LASER SURFACE CLADDING OF STEEL
by LUCINO TAPIA-VILLANUEVA

A Thesis presented for the degree of master of Philosophy of the University of London

John Percy Research Group
in Process Metallurgy

ABSTRACT

A novel method of cladding with stainless steel, a nickel base alloy (monel), and a copper base alloy (tin-bronze) has been developed; the technique is to use a laser beam to melt the alloy in powder form onto the surface of a base metal to give it the improved properties of the cladding alloy. Applications of this work are in the area of protection against corrosion and others.

The present work was done using powdered 316 stainless steel 300 mesh, monel and copper-tin (tin-bronze) (also as fine powders) as the surfacing material and mild steel (En 3) as the base plate. Both surfacing materials and baseplate were supplied by British Steel Corporation (Scottish Laboratories), and the experiments were carried out at Imperial College with a CO_{2} continuous wave laser of 2 kilowatts.

The independent variables which defined the process for a single run were:
a) total incident beam power P (W)
b) incident beam diameter D (mm)
c) traverse speed of incident beam V (mm / s)
d) powder bed thickness d(mm)

On the other hand the dependent variables were found to be:
a) continuity of bead
b) width of the bead, w (mm)
c) height of the bead, h (mm)
d) spreading
e) solidified contact angle, θ (degrees)
f) depth of the heat-affected zone (HAZ), Z (mm)
g) dilution
(\%)
h) deposition rate, ($\mathrm{Kg} / \mathrm{Hr}$)
i) microstructure in both surface cladding and baseplate (HAZ)

A study was made of the effect of the process parameters on the quality of deposit and metallurgical bond formed for single runs. This was was then extended to multiple track runs in which the additional parameters of track overlap and degree of preheat of the substrate were also studied.

Some parameter correlations were established between deposit quality width, height, solidified contact angle, depth of the heat-affected zone, rate of deposition and degree of dilution with ($P / D V$) and (P / V).

The previously noted advantages of using a laser for cladding have been justified in this work. Those advantages were:
a) precise control of energy input
b) localisation of heat
c) minimal heat-affected zone and therefore thermal distortion and interface embrittlement
d) a relatively tranquil process suffering from low dilution compared to other surfacing processes
e) a rapid process, resulting in high quench rates and therefore homogeneous deposits

The quality of the deposits made here has shown that smooth surface deposits of controlled depth are possible, this could be useful in reducing finishing costs in an industrial process.

2.2. LASER CLADDING 22
2.2 .1 LASER BEAM DIAMETER 23
2.2 .2 DILUTION IN.SURFACE CLADDING 26
2.2 .3 MATERIALS 29
2.2.3.1 BASE METAL 29
2.2.3.2 METAL CLADDING 29
2.2.3.2.1 316 STAINLESS STEEL 29
2.2.3.2.1.1 INFLUENCE OF PRINCIPAL CONSTITUENTS 30
2.2.3.2.1.1.1 ADDITION OF CHROMIUM 30
2.2.3.2.1.1.2 ADDITION OF NICKEL 31
2.2.3.2.1.1.3 ADDITION OF MOLYBDENUM 31
2.2.3.2.1.2 PHYSICAL METALLURGY OF AUSTENITIC STAINLESS STEEL 32
CHAPTER 3 34
3. EXPERIMENTAL PROCEDURE 35
3.1 STAINLESS STEEL SURFACE CLADDING 35
3.2 MONEL SURFACE CLADDING 36
3.3 TIN-BRONZE SURFACE CLADDING 36
3.4 SINGLE TRACK DEPOSIT 37
3.4.1 SPECIMEN PREPARATION BEFORE CLADDI NG 37
3.4.2 SPECIMEN PREPARATION AFTER CLADDING 38

3.5	MULTIPLE TRACK DEPOSITS	41
3.5 .1	SPECIMEN PREPARATION BEFORE CLADDING	41
3.5 .2	SPECIMEN PREPARATION AFTER CLADDING	42
3.6	MICROHARDNESS MEASUREMENT	46
$3 \cdot 7$	CALCULATING DILUTION	46
3.8	EQUI PMENT	47
3.8 .1	CO_{2} GAS LASER OF 2,000 WATTS	47
3.8.1.1	OPTICAL AND SUPPORT STRUCTURE SYSTEM	48
3.8.1.2	POWER SUPPLIES AND CONTROLS	48
3.8.1.3	WATER FLOW SYSTEM	49
3.8.1.4	GAS FLOW SYSTEM	50
3.8.1.5	MOVEMENT OF WORKPIECE	50
CHAPTER 4		55
4.	DESCRIPTION OF THE RESULT TRACK DEPOSITS	57
4.1	316 Stainless steel surface cladding	57
4.1 .1	HEIGHT \& WIDTH - 316 STAINLESS STEEL	61
4.2	TIN-BRONZE SURFACE CLADDING	82
4.2 .1	HEIGHT \& WIDTH - TIN - BRONZE	82.
4.3	MONEL SURFACE CLADDING	92.
4.3 .1	HEIGHT \& WIDTH - MONEL	92
4.4	DEVELOPING SECTION SURFACE CLADDING	109

4.5	QUANTITATIVE DILUTION	118
4.5.1	316 STAINLESS STEEL-DILUTION IN SURFACE CLADDING	118
4.5 .2	TIN-BRONZE-DILUTION IN SURFACE CLADDING	119
4.6	DEPOSITION RATE IN SURFACE CLADDING	127
4.6 .1	DEPOSITION RATE FOR 316 STAINLESS STEEL	127
4.6 .2	DEPOSITION RATE FOR TIN-BRONZE	134
4.7	SOLIDIFICATION IN TYPE 316 STAINLESS STEEL	
	SURFACE CLADDING	136
4.8	METALLOGRAPHIC OBSERVATIONS	143
4.8 .1	316 STAINLESS STEEL SURFACE CLADDING	143
4.8 .2	MICROSTRUCTURES IN THE HEAT-AFFECTED ZONE:	
	SUBSTRATE	147
4.9	SURFACE CLADDING COMPOSITION	154
4.10	Resultant hardness in the clad layer	162
4.10 .1	RESULTANT HARDNESS IN 316 STAINLESS STEEL	
	CLADDING	162
4.10 .2	RESULTANT HARDNESS IN THE HEAT-AFFECTED ZONE SUBSTRATE	162-a
4.10 .3	RESULTANT HARDNESS ON SELECTED SPECIMENS	
	316 STAINLESS STEEL SURFACE CLADDING	176
4.11	RESULTANT SURFACE CLADDING ON MULTIPLE RUN DEPOSITS	176
4.12	METALLOGRAPHIC OBSERVATION ON MULTIPLE RUNS	182
4.12 .1	316 STAINLESS STEEL SURFACE CLADDING	182
4.12 .2	heat-affected zone substrate	182
4.13	WETTING AND SPREADING OF MOLTEN	

CLADDING ALLOY ON A BASE METAL 183
4.14 VISCOSITY IN SURFACE CLADDING 194
4.15 MECHANICAL PROPERTIES IN SURFACE CLADDING 194
4.15.1 EEND TEST 194
4.15.2 SHEAR TEST 195
CHAPTER 5 197
CONCLUSIONS 197

APPENDICES		202
I. 1	OPERATING CONDITIONS AND RESULTS SINGLE TRACK	
	DEPOSITS, 316 STAINLESS STEEL SURFACE CLADDING	203
I. 2	OPERATING CONDITIONE AND RESULTS SINGLE TRACK	
	DEPOSITS, TIN-BRONZE SURFACE CLADDING	228
I. 3	OPERATING CONDITIONS AND RESULTS SINGLE TRACK	
	DEPOSITS, MONEL SURFACE CLADDING	230
I. 4	OPERATING CONDITIONS AND RESULTS MULTIPLE TRACK	
	DEPOSITS, 316 §TAINLESS STEEL SURFACE CLADDING	237
17. 1	SECTIONAL AREA, PERCENTAGE dILUTION, DEPOSITION	
	Rate and solidified contact angle as a function	
	OF THE APPLIED SPECIFIC ENERGY AND POWDER THICKNESS	241
II. 2	SECTIONAL AREAS, PERCENTAGE DILUTION, DEPOSITION	
	RATE AND SOLIDIFIED CONTACT ANGLE AS A FUNCTION OF	
	THE APPLIED SPECIFIC ENERGY FOR A 1.00 mm POWDER	
	THICKNESS OF TIN-BRONZE	244
II. 3	deposit toughness and adherence as measured by	
	BEND AND SHEAR TESTS	245
	NOMENCLATURE	246
	Tables	249
	REFERENCES	250
	LIST OF FIGURES	253
	ACKNOWLOEDGMENTS	263

CHAPTER 1
1 INTRODUCTION
1.1 LASER MACHINES
1.2 CLASSES OF CO_{2} LASERS
1.2 .1 SLOW-AXIAL-FLOW CO 2 LASER
1.2.2 FAST-AXIAL-FLOW CO_{2} LASER
1.2.3 TRANSVERSE-FLOW CO_{2} LASER
1.3 GAS LASER
1.4 GAS CONTAMINATION

1. INTRODUCTION

Laser cladding is one of the new applications for a high power continuous wave CO_{2} laser in material processing. There are as yet very few published references to it. It has recently become a method of production, but only in a few factories (e.g. Rolls Royce). However, the process can be considered an excellent technique for improving the resistance of metals against corrosion and high temperature environments.

The technique consists of placing a cladding alloy face to face with a base plate to be clad and using a continuous wave output laser beam to melt the alloy onto the surface.

The aim in the present research is to make use of powdered 316 stainless steel, monel and tin-bronze as cladding alloys, mild steel (En 3) as base plate, and a continuous wave CO_{2} laser beam of 2 kilowatts as a heat source to produce an adherent surface cladding, with the minimum possible of dilution, to provide smooth surface cladding with homogeneous microstructure and hardness across it; to provide high density-low porosity as well as to minimize interdiffusion between the cladding alloy and the base plate; to avoid effects on the base plate (big heat-affected zone) and finally, to make the process as flexible as possible.

1.1 LASER MACHINES

The laser has been widely and successfully used in the fields of welding, cutting and surface treatment of materials due to its ability to place rapidly and precisely high intensity energy which is chemically clean (1, 2, 3, 4).

In the last decade different types of lasers have been developed for these industrial applications. The types of laser used are CO_{2} gas lasers, He-Ne gas, argon ion, Nd:YAG solid state lasers, ruby and Nd:Glass solid state laser. For more details of these commercial lasers used in material processing see Table 1. However, only the CO_{2} gas laser will be described here because this is the kind of laser used in these experiments.

TABLE 1:
COMmercial laser used in material processing (21)

LASER	TYPE OF material	TYPE OF operation	yavelength $\left(\mu_{\mathrm{m}}\right)$	POWER (w)	PULSE REP. RATE (ppa)	PULSE LENGTH	TYPICAL USE
CO_{2}	molecular GAS	CONTINUOUS	10.6	100-SEVERAL THOUSAND	-	-	SEAM WELDS
CO_{2}	molecular GAS	REPETIVELY PULSED	10.6	100 (average)) 100	100\%:	SEAM WELDS HOLE DRILLING
CO_{2}	molecular GAS	TEA	10.6	10^{7}	UP TO 100	10 ms	HOLE DRILLING MARKING
Nd: YAG	SOLID State	continuous	1.06	UP TO 1000	-	-	SEAM UELDS
Nd: YAG	SOLID STATE	REPETIVELY Q-SWITCHED CONTINUOUSLY PUMPED	1.06	$\begin{aligned} & 10^{4} \text { (PEAK) } \\ & 10 \text { (AVERAGE) } \end{aligned}$) $\geq 25,000$	200 nsec	COMPONENT FABRICATION AND TRIMAING
Nd:YAG	SOLID STATE	PULSED PLMPED	1.06	10^{4} (PEAK)	100	1-10 maec	SPOT AND SEAM WELDS, MARKING
RUBY	SOLID STATE	NORMAL PULSE	0.6943	10^{5} (PEAK)	SINGLE PULSE	0.25-5msec	SPOT WELDS AND SINGLE HOLES
Nd:GLASS	SOLID STate	normal pulse	1.06	10^{6} (PEAK)	SINGLE PULSE	0.5-10msec	SPOT WELDS AND SINGLE HOLES

1.2 1.2.1

Classes of CO_{2} Lasers
CO_{2} lasers are used in material processing which have beam powers from 100 w to 100 kw . They produce a $10.6 \mu \mathrm{~m}$ infra red radiation with an efficiency of conversion of electrical excitation to optical beam power of between $10-20 \%$. They may be classified according to the gas flow or the method of excitation e.g. slow axial flow, fast axial flow, transverse flow, TEA (Transversely Excited Atmospheric).
Slow-Axial Flow CO_{2} laser
Slow axial flow CO_{2} lasers were the first CO_{2} lasers.

They consisted of a water-cooled tube with mirrors on both ends through which the laser gas mixture $\left(\mathrm{CO}_{2}, \mathrm{~N}_{2}\right.$ \& He) flowed, the low: pressure gas was excited by an electric plasma discharge. The gas mixture was cooled by heat conduction to the cool side walls of the discharge tube.

Continuous wave CO_{2} lasers cannot operate efficiently at temperatures much above $300^{\circ} \mathrm{C}$. The maximum electrical power, which can be delivered to the glass tube must be less than about $500 \mathrm{~W} / \mathrm{m}$ of
discharge tube, at the conversion efficiency of 10%, which
corresponds to an output power of $50 \mathrm{~W} / \mathrm{m}$.

If the input power were increased then the gas would overheat and
so the laser optical power would not increase, neither could the
input power be increased if the tube diameter were increased,

```
the gas in the centre of the tube would overheat due to the longer
conduction path to the cooled wall. If the gas pressure were increased
then the uniform electrical glow discharge between the electrodes
would become filamentary in nature and consequently the output power
would be reduced. Thus, the only way to increase the output power
is to increase the length of the glass tube. The output power in this
type of laser could be lO kilowatts but the length of such a device
would be of the order of }100\mathrm{ meters.
Fast Axial-Flow }\mp@subsup{\textrm{CO}}{2}{}\mathrm{ Laser.
The discharge in this category of high power, continuous wave }\mp@subsup{\textrm{CO}}{2}{
laser takes place in a series of long glass tubes. The discharge
is usually parallel to the flow direction. The loss of heat from the
discharge tube is by convection rather than by conduction,
    ecause of the high flow rates involved (the control laser 2.KW CW
CO
cycle gas flow with a small purge. Commercial machines using this
principal are available from 500W to 6000W. The specific output power
is approximately 500 W/m with a uniform electric discharge. The
2 kilowatts }\mp@subsup{\textrm{CO}}{2}{}\mathrm{ laser used in this work is of this type. It will be
described in section 3.8.
```

1.2 .3

```
Transverse-Flow- CO
In this class of laser, the gas flow is perpendicular to both the
electric discharge and the optic axis, giving rise to a cross flow
configuration. This has the advantage that the time of residence
of the lasing gas in the optical cavity is much shorter than in the
axial flow devices, resulting in the possibility of much higher power
density and consequently much more power per unit length of optical
cavity.
In this system a uniform electric discharge is required over a much
larger area than in the axial-flow system.
This is achieved by having specially shaped electrodes (Rogowski
electrodes! (e.g. Culham CL5 5kWCW CO}2\mathrm{ laser) or by ionising the
lasing gas by firing an electron beam through it (e.g. Avco Everett
15 kW (W CO }2\mathrm{ laser).
GAS LASER
The lasing action is usually obtained in a gas laser by subjecting
it to an electric discharge (the alternative being chemical or gas
dynamic excitation). The energetic electrons provided by the
discharge collide with the active gas particles (atoms or molecules)
which are excited to their higher energy levels from which they will
```

spontaneously descend to lower energy levels. The excess of energy

```
is emitted in the form of photons or light quanta.
If an excited atom or molecule is struck by one of these photons
it will be stimulated to change to a lower energy state thus
producing another photon. This amplification is the basic laser
mechanism. (The word LASER standing for LIGHT AMPLIFICATION BY THE
STIMULATED EMISSION OF RADIATION).
To achieve this optical gain it is necessary that the population
density of particles in the upper energy level exceed that in the
lower energy level (known as a "population inversion"). It is
also necessary that the absolute number of atoms or molecules ex-
cited to the upper level be large and that the gas particles leave
the lower laser level just as fast as they arrived from the
upper level. So the depopulation or de-excitation of the
particles in the lower laser level is just as important as the
ground state to the upper laser level, since a particle that
has already contributed to the laser output must return to the
ground state so it is available again for excitation to the
upper level in order to produce additional laser power.
The quantity of energy wasted by the particle in returning from the
```

```
between the energy needed to excite the particle to the upper laser
level and the energy of the photon of light which is emitted when
the particle makes the transition from the upper laser level to the
lower laser level; so the absolute maximum efficiency of the laser
system is given by the emitted energy,divided by the excitiation energy. For
a carbon dioxide laser the maximum theoretical, or quantum, efficiency is
approximately 45%.
In practice the efficiency of the gas laser is lower than its quantum
efficiency, which implies that there is not a perfect state of
collision between an atom and an energetic electron in the gas
discharge.
Some techniques have been developed for the excitation of the gas
laser in the discharge, such as electron-beam-sustained, ultraviolet
radiation, radiofrequency-stabilized., etc. The ideal selection
of these excitation mechanisms, combined with a high quantum efficiency
could be the prescription for obtaining a high working efficiency in
gas lasers.
The electron energy level spectra of molecular gases is extremely
complicated. However, a molecule can also have energy levels
```

```
arising from vibrational and rotational motion. Thus for a given
electron configuration of a gas molecule, there are several almost
equally spaced vibrational levels, and for each vibrational level
there are a number of rotational levels. Such excited states are
of low energy and hence usually emit photons in the infra red end of
the spectrum.
```

The use of molecular gases has been found useful for continuous-wave
laser oscillation; the vibrational-rotational levels belonging to the
electron ground state of the molecule are ideal for efficient and
powerful laser systems in the infrared region. The vibrational levels
of the electron ground state are very close to the ground level of the
molecule, and thus the laser photon energy is a sizable fraction of
the total energy needed to excite the molecule from the ground state
to the upper laser level. The result is a very high quantum efficiency
compared with that of an atomic-gas infrared laser. In addition,
since the vibrational levels are close to the ground state of the
molecule, almost all the electrons present in the discharge will be
effective in the required excitation process. This fact ensures a

```
high working efficiency as well as high power output, because at
these conditions a large population density of molecules in the
upper laser can be obtained.
Carbon dioxide has been found suitable for continuous-wave laser
oscillation because it is one of the simplest of the triatomic
molecules. Moreover, a large amount of spectroscopic information
exists about its vibrational-rotational transitions. The carbon
dioxide molecule, as is well known, is linear and symmetric in
configuration and has three degrees of vibrational freedom as it
can be seen on right top fig. 1-1. In the first degree, atoms
of the molecule vibrate along the internuclear axis in a symmetric
manner; the mode of vibration is called the symmetric stretch
mode and is denoted, }\mp@subsup{W}{1}{}\mathrm{ . In the second symmetric mode of
vibration, the oscillation of the atoms is perpendicular to the
internuclear axis; this mode is called the bending mode and
is denoted }\mp@subsup{山}{2}{
vibration along the internuclear axis and is denoted N}\mp@subsup{N}{3}{}\mathrm{ . The
energies of the vibrations are quantized by the rules of
quantum mechanics and as they are all different, the carbon
```

```
dioxide molecule can be excited to have any linear combination
of the three individual modes of vibration. For this reason
the vibrational state of the molecule must be described by the
three quantum numbers, \mp@subsup{|}{1}{},\mp@subsup{N}{2}{},\mathrm{ and }\mp@subsup{N}{3}{}\mathrm{ , which represent the quantum}
of the \mp@subsup{N}{1}{},\mp@subsup{H}{2}{},\mathrm{ and }\mp@subsup{H}{3}{}\mathrm{ modes of vibration to which the molecule is}
excited and then a description of a given vibrational level would
accordingly take the form ( }\mp@subsup{H}{1}{}\mp@subsup{W}{2}{}\mp@subsup{W}{3}{\prime})
The energy-level diagram of some of the low-lying vibrational states
of carbon dioxide is shown in fig l.l, where the various vibrational
levels with different quanta in modes }\mp@subsup{W}{1}{},\mp@subsup{W}{2}{}\mathrm{ and }\mp@subsup{W}{3}{}\mathrm{ form equally
spaced ladders. The lifetime of carbon dioxide molecules in the
various states is shown together with the probability of
excitation by electron impact from the ground state. The level
designated 001 is suitable for the upper faser level and the 100 and
020 levels form the respective lower laser levels. The 001 -> 100
vibrational-rotational transitions produce infrared radiation near
10.6 microns wavelength and from this lower level decays to the
ground state through radiative and collition-induced transitions
to the lower 010 level, which in turn decays to the ground state.
```

```
A similar mechanism can be taken by 001 }->020\mathrm{ vibrational-rotational
transitions to produce infrared radiation near 9.6 microns wavelength
and from this lower level decays to the ground state as in the above
case.
Particularly important in raising the working efficiency of carbon
dioxide lasers is the fact that nitrogen has only one vibrational
state and the energy level of this state is almost identical to the
(OOL) vibrational state of carbon dioxide. This means that by
adding nitrogen to the carbon dioxide more of the energy in the
electric discharge is converted to a level similar to that of (001)
CO}\mp@subsup{2}{2}{-}\mathrm{ . The nitrogen can only lose its excitation energy by collision
with a CO}2\mathrm{ molecule or the container walls.
    Helium is also added to the lasing gas mixture to increase its
thermal conductivity and to stabilise the electric discharge.
```


fig 1.1 oscillation modes and vibrational energy levels of carbon dioxide and nitrogen molecule.

Gas Contamination

```
One of the limitations in operating high power continuous wave \(\mathrm{CO}_{2}\)
lasers has been the effects of small concentrations of impurities
which may be present in the fresh \(\mathrm{CO}_{2}-\mathrm{N}_{2}-\mathrm{He}\) lasing gas mixture
or generated in the chemical reaction during the discharge (5).
In fig l.2, are shown some of the various reaction products that
can occur in the electric excitation of the mixture \(\mathrm{CO}_{2}-\mathrm{N}_{2}-\mathrm{He}\),
where oxygen-nitrogen reactions are the worst contaminants and \(\mathrm{NO}_{2}\)
is the most adverse to laser efficiency.
```

The presence of contaminants in the carbon dioxide electric-
discharge laser alters the discharge impedance which is determined
by the balance achieved between the production and loss of charged
particles. The neutral gas temperature is determined by the power
input to the discharge and is therefore a function of the discharge
impedance; moreover, small-signal gain is degraded by its
extreme sensibility to changes in the gas temperature. Thus the
impurities either upset the plasmas stability, leads to overheating
of the gas, or to absorption of the radiation in the cavity.
Variations in impedance and small-signal gain may also be produced
by plasma instabilities, which manifest themselves in two

```
different forms: in the first there are moving striations in the
positive column, which do not alter the glow character of the
discharge, but cause fluctuations in the sidelight emission. These
striations may have the effect of allowing the discharge to operate
at a lower average electric field than in their absence; the second
form of instability is the sudden constriction of the glow into a
bright filament, which may be accompanied by a drop in impedance
and degradation of the small-signal' gain.
```


NITROGEN-OXYGEN CONTAMINATION EFFECTS

CONTAMINANT	EFFECTS
NO	GAIN AND PLASMA IMPEDANCE BEGAN TO DECREASE AT 0.1% (*) , COMPLETE LOSS OF GAIN 1.5%.
NO_{2}	0.04\% CAUSE PLASMA INSTABILITIES; COMPLETE LOSS OF GAIN AT 0.1%.
$\mathrm{N}_{2} \mathrm{O}$	0.08\% CAUSED PLASMA Instabilities; complete LOSS OF GAIN AT 0.2%.

FIG. 1.2 CHEMICAL REACTIONS IN GAS LASER.

* RELATIVE TO TIE TOTAL FLOW RATE. REFEIENCE 5.

