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ABSTRACT 

The research reported in this thesis is concerned with 
algorithms for designing for statistical variations in 
the performance of manufactured circuits. The variation 
in performance is a consequence of variations in component 
parameter values which in turn result from uncertainties 
in the process of manufacture of these components or to 
their dependence on environmental effects such as 
temperature. 

The research contribution can be seen to comprise three 
distinct elements: (a) A review of the general field of 
statistical design (chapter 1) and an assessment of 
existing techniques and algorithms, including a clear 
problem formulation and classification (chapter 2). 
(b) A practical investigation of some of the techniques 
reviewed and the proposal, implementation and general 
investigation of new algorithms to extend the range of 
problems addressed (chapter 3,4 and 5) and (c) the 
identification of areas of further research (chapters 2 
and 6). 

The thesis commences with an overview of the general 
field of statistical design, followed by a critical 
review of existing algorithms and techniques addressed 
to some particular statistical design problems (namely 
tolerance assignment and design centering). The next 
three chapters present contributions of new algorithms 
and techniques. In chapter three we discuss branch 
and bound methods of discrete optimization, applied to 
the tolerance assignment and design centering problems. 
A geometrically based feasibility testing procedure, 
INDENTATION, is described and demonstrated for a particular 
circuit example. In chapter four iterative Monte Carlo 
based design centering methods are described and 
demonstrated for circuit examples involving up to 43 
variable components. Special sampling schemes for reducing 
overall computational effort are discussed and compared. 
In chapter five, iterative Monte Carlo based tolerance 
assignment methods are considered. Results of a practical 
investigation of an existing method, TOLERATE, are presented 
and its shortcomings are demonstrated. A new method, 
PERTOL, which overcomes some of these shortcomings is 
proposed and demonstrated for practical circuit examples. 
Finally, in chapter six an assessment of existing techniques 
(including those reported in this thesis) is made and areas 
of further research identified. 

2 



To my Mother and Father 



8-41-1rdirefii -411 3 	birri Jug 

-6) -147-6-41-26 -46 ari*-114 
-24ii-wk 	-4-4-41 -Erazo zri+h-fa 	afrar 

-1A-wri zrPpli-R 4fral- 
6T-ER. 	arma-a a--tg- 	artf- I  

A man may load carts with books; he may load 
men with books to take with him; 

Books may be put on boats; pits may be filled 
with them. 

A man may read books for months; he may read 
them for years; 

He may read them for life; he may read them 
while he hath breath - 

Nanak, only one word, God's name, would be of 
account; all else would be the senseless discussion 
of. pride. 

Guru Nanak 



ACKNOWLEDGEMENTS  

I am greatly priviledged to have had Dr Robert Spence as my supervisor. 

I wish to take this opportunity of expressing deep gratitude for his 

guidance and encouragement throughout the course of my research work. 

I also wish to express a special thanks to my friend and colleague 

Dr Kirpal Tahim for much valued criticism and encouragement. 

I am grateful to Mr Robert Tung, Dr David Agnew, Mr Paul Rankin, 

Mr Kenneth Moulding, and to numerous colleagues and friends in the 

communications section for many stimulating discussions. 

I am also very grateful to Mr Hugh Koanantakool for assistance in the 

preparation of this thesis. 

A very special thanks is due to my beloved sister, Bholan Dhot, for 

persevering with the typing of this thesis over its protracted period of 

preparation. 

The research reported in this thesis was carried out while I was the 

recipient of a research studentship of the U.K. Science Research Council 

and later of a bursary sponsored by the Submarine Systems Division of the 

Standard Telephone and Cables Company. The financial assistance of both 

organisations is gratefully acknowledged. 

3 



4 

CONTENTS  

PAGE 

TITLE PAGE. 	 1 

ABSTRACT. 	 2 

ACKNOWLEDGEMENTS. 	 3 

CONTENTS. 	 4 

LIST OF FIGURES. 	 9 

LIST OF TABLES. 	 15 

STATEMENT OF ORIGINALITY. 	 17 

CHAPTER 1 - STATISTICAL CIRCUIT DESIGN - THE SCENARIO. 	19 

1.1 Introduction. 	 20 

1.2 Notation and terminology. 	 24 

1.3 Statistical analysis. 	 27 

1.3.1 Monte Carlo analysis. 	 29 

1.3.2 The method of moments. 	 32 

1.4 Parameter value distributions. 	37 

1.4.1 Discrete components. 	 37 

1.4.2 Integrated circuits components. 	39 

1.5 Statistical circuit design - some scenarios. 	40 

1.5.1 Tolerance assignment and design centering. 	41 

1.5.2 Choice of performance specifications. 	43 

(a) Specification sensitivity. 	43 

(b) System specification. 	44 

1.5.3 Specification of manufacturing tests. 	46 

(a) Go-no go testing. 	 46 

(b) Accounting for environmental effects 	47 
in factory testing. 

(c) Selection of testing accuracy. 	47 

1.6 Summary 	 48 



5 

PAGE 

60 CHAPTER 2 - ALGORITHMS FOR TOLERANCE ASSIGNMENT 
AND DESIGN CENTERING - A CRITICAL 
REVIEW. 

2.1 Introduction. 

2.2 Cost models. 

2.2.1 Component cost functions. 

2.2.2 The unit cost function. 

2.3 Problem formulations. 

2.3.1 Problem P1: Composite tolerance assignment 
and design centering. 

2.3.2 Problem P2: Worst case tolerance assignment 
and design centering. 

2.3.3 Problem P3: Worst case tolerance assignment. 

2.3.4 Problem P4: Statistical tolerance assignment 
and design centering. 

2.3.5 Problem P5: Statistical tolerance assignment. 

2.3.6 Problem P6: Design. centering (Yield 
maximization). 

2.3.7 Problem P7: Tolerance assignment, design 
centering, and tuning. 

2.4 The review. 

2.4.1 Methods based on geometrical 
characterization. 

2.4.2 Methods based on non-linear 
programming. 

(a) Worst case formulation. 

(b) Statistical. formulation. 

2.4.3 Methods based on Monte Carlo analysis. 

2.4.4 Discrete methods. 

2.5 Summary and conclusions. 

61 

63 

63 

64 

66 

66 

67 

68 

68 

69 

69 

69 

71 

71 

73 

74 

76 

79 

81 

82 



6 

PAGE 

CHAPTER 3 - DISCRETE OPTIMIZATION METHODS FOR WORST 
	101 

CASE TOLERANCE ASSIGNMENT AND DESIGN 
CENTERING. 

3.1 Introduction. 	 102 

3.2 Notation. 	 103 

3.3 Branch and bound methods. 	 105 

3.3.1 General structure. 	 106 

3.3.2 Procedures for selecting tolerance 	107 
solutions for feasibility testing. 

3.3.3 Considerations for eliminating non- 	109 
feasible and non-optimal solutions. 

3.3.4 Feasibility testing procedure. 	111 

(a) Monte Carlo analysis. 	111 

(b) Vertex analysis. 	 113 

(c) Pairwise constraints. 	114 

(d) Indentation. 	 116 

3.4 Circuit example and results. 	 120 

3.5 Summary. 	 122 

CHAPTER 4 - ITERATIVE MONTE CARLO BASED METHODS FOR 	137 
DESIGN CENTERING. 

4.1 Introduction. 	 138 

4.2 Problem formulation and geometrical 
	

139 
interpretation. 

4.3 Optimization methods for yield maximization - 	142 
some general comments. 

4.4 Direct search methods. 	 144 

4.4.1 The pattern search method. 	145 

4.4.2 The statistical exploration method. 	148 

(a) Choice of search direction. 	149 

(b) Choice of step size. 	 150 

(c) Choice of sample size. 	154 

(d) The correlated sampling scheme. 	156 

(e) The common points scheme 
	

160 



225 

226 

229 

229 

231 

231 

235 

237 

240 

241 

242 

242 

244 

247 

248 

PAGE 

(f) Some algorithms. 	 168 

(i) Algorithm 4.1 - correlated sampling 	169 
scheme.' 

(ii) Algorithm 4.2 - common points scheme. 	170 

(g) Circuit examples and results. 	172 

(i) Passive high pass filter. 	172 

(ii) A high frequency amplifier. 	178 

(iii) A transversal filter. 	179 

4.5 Summary and conclusions. 	 181 

CHAPTER 5 - ITERATIVE MONTE CARLO BASED METHODS FOR 	224 

TOLERANCE ASSIGNMENT 

5.1 Introduction. 

5.2 Problem Formulation. 

5.3 The TOLERATE method. 

5.3.1 An Overview. 

5.3.2 The tolerance assignment criterion. 

(a) Implications on yield. 

(b) Some practical considerations. 

5.3.3 Yield sensitivity. 

5.3.4 Summary. 

5.4 The PERTOL method. 

5.4.1 The PERTOL criterion 

(a) The practical algorithm. 

(b) Implications on yield. 

5.4.2. Results. 

5.5 Summary and conclusions. 

7 



8 

PAGE 

CHAPTER 6 - SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH 
	289 

6.1 Introduction. 	 290 

6.2 Summary of the thesis and conclusions. 	290 

6.3 Suggestions for further research. 	 299 

6.3.1 Extensions to techniques developed in 
the thesis 	 299 

6.3.2 Extension of the Monte Carlo based design 	306 
approach to other problems in the field 
of statistical design 

Ī~~er"enc~s 	 311 



LIST OF FIGURES  

9 

PAGE 

Fig. 1.1 A general circuit representation. 

Fig. 1.2 An illustration of some notation. 

Fig. 1.3 Monte Carlo analysis - a general 
flow chart. 

Fig. 1.4 Typical set of Monte Carlo samples 
(points) generated by a pseudo-
random process. 

Fig. 1.5 Illustrating a method for generating 
component parameter values from 
random numbers distributed in the 
interval 0 to 1. 

Fig. 1.6 The relationship between the number 
of samples and the accuracy of the 
yield estimate, in Monte Carlo 
analysis. 

Fig. 1.7 Typical probability density functions 
encountered with discrete components. 

Fig. 1.8 A skewed component p.d.f. 

Fig. 1.9 Illustration of the terms-design 
center and tolerance. 

Fig. 1.10 Geometrical interpretation of design 
centering and tolerance assignment. 

Fig. 1.11 Illustrating the application of 
statistical design to the problem 
of selecting testing accuracy. 

Fig. 2.1 A typical cost-versus-tolerance 
relationship. 

Fig. 2.2 Geometrical illustration of the worst 
case tolerance assignment and design 
centering problem. 

Fig. 2.3 An illustration of the (face based) 
simplicial approximation method 
of design centering. 

Fig. 2.4 The point basis method of design 
centering. 

50 

51 

52 

53 

54 

55 

56 

57 

57 

58 

59 

87 

88 

89 

90 



10 

PAGE 

Fig. 2.5 An illustration of one-dimensional. 	93 
convexity. 

Fig. 2.6 Illustrating the overdesign inherent 	95 
in worst case tolerance solutions. 

Fig. 2.7 An illustration of the structure 	96 
of statistical, non-linear programming 
based methods for tolerance assignment. 

Fig. 2.8 A yield estimation procedure based on 	97 
linear approximations of the boundary 
of the intersection of the regions RA 
and RT.  

Fig. 2.9 The TOLERATE method of tolerance 
assignment. 

Fig. 2.10 The radial exploration method of 
obtaining an indication of yield. 

Fig. 2.11 The radial exploration method of 
design centering. 

Fig. 3.1 Contours for a hypothetical objective 
function showing that in general the 
discrete solution nearest to the 
continuous optimum solution is not 
necessarily the best available discrete 
solution. 

Fig. 3.2 General structure of a branch and 
bound method for discrete worst case 
tolerance assignment. 

Fig. 3.3 Typical discrete cost versus tolerance 
relationship. 

Fig. 3.4 Illustrating the basis for eliminating 
certain non-feasible solutions in the 
branch and bound methods for worst case 
tolerance assignment. 

Fig. 3.5 Bimodal distribution used in Monte Carlo 
feasibility testing. 

Fig. 3.6 Double triangular distribution used in 
Monte Carlo feasibility testing. 

Fig. 3.7 An illustration of pairwise feasibility. 

Fig. 3.8 Illustrating regionalization for a two 
dimensional example. 

98 

99 

100 

123 

124 

125 

126 

127 

127 

128 

129 



PAGE 

Fig. 3.9 A discrete representation of the 	
130 region of acceptability. 

Fig. 3.10 Illustrating the basis of the 	131 
indentation method. 

Fig. 3.11 Representing the region of 	132 
exploration as a matrix of logical 
elements. 

Fig. 3.12 Illustrating partial indentation. 	133 

Fig. 3.13 A low pass filter example. 	135 

Fig. 3.14 Performance requirements for the 	135 
low pass filter example. 

Fig. 3.15 The region of acceptability of the 	136 
low pass filter represented as a 
3-dimensional matrix of logical 
elements. 

Fig. 4.1 A geometrical interpretation of 
yield. 

Fig. 4.2. A general flow chart for the Pattern 
Search method. 

Fig. 4.3 Hypothetical trajectory for application 
of the pattern search method to a 
2-dimensional example. 

Fig. 4.4 Wide band amplifier circuit example for 
the pattern search strategy. 

Fig. 4.5 General flow chart for the statistical 
exploration method. 

Fig. 4.6 A geometrical representation of the 
relationship between successive iterates 
in design centering. 

Fig. 4.7 Illustrating some additional notation. 

Fig. 4.8 Sampling distribution of the yield 
estimate. 

Fig. 4.9 Sampling distributions for estimating 
yield difference. 

Fig. 4.10 Illustrating the relationship between 
p.d.f.'s of successive iterates. 

11 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 



PAGE 

Fig. 4.11 Illustrating the relationship between 	206 
corresponding sample points for 
successive tolerance regions when the 
correlated sampling scheme is employed. 

Fig. 4.12 Illustrating notation for the distri- 	207 
bution of sample points in the common 
points scheme. 

Fig. 4.13 Yield trajectory for a high pass filter 	208 
example; demonstrating the effective-
ness of the common points scheme. 

Fig. 4.14 Flow chart for a statistical explo- 	209 
ration - design centering algorithm 
employing the correlated sampling 
scheme. 

Fig. 4.15 Flow chart for a statistical exploration- 	210 
design centering algorithm employing 
the common points scheme. 

Fig. 4.16 Circuit diagram of the passive high pass 	211 
filter. 

Fig. 4.17 Performance requirements for the high 	212 
pass filter. 

Fig. 4.18 Yield trajectory for the high pass 	213 
filter assuming 5% tolerances 
and uniform distributions. 

Fig. 4.19 Yield trajectory for the high pass 
filter assuming 15% tolerances 
and uniform distributions. 

Fig. 4.20 Yield trajectories for the high pass 
filter assuming 10% tolerances and 
uniform and Gaussian distributions. 

Fig. 4.21 Yield trajectory for the strategy 
where only the final continuous 
solution is rounded off. 

Fig. 4.22 Yield trajectory for the strategy 
where intermediate and final 
continuous solutions are rounded 
off. 

Fig. 4.23 Circuit diagram of the high frequency 
amplifier example, including the d.c. 
biasing components. 

Fig. 4.24 Circuit diagram of the a.c. equivalent 
of the high frequency amplifier. 

12 

214 

215 

216 

216 

217 

218 



tt 

( 

( 

,t 

It 

It 

,t 

( 
t, 

( tt 

" (Component number 5). „ 

PAGE 

Fig. 4.25 Yield trajectory obtained by application 
of the statistical exploration-design 
centering method to the high frequency. 
amplifier example. 

Fig. 4.26 A general structure for a transversal 
filter. 

Fig. 4.27 Performance requirements for the 	222 
transversal filter example. 

Fig. 4.28 Yield trajectory obtained by application 	223 
of the statistical exploration design 
centering method to the 43 variable 
transversal filter. 

Fig. 5.1 A general flow chart for the TOLERATE And 	254 
PERTOL methods of tolerance assignment. 

Fig. 5.2 The TOLERATE tolerance assignment criterion, 255 
showing the original and revised ranges; 
assuming 1=1. 

Fig. 5.3 Circuit diagram of the band pass filter exa 
example. 

Fig. 5.4 Performance constraints and typical shape 	257 
of response for the band pass filter example. 

Fig. 5.5 Yield tolerance trajectories for the band 
pass filter circuit example (component 
number 2). 

Fig. 5.6 Yield tolerance trajectories for the band 
pass filter circuit example ( component 
number 4). 

Fig. 5.13 An illustration of expression 5.13. 

13 

220 

221 

256 

Fig. 5.7 

Fig. 5.8 

Fig. 5.9 

Fig. 5.10 

Fig. 5.11 

Fig. 5.12 

258 

259 

260 

261 

262 

263 

264 

265 

266 



14 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

Fig. 

5.14 

5.15 

5.16 

5.17 

5.18 

5.19 

5.20 

5.21 

5.22 

5.23 

5.24 

5.25 

5.26 

5.27 

5.28 

5.29 

5.30 

5.31 

5.32 

5.33 

5.34 

5.35 

5.36 

6.1 

	

Diagram showing pass and fail 	histograms 
of the high pass filter circuit example. 
(Component number 2). 

11 	 „ 	 It 	rt 	(Component Number 	3) . 

11 	11 	 ►, 

	

It 	( 	,1 	 1, 4) . 

11 	 1I 	,1 	tt 	( 	,1 	 11 6) . 

,t 	tl 	 It 	rl 	( 	,t 	It 7). 

tt• 	 tt 	 11 	t► 	( 	►1 	IT 8) . 

t ► 	 11 	 „ 	1► 	( 	tr 	it 10) . 

Illustrating the definition of yield sensitivity. 

Illustrating the PERTOL criterion for tolerance 
assignment. 

Illustrating some terminology. 

Cost trajectories for the band pass filter 
circuit example. 

t► 	If 	 ,t 	11 	 It 	It 	,t 

it 	 11 	11 	It 	 It 

I, 	,1 	 t1 	tt 	t, 	,1 	,► 

Yield tolerance trajectories for the high 
pass filter circuit (Component Number 2). 

11 	 TI 	II 	tl 	( 	11 	 ,1 3) . 

,1 	TT 	It ( 	If 	 It 4) . 

11 	 tl 	11 	11 	( 	Tt 	t1 6). 

It 	 1, 	11 	,t 	( 	t1 	It 7) . 

It 	 ►1 	It 	It 	( 	It 	 11 8) . 

tt 	 11 	,1 	I1 	( 	If 	 It 10) . 

Cost trajectories for the high pass filter 
circuit example. 

It 	 ,1 	It 	 It 	 t l 	It 

Diagram showing the relationship between 
corresponding points of successive iterates. 

PAGE 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

279 

280 

280 

281 

282 

283 

284 

285 

286 

287 

288 

288 

310 



Table 1.1 

Table 2.1 

Table 4.1 

Table 4.2 

Table 4.3 

Table 4.4 

Table 4.5 

Table 4.6 

Table 4.7 

Table 4.8 

Table 4.9 

Table 5.1 

LIST OF. TABLES 

15 

PAGE 

49 

86 

Typical tolerances and temperature 
coefficients of component parameters 
in integrated circuits. 

A summary of the main contributions 
in the field of tolerance assignment and 
design centering. 

Performance constraints for the wide- 	186 
band amplifier circuit example. 

Summary of results of the application 	187 
of the Pattern search strategy for 
the wide band amplifier circuit example. 

Summary of a set of results demonstrating 	188 
the efficacy of the common points scheme 
and a comparison with the correlated 
sampling scheme. 

Component values for the various iterations 	189 
of the statistical exploration - design 
centering run summarised in figure 4.18. 

Component values for the various iterations 
of the statistical exploration design-
centering run summarised in figure 4.19. 

Component values for the various iterations 
of the statistical exploration design 
centering run summarised in figure 4.20. 

Component values for the various iterations 
of the statistical exploration - design 
centering run summarised in figure 4.22. 

Gain specifications, component nominal 
values, and tolerances for the high 
frequency amplifier cricuit example. 

A summary of typical results for six 
circuit examples showing that the number 
of iterations performed (until no further/ 
in yield accrue), using the statistical 
exploration method is independent of 
the dimensionality. 

Table showing the variation with number 
of class intervals, of the estimated 
yield sensitivity and sensitivity 
ranking of individual components for 
a low yield. 

190 

191 

192 

193 

195 

251 



PAGE 

16 

252 Table 5.2 Table showing the variation with number 
of class intervals, of the estimated yield 
sensitivity and sensitivity ranking of 
individual components for an intermediate 
yield value. 

Table 5.3 Table showing the variation with number 
of class intervals, of the estimated yield 
sensitivity and sensitivity ranking of 
individual components for a high yield. 

253 



STATEMENT OF ORIGINALITY 

As far as the author is aware, the opinions and techniques 

presented in this thesis are his own unless otherwise 

acknowledged by making specific reference. The main 

contributions are deemed to be the following: 

1. The proposal and implementation of an iterative, small 

sample, Monte Carlo based, statistical method (called MYOSE) 

for design centering, and its verification for practical 

circuit examples (chapter 4). This includes the proposal 

of specific criteria for choosing a direction of search 

and step size (to move the design centre to improve yield) 

based on results obtained in Monte Carlo analysis. 

In addition, in the case where only certain discrete values 

for the design centers may be available, the demonstration 

of the efficacy of a procedure for rounding of the optimum 

continuous solution to the nearest discrete solutions. 

2. The proposal and incorporation in MYOSE (chapter 4) 

of a special sampling scheme (called the common points scheme) 

to reduce computational cost by re-employing both for 

design centering and yield estimation, at current iterations, 

circuit analyses performed at previous iterations. In 

addition the demonstration of the added efficiency of this 

sampling scheme for purposes of ranking yield estimates when 

their confidence intervals overlap, and a practical comparison 

of the common points scheme with a standard sampling scheme, 

called correlated sampling /1/. 
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3. A practical assessment of an existing Monte Carlo based, 

statistical method of tolerance assignment, TOLERATE /2/ 

(chapter 5). The proposal and implementation of a more 

effective technique, called PERTOL. This includes the 

proposal of specific criteria for choosing nominals and 

tolerances on the basis of results obtained in Monte Carlo 

analysis. In addition a practical comparison of the two 

methods when applied to particular circuit examples. 

4. The proposal and implementation of a geometrical technique 

(called INDENTATION) for testing the worst case feasibility 

(i.e. 100% yield) of tolerance solutions; as part of a 

general branch and bound method /4/ for tolerance assignment 

and design centering for the situations where only discrete 

values of tolerances and nominals,may be available (chapter 3). 

This includes a demonstration of the applicability of the 

method for a particular circuit example. 

5. A critical review and classification of existing methods 

for tolerance assignment and design centering.(chapter 2). 

6. A review of specific problems and techniques in the general 

field of statistical circuit design. (chapter 1). 

7. An identification of the outstanding problems in the field 

of statistical design of electrical circuits, and proposals for 

future research in this area in the light of the contributions 

in this thesis. (chapter 6). 
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CHAPTER 1  

STATISTICAL CIRCUIT DESIGN - THE SCENARIO 

1.1 INTRODUCTION  

The increasing degree of reliance placed on computer aids 

by circuit and systems designers may be traced to two 

broad trends. Firstly, the availability in increasing volume 

of progressively cheaper and more powerful computing 

facilities. Concomitant with this trend has been the discovery 

and development of numerous algorithms and programs /5/a  

addressed to the solution of various problems in the design 

and manufacture of electrical circuits and. systems. Secondly, 

there has been a proliferation in the range and comp fxity 

of available devices and circuits, such as integrated circuits. 

For these, some of the traditional methods of approximate 

modelling and laboratory simulation and experimentation (e.g. 

breadboarding) are inadequate. 

Three broad areas of engineering activity for which computer 

aids are available may be discerned. Firstly, in circuit design, 

where the principal aids are circuit simulators. These comprise 

facilities for describing to the computer program, the topology 

of the circuit, the component types and their parameter values. 

The program employs appropriate mathematical models of the 

electrical behaviour of the relevant components, and 

facilitates numerical simulation to study and change the circuit 

aAn extensive review of available circuit analysis packages 
is reported by Bowers and Zobriest et al /6/. 
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to improve its performance. Secondly, computer aids are 

essential in the area of component layout, the routing of 

interconnections, the drafting of artwork for photo-

lithographic processes etc, in the manufacture of many types 

of electrical circuits, especially integrated circuits /7/. 

Thirdly, with the increased complexity of performance of 

circuits and systems, and for greater cost effectiveness, 

computer aids are increasingly being brought to the factory 

floor to aid activities such as testing, verifying performance 

and detecting faults in manufactured circuits and systems /8/. 

Therefore in some specific areas of application, computers 

help perform traditional design tasks more efficiently, and 

in others design activities are introduced which could only be 

performed crudely and with a large degree of approximation 

if at all by non computer aided methods. One such area 

of application in the field of circuit design, is statistical 

design. The most common application of computers in circuit 

design is in performing analyses of circuit behaviour to 

compute various responses such as voltages, currents, power 

gains, time delays, sensitivities etc. This information 

is then used either manually by the designer, or automatically 

by the computer program, to make adjustments to the 

proposed circuit, to improve its performance with respect to 

appropriate criteria. Here the designer is experimenting 

with the nominal circuit. However, when a circuit is to be 

manufactured in large numbers,the designer must analyse 

and design for statistical spreads in the performance of 

nominally identical circuits, arising from statistical 

21 



spreads encountered in values of the parameters of their 

constituent components. This latter design activity is 

called statistical design. 

For illustration consider the representation of figure 1.1. 

For a particular set of stimuli S = S1 	 Sr, the circuit 

responses flf2 	 fm  are functions of the component 

parameters P = p1p2  .... pk, i.e. fj  = fj(pi .... pk); 

j=1 .... m. For example, for a frequency selective circuit, 

the parameters may be values of the resistances, capacitances 

and inductances, while the.fj  (.) may be responses such as 

insertion loss, group delay etc, at a number of frequencies. 

Uncertainty is associated with the values of the component 

parameters and thus the values of the response functions, in 

the following sense. If a number of nominally identical 

circuits are to be manufactured (assembled or fabricated) from 

their constituent components, then variations in the processes 

of manufacture of the components cause the values of their 

parameters to be statistically distributed. Consequently, 

the response values of the manufactured circuits also display 

variation from one circuit sample to another. In addition the 

response of a particular circuit whose component parameters 

have particular values pl*p2* .... pk* at the time of 

manufacture, will experience a non-deterministic drift in 

response, as a result of drift in the values of these component 

parameters due to factors such as fluctuations in the 

environmental conditions of service (e.g. temperature or 

humidity) or component ageing. 

22 
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The spread in performance may be such that some of the 

manufactured circuits fail to meet the required limits 

on response values specified by the customer. Therefore, 

yielda,s will be less than 1 (100%). The failing circuits 

need then be discarded or repaired, hence incurring additional 

cost. The extent of spread of response may be reduced and 

hence the yield increased by employing more precise (i.e. 

subject to a smaller extent of spread) components. However, 

precise components are more expensive. Therefore, the circuit 

designer may seek a compromise between yield and precision 

(generally called tolerance) of component parameters to 

minimize overall cost. This particular design problem is 

called tolerance assignment. On the other hand yield may 

be increased by re-assigning the nominal values of the component 

parameters, while their tolerances remain fixed. This 

latter procedure is called design centering. In the general 

case a combined procedure for reassigning both tolerances 

and nominals will lead to the design of the most cost effective 

circuits. 

Numerous algorithms have been proposed for various formulations 

of the design centering and tolerance assignment problems. 

The work reported in this thesis is addressed to a critical 

aYield is that proportion of manufactured circuits whose 
response 	meets the limits specified by the customer. 
Yield will be formally defined in section 1.2. 

f3From the point of view of yield, we shall only consider 
circuits which are assumed to be free from gross errors, 
such as wiring faults, mask misalignment,crystal.defects etc. 
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survey of the nature and limitations of existing methods, and 

the proposal and investigation of new and improved methods. 

In chapter two several formulations of these design problems 

are presented, together with a classification and critical 

review of proposed solution techniques. The next three 

chapters then report the proposal, implementation and general 

investigation of a number of new algorithms. Finally, in 

chapter six, we outline areas of future research in this field. 

The aims of this chapter are two fold. Firstly, we intro-

duce a consistent terminology and notation to be then used 

throughout this thesis. In addition the expected parameter 

distributions and methods of statistical analysis are briefly 

reviewed. Secondly, we note that tolerance assignment and 

design centering are particular instances of statistical 

design problems. Therefore the latter half of this chapter 

discusses various scenarios to illustrate the wider scope 

of statistical design. 

1.2 NOTATION AND TERMINOLOGY  

Let p A p1p2 .... pK be a general set of values for the 

component parameters of the circuit in question. P can be 

thought of as a point in a K-dimensional space (called the 

input space). The variability of P can be represented by 

a K-dimensional probability density function (p.d.f.), denoted 

by 0(P). Therefore the following equation holds: 

f..._~ 0(P) dPi 	dpK = 1 	1.1 

In practice the range of variation of the individual parameters 



will be truncated i.e. 

0(P) = 0 for p. < p. < j 	j =1 .... K 	1.2 

Wherepj  and pj  are constants, respectively termed the 

lower limit and the upper limit of variation of the jth 

parameter. Also consider the vector of tolerances 

T A tlt2  .... tK  where ti  = (pi-21)/2 	i=1 	 K 

and the vector of nominal values: 

P° 
A  po 	 

= 1 PK 	where, p°  = (P.+10i)/2  

Equation 1.1 may then be rewritten as 

p +  tK 

f 
p°  - t, 
 K  

 

0(P) dpi  dp2 	dpK  = 1 	1.3 

 

Relation (1.2) defines a region in the input space, called 

the tolerance region, and denoted RT, such that 

P c RT  if 0(P) > 0 	1.4 

Clearly RT  is a hyper rectangle, with center P°  and sides 

of length 2ti, i=1 	 K. A geometrical representation 

is given in figure 1.2. Also we denote by fi(P), i=1 .... m 

the response functions of the circuit. The variability of 

these responses may be modelled in terms of another joint 

probability density function, which is denoted as 

St(flf2 	fm) . In addition we denote by Sti  (fi) the 

particular p.d.f. of the ith performance function. The 
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Yield = <g(P)> = 	f 

pK  - tK 	pK - t,. 
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problems of statistical analysis involve computation of 

various parameters of the function c(.). For example the 

customer for whom the circuit is manufactured may require its 

response to be constrained such that 

f. < fi  (P) < fi 	i=1 	 m 	1.5 

where fi  and fi  are constants. The proportion of 

manufactured circuits which meet condition 1.5 is termed the 

production yield, and may be written as the multi-dimensional 

integral T. f l  
Yield = I •••f 

m 	
ft(fl  .... fm) df ... df- 	1.6

m  f 	f1  

Alternately we may define a testing function g(P) reflecting 

the acceptance pr rejection of a circuit, such that 

g(P) = 1 if 	fi  < fi  (P) < f i 	i = 1 	 m 	 1.7 

and = 0 otherwise. 

Yield is then the following expectation. 

pK t 	p + t
1  

g(P)O(P) dpi  .... dpK  1.8 

Relation (1.7) allows definition of another region in the input 

space, the region of acceptability, RA, such that 

P e RA  if g(P) = 1 1.9 

Clearly RA  represents all those combinations of component 

values which result in acceptable circuits. With the 

definition of the tolerance region RT  and the region of 



acceptability RA  it is useful to consider a geometrical 

interpretation of yield, as represented in figure 1.2. 

Here we consider a 2 dimensional example (K=2), with 

nominal P°  = pi, p2 and tolerances T = t1, t2. Initially 

we assume that the p.d.f. 0(P) is bivariate uniform and 

the parameters are statistically independent /9, chapter 5/, 

0(P) = 01(1)1)-02022) 

and 	= 1 for (pi - tl)< pi< (pi + t1) 
2tl  

01  (P1  ) 

= 0 otherwise 	 1.10 

and 

02  (P2) 

1 
= 2t2  for (p2 - t2)<p2  < (p + t2) 

0 otherwise 

Then, yield is the ratio of the areas (in the general case 

volumes) of the regions (RT(IRA) and R1.. That is; 

Yield = V(RTfRA) /V(RT ) . 	 1.11 

Where V(.) indicates volume. For the more general case the 

parameter values may be statistically dependent (correlated) 

and the individual probability density functions may be 

other than uniform. In that case the function 0(.) may be 

taken to represent a weighting of the points of RT. Hence 

the volumes in expression 1.11 should now be interpreted 

as weighted volumes. 

1.3 	STATISTICAL ANALYSIS  

Statistical analysis involves computation of various 

parameters of the output probability density function si(.). 
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For example, for a particular set of nominal values, tolerances 

and input p.d.f., it is very important to estimate the 

expected production yield. For the present discussion, it is 

assumed; (i) that for a set of values P* for the K 

parameters of the circuit in question, it is possible to 

evaluate the m response functions, and (ii) the form of 

the input probability density function is known. In practice 

the first assumption is true for most circuits of interest, 

although evaluation of circuit responses may involve considerable 

computational expense. However, the statistical distribution 

of component parameters is not generally known. In some 

situations, namely discrete components, a simple choice (such 

as Uniform or Gaussian p.d.f.) may suffice. However, for 

integrated circuits, the function O(.) may be very complex. 

The question of suitable choice for O(.) is discussed later. 

A thorough review of different methods of statistical 

analysis is reported by Tahim /10/. We shall re-iterate 

the main features of two methods, namely, Monte Carlo 

analysis and the method of moments. These are emphasised 

here because of their importance as integral parts of certain 

statistical design methods, to be discussed in this thesis. 

Monte Carlo analysis is a direct and general method, 

applicable to all circuit problems. However, it is 

computationally very expensive and may be prohibitively so 

in many cases. On the other hand the method of moments, 

although computationally cheaper, involves considerable 

approximation. However, the approximations may not hold 

in all situations. Nevertheless, the method of moments 

is useful in several statistical design methods. 
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1.3.1 	MONTE CARLO ANALYSIS  

In this method, illustrated in figure 1.3, a number 

N: P1  P2 	 PN,  of sets of sample circuit values are 

generated. These values are obtained by suitably trans-

forming pseudo random numbers, so that they are distributed 

according to the relevant p.d.f. O(.). This is illustrated 

for a two dimensional example in figure 1.4. The sample 

circuits are analysed and a representation of the performance 

distribution is obtained. To illustrate its salient 

features, the use of the method for estimating yield is 

discussed here. 

