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ABSTRACT 

In this work three types of electromagnetic flowmeters 

are analysed. These flowmeters have distorted imposed fields in 

which the distortion is caused either by magnetic property, electrical 

conductivity or flowrate of fluid. 

The first type is the electromagnetic flowmeter for magnetic 

slurries, where the permeability of fluid affects the imposed field 

and makes the performance of the meter non-linear. A design is given 

which has a search coil positioned in the liner which is used as a 

reference and gives a constant signal for changing fluid permeability 

and an almost constant one for a limited range of axisymmetric 

velocity profiles. 

The second type of flowmeter is a swept field one where 

the high magnetic Reynolds number (Rm = po aVm) causes the field sweeping. 

These flowmeters are analysed and their performances are found for three 

different types of imposed fields. The solution is a numerical finite 

difference approximation with S.O.R. Also a weight function is found 

for the swept field flowmeter which is magnetic Reynolds number dependent. 

And finally a design is given with electrodes displaced downstream. The 

performance of this meter is effected by conductivity change. 

The design which is immune to any conductivity change is the 

integrated voltage flowmeter for which the theory, and examples for 

confirming this theory, are given. 

Experiments are carried out on swept field flowmeters using 

an analogue rig and the results obtained are in good agreement with 

prediction. 

Finally pulsed field flowmeters are analysed and a design is 

given which can measure the flowrate and conductivity of the flow. Performance 

of this flowmeter is immune to any temperature or conductivity change. 
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NOMENCLATURE 

a 	internal radius of pipe, semi-width of channel (in x-direction) 

A 	magnetic vector potential 

A 	Laplace transformation of A 

A_., A ' 	constant 
n n 

b 	external radius of pipe, semi-depth of channel (in y-direction) 

6f T 
Cr 	contact resistance number, ( a  

6 W 
W 

d wall conductivity number, 	(Q a) ds 	area element, vector normal to area 
dw 	diameter of coil winding 

electric displacement vector 

Dn 	constant 

E electric field intensity vector, elliptic integral of 
second kind 

f(x) 	function 

F 	 vector .quantity 

h1,h2 	lattice size in r-direction 

h3 	lattice size in z-direction 

H magnetic field intensity vector 

i,j,k 	Cartesian co-ordinates 

i 

 

i
n 	

electric current 

I 	total current vector, total current in coil 

I(x) 	Bessel function of first kind 

I1(x) 	modified Bessel function of first kind 

Im 	virtual current in midplane of pipe 

J current density vector 

Jo 	current density in primary coil 

J virtual current density 
v 

magnetic flux density 

B 
n 	

constant 
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R 	radius 

R 	 Reynolds number ( .pmaVm/rfi) 

R 
c 	

radius of coil 

Rm 	magnetic Reynold's number (µ cavm) 

R 
n 	

electrical resistance 

S sensitivity 

sl,s2 	surfaces around the electrodes 

t 'time 

t,f 	non-dimensional time scale (t/Uaa2 ) 

T 	time constant of medium 

U electrical potential 

Uo 	constant voltage at electrodes 

Uv 	virtual electric potential 

Uv' 	virtual electric potential for Uo  potential 

Um' 	voltage induced by motion 

✓ fluid velocity vector 

m 	mean velocity 
w wall thickness 
W weight vector, weight function 

x,y,z 

zl  

z' 

Cartesian co-ordinates 

Cartesian co-ordinate 

z  
R 
c  
zl  

zl 	R c 
 

zn 	parameter of Gauss Legendre quandrature 

Greek Symbols  

a
n n 	

parameter of Gauss Legendre quadrature 

a 	half angle of coil 

a0=7/2-B angle of coil (in Appendices A, B and C) 
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dr 
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d (z) 

d  
n 
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angle 

search coil angle 

constant 

lattice size in r-direction 

lattice size in e-direction 

delta function 

constant 

fluid permittivity 

c 	induced electric potential in secondary coil 
6 R e 

c 	 
e non-dimensional induced electric potential N NpIrr 

viscosity of fluid 

e polar co-ordinate 

µ. 	magnetic permeability- 
41  
• 42  

-7 
permeability of free space, 47 x 10 

0 

P 	polar co-ordinate, fluid density, charge density 

dimensionless radius (R or ā) 
c c  

Pm 	mass density of fluid 

a 	electrical conductivity 

T 	contact resistance per unit area, time interval, transient time 

volume element 

magnetic potential function 

magnetic potential at pole faces 

scalar potential 

angular velocity 

µ' 

dT 

w 

Subscripts  

f 
	

value in the fluid 

0 
	

imposed or uniform, value at the centre 



xi 

r,9,z 	cylindrical components 

x,y,z 	Cartesian components 

w 	value in the wall 

.e 	 value in the flowmeter liner 

bar (e.g.U) integral value of U in z-direction 

+m 

U = 	U dz 



CHAPTER 1 

INTRODUCTION 

The safe operation of the fast breeder reactor (FBR) with 

liquid sodium cooling necessitates the flow measurement of sodium 

in a wide range of pipe sizes up to the order of lm diameter and 

velocities as high as 10m/sec. Under these conditions the rePability 

of a flowmeter is more important than the accuracy as an accuracy 

of a few per cent is sufficient (Hayes 1974). 

Electromagnetic flowmeters (induced voltage or induced magnetic 

field) have been used both in the core, primary and secondary cooling 

systems of sodium cooled FBR. In the core of the reactor the flow 

velocity is not high but the operating conditions are severe. High 

temperature, radiation and inaccessibility encountered here all cause 

problems and therefore eddy current flowmeters are.normally recommended 

to be used in core flow measurement. 

Primary and secondary flow measurements are made using transverse 

field electromagnetic flowmeters, but the high value of magnetic Reynolds 

number (Rm) tends to produce distortion of'the imposed magnetic field 

and this makes the performance of these metersnon-linear. In this work 

a design is produced which, although it. has an applied magnetic field 

distorted by the flow, will still provide a linear performance._ Ar-

problem exists in calibration of the electromagnetic flowmeters for 

magnetic slurries, where the magnetic property of the slurry causes 

the distortion of the imposed field and changes the calibration. A 

flowmeter design is given for the measurement of flow of magnetic 

slurries, the output of which is not affected by the permeability of 

the fluid . 

The contact method of flow measurement exhibits known disadvantages 

when used to measure the flowrate of high temperature corrosive fluids. 



In particular, the variability of the contact resistance between the 

electrodes and the medium or the channel walls and the medium gives 

rise to additional measurement error. In this context a pulsed field 

flowmeter is analysed and developed which may be used for flow measurement 

in production of wires, rods, tubes, M.H.D. devices, in the core, the 

primary and also 
	

in the secondary cooling circuit of a Fast 

Breeder Reactor. 

1.1 History and Development of Electromagnetic Flowmeters  

In 1832 Faraday attempted to measure the induced voltage across the 

river Thames resulting from the interaction of the water flow and the 

Earth's magnetic field. 

Years after Faraday the principle of electromagnetic flowmeasurement 

had still only been used for oceanographic applications. Somewhat after/  

it was realised that electromagnetic flowmeasurement could be applied to 

other fluids than water. 

Within the last two decades the electromagnetic flowmeter has been 

used in the flowmeasurement of, for example, water, chemicals, blood, 

ionized gases, food stuffs, liquid metals and others. Electromagnetic 

flowmeters are divided into two distinct categories depending on their 

mechanism of operation. 

a) Induced voltage flowmeters 

b) Induced magnetic field flowmeters 

1.1.1 Induced voltage flowmeter  

The operation of this meter is based on the discovery by Faraday 



that voltages are induced in a conductor which moves through a magnetic 

field. The electric field E induced by such motion is expressed by 

the vector equation: 

E = V x B 	 (1.1) 

where V is the velocity of motion, and B is the magnetic flux 

density. Figure 1.1 shows an induced voltage electromagnetic flow-

meter in a pipeline configuration. The induced voltage is sensed by 

two electrodes at diametrically opposite points on the pipe wall. 

Williams (1930) performed experiments with a copper sulphate 

solution flowing in a non-conducting circular pipe, under a uniform 

transverse magnetic field. The results showed that the induced voltage 

between the electrodes EE was proportional to the flowrate. The early 

theory of electromagnetic flowmeters was developed by Thūrlemann (1941) 

and Kolin (1945) who showed that the signal from an electromagnetic 

flowmeter with point electrodes non-conducting circular channels and 

a uniform magnetic field is directly proportional to the flowrate for 

any axisymmetrical velocity profile. That is 

AUEE  = 2a Bo  Vm  (1.2) 

where DUES  is the potential difference between the electrodes, Bo  is 

the uniform magnetic field, V
m 
 is the mean velocity, and 2a is the 

pipe diameter. Shercliff (1954) introduced the weight function to 

show how the distribution of velocity affects the performance of the 

flowmeter. The signal was described as: 



AUEE = Bo  fv. W ds 
cross 
section 

in which W, the weight function, was given by 

(1.3) 

W(r,e) = 
a4  + a2r2  Cos 2e (1.4) 
a4  + 2a2r2  Cos 2e + r4  

The sensitivity of the flowmeter is defined as 

2aEB V 	 (1.5) 
o m 

Figure 1.2 shows the contours of W, which indicate the contri-

bution of the various parts of the cross-section to the output signal. 

For axisymmetric velocity profiles equation 1.3 gives a sensitivity  

of unity, as was obtained by Thūrlemann and Kolin, but when the 

velocity profile is non-axisymmetrilt the sensitivity can be greater or 

less than unity and sometimes negative. The sensitivity becomes .5 

if the flow concentrates near the side walls. If the flow concentrates 

near the electrodes the sensitivity can be much greater than unity. 

Localised reverse flow, may reduce the sensitivity below .5 and 

could even make it negative. 

The sensitivity of the flowmeter, when the magnetic field is 

non-uniform and flow is rectilinear in the channel cross-section, is 

expressed in a more general form by Korsunskii (1974). 

S = 

a 27 

ō I VZ  (r,e).B(r,e).W(r,e)r dr de 
(1.6) 

a 27 
Bo 

f  I  z (r ,e) r dr de 

In which Bo  here is the magnetic field at the centre of the channel 

and W is the Shercliff weighting function. If the field is uniform 



and flow is axisymmetric the sensitivity again is unity. 

In order to remove the effect of velocity profile Rummel and 

Ketelson (1966) have proposed an electromagnetic flowmeter with a 

magnetic field inversely proportional to the Shercliff weight 

function. The magnetic flux distribution everywhere in the channel 

is defined by the relation: 

B (r, 9) /Bo 1/W(r,(9) 	 (1.7) 

Bevir (1970,1971) continuing the work of Shercliff has shown that- the 

potential difference between the electrodes can be written in the 

general form: 

AUS = T W. V dT 	 (1.8) 

where T is the volume and W denotes the weight vector. 

W = B x J V (1.9) 

and 

Jv = VG 

G is the solution of the Laplace equation in the region under 

consideration with given boundary conditions. Bevir refers to J ~ 

as a virtual current, which would occur if unit current passed between 

the electrodes with no fluid motion. The condition on W for an ideal 

flowmeter which gives a signal proportional to the flowrate irrespective 

of the velocity distribution was given as: 



VxW = 0 	 (1.10) 

This condition can be satisfied using certain shapes and electrodes. 

Electromagnetic flowmeter with two point electrodes, in a circular 

channel cannot have this property, though it can with difficulty 

be made immune to variation in the profile of a rectilinear flow. 

Gammerman and Mezhburd (1971) gave a three dimensional solution 

for Bevir's weight vector for a cylindrical flowmeter with insulated 

walls and this work shows that the two dimensional solution by 

Shercliff is a particular case of the general solution obtained. The 

solution gives the virtual current distribution for an insulating 

circular pipe with point or finite electrodes. 

Kirshtein and Timofeev (1975,1977) analysed the effect of a non-

uniform magnetic field in the direction of flow, on the characteristics 

of the meter. Their conclusion was that the distribution of the 

magnetic field along the tube axis has a significant effect on the 

characteristics of a flowmeter and so approximate designs with shortened 

magnet systems, which do not take into account the non-uniformity of 

the magnetic field along the flow can lead to large errors. Thus both 

the longitudinal and the transverse non-uniformity of the magnetic 

field must be taken into consideration, when the flowmeter parameters 

are to be determined. One possible design to give responses proportional 

to the mean velocity, for an arbitrary velocity distribution in the 

flowmeter channel, is one in which the magnetic field B is such as to 

ensure that the component Wz  in the direction of the flow is approximately 

constant and that all the remaining components of W vanish. 

One of the problems in measuring liquid metal flow by electro-

magnetic flowmeters is their high sensitivity to changes in the electrical 

parameters at the interface of two media, the channel wall and liquid 

metal. These changes can be caused by the fact that the channel walls 



are not wettable, because of the deposition of oxides and precipitates. 

i 

Velt and Mikaileve (1977) considered the possibility of constructing 

flowmeters with signals independent of the contact resistance, by 

introducing a non-uniform magnetic field of a special type. The 

magnetic field distribution is found from the requirement that the 

normal current component caused by flow in the magnetic field should 

vanish at the boundary between the liquid and the wall. The effect of 

distortion from axial symmetry in the fluid velocity profile was studied 

by Wenger (1971). A general formula was given for computing the 

sensitivity for any given rectilinear velocity profile. The solution 

is in two dimensions and the magnetic field is uniform. 

1 	2Tr 

II 
K(p,9) V(p, 9)p dp d9 

S 	
1 27 

ō ō V(p,A)p dp de 

where K(p,A) the weighting vector is 

co 

K(p,e) = E 	2R 
 
2m 	2m 	

p 	Cos(m - 1)A Sin-- 
m=1 (R 	+ 1) + y (R 	- 1) 

(1.12) 

and 

a w  
Y = and 	R = b/a 

If K(p,(9) is a constant the flowmeter would be ideal and the sensitivity 

would be completely independent of the velocity profile. The series 

expression for K(p,e) can be expressed in closed form only for a non-

conducting pipe wall: i.e., 



1 + p2  Cos29 
(1.13) 

1 + 2p2  Cos 28 + p4  

This result was also obtained by Shercliff (1954). The author shows 

how to select the flowmeter pipe wall thickness and electrical 

conductivity to minimize the error in the flow measurement due to 

uncertainties in the velocity profile. Then the velocity profile 

distortion produced by the flowmeter itself was analysed for fully 

developed flow and a Hartmann number range of 1 to 1000. Numerical 

results were presented in tabular form and used to help to correct 

flow measurements. 

The electromagnetic flowmeters with cylindrical magnets are 

particularly suitable for measuring flow rates in tubes several 

hundred millimetres in diameter. The application of a conventional 

magnetic flowmeter of this size requires a very large magnet system. 

Modern magnetic materials are capable of operation at temperature 

up to 600°C. The magnetic flux in these meters is created by a 

cylindrical permanent magnet, magnetized along its diameter and is 

placed along the axis of the pipe-line. Loginov (1971) analysed such 

a meter, and the potential distribution in the walls of the sensor, in 

the surrounding flow, and in the tubing itself. The solution is 

analytical and it assumes an infinitly long transverse magnetic field 

with axisymmetric velocity profile. This author also considers the 

case when an electrical contact resistance exists between the liquid 

metal and the solid wall. Kormilov and Loginov (1978) show how the 

velocity profile effects the sensitivity of the above flowmeter and 

a correction coefficient for velocity profile is introduced and a table 

of this coefficient is given, 



1.1.2 Induced Magnetic Field Flowmeter  

The motion of a fluid in an imposed magnetic field produces 

an induced magnetic field which is a function of velocity profile and 

fluid conductivity. Measurement of this induced field is the basis of 

another technique for flow measurement. The fact of conductivity 

dependence, makes the measurement uncertain, but if the velocity is 

known, the method may be used for conductivity measurement (Meyer, 1961). 

The attraction of the induced field flowmeter is that it requires no 

electrical connections to or inside the flow channel and therefore no 

trouble from electrode polarisation and contact resistance exists. 

The change in the magnetic field may be measured by a search coil 

and an a.c. system, the frequency must be low to avoid skin effects in 

the liquid metal. A device of this kind was first patented by Lehde and 

Lang (1948) for ship speed measuremnt. This flowmeter consists of a central 

coil (primary), energized from an alternating current source with a certain 

frequency, with two identical secondary coils connected differentially at 

either side of the primary. The coils can be treated as a differential 

transformer and balanced to zero for stationary fluids (see figure 1.3). 

The interaction of the flow with the magnetic field of the primary coil 

creates eddy currents in the. fluid. These eddy currents distort the 

field and generate e.m.f's in the secondary coils which their difference is 

a function of magnetic Reynolds number. The fluid can either flow through 

an internal channel or an external channel depending on the particular 

application. 

One type of the induced magentic flowmeter is tested by Kalnin et 

al (1966). On one side of the flow channel there is a pulsating field 

inductor, supplied with single-phase alternating current. A receiving 

inductor is placed on the other side of the channel. An emf is created 
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at the receiving inductor winding by the flow of fluid through the 

channel. The disadvantage of the meter is its depedence on the velocity 

profile, the geometry of the channel and the inductor, the frequency and 

the conductivity of the fluid. The measurement showed an error of about 2% 

0 
at AT = ±10oC in the range from +2000  to 450 C. 

Another type of induced field flowmeter suitable for high magnetic 

Reynolds number has been suggested and tested for high temperature 

corrosive media like those in M.H.D. devices at Riga, Latvain S.S.R. 

Zheigur and Sermons (1965) describe this flowmeter, which in its simplest 

form consists of two coaxial coils spaced along a pipe (see figure 1.4). 

The transmitting coil is fed from a generator with rectangular current 

pulses which induce circular currents in the medium and are convected by the 

moving liquid. This is accompanied by a displacement of the magnetic field 

lines induced by the eddy currents and these in turn induce an e.m.f. in the 

receiving coil. The signal in the receiving coil is a maximum when the eddy 
• 

current passes the coil. The transit time is a function of velocity and 

fluid conductivity. If conductivity is constant the velocity becomes the 

ratio of distance between the coils to transit time: 

V = t/T 	 (I j4 ) 

This expression is true only for an ideal case (two circular coils in a moving 

X 
conducting medium) and high value of magnetic Reynolds number. 

1.2 Fast Breeder Reactors  

The major development of electromagnetic devices came after the Second 

World War, with the advent of nuclear power reactors, in particular, the fast 

breeder system (FBR), where the compactness of the reactor produces problems 

of extracting heat from the core. 

The FBR has been a concept of nuclear physicists from the earliest 

days of atomic energy. In nuclear reactors when fission occurs the emitted 
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neutrons are moving at high speeds. In the case of fast breeder reactors 

no delibrate attempt is made to slow the neutrons down, whereas in a 

thermal reactor a moderator is introduced, whose function is to absorb the 

kinetic energy of the neutrons and slow them to thermal energies. Conventions 

thermal reactors are capable of. recoveringonly 1 per cent of the energy 	t 

contained in Uranium, while in fast breeder reactors there is potential 

for recovery of at least 50 per cent of the energy contained in the Uranium 

and Plutonium. 

In the FBR, the fuel is manufactured from Uranium (U-238) and Plutonium 

(Pu.-239). Like the U-238 in a conventionalreactor, Pu-239 is a fissionable 

material; neutrons striking Pu-239 cause its atoms to fission and release 

heat. But not all the neutrons collide with Plutonium, some hit U-238 causing 

the Uranium to be transmitted to Plutonium, Pu-239. Compared with a conven- 

tional reactor, a breeder therefore has a vital feature. The reactor breeds 

Plutonium, and the refuelling cycle essentially consists in topping up with 

U--238. The breeding capability of the FBR will lead to a higher energy 

potential of the available Uranium and therefore lower consumption for a 

fixed demand. The prospect of economic power generation, with substantial 

independence from external fuel supplies as offered by fast breeder reactors, 

has provided a strong incentive for several countries to initiate development 

programmes on this type of reactor. 

High ratings and surface heat fluxes are inherent in the core design 

of a fast reactor. These requirements give rise to verysevere cooling problems 

Furthermore, the choice of coolant is dictated by the fact that it is un-

desirable to introduce neutron-moderating materials into the core, so that 

water or hydrogenous materials are not suitable. This limitation and the 

inadequacy of a gas as a heat transfer medium directed attention in the early 

days of development to the consideration of liquid metals as reactor coolants. 

The alkali metals proved most suitable and sodium or sodium potassium alloys 

have emerged as pre-eminent. It is interesting to note the properties 
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of sodium which have led to its choice as a coolant for the fast 

reactor: 

1) Good resistance to irradiation damage. 

2) High boiling point, which permits high operating temperatures 

and therefore high thermal efficiency in the steam cycle. 

3) High thermal conductivity leading to good heat transfer 

coefficients, which in turn permit high rates of heat transfer 

from the surfaces of the fuel elements. It has also a 

reasonably high specific heat and density which enables the 

required heat transport rates to be obtained with acceptable 

coolant velocities and temperature rise across the core. 

4) It is cheap and a large supply is readily obtainable. Thus 

sodium has a. combination and range of physical properties 

which make it particularly suitable for a fast reactor coolant 

(Moore et al, 1961), 

1..3 Electromagnetic Flowmeters for Fast Breeder Reactors  

The typcial large fast reactor under construction or active 

design today employs mixed oxide (Pu,U)02  fuel helium bonded to stain-

less steel clad jackets having a diameter of about .6cm. The fuel 

elements are close-packed into a core having an average composition of 

about 35% fuel, 45% sodium and 20% steel (Simnad, 1971). Between 

the radioactive primary system sodium and the steam generators 

is an intermediate sodium heat exchanger and secondary sodium system. 

Typical average core exit coolant temperatures are 540-600°C; the 

core temperature (AT) is about 170°C. Primary system pumps are 

usually mechanical. Three or six primary system loops are usually 
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considered, although as few as two have been proposed. The major 

early designs had two choices of primary  system: the loop system, 

in which coolant is piped from the reactor vessel to the pump and 

intermediate exchanger, which are located in inter atmosphere cells; 

or the pool system in which the entire primary system lies submerged 

in a large vessel. Examples of loop and pool systems are illustrated 

in figures 1.5 and 1.6 respectively and table 1.1 shows which of the 

reactors under construction or already operating have loop, and which 

have pool type primary circuits (Campbell, 1973). 

The safe operation of FIR requires reliable instruments for 

monitoring the sodium in core, primary and secondary circuits. The 

problems of designing such instruments are severe. These include 

for example, high temperature; radiation; restricted access; 

hydraulic shock and reliability (buncombe and .Thomasset, , 1970). All 

these qualities, and more, are possessed by the electromagnetic flow-

meter, which has now become a standard fitting in liquid metal circuits 

such as those in fast breeder reactors Hess et al (1975) give a 

survey of measurement methods and the variety of appropriate instru-

mentation developed and tested for primary and secondary systems of 

fast breeder reactors. Baker (1977) considers various types of electro-

magnetic flowmeters which have been used for primary and secondary 

circuits. For primary, both flow through type and probe type 

electromagnetic flowmeters, have been proposed while in the secondary 

the high magnetic Reynolds numbers cause field sweeping and this has 

led to the use of the long saddle coil flowmeter. Flux distortion 

(eddy current) flowmeters, either flow through or probe types, have 

been discussed for monitoring the primary circuit flow. 



14 

1.3.1 Core Flow Measurements 

The space available in the control rod guide tube puts 

restrictions on the size and type of the flowmeter which may be 

used in core flow measurements. This space is dictated by the .53m 

long, 5cm diameter flow channel in the guide tube. The instrument 

should respond to 10% change in flowrate over a 10 second period and 

must operate satisfactorily in molten sodium at temperature up to 

700°C in the presence of high radiation levels (Dean et al 1970). The 

electromagnetic flowmeter in which a magnetic flux is produced by a 

permanent magnet may be used for either flow through or probe type, 

but the difficulty is to find magnetic materials with stability up to 

700°C. Modern magnetic materials are capable of operating at high 

temperature and some of these designs have been tested by Popper and 

Glass (1967), 	Foster (1971, 1973) and Yada 	(1970) 	At 

the present times  with the difficulties surrounding the permanent 

magnet flowmeters, the eddy current (flux distortion) flowmeters seem 

to be favoured for core flow measurements. 

The probe type eddy current flowmeter is shown in figure 1.8 

and is inserted coaxially into a duct where the sodium flows through 

the annulus between the probe and the duct wall. This flowmeter has 

been developed and selected in British prototype fast reactor for 

protection against the loss of coolant incident and for primary 

circuit flow monitoring (Dean et al, 1970). A theoretical model 

has been illustrated by Hirayama (1977) and its validity has been 

confirmed by experiments using a moving aluminium cylinder as a fluid. 

Wiegand (1967,1969) describe the flow through eddy current flowmeter 

(see figure 1.7), and a numerical solution is given by Feng et al 

(1975) employing a finite difference relaxation method and complex 
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notation for quadrature signal. Calculations were made for various 

axially symmetric arrangements of coils, and experiments have been 

carried out using mercury as the conducting fluid. There was a good 

agreement between measured and computed values and the conclusion 

was that, for a reasonable accuracy, a low frequency should be used 

to allow for skin effects. 

As explained earlier, the primary system could be a loop or 

a pool system. The probe type eddy current flowmeter is used in 

the pool system, which can be pushed down into the discharge pipe 

(see Dean et al 1970). Besides the eddy current flowmeter, the 

induced voltage electromagnetic flowmeter may also be used. Problems 

arise in the primary (with the loop system) and secondary circuit, 

where the flow rates, sodium conductivity and channel size produce 

a high magnetic Reynolds number (Rm  = µ6 a Vm). 

1.3.2 Primary (loop system) and Secondary Circuit Flow Measurement  

The high magnetic Reynolds number in the primary and secondary 

circuit causes the field of a conventional flowmeter to be swept away 

from the midplane of a meter downstream by the flow and results in 

a non-linear characteristic. Turner (1960) has shown that the non-

linearity of a flowmeter at high magnetic Reynolds number is due to 

the distortion of the magnetic field caused by the eddy currents 

flowing in the sodium. He suggested tw6 methods for obtaining 

a nearly linear output from large electromagnetic flowmeters: 

1) make the pole-face-length/pipe-diameter ratio large, or 

2) move the electrodes to a location downstream from the centre 

of the magnet assembly. 
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The flowmeter with a long field may be used so that at the centre 

of the meter the effect of sweeping becomes negligible. Increasing 

the pole-face length does not appear promising since, the pole-face 

length would have to increase by a factor of eight or greater-. if the 

pipe diameter were doubled and a permanent magnet of this size 

becomes massive and it leads to handling and space problems. The 

non-linear output was also observed by Meshii and Ford (1969), in 

calibration of flowmeters located on the .36m lines of the primary 

loop of the Enrico Fermi atomic power plant. In this case the 

permanent magnet had a length-to-diameter ratio of .7. Pfister 

and Dunham (1957) have noticed this effect in their experiments 

and they indicate that the non-linearity depends on sodium conductivity 

as well as flow rate. 

Thatcher et al (1970) have developed the concept of the saddle 

coil electromagnetic flowmeter. This saddle coil has a sufficient 

length (2.34m), to reduce the effects of sweeping and is illustrated 

in figure 1.10. It is mounted outside the .3m stainless steel pipe 

having .64cm wall thickness. The maximum sodium flow rate is .455 

m3 /s at 400°C and produces the Rm  of 5. The coil has a diameter 

2.5 times that of the flow pipe and produces a uniform magnetic 

field across the pipe cross-section. The field distribution is 

assumed to be in a trapezoidal form and for this field profile the 

correction factor for field distortion is obtained but it is not 

valid for gross field distortion where the departure from linearity 

is greater than a few per cent. The disadvantage of this meter is 

that it requires a long system of straight pipes which are not always 

available. Therefore there is a need for flowmeters which fit into 

short pipe sections and operate for a wide range of magnetic Reynolds 

number with linear characteristics. The design proposed by Turner 
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(1960) is the short magnetic field with electrodes located downstream 

which gives nearly linear outputs. The performance is linear at a 

constant temperature and any temperature fluctuation will affect the 

linearity as a result of conductivity change. Komori et al (1974) 

suggested the use of more than one pair of electrodes along the pipe 

to overcome the uncertainty caused by magnetic field distortion. 

1.4 Electromagnetic Flowmeter for Magnetic Slurries  

Distortion of the imposed magnetic field also occurs in 

electromagnetic flowmeters used for magnetic slurries. These meters 

are used to measure the flow rate of magnetic iron ore. The magnetic 

property of fluid flow modifies the imposed magnetic field and changes 

the sensitivity of the flowmeter. Mannhers et al (1968) employed a 

reference coil to reduce the change in sensitivity when the magnetic 

permeability of slurry varied. This flowmeter is shown in figure 

1.9', where the reference coil is located at right angles to the 

electrodes. The induced voltage in this coil is proportional to 

the magnetic flux through the conducting medium. The ratio of output 

signal to the reference voltage was found to be less sensitive to the 

magnetic property of the slurry. 

1.5 Outline of Thesis  

Electromagnetic flowmeters are described and a review is given. 