$2 \quad \therefore$	SURFACE HEAT TREATING WITH LASER BEAM
2.1	Classification of metal surface cladding
2.1.1	PLASMA ARC-POWDER SURFACE CLADDING
2.1 .2	PLASMA ARC-ROD CAST SURFCAE CLADDING
2.1 .3	PLASMA ARC-ROD CAST-POWDER SURFACE CLADDING
2.2	LASER CLADDING
2.2.1	LASER BEAM DIAMETEK
2.2 .2	DILUTION IN SURFACE CLADDING
2.2.3	Materials
2.2.3.1.	BASE METAL
2.2.3.2	METAL CLADDING
2.2.3.2.1	316 STAINLESS STEEL
2.2.3.2.1.1	INFLUENCE OF PRINCIPAL CONSTITUENTS
2.2.3.2.1.1.	(2) ADDITION OF CHROMIUM
2.2.3.2.1.1.2	2 ADDITION OF NICKEL
2.2.3.2.1.1.3	3 ADDITION OF MOLYBDENUM
2.2.3.2.1.2	PhYSICAL MEIALLURGY Of aUSTENITIC STAINLESS

2.

Surface Heat Treating with a Laser Beam

```
In the field of heat treatment of the surface of materials, various
techniques have been developed making use of a laser beam, such
as surface hardening (3,6), glazing (7), alloying (6), and
cladding (8). The aim of the processes is to improve the surface
properties of metals.
Surface cladding, in which we are interested at present, is a
technique similar to conventional hardfacing. The process is
effected by using a controlled heat source, with the aim of melting
cast rod, powder alloys or both cast rod -powder alloy and causing
the cladding to flow onto the surface of a base metal.
```

The heat source could be oxygen-acetylene, flames, arc-plasmas,
electron beam, laser beam, etc. The one selected is made according
to may factors, such as economicsrate of production, quality,
equipment versatility, etc.
In this choice the laser is the latest and least understood process.
It has advantages, though, which are already apparent. It only
heats a small area, it is a chemically clean heat source, it is
easily automated, it can be operated in the air at atmospheric
pressure and it does not generate x-radiation. These advantages
distinguish it from all other heat sources.
2.1

Classification of Metal Surface Cladding

The ordinary industrial method for surface cladding metals is to
use an arc as a heat source with the cladding in the form of a powder, wire or both. This being the principal process with which laser cladding must compete. It is now described briefly. (Electroplating and cementation are not clading processes in the same sense, differing profoundly in the quality, structure and thickness of deposit).

Plasma Arc-Powder Surface Cladding

The adherence of the cladding using this technique is described
by R.S. Suchowski and E Garrabrant (9). The technique is similar
to the gas tungsten-arc process, except that it makes use of
a constricted arc and employs filler metal in powder form which
is directed through the arc in an argon atmosphere.

The powder is melted and the molten droplets joined to the base \wedge
metal under a shielding gas. A sketch is shown in opposite of the next page.

The results obtained using this technique have been found acceptable
industrially, as it gives low dilution, a high deposition rate

Schematic view of plasma arc weld sufacingelectrode holder (9).

Schematic representative of the plasma arc hot-wire surfacing process (10).

```
and good deposition thickness.
```

2.1.2 Plasma Arc-Rod Cast Surface Cladding

Another process has been developed for metal surface cladding in which plasma arc and hot wire are used; Garrabrant E.C. and R.S. Zuchnowsky (10) describe the process. Basically the technique employs two sources of heat, one of them for the desired fusion on the base metal, by a transferred plasma arc with its direct current power supply; and the second one for the filler metal: this source of heat comes from the resistance heating of the two filler metal wires, and this is done with an alternating current power supply, the filler wires being continuously fed to the
molten area where the electric circuit is completed. In
conclusion, the function of the plasma arc is to melt only the
top of the substrate and completely melt the filler metal which
was heated previously, the system being shielded through the plasma
arc torch. The results have been successful and are finding
industrial application. A sketch is shown in opposite.

Plasma Arc-Rod Cast-Powder Surface Cladding

The third method for surface cladding metals to be described in


```
The present report is to make use of a plasma arc, cast rod,
and filler powder metal. This process is called bulk process
weld using flux (11). Basically the technique consists in
feeding metal powder from an electric metalmeter to the workpiece
    just ahead of the consumable electrode wire, which at the same
time controls the flow rate of the powder and keeps the ratio
powder/wire constant. The powder is melted and mixed with the
electrode when an arc is passed between the electrode and the
base metal as well as the granular metal. A sketch is shown in opposite.
The "bulk" process has advantages (11) over other surfacing
processes(HotRolled Ameled Bar Mill Clad, Manual Surface Deposit,
Gas Metal Arc Surface, Cladding) for its low dilution, high
deposition rate, corrosion resistance, and low cost.
Laser cladding is the technique of passing a defocused laser
beam over the powder alloys to be melted and causing the cladding
alloy to flow onto the surface of a base metal to provide improved
properties, such as corrosion or wear resistance.
Laser beams offer potential capability for precise control of
```

2.2 Laser Cladding

```
energy to melt a powder alloy both in power and spatial
distribution. The metallurgical bond is excellent with a very
low dilution and high deposition rate.
Dilution can be defined as the degree of admixture between the
cladding alloy and base metal. Basically low dilutions in surface
cladding are obtained by the control of heat input and power density
with elimination of local melting of the base metal which would
cause excess dilution of the clad surface. Dilution is undesirable
because there is usually a substantial loss of properties as
dilution of the cladding metal increases. However at the interface
some dilution is required for a good metallurgical bond. Though
the thinner this interface can be the less expensive cladding
material will be required.
It is essential to know the diameter of the laser beam on the work
piece; in fact it can be argued that a knowledge of this
independent variable is more important than a knowledge of the
total laser power (12). Consequently a good optical beam is
```


2.2.1 Laser Beam Diameter

```
desired. In order to achieve this, it is essential that the
gas laser medium exhibit either no significant refractive
distortions, or small fixed optical distortions which can be
compensated by corrective optics techniques.
There are many difficulties in measuring the beam diameter.
Single isotherm measuring techniques are simple and quick to
use, e.g. burn marks in acrylic, asbestos board, or paper, as
used in this work. But they are not accurate since the
measured diameter is a function of the exposure time of the
beam power. Methods of measuring multiple isotherms are very
much more complicated to use, but are more accurate if they
can be evaluated. e.g. photon drag detector, linear response
photographic paper. The problem of evaluation lies in the
fact that the power distribution often has multiple peaks in
it, so what is the definition of the diameter then?
Normally the beam diameter is defined as that radial location
on a GAUSSIAN beam profile where the power intensity W/mm}\mp@subsup{}{}{2
has fallen to 1/e 2}\mathrm{ of the central value.
With irregular beams this value can be found by passing the beam
```

```
through variable apertures to find which size produces (1-1/ e}\mp@subsup{}{}{2}
of the total power or the beam can be used to heat the surface of
a block, the temperature rise measured and the rate compared to
the heating rate from a Gaussian beam via a mathematical model :
the thermal rise time method (12). This gives the gaussian beam diameter equivalent
to the heating effect of the incident beam.
The laser used here, a fast axial flow 2kW CW CO
manufactured by Control Laser Ltd., produced a near Gaussian
beam of 22mm exit diameter from the cavity.
```

The process of cladding requires this power to be accurately and
uniformly spread over a certain area ($\sim 1-2 \mathrm{~mm}$ diameter). This
careful control of power means a control of the amount of base metal
and hence dilution.
In these experiments the beam was simply defocused, thus any
irregularity in the beam profile or mode structure would be
reflected in the process. To avoid this the beam can be spread
by restoring from oscillating mirrors, or reformed by reflecting
off faceted mirrors as practised at Culham Laboratories and
Avco Ltd. Both these processes allow the greater freedom of using
a square or rectangle of heat in place of a circle.

Recently Ream S.L (13) has recommended using a convex beam integrator in laser heat treatment. This technique consists in dividing the output beam into small parts and applying each one to the same localization of the work surface making use of a mirror with convex shape and covered with irregular facets. Problems were encountered due to diffraction and interference effects but these could possibly be eliminated by use of other optical techniques.

2.2.2 Dilution in Surface Cladding

Dilution is the degree of admixture between the deposited metal and the base metal, or, quantitatively, fig 2.1 defines dilution and illustrates that the percentage of dilution equals the amount of base metal melted (area B), divided by the sum of the clad metal deposited and base metal melted (area $A+$ area B), the quotient of which is multiplied by 100.

$$
1 \% \text { dilution }=\frac{B}{A+B} \quad \times 100
$$

where:
$A=$ partial area of deposit on the base metal (mm ${ }^{2}$)
$B=$ Partial area of deposit penetrated on the base metal (mm^{2})

```
    A + B = total area of deposit on the base metal (mm}\mp@subsup{}{}{2}
The level of dilution, which affects the composition and
properties of the clad layer, is dependent on the quantity of
base metal melted ( control of the heat input) and the level
of turbulence in the melt pool. The laser generated melt
pool has only convection and surface tension forces causing
turbulence; which compares favourably with arc processes and
flame processes where there are also electromagnetic and
aerodynamic forces stirring the melt.
Some intermixing at the interface is required in order to get
a good metallurgical bond and avoid having an abrupt change in
the coefficient of expansion. However this can be very small
(lOpm). The smallerit is the less will be the quantity of
cladding material needed.
```


$\%$ DILUTION $=\frac{B}{A+B} \times 100$

FIG 2.1 DILUTION OF SURFACE CLADDING. THE BEAD, A, AND PENETRATION, $B, ~ B O T H$ AREAS A AND B ARE THE SAME cladding alloy, but are shaded differently to illustrate the calculation of dilution.

2.2.3.
 Materials

2.2.3.1 Base Metal

The material used in this research as base metal was mild
steel (En 3) with chemical composition.
$\% \mathrm{C} \quad \% \mathrm{Mn} \quad \% \mathrm{P}$
$0.16 / 0.24 \quad 0.50 / 0.90 \quad 0.05 \mathrm{MAX} \quad 0.05 \mathrm{MAX}$

This type of steel is one of the most widely employed and generally used of all engineering materials.

En 3 steel is readily weldable by ordinary fusion methods and that must be taken into account in making surface cladding on it.

The specimens used were in the form of rolledplate of 12 mm
thickness, 75 mm width and 300 mm length respectively, and
were cleaned to remove impurities from the surface.by
surface grinding and degreasing.
2.2•3:2 Metal Cladding
2.2.3.2.1 Stainless Steel

Austenitic stainless steel was used in powder form type 316
of - 300 and 300 mesh and chemical composition.
$\% \mathrm{C} \quad \% \mathrm{Cr} \quad \% \mathrm{Ni} \quad \% \mathrm{Si} \quad \% \mathrm{Mn} \quad \% \mathrm{P} \quad \% \mathrm{~S} \quad \% \mathrm{Mo}$
$0.0816 .5 / 18.510 .0 / 13.0 \quad 0.20 / 1.00 \quad 0.5 / / 2.00 .04 \quad 0.03 \quad 2.0 / 3.0$

First of all stainless steels are a group of ferrous alloys
that have at least 12% chromium necessary to produce passivity
which is the principal characteristic producing extremely high
levels of corrosion resistance.

Type 316 stainless steel is atypical austenitic stainless
steel with additions of molybdenum (2.0/3.0\%) for the
stabilization of the carbides present in it: This material
is used for its excellent corrosion resistance in chemical
equipment and process plant industries, as well as where a
clean surface and hygienic conditions are essential.
2.2.3.2.1.1 Influence of Principal Constituents
2.2.3.2.1.1.l Addition of Chromium

Chromium, according to classical theories, acts by forming a
surface film on the metal, compressing oxides impermeable to
and insoluble in corrosive media.

2.2.3.2.1.1.2 Addition of Nickel

```
The addition of nickel to the steel is made with the aim
of stabilizing austenite and modifies the structure of the steel,
and gives rise to an alloy with improved ductility, high
temperature mechanical strength and weldability. The addition
of sufficient nickel to the steel results in a fully
austenitic structure at room temperature.
```

2.2.3.2.1.1.3 Addition of Molybdenum

The passivity and chemical resistance of stainless steel are
influenced by addition of molybdenum to reduce acids and chloride solutions where the passivity of chromium itself is less stable. Molybdenum; \mathfrak{l} like chromium and silicon, is a ferrite former and stabilizer.

In addition to the effects of various elements on corrosion resistance and mechanical properties, a wide range of grade
steels can be obtained according to various services
requirements.

316 austenitic stainless steel offers a wide range of
mechanical properties, such as good ductility and modest strength,

```
so for its high toughness is suitable for low temperatures
as well as offering high strength at elevated temperatures
(good creep).
Adstenitic stainless steels with a high percentage of nickel
cannot be hardened by heat treatment, but with a low
percentage of nickel some are age-hardenable as well as
all being readily strainhardened by cold forming.
Austenitic stainless steels are readily welded by all common
fusion processes as well as easily cut, but because of their
high ductility and rapid workhardening some precautions should
be taken in machining.
```

2.2.3.2.1.2 Physical Metallurgy of Austenitic Stainlee Steels
The chemical composition of type 316 stainless steel, as well
as some grade austenitic, was so designed that when these alloys
are solidified from the melt the resultant austenitic structure
has a percentage of delta-ferrite, which is useful for avoiding
hot cracking during solidification.

CHAPTER 3

3	EXPERIMENTAL PROCEDURE
3.1	STAINLESS STEEL SURFACE CLADDING
3.2	MONEL SURFACE CLADDING
3.3	TIN-BRONZE SURFACE CLADDING
3.4	SINGLE TRACK DEPOSIT
3.4 .1	SPECIMEN PREPARATION BEFORE CLADDING
3.4 .2	SPECIMEN PREPARATION AFTER CLADDING
3.5	MULTIPLE TRACK DEPOSITS
3.5.1	SPECIMEN PREPARATION BEFORE CLADDING
3.5 .2	SPECIMEN PREPARATION AFTER CLADDING
3.6	MICROHARDNESS MEASUREMENT
3.7	CALCULATING DILUTION
3.8	EQUIPMENT
3.8.1	CO_{2} GAS LASER OF 2,000 WATTS
3.8 .141	OPTICAL AND SUPPORT STRUCTURE SYSTEM
3.8.1.2	POWER SUPPLIES AND CONTROLS
.3.8.1.3	WATER FLOW SYSTEM
3.8.1.4	GAS FLOW SYSTEM
3.8.1.5	MOVEMENT OF WORKPIECE

```
Experimental Frocedure
A Control Laser continuous wave }\mp@subsup{\textrm{CO}}{2}{}\mathrm{ laser of 2 kilowatts at Imperial
College was used as the heat source for cladding powder
type 316 stainless steel, monel and tin-bronze onto a substrate of
mild steel.
Stainless Steel Surface Cladding
Surface cladding witti 316 stainless steel was done under
    different operating conditions; of the following independent
    variables:
    (a) Laser beam power, (W)
    (b) Laser beam diameter, (mm)
    (c) Transverse speed, (mm/s)
    (d) Powder bed thickness, (mm)
    The operating conditions are shown in Appendix 1.1
    For multiple runs two more variables were included:
    (e) overlap, (mm)
    (f) Preheat, ( }\mp@subsup{}{}{\circ}\textrm{C
    The powder was replaced on the substrate and the laser
    beam transversed through the powder.
```

Monel Surface Cladding

Surface cladding with monel powder was done in two different
ways, The first used a procedure similar to 316 stainless
steel surface cladding, the effect of the same variables being studied.

In the second method the powder was blown into the laser
interaction zone making use of a deloro-stellite flame spray gun which introduced another variable:
(e) Mass flow rate of powder, $(\mathrm{Kg} / \mathrm{Hr})$

The different operating conditions are shown in Appendix 1.3, applying the same technique of blowing the powder. Multiple runs were done with two additional variables:
(g) Overlap, (mm)
(h) Preheat, (${ }^{\circ} \mathrm{C}$)
3.3

Tin-bronze Surface Cladding

15 single runs and 4 multiple runs of surface cladding with
bronze powder were done. The variables explored on a single run nere:
(a) Incident laser beam power, (W)

```
(b) Laser beam diameter, (mm)
(c) Traverse speed, (mm/s)
(d) Powder bed thickness, (mm)
On the other hand for a multiple run only one additional variable
was included:
(e) Overlap, (mm)
The operating conditions are shown in Appendix 1.2
3.4 Single Track Deposits
The objective in making these layers was to find the
behaviour of the laser beam under different operating conditions
and to find the optimum operating region defined from: continuous
track, good adherence, high deposition rate, low dilution and
the minimum possible heat affected zone.
3.4.1 Specimen Preparation Before Cladding
The base metal of mild steel to be clad was cleaned with alcohol
to take off impurities and mounted on a movable x-y table beneath
the laser nozzle. This table was hydraulically actuated to give
controlled and steady speeds to over a diotance of 18 inches.
```

```
The baseplate was positioned perpendicular to the laser nozzle
at a carefullly measured working distance from the nozzle. A bed of
powder of known thickness was laid on it. The laser beam diameter
on the base plate surface was calculated from a knowledge of the
focal position and nozzle plate working distance. The specimen
was moved away from the laser nozzle, a speed selected and the
specimen was passed under the laser nozzle. When the specimen
was under it, the beam was switched on and the powder was melted
by the laser beam, solidifying as a single track behind the path
of the beam. The arrangement for making single-runs is shown
in Fig}3.1
For each run a record was made of the run number, total power,
working distance, traverse speed and powder thickness. For the next
mun the unmelted powder was removed and reformed for tha next
traverse with different operating conditions, and so on.
```

3.4.2 Specimen Preparation after Cladding

All the resulting beads were photographed and cut sectionally
as well as mounted in resin, polished and etched in a 2% nital

```
solution that developed only the base metal structure which was
observed by light microscopy to analyse the interface between surface
cladding and base metal, resulting structures, and underbead
cracks. All the sectional views of the beads were photographed,
from which measurements were made of the resulting bead dimensions.
Their respective sectional areas were calculated, after which the
percentage dilution and the deposition rates as well as the depth
of the heat affected zone were determined. Contact angles were
also measured. All working conditions and results are shown in
Appendix 1 and II.
Selected specimens were polished and etched in different solutions
with the aim of developing the cladding alloy structure. It was
found that the K.alling's reagent (2g of Cu Ci, 40 ml of MCl,60
ml ETHANOL (95%) and 20 ml of WATER - developing time was around
15 minutes) and a mixture of acid solutions(10 ml of HNO
ml of HCl and 30 ml of H2O - developing time was around 5 minutes)
were the most appropriate developer of the stainless steel
structure. The solution of acids seem to give the best results.
On selected specimens microhardness measurements across the
surface cladding were taken.
```


FIG 3.1 ARRANGEMENT OF THE APPARATUS FOR MAKING A SINGLE BEAD SURFACE CLADOING.


```
repeatedly forwards and backwards through the powder bed
in the x-direction with a set movement in the Y-direction
between passes. The Y-direction increments for each specimen were
varied to allow the effect of overlap to be studied.
Specimen Preparation after Cladding
The top view of the runs MI to M2O of stainless steel, BM14
to BM19 of tin-tronze, and M45 to M49, M110 to M112 of monel
was photographed, and each one was sectioned, polished, and
etched in a 2% nital solution, as for the single tracks to
study the different morphology presented in the interface
between the surface cladding alloy and the base metal. The
sectioned surface cladding was photographed with the aim of
showing the effects of the degree of preheat and overlap.
All specimens were polished and etched in K:alling's reagent,
and the resulting structures were analysed at high magnification
and selected samples were photographed. Again all specimens
were polished and etched in a mixture of acid solutions and the
resulting structures were analysed and photographed. Both etching
in Kalling's reagent and mixture of acids were found to be
best for developing stainless steel structures.
```

For the determination of some mechanical properties of the surface
cladding, all muliple-run samples were sent to British Steel

Corporation (Scottish Laboratories) who performed bend and shear
tests according to ASTM A264 for evaluation of the ductility and
adherence of the surface cladding onto the base plate. The
results are shown in table $A, 3$ and Appendix [I.3.

FIG 3.2 ARRANGEMENT OF THE APPARATUS

FIG 3.3 PHOTOGRAPH OF THE ARRANGEMENT OF APPARATUS FOR MONEL SURFACE CLADDING.
3.6 Microhardness Measurements

The microhardness measurements were done on akashi micro
hardeness tester which had been fitted with a load of 200 g .

The measurements were taken on a transverse section from the top of the surface cladding through the interface and into the substrate. The selected specimens were polished and etched in 2% nital solution followed by the microhardness measurement.

The vickers hardness number can be estimated from the indentation by a conversion equation, or by standard tables.

The operation of the machine is to indent the specimen structure with the previously set load (200 g) and then take an ocular measurement of the resulting indent (μ).

The size of the indent is converted as the hardness value.
3.7 Calculating Dilution

All specimens were cut sectionally and polished as well as
etched in a 2% nital solution, the aim being to distinguish
the interface between surface cladding and base metal. The section view of each specimen was projected on a projector; a picture was drawn of each one; and from that, and taking the surface of the substrate as reference, the bead and penetrating areas of the surface cladding were calculated. By applying the equation described in section 2.2 , the percentage of dilution was calculated. The resulting dilutions are shown in Appendix II.
3.8 .1
CO_{2} Gas Laser of 2 Kilowatts

The Control Laser 2 kilowatts continuous wave laser at

Imperial College has been developed by Control Laser Ltd (previously British Oxygen Co., Industrial Power Beams Division) and the British Welding Institute.

The system is operated semi automatically with safety interlocks.

Basically the system consists of five subsystems: optical
and support structure system, power supplies and control gas flow system, water flow system and beam manipulator.

```
Optical and Support Structure System
The optical system consists of four pairs of discharge tubes
which are supported on a rigid structure, four meters long;
These form the laser cavity.
The total optical cavity is 8 meters long folded in the
middle. The output beam is passed through a gallium arsenide
window which isolates the cavity vacuum from the atmosphere.
A pneumatically operated shutter is provided after the output
window for beam on-off operation, when the beam is "off"
the shutter mirror reflects the output beam into a water
calorimeter to monitor the power. There is a fifth mirror
which is used for directing the output beam through a lens
(KC1) to the workpiece.
```

3.8.1.2 Power Supplies and Controls
The overall efficiency of the laser in converting
electricity into optical power is around 10-20\%. Thus
at 2 kw optical power $10-20 \mathrm{kw}$ of electrical power has
to be discharged into the tubes.

Thus the laser power supply is up to 100 amps at 450 volts.

```
This three phase system passes through a transformer
after which it is rectified into four ballasted supplies
of up to }30,000\mathrm{ volts at 200mA. This is sufficient to
make the tubes self starting.
The remaining power is required to drive the gas blower.
If any of the essential services fail then the laser is
automatically shut down. The essential services are
cooling water supplies, gas supplies, or inspection covers
opened.
Water Flow System
Three water flows are provided for cooling system components.
The primary water circuit is used for cooling of the inlet
block to the ovens, the gas heat exchangers, the rootes
blower and the cathode box. The secondary water circuit
is used for cooling all mirrors and the output window.
A tertiary deionised water circuit is used in the
calorimeter.
If any of these circuits fails the laser is switched off.
```

3.8.1.4 Gas Flow System

```
A roots blower is provided for circulating the lasing gas
mixture-carbon dioxide, nitrogen and helium-through the laser
cavity at the rate of 2,500 cubic feet per minute. Three
heat exchangers are provided, one of them situated at a
point before the gas mixture passes through the blower and the
other two after the gases have been passed through the blower.
```

Their purpose is to cool the gas to bring the carbon dioxide
back to its ground state (see section 1.3) A small gas
purge reduces the build up of contaminants. This purged
gas can be passed through a catalyst in the ovens and so
recycled. This reduces the gas consumption by around a factor
of 5 .
An illustration of the control laser 2 kw fast axial flow
CO_{2} laser, which was used for these experiments, is shown
in Fig 3.4.
3.8.1.5 Movement of Workpiece

The workpiece was mounted on an x - y table which was situated
below the stationery laser nozzle. This table was moved in
x - y direction at a continuous speed by a hydraulic piston
controlled with a setting on a needle valve. The hydraulics
were manufactured by "Double A Hydraulics". A photograph
of the equipment is shown in Fig 3.5.


```
FIG 3.4 BOC 2 Kw CO2 LASER-GAS AND DISCHARGE PATHS. ( REF. 14 )
```


RESULTS
4 DESCRIPTION OF THE RESULT TRACK DEPOSITS
4.1 316 STAINLESS STEEL SURFACE CLADDING
4.1.1 HEIGHT AND WIDTH - 316 STAINLESS STEEL
4.2 TIN-BRONZE SURFACE CLADDING
4.2.1 HEIGHT AND WIDTH-TIN-BRONZE
4.3 MONEL SURFACE CLADDING
4.3.1 HEIGHT AND WIDTH-MONEL
4.4 DEVELOPED SURFACE CLADDING
4.5 QUANTITATIVE DILUTION
4.5.1 316 STAINLESS STEEL-DILUTION IN SURFACE CLADDING
4.5.2 TIN-BRONZE-DILUTION IN SURFACE CLADDING
4.6.1 DEPOSITION RATE FOR 316 STAINLESS STEEL
4.6.2 DEPOSITION RATE FOR TIN-BRONZE
4.7 SOLIDIFICATION IN TYPE 316 STAINLESS STEEL

SURFACE CLADDING
4.8 METALLOGRAPHIC OBSERVATIONS
4.8.1 316 STAINLESS STEEL SURFACE CLADDING
4.8.2. MICROSTRUCTURES IN THE HEAT-AFFECTED ZONE SUBSTRATE

4.9	SURFACE CLADDING COMPOSITION
4.10	RESULTANT HARDNESS IN THE CLAD LAYER
4.10 .1	RESULTANT HARDNESS IN 316 STAINLESS STEEL
	CLADDING
4.10 .2	RESULTANT HARDNESS IN THE HEAT-AFFECTED ZONE SUBSTRATE

4.10 .3	Resulant hardness on Selected specimens
	316 Stainless steel surface cladding
4.11	resultant surface cladding on multiple run deposits
4.12	metallographic observation on multiple runs
4.11 .1	316 Stainless steel gurface cladding
4.12 .2	HEAT-AFFECTED ZONE SUBSTRATE
4.13	WEtting and spreading of molten cladding alloy on a base
	METAL
4.14	viscosity in surface cladding
4.15	mechanical properties in surface cladding
4.15 .1	bend test
4.15 .2	SHEAR TEST

4. Description of the Resultant Track Deposits

To produce continuous single tracks some melting of the base metal must take place in order to aid wetting of the substrate by the cladding alloy. The less melting that occurs the less will be the resultant dilution. It was found that the continuity and overall structure of the deposit was dependent on the specific energy applied ($\mathrm{P} / \mathrm{DV}, \mathrm{J} / \mathrm{mm}^{2}$). A.t high values of the Specific Energy considerable penetration of the base metal occured giving high levels of dilution, flat or semi-flat bead profile (akin to a bead on plate weld). The whole event being relatively wide with a large heat affected-zone ($H A Z$) in the substrate.