The Monte Carlo method simulates the process which takes place 

in a circuit production run. Circuits are assembled using 

components randomly picked from particular binsa. In the 

equivalent computer exercise, random numbers are generated 

with a uniform distribution, in the interval 0 to 1 and 

are then transformed (this is illustrated for one component 

in figure 1.5) to satisfy the required p.d.f. Each set of 

component parameter values, representing a manufactured circuit, 

is analysed and the corresponding values of the performance 

functions are. obtained. Each analysed circuit is assigned to 

one of two mutually exclusive classes namely acceptable and 

reject. An acceptable circuit is one which meets all performance 

requirements such as relation 1.5. A reject circuit is one 

which fails at least one requirement. The process is repeated 

a number of times and yield is estimated as follows. 

aAlthough for integrated circuits, individual components may 
not be handled, the analogy still holds. 



If, of N analysed circuits NA are found to be acceptable 

then Y = NA/N is an unbiased estimates  of the true yield 
h 

Y. Y is a random variable, since if the experiment were 

to be repeated with a different set of N sample circuits, 
N 

a different value would be obtained for Y. It is appropriate 
IMP 

to consider the accuracy of the estimate Y, and its 

dependence on the number of circuits analysed. Specifically, 

it is required to construct confidence intervals, so that 

we can make statements like 

(Y C) < Y < (7+C) 	1.12 

with a particular degree of confidence. Here, C denotes 

some constant called the confidence interval. 

Each circuit analysis and test for compliance with performance 

requirements may be taken to be a Bernoulli 	trial. If the 

probability that a circuit with randomly selected component 

values is acceptable, is Y, then the probability of exactly 

NA acceptable circuits in N trials is 

F(NA) = 
N! 	YNA (1-Y)  NA 	1.13 

(N-NA): NA: 

The function F(NA) is a Binomial probability density function 

(p.d.f.) with mean and variance given by: 

p = NY 	 1.14 

OIn statistics an unbiased estimator is a random variable, 
whose expected value is the parameter being estimated. An 
unbiased estimate is an estimate provided by such an 
estimator. /9, chapter 7, page 230). 

SA Bernoulli trial is a random experiment which can only 
have one of two outcomes, e.g. the tossing of a coin. 
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and 0 2 = NY(1-Y) 1.15 
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When N is reasonably large, the Binomial distribution may 

be approximated by a Gaussian distribution. Therefore, the 
N 

p.d.f. of the random variable Y may be 'written as 

F (Y) = a~l  
Y✓" exp 

07/..,y) 2 
a-1 Y 

1.16 

where the mean 
uY 

and variance aY are given by: 

UY = Y 	 1.17 

and a2 = Y(l'-Y0 
Y 	N 

1.18 

Thence the confidence interval for the Yield estimate Y can 

be constructed as follows. The probability of Y falling 

in the interval (Y-co ) to (Y+caY) is the integral 

+ caY 

F (Y) dY 
Y - eaY 

1.19 

1 	c 	-x
2 

✓ 1 exp 2 dx 	 1.20 
-c 

7-y 
where x = and c is a constant. 

The function F(.) is now Gaussian. The most commonly used 

value for c is 2, leading to a probability of 0.95 that the 

true value of yield is between the limits (Y.-29F) and (7+29). 

Clearly Monte Carlo analysis is a very general procedure and 

can accomodate any type of circuit (linear, non-linear etc) 

and any number and type of circuit response. However, the 
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repetitive analysis of sample circuits is computationally 

expensive. The total cost of a Monte Carlo analysis is 

roughly proportional to N, the number of sample circuits 

analysed. However, as embodied in equation 1.18 the accuracy 

of the resulting estimates is proportional to 

the inverse of the square root (i.e. 1/,/'N) of the number 

of analyses. Therefore to double the accuracy, N has 

to be increased four fold. For different values of yield, 

the dependence of the confidence interval on the sample 

size, is depicted in figure 1.6. The corresponding confidence 

level is 9S% i.e. the probability of bracketing the true yield, 

in the appropriate confidence intervals is 0.95. 

1.3.2 THE METHOD OF MOMENTS 

Whereas in the Monte Carlo method an empirical characterization 

of the output p.d.f. S?(.) is constructed, here we consider 

approximation to S1(.) constructed from a 'knowledge of the 

moments of the input p.d.f. O(.) and an approximation of 

the performance function in terms of the input parameters. 

Each of the performance functions fi(pi); i=1 .... m, may be 

expanded in Taylor series /11, Sec.4.10 / to give analytic 

expressions for these functions in the vicinity of the 

nominal point P°. i.e. 

K . a. f. 	K 	K 	a2fi 
f • (pl .... PK) = fi (P°) +2 1  Ap.  +Z / 	2 	APr 	 Alps +. 1.21 
L 	r=1 ap, 	r 	r=1 s=1 	apraps 

where the dpi  are deviations from the nominal values, 

i.e. npi = pi  - P. 



Neglecting second and higher order terms in 1.21, we get 1.22 

	

K 	af. 

	

fi (pl .... PK) = fi  (p°) + / 	1  
r=1 apr  

1.22 

We may then easily obtain the following expression relating 

the variances Q2 ; i=1 ... K, of the input parameters to 
p 

the variances c2  ; j=1 	m of the performance functions,as: 
fj 

K 	af. 	K 	K 	af. af. • 
al = y _ 3  62  + 2 2 	2 	Coy (pr,ps) 	 1.23 
j 	1=1 api  pi 	r=1 s=1 apr  aps  

Where COV(pr,ps) is the covariance between parameters 

pr  and ps. Further the mean value of fi, will clearly 

be fi(p°). Expressions equivalent to 1.23 may be obtained 

for all m performance function /3, chapter 3/. 

According to the central limit theorem /9, chapter 5/, the 

joint probability density function of the performance 

functions will be approximately m-variate Gaussian if several 

conditions are met /13, chapter 2-3/. These are; 

(a) the number of component parameters are large, (b) the 

variances of a few parameters are not much greater than those 

of all the others, (c) the individual parameter p.d.f.'s 

are symmetrical about the nominal values. The diagonal 

elements of the variance-covariancea matrix of c(.) are 

given by expressions such as 1.20. Similar expressions may 

aFor an m dimensional random variable, the variance-
covariance matrix is an (m by m) symmetrical matrix. 
The elements sij  - i = 1 .... m, j = 1 .... m; are the 
covariances between component i and j of the random variable. 
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be obtained relating the covariances of different performance 

functions to the variances and covariances of the input 

p.d.fs. 	These form the non-diagonal elements of the 

variance covariance matrix of SZ(.) 

Even such an approximation to S2(.) as a multivariate 

Gaussian p.d.f., presents formidable computational problems 

for obtaining yield, since it involves the evaluation of an 

m dimensional integral, where m may be large. 

However, the Normal (Gaussian) approximation can effectively 

be used to derive bounds on the true value of yield. We 

first consider the notion of "partial yield". In all there 

will be m partial yields, Yi; 1=1 ... m, where Yi  is 

the probability that a correctly manufactured circuit will 

meet the ith, performance requirement, i.e. 

Y.  = Probability (f. < f.
1
(P) < Ti) 

or the integral 

f. 
1 

Y.= 	
f 	

SZ1 (f1)df. 
-1 

1.24 

If all the performance functions were independent, i.e. 

S2(.) was the product 

SZ = 	S2 1 
1=1 

1.25 

then the overall yield Y, would be the product 

m 
Y. 1.26 
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In practice 1.25 does not often hold, and 1.26 is replaced 

by the inequality 1.27. 

m 
Y > TT 	Y. 	 1.27 

i=1 1  

Hence, 1.27 provides a lower bound on the yield. 

Evaluation of the Yi, involves single dimensional integrations 

(expression 1.24). These may be easily performed, since the 

Q. are assumed Gaussian with means and variances calculated 

from expressions such as 1.23. Tighter bounds on yield may 

be obtained as follows. Now the probability of occurrence of 

a reject circuit is the joint probability of occurrence of 

failure to meet at least one of the m performance 

requirements. Consider the following additional notation: 

Let xj  denote the condition that the jth performance 

requirements is met, i.e. 

1. < f. (P) < fj 	 1.28 

and 7. that the condition is not met. Then clearly 

Y. = Pr(xi), where Pr(.) denotes probability. 

Therefore we may write: 

(1-Y) = Pr(xl  + 72  + 	xm) 	1.29 

From elementary probability theory /9, chapter 2/, 1.29 may 

be rewritten as: 

(1-Y) _ {pr  (71) + pr (72)   P
r(xm) 1 

{Pr(x172) + Pr(x173) + 	 Pr( 7j) + Pr(xm_i, Xm) } + .... 

ij 
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+ (-1) Pr(x1x2  1.30 Xm) 
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If we replace Pr(x ì), Pr(xil) etc as follows. 

W. = Pr(7.) 

) Wij 	Pr(x.x
j  

and Wij k  = Pr (7. )7.7X ) k  

Then (1.30) may be rewritten as 

m 	m-1 m 	m-2 m-1 m 
(1-Y)= 	W. + 	W- - y 	W. + .... 1.31 

j =1 	j =1 k=j +1 3- 	j =1 k=j+11 Q=k+1 7 k o 

Returning to equation 1.30, we note that the right hand side 

is the sum of (2m-1) bracketed addends of non increasing 

numerical value with alternating signs. According to the 

Benferoni inequality procedure /3, chapter 3/, if we truncate 

the right hand side of 1.30, and use only the first K 

bracketed addends, then the value of the left hand side will 

be bounded by the first (K-1) and the first K addends. We 

may use this to obtain closer bounds on yield than 1.27. 

Equation 1.31 shows three addends. Thus the following bound 

on yield is obtained: 

m 	m-1 m 	m-2 m-1 m 
1 - 

j=1 
 W. 

 + j=1 k=j +1 	
W

J k 	j=1 k=j +1 Q=k+1 Wj kQ 	
Y 

	

m 	m-1 .m 

	

1 - I 	W. + 	W. 
j=1 3  j=1 k=j+1 ]k 

1.32 

Clearly, Yi  = 1-Wi  etc. 

Hence evaluation of the Wi, the W. 	and the Wijk, involve 

the integration of univariate, multivariate and trivariate 



Gaussian probability density functions respectively e.g. 

	

f. 	f . 	f 

	

W.. k  = fl 
f. 	

k Q. Q. Qk  df• df. df1f. 	. f 

	

1 	1 	k 

etc. 

The procedure for obtaining  yield bounds, outlined above is 

computationally cheaper than Monte Carlo analysis. However, 

it relies on several series of approximations and 

assumptions and is therefore less general and less reliable. 

1.4 PARAMETER VALUE DISTRIBUTIONS  

To perform effective statistical analysis, it is necessary 

to have knowledge of the statistical distributions of the 

component parameter values. Distinct differences exist 

in the distributions encountered in the parameters of components 

in discrete circuits and those in integrated circuits. 

1.4.1 DISCRETE COMPONENTS  

For discrete passive elements, i.e. resistors, capacitors, 

and inductors, it is adequate to determine the nominal 

values and form of the individual parameter p.d.f. The 

parameters of the various components in a circuit will be 

statistically independent. Therefore, the K dimensional 

joint p.d.f. O(.), may be written as the product of the 

individual parameter p.d.f5. i.e. 

0(P) 
K 
TT 0. (pi)  i=i 

1.33 

The component manufacturer may impose tolerance limits on 

a batch of components by removing  out of tolerance components. 

It is therefore convenient to write 1.33 as 
K 

0(P)Po,T) = Ī7 . (p4,t. ,p) 	1.34 
i=1 
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where as before P° and T are respectively, the nominal 

value and tolerance vectors. Further we expect 

O1(P1,p°,ti) = 0 for (p°-ti) > Pi  
i 

or 0.+t.) < pi 1 

1.35 

The form of the p.d.f. for most manufactured components is 

found to be Gaussian (figure 1.7a), when they leave the 

production line /12, chapter 6/. This is especially the case 

if a manufacturer mixes nominally identical components from 

batches produced at different times. Manufacturers often 

select components from the middle of the distribution to sell 

as precision components. Therefore for particulr nominals and 

tolerances, the distributions encountered by the component 

purchaser may be of the form shown in figure 1.7b, and 

1.7c. For some types of components, e.g. thin film 

resistors, the probability density function is often found 

to be markedly skewed, as shown in figure 1.8. 

For purposes of circuit analysis discrete active circuits are 

represented by equivalent circuits. For example, the hybrid 

II model, which is applicable when the transistor is used 

in linear a.c. applications. The different parameters of 

the equivalent circuit will then be inter-related and their 

statistical distributions correlated. The interrelations and 

correlations may be characterized from a knowledge of the 

physics of the device or more commonly from measurements made 

on a representative number of sample components. 
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1.4.2 	INTEGRATED CIRCUIT COMPONENTS 

The values of the parameters of the components of an integrated 

circuit are determined by the physical properties (e.g. 

material properties such as mobility, doping levels, diffusion 

constants etc) of the material of which the component is 

made and the geometrical dimensions of its layers. In general 

parameter tolerances in integrated circuits are larger than 

those encountered in discrete components, and there are 

distinct differences in the forms of the distributions 

encountered. For example, the values of the resistances 

depend upon sheet resistivity. Uncertainty in the manufacturing 

processes results in a tolerance of a few percent, on the 

value of the sheet resistivity from slice to slice. However, 

the variation of resistivity in circuits on one slice will 

be very small. Further this variation will be very gradual 

over the slice. Therefore although large tolerances may be 

associated with individual resistors, the statistical 

distribution of values of resistors in close proximity on 

single chips, will be correlated, thus reducing the overall 

tolerance effect. Therefore the designer of integrated 

circuits may exploit this fact by designing circuits whose 

performance depends upon ratios of resistances. Similarly 

the parameters of other components, such as the B values 

of transistors, will be correlated, especially when they are 

in close proximity. Such correlations must be characterized 

and taken into account when performing statistical analysis 

of integrated circuits. 



Tolerances in the lateral dimensions of integrated components 

also cause considerable variation in parameter values. 

Inaccuracies may result from errors in layout or cutting of 

master drawings and in the photographic reduction processes. 

Further, inaccuracies may occur in positioning masks with 

respect to previous patterns. In general, such surface 

dimension tolerances will tend to increase towards the edge 

of a circuit. The uncertainty in the definition of the edges 

may be reduced by making the sizes of the components larger. 

Generally the p.d.fs encountered in integrated circuits 

will be continuous and for many parameters will approach a 

Gaussian form. However, for several important situations, 

the distributions will be skewed. For example a major 

source of error in a resistor will be its path width, and 

the chance of it being too narrow would be about twice the 

chance of it being too wide. Also the value of resistance 

for a particular length and depth is inversely proportional 

to the width. Therefore a ± 50% tolerance in width would 

result in a tolerance on resistance values from +100% to 

-33% with a marked skew towards the higher resistance values. 

To summarize this discussion, typical tolerances of 

integrated circuit components are given in table 1.1 

/12, chapter 6/. 

1.5 	STATISTICAL DESIGN - SOME SCENARIOS  

Although in this thesis we are largely concerned with 

algorithms for tolerance assignment and design centering, many 
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other instances of statistical design problems may be 

identified. Therefore in this section we briefly examine 

some design scenarios. We commence however, with some comments 

on our specific problem (i.e. tolerance assignment) and 

introduce geometrical interpretations which will be useful 

for further exposition. 

1.5.1 	TOLERANCE ASSIGNMENT AND DESIGN CENTERING  

For discrete components, the parameter p.d.fs will be 

centered about the nominal value and be truncated at the 

tolerance limits. The region of variation in the input 

space may then be represented by a rectangle centereda  

about the nominal value (design center) with sides of length 

2ti, where the ti  are the relevant tolerances. We illustrate 

this for a 2-dimensional case (K=2) in figure 1.9. Also 

shown are the two p.d.fs 	which in this case are taken to 

be, truncated Gaussian and uniform, for parameters pl  and 

p2  respectively. The region of acceptability, (defined 

in equation 1.9) is a mapping in the input space of the 

performance specifications defined in the output space. 

Consider figure1.10(a) where both the tolerance region RT 

and the region of acceptability RA  are represented. 

Initially, assume both parameters to be uniformly distributed. 

Then yield will be the ratio of the volume (area for K=2) 

of region (RTf1RA) to the volume of region RT. In the 

illustration of figure 1.10(a) this ratio is less than unity. 

aIn the case of skewed p.d.f., the nominal value may by 
definition be taken to be the mid point between the tolerance 
limits. 
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To increase the yield the designer may keep the size of the 

tolerance region fixed and increase the overlap between 

the two regions. This may be achieved by choosing the 

nominal values such that the tolerance region is more 

centrally placed inside the region of acceptability as 

illustrated in figure1.10(b). Hence, this process is called 

design centering. Alternately the designer may accept the 

nominal value and decrease tolerances, and therefore reduce 

the size of the tolerance region. This latter procedure is 

called tolerance assignment. Figures1.10(b) and 1.10(c) 

illustrate application of these two alternatives to the 

situation of figure 1.10(a). Tighter tolerances imply 

better grade and therefore more expensive components. 

Therefore, the designer may invoke a combination of both 

procedures to obtain a suitable trade-off between component 

costs and the cost of discarding 'or repairing failed circuits. 

For the situation where all the parameters are not independent 

and uniformly distributed, the relevant p.d.f. 0(P) will 

define a weighting of every point in RT. The yield 

will then be a ratio of weighted volumes. A similar geometrical 

interpretation of tolerance assignment and design centering may 

also be considered in this situation. 

In the manufacture of integrated circuits, individual components 

cannot be sorted and therefore tolerances cannot be placed 

upon individual parameters. For many parameters, tolerances 

determined by the manufacturing process have to be accepted 

and the designer may then attempt to maximize yield by 

re-assigning nominal values. However, for other components, 
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for example resistors, tolerances on parameter values are 

determined by the chip area occupied by the component. The 

larger the area, the smaller the tolerance. However, larger 

component sizes increase the overall area occupied by the 

circuit. This increases the cost of processing the circuit 

and may result in a greater incidence of catastrophic faults. 

Here again a higher cost is associated with tighter tolerances. 

Therefore both tolerance assignment and design centering 

procedures are of relevance to integrated circuits. 

1.5.2 	CHOICE OF PERFORMANCE SPECIFICATIONS  

(a) Specification Sensitivity 

In the discussion so far it has been assumed that the 

specifications on performance (expression 1.7) are 

invariant and the engineer has to design for component value 

statistical spreads with respect to these specifications. 

However, the designer may find response spreads are such 

that even after tolerance assignment and design centering, 

the resulting circuits are still too expensive to manufacture. 

The designer may then explore the effect on yield of altering 

various specifications to consider possible trade-offs 

between different specifications. It may be possible to offer 

to the customer, circuits which are appreciably cheaper, but 

have specifications more commensurate with performance 

spreads achCī»able with available component spreads. The 

performance requirements are often somewhat arbitrary and 

there is usually the possibility of suitable trade-off of 

different specifications. 
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The sensitivity of yield to different performance speci-

fications may be explored using Monte Carlo analysis. 

Associated with each of the N sample circuits is a number 

m of values for the performance functions. Overall yield is 

estimated as the proportion of the N analysed circuits 

which simultaneously meet all performance specifications. 

Similarly the partial yields (introduced in section 1.3.2) 

for each performance may be estimated as the fraction which 

meets that particular performance specification. The effect 

of relaxing or tightening specifications may then be 

explored by changing performance specifications and re-

calculating overall and partial yields. 

(b) System Specification 

The discussion so far has been concerned with the problems 

of designing circuits in the presence of uncertainty in 

component parameter values. However, the concepts and 

methods (specifically Monte Carlo analysis) may be extended 

to certain aspects of systema  specification. System 

specification consists firstly of a functional specification, 

i.e. a specification of the functions to be performed by 

each of the subsystems, and the nominal values expected 

of their response. 

Secondly, it involves a specification of the allowed range 

of variation of response in each subsystem. The specification 

of allowed variations in subsystem response calls for a 

a 
Although a circuit may always be considered a system, here 

we take system to be, entities such as F.D.M. communication 
systems, digital transmission systems etc. 
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knowledge of the effects on the overall system performance 

of deviation from nominal of each of the subsystem 

performances. Computing the effects on the overall system 

performance deviations, taking the system responses one 

at a time would not be valid in the presence of non-

linearities. Monte Carlo analysis can be very effective in 

studying overall system behaviour when the performance of 

the subsystems deviates from nominal. An initial study would 

assume a hypothetical p.d.f., for example multivariate 

uniform, to represent variation of subsystem response. 

Monte Carlo analysis could then be performed as summarized in 

the block diagram in figure 1.3, where the block labelled 

circuit simulator may now be replaced by a system simulator. 

Such a study would provide the designer with information as 

to how subsystem performances combine and what maximum and 

minimum system degradation may be expected from subsystem 

degradation. The designer would be interested in specifying 

the largest allowable subsystem degradation such that 

overall system performance were still acceptable. More 

generally, a trade-off between different subsystem performance 

specifications may be considered. An example of such a study 

for a waveguide transmission system is reported in reference 

/14/, where the subsystems may comprise equalizers, detectors, 

regenerators etc. The system designer would be required to 

specify allowable deviations such as delay, amplitude 

distortion, error rate etc, in the subsystems. 
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1.5.3. 	SPECIFICATION OF MANUFACTURING TESTS  

The engineer may study a wide variety of circuit properties 

for evaluation and improvement during the design stage. 

However, it is desirable for economic reasons, to keep the 

number of tests performed on manufactured circuits to a 

minimum. In addition certain test may be substantially 

more expensive than others. For example, for linear 

integrated circuits, testing for d.c. properties is much 

cheaper than a.c. testing /15/. Therefore the specification 

of manufacturing tests is an important part of design. The 

methods of statistical analysis are very useful to study 

circuit behaviour from the point of view of specifying a 

suitable testing strategy while minimizing cost. In this 

section we describe a number of scenarios from this area. 

(a) Go-No Go Testing 

This represents the simplest case where statistical analysis 

may be employed to specify testing procedures. Consider 

the situation where the manufactured circuit is required 

to meet a certain number of performance specifications. 

Every manufactured circuit is to be tested sequentially 

for compliance with each performance specification. A 

circuit failing any one test is to be discarded or repaired. 

A Monte Carlo analysis performed with the expected input 

p.d.f.s would then give an indication of the performance 

functions where circuits are most likely to fail and of 

the likely correlations between failures at different 

specifications. An order of testing could then be estabilished 

to minimize overall cost of testing. 
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(b) Accounting For Environmental Effects In Factory Testing 

Manufactured circuits have to function in environmental 

conditions (e.g. temperature, humidity etc) subject to 

uncertainty. These factors, in addition to component ageing, 

cause input parameters to drift from their values at the 

time of manufacture. Further, this drift is reflected 

in circuit performance while in service. Generally it is 

not feasible to physically simulate these effects upon 

manufactured circuits while testing in the factory. Therefore, 

to allow for degradation of behaviour while in service, 

circuits have to be tested to specifications more stringent 

than required for acceptability. A Monte Carlo analysis 

may easily be modified to simulate such environmental effects. 

This would require knowledge of the dependence of component 

parameter values upon environmental parameters. The additional 

performance degradation due to environmental effects could be 

estimated and the factory test limits set accordingly. 

(c) Selection Of Testing Accuracy 

In most situations testing procedures with greater attendant 

accuracy will incur a greater cost. A Monte Carlo analysis 

may be employed to select test accuracy and strategy to 

reduce overall testing costs. For illustration consider 

the hypothetical example of figure 1.11. A Monte Carlo 

analysis is employed to obtain a histogram (not depicted in 

the diagram) of the expected distribution of a particular 

performance function fi. The accuracy of a particular test 

may be represented by an interval of uncertainty and a 

hypothetical distribution of errors. We may consider a 
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strategy where two test procedures are to be employed. This 

may comprise a crude test for performance values in the middle 

of the allowed range, and a more precise test for values 

'near the limits of the allowed range. For particular choices 

of accuracy of the two tests, the results of the Monte Carlo 

analysis may be employed to estimate the proportion of 

• manufactured circuits for which either test will be required. 

Hence, overall testing costs may be estimated. Indeed the 

results of the Monte Carlo analysis may be used to specify 

the accuracy of the two tests, such that overall testing 

costs are minimized. 

1.6 SUMMARY  

This chapter is a general review of the field of statistical 

design. Some useful notation and terminology is introduced 

and explained. The two most widely used methods of statLslc.oa. 

analysis, viz. Monte Carlo analysis and the Method of Moments 

are briefly described. Brief comments on the type of 

distributions encountered in discrete and integrated circuit 

components are given. 

In addition to tolerance assignment and design centering some 

other problems in the field of statistical design are described. 

These include the specification of performance constraints in 

manufactured circuits; the specification of sub-system 

performance constraints in system design; and various problems 

related to the specification of performance tests on manufactured 

circuits. The possible use of Monte Carlo analysis for such 

problems is emphasised. 
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Element Symbol 
typical 
value 

Tolerance 
normal/ 
narrow 
liAcwidth 

Temperature 
Coefficient 

General 
Sheet resistance of 

base diffusion 
R 
s 

150 SIV ±10% +0.2% 	/°C 

Sheet resistance of 
emitter diffusion 

R 
s 

2.5Q/ ±30% +0.0l%/°C 

Sheet resistance of R 200W ±15% +0.2% 	/°C 
epitaxial layer s o 

Sheet resistance of 
deposited resist- 
ance layer 

R 50- 
1000 
C/ 

±5% 0.01%/ C 

Transistors 
Current amplifica- 

tion factor 
$ +50% 

-30% 50 
 

+0.5%/oC 
Matching of S  bet-
ween identical AS - o 
transistors in 
close proximity 

±10% ±0.0005% 	/ C 

Resistors o 
Resistance of dif R - +100% +0.2% 	/ C 
fused resistors ±25% - 50% o 

Resistance of dep- R - +30%' +0.01%/ C 
osited resistors .±8% -20% 

Matching between o 
identical resis- 
tors in close 
proximity 

AR - ±3% ±8% ±0.0005%/ C 

Capacitors 
Capacitance of di- C - +100% - 

ffused capacitors ±25% -50% 
Capacitance of dep- C - +80% - 
osited capacitors ±20% 40%  

Matching of identi- ' 
cal capacitors in 
close proximity 

AC - ±3% ±8% - 

Junction FET o 
Transconductance g - ±50% -0.2%/ C 

m 'o 
Pinch-off voltage VP  - ±30% -0.5%! C 

IGFET o  
Transconductance g 

m  
- ±50% ±0.1%/ C 

Threshold voltage V - ±50% - 
T 

Table 1.1 Typical Tolerances And Temperature 
Coefficients Of Component Parameters In 
Integrated Circuits. 
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Designer inputs: 
maximum number of 
sample circuit 
analyses - N 

     

Set Counter 
J=1 

 

      

        

        

        

Designer inputs: 
1. Component 

Statistics. 
2. Nominals. 
3. Tolerances. 
4. Component 

correlations 
etc. 

Designer inputs: 
1. Circuit data e.g. 

circuit topology, 
component types 

etc. 
2. Information about 

required analyses, 
e.g. frequency 
points. 

3. Required data. 

• 

i»  
Random generator 
1. Generate pseudo-random 

numbers. 
2. Transform numbers to 

represent component 
parameter values, using 
information about tolerances, 
nominals etc. input by the 
designer. 

Circuit Simulator 

Analyse circuit.. 

Input by the 
designer. 
- - - - - - - ----  - - - --.1-  Has sufficient 

information 
been collected, 

Advance 
Counter 
J=J+1 

is number of 
analyses equa 

N. 

Yes 

Stop 

Figure 1.3 : Monte Carlo Analysis - A General Flow 
Chart. 
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Figure 1.4 Typical set of Monte Carlo samples 
(points) generated by a pseudo 
random process. 
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Figure 1.5 Illustrating A Method For Generating 
Component Parameter Values From random numbers 
Distributed In The Interval 0 to 1. 
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Probability 
Density 

Truncated Gaussian 
distribution. Tolerance 

t = 3a assumed 
t = 10% of p 

p-t 	u 	p+t 	Component 
Value 

Probability 
Density 

Figure 1.7(a) 

The components from 
the middle of the Gaussian 
distribution have been 
removed for sale as 
precision 5% tolerance 
components. 

(p-t') 

Probability 
Density 

u 	(p+t') 

Figure 1.7(b) 

Component 
Value 

The remaining components 
are offered as 10% 
tolerance components. 

CComponent 
Value (u-t) 

Figure 1.7(c) 

Figure 1.7 Typical Probability Density Functions 
Encountered with discrete components. 
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Figure 1.9 Illustration Of The Terms Design 
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CHAPTER 2  

ALOGRITHMS FOR TOLERANCE ASSIGNMENT AND 

DESTGN CENTERING - A CRITICAL REVIEW  

2.1 INTRODUCTION  

As discussed in the previous chapter, statistical 

distribution of component parameter values may cause some 

of the manufactured circuits to fail to meet performance 

requirements at the time of manufacture. That is, the 

manufacturing yield may be less than 100%. Clearly there 

is an inter—dependence between component tolerances and 

manufacturing yield. In general tightening tolerances 

will lead to higher yields. However, tighter tolerance 

components are more expensive and increase the overall 

cost of producing the circuit. On the other hand for 

yield less than 100% failed circuits have to be discarded 

or repaired, and this too leads to increased costs. Hence 

a compromise between tighter tolerance and higher yield 

may be sought. A'procedure for effecting such a compromise 

is termed tolerance assignment. 

In the manufacture of some types of circuits, expecially 

integrated circuits, it may not be possible to impose 

tolerances on the component parameters. This is unlike the 

case for discrete circuits, where a stipulated tolerance may 

be imposed on a particular batch of a component. To do 

this, the component manufacturer simply removes from the 

batch those components whose value falls outside the 	\! 
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tolerance limits he wishes to choose. For integrated 

circuits, the designer usually has to accept parameter 

tolerances determined by the physical process employed 

to fabricate the components, and to try and increase 

yield by changing the nominal values of the component 

parameters. This latter procedure is called design  

centering, and a particular set of nominal parameter 

values is called a design center. In the case of discrete 

circuits, design centering and tolerance assignment 

procedures may be combined to give even more cost effective 

circuit solutions. 

In both design centering and tolerance assignment, the 

designer seeks to minimize those circuit costs which depend 

upon component tolerances and circuit yield. We therefore 

commence this chapter with a discussion of appropriate 

cost models. This is then followed by various problem 

formulations which may be appropriate in different 

circuit applications. In the latter part of this chapter, 

various proposed solution techniques are reviewed. This 

review is by intention not exhaustive; nevertheless, 

different general strategies are identified and their 

attributes illustrated by a discussion of one or two 

representative alogrithms. Thus the advantages and 

shortcomings of each category of solution technique are 

highlighted. Finally, conclusions are drawn as to the 

best area for the development of more effective methods. 
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2.2 COST MODELS  

The total cost of manufacturing an electrical circuit will 

depend upon a large variety of factors. Of concern to 

the engineer are costs of purchase of components, the cost 

of circuit assembly or fabrication and of testing, repairing 

or tuning. The cost models discussed, here will be derived 

by considering (a) tolerance dependent component costs 

and (b) the cost of repairing or discarding correctly 

assembled or fabricated circuits, whose performance fails 

to meet requirements as a result of variation of parameter 

values within allowed tolerances. 

2.2.1 COMPONENT COST FUNCTIONS  

These relate specifically to circuits employing discrete 

components. Let Ci(ti) denote the cost function of 

the ith component whose fractional tolerance is ti. Then 

if C 	represents the total component cost of the 

circuit, we may write: 

K 
Cr  = 	Ci(t ) 

i=1 	1  

In every case the function C (•) will be a monotonically 

decreasing function of tolerance ti. The individual 

Ci(.) may take on various forms, typically: 

C (t ) = a + b it 
i i 	i i i 

2.2 

and 
C (t ) = f + d log t 	 2.3 
i i 	i i 	i 

The constants a and f represent the fixed costs i.e. 

the basic material and labour cost of making the component. 
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The constants b 	and d 	reflect the weighting, 

relative to other components in the circuit, of that 

component. The constant Q.i  in 2.2 is a measure of 

the rate at which the cost approaches a minimum 

(typically t. is unity) /17/. A typical cost versus 

tolerance curve is depicted in figure 2.1. 

2.2.2 THE UNIT COST FUNCTION  

The unit cost function expresses the average cost of 

producing one acceptable circuit. Two functions will 

be derived. Firstly, we will assume a strategy where correctly 

assembled circuits which fail to meet performance 

requirements are discarded, and secondly a strategy where 

failing circuits are repaired by replacement of all the 

components. Obviously, the latter strategy can only 

be applied to the manufacture of discrete component circuits. 

Assuming that a total number N of circuits is to be 

manufactured then a yield Y implies that NY of the N 

circuits will on average be acceptable. Therefore, the 

total cost of producing N circuits is 

K 
C = N(C + E 	C (t ) ) 
T 	A i=1 i i 

2.4 

C 	embodies the fixed, tolerance independant costs of 
A 
producing each circuit. For example the cost of printed 

circuit boards, labour cost, costs of testing, etc. Now 

if failing circuits are to be discarded, then the average 

cost per acceptable circuit is: 



K
rr  

CA + 1=1 Ci(ti) 

U 	*v 	Y 

In an alternative strategy each of the failing circuits 

is repaired by replacing all the components with a 

different set, selected at random as before. Let us assume 

that this is continued until practically all the circuits have 

been made to meet the performance requirements. If we 

let C 	represent the cost of repairing each failing 
R 

circuit, then the total cost of ensuring that practically 

all the circuits are acceptable will be the following sum 

C 	= N(C +C )+N(1-Y)C +N(1-Y)2C + 	 
T 	A C 	R 	R 

K 
= N{C + C +C ( . 	(1-Y)') } 

A C R 1=1 

= N{C +C +C (111.)) 
ACR 

As before C is the fixed cost and Cc the sum of the 
A 

tolerance dependent component costs. Therefore, the cost per 

acceptable circuit for this second strategy will be,: 

C 	= C +C + C (1-Y) 	 2.7 
UR 	ACRY 

The relative merits of the two strategies may now be 

compared. Clearly, the throwaway strategy is less expensive 

if: 	C +C <'C 	 2.8 
A C R 

That is to say it is cheaper to discard failing circuits 

if the cost of repairing a circuit, exceeds the sum of the 

fixed and component costs. 

