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Abstract 

This thesis is concerned with the problem of language 

orientated computer design from the perspective of intermediate language 

machines, i.e.the abstract machines defined by intermediate forms of 

compilation which can be, afterwards, either translated to target machine 

code or interpreted (by software or microprogram). 

Two kinds of intermediate language machines are considered: 

the first is designed around a particular memory structure and the 

second is a more general machine which can be either software or hardware 

interpreted, or may be further translated prior to interpretation. 

The first case examines the problem of designing an inter-

mediate language machine for a subset of Pascal in which a special 

hardware memory structure is provided to match the requirements of the 

source language data and control structures. Since the mapping of the 

full Pascal data structures to a hardware mechanism is very complex an 

alternative solution using a descriptor mechanism is then presented. 

The second case starts with an empirical study of Pascal 

programs in which a wide range of data about static form and dynamic 

behaviour of Pascal programs is collected and discussed. This data is 

afterwards used to evaluate the Pascal P4 intermediate language machine. 

From this evaluation the most expensive source language constructs are 

detected and alternative intermediate language primitives are suggested 

leading to an improved P4 machine. 
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Thirty spokes are made one by holes in a hub 

By vacancies joining them for a wheel's use; 

The use of clay in moulding pitchers 

Comes from the hollow of its absence; 

Doors, windows, in a house, 

Are used for their emptiness; 

Thus we are helped by what is not 

To use what is. 

Lao Tzu, 'Tao Te Ching', (XI) 

Translated by W. Bynner 



Chapter 1 - Introduction 

1.1 Positioning the problem 

The application of a computing system to the solution of a 

problem expressed in a high-level source language such as Fortran, 

Cobol or Pascal involves two different operations applied in sequence. 

Firstly, the source language statements require translation to some 

intermediate form of statements, an operation normally known as 

compilation. Secondly, the intermediate form statements require 

interpretation, a phase of operation known as execution or run-time. 

In attempting to orientate the design of a computer towards the 

solution of problems expressed in a high-level language, we are 

therefore concerned with the overall cost-effectiveness of the translation 

and interpretation processes. The balance sought between these operations 

will clearly vary in different user environments. In a predominantly 

development environment such as a laboratory servicing classes of under-

graduate students, the translation or compilation phase will be dominant. 

In a production environment, as in a data processing system in a bank, 

repeated interpretation of a limited number of programs will be the 

dominant process. 

Given a particular source language, the translation and inter-

pretation phases will be affected in different ways by the nature of the 

intermediate form of the program (the output of the translation and 

input for the interpretation) and by mechanisms used to achieve the 

transformation; either or both of these factors can be varied by the 

designer to achieve an optimum effect. We shall consider in the 

following chapters examples of optimization of each of these factors 

independently in one case considering the intermediate form of the 



program to be the instruction code of a computer with a store- 

processor structure designed to match the requirements of the source 

language, and in the other considering the nature of the intermediate 

form without analysing in detail the mechanism of the interpretation 

of this intermediate form. 

The nature of the intermediate form of programs is influenced 

by the use to be made of the intermediate form. Example of different 

properties of intermediate forms, dictated by use, are: 

1-source language independence: a common example is the machine 

code of a general purpose computer, compilers of all source languages 

producing a common machine code, subsequently interpreted by hardware 

at run-time. 

2-interpreter independence: an example used subsequently in 

this thesis is the P4 intermediate form of Pascal source programs. The 

result of the compilation may be directly interpreted (for example by 

software or microcode interpretation on a variety of computers having 

different machine code or microcode properties) or may be subjected to 

further translation to a group of machine codes which are subject to 

hardware interpretation. 

3-source language and interpreter independence: the classic 

example of such a universal intermediate form is the UNCOL form (Str58a). 

4-source language dependence permitting (although not demanding) 

the use of a specialized interpreter : in this case the intermediate 

form acts as a natural interface in the overall system designed to 

execute programs expressed in a particular source language. 

The work reported in this thesis partitions the overall problem 

and considers only intermediate forms having the properties of category 4 



above. We postulate, therefore, an intermediate form specifically 

related to a single source language and which may be interpreted 

afterwards by either a particular hardware mechanism or (possibly after 

further translation) by a more general purpose hardware or microcode 

mechanism. 

The translation phase is also affected, of course, by the 

mechanism of interpretation of the translator or compiler. It may be that 

the mechanism is identical to that used to interpret the intermediate 

code (eg. it is common to use the same machine for compilation and 

execution). If it should also be the case that the translator is written 

in the original source language, then overall optimization is achieved 

in the compilation phase by the optimization of the run-time characte-

ristics. This is the case of one example considered in detail in this 

thesis, namely, the Pascal P4 compiler. If the translator cannot be 

written in the source language under consideration, the compilation 

phase becomes a separated exercise in the design of a system to handle 

this different form of problem specification. We shall not pursue further 

in the present thesis a separate study of the execution of the compilation 

phase; we shall however use "ease of translation" as a critical input to 

the design of the intermediate form. 

We shall consider two different types of intermediate forms, one 

designed to be interpreted by a specifically designed hardware mechanism 

and one designed for more general interpretation. In the latter case, it 

would be desirable to analyse the effectiveness of different forms of 

interpretation, which would require a separate study in itself if we were 

to consider the variety of machinery available from different suppliers. 

In the present study, we limit our analysis of effectiveness of the 



intermediate form by analysing the limiting performance of a 

hypothetical interpreter, the limiting case being dictated by store 

occupancy and frequency of access to code and data. No attempt has 

been made to complete a thorough analysis of the effectiveness of 

the intermediate form when translated and/or interpreted on an 

existing general purpose computing system such as the IBM 370. 

1.2 - Delimiting the problem 

Our study is concerned with the design of high-level language 

orientated computers. We have approached the problem by considering 

different forms of intermediate languages which can afterwards be 

either interpreted directly or suffer a further translation to a 

different form to be executed. We have transformed this problem 

to the problem of finding an intermediate form defined by 

two constraints: it should offer a simple translation and its interpreter 

should be efficient at run-time. 

The source language chosen for this study is Pascal. Pascal is 

a block structured high-level language providing a wide variety of 

control and data structuring methods which makes it suited for writing 

well-structured programs. Pascal has been experiencing widespread support 

and is being used in the programming spectrum ranging from teaching basic 

programming principles to sophisticated system applications. This fact 

confirms the correctness of the principles used by the designer N. Wirth, 

and gives support to the study of Pascal orientated machines. Part of 

the success of Pascal can be attributed to its well-defined and 

consistent definition, both at the syntactic and semantic levels. Good 

references to these can be found in Wir71a, Hoa73a and Jen75a. 



The efficiency of the abstract machine defined by an inter-

mediate form can be evaluated according to the resources consumed by 

the machine when executing a benchmark. The use of the resources 

implies a cost measure which is a function of a set of cost parameters. 

The cost parameters chosen in our case must be, preferably, implemen-

tation independent; this lead us to choose parameters based on memory 

utilization instead of time or speed which are dependent on low-level 

implementation and operating system behaviour. The set of cost parameters 

has static and dynamic components, the static ones measuring code and 

data occupancy and the dynamic parameters measure the information 

traffic during program execution. More explicitly the cost parameters 

used, denoted by ai (16) are the same as the set used by Wortman 

(Wor72a) in his study of a Student-P1 machine, and can be defined as: 

al-the number of bits required to represent instructions 

a2-the number of bits required to represent data 

a3-the number of memory references to fetch instructions 

at run-time 

a4-the number of memory references to access data 

(load or store) at run-time 

a5-the number of bits of instruction fetched during program 

execution 

a6-the number of bits of data accessed during program 

execution&  

The evaluation of these cost parameters involves using a 

given estimative of the workload to which the machine is going to be 

submitted. There are two approaches to this measuring: 

i-direct measurement: in this case the compiler(from the 

source language to the intermediate form)and the interpreter are modified 



to provide direct monitoring information about data and code usage 

when running the benchmark. 

ii-indirect measurement: the composition of the benchmark is 

analysed in terms of source language constructs (Wor72a). With the 

aid of the code generation patterns for these constructs and the 

knowledge of the static and dynamic frequency of appearance of these 

constructs the cost measure can be estimated without running the 

benchmark. This method can be very useful in initial design phases 

if the frequency of usage of these constructs is known since it offers 

the advantage of accessing performance without the need for constructing 

a compiler and interpreter. 

1.3 Related work 

One of the first reported contributions to the study of 

intermediate languages is given by Randell and Russell (Ran64a) in 

their description of the intermediate language machine for Algol-60 

to run in the KDF-9. Their proposals had an influence in the Burroughs 

B6700 and some ideas are found in the Atlas computer. 

The use of abstract intermediate language machines as one way 

of writing portable compilers is a common practice in compiler writing. 

The compiler is divided in two parts: the first of which is source 

language dependent and the second of which is interpreter or machine 

dependent; the interface between the two parts being an abstract machine. 

This approach is used in several compilers, such as BCPL, Algol 68C and 

Pascal P. Compiler portability is achieved by writing one translator 

from the intermediate code to the target machine code. The BCPL inter-

mediate code machine is called OCODE (Ric71a) and is a zero address 

stack based machine. Since BCPL allows access only to variables in the 



current procedure or global variables, the addressing mechanism 

needs only two registers: one to the base of the local stack and 

one to the global area. Further simplifications in the OCODE machine 

come from the fact there is only one data size in BCPL and the 

language does not allow dynamic creation of objects. The Algol 68C (Bau73a) 

Z-Code machine is a one address machine with a set of registers. The 

set of instructions provide register-register and register-storage 

instructions and is orientated to interpretation in the IBM 370. 

The Pascal P4 compiler is a portable compiler for a subset of 

standard Pascal (Jen73a, Nor74a). The compiler generates code for an 

abstract intermediate language machine. The P4 machine is an almost 

pure stack machine whose design constraints where both simplicity of 

compilation and interpreter efficiency. The machine is considerably 

more complex than OCODE due to Pascal rules for variable accessing, 

dynamic creation of objects and different data sizes. This compiler 

has been implemented in a wide range of machines from Cray-1 to 

microcomputers. A more detailed description of it is made in chapter 5. 

N. Wirth describes in his book "Algorithms+Data Structures= 

Programs" an interpreter for an intermediate language used in the 

compilation of PL/O. We have used this work as a basis for our 

experiment with the extended PL/O machine described in chapter 2. The 

PL/O machine described by Wirth is a simple, pure stack machine 

reflecting some of the ideas of the P4 machine. 

The "Basic Language Machine" is an attempt at designing a 

computer architecture to suit a given language. The approach taken 

by Iliffe (I1i68a) is the design of a conceptual storage structure 

to meet the requirements of a language to be used in systems and 



application tasks. The storage is organized as a tree in which the 

storage elements are grouped together in sets of various types. The 

sets are linked to each other by structural information called 

"codewords", which are also grouped into sets. There are some real 

machines which have incorporated concepts derived from the study of 

intermediate language machines. The Burroughs 6500 is the first 

realization of one architecture to solve the weaknesses of conventional 

architectures for handling languages like Algol-60 where dynamic storage 

allocation is a language property. The main•problem posed by Algol-60, 

i.e. the formation of addresses at run-time and the maintenance of 

procedural history are elegantly solved by the use of the display and 

the B-6500 stack organisation (How76a, Hau68a). 

Two of the main design objectives in the design of the 

ICL-2900 were related to the matching of high-level language charac-

teristics: efficiency in handling code from several high-level languages 

and capability for handling dynamic code and data structures. In other 

words, the ICL 2900 was designed to act as an intermediate language 

machine for various source languages, (Buc78a and How76a). 

The Burroughs B1700 system (Wi172b) is aimed to work as a 

universal intermediate level machine. The machine does not possess a 

fixed instruction set but allows the possibility of every application 

defining its required instruction set and addressing primitives into 

what is called a S-language, which is then interpreted by changeable 

microprogrammed emulators. 

Wortman presents in his Ph.D thesis (Wor72a) one instance of 

the whole process of language oriented computer design. The source 

language is Student-PL, a dialect of P1-1, used for teaching purposes 



at Stanford University. The work has two main parts: first is the 

definition and refinement of a Student-Pl machine; second a comparison 

of the efficiency of this machine against the IBM 360. Wortman's 

evaluation technique is an extension of Wichman's method (Wic69a, 

Wic70a, Wic71a) for comparing Algol-60 implementations. Wichman's 

work indicates that terms of the cost measure used in the evaluation 

can be associated with statements in the source language and that it 

is a useful way to characterize machine performance. Wortman extended 

this work by relating the cost parameters used in the evaluation with 

language fragments which often constitute only parts of statements. 

The defintion of which fragments to use in the evaluation depends on 

the source language, the cost measure function being used and the 

implementations being compared. The basic idea is to choose enough 

small fragments so that every cost parameter can be uniquely associated 

with a set of language fragments. According to Wortman, there are two 

conditions for choosing the fragments: 

a-each fragment must be mapped to a non-overlapping sequence 

of object code instructions 

b-it should not contain data dependent loops. 

This evaluation technique will be used in chapters 5 and 6 of this thesis. 

1.4 Method 

We present in this thesis two approaches to the study of 

Pascal orientated intermediate language machines. The first is presented 

in chapter 2 and the second is covered in chapters 4, 5 and 6. 

The first method deals with the derivation of an intermediate 

language machine, whose primitives are built using a specifically 
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designed memory structure. We start by considering two aspects of the 

problem: the derivation of intermediate language primitives for control 

statements and primitives for language data structures. The advantage 

of this approach is that we can work with two different aspects of the 

source language; in the first case we study the problem of implementing 

procedure calls, loop handling and expression evaluation without consi-

derations about data; in a second stage we study the problem of mapping 

data structures independent of control sequence. In both cases the 

requirements of both control and data structures are translated in terms 

of abstract data structures. These abstract data structures are then 

translated in terms of special-purpose memory systems, such as specially 

designed shift-registers or random-access memories with automatic 

indexing capabilities. This technique can be seen as an attempt to bridge 

the gap between the definition of intermediate languages and the 

possibilities of large-scale integration for implementing complex but 

repetitive hardware structures. One way of achieving simpler inter-

mediate forms is by the use of more sophisticated hardware memory 

structures, which is an exact parallel of the case of introducing 

hardware primitives for real arithmetic instead of the painstakingly 

interpretation of these using simple arithmetic for integers. 

A method for deriving intermediate language machines which are 

more general purpose and more independent of its mode of interpretation 

is presented in chapters 4, 5 and 6. The method is based on two simple 

principles: the first is that the process of deriving an intermediate 

form is essentially iterative, i.e. it may have to be repeated several 

times until the desired results are obtained; the second is the 

principle that the intermediate language machine has to be evaluated 

and improved according to the workload to which the intermediate 
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language machine is going to be submitted. This method has four 

distinct phases: 

i-start with the definition of an "easy to compile" 

intermediate form. In our case we start with one already defined 

intermediate form - the P4 intermediate form used by the Pascal P4 

compiler: 

ii-a study of an advanced workload is made, from which the 

characteristics of the advanced workload are collected. This information 

is to be used both for evaluation and improvement of the intermediate 

form machine. The key to this evaluation technique is the concept of 

language fragments (Wor72a). 

iii-the evaluation of the cost measure is made using the static 

and dynamic distribution of fragments obtained in phase ii. Determine 

which are the language fragments which use most of the resources. 

iv-alternative intermediate form primitives for the mapping 

of these fragments are suggested. The data about frequency usage of 

language fragments is now used to evaluate the effect of these alter-

native strategies in the cost measure. This process can be repeated 

several times until a satisfactory cost measure is obtained. In a 

latter phase, not developed in this work, the data about fragments 

usage can be used to compare the resulting intermediate form with other 

forms using different hardware bases. 

1.5 Thesis composition 

In chapter 2 we consider the problem of deriving an intermediate 

language machine for a subset of Pascal. The control and data structures 

are analysed and implemented with special purpose hardware mechanisms. 

The source language is an extended version of the PL/0 language with 
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additional control and data structures. 

Chapter 3 presents a study of the problem of defining intermediate 

language primitives for the implementation of Pascal data structures. 

The resulting technique is a descriptor mechanism using a set of 

descriptor operators and descriptor formats. 

Chapter 4 presents the result of our analysis of form and 

behaviour of Pascal programs. From this study, among other data, we 

have collected static and dynamic properties which permit evaluation 

of different implementations of Pascal orientated machine, and it will 

be used to evaluate and improve the Pascal P4 intermediate language 

machine. 

In chapters 5 and 6 we study one particular intermediate 

language machine - the P4-machine. We start by evaluating the P4 

machine using the data collected in chapter 4. The result of this 

evaluation is used to detect the areas of the P4-machine which use 

most of the resources. Alternative constructs are suggested and the 

overall improvement measured. 
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2 - The EPL/0 machine 

2.1 - Introduction 

The implementation of a high-level language on a real or abstract 

machine via a compiler involves the implementation of two different 

language aspects: 

a - the language control structure, comprising the set of prim-

itives for mapping selection, repetition and procedure call statements. 

b - the language data structures, comprising the representation 

of primitive data types and the provision for implementing the methods 

for data structuring provided by the language. 

Implementing each one of the features in the first group above 

involves the use of some storage space; which has some properties 

defined by the language rules and some defined by the method chosen by 

the implementor to execute the translation procedure. For example, the 

implementation of procedure and function calls need some area of 

storage to be used to store control information. The type of infor-

mation and its structure depend on language rules - e.g. it will depend 

on whether the language allows procedures to be nested or recursive or 

permits procedures to be passed as parameters (McKe75a). These features 

would imply, for example: 

a - if no recursion is allowed, storage for data areas can be 

allocated when the program is loaded. 

b if no nesting is permitted, the addressing will be reduced 

to local and global variables. 

c - if the language does not allow parametric procedures, all 

calls will preserve the current scope of addressing apart from the data 

area of the called procedure, i.e. only one change in the scope is made. 

We can imagine that the area of storage used for the support 
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of procedure implementation forms a data structure, whose actual form 

depends on language rules and compiler strategy. The same concept can 

be applied to the rest of the control primitives. The storage area 

needed for the implementation of language data structures can also be 

thought of as a data structure. As in the case of procedures, there 

are several language parameters which can influence the run-time data 

structure, including: 

a - if the type definitions can be nested 

b - if the size of data objects can vary at run time. 

c - if new objects can be generated at run time. 

One approach to the problem of language oriented computer design 

is through the direct hardware implementation of the run time control and 

data structures. A good example is the display mechanism of the Burroughs 

B6700, which is a hardware implementation of part of the data structure 

required for keeping the run-time addressing environment in a block 

structured language. This partial data structure is an array of addresses 

pointing to the data areas accessible to the running procedure (or block) 

which is implemented as a set of fast registers. This idea could be 

extended to cover not only the control activities (like return addresses, 

memory allocation) but also storage and access of structured variables, 

e.g. arrays could be stored and accessed in a special memory for arrays, 

records would have their special memory etc. 

This chapter describes one exercise in language oriented machine 

design, based on the ideas presented above. The work consists of four 

parts: 

a - the design of the specialized memory structures to meet the 

language requirements. 

b - design of the intermediate language which uses the specialized 

memory primitives. 
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c - write a compiler and interpreter to verify these concepts 

d - run a test batch to collect some machine statistics and 

study its behaviour. 

We have chosen for this experiment a subset of Pascal called 

PL/0 (Wir76a) which was extended to provide additional control state-

ments and data types. We have chosen this extended version of PL/0 

as it provides a realistic language on which to demonstrate the design 

method, while remaining simple enough to be analysed and tested without 

excessive effort. 
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2.2 - The PL/0 language and its extensions. 

The PL/O language was created by N.Wirth (Wir76a) for the purpose 

of teaching compiler techniques. The design constraints for this 

language were that it should be "small" enough for its compiler to be 

presented in a book and sufficiently complex to expose the basic concepts 

of compilation. It can be thought as a simplified version of Pascal 

designed for compiler teaching purposes. 

The original version of PL/O contains the basic control statements 

for selection and repetition: if-then and while statements. It also 

provides assignments and procedure calls. The procedure definition can 

be nested and procedures can be recursive. The only data type offered 

is integer. 

The original PL/O definition has been extended in the present work 

and it will be referred to as EPL/O from now on to differentiate it 

from the original version. 

The modifications introduced are: 

a - inclusion of the for, repeat and case statements. 

b - the procedure definition can specify value parameters. 

c - two new data types: array and stack. 

Arrays are of type integer and the lower bound is always zero. 

Stacks, corresponding to the common last-in first-out structure have 

a base type integer. A variable which is declared of type stack can 

appear either in expressions or in the left-hand side of assignments; 

if inside an expression every reference to it implies that an element in 

the top of this stack is read out, while if in the left hand side the 

result of the expression is inserted on top of the stack. There is also 

a primitive called - empty(s) which returns the value 1 (there are no 

booleans in PL/O) in the case when the stack denoted by the parameter s is 
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empty, otherwise returns. Q. 

The main reason for the introduction of stacks as a language 

feature (which makes it not a true subset of Pascal) is for testing 

the possibility of designing memory structures for matching abstract 

data structures. The only way of using this data structure in a language 

like Pascal is to introduce it as a type to be used by the programmer 

at variable definition time. 

A syntactic flowgraph of the extended version of PL/0 is presented 

in Appendix 4. 
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2.3 - The extended PL/O machine 

The design of the extended PL/O machine followed the principle, 

outlined in section 2.1, that the structure of a machine oriented 

towards a high level language can be derived from the analysis of the 

run time requirements for implementation of that language. The run time 

requirements are first expressed in terms of abstract data structures 

which are then implemented by specialized memory devices. Each one of 

these specialized memory devices will have a set of primitives upon 

which the instruction set is defined, with each instruction expressed 

as a combination of these primitives. 

The first step in our design for an extended PL/O machine is 

the study of the requirements for the memory system. We have already 

identified two basic structure classes: the language data structures 

and the control structures, so we assume that the machine needs two 

memory systems: 

a - the data memory: to store the local and global variables 

simple or structured and support their access methods. 

b - the control memory: to store the control information needed 

for supporting data and code addressing in a nested, recursive procedure 

environment and provide a mechanism for expression evaluation. 

2.3.1 - The data memory system 

The data memory system implements the data structures needed 

for supporting the storage and access of simple and structured variables. 

The problems arising from the use of this memory system in a dynamic 

allocation scheme do not affect primarily the memory structure, but only 

its addressing, which will be dealt with in the next section. 

Extended PL/O has one simple type - integer and two structured 

types array and stack, both of base type integer. This lead us naturally 
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to the subdivision of the data memory system in three subsystems: 

- the integer memory to store integer variables 

- the array memory to implement array variables storage and access. 

- the stack memory to implement stack variables storage and access. 

2.3.1.1 - The integer memory 

The integer memory, referred to as IM is, in abstract, an array 

of integers, the array upper bound being the memory size. An array is 

mapped directly in hardware to a random access memory. There are two 

primitives defined for accessing the integer memory: 

- readint (absadr): read the contents of the integer memory whose 

address is absadr. 

- writeint (absadr): write the contents of the memory buffer into 

the address absadr. 

The absolute address utilized by the primitives is the result 

of the translation of the address couple in the display memory, discussed 

in section 2.3.2.5. The integer memory and its primitives are presented 

formally using Pascal notation in table 2.1. 

2.3.1.2 - The array memory 

The array memory stores the local and global variables of type 

array and provide a simple mechanism for array element access. Individual 

components of an array variable are denoted by a selector of the form: 

x[i]. An access to an array element involves two main actions: 

a - check if index i is in the array range 

b - evaluate the address of x[i]. 

In some machines a dedicated register, the index register, is 

used to mechanize the second operation. This operation involves setting 

the index register to the value of the index i and loading the value of 

the array base address to the accumulator, the value of the address of 
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xEi] being automatically generated. The actions for range checking the 

index are left to the programmer.* 

A special memory system can be devised in such a way that both 

operations are executed by the memory system itself. One solution is 

the specification of an array memory with the following components: 

(Fig 2.1) 

a - one random access memory AD for storing the array data. 

b - a random access memory MA for storing the addresses of arrays 

in AD. 

c - one active component for adding and comparing addresses. 

address of x in MA 

        

 

MA 

   

index i 

     

   

,` 	+ / adder for indexing 

W 

 

comparator for bounds check 

AD 

Figure 2.1-Array memory lay-out 

The operation is as follows: the address of array x is an entry 

to MA; the system reads the address of array x in AD and reads the base 

address of the successor of x in MA, which enables the system to execute 

* Footnote Machines with descriptor mechanisms can do both actions 

simultaneously, see chapter 3 for discussion of this 

alternative solution . 
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bounds checking. A formal description of the array memory is given in 

table 2.2. 

2.3.1.3 - The stack memory 

The design of the stack memory followed the same ideas used in 

design of the array memory. Stacks are usually simulated in random 

access memories as arrays with implicit indices, which are incremented 

or decremented according to the operation being executed. Complex 

problems of space management appear when more than two stacks are 

required to share a limited memory area (Knu68a). 

A single stack can be implemented by a shift-register on which 

the primitives shift-right and shift-left are used to map the stack 

primitives pop and push. However, a problem appears when more than one 

stack has to share the same physical device, since the normal shift-

register has only its extreme elements accessible. One technique for 

solving this problem is by defining a shift-register in which every 

position is addressable and the primitives shift-right and shift-left 

are changed to: 

a - push from x: elements with address greater or equal to x 

are shifted one position. The position x is 

written with the value of the memory buffer mbr. 

b - pop from x: the position x in the shift-register is read 

out and all elements with address greater than 

x are shifted one position. 

