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ABSTRACT 

Offshore platforms in the North Sea are generally 

subjected to high cyclic loads which cause extreme fatigue 

problems particularly at the intersections of steel 

tubular members. 	In view of the shortcomings of these 

more traditional tubular joints, a new approach is suggested 

and developed in this thesis and that is the use of composite 

joints. 

The structural complexity of the proposed composite 

joints required the development of a special purpose 

computer system for stress analysis. 	The computer system 

includes a doubly curved thin shell element (Semi Loof shell) 

used in conjunction with the newly developed hexahedronal 

solid element (Semi Loof solid), thus permitting composite 

thin steel and thick concrete forms to be analysed. 

Various numerical examples were selected to establish 

the validity and generality of the newly developed solid 

element. The element passes the patch test with rectangular, 

parallelogram, arbitrary quadrilateral and general hexagonal 

geometries. Mixed meshes consisting of Semi Loof shell 

and Semi Loof solid elements also passed the patch test. 

An experimental study was carried out on straight 

tubular composite connections and comparison of the results 

with the finite element results verified the accuracy of the 

newly developed Semi Loof solid element. 
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Having thus established the performance and validity 

of the finite element system various types of tubular 

connections and tubular joints suitable for use in the 

construction or repair of pipe lines and offshore structures 

were analysed. Certain conclusions were drawn with 

respect to the design, fabrication and installation of the 

proposed composite connections in the construction and repair 

of North Sea structures. 
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NOTATION 

a 0 	 initial crack size 

acr 	the critical crack size 

B strain-displacement matrix 

C 	carbon 

c r  

cu 

di  

D 

chromium 

copper 

unit displacement vector at a point i 

modulus matrix 

E modulus of elasticity 

e eccentricity of a branch from central axis of chord 

element nodal force vector 

J the Jacobian matrix 
} 
J 	vector of covariant base vectors 

j 	vector of contravariant base vectors 

Ke 	element stiffness matrix 

L Loof shape functions 

Mx 	flexural moment per unit width perpendicular 

to the x-direction at Loof point 

Mn 	manganese 

Mo 	molybdenum 

N shape functions 

Ni 	nickel 

Pxi'Pyi'Pzi applied nodal loads along the x,y and z axes 

at point i, respectively 

t thickness of shell 

u,v,w 	global displacement components at a point 

✓ vanadium 
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W 

W
* 
 

WA'WB  

Y  xy 

Yxz'Yyz 

S 

Se  

SA' SB 

e 

ex,sy,sz  

shape function array 

constrained shape function array 

partitions of the shape function array 

which refer to the wanted and unwanted 

variables respectively 

shearing components of strain in the 

xy plane 

transverse shear strain components in the 

xz and yz planes respectively 

vector of global displacements 

vector of global displacements for 

an element 

element displacements associated with the 

wanted and unwanted variables 

strain vector 

normal components of strain in the x, y 

and z directions respectively 

natural coordinate in the xi direction 

natural coordinate in the eta direction 

natural coordinate in the zeta direction 

rotations of normals to the mid-surface 

about the x and y axes respectively 

poisson's ratio 

stress matrix 

global stress matrix 

normal components of stress in the x and y 

directions respectively 

shearing stress 

global shearing stress 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 INTRODUCTION 

Increasing power consumption and the importance of 

petroleum for the production of energy are reflected in the 

increase of crude oil exploration. New discoveries have 

been found under the sea in the shallow regions of the Gulf 

of Mexico, the North Sea, the Persian Gulf, the coasts of 

Gabon, Nigeria and Senegal and more recently in Alaska. 

The first drilling rig in the Gulf of Mexico was 

installed in 1947, and in the following years rapid progress 

took place not only in the number of platforms constructed, 

but also in the water depths in which platforms were installed, 

for example, in the years 1955, 1965 and 1967 depths of 33, 

95 and 133 meters were reached. 

In August 1972, Amoco installed the first jack-up gas 

production platform in 25 meters of water in the Laman Bank of 

the United Kingdom section of the North Sea. This installation 

was the start of the rapid development which has recently 

resulted in the installation of a Chevron platform in 168 meters 

of water in the Ninian Field. 

The North Sea and Eastern and Western Canada, where 

the number of installations is increasing, have the most 

hostile marine environments with severe waves, Fig. (1,1), 

and deep water. 	As the water depths increase in this 

hostile environment, so do the structural complexities, and 

there is an increasing need for more economical and efficient 
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designs. Structures in the North Sea are generally subjected to 

dynamic loads which cause extreme fatigue problems, particularly 

at the intersections of tubular members (tubular joints). 

Various problems,such as cracking and even complete separation 

at the intersection of tubular joints,have been cited in the 

literature. 

In view of the shortcomings of the more traditional 

tubular joints, a new approach is suggested and developed in 

this thesis and that is the use of composite joints. 

Accordingly, this thesis is concerned with the design, analysis 

and testing of a range of suitable composite joint configurations. 

In this chapter a general review of joint problems in 

respect of analytical and experimental studies is carried out. 

In chapter 2 the finite element method for shell analysis 

is reviewed. 	A description of Semi Loof shell is presented 

and the finite element method is extended to analyse both 

shell and solid elements. 

In chapter 3 the theory of the newly developed Semi 

Loof solid element is described together with the extensive 

series of tests carried out to establish the validity of the 

proposed element formulation. 

In chapter 4 an extensive series of experimental tests 

carried out on straight tubular connections are described. 

Several small scale and one larger scale specimens were 

tested. 

In chapter 5 the elastic behaviour of straight tubular 

connections and tubular joints is discussed. 

In chapter 6 concluding remarks of a general nature are 

made together with recommendations for future research. 
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1.2 REVIEW OF PREVIOUS WORK ON TUBULAR JOINTS 

Most joints in offshore platforms are complicated and 

consist of many interconnecting members. 	The lack of 

suitable analytical tools for the analysis of such complex 

structures has, in the past, meant that most information 

available on the stress distribution in tubular joints was 

obtained by experimental methods. However, a small number 

of analytical studies have been carried out on tubular joints. 

1.2.1 Static Experimental Studies 

During the last four decades extensive and varied 

experimental studies have been carried out on typical T, Y 

and K joints. 

Roark 11  measured the effect of a concentrated external 

load applied normal to the surface of thin walled cylinders, 

from which he derived empirical expressions for circumferential 

and longitudinal stresses of T joints. 

Later Schoessow and Koaistra 12  collected very 

extensive empirical data by studying a specimen which 

consisted of a 1.35 m diameter cylindrical shell to which 

two 0.3 m diameter tubes were symmetrically attached. The 

two branches were loaded in tension, compression, longitudinal 

bending and circumferential bending. Electrical strain gauges 

were placed on the inside and outside surfaces of the branch and 

chord tubes. 

In the studies conducted by Bryant and Pease 1'3  attempts 

have been made to compare stresses computed theoretically with 

those determined experimentally. 	The test consisted of 

unreinforced T-joints 0.175 m outside diameter chord where 

strains were measured using electrical resistance strain gauges. 
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Subsequently, the experimental results were compared with 

values derived from the Bijlaard 1.4  equations with fair 

agreement. A series of tests on T-specimens was also conducted 

at the Southern Methodist University 1.3  , with only one of 

nine specimens being instrumented with strain gauges. From 

these tests, a relationship between failure load and wall 

thickness/diameter ratio was derived. 

Toprac 1.5  conducted a study of the strength and rigidity 

of tubular joints. Tubes of 0.1 m and 0.2 m diameter were 

welded to make angles of 90°  and 135°  with each other 

respectively. 	These tests were basically concerned with 

the moment rotation of the joint and the value of plastic 

moment. 

Beale and Toprac 1.6  later carried out a two phase 

research project on tubular joints. 	Phase one involved 

seven joints with various geometrical properties, tested 

within the elastic range and with each subjected to four 

loading conditions (direct tension, direct compression, 

longitudinal moment and circumferential moment). 	All of these 

specimens were strain gauged, and subsequently they were 

loaded to failure with a tensile load on the brace. 	The 

experimental results for the stresses in a T-joint indicated 

that inadequacies existed in the then popular theoretical 

method of Bi j laard' s 	However comparing the results predicted 

by Dundrova's equation 1'7  indicated a comparatively good• 

correlation between theory and experiment. 	The second 

phase of the project expanded to cover Y and K specimens 

and the Dundrova equation was used for correlation. The 

vertical and horizontal displacements were obtained after 
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application of each load increment, also observations were 

made on the stress coats after each increment of load to 

determine the direction of principal stress. 	The variation 

of stress with respect to geometrical properties was studied 

and empirical equations for T and Y joints were derived, 

together with an approximate evaluation for K joints. However 

investigations carried out by other researchers have subsequently 

proved the inapplicability of this empirical equation for large 

diameter K joints. 

An 'ideal' T-joint was constructed and tested at Oak Ridge 

National Laboratories 1.8 • 	The joint was formed by welding 

together two thick-walled carbon steel cylinders. The weldment 

was annealed and the inner surface machined by boring. The 

joint was annealed a second time and the outer surface machined 

by turning on a lathe, milling and finally by hand finishing 

in the junction region. 	The absence of a weld toe permitted 

gauges to be placed within 1/8 of an inch from the point of 

intersection of the branch and chord. 	Strain gauge data were 

assimilated for 13 load cases, six branch loads, six chord 

loads and an internal pressure. 

An experimental study of the effect of stiffening rings on 

the strength of a Y-joint was carried out by Miller and 

Trammel 1'9 
	

A 1.35 m chord diameter was used to allow 

access to develop full penetration welds. 	The joint was 

subjected to combinations of axial load, longitudinal and 

circumferential moment but did not produce any guide to the 

number and size of stiffening rings required. 
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1.2.2 Static Analytical Studies 

Early attempts at analysis of tubular joints began with 

the solution of classical equations for cylindrical thin 

shells, such as Donnell's equation 1.10  and Flugge's 

equation 1.11  

Yuan 1.12  , using both the Donnell and Flugge gge equations 

analytically, studied cylinders subjected to diametrically 

opposed concentrated loading. 

Bijlaard 1.3,1.4  used an equation similar to Donnell's 

equation with the displacement represented by a double Fourier 

series in a natural coordinate system lying on the shell 

surface. This equation overcomes some of the known inaccuracies 

of Donnell's equation for long shells. For tubular T-joints 

in which the branch was subjected to an axial load, the load 

transmitted to the cylinder was assumed to be radially directed 

and uniformly distributed over a square area. 

Although the above theories have done much to further the 

understanding of the behaviour of tubes subjected to external 

load, several limitations in their range of application have 

been found. 

An improved representation of the stresses in a T-joint 

has been presented by Dundrova 1.7  . In this analysis, loads 

were transmitted to the chord along the line of intersection 

with the branch, and it was assumed that the chord was 

subjected only to forces directed parallel to the branch axis. 

Dundrova extended the analysis to Y and K joints. In all of 

these connections, compatibility of the displacements in the 

axial direction of a branch was maintained between the branches 

and the chord. However the flexural interaction between a 
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branch and chord was not considered. 

Scordelis and Bouwkamp's1.13 analytical study of a 

tubular joint was based on Donnell's equation. This analysis 

was improved to accept five different types of loading viz, 

radial load, tangential load, transverse moment load, 

longitudinal moment load and radial moment load, and this was 

achieved by applying the load in the form of associated 

Fourier series. 	The results derived from analysis showed 

an inherent improvement by correct evaluation of the load 

transfer from branch tube to the chord member over previous 

methods. 

It is apparent that the classical methods of shell 

analysis which have been used by previous investigators deal 

with the tubular joint problem only approximately because of 

the difficult boundary conditions at the cylinder intersection 

line. These methods have considered only the axial stiffness 

of the branch in computing the forces transmitted by the 

branch to the chord and have neglected the flexural stiffness 

at the chord-branch intersection. 

The problems associated with classical methods of 

analysis have been gradually overcome with the emergence of 

the finite element method. 	The finite element method has been 

developed and applied to tubular joint problems since the 

latter part of the last decade. 	A literature survey of this 

method is presented in chapter 2. 
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1.2.3 Experimental Fatigue Studies 

Many structures suffer a reduction in strength after 

being subjected to cyclic loading. This phenomenon is known 

as fatigue, and is essentially a process of crack initiation 

and subsequent propagation. 

The fatigue strength of platforms designed to operate in 

the North Sea is critical compared with those for other marine 

areas. 

The first study on the behaviour of T-joints under cyclic 

loading was made at the University of Texas 
1.14  and considered 

the influence of geometrical stress concentration on fatigue 

in lower range of cycles (about 105  cycles). 	The results 

indicated the considerable effect of geometrical parameters on 

fatigue and also emphasised that the effect of weld profile 

and stress range should not be neglected. This project was 

later expanded to investigate the effect of stress range and 

15 
weld profile (convex weld surface or concave weld surface 1. 	) 

which showed that almost all the crack initiated at the stress 

concentration point in the chord wall. 

A research team at the University of California 
1.16  

also reported the importance of stress concentration and its 

influence on the fatigue behaviour of joints. 

In the United Kingdom research was carried out on the 

effect of eccentricity on K joints 
1.17  and it was reported 

that the highest fatigue strength was obtained when branches 

overlap each other at the intersection whereas the lowest 

fatigue life occurred when they were separated. 
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Later a random load fatigue test was conducted on a 

tubular welded T-joint subjected to in-plane bending 1.18 

The purpose of the test was to develop techniques able to 

predict the fatigue life of a typical joint. 	It was noted 

that the life of a joint was dependent on the crack 

propagation through the wall of the tube but the tests 

failed to provide a basis for the prediction of the fatigue 

life of joints in general. 

A series of fatigue tests under constant and variable 

amplitude loading were carried out to evaluate the suitability 

of Miner's Rule 1'19  for cumulative fatigue damage 

calculation 1'20  . 	Very good correlation of data was 

obtained from constant-amplitude fatigue tests and the AWS 

design curve 1.21 which suggests that AWS design curves 

are a safe criterion for fatigue analysis. 	Comparison of 

variable-amplitude data also suggests that Miner's Rule was 

a safe criterion for cumulative damage calculations. 

The scatter of the results observed in various fatigue 

tests mentioned in this review could be due to the fact that 

most of the available data of welded connection relates to 

test specimens with small diameters, which are not in every 

respect representative of the joints in offshore structures. 

Most of the experiments were performed under constant stress 

amplitude and high frequency, whereas an offshore structure 

is subjected to random loading with fairly low frequency. 

A number of other factors influencing the fatigue behaviour, 

such as corrosion, growth of marine organisms and low 

temperature which should also be simulated in laboratory 

experiments. 
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1.2.4 Fatigue Life Prediction 

The service life of tubular connections subjected to 

fatigue can be determined with the aid of either S-N curves 

and the damage assessment rule or fracture mechanics methods. 

(i) S-N Curves and Damage Assessment Rule: 

A commonly used fatigue characteristic of a 

material subjected to repeated cycles of stress of a constant 

magnitude is known as the S-N curve. 	S is taken as the hot 

spot stress and N the number of cycles to failure. A typical 

S-N curve is shown in Fig. (1,2). 	The difficulties in 

determining the hot spot stress at a tubular intersection have 

now been substantially solved with the advent of the finite 

element method. 

The most generally applied damage assessment rule to the 

design of offshore structures is the Palmgren-Miner linear 

damage rule. 	This rule defines the fraction of the fatigue 

life consumed by a given stress range in one year as the 

ratio of ni, the number of cycles in the stress range i 

occurring in one year to the Ni, the number of cycles required 

in that stress range to cause failure. 	The total damage per 

year is given by the sum of the fractions of consumed life. 

m 	n. 
Damage in one year 	E 	Nl < 1 	(1.1) 

1=1 	i 

where m is the number of stress ranges considered. When the 

cumulative damage reaches unity the structure's life time is 

considered to be complete. 
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(1.3) 
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(ii) 	Fracture Mechanics: 

Fatigue is usually considered to be a two stage 

process consisting of crack initiation and crack propagation. 

In welded steel structures crack initiation is assumed to 

have occurred due to the presence of weld defects so that the 

whole of the fatigue life of a welded connection can be 

considered as being taken up by crack propagation. 

The fracture mechanics method uses a factor called the 

stress intensity factor (Ki) to describe the stress field near 

the crack tip. 	The stress intensity factor is a function of 

geometry, crack size, and the loading condition. 

Having the stress intensity factor for the material and 

assuming that the material is behaving elastically through 

to failure, it is a relatively simple matter to predict life. 

Assuming some starting point ao  (the initial crack size) and 

end point acr  (the critical crack size), the crack growth rate 

can be expressed as 

da 
dN 

= C(A Ki)m 	 (1.2) 

where C, m are material constants. 	The life due to crack 

propagation can be obtained by integration 

The value of the stress intensity factor can be found 

theoretically for a simple welded joint by using the finite 

element method. 