The applications in the FBR are explained and the problems are defined. The 

theory of electromagnetic flowmeters comes in Chapter 2 where the 

governing equations are derived and the simple forms of magnetic 

field and flowmeter equations are given. In Chapter 3 the flowmeter 
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for magnetic slurries is analysed. In Chapter 4 the swept field 

flowmeter is analysed and to find the performance of the flowmeter, 

magnetic field and flowmeter equations are solved numerically using 

the finite difference approximation and the Successive Over 

Relaxation method. In Chapter 5 the swept field flowmeter has been 

approached by using weight function theory. A weight function is 

derived for swept field flowmeters. This is a fir.st attempt to find 

the weight function for distorted field induced voltage flowmeters. 

Chapter 6 deals with integrated voltage _flowmeters where an original 

theoretical solution is given for this meter and two different 

approaches are carried out (flowmeter equation and weight function) . 

Several examples are given to prove this theory. 

Chapter 7 covers the experimental work where the validity 

of the numerical solution obtained in Chapter 4 is checked using an analogue 

sodium rig. A permanent magnet is used in this experime~t __ a~ an 

imposed field source. The pulsed field flowmeter is analysed in 

Chapter 8. The vector potential equation is solved by a time marching 

technique using the finit-e difference approximation and S.O.R. method. 

Employing this solution the performance of this flowmeter is predicted 

and a new design is given which is only s.ensitive to flowrate. 

Appendices A, B a~d C giye analytical solutions for three 

different air core coils (saddle coil concentric type, diamond coil and 
/ . 

saddle coil) which are used in the calculationsin Chapter 4. 

r-- ''.JL V -A.~ ~v \r . ~ cL r 
) C? t ~ \r 

J'~ t fr '7 ~ 
e ~ 
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CHAPTER 2  

THEORY 

2.1 Introduction 

Electromagnetic flowmeters vary in their construction depending on 

the application, but they all operate in basically the same manner. 

The principle of operation is based on the interaction between the 

moving conducting medium and an imposed magnetic flux. Electric 

currents are induced when the flow passes through an imposed magnetic 

field, or it may be induced by changes in magnetic field with time. 

There are two consequences: 

1) Perturbation of the imposed magnetic field by the induced 

magnetic field associated with those currents; 

2) Perturbation of the flow by the electromagnetic force due to the 

interaction of currents and magnetic field. 

The second effect exists in M.H.D. devices, where the imposed 

magnetic flux is strong and perturbes the flow. 	M2/R = B2a/pm vm 

gives the magnitude of the perturbations, where M is the Hartmann 

number and R is the Reynolds number. In electromagnetic flowmeters 

the imposed magnetic flux is not strong and therefore the Hartmann 

number is very small, hence we can neglect the perturbation of velocity 

caused by the imposed field. This study of electromagnetic flowmeters 

is concerned with the first phenomenon only. 

The imposed magnetic field is affected by many different para- 

meters, these are outlined below: 

a) 	Permeability of the media (4): 

The permeability of the fluid alters the signal by modifying 
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the imposed magnetic field in the flowmeter section. In Chapter 

3 this effect is examined and a design is produced which gives 

a signal constant for changing fluid permeability and almost 

constant for a limited range of axisymmetric velocity profiles. 

b) Magnetic Reynolds number (Rm  = 4aavm): 

Magnetic Reynolds number gives the ratio of induced field 

(produced by induced currents in the fluid) to imposed field and 

shows the extent to which the imposed field is distorted. This 

parameter is very important in the design of flowmeters for 

liquid metals where the electrical conductivity is high. 

c) Skin effect (S2  = µa wa2) : 

The alternating magnetic field or time dependent velocity induces 

an alternating current. Then, if the frequency is high, the 

induced current and electric field distributions will be seriously 

upset by self-inductance. In extreme cases this excludes the 

imposed magnetic field from the bulk of the fluid, so rendering 

electromagnetic flow measurement impossible. Here w is the 

frequency of change of the fluid velocity or the magnetic field. 

We assume that this is small so that the self-inductance effects 

may be ignored, obviously it will vanish in d.c. flowmeters. 

With electrolytic conductors little restriction on u is necessary 

due to the very low conductivity, but with liquid metals self-

inductance effects are severe and it is wise to use a d.c. 

field. 

d) Permittivity (c): 

The dielectric liquids such as oil have high permittivity which 

introduce the displacement current (3D/3t) which may be higher 

than the conduction current. In this work we are not studying 

this effect (see Cushing, 1958). We neglect the displacement 
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current in comparison with the conduction current (mE/a«1). 

2.2 Governing Equations  

In a material of conductivity a moving with velocity V relative 

to a system in which the electric and magnetic fields are E and B ~ 

respectively the current density will be: 

J = o(E + V x B) 
r 	N # N 

(2.1) 	(Ohm's Law) 

The Maxwell equations are used in the following form: 

✓ x: E = -8B/2t 	(2.2) 

V.B = 0 	 (2.3) 

✓ xE = J 	 (2.4) 

Where: 

H = magnetic intensity 

t - time 
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The medium is taken to be linear and isotropic, but not homogeneous. 

In a linear and isotropic medium the following relations between 

B and H hold: 

B = µH 
r 	~+ 

(2.5) 

2.2.1 Induced Voltage Flowmeter  

For a steady magnetic field the inductance term, 9B/8t is zero, 

therefore the Maxwell's equations lead to: 

v xE = 0 	 (2.6) 

VxB/µ = J 	 (2.7) 

Since V x.E = 0, then E is the gradient of some scalar function U, 
N 	 ~ 

such that: 

E = -VU 	 (2.8) 

Equation 2.7 describes how the imposed magnetic field is affected 

by the induced current in the fluid. The object of this chapter is to 

present the simple form of the governing equations for electromagnetic 

flowmeters, therefore it is assumed that the induced currents are small 

and have no effect on the applied magnetic field: 
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4 x B/µ = 0 	 (2.9) 

Since 4 x pig= 0, then we may define the potential function 4  as: 

Vb = B/g (2.10) 

Now taking the divergence of equation 2.10 and assuming the 

permeability to be uniform the magnetic potential equation becomes: 

424 = 0 	 (2.11) 

This equation is solved in Chapter 3 for a moving fluid with 

uniform permeability but with a higher permeability than that of 

free space (go) . 

The flowmeter equation can be derived by taking the divergence 

of equation 2.1 and applying equation 2.8 	with a constant: 

V2 U = 7.(v x B) 	 (2.12) 
N N 

Using a vector identity we may rewrite 2.12 as 

42U = B.4x V-V.4xB 	(2.13) 

The second term on-- the right hand side nfay be neglected if the 

magnetic field is not affected, the importance of this 

term is the subject of Chapter 4 and 5. Then, 

'72 U = B.0 x V 	 (2.14) 
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The second order differential equations 2.11 and 2.14 require a single 

electrical and magnetic boundary condition. Part of the boundary 

usually consists of hypothetical surfaces where the fluid enters and 

leaves the region of interest. These may be chosen to be sufficiently 

remote for all electrical and magnetic disturbances to have fallen to 

negligible proportions, unless the relevant boundary condition is 

obvious from symmetry of the problem. Within this region there may 

be interfaces separating liquid and solid conductors over .which  two 

electrical boundary conditions must be specified. 

One simple solution of equation 2.14 for an axisymmetric velocity 

profile V(r), nonconducting pipe wall and very long field is given 

by Baker (1968b). 

r 

U = 	f -07(157- + V (a 	r) } Be  (p , 9) dō 	(2.15) 

If the magnetic field Be(r, 7r/2) is uniform the potential difference 

between two electrodes is (see figure 1.1): 

AUEE = 2 a B Vm  (2.16) 

Shercliff (1962) discussed how a conducting tube affects the signal 

due to shorting the current in the pipe wall, and also the drop due 

to the contact resistance between the fluid and the pipe wall. The 

sensitivity is reduced for a uniform field flowmeter to 

S = 	2a2 
(2.17) 

(a2  + b2  ) + cw 	(1 + a T ) 	(b2  - a2  ) 
a 	 a 
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Where 614 is the wall conductivity, a is the fluid conductivity, T 

is the contact resistance between fluid and wall, 2a is the inside 

diameter of tube and 2b is the outside diameter of the tube wall. 

The equation 2.17 simplifies if the wall thickness, w is small 

in comparison with a,(wI<a) giving equation (2.18). 

S = 
1 

  

(2.18) 
e w 

1 + w (1 + 
T-\ 

a a 	-- 

2.2.2 Induced Magnetic Field Flowmeter  

In analysing the induced field flowmeter it is common to use 

the magnetic vector potential which is expressed as: 

B = V x A 	 (2.19) 
r 	~ 

Equations 2.1 	may be substituted into equation 2.4 to give 

$ x H = a (E + 
V x B) 	 (2.20) 
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Q x E= - 
8t 

(0 xA) r 

or 	o x E _  -0 x 
at• 

or 	E • - 3A/8t - V0 

(2.21) 

(2.22) 

(2.23) 

The term 0  is a scalar potential. The coil may be driven by a voltage 

generator with an applied voltage 0  and an internal resistivity 1/a. 

However for the purpose of the pulse field flowmeter the driving 

function is expressed as a step current density of Jo(t) rather than 

applied potential (in fact this applied current may have a pulse or 

alternating form) where: 

V 

aV fJ) 	= J (t) 
rQ 

(2.24) 

This provides a current which is not affected by induced voltages or 

the presence of other coils. 

Making this substituion gives: 

aE = - cr A/8t + J (t) (2.25) 

Substituting equations 2.5 and .2.19 into the left hand side of equation 

2.20 and equation 2.25 into the right hand side of equation 2.20 gives: 

V x (µ 	o0 x A) = cr ( -at) + J (t) + aV x (V x A) (2.26) 

The vector identities: 
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✓ x ) = V113 x F + 3VxF 
M 	N 

(2.27) 

and 

✓ x V x F = V(V.F) - VF 	 (2.28) 

could be used to obtain the differential equation for A ie: 

V' x (µ) (V x A) = Vµ x (V x A) + 
µ 

V-  x (V x A) .,  (2.29) 

or 

✓ x (µ), (V x A) = V (µ) x (V x A) + µ (V.A) - 1 VA (2.30) 
r 	 r 	 r 

In the original definition of the vector potential the divergence 

of the vector potential was not specified, so it can be chosen to be 

anything convenient. It is assumed that V.A is zero, equation 2.30 

will then yield the following results when substituted in equation 

2.26. 

V (1) x (V x A) - L V2A = - 6a 	+ J (t) + ay x (V x A) 
µ 	r µ 	

o  

(2.31) 

or 

VZA = -pJo  (t) + µ6 āt + p V (1) x (V x N) - pay x (V x A) 
µ 	r  

(2.32) 

Dodd and Deeds (1967) solved this equation for a stationary 

conductor with sinusoidal and also pulsed applied current. It was 

found that the computed and measured values are in good agreement. 
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Feng et al (1975) give a numerical solution for a sinusoidal applied 

current density and an axisymmetric velocity distribution. 

Thatcher (1971) has solved the vector potential equation numeri-

cally when the permeability is uniform. The applied current density 

appears in the boundary condition at the primary coils instead of in 

the vector potential equation: 

(r + r) - (r + Dr) = µr}i o  Jo  
2 	1 

(2.33) 

Baker (1977) gives a finite difference analysis with a time marching 

solution, he uses a magnetic functionapproach instead of the magnetic 

vector potential. He also discusses a method using current rings to 

divide up the conducting material. By considering the interaction of 

all the rings, the current distribution and hence the magnetic field 

can be found. 

We assume permeability is constant at any point in the medium 

and is equal to the permeability of free space (µ = 40), therefore 

equation 2.32 becomes: 

V2 A = - µ0  J (t) + µ a 
 0 	0 

aA  
at

- Qµo  V x(7xA) (2.34) 

With axial symmetry of coils and flow, there is only one 

componenet of A (for non-symmetric coils the problem requires a 

three dimensional solution). 
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CHAPTER 3  

THE PERFORMANCE OF ELECTROMAGNETIC FLOWMETER 

WITH MAGNETIC SLURRIES* 

3.1 Introduction  

In this Chapter the effect of a magnetic fluid on the 

response of a particular design of electromagnetic flowmeter 

is examined. Aqueous based fluids are considered in which the 

conductivity is that for an electrolyte and therefore low 

enough to ensure that the currents circulating in the fluid 

will be small enough to have a negligible effect on the 

applied magnetic field. 

Magnetic slurries have been observed to have a consider-

able effect on the flowmeter calibration. The cause of this, 

which will be discussed later, is the change in the permeability 

of the magnetic circuit. The material between the pole-pieces 

changes from a relative permeability of unity to something higher 

and the flux density is accordingly increased. The flux distri-

bution may also be modified since not all the permeability will be 

changed in the same ratio. The consequences of these changes in 

flux density and distribution is to change the size of the voltage 

generated by the flow. 

* The work in this Chapter has been reported by R.C. Baker and 
M. Tarabad (1978). 
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The effect of magnetic slurries does not appear to have been 

analysed, but a method for compensating for the increased signal 

level was proposed and patented (Mannherz and Schmoock 1968). The 

idea incorporated in this patent was to use a search coil which 

would monitor the field size, and the signal from this could be used 

to eliminate the effect of changing flux by taking the ratio of 

generated voltage to search coil signal. Of course the idea of 

using a ratio to eliminate effects due to fluctuation of field caused 

by mains voltage is common practice. However the usual method is to 

sample the field current, rather than as suggested in_the patent 

mentioned above, to sample the flux density. The inventors assumed 

the use of as uniform a field as possible. This is seldom the 

case actually and the change in flux distribution means that even 

with the use of a search coil, the calibration will not necessarily 

be retained. One outcome of this work will be to recommend a design 

having a constant calibration for a wide range of slurry permeability. 

The governing equations given in Chapter 2 are used to obtain 

the solutions for the particular geometry selected. The results are 

discussed including a simple model to confirm the behavioural trends, 

and limitations of the analysis are considered. 

3.2 Theory 

• It was assumed that the conductivity would not be endigh to 

permit circulating currents of sufficient size to modify the applied 

magnetic field appreciably. 

It was also assumed that the effects of changing magnetic field 

will be eliminated by careful design of the flowmeter (Baker 1968a) 

so that the electric field will satisfy equation 2.6. Using these 
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assumptions the flowmeter equation 2.14 was obtained. 

The boundary conditions can be obtained from equation 2.1 for a 

non-conducting boundary as 

aU  
an = - (~v.~ x B)1 (3.1) 

where n is the co-ordinate perpendicular (-L) to the boundary. 

In this work the attention will be confined to the "long-

flowmeter" where variation is considered to exist only for r and 

9. The solution for this case has been obtained (Baker 1968b) and 

is given below (see figure 3.1 for the geometry). 

0 

AUEE = 2Ia v( ra) Be(r,7/2) dr 

where LUEE is the potential difference generated between diametrically 

opposed electrodes (9 = 7/2), a is the pipe radius, v(r) is an 

axisymmetric velocity profile, and Be is the azimuthal component of 

the magnetic field. 

The change in signal which will be considered arises from a 

redistribution of the magnetic field. The flowmeter layout which 

is convenient•for this analysis is one suggested by Bevir (1969) 

in which the field coils lie in the flowtube surface only separated 

from the fluid by the presence of the non-conducting liner (figure 

3.2). This geometry has also been analysed by Baker (1973). In 

this work it will be assumed that the relative permeability of the 

tube (which behaves as the magnet yoke) will be very large compared 

with the relative permeability of the slurry. So referring to figure 

3.2 there are three regions of differing permeability, the yoke, the 

slurry and the insulating liner with relative permeability of unity. 

(3.2) 
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The solution of magnetic potential equation 2.11 is obtained 

in the three regions to match the appropriate boundary conditions. 

The boundary conditions to be satisfied are that 

µl (an) 	µ2 (3n) 1 	2 
(3.3) 

where 1 and 2 refer to two different regions and 

(3.4) 

These are all the equations needed to solve the problem and 

the solution for the magnetic field making use of was obtained. 

Then applying this to equation 3.2 the solution for a long flow-

meter was found. 

3.3 Solution 

It is assumed that the value of 1 on the surface of the tube 

will be unaffected by the magnetic slurry and so only two regions need 

to be considered, the tube lining where on the outer boundary will 

be given and the slurry in the tube. 

The general solution for the magnetic potential function in the 

liner in cylindrical co-ordinates is 

r,e) = E 	(A rn + B r-n)Cosne 
n~0 

n 	n cbt (3.5) 

and for the slurry in the tube is 



CO 

~f(r,e) = E 	(C nrn + Dnr-n)Cosne 
n=0 

where A
n
,  B

n
, C 

n 
and D 

n 
are arbitrary constants. D 

n 
in equation 

3.6 must be zero as the value of magnetic potential function at 

r = 0 is finite. Using the boundary conditions of r = a (equations 

3.3 and 3.4) give 

-2n 
C 
n 

= A
n 

+ B
n 

a 

and 

1 -2n 
= ū, (An - B

n 
a) 

At. r = b we have: 

CO 

(An bn + Bn b-n) Cosne = (131 (b,9) 

n=0 

Using the Fourier Cosine transformation we obtain: 

An bn + Bn b-n = 	f7r Cosne tto (b e) de 
..n 

or 

(3.10) 

	

A.. bn + B
n 

	
n 

= ? Sin(ns) (1 - Cosn~r.) n 	n 	7n o 
(3.11) 
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(3.6) 

(3.7) 

(3.8) 

(3.9) 

where ¢ 
0 

= I 



can be calculated as: 

A 	= 	
Trn 

-2I Sin (n5) (1 - Cosn'T) (µ' + 1) (b/a2) n  A
n 	01' - 1) - (b/a) 2n  (µ' + 1) 
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From equations (3.7), (3.8) and (3 .11) the values of An, B, Cn 
n  

(3.12) 

and 

and 

B 	= 2I Sin (n5) (1 - Cosa Tr) (µ' - 1) bn  B
n 	7n  

01. 1  - 1) - (b/a) 2n  (µ' + 1) 

C 	= _4I Sin (n5) (1 - Cosn?r) (b/az) 
n 

n 	Trn 	
(µ' - 1) - (b/a) 

2n (
µ' + 1) 

(3.13) 

(3.14) 

when n = 2m, 	A , B and C
m 

	zero, therefore the m m 	m 

magnetic potential function distributions for the liner and the slurry 

regions will be as follows: 

co 
-4I sin(2m + 1)5 cos(2m + 1)e  ,e(r,e) - 	E 	 2(2m + 1) 

m=o 	(2m + 1) { (µ' - 1) - (b/a) 	(µ' + 1) } 

br (2m + 1) 	 - (2m + 1) 
x { (µ + 1) (a2) 	- (µ + 1) (b

r
) 	} 	(3.15) 

and 

f  (r,e) - 8I m 	Sin (2m + 1) S cos(2m + 1) e 

m=0 (2m + 1) { (µ. ' - 1) - 
(b)2 

(2m + 1) 

a 

br 2m+I 
(a2 

(µ' + 1)} 

(3.16) 

where the geometry is given in figure 3.2, and I. is equal to the 

current turns in the slot. In particular 5 is the half angle of 
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the pole pieces and a and b the inner and outer radii of the 

insulating liner.µ' is the ratio of permeabilities of fluid and 

liner, which on the assumption that the relative permeability of 

the liner is unity will be equal to the relative permeability of 

the slurry. 

The A component of magnetic flux density may be calculated as: 

BAf (r,9) = 

  

r 

 

(3.17) 

Using equation 3.16 gives, 

8µfi 	
2m + 1 

sin(2m + 1)sin(2m + 1)9 	(br 
B
Af 

(r,9) = 	irr 	m-0 ((If - 1) - (b/a) 2 (2m + 1) (u ~ + 1) } a2 ) 

(3.18) 

Equation 3.18 can be applied in equation 3.2 and gives, 

16µ fI E 	(_ 1) msin (2m+1) S 	av ( ra) br 2m+1 
AU EE = 	

m=0 { (la'-1)-(b) 
2(2m+1) (µ~+1) } o 	r 	(ā ) 	dr 

(3.19) 

For two special cases the following results are obtained. 

(a) Uniform Profile  

In this case v is constant and equal to v
m 
, and equation 3.19 

reduces to: 

164
fvml 	(-1)msin(2m+1)S 	

b 2m+1 
AUEE 	

m=0 (2m+1)(4'-1)-(
12
.)
2(2m+1)(

4'44) 
(a ) 

(3.20) 
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(b) Parabolic profile  

The expression for v(r) is 

V = 2v (1 - (r)2) m 	a 
(3.21) 

and equation 3.19 reduces to 

16A,  vml 	(-1) msin (2m+1) 6 	
b  2m+1 

dU 	
_ 	m=0 (m+1) (2m+1) { (µ'-1)-(b)2(2m+1)

(4,44))  
  
(a)  

a 

(3.22) 

One further quantity will be required. To obtain an output 

signal which is independent of fluid permeability, the generated 

voltage will be divided by the signal from a search coil in the 

insulating liner which measures the radial component of magnetic 

field at r=a and 9=Y. Various values of Y will be tested. The best 

search coil position angle will then be found. 

The field at this point is given by 

-Sµl 	
sin (2m+1) scos (2m+1)y 	

b 2m+1 

r(dry) = 	
as m=0 { (µ'-1)- (ā)  2 (2m+1)(µ.+1) } (a) 

(3.23) 

3.4 Results 

The first  results show the effect on the signal of increasing 

fluid permeability assuming that the signal is taken as a ratio of 

voltage generated to field current. The field current, magnetic 
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flux density and magnetic potential at the pole piece are related 

by: 

b B 
I = I -2  (r,0)dr  = '(b,A) 

0 
(3.24) 

4(b,A) is, of course, constant for the pole piece. The results are 

given by the ratio 
LUEE/(µQI m) which can be considered as a flowmeter 

sensitivity (5hercliff, 1962). 

Figure 3.3 shows the signal variation with µ' obtained from 

equations 3.20 and 3.22 for two velocity profiles and four field 

coil angles. 

The next results in figure 3.4 show the effect of taking the 

ratio of voltage generated to search coil signal. These are obtained 

from equations 3.20 and 3.22 using equation 3.23 for the coil signal. 

Again the variation of the signal with µ' is shown for two velocity 

profiles and, in this case, three search coil angles. The ratio used, 

AUEE/(2aBrvm), where Br  is the field at the search coil, is also a 

sort of sensitivity. 

3.5 Discussion  

In discussing these results some apology for the approach is not 

out of place. It is reasonable to expect a weight-function analysis 

to be applied to the behaviour of the electromagnetic flowmeter. In 

nearly all situations this appears to be the best approach since it 

provides a clear picture of the effect of any particular region of 

flow on the signal. It is not immediately obvious how a change of 

complete profile will affect the signal, but this can be calculated with 
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relative ease given the weight function and a computer. 

The essential different in this situation of changing permea- 

bility is that because the magnetic flux distribution will change 

the weight function distribution will also change. The weight 

function will continue to be valuable in providing an indication of 

the effect of varying velocity profile but only for a given permeability. 

Since the effect on the signal level is to be considered it 

is chosen to examine the effect on output signal of changing 

permeability for the two extreme profiles; parabolic to give the 

laminar end of the range and uniform as an extreme limit of a turbulent 

profile. 

Long flowmeters with axisymmetric flow profile are to be considered 

so the more extensive problem of non-axisymmetric profiles is excluded. 

3.5.1 Operation with Constant Field Current  

The most common method used to compensate for supply 

voltage variation, which would otherwise upset the calibration by 

altering the magnetic field strength, is to divide the flow induced 

voltage by a signal proportional to the field current. The variation 

of signal with permeability for a conventional variety of flowmeter 

will result. Figure 3.3 indicates first a rapid increase in signal 

followed by an asymptotic behaviour. It is assumed in this work that 

the fluid permeability will always be mtfch less than the yoke 

permeability, so this will not be a true asymptote. However, the 

reason for this trend can be understood from a simple argument based 

on an idealisation of the magnetic circuit. The magnetic reluctance 

in the fluid will generally be much greater than the magnetic 

reluctance in the liner since the distances will be greater in the 
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fluid. As the fluid permeability increases, however, the fluid 

reluctance will decrease until for the limit of fluid permeability 

much greater than unity, the fluid reluctance will be negligible 

compared with the liner magnetic reluctance. The field will then 

jump the liner by the shortest path and the liner reluctance will 

control the field strength. Thus the asymptotic-like behaviour 

will result. 

The critical point at which this behaviour starts will be 

related to the ratio of liner thickness to pipe radius. The larger 

this ratio the sooner  it will occur. This of course overlooks the 

change in the distribution of the flux which introduces separate 

factors. 

It is possible to calculate the value of the induced voltage 

when the fluid permeability is also very high. This calculation may 

be simplified by making the following approximations: the value of 

4) on the inner surface of the liner will be zero and on the outer 

surface will be I for 0 4 A < S and will be zero for S < A 4  7/2; 

the value of Br  at the inner surface of the liner will be plI/t for 

0 : 9 < 8 and zero for 8 < 9 7/2, where t is thickness of the liner. 

The first approximation is adequate provided the ratio of liner thickness 

to permeability is very much greater than the ratio of tube radius to 

the 'inifinite' permeability of tube and fluid. The second approxi- 

mation will only be valid for an infinitely thin liner, but simplifies 

the analysis greatly. 

The flow signal is given by equation (3.2) which for a uniform 

profile is 

iUEE = 2v
m 	Be(r,7/2) dr 	 (3.25) 

a 
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Since all the flux entering at the circumference must cross the 

electrode diameter 

0 

Be  (r,7/2) dr = a 	Br  (a,6) dA 

a 	0 

or 

AUEE  _ 2aR 
g Iv m  t 

(3.26) 

(3.27) 

For S = 69°  and t/a = 0.2, the value of 
AUEE/(µ.Iv

or) = 12 which agrees 

well with the value given in figure 3.3. 

The design which is considered is not entirely typical, but the 

trends which have been obtained should generally be applicable to 

commercial designs. The effect on signal of variation of the flow 

profile at different permeabilities (Figure 3.3) is likely to be the 

aspect of the behaviour least able to be applied to the other designs. 

It can be seen from Figure 3.3 that while for lower values of 

the field coil angle the parabolic velocity profile results in a 

higher singal than the uniform profile and for higher values the 

reverse, a value of 6 = 69°  gives the same signal for both profiles. 

One change not calculated here is the inductance of the circuit 

resulting in a lower field current for the same supply voltage. Mannherz 

and Schmook (1968) note that for water a meter had a magnet current 

of 1.37 amps while for a slurry containing 32.5 of magnetite by 

weight the magnet current dropped to 1.27 amps. For the same change the 

ratio of signal voltage over flow rate was found to increase from 

1.836 millivolts per gallon per minute to 2.175 millivolts per gallon 

per minute. 
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3.5.2 Operation with a Search-Coil Reference Voltage  

!annherz and Schmook (1968) using a search coil to measure their 

approximately uniform magnetic field and dividing their signal voltage 

by this search coil voltage were able to keep this ratio constant to 

about 1% for the change given in section 3.5.1. 

Figure 3.4 shows the possibilities for the design which have been 

considered for compensating for increased permeability of fluid using 

a search coil positioned at the edge of the insulating liner. The 

search coil angle has been varied to examine the effect on the ratio 

with changing permeability and flow profile. 

It is apparent from Figure 3.4 that with a search coil angle of 

y = 40°  the ratio of flow signal to search coil signal is virtually 

independent of relative permeability. However there is a small change 

of about 2% when the profile changes from parabolic to uniform. Using 

a field coil angle S = 69°  and a search coil angle y = 34°, the 

variation was much reduced. 

It seems likely that a similar analysis. for any design will 

equally yield a best layout. Equally it does not seem necessary to 

retain the uniform field limitation of Mannherz and Schmook since 

the fields which are considered have been far from uniform. 

3.6 Conclusions 

The behaviour of electromagnetic flow meters with magnetic 

slurries has been illustrated using a convenient design of long flow 

meter having a non- uniform field. 

The signal variation with constant field excitation current has 

been calculated and an explanation in terms of simple magnetic 
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circuit concepts advanced. 

The use of a search coil to provide a reference signal has been 

discussed and the constancy of the ratio of flow signals to search 

coil signal has been plotted for certain parameter variations. It 

was suggested that a suitable layout should be obtainable which 

would ensure a constant signal for any design regardless of the field 

uniformity, for the restricted range of axisymmetric velocity profiles 

represented by the parabolic and uniform profiles. 
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CHAPTER 4 

SWEPT FIELD ELECTROMAGNETIC FLOWMETERS 

4.1 Introduction 

The motion of a conducting fluid in a magnetic field induces 

currents in the fluid. The induced currents were ignored in non-

metallic liquids because of the low conductivity, but in liquid 

metals with high conductivity the effects are significant. Two 

major phenomena associated with these currents are: 

1) The distortion of imposed magnetic fields by the induced 

currents. 

2) The body forces produced by interaction of the imposed field 

and the induced currents, which affects the fluid dynamics, 

disrupt the velocity profile and add to the pressure drop. 

The Hartmann number M(= Ba ,/6A)", which is the ratio of the 

electromagnetic forces to the viscous forces in the fluid 

is small in electromagnetic flowmeasurements. Therefore the 

effect of self-induced velocity profile distortion by the 

flowmeter is considered to be negligible. Wenger (1971) has 

shown the effect of Hartmann number on flowmeter sensitivity 

for a Hartmann number range from 1 to 1000. The results enable 

the experimenter to correct flow measurements for the effect 

of velocity profile distortion produced by the flowmeter itself. 