At intermediate values of the specific energy a semi-circular trace having good adhesion and low diltuion was created. The contact angle between the base plate and the cladding increaseed with decrease in specific energy At low values of the specific energya digcontinuous trace was produced with a minimal heat affected zone.

316 Stainless Steel Surface Cladding

The range of values of the specific energy for the three types of track just described were a function of the powder bed thickness as described in the table 4.1. The operating conditions for all specimens are

TABLE 4.1 QUALITY OF TRACKS FORH 316 STAINLESS STEEL

\begin{tabular}{|c|c|c|c|}
\hline resultant tracks \& BED DEPTH (m) \& \begin{tabular}{l}
SPSCIFIC ENERGY \\
BANGE, \(\mathrm{S} \mathrm{J} / \mathrm{m}^{2}\)
\end{tabular} \& SPECIMEN NUMBERS (see Appendix 1.1 \\
\hline deEp penethation tracks \& \begin{tabular}{l}
1.00 \\
0.50 \\
0.25
\end{tabular} \& \[
\begin{aligned}
\& P / D V>44.0 \div 8.0 \\
\& P / D V>35.0 \div 8.0 \\
\& P / D V>20.0 \div 8.0
\end{aligned}
\] \& \\
\hline good tracks \& 1.00
0.50
0.25 \& \[
\begin{aligned}
\& 44.0 \pm 8.0>P / D V> \\
\& 14.0 \pm 5.0 \\
\& 35.0 \pm 8.0>P / D V> \\
\& 11.0 \pm 5.0 \\
\& 20.0 \pm 8.0>P / D V> \\
\& 10.0 \pm 5.0
\end{aligned}
\] \& ```
55, 56, 59, 510-513, 520
s59, 560, s63, 565,
s66, s67-572, s116 -
S124 \& Fig 4.2
S26-S34, S37, S38, S42,
S75-S78, S80-S83, 3134-
S139
515-519
``` \\
\hline \begin{tabular}{l}
discontinluous \\
tracks
\end{tabular} \& 1.00
0.50
0.25 \& \(P / D N<14.0 \pm 5.0\)
\(P / D V<11.0 \pm 5.0\)

$P / D V<10.0 \pm 5.0$ \& ```
s2, s3, 37, S21, S61
s64, s66, 567, s111, s112
S115, S121, S127, S128,
S129
535,539,540, 543,544
S46, s47, 573, 574, 584,
s86, s87, 589, s90-596,
S108, 5109, S110, S130,
S132,S140,S141 \& Fig 4.1
S22-S25, S51, S52, S55,
s56 558, 599, 5100,
Slo1, S102, S104, S105,
S107,5108, 5143, S144,
S146, S147, S148

``` \\
\hline
\end{tabular}

\footnotetext{
FIG 4.1 HIGH PENETRATION AND DISHDMOGENEOUSDEPOSITS; POWER=1 B00 W; BEAM DIAMETER= \(=7.2,7.2\) AND 5.8 MM; SPEED \(=5,15\) AND 5 MM/S; POWDER THICKNESS \(=0.50 \mathrm{MM}\).
}

FIG 4.2 HOMOGENEOUS DEPOSITS; POWER=1600 W ; BEAM DIAMETER \(=4.3\) MM; SPEED \(=15,20\), AND \(25 \mathrm{MM} / \mathrm{S} ;\) POWDER THICKNESS \(=1.00 \mathrm{MM}\).

The resultant height and width of a track were found to be dependent on both specific energy and initial bed depth as shown in graph 4.3-4.8, and a plot of deposit ratio vs specific energy is shown in graphs 4.9-4.11. Likewise the heat affected zone depended on both specific energy
and bed depth. Graphs 4.12-4.14
By selecting samples of equal laser power and beam diameter
(e.g s4 - S7, 58 - S13 etc) it is possible to see a trend
in bead height and width with traverse speed in figs 4.15
- 4.20. It should be noticed that the permissible operating
range of specific energy varies to bed depth as illustrated
in fig 4.21.
It should be noted that the operating region for producing
good tracks (as represented by the range in Specific
Energy) is smaller with shallow beds, and very thick beds.
```

This introduces the idea of their being an optimum bed
depth for laser cladding.
No porosity in the stainless steel track was noticed
at the interface of tracks. The principal runs recorded
in Appendix 1.1 were all pore free.

```


FIG 4. 3 bead height (mm) vs energy Iunit area, p/ov (J/mm²) FOR A 1.00 MM POWDER THICKNESS.

FIG 4.4 bead height (mm) vs energyiunit area. piov (J (mm²) FOR A 0.50 MM POWOER THICKNESS.

FIG4.5 BEAO HEIGHT (MM) vs ENERGYIUNIT AREA, PIDV (J/MM²) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.6 BEAD WIDTH (MM) vs ENERGYIUNIT AREA, PIDV (J/MM²) FOR A 1.00 MM POWDER THICKNESS.

FIG 4.7 BEAD WIDTH (MM) vs ENERGY/UNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A 0.50 MM POWDER THICKNESS.

FIG 4.8 BEAD WIDTH (MM) vs ENERGY/UNIT AREA, PIDV (J/MM²) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.9 RATIO [W/H]vs ENERGY/UNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A 1.00 MM POWDER THICKNESS.

\(\begin{aligned} \text { FIG } 4.10 & \text { RATIO }[W / H] V S ~ E N E R G Y / U N I T ~ A R E A, ~ P / D V ~(J / M M ~\end{aligned}\)

FIG 4.11 RATIO \([W / H]\) vS ENERGY/UNIT AREA, P/DV (J/MM \({ }^{2}\)) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.12 DEPTH OF THE HAZ (HEAT-AFFECTED ZONE), (MM):vs ENERGY/ UNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A 1.00 MM POWDER THICKNESS.

fig 4.13 DEPTH OF THE HAZ (HEATAFFECTED ZONE), (MM) vs ENERGY/ UNIT AREA, PIDV (J/MM \({ }^{2}\)) FORA 0.50 MM POWDER THICKNESS.

fig 4.14 DEPTH OF THE haZ (heat-AFFECTED ZONE), (MM) vs ENERGY/ UNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.15 BEAD HEIGHT (MM) vs TRAVERSE SPEED (MM/S) FOR A 1.00 MM POWDER THICKNESS.

FIG 4.16 BEAD HEIGHT (MM) vs TRAVERSE SPEED (MMIS) FOR A 0.50 MM POWDER THICKNESS.

FIG 4.17 BEAD HEIGHT (MM) vS TRAVERSE SPEED (MM/S) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.18 BEAD WIDTH (MM) vs TRAVERSE SPEED (MM/S) FOR A \(1.00^{\circ}\) MM POWDER THICKNESS.

FIG 4.19 BEAD WIDTH (MM) vs TRAVERSE SPEED (MM/S) FOR. A 0.50 MM POWDER THICKNESS.

FIG 4.20 BEAD WIDTH (MM) vS TRAVERSE SPEED (MMIS) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.21 POWDER THICKNESS (MM) vs ENERGYIUNIT AREA, P/DV (J/MM²) FOR 316 STAINLESS STEEL.
4.2 Tin Bronze Surface Cladding

Tin bronze has a lower melting point than stainless steel and a different affinity for the base plate mild steel.

The runs were made with only a 1.00 mm powder bed depth and these showed the same trends in overall structure observed with the stainless steel. In an attempt to vary the surface wettability runs were made with a bed of only tin bronze powder, a bed where the tin bronze was covered by a layer of boric acid (which is used as a flux in bronzing) and a bed where the boric acid is mixed with the powder. The results are summarized in table 4.2 .

High values of specific energy were associated with some porosity in the clad trace.
"Good" traces had no noticeable porosity and in heat affected zone in
the base metal, probably due to lower melting point.
4.2.1 Height and Width of Tracks - Tin Bronze The effect of the boric acid was brighter and smoother tracks with slower traverse and similar with high traverses. The resultant tracks were smaller and widther as can be seen in graphs 4.24 and 4.25 , where the track height and width are plotted v.s specific energy and a plot of deposit ratio vs specific energy is shown in graph 4.26.

Likewise the heat affected zone was affected by the boric acid as shown in graph 4.27 and bead height and width vs traverse is plotted in fig 4.28 and 4.29.

TABLE 4.2 QUALITY OF TRACXS MADE YITH TIN-BRONZE

FIG 4.22 GOOD AND UISCONTINUOUS TRACKS, POWER \(=1500 \mathrm{~W}\), BEAM DIAMETER \(=2.00 \mathrm{MM}\) TRAVERSE SPEED \(=20,40\), \(\operatorname{AND} 80 \mathrm{MM} / \mathrm{S}\), POWDER THICKNESS \(=1.00\) MM, X3.

FIG 4.23 DIfferent cross section produced between
(a) TIN-bRONZE SURFACE CLADDing
(b) 316 stainless steel surface cladding

FIG 4.24 BEAD HEIGHT (MM) vS ENERGYIUNIT AREA, PIDV (JIMM²) FOR A 1.00 MM POWDER THICKNESS AND 2.00 MM BEAM DIAMETER.

FIG 4.25 BEAD WIDTH (MM) vS ENERGYIUNIT AREA, PIDV (J/MM²) FOR A 1.00 MM powder thickness and 2.00 mm beam diameter.

FIG 4.26 RATIO [W/h] (bEAD WIDth/bead height) vs energyiunit area,PIDV (J/MM \({ }^{2}\)) FOR A 1.00 MM POWDER THICKNESS AND 2.00 MM beam diameter.

FIG 4.27 DEPTH OF THE HAZ (MM) vs ENERGY/UNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A 1.00 MM POWDER THICKNESS AND 2.00 MM BEAM DIAMETER.

FIG 4.28 BEAD HEIGHT (MM) vs TRAVERSE SPEEO (MMIS) FOR A 1.00 MM POWOER THICKNESS AND 200 MM BEAM DIAMETER.

FIG 4.29 BEAD WIOTH (MM) vs TRAVERSE SPEED (MMIS) FOR A 1.00 MM POWDER THICKNESS AND 2.00 MM BEAM DIAMETER.
```

4.3 Monel Surface Cladding
Monel is one of the most difficult alloys to join onto a base
metal, due perhaps to its high melting point.
The runs were made with three different mass flow rates using a
stellite gun as described in table 4.3. The operating
conditions for all specimens are shown in appendix 1.3.
4.3.1 Height and width of Tracks-Monel
The resultant height and width of the tracks were found to
depend on both specific energy and mass flow rate as shown in
graphs 4.32 - 4.37, a plot of deposit ratio vs specific energy
is shown in graphs 4.38-4.40, and plots of bead width vs energy
per unit length is shown in figs 4.41 and 4.42.
Likewise, a plot of height and width of the bead vs traverse
speed is shown in graphs 4.43 and 4.44.

```
table 4.3 quality of trucks made with monel
\begin{tabular}{|c|c|c|c|}
\hline mass flow rate (\(\mathrm{Kg} / \mathrm{Hr}\) & Quality of track & specific entrgy
\[
\mathrm{J} / \mathrm{m}^{2}
\] & \begin{tabular}{l}
SAMPLE NO (K) \\
(SEE APFENDIX K.3)
\end{tabular} \\
\hline \multirow[t]{3}{*}{2.05} & gOOD TRACKS & \[
\begin{gathered}
80.0 \div 20.0 \mathrm{~J} / \mathrm{m}^{2} \\
>P / D \mathrm{~V}> \\
30,0 \pm 12,0 \mathrm{~J} / \mathrm{m}^{2}
\end{gathered}
\] & \[
\begin{aligned}
& 7,8,9,10,11,36,37,46,47,48, \\
& 49,51,52,58,61,68,72,84,92 \\
& 96,98,99,104
\end{aligned}
\] \\
\hline & discontinuous TRACKS & \[
\begin{aligned}
& \mathrm{P} / \mathrm{DN}_{2}<30.0 \pm 12.0 \\
& \mathrm{~J} / \mathrm{ma}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& 12,13,14,15,16,38+39,40,64, \\
& 76,80,88,102 \& \text { Fig } 4.30
\end{aligned}
\] \\
\hline & Laser only & & 5.6 \\
\hline \multirow[t]{3}{*}{1.37} & GOOD TRACKS & \[
\begin{gathered}
80.0 \pm 20.0 \mathrm{~J} / \mathrm{mm}^{2} \\
>P / \mathrm{DV}> \\
2.50 \pm 10.0 \mathrm{~J} / \mathrm{mm}^{2}
\end{gathered}
\] & \[
\begin{aligned}
& 17,18,19,20,30,31,32,33,50 \\
& 53,54,55,57,60,71,91 \& 1104,31
\end{aligned}
\] \\
\hline & DISCONTINOUS tracks & \[
\begin{aligned}
& \mathrm{P} / \mathrm{DN}<25.0 \pm 10.0 \\
& \mathrm{~J} / \mathrm{ma}
\end{aligned}
\] & \[
{ }_{101}^{21,22,29,34,35,67,75,79,87}
\] \\
\hline & LASER ONLY & & 63,83,95 \\
\hline \multirow[t]{3}{*}{0.83} & GOOD tracks & \[
\begin{gathered}
80 \pm 20.0 \mathrm{~J} / \mathrm{mma}^{2} \\
>P / D \mathrm{DV}> \\
25.0 \pm 10.0 \mathrm{~J} / \mathrm{ma}^{2}
\end{gathered}
\] & 23,24,41,56,70,90 \\
\hline & discontinuous tracks & \[
\begin{aligned}
& \mathrm{P} / \mathrm{DN}_{2}<25.0 \pm .10 .0 \\
& \mathrm{~J} / \mathrm{m}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& 25,26,27,28,42,43,45,59,86,94, \\
& 100,3,4 .
\end{aligned}
\] \\
\hline & LASER OWILY & & 1,2,62,66,74,78,82 \\
\hline
\end{tabular}

\[
\begin{aligned}
\text { FIG } 4.30 & \text { DISCONTINUCUS TRACKS, POWER }=1600 \mathrm{~W}, \text { BEAM } \\
& \text { DIAMETER }=2.00 \mathrm{MM} \text { TRAVERSE SPEED }=35,40, \\
& 45,50 \mathrm{MM} / \mathrm{S}, \mathrm{MASS} \text { FLOW RATE }=2.05 \mathrm{~kg} / \mathrm{Hr}, \times 3 .
\end{aligned}
\]

\[
\begin{aligned}
& \text { FIG } 4.31 \text { CONTINUOUS TRACKS, POWER }=1560 \mathrm{~W}, \text { BEAM DIAMETER }= \\
&=2.00 \mathrm{MM}, \text { TRAVERSE SPEED }=10,15,20, \mathrm{AND} 25 \mathrm{MM} / \mathrm{S} \\
& \text { MASS FLOW RATE }=1.37 \mathrm{Kg} / \mathrm{Hr}, \times 3 .
\end{aligned}
\]

FIG4.32 BEAD HEIGHT (MM) vs ENERGY/UNIt AREA, PIOV (J/MM²) FOR A MASS FLOW RATE OF \(2.05 \mathrm{Kg} / \mathrm{Hr}\), \(O 2.00\) ANO \(\rightarrow 3.00 \mathrm{MM}\) BEAM diameter.

FIG 4.33 BEAD HEIGHT (MM) VS ENERGY/UNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A MASS FLOW RATE OF \(1.37 \mathrm{Kg} / \mathrm{Hr}, \mathrm{a}=2.00\) AND \(\quad=3.00 \mathrm{MM}\) BEAM DIAMETER.

FIG4.34 BEAD HEIGHT (MM) vs ENERGY/UNIT AREA, PIOV (J/MM \({ }^{2}\)) FOR A MASS FLOW RATE OF \(0.83 \mathrm{Kg} / \mathrm{Hr}, \circ=2.00\) AND \(\bullet=3.00 \mathrm{MM}\) BEAM diameter.

FIG 4.35 BEAD WIDTH (MM) vS ENERGY/UNIT AREA, PIDV (J/MM²) FOR A MASS FLOW RATE OF \(2.05 \mathrm{Kg} / \mathrm{Hr}, \sigma=2.00 \mathrm{AND} \rightarrow=3.00 \mathrm{MM}\) BEAM OIAMETER.

FIG 4.36 BEAD WIDTH (MM) vS ENERGYIUNIT AREA, P/DV (J/MM \({ }^{2}\)) FOR A MASS FLOW RATE OF \(1.37 \mathrm{Kg} / \mathrm{Hr}, \quad \square=2.00\) AND \(m=3.00 \mathrm{MM}\) BEAM DIAMETER.

FIG 4.37 BEAD WIDTH (MM) vS ENERGYIUNIT AREA, P/DV (J/MM \({ }^{2}\)) FOR A MASS FLOW RATE OF \(0.83 \mathrm{Kg} / \mathrm{Hr}, \quad 0=2.00\) AND \(\bullet=3.00 \mathrm{MM}\) BEAM diameter.

FIG 4.38 RATIO [W/H] (BEAD WIDTH/BEAD HEIGHT) VS ENERGY/UNIT AREA, PIOV (J/MM \({ }^{2}\)) FOR A MASS FLOW RATE OF \(2.05 \mathrm{Kg} / \mathrm{Hr}, ~ o=2.00\) AND \(-=3.00 \mathrm{MM}\) BEAM DIAMETER.

FlG 4.39
RATIO [W/H] (BEAD WIDTH/BEAD HEIGHT) vs ENERGYIUNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A MASS FLOW RATE OF \(1.37 \mathrm{Kg} / \mathrm{Hr}, \quad \mathrm{o}=2.00\) \(A N D \quad=3.00 \mathrm{MM}\) BEAM DIAMETER.

FIG4.40 RATIO [W/H] (BEAD WIDTH/BEAD HEIGHTI vS ENERGYIUNIT AREA. PIDV (J/MM \({ }^{2}\)) FOR A MASS FLOW RATE OF \(0.83 \mathrm{Kg} / \mathrm{Hr}, \quad 0=2.00\) AND \(\bullet=3.00\) MM BEAM DIAMETER.

FIG 4.41 BEAD WIDTH (MM) vs ENERGY/UNIT LENGTH, PIV (J/MM) FOR A 2.00 MM BEAM DIAMETER.

FIG 4.42 BEAD WIDTH (MM) vs ENERGYIUNIT LENGTH, PIV (JIMM) FOR A 3.00 MM BEAM DIAMETER.

FIG 4.43 BEAD HEIGHT (MM) vs TRAVERSE SPEED (MM/S) FOR A MASS FLOW RATE OF \(\alpha=2.05, \square=1.37\) AND \(0=0.87 \mathrm{Kg} / \mathrm{Hr}\).

FIG 4.44 BEAD WIOTH (MM) vS TRAVERSE SPEED (MMIS) FOR A MASS FLOW RATE OF \(\sigma=2.05, \square=1.37\) AND \(O=0.87 \mathrm{Kg} / \mathrm{Hr}\).
```

Developing Section Surface Cladding
All single-run specimens were cut, mounted, polished and etched
in a 2% and 4% nital solution, proceeding to a microscopic
analysis of each one, making use of a light microscope to
observe the morphology at the interface between surface cladding
alloy and base metal. Another object of the analysis was to
check for possible underbead cracking as well as cracking in
the bead .
All specimens were photographed at low magnification. Thesc
are shown in Appendix l.l in which the different areas of
deposition can be observed.
The resultant sectional area was found to depend on the
traverse speed as shown in graphs 4.45-4.47 for stainless
steel and in graph 4.48 for tin-bronze. This implies more
melting sideways in the fixed powder bed at slow speeds.
Another manifestation of this greater neat preparation is shown
in graphs 4.49 and 4.51 for stainless steel and 4.52 for tin-bronze.

```


FIG 4.45 SECTIONAL AREA (MM2) vs TRAVERSE SPEED (MM/SEC) FOR A 1.00 MM powder thickness.

FIG 4.46 SECTIONAL AREA (MM \({ }^{2}\)) vs TRAVERSE SPEED (MM/SEC) FOR A 0.50 MM POWDER THICKNESS.

FIG 4.47 SECTIONAL AREA (MM \({ }^{2}\)) vs TRAVERSE SPEED (MM/SEC) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.48 SECTIONAL AREA (MM²) vS TRAVERSE SPEED, V (MM/SEC) FOR A 1.00 MM POWOER THICKNESS AND 2.00 MM BEAM DIAMETER.

FIG 4.49 SECTIONALAREA (MM2) vS DEPTH OF THE HAZ (MM) FOR A 1.00 MM POWDER THICKNESS.

fig 450 SEctional AREA (MM \({ }^{2}\)) vs DEPTH OF THE HAZ (MM) FOR A 0.50 MM POWDER THICKNESS.

FIG 4.51 SECTIONALAREA (MM \({ }^{2}\)) vs DEPTH OF THE HAZ (MM) FOR A 0.25 MM POWDER Thickness.

FIG 4.52 SECTIONAL AREA (MM \({ }^{2}\)) vS DEPTH OF THE HAZ (MM) FOR A 1.00 MM POWDER THICKNESS AND 2.00 MM BEAM DIAMETER.
4.5 Quantitiative Dilution

The resu ltant dilution measured on the basis described in
section 2.2 for each run was found to vary, with the working conditions, as was expected and could be correlated with. the specific energy, and powder bed thickness. From this it can be deduced that there exists an optimum specific energy for a given bed depth, which will produce a continuous adherent track with low dilution. Calculated dilution values are shown in Appendix II.
4.5.1 316 stainless Steel - Dilution in Surface Cladding

The percentage dilution, calculated as described in section 2.2
and illustrated here by fig 453 a and 453 b , was found to be a
function of the applied specific energy, as shown in figs 4.54
4.55 and 4.56 in which it is seen that a decrease of specific
energy causes less melting of the substrate and hence a
decrease in dilution.

The dilution figures recorded here are artificial since they
```

assume that there is uniform mixing through the clad trace.
This is rarely found to be the case (ref 8). Even so in
the region previously identified as "good" the dilution %
is always below 12%.
Variation of dilution with traverse speed can be observed for
selected samples having the same incident power and beam
diameter.
(e,g. S4 - S7, S8 - S13 etc)
These values are plotted in fig 4.57-4.59.
No obvious correlation is noted. The considerable experimental
scatter may be due to the intermittent flow of the weld bead
causing rippling of the upper surface and interface which would
cause a variation in dilution as measured in the manner described
here.
For a given specific energy and traverse speed the % dilution
increases with decreasing bed depth as shown in 4.54-4.56 and
4.57-4.59.
4.5.2 Tin-Bronze Dilution in Surface Cladding
No dilution was observed in any example of tin-bronze surface
cladding. Probably due to the desparity in melting points
between bronze and steel.