In the case of a complicated joint a detailed three-

dimensional finite element analysis in the region of the 

crack, which takes account of weld profile and provides for 

singularity at the crack tip is required to evaluate the 

stress intensity factor, this has proved to be very difficult, 

costly and time consuming. 	Therefore the stress intensity 

factor for the joint has usually been obtained from experimental 

data 1.22 

The fracture mechanics approach is in principle superior 

to the S-N curve method but it is not sufficiently operational 

for complex joints and even an analysis of a simple T-joint 

is costly and time consuming. The fracture mechanics technique 

is relatively new and untried for joints and further work is 

required to confirm its applicability. 

1.3 MATERIAL SELECTION FOR PLATFORM JOINTS 

Offshore platforms are subjected to wide variations in 

loading and this places severe demands on such structures and 

the materials from which they are built. 

Criteria for joint design and material selection are now 

discussed with respect to static strength, fatigue resistance, 

fabrication and economy. 

1.3.1 Behaviour of Steel 

(i) 	Static strength - A fundamental requirement 

for the satisfactory behaviour of tubular structures is 

adequate static strength of the joints. 

A study 1.23  on the most appropriate steels for North 

Sea construction recommended the production of a very high 

24 



ductility steel and this is designated BS 50D grade. 

(ii) Fatigue Behaviour - The fatigue strength of a 

tubular joint depends on such factors as, ultimate yield stress, 

stress range, joint geometry, corrosion and sea temperature. 

The geometrical factors affecting joint strength are the 

diameter/thickness ratio, the overlapping and spacing of 

the tubes at the joint, the joint eccentricity and the 

distance from adjoining joints. 

A survey 1.24  of the fatigue behaviour of different steels 

showed that the fatigue resistance of steel with a yield strength 

of up to 350 N/mm2  (50 K_si) increased significantly and 

approximately in proportion to the yield strength. However, 

for steels with a yield strength of 420 N/mm2  (60 Ksi) or 

higher there is no marked improvement in the fatigue resistance. 

(iii) Fabrication - A property required of a steel 

during the construction of an offshore structure is that it 

should be capable of being formed into tubular components. 

This implies that the steel must be resistant to deterioration 

during hot and cold forming and be capable of being welded 

under site conditions. Experience indicates that limiting 

the carbon equivalent (C,E ) to a maximum of 0.45% where 

Mn 	Cr+Mo+V 	Ni+Cu 
C.E = C + — + 	 + 	 

6 	5 	15 
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can be a most useful guideline in selecting steel for tubular 

joints. 



(iv) Economy - The structure should serve the intended 

purpose in a safe and efficient manner under the environmental 

conditions involved, and should be constructed and maintained 

at minimum cost. 	All steel platforms at present use steel 

plate as the construction material and welding for joining 

the segments. The cost of the steel and the subsequent costs 

of fabrication are dependent to a high degree on the properties 

of the steel chosen. 	The correct choice of steel is 

obviously of significant importance. 	A major cost which 

must also be considered is that of underwater welding during 

the maintenance of an offshore structure. 

1.3.2 Behaviour of Concrete 

Marine structures in reinforced concrete have been in 

existence for over 70 years and have proved to be exceptionally 

durable in this harsh environment 1.25 

Prestressed concrete structures have been in use for 

about 40 years and have also exhibited excellent durability 1.26 

(i) Static Strength - Normal concrete with high 

compressive strength 35-50 N/mm2  (5-7 Ksi) possesses poor 

flexural, shear and tensile properties. It is necessary to 

improve these properties to justify the use of concrete for 

the 'construction of joints. 	The tensile strength of concrete 

could be improved by using steel fibres to reinforce the 

cement. Other alternatives could be the use of multiaxial 

prestressing or structural steel cover plates and stiffeners, 

all producing a triaxial state of stress. 
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(ii) Fatigue Behaviour - Under cyclic loading the 

fatigue endurance of concrete in compression is higher than 

that of steel 1.27 . 	The fatigue failure of concrete is not 

as critical as steel, which is of a brittle nature. 

In a corrosive environment the fatigue endurance of steel 

can drop considerably, whereas concrete being dense and relatively 

impermeable to the corrosive environment can even offer an 

effective protection system to the steel 1.28 

(iii) Fabrication - Concrete has the property that it 

can be formed into any complex geometrical shape of any size 

and this is an important advantage for joint construction. 

(iv) Economy - The utilisation of concrete for offshore 

platforms has the advantage of low initial cost. 	The use of 

traditional civil engineering labour and methods of construction, 

in place of the highly skilled welder, can produce concrete 

structures which are more economical than steel structures. 

Experience gained with concrete platforms already installed, 

indicates that the maintenance cost for concrete platforms 

is far below that for steel. 	A conservative estimate 

would be in the range of 1% of construction cost compared with 

5% for maintenance of a steel jacket 1.29 	This lower 

maintenance cost of concrete could be attributed to its 

progressive mode of failure compared with the sudden collapse 

which can occur with steel structures in fatigue failures. This 

progressive failure mode of concrete enables repairs to be 

carried out in situ before more significant and 

expensive damage occurs. 
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1.4 CONCLUSIONS 

An investigation of the literature on tubular joints, 

as used in North Sea platforms, indicated that welded steel 

joints suffer seriously from low fatigue resistance due to 

the high stress concentration at the weld toes. A possible 

practical solution is to construct composite joints with 

steel and concrete. 	The use of concrete in the region of 

high stress of a joint, spreads the load over a greater 

area thus reducing the stress concentration. 	Furthermore, 

the concrete can support the walls of steel tubes and reduces 

the high local deformations. 

Composite joints might reasonably be expected to perform 

well in service due to the fatigue endurance of concrete, the 

low initial costs, the low maintenance costs, the corrosion 

resistance, the large energy absorption and the high strength 

carrying capcity. 	These attributes are derived from the 

inherent qualities of both the concrete and the steel. 

1.5 OBJECTIVES AND SCOPE OF THE PRESENT RESEARCH 

Failures in welded steel joints in offshore platforms 

have been reported in increasing numbers in recent years. 

As a result of these failures more efficient alternative joints 

of composite construction are proposed in this thesis. The 

efficiency, safety and economy of the proposed family of 

composite joints is explored by reference to both analytical 

and experimental studies. These studies cover a wide range 

of composite connections employed in both the repair and 

construction of various elements of marine structures, including 

tubular nodal joints, straight tubular connections and pipe lines. 
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The analysis is carried out using the finite element method 

and for this purpose a new solid element is developed which 

can be combined with an existing generally curved shell 

element as required for composite construction. 	A special 

purpose mesh generation program is developed to reduce the 

manual intervention during the data preparation for a finite 

element analysis. 

29 



30 

CHAPTER 2 

FINITE ELEMENT ANALYSIS 

2.1 INTRODUCTION 

The stress analysis of tubular joints with two or 

more cylindrical shell surfaces intersecting at a 

node, is of an extremely complex nature. The classical 

methods of shell analysis can only deal with the problem 

approximately, because of the unknown boundary conditions 

at the intersection line. 

The advent of the finite element method and flat 

shell elements has in recent years enabled engineers to 

approximately analyse tube intersection problems with 

their complex geometry and boundary conditions. However, 

in order to effectively apply the finite element• method to 

the analysis of composite tubular joints a doubly curved 

thin shell element and a compatible solid element are essential. 

The Irons Semi Loof shell element, the best thin shell 

element currently available, can be employed to idealise 

the steel tubes. The Semi Loof solid element, developed 

and presented in this thesis, can be employed to idealise 

the concrete sections. 

A semi automatic mesh generation program was developed 

to minimise the manual effort required in the preparation 

of data for a finite element analysis. This mesh 

generation facility can take account of the geometries 

of cylindrical surfaces and intersection lines for any 

composite tubular joint configuration. 



A linear elastic analysis of a welded T-joint was 

carried out to verify the accuracy of the Semi Loof 

shell element by comparison with an experimental model. 

This analysis also served to establish the utility of 

the mesh generation program. 
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2.2 REVIEW OF PREVIOUS WORK ON THE FINITE ELEMENT ANALYSIS 

OF JOINTS 

At the beginning of the last decade at the University 

of California, some attempts were made to analyse T, Y and 

K joints by the finite element method. 	In this analysis 

the curved surface was approximated by flat elements. 

The first attempt 2°1  used a triangular flat plate 

element with five degrees of freedom at each node. The 

element stiffness properties were derived from membrane 

and bending element stiffnesses, 	The two types considered 

were the Turner and Clough membrane element with two 

degrees of freedom (u,v) at each node, and the Clough and 

Tocher bending element with three degrees of freedom 

(w, 6x, 6y) at each node. The effect of a branch member 

in a T-joint was included by a constant uniform load applied 

on the chord around the intersection line. The analytical 

results derived from a reasonable refined mesh showed a 

fair agreement with experimental results for a T-joint. 

The next attempt to analyse a tubular joint 2.2  used 

as a basis a triangular flat shell element formed from the 

constant strain triangular (CST) membrane element combined with 

the Hsieh, Clough, Tocher (HCT) bending triangle. Four 

of these membrane/bending triangles were then used to 

construct a quadrilateral shell element with a non-planar 

central node. This quadrilateral shell element was used 

to analyse a K-joint. 	The finite element program was 

divided into two overlays on a CDC6400 computer and this 

allowed a half-bandwidth of 230 to be accommodated. The 

K-joint was analysed by a substructure technique. 
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Later an improvement in the analysis of tubular 

joints was achieved by using flat triangular and quadri- 

lateral shell elements developed by Johnson 2.3. 	The 

quadrilateral element was constructed of four constrained 

linear strain membrane triangles (CLST) plus four 

bending tiangles (HCT) with five degrees of freedom at 

each node (20 d.o.f. total). 	A K-joint with separate 

branches was analysed and the results compared favourably 

with Bouwkamp's experimental test 2.4. Although the 

correlation of results demonstrated the excellent 

capabilities of the quadrilateral element, a small 

inaccuracy arose due to the absence of the third rotational 

degree of freedom which introduced constraints on the 

bending of the branch elements adjacent to the intersection 

line. 

The aforementioned families of flat plate elements 

provided only an approximate idealisation of a curved 

shell surface and this is inherently inaccurate. Furthermore 

this type of element has the disadvantage of creating 

incompatibilities at a shell intersection line. 

Early attempts to analyse tubular joints were 

somewhat hindered by the computational demands associated 

with the large number of elements required to model the 

curved geometry and structural behaviour of the joint. 

A crossed joint of equal diameter tubes was analysed 

using the (SATE) finite element program 2.5,  and the 

results were compared with the results derived from a 

parallel experiment. 	A curved triangular shell element 

2.6  by Visser .6  was used to study the local stress 



pattern in the cross-joint with specific weld sizes. 

This triangular element has three transitional degrees 

of freedom at the mid side nodes (u,v,w) and six degrees 

of freedom at the corner nodes (u,v,w,ml,m2,m3  where m are 

moments). 	This element was also used for the analysis 

of stiffened and unstiffened T and K joints 2.7 	However 

a fine mesh idealisation was required to obtain agreement 

with the experimental results. 	The thickness of the 

elements in the intersection region was increased by 1.1 

to 1.5 times the normal wall thickness to allow for the 

influence of the weld size. 

A three-dimensional hexahedral isoparametric element 

with a total of 48 degrees of freedom developed by Dovey, 

was used for the stress analysis of grouted and ungrouted 

connections 2.8. 	An accurate computation of the stress 

concentration factors in chords and branches was achieved 

by correct idealisation of the weld zones. A special 

purpose mesh generation routine automatically generated 

the weld profile geometry according to AWS guidelines, 

while Greste's 	mesh generation 2.3  generated the mesh 

numbers and coordinates. The coordinates of the weld 

toe, root and intermediate nodal points, were automatically 

computed depending on the local dihedral angle between the 

tangent planes of the intersecting cylindrical surfaces. 

The mesh idealisation for this program, when compared with 

previous finite element analyses 2.1-3  of joints, requires 

far less elements. Nevertheless the element's large number 

of degrees of freedom made substructuring and optimum node 

numbering of vital importance. 
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Recently, a shell and solid element has been used 

to study non-linear behaviour of T-joints 2.9. An 

elastic analysis of a joint was carried out using a shell 

element constructed of CST membrane element and 

Zienkiewicz's non-conforming bending element to provide 

data for a local non-linear analysis of the area near the 

intersection line. 	An isoparametric solid element with 

63 degrees of freedom which was subdivided into layers 

throughout the thickness to represent the spread of 

plasticity, was used for local non-linear analysis. This 

non-linear approach made the ultimate load study of joints 

possible only for marine regions where fatigue is not a 

dominant feature. 

The sophisticated thin shell element developed 

by Irons was applied to T-joint analysis 2.10  The results 

derived from a fine mesh (with 60 elements) compared well 

with Oak Ridge Laboratory experimental results. 
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2.3 	FINITE ELEMENT PROGRAM 

To apply the finite element method effectively 

to the analysis of composite tubular joints attention 

should be given to the choice of finite elements, the 

mesh generation routine, the input and output facilities 

and the computational efficiency of the program. 

2.3.1 Finite elements 

A careful study of the published behaviour of 

existing thin shell elements in joint analysis, resulted 

in the choice of Iron's Semi Loof shell element. 

This element has the advantage that it will 

produce accurate results with only a medium mesh and can 

idealise sharp corners and intersecting shell surfaces. 

In order to model the concrete parts in the 

finite element analysis of composite tubular joints, a 

three-dimensional solid element which could be mated with 

the Semi Loof shell element was required. Since no such 

element existed a new Semi Loof solid element was 

developed. The nodal configuration is based on the twenty 

node isoparametric solid element but has an additional 

eight rotations on the top surface to attain both C°  

continuity and a semblance of C1  continuity with the Semi 

Loof shell element. 	The theory and verification of this 

new mixable solid element, Semi Loof solid, is presented 

in the following chapter. 
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2.3.2 	Input Facilities and Mesh Generation 

To achieve a satisfactory analysis of a tubular 

joint, the finite element mesh should exhibit the 

following properties: 

(i) Since the highest stress gradients occur 

in the immediate vicinity of the branch to chord connections, 

the elements should become smaller and more concentrated 

in these regions. 

(ii) Near the ends of the chord and the branches 

where the stresses are more uniformly distributed the 

elements may be considerably larger and therefore the 

mesh coarser, though not to such an extent that the curved 

surface is poorly described. 

(iii) The nodes should be numbered so as to achieve 

the smallest possible bandwidth for the stiffnes's matrix, 

when a banded solution procedure is used. 

(iv) The elements should be numbered or presented 

so as to achieve the smallest possible front width for the 

stiffness matrix, when a frontal solution procedure is used. 

A semi-automated mesh generation routine was 

developed to provide data for typical T, Fig. (2,1), Y 

and general K, Fig. (2,2), joints. 	The degree of 

refinement of the mesh can be chosen by the user. The 

user can also decide on the discretization of mesh, 

when comparison with experimental results are involved. 

For example, the strain gauge locations can be adjusted to 

match an element node or vice versa, in order to simplify 

the interpolation of results. 



To generate the coordinate data the user 

specifies the x and z coordinates (elevation) 	of element 

corner nodes. 	The program then generates the three- 

dimensional coordinates of the element corner and mid-side 

node, computes the node coordinates along the intersection 

line and then generates the node coordinates of the branches 

automatically. The fdrmulae for the coordinates of nodes 

on the intersection line for T, Y and general K joints are 

presented in Appendix 1. 

The input parameters required for a T-joint are; 

(i) The length of the branch, Q. 

(ii) The length from the centre of coordinates 

system along the chord to the central 

axis of the branch,Qb. 

(iii) The radius of branch and chord, r and R. 

(iv) The number of elements along the inter-

section line, n. 

(v) The first and last node numbers on the 

intersection line, N1  and N2. 

A typical T-joint is shown in Fig. (2,3). 

The input parameters required for a Y-joint are; 

(i) The length of the branch, Z. 

(ii) The length from centre of coordinates 

system to the axis of branch, Qb. 

(iii) The branch inclination with respect to 

the chord, (I). 

(iv) Radius of branch and chord, r and R. 

(v) Number of element at the intersection 

line, n. 
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(vi) First and last node numbers on the inter-

section line, N1  and N2. 

A typical Y-joint is shown in Fig, (2,4). 

The input parameters required for a K-joint 

with positive or zero eccentricity are, a combination of 

T and Y or Y and Y joint mesh generators. 

Parameters required for a K-joint with negative 

eccentricity are; 

(1) 	The branches inclination with respect 

to chord, cp 1  and (1)2. 

(ii) The lengths of branches, Q 1  and Z2'  

(iii) The length from centre of coordinates 

system, Qb  and Qb  . 
1 	2 

(iv) Radius of the branches, r 	and r 
b1 	

b2. 

and radius of chord, R. 

(v) First, mids and last node numbers on 

intersection line, N1-N6. 

(vi) The coordinate X of point N2. 