As in the case of arrays, two operations have to be implemented 

when accessing an element of a stack variable: 

a - locate the top of stack in the stack memory 

b - check if the stack is empty 

For performing these two operations another memory, the mark-stack 
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MS is introduced in addition to the storage for the stack variables SM. 

The mark-stack or MS is a simple array of pointers each of which contains 

the address of a particular stack variable. The address of the top 

element of a particular stack is obtained by relocating the stack address 

as known in the program in the mark-stack; i.e. the variable index  in 

the primitives described in table 2.3 can be defined as: 

index: =, MS [stackaddress3; where stackaddress is obtained after 

relocation of the stack address couple in the display memory. 

Since after any stack operation occurs, all the addresses of 

other stacks will change, a primitive operation, called fixmarkstack, 

is to be incorporated in MS to execute this correction automatically. 

Table 2.3 defines the memory subsystems for the stack memory. 

Since we are using a sequential language for describing parallel operations, 

stacks in table 2.3 are represented as arrays with the sequential for 

loop in the primitives pushfrom, popfrom and fixmarkstack denoting an 

operation which is to be executed in parallel. Table 2.3 also defines 

three high-level primitives which will be used directly in the instruct- 

ion set: 

a - pop(absadr): to read a stack element 

b - push(absadr): to write on a stack variable 

c - empty(absadr): to test if the stack is empty 

2.3.2 - The control memory system 

The basic requirement for the control memory is the supporting 

of the implementation of the control structure of the language. This 

implies in mechanisms for the support of the selection (if-then and case 

statements), repetition (while, repeat and for statements) and abstrac-

tion statements (procedure and function calls). The selection and 

repetition statements require very simple control mechanisms, which are 

reduced to expression evaluation and code jumps. Expression evaluation 

is needed in assignment and procedure calls (in parameter passing) and a 
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special memory is assigned to it. 

Most of the other requirements for the control memory stem from 

the fact that extended PL/O procedures can be nested and recursive. 

Procedure calls in a static language like Fortran can be implemented 

very simply by storing the return address in the body of the called 

procedure - a solution which can not be used in EPL/O since procedures 

are recursive; the mechanism for implementing return address requirements 

is the procedure linkage memory. 

Other requirements come from data addressing in an environment 

where procedures can be nested and recursive. Two different mechanisms 

are needed -the first to manage the creation of procedure data areas 

called the mark-data-area memory; the second for the support of data 

addressing mechanism and it is called the display memory. 

In the description of the control memory system we shall make 

frequent use of the stack data structure. To simplify the description 

we shall use a type stack having the same properties as the type stack 

in EPL/O. 

The control memory system contains four memory subsystems: 

1 - the expression evaluation memory 

2 - the procedure linkage memory 

3 - the mark-data memory 

4 - the display memory 

2.3.2.1 - The expression evaluation memory 

The data structure needed for implementing expression evaluation 

depends on the algorithm chosen by the implementor to translate 

expressions (and obviously the language rules). The simplest form of 

translating expressions is by transforming the expression to a reverse 

polish format which is then executed by using a stack and reverse 
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polish (postfix) operators in the order code. In normal stack machine 

implementations the evaluation stack coalesces with the data storage 

stack, although this is not a necessary condition since the data storage 

stack is used as a stack for block allocation of variables which are 

subsequently accessed, not in the last-in first-out manner but in a 

random-access way. We assume the expression evaluation memory EM to be 

a stack on which the following primitives are defined: 

a - pushem: push mbr in expression memory 

b - popem: read top of expression stack to mbr. 

c - literal (value): push value to expression stack 

d - operator (op): execute operation defined by op with the two 

elements in the top of EM and return result 

to EM. 

A definition of the expression memory and its primitives is presented in 

table 2.4. 

2.3.2.2 - The procedure linkage memory LM 

Every time a procedure is called, the information about the 

return address - which is the actual value of the program counter PC 

(in the extended PL/0 machine) must be saved. In a normal implementation 

this information would be saved in the activation record of the called 

procedure and restored on return. Return addresses of procedures are 

naturally accessed in a last-in first-out manner, so the abstract data 

structure in this case is the stack. 

The linkage memory can be used for loop control, and in the 

extended PL/0 implementation it is used for storing information used 

in the execution of the for statement. 

2.3.2.2 - The mark-data-area memory 

Extended PL/0, like Pascal, allows procedures to be recursive. 



25 

This implies that procedure data areas can not be allocated at load 

time; instead they must be allocated at procedure entry time and 

released at exit time. Since the last data area to be allocated is 

the first to be released the addresses of active data areas form a 

stack which is called MD in the EPL/O machine. 

In the extended PL/O machine there are three different data 

memories, one for each type, so each entry in the stack which holds 

the address of the active data areas should contain three pointers, one 

to each of the specialized data memories: integer, stack and array. 

The format of each entry can be defined by the type declaration 

datapointer in table 2.6. We also define a register TOP to point the 

start of the free space in the data memories. The management of the 

data areas is executed by the primitives pushmd and popmd. 

2.3.2.5 - The display memory 

The addressing of global data areas, i.e. addressing variables 

of procedures in levels of nesting less than the current procedure, can 

be achieved via the display. The display is simply an array of pointers 

to the *areas of the procedures which are accessible to the one which is 

currently in execution. If the maximum level of nesting allowed is 

maxnest then a simple display can be defined as: 

DM: array El..maxnest) of datapointer; 

When a procedure is called the display memory must be updated. 

If the language does not allow procedures to be passed as parameters, 

then this implies that the called procedure must be in the scope of the 

caller. The implication is that the display is already set, apart from 

the entry corresponding to the data area of the called procedure. If 

the lexical level of the caller is m and the lexical level of the called 

procedure is n (1 s n s m+1) then the actions at procedure entry and 

exit are: 
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at entry; save DM[n] (the entry to be changed) 

replace DM[n] by current stack marker 

at exist; restore DM[n] to old value. 

Since the first exit must correspond to the last entry, then a 

stack is the adequate structure for storing the entries of the display 

to be saved. The simplest solution is to define each entry in the 

display to be a stack, such that the contents of each element can be 

automatically saved. With this refinement the definition of display 

becomes: 

DM: array El..Maxnest] of 

stack of datapointer; 

The set of primitives operating on DM (table 2.8) simplifies 

the display maintenance, which becomes: 

at entry: execute 'pushdisplay(n)' where n is the level of the 

called procedure, this will automatically save the old 

display entry and load the address of the free area 

to DM[n], 

at exit: execute popdisplay(level) to restore old data area 

pointer. 

Each extended PL/O variable is defined by a triple (type, level, offset), 

with the variable type embedded in the instruction format. The absolute 

address for an element of type integer is formed by the primitive: 

procedure intaddress(level, offset) 

begin(*evaluate absolute address*) 

absadr: = DM[level]. intpainter + offset 

end; 

The same applies for stacks and arrays. 

The extended PL/0 instructions set (table 2.8) is built with the 
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set of memory primitives defined for data and control memory systems. 

Fig. 2.2 shows the relation between the various system components. 

2.4 - The experiment 

A complete system was designed to test, simulate and perform 

measurements in the extended PL/O machine defined above. The system 

consists of an extended PL/O compiler and interpreter both written in 

Pascal. The compiler translates extended PL/0 programs to EPL/O machine 

code. Monitoring instructions embedded in the compiler and interpreter 

are used to collect data about source text composition, the code generated 

and run-time machine characteristics. 

Two experiments were made in the simulated version of the EPL/O 

machine: 

a - a set of 28 procedures was collected from Wir76a and Wir73a. 

These procedures were coded in EPL/0, compiled and run in the system. 

b - a subset of the test batch above, consisting of five sort 

procedures was coded and run in the original PL/O machine, as defined 

in Wir76a. Both machines are compared in terms of the number of 

instructions needed for coding and running the sort algorithms. 

The information resulting from the above experiments, although 

of limited scope, can be used to check the correctness of the design 

principles and suggest improvements in the EPL/O machine to match 

language usage requirements. 

2.5 - Results 

The data gathered in the first part of the experiment can be 

divided in three groups: 

a - data about EPL/O program composition: tables 2.9 and 2.10 

display the information about frequency of use of source language con-

structs and operators, while table 2.11 displays EPL/0 procedure data 
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area size statistics. 

b - data about the code generated - tables 2.12 and 2.13 contain 

the static and dynamic distribution of EPL/O machine instruction usage. 

c - data about EPL/O machine memory behaviour: table 2.14 displays 

the frequency of use of each one of the components of the EPL/O memory 

system. 

The results of the experiment of running five sort procedures 

in both the EPL/O machine and the original PL/O is presented in table 

2.15. 

2.6 - Conclusions. 

This chapter describes an attempt to design an intermediate 

language machine around a specialized memory system. The memory system 

primitives are defined to match the source language data and control 

requirements. 

The following points should be noted concerning the mapping of 

language data structures: 

a - there is a definite improvement in data access efficiency 

combined with a simplification in code generation. 

b - the use of a special memory for types which are not in the 

language definition, such as stacks, although offering some implementation 

difficulties can bring considerable gains. However, to be used efficiently, 

these types must be embedded in the language. 

c - there is an overhead in the control memory system incurred 

in the management of different data memories. As a consequence the data 

space required by the display and mark-data memories is trebled in the 

design considered here. 

d - there will be difficulties when we try to apply this concept 

to the full data structuring methods provided by Pascal. This is due 
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to fact that Pascal types can be nested, implying that the access 

technique for one type cannot be used for another. 

In the case of the control memory we observe that: 

a - there is a significant improvement in compiler simplicity 

and in the size of the generated code achieved by the use of a memory 

system orientated towards the control requirements of the source language. 

In this specific case, the control memory has two main components one 

for expression evaluation and a second for supporting the procedure call 

mechanism; these are the most used language features (see table 2.9). 

b - the components of the control memory can be implemented by 

cheap, large sequential memories thus providing a fast and simple solution 

to control structure mapping without any loss in generality. 
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Table 2.1 - Integer memory definition 

IM: array [0..maxintaddress] of integer; 

procedure readint (absadr: 0..maxintaddress); 

begin  

mbr: = IM[absadr] 

end; 

procedure writeint (absadr: 0..maxintaddress); 

begin 

IM[absadr] := mbr 

end; 

Note: mbr is a special purpose register - the memory buffer register. 

Table 2.2 - Array memory definition 

AD: array CO..maxarrayaddress] of integer; 

MA: array [O..maxnoarrays] of 0..maxarayaddress; 

procedure readarrayelement (arrayaddress, index); 

begin  

elementaddress: = MACarrayaddress] + index; (*form real address*) 

arraybound: = MACarrayaddress +1]; (*bound is next array start*) 

if (index < 0) or (elementaddress arraybound) 

then 

error 

else 

mbr: = AD[elementaddress] 

end; 
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Table 2.2 (Cont'd) 

procedure writearrayelement (arrayaddress, index); 

begin  

elementaddress: = MA[arrayaddress] + index; (*form address*) 

arraybound 	. = MA[arrayaddress + 1]; 	(*bound*) 

if (index < 0) or (elementaddress >arraybound) 

then 

error 

else 

AD[elementaddress]: = mbr 

end; 

procedure updatemark (arraysize,offset); 

begin 

MA[offset] + arraysize (*offset is address of next array in MA*) 

end; 

Table 2.3 - Stack memory definition 

SM: array CO..maxstackaddress] of integer; 

procedure pushfrom (index); 

begin  

for control: = maxstackaddress 

downto index + 1 

do SM[control] : = SM[control-1]; 

SM[index ] : = mbr 

end; 

procedure popfrom (index); 

begin  

mbr: = SM[index]; 

For control: = index 

to maxstackaddress-1 

do SM[control]: = SM[control+l] 

end; 
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Table 2.3 (Cont'd) 

procedure fixmarkstack (stackaddress); 

begin  

for control: = stackaddress 

to maxmarkstackaddress 

do SMCcontrol]: = succ(SMCcontrol]); 

end; 

procedure pop (absadr); 

begin 

index: = MS[absadr]; 	(*get address of top of the stack*) 

popfrom (index); 	(*mbr has data*) 

fixmarkstack; 	(*correct mark—stack*) 

end; 

procedure push (absadr); 

begin  

index: = MS[absadr]; 	(*address of top of stack*) 

pushfrom(index) ; 	(*inser mbr in top of stack*) 

fixmarkstack; 	(*correct mark—stack*) 

end; 

procedure empty (absadr); 

begin 

if MSCabsadr] = MS[absadr+lJ 

 

then 

mbr: = 1 

else 

mbr: = 0 

(*stack is empty*) 

end; 
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Table 2.4 - Expression memory definition 

EM: Stack of integer; 

procedure pushem; 

begin (*write mbr in top of stack*) 

EM: = mbr 

end 

procedure popem; 

begin (*read top of the stack to mbr*) 

mbr: = EM 

end; 

procedure literal (value); 

begin (*load a literal constant on evaluation stack*) 

EM: = value 

end; 

procedure operator ( op); 

begin (*execute operation defined by op*) 

acl: = EM; 	(*read first operand*) 

act: = EM; 	(*second*) 

case op of : 

+ . . 	EM: = acl + ac2 ; 

EM: = ac2 - acl ; 

* 	EM: = acl* ac2 ; 

/ 	EM: = ac2/acl 	; 

end; 

end; 
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Table 2.5 - Procedure linkage memory definition 

LM: stack of integer; 

procedure pushlm; 

begin (*save PC in linkage memory*) 

LM: = PC 

end; 

procedure poplm; 

begin 	(*restore PC*) 

PC: = LM 

end; 

Table 2.6 - Mark data-area memory definition 

type datapointer = record  

intpointer: 0..maxintaddress; 

stapointer: 0..maxstackaddress; 

arrpointer: 0..maxarrayaddress 

end; 

TOP: datapointer; 

MD : stack of datapointer; 

procedure pushmd; 

begin (*save current pointers to free data space*) 

MD: = TOP 

end; 

procedure popmd; 

begin (*restore pointer to free space*) 

TOP: = MD 

end; 
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Table 2.7 — Display memory definition 

DM: array [1..maxnest]'of 

stack of datapointer; 

procedure pushdisplay(level) 

begin (*save current entry in the display and update*) 

DM [level] : = TOP 

end; 

procedure popdisplay(level); 

begin (*return old entry in level*) 

scratch: = DM [level] 

end; 
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Table 2.8- EPL/Q instruction set. 

I-LODINT 	1,a :begin (*load integer to expression memory*) * 
readint (absadr)' 
end; 

2-LODSTA 	l,a :begin (*load stack element to expression memory*) 
pop (absadr) 

end: 

3-LODVEC 	l,a :begin (*load array element to expression memory*) 
popem; 
readarrayelement(absadr,mbr) 

end; 

4-STOINT 	l,a 	:begin (*store top of EM in integer memory*) 
writeint(absadr) 

end; 

5-STOSTAL 	l,a 	:begin (*store top of EM in stack memory*) 
push(absadr) 

end; 

6-STOVEC 	l,a 	:begin (*store top of EM in array memory*) 
popem; 
writearrayelement(absadr,mbr) 

end; 

7-DOUPEN 

8-DOUPEE 

9-STOCS 

10-LITCS 

a 	:begin (*do loop enter sequence*) 
** 

if IM[ctladr]>limit 
then PC: = a; (*a contains out of loop address*) 

end; 

a 	:begin (*do loop tail sequence*) 
IM[ctladr] : = succ(IM[ctladr]); 
PC: = a 

end; 

:begin (*store top of EM in linkage memory*) 
temp: = PC; 
PC: = EM; 
pushlm; 
PC: = temp 

end; 

a 	:begin(*store literal a in linkage memory*) 
temp: = PC 
PC: = a; 
pushlm; 
PC: = temp 

end; 

* FōōtnOte 	absadr is the absolute address generated by the relocation of 
the address couple (1,a) by the display memory. 
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11-TSTACK 	l,a 

12-STOIP 	l,a 

:begin (*test if stack is empty*) 
if empty(absasdr) 
then litem(1) 
else litem(0) 

end; 

:begin (*store integer parameter at offset a*) 
writeint(TOP.intpointer+a): 

end; 

13-STOSP 

14-LIT 

a 	:begin (*store stack parameter at offset a*) 
push(TOP.stapointer+a) 

end; 

a 	:begin (*load literal a at EM*) 
literal (a) 

end; 

15-0PR 	a 	:begin (*execute arithmetic operation*) 
operator(a) 

end; 

16-JMP 

17-JPC 

18-CALL 

a 	:begin (*jump to a*) 
PC: = a; 

end; 

	

a 	:begin (*jump if false to a*) 
if EM = 0 

then PC: = a 
end; 

	

l,a 	:begin (*call procedure at level 1 address a*) 
pushdisplay(1); 
pushlm; 
pushmd; 
PC: = a 
end; 

19-RETURN 	1 	:begin (*return from level 1*) , 
poplm; 
popmd; 
popdisplay(1) 

end; 

20-ENTI 	a 	:begin (*allocate space for a integer variables*) 
TOP.intpointer: = TOP.intpointer+a 
end; 

21-ENTS 

22-ENTA 

a 	:begin (*allocate 
TOP.stapointer: 
end; 

a 	:begin (*allocate 
TOP.arrpointer: 
end; 

space for a stack variables*) 
= TOP.snapointer+a 

space for a array variables*) 
= TOP.arrpointer+a 

** Footnote 	ctladr is the address of the for control variable and limit 
is the maximum value of the iteration; both of which are stored 

in the procedure linkage memory. 
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Table 2.9 - Sentence Distribution 

SENTENCE FREQUENCY PERCENT 

IF 38 9 

WHILE 24 6 

REPEAT 17 4 

FOR 27 6 

CASE 4 1 

CALL 51 12 

ASSIGNMENT 258 62 

Table 2.10 - Operator Distribution 

OPERATOR FREQUENCY PERCENT 

+ 48 25 

38 20 

* 15 8 

/ 9 5 

OR 5 3 

AND 2 1 

NOT 6 3 

= 8 4 

<> 5 3 

<= 10 5 

>= 4 2 

> 30 16 

9 5 
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Table 2.11 — Data Area Size Distribution(Static) 

BLOCK SIZE* FREQUENCY PERCENT 

0 3 5 

1 2 3 

2 10 15 

3 23 35 

4 10 15 

5 10 15 

6 2 3 

7 3 5 

8 2 3 

9 0 0 

10 0 0 

Total number of declared variables and parameters in a procedure. 
* 
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Table 2.12 -- Instruction Distribution(Static) 

INSTRUCTION FREQUENCY PERCENT 

LODINT 405 19 
LODSTA 11 1 
LODVEC 82 4 
STOINT 199 10 
STOSTA 14 1 
STOVEC 72 3 
DOUPEN 24 1  
DOUPRE 24 1  
DODOEN 3 0 
DODORE 3 0 
STOCS 27 1  
LITCS 27  1  
TSTACK 12  1  
STOIP 16 4 
STOSP 3  0  
STOVP 0 0 
LIT 313 15 
OPR 214 10 
JNP 115 6 
JFC 0 0 
JPC 91 4 
CALL 50 2 
RETURN 65 3 
ENTI 65 3  
ENTS 65  3  
ENTV 23 1 
ENTD 65 3  
DISP 33  2  
ABORT 4 0 
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Table 2.13 - Dynamic Instruction Frequency 

INSTRUCTION FREQUENCY PERCENT 

LODINT 3143 29 
LODSTA 35 0 
LODVEC 861 8 
STDINT 823 8 
STOSTA 58 1 
STOVEC 550 5 
DOUPEN 264 2 
DOUPRE 216 2 
DODOEN 44 0 
DODORE 36 0 
STOCS 56 1 
LITCS 56 1 

TSTACK 34 0 
STOIP 209 2 
STOSP 0 0 
STOVP 0 0 
.LIT 1079 10 
OPR 1546 14 
JMP 291 3 
JFC 0 0 
JPC 688 6 

-CALL 123 1 
RETURN 124 1 
ENTI 152 1 
ENTS 152 1 
ENTV 23 0 
ENTD 152 1 
DISP 60 1 
ABORT 0 0 
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Table 2.14 - Memory Access Distribution 

MEMORY 
	

FREQUENCY 	PERCENT 

INTEGER 	4735 	13 
STACK 	127 	9 
ARRAY 	1434 	4 
EXPRESSION 	10662 	29 
DISPLAY 	6835 	19 
MARK-DATA 	992 	3 
LINKAGE 	796 	2 
CODE 	10779 	29 

Table 2.15 - Comparison of two PL/O machine versions. 

Machine 
	Code size 	Instructions executed 

Original PL/O 	536 	4788 
EPL/O 	398 	2803 
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3 	Descriptors and the implementation of data structures. 

3.1 Introduction 

According to N. Wirth (Wir76a) a well-structured program can 

be thought as consisting of two different parts: a data structure and 

the algorithms which work upon it. In the same manner, the problem of 

mapping a high level language like Pascal to an architecture can be 

subdivided in two problems: 

- the mapping of language data structures. 

- mapping of the control statements. 

The problem of finding primitives for control structure does 

not present major difficulties. Deriving primitives of language data 

structures which can be efficiently mapped to hardware is more difficult, 

not only because data structures are more complex than control structures 

but also because the former is interwined with the addressing method 

of the language with its problems of scope, blocks etc. 

There are two main techniques for mapping language data 

structures to machine architecture: 

a. A hardware solution, which is characterised by the design of special 

purpose memories to meet the required data structure primitives. 

This is the line of solution used in the PL/0 machine discussed 

in Chapter 2. This approach can only be used when the language 

data structures are not very complex - like PL/0. But, when we 

consider a language like Pascal two main obstacles appear: 

i, there are several forms of structuring data. This leads 

to several different memories whose management is very 

costly. 

ii. the data types can be nested. The memory structure to 

cope with this case would be very complex. 
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b. A software or logical solution which involves a memory 'emulation 

device', i.e. a device capable of transforming the linear memory 

of present day computers into a structured space with the required 

properties of the data structure definition. This can be achieved 

using descriptors. 

As a starting point in our study of descriptors we decided 

to investigate the ICL 2900 descriptor mechanism. (ICL76a). The ICL 

2900 was designed originally to act as a target language machine, i.e. 

to match the needs of the intermediate forms of various compilers 

(Buc78a). Since it is also one of the more advanced architectures in 

the market, it was thought profitable to study it and to obtain the 

maximum feedback from its design. 

However, the ICL 2900 descriptor presents several problems 

to the implementor of Pascal. These problems are discussed in (Iza79a 

and Ree77a) and can be briefly summarized as: 

a. the 2900 descriptor being a 64-bit entity gives a low value to 

the quotient (data bits/descriptor), i.e. descriptors occupy too much 

space. 

b. the 2900 scheme is not general enough to Pascal requirements, 

e.g. the descriptor 'size' fields can describe only the basic machine 

types, making it impossible the define arbitrary size elements as a 

Pascal record. 

Although an 'ad hoc' method can improve this ratio, it 

imposes a penalty on compiler simplicity. The standard architectural 

solution not only does not provide a simple method for the assignment 

of data structures (as a block) due to the fact that descriptors and 

data are mixed but also complicates the creation of dynamic data 
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structures since structural information must be evaluated at generation 

time (through the procedure new). 

This chapter describes a descriptor mechanism for mapping 

Pascal data types to computer memory. It consists of a set of type 

descriptors and three descriptor operators. The idea is transforming 

a valid Pascal name into a semantic expression which when evaluated 

at run time will give as a result the semantic attributes of the name: 

address and type. 

The semantic expression consists of operands and operators. 

The operands are descriptors and the operators (which operate on 

descriptors giving descriptors) have a one to one correspondence with 

Pascal data selectors. 

Our solution tries to cope with the 2900 descriptor problems 

cited above. The ratio (data/structural information) can be improved 

by attaching descriptors to types instead of to variables. Assignment 

and creation of data structures are simplified because data structures 

are laid down linearly in memory and descriptors are kept separate from 

data. 

The main advantage of this method against the traditional 

compiler evaluation is the obvious simplification of the translation 

procedure which is one of the aims of the language-oriented computer design. 

This is achieved by delaying all the work related to address and type 

evaluation of data structure elements to run time. 

3.2 Basic definitions  

In some primitive machine architectures the semantic infor-

mation about a type or variable is distributed throughout the code, 

without any structure. An organised technique for description of data 
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at machine level is required. 

Instead of having data about an array, for example, 

distributed in instructions like 'compare bounds' or 'load an element 

of size x', data about bounds and element type could be stored in a 

special position which is read each time an access to the array is 

executed. This position is here called the (array) descriptor. 

Since all accesses to data structures of the same kind 

require the same set of operations, it seems natural to associate with 

the descriptor some implementation of the primitive access operations 

required for the particular structure. In the case above, the instruction 

'compare bounds' is a primitive of all array access therefore it can be 

merged in a more general operation 'access array through descriptor' 

which would execute this checking automatically. 

Hence, when discussing descriptors, it is useful to remember 

that the term connotes, with its semantic data, a set of basic operations 

used in data structure access. 

In the implementation of language data structures using 

descriptors the latter will act as a bridge connecting abstract data 

structures to concrete computer memory. Since the terms type, data 

structure and descriptor are very frequent in this chapter, it is 

useful to start by stating their definition and associated symbols. 