In this chapter we study the first phenomena to see the extent to 

which the imposed magnetic field is distorted by the induced 

currents. 
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The output voltage of an ideal electromagnetic flowmeter with 

infinitely long, unifrom magnetic field and axisymmetric velocity 

profile was given by equation 1.2. For flowmeters representative of 

present industrial practice, where the magnetic field is neither 

infinite nor uniform an allowance must be made for reduction in volt-

age. Hartmann (1937) realised that the induced voltage in the fluid 

decreases where the magnetic field falls off, allowing short-circuit 

currents in planes parallel to the direction of flow at the edge of 

the magnetic field. Boucher and Ames  (1961) showed how these end 

currents produce losses in d.c. MHD generators and Shercliff (1962) 

gave a simple explanation for edge effects (see figure 4.1). For an 

imposed magnetic field which is not perturbated too greatly, the 

edge current density is of order aBV m  circulating at the edges of the 

field at which the field perturbation will be a maximum. The magnetic 

field induced by the circular currents at upstream is of order µaaBVm  

and therefore the induced magnetic field will distort the imposed 

field at the upstream edge of the magnet by a fraction of the order 

a.aVm, (the magnetic Reynolds number). At the downstream edge the 

field will be reinforced by a similar fraction. The resultant field 

profile is shown in figure 4.2. The flow of liquid metal tends to 

sweep the imposed field downstream and the characteristics of the flow-

meter becomes non-linear. The magnetic field distortion will vary 

with magnetic Reynolds number. 

The short meter with electrodes displaced downstream or a 

combination of electrodes are the alternatives to the long transverse 

field meter with point electrodes in the midplane. The main steps 

to analyse this meter will be: 

a) 	To analyse the field in a circular pipe for high magnetic 
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Reynolds number. 

b) 	To predict the response for the best electrode arrangements. 

4.2 Magnetic Field Analysis  

The extent to which the imposed field is distorted by the 

induced currents is given by equation 2.7. From equation 2.1 and 

equation 2.7 it follows that 

B 
✓ x µ= a(E + V x B) 

If we take the curl of both sides of equation 4.1 we obtain: 

B 
✓ xVx— = c(V xE+V x (VxB)) 

For steady magnetic field and uniform permeability we have 

✓ x V x B = goV x (V x B) 

or 

V(V.B) - V2 B = pa V x (V x B) 

Using equation 2.3 this gives 

72 B = -ga V x (V x B) 

The following assumptions are made in deriving equation 4.5 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 



45 

a) a, the electrical conductivity is constant 

b) µ, the magnetic permeability is constant and is equal to the 

permeability of free space (µo). 

If the velocity is axisymmetric along the axis of the pipe, the 

equation 4.5 leads to 

	

02B = -4
o 

	V x (-V (r) B r 	V (r) B A) 

	

p 	z 	9 ,. 	z 	r 

where Br  and Be  • are the magnetic field components. 

It follows therefore that: 

Br 02  B = p. a V. Cr)r + p a V Cr)
0 	

z 	
a 	o 	z 	

aB9 

BB 
- µōa {r (āY (r Vz  (r) Br ) + Vz  Cr) ae z} 

The expression V2 B is given in Appendix E and from that the 

following differential equations can be derived for the r and 9 

components of an induced magnetic field: 

a2B 	aB 	a2 B 	a2B 	Br  r 1 r 1 r  r  r 2 .9  
ar2  + r Dr + r2  a92  	3z2 	r2 	r2  a9 

aB 
a 	Cr) 	.r  

µo z az 

(4.6) 

(4.7) 

(4.8) 

and 
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32Be 	
1 D B

9 	1 32 Be 	32 B
9 

_B 
9  

2 a Br 

+ 	 + 3r2 	r 8r + r2 992 + 8z2 	r 	r2 8A 

3Be 
= µ a V o 	z(r) 3z (4.9 ) 

To express the above equations in non-dimensional form, the 

following definitions are used: 

Rm = µ a a Vm, r1 = r/a and z1 = z/a 

Substituting the above definitions into equation 4.9 gives 

2 B 	8B 	32B 	32 B 	B 	 aB 	V (r ) aB 
ā r 1 	i 1 	r+ 	r 	r 	2 	A_ R z 1 	r 
3r - 	1 3r1 	=i a AZ 	3z.2 	r12 	r~ 2 aA 	m 	Vm 	3z1 

(4.10 ) 

and 

z 923 	9B aB 	a2 B 	B 	a B 	 V (r) aB 
A}1 	A + 1 e + e e 2 	r 	R z 1 	9 

3r12 r1 3r1 	r2 aAZ 	3z12 	r 2 r 2 a6 	m Vm 	3z1 
(4.11) 

The effect of the induced current is expressed by the :terms on the 

right hand side of both equations 4.10 and 4.11. This is the term 

which produces field distortion and it will vanish for low conducting 

fluids or zero flow. 

An analytical solution of equations 4.10 and 4.11 is not generally 

available and this is particularly so when the equations are applied to 

situations complicated by flow profile, pipe geometry or imposed field 

configuration. Therefore with the help of a numerical technique a 

solution is obtained for an arbitrary imposed field. 
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4.2.1 Numerical Techniques  

To solve the magnetic field equations we use the finite 

difference approximation. The individual terms in equations 4.10 

and 4.11 can be approximated in finite difference form: 

h 2 	h12 
f(x + h1) = f(x) + h1f' (x) + 21— f" (x) + 3 f" (x) + .... 

h
2 
	h 3  

f (x - h2) = f (x) - h2f' (x) + 2? 
f" (x) 	3? 

f"' (x) + ... . 

From the above equations it is possible to find the first and second 

derivatives of f(x) in terms of values of the function of points 

x, x + h1  and x - h2.  

f" (x) _ 
h2f (x + h1) + h1

f(x - h2) - (h1  + h2) f (x) 
+ 	(h2  ) 

(4.12) h  2 2 
 (h1  + h2) 

h22 f(x + h1) - h1 2 f(x - h2) - (h22 	h12 )f(x) 
f (x) = 

	

	 +0(h2)_ h1h2  (h1  + h2) 

(4.13) 

After the various terms in equations 4.10 and 4.11 have been approxi-

mated in cylindrical co-ordinates with a particular lattice size, as 

shown in Figure 4.3 it follows that: 

Br(i,j,k) = A2 (i)Br(i - 1,j,k) + A3  (i) Br(i+ 1,j,k) 

+ A4  (i) (Br  (i,j - 1,k) + Br (i,j + 1,k)) + A6 (i)Br  (i,j,k - 1) 

+ A7 (i) B (i, j,k + 1) + A8  (i) (B (i, j  - 1,k) - Be  (i, j + 1,k)) /A1  (i) 

(4.14). 

and 

B8 (i.j.k) = (A2  (i)Be  (i - 1,j,k) + A3  (i)BG  (i + 1,j,k) + A
4(i) 

(Be.;i,j - 1,k) + e (i, j + 1,k)) + AC  (i)Be  (i.j.k - 1) + 

Be  (ij,k + 1) + A8  (i) (Br (i.j - 1,k) - Br  (i,j + 1,k)J/A1,(i) 

(4.15) 
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where 

2 	2 	1 	2 	2 	1  Al  (i) = (h1h2 	
r1  (i) h1h2  + (r1  (i) de )1  + h32 	r1  (i) 2 ) 

2 	h1  A2  (i) = (.112(h
1 
 + h2) 	r1  (i)h2  (h1  + h2)

)  

2 	h2  A3  (i) _ (
h1 

 (h1  + h2) + r1  (i) h1  (h1  + h
2
))  

A (i) - 	1  
4 	(r1  (i) de) 2 

R 	V.. (i) 
A6 (i) = (h12 + 2h

3 
1,7
m 

 
3  

R V (i) 
A7  (i) - (h12 	2h V  3 	3 m 

(i) - 	1  A
8 	rl  (i)26e 

Equation 4.14 gives the r component of the magnetic field at 

every point in terms of its value at the nearest six neighbours to 

that point And the e component of the magnetic field at the two 

nearest neighbours (see figure 4.3). Equation 4.15 gives the e - 

component of the magnetic field. 

It is not possible to solve the equations 4.111 and 4.15 

separately, therefore an iteration method with Successive Over 

Relaxation method (S.O.R) has been used to solve these two 

equations simultaneously. 

h - h 
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4.2.2 Successive Over Relaxation  

A direct method of successive elimination cannot be applied 

to solve the magnetic field equations (coupled equations), therefore an 

iterative method must be used to handle the system of equations. Using 

this method it is first necessary to set the boundary conditions and 

the initial guesses for all the other points in the field. From 

equation 4.14 it is then possible to calculate the new value of 

Br 	(i,j,k), however iteration can be accelerated by imposing a 

greater change in 
Brn+1(i

,j,k). 

n+1 	n AB. (i,j,k) = Br 	(i,j,k) - Br  

The new value of B
r 
n+1

(i,j,k) used is then: 
•  

B  n+1 
 (i,j,k) = B n(i,j,k) + R . AB  r 	r 	 r  

(4.16) 

(4.17) 

where R is the relaxation factor. 

In general, the higher the value of R, the faster convergence is 

obtained, but values of R above an optimum value will give oscillation 

in successive values of B •
r
(i,j,k) and excessively high values of R will 

give total instability. 

Once the calculation has been carried out to find the new values 

of Br  at all the other points the new value of Br  obtained is used 

to replace the old value for quick convergence. 

After one sweep the new values of B
r 
 are obtained at each point, 

using these values we continue to find the new value for Be  by the 

same method from equation 4.15. After one sweep for Be,  we repeat the 

process all over again until the convergence criteria is satisfied 

n+1 
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for both Be  and B. Convergence usually takes place rapidly once 

a system has begun to converge. The convergence criteria should 

normally be somewhere in the range of 10-4  - 10-7, which is 

sufficient for most purposes. There are several methods of convergence 

that can be used: 

1) Maximum absolute residual 

2) Average absolute residual 

3) Maximum absolute weighted residual 

4) Mean absolute weighted residual 

The last method has been employed in this investigation to 

check for the convergence, i.e.: 

Mean absolute weighted residual: 

Et I B 
r 
n - B rn-1 I 

n=1 

nt 

nB=1 I rn l 

4.2.3 Boundary Conditions  

The imposed magnetic field is normally symmetric about the pipe 

centre line and the coils producing this field are placed at the top 

and bottom part of the pipe. Some of these coils are analysed in 

AppendicesA, B and C.tten the velocity distribution is axisymmetric and 

the imposed field has the symmetrical configuration, it iš sufficient 

to analyse only 1/4 of the pipe, for non-symmetric velocity distribution 

or imposed field the whole section must be considered. The spacing•of 

lattices is illustrated in figure 4.4. The boundary conditions for 

Br  and Be  are defined as follows. Since the finite difference terms 

become infinite at the centre of the pipe, the equations fail at the 
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centre. To overcome this it is assumed that the magnetic field 

components have flat curves (i.e. not changed) near the centre and 

a half spaced lattice at the centre is used. 

Br(O,9,z) = Br ( 2r,e,z) 

and 

Be(O,e,z) = Be  
(2  

The r component of magnetic field is mirrored by the plane at 

e = 0, the 9 component of magnetic field is zero at this plane, and 

is also mirrored by the plane but in the opposite direction (see 

figure 4.5). The e component of magnetic field is mirrored by the 

plane at 9 = 7/2, the r component of magnetic field is zero at this 

plane, and is mirrored by this plane in the opposite direction. 

Magnetic field components at upstream and downstream remote from 

edges of imposed field are set to zero. It is assumed that magnetic 

field components at r = b, (the surface close to the imposed magnetic 

field coil or permanent magnet pole faces) are not affected by the 

induced currents and are equal to the imposed field. Later the extent 

of the error produced by this approximation is investigated. 

4.3 Induced Voltage  

Equation 2.12 is the general form of the flowmeter equation, for 

an rectilinear velocity profile the equation becomes: 

DV (r) 
OZ  U = -B9  	Vz  (r) CV x B) z 	C4.18) 
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From equation 2..7 we have 

(V x B) z = 4 z  

and from Ohm's Law we have 

Jz  = 6 ( aZ ) 

(4.19) 

(4.20) 

Combining the last three equations (4.18, 4.19 and 4.20) gives: 

or 

5Vz  (r) 	aU 
— V2  U = -B9 a r 	+ µ Q Vz  (r) az 

(4.21) 

32 U 	1 aU 	1 a 2  U 	32 U 	aVz 
(r) 	aU 	(4.22) 

a r ār + r2  ae? + az2 =  -B9 Dr 	+ µ Q Vz  (r) 
az 

In non-dimensional form this equation becomes: 

a 2  	1  au 1  a2U a2u 	a Vz(r1)  
ar12  + r1  ar1  + r22 ae2 + az12 = -a Be ar1 	+ µ 6 a Vz(r1 azl (4.23) 

Using the finite difference approximation in cylindrical co-ordinate 

gives the equation: 

U(i,j,k) 	=( A'2(i)U(i - 1,j,k) + A'3(i)U(i + 1,j,k) + A'4(i)( 

U(i,j - 1,k) + U(i,j + 1,k)) + A'6(i)U(i,j,k - 1) + A'7(i)U(i,j,k + 1) 

By (i) 
- a Be  (i,  j ,k) arz 	)/A 1 1  (i) 1 

(4.24) 
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where 

2 	h2 -h1 	2 	2 , A'
1(i)  _ (h1h2 	r1  (i) h1h2 

+ 
(r1  (i) (s9) 2  + h32 

and A'2,  A'3,  A'4,  A'6  and A'
7  are the same as A2,  A3,  A4,  A6  and 

A7, given before in Section 4.2.1. 

The induced voltage at any point, U(i,j,k) is in terms of 

the values of induced voltage at the six nearest neighbours. We use 

the same method (S.O.R) as used for calculation of the magnetic 

field equation to solve the induced voltage equation. 

4.3.1 Boundary Conditions  

The partial differential equation governing the distribution 

of U the induced voltage requires a single electrical boundary condi-

tion specified at all points along the boundary of the conducting 

region. Part of the boundary of the region of interest consists of 

hypothetical surfaces. These surfaces are where the fluid enters and 

leaves, which may be chosen to be sufficiently remote for all 

electrical disturbances to have fallen to negligible proportions and 

the assumption of aZ = 0 is quite correct. From symmetry it is obvious 

that a6 = 0 at 9 = rr/2 and the induced voltage is constant at e = 0, 

and it may be set to zero for convenience. The boundary condition at r=a 

the fluid and pipe interface, depends or wall conductivity and contact 

resistance between the wall and fluid. 

It is possible to use the numerical solution of the induced 

voltage equation in the wall as well as in the fluid and satisfy the 

boundary condition at wall and fluid interface from these two solutions. 

However to save 	computing time it is assumed that the pipe is thin 
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e.g. the wall conductivity number is much smaller than unity: 

wa 
d(= w) « 1 

ac 

4.3.2 Thin-wall Boundary Conditions  

Let 	thee conductivity of the pipe material be uniform and 

the contact resistance between the fluid and the wall be T. Here it 

is assumed that T is also uniform, although in practice it is well 

known to be very variable, both in time and space (Shercliff, 1962). 

It is not even always realistic to take the contact voltage drop as 

proportional to normal current density. However, use of a constant 

T enables us to explore the effect of contact resistance without too 

much mathematical complication. Figure 4.6 shows a portion of thin 

wall, the flow being in the z-direction. 

Let J 
w denote the total current in the wall at any point per 

unit length of pipe, it therefore follows: 

where 

Jw =(Jew  A + J  z) zw  

wa DU 
• _ _ _w 	w  

JAw 	a DA 

(4.25) 

(4.26) 

and 

DU 
W6 w 

Jzw = - w ā zz  (4.27) 
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leading to: 

6 @cr 	DU 
J = w( 

 w 
 2e A - 	6w aZw z) 	 (4.28) 

The electrical current is continuous at the fluid and wall 

interface and Jw varies in accordance with the equation: 

8 J 	3J 1 	
ew 	zw 

a aA 	8z 	- Jrf 
(4.29) 

Jrf is the current density in the r-direction in the fluid at 

the fluid/wall interface. Combining equations 4.26, 4.27 and 4.29 

results in equation 4.30 below: 

w e 	au 	DU, 

	

a 8Ā (- a 
w 

De 	+ āz (- 
w 6

w azT~) = J
rf 

(4.30) 

or 

1 a2Uw 	32U 	1 3Uf 
d(;

7.2 Del + aZ 
w ) 

	ā (ar + Vz (r) B
e) 

(4.31) 

At the interface between the fluid and the wall there is a volt-

age difference where the normal current traverses the contact resist-

ance. This is expressed by the equation.: 

Uf - Uw = T J
rf 

(4.32) 

or 



If C
r 

 
r a 

is the contact resistance number equation 4.34 
T a 
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DU 
Uw  - Uf  + T af  (arf  + VZ(r) Be) (4.33) 

From equations 4.31 and 4.33 we obtain the partial differential 

equation for induced voltage at the fluid/wall interface. 

2 	BU 

a2 ae2 (Uf  + T a f  (Brf  + VZ  (r) Be) ) 

aZ 	 BUf 	1 aU f  
+ d aZ2  cut. + r af (3r + VZ  (r) Be)) = ā (ar + VZ  (r) Be) (4.34) 

becomes: 

B2 	 BTf  
d 919(U f  + Cr  ( ar + VZ  (r 1) a Be) 

1  

32 	 ;t1 "f aU'. f  
+ d -- (Uf  + Cr  (ari  + VZ  (ri) a Be) ) 	

ari 
+ VZ  (r i ) a Be  (4.35) 

To represent the boundary condition more accurately at r = a 

a central difference formula is used: 

au 
Br 

U(a +6r) - U(a - Sr) 

2 or 

where U(a + Sr) is the fictitious voltage at the external mesh point. 

The voltage U(a + Ort is unknown and necessitates another equation. 

This is obtained by assuming that the induced voltage equation is 

satisfied at r = a. Now by rewriting equation 4.35 in terms of 
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U(a + Sr,e,z), fictitious voltage and induced voltage equation at 

r = a we can calculate the induced voltage at the external mesh point: 

U(ii  + 2,j,k) = 	(Q1.U(ii  + 1,j,k) - Q2.U(i1,j,k) + 

Q3. (U(ii  + 1,j,k) + U(11  + 1,j - 1, k)) + Q4. (U(i + 1,j,k + 1) 

+ U(11  + 1,j,k - 1)) + Q5. (U(ii  + 2,j + 1,k) + U(ii  + 2,j - 1,k) 

-UCil,j + 1,k) - U(ii,j - 1,k1))+ Q6. (U(ii  + 2,j,k  + 1) 

+ U(ii  + 2,j,k - 1) 	U(i1,j,k + 1) - U(ii,j,k - 1)) + Q7)/Q2  

(4.36) 

where 

Qi  = -2 d (ex + 5—g-) 
1 

d C 

Q2 SrJr  

d 

(SAZ 	+ dz-) 	+ 2 Srt  

Q3 S  

Q4  = ST 

d C
r  

Q5 = 26r1  

d 

6(32  

C
r  

Q6  26r1 61 
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Q7  = (d Cr  VZ  (i1  + 1) a) 

(Be(i1  + 1,j + 1,k) + B
e 
 (i

1
+ 1,j - 1,k) - 2Be(i1  + 1,j,k)) 

8e2  

(Be(i1  + 1,j,k + 1) + Be(i1  + 1,j,k - 1) - 2Be(i1  + 1,j,k) 

dZ1  

- VZCi_1  + 1) a Be(i1  + 1,j,k) 

4.4 Results. 

A computer program has been written to solve magnetic field 

equations utilising the S.O.R. method and employing several accelerated 

convergence techniques. The program can handle an axisymmetric 

velocity profile and symmetrical imposed field. The values of 

magnetic field close to the coil are calculated from direct analyses 

of the coils (rectangular or diamond) and in the case of permanent 

magnets the measured values are given as boundary values. The effect 

of relaxation factor on convergence is shown by figures 4.7, 4.8 

and 4.9. These are plots of the mean weighted absolute residual 

as the iteration proceeds for a number of relaxation factors. The 

optimum relaxation factor in calculating the magnetic field components 

is about 1.6, while the induced voltage equation converges most 

rapidly with a value of about 1.4. A relaxatioh'factor of 2 or 
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greater makes the system of equations unstable. 

The numerical solution of induced magnetic field and induced 

voltage equations makes it possible to analyse any flowmeter 

with symmetrical imposed field. The solution is valid for a 

wide range of magnetic Reynolds number and axisymmetric velocity 

profiles. The effect of wall conductivity and wall contact 

resistance can also be predicted. Here the flow of sodium in the 

.356m diameter pipes of a fast breeder reactor with a typical 

sodium temperature of 400oC and the maximum R
m 

of 5 is studied. 

4.4.1 Saddle Coil (Concentric Type) Flowmeter  

The configuration of the coil is illustrated in Appendix 

A where an analytical formula for induced magnetic field is 

derived. This solution will provide the magnetic field components 

at the boundary, where r = b. The specifications of the coil 

are 

coil diameter = three times the pipe inside diameter 

coil length = two times the pine inside diameter 

half coil angle = 800  

magnetic field strength at the centre of coil = 3.404 mT 

no contact resistance (Cr  = 0) and wall conductivity 

number (d) = .044 
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The coil has 100amps and 26 turns per component coil. 

The results of this analysis are presented in figure 4.11 to 

figure 4.18. Figure 4.11 shows the magnetic field distribution in 

the plane 9 = 0. The high magnetic Reynolds number (R
m 
 = 5) has 

swept the imposed field downstream. Figure 4.12 shows how the size 

of magnetic Reynolds number affects the distortion of magnetic field 

and magnitude of induced field. The change in sodium temperature 

affectsthe distortion, since a change in temperature would cause a 

change in the sodium conductivity, causing a change in the magnitude 

of the eddy currents. The magnetic field distribution was then used 

to obtain the induced voltage and is illustrated in figure 4.13. The 

induced voltage at the inner and outer surface of the pipe is equal, 

because the contact resistance between sodium and wall is ignored. 

Figure 4.14 shows the induced voltage distribution along the 

pipe for point electrodes at 6 = 1./2 and r = a and various values of 

magnetic Reynolds number. The effects of velocity profile are shown 

in figure 4.15. The results indicate that there is a position of 

electrodes that gives an equal signal for uniform and parabolic 

velocity profile and downstream of that position the signal is higher 

for uniform velocity and upstream of that the signal is higher for 

parabolic velocity. Figure 4.16 illustrates how the wall conductivity 

number d, causes a drop in signal and there is also a further drop 

due to the contact resistance number Cr, and the voltage drops are 

maximum at one diameter downstream of ffow. This is because 	the end 

currents enter the wall at maximum rate at this section of pipe. The 

induced voltage is non-linear for electrodes in the midplane of .the flow-

meter and this is shown in figure 4.17. Figure 4.18 shows the induced 

voltage from six electrode locations, and the signal is nearly linear 

for _electrodes positioned at one diameter downstream. 
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The sensitivity defined as: 

S 
/MJ 

 

2 a V B m o 

(where ō  is the magnetic field at the centre of the flowmeter for 

no flow), is calculated for two positions of the electrodes and two 

velocity profiles and three values of Rm. The results are given in 

table 4.1. 

4.4.2 Diamond Coil Flowmeter  

The configuration of this coil is shown in figure C.1 and the 

analytical formula for induced magnetic field is derived in Appendix 

C. The specifications of the diamond coil flowmeter are identical 

to the saddle coil used in section 4.4.1. The magnetic field at the 

centre of the coil is B = 2.44 mT. 
0 

The distortion of magnetic field is shown in figure 4.19. 

The induced voltage distribution along the pipe for point electrodes 

at A = 112 and r = a and three values of magnetic Reynolds number is 

shown in figure 4.20. The effect of velocity profile is shown in 

figure 4.21. 

The induced signals from six electrode locations are shown in 

figure 4.22, and the signal is nearly linear for the electrode 

positioned at one diameter downstream. Again the sensitivity of the 

flowmeter for two positions of electrodes, two velocity profiles and 

three values of R
m are calculated and are given in table 4.2. 



µ  0 I a2 
Bl 	

2 (a2  + 	) 3/2  
(4.37) 
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4.5 Discussion 

Earlier it was assumed that the magnetic field at the surface 

close to the coil was not affected by the induced currents. This 

surface has a radius of b and is not so close to the coils as to make 

the calculation of imposed field impossible at this surface. Generally 

the distance of two or three wire diameters are sufficient.. To see the 

magnitude of the error produced by this assumption a very simple method 

is used. The end currents have a maximum radius of a (the radius of the 

pipe)_ and this is shown in figure 4.10. The magnetic field at the 

centre line of this current loop  is 

This equation shows how the induced field drops with r, the 

distance from the axis of the current loop. Therefore the ratio of 

induced field at r,the distance from the centre of circle., to induced 

field at the centre of circle is 

B. 
1  

 

1 

 

(4.38) B. 10 

 

(1 + (r)2 )3  
a 

2 

The calculation gives B. = 2.1 mtesla for a magnetic Reynolds 
io 

number of 5. The radius of the coil is three times the pipe radius and 

hence the equation 4.38 suggests an induced field of .066 mtesla at 

the surface. This is only 1.7% of the imposed field at this point. 

This error is less for lower values of R
m 
. The nature of end currents 

is to increase the imposed field downstream of the coil and to reduce 

the field upstream and this introduces a maximum error of +1.7% 
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downstream and -1.7% 	upstream. The opposite sign of the error 

at the two ends will produce practical errors less than 1.7% for a 

magnetic Reynolds number of 5. 

4.6 Conclusions  

The magnetic field and flowmeter equations have been presented 

for the case when the effect of magnetic Reynolds number may not be 

ignored. 

In addition the magnetic field equation is solved numerically 

in three dimensions, using a cylindrical co-ordinate system and taking 

into account the effect of magnetic Reynolds number. The flowmeter 

equation is also solved numerically using the magnetic field distribution: 

obtained in the first part of this chapter(Section 4.2). 

Two types of short air cored coil, namely saddle coil (concentric 

type) and diamond coil are examined. 

The results show that the performance of flowmeters with electrodes 

located in the middle of the coil, becomes non-linear with increasing 

magnetic Reynolds number. The results also show that linearity can 

be achieved by displacing the electrodes downstream of the midplane. 

This was also observed by Turner (1960) and the theoretical results 

obtained here 	confirm his experimental observation. 

The only disadvantage of this method is that the linearity is 

obtained with respect to magnetic Reynolds number not the flow rate 

and therefore any change in fluid temperature will affect the perform-

ance of the flowmeter. This type of flowmeter is capable of working, over 

a wide range of flow rate. However, where the problems of field 

sweeping exist, the change of temperature must be small, unless a 

continuous check on fluid temperature is maintained. 
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In Chapter 6 a method is established for eliminating the effect 

of fluid temperature. 

Note on uncertainty due to unknown a  

If a is unknown but Rm  is known to be given by 

O < R 
m 

< 5 

the sensitivity for the saddle coil flowmeter (for example) with 

electrodes one diameter downstream and uniform profile will be in the 

range 

.676 < S < .802 
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CHAPTER 5 

WEIGHT FUNCTION FOR SWEPT FIELD FLOWMETER  

5.1 Introduction 

The previous weight function approach on the induced voltage 

electromagnetic flowmeter was concerned with low conducting fluids, 

where the induced currents in the fluid are negligible and the induced 

magnetic field by these currents is not strong enough to influence 

the imposed field significantly. For the case of liquid metals 

however, the conductivity is high and therefore the induced currents 

will distort the imposed magnetic field. In this chapter a weight 

function is derived for the induced voltage flowmeter with a distorted 

field. This weight function will be a function of magnetic Reynolds 

number, but a position of the electrodes is to be found where a 

weight function distribution independent of magnetic Reynolds number 

occurs. 

5.2 Theory  

Bevir (1970) gives the relation for the flowmeter signal (see 

equation 1.8). This equation has been derived with no restriction on 

magnetic field shape and fluid conductivity and therefore it is still 

valid when the induced currents are not ignored. Volume of integration 

is restricted to the moving fluid because V=0 outside it. J
V  the virtual 

current density is determined by the electrode shape, electrical 

condition on the flowmeter wall and the conductivity distribution of 

fluid if this is non-uniform. Bevir (1970) assumed that the induced 

currents were negligible and calculated the magnetic field distribution 

from the following equation: 
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V2F = 0 	 (5.1) 

where 

B = VF (5.2) 

But when the conductivity of the fluid is high the induced currents 

cannot be ignored and therefore we used the magnetic field distribution 

found numerically in Chapter 4. 

The virtual current is expressed by the equation: 

Jv  = -a VUv  (5.3) 

If we take the divergence of virtual current and assume that 

conductivity of the fluid is uniforme obtain: 

V2 U = 0 v 

The distribution of the virtual current may be found from the 

'virtual voltage' equation 5.4. 

5.2.1 Boundary Conditions  

The boundary condition of r = a is the same as equation 4.34 

when the fluid velocity is zero. 