A typical K-joint is shown in Fig. (2,5). 

2.3.3 	Solution Facilities 

A finite element idealisation of compositie 

tubular joints, even with optimum numbering of the nodes, 

produces a stiffness matrix with a large bandwidth. In 

order to accommodate this large bandwidth an efficient, 

practically unlimited, bandwidth equation solver 2.11  was 

implemented in the finite element program. This solution 

processor enables analyses of composite joint meshes 
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consisting of large numbers of Semi Loof solid elements 

(68 DOF) and Semi Loof shell elements (32 DOF). 

A computer subroutine was written to store the 

equations in blocks and the operations are only performed 

on non-zero figures. The available high speed core of 

computer is used in an optimum way by calculating the 

maximum block size possible. A comparison of the block 

solution with the frontal solution showed that an equal 

amount of computer time was required. The main difference 

between the two methods is that the block solution requires 

optimum node numbering whereas the front solution requires 

optimum element numbering. 

2,3.4 Output Facilities 

To simplify the interpolation of finite element 

results the von Mises stresses (inside and outside surfaces) 

of Semi Loof shell are computed from the moments and membrane 

stresses, according to the following formula for shells: 

a y 

a Xy 

= 

= 

± 	6 M 	+ 
X 

MX 	+ 

~3xy + 

a 
Xm 

o 
ym 

T Xym 

t2 

± 

± 6 
t 2 

in which t is the shell thickness and a , a 	and T 
Xm ym 	Xym 

are membrane stresses. The positive and negative signs 

are for the outside and inside surfaces respectively. 
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Principal stresses for Semi Loof shell are computed 

from ax,  ay  and axy  using Mohr's circle and similarly for the 

Semi Loof solid from ax, ay' az,  axy, ,a ,a  azx using 

standard transformation relationships, Appendix 2. 
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2.4 	THEORY OF SEMI LOOF SHELL ELEMENT 

The quadrilateral Semi Loot shell has three 

types of nodes, 

(i) Corner and midside nodes at which three 

global displacement components (Ui,Vi, W1) are taken as 

nodal variables. 

(ii) Loof nodes which are located at the Gaussian 

quadrature positions for two point integration along the 

element sides. 	Consequently the two nodes along a side 

are positioned at a distance of 1/2 / side length, from 

centre. The nodal parameters at Loof node, j, are chosen 

to be the two rotations Q , e yz which are respectively 

normal and parallel to the element edge and are expressed 

with respect to a local coordinate system defined by 

the orthogonal unit vector systems (X, Y, Z). 

(iii) The central node at which the nodal variables are 

chosen to be the three global displacement- components together 

with the two rotations, e XZ and e ~z. 

The element has a total 43 degrees of freedom which 

will later be condensed to 32 by the prescription of 

appropriate constraints on the shear behaviour of the 

element. 

The two families of shape functions are the corner-

midside nodes family 2.12 Ni . ( ,n) where i = 1 to 8, and 

the Loof family 
2.13 LJ ( ,n), including the central node, 

where j = 1 to 9. 

A preliminary requirement is the generation of the 

local coordinate system (X, Y, Z) at Gauss and Loof 

points. Denoting the global displacements of point P (x,y,z) 



by 

u 
{ d } 	= 	v 	(2.1) 

w 

considering the shape function N then, 

{ d } = [N] {d e l 	(2.2) 

The displacement components in each of the local directions 

x, y and z are denoted by u, v and w respectively and are 

obviously projections of {d }on the unit base vectors 

and therefore given by the scalar product; 

u = { x }T  {d } = {x }T  [N1{d e  } (2.3) 

with similar expressions for v and w. 

In order to accomplish in-plane derivatives of 

u and v, with respect to local directions based on 

eqn. (2.3), the formulation 

au {x} C T aN 
= 	

{de} 
ax 	ā (2.4) 

where 
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is desired. 

The out of plane derivatives āz , āZ require 

special attention. 	The deformation is as 

Du
—
_ 
(—
Du 

)
L + au N 

āZ 	(āz) 	(—
Du 
 ) (2.6) 

where the first term relates to the contributions from 

the rotations at the Loof and central nodes and the second 

term denotes the contribution from the displacements of 

the corner and midside and central nodes. In order to 

evaluate the first term, a vector, Tj, is defined at each 

Loof node and central node, j, as follows: 

T3 = t3  Zj (2.7) 

where tj is the shell thickness at node j. 

The rotation shared by adjacent elements can 

be expressed by means of the vector, R3, as 

Rj  = Tj  X YJ 	(2.8) 

and the slope along the element edge, at node j, is given 

by 

Sj= t Yj  (2.9) 

with the aid of these vectors the first term in eqn. (2.6) 

can be expressed as 
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(āZ)L 	 3 = E [{R}T{x} t3 exz + {s3 }T{x} t3 Qyz] 	(2.10) 
j=1 

A similar expression exists for (āZ)L. Using eqn. (2.7) 

the vector T at any point can be interpolated as 

9 
T = 	E L3  T3  

j=1 
(2.11) 

The vector thickness T is in general not normal to the mid 

surface, which implies that a relative displacement of two 

points (say A and B), A not orthogonally above B confined to 

the plane XZ, is 

( a u)N 	- UB-UA = Tx 9u 
a z xz 	t 	t 	ax (2.12) 

where t is the shell thickness at the point in question 

and Tx  is the component of T along the local x-axis. Adding 

the correction (Kirchhoff and Love assumption) gives 

au N 	T aN 	T aN (aZ  ) = t  {Tx  [xJ ( 
tx ) 

 + Ty  [xJ āy ) } { se } (2.13) 

A similar expression can be written for (āZ)N. 

The degrees of freedom corresponding to the 

displacements of the central node are combined to create 

a deflection normal to the element at its centre, the 

in-plane components are then discarded. Of the remaining 

43 degrees of freedom a further 11 variables are eliminated 

to give a final total of 32 degrees of freedom for the element, 



which are; 24 displacement components, with respect to the 

global axes at the corner and midside nodes, 8 rotations 

normal to the element edge at each Loof node (i.e. exz). 

The eleven constraints fall into the following 

three classes: 

(i) The eight unwanted rotations at the Loof 

nodes. 	The slope of the normal in the side 

direction generates a shear strain yyz. 	It is natural to 

constrain it by putting yyz  = 0 at Loof points knowing 

that the lateral deflections W are identical for neighbouring 

elements. Furthermore one can argue that as W varies 

quadratically with y and because the shear yyz  is 

constrained to zero at both Loof points, it follows that a 

patch test will succeed,, whatever three final constraints 

are chosen 
2.14  

(ii) The two rotations at the centre. 	The 

shear vector in plane xy is 

yX yXZ + ° yyz  (2.14) 

A 	 A 

The unit vector X9  and Y9  at centre = n = 0 with 

reference to the Kirchhoff assumption is; 

IX9.y d(area) = 1Y9.y d(area) = 0 

(2.15) 

(iii) The bubble function (1-X2)(1-n2). The 

function has negative curvature in both the 	and n 

directions. 	Therefore it seems highly probable that the 
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total curvature 

a  2w + a  2w 

axe 	ay2  
(2.16) 

47 

is negative almost everywhere. As there is no rotation. 

and u = v = 0 at the central point, therefore shear 

corresponding to slope Wx  is Yxz = Wx  U . Now the expression 

in the shears that corresponds to the total curvature in 

the same way, is 

9Yxz 	Dyyz 
ax + ay = v • Y (2.17) 

It would be reasonable to integrate v.y over 

the area, to generate an appropriate constraint 

jv . y d(area) = 0 	(2.18) 

This was the constraint originally used, but when the 

thickness is constant, by using Green's theorem the 

constraint can be transformed to 

f  t(Yxz) d (boundary) = 
0 	(2.19) 

The eleven constraint equations can be written 

in matrix form as 

(2.20) 

B 



where {SA} represents the 32 degrees of freedom to be 

retained,{SB} denotes the ones to be eliminated and [C1 
is a (11 x 43) constraint matrix. 	The element stiffness 

matrix is computed using a five point integration rule. 

To date this rule has not revealed any mechanisms. 
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2.5 	PROGRAM VERIFICATION 

In order to establish the validity of the computer 

code and to assess the accuracy of the Semi Loof shell 

element an analysis of a tubular T-joint was carried out 

and compared with experimental results 2.3 

Finite element analyses of a T-joint subject to 

internal pressure with coarse, medium and fine mesh 

idealisations were carried out, the latter is shown in 

Fig. (2,1). 	Surface stresses are compared with 

experimental values in Figs. (2,6) to (2,9). 	In each 

case the axial stress is directed along the section at 

which the stresses are plotted and the hoop stress 

is perpendicular to the section, The region of greatest 

interest is the vicinity of the chord-branch intersection 

where the chord-branch intersection induces high stresses. 

The finite element results and experimental values compared 

favourably for the fine mesh idealisation of 60 Semi Loof 

shell elements. 
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2.6 	CONCLUSIONS 

The practical application of Semi Loof shell 

and solid elements to the analysis of arbitrary joints 

requires a computer program with special mesh generation 

facilities, high computational efficiency and extensive 

input and output facilities. Such capabilities are 

especially important because of the complexities of three-

dimensional meshes, the large number of linear equations 

that must be solved and because of the quantity of stress 

and displacement information that can be produced by the 

Semi Loof shell and Semi Loof solid elements. 

The equation solving algorithm used, has the 

capability of accommodating essentially unlimited bandwidth 

in 50,000 decimal central memory locations of the 

Cyber 174 or CDC 6500 computers āt Imperial College. 

This solution facility offers the possibility of analysing 

various ranges of joint configurations limited only by 

the computing cost. 

A practical application of the computer program 

is illustrated by reference to the analysis of a T-joint. 
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CHAPTER 3 

THE SEMI LOOF SOLID ELEMENT 

3.1 	INTRODUCTION 

In order to apply the finite element method 

effectively to the analysis of composite tubular joints, 

finite elements with a good performance and a sound 

theoretical basis are required. For the thin shell part 

of the joint an element which could satisfy these 

requirements is the non-conforming Semi Loof shell element 

developed by Irons. For the thick concrete part of the 

joint the familiar 20-node isoparametric solid element 

could be appropriate. 	However, the Semi Loof shell and 

the 20-node isoparametric solid element cannot strictly 

be mixed at the interface between the steel and concrete 

due to the lack of continuity between the elements which 

causes gross errors on their interface . 	Accordingly, a 

new special purpose Semi Loof solid element has been 

developed which permits the analysis of combined shell and 

solid problems. 

Irons' thin shell element is a non-conforming 

quadratic Ahmad type element, which uses low order 

integration and can accommodate multiple shell junctions. 

This element is the first of the Ahmad family to pass the 

patch test with general quadrilateral geometry. 	The 

Semi Loof shell element has eight nodes with u, v and w 

as deflections in the global x, y and z directions. This 

would be sufficient for a membrane shell c(0)  continuity, but to 

provide a semblance of c(l)  continuity the 8 normal slopes 



in local directions at the Loof nodes have been added in 

a non-conforming way so that the slopes are continuous only 

at the Loof nodes. 	The 32 degrees of freedom for the 

element should be sufficient to define linear stress fields 

both in membrane and bending actions. Irons grouped the 

two rotations at the Loof nodes along a side as "mid side" 

variables, for convenience, as if they are operated at 

the mid side node, Fig. (3,1). 

The new Semi Loof solid element should possess a 

top surface nodal configuration and response identical 

with that of the Semi Loof shell element and a bottom 

surface nodal configuration and response that is identical 

with that of 20-node isoparametric solid element, Fig. (3,2). 

The nodal configuration for the proposed solid element is 

based on the familiar 20-node isoparametric solid element, 

but has additional rotational degrees of freedom at the 

Loof nodes on the top surface to ensure a semblance of 

c(1)  continuity, Fig. (3,2). The formulation includes 

shear deformations and the element is coded into a shape 

function subroutine. The use of a shape function 

subroutine combined with numerical integration means that 

any matrix can easily be formed and ensures that the 

element will be easy to implement in existing finite 

element systems. 
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3.2 	HISTORY 

This section looks into the history and development 

of the techniques which characterize the second generation 

of isoparametric elements for shell analysis. 

In 1966 H.W. Loof 3'1  conceived the idea of 

connecting non-conforming elements at Gauss points along 

the inter-element boundaries to minimize the virtual 

work generated by the non-conformity. A few years later the 

Ahmad membrane stack was devised using vectorial arguments 

for the first time in finite element history 3.2 

The Ahmad element has 40 degrees of freedom and 

to make it sufficiently stiff in bending for thin shells 

a factor of 1.2 was introduced to simulate parabolic shear 

distribution. 

The Discrete Kirchhoff Assumption is being used 

increasingly for thin shells and plates. This assumption, 

first applied to plates and shells by Love and Kirchhoff, 

means that straight lines normal to the middle surface 

before deformation remain straight and normal to the middle 

surface and unchanged in length after deformation. The 

Discrete Kirchhoff Assumption sometimes produces elements 

with exceptionally good performance 3.3, 3.7, 3.9 

A careful survey of integrating rules by Too 3.4 

showed that 2 x 2 Gaussian integration gives remarkably 

improved results in the Ahmad stack provided that the 

final stresses are calculated at the same 2 x 2 points. 



A further development in 1973 by Baldwin, Razzaque 

and Irons 3'5  led to the introduction of the first 

delinquent plate element (an approximately integrated iso- 

parametric element with the Discrete Kirchhoff Assumption). 

Then Razzaque 3°6  developed and coded the delinquent Ahmad 

shell element. In both of these elements the Kirchhoff 

assumption was applied by constraining the shears to the 

zero at the 2 x 2 Gauss points, and this enabled the 

superfluous degrees of freedom to be discarded (a translation 

and rotation at each mid side node). However, the patch 

test was satisfied only for parallelogram geometry. Later for 

the Semi Loof shell Irons constrained the slopes at the 

Loof points (Gauss point at the edge 	either side of 
2V-3-  

mid side point) to exactly zero and now the patch test 

was successful in general quadrilateral geometry. 

Irons found that by using a constraint which relates 

to a side rather than to the surface one ensures that the 

discarded degree of freedom takes the same constrained 

values in the neighbouring element. .Therefore the constraint 

does not destroy the patch test behaviour-so the continuity 

is guaranteed. 	Also to succeed in the quadrilateral 

patch Test W must be able to respond quadratically in x, y. 

Accordingly the bubble function was 

w = (1-g
2
) (1-n2) 	at 	= 0, n = 0 

added as an extra initial degree of freedom and later 

constrained 3°7,3.8. 

(3.1) 
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Semi Loof shell element is one of the latest elements 

in the evolution process of the above concepts. 	The most 

recent is the ISOFLEX family of plate bending elements 

developed on similar concepts by Lyons 3'9 0 
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3.3 	REQUIREMENTS 

The requirements for a Semi Loof solid element 

may be summarised as follows; 

(i) The element should be capable of representing 

curved boundaries when necessary. 

(ii) The nodal configuration should be such that 

a Semi Loof shell element can be mated with the top 

surface and an isoparametric solid element can be mated 

with the bottom surface. 

(iii) The equations produced should not be ill-

conditioned and fail for certain geometries. 

(iv) The element should be easy to implement and 

computationally efficient. 

(v) The element should pass the patch test for 

general hexahedral geometry both on its own and when 

mixed with the Semi Loof shell element and the 20-node 

isoparametric solid element. 
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3.4 	THEORY FOR CONSTRAINED SOLID ELEHENT 

The theory given in the subsequent section 

introduces a new vectorial approach for the formulation 

of a solid element. The variation of a displacement and 

its derivatives within the element are specified 

independently by suitable shape functions. The independent 

displacements and rotations are then constrained to be 

compatible at the Loof points on the top surface of the 

solid element with the Semi Loof shell surface. 

3.4.1 Basic Assumptions 

The following assumptions are traditional for an 

elastic solid element with shear deformations; 

(i) The displacements within the deformed 

body are linearly related to the forces (Hooke's Law). 

(ii) The deflections are small and linearly 

related to the strains within the deformed body. 

3.4.2 Nodal Configuration and Sign Convention 

The element has three global displacements u,v,w 

at twenty corner and mid side nodes. These sixty variables 

are necessary and sufficient to ensure c(0)  compatibility at the 

edges of the neighbouring solid and shell elements. The top 

surface of the solid has additional local rotations at 

the two Loof points along each side. 

Noticing that solid elements experience shearing 

deformations, whereas the shell does not, it is clearly 

impossible to say that the normal slopes(Z,.!)on the top 

surface of the solid and on the shell surface would agree after 

deformation. However it is conceivable to equate the 



slopes of the top surface(--  ' )of the solid and at the shell 

surface. 

The sign convention for rotations along an edge of 

Semi Loof solid and of a Semi Loof shell element are 

identical;. that is a rotation according to the right-hand 

screw rule where the vector direction along an edge is 

defined by ascending node numbers. 

