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GRAVITATIONAL AND GAUGE INTERACTIONS

WASEEM AHMAD SAYED

ABSTRACT

Some aspects of the gravitational and gauge interactions are
studied with a particular view to their generalisation. After a brief
review of the conventional descriptions of these interactions attention is
first focused on the Lagrangian for torsion~containing extensions of the
general theory of relativity. It is shown that the general structure of
métric-torsion theories allows a parity-violating contribution to the

complete action which is linear in the curvature and vanishes identically
d

in the absence of torsion. The resulting action involves, apart from the

Newtonian constant, an extra coupling which governs the strength of the

predicted parity non-conserving 'interactions' mediated by torsion. This

theory is then studied in the presence of a Proca field and shown to lead

to a parity-violating term in the field esquations in contrast to the

Einstein-Cartan-Sciama-Kibble theory.

The problem of coupling torsiom to gauge fields in such a manner

as to retain gauge invariance is considered next. It is shown that by

A

modifying the Yang-Mills-Shaw field strength and using a generalisation

of the minimal coupling procedure allows a simple but non-trivial type of
dynamic torsion to couple to all gauge fields in a consistent manner.

This allows, for the first time, a framework in which no spinning particle
is required to be exempted from both generating and reacting to torsion.
Apart from the introduction of a new scalar field, one may view the two
modifications as being the replacement of all gauge couplings everywhere

by space-time dependent gauge couplings.
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CHAPTER ONE

INTRODUCTION

He who attempts to deal with questions of natural science
without the help of geometry is attempting the infeasible,

{Galileo, Dialogues Concerning Two New Sciences, Ch.VII}



1.1 MOTIVATION

At the macroscopic level the general theory of relativity
appears to describe gravitational phenomena very well, while on the micro-
scopic scale the theories of quantum electrodynamics (QED), the SU(2)xU(1l)
electroweak unification scheme, and the SU(3) quantum chromodynamics
scheme for strong interactions have attained great successes. Although
each of these theories is built upon several important and distinct
physical assumptions, the central idea in each case is the assumption
that the laws being fofmulated to describe the particular interactions
under study are invariant under some given set of transformations which
form a group.

In the former case of general relativity the assumed invariénce
is the largest and requires that the theory be invariant under general
co-ordinate transformations of the assumed four-dimensional Riemannian
structure of space-time, whilelin the latter case of various gauge
theories, the laws governing QED and electronuclear phenomena are taken
to be invariant under a sét of local space-time dependent gauge'transfor—
mations acting in appropriately chosen internal spaces.

It is hardly necessary to even outline the experimental
successes of these theories, suffice it to say that the ideas of general
coordinate and gauge invariance have to date attained such a large measure
of experimental support that their detailed study becomes imperative.
This thesis is, therefore, devoted to the study of some aspects of these

theories which we now describe briefly.
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1.2 SUMMARY QOF CONTENTS

In particular, we shall be concerned in this thesis with
problems related to torsion—containing generalisations of Einstein's
general theory of relativity and to problems which arise when we try to
couple such theories to gauge fields. The next two brief chapters are,
therefore, concerned with the presentation of those essential elements of
these theories which we shall need later. Of course, it is not the
purpose of these chapters to give sufficient material to enable the
reader to master the subjects of gauge theories and extensions of the
general theory of reflativity: a basic knowledge of tensor analysis and
group theory is assumed.

\ In chapter four we consider the choice of the Lagrangian which
is generally used for the Einstein~Cartan-Sciama-Kibble (ECSK) theory,
viz. the curvature scalar constructed out of the asymmetric connection on
which this theory is based. This connection contains, apart from the
symmetric Christoffel part, an additional term called the contorsion
which is constructed from the antisymmetric part of the full connection.
The work carried out in this chapter shows that the traditional require-
ments for determining the action do not in fact single out the convention-
al choice and that an extra éontribution, involving the pseudo-tensor
density € va? still linear in the curvature is allowed. The analogue
of the additional term that we motivate has been considered in the past
for the pure Einstein theory but is known there to vanish identically —
leaving the standard choice of the Lagrangian for Einstein's theory as
the unique candidate upto the addition of a cosmical term. The general-
ised action we propose does, therefore, involve, apart from the Newtonian
constant, an additional coupling parameter which governs the strength of

the new 'interactions'.