Type determines the class of values that may be assumed by 

a variable or expression. Structured type is a type defined in terms 

of other types. Data structure is a structured type together with 

some operations on that data type (Co178a) 
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Descriptor is a data object containing the semantic specifi-

cation of a type or variable. The value of a descriptor, x, is 

displayed as 

x=(n0=f0,n1=f1, ....nk=fk) , 

where ni is the identifier of the i-th field and f0,fl,..fn represent 

the values of the descriptor fields in the same order as they appear 

in the definition. We refer to a descriptor field using the same dot 

notation as in the reference to a Pascal record i.e.: 

x.ni = fi where ni is the identifier of the i-th 

field in the descriptor template definition. 

Descriptor template defines the class of values that may be 

assumed by the descriptor. The template acts as 'type' for the 

descriptor. The definition of a descriptor template is made using the 

same notation used for Pascal records. When defining physical fields 

bit [n] = array [l..n] of boolean 

is used. 

Descriptor operations are the set of basic addressing and 

type evaluating primitives working on descriptors. The description of 

these operations will be made using the same form as a Pascal procedure. 

3.3 Descriptor objects  

Descriptors are data objects. As data objects they have a 

name and a value. The descriptor value is a set of attributes which 

characterise some computer object, e.g. variable, file, procedure or 

another descriptor. Since this chapter is discussing data structures, 

'descriptor' will hereafter denote descriptor for data objects only, 

excluding code descriptors, etc. 

Descriptors are complex data objects. The basic units forming 

the descriptor are called descriptor fields. Each one describes one of 



49 

the attributes of the object. A descriptor field can itself be a 

complex data object depending on the particular attribute being defined. 

The descriptor template defines the set of values that a 

descriptor can assume by defining how many and what kind of fields 

the descriptor has. There are many ways to arrange the semantic infor-

mation concerning an array (array bounds, element type, size, address) 

in different descriptor fields. We have chosen one field partition, which 

will result in the simpler algorithm for name translation, as shown 

in section 3.5. This format is not intended to be the final one, since 

many efficiency constraints could modify it. Among the factors which 

can influence partition are descriptor size and information traffic. 

A field partition whose target were to minimize the area occupied by 

descriptors would give a different descriptor template. 

3.4 Descriptors for Pascal data types  

We are concerned only with Pascal data objects. The data 

objects generated by Pascal are Pascal variables. A Pascal variable 

can be defined by its address and type so a Pascal variable descriptor 

has two fields, type and address, the former being usually a complex 

field. It can be seen that finding descriptors for Pascal variables can 

be reduced to the problem of finding descriptors for Pascal types. It 

is also useful to consider type descriptors as objects in themselves. 

Since types can be shared by variables, the same descriptor can be used 

in the definition of several variables. 

In this chapter we discuss the definition of descriptor 

templates for seven different Pascal data types, of which three are 

simple types and four are structured In order to be able to describe 

semantically all possible type declarations we need at least one 

*Footnote We shall not consider file types since it involves 
system dependent features. 



50 

descriptor template for each data type. 

All non-recursive types, simple types and sets, can be 

described by a fixed format descriptor template. Arrays and records 

on the other hand, if one ties to put in their descriptor the entire 

semantic specification, cannot have a fixed descriptor representation. 

Fortunately Pascal restricts the type of operations on structured types. 

The only operation allowed is assignment of equal type structures which 

does not depend on any semantic attribute of the type apart from its 

size. As an example, the semantic data needed for an array x in its 

two forms x and x[ii are different. For the first case, only its size, 

whilst for the second information about bounds and element type is 

necessary. There is an exact parallel in the case of records. 

This fact gives us the key to solving the problem of the 

recursive nature of these types. The descriptor template for arrays 

and records has (apart from its tag) only one field to hold the array 

or record physical size; separate templates are defined for array 

elements and record items. 

Note: in order to get a more concise representation for 

descriptors, we will omit the field identifier in front of the 

descriptor field value. 

Example: d(T)=(tag=sca,card=3) will be denoted by 

d(T)=(sca,3) . 

In the case of complex fields, parenthesis are used to 

give the correct hierarchy. Also, the mnemonic bit [n] denotes an 

implementation dependent field size. 
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We show below for each Pascal data type its associated 

descriptor template: 

1-primitive types 

Primitive types being predefined and static, there is no need 

for any semantic parameter in their definition. They are defined 

uniquely by their tag. 

primitive-type-template= 	record  

tag: (int,char,bool,real) 

end 

for example, a declaration like: 

type T = integer; 

would create a descriptor for T denoted by d(T) as : 

d(T)=(int). 

2-scalar types 

A scalar type is defined by a set of constant identifiers over 

which the Pascal standard functions pred(x) and succ(x) are defined. 

They can be implemented by mapping the constants on to a subset of 

integers 1..n, so their semantic description needs only the number of 

elements in the set. Their template is: 

scalar-type-templates= 	record  

tag: (s ca) ; 

card: bit [n] 

end 

for example : 

type T=(white, grey, black) would generate 

d(T)=(sca, 3) . 
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3-subrange types 

The subrange type is defined by a pair of constants marking 

an interval over an already defined scalar type. Its template can be 

defined as: 

subrange-type-templates= 	record  

tag : (subr); 

Icon, ucon : bit En] 

end 

4-set types 

The set type can be semantically identified by: 

set-type-template = 	record  

tag : (set) ; 

card: bit En] 

end 

where the field card defines the number of elements in the 

type over which the set is defined. 

5-Array types 

The semantic definition of the type array involves two 

templates. The first is a descriptor for the whole array: 

array-type-template = 	record  

tag : (arr); 

size: bit En] 

end 

where size is field to hold the array physical size, e.g. 

in bytes. We have a second one for the array elements: 

array-element-template = record  

index : simpletypetemplate; 

element : typetemplate 

end 
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where index is any simple type template and element is any type 

6-Record types 

As in the array case, there are two templates defined for 

records. 

record-type-template = 	record  

tag : (rec); 

size: bit [n] 

end 

record-item-template = 	record  

tag : (fid); 

item: typetemplate ; 

offset: bit En] 

end 

where offset is a field holding the physical distance of the item from 

the beginning of the record. 

7-Pointer type 

Since pointers are defined over an already defined type, 

their semantic specification does not need any semantic fields (they 

are already in the pointed type). 

pointer-type-template = 	record  

tag : (ptr) 

end 

Example - We show below how the descriptors for some simple 

types are being absorbed into more complex ones. In the left column 

there is a Pascal declaration, and in the corresponding right column 

we find its descriptor. 
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In the following example we used the symbols : 

d(<id>) - for the descriptor of id 

d(<id>-e) - for the descriptor of the array element of <id>. 

d(<id>-p) - for the descriptor of the type to which the 

variable <id>, a pointer, is bound 

type  

alfa = 1 .. 10 ; 

beta = set of 1..6; 

gama = array Calla] 

of char; 

d(alfa)=(subr,1,10) 

d(beta)=(set,6) 

d(gama e)=(arl,(subr,1,10),chr) 

d(gama)=(arr,10) 

delta= record 

x : alfa ; 	d(x)=(fld, (subr,l,l0), 

y : beta ; 	d(y)=(fld,(set,6),1) 

z : gama ; 	d(z)=(fld,(arr,l0),2) 

u : + delta ; 	d(u)=(fld,ptr,12) 

end; 	d(delta)=(rec,16) 

epsilon = array [alfa] of data ; 

d(epsilon-e)=(arl,(subr,1,10),(rec,16)). 

d(epsilon)=(arr,160) 

3.5 Descriptors for Pascal variables  

Given a set of descriptor templates, one for each data types, 

we can generate descriptors for any Pascal variable. The descriptor 

for a variable is defined by two fields: a data attribute field which 

is the type descriptor to which the variable is bound and an address 

field. 
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The format of any variable descriptor can be defined as: 

variable-descriptor = record 

attribute : typetemplate; 

address : bit [n] 

end 

for example suppose a declaration like: 

var sigma: epsilon; 

d(sigma)=(d(epsilon),address) 

but as in the last section : 

d(epsilon)=(arr,160) 

and if sigma is bound to location 300 in memory, the 

value of its descriptor is : 

d(sigma)=((arr,160),300). 

3.6 Descriptor operators  

Given this semantic description of a data structure we can 

get the descriptor of one of its elements, by using specific descriptor  

operators. 

The operation executed by the 2900 array descriptors is an 

example of a descriptor operator in which given the array descriptor 

and an index it evaluates the array element descriptor. 

After a structure is defined it can be accessed as a whole 

or in parts. The access to certain components of a data structure is 

made through the use of selectors. There is a selector corresponding 

to each structuring method, and in the same way, both can be recursively 

used. 

When a single element which is part of a data structure is 

referenced, it is denoted by a series of selectors applied to the 
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highest hierarchic name in the data structure. One way of thinking 

about a cascade of selectors is as constituting a series of operators 

applied on data types. 

The main constraint in the design of the descriptor 

operators, was the need for a resulting simple translation algorithm 

to minimize the work done by the compiler when generating code for a 

Pascal name. The second restriction is one-symbol-look-ahead, which 

implies that the analysis of names must be done in a single scan from 

left to right. Additionally, during evaluation, the system should use 

the normal data stack, without any special features. At the end of the 

evaluation process the resulting descriptor should be at the top of 

the data stack. These conditions allow a very simple and structured 

technique for evaluating Pascal names, since all evaluations, both of 

expressions and descriptors are made on the same stack. 

The simplest way of fulfilling the above condition is a 

simple one-to-one replacement of the Pascal 'C' the array selector, 

'.' the record item selector and '4' the pointer selector by three 

descriptor operators, which we call bracket, dot and arrow. 

For example, a name like sigma[2].z, would be converted by 

the compiler into the Reverse Polish string 

d(sigma) d(sigmae) 2 bracket d(z) dot . 

where d(<id>) means 'load the descriptor of <id> to the stack'. In this 

case bracket would operate on d(sigma), d(digmā e) and the value 2 to 

produce the descriptor of sigma [2], which combined with d(z) by the 

operator dot gives as result the address and type of sigma[2].z. 

This means a transfer of the operations made by the compiler 

when generating code for sigma[2].z to runtime. 
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The descriptor operators assume a resulting descriptor with 

the format: 

result: 	record  

type: typetemplate 

address: bit [n] 

end 

We use also the following functions: 

Length (x) - is a function that when applied to the descriptor 

argument x returns the size (in bytes) of the element described by x. 

value (x) - the argument x is a descriptor, the function 

returns the value of the object described by x. 

lbound(x) - the argument is a simple type descriptor, the 

function returns the value of the lower bound of the type specified by 

the descriptor. 

i-the bracket operator 

The function of this operator is given an array descriptor x 

an array element descriptor z  and an index value z generate a descriptor 

for the array element variable. Its operation can be defined by the 

following procedure (operands being assumed to be global) : 

procedure bracket; 

{generate a variable descriptor for the array element) 

begin  

result.type := y.element; 

result.address:= (z-lbound(y.index)) 

*length(y.element) 

+x.address 

end 
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This means the generation of a variable descriptor whose 

type is the element field of the array element descriptor and whose 

absolute address is the sum of the base address of the array with the 

product of the index by the array element size. 

ii-the dot operator 

This supplies as result the semantic characteristics of the 

item being selected inside a record. If x is the array descriptor and 

y is the record item descriptor then its operation can be defined as 

procedure dot; 

{generate the descriptor for the record item} 

begin  

result.type := y.item; 

result.address := x.address+y.offset; 

end 

This means the generation of a variable descriptor whose 

type is the same as the item descriptor and has as address the sum 

of the base address of the record with the item offset. 

iii-the arrow operator 

This supplies the semantic description of a pointer selected 

variable. As the pointer variable descriptor describes a pointer 

variable, whose contents point to a variable of type 21, the result 

is the creation of a variable descriptor of the same type, having as 

address the contents of the pointer variable. This can be seen in the 

definition below: 
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procedure arrow; 

{generate the descriptor of a pointed variable} 

begin  

result.type := y; 

result.address := value(x) 

end 

3.7 Examples  

This example shows how, given a name in its textual form 

with all the descriptors associated with it, we can form descriptors 

for its elements. In the following examples suppose the variable 

sigma is bound to memory location 300 and that descriptor evaluation 

is taking place on the same stack as the expressions. Figure 3.1 shows 

a graphic representation of the memory lay-out of this data structure. 

Let us use the same type definitions as in section 3.4. 

Valid Pascal names, defined over a variable sigma of type epsilon are: 

sigma 

sigmaC2] 

sigma[2].x 

sigmaC2].z 

sigmaC27.z[3] 

sigma[2].u+.z 

case 1  

The name is sigma. The descriptor of sigma is: 

d(sigma) = (d(epsilon),300) = ((arr,160),300) 

which means that sigma is an array of size 160, starting at location 

300. See figure 3.1. Note that no other semantic information is needed, 

since Pascal operations on data structures are limited to assignment. 



case 2  

The name is sigma 2 . Its descriptor is defined by the following 

reverse polish string: 

d(sigma [2]) = d(sigma) d(sigmā e) 2 bracket  

Looking at the definition of bracket we can see that the result is 

((rec,6),316), which agrees with figure 3.1-ii. 

case 3 

The name now is sigma [2].x. In this case we have: 

d(sigma[2].x) = d(sigma[2]) d(x) dot 

d(sigmaC2].x) = ((rec,16),316) (fld,(subr,1,10),0) dot 

d(sigmaC2].x) = ((subr,1,10),316) 

The record with its elements is shown in figure 3.1-iii. 

case 4  

The name is sigma [2].z. The result in this case is an array 

descriptor with the attributes of type game and address 318. 

d(sigma[2].z) = d(sigma[2]) d(z) dot 

d(sigmaI2].z) = ((arr,10),318) 

Again, this is shown in figure 3.1-iii. 

case 5  

The name is sigma[2].z[3]. What we get now is the descriptor of 

a variable of type char at address 320, as in figure 3.1-iv. 

d(sigmaE2].z[3]) = d(sigma) d(sigmā e) 2 bracket d(z) dot 

d(z-e) 3 bracket  

which expression when evaluated from left to right gives 

d(sigmaC2].z[3]) = (char,320). 

60 
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case 6  

The name now is sigma[2].u+.z. Suppose also that an instruction 

new (sigmaC2].u) was issued before, allocating a record of type delta 

at position 1000 in memory. 

d(sigmaC2].u+.z) = d(sigmaC2]) d(u) dot d(ū p) arrow d(z) dot 

which will give as final result ((arr,10),1002). 

See parts v and vi of figure 3.1. 

3.8 Conclusions 

We have derived in this chapter one technique for Pascal 

data structure implementation based on language considerations. This scheme 

is more general, less space consuming and simpler to use at compile 

time than the mechnism incorporated in the ICL 2900 architecture. 

Before any efficiency evaluation of this mechanism can be 

made, several implementation considerations must be solved first: 

a. the final descriptor format with number and size of fields. 

b. how to implement descriptor operators - as zero address 

instructions or as one address instructions with the address 

field specifying the descriptor address. 

c. the primitives use for load, store and move data via descriptors. 

d. the method used for store and descriptors: as constants, 

variables in the code area etc. 

In order to answer these questions and to evaluate the efficiency 

of this mechanism we must know first the usage patterns of Pascal data 

structures. An investigation of these usage patterns will be the subject 

of the next chapter. Considerations about implementation and efficiency 

of the descriptor mechanism will be presented in Chapter 6. 
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4-A Study of Pascal programs 

4.1-Introduction 

The main problem in language oriented computer design is to 

find which of the semantic primitives in the source programming 

language must be optimized when mapped to real hardware. A language is 

only a set of rules. It is possible to derive a multitude of machines 

to implement that set of rules. We are looking for a language oriented 

computer matching some efficiency criteria. 

The efficiency criteria we are using is the one already defined 

by McKeeman (McKe67a), which is based in the amount of redundant 

information used by the language-oriented machine to store and run 

programs in the source language. The more information the machine uses 

the less efficient it is. The task of designing a machine for a given 

programming language can be defined by two constraints: the machine 

should allow the implementation of all the language constructs and be 

efficient in terms of information usage. 

It is simple to conform to the first constraint, since any 

machine with a simple increment, test and branch on minus can be proved 

to execute any computable function. However, to minimize the redundant 

information required to store and run programs in the source language, 

we must know the characteristics of these programs in order to adapt 

the machine characteristics to the most frequent program patterns. 

If one had the complete information about the actual programs 

behaviour it would be possible to design a machine which uses the 

minimum of redundant information to run a specific workload. 

Unfortunately this is not possible in a real environment, since 

the components of the workload are not always the same and usually each 

program is being updated and changed as time passes. However, the 
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patterns of the population of programs which constitute the workload 

can be achieved by a statistical analysis of a sample of programs 

representative of the whole population. Extrapolation from such a sample 

is possible since the population of programs will have some properties 

which will be imposed both by the type of application and the language 

rules. 

There are several works in the area of analysis of behaviour of 

programs written in a high-language. Algol-60 was studied by Wichman 

(Wic70a), Chevance analysed Cobol (Chev78a), Knuth studied Fortran 

(Knu71a) and Alexander and Wortman analysed XPL (Ale75a). Wortman made 

a deep study of a dialect of PL-1 called Student-P1 in his doctoral 

thesis (Wor72a). 

Since we are working in Pascal oriented machine architecture 

and there exists no case in the literature of a study, similar to the 

above, of Pascal programs it was necessary to conduct our own 

measurements. 

This study has two main targets: 

1-to collect characteristics of programs which can be used to 

design and improve Pascal oriented machines. 

2-to obtain data which is general enough to enable the building 

of program models. These models could then be used to build synthetic 

workloads,to make predictions and evaluations of computer performance. 

This chapter contains a description of the results obtained by 

the analysis of form and behaviour of well-structured Pascal programs. 

In selecting the sample of programs, we concentrated on system programs 

since it is reasonable to assume that they will consume most of the 

installation resources. The analysis includes textual structure, 
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measurement of syntactic composition and usage.  of •language fragments,.both 

static (appearing in the object code produced by the compiler) and 

dynamic (executed at-run time). 

4.2-The Experiment  

The experiment sample 	consisted of 38 Pascal programs 

making a total of 65000 lines of text; out of the 38 programs we 

selected 23 for dynamic analysis. 

The experimental tool used in the study was based on the Pascal 

P4 compiler which runs in the IBM-370 of the Computing and Control 

Department of Imperial College. See Pugh79a for more details about 

this implementation. 

The Pascal compiler was modified to collect data about the 

currently compiled program composition and its code generation part also 

was modified to insert monitoring instructions in the intermediate text 

being generated. The analysis of the source text is made by procedures 

called at three stages of the compilation process: 

Stage 1 - at the end of compiling a procedure  

Two main routines are executed: 

i- symbol table scan - gets data about declared 

entities in this procedure, more specifically labels, constants, types, 

variables procedures and parameters 

ii- procedure body composition-collects data about 

frequency and size of statements. 

Stage 2 - syntax phase  

Based on the Pascal syntax definition given in the 

Standard Report (Jen74a), monitoring instructions are inserted in the 

text of the compiler to count the frequency usage of the parsing rules. 
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Stage 3 - code generation phase  

We defined a set of Pascal fragments corresponding 

sequences of code generated for 	possible paths in the 

code generation process. In general, fragments constitute only parts 

of statements. Each time a particular 	fragment is found, an 

instruction "monitor fragment i" is inserted in the intermediate code 

and a static record of it is made. ' 

At run time, the monitoring instruction, trans-

lated to 370 object code, updates an array in the stack of the running 

program. Programs are also modified such that they will output automati-

cally, at the end of the run, a file containing the record of the dynamic 

usage of the fragments. 

A flowgraph of the measurement system is shown 

in Figure 4.1. 

4.3-Results  

This section is intended to serve as a guide to the interpre-

tation of the tables obtained as a result of the experiment. The results 

can be divided in three classes: text composition, syntactic structure, 

and code fragments usage. 

4.3.1-Text Composition  

The data about textual composition of programs contains the 

cumulative result of the 38 programs analysed. This data is divided 

again according to the declaration parts in Pascal texts: labels, 

constants, types, variables and procedures. 

4.3.1.1-Labels  

The distribution of labels in lexical levels is presented 

in table 4.1 
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4.3.1.2 - Constant declarations  

Table 4.2 shows both the distribution of declared constants 

in lexical levels and type. Under the entry Scalar are counted all 

constants declared in a definition of a user defined scalar type. The 

third part of the table shows the distribution of the logarithm (base 2) 

of the value of the declared integer constants. 

4.3.1.3 - Type declarations  

Data collected about types consists of: type distribution by 

level, type distribution by form and composition of structured types. 

The data for the last case is presented in matrix form. The lines 

represent the form of the structured type and the columns the component 

type. Each matrix element is a frequency count of the occurence of a 

structured type of a given component type. In the record case, each 

field is accounted separately and pointer entries are for the pointed 

element type.* 

4.3.1.4 - Variable declarations  

We have lumped together local variables and value parameters 

in Table 4.4, since they are indistinguishable in the compiler symbol 

table. The same considerations as for the TYPE area apply. 

4.3.1.5 - Procedures and functions  

Table 4.5 presents the distribution of declared procedures 

by lexical levels and table 4.6 displays the same distributions for 

functions together with the distribution by result type. 

Parameters - Tables 4.7 and 4.8 show the parameter distribution 

both by value and reference (var). Note that a parameter declared in a 

procedure at level n belongs to the level n+l. Since only 5 out of 2026 

of the parameters are procedures their statistics is not displayed. 

* Footnote A more detailed study of the composition of the type  
area appears in Sch79a. 
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Cardinality of arrays, subranges, records and scalars  

Tables containing this information are presented in 

Appendix 1. 

Procedure body composition  

In table 4.9 we have the distribution of logical or syntac-

tical size of procedures. Table 4.10 shows an equivalent distribution 

for statements. In the case of procedures, a size of n means that the 

compiler procedure parsing statements was called n times inside the 

procedure body. (The compulsory begin-end pair is not counted since it 

does not call for statement parsing) 

The information in table 4.11 was collected in order to 

answer the question "what is the composition of a Pascal procedure in 

terms of statements?". A more accurate answer was required than the 

simple average of how many statements of a given kind were found. The 

result is a matrix giving the frequency count of the frequency of 

appearance of statements in procedures. E.g. 175 procedures were found 

with 2 if-statements inside. Only the non-zero entries are listed to 

increase legibility. 

4.3.2 Syntactic Structure 

A convenient way of describing the syntactic composition of 

programs is through a table showing the frequency of utilization of the 

syntax rules used in parsing. Table 4.12 shows this information. The 

format of this table is: the first column has the rule number, the 

second its frequency count followed by the percent against the total 

number of rules. The last column has the description of the rule as it 

appears in the Standard Report. 

There are some simplifications in the set of rules presented 

and they are concerned mainly with redundant rules or some rules used 
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in the lexical definitions of integer, identifier etc. Some of the rules 

which appear in the syntax definition are ignored by the compiler, but 

are still presented here although their count is made "a posteriori" 

(since they are redundant). As one example: 

<tmlabeled statement> ::= <simple statement >1 

structured statement> 

is disregarded by the recursive descent top-down parser. 

The meaning of the frequency count associated with recursive 

rules is as follows: 1-if the rule has the form: 

<C> ::=tI> 1,<y~ the frequency count is the 

number of times the terminal t was found in the text 

2-if the rule has the form 

::= <y>[,<y)' the frequency count is 

considered to be the number of times the non-terminal y is parsed. 

Example - looking at the syntax rules nos. 4 and 5 in table 4.12, we 

can conclude that out of the 1577 (1538+39) times the non-terminal 

(label declaration) was parsed, in 1538 cases no label was declared and 

in 39 cases the reserved word label was found. 

4.3.3 Pascal fragments usage 

Table 4.13 contains the distribution of usage, both static 

and dynamic, of code fragments. The static distribution refers to the 

whole sample - 38 programs while the dynamic is related to the usage 

pattern of a subset of the sample with 23 programs. 

The main categories of fragments are: 

1-program entry/exit - fragments 0 and 1. 

2-Block entry/exit - fragments 2 and 3. 

3-Assignments 	- fragments 4 to 36. This class contains 

the frequency count of the code sequences generated for assignments. 
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They contain three classes depending on the right hand side being a 

constant, a variable or an expression. 

4 Procedure calls - the first group of fragments refers to 

parameter passing by value, using the same categories as the assignment. 

The second group is for var parameters. Fragment 81 and 82 relates to 

procedure calls with or without parameters. The last group contains 

information about usage of the most frequent standard procedures. 

5-Control statements - fragments 93 to 106. 

6-Expressions 	- we have examined the code fragments 

used in code generation for expressions according to operator and the 

class (constant variable or expression) of the operands. We have also 

monitored the use of factors: constants, variables, user and standard 

functions. 

7-Structured variable access - a set of fragments to monitor 

data structure access by the class of access used - record, array, 

pointer or file and type of the accessed element. 

4.4 Conclusions  

4.4.1 Program composition in general 

The average program is about 1685 lines. Its declaration part 

has 16 constants, 17 types, 91 variables, 36 procedures and 6 functions. 

Each program has, on average, 3.2 external files. 

For the average program, the Pascal P4 compiler generates 

3456 intermediate code instructions - an average of 2.06 instructions 

• per source line or 5.14 instructions per statement. 

