
University of London

Imperial College of Science & Technology

Department of Computing and Control

Pascal-orientated computer design

by

E.A. Schmitz

April 1980

A thesis submitted for the degree of Doctor of Philosophy of the

University of London and Diploma of Membership of Imperial College.

Abstract

This thesis is concerned with the problem of language

orientated computer design from the perspective of intermediate language

machines, i.e.the abstract machines defined by intermediate forms of

compilation which can be, afterwards, either translated to target machine

code or interpreted (by software or microprogram).

Two kinds of intermediate language machines are considered:

the first is designed around a particular memory structure and the

second is a more general machine which can be either software or hardware

interpreted, or may be further translated prior to interpretation.

The first case examines the problem of designing an inter-

mediate language machine for a subset of Pascal in which a special

hardware memory structure is provided to match the requirements of the

source language data and control structures. Since the mapping of the

full Pascal data structures to a hardware mechanism is very complex an

alternative solution using a descriptor mechanism is then presented.

The second case starts with an empirical study of Pascal

programs in which a wide range of data about static form and dynamic

behaviour of Pascal programs is collected and discussed. This data is

afterwards used to evaluate the Pascal P4 intermediate language machine.

From this evaluation the most expensive source language constructs are

detected and alternative intermediate language primitives are suggested

leading to an improved P4 machine.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. David J. Howarth,

whose insight in computer architecture combined with sure guidance

helped me during all stages of this work.

I would also like to thank Bill Izatt for many stimulating

discussions; Greg Pugh, Stuart McRae and Ed Davies for providing

indispensable material and suggestions in the study of Pascal programs,

and my fellow research students for suggestions and discussions.

This work was supported by a grant from the Conselho Nacional

de Pesquisas and the Universidade Federal do Rio de Janeiro, Brasil.

Table of Contents

1 - Introduction 	 1

1.1-Positioning the problem 	 1

1.2-Delimiting the problem 	 4

1.3-Related work 	 6

1.4-Method 	 9

1.5-Thesis composition 	 11

2 - The EPL/0 machine 	 13

2.1-Introduction 	 13

2.2-The PL/O language and its extensions 	16

2.3-The extended PL/O machine 	 18

2.4-The experiment 	 27

2.5-Results 	 27

2.6-Conclusions 	 28

3 - Descriptors and the implementation of data structures 	44

3.1-Introduction 	 44

3.2-Basic definitions 	 46

3.3-Descriptor objects 	 48

3.4-Descriptors for Pascal data types 	49

3.5-Descriptor for Pascal variables 	54

3.6-Descriptor operators 	 55

3.7-Examples 	 59

3.8-Conclusions 	 61

4 - A Study of Pascal programs 	 63

4.1-Introduction 	 63

4.2-The experiment 	 65

4.3-Results 	 66

4.4-Conclusions 	 70

5 - Evaluation of the P4-machine 	 105

5.1-Introduction 	 105

5.2-The P4 machine 	 108

5.3-Cost parameters of instructions 	120

5.4-Evaluating the attribute matrix 	121

5.5-Conclusion 	 122

6 - Improving the P4-machine 	 132

6.1-Introduction 	 132

6.2-Expression evaluation 	 133

6.3-Assignments 	 137

6.4-For instruction 	 138

6.5-Data structure access 	 140

6.6-Standard procedures and functions 	151

6.7-Comments on line tracking 	 152

6.8-Conclusions 	 152

7 - Conclusions 	 154

References 	 156

Appendix

1 - Cardinality of subranges, arrays, records 	160

2 - P4-machine code mnemonics 	 165

3 - Evaluation of fragment cost for the P4-machine 	167

4 - EPL/0 syntactic flowgraph 	 173

Index of tables

2.1 - Integer memory definition 	 31

2.2 - Array memory definition 	 31

2.3 - Stack memory definition 	 32

2.4 - Expression memory definition 	 34

2.5 - Procedure linkage memory definition 	35

2.6 - Mark-data-area memory definition 	 35

2.7 - Display memory definition 	 36

2.8 - EPL/O instruction set 	 37

2.9 - Sentence distribution 	 39

2.10 - Operator distribution 	 39

2.11 - Data area size distribution 	 40

2.12 - Static instruction distribution 	 41

2.13 - Dynamic instruction frequency 	 42

2.14 - Memory access distribution 	 43

2.15 - Comparison of two PL/0 machines 	 43

4.1 - Label declaration 	 80

4.2 - Constant declarations 	 81

4.3 - Type declarations 	 82

4.4 - Variable declarations 	 83

4.5 - Proper procedures 	 84

4.6 - Functions 	 85

4.7 - Value parameters 	 86

4.8 - Var parameters 	 87

4.9 - Logical size of procedures 	 88

4.10 - Logical size of statements 	 89

4.11 - Frequency distribution of statements per procedure 	90

4.12 - Syntax rules usage 	 91

4.13 - Pascal fragments usage 	 99

4.14 - Explicit and implicit constants usage 	71

4.15 - Variable use 	 73

4.16 - Frequency distribution of statements 	74

4.17 - User and standard procedures 	 76

4.18 - Average loop traversal for repetitive statements 	77

4.19 - Usage of factors and operators 	 78

5.1 - Cost parameters for the P4-machine 	124

5.2 - Attribute matrix for the P4-machine 	126

5.3 - Cost measure for the P4-machine 	 128

5.4 - The 10 most expensive fragments 	 131

6.1 - Descriptor operator formats 	 144

6.2 - Primitives for data movement via descriptors 	145

6.3 - Descriptor operators definition 	 148

6.4 - Modifications on the total cost measure 	153

Index of figures

2.1 - Array memory lay-out 	 20

2.2 - EPL/0 machine memory system 	 30

3.1 - Data structure lay-out example 	62

4.1 - Measurement system flowgraph 	 79

Thirty spokes are made one by holes in a hub

By vacancies joining them for a wheel's use;

The use of clay in moulding pitchers

Comes from the hollow of its absence;

Doors, windows, in a house,

Are used for their emptiness;

Thus we are helped by what is not

To use what is.

Lao Tzu, 'Tao Te Ching', (XI)

Translated by W. Bynner

Chapter 1 - Introduction

1.1 Positioning the problem

The application of a computing system to the solution of a

problem expressed in a high-level source language such as Fortran,

Cobol or Pascal involves two different operations applied in sequence.

Firstly, the source language statements require translation to some

intermediate form of statements, an operation normally known as

compilation. Secondly, the intermediate form statements require

interpretation, a phase of operation known as execution or run-time.

In attempting to orientate the design of a computer towards the

solution of problems expressed in a high-level language, we are

therefore concerned with the overall cost-effectiveness of the translation

and interpretation processes. The balance sought between these operations

will clearly vary in different user environments. In a predominantly

development environment such as a laboratory servicing classes of under-

graduate students, the translation or compilation phase will be dominant.

In a production environment, as in a data processing system in a bank,

repeated interpretation of a limited number of programs will be the

dominant process.

Given a particular source language, the translation and inter-

pretation phases will be affected in different ways by the nature of the

intermediate form of the program (the output of the translation and

input for the interpretation) and by mechanisms used to achieve the

transformation; either or both of these factors can be varied by the

designer to achieve an optimum effect. We shall consider in the

following chapters examples of optimization of each of these factors

independently in one case considering the intermediate form of the

program to be the instruction code of a computer with a store-

processor structure designed to match the requirements of the source

language, and in the other considering the nature of the intermediate

form without analysing in detail the mechanism of the interpretation

of this intermediate form.

The nature of the intermediate form of programs is influenced

by the use to be made of the intermediate form. Example of different

properties of intermediate forms, dictated by use, are:

1-source language independence: a common example is the machine

code of a general purpose computer, compilers of all source languages

producing a common machine code, subsequently interpreted by hardware

at run-time.

2-interpreter independence: an example used subsequently in

this thesis is the P4 intermediate form of Pascal source programs. The

result of the compilation may be directly interpreted (for example by

software or microcode interpretation on a variety of computers having

different machine code or microcode properties) or may be subjected to

further translation to a group of machine codes which are subject to

hardware interpretation.

3-source language and interpreter independence: the classic

example of such a universal intermediate form is the UNCOL form (Str58a).

4-source language dependence permitting (although not demanding)

the use of a specialized interpreter : in this case the intermediate

form acts as a natural interface in the overall system designed to

execute programs expressed in a particular source language.

The work reported in this thesis partitions the overall problem

and considers only intermediate forms having the properties of category 4

above. We postulate, therefore, an intermediate form specifically

related to a single source language and which may be interpreted

afterwards by either a particular hardware mechanism or (possibly after

further translation) by a more general purpose hardware or microcode

mechanism.

The translation phase is also affected, of course, by the

mechanism of interpretation of the translator or compiler. It may be that

the mechanism is identical to that used to interpret the intermediate

code (eg. it is common to use the same machine for compilation and

execution). If it should also be the case that the translator is written

in the original source language, then overall optimization is achieved

in the compilation phase by the optimization of the run-time characte-

ristics. This is the case of one example considered in detail in this

thesis, namely, the Pascal P4 compiler. If the translator cannot be

written in the source language under consideration, the compilation

phase becomes a separated exercise in the design of a system to handle

this different form of problem specification. We shall not pursue further

in the present thesis a separate study of the execution of the compilation

phase; we shall however use "ease of translation" as a critical input to

the design of the intermediate form.

We shall consider two different types of intermediate forms, one

designed to be interpreted by a specifically designed hardware mechanism

and one designed for more general interpretation. In the latter case, it

would be desirable to analyse the effectiveness of different forms of

interpretation, which would require a separate study in itself if we were

to consider the variety of machinery available from different suppliers.

In the present study, we limit our analysis of effectiveness of the

intermediate form by analysing the limiting performance of a

hypothetical interpreter, the limiting case being dictated by store

occupancy and frequency of access to code and data. No attempt has

been made to complete a thorough analysis of the effectiveness of

the intermediate form when translated and/or interpreted on an

existing general purpose computing system such as the IBM 370.

1.2 - Delimiting the problem

Our study is concerned with the design of high-level language

orientated computers. We have approached the problem by considering

different forms of intermediate languages which can afterwards be

either interpreted directly or suffer a further translation to a

different form to be executed. We have transformed this problem

to the problem of finding an intermediate form defined by

two constraints: it should offer a simple translation and its interpreter

should be efficient at run-time.

The source language chosen for this study is Pascal. Pascal is

a block structured high-level language providing a wide variety of

control and data structuring methods which makes it suited for writing

well-structured programs. Pascal has been experiencing widespread support

and is being used in the programming spectrum ranging from teaching basic

programming principles to sophisticated system applications. This fact

confirms the correctness of the principles used by the designer N. Wirth,

and gives support to the study of Pascal orientated machines. Part of

the success of Pascal can be attributed to its well-defined and

consistent definition, both at the syntactic and semantic levels. Good

references to these can be found in Wir71a, Hoa73a and Jen75a.

The efficiency of the abstract machine defined by an inter-

mediate form can be evaluated according to the resources consumed by

the machine when executing a benchmark. The use of the resources

implies a cost measure which is a function of a set of cost parameters.

The cost parameters chosen in our case must be, preferably, implemen-

tation independent; this lead us to choose parameters based on memory

utilization instead of time or speed which are dependent on low-level

implementation and operating system behaviour. The set of cost parameters

has static and dynamic components, the static ones measuring code and

data occupancy and the dynamic parameters measure the information

traffic during program execution. More explicitly the cost parameters

used, denoted by ai (16) are the same as the set used by Wortman

(Wor72a) in his study of a Student-P1 machine, and can be defined as:

al-the number of bits required to represent instructions

a2-the number of bits required to represent data

a3-the number of memory references to fetch instructions

at run-time

a4-the number of memory references to access data

(load or store) at run-time

a5-the number of bits of instruction fetched during program

execution

a6-the number of bits of data accessed during program

execution&

The evaluation of these cost parameters involves using a

given estimative of the workload to which the machine is going to be

submitted. There are two approaches to this measuring:

i-direct measurement: in this case the compiler(from the

source language to the intermediate form)and the interpreter are modified

to provide direct monitoring information about data and code usage

when running the benchmark.

ii-indirect measurement: the composition of the benchmark is

analysed in terms of source language constructs (Wor72a). With the

aid of the code generation patterns for these constructs and the

knowledge of the static and dynamic frequency of appearance of these

constructs the cost measure can be estimated without running the

benchmark. This method can be very useful in initial design phases

if the frequency of usage of these constructs is known since it offers

the advantage of accessing performance without the need for constructing

a compiler and interpreter.

1.3 Related work

One of the first reported contributions to the study of

intermediate languages is given by Randell and Russell (Ran64a) in

their description of the intermediate language machine for Algol-60

to run in the KDF-9. Their proposals had an influence in the Burroughs

B6700 and some ideas are found in the Atlas computer.

The use of abstract intermediate language machines as one way

of writing portable compilers is a common practice in compiler writing.

The compiler is divided in two parts: the first of which is source

language dependent and the second of which is interpreter or machine

dependent; the interface between the two parts being an abstract machine.

This approach is used in several compilers, such as BCPL, Algol 68C and

Pascal P. Compiler portability is achieved by writing one translator

from the intermediate code to the target machine code. The BCPL inter-

mediate code machine is called OCODE (Ric71a) and is a zero address

stack based machine. Since BCPL allows access only to variables in the

current procedure or global variables, the addressing mechanism

needs only two registers: one to the base of the local stack and

one to the global area. Further simplifications in the OCODE machine

come from the fact there is only one data size in BCPL and the

language does not allow dynamic creation of objects. The Algol 68C (Bau73a)

Z-Code machine is a one address machine with a set of registers. The

set of instructions provide register-register and register-storage

instructions and is orientated to interpretation in the IBM 370.

The Pascal P4 compiler is a portable compiler for a subset of

standard Pascal (Jen73a, Nor74a). The compiler generates code for an

abstract intermediate language machine. The P4 machine is an almost

pure stack machine whose design constraints where both simplicity of

compilation and interpreter efficiency. The machine is considerably

more complex than OCODE due to Pascal rules for variable accessing,

dynamic creation of objects and different data sizes. This compiler

has been implemented in a wide range of machines from Cray-1 to

microcomputers. A more detailed description of it is made in chapter 5.

N. Wirth describes in his book "Algorithms+Data Structures=

Programs" an interpreter for an intermediate language used in the

compilation of PL/O. We have used this work as a basis for our

experiment with the extended PL/O machine described in chapter 2. The

PL/O machine described by Wirth is a simple, pure stack machine

reflecting some of the ideas of the P4 machine.

The "Basic Language Machine" is an attempt at designing a

computer architecture to suit a given language. The approach taken

by Iliffe (I1i68a) is the design of a conceptual storage structure

to meet the requirements of a language to be used in systems and

application tasks. The storage is organized as a tree in which the

storage elements are grouped together in sets of various types. The

sets are linked to each other by structural information called

"codewords", which are also grouped into sets. There are some real

machines which have incorporated concepts derived from the study of

intermediate language machines. The Burroughs 6500 is the first

realization of one architecture to solve the weaknesses of conventional

architectures for handling languages like Algol-60 where dynamic storage

allocation is a language property. The main•problem posed by Algol-60,

i.e. the formation of addresses at run-time and the maintenance of

procedural history are elegantly solved by the use of the display and

the B-6500 stack organisation (How76a, Hau68a).

Two of the main design objectives in the design of the

ICL-2900 were related to the matching of high-level language charac-

teristics: efficiency in handling code from several high-level languages

and capability for handling dynamic code and data structures. In other

words, the ICL 2900 was designed to act as an intermediate language

machine for various source languages, (Buc78a and How76a).

The Burroughs B1700 system (Wi172b) is aimed to work as a

universal intermediate level machine. The machine does not possess a

fixed instruction set but allows the possibility of every application

defining its required instruction set and addressing primitives into

what is called a S-language, which is then interpreted by changeable

microprogrammed emulators.

Wortman presents in his Ph.D thesis (Wor72a) one instance of

the whole process of language oriented computer design. The source

language is Student-PL, a dialect of P1-1, used for teaching purposes

at Stanford University. The work has two main parts: first is the

definition and refinement of a Student-Pl machine; second a comparison

of the efficiency of this machine against the IBM 360. Wortman's

evaluation technique is an extension of Wichman's method (Wic69a,

Wic70a, Wic71a) for comparing Algol-60 implementations. Wichman's

work indicates that terms of the cost measure used in the evaluation

can be associated with statements in the source language and that it

is a useful way to characterize machine performance. Wortman extended

this work by relating the cost parameters used in the evaluation with

language fragments which often constitute only parts of statements.

The defintion of which fragments to use in the evaluation depends on

the source language, the cost measure function being used and the

implementations being compared. The basic idea is to choose enough

small fragments so that every cost parameter can be uniquely associated

with a set of language fragments. According to Wortman, there are two

conditions for choosing the fragments:

a-each fragment must be mapped to a non-overlapping sequence

of object code instructions

b-it should not contain data dependent loops.

This evaluation technique will be used in chapters 5 and 6 of this thesis.

1.4 Method

We present in this thesis two approaches to the study of

Pascal orientated intermediate language machines. The first is presented

in chapter 2 and the second is covered in chapters 4, 5 and 6.

The first method deals with the derivation of an intermediate

language machine, whose primitives are built using a specifically

10

designed memory structure. We start by considering two aspects of the

problem: the derivation of intermediate language primitives for control

statements and primitives for language data structures. The advantage

of this approach is that we can work with two different aspects of the

source language; in the first case we study the problem of implementing

procedure calls, loop handling and expression evaluation without consi-

derations about data; in a second stage we study the problem of mapping

data structures independent of control sequence. In both cases the

requirements of both control and data structures are translated in terms

of abstract data structures. These abstract data structures are then

translated in terms of special-purpose memory systems, such as specially

designed shift-registers or random-access memories with automatic

indexing capabilities. This technique can be seen as an attempt to bridge

the gap between the definition of intermediate languages and the

possibilities of large-scale integration for implementing complex but

repetitive hardware structures. One way of achieving simpler inter-

mediate forms is by the use of more sophisticated hardware memory

structures, which is an exact parallel of the case of introducing

hardware primitives for real arithmetic instead of the painstakingly

interpretation of these using simple arithmetic for integers.

A method for deriving intermediate language machines which are

more general purpose and more independent of its mode of interpretation

is presented in chapters 4, 5 and 6. The method is based on two simple

principles: the first is that the process of deriving an intermediate

form is essentially iterative, i.e. it may have to be repeated several

times until the desired results are obtained; the second is the

principle that the intermediate language machine has to be evaluated

and improved according to the workload to which the intermediate

11

language machine is going to be submitted. This method has four

distinct phases:

i-start with the definition of an "easy to compile"

intermediate form. In our case we start with one already defined

intermediate form - the P4 intermediate form used by the Pascal P4

compiler:

ii-a study of an advanced workload is made, from which the

characteristics of the advanced workload are collected. This information

is to be used both for evaluation and improvement of the intermediate

form machine. The key to this evaluation technique is the concept of

language fragments (Wor72a).

iii-the evaluation of the cost measure is made using the static

and dynamic distribution of fragments obtained in phase ii. Determine

which are the language fragments which use most of the resources.

iv-alternative intermediate form primitives for the mapping

of these fragments are suggested. The data about frequency usage of

language fragments is now used to evaluate the effect of these alter-

native strategies in the cost measure. This process can be repeated

several times until a satisfactory cost measure is obtained. In a

latter phase, not developed in this work, the data about fragments

usage can be used to compare the resulting intermediate form with other

forms using different hardware bases.

1.5 Thesis composition

In chapter 2 we consider the problem of deriving an intermediate

language machine for a subset of Pascal. The control and data structures

are analysed and implemented with special purpose hardware mechanisms.

The source language is an extended version of the PL/0 language with

12

additional control and data structures.

Chapter 3 presents a study of the problem of defining intermediate

language primitives for the implementation of Pascal data structures.

The resulting technique is a descriptor mechanism using a set of

descriptor operators and descriptor formats.

Chapter 4 presents the result of our analysis of form and

behaviour of Pascal programs. From this study, among other data, we

have collected static and dynamic properties which permit evaluation

of different implementations of Pascal orientated machine, and it will

be used to evaluate and improve the Pascal P4 intermediate language

machine.

In chapters 5 and 6 we study one particular intermediate

language machine - the P4-machine. We start by evaluating the P4

machine using the data collected in chapter 4. The result of this

evaluation is used to detect the areas of the P4-machine which use

most of the resources. Alternative constructs are suggested and the

overall improvement measured.

13

2 - The EPL/0 machine

2.1 - Introduction

The implementation of a high-level language on a real or abstract

machine via a compiler involves the implementation of two different

language aspects:

a - the language control structure, comprising the set of prim-

itives for mapping selection, repetition and procedure call statements.

b - the language data structures, comprising the representation

of primitive data types and the provision for implementing the methods

for data structuring provided by the language.

Implementing each one of the features in the first group above

involves the use of some storage space; which has some properties

defined by the language rules and some defined by the method chosen by

the implementor to execute the translation procedure. For example, the

implementation of procedure and function calls need some area of

storage to be used to store control information. The type of infor-

mation and its structure depend on language rules - e.g. it will depend

on whether the language allows procedures to be nested or recursive or

permits procedures to be passed as parameters (McKe75a). These features

would imply, for example:

a - if no recursion is allowed, storage for data areas can be

allocated when the program is loaded.

b if no nesting is permitted, the addressing will be reduced

to local and global variables.

c - if the language does not allow parametric procedures, all

calls will preserve the current scope of addressing apart from the data

area of the called procedure, i.e. only one change in the scope is made.

We can imagine that the area of storage used for the support

14

of procedure implementation forms a data structure, whose actual form

depends on language rules and compiler strategy. The same concept can

be applied to the rest of the control primitives. The storage area

needed for the implementation of language data structures can also be

thought of as a data structure. As in the case of procedures, there

are several language parameters which can influence the run-time data

structure, including:

a - if the type definitions can be nested

b - if the size of data objects can vary at run time.

c - if new objects can be generated at run time.

One approach to the problem of language oriented computer design

is through the direct hardware implementation of the run time control and

data structures. A good example is the display mechanism of the Burroughs

B6700, which is a hardware implementation of part of the data structure

required for keeping the run-time addressing environment in a block

structured language. This partial data structure is an array of addresses

pointing to the data areas accessible to the running procedure (or block)

which is implemented as a set of fast registers. This idea could be

extended to cover not only the control activities (like return addresses,

memory allocation) but also storage and access of structured variables,

e.g. arrays could be stored and accessed in a special memory for arrays,

records would have their special memory etc.

This chapter describes one exercise in language oriented machine

design, based on the ideas presented above. The work consists of four

parts:

a - the design of the specialized memory structures to meet the

language requirements.

b - design of the intermediate language which uses the specialized

memory primitives.

15

c - write a compiler and interpreter to verify these concepts

d - run a test batch to collect some machine statistics and

study its behaviour.

We have chosen for this experiment a subset of Pascal called

PL/0 (Wir76a) which was extended to provide additional control state-

ments and data types. We have chosen this extended version of PL/0

as it provides a realistic language on which to demonstrate the design

method, while remaining simple enough to be analysed and tested without

excessive effort.

16

2.2 - The PL/0 language and its extensions.

The PL/O language was created by N.Wirth (Wir76a) for the purpose

of teaching compiler techniques. The design constraints for this

language were that it should be "small" enough for its compiler to be

presented in a book and sufficiently complex to expose the basic concepts

of compilation. It can be thought as a simplified version of Pascal

designed for compiler teaching purposes.

The original version of PL/O contains the basic control statements

for selection and repetition: if-then and while statements. It also

provides assignments and procedure calls. The procedure definition can

be nested and procedures can be recursive. The only data type offered

is integer.

The original PL/O definition has been extended in the present work

and it will be referred to as EPL/O from now on to differentiate it

from the original version.

The modifications introduced are:

a - inclusion of the for, repeat and case statements.

b - the procedure definition can specify value parameters.

c - two new data types: array and stack.

Arrays are of type integer and the lower bound is always zero.

Stacks, corresponding to the common last-in first-out structure have

a base type integer. A variable which is declared of type stack can

appear either in expressions or in the left-hand side of assignments;

if inside an expression every reference to it implies that an element in

the top of this stack is read out, while if in the left hand side the

result of the expression is inserted on top of the stack. There is also

a primitive called - empty(s) which returns the value 1 (there are no

booleans in PL/O) in the case when the stack denoted by the parameter s is

17

empty, otherwise returns. Q.

The main reason for the introduction of stacks as a language

feature (which makes it not a true subset of Pascal) is for testing

the possibility of designing memory structures for matching abstract

data structures. The only way of using this data structure in a language

like Pascal is to introduce it as a type to be used by the programmer

at variable definition time.

A syntactic flowgraph of the extended version of PL/0 is presented

in Appendix 4.

18

2.3 - The extended PL/O machine

The design of the extended PL/O machine followed the principle,

outlined in section 2.1, that the structure of a machine oriented

towards a high level language can be derived from the analysis of the

run time requirements for implementation of that language. The run time

requirements are first expressed in terms of abstract data structures

which are then implemented by specialized memory devices. Each one of

these specialized memory devices will have a set of primitives upon

which the instruction set is defined, with each instruction expressed

as a combination of these primitives.