```


FIG 4.53 a NUGGET ARACTERISTICS: SPECIMEN NUMBER S74; POWER \(=1400 \mathrm{~W}\); BEAM DIAMETER=3.2 MM; SPEED \(=5\) \(\mathrm{MM} / \mathrm{S} ; \quad \mathrm{POWDER}\) THICKNESS \(=0.50 \mathrm{MM}\).
TOTAL AREA \(=0.53 \mathrm{MM}^{2}\), DEPOSITION RATE \(=0.08 \mathrm{Kg} / \mathrm{Hr}\); DILUTION = \(57.5 \%\).

FIG 4.53b NUGGET ARACTERISTICS: SPECIMEN NUMBER S123, POWER=1800 W, BEAM DIAMETER=5.8 MM; SPEED=10 MM/S; POWDER THICKNESS \(=1.00 \mathrm{MM}\)
TOTAL AREA \(=4.19 \mathrm{MM}^{2}\); DEPOSITION RATE \(=1.21 \mathrm{Kg} / \mathrm{Hr}\), DILUTION=0.13 \% (0)

FIG 4.54 ENERGY/UNIT AREA, P/DV \(\left(J / \mathrm{MM}^{2}\right.\)) vS GILUTION \(1 \%\)) FOR A 1.00 MM POWDER THICKNESS.

FIG 4.55 ENERGY/UNIT AREA. PIDV (J/MM \({ }^{2}\)) vS DILUTION (\%) FOR A 0.50 MM POWDER THICKNESS.

FIG 4.56 ENERGYIUNIT AREA, PIDV (J/MM \({ }^{2}\)) VS DILUTION (\%) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.57 DILUTION (\%) vs TRAVERSE SPEED (MM/S) FOR A 1.00 MM POWDER THICKNESS.

FIG 4.58 DILUTION (\%) vs TRAVERSE SPEED (MM/S) FOR A 0.50 MM POWDER THICKNESS.

FIG 4.59 DILUTION (\%) vs TRAVERSE SPEED (MM/S) FOR A 0.25 MM POWDER THICKNESS.
Deposition rate, in the surface cladding process can be
measured as the weight of material deposited per unit of time.
The deposition rate using powdered stainless steel 316 and tin-
bronze after melting with a laser beam was found to be
dependent on powder bed thickness, type of powder alloy,
beam power, beam diameter and traverse speed.
4.6.1 Deposition Rates for 316 Stainless Steel
The variation of deposition rate with traverse speed is shown
in fig \(4.60,4.61\) and 4.62 for various bed depths. The
values of deposition rate observed are also given in Appendix
II. The deposition rate increased with traverse speed as
expected for fixed bed deposition as practical here, but a
maximum deposition rate was observed at that speed corresponding
to a specific energy near the onset of discontinuous traces.
The observed rate of deposition rates are showin in Table 4.4.
TABLE 4.4 RANGE OF DEPOSITION RATE OBSERVED WITH DIFFERENT
 BED DEPTHS OF 316 STAINLESS STEEL
\begin{tabular}{ccc}
\hline BED DEPTH \(\pi n\) & MINIMUM \(\mathrm{Kg} / \mathrm{Hr}\) & MAXIMUM Kg/Hr \\
\hline 1.00 & 0.12 & 1.43 \\
0.50 & 0.06 & 0.89 \\
0.25 & 0.03 & 0.44 \\
\hline
\end{tabular}
```

The variation of deposition rate with traverse speed for
constant beam power and beam diameter for three different
bed depths is shown in fig 4..63.
To understand the relation between deposition rate, deposit
thickness and dilution see fig 4,64 where the curves
indicate the following:
(a) for a given deposition rate, dilution decreases as the
deposit thickness is increased.
(b) for a given deposit thickness, dilution increases as
the deposition rate is increased, which implies an increase
in power density and this in turn increases dilution.
It can also be seen that the deposition rate is limited by the
required deposit thickness and acceptable percentage dilution.
For example, if the proposed bead height of surface cladding is
1.00 mm, then, at the dilution of 2%, the maximum deposition
rate is fixed at about 0.50 Kg/Hr. However, if the percentage
dilution of 6% still acceptable, then a deposition rate of 0.80
Kg/Hr can be used for the purpose.

```


FIG 4.60 DEPOSITION RATE (\(\mathrm{Kg} / \mathrm{Hr})\) vs TRAVERSE SPEED (MM/S) FOR A 1.00 MM POWDER THICKNESS.

FIG 4.61 DEPOSITLON RATE (\(\mathrm{Kg} / \mathrm{Hr)}\) vS TRAVERSE SPEED (MM/S) FOR A 0.50 MM POWDER THICKNESS.

FIG 4.62 DEPOSITION RATE (\(\mathrm{Kg} / \mathrm{Hr)}\) vs TRAVERSE SPEED (MM/S) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.63 DEPOSITION RATE (\(\mathrm{Kg} / \mathrm{Hr}\)) vs TRAVERSE SPEED (MM/S) FOR A BEAM POWER \(=1600 \mathrm{~W}\). BEAM DIAMETER \(=4.3 \mathrm{MM}\) AND \(0=1.00\), \(\square=0.50, \circ=0.25\) MM POWDER THICKNESS.

FIG 4.64 BEAD HEIGHT (MM) vs DILUTION (\%), FOR 316 STAINLESS STEEL.
```

4.6.2 Deposition rate for tin-bronze, for a 1.00mm powder
bed thickness of neat powder it is observed that
for a constant beam power and beam diameter the
deposition rate increases when traverse speed is
increased, as can be seen in appendix 1.2 or in
fig 4.65. The effect of boric acid, as an active
surface agent was, that when the bed was covered
with borax the deposition rate increased for a
given traverse speed, However, the deposition
rate decreased when the powder and borax were
mixed for a constant traverse as can be seen
in fig 4.65.

```


FIG 4.65 DEPOSITION RATE (\(\mathrm{Kg} / \mathrm{Hr}\)) vS TRAVERSE SPEED (MM/S) FOR A 1.00 MM POWDER THICKNESS AND 2.00 MM BEAM DIAMETER.

and phosphides, and silicon tends to form glassy silicate films. In alloys solidifying as primary austenite, sulphur phosphorus, and silicon are rejected to the liquid, form low melting constituents in the interdendritic regions and thus cause hot cracking. Alloys solidifying as primary delta ferrite reject less of these elements to the liquid and consequently are more resistant to hot cracking. The content of delta ferrite in 316 stainless steel should be at least \(1 \%\) to avoid cracking when this steel is welded. According to the Schaeffler diagram fig 4.66 (Ref 16), if the chemical composition does not change during the deposition the percentage of delta ferrite should be in the range of \(2 \%\) to \(5 \%\) with a Creq/Nieq \(\simeq 1.45\) relation, where Creq is the chromium equivalent and Nieq is the nickel equivalent. Considering equilibrium solidification , fig 4.67 is a schematic pseudo-binary slice of the iron-chromium-nickel ternary system taken at \(70 \% \mathrm{Fe}\). The approximate location of type 316 stainless steel (considering only the iron chromium and nickel contents) is shown by the vertical line. According to this diagram, the initial stage would begin at \(\mathrm{T}_{1}\). The diagram also predicts that the end of solidification would be when the temperature reaches \(T_{2}\). As the alloy cools below
```

the solidus it must pass through the two phase }\gamma+\delta\mathrm{ region,
and then enter the single phase austenitic region as
indicated in fig 4.67. However, the rate of cooling through
the two phase }\gamma+\delta\mathrm{ region is believed to be so fast that
the diffusion-controlled transformation predicted by equilibrium
cannot occur. Instead, the delta ferrite, is believed to
transform to austenite by a diffusionless massive transformation.
This is made possible by the fact that for the alloy in question,
at temperatures below }\mp@subsup{T}{3}{}\mathrm{ austenite is the stable phase. Therefore,
it is merely necessary to convert the body-centered cubic
ferritic crystal structure to the face-centered cubic crystal
structure of austenite during rapid cooling.
Concerning the mode of solidification, and in accordance to the
theory of metal solidification (20), the character of the
substructure is determined by the degree of constitutional
supercooling, by the temperature gradient (G) and the square
root of solidification rate ( }\mp@subsup{R}{}{\frac{1}{2}}\mathrm{ ). The ratio G/ R
the mechanism of solidification. High G/R ratios are associated
with planar front cellular; low levels with equiaxed-dendritic;
between these extreme possibilities there are transient types:
cellular-dendritic, columnar-dendritic. Whereas the product G.R

```
gives the cooling rate \((\dot{\mathrm{T}})\) which controls the scale of the structure forming.

It is known that the instantaneous solidifcation rate (\(R\)) in a given point of a solidification isotherm depends upon traverse speed (V) according to figs 4.68 (19).
\[
\begin{equation*}
R=V \operatorname{Cos} \theta \tag{1}
\end{equation*}
\]
where
\[
\begin{aligned}
\theta= & \text { Angle between traverse vector and the normal to the } \\
& \text { isotherm in a given point }
\end{aligned}
\]

Thus the growth velocity would vary from \(R=0\) at the sides of the pool (points \(A\) and \(C\)) where \(\theta=90^{\circ}\), to a maximum of \(R=V\) at the certerline of the clad (point E) where \(\theta=0\). The cooling rate (\(\dot{T}\)) can be expressed as a time dependence of a temperature change,
\[
\begin{equation*}
\dot{T}=\frac{\partial T}{\partial t} \tag{2}
\end{equation*}
\]
and the temperature gradient (G) as change of temperature with the distance in the direction of the normal
\[
\begin{equation*}
\mathbf{G}=\frac{\partial T}{\partial x} \tag{3}
\end{equation*}
\]
then, \(\dot{T}=\frac{\partial T}{\partial x} \cdot \frac{\partial x}{\partial t}=G \cdot R\)
from equations (1) and (4) it follows that
\(T=G \cdot V \cdot \cos \theta\)
in other words, the cooling rate at a given transverse speed varies with position in the molten pool area, for example at
at point \(A\) where \(\theta\) approaches \(90^{\circ}\) the cooling rate approaches zero, at the same traverse speed but with different factors influencing the cooling rate in the clad axis, various types of structure and thus also various clad metal properties can be obtained.

FIG4.66 CONSTITUTION DIAGRAM FOR STAINLESS STEEL AS A WELD DEPOSIT (REF. 15).

FIG 4.67 Fe-[r-Ni PSEUDO-BINARY DIAGRAM TAKEN AT \(70 \% \mathrm{Fe}\). (22)

(a)

(b)

FIG 4.68 SCHEMATIC DIAGRAMS SHOWING COMPETITIVE GROWTH FOR A MOVING POOL WITH,
(a) AN ELLIPTICAL SHAPED PUDDLE
(b) A TEARDROP SHAPED PUDDLE
4.8
4.8 .1

Metallographic Observations

Observations on the cross section of a clad trace by optical microscopy show distinct variations in microstructure from the top of the trace down to the interface and into the heat-affected zone (HAZ) of the substrate.

316 Stainless Steel Surface Cladding

The structures resulting from solidification in austenitic 316 stainless steel cladding were found to be predominantly cellulardendritic. In fig 4.69 there can be seen different forms of structures that could be dependent on the redistribution of the elements i.e. microsegregation, as well as on the different gradients and cooling rate during the solidification. At the top of fig 4.69 cellular grain formation produced by solidification in the cellular mode is observed, a similar structure can be observed in fig 4.71 , where the grain was, perhaps, quite well developed by etching. In the centre of fig 4.69 cellulardendritic grains can be seen with different growth directions and grain sizes similar shapes of grain are observed in figs 4.71, 4.72 and 4.73.

At the bottom of fig 4.69 , where the interface is located, . the resultant grain is different from the others described; planar grains are observed which was produced by the planar growth mode of solidification.

Fig 4.69 microstructure 316 stainless steel cladding, specimen NUMBER S62, POWER=1400 Wi BEAM DIAMETER \(=5.8 \mathrm{MM}\), SPEED= \(=5\) MM/S; POWDER THICKNESS \(=1.00 \quad \mathrm{MM}\); ETCHED IN HCl \(+\mathrm{HNO}_{3}\) AND \(\mathrm{H}_{2} \mathrm{O}\) SOLUTION; \(\times 110\).

FIG 4.70 MICROSTRUCTURE 316 STAINLESS STEEL CLADDING; SPECIMEN NUMBER S68; POWER \(=1400 \mathrm{~W}\); BEAM DIAMETER=3.2 MM; SPEED \(=\) \(=10 \mathrm{MM} / \mathrm{S}\), POWDER THICKNESS \(=1.00 \mathrm{MM}\); ETCHED IN \(\mathrm{HCl}+\) \(+\mathrm{HNO}_{3}\) AND \(\mathrm{H}_{2} \mathrm{O}\) SOLUTION \(\quad \times 110\).

FIG 4.71 MICROSTRUCTURE 316 STAINLESS STEEL CLADDING, SPECIMEN NUMBER M8 ; POWER \(=1300 \mathrm{~W}\); BEAM DIAMETER \(=\) \(=2.29 \mathrm{MM} ; \quad\) SPEED \(=25 \mathrm{MM} / \mathrm{S} ;\) POWDER THICKNESS \(=2.00 \mathrm{MM}\); ETCHED IN KALLING'S REAGENT: \(X\)

FIU 4.72
MICROSTRUCTURE 316 STAINLESS STEEL CLADDING; SPECIMEN NUMBER M9; POWER \(=1460 \mathrm{~W}\); BEAM DIAMETER \(=\) \(=2.29 \mathrm{MM} ; \quad \mathrm{SPEED}=15 \mathrm{MM} / \mathrm{S} ;\) POWDER THICKNEES \(=2.00 \mathrm{MM}\); GRADE OF PREHEATING \(=300{ }^{\circ} \mathrm{C}\); OVER:AP \(=1.5 \mathrm{MM}\); FORWARDS AND BACKWARDS, ETCHED IN A SOLUTION OF \(\mathrm{HCl}+\mathrm{HNO}_{3}\) AND \(\mathrm{H}_{2} \mathrm{O}\); X182.

FIG 4.73 THE SAME AS ABOVE, BUT AT X442.
4.8.2 Microstructure in the Heat-affected Zone Structure

The microstructures in the heat-affected zone produced in the mild steel base plate after cladding with 316 stainless steel, consist of a number of different areas within its narrow thickness. This variation is due to the range of heating and cooling rates, as well as maximum temperatures possible with this process. The resultant dimensions of the heat-affected zone are shown in appendix 1.1, and the resultant structures are shown in figs 4.74 to 4.78 . The different structures in the base metal are very fine and not quite clearly resolved by light microscopy. Those structures in regions which have been heated above \(A_{3}\), e.g. points "C" and "D" on fig 4.79 , reached the single phase austenite which has been transformed into martensite on cooling and this is in agreement with the hardness value measured and with previous work (3). There was a decrease in microhardness value further into the base metal that perhaps corresponds to martensitic-bainitic structures, a bainitic structure has a tendancy to form in this kind of steel, according to the isothermal transformation diagram in fig \(4.80(A+F+C)\).

FIG4.74 HEAT-AFFECTED ZONE TN E 3 STEEL AFTER LASER \(\qquad\) CLADDING 316 STAINLESS STEEL; SPECIMEN NUMBER S63; POWER \(=1400 \mathrm{~W}\), BEAM DIAMETER \(=4.6 \mathrm{MM} ; \quad\) SPEED \(=10 \mathrm{MM} / \mathrm{S}\); POWDER THICKNESS \(=1.00\) MM; ETCHED IN \(2 \%\) NITAL, \(\times 110\).

FIG 4.75
HEAT-AFFECTED ZONE IN ET 3 STEEL AFTER LASER CLADDING 316 STAINLESS STEEL; SPECIMEN NUMBER S123; POWER \(=1800 \mathrm{~W}\), BEAM DIAMETER \(=5.8 \mathrm{MM}\), SPEED \(=10 \mathrm{MM} / \mathrm{S}\); POWDER THICKNESS \(=1.00\) MM; ETCHED IN \(2 \%\) NITAL; \(\times 110\)

FIG 4.76 HEAT AFFECTED-ZONE IN En 3 STEEL AFTER LASER CLADDING 316 STAINLESS STEEL, SPECIMEN NUMBER S 20, POWER \(=1600 \mathrm{~W}\), BEAM DIAMETER \(=4.3 \mathrm{MM}\), SPEED \(=35 \mathrm{MM} / \mathrm{S}\), POWDER THICKNESS \(=1.00 \mathrm{MM}, \quad-\) ETCHED IN A \(2 \%\) NITAL SOLUTION, \(\times 182\).

Anterface
HAZ

FIG 4.77 HEAT AFFECTED-ZONE IN E 3 STEEL AFTER LASER CLADDING 316 STAINLESS STEEL, SPECIMEN NUMBER M4; POWER \(=1300 \mathrm{~W}\); BEAM DIAMETER \(=2.29 \mathrm{MM}\); SPEED \(=15 \mathrm{MM} / \mathrm{S}\); POWDER THICKNESS= \(=2.00\) MM; NO PREHEAT; OVERLAP \(=1.88 \mathrm{MM}\) : ETCHED IN \(2 \%\) NITAL; \(\times 110\).

FIG 4.78 HEAT AFFECTED-ZONE IN En 3 STEEL AFTER LASER CLADOING 316 STAINLESS STEEL, SPECIMEN NUMBER M16; POWER \(=1400 \mathrm{~W}\); BEAM DIAMETER \(=2.29\) MM; SPEED \(=20 \mathrm{MM} / \mathrm{S}\); POWDER THICKNESS= \(=200 \mathrm{MM}\); DEGRE OF PREHEATING \(=150^{\circ} \mathrm{C} ; \quad\) OVERLAP \(=1.5 \mathrm{MM} ;-\) ETCHED IN \(2 \%\) NITAL; \(\times 110\).

\footnotetext{
fig 4.79 relation betheen the peak temperatures by various regions in heat affect zone, and how these
- correlate with iron-carbon. phase diagram
}

FIG 4.80 ISOTHERMAL TRANSFORMATION DIAGRAM FOR En 3 STEEL (REF. 16).
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{4.9} & Surface Cladding Composition \\
\hline & The distribution of alloying elements in the surface cladding \\
\hline & has been studied using a microprobe analyzer. \\
\hline & The aim of the analysis was to check the composition of the \\
\hline & surface cladding, and it was found that nickel, chromium and \\
\hline & molybdenum were suitable for tracing, but manganese and silicon \\
\hline & too low to-give reliable results. Iron was present strongly \\
\hline & throughout, and so was not used. All specimens were therefore \\
\hline & traced across the junction from about \(200 \mu \mathrm{~m}\) into the surface \\
\hline & cladding for chromium/nickel and nickel/molybdenum as can be \\
\hline & seen in Figs 4.81 to 4.86. \\
\hline & All results show that the composition is constant, except that \\
\hline & S26 showed a lower nickel and chromium content, and that \$137 \\
\hline & showed a short step just before the interface. Traces for \\
\hline & nickel and chromium dropped off over the last 50 , or so \(\mu \mathrm{m}\). \\
\hline & Approximate calibrations were made by signal comparison with \\
\hline & the pure metals, but because of the low nickel values obtained, \\
\hline & these were checked by rough measurement on S118 and S137, and \\
\hline & found to agree with the calibrations for both nickel and \\
\hline & chromium. It seems that the nickel content of all of these surface \\
\hline & cladding is about \({ }^{1 / 3}\) of that specified for 316 stainless steel. \\
\hline & The small variations that have been registered with the \\
\hline
\end{tabular}
```

microprobe analyzer from nickel, chromium and molybdenum
are due to the microsegregated caused by carbides and by the
ferrite phase. The measured segregation ratios (Cmax/Cmin)
of nickel, chromium and molybdenum are 1.13, 1.15 and 1.55
for Sl, 1.15, 1.13 and 1.75 for S26; 1.13, 1. 06 and 1.50 for
S63; 1.12, l06 and 1.75 for S116; 1.05,1.10 and 1.65 for S118;
1.10, 1.05 and l. }60\mathrm{ for Sl37 respectively.

```


FIG 4.81 EPMA CONCENTRATION PROFILES FOR Cr, Ni, AND MO IN 316 stainless steel surface cladding, specimen si.

FIG 4.82 EPMA CONCENTRATION PROFILES FOR Cr, Ni, AND MO IN 316 STAINLESS STEEL SURFACE CLADDING, SPECIMFN S26.

FIG 4.83 EPMA CONCENTRATION PROFILES FOR Cr, Ni, AND MO In 316 Stainless steel surface cladding, SPECIMEN 563.

FIG 4.84 EPMA CONCENTRATION PROFILES FOR CR, Ni, AND Mo IN 316 STAINLESS STEEL SURFACE CLADDING, SPECImen S116.

FIG 4.85 EPMA CONCENTRATION PROFILES FOR \(C r\), Ni, ANDMO IN 316 Stainless steel surface cladding specimen 5118.

FIG 4.86 EPMA CONCENTRATION PROFILES FOR \([r\), Ni, AND Mo IN 316 stainless steel surface cladding, specimen si37.

\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{4.10 .2} & Resultant Hardness in the Heat-Affected Substrate \\
\hline & The heat-affected zone of the base metal had its highest \\
\hline & degree of hardness at a point adjacent to the clad alloy- \\
\hline & base metal interface being \(550 \pm 62 \mathrm{VPN}\). This high \\
\hline & level of hardness was expected, since this value corresponds \\
\hline & to a martensitic structure prediction in Fig 4.99; due to \\
\hline & the high cooling rates created in the bulk of the substrate. \\
\hline & With small increases in the short distance from the interface, \\
\hline & the resultant degree of hardness was decreased by the presence \\
\hline & of other constituents whose values corresponded to the \\
\hline & martensitic-bainitic structure. Where the hardness was \\
\hline & found to be less than in the homogeneous transformation, the \\
\hline & values correspond to mixture martensite-bainite and perhaps \\
\hline & retained austenite. In the last affected area in the substrate, \\
\hline & it corresponds to the thermally affected pearlite the degree \\
\hline & of hardness was found to be higher than in the unaffected \\
\hline & base metal. \\
\hline
\end{tabular}

FiG 4.87 MICROHARONESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING ETCHED \(2 \%\) NITAL, \(\times 21\). POWER \(=1600 \mathrm{~W}\) BEAM DIAMETER \(=5.8 \mathrm{MM}\), SPEED=5 MM/S, POWDER THICKNESS \(=1.00 \quad \mathrm{MM}\)

FIG 4.88 MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING FTCHED \(2 \%\) NITAL, \(\times 21\). POWER \(=1600 \mathrm{~W}\). BEAM DIAMETER \(=5.8 \mathrm{MM}, \mathrm{SPEED}=15 \mathrm{MM} / \mathrm{S}, \quad \mathrm{POWDER}\) THICKNESS \(=1.00 \mathrm{MM}\).

FIG489MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE 〔LADDING ETCHED \(2 \%\) NITAL, X21, POWER=1 600 W BEAM DIAMETER \(=4.3 \mathrm{MM}\), SPEED \(=5 \mathrm{MM} / \mathrm{S}\), POWDER THICKNESS \(=1.00 \mathrm{MM}\).

FIG 4.90 MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING ETCHED \(2 \%\) NITAL, \(\times 21\). POWFR \(=1600 \mathrm{~W}\) BEAM DIAMETER \(=4.3 \mathrm{MM}, \quad \mathrm{SPEED}=15 \mathrm{MM} / \mathrm{S}\), POWDER THICKNESS \(=1.00 \mathrm{MM}\).

FIG4.91 MICROHARDNESS AND MICROGRAPH SECTION VIEW THROUGH SURFACE CLADDING ETCHED 2\% NITAL, X21. POWER=1600 W BEAM DIAMETER \(=4.3 \mathrm{MM}\), SPEED \(5 \mathrm{MM} / \mathrm{S}\), FOWDER—— THICKNESS \(=0.50 \mathrm{MM}\).

FIE 4.92 MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING ETCHED \(2 \%\) NITAL, \(\times 21\), POWER \(=1600 \mathrm{~W}\) BEAM DIAMETER \(=43 \mathrm{MM}\), SPEED \(=10 \mathrm{MM} / \mathrm{S}\), POWDER THICKNESS \(=0.50 \mathrm{MM}\).