It is worth pointing out, however, that the new term cannot on
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its own, be used to provide an adequate description of the gravitational
interactions since this term is not capable of providing the dynamics

for the metric and, being a pseudoscalar, is parity violating, whereas
the classically observed gravitational phenomena are parity conserving.
The new Lagrangian still only involves torsion in an algebraic form
since it does not contain any terms involving derivatives of the torsion
(once some divergences have been removed) as indeed must be the case for
all theories based on Lagrangians linear in the curvature tensor. One

consequence of this is that torsion again vanishes by virtue of the
field equations in the absence of matter as is the case for the ECSK
theory.

W . . . . .
Hoever, if we accept the view that torsion is the geometrical

analogue of spin just as curvature 'represents' mass and if %e accept that
gravitation is due to a spin-two particle, then we may reasonably demand
that some form of dynamic torsion be present even in the absence of
matter. This 'vacuum torsion' would then, in some sensa, represent the
torsional effects due to the spin-two nature of gravitation.

Wevconsider possible ways of achieving this within the confines
of a linear cufvature theory and are led to examine a very restricted
but dynamic form of torsion generated by a scalar field which makes an
appearence also in the next chapter where it is argued to arise from a
completely different point of view.

In the concluding section of this chapter we go on to give an
example of a situation where the Lagrangian we propose can give rise to
new effects not present in the ECSK theory. The example we consider

L
shows that when our theory is analysed in the presence of the Proca
field new parity violating terms arise in the field equations which
would be absent for the similar situation in the ECSK theory.

The new feature of these generalised theories which disting-

uishes them from Einstein's theory is that they are, as already stated,



based on an asymmetric torsion containing connection. The physical inter-
pretation of the new contribution is tied up with the spin angular
momentum of matter and it is argued that just as mass, or more correctly
the energy-momentum tensor of matter, gives rise to the gravitational
field in Einstein's theory based on the Riemannian structure of space-
time, the spin angular momentum of matter should be the source of the
non-Riemannian aspects of the theory based on the torsion containing
connection.

A natural consequence of adopting this interpretation ié that
all spinning matter should couple to the torsion field of this theory.

It turns out, however, as will be explicitly demonstrated in chapter five,
that no gauge fields can be coupled to theories containing torsion in

the usual manner of coupling matter to gravity theories without at the
same time losing the gauge invariance of the original theory.

The problem that we tackle in chaptér five is then to search
for a way in which this deficiency can be overcome, thereby allowing us
to maintain the standard inte?pretation of torsion and at the same
time keeping gauge invariance. The method which allows us to do this
does, however, require the generalisation of the usual concept of minim=—
ally coupling gauge fields to 'charged' matter fields and a slight
modification of the Yang-Mills-Shaw field strength.

Two interesting consequenéés of the theory which emerges are:
(i) That all gauge couplings of nature become space-time dependent;
(ii) That torsion enters the theory in the very restricted but

dynamic form that we motivate in chapter four.

A more detailed treatment of all this will be given in chapter
five.

The recurrence of this particular type of dynamic torsion leads
us to wonder whether it plays any fundamental role in nature and whether

there are any experimental comsequences of such torsion. This question

12
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has been examined for the case of the work of chapter five for the
abelian case in the literature. We discuss these results and several
other possible lines of further research suggested by the work of
chapters four and five in the penultimate chapter.

The thesis ends on a rather optimistic note in the final very
brief chapter where we record some speculative remarks provoked by the
work detailed in the body of the thesis and some other, not altogether

unrelated work attached as subsidiary material at the end of the thesis.