2 	aU 	2 	aU 	aU 
a 	

(U + C 	vf ) + d 
a 	

(U 
vf 

 C 	
vf ) = 	vf 

d 
 ae2 	vf 	r ari 	az12 	vf 	r ari 	ari  

(5.4) 

(5.5) 
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The definition of virtual current requires a unit current density 

at the electrodes, but for easy computation it is assumed that the 

induced voltage is constant (U 
0
) at electrodes, therefore from 

equation 4.33 we have 

aUvf Uvf 	r  - Uo  = c( art  (5.6) 

The virtual voltage downstream and upstream (and sufficiently 

remote from electrodes) is chosen to be zero. From symmetry it is 
DU 

obvious that a6
v 

= 0 at 9 = 7/2, the virtual voltage is constant 

at 9 = 0 and is taken to be zero for convenience. With the help of 

these boundary conditions and the numerical technique, successive over 

relaxation (S.O.R.), the Laplace equation for virtual voltage in 

three dimensions has been solved. The real virtual voltage at 

any point when unit current density is set at the eletrodes is given 

by: 

U' 

Uv 	I m  

where U' is the virtual voltage when the voltage at electrodes is U. 

Im  is the current in the midplane of the pipe: 

a 	co 

Im  = 4 r SJdr 
 dz 

0 0 

At the midplane the current perpendicular to this plane is 

Je (see figure 5.1). Hence from equation 5.8 it follows that: 

a co 

Im  = 4 	(. Je f  dr + Jim) dz.1; 

(5.7) 

(5.8) 

(5.9) 
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J
ew 

a w  DU _ 	w 	vw 
a 	De (5.10) 

putting this in equation 5.9 gives: 

(
op 	1 

	

J6f 	a im  = 4 a uf 4 	(a( 	dr1  - d 	
89 

 )dzi 
,j 	J 	f 
0 0 

(5.11) 

where 

Jef _ 1 aUvf  
af 	a  Dr 1 at r = 0 

and 

J8f _ 	1 
o f 	art  

aU
vf  
De 

for o<r 1 i_ •  

If the velocity consists of a z-component only it follows from 

equation 1.8 that: 

AU = 	V z . W z dT 

T 

(5.12) 

And for a velocity independent of_ z we obtain: 

AU = JVz  . Wz  dS 	 (5.13) 
s 

where Wz  = ( Wz  dz is called the mean weight function and 

—co 
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or 

Wz  = (B x Jv)
z  (5.14) 

Wz = (B
r Jev 

- Be  Jrv) (5.15) 

Putting the virtual current density components from equation 5.3°in 

equation 5.15 gives: 

1  aUv 	aUv 

Wz 	af (Br r ae 	Be ar )  (5.16) 

At e = 0 it follows that Be  = 0 from the symmetry of meter, and 

therefore: 

aU 
Wz  = a Br (r aeV) (5.17) 

At e = 11/2 	we have B = 0 giving: 
r  

Wz  = af  Be  (5.18) 

At the centre of the pipe equation 5.18 has been used when Wz  

is calculated. 

5.3 Results 

The finite difference approximation and successive over relaxa-

tion method has been employed again to solve equation 5.4 giving 

the weight vector distribution. 	The virtual voltage 

is a maximum in the plane of electrodes and drops rapidly along the 
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z-axis shown in figure 5.1. Therefore to find a more accurate weight 

vector the grid must be finer in the z-direction. Finer grids are 

used in calculating the virtual voltage. "Lagrangian interpolation" 

(see Appendix D) is applied to calculate magnetic field components 

which can then be found from coarser grids. The mean weight function 

distribution has been found for different positions of the electrodes 

along the pipe and is presented by figure 5.2 through 5.6. 

Figure 5.2 shows the mean weight function at the cross-section 

of the conducting pipe with wall conductivity number of .044 and 

the electrodes positioned at the midplane of meter and no flow. The 

imposed field is produced by the short saddle coil identical to the 

one used in Chapter 4. A similar plot when the magnetic Reynolds 

number is 5 is illustrated in figure 5.3. Figure 5.3 for R
m 
 = 5 

shows that the high value of magnetic Reynolds number has changed 

the mean weight function distribution from the form presented by 

Shercliff, which is similar to figure 5.2 when Rm  = 0. This 

change of distribution produces a non-linear signal, this being 

observed from results obtained in induced voltage analysis. The calculation 

shows that with electrodes shifted to the edge of the coil (one diamter 

downstream) the mean weight function distribution becomes identical 

for a magnetic Reynolds number range of 0 to 5 and the signal becomes 

linear. This is shown in figure 5.4. This again gives the expected 

results which were found in Chapter 4 with a different method of analysis. 

The effects of wall conductivity and imposed field configuration are shown 

in figures 5.5 to 5.6. If we compare figure 5.2 and 5.6 we can see 

that the diamond coil flowmeter is less sensitive to velocity profile 

than the saddle coil meter as it gives a more uniform mean weight 

function distribution. Figure 5.5 shows that a non-conducting wall 

produces a smaller mean weight function at the wall and shows that by 
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increasing the wall conductivity it is possible to obtain a more 

uniform mean weight function as observed by Bevir (1970) when he 

used large electrodes. 

5.4 Conclusions 

The weight function analysis is more useful in flowmeter design 

because adjustments can be made to the electrode or field configuration, 

to obtain a flowmeter with a uniform mean weight function and therefore 

one independent of velocity distribution. Here it is shown that the 

flowmeter with point electrode , positioned at the middle of the 

field gives a non-linear signaL and moving the electrodes to the 

edge of field gives a linear signal which is not affected by magnetic 

Reynolds number. The flowmeter with electrodes positioned at the 

edge of field cannot be accepted as the final design as a change in 

temperature will affect the fluid conductivity, magnetic Reynolds 

number and therefore the signal. The results show that--a design 

with. series of electrodes along the pipe integrated voltage flowmeter 

is immume to conductivity changes. 	In the next chapter 

it is shown that the integrated voltage flowmeter will have a mean 

weight function which is unaffected by changes in the flowrate or 

fluid conductivity and a signal proportional to flowrate. 
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CHAPTER 6  

INTEGRATED-VOLTAGE FLOWMETERS 

6.1 Introduction 

It has been shown that swept field flowmeters, with electrodes 

displaced one diameter downstream, have a linear characteristic but 

are affected by changes in conductivity. Therefore the aim of this 

part of the work is to design a flowmeter which gives a linear per-

formance and is immune to any conductivity change due to temperature 

variation. 

The end currents 	downstream will induce a field in the 

direction of the imposed field which adds to the field, but the end 

currents upstream induce the field in the opposite direction to the imposed 

field and therefore reduce the field (see figure 4.2). The distortion 

of the -imposed-field leads to a distorted induced voltage and gives a 

non-linear signal. Therefore an increase in field downstream 

increases the induced voltage and a reduction of field 	upstream 

reduces the induced voltage. Shercliff (1962) suggested integration 

of the signal along the pipe to eliritin_ate the effect of the non-

uniformity of the transverse field. In this chapter a theory for 

integrated-voltage flowmeters is given and it is proved by two 

independent methods that they have a linear performance which is not 

affected by the conductivity change. Finally a few examples are 

given to confirm the theory. 
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6.2 Induced Voltage Solution  

6.2.1 Theory  

In analysing the ordinary flowmeter it is assumed that induced 

currents have no effect on the applied magnetic field (V x B = 0), 

and therefore the magnetic field distribution may be found from a 

potential function equation 2.11. In liquid metal flowmeters the 

induced currents cannot be ignored as they have a significant effect 

and they modify the applied field. The z-component of induced 

current density is given by equations 4.19 and 4.20 and from these 

equations it follows: 

(0 x B) z = µ a (- —au
) (6.1) 

Expanding equation 6.1 gives 

aB 
1 (— (r Be) - aer) 	µ a (- az) 

(6.2) 

The integral of the magnetic field components is defined as: 

Be  = r Be  dz 

_m 

and 

(6.3) 

B 
r 

= 	B r 
dz 	 (6.4) 
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The integral of equation 6.2 from z = -co to z = +co 

is 

+m 	+ 	+co 

r ar (r1 Be  dz) - a9  1 Br  dz} = µ a(- . 	8z dz) (6 .5) 

In the derivation of equation 6.5 it was assumed that the 

velocity had only a z-component and fluid permeability and fluid 

conductivity are constant in that direction. The induced voltage 

at z = -±-W is zero as the magnetic field is zero, therefore equation 

6.5 becomes 

_ aB 
r ( 8r (r B9) - a9-) = 0 	 (6.6) 

Equation 6.6 proves that the following relation between the 

scalor 	(integral of potential function) and B (integral of magnetic 

field) exists 

(6.7) 

or 

Bar = 
ai

r + r ē 9+ J 	dz 

4 may be assumed equal to zero at z = ±o and hence the equation 

6.8 becomes: 

1 
ar r + r 39 

6 

(6.8) 

(6.9) 
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The integral of ectuation 2.3 from z = -°° to z = +00 

leads to: 

V. = 0 
	

(6.10) 

and from equations 6.7 and 6.10 the following equation results: 

V2  = 0 	 (6.11) 

The solution of equation 6.11 gives the integral of magnetic 

field components. 	The solution is in two dimensions and is 

independent of the z-axis. The boundary condition for the differential 

equation 6.11 is, in an integral form: 

dz 	 (6.12) 

tis the value of the magnetic potential at the pole-pieces of 

flowmeter. The differential equation for induced voltage was given 

by equation 4.22 and the integral of induced voltage along the z-axis 

is defined as: 

+00 

U = 
- 

U dz 

_co 

(6.13) 

As z -> ±o  outside the field, U and 
az 
 tend to zero and therefore 

+W 
aU 

dz = 0  
2z (6.14) 

_CO 
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and 

S a2  dz = 0 	 (6.15) az2  
_o 

The integral of equation 4.22 along the z-axis after the 

substition of equations 6.3, 6.13, 6.14 and 6.15 is 

a2  U 

are  
+ t aU + 1 3.7j _ -B. 

DVz  (r) 
r Dr 	p ae2 	e Dr 

(6.16) 

The r-component of current density at r = a is 

Jr = c (- DU 
 ar - Vz  (a) Be) 

The integral of equation 6.17 is 

+
+
c 

t Jr  dz = a ( - - Vz  (a) Be) Dr 

(6.17) 

(6.18) 

Equation 6.18 for a non-conducting wall becomes 

ar = -  V  (a) Be (6.19) 

6.2.2 Solution 

The following solutions have been found for a flowmeter with 
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point electrodes, and an infinitely long transverse field, are used to 

find the signal for the integrated-voltage flowmeter with a short 

imposed field. 

Baker (1968b) 

The solution of the induced voltage equātions for a non-uniform 

magnetic field in the cross-section of a pipe with point electrodes 

was given by Baker (1968b): 

U = - 2 
f 
 {VZ  (77) + V,  (a1/77) } Be  ( p, A) dp (6.20) 

Using this equation for an integrated-voltage flowmeter 

gives: 

r
r 

U = - 2 J {VZ (v ) + z (a 	r) } Be  CP (9) d"P 
0 

(6.21) 

The signal for electrodes at r = a and e = 7/2 will be 

aU = 2 J
% 
	VZ  ( Pā) Be (p 71./2) dp 
0 

(6.22) 

Integrated-voltage flowmeters with magnetic slurries  

In Chapter 3 a solution was given for a flowmeter with point 

electrodes and a reference coil, which had a performance immune from 

fluid permeability changes. The solution was obtained assuming that 
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the conductivity is not so high as to permit induced currents to 

modify the imposed magnetic field. This restriction for conductivity 

is not necessary any more. Instead of using equation 2.11 to find 

the magnetic field distribution equation 6.11 can be used, which has 

no conductivity limitation. Therefore equation 3.18 becomes 

8µ 4 	
m 

Sin(2m + 1) s Sin(2m + 1) 8 	br 2m + 1 
Of (r,(9) _ 	f

r 
o 	

E 	 b 2 (2m+1) 	 ( a2 ) 

m=0 { (µ' - 1) - (—a
) 	(R' + 1)}' 

(6.23) 

where 

0 
(6.24) 

and 2t is the length of pole pieces. 

Put equation 6.23 in equation 6.22 

~U = 32ufZI 	(-1) m Sin(2m + 1) 13 	v ( ra) (b2) 2m +  1 
dr 

7 	 2(2m +1) 	) 	r 	a: 
m=0 {µ' - 1) - (b) 	(p' + 1)). 

(6.25) 

For a uniform velocity profile equation 6.25 reduces to 

QU = 
324

f mt 	
(-1) m Sin(2m + 1) s 	(b) 2m + 1 

s 	 2(2m + 1) 	a 
m=0 (2m + 1) { (µ' - 1) -(ā) 	(u' + 1) } 

(6.26) 

CO 

and for a parabolic velocity profile equation 6.25 reduces to 
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DU 
32µ

fVmtI  E 	(-1)mSin(2m + 1) 	 2m + 1 
b 

n 	 2(2m + 1) (a)  

	

m=0 (m + 1) (2m + 1) ((g' - 1) - (b) 	(p 	 + 1) } a 

(6.27) 

The integral of the r-component of magnetic field at r = a 

and e = y is 

B (a ) - -16µf ti E 	Sin(2m + 1)8Cos(2m + 1)Y 	(b) 2m + i 
r 	,y 	7a 	 2(2m + 1) 	a  

m=0 	{ (µ: - 1 ) - (ā) 	Of + 1) } 

(6.28) 

The value of Br(a,y) may be found by fitting a search coil at 

r = a and A = y and extended along the pipe. The sensitivity of this flow-

meter is defined as: 

AU 
S = 

 

(6.29) 

 

(2a B V ) 
r m 

Equations 6.26, 6.27 and 6.28 are similar to equations 3.20, 

3.22 and 3.23 in Chapter 3 with an extra term, 2Z, the length of the 

pole pieces. The design explained in Chapter 3 with infinitely long 

pole pieces may be changed to one with 'short pole pieces, length 2.e, 

infinitely long integrating electrodes and a search coil at r=a and 

9=Y  which is long enough in the z-direction to integrate the r-component 

of magnetic field along the pipe. This design with coil half angle 

S = 69°  and a search coil angle y = 34°  gave a sensitivity which is 

proportional to the length of the pole pieces. 
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(see figure 6.1). 

Thatcher (1971)  

The field distortion and its effect on sensitivity was investi-

gated for the rectangular transverse uniform field and the flow of 

liquid metals in a channel with insulated walls (see figure 6.2). It 

was assumed that the applied field was uniform for all x and z less 

thane but greater than-t. and having only a y-component. The imposed 

field is zero everywhere else. The velocity is uniform and is in 

the z-direction. The solution given by Thatcher does not seem to 

be correct, while the correct formulae for induced voltage distribution 

are as follows: 

2V B 	(-1~n 6 Sina x (eYn 
(z 	~)- en (z + 	t ) 

U = 	
m o 

{ E 	
n 	n 

a 	a2n (Y - 6
n) 

n=1 
n n 

} 

(6.30) 

Y 
2V B 	(-1)n 6 Sin a x e n (z - ,e

'-)

U_ 	m o { E 	n 	n  
a 	

a2n 
(Yn - 6n) 

n=1 

a 

(-1)n y Sin a x:e n(z + .e) 
- E 	n 	n 

a2n (Yn - n) 
n=1 

} 	(6.31) 

2V B 	(-1) y Sin a x(e 	-e 

U 	m o{ E 	 n 	n 	
,} (6.32) a 	a2 

	(y - 6 ) 
n=1 n n n 
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where 

y 
n 
a = (R + (R

m 
2 + 4 (a 

n 
a)2 ) 12)b 

6a = (R
m 

- (Rm 
2 + 4 (an a)2 ) ~)~2 

and 

an a = (2n - 1) Tr/2 

The induced voltage for electrodes at x = ±a will be 

AU = U (-a) - U(a) 	 (6.33) 

and from equation 6.33 and 6.30 the following is obtained: 

4V B 	S (eyn(z 
- ~)- eyn(z + Q.) 

m o 	n  
2 DU = 	a 	n=1 a2 (yn - Sn ) 

for z < -e 

(6.34) 

and from equation 6.33 and 6.31':Mite following is obtained: 

4V B 	00 	Ō 	yn (z - e) 	a2  m o 	n e 	a_ 
DU = 	a 	n=1 

az 
n (yn - Sn) 	+ 2 	n=1 

n(z + f) 
yn e 	 } 	 (6.35) 

for -e <z <e 

a2 n (yn - 6
n) 
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and from equation 6.33 and 6.32 it follows that: 

y 	Sn (z -) 	,e) co 

AU - 
4 
m Bo 	n(e 	-  e

n (z + 
 

a 	
n=1 

a
n '  1•1 - 6n)  

(6.36) 

for z >2, 

The signal from the integrated voltage can be calculated by 

integrating equations 6.34, 6.35 and 6.36 along the channel. 

The result after integration is a very simple term given 

by equation 6.37. 

DU = 4 B V a2. 	 (6.37) o m 

and from equation 6.37 the sensitivity is given by: 

5 = 22. 	 (6.38) 

which 22 is the extent of uniform applied field. 

The above resultcould be found directly from the differential 

equation, which is, (See Thatcher 1971) 

a2u 	a2u 	au 
axe + az= = u 6 m ax (6.39) 

and the boundary conditions are: 

au 	au 
ax - az - 0 at z = ±m 

and 	U = 0 	at z = ±W 
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and 

aU = — V B ax 	m o at x = ±a 	for  -.<z<,C 

Du 	0  
ax at x = ±a 	for z<, . and z>-. £ 

The integrals of differential equation and boundary conditions 

using equation 6.13 are 

a2ū 
ax' = 0 	

(6.40) 

and 

air _ 2e V B 
ax 	m o 

at x = ±a  

The solution of the differential equation 6.40 with the above 

boundary condition is 

U = -2e. V B x 
m o 

(6.41) 

and the signal for the electrodes at x = ±a, using equation 6.33, 

is: 

dU = 4at B V o m 

which gives the sensitivity as found before in equation 6.38. 
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Numerical Example  

In Chapter 4 the induced voltage distribution was found for a 

short saddle coil. The integral of the signal, for electrodes at 

A = 1r/2 and r = a, along the pipe was calculated for different values 

of magnetic Reynolds number and uniform or parabolic velocity profiles. 

The sensitivity of the integrated-voltage flowmeter based on these 

calculations is given in table 6.1. Table 6.1 shows that the 

sensitivity of a saddle coil flowmeter is 	constant for different 

values of magnetic Reynolds number and the slight difference for Rm  of 5 

is due to computational errors. 

The change of velocity profile has little effect on the 

sensitivity. The table also shows that for two cases with magnetic 

Reynolds numbers of 5, one with a conductivity double 	the other 

and a mean velocity half of the other, the senstivity is the same. 

This proves that the sensitivity is not affected by fluid conductivity. 

The effect of wall conductivity number (d) and contact resistance number 

(C 
r) on sensitivity is given in table 6.2. Table 6.2 shows that the 

results from the numerical solution are in Very good agreement with 

those found from Equation 2.18. 

Table 6.3 gives the sensitivity of a diamond coil flow meter 

for three values of magnetic Reynolds number and two velocity 

profiles. 

6.3 Weight Function Solution  

It is more useful. to use the concept of the weight function 

when analysing electromagnetic flowmeters. Shercliff (1962) and 

Bevir (1970) have done this for flowmeters where the imposed magnetic 
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field is not distorted by the induced currents. In the following 

section this is extended for integrated-voltage flowmeters used 

with liquid metals. 

The divergence theorem of Gauss is: 

f V.A dT = j A.ds 	 (6.42) J ^' 
T 	S 

and from this equation it follows that: 

5 	
(UmJ - U Jm) .ds = {0. (UmJ ) - 0. (U Jm) } dT .. v 	V.. 	e 	 -v 	v_ (6.43) 

s1+s2 
	T 

where s1  and s2  are the surfaces around the electrodes and T is the 

entire volume of the meter. 

From equation 2.5 it follows that: 

V.Jv = 0 	 (6.44) 

V.J = 0 	 (6.45) 

Jv  is the virtual current and Uv  is the virtual voltage, which 

would occur if unit current entered at r = a and 9 = 7/2 and left 

at r = a and 9 = -7f/2 with no fluid motion. Jm  is the induced current 

density and Um  is the induced voltage, with fluid motion. 

Substitutions of equations 6.44 and 6.45 in equation 6.43 leads 

to: 
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(UmJ - U Jm).ds = 	(J .VUm  - Jm.4U ) dT 	(6.46) .v v_ 	 -v - v 

sl+s2 	T 

The virtual current is zero everywhere on the outer surface of 

wall except at the electrodes where it is unity and Jm  is zero because 

no current is drawn during the operation of the flowmeter. Therefore 

the left hand side of equation 6.46 becomes: 

+co 

(UmJv  - UvJm).ds = ` (U2m  - U1m)dz 	(6.47) 

s1+s2  

and 

+= 

...0
617 = 	(U2m  - U1m)dz (6.48) 

-03 

The right hand side of equation 6.48 will lead to equation 6.49 

if Ohm's Law is used. 

KJ = 	-a(V x B).V uv dT - -  

T 

(6.49) 

Applying Ohm's Law to the virtual current density in equation 

6.49 gives: 

6;3  _ 	Of x B) .J dT 	 (6.50) 
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Equation 6.50 may be written in the following form: 

ji 
DU = 	V. (B x J ) di 

r _ ry 
(6.51) 

T 

where W = B x J and is called the weight vector by Bevir 

(1970). For an integrated-voltage flowmeter the distribution of Jv, 

the virtual current is two dimensional and is not a function of z. 

If the velocity is a function of e and r we obtain: 

DU =v..-1W d s 	 (6.52) 

s 

+co 

where W - = 	W dz is the mean weight function and can be found 

-o 

from equation 6.53. 

W - = Br  J 	- Be Jvr  (6.53) 

where B- and Be are defined by equations 6.3 and 6.4 respectively and 

are calculated from equation 6.11. The distribution of virtual current 

density may be found from equation 6.54. 

02  U 	= 0 	 (6.54) v 

The mean weight function for the integrated voltage flowmeter 

is not affected by velocity profile, flowrate or conductivity of the 
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fluid and if the mean weight function is uniform the signal is 

proportional to flowrate. 

6.4 Method for Integrating the Signal  

The integral could be evaluated experimentally with reasonable 

precision from readings taken at a small number of electrodes along 

the pipe. One way of combining the readings would be to use two 

passive networks of resistance (high compared with the fluid but low 

compared with the voltage measuring device), this is shown in figure 

6.3. If U is the output signal and U
n is the voltage for the electrode 

at zn  then it follows from Ohm's equation: 

U1  - U = i1  R1  

U2  - U = i1  R2  

U3  - U = i3  R3  

Un  U = i
n n 	n n  (6.55) 

Because no current is drawn out of the meter during the operation, 

it follows that (Kirchhoffs Law): 

i1  + i2  + i3  + ... + in  = 0 	 (6.56) 
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and from equations 6.55 and 6.56 we obtain 

U U U U 
U(1  +1  +1  ...+ 1 ) = 1 +?+ 3... n  
R1  R2 R3 	

R
1 
 R2  R3  Rn  

(6.57) 

or in general equation 6.57 becomes 

1=1 

U 

 n 
N 
E 	

(R n=1 n  

U (6.58) 

The values of R 
n 

can be calculated and depends on the method 

of integration. For example, if a simple method of adding the 

signal is used, for which the resistances are equal, then equation 

6.59 becomes 

U 

• N 
E U 

_ n=1 n  
N (6.59) 

and the integral is 

U = N U 	 (6.60) 

The Gauss-Legendre quadrature method can be used which gives 

+1 
N 

f(x) dx = E 	an  f (z ) 
n=1 n 

(6.61) 

-1 
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N U 
In equation 6.58 it is necessary to find the value of E (Rn) 

n=1 n 
which is the integral of the signal. The values of Rn  and the 

positions of the electrodes with respect to each other can then be 

found by selecting the number of electrodes from the the values of 

a
n n 
and z n. 

6.5 Conclusions  

It has been shown that the integrated voltage flowmeter may be 

used wherever . the problem of field distortion and induced voltage 

distortion exists, due to field sweeping, because of the short 

length of imposed magnetic field and high magnetic Reynolds number. 

This flowmeter will give a signal proportional to flowrate and is not 

affected by conductivity changes in the fluid. Tt was also shown that 

the non-linearity because of the magnetic property of the fluid can be 

overcome by using a reference coil at the appropriate position at 

the liner but long enough to integrate the field along the pipe at 

that angle. 
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CHAPTER 7 

SWEPT FIELD FLOWMETER EXPERIMENTS  

7.1 Introduction  

The experimental rig described in this chapter gives an 

analogue of sodium flow in the FBR and was designed to simulate flow 

up to a maximum magnetic Reynolds number of about 1.5, with reasonably 

steady measuring conditions. Measurements were also carried out for 

R
m greater than 1.5 but the velocity was not steady and therefore 

higher errors resulted. A sketch of the rig is shown in figure 7.1. 

A 5cm diameter aluminium rod was used to simulate a uniform flow of 

sodium in a non-conducting pipe. The rod was driven through 

a system of belts and pulleys, the pulleys in turn being driven 

by a pneumatic cylinder. The aluminium rod was supported on an 

aerostatic track and has coaxial guides. The complete driven system, 

rod, pulley, belts and track were contained in a common support 

frame. 

The system of pulleys situated near the centre of the frame 

transmitted the drive from belts fitted to the double ended pneumatic 

piston to belts attached to the rod. This design is a modification 

of the rig built to investigate flux distortion flowmeters (see 

Baker et al 1974). 

The objective of the experiments reported in this chapter 

is to verify the predictions obtained numerically in chapter 4. 

The aluminium rod needs to be moved at high speed for a short time, 

and many of the design problems were due to the high acceleration and 
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deceleration needed to achieve a constant rod velocity over a short period. 

This was overcome with an effective braking system at the end of the stroke. 

The design of electrodes also created a problem, the'contacts of 

the electrodes with the surface of the rod would cause corrosion and signal 

noise. Various ideas were tried and the final design is the carbon brushes. 

Electrodes are spring loaded for constant contact with the rod to measure 

the induced voltage across the diameter of the rod. 

7.2 Mechanical Design 

The experimental rig consists of: 

1. Base Frame 

2. Pneumatic Drive Cylinder 

3. Drive Belts and Gears 

4. Aluminium Rod 

5. Flowmeter Assembly 

7.2.1 Base Frame 

The total length of the base frame is about seven metres and 

consists of eight hexagonal loops connected lengthwise by two square 

and two rectangular section steel members. The pneumatic cylinder, 

gears, pulleys, aluminium rod auides and permanent magnets are supported 

by this frame (figure 7.2). 

Care was taken in the design to avoid steel in the vicinity of the 

magnet assembly and the hexagonal frames at that point are made of 

wood. The shocks from the sudden accelerations and decelerations due 

to high speed operation were reduced by supporting the frame on foam 
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pads. 

7.2.2 Pneumatic Drive Cylinder 

This is operated from the shop air supply of about 7 bar. 

This is fed into a reservoir which in turn feeds a four-way solenoid-

operated control sequence valve attached to the cylinder inlet, the 

outlet or exhaust is controlled by a variable flow control ratio 

valve. This controls the overall speed of the drive system. The 

cylinder is of the through. rod type which enables the toothed 

belt to be driven in either direction. The cylinder stroke is .58 

metres which allows the aluminium rod to travel 1.16 metres. 

7.2.3 Drive Belts and Gears  

Two types of belting were used, toothed and flat section. The 

toothed belts could only be obtained up to a certain length and in 

consequence the remaining belt length was made up with a glass fibre 

belt. This combination of belts gave  a good performance. The belts 

were joined to the drive cylinder eccentrically and with an adjust-

ment to allow for the gear wheel diameters. The fibre belt was bolted 

to the rod and were tightened by using alloy plates with series of 

holes. Then the belts were linked through a series of toothed gears. 

Two sets of these gears transmitted the drive from the belts connected 

to the piston. The third set was not used. 

Figure 7.3 shows the gear arrangement. The large diameter carry 

the belts from the rod and the smaller gears carry the belts from the 

piston end. The gear ratio is 2 and therefore the speed of the rod 
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is twice that of the piston. 

7.2.4 Aluminium Rod  

The aluminium rod was used to simulate the sodium flow, this 

rod has a minimum diameter of 5.037cm;.and a maximum diameter of 

5.044cm. The average diameter was used in calculations. The rod 

is mounted on an air bearing to obtain smooth linear movement. These 

air bearings consist of a laminated wooden base on which the two 

supports for the rod run. In the base of each support an array of 

holes supplies air to the surface. In addition to this bearing two 

further wooden guides ensure that the rod is concentric. 

Problems arise from the high deceleration necessary to bring 

the aluminium rod to rest at the end of the piston stroke. To 

prevent sudden shocks braking the belts, a brake system was added 

and can be seen in figure 7.4. This brake makes sure that the 

aluminium rod will not hit the magnet and electrode support. 

Therefore the rod is stopped independently of the piston as the 

latter comes to the end of its stroke. 

The surge  of air into the piston caused a rod peak velocity 

of about 2.5m/sec followed by a fluctuation which smoothed out 

towards the end of the stroke to give reasonably steady measuring 

conditions at about 1.5m/sec. 

7.2.5 Flowmeter Assembly  

Figure 7.5 shows the flowmeter design where the position of 

electrodes, electrode support and the permanent magnet can be seen. 