The first step in our design for an extended PL/O machine is

the study of the requirements for the memory system. We have already

identified two basic structure classes: the language data structures

and the control structures, so we assume that the machine needs two

memory systems:

a - the data memory: to store the local and global variables

simple or structured and support their access methods.

b - the control memory: to store the control information needed

for supporting data and code addressing in a nested, recursive procedure

environment and provide a mechanism for expression evaluation.

2.3.1 - The data memory system

The data memory system implements the data structures needed

for supporting the storage and access of simple and structured variables.

The problems arising from the use of this memory system in a dynamic

allocation scheme do not affect primarily the memory structure, but only

its addressing, which will be dealt with in the next section.

Extended PL/O has one simple type - integer and two structured

types array and stack, both of base type integer. This lead us naturally

19

to the subdivision of the data memory system in three subsystems:

- the integer memory to store integer variables

- the array memory to implement array variables storage and access.

- the stack memory to implement stack variables storage and access.

2.3.1.1 - The integer memory

The integer memory, referred to as IM is, in abstract, an array

of integers, the array upper bound being the memory size. An array is

mapped directly in hardware to a random access memory. There are two

primitives defined for accessing the integer memory:

- readint (absadr): read the contents of the integer memory whose

address is absadr.

- writeint (absadr): write the contents of the memory buffer into

the address absadr.

The absolute address utilized by the primitives is the result

of the translation of the address couple in the display memory, discussed

in section 2.3.2.5. The integer memory and its primitives are presented

formally using Pascal notation in table 2.1.

2.3.1.2 - The array memory

The array memory stores the local and global variables of type

array and provide a simple mechanism for array element access. Individual

components of an array variable are denoted by a selector of the form:

x[i]. An access to an array element involves two main actions:

a - check if index i is in the array range

b - evaluate the address of x[i].

In some machines a dedicated register, the index register, is

used to mechanize the second operation. This operation involves setting

the index register to the value of the index i and loading the value of

the array base address to the accumulator, the value of the address of

20

xEi] being automatically generated. The actions for range checking the

index are left to the programmer.*

A special memory system can be devised in such a way that both

operations are executed by the memory system itself. One solution is

the specification of an array memory with the following components:

(Fig 2.1)

a - one random access memory AD for storing the array data.

b - a random access memory MA for storing the addresses of arrays

in AD.

c - one active component for adding and comparing addresses.

address of x in MA

MA

index i

,` 	+ / adder for indexing

W

comparator for bounds check

AD

Figure 2.1-Array memory lay-out

The operation is as follows: the address of array x is an entry

to MA; the system reads the address of array x in AD and reads the base

address of the successor of x in MA, which enables the system to execute

* Footnote Machines with descriptor mechanisms can do both actions

simultaneously, see chapter 3 for discussion of this

alternative solution .

21

bounds checking. A formal description of the array memory is given in

table 2.2.

2.3.1.3 - The stack memory

The design of the stack memory followed the same ideas used in

design of the array memory. Stacks are usually simulated in random

access memories as arrays with implicit indices, which are incremented

or decremented according to the operation being executed. Complex

problems of space management appear when more than two stacks are

required to share a limited memory area (Knu68a).

A single stack can be implemented by a shift-register on which

the primitives shift-right and shift-left are used to map the stack

primitives pop and push. However, a problem appears when more than one

stack has to share the same physical device, since the normal shift-

register has only its extreme elements accessible. One technique for

solving this problem is by defining a shift-register in which every

position is addressable and the primitives shift-right and shift-left

are changed to:

a - push from x: elements with address greater or equal to x

are shifted one position. The position x is

written with the value of the memory buffer mbr.

b - pop from x: the position x in the shift-register is read

out and all elements with address greater than

x are shifted one position.

As in the case of arrays, two operations have to be implemented

when accessing an element of a stack variable:

a - locate the top of stack in the stack memory

b - check if the stack is empty

For performing these two operations another memory, the mark-stack

22

MS is introduced in addition to the storage for the stack variables SM.

The mark-stack or MS is a simple array of pointers each of which contains

the address of a particular stack variable. The address of the top

element of a particular stack is obtained by relocating the stack address

as known in the program in the mark-stack; i.e. the variable index in

the primitives described in table 2.3 can be defined as:

index: =, MS [stackaddress3; where stackaddress is obtained after

relocation of the stack address couple in the display memory.

Since after any stack operation occurs, all the addresses of

other stacks will change, a primitive operation, called fixmarkstack,

is to be incorporated in MS to execute this correction automatically.

Table 2.3 defines the memory subsystems for the stack memory.

Since we are using a sequential language for describing parallel operations,

stacks in table 2.3 are represented as arrays with the sequential for

loop in the primitives pushfrom, popfrom and fixmarkstack denoting an

operation which is to be executed in parallel. Table 2.3 also defines

three high-level primitives which will be used directly in the instruct-

ion set:

a - pop(absadr): to read a stack element

b - push(absadr): to write on a stack variable

c - empty(absadr): to test if the stack is empty

2.3.2 - The control memory system

The basic requirement for the control memory is the supporting

of the implementation of the control structure of the language. This

implies in mechanisms for the support of the selection (if-then and case

statements), repetition (while, repeat and for statements) and abstrac-

tion statements (procedure and function calls). The selection and

repetition statements require very simple control mechanisms, which are

reduced to expression evaluation and code jumps. Expression evaluation

is needed in assignment and procedure calls (in parameter passing) and a

23

special memory is assigned to it.

Most of the other requirements for the control memory stem from

the fact that extended PL/O procedures can be nested and recursive.

Procedure calls in a static language like Fortran can be implemented

very simply by storing the return address in the body of the called

procedure - a solution which can not be used in EPL/O since procedures

are recursive; the mechanism for implementing return address requirements

is the procedure linkage memory.

Other requirements come from data addressing in an environment

where procedures can be nested and recursive. Two different mechanisms

are needed -the first to manage the creation of procedure data areas

called the mark-data-area memory; the second for the support of data

addressing mechanism and it is called the display memory.

In the description of the control memory system we shall make

frequent use of the stack data structure. To simplify the description

we shall use a type stack having the same properties as the type stack

in EPL/O.

The control memory system contains four memory subsystems:

1 - the expression evaluation memory

2 - the procedure linkage memory

3 - the mark-data memory

4 - the display memory

2.3.2.1 - The expression evaluation memory

The data structure needed for implementing expression evaluation

depends on the algorithm chosen by the implementor to translate

expressions (and obviously the language rules). The simplest form of

translating expressions is by transforming the expression to a reverse

polish format which is then executed by using a stack and reverse

24

polish (postfix) operators in the order code. In normal stack machine

implementations the evaluation stack coalesces with the data storage

stack, although this is not a necessary condition since the data storage

stack is used as a stack for block allocation of variables which are

subsequently accessed, not in the last-in first-out manner but in a

random-access way. We assume the expression evaluation memory EM to be

a stack on which the following primitives are defined:

a - pushem: push mbr in expression memory

b - popem: read top of expression stack to mbr.

c - literal (value): push value to expression stack

d - operator (op): execute operation defined by op with the two

elements in the top of EM and return result

to EM.

A definition of the expression memory and its primitives is presented in

table 2.4.

2.3.2.2 - The procedure linkage memory LM

Every time a procedure is called, the information about the

return address - which is the actual value of the program counter PC

(in the extended PL/0 machine) must be saved. In a normal implementation

this information would be saved in the activation record of the called

procedure and restored on return. Return addresses of procedures are

naturally accessed in a last-in first-out manner, so the abstract data

structure in this case is the stack.

The linkage memory can be used for loop control, and in the

extended PL/0 implementation it is used for storing information used

in the execution of the for statement.

2.3.2.2 - The mark-data-area memory

Extended PL/0, like Pascal, allows procedures to be recursive.

25

This implies that procedure data areas can not be allocated at load

time; instead they must be allocated at procedure entry time and

released at exit time. Since the last data area to be allocated is

the first to be released the addresses of active data areas form a

stack which is called MD in the EPL/O machine.

In the extended PL/O machine there are three different data

memories, one for each type, so each entry in the stack which holds

the address of the active data areas should contain three pointers, one

to each of the specialized data memories: integer, stack and array.

The format of each entry can be defined by the type declaration

datapointer in table 2.6. We also define a register TOP to point the

start of the free space in the data memories. The management of the

data areas is executed by the primitives pushmd and popmd.

2.3.2.5 - The display memory

The addressing of global data areas, i.e. addressing variables

of procedures in levels of nesting less than the current procedure, can

be achieved via the display. The display is simply an array of pointers

to the *areas of the procedures which are accessible to the one which is

currently in execution. If the maximum level of nesting allowed is

maxnest then a simple display can be defined as:

DM: array El..maxnest) of datapointer;

When a procedure is called the display memory must be updated.

If the language does not allow procedures to be passed as parameters,

then this implies that the called procedure must be in the scope of the

caller. The implication is that the display is already set, apart from

the entry corresponding to the data area of the called procedure. If

the lexical level of the caller is m and the lexical level of the called

procedure is n (1 s n s m+1) then the actions at procedure entry and

exit are:

26

at entry; save DM[n] (the entry to be changed)

replace DM[n] by current stack marker

at exist; restore DM[n] to old value.

Since the first exit must correspond to the last entry, then a

stack is the adequate structure for storing the entries of the display

to be saved. The simplest solution is to define each entry in the

display to be a stack, such that the contents of each element can be

automatically saved. With this refinement the definition of display

becomes:

DM: array El..Maxnest] of

stack of datapointer;

The set of primitives operating on DM (table 2.8) simplifies

the display maintenance, which becomes:

at entry: execute 'pushdisplay(n)' where n is the level of the

called procedure, this will automatically save the old

display entry and load the address of the free area

to DM[n],

at exit: execute popdisplay(level) to restore old data area

pointer.

Each extended PL/O variable is defined by a triple (type, level, offset),

with the variable type embedded in the instruction format. The absolute

address for an element of type integer is formed by the primitive:

procedure intaddress(level, offset)

begin(*evaluate absolute address*)

absadr: = DM[level]. intpainter + offset

end;

The same applies for stacks and arrays.

The extended PL/0 instructions set (table 2.8) is built with the

27

set of memory primitives defined for data and control memory systems.

Fig. 2.2 shows the relation between the various system components.

2.4 - The experiment

A complete system was designed to test, simulate and perform

measurements in the extended PL/O machine defined above. The system

consists of an extended PL/O compiler and interpreter both written in

Pascal. The compiler translates extended PL/0 programs to EPL/O machine

code. Monitoring instructions embedded in the compiler and interpreter

are used to collect data about source text composition, the code generated

and run-time machine characteristics.

Two experiments were made in the simulated version of the EPL/O

machine:

a - a set of 28 procedures was collected from Wir76a and Wir73a.

These procedures were coded in EPL/0, compiled and run in the system.

b - a subset of the test batch above, consisting of five sort

procedures was coded and run in the original PL/O machine, as defined

in Wir76a. Both machines are compared in terms of the number of

instructions needed for coding and running the sort algorithms.

The information resulting from the above experiments, although

of limited scope, can be used to check the correctness of the design

principles and suggest improvements in the EPL/O machine to match

language usage requirements.

2.5 - Results

The data gathered in the first part of the experiment can be

divided in three groups:

a - data about EPL/O program composition: tables 2.9 and 2.10

display the information about frequency of use of source language con-

structs and operators, while table 2.11 displays EPL/0 procedure data

28

area size statistics.

b - data about the code generated - tables 2.12 and 2.13 contain

the static and dynamic distribution of EPL/O machine instruction usage.

c - data about EPL/O machine memory behaviour: table 2.14 displays

the frequency of use of each one of the components of the EPL/O memory

system.

The results of the experiment of running five sort procedures

in both the EPL/O machine and the original PL/O is presented in table

2.15.

2.6 - Conclusions.

This chapter describes an attempt to design an intermediate

language machine around a specialized memory system. The memory system

primitives are defined to match the source language data and control

requirements.

The following points should be noted concerning the mapping of

language data structures:

a - there is a definite improvement in data access efficiency

combined with a simplification in code generation.

b - the use of a special memory for types which are not in the

language definition, such as stacks, although offering some implementation

difficulties can bring considerable gains. However, to be used efficiently,

these types must be embedded in the language.

c - there is an overhead in the control memory system incurred

in the management of different data memories. As a consequence the data

space required by the display and mark-data memories is trebled in the

design considered here.

d - there will be difficulties when we try to apply this concept

to the full data structuring methods provided by Pascal. This is due

29

to fact that Pascal types can be nested, implying that the access

technique for one type cannot be used for another.

In the case of the control memory we observe that:

a - there is a significant improvement in compiler simplicity

and in the size of the generated code achieved by the use of a memory

system orientated towards the control requirements of the source language.

In this specific case, the control memory has two main components one

for expression evaluation and a second for supporting the procedure call

mechanism; these are the most used language features (see table 2.9).

b - the components of the control memory can be implemented by

cheap, large sequential memories thus providing a fast and simple solution

to control structure mapping without any loss in generality.

Arithmetic Unit

stack

TOP
Mark-data-area

Integer
Display

Procedure linkage

Code

1

----- 	------

Fig. 2.2 EPL/O machine memory system
conventions:
	 pointer

data flow

31

Table 2.1 - Integer memory definition

IM: array [0..maxintaddress] of integer;

procedure readint (absadr: 0..maxintaddress);

begin

mbr: = IM[absadr]

end;

procedure writeint (absadr: 0..maxintaddress);

begin

IM[absadr] := mbr

end;

Note: mbr is a special purpose register - the memory buffer register.

Table 2.2 - Array memory definition

AD: array CO..maxarrayaddress] of integer;

MA: array [O..maxnoarrays] of 0..maxarayaddress;

procedure readarrayelement (arrayaddress, index);

begin

elementaddress: = MACarrayaddress] + index; (*form real address*)

arraybound: = MACarrayaddress +1]; (*bound is next array start*)

if (index < 0) or (elementaddress arraybound)

then

error

else

mbr: = AD[elementaddress]

end;

32

Table 2.2 (Cont'd)

procedure writearrayelement (arrayaddress, index);

begin

elementaddress: = MA[arrayaddress] + index; (*form address*)

arraybound 	. = MA[arrayaddress + 1]; 	(*bound*)

if (index < 0) or (elementaddress >arraybound)

then

error

else

AD[elementaddress]: = mbr

end;

procedure updatemark (arraysize,offset);

begin

MA[offset] + arraysize (*offset is address of next array in MA*)

end;

Table 2.3 - Stack memory definition

SM: array CO..maxstackaddress] of integer;

procedure pushfrom (index);

begin

for control: = maxstackaddress

downto index + 1

do SM[control] : = SM[control-1];

SM[index] : = mbr

end;

procedure popfrom (index);

begin

mbr: = SM[index];

For control: = index

to maxstackaddress-1

do SM[control]: = SM[control+l]

end;

33

Table 2.3 (Cont'd)

procedure fixmarkstack (stackaddress);

begin

for control: = stackaddress

to maxmarkstackaddress

do SMCcontrol]: = succ(SMCcontrol]);

end;

procedure pop (absadr);

begin

index: = MS[absadr]; 	(*get address of top of the stack*)

popfrom (index); 	(*mbr has data*)

fixmarkstack; 	(*correct mark—stack*)

end;

procedure push (absadr);

begin

index: = MS[absadr]; 	(*address of top of stack*)

pushfrom(index) ; 	(*inser mbr in top of stack*)

fixmarkstack; 	(*correct mark—stack*)

end;

procedure empty (absadr);

begin

if MSCabsadr] = MS[absadr+lJ

then

mbr: = 1

else

mbr: = 0

(*stack is empty*)

end;

34

Table 2.4 - Expression memory definition

EM: Stack of integer;

procedure pushem;

begin (*write mbr in top of stack*)

EM: = mbr

end

procedure popem;

begin (*read top of the stack to mbr*)

mbr: = EM

end;

procedure literal (value);

begin (*load a literal constant on evaluation stack*)

EM: = value

end;

procedure operator (op);

begin (*execute operation defined by op*)

acl: = EM; 	(*read first operand*)

act: = EM; 	(*second*)

case op of :

+ . . 	EM: = acl + ac2 ;

EM: = ac2 - acl ;

* 	EM: = acl* ac2 ;

/ 	EM: = ac2/acl 	;

end;

end;

35

Table 2.5 - Procedure linkage memory definition

LM: stack of integer;

procedure pushlm;

begin (*save PC in linkage memory*)

LM: = PC

end;

procedure poplm;

begin 	(*restore PC*)

PC: = LM

end;

Table 2.6 - Mark data-area memory definition

type datapointer = record

intpointer: 0..maxintaddress;

stapointer: 0..maxstackaddress;

arrpointer: 0..maxarrayaddress

end;

TOP: datapointer;

MD : stack of datapointer;

procedure pushmd;

begin (*save current pointers to free data space*)

MD: = TOP

end;

procedure popmd;

begin (*restore pointer to free space*)

TOP: = MD

end;

36

Table 2.7 — Display memory definition

DM: array [1..maxnest]'of

stack of datapointer;

procedure pushdisplay(level)

begin (*save current entry in the display and update*)

DM [level] : = TOP

end;

procedure popdisplay(level);

begin (*return old entry in level*)

scratch: = DM [level]

end;

37

Table 2.8- EPL/Q instruction set.

I-LODINT 	1,a :begin (*load integer to expression memory*) *
readint (absadr)'
end;

2-LODSTA 	l,a :begin (*load stack element to expression memory*)
pop (absadr)

end:

3-LODVEC 	l,a :begin (*load array element to expression memory*)
popem;
readarrayelement(absadr,mbr)

end;

4-STOINT 	l,a 	:begin (*store top of EM in integer memory*)
writeint(absadr)

end;

5-STOSTAL 	l,a 	:begin (*store top of EM in stack memory*)
push(absadr)

end;

6-STOVEC 	l,a 	:begin (*store top of EM in array memory*)
popem;
writearrayelement(absadr,mbr)

end;

7-DOUPEN

8-DOUPEE

9-STOCS

10-LITCS

a 	:begin (*do loop enter sequence*)
**

if IM[ctladr]>limit
then PC: = a; (*a contains out of loop address*)

end;

a 	:begin (*do loop tail sequence*)
IM[ctladr] : = succ(IM[ctladr]);
PC: = a

end;

:begin (*store top of EM in linkage memory*)
temp: = PC;
PC: = EM;
pushlm;
PC: = temp

end;

a 	:begin(*store literal a in linkage memory*)
temp: = PC
PC: = a;
pushlm;
PC: = temp

end;

* FōōtnOte 	absadr is the absolute address generated by the relocation of
the address couple (1,a) by the display memory.

38

11-TSTACK 	l,a

12-STOIP 	l,a

:begin (*test if stack is empty*)
if empty(absasdr)
then litem(1)
else litem(0)

end;

:begin (*store integer parameter at offset a*)
writeint(TOP.intpointer+a):

end;

13-STOSP

14-LIT

a 	:begin (*store stack parameter at offset a*)
push(TOP.stapointer+a)

end;

a 	:begin (*load literal a at EM*)
literal (a)

end;

15-0PR 	a 	:begin (*execute arithmetic operation*)
operator(a)

end;

16-JMP

17-JPC

18-CALL

a 	:begin (*jump to a*)
PC: = a;

end;

	

a 	:begin (*jump if false to a*)
if EM = 0

then PC: = a
end;

	

l,a 	:begin (*call procedure at level 1 address a*)
pushdisplay(1);
pushlm;
pushmd;
PC: = a
end;

19-RETURN 	1 	:begin (*return from level 1*) ,
poplm;
popmd;
popdisplay(1)

end;

20-ENTI 	a 	:begin (*allocate space for a integer variables*)
TOP.intpointer: = TOP.intpointer+a
end;

21-ENTS

22-ENTA

a 	:begin (*allocate
TOP.stapointer:
end;

a 	:begin (*allocate
TOP.arrpointer:
end;

space for a stack variables*)
= TOP.snapointer+a

space for a array variables*)
= TOP.arrpointer+a

** Footnote 	ctladr is the address of the for control variable and limit
is the maximum value of the iteration; both of which are stored

in the procedure linkage memory.

39

Table 2.9 - Sentence Distribution

SENTENCE FREQUENCY PERCENT

IF 38 9

WHILE 24 6

REPEAT 17 4

FOR 27 6

CASE 4 1

CALL 51 12

ASSIGNMENT 258 62

Table 2.10 - Operator Distribution

OPERATOR FREQUENCY PERCENT

+ 48 25

38 20

* 15 8

/ 9 5

OR 5 3

AND 2 1

NOT 6 3

= 8 4

<> 5 3

<= 10 5

>= 4 2

> 30 16

9 5

40

Table 2.11 — Data Area Size Distribution(Static)

BLOCK SIZE* FREQUENCY PERCENT

0 3 5

1 2 3

2 10 15

3 23 35

4 10 15

5 10 15

6 2 3

7 3 5

8 2 3

9 0 0

10 0 0

Total number of declared variables and parameters in a procedure.
*

41

Table 2.12 -- Instruction Distribution(Static)

INSTRUCTION FREQUENCY PERCENT

LODINT 405 19
LODSTA 11 1
LODVEC 82 4
STOINT 199 10
STOSTA 14 1
STOVEC 72 3
DOUPEN 24 1
DOUPRE 24 1
DODOEN 3 0
DODORE 3 0
STOCS 27 1
LITCS 27 1
TSTACK 12 1
STOIP 16 4
STOSP 3 0
STOVP 0 0
LIT 313 15
OPR 214 10
JNP 115 6
JFC 0 0
JPC 91 4
CALL 50 2
RETURN 65 3
ENTI 65 3
ENTS 65 3
ENTV 23 1
ENTD 65 3
DISP 33 2
ABORT 4 0

42

Table 2.13 - Dynamic Instruction Frequency

INSTRUCTION FREQUENCY PERCENT

LODINT 3143 29
LODSTA 35 0
LODVEC 861 8
STDINT 823 8
STOSTA 58 1
STOVEC 550 5
DOUPEN 264 2
DOUPRE 216 2
DODOEN 44 0
DODORE 36 0
STOCS 56 1
LITCS 56 1

TSTACK 34 0
STOIP 209 2
STOSP 0 0
STOVP 0 0
.LIT 1079 10
OPR 1546 14
JMP 291 3
JFC 0 0
JPC 688 6

-CALL 123 1
RETURN 124 1
ENTI 152 1
ENTS 152 1
ENTV 23 0
ENTD 152 1
DISP 60 1
ABORT 0 0

43

Table 2.14 - Memory Access Distribution

MEMORY
	

FREQUENCY 	PERCENT

INTEGER 	4735 	13
STACK 	127 	9
ARRAY 	1434 	4
EXPRESSION 	10662 	29
DISPLAY 	6835 	19
MARK-DATA 	992 	3
LINKAGE 	796 	2
CODE 	10779 	29

Table 2.15 - Comparison of two PL/O machine versions.

Machine
	Code size 	Instructions executed

Original PL/O 	536 	4788
EPL/O 	398 	2803

44

3 	Descriptors and the implementation of data structures.

3.1 Introduction

According to N. Wirth (Wir76a) a well-structured program can

be thought as consisting of two different parts: a data structure and

the algorithms which work upon it. In the same manner, the problem of

mapping a high level language like Pascal to an architecture can be

subdivided in two problems:

- the mapping of language data structures.

- mapping of the control statements.

The problem of finding primitives for control structure does

not present major difficulties. Deriving primitives of language data

structures which can be efficiently mapped to hardware is more difficult,

not only because data structures are more complex than control structures

but also because the former is interwined with the addressing method

of the language with its problems of scope, blocks etc.

There are two main techniques for mapping language data

structures to machine architecture:

a. A hardware solution, which is characterised by the design of special

purpose memories to meet the required data structure primitives.

This is the line of solution used in the PL/0 machine discussed

in Chapter 2. This approach can only be used when the language

data structures are not very complex - like PL/0. But, when we

consider a language like Pascal two main obstacles appear:

i, there are several forms of structuring data. This leads

to several different memories whose management is very

costly.

ii. the data types can be nested. The memory structure to

cope with this case would be very complex.

45

b. A software or logical solution which involves a memory 'emulation

device', i.e. a device capable of transforming the linear memory

of present day computers into a structured space with the required

properties of the data structure definition. This can be achieved

using descriptors.

As a starting point in our study of descriptors we decided

to investigate the ICL 2900 descriptor mechanism. (ICL76a). The ICL

2900 was designed originally to act as a target language machine, i.e.

to match the needs of the intermediate forms of various compilers

(Buc78a). Since it is also one of the more advanced architectures in

the market, it was thought profitable to study it and to obtain the

maximum feedback from its design.

However, the ICL 2900 descriptor presents several problems

to the implementor of Pascal. These problems are discussed in (Iza79a

and Ree77a) and can be briefly summarized as:

a. the 2900 descriptor being a 64-bit entity gives a low value to

the quotient (data bits/descriptor), i.e. descriptors occupy too much

space.

b. the 2900 scheme is not general enough to Pascal requirements,

e.g. the descriptor 'size' fields can describe only the basic machine

types, making it impossible the define arbitrary size elements as a

Pascal record.