CHAPTER TWO

THE GRAVITATIONAL INTERACTION

From the absolute to nothing absolutely

14



2.1 EINSTEIN'S GENERAL THEORY OF RELATIVITY [r1/

Einstein's general theory of relativity/1-9/ is a theory of
gravitation as fundamentally different from the Newtonian theory as it is
possible to conceive. It abolishes the central idea of forces on which
the extremely successful structure of Newton's theory rests. Instead it
explains the observed phenomena of gravitation to an even greater degree
of accuracy than the theory of Newton through geometrical means by
providing a dynamical understanding of the structure of space-time. .

The fundamental object with which Einstein's theory operates
is the metric guv (the components of which we shall refer to as the
gravitational fields) of the assumed four dimensional Riemannian structure
of space-time. Any point of this space-time model is labelled by real
co-ordinates xu, with y = 0,1,2,3, where O refers to the time co-ordinate
and 1,2,3, refer to the space co-ordinates. The theory further assumes:
CHE The equivalence of all four—dimensional systems of co-ordinates

obtained from any one of them by an arbitrary general co-

ordinate transformation, and
(ii) That the four—dimensional continuum has a metrical connection
impressed upon it.

The meaning of the latter requirement is that at every point a
certain quadratic form of the co-ordinate differntials,

gwdx”dx",
called the square of the interval between the two points in question,
has a fundamental meaning invarilant under the aforesaid transformations.

This last requirement determines the connection of this theory
to be the so-called Christoffel connection which depends on the metric

g as follows:
uv

= 10 -
ot =28 (g, | * 8y ) ™ 8y o) (2.1.1)



where a comma denotes partial differentiation, thus

v
gcn,v = agcn/ax .

In order to obtain the dynamics for the gravitational fields
from a least action principle which obeys the requirements of general co-
ordinate invariance and is such as to yield’the Newtonian results in
some limit it is necessary first to construct a tensor out of the metric
tensor and its first and second derivatives which is also linear in the
second derivatives of guv.Remembering that the Christoffel comnection has
the following transformation law

e hy oot ax® e vt ax %

x {7} +
ny ax” ax“ 3x ax‘T ax“ ax”

" oa ’ (2.1.2)
it is easy to show that the only such tensor is the Riemann Christoffel

tensor

of _r O© _rC Oye Ty _f Oy T
Ron (0 = €51 = (53 0+ (000 - (0] @.13)

Having obtained this tensor it is straightforward to see that
the following action for gravitation yields the desired field equatioms
for &y by requiring stationarity under infinitesimal variations in the
metric tensor:

1

G - 167G,

1 f V=g R dx . (2.1.4)

Here g denotes det gpv G\I is the Newtonian coupling constant
9 I\

and R({}) = gvl gH? vakc({})’ is the Ricei curvature scalar. It will be

useful to record here some of the formulae needed in the derivation of
the field equations for v

From the definition of the curvature scalar R({}) it follows

that

5/ RUD) = 6(78) RUD + g 6g”'r, (1) + /5 g™ &, (D),

(2.1.5)

16



17

where va({}) is the Ricei temsor. It is an old established result that
the last term in (2.1.5) can be expressed as a pure divergence and there-

fore drops out when we integrate over all space. Using now the results:

s/g =1 /g g sg_ (2.1.6)
uv
and
JHV _ _ JMp VO
Sg g & 88, (2.1.7)
we finally obtain
et S uv- LMY o 4o
§Tg = Tgna- 7 "8 (R UD - 487 RUD ) 85, d'x. (2.1.8)

N

If the total action IT is written as
Ip = L, + I ’ (2.1.9)
and if we define the matter energy momentum tensor through

=17 dx v-g TV sg (2.1.10)

uv

then we may obtain the complete set of Einstein's field equationms:

Ry~ i guvR({}) ~ 871Gy Tuv =0 . (2.1.11)

So much for the material we shall later need to be familiar
with from Einstein's theory. The next section of this chapter contains

an equally brief account of the ECSK theory.



2.2 THE ECSK THEORY

When we venture forth into the microphysical realm of.
matter, we find that spin angular momentum also comes
into play ... The hypothesis is near at hand that
spin angular momentum is the source of a field too,

in fact the source of a gravitational field [14/.