4.4.2 Constants 

The constants appearing in the object code can be classified 

in: explicit and implicit. An explicit constant appears in the source 

text inside an expression as a literal or a constant identifier. 
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On the other hand, each time an array index (or a subrange) is computed 

(or assigned to) there is a reference to a pair of constants which do 

not appear explicitly in the text - the array range bounds. We call each 

element of a bounds pair a implicit constant. Statically the total number 

of references to explict constants is 16,899 against 10,080 implicit. 

Dynamically there are 953,346 references to explicit constants against 

1,289,622 references to implicit constants. 

The following points are interesting to note: 

- the fact that implicit and explicit constant usage tend to 

balance each other both ..Statically and dynamically 

- almost the totality of implicit constants are of type integer 

as are about 40% of the explicit ones 

- constant strings have a very high static use, about 24%, but 

their percentage of the total number of references to constants at run--

time drops to only 4% 

- the pointer constant nil, on the contrary, has a low percent 

of the total number of the static references, (6.3%) but its percent 

increases to more than the double (13.5%) at run-time. This is due to 

the fact that many loops for scanning lists and trees make use of a 

construct like: 

Table 4.14 

while pointer # nil 	do begin 	.. end 

usage Explicit Constants 

Type Static% Dynamic% 

Integer 38.9 40.2 

Real .1 - 
Character 10.7 28.6 

Boolean 6.5 3.0 

Scalar 13.4 10.5 

String 23.9 4.2 

Pointer 6.3 13.5 
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Con'td Table 4.14 

Implicit constants  

Use 	Static% 	Dynamic% 

Assignment 	21.5 	36.0 

Value Par. 	9.6 	0.7 

Array index 	69.2 	63.5 

4.4.3 Variables  

Variables are used mostly in expressions and in the left-hand 

side of assignments. Statically there is one reference to a variable 

in the left side against two inside expressions. At run-time we have 

one (store) reference against three in expressions (loads). 

About 70% of the variables appearing in the text were entire  

i.e. they had no selectors. Statically we have 0.29 selectors/ variable, 

but this proportion rises to almost the double (0.57 selectors/variable) 

at run—time. This means that it is common to find more structured 

variables than simple variables inside the processing loops. This case 

can be noticed clearly in file buffer access, where only 296 static 

references were found whereas the dynamic count measured was 280,000. 

Since most of the programs were used in some form of symbol processing, 

we could have expected a high number of dynamic access to structures 

including reading and writing files, tree searching and insertion, table 

accesses, etc... The fact that some loops can be very tiny(e.g. while 

not (eof) do read(c)) but work on large pieces of data accounts for the 

large number of dynamic references to structured variables. 
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Table 4.15 

Static % Dynamic 

Variable use 

Construct 

Expressions 57.00 66.96 

Assignment 28.54 22.80 

Ref. parameters 10.11 5.83 

With statement 3.32 2.03 

For control 1.11 2.35 

Static variable composition 

Class Static 

Entire 71.14 

Indexed 10.17 

Field design 11.25 

Referenced 6.58 

File buffer 0.87 

Structured data access 

Class Static % Dynamic 7 

Record field 38.96 40.13 

Array element 35.24 25.10 

Pointed element 22.78 18.13 

File buffer 3.00 16.61 

4.4.4 Procedures and functions 

The compiler processed 1671 procedure declarations. Included 

in this count are 50 procedures with the attribute FORWARD and 82 

external procedures. About 13% of these declarations were 	functions. 
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There were 2026 parameters declared, including parameters to 

external procedures, so the average number of parameters per procedure 

is 1.25. About 37% of the procedures and 17% of the functions had no 

parameters. 

It is an accepted fact that the better structured a program 

is7the higher the proportion of procedure calls it has. It was reported 

by Tanenbaum (Tan78a) how the proportion of procedure calls inside the 

text changed from Fortran to block structured languages like XPL and 

SAL. In a typical Fortran program one might expect a ratio of 10:1 of 

assignments to procedure calls, while in XPL and SAL this ratio is 

between 3:1 to 2:1. As a consequence of the high level of programs in 

our sample, this ratio dropped to almost 1:1 (Including standard 

procedure calls). 

The tables below show the results of the statement distribution 

and also the static distribution of executable statements found in 

several studies of program behaviour. 

Table 4.16  

Frequency distribution of statements  

Statement Static % Dynamic % 

Assignment 30.6 40.3 

Call 29.2 24.3 

If-then 12.3 29.4 

Case 0.8 0.6 

While 2.0 1.5 

Repeat 0.7 0.4 

For 1.2 0.4 

With 2.9 2.9 

Goto 0.2 0.1 

Compound 12.16 

Empty 8.13 
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Cont' d 	Table 4.16 

Executable statements in several languages (static %) 

Pascal Statement Fortran XPL SAL 

Assignment 51 55 47 38 

Call 5 17 25 37 

If 10 17 17 15 

Loops 9 5 6 5 

Goto 9 1 0 0.3 

From the table above we can conclude that the increase in the 

proportion of procedure calls coincide with the decrease of assignments 

and gotos. But, the proportion of if's and loops tend to remain constant. 

The composition in static terms is dominated by assignments, 

calls and ifs. The proportion of assignments, calls and ifs at run—time 

tend to be equal. 

4.4.5 Assignments 

Assignments tend to be very simple. A simple constant or 

variable in the right hand side accounts for 66% of the static 

assignments, this proportion falling to 57% at run-time. 

There is a high proportion of assignments of constants, arising 

in part form initialization of variables as a consequence of the extensive 

use of procedures and local variables. 

About 14% of the static assignments need a range check, but 

this proportion goes up to 37% at run-time. 

The assignment of structured variables - of type record or 

array accounts 14% of the static assignments but only 3% of the dynamic 

ones. This is a consequence of the fact that most string usage is in 

initialization of printable titles. 
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4.4.6 Procedure calls and parameter passing 

Procedures are the second most used language feature. We have 

included standard procedures in our statistics since 50% of procedure 

usage (both static and dynamic) is of intrinsic procedures. 

The situation changes when considering function usage. Although 

statically user and standard function balance each other, there is a 

much higher use of standard functions at run-time - about 80% of all 

function calls. The predicates EOF and EOL dominates at run-time - 50% 

of total function calls, with SUCC accounting for the additional 30%. 

The amount of effort expended in parameter passing is note-

worthy. Parameter passing to user procedures is almost half of the 

assignments - statically 8500 assignments against 7600 parameters 

passed, dynamically 620,000 assignments against 3000,000 parameters 

passed. Since this count not include parameters passed to standard 

procedures and functions we can infer that parameter passing has the 

same level of usage as assignments. 

User and standard procedures - Table 4.17 

Class 	Static % 	Dynamic % 

User 	55 	48 

Standard 	45 	52 

User and standard functions  

Class 	Static 	Dynamic % 

User 	50 	20 

Standard 	50 	80 

Parameter passing to user procedures and functions  

Class 	Static % 	Dynamic 7 

Value , 	60 	42 

Reference 	40 	58 

4.4.7 The selective statements - if-then, if-then-else and case 

Statically these account for 15% of the executable statements, 

this proportion going up to 30% at run-time. This can be partly 
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explained by the fact that in a if-then statement at run-time the if 

part will always be executed but the execution of the then part depends 

on a condition (the same consideration applies for the if-then-else) 

although statically they are counted as two separate statements. The 

average number of case labels in the case statement derived from table 4.12 

is 7.3 labels per case statement. 

4.4.8 The repetitive statements - while, repeat and for 

Using the data present in the fragments table we can evaluate 

the average loop traversal for the repetition statements. See table 4.18. 

Average loop traversal for repetitive statements - Table 4.18 

Statement Usage Repetation Traversal 

While 26,164 145,958 5.6 

Repeat 7,332 59,497 8.1 

For 6,838 70,119 10.25 

4.4.9 Abbreviations - WITH statement 

We have found 793 WITH statements, accounting for 962 

abbreviated variables. The estimated dynamic use of abbreviations at run_. 

time is 60,465. Unfortunately we have not the data to know how many 

variables in the text were being abbreviated. 

4.4.10 Expressions 

Expressions tend to be very simple. The average number of 

operators per expressions is 0.21 (statically) i.e. 4 out of 5 expressions 

will have only one operand. The situation changes at run-time - statically 

there are 0.18 operators/operand but this quota rises to 0.33 run-time. 

Logical expressions have a different pattern. They are used 

in control of selective and repetitive statements, so they include one 

relational operator or a conjunction of conditions. Statically we have 

1.15 operators per logical expression. Also, 75% of the logical 
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expressions have a form: 

<variable> <relational operator) (constant). 

The present results can be compared with those already obtained 

by Tanenbaum and Alexander. The  average number of operators per 

conditional expression is for XPL 1.19 and for SAL 1.22; which shows 

a good correlation with our results. 

Alexander and Wortman have reported about the inefficiency of 

the recursive descent parser when analysing simple forms of expressions. 

This is also noticed in our case, where the compiler uses 30% of all 

the productions only for evaluation of precedence without any semantic 

purpose. The source of inefficiency lies in the fact that the recursive 

descent implements productions by real procedure calls - such that the 

parsing of a single constant or variable takes 3 procedure calls (with 

parameter passing etc..). In a machine without a support for procedure 

calls this can be very expensive. 

Table 	4.19 

Usage of factors 

Class Static % Dynamic 

Variable 51.25 62.00 

Constant 43.41 37.30 

User function 2.18 2.03 

Standard function 2.15 8.29 

Set expression 0.29 0.36 

Operator distribution  

Class 	Static % 	Dynamic 

Relational 	52.99 	61.77 

Add group 	23.76 	19.10 

Multiply group 	12.74 	11.02 

Not (logical) 	10.51 	8.28 
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***********************i ***** 

Table 4.1-Label declarations 

#******** ******************It 

Level Distribution 

Levels Count Percent Cumulative 

1 7 16.67 16.67 

2 12 28.57 45.24 

3 7 16.67 61.90 

4 4 9.52 71.43 

5 1 2.38 73.81 

6 7 16.67 90.48 

7 3 7.14 97.62 

10 1 2.38 100.00 

Total of Labels = 	42 
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******************************* 
Table 4.2-Constant declarations 
******************************* 

Level. Distribution 
Levels 	 Count 	Percent 	Cumulative 

1 1070 83.46 83.46 
2 179 13.96 97.43 
3 21 1.64 99.06 
4 7 0.55 99.61 
5 3 0.23 99.84 
6 2 0.16 100.00 

Type Distribution 
Types Count Percent 
Integer 363 28.32 
Real 1 0.08 
Char 37 2.89 
Boolean 6 0.47 
Scalar 671 52.34 
Array 204 15.91 

Value distribution of 	integer constants 
Size(bits) 	Count 

1 40 
2 56 
3 61 
4 38 
5 2.4 
6 22 
7 40 
8 37 
9 

10 7 
li 8 
12 5 
13 2 
14 6 
15 4 
16 6 
18 1 
31 1 

Total of Constants = 	1282 
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*******************z* ***** * 

Table 4.3-Type declarations 
**.************************* 

Level Distribution 
Levels Count Percent Cumulative 

1 568 88.20 88.20 

2 69 10.71 98.91 

3 5 0.78 99.69 

4 I 0.16 99.84 

6 1 0.16 100.00 

Type Distribution 
Types Count Percent 
Integer 11 1.71 
Char 4 0.62 

Scalar 84 13.04 

Subrange 120 18.63 
Set 8 1.24 

Array 140 21.74 

Record 176 27.33 

Pointer 90 13.98 
File 11 1..71 

Structured type 
Int 

composition 
Rea 	Cha 	Boo Sca Sub Set Arr Rec Poi 

Subrange 118 0 1 0 1 0 0 0 0 0 

Set 0 0 0 0 5 3 0 0 0 0 

Array 3 0 110 0 1 9 0 .1 14 2 

Record 114 5 30 67 47 128 6 375 54 221 

Pointer 2 0 0 0 0 2 1 3 82 0 

File 2 0 0 0 0 0 0 5 4 0 
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******************************* 

Table 4.4-Variable declarations 
******************************* 

Level Distribution 
Levels 	 Count 	Percent 	Cumulative 

1 711 17.99 17.99 
2 1719 43.50 61.49 
3 1076 27.23 88.71 
4 247' 6.25 94.96 
5 90 2.28 97.24 
6 52 1.32 98.56 
7 47 1.19 99.75 
8 6 0.15 99.90 
9 4 0.10 100.00 

Type Distribution 
Types Count Percent 
Integer 544 13.77 
Real 37 0.94 
Char 71 1.80 
Boolean 422 10.68 
Scalar 148 3.74 
Subrange 785 19.86 
Set 62 1.57 
Array 664 16.80 
Record 273 6.91 
Pointer 812 20.55 
File 134 3.39 

• 

Structured type composition 
Int Rea Cha Boo Sca Sub Set Arr Rec Poi 

Subrange 783 0 1 0 1 0 0 0 0 0 

Set 0 0 5 0 44 13 0 0 0 0 

Array 23 0 559 0 6 11 0 19 36 10 
Record 220 11 33 140 66 243 11 649 105 192 
Pointer 0 0 0 0 0 0 2 5 805 0 
File 3 0 104 0 0 1 0 15 11 0 
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*************************** 
Table 4.5-Proper Procedures 
*************************** 

Level Distribution 
Levels 	 Count 	Percent 	Cumulative 

1 798 56.72 56.72 
2 403 28.64 85.36 
3 121 8.60 93.96 
4 -  31 2.20 96.16 

5 22 1.56 97.73 

6 23 1.63 99.36 

7 6 0.43 99.79 

8 1 0.07 99.46 

9 2 0.14 100.00 

Total of Procedures = 1407 
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**********a********* 

Table 4.6-Functions 
******************* 

Level Distribution 
Levels Count Percent Cumulative 

1 122 57.01 57.01 
2 67 31.31 88.32 
3 11 5.14 93.46 
4 8 3.74 97.20 
5 2 0.93 98.13 
7 3 1.40 99.53 
8 1 0.47 100.00 

Type Distribution 
Types Count Percent 
Integer 25 11.68 
Beal 3 1.40 
Char 7 3.27 
Boolean 88 41.12 
Scalar 2 0.93 
Subrange 34 15.89 

Pointer 55 25.70 
Total of Functions = 	214 

Total of procedures S functions = 	1621 
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*************************** 

Table 4.7-Value Parameters 

*************************** 

Level Distribution 

	

Levels 	Count 	Percent 	Cumulative 

	

2 	 635 	 57.99 	57.99 

	

3 	 332 	 30.32 	88.31 

	

4 	 65 	 5.94 	94.25 

	

5 	 28 	 2.56 	96.80 

	

6 	19 	1.74 	98.54 

	

7 	 11 	 1.00 	99.54 

	

8 	 4 	 0.37 	99.91 

	

9 	 1 	 0.09 	100.00 

Type Distribution 
Types 	Count 	Percent  
Integer 	 134 	 12.24 
Real 	 6 	 0.55 
Char 	 23 	 2.10 
Boolean 	 61 	 5.57 
Scalar 	 66 	 6.03 
S ubranga 	199 	18.17 

Set 	31 	2.83 

Array 	 264 	 24.11 
Record 	79 	7.21 

Pointer 	232 	 21.19 

Structured type composition 

Int Rea Cha Boo Sca Sub Set Arr Rec Poi 

Subrange 198 0 0 0 1 0 0 0 0 0 
Set 	0 0 0 0 27 4 0 0 0 0 

Array 	2 0 258 	0 0 0 	0 0 3 	1 
Record 	67 1 10 37 13 52 1 250 54 50 
Pointer 	0 0 0 0 0 0 2 0 230 0 

Fite 	0 	. 0 	0 	0 	0 	0 	0 	0 	0 	0 
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***** *** * * *** * **** * ** * * * 

Table 4,8-Var Parameters 
***#******************** 

Level Distribution 
Levels Count Percent Cumulative 

2 533 63.99 63.99 

3. 172 20.65 84.63 

4 108 12.97 97.60 

5 12' 1.44 99.04 

6 4 0.48 99.52 

7 4 0.48 100.00 

Type Distribution 
Types Count Percent 
Integer .61 7.32 
Real 3 0.36 

Char 7 0.84 

Boolean • 105 12.61 

Scalar 31 3.72  
Subrange 44 S.25 
Set 2 0.24 
Array 124 14.89 
Record 259 31.09 
Pointer 110 13.21 
File 87 10.44 

Structured type composition 
Int 	Rea 	Cha 	Boo Sca Sub Set Arr Rec Poi 

Subrange 44 0 0 0 0 0 0 0 0 0 

Set • 0 0 0 •0 0 2 0 0 0 0 

Array 0 0' 107 0 1 2 0 0 14 0 

Record 154 39 87 322 46 602 1 553 222 112 

Pointer 0 0 0 0 0 0 1 0 109 0 

File' 1 0 82 0 0 0 0 4 0 0 
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************************************ 
Table 4.9-Logical Size of Procedures 
************************************ 

Size 	Count 	Percent 	Cumulative 
0 6 0.38 0.38 
1 16i 10.59 10.97 
2 64 4.06 15.03 
3 76 4.82 19.85 
4 99 6.28 26.13 
5 76 4.95 31.07 
6 86 5.45 36.53 
7 66 4.:31 40.84 
8 62 3.93 44.77 
9 56 3.55 48.32 
10 62 3.93 52.25 
11 55 3.49 55.74 
12 42 2.66 58.40 
13 38 2.41 60.81 
14 36 2.28 63.09 
15 42 2.66 65.76 
16 24 1.52 67.28 
17 32 2.03 69.31 
18 26 1.65 70.96 
19 40 2.54 73.49 
20 22 1.40 74.89 
21 25 1.59 76.47 
22 33 . 2.09 78.57 
23 21 1.33 79.90 
24 24 1.52 81.42 
25 22 1.40 82.82 
26 13 0.82 83.64 
27 12 0.76 84.40 
28 11 0.70 85.10 
29 13 0.82 85.92 
30 24 1.52 87.44 
31 7 0.44 87.89 
32 6 0.51 88.40 
33 i u.44 88.84 
34 15 u.95 89.79  
35 - 0...2 9(,.11 
36 9 (1.57 90.68 
37 4 0.25 90.93 
38 6 0.51 91.44 
39 i 0.44 91.38 
40 6 0.38 92.26 
41 1 0.06 92.33 
42 4 0.25 92.58 
43 9 0.57 93.15 
44 6 0.38 93.53 
45 E 0.51 94.04 
46 2 0.13 94.17 
47 6 0.38 94.55 
48 1 0.06 94.61 
49 4 0.25 94.86 
50+ 81 5.14 100.00 
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**********4***************** **$*#X** 

	

Table 	4.1U-Locicat Size of 	Statements 
** *.***** 	**v*******,  t*************** 

SJ ze 	If 	White 	;tepee 
0 

	

1 	2 	 1 

	

2 	778 	141 	24 

	

J 	473 	 16 

	

4 	241 	101) 	12 

	

5 	3€0 	66 	10 

	

6 	140 	40 	11 

	

7 	185 	29 	9 

	

8 	112 	24 	13 

	

9 	115 	16 	3 

	

10 	79 	9 	6 

	

11 	95 	7 	6 

	

12 	6t 	8 	13 

	

1J 	74 	6 	6 

	

14 	SE 	6 	6 

	

15 	79 	11 	3 

	

16 	47 	6 	.3 

	

17 	55 	7 	4 

	

18 	26 	7 	4 

	

19 	37 	2 	2 

	

20 	32 	3 	1 

	

21 	31 	4 

	

22 	17 	2 	2 

	

23 	15 	2 

	

24 	27 	3 	2 

	

25 	16 	1 	 1 

	

26 	24 	3 	J 

	

27 	22 	3 	1 

	

28 	14 	1 	 1 

	

29 	14 	4 	.3 

	

30 	 10 	 5 	 2 

	

31 	5 	3 	1 

	

32 	11 	 2 

	

33 	4 	1 	1 

	

34 	12 	9 	1 

	

35 	4 	"2 	2 

	

J6 	9 	1 

	

37 
38 	7 4 	3 

	

40 	 5 	 1 

	

41 	7 	1 

	

42 	3 	1 

	

43 	3 	
1 

	

44 	
5 45 

46 

	

47 	4 

	

48 	1 

	

49 	3 	1 
50+ 	64 	16 	4 

For 
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39 
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20 
11 
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7 
6 
2 
2 
1 
2 
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1 
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1 
1 

1 
2 

1 
1 

J 

Case 

3 
16 
12 
27 
15 
6 
b 

11 
1J 
2 
5 
7 
J 
7 
8 
9 
2 
6 
1 
4 
7 

.3 
2 

1 

1 
2 
1 

1 
1 
2 

3 

1 

1 

1 
2 

1 

17 

wlth 

35 
16 

108 
81 
78 
55 
41 
31 
J7 
29 
20 
15 
21 
19 
Ti 
17 
1J 
13 
12 
10 
11 
11 

9 
15 
4 
4 
5 
4 
5 
6 
2 
2 
3 
3 
1 

1 

1 

1 
6 

2 

J 
1 
15 

Compo 

4 
55 

989 
520 
276 
222 
173 
120 
100 
85 
81 
60 
65 
57 
52 
50 
33 
39 
24 
25 
18 
21 
17 
24 
16 
18 
10 
13 
16 
13 
7 
7 
15 
10 
8 
8 

5 

3 
4  
11 
2 
2 
6 
3 

6 
1 

56 
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*####***************c*#************v*v#* v 
Table 4.11—Frequency distribution or HtatesucntH 

4 	******#****'f 
p r drocoduie 

*********** #******************** *a* ***4* f,,-* *arc +t **** +*** A"r*- *• 

Frey As iō 	Cull 	Col() It %File kelieu For Cuss With Coinl,o 
U .346 	338 	1537 619 1163 1432 1345 1433 1033 577 
1 223 	296 	31 JJd .113 127 17d 113 423 353 
2 148 	202 	3 17.i 70 13 38 13 72 222 
3 155 	122 	5 147 21 2 6 12 21 1J2 
4 134 	94 85 10 4 3 13 99 
5 81 	66 53 1 2 1 6 43 
6 79 	49 	1 23 1 2 46 
7 56 	53 2) 1 2 21 
8 39 39 _ 20 2 1 18 
9 34 	44 19 14  
10 42 	32 11 1 3 14 
11 25 	26 11 1 4 
12 25 	31 8 J 
13 15 	23 9 1 1 5 
14 13 	23 8 1 1 
16 13 	18 5 6 
17 7 	13 1 1  
18 13 	9 
19 
20 

6  l5 	
13 4 4 

21 
22 

4 	11 
1 	5 

2 
1 

23 7 	11 
24 5 	7 1 
25 6 	3 2 
26 4 	1 2 
27 1 	3 1  
28 2 	1 
29 1 	2 
30 
31 

1 	3 
3 	1 1  

32 2 
33 2 	1 
34 1 
35 1 
36 2 	1 
37 1 	2 
38 2 
39 1 
4U 1 1 
41 
42 2 
43 
44 
45 3 	' 	1 
46 
47 2 
48 1 
49 1 
50+ 12 	8 1 2 



rn  

#**************************** 
Table 4.12-Syntax Rules 
****.***#********#****** 

Rule 	Rule Count 	Percent 

1 	38 	0.01 

2 	3E 	0.01 

3 	1577 	.0.40 

Usage 
****** 

Rule Name 

<program>::=<progriun heading><bLock>. 

<program heading>::=program<id>( <file Ld>(,<ftLe 	id>) ) 

<block>::=<labet 	dac part><const dec part><type dec part><var dec part> 

<pro/fun dec part><stmt part> 

4 1535 0.39 <labet dec part>::=<empty> 

5 39 0.01 Label 	<label>{,<Labet>) 

6 1481 0.38 <const dec part>::=<empty> 	1 

7 96 0.02 const <const def> [,<const der>) 

8 611 0.16 <const 	dei>:: =<i d> _ <constant> 

9 1660 0.42 <constant 	>::=<unsigned number> ( 

10 24 0.01 <sign><unsigned number> 1 

11 1463 0.37 <constant 	identifier> 

12 3 0.00 <sign><constant 	identifier> 1 

13 373 0.09 <string> 

14 1673 0.42 <unsigned number>::=<unsigned integer> ( 

15 1 0.00 <unsigned real> 

16 1E07 0.38 <type dec part>:: =<empty> 

17 70 0.02 type<type det>[,<type def>) 

18 644 0.16 <type def>::=<id> _ <type> 

19 3593 0.91 <type>::=<simpte 	type> 	1 

20 580 0.15 <structured type> ( 

21 101 0.03 <point er type> 
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Table 

22 
23 
24 

4.12-Syntax 

'94 
560 

3298 

Rules 

0.02 
0.14 
0.84 

Useye 	(cont.) 

<simple type>::=<<cnlar 	type> 	I 

<subrunpe type> 	I 

<type 	id> 

25 94 0.02 <scalar type>::= 	( 	<id> 	(,<id>) 	) 

26 560 0.14 <subranpe type>: : = <c:onstant>.. <ccnstant> 
27 374 0.09 <structured type>::=<unpacked structured 	type> 1 

28 206 0.05 packed <unpacked structured type> 
29 339 0.09 <unpacked strnc. type>::= <arraY type> 	1 

JO 194 0.05 <record type> 1 

31 20 0.01 <set type>I 
32 27 0.01 <file type > 
33 339 0.09 <array type>;: =array (<index type>j of <component type> 
34 339 0.09 <index type>::_ <simple 	type> 
35 339 0.09 <component 	type>::= <type> 

36 194 0.05 <record type>::=record <field list> end 
37 287 0.07 <field 	list>:: =<tl'ced part> 	I 

38 23 0.01 <ti'cc•d 	part> 	; 	<variant 	part> 	1 

39 35 0.01 <variant part> 
40 987 0.25 <tixed part>::=<record section> 	(;<record section>) 

41 1075 0.27 <record section>::=<field id>(,<field Id>) 	: 	<type> 	1 

42 0 0.00 <empty> 



rn 

Table 

43 
44 
45 

4.12-Syntax 

57 
31 
26 

Rules 

0.01 
0.01 
0.01 

Usu 	a 	(cont.) 