65 

2.5 
C 
	CT  

S 

2.6 



2.3 PROBLEM FORMULATIONS  

This section presents various problem formulations of 

design centering and tolerance assignment, based on the 

cost functions discussed previously. Only the throw away 

strategy will be considered, although similar formulations 

may be obtained for the repair strategy. 

2.3.1. PROBLEM P1: COMPOSITE TOLERANCE ASSIGNMENT AND  
DESIGN CENTERING 

P1: Minimize 

C 
CA + y

-1 
Ci  (ti) 

2.9 

  

Y(P°,T) 
0 

by appropriate choice of P and T. Reiterating, 

P°  = p° 	 pK is the vector of nominal component 

values and 	T = t .... t 	the vector of relative 
1 	K . 

tolerances. The yield Y(•) depends upon the joint 

probability density function Q(•) of the component 

parameters. In practice a particular form of p.d.f. is 

assumed for O(•) and the parameter P° and T regarded 

as indices for O(•). For example O(.) may be multi-

variate Gaussian, truncated at the 30 points. So that 

p°  would be the mean of the ith component and t , its 

tolerance would be related to the standard deviation as 

ti  = 3a.. Therefore in this notation yield may be written 

as a function of PO  and T for stipulated form of p.d.f. 

P1 as stated in 2.9 is an unconstrained optimization 

problem. This formulation will only be relevant to 

discrete component circuits. However, in such circumstances, 

the designer may only be allowed tolerance values 
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from a discrete set, i.e. 

t Et t 	 t , j=1 ...9  ; i=1 	 K 	2.10 
i i1 i2 	ij 

Where £. is the number of available discrete tolerance values 
1 

for the ith component. In addition the parameter nominals 

may also only be allowed a discrete set of values. For 

example the jth component may be a resistor whose 

nominal value would have to be from a preferred range, i.e. 

0 0 0 
PE PP 
 it pit 

 

0 

p ; j=1 ....n ; i=1 .... K 
ij  

2.11 

 

Further the denominator in 2.9, the yield, is a multi-

dimensional integral. Therefore, it is impractical to 

analytically compute either the cost function (2.9), or its 
0 

gradients with respect to the design parameters P and T. 

Hence, standard methods of non-linear programming cannot 

easily be applied to(2.9). To make the problem more tractable, 

various authors have considered alternative formulation by 

modifying the cost function as follows. 

2.3.2 PROBLEM P2: WORST CASE TOLERANCE ASSIGNMENT AND 

DESTGN CENTERING. 

K 
P2. Minimize 	C = C + 	C (t ) 

A i=1 i i 
2.12 

by appropriate choice of p9, t.; i=1 .... K 

Under the constraint that yield is unity i.e. 

y(p°,T) = 1 	2.13 

The geometrical interpretation of 2.12 and 2.13 is given in 

figure 2.2. Basically, the tolerance rectangle R (P°,T) 

is to be placed inside the region of acceptability R 
A 
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by choosing P and T, such that R (P°,T) is wholly 
T 

contained in R ; i.e. R (P°,T)CR 	and cost is 
A 	T 	A 

minimized. 

2.3.3 PROBLEM P3: WORST CASE TOLERANCE ASSIGNMENT  

K 
P3: Minimize 	C =C + 	C (t ) 	2.14 

A 	i=1 

by appropriate choice of t ; i=1 .... K, for design 
i 

center P° and subject to the constraint that yield is 

unity. This formulation is more restrictive than P2, as 

it assumes a fixed nominal point. Geometrically it may be 

interpreted as: with tolerance rectangle centered about 

P°, discover the largest tolerances ti ,, for which the cost 

function(2.14)is minimized and the tolerance rectangle is 

wholly contained in R (see figure 2.2) 
A 

2.3.4 PROBLEM P4: STATISTICAL TOLERANCE ASSIGNMENT  

AND DESIGN CENTERING  

In the formulations P4 and P5, we relax the constraint 

on yield, which is now required to be greater than a certain 

value YL. 

P4: Minimize 
K 

C + y 	C (t ) 
A i=1 i i 

2.15 

by appropriate choice of P°  and T, subject to the constraint 

that 	Y(P°,T)> Y 	 2.16 
L 

The constant Y 	is a lower bound on the yield. This 
L 

problem formulation is of importance, because in a particular 

class of solution technique the constraint on yield is first 
0 

transformed to constraints on' the design parameters P and TJ 
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standard methods are then used to solve the resulting 

constrained non-linear programming problem. 

2.3.5. PROBLEM P5: STATISTICAL TOLERANCE ASSIGNMENT 

This may be defined as a variant of P4 when the design 

center is assumed fixed.. 
K 

P5: Minimize 	C = C + 	C (t ) 	2.17 
A 1=1 i i 

by appropriate choice of t , i=1 ... K, for a fixed design 
i 

center Pd subject to the constraint that 

Y(T) > Y 
L 

2.18 

2.3.6. PROBLEM 6: DESIGN CENTERING (YIELD MAXIMIZATION)  

P6: Maximize 	Y (O (PO) ) 	 2.19 

by appropriate choice of design center P°. 

This particular formulation is of especial interest in 

the design of integrated circuits. Here, the,designer 

has to accept tolerances determined by the uncertainties 

of the manufacturing process and to try and maximize yield 

by changing nominal component values. The procedure is 

also useful as a prelude to tolerance assignment for discrete 

circuits. For fixed tolerances, cost is a monotonically 

decreasing function of yield, therefore no cost function 

need be formulated explicitly in terms of the yield. 

2.3.7 PROBLEM P7: 	TOLERANCE ASSIGNMENT, DESIGN CENTERING 

AND TUNING  

In many circuits of high complexity, it may not be possible 

to obtain satisfactory performance of manufactured circuits, 

using 	components with available tolerances. It may then 



70 

be necessary to tune (adjust) some of the component 

parameters after circuit manufacture, until performance 

requirements are met. Two examples of tuning are the 

adjustment of a slug in a pot core inductor 	and the laser 

triming of thin film resistors. In general we require a 

procedure for selecting a subset (of size K' say) of 

the K relevant component parameters, such that by 

adjustment of components from this subset, the deviation 

of performance beyond specified limits may be compensated 

for in some or all of the manufactured circuits. It may 

not be possible to formulate a suitable cost function which 

satisfactorily reflects the costs of making adjustments 

and the added costs of tunable components. We may however, 

consider simpler problem formulations, such as the worst-

case design centering, tolerance assignment and tuning 

problem. The circuit is designed such that performance 

deviation in the manufactured circuits can always be 

compensated by adjusting the tunable components. The problem 

then reduces to ; 

K-K') 
P7: Minimize 	C = C + y, 	C (t ) 

A 	i=1  
2.20 

by appropriate choice of nominals and tolerances for the (K-K') 

non tunable components; subject to the constraint that 

yield is unity, after adjustment of the K' tunable components. 

The formulation is investigated by Bandler et al /17/. The 

additional problem of selecting the most effective 

component parameters as candidates for tuning is investigated 

by Glesner /18/ and will not be treated in this thesis. 
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2.4 THE REVIEW 

The numerous proposed schemes addressed to the design 

centering and tolerance assigment problems may be classified 

according to various criteria. For the purpose of this 

review, the classification employed is based on the type of 

solution technique used. Four classes are identified, viz. 

geometrical characterization, standard non-linear programming, 

iterative Monte Carlo and discrete methods. 

Algorithms are often divided into worst case, i.e. those 

that require yield to be constrained to unity,,and statistical. 

i.e. those that allow yield to take on a value less than 

unity. This latter classification relates to the problem 

formulation and not the solution technique. For instance 

standard non linear programming techniques have been reported 

/19,20/ for both.worst case and statistical formulations. 

2.4.1. METHODS BASED ON GEOMETRICAL CHARACTERIZATION  

Geometrical interpretations may be associated with the 

various problem formulations. However, it is prohibitively 

expensive to compute the boundary BR of the region of 
A 

acceptability R for circuit examples involving more than 
A 

a few variables. 

Director and Hachtel /21/ have demonstrated a scheme, where 

BR is approximated by a simplex/22,chapter 6/ of bounding 
A 

hyper planes. For a K-dimensional example, the process 

commences with (K+1) hyper-planes, each of dimension (K-1). 

The planes are constructed by forming the convex hull of a 

number M >K+1 of points on BRA. These initial points are 
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obtained by performing a series of unidimensional line 

searches parallel to the co-ordinate axes, emanating from 

the initial nominal point (design center). The simplicial 

approximation is improved iteratively. A new point on 

3R 	is obtained by searching along the outward normal 
A 

from the center of the largest bounding hyper-plane of 

the current approximating simplex. The approximation is 

then improved by forming the convex hull of all previous points 

and the newly discovered boundary point. The process is 

illustrated for a two dimensional example in figure 2.3. 

Such a characterization of aR 	considerably simplifies 
A 

the design centering and tolerance assignment problems. For 

example, in one version of this method, the design centre 

is computed as the centre of the largest inscribable 

hypersphere (of dimension K) in the simplicial approximation. 

The computational effort is largely made up of circuit 

evaluations to determine points on the boundary all . The 
A 

procedures for determining the largest hyper-planes, for 

inscribing hyperspheres etc. may be formulated as standard 

problem in linear programming. However, the process can only 

work well for problems of small dimension, as the number 

of faces (bounding hyperplanes) required for a good 

approximation of R becomes very large with increasing 
A 

dimensionality /53/. The procedure is largely addressed to the 

design centering problem (P7) applicable in the design of 

integrated circuits, where the design variables are process 

parameters such as sheet resistivities and specific 

capacitances. These parameters are normally fewer in number 

(typically less than 10) than the design variables 



(resistances capacitances and inductances etc.) encountered 

in practical discrete component circuits. 

Some of the dimensional dependence of the above method 

of simplicial approximation is reduced in the point basis 

approach /23/ where the approximating. simplex is character-

ized in terms of the co-ordinates of a number N > K+1 points 

on DRA.  For a particular dimensionality, the point basis 

method, illustrated in figure 2.4 is reported to require 

a smaller number of circuit analyses than the face based 

method. Nevertheless, the effectiveness of such schemes 

has only been demonstrated for circuit examples involving 

a maximum of four toleranced components /24/. 

An additional difficulty arises, since the approximating 

simplex will only be interior to RA  if RA is convex. 

This assumption may not hold in general and hence can 

cause difficulty. 

2.4.2 METHODS BASED ON NON-LINEAR PROGRAMMING 

The methods considered in this section minimize cost 

functions which depend explicitly on component tolerances. 

Whereas both the design center and associated tolerances may 

be taken as design variables, yield is only introduced 

implicitly. Constraints are placed on yield, which are then 

transformed to constraints on the tolerances. Both worst 

case and statistical formulations are considered. 
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(a) WORST CASE FORMULATION  

The problem formulation is as in P2 or P3. Re-iterating 

P3: Minimize 
K 	 o 

C (t ,p ) 
1=1  

0 

2.21 

by appropriate choice of p 	and t ; 1=1 ... K, subject 
i 	1 

to the constraint 
Yield = Unity 	2.22 

This formulation has been treated by Pinel and 

Roberts /25/, Sud and Spence /26/ and more extensively 

by Bandler et al /19,27/. 

A yield of unity requires that the tolerance hyper- 

rectangle 	R (P°,T), (centered about P°  and of sides 
T 

of length 2ti, T=t1  .... tK) 	be wholly contained in RA; 

i.e. 
RT(P°,T) C RA  2.23 

The condition 2.23 is given geometrical interpretation 

in figure 2.2. This condition entails an infinite number 

of constraints, since the infinity of points comprising 

R 	is required to belong to RA. The problem is made more 
'T 
tractable by adopting either of two approaches. 

(i) 	It is assumed that the worst value of a performance 

function occurs at one of the vertices of. R 	rather than 
T 

at a point interior to it. The unity yield condition 

then requires that all 2K  vertices of RT  belong 

to RA  i.e. 

Sv  e RA  implies RT C RA 	2.24 
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K 
Where S 	is the set of the 2 vertices of R . The 

v 	 T 
number of constraints can be reduced further by performing 

sensitivity analyses at the centre of R and for each 
T 

performance function, identifying the worst vertex from 

the signs of the first order sensitivities of that 

performance with respect to the component parameters /28/. 
K 

This reduces the number of constraints from 2 , to 

m, where m is the number of requirements on the 

performance of a circuit for it to be deemed acceptable. 

(ii) In an alternative strategy, it is assumed that the 

region of acceptability R 	is one dimensionally 
A 

convex / 27/, as illustrated in figure 2.5. A closed 

region R is one dimensionally convex, if for any two points 

in R, which are the end points of a line parallel to 

any one of the co-ordinate axes all the points on the line 

also belong to R. Now we recall that each side of the 

tolerance rectangle R 	is parallel to one of the co-ordinate 
T 

axes. Therefore for a one-dimensionally convex R , if the 
A 

vertices of R are contained in R , then so is the 
T 	A 

entire region R (condition 2.24). However, unlike the 

first approach above, with the one-dimensional convexity 

assumption, the worst value of the performance functions 

need not occur at the vertices of R , for 2.24 to hold. 
T 

This second approach is treated by Bandler et al /17,19,27/. 

For each performance constraint, a combination of sensitivity 

analyses and tests for monotonicity..of the performance functions 

are employed to identify the critical vertices. For a particular 



tolerance region, a vertex will be designated critical if 

it touches the boundary of the region of acceptability. Thus 

the number of constraints to be considered is usually much 

less than 	2K. 

For either approach, the minimization is performed by 

standard non-linear programming methods, for example, 

the sequential unconstrained optimization technique of 

Fiacco and McCormick /Z9/. For the discrete tolerance 

problem (2.10 and 2.11) a continuous solution is first 

obtained and is followed by a tree search method to 

discretize the continuous solution /19,30/. 

In many practical examples, these methods and the assumptions 

upon which they are based are found to be acceptable. 

However, the worst case formulation leads to excessively 

narrow tolerances. It is often the case that tolerances 

can be relaxed appreciably for a very small dimunition in 

yield in the vicinity of 100%. This is illustrated in 

figure 2.6. The worst case methods do not provide information 

about, or exploit such yield tolerance trade-offs. Further, 

the methods are inapplicable where a'unity yield is not 

achievable with available tolerances, such as in the 

design of integrated circuits. 

(b) STATISTICAL FORMULATION  

A general statistical formulation such as problem P1, 

comprising an unconstrained minimization and incorporating 

yield in the objective function, poses problems due to 
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the difficulty of computing yield. Methods addressed 

to problem P1 and which employ Monte Carlo analysis to 

estimate yield are discussed in the next section. Here we 

consider methods addressed to formulations P4 and P5. The 

cost functions depend explicitly upon tolerances, whereas 

yield is introduced implicitly via constraints. Unlike 

the worst case formulation, yield is required to be greater 

than a certain minimum value YL,  say, where Yb  is 

less than unity. 

Seth and Roe /31/ and later Thorbjorensen and Director /20/ 

have reported alogrithms based on the method of moments 

approximation, discussed in section 1.3. Essentially, 

the moments of the performance p.d.f. are written in 

terms of the moments of the component parameter p.d.f. by 

invoking -  Taylor series representations of the response 

functions. If the performance p.d.f. is assumed multi-

variate Gaussian, then bounds on the yield may be obtained 

via the Bonferoni inequality procedure. Alternately if no 

assumption is made about the form of the performance p.d.f., 

then a generalization of the Chebychev inequalities 	will 

allow suitable estimates of the yield to be made. In either 

approach, constraints on the response moments may be 

obtained from constraints on the yield. The relationship 

a The Chebychev inequality allows statements of the spread 
of a p.d.f, in terms of its variance,-and mean. For 
example for a univariate p.d.f. P(x), with mean 	p and 
variance o2: 

(13(p-Ko< x <p +Ka)}>1/K2, where K is a constant. 
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between the response moments and the component parameter 

moments may then be used to derive constraints on the 

tolerances. Thence the tolerance dependent cost function can 

be minimized subject to these constraints. The whole process 

may be iterated to explore the yield tolerance trade off. 

The series of steps is symbolically expressed in figure 2.7. 

The main shortcomings of this approach arise from the fact 

that the inherent approximations and assumptions do not 

hold in practical cases. Pinel and Singhal /32/ report that 

the output p.d.f. cannot be assumed to be multivariate 

Gaussian in practical examples. In addition the low order 

Taylor series upon which the Transmission of variances 

equation is based may poorly approximate the response 

functions over the tolerance intervals considered. 

Bandler et al /33/ employ a modified worst case method. A 

worst case solution is first obtained. The tolerance 

rectangle is then expanded and yield estimated by calculating 

the volume of the "infeasible region", i.e. RTnRA, as shown 

in figure 2.8. The boundaries of the region where individual 

performance constraints are violated, are approximated as 

planes. The planes are obtained by linearizing quadratic 

approximations to the performance constraint boundaries. 

Among the main limitations of this approach are that it is 

only suitable where each reject circuit is expected to 

fail only one performance constraint. Further, the general 

validity of the quadratic approximation still remains 

unresolved. 
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2.4.3. METHODS BASED ON MONTE CARLO ANALYSIS  

Elias /2/ 	has introduced a method (called TOLERATE) 

for tolerance assignment and design centering, where the 

yield versus tolerance trade-off is explored. The method 

is summarized in flow chart in figure 2.9. For a parti-

cular set of nominals and tolerances and for particular 

forms of input parameter p.d.fs Monte Carlo analysis 

is performed and yield is estimated. Information about 

the distribution in the input space, of passing and failing 

sample circuits, obtained from the Monte Carlo analysis is 

then used to re-assign nominals and tolerances. The process 

is iterated and the yield tolerance trade-off is explored. 

The method commences with wide tolerances and low 

corresponding yields, and progressively tightens tolerances 

to increase yield. 

A method employing a similar approach has been introduced 

by Becker and Jensen /12 , chapter 9 1. For particular 

input parameter p.d.fs 	and fixed absolute tolerances, a 

standard direct search optimization method, pattern search 

/34/, is used to choose suitable nominal values. The 

objective function to be maximized, the yield, is estimated 

via Monte Carlo analysis. 

The main shortcomings of these methods arise from the 

computational expense of performing Monte Carlo analyses 

iteratively. However, the number of sample circuits 

required to -be analysed is independent of the number of 

toleranced components. Therefore, these methods can 
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deal with larger circuit examples than other techniques. 

In chapter 4, we describe a novel Monte Carlo based design 

centering method and illustrate its effectiveness for 

circuit examples involving up to 43 toleranced components. 

Unlike the pattern search method, the new technique uses 

information about the position in the tolerance region of 

pass and fail sample circuits to choose a design center 

to improve yield. The computational expense is moderated by 

efficient sampling schemes which re-use sample circuits 

between iterations. Further, practical shortcomings of 

the TOLERATE method are discussed in chapter 5. A more 

effective tolerance assignment method, PERTOL is introduced 

and a comparison with TOLERATE is presented. 

In contrast to the above methods, which use standard Monte 

Carlo analysis, Tahim/l0, chapter 5/ has introduced a 

radial exploration method for design centering. Essentially, 

an indicator approximating the yield is computed as detailed 

on figure 2.10. The value of the indicator is used to control 

the design centering process. The design centering procedure 

itself is based upon achieving a reduction in the assymetry 

of the feasibility region, i.e. RTi1RA, as shown in figure 2.11. 

The radial exploration employs a particular large change 

sensitivity algorithm /35/ to reduce computational effort. 

However, this sensitivity algorithm is only applicable to 

linear circuits and over a restricted tolerance range. 
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2.4.4 	DISCRETE METHODS  

In many practical situations values for nominals and 

tolerances must be chosen from discrete sets of 

allowable values. For example for discrete capacitors the 

designer may only be allowed choices from the E24 series 

/36/. 	Although there may be greater freedom of choice of 

nominal values (within an achievable range) for integrated 

circuit components, the finite resolution of the mask making 

process and other processes will ensure that the choices 

are ultimately quantized. Therefore all proposed algorithms 

have eventually to consider methods for arriving at choices 

of nominals and tolerances from allowable discrete sets. 

Two distinct approaches for the discretization problem have 

been reported. In the first approach a continuous solution 

is first sought. 	A discrete solution is then obtained by 

rounding off to the nearest discrete values, or by invoking 

a standard tree search method, e.g. Dakin's. tree search 

technique /30/. 	In an alternative approach continuous 

solutions are not sought and the methods work with discrete 

solutions throughout. An algorithm from the class of 

techniques called the branch and bound methods is 

generally employed. 

Karafin /3/ 	has described branch and bound methods 

addressed to both worst case and statistical tolerance 

assignment problems. In the worst case algorithm the main 

computational cost accrues from the process of testing 
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particular tolerance solution for the 100% yield condition. 

In chapter three, we describe the general structure of 

the algorithm together with a discussion of some worst 

case testing methods. In addition we report a cheap and 

efficient worst case testing method based on a regional-

ization/ 37/ of the input parameter space. However, as with 

other worst case methods, the branch and bound method offers 

tolerance solutions which are too pessimistic. 

In contrast the branch and bound algorithm for the statistical 

formulation employs the method of moments to estimate 

yield. The assumptions and approximations involved in 

the method of moments, render the statistical branch and 

bound algorithm unreliable for many circuit applications. 

Nevertheless, the use of Monte Carlo analysis in place 

of the method of moments is not to be recommended as the 

number of yield estimations required would incur a prohibitive 

computational cost. 

2.5 SUMMARY AND CONCLUSIONS 

This chapter comprises a critical assessment of reported 

methods of tolerance assignment and design centering. Initially 

we discuss relevant cost functions and various problem 

formulations which fall under the general headings of tolerance 

assignment and design centering. The methods reviewed are 

considered under four categories. These are Geometrical 

characterization, Standard non-linear programming iterative 

Monte Carlo based methods and Discrete methods. 
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Of the Geometrical methods, simplicial approximation is briefly 

described. Geometrical methods in general become prohibitively 

expensive as the number of toleranced components increases 

beyond about ten /53/. To date simplicial approximation has 

been reported for a largest circuit example involving only 

four toleranceō components. 

The methods based on standard non-linear programming are 

further subdivided into worst case and statistical. 'Both 

groups avoid the evaluation of yield. The worst case methods 

constrain yield to be equal to 100%. On the other hand the 

statistical methods require yield tongreater than a certain 

minimum value YL, where YL  is less than 100%. The worst case 

methods require procedures for testing the 1001 yield condition, 

while the statistical methods approximate yield via procedures 

based on the method of moments. 

The main shortcoming of the worst case methods is that of 

over-design. In general it is possible to trade-off yield 

against tolerances. The worst case methods do not explore 

this trade-off and hence provide expensive tolerance solutions. 

Additionally the worst case methods are inapplicable for 

situations where 100% yield is not achievable with available 

tolerance such as in the manufacture of integrated circuits. 

In contrast the statistical non-linear programming based 

methods allow yield to be less than 100%, and do not produce 

as tight tolerances as the worst case methods. Nevertheless, 

statistical non-linear programming methods maximizes tolerances 

for a particular choice of yield and do not explore the yield 

tolerance trade-off. To explore this trade-off the optimization 



84 

could be repeated for different choices of yield. However, the 

inherent unreliability of a yield estimation procedure 

based on the method of moments makes this approach 

unattractive. 

The methods based on Monte Carlo analysis have important 

advantages over both the geometrical and non-linear programming 

based methods. Firstly, in estimating yield the number of 

circuit analyses required in Monte Carlo analysis is independent 

of the number of toleranced components. Therefore such methods 

may be considered for large circuits. Secondly, the Monte 

Carlo yield estimation procedure is more general and more 

reliable than the method of moments. The main contributions 

of new techniques in this thesis falls in the area of Monte 

Carlo based methods. These are fully discussed in chapters 

four and five and only brief mention is made in this chapter. 

The three categories discussed above provide continuous solutions. 

In practice however, only discrete choices may be available 

for tolerances and nominal values. The expedient of rounding 

off the best continuous solution to the nearest allowable 

discrete solution does not always provide the best available 

discrete solution. On the other hand Discrete methods work in 

terms of the discrete choices without first seeking continuous 

solutions. The main shortcomings of such an approach arise 

from the fact that the number of available discrete solutions 

becomes very large for the size of most circuit examples of 

interest. Therefore, the computational effort is often 

prohibitive. 



The applicability of the main contributions in the field of 

tolerance assignment and design centering , appearing in the 

recent literature is summarised in table 2.1. 
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P5: 

Seth and Roe 	/31/ 

Karafin /3, chapter 3/ 

P3: 

Pinel and Roberts /25/ 

Sud and Spence /26/ 

Karafin /38; 	3, 
chapter 3/ 

P1 	; 	P4 P2 

Elias /2/ Bandler et al /27/ 

Thorbjorensen and 
Director /20/ 

Li, Hammond and Su /39/ 

Bandler et al /33/ 

Soin /This thesis, 
chapter 5/ 

P6 

Director and Hachtel 
/21,23/ 

May not be possible 
Becker and Jensen /12, 

chapter 6/ 
with available 
tolerances 

Tahim and Spence /40/ 

Soin and Spence /41,42/ 

Soin /this thesis 
chapter 4/ 

Less than 100% yield 

Table 2.1: A summary of the main contributions in 
the field of tolerance assignment and 
design centering (P1, P2 etc. refer 
to the problem formulations of section 
2.3) 



Cost 
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Tolerance 

Figure 2.1 : A Typical Cost-Versus-Tolerance Relationship 
For A Single Component. 



P1 .P2  

RA  The Region 
of accepta-
bility 

R Tolerance recta-
T2 ngle for a tol-

erance solution 
satisfying the 
worst case con-
dition 

1 
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R Tolerance rectangle for 
Ti a tolerance SO LU AIN. not 

satisfying the worst case 
condition 

P2  

P1  

Figure 2.2 : An Illustrating Of The Geometrical Interpretation 
Of The Worst Case Constraint. 



ORA 	(unknown) true boun- A dary of the region of 
acceptability RA  

R (in bold) Bounding 
A'.hyperplanes, con-
stituting the curr-
ent approximation to 
SRA  

New planes to 
update the approx-
imation OR

A  

P4  

New point on OR A  
discovered to 

update ORA  

P3  

89 

Note : Points Pl  P2  P3  are used for the current simplicial 

approximation , which is constituted by the lines (planes 
in higher dimensions) A,B, and C, indicated in bold line. 
Point PA is discovered by searching along the outward 
normal from the center of the largest plane (i.e C) to the 
boundary OR A. The Simplicial Approximation is updated by 
eliminatingA plane C and including the new planes D and E. 
The center of the largest inscribable circle (hyper-sphere) 
in the approximation is taken to be the best design center. 

Figure 2.3 : An Illustration Of The(Face Based) Simplicial 
Approximation Method Of Design Centering. 



SR' (approx-
imation to 
SRA)  

P2  

Figure 2.4(a) 

Note : The point basis simplicial approximation method of design 
centering is described with the aid of figures 2.4(a),(b), 
(c),(d), and (e). Points P1  P2  P3  P4  P5  P6  are predetermined 
points on the boundary SRA 	of RA  the region 
of acceptability.,-Initially the center C1 of the circle 
circumscribing points P1  P2  P6  is determined. The three 
lines (faces)of triangle 	P1 P2 P6 are tested one by 
one to see if a larger circle 	can be found which 
circumscribes two points from the set P1  P2  P6  and another 
point on the boundary SRA. The search 	consists 
of examining trial centers which lie on the line from C 
normal to the line of the triangle, being tested. Such 1  
a center is is discovered as C2  which lies on the line 
from C1  normal to the line 	P2  P6.  The circle centered 
about C2  now circumscribes 	points P2  P3  P6. The 
lines of triangle P2  P3  P6 are now tested as 	were 
the lines of triangle 	P1  P2  P6,. A new center C3  is 
now discovered for a circle 	circumscribing points 
P P P .The procedure is terminated at C3  because a larger 
6 3 5circle cannot be found which will circumscribe 
two points from the set Ps  P P5  and P A . The next step in 
the overall procedure is to discover 'new points on the 
boundary SR .The procedure for finding design centers can 
then be repAeated as described above.The three stages of 
design centering for this example are illustrated in sequence 
in figures 2.4(b),(c) and (d). For clarity SRA  is not 
shown . Figure 2.4(e) shows the procedure for determining 
new points on SRA.(Further notes are provided in the next 
two pages). 

Figure 2.4 : The Point Basis Method Of Design Centering 
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Figure 2.4(b) 

Figure 2.4(c) 
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P6  

P7  

Figure 2.4(e) 

5 
P 

Note : In figure 2.4(e) we show how new points on SR. are located 
in this procedure.The point PN  on the 	A approximating 
plane nearest the current design center C3, is located. 
The line joining this point to the design center is 
searched until a new point (P7) on SRA  is located.The 
procedure described in figure 2.4(a) is then repeated to 
obtain the best design center.For this example this is shown 
as C4.The corresponding circle now circumscribes points 
P2  P3 P7. 

The point basis method has been described with referen.ce 
a two dimensional parameter space. In the general case of 
an n dimensional space we must consider n dimensional 
spheres circumscribing n+l points on SRA.A rigorous 
description is given in /23/. 

The point basis method has the advantage over the face based 
methods that all the planes constituting the simplicial 
approximation do not have to be stored.Since the number 
of planes is much greater than the number of points this 
results in a considerable saving in computational effort. 
In addition the point basis method is not as prone to 
failure as the face based method when the region of 
acceptability is not convex. 
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P 
Figure 2.5(a) : A Convex region in two dimensions 

Note : In figures 2.5(a) and 2.5(b) we give a simple geom-
etrical illustration of the terms convexity and one 
dimensional convexity. Figure 2.5(a) illustrates a 
convex region in two dimensions and figure 2.5(b) 
a one dimensionaly convex region in two dimensions. 
A region is said to be convex if for any two points 
belonging to the region all the points on the line 
joining the two points also belong to the region. 
On the other hand a region is said to be one dim-
ensionally convex if for any two points which are 
the end points of a line parrallel to any one of 
the co-ordinate axes,and belonging to the region, 
all the points on the line joining the two points 
also belong to the region. 
Clearly if the vertices of a rectangle (hyper-rectangle) 
belong to a convex or one dimensionally convex region 
then the entire rectangle will be contained inside 
the region. 

Symbolically a two dimensional region.R is convex if 

For A=al,a2  B=bi,b2 and AeR 	; BER implies PeR, 
where 

P = A + x(B - A) 	O<A<1 

Figure 2.5 : An Illustration Of One dimensional Convexity 
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Figure 2.5(b) : Illustrating A One Dimensionally 
Convex Region In Two Dimensions. 

Symbolically, a region R is one dimensionally 
convex if: 

For A=al,a2  and B=b1,b2  and AeR and Belland 

b1=a1  _and 	P = al,X(a2-b2) 	O<X<1 implies PeR 
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P2 
Tolerance region of 
tolerance solution 
satisfying the worst 
case condition 
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Tolerance region of 
I tolerance solution 

.4 not satisfying the 
the worst case cond-
ition. 

P1  

Note : The diagram shows that a small diminution of 
yield (less than 100%') allows an appreciable 
relaxation of tolerances. 

Figure 2.6 : Illustrating The Overdesign Inherent In The 
Worst Case Tolerance Solution. 



r-------- .Constraints on yield 

Via the normal approximation 
or the generalized Chebychev 
inequality. 

Constraints on response moments 

Via approximations, such as 
the transmission of variances 
equation (itself based on the 
Taylor series approximation). 

Constraints on moments of component 
parameter spreads 

Relationship between input moments 
and tolerances -e.g. for Gaussian 
distribution nominal p° = mean u 
and tolerance t = 3a where a is 
the standard deviation. 

V 
Constraints on tolerances 

Minimize tolerance dependent 
cost function subject to above 
constraints - using standard 
non-linear programming methods. 

Change constraints 
on yield and repeat 
process. 

Figure 2.7 An illustration of the structure of 
statistical non-linear programming 
based methods for tolerance assignment. 
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RT  The tolerance 
region 
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p1 

Note : Here we give a simple illustration of the deterministic 
yield estimation method by Bandler et al. Essentially 
the method consists of locating points such as al;a2, 
and a3  which are the intersection of the regions 
of acceptability and the tolerance region. For a 
three dimensional region such as the one illustrated 
above the three points ala2a3  define a plane, which 
is used as a linear approximation to the intersection 
of the tolerance region and the boundary of the region 
of acceptability. 
With the additional notation : RF  = RA1RT ,  where RF  
is called the feasible region , 
then yield is the ratio of the volume of the 
feasible region to the volume of the tolerance region. 
For this example the volume of the infeasible region RF  
is: 

VF= 1 (al a2  a3) 
3' 

Such analytic formulae allow us to estimate yield and 
since the al  a2  a3  are functions of the coordinates of 

pl p2 of 	the design center P° we can also 
obtain formulae for the gradients of the yield 

with respect to p° and p°. Therefore design centering 
(yield maximization)may 2  be performed using standard 
gradient based methods of optimization.We envisage the 
main difficulty with such a method will'be that the 
approximations will be poor for more complicated regions 
of acceptability and when the dimensionality is high. 

Figure 2.8 : A Yield Estimation Procedure Based On Linear approximation 
Of The boundary Of The intersection Of The Regions RA  
And RT 
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Figure 2.9 : The TOLERATE Method Of Tolerance 
Assignment. 
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RF  The feasible region 

RT  The tol-
erance -- 4 
region 	ri 

Random dire-
ctions 

The Region of 
Acceptability 

Note : A number of lines are generated at randomly 
chosen angles , emanating from the design center. 
For each line the ratios r+= OA and r-= OA' are 

OB 	OB' 

computed. OB and OB' are the distances to the 
boundary ofL.the tolerance region and OA and OA' are 
are distances to the boundary of the feasible region 
(The feasible region RF is the intersection of 
the region of acceptability, and the tolerance region 
i.e  RF  = RA6\ RT  ) 

An indication of yield is obtained as : 

N 

1/N,j1=1 r
0]  + 	r03  

Where N is the number of lines. 