The basic reason behind all attempts to generalise the theory
of Einstein has been summed up beautifully by Schrodinger /3/ which we
now paraphrase slightly: Of the two principles on which Einstein's theory
is based, the second - the adoption of a metrical conmection straight
away ~ does not seem to be the simplest way of obtaining it. The reason
for this is that the concepts on which this theory hinges such as
invariant differentiation, Riemann-Christoffel tensor, curvature, variat-
ional principle etc. are not at all peculiar to the metrical connection.
Indeed, they come in in a much simpler way when one only introduces as
much of a connection as the idea of differentiation calls out for in view
of the general co-ordinate invariance one has admitted. This is the so-
called affine connection and leads to theories based on this more genmeral
connection inaugurated by Weyl as early as 1918 /10/ .

As a digression it is amusing to note that it was in this 1918
work of Weyl that the first local gauge invariance principle was suggested
and amazingly enough it was introduced as an addition to Einstein's
theory in an attempt to obtain geometrical unification of electromagnetism
and gravitation. It should be mentioned, of course, that Weyl's attempted
unification failed as it led to deductions in contradiction with
experiment /F2/. The idea of gauge invariance here introduced, and from
where it derives its name, was revived a decade or so later /11/ by Weyl
himself, after the advent of quantum mechanics in the form of a U(1)

gauge ~ a locally space-time dependent phase factor for charged fields -

18



instead of scale invariance. This abstract 'internal' gauge invariance
was Weyl's second and much more successful definition. However, it was
the generalisation to the non—abelian case, exactly a quarter of a
century later, by Yang, Mills, and Shaw /12-13/ which led to gauge unifi-
cation schemes so popular today. A more complete discussion of gauge
theories will be relevant in the next chapter.

We return to the discussion of the ECSK theory. This theory
/14/ differs from that of Einstein in that it employs, apart from the
metric tensor guv, an extra set of 24 independent fields which arise in
the theory on giving up the purely symmetric Christoffel connection. The
asymmetric connection I‘uvG contains an antisymmetric part called the

torsion,

Suv =1 ( Puv - Pvu ) (2.2.1)

=- 35 s (2.2.2)

which is antisymmetric in its first two indices.
The full connection may be decomposed /F3/ upon imposition of
the requirement of metricity, i.e. the requirement that space-time be

locally Minkowskian, into,

A
- uv} - Kuv (2.2.3)

A . .
where Kuv ,» the contorsion tensor depends on the metric and the
torsion in the following manner:

KR *=og Pegh g (2.2.4)
uv uv vV u HV

=-K" (2.2.5)

and is antisymmetric in its last two indices. The extra 24 independent

fields of this theory may be identified with either of the two 24-compo-

A A
nent tensors S or K .
HV Hv



A simple proof of (2.2.3) follows, Metricity implies that
g =0 (2.2.6)

- r - r = . . L4
Euv,p ou  Sav ov  Eua 0 (2.2.7)

We can obtain the following two equations from this by permutation:

-T -T =0 .2,
Bvp,u w  Sop wo  Sva ? (2.2.8)

and

o o
- -T =0. .2.
8ou,v " Tvp Baw T Tup Gpa (2.2.9)

Adding (2.2.8) and (2.2.9) and subtracting (2.2.7) from the result

yvields,

ST By * T gy rpu“ 8oy = O (2.2.10)

The last six terms can be written in terms of torsion and the symmetric

part of T as follows:

s
a o a
2 gap Fuv 2 gva Sup 2 gau Svp R (2.2.11)
where s
o _ a a
ruv =1 (I‘uv + rvu ) . _ (2.2.12)
Multiplying (2.2.10) by %ng we obtain
By _ > B_ B _ B
{uv} - ruv - SU v - Sv u = 0, (2.2.13)