<variant 	part>:: =cuse<tag 	field><type 	id> of <variant>(; variant} 
tars 	i'ield>::=< field 	identifier> 	: 	I 

<empty> 

46 151 0.04 <variant>::=<cnse 	Label 	List> 	: 	(<field 	List>) 

47 18 0.00 <empty> 
48' 151 U.04 <case 	label tist>::=<case 	label>(,<case 	Label>) 

49 180 0.05 <case 	Label>::=<constant> 

50 20 0.01 <set type>::= 	set of <base type> 

51 20 0.01 <base 	type>:: =<simiile 	type> 
52 27 0.01 <file 	type>::=file of 	<type> 

53 101 0.03 <pointer type>:: = 	) 	<type 	id> 

54 t98 0.18 <variable 	declaration part>::=<empty>1 
55 879 0.22 var <var.declaration>(;<var.declaration>} 

56 2879 0.73 <var.decLaration>::=Cid> (,<id>} 	: 	<type> 

57 1671 0.42 <proc/func dec part>::=(<procedure cr function declaration>;) 

58 1407 0.36 <procedure or function declaration>::=<procedure declaration>$ 

59 214 0.05 <function declaration> 

60 1407 0.36 <procedure declaration>::=<procedure head><bLock> 
61 512 0.13 <procedure head>::=procedure<id> ; 	i 

62 895 0.23 procedure <id>( <formal par.sec.> (;<formal parsec.>) ) 



Table 

63 

4.12-Syntax 

977 

Rules 

0.25 

Usage (cont.) 

<formal parameter section>::=<parameter group>I 

64 900 0.23 var <pa rame to r group> I 

65 0 0.00 .function<parameter group>I 

66 5 0.00 procedore<id>t,<id>j 

67 2021 0.51 <parameter group>::=<id> (,<id>) 	: <type 	id> 

68 214 0.05 <function declaration>::=<function head><block> 

69 35 0.01 <function head>::=function <id>:<resutt 	type> 	1 	• 

70 179 0.05 (unction <id> <formal par sec> 

(; <iormat par sec>j :<resutt 	type> 

71 214 0.05 <result type> 	::=<type id> 

72 1577 0.40 <stmt 	part>:: =<compound stmt> 

73 27766 7.05 <statement>::=<unlabtlted stmt>I 

74 42 0.01 <label> 	: <untabelled stmt> 

75 18932 4.81 <unlabelle d stmt 	>::=<simpte stmt) 

76 8576 2.25 <struct. stmt> 

77 8505 2.16 <simple stmt 	>::_ <assignment stmt > 

78 8109 2.06 <procedure stmt> I 

79 58 0.01 <goto stmt> 	( 

80 2260 0.57 <empty stmt> 

R1 8165 2.07 <assignment stmt 	>::=<variabte>:=<expression> 

82 340 0.09 <function id>:=<expresslon> 



Table 

83 

84 

85 

4.12-Syntax 

24304 

7614 

2247 

Rules 

6.17 

1.93 

0.57 

Usage 	(cont.) 

<variable>::=<entire variable)! 

<component variable>I 

<referenced variable> 

86 3476 0.88 <component variable>::=<indexed variable,' 

87 3842 0.98 <field designator)! 

88 296 0.08 <file buffer> 

89 3476 0.88 <indexed variable>::=<array var >L<expr>{,(expr>j ] 

90 3842 0.98 <field designator>::=<record var > 	. <field id> 

91 296 0.08 <file 	buffer>::=<ille 	var 	> 	$ 

92 2247 0.57 <referenced var >::=<pointer var > $ 

93 30 175 7.66 <expressi on>:: =<s i np le expression*.  xpreasion>I' 

94 3753 0.95 <simple expr.><relational operator><simpte 

95 1718 0.44 <relational operator>::= 	= 	I 

96 990 0.25 <> 	I 

97 259 0.07 < 	I 

98 149 0.04 <= 	I 

99 102 0.03 >= 

100 259 0.07 > 	1 

101 276 0.07 in 

expr> 



Table 

102 

103 

104 

105 

106 

107 

4.12-Syntex 

3E947 

51 

1683 

1054 

434 

338 

Rules 

9.13 

0.01 

0.43 

0.27 

0.11 

0.09 

Usage 	(cont.) 

<simple expr.>::=<term> 	1 

<imn><term>1 

<simpte exp.><add 

<add op> 	+ 	I 

- 	I 

or 

108 38E05 9.80 <term>::=<fector> 	1 

109 902 0.23 <term><mutt. 	op.><factor> 
110 165 0.04 <mutt. 	op>::_ 	* 	I 

111 50 0.01 / 	I 

112 137 0.03 divl 

113 57 0.01 mod) 

114 587 0.15 ani 

115 19900 5.05 <factor>::=<varialte>I 

116 5683 1.44 <unsigned constant>, 

117 1636 0.42 (<expression>) 	1 

118 1684 0.43 <function deslpnator>I 

119 384 0.10 <set>I 
120 744 0.19 not<factor> 

op.><term> 



Table 

121 
122 
123 
124 

4.12-Syntax 

5683 
5365 
4783 
1068 

Rules 

1.44 

1.36 

1.21 

0.27 

Usage (cont.) 

<unsigned constant>::=<unsigned number> 
<string>, 

<constant id>/ 

niL 

125 59 0.01 <function designator>::=<function id>I 
126 789 0.20 <function id> (<actual per.>(,<actual par>} I 

127 836 0.21 <standard function> 

128 384 0.10 <set >:: =[ 	<cl emen t 	list > 

129 340 0.09 <element 	List>::=<element>t,<element>J 

130 44 0.,01 <empty> 

131 668 0.17 <element>::=<expression>1 

r. 132 129 0.03 <expression> 	. 	. <expression> 
0 

133 992 0.25 <procedure stmt>::=<procedure id>I 

134 3395 0.86 <procedure id>(<actual par>(,<actual per>j )$ 
135 3722 0.95 <standard procedure call> 

136 7611 1.93 <actual par >::=<Expression> 
137 3015 0.77 <variable>I 

138 17 0.00 <procedure id> 

139 0 0.00 <function Id> 

140 58 0.01 <go to stmt>::= mot() <label> 

141 2260 0.57 <empty stmt>::= 



Table 

142 

143 

144 

145 

4.12-Syntax 

3381 
3632 
1070 

793 

Rutei 

0.86 
0.92 
U.27 
0.20 

Usage (cont.) 

<struct.stmt>:: =<compound stmt> 	1 

<conditionai stmt> 

<repetitive stmt 	> 	1 

<with stmt> 

146 3381 0.86 <compound stmt.>::=begin <stmt>[;<stmt>) 	end 

147 3419 0.87 <conditional stuit>::=<if stmt> 

148 213 0.05 <case stmt> 

149 1501 0.38 <if stmt>::=1f <expr> 	then <stmt> 	1 

150 1912 0.49 if <expr> then <stmt> else <stmt> 
151 213 0.05 <case stmt>::=case <expr> of <case list et.>{,<case List 

152 1236 0.31 <case 	list el.>::=<case label 	list> 	: 	<stmt> 	1 

co m 
153 0 0.00 <empty> 

154 1554 0.39 <case 	tabel L i st> :: =<cas a 	Labe t> (,<case 	tabel>) 

155 556 0.14 <repetitive stmt>::=<white stmt> 

156 183 0.05 <repeat stmt> 1 

157 331 0.08 <for stmt> 

158 556 0.14 <while stmt>:: =white <expr> do <stmt> 

159 183 0.05 <repeat stmt>::= 	repeat <stmt> [; <stut>) until<expr> 
160 331 0.08 <for stmt>::=for <control var> 	:=<fcr 1.1st> do <stmt> 

161 793 0.20 <with stmt>::=with<record variable list> do <stmt> 

162 962 0.24 <record variable tint>::=<record var.>(,<record star>) 

Total number of rules applied 	393779 

et.>}end 



********************************* 
Table 4.13-Puscat fragments usage 
************plc*****3r************** 

Order 	Static Count Dynamic Count 

0 	 38 	23 
1 	122 	7.3 
2 	1577 	26051.4 
3 	 7 	1U 

4 	429 	2523 
5 	 9 	 5 
6 	254 	53641 
7 	981 	15647 
8 	729 	9599 
9 	577 	14166 
10 	47 	 18 
11 	745 	12836 
12 	 0 	 0 
13 	415 	122.17 

15 	244 	25136 
16 	 15 	 2 
17 	253 	176353 
18 	49 	1 574 
19 	47 	10864 
20 	319 	15 580 
21 	 5 	 0  
22 	242 	8501 
23 	149 	5061 
24 	1175 	4973'3 

26 	454 	7994 
27 	65 	824 
28 	61 	13369 
29 	256 	20993 
30 	 3 	14 
31 	757 	224344 
32 	57 	628 
33 	 0 	 U 
34 	 0 	 0 
35 	165 	28090 

Fragment Description 

Main program 
External files binding overhead 
Procedure entry overhead 
Open and close of local files 
Assignments - right hand side composition 
Constants by type 
Integer 
Real 
Char 
Boolean 
Scalar 
Subrange 
Set 
Array 
Record 
Pointer 
Variables by type 
Integer 
Real 
Char 
Boolean 
Scalar 
Subrange 
Set 
Array 
Record 
Pointer 
Expressions 
Integer 
Real 
Char 
Boolean 
Scalar 
Subrange 
Set 
Array 
Record 
Pointer 



Table 4.13-Pascal 	fragments usage (cont. ) 

Value parainetere 
Constants by type 

37 334 377 Integer 
38 1 0 heat 
39 85 420)7 Char 
40 93 10056 Boolean 
41 418 1674 . Sca to r 
42 503 1284 Subrange 
43 31 2199 Set 
44 305 2 Array 
45 0 0 Record 
46 21 1 Pointer 

Variables by type 
48 209 148 Integer 
49 15 0 Real 
50 38 10119 Char 
51 87 522 Boolean 
52 49 3252 Scalar 
53 393 2383 Subrange 
54 56 3505 Set 
55 646 1913 Array 
56 183 1987 Record 

o 
57 793 69134 Pointer 

VAR parameters 
oo  70 211 9250 Integer 

71 3 0 Real 
72 15 653 Char 
73 250 504 Boo Lean 
74 110 1 Scalar 
75 180 6604 Subrange 
76 8 Ii Set 
77 472 30106 Array 
78 843 38823 Record 
79 373 78833 Pointer 
80 550 8830 Pile 
81 992 .85416 Procedure ca 11s with no parameters 
82 3395 110650 Procedure catt with parameters 
83 121 ' 107891 Standard procedure GET 
84 20 32531 PUT 
85 170 51 RESET 
86 90 34 REWRITE 
87 198 151.35 READ 
88 2239 55543 WRITE 
89 211 6004 NEW 
90 0 0 DISPOSE 



Table 	4.13-Pascat fragments usage (cont.) 

91 0 0 
92 516 1399 
93 48 2247 
94 10 92 
95 1507 158951 
96 1507 53760 
97 1912 343425 
98 1912 85661 
99 213 10847 
100 556 26 164 
101 556 145958 
102 183 7332 
103 183 59497 
104 331 6838 
105 331 70119 
106 793 49841 

107 983 163992 
108 19 0 
109 346 201811 
110 12 12 
111 479 80854 
112 256 17786 
113 301 14669 
114 635 127111 
115 1 100 
116 721 119260 

' 	\ 
118 2852 548656 
119 70 1102 
120 727 171797 
121 92 3994 
122 12 46 

123 695 118792 
124 47 52 
125 194 4003 
126 78 2692 
127 40 370 
128 138 7061 

PAGE 
CMS procedure 
Goto 
Interlevet jump 
If-then 
If-then =true 
If-then-etse 
If-then-else = true 
Case statement 
While statement 
While test 
Repeat statement 
Repeat test 
For statement 
For incrementing -testing and return 
With statement 
Relational operators - operand type 
Integer 
Real 
Char 
Boolean 
Scalar 
Subrange 
Set 
Array 
Record 
Pointer 
Relational operators - operand class 
Constant - Variable 
Constant - Expression 
Variable - Variabte 
Variable - Expression 
Expression - Expression 
Add operators - operand class 
Constant - Variable 
Constant - Expression 
Variable - Variable 
Variable - Expression 
Expression - Expression 
Set Union 



Table 	4.13-Pascal fragments usage (cont.) 

Subtract operator -operand class 
129 270 9022 Constant - Variable 
130 27 136 Constant - Expression 
131 67 689 Variable - Variable 
132 41 511 Variable - Expression 
133 29 1903 Expression - Expression 
134 20 617 Set Difference 

Cr operator - operand class 
135 0 U Constant - Variable 
136 0 U Constant - Expression 
137 29 16 Variable - Variable 
138 48 1211 Variable - Expression 
139 261 75212 Expression - Expression 

Multiply operators - operand class 
140 68 21)5 Constant - Variable 
141 59 351) Constant - Expression 
142 22 360 Variable - Variable 
143 13 13 Variable - Expression 
144 3 0 Expression - Expression 
145 3 0 Set product 

Divide operators - operand class 
146 111 1168 Constant - Variable 	• 
147 50 34.3 Constant - Expression 
148 19 2(9 Variable - Variable N 149 6 0 Variable - Expression 0 150 1 0 Expression - Expression 

Modulo operator - operand class 
151 30 177 Constant - Variable 
152 14 20) Constant - Expression 
153 5 U Variable - Variable 
154 2 0 Variable - Expression 
155 6 0 Expression - Expression 

And operator - operator class 
156 0 0 Constant - Variable 
157 0 U Constant - Expression 
158 24 8623 Variable - Variable 
159 81 10250 Variable - Expression 
160 482 105772 Expression - Expression 
161 384 12644 Set expressions 
16.2 406 1473 Not operator - variable 
163 338 95750 Not operator - expression 



Table 4.13-Pascal fragments usage (cont.) 

Constants usage by type 
16'1 6586 383247 Inte _4er 
163 23 h Real. 
166 1820 ' 272492 Char 
167 1102 29017 Boolean 
168 2263 100(08) Scalar 
169 0 0 Subrange 
170 0 0 Set 
171 4037 359:57 Array 
172 0 0 Record 
173 1068 128469 Pointer 

User functions by type 
175 109 921 Integer 
176 15 U Real 
177 24 20782 Char 
178 343 11816 Boolean 
179 3 7 Scalar 
180 142 8521 Subrange 
181 0 0 Set  
182 0 0 Array 
183 0 0 Record 
184 212 29079 Pointer 
186 4 0 Standard function ADS 

cn 187 5 4 SQR 
0 188 12 7 ODD 
,-' 189 85 100 215 LOL 

190 141 73452 F.OF 
191 6 U TRUNC 
192 0 0 ROUND 
193 158 5719 ORD 
194 90 635 CHR 
195 208 109 293 SUCC 
196 47 261 PRED 

Variables within expresions -by 
197 2481 38688 Integer 
198 149 833 Real 
199 1074 4900.17 Char 
200 1467 57950 Boolean 
201 999 119927 Scalar 
202 4387 74796 Subrange 
203 397 19977 Set 
204 2908 303148 Array 
205 1187 46724 Record 
206 3146 319800 Pointer 
207 1705 19964 File 

type 



Table 	4.13-Fascat fragments usage (cont.) 

Record item access - by type 
208 335 5131 Integer 
209 65 '0 Real 
210 52 3245 Char 
211 167 16503 Boolean 
212 285 34406 Scalar 
213 534 7516(0 Subrange 
214 44 46 Set 
215 1088 322732 Array 
216 298 115251 Record 
217 974 • 102176 Pointer 

Pointed element access - by type 
219 17 0 Integer 
220 0 0 Real 
221 0 0 Char 
222 0 0 Boolean 
223 0 U Scalar 
224 4 0 Subrange 
225 10 0 Set 
226 156 (1 Array 
227 2060 304924 Record 
228 0 U Pointer 

Array element access - by type 
230 1946 70657 Integer 
231 0 0 Real 

O 232 247 67951 Char 
'~ 233 17 1131J Boolean 

234 250 139 Scalar 
235 1024 272025 Subrange 
236 0 0 Set 
237 0 0 Array 
238 0 0 Record 
239 0 0 Pointer 
241 182 228649 Access to a fife buffer-scatar element 
242 3 0 Subrange 
243 0 0 Set 
244 37 36712 Array 
245 74 9009 Record 
246 0 0 Pointer 
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5 - Evaluation of the P4-machine 

5.1 	Introduction 

After a computer has been specified on paper, its design 

must be evaluated to see whether it meets the required standards and 

to detect the areas of the design which require improvement. This 

chapter is an exercise in language oriented computer evaluation using 

the technique of language fragments (Wor72a). The goal of this chapter 

is to investigate the behaviour of the Pascal P4. Intermediate code 

machine (Nor74a) as a Pascal engine. Although the 	Intermediate 

Language was designed to meet portability constraints, the P4-machine 

has several other advantages as a starting point towards a Pascal 

machine: 

-it is a well structured design 

-it is Pascal oriented 

-has been implemented in hardware and software. 

A proposed machine can be evaluated on the basis of its 

resource consumption which defines a "cost measure" for running a 

workload in this machine. If the machine is oriented towards a high-

level language, then the evaluation problem can be restated as: 

"evaluate the cost measure of running a set of programs representing 

the workload in the proposed machine". 

Since it is not always possible to use the real workload to 

which the machine is going to be applied, we must use an "anticipated 

workload" for evaluation. The anticipated workload used in this study 

is the set of Pascal programs studied in the last chapter. 

In order to be independent of low-level implementation consi-

derations we will define a cost measure which is function only of the 

amount of information used to store and run the anticipated workload 
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(Wor72a). This cost measure has three components: 

i-the static size of programs 

ii-the number of memory references at run time. 

iii-the amount of information - transferred to and from 

store at run time. 

More specifically, the cost measure is a function of six cost parameters 

defined as: 

al-code size in bits. 

a2-static data size in bits. 

a3-the number of memory fetches to instructions during execution. 

a4-number of memory references to data 

a5-number of instruction bits fetched 

a6-number of data bits accessed 

It 

rt 	 tt 

The total cost measure is a weighted sum of these parameters: 

6 
CM= E w..a. 

i=1 1 1 

where the w. are constants used to convert the cost parameters to a 

common measuring unit. 

The cost of parameters of the workload can be estimated by 

calculating the parameters for each code fragment, and then accumulating 

these using knowledge of the static and dynamic usage of code fragments 

in the workload. 

Let us associate with each code fragment fi  a cost vector  

vi[i..6]. We can thus generate the attribute matrix, A.., where ie ij 

[l..6] and j£[1..n] n being the number of fragments. The attribute matrix 

thus contains the cost parameters of all fragments. 
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If the static and dynamic counts of the usage of code 

fragment fi  in the workload are Si  and Di, then the total cost parameters 

ai, can be expressed as: 

a. = EAik.Sk 	(i=1,2) 

k=1 

Eq. 1 
n 

= EA. kDk 
k=i 

(i=3..6) 

Since the weighting factors wi  are technology dependent, we 

will simplify the evaluation procedure to the study of the six total 

cost parameters - ai. Thus instead of dealing with a single scalar cost 

measure, we will analyse a cost measure which is a vector: 

CM' = (al, a2, a3, a4, a5, a6). 

Based on the data presented in (Nor74a, and Jen73a) we 

describe an initial implementation for the P4 machine. With this 

description we can evaluate the cost measure for each one of the P4 

instructions. Since fragments are sequences of instructions, we can then 

evaluate the cost parameters for each of the fragments, and hence the 

cost measure CM' to run the anticipated workload. 

When we know the total cost measure CM' we can now evaluate 

how possible modifications in the P4 machine would alter the total 

cost measure, and by some iterations arrive at an.improved Pascal 

machine. 
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5.2 The P4 -machine 

5.2.1 Introduction 

The P4-machine is the abstract machine defined by the 

intermediate language used in the P4 Pascal compiler (Nor74a). It is 

a stack machine with zero address instructions. The basic operations 

of the P4-machine are derived out of logical requirements due to 

Pascal with extra operations introduced for matching the needs of data 

structure access. 

The P4-machine has 6 registers and one memory. The registers 

are: 	-PC 	the program counter 

-SP 	the stack pointer 

-MP 	the mark pointer 

-NP 	the new pointer 

-EP 	the extreme stack pointer 

-IR 	the instruction register. 

The memory is divided in two parts: one for code and one for 

data. IR contains the instruction currently in execution and PC is a 

pointer to the next instruction to be executed. The meaning of the 

other registers will become clear in the course of the description of 

the P4-machine. 

5.2.2 Data memory structure 

The data memory has three parts: the stack, the constants area  

and the heap. The stack grows from address 0 upwards and contain all 

directly accessible data, the register SP pointing to the first free 

position above the stack. The constants area occupies the other extreme 

of the memory and contains strings, reels, sets, small integers and 

boundary-pairs (for range check). Other constants are stored in 
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instruction fields. The heap area, contains all dynamically created 

data, grows downwards from the constants area and its growth is 

directed by the use of the standard procedures new and dispose. The 

register NP, the new pointer, points to the beginning of the heap 

area. The register EP, points to the maximum position the stack may 

grow when a given procedure is active (fixed at compile time) such 

that a condition of data memory overflow can be detected when EP and NP 

meet. ' 

The stack has a further level of structuring. It consists of 

a series of activation records, each one generated by the call of a 

user procedure. Each activation record, in turn, has four separated 

areas: the mark stack, parameters area, local variables and temporary 

storage areas. 

The mark stack contains 5 fields: function return value, static 

link, dynamic link, extreme stack pointer and return address of the 

calling procedure. 

The parameter section has three parts: pointers to implement 

var parameters and addresses of structured value parameters (of type 

array or record) constitute the first part. The second part contains the 

value parameters which are not of array or record type; and the third 

section contains the value of the parameters of type array or record. 

5.2.3 Procedure call and variable access 

Call to both procedures and functions is executed the same way. 

It is realized in four phases: 

1- a "mark stack" instruction is executed to fill the links. 

2- parameter passing 

3- proper "call" instruction transfers control to the called 

procedure 

4- enter phase, which allocates space for local variables and 

copies the value parameters of type array or record. 
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The return phase resets the stack to its state before the 

call and does the necessary adjusting if a function value is being 

returned. 

Directly accessible variables are defined by a pair: (level-

difference, offset), where level-difference is the difference between 

the static level of the procedure actually in execution and the 

lexicographical level of the accessed variable (a level-difference of 

0 means a local variable to the procedure in execution). A level-

difference of n implies then n indirections in the static chain to obtain 

the address of the data area where this variable is located. Global 

variables can be accessed directly, only by their offset. Indirectly 

accessible variable like reference parameters and pointed variables are 

accessed via the absolute stack address. 

5.2.4 Data and instruction sizes 

The set of instructions of the P4 machine defines a P4 

processor. We will assume that the P4 processor uses the following data 

formats for Pascal data types: 

8 bits for characters, booleans and user defined scalars 

32 bits for integers 

64 bits for reals and sets 

24 bits for pointers. 

The P4-machine instructions can be short or long. A short 

instruction has only one field OP whereas a long instruction has three 

fields: OP, P and Q. The meaning of these fields will be clarified in 

the description of the instruction set which follows. 

The instruction container sizes we defined for the P4 

machine are based on the ones for the P4 machine given in Nor74a. 
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Since we would like to extend the instruction set incorporating 

new instructions, a value of 8 bits for the OP field, (instead of 

the 6 bits allowing a maximum of 64 instructions) is reasonable. 

The P field is used for storing lexical level data, so we have 

followed Nor74a in assigning 4 bits to this field. Since we would 

like a long instruction size to be a multiple of the short, a choice 

of 20 bits for the Q field (used for address) was made. 

5.2.5 The instruction set description 

The evaluation of the cost measure of running the antici-

pated workload in the P4-machine involves the evaluation of the cost 

parameters for each P4-machine instruction. 

To evaluate the cost parameters of instructions, we need 

a detailed description of the actions taken by the P4-processor 

when executing each instruction. For this description we need to 

postulate a set of properties and elements in the P4-processor which 

are not actually seen at the intermediate language level. These 

properties are: 

- it has 3 registers acl, ac2, ac3 in which operations of the 

form ac= acl op ac2 can be realised; with yp being a 

arithmetic or logical operation. 

- it has a counter aux and a flip-flop flag. 

- the processor has a primitive function findbase(p), which 

follows the static chain for p nodes and returns the address 
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of the data area at lexical level (n-p) where n is the 

lexical level of the active procedure. 

- the registers in the processor can be incremented or 

decremented with the primitives inc and dec. 

The description of the instruction set semantics will be 

made using a dialect of Pascal with the following alterations : 

- data movements are indicated by "_". 

- if a register x contains an address of a memory position then 

xt denotes the contents of that location. 