Figure 2.10 : The Radial Exploration Method Of Obtaining 
An :Indication Of Yield 



Region of 
acceptability 

Tolerance 
region RT,n  

Tolerance 
region RT,n +l 

L 

Note : Pn corresponds to the current design center. 111.+1 
corresponds to the new design center. 

An indication of yield is first obtained as summarised 
in figure 2.10. For design centering , the assymetry 
vector for each line is computed. The assymetry vector 
of the jth. line, is a line parallel to the jth. line, 
and of length rō•- rō . The assymetry vectors are 
vectorially summbd and a direction of movement for the 
design center is obtained. 

Figure 2.11 : The Radial Exploration Method Of Design 
Centering. 
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3.3 Branch and bound methods. 
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3.3.2 Procedures for selecting tolerance 
solutions for feasibility testing. 
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(a) Monte Carlo analysis. 

(b) Vertex analysis. 
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3.4 Circuit example and results. 
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CHAPTER 3  

DISCRETE OPTIMIZATION METHODS FOR WORST CASE  

TOLERANCE ASSIGNMENT AND DESIGN CENTERING  

3.1 INTRODUCTION  

This chapter deals with the problem of tolerance assignment 

and design centering for the special case in which nominals 

and tolerances are to be selected from discrete sets of 

allowable values. A number of alogrithms have been 

developed /20,25/ where nominals and tolerances are 

first chosen from conti ribus ranges and the discrete solutions 

are then obtained by rounding off to the nearest allowable 

discrete values. However, in general rounding off the 

continuous solution will not produce the best available 

discrete solution. This is illustrated for a hypothetical 

case in figure 3.1. In this chapter attention is confined 

to an alternative class of methods, where the optimization is 

performed with discrete values without first seeking 

continuous solutions. Such methods fall in the realm 

of discrete optimization methods (sometimes called integer 

programming). Specifically, we address the discrete worst 

case tolerance assignment and design centering problem. 

Karafin / 3/ has investigated the application of a branch 

and bound strategy, which comprises a tree search 

algorithm and various worst case testing techniques. We make 

brief comments on the general structure of this type of 

strategy, together with a review of some worst case testing 
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methods. The main orignal contribution reported in this 

chapter is a geometrically based technique, called 

"Indentation".a  Indentation was developed as a complement 

to the regionalization method /37/ of statistical analysis. 

For application to linear circuits, the efficiency of 

regionalization and therefore indentation is enhanced by 

application of the systematic exploration method /44/ 

of large change sensitivity computation. 

3.2 NOTATION  

Initially consider the case where nominal component values 

are fixed as some constants; p° = p* p* .... p*. For 
1 2 	K 

each component a number of tolerance values are available. 

Let t , j=1 .... n 	represent the n 	available 
ij  

tolerances for the ith component. Tolerances need to be 

selected for each of the K component parameters. We 

denote by T = t t .... t (tolerance vector) any such 
1 2 	K 

choice of tolerances and by S 	the set of all possible 
T 

tolerance vectors. Then the total number of elements 

of S 	is the product. 
T 

K 
N = II n 
T i=1 i 

Associated with each tolerance vector T is a cost denoted 

by C(T). 	C(T) is the sum of the tolerance dependent 

aA similar approach to Indentation, called the method of 
orthogonal silhouettes was suggested by Leung /43, chapter 7/. 

3.1 



cost of each of the components i.e. 

C(T) = f 	C (t ) 
i=1 

Also associated with any tolerance vector T is a tolerance 

region R . R is a K-dimensional hyper-rectangle centered 
T T 	o 

about the nominal point P 	and of sides of length 

2t ; i=1 	K. Of the set S of all possible tolerance 
i 	 T 

vectors, we are interested in a subset Sw  of vectors which 

result in 100% yield. Therefore the tolerance region associated 

with any tolerance vector belonging to Sw  will be wholly 

contained in the region of acceptability RA. That is 

TeSw  implies RC R . The optimization problem is then 
T—  

stated as: 

K 
Minimize 	C(T) = 	C (t ) 

1=1 

by choice of T=t t 	 t from the discrete set ST  
i 2 	K 

subject to the constraint that TeSw. 

, 

Task 3.3 is therefore a discrete constrained optimization 

problem. For most circuits of interest, the total number 

of possible tolerance solutions will be very large. For 

example, for a circuit with eight toleranced components with 

each component allowed five values of tolerance, the total 

number of possible tolerance vectors will be 85. Therefore, 

an exhaustive procedure which checked the feasibility 

(i.e. membership of S) of all possible tolerance solutions 

and amongst the feasible solutions identified the one with 

the smallest associated cost, would incur a prohibitive 

computational cost. 
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Consider now the case where nominal values are also variable. 

We denote by pig , 5=1 ... Ri, the choices for the ith 

component and hence by K 
N = I Q_ 

=1 3 
3.4 

the total number of possible choices. The optimization 

problem 3.3 can be extended to include the nominal values 

as design variables. The total number of possible solutions 

is now the product 

N = NN  x NT 	3.5 

For suitable choices of nominal values it will generally 

be possible to select larger values of tolerance which 

still satisfy the worst case constraint. 

3.3 BRANCH AND BOUND METHODS  

Branch and bound /4/ is a generic name for a family of 

discrete optimization methods. For example for the discrete 

worst case tolerance assignment problem the strategy entails 

selecting test solutions from the current set of 

possible solutions. The set of possible solutions initially 

comprises all NT  available solutions (equation 3.1). If the 

test solution meets the feasibility condition then its 

associated cost forms  a lower bound. All solutions with a 

higher cost are eliminated. Thus the size of the current set 

of possible solutions is reduced. On the other hand if the 

test solution is infeasible then all solutions with larger 

tolerances will be guaranteed to be infeasible and can 

therefore be eliminated. The process of selecting test 

solutions, testing for feasibility and eliminating more 

expensive or infeasible solutions is continued until the 

cheapest feasible tolerance solution is obtained. So that 

although the total number of possible solutions is very large, 
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only a small number are tested. The vast majority of 

infeasible and non-optimal solutions are systematically 

eliminated. 

3.3.1 GENERAL STRUCTURE  

Figure 3.2 summarizes the essential features of one method 

/ 3/ which is a variant of the general strategy outlined above. 

The two main computational tasks are a tree search for selecting 

tolerance solutions (box B) and procedures for testing their 

feasibility (boxes A, C and E). Preliminary feasibility tests 

are first performed (box A). The results of these computations 

help eliminate a large number of tolerance solutions from the 

total number of possible solutions. The amended set of tolerance 

vectors is referred to as the "current set of possible solutions". 

A tree search alogrithm (box B) is then invoked to determine 

the optimum solution from the current set of possible solutions. 

The optimum solution so obtained is checked for feasibility 

(box C) through an initial, computationally cheap feasibility 

test. If it fails this feasibility test then the current set 

of possible solutions is amended (box D) by eliminating a 

number of possibilities and the tree search procedure is 

repeated. On the other hand, if the solution passes the initial 

feasibility test, it is subjected to a second more stringent 

and computationally more expensive feasibilty test (box E). 

Again failure to meet the feasibility test results in the 

current set of possible solutions being amended and the tree 

search being re-entered. Otherwise the solution is 

accepted as the optimum feasible solution. 



3.3.2 PROCEDURES FOR SELECTING TOLERANCE SOLUTIONS FOR 

FEASIBILITY TESTING 

Various tree search methods can be used to obtain the 

solution with the least associated cost from the current 

set of possible solutions. We note that the current set 

of possible solutions contains both feasible and in-

feasible tolerance vectors. A full description of one 

particular tree search alogrithm is given in reference 

/3, chapter 2/. However, this technique is too complex 

to be briefly summarized in this chapter. 

Nevertheless the general ideas will become apparent from 

the following description of a very simple tree search 

alogrithm called the bisectional search. This method has 

been incorporated in a general optimization strategy, 

(see section 3.4), which differs a little from the 

structure shown in figure 3.2. 

Consider an example involving three toleranced components. 

Let the number of allowed tolerance values for each 

component be five, and let these be 1% 2% 	 5%. 

Therefore there are initially a total of 125 possible 

tolerance solutions. Firstly, the cost associated with 

each solution is computed and the tolerance vectors are 

ordered in descending order of cost. A typical ordering 

will be the following. 
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~ 	TOLERANCES  	1 I 	 I  	 1 
h ___-----T------- — 	-----------1 

Lsoiution No. I Component 1 i 	Component r2 j 	Component 3 1 
1 	 -'I 	I 	I 	 I 
I 	1 	

I
I 
	

5 	I 	5 	I 	5 
i 
I 	 I 	 I 	 I 	 I 

I 	2 	i 	
5 	 i 	

4 	
' 	

5 1 	I I 	 , 	equalicost 
I 	 I 	 I 	 I 
I 	3 	I 	4 	1 	5 	1 	5 "-` 	

i I 	 I 	 I 	 I 
I 	 I 	 I 	 I 	 I 
I 	

I 	
I 	 I 	 I 

I 	 I 	 1 	 I 	 1 
I 

I 	 I 	 I 	 I 	 I 

	

63 	1 	3 	1 	3 	I 	3 
I 

1 	I 	 I 	1 

I 	 I 	~ 	II 
I 	 I 	 I 	 I 	 I 
I 	 1 1 

I 	 1  
I 	 I 	 I 	 I  

	

125 	i 1 	1 	1 	1 	I I 	 I
I 	 I 	 I 	 I 	 I 
1--------J 	  L.------- -- 

 
I --- - - - -- - - - 1 

Now the current set of possible solutions contains 125 

elements. To choose a candidate for feasibility testing 

the ordered set is bisected. That is the tolerance solution 

half way between the most and least expensive is selected. 

In the first case this will be solution number 63, which 

will correspond to tolerances of 3% on each component. 

Now if this solution passes the feasibility tests then the 

solutions numbered 64 to 125 are eliminated from consideration, 

since they are more expensive than 63. Alternately, if the test 

solution is infeasible, then among solutions 1 to 62, the 

tolerance vectors with corresponding tolerances equal to 

or larger than those of the test solution are eliminated. 

For example if the test vector 3 3 3 is found to be 

infeasible, then 3 4 3, 3 3 4, 4 4 4 etc. will also be 

infeasible. This will be further clarified in the next section. 
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The remaining solutions are now re-numbered. The next 

trial solution is then chosen as before by bisecting the 

current set of possible solutions. The process is 

continued as before, until only one tolerance vector 

remains and all the others have been eliminated as described 

above. The remaining tolerance solution will then be the 

optimum feasible solution. 

3.3.3. CONSIDERATIONS FOR ELIMINATING NON-FEASIBLE 

AND NON-OPTIMAL SOLUTIONS 

If a particular tolerance solution is found to be feasible, 

then all other tolerance solutions with greater associated 

cost are eliminated from consideration. On the other hand 

if the tolerance solution is found to be infeasible, then 

all other solutions with tolerances equal to or larger than 

this trial solution will also be infeasible. These in turn 

can be eliminated from consideration. The basis for this 

is explained below. 

Now the cost associated with a particular tolerance vector 

is the sum of the costs of the individual component 

tolerances: i.e. equation 3.3 

K 
C(T) = 	Ci  (ti) 

1=1 

The individual cost functions Ci(.) are discontinuous functions 

defined for discrete values of ti  (see figure 3.3). 

Typically: 

a.  Ci(ti)  = -- 	 3.6 
t. 

for ti  = t
il tib .... t

i 	.... 
J 

J =1 	 n. 
1 



The Ci(ti) are monotonically decreasing functions. That 

is, they have the following property. 

Ci  (ti) < Ci  (ti*) 

for 	t*. > t** 
1 	1 

We consider two tolerance vectors T' = t' t' .... t' 
1 2 	K 

and T" = t" t" ... t" , such that 
1 2 	K 

t" < t'. for all ti, i=1 ... K 
1 - 1 

3.8 

K 
Then for overall costs C(T') = 	C.(t') 	and 

1=1 1  1 
K 

C(T") = 	C, (t!'), we may say: 
1.1 1  1 

C(T") > C(T') 	3.9 

In other words the cost of a particular tolerance solution 

T' is less than or equal to the cost of any other tolerance 

solution T", if the elements of T' are greater than or 

equal to corresponding elements of T". 

Secondly, if a vector T' is found to be infeasible, then any 

other vector T" will also be infeasible if T' and T" 

satisfy 	condition (3.8). This is so, because if T' and 

T" obey condition (3.8), then the dimensions of the sides 

of the tolerance rectangle RT' will be greater than the 

dimensions of the corresponding sides of tolerance rectangle 

R" . Therefore, if RT cannot be wholly contained in RA  

then neither can R. Symbolt,va i if T' and T" obey 
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condition (3.8), then 

RI RA  implies R"$RA 

This is shown in figure 3.4. 

3.10 
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3.3.4 FEASIBILITY TESTING PROCEDURES  

In general no computational procedure will allow us to 

say with absolute certainty that a particular tolerance 

solution is feasible. Nevertheless, in the method outlined 

in figure 3.2, the feasibility tests are used to detect 

infeasible tolerance solutions. Now the passing of a 

feasibility test by a_ tolerance solution does not guarantee 

its feasibility. However, failure to do so does guarantee 

infeasibility. That is,in addition to passing all 

feasible solutions, the tests will also pass some infeasible. 

solutions. The tendency of a test to pass infeasible 

solution is referred to as its stringency. The greater 

the stringency of a test, the less likely it is to pass 

infeasible solutions. Also in practice it is found that 

the more stringent feasibility tests tend to be compu-

tationally more expensive. Therefore, in the discrete 

optimization strategy, the tests are used in ascending order 

of computational cost (hence stringency). In the next 

section we examine the cost and efficiency of different 

feasibility tests. 

(a) MONTE CARLO ANALYSIS  

For the general case, Monte Carlo analysis provides the 

most stringent feasibility test. However, it is also computa-

tionally the slowest and most expensive method. Therefore 



in a discrete optimization scheme such as the one outlined 

in figure 3.2, Monte Carlo analysis is only employed 

after a tolerance solution has passed the computationally 

cheaper and less stringent tests. 

In this procedure a random sample circuit is generated in 

the tolerance region and is analysed and tested against 

performance requirements. If the circuit fails to meet 

any one of the performance requirements, the tolerance 

solution under test is deemed to be infeasible and the 

test is terminated. Otherwise a new random sample circuit 

is generated and the analysis is repeated. The procedure 
} 

is continued for several hundred sample circuits 

(typically 300) and if all circuits are found to meet 

performance requirements then the tolerance vector is 

accepted. This will still not guarantee feasibility because 

the Monte Carlo analysis does not exhaustively explore 

the entire tolerance region. 

With the expectation that worse values of performance 

occur at the periphery of the tolerance region, the 

. random component values are often generated to have a 

bimodal distribution (figure 3.5). However, with such 

distributions the random circuits always tend to be adjacent 

to the vertices. The regions adjacent to the sides of 

the-tolerance rectangle tend not to be tested. Therefore, 

it is considered preferable / 3/ to employ p.d.f's of 

the form shown in figure 3.6. These distributions ensure 

that points not adjacent to the vertices are also tested. 

Although a bias towards the periphery of the tolerance 

region is maintained, some points from the middle are 

also tested. This makes the feasibility test more stringent. 
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(b) VERTEX ANALYSIS  

For a tolerance solution T to be feasible, the associated 

tolerance region RT  has to satisfy the condition. 

R C R T -- A 
3.11 

If it is assumed that the extreme values of each performance 

function occurs at one of the vertices of RT  then a 

suitable feasibility test consists of circuit analyses 

at all vertices of RT. However, RT  has 2K  vertices 

(where as before K is the number of toleranced components). 

Therefore such a procedure is prohibitively expensive for most 

circuit examples. The problem becomes more tractable if 

certain sensitivity analyses are employed to give an 

indication of the worst vertex for each performance 

constraint. This reduces the number of vertices to be 

tested to be less than or -equal to m, where m is the 

number of performance constraints. A fuller discussion of 

this method is provided in chapter 2, Section 2.4.2 

and in references /16,19,28/. Failure of a tolerance solution 

to satisfy such a vertex test guarantees infeasibility; 

however, success does not ensure feasibility. This is so 

because it cannot be ensured that the assumptions of 

worst behaviour at vertices, and the method of identifying 

the worst vertices are always valid. Nevertheless, in 

practice this method has been found to give satisfactory 

results for a large number of circuit examples. 
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(c) 	PAIRWISE CONSTRAINTS  

The feasibility testing procedures discussed above check 

feasibility of one particular tolerance vector at a time. 

In contrast the pairwise constraint method provides 

information on combinations of individual component tolerances 

which will result in feasible and infeasible tolerance 

solutions. The technique is invoked prior to commencing 

with the tree search routine (figure 3.1).. This routine 

uses the pairwise information to eliminate infeasible 

solutions from consideration while searching for an optimal 

feasible solution. 

The pairwise constraint method is essentially a geometrical 

technique. Component parameters are selected two at a time. 
K 

Thus for K parameters 2} selections are made. Consider 

the ith and jth parameters pi  and p, respectively. The 
J 

values of the other (K-2) parameters are held at their 

nominal values and the two dimensional space of variation 

of pi  and Pi  is explored. That is, circuit analyses are 

performed for various pairs of parameter values chosen 

by some search alogrithm, and an approximation to the 

boundary of the region of acceptability RAij  in this 

space is obtained. 

Now let the allowable tolerances of the parameters pi  and 

pj  be: 

and 

t.  , 	
r=1 	 n. 1  

t. , s=1 	 n. 
j 

(3.12) 

Then pairs of tolerance values, with each pair comprising 

a member from t. 	and a member from t. 	are tested 
ir 	 3s 



for feasibility inside 
RAi 

 ,as shown in figure 3.7. 
J 

The set Sij  of pairs of tolerances of components i and 

j which meet the feasibility condition is identified. The 

process is repeated for all possible combinations of 

components taken two at a time. 

To test the feasibility of a particular tolerance solution 

T* = t* t2 	 tK, these specific tolerance values are 

taken two at a time and checked for membership of the 

appropriate set Sij. If any one of the pairs of 

tolerance values does not belong to the relevant set, then 

the entire tolerance solution is guaranteed to be infeasible. 

However, the converse does not hold. Compliance with pair-

wise constraints does not guarantee feasibility. This 

is further explained in reference / 3/. 

Most of the computational cost associated with this method 

is incurred in performing circuit analyses to obtain 

approximations to the 2-dimensional regions of acceptability 

RAij. This cost can be reduced by use of a large change 

sensitivity alogrithm, such as systematic exploration /43/. 

Nevertheless, the computational cost of this method is 

much greater than other feasibility tests. In addition 

it is found to pass too many infeasible solutions and 

hence is not to be generally recommended. 
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(d) INDENTATION  

Indentation is a geometrically based feasibility test 

which is applicable when the component parameter space is 

regionalized /37/. Regionalization is demonstrated for 

a two dimensional example in figure 3.8. An initial 

tolerance region, the region of exploration RE  is divided 

into a number of sub-regions by partitioning along each of 

the component parameter directions. The circuit is analysed 

at the center point of each sub region. Accordingly the 

point and corresponding region are identified as pass or 

fail. In this way a discrete representation R' of the 
A 

region of acceptability RA  is obtained (see figure 3.9). 

Initially assume that both nominals and tolerances are 

variable. Then the set of points to be analysed is determined 

by the available choices of nominal values. On the other 

hand the available choices of tolerance values determine 

the lateral dimensions of the sub regions. For a particular 

tolerance solution T* and tolerance hyper-rectangle 

RT , the procedure to be described checks whether one of the 

analysed points can be chosen as the center of RT*, such that 

RT*  is wholly contained in RAT. That is indentation tests 

whether 

R *C R A  (3.13) 

The indentation procedure also identifies the points 

(if any) about which RT*  may be centered for 3.13 to hold. 

The basis of the method is illustrated in fig. 3.10. RE  and RAT 

are the regions of exploration and acceptability as before. 
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The computational procedure identifies "indented regions" 

such as 	R1'1 	and 	RT.'3. Region. R1,3  for example 

is the region containing all those points about which 

a tolerance rectangle of lateral dimensions gdpl  and 

6L.p2 	may be centered and yet be wholly contained in 

RĀ. Similarly, R4 ' 	corresponds.to the centers of a 

tolerance rectangle of dimensions 2Ap1  and 2Lp2. For 

this two dimensional example, these regions can be obtained 

by a very simple geometrical procedure involving an 

indentation of the boundary of the region R. 

The computational procedure for the general case is 

described with reference to figures 3.11 and 3.12 and 3.13. 

The region of exploration RE  is represented as an 

array of logical elements as shown in figure 3.11. A logical 

1 implies membership of RA  for the corresponding sub-region 

and logical 0 implies membership of 	For For the components 

.pl and p2, let the number of quantized intervals be n1  and n2  

respectively. Any allowable choice for tolerances t1  and t2  

will be some multiple of the respective lateral dimensions 

Apl  and Apt  of the sub regions. Let us further assume 

that the feasibility of the solution t1  = 2tp1 	and 

t2  = 3Ap2 	is to be tested. Then for a two dimensional 

example a maximum of four sets of logical operations called 

"partial indentations" will need to be performed. 

Figures 3.12 (a) to 3.12 (d) represent the partial indentations. 

Matrix A is the original RE  matrix. Matrices B,C,D and 

E are obtained by indenting matrix A by appropriate amounts. 

For example B is obtained from A by offsetting the elements 

by +2 and +3 along dimensions one and two respectively. 
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Symbolically the elements bij: i=1 ... n1, j=1 ... n2  

of B are related to the elements 	a1  ; i=1 ... n1, 

j=1 ... n2  of A as: 

bij = ai+2,j+3 

i=1 .... (n1-2) 

j=1 .... (n2-3) 
3.14 

= 0 otherwise. 

Similarly, the elements of C are obtained by offsetting 

the elements of A by +3 and -2 along dimension one and two 

respectively. So that 

i=3,4 	 nl  
Cij - ai-2, j +3 	j=4,2 	 (n2-3) 

and so on for matrices D and E. 

To complete the process logical AND operations are performed on 

corresponding elements of B,C,D and E. That is, we get 

matrix F as: 	F = B.C.D.E 

or 	 i= 1 ... n1  
f 	= bij  , cij  . d.... eij 	_ 1 	 3.15 

j 	... n2  

where bij, cij, dij, eij, fij  are elements of matrices 

B,C,D,E and F respectively. For this example (figure 3.11 

and 3.12) the matrix F is shown in figure 3.12 (e). Every 

element of F with a value of 1, represents a point about 

which a tolerance rectangle of size 6 by 4 can be centered 

and be wholly contained in R'A. 

In practice it is inadvisable to perform all the partial 

indentations before performing the AND operations, i.e. 3.15. 

For a K dimensional example 2K  partial indentations 

would be required. Now the storage requirements for 2K  

matrices would be prohibitive for most examples. Therefore 
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the AND operations are performed after each partial 

indentation. So that for the two dimensional example above, 

after obtaining matrix C we would obtain matrix F as: 

F = B.0 	 3.19 

Matrices B and C would no longer be required and hence 

would be discarded. Matrix D would be obtained from 

matrix A as described before. This would be followed by 

matrix F being updated as 

F = F.D 	 3.20 

Then after obtaining matrix E by the appropriate partial 

indentation, we would get the final F matrix as: 

F = F.E 	 3.21 

In general the process need not always be performed for 

all 2K  partial indentations. We recall that if every 

element of the final F matrix, i.e. 3.21 is a logical 0 

then the tolerance solution under test in infeasible. 

Clearly, this will also be the case if all the elements of 

the F matrix after an intermediate stage (i.e. 3.19 and 3.20 

etc) are zero. Therefore, in a practical implementation 

of this method the matrix F is checked for non-zero 

elements after each partial indentation and logical AND 

operation. If at any stage the elements of F are all 

zero, then the test is terminated and the tolerance solution 

declared infeasible. Otherwise, at the end of 2K  partial 

indentations, the tolerance solution is taken to have passed 

the feasibility test. The component values corresponding to 

logical l's are then identified as suitable design centers 

for the tolerance solution under test. 
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In the situation where the nominal point is to remain fixed, 

the procedure is modified slightly. After each partial 

indentation and logical AND operation, the resulting 

F matrix is checked to see if the particular element 

corresponding to the fixed nominal point is a logical 1. 

The test is terminated and the tolerance solution declared 

infeasible if this element is a logical 0. 

In the next section the effectiveness of the indentation 

procedure will be demonstrated by application to a particular 

circuit example involving three toleranced components. 

We note that in common with other geometrically based 

methods, the computational cost increases very sharply with 

dimensionality. The greater proportion of the computational 

cost will be incurred in performing circuit analyses following 

regionalization. For example, for a circuit with K 

toleranced components and with q intervals for each component, 

a total of qK  circuit analyses will be required. On the other 

hand the computational cost of 	each partial indentation 

will largely be incurred in performing qK  logical AND 

operations. In addition the maximum number of partial indenta-

tion required (21() will double with dimensionality. Again 

the comnutational effort incurred in the circuit analyses 

may be considerably moderated by employing the large change 

sensitivity method called systematic exploration /43/. 

However, this method is only applicable to the frequency 

domain behaviour of linear circuits. 
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3.4 	CIRCUIT EXAMPLE AND RESULTS  

The indentation procedure was incorporated in a.discrete 

optimization strategy comprising the bisectional search 

described in section 3.3.2. Tolerance assignmentand 

design centering were performed on the circuit shown in 

figure 3.13. The circuit was subject to the performance 

requirements detailed in figure 3.14. The three components 

marked with arrows were taken to be toleranced. For 

performing the regionalization, the nominal component values 

shown in figure 3.14 (i.e. p4, p2,11) were used. For each 

component a range of ±10% of this nominal value was divided 

into 10 intervals. The resulting 113  pointsa were then 

analysed and tested for compliance with the performance 

requirements. The logical matrix so obtained is illustrated 

in figure 3.15. RE,  is a three dimensional logical array 

of size 11 x 11 x 11. To represent RE, in two 

dimensions, eleven 11 x 11 matrices are shown. Each 

matrix corresponds to one of the eleven allowable values 

of component X1. The 11 x 11 points of each matrix 

correspond to the eleven choices for each of the other two 

components. 

In total four tolerance solutions were tested for feasibility. 

The final solution comprised tolerances of 4, 6 and 6 percent 

respectively of pi, p2 and p3 (see figure .13) for 

components X1 , X2  and X3. The corresponding design center 

aThese points could have been analysed cheaply with the 
systematic exploration technique. However, in the absence 
of an implementation of this method, 113  analyses were 
performed. 
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is indicated in figure 3.15. Finally, for these 

tolerances and nominals a 500 sample Monte Carlo analysis 

was performed using uniform distributions for each 

component. No failures were encountered. 

3.5 SUMMARY 

In this chapter discrete optimization methods for the worst 

case tolerance assignment and design centering problems 

have been considered. The general branch and bound strategy 

has been outlined. The main computational aspects of 

this strategy have been identified firstly as a discrete 

search method for selecting suitable tolerance solutions and 

secondly various methods for testing tolerance solutions 

for their compliance with the worst case condition. A simple 

search strategy called the bisectional search and various 

worst case testing methods have been described. In particular 

a novel geometrically based worst case testing method called 

indentation has been presented. The effectiveness of this 

method has been demonstrated by application to a circuit 

involving three toleranced components. 
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Clearly RT  C RA  implies RT„ 	RA  

Figure 3.4 Illustrating The Basis For 
Eliminating Certain Non Feasible 
Solutions In The Branch And Bound 
Methods For Worst Case Tolerance 
Assignment. 
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Figure 3.6 Double Triangular Distribution 
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Testing. 
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Figure 3.5 Bimodal Distribution Used In Monte 
Carlo Feasibility Testing. 
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Two pairs of tolerances tiw, t.x and ti y, t•z 
are considered. Clearly.tiw,~tjx is feasible 
while tiy, tjz is infeasible. 

RAi is the region of acceptability computed 

after setting the other (K-2) parameters at their 

i.e. pr = pr for r 	i, r 	j. 

Figure 3.7: An illustration of pairwise feasibility 



i °p2 

RE  the region of exploration 

• . .• . . • • • • .1 

l 

•. 

• . • • • • . • • • • • a. 

. . . . . •. . . . . 

• . 

• 

• • • • • • . 

• • • • • •. 

• • • • • • 

• • • • • • • • . . •  

• 

1 
40-11. 
Ap 
l Individual sub-regions 

p1 

Figure 3.8 Illustrating Regionalization For 
A Two-dimensional Example. 

129 



• 

+-, 	 

1 p 
Points Inside Thick Lines Pass Performance 
Requirements 

Figure 3.9 A Discrete Representation Of The 
Region Of Acceptability 

130 



· 

· 

· 
· 

· 

· 
· 
· 

· 

· 
· 

· 

Pz . . 

. . 

• 

I 
· · 

· 

" 

. · 

· 
· 

· · 

· · 

· · · 
· 

· · · 
· · · 

· · · 
· · · . 

· · 
· · · 

, 

· · 

· 
. · · · 

/ 
0, V. · • 

· · · e

J 
V 

· · · I 
· · I 0 

.. · · · 
· · .. · 
· · · · 
· · · · 
· · · · 
· · · · 
· • · · 
. · .. • 

· · · · 
· · · · 

• • · 
· · · 
· )( · 
· · · 
· · .. 

./ 

A 4x6 tolerance 
rectangle. 

I 
. 
· 
· 
· 
· 
· 
· 
· 
· 
• 

· 
· 
· 

Figure 3.10 Illustrating The Basis of 
The Indentation Method • 

• · 
· 
· 
· 
· · 
· • 

e • 

· .. 

· • 

· · 
· .. 

• · 
.. · 
· .. 

· 0 

· · 
· · 
.. · 
· · 
· . 

· . 
~p 

2 

! 
_I 

. 

. 
.. 

· 
· 

· 
· 
· 

· 
• 

· 
· 
• 

· 
· 
· 
. 

· 

131 

A Zx2 
tole 
reet , 

· 

· 
• 

· 
· 
· 
· 
• 

· 
· 
• 

· 
• 

• 

. 

. 

ranee 
anp,le 



0 0 0 0 1 1 1 1 1 0 0 0 0 
0 0 1 1 1 1 1 1 1 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 0 
0 1 1 1 1 1 1 1 1 1 1 1 0 
0 0 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 0 0 

Figure 3.11 	Representing The Region Of 
Exploration As A Matrix Of Logical 
Elements. 
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Figure 3.12 (e) 
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Figure 3.14: Performance Requirements For The Low Pass 
Filter Example. 
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CHAPTER 4 

ITERATIVE MONTE CARLO BASED METHODS 

FOR DESIGN CENTERING 

4.1 	INTRODUCTION  

In chapters four and five we consider techniques where an 

objective function involving yield is optimized by 

methods based on Monte Carlo analysis. Specifically, we 

discuss design centering (yield maximization ) in chapter 

four while tolerance assignment is considered in chapter 

five. 

As discussed in chapters one and two, Monte Carlo analysis 

is a general procedure which can deal with any number of 

component parameters and performance requirements. Unlike 

the method of moments, the Monte Carlo method is not based on 

approximations of the circuit response or on assumptions 

of Normality (Gaussian) about the response probability 

density functions. In addition the number of sample circuits 

required to be analysed is independent of the dimensionality 

(number of component parameters) of the circuit. This is 

unlike the situation with deterministic methods such as 

simplicial approximation (see chapter 2), where the number 

of sample circuits required to be analysed increases rapidly 

with dimensionality. 

Therefore, design methods based on Monte Carlo analysis are 

preferred over other methods, especially for application 

to circuit examples involving a large number of toleranced 

components. 
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Gradient based optimization methods /45/ are inappropriate 

for the design centering problem since the Monte Carlo yield 

estimation procedure does not evaluate the gradients of 

yield with respect to the nominal parameter values (design 

center). Therefore, attention is confined to direct search 

methods /45/ which do not require gradient information. 

However, in addition to an estimate of yield the Monte 

Carlo method does provide information about the distribution 

of passing and failing circuits in the input space. Therefore 

in addition to investigating the applicability of conventional 

direct search methods, we propose novel schemes which make 

use of the spatial information obtained from the Monte 

Carlo procedure. 

4.2 PROBLEM FORMULATION AND GEOMETRICAL INTERPRETATION  

The problem addressed is that of maximizing yield for fixed 

absolute tolerances and a particular form of component 

parameter p.d.f. Notationally the following unconstrained 

optimization problem is considered: 

Maximize (P°,T) 4.1 

by appropriate choice of design center P°  = p1 p2 .... p°K , 
for constant tolerances T = t1t2  .... tK. 

The vectors P°  and T are considered to be parameters of 

the component probability density function q(.). For 

example if the component parameters are statistically 

independent with Gaussian distributions, then 0 (.) is 



the product; 
K 

f (•) = TT vpi ,pi,oi) 
i=1 

p° and ai are respectively the mean and standard deviation 

of the ith probability density function O (.). For all 

practical purposes we may take ((.) to be zero for 

° >3e . Therefore we can say 	 = 3a; 1=1 ... K. ~pi"p- 	h 	y that ~ 	i 	 t• 1 	>  

Similar relationships can be defined for other forms of p.d.f. 

The geometrical interpretation of design centering briefly 

discussed in chapter one is now expanded. Initially we 

reconsider certain definitions. For example the vectors 

P° and T define a region in the input space, the tolerance 

region Rj,(PO,T) , such that for 

P = p1p2 	 PK 

PERT if (pi-ti)<pi<(pi+ti) 	1=1 .... K 	4.3 

The function ((P,P°,T) is defined over the tolerance region 

and is zero otherwise. Further since O(.) is a p.d.f., 

we have 

PK+ tK 	p1+t1 

f 	O(P,P°,T) dpidp2 .... dpK = 

PK_ tK
,o t1 

We re-iterate the definitions of yield and region of 

acceptability. 

1 	4.4 
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4.2 

pK
+t 
	Pl +t1 

+tl 

f 	f 	g(P)0(P,P°,T)dp1 dp2 	dPK 	
4.5 

10°K-tA 	pi-tl 

Yield 
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As before g(P) denotes a testing function whose value is 
I 

unity if the circuit with component values P satisfies all 

performance requirements, and is zero otherwise. The 

region of acceptability RA  is then defined as: 

RA 	{PIg(P) = 1} 	4.6 

It is profitable to reconsider'the geometrical interpretation 

of yield. Figure 4.1 illustrates the definitions for the 

case where the dimensionality K, is two. Initially, we 

take ((P,P°,T) to be a multivariate uniform p.d.f: i.e. 