Although an 'ad hoc' method can improve this ratio, it

imposes a penalty on compiler simplicity. The standard architectural

solution not only does not provide a simple method for the assignment

of data structures (as a block) due to the fact that descriptors and

data are mixed but also complicates the creation of dynamic data

46

structures since structural information must be evaluated at generation

time (through the procedure new).

This chapter describes a descriptor mechanism for mapping

Pascal data types to computer memory. It consists of a set of type

descriptors and three descriptor operators. The idea is transforming

a valid Pascal name into a semantic expression which when evaluated

at run time will give as a result the semantic attributes of the name:

address and type.

The semantic expression consists of operands and operators.

The operands are descriptors and the operators (which operate on

descriptors giving descriptors) have a one to one correspondence with

Pascal data selectors.

Our solution tries to cope with the 2900 descriptor problems

cited above. The ratio (data/structural information) can be improved

by attaching descriptors to types instead of to variables. Assignment

and creation of data structures are simplified because data structures

are laid down linearly in memory and descriptors are kept separate from

data.

The main advantage of this method against the traditional

compiler evaluation is the obvious simplification of the translation

procedure which is one of the aims of the language-oriented computer design.

This is achieved by delaying all the work related to address and type

evaluation of data structure elements to run time.

3.2 Basic definitions

In some primitive machine architectures the semantic infor-

mation about a type or variable is distributed throughout the code,

without any structure. An organised technique for description of data

47

at machine level is required.

Instead of having data about an array, for example,

distributed in instructions like 'compare bounds' or 'load an element

of size x', data about bounds and element type could be stored in a

special position which is read each time an access to the array is

executed. This position is here called the (array) descriptor.

Since all accesses to data structures of the same kind

require the same set of operations, it seems natural to associate with

the descriptor some implementation of the primitive access operations

required for the particular structure. In the case above, the instruction

'compare bounds' is a primitive of all array access therefore it can be

merged in a more general operation 'access array through descriptor'

which would execute this checking automatically.

Hence, when discussing descriptors, it is useful to remember

that the term connotes, with its semantic data, a set of basic operations

used in data structure access.

In the implementation of language data structures using

descriptors the latter will act as a bridge connecting abstract data

structures to concrete computer memory. Since the terms type, data

structure and descriptor are very frequent in this chapter, it is

useful to start by stating their definition and associated symbols.

Type determines the class of values that may be assumed by

a variable or expression. Structured type is a type defined in terms

of other types. Data structure is a structured type together with

some operations on that data type (Co178a)

48

Descriptor is a data object containing the semantic specifi-

cation of a type or variable. The value of a descriptor, x, is

displayed as

x=(n0=f0,n1=f1,nk=fk) ,

where ni is the identifier of the i-th field and f0,fl,..fn represent

the values of the descriptor fields in the same order as they appear

in the definition. We refer to a descriptor field using the same dot

notation as in the reference to a Pascal record i.e.:

x.ni = fi where ni is the identifier of the i-th

field in the descriptor template definition.

Descriptor template defines the class of values that may be

assumed by the descriptor. The template acts as 'type' for the

descriptor. The definition of a descriptor template is made using the

same notation used for Pascal records. When defining physical fields

bit [n] = array [l..n] of boolean

is used.

Descriptor operations are the set of basic addressing and

type evaluating primitives working on descriptors. The description of

these operations will be made using the same form as a Pascal procedure.

3.3 Descriptor objects

Descriptors are data objects. As data objects they have a

name and a value. The descriptor value is a set of attributes which

characterise some computer object, e.g. variable, file, procedure or

another descriptor. Since this chapter is discussing data structures,

'descriptor' will hereafter denote descriptor for data objects only,

excluding code descriptors, etc.

Descriptors are complex data objects. The basic units forming

the descriptor are called descriptor fields. Each one describes one of

49

the attributes of the object. A descriptor field can itself be a

complex data object depending on the particular attribute being defined.

The descriptor template defines the set of values that a

descriptor can assume by defining how many and what kind of fields

the descriptor has. There are many ways to arrange the semantic infor-

mation concerning an array (array bounds, element type, size, address)

in different descriptor fields. We have chosen one field partition, which

will result in the simpler algorithm for name translation, as shown

in section 3.5. This format is not intended to be the final one, since

many efficiency constraints could modify it. Among the factors which

can influence partition are descriptor size and information traffic.

A field partition whose target were to minimize the area occupied by

descriptors would give a different descriptor template.

3.4 Descriptors for Pascal data types

We are concerned only with Pascal data objects. The data

objects generated by Pascal are Pascal variables. A Pascal variable

can be defined by its address and type so a Pascal variable descriptor

has two fields, type and address, the former being usually a complex

field. It can be seen that finding descriptors for Pascal variables can

be reduced to the problem of finding descriptors for Pascal types. It

is also useful to consider type descriptors as objects in themselves.

Since types can be shared by variables, the same descriptor can be used

in the definition of several variables.

In this chapter we discuss the definition of descriptor

templates for seven different Pascal data types, of which three are

simple types and four are structured In order to be able to describe

semantically all possible type declarations we need at least one

*Footnote We shall not consider file types since it involves
system dependent features.

50

descriptor template for each data type.

All non-recursive types, simple types and sets, can be

described by a fixed format descriptor template. Arrays and records

on the other hand, if one ties to put in their descriptor the entire

semantic specification, cannot have a fixed descriptor representation.

Fortunately Pascal restricts the type of operations on structured types.

The only operation allowed is assignment of equal type structures which

does not depend on any semantic attribute of the type apart from its

size. As an example, the semantic data needed for an array x in its

two forms x and x[ii are different. For the first case, only its size,

whilst for the second information about bounds and element type is

necessary. There is an exact parallel in the case of records.

This fact gives us the key to solving the problem of the

recursive nature of these types. The descriptor template for arrays

and records has (apart from its tag) only one field to hold the array

or record physical size; separate templates are defined for array

elements and record items.

Note: in order to get a more concise representation for

descriptors, we will omit the field identifier in front of the

descriptor field value.

Example: d(T)=(tag=sca,card=3) will be denoted by

d(T)=(sca,3) .

In the case of complex fields, parenthesis are used to

give the correct hierarchy. Also, the mnemonic bit [n] denotes an

implementation dependent field size.

51

We show below for each Pascal data type its associated

descriptor template:

1-primitive types

Primitive types being predefined and static, there is no need

for any semantic parameter in their definition. They are defined

uniquely by their tag.

primitive-type-template= 	record

tag: (int,char,bool,real)

end

for example, a declaration like:

type T = integer;

would create a descriptor for T denoted by d(T) as :

d(T)=(int).

2-scalar types

A scalar type is defined by a set of constant identifiers over

which the Pascal standard functions pred(x) and succ(x) are defined.

They can be implemented by mapping the constants on to a subset of

integers 1..n, so their semantic description needs only the number of

elements in the set. Their template is:

scalar-type-templates= 	record

tag: (s ca) ;

card: bit [n]

end

for example :

type T=(white, grey, black) would generate

d(T)=(sca, 3) .

52

3-subrange types

The subrange type is defined by a pair of constants marking

an interval over an already defined scalar type. Its template can be

defined as:

subrange-type-templates= 	record

tag : (subr);

Icon, ucon : bit En]

end

4-set types

The set type can be semantically identified by:

set-type-template = 	record

tag : (set) ;

card: bit En]

end

where the field card defines the number of elements in the

type over which the set is defined.

5-Array types

The semantic definition of the type array involves two

templates. The first is a descriptor for the whole array:

array-type-template = 	record

tag : (arr);

size: bit En]

end

where size is field to hold the array physical size, e.g.

in bytes. We have a second one for the array elements:

array-element-template = record

index : simpletypetemplate;

element : typetemplate

end

53

where index is any simple type template and element is any type

6-Record types

As in the array case, there are two templates defined for

records.

record-type-template = 	record

tag : (rec);

size: bit [n]

end

record-item-template = 	record

tag : (fid);

item: typetemplate ;

offset: bit En]

end

where offset is a field holding the physical distance of the item from

the beginning of the record.

7-Pointer type

Since pointers are defined over an already defined type,

their semantic specification does not need any semantic fields (they

are already in the pointed type).

pointer-type-template = 	record

tag : (ptr)

end

Example - We show below how the descriptors for some simple

types are being absorbed into more complex ones. In the left column

there is a Pascal declaration, and in the corresponding right column

we find its descriptor.

54

In the following example we used the symbols :

d(<id>) - for the descriptor of id

d(<id>-e) - for the descriptor of the array element of <id>.

d(<id>-p) - for the descriptor of the type to which the

variable <id>, a pointer, is bound

type

alfa = 1 .. 10 ;

beta = set of 1..6;

gama = array Calla]

of char;

d(alfa)=(subr,1,10)

d(beta)=(set,6)

d(gama e)=(arl,(subr,1,10),chr)

d(gama)=(arr,10)

delta= record

x : alfa ; 	d(x)=(fld, (subr,l,l0),

y : beta ; 	d(y)=(fld,(set,6),1)

z : gama ; 	d(z)=(fld,(arr,l0),2)

u : + delta ; 	d(u)=(fld,ptr,12)

end; 	d(delta)=(rec,16)

epsilon = array [alfa] of data ;

d(epsilon-e)=(arl,(subr,1,10),(rec,16)).

d(epsilon)=(arr,160)

3.5 Descriptors for Pascal variables

Given a set of descriptor templates, one for each data types,

we can generate descriptors for any Pascal variable. The descriptor

for a variable is defined by two fields: a data attribute field which

is the type descriptor to which the variable is bound and an address

field.

55

The format of any variable descriptor can be defined as:

variable-descriptor = record

attribute : typetemplate;

address : bit [n]

end

for example suppose a declaration like:

var sigma: epsilon;

d(sigma)=(d(epsilon),address)

but as in the last section :

d(epsilon)=(arr,160)

and if sigma is bound to location 300 in memory, the

value of its descriptor is :

d(sigma)=((arr,160),300).

3.6 Descriptor operators

Given this semantic description of a data structure we can

get the descriptor of one of its elements, by using specific descriptor

operators.

The operation executed by the 2900 array descriptors is an

example of a descriptor operator in which given the array descriptor

and an index it evaluates the array element descriptor.

After a structure is defined it can be accessed as a whole

or in parts. The access to certain components of a data structure is

made through the use of selectors. There is a selector corresponding

to each structuring method, and in the same way, both can be recursively

used.

When a single element which is part of a data structure is

referenced, it is denoted by a series of selectors applied to the

56

highest hierarchic name in the data structure. One way of thinking

about a cascade of selectors is as constituting a series of operators

applied on data types.

The main constraint in the design of the descriptor

operators, was the need for a resulting simple translation algorithm

to minimize the work done by the compiler when generating code for a

Pascal name. The second restriction is one-symbol-look-ahead, which

implies that the analysis of names must be done in a single scan from

left to right. Additionally, during evaluation, the system should use

the normal data stack, without any special features. At the end of the

evaluation process the resulting descriptor should be at the top of

the data stack. These conditions allow a very simple and structured

technique for evaluating Pascal names, since all evaluations, both of

expressions and descriptors are made on the same stack.

The simplest way of fulfilling the above condition is a

simple one-to-one replacement of the Pascal 'C' the array selector,

'.' the record item selector and '4' the pointer selector by three

descriptor operators, which we call bracket, dot and arrow.

For example, a name like sigma[2].z, would be converted by

the compiler into the Reverse Polish string

d(sigma) d(sigmae) 2 bracket d(z) dot .

where d(<id>) means 'load the descriptor of <id> to the stack'. In this

case bracket would operate on d(sigma), d(digmā e) and the value 2 to

produce the descriptor of sigma [2], which combined with d(z) by the

operator dot gives as result the address and type of sigma[2].z.

This means a transfer of the operations made by the compiler

when generating code for sigma[2].z to runtime.

57

The descriptor operators assume a resulting descriptor with

the format:

result: 	record

type: typetemplate

address: bit [n]

end

We use also the following functions:

Length (x) - is a function that when applied to the descriptor

argument x returns the size (in bytes) of the element described by x.

value (x) - the argument x is a descriptor, the function

returns the value of the object described by x.

lbound(x) - the argument is a simple type descriptor, the

function returns the value of the lower bound of the type specified by

the descriptor.

i-the bracket operator

The function of this operator is given an array descriptor x

an array element descriptor z and an index value z generate a descriptor

for the array element variable. Its operation can be defined by the

following procedure (operands being assumed to be global) :

procedure bracket;

{generate a variable descriptor for the array element)

begin

result.type := y.element;

result.address:= (z-lbound(y.index))

*length(y.element)

+x.address

end

58

This means the generation of a variable descriptor whose

type is the element field of the array element descriptor and whose

absolute address is the sum of the base address of the array with the

product of the index by the array element size.

ii-the dot operator

This supplies as result the semantic characteristics of the

item being selected inside a record. If x is the array descriptor and

y is the record item descriptor then its operation can be defined as

procedure dot;

{generate the descriptor for the record item}

begin

result.type := y.item;

result.address := x.address+y.offset;

end

This means the generation of a variable descriptor whose

type is the same as the item descriptor and has as address the sum

of the base address of the record with the item offset.

iii-the arrow operator

This supplies the semantic description of a pointer selected

variable. As the pointer variable descriptor describes a pointer

variable, whose contents point to a variable of type 21, the result

is the creation of a variable descriptor of the same type, having as

address the contents of the pointer variable. This can be seen in the

definition below:

59

procedure arrow;

{generate the descriptor of a pointed variable}

begin

result.type := y;

result.address := value(x)

end

3.7 Examples

This example shows how, given a name in its textual form

with all the descriptors associated with it, we can form descriptors

for its elements. In the following examples suppose the variable

sigma is bound to memory location 300 and that descriptor evaluation

is taking place on the same stack as the expressions. Figure 3.1 shows

a graphic representation of the memory lay-out of this data structure.

Let us use the same type definitions as in section 3.4.

Valid Pascal names, defined over a variable sigma of type epsilon are:

sigma

sigmaC2]

sigma[2].x

sigmaC2].z

sigmaC27.z[3]

sigma[2].u+.z

case 1

The name is sigma. The descriptor of sigma is:

d(sigma) = (d(epsilon),300) = ((arr,160),300)

which means that sigma is an array of size 160, starting at location

300. See figure 3.1. Note that no other semantic information is needed,

since Pascal operations on data structures are limited to assignment.

case 2

The name is sigma 2 . Its descriptor is defined by the following

reverse polish string:

d(sigma [2]) = d(sigma) d(sigmā e) 2 bracket

Looking at the definition of bracket we can see that the result is

((rec,6),316), which agrees with figure 3.1-ii.

case 3

The name now is sigma [2].x. In this case we have:

d(sigma[2].x) = d(sigma[2]) d(x) dot

d(sigmaC2].x) = ((rec,16),316) (fld,(subr,1,10),0) dot

d(sigmaC2].x) = ((subr,1,10),316)

The record with its elements is shown in figure 3.1-iii.

case 4

The name is sigma [2].z. The result in this case is an array

descriptor with the attributes of type game and address 318.

d(sigma[2].z) = d(sigma[2]) d(z) dot

d(sigmaI2].z) = ((arr,10),318)

Again, this is shown in figure 3.1-iii.

case 5

The name is sigma[2].z[3]. What we get now is the descriptor of

a variable of type char at address 320, as in figure 3.1-iv.

d(sigmaE2].z[3]) = d(sigma) d(sigmā e) 2 bracket d(z) dot

d(z-e) 3 bracket

which expression when evaluated from left to right gives

d(sigmaC2].z[3]) = (char,320).

60

61

case 6

The name now is sigma[2].u+.z. Suppose also that an instruction

new (sigmaC2].u) was issued before, allocating a record of type delta

at position 1000 in memory.

d(sigmaC2].u+.z) = d(sigmaC2]) d(u) dot d(ū p) arrow d(z) dot

which will give as final result ((arr,10),1002).

See parts v and vi of figure 3.1.

3.8 Conclusions

We have derived in this chapter one technique for Pascal

data structure implementation based on language considerations. This scheme

is more general, less space consuming and simpler to use at compile

time than the mechnism incorporated in the ICL 2900 architecture.

Before any efficiency evaluation of this mechanism can be

made, several implementation considerations must be solved first:

a. the final descriptor format with number and size of fields.

b. how to implement descriptor operators - as zero address

instructions or as one address instructions with the address

field specifying the descriptor address.

c. the primitives use for load, store and move data via descriptors.

d. the method used for store and descriptors: as constants,

variables in the code area etc.

In order to answer these questions and to evaluate the efficiency

of this mechanism we must know first the usage patterns of Pascal data

structures. An investigation of these usage patterns will be the subject

of the next chapter. Considerations about implementation and efficiency

of the descriptor mechanism will be presented in Chapter 6.

addres s
s igma C21 xI Y 	 z

316 	317 	318 	328

62

address 300 460
name <-- s igma --> 1

address 300 316 I 	444
name sigma[1J sigma[21 	! 	iiiiiall-01—

I

(iv) address 318 I 319 I 	327
s igma [21.z z111 • z 12] I 	z f101

address 328 , (1000
s igma[21 . u 1 	u
valugJ000 _ I

address 	1000 	1001 	1002
	1012

z 	u

Figure 3.1

(i)

(v)

(vi)

63

4-A Study of Pascal programs

4.1-Introduction

The main problem in language oriented computer design is to

find which of the semantic primitives in the source programming

language must be optimized when mapped to real hardware. A language is

only a set of rules. It is possible to derive a multitude of machines

to implement that set of rules. We are looking for a language oriented

computer matching some efficiency criteria.

The efficiency criteria we are using is the one already defined

by McKeeman (McKe67a), which is based in the amount of redundant

information used by the language-oriented machine to store and run

programs in the source language. The more information the machine uses

the less efficient it is. The task of designing a machine for a given

programming language can be defined by two constraints: the machine

should allow the implementation of all the language constructs and be

efficient in terms of information usage.

It is simple to conform to the first constraint, since any

machine with a simple increment, test and branch on minus can be proved

to execute any computable function. However, to minimize the redundant

information required to store and run programs in the source language,

we must know the characteristics of these programs in order to adapt

the machine characteristics to the most frequent program patterns.

If one had the complete information about the actual programs

behaviour it would be possible to design a machine which uses the

minimum of redundant information to run a specific workload.

Unfortunately this is not possible in a real environment, since

the components of the workload are not always the same and usually each

program is being updated and changed as time passes. However, the

64

patterns of the population of programs which constitute the workload

can be achieved by a statistical analysis of a sample of programs

representative of the whole population. Extrapolation from such a sample

is possible since the population of programs will have some properties

which will be imposed both by the type of application and the language

rules.

There are several works in the area of analysis of behaviour of

programs written in a high-language. Algol-60 was studied by Wichman

(Wic70a), Chevance analysed Cobol (Chev78a), Knuth studied Fortran

(Knu71a) and Alexander and Wortman analysed XPL (Ale75a). Wortman made

a deep study of a dialect of PL-1 called Student-P1 in his doctoral

thesis (Wor72a).

Since we are working in Pascal oriented machine architecture

and there exists no case in the literature of a study, similar to the

above, of Pascal programs it was necessary to conduct our own

measurements.

This study has two main targets:

1-to collect characteristics of programs which can be used to

design and improve Pascal oriented machines.

2-to obtain data which is general enough to enable the building

of program models. These models could then be used to build synthetic

workloads,to make predictions and evaluations of computer performance.

This chapter contains a description of the results obtained by

the analysis of form and behaviour of well-structured Pascal programs.

In selecting the sample of programs, we concentrated on system programs

since it is reasonable to assume that they will consume most of the

installation resources. The analysis includes textual structure,

65

measurement of syntactic composition and usage. of •language fragments,.both

static (appearing in the object code produced by the compiler) and

dynamic (executed at-run time).

4.2-The Experiment

The experiment sample 	consisted of 38 Pascal programs

making a total of 65000 lines of text; out of the 38 programs we

selected 23 for dynamic analysis.

The experimental tool used in the study was based on the Pascal

P4 compiler which runs in the IBM-370 of the Computing and Control

Department of Imperial College. See Pugh79a for more details about

this implementation.

The Pascal compiler was modified to collect data about the

currently compiled program composition and its code generation part also

was modified to insert monitoring instructions in the intermediate text

being generated. The analysis of the source text is made by procedures

called at three stages of the compilation process:

Stage 1 - at the end of compiling a procedure

Two main routines are executed:

i- symbol table scan - gets data about declared

entities in this procedure, more specifically labels, constants, types,

variables procedures and parameters

ii- procedure body composition-collects data about

frequency and size of statements.

Stage 2 - syntax phase

Based on the Pascal syntax definition given in the

Standard Report (Jen74a), monitoring instructions are inserted in the

text of the compiler to count the frequency usage of the parsing rules.

66

tQ some-

Stage 3 - code generation phase

We defined a set of Pascal fragments corresponding

sequences of code generated for 	possible paths in the

code generation process. In general, fragments constitute only parts

of statements. Each time a particular 	fragment is found, an

instruction "monitor fragment i" is inserted in the intermediate code

and a static record of it is made. '

At run time, the monitoring instruction, trans-

lated to 370 object code, updates an array in the stack of the running

program. Programs are also modified such that they will output automati-

cally, at the end of the run, a file containing the record of the dynamic

usage of the fragments.

A flowgraph of the measurement system is shown

in Figure 4.1.

4.3-Results

This section is intended to serve as a guide to the interpre-

tation of the tables obtained as a result of the experiment. The results

can be divided in three classes: text composition, syntactic structure,

and code fragments usage.

4.3.1-Text Composition

The data about textual composition of programs contains the

cumulative result of the 38 programs analysed. This data is divided

again according to the declaration parts in Pascal texts: labels,

constants, types, variables and procedures.

4.3.1.1-Labels

The distribution of labels in lexical levels is presented

in table 4.1

67

4.3.1.2 - Constant declarations

Table 4.2 shows both the distribution of declared constants

in lexical levels and type. Under the entry Scalar are counted all

constants declared in a definition of a user defined scalar type. The

third part of the table shows the distribution of the logarithm (base 2)

of the value of the declared integer constants.

4.3.1.3 - Type declarations

Data collected about types consists of: type distribution by

level, type distribution by form and composition of structured types.

The data for the last case is presented in matrix form. The lines

represent the form of the structured type and the columns the component

type. Each matrix element is a frequency count of the occurence of a

structured type of a given component type. In the record case, each

field is accounted separately and pointer entries are for the pointed

element type.*

4.3.1.4 - Variable declarations

We have lumped together local variables and value parameters

in Table 4.4, since they are indistinguishable in the compiler symbol

table. The same considerations as for the TYPE area apply.

4.3.1.5 - Procedures and functions

Table 4.5 presents the distribution of declared procedures

by lexical levels and table 4.6 displays the same distributions for

functions together with the distribution by result type.

Parameters - Tables 4.7 and 4.8 show the parameter distribution

both by value and reference (var). Note that a parameter declared in a

procedure at level n belongs to the level n+l. Since only 5 out of 2026

of the parameters are procedures their statistics is not displayed.

* Footnote A more detailed study of the composition of the type
area appears in Sch79a.

68

Cardinality of arrays, subranges, records and scalars

Tables containing this information are presented in

Appendix 1.

Procedure body composition

In table 4.9 we have the distribution of logical or syntac-

tical size of procedures. Table 4.10 shows an equivalent distribution

for statements. In the case of procedures, a size of n means that the

compiler procedure parsing statements was called n times inside the

procedure body. (The compulsory begin-end pair is not counted since it

does not call for statement parsing)

The information in table 4.11 was collected in order to

answer the question "what is the composition of a Pascal procedure in

terms of statements?". A more accurate answer was required than the

simple average of how many statements of a given kind were found. The

result is a matrix giving the frequency count of the frequency of

appearance of statements in procedures. E.g. 175 procedures were found

with 2 if-statements inside. Only the non-zero entries are listed to

increase legibility.

4.3.2 Syntactic Structure

A convenient way of describing the syntactic composition of

programs is through a table showing the frequency of utilization of the

syntax rules used in parsing. Table 4.12 shows this information. The

format of this table is: the first column has the rule number, the

second its frequency count followed by the percent against the total

number of rules. The last column has the description of the rule as it

appears in the Standard Report.

There are some simplifications in the set of rules presented

and they are concerned mainly with redundant rules or some rules used

69

in the lexical definitions of integer, identifier etc. Some of the rules

which appear in the syntax definition are ignored by the compiler, but

are still presented here although their count is made "a posteriori"

(since they are redundant). As one example:

<tmlabeled statement> ::= <simple statement >1

structured statement>

is disregarded by the recursive descent top-down parser.

The meaning of the frequency count associated with recursive

rules is as follows: 1-if the rule has the form:

<C> ::=tI> 1,<y~ the frequency count is the

number of times the terminal t was found in the text

2-if the rule has the form

::= <y>[,<y)' the frequency count is

considered to be the number of times the non-terminal y is parsed.