FIG 4.93 MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING ETCHED \(2 \%\) NITAL, X21. POWER=1600 W BEAM DIAMETER \(=4.3 \mathrm{MM}, \quad \mathrm{SPEED}=15 \mathrm{MM} / \mathrm{S}\), POWDER THICKNESS \(=0.50 \mathrm{MM}\)

FIG4.94MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING FTCHED \(2 \%\) NITAL, X21. POWER \(=1400 \mathrm{~W}\) BEAM DIAMETER \(=8.7 \mathrm{MM}\), SPEED \(=5 \mathrm{MM} / \mathrm{S}\), POWDER THICKNESS \(=1.00 \mathrm{MM}\).

FIG 4.95 MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING ETCHED \(2 \%\) NITAL, \(\times 21\), POWER \(=1400 \mathrm{~W}\) BEAM DIAMETER=7.2 MM, SPEED=5 MM/S, POWDER THICKNESS \(=1.00 \mathrm{MM}\)

172

FIG4.96 MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING ETCHED \(2 \%\) NITAL, X21, POWER=1400 W BEAM DIAMETER \(=3.2 \mathrm{MM}\), SPEED \(=20 \mathrm{MM} / \mathrm{S}\), POWDER THICKNESS \(=0.50 \mathrm{MM}\).

FIG4.97 MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING ETCHED \(2 \%\) NITAL, X21. POWER \(=1800 \mathrm{~W}\), BEAM DIAMETER=5.8 MM, SPEED \(=15 \mathrm{MM} / \mathrm{S}\), POWDER \(\qquad\) THICKNESS \(=1.00 \mathrm{MM}\).

FIG4.98 MICROHARDNESS AND MACROGRAPH SECTION VIEW THROUGH SURFACE CLADDING ETCHED \(2 \%\) NITAL, 入 21 , POWER=1800W BEAM DIAMETER \(=5.8 \mathrm{MM} . \quad S P E E D=20 \mathrm{MM} / \mathrm{S}\), POWDER

THICKNESS \(=1.00 \mathrm{MM}\).

FIG: 4.99 APPROXIMATE HARDNESS OF CARBON STEELS AS A FUNTION OF CARBON CONTENT. FULLY HARDENED MARTENSITE. (REF. 17)
4.10.3 Resultant Hardness on Selected Specimens 316 Stainless Steel
```

Surface Cladding
The heat input was applied by the laser beam under different
operating conditions for each run, so it is to be expected
that the microhardness of the surface cladding as well as within
the heat-affected zone will vary between runs.
In each case the same or similar trend is seen.

```
a) A reasonable constant value of hardness across the
 bead of between 220-280 VPN. The effect of dilution is seen
 in Fig 4.91.
 b) A fairly abrupt increase at the interface due to
 martensitic formation in the base metal.
 c) The hardness value falling in the HAZ away from the
 interface down to the constant value of the En 3 base
 metal of 220-280 VPN.
4.11 Results of Surface Cladding with Multiple Run Deposits
Multiple run deposits were made as described in section 3.5.1.
The principle variables studied were:-
```

        a) the overlap of consequential runs.
        b) degree of preheat of base metal
    The operating conditions are shown in appendix 1.4 and the
overall structural features are collated in table 4.5. In
which it is seen that interrun inclusions are less frequent with
increasing preheat temperature while surface smoothness improves
with increasing overlap, though some improvement was noticed
in traversing the laser back and forth across the powder bed
instead of traversing in one direction alone (sample M3 for
example).

```
table 4.5 pitysical characteristics of multiple runs in 316 stainless steel, powder bed 2.0 ma deep
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
FUN \\
number
\end{tabular} & \[
\begin{aligned}
& \mathrm{PD} / \mathrm{N} \\
& \left(\mathrm{~J} / \mathrm{m}^{2}\right)
\end{aligned}
\] & \begin{tabular}{l}
PRETEAT \\
TEMPERATURE \\
(oc)
\end{tabular} & \begin{tabular}{l}
PERCENTAGE OVERLAP \\
(\%)
\end{tabular} & PRESEHCE SUPface of OXIDE RANKING & \begin{tabular}{l}
INTER-RUN \\
Inclusions \\
panxing
\end{tabular} & \begin{tabular}{l}
SURFACE \\
moothness \\
RANXING
\end{tabular} & KETHOD OF trayerse & corrents \\
\hline M1 & 33.96 & 500 & 21.0¹.56 & 20 & \(\bigcirc 1\) & 10 & B & Suall ripplea appeared \\
\hline H2 & 33.96 & 300 & 38.0*0.68 & 19 & 2 & 6 & B & See Fig 4.100 top rier surface \\
\hline M3 & 40.76 & 20 & 36.0*6.01 & 7 & 16 & 16 & B & \begin{tabular}{l}
Smoother in fourth \\
direction than back
\end{tabular} \\
\hline M 4 & 37.85 & 20 & 23.5*2.12 & 4 & 17 & 4 & B & Disunlform overlap \\
\hline M 5 & 37.85 & 20 & \(44.0 \div 4.24\) & 5 & 14 & 7 & B & Shear teat was made \\
\hline 14 & 28.38 & 20 & 35.0⒈73 & 3 & 18 & 17 & B & See Fig 4.102 -ith Interun incluaion \\
\hline M7 & 28.38 & 20 & 27.5*0.71 & 2 & 19 & 18 & \(\wedge\) & See Fig 4.104 with big interun incluelon \\
\hline 48 & 22.71 & 20 & & 1 & & 20 & \(A\) & Diacontinuoun erack \\
\hline н9 & 42.50 & 300 & 29.0*1.73 & 15 & 4 & 13 & B & \begin{tabular}{l}
See Fig 4.103 with \\
aljoht interun inclusion
\end{tabular} \\
\hline M 10 & 31.88 & 300 & 33.0*6.0 & 8 & 8 & 3 & 8 & \begin{tabular}{l}
See Fig 4.101 \\
top viow murfece
\end{tabular} \\
\hline HII & 25.50 & 300 & 35.0*7.21 & 6 & 10 & 1 & B & Shear teat vas made \\
\hline H12 & 40.76 & 200 & 34.0-2.65 & 11 & 9 & 12 & B & \\
\hline M13 & 30.57 & 200 & 30.6さ4.90 & 10 & 12 & 2 & B & \\
\hline M14 & 24.43 & 200 & 29.0-5.0 & 9 & 11 & 15 & B & \\
\hline 415 & 40.76 & 150 & 17.0:5.66 & 17 & 7 & 19 & B & The backwarde affected the for \\
\hline M16 & 30.57 & 150 & 19.67*4.73 & 16 & 3 & 9 & B & See Fig 4.105 without interun inclueion \\
\hline H17 & 24.45 & 150 & 29.0².89 & 14 & 6 & 8 & B & Shenr tent ven made \\
\hline Mib & 37.85 & 400 & 31.0*6.24 & 18 & 13 & 11 & B & \\
\hline M19 & 28.38 & 400 & 22.0-4.24 & 13 & 15 & 5 & B & \\
\hline M20 & 22.71 & 400 & \(20.0 \pm 4.36\) & 12 & 5 & 14 & B & Shanr tret wae mode \\
\hline
\end{tabular}
scored ranking: 1 IS the best, 20 is tie vorst
A. SINGLE DIRECTION TRAVERSE
B. traversy in both diractions

FIG 4.100 SURFACE CLADDING: POWER \(=1400 \mathrm{~W}\); BEAM DIAMETER \(=\) \(=2.29 \mathrm{MM}: \quad\) SPEED \(=18 \mathrm{MM} / \mathrm{S}_{\mathrm{i}}\) POWDER THICKNESS \(=2.00 \mathrm{MM}\); GRADE OF PREHEATING \(=300^{\circ}{ }^{\circ} \mathrm{C}\), OVERLAP \(=1.25 \mathrm{MM}\); TOWARDS AND BACKWARDS, \(\times 3\).

FIG4.101 SURFACE CLADDING: POWER=1460 W, BEAM DIAMETER= \(=2.29 \mathrm{MM} ; \quad\) SPEED \(=20 \mathrm{MM} / \mathrm{S}, \quad\) POWDER THICKNESS \(=2.00 \mathrm{MM}\); GRADE OF PREHEATING \(=300^{\circ} \mathrm{C}\); OVERLAP \(=1.50 \mathrm{MM} ; \quad\) -
TOWARDS
AND
BACKWARDS
\(\times 3\).

FIG 4.102 SECTION VIEW 316 STAINLESS STEEL CLADOING; SPECIMEN \(\therefore\) AUMBER M6: POWER \(=1300 \quad W:\) BEAM DIAMETER \(=2.29 \quad \mathrm{MM}\) : — SPEED \(=20\) MM/S; POWOER THICKNESS \(=2.00 \mathrm{MM}\); NO PREHEAT; OVERLAP \(=1.5 \mathrm{MM}\); FORWARDS AND BACKWARDS; ETCHED IN — \(4 \%\) NITAL; X18.

FIG4.103 SECTION VIEW 316 STAINLESS STEEL CLADDING; SPECIMEN NUMBER M9; POWER \(=1450 \mathrm{~W}\) : BEAM DIAMETER \(=2.29 \mathrm{MM}\); SPEED \(=15 \mathrm{MM} / \mathrm{S}\); POWDER THICKNESS \(=2.00 \mathrm{MM}\); DEGRE OF PREHEATING \(=300{ }^{\circ} \mathrm{C} ; \quad\) OVERLAP \(=1.50 \mathrm{MM}\); FORWARDS AND BACKWARDS: ETCHED IN \(4 \%\) NITAL; \(\times 18\).

FIG4.104 SECTION VIEW 316 STAINLESS STEEL CLADDING; SPECIMEN NUMBER M7; POWER \(=1300 W_{i}\) BEAM DIAMETER \(=2.29 \quad \mathrm{MMi}\) SPEED \(=20 \mathrm{MM} / \mathrm{S} ;\) POWDER THICKNESS \(=2.00 \mathrm{MM}\); NO PREHEAT; OVERLAP \(=1.5 \mathrm{MM}\); FORWARDS; ETCHED IN \(4 \%\) NITAL; X18.

FIG4.105 SECTION VIEW 316 STAINLESS STEEL CLADDING; SPECIMEN NUMBER M16; POWER \(=1400 \mathrm{~W}\); BEAM DIAMETER \(=2.29 \mathrm{MM}\); SPEED \(=20 \mathrm{MM} / \mathrm{S} ;\) POWDER THICKNESS \(=2.00 \mathrm{MM}\); DEGRE OF PREHEATING \(=150{ }^{\circ} \mathrm{C} ; \quad\) OVERLAP \(=1.5 \mathrm{MM}\); FORWARDS ANDBACKWARDS; ETCHED IN \(4 \%\) NITAL; X18.
\begin{tabular}{|c|c|}
\hline 4.12 & Metallographic Observation on Multiple Runs \\
\hline \multirow[t]{11}{*}{. 4.12 .1} & 316 Stainless Steel Surface Cladding \\
\hline & All specimens were cut, mounted, polished and etched in \\
\hline & either Kalling's Reagent, or in a solution of 10 :mi of \\
\hline & \(\mathrm{HNO}_{3}, 20 \mathrm{ml}\) of HCl , and 30 ml of \(\mathrm{H}_{2} \mathrm{O}\) also, to develop \\
\hline & surface cladding structure, the acid etchant showed the \\
\hline & stainless steel structure best. \\
\hline & On the transverse section view from the top surface cladding \\
\hline & towards the HAZ, columnar-grained dendritic structure is \\
\hline & observed, similar to single track runs with slight variations \\
\hline & in grain size as well as in growth orientation, as can be \\
\hline & seen in Figs 4.71-4.73. \\
\hline \multirow[t]{9}{*}{4.12 .2} & Heat-Affected Zone Substrate \\
\hline & All specimens were polished and etched in a \(2 \%\) nital solution \\
\hline & to develop the HAZ structures. \\
\hline & Similar structures are observed in multiple runs to those \\
\hline & found in single pass runs. That is a martensitic structure \\
\hline & is present adjacent to surface cladding with martensitic - \\
\hline & bainitic or non homogeneous martensite further removed from the \\
\hline & cladding. However there are also zones of tempered martensitic \\
\hline & in regions where the depth of the HAZ is overlapped. \\
\hline
\end{tabular}

A basic factor which is involved in any cladding operation, is the wettability of the base metal by cladding alloy and it can be defined as the ability of the liquid cladding alloy to flow over the base metal surface which might be either liquid or solid.

The ability of spreading of the cladding alloy is dependent upon surface tension forces and the interaction between elements of the base metal and the cladding alloy.

A diagram of the forces acting on a liquid droplet of cladding alloy in two dimensions is shown in Fig 4. 106 The vector system for this diagram can be derived from the Dupré equation (18), to yield:
\[
\gamma_{s / g}=\gamma_{1 / s}+\gamma_{1 / g} \cos \theta
\]
by considering a force balance in the horizontal direction.

This expression means that spreading will occur at melt down when the base metal surface tension or the spreading tension \(\gamma_{s / g}\) is of greater magnitude than the sum of the interfacial tension, \(\gamma_{1 / s}\) and the cosine component of the cladding alloy surface tension, \(\gamma / / g\) in some circumstances of penetrating \(\gamma / / s\) may no longer act horizontally but may be deflected downwards at some angle, § so, the expression for spreading is now
\[
\gamma_{s / g}>\gamma_{1 / s} \cos \Phi+\gamma_{1 / g} \cos \theta
\]
thus the sessile drop will tend to spread outward under the influence of \(\gamma_{s / g}\) until a new equilibrium of the above equation is established.

Spreading by the liquid cladding alloy could result from a high or low base metal surface energy as long as the condition of the above equation would prevail, low surface tension in the liquid cladding alloy \(\gamma_{/ / g}\) and the tendency towards superficial alloying between the liquid cladding alloy and the base metal (large \(\gamma_{s / g}\)) would favour the predominance of \(\gamma_{s / g}\) and thus improve wettability. Poor spreading would prevail when the magnitude of the spreading component is less than the sum of the interfacial tension and the cosine component of the cladding alloy surface tension, it can be represented symbolically, as:
\[
\gamma_{s / g}<\gamma_{1 / s}+\gamma_{1 / g} \cos \theta
\]

A high \(\gamma_{l / g}\) or \(\gamma_{l / s}\) would be expected when the liquid cladding alloy becomes contaminated as would be the case with oxide contamination. In some cases this effect could be great enough to cause nowetting or contraction to the cladding alloy upon melting, after it has initially spread over and reacted with some of the base metal surface film, in this instance, \(\gamma_{l / g}\) and \(\gamma_{l / s}\) try to contract the droplet into a spherical shape while attempting to obtain a minimum equilibrium surface energy level in the liquid.
```

Micrographs of all specimens were projected onto a screen
and the solidified contact angles were measured between the
cladding alloy and the base metal.
It is noticed that the resultant areas and solidifed contact
angles were quite different, as expected, for the different
working conditions. For instance, with a l.00 millimeter
powder thickness on specimen number S65, the biggest contact
angle was }127\mathrm{ degrees indicating that it did not exhibit good
spreading. While another runs S128 had a.small solidified contact
angle of 23 degrees which did show good spreading.
Given a clean metal surface (true for all but preheat specimens)
\mp@subsup{\gamma}{s/g}{}\approx constant. The angle }\oint\mathrm{ is a function of dilution
while }\mp@subsup{\chi}{l/g}{}\mathrm{ and }\mp@subsup{\chi}{l/s}{}\mathrm{ would be expected to decrease with increased
temperatures which is a function of (P/DV) the applied specific
energy.
Fig 4. 107, 4. 109 shows how the contact angle }0\mathrm{ varies with dilution
while Fig 4.110-4.112 shows the variation with(P/DV). These
twc graphs are not unrelated since it has already been seen
that dilution is a function of P/DV.
Likewise in Fig 4.l3 shows the variation of the contact angle
\ell with (P/DV), for tin-bronze surface cladding.

```


FIG 4.106 FORCE SYSTEM AFFECTING WETTABILITY IN TWO DIMENTIONS.

FIG 4.107 SOLIOIFIED CONTACT ANGLE, \(\theta\) (DEGREES) vS OILUTION (\%) FOR A 1.00 MM POWDER THICXNESS.

FIG 4.109 SOLIDIFIED CONTACT ANGLE, \(\theta\) (DEGREES) vs OILUTION (\%) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.110 - (DEGREES) VS ENERGY/UNIT AREA, P/DV (J/MM \({ }^{2}\)) FOR A 1.00 MM POWDER THICKNESS.

FIG 4.111 日 (DEGREES) vs ENERGY/UNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A 0.50 MM POWDER THICKNESS.

FIG \(4.112 \theta\) (DEGREESI vS ENERGYIUNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A 0.25 MM POWDER THICKNESS.

FIG 4.113 8 (DEGREES) vs ENERGYIUNIT AREA, PIDV (J/MM \({ }^{2}\)) FOR A 1.00 MM POWDER thicknees and 2.00 mm beam diameter.
\begin{tabular}{|c|c|}
\hline 4.14 & Viscosity in Surface Cladding \\
\hline & Along the length of the clad trace there is a thermal gradient, \\
\hline & which could be quite steep for the higher speed runs. This \\
\hline & thermal gradient means there is a variation in surface tension, \\
\hline & since surface tension is a function of temperature. The \\
\hline & imbalance of surface tension forces causes surface movement \\
\hline & the extent of which is governed by the molten pool viscosity \\
\hline & and depth of the molten pool. The viscosity is also \\
\hline & temperature dependent. \\
\hline & An oscillating backward flows from the molten pool is thus \\
\hline & set up which results in the surface ripple structure. \\
\hline 4.15 & Mechanical Properties in Surface Cladding \\
\hline & The determination of the bend and shear tests were made by \\
\hline & B.S.C (S.L) according to A.S.T.M 264-74. The specimens were \\
\hline & prepared according to the standard specification. The aim \\
\hline & of the tests is to evaluate the ductility and adherence of the \\
\hline & surface cladding. \\
\hline . 15.1 & Bend Test \\
\hline & The ASTM E290-77 describes a semi-guided bend test for \\
\hline & ductility of metallic materials by bending through a specified \\
\hline & angle and to a specified inside radius of curvature. The \\
\hline
\end{tabular}
sufficient length to permit bending and the ratio of width to thickness shall be 2:1.

The results are recorded in table A. 3 Appendix II. From these results it is apparent that to avoid cracking preheat of around \(350^{\circ} \mathrm{C}\) is necessary. The results are a little scattered probably due to lack of shielding gas.
4.15.2 Shear Test

The specimen is prepared according to standard specification and the aim of the test is to evaluate the adherence of the surface cladding onto the base metal.

The method consists in applying a force tangentially to the specimen in the top section until the surface cladding starts cracking from the base metal. The arrangement is illustrated in Fig 4. 11.4. The results are reported in table A3, Appendix II, from which is concluded that there is adequate ' adherence of the surface cladding.

FIG 4.114 TEST SPECIMEN AND METHOD OF MAKING SHEAR TEST OF CLAD PLATE (FROM ASTM A 264-74a).

\section*{Conclusion}

The previously noted advantages of using a laser for cladding
have been justified in this work. Those advantages were
- precise control of energy input
- localisation of heat
- minimal heat affected zone and therefore thermal distortion and interface embrittlement
- a relatively tranquil process suffering from low dilution compared to other surfacing processes.
- a rapid process, resulting in high quench rates and therefore homogeneous deposits

The quality of the deposits made here fas shown that smooth surfaced deposits of controlled depth are possible, this could be useful in reducing finishing costs in an industrial process.

The optimum operating conditions are described by the value of the applied specific energy \((P / D V) \mathrm{J} / \mathrm{mm}^{2}\). Which.. for stainless steel, tin-bronze and monel is:
(a) Stainless Steel
\(1.00 \mathrm{~mm} \quad 44.0 \pm 8.0 \mathrm{~J} / \mathrm{mm}^{2}>\mathrm{P} / \mathrm{DV}>14.0 \pm 5.0 \mathrm{~J} / \mathrm{mm}^{2}\)
\(0.50 \mathrm{~mm} \quad 35.0 \pm 8.0 \mathrm{~J} / \mathrm{mm}^{2}>\mathrm{P} / \mathrm{DV}>11.0 \pm 5.0 \mathrm{~J} / \mathrm{mm}^{2}\)
\(0.25 \mathrm{~mm} \quad 22.0 \pm 8.0 \mathrm{~J} / \mathrm{mm}^{2}>\mathrm{P} / \mathrm{DV}>10.0 \pm 5.0 \mathrm{~J} / \mathrm{mm}^{2}\)
(b) Tin-bronze
1.0 mm
\(150 \pm 25.0 \mathrm{~J} / \mathrm{mm}^{2}>\mathrm{P} / \mathrm{DV}>10.0 \pm 5.0 \mathrm{~J} / \mathrm{mm}^{2}\)
\(1.0 \mathrm{~mm} \quad 150 \pm 25.0^{\prime} \mathrm{J} / \mathrm{mm}^{2}>P / D V>10.0 \pm 5.0 \mathrm{~J} / \mathrm{mm}^{2} \quad \ldots\)
\(1.0 \mathrm{~mm} \quad 196 \pm 18.25 \mathrm{~J} / \mathrm{mm}^{2}>\mathrm{P} / \mathrm{DV}>18.25 \pm 5.0 \mathrm{~J} / \mathrm{mm}^{2} \ldots\)
(c) Monel
\(2.05 \mathrm{Kg} / \mathrm{Hr} \quad 80.0 \pm 20.0 \mathrm{~J} / \mathrm{mm}^{2}>\mathrm{P} / \mathrm{DV}>30.0 \pm 12.0 \mathrm{~J} / \mathrm{mm}^{2}\)
\(1.27 \mathrm{Kg} / \mathrm{Hr} \quad 80.0 \pm 20.0 \mathrm{~J} / \mathrm{mm}^{2}>\mathrm{P} / \mathrm{DV}>25.0 \pm 10.0 \mathrm{~J} / \mathrm{mm}^{2}\)
\(0.83 \mathrm{Kg} / \mathrm{Hr} \quad 80.0 \pm 20.0 \mathrm{~J} / \mathrm{mm}^{2}>\mathrm{P} / \mathrm{DV}>25.0 \pm 10.0 \mathrm{~J} / \mathrm{mm}^{2}\)
- Neat powder
.. Bed covered with boric acid
... Powder and borax mixed in

These values were found to give continuous tracks with less than \(12 \%\) dilution.
```

The microhardness of 316 Stainless Steel surface cladding from
the apex to the interface is approximately constant with values
of 239 £ 31 VPN, this implies that the resultant microstructure
is homogeneous with only small variation in grain size and
orientation.
The hardened martensitic zone is not homogeneous in structure
through the HAZ perhaps because the short time at elevated
temperature is insufficient to remove the effects of the prior
ferrite-pearlite structure, so the resultant structure (deformed
ferrite and bainite) contains alternating hard and soft regions.
The maximum values of microhardness were found at the adjacent
region to the interface. Typical values for the En3 steel were
550 - 62 VPN.
The solidification structures formed during laser cladding are
extremely fine cellular dendrites formed due to the rapid
solidifcation rate characteristic of the process.
The microstructure in surface cladding is on a very fine scale
and morphologicaly resembles that of the chilled zone of a
solidifying bead, after the wide chilled zone has formed.

```
```

Relatively long columnar dendrites grow into the melt with
differently grown direction and size, and finally a planar
dendritic structure is developed in the bottom melt region
adjacent to the interface.
In the multiple runs of 316 stainless steel surface cladding
with preheating of the base metal of mild steel it is found
that the interrun inclusions is less marked than without
preheating where the oxide is present quite clearly in some
runs. Good multiple-runs can be made with the correct or
adequate preheat, though an improvement would be expected if
a shielding gas were used.
In order to achieve a nearly smooth surface or overlap of 40-60%
at least is required. There appears to be no harmful effect on
the interface structure due to overlapping traces.
Adequate preheat, postheat and slow cooling after cladding
could be useful to prevent possible cracks; and reduce residual
thermal stress - as indicated by the bend test, while large
differences in thermal and expansion coefficients between the
clad alloy and the base metal should be avoided.