3.4.3 Shape Functions 

In order to implement any displacement formulation, 

a set of suitable interpolation functions should be chosen. 

The functions can vary to ensure continuity in linear, 

parabolic and cubic forms. 

(Displacement) = &Ni (Displacement at node i) (3.2) 

Two families of interpolating functions are 

necessary to define the deflections and rotations 

independently. 

(i) 	Solid shape function: 

Using three normalized coordinates (,n,c) 

the quadratic solid element (20-node ) shape functions 

can be expressed in the following way: 

Ni = 8 (1 + ~) (1 + no) (1 + co) (50 + n0 + 0 - 2) 

Eo = EEi no = nn± '0 = cci (3.3) 
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for the 8 corner nodes. 



1 

n.' 

, 

and for a typical mid side node 

when 

0 	ni = ±1 i 
±1 

Ni = 4 ( 1 - 2) (1 + no) ( 1 + ~o) (3.4) 

eqn° (3.4) maintains the inter-element continuity. 

This family of shape function are identical to the second 

order serendipity rectangle 3°10, in 3D this becomes 
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(3.5) 

(ii) Loof shape function: 

The polynomial terms of second family of 

shape function, which only operates on the top surface, are 

as follows: 



/ 	/ 
\, 	/ 

,2
n 	\/. 	n2 / 

/ N / N / 

/ < N Ent / 	2 ~~ 
/ 

E3n / /~ E2n2 / 	En3 / / / 	
/ 

/ 	 / 
/\ 

/ 

Bubble function term 
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(3.6) 

The Loof family, Lj (~, n), j = 1 to 9 has been taken 

from the Semi Loof shell element for compatibility between 

the two elements 
3.8, 

a typical shape function shown 

in Fig. (3,3) is 

L1 = 32 ( 3n2 	2 ) + 8 [- 3n 

-n - 1 - 

(1 - 2) 	
/-5E{ 3n2 

3n -n - E2 )}] (3.7) 

By adding an extra degree of freedom at the central node 

of the element top surface (E = 0,11 = 0,r = 1) in a 

direction normal to this surface ensures that the patch 

test suceeds for quadrilateral geometry. This extra 

degree of freedom is introduced by use of the bubble 

function 

L9 = (1 - E2) (1 - n2) (3.8) 
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The zero value of the bubble function along all boundaries 

does not affect inter-element continuity. For a hexahedronal 

to pass a flexural patch test, the element should respond 

with w = quadratic in x,y. Therefore the term 27-12  is required 

and rotations at the central_ node are now derived from bubble 

function. 

3.4.4 Element Stiffness Formulation 

The displacement field can be expressed in terms 

of a set of discrete nodal displacements, Se, by use of 

shape function, N 

6 = N SC 	 (3..10) 

and the strains are defined as 

E = B 5e 	 (3.11) 

where B is a matrix which depends on the shape functions 

N and its derivatives with respect to global coordinates. 

the usual 

The 

ox  

ay  

a
z  

cs xy  

6yz 

ozx 

equation 

element stress components a  

Dx 	D1 	D1 	0 	0 

D 	D1 	0 	0 

D z 	0 	0 

D 	0 xy 

D yz 

are given 

0 

0 

0 

0 

0 

D 
ZX 

by 

_x 

ey  

EZ  

Y  xy 

Yyz  

Yzx 

(3.12) 



where for an isotropic material 

E(1-v) 
D = D = D = 
x y z  

 

(1 + v) (1- 2v) 

D1  = Ev 

 

(1 + v) (1 - 2v) 

D = D = D - 	
E  

xy 	yz 	zx 2(1 + v) 

E is elastic modulus and v is Poisson's ratio. 

The element stiffness matrix can be derived 

from eqns. (3.10) and (3.12) as 

Ke  = ! BT  D B d (vol) (3.13) 

3.4.5 Unconstrained Displacement Field 

The unconstrained nodal configurations and 

coordinates systems are shown in Fig. (3,4). 

The strain-displacement relationship can be written 

in matrix form for the corner and mid-side nodes with 

three degrees of freedom as follows; 

E x  

ey  

< cz 

Yxy 

Yyz 

Y x L  z  

0 	0 ax 
o 	a

aY 	
o 

= 0 	o a az 
1- 	a 	o 
BY 	ax 
o a 	a 

DZ 	 āY 
a 	o 	a 
az 	 ax 

{uv 

 

w 

 

(3.14) 
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where u, v and w are respectively the x, y and z components 

of displacement. 

For the top surface midside nodes, the strains due 

to discrete nodal variables are; 

      

      

    

u 
v 

 

e 
y 

ez  

Yxy 

Yyz 

Yxz 

 

a 0 0 0 0 0 0 āx 
o āy o 0000 
O o dz 0 0 0 0 
a 	a 	0 	0 	0 	0 	0 Dy 	ax 
O L. 

 ay Li  0 L. 0 

az 0 āx 0 Li  0 L. 

  

  

(3.15) 

  

  

  

  

  

  

eyi 
e xj  
Ay3  

 

      

      

      

for the two Loof points i and j assigned to the mid-side node. 

These physical quantities have been stored in the Displacement 

Matrix in the following order. 

(i) Direct Strain: 	The value of the resultant 

global displacement u at some arbitrary point (XI) in 

response to a unit displacement in the same direction has 

been stored in the first row of the displacement matrix. 

Accordingly, the values of v , w have been stored in the 

succeeding rows. So, for a given displacement vector di  

at a node, there is a displacement vector Ni  diat an 

arbitrary point (XI). Now by using the scalar product 

all the displacements and their first order derivatives 

would be: 



v 
i=n 

i=1 

i=n 

i=1 

u x  

v x 

(3.16) 

Nix  d. X 

Nix  di  Y 

N. d. Z lx 1 

i=n 
E 
i=1 

i=n 
. 	E 
1=1 

u y  

vy 

wy  

uz  

Vz  

w z  

i=n 
E 

i=1 

i=n 
E 
i=1 

i=n 
E 
i=1 

i=n 
E 
1=1 

i=n 
E 
i=1 

i=n 
E 
i=1 

A 
Ni  di  X 

A 
N. d. Y 1 1 

A 
d. Z 

1 1 
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N. d. X 
ly 1 

N. di  Y 

N. d. Z 
137 1 

N. d. X 
lz 1 

N. di  Y 

N. d. Z 
1z 1 



where X = outward pointing normal in the tangent 

plane at the element boundary 

Y = axis along the boundary in the tangent 

plane at the element boundary 

Z = normal to X, Y surface (top surface 

of solid element) and n is number of nodes. 

The technique- to create a {X,Y,Z} set of 

vectors at a node will be described later. 

(ii) Shearing Strain: Considering a 

deformed cross section of a plate as shown in Fig. (3,5). 

The rotation of (I)x  can be expressed as the sum of the rotation 

of the mid surface 8X  plus a straight line rotation which 

represents a uniform shear through the thickness. 

6 = 

 

au 
x 	az 
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(3.17) 

In thin shell theory plane sections remain plane 

and shear deformations are not permitted which requires 

some internal restraint'O x  = 0). 	For thick elements 

this internal restraint is relaxed so that when shear. 

deformation takes place the rotation of the normal Z at 

any Loof point, j, is described by a vector in the local 

coordinate system 

ZJ  (rj 	sj 	zJ  ) (3,18) 

where r. is the rotation about the axis OX 
J 

s. is the rotation about the axis OY 

z. is the rotation about the axis OZ as demonstrated 

in Fig. (3,6). 



i=n 

	

ex 	E 	L. 

	

x 	
1=1 	1 

i=n 

6 = E L. 

	

Y 	i=1 

   

-} 
r 
i 
S 
4- 
z 

A 
X. 1 

(3.22) 

  

  

4. 
r.
J 

is the unit rotation shared with neighbouring 

elements and can be expressed as 
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(3.19) r. 	
=ZJ 	y. 

The rotation along the edge s.
J 
(a variable 

destined to be eliminated) is 

-} 	-> 	-> 
S. 	= r~ ^ Z. 

(3.20) 

But the rotation of Z at any integration point (i) 

would be 

Z. = Z~ R( 0) = (r. s.si zi ) (3.21) 

R(e) is the transformation matrix from Loof local 

coordinates system to integration point coordinates system and 0 

is the angle between Zi, Zj, which for a flat element 

is zero. 

In general Z(r s z) 	represents the rotation at 

Loof or at Gauss point respectively, Now, the rotations 

8 and A can be introduced as follows x 	y 



where n = number of Loof or 

i=n 	• 	} 

Gauss 

X 

points, or as; 

A 	= 	E 	L. 	A. (3.23) 
1=1 	1 	1  

The normal displacement contribution to transverse 

shear strains at any point from eqn. (3.16) are: 

__ 
	

au 	aw = EN . d X + ; _N. S.  
Yxz 	az 	ax 	1Z i 	1x. 1  z 

(3.24) 

Yyz 
av 
az +  ōw = EN1Z di Y 

Y + IN. 	_di  Z ly 

By adding the rotation of the normal to the normal 

displacement, the complete shearing strain formula can be 

obtained 
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Yxz 

   

E Li  fl 	+ ENiz di [x E Nix 1Z 	(3.25) 
_Yyz 

  

EN. ly. 

 

  

   

3.4.6 Jacobian Matrix 

It is now necessary to establish the relationship 

between natural (curvilinear) coordinate and local 

coordinate systems. 	The x, y and z coordinates at a point 

, n and C can be given as 
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x 

y 

z 

i=n 
n E 	N 
1=1 i 

x 

y 

z 
i 

(3.26) 

 

      

      

where the shape function (N) are in terms of the natural E, n 

and c coordinates and the summation is,taken over n nodes on 

the element periphery which are sufficient to define the element 

geometry. 

By the use of partial differentiation rules 3.10 the 

three-dimensional transformation relationship derives as 

         

" aNi 

   

aNi 

  

         

  

ax 

aNi 
ay 

aNi 

az 

 

= 

 

aC 

DN. i 
an 

aNi 

ac 

 

(3.27) 

         

         

         

where 

ay az _ az az az az  ix az,ax az 	ay az -an.. āC . 
ac an 

ac. āE 	a . 
al ac an  

- 

an. ā 

[~
-1 = 1 

de.t [J] 
ax az ax az ax az ax az l ax az ax az 
aC' ,, an n' ā~ l ā~ ac  - ā~ Wan' aE - āE' an 

ax. y _ ax ay ' ax 	_ ax ay l ax ay _ ax ay 
an 3c 	ac' an ' ā~' a E 	aE' 303E' an 	an' ac 

(3.28) 
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A geometrical interpretation of the Jacobian is that 

the rows of J constitute three vectors which are tangential 

to the coordinate curves E, n and c  at the point of inter- . 

section and are known as the covariant base vectors, Fig. (3,7). . 

EJ]= (3.29) 

} 
J 

On inspection it can be seen that the definition of 

local axes (Xi  Y. Z. ) would be derived from base 

covariant vectors as follows: 

} 
Jn  

Z = (3.30) 

which is normal to top surface of element and Y tangent to 

the side at loof nodes 

} 
Y 

 

/(ax )2 
 + (j)2  + (3.)2  

an 	an 	an 

(3.31) 

and finally 

X = Y A Z (3.32) 

The vector X is pointing out of the element side, 

Fig. (3,8), at the Loof nodes, where the corner node 

numbers are ascending, otherwise by swopping the coordinate 



system the consistency between the two elements is insured. 

Also the columns of [J] -1  constitute three vectors 

which are normal to the coordinate surfaces 	= constant, 

= constant and 	= constant and are known as contra- 

variant base vectors which can be written as 

} 
[J] -1 	1 	Jp ,J 	, Jc  ^ J , `J 	Jp de t [J] 
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J (3.33) 

and the symbol ^ signifies a vector cross product. 

3.4.7 Strain Displacement Relations 

The 78 unconstrained nodal variables for Semi Loof 

solid have been illustrated in Fig. (3,4), The relationship 

of all the unconstrained variables and derivatives, at 

any point , n and c  within the element, to the discrete 

nodal displacements can be concisely presented in the 

following order 

(U} 	= 	[N1 {s} 	N is (12 x 78) 	(3.34) 

A typical partition for a node with 3 d.o.f. is 



v 

u 

w 

u x  

uy  

E uz  

v x  

v 
y 

z v 

w x  

w 
y 

w z  

N. 1 

u. . 

V1 

Wi 
(3.35) 

N. 
i 

N. 
ix 

N. ly 

N. 1z 

N. 
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N. ix 

Niy 

Niz 

Whilst a typical partition for mid-side nodes on the top 

surface would have additional terms in rows ten and eleven. 
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u 
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w 
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u 
y  

uz  

v x  

vy  

v z  

wx  

w 
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w z  

  

N. 
2. 
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N. 1 

     

          

  

N. x 

N. 1 y 

Ni"z 

     

ui  

v. 
i 

wi  

 

        

       

ex j,  

 

   

N. 1 x 

Ni y 

Ni z 

     

   

N. 	L. 
1  x 	J 

    

          

    

N. 1 y 

N. 1 z 

L. Lj+1 

   

           

           

           

(3,36) 

For Loof point variables the summation is taken over all 

mid sides (j = 1,8) whereas for other nodes it is taken over 

all nodes (i = 1,20) and it is numercially convenient to store 

0 . (the degree of freedom at each Loof point which would 

be discarded) in the last eight columns of the displacement 

array followed by two rotations at middle point of top surface. 

From eqns. (3.14), (3.15), (3.35) and (3.36) one can 

derive in matrix form, 

E = B Se 	 (3.37) 

where B is the matrix relating the strains at any point , 

n  and c  to the displacement components of node i 
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3.4.8 Kinematic Constraints 

The unconstrained nodal variables for the Semi Loof solid 

element, Fig. (3,4) are now reduced to the constrained 

nodal configuration of Fig. (3,9). 	Ten constraints are 

required to produce an element, whose degrees of freedom on 

the top surface correspond with those of the Semi Loof 

shell element. The degrees of freedom and the constraints 

are introduced to duplicate so far as possible the behaviour 

of the Semi Loof shell surface on the top surface of the 

solid. 	Therefore if A and B are the neighbouring Loof 

points on the shell and the solid elements the relative 

angular displacement (0) of adjacent edges can be prescribed 

to zero. 

(0)A  - (e)B  = 0 
(3.38) 

(e)A = (0)B 

Considering the rotation terms of the Semi Loaf shell 

the above constraints also mean securing the w, ā , 
3w TR. ay 

continuity between shell and solid at corner and mid-side 

nodes. 

Several tests of element performance with different 

constraints showed that the reproduction of the central w 

on the top surface of the solid element caused ill conditioning. 

This degree of freedom on shell element helps in providing 

constant flexural curvature of the shell mid surface. 



The following set of constraints are such that 

the element passes the patch test for arbitrary hexagonal 

geometry and for mixed Semi Loof solids and shells. 

The list of the constraints are as follows; 

(i) The Loof Rotations (2 constraints along each 

edge) : 

In Semi Loof solid elements the relative angular 

rotation is constrained to zero at the two Loof points on 

each edge of top surface of the element. 	These boundary 

constraints have the advantage of being identical for two 

adjacent elements. The top surface slope (āy ) due to the 

rotations at the Loof points are constrained to be identical 

to the top surface slope (āy) due to the displacements at the 

corner and mid-side nodes. 

(ii) The Two Rotations at the Centre (2 constraints): 

The work produced during rigid body displacement of 

an element by proposed rotation equality is to be zero. 

Therefore, by numerical integration of 

} 

6 = X . 8 X  + Y.6 (3.39) 

over the top surface of element, the total work is equal to 

zero. 

} 

farea 
X9 6 d(area) = 0 

(3.40) 

area Y9 6 d(area) = 0 
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From eqns. (3.36) and (3.40) by extracting the 

appropriate columns and transforming the edge tangential 

rotation and integrating the rotation force over the 

area, one can derive the following equation 

A 
0 
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6 

CA 	I 	CB  (3.41) 

1 SB  0 

10x68 	10x10 

where dA  are the wanted variables and dB  are the unwanted 

variables. From eqn. (3.41) the discarded variables cā.n 

be expressed in terms of the others as 

SB  = - CB-1 CA ōA 	(3.42) 

By introducing the eqn. (3.42) to (3.35) and (3.36) the 

constrained displacement array 

W*  _ {WA  - WB  CB-1 CA} 

and eqn. (3.10) would be expressed as 

* 	* = W 6 	6A  

(3.43) 

(3.44) 

the inversion of the matrix CB  followed by a matrix 

multiplication for the product CB-1  CA  can be solved by the 

Gauss elimination or Faddeeva scheme 3.11 
 



3.4.9 Numerically Integrated Stiffness Matrix 

From eqns. 	(3.13) 

can be expressed as 

	

+1 	+1 
Ke  = I 	I 	I 

	

-1 	-1 

or in submatrix form 

+1 	+1 
Kib 	= I 	I 

-1 	-1 

and 

+1 

-1 

+1 
I 
-1 

(3.27) the stiffness matrix 

BT  D B [J]3x3 dEdrid 	(3.45) 

B  . T D B. 	[J] 	d Wridc 	(3.46) 

where K.. 	is a typical submatrix linking nodes i to ij 

J. 
Integration of the stiffness coefficients is carried out 

numerically, so if eqn. (3.46) is replaced by a weighted 

summation of the values at a certain Gauss point in the 

element 

Ke  = E Wp  [ BT D 	Bp  [J] ] 
i=1 

(3.47) 

Where B is evaluated at the appropriate integration point with 

coordinates(gyp, T1p, gyp) and W are the corresponding 

weight coefficients at this point. 