Example - looking at the syntax rules nos. 4 and 5 in table 4.12, we

can conclude that out of the 1577 (1538+39) times the non-terminal

(label declaration) was parsed, in 1538 cases no label was declared and

in 39 cases the reserved word label was found.

4.3.3 Pascal fragments usage

Table 4.13 contains the distribution of usage, both static

and dynamic, of code fragments. The static distribution refers to the

whole sample - 38 programs while the dynamic is related to the usage

pattern of a subset of the sample with 23 programs.

The main categories of fragments are:

1-program entry/exit - fragments 0 and 1.

2-Block entry/exit - fragments 2 and 3.

3-Assignments 	- fragments 4 to 36. This class contains

the frequency count of the code sequences generated for assignments.

70

They contain three classes depending on the right hand side being a

constant, a variable or an expression.

4 Procedure calls - the first group of fragments refers to

parameter passing by value, using the same categories as the assignment.

The second group is for var parameters. Fragment 81 and 82 relates to

procedure calls with or without parameters. The last group contains

information about usage of the most frequent standard procedures.

5-Control statements - fragments 93 to 106.

6-Expressions 	- we have examined the code fragments

used in code generation for expressions according to operator and the

class (constant variable or expression) of the operands. We have also

monitored the use of factors: constants, variables, user and standard

functions.

7-Structured variable access - a set of fragments to monitor

data structure access by the class of access used - record, array,

pointer or file and type of the accessed element.

4.4 Conclusions

4.4.1 Program composition in general

The average program is about 1685 lines. Its declaration part

has 16 constants, 17 types, 91 variables, 36 procedures and 6 functions.

Each program has, on average, 3.2 external files.

For the average program, the Pascal P4 compiler generates

3456 intermediate code instructions - an average of 2.06 instructions

• per source line or 5.14 instructions per statement.

4.4.2 Constants

The constants appearing in the object code can be classified

in: explicit and implicit. An explicit constant appears in the source

text inside an expression as a literal or a constant identifier.

71

On the other hand, each time an array index (or a subrange) is computed

(or assigned to) there is a reference to a pair of constants which do

not appear explicitly in the text - the array range bounds. We call each

element of a bounds pair a implicit constant. Statically the total number

of references to explict constants is 16,899 against 10,080 implicit.

Dynamically there are 953,346 references to explicit constants against

1,289,622 references to implicit constants.

The following points are interesting to note:

- the fact that implicit and explicit constant usage tend to

balance each other both ..Statically and dynamically

- almost the totality of implicit constants are of type integer

as are about 40% of the explicit ones

- constant strings have a very high static use, about 24%, but

their percentage of the total number of references to constants at run--

time drops to only 4%

- the pointer constant nil, on the contrary, has a low percent

of the total number of the static references, (6.3%) but its percent

increases to more than the double (13.5%) at run-time. This is due to

the fact that many loops for scanning lists and trees make use of a

construct like:

Table 4.14

while pointer # nil 	do begin 	.. end

usage Explicit Constants

Type Static% Dynamic%

Integer 38.9 40.2

Real .1 -
Character 10.7 28.6

Boolean 6.5 3.0

Scalar 13.4 10.5

String 23.9 4.2

Pointer 6.3 13.5

72

Con'td Table 4.14

Implicit constants

Use 	Static% 	Dynamic%

Assignment 	21.5 	36.0

Value Par. 	9.6 	0.7

Array index 	69.2 	63.5

4.4.3 Variables

Variables are used mostly in expressions and in the left-hand

side of assignments. Statically there is one reference to a variable

in the left side against two inside expressions. At run-time we have

one (store) reference against three in expressions (loads).

About 70% of the variables appearing in the text were entire

i.e. they had no selectors. Statically we have 0.29 selectors/ variable,

but this proportion rises to almost the double (0.57 selectors/variable)

at run—time. This means that it is common to find more structured

variables than simple variables inside the processing loops. This case

can be noticed clearly in file buffer access, where only 296 static

references were found whereas the dynamic count measured was 280,000.

Since most of the programs were used in some form of symbol processing,

we could have expected a high number of dynamic access to structures

including reading and writing files, tree searching and insertion, table

accesses, etc... The fact that some loops can be very tiny(e.g. while

not (eof) do read(c)) but work on large pieces of data accounts for the

large number of dynamic references to structured variables.

73

Table 4.15

Static % Dynamic

Variable use

Construct

Expressions 57.00 66.96

Assignment 28.54 22.80

Ref. parameters 10.11 5.83

With statement 3.32 2.03

For control 1.11 2.35

Static variable composition

Class Static

Entire 71.14

Indexed 10.17

Field design 11.25

Referenced 6.58

File buffer 0.87

Structured data access

Class Static % Dynamic 7

Record field 38.96 40.13

Array element 35.24 25.10

Pointed element 22.78 18.13

File buffer 3.00 16.61

4.4.4 Procedures and functions

The compiler processed 1671 procedure declarations. Included

in this count are 50 procedures with the attribute FORWARD and 82

external procedures. About 13% of these declarations were 	functions.

74

There were 2026 parameters declared, including parameters to

external procedures, so the average number of parameters per procedure

is 1.25. About 37% of the procedures and 17% of the functions had no

parameters.

It is an accepted fact that the better structured a program

is7the higher the proportion of procedure calls it has. It was reported

by Tanenbaum (Tan78a) how the proportion of procedure calls inside the

text changed from Fortran to block structured languages like XPL and

SAL. In a typical Fortran program one might expect a ratio of 10:1 of

assignments to procedure calls, while in XPL and SAL this ratio is

between 3:1 to 2:1. As a consequence of the high level of programs in

our sample, this ratio dropped to almost 1:1 (Including standard

procedure calls).

The tables below show the results of the statement distribution

and also the static distribution of executable statements found in

several studies of program behaviour.

Table 4.16

Frequency distribution of statements

Statement Static % Dynamic %

Assignment 30.6 40.3

Call 29.2 24.3

If-then 12.3 29.4

Case 0.8 0.6

While 2.0 1.5

Repeat 0.7 0.4

For 1.2 0.4

With 2.9 2.9

Goto 0.2 0.1

Compound 12.16

Empty 8.13

75

Cont' d 	Table 4.16

Executable statements in several languages (static %)

Pascal Statement Fortran XPL SAL

Assignment 51 55 47 38

Call 5 17 25 37

If 10 17 17 15

Loops 9 5 6 5

Goto 9 1 0 0.3

From the table above we can conclude that the increase in the

proportion of procedure calls coincide with the decrease of assignments

and gotos. But, the proportion of if's and loops tend to remain constant.

The composition in static terms is dominated by assignments,

calls and ifs. The proportion of assignments, calls and ifs at run—time

tend to be equal.

4.4.5 Assignments

Assignments tend to be very simple. A simple constant or

variable in the right hand side accounts for 66% of the static

assignments, this proportion falling to 57% at run-time.

There is a high proportion of assignments of constants, arising

in part form initialization of variables as a consequence of the extensive

use of procedures and local variables.

About 14% of the static assignments need a range check, but

this proportion goes up to 37% at run-time.

The assignment of structured variables - of type record or

array accounts 14% of the static assignments but only 3% of the dynamic

ones. This is a consequence of the fact that most string usage is in

initialization of printable titles.

76

4.4.6 Procedure calls and parameter passing

Procedures are the second most used language feature. We have

included standard procedures in our statistics since 50% of procedure

usage (both static and dynamic) is of intrinsic procedures.

The situation changes when considering function usage. Although

statically user and standard function balance each other, there is a

much higher use of standard functions at run-time - about 80% of all

function calls. The predicates EOF and EOL dominates at run-time - 50%

of total function calls, with SUCC accounting for the additional 30%.

The amount of effort expended in parameter passing is note-

worthy. Parameter passing to user procedures is almost half of the

assignments - statically 8500 assignments against 7600 parameters

passed, dynamically 620,000 assignments against 3000,000 parameters

passed. Since this count not include parameters passed to standard

procedures and functions we can infer that parameter passing has the

same level of usage as assignments.

User and standard procedures - Table 4.17

Class 	Static % 	Dynamic %

User 	55 	48

Standard 	45 	52

User and standard functions

Class 	Static 	Dynamic %

User 	50 	20

Standard 	50 	80

Parameter passing to user procedures and functions

Class 	Static % 	Dynamic 7

Value , 	60 	42

Reference 	40 	58

4.4.7 The selective statements - if-then, if-then-else and case

Statically these account for 15% of the executable statements,

this proportion going up to 30% at run-time. This can be partly

77

explained by the fact that in a if-then statement at run-time the if

part will always be executed but the execution of the then part depends

on a condition (the same consideration applies for the if-then-else)

although statically they are counted as two separate statements. The

average number of case labels in the case statement derived from table 4.12

is 7.3 labels per case statement.

4.4.8 The repetitive statements - while, repeat and for

Using the data present in the fragments table we can evaluate

the average loop traversal for the repetition statements. See table 4.18.

Average loop traversal for repetitive statements - Table 4.18

Statement Usage Repetation Traversal

While 26,164 145,958 5.6

Repeat 7,332 59,497 8.1

For 6,838 70,119 10.25

4.4.9 Abbreviations - WITH statement

We have found 793 WITH statements, accounting for 962

abbreviated variables. The estimated dynamic use of abbreviations at run_.

time is 60,465. Unfortunately we have not the data to know how many

variables in the text were being abbreviated.

4.4.10 Expressions

Expressions tend to be very simple. The average number of

operators per expressions is 0.21 (statically) i.e. 4 out of 5 expressions

will have only one operand. The situation changes at run-time - statically

there are 0.18 operators/operand but this quota rises to 0.33 run-time.

Logical expressions have a different pattern. They are used

in control of selective and repetitive statements, so they include one

relational operator or a conjunction of conditions. Statically we have

1.15 operators per logical expression. Also, 75% of the logical

78

expressions have a form:

<variable> <relational operator) (constant).

The present results can be compared with those already obtained

by Tanenbaum and Alexander. The average number of operators per

conditional expression is for XPL 1.19 and for SAL 1.22; which shows

a good correlation with our results.

Alexander and Wortman have reported about the inefficiency of

the recursive descent parser when analysing simple forms of expressions.

This is also noticed in our case, where the compiler uses 30% of all

the productions only for evaluation of precedence without any semantic

purpose. The source of inefficiency lies in the fact that the recursive

descent implements productions by real procedure calls - such that the

parsing of a single constant or variable takes 3 procedure calls (with

parameter passing etc..). In a machine without a support for procedure

calls this can be very expensive.

Table 	4.19

Usage of factors

Class Static % Dynamic

Variable 51.25 62.00

Constant 43.41 37.30

User function 2.18 2.03

Standard function 2.15 8.29

Set expression 0.29 0.36

Operator distribution

Class 	Static % 	Dynamic

Relational 	52.99 	61.77

Add group 	23.76 	19.10

Multiply group 	12.74 	11.02

Not (logical) 	10.51 	8.28

Static Results Static and dynamic
data

Modified P4
Compiler

Intermediate Code

Static
and dynamic
results

object
program

Fig.4.1-The measurement system flowgraph

Dynamic Result

80

***********************i *****

Table 4.1-Label declarations

#******** ******************It

Level Distribution

Levels Count Percent Cumulative

1 7 16.67 16.67

2 12 28.57 45.24

3 7 16.67 61.90

4 4 9.52 71.43

5 1 2.38 73.81

6 7 16.67 90.48

7 3 7.14 97.62

10 1 2.38 100.00

Total of Labels = 	42

81

Table 4.2-Constant declarations

Level. Distribution
Levels 	 Count 	Percent 	Cumulative

1 1070 83.46 83.46
2 179 13.96 97.43
3 21 1.64 99.06
4 7 0.55 99.61
5 3 0.23 99.84
6 2 0.16 100.00

Type Distribution
Types Count Percent
Integer 363 28.32
Real 1 0.08
Char 37 2.89
Boolean 6 0.47
Scalar 671 52.34
Array 204 15.91

Value distribution of 	integer constants
Size(bits) 	Count

1 40
2 56
3 61
4 38
5 2.4
6 22
7 40
8 37
9

10 7
li 8
12 5
13 2
14 6
15 4
16 6
18 1
31 1

Total of Constants = 	1282

82

*******************z* ***** *

Table 4.3-Type declarations
.***********************

Level Distribution
Levels Count Percent Cumulative

1 568 88.20 88.20

2 69 10.71 98.91

3 5 0.78 99.69

4 I 0.16 99.84

6 1 0.16 100.00

Type Distribution
Types Count Percent
Integer 11 1.71
Char 4 0.62

Scalar 84 13.04

Subrange 120 18.63
Set 8 1.24

Array 140 21.74

Record 176 27.33

Pointer 90 13.98
File 11 1..71

Structured type
Int

composition
Rea 	Cha 	Boo Sca Sub Set Arr Rec Poi

Subrange 118 0 1 0 1 0 0 0 0 0

Set 0 0 0 0 5 3 0 0 0 0

Array 3 0 110 0 1 9 0 .1 14 2

Record 114 5 30 67 47 128 6 375 54 221

Pointer 2 0 0 0 0 2 1 3 82 0

File 2 0 0 0 0 0 0 5 4 0

83

Table 4.4-Variable declarations

Level Distribution
Levels 	 Count 	Percent 	Cumulative

1 711 17.99 17.99
2 1719 43.50 61.49
3 1076 27.23 88.71
4 247' 6.25 94.96
5 90 2.28 97.24
6 52 1.32 98.56
7 47 1.19 99.75
8 6 0.15 99.90
9 4 0.10 100.00

Type Distribution
Types Count Percent
Integer 544 13.77
Real 37 0.94
Char 71 1.80
Boolean 422 10.68
Scalar 148 3.74
Subrange 785 19.86
Set 62 1.57
Array 664 16.80
Record 273 6.91
Pointer 812 20.55
File 134 3.39

•

Structured type composition
Int Rea Cha Boo Sca Sub Set Arr Rec Poi

Subrange 783 0 1 0 1 0 0 0 0 0

Set 0 0 5 0 44 13 0 0 0 0

Array 23 0 559 0 6 11 0 19 36 10
Record 220 11 33 140 66 243 11 649 105 192
Pointer 0 0 0 0 0 0 2 5 805 0
File 3 0 104 0 0 1 0 15 11 0

84

Table 4.5-Proper Procedures

Level Distribution
Levels 	 Count 	Percent 	Cumulative

1 798 56.72 56.72
2 403 28.64 85.36
3 121 8.60 93.96
4 - 31 2.20 96.16

5 22 1.56 97.73

6 23 1.63 99.36

7 6 0.43 99.79

8 1 0.07 99.46

9 2 0.14 100.00

Total of Procedures = 1407

85

**********a*********

Table 4.6-Functions

Level Distribution
Levels Count Percent Cumulative

1 122 57.01 57.01
2 67 31.31 88.32
3 11 5.14 93.46
4 8 3.74 97.20
5 2 0.93 98.13
7 3 1.40 99.53
8 1 0.47 100.00

Type Distribution
Types Count Percent
Integer 25 11.68
Beal 3 1.40
Char 7 3.27
Boolean 88 41.12
Scalar 2 0.93
Subrange 34 15.89

Pointer 55 25.70
Total of Functions = 	214

Total of procedures S functions = 	1621

86

Table 4.7-Value Parameters

Level Distribution

	

Levels 	Count 	Percent 	Cumulative

	

2 	 635 	 57.99 	57.99

	

3 	 332 	 30.32 	88.31

	

4 	 65 	 5.94 	94.25

	

5 	 28 	 2.56 	96.80

	

6 	19 	1.74 	98.54

	

7 	 11 	 1.00 	99.54

	

8 	 4 	 0.37 	99.91

	

9 	 1 	 0.09 	100.00

Type Distribution
Types 	Count 	Percent
Integer 	 134 	 12.24
Real 	 6 	 0.55
Char 	 23 	 2.10
Boolean 	 61 	 5.57
Scalar 	 66 	 6.03
S ubranga 	199 	18.17

Set 	31 	2.83

Array 	 264 	 24.11
Record 	79 	7.21

Pointer 	232 	 21.19

Structured type composition

Int Rea Cha Boo Sca Sub Set Arr Rec Poi

Subrange 198 0 0 0 1 0 0 0 0 0
Set 	0 0 0 0 27 4 0 0 0 0

Array 	2 0 258 	0 0 0 	0 0 3 	1
Record 	67 1 10 37 13 52 1 250 54 50
Pointer 	0 0 0 0 0 0 2 0 230 0

Fite 	0 	. 0 	0 	0 	0 	0 	0 	0 	0 	0

87

***** *** * * *** * **** * ** * * *

Table 4,8-Var Parameters
#*****************

Level Distribution
Levels Count Percent Cumulative

2 533 63.99 63.99

3. 172 20.65 84.63

4 108 12.97 97.60

5 12' 1.44 99.04

6 4 0.48 99.52

7 4 0.48 100.00

Type Distribution
Types Count Percent
Integer .61 7.32
Real 3 0.36

Char 7 0.84

Boolean • 105 12.61

Scalar 31 3.72
Subrange 44 S.25
Set 2 0.24
Array 124 14.89
Record 259 31.09
Pointer 110 13.21
File 87 10.44

Structured type composition
Int 	Rea 	Cha 	Boo Sca Sub Set Arr Rec Poi

Subrange 44 0 0 0 0 0 0 0 0 0

Set • 0 0 0 •0 0 2 0 0 0 0

Array 0 0' 107 0 1 2 0 0 14 0

Record 154 39 87 322 46 602 1 553 222 112

Pointer 0 0 0 0 0 0 1 0 109 0

File' 1 0 82 0 0 0 0 4 0 0

88

Table 4.9-Logical Size of Procedures

Size 	Count 	Percent 	Cumulative
0 6 0.38 0.38
1 16i 10.59 10.97
2 64 4.06 15.03
3 76 4.82 19.85
4 99 6.28 26.13
5 76 4.95 31.07
6 86 5.45 36.53
7 66 4.:31 40.84
8 62 3.93 44.77
9 56 3.55 48.32
10 62 3.93 52.25
11 55 3.49 55.74
12 42 2.66 58.40
13 38 2.41 60.81
14 36 2.28 63.09
15 42 2.66 65.76
16 24 1.52 67.28
17 32 2.03 69.31
18 26 1.65 70.96
19 40 2.54 73.49
20 22 1.40 74.89
21 25 1.59 76.47
22 33 . 2.09 78.57
23 21 1.33 79.90
24 24 1.52 81.42
25 22 1.40 82.82
26 13 0.82 83.64
27 12 0.76 84.40
28 11 0.70 85.10
29 13 0.82 85.92
30 24 1.52 87.44
31 7 0.44 87.89
32 6 0.51 88.40
33 i u.44 88.84
34 15 u.95 89.79
35 - 0...2 9(,.11
36 9 (1.57 90.68
37 4 0.25 90.93
38 6 0.51 91.44
39 i 0.44 91.38
40 6 0.38 92.26
41 1 0.06 92.33
42 4 0.25 92.58
43 9 0.57 93.15
44 6 0.38 93.53
45 E 0.51 94.04
46 2 0.13 94.17
47 6 0.38 94.55
48 1 0.06 94.61
49 4 0.25 94.86
50+ 81 5.14 100.00

al

**********4***************** **$*#X**

	

Table 	4.1U-Locicat Size of 	Statements
** *.***** 	**v*******, t***************

SJ ze 	If 	White 	;tepee
0

	

1 	2 	 1

	

2 	778 	141 	24

	

J 	473 	 16

	

4 	241 	101) 	12

	

5 	3€0 	66 	10

	

6 	140 	40 	11

	

7 	185 	29 	9

	

8 	112 	24 	13

	

9 	115 	16 	3

	

10 	79 	9 	6

	

11 	95 	7 	6

	

12 	6t 	8 	13

	

1J 	74 	6 	6

	

14 	SE 	6 	6

	

15 	79 	11 	3

	

16 	47 	6 	.3

	

17 	55 	7 	4

	

18 	26 	7 	4

	

19 	37 	2 	2

	

20 	32 	3 	1

	

21 	31 	4

	

22 	17 	2 	2

	

23 	15 	2

	

24 	27 	3 	2

	

25 	16 	1 	 1

	

26 	24 	3 	J

	

27 	22 	3 	1

	

28 	14 	1 	 1

	

29 	14 	4 	.3

	

30 	 10 	 5 	 2

	

31 	5 	3 	1

	

32 	11 	 2

	

33 	4 	1 	1

	

34 	12 	9 	1

	

35 	4 	"2 	2

	

J6 	9 	1

	

37
38 	7 4 	3

	

40 	 5 	 1

	

41 	7 	1

	

42 	3 	1

	

43 	3 	
1

	

44 	
5 45

46

	

47 	4

	

48 	1

	

49 	3 	1
50+ 	64 	16 	4

For

191
10
39
15
20
11
8
7
6
2
2
1
2
1

1
3

2

1
1

1
2

1
1

J

Case

3
16
12
27
15
6
b

11
1J
2
5
7
J
7
8
9
2
6
1
4
7

.3
2

1

1
2
1

1
1
2

3

1

1

1
2

1

17

wlth

35
16

108
81
78
55
41
31
J7
29
20
15
21
19
Ti
17
1J
13
12
10
11
11

9
15
4
4
5
4
5
6
2
2
3
3
1

1

1

1
6

2

J
1
15

Compo

4
55

989
520
276
222
173
120
100
85
81
60
65
57
52
50
33
39
24
25
18
21
17
24
16
18
10
13
16
13
7
7
15
10
8
8

5

3
4
11
2
2
6
3

6
1

56

rn

*####***************c*#************v*v#* v
Table 4.11—Frequency distribution or HtatesucntH

4 	******#****'f
p r drocoduie

*********** #******************** *a* ***4* f,,-* *arc +t **** +*** A"r*- *•

Frey As iō 	Cull 	Col() It %File kelieu For Cuss With Coinl,o
U .346 	338 	1537 619 1163 1432 1345 1433 1033 577
1 223 	296 	31 JJd .113 127 17d 113 423 353
2 148 	202 	3 17.i 70 13 38 13 72 222
3 155 	122 	5 147 21 2 6 12 21 1J2
4 134 	94 85 10 4 3 13 99
5 81 	66 53 1 2 1 6 43
6 79 	49 	1 23 1 2 46
7 56 	53 2) 1 2 21
8 39 39 _ 20 2 1 18
9 34 	44 19 14
10 42 	32 11 1 3 14
11 25 	26 11 1 4
12 25 	31 8 J
13 15 	23 9 1 1 5
14 13 	23 8 1 1
16 13 	18 5 6
17 7 	13 1 1
18 13 	9
19
20

6 l5 	
13 4 4

21
22

4 	11
1 	5

2
1

23 7 	11
24 5 	7 1
25 6 	3 2
26 4 	1 2
27 1 	3 1
28 2 	1
29 1 	2
30
31

1 	3
3 	1 1

32 2
33 2 	1
34 1
35 1
36 2 	1
37 1 	2
38 2
39 1
4U 1 1
41
42 2
43
44
45 3 	' 	1
46
47 2
48 1
49 1
50+ 12 	8 1 2

rn

#****************************
Table 4.12-Syntax Rules
****.***#********#******

Rule 	Rule Count 	Percent

1 	38 	0.01

2 	3E 	0.01

3 	1577 	.0.40

Usage

Rule Name

<program>::=<progriun heading><bLock>.

<program heading>::=program<id>(<file Ld>(,<ftLe 	id>))

<block>::=<labet 	dac part><const dec part><type dec part><var dec part>

<pro/fun dec part><stmt part>

4 1535 0.39 <labet dec part>::=<empty>

5 39 0.01 Label 	<label>{,<Labet>)

6 1481 0.38 <const dec part>::=<empty> 	1

7 96 0.02 const <const def> [,<const der>)

8 611 0.16 <const 	dei>:: =<i d> _ <constant>

9 1660 0.42 <constant 	>::=<unsigned number> (

10 24 0.01 <sign><unsigned number> 1

11 1463 0.37 <constant 	identifier>

12 3 0.00 <sign><constant 	identifier> 1

13 373 0.09 <string>

14 1673 0.42 <unsigned number>::=<unsigned integer> (

15 1 0.00 <unsigned real>

16 1E07 0.38 <type dec part>:: =<empty>

17 70 0.02 type<type det>[,<type def>)

18 644 0.16 <type def>::=<id> _ <type>

19 3593 0.91 <type>::=<simpte 	type> 	1

20 580 0.15 <structured type> (

21 101 0.03 <point er type>

os

Table

22
23
24

4.12-Syntax

'94
560

3298

Rules

0.02
0.14
0.84

Useye 	(cont.)