Adding and subtracting an antisymmetric part of the conmection to this
equation gives,

s

( By B_g B,g B_gB _gB _ o, (2.2.14)
v Hv Hv uv H Vv v d

B

However, the second and the third terms together are just - Puv , SO

20



that we finally obtain the desired result that

B LB (2.2.15)

T B={B}+s B-s
Hv uv AVART | IRY)

uv

As before, we must now construct an action which can provide
the dynamics for gravity. For this purpose the usual choice is to work
with the curvature tensor Rule(F) which has the same form in terms of
I' as the Riemann-Christoffel tensor has in terms of the Christoffel

symbols {1} :

g - g _ g _
Ruvk ) rvl s 1 ruk Y * Fur ka er ux

———— (2.2.16)
The action used conventionally for obtaining the field equations of this

theory is then taken to be,

I [ V/-g R(TY dx, (2.2.17)

ECSK E_}r_%_
where now the curvature scalar is the one obtained by contracting RuvAU(F).
It is worth pointing out here that this action does not involve
any extra couplings apart from the Newtonian constant. It is a simple
enough matter once again to derive the field equations for this theory.
The only extra work needed over and above that needed to overcome the
complications of the Einstein case is due to the variation of either the
torsion or the contortion fields to obtain their field equations, though
the techniques remain the same.
In the next chapter we shall go on to give a brief introduction

to gauge theories.

21



CHAPTER THREE

THE GAUGE INTERACTIONS

Replacing everywhere always by here now

22
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3.1 ABELIAN GAUGE INVARTANCE [F4/

In the last chapter we have outlined Einstein's description of
the phenomena of gravitation. We saw there that a successful description
of the effects of gravity was obtained by ascribing them to the geometri-
cal structure of space-time. The dynamics of this structure then
determined the laws of gravitation in a manner precisely dictated by the
requirements of general co-ordinate invariance.

In the present chapter we sha;l be concerned with invariances
not altogether dissimilar to those of Einstein, the only difference
being that now we shall ascribe the new interactions, called gauge inter-—
actions, to the geometrical structure of appropriately defined internal
spaces. At present it 1s believed that there are four fundamental inter—
actions in nature. In order of increasing strength these are the
gravitational, the weak, the electromagnetic, and the strong interactionms.
With the recent successes of the electroweak unification scheme of Salam
and Weinberg on the one hand and the very encouraging though as yet only
qualitative successes of the quantum chromodynamics model of the strong
interactions on the other it is now widely accepted that the last three
of these interactions can be successfully comprehended within the: frame-
work of gauge theories, while the theory of general relativity is, at
present, the best candidate for the gravitational interaction. In view
of the fact that all these interactions can be déscribed in a
'geometrical’ framework it becomes clear how very prophetic were the words of
Galileo quoted earlier that an adequate description of the workings of
nature is impossible without the aid of geometry.

In the present section we shall show how the laws of electro—
dynamics arise as a consequence of assuming a local abelian U(1) gauge
invariance. This procedure shall then be generalised to non—-abelian

gauge groups in the second section of this chapter /15/ .
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For the purposes of illustrating the basic concepts of gauge
theories let us start by comsidering a set of fields ¢ , the dynamics of
which are determined by a Lagrange density which depends on ¢ and Bué :
L(o , Bué).Suppose that each field @i has charge q; (in units of e the
electron charge). Then define a group of transformations on the fields

by
@i(x) +exp ( -i q; A ) @i(x) , (3.1.1)
where A is a constant. This group is the group of unitary trans-

formations in one dimension U(1).

It is not hard to see that 1. must be invariant under these

transformations. Every term in L is a product of the fields @1_.... @n .
Under the above transformation this term goes to
exp ( -1(q1 + 44 + ...+ qn)A) @1 @2 .o @n s (3.1.2)

but charge conservation requires that L be neutral; therefore the sum
9 +Qy + eeo q, must vanish so that all such terms are invariant.
However, some terms in L contain derivatives of the fields as well as the

fields themselves. Nevertheless, since A is independent of x,
Buéi + exp ( -i q; A )3u<1>i (3.1.3)

as well so that these terms are also invariant. The infinitesimal form

of (3.1.1) is
§6, = -iA q. ©. , (3.1.4)
i i i

where A is an arbitrary infinitesimal parameter.