K 1 
0(P,P°,T) 	TT 

i=1 2t. 
for PERT  4.7 

= 0 otherwise. 

Then with notation V{RX} meaning volume of region Rx, yield 

is the following ratio of volumes: 

V{RT(P(3)nRA} 

V{RT  (p°) } 
4.8 

For the situation where the p.d.f. O(.) is other than 

uniform, the function 0(P,P°,T) may be taken to define a 

weighting of every point in RT. Therefore notation 

V{R 
x
} in equation 4.8 should now be taken to mean the volume 

of region R weighted according to the function Q(.). As 

a consequence of definition 4.3 and equation 4.4, the value 

of the denominator in equation 4.8 will have a constant 

value irrespective of the design center P°. Therefore a 

geometrical interpretation of design centering is to find a 

center P° for the tolerance region RT, such that the 

volume V{RT(p°)r1RA} is maximized. 
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In practice design centering can be treated as an un-

constrained optimization problem. The most commonly 

occurring constraints on parameter values will be box 

constraints /46/. One example of a box constraint is the 

non-negativity condition, po>0; i=1 .... K. Other common 
i 

examples are the constraints imposed by the limits of the 

technological processes used to make the components. For 

example it may be required that the resistors in planar 

integrated circuits be less than a certain maximum value 

(typically 20K0). Nevertheless, in almost all practical 

problems these constraints are never encountered in the 

search for an optimal design center. 

4.3 OPTIMIZATION METHODS FOR YIELD MAXIMIZATION - SOME  

GENERAL COMMENTS  

Yield as defined in equation 4.5 is a multidimensional 

integral, where the dimensionality is equal to the number of 

component parameters subject to variation. For circuits 

of realistic size and complexity, the integral cannot be 

computed by a deterministic numerical method such as 

quadrature. This difficulty is unresolved with a geometrical 

approach, as the computational effort required to characterize 

the regions RA  or RrnRA  is prohibitive for most circuit 

examples. 

In chapter one we have described a computationally cheap 

statistical method, namely the method of moments. However, 

we re-iterate that the approximations inherent in this 

method make it unsuitable for most applications. 
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In practice Monte Carlo analysis has to be employed to 

estimate yield. However, Monte Carlo analysis is compu-

tationally expensive and it is therefore unattractive to use 

it prodigiously in any adaptation of conventional iterative 

optimization methods. Nevertheless, Monte Carlo analysis can 

deal with circuit examples comprising any number of components 

and performance requirements. Further, it does. not require 

simplifying approximations and assumptions. Therefore, we 

consider methods whi'ch'make prudent use of all the information 

generated in the Monte Carlo analysis and which moderate the 

computational effort by employing efficient sampling schemes. 

A confidence interval is associated with each,Monte Carlo 

estimate of yield. The true yield is expected to occur 

inside this interval with a certain degree of confidence. 

When the Monte, Carlo method is used iteratively, the confi-

dence interval associated with the yield estimates at 

different iterates may overlap. Therefore a situation could 

arise where the estimated yield for a particular iterate was 

greater than that of another iterate, when the true yield 

was not so. Therefore it is important to consider the 

confidence of correctly ranking iterates. That is, the 

degree of confidence in asserting that the true yield 

associated with one iterate is greater than that associated 

with the other. 

The extent of the confidence intervals associated with the 

yield estimates and the confidence of correctly ranking 

iterates depend upon the number of sample circuits analysed 

in the Monte Carlo analyses. In general it requires a smaller 

number of samples to have a high confidence of correct 
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ranking than to attain small confidence intervals. Also, 

in the intermediate stages of the optimization, it is 

sufficient to correctly rank iterates, whereas the accuracy 

of the yield estimate becomes important for the final 

iterate. 

Later in this chapter the basis for computing the confidence 

of correct ranking will be discussed. We shall also consider 

special sampling schemes, which while giving sufficient 

confidence of.correct ranking, reduce considerably the 

sample sizes below those required for a direct iterative 

application of Monte Carlo analysis. 

In considering the applicability of standard optimization 

methods to the maximization of yield, it is noted that 

Monte Carlo analysis does not provide gradients of the 

yield with respect to the design variables, i.e. 

pl p2 ....  pk. Further, no tractable numerical methods are 

available for the computation or estimation of'such gradients. 

Hence gradient based methods are inappropriate. Therefore we 

consider direct search methods, which in contrast do not 

require gradient information. 

4.4 DIRECT SEARCH METHODS  

All numerical optimization methods involve iterative 

procedures where the objective function is evaluated at 

difference points (trial solutions) in the input space, 

until a maximum (or minimum) is obtained. Direct search 

methods are a class of optimization method where a trial 

solution is determined by a strategy which considers the 



145 

position of a number of previous trial solutions and the 

values of the objective function at these points. The 

gradients of the objective function with respect to the 

design variables are not required to determine the next 

trial solution. 

Two specific direct search methods are considered for the 

problem of maximizing yield. Firstly, we discuss a 

standard method, namely Pattern search /34/. Secondly, we 

propose a novel technique called "statistical exploration". 

In''choosing trial solutions, the latter method uses info-

rmation about the position of pass and fail circuits generated 

by Monte Carlo analysis. 

The optimization process involves a number M of trial 

solutions, Pi, P2 .... PM, with associated tolerance regions 

RT1, 
 
RT2 ••.. RTM. As before, region RTj  is a hyper-

rectangle centered about the point P3. The sides of RTj  
N 

are of lengths 2ti, i=1 .... K. In addition we let Yj  denote 

an estimate of the true yield Yj  associated with the design 

center P9. The estimate Y. is obtained via a Monte 

Carlo analysis with aisample size of Nj. 

In the initial discussion, it is assumed that the sample sizes 

provide adequate confidence of correct ranking. The 

question of sample size is relevant to all Monte Carlo based 

methods and is taken up in section 4.4.2. 

4.4.1 THE PATTERN SEARCH METHOD  

Becker and Jensen /12/ report theXapplication of the pattern, 

search method to the yield maximizatir problem. The method 



takes the form of alternative application of "exploratory" 

and "pattern" moves as summarized in figure 4.2. 

Let P1= 
P11 P12 	

 P1K be the starting point with 

associated yield estimate Y1. We refer to Pi as the 

first base point and additionally denote it as PB1. To 

commence the procedure, the value pl1  is incremented by 

a specific amount Apt  and yield is re-estimated. If the 

yield increases then p11  + op1  is accepted as the new value 

of pZ; otherwise p11  is decremented by Lp1  and yield is 

re-estimated. If yield is now found to increase, then 

pll - Apl is accepted as the new value of pi. If neither 

perturbation results in an increase of yield over Y1, 

then the value of pi. is left unchanged. 

Let us assume that an increment of the value of pi resulted 

in an increase in yield. Then in our notation, we have 

P3=(PT1 + Ap1)  p12 P13 •••• P1K• We now begin to explore 

the effect. on yield of changes to the value of the second 

component p(1. We increment the value p12  by Lp2 and 

re-estimate yield Go that we are now estimating yield 

for design center P3 = (pil + AP1)(P12  + AP2)P13 	 no ' 

The yield Y3  is now compared with yield Y2. If no increase 

in yield is obtained then the value of P2 is decremented 

and yield is re-evaluated. If neither perturbation results 

in an increase in yield, then the value of 143  is left 

unchanged atp12. These perturbations and yield estimations 

are carried out for each parameter in turn, and constitute 

the exploratory moves. At the end of the exploratory moves 

we get anew point PB2, i.e. the second base point. 
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The line joining the new base point PB2  with the initial 

base point PB1 forms the direction of movement. A pattern 

move is made by extending this line from the first base 

point to the second base point by doubling its length. The 

end of this line forms the third base point from which the 

exploratory moves are restarted. 

If the exploratory moves do not produce an increase in yield, 

then the sizes of the perturbations Api, 1=1 ... K, are 

reduced and the process is restarted from the previous base. 

The procedure involving alternative application of exploratory 

moves and pattern moves is continued until no further 

increase in yield are obtained. 

A hypothetical trajectory for a two dimensional example is 

illustrated in figure 4.3. The trial solutions are 

numbered 1 to 27. The thin lines depict exploratory moves, 

while the 	thick lines indicate pattern moves. Among the 

thin lines, the broken ones indicate exploratory moves 

which did not lead to an increase in yield. The exploratory 

moves around base point PB7  do not lead to an increase 

in yield. Therefore the procedure reverts to the previous 

base point and re-commences the exploratory moves, but with 

smaller perturbations. 

Application of the pattern search method has been reported for 

the three transistor amplifier circuit shown in figure 4.4. 

The design variables are the nominal values of the resistors 

R2  to R7.  Each resistance has an associated tolerance of 10% 

of the initial values. The probability density function for 

each 14arameter is taken to be unform. The circuit performance 
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constraints are shown in table 4.1. Table 4.2 shows the 

results obtained for one of the yield maximization runs. 

This example is reproduced here for comparison with the 

results of the statistical exploration methoddescribed'below. 

4.4.2 THE STATISTICAL EXPLORATION METHOD  

This method takes advantage of the exploratory spatial 

information generated by the Monte Carlo yield estimation 

procedure. To appreciate this, we recall the geometrical 

interpretation of design centering as maximizing the volume 

of the region of intersection RTnRA. 

In the Monte Carlo estimation of yield, circuits (points 

in RT) are randomly generated, analysed, and tested against 

performance requirements. For each analysed circuit, we 

know its position in the tolerance region, and whether or 

not it belongs to the region of acceptability. Therefore, 

Monte Carlo analysis identifies points generated in regions 

RTnRA and RTnRA. This information can be used efficiently 

for design centering. 

A general flow chart of the method is shown in figure 4.5. 

The procedure is iterative. From a particular trial solution 

P9 with associated yield estimate Y.j, a new trial solution 

P~+l is sought such that 

V( RT,J+ln RA) > voRT,Jri RA) 

The new trial solution P~+l may be written • as: 

P~ +l = P4 + a~ 6P~ 

4.10 

4.11 
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Clearly every point in RT, is moved in a direction parallel 

to APj  by an amount A. 
IAP ,I 	to form RT i +1 . This is 

illustrated in figure 4.6. 

( ) Choice Of Search Direction 

From geometrical considerations, e.g. figure 4.6, 

we surmise that an effective search dilrection will be the 

direction parallel to the line joining the centers of gravity 

of the acceptable and reject regions. 

direction 0. given by: 

aP j  = GAj 
 - GRj 

That is, the search 

4.12 

More precisely, GAj  and GRj  are the centers of gravity 

of regions (RTJflRA) and (RTjr1RA) which have been weighted 

according to the relevant p.d.f. 

After performing Monte Carlo analysis, the centers of 

gravity are estimated as follows. 

Let N be the total number of sample circuits analysed. Let 

NA be the number which pass all performance requirements. 

Then yield is estimated as Y =' A. Clearly the number of 

circuits which fail at least one performance requirement 

will be (N-NA). Further, let P = pi p2 .... pi 

represent the component values of the tth analysed circuit. 

In addition let the NA  acceptable circuits be numbered 

from 1 to NA and the (N-NA) reject circuits from (NA+1) 

to N. Then the co-ordinates gĀ and gi. ; i=1 .... K, 
j 

of GAj  and GRj, are estimated as: 

gAJ = NA Q=1 pi 
	

i=1 .... K 	4.13 



and 
N 

1 	E 	Q 
6RJ  (N-NA) NA+1 pi 
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i=1 .... K 	4.14 

Fōr the sake of rigour, definitions of the centers of 

gravity GAS and 
GRJ 

are given in equations 4115 and 4.16. 

	

pio(P3)dpi 		 dpK 

= RT]nRA 	4.15 gAj  

J 	O(Pj)dpl 	 dpK 
R .nRA 

And 	

J

r pi0i(PpdP1 	 dpK 

RTJfRA 	4.16 

_ ( 	0 (P~) dPi 	 dpK 

RT,~ 
D. 

Clearly the quantities defined in 4.13 and 4.14 are estimates 

of the quantities defined in 4.15 and 4.16. 

(b) Choice Of Step Size 

In view of the computational cost of Monte Carlo analysis, 

it is inadvisable to perform a unidirectional search for 

maximum yield along the search direction APA. We are content 

with any value of a 	(and hence P~+l through equation 

4.11) such that the resulting yieldYj+l is greater than 

the current yield Yj. 

Since little is known about the shape of typical regions 

of acceptability, very precise rules for the choice of 

A cannot be obtained. However, prudent constraints on the 

choice of A may be derived from the following qualitative 

development. Consider figure 4.6 depicting the tolerance 



V (BUC)f1RA . 
Y 	-  
j+1 	VR 

T 

4.19 

, regions for successive design centers P9 and P9 . The 
3+1 

following additional notation is introduced. 
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Region A - RT (P9)(1 RT (PJ °- 1) That part of 
RTj not overlapped 

by RT,j+l 

Region B 

Region C 

RT (Pp(1RT (P3+1 ) 

RT(P))nRT(Pj J+l) 

The overlap region. 

That part of RT,j+1 
not overlapped 
by RT

j 

For convenience, this notation is illustrated in figure 4.7. 

Initially, all the component parameters are assumed to be 

independent and uniformly distributed. Notation VX denotes 

the volume of region X. Then the two yields of interest 

may be written as: 

and 

V (AUB)nRA 

VR 
T 

4.18 

Also let AY. 

That is, 

denote the difference between yields  

AY = Y. +1 - Y~ j  

V(BUC)nRA V(AUB)l1.RA 

    

VCflR~ — 

VRT 

V

R 

VAARA 
4.20 

 



(VRT - VB) - VAnRn 
1-Y~ 

V RT 

4.22 
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Consider now a limit case in which (a) 100% yield can be 

achieved with the given tolerances and (h) one step in the 

iteration causes 100% yield to be obtained. These conditions 

imply that Y j *1 ='1 and hence VCfRA = VC and 

AYE = 1-Y.. Equation 4.20 may be re-written as 

VC - VA(1R 
A = 1-Y~ 
	4:21 

VRT 

However, VC = VA = V
RT 

- VB and hence (4.21) may be 

replaced by: 

In practice the maximum obtainable yield is often less 

than 100% and cannot be achieved in one iteration. Therefore 

the equality in 4.22 is replaced by an inequality. Further, 

for any particular VB, the left hand side of 4.22 

is maximized if VAf1R = 0. Therefore we obtain: 
A 

VR 	VB T 	< 1-Y. 
V 
RT 

K 
Also 	VB = Ti (2i. - A. hp.), where Opi is the ith 

i=1 	1 	3 
co-ordinate of AP and V 	= T1 2ti. Therefore 

RT 	1=1 
substituting for VRT and VB in 4.23, we get: 

4.23 

K 	K 
.. 	2t ...-..TT... (2t. 

i 	=1 1 i=1 J 
< (1-Y~ )

• 
4.24 

• fi 2t.  
i=1 1 

 



Alternately, this may be written as: 

1=1 1  3  1 ? Yj 	4.25 

T12t. 

The tolerances ti  are given constants and the Ap. are 

co-ordinates of APA , the search direction. Therefore 

inequality (4.25) constitutes a constraint on the value of 

X . Although X cannot be explicitly written in terms 

of the other quantities, relationship (4.25) is essentially 

an upper bound on the value of Xj. This is so because the 

value of the expression on the left hand side of 4.25 

monotonically decreases with increasing value of X.. 

Inequality 4.25 is also of importance in the common points 

sampling scheme to be 'discussed later. We note that 

region B is the region common to successive tolerance 

regions. Moreover the left hand side of 4.25 is simply the 

ratio of the volume of the common region to the volume of 

the entire tolerance region, i.e. VB/VT. Therefore, the 

above qualitative argument has shown that for a particular 

choice of search direction AP, the step size X should 

be chosen such that the common volume ratio is greater than 

the yield fox the current iterate. 

So far the arguments for choice of step size have assumed 

uniform distributions. A parallel development is not 

provided for non-uniform distributions. However, in practice 

and especially for the choice of Gaussian distributions, 

choices of X based on 4.25 have been found to be very 

effective for design centering. 
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The statistical exploration algorithm has been implemented 

as a part of an interactive statistical design facility, where 

the choice of step size is made by the human designer. 

Further discussion of criteria for choice of step size will be 

presented in the respective sections dealing with algorithm 

implementation and with specific circuit examples. 

(c) Choice of Sample Size 

Computational cost is largely dependent on the total number 

of sample circuits tested in the Monte Carlo analyses. The 

sample sizes also determine the extent of the confidence 

intervals associated with individual yield estimates and 

the confidence of correctly ranking iterates. In the 

intermediate stages of the optimization, the correct ranking 

of iterates is of greater importance while the accuracy 

of the yield estimate becomes significant for the-final 

design center. We first discuss the dependence on sample 

size both of correctly ranking estimates and of the extent 

of the confidence intervals. Then two sampling schemes are 

introduced, which for a particular sample size increase the 

confidence of correct ranking. 

From chapter one, we recall that for an N sample Monte 

Carlo analysis, where NA circuits are found to be 
M 

acceptable, yield is estimated as Y = NA/N. The sampling 

distribution of Y is Binomial, which for reasonably 

large N can be approximated by a Gaussian distribution with 

mean u = Y and variance a2 = 7(1-7)/N. The sampling distribution 

is sketched in figure 4.8. Confidence statements may then 

be made about Y. For example 95% of the total area under 



the Gaussian curve is within p ± 2c, which is hence the 

95% confidence interval. 

Now consider yield estimates Yj and 7j+1 for successive 

iteratesP? and P~+1 respectively. As before AYE 

denotes the difference between the two yields, i.e. 

tYj = Yj+1 - Y.. Having performed two Monte Carlo 

analyses, we can estimate A7j as the difference between 

the two yield estimates, i.e. 

AYj = Yj+1 - Y ~ 4.26 

M 
The sampling distribution of A7j is also Gaussian because 

LY. is the difference between two Gaussian distributed 
J 

random variables. In addition, the variance a2Y 
J 

of the 

c2 	and a 	of estimates Y. and Yj+1 according 

sampling distribution of AYj is related to the variances 

Yj 	Yj+1 	J 
to 4.27. 

aQy
= c2 + aY 	- 2 COV (Y,, Y. +l) 	4.27 

J 	j 	j
+ 
l 	 J 	J 

COV (Y.,Yj1) is the covariance between the two yield 

estimates 7. and 7j+1' 

The sampling distribution of A7. is sketched in figure 

4.9(a), where the estimated yield difference is assumed 

positive. The degree of confidence in the assertion that 

the true yield difference AY. is positive when the 

estimated yield difference AV 	is positive, is the area 

under the curve to the right of the abscissa, i.e. the 
y 

shaded area. This area is equal to '-z + erf (AY/ ff), 
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where erf(.) is the error function defined below. 

x 
erf(x) = 	1 	f exp - t2/2 dt. 

v'2Tr o 

The value of the error function and hence that of the confidence 

of correct ranking increases monotonically with the value 

of the argument 	AY/crpy. Therefore the confidence of 

correct ranking is increased either if DY is large or if 

6iy is small. Qualitatively, the shaded area (in figure 4.9a) 

will be increased either if the curve is squeezed inwards, 

i.e. there is a smaller variance, or if the whole curve. 

is shifted to the right, i.e. there is a greater difference 

in yield. The two situations are described in figure 4.9(b) 

and 4.9(c) respectively. 

We now describe two sampling schemes which, for particular 

sample size increase confidence by attempting each of the 

above two alternatives. One, correlated sampling, decreases 

o
Ay
; the other,the common points scheme, increases AY. 

(d) The Correlated Sampling Scheme  

A sample circuit in Monte Carlo analysis comprises values for 

each of the K variable component parameters. The component 

values are obtained by suitably transforming sets of values, 

called raw random numbers. The raw random numbers are 

pseudo-randomly generated to lie in the interval 0 to 1. 
N 

If in the estimation of YJ  and Yj+l, the raw random 

numbers were unrelated, the covariance term in equation 4.27 

would tend to zero. For future reference this situation 

is termed "independent sampling". 
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It is however more satisfactory to employ the same stream of 

raw random numbers for the jth and (j+l)th yield estimation. 

This can easily be done since the raw random numbers are 

obtained from a deterministic equation/28, chapter 6/ 

and hence may be repeated. This later strategy is termed 

"correlated sampling", /1,12,13, chapter 4/. 

In contrast to independent sampling, correlated sampling 

introduces a positive covariance between estimates Yj and 

and hence reduces the variance a2 	(see equation 4.27) Yj+l  

of the estimated yield difference aY.. 

The cause of the positive covariance will be examined 

presently. Firstly, we note that Yj andY3+1 will be 

unbiased estimates of the true yields Y. and Yj+1 

respectively. This is so, since although the same stream of 

raw random numbers is employed for both estimations, the raw 

random numbers are transformed according to different 

p.d.f.'s i.e. OR?) and 0(P°+1). Therefore for either 
j+1 

 representative sets of sample circuits corresponding 

to design centers P9 and P~*1 are generated and 

analysed. 

Secondly, it is noted that the difference between two unbiased 

estimates is an unbiased estimate of the difference. In the 

correlated sampling scheme the precision of the estimate of 

the yield difference is enhanced because the dependence 

between the two individual yield estimates is such that 

when one result is overestimated (or underestimated) by 

sampling variations, then so is the other one by roughly the 

same amount /13, page 48/. 



A detailed comparison of independent and correlated sampling 

is !made by Jensen /1/. Here we briefly develop the formula 

for computing the sampling variance defined in equation 4.27. 

Let the number of sample circuits tested in each Monte Carlo 

analysis be N. Also let Pi' P2 .... PN and 
3 	j 	J 	. 

P. 	P2 P~+1 	 ~+1 denote the sample circuits of two 

successive iterations. The result of each circuit analysis 

and test can be represented as 1 o 0, reflecting the sample 

circuits conformity or otherwise with the performance 

requirements. The vector of outcomes (results) of a 

Monte Carlo analysis is termed its yield trace. We let 

lXj = 	 xN and X. 	= xj+1 x
J+l 
	x.

J J 	3 
 
J+1 

denote the yield traces of the jth and (j+l)th Monte 

Carlo analysis. The dependence in the two yield traces 

introduced by the use of the same raw random numbers is 

seen in the outcomes of corresponding circuits, i.e. 

xj and x
3 +1 

etc. Also let nll be the number, of times 

and x~+l are both 1, n00 the number of times both xj  

x~ and x~+1 are zero, n10 the number of times xi is 1 while 

x~+1 is 0 and so on for n01' 

4- 
Clearly 	Yj 	(n11 + n10)/N 

and 4- 
Yj+1 = (n11 + n01)/N 

It is shown in /1/ that 

1 
COV(i., Y. ) = - COV (xl, xl ) 

J+1 	N 	J 	
J+1. 
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and further that 

COV (x~ , xj +l) 	(n11 n00 - n01 n10) /N2 

leading to 

COV(V , Y- 1) = (nii no - n01 n10)/N 
4.28 

The cause of this positive covariance may be appreciated by 

reconsidering the geometrical interpretation. In figure 4.10 

a two dimensional example is considered. The parameters pl 

and p2 are subject to a uniform and a Gaussian p.d.f. 

respectively. The diagram illustrates the relationship 

between the joint p.d.fs of successive iterates. 

Figure 4.11 shows successive tolerance regions R 	and 
T,j 

RT,j+l 
associated with design centers P9 and 

P~+l respectively. Now we recall that P~+l and P~ 

are related as 

P~ +l = P~ + X . lP . 

The difference between the two design centers and therefore 

between the two joint p.d.f.'s 0(p7) and 0(11+1) is 

simply one of translation by ?jai. Similarly since 

the same raw random numbers are employed for both iterations, 

the difference between corresponding sample points is 

also X.tP.. Therefore we may write 

P.+1 = P. + 	A . APj 4.29 

for i = 1 	 N 

As before P~ and Pi.-
+1 

represent the ith samples of the jth 

and (j+l)th iterations respectively. 

159 



160 

Figure 4.11 shows the two design centers and two pairs of 

j+l 	
s 
	

s typical points; Pr, 	and Pi, Pj +l , say. In practice 

X. IAP I will be small. Therefore, corresponding points 

will be in close proximity in the input parameter space. 

Hence, there will be a small difference in performance 

between corresponding circuits. So that if the outcome of 

a particular sample circuit in iteration j is a pass, then the 

corresponding sample circuit in iteration j+l is also likely 

to be so and, similaray for a fail. 

(e) The Common Points Scheme 

When iteratively performing Monte Carlo analysis, the common 

points scheme makes computational savings by re-employing, 

for current iterations, circuit analyses performed at previous 

iterations. However, unlike correlated sampling, the common 

points scheme is only applicable when the component parameter 

p.d.f. ¢(.) is multivariate uniform. For practical circuit 

examples, the common points scheme uses smaller sample sizes 

and is found to give levels of confidence of correct ranking 

which are comparable to or greater than those obtained with 

correlated sampling. Later in this section we shall present 

a typical set of results demonstrating this. Initially, 

we develop the basic ideas behind the common points scheme. 

Again consider figure 4.7, and the definitions of regions: A, B 

and C. Let the relevant component parameter p.d.f. be 

K-variate uniform. Let us say that a straightforward Monte 

Carlo analysis is performed for design center P°  and tolerance 

region RT.. If the analysis comprises N sample circuits 

randomly distributed with a uniform distribution and if NA 

circuits are found to be acceptable, then yield can be 



Y = NA/N 
J 

4.30 
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estimated as: 

In view of the distribution of sample circuits according 

to a uniform p.d.f., on average a number 

N' = N x (VA/VT) 

will fall in region A and 

N". = (N-N') = N x (VB/VT) 

will fall in region B. As before VA,VB  and VT  denote 

the volumes of regions A, B and RT  respectively. 

The yields YA  and YB  in regions A and B are referred to 

as partial yields, and can be estimated as: 

YA  = NA'/N' 4.31 

and 

YB  = NA"/N" 

NA' and NA" are the numbers of acceptable circuits in regions 

A and B respectively (see figure. 4.12). An alternative 

estimate of the overall yield will then be the following: 

Yj  = (VA/VT)YA  + (VB/VT) YB 	4.32 

Both expressions 4.30 and 4.32 are unbiased estimates of the 

true yield Y . If N' is exactly equal to (VA/VT) then the 
J 

two estimates are identical. The estimation of yield based 

on 4.32 is an instance of a variance reduction technique known 

as stratified sampling. Specifically, it is an instance of 
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"stratification after sampling". The general ideas involved 

in stratified sampling are discussed by Kleijnen /47,chapter 3, 

pp. 110-132/. At the end of this section we shall quote 

the relevant expressions for estimating the variance associated 

with a yield estimate based on stratified sampling, (i.e. 

estimate 4.32) and compare it with the variance of the 

conventional Monte Carlo estimate, i.e. expression 4.30. 
1 

In practice the difference is too small to merit a fuller 

exposition. 

Now for iteration j+l, the new design center P~+1 can be 

chosen as described earlier. We now need to estimate the 

new yield Yj+1. This can be written as: 

Yj +1 

 

= YB (vg /VT) + C (VC /VT) 4.33 

However, an estimate of the partial yield YB is available 

from the previous iteration, and hence this estimation need 

not be repeated. Partial yield YC can then be estimated 

by randomly generating and analysing a number ofsample 

circuits distributed in the region C. In one practical 

algorithm to be described later, the number of new circuits 

generated in region C is chosen to be Nr , i.e. equal to the 

number of circuits in region A. Therefore, the estimate 

Yj+l (expression 4.33) is also based on a sample size of 

N; whereas only N' new circuit analyses are performed, and 

N" circuit analyses from the previous iteration are re-employed. 

Now we consider the implications on confidence of correctly 

ranking yield estimates, arising out of this scheme. Subtracting 
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equation 4.32 from 4.31, the difference between the two 

yields Y.j+1 and Y. can be written as 

 

AYZ = (VC/VT)YC-(VA /VT)YA 4.34 

However, VA = V. Therefore (4.34) becomes: 

 

AY. = (VA/VT) (YC - YA) 	 4.35 

Denoting (YC - YA) as AY'j , expression (4.36) may be 

re-written as: 

AYj = (V
A 
/V
T 
)AY~ 	 4.36 

In other words the difference AY , between the yields J 

Y. 	and Y. is (VA/VT) times the difference AY' between the 
J 

partial yields YC and YA. However, (VC/VT) < 1, therefore 

AY! >Y. 
• J 

4.37 

To estimate DYS, we subtract estimate Y4 fcor Yc (see 

expression 4.31). The difference AYE in the overall 

yields can then be obtained from expression 4.36. 

The sampling distribution of AY' will be Gaussian with 

mean 	p =AY! and variance a2 , given by expression 4.38 
3 

below: 

a2 = 02 02 
AY' 

YC YA 

4.38 

The individual variances o2 	and a2 	will be given by 
YC 	YA 

the following expressions: 

Y (1-Y ) 
a2 	" 'A 	A  
YA 	N' 

4.39 



and 
N 

02 	YC(1-YC) 
YC N' 
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4.40 

In'comparing.expression 4.38 with expression 4.27, we find 

that the covariance term has been omitted. In practice we 

expect the covariance to be approximately zero. This is 

so since the raw random numbers employed in the Monte 

Carlo estimation of the partial yields YA and YC are 

independent. 

To rank overall yields Y.)+1 and Y~, we only need to 

rank yields YA and YC. That is because 

	

Y > Y 	implies Y. 	> Y~ 

or 	AYE > 0 	implies AY. > 
	

4.41 

The confidence of correct ranking is now 1 + erf( AY/aAy) 

where erf(.) is the error function defined previously. This 

compares with a confidence of z + erf( AY-) /cAY) for 

independent sampling. The confidence of correct ranking 

increases monotonically with the value of the argument of the 

error function. In practice we have always found that due to 

relationship 4.37, 

AY! 	. AY. 
--1 > 	3 	 4.42 
6AY . 	6An 

Unfortunately, no sirsple relationship connecting the variances 

aAy! 	and GAY 
can be obtained. However, in practice 

J 
we have found that the larger magnitude of AY! over AYE 

J 
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ensures that 4.42 holds. Therefore the confidence of 

correct ranking is enhanced in the common points scheme. The 

effect is illustrated in figure 4.9 (c) and can be contrasted 

with the effect achieved by using correlated sampling as 

illustrated in figure 4.9(b). 

The correlated sampling scheme described earlier is applicable 

for both non-uniform and uniform component p.d.f.'s, whereas 

the common points scheme is only applicable for uniform 

distributions. However, in the latter case the common points 

scheme is found to be more efficient. We demonstrate this 

with a typical set of results. 

Figure 4.13 shows the yield trajectory (i.e. curve of yield 

against iteration) obtained by application of the statistical 

exploration design centering algorithm to a particular 

circuit example ee  The applicable p.d.f. is assumed to be 

uniform and the common points scheme is used. The number of 

new circuit analyses performed at each iteration is indicated. 

The algorithm maintains a constant number of circuit samples 

(in this case 100) throughout the optimization. So that for 

iteration two for example, 29 new circuit analyses were 

performed, hence 71 analyses from the previous iteration were 

re-employed. 

The results are further summarized in Table 4.3 and a comparison 

with correlated sampling is made. Column two of table 4.3, 

a 
The circuit in question is a seven component high pass filter 
which will be more fully discussed in the next section. 
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shows the number of new circuit analyses performed at each 

iteration while column three shows the overall estimate of 

yield. Columns four and five show the partial yields YA 

and YC, while column six indicates the difference in the 

partial yields. Column seven on the other hand is the 

difference in the overall yields. For example the entry in row 

two, column seven is the overall difference in yields between 

iterations one and two. 

The confidence of correct ranking for the common points 

and correlated sampling schemes is compared in columns eight, 

nine and ten. We recall that the confidence of correct 

ranking is a monotonically increasing function of the 

co-efficient AY/aAy. Column eight shows - the value of 

this co-efficient at different iterations, for the common 

points scheme. Columns nine and ten show the value of 

the same argument if the correlated sampling scheme had 

been employed. To appreciate the significance of this, we 

re-iterate the equation (4.27) for the variance cāy in 

correlated sampling as: 

aAY = 6Y + 6Y 	-  2 Coy (Y1 ,Y~ +l) 

j 	J 	3+1 

However, we can replace the covariance term as: 

Coy (Y~ ,Y~ +1)  = PQYi . 6Yi +1. 

4.27 

4.43 

Here p is the correlation co-efficient. Therefore we 

may re-write 4.27 as: 

2 	2 a. 2 

aAY 	
nYJ cY.+l - 2p 

6Y.o

YJ+l 
4.44 



a2 
YA 	N' 

YA•(•1._YA) 

and 
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Further from elementary probability theory / 9, chapter 5/, we 

recall that -1 <.p,<1. In column nine and. ten we have 

assumed particular positive values (0.5 and 0.8) for the 

correlation co-efficient and computed the variance .6Ay 
 

using  equation 4.44. 

In every case it can be seen that the value of the co-

efficient in column eight (common points scheme) is larger 

than that in columns nine or ten (correlated sampling). 

These results are typical of those obtained with other 

practical circuit examples. 

Finally to conclude this section we reconsider expressions 

for the variance associated with an overall estimate of 

yield based on equation 4.32, i.e stratified sampling. 

We re-iterate equation 4.32, (also consider figure 4.12). 

Yj+l = (VA/VT)YA  +'(VB/VT)YB 	4.32 

The variance associated with this estimate is derived by 

Kleijnen /47/ as: 

v 2 	V 
2 	A 	2 	f B1 2 

6 	= Y j 	IT-) 
6Y 	

\ r oYB T A VT 

(4.45) 

The individual variances a' 	andoYB  can be estimated as 

indicated by expressions 4.39 and 4.40 i.e. 

4.39 

Y.B. (.1.-Y.B.I 

ayB  = 

 

4.40 
N 



This compares with the conventional yield estimate as 

= NA/N 	 (4.30) 

and an associated variance 
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(4.46) 

in general the variance (4.45) obtained with stratified 

sampling is smaller than that (4.46) obtained with conventional 

sampling. However, in our example, the region of interest 

RT  has been divided into two strata, i.e. regions A and B. 

It is shown in reference /47/, that the reduction in 

variance obtained by stratified sampling depends upon the 

number of strata and is very small for only two strata. 