<simple type>::=<<cnlar 	type> 	I

<subrunpe type> 	I

<type 	id>

25 94 0.02 <scalar type>::= 	(<id> 	(,<id>))

26 560 0.14 <subranpe type>: : = <c:onstant>.. <ccnstant>
27 374 0.09 <structured type>::=<unpacked structured 	type> 1

28 206 0.05 packed <unpacked structured type>
29 339 0.09 <unpacked strnc. type>::= <arraY type> 	1

JO 194 0.05 <record type> 1

31 20 0.01 <set type>I
32 27 0.01 <file type >
33 339 0.09 <array type>;: =array (<index type>j of <component type>
34 339 0.09 <index type>::_ <simple 	type>
35 339 0.09 <component 	type>::= <type>

36 194 0.05 <record type>::=record <field list> end
37 287 0.07 <field 	list>:: =<tl'ced part> 	I

38 23 0.01 <ti'cc•d 	part> 	; 	<variant 	part> 	1

39 35 0.01 <variant part>
40 987 0.25 <tixed part>::=<record section> 	(;<record section>)

41 1075 0.27 <record section>::=<field id>(,<field Id>) 	: 	<type> 	1

42 0 0.00 <empty>

rn

Table

43
44
45

4.12-Syntax

57
31
26

Rules

0.01
0.01
0.01

Usu 	a 	(cont.)

<variant 	part>:: =cuse<tag 	field><type 	id> of <variant>(; variant}
tars 	i'ield>::=< field 	identifier> 	: 	I

<empty>

46 151 0.04 <variant>::=<cnse 	Label 	List> 	: 	(<field 	List>)

47 18 0.00 <empty>
48' 151 U.04 <case 	label tist>::=<case 	label>(,<case 	Label>)

49 180 0.05 <case 	Label>::=<constant>

50 20 0.01 <set type>::= 	set of <base type>

51 20 0.01 <base 	type>:: =<simiile 	type>
52 27 0.01 <file 	type>::=file of 	<type>

53 101 0.03 <pointer type>:: =) 	<type 	id>

54 t98 0.18 <variable 	declaration part>::=<empty>1
55 879 0.22 var <var.declaration>(;<var.declaration>}

56 2879 0.73 <var.decLaration>::=Cid> (,<id>} 	: 	<type>

57 1671 0.42 <proc/func dec part>::=(<procedure cr function declaration>;)

58 1407 0.36 <procedure or function declaration>::=<procedure declaration>$

59 214 0.05 <function declaration>

60 1407 0.36 <procedure declaration>::=<procedure head><bLock>
61 512 0.13 <procedure head>::=procedure<id> ; 	i

62 895 0.23 procedure <id>(<formal par.sec.> (;<formal parsec.>))

Table

63

4.12-Syntax

977

Rules

0.25

Usage (cont.)

<formal parameter section>::=<parameter group>I

64 900 0.23 var <pa rame to r group> I

65 0 0.00 .function<parameter group>I

66 5 0.00 procedore<id>t,<id>j

67 2021 0.51 <parameter group>::=<id> (,<id>) 	: <type 	id>

68 214 0.05 <function declaration>::=<function head><block>

69 35 0.01 <function head>::=function <id>:<resutt 	type> 	1 	•

70 179 0.05 (unction <id> <formal par sec>

(; <iormat par sec>j :<resutt 	type>

71 214 0.05 <result type> 	::=<type id>

72 1577 0.40 <stmt 	part>:: =<compound stmt>

73 27766 7.05 <statement>::=<unlabtlted stmt>I

74 42 0.01 <label> 	: <untabelled stmt>

75 18932 4.81 <unlabelle d stmt 	>::=<simpte stmt)

76 8576 2.25 <struct. stmt>

77 8505 2.16 <simple stmt 	>::_ <assignment stmt >

78 8109 2.06 <procedure stmt> I

79 58 0.01 <goto stmt> 	(

80 2260 0.57 <empty stmt>

R1 8165 2.07 <assignment stmt 	>::=<variabte>:=<expression>

82 340 0.09 <function id>:=<expresslon>

Table

83

84

85

4.12-Syntax

24304

7614

2247

Rules

6.17

1.93

0.57

Usage 	(cont.)

<variable>::=<entire variable)!

<component variable>I

<referenced variable>

86 3476 0.88 <component variable>::=<indexed variable,'

87 3842 0.98 <field designator)!

88 296 0.08 <file buffer>

89 3476 0.88 <indexed variable>::=<array var >L<expr>{,(expr>j]

90 3842 0.98 <field designator>::=<record var > 	. <field id>

91 296 0.08 <file 	buffer>::=<ille 	var 	> 	$

92 2247 0.57 <referenced var >::=<pointer var > $

93 30 175 7.66 <expressi on>:: =<s i np le expression*. xpreasion>I'

94 3753 0.95 <simple expr.><relational operator><simpte

95 1718 0.44 <relational operator>::= 	= 	I

96 990 0.25 <> 	I

97 259 0.07 < 	I

98 149 0.04 <= 	I

99 102 0.03 >=

100 259 0.07 > 	1

101 276 0.07 in

expr>

Table

102

103

104

105

106

107

4.12-Syntex

3E947

51

1683

1054

434

338

Rules

9.13

0.01

0.43

0.27

0.11

0.09

Usage 	(cont.)

<simple expr.>::=<term> 	1

<imn><term>1

<simpte exp.><add

<add op> 	+ 	I

- 	I

or

108 38E05 9.80 <term>::=<fector> 	1

109 902 0.23 <term><mutt. 	op.><factor>
110 165 0.04 <mutt. 	op>::_ 	* 	I

111 50 0.01 / 	I

112 137 0.03 divl

113 57 0.01 mod)

114 587 0.15 ani

115 19900 5.05 <factor>::=<varialte>I

116 5683 1.44 <unsigned constant>,

117 1636 0.42 (<expression>) 	1

118 1684 0.43 <function deslpnator>I

119 384 0.10 <set>I
120 744 0.19 not<factor>

op.><term>

Table

121
122
123
124

4.12-Syntax

5683
5365
4783
1068

Rules

1.44

1.36

1.21

0.27

Usage (cont.)

<unsigned constant>::=<unsigned number>
<string>,

<constant id>/

niL

125 59 0.01 <function designator>::=<function id>I
126 789 0.20 <function id> (<actual per.>(,<actual par>} I

127 836 0.21 <standard function>

128 384 0.10 <set >:: =[<cl emen t 	list >

129 340 0.09 <element 	List>::=<element>t,<element>J

130 44 0.,01 <empty>

131 668 0.17 <element>::=<expression>1

r. 132 129 0.03 <expression> 	. 	. <expression>
0

133 992 0.25 <procedure stmt>::=<procedure id>I

134 3395 0.86 <procedure id>(<actual par>(,<actual per>j)$
135 3722 0.95 <standard procedure call>

136 7611 1.93 <actual par >::=<Expression>
137 3015 0.77 <variable>I

138 17 0.00 <procedure id>

139 0 0.00 <function Id>

140 58 0.01 <go to stmt>::= mot() <label>

141 2260 0.57 <empty stmt>::=

Table

142

143

144

145

4.12-Syntax

3381
3632
1070

793

Rutei

0.86
0.92
U.27
0.20

Usage (cont.)

<struct.stmt>:: =<compound stmt> 	1

<conditionai stmt>

<repetitive stmt 	> 	1

<with stmt>

146 3381 0.86 <compound stmt.>::=begin <stmt>[;<stmt>) 	end

147 3419 0.87 <conditional stuit>::=<if stmt>

148 213 0.05 <case stmt>

149 1501 0.38 <if stmt>::=1f <expr> 	then <stmt> 	1

150 1912 0.49 if <expr> then <stmt> else <stmt>
151 213 0.05 <case stmt>::=case <expr> of <case list et.>{,<case List

152 1236 0.31 <case 	list el.>::=<case label 	list> 	: 	<stmt> 	1

co m
153 0 0.00 <empty>

154 1554 0.39 <case 	tabel L i st> :: =<cas a 	Labe t> (,<case 	tabel>)

155 556 0.14 <repetitive stmt>::=<white stmt>

156 183 0.05 <repeat stmt> 1

157 331 0.08 <for stmt>

158 556 0.14 <while stmt>:: =white <expr> do <stmt>

159 183 0.05 <repeat stmt>::= 	repeat <stmt> [; <stut>) until<expr>
160 331 0.08 <for stmt>::=for <control var> 	:=<fcr 1.1st> do <stmt>

161 793 0.20 <with stmt>::=with<record variable list> do <stmt>

162 962 0.24 <record variable tint>::=<record var.>(,<record star>)

Total number of rules applied 	393779

et.>}end

Table 4.13-Puscat fragments usage
************plc*****3r**************

Order 	Static Count Dynamic Count

0 	 38 	23
1 	122 	7.3
2 	1577 	26051.4
3 	 7 	1U

4 	429 	2523
5 	 9 	 5
6 	254 	53641
7 	981 	15647
8 	729 	9599
9 	577 	14166
10 	47 	 18
11 	745 	12836
12 	 0 	 0
13 	415 	122.17

15 	244 	25136
16 	 15 	 2
17 	253 	176353
18 	49 	1 574
19 	47 	10864
20 	319 	15 580
21 	 5 	 0
22 	242 	8501
23 	149 	5061
24 	1175 	4973'3

26 	454 	7994
27 	65 	824
28 	61 	13369
29 	256 	20993
30 	 3 	14
31 	757 	224344
32 	57 	628
33 	 0 	 U
34 	 0 	 0
35 	165 	28090

Fragment Description

Main program
External files binding overhead
Procedure entry overhead
Open and close of local files
Assignments - right hand side composition
Constants by type
Integer
Real
Char
Boolean
Scalar
Subrange
Set
Array
Record
Pointer
Variables by type
Integer
Real
Char
Boolean
Scalar
Subrange
Set
Array
Record
Pointer
Expressions
Integer
Real
Char
Boolean
Scalar
Subrange
Set
Array
Record
Pointer

Table 4.13-Pascal 	fragments usage (cont.)

Value parainetere
Constants by type

37 334 377 Integer
38 1 0 heat
39 85 420)7 Char
40 93 10056 Boolean
41 418 1674 . Sca to r
42 503 1284 Subrange
43 31 2199 Set
44 305 2 Array
45 0 0 Record
46 21 1 Pointer

Variables by type
48 209 148 Integer
49 15 0 Real
50 38 10119 Char
51 87 522 Boolean
52 49 3252 Scalar
53 393 2383 Subrange
54 56 3505 Set
55 646 1913 Array
56 183 1987 Record

o
57 793 69134 Pointer

VAR parameters
oo 70 211 9250 Integer

71 3 0 Real
72 15 653 Char
73 250 504 Boo Lean
74 110 1 Scalar
75 180 6604 Subrange
76 8 Ii Set
77 472 30106 Array
78 843 38823 Record
79 373 78833 Pointer
80 550 8830 Pile
81 992 .85416 Procedure ca 11s with no parameters
82 3395 110650 Procedure catt with parameters
83 121 ' 107891 Standard procedure GET
84 20 32531 PUT
85 170 51 RESET
86 90 34 REWRITE
87 198 151.35 READ
88 2239 55543 WRITE
89 211 6004 NEW
90 0 0 DISPOSE

Table 	4.13-Pascat fragments usage (cont.)

91 0 0
92 516 1399
93 48 2247
94 10 92
95 1507 158951
96 1507 53760
97 1912 343425
98 1912 85661
99 213 10847
100 556 26 164
101 556 145958
102 183 7332
103 183 59497
104 331 6838
105 331 70119
106 793 49841

107 983 163992
108 19 0
109 346 201811
110 12 12
111 479 80854
112 256 17786
113 301 14669
114 635 127111
115 1 100
116 721 119260

' 	\
118 2852 548656
119 70 1102
120 727 171797
121 92 3994
122 12 46

123 695 118792
124 47 52
125 194 4003
126 78 2692
127 40 370
128 138 7061

PAGE
CMS procedure
Goto
Interlevet jump
If-then
If-then =true
If-then-etse
If-then-else = true
Case statement
While statement
While test
Repeat statement
Repeat test
For statement
For incrementing -testing and return
With statement
Relational operators - operand type
Integer
Real
Char
Boolean
Scalar
Subrange
Set
Array
Record
Pointer
Relational operators - operand class
Constant - Variable
Constant - Expression
Variable - Variabte
Variable - Expression
Expression - Expression
Add operators - operand class
Constant - Variable
Constant - Expression
Variable - Variable
Variable - Expression
Expression - Expression
Set Union

Table 	4.13-Pascal fragments usage (cont.)

Subtract operator -operand class
129 270 9022 Constant - Variable
130 27 136 Constant - Expression
131 67 689 Variable - Variable
132 41 511 Variable - Expression
133 29 1903 Expression - Expression
134 20 617 Set Difference

Cr operator - operand class
135 0 U Constant - Variable
136 0 U Constant - Expression
137 29 16 Variable - Variable
138 48 1211 Variable - Expression
139 261 75212 Expression - Expression

Multiply operators - operand class
140 68 21)5 Constant - Variable
141 59 351) Constant - Expression
142 22 360 Variable - Variable
143 13 13 Variable - Expression
144 3 0 Expression - Expression
145 3 0 Set product

Divide operators - operand class
146 111 1168 Constant - Variable 	•
147 50 34.3 Constant - Expression
148 19 2(9 Variable - Variable N 149 6 0 Variable - Expression 0 150 1 0 Expression - Expression

Modulo operator - operand class
151 30 177 Constant - Variable
152 14 20) Constant - Expression
153 5 U Variable - Variable
154 2 0 Variable - Expression
155 6 0 Expression - Expression

And operator - operator class
156 0 0 Constant - Variable
157 0 U Constant - Expression
158 24 8623 Variable - Variable
159 81 10250 Variable - Expression
160 482 105772 Expression - Expression
161 384 12644 Set expressions
16.2 406 1473 Not operator - variable
163 338 95750 Not operator - expression

Table 4.13-Pascal fragments usage (cont.)

Constants usage by type
16'1 6586 383247 Inte _4er
163 23 h Real.
166 1820 ' 272492 Char
167 1102 29017 Boolean
168 2263 100(08) Scalar
169 0 0 Subrange
170 0 0 Set
171 4037 359:57 Array
172 0 0 Record
173 1068 128469 Pointer

User functions by type
175 109 921 Integer
176 15 U Real
177 24 20782 Char
178 343 11816 Boolean
179 3 7 Scalar
180 142 8521 Subrange
181 0 0 Set
182 0 0 Array
183 0 0 Record
184 212 29079 Pointer
186 4 0 Standard function ADS

cn 187 5 4 SQR
0 188 12 7 ODD
,-' 189 85 100 215 LOL

190 141 73452 F.OF
191 6 U TRUNC
192 0 0 ROUND
193 158 5719 ORD
194 90 635 CHR
195 208 109 293 SUCC
196 47 261 PRED

Variables within expresions -by
197 2481 38688 Integer
198 149 833 Real
199 1074 4900.17 Char
200 1467 57950 Boolean
201 999 119927 Scalar
202 4387 74796 Subrange
203 397 19977 Set
204 2908 303148 Array
205 1187 46724 Record
206 3146 319800 Pointer
207 1705 19964 File

type

Table 	4.13-Fascat fragments usage (cont.)

Record item access - by type
208 335 5131 Integer
209 65 '0 Real
210 52 3245 Char
211 167 16503 Boolean
212 285 34406 Scalar
213 534 7516(0 Subrange
214 44 46 Set
215 1088 322732 Array
216 298 115251 Record
217 974 • 102176 Pointer

Pointed element access - by type
219 17 0 Integer
220 0 0 Real
221 0 0 Char
222 0 0 Boolean
223 0 U Scalar
224 4 0 Subrange
225 10 0 Set
226 156 (1 Array
227 2060 304924 Record
228 0 U Pointer

Array element access - by type
230 1946 70657 Integer
231 0 0 Real

O 232 247 67951 Char
'~ 233 17 1131J Boolean

234 250 139 Scalar
235 1024 272025 Subrange
236 0 0 Set
237 0 0 Array
238 0 0 Record
239 0 0 Pointer
241 182 228649 Access to a fife buffer-scatar element
242 3 0 Subrange
243 0 0 Set
244 37 36712 Array
245 74 9009 Record
246 0 0 Pointer

105

5 - Evaluation of the P4-machine

5.1 	Introduction

After a computer has been specified on paper, its design

must be evaluated to see whether it meets the required standards and

to detect the areas of the design which require improvement. This

chapter is an exercise in language oriented computer evaluation using

the technique of language fragments (Wor72a). The goal of this chapter

is to investigate the behaviour of the Pascal P4. Intermediate code

machine (Nor74a) as a Pascal engine. Although the 	Intermediate

Language was designed to meet portability constraints, the P4-machine

has several other advantages as a starting point towards a Pascal

machine:

-it is a well structured design

-it is Pascal oriented

-has been implemented in hardware and software.

A proposed machine can be evaluated on the basis of its

resource consumption which defines a "cost measure" for running a

workload in this machine. If the machine is oriented towards a high-

level language, then the evaluation problem can be restated as:

"evaluate the cost measure of running a set of programs representing

the workload in the proposed machine".

Since it is not always possible to use the real workload to

which the machine is going to be applied, we must use an "anticipated

workload" for evaluation. The anticipated workload used in this study

is the set of Pascal programs studied in the last chapter.

In order to be independent of low-level implementation consi-

derations we will define a cost measure which is function only of the

amount of information used to store and run the anticipated workload

106

(Wor72a). This cost measure has three components:

i-the static size of programs

ii-the number of memory references at run time.

iii-the amount of information - transferred to and from

store at run time.

More specifically, the cost measure is a function of six cost parameters

defined as:

al-code size in bits.

a2-static data size in bits.

a3-the number of memory fetches to instructions during execution.

a4-number of memory references to data

a5-number of instruction bits fetched

a6-number of data bits accessed

It

rt 	 tt

The total cost measure is a weighted sum of these parameters:

6
CM= E w..a.

i=1 1 1

where the w. are constants used to convert the cost parameters to a

common measuring unit.

The cost of parameters of the workload can be estimated by

calculating the parameters for each code fragment, and then accumulating

these using knowledge of the static and dynamic usage of code fragments

in the workload.

Let us associate with each code fragment fi a cost vector

vi[i..6]. We can thus generate the attribute matrix, A.., where ie ij

[l..6] and j£[1..n] n being the number of fragments. The attribute matrix

thus contains the cost parameters of all fragments.

107

If the static and dynamic counts of the usage of code

fragment fi in the workload are Si and Di, then the total cost parameters

ai, can be expressed as:

a. = EAik.Sk 	(i=1,2)

k=1

Eq. 1
n

= EA. kDk
k=i

(i=3..6)

Since the weighting factors wi are technology dependent, we

will simplify the evaluation procedure to the study of the six total

cost parameters - ai. Thus instead of dealing with a single scalar cost

measure, we will analyse a cost measure which is a vector:

CM' = (al, a2, a3, a4, a5, a6).

Based on the data presented in (Nor74a, and Jen73a) we

describe an initial implementation for the P4 machine. With this

description we can evaluate the cost measure for each one of the P4

instructions. Since fragments are sequences of instructions, we can then

evaluate the cost parameters for each of the fragments, and hence the

cost measure CM' to run the anticipated workload.

When we know the total cost measure CM' we can now evaluate

how possible modifications in the P4 machine would alter the total

cost measure, and by some iterations arrive at an.improved Pascal

machine.

108

5.2 The P4 -machine

5.2.1 Introduction

The P4-machine is the abstract machine defined by the

intermediate language used in the P4 Pascal compiler (Nor74a). It is

a stack machine with zero address instructions. The basic operations

of the P4-machine are derived out of logical requirements due to

Pascal with extra operations introduced for matching the needs of data

structure access.

The P4-machine has 6 registers and one memory. The registers

are: 	-PC 	the program counter

-SP 	the stack pointer

-MP 	the mark pointer

-NP 	the new pointer

-EP 	the extreme stack pointer

-IR 	the instruction register.

The memory is divided in two parts: one for code and one for

data. IR contains the instruction currently in execution and PC is a

pointer to the next instruction to be executed. The meaning of the

other registers will become clear in the course of the description of

the P4-machine.

5.2.2 Data memory structure

The data memory has three parts: the stack, the constants area

and the heap. The stack grows from address 0 upwards and contain all

directly accessible data, the register SP pointing to the first free

position above the stack. The constants area occupies the other extreme

of the memory and contains strings, reels, sets, small integers and

boundary-pairs (for range check). Other constants are stored in

109

instruction fields. The heap area, contains all dynamically created

data, grows downwards from the constants area and its growth is

directed by the use of the standard procedures new and dispose. The

register NP, the new pointer, points to the beginning of the heap

area. The register EP, points to the maximum position the stack may

grow when a given procedure is active (fixed at compile time) such

that a condition of data memory overflow can be detected when EP and NP

meet. '

The stack has a further level of structuring. It consists of

a series of activation records, each one generated by the call of a

user procedure. Each activation record, in turn, has four separated

areas: the mark stack, parameters area, local variables and temporary

storage areas.

The mark stack contains 5 fields: function return value, static

link, dynamic link, extreme stack pointer and return address of the

calling procedure.

The parameter section has three parts: pointers to implement

var parameters and addresses of structured value parameters (of type

array or record) constitute the first part. The second part contains the

value parameters which are not of array or record type; and the third

section contains the value of the parameters of type array or record.

5.2.3 Procedure call and variable access

Call to both procedures and functions is executed the same way.

It is realized in four phases:

1- a "mark stack" instruction is executed to fill the links.

2- parameter passing

3- proper "call" instruction transfers control to the called

procedure

4- enter phase, which allocates space for local variables and

copies the value parameters of type array or record.

110

The return phase resets the stack to its state before the

call and does the necessary adjusting if a function value is being

returned.

Directly accessible variables are defined by a pair: (level-

difference, offset), where level-difference is the difference between

the static level of the procedure actually in execution and the

lexicographical level of the accessed variable (a level-difference of

0 means a local variable to the procedure in execution). A level-

difference of n implies then n indirections in the static chain to obtain

the address of the data area where this variable is located. Global

variables can be accessed directly, only by their offset. Indirectly

accessible variable like reference parameters and pointed variables are

accessed via the absolute stack address.

5.2.4 Data and instruction sizes

The set of instructions of the P4 machine defines a P4

processor. We will assume that the P4 processor uses the following data

formats for Pascal data types:

8 bits for characters, booleans and user defined scalars

32 bits for integers

64 bits for reals and sets

24 bits for pointers.

The P4-machine instructions can be short or long. A short

instruction has only one field OP whereas a long instruction has three

fields: OP, P and Q. The meaning of these fields will be clarified in

the description of the instruction set which follows.

The instruction container sizes we defined for the P4

machine are based on the ones for the P4 machine given in Nor74a.

111

Since we would like to extend the instruction set incorporating

new instructions, a value of 8 bits for the OP field, (instead of

the 6 bits allowing a maximum of 64 instructions) is reasonable.

The P field is used for storing lexical level data, so we have

followed Nor74a in assigning 4 bits to this field. Since we would

like a long instruction size to be a multiple of the short, a choice

of 20 bits for the Q field (used for address) was made.

5.2.5 The instruction set description

The evaluation of the cost measure of running the antici-

pated workload in the P4-machine involves the evaluation of the cost

parameters for each P4-machine instruction.

To evaluate the cost parameters of instructions, we need

a detailed description of the actions taken by the P4-processor

when executing each instruction. For this description we need to

postulate a set of properties and elements in the P4-processor which

are not actually seen at the intermediate language level. These

properties are:

- it has 3 registers acl, ac2, ac3 in which operations of the

form ac= acl op ac2 can be realised; with yp being a

arithmetic or logical operation.

- it has a counter aux and a flip-flop flag.

- the processor has a primitive function findbase(p), which

follows the static chain for p nodes and returns the address

112

of the data area at lexical level (n-p) where n is the

lexical level of the active procedure.

- the registers in the processor can be incremented or

decremented with the primitives inc and dec.

The description of the instruction set semantics will be

made using a dialect of Pascal with the following alterations :

- data movements are indicated by "_".

- if a register x contains an address of a memory position then

xt denotes the contents of that location.

- the register SP has the special property that it is automatically

pre-incremented when in the left-hand side of an assignment and

post-decremented when in the right-hand side.

- the register IR, used to hold instructions, has the three fields,

denoted as IR.op, IR.p and IR.q.

The P4-machine as defined in (Nor74a) and in (Jen73a) has a

set of 64 basic instructions, some of them can have variants according

to the type of the data being dealt with. See appendix 2 for an informal

description of the instruction set.

The instruction set can be divided in 9 groups according to

the type of operation performed. The groups are:

1- polish binary operators

2- " unary "

3- relational operators

4- procedure call instructions

5- branches

6- address manipulation

7- loads

8- stores

9- others

113

We proceed to the description of the instruction set:

Group 1

Contains the following instructions:

- on integers 	:ADI, SBI,DVI, MPI, MOD

- on boolean 	:AND, IOR

- on sets 	:DIF, INT, UNI

-on reals 	:ADR, SBR, MPR, DVR

The instruction format is simply : opcode, where opcode occupies the

OP field. The instruction execution can be described as :

opcode-group 1: begin

acl = SP1; (*read first operand*)

ac2 = SP+ (*second*)

ac3 = acl op ac2; (*executes operation*)

SP = ac3; (*result back to back*)

end;

Group 2 - Unary operators

The instruction format is opcode. It contains the instructions:

- on integers : ABI, INC, DEC, NGI, SQI

- on boolean : NOT

- on reals 	: ABR, FLO, FLT, SQR

- on sets 	: SGS

- transfer 	: CHR, ORD, TRC, ODD.