```
```

Low solidified contact angles may be dependent upon a low
cladding-alloy surface tension combined in some cases with
considerable dilution, diffusion and alloying with the base
metal. High contact angles must be associated with high
cladding-alloy surface tension, high interfacial tensions,
and contaminated base-metal surface.
Substantial spreading of cladding alloy cannot occur unless
the contact angle between alloy and solid substrate is low.
As equation (}\mp@subsup{\gamma}{//g\operatorname{cos}0=\mp@subsup{\gamma}{s/g}{}-\mp@subsup{\gamma}{s/l}{})\mathrm{ shows factors which increase}}{
the difference between }\mp@subsup{\gamma}{s/g}{}\mathrm{ and }\mp@subsup{\gamma}{s/l}{}\mathrm{ , or decrease the values
of }\mp@subsup{\gamma}{l/g}{\mathrm{ favour low contact angles.}
For data resulting from shear test which was made on some
specimens indicates good adherence. The results are acceptable
according to ASTM A264-74, consequently, successful multiple
runs can be made.
It is thus concluded that laser cladding is a viable process
having a promising industrial future.

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{APPENDICES} \\
\hline \multirow[t]{2}{*}{1.1} & OPERATING CONDITIONS AND RESULTS SINGLE TRACK \\
\hline & DEPOSITS, 316 STAINLESS STEEL SURFACE CLADDING \\
\hline \multirow[t]{2}{*}{1.2} & OPERATING CONDITIONS AND RESULTS SINGLE TRACK \\
\hline & DEPOSITS, TIN-BRONZE SURFACE CLADDING \\
\hline \multirow[t]{2}{*}{1.3} & OPERATING CONDItIONS AND RESULTS SINGLE TRACK \\
\hline & DEPOSITS, MONEL SURFACE CLADDING \\
\hline \multirow[t]{2}{*}{1.4} & OPERATING CONDIt \({ }^{\text {cons and results multiple track }}\) \\
\hline & DEPOSITS, 316 STAINLESS STEEL SURFACE CLADDING \\
\hline \multirow[t]{3}{*}{11.1} & SECTIONAL AREA, PERCENTAGE DILUTION, DEPOSATION \\
\hline & RATE AND SOLIDIFIED CONTACT ANGLE AS A FUNCTION \\
\hline & OF THE APPLIED SPECIFIC ENERGY AND POWDER THICKNESS \\
\hline \multirow[t]{4}{*}{11.2} & SECTIONAL AREAS, PERCENTAGE DILUTION, DEPOSITION \\
\hline & RATE AND SOLIDIFIED CONTACT ANGLE AS A FUNCTION OF \\
\hline & THE APPLIED SPECIFIC ENERGY FOR A 1.00 mm POWDER \\
\hline & THICKNESS OF TIN-BRONZE \\
\hline \multirow[t]{2}{*}{11.3} & DEPOSIT TOUGHNESS AND ADHERENCE AS MEASURED BY \\
\hline & BEND AND SHEAR TESTS \\
\hline
\end{tabular}

APPENDIX I-1 OPERATING CONDITIONS AND RESULTS SINGLE TRACK DEPOSITS, 316 STAINLESS STEEL SURFACE CLADDING. \(\qquad\)

POWDER: STAINLESS STEEL 316, 300 MESH.

POWDER: STAINLESS STEEL 316,300 MESH.

POWDER: STAINLESS STEEL 316, 300 MESH.

POWDER: STAINLESS STEEL 316, 300 MESH.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Specimen Number} & \multirow[t]{2}{*}{Laser Power (W)} & \multirow[t]{2}{*}{Beam Diameter (mm)} & \multirow[t]{2}{*}{Traverse Speed (\(\mathrm{mm} / \mathrm{m}\))} & \multirow[t]{2}{*}{Powder Thickness (min)} & \multicolumn{2}{|c|}{Bead} & \multirow[t]{2}{*}{\begin{tabular}{l}
HAZ \\
Depth (mm)
\end{tabular}} & \multirow[t]{2}{*}{Top View} & \multirow[t]{2}{*}{Section View} \\
\hline & & & & & Width
\[
(m m)
\] & Height (nimi) & & & \\
\hline S 31 & 1600 & 4.3 & 30 & 0.50 & \[
\begin{gathered}
1.50 \\
+ \\
- \\
0.18
\end{gathered}
\] & \[
\begin{gathered}
0.78 \\
+ \\
- \\
0.34
\end{gathered}
\] & 0.50 & & \\
\hline S 32 & 1600 & 4.3 & 35 & 0.50 & \[
\begin{gathered}
1.43 \\
+ \\
- \\
0.12
\end{gathered}
\] & \[
\begin{gathered}
0.78 \\
+ \\
- \\
0.32
\end{gathered}
\] & 0.45 & & \\
\hline S 33 & 1600 & 4.3 & 40 & 0.50 & \[
\begin{gathered}
1.44 \\
+ \\
- \\
0.16
\end{gathered}
\] & \[
\begin{gathered}
0.77 \\
+ \\
- \\
0.14
\end{gathered}
\] & 0.60 & & \\
\hline S 34 & 1600 & 4.3 & 50 & 0.50 & \[
\begin{gathered}
0.85 \\
+ \\
- \\
0.70 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.54 \\
+ \\
- \\
0.46
\end{gathered}
\] & 0.35 & & \\
\hline S 35 & 1600 & 4.3 & 75 & 0.50 & \[
\begin{gathered}
0.76 \\
+ \\
- \\
1.30
\end{gathered}
\] & \[
\begin{gathered}
0.76 \\
+ \\
- \\
1.26
\end{gathered}
\] & 0.25 & & \\
\hline S 36 & 1600 & 5.8 & 5 & 0.50 & \[
\begin{gathered}
2.81 \\
+ \\
- \\
0.36
\end{gathered}
\] & \[
\begin{gathered}
0.69 \\
+ \\
- \\
0.20
\end{gathered}
\] & 1.00 & & \\
\hline
\end{tabular}

POWDER: STAINLESS STEEL 316,300 MESH.

POWDER: STAINLESS STEEL 316,300 MESH.

POWDER: STAINLESS STEEL 316, 300 MESH.

POWDER: STAINLESS STEEL 316,300 MESH.

POWDER: STAINLESS STEEL 316,300 MESH

POWDER: STAINLESS STEEL 316,300 MESH

POWDER: STAINLESS STEEL 316, 300 MESH.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Specimen Number & Laser Power (W) & Beam Diameter (mm) & Traverse Speed (\(\mathrm{mm} / \mathrm{s}\)) & Powder Thickness (min) & \[
\underset{\underset{(\mathrm{mm})}{\mathrm{Width}}}{\mathrm{Be}}
\]
(mim) & Height (mm) & \begin{tabular}{l}
HAZ \\
Depth \\
(muI)
\end{tabular} & Top View & Section View \\
\hline S 121 & 1800 & 4.3 & 35 & 1.00 & \[
\begin{gathered}
0.89 \\
+ \\
- \\
1.94
\end{gathered}
\] & \[
\begin{gathered}
0.74 \\
+ \\
- \\
1.60
\end{gathered}
\] & 0.20 & & \\
\hline S 122 & 1800 & 5.8 & 5 & 1.00 & \[
\begin{gathered}
2.88 \\
+ \\
- \\
0.14
\end{gathered}
\] & \[
\begin{gathered}
1.98 \\
+ \\
- \\
0.52
\end{gathered}
\] & 1.15 & & \\
\hline S 123 & 1800 & 5.8 & 10 & 1.00 & \[
\begin{gathered}
2.45 \\
+ \\
- \\
0.26
\end{gathered}
\] & \[
\begin{gathered}
1.73 \\
+ \\
- \\
0.32
\end{gathered}
\] & 0.80 & aximin & \\
\hline S 124 & 1800 & 5.8 & 15 & 1.00 & \[
\begin{gathered}
2.01 \\
+ \\
- \\
0.08
\end{gathered}
\] & \[
\begin{gathered}
1.44 \\
+ \\
- \\
0.08
\end{gathered}
\] & 0.60 & & \\
\hline S 125 & 1800 & 5.8 & 20 & 1.00 & \[
\begin{gathered}
2.09 \\
+ \\
- \\
0.52
\end{gathered}
\] & \[
\begin{gathered}
1.78 \\
+ \\
- \\
0.36
\end{gathered}
\] & 0.45 & \(\square\) & \\
\hline S 126 & 1800 & 7.2 & 5 & 1.00 & \[
\begin{gathered}
3.02 \\
+ \\
- \\
0.12 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1.28 \\
+ \\
- \\
0.38
\end{gathered}
\] & 0.95 & "-numat & \\
\hline
\end{tabular}

POWDER: STAINLESS STEEL 316,300 MESH.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Specimen Number & \begin{tabular}{l}
Laser \\
Power \\
(W)
\end{tabular} & \begin{tabular}{l}
Beam \\
Diameter \\
(mm)
\end{tabular} & Traverse Speed (\(\mathrm{mm} / \mathrm{s}\)) & Powder Thickness (nim) & \[
\begin{aligned}
& \text { Width } \\
& (\mathrm{mm})
\end{aligned}
\] & Height (mm) & \begin{tabular}{l}
HAZ \\
Depth \\
(mm)
\end{tabular} & Top View & Section View \\
\hline S 127 & 1800 & 7.2 & 10 & 1.00 & \[
\begin{gathered}
2.14 \\
+ \\
- \\
0.34
\end{gathered}
\] & \[
\begin{gathered}
0.53 \\
+ \\
- \\
0.38
\end{gathered}
\] & 0.65 & & \\
\hline S 128 & 1800 & 8.7 & 5 & 1.00 & \[
\begin{gathered}
2.75 \\
+ \\
- \\
2.26 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.93 \\
+ \\
- \\
1.64
\end{gathered}
\] & 0.90 & & \\
\hline S 129 & 1800 & 8.7 & 15 & 1.00 & & & - & & \\
\hline S 130 & 1800 & 8.7 & 5 & 0.50 & \[
\begin{gathered}
2.47 \\
+ \\
- \\
3.12
\end{gathered}
\] & \[
\begin{gathered}
0.44 \\
+ \\
- \\
0.68
\end{gathered}
\] & 0.95 & & \\
\hline S 131 & 1800 & 7.2 & 5 & 0.50 & \[
\begin{gathered}
2.80 \\
+ \\
- \\
1.22
\end{gathered}
\] & \[
\begin{gathered}
0.66 \\
+ \\
- \\
0.54
\end{gathered}
\] & 1.30 & - & \\
\hline S 132 & 1800 & 7.2 & 15 & 0.50 & & - & - & & \\
\hline
\end{tabular}

APPENDIX I-2 operating conditions and results single track deposiss, tin-bronze surface cladding
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Specimen Number} & \multirow[t]{2}{*}{\begin{tabular}{l}
Laser \\
Power \\
(w)
\end{tabular}} & \multirow[t]{2}{*}{Beam Diameter (mm)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Traverse \\
Speed (mm/s)
\end{tabular}} & \multirow[t]{2}{*}{Powder Thickness (mm)} & \multicolumn{2}{|c|}{Bead} & \multirow[t]{2}{*}{\begin{tabular}{l}
HoA。Z \\
Depth (mm)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Top \\
View
\end{tabular}} & \multirow[t]{2}{*}{Section View} \\
\hline & & & & & Width (mm) & Height (mm) & & & \\
\hline B1 & 1500 & 2.0 & 5 & 1.0 & 2.80 & 0.67 & 0.27 & & \\
\hline B2 & 1500 & 2.0 & 10 & 1.0 & 2.44 & 0.80 & 0.17 & & \\
\hline B3 & 1500 & 2.0 & 20 & 1.0 & 2.50 & 0.74 & 0.14 & & \\
\hline B4 & 1500 & 2.0 & 40 & 1.0 & 2.80 & 0.95 & 0.17 & & \\
\hline B5 & 1500 & 2.0 & 60 & 1.0 & 1.80 & 0.77 & 0.12 & & \\
\hline B6 & 1480 & 2.0 & 80 & 1.0 & 1.55 & 0.84 & 0.10 & - & \\
\hline B07 & 1500 & 2.0 & 5 & 1.0 & 2.74 & 0.90 & 0.20 & Faryontratraydy & \\
\hline B08 & 1500 & 2.0 & 10 & 1.0 & 2.36 & 0.72 & 0.19 & & \\
\hline B09 & 1500 & 2.0 & 20 & 1.0 & 2.60 & 0.58 & 0.17 & - & \\
\hline B010 & 1500 & 2.0 & 40 & 1.0 & 2.30 & 0.60 & 0.15 & & \\
\hline B011 & 1490 & 2.0 & 80 & 1.0 & 1.51 & 0.94 & 0.08 & Ryntimatan & \\
\hline BI12 & 1460 & 2.0 & 5 & 1.0 & 2.51 & 0.58 & 0.26 & \(\cdots\) & \\
\hline
\end{tabular}

```

O - BED WAS LIGHT COVERED OF BORIC ACID
I - POWDER WITH BORAX MIXED IN
S - LENS GAS SHIELDING
M - OVERLAP 1.25 mm

```

POWDER: \(90 \% \mathrm{Cu}, 9.5 \% \mathrm{Sn}, 0.2 \% \mathrm{P}, 0.3 \%\) OTHERS
appendix i-3 operating conditions and results single track deposits, monel surface cladoing.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Specimen Number} & Laser & Beam & Traverse & Mass Flow & & & HAZ & Top & Section \\
\hline & Power & Diameter & Speed & Rate & Width & Height & Depth & Vicw & View \\
\hline & (W) & (mn) & (mm/s) & (\(\mathrm{Kg} / \mathrm{Hr}\)) & (mim) & (mm) & (mm) & & \\
\hline
\end{tabular}

POWDER MONEL : PRE-ALIOYED APB2/TVKO619 (150 \(\mu \mathrm{m}\))

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Specimen & Laser & Beam & Traverse & Mass Flow & Be & & \(1 \mathrm{M} Z\) & Top & Section \\
\hline Number & \begin{tabular}{l}
Power \\
(b)
\end{tabular} & \[
\begin{aligned}
& \text { Diameter } \\
& \text { (ווחו })
\end{aligned}
\] & Speed (\(\mathrm{mm} / \mathrm{s}\)) & Rate
\[
(\mathrm{Kg} / \mathrm{Hr})
\] & Width (\(\mathrm{m} . \mathrm{m}\)) & \[
\begin{aligned}
& \text { Height } \\
& (\text { (minm) }
\end{aligned}
\] & Depth (mim) & Vicw & View \\
\hline M 33 & 1560 & 3.0 & 20 & 1.37 & 1.00 & 0.20 & & & \\
\hline M 34 & 1560 & 3.0 & 25 & 1.37 & 0.90 & 0.10 & & & \\
\hline M 35 & 1560 & 3.0 & 30 & 1.37 & & & & & \\
\hline M 36 & 1560 & 3.0 & 10 & 2.05 & 1.40 & 1.40 & & & \\
\hline M 37 & 1560 & 3.0 & 15 & 2.05 & 1.60 & 0.55 & & & \\
\hline M 38 & 1560 & 3.0 & 20 & 2.05 & 1.05 & 0.25 & & & \\
\hline M 39 & 1560 & 3.0 & 25 & 2.05 & 0.55 & 0.10 & & & . \\
\hline M. 40 & 1560 & 3.0 & 30. & 2.05 & & & & & \\
\hline M 41 & 1560 & 3.0 & 10 & 0.83 & 1.50 & 0.40 & & & \\
\hline M 42 & 1560 & 3.0 & 15 & 0.83 & 1.15 & 0.23 & & & \\
\hline M 43 & 1560 & 3.0 & 20 & 0.83 & 0.70 & 0.10 & & & \\
\hline M 44 & 1560 & 3.0 & 25 & 0.83 & & & & & \\
\hline M 45 & 1560 & 3.0 & 30 & 0.83 & & & & & \\
\hline M 46 & 1560 & 3.0 & 13 & 2.05 & 1.25 & 0.30 & & & \\
\hline M 47 & 1560 & 3.0 & 13 & 2.05 & 1.15 & 0.20 & & & \\
\hline M 48 & 1560 & 3.0 & 13 & 2.05 & 1.25 & 0. 30 & & & \\
\hline POWDER & ONEU : & PRE-ALLOY & D APB2 & VKO619 (150 & \(\mu \mathrm{m})\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Specimen Number & Laser Power (H) & Beam Diameter (mm) & Traverse Speed (\(\mathrm{n} 1 \mathrm{~m} / \mathrm{m} / \mathrm{s}\)) & \[
\begin{gathered}
\text { Mass Flow } \\
\text { Rate } \\
(\mathrm{Kg} / \mathrm{Hr})
\end{gathered}
\] & Width (mun) & \begin{tabular}{l}
d \\
Height (Imin)
\end{tabular} & \begin{tabular}{l}
HAZ \\
Depth \\
(Imin)
\end{tabular} & Top View & Section View \\
\hline MM 49 & 1560 & 3.0 & 13 & 2.05 & & & & & \\
\hline MM 50 & 1530 & 3.0 & 10 & 1.37 & & & & & \\
\hline MM 51 & 1460 & 3.0 & 10 & 2.05 & & & & & \\
\hline MM 52 & 1560 & 3.0 & 10 & 2.05 & & & & & \\
\hline MM 53 & 1500 & 3.0 & 6 & 1.37 & & & & & \\
\hline MM 54 & 1500 & 3.0 & 6 & 1.37 & & & & & \\
\hline MM 55 & 1500 & 3.0 & 8 & 1.37 & & & & 3 & \\
\hline M 56 & 1560 & 3.0 & 10 & 0.83 & 1.70 & 0.1 .5 & & & \\
\hline M 57 & 1560 & 3.0 & 10 & 1.37 & 1.50 & 0.13 & & & \\
\hline M 58 & 1560 & 3.0 & 10 & 2.05 & 1.55 & 0.25 & & & \\
\hline M 59 & 1560 & 3.0 & 6.6 & 0.83 & 1.40 & 0.08 & & & \\
\hline M 60 & 1560 & 3.0 & 6. 5 & -1.37 & 1.70 & 0.18 & & 2 & \\
\hline M 61 & 1560 & 3.0 & 6.6 & 2.05 & 1.95 & 0.25 & 56 & & \\
\hline M 62 & 1560 & 3.0 & 20 & 0.83 & & & & & \\
\hline M 63 & 1560 & 3.0 & 20 & 1.37 & & & & & \\
\hline M 64 & 1560 & 3.0 & 20 & 2.05 & & & & & \\
\hline \multicolumn{2}{|l|}{POWDER MONEL :} & PRE-ALLOYED & APB2/TVKO619 & \multicolumn{3}{|l|}{(150 \(\mu \mathrm{m}\))} & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Specimen Number & Laser Power (W) & Beam Diameter (mun) & Traverse Speed (\(\mathrm{mm} / \mathrm{s}\)) & Mass Flow Rate (\(\mathrm{Kg} / \mathrm{Hr}\)) & ```
 Bead
Width Height
(mm) (mm)
``` & \begin{tabular}{l}
HAZ \\
Depth \\
(min)
\end{tabular} & Top View & Section View \\
\hline M 97 & 1560 & 2.0 & 20 & 2.74 & 1.15 & & & \\
\hline 1TM 98 & 1560 & 2.0 & 15 & 2.05 & & & & \\
\hline MM 99 & 1560 & 2.0 & 15 & 2.05 & & & & \\
\hline M 100 & 1520 & 2.0 & 25 & 0.83 & 0.90 & & & \\
\hline M 101 & 1520 & 2.0 & 25 & 0.83 & 0.65 & & & \\
\hline M 102 & 1520 & 2.0 & 25 & 2.05 & 0.75 & & & \\
\hline M 103 & 1520 & 2.0 & 25 & 2.74 & 1.5 & & & \\
\hline M 104 & 1520 & 2.0 & 10 & 2.05 & & & & \\
\hline M 28A & 1500 & 2.0 & 13 & 1.37 & & & & \\
\hline MM 110 & 1400 & 3.0 & 13 & 2.05 & & & & \\
\hline MM 111 & 1400 & 3.0 & 13 & 2.05 & & & & \\
\hline M 112 & 1400 & 3.0 & 13 & 2.05 & & & & \\
\hline
\end{tabular}

APPENDIX \([-4\) opfrating conditions and resul.ts mulitple. Trar k geposits, 316 stainless stefl surface. cladding

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Specimen number & Laser power (W) & Beam diameter (mm) & Traverse speed ( \(\mathrm{IIII} / \mathrm{s}\) ) & Powder thickness (mm) & AISI powder & Preheat
\[
\left({ }^{\mathrm{O}} \mathrm{C}\right)
\] & \begin{tabular}{l}
Overlap \\
(mm)
\end{tabular} & Bear height (mm) & HAZ depth (mm) \\
\hline M 6 & 1300 & 2.29 & 20 & 2.0 & \[
\begin{array}{r}
316 \\
-300
\end{array}
\] & 20 & 1.50 & \[
\begin{gathered}
0.79 \\
\pm \\
0.12
\end{gathered}
\] & \[
\begin{gathered}
0.21 \\
\pm \\
0.06
\end{gathered}
\] \\
\hline M 7 & 1300 & 2.29 & 20 & 2.0 & \[
\begin{array}{r}
316 \\
-300
\end{array}
\] & 20 & 1.50 & \[
\begin{gathered}
0.81 \\
\pm \\
0.26
\end{gathered}
\] & \[
\begin{gathered}
0.35 \\
\pm \\
0.16
\end{gathered}
\] \\
\hline M8 & 1300 & 2.29 & 25 & 2.0 & \[
\begin{array}{r}
316 \\
-300
\end{array}
\] & 20 & \[
\begin{aligned}
& \text { single } \\
& \text { run }
\end{aligned}
\] & \[
\begin{gathered}
\text { width } \\
1.9 \\
\text { height } \\
1.8
\end{gathered}
\] & 0.2 \\
\hline M9 & 1460 & 2.29 & 15 & 2.0 & \begin{tabular}{l}
316 \\
\(-300\)
\end{tabular} & 300 & 1.50 & \[
\begin{gathered}
0.84 \\
\pm \\
0.54
\end{gathered}
\] & \[
\begin{gathered}
0.26 \\
\pm \\
0.06
\end{gathered}
\] \\
\hline M10 & 1460 & 2.29 & 20 & 2.0 & \[
\begin{array}{r}
316 \\
-300
\end{array}
\] & 300 & 1.50 & \[
\begin{aligned}
& 0.74 \\
& \pm \\
& 0.20
\end{aligned}
\] & \[
\begin{gathered}
0.26 \\
\underset{ \pm}{0.06}
\end{gathered}
\] \\
\hline
\end{tabular}