In practice for yield estimation, we have found negligible 

differences in the variances calculated from the two 

expressions. 

(f) Some Algorithms 

Design centering algorithms based on the statistical 

exploration approach discussed above are summarized, in figure 

4.14 and 4.15. 

(i) Algorithm 4.1 - Correlated Sampling Scheme 

The following notes are provided in addition to figure 4.14. 

1. The raw random numbers are a pseudo random sequence of 

values, uniformly distributed in the interval 0 to 1. 

The sequence of values is obtained by a deterministic 

equation and can be repeated exactly if the process commences 

from a particular value. This value is called the 



random seed. Since we are employing the correlated 

sampling scheme, we are interested in repeating the 

sequence of raw random numbers. Therefore the initial 

random link is stored. After each iteration the value 

of the random link is re-set to this initial value. 

2. Monte Carlo analysis is described in chapter one. 

3. The design center for the next iteration is selected as 

described in section (b) and (c) , i.e.. 

P. +1  = P. + A(GA-GR) 

The centers of gravity GA  and GR  can be computed as 

described in section (a.). In section (b), we have 

developed constraints on the value of the step size A. 

In this practical algorithm, the constraint on the value 

of A was of the form: 
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L1t2ti-xj  (A - R ) } 
 1  <Yj 4.25 

K 
2ti  

1=1 

Hereti  are the absolute tolerances of the K components, 

gAi  and gRi  are the co-ordinateslof the centers of 

gravity GA  and GR  respectively and Y. is the yield 

for the current iteration. Also we note that 4.25 is an 

implicit constraint on A, i.e. A cannot be written 

explicitly in terms of the other quantities. Therefore 

in practice the left hand side of 4.25 is evaluated for 

several discrete values of A. Typically fifteen values 

are considered from 0.1 to 1.5 in steps of 0.1. In the 

initial stages of the optimization, the largest value of A 
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which satisfies inequality 4.25 is chosen. However, as the 

optimization progresses and smaller yield increases per 

iteration are encountered, even smaller values of X are 

selected. Typical selections of value of X will be 

indicated for several practical examples in the next 

section. 

4. Before every iteration the random link is reset to the 

initial value. This ensures that the same seit of raw 

random numbers are used. 

5. The confidence of correct ranking is computed as 

indicated in the formulae developed in section (d) above. 

6. This is a decision made by the designer. If the 

confidence of correct ranking is small, say less than 

about 90%, then the designer may decide to perform more 

circuit analyses. The designer may then re-assess the 

difference in yield and the confidence of correct 

ranking. He may continue performing more analyses until 

the confidence is sufficiently high. 

7. After each iteration the designer decides whether the 

process is to be continued to another iteration. As is 

indicated in the diagram, the designer normally terminates 

the optimization if a decrease in yield occurs over 

that for the previous iteration. 

(ii) Algorithm 4.2 - Common Points Scheme 

The following notes are provided in addition to figure 4.15. 

1. The designer initially selects an "available sample size", 
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typically 100. This means that the method maintains 

100 samples for each iteration. For example at a 

particular iteration 60 samples from the previous iteration 

may be found to be relevant to the current iteration. 

Then the 60 relevant samples are re-used and the other 

40 circuit samples are discarded. Forty new sample 

circuits relevant to the current iteration are then 

generated and analysed. This is further explained in 

notes 4 and S. , 

2. A conventional Monte Carlo analysis is performed as 

outlined in chapter one. 

3. The design center is determined as explained in sections 

(a) and (b). The step size aj  is selected as outlined 

in note 3, of algorithm 4.1 above. 

4&5 The definitions of regions A, B and C are given in figure 

4.6 and section (e). N is the available sample size. The 

method checks the position of each sample point. All 

sample circuits incident in the region A are discarded. 

The sample circuits incident in region B are re-employed. 

If N: is the number of sample circuits incident in 

region A, then N 	new samples are generated in region C. 

Therefore in total N samples are available for the 

next iteration. The N! samples for region C are 

generated by a rejection technique. Basically, samples 

are generated with a uniform distribution over the 

entire tolerance region R 	, (i.e. region BnC). If 
TJ+1 

a sample belongs to region B it is discarded, while if it 

belongs to region C, the sample is analysed. This 
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is continued until N! circuit samples have accrued in 
J 

region C. 

6. The overall yield for the new tolerance region and the 

confidence of correct ranking are computed as described 

in section (e). 

7. This represents one of the decisions made by the human 

designer. If the confidence of correct ranking is low, 

say less than about 90%, then the designer may decide to 

perform more circuit analyses in regions A and C and re-

compute the confidence. 

8. Circuits can be generated to fall in regions A and C, 

by a method similar to the rejection technique mentioned 

in notes 4 and 5. 

9. After each iteration the designer may decide to terminate 

the optimization. Usually, this is done if the yield 

is found to have decreased over that for the previous 

iteration. 

(g) Circuit Examples And Results 

The algorithms have been extensively tested for several 

circuit examples. In this section the results pertaining to 

three particular circuit examples are presented and discussed. 

(i) Passive High Pass Filter /25/ 

The relevant circuit diagram is shown in figure 4.16. 

The specifications on the insertion loss, together with a 

sketch of the typical shape of the response curve are 

shown in figure 4.17. The circuit comprises seven 
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toleranced components and a total of eleven frequency 

points are'tested. 

In figures 4.18 and 4.19, we show typical yield-

trajectories obtained by the application of the design 

centering algorithm. Uniform distributions are assumed 

and tolerances are taken as 5% and 15% respectively of 

the nominal component values of iteration No. 1. The .  

common points sampling scheme is employed, and the number 

of fresh circuit samples analysed per iterate is 

indicated. For example, for the 5% tolerance case 

(figure 4.18), a total of 195 circuit analyses were 

performed over six iterations, for each of which the 

"available sample size" was 100. That is, the yield 

estimate for each iteration was based on 100 samples., 

although the number of circuit analyses performed was 

smaller. For example for iteration No. 3, 29 new sample 

circuits were analysed, whereas 71 samples from the 

previous iterations were re-employed. 

For both examples, substantial increases in yield 

were obtained over five or six iterations. The confidence 

of correctly ranking successive iterates, also indicated 

in the diagrams, was high. In both cases, a confirmatory 

500 sample Monte Carlo estimation was made at the initial 

and final iterations. The results of these analyses 

are also indicated in the diagrams. 

The values of the step size X are shown in the 

diagrams. These values were chosen by the experimenter 

by the method outlined in note 3 on algorithm 4.1,in 

Section (f). 
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In figure 420, we present the results of the application 

of the method when the component probability density 

functions are Gaussian. Two curves are shown. Curve 

A is the yield trajectory obtained when sample values 

were generated assuming Gaussian distributions. The 

correlated sampling scheme (described earlier) was 

employed. The sample size for. each iteration was 100. 

Again substantial increases in yield were obtained and 

the confidence of correct ranking was high. 

Curve B shows the yield trajectory when uniform distributions 

were assumed. As for curve A, tolerances were 10% of 

the nominals at iteration No. 1. Identical values were 

assumed for the design centers corresponding to iteration 

No. 1, for both yield trajectories., 

For strategy B, the common points scheme was employed. 

The total number of circuit analyses performed over 

five iterations was 217. Strategy A on the other hand 

employed correlated sampling, which required a total 

of 500 samples. We note however, that strategy A 

used Gaussian distributions, for which the common points 

scheme was inapplicable. 

At the termination of the design centering (strategy B), 

a 500 sample Monte Carlo analysis was performed for 

nominal values (design center) corresponding to iteration 

No. 5 of strategy B, but with the sample values generated 

assuming a Gaussian distribution. The resulting yield 

estimate was within 5% of the yield estimate for iteration 

No. 5 of strategy A. Now since strategy B is substantially 
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cheaper, these results suggested an overall strategy where 

uniform distributions and the common points scheme are 

employed for several iterations until further increases 

in yield appear unlikely. A switch is then made to the 

Gaussian distribution and the correlated sampling scheme. 

In the example shown here, no further increases in yield 

were obtained when a switch to a Gaussian distribution was 

made after iteration No. 5 of strategy B. 

So far the results of the design centering experiments 

have been summarized in the form of graphs (yield 

trajectories). To give the reader an impression of the 

typical changes in component valUes, the component values 

for the various iterations represented in figures 4.18, 

4.19 and 4.20 are presented in tables 4.4, 4.5 and 4.6 

respectively. 

As discussed in chapters two and three, the circuit 

designer may be constrained to select nominal values from 

a discrete set. A common method of dealing with such 

a constraint is to round off the continuous solution to 

the nearest allowable discrete solution. Although such a 

strategy can be shown to be non-optimal (see figure 3.1, 

chapter 3), the other alternative commonly used, i.e. a 

branch and bound method, would incur a prohibitive 

computational cost due to the need to perform a large 

number of yield estimations. 

In figures 4.21 we present the results of a design centering 

strategy, where the continuous solutions are rounded off 
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to the nearest discrete solution. The results relate 

to the high pass filter example (figures 4.16 and 4.17). 

Tolerances were taken to be 5% of the nominal values 

for iteration No. 1. That is if the design center for 

the first iteration is 
P1 	

p° no
p12 ... '

no 	then then 

the tolerances are T = t1  t2 	 tk,  where 

ti 	pli x 0.05; for i=1 .... K. 

Eleven discrete choices of nominal values were assumed 

available for each component parameter. These allowable 

values were equally spaced in the intervals: 

(pc)  - t.) < p? < (P 	+ t.) ; i=1 	 K 
li 	1 	1 	li 	i 

Symbolically the allowable values for the ith component 

would be: 

(p1.-t.), (p7.-0.8t. li-0.6t. 

 

0 
pli' 

 

(pli + 0.2ti) 	(pli + 0.8ti)  (pli + ti) 	(4.45) 

The exact numerical values for this example are presented 

in table 4.7. 

In results shown in figure 4.21, continuous values 

were first assumed available for iterations one to six. 

The continuous values for iteration six were rounded 

off to the nearest available discrete values for each 

of the toleranced components. A Monte Carlo analysis 

was then performed for the discrete design center, i.e. 

iteration No. 7. 



177 

On the other hand in figure 4.22, we illustrate a modified 

method where the continuous solution at each iteration 

was rounded off to the nearest allowable values before 

performing the Monte Carlo analysis. The same tolerances, 

allowable values and initial design center as for the 

example in figure 4.21 were assumed. After four 

iterations, a result identical to the one obtained with 

the previous strategy was obtained. That is, iterates 

four of figure 4.22 and seven of figure 4.23 were 

identical. 

Similar results were obtained when considering tolerances 

of 10% of the initial nominal values. As before eleven 

discrete allowable values distributed as indicated 

in expression 4.45 were assumed. 

A sufficient number of circuits were not tested to come 

to definite conclusions as to which of the above two 

variations of the rounding off strategy was to be 

preferred. Nevertheless, the results confirmed the 

effectiveness of the rounding off procedure employed in 

conjunction with the statistical exploration method 

of design centering. 

Finally we note that commercially available components 

/36/ are not usually available in preferred values which 

are equally spaced over an interval, as is assumed above. 

Nevertheless, in principle the methods discussed above 

could deal with arbitrary distributions of discrete 

values. 
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We acknowledge that a more thorough practical investi-

gation of the discrete value design centering problem 

still remains to be made. 

(ii) A High Frequency Amplifier 

Design centering was performed for the high frequency 

amplifier circuit shown in figures 4.23 and 4.24 /48/. 

Figure 4.23 shows the full circuit diagram including the 

resistors employed to bias the transistors. On the other 

hand in figure 4.24 (a) we consider only that part 

of the circuit which affects its a.c. behaviour. Figure 

4.24(b) shows the a.c. small signal model employed for 

the transistors. The nominal values of the parameters 

of each of the transistors is also indicated. 

The effectiveness of the statistical design centering 

method can be demonstrated with the a.c. equivalent 

circuit. In principle there is no limitation in 

considering the d.c. behaviour as well. However, in 

the absence of an implementation of a suitable d.c. 

analysis facility, the d.c. behaviour was not considered. 

Our purpose in including this example is to demonstrate 

the application of the design centering method to different 

types of circuits and to illustrate its independence of 

dimensionality. 

The nominal values of the component parameters at the 

start of the optimization are shown in figure 4.24 (a) 

and in table 4.8(b). The absolute tolerances of the component 

are also shown. Uniform p.d.fs are assumed for each 

component parameter. This example involves nineteen 



toleranced components. The circuit is required to meet 

a power gain specification at eleven frequencies 

as is indicated in table 4.8. 

The results of the design centering are shown in figure 

4.25. Substantial increases in yield are obtained over 

itou-r iterations. The common points scheme was employed 

and the confidence of correctly ranking successive 

iterates was high. 

(iii) A Transversal Filter 

Here we demonstrate the application of the statistical 

exploration method to a circuit example consisting of 

43 toleranced components. The circuit belongs to a 

family of transversal filters /49/ to be manufactured 

using charge-coupled devices. The basic structure of 

a transversal filter is shown in figure 4.26. The 

circuit operates on sampled values of an analogue signal. 

The input signal is passed through a cascade of delay 

elements. The output of each delay element is multi-

plied by a particular co-efficient and the multiplied 

outputs are summed to form the overall output of the 

filter. The mode of operation of the circuit for both 

frequency and time domains can be summarized as: 

Time domain: 

Frequency 
Domain: 

K-1 
U2(t) _ 	a.vUl(t-vT) 

v=0 

K-1 
V (jt)= 	~.V1 e-jvwT 
2 

v=0 
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or 



Or The 
Transfer 
Function: 

V2 = K-1 

V1 
	v=0 

e-jvwT 
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T is the time interval between samples, and is related to the 

sampling frequency f as: 

T = 1/fs  

U1(t) is the stream of input pulses and U2  the output 

pulses. The ai; i=0 	 K-1, the filter co-efficients 

are the parameters subject to variation. The values of 

the ai  are determined by a capacitance which in turn is 

proportional to the area of an electrode in the integrated 

circuit. This is further explained in reference /49/. 

Due to the uncertainties of the manufacturing process, 

the values of these co-efficients are subject to 

statistical variation. 

Design centering was performed on a filter involving 43 

variable co-efficients. The applicable frequency domain 

specifications are shown in figure 4.27. The nominal 

values of the co-efficients were in the range -1 to 1, 

and the largest value encountered was 1. For design 

centering, tolerances were taken to be ± 0.01 (i.e. 1% 

of the largest co-efficient) for all the co-efficients. 

The applicable p.d.f. s were assumed to be uniform 

and independent. 3n the absence of accurate information 

about the statistical distributions of co-efficient 

values, the choice of uniform distributions was considered 

prudent for an initial attempt at improving the design/50/. 
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The results obtained are shown in figure 4.28. As for 

the examples discussed before, substantial increases in 

yield were obtained. These results lend support to the 

assertion that statistical Monte Carlo based methods are 

relatively independent of dimensionality, since in most cases 

a substantial fraction of the achieved yield increase is 

obtained in six or seven iterations. 

4.5 SUMMARY AND CONCLUSIONS  

In this chapter we have investigated the application of direct 

search optimization methods to the problem of maximizing 

production yield for fixed absolute component tolerances. 

We commenced the chapter with a brief description of a standard 

method, Pattern search, together with results for a particular 

circuit example. 

The main contribution of this chapter is the introduction and 

development of a novel technique called Statistical Exploration. 

Both Pattern Search and Statistical Exploration employ Monte 

Carlo analysis to estimate yield. However, in contrast to 

Pattern Search, Statistical Exploration makes use of the spatial 

information generated by Monte Carlo analysis, to choose 

suitable design centers. A direct comparison between the 

two methods has not been made. Pattern search has been reported 

' for a 5 variable circuit, where the initial yield was 80%. Yield 

increases of 9% to 10% were reported. On the othe- hand 

Statistical Exploration has been reported for various circuit 

examples ranging from 7 to 43 toleranced components. In addition 

while commencing with yields smaller than 80%, large overall 

increases in yield have been achieved. 
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It was concluded in the review in chapter two that statistical 

methods which are independent of dimensionality (number of 

toleranced components) were preferred over deterministic methods. 

We note that both Pattern search and Statistical Exploration 

employ Monte Carlo analysis, for which the number of circuit 

analyses required is independent of dimensionality. However, 

Monte Carlo analysis is computationally very expensive. Therefore 

we are interested in minimizing the number of iterations performed. 

In the examples tested with Statistical Exploration, the number 

of iterations performed to arrive at yield maxima ranges from 

4 to about 8, and is found to be independent of dimensionality. 

This is summarised in table 4.q, for the circuit examples 

reported here and in references /51,52/. These results 

contrast with those expected for the Pattern Search strategy, 

which is inherently dependent upon dimensionality. For 

example, the minimum number of iterations required for one 

set of exploratory moves will be K (the number of toleranced 

components), while the maximum number will be 2K. In addition 

the number of base points has been reported to be proportional 

to K2. 

In order to reduce overall computational cost both the number of 

iterations and the number of circuit analyses performed for the 

individual iterations must be kept small. We have discussed 

the dependence of the extent of the confidence intervals of 

individual yield estimates, and the degree of confidence of 

correctly ranking estimates (iterates), on sample size. 
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Special sampling schemes which reduce the sample size 

required for a particular degree of confidence of correct 

ranking have been discussed. A novel technique, the ommon 

Points scheme, has been proposed and compared with a standard 

scheme, Correlated Sampling. The Common Points Scheme is only 

applicable for the case where the component parameter p.d.fs 

are uniform, whereas the Correlated Sampling Scheme is applicable 

for all forms of p.d.f. Nevertheless, in practical circuit 

examples, for the Case where component p.d.fs were assumed 

to be uniform, the Common Points Scheme is expected to 

require substantially smaller sample sizes than those required 

for the Correlated Sampling Scheme. A particular circuit 

example comparing the two schemes has been presented in this 

chapter (section 4). 

In addition to the case of uniform component parameter p.d.f 

only the case of independent Gaussian distributions has been 

investigated. As regards the Statistical Exploration method there 

is no difficulty in principle in extending it to the case 

where arbitrary forms of p.d.f. are considered. For the case 

of independent Gaussian distributions it has been shown that the 

Statistical Exploration method employed in conjunction with 

the Correlated Sampling scheme gives satisfactory results. 

Nevertheless, it is found to be more satisfactory to assume 

uniform distributions for the initial iterations and to switch 

to Gaussian p.d.fs , when no more increases in yield are obtained 

with the uniform distributions. The assumption of uniform p.d.f 

allows the use of the Common Points scheme and results in a 

considerable saving in computational effort over the alternative 

scheme where Gaussian distributions are assumed throughout. 
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For the design of discrete component circuits design 

centering may be used as a prelude to tolerance assignment. 

In such a case the designer may only be allowed to choose 

nominal component values from a discrete set of allowable 

values. Therefore discretization may be considered as a 

special type of constraint on the design variables. We have 

investigated a strategy where the continuous design values 

selected by the design centering algorithm are rounded off 

to the nearest discrete allowable values. Two variants of 

this strategy have been reported for application to a 

particular circuit example. Satisfactory results are obtained. 

Nevertheless, it is concluded that further investigation of 

this problem is desirable. 

Design centering is of particular importance for integrated 

circuits. The designer has less freedom in choosing component 

tolerances than for discrete circuits. Therefore he must increase 

yield by choosing a more suitable set of nominal values. The 

circuit examples reported in this chapter have been regarded 

as discrete component circuits. Nevertheless, the main ideas 

may easily be extended to the design of integrated circuits. 

A far greater problem as regards the design of integrated 

circuits will be that of obtaining accurate descriptions of the 

component parameter p.d.f. s. We surmise that for many forms of 

p.d.f. 	it will be useful to commence the design centering 

by assuming uniform distributions. The applicable p.d.f. s 

can then be considered when an approximate solution has been 

so found. 
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Finally we note that a set of heuristic optimization techniques 

has been presented and their efficacy demonstrated for 

particular circuit examples. These methods have been found 

to function satisfactorily for everyone of the circuit examples 

considered so far. The methods have been demonstrated for 

much larger circuit examples than those reported in the 

literature so far (e.g. Director et al /21/). 



PERFORMANCE FUNCTION LOWER LIMIT UPPER LIMIT 

D.C. 	collector 
current of transistor 

0.2mA 0.8mA 

Tr 1. 

D.C. collector current 
transistor Tr 2. 

0.5mA 1.5mA 

D.C. emitter current 
of Transistor Tr 3. 10mA 15mA 

VCE  of Tr 1 1V 5V 

VCE  of Tr 2 2V 8V 

VCE of Tr 3 2V 6V 

Mid band voltage 
gain of the amplifier 18 24 

Mid band input 
impedence 

20KSZ 50KS2 

Mid band output 
impedence 

OS/ 0.5KSZ 

Table 4.1: Performance constraints for 
the wide-band amplifier 
circuit example. 
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COMPONENT INITIAL VALUE 

KO 

FINAL VALUE 

KR 

R2  0.020 0.020 

R3  45.75 48.75 

R4  13.75 16.25 

R5  1.45 1.3 

R6  3.875 3.625 

R7  0.425 0.4 

The number of base points was 9. 

The initial yield was 84.2%. 

The final yield was 90%. 

Table 4.2: Summary of results of the application 
of the Pattern search strategy for 
the wide band amplifier circuit example. 
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J P1 

nF 

p2 

nF 

p3 

H 

p4 

nF 

p5 

nF 

p6 

H 	~~ 

p7 

nF 

Yield 

1 11.89 36.21 3.945 11.35 95.95 2.91 16.06 65 

2 11.79 36.14 3.92 11.31 95.64 2.879 16.03 76 

3 11.72 36.12 3.908 11.25 95.42 2.854 15.98 85 

4 11.68 36.07 3.898 11.22 95.52 2.896 15.93 90 

5 11.66 35.96 3.878 11.20 95.46 2.832 15.89 96 

6 11.64 35.92 3.872 11.18 95.48 2.826 15.86 96 

The Absolute Values Of The Tolerances Of The Various Components were: 

ti t2 t3 I t4 t5 t6 t7 

nF nF H nF nF H- nF 

.5945 1.811 .1973 .5675 4.798 .1455 .803 

Table 4.4: Component'Values For The Various Iterations 
Of The Statistical Exploration-Design Centering 
Run Summarised In Figure 4.18.(Also See 
Circuit Diagram Fig. 4.16) 

A 



Iteration No. 

 

Component Values 
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ij pl 

nF 

p2 

nF 

p3 

H 

P4 
nF 

p5  

nF 

P6 

H 

P7 

nF 

Yield 

1 11.89 36.21 3.945 11.35 95.95 2.91 16.06 22 

2 11.76 37.29 3.733 10.51 96.89 2.73 15.94 28 

3 11.57 38.71 3.722 10.15 96.07 2.698 15.84 32 

4 11.8 39.24 3.703 10.02 95.57 2.725 15.72 33 

5 11.91 39.3 36.95 10.05 95.02 2.736 15.59 36 

The Absolute Values Of The Tolerances Of The Various Components Were 

ti 
t2  t3 t4  t5 t6 t7  

nF nF H nF nF H nF 

1.783 5.432 .5918 1.703 14.39 .4365 2.409 

Table 4.5: Component Values For The Various Iterations Of 
The Statistical Exploration-Design Centering 
Run Summarised In Figure 4.19.(Also See Circuit 
Diagram Fig. 4.16) 



j pl 

nF 

P2 

nF 

p3 

H 

p4 

nF 

p5 

nF 

p6 

H 

p7  

nF 

Yield 

1 11.89 36.21 3.945 11.35 95.95 2.91 16.06 62 

2 11.79 35.83 3.911 11.33 95.32 2.884 15.93 79 

3 11.72 35.78 3.9 11.34 95.23 2.863 15.82 86 

4 11.64 35.79 3.897 11.29 95.36 2.84 15.76 91 

5 11.62 35.79 3.898 11.27 95.51 2.834 15.76 94 

1 11.89 36.21 3.945 11.35 95.95 2.91 16.06 39 

2 11.68 36.24 3.868 11.05 95.88 2.752 15.85 53 

3 11.71 35.51 3.832 11.08 96.29 2.684 15.64 63 

4 11.61 35.1 3.85 10.7 96.13 2.71 15.73 65 

5 11.56 34.76 3.87 10.58 95.85 2.716 15.56 66 

The Absolute Values Of The Tolerances Of The Various Components Were 

ti t2 t3 t4 t5  t6 t7 

,1.189 3.621 .3945 1.135 9.595 .291 1.606 

Table 4.6 : Component Values For The Various Iterations Of 
The Statistical Exploration Design Centering Run 
Summarised In Figure 4.20 (Also See Circuit Diagram 
fig. 4.16) 

191 

A 
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Iteration No. Component Values 
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it p1  

nF 

p2 

nF 

p3 

H 

p4 
nF 

p5 
nF 

p6 
H 

p7 

nF 

Yield 

1 '11.89 36.21 3.945 11.35 95.95 2.91 16.06 65 
'11.89 36.21 3.945 11.35 95.95 2.91 16.06 

2 11.79 36.15 3.919 11.31 95.63 2.874 16.03 73 
►11.77 36.21 3.906 11.35 95.95 2.881 16.06 

3 '11.7 36.17 3.898 11.31 95.89 2.858 15.99 85 
36.21 3.906 11.35 95.95 2.852 16.06 11.65 

4 '11.62 36.17 3.895 11.31 96.1 2.846 16.02 87 
36.21 3.906 11.35 95.95 2.852 16.06 11.65 

The Absolute Values Of The Tolerances Of The Various Components Were 

tl  t2  t3  t4  t5  t6  t7  

nF nF H nF nF H nF 

.5945 1.811 .1973 .5675 4.798 .1455 .803 

Note A Refers To The Continous Values Indicated By The Design 
Centering Algorithm And B Refers to the Corresponding Values 
After Mounding Off To The Nearest Allowable Discrete Values. 

Table 4.7: Component Values For The Various Iterations Of The 
Various Iterations Of The Statistical Exploration 
Design Centering Run Summarised In Figure 4.22.(Both 
Continous And Discretized Solutions Are Indicated) 
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, Frequency 10 40 70 100 150 200 240 270 300 320 350 
In MHz. 

Lower 
Limit on 
Gain in dB, -0.14 -0.12 -0.08 0.02 0.08 0.15 0.1 0.1 0 -0.2 -0.4 
Relative to 
Gain at 50 
Mhz. - 

Upper Limit 0 0.04 0.08 0.22 0.3 0.75 0.8 0.8 0.8 0.8 0.8 
On Gain, 

Gain Specification 

Table 44.00 

Table 4.8  : Gain Specifications , Component Nominal Values, 
And Tolerances For The High Frequency Amplifier 
Circuit Example. (P.T.O'For Table 4.7(b) ) 



T 
Component Initial Absolute Tolerance 
Parameter Nominal Value Of Expressed As 

Value Tolerance % Of Initial 
Nominal Value 

R1 11.1' 0.111 1 

R2 180 3.6 2 

R3 1500 30 2 

R4 18 0.09 0.5 

R5 83 0.415 0.5 

R6  417 2.085 0.5 

R7 510 5.1 1 

R8  22 0.11 0.5 

R10  46.5 0.2325 0.5 

R11 750 15 2 

R12  430 8.6 2 

R14  200 1 0.5 

R15  50 0.25 0.5 

R16  23.1 0.1155 0.5 

R
p1  

210 69.3 33 

Rp  114 37.62 33 
2  

R
p3  

123 40.59 33 

R_ 33 10.89 33 
4 

C8 6.2 0.496 8 

Note: Resistance values in 0 : Capacitance values in pF 
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Table 4.8(b): Component Nominal Values'And Tolerances 
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CIRCUIT NO. OF 
COMPONENTS 

INITIAL 
YIELD % 

FINAL 
YIELD % 

NO. OF 
ITERATIONS 

High Pass. 
Filter /42/ 7 40 65 5 

Land Pass 
Filter /41/ 

8 15 62 5 

Low Pass 
Filter /51/ 

11 22 72 5 

High 
Frequency 
Amplifier 
/this chapter/ 

19 22 83 4 

Trans-ersal 
Filter 	(43 
Coefficients) 
/this chapter/ 

43 6 30 8 

Transversal 
'Filter (55 
Coefficient) 
/52/ 

55 52 64 5 

Table 4.9: A summary of typical results for 
six circuit examples showing that the number 
of iterations performed (until no further 
increases in yield accrue), using the statis-
tical exploration method is independent of 
the dimensionality 
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1 
po P1  

P2  

(p2+ t2) 

0 
P2  

t2) 
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RT  (Po) 

R(Po)n RA  

Yield A Volume of RT  (Po) !1 ) t
1 

 

Volume of RT  (P° ) 

Figure 4.1: A Geometrical Interpretation Of Yield. 



Pattern Move 

i 
Exploratory Moves Are 
Performed 

Initial Base 

1 
Size Of Exploratory 
Moves Is Decided 
Upon 

Reduce Step 
Size 

Stop 

Yes 

Return To Previous Base 

Figure 4.2 : A General Flow Chart For The 
Pattern Search Method /12, Chapter 8, Page 184/ 
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Set New Base Point 
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2 

21 

9 

7 	8 

17 

/18  

19 20 
13 

 

15 

  

25 23 24 

/26 

27 

The base points are 1,3,4,6,7,10,11, 	1  
18,19,22,23,26 

Thick lines denote pattern moves,thin lines 
denote exploratory moves,broken thin lines 
denote unsuccessful exploratory moves. 

Figure 4.3 Hypothetical Trajectory For Application Of 

The Pattern Search Method To A 2 Dimensional 

Example 

po 
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Figure 4.4 Wide Band Amplifier- Circuit Example For 

The Pattern Search Strategy 



Monte Carlo 
analysis 

N. Sample 
size 

Determined 
by designer 

j=j+1 

DESIGN CENTERING. 

Pj +l = P~ + X (GAj -GR. ) 

200 

INITIALISATION 
	

STATISTICAL 	TERMINATION 
ANALYSIS 

j=1 Iteration 
number 

Pi Nominal comp-
onent values 

N1 Sample size 

ADVANCE 
COUNTER 

Figure 4.5: General flow chart for the statistical 
exploration method of design centering. 
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po  2  

• 
• • 

• 

A Pi  p.
J  

• 

Figure 4.6: A Geometrical Representation Of The Relationship 

Between Successive Iterates In Design Centering. 



ti 
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Figure 4.7: Illustrating Some Additional Notation. 



1 exp (Y-Y)2/2a2  

a✓2Tr 

(Y-2a) u=Y ( y+2a ) Y 

Figure 4.8: Sampling Distribution Of The Yield 

Estimate. 
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Figure 4.9(a): 	Independent Sampling 

Figure 4.9(b) 	Correlated Sampling 

0 
Figure 4.9(c) 

AY 
Common Points Scheme 

Figure 4.9: Sampling Distributions For Estimating Yield Difference. 



po 
2 

132 ,2 
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Figure 4.10: Illustrating The Relationship Between 

p.d.f s Of Successive Iterates. 
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0 
p2 

1 	Ps 
r 2  

PO RT (P2 ) 

RT  (P°) 

Let j=1 and j+1=2, then: 

P2 = P1 + XdP 

0 
pl  

Pi = PĪ + h iP 

P2 = pi + adP 

Figure 4.11: Illustrating The Relationship Between 

Corresponding Sample Points For Successive Tolerance 

Regions When The Correlated Sampling Scheme Is Employed. 



0 

0 

p1  

Figure 4.12: Illustrating Notation For The Distribution 

Of Sample Points In The Common Points Scheme. 
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106-  

% Yield 

90 . 

80J- 

95% Confidence Intervals- 

70_ 

60_ 
Number Of New Circuit Analyses 

100 	29 	23 	10 	28 	5 

50-. 	Value of the Co-efficient DY/6taY  

3.17 	3.1 	2.75 	1.717 	1.414 

0 

1 	2 	3 	4 	5 	6 

Iteration Number 

Figure 4.13: Yield Trajectory For A High Pass Filter Example: 

Demonstrating The Effectiveness Of The Common 

Points Scheme. 
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2 
Perform Monte Carlo analysis 
with design center P~. 

p. d. f. 0(P9);  sample size N~ 
Estimate yield Y. 

j=1? 
Yes 

S 
Estimate AYj_1 = Yj-Yj_1 

Estimate confidence of 
correct ranking. 

6 
Is confidence 
sufficient? 

Generate and 
analyse-more 
random circuits. 
In addition to 
the number 
already done. Yes 

Yes 

4 
Reset random seed to RL. 
Increment counter j =j +1. 

STOP 

3 
Examine parameter values of 
sample circuits of jth Monte 
Carlo analysis. Determine 
new design center. 

Pj +1 = P~ + aj (G. j -GRj ) 
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Set counter j=1. Set 
seed of random generator 
to some value RL. 

Fig. 4.14: Flow chart for a statistical 
exploration - design centering 
algorithm employing the 

correlated sampling scheme. 
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Determine new design center 

3 P~ +l = P9 + X . (GAj - GRJ ) , on the 
basis of the N available samples. 

__. 

1 

Determine regions A,B,C (see figure 
4.6). From the N circuit samples; 
identify & determine the numbers N! 

4 and (N-N!) respectively, falling 3 
in regions A and B. Estimate partial 
yield YA and YB. Discard samples 

in region A. This leaves N samples - 
available. 

Perform a modified Monte Carlo analysis. 
Generate and analyse N3 random (with a 

S uniform distribution) circuits distributed 
in region C. 

1 

Estimate partial yields YC and 'y 
hence estimate (j+l)th 
yield Yj+1, as 

6 Yj+l = YBVB/VT + YCVC/VT. Estimate 

the difference in yields AYE = YC-YA. 

Compute confidence of correct ranking 
of jth and (j+l)th iterates. 

F 

8 

Perform more 
circuit 
analyses 
in regions 
A and C 

A 

Increment 
Counter j =j +1 

I 
7 
Is confidence sufficient? 

NO 

YES 
YES 

Is AY' +ve? NO 	s. STOP 

Set counter j = 1 
l Select N - the "available" 

Sample size. Let Ni=N 

Perform Monte Carlo analysis 
2 Sample size N1: Design 

Center Pi 

Fig 4.15: Flow chart for a statistical exploration - 

design centering algorithm employing the 
common points scheme. 
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V2  

 

  

Arrows indicate toleranced components. 