- the register SP has the special property that it is automatically 

pre-incremented when in the left-hand side of an assignment and 

post-decremented when in the right-hand side. 

- the register IR, used to hold instructions, has the three fields, 

denoted as IR.op, IR.p and IR.q. 

The P4-machine as defined in (Nor74a) and in (Jen73a) has a 

set of 64 basic instructions, some of them can have variants according 

to the type of the data being dealt with. See appendix 2 for an informal 

description of the instruction set. 

The instruction set can be divided in 9 groups according to 

the type of operation performed. The groups are: 

1- polish binary operators 

2- " unary " 

3- relational operators 

4- procedure call instructions 

5- branches 

6- address manipulation 

7- loads 

8- stores 

9- others 
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We proceed to the description of the instruction set: 

Group 1  

Contains the following instructions: 

- on integers 	:ADI, SBI,DVI, MPI, MOD 

- on boolean 	:AND, IOR 

- on sets 	:DIF, INT, UNI 

-on reals 	:ADR, SBR, MPR, DVR 

The instruction format is simply : opcode, where opcode occupies the 

OP field. The instruction execution can be described as : 

opcode-group 1: begin 

acl = SP1; (*read first operand*) 

ac2 = SP+ (*second*) 

ac3 = acl op ac2; (*executes operation*) 

SP = ac3; (*result back to back*) 

end; 

Group 2 - Unary operators 

The instruction format is opcode. It contains the instructions: 

- on integers : ABI, INC, DEC, NGI, SQI 

- on boolean : NOT 

- on reals 	: ABR, FLO, FLT, SQR 

- on sets 	: SGS 

- transfer 	: CHR, ORD, TRC, ODD. 

<opcode-group2>: begin 

acl = SP ; (*read top of stack*) 

ac3 = op acl ; (*do operation*) 

SP = ac3; (*store back*) 

end; 
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Group 3 Relational operators. 

There are two formats of instructions in this group: 

i-opcode 	a simple opcode of 8 bits for relational operators between 

simple types, i.e. - integers, reals, characters, scalars, 

sets and pointers. 

ii-opcode, n a 32 bit instruction for arrays and records. The parameter 

n occupies the address field of the instruction and 

specifies the size of the elements being compared. 

Their operation is: 

<opcode-group3-i> : begin 

acl = SP+; (*read first operand*) 

ac2 = SP+; (*read second 	*) 

ac3 = acl op ac2 ; (*compare*) 

SP+ = ac3 ; (*boolean back to stack*) 

end; 

<opcode-group3-ii>: begin 

aux = IR.q; (*size of element to counter*) 

flag= 1 	; (*flip-flop set*) 

while flag and(aux > 0) 

do begin 

if act+= ac2+ 

then begin 

dec (aux) 

inc(acl); 

inc(ac2) 

end 

else flag = 0 

end 

acl = flag and (aux = 0); 

SP+ = acl; 

end; 
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Note : in the group ii there can be some variations according to the 

type of comparison being performed. 

Group 4 - Procedure calls 

The machine has a set of 4 instructions-for executing procedure calls. 

MST, p 	: mark stack to fill the links 

CUP, p, q 	: proper call 

ENT, p, q 	: enter - updates stack pointer 

RET, p 	: return and adju stack pointer 

4.1 - mark stack 

MST p : begin 

acl = MP + 2 (*link address*) 

aux = IR.p 

while aux> 0 

do 

begin 

ac3 = acl ; 

acl = acl+; (*read link of level-1*) 

dec(aux) ; 

end; (*aux = 0*) 

SP = SP + 2; 

SP+= acl ; 	(*copy link static*) 

SP+= MP ; 	(*dynamic link*) 

SPF= EP ; 	(*pass extreme stack pointer*) 

end; 
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4.2 - call user procedure 

CUP p, q : begin 

acl = SP - (IR.p+4); (*adjust the base of 

activation rec*) 

MP = acl; 

acl = acl + 4; 

act = PC; 

end; 

(*PC address*) 

(*save return program counter*) 

4.3 - enter 

ENT p, q : begin 

if IR.p = 1 

then 

SP = MP + IR.q 	(*local variable size*) 

else 

EP = SP + IR.q 	(*extreme stack*) 

end; 

4.4 - return 

RET p begin 

if IR.p = 0 

then SP = MP -1 	(*procedure return*) 

else SP = MP; 

PC = (MP+4)+; (*return PC*) 

EP = (MP+3)+; (*return EP*) 

MP = (MP+2)+; (*return MP*) 

end 
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Group 5 - Jumps 

There are 4 instructions in this group: FJp q, UJP q, XJP and UJC. 

FJP , q 	: begin 

acl = SP1'; (*read top of stack*) 

if acl = 0 

then 

PC = IR.q 

end; 

UJP q : begin 

PC = IR.q 

end; 

XJP q 	begin 

acl = SP1; (*read index from stack*) 

PC = acl + IR.q 

end; 

UJC 	: begin 

halt 	(*error in case statement*) 

end; 

Group 6 - Address manipulation instructions 

LAO,.LCA, LDA, IXA are in this group. 

LAO q; LCA, q : begin 

SP+ = IR.q 

end; 

LDA p, q . begin 

acl = findbase(p); (*locate address p levels 

down*) 

ac3 = acl + IR.q ; (*index*) 

SP+ = ac3 	(*address to stack*) 

end; 
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IXA q : begin 

acl = SP+ ; 	(*index*) 

acl = acl * IR.q (*scale by size *) 

ac2 = SPF ; 	(*array base*) 

ac3 = acl + ac2 ;(*element address*) 

SPT = ac3 ; 	(*address is stacked*) 

end; 

Group 7 - Loads 

LOD, LDO, LDC, LCI, IND are in this group. 

LOD p, q begin 

acl = findbase(p) ; (*get address of activation rec*) 

acl = acl + IR.q ; (*offset inside*) 

acl = acl fi 	(*write on stack top*) 

end; 

LDO q ; LCI, q : begin 

ac = IR.q ; 	(*data obsolute address*) 

act= acll' ; 	(*read*) 

SP+= acl ; 	(*write on stack*) 

end; 

LDC q : begin 

act= IR.q; 

SP+= acl ; 

end; 

IND q : begin 
acl= SP+; 

act= acl + IR.q 
acl= acl + ; 

SP+= acl 	; 

end; 

(*data is immediate*) 

(*write back on stack*) 

(*address is on stack*) 

(*offset if necessary) 

(*read data*) 

(*write on top of stack*) 
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Group 8 - Store 

STR, STO, SRO, MOV are in tris group. 

STR P, q : begin 

acl = findbase(p) (*get address of activation rec*) 

acl = acl + IR.q 	(*offset*) 

ac2 = SP+ ; 
	

(*data to be stored*) 

acllh= ac2 ; 
	

(*store at address*) 

end; 

SRO q 	: begin 

acl = IR.q; 	(*absolute address*) 

ac2 = SP+ 	(*data to be moved*) 

acl+= ac2; 	(*store*) 

end; 

STO 	: begin 

acl = SP+; 	(*address is in stack*) 

ac2 = SP+; 	(*data also*) 

ac2 = acl; 	(*move*) 

end; 

MOV q : begin 

acl = SP+ ; 	(*source address*) 

ac2 = SPF ; 	(*destination address*) 

aux = IR.q; 	(*size of data*) 

while aux> 0 

do 

begin 

MR = acl+ 	(*read to memory register*) 

ac2+ = MR; 	(*move*) 

dec(aux); inc(acl); inc(ac2); 

end; 

end; 
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Group 9 - Bounds check 

CHK q : begin 

acl = IR.q; 
	

(*address of bound pair*) 

ac2 = SP+ ; 
	

(*bound to be checked*) 

acl = acl+; 
	

(*read bound*) 

if acl > ac2 

then error; 

acl = IR.q + 1; 

acl = acl+ 

if acl < ac2 

then error 

end; 

5.3 Cost parameters of instructions 

Using the instruction definition above we can determine the 

cost parameters for the components of the P4 instruction set. These 

are shown in table 5.1. 

The cost parameters of some instructions may vary according to 

the level of addressing or the size of the data being operated upon. 

So, in order to proceed with the evaluation experiment we will make the 

following assumptions: 

1- all data accesses are to either the local or global activation 

records. The effect here is to ignore the form by which data in inter-

mediate levels is accessed, e.g. using a display like the Burroughs B-6500 

or a chain as in the IBM. 370 (P4 implementation). 

2- we have assumed both EOL and EOF to be standard functions 

implemented through calls. 
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3- String sizes are assumed to be 10 bytes long. This 

apply also for record sizes. 

5.4 Evaluating the attribute matrix and the total fragment cost 

The cost parameters of a fragment can be derived by a 

suitable addition of the cost parameters of the P4 instructions of which 

the fragment is composed. 

Some assumptions had to be made for the evaluation of the 

atrribute matrix since we have not collected all the necessary infor-

mation. The reason for this is that a complete data collection for 

fragment analysis would require a very large number of fragments and the 

overhead in terms of monitoring instructions would be too large. If 

the number of code fragments is large, and in consequence, the code 

overhead is large, the procedures will tend to be larger than the maximum 

limit of 12Kbytes of code which is a restriction in our version of the 

P4 compiler. To run, then would imply to break the larger procedures in 

smaller ones, which is not only difficult but could mask the results of 

the experiment. 

The assumptions are: 

1- the proportion of variables which is directly accessible 

is equal to the proportion which is indirectly accessible. 

2- we have not taken into account the total cost for standard 

procedures and functions. The only cost we accounted was the linkage 

cost, i.e. call (a simple branch and link) and return. For the standard 

functions: CHR, ORD, SUCC, and PRED we assumed that a 'simple instruction 

was inserted in their place. 
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3- we have ignored record item access cost since its exact 

evaluation would require much more information than it is available. 

See section 6.5 for a discussion of this case. 

We have also simplified the total fragment cost by ignoring 

some fragments, whose utilization is very low, or whose accounting is 

controversial such as: 

- program linkage and external files 

- operations with reels and in some sets 

We have introduced a new fragment which is not in the original 

set: range check (no. 255), whose count can be derived form the counts 

of assignments, array accesses and value parameter passing. 

The process of attribute matrix generation for the P4 machine 

is presented in appendix 3. The resulting matrix is shown in table 5.2. 

Using the attribute matrix and the static and dynamic 

distribution of fragments we can now derive the total cost according to 

eq. 1, i.e. 	CM' = (al,  a2,  a3, a4, a5, a6) 

where n 
E 	Ai,k.Sk  for i=1,2 

k=1 

a. = 
i n 

E 	Ai k.Dk  for i=3, 4, 5, 6. 
k=1 	' 

5.5 Conclusion 

There are two possible routes to follow when we have found 

the total cost measure for the anticipated workload: 

1- evaluate the attribute matrix for a different machine, 

e.g. the IBM 370 and make a comparative performance evaluation analysis. 
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2- we can study the fragments which are more expensive to 

implement and suggest alternative constructs. They will give rise to 

a new attribute matrix and a new cost measure, which shows the effect 

of this particular change on the total cost. In this case, we are 

using the technique of fragments as a tool for design improvement. 

Since our interest is to determine the more important primitives 

of the language and find optimum implementations for them we will take 

the second route. To proceed in a systematic way, we look at the 

fragment cost matrix, which is presented in table 5.3. From this table 

we take for each of the cost parameters the 10 most expensive fragments 

and arrange them in order of expense. This is shown in table 5.4. 

From this table, we know which are the areas of the machine 

that need attention since they are using most of the resources. But, 

of the fragments displayed above, not all of them are capable of 

further optimization (for example, procedure calls are implemented in 

an optimized way in the P4 machine). However, there are some fragments 

whose cost can be decreased, and we shall concentrate our first iteration 

step in the following areas, each of which may involve one or more 

fragments: 

1- array and pointer access 

2- range checks 

3- arithmetic and relational operators 

4- assignments 

5- for statement 
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Table 5.1 - Cost parameters of P4 instruction set. 

Instruction 	al 	a2 	a3 a4 a5 a6 

ADI 8 0 1 3 8 96 
SBI 8 0 1 3 8 96 
MPI 8 0 1 3 8 96 
DVI 8 0 1 3 8 96 
MOD 8 0 1 3 8 96 
AND 8 0 1 3 8 24 
IOR 8 0 1 3 8 24 
DIF 8 0 1 3 8 192 
INT 8 0 1 3 8 192 
UNI 8 0 1 3 8 192 
ADR 8 0 1 3 8 192 
SBR 8 0 1 3 8 192 
MPR 8 0 1 3 8 192 
DVR 8 0 1 3 8 192 
INC 32 0 1 2 32 64 
DEC 32 0 1 2 32 64 
ABI 8 0 1 2 8 64 
NGI 8 0 1 2 8 64 
SQI 8 0 1 2 8 64 
NOT 8 0 1 2 8 16 
ABR 8 0 1 2 8 128 
FLO 
FLT 
SQR 8 0 1 2 8 128 
CHR 8 0 1 2 8 40 
ORD 8 0 1 2 8 40 
ODD 8 0 1 2 8 40 
TRC 8 0 1 2 8 96 
SGS 8 0 1 2 8 96 
Relational int. 8 0 1 3 8 72 

chr. bool 8 0 1 3 8 24 
scalar 8 0 1 3 8 24 
real 8 0 1 3 8 136 
sets 8 0 1 3 8 104 
pointer 8 0 1 3 8 56 
array/rec 32 0 1 

MST 32 0 1 5 32 120 
CUP 32 0 1' 1 32 24 
ENT 32 0 1 0 32 0 
RET 32 0 1 3 32 72 
FJP 32 0 1 1 32 8 
UJP 32 0 1 0 32 0 
XJP 32 0 1 1 32 32 
LCA 32 0 1 1 32 24 
LAO 32 0 1 1 32 24 
LDA 32 0 1 1 32 24 
IXA 32 0 1 3 32 96 
LOD 32 0 1 2 32 dd. 
LDO 32 0 1 2 32 dd. 
LDC 32 0 1 1 32 dd. 



Con't of Table 5.1  

Instruction al a2 a3 a4 a5 a6 

IND 32 0 1 3 32 dd. LCI 32 dd 1 2 32 dd. STR 32 0 1 2. 32 dd. SRO 32 0 1 2 32 dd. STO 8 0 1 3 8 dd. 
MOV 32 dd 1 8 32 240 CHK 32 64 1 3 32 96 

NOTE: dd means data type dependent. 

125 
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Table 5.2-  Attribute matrix 

Fragment 	al 	a2 

for 

a3 

the P4 machine 

a4 a5 a6 

4 56 0 2 2.3 56 104 
5 0 U 0 0 0 0 
6 56 0 2 2.3 56 32 
7 56 0 2 2.3 56 32 
8 56 0 2 2.3 56 32 
9 56 0 2 2.3 56 104 
10 56 64 2 2.3 56 200 
11 64 80 2 9 64 264 
12 b4 80 2 9 64 264 
13 S6 0 2 2.3 56 80 
15 52 0 2 5 52 152 
16 0 0 0 0 0 0 
17 52 0 2 5 52 56 
18 52 0 2 5 52 56 
19 52 0 2 5 52 56 
20 52 0 2 5 52 152 
21 52 0 2 5 52 264 
22 64 0 2 9 64 264 
23 64 0 2 9 64 264 
24 52 0 2 5 52 104 
26 24 0 1 2.3 24 136 
27 0 0 0 0 0 0 
28 24 0 1 2.3 24 40 
29 24 0 1 2.3 24 40 
30 24 0 1 2.3 24 40 
31 24 0 1 2.3 24 136 
32 24 0 1 2.3 24 264 
33 0 0 0 0 0 0 
34 0 0 0 0 0 0 
35 24 0 1 2.3 24 104 
37 32 0 1 1 32 32 
38 0 0 0 0 0 0 
39 32 0 1 1 32 8 
40 32 3 1 1 32 
41 32 0 1 1 32 S 
42 32 0 1 1 32 32 
43 32 o4 1 2 32 64 
44 126 80 4 11 128 312 
45 0 0 0 0 0 0 
46 32 0 1 1 32 24 
48 32 U 1 2.5 32 60 
49 0 0 0 0 0 0 
50 32 0 1 2.5 32 24 
51 32 0 1 2.5 32 24 
52 32 0 1 2.5 32 24 
53 32 U 1 2.5 32 60 
54 32 0 1 2.5 32 108 
55 128 0 4 11 128 312 
56 128 U 4 11 128 312 
57 32 U 1 2.3 32 46 
59 0 0 0 0 0 0 
60 0 0 0 0 0 0 
61 0 0 0 0 0 0 
62 0 0 0 0 0 0 
63 0 0 0 0 0 0 
64 0 0 0 0 0 0 
65 U 0 0 0 0 0 
66' 0 0 0 0 0 0 
67 0 0 0 0 0 0 
68 0 0 0 0 0 0 
70 32 0 1 1 32 24 
71 32 0 1 1 32 24 
72 32 0 1 1 32 24 
73 32 0 1 1 32 24 
74 32 0 i 1 32 24 
75 32 0 1 1 32 24 
76 32 0 1 1 32 24 
77 32 0 1 1 32 24 
78 32 0 1 1 32 24 
79 32 0 1 1 32 24 
80 32 0 1 1 32 24 
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Table 5.2-Attribute matrix 
Fragment 	ai 	a2 

for the 
a3 

P4 machine 
a4 

(cont.) 
a5 a6 

81 64 0 3 9 96 216 
82 64 0 3 9 96 216 
83 32 0 2 2 64 48 
84 32 0 2 2 64 48 
85 32 0 2 2 64 48 
86 32 0 2 2 64 48 
87 32 0 2 2 64 48 
88 32 0 2 2 64 48 
89 32 0 2 2 64 48 
90 32 0 2 2 64 48 
91 32 0 2 2 64 48 
92 32 0 2 2 64 48 
93 32 0 1 0 32 0 
94 32 0 1 0 32 0 
95 32 0 1 1 32 8 
96 0 0 0 0 0 0 
97 64 0 1 1 32 8 
98 0 0 1 0 32 8 
99 664 64 7.5 9 216 280 
100 32 0 1 1 32 8 
101 64 0 2 1 64 8 
102 0 0 0 0 0 0 
103 32 0 1 1 32 8 
104 128 0 4 6 128 176 
105 232 0 8 14 232 400 
106 64 0 2 2 64 48 
107 72 0 3 7 72 191 
108 0 0 0 0 0 0 
109 72 0 3 7 72 65 
110 72 0 3 7 72 65 
111 72 0 3 '7 72 65 
112 72 0 3 7 72 191 
113 72 0 3 o 72 264 
114 96 80 3 10 96 264 
115 96 80 3 1) 96 2b4 
116 72 0 2 7 72 149 
123 72 0 3 6.5 72 204 
124 40 0 2 4 40 128 
125 72 0 3 8 72 
126 40 0 2 5.5 40 172 
127 8 0 1 3 8 96 
135 0 J 0 0 0 0 

137 72 U 3 8 72 60 
138 40 0 2 5.5 40 52 
139 8 0 1 3 8 24 
162 40 0 2 4.5 40 44 
163 8 0 1 2 8 16' 
175 96 0 3 9 96 216. 
176 96 0 3 9 96 216 
177 96 0 3 9 96 216 
178 96 0 3 9 96 216 
179 96 0 3 9 96 216 
180 96 0 3 9 96 216 
181 96 0 3 9 96 216 
182 96 0 3 9 96 216 
183 96 0 3 9 96 216 
184 96 0 3 9 96 216 
186 32 0 2 2 64 48 
187 32 0 2 2 64 48 
188 32 0 2 2 64 48 
189 32 0 2 2 64 48 
190 32 0 2 2 64 48 
191 32 0 2 2 64 48 
192 32 0 2 2 64 48 
193 8 0 1 2 8 40 
194 8 0 1 2 8 40 
195 32 0 1 2 32 64 
196 32 0 1 2 32 64 
227 32 0 1 2.5 32 60 
230 118 0 3.7 7 118 198 
255 32 64 1 3 32 96 



Table 5.3-Cost measure for the P4 machine 

Fragment al 	 a2 	 a3 	 a4 	 a5 	 a6 

	

4 	 24024 	 0 	 5046 	 5803 	 141288 	 262392 

	

5 	 0 	 0 	 0 	 0 	 0 	 0 

	

6 	 19224 	 0 	 107282 	 123374 	 3003896 	 1716512 

	

7 	 54936 	 0 	 31294 	 35988 	 876232 	 500764 

	

8 	 40824 	 0 	 19198 	 22078 	 537594 	 307168 

	

9 	 32312 	 0 	 28332 	 32582 	 793296 	 1473264 

	

10 	 2632 	 3008 	 36 	 41 	 1008 	 3600 

	

11 	 47680 	 59600 	 25672 	 115524 	 821504 	 3388704 

	

13 	 23240 	 0 	 24474 	 28145 	 685272 	 978960 

	

15 	 1268E 	 0 	 5012 	 12530 	 130312 	 380912 

	

17 	 13156 	 0 	 352706 	 881765 	 9170356 	 9875768 

	

18 	 2548 	 0 	 3148 	 7870 	 81848 	 88144 

	

19 	 2444 	 0 	 21728 	 54320 	 564928 	 608384 

	

20 	 1658E 	 0 	 3116U 	 77900 	 810160 	 2368160 

	

21 	 260 	 0 	 0 	 0 	 0 	 0 

	

22 	 15485 	 0 	 17002 	 76509 	 544064 	 2244264 

	

23 	 9536 	 0 	 10122 	 15549 	 323904 	 1336104 

	

24 	 61100 	 0 	 99478 	 248695 	 2586428 	 5172856 

	

26 	 10896 	 0 	 7994 	 18386 	 191856 	 1087184 

	

28 	 1464 	 0 	 13369 	 30749 	 320856 	 534760 

	

29 	 6194 	 0 	 20993 	 48284 	 503832 	 839720 
co 	 30 	 72 	 0 	 14 	 32 	 336 	 560 
csi 	 31 	 18168 	 0 	 224344 	 515991 	 5384256 	30510784 

	

32 	 1365 	 0 	 628 	 1444 	 15072 	 165792 

	

33 	 0 	 0 	 0 	 0 	 0 	 0 

	

34 	 0 	 0 	 0 	 0 	 0 	 0 

	

35 	 3960 	 0 	 28050 	 64515 	 673200 	 2917200 

	

37 	 10685 	 0 	 377 	 377 	 12064 	 12064 

	

39 	 2720 	 0 	 4207 	 4207 	 134624 	 33656 

	

40 	 2976 	 0 	 10056 	 10056 	 321792 	 80448 

	

41 	 13376 	 0 	 1674 	 1674 	 53568 	 13392 

	

42 	 16096 	 0 	 1284 	 1284 	 41088 	 41088 

	

43 	 992 	 1984 	 2199 	 4398 	 70368 	 140736 

	

44 	 39040 	 24400 	 8 	 22 	 256 	 624 

	

46 	 672 	 0 	 1 	 1 	 32 	 24 

	

48 	 6658 	 0 	 148 	 370 	 4736 	 8880 

	

50 	 1216 	 0 	 10119 	 25298 	 323808 	 242856 

	

51 	 2784 	 0 	 522 	 1305 	 16704 	 12528 

	

52 	 1568 	 0 	 3252 	 8130 	 104064 	 78048 

	

53 	 12576 	 0 	 2383 	 5958 	 76256 	 142980 

	

54 	 1792 	 0 	 3505 	 8763 	 112160 	 378540 

	

55 	 82688 	 0 	 7672 	 21098 	 245504 	 598416 

	

56 	 23424 	 0 	 7948 	 21857 	 254336 	 619944 

	

57 	 25376 	 0 	 69138 	 172845 	 2212416 	 3318624 



Table 5.3-Cost measure 
Fragment 	al 

of P4 machine 
a2 

(cont. ) 

a3 a4 a5 a6 
70 6752 0 9 250 9250 296000 222000 71 96 0 0 0 0 0 72 480 0 653 653 20896 15672 73 8000 0 50 3 504 16128 12096 74 3520 0 1 1 32 24 75 5760 0 6604 6604 211328 158496 76 256 0 0 0 0 0 77 15104 0 30106 30106 963392 722544 78 26976 0 38823 38823 1242336 931752 79 11936 0 78833 78833 2522656 1891992 80 17600 0 8830 8830 282560 211920 81 63488 0 256248 768744 8199936 18449856 82 217280 0 331950 995850 .10622400 23900400 83 3872 0 215602 215602 6899264 5174448 84 640 0 65062 65062 2081984 1561488 85 5440 0 102 102 3264 2448 86 2880 0 68 68 2176 1632 87 6336 0 30 270 30270 968640 72 6480 88 71648 0 111096 111096 3555072 2666304 89 6752 0 12008 12008 384256 2 88192 
91 C 0 0 0 0 0 92 16512 0 2798 2798 89536 67152 

N ,-.1 
93 
94 

1536 
320 

0 
0 

2247 
92 

0 
0 

71904 
2944 

0 
0 95 48224 0 158953 158953 5086496 1271624 96 0 0 0 0 0 0 97 122.368 0 343425 343425 10989600 2747400 98 0 0 85661 0 2741152 685288 99 141432 13632 8135.3 97623 2342952 303 7160 100 17792 0 26164 26164 837248 209312 101 35584 0 291916 145958 9341312 1167664 102 0 0 0 0 0 0 103 5856 0 59497 59497 1903904 475976 104 42368 0 27352 41028 875264 1203488 105 76792 0 560952 981666 16267608 28047600 106 50752 0 99688 . 	99688 3190016 2392512 107 70776 0 491976 1147944 11807424 31322472 108 0 0 0 0 0 0 109 24912 0 605433 1412677 14530392 13117715 110 864 0 36 84 864 780 111 34488 0 242562 565978 5821488 5255510 112 18432 0 53358 124502 1280592 3397126 113 21672 0 44007 88014 1056168 3872616 