table at sectional area percentage dilution deposition rate ano solidified contact angle as a function of the applied specific energy and bed powder thickness.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SPECMEN RUHBER & \begin{tabular}{l}
APPLIED SPECIFIC \\
EIERGY \\
( \(\mathrm{J} / \mathrm{m} \mathrm{m}^{2}\) )
\end{tabular} & \begin{tabular}{l}
POMOLR \\
THICLITIESS \\
(man)
\end{tabular} & \[
\begin{aligned}
& \text { SECTIONAL } \\
& \text { AREA } \\
& \left(\mathrm{mm}^{2}\right)
\end{aligned}
\] & DILUTION
(x) & RATE OF DEPOSITION ( \(\mathrm{Kg} / \mathrm{Hr}\) ) & solidifien contact angle - Degres : \\
\hline 51 & 44.0 & 1.00 & 1.91 & 1.78 & 0.28 & 57 \\
\hline 52 & 14.8 & 1.00 & - & - & - & - \\
\hline S 3 & 8.9 & 1.00 & - & - & - & - \\
\hline S 4 & 55.2 & 1.00 & 2.95 & 0.76 & 0.42 & 89 \\
\hline 55 & 18.4 & 1.00 & 1.39 & 0.81 & 0.60 & 68 \\
\hline 56. & 13.8 & 1.00 & 1.50 & 2.26 & 0.86 & 82 \\
\hline 57 & 11.0 & 1.60 & 0.88 & 0.51 & 0.63 & 85 \\
\hline 58 & 74.4 & 1.00 & 1.72 & 22.88 & 0.25 & 47 \\
\hline 59 & 37.2 & 1.00 & 2.65 & 0.71 & 0.76 & 85 \\
\hline 510 & 24.8 & 1.00 & 1.66 & 0.34 & 0.72 & 99 \\
\hline S11 & 18.6 & 1.00 & 1.97 & 0.29 & 1.13 & 103 \\
\hline S12 & 14.9 & 1.00 & 1.98 & 4.55 & 1.43 & 89 \\
\hline S13 & 12.4 & 1.60 & 1.25 & 0.45 & 1.08 & 114 \\
\hline S14 & 74.4 & 0.25 & 0.23 & 50.00 & 0.03 & 14 \\
\hline \$15 & 37.2 & 0.25 & 0.55 & 12.24 & 0.16 & 36 \\
\hline 516 & 24.8 & 0.25 & 0.25 & 36.35 & 0.11 & 17 \\
\hline 517 & 18.6 & 0.25 & 0.43 & 10.53 & 0.25 & 36 \\
\hline 518 & 14.9 & 0.25 & 0.17 & 6.67 & 0.12 & 43 \\
\hline 519 & 12.4 & 0.25 & 0.51 & 8.89 & 0.44 & 58 \\
\hline S20 & 10.6 & 1.00 & 1.29 & 1.73 & 1.30 & 117 \\
\hline \$21 & 9.3 & 1.00 & - & - & - & - \\
\hline S22 & 10.6 & 0.25 & 0.15 & 7.69 & 0.15 & 45 \\
\hline S23 & 9.3 & 0.25 & 0.10 & 5.88 & 0.12 & 33 \\
\hline \$24 & 7.4 & 0.25 & - & - & - & - \\
\hline 525 & 5.0 & 0.25 & - & - & - & - \\
\hline S26 & 74.4 & 0.50 & 2.11 & 30.40 & 0.30 & 58 \\
\hline 527 & 37.2 & 0.50 & 0.85 & 20.00 & 0.24 & 34 \\
\hline 528 & 24.8 & 0.50 & 1.17 & 5.80 & 0.51 & 40 \\
\hline 529 & 18.6 & 0.50 & 0.93 & 9.70 & 0.54 & 39 \\
\hline 530 & 14.9 & 0.50 & 0.65 & 0.68 & 0.48 & 56 \\
\hline 531 & 12.4 & 0.50 & 1.03 & 5.88 & 0.89 & 56 \\
\hline 532 & 10.6 & 0.50 & 0.58 & 9.71 & 0.58 & 49 \\
\hline 533 & 9.3 & 0.50 & 0.72 & 0.79 & 0.83 & 70 \\
\hline 534 & 7.4 & 0.50 & 0.36 & 1.27 & 0.52 & 46 \\
\hline \$35 & 5.0 & 0.50 & - & - & - & - \\
\hline S36 & 55.2 & 0.50 & 0.78 & 1.44 & 0.11 & 25 \\
\hline 537 & 27.6 & 0.50 & 1.89 & 1.79 & 0.54 & 68 \\
\hline 538 & 18.4 & 0.50 & 0.68 & 1.67 & 0.29 & 45 \\
\hline S39 & 13.8 & 0.50 & - & - & - & - \\
\hline \$40 & 11.0 & 0.50 & - & - & - & - \\
\hline 541 & 44.4 & 0.50 & 0.45 & 10.00 & 0.06 & 23 \\
\hline 542 & 22.2 & 0.50 & 1.08 & 2.08 & 0.31 & 68 \\
\hline 543 & 14.8 & 0.50 & 0.79 & 2.85 & D. 34 & 71 \\
\hline 54.4 & 11.1 & 0.50 & - & - & - & - \\
\hline 545 & 36.8 & 0.50 & 0.61 & 11.93 & 0.09 & 21 \\
\hline S46 & 18.4 & 0.50 & - & - & - & - \\
\hline 547 & 12.3 & 0.50 & - & - & - & - \\
\hline S48 & 55.2 & 0.25 & - & - & - & - \\
\hline S49 & 27.6 & 0.25 & - & - & - & - \\
\hline 550 & 1\%.i &  & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SPECIMEN RUMBER & APPLIED SPECIFIC ENERGY ( \(\mathrm{J} / \mathrm{mm}^{2}\) ) & \begin{tabular}{l}
POHOCR \\
thicriness (min)
\end{tabular} & \[
\begin{aligned}
& \text { SECTIOMAL } \\
& \text { AREA } \\
& \left(\mathrm{mm}^{2}\right)
\end{aligned}
\] & OILUTION
\[
(x)
\] & PATE OF DEPOSITION ( \(\mathrm{Kg} / \mathrm{Hr}\) ) & SOLJDIFIED GONTACT ANGLE (DEGREES) \\
\hline S51 & 13.8 & 0.25 & 0.42 & 0.54 & 0.24 & 49 \\
\hline S52 & 11.0 & 0.25 & 0.17 & 1.32 & 0.12 & 43 \\
\hline S53 & 44.4 & 0.25 & - - & - & - & - \\
\hline S54 & 22.2 & 0.25 & 0.63 & 42.86 & 0.18 & 22 \\
\hline S55 & 14.8 & 0.25 & - & - & - & - \\
\hline 556 & 11.1 & 0.25 & - & - & - & - \\
\hline \$57 & 35.8 & 0.25 & - & - & - & - \\
\hline S58 & 13.4 & 0.25 & 0.37 & 51.52 & 0.11 & 15 \\
\hline 559 & 32.2 & 1.00 & 5.15 & 1.42 & 0.74 & 110 \\
\hline 560 & 39.0 & 1.00 & 5.07 & 0.67 & 0.73 & 120 \\
\hline 561 & 19.4 & 1.00 & - & - & - & - \\
\hline S62 & 48.3 & 1.00 & 1.43 & 0.79 & 0.21 & 51 \\
\hline S63 & 30.4 & 1.60 & 2.64 & 0.09 & 0.76 & 115 \\
\hline 564 & 20.3 & 1.00 & 0.35 & 1.27 & 0.15 & 39 \\
\hline S65 & 15.2 & 1.00 & 1.58 & 0.28 & 0.91 & 127 \\
\hline S60 & 12.2 & 1.00 & - & - & - & - \\
\hline S67 & 87.5 & 1.00 & 3.62 & 6.23 & 0.52 & 97 \\
\hline S68 & 43.8 & 1.00 & 2.74 & 2.47 & 0.79 & 100 \\
\hline S69 & 29.2 & 1.00 & 1.79 & 0.31 & 0.77 & 97 \\
\hline S70 & 21.9 & 1.00 & 1.43 & 0.40 & 0.82 & 109 \\
\hline S71 & 17.5 & 1.00 & 1.42 & 1.58 & 1.02 & 88 \\
\hline 572 & 14.6 & 1.00 & 0.99 & 0.23 & 0.86 & 100 \\
\hline 573 & 12.5 & 1.00 & - & - & - & - \\
\hline 574 & 87.5 & 0.50 & 0.53 & 57.45 & 0.08 & 24 \\
\hline S75 & 43.8 & 0.50 & 0.71 & 8.87 & 0.20 & 43 \\
\hline S76 & 29.2 & 0.50 & 0.71 & 1.59 & 0.31 & 60 \\
\hline S77 & 21.9 & 0.50 & 0.61 & 0.93 & 0.35 & 71 \\
\hline 578 & 17.5 & 0.50 & 0.48 & 0.47 & 0.35 & 55 \\
\hline 579 & 14.6 & 0.50 & 0.40 & 1.41 & 0.35 & 60 \\
\hline \$80 & 12.15 & 0.50 & 0.57 & 0.39 & 0.57 & 74 \\
\hline 581 & 10.9 & 0.50 & 0.63 & 7.21 & 0.73 & 73 \\
\hline 582 & 9.7 & 0.50 & 0.59 & 3.85 & 0.76 & 73 \\
\hline 583 & 3.8 & 0.50 & 0.46 & 19.51 & 0.66 & 59 \\
\hline 584 & 5.8 & 0.50 & - & - & - & - \\
\hline 535 & 60.8 & 0.50 & 0.79 & 4.26 & 0.11 & 44 \\
\hline 585 & 15.2 & 0.50 & - & - & - & - \\
\hline 537 & 3.7 & 0.50 & - & - & - & - \\
\hline SE3 & 45.9 & 0.50 & 2.27 & 6.47 & 0.33 & 60 \\
\hline S89 & 23.0 & 0.50 & 0.60 & 15.89 & 0.17 & 76 \\
\hline S¢0 & 10.5 & 0.50 & - & - & - & - \\
\hline 591 & 3.4 & 0.50 & - & - & - & - \\
\hline 592 & 33.3 & 0.50 & - & - & - & - \\
\hline SO3 & 7.8 & 0.50 & - & - & - & - \\
\hline 594 & 12.7 & 0.50 & - & - & - & - \\
\hline 595 & 14.3 & 0.50 & - & - & - & - \\
\hline 595 & 10.9 & 0.53 & - & - & - & - \\
\hline 597 & 35.9 & 0.50 & 1.92 & 0.59 & 0.28 & 76 \\
\hline 593 & 32.2 & 0.25 & 1.47 & 0.23 & 0.21 & 48 \\
\hline 599 & 10.7 & 0.25 & - & - & - & - \\
\hline 5100 & 6.4 & 0.25 & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SPECIMEN NUMBER & \begin{tabular}{l}
APPLIEO SPECIFIC \\
ENIERGY \\
\(\left(1 / \mathrm{mm}^{2}\right)\)
\end{tabular} & \begin{tabular}{l}
PONDER \\
THICKIESS \\
( mm )
\end{tabular} & SECTIONAL AREA ( \(\mathrm{mm}^{2}\) ) & DILUTION (\%) & RATE OF DEPOSITION ( \(\mathrm{Kg} / \mathrm{Hr}\) ) & SOLIDIFIED contact angle ( degrees ) \\
\hline 5101 & 13.0 & 0.25 & - & - & - & - \\
\hline S102 & 4.9 & 0.25 & - & - & - & - \\
\hline S103 & 55.8 & 0.25 & 0.52 & 34.41 & 0.07 & 22 \\
\hline 5104 & 18.6 & 0.25 & 0.14 & 48.00 & 0.06 & 29 \\
\hline 5105 & 11.2 & 0.25 & - & - & - & - \\
\hline 5105 & 20.7 & 0.25 & - & - & - & - \\
\hline 5107 & 6.9 & 0.25 & - & - & - & - \\
\hline 5108 & 20.7 & 0.50 & - & - & - & - \\
\hline 5109 & B. 3 & 0.50 & - & - & - & - \\
\hline 5110 & 13.8 & 0.50 & - & - & - & - \\
\hline 5111 & 9.2 & 1.00 & - & - & - & - \\
\hline 5112 & 11.2 & 1.00 & - & - & - & - \\
\hline S113 & 27.9 & 1.00 & 0.82 & 4.14 & 0.24 & 66 \\
\hline S114 & 55.8 & 1.00 & 0.80 & 5.64 & 0.12 & 42 \\
\hline S115 & 18.5 & 1.00 & 0.57 & 1.98 & 0.25 & 118 \\
\hline 5116 & 41.9 & 1.00 & 3.06 & 1.29 & 0.88 & 8 B \\
\hline S117 & 27.9 & 1.00 & 2.89 , & 0.78 & 1.25 & 88 \\
\hline 5118 & 20.9 & 1.00 & 1.78 & 4.13 & 1.03 & 72 \\
\hline S119 & 16.7 & 1.00 & 1.34 & 8.40 & 0.96 & 65 \\
\hline S120 & 14.0 & 1.00 & 0.42 & 1.33 & 0.36 & 68 \\
\hline S121 & 12.0 & 1.00 & - & - & - & - \\
\hline S 122 & 62.1 & 1.00 & 3.29 & 3.29 & 0.47 & 80 \\
\hline S123 & 31.0 & 1.00 & 4.14 & 4.19 & 1.21 & 103 \\
\hline 5124 & 20.7 & 1.00 & 2.38 & 2.38 & 1.03 & 88 \\
\hline S125 & 15.5 & 1.00 & 2.33 & 2.33 & 1.34 & 118 \\
\hline S 126 & 50.0 & 1.00 & 3.87 & 1.31 & 0.56 & 70 \\
\hline \$127 & 25.0 & 1.00 & 0.68 & 33.33 & 0.20 & 35 \\
\hline S128 & 41.4 & 1.00 & 1.05 & 41.18 & 0.15 & 23 \\
\hline S129 & 13.8 & 1.00 & - & - & . & 2 \\
\hline S130 & 41.4 & 0.50 & - & - & - & - \\
\hline S131 & 50.0 & 0.50 & 1.01 & 34.00 & 0.15 & 27 \\
\hline S132 & 16.7 & 0.50 & - & - & . & 2 \\
\hline S133 & 62.1 & 0.50 & 0.61 & 14.81 & 0.09 & 25 \\
\hline S134 & 31.0 & 0.50 & 0.92 & 0.25 & 0.26 & 36 \\
\hline S135 & 20.7 & 0.50 & 0.44 & 0.76 & 0.19 & 31 \\
\hline 5136 & 41.9 & 0.50 & 1.62 & 3.82 & 0.47 & 50 \\
\hline S137 & 27.9 & 0.50 & 1.03 & 5.46 & 0.44 & 50 \\
\hline S138 & 20.9 & 0.50 & - & - & - & - \\
\hline S139 & 15.7 & 0.50 & 0.73 & 0.15 & 0.53 & 65 \\
\hline S140 & 14.0 & 0.50 & 0.92 & 7.98 & 0.79 & 79 \\
\hline 5141 & 12.0 & 0.50 & 0.40 & 1.11 & 0.40 & 52 \\
\hline S142 & 41.9 & 0.25 & - & - & - & - \\
\hline S143 & 13.0 & \(0 . \hat{8}\) & - & - & - - & - \\
\hline 5144 & 31.0 & 0.25 & 0.35 & 21.67 & 0.10 & 26 \\
\hline 5145 & 20.7 & 0.25 & 0.14 & 4.00 & 0.06 & 16 \\
\hline 5146 & 50.0 & 0.25 & 0.52 & 39.13 & 0.07 & 19 \\
\hline S147 & 10.0 & 0.25 & - & - & - & - \\
\hline 5148 & 20.7 & 0.25 & - & - & - & - \\
\hline
\end{tabular}

APPENDIX 11.2
table a. 2 sectional areas, percentage dilution, deposition rate and solidified contact angle as a function OF THE APPLIED SPECIFIC ENERGY FOR A 1.00 mm POWDER THICKNESS OF TIN-BRONZE.
\begin{tabular}{lccccl} 
SPECIMEN & APPLIED SPECIFIC & SECTIONAL & DILUTION & DEPOSITION & SOLIDIFIED \\
NUMBER & ENERGY & AREA & & RATE & CONTACT \\
& \(\left(\mathrm{J} / \mathrm{mm}^{2} 2\right)\) & \((\mathrm{mm} 2)\) & \((\%)\) & \((\mathrm{Kg} / \mathrm{Hr})\) & ANGLE \\
& & & & & (Degrees)
\end{tabular}
\begin{tabular}{lrclll} 
B1 & 150.00 & 1.49 & \(-*\) & 0.24 & 88 \\
B2 & 75.00 & 1.35 & - & 0.43 & 86 \\
B3 & 37.50 & 1.44 & - & 0.91 & 58 \\
B4 & 18.75 & 1.72 & - & 2.18 & 104 \\
B5 & 12.50 & 0.94 & - & 1.79 & 105 \\
B6 & 9.25 & 0.86 & - & 2.18 & 93 \\
BO7 & 150.00 & 2.74 & - & 0.32 & 115 \\
B08 & 75.00 & 1.36 & - & 0.43 & 122 \\
B09 & 37.50 & 1.70 & - & 1.08 & 135 \\
B010 & 18.75 & 1.06 & - & 1.34 & 118 \\
B011 & 9.32 & 0.92 & - & 2.33 & 110 \\
BI12 & 196.00 & 0.92 & - & 0.15 & 55 \\
BI13 & 18.25 & 0.33 & - & 0.42 & 84 \\
B015 & 75.00 & 1.69 & - & 0.54 & 118
\end{tabular}
* No dilution was found.

\section*{APPENDIX 11.3}
table a. 3 DEPOSIT TOUGHHESS AND ADHERENCE AS MEASURED BY BEHD ARID SHEAR TESTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPECIMEN NUMBER & DEGREE OF PREHEATING ( \({ }^{\circ} \mathrm{C}\) ) & OVERLAP (rim) & \begin{tabular}{l}
traverse \\
SPEED \\
( \(\mathrm{mm} / \mathrm{s}\) )
\end{tabular} & AHGLE OF BEHD TEST befdre crackilig (DEGREES) * & PEAK LOAD (TOHF ON T.S.I.) * \\
\hline M 1 & 500 & 1.25 & 18 & 90-100 & \\
\hline H2 & 300 & 1.25 & 18 & 80 & \\
\hline M 3 & 20 & 1.25 & 15 & 90 & \\
\hline M 4 & 20 & 1.88 & 15 & DITTO HAZ & \\
\hline M 5 & 20 & 1.50 & 15 & 120 & 2.99/15.95 \\
\hline H 6 & 20 & 1.50 & 20 & 120 & \\
\hline M 7 & 20 & 1.50 & 20 & 90 & \\
\hline 1.8 & 20 & SINGLE RUN & 25 & 120 & \\
\hline 19 & 300 & 1.50 & 15 & 140 & \\
\hline M10 & 300 & 1.50 & 20 & 120 & \\
\hline MII & 300 & 1.50 & 25 & OK 180 & \(3.653 / 19.48\) \\
\hline 1 l 2 & 200 & 1.50 & 15 & \(160+180\) & \\
\hline 113 & 200 & 1.50 & 20 & 90 & \\
\hline 814 & 200 & 1.50 & 25 & \(160+180\) & \\
\hline M15 & 150 & 1.50 & 15 & 120 & \\
\hline M16 & 150 & 1.50 & 20 & 120 & \\
\hline 117 & 150 & 1.50 & 25 & OK 180 & 1.605/8.56** \\
\hline M18 & 400 & 1.50 & 15 & OK 180 & \\
\hline M19 & 400 & 1.50 & 20 & \(160+180\) & \\
\hline M20 & 400 & 1.50 & 25 & OK 180 & \(2.91 / 15.52\) \\
\hline
\end{tabular}
* TESIS DO::E BY B.S.C. (S.L.)
** fui: :io. 17 failed to meet the minmuit specified OF 20000 P.S.I.

NOMENCLATURE

SYMBOL MEANING UNITS

A AUSTENITE

A PARTIAL AREA OF DEPOSITION ON THE BASE METAL mm²

A SINGLE DIRECTION TRAVERSE
\(A+B\) TOTAL AREA OF DEPOSIT ON THE BASE METAL mm²

B Partial area of deposit penetrated on the BASE METAL \(m^{2}\)
B. TRAVERSE IN BOTH DIRECTIONS

C CARBIDES

Creq CHRONIUM EQUIVALENT \(=\% \mathrm{Cr}+\mathrm{Mo} \div\)
\(1.5 \mathrm{X} \% \mathrm{Si}+0.5 \times \% \mathrm{~N} 6\)

C Max MaXImum segregation measured

C Min MaXImum segregation measured

D INCIDENT BEAM DIAMETER mm
d POWDER BED THICKNESS mm

F FERRITE

Hv VICKERS HARDNESS NUMBER
h HEIGHT OF THE BEAD mm

L LIQUID PHASE
```

 M MARTENSITE
 Nieq NICKEL EQUIVALENT = %Ni + 30 x %C
 +0.05 x% Mn
 P TOTAL INCIDENT BEAM POWER
 (P/DY) APPLIED SPECIFIC ENERGY
 J/mm
 T TEMPERATURE
 v TRAVERSE SPEED OF INCIDENT BEAM
 MM/S
 W WIDTH OF THE BEAD
 X-Y dIrections of moveable Table
 Z DEPTH OF THE HEAT-AFFECTED ZONE
 mm
 X
 \propto(alpha) FERRITE
\gamma (gamma) AUSTENITE
\gammas/g SURFACE TENSION OF SOLID SURFACE AND GAS
\gammal/s INTERFACIAL TENSION OF LIQUID CLADDING
ALLOY AND SOLID BASE METAL
\l/g SURFACE TENSION OF THE LIQUID
CLADDING ALLOY AND GAS
\delta(delta) DELTA FERRITE
n (eta) LAVES PHASE
0 (theta) sOLIDIFIED CONTACT ANGLE, DEGREES
\lambda
WAVELENGTH (m\mu)

```
\(U_{1}\) ( Nu ) SYMUETRIC STRETCH MODE OF CO 2 VIBRATION
\(\bigcup_{2}\) bending mode of \(\mathrm{CO}_{2}\) VIbRATION
\(\omega_{3} \quad\) ASSYMETRIC STRETCH MODE OF CO 2 vIBRATION
\(\sigma\) (Sigma) SIGMA PHASE
\(\oint\) (Phi) DEFLECTED DOWNWARDS ANGLE IN DILUTION SURFACE CLADDING,

DEGREES

X (Ghi) CHI PHASE
\begin{tabular}{|c|c|}
\hline 1.1 & Commercial laser used \\
\hline 4.1 & Quality of tracks form 316 stainless steel \\
\hline 4.2 & Quality of tracks made with tin-bronze \\
\hline 4.3 & Quality of tracks made with monel \\
\hline 4.4 & Range of deposition rate observed with different bed depths of 316 stainless steel \\
\hline 4.5 & Physical characteristics of multiple runs in 316 stainless steel \\
\hline A. 1 & Sectional area, percentage dilution, deposition rate and solidified contact angle as a function of the applied specific energy and powder bed thickness \\
\hline A. 2 & Sectional area, percentage dilution deposition rate and solidified contact angle as a function of the applied specific energy for a 1.00 mm powder thickness of tin-bronze \\
\hline A. 3 & Deposit toughness and adherence as measured by bend and shear tests. \\
\hline
\end{tabular}

REFERENCES
1. Desforges C.D.

Technical File No 46
Engineering, October 1977
2. Megaw J.H and I.J Spalding

Physics in Technology, 186-194, September 1976
3. Steen W.M and C. Courtrey

Surfaces Heat Treatment of En 8 Steel
using a 2 kw continuous-wave \(C O\) Laser 2
Metals Technology, 456-462 December 1979
4. Eduard U. Locke and Richard A. Hella

Metal Processing with High Power \(\mathrm{CO}_{2}\) Laser
ICE Journal of Quantum Electronics, Vol QE-10 No 2, 179185, February 1974.
5. Peter Bletzinger and others.

IEEE Jounral of Quantum Electronic Vol QE-11 No 7, 317322, July 1975.
6. Seaman F.D and D.S Gnanamuthu using the Industrial Laser to surface Harden and Alloy.

Metal progress, 67-74 August 1975.
7. Breinan E.M, B.H. Kear and C.M. Banas

Processing Materials with Lasers
Physics Today, 44-50 November 1976.
8. Steen W.M and C.G.H Courtney

Hardfacing Ninonic 75
Metals Technology, 232-237 June 1980
9. Suchowsky R.S and E Garrabrant

Welding Journal, 43 (1), 13-20 1964
10. Gabrabrant E.C and R.S. Suchowsky Welding Journal, 48 (5) 385-395 1969
11. Raynolds G.H and E.J. Kachelmeier

Metal Construction, 429-430 1978
12. Courtney C. and W.M. Steen

Measurement of the Diameter of a Laser Beam
Applied Physics 17, 303-307, 1978
13. Ream S.L.

Laser Focus, 68-71 November 1979
14. Making Light Work

Metalworking Production, 75 August 1979.
15. Shaeffler, A

Metal Progress 56, 680-680B, 1949
16. Physical and Mechanical Properties of

British Steels
17. Bain E.C and A.W. Paxton

Alloy Elements in Steel

23rd Ed. American Society for Metals, Metal
Park, Ohio. 1961
18. Adans A.W.