76 



3.4.10 Nodal and Pressure Loading 

The Semi Loof solid at present accepts only the 

following constituents: 

F-F1+F2  (3.48) 

where F1  and F2 are the consistent nodal forces associated 

with concentrated nodal loads and distributed surface pressures 

respectively. 

The vector F1  will consist of three force components 

for corner and mid-side nodes with three degrees of freedom 

and five for top surface mid-side nodes with five degrees 

of freedom. 

Pxi 
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with f. 
i Pyi 

P 
zi 3 d.o.f 

(3.49) 
_ 
P 
xi 

and fi = P 
yi 

5 d.o.f 

The consistent nodal forces F2  due to a distributed 

pressure p over the top surface 	= +1) can be determined 

simply as 

F- area WT  p d(area) Z (3.50) . 

F 
	

fi  

f20  



where W here refers to the first column of shape function array 

and p which varies over the surface and can be interpolated 

from the values specified at the nodes as 

i =8 
p = E 	Ni  pi  

i=l 
(3.51) 

where Ni  here refers to the standard shape function for an 

eight node isoparametric element. 

The integration in eqn. (3.50) is carried out 

numerically and concurrently with the stiffness integration. 

7R 
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3.5 	REDUCED NUMERICAL INTEGRATION AND SPURIOUS MECHANISMS 

The stiffness matrix of the Semi Loof solid element 

is obtained by numerical integration of eqn. (3.47). Three 

different integration rules have been used and are presented 

in the general form: 

I
+1 

I+i  I
+i 

f(x,y,z) dxdydz =A1  f(0,0,0) (1 term) 

+ B6  {f(-b,0,0) + f(b,0,0) + f(0,-b,0) + . 6 terms) 

+ C8  {f(-c,-c,-c) + f(c,-c,-c) + ... 

+ D12{f(-d,-d,0) + ... + f(d,0,-d) + ... 

8 terms) 

12 terms) 

(3.52) 

The rules are listed below: 

Rule 8G (The 2 x 2 x 2 product - Gauss Rule) 

Al  = 0, B6  = 0, C8  = 1.0, c= 0.57732 

This is the most popular and economical one with good 

results and rapid convergence. 	However this reduced 

rule does not prevent spurious mechanism occurring. 	Ideally 

the stiffness matrix for an element should have a rank of 

(the number of nodal variables) -(the number of rigid body 

3 motion available '7). 



The Semi Loof solid element therefore requires a rank 

of 68 - 6 = 62 and each integration point can contribute 

at most 6, 	(the rank of the elasticity matrix). 

Hence the 2 x 2 x 2 Gauss integration rule should 

permit the occurrence of at least (14) spurious mechanisms. 

Rule 27G - (3 x 3 x 3 product - Gauss Rule) 

which is exact for polynomial of fifth order in each 

direction 3.10 

Al  = 0.70233196 

B6  = 0.43895747 

C8  = 0.17146776 

D12  = 0.27434842 

b = c = d = 0.77459667 

The 3 x 3 x 3 Gauss integration rule would provide 

adequate rank thus avoiding spurious mechanism but it 

could be very costly in computer time. However in the search 

for more economical rules giving the same order of accuracy 

as the Gauss 3 x 3 x 3 rule, but cheaper, one can try 

the 14 point rule 3.12,3.13  given originally by Hammer and 

Stroud and the slightly cheaper, slightly less accurate, 13 

point rule given originally by Stroud 3.14 

Rule 13 - The (13) point rule is defined by the 

following coordinates and weighting coefficients 
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• 



(0, 0, 0) Coeff. A 

± (X,E,E), ± (E,A, E),± (E,E, A), Coeff. B 

± (u,u,A), ± (u,Y, 11),± (Y,u, u), Coeff. C 

	

A = 0.88030430 
	

E = - 0.49584802 

	

P = 0.79562143 
	

Y = 	0.025293237 

	

A = 1.68421056 
	

B = 	0.54498736 

C = 0,507644216 

Rigid body tests showed that the (13) point rule does 

not prevent the occurrence of spurious mechanism totally, 

although it reduces their number. 

Rule 14 - with B6  = 0.886426503 

b = 0.795822426 ,C8 

and 	c = 0.758786911 

= 0.335180055 

Accurate to complete quintic, like 27G, with the same 

Gaussian efficiency and considerably cheaper effort. 

Several rigid body tests showed that the 14 point 

rule of integration prevented the occurrence of spurious 

mechanism. 
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3.6 	GLOBAL STRESSES 

The strain components of interest are in the 

directions (x,y,z), local coordinates, so as to be 

consistent to the Semi Loof shell assumption. 	The 

stresses corresponding to these are defined by a matrix 

{a} in local coordinates. 

These are indeed directly of interest but as the 

directions of local axes are not easily visualised at 

Gauss points or nodes, it is convenient to transfer the 

components to the global system using the following 

formulation. 

[7"] 3x3 
	

X Y Z] 3x3 * [Q] 3x3 * [X Y Z] 3x3 	(3.53) 

where 

	

a' 	T 	T. 

	

x 	xy 	xz 

	

T' 	6' 	T' xy 	y 	yz 

TXZ 	Tyz 	cZ  

The nodal stresses can be calculated by extrapolating 

the stresses at Gauss points to the nodes. 

The stresses calculated at a nodal point where 

several elements meet can then be averaged. 

In typical solid structures the stress in a global 

system does not, however, give a clear picture of stresses. 

The principal stress routine and principal strain routine 

would derive the principal stresses or strains 

correspondingly, where direction cosines of such stresses 

or strains are also obtained (see Appendix 1). 

= 
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3.7 	NUMERICAL RESULTS 

Various numerical examples were selected to establish 

the validity and generality of the proposed formulation. 

3.7.1 Patch Tests 

The element passed the patch test with rectangular, 

parallelograms, trapezoidal and arbitrary hexagonal geometry 

as demonstrated, Figs. (3,10) to (3,14). 

In order to check against the occurrence of mechanisms 

the rectangular and quadrilateral patch tests were repeated 

in the form of rigid body tests. In these tests a sufficient 

number of boundary' constraints were prescribed to produce a 

statically determinate system, together with the external 

forces (the computed reactions derived from the patch test) 

acting on the patch. 	If there is any chance of a singular 

assembled stiffness matrix then this procedure would encourage 

it to occur. 

However, as stated in the previous section, the rigid 

body test showed that the element has at least 14 mechanisms 

when 2 x 2 x 2 point Gaussian integration is being used. 	The 

13 point rule also showed some mechanisms, when the 14 point 

rule and the 27 Gaussian rule did not show any 

singularity in the stiffness matrix. 

A careful study of the behaviour of a patch of elements 

using different integration rules showed that all the patch 

tests with elements integrated by the 14 point rule were 

passed successfully. 	Furthermore, the 14 point rule is 

more economical than the 27 point Gaussian rule. 

A series of mixed patch tests were carried out to 

establish the mixability of the Semi Loof solid element 



84 

with the Semi Loof shell element. 	The rectangular and 

general hexagonal mixed patch tests were successful. 

3.7.2 Convergence Studies 

(i) Cantilever Beam 

A cantilever beam, shown in Fig. (3,15), illustrates 

the element accuracy for plane stress structures. The 

results for two different loading conditions and for two 

different meshes are shown in Table (3-1). 	The results 

compare favourably with the exact theoretical solution, the 

standard isoparametric quadrilateral element (Q4), and the 

Wilson incompatible element (Q6) 3.15,3.16 

(ii) Plane Stress Cantilever Beam 

A plane stress cantilever subjected to the point 

load*at the free end, is shown in Fig, (3,16). The results 

compared favourably with the exact solution and the Semi 

Loof shell element 3.17  

(iii) Cantilever Beam 

The out-of-plane performance of the Semi Loof solid 

was tested for meshes with varied length/thickness ratios. 

The performance of the element as a thick element also 

compared with thick beam theory 3.18, with the twenty nodes 

isoparametric brick element, and with both parallelogram 

(PQC3) and quadrilateral (QLC3) elements 3'19  (both include 

shear deformation). 	The results are shown in Tables (3-2) 

and (3-3). 



The Semi Loof solid gives superior results as 

shown in Fig. (3,17) for very thick elements (shear dominated 

area) and slightly superior in almost thin elements (bending 

dominated area) over twenty nodes isoparametric brick element. 

(iv) Simply Supported Thick Plate 

A simply supported square plate was analysed using 

a 1 x 1, 2 x 2, 4 x 4 and 6 x 6 mesh of elements. A 

comparison with thick plate theory 3.20-3.24  and twenty node 

isoparametric brick element is shown in Fig. (3,18). A Semi 

Loof solid showed a better convergence than a twenty node 

brick element. 

(v) Composite Beam 

A composite plated beam was analysed using six Semi 

Loof shell and six Semi Loof solid elements as shown in 

Fig. (3,19). The deflection at the centre derived from 

finite element analysis compared favourably with the 

experimental results 3.25. 

(vi) A Cylinder under Uniform Axial Load 

A cylinder subjected to uniform axial load (p) 

at both ends is shown in Fig. (3,20). A quarter of the 

circumferential cross-section was idealised by eight elements 

and one element used longitudinally as shown in Fig. (3,21). 

Symmetrical boundary conditions were applied on all the 

four cut edges. 	The results plotted in Fig. (3,22) show 

good correlation with results from the twenty node 

isoparametric brick element and classical shell theory. 
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308 	CONCLUSIONS 

(i) The formulation for a special Semi Loof solid 

element has been developed and presented. 	The new element 

is capable of being mixed with the Semi Loof shell element 

and the twenty node isoparametric solid element as may be 

required in the analysis of composite structures. 

(ii) The criteria for convergence are satisfied 

according to the patch test and there are no limitations 

such as low rank and spurious mechanisms. 

(iii) The results of the numerical examples establish 

the validity of the formulation for an extensive range of 

single material and composite structural problems and the 

results are an improvement over the twenty node solid element. 

The element performs well even for a coarse mesh idealisation. 

(iv) The Semi Loof solid element has been coded 

into a shape function subroutine which with the use of 

numerical integration is easy to implement and computationally 

efficient. 
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CHAPTER 4 

EXPERIMENTAL STUDY OF THE 

COMPOSITE CONNECTIONS 

4.1 	INTRODUCTION 

To investigate the applicability of composite 

connections an experimental test program was undertaken. 

This chapter describes the manufacture, instrumentation 

and testing arrangement for the 12 models of Phase 1, 2 

models of Phase 2 and the large-scale model of Phase 3, which 

simulate different forms of composite connections. These 

connections are studied with particular attention being 

given to the axial and circumferential strains and stresses, 

bond stress of concrete, displacement and the composite 

behaviour of steel and concrete. 

4.1.1 Objectives of the Experimental Tests 

The limited funds available allowed an experimental 

program to be conducted only on, straight tubular composite 

connections. 	The construction and testing of these 

straight tubular connections, gave some insight into the 

possible construction procedure and provided in depth 

information on their structural behaviour. 	The choice 

of straight tubular connections as opposed to the more commonly 

used T or K joints was for reasons of economy and of the difficult 

in physically understanding the structural action of 

the latter, due to the indeterminate triaxial stress 

effects and the composite behaviour of steel and concrete 

in areas of high stress concentrations. Furthermore, a 



need existed for simple model tests to be conducted in which 

the effects on the composite behaviour of varying the 

various parameters are immediately obvious. 	The general 

objectives of the tests were therefore; 

(i) To develop a construction procedure for 

straight tubular connections with the generality necessary 

to cope with construction and repair of straight tubular 

connections and pipe lines in deep water. 

(ii) To provide comprehensive experimental data 

against which the analytical approach derived earlier in 

this thesis could be checked and also to elucidate on 

aspects of the behaviour not directly apparent from current 

finite element methods, for example the effect of shear 

connections and welded end rings. 

(iii) To examine the non-linear behaviour of 

connections, in particular the effects of the concrete 

cracking. 

4.1.2 Composite Connection Layout and Form of Construction 

Phase 1.- The specimens were constructed of two 

equal diameter tubes placed in a steel sleeve which was 

then grouted to form connection, Plate 1. 	The sleeve was 

carefully positioned and grouted to ensure a near perfect 

symmetry with a constant thickness of grout. 	A series 

of twelve small scale tests were carried out, with various 

geometries and types of surface roughness to determine an 

optimium configuration for the large scale test to follow. 
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Phase 2 - It was proposed that the serviceability 

of a connection could be improved by welding two steel 

rings to the extremities of the sleeve to contain the grout 

in a triaxial manner. To verify this proposal two small 

scale tests with a welded ring at the end were carried out, 

Plate 2. 

Phase 3 - This large scale model was instrumented 

with strain gauges, Fig. (4l), to measure the variation 

in strains along the length of steel tube and sleeve, 

Plate 3. 
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4.2 	MODEL SCALE AND MATERIALS 

The choice of scale depended upon the following: 

(i) Minimum possible distance between steel 

tube and sleeve to accommodate the grout. 

(ii) Magnitude of loads readily available in 

the laboratory. 

Consequently the small scale of 1:20 and large 

scale of 1:5 based on original tube diameter of 1,000 mm 

were chosen. 

It was also decided at an early stage that the mix 

most suitable and easy to pump for the construction of 

the connections was a fine sand (25-100) and Portland 

cement mixture to represent concrete parts of the models 

and steel tubes for steel parts of the models. 

4.2.1 Grout Properties 

The grout used for the small scale models was a 

1:2 cement-sand with a free w/c ratio of 0.49, FEBMIX 

plasticiser (5.6 cc to each 1 kg of cement) was added. 

The sand used was a fine sand passing (25-100) grade. 

This was mixed with ordinary Portland cement. Test 

cubes were made from the grout mix which gave an average 

value of 34.5 N/mm2  compressive cube strength for 28 days. 

The grout used for the large scale model was a 1:1.5 

cement-sand mixed with a free w/c ratio of 0.48 and FEBMIX 

plasticiser (5.6 cc to each 1-'kg of cement) was added. The sand 

was a fine sand passing (25-100) grade. This was mixed 

with ordinary Portland cement. Test cubes were made from 

the mix used for casting the model, which gave an average 

value of 30 N/mm2  at 14 days. 



4.2.2 Steel Properties 

The steel used for the manufacture of the small 

scale composite connections was cut from standard 

scaffolding steel tubes which were machine turned to give 

the required diameters and thicknesses. 

The steel used for large scale models was chosen 

from standard pipes used in North Sea construction. 

Table (4-1) shows the diameters and thicknesses of the 

tubes used. Values of yield stress and other information 

given by supplier is shown in Table (4-2). Tensile 

specimens were cut from each of the tubes used and elasticity 

modulus was calculated. 

Further tests were carried out to check the strength 

of the pipes and sleeve and it was found that the average 

yield stresses of the pipe and sleeve were 340.37 N/mm2  and 

384.00 N/mm2  respectively. 
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4.3 	INSTRUMENTATION 

No instrumentation was used for the small scale 

tests. 	The large scale model was instrumented to measure 

displacements and strains. 	The instrumentation was 

concentrated at sections which were thought likely to be 

highly stressed. 	The instrumentation was attached to 

the internal and external faces of the tubes and the 

external face of the sleeve. 

4.3.1 Displacements 

The displacements at both ends of the large scale 

sleeve were measured using two dial gauges of 0.001 of 

an inch sensitivity as the load increased. 

4.3.2 Strains 

The T.M.L. electrical resistance strain gauges 

type PC.5.11 were used for strain measurements. 

The gauge factor was approximately 2.04 with a tolerance of 

±1%. 	Cross gauges (biaxial) were used to derive axial... 

and hoop stresses. Owing to the axial symmetry it was 

felt rosettes were unnecessary. 

4.3.3 Data Logger 

A data logging system, a 70 channel Solartron logger, 

was used for this project. This system incorporates fast 

scanning speeds, print out and punch tape output, so that 

temperature changes do not affect the measured parameter 

values during the scanning period. 	The experiment took 

place in one morning so that a temperature compensating 

dummy gauge was not required. 
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4.4 	LOADING PROCEDURE 

A simple uniaxial 50 ton pullout machine was used 

to test the small scale models, Plate 4. 	Consequently 

the pullout forces that caused any significant slip and 

ultimate loads were recorded. 