<opcode-group2>: begin

acl = SP ; (*read top of stack*)

ac3 = op acl ; (*do operation*)

SP = ac3; (*store back*)

end;

114

Group 3 Relational operators.

There are two formats of instructions in this group:

i-opcode 	a simple opcode of 8 bits for relational operators between

simple types, i.e. - integers, reals, characters, scalars,

sets and pointers.

ii-opcode, n a 32 bit instruction for arrays and records. The parameter

n occupies the address field of the instruction and

specifies the size of the elements being compared.

Their operation is:

<opcode-group3-i> : begin

acl = SP+; (*read first operand*)

ac2 = SP+; (*read second 	*)

ac3 = acl op ac2 ; (*compare*)

SP+ = ac3 ; (*boolean back to stack*)

end;

<opcode-group3-ii>: begin

aux = IR.q; (*size of element to counter*)

flag= 1 	; (*flip-flop set*)

while flag and(aux > 0)

do begin

if act+= ac2+

then begin

dec (aux)

inc(acl);

inc(ac2)

end

else flag = 0

end

acl = flag and (aux = 0);

SP+ = acl;

end;

115

Note : in the group ii there can be some variations according to the

type of comparison being performed.

Group 4 - Procedure calls

The machine has a set of 4 instructions-for executing procedure calls.

MST, p 	: mark stack to fill the links

CUP, p, q 	: proper call

ENT, p, q 	: enter - updates stack pointer

RET, p 	: return and adju stack pointer

4.1 - mark stack

MST p : begin

acl = MP + 2 (*link address*)

aux = IR.p

while aux> 0

do

begin

ac3 = acl ;

acl = acl+; (*read link of level-1*)

dec(aux) ;

end; (*aux = 0*)

SP = SP + 2;

SP+= acl ; 	(*copy link static*)

SP+= MP ; 	(*dynamic link*)

SPF= EP ; 	(*pass extreme stack pointer*)

end;

116

4.2 - call user procedure

CUP p, q : begin

acl = SP - (IR.p+4); (*adjust the base of

activation rec*)

MP = acl;

acl = acl + 4;

act = PC;

end;

(*PC address*)

(*save return program counter*)

4.3 - enter

ENT p, q : begin

if IR.p = 1

then

SP = MP + IR.q 	(*local variable size*)

else

EP = SP + IR.q 	(*extreme stack*)

end;

4.4 - return

RET p begin

if IR.p = 0

then SP = MP -1 	(*procedure return*)

else SP = MP;

PC = (MP+4)+; (*return PC*)

EP = (MP+3)+; (*return EP*)

MP = (MP+2)+; (*return MP*)

end

117

Group 5 - Jumps

There are 4 instructions in this group: FJp q, UJP q, XJP and UJC.

FJP , q 	: begin

acl = SP1'; (*read top of stack*)

if acl = 0

then

PC = IR.q

end;

UJP q : begin

PC = IR.q

end;

XJP q 	begin

acl = SP1; (*read index from stack*)

PC = acl + IR.q

end;

UJC 	: begin

halt 	(*error in case statement*)

end;

Group 6 - Address manipulation instructions

LAO,.LCA, LDA, IXA are in this group.

LAO q; LCA, q : begin

SP+ = IR.q

end;

LDA p, q . begin

acl = findbase(p); (*locate address p levels

down*)

ac3 = acl + IR.q ; (*index*)

SP+ = ac3 	(*address to stack*)

end;

118

IXA q : begin

acl = SP+ ; 	(*index*)

acl = acl * IR.q (*scale by size *)

ac2 = SPF ; 	(*array base*)

ac3 = acl + ac2 ;(*element address*)

SPT = ac3 ; 	(*address is stacked*)

end;

Group 7 - Loads

LOD, LDO, LDC, LCI, IND are in this group.

LOD p, q begin

acl = findbase(p) ; (*get address of activation rec*)

acl = acl + IR.q ; (*offset inside*)

acl = acl fi 	(*write on stack top*)

end;

LDO q ; LCI, q : begin

ac = IR.q ; 	(*data obsolute address*)

act= acll' ; 	(*read*)

SP+= acl ; 	(*write on stack*)

end;

LDC q : begin

act= IR.q;

SP+= acl ;

end;

IND q : begin
acl= SP+;

act= acl + IR.q
acl= acl + ;

SP+= acl 	;

end;

(*data is immediate*)

(*write back on stack*)

(*address is on stack*)

(*offset if necessary)

(*read data*)

(*write on top of stack*)

119

Group 8 - Store

STR, STO, SRO, MOV are in tris group.

STR P, q : begin

acl = findbase(p) (*get address of activation rec*)

acl = acl + IR.q 	(*offset*)

ac2 = SP+ ;
	

(*data to be stored*)

acllh= ac2 ;
	

(*store at address*)

end;

SRO q 	: begin

acl = IR.q; 	(*absolute address*)

ac2 = SP+ 	(*data to be moved*)

acl+= ac2; 	(*store*)

end;

STO 	: begin

acl = SP+; 	(*address is in stack*)

ac2 = SP+; 	(*data also*)

ac2 = acl; 	(*move*)

end;

MOV q : begin

acl = SP+ ; 	(*source address*)

ac2 = SPF ; 	(*destination address*)

aux = IR.q; 	(*size of data*)

while aux> 0

do

begin

MR = acl+ 	(*read to memory register*)

ac2+ = MR; 	(*move*)

dec(aux); inc(acl); inc(ac2);

end;

end;

120

Group 9 - Bounds check

CHK q : begin

acl = IR.q;
	

(*address of bound pair*)

ac2 = SP+ ;
	

(*bound to be checked*)

acl = acl+;
	

(*read bound*)

if acl > ac2

then error;

acl = IR.q + 1;

acl = acl+

if acl < ac2

then error

end;

5.3 Cost parameters of instructions

Using the instruction definition above we can determine the

cost parameters for the components of the P4 instruction set. These

are shown in table 5.1.

The cost parameters of some instructions may vary according to

the level of addressing or the size of the data being operated upon.

So, in order to proceed with the evaluation experiment we will make the

following assumptions:

1- all data accesses are to either the local or global activation

records. The effect here is to ignore the form by which data in inter-

mediate levels is accessed, e.g. using a display like the Burroughs B-6500

or a chain as in the IBM. 370 (P4 implementation).

2- we have assumed both EOL and EOF to be standard functions

implemented through calls.

121

3- String sizes are assumed to be 10 bytes long. This

apply also for record sizes.

5.4 Evaluating the attribute matrix and the total fragment cost

The cost parameters of a fragment can be derived by a

suitable addition of the cost parameters of the P4 instructions of which

the fragment is composed.

Some assumptions had to be made for the evaluation of the

atrribute matrix since we have not collected all the necessary infor-

mation. The reason for this is that a complete data collection for

fragment analysis would require a very large number of fragments and the

overhead in terms of monitoring instructions would be too large. If

the number of code fragments is large, and in consequence, the code

overhead is large, the procedures will tend to be larger than the maximum

limit of 12Kbytes of code which is a restriction in our version of the

P4 compiler. To run, then would imply to break the larger procedures in

smaller ones, which is not only difficult but could mask the results of

the experiment.

The assumptions are:

1- the proportion of variables which is directly accessible

is equal to the proportion which is indirectly accessible.

2- we have not taken into account the total cost for standard

procedures and functions. The only cost we accounted was the linkage

cost, i.e. call (a simple branch and link) and return. For the standard

functions: CHR, ORD, SUCC, and PRED we assumed that a 'simple instruction

was inserted in their place.

122

3- we have ignored record item access cost since its exact

evaluation would require much more information than it is available.

See section 6.5 for a discussion of this case.

We have also simplified the total fragment cost by ignoring

some fragments, whose utilization is very low, or whose accounting is

controversial such as:

- program linkage and external files

- operations with reels and in some sets

We have introduced a new fragment which is not in the original

set: range check (no. 255), whose count can be derived form the counts

of assignments, array accesses and value parameter passing.

The process of attribute matrix generation for the P4 machine

is presented in appendix 3. The resulting matrix is shown in table 5.2.

Using the attribute matrix and the static and dynamic

distribution of fragments we can now derive the total cost according to

eq. 1, i.e. 	CM' = (al, a2, a3, a4, a5, a6)

where n
E 	Ai,k.Sk for i=1,2

k=1

a. =
i n

E 	Ai k.Dk for i=3, 4, 5, 6.
k=1 	'

5.5 Conclusion

There are two possible routes to follow when we have found

the total cost measure for the anticipated workload:

1- evaluate the attribute matrix for a different machine,

e.g. the IBM 370 and make a comparative performance evaluation analysis.

123

2- we can study the fragments which are more expensive to

implement and suggest alternative constructs. They will give rise to

a new attribute matrix and a new cost measure, which shows the effect

of this particular change on the total cost. In this case, we are

using the technique of fragments as a tool for design improvement.

Since our interest is to determine the more important primitives

of the language and find optimum implementations for them we will take

the second route. To proceed in a systematic way, we look at the

fragment cost matrix, which is presented in table 5.3. From this table

we take for each of the cost parameters the 10 most expensive fragments

and arrange them in order of expense. This is shown in table 5.4.

From this table, we know which are the areas of the machine

that need attention since they are using most of the resources. But,

of the fragments displayed above, not all of them are capable of

further optimization (for example, procedure calls are implemented in

an optimized way in the P4 machine). However, there are some fragments

whose cost can be decreased, and we shall concentrate our first iteration

step in the following areas, each of which may involve one or more

fragments:

1- array and pointer access

2- range checks

3- arithmetic and relational operators

4- assignments

5- for statement

124

Table 5.1 - Cost parameters of P4 instruction set.

Instruction 	al 	a2 	a3 a4 a5 a6

ADI 8 0 1 3 8 96
SBI 8 0 1 3 8 96
MPI 8 0 1 3 8 96
DVI 8 0 1 3 8 96
MOD 8 0 1 3 8 96
AND 8 0 1 3 8 24
IOR 8 0 1 3 8 24
DIF 8 0 1 3 8 192
INT 8 0 1 3 8 192
UNI 8 0 1 3 8 192
ADR 8 0 1 3 8 192
SBR 8 0 1 3 8 192
MPR 8 0 1 3 8 192
DVR 8 0 1 3 8 192
INC 32 0 1 2 32 64
DEC 32 0 1 2 32 64
ABI 8 0 1 2 8 64
NGI 8 0 1 2 8 64
SQI 8 0 1 2 8 64
NOT 8 0 1 2 8 16
ABR 8 0 1 2 8 128
FLO
FLT
SQR 8 0 1 2 8 128
CHR 8 0 1 2 8 40
ORD 8 0 1 2 8 40
ODD 8 0 1 2 8 40
TRC 8 0 1 2 8 96
SGS 8 0 1 2 8 96
Relational int. 8 0 1 3 8 72

chr. bool 8 0 1 3 8 24
scalar 8 0 1 3 8 24
real 8 0 1 3 8 136
sets 8 0 1 3 8 104
pointer 8 0 1 3 8 56
array/rec 32 0 1

MST 32 0 1 5 32 120
CUP 32 0 1' 1 32 24
ENT 32 0 1 0 32 0
RET 32 0 1 3 32 72
FJP 32 0 1 1 32 8
UJP 32 0 1 0 32 0
XJP 32 0 1 1 32 32
LCA 32 0 1 1 32 24
LAO 32 0 1 1 32 24
LDA 32 0 1 1 32 24
IXA 32 0 1 3 32 96
LOD 32 0 1 2 32 dd.
LDO 32 0 1 2 32 dd.
LDC 32 0 1 1 32 dd.

Con't of Table 5.1

Instruction al a2 a3 a4 a5 a6

IND 32 0 1 3 32 dd. LCI 32 dd 1 2 32 dd. STR 32 0 1 2. 32 dd. SRO 32 0 1 2 32 dd. STO 8 0 1 3 8 dd.
MOV 32 dd 1 8 32 240 CHK 32 64 1 3 32 96

NOTE: dd means data type dependent.

125

126

Table 5.2- Attribute matrix

Fragment 	al 	a2

for

a3

the P4 machine

a4 a5 a6

4 56 0 2 2.3 56 104
5 0 U 0 0 0 0
6 56 0 2 2.3 56 32
7 56 0 2 2.3 56 32
8 56 0 2 2.3 56 32
9 56 0 2 2.3 56 104
10 56 64 2 2.3 56 200
11 64 80 2 9 64 264
12 b4 80 2 9 64 264
13 S6 0 2 2.3 56 80
15 52 0 2 5 52 152
16 0 0 0 0 0 0
17 52 0 2 5 52 56
18 52 0 2 5 52 56
19 52 0 2 5 52 56
20 52 0 2 5 52 152
21 52 0 2 5 52 264
22 64 0 2 9 64 264
23 64 0 2 9 64 264
24 52 0 2 5 52 104
26 24 0 1 2.3 24 136
27 0 0 0 0 0 0
28 24 0 1 2.3 24 40
29 24 0 1 2.3 24 40
30 24 0 1 2.3 24 40
31 24 0 1 2.3 24 136
32 24 0 1 2.3 24 264
33 0 0 0 0 0 0
34 0 0 0 0 0 0
35 24 0 1 2.3 24 104
37 32 0 1 1 32 32
38 0 0 0 0 0 0
39 32 0 1 1 32 8
40 32 3 1 1 32
41 32 0 1 1 32 S
42 32 0 1 1 32 32
43 32 o4 1 2 32 64
44 126 80 4 11 128 312
45 0 0 0 0 0 0
46 32 0 1 1 32 24
48 32 U 1 2.5 32 60
49 0 0 0 0 0 0
50 32 0 1 2.5 32 24
51 32 0 1 2.5 32 24
52 32 0 1 2.5 32 24
53 32 U 1 2.5 32 60
54 32 0 1 2.5 32 108
55 128 0 4 11 128 312
56 128 U 4 11 128 312
57 32 U 1 2.3 32 46
59 0 0 0 0 0 0
60 0 0 0 0 0 0
61 0 0 0 0 0 0
62 0 0 0 0 0 0
63 0 0 0 0 0 0
64 0 0 0 0 0 0
65 U 0 0 0 0 0
66' 0 0 0 0 0 0
67 0 0 0 0 0 0
68 0 0 0 0 0 0
70 32 0 1 1 32 24
71 32 0 1 1 32 24
72 32 0 1 1 32 24
73 32 0 1 1 32 24
74 32 0 i 1 32 24
75 32 0 1 1 32 24
76 32 0 1 1 32 24
77 32 0 1 1 32 24
78 32 0 1 1 32 24
79 32 0 1 1 32 24
80 32 0 1 1 32 24

127

Table 5.2-Attribute matrix
Fragment 	ai 	a2

for the
a3

P4 machine
a4

(cont.)
a5 a6

81 64 0 3 9 96 216
82 64 0 3 9 96 216
83 32 0 2 2 64 48
84 32 0 2 2 64 48
85 32 0 2 2 64 48
86 32 0 2 2 64 48
87 32 0 2 2 64 48
88 32 0 2 2 64 48
89 32 0 2 2 64 48
90 32 0 2 2 64 48
91 32 0 2 2 64 48
92 32 0 2 2 64 48
93 32 0 1 0 32 0
94 32 0 1 0 32 0
95 32 0 1 1 32 8
96 0 0 0 0 0 0
97 64 0 1 1 32 8
98 0 0 1 0 32 8
99 664 64 7.5 9 216 280
100 32 0 1 1 32 8
101 64 0 2 1 64 8
102 0 0 0 0 0 0
103 32 0 1 1 32 8
104 128 0 4 6 128 176
105 232 0 8 14 232 400
106 64 0 2 2 64 48
107 72 0 3 7 72 191
108 0 0 0 0 0 0
109 72 0 3 7 72 65
110 72 0 3 7 72 65
111 72 0 3 '7 72 65
112 72 0 3 7 72 191
113 72 0 3 o 72 264
114 96 80 3 10 96 264
115 96 80 3 1) 96 2b4
116 72 0 2 7 72 149
123 72 0 3 6.5 72 204
124 40 0 2 4 40 128
125 72 0 3 8 72
126 40 0 2 5.5 40 172
127 8 0 1 3 8 96
135 0 J 0 0 0 0

137 72 U 3 8 72 60
138 40 0 2 5.5 40 52
139 8 0 1 3 8 24
162 40 0 2 4.5 40 44
163 8 0 1 2 8 16'
175 96 0 3 9 96 216.
176 96 0 3 9 96 216
177 96 0 3 9 96 216
178 96 0 3 9 96 216
179 96 0 3 9 96 216
180 96 0 3 9 96 216
181 96 0 3 9 96 216
182 96 0 3 9 96 216
183 96 0 3 9 96 216
184 96 0 3 9 96 216
186 32 0 2 2 64 48
187 32 0 2 2 64 48
188 32 0 2 2 64 48
189 32 0 2 2 64 48
190 32 0 2 2 64 48
191 32 0 2 2 64 48
192 32 0 2 2 64 48
193 8 0 1 2 8 40
194 8 0 1 2 8 40
195 32 0 1 2 32 64
196 32 0 1 2 32 64
227 32 0 1 2.5 32 60
230 118 0 3.7 7 118 198
255 32 64 1 3 32 96

Table 5.3-Cost measure for the P4 machine

Fragment al 	 a2 	 a3 	 a4 	 a5 	 a6

	

4 	 24024 	 0 	 5046 	 5803 	 141288 	 262392

	

5 	 0 	 0 	 0 	 0 	 0 	 0

	

6 	 19224 	 0 	 107282 	 123374 	 3003896 	 1716512

	

7 	 54936 	 0 	 31294 	 35988 	 876232 	 500764

	

8 	 40824 	 0 	 19198 	 22078 	 537594 	 307168

	

9 	 32312 	 0 	 28332 	 32582 	 793296 	 1473264

	

10 	 2632 	 3008 	 36 	 41 	 1008 	 3600

	

11 	 47680 	 59600 	 25672 	 115524 	 821504 	 3388704

	

13 	 23240 	 0 	 24474 	 28145 	 685272 	 978960

	

15 	 1268E 	 0 	 5012 	 12530 	 130312 	 380912

	

17 	 13156 	 0 	 352706 	 881765 	 9170356 	 9875768

	

18 	 2548 	 0 	 3148 	 7870 	 81848 	 88144

	

19 	 2444 	 0 	 21728 	 54320 	 564928 	 608384

	

20 	 1658E 	 0 	 3116U 	 77900 	 810160 	 2368160

	

21 	 260 	 0 	 0 	 0 	 0 	 0

	

22 	 15485 	 0 	 17002 	 76509 	 544064 	 2244264

	

23 	 9536 	 0 	 10122 	 15549 	 323904 	 1336104

	

24 	 61100 	 0 	 99478 	 248695 	 2586428 	 5172856

	

26 	 10896 	 0 	 7994 	 18386 	 191856 	 1087184

	

28 	 1464 	 0 	 13369 	 30749 	 320856 	 534760

	

29 	 6194 	 0 	 20993 	 48284 	 503832 	 839720
co 	 30 	 72 	 0 	 14 	 32 	 336 	 560
csi 	 31 	 18168 	 0 	 224344 	 515991 	 5384256 	30510784

	

32 	 1365 	 0 	 628 	 1444 	 15072 	 165792

	

33 	 0 	 0 	 0 	 0 	 0 	 0

	

34 	 0 	 0 	 0 	 0 	 0 	 0

	

35 	 3960 	 0 	 28050 	 64515 	 673200 	 2917200

	

37 	 10685 	 0 	 377 	 377 	 12064 	 12064

	

39 	 2720 	 0 	 4207 	 4207 	 134624 	 33656

	

40 	 2976 	 0 	 10056 	 10056 	 321792 	 80448

	

41 	 13376 	 0 	 1674 	 1674 	 53568 	 13392

	

42 	 16096 	 0 	 1284 	 1284 	 41088 	 41088

	

43 	 992 	 1984 	 2199 	 4398 	 70368 	 140736

	

44 	 39040 	 24400 	 8 	 22 	 256 	 624

	

46 	 672 	 0 	 1 	 1 	 32 	 24

	

48 	 6658 	 0 	 148 	 370 	 4736 	 8880

	

50 	 1216 	 0 	 10119 	 25298 	 323808 	 242856

	

51 	 2784 	 0 	 522 	 1305 	 16704 	 12528

	

52 	 1568 	 0 	 3252 	 8130 	 104064 	 78048

	

53 	 12576 	 0 	 2383 	 5958 	 76256 	 142980

	

54 	 1792 	 0 	 3505 	 8763 	 112160 	 378540

	

55 	 82688 	 0 	 7672 	 21098 	 245504 	 598416

	

56 	 23424 	 0 	 7948 	 21857 	 254336 	 619944

	

57 	 25376 	 0 	 69138 	 172845 	 2212416 	 3318624

Table 5.3-Cost measure
Fragment 	al

of P4 machine
a2

(cont.)

a3 a4 a5 a6
70 6752 0 9 250 9250 296000 222000 71 96 0 0 0 0 0 72 480 0 653 653 20896 15672 73 8000 0 50 3 504 16128 12096 74 3520 0 1 1 32 24 75 5760 0 6604 6604 211328 158496 76 256 0 0 0 0 0 77 15104 0 30106 30106 963392 722544 78 26976 0 38823 38823 1242336 931752 79 11936 0 78833 78833 2522656 1891992 80 17600 0 8830 8830 282560 211920 81 63488 0 256248 768744 8199936 18449856 82 217280 0 331950 995850 .10622400 23900400 83 3872 0 215602 215602 6899264 5174448 84 640 0 65062 65062 2081984 1561488 85 5440 0 102 102 3264 2448 86 2880 0 68 68 2176 1632 87 6336 0 30 270 30270 968640 72 6480 88 71648 0 111096 111096 3555072 2666304 89 6752 0 12008 12008 384256 2 88192
91 C 0 0 0 0 0 92 16512 0 2798 2798 89536 67152

N ,-.1
93
94

1536
320

0
0

2247
92

0
0

71904
2944

0
0 95 48224 0 158953 158953 5086496 1271624 96 0 0 0 0 0 0 97 122.368 0 343425 343425 10989600 2747400 98 0 0 85661 0 2741152 685288 99 141432 13632 8135.3 97623 2342952 303 7160 100 17792 0 26164 26164 837248 209312 101 35584 0 291916 145958 9341312 1167664 102 0 0 0 0 0 0 103 5856 0 59497 59497 1903904 475976 104 42368 0 27352 41028 875264 1203488 105 76792 0 560952 981666 16267608 28047600 106 50752 0 99688 . 	99688 3190016 2392512 107 70776 0 491976 1147944 11807424 31322472 108 0 0 0 0 0 0 109 24912 0 605433 1412677 14530392 13117715 110 864 0 36 84 864 780 111 34488 0 242562 565978 5821488 5255510 112 18432 0 53358 124502 1280592 3397126 113 21672 0 44007 88014 1056168 3872616

Table 5.3-Cost measure

Fragment 	al

of P4 machine

a2

(cont.)

a3 a4 a5 a6

114 60960 50800 381333 1271110 12202656 33557304
115 96 80 300 1000 9600 26400
116 51912 0 357780 834820 8586720 17769740
123 84528 0 393882 853411 9453168 26783976
124 7880 0 1902 3804 38040 121728
125 22104 0 15954 42544 382896 1318864
126 5600 0 6432 17688 128640 553152
127 632 0 2276 6828 18208 218496
135 0 0 0 0 0 0
136 0 0 0 0 0 0
137 3 816 0 26 157 69 752 6 277 68 697520
138 5160 0 22938 63080 458760 696388
139 E944 0 180984 542952 1447872 4343616
162 16240 0 2946 6629 58920 64812
163 2704 0 95750 191500 766000 1532000
175 10464 0 27b3 8289 88416 198936
176 1440 0 0 0 0 0
177 2304 0 62346 187038 1995072 4488912
178 32928 0 35448 106344 1134336 2552256
179 288 0 21 63 672 1512
180 13632 0 25563 76689 • 818016 1840536
181 0 0 0 0 0 0
182 0 0 0 0 0 0

m 183 0 0 0 0 0 0
,-+ 184 20352 0 87237 261711 2791584 6281064

186 128 0 0 0 0 0
187 160 0 8 8 256 192
188 384 0 14 14 448 336
189 2720 0 200430 200430 64137 60 4810320
190 4512 0 146904 146904 4700928 3525696
191 192 0 0 0 0 0
192 0 0 0 0 0 0
193 1264 0 5719 11438 45752 228760
194 720 0 635 1270 5080 25400
195 6656 0 109293 218586 3497376 6994752
196 1504 0 261 522 8352 16704
227 71904 0 304924 762310 9757568 18295440
230 411112 0 1561714 2954595 49806030 53572830
255 161280 322560 664831 1994493 21274592 63823776

TOTAL 2877440 476064 10271800 21239942 295171894 511935301

Table 5.4 The 10 most expensive fragments arranged by cost parameter

al 	a3 	a4 	a5 	a6

array access 	array access 	array access 	array access 	array access

procedure call 	range check 	range check 	range check 	range check

1
range check 	relop char 	relop char 	for-body 	relop array

case statement 	relop int 	relop int. 	relop array 	assign subrange

2
if-then 	aritop CV 	procedure call 	relop int. 	for-body

procedure call 	relop array 	for-body 	if-then-else 	aritop CV

aritop CV 	pointer acc. 	assign char 	procedure call 	procedure call

array param. 	assign char 	aritop CV 	pointer acc. 	procedure call

for-body 	if-then-else 	relop pointer 	aritop CV 	pointer access

Notes :
1-relop stands for relational operation between elements of the given type.
2-aritop CV stands for arithmetic_ operation between a constant and a variable.