Insertion Loss is 20Log J V2  (j w) /Vi  (j w) 

Figure 4.16: Circuit Diagram Of The Passive High Pass 

Filter example. 
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170 350 440 630 	990 	1800 
Frequency (Hz) 
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CHAPTER 5  

ITERATIVE 'MONTE CARLO BASED METHODS  

FOR TOLERANCE ASSIGNMENT  

5.1 	INTRODUCTION  

As discussed in chapters one and two certain algorithms are 

addressed to the problem of returning tolerance solutions which 

guarantee 100% yield, i.e. worst case solutions. However, 

the average cost of producing an acceptable circuit may be 

much reduced if a smaller yield is accepted. The latter 

situation allows larger tolerances and hence cheaper components 

to be employed. This may offset the additional cost 
r 

incurred in discarding or repairing circuits whose performance 

does not meet requirements. Therefore the tolerance/yield 

trade-off may be explored to minimize overall cost. 

In this chapter we examine a class of Monte Carlo based methods 

of tolerance assignment, where less than 100% yield is 

considered acceptable. The methods commence by performing 

Monte Carlo analysis while assuming large tolerances. In 

addition to estimating yield the results of the Monte Carlo 

analysis are employed to choose new tolerances. Another Monte 

Carlo analysis is performed with this new set of tolerances 

and the process is continued. At each iteration, tolerances 

are reduced and yield increased over that for the .previous 

iteration. The particular criterion employed to re-assign 

tolerances distinguishes one method in this class from another. 
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5.2 	PROBLEM FORMULATION  

Yield estimation and tolerance assignment may be performed 

over several iterations thus exploring the yield-tolerance 

trade-off. Alternatively a cost function involving yield 

and tolerances may be formulated and minimized. For the 

situation where failing circuits are to be discarded, a 

suitable cost function is expression 2.5, which is repeated 

here: 

C.A..~-._l. 

CU 	
i{S (P°,T) } 

5.1 

As before Cu is the unit cost, i.e. the cost of producing 

one acceptable circuit. CA represents the sum of the 

tolerance independent or fixed costs, while Ci(.) is 

the tolerance dependent cost function of the ith component. 

The manufacturing yield Y(.) is defined in terms of the 

component parameter p.d.f. ¢(.) and the performance 

requirements of the circuit, as detailed in chapter one. 

For our present purpose we assume Q(.) to have a particular 

form e.g. multivariate uniform. The nominal values 

P° 	P1P2 	 pK and associated tolerances T = tlt2 ....tK 

are taken as parameters of the p.d.f. Therefore it is 

sufficient to write yield as a function of P°' and T 

and to omit reference to O(.). We may formally' state 

the relevant optimization problem as: 



Minimize 

CU  = 

K 

CA + i=1 	
C1(ti) 

Y(p°,T) 

by appropriate choice of design center P°=p°1 
 ..., o 

pK 
and tolerances T = t1 .... tK. 

In view of the complexity of the denominator (the yield) 

it is not possible in general to derive analytic properties 

of the objective function. Nevertheless, it is useful to 

consider.a heuristic,argument, which indicates that cost 

minima exist between the two extreme situations of high yield 

and low tolerances on the one hand, and low yields and 

large tolerances on the other. 

The individual component cost functions are monotonically 

decreasing functions of tolerance. Therefore for large 

tolerances the functions Ci(.) have small values and hence 

the numerator of 5.1 is approximately equal to the sum of 

the fixed costs i.e. CA.  However, for large tolerances 

the denominator (the yield) approaches zero. Therefore, the 

unit cost function has a large value. As the tolerances are 

decreased, the component costs become significant and the 

value of the numerator increases. If the rate of increase 

of the denominator (the yield) is greater than the rate 

of increase of the numerator (the sum of the fixed costs and 

the tolerance dependent costs) then the overall value of 

Cu  becomes smaller. 

At the extreme as tolerances become very small, yield 

approaches its maximum value of unity. The overall cost is 

then largely dependent upon the sum of the tolerance 
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5.2 

a 



228 

dependent component costs, which are large with small 

tolerances. Therefore an approximately paraboloidal shape is 

envisaged for the function Cu(.), with large values 

accruing for the two extreme cases of wide tolerances with 

low yields and narrow tolerances with high yields, and 

cost minima in between. 

The methods discussed in this chapter commence with large 

tolerances. Monte Carlo analysis is performed and yield is 

estimated. Information about the distribution of pass and 

fail circuits provided by the Monte Carlo analysis is 

employed by an algorithm to re-assign tolerances. The Monte 

Carlo analysis is then repeated with the new tolerance 

values and yield is re-evaluated. The process is continued 

over several iterations. At each iteration tolerances are 

decreased in a way that increases yield. Therefore with 

reference to the above discussion of the unit cost function, 

the methods commence from one extreme situation, that is low 

yield and high tolerance, and progressively tighten 

tolerances and increase yield. 

This chapter commences with the critical assessment of a 

previously reported algorithm called TOLERATE /Elias,2 /. 

The results of a theoretical and practical investigation 

of TOLERATE are presented. A number of shortcomings of 

this method are highlighted. To improve upon the capabilities 

of TOLERATE we introduce a novel technique called PERTOL 

(PERcentile based TOLerance assignment). Practical results 

of a comparison of both methods when applied to the same 

circuit examples are presented. These demonstrated the general 

superiority of PERTOL over TOLERATE. 
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Before embarking on further discussion, some additional 

notation employed in this chapter is clarified'. Previously 

a nominal value pT and corresponding absolute tolerance 

ti  implied component values pi  distributed in the 

range (p°-t) <'pi  < (PT+ti) with p. d. f. Oi (Pi,PT,ti) . 

In Monte Carlo based tolerance assignment procedures it is 

found more appropriate to consider limit values. These 

are the extremes of the tolerance range of each component. 

For example Li  = (pi-ti) and Ui = (p°+ti) are 

respectively the lower and upper limit values of the ith 

component. Clearly pi = (Ui+Li)/2 and ti  = (Ui-Li)/2. 

The iterative algorithms to be described in this chapter 

assign limit values to parameters from which the tolerances 

and nominals are inferred. 

5.3 THE TOLERATE METHOD 

5.3.1 AN OVERVIEW 

The general structure of the TOLERATE method is ullustrated 

in figure 5.1. For the jth iteration, the INTERPRETER 

examines the results of the Monte Carlo analysis and 

re-assigns limit values as follows. 

Let us say the Monte Carlo analysis comprised the testing of 

a number N j  of random sample circuits with component 

values distributed according to 0(11,Tj). The Ni  sets of 

component values are separated. into a pass list and a fail list of 

sizes N. 	and NjF  respectively. The pass list comprises 

the circuits which meet all performance requirements and the 

fail list those which fail to meet at least one performance 

requirement. For each component, histograms representing 
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the conditional probability density function /9, chapter 5/ 

Pr(pi/pass) and Pr(pi/fail); 1=1 ... K, are constructed 

from these lists and the limit values and hence tolerances and 

nominals are revised. This is illustrated in figure 5.2. 

For the sth component new limit values Ls,j+1 and Us,j+1 

are selected such that: 

Pr(ps/pass) > Xs  Pr(ps/fail) 

5.3 
for all 	Ls,j+1 < ps 	Us,j+1 

where 	X
s 

is a positive constant. 

. The criterion 5.3 is illustrated in figure 5.2. To 

demonstrate the main features of the TOLERATE method, we 

introduce a band pass filter example /38/ whose 

circuit diagram, performance requirements and typical shape 

of response are shown in figures 5.3 and 5.4. Figures 

5.5 to 5.12 show a series. of results obtained by application 

of the TOLERATE method to this circuit example. Each of the 

diagrams depicts yield-tolerance trajectories for one of 

the eight toleranced components. The trajectories marked 

A and B correspond to the TOLERATE method. Trajectory C 

on the other hand is obtained by application of the PERTOL 

method and should be ignored in the present discussion. 

Trajectories A and B correspond to choices of 0.8 and 1 

respectively for the constant Xs, s=1....8, in criterion 5.3. 

The implications on yield of tolerance assignment according 

to 5.3 are examined in the next section. In this method, 

tolerance re-assignment is not necessarily performed for 



231 

all components subject to variability. Instead a particular 

type of sensitivity analysis based on a parameter termed 

"yield sensitivity" is performed. Tolerance re-assignment 

is then carried out for those components whose yield 

sensitivity exceeds a particular value specified by the 

designer. The definition of yield sensitivity and its 

practical computation are discussed in section 5.3.3. 

5.3.2 THE TOLERANCE ASSIGNMENT CRITERION  

(a) Implication on Yield  

To appreciate the rationale behind expression 5.3 we consider 

initially the situation where the tolerance of only one 

component parameter is to be revised. The yield for the 

jth iterate is: 

Yj = Pr (pass) 5.4 

Also we assume that for iteration j+l, the new limit values 

Ls ~j+1 and Us,j+1 are chosen such that 

Pr(ps/pass) > Xs Pr(ps/fail) 	5.5 

for all ps within the range Ls,j+1 < ps <Us,j+1 

and for Xs > 1. 

Criterion 5.6 differs from criterion 5.3 because the value 

of as is required to be greater than zero in 5.3 and greater 

than one in 5.5. Further, assuming that the parameter ps 

is uniformly distributed, the new yield will be: 

Yj+1 = Pr (pass/Ls,j+1 < ps < Us,j+1) 5.6 
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To enhance clarity we introduce the following additional 

notation: 

A is the event 	Ls ,j4.1  < ps  < Us,j+l 

B is the event 	A random circuit is a pass at 

iterate j. 

C is the event 	A random circuit is a fail at 

iterate j. 

Then we can re-write (5.4) and (5.6) as: 

Yj = Pr (B) 	5.4 

and 

Yj +1  = Pr(B/A) 5.6 

We wish to show that a choice of Ls ,j+1 and Us,j+l 

according to (5.5) results in an increase in yield, i.e. 

Yj +1  > Yj. 

Using Bayes rule /9,chapter 12/, (5.6) may be re-written as: 

Yj+1  =  
Pr (Ls,j+l < ps  < Us,j+1/Pass) Pr (pass) 

Pr(Ls,j+1  < ps  < Us,j+1) 

Pr. (A/.B ) 
Pr(B) 

Pr(A) 

substituting Yj  for Pr(B); 

Pr (A/B) 
Yj 	

_ 
+1 r 	 Yj  

Pr(A) 

Clearly Pr(A/B) > Pr(A) implies Yj+1  > Yj  

or 

Yj  5.7 

5.8 

5.9 
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Now from elementary probability theory, we may say: 

Pr(A) = Pr(A/B)Pr(B)+Pr(A/C)Pr(C) 	5.10 

However, Pr (B) + Pr (C) = 1; i.e.  Pr (Pass) + Pr (fail) = 1. 

Therefore (5.10) may be re-written as: 

Pr(A) = Pr(A/B)Pr(B) + Pr(A/C) {1-Pr(B)} 

Or rearranging 

Pr(A)-Pr(A/C) = Pr(B){Pr(A/B) - Pr(A/C)} 	5.11 

Now, our choice of Ls,j+1  and Us,j+1  acc ding to (5.5) 

ensures that: 

{Pr(Ls,j+1 < ps  < Us,j+i/Pass) = 
fUs 	

1 Pr(Ps/Pass)dps} > 
Ls

'5 

j +1  

Us 'j+I 
{Pr(Ls,j+1  < ps  < Us,j+1/fail) = f 	Pr(ps/fail)dps} 5.12 

Relation (5.12) may be re-written as: 

Pr(A/B) - Pr(A/C).> 0 
	

5.13 

The meaning of relation (5.12) or (5.13) is illustrated in 

figure 5.13 (a). 

We also know that 0 < . {Pr (B) = Y.} < 1 5.14 

Therefore substituting (5.13) and (5.14) into (5.11), we 

can say that: 

Pr(A/B) - Pr(A/C) > Pr(A) - Pr(A/C) 

Pr(A/B) > Pr(A) 	 5.15 

Relation (5.15) is the desired result. Reconsidering (5.8), 

it can be seen that (5.15) ensures that 

Yj +1 > Yj 	 5.16 

L
s 
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The above development has shown that for the case of uniform 

distributions, and where a single component is considered, a 

choice of limit values according to (5.5) ensures that 

yield is increased. 

Now criterion (5.5) assumes that As  has a value greater 

than unity. Such a choice of As  ensures that (5.12) 

or (5.13) definitely hold. However, As  > 1 is not a 

necessary precondition for (5.12) to hold. That is (5.12) 

can also be satisfied by values of As  less than unity. One 

such case is illustrated in figure 5.13(b). 

The greater the value of A, the greater is the tightening of 

( tolerances between iterates. Typically a choice of As  > 1 

represents overdesign in practical cases. Figure 5.13(C) 

shows a choice of limit values for As  > 1. The overdesign 

can also be seen from the yield-tolerance trajectories 

(A and B) depicted in figures (5.5) to (5.12). For this 

lexample the choice of X=1 generally provides tighter tolerance 

solutions for similar values of yield than a choice of 

A = 0.8. 

The development of the tolerance assignment criterion assumed 

that the tolerance of only one component was to be tightened. 

A criterion parallel to 5.3, for the case where the tolerance 

assignment of a number of components is considered, cannot 

easily be derived. Nevertheless in practical cases (e.g. 

figures 5.5 to 5.12) a choice of limit values for each 

component according to (5.3) is found to give satisfactory 

results. 
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(b) Some Practical Considerations  

We now discuss practical aspects of choosing limit values 

according to the TOLERATE criterion. 

The range Ls,j4.1  < pS  < Us,j+1  for which criterion (5.3) is 

satisfied is determined from histograms of the conditional 

p.d.fs Pr(ps/pass) and Pr(ps/fail). These histograms are 

constructed from the results of the Monte Carlo analysis. 

Certain practical difficulties are encountered in identifying 

the range of values of the parameter ps  for which (5.3) 

holds. These necessitate a modification to 5.3 as discussed 

below. 

In figures (5.14) to (5.20), we show histograms corresponding 

to the pass and fail conditional p.d.f.s of each of the 

toleranced components of the high pass filter example (chapter 

4, figure 4.16 and 4.17). Each figure (figures 5.14 to 5.20) 

shows two pairs of histograms. The pairs labelled as A were 

constructed using 10 class intervals, while the pairs labelled 

B were constructed using 15 class intervals. The Monte Carlo 

analysis tested 500 sample circuits. The numbers of passing 

and failing circuits was 286 and 214 respectively. 

Initially consider component No. 2, for which results are 

shown in figure 5.14. Consider the two histograms constructed 

with 10 class intervals (i.e. pair A). Both histograms 

employ an identical set of class intervals. Also since the 

histograms are representations of probability density functions, 

the total area represented by the bars in either histogram 

is unity. The sum of the heights of the bars in each histogram 
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has been normalized to unity. Therefore to identify the range 

over which 5.3' holds for various values of X, we compare 

the heights of the bars for corresponding class intervals of 

the pass and fail conditional histograms. The logical vectors 

RI(1), RI(0.8) and RI(0.5) summarize such a comparison. 

Each of the vectors RI(.) has 10 elements, and each element 

corresponds to one of the ten class intervals. For example 

the first element of RI(1) is 1 if the height of the first 

class interval of the pass histogram is greater than that 

of the fail histogram and is 0 otherwise. Similarly, 

the first element of RI(0.8) is 1 if the height of the 

first class interval of the pass histogram is greater than 0.8 

multiplied by the height of the first class interval of the 

fail histogram and is 0 otherwise. 

To identify the range for which 5.3 holds we consider the 

class intervals corresponding to logical l's in the appropriate 

RI(.) vector. In the case of component No. 2, for a choice 

of X2  equal to 1, this range will be disjoint. A similar 

occurrence may be observed for the three choices of A for 

the case of 15 class intervals and similarly for other compo-

nents (figures 5.14 to 5.20). 

The disjoint tolerance ranges imply that the tolerance 

solution indicated by the procedure is not unique. To 

overcome this difficulty we have modified criterion 5.3 to 

the following. 

Choose Ls,j+1  and Us,j+1, such that for all ps  < Ls,j+1 

and ps  > Us,j+1  the following holds 

• Pr(ps/pass) < as  Pr(ps/fail) 
	

5.17 
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Criterion 5.17 therefore means that the new tolerance range 

is bracketed by the first and last occurrence of a 1 in 

the appropriate RI(.) vector, for the particular value of 

Xs  chosen by the designer. This is indicated for component 

No. 4 in figure 5.16. In fact, the yield tolerance traje- 

ctories (A and B) of the band pass filter example shown in 

figures 5.5 to 5.12 were obtained by application of this 

modified criterion, i.e. (5.17). 

5.3.3 YIELD SENSITIVITY  

The mathematical development from expression 5.7 to 5.16 

has been based upon the tolerance assignment of a single 

component per iteration. However, such a procedure would 

require a large number of iterations and incur a prohibitive 

computational cost for most circuit examples of interest. 

Therefore in practice, tolerance assignment is performed 

simultaneously for a number of toleranced components. On 

the other hand it is desirable to choose new tolerances only 

for those components which have a substantial effect on yield. 

In the TOLERATE method, a parameter called "yield sensitivity" 

is introduced. Between successive iterations, tolerances 

are tightened only for those components whose yield sensitivity 

exceeds a certain arbitrary level specified by the circuit 

designer. Formally, the yield sensitivity for the ith 
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component is defined as: 

Oa 

Mi  = f_ 	IPr(pi/pass) - Pr(pi/fail)Idpi 	5.18 

This definition is illustrated in figure 5.21 (a). Clearly 

Mi  is a measure of the amount of overlap between the pass 

and fail conditional p.d.f.'s of the ith component. This 

definition assumes that if the overlap between the p.d.f.'s 

is high then the parameter has a small,effect on yield and 

vice-versa. Figure 5.21 (b), (c) and (d) demonstrate the 

situation corresponding to low, intermediate and high yield 

sensitivities respectively. The actual numerical value of 

Mi can range from 0 to 2. 

Commonly, sensitivity measures relate changes in the value 

of particular performances to changes in component values. 

By analogy, yield sensitivity of a component could have been 

defined as the rate of change of yield with the tolerance of 

the components i.or example AY/1ti, where AY is the change 

in yield due to a particular change Oti  in the tolerance of 

the ithcomponent. However, such a sensitivity measure is 

difficult to compute. If a perturbation method is employed 

then a fresh Monte Carlo analysis is needed to compute the 

yield sensitivity of each component. Thus the computational 

effort required to compute yield sensitivity defined in this 

way is prohibitive. 

In contrast yield sensitivity as defined by Elias is an overall 

sensitivity measure indicating the dependence of the occurrence 

of passing and failing circuits on the values of particular 

component parameters. In practice however yield sensitivity 
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(as defined in 5.19) can be an ambigiuous measure of a compo-

nent's influence on yield. For a qualitative appreciation 

one may consider the histograms shown in figures 5.14 to 5.20. 

For every component the conditional p.d.f's overlap considerably 

and the numerical values of the yield sensitivities are low 

(see table 5.1). Typically, the histograms show heavy overlap. 

This detracts from the heuristic support lent to the TOLERATE 

method by the idealized situation depicted in sketches of 

the form shown in figure 5.2. 

Table 5.1 shows the value of the yield sensitivity for each 

of the components and the variation of these values with 

the number of class intervals employed to compute them. 

Adjacent to each value of yield sensitivity we indicate the 

sensitivity ranking (highest sensitivity 1st) of the particular 

component. It can be seen that the value of yield 

sensitivity and the sensitivity ranking of a component vary 

appreciably with the number of class intervals. Table 5.1 

and figures 5.14 to'5.20 refer to the high pass filter example 

(chapter 4, figure 4.16 and 4.17) and for the situation 

where the yield is 42%. Tables 5.2 and 5.3 show the results 

obtained for the band pass filter (figure 5.3 and 5.4). Both 

tables correspond to Monte Carlo analyses with sample 

sizes of 200. Table 5.2 refers to the situation where 

tolerances were large 'and the yield was only 18%. On the other 

hand Table 5.3 corresponds to smaller tolerances and a yield 

of 79%. 

In tables 5.1 and 5.2 the values of the yield sensitivities 

and the yield rankings of the various components vary 



240 

appreciably with the number of class intervals. This variation is 

smaller in table 5.3. 

5.3.4 SUMMARY  

The TOLERATE method is based on the pass and fail conditional 

p.d.fs of individual component parameters. The conditional 

p.d.fs are approximated by histograms constructed from 

the, results of the Monte Carlo analysis of the previous 

iteration. A. particular criterion involving the conditional 

p.d.fs are employed to select new limit values for the 

component parameters. 

The main practical difficluties of the TOLERATE method arise 

out of the fact that the entire conditional p.d.fs 

of individual component parameters have to be characterized 

by histograms. A straightforward application of the TOLERATE 

criterion (as reported in /2 /) leads to non-unique tolerance 

solutions in practical cases. We have therefore introduced 

a modification to the criterion to overcome this problem. 

The rationale for the TOLERATE criterion for choosing limit 

values is that it leads to increases in yield. We have 

clarified the mathematical arguments in support of this and 

have stated the assumptions required for it to hold. 	The 

criterion involves the choice by the designer of values for 

the factor X. We have shown that a choice of X > 1 always 

results in an increase in yield. However, this is not a 

necessary condition. Certain choices of X < 1 will also 

result in an increase in yield. However, no simple way of 

choosing a suitable value for X has been found. The actual 

choice of value of l is crucial in the practical application 

4 
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of this method. In general we find that the larger values of 

A result in overdesign, i.e. too great a tightening of 

tolerances for particular increases in yield. 

To deal with the problem of overdesign, the yield sensitivity 

analysis was introduced in the original method. However, we 

have shown that in practice yield sensitivity is an ambiguous 

measure. 

Therefore the most serious shortcoming of this method is 

overdesign. The results presented so far have demonstrated 

that smaller values of A usually provide better tolerance 

solutions. However, if the value of A is taken too low, then 

the method requires too many iterations; does not always 

lead to increases in yield and can be wasteful of computer 

effort. In the next section we introduce a method (PERTOL) 

based on the cumulative distribution functions (9, chapter 12) 

corresponding to the conditional p.d.fs. 	The overdesign 

inherent in TOLERATE will be demonstrated by comparison with 

results obtained by application of the PERTOL method. 

5.4 THE PERTOL METHOD  

The basic structure of the PERTOL method is similar to that 

of TOLERATE as is illustrated in figure 5.1. That is, the 

procedure commences with large tolerances.. Monte Carlo 

analysis is performed and tolerances (more specifically limit 

values) of component parameters are adjusted by an algorithm 

which takes into account the distribution of passing and 

failing circuits. After revising the limit values, the 

Monte Carlo analysis is repeated and the process is continued 

until a cost minimum is achieved or 100% yield is obtained. 
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The essential difference between the PERTOL and TOLERATE 

methods is in the actual algorithms employed to revise limit 

values. Referring to figure 5.1, the difference in the two 

methods is in the mode of operation of the INTERPRETER. 

We briefly discribe the PERTOL procedure for revising limit 

values and later develop its mathematical justification. 

This is followed by discussion of practical results obtained 

with this method. 

5.4.1. THE PERTOL CRITERION  

(a) The Practical Algorithm 

As before we let is = Us,j  - Ls,j 	and tg+l = Us,j+1 - Ls,j+1 

2 

 

2 

be the tolerances for the sth component at the jth and (j+l)th 

iteration respectively. The PERTOL method selects limit 

values Ls,j+1  and Us,j+1  such that they are the (100 x r)th 

and {100 x (1-r)}th percentile of the pass conditional p.d.f. 

Pr(ps/pass). The values of r, is and is+l are required 

to meet the following condition. 

t +1 

ti 

The relationship between r, Ls,j+1  a d Us,j+1  is illustrated 

in figure 5.22. 

In one implementation of the method, the following strategy 

is followed. 

The N. sample circuits from the jth Monte Carlo analysis are 

divided into a pass list and a fail list. Let Nip  and NJf  

be the respective sizes of the pass and fail lists. 

r < z (1 - 5.18 
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As before, let Ls, and Usj  represent the limit values of 

the sth component for the jth iteration, and Ls,j+1  and Us,j+1, 

the corresponding limit values for the (j+l)th iteration. 

To select limit values Ls,j+1  and Us,j+1  the values of the 
1 

sth component of the Njp  pass circuits are sorted into an 

ascending order. Then the first value in this ordered list 

is an estimate of the (100 x 1/Njp)th percentile of the 

conditional p.d.f. Pr(ps/pass). The second value in the list 

is an estimate of the (100 x 2/Njp)th percentile and so on. 

Similarly the last value is an estimate of the 100 x (1-1/Njp)th 

percentile and the last but one value is an estimate of the 

100 x (1 - 2/Njp)th percentile. 

The algorithm commences by considering the first and last 

values in the list. We denote these by al  and bl respectively. 

The let r = 1/Njp and c = b1 - al/ 2. The algorithm 

tests if the following condition is satisfied. 

c 
r < 2 (1  - tf) 

s 
5.19 

where is = (Us,j  - Ls,j)/2 

if condition (5.1q) is satisfied, then al  and b1  are 

accepted as the limit values Ls,j+i  and Us,j+1  respectively. 

Otherwise the second value in the ordered list designated as 

a2  and the last but one value designated b2  are selected. 

We now let r = 2/Njp  and c = b2 - a2/2. Again condition 

(5.18) is tested. If (5.18) is satisfied then a2 and b2 are 

selected as the new limit values. On the other hand if 

5.18 is still not satisfied, then the procedure is continued 

to the'third and last but third values in the ordered list. 

w 



Yj  = 
V(RT,j) 

V (.RT. ,. j n RA) 

'44 

The procedure is continued until a pair of values is found 

which satisfied (5.18). If no such pair can be found, then 

the new limit values of the sth component are left unchanged. 

That is Ls,j+1  = Ls,j and Us,j+1  = Us,j. 

To re-assign limit values for another component (the qth 

component say), the Nip  pass circuits now have to be 

re-ordered according to ascending values of the qth component. 

The process of finding a pair of values which meet condition 

5.19 is carried out as for the sth component, as described 

above. The procedure is carried out for all K components. 

(b) Implications On Yield  

We now discuss the implications on yields Yj  and Yj+i  of 

choosing limit values according to the PERTOL method. 

Specifically we will show that a choice of Ls,j+1, Us,j+1  

which satisfies (5.18) ensures that Y: 	> Y. 
J +1 	j 

As before let RT,j.and RT,j+1  represent the tolerance 

regions for iterations j and j+l respectively, and let 

V(Rx) represent the volume of a region x. Then the yields 

Y. and Yj+1  may be re-written as: 

5.20 

and 

Yj+1  V (RT;.j nR ) 

V(RT.j+l)  
5.21 
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As previously in the development of the TOLERATE criterion 

we initially consider only one parameter at a time. 

Definitions (5.20) and 5.21) for this case are illustrated in 

figure 5.23. We aim to choose new limit values for the sth 

component such that yield is increased. That is, we require 

Y3+1 > Yj 5.22 

or 

V(RT ,j+i,(I RA)  > 	V(TT,JnRA)  

V(Rr,j+l) 	V(RT,j)  

5.23 

Since we are only considering the sth component, we get: 

V(RT,j+I) 	= 

V(RT,J)  

t j+1 

ts 
5.24 

If Ls,j+1  and Us,j+1  are chosen as described previously 

and illustrated in figure 5.22, then the following holds: 

V(RT,J+lfl RA)  - 1-2r 
V(RT,jfl RA)  

5.25 

To appreciate (5.25) we note that the ratio of the numbers 

of passing circuits in regions RT,j+1 and RT,J  is an 

estimate of the ratio of the volumes of regions RT,j+1(1RA 

and RT,j+l() RA. We have chosen is+1  such that the ratio 

of passes in the two regions RT,j+1 and RT,j  is 1-2r, 

and therefore 5.25 holdsa. 

aThe right hand side of (5.25) is only an estimate of the ratio 
of volumes. However, to avoid complicating the argument, 
(S.25) shows an equality. 
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Also shown in figure 5.22 is the corresponding situation for 

the fail conditional p.d.f. of the sth component and the 

associated cumulative distribution function. Let us say 

that the (100 x r)th and {100 x (1-r)}th percentile of the 

pass cumulative distribution function correspond to the 

(100 x r')th and {100 x (1-r")}th percentile of the fail 

cumulative distribution function of the sth component. 

Then as before it is required to choose limit values (hence 

nominal and tolerance) for the sth component such that 5.23 

is satisfied, i.e. 

Yj +l > Yj 

The yields Yj  and Yj+1  may also be written as: 

V(RT,j()) 

V(RT,j) 

and 

Yj 	= 
1 - V(RT,j+ln RA) 

V(RT,j+l)  

Therefore to satisfy (5.22) we require 

V(RT,j+ln R,0 	v(RT,inizTA)) 

V(RT,j+1) 	V(RT,j) 

Re-arranging (5.29), we get 

v(RT,j41()TA0 	V(RT,j.+1) 

V(RT,jn  RA) 	V(RT,j)  

Then as before 

(RT , j +1) 	ts+l  

V(RT,j) 
	tis 

Y j  = 1 

5.26 

5.27 

5.28 

5.29 

5.30 

5.31 

4, 
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However, now by analogy with (5.25), we may say: 

V(RT,j +1(1RA)  

V(RT,jn  RA)  
= 1 - (r'+r") 	5.32 

Therefore substituting (5.32) into (5.31) we get: 

t 

(r'+r") < (1 - --) 	 5.33 
tJ 
s 

Expression (5.33) c&rresponds;to the fail conditional p.d.f. 

of the sth component and should be compared to expression 

(5.25) which refers to the pass conditional p.d.f. The 

two conditions (5.25) and (5.33) are in fact equivalent and 

if one is satisfied then so is the other one. 

5.4.2 RESULTS  

Yield tolerance trajectories obtained by application of the 

PERTOL method to the band pass filter (figure 5.3 and 5.4) 

are shown in figure 5.5 to 5.12. The trajectories labelled 

C refer to the PERTOL method, while those labelled A and B 

refer to the TOLERATE method. It is evident that PERTOL gives 

larger tolerance solutions for roughly the same values of 

yield than TOLERATE. 

The comparison between PERTOL and TOLERATE is also shown 

in terms of unit costs, in figures 5.24 to 5.27. The unit cost 

function is the following expression: 

CA  .+ CT  
Cu 

 

CA  is the fixed cost and CT  is the sum of the tolerance 

dependent costs. We assume CT  = 	Ci(ti) 
1=1 
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and Ci(ti) = Si , where $. is a constant reflecting the 
t. 

cost of component i with respect to the other components 

in the circuit. The different graphs (figure 5.24 to 5.27) 

refer to different relative values of fixed (CA) and tolerance 

dependent (CT) costs. For example figure (5.24) refers to 

the situation where the fixed and tolerance dependent costs 

are equal. On the other hand (5.25) refers to the case where 

CA  is twice CT. The unit cost function is normalized to 

have a value of unity for the tolerances and yield at iteration 

one. 

A set of yield tolerance trajectories for the high pass 

filter example (Chapter 4, figure 4.16 and 4.17) are shown 

in figure 5.28 to 5.34. The curves labelled A refer to 

the TOLERATE method and B refer to PERTOL. In figure 

5.35 and 5.36 the variation of the unit cost with iteration 

is shown for this example. For all six variations of cost 

function for the two circuit examples reported here, the 

PERTOL method provides considerably smaller cost solutions 

than TOLERATE. 

5.5 	SUMMARY AND CONCLUSIONS  

In this, chapter, methods of tolerance assignment based on 

Monte Carlo analysis have been reviewed. An existing method, 

TOLERATE, has been briefly described. TOLERATE belongs to 

a class of iterative methods which differ in the criterion 

employed to re-select component tolerances. We have clarified 

the mathematical arguments in support of the TOLERATE 

criterion. In addition the results of the practical 

application of the TOLERATE method to particular circuit examples 

have been presented. It has been shown that a direct 
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application of the TOLERATE criterion as reported in /2/  

can lead to non-unique tolerance solutions. To deal with 

this problem a modification of this criterion has been 

introduced. 

To overcome the disadvantages of overdesign, a sensitivity 

measure called yield sensitivity was introduced in the original 

TOLERATE method. The purpose of yield sensitivity is to 

pinpoint components which have substantial effect on yield. 

We have presented practical results showing that yield 

sensitivity calculating with practical circuit examples can 

be an ambiguous measure of the relative effect on yield of 

a particular component.. 

Overdesign remains the most serious shōrtcoming of the 

TOLERATE method. To overcome the disadvantages associated 

with overdesign we have introduced the PERTOL method. 

PERTOL is based on the cumulative distribution functions 

associated with the conditional p.d.f.s of individual 

component parameters. Generally, cumulative distribution 

functions are found to be of value in the periphery of the 

region of variation of statistical parameters. In the 

class of methods considered in this chapter most interest is 

directed at the behaviour of the tolerance region near its 

periphery. 

The PERTOL criterion requires estimates of percentiles of 

the conditional distributions. Therefore the entire 

conditional p.d.fs of individual component parameters need 
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not be characterized by histograms. Thus most of the practical 

ambiguities of the TOLERATE method are avoided. 

We have provided a brief description of the PERTOL method 

of choosing limit values. We have also discussed the 

implications on yield of choosing limit values in this manner. 

Finally we have presented comparitive results of applying 

both PERTOL and TOLERATE to the same circuit examples. 