Table 5.3-Cost measure 

Fragment 	al 

of P4 machine 

a2 

(cont.) 

a3 a4 a5 a6 

114 60960 50800 381333 1271110 12202656 33557304 
115 96 80 300 1000 9600 26400 
116 51912 0 357780 834820 8586720 17769740 
123 84528 0 393882 853411 9453168 26783976 
124 7880 0 1902 3804 38040 121728 
125 22104 0 15954 42544 382896 1318864 
126 5600 0 6432 17688 128640 553152 
127 632 0 2276 6828 18208 218496 
135 0 0 0 0 0 0 
136 0 0 0 0 0 0 
137 3 816 0 26 157 69 752 6 277 68 697520 
138 5160 0 22938 63080 458760 696388 
139 E944 0 180984 542952 1447872 4343616 
162 16240 0 2946 6629 58920 64812 
163 2704 0 95750 191500 766000 1532000 
175 10464 0 27b3 8289 88416 198936 
176 1440 0 0 0 0 0 
177 2304 0 62346 187038 1995072 4488912 
178 32928 0 35448 106344 1134336 2552256 
179 288 0 21 63 672 1512 
180 13632 0 25563 76689 • 818016 1840536 
181 0 0 0 0 0 0 
182 0 0 0 0 0 0 

m 183 0 0 0 0 0 0 
,-+ 184 20352 0 87237 261711 2791584 6281064 

186 128 0 0 0 0 0 
187 160 0 8 8 256 192 
188 384 0 14 14 448 336 
189 2720  0 200430 200430  64137 60 4810320 
190 4512 0 146904 146904 4700928 3525696 
191 192 0 0 0 0 0 
192 0 0 0 0 0 0 
193 1264 0 5719 11438 45752 228760 
194 720 0 635 1270 5080 25400 
195 6656 0 109293 218586 3497376 6994752 
196 1504 0 261 522 8352 16704 
227 71904 0 304924 762310 9757568 18295440 
230 411112 0 1561714 2954595 49806030 53572830 
255 161280 322560 664831 1994493 21274592 63823776 

TOTAL 2877440 476064 10271800 21239942 295171894 511935301 



Table 5.4 The 10 most expensive fragments arranged by cost parameter 

al 	a3 	a4 	a5 	a6 

array access 	array access 	array access 	array access 	array access 

procedure call 	range check 	range check 	range check 	range check 

1 
range check 	relop char 	relop char 	for-body 	relop array 

case statement 	relop int 	relop int. 	relop array 	assign subrange 

2 
if-then 	aritop CV 	procedure call 	relop int. 	for-body 

procedure call 	relop array 	for-body 	if-then-else 	aritop CV 

aritop CV 	pointer acc. 	assign char 	procedure call 	procedure call 

array param. 	assign char 	aritop CV 	pointer acc. 	procedure call 

for-body 	if-then-else 	relop pointer 	aritop CV 	pointer access 

Notes : 
1-relop stands for relational operation between elements of the given type. 
2-aritop CV stands for arithmetic_ operation between a constant and a variable. 
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Chapter 6 - Improving the P4-machine 

6.1 Introduction 

Given the information about usage patterns of a high-level 

language and a proposed language oriented machine, there are two 

possible types of optimization which can be made on the latter: 

a- agglutination of primitives - a sequence of instructions 

which appears very often in the object code is replaced by a single 

one. (McKe67a) 

b- container optimization - the most common forms of data 

and instructions are coded with fewer bits, in different variants of 

Huffman coding. The total effect is to decrease "information redundancy" 

(Wi172a) although the meaning of the primitives is not changed. A good 

example of this technique is given by Wilner (reference above) in the 

design of the Burroughs B-1700 S-languages, which are forms of defining 

language oriented machines which are to be interpreted by the micro-

programming system of the B-1700. A full study of possible optimizations 

using this technique would require a different set of data about 

programming language usage patterns e.g. patterns of data size and 

address usage and it will not be dealt with here. These two types of 

optimization constitute only one of the design steps towards a language-

oriented machine. Following this step a second step must be made 

attempting to adapt the hardware low level mechanisms to the high level 

requirements of the machine (e.g. the use of the fast registers as top 

of the stack as in the B-5500). 
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The main objective of this chapter is to generate an 

improved version of the P4 machine described in chapter 5. Two main 

alterations will be introduced: 

a- sequences of code in very costly fragments will be coded 

as single instructions. 

b- the descriptor mechanism (described in chapter 3) will 

be incorporated into the machine. 

After making these changes, we use the information about fragment usage 

to calculate the variation in the cost measure. The real decision 

whether this change should be introduced or not, can only be made by 

the implementor when considering the trade-off between: the gain that 

the change will introduce to the cost measure and the cost of imple-

menting these changes (Wor72a). If the reduction in the cost measure 

offsets the cost of implementing the proposed changes then they 

should be implemented. 

We presented as a conclusion of chapter 5, the constructs 

which make the highest demand on the resources. We propose alternative 

constructs for these fragments or fragment groups in such a way as to 

decrease the cost measure associated with that fragment. 

The final result of this chapter is a demonstration of the 

use of the methodology described earlier in designing a machine, and 

a proposal for a Pascal machine based on the P4 machine with a 

descriptor mechanism and some new instructions added to it to fit the 

patterns of Pascal programming usage. 

6.2 Expression evaluation 

The most commonly used form of Pascal expressions (as measured 

in the analysis of Pascal programs in chapter 4) is very simple - i.e. 

the average number of operators per expression is 0.21 (statically). 
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We can thus optimize expression evaluation as a whole because, 

the expressions being simple, they will usually be mapped into a 

single code fragment so that optimization of code fragments cost is 

tantamount to optimization of expressions in general. 

We deal with two classes of expression fragments: 

the first involving relational operators and the second,arithmetic 

operators. 

6.2.1 Relational Expressions  

Relational expressions have a different pattern than arithmetic 

expressions. A relational expression has 1.15 operators on average, 

i.e. has usually two operands. In 75% of the cases these operands will 

be a single variable and a constant. The reverse polish generated by 

the P4 compiler for a construct like: 	x = c is: 

LODr 	x {load variable} 

LDC. 	c 	{load constant immediate} 

EQU {test if equal and replace operands by boolean result} 

The three instructions above can be reduced to a single one, 

with three fields like: 

OPr p,q,r where (p,q) specify the variable address and the 

field r contains the constant. OPr is any of the 

relational operators. 

We also need a 'compare indirect' for the cases in which the variable 

address is not known at compile time, i.e.: 

r as above with the difference that the variable 

address is in the top of the stack. 

OPIr 
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A considerable part of the cost of this fragment in the P4 

machine arises because the result of a relational operation must be 

deposited back to the stack for the posterior use of (possibly) a FJP 

instruction which will branch according to the contents of the top 

of stack. It seems reasonable to suppose that an additional gain could 

be obtained if the result, instead of being stacked, could be used to 

set a condition code. This case would give a gain, not only in the 

relational fragment but also in the jump instruction, which would not 

need to read the top of stack for the branching decision. But the 

introduction of condition codes would necessitate an additional 

register which has to be saved and restored at procedure entry/exit. 

This would add an additional cost overhead of around 2 million bytes of 

condition codes being moved to and fro at procedure calls. On the other 

hand, the old stack solution can be considerably improved in cost by 

the introduction of fast registers at top of stack whilst the cost of 

saving condition codes in the activation records of procedure calls 

cannot (probably) be decreased by further refinement steps. Hence, we 

shall retain the stack solution for condition codes. 

The new instruction description is : 

OPr p q r : begin 

acl = IR.q; 	(*address, suppose p=0*) 

ac2 = IR.r; 	(*constant immediate*) 

acl+= acl ; 	(*variable value*) 

ac3 = acl op ac2; (*op depends on instruction*) 

SPT = ac3; 	(*result is stacked*) 

end; 



OPIr 	r : begin 

acl = SP+ ; 	(*read address*) 

ac2 = IR.q; (*constant*) 

ac3 = acl op ac2 (*op depends on instruction*) 

SP+ = ac3 	(*stack result*) 

A further optimization is possible in the case of the very 

common construct ptr OP nil, where ptr is a variable of type 

pointer. Since the pointer constant nil is uniquely identified, the 

instructions above do,  not need the field r for the constant value, 

and they are reduced to 

OPNIL p,q -compare variable at (p,q) with nil 

OPNIL 	-same as above but indirect 

The final result of this set of modifications in the cost 

measure associated with expressions (as a whole) is seen in the table 

below: 

Cost parameter Reduction 

al 15 

a3 23 

a4 27 

a5 21 

a6 24 

6.2.2 Arithmetic Expressions  

The same form of modification can be extended, in an 

orthogonal manner, to arithmetic operators to handle arithmetic 

fragments between a variable and a constant. Their form is (operations 

on integers only): 

136 
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OPa 	p q r - execute the arithmetic operation between 

variable at (p, q) and constant in field r. 

OPIa r - as above with address in top of stack. 

The combined effect of the relational and arithmetic operators between 

constant and variable is shown in the table below: 

Cost parameter 	Reduction % (for fragments associated 
with expressions) 

al 	21 

a3 	30 

a4 	34 

a5 	25 

a6 	36 

Other agglutinations can be tried but since the above are the most 

frequent constructs with the simpler implementations, we will limit 

the consideration to these at this level of refinement. Other cases 

like variable-variable operators can be optimized in the next step 

of refinement through the use of fast registers. 

6.3 Assignments 

A very common construct in Pascal texts is the assignment of 

a single constant to a variable, for initialization purposes. This 

construct has a major influence in the static cost where about 30% of 

all assignments are of this form. P4 code for this construct is: 

LDC 	c - load constant to top of stack. 

STR, 	p, q 	- store at address (p, q) 

This sequence can be merged in a single instruction SET whose format is: 

SET p q r - set the content of address (p,q) to the value in r 

SETI 	r - as above but address in top of stack. 
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These instructions can be defined as: 

SET p q r : begin 

acl = IR.q ; (address, suppose p=0*) 

ac2 = IR.r ; (*constant value*) 

acl+ = ac2 ; (*store*) 

end; 

SETT 	r : begin 

adl = SP+ ; (*address in top of stack*) 

ac2 = IR.r 	(*constant*) 

act+ = ac2 ; (*store back*) e  
i 

The introduction of these instructions will affect mainly the instruc-

tion static occupancy (because of the reduction in code size); its 

effect is less prominent in the dynamic cost parameters since 

assignment of a constant has a smaller share of resource consumption 

at run time than it has statically. The effect of these instructions 

is to reduce instruction occupancy by 11%; thus reducing cost parameter 

al by 11% in all fragments associated with assignments. We can ignore 

the effect on the other cost parameters. 

6.4 For instruction  

The for instruction is compiled by the P4 in two parts: one 

to evaluate and set the initial and final value of the control 

variable and a second (the for body) which has in turn two parts - one 

to test if the control variable is less than the limit and a second to 

increment it. A substantial reduction in the cost measure can be 

achieved by introducing primitives to perform these tasks. So, we 

create two new instructions: 
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DOE r s : compare local variables at addresses r and s (both 

must be local variables) 

return result to top of stack. 

DOR p q : decrement/increment control variable at offset q. 

With these modifications a for loop can be coded easily as: 

1- evaluate initial value for control variable. 

2- evaluate final index of loop and store in temporary location. 

3- insert DOE r, s. 

4- insert FJP to out of loop. 

5- insert code for loop statements. 

6- insert DOR p,q. 

7- insert UJP to step 3. 

A further compression could be achieved by merging the DOE with FJP 

and DOR with UJP, but we reject this choice in view of the reduced 

gains it would introduce if a fast top of stack is used. 

The instruction can be defined as: 

DOE r s : begin 

acl = IR.r ; (*first address*) 

ac2 = IR.s ; (*second address*) 

acl = acl+ ; (*read control variable*) 

ac2 = ac2+ ; (*read limit*) 

ac3 = acl less ac2; (*for up counting*) 

SP+ = ac3 ; 

end; 



DOR p q : begin 

ac2 = IR.q ; (*address of control variable*) 

acl = ac2l' ; (*fetch control variable*) 

ac3 = acl + 1 ; (*minus if down to*) 

ac2+ = ac3 
	

(*store back*) 
end)  

The effect of the introduction of these instructions on the cost 

measure associated with statements (fragments 93 to 106) is seen in 

the table below: 

Cost parameter Reduction 

al 6 

a3 16 

a4 28 

a5 13 

a6 43 

6.5 Data structure access  

6.5.1 Introduction 

The aim of this section is to define a more efficient data 

structure access method for the P4 machine using the descriptor 

mechanism presented in chapter 3. It is worth noting that this mechanism 

includes range check on arrays and subranges, so we are optimizing not 

only array access but also all checks on subrange variables. 

The scheme presented in chapter 3 should be seen as the first 

step of refinement in a process of deriving a descriptor mechanism for 

a Pascal machine. In this section, an additional refinement step will 

be made with new constraints which will have the effect of changing the 

descriptor operator forms as defined in chapter 3. 
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The new constraint to be imposed in the design is that the 

implementation of the descriptor mechanism should present a lower 

cost measure for data structure access than the P4-machine scheme. To 

obtain a lower cost measure than the P4 method the new implementation 

should reduce the traffic of redundant information which is, in turn, 

caused by the constraint imposed on its design that the translation 

process should be as simple as possible. This simplicity constraint 

implies that every time a selected element appears, its full semantic 

specification is loaded to the stack, even if the next descriptor 

operator will only use a part of it. 

6.5.2 Descriptors for the P4-machine. 

To decrease the cost measure for data access, we have to modify 

the mechanism presented in chapter 3 - with new formats for the 

descriptor operators and also allow more work to be made at compile time. 

The modifications introduced are: 

1- descriptors are presented (conceptually but not physically) 

in two different formats: short and long. The long format descriptor is 

the same as defined in chapter 3, whilst the short format consists 

simply of a tag and an address. The descriptor operators, in consequence, 

have two variants to enable them to work with the two different 

descriptor formats. 

2- the descriptor operators defined in chapter 3 are zero-

address polish operators. In this new implementation, two new forms of 

specifying the descriptor operand (which was implicit in the old form) 

are provided: 

i- by an address field with the absolute address of 

the descriptor, i.e. the operator is changed from a zero address to a 



one-address operator. 

ii- immediate - in this case the descriptor follows the 

operators. Immediate operands are an advantage when they are small 

enough to be packed in the same container size as the address, saving 

thus one extra reference at run time. 

The causes for these changes are: 

a) there is the need for reducing the instruction static size cost by 

merging the load descriptor operation with its descriptor operator 

successor into a single operation code. 

b) in the case of record item access there is the need for a low cost 

instruction for generating record item descriptors, to compete with the 

P4 machine which uses simply ah"increment address" instruction in this 

case. The P4 compiler also takes advantage of the fact that the record 

item offset is known at compile time and, in some cases, does all the 

address evaluation with no instruction being generated at run time. 

This is achieved by merging the information about record item offset 

and type in the current instruction successor. If the record item is 

directly accessible, the item offset is added to the offset field of 

the next instruction, or. else is added to the offset field of the following 

"indirect fetch" (IND) instruction. 

An instruction is generated only when there is a need for an 

absolute address - i.e. after the evaluation of the left-hand,or 

preceding an array access. 

3- a new operator Arrowdot is created, This operator is a 

combination of the operators arrow and dot in sequence. Its appearance 

is due to the necessity of optimizing the very frequent programming 

construct a+.x where a is an arbitrary name. 
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(See also table 13 for pointed element fragments, where almost all 

of the pointers point to records). In the case of the P4-machine the 

code generated is: 

i- evaluate the address of a. 

ii- insert IND q 	-to fetch the value of a. 

iii- insert In x 	-to increment address in stack by the 

offset of x. 

Using the operator Arrowdot, the above construct can be 

translated as: 

i- evaluate the descritor of a, 

ii- insert Arrowdot <par> - where <par > specifies the record item 

descriptor. 

4- In the case of the same construct as above, but when the 

descriptor of at is known at compile timela different sequence can be 

generated: 

i- load descriptor of at 

ii- insert Dot <par > - where <par > specifies the record 

item descriptor. 

5- A new descriptor format is introduced in addition to the ones 

described 	in chapter 3 to define subrange bounds of type integer. 

Since most of the array and subrange bounds can be coded with a few 

bits there are two new tags: 

i- one for subranges of integer which require a full integer 

format, e.g. the very common type: Positive_Integer = 0..MAXINT. 

ii- one for subranges of integer such that the lower bound 

can be coded with 8 bits each (smallest unit for arithmetic purposes). 

With this coding we can describe 100% of the lower bounds of arrays 
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(99% of subranges and 97% of the upper bound of arrays (50% for 

subranges). The total space for bounds is now 16 bits or 1/4 of the previous 

need , which will give a big saving in the static constant area and 

in information traffic for range check. 

7- we need also primitives for load, store and move data 

through descriptors in the top of the stack: 

i- Lodd 	- unary operator for leading a piece of data using 

descriptor in the top of the stack. 

ii- Stod 	- store data in the top of the stack using descriptor 

immediately belowfand do the range check if 

necessary. 

iii- Movd 	- move data described by the descriptor below the 

top of the stack to the position described in 

the top of the stack. Do range check if necessary. 

8- We also need one primitive for loading descriptors to the 

top of the stack: 

i- Ldesc<par> : where <pa specifies the descriptor form and 

address. 

6.5.3 Descriptor operator formats 

The final result of the primitives available for data structure 

access is presented in tables 6.1 and 6.2 below. A full description of 

the execution of the descriptor operation is given in Table 6.3. 

Table 6.1 - Descriptor operator formats  

Each descriptor operator has four fields named as: opcode, 

form or f,spec or stand a  (used as an address or data field). The opcode 

field can specify one of the five possible descriptor operators; 

Ldesc,Dot,Arrow,Bracket and Arrowdot. 



Mnemonic 

1 Lodd 
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- The form field defines the descriptor to be operated on to be in 

long or short format. 

- The spec field _specifies if the descriptor operand is defined by.its 

address or follows the operator as a literal. 

Descriptor operators mnemonics 

Mnemonic 	Description 

1- Ldesc 	f s q 	load descriptor specified by the f, s and 

c fields, to the stack. 

2- Bracket 	f s q 	do range check and indexing with descriptor 

specified in (f s q) fields with index and 

array base address in top of stack. 

3- Dot 	f s q 	record item descriptor generation with item 

descriptor defined in (f s q) and record 

descriptor in stack. 

4- Arrow 	f s q 	generate descriptor of pointed variable with 

(f s I) specifying descriptor and top of 

stack containing address of pointer. 

5- Arrowdot 	f s q 	generate the descriptor of a record item whose 

descriptor is defined by (f s q) fields. The 

top of the stack contains the descriptor of 

the pointer which is pointing to the record. 

Table 6.2 - Primitives for load, store and move data via descriptors. 

Description 

Load data specified by descriptor in top of 

stack to top of stack, replacing descriptor. 



Mnemonic 

2- Stod 
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Description 

Store data in top of the stack to address 

specified by descriptor in position 

immediately below the top of the stack. 

3- Movd Move data specified by descriptor in top of 

the stack to position specified by descriptor 

below the top of the stack. 

Table 6.3 - Descriptor operators 

In the description below, suppose f=short, s=address and 

q contains the address of the descriptor. The descriptor formats are 

as specified in chapter 3. 

1-Ldesc f s q : begin 

acl = IR.q; 	(*address of descriptor*) 

ac2.tag = aclt.tag; (*read tag*) 

ac2.address = acl1.address; (*read address*) 

SPt = ac2; 	(*move result descriptor to stack*) 

end; 

2- Dot 	f s q : begin 

acl = IR.q ; (*address of descriptor*) 

ac2.tag.= acl+.tag; (*read tag*) 

ac2.offset =acl+.offset ; (*record item offset*) 

acl = SPt ; (*record descriptor*) 

acl.tag = ac2.tag ; 

acl.address = acl.address + ac2.offset; 

SP+ = acl ; (*move result descriptor to stack*) 

end; 
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3—Arrow f s q : 	begin 

acl = SP+; (*read pointer address*) 

acl.address = acl+.address ; (*pointer value*) 

ac2 = IR.q ; (*pointed element descriptor address*) 

acl.tag = ac2 .tag;  

SPT = acl 

end; 

4— Bracket f s q : begin 

acl = SPT; (*array index*) 

ac2 = IR.q; (*array element descriptor address*) 

ac2 = ac2+; (*read descriptor*) 

if (acl<ac2.lower) or (acl>ac2.upper) 

then error; (*bounds check*) 

ac3 = acl*length (ac2.tag);(*indexing*) 

acl = SPT; (*array descriptor*) 

ac3.tag = ac2.tag; 

ac3.address=ac3.address+acl.address 

SPT= ac3; 

end; 

5— Arrowdot f s q : begin 

acl = SPT ; (*pointer address*) 

ac2 = IR.q; 

ac2 = ac2+; (*record item descriptor*) 

acl = acl+; (*record address*) 

ac3.tag = ac2.tag; 

ac3.address = acl.address+ac2.address; 

SP+ = ac3 ; 

end; 
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6.5.4 Examples of Use  

We show in the examples below, various sequences of code 

generated by the P4 compiler using the algorithms in chapter 3 and 

the new descriptor implementation described above. 

Suppose, variables Sigma and Phi are both of type epsilon as in 

Chapter 3. 

i- Sigma [j] := Phi Cj] ; 

P-4 sequence 	Old descriptor 	New descriptor  

Lda Sigma 	Ldesc Sigma 	Ldesc Sigma 

Lod j 	Ldesc Sigma-e Load 

Check bounds 	Lod 	j 
	

Bracket Sigma-e (long) 

Dec 1 	Bracket 

Ixa Size 

Lda Phi 	Ldesc Phi 	Ldesc Phi 

Lod j 	Ldesc Phi-e 	Lod j 

Check bounds 	Lod 	j 
	

Bracket Phi-e 	(short) 

Dec 1 	Bracket 

Ixa Size 

Mov Size 	Mov 	Movd 

11 instructions 	9 instructions 	7 instructions 

j 
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ii- Sigma Cj].z .= Phil [j].z 

P-4 Old descriptor New descriptor 

Lda Sigma Ldesc Sigma Ldesc 	Sigma 

Lod j Ldesc Sigma-e Lod 	j 

Check bounds Lod j Bracket Sigma-e (short) 

Dec 1 Bracket 

Ixa Size 

Inc offset of z Ldesc z Dot 	z (long) 

Dot 

Lda Phi Ldesc Phi Ldesc 	Phi (short) 

Lod j Ldesc Phi-e Lod 	j 

Check bounds Lod j Bracket Phi-e (short 

Dec 1 Bracket 

Ixa Size 

Inc z Ldesc z Dot 	j (short) 

Nov size Dot Movd 

Mov 

13 instructions 
	13 instructions 	9 instructions 
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iii- Sigma Cj].0+.z .=Phil[j].u+.z 

P4 code Old descriptor New descriptor 

Lda 	Sigma Ldesc Sigma Ldesc 	Sigma (short) 

Lod 	j Ldes Sigma-e Lod 	j 

Check bounds Lod j Bracket Sigma-e (short) 

Dec 	1 Bracket 

Ixa 	Size 

Ind 	u Ldesc u Arrowdot u (short) 

Inc 	z Dot 

Arrow 

Ldexc 

u-p 

z 

Dot 	z (long) 

Dot 

(as above with Phi) 	(as above with Phi) (as above with Phi) 

Mov size 	Nov 

15 instructions 
	19 instructions 	11 instructions 

Movd 
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6.5.5 - Evaluation of the descriptor mechanism 

The combined effect of using the new format for descriptors and 

descriptor operators is that record and pointer access will have 

approximately the same cost measure. An additional reduction in the cost 

measure is obtained in the case of the bounds checking required in the 

assignment to a subrange variable. The instruction 'store via descriptor' 

will perform automatic range checking without the need for an explicit 

'check bounds' instruction. 

We will evaluate,in this section, only the reduction in the cost 

measure associated with array accesses. The combined effect of array 

accesses and subrange checking with the new descriptor mechanism in the 

total cost measure is presented in table 6.4. The reduction of the cost 

measure for array accesses is shown in the table below: 

Cost parameter 
	

Reduction % 

al 
	

42 

a3 
	

41 

a4 	27 

a5 	42 

a6 	36 

6.6 - Standard procedures and functions. 

The cost measure we have associated with standard functions and 

procedures in the P4 machine is the estimated cost of a simple 'branch 

and link' instruction, i.e. a jump to the procedure code saving only the 

return address without any actions on the scope. 

We have evaluated the improvement in the cost measure which comes 

from the implementation of standard procedures as one-byte, zero address 

polish operators. The effect of this change in the total cost measure 

is shown in table 6.4. 
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6.7 - Comments on line tracking and Post-mortem-dump. 