The loading rig for the large scale model was 

made of two vertical steel frames which could move 

longitudinally without any friction. 	Both ends of the 

pipes were horizontally secured at the centres of the 

frames through special holes, and 12 jacks each with 20 tons 

capability providing a total of 240 tons pushed the two 

frames apart and this therefore pulled out the connections, 

Plate 5. 

The load was applied in increments of 13.2 tons and 

loading was sustained for a few minutes before each set 

of instrument readings. 	Large strains were noticeable 

as the load increased and after the eleventh increment 

of load (145 tons) a crack appeared on the weld between the 

sleeve and external ring at approximately 150 tons load. At 

this stage the loading was removed and reapplied with the same 

increments up to 79.2 tons. During the next increment at 

approximately 84 tons, the bond between the steel and the 

concrete was broken and the concrete started to slip out. 

from the sleeve, Plate 6. 



94 

4.5 	SMALL SCALE MODELS 

The Phase 1 small scale models were categorised into 

four groups; 

Group 1 - Three models with various lengths of 

sleeve (2D, 2.5D and 3D) were tested. The specimens of 

this group were dipped in a sea water bath before grouting 

for three weeks to give a roughened surface to the steel 

tubes. 	The test results showed that the maximum equivalent 

bond strength was obtained when the L/Dlratio was equal to 

2.5. 	No slip was noticed during testing and failure occurred 

when one of the pipes pulled out of the joint. 

Group 2 - Three models were similar to those of 

Group 1 except that the sleeve had a larger internal 

diameter which left a gap of 12.2 mm for the grout. The 

models were treated in the same manner as in Group 1. 

Again, maximum ultimate bond strength was obtained at 

L/DI  ratio of 2.5. 

Group 3 - Three models had the same dimensions as 

Group 1. 	However the outside surface of the pipes and 

the inside surface of the sleeve had additional rings of 

protruding teeth, 2 x 2 mm square at a 20 mm spacing, and the 

teeth on the inside surface of the sleeves alternated with 

the teeth on the outside surface of the pipes. Test 

results showed a significant increase in ultimate bond 

strength over the previous models. Two modes of failure 

can be seen on Plates 7 and 8. 

Group 4 - Three models similar to Group 3 models 

but with a larger sleeve diameter which allowed 12.2 mm grout 

thickness were tested. The maximum equivalent bond strength 
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was obtained when the L/DI  ratio was equal to 2. 	Plate 9 

shows the mode of failure for L/DI  ratio of 3 and the 

position of shear connectors for this model. 

In Phase 2 testing two specimens with rings welded 

at both extremities were tested. The diameters and thickness 

of tube and sleeve, the size and number of shear connectors 

and the thickness of grout were exactly the same as the 

first specimen of Group 3 (L = 2D). 	In addition a 3.2 mm 

thick steel ring was welded to the end of the sleeve to 

contain the grout.triaxially, One of the models had the 

ring welded to the tube and sleeve, whereas in the second 

model the ring was welded only to the sleeve. The first 

model failed at approximately 11.75 tons when the steel tube 

yielded and failed. 	The second model, with the steel ring 

welded to the sleeve, like the first, also showed an 

improvement in ultimate load capacity compared with with the 

Group 3 model. 

The behaviour of the models was studied with particular 

attention being given to the ultimate equivalent bond strength 

and its relationship with radial stiffness, length/diameter 

ratio and with shear connectors. 	Table (4-3) shows the 

value of the ultimate axial loads, the geometrical properties 

and the associated ultimate equivalent bond strength for each 

of the small scale models tested. 

4.5.1 Effect of Tube and Sleeve Geometry on Bond Strength 

The test results showed that the ultimate bond 

strength is extremely sensitive to model geometry and the 

radial stiffnesses of the sleeve, tube and grout. The 



radial stiffness of the tube or sleeve in terms of a 

uniformly distributed radial force F, and radial deflection 

A, is proportional to Young's modulus E, and the thickness 

to diameter ratio (t/D) of the tube. 	If the radial stiffness 

of the complete connection is considered, a stiffness 

factor, K, proportional to the radial stiffness of the grout 

and steel cylinders can be derived. 	A linear 

relationship 4.1,4.2  exists between the ultimate bond strength 

and the radial stiffness factor for a given set of conditions 

(i.e. grout strength, surface roughness and length of 

connection). The stiffness factor K is given by: 

S F 
A 

E t  
D 

(4.1) 

1 	1 	)-1 
K = Sgrout + ( 	 + Stube sleeve 

is plotted against ultimate bond strength in Fig. (4,2). It 

was noticed from this diagram that shear connectors improve 

the performance of connection several times. 

4.5.2 Effect of Length/Diameter Ratio on Bond Strength 

The length to diameter ratios in the range of 

2 < L/DI  < 3 were chosen for the composite connection tests. 

The ultimate bond stress is plotted against L/DI  ratio in 

Fig. (4,3). 	The results indicate a slight reduction in 

bond stress with increasing length although the maximum 

values occur at different (L/DI) ratios for each of the test 
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groups. 



4.5.3 General Behaviour of Tests 

Most of the models with shear connectors exhibited 

large reserves of strength and in many cases the ultimate 

load was sustained over displacements of several millimeters. 

The behaviour of Groups 1 and 2 was more erratic owing to 

the sudden breakage of the chemical bond (the adhesion or 

glueing by the cement gel to the steel) and of the friction 

due to concrete shrinkage.. 

The behaviour of the Group 3 and 4 models with shear 

connectors was different because there was a large post 

ultimate reserve of strength. Failure took place on the 

grout and sleeve interface by crushing the grout ahead of 

the weld bead. In most cases, near the ends of the connection, 

diagonal cracks formed across the annulus originating from 

weld bead positions. 

A significant increase in the strength of the connection 

was achieved by triaxial action of the grout due to.the 

presence of welded rings at both extremities of the sleeve. 

A model with similar geometrical and physical properties to 

one of the Phase 1 models but with a 3.2 mm thickness steel 

ring welded lightly to the tube and the sleeve showed a 

180% increase in strength over a similar model. 	Failure 

occurred in the steel tube without any noticeable effect 

on the connection. 
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4.6 	LARGE SCALE MODEL 

In Phase 3 of testing a large scale specimen was 

tested. The outside surface of tubes and the inside 

surface of the sleeve were furnished circumferentially with 

5 mm height and 5 mm width of weld beads at 70 mm spacing. 

The weld beads on the tubes were located mid-way between 

the weld beads of the sleeve. 	A ring made of 6 mm thick 

steel plate was welded to both extremities of the sleeve and 

to the tubes. Holes on the end ring of the connection allowed 

the grout mix to be pumped into the cavity between the tubes 

and the sleeve. 

This model carried a substantial load in tension 

and failure occurred when the total load on the model 

reached 150 tons, that is 81% of the, yield load of the tube, 

when fracture of the weld between the sleeve and tubes 

occurred. A tolerance of 1-5 mm between the sleeve and 

tube which had been filled with weld deposits may have 

caused the failure of the connection earlier than expected. 

However, the connection still exhibited a high reserve of 

strength and was again capable of carrying a load up to 

84 tons. At this load the bond between the sleeve and the 

grout failed, Plate 10. This model was extensively 

covered with electrical strain gauges. 	The locations of 

the strain gauges on the external surface of the sleeve 

are shown on Plate 11. 	A total of 35 axial and 35 

circumferential strain gauge elements were used on this 

model. The location and numbering of the biaxial strain 

gauges on the inside and outside of the tube and outside 

of the sleeve are shown in Fig. (4,1), 



4.6.1 Variation of Strains and Displacements in Large 

Scale Model 

The behaviour of the model is studied with 

particular attention being given to the distributions of 

axial and hoop strains and stresses, principal stresses, 

displacements and bond between concrete and steel. 

Before the results were plotted, the readings from 

gauges which drifted more than 30 pe were rejected. Out 

of a total of 70 strain gauge elements on this model, one 

had a drift larger than 30 pc on three successive readings 

and in this case the results obtained.were from one of the 

reserve gauges. 	However, reserve gauges were present 

as a precaution against drift and failure, the alternative 

readings were invariably available. 

Figs, (4,4) and (4,5) show the overall axial strain 

distribution and Figs. (4,6) and (4,7) show the overall 

circumferential strain distributions for different load 

cases. 

Longitudinal extensions of the sleeve are plotted 

in Fig. (4,8), 

4.6.2 General Behaviour of Large Scale Test 

A high post ultimate reserve of strength was 

observed in the large scale composite connection and this 

was due to the following; 

The steel cylinder with its high strength and ductility 

suppressed the development of cracks in concrete until the 

mechanical bond was broken and crushing of concrete occurred. 

The cracked concrete could carry high shear stress 

by an arching action which delayed failure. 
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The presence of two welded rings at both 

extremities of the sleeve increased the strength of the 

connections due to the triaxial effect on the concrete. 
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4.7 	CONCLUSIONS 

The ultimate bond strength of composite connections 

depends on many parameters including, the radial stiffness 

of the connection, the length/diameter ratio of the connection, 

the grout strength and the size and number of shear connectors. 

The use of shear connectors provides a high ultimate 

strength which is not affected by shrinkage or expansion of 

the grout and can be sustained over large displacements. 

A significant increase in the strength of composite 

connections can be achieved by the use of steel rings 

welded to both extremities of the sleeve which fully confines 

the concrete. 	This also assures complete waterproofing 

when the connection is used for pipe lines in deep water. 



CHAPTER 5 

FINITE ELEMENT ANALYSIS 

OF COMPOSITE TUBULAR JOINTS 

5.1 	INTRODUCTION 

The newly developed Semi Loof solid element was 

described and verified by reference to classical problems 

and convergence tests (chapter 3). However in order to 

further verify the proposed element formulation and the 

validity of the associated computer code, the large scale 

model test described in chapter 4, was analysed and the 

results are presented and compared in this chapter. 

Having thus established the performance and validity 

of the proposed Semi Loof solid element,various types of 

tubular connections and tubular joints,suitable for use in 

the construction or repair of pipelines and offshore structures, 

were analysed. 	Information on the displacement and stress 

distributions is presented in this chapter and the effect of 

including concrete is shown. From these analyses certain 

conlusions are drawn with respect to the design, fabrication 

and installation of the proposed composite connections in 

the construction and repair of North Sea structures. 
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5.2 	COMPOSITE STRAIGHT TUBULAR CONNECTIONS 

An analytical study of two types of composite 

straight tubular connections was carried out. 	The two 

types of construction considered were, steel tubes 

connected by a steel sleeve filled with cement grout, with 

or without welded end rings, and steel tubes connected 

by a prestressed concrete sleeve with or without steel 

encasement. The geometrical and material properties were 

as for the large scale model of chapter 4, which allows a 

comparison between finite element results and experimental 

results. 

The connections were analysed for loadings at 

45% of the estimated ultimate loads, in order to ensure 

that joint behaviour was predominantly elastic. The stress 

distributions shown subsequently were plotted from the 

values available at the Gauss points for both shell and 

solid elements. 

5.2.1 Finite element analysis of steel tubes connected by a 

steel sleeve filled with -concrete 

Finite element analyses of the (1:5 scale) composite 

tubular connections were carried out using 42 Semi Loof shell 

and 30 Semi Loof solid elements. The mesh incorporated 

elements over a quarter of tube and nine shell elements 

over the half length of tube together with five solid 

elements along the connection length. Only one quarter 

of the structure was analysed to take advantage of the 

double symmetry of the structure, Fig. (5,1). 



The shear connectors (weld beads) were not modelled 

in the finite element idealization and a perfect bond state 

between the steel and concrete was assumed. 

In order to ascertain whether undesirable stress 

concentrations were likely to arise under operating 

conditions, two types of loading were considered. 

Load case 1 - an axial load along the connection 

caused by tensile end forces of 79.2 tons (790 KN), which 

is approximately 45% of the yield loading (Py) of the 

pipes. 

Load case 2 - a constant bending moment along the 

length of the connections was applied by end moments of 

13.75 KN.M and this is approximately 10%tof the full plastic 

moment (Mp) of the pipes for pipe lines. End moments of 

27,50 KN.M, which is approximately 20% of the full plastic 

moment (Mp) of the pipes for straight tubular connections. 

The longitudinal stresses of the inside and 

the outside surfaces of the steel tube and the sleeve 

subjected to axial load are shown in Figs. (5,2) to (5,4). 

The largest stress concentration factor was found to be 1.13. 

The variation of longitudinal tensile stresses in the 

concrete is shown in Fig. (5,5). The analysis was then 

extended to a model with welded steel rings at the 

extremities of the sleeve and a considerable reduction in the 

10.10 Mp, is the largest fluctuating moment likely to be 

permitted in pipe lines for a fatigue life of 108  cycles5.1  
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longitudinal tensile stress of the concrete was observed, 

Fig. (5,5), however the effect on the stresses in the tube 

and sleeve was not so marked. The results of this second 

analysis were compared with the experimental results, 

reported in chapter 4. 	Axial strains in the steel tube 

are shown in Fig. (5,6). Close agreement between the 

analytical results and model experimental results was 

obtained except in the vicinity of the weld in the sleeve 

where a high strain concentration was detected by the 

electrical strain gauges. Circumferential strains in the 

steel tube are shown in Fig. (5,7). Analytical results 

were in close agreement with the model experimental results. 

Longitudinal expansions of the sleeve versus load cases 

are plotted in Fig. (5,8). 

The analysis of the composite connection was also 

carried out subjected to a factored load combination 

(Py + 10% bip) for pipe line connections. 	The largest 

stress concentration factor of 1.35 on the outside surface 

of the tube was caused by local bending near the end of the 

connection. It can therefore be concluded that the additional 

bending moment increased the tensile stresses of the steel and 

concrete by a maximum of 18%. 

This analysis was repeated for straight tubular 

connections as found in platforms subjected to a factored 

load combination of (Py + 20% MID). 	The largest stress 

concentration factor of 1.56 was calculated on the outside surface 

of the tube. 



5.2.2 Finite element analysis of steel tubes connected by a 

prestressed concrete sleeve 

Finite element analyses of several prestressed 

composite connections were carried out idealizing only one-

eighth of the connection with 27 Semi Loof shell and 30 

Semi Loof solid elements by taking advantage of the 

triple symmetry, Fig. (5,9). To find a suitable prestressing 

force and an appropriate number of tendons several 

connections were analysed. The prestressing tendons were 

idealized by point loads acting axially at the mid-thickness 

of the concrete. 

Longitudinal stresses of the inside and the outside 

surfaces of the steel subjected to several prestressing 

forces are shown in Figs. (5,10) 'and (5,11). 

The variation of stress concentration factors, the 

ratio of maximum axial stress to the nominal axial stress, 

versus prestressing forces are shown in Fig. (5,12). 

Longitudinal stresses in concrete for various 

prestressing forces are shown in Fig. (5,13). 

It was noted that connections with smaller numbers 

of tendons around the periphery produced high stress 

concentration on the steel tube. 	It can be argued that 

the connection with the lower stress concentration factor 

and with adequate compressive stress of concrete is the 

least vulnerable to cyclic loading damage and best suited 

to the North Sea environment. 
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5.2.3 	Discussion and Conclusions 

The experimental tests and the finite element 

analyses of the composite connections with steel 

encasement provided sufficient evidence to allow this 

connection to be used for permanent repairs and tie-ins 

of subsea pipe lines and straight tubular connections on 

offshore platforms. 

The fabrication process would start by welding 

vertical rings (with holes for grouting) in two halves 

to the two halves of sleeve, leaving an appropriate 

connection length. 	The sleeve would then be placed and 

welded to the pipe at the side of the opening. 

The two halves of the sleeve and rings are then 

welded together. 	These welds should withstand the 

bending moments produced by cyclic forces. The gap is then 

pumped full with high strength grout. Proper sealing 

of the pipe is required to prevent oil or gas chemical 

action on the cement grout. 

The prestressed connection also can be used to 

reinforce or repair subsea pipe lines and straight tubular 

connections on offshore platforms. Prestressing can be 

accomplished in either of two ways, depending on the 

economics, the size of the member and the environment. 

The prestressed connection with the concrete 

collar is particularly suitable for large diameter tubes in 

platform structures. Post tensioning tendons are stressed 

uniaxially after the concrete has been cast and attained 

sufficient strength to safely withstand the prestressing force. 



The pretensioned-strand system can be used for 

smaller diameter pipes in connection with a steel sleeve 

filled with concrete. A steel sleeve and end rings 

are welded to the pipe. 	A number of strands are arranged 

in a circle and anchored safely to the end rings with 

nuts on washers, so that the extra cost of anchorage blocks 

can be avoided. The tendons are then tensioned and the 

gap between sleeve and pipe grouted. 	When the grout has 

set and tension in the strands is released the grouted 

connection goes into compression. This prestressed 

connection secures watertightness in deep water. Where the 

water pressure can cause serious problems5.2,5.3  in exposed 

concrete surfaces. 