Figure 7.5 also shows a sectional view of the meter. The electrode 
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support is made out of non-conducting material (polyvinyl  chloride) 

with 	resistivity of 10 16 ohm/cm. It has nine pairs of holes 

diametrically opposite each other at 2.54cm intervals, the inner 

diameter of support is 5.33cm and the outer diameter is 7.32cm. 

The main problem associated with voltage measurement was the 

design of a system for picking up the voltage from the surface of 

the moving aluminium rod. Various methods were tried and each one of 

them had its own problem. Small brass wheels were tried but they 

did not revolve smoothly at high R.P.M. Small steel balls caused 

scratching of the rod surface and also produced a high. level of 

noise comparable with the actual signal. Finally the best solution 

considered was the use of carbon brushes similar to the ones used in 

electrical machines. The electrodes were made out of cylindrical 

carbon brushes and were inserted in the electrode support. The electrodes 

were loaded by springs and were secured to the support to allow 

a reasonable amount of play as the aluminium rod moved through the 

support tube. 

The permanent magnet is shown in figure 7.5 which is 10cm long 

and has replaceable pole faces. The pole faces were machined to 

accomodate the electrode support. The gap between poles is 7.32cm at the 

midplane and the support was held in Position by screws through the pole-

face. The magnet was lined up with the rod:and supported-by the base 

frame (see figure 7.6). The magnetic field strength at the centre of the 

magnet was .03T(300 gauss). 

7.3 Electrical Operation  

The electrical equipment is shown in figure 7.7 and it consists 

of the following parts. 
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7.3.1 Cylinder Control and Trigger Controls  

The pneumatic cylinder were controlled by electrical solenoids and 

two push button switches control the solenoid operation for the firing 

stroke and the return stroke. 

When the fire stroke button was pressed two timing circuits 

start to work. One timer triggered the oscilloscope to store the 

trace of the signal for the duration of the movement and it was set 

to trigger instantaneously. The second timer triggered both digital 

counter and digital voltmeter and was also used to give a trace on the 

oscilloscope to show the point at which the recordings were made. 

The delay time could be varied by selection of capacitance 

and changing the variable resistance in the timer circuit, and 

therefore the time at which the measurements were made could be 

varied to obtain a satisfactory point during the rod movement. 

7.3.2 Speed Measurement 

An encoder is keyed to the shaft of one of the gear wheels, 

this is shown in figure 7.3. The encoder has a disc with 500 lines 

and gives 2000 pulses for every revolution of the disc. Its rotation 

is directly linked to the movement of the rod. One revolution of the 

shaft was equivalent to a linear movement of .381 metres. The timing 

interval could be selected from a seven- position switch which gave 

factors of ten for each position change and for a given position, four 

selection dials allowed ranges up to 9999. Therefore the counting 

time may be found from the following equation: 

t = (10) 
n - 3 

(N1 ) (7.1) 
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where t is in ms, n is the position on the seven position switch 

and N1  is the selection dial. 

The incoming encoder pulses were counted for a given time 

period and the final number could then be converted to a value 

representing the speed of the rod. 

V 	(counts in 100ms)  
m 	524.9 (7.2) 

where V
m 

is in m/sec. 

Time periods of 100ms were used for the low velocities, where 

there was enough smooth movement of rod and for higher velocities 50ms 

and 25ms periods were used. 

7.3.3 Signal Amplifier  

A differential amplifier was built with a fixed gain and this 

was calibrated with a standard digital voltmeter. The calibration 

curve is shown in figure 7.8. The signal picked up by the electrodes 

was transmitted to the amplifier and then to a digital voltmeter which 

gave a full scale reading for 199.9mV D.C. The output of the 

amplifier was also connected to an oscilloscope with a storage 

facility_ 

7.3.4 Earth Connections  

The earth connections are shown in figure 7.9. All signal earths 

originated from the amplifier output. The power earths of the 

triggering circuits, counter and oscilloscope, base frame and 

aluminium rod all had a common earth. No earth screens were used 
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between the trigger and oscilloscope. 

7.4 Magnetic Field Measurements  

In order to predict the performance of the permanent magnet 

flowmeter it was necessary to measure the magnetic field components 

(Br  and B) near the pole faces. The field was measured in 10°  

intervals in the 9-direction and 1.27cm intervals in the z-direction 

by means of 	a Hall probe. Figure 7.10 shows the probe and 

how it was positioned for field measurement. 

About a 100mA current was supplied to the probe and the 

resulting voltage across the probe was measured. The measurement 

also was carried out by turning the probe 180°, and then the 

magnetic field was deduced from the average of these two measure-

ments. The probe was calibrated and the calibration factor was found 

with an accuracy of ±2.6%. 

The magnitude of the emf induced in the probe is proportional 

to the product of the current and the field and was found from the 

following expression. 

I B eH 
_4742 

where eH  in my, I in mA and B in gauss. 

The magnetic field components were found from these 

measured values and were used as boundary values in the numerical 

solution described in Chapter 4. 

7.5 Rod Conductivity 

(7.3) 

The suppliers of the aluminium bar do not provide a conductivity 
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value. Measurements were therefore made of the bar conductivity 

after it was machined and was ready to fit in the rig. A current 

was passed from one end of the rod to the other end at opposite ends 

of a diameter. This current was measured using an avometer. The 

voltage between the two knife edges on which the rod rested, was 

taken at the same time. Knowing the distance apart of the knife 

edges and the rod dimensions the value of conductivity was obtained: 

aAI = 2.93 x 107  mho/m 

This is 20% less than the conductivity of the pure aluminium. 

7.6 Theoretical Prediction  

The performance of the flowmeter assembled in the experimental 

rig was obtained by using the numerical solution in Chapter 4 

together with the measured values of the magnetic field components 

near the pole faces*. Figure 7.11 shows the magnetic field distribu-

tion along the aluminium rod for different values of magnetic 

Reynolds numbers. Figure 7.12 shows the induced voltage distribution 

along the pipe for various values of magnetic Reynolds numbers. The 

induced voltage from six electrode locations is shown in figure 7.i3. 

The signal is nearly linear for the position of electrode at 5cm 

downstream. 

7.7 Test Procedure  

Tests were run for nine different positions of electrodes along 

the rod at 2.54cm intervals. For each test a range of speeds was  

used and for each speed the run was repeated eight times or more. 

For each new speed, adjustments were made for delay time to ensure 

*The theoretical assumed requirement of a distant field boundary will clearly 
introduce an error for this case. 
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that the triggering pulse occured at the point in the rod movement 

at which the output signal was acceptably constant. The photographs 

were taken of 'the signal displayed on the oscilloscope to study the 

signal and its changes during the counting. One of these photographs 

is shown in figure 7.14. 

• 

7.8 Test Results 

The results for nine different positions of electrodes are given 

in tables 7.1 to 7.9. For each position of the electrodes, the 

tables give the number of counts in 100ms, the signal displayed 

on the digital voltmeter, velocity, the equivalent magnetic 

Reynolds number and the output signal of the flowmeter. The results 

are also plotted in figure 7.15, 7.16 and 7.17 and are compared 

with the prediction obtained from the analysis of Chapter 4. 

The best curve is fitted through the results and from this the 

distribution of the signal along the rod is found for R
m 
 =,5, 

1. and 1.5. Figure 7.18 shows the computed distribution and the 

experimental curve. The distribution of magnetic field along the z-axis 

at the centre of rod, when there is no movement of rod is shown 

figure 7.19 and measured values are compared with computed results. 

7.9 Experimental Errors 

These errors are caused by a number of sources - speed, signal 

,magnetic field measurements and non-symmetry of the permanent 

magnet. 
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7.9.1 Error in Speed Measurement 

Belt stretching can be neglected and therefore the rotation of the -

encoder disc will give an accurate indication of the linear movement of the 

rod. The counter will produce an error of ±1.2% at low speed and ±.4% at the 

highest speed. On top of that, an uncertainty of ±2 in the last digit of the 

counter will give an error of about ±2.3% for the slow runs and ±.8% for the 

highest speed. However each experiment was repeated eight times or more 

and this would eliminate these errors. 

The signal trace had a variation over the period during which pulses 

were received by the counter. The trace for four different runs is shown in 

figure 7.14. The picture shows that there is a variation of ±4% in signal for 

Rm  = 1.5 and a careful study of the trace during the counting period shows that 

the average velocity for slow speed, and for Rm  = 2.5 the trace shows that the 

signal drop during the counting is 8% and therefore the signal is overestimated 

by 4%. 

7.9.2 Error in Signal Measurement  

The digital voltmeter had a full scale input range of 199.9mV with the 

option of 1 decimal and this produced the error of ±.8% at the lowest speed and 

±1% at the highest speed. 

7.9.3 Errors in Magnetic Field Measurement  

The errors in magnetic field measurement are due to the calibration factor 

for the Hall probe and positioning the probe during the measurements. The 

magnetic field is nearly uniform in the magnet gap and it drops outside the 

gap. The variation of magnetic field components are a maximum at 9 = 400  which 

makes errors a maximum at this point. The error estimated as a results of 

inaccurately positioning the probe with respect to the magnet in the 9 direction 

is ±1%, in the z-direction ±.4% and in the radial direction ±.14%. The calibration 
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factor of the Hall probe was found using a standard magnet. There 

is a change of ±2.6% in magnetic field strength in the gap of a 

standard magnet, therefore there was an uncertainty of ±2.6% in the 

calibration factor. The error produced by a standard DVM for reading 

the current input to the probe was ±.01% while the induced voltage 

reading gave an error of -1.013%. Hence the total error in magnetic 

field measurement was ±4.16%. This error will appear in the numerical 

results, as the measured values were used in the numerical calculations. 

7.9.4 Non-Symmetry of the Magnetic Field  

The major error was introduced by the shape of the permanent 

magnet. In the numerical solution a symmetrical imposed magnetic field 

was assumed and the magnetic field was measured at the surface S 

(see figure 7.5) and then-used as boundary value. The shape of 

magnet assembly suggests that the magnetic field is not symmetrical, 

the region near the core. of the magnet_having a higher magnetic 

flux density. 

The measurements also show that the maaentic field at point a 

is 15% less than that at point b (figure 7.5). Hence it will be realistic to 

expect the measured values to be about 10% more than the computed 

values as a result of non-symmetry of the imposed magnetic field. 

7.9.5 Error in Conductivity Measurement  

The error in the conductivity measurement will result from the 

error in dimensional measurement of 1.054%, the error of ±.13% in 

measuring the current and the error of ±1.2% in voltage measurement, 

giving a total error of ±1.4%. 
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7.10 Discussion 

Figures 7.10, 7.11 and 7.12 show the numerical solution and 

experimental results. It was stated that the experimental values 

should be higher than the numerical values, 10% of the difference 

being due to non-symmetry of the imposed magnetic field. The 

numerical results were calculated with an accuracy of ±4.16%, 

while there is an uncertainty in velocity measurement which produces 

an error of ±2% for Rm  = 1.5 and ±1% for Rm  = .5. The speed 

measurement error was more when the measurement was made for R 
m  

greater than 1.5. These measurements were taken at the peak speed 

of the rod immediately after acceleration (see figure 7.14) and the 

trace shows: that the voltage drop is 8% during the counting. This 

will cause a 4% overestimation. At slower speeds the measurement 

was made in the region where the speed was more steady. Although 

the magnetic Reynolds number which could be reached experimentally 

was not as high as exists in the FBR where there is high distortion 

and non-linearity (as shown numerically in figure 7.11 and 7.12), there 

is a measureable amount of distortion in figure 7.18. 

In figure 7.19 the magnetic field distribution is shown and 

it can be seen that the measured field is higher than the computed 

value and this was expected due to non-symmetry of magnet. 

7.11 Conclusion  

The experiments were carried out with an analogue sodium rig, 

and the experimental results were in good agreement with the computed 

values. The uncertainty in speed measurement was reduced by repeating 

the experimental runs more than eight times, but the variation of 
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speed during measurements produced a ±2% error at high speed and less 

than ±1% at the lowest speed. The non-symmetry of the imposed 

magnetic field produced an expected 10% difference between the 

experimental results and numerical values. The experimental results 

give confidence in the numerical solution obtained in Chapter 4 

which can be used to predict the performance of swept field flow-

meters. 
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CHAPTER 8  

PULSED FIELD FLOWMETERS 

8.1 Previous Work 

Non-contact methods of measuring the velocity and flowrate 

of liquid metals are well known in magnetohydrodynamic (MHD) 

measurements and there is a considerable amount of work in the 

Russian literature. Sermons (1964, 1966), and Sermons and 

Zheigur (1964) studied the propagation of an electromagnetic field 

pulse in a moving conducting medium, and showed the possibility 

of using a pulsed field to measure the flowrate of a conducting 

fluid. 

The flowmeter consists of two coaxial coils spaced along a 

pipe. The primary coil is supplied by a generator with rectangular 

current pulses which induce circular currents in the moving 

conducting liquid. The displacement of the magnetic field lines 

induced by the currents in turn induce a voltage in the secondary 

coil due to is decay and due to its motion. The induced signal 

due to motion is a maximum when the current rings reach the secondary 

coil. The operating principle of this device can be appreciated from 

figure 1.4. 

Zheigur and Sermons (1965) gave an analytical solution for an 

induced voltage in the secondary coil, when a step current is applied 

between two circular circuits in a moving conducting medium: 

* = t*3/2 e-1/t* I(1/t*)exp{ 
2t (e* 	- V*t*}z  } 
* 

(8.1) 

where the following quantities are introduced as dimensionless 
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parameters: 

__ QRcE 	_ 2t 	_ 1 * 	
I 	

t* 	
aoRc2 	

V* 	2 Q µo Rc m 

and z*  
R c  

The condition for maximization of the function defined by equation 

8.1 is: 

t*  V*  or t = (8.2) 

The curves plotted in figure 8.1 were calculated from 

equation 8.1 and they show that relation 8.2 is satisfied with a 

reasonable degree of accuracy when V* 7, 8 i.e. for a comparatively 

high value of the magnetic Reynolds number. The reason for this is 

the time constant of the medium: 

T = 1/4 
0 

 a Rc2 	 (8.3) 

The distance between the coils for the corresponding velocity, 

V must be chosen with allowance for the time constant of the medium 

to satisfy the inequality: 

k < VT 	 (8.4) 

or 

v*  > 2-* 	 (8.5) 
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Equation 8.2 which enables the velocity of the medium to be 

determined regardless of the conductivity of the medium is only 

applied for idealized cases, i.e. when allowance is not made for 

the velocity distribution, the effect of the channel walls etc. 

The theoretical investigation of problems in which allowances are 

made simultaneously for all factors is difficult and has not been 

tackled before. In this chapter we apply a numerical technique 

together with a finite difference approximation to solve the problem. 

8.2 Governing Equation  

Expanding the component of equation 2.34 gives: 

82 A 	1 8A 	A82A 	DA 
Dr' + r ar - r2  + 3z2 - -µo  Jo  (t) + 

µo  a  at 

 -aµo  V 	(VxA) 

If the velocity of the fluid be axisymmetric, V 
z(r) then: 

DA 
ar2  + r Dr r2  + 

az2  = - µo  Jo  (t) + µ0  a 87  

+ µ a V (r) 2A— o 	z 	az 

The term a µo  Vz(r) at is the only one containing the velocity 

and is the one responsible for the effect produced by motion. We 

(8.6) 

(8.7) 

rl  = r/a, z1  = z/a and t1  = t/(µoaf  a2) (where a is the 

conductivity of fluid and a is the radius of the pipe) then we have: 

define 
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32  A1 aA 	A 	aA 	DA 
ar12 + 

r1 3r1 	r12  + az12 - µō a Vz  (r1) 3z1  

(r1)  aA  
a
f 	

at
1 	

µo a2 Jo (t) 

If I
0
(t) is the current in the primary coil, then 

I (t) 
J (t) - 

o  
o 	a2 dr1(Sz1  

where Sr1  and dz1  are the lattice snacinas. 

It follows from this that 

a2A2  + 1 	aA 	A 2+  @2A 	@A
- µ a a V Cr  pz) arl 	rl 

arl 	rl 	az1 	o 	z 1 azl  

a.(r1) aA 	µo  Io  (t) 

af 	at1  Sr1  Sz1  

8.3 Boundary Conditions for Thin Wall Channels  

It is assumed that the thickness of wall, w is much smaller than 

the radius of pipe, and therefore, at r- =  a we have a current sheet 

with density of J 
w
. The integral form of Maxwell's equation is: 

IH.dl = µ I 
0  

(8.10) 

(8.8) 

(8.9) 

Taking a portion of wall with length 	dz and using equation 
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8.10 gives: 

(Hz
I - HzII) dz =µo w J

W 
dz (8.11) 

We know from equation 2.29 that J  = 6w( 2t) 
and Hz = A + ār,~ 

therefore: 

(HZI - 
HZII) 	= µ

o w Qw
(- ā ) 

r = a 
(8.12) 

The vector potential is continuous at r = a, i.e. 

(AI) 	_ (A
n

) 
r = a r = a 

(8.13) 

Therefore we obtain the condition at r = a as: 

aA1 DA DA  DA d( 	) 
Dr1 	Dr1 	8t1 r = a 

(8.14) 

8.4 Time Marching Solution  

The magnetic vector potential is a time dependent variable and 

to find this the solution must be a function of time as well as z 

and r-directions. The individual terms in equation 8.9 may be 

written in finite difference form as: 

92 A(r1 ,z17t1) 	A(ri + Sri,zi,t1) + A(ri - (Sri,zi,t1) - 2A(ri,zi,t1) 

Dr1 2 	 dr12 
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92 A 
	A(ri,zi  + dz1,t1) + A(ri,z1  - Szi,t1) - 2A(ri,z1,t1) 

3z12 - 	az 12  

1 	aA 	1 	A(r1  + (Sr 1,zl,t1) - A(r1  - (Sr1 ,z1 ,t1) 

r1  9r1 	ri _ 	2 (Sr1  

and 

and 

aA 

 

A(r11z1  + Szl,t1) - A(r1,z1  - Szi,t1) 

   

az1 	2 Sz1  

The time derivative term is: 

aA 	A(r1,zi,t1) - A(r1'z1,t1  - T) 

atl  

where 

Srl  is the size of lattice in r-direction 

Sz1  is the size of lattice in z-direction 

T 	is the time step. 

Using these finite difference approximations yields: 

A(ri  + Sri,zi,t1) + A(ri  - (Sri,zi,t1) - 2A(r1,z1,t1) + 

Sr12  

1 	A(ri  + 6r1,z1,t1) - A(r1  - Sr1,zi,t1) 	A(r11zi,t1) 

r1 	2 Sr1 	 r1 2  

A(rl ,z1  + 6z1,t1) + A(d 1z1  - Szi ,tl)- 2A(r1,z1't1) 

Sz12  
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A(r1,z1  + (Sz1,t1) 
-1'z1- 

 (Sz1,t1) 
- a (r1)a Vz  (r1) 	2 Sz  1 

a(r1) 	A(r1,z1,t1) - A(r1,z1,t1 - T) 	µo  1o (t) 
af 	( 	T 	) 	Sr1  (5z1  (8.15) 

and hence 

A(r1,z1,t1) = (A(r1  - dr1,z1,t1)C2  + A(r1  + Sr1,z1,t1)C3 

+ A'(r1,z1 	- Sz1,t1)C4  + A(r1,zi  + (Sz1,t1)C5  

+ A(r1,z1't1  - T)C6  + C7
)/C1  

where 

_ 	2 	1 	2 	a  (r1) C1 	Sr12  + r12 + Sz1 Z  + afT  

C2 	Sr12 	2r1 :Sr1 

1 	1  
C3 	Sr12  + 2r1  Sr1  

1 	a(r1)40 
 a Vz(r1) 

C4 (Sy + 	2 Szl  

1 	a(r1) 10  a Vz  (r1) 
C5 	Sz12 	2 Sz1  

C 	= a (r 1) 
6 

af  T  

µo I (t ) 
C7 	

Sr1  Sz1  

(8.16) 

1 	1 
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Using the finite difference approximation for the boundary 

condition at a conducting wall gives: 

A ([1,z1,t1) = 	(A(r1  - (Sr l,zl,t1) + A(r
1 
 + (S rl ,z l ,t1) + 

d dr1 	d (Sr
i. A(r1,z1,t1  - T)/(2 + 	T  )  (8.17) 

The velocity was assumed to be independent of 9, z and t. In 

solving for this vector potential, it is sufficient to solve the 

problem in one half plane only, due to the axial symmetry. Equation 

8.16 will simplify somewhat depending on the location of the parti-

cular point. For example, Vz  = 0 and a = 0 everywhere, except in 

the medium and conducting wall, Io(t) = 0 everywhere except in the 

primary coils. Along the boundaries of the mesh the values of 

A(r,z,t) are held to zero. The magnetic potential along the axis is 

constant, (for convenience this is taken to be zero), and the 

remaining boundary should be far enough away to approximate to 

infinity. The current in the primary coils, Io(t) can be approxi-

mated (in time) to any'current wave form. The solution will have 

to start where Io(t) is a constant and at = 0, then the vector 

potential equation can be solved independent of time with appropriate 

boundary condition for z and r. The calculations then proceed to 

values of t where Io(t) varies. This method of solution in which 

the results at one time step are used in calculation for the next 

time step is called a 'time marching' solution as the calculations 

march with time step by step. 
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8.5 Computer Results  

A computer program has been written which employs the numerical 

technique explained in chapter 4 together with the finite difference 

approximation. The program handles the solution of the vector 

potential equation for a rotationally symmetric system, such as flow 

of fluids with axisymmetric velocity profiles inside a conducting 

pipe. The current in the primary coils can be sinusoidal or any 

other pulse form. The coils can be positioned inside or outside 

the pipe. 

The computer starts at a point in the mesh (see figure 8.2) 

and works through point by point using the Successive Over Relaxation 

(S.O.R.) method. The optimization procedure shows that the best 

relaxation factor is 1.5 for parabolic and 1.6 for uniform velocity 

profiles. The accuracy of the results depends on the mesh size, the 

finer the mesh, the greater the accuracy and longer and more 

expensive the solution. 

The computer program is tested against some special cases, e.g. 

the stationary conductor and two circular coils placed in a moving 

sodium pool with uniform velocity. The results are in good agreement 

with the analytical solution of Zheigur and Sermons (1965).  For 

stationary fluid Smythe (1968) gives an expression for the potential 

induced by a coil with current I and radius R. (This is mentioned 

by Baker (1977)). 

a 

A 	= Ī (R) 11  { (1 - k) K - E} 	 (8.18) 7rR r 	2 

where K and E are complete elliptic integrals of the first and 

second kind. 
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k2  
4Rr  
(R + r)2  + z2  (8.19) 

The Elliptic integrals are given by Dwight (1961) in the 

form: 

12 	12.32 	z z z K 
= 2 

(1 + m) {1 + 
22 

mz . + 
22 .42 m4  + 22 .42 .62 m6  + .... } 

and 

rr 	 z 
E 	_ 	

1 
+ 2

z 

4 	
z 	z 

+m6+....} 

(8.20) 

(8.21) 

(8.22) 

2(1 + m 	 2 	
+
22  

where m = 	(1 -k') / (1 + k') 

and k' = 111-777 

The induced signal in a coil 

2nr 

m+ 22.42.62 

at radius r is 

e 	= 	( 	
at 
 ) 

Calculations show that the induced voltage from equation 8.22 

is in good agreement with the computed values from finite difference 

solutions. The difference is due to errors which arise because 

of the lattice size. 

Figure 8.3 shows the matrix plot of the vector potential at 

difference time steps, at t = 0 the constant current in the primary 

induces the magnetic field distribution which is a maximum in the 

plane of the primary coil. When the current is switched off the 

circular currents form and move with the fluid. The plot shows 

the magnetic field moving and damping with time, which is 
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caused of conductivity of the medium. The higher the conductivity 

the slower is the damping.'- The induced voltage can be found from the 

following expression: 

e = 2Trr E~ (8.23) 

where 

E _ - aA 
e 	at 

or 

DA 
e = 2Trr at 

and in finite difference form: 

e rr 
(A(r,z,t + T) - A(r,z,t - T))  

T 
(8.24) 

8.6 Flowmeter Design  

The design 	considered consists of three coaxial coils and 

is illustrated in figure 8.4. The centre coil is the primary or 

excitation coil. The two end secondary coils are connected together 

(series opposing), as in a differential transformer arrangement. 

Because of the symmetry of the system, the output signals of the 

coils are zero when the fluid is stationary. 

If Io is the primary current, N the primary turns and Ns the 

secondary turns the output signal is: 
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E = (E1  - E2) Np  Ns  Io  (8.25) 

E1  and E2  are the signal in the secondary coils for unit 

current pulse in the primary coil. Figure 8. 5 shows how the 

induced voltage in the secondary system of.•coils changes with time 

for different values of magnetic Reynolds numbers. Figure 8.6 

shows the induced signal when the velocity is parabolic. The 

transient time is longer and the signal is smaller for the parabolic 

velocity profile. The reason is that the signal induced is influenced 

mostly by the induced current rings near the wall rather than 

those close to the centre of the pipe. In the flow of a fluid with 

parabolic velocity profile the velocity of fluid near the wall 

is less than the average velocity and therefore the induced current 

rings move slower compared with uniform flow. 

The conducting wall will affect the signal by delaying the 

transient time. The current induced in the wall delays the maximum 

signal by enforcing the signal in the secondary coil. This effect 

is shown in figure 8.7 (for d = 0, .0154 and .077). 

The characteristics of the flowmeter are shown in figure 8.8 

for two extreme cases of velocity profile, parabolic velocity 

profile which represents  laminar flow and uniform velocity profile 

for turbulent flow. The results show a linear characteristic line 

but with different slope depending on the velocity profile. The 

characteristic becomes non-linear at 16w values of magnetic Reynolds 

number and this is because 	decay dominates the response at low 

R. Figure 8.9 exhibits the use of an induced signal as a measure 

of magnetic Reynolds number, but the characteristic is not linear. 

The results obtained so far explain how the transit time changes with 

magnetic Reynolds number. The magnetic Reynolds number is proportional 
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to fluid conductivity as well as mean velocity. As the electrical 

conductivity of liquid metals is dependent on temperature (see 

figure 8.10) this factor must be allowed for when calibrating the 

meter. In practice, if the measurement is to be made accurately, 

fluid conductivity needs to be specified at the time of measurement. 

The technique for finding the conductivity of the fluid is described 

below. This method can be applied in any system with moving 

conductive medium for conductivity measurement. 

8.7 Eddy Current Method for Conductivity Measurement  

If a magnetic field is suddenly applied to a conductor, eddy 

currents are caused to flow in the conductor. The magnetic field 

created by these currents is in opposition to the externally 

applied field. The induced field damps with time, and the rate 

of damping is a function of the conductivity of the conductor. 

The higher the conductivity of the medium the slower the damping 

of the magnetic field. This method is described by Bean et al 

(1959) for measuring the resistivity of metallic specimens. The 

measurement is made by noting the rate of decay of flux from a bar 

situated in an external magnetic 'field that has been rapidly reduced 

to zero (see figure 8.11). 

Nagao and Ishibashi (1976) used the same method to measure the 

resistivity of NaCl solution, an alternative to the Kohlaush-Bridge 

method which is more commonly used. 

For a moving conducting medium the common practice for conductivity 

measurement is to employ an alternating field. This has limitations 

as a result of skin effect. It is shown that the eddy current 

method may equally be applied for the conductivity measurement of a 
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moving medium. The sudden change of field in the primary coil 

induces eddy currents in the moving liquid and the eddy currents 

induce a signal in any circular coil perpendicular to the flow 

due to is motion and decay. The signal produced by motion has 

a positive sign 	downstream of the eddy current and negative 

sign upstream, while the part of the signal due to the decay is 

always positive. By placing a solenoid around the pipe the induced 

signal along the pipe may be integrated and therefore the part of 

the signal induced by motion will vanish. The final signal will be 

a function of conductivity. 

The equation of vector potential in a fluid region was (see 

figure 8.12): 

a2A1 1 aA1  Al 	a 2 A1 	@A1 	aA1  

are + 	Dr 	r2 	+ az2 	 oafVzaz } uocfat 	(8.26) 

defining 

+09 

A = 	A dz 

-00 

(8.27) 

to be an integral transform of the vector potential, and applying 

this in equation 8.26 gives: 

a2  A1 	1 
aA1  

	A _ 	9A1  
Dr2  } r Dr 	r2 	µocfat 

(8.28) 

where the first term on the right hand side of equation 8.26 is dropped 

as its integral is zero. 

The first derivatives of the vector potential is zero at z = ±03 

(remote 	from the primary coils), and the vector potential is 
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constant at z = ±o and 	is assumed to be zero. The output 

signal from the solenoid is of the form: 

+m 

e = ir c dz (8.29) 

or 

c= — 27R āA  
at 

(8.30) 

Let 

co 

7-1 =1 Ae st dt 

0 

(8.31) 

be the Laplace transformation of A, using this transformation in 

equation 8.28 gives: 

a25
1 1 

2Ā1 Ā.1 
= 

 
2r2  + r 2r 	r2 	cfµō Al (8.32) 

This equation for region"2 and 3 outside the pipe where the 

conductivity is zero becomes: 

22  A2 	1  252 	A2  

2r2  + r 2r 	r2 	
0 	 (8.33) 

Hence, the equation for the vector potential in the fluid region 

is: 
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Y2  
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82A 1  351  
ar=  + r Dr (y2 + r2 ) Al  = 0 	(8.34) 

= a  f  µo  S  

The general solution of equation 8.34 has the form 

Al = C1  I1  (yr) + C2  K1  (yr) (8.35) 

The value of K1  leads to infinity as r -} 0, hence C2  must be 

zero. The solution of the differential equation 8.33 for region 2 and 

3 is: 

_ 	C 
Ā2  = C3  r + 4  r (8.36) 

and 

_ 	C
6  

Ā3  = C5  r + r (8.37) 

For r -} = the value of A3  becomes infinite and hence C5  must 

be zero. 