It is well known, however, that electrodynamics possesses a
symmetry larger tham global(A not fumction of x) transformations of the
above type. Indeed invariance is maintained under the much larger set

of transformations obtained by allowing A in (3.1.1) to be space-time



dependent. The invariance is much larger, not because we have enlarged
the rank of the group, but because we have assumed that there is a U(1)
invariance at each point of space-time whereas before we had a single
global U(l). The finite and the infinitesimal form of these new local
gauge transformations are, of course, just the expressions (3.1.1) and
(3.1.4) where A is allowed to be a space-time dependent function.
Now we note that although the terms in the Lagrangian which
depend only on the fields are once again invariant, terms involving the

derivatives of the fields, such as the kinetic energy term, need to be

cosidered a little more carefully since auéi no longer transforms as @i.

Indeed Bu@i transforms to

auéi > exp(--1qi A(x) ) auéi - 1qi(3uA(x))exp(—1qi A(x)) o, .

(3.1.5)
The second term in this expression is the difference between the way the
derivative of @i and @i transform. Note, however, that the Lagrangian
will be invariant only if it is a product of terms all of which transform
like (3.1.1) with the sum of qz vanishing.

This 1is achieved in electrodynamiés by introducing the photon
field according to the rule of minimal coupling which is an operator form
of the classical pu > P, " eAu transformation which takes us from
classical mechanics to classical electrodynamics of charged particles:
This rule requires that a derivative of the charged field appear in the
Lagrangian only in conjunction with the photon field Au s in the
combination (3u - ie qi Au) @i. Au is a spin—-one field - the photon -
which is our first example of a gauge field. We require it to transform
in a special way, so that the combination (3u - le q; Au) @i transforms

like @i . That 1is

(8u - ieq; Au) ®i(x) = exp(—iin(x)) (Bu -1einu)©i. (3.1.6)



If this can be arranged then L(<I>i,(8u -ieinu)Qi) will be invariant under
local gauge transformations also. Substituting into (3.1.6) the

transformation law for the fields Qi we cobtain:

:r’

exp(—lin)(au - 1einu)<I>i - 1qi3uAexp(-1in)®i - 1eqiexp(1in)<I>i6Au

= exp(-iqil\.)(au - ieinu)<I>i , (3.1.8)

which solves to yield the transformation law for Au

1
6A = A - A = - e— a A . o Lo
y y y e 2 (x) (3.1.9)

In addition to the terms coupling the photon field to the
charged fields, we need also a quadratic kinetic energy term for the
photon in order to provide the dynamics for this field. This term is

constructed from the gauge invariant field strength,

F =3A -3A (3.1.10)

L =-14}r 7Y, (3.1.11)

An action principle can then easily be shown to lead-to the familiar
field equations of electrodynamics in a manner completely analogous to
the case of the gravitational field equations we cbtained in the last
chapter.

The generalisation of local gauge invariance to non-Abelian
groups was considered first by Yang and Mills, and Shaw /12-13/ and is
the subject of the next section. There it will be seen that the
fundamental new ingredient that emerges is the possibility of self-

coupling gauge fields for non-Abelian groups - a feature which is absent

26
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from electrodynamics because of 1its abelian nature which requires that
the photon be neutral. The presence of this self-interaction term for
non-Abelian gauge fields means that the theory is intrinsically non-
linear and therefore resembles the theory of Einstein much more than the

Abelian case of electrodynamics.
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3.2 THE NON ABELITAN THEORY

For the purposes of outlining the non—Abelian theory let us
consider an internal symmetry group G with generators Ti which satisfy

the commutation relations,
[Ti , Tj] = 1L T (3.2.1)

where the Ci'

ik are the structure constants of the group G. A collection

of fields @i which we shall denote simply by ¢ transforms according to

8(x) - 0(x) = exp(-itd Ad) o)