Comparisons of the merits of the two methods can be made 

either in terms of the yield versus tolerance trajectories, 

or in terms of the trajectories of the unit cost with 

iteration. From a comparison of yield trajectories it will 

be seen that for particular values of yield, PERTOL generally 

provides larger tolerances than TOLERATE. Similarly from 

a comparison of the cost trajectories it will be seen that 

PERTOL consistently provides lower cost solutions. 
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No. 	of Class 
intervals 
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5 
0.248 0.119 0.461 0.5 0.07 0.316 0.465 

5 6 3 1 7 4 2 --------- 

10 
--------- 

0.3 0.227 0.467 0.5 0.177 0.316 0.513 

5 6 3 2 7 4 1 

0.34 0.34 0.55 0.626 0.354 
20 

— 

0.434 0.527 

6 7 2 1 5 4 . 	3 

Yield 
Ranking 

Yield 
Sensitivity 

Table 5.1 : Table Showing  The Variation With Number Of Class Intervals, 
Of The Estimated Yield Sensitivity And Sensitivity Ranking 
Of Individual Components For An Intermediate Yield Case (42%) 
(High Pass Filter Circuit Example) 



COMPONENT NUMBERS 

No. 	of Class 
Intervals 2 4 5 7 8 10 11 13 

8 
-- 	- ----- i 

0.2751 0.4636 1.084 0.418 0.2859 0.9187 p.4282 0.3496 

1 6 8 4 2 7 5 3 

10 

------------► 

0.4634 0.5285 1.084 0.5705 0.3821 0.9187 0.52.3 0.4743 

2 5 8 6 1 7 4 3 

12 
- 	-♦ 

0.4336 0.66.8 1.175 0.4228 0.4607 0.9228 0.5041 0.3916 

3 6 8 2 4 7 5 1 

f 

Yield_ 
Rankings 

Yield 
Sensitivity 

Table 5.2 : Table Showing The Variation With Number Of Class Intervals, 
Of The Estimated Yield Sensitivity And Sensitivity 
Ranking Of Individual Components For A Low Yield Case (18%) 
(Band Pass Filter Circuit Example) 
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COMPONENT NUMBERS 

No. 	of Class 
Intervals 2 4 5 7 8 10 11 13 

8 
------ 

0.6553 0.5136 0.2056 0.2071 0.5041 0.7857 0.4114 0.366 

7 6 1 2 5 8 4 3 ----.. 

12 
------- 	-- 

0.7731 0.622 0.3611 0.3054 0.5516 0.8692 0.5338 0.4004 

7 6 2 1 5 8 4 3 

16 
------------w 

0.883 0.7765 0.339 0.467 0.5578 0.8692 0.637 0.5372 

7 6 2 5 8 1 4 3 

Yield 
Sensitivity 

Table 5.3 :-Table Showing The Variation With Class Intervals, 
Of The Estimated Yield Sensitivity And Sensitivity 
Ranking Of Individual Components For A High Yield Case(79%) 
(Band Pass Filter Circuit Example) 
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Component p.d.f. 
Circuit description 
Performance 
requirements. 

Monte Carlo Analysis 	'Circuit Yield 

Pass/fail 
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ore iterations? 
Decided by human 
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nominal values. 

..._ Information 

STOP 

Figure 5.1 : A General Flow Chart For The TOLERATE 
And PERTOL Methods Of Tolerance Assignment. 
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Pass Conditional p.d.f 	Fail Conditional p.d.f 

Pr(ps/pass) 	Pr(ps/fail) 

Component Parameter ps  

Figure 5.2 : The TOLERATE Tolerance Assignment Criterion; 
Showing The Original, And Revised Ranges; 
Assuming X=1. 
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Figure 5.3 : Circuit Diagram Of The Band Pass Filter 
Example. 

Note : Arrows Indicate Toleranced Components. 
Insertion Loss Is 20LogjV2/V1ldB 
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Figure 5.4 : Performance Constraints And Typical Shape 
Of Response For The Band Pass Filter 
Example 
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Figure 5.5 : Yield-Tolerance Trajectories For The 
Band Pass Filter Circuit Example 
(component Number 2) 
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Figure 5.6 : Yield-Tolerance Trajectories For The 
Band Pass Filter Circuit Example 
(component Number 4) 
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Figure 5.7 : Yield-Tolerance Trajectories For The 
Band Pass Filter Circuit Example 
(component Number 5) 
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Figure 5.8 : Yield-Tolerance Trajectories For The 
Band Pass Filter Circuit Example 
(Component Number 7) 
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Figure 5.9 : Yield-Tolerance Trajectories For The 
Band Pass Filter Circuit Example 
(Component Number 8) 
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Figure 5.10 : Yield-Tolerance Trajectories For The 
Band Pass Filter Circuit Example. 
(Component Number 10) 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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Figure 5.11 : Yield-Tolerance Trajectories For The 
Band Pass Filter Circuit Example. 
(Component Number 11) 
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Figure 5.12 : Yield-Tolerance Trajectories For The 
Band Pass Filter Circuit Example. 
(Component Number 13) 
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Note : Expression 5.13 May Be Interpreted As 	: The Area 
Under Curve X Between The limits Ls j+1 And Use +1 Is Always Greater Than The Area Under Curve Y Between The 
Same Limits, If we choose a >1 In Expression 5.6. In 
The Diagram We show The Orignal And Revised Ranges,For 
A Choice Of Xs=1. 

Figure 5.13(a) : An Illustration Of Expression 5.13 
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Note : Here We Show That Expression 5.13 Can Hold For A 
Choice Of ' Xs<1.3 The Diagram Shows The Orignal 
(L5 	; U$ ~j) And Revised (L5, j+1 : Us,j+1) Limit Values 

s~ 

Assuming-X < 1 .The Area Under Curves X And Y Is The 
Same. Clearly It Is Possible For The Area Under Curve X 
Between The Limits L 	And Us,j+1 

To Be. Greater 

Than The Area Under Curve ,Y Between The Same Limits. 

Figure 5.13(b) 
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Note : In This Diagram We Show Limit Values For A 
Choice Of s>1 . 

Figure 5.13(c) 
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Figure 5.14 : Diagram Showing Pass And Fail Histograms 
Of The High Pass Filter Circuit Example 
(For Circuit Diagram And Response See 
Figures 4.16 And 4.17). The Above Diagrams 
Are For Component Number 2. 
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Figure 5.15 : Diagram Showing The Pass And Fail Histograms 
For The High Pass Filter Circuit Example. 
(Component Number 3) 
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New Range For 
A=1 

RI For X=1: 	0 1 0 0 1 1 1 1 0 0 

X=0.8: 0 1 1 1 1 1 1 1 0 0 

X=0.5: 1 1 1 1 1 1 1 1 0 0 

Pass 
Histogram 

\4 

Fail 
Histogram 

RI For X=1: 	0 0 1' 0 1 0 1 1 1 1 1 1 0 0 0 

X=0.8: 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 

a=0.5: 	1 1 1. 1 1 1 1 1 1 1 1 1 1 0 0 

Figure 5.16 : Diagram Showing The Pass. And Fail 
Histograms For The High Pass Filter Circuit 
Circuit Example. (component Number 4) 
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RI For X=1: 	1 1 1 1 1 1 0 0 0 0 

X=0.8: 1 1 1 1 1 1 0 1 0 0 

X=0.6: 1 1 1 1 1 1 1 1 0 0 

Pass 
Histogram 

r 

Pass 
Histogramme _,.. 

RI For X=1: 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 

X=0.8: 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 

A=0.6: 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 

Figure 5.17 : Diagram Showing The Pass And Fail 
Histograms For The High Pass Filter 
Circuit Example (Component Number 6) 
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ammo 

RI For A=1: 	1 0 1 0 0 1 1 0 0 1 

X=0.8: 1 1 1 1 1 1 1 1 0 1 

X=0.5: 1 1 1 1 1 1 1 1 1 1 

Pass 	 Fail 
Histogram 	 Histogram 

Figure 5.18 : Diagram Showing The Pass And Fail 
Histograms For The High Pass Filter 
Circuit Example. (Component Number 7) 
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RI For X=1: 0 0 1 1 1 1 1 0 1 1 

X=0.8: 0 0 1 1 1 1 1 0 1 1 

X=0.6: 0 1 1 1 1 1 1 1 1 1 

Pass 
Histogram 

RI For X=1: 	0 0 0 1 0 1 1 1 1 1 1 

X=0.8: 	O 1 0 1 1 1 1 1 1 1 1 

A=0.6: 	1 1 1 1 1 l l l 1 1 l 

0 0 0 0 

1 1 1 0 

1 l l 0 

Figure 5.19 : Diagram Showing The Pass And Fail 
Histograms For The High Pass Filter 
Circuit Example. (Component Number 8) 
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RI For A=1: 	000000111101111 

a=0.8: 

A=0.6: 

0 0 0 0 1 1 1 1 1 1 

0 0 1 0 1 1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 

Figur 5.20 : Diagram Showing The Pass And Fail 
Histograms For The High Pass Filter Circuit 
Circuit Example. (Component Number 10) 
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Figure 5.21(a) Yield Sensitivity Is The Sum-Of The 
Shaded Areas. 

Figure 5.21(b) Illustrating Low Yield Sensitivity. 
Minimum Value Is 0 . 

Pr(ps/pass) 	Pr(ps/fail) 

Figure 5.21(c) Illustrating Intermediate Yield 
Sensitivity. 

Pr(ps/pass) 	Pr(ps/fail) 

Figure 5.21(d) Illustrating High Yield Sensitivity. 
Maximum Value Is 2 

P Figure 5.21 : Illustrating The Definition Of 
Yield Sensitivity. 
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Figure 5.22 : Illustrating The PERTOL Criterion 
For Tolerance Assignment. 
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At Iteration Number 1, 

CA=CT=0.15 

5=0.2813 

Note : Cost Is Normalized 
To Unity For Iteration One. 

2 	3 	 7 
Iteration Number 

Figure 5.24 : Cost Trajectories For The Band Pass 
Filter Circuit Example 

At Iteration Number 1, 

CA=2CT=0.2  

13=0.1875 

1 	2 	3 	4 	5 	6 	7 
Iteration Number 

Figure 5.25 : Cost Trajectories For The'Band Pass 
Filter Circuit Example. 
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Figure 5.26 : Cost Trajectories For The Band Pass 

Filter Circuit Example 

At Iteration Number 1, 

CA=1/3CT=0.075 

B=0.4216 
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Iteration Number 
Figure 5.27 : Cost Trajectories For The Band Pass Filter 

Circuit Example 
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Figure 5.28 : Yield-Tolerance Trajectories For The High Pass Filter Circuit 
(For Circuit Diagram And Response Curves See Figure 4.-16 And 4.17) 
These Trajectories Refer To Component Number 2) 
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Figure 5.29 : Yield-Tolerance Trajectories For The High Pass Filter 
Circuit Example.(Component Number 3) 
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Figure 5.30 : Yield-Tolerance Trajectories For The High Pass Filter 
Circuit Example (Component Number 4) 
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Figure 5.31 : Yield-Tolerance Trajectories For The High Pass Filter Circuit 
(Component Number 6) 
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Figure 5.32 : Yield-Tolerance Trajectories For The High Pass 

Filter Circuit Example (Component Number 7) 

100 -+ 
% Yield 

90 -~ 

80 -- 

70 -- 

60 

50 — 

40 — 

30 — 

20. — 

10 — 



1 E I 	i 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 
4 5 	6 7 	8 	9 	10 11 12 13 14 15 16 17 18 19 20 21 22 

Percentage Tolerance 

Figure 5.33 : Yield-Tolerance Trajectories For The High Pass 
Filter Circuit Example (Component Number 8) 
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Figure 5.34 : Yield-Tolerance Trajectories For The High Pass Filter 
Circuit Example (Component Number 10) 
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Figure 5.35 : Cost Trajectories For The High Pass 
Filter Circuit Example 
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Figure 5.36 : Cost Trajectories For The High Pass 
Filter Circuit Example. 
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CHAPTER SIX 

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH 

6.1 INTRODUCTION  

Our main research contribution has been the introduction and 

development of a number of algorithms and techniques addressed 

to the design centering and tolerance assignment problems. 

The new algorithms are introduced in the light of a critical 

assessment of existing techniques reported in the literature. 

In this final chapter we summarize the contents of the thesis 

and make suggestions for future research. 

6.2 SUMMARY OF THE THESIS AND. CONCLUSIONS  

Chapter one is a general review of the field of statistical 

design. Some useful notation and terminology is introduced 

and explained. The two most widely used methods of statistical 

analysis, viz. Monte Carlo analysis and the method of moments 

are briefly described. 

It is shown that Monte Carlo analysis is a general procedure 

which is applicable for any form of component parameter p.d.f. 

In addition it does not require assumptions about the form 

of the p.d.f. of circuit responses. In particular the 

procedure for estimating manufacturing yield is described. For 

a specific circuit the cost of a Monte Carlo estimation of yield 

is proportional to the number N, of sample circuits analysed. 

4 
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It is shown that the accuracy of the yield estimates is 

proportional to 1/1/N. Therefore, to achieve a certain accuracy 

the number of sample circuits required to be analysed is 

independent of the number of toleranced components in the 

circuit. 

The method of moments on the other hand although computationally 

cheaper then Monte Carlo analysis, is less general. The 
I 

method approximates the moments of the response p.d.f.S2(.) 
I 

as functions of the component parameter p.d.f. O(.). The 

approximating functions are of limited validity as they are 

based on Taylor series approximations of the circuit's 

responses. The method is commonly employed to obtain 

estimates of the second moments of St(.). However, to estimate 

parameters such as yield, assumptions need to be made about 

the functional form of 52(.). A common assumption that ;Z(.) 

is multidimensional Gaussian has been demonstrated to be 

generally invalid /32/. Even if we make a suitable assumption 

the computational procedure becomes very complex as the 

number of performance constraints becomes large. The use of 

the method of moments in conjuction.with the Bonferoni 

inequalities procedure to estimate yield is described. 

To perform effective statistical design, knowledge of the 

form of statistical distributions of component parameters is 

essential. The problem of characterizing the statistical 

distributions of component parameters, also called statistical 

modelling is still the subject of active research/54/. 

4 
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Statistical modelling falls outside our immediate area of 

research. Therefore in chapter one we make only brief comments 

on the type of distributions encountered in discrete and 

integrated circuit components. 

In addition to tolerance assignment and design centering, 

some other problems in the field of statistical design are 

briefly described. These include the specification of 

performance constraints in manufactured circuits; the 

specification of sub-system performance constraints in system 

design; and various problems related to the specification of 

performance tests on manufactured circuits. The possible use 

of Monte Carlo analysis to help solve such problems is emphasised. 

In chapter two we make a critical assessment of, reported 

methods of tolerance assignment and design centering. The 

chapter commences with a discussion of relevent cost functions 

and of different problem formulations which fall under the 

general titles of tolerance assignment and design centering. 

The methods reviewed are considered under four categories, viz. 

geometrical characterization, standard non-linear programming, 

iterative Monte Carlo based methods, and discrete methods. 

As is discussed in chapter one, geometrical interpretations 

may be given to the various problem formulations. The most 

successful geometrical method so far, simplicial approximation 

/21/, approximates the region of acceptability as 'a simplex 

of bounding hyperplanes. The procedure becomes prohibitively 

expensive as the number of statistically varying parameters 

increases beyond about ten. 

4 
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The methods based on standard non-linear programming are 

considered in two groups. Firstly worst case methods, which 

seek minimum cost tolerance solutions constrained to return 

100% (unity) yield; and secondly statistical, which allow 

yields of less then 100%. It is shown that both groups 

of method avoid the explicit evaluation of yield. The worst 

case methods require tests to check the unity yield condition. 

Some of the different worst case testing methods are discussed 

in chapters two and three. The statistical methods on the 

other hand constrain yield to be greater than a certain lower 

bound. The constraints on yield are then transformed to 

constraints on tolerance via approximate relationships such as 

the transmission of variances equation /12/. (i.e. the method 

of moments). 

The main shortcoming of the worst case methods is overdesign. 

In general it is possible to trade off yield against tolerances. 

The worst case methods do not explore this trade-off and hence 

provide expensive tolerance solutions. In addition the worst 

case methods are inapplicable in situations where 100% yield 

is not achievable with available tolerances. The latter situation 

commonly arises in the manufacture of.integrated circuits. 

The statistical non-linear programming based methods allow 

yield to be less than 100% and do not produce as tight tolerances 

as the worst case methods. Nevertheless statistical methods 

maximize tolerances for a particular choice of yield and still 

do not explore the yield-tolerance trade-off. To explore this 

trade-off the optimization could be repeated for different choices 

of yield. However, the unreliability of a yield estimation 
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procedure based on the transmission of variances equation 

renders this approach unattractive. 

The methods based on Monte Carlo analysis have important 

advantages over both the geometrical and the non-linear 

programming based methods. Firstly, in estimating yield 

the number of 'circuit analyses required in Monte Carlo analysis 

is independent of the number of toleranced components. This 

implies that the methods maybe considered for large circuits. 

Secondly the Monte Carlo yield estimation procedure is more 

general and more reliable than the method of moments. Our 

main contribution of new techniques falls in the area of Monte 

Carlo based methods, as is discussed in chapters four and five. 

Therefore only brief mention is made of it in chapter two. 

All three categorries of method discussed above provide 

continuous solutions. In practice however, only discrete 

choices may be available for tolerance and nominal values. The 

expedient of rounding off the best continuous solution to the 

nearest allowable discrete solution does not always provide 

the best available discrete solution. Discrete methods work 

in terms of the discrete choices without first seeking continuous 

solutions. The main shortcomings of this approach arise from 

the fact that the number of available discrete solutions 

becomes very large for the size of most circuit examples of 

interest. Therefore the computational effort is often 

prohibitive. 
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A number of new algorithms and techniques are introduced in 

chapters three, four and five. Chapter three is concerned with 

the discrete worst-case tolerance assignment problem, while 

chapters four and five respectively consider design centering 

and tolerance assignment methods based on Monte Carlo analysis. 

In chapter three we deal with a class of method called the 

branch and bound method. The two main computational tasks 

in such a method are, firstly a strategy for selecting tolerance 

solutions and secondly suitable methods for testing these 

solutions for compliance with the worst case requirement. The 

results of such tests allow a number of the possible solutions 

to be eliminated from consideration. By suitably selecting 

test solutions, the methods effectively eliminate most of 

the non-feasiblea  solutions from consideration. Thus the 

optimum tolerance solution can be identified after evaluating 

only a few of the many possible tolerance solutions. 

In chapter three a brief summary of the structure of Branch 

and Bound methods, together with a review of various worst case 

testing methods is given. Our main contribution to this 

group of techniques is the introduction of a geometrically 

based worst case testing method called INDENTATION. The 

INDENTATION method is based on a discrete representation of 

the region of acceptability, obtained by a regionalization /37/ 

a 
Solutions which fail to meet the 100% yield requirement. 

44 
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Of the input space. As with other geometrical methods 

regionalization and therefore INDENTATION becomes prohibitively 

expensive as the dimensionality becomes large. 

In chapter three the results of the application of the 

INDENTATION method in conjunction with a particular search 

strategy called the bisectional search, are presented for 

a three variable circuit. 

Chapter four deals with design centering methods based on 

Monte Carlo analysis. As Monte Carlo analysis does not provide 

gradients of the yield function, attention is confined to 

direct search methods of optimization. Initially, a previously 

reported method, Pattern search, is briefly reviewed. The main 

original contribution is the introduction and development of 

a novel technique, called the statistical exploration method 

(abbreviated MYOSE). 

For selecting new trial solutions, MYOSE uses information about 

the position of passing and failing circuits, provided by Monte 

Carlo analysis performed for the current iterate. The procedures 

for selecting the direction of search and the size of the step 

in this direction are described and discussed. The effectiveness 

of the MYOSE method is demonstrated with results obtained for 

a number of circuit examples. The largest circuit example 

tested involves 43 variable components. 

The dependence of the accuracy of a yield estimate on sample 

size was discussed in chapter one. In chapter four it is 

argued that in an iterative method of yield maximization 

4 
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(design centering) it is of greater importance to correctly 

rank yield estimates than to attain high accuracy for individual 

yield estimates. The relationship between sample size and 

degree of confidence of correct ranking is discussed. Two 

sampling schemes which for small sample sizes return .a high 

degree of confidence are described. The first scheme, correlated 

sampling uses the same random numbers for successive iterates. 

This decreases the variance of the estimate of the difference 

in the yields of successive iterates. Thus for a particular 

sample size the confidence of correct ranking is increased. 

The second scheme, the Common Points scheme, reuses, for the 

current iteration, some of the circuit analyses performed for 

the Monte Carlo analysis of the previous iterations. The 

tolerance regions of successive iterations overlap considerably. 

The scheme makes use of the fact that the contribution to 

yield of the overlapping part of the tolerance region does 

not need to be re-evaluated. Whereas the correlated sampling 

scheme is useful for any form of component p.d.f., the common 

points scheme is only applicable for the case of uniform 

p.d.fs. 	Later in the chapter we provide a comparison of the 

two schemes for a particular circuit example, when component 

p.d.fs 	are assumed to be uniform. This particular example indi- 

cates a greater 4fficiency of the common points scheme,over 

the correlated sampling scheme. 

As with other direct search methods /55/ no general results for 

the convergence properties of the 	method are given. In 
N 
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addition we are unable to derive conditions for yield maxima. In 

practice application of the algorithm to various circuit 

examples leads to increases in yield for several iterations. The 

number of iterations required has been from about five to nine. 

For the circuit examples tested, the number of iterations appears 

to be independent of dimensionality (see table 4.9). 

Chapter five considers methods of tolerance assignment based 

on Monte Carlo analysis. The group of methods considered 

commences with wide tolerances and low associated yield. 

Yield is estimated by Monte Carlo analysis. New tolerances 

are selected via algorithms which use information about the 

distribution of the component values of the pass and the fail 

circuits. The particular algorithms for selecting new tolerances 

distinguishes one method in this class from another. 

Monte Carlo analysis is performed with the new' se of tolerances 

and the process is continued. At each iteration tolerances are 

tightened over those of the previous iteration. The procedure 

can be continued over a number of iterations until 100% yield 

is achieved. Alternately the procedure may be continued until, 

a cost function is minimized. 

We commence the chapter with discussion of a relevant cost 

function reflecting the trade-off between yield and tolerance. 

The efficacy of the iterative scheme for minimizing such a function 

is discussed. An existing method, TOLERATE is reviewed. The 

mathematical arguments in support of the TOLERATE algorithm are 

4 



299 

are clarified. In particular the parameter, yield sensitivity 

which is intended to be a measure of a component's effect 

on yield, is shown to be unreliable. 

A serious shortcoming of the TOLERATE method is that of overdesign. 

To overcome the practical ambiguities and overdesign, the 

PERTOL method is introduced. The mathematical arguments for the 

PERTOL tolerance assignment criterion are explained. Comp-

arative results of the application of both methods to specific 

circuit examples are shown. PERTOL is found to provide lower 

cost solutions than TOLERATE in every case. 

6.3 SUGGESTIONS FOR FURTHER RESEARCH  

Suggestions for future research are presented in two groups. 

The first group relates to improvements and extensions to 

algorithms and techniques discussed in this thesis. The 

second group considers the extension of the concepts and ideas 

developed, to other problems within the field of statistical 

design. 

6.3.1 EXTENSIONS TO TECHNIQUES DEVELOPED IN THE THESIS  

6.3.1(a) A technique' for further increasing the computational 

efficienty of Monte Carlo based design centering methods 

(Chapter 4) is proposed. The method to be employed in 

conjunction with the correlated sampling scheme is based on the 

use of Taylor series approximation of the circuit response. 
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We denote by f(P°) a particular circuit response. Here 

P°  = Pi p2 .... pK represents a set of values for the K 

component parameters. The value of the response for another set of 

values P' = P°+1P may be written in terms of a Taylor series 

expansion /11/ as: 

K 1 K K 	a p 
f (P°+AP) = f (P°) +1 	Sf 	Pi  + -21I 	Sf Sf 	Pi 	Pi 

1=1 Pl pi 	1=1 j=1 Pi  Pi . p 	P 

	

i 	j  

+  	 (6.1) 

Where SX etc. are the first, second and higher order 

sensitivities of the response f(.). 

A full circuit analysis and the required sensitivities are 

computed at point P°. The response at any other point P' 

can then be estimated using a suitably truncated version of 

series (6.1). The advantage of this method is that the compu-

tational cost of evaluating sensitivities and the Taylor 

series approximation is in general far less than that of re-

evaluating the circuit response for P'. 

Expression (6.1) is an infinite series. However, in practice 

it has to be truncated after a certain number of terms. The 

conditions to be satisfied for (6.1) to converge and the 

dependence of accuracy on the point of truncation are discussed 

by Sud /56/. Sud has also described a scheme for using the 

Taylor series to perform Monte Carlo analysis /57/. In 

I 
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any investigation of our proposed scheme, the results obtained by 

Sud are of interest. Therefore his scheme for performing 

Monte Carlo analysis using Taylor series approximations is 

summarized here. 

Scheme 1 uilia/ 57/) ,  

1. Perform a full circuit analysis for the nominal point 

(design center) P°. Calculate the sensitivities of the 

circuit response with respect to the component parameters. 

2. Set counter j=1. 

3. Generate random sample Pi. Points are generated according 

to the relevant probability density function O(.). 

4. Estimate values for circuit responses at point Pj, by 

use of the truncated Taylor series. 

5. Store results. 

6. Increment counter j=j+1. Stop if j is greater than the 

maximum number of sample circuits to be analysed. Otherwise 

go to step 3. 

The main shortcoming of this method of Monte Carlo analysis is 

that of lack of accuracy. For a particular number of terms the 

approximation becomes less accurate as the deviation from 

nominal of individual parameter values increases. Therefore 

the use of the Taylor series for Monte Carlo analysis is less 

reliable when the parameters are subject to large tolerances. 

The limitations imposed by accuracy will be less stringent 

4 
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when the approximation is employed for correlated sampling. 

This will be so because corresponding sample points of successive 

iterates will be in close proximity in parameter space. 

Consider figure 6.1 which illustrates the relationship between 

the tolerance regions and sample points of successive iterates 

in design centering. Initially let the iterates of interest 

be 1 and 2, with design centers Py and 11 respectively. The 

sample points for the two iterations are denoted as 

P11 P12 •••• PIN 	and P21 P22 	 P2N respectively. 

The two design centers are related according to (6.2): 

P2 = PZ + 	~P1 6.2, 

where we denote AP]. = Ap11 61)12 	 Ap1K' 

It is shown in section 4.4..2 that correlated sampling ensures 

that sample points will be related in a similar manner i.e. 

P2j = Pli + AP1 	j=1....N 	6.3 

Our proposed scheme is as follows: 

Scheme 2 

1. Perform a full Monte Carlo analysis with design center P1. 

That is, perform circuit analysis for the N random sample 

points P11 P12 .... PIN• In addition evaluate and store 

relevant sensitivities of the various responses with 

respect to the component values, for each of the N sample 

circuits. 
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3. Perform a modified Monte Carlo analysis: 

(i) Generate the new sample points according to expression 

6.3, i.e. perform correlated sampling. 

(ii) Approximate circuit response for the new points 

P2= 	p2N, by use of the Taylor series.a 

Implementation of steps 2 and 3 in the iterative scheme summarized 

in section 4.4.2(f), will result in considerable computational 

savings. 

Scheme 2 as described here only extends to the second iteration. 

When a new design center is chosen after iteration 2, i.e. 

P3 = P2 + OP'2, then the response of the new sample points may still 

be'S approximated in terms of the response and sensitivities 

of the sample points of iteration number 1. Alternatively, 

we may now perform full circuit analyses and sensitivity 

calculations and use these to approximate the sample points 

for the fourth iteration. 

A general scheme is envisaged where, after each new choice of 

design center, a decision is made as to whether full circuit 

analyses are to be performed, or the approximation is to be 

employed. The accuracy of the approximation becomes poorer with 

increasing deviation of component values. However, the 

deviations apl Ap2 .... apK will in general be much smaller 

than the tolerances of the component parameters. 
a 
No specific suggestions are made about the point of truncation 
of the Taylor series. This question has been investigated by 
Sud /56/ and also by Karafin/'3/. For certain tolerancing 
algorithms Karafin has suggested the use of all first order 
sensitivities and unmixed second order sensitivities. 
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6.3.1 (b) The scheme proposed in 6.3.1 (a), improves 

efficiency by approximating circuit responses for some of the 

Monte Carlo iterations. However, for the situation where 

full circuit analyses are to be performed, we suggest an 

investigation of the following enhancements. 

For acceptability, a circuit has to meet a number of performance 

requirements. 

Notationally: fl  < fl(.) < fl  

fM  < fM( .) < fM 

As before fi(.) is the ith circuit response and fi  and fi 

are the limits of acceptability of fi(.). 

Failure to comply with anyone of the M performance requirements 

renders the circuit to be a fail. While performing Monte Carlo 

analysis the performance functions are evaluated sequentially 

for each sample point. One enhancement already implemented 

is to terminate performance evaluation when the first failure 

to comply with a performance requirement occurs. Further 

improvement will be effected if the order of evaluation of the 

circuit responses is changed. The new order would be such 

that the responses most likely to fail were evaluated first. 

In one possible scheme an arbitrary testing order is assumed 

for the first iteration of the Monte Carlo analysis. The 

frequency of failure of each of the performance constraints is 

evaluated by counting. The order of testing for the second 
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iteration is selected such that the most frequently failing 

performance is tested first and the least frequently failing 

performance is tested last. 

The 43 variable digital filter circuit (chapter 4) was subject 

to 256 performance constraints (i.e. the insertion loss at 256 

frequencies was tested). For each analysis the computational 

cost was proportional to the number of frequencies tested. 

Whereas a passing circuit had to be tested for all 256 

frequencies, a failing point only needed to be tested uptil the 

first failing frequency. Typically the failure rate was 70%. 

Therefore it is clear that considerable savings in computational 

effort could be effected by re-ordering the test frequencies. 

6.3.1 (c) For design centering, two sampling schemes, viz. 

correlated sampling and the common points schemes were discussed. 

For a particular sample size, correlated sampling reduces the 

variance of the estimate of yield difference between different 

iterates. The common points scheme on the other hand achieves 

computational savings by re-using some of the circuit 

analyses of the previous iterate. In chapter four the results 

of a practical comparison of the application of the two 

sampling schemes to a particular circuit example are discussed. 

The results support the conjecture that the common points scheme 

is more efficient. 

We suggest that a more rigorous theoretical and experimental 

comparison of the two schemes be made. Such a comparison would 

be of particular value as the schemes have application beyond 
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the problems of statistical circuit design. For example 

correlated sampling is extensively used in simulation /47/, 

particularily in the design and evaluation of systems subject 

to statistical variations. 

6.3.2 EXTENSION OF THE MONTE CARLO BASED DESIGN APPROACH TO 

OTHER PROBLEMS IN THE FIELD OF STATISTICAL DESIGN 

In this thesis methods of design centering and tolerance 

assignment based on Monte Carlo analysis have been introduced. 

Previously Monte Carlo analysis has been used purely for analysis. 

For particular nominals, tolerances and component parameter 

distributions, the Monte Carlo method is used to estimate 

parameters such as yield. The design methods discussed in 

chapters four and five iterate the process. New nominals 

and tolerances are selected via algorithms which make use of 

the spatial information provided by the Monte Carlo analysis. 

Our methods have several important advantages. Firstly, they 

can deal with circuits involving a large number of toleranced 

components. Secondly the methods are easy to implement using 

existing circuit analysis routines. Finally they do not 

require simplifying assumptions about the form of the component 

or performance p.d.f.s or about the shape of the region of 

acceptability (e.g. convexity). We therefore propose extension 

of our approach to other design problems as discussed below. 

Although the methods discussed are not limited by the nature of 

the circuit being designed, only discrete component circuits 

have been investigated. The extension of the approach to 

va 
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integrated circuits requires a consideration of other statistical 

design problems which may be of relevance. 

6.3.2 (a)  In discrete circuits, tolerances can be imposed on 

any batch of a component by removing out of tolerance components. 

In integrated circuits individual components cannot be sorted. 

Tolerance assignment is nevertheless of importance in integrated 

circuit design. For example the value of an integrated resistor 

is determined by its aspect ratio (length/width). The tolerance 

on its resistance value depends on the width. If the width 

is increased and the length is also increased to maintain a 

certain aspect ratio, then the nominal value of the resistor 

remains constant while its tolerance decreases. 

In addition to tolerance assignment, it is of importance to 

consider correlation between component spreads. For example 

the detrimental effect o'f large resistor spreads may be reduced 

by designing circuit performance to depend on ratio of 

resistance values. The correlation between resistors can then 

be increased by placing them adjacently on the I.C. chip. 

One particular design problem is that of identifying the 

desirability of tracking between component parameters: The 

terms correlation assignment /15/ has been suggested for this 

design problem. Consider the situation where an electrical 

topology and nominal values have been suggested for a circuit 

which is to be manufactured as an integrated circuit. Then 

it is useful to identify desirable tracking between parameters. 

One possible method of doing this would be the following. 
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Perform Monte Carlo analysis assuming uniform p.d.f. s for the 

component parameters. Identify the random sample circuits as 

pass or fail (according to performance requirements). Then 

knowledge of desirable tracking may be obtained by estimating 

the correlation between component values for the pass circuits. 

Similarily undesirable tracking may be identified by considering 

the correlation of component values of the fail circuits. Such 

analyses would give the designer information which would be 

useful in the geometrical layout of the circuit, or in making 

changes to the electrical specifications of the design. 

The effectiveness of different layouts and electrical designs 

could then be evaluated by performing further Monte Carlo analyses, 

taking the correlations into account. 

6.3.2(b)  Monte Carlo based methods would be useful for 

specifying tests on manufactured circuits. The Monte Carlo 

analysis provides information about the correlation between 

different aspects of a circuit's electrical characteristics. 

This may be used to simplify and reduce the cost of testing. 

For example in the manufacture of linear integrated circuits, 

it is more expensive to perform a.c. tests than d.c. tests. 

For final acceptability'a circuit has to meet certain a.c. 

performance requirements. It is desirable to identify and remove 

failing circuits after the d.c. tests. 

Monte Carlo analysis can be used for evaluating the correlation 

between d.c. and a.c. behaviour. On the basis of this, limits 

may be imposed on acceptable d.c. behaviour. By imposing 
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suitable limits the number of bad circuits passed on for a.c. 

testing will be reduced. However, some good circuits will be 

rejected after d.c. testing. The designer may estimate the 

proportion of circuits which pass particular d.c. test limits 

and fail a.c. tests or those which fail the d.c. test limits 

but would have gone on to pass a.c. tests. The effect on these 

proportions of different d.c. test limits may he investigated by 

Monte Carlo analysis. Suitable test limits can then be chosen to 

minimize overall costs of testing. 

The particular problem can be seen to be closely related to 

the tolerance assignment problem / 2/. Therefore some of the 

techniques and'ideas discussed in chapter five may be applied. 
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Design Center P. 

x Represents Sample Points Associated With 
Design Center P2 

Figure 6.1 : Diagram Showing The Relationship Between 
Corresponding Points Of Successive Iterates. 
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