Physical Chemistry of Surfaces

Ad. John Wiley \& Sons
Third Edition 1976.
19. G J Davies and J G Garland Solidification Structures and Properties af Fusion Welds

International Metallurgical Reviews
March 1975, Vol 20, P 83

20 M C Flemings
Solidifcation Processing
McGraw-Hill 1974
21. J. F. READY

Industrial Applications of Lasers
Academic Press 1978
22. D. Peckner \& I. M. Bernstein

Handbook of Stainless Steel
McGraw Hill Book Co 1977

List of Figures

FIGURE TITLE
1.1 Oscillation modes and vibrating energy levels of carbon and nitrogen molecules.
1.2 Chemical reactions in gas laser.
2.1 Dilution of surface cladding, the bead, A, and penetration B. both areas A and B are the same cladding alloy, but are shaded different to illustrate the calculation of dilution.
3.1 Arrangement of the apparatus for making a single bead surface cladding.
3.2 Arrangement of the apparatus.
3.3 Photograph of the arrangement of apparatus for monel surface cladding.
3.4 BCO 2 kw CO 2 laser-gas and discharge path (ref 14).
3.5 Photograph of the equipment.
4.1 High penetration and dishomogeneous deposits, power \(=1800\) \(w ;\) beam diameter \(=7.2,7.2\) and \(5,8 \mathrm{~mm} ;\) speed \(=5,15,5\) \(\mathrm{mm} / \mathrm{S}\); powder thickness \(=0.50 \mathrm{~mm}\).
4.2 Homogeneous deposits; power \(=1600 \mathrm{w}\); beam diameter \(=4.3\) \(\mathrm{mm} ;\) speed \(=15,20\) amd \(25 \mathrm{~mm} / \mathrm{s} ;\) powder thickness \(=1.00 \mathrm{~mm}\).
4.3 Bead height vs energy/unit area \(p / d v\left(\mathrm{~J} / \mathrm{mm}^{2}\right)\) for a 1.00 mm powder thickness.
4.4 Bead height vs energy/unit area \(p / \mathrm{dv}\left(j^{j} / \mathrm{mm}^{2}\right)\) for a 0.50 mm powder thickness.
4.5 Bead height vs energy/unit area \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right)\) for a 0.25 mm powder thickness.
4.6 Bead width vs energy/unit area \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right)\) for a 1.00 mm powder thickness.
4.7 Bead width vs energy/unit area \(p / d v\left(J / \mathrm{mm}^{2}\right)\) for a 0.50 mm powder thickness.
\begin{tabular}{|c|c|}
\hline 4.8 & Bead width vs energy/unit area \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right.\) ) for a 0.25 \\
\hline & mm powder thickness. \\
\hline 4.9 & Ratio (W/H) vs energy/unit area, \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right.\) ) for a \\
\hline & 1.00 mm powder thickness. \\
\hline 4.10 & Ratio (W/H) vs energy/unit area, \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right.\) ) for a \\
\hline & 0.50mm powder thickness. \\
\hline 4.11 & Ratio (W/H) vs energy/unit area, p/dv ( \(\mathrm{J} / \mathrm{mm}^{2}\) ) for a \\
\hline & 0.25mm powder thickness. \\
\hline 4.12 & Depth of the HAZ (heat-affected zone) vs energy/unit area, \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right)\) for a 1.00 mm powder thickness. \\
\hline 4.13 & Depth of the HAZ (heat-affected zone) ve energy/unit area, \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right)\) for a 0.50 mm powder thickness. \\
\hline 4.14 & ```
Depth of the HAZ (heat-affacted zone) vs energy/unit area,
p/dv (J/mm}\mp@subsup{}{}{2})\mathrm{ for a 0.25 powder thickness.
``` \\
\hline 4.15 & Bead height (mm) vs traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a 1.00 mm powder \\
\hline & thickness. \\
\hline 4.16 & Bead height (mm) vs traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a 0.50 mm powder \\
\hline & thickness. \\
\hline 4.17 & Bead height (mm) vs traverse speed (mm/s) for a 0.25 mm po der \\
\hline & thickness. \\
\hline 4.18 & Bead width (mm) vs traverse speed for a 1.00 mm powder thicknes. \\
\hline 4.19 & Bead width (mm) vs traverse speed for a 0.50 mm powder thickness. \\
\hline 4.20 & Bead wisth (mm) vs traverse speed for a 0.25 mm powder thickness. \\
\hline 4.21. & Powder thickness (mm) vs energy/unit area, \(p / d v\left(J / \mathrm{mm}^{2}\right)\) for \\
\hline & 316 stainless steel. \\
\hline 4.22 & Good and discontinuous tracks, power \(=1500 \mathrm{w}\); beam diameter \(=\) \\
\hline & 2.00 mm speed \(=20,40\), and \(80 \mathrm{~mm} / \mathrm{s} ;\) powder thickness \(=1.00 \mathrm{~mm}\). \\
\hline 4.23 & Different cross section produced between \\
\hline & a) tin-bronze surface cladding \\
\hline & b) stainless steel surface cladding \\
\hline
\end{tabular}
4.24 Bead height (mm) vs energy/unit area, \(p / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right)\) for a 1.00 mm powder thickness and 2.00 mm beam diameter.
4.25 Bead width (mm) vs energy/unit area, \(\mathrm{p} / \mathrm{dv}\), (\(\mathrm{J} / \mathrm{mm}^{2}\)) for a 1.00 mm powder thickness and 2.00 mm beam diameter.
4.26 Ratio (W/H) (bead width/bead height) vs energy/unit area, p/dv for a 1.0 mm powder thi kness and 2.00 mm beam diameter.
4.27 Depth of the \(\mathrm{HAZ}(\mathrm{mm}) \mathrm{vs}\) energy/unit area \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right)\) for a 1.00 mm pawder thickness and 2.00 mm beam diameter.
4.28 Bead height (mm) vs traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a 1.00 mm powder thickness and 2.00 mm beam diameter.
4.29 Bead width (mm) vs traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a 1.00 mm powder thickness and 2.00 mm beam diameter.
4.30 Discontinuous tracks \(=1600 \mathrm{w}\); beam diameter \(=2.00 \mathrm{~mm} ;\) speed \(=35,40,45\) and \(50 \mathrm{~mm} / \mathrm{s} ;\) masss flow rate \(=2.05 \mathrm{Kg} / \mathrm{Hr}\).
4.31 Continuous tracks; power \(=1560 \mathrm{w}\); beam diameter \(=2.00 \mathrm{~mm} ;\) speed \(10,15,20\) and \(25 \mathrm{~mm} / \mathrm{s}\); mass flow rate \(=1.37 \mathrm{Kg} / \mathrm{Hr}\).
4.32 Bead height (mm) vs energy/unit area, \(p / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right.\)) for a mass flow rate of \(2.05 \mathrm{Kg} / \mathrm{Hr}, \Delta=2.00\) and \(\rightarrow=3.00 \mathrm{~mm}\) beam diameter.
4.33 Bead height (mm) vs energy/unit area, \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right.\)) for a mass flow rate of \(1.37 \mathrm{Kg} / \mathrm{Kg}, \quad \square=2.00\) and \(\mathrm{m}=3.00 \mathrm{~mm}\) beam diameter.
4.34 Bead height (mm) vs energy/unit area, \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right.\)) for a mass flow rate of \(0.83 \mathrm{Kg} / \mathrm{Hr}, \quad 0=2.00\) and \(\bullet=3.00 \mathrm{~mm}\) beam diameter. Bead width (mm) vs energy/unit area. \(p / d v\left(J / \mathrm{mm}^{2}\right)\) for a mass flow rate of \(2.05 \mathrm{Kg} / \mathrm{Hr}, \circ=2.00\) and \(-=3.00 \mathrm{~mm}\) beam diameter.
4.36 Bead width (mm) vs energy/unit area, \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right.\)) for a mass flow rate of \(1.37 \mathrm{Kg} / \mathrm{Hr}, \square=2.00\) and \(m=3.00 \mathrm{~mm}\) beam diameter.
4.37 Bead width (mm) vs energy/unit area, \(p / d v\) (\(\mathrm{J} / \mathrm{mm}^{2}\)) for a mass flow rate of \(0.87 \mathrm{Kg} / \mathrm{Hr}, \quad 0=2.00\) and \(0=3.00 \mathrm{~mm}\) beam diameter.
4.38 Ratio (W/H) (bead width/bead height) vs energy/unit area, p/dv \(\left(\mathrm{J} / \mathrm{mm}^{2}\right)\) for a mass flow rate of \(2,05 \mathrm{Kg} / \mathrm{Hr}, \phi=2.00\) and \(\phi=3.00\) mm beam diameter.

\begin{tabular}{|c|c|}
\hline 4.52 & Sectional area \(\left(\mathrm{mm}^{2}\right)\) vs depth of the HAZ (mm) for a 1.00 mm powder thickness and 2.00 mm beam diameter. \\
\hline \multirow[t]{4}{*}{4.53a} & Nugget characteristics: specimen number 574 , power \(=1400 \mathrm{~W}\), \\
\hline & beam diameter \(=3.2 \mathrm{~mm} ;\) speed \(=5 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=0.50 \mathrm{~mm}\) \\
\hline & total area \(=0.53 \mathrm{~mm}{ }^{2}\), deposition rate \(=0.08 \mathrm{Kg} / \mathrm{Hr}\), dilution \(=\) \\
\hline & 57.5\%. \\
\hline \multirow[t]{4}{*}{4.53 b} & Nugget characteristics: specimen number S 123, power \(=1800 \mathrm{~W}\), \\
\hline & beam diameter \(=5.8 \mathrm{~mm} ;\) speed \(=10 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=1.00 \mathrm{~mm}\) \\
\hline & total area \(=4.19 \mathrm{~mm}^{2}\), deposition rate \(=1.21 \mathrm{Kg} / \mathrm{Hr}\), dilution \(=\) \\
\hline & 0.13\%. (0) \\
\hline \multirow[t]{2}{*}{4.54} & Energy/unit area, p/dv (\(\mathrm{J} / \mathrm{mm}^{2}\)) vs dilution (\%) for a 1.00 mm \\
\hline & powder thickness. \\
\hline \multirow[t]{2}{*}{4.55} & Energy/unit area, p/dv (\(\mathrm{J} / \mathrm{mm}^{2}\)) vs dilution (\%) for a 0.50 mm \\
\hline & powder thickness. \\
\hline \multirow[t]{2}{*}{4.56} & Energy/unit area, \(\mathrm{p} / \mathrm{dv}\left(\mathrm{J} / \mathrm{mm}^{2}\right.\)) vs dilution (\%) for a 0.25 mm \\
\hline & powder thickness. \\
\hline \multirow[t]{2}{*}{4.57} & Dilution (\%) vs traverse speed (mm/s) for a 1.00 mm powder \\
\hline & thickness. \\
\hline \multirow[t]{2}{*}{4.58} & Dilution (\%) ve traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a 0.50 mm powder \\
\hline & thickness. \\
\hline \multirow[t]{2}{*}{4.59} & Dilution (\%) vs traverse speed (mm/s) for a 0.25 mm powder \\
\hline & thickness. \\
\hline \multirow[t]{2}{*}{4.60} & Deposition rate (\(\mathrm{Kg} / \mathrm{Hr}\)) vs traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a 1.00 mm \\
\hline & powder thickness. \\
\hline \multirow[t]{2}{*}{4.61} & Deposition rate (\(\mathrm{Kg} / \mathrm{Hr}\)) vs traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a 0.50 mm \\
\hline & powder thickness. \\
\hline \multirow[t]{2}{*}{4.62} & Deposition rate (\(\mathrm{Kg} / \mathrm{Hr}\)) vs traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a 0.25 mm \\
\hline & powder thickness. \\
\hline \multirow[t]{2}{*}{4.63} & Deposition rate (\(\mathrm{Kg} / \mathrm{Hr}\)) vs traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a beam \\
\hline & power \(=1600 \mathrm{~W}\); beam diameter \(=4.3 \mathrm{~mm}\) and \(0=1.00, \square=0.50\), \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \(\bigcirc=0.25 \mathrm{~mm}\) powder thickness. \\
\hline 4.64 & Bead height (mm) vs dilution (\%), for 316 stainless steel. \\
\hline \multirow[t]{2}{*}{4.65} & Deposition rate (\(\mathrm{Kg} / \mathrm{Hr}\)) vs traverse speed (\(\mathrm{mm} / \mathrm{s}\)) for a 1.00 mm \\
\hline & powder thickness and 2.00 mm beam diameter. \\
\hline \multirow[t]{2}{*}{4.66} & Constitution diagram for stainless steel as weld deposit \\
\hline & (Ref 15). \\
\hline 4.67 & \(\mathrm{Fe}-\mathrm{Cr}\) - Ni Pseudo-binary diagram taken at 70\% Fe. \\
\hline \multirow[t]{4}{*}{4.68} & Schematic diagrams showing competitive growth for a moving \\
\hline & pool with, \\
\hline & a) An ellipticsl shaped puddle \\
\hline & b) A teardrop shaped puddle \\
\hline \multirow[t]{3}{*}{4.69} & Microstructure 316 stainless steel cladding, specimen number \\
\hline & S62, power \(=1400 \mathrm{~W}\); beam diameter \(=5.8 \mathrm{~mm}\), speed \(=5 \mathrm{~mm} / \mathrm{s}\), powder \\
\hline & thickness \(=1.0 \mathrm{~mm}\), etched in \(\mathrm{HCl}+\mathrm{HNO}_{3}\) and \(\mathrm{H}_{2} \mathrm{O}\) solution, X 110. \\
\hline \multirow[t]{3}{*}{\(4 \cdot 70\)} & Microstructure 316 stainless steel cladding, specimen number S68; \\
\hline & powder thickness \(=1.00 \mathrm{~mm}\) etched in \(\mathrm{HCl}+\mathrm{HNO}_{3}\) and \(\mathrm{H}_{2} \mathrm{O}\) solution \\
\hline & X110. \\
\hline \multirow[t]{3}{*}{4.71} & Microstructure 316 stainless steel cladding, specimen number M 8, \\
\hline & power \(=1300 \mathrm{~W}\), beam diameter \(=2.29 \mathrm{~mm}\), speed \(=25 \mathrm{~mm} / \mathrm{s}\), powder \\
\hline & thickness \(=2.00 \mathrm{~mm}\), etched in Kalling's Reagent, X . \\
\hline \multirow[t]{5}{*}{4.72} & Microstructure 316 stainless steel cladding, specimen number M:9, \\
\hline & power \(=1460 \mathrm{~W}\), beam diameter \(=2.29 \mathrm{~mm}\), speed \(15 \mathrm{~mm} / \mathrm{s}\), powder \\
\hline & thickness \(=2.0 \mathrm{~mm}\), grade of preheating \(=300{ }^{\circ} \mathrm{C}\) overlap \(=1.15 \mathrm{~mm}\), \\
\hline & forwards and backwards, etched in a solution of \(\mathrm{HCl}+\mathrm{HNO}_{3}\) and \\
\hline & \(\mathrm{H}_{2} \mathrm{O}, \mathrm{X} 182\). \\
\hline 4.73 & The same as above, but at X 442 . \\
\hline \multirow[t]{4}{*}{4.74} & Heat-affected zone in En 3 steel after laser cladding 316 \\
\hline & stainless steel, specimen number S 63 , power \(=1400 \mathrm{~W}\); beam diameter \\
\hline & \(=4.6 \mathrm{~mm}\), speed \(=10 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=1.0 \mathrm{~mm}\) etched in \(2 \%\) \\
\hline & nital Xllo. \\
\hline
\end{tabular}

Heat-affected zone in En 3 steel after laser cladding 316 stainless steel, specimen number S 123 , power \(=1800 \mathrm{~W} ; \mathrm{D}=5.8 \mathrm{~mm}\), \(V=10 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=1.00 \mathrm{~mm}\), etched in \(2 \%\) nital X 110.

Heat-affected zone in En 3 stainless steel, specimen number 520 , \(P=1600 \mathrm{~W} ; \mathrm{D}=4.3 \mathrm{~mm}, V=35 \mathrm{~mm} / \mathrm{s}\), powder thickness 1.00 mm , etched innital, \(\quad\) x182.
4.77 Heat-affected zone in En 3 steel after laser cladding 316 stainless steel, specimen number \(M 4, P=1300 \mathrm{~W} ; \mathrm{D}=2.29 \mathrm{~mm}, V=15 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=2.00 \mathrm{~mm}\), not preheat overlap, 1.88 mm, etched in \(2.00 \%\) nital X110.

Heat-affected zone in En 3 ateel after laser cladding 316 stainless steel, specimen number \(M 16, P=1400 \mathrm{~W} ; D=2.29, V=20 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=2.0 \mathrm{~mm}\).

Relation between the peak temperatures by various regions in heat-affected zone, and how these correlate with iron-carbon phase diagram.

Isotherm transformation for En 3 steel (Ref 16).
EPMA concentration profiles for \(\mathrm{Cr}, \mathrm{Ni}\) and Mo in 316 stainless steel surface cladding, specimen Sl.

EPMA concentration profiles for \(\mathrm{Cr}, \mathrm{Ni}\) and Mo in 316 stainless steel surface cladding, specimen \(\$ 26\).
4.83 EPMA concentration profiles for \(\mathrm{Cr}, \mathrm{Ni}\) and Mo in 316 stainless steel surface cladding, specimen S63.
4.84. EPMA concentration profiles for \(\mathrm{Cr}, \mathrm{Ni}\) and Mo in 316 stainless steel surface cladding, specimen Sll6.
4.85

EPMA concentration profiles for \(\mathrm{Cr}, \mathrm{Ni}\) and Mo in 316 stainless steel surface cladding, specimen number Sll8.
4.86 EPMA con entration profiles for \(\mathrm{Cr}, \mathrm{Ni}\) and Mo in 316 stainless steel surface cladding, specimen number 5.137 . Microhardness and macrograph section view through surface
\begin{tabular}{|c|c|}
\hline & 1600 W , beam diameter \(=5.8 \mathrm{~mm}\), traverse speed \(=5 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=1.0 \mathrm{~mm}\). \\
\hline \multirow[t]{4}{*}{4.88} & Microhardness and macrograph specimen view through surface \\
\hline & cladding of specimen number S5, etched \(2 \%\) nital, X21, power \(=1600\) \\
\hline & \(W\), beam diameter \(=5.8 \mathrm{~mm}\), traverse speed \(=15 \mathrm{~mm} / \mathrm{s}\), powder \\
\hline & thickness \(=1.0 \mathrm{~mm}\). \\
\hline \multirow[t]{4}{*}{4.89} & Microhardness and macrograph specimen view through surface \\
\hline & cladding of specimen number s8, etched \(2 \%\) nital, \(\mathbf{x}_{21}\), power \(=1600\) \\
\hline & W , beam diameter \(=4.3 \mathrm{~mm}\) traverse speed \(=5 \mathrm{~mm} / \mathrm{s}\), powder ; \\
\hline & thickness \(=1.0 \mathrm{~mm}\). \\
\hline \multirow[t]{3}{*}{4.90} & Microhardness and macrograph section view through surface cladding \\
\hline & of specimen number S9, power \(=1600 \mathrm{~W}\), beam diameter \(=4.3 \mathrm{~mm}\) \\
\hline & traverse speed \(=15 \mathrm{~mm} / \mathrm{s}\) powder thickness \(=1.0 \mathrm{~m}\). \\
\hline \multirow[t]{3}{*}{4.91} & Mi rohardness and macrograph section view through surface cladding \\
\hline & of specimen number S26 power \(=1600 \mathrm{~W}\), beam diameter \(=4.3 \mathrm{~mm}\), \\
\hline & traverse speed \(=5 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=0.50 \mathrm{~mm}\). \\
\hline \multirow[t]{3}{*}{4.92} & Microhardness and macrograph section view through surface cladding \\
\hline & of specimen number 527 , power \(=1600 \mathrm{~W}\), beam diameter \(=4.3 \mathrm{~mm}\), \\
\hline & traverse speed \(=10 \mathrm{~mm} / \mathrm{s}\) powder thickness \(=0.50 \mathrm{~mm}\). \\
\hline \multirow[t]{3}{*}{4.93} & Microhardness and macrograph section view through surface cladding \\
\hline & of specimen number s 28 , power \(=1600 \mathrm{~W}\), beam diameter \(=4.3 \mathrm{~mm}\), \\
\hline & traverse speed \(15 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=0.50 \mathrm{~mm}\). \\
\hline \multirow[t]{3}{*}{4.94} & Microhradness and macrograph section view through surface cladding \\
\hline & of specimen number S 59 , power \(=1400 \mathrm{~W}\), beam diameter \(=8.7 \mathrm{~mm}\) \\
\hline & traverse speed \(=5 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=1.0 \mathrm{~mm}\). \\
\hline \multirow[t]{3}{*}{4.95} & Microhardness and macrograph section view through surface cladding \\
\hline & of specimen number S60, power \(=1400 \mathrm{~W}\), beam diameter \(=7.2 \mathrm{~mm}\), \\
\hline & traverse speed \(5 \mathrm{~mm} / \mathrm{s}\) powder thickness \(=1.00 \mathrm{~m}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 4.96 & Microhardness and macrograph section view through surface cladding of specimen number 577 , power \(=1400 \mathrm{~W}\), beam diameter \(=3.2 \mathrm{~m}\), trawerse speed \(=20 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=\) 0.50 mm . \\
\hline 4.97 & Microhardness and macrograph section view through surface cladding of specimen number 5124 , power \(=1800 \mathrm{~W}\), beam diameter \(=5.8 \mathrm{~mm}\) traverse speed \(=15 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=\) 1.00 mm . \\
\hline 4.98 & Microhardness and macrograph section view through surface cladding of specimen number S125, power \(=1800 \mathrm{~W}\), beam diameter \(=5.8 \mathrm{~mm}\), traverse speed \(=20 \mathrm{~mm}\), powder thickness \(=\) 1.0 mm . \\
\hline 4.99 & Approximation hardness of carbon steel as a function of carbon content, fully hardrning martensite (Ref 17). \\
\hline 4.100 & ```
Surface cladding; power 1400 W, beam diameter = 2. 29mm, speed
= 18mm/s, powder thickness = 2.00mm, grade of preheating =
300}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ , overlap = 1.25mm, towards and backwards, X3.
``` \\
\hline 4. & ```
Surface cladding, power = 1460W, beam diameter = 2.29mm, speed
= 20mm/s, powder thickness = 2.00mm, grade of preheating =
300}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ , overlap = 1.50mm, towards and backwards, X3.
``` \\
\hline 4 & Section view 316 stainless steel cladding, specimen number M6, power \(=1300 \mathrm{~W}\), beam diameter \(=2.29 \mathrm{~mm}\), speed \(=20 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=2.00 \mathrm{~mm}\), no preheat, overlap \(=1.5 \mathrm{~mm}\) forwards and backwards etched in 4\% nital. \\
\hline 4.103 & Section view 316 stainless steel cladding, specimen number M9, power \(=1450 \mathrm{~W}\), beam diameter \(=2.29 \mathrm{~mm}\), speed \(15 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=2.00 \mathrm{~mm}\), degree of preheating \(=300^{\circ} \mathrm{C}\), overlap \(=1.50 \mathrm{~mm}\), forwards and backwards, etched in \(4 \%\) nital, X18. \\
\hline 4.104 & Section view 316 stainless steel cladding, specimen number M7, power \(=1300 \mathrm{~W}\), beam diameter \(=2.29 \mathrm{~mm}\), speed \(=20 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=2.0 \mathrm{~mm}\), no preheat, overlap \(=1.5 \mathrm{~mm}\), forwards etched in \(4 \%\) nital, X18. \\
\hline 4.105 & Section view 316 stainless steel cladding, specimen number M16, power \(=1400 \mathrm{~W}\), beam diameter \(=2.29 \mathrm{~mm}\), speed \(=20 \mathrm{~mm} / \mathrm{s}\), powder thickness \(=2.00 \mathrm{~mm}\), degree of preheating \(=150^{\circ} \mathrm{C}\), overlap \(=\) 1.5 mm , forwards and backwards, etched in \(4 \%\) nital, X18. \\
\hline
\end{tabular}
4.106 Force system affecting wettability in two dimensions.
4. 107 Solidified contact angle, \(\theta\) (degrees) vs dilution (\%) for a 1.00 mm powder thickness.
4.108 Solidified contact angle, \(\theta\) (degrees) vs dilution (\%) for a 0.50 mm powder thickness.
4.109 Solidified contact angle, \(\theta\) (degrees) vs dilution (\(\%\)) for a 0.25 mm porder thickness.
\(4.110 \quad \theta\) (degrees) vs energy/unit area, \(P / D V\left(\mathrm{~J} / \mathrm{mm}^{2}\right)\) for a 1.00 mm powder thickness.
\(4.111 \theta\) (degrees) vs energy/unit area, \(\mathrm{P} / \mathrm{DV}\left(\mathrm{J} / \mathrm{mm}^{2}\right)\) for a 0.50 mm powder thickness.
\(4.112 \theta\) (degrees) vs energy/unit area, \(P / D V\left(J / m^{2}\right.\) (for a 0.25 mm powder thickness.
4.113 - (degrees) vs energy/unit area, P/DV (\(\mathrm{J} / \mathrm{mm}^{2}\)) for a 1.00 mm powder thickness and 2.00 mm beam diameter.
4.114 Test specimen and method of making shear test of clad plate (from ASTM A264-74a).

ACKNOWLEDGEMENTS

Thanks are due to British Steel Corporation (S. L.) for providing the materials used in this project. I am very greateful and I express my thanks to Dr W. M. Steen, not only for introducing me to the field of lasers, but also for his invaluable guidance and contribution to this thesis. Thanks are also due to Dr D. R. F. West for many suggestions. I would like to thank all members of John Percy Research Group for their help.

I am very greatiful to all members of the Laser Group, and Mr and Mrs Courtney for their invaluable help.

Thanks to all Technicians of the Department of Metallurgy for their help.

I am very greatiful to T. Clarke who patiently typed this work. And last but not lest my thanks to all persons Who kept me happy during the elaboration of this thesis, and Mr M. Sandwith, chairman of the Society of Friendship for Oversea Students.```