132

Chapter 6 - Improving the P4-machine

6.1 Introduction

Given the information about usage patterns of a high-level

language and a proposed language oriented machine, there are two

possible types of optimization which can be made on the latter:

a- agglutination of primitives - a sequence of instructions

which appears very often in the object code is replaced by a single

one. (McKe67a)

b- container optimization - the most common forms of data

and instructions are coded with fewer bits, in different variants of

Huffman coding. The total effect is to decrease "information redundancy"

(Wi172a) although the meaning of the primitives is not changed. A good

example of this technique is given by Wilner (reference above) in the

design of the Burroughs B-1700 S-languages, which are forms of defining

language oriented machines which are to be interpreted by the micro-

programming system of the B-1700. A full study of possible optimizations

using this technique would require a different set of data about

programming language usage patterns e.g. patterns of data size and

address usage and it will not be dealt with here. These two types of

optimization constitute only one of the design steps towards a language-

oriented machine. Following this step a second step must be made

attempting to adapt the hardware low level mechanisms to the high level

requirements of the machine (e.g. the use of the fast registers as top

of the stack as in the B-5500).

133

The main objective of this chapter is to generate an

improved version of the P4 machine described in chapter 5. Two main

alterations will be introduced:

a- sequences of code in very costly fragments will be coded

as single instructions.

b- the descriptor mechanism (described in chapter 3) will

be incorporated into the machine.

After making these changes, we use the information about fragment usage

to calculate the variation in the cost measure. The real decision

whether this change should be introduced or not, can only be made by

the implementor when considering the trade-off between: the gain that

the change will introduce to the cost measure and the cost of imple-

menting these changes (Wor72a). If the reduction in the cost measure

offsets the cost of implementing the proposed changes then they

should be implemented.

We presented as a conclusion of chapter 5, the constructs

which make the highest demand on the resources. We propose alternative

constructs for these fragments or fragment groups in such a way as to

decrease the cost measure associated with that fragment.

The final result of this chapter is a demonstration of the

use of the methodology described earlier in designing a machine, and

a proposal for a Pascal machine based on the P4 machine with a

descriptor mechanism and some new instructions added to it to fit the

patterns of Pascal programming usage.

6.2 Expression evaluation

The most commonly used form of Pascal expressions (as measured

in the analysis of Pascal programs in chapter 4) is very simple - i.e.

the average number of operators per expression is 0.21 (statically).

134

We can thus optimize expression evaluation as a whole because,

the expressions being simple, they will usually be mapped into a

single code fragment so that optimization of code fragments cost is

tantamount to optimization of expressions in general.

We deal with two classes of expression fragments:

the first involving relational operators and the second,arithmetic

operators.

6.2.1 Relational Expressions

Relational expressions have a different pattern than arithmetic

expressions. A relational expression has 1.15 operators on average,

i.e. has usually two operands. In 75% of the cases these operands will

be a single variable and a constant. The reverse polish generated by

the P4 compiler for a construct like: 	x = c is:

LODr 	x {load variable}

LDC. 	c 	{load constant immediate}

EQU {test if equal and replace operands by boolean result}

The three instructions above can be reduced to a single one,

with three fields like:

OPr p,q,r where (p,q) specify the variable address and the

field r contains the constant. OPr is any of the

relational operators.

We also need a 'compare indirect' for the cases in which the variable

address is not known at compile time, i.e.:

r as above with the difference that the variable

address is in the top of the stack.

OPIr

135

A considerable part of the cost of this fragment in the P4

machine arises because the result of a relational operation must be

deposited back to the stack for the posterior use of (possibly) a FJP

instruction which will branch according to the contents of the top

of stack. It seems reasonable to suppose that an additional gain could

be obtained if the result, instead of being stacked, could be used to

set a condition code. This case would give a gain, not only in the

relational fragment but also in the jump instruction, which would not

need to read the top of stack for the branching decision. But the

introduction of condition codes would necessitate an additional

register which has to be saved and restored at procedure entry/exit.

This would add an additional cost overhead of around 2 million bytes of

condition codes being moved to and fro at procedure calls. On the other

hand, the old stack solution can be considerably improved in cost by

the introduction of fast registers at top of stack whilst the cost of

saving condition codes in the activation records of procedure calls

cannot (probably) be decreased by further refinement steps. Hence, we

shall retain the stack solution for condition codes.

The new instruction description is :

OPr p q r : begin

acl = IR.q; 	(*address, suppose p=0*)

ac2 = IR.r; 	(*constant immediate*)

acl+= acl ; 	(*variable value*)

ac3 = acl op ac2; (*op depends on instruction*)

SPT = ac3; 	(*result is stacked*)

end;

OPIr 	r : begin

acl = SP+ ; 	(*read address*)

ac2 = IR.q; (*constant*)

ac3 = acl op ac2 (*op depends on instruction*)

SP+ = ac3 	(*stack result*)

A further optimization is possible in the case of the very

common construct ptr OP nil, where ptr is a variable of type

pointer. Since the pointer constant nil is uniquely identified, the

instructions above do, not need the field r for the constant value,

and they are reduced to

OPNIL p,q -compare variable at (p,q) with nil

OPNIL 	-same as above but indirect

The final result of this set of modifications in the cost

measure associated with expressions (as a whole) is seen in the table

below:

Cost parameter Reduction

al 15

a3 23

a4 27

a5 21

a6 24

6.2.2 Arithmetic Expressions

The same form of modification can be extended, in an

orthogonal manner, to arithmetic operators to handle arithmetic

fragments between a variable and a constant. Their form is (operations

on integers only):

136

137

OPa 	p q r - execute the arithmetic operation between

variable at (p, q) and constant in field r.

OPIa r - as above with address in top of stack.

The combined effect of the relational and arithmetic operators between

constant and variable is shown in the table below:

Cost parameter 	Reduction % (for fragments associated
with expressions)

al 	21

a3 	30

a4 	34

a5 	25

a6 	36

Other agglutinations can be tried but since the above are the most

frequent constructs with the simpler implementations, we will limit

the consideration to these at this level of refinement. Other cases

like variable-variable operators can be optimized in the next step

of refinement through the use of fast registers.

6.3 Assignments

A very common construct in Pascal texts is the assignment of

a single constant to a variable, for initialization purposes. This

construct has a major influence in the static cost where about 30% of

all assignments are of this form. P4 code for this construct is:

LDC 	c - load constant to top of stack.

STR, 	p, q 	- store at address (p, q)

This sequence can be merged in a single instruction SET whose format is:

SET p q r - set the content of address (p,q) to the value in r

SETI 	r - as above but address in top of stack.

138

These instructions can be defined as:

SET p q r : begin

acl = IR.q ; (address, suppose p=0*)

ac2 = IR.r ; (*constant value*)

acl+ = ac2 ; (*store*)

end;

SETT 	r : begin

adl = SP+ ; (*address in top of stack*)

ac2 = IR.r 	(*constant*)

act+ = ac2 ; (*store back*) e
i

The introduction of these instructions will affect mainly the instruc-

tion static occupancy (because of the reduction in code size); its

effect is less prominent in the dynamic cost parameters since

assignment of a constant has a smaller share of resource consumption

at run time than it has statically. The effect of these instructions

is to reduce instruction occupancy by 11%; thus reducing cost parameter

al by 11% in all fragments associated with assignments. We can ignore

the effect on the other cost parameters.

6.4 For instruction

The for instruction is compiled by the P4 in two parts: one

to evaluate and set the initial and final value of the control

variable and a second (the for body) which has in turn two parts - one

to test if the control variable is less than the limit and a second to

increment it. A substantial reduction in the cost measure can be

achieved by introducing primitives to perform these tasks. So, we

create two new instructions:

139

DOE r s : compare local variables at addresses r and s (both

must be local variables)

return result to top of stack.

DOR p q : decrement/increment control variable at offset q.

With these modifications a for loop can be coded easily as:

1- evaluate initial value for control variable.

2- evaluate final index of loop and store in temporary location.

3- insert DOE r, s.

4- insert FJP to out of loop.

5- insert code for loop statements.

6- insert DOR p,q.

7- insert UJP to step 3.

A further compression could be achieved by merging the DOE with FJP

and DOR with UJP, but we reject this choice in view of the reduced

gains it would introduce if a fast top of stack is used.

The instruction can be defined as:

DOE r s : begin

acl = IR.r ; (*first address*)

ac2 = IR.s ; (*second address*)

acl = acl+ ; (*read control variable*)

ac2 = ac2+ ; (*read limit*)

ac3 = acl less ac2; (*for up counting*)

SP+ = ac3 ;

end;

DOR p q : begin

ac2 = IR.q ; (*address of control variable*)

acl = ac2l' ; (*fetch control variable*)

ac3 = acl + 1 ; (*minus if down to*)

ac2+ = ac3
	

(*store back*)
end)

The effect of the introduction of these instructions on the cost

measure associated with statements (fragments 93 to 106) is seen in

the table below:

Cost parameter Reduction

al 6

a3 16

a4 28

a5 13

a6 43

6.5 Data structure access

6.5.1 Introduction

The aim of this section is to define a more efficient data

structure access method for the P4 machine using the descriptor

mechanism presented in chapter 3. It is worth noting that this mechanism

includes range check on arrays and subranges, so we are optimizing not

only array access but also all checks on subrange variables.

The scheme presented in chapter 3 should be seen as the first

step of refinement in a process of deriving a descriptor mechanism for

a Pascal machine. In this section, an additional refinement step will

be made with new constraints which will have the effect of changing the

descriptor operator forms as defined in chapter 3.

140

141

The new constraint to be imposed in the design is that the

implementation of the descriptor mechanism should present a lower

cost measure for data structure access than the P4-machine scheme. To

obtain a lower cost measure than the P4 method the new implementation

should reduce the traffic of redundant information which is, in turn,

caused by the constraint imposed on its design that the translation

process should be as simple as possible. This simplicity constraint

implies that every time a selected element appears, its full semantic

specification is loaded to the stack, even if the next descriptor

operator will only use a part of it.

6.5.2 Descriptors for the P4-machine.

To decrease the cost measure for data access, we have to modify

the mechanism presented in chapter 3 - with new formats for the

descriptor operators and also allow more work to be made at compile time.

The modifications introduced are:

1- descriptors are presented (conceptually but not physically)

in two different formats: short and long. The long format descriptor is

the same as defined in chapter 3, whilst the short format consists

simply of a tag and an address. The descriptor operators, in consequence,

have two variants to enable them to work with the two different

descriptor formats.

2- the descriptor operators defined in chapter 3 are zero-

address polish operators. In this new implementation, two new forms of

specifying the descriptor operand (which was implicit in the old form)

are provided:

i- by an address field with the absolute address of

the descriptor, i.e. the operator is changed from a zero address to a

one-address operator.

ii- immediate - in this case the descriptor follows the

operators. Immediate operands are an advantage when they are small

enough to be packed in the same container size as the address, saving

thus one extra reference at run time.

The causes for these changes are:

a) there is the need for reducing the instruction static size cost by

merging the load descriptor operation with its descriptor operator

successor into a single operation code.

b) in the case of record item access there is the need for a low cost

instruction for generating record item descriptors, to compete with the

P4 machine which uses simply ah"increment address" instruction in this

case. The P4 compiler also takes advantage of the fact that the record

item offset is known at compile time and, in some cases, does all the

address evaluation with no instruction being generated at run time.

This is achieved by merging the information about record item offset

and type in the current instruction successor. If the record item is

directly accessible, the item offset is added to the offset field of

the next instruction, or. else is added to the offset field of the following

"indirect fetch" (IND) instruction.

An instruction is generated only when there is a need for an

absolute address - i.e. after the evaluation of the left-hand,or

preceding an array access.

3- a new operator Arrowdot is created, This operator is a

combination of the operators arrow and dot in sequence. Its appearance

is due to the necessity of optimizing the very frequent programming

construct a+.x where a is an arbitrary name.

142

143

(See also table 13 for pointed element fragments, where almost all

of the pointers point to records). In the case of the P4-machine the

code generated is:

i- evaluate the address of a.

ii- insert IND q 	-to fetch the value of a.

iii- insert In x 	-to increment address in stack by the

offset of x.

Using the operator Arrowdot, the above construct can be

translated as:

i- evaluate the descritor of a,

ii- insert Arrowdot <par> - where <par > specifies the record item

descriptor.

4- In the case of the same construct as above, but when the

descriptor of at is known at compile timela different sequence can be

generated:

i- load descriptor of at

ii- insert Dot <par > - where <par > specifies the record

item descriptor.

5- A new descriptor format is introduced in addition to the ones

described 	in chapter 3 to define subrange bounds of type integer.

Since most of the array and subrange bounds can be coded with a few

bits there are two new tags:

i- one for subranges of integer which require a full integer

format, e.g. the very common type: Positive_Integer = 0..MAXINT.

ii- one for subranges of integer such that the lower bound

can be coded with 8 bits each (smallest unit for arithmetic purposes).

With this coding we can describe 100% of the lower bounds of arrays

144

(99% of subranges and 97% of the upper bound of arrays (50% for

subranges). The total space for bounds is now 16 bits or 1/4 of the previous

need , which will give a big saving in the static constant area and

in information traffic for range check.

7- we need also primitives for load, store and move data

through descriptors in the top of the stack:

i- Lodd 	- unary operator for leading a piece of data using

descriptor in the top of the stack.

ii- Stod 	- store data in the top of the stack using descriptor

immediately belowfand do the range check if

necessary.

iii- Movd 	- move data described by the descriptor below the

top of the stack to the position described in

the top of the stack. Do range check if necessary.

8- We also need one primitive for loading descriptors to the

top of the stack:

i- Ldesc<par> : where <pa specifies the descriptor form and

address.

6.5.3 Descriptor operator formats

The final result of the primitives available for data structure

access is presented in tables 6.1 and 6.2 below. A full description of

the execution of the descriptor operation is given in Table 6.3.

Table 6.1 - Descriptor operator formats

Each descriptor operator has four fields named as: opcode,

form or f,spec or stand a (used as an address or data field). The opcode

field can specify one of the five possible descriptor operators;

Ldesc,Dot,Arrow,Bracket and Arrowdot.

Mnemonic

1 Lodd

145

- The form field defines the descriptor to be operated on to be in

long or short format.

- The spec field _specifies if the descriptor operand is defined by.its

address or follows the operator as a literal.

Descriptor operators mnemonics

Mnemonic 	Description

1- Ldesc 	f s q 	load descriptor specified by the f, s and

c fields, to the stack.

2- Bracket 	f s q 	do range check and indexing with descriptor

specified in (f s q) fields with index and

array base address in top of stack.

3- Dot 	f s q 	record item descriptor generation with item

descriptor defined in (f s q) and record

descriptor in stack.

4- Arrow 	f s q 	generate descriptor of pointed variable with

(f s I) specifying descriptor and top of

stack containing address of pointer.

5- Arrowdot 	f s q 	generate the descriptor of a record item whose

descriptor is defined by (f s q) fields. The

top of the stack contains the descriptor of

the pointer which is pointing to the record.

Table 6.2 - Primitives for load, store and move data via descriptors.

Description

Load data specified by descriptor in top of

stack to top of stack, replacing descriptor.

Mnemonic

2- Stod

146

Description

Store data in top of the stack to address

specified by descriptor in position

immediately below the top of the stack.

3- Movd Move data specified by descriptor in top of

the stack to position specified by descriptor

below the top of the stack.

Table 6.3 - Descriptor operators

In the description below, suppose f=short, s=address and

q contains the address of the descriptor. The descriptor formats are

as specified in chapter 3.

1-Ldesc f s q : begin

acl = IR.q; 	(*address of descriptor*)

ac2.tag = aclt.tag; (*read tag*)

ac2.address = acl1.address; (*read address*)

SPt = ac2; 	(*move result descriptor to stack*)

end;

2- Dot 	f s q : begin

acl = IR.q ; (*address of descriptor*)

ac2.tag.= acl+.tag; (*read tag*)

ac2.offset =acl+.offset ; (*record item offset*)

acl = SPt ; (*record descriptor*)

acl.tag = ac2.tag ;

acl.address = acl.address + ac2.offset;

SP+ = acl ; (*move result descriptor to stack*)

end;

147

3—Arrow f s q : 	begin

acl = SP+; (*read pointer address*)

acl.address = acl+.address ; (*pointer value*)

ac2 = IR.q ; (*pointed element descriptor address*)

acl.tag = ac2 .tag;

SPT = acl

end;

4— Bracket f s q : begin

acl = SPT; (*array index*)

ac2 = IR.q; (*array element descriptor address*)

ac2 = ac2+; (*read descriptor*)

if (acl<ac2.lower) or (acl>ac2.upper)

then error; (*bounds check*)

ac3 = acl*length (ac2.tag);(*indexing*)

acl = SPT; (*array descriptor*)

ac3.tag = ac2.tag;

ac3.address=ac3.address+acl.address

SPT= ac3;

end;

5— Arrowdot f s q : begin

acl = SPT ; (*pointer address*)

ac2 = IR.q;

ac2 = ac2+; (*record item descriptor*)

acl = acl+; (*record address*)

ac3.tag = ac2.tag;

ac3.address = acl.address+ac2.address;

SP+ = ac3 ;

end;

148

6.5.4 Examples of Use

We show in the examples below, various sequences of code

generated by the P4 compiler using the algorithms in chapter 3 and

the new descriptor implementation described above.

Suppose, variables Sigma and Phi are both of type epsilon as in

Chapter 3.

i- Sigma [j] := Phi Cj] ;

P-4 sequence 	Old descriptor 	New descriptor

Lda Sigma 	Ldesc Sigma 	Ldesc Sigma

Lod j 	Ldesc Sigma-e Load

Check bounds 	Lod 	j
	

Bracket Sigma-e (long)

Dec 1 	Bracket

Ixa Size

Lda Phi 	Ldesc Phi 	Ldesc Phi

Lod j 	Ldesc Phi-e 	Lod j

Check bounds 	Lod 	j
	

Bracket Phi-e 	(short)

Dec 1 	Bracket

Ixa Size

Mov Size 	Mov 	Movd

11 instructions 	9 instructions 	7 instructions

j

149

ii- Sigma Cj].z .= Phil [j].z

P-4 Old descriptor New descriptor

Lda Sigma Ldesc Sigma Ldesc 	Sigma

Lod j Ldesc Sigma-e Lod 	j

Check bounds Lod j Bracket Sigma-e (short)

Dec 1 Bracket

Ixa Size

Inc offset of z Ldesc z Dot 	z (long)

Dot

Lda Phi Ldesc Phi Ldesc 	Phi (short)

Lod j Ldesc Phi-e Lod 	j

Check bounds Lod j Bracket Phi-e (short

Dec 1 Bracket

Ixa Size

Inc z Ldesc z Dot 	j (short)

Nov size Dot Movd

Mov

13 instructions
	13 instructions 	9 instructions

150

iii- Sigma Cj].0+.z .=Phil[j].u+.z

P4 code Old descriptor New descriptor

Lda 	Sigma Ldesc Sigma Ldesc 	Sigma (short)

Lod 	j Ldes Sigma-e Lod 	j

Check bounds Lod j Bracket Sigma-e (short)

Dec 	1 Bracket

Ixa 	Size

Ind 	u Ldesc u Arrowdot u (short)

Inc 	z Dot

Arrow

Ldexc

u-p

z

Dot 	z (long)

Dot

(as above with Phi) 	(as above with Phi) (as above with Phi)

Mov size 	Nov

15 instructions
	19 instructions 	11 instructions

Movd

151

6.5.5 - Evaluation of the descriptor mechanism

The combined effect of using the new format for descriptors and

descriptor operators is that record and pointer access will have

approximately the same cost measure. An additional reduction in the cost

measure is obtained in the case of the bounds checking required in the

assignment to a subrange variable. The instruction 'store via descriptor'

will perform automatic range checking without the need for an explicit

'check bounds' instruction.

We will evaluate,in this section, only the reduction in the cost

measure associated with array accesses. The combined effect of array

accesses and subrange checking with the new descriptor mechanism in the

total cost measure is presented in table 6.4. The reduction of the cost

measure for array accesses is shown in the table below:

Cost parameter
	

Reduction %

al
	

42

a3
	

41

a4 	27

a5 	42

a6 	36

6.6 - Standard procedures and functions.

The cost measure we have associated with standard functions and

procedures in the P4 machine is the estimated cost of a simple 'branch

and link' instruction, i.e. a jump to the procedure code saving only the

return address without any actions on the scope.

We have evaluated the improvement in the cost measure which comes

from the implementation of standard procedures as one-byte, zero address

polish operators. The effect of this change in the total cost measure

is shown in table 6.4.

152

6.7 - Comments on line tracking and Post-mortem-dump.

The Post-mortem-dump (PMD for short) is undoubtedly one of the

more costly elements in the execution of Pascal programs. Although it

is possible to estimate the cost measure associated with PMD, using the

data about language usage, we have deliberately refrained from discus-

sing it because it is a complex and controversial subject beyond the

scope of this work. We shall mention briefly the simpler case of line-

tracking, i.e. the possibility of knowing, at every instruction, the

physical line number of the source code sequence which originated this

instruction. In the P4 compiler there are two forms of line tracking:

a-minimal: line numbers are introduced only at procedure calls.

The activation record lay-out is modified to include one entry for line

number, which is passed as an implicit parameter to every user procedure

call.

fUll: in this case, one instruction of the intermediate language

specifying the line number is generated for each physical line. The

line number at procedure call is still passed as a parameter.

The problem of an efficient implementation for line tracking was

investigated by Wortman (Wor72a). He proposes two lines of solution :

a-a software solution involving tables and searching.

b-a hardware solution, using another memory, with the same size

as the code memory, in which every instruction is paired with a line

number.

We shall not discuss the cost measure associated with line

tracking, although it can be derived from the data about fragment usage.

6.8 - Conclusions.

The discussion of the improvements in the P4 machine have been

concentrated on the effects of alternative constructs in the cost measure

associated with particular groups of fragments, e.g. fragments associated

153

with expressions, assignments.etc. Table 6.4 shows the effect of each

one of the proposed alterations on the total cost measure. The entry

for 'data access' covers the case of array accesses and checking for

variables of type subrange.

Table 6.4 - Modifications on the total cost measure (%)

Fragment group Expr. Assign. For Data access Std. Proc. Total(%)

al 3.3 1.6 1.2 9.5 3.1 19.8

a3 8.6 0.5 2.7 10.7 3.8 30.2

a4 11.8 0.4 2.6 9.0 3.7 27.6

a5 6.0 0.6 2.5 11.8 8.5 29.3

a6 10.2 0.4 3.5 13.2 3.7 31.1

From the table above we conclude that most of the gains can be

associated with two factors:

a - the use of instructions for executing operations between a

constant and a variable with the result being stacked.

b - the gains in data access for array elements and subrange

variables checks.

In spite of its simplicity, the P4 machine is a very well designed

machine with its primitives being well adequate for Pascal requirements.

This fact means that the improvements achieved, in the region of 20%

to 30% in the cost parameters are satisfactory. Further refinements in

the P4 machine are possible but the gains are likely to be insignificant

when compared with the actual implementation details of the P4 machine,

e.g. the nature of the microcode machine or the translation to machine

code.

154

7-Conclusions

This thesis presented a study of language directed computer

design, more specifically a study of Pascal-orientated intermediate

language machines.The problem was approached from the point of view

of intermediate forms of compilation, which in turn, define an abstract

machine for their execution.

First, we studied the case of an intermediate language machine

derived to meet a specifically designed hardware configuration. The

difficulties encountered in the mapping of language data structures in

the case of full Pascal structuring methods lead us to the study of a

descriptor mechanism to meet Pascal requirements, using only the normal

random access memory as a hardware base. The scheme presented is derived

from a study of the ICL 2900 descriptor mechanism which posed some

problems to Pascal implementors. This solution is general, supports

the needs of Pascal data structures and simplifies the code generation

.for Pascal names.

The efficiency of a given intermediate language machine can

be substantially improved with the knowledge of its usage patterns. In

chapter 4 we presented a detailed analysis of form and behaviour of a

given set of Pascal programs. A set of tables detailing textual,

syntactic and language fragments usage was given. This data can be

used both by the compiler writer and the machine implementor to evaluate

and improve their designs.

This data has been used to evaluate and improve the Pascal

P4 intermediate language machine. With the aid of the patterns of

language usage the most expensive source language constructs were

detected and alternative constructs resulting in a more

efficient P4-machine were suggested and the improvement measured.