U(A) o(x) , (3.2.2)

where ¢(x) is a column vector and Lj is a matrix representation of the
generators of the group under which & transforms as above. The Lagfangian
L is assumed to be invariant under transformations with constant Aj. The
problem is then to construct a theory which is invariant under the larger
set of transformations obtained by replacing Aj in (3.2.2) by Aj(x)
exactly as for the Abelian case. We shall do this, in analogy with the
case of electrodynamics by introducing a set of vector fields Ai . Under

local gauge transformations,
@(x)‘ + U(A) o(x) (3.2.3)
and therefore,
Bu@(x) + U(A) 8u@(x) + (3 () ex) . (3.2.4)

The idea is to introduce a gauge covariant derivative Du®(x) which

transforms like ¢(x). Thus

Dué(x) > U(p) Dué(x) (3.2.5)



Then if Bné(x) appears in L only as a part of Dué(x), L will retain
its invariance under transformations of the type (3.2.2) even when A is
allowed to be a space-time dependent functiom.

We define the covariant derivative as follows:
D & = (3 - ig L. ‘ .2,
y (x) ( n i Au) b (%) ‘(3 2.6)

where we have introduced one gauge field for each generator and where
the coupling constant g is the analogue of the electromagnetic e. The

transformation property of Aﬂ is determined by the requirement that

,

DuQﬁx) = Bué(x) - ig AuJLJ¢Ex)
= (UM + U 8 - igA;-L Uy  (3.2.7)
is equal to
Uda) Du® = Up) (Bﬁ -ig AU.L>® . (3.2.8)

This solves straightforwardly to yield
~igh L U(A) @ = -igU(A) ALe - (3 U))e (3.2.9)
or, since this must hold for all &

A -L
u

: ~1 i, -1
ua) AU LU () - *E— (BuU(A)) U " (4)

U(A) {Au-L --—é— U-l(A) auU(A)} U-l(A) . (3.2.10)

The appearance of L in this equation might seem to suggest that the
transformation law for the gauge fields depends on the representation
under which the charged fields transform, whereas infact it depends only
on the commutators {Li , Lj] whose form is representation independent.
This fact becomes apparent from the infinitesimal transformation law as

follows. From (3.2.10) we obtain for the infinitesimal case,

L3 sad = o L pdg pd o pptaiadpd o oppdpdadcd
u g u u u
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= -2 13 5% e iad At Lt 13
g M u

1

- 1d 5 pd o pd Al ., 1k
g u p Cij

kL (3.2.11)

and since the LI are linearly independent one obtains for GA: the

formula,

A = - L g at s, Ak, (3.2.12)
u g ¥ 13k U

which shows that the transformation properties do, in fact, not depend
on the representation matrices Li .

Before going on to discuss the construction of the kinetic
energy term it_is worth showing that these transformations satisfy the
group property. If we perform two gauge transformations successively on

Au then we obtain,

(3.2.13)

’ i -1 -1
AH‘L = U(Al){Au.L —‘—g— U (Al)auU(Al)} U (Al)

and

L R S | -1
A -L—U(Az){AuL -—.g-—U (Az)auchz)}U (A

y (3.2.14)

2)

Upon substitution for Au from (3.2.13) into (3.2.14) we obtain,

-

- LY {A o1 - Lyl -1 -
Au L= U(Az) [U(Al) {Au L 2 U CAl)auU(Al)} U (Al)
i.-1 -1
- U (Az)auU(Az)} U “(A,).(3.2.15)

However, the last two terms reduce to,

1

i -
"3 (auU(AB)) U (A3) (3.2.16)

where

= \ 2. 7
So we obtain finally the result that

cer o fa ep o kgl S
AL = Uy {41 - g U A udyiTd

3) (3.2.18)

which has the same form as (3.2.10) and, therefore, shows that the group

property is indeed satisfied.
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Next we consider the problem of constructing the kinetic energy
term for these non-Abelian gauge fields. Now we recall that unlike the
case of electromagnetism, not all members of the gauge field multiplet
Ai are neutral under all the generators Ti of the group. This means
that the "free' kinetic energy part of the gauge Lagrangian can no longer
be of the same simple form encountered in electromagnetism. Indeed, it

follows from (3.2.12) that
§L3 Ai -3 AiI =C.. A.(3 Ak - 23 A ) + C {(3 AJ)A (3 Aj)Ak}.(3.2.19)
TR Vo 13k ] v u