The Post-mortem-dump (PMD for short) is undoubtedly one of the 

more costly elements in the execution of Pascal programs. Although it 

is possible to estimate the cost measure associated with PMD, using the 

data about language usage, we have deliberately refrained from discus-

sing it because it is a complex and controversial subject beyond the 

scope of this work. We shall mention briefly the simpler case of line-

tracking, i.e. the possibility of knowing, at every instruction, the 

physical line number of the source code sequence which originated this 

instruction. In the P4 compiler there are two forms of line tracking: 

a-minimal: line numbers are introduced only at procedure calls. 

The activation record lay-out is modified to include one entry for line 

number, which is passed as an implicit parameter to every user procedure 

call. 

fUll: in this case, one instruction of the intermediate language 

specifying the line number is generated for each physical line. The 

line number at procedure call is still passed as a parameter. 

The problem of an efficient implementation for line tracking was 

investigated by Wortman (Wor72a). He proposes two lines of solution : 

a-a software solution involving tables and searching. 

b-a hardware solution, using another memory, with the same size 

as the code memory, in which every instruction is paired with a line 

number. 

We shall not discuss the cost measure associated with line 

tracking, although it can be derived from the data about fragment usage. 

6.8 - Conclusions. 

The discussion of the improvements in the P4 machine have been 

concentrated on the effects of alternative constructs in the cost measure 

associated with particular groups of fragments, e.g. fragments associated 
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with expressions, assignments.etc. Table 6.4 shows the effect of each 

one of the proposed alterations on the total cost measure. The entry 

for 'data access' covers the case of array accesses and checking for 

variables of type subrange. 

Table 6.4 - Modifications on the total cost measure (%) 

Fragment group Expr. Assign. For Data access Std. Proc. Total(%) 

al 3.3 1.6 1.2 9.5 3.1 19.8 

a3 8.6 0.5 2.7 10.7 3.8 30.2 

a4 11.8 0.4 2.6 9.0 3.7 27.6 

a5 6.0 0.6 2.5 11.8 8.5 29.3 

a6 10.2 0.4 3.5 13.2 3.7 31.1 

From the table above we conclude that most of the gains can be 

associated with two factors: 

a - the use of instructions for executing operations between a 

constant and a variable with the result being stacked. 

b - the gains in data access for array elements and subrange 

variables checks. 

In spite of its simplicity, the P4 machine is a very well designed 

machine with its primitives being well adequate for Pascal requirements. 

This fact means that the improvements achieved, in the region of 20% 

to 30% in the cost parameters are satisfactory. Further refinements in 

the P4 machine are possible but the gains are likely to be insignificant 

when compared with the actual implementation details of the P4 machine, 

e.g. the nature of the microcode machine or the translation to machine 

code. 
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7-Conclusions 

This thesis presented a study of language directed computer 

design, more specifically a study of Pascal-orientated intermediate 

language machines.The problem was approached from the point of view 

of intermediate forms of compilation, which in turn, define an abstract 

machine for their execution. 

First, we studied the case of an intermediate language machine 

derived to meet a specifically designed hardware configuration. The 

difficulties encountered in the mapping of language data structures in 

the case of full Pascal structuring methods lead us to the study of a 

descriptor mechanism to meet Pascal requirements, using only the normal 

random access memory as a hardware base. The scheme presented is derived 

from a study of the ICL 2900 descriptor mechanism which posed some 

problems to Pascal implementors. This solution is general, supports 

the needs of Pascal data structures and simplifies the code generation 

.for Pascal names. 

The efficiency of a given intermediate language machine can 

be substantially improved with the knowledge of its usage patterns. In 

chapter 4 we presented a detailed analysis of form and behaviour of a 

given set of Pascal programs. A set of tables detailing textual, 

syntactic and language fragments usage was given. This data can be 

used both by the compiler writer and the machine implementor to evaluate 

and improve their designs. 

This data has been used to evaluate and improve the Pascal 

P4 intermediate language machine. With the aid of the patterns of 

language usage the most expensive source language constructs were 

detected and alternative constructs resulting in a more 

efficient P4-machine were suggested and the improvement measured. 
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There are several avenues of research open, using some of 

the results presented here. 

a-Our study was deliberately kept on an abstract, implementation 

independent, level. The next logical step is the study of the implemen-

tation of intermediate language constructs suggested, including the 

descriptor implementation. This study would also include the effects of 

the suggested constructs if the machine is going to be interpreted by 

microprogram or suffer further translation. 

b-A study could be made of the operating system interface, 

including the file interface and its primitives. 

c-A study could be made of a multiprogrammed Pascal 

intermediate language machine. 

d-Our study of Pascal programs should be extended to include 

more user programs - possibly student programs as opposed to the system 

orientated workload studied here. 

e-The results of the study of Pascal programs could be used 

to obtain synthetic programs to simulate the whole workload, and 

possibly to develop a form of "Gibson's mix" based on Pascal program 

composition. 
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Appendix 17Cardinality of subrange •errays,scalar and records. 

Appendix 1.1-1n type declarations. 

Subrange Bounds 

Lo Mer Bound 

	

Size(bits) 	Count 	Percent 	Cumulative 

	

1 	 111 	93.28 	93.28 

	

2 	1 	 0.R4 	94.12 

	

7 	2 	1.68 	95.80 

	

8 	4 	3.36 	99.16 

	

15 	1 	0.54 	100.00 
Mean = 	1.46 	Variance = 	520.00 
Upper Bound 

	

Size(bits) 	Count 	Percent 	Cumulative 

	

1 	3 	2.52 	2.52 

	

2 	10 	8.40 	10.92 

	

3 	13 	10.92 	21.95 

	

4 	12 	10.08 	31.93 

	

8 	 6.72 	38.66 

	

6 	4 	3.36 	42.02 

	

7 	10 	8.40 	50.42 

	

8 	 21 	17.65 	68.07 

	

9 	2 	1.68 	69.75 

	

10 	3 	2.52 	72.27 

	

11 	5 	4.20 	76.47 

	

12 	1 	0.34 	77.31 

	

14 	1 	0.64 	78.15 

	

15 	2 	1.68 	79.83 

	

16 	5 	4.20 	84.03 

	

17 	2 	1.68 	85.71 

	

18 	1 	 0.84 	86.55 

	

24 	2 	1.6S 	88.24 

	

25 	1 	 0.94 	89.08 

	

31 	13 	10.92 	100.00 
Glean = 	9.91 	Variance = 	19660.00 

Scalar type cardinality 

Size 	Count 	Percent 	Cumulative 

	

2 	27 	32.14 	32.14 

	

3 	11 	13.10 	45.24 

	

4 	7 	5.33 	53.57 

	

5 	9 	10.71 	64.34  

	

t 	5 	5.45 	7x.24 

	

7 	c 	7.95 	76.19 

	

3.57 	74.76 

	

9 	 3 	= 57 	83.33 

	

10 	1 	1.1° 	84.52 

	

14 	2 	2.3k 	86.90 

	

13 	1 	 1.10 	 3̀ 5.10 

	

14 	1 	 1.19 	89.29 

	

15 	1 	1.19 	90.43 

	

16 	3 	3.57 	94.05 

	

26 	1 	1.19 	95.24 

	

32 	4 	4.76 	100.00 
Mean = 	6.60 	Variance = 	7368.(0 

Record Sizes 
t* mm:: *::: r: 

Size Count Percent Cumulative 
1 2 1.14 1.14 
2 3g 21.59 22.73 
3 26 14.77 37.50 
4 27 15.34 52.94 
5 17 9.66 62.50 
6 13 7.39  69.9° 
7 14 7.95 77.44 
8 3 1.70 79.55 
8 5 2.84 82.39 

10 3 1.70 84.09  
11 5 2.84 86.93 
12 8 4.55 91.48 
13 5 2.84 94.32 
15 1 0.57 94.89 
17 2 1.14 96.02 
18 1 0.57 96.59 
19 2 1.14 97.73 
21 1 0.57 98.30 
27 3 1.70 100.00 

Mean = 	5.95 Variance = 9328.00 

Array index type 

Type 	Distribution 
Typee Count Percent 
Char 4 2.86 
Scalar 1 0.71 
Suhrange 135 96.43 

Total of Types,. 	644 
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Array Bounds 

Lower Bound 

	

Size(bits) 	Count 	Percent 	Cumulative 

	

1 	635 	98.76 	98.76 

	

2 	3 	0.47 	99.22 

	

S 	 S 	 0.78 	100.00 
Mean = 	1.06 	Variance = 	298.00 
Upper Bound 

	

Size(bits) 	Count 	Percent 	Cumulative 

	

2 	50 	8.71 	8.71 

	

3 	190 	29.55 	38.26 

	

4 	285 	44.32 	92.58 

	

5 	47 	7.31 	89.99 

	

0 	8 	1.24 	91.14 

	

7 	15 	2.33 	93.47 

	

8 	28 	4.35 	97.82 

	

10 	10 	1.56 	99.38 

	

11 	1 	0.16 	99.53 

	

12 	1 	0.16 	99.69 

	

14 	1 	0.16 	99.54 

	

15 	1 	0.16 	100.00 
Mean = 	4.02 	Variance = 	9584.00 

Subrange Hounds 

Lower Bound 

	

Size(bits) 	Count 	Percent 	Cumulative 

	

1 	756 	96.43 	96.43 

	

2 	7 	0.89 	97.32 

	

3 	2 	0.26 	97.58 

	

5 	1 	0.13 	97.70 

	

7 	3 	 G.38 	98.09 

	

6 	13 	1.6o 	99.74 

	

11 	1 	0.13 	99.87 

	

15 	1 	(0.13 	100.00 
mean = 	1.19 	variance = 	1220.00 
Upper Bound 

	

Size(bits) 	Count 	Percent 	Cumulative 

	

1 	7 	0.89 	0.89 

	

2 	41 	5.23 	6.12 

	

J 	55 	7.02 	13.14 

	

4 	67 	8.55 	21.68 

	

S 	 3° 	4.97 	26.66 

	

14 	1.74 	28.44 

	

7 	74 	0.44 	37.88 

	

9'.' 	12.5 , 	50.35 

	

4 	11 	1.4'+ 	51.7° 

	

1.r 	61 	7.78 	59.57 

	

11 	12 	1.66 	61.22 

	

12 	• 	4 	0.51 	61.73 

	

13 	15 	1.°1 	63.65 

	

15 	25 	3.19 	66.94 

	

16 	26 	3.32 	70.15 

	

17 	11 	1.40 	71.56 

	

24 	20 	2.55 	74.11 

	

25 	1 	0.13 	74.23 

	

J1 	 2U2 	25.77 	100.00 
Mean = 	13.96 	Variance = 235574.00 

Scalar type cardinality 

Size 	Count 	Percent 	Cumulative 

	

2 	447 	78.42 	76.42 

	

3 	9 	1.40 	79.52 

	

4 	26 	4.91 	84.74 

	

5 	7 	1.23 	85.96 

	

6 	 15 	2.63 	58.60 

	

7 	5 	0.88 	39.47 

	

5 	1 	0.18 	89.65 

	

9 	7 	1.23 	90.85 

	

10 	1 	0.18 	91.05 

	

13 	10 	1.75 	92.81 

	

14 	1 	0.18 	92.98 

	

16 	15 	2.63 	95.61 

	

26 	5 	0.88 	96.49 

	

32 	20 	3.51 	100.00 
Mean = 	4.25 	Variance = 	31160.00 

Record Sizes 
e*e**aae* e** 

Size 	Count 	Percent 	Cumulative 

	

1 	25 	9.16 	9.16 

	

2 	75 	27.47 	36.63 

	

3 	23 	8.42 	45.05 

	

4 	19 	6.06 	52.01 

	

5 	 9 	3.30 	55.31 

	

6 	41 	15.12 	70.33 

	

7 	5 	1.S3 	72.16 

	

6 	15 	5.49 	77.66 

	

9 	 3 	1.10 	78.75 

	

10 	3 	1.10 	79.95 

	

11 	10 	3.66 	83.52 

	

12 	24 	8.79 	92.31 

	

17 	1 	0.37 	°2.67 

	

21 	18 	6.59 	99.27 

	

21 	2 	 0.73 	100.00 
Mean = 	6.12 	Variance = 	16966.00 

Array index tyre 
vevewe=:=a**==Y= 

Type Distribution 
Types 	Count 	Percent 
Char 	 6 	10.9Ū 
Scalar 	16 	2.26 
S uhrange 	64.1 	96.84 

Total of Varu.jte = 	2°5 2 
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Appendix 1.3-In value parameters declarations. 

Array Hounds 
a*¥  lSma*..= 
Lower Hound 

Size(bits) 	Count 	Percent 	Cumulative 
1 	264 	100.00 	100.00 

Kean = 	1.00 	Variance = 	0.00 
Upper Bound 

Size(bits) 	Count 	Percent 	Cumulative 
2 25 0.47 9.47 
3 108 40.91 50.38 
4 105 39.77 90.15 
5 20 7.56 97.73 
b 2 0.76 98.48 
7 2 0.76 99.24 
10 2 0.76 100.00 

Mean = 	3.56 Variance = 	2652.00 

Subrange Bounds 
aka*amza*asap#=a 
Lower Bound 

Si ze(bits) Count Percent Cumulative 
1 179 90.40 90.40 
7 9 4.55 94.95 
ā 10 5.05 100.00 

Mean = 1.63 Variance = 938.00 
Upper Bound 

Size( bits) Count Percent Cumulative 
1 3 1.52 1.52 
2 7 3.54 5.05 
3 10 5.05 10.10 
4 7 3.54 13.64 
5 7 3.54 17.17 
6 2 1.)1 19.18 
7 16 8.08 26.26 
t 35 17.66 43.94 o 3 1.32 45.45 

10 10 6.57 52.02 
11 5 3 54.55 
1 6 1-. 7,07  61. 62 
17 _ 1.+:1 62.733 
2-, 3.5- 66.16 

1 C.51 6.6.67 
1 66 33.33 100.30 

Mean = 16.26 Variance = 74674.00 

Scalar type 
r sz3t al az a Sx., 

Size 

cardinality 
_r.x=r. r.ra ta 

Count Percent Cumulative 
4 70 55.1" 35.12 
3 3 2.36 57.44 
4 13 10.24 67.72 
5 3 2.36 70.78 
c 3 3.36 72.44 
7 2 1.57 74.02 
9 5 3.94 77.95 

1:; 1 0.79 78.74 
13 5 3.94 82.68 
16 9 7.09 89.76 
26 1 0.79  90.55 
32 12 9.45 100.00 

Mean = 7.26 Variance = 	16492.00 

Record Sizes 

Size Count Percent Cumulative 

	

1 	15 	18.99 	18.99 

	

2 	14 	17.72 	36.71 

	

3 	10 	12.66 	49.37 

	

4 	1 	1.27 	50.63 

	

2 	2.53 	53.16 

	

6 	6 	40.13 	63.29 

	

7 	1 	1.27 	64.56 

	

ā 	3 3.50 	68.35 

	

10 	1 	1.37 	69.62 

	

11 	 1 	1.27 70.89 

	

12 	IS 	18.99 	89.97 

	

21 	5 	10.13 	100.00 
Mean = 6.77 	Variance = 	6130.00 

Array index Type 
:a=raz*aa=rvx.,=.== 

Type Distribution 
Types 
	

Count 
	

Percent 
Subrange 
	

2< 

Total of value parameters 	= 	1095 
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Appendix 1.4-In reference parameter Declarations. 

Array Rounds 
ac:eeme4m*:u* 
Lower Bound 

	

Size(bits ) 	Count 	Percent 	Cumulative 

	

1 	 115 	94.26 	94.26 

	

5 	4 	 3.28 	97.54 

	

6 	 2 	1.64 	99.18 

	

5 	1 	0.82 	100.00 
Mean = 	1.27 	Variance = 	196.00 
tipper Bound 

	

Size(bits) 	Count 	Percent 	Cumulative 
2 13 1^.66 10.66 
3 42 34.43 45.08 
4 26 21.31 66.39 
5 12 9.84 76.23 
6 7 5.74 81.97 
7 2 1.64 83.61 
S 14 11.48 95.015 

10 6 4.92 100.00 
Mean = 	4.46 Variance = 	2448.00 

Subrange Bounds 
1tmemevacacaae**-n 
Lower Bound 

Size(bits) Count Percent Cumulative 
1 44 100.00 100.00 

Mean = 	1.00 Variance = 	0.00 
Upper Bound 

size(bits) Count Percent Cumulative 
1 6 13.64 13.64 
3 10 22.73 36.36 
4 1 2.27 38.64  

1 2.27 40.91 
7 2 4.35 45.45 

12 27.27 72.73 
10 3 6.82 79.55 
24 1 2.27 81.52 
3:1 5 19.16 100.00 

'lean = 1L.39 Variance = 0110.00 

Scalar type 

SIZE 

cardinality 

Count Percent Cumulative 
2 117 66 .0.7. O3 16. J3 
4 Iv 7.35 93.36 
6 .1 2.44 96.32 
9 1 {'.74 97.06 

14 1 G.74 97.79 
tc 
02 

2 
1 

1.47 ,7..74 
99.26 
100.00 

Mean = 2.95 Variance = 3020.00 

Pecord Sizes 
zlfflr .v=*w* 

Size Count Percent Cumulative 
2 
3 
4 
5 
6 

44 
13 
26 
46 
3n 

16.99• 
5.02 
10.04 
17.76 
11.56 

16.99 
22.01 
32.05 
49.81 
61.39 

7 9 3.47 64.86 
8 6 2.32 67.18 
8 8 3.09 70.27 
10 1 0.30  70.66 
11 1 0.39 71.04 
12 5 1.93 72.97 
13 3 1.16 74.13 
15 14 5.41 79.54 
17 41 15.83 95.37 
21 6 2.32 97.68 
27 6 2.32 100.00 

Mean = 	5.26 Variance = 25740.00 

Array index type 
fem **==*Y.. w *===Z: 

Type Distribution 
Types 
	Count 

	
Percent 

Char 
	 1.61 

S uhrange 
	

122 
	

96.39  

Total of Var Parameter= = 	533 
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Appendix 2 — P4 machine code mnemonics 

In the instructions below the C parameter field is used to 

indicate the instruction variants according to the type of data being 

operated upon i.e. character, address, integer or string 

Mnemonic 	Parameter 	description 

ABI 	 absolute value of integer 

ABR 	 absolute value of real number 

ADI 	 integer addition 

ADR 	 real addition 

AND 	 Boolean "and" 

CHK 	C P Q 	check against upper and lower bounds 

CHR 	 convert integer to character 

CSP 	Q 	call standard procedure 

CUP 	P Q 	call user procedure 

DEC 	C Q 	decrement 

DIF 	 set difference 

DVI 	 integer division 

DVR 	 real division 

ENT 	P 	Q 	enter block 

EDF 	 test on end of file 

EQU 	C 	(Q) 	compare on equal 

FJP 	Q 	false jump 

FI.O 	 float next to the top 

FLT 	 float top of the stack 

GEQ 	C 	(Q) 	greater or equal 

GRT 	C (Q) 	greater than 

INC 	C Q 	increment 



Con't of Appendix 2  

Mnemonic 	Parameter 	Description 

INC 	C Q 	indexed fetch 

INN 	 test set membership (in) 

INT 	 set interconnection 

IOR 	 Boolean "inclusive or" 

IXA 	Q 	compute indexed address 

LAD 	Q 	load base-level address 

LDA 	Q 	load address of constant 

LDA 	P Q 	Load address with level P 

LDC 	C Q 	load constant 

LDO 	C Q 	load contents of base-level address 

LEQ 	C (Q) 	less than or equal 

LES 	C (Q) 	less than 

LOD 	C P Q 	load contents of address 

MOD 	 modulus 

MOV 	Q 	move 

MPI 	 integer multiplication 

MPR 	 real multiplication 

MST 	P 	mark stack 

NEQ 	C 	(Q) 	not equal 

NGI 	 integer sign inversion 

NGR 	 real sign inversion 

NOT 	 Boolean "not" 

ODD 	 test on odd 

ORD 	C 	convert to integer 

165 
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Mnemonic 
	

Parameters 	Description 

RET 	C 	return from block 

SBI 	 integer subtraction 

SBR 	 real subtraction 

SGS 	 generate singleton set 

SQI 	 square integer 

SQR 	 square real 

SRD 	C 	Q 	store at base level address 

STO 	C 	store indirect 

STP 	 stop 

STR 	C P Q 	store at level P 

TRC 	 truncation 

UJP 	Q 	unconditional jump 

UNI 	 set union 

XJP 	Q 	indexed jump 
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Appendix 3 - Evaluation of fragment cost for the P4 machine 

We show below, for each group of fragments, the possible 

code sequence for evaluation of the fragment cost. 

1- Assignments 

There are 3 cases to consider : 

i- rhs is a constant 

ii- rhs is a variable 

iii- rhs is an expression 

Case i - the code patterns for single variables is: 

a-Ldc q 
	

b-Ldc q 	c-Ldc q 

Str p, q 
	

Sro q 	Sto 

the code for arrays and records is 

d-Lca q 

Nov 3 

Case ii - four possible cases for simple variables 

a-Lod p, q 	b-Lod p, q 	c-Ind q 	d-Ind q 

Str p, q 	Sto 	Str p,q 	Sto 

for arrays and records 

e-Lda q 

Nov 3 

Case iii - three possible sequences 

a-Str p, q 
	

b-Sro q 	c-Sto 

2- Parameter passing by value 

There are three cases to consider: 

i-actual parameter is a constant 

ii-actual parameter is a variable 

iii-actual parameter is an expression 
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Case i- only one•case for simple type formal parameters 

a- Ldc q 

if an string then 

b- Lca q 

Lod p,q 

Lda q 

Mov 3 

Case ii- if simple type then 

a- Lod p,q 	b-Ind q 

if string or record 

c- Lda p,q 

Lda p,q 

Lod p,q 

MOv 

Case iii- if expression then the fragment cost is evaluated in expressions. 

3- Parameter passing by reference 

only one sequence is possible: 

a-Lda p,q 

4-Procedure call (user procedures and functions) 

For static cost parameters and sequence is: 

a-Mst 1 

Cup p, q 

For dynamic cost parameters the return must be accounted 

b-Mst 1 

Cup p, q 

Ret 

5- Standard procedure calls other than ORD, CHR, SUCC and PRED 
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For static cost we estimated the cost of a branch-and-link 

instruction, while for dynamic cost the cost parameters are accounted 

for a branch-and-link plus a return. 

6-Gotos-We assume all gotos being to the same level 

(i.e. neglect interlevel jumps) 

a-Ujp q 

7-If-then 

a-Fjp q 

8-If-then-else 

the sequence to be accounted statically is: 

a-Fjp q 

Ujp q- 

but at run time the second instruction is executed only if 

the condition is true, and is accounted in fragment 98. 

9-Case statement 

we assume a case statement with 7.5 case elements. 

The static code sequence is: 

a-Lod p, q 

Ujp q 

Ujp q (repeated n times, where n is the number of elements) 

Chk q 

Ldc q 

Sbi 

Xjp 

Ujp q (n times for jum table) 

Ujc 	(error) 
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at run time only the following sequence is executed: 

b-Lod p, q 

Ujp 	q 

Chk 	q 

Ldc 

Sbi 

Xjp 

Ujp 	q(to statement) 

Ujp 	q(out of statement) 

10-While statement 

Assuming that almost all conditions are expressions then: 

a-expr 

Fjp q 

statement 

Ujp q (to head) 

So, for while head overhead we use only a FJP q adn for 

while body (fragment 101) we use the above sequence: Fjp q, Ujp q. 

11-Repeat statement 

The code pattern is: 

a-statement 

expression 

Fjp 

12-For statement 

It is composed of two parts: the head and the body. 

Case i - for head, assume both limits as constants. 

a-Ldc q 

Str p, q 

Ldc q 

Str p, q 
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Case ii - for body 

b-Lod p, q 

Lod o, q 

Leq 

Fjp 	q (out of loop) 

Lod p, q 

Inc 

Str p, q 

Ujp q 

13-With statement 

a-Lda 

Str p, q (in temporary location) 

14-Expressions 

We have considered three cases: 

i-relational operators 

ii-arithmetic operations on integers 

iii-logical operators 

Case i-Relational operators. 

The possible sequences are, according to operand class: 

a-Ldc q 	b-Ldc q (for operations between constant and 

variables) 

Lod p, q 	Ind q 

c-Lod p, q d-Ind q (between variables) 

INd q 

e-Lda p,q 

Lda p,q 

Lod p, q 

(for arrays and records) 

Equ 
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Case ii - Arithmetic operations on integers 

There are cases according to operands classes: 

a-Ldc q 

Lod p,q 

Opr 

c-Ldc q 

OP 

b-Ldc q (constant-variable) 

Ind q 

Op r 

(constant-expression) 

d-Lod p,q 	a-Ind q 	(variable-variable) 

Ind q 	Lod p,q 

Opr 	Opr 

f-Lod p,q 	g-Ind q 	(variable-expression) 

INd q 	Lod p,q 

Opr 	Opr 

h-OPr 	(expression-expression) 

Case iii-Boolean operators 

Same as above. 

15-Array access: 

a-Lda p, q 

expression 

Chk q (check bounds) 

Dec q 
• 

Ixa q (index) 

16-Pointer access 

a-Lod p, q 	b-Ind q 



173 

Appendix 4- EPL/0 syntax flowgraph 
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Appendix 4- EPL/0 syntax flowgraph (continued) 
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Appendix 4- EPL/0 syntax flowgraph (continued) 
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Appendix 4- EPL/0 syntax flowgraph (continued) 
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