The following conclusions can be drawn from the 

above discussion and the finite element analyses of composite 

connections: 

(i) The finite element results of composite 

connection with steel encasement compared favourably with 

the experimental results. 

(ii) Welded end rings with some stiffness endured 

the relative movement between concrete and steel tubes 

producing compressive stress in concrete which delayed the 

bond failure. 	This implies that higher stress levels can 

be imposed. A similar observation was made during the 

experimental program. 

(iii) In practice, to ensure composite action 

between concrete and steel as assumed in the numerical 

examples, the surfaces of the steel tube and sleeve should 

be furnished with shear connectors. The mechanical shear 
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connectors should be designed to resist all the interface 

forces arising from composite actions between the concrete 

and steel tube. 

(iv) In the case of prestressed connections high 

compressive stresses in the concrete were observed. 

(v) A more rapid diminution of axial stress in the 

tube inside the encasement was observed in the prestressed 

connections compared to other composite connections. It 

was also noted that the prestressing forces caused local 

bending beyond the sleeve. It is likely that this local 

bending was due to the method of applying prestressing 

forces in the analysis. 

(vi) Concrete compressive stresses, induced due to 

the presence of mechanical shear connectors, welded end 

rings and prestressing,allow a much shorter connection 

to be made. 	This implies savings during fabrication and 

installation. 

(vii) Advantage can be taken of a longer fatigue 

life due to the high fatigue endurance of concrete in 

compression. 

(viii) In connections in which steel surrounds 

the concrete, a higher compressive triaxial stress state 

is achievable under large loads. 	This increases the 

strength of the connection. 
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5.3 	COMPOSITE TUBULAR T-JOINTS 

Finite element analyses of composite T-joints with 

a concrete collar and a steel collar filled with concrete 

were carried out and compared with welded joint results 

computed for a T-joint subjected to a branch axial force. 

Because the finite element discretization models the welded 

T-joint as an ideal intersection of two tubes, it would be 

appropriate first to establish the validity of the analysis 

by comparison with experimental data from such an idealized 

joint. 	The Oak Ridge National Laboratory's ideal T- 

oint5.4,5.5 is shown in Fig. g. (5,14). 	The joint was 

cantilevered at one end of the chord and subjected to an 

axial load applied at the end of the branch. 	Attached to 

each of the unsupported pipe ends was a heavy end plate which 

constrained the pipe end to remain a plane circle and largely 

restrained rotation of the pipe wall about the axes in 

the plane of the end plate. For both the chord and the branch 

the radius to thickness ratio was 50.0 which places this shell 

structure well within the range of what are usually regarded 

as thin shells. 	The finite element analysis was carried 

out with 60 Semi Loof shell elements, Fig. (5,15). Analytical 

results of the surface longitudinal and transverse stresses 

for the branch axial load of 100 lb (445 N), 25% of the 

branch yield load, were compared with experimental values in 

Figs. (5,16) to (5,18). In each case the longitudinal 

stress was directed along the section at which the stresses 

were plotted and the transverse stress was perpendicular to 

the section. A hot spot stress value of about 8765 lb/int  

(60.62 N/mm2) was observed and this value is later compared 



with the hot spot stress values derived from various 

composite T-joints. 

5,3.1 Finite element analysis of a T-joint with a concrete 

collar 

In this joint the highly stressed area in a welded 

T-joint is covered by an 0.4 in (10 mm) thick concrete 

collar. 	A finite element analysis was carried out using 

60 Semi Loof shell and 24 Semi Loof solid elements. The 

mesh idealization is shown in Fig. (5,19). 	The concrete 

modulus was taken as 3000 KSi (21000 N/mm2) with Poisson's 

ratio of 0.2. 

The effect of the concrete collar on the variation 

of chord stresses and stresses around the intersection 

line are shown in Figs. (5,20) and (5,21). 

It is apparent that, if the concrete remains bonded 

to the outside surfaces of the chord and branch members, 

then significant reductions in the local stresses would be 

realized. 	In addition there is a 70% reduction of the 

hot spot stress value. 	The maximum shear and tensile 

normal bond stresses on the inside surface of the concrete 

were calculated to be 61 lb/in2  (0.42 N/mm2) and 247 lb/in2  

(1.73 N/mm2) respectively. 	The concrete stresses in the 

immediate vicinity of the branch chord intersection are close 

to the allowable concrete tensile and bond stresses, whereas 

the maximum steel tensile stress is far from the allowable. 

It would seem that a non-linear analysis which takes account 

of the cracking of the concrete and changes in stiffness 

in solid elements experiencing high tensile stresses would 

probably show a less substantial reduction in chord stresses 
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when higher axial load is applied. 

5.3.2 	Finite element analysis of a T-joint with a steel 

collar filled with concrete 

In this joint the highly stressed area in a welded 

T-joint is covered by an 0.6 in (15 mm) thickness of concrete 

surrounded by an 0.05 in (1.3 mm) steel tube. The finite 

element analysis was carried out using 84 Semi Loof shell and 

48 Semi Loof solid elements. 	The mesh idealization is 

shown in Fig. (5,22). 	The concrete modulus was taken as 

3000 Ksi (21000 N/mm2) with Poisson's ratio of 0.2. 

The effect of a steel collar filled with grout 

on the variation of chord stresses and stresses around 

the intersection line are shown in Figs. (5,23) and (5,24). 

A significant (80%) reduction of hot spot stress values 

was obtained when compared to a welded T-joint. The maximum 

shear and tensile normal bond stresses on the inside surface 

of concrete were calculated to be 12.9 lb/in2  (0.09 N/mm2) 

and 131 lb/mm2  (0.91 N/mm2) respectively. 

5.3.3 	Discussion and Conclusions 

A requirement exists for an effective method for the 

repair and strengthening of T-joints in offshore structures. 

The method proposed in this thesis consists of placing a 

steel collar around the T-joint and filling the gaps thus 

created with concrete. A benefit of this approach is the 

easy casting and fabrication process required. 	Furthermore, 

since the strengthening is external to the tubes the main 

legs of an offshore structure remain uncluttered for easy 

access. 
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To ensure composite action between concrete and 

steel tubes, the surface of the steel tubes should be 

furnished with mechanical shear connectors. 	The corroded 

surface of tubes in offshore platforms generally offers some 

mechanical connection between the steel and concrete. 

To withstand North Sea cyclic loading and the 

related high bending moments, the steel collar should be 

walled (that is a lip plate around the periphery of the 

collar) and welded to the chord and the branch. As an 

alternative prestressing tendons can be used to produce 

compression stresses in the concrete thus allowing higher 

stress levels to be imposed•. 

The following conclusions can be drawn from the 

above discussion and the finite element analyses of T-joints: 

(i) The presence of concrete in the T-joint 

with concrete collar reduced the hot spot values of stress 

around the intersection line. 

(ii) A composite T-joint with a steel collar filled 

with concrete had a higher strength when compared to a 

composite T-joint without a collar. 

(iii) It is likely that the addition of a steel 

collar surpresses crack initiation and propagation in the 

concrete surface when a joint is subjected to higher loads. 

(iv) The encasement of concrete with a steel 

collar produces an advantageous triaxial compressive 

stress state in the concrete. 
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5.4 	COMPOSITE TUBULAR K-JOINT 

A finite element analysis of a composite K-joint 

was carried out and the results compared with the results 

derived from the analysis of a welded K-joint. The validity 

of the welded K-joint analysis was established by comparison 

with published experimental data5.6. 	The geometry and 

loading of the K-joint are shown in Fig. (5,25). The chord 

and branches are subjected to axial and transverse forces 

and a transverse moment. 	In the analysis the right-hand 

end of the chord and the two branch loads were assumed to be 

completely free and subjected to end loads, while the 

left-hand of the chord was assumed to be completely fixed. 

A finite element analysis of a welded K-joint with an 

idealization using 245 Semi Loof shell elements,was carried 

out, Fig. (5,26). 	The maximum principal stresses along 

the top line of the chord compared well with the experimental 

values, Fig. (5,27). 	The displacement along the chord top 

line is shown in Fig. (5,28). A hot spot stress value of 

32,252 lb/int  (222.37 N/mm2) was obtained from the analysis. 

5.4.1 	Finite element analysis of a K-joint with a 

concrete collar 

In this joint the highly stressed area in a welded 

K-joint is covered by an 0.8 inch (20 mm) thickness of 

concrete to form a composite K-joint. The finite element 

analysis of the joint was carried out using a mesh of 

245 Semi Loof shell and 100 Semi Loof solid elements, 

Fig.(5,29). The concrete modulus was taken as 3000 Ksi 

2  (21000 N/mm) with a Poisson's ratio of 0.2. 
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The effect of the concrete on the variation of 

chord stresses, the displacements and stresses around the 

intersection lines are shown in Figs. (5,30) to (5,32). A 

hot spot stress value of about 17138 lb/int  (118.16 N/mm2) was 

obtained. With reference to this figure it became apparent 

that, if the concrete remained bonded to the outside surfaces 

of the chord and branches, a significant (46%) reduction of 

the hot spot stress value in comparison to a welded K-joint 

was obtained. 

The maximum shear and tensile normal bond stresses on 

the inside surface of concrete were higher than allowable values. 

5.4.2 	Discussion and Conclusions 

The results presented here, for a composite K-joint 

having simple geometry, serve as an illustration of the 

analysis technique developed in this thesis which may be 

applied to joints of considerable complexity, Appendix 3. 

The following conclusions can be drawn from the 

analysis of a composite K-joint; 

(i) The thickness of concrete in the model 

analysed was inadequate since the shear and tensile stresses 

in the concrete were greater than the allowable values. 

(ii) The presence of concrete decreased the hot 

spot stress values in the steel around the intersection 

lines. 

(iii) Smaller W  displacements were 

observed in the composite K-joint compared to the welded 

K-joint. 
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5.5 	CONCLUSIONS 

The newly developed Semi Loof solid element when 

combined with the Semi Loof shell element provides an 

efficient procedure for the analysis of conrete and steel 

in composite connections. 	The results derived from the 

finite element analysis compared closely with the experimental 

results for a composite connection with a steel sleeve filled 

with concrete. 

From the analysis of various types of composite 

connections and joints reported in this chapter, it is 

evident that the proposed finite element method can be 

used effectively to provide an improved understanding of 

the structural behaviour. 

The proposed finite element method is simple to 

apply and computationally efficient as was demonstrated in 

the analysis of a composite K-joint. This problem required 

an idealization of 245 Semi Loof shell and 100 Semi Loof 

solid elements with a total of 1297 nodes. The mesh 

generation routines reduced the data preparation effort to 

a minimum and the execution time required to produce the 

results was 3000 sec on a Cyber 174 computer. 



CHAPTER 6 

GENERAL CONCLUSIONS 

6.1 	SU1b MARY OF WORK 

The work described herein on the linear static 

analysis of straight tubular members,composite connections 

and composite tubular joints has involved; 

(i) The development of a Semi Loof solid element 

which is mixable with the Semi Loof thin shell element and 

is particularly suitable for use in the analysis of composite 

connections. 

(ii) The development of a special purpose mesh 

generation program which will automatically generate the 

descriptive data required for a wide range of joint 

geometries. 

(iii) An experimental program to study the composite 

behaviour of steel and concrete for connections with various 

physical and geometrical properties. 

(iv) The verification of the developed computer 

program by reference to model experiments. 

(v) The application of the computer program to a 

range of composite connections and joints. 

(vi) Discussion with respect to the design, 

fabrication and installation of the analysed composite 

connections. 
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6.2 	CONCLUDING REMARKS 

The Semi-Loof solid element was developed and applied 

to various composite tubular connections and joints. 

The finite element results of several models were 

compared with theoretical and experimental results, and 

found to be in close agreement, thus establishing the 

overall validity of the element and versatility of the 

finite element program. 

The finite element program was used to analyse several 

composite tubular connections and joints, and the results 

enabled certain improvements with respect to the design, 

fabrication and installation to be suggested. The program 

could therefore be utilized for parametric studies of a 

series of static linear joints for the formulation of a 

design guides to estimate stress concentration factors. 

The Semi Loaf solid finite element can be utilized 

in conjunction with one of several iterative schemes to 

incorporate the effect of geometrical and material non-

linearity, cracking in concrete, steel plasticity etc. 

The application of a program containing these effects would 

be limited by the high computer costs involved in the 

incremental solution of the non-linear equations. 

In this thesis attention has been drawn to the 

fatigue problem at joint intersections as a result of 

cyclic forces. The way now appears to be open for the 

development of time dependent forces acting on joints 

based on this static program. The fatigue life of a joint 

can be derived from the fatigue analysis in conjunction 

with Palmgren-Miner 's rule. 
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6.3 	FUTURE EXPERIMENTAL WORK 

As a result of the experimental program carried 

out for this thesis the following suggestions are made 

for future work. 	Studies could with advantage be made of:- 

(i) The effect of steel tube diameter/grout 

thickness ratio on the ultimate strength of straight 

tubular connections. 

(ii) The effect of the shear connection height/ 

spacing, height/tube diameter and spacing/tube diameter 

ratios on the ultimate strength of straight tubular 

composite connections. 

(iii) The effect of shear connection height/spacing, 

height/tube diameter and spacing/tube diameter ratios and 

concrete compressive strength on the induced compressive 

stress of the concrete in straight tubular composite 

connections. 

(iv) The effect of reinforcing and prestressing 

the concrete on the ultimate strength of straight tubular 

composite connections. 

(v) The fatigue performance of composite 

materials (steel and concrete). 

(vi) The behaviour of straight tubular composite 

connections under cyclic loading. 

(vii) The behaviour of large scale composite 

T-joints subjected to branch axial and flexural load 

(static and dynamic loading). 

(viii) The behaviour of large scale composite 

K-joints subjected to full platform loads. 



APPENDIX 1 

Al. 	T, Y AND K JOINT GEOMETRIC FORMULATION 

The following formulae provide the value of the 

coordinates (X,Y, Z) at the intersection line, for any 

polar position (a) around the branch member 

(i) 	T-joint, Fig. (2,1). 

X = Qb  + r Cos a 

Y = r Sin a 

a = Arc (Sin (R)) 

Z = R Cos 8 

when 	0 < a <180°  and 0 < 8.<900 . 

(ii) Y-joint, Fig. (2,2). 

The value of ordinate (R) for any polar 

position (a) around the branch member is 

h = Sine  EAJ + tan d 	DI 

where 

[A] = 1 - 	A. - (R)2  Sin2a 

[B] = 1 - Cos a 
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Therefore, 

X = Qb + Sin 	
 + R Cot - r (1-Cos a) Sin 

- h Cos 

r Sin a Sin 

Arc (Sin (R)) 

R Cos S 

(iii) K-joint with negative eccentricity, Fig. (2,3) 

The value of the x coordinate of the point 

N2  can be found graphically
A1.1, 

 the program then generates 

the coordinates of the intersection points related to XN  as 
2 

- 
a 	= Arc Cos ( XN2 	Qbf  ) 
1 	r1  

r1  Sin a1 
a2 	= Arc Sin ( 	) 
N2 	r2  Sin 

where the al  and a2  angles vary as 

1800 < a  1 < al N2  

a2 	< a2  < 0 
N2  

The previously described T-joint and Y-joint 

geometric formulation can now be used in the above angular 

domain. The coordinate values of N2,  N4,  N5  and N6  on 

the intersection line between the two small pipes are 
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Y = 

Z = 

N2  



4 XN 

XN  
2 

known 
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2 
YN

2 = Vr2  - XN
2  

rl  Cos a2  
ZN 	= 	Sinn q) 	2 

Qb + rl  - XN  ) 
1 	 2 

3 	 2 

YN 	
2 

4 = 
	rl  - X

N 
2 

4 

rl  Cos a2  
Z N4 	Qb2 	Sin 4 	 + XN4  tan c 

XN = 	Qb + rl 6 	1 

XN 
= 0 

6 

r Cos a 
Z 	= Q 	- 	1 	2  + X 	tan 41 
N6 	b2 	Sin 	 N6  

( 

XN  

 

2( Z,,, + r1 - XN  ) 
1 	 2 + XN  

2 5 3 

 

✓  2 	2 YN5  = 	r1  - XN  

r1  Cos a2  
ZN5 	Qb2 	Sin 	 + XN5  tan co 

5 



APPENDIX 2 

A2 	DETERMINATION OF PRINCIPAL STRAINS AND STRESSES 

The 3D symmetric stress tensor [a] is 

. 
 all a12 a13 

a21 a22 a23 

a31 a32 a33 

This tensor can be multiplied by a unit vector ni  to give 

the product aij. ni. This product can be rewritten as 

Sn  , where S is a scaler representing the magnitude of the 
J 

vector and n. is a unit vector. 
J 

Then 

a.. n. = S 1j 1 	nj, 

and 

(a 	--S ō 	) n.'= 0 
ij 	ij 	i 

The above equation represents a set of three linear 

algebraic homogeneous equations in the ni. A necessary 

and sufficient condition for a non-trivial solution is 

that the determinant of the coefficients be zero. The 

expansion of the determinant yields a cubic equation for S 

which is called the characteristic equation of the symmetric 
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tensor aij. 