A3  = 
C6  

r (8.38) 
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8.7.1 Boundary Conditions  

The vector potential is continuous at r = a and r = R 
c
, i.e. 

Al I 	= A2  1 
r = a 	r = a 

and 

A21 	= A31 
r = R 	r = R 

c 	c  

for non-conducting  channel walls we have 

1 a 
(rA1)  

r Dr 1 
r = a 

1 
 (rA• ) 

= rr 
r = a 

The boundary condition at the primary coil is 

1 a (rA

▪ 2

) r ar 
r = R 

c  

a 
(rĀ3) 

r ar 	I 	= uo  Jo  (t) 6(Z) 	(8.39) 
r = R 

c  

Using  the transformation for z we obtain 

1 a  (rA 

• ) 

	 1 a (rA • ) 
2 	- r 	3 I_ 	= µo  N To(t) 	(8.40) r 	 p 

r = R 	r = R 
c 	c  

where J0(t) is the current density, 10(t) is the current in the primary coil 

and N is the number of turns in the primary coil. 

The Laplace tranformation of equation 8.40 becomes: 



2S 
C3 = µo  Io 

N
D  (8.43) 
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1 a (rA2)I 	
- 

1  a  (rA3) I 	__ µo NP Io 

r ar 	r=R rar 
	

r=R 
 

c 	c  

(8.41) 

The current density in the primary is taken to be a step 

function. Applying the boundary conditions leads to: 

C4  
C1  11  (ya) = C3a + 	

a 

	

DI1  (Yr) 	C4  
C1 	ar 	= C3 - az 

r = a 

	

C4 	C6  
C R c  + R = R  

	

c 	c 

	

C4 	C6 	
ō 
I N o  

	

_ _ 	P  
3 R + R 	S 

	

c 	c 

Solving the above equations gives C1, C3, C4  and C6: 

A I  N 	1. 
_ 

0 o p  
C1 	S 	

(11  (ya) 	3I1 (Yr) 
) 	

(8.42) 

+ 	I 
a 	ar .-= a 

µo  IN Np  az  I1  (ya) 	az 
C4  - 	S 	(I1 	(Ya) + a aI1  (yr) I 	2 ) 	 (8.44) 

ar 	r = a 

µo  Io  N
p (

a2
1  (ya) 	a2 	

Rc2 
C6 	S 	(I (ya) + a 9I1  (yr) 	2 + 2  ) 	(8.45) 

ar 	I r = a 
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Finally the equations for the transformed vector potential in 

region 1, 2 and 3 are: 

I N 	a I (ya) 

Al  (s) - µ
o 

S  P  (I1 
 (ya) + a 811  (Yr) 	) I1 (yr) 	(8.46) 

A (si = µo  Io 
Np 
 r + µo 	Io N

p 	 I(ya) 
	  _ a2 

2 	2S 	 Sr 	I1  (ya) + a 311  (yr) 	2 

(8.47) 

µo  I 	
P 

N 	a2  I1  (ya) 	 a2 	RC2 

A3  (s) = 	Sr 	(I1 	
(ya) + a 311  (Yr) 	2 	+ 2 

3r r=a 

(8.48) 

The induced signal in the solenoid may be found by the inverse 

Laplace tranform of A(s)and the methods of complex variable theory. 

3r 	Ir= a 

3r I  r=a 

_ 1 A 	27ri  lim st  e 	A (s) dS 

C - iT 

(8.49) 

where c is chosen so that all the singular points of A(s) lie to the 

left of the line Re(s) = c in the complex plane. 

The inverse Laplace transform of Ā(s) is difficult to find and 

it is in a complicated form, while the numerical solution of 

equation 8.28 is easier to obtain. Here the induced signal distribution 
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obtained in section 8.5 has been integrated in z-direction to find the signal 

induced in solenoid for conductivity measurement. The results show 

that the signal in the solenoid is not affected by velocity, and has 

only one non-dimensional plot which is shown in figure 8.13. There- 

fore the conductivity of the medium can be fotnd from this curve and 

knowing the magnetic Reynolds number from previous calculations the 

mean velocity can be obtained. Figure 8.14 illustrated the flow- 

meter which provides the mean velocity and fluid conductivity. 

8.8 Conclusions  

The pulsed field flowmeter has been analysed and a time marching 

solution 	given using the finite difference approximations and 

S.O.R. methods.. The effects of wall conductivity and fluid velocity 

profile are considered. 

The results show that the flowmeter with one primary and two 

secondary coils gives the flowrate of fluid but its performance is 

dependent on the velocity profile and the temperature of fluid flow. 

The flowmeter shown in figure 8.14 is designed to cancel the tempera-

ture dependence and it is capable of measuring the magnetic Reynolds 

number and conductivity of fluid flow. 
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CHAPTER 9 

CONCLUSIONS AND FURTHER WORK 

In this thesis electromagnetic flowmeters are reviewed and 

analysed. The following problems exist in their design and calibra-

tion; 

a) Variations in calibration due to changes in the permeability 

of the fluid. 

b) Short axial length transverse field flowmeters, when used in a 

flow with high Rm, suffer from field sweeping. This sweeping 

produces a non-linear output signal from electrodes positioned 

in the mid-plane of the flowmeter. 

c) Variations in calibration due to changes in contact resistance 

between the fluid and the pipe wall. 

The first problem exists in electromagnetic flowmeters with 

magnetic slurries. In Chapter Three a long flowmeter with concentric 

pole-pieces was examined and a solution given for the induced signal 

and magnetic distribution signal varies with changes of permeability. 

It was found that using a search coil positioned in the insulating 

liner to act as a reference, gives a constant signal for changing 

fluid permeability, and an almsot constant one for a limited range 

of axisymmetric velocity profiles. The solution was found for 

uniform fluid permeability in the fluid-region, but in practice a 

non-uniform distribution of permeability may occur, and also the 

conductivity may be high enough to affect the imposed magnetic field. 

Therefore the numerical solution may be applied to more general 

cases by taking into account the non-uniform permeability, effect of 

conductivity and the length of the applied magnetic field. 
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Swept field flowmeters were analysed in Chapter Four where the 

magnetic field and flowmeter equations were solved numerically in 

three-dimensions, using a cylindrical co-ordinate system and taking 

into account the effect of magnetic Reynolds number. The flow was 
wa 

assumed to be rectilinear in a thin conducting pipe(aaW  « 1) with a 

The numerical solution uses a finite difference approximation with S.O.R. 

The computer program (SWEPT) can deal with a symmetrically imposed 

magnetic field, and requires the distribution of the imposed magnetic 

field at the surface, (r = b) as a boundary condition. The magnetic 

field at this surface is assumed to be unaffected by the flow of the 

fluid. This assumption produces some error, however, the estimated 

error in Chapter Four where b = 3a and Rm  = 5 was less than 1.7%. 

The performance of a swpet field flowmeter was found for three 

different types of imposed magnetic fields (saddle coil, diamond coil, 

and permanent magnet). The results show that high values of R
m  sweep 

the imposed magnetic field downstram and produce a non-linear signal 

for point electrodes positioned at the mid-plane. The results also 

show that for electrodes positioned one pipe diameter downstream the 

signal is nearly linear for magnetic Reynolds numbers from 0 to 5 

(see figures 4.18, 4.22 and 7.13). 

The weight function is more useful in designing a flowmeter, the 

aim being to find a flowmeter with  a uniform weight function. Changes 

in electrode shape and field configuration can produce this uniform 

weight function. This is the first time that weight function theory 

has been applied to the swept field flowmeter. The weight function 

distribution is affected by the magnetic Reynolds number. In Chapter 

Five the weight vector is derived for similar conditions specified 

in Chapter Four (rectilinear flow, thin wall, constant contact 

f 
constant contact resistance between the pipe wall and the fluid. 
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resistance). A numerical solution is obtained using a finite difference 

approximation with S.O.R. The weight function distribution is found 

for different electrode positions along the pipe. The results show 

that the weight function is dependent on Rm, but for electrodes 

displaced one diameter downstream the weight function distribution 

becomes unchanged for Rm  over the range from 0- to 5. 

The computer program can be used to find a uniform weight 

function by changing the electrodes shape and field configuration. 

The results obtained by the weight function solution are a check for 

results obtained by direct solution of the flowmeter equation. The 

weight function distributions show that; 

(i) a diamond coil flowmeter has a more uniform weight function 

compared tQ a saddle coil flowmeter. 

(ii) a flowmeter with a conducting wall has a more uniform weight 

function than one with a non-conducting wall. 

This shows that the flowmeter with large electrodes and a tailored 

field can give a uniform weight function. Experiments carried out on 

the swept field flowmeter are described in Chapter Seven, where an 

aluminium rod was used to simulate the uniform flow domain. Although 

the experiments were for low values of Rm  (less than 2), the results 

showed good agreement with the numerical predictions. More experimental 

work can be carried out with the actual sodium rig for higher values 

of R
m to confirm the theoretical work. -  

The swept field flowmeter has the advantage of a short axial 

length but suffers from conductivity dependence. To overcome the latter 

disadvantage an integrated voltage flowmeter was designed (patent 

119243). This design of flowmeter has a short imposed magnetic field 

and electrodes integrating the signal in the flow direction. The signal 
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is independent of the conductivity of the liquid. The theory of this 

flowmeter is given in Chapter Six. It was discovered that if all the 

quantities in the flowmeter equation (2.12) were integrated in the flow 
+03 

direction (U = I Udz) then the form of the flowmeter equation is the 
—ca 

same as that of the flowmeter equation for low conductivity fluids in 

two-dimensions. The importance of this observation is that this 

equation is susceptible to all the analytical techniques used for the 

two-dimensional form of the equation. 

The practical consequences are: 

a) The signal from the flowmeter is not affected by conductivity 

of the fluid. 

b) The signal is a linear function of the flowrate and is dependent 

on velocity profile. 

c) It may be possible to optimise the magnetic field distribution 

and electrode shape in the cross-sectional plane, so that such 

a flowmeter has a low sensitivity to changes in flow profile.. 

An alternative design is given in Chapter Six, in which a search 

coil is placed in the liner as a reference, and electrodes integrating 

the signal along the. pipe (see figure 6.1). This flowmeter can 

operate for fluids with a wide range of conductivity and permeability 

and gives a linear signal with flowrate. 

The last type of flowmeter which has been anlysed is a pulsed field 

flowmeter. A time marching solution is-given using a finite difference 

approximation with S.O.R. The computer program (ECFM) is written for 

this numerical solution. It is assumed that the flow is rectilinear 

in a thin conducting pipe. A design with a primary and two secondary 

coils spaced symmetrically on either side of the primary, gives an 

output signal dependent on the velocity profile and conductivity of 
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the fluid. It is shown that by integrating the vector potential equation 
+= 

in the z-direction (A = I Adz), we obtain an equation which has no 
.4.00 

velocity term. The induced signal (E = I Edz) obtained from this 

equation is not velocity dependent and is a function of the conductivity 

of the fluid. Therefore a solenoid was placed around the pipe to 

integrate the induced signal along the pipe. The output signal 

of this solenoid was used to calculate the conductivity of the fluid 

(see figure 8.13). The magnetic Reynolds number was found from the 

three coil arrangement and hence the flowrate can be found. The 

disadvantage of this flowmeter is its velocity profile dependence, 

this can be seen in figure 8.8. 
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APPENDIX A 

CALCULATION OF INDUCED MAGNETIC FIELD 

FOR SADDLE-TYPE COILS (CONCENTRIC)  

In the saddle coils flowmeter the magnetic field is generated 

by two saddle shaped, series connected, air cored coils, supplied 

with a constant current and installed around the liquid metal 

containing duct. A special coil former in two separable halves 

supports the coil cables. The coils are fitted diametrically 

opposite to each other over the duct and work in relatively cool 

ambient conditions (see figure A.1). The calculations of field 

distribution were made for a coil with finite length and the windings 

replaced by a cylindrical conductor at S (angle of coil). The 

magnetic induction due to a current flowing in the conductor can be 

calculated using Biot-Savart's law for each part of the conductor. 

Biot-Savant's' law for magnetic induction due to a 

current NI, flowing in a conductor of length ds at a point P(p,0,z) 

illustrated in figure A.2 is defined as: 

an - 
µo  NI ds x r1  

47r 	1r2 1 
(A.1) 

or 

dB - µo  I 
ds 
 x x - 

47r 	1  r'  I 

where the variables are 

(A.2) 

ds = 

dB = 

rl  = 

an element of conductor carrying current NI 

induced magnetic field at point P(p,4,z) 

unit vector directed toward point P(p,4,z) at point M(Rc,s.,z') 
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r 	= vector joining P to M 

I 	= electrical current 

N 	= number of turns per coil element 

Applying the above law to part 5 of conductor gives the 

result: 

ds = (Rc  ds Cosa) i - (Rc  ds Sins) j 	(A.3) 

Where R c is the radius of saddle coils and 

(Rc  Sins - p Sint) i + (Rc  Coss - p Cost) j + (L - z) k 

(A. 4) 

Rearranging equations A.2, A.3 and A.4 gives the following 

equation for dB 

as = 
4n{ (Rc  Sins - P Sint) 2 + (Rc  Coss - p Cost) 2  + (L - z)- }

3/2 

(Rc  Sins - P Sint) i + (Rc  Coss - P Cost) j + (L - z) k} 

(A.5) 

alternatively it can be written as, 

- oNI 	(Rc  d8 Coss i - Rc  ds Sins j) X 

ōNI Rc  Sin3 (L - z) d8 'i + Rc  Cosa(L - z) d8 j 

{(Rc  Sins- PSin4))2  + (Rc  Cosa - PCost)2  

- (.c2  - p Rc  Cos( a - t)) da k 

+ ( L - z)2)3/2  

dB - 4n - 

(A.6) 



{ 

{(Sine - p1Sin4) 2  + (Coss - piCos4) 2  + (t - z1)1}
3/2  

Sins(.Q - Zi)i + Coss( -z1)j - (1 - piCos(s - 	k 
}ds 
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Introducing the following definitions, equation A.6 can be 

rewritten, giving equation A.7 

p 1 	R 
C 

- L 
R 
C  

and z1  = R 
c  

Therefore: 

oNI Sins (,Q - z 1) d6 i + Coss (e. - Z 1) ds j - (1 - p 1Cos (s- (I) ) ds k 
4TrR

C { (Sins - p.1Sin ) 2 + (Coss - p 1Cos4) 2 + 	- z1)2 1.     /2 

(A.7) 

To find the magnitude of the. induced magnetic field from part 

5 of conductor at point P we integrate over the angle $ from 

a° to iT 	 °  : 

7 
oNI 	° 

B$ 	
4xRC 

0  

dB 

(A. 8) 

B6, B7  and B8  induced field at point P by parts of conductor 

which is curved at z = ±L can be found by substitution of the following 

expressions into equation A.8 
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35 B6 B~ B8 

I -I -I I 

s
0
<s<7 - 0 S0

<S<7T - S
O 

7 + so<s<27f -13o 
TT + so<s<27 - SO 

.2 =.e ,2 	= -/ .e = .e .P 	= --e. 

Therefore the magnetic induction at point P(P,4,z) by the 

parts of the conductor at z1 = t,e will be 

B = B5 + B6 + B
7 
+ B8 (A.9)  

Now the magnetic induction from the straight parts of conductor 

may be calculated. It follows that: 

ds = dz' k and M(R Sins , R Coss, z') 
c o c o 

Because 

r = (RcSinso - FSin4) i + (RC 	s 	P Cos o - Cos()) j + (z' - z) k 

(A.10)  
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and using the Bllt-Savart law it follows that: 

µ NI 
dB = o  

47r 

(R Cosso  - pCos)i dz' - (Rc  Sine - PSiniti)j dz' 

{(RC  Sine - PSin02  + RC  Cosso  - PCos02  + (z1 - z)2}3/2  

(A.11) 

The magnetic induction by part 1 of the conductor at point P 

is the integral of above equation from -L to +L. 

L 
µ 0NI 

4r 

-L 

(R Cosso  - pCosc)i - (Rc  Sine - pSin0j 
{ 	  

  

}dz' 

 

(z ' - z) 2 }3/2  { (Rc  Sinso  - pSin0 2  + (Rc  Cosso  - PC04) 2  + 

 

(A. 12) 

substituting for z'1  = z'/R and the other dimensions defined as 

before it follows that 

B1 

+t 
µ
o
NI )- 

_  
41rR  

C 

(Cosso  - p1Cos4) i - (Sinso  - 

{ { (Sinso  - P1SinO 2  + (Cosso  

P1  Sini)) 

- P1Cos420)2  
3/2 

} dz' 
+ (z1  - z1)2 1

3/2  

(A.13) 
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The result of the integration is 

B 
— µo I (B1  i - Al  j) { 	E1 	 + 

-1 	4711c  (Al2  + B12 ) 	(Al 2  + B12 	+ E12  ) "f 

E2  

Al2  + B12  + E22) 1/2 } (A .14) 

where 
E 

E2 
 

= 

= 

( 	+ z 

(, 
p, 

 

	- z 1 

Al  = Sins
o 
 - pl  Sing 

A2  = Sine 	+ p1  Sing 

B1  = 
Cosa° - p1 Cos4 

B2  = Cosso  + 
p1 Cosc 

B2, B3  and B can be calculated from the following alternatives 

in equation A.14, 

B1 B2 -3 B4 

I -I -I I 

S 	= s
o  0 	0 0 

= Tr — s 
0 

S 	= 	Tr 	-I- S 
 0 0 

S 	= 
0 

27 — Q 
0 

The total magnetic induction at point P(p,4,z) by the saddle coil 

is the sum of the fields induced by the individual parts of the 

conductor, i.e. 
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8 
B = E B. 

i=1 rl 
(A.15) 

The calculations were made for coil diameter 1.067m and pipe 

diameter .356m and coil half length .356m. The electrical current 

in winding was 110 amps and number of windings per coil element was 

26. The results are plotted in figure A.3 through A.G. 

Figure A.3 shows the magnetic field distribution along z-axis 

at the centre of the saddle coil for three coil angles. The magnetic 

field distribution along z-axis at 4) = 7/2 and R = 2.7a is shown in 

figure A.4. The values of magnetic field at this surface were 

used as boundary value for finite difference calculations, and it 

was assumed that it is not affected by the flow of fluid. Figure 

A.5 shows the magnetic field distribution at z = 0, along y-axis 

and figure A.6 shows the distribution along x-axis. 
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APPENDIX B 

CALCULATION OF MAGNETIC FIELD  

DISTRIBUTION OF SADDLE-TYPE COILS 

These coils are illustrated in figure B.1 and the calculations 

of field distribution were made for a coil with finite length and 

the windings replaced by continuous current sheets. The top and 

bottom part of each is divided into four elements to make the 

calculations easier (see figure B.2). 

N is the total number of coil turns and are placed in the 

A-direction as shown in figure B.3. Therefore s
c 
 is: 

SC 	R 
c  

where R 
c is the radius of coil and d w is the diameter of the cable. The 

model is considered as a conductor with thickness of n1dw  in the 

r-direction and current density of J in the z-direction which can be 

calculated as 

IN = J d
14-

3
C 
RC  n  1  (B.2)  

or 

J - 
I 

d2  
w. 

(B.3)  

If L is the half length of the coil winding in the z-direction 

for the winding placed at angle so  and Lo  is the half length of the coil 

winding in z-direction for the winding placed at angle so + 
sc 

then: 

dw. N1  
(B.1) 
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L = L 

 

(B.4) 
ac Rc nl L

o 	n2 

Biot-Savart's law for a magnetic field induced by element dT 

with current density of J at point P(p,4,z) is: 

dB - 
4ir 

dT 	 (B.5) 

where 

dT = (Rc ni dw) ds dz' 	 (B.6) 

The co-ordinate of the volume element (dT) is 

M(Rc,s,z') 

Therefore: 

r = PM = (Rc Sins - p Sino) i + (Rc Coss - p Cos(121) ) + (z' - z) k 

(B.7) 

and 

rl = 
~rH 

(B. 8) 

where 

= { (Rc Sins - p Sin4)2 + (Rc Coss - p Cos(02 + (z' - z)2)1/2 

(B.9) 
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It therefore follows that: 

-µ J k 
dB - 	°47 	x 

{(Rc  Sins - p Sini)i + (Ro  Cos - p CosOj + (z' - z)k}Rc  n d _ :mar  

(CR Sin6 - p Sino) 2 + (Ro  Cos6 - p Cosq:) 2 + (z' - z) 2 }3/2 

(B.10)  

or 

dB - 

 

 

4ir 

{ CRo  Coss - p Coscf) i - (R Sins - p Sin ) j Rc .dw  n1 	ā ' z 

{(Ro  Sins - p Sin4)2  + (Ro  Coss - p Cos4)2  + (z' - z)2}3/2  

(B.11)  

Substituting the non-dimensional parameters in equation B.11 

leads to: 

µo  J dw  n1  
dB = 	 

{ (Cos6 - p 1Cos4) i + (Sins - p 1Sin4)) j } d6 dzi 

((Sine - p1Sinc02  + (Cos6 - p1Cos()2  + (z1' - z1)}
3/2  

(B.12)  

47 Rc 

Using the value of J from equation (B.3) gives: 



g
o  dB = 4
0 a R 

c c 

{(fosa - p1Cos4)i - (Sine - piSin0)j}da dzi 

{(Sine - piSin4)2 + (Cosa - piCos0)2 + (z1' - zi)2 }3/2 

(B.13)  

To find the induced magnetic field by element (1) of the top 

winding equation (B.13) is integrated giving, 

B1 

	µo NI 	J o + c 	/
t
z 

47 	a~ Rc 

o 	 z 

{(Cosa - p 1CosO) i - (Sine - p iSinitI) j } caa dzi 

{(Sine - p 
1Sin4) 2 + (Cose - p iCos0) 2 + (z1' - z1)2)3 

(B.14)  

where tz is the half length of the cable which is placed at an angle 

of a and can be obtained from the following relation: 

.z 	= n
i 

a + t + n
i 

a 	 (B.15) z 	n2 	n2 0 

After integrating the following expression is obtained: 

B1 
µ NI so + ac 
0  

47 ac RC 	
Bo 

{(Cosa - piCosO) i - (Sine - piSin4) j } 

{(Sine - p iSin4) 2 + (Cosa - p iCos4) 2 } 
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2 
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{ 
z

- z
1 

((Sin/3- P1Sin)2 + (Cos/7- P1Cos11:) 2 + ( 
z 

- zi)2 }-2 

ez +z1 
	1/2 }d8 	(B.16) 

{(Sins - p iSin4) 2 + (Cosa - p1Cosi0 2 + (tz + z1 ) 2 } 

B2, B3 and B4 can be found by substitution of the following 

expression into equation B.16 in turn. 

B1 BZ B3 B4 

I -I -I I 

£z = -nl a + !. + , 	= 	+ ,e - 
2

n 

n1 
(27 - ao ) 

2 

2 

n 

nl ao 
2 

,P..z = n1 a + .e. = 
2 

nl 	(Tr - ao) 
2 

t 	- -ni a + ,Q + 
2 

ni 	(7+ ao) 
2 

a0<13<80  + S   c 

L 

Tr-s -6 <g<Tr-S 
o c 	o 

7r+s <S<7r+S +S 
0 	o 	c 

2~r+S -S <B<27-s 
o c o 

Now the induced magnetic field by the parts of the coil winding 

which they are in the 9-direction around the pipe is calculated (see 

figure B.4). 

The current density may be expresses: in the form of: 

J = J Cosa i + J Sina j 	 (6.17) 
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Using the Biot-Savart's law we obtain: 

dB - 
-µo 

41r 

{(J Coss i - J Sine j) x { (Ro Sins - pSin4) i + ..(RCoss PCosi) j+(z'-z)k}d 

{ (Ro Sine -f Sino) 2 + (Ro Cos - pCos4) 2 + (z' - z) 2 }3/2 

(B.18) 

where dT = Re dir n2 dB dz' 

Therefore: 

µo J n2 dw Ro 
dB 

= 

{Sine(z' - z)i + Coss(z' - z)j 	(Rc - pCos(e - (1)))k}de dz' 

{(RCSine - pSin~)2 + (RCCoss - pCos~)2 + (z' - z)2}3%2 

(B. 19) 

Substituting for non-dimensional parameters and value of J from 

equation B.2 gives 

dB 
µo IN n2 

41r so Ro nl 

{Sine(z1' - z1 )i + Cose(zl' - z1 )j - (1 - p1Cos(s - 4))k} de dz1 

{Sins- p1Sin0)2 + (Coss - p1Co4)2 + (zl - Z1 )2 } }
3/2 

(B.20) 
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B5  the induced magnetic field is calculated by integrating the 

above equation. 

o IN n2  

B5 	47r a
c  R

c  n1  

where 

and 

{Sins(zi - zi)i + Coss(zi - zi)j - (1 - p1Cos(13 - 4))k} aS dzi 

{(Sins - p1Sin4)2  +(Coss - p1Co4)2  + (zl - z1)2 }3/2 

(1)1  and (1).2 
 are the half angles of coil winding at zi. 

42 	- (1)1 

(1)1 = -
n? 	 2  z' +so +

ǹ £ 
	 (B.23) 

1 	1 

(B.21)  

(B.22)  

and 

-2 	= t- n 11 S 
o n2 c  

(B.24) 

Be, B7  and Be  can be calculated by the following alternatives 
in equation B.21. 



B5 B6 B7 B8 

I -I -I I 

.eo<z' <,e -.e.<z' <- ,e .eo < . ' <.e 
. 

-,e<z' <- ō1 

91 <S<92 43<S<  4 `15<S46 (1)7<(34 8  

12 	= 	Tr-41 44 	= 	Tr- 4)3 (I)6 	= 	31r-4)5 48 	= 	Irr - 4)7  

n 
T 	_ - 1  z' +S 
1 	nl 	1 	o 

n 
+ 	1 .e 
nl  

n 
9 	= 	1 'z' 	+ s 3 	nl 	1 	o 

n  
+?,e 

n1  

n 
= ?  Z' + Tr

+ a 5 	n1 	1 

n 
+ ?  o 	n1  

£ 
n 

I 	_ ' z' 
+ 7 	n1 	1 	o 

n 
+ ?e+ Tr nl 
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The computed field distribution of a short saddle coil in the 

x, y and z direction are shown in figures B.5, B.6 and B.7. 

The geometry of the coil used here is identical with the one 

which was used in Appendix A. The coil angle was 100(5 
0
). 

Figure B.5 shows the magnetic field distribution at the centre 

line of coil at = 1.r/2 and three different types of saddle coil 

windings. The results show that the field strength is higher for the 

design in which the winding is presented as a single winding, similar 

to the design explained in Appendix A. Figure B.6 and B.7 shows the 

field distribution along y and x axis respectively. 
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APPENDIX C 

CALCULATION OF MAGNETIC FIELD DISTRIBUTION FOR 

DIAMOND-TYPE COILS 

The magnetic field is generated by two diamond shaped air,cored 

coils supplied with a constant current and installed around the fluid 

containing duct. This is shown in figure C.1. 

Vector ds in Biot-Savart's equation (A.1) can have the 

following form 

ds = a i+ b j + c k (C.1) 

From equation A.2, A.4 and C.1 we obtain the expression for 

induced magnetic field as: 

-A NI 
dB - 

4Tr R  
c 

{ { (Rc  Sins - psin4) 2 + (RC  Coss - pCosC)) 2  + (z' - z)2 1
3/2 
	} 

(C. 2) 

Substituting for the non-dimensional parameters as before, and 

a' = a/Rc, b' = b/Rc, c' = c/Rc  and simplify the above equation 

leads to the equation C.3: 

(a i + b j + c k) x { (RcSins - pSinO i + (Rc  Coss - pCos0 j +(x1  - z)16 



and 

z 

-µ NI 
dB - 

47 R  
C 

{b' (zi - z1) - c' (COSB - p 1CosO} i 4 {c' (sins  - P 1SincD) - a' (zi - z1)) j 

3/2 	 

+ {a' (Cosa - p 1Cos4) - b' (Sins - p1Sin4) } k 

(C. 3) 

The aim is to find the magnetic field contribution of every 

individual part of the coil at point P(p,0,z). Therefore each part 

of the coil is labelled with a number. To calculate the total magnetic 

field at point P due to for example wire 1 it is necessary to know the 

form of element ds, relationship between z' and a and the limits of 

integral, because 

B = 	dB 

s1 

(C.4) 

Figure C.2 shows a plane view of diamond coil and it follows 

that: 

L2  = xc  (7r/2 - so) 

L1  (L2  - Lz) 

L2  
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{(Sins - p1Sin4)2  + (CosB - p1Cos0)2+ (zi - z1)2 1 

(C.5)  

(C.6)  
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From figure C.2 we have: 

Lz  = Rc  (ir/2 - a) 

therefore 

L1  Rc  (s - 1r/2) + L1L2  
z' 

L2  

or in non-dimensional form 

f
1(8 - 7/2) + 1f2 

 
zl = 

2 

where f1  = R1  and f.2 	
L2 

 c 	 c  

Figure C.3 shows the element ds in the different wires. In the 

wire where ds appears in the opposite direction to the current, -ds is 

used. 