155

There are several avenues of research open, using some of

the results presented here.

a-Our study was deliberately kept on an abstract, implementation

independent, level. The next logical step is the study of the implemen-

tation of intermediate language constructs suggested, including the

descriptor implementation. This study would also include the effects of

the suggested constructs if the machine is going to be interpreted by

microprogram or suffer further translation.

b-A study could be made of the operating system interface,

including the file interface and its primitives.

c-A study could be made of a multiprogrammed Pascal

intermediate language machine.

d-Our study of Pascal programs should be extended to include

more user programs - possibly student programs as opposed to the system

orientated workload studied here.

e-The results of the study of Pascal programs could be used

to obtain synthetic programs to simulate the whole workload, and

possibly to develop a form of "Gibson's mix" based on Pascal program

composition.

References

Ale75a-Alexander, W.G. and Wortman, D.B.
Static and dynamic characteristics of XPL programs
Computer 8, 1975, pp.41-46

Bou73a-Bourne, S.R.
Zcode-a simple machine. Technical Report
Univ. of Cambridge Computer Laboratory.

Buc78a-Buckle, J.K.
The ICL 2900 series
MacMillan Press, 1978

Chev78a-Chevance, R.J. and Heidet, T.
Static profile and dynamic behaviour of Cobol programs
Sigplan, v13-4, April 1978, pp.44-57

Co178a-Coleman, D.
A structured programming approach to data
MacMillan Computer Science Series, 1978

Hau68a-Hauc, E.A. and Dent, B.A.
Burroughs 6500 stack mechanism
Proc. 1968 SJCC, pp.245-251

Hoa73a-Hoare, C.A.R. and Wirth, N.
An axiomatic definition of the programming language Pascal
Acta Informatica, 2, 1973, pp.335-355

How76a-Howarth, D.J.
Lecture notes on computer architecture (unpublished)
Imperial College, 1976

ICL76a-ICL 2900 primitive level interface
P.S.D. 2.5.1
ICL Ltd., Bracknell, 1976

Ili68a-Iliffe, J.K.
Basic machine principles
Macdonald Computer Monographs, 1968.

156

157

Iza79a-Izatt, W. and Schmitz, E.A.
Data structures and descriptors in the series 2900
and beyond
CCD report 79/23
Imperial College, London

Jen73a-Jensen, K. and Wirth, N.
An assembler/interpreter for a hypothetical stack computer
Program listing

Jen75a-Jensen, K. and Wirth, N.
Pascal user manual and report.
Springer-Verlag, N.Y. 1975

Knu68a-Knuth, D.E.
The art of computer programming, v.1
Addison-Wesley, Reading, Mass. 1968

Knu7la-Knuth, D.E
An empirical study of Fortran programs
Software-practice and experience
vl, 1971, pp.105-153

McKe67a-McKeeman, W.
Language directed computer design
Proc. FJCC 1967
AFIPS Press

McKe75a-McKeeman, W.
Stack machines
Introduction to Computer architecture , S.R.A., 1975
H.S. Stone, Editor

Pug79a-Pugh, C.G.
Pascal P4 for VM/370 CMS
Computing and Control Dept.
Imperial College

158

Ree77a-Rees, M.J. et al.
Pascal on an advanced architecture
Third Annual Computer Studies Symposium
Univ. Southampton, March 1977

Ric71a-Richards, M.
The portability of the BCPL compiler
Software-practice and experience
vl, pp.135-146

Sch79a-Schmitz, E.A.
A study of static data type usage in Pascal
Computing and control Dept. Technical report 79/17
Imperial College, 1979

Str58a-Strong, J. et al.
The problem of communicating with changing machines
CACM vl-8, 1958

Tan78a-Tanenbaum, A.S.
Implications of structured programming for machine architecture
CACM, v21-3, March 1978, pp,237-246

Wic69a-Wichman, B.A.
A comparison of Algol 60 execution speeds
NPL report CCU-3, January 1969

Wic70a-Wichman, B.A.
Some statistics_ from Algol programs
NPL Report, CCU-il, August 1970

71a-Wichman, B.A.
The performance of some Algol systems
Proc. IFIP Congress, 1971

159

Wi172a-Wilner, W.T.
Burroughs B1700 memory utilization
Proc. FJCC, AFIPS v41-1972, pp.579-586

Wi172b-Wilner, W.T.
The design of the Burroughs B1700
Proc. FJCC, AFIPS v41-1972

Wir71a-Wirth, N.
The programming language Pascal
Acta Informatica, vl, 1971, pp.35-63

Wir7lb-Wirth, N.
The design of a Pascal compiler
Software-practice and experience
vl, 1971, pp.309-333

Wir73a-Wirth, N.
Systematic Programming, an introduction
Prentice-Hall, 1973

Wir76a-Wirth, N.
'Algorithms + Data Structures = Programs'
Prentice-Hall, 1976

Wor72a-Wortman, D.B.
A study of language directed computer design
Ph.D. thesis, Stanford Univ., 1972

160

Appendix 17Cardinality of subrange •errays,scalar and records.

Appendix 1.1-1n type declarations.

Subrange Bounds

Lo Mer Bound

	

Size(bits) 	Count 	Percent 	Cumulative

	

1 	 111 	93.28 	93.28

	

2 	1 	 0.R4 	94.12

	

7 	2 	1.68 	95.80

	

8 	4 	3.36 	99.16

	

15 	1 	0.54 	100.00
Mean = 	1.46 	Variance = 	520.00
Upper Bound

	

Size(bits) 	Count 	Percent 	Cumulative

	

1 	3 	2.52 	2.52

	

2 	10 	8.40 	10.92

	

3 	13 	10.92 	21.95

	

4 	12 	10.08 	31.93

	

8 	 6.72 	38.66

	

6 	4 	3.36 	42.02

	

7 	10 	8.40 	50.42

	

8 	 21 	17.65 	68.07

	

9 	2 	1.68 	69.75

	

10 	3 	2.52 	72.27

	

11 	5 	4.20 	76.47

	

12 	1 	0.34 	77.31

	

14 	1 	0.64 	78.15

	

15 	2 	1.68 	79.83

	

16 	5 	4.20 	84.03

	

17 	2 	1.68 	85.71

	

18 	1 	 0.84 	86.55

	

24 	2 	1.6S 	88.24

	

25 	1 	 0.94 	89.08

	

31 	13 	10.92 	100.00
Glean = 	9.91 	Variance = 	19660.00

Scalar type cardinality

Size 	Count 	Percent 	Cumulative

	

2 	27 	32.14 	32.14

	

3 	11 	13.10 	45.24

	

4 	7 	5.33 	53.57

	

5 	9 	10.71 	64.34

	

t 	5 	5.45 	7x.24

	

7 	c 	7.95 	76.19

	

3.57 	74.76

	

9 	 3 	= 57 	83.33

	

10 	1 	1.1° 	84.52

	

14 	2 	2.3k 	86.90

	

13 	1 	 1.10 	 3̀ 5.10

	

14 	1 	 1.19 	89.29

	

15 	1 	1.19 	90.43

	

16 	3 	3.57 	94.05

	

26 	1 	1.19 	95.24

	

32 	4 	4.76 	100.00
Mean = 	6.60 	Variance = 	7368.(0

Record Sizes
t* mm:: *::: r:

Size Count Percent Cumulative
1 2 1.14 1.14
2 3g 21.59 22.73
3 26 14.77 37.50
4 27 15.34 52.94
5 17 9.66 62.50
6 13 7.39 69.9°
7 14 7.95 77.44
8 3 1.70 79.55
8 5 2.84 82.39

10 3 1.70 84.09
11 5 2.84 86.93
12 8 4.55 91.48
13 5 2.84 94.32
15 1 0.57 94.89
17 2 1.14 96.02
18 1 0.57 96.59
19 2 1.14 97.73
21 1 0.57 98.30
27 3 1.70 100.00

Mean = 	5.95 Variance = 9328.00

Array index type

Type 	Distribution
Typee Count Percent
Char 4 2.86
Scalar 1 0.71
Suhrange 135 96.43

Total of Types,. 	644

Appendix 1.2-1n variable declarations. 	161

Array Bounds

Lower Bound

	

Size(bits) 	Count 	Percent 	Cumulative

	

1 	635 	98.76 	98.76

	

2 	3 	0.47 	99.22

	

S 	 S 	 0.78 	100.00
Mean = 	1.06 	Variance = 	298.00
Upper Bound

	

Size(bits) 	Count 	Percent 	Cumulative

	

2 	50 	8.71 	8.71

	

3 	190 	29.55 	38.26

	

4 	285 	44.32 	92.58

	

5 	47 	7.31 	89.99

	

0 	8 	1.24 	91.14

	

7 	15 	2.33 	93.47

	

8 	28 	4.35 	97.82

	

10 	10 	1.56 	99.38

	

11 	1 	0.16 	99.53

	

12 	1 	0.16 	99.69

	

14 	1 	0.16 	99.54

	

15 	1 	0.16 	100.00
Mean = 	4.02 	Variance = 	9584.00

Subrange Hounds

Lower Bound

	

Size(bits) 	Count 	Percent 	Cumulative

	

1 	756 	96.43 	96.43

	

2 	7 	0.89 	97.32

	

3 	2 	0.26 	97.58

	

5 	1 	0.13 	97.70

	

7 	3 	 G.38 	98.09

	

6 	13 	1.6o 	99.74

	

11 	1 	0.13 	99.87

	

15 	1 	(0.13 	100.00
mean = 	1.19 	variance = 	1220.00
Upper Bound

	

Size(bits) 	Count 	Percent 	Cumulative

	

1 	7 	0.89 	0.89

	

2 	41 	5.23 	6.12

	

J 	55 	7.02 	13.14

	

4 	67 	8.55 	21.68

	

S 	 3° 	4.97 	26.66

	

14 	1.74 	28.44

	

7 	74 	0.44 	37.88

	

9'.' 	12.5 , 	50.35

	

4 	11 	1.4'+ 	51.7°

	

1.r 	61 	7.78 	59.57

	

11 	12 	1.66 	61.22

	

12 	• 	4 	0.51 	61.73

	

13 	15 	1.°1 	63.65

	

15 	25 	3.19 	66.94

	

16 	26 	3.32 	70.15

	

17 	11 	1.40 	71.56

	

24 	20 	2.55 	74.11

	

25 	1 	0.13 	74.23

	

J1 	 2U2 	25.77 	100.00
Mean = 	13.96 	Variance = 235574.00

Scalar type cardinality

Size 	Count 	Percent 	Cumulative

	

2 	447 	78.42 	76.42

	

3 	9 	1.40 	79.52

	

4 	26 	4.91 	84.74

	

5 	7 	1.23 	85.96

	

6 	 15 	2.63 	58.60

	

7 	5 	0.88 	39.47

	

5 	1 	0.18 	89.65

	

9 	7 	1.23 	90.85

	

10 	1 	0.18 	91.05

	

13 	10 	1.75 	92.81

	

14 	1 	0.18 	92.98

	

16 	15 	2.63 	95.61

	

26 	5 	0.88 	96.49

	

32 	20 	3.51 	100.00
Mean = 	4.25 	Variance = 	31160.00

Record Sizes
e*e**aae* e**

Size 	Count 	Percent 	Cumulative

	

1 	25 	9.16 	9.16

	

2 	75 	27.47 	36.63

	

3 	23 	8.42 	45.05

	

4 	19 	6.06 	52.01

	

5 	 9 	3.30 	55.31

	

6 	41 	15.12 	70.33

	

7 	5 	1.S3 	72.16

	

6 	15 	5.49 	77.66

	

9 	 3 	1.10 	78.75

	

10 	3 	1.10 	79.95

	

11 	10 	3.66 	83.52

	

12 	24 	8.79 	92.31

	

17 	1 	0.37 	°2.67

	

21 	18 	6.59 	99.27

	

21 	2 	 0.73 	100.00
Mean = 	6.12 	Variance = 	16966.00

Array index tyre
vevewe=:=a**==Y=

Type Distribution
Types 	Count 	Percent
Char 	 6 	10.9Ū
Scalar 	16 	2.26
S uhrange 	64.1 	96.84

Total of Varu.jte = 	2°5 2

162

Appendix 1.3-In value parameters declarations.

Array Hounds
a*¥ lSma*..=
Lower Hound

Size(bits) 	Count 	Percent 	Cumulative
1 	264 	100.00 	100.00

Kean = 	1.00 	Variance = 	0.00
Upper Bound

Size(bits) 	Count 	Percent 	Cumulative
2 25 0.47 9.47
3 108 40.91 50.38
4 105 39.77 90.15
5 20 7.56 97.73
b 2 0.76 98.48
7 2 0.76 99.24
10 2 0.76 100.00

Mean = 	3.56 Variance = 	2652.00

Subrange Bounds
aka*amza*asap#=a
Lower Bound

Si ze(bits) Count Percent Cumulative
1 179 90.40 90.40
7 9 4.55 94.95
ā 10 5.05 100.00

Mean = 1.63 Variance = 938.00
Upper Bound

Size(bits) Count Percent Cumulative
1 3 1.52 1.52
2 7 3.54 5.05
3 10 5.05 10.10
4 7 3.54 13.64
5 7 3.54 17.17
6 2 1.)1 19.18
7 16 8.08 26.26
t 35 17.66 43.94 o 3 1.32 45.45

10 10 6.57 52.02
11 5 3 54.55
1 6 1-. 7,07 61. 62
17 _ 1.+:1 62.733
2-, 3.5- 66.16

1 C.51 6.6.67
1 66 33.33 100.30

Mean = 16.26 Variance = 74674.00

Scalar type
r sz3t al az a Sx.,

Size

cardinality
_r.x=r. r.ra ta

Count Percent Cumulative
4 70 55.1" 35.12
3 3 2.36 57.44
4 13 10.24 67.72
5 3 2.36 70.78
c 3 3.36 72.44
7 2 1.57 74.02
9 5 3.94 77.95

1:; 1 0.79 78.74
13 5 3.94 82.68
16 9 7.09 89.76
26 1 0.79 90.55
32 12 9.45 100.00

Mean = 7.26 Variance = 	16492.00

Record Sizes

Size Count Percent Cumulative

	

1 	15 	18.99 	18.99

	

2 	14 	17.72 	36.71

	

3 	10 	12.66 	49.37

	

4 	1 	1.27 	50.63

	

2 	2.53 	53.16

	

6 	6 	40.13 	63.29

	

7 	1 	1.27 	64.56

	

ā 	3 3.50 	68.35

	

10 	1 	1.37 	69.62

	

11 	 1 	1.27 70.89

	

12 	IS 	18.99 	89.97

	

21 	5 	10.13 	100.00
Mean = 6.77 	Variance = 	6130.00

Array index Type
:a=raz*aa=rvx.,=.==

Type Distribution
Types
	

Count
	

Percent
Subrange
	

2<

Total of value parameters 	= 	1095

163

Appendix 1.4-In reference parameter Declarations.

Array Rounds
ac:eeme4m*:u*
Lower Bound

	

Size(bits) 	Count 	Percent 	Cumulative

	

1 	 115 	94.26 	94.26

	

5 	4 	 3.28 	97.54

	

6 	 2 	1.64 	99.18

	

5 	1 	0.82 	100.00
Mean = 	1.27 	Variance = 	196.00
tipper Bound

	

Size(bits) 	Count 	Percent 	Cumulative
2 13 1^.66 10.66
3 42 34.43 45.08
4 26 21.31 66.39
5 12 9.84 76.23
6 7 5.74 81.97
7 2 1.64 83.61
S 14 11.48 95.015

10 6 4.92 100.00
Mean = 	4.46 Variance = 	2448.00

Subrange Bounds
1tmemevacacaae**-n
Lower Bound

Size(bits) Count Percent Cumulative
1 44 100.00 100.00

Mean = 	1.00 Variance = 	0.00
Upper Bound

size(bits) Count Percent Cumulative
1 6 13.64 13.64
3 10 22.73 36.36
4 1 2.27 38.64

1 2.27 40.91
7 2 4.35 45.45

12 27.27 72.73
10 3 6.82 79.55
24 1 2.27 81.52
3:1 5 19.16 100.00

'lean = 1L.39 Variance = 0110.00

Scalar type

SIZE

cardinality

Count Percent Cumulative
2 117 66 .0.7. O3 16. J3
4 Iv 7.35 93.36
6 .1 2.44 96.32
9 1 {'.74 97.06

14 1 G.74 97.79
tc
02

2
1

1.47 ,7..74
99.26
100.00

Mean = 2.95 Variance = 3020.00

Pecord Sizes
zlfflr .v=*w*

Size Count Percent Cumulative
2
3
4
5
6

44
13
26
46
3n

16.99•
5.02
10.04
17.76
11.56

16.99
22.01
32.05
49.81
61.39

7 9 3.47 64.86
8 6 2.32 67.18
8 8 3.09 70.27
10 1 0.30 70.66
11 1 0.39 71.04
12 5 1.93 72.97
13 3 1.16 74.13
15 14 5.41 79.54
17 41 15.83 95.37
21 6 2.32 97.68
27 6 2.32 100.00

Mean = 	5.26 Variance = 25740.00

Array index type
fem **==*Y.. w *===Z:

Type Distribution
Types
	Count

	
Percent

Char
	 1.61

S uhrange
	

122
	

96.39

Total of Var Parameter= = 	533

164

Appendix 2 — P4 machine code mnemonics

In the instructions below the C parameter field is used to

indicate the instruction variants according to the type of data being

operated upon i.e. character, address, integer or string

Mnemonic 	Parameter 	description

ABI 	 absolute value of integer

ABR 	 absolute value of real number

ADI 	 integer addition

ADR 	 real addition

AND 	 Boolean "and"

CHK 	C P Q 	check against upper and lower bounds

CHR 	 convert integer to character

CSP 	Q 	call standard procedure

CUP 	P Q 	call user procedure

DEC 	C Q 	decrement

DIF 	 set difference

DVI 	 integer division

DVR 	 real division

ENT 	P 	Q 	enter block

EDF 	 test on end of file

EQU 	C 	(Q) 	compare on equal

FJP 	Q 	false jump

FI.O 	 float next to the top

FLT 	 float top of the stack

GEQ 	C 	(Q) 	greater or equal

GRT 	C (Q) 	greater than

INC 	C Q 	increment

Con't of Appendix 2

Mnemonic 	Parameter 	Description

INC 	C Q 	indexed fetch

INN 	 test set membership (in)

INT 	 set interconnection

IOR 	 Boolean "inclusive or"

IXA 	Q 	compute indexed address

LAD 	Q 	load base-level address

LDA 	Q 	load address of constant

LDA 	P Q 	Load address with level P

LDC 	C Q 	load constant

LDO 	C Q 	load contents of base-level address

LEQ 	C (Q) 	less than or equal

LES 	C (Q) 	less than

LOD 	C P Q 	load contents of address

MOD 	 modulus

MOV 	Q 	move

MPI 	 integer multiplication

MPR 	 real multiplication

MST 	P 	mark stack

NEQ 	C 	(Q) 	not equal

NGI 	 integer sign inversion

NGR 	 real sign inversion

NOT 	 Boolean "not"

ODD 	 test on odd

ORD 	C 	convert to integer

165

166

Mnemonic
	

Parameters 	Description

RET 	C 	return from block

SBI 	 integer subtraction

SBR 	 real subtraction

SGS 	 generate singleton set

SQI 	 square integer

SQR 	 square real

SRD 	C 	Q 	store at base level address

STO 	C 	store indirect

STP 	 stop

STR 	C P Q 	store at level P

TRC 	 truncation

UJP 	Q 	unconditional jump

UNI 	 set union

XJP 	Q 	indexed jump

167

Appendix 3 - Evaluation of fragment cost for the P4 machine

We show below, for each group of fragments, the possible

code sequence for evaluation of the fragment cost.

1- Assignments

There are 3 cases to consider :

i- rhs is a constant

ii- rhs is a variable

iii- rhs is an expression

Case i - the code patterns for single variables is:

a-Ldc q
	

b-Ldc q 	c-Ldc q

Str p, q
	

Sro q 	Sto

the code for arrays and records is

d-Lca q

Nov 3

Case ii - four possible cases for simple variables

a-Lod p, q 	b-Lod p, q 	c-Ind q 	d-Ind q

Str p, q 	Sto 	Str p,q 	Sto

for arrays and records

e-Lda q

Nov 3

Case iii - three possible sequences

a-Str p, q
	

b-Sro q 	c-Sto

2- Parameter passing by value

There are three cases to consider:

i-actual parameter is a constant

ii-actual parameter is a variable

iii-actual parameter is an expression

168

Case i- only one•case for simple type formal parameters

a- Ldc q

if an string then

b- Lca q

Lod p,q

Lda q

Mov 3

Case ii- if simple type then

a- Lod p,q 	b-Ind q

if string or record

c- Lda p,q

Lda p,q

Lod p,q

MOv

Case iii- if expression then the fragment cost is evaluated in expressions.

3- Parameter passing by reference

only one sequence is possible:

a-Lda p,q

4-Procedure call (user procedures and functions)

For static cost parameters and sequence is:

a-Mst 1

Cup p, q

For dynamic cost parameters the return must be accounted

b-Mst 1

Cup p, q

Ret

5- Standard procedure calls other than ORD, CHR, SUCC and PRED

169

For static cost we estimated the cost of a branch-and-link

instruction, while for dynamic cost the cost parameters are accounted

for a branch-and-link plus a return.

6-Gotos-We assume all gotos being to the same level

(i.e. neglect interlevel jumps)

a-Ujp q

7-If-then

a-Fjp q

8-If-then-else

the sequence to be accounted statically is:

a-Fjp q

Ujp q-

but at run time the second instruction is executed only if

the condition is true, and is accounted in fragment 98.

9-Case statement

we assume a case statement with 7.5 case elements.

The static code sequence is:

a-Lod p, q

Ujp q

Ujp q (repeated n times, where n is the number of elements)

Chk q

Ldc q

Sbi

Xjp

Ujp q (n times for jum table)

Ujc 	(error)

170

at run time only the following sequence is executed:

b-Lod p, q

Ujp 	q

Chk 	q

Ldc

Sbi

Xjp

Ujp 	q(to statement)

Ujp 	q(out of statement)

10-While statement

Assuming that almost all conditions are expressions then:

a-expr

Fjp q

statement

Ujp q (to head)

So, for while head overhead we use only a FJP q adn for

while body (fragment 101) we use the above sequence: Fjp q, Ujp q.

11-Repeat statement

The code pattern is:

a-statement

expression

Fjp

12-For statement

It is composed of two parts: the head and the body.

Case i - for head, assume both limits as constants.

a-Ldc q

Str p, q

Ldc q

Str p, q

171

Case ii - for body

b-Lod p, q

Lod o, q

Leq

Fjp 	q (out of loop)

Lod p, q

Inc

Str p, q

Ujp q

13-With statement

a-Lda

Str p, q (in temporary location)

14-Expressions

We have considered three cases:

i-relational operators

ii-arithmetic operations on integers

iii-logical operators

Case i-Relational operators.

The possible sequences are, according to operand class:

a-Ldc q 	b-Ldc q (for operations between constant and

variables)

Lod p, q 	Ind q

c-Lod p, q d-Ind q (between variables)

INd q

e-Lda p,q

Lda p,q

Lod p, q

(for arrays and records)

Equ

172

Case ii - Arithmetic operations on integers

There are cases according to operands classes:

a-Ldc q

Lod p,q

Opr

c-Ldc q

OP

b-Ldc q (constant-variable)

Ind q

Op r

(constant-expression)

d-Lod p,q 	a-Ind q 	(variable-variable)

Ind q 	Lod p,q

Opr 	Opr

f-Lod p,q 	g-Ind q 	(variable-expression)

INd q 	Lod p,q

Opr 	Opr

h-OPr 	(expression-expression)

Case iii-Boolean operators

Same as above.

15-Array access:

a-Lda p, q

expression

Chk q (check bounds)

Dec q
•

Ixa q (index)

16-Pointer access

a-Lod p, q 	b-Ind q

173

Appendix 4- EPL/0 syntax flowgraph

pro9raw block >,®

block 	pa►n.

	 xmarliNk

©<

blad

	 Steklktit

stakut.1. , 	 Ck.ato.

I

	i

„) tt04411-1----,---)---
	1

i deNt tarz —

e tekte

174

Appendix 4- EPL/0 syntax flowgraph (continued)

1*-atV

	Istitto%

H

tkt. - stAciki L

9..g. tor

- €11,E49 ----r1t4"‘
ir(i,-k

-

ellriMAi04 	- trt'at
r

Si114).-4

>© 	ex.pir

—>(ekfti)

175

Appendix 4- EPL/0 syntax flowgraph (continued)

	 tcr.en I t\

Ll term- k

/0 4.-tar

>Etvac A_) 	

	>(;■%11116e-r)

- —> %it) 	Ci) r

176

Appendix 4- EPL/0 syntax flowgraph (continued)

t31)7 *dtier}

(GIt 	J 	-.© ;(O --7110 t) 	

vosrLAk 1_ 	