2 	2  
12 	a11 a22 + a11 a33 + a22 a33 	a12 	a13  

S3 - 1  S2  + I2  S - I3  = 0 
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I 1 	611 + a22 + a33 	E aii 

where 

and 

x232 	2 a.. - 

I3  = det [bij] 

I1,  I2  and I3  are called the basic invariants of the 

symmetric tensor 6
ijA2.1 	

The principal values of the 

stresses are the roots of the cubic equation. 

A similar procedure can be carried out to calculate 

principal strain values. 



APPENDIX 3 

A3. 	VARIOUS DESIGNS FOR COMPOSITE TUBULAR JOINTS 

The five joint designs which were originally 

proposed and investigated during the author's M.Sc. project 

were later modified as a result of discussions with design 

and construction engineers involved in offshore work. 	These 

joints were designed to withstand loadings anticipated in a 

typical North Sea platform and are now described in this 

section. 

Joint I - This first joint is in essence a steel tube 

composite with a prestressed concrete casing and is suitable 

for a jacket structure. The main leg is left entirely free 

internally and it has simple prestressed bar guides welded 

onto its outside. The bracing members finish in two simple 

collars which guide the Macalloy bars, Fig. (A3,1) and 

Plate 12. 

Joint II - This joint is for the same structural members 

having smaller eccentricity, which has the main leg 

strengthened with a partial filling of concrete thus saving 

weight in return for partially blocking the tube. 	This 

and the next joint are logical extensions of the practice 

using concrete-filled composite steel tubes and would employ 

standard shear connections, Fig. (A3,2). 

Joint III - There is a tendency towards larger diameter legs 

in gravity platforms in order to increase buoyancy. This 

makes it possible to envisage a partial blockage of the 

hollow leg without loss of function. The design, shown in 
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Fig. (A3,3) and Plate 13 is proportionately lighter in 

weight than the second joint. 

Joint IV - This is a different approach to the gravity 

platform joint where all the steel tubes are stiffened 

with internal plates and the bracing tubes are finished 

with curved cylindrical ends to match the main leg, 

Fig. (A3,4). 	The composite joint now consists of a sand 

filled epoxy resin concrete which is prestressed by high 

strength friction grip bolts to hold the members together. 

Joint V - Examination of the previous four joints and 

discussion with some designers and consultants of offshore 

practice, led to this joint. The joint has similarities 

with joint III with additional advantages of external 

concrete for easy access, a non-structural steel cover 

to give electrical continuity and resin-bonded filler to 

allow the concrete to be cast in advance and to accommodate 

any dimensional inaccuracies in manufacture, Fig. (A3,5). 
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• 
V DISPLACEMENT ATi S?RESS 	AT j 

LOAD A LOAD B LOAD A LOAD B 

BEAM 
THEORY 10.0000 103.000 300,00 4050,00  

SL SOLID 10,0076 102,195 300,00 4050.00 

MESH 
1 

a 4 6.8100 70.1000 218.20 2945,00 

0, 6 1 0.0000 101,500 300,00 40 50,0 0 

MESH 

SL SOLID 9,4600 103.100 300.10 4050,70 

2 	 
Q 4 7.0600 72,300 218,80 2954,00 

Q 6 10,0000 101,300 300,00 4050.00 
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Table (3_1) 



Downward Vertical Displacement at the Free end in Terms of 
P f Et ( AVERAGE OF D1SPLACEMEN1S AT TOP AND BOTTOM FOR SOLIDS) 

Fi nite Element 
SEAM Fin i te Element Analysis 

SPAN THEORY 
lNCLUDlNG 

VAlU E .. /. OF BEAM 1HEORY Idealization L SHEAR 

DEFORMAT10N 

~1 
PQC3 Q.L C 3 KHX 20 KHL 20 P Q,C 3 QL C 3 KHX 20 1<H L 20 

;;-2 .:1<3 
p 2d 36.8 35.382 35,382 40,794 36,860 96.140 96,140 110.850 100.160 

J Id t I I I 4d 2 G5,5 259.764 259,764 266.807 26/,540 97,800 97.800 100.450 99,500 

'L 2031,530 2031.520 2065,930 2064.200 9S .270 98.270 I 99,930 99,C050 Sd 2067,2 

P 
2d .36,8 36.380 33,765 38.750 36.530 98.S 50 91.750 105.290 99.260 

.P t I 4d 265.6 265,100 247.529 "26'5.87S 264.198 99.840 93.190 100.100 9 9.470 

L Bd 2057,2 2066.BOO 1935,050 20G 5.270 2055,9/0 99.980 93. GO 0 99,900 9 9 .~50 
, 

3 
~1 Thick Beam 1heory W=W

b 
+ Ws =p L/3El-t 5/5tPL/AG) 

;f. 2 20 Node Sol id E 1 e men i 

7f<"3 Semi Looi Solid 

Table (3-2) 

-~ o 



Stresses ai Point A in Te.rms of (P/td) 

BEAM Finile Ele.ment Analysis 
Finite Element SPAN THEORY 

INCLUDING VALUE ./. OF BEAM lHEORY 

Idealization L SHEAR 

DE Fa Rt--1ATION 
PQ C 3 Q,LC3 1< H X 20 KH L 20 PQ.C3 Q,L C 3 K HX 20 KH L 20 

:.'f1 
~ l. ~3 

r 2 d 9.00 8.999 9.000 9.000 8.969 99.990 100.000 100.QOO 99.650 

t I I I . Pd 4d 18.00 18.00() 18.000 18.000 1"(965 100.000 100.000 100.000 99.800 

A L 
I 100.000 100.370 8d 35.00 3 6,000 36.000 35,000 36.135 100.000 100.000 

P 2d 9.00 9.025 9.000 9.000 9.000 100.270 100.000 100.000 100.000 

.Pd t I l.d 18.00 18,021 15.000 18.000 18.000 100.110 100.00eJ 100.000 100.000 

A L 8d 35.00 35.990 36.000 3 6.000 36.000 99.970 100.000 100.00~ 100.000 

'* 1 TH1CK "BEAM THEORY 
~ 2 20 NODE SOLID EL E HE NT 

~ 3 SEMI LOaF so LlD E LEME NT 

Table(3-3) 



Do 
TUBE 

t 
TUBE 

Di 
SLEEVE 

t 
SLEEVE 

I 
CONCRETE 

Phase 
1 

GROUP 1,3 1.7,625 2,160 60.325 1,650 12.700 

GROUP2,4 1. 7.625 2.160 73,025 1.650 12.700 

Phase 
2 

1.7,625 2,160 60.325 1.650 6.350 

Phase 
3 

219.280 8.135 258.000 8.230 19.350 

Do =Outside Diameter 

Di = Inside 	Dia meter 

Table(4-1 ) - Geometrical Properties of 
Small-Scale and Large-Scale Models (i n mm ) 



API 5L Grade 
B 

Dimension 	of 	Test 	Piece YIELD 

LOAD 

MAX 

LOAD 

YIELD 

STRESS 

TENSILE 

STRENGTH 

Elongation 

% on 
ORIDIAM 

mm 

THIKNESS 

mm 

AREA 

mm2  RN xN N/mm2  N/mm2  

SLEEVE 

TUBE 

38.70 

38.60 

7.10 

8 .15 

275.00 

315.00 

132 

122 

180 

164 

481 

3 87 

655 

521 

38 

38 

. Chemical 	Composition 
C Si Mn P S Cr Mo 

Carbon 
Equivalent 

SLE EVE 

TUBE 

.20 

,19 

.30 

.30 

.52 

.52 

.008 

.009 

.017 

.018 

C.E-.30 

C.E=.29 

Table (4-2 )- Physical and Chemical Properties 

of Large-Scale Model 



D = Outside Diameter of Tube 

D R. Inside Diameter of SleevA 
z 
t = Thickness of the Grout 

L = Length of the Sleeve 

A = Area of Tube and Grout 
Interface (i1DxL/2) 

F = Ultimate Load 
fb= Equivalent Ultimate 

Bond Strength(FJA 

K= Radial Stiffness 
-1 

IS grout 
(1 / S 

tube 1  / sleeve 

Small-Scale D 
(mm) 

t 
(mm) 

L 
(mm) 

A 
(mm2) 

F 
(N) 

f b  
(Nlmmi) 

L/Di  K 2  
(N/mm ) 

• 1 47,625 6,35 120.650 9025,73 17437.0 1,930 2, 00 5943.80 

Group 1 2 47.625 6,35 152.400 11400.92 21920.8 1.923 2.50 594 3, 80 

3 L 7,625 6.35 180,975 13538.60 209244 1.545 3.0 0 5943,80 

Group 2 
1 47, 625 12.70 146,050 10925,88 23913,6 2.1 89 2. 00 7046.68 

2  47.625 12.70 182,563 13657.40 32881.2 2.407 2,50 7046.68 

3 47,625 12.70 21 9.075 1 6388.82 38361,4 2,340 3.00 7046,68 

Group 3 

1 47.625 6,35 120,650 9025,73 62275.0 6.900 2.00 5943.50 

2 4 7.625 6.35 152.400 11400.92 86188.6 7.560 2.50 5943,80 

3 4 7,625 6.35 180.975 13538.60 108507.6 8.022 3.00 5943,80 

• 

G roup 4. 
1 47.625 12.70 146.050 10925,88 82701.2 7.569 2.00 7046.68 

2 4 7.625 12.70 162.563 13657.40 85690,4 6,274 2.50 7046.68 

3 47.625 12,70 219.075 16388,82 106614.8 6.505 3.00 7046,68 

Table (4.-3 )-Geometrical and Physical Properties of 
Small -Scale Models 
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l'  
Fig (2 ,1) Fi n it e Element Model. 

of Tee Joint 



Fig (2,2) Finite element model of K joint 
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Fig (2,3) Tee joint 

Fig (2,4) y-Joint 



( 0,0.0) 

1 49 

Fig (2)  5) K -Joint (Two branches joint with negative eccentricity) 
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Fig (2,6) Axial stresses 
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- Experimental result 
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Fig (2, 7) Hoop stresses 
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Fig (2,8) Axial stresses 
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Description 	Curved thin 
shell quadrilateral element 

Number of nodes 8 
(vertices and mid sides ) 

Degrees of freedom 
• (a) At corner nodes: x,y,z 
(b) At midsides' x,y,z, ex,e'y 

Total d.o.f=32 

Geometric properties 
t~ t2 t3 t4 t5t5ty t8 
(thickness at the nodes) 

Material properties  
E - Youngs modulus 
u -Poisson's ratio 

Fig (3,1) Semi loof shell nodal configuration 



18 

13 

9 

18 

Iso-parametric solid 

Description 	Curved thick 
brick quadrilateral element 

'Number of nodes 20 
(vertices and midsides) 

Degrees of freedom  
At corner and midside nodes: x,y,z 
' 	Total d.o.f =60 
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Semi- loof solid 

Description 	Curved thick 
brick quadrilateral element 

Number of nodes 20 
(vertices and midside) 

Degrees of freedom 
a) At corner and midside 

nodes: x, y,z 
b) At top surface midside 

nodes :x,y,z, ex, 
Total d.o.f = 68 

Material properties  
E Youngs modulus 
U 

 
Poissons ratio 

Fig (3, 2) 20 Node solid and semi loof solid 
elements. Nodal configuration 



1  
• Loof points 21T  1 from centre 

0 Corner and midside nodes 
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Fig (3,3) Shape function L for the first loof points 
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U1 	 U2 
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U19 

1 57 

Fig (3,4) Unconstrained variables of semi loof solid 



told-surface tine 
z,w 

- 

x,u 

Actual deformation 
‘—Assumed deformation 

z 

Fig(3,5) Actual deformation for thick shells 

	 X 

x , y, z are global cartesian system 

zj yi ,zi are loof local coordinate system 

xi, yi ,z i  are gauss local coordinate system 
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Fig (3,6) Semi loof solid co-ordinate system 



t K S are base vectors 

īt i,~Jc are co-variant base vectors 

Fig (3, 7) Non cartesian system 

Fig (3, 8) Loot nodes and gauss points 
local co-ordinate vectors 
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U17 
V17 

W17 
U11 
V11 
W11 

U5 
V5 
W5 

1 60 

W1 
	

W2 
	 U3 

Y3 
W3 

Fig (3,9) Constrained variables of 
semi loof solid element 



o mid side and corner nodes 3 d.o.f 

O mid side nodes 	 5 d.o.f 

1 61 

Assumed displacement field 

u =1+2x+3y 

v =2+3x+4y 

Constant strain state : Ex  = 2, Cy = 4, Ez = 0, Exy= 6, Eyz=O , 

Ox 	105495 

ay 	 15164 .8 

0 
Finite element results: 

Oxy 	6923-08 

O yz 	 0 

Oxz 	 0 

Ex z= 0  

Fig (3,10) General rectangular (u , v patch test ) 



o mid side and corner nodes 3 d.o.f 

® mid side nodes 	 5 d.o.f 

Assumed displacement field 

u =1+2x+ 3y 

v =2+3x + 4y 

Constant strain state : Ex = 2, Ey= 4, Ez =0, Exy= 6, Eyz=O, Exz=O 

Ox 10549- 5 

ay 15164. 8 

oz 0 
Finite element results: 

axy ( 	1 6923- 08 

oyz ~ I 	0 
oxz l I 	0 
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Fig (3,11) Paralleogram patch test 



163 

Exz = 0 

• mid side and corner nodes 3 d.o.f 

O mid side nodes 	5 d.o.f 

Assumed displacement field 

u =1+2x+ 3y 

v 2+3x+ 4y 

Constant strain state Ex 

ox 	10549.5 

oy 	15164.  8 

Qz 	 0 

Oxy 	6923-  08 

Oyz 	0  

Finite element results: 

J 

=2, Ey =4 , Ez =0 , Exy =6, Eyz = O , 

oxz 

 

0 

   

Fig (3, 12) Trapezoidal patch test 



0 mid side and corner nodes 3 d.o.f 

Q mid side nodes 	 5 d.o.f 

Assumed displacement field 

u =1+ x + 2y 

v =1+x + y 

w =1+ 2x+ y 

Constant strain state : Ex  

Finite 	element results: 

= 1, 

ox 

or  

az  

oxy 

ay  

axz 

Ey =1, 	Ez 

3000 

= 0, 

0.7 

0.3 

0.3 

Exy = 3, 

0.3 0.3 

0-7 0.3 

0.3 0.7 

Eyz =1 , 

0.2 

02 

Exz 

- 

0.2 

= 2 

-1 

1 

0 

3 

1 

2 

5769.23 - 

5769.23 

0 

3461.54 

1153-846 

2307692 

0.52 

Fig (3,13)Arbitrary hexagonal patch test 
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0.7 0-3 0.3 0 0 

0- 3 0- 7 0- 3 0 0 

3000 
0.3 0.3 0 - 7 0 0 

0.52 0 -2 0 0 

0.2 3 3461.54 

0-2 2 2307.69 

Finite element results. 

o mid side and corner nodes 3 d.o.f 

© mid side nodes 	5 d.o.f 

General arbitrary quadrilateral 

(w Free patch test ) 

Assumed displacement field: 

_ 	w =14 2x; 3 Y 

Constant strain state : Ex = 0, Ey =0, Ez =0,  Exy=  0, Eyz =3 , Exz=2 
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Fig (3,14) Arbitrary hexagonal 
(w free patch test) 
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Mesh 2. 

Fig (3,15) Cantilever beam 
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Fig(3,16) Cantilever mesh idealization and 
results comparison with beam theory 
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Beam theory 
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Fig (3,17) Cantilever beam 
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Fig(5,15 )Welded T- joint ,mesh idealization 
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Fig( 5,19) T- joint with concrete col lar , mesh idealization 
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Fig(5,22)T-joint with steel collar filled with concrete 
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Fig(5,26) K-joint, mesh idealization 
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Fig(5,29)Composite K-joint, mesh idealization 
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Plate 1: Small scale model (Phase 1) 



Plate 2: Small scale model with ring welded at the end of 
sleeve (Phase 2) 



Plate 3: Large scale model (Phase 3) 
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Plate 4: Loading rig of small scale model 
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Plate 5: Loading rig of large scale model 
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Plate 6: The mode of failure of large scale model 
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Plate 7: The mode of failure of small scale model (L = 2D) 
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Plate 8: The mode of failure of srcall model (L = 3D) 
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Plate 9: Shear connectors in small scale model 



Plate 10: Shear connectors (weld beads) on large scale model 



2 2 8 

Plate 11: Strain gauges. Layout on external surface of sleeve 
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Plate 12: Joint I model 



Plate 13: Joint III model 