It follows therefore for: 

Wire 1 

ds = Rc  ds Coss i - Rc  ds Sins j + dz' k 

1 (s — 1r/2) + 1t2  zi 	
f2  

1r/2 

Bi  = Jr 	dB 

s 0  

(C.7)  

(C.8)  

(C.9)  
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Wire 2  

ds = Rc d$ Cos$ i - P. d$ Sin$ j - dz' k 

1 (r/2 - $) + .Q12 

ir- 
0 

2 = 	dB 
Tr/2 

Wire 3 

-ds = -(Rc d$ Cos$ i - Rc d$ Sin$ j + dz' k) 

z1 	
£2 

-$ 
0 

B = 	 dB 
Tr/2 

and for 

Wire 4 

-ds = - (R c d$ Cos$ i - R c d$ Sin$ j - dz' k) 

el ($ - 7r/2) + i 1-2 

42 

z1 	
£2 

~1 (7/2 	$) + t1"2 

z' 



Z1 	
£2 

(s - 2~) + 1
t
2 
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Figure C.4 shows the configuration of element ds for the 

bottom coil. 

Similarly it follows for 

Wire 5  

-ds = -(R ds Coss i - Rc ds Sins j - dz' k) 

£1 ( 21  - s) 
+12 z1 	

£2 

2~r - 
0 

B5 - J 
	

dB 
37 
2 

Wire 6  

-ds = (Rc ds Coss i - Rc d.s Sins j + dz' k) 
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Wire 7 

ds = (Rc ds Coss i - Rc ds Sins j - dz' k) 

t1 (a - 22) + 
t 1 t2 z1 	

£2 

37r 

B = 2 	dB 

,r +s 
0 

and 

Wire 8  

ds = 	(Rc ds Coss i - Rc ds Sine j + dz' k) 

z' 1 =  ~1 	
( 
2 	

- s ) + 	,~1.~2 

£2 

27r - 

B8 = 

0 

dB 

37r 
2 

A computer program has been written to find the integral of equation 

C.3, numerically for different wires. The program is being tested for 

special cases such as straight wires (when 
-1 

is very large) and 

circular coils (when A is very small) . 

The diamond coil used in the following has the _ similar geometry 

with saddle coil given in Appendix A. 

Figures C.5 shows the magnetic field distribution along z-axis 
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at the centre of diamond coil for three coil angles. The field distri-

bution along z-axis and R = 2.7a is shown in figure C.6. The distri-

bution at this surface is used as boundary values in finite difference 

solution. The magnetic field distribution at z = 0, along y-axis 

of diamond coil for three coil angles are shown in figure C.7 and distri-

bution along x-axis is shown in figure C.8. 
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APPENDIX D 

LAGRANGIAN INTERPOLATION 

In the general case the polynomial P(x) of degree n 

passing through the tabular points is given by 

n 

P (x) = E 	Lk  (x) fk  

k=0 

where 

	

L
k 
	= if 	(x - x )/]I 	(x 	x ) 

	

k 	
rk 	r  r k k 	r  

P(x) is known as the Larangian interpolation polynomial of 

degree n. Since 

ō , ik 

Lk  (xi) = 

1 , i=k 

it follows that P(xk) = fk, that is, the polynomial P(x) has 

the same values as the function f(x) at the tabular points. 

(D.1)  

(D.2)  

(D.3)  
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APPENDIX E 

02 f 

The expression for Af = V2f, where f is a vector field is 

given by N. Kemmer (1977) in cyl indrical polars: 

a 2 f 	a2 f 	Df 
Qf = (a 	(1 8 	

(rf ))+ 
1 	r 

+ 	
r 	2 	e)  r ar 	r Dr r 	r2 ae2 	 az2 	r2 Be 

a2f 	a 2 f Df 

+( ar (r 	ar (r fi) ) + r2 ae28 + az2
.E3 + r2 aer) e 

1 a 	8fz 	1 	a2 z 
	

22 
z 

+~r ar 
(r ar ) + r2 ae2 	+ az2 	z (E. 1) 



152 

Reactor Country MWt MWe pool 
or 
loop 

Operation 

Experimental 

BR-5 Russia 5 ... loop 1959 

DFR Great Britain 72 15 loop 1959 

EBR-II United States 62.5 20 pool 1963 

FERMI United States 200 67 loop 1963 

RAPSODIE France 40 ... loop 1967 

BR-60CBRO). Russia 60 ... loop 1970 

JOY() Japan 100 ... loop 1974 

FFTF United States 400 ... loop 1975 

Power 
Producing 

BN--350 Russia 1000 350 loop 1973 

PFR Great Britain 600 250 pool 1973 

Phenix France 600 250 pool 1973 

BN-600 Russia 1500 600 pool 1976 

SNR-300 Debenelux 730 300 loop 1978 

MONJU Japan 714 300 loop 1978 

Table 1.1 List of experimental and power producing Fast Breeder Reactors 
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Electrode location midplane one diameter downstream 

Velocity profile uniform parabolic uniform parabolic 

Rm  = 1 .955 .934 .757 .729 

3 .677 .695 .802 .765 

5 .463 .509 .676 .661 

Table 4.1 Sensitivity of saddle coil flowmeter for two positions 
of electrode location 

Electrode location midplane one diameter downstream 

Velocity profile uniform 

R 

parabolic uniform parabolic 

Rm  = 1 .903 .891 .599 .61 

3 .602 .63 .685 .662 

5 .38 .447 .575 .572 

Table 4.2 Sensitivity of diamond coil flowmeter for  two positions 
of electrode location 
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Saddle Coil 

Sensitivity, S 

Rm  Vm  m/sec Uniform velocity Parabolic velocity 

1. .985 .825 .817 

3. 2.954 .825 .816 

5. 4.924 .815 .807 

.1 .0985 .826 - 

5. 2.462 .815 .807 

Table 6.1 Sensitivity of integrated voltage flowmeter 
for `different flowrate dnd velocity profile, 
wall conductivity number (d = .044) 'and contact' 

resistance number (C 
r 

= 0) 

Saddle Coil  

Sensitivity, S 

d = 0 
C= 0 r 

d = 	.022 
Cr = 0 

d = 	.044 
C
r = .0 

d = 	.044 
C 	= .5 
r 

n
u
m
e
r i
ca
l
 

s
ol
u t
i
on
  

(3
-D
)
  

.853 .834 .815 .796 

f
r
om
  
e
q
u
a
t
i
on
  

2
.
2
1  

(2
-D
)
  

.853 .835 .817 .8 

Table 6.2 Effect of wall conductivity number d, and contact 
resistance number C , on the sensitivity. 

r 
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Diamond Coil  

Sensitivity, S 

R 
m 

V 	m/sec m 
Uniform Velocity Parabolic Velocity 

1. .985 .662 .668 

3. 2.954 .657 .664 

5. 4.924 .646 .653 

Table 6.3 Sensitivity of integrated voltage flowmeter 
for different flow rate and velocity profile 
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Counts in 
100 mS 

Amplifier 
output mV 

Speed 
m/sec 

Magnetic 
Reynolds 
Number 

Flowmeter 
Output mV 

0 2.'007 0 0 0 
85 5.2003 .1638 .1523 .0819 
95 5.6003 .181n .1683 .0925 
94 5.000J .1731 .1665 .0766 
94 5.3000  .1791 .1665 .0846 
92 4.500') .1753 .1629 .0634 
95 5.0000 .1810 .1683 .0766 
95 5.0000 .1810 .1683 .0766 
95 4.6000 .1810 .1683 .0661 
97 4.(4303  .1848 .1718 .0661 
201 7.700J .3829 .3560 .1374 
231 7.6000 .382.9 .3560 .1453 
_200 1.E000 .3810 .3542 .1506 
231 7.'000 .3829 .35F.J .1401 
201 7.6000 .3829 .3550 .15n 
201 7.9000 .3829 .3060 .1533 
201 7.6000 .3829 .3560 .1453 
201 7.0300 .3829 .3560 .150f3 
201 7.6000 .3829 .3560 .1493 
347 _0.4000 .6511 .6146 .2193 
347 10.6030 .6611 .6146 .2246  
346 11.5000 .6592 .6128 .2484  
346 11.1000 .6592 .6128 .2378 
346 11.4000 .6592 .6128 .2458 
346 10.9000 .6592 .6128 .2326 
346 11.1000 .6592 .6128 .2378 
346 11.4000 .6592 .6128 .2458 
346 10.4000 .6592 .6123 .2193 
443 14.4000 .8440 .7846 .3251 
486 14.6000 .9259 .6608 .3303 
456 13.0000 .8878 .6253 .2881 

13.6000 .8535 .7935 .3039 448 
444 13.6000 .8459 .7864 .3039 
466 13.2000 .8878 .8253 .2933 
510 1 t.7CD .9716 .9033 .3330 
496 13.5000 .9449 .8785 .3013 
504 14.6000 .9602 .8926 .3303 
612 15.6000 1.1659 1.0839 .3568 
604 15.9000 1.1507 1.0698 .3647 
620 15.8000 1.1812 1.0981 .3621 
616 16.5000 1.1736 1.0913 .3805 
624 17.0000 1.1888 1.1052 .3938 
636 15.8000 1.2117 1.1264 .3621 
558 16.7000 1.0821 1.0060 .3858 
608 15.6000 1.1583 1.0768 .3568 
568 17.1000 1.0821 1.0060 .3964 
776 18.9000 1.4784 1.3744 .4440 
764 19.0000 1.4555 1.3531 .4466 
764 19.3000 1.4555 1.3531 .4545 
716 17.8000 1.3641 1.2681 .4149 
736 18.5000 1.4022 1.3035 .4334 
724 18.4000 1.3793 1.2823 .4308 
800 18.9000 1.5241 1.4169 .4440 
784  19.7000 1.4936 1.3886 .4651 
755 18.7000 1.4403 1.3390 .4387 
864 22.1000 1.6460 1.5302 .5285 
920 23.5000 1.7527 1.6294 .5655 
868 24.0000 1.6536 1.5373 .5788 
904 25.9000 1.7222 1.6011 .6290 
952 25.0000 1.8137 1.6861 .6052 
928 27.2000 1.7680 1.6436 .6633 
876 22.8000 1.6689 1.5515 .5470 
936 26.4000 1.7832 1.6578 .6422 
1116 30.5000 2.1261 1.9766 .7505 
1140 31.3003 2.1718 2.0191 .7717 
1:77  7.272:3 .75 	_ 

Table 7.1 Experimental results for electrodes positioned at 

z = - 10.16cm 
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Counts in 
100 mS 

Amplifier 
output mV 

Speed 
m/sec 

Magnetic 
Reynolds 
Number 

Flowmeter 
output mV 

0 2.1000 0 0 0 
66 5.2000 .1630 .1523 .0819 
81 5.6000 .1543 .1435 .0925 
78 5.2000 .14e6 .1381 .0819 
77 5.'000 .1467 .1364 .0872 
78 5.5000 .1486 .1381 .0899 
79 5.5000 .1505 .1399 .0899 
80 5.6000 .1524 .1417 .1004 
80 5.8000 .1524 .1417 .0978 
80 5.6000 .152-t .1417 .0925 
208 12.2000 .3963 .3684 .2669 
210 12.3000 .4001 .37Yd .2696 
211 12.4000 .4020 .3737 .2722 
210 12.3)00 .4001 .3719 .2696 
210 13.1000 .4001 .3719 .290; 
211 12.4000 .4020 .3737 .2722 
211 12.6000 .4020 .3737 .2775 
210 :2.4000 .4001 .3719 .2722 
212 12.6000 .4039 .3755 .2775 
356 19.2000 .6782 .6305 .4519 
362 19.1000 .6397 .6411 .4493 
361 18.2000 .6878 .6394 .4255 
362 18.7000 .6097 .6411 .4387 
364 18.6000 .6035 .6447 .4360 
326 17.8000 .6401 .5951 .4149 
352 I8.7000 .6706 .6231 .4387 
346 18.4000 .6592 .6128 .4308 
366 20.0000 .6973 .6482 .4730 
506 23.2000 .9640 .8962 .5576 
472 22.0000 .8992 .8360 .5259 
512 23.6000 .9754 .9068 .5682 
502 24.7000 .9564 .8891 .5973 
499 2.' . 9000 .9498 .8820 .5761 
506 23.1000 .9E40 .8962 .5550 
502 24.6000 .9564 .8891 .5946 
504 23.9000 .9002 .8926 .5761 
500 23.9000 .9526 .8856 .5761 
620 28.6000 1.1812 1.0981 .7003 
624 29.2000 1.1088 1.1052 .7162 
620 29.5000 1.1812 1.0981 .7241 
624 28.1000 1.1888 1.1052 .6871 
620 29.0000 1.1812 1.0981 .7109 
616 27.9000 1.1736 1.0910 .6818 
624 28.8000 1.1808 1.1052 .7056 
608 27.9000 1.1583 1.0768 .6818 
624 28.5000 1.1688 1.1052 .6977 
800 37.8000 1.5241 1.4169 .9434 
808 36.9000 1.5393 1.4311 .9197 
788 37.1000 1.5012 1.3956 .9249 
828 35.0000 1.5774 1.4665 .8695 
764 32.0000 1.4555 1.3531 .7902 
732 34.5000 1.3946 1.2965 .8562 
784 34.3000 1.4936 1.3806 .8510 
732 33.5000 1.3946 1.2965 .8298 
952 44.7000 1.8137 1.6061 1.1258 
976 46.4000 1.8594 1.7286 1.1707 
936 45.7000 1.7832 1.6578 1.1522 
992 47.6000 1.8899 _1.7569 1.2024 
932 45.8000 1.7756 1.6507 1.1519 
936 46.6000 1.7832 1.6578 1.1760 

Table 7.2 Experimental results for electrodes positioned at 
z = -6.45cm. 
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Counts in 	Amplifier 
100 mS 	output mV 

Speed 
m/sec 

Magnetic 
Reynolds 
Nnmber 

Flowmeter 
output mV 

0 2.1000 0 0 0 
84 8.1003 .1E00 .1488 .1586 
85 7.5003 .1538 .1523 .1533 
89 8.3000 .1696 .1576 .1638 
89 8.4003 .1696 .1576 .1665 
90 8.5000 .1715 .1594 .1691 
91 8.4000 .1734 .1612 .1665 
91 8.8000 .1734 .1612 .1771 
92 9.2000 .1753 .1629 .1876 
93 9.3000 .1772 .1647 .1903 
202 18.6003 .3648 .3578 .4360 
201 18.1000 .382i .3560 .4228 
201 18.7000 .3829 .3560 .4387 
202 18.8000 .3648 .3578 .4360 
201 18.1000 .3829 .3560 .4228 
201 18.4000 .3829 .3560 .4308 
201 18.4000 .3829 .3560 .4308 
201 18.6000 .3829 .3560 .4360 
201 18.3000 .3829 .3560 .4281 
325 29.0009 .6192 .5756 .7109 
328 28.3000 .6249 .5809 .6924 
3ā7 23.1000 .6230 .5792 .6871 
326 28.4000 .6211 .5774 .6950 
327 27.6000 .6230 .5792 .6739 
327 28.5000 .6230 .5792 .6977 
327 28.0000 .6230 .5792 .6845 
327 28.6000 .6230 .5792 .7003 
324 28.3000 .6173 .5738 .6924 
508 44.9000 .9678 .8997 1.1179 
496 42.2000 .9449 .8785 1.0597 
490 42.8000 .9335 .8678 1.0703 
456 39.8000 .8687 .8075 .9963 
490 43.3000 .9335 .8678 1.0888 
502 92.6000 .9564 .8891 1.0703 
508 93.2000 .9678 .8997 1.0862 
512 42.0000 .9754 .9068 1.0755 
524 43.6000 .9983 .9281 1.0967 
616 51.4000 1.1736 1.0910 1.3029 
616 52.4000 1.1736 1.0910 1.3293 
628 50.5000 1.1964 1.1123 1.2791 
596 48.8000 1.1355 1.0556 1.2289 
608 52.6000 1.1583 1.0768 1.3346 
624 53.4000 1.1868 1.1052 1.3557 
620 51.2000 1.1812 1.0981 1.2976 
620 51.5000 1.1812 1.0981 1.3055 
620 51.2000 1.1812 1.0981 1.2976 
824 64.5000 1.5698 1.4594 1.6490 
808 63.5000 1.5393 1.4311 1.6226 
636 85.6000 1.5927 1.9807 1.5781 
800 64.9000 1.5291 1.4169 1.6464 
740 58.4000 1.4098 1.3106 1.4878 
824 65.3000 1.5698 1.4594 1.6702 
000 63.8000 1.5241 1.4169 1.6305 
788 64.2000 1.5012 1.3956 1.6411 
800 61.5000 1.5241 1.4169 1.5698 
992 79.7000 1.8899 1.7569 2.0507 
1004 80.3000 1.9127 1.7782 2.0666 
1012 80.4000 1.9280 1.7924 2.0692 

Table 7.3 Experimental results for electrodes positioned at 
z = -5.08cm. 
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Counts 
100 mS 

in 	Amplifier 
output mV 

Speed 
m/sec 

Magnetic 
Reynolds 
Number 

Flowmeter 
Output mV 

0 2.1000 0 0 0 
86 10.6000 .1638 .1523 .2246 
85 10.5000 .1538 .1523 .2220 
03 10.7000 .1677 .1559 .2273 
50 11.0000 .1715 .1594 .2352 
93 11.3000 .1772 .1547 .2431 
83 10.6000 .1581 .1470 .2246 
89 10.7000 .1696 .1576 .2273 
90 11.3000 .1715 .1594 .2431 
90 11.2000 .1715 .1594 .2405 
206 23.9000 .3925 .3649 .5761 
205 23.5000 .3906 .3631 .5655 
205 23.5000 .3906 .3631 .5655 
205 23.2000 .3906 .3631 .5576 
205 23.5000 .3906 .3631 .5655 
205 23.7000 .3906 .3631 .5708 
205 23.6000 .3906 .3631 .5682 
204 23.1000 .3886 .3613 .5550 
205 23.4000 .3906 .3631 .5629 
337 36.5000 .6420 .5969 .9091 
337 36.4000 .6420 .5969 .9054 
339 36.6000 .6458 .6004 .9117 
332 36.2000 .6325 .5880 .9012 
342 36.7000 .6516 .6057 .9144 
341 36.7000 .6496 .6040 .9144 
338 36.9000 .6439 .5986 .9197 
339 36.5000 .6458 .6004 .9091 
338 36.6000 .6439 .5986 .9117 
468 46.8000 .8916 .8289 1.1813 
464 47.3000 .8840 .8218 1.1945 
494 48.9000 .9411 .8749 1.2368 
450 46.2000 .8573 .7970 1.1654 
492 50.5000 .9373 .8714 1.2791 
480 47.7000 .9145 .8501 1.2051 
448 46.2000 .8535 .7935 1.1654 
490 50.6000 .9335 .8678 1.2817 
436 46.3000 .8306 .7722 1.1681 
608 65.6000 1.1583 1.0768 1.6781 
600 61.8000 1.1431 1.0627 1.5777 
;00 63.8000 1.1431 1.0627 1.6305 
600 62.6000 1.1431 1.0627 1.5988 
600 62.6000 1.1431 1.0627 1.5988 
604 61.3000 1.1507 1.0698 1.5645 
604 60.1000 1.1507 1.0698 1.5328 
588 60.7000 1.1202 1.0414 1.5486 
604 61.2000 1.1507 1.0698 1.5618 
776 74.2000 1.4784 1.3744 1.9054 
792 77.5000 1.5089 1.4027 1.9926 
800 79.4000 1.5241 1.4169 2.0428 
716 73.4000 1.3641 1.2681 1.8842 
784 78.5000 1.4936 1.3806 2.0190 
788 79.1000 1.5012 1.3956 2.0349 
808 77.3000 1.5393 1.4311 1.9873 
800 77.6000 1.5241 1.4169 1.9952 
800 77.0000 1.5241 1.4159 1.9794 
944 101.3000 1.7984 1.6719 2.6216 
996 102.9000 1.0975 1.7640 2.6638 
988 102.7000 1.8823 1.7499 2.6586 
912 101.0000 1.7375 1.6153 2.6136 
1008 104.4000 1.9204 -1.7853 2.7035 
916 100.3000 1.7451 1.6223 2.5951 

Table 7.4 Experimental results for electrodes positioned at 
z = -2.45cm. 



160 

Counts in 
100 mS 

ATplifier 
output mV 

Speed 
m/sec 

Magnetic 
Reynolds 
Number 

Flowmeter 
output mV 

0 2.1000 0 0 0 
97 13.2000 .1657 .1511 .2933 
(13 12.3000 .1581 . 14 70 .2696 
05 11.6000  . 1638 .1522 .2511 
E19 13.0000 .1606 .1570  . 2861 
91 2.9C'00 .1734 .1612 .2054 
91 12.2000 .1734 .1612 .2669 
93 11.7600 .1772 .1647 .2537 
92 11.9000 .1753 .1629 .2590 
94 1'.7000 .1791 .1665 .2001 
206 20.0000 .3925 .3619 .6316 
205 25.2000 .3025 .3649 .6105 
206 25.0000 .3925 .3549 .6263 
205 20.6000 .3325 .3649 .6210 
207 25.2000 .3944 .3666 .6105 
205 25.3000 .3025 .3649 .6131 
:04 24.9000 .3806 .3613 .6025 
205 25.5000 .3005 .3631 .6104 
205 25.5290 .3306 .3631 .6210 
327 37.0000 .6230 .5792 .5461 
320 30.0000 .6249 .5009 .9497 
327 37.6000 .6230 .5702 .9434 
328 20.3000 .6249 .5809 .9567 
329 37.7000 .6249 .5009 .9458 
327 39.0000 .6230 .5792 .9752 
327 20.5000 .6230 .5792 .9646 
324 30.0000 .6173 .5738 .9699 
332 20.0000 .6325 .5080 .9639 
435 55.9000 .9259 .8608 I.4218 
475 54.5000 .9068 .8431 1.2048 
4132 55.9000 .9373 .8714 1.4218 
404.  56.5000 .9221 .8572 1.4375 
472 53.5000 .8992 .8360 1.3584 
484 53.7000 .9221 .8572 1.3636 
472 55.0000 .8092 .0350 1.3990 
490 57.5000 .0335 .8678 1.4641 
460 55.7000 .8916 .8289 1.4155 
524 72.7000 1.1808 1.1052 1.0556 
622 70.3000 1.1850 1.1016 1.5023 
630 73.200e 1.2002 1.1158 1.8790 
626 71.0000 1.1926 1.1087 1.8420 
636 75.0000 1.2117 1.1264 1.9265 
612 70 .300 1.1659 1.0039 1.9023 
620 71.7000 1.1012 1.0391 1.8393 
635 73.6000 1.2117 1.1254 1.0005 
610 69.4000 1.1621. 1.0E+01 1.7705 
790 09.0000 1.5050 1.3902 2.2965 
776 00.0900 1.4704 1,3741 2.1591 
712 77.5000 1.3564 1.2610 1.9926 
772 05.9000 1.4708 1.3573 2.2146 
700 05.6000 1.5012 1.3956 2.2067 
760 81.7000 1.4479 1.3460 2.1036 

.700 04.0000 1.4060 1.3815 2.1644 
772 36.4000 1.4700 1.3673 2.2270 
732 02.0000 1.3046 1.2055 2.1353 
960 100.3000 1.0289 1.7003 2.0330 
950 107.6000 1.0209 1.7003 2.7001 
955 111.5000 1.0213 1.6932 2.0938 
949 105.9000 1.0061 1.6790 2.7431 
952 105.9000 1.8137 1.6051 2.7656 
941 01.2000 1.7904 1.6719 2.5396 
916 90.9300 1.7451 1.6223 2.3457 
556 93.2000 1.6306 1.5161 2.4075 
0,.,:l T;'..0,100 1.9070  1.73 .7 2.4974 
161? 100.700C 1.9200 1.79;4  2.6057 
07.) (14.7000 1.0510 1.721$ 2.4471 
112 91.1000 1.7756 1.5507 2.3520 
'?40 0,..4000 1.8061 I .671)0 2.4656 
940 955.0300 1.7900 1.L,40 2.4551 
1144 124.0000 2.1795 ?.021•2 3.2215 
1'2:.4 107 .91(01) 2.0271 1.9045 2.7960 
11'"0 1?'•.4900 2.2023 2.0474 3.2505 
1104 1:5.1030 2.1033 1.9553 3.0127 
1:00 7 '1. 59C0 2.70T1' a.05.15 3.0695 
1 : 12 110.7000 2.1185 1.9695 3.0014 
1C..6 :15.9:,:10 2.0090 1.9411 3.0010 
11396 1)5.(131313 2.0090 3.0411  0.0040 
1200 174.90(1)) 2.2061 2.123 3.2452 
1294 12(1.1000 2.2930 2.1324 3.3290 
1940 102.4000 1.9013 1.0420 2.6506 
1104  113.7000 2.1033 1.9553 2.9493 

Table 7.5 Experimental results for electrodes positioned at 
z = 0. 
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Counts in 
100 mS 

Amplifier 
output my 

Speed 
m/sec 

Magnetic 
Reynolds 
Number 

Flowmeter 
output mV 

0 2.1000 0 0 0 
88 12.5(1)0 .677 .1559 .2748 
88 12.3000 .1677 .1559 .2696 
88 12.3010 .1677 .1559 .2699 
88 11.8000 .1677 .1559 .2563 
87 12.3000 .1657 .1541 .2696 
87 12.3000 .1657 .1541 .2696 
88 12.5000 .1677 .1559 .2748 
87 12.6000 .1657 .1541 .2775 
88 12.3000 .1577 .1559 .2696 
210 25.7000 .4001 .3719 .6237 
210 25.5000 .4001 .3719 .6184 
209 25.4000 .3982 .3/02 .6:58 
210 25.7000 .4001 .3719 .6237 
209 25.4000 .3982 .3702 .6158 
210 25.8000 .4001 .3719 .6263 
210 25.1000 .4001 .3719 .6078 
209 22.7000 .3982 .3702 .5444 
209 22.6000 .3992 .3702 .5418 
334 39.1000 .6363 .5916 .9778 
333 36.9000 .6344 .5898 .9197 
333 38.3000 .6344 .5898 .9567 
333 36.7000 .6344 .5898 .9144 
332 37.5000 .6325 .5880 .9355 
332 37.3000 .6325 .5880 .9302 
333 38.0000 .6344 .5898 .9487 
333 37.1000 .6344 .5898 .9249 
330 36.2000 .6287 .5845 .9012 
490 55.5000 .9335 .8678 1.4112 
494 55.1000 .9411 .8749 1.4006 
194 54.6000 .9411 .8749 1.3874 
494 54.2000 .9411 .8749 1.3768 
492 56.0000 .9373 .8714 1.4244 
436 53.0000 .9259 .8608 1.3663 
488 51.8000 .9297 .8643 1.3927 
426 55.5000 .9419 .8785 1.4112 
456 55.0000 .8687 .8076 1.3980 
612 69.5000 1.1650 1.0839 1.7812 
620 70.1000 1.1012 1.0981 1.8050 
618 70.5000 1.1774 1.0946 1.8076 
634 74.0000 1.2078 1.1229 1.9212 
604 67.2000 1.1507 1.0698 1.7204 
514 69.8000 1.1697 1.0875 1.7891 
610 70.6000 1.1621 1.0804 1.8103 
616 70.4000 1.1736 1.0910 1.8050 
602 68.1000 1.1469 1.0662 1.7442 
774 85.8000 1.4746 1.3708 2.2119 
780 87.2000 1.4860 1.3815 2.2489 
760 86.3000 1.4479 1.3460 2.2252 
788 85.0000 1.5012 1.3956 2.2119 
772 88.1000 1.4708 1.3673 2.2727 
788 87.0000 1.5012 1.3956 2.2437 
780 84.2000 1.4030 1.3815 2.1697 
772 85.6000 1.4703 1.3673 2.2067 
772 85.3000 1.4708 1.3673 2.1987 
944 112.9000 1.7904 1.6719 2.9281 
992 114.1000 1.8899 1.7569 2.9598 
976 115.7000 1.8594 1.7286 3.0021 
976 113.7000 1.8594 1.7236 2.9493 
972 113.0000 1.8518 1.7215 2.9308 
960 114.5000 1.8289 1.7003 2.9704 

Table 7.6 Experimental results for electrodes positioned at 
z = 2.54cm. 
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Counts in 
100 mS 

Amplifier 
output mV 

Speed 
m/sec 

Magnetic 
Reynolds 
Number 

Flowmeter 
output mV 

0 2.1000 0 0 0 
90 11.5000 .1715 .1594 .2484 
91 11.0000 .1734 .1612 .2352 
93 11.1000 .1772 .1647 .237E 
95 11.7000 .1810 .1683 .2537 
95 10.8000 .1810 .1683 .2299 
94 10.9000 .1791 .1665 .2326 
93 10.8000 .1772 .1647 .2299 
94 11.2000 .1791 .1665 .2405 
94 10.0000 .1791 .1665 .2326 
210 21.1000 .4001 .3719 .5100 
212 21.8000 .4039 .3755 .5206 
211 21.7000 .4020 .3737 .5180 
212 22.2000 .4039 .3755 .5312 
212 21.8000 .4039 .3755 .5206 
213 22.2000 .4058 .3772 .5312 
214 22.2000 .4077 .3790 .5312 
214 22.3000 .4077 .3790 .5338 
214 22.1000 .4077 .3790 .5285 
332 34.3000 .6325 .5080 .8510 
335 34.3000 .6382 .5933 .8510 
333 34.1000 .6344 .5098 .8457 
334 34.3000 .6363 .5916 .8510 
334 34.0000 .6363 .5916 .8642 
333 39.5000 .6344 .5898 .8562 
334 34.6000 .6363 .5916 .8509 
333 34.2000 .6344 .5898 .8483 
340 35.3000 .6477 .6022 .8774 
402 40.1000 .9103 .8537 1.2236 
496 47.2000 .9449 .8785 1.1919 
404 46.7000 .9221 .8572 1.1786 
484 47.1000 .9221 .8572 1.1971 
484 47.9000 .0221 .6572 1.2104 
406 49.3000 .9259 .8608 1.2474 
404 47.9000 .9221 .0572 1.2104 
486 47.2000 .9259 .0600 1.1919 
408 47.0000 .9297 .8643 1.2077 
600 60.9000 1.1583 1.0768 1.5539 
616 62.5000 1.1736 1.0910 1.5962 
636 63.2000 1.2117 1.1264 1.6147 
602 60.0000 1.1459 1.0662 1.5301 
592 60.5000 1.1278 1.0485 1.5433 
630 62.6000 1.2002 1.1158 1.6041 
592 59.6000 1.1278 1.0405 1.5196 
508 60.6000 1.1393 1.0591 1.5460 
622' 63.1000 1.1850 1.1016 1.6121 
776 75.0000 1.4784 1.3744 1.9265 
756 75.5000 1.4403 1.3390 1.9397 
776 76.6000 1.4784 1.3744 1.9688 
749 74.6000 1.4250 1.3248 1.9160 
716 71.7000 1.3641 1.2681 1.8393 
772 76.1000 1.4708 1.3673 1.9556 
780 77.2000 1.5012 1.3956 1.9847 
760 75.6000 1.4479 1.3460 1.9424 
756 74.4000 1.4403 1.3390 1.9107 
1000 98.5000 1.9051 1.7711 2.5476 
948 96.9000 1.8061 1.6790 2.5053 
952 98.3000 1.8137 1.6861 2.5423 
996 97.7000 1.8975 1.7640 2.5264 
976 98.1000 1.8594 1.7286 2.5370 

Table 7.7 Experimental results for electrodes positioned at 
z = 5.08cm 
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Counts in 	Amplifier 	Speed 
100 mS 	output mV 	m/sec 

Magnetic 
Reynolds 
Number 

Flowmeter 
output mV 

•0 2.1000 0 3 0 
84 7.0000 .1600 .1488 .1295 
89 7 5000 .1696 .1576 .1427 
90 7.1000 .1715 .1594 .1401 
90 7.2000 .1715 .1594 .1348 
92 7.4000 .1753 .1629 .1401 
93 7.2000 .1772 .1647 .1348 
94 7.7000 .1791 .1665 .1480 
95 7.5000 .1810 .1683 .1427 
95 7.4000 .1810 .1683 .1401 
213 14.6000 .4058 .3772 .3303 
213 14.5000 .4058 .3772 .3277 
214 14.4000 .4077 .3790 .3251 
214 14.2000 .4077 .3790 .3198 
215 14.2000 .4096 .3808 .3198 
214 14.3000 .4077 .3790 .3224 
216 14.7000 .4115 .3825 .3330 
215 15.0000 .4006 .3808 .34C9 
215 14.6000 .4096 .3808 .3303 
337 22.2000 .6420 .5969 .5312 
338 22.9000 .6439 .5986 .5497 
339 23.6000 .6458 .6004 .5682 
339 23.5000 .6458 .6004 .5655 
339 23.3000 .6458 .6004 .5603 
340 23.8000 .6477 .6022 .5735 
338 23.9000 .6439 .5986 .5761 
335 22.7000 .6382 .5933 .5444 
344 22.5000 .6554 .6093 .5391 
182 30.2000 .9183 .8537 .7426 
482 31.2000 .9163 .8537 .7690 
490 31.6000 .9335 .8678 .7796 
186 31.5000 .9259 .8600 .7770 
401 31.3000 .9104 .8519 .7717 
450 29.3000 .8725 .8112 .7188 
456 29.7000 .3667 .8076 .7294 
482 30.9000 .9183 .8537 .7611 
456 20.3000 .0007 .8076 .7188 
592 37.2000 1.1278 1.0485 .9276 
606 37.5000 1.1545 1.0733 .9355 
596 38.4000 1.1355 1.0556 .9593 
606 38.4000 1.1545 1.0733 .9593 
608 37.1000 1.1583 1.076E .9249 
604 38.2000 1.1507 1.0698 .9540 
612 38.8000 1.1659 1.0839 .9699 
596 37.4000 1.1355 1.0556 .9329 
594 38.0000 1.1316 1.0520 .9487 
788 50.1000 1.5012 1.3956 1.2685 
762 47.9000 1.4517 1.3496 1.2104 
785 49.9000 1.4974 1.3921 1.2632 
796 50.2000 1.5165 1.4098 1.2711 
762 47.7000 1.4517 1.3496 1.2051 
792 51.1000 1.5089 1.4027 1.2949 
790 50.4000 1.5050 1.3992 1.2764 
784 50.4000 1.49'•6 1.3006 1.2764 
760 52.0000 1.4860 1.3815 1.3187 
966 66.3000 1.8705 1.7463 1.6966 
972 66.1000 1.8518 1.7215 1.6913 
932 54.8000 1.7756 1.6507 1.6570 
976 67.1000 1.8594 1.7286 1.7178 
976 67.2000 1.8594 1.7286 1.7204 

Table 7.8 Experimental results for electrodes positioned at 
z = 6.45cm. 
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Counts in .Amplifier 
100 mS 	output mV 

Speed 
m/sec 

Magnetic 
Reynolds 
Numher 

Flowmeter 
output mV 

0 2. 100 0 0 0 
86 3.80Gt7 .168 .1523 .0449 
89 3.7000 .1JE'6 .1576 .0423 
89 3.60CC .1696 .1576 .0396 
68 4.3000 .1677 .1559 .0581 
90 3.8000 .1715 .1594 .0449 
90 3.9000 .1715 .1594 .0476 
88 3.8000 .1677 .1559 .0449 
89 3.8000 .1696 .I576 .0449 
87 4.4000 .1657 .1541 .0608 
209 7.7000 .3982 .3702 • .1480 
210 7.5000 .4001 .3719 .1427 
211 7.3000 .4020 .3737 .1374 
211 8.5000 .4020 .3737 .1691 
212 8.5000 .4039 .3755 .1691 
212 7.7000 .4039 .3755 .1180 
212 7.6000 .4039 .3755 .1453 
212 7.6000 .4039 .3755 .1453 
213 8.0000 .4058 .3772 .1559 
342 11.9000 .6516 .6057 .2590 
336 11.9000 .6401 .5951 .2590 
339 12.0000 .6458 .6004 .2616 
340 12.4000 .6477 .6022 .2722 
342 11.9000 .6516 .6057 .2590 
341 12.3000 .6496 .6040 .2696 
334 12.2000 .6363 .5916 .2669 
344 13.0000 .6554 .6093 .2881 
346 12.2000 .6592 .6128 .2669 
442 16.4000 .8421 .7828 .3779 
506 18.3000 .9640 .8962 .4281 
526 18.1000 1.0021 .9316 .4228 
504 10.1000 .9602 .8926 .4228 
432 17.7000 .9183 .8537 .4123 
500 17.8000 .9526 .8856 .4119 
518 19.6000 .9869 .9174 .4625 
516 18.9000 .9830 .9139 .4440 
528 17.7000 1.0059 .9352 .4123 
636 22.0000 1.2117 1.1264 .5259 
592 24.4000 1.1278 1.0485 .5893 
608 22.7000 1.1583 1.0768 .5444 
620 22.1000 1.1812 1.0981 .5285 
628 21.7000 1.1964 1.1123 .5180 
608 24.2000 1.1583 1.0768 .5840 
608 23.4000 1.1583 1.0768 .5629 
632 22.2000 1.2040 1.1193 .5312 
618 21.8000 1.1774 1.0946 .5206 
720 29.0000 1.3717 1.2752 .7109 
680 24.7000 1.2955 1.2044 .5973 
700 25.3000 1.3336 1.2398 .6131 
700 25.5000 1.3336 1.2398 .6184 
684 23.9000 1.3031 1.2114 .5761 
688 24.0000 1•.3107 1.2165 .5788 
700 26.4000 1.3336 1.2398 .6422 
732 26.7000 1.3946 1.2165 .6501 
680 23.3000 1.2055 1.2014 .5603 
924 34.9000 1.7603 1.6365 .8668 
972 34.4000 1.8518 1.7215 .8536 
904 34.7000 1.7222 1.6011 .8615 
900 33.2000 1.7146 1.5940 .8219 
960 34.6000 1.8289 1-.7003 .8589 
932 35.6000 1.7756 1.6507 .8853 

Table 7.9 Experimental results for electrodes positioned at 
z = 10.16cm. 
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Figure 1.1 Schematic of induced voltage electromagnetic flowmeter 

Figure 1.2 Shercliff weight function. for uniform field and point 
electrode flowmeter 
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a) Symmetrical normal eddy currents induced in static and moving sodium 

b) Flow induced currents produce secondary fields which effectively 
distort the primary field in the direction of the flow. 

Figure 1.3 Principle of eddy current flowmeter 
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Figure 1.4 Block diagram of pulsed field flowmeter operating 
on the principle of recording the shift in the peak 
of the emf induced in the measuring coil; a _position 
of the coils, b.. curves of the current and emf in the 
transmitting and receiving coils. 
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Figure 1.5 A loop-type primary system 
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Figure 1.6 A pool-type primary system 
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Figure 1.7 Eddy current flow through type flowmeter 
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Figure 1.8 Eddy current probe-type flowmeter 
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Figure 1.9 Flowmeter for magnetic slurries (Mannherz and Schmook 1968) 
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Figure 1.10 Saddle coil flowmeter 
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Figure 3.1 Flowmeter geometry 

Figure 3.2 Two dimensional flowmeter for magnetic slurries 
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Figure 3.3 Variation with fluid permeability of the ratio (flow signal/ 
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Figure 3.4 Variation with fluid permeability of the ratio (flow signal/ 
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angles 
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Figure 4,1 Side view of flowmeter showing current 1ooDs at thē edges 
of the field 

Figure 4.2 Distortion of transverse magnetic field 
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Figure.4.3 Lattice configuration a) lattice configuration_ for 
calculating the  magnetic field components,, b). and c) 
diagram showing the magnetic field components required 
at neighbouring points to calculate the magnetic field 
components at the centre point 
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Figure 4.4 Typical -lattice arrangement for numerical analysis 
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Figure 4.5 To show the direction and symmetry of magnetic field 
components at cross-section of coil. 
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Figure 4.6 Portion of the thin conducting wall 
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Figure 4.7 The :mean weighted absolute residual VS. no. of sweep 
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Figure 4.8 The mean weighted absolute residual VS. no. of sweep 
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Figure 4.9 The mean weighted absolute residual vs. no. of sweep 

Figure 4.10 View of flowmeter showing current loop at the edges 
of the field. 



Figure 4.11 Magnetic field distribution in the plane, 2 = 0 
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Figure 4.12 Magnetic field distribution at the centre line of pipe, uniform velocity 



z 

r 

U 

Figure 4.13 Induced voltage distribution in the plane, e = IT/2 
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Figure 4.14 Induced voltage distribtuion along z-axis, d = .044 
Cr  = 0 and uniform velocity 

Figure 4.15 _induced voltage distribution along z-Axis, d = .044 and 
C
r  r  
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Figure 4.16 Effect of the wall conductivity no. d, and the contact 
resistance no. Cr on the inducted voltage 
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Figure 4.17 Flowmeter output from centre electrodes 
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Figure 4.18 Flowmeter output from six electrode locations 
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Figure 4.20 Induced voltage 	distribution along z-axis 
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Figure 4.22 Flowmeter output from six electrode locations 
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a) Section perpendicular to flow (on xx') 

b) Section perpendicular to magnetic field 

Figure 5.1 The virtual current lines-for circular conducting thin 
wall flowmeter with point electrodes 



190 

w-.53 

Figure 5.2 W-distribution at the cross section of pipe with a saddle 
coil1  electrode positioned at the middle, no flow (R = 0), 
wall conductivity no. = .044, and no contact resistance. 

W=.76 

7,.73 
Figure 5.3 W-distribution at the cross section of pipe using a saddle 

coil, electrode positioned. at the middle, R = 5, wall 
conductivity no. = .044 and no contact resistance 
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7.. 51 
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Figure 5.4 W-distribution at the cross section of  pipe  with a saddle 

coil, electrode positioned at the edge  of  field, calculations 
were made for R = 0 and R = 5 and the distribution  of W was 
the same  for bo h, wall conductivity no. = .044 and no 
contact resistance 

w..51 

Figure 5.5 W-distribution at the cross section of pipe using a saddle 
coil, wall conductivity no. = 0, and no-contact resistance 

t 
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SQL=.. 62 

Figure 5.6 W-distribution at the cross-section of pipe with a 

diamond coil, electrode positioned at the middle, 

no flow (Rm  = 0), wall conductivity no. = .044, 

and no contact resistance. 
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Figure 6.1 Electromagnetic flowmeter designwhich measures the flowrate 
independent of fluid properties (magnetic property and 
electrical conductivity)  

co 0-420  

Figure 6.2 Electromagnetic flowmeter model used by Thatcher (1971) 
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Figure 6.3 Diagram showing the resistance for integrating the 
signal along the pipe 
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Figure 7.1 Sketch of the experimental rig 



Figure 7.2 Side View of Experimental Rig 



Figure 7.3 View of Gears from Drive Cylinder End 



Figure 7.4 View of Braking System 
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Figure 7.5 Flowmeter assembly 



Figure 7.6 View of Flowmeter Assembly 



Figure 7.7 View of Instrumentation 
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Figure 7.10 View of Permanent Magnet and Hall Probe 
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Figure 7.11 Magnetic field distribution at the centre line of aluminium rod (prediction) 
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Figure 7.12 Induced voltage distribution. along z-axis (prediction) 
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Figure 7.14 The signal displayed on the'oscilloscope a)R = .36, Counting Period = 100mS,Scale .5S- 5mV 
b)R = .87, Counting Period = 50mS,Scale .2S-10mV 	c)Rm  = 1.4, Counting Period = 50mS,Scale .1S-20mV 
d)R

m 
m  = 1.7, Counting Period = 25mS,Scale .1S-20mV 	

m 
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Figure 7.15 Induced voltage against magnetic Reynolds number for four location of electrodes upstream, 
(p experimental values, — theoretical values) 
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Figure 7.17 Induced voltage against magnetic Reynolds number for .four locationsof electrodes 
downstream, (O experimental values, —theoretical values.) 
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Figure 7.18 Induced voltage along the rod for electrodes at r=a and A = Tr/2, 
( 	theoretical values, - — ------  experimental values) 
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between two circular circuits in a moving electrically 
conducting medium 
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Figure  8.3 Distribution  of vector  potential function  at  different  time  intervals  
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cross section 

Figure A.1 Saddle type coils (concentric winding) 

Figure A.2 Calculation diagram using Biot-Savart's Law for magnetic 
field of a saddle type coil. 
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Figure A.3 Magnetic field distribution along z/a axis at the centre 
of saddle coil for three coil angles 
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Figure C.3 Top diamond coil showing the direction of ds and dz 
at different sections of coil 
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Figure C.4 Bottom diamond coil, showing the direction of ds and dz 
at different sections of coil 
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Figure C.5 Magnetic field distribution along z/a axis at the centre 
of diamond coil for three coil angles 

a 

x 

 
0 

= 10 

 

 

  

-a 0., 1 	. 	, 	f 	 ! 	 , 	, 	 1 	, 	. 	I 

 

0.5 	1.0 	1.5 	2.0 	2.5 	3.0 	3.5 	4 0 

Z/a —Ax Ts 

Figure C.6 Magnetic field distribution along z/a axis of diamond 
coil at R/a = 2.7. 



= 00  
0 

10 

20 

! 	. 

 
1 .5 

I 	I 
0 	0.3 	0.6 	0.9 	1.2 	1.5 	1.8 	2.

l 
 1 	2.4 	2.7 	3 0 

Y/a -Axis 

Figure C.7 Magnetic field distribution at z/a = 0 along Y/a axis 
of diamond coil for three coil angles 

X/a - Axis 

Figure C.8 Magnetic field distribution at z/a = 0 along x/a axis 
of diamond coil for three coil angles . 

a 

12.0 

10.5 

9.0 

7.5 

6.0 

4.5 

3.0 

233 



234 

REFERENCES 

1. Baker R.C. (1968a) "On the potential distribution resulting from 

flow across a magnetic field projecting from a plane wall." 

J. Fluid Mech. Vol. 33 pp.73-86 

2. Baker R.C. (1968b) "Solutions of the electromagnetic flowmeter 

equation for cylindrical geometrics." Br.J.Appl. Phys.(J.Phys.D) 

SER 2 Vol.1 pp.895-899 

3. Baker R.C. (1973) "Numerical analysis of the electromagnetic 

flowmeter." Proc. IEE Vol.120 No. 9 pp.1039-1043 

4. Baker R.C. and Saunder P.M. (1974) "A numerical and experimental 

investigation of flux distortion flowmeters." Work undertaken 

for U.K.A.E.A. Reactor Group, Risley, Warrington 

5. Baker R.C. (1977) "Electromagnetic flowmeters for fast reactors." 

Progress in Nuclear Energy. Vol. 1 pp.41-61 

6. Baker R.C. and Tarabad M. (1978) "The performance of electro-

magnetic flowmeters with magnetic slurries." J.Phys.D. 

Appl.Phys. Vol.11 pp.167-175 

7. Bean C.P., DeBlais R.W. and Nesbitt L.B. (1959) "Eddy-current 

method for measuring the resistivity of metals." J.Appl.Phys. 

Vol.30 No.12 pp.1976-1980 



235 

8. Bevir M.K. (1969) "Induced voltage electromagnetic flowmeters." 

PhD thesis, University of Warwick 

9. Bevir M.K. (1970) "The theory of induced voltage electromagnetic 

flowmeters." J.Fluid Mech. Vol.43 pp.577-590 

10. Bevir M.K. (1971) "Long induced voltages electromagnetic 

flowmeters and the effects of velocity profile." Q.J.Mech. and 

Appl.Math. Vo1.24 pp.347-372 

11. Boucher R.A. and Ames D.B. (1961) "End effect losses in DC 

MHD generators." J.Appl.Phys. Vol.32 No.5 pp.755-759 

12. Campbell R.H. (1973) "Primary system design of sodium cooled 

fast reactors". Journal of British Nuclear Energy Society 

Vol.12 pp.357-365 

13. Cushing V. (1958) "Induction flowmeter (for use with dielectrics)." 

Rev. Sci. Instrum. 29,692 

14. Dean S.A., Harrison E. and Stead A. (1970) "Sodium flow 

monitoring." Nuclear Engineering International Vol. 15 No.174 

15. Dodd C.V. and Deeds W.E. (1967) "Electromagnetic forces in 

conductors." J.Appl.Phys. Vo138 No.13 pp.5045-5051 

16. Duncombe E. and Thomasson R.K. (1970) "Sodium process instru- 

mentation for the Dounreay PFR." Nuclear Engineering International 

Vol.15 No.172 pp.714-717 



236 

17. Dwight H.B. (1961) "Tables of integrals and other mathematical 

data." Macmillan 4th edition 

18. "Electromagnetic methods of measuring the parameters of MHD 

processes." Academcy of Sciences of the Latvian SSR, Institute 

of Physics. "Zinatne" publishers, Riga, 1968 English 

Translation U.K.A.E.A. Culham Laboratory. April 1977. 

19. Faraday M. (1832) "Experimental researches in electricity" 

Vol. 1 p.55 January 

20. Feng C.C., Deeds W.E. and Dodd C.V. (1975) "Analysis of eddy-

current flowmeters." J.Appl.Phys. Vol.46 No.7 pp.2935-2940 

21. Foster G.A. (1971) "Performance of permanent magnet flow-

through-type sodium flowmeters in EBR-II instrumented 

subassemblies." IEEE Trans. NS18(1) pp.363-365 

22. Foster G.A. (1973) "Long-term stability of Alnico 5 and 8 

magnets at 700 to 1200°F." Argonne National Lab. Ill(USA) 

Report No. ANL-CT-73-16 

23. Gammerman M.Ya and Mezhburd V.I. (1971) "Weight functions of 

electromagnetic flowmeter in the three dimensional approximation." 

Magn. Gidrodin. No. 3 pp.130-133 

24. Hartmann J. (1937) Math-fys. Medd. 15, No. 6 



237 

25. Hayes D.J. (1974) "Instrumentation for liquid sodium in nuclear 

reactors." J.Phys.E.: Scientific Instruments pp.69-75 

26. Hess B. and Ruppert E. (1975) " Instrumentation for core  and 

coolant monitoring in liquid metal fast breeder reactors (LMFBR)." 

Atomic Energy Review, 13, 1 pp.81-144 

27. Hirayama M. (1977) "Theoretical model of an eddy current 

flowsensor." IEEE Trans. Vol.NS-24 No.5 pp.2021-2030 

28. Kalnin R.K., Kisis A.Yu. and Sermons G.Ya (1966) "A contactless 

device for measuring the flow velocity of an electrically 

conducting fluid." Magn. Gidrodin. Vol.2 No.3 pp.l5O-151 

29. Kemmer. N. (1977) "Vector analysis." Cambridge University Press 

30. Kirshtein G.Kh. and Timofeev V.A. (1975) "Effect of a magnetic 

field non-uniform along the stream on the characteristics of 

electromagnetic flowrate transducers." Magn. Girodin. No.4 

pp.139-142 

31. Kirshtein G.Kh. and Timofeev V.A. (1977) "Effect of magnetic 

field distribution on the weighting function of a conduction 

flowmeter for rectilinear flow." "Magn. Gidrodin. No.1 pp.125-130 

32. Kolin A. (1945) "An alternating field induction flowmeter of 

high sensitivity." Rev.Sci.Instr. Vol.16 No.15 pp.109-116 



238 

33. Komori Y., Someyana T., Iwameto S., Yamada K. and Kobayashi H. 

(1974) "Shimadzu_ electromagnetic flowmeter for liquid sodium." 

Shimadzu Hyoran 31, 163 

34. Kormilov V.P. and Loginov N.I. (1978) "Effect of the velocity 

head on the output voltage of an electromagnetic velocity meter 

with a cylindrical magnet." Magn.Gidrodin No.1 pp.121-124 

35. Korsunskii L.M.(1974) "Effect of the velocity distribution on 

the readings of flowmeters with a magnetic field intensity 

inversely proportional to the weighting function." Magn. 

Gidrodin. No.2 pp.125-128 

36. Lehde H. and Lang W.T. (1948) "Device for measuring rate of 

fluid flow." U.S. Patent 2 435"043 

37. Loginov N.I. (1971) "Distribution of the potentials in an 

electromagnetic velocity meter with a cylindrical magnet." 

Magn. Gidrodin No.2 pp.128-132 

38. Mannherz E.D. and Schmook R.F. (1968) "Magnetic flowmeters for 

magnetic slurries." U.S. Patent 3 380 301 

39. Meshii R. and Ford J.A. (1969) "Calibration of electromagnetic 

flowmeters in the Enrico Fermi atomic power plant." Nuclear 

Applications and Technology Vo. 7 pp.76-83 

40. Meyer R.X. (1961) "Some remarks concerning magneto-hydrodynamic 

applications to re-entry problems." Second symposium on the 

engineering aspects of MED (Columbia University Press) 



239 

41. Moore R.V. and Hurst R. (1961) "The fast breeder reactor." Journal 

of the British Nuclear Energy Conference Vo. 6 pp.161-165 

42. Nagao A. and Ishibash R. (1976) "Resistivity measurement of 

NaCl solution by eddy current decay method." Japanese J.Appl. 

Phys. Vol. 15 No. 4 pp.627-631 

43. "Non-contact control of liquid metals flow". (1968) Academy of 

Science - Latvia Republic of the Soviet Union, Institute of 

Physics, Zinatne, Riga 

44. Pfister C.G. and Dunham R.J. (1957) "D-C magnetic flowmeter for 

liquid sodium loops." Nucleonics Vol.15 No.10 pp.122-123 

45. Popper G.F. and Glass M.C. (1967) "The design and performance of 

a 1200°F magnetic flowmeter for in-core application in sodium 

cooled reactors." IEEE Trans. Nuc.Sci. NS-14(1), 342 

46. Rummel Th. and Ketelson B. (1966) "A non uniform magnetic field 

makes inductive measurements of the flowrate possible with all 

velocity profiles encountered in practice." Regelungstechnik, 

No.6 pp.262-267 

47. Sermons G.Ya. (1964) "Propagatiorr of an electromagnetic field pulse 

in a moving electrically conducting medium." Transactions of the 

Academy of Sciences of the Latvian SSR, physical and technical 

sciences series no.1, 33 



240 

48. 	Sermons, G.Ya 	(1966) "Theory of propagation of 

pulsed magnetic field in moving conducting media." In: Motion 

of conducting bodies in a magnetic field. Riga "Zinatne", p.135 

49, 	Sermons, G.Ya and Zheigur B.D. (1964) "Study of the propagation 

of an electromagnetic field pulse in a moving medium." Problems 

of Magnetic Hydrodynamics, 4. Riga, Academy of Sciences of the 

Latvian SSR Publishers, 91 

50. Shercliff J.A. (1954) "Relation between the velocity profile and 

the sensitivity of electromagnetic flowmeters." J.Appl.Phys. 

Vol.25 pp.817-818 

51. Shercliff J.A. (1962) "The theory of electromagnetic flow 

measurement." Cambridge University Press 

52.. 	Simnad M.T. (1971) "Fuel element experience in nuclear power 

reactors." Gordon and Breach Science Publishers, Inc. 

53. Smythe W.R. (1968) "Static and dynamic electricity." 

McGraw-Hill, 3rd edition 

54. Thatcher G. (1971) "Electromagnetic flowmeters for liquid metals." 

International Conference on modern developments in flow measurement, 

Harwell pp.359-380 

55. Thatcher G., Bentley, P.G. and McConigal G. (1970) "Sodium flow 

measurement in PFR." Nuclear Engineering International Vol.15 

No.173 pp.822-825 



241 

56. ThUrlemann B. (1941) "A method of electrically measuring the 

velocity of fluids." Helv.Phys.Acta., No.14 pp.383-419 

57. Turner G.E. (1960) "The non-linear behaviour of large permanent-

magnet flowmeters." Atomics International Report NAA-SR-4544 

58. Velt I.D. and Mikaileve Yu.U. (1977) "E.M. flowmeter with a 

non-uniform magnetic field for liquid metal." Magn.Gidrodin, 

No.1 pp.131-135 

59. Wenger N.C. (1971) "Effect of velocity profile distortion in 

circular transverse field electromagnetic flowmeters." NASA 

TND-6454 

60. Wiegand D.E. (1967) "Summary of an analysis of the eddy current 

flowmeter." 14th Nuclear Science Symposium, IEEE, Los Angeles, 

October. 

61. Wiegand D.E. (1969) "The eddy current flowmeter. An analysis 

giving performance characteristics and preferred operating 

conditions." Argone National Laboratories Engineering and 

Equipment. Rep. No. ANL-7554 August. 

62. Williams E.J. (1930) Proc. Phys. Soc. Lond., 42, 466 

63. Zheigur B.D. and Sermons G.Ya. (1965) "Pulse method of measuring 

the flowrate of liquid metals." Academy of Sciences of the Latvian 

SSR Institute of Physics "Zinatne" Publishers, Riga. 



242 

64. 	Yada H. (1970) "Fuji electromagnetic flowmeters for liquid 

sodium." Fuji Electric Journal 43, 194(24) 



243 

PUBLICATIONS 

1. Baker, R.C. and Tarabad, M. (1978) "The performance of 

electromagnetic flowmeters with magnetic slurries." J.Phys.D. 

Appl.Phys., Vol. 11 	pp.167-175 

2. Tarabad, M. and Baker, R.C. (1979) "Electromagnetic flowmeters 

for sodium-cooled reactors." Proceedings of IMEKO symposium on 

flowmeasurement and control in industry, Tokyo, Japan, November. 

3. Baker, R.C. and Tarabad, M. (1979) U.K. Patent Application 

No.119243. 