It is easy to see, however, that a kinetic energy term of the F2 type

for non-Abelian gauge fields would be gauge invariant if it was constructed
from a tensor Fiv which is gauge covariant. It is necessary, therefore,

to add something to auAi - avAi which cancels the unwanted terms in
(3.2.19). Furthermore, this term must involve a. self-coupling of the
gauge fields for the reasons discussed already.

Now, we know from (3.2.12) that

ok L J ik
& Ciap SLa AT C {(a A )A - (3 A Au} +

1,m,j
= C ATA A
C éCJlm AA + 1o v U) (3.2.20)
The first terms cancel the unwanted terms in (3.2.19) while the last

two can be written, using the antisymmetry of the structure constants as

1 im

CiomCii1 = CiguCiems T A A'I]IAU , (3.2.21)
which can be further simplified to read
C.,,.C . Al A . A (3.2.22)
ilk kjm uj vam
upon use of the Jacobi identity for the structure constants
= 0 (3.2.23)

Cimelii1 T %iskCkm T Ci1k%kim X
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So that if we define

i i i .k
= - + 2 el s
oo 3.4, 7 34, B G AT (3.2.24)
then
§ F* = . A s (3.2.25)
yv ijk pv  ? e

which shows that Ftvtransforms gauge covariantly. This allows us to

take
1.1 i
A‘an Fuv ?

as the gauge kinetic energy term.
2

Once again, a mass term of the form -~ EE— A; A*Y violates
gauge invariance and is, therefore not permissible. Finally, then, we

can retain gauge invariance of the local type if we take as our Lagrangian

L

11 _i
Total 4 Fu F

v ;v+ L(9,(3, -igA +1)9) . (3.2.26)
Of course, massless gauge fields which do not correspond to

the photon have little to do with observed phenomena. This does not mean,

however, that they have no role to play in a successful description of

nature. What it does mean is that several other ingredients are

needed before they can be used with any success. These are the well-

known phenomena of spontaneous symmetry breaking and the Higgs-Kibble

mechanism, which we shall not in fact be using in the work carried out

in this thesis.



CHAPTER FOUR

LAGRANGIANS FOR METRIC-TORSION THEORIES OF GRAVITATION
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4.1 MOTIVATION

As the title of this chapter suggests we shall here be concerned
with the choice of a suitable Lagrangian for metric—torsion theories of
gravitation. The point being that once we give up the Einsteinian choice
of the Christoffel commection there is no reason to assume that the
simple choice R(T') for the metric-torsion Lagrangian will be the only
possibility permitted by the requirement of general co-ordinate invariance
as 1is the case for the choice R({}) for the Einstein theory.

We shall consider this question in the following section
of this chapter where it will be argued ' that the Lagrangian for such
theories ought to be comstructed solely out of linear combinations of
the curvature tensor- thereby removing the possibility of admitting other
tensors, such as the torsion tensor or its covariant derivatives, from
appearing in the Laérangian. It will be shown, however, that even this
restriction does not limit the choice of the Lagrangian to the conventio-
nal omne, viz. R(D).

The new Lagrangian /16/ that we propose is motivated in the
" next section and involves, apart from the usual choice, an extra term

uvaf

constructed from the pseudo-tensor density ¢ and the curvature

tensor RuvaB(r)' The complete action is, of course, still linear in the
curvature but leads to new parity violating effects in the presence of

torsion which are not present in the ordinary ECSK theory. The analogue
of the additional term our action involves has been considered before /17/

for the pure Einstein theory but is known there to vanish identically

because of the cyclicity property of the Riemann-Christoffel tensor

Ruvaﬁ({}) .

The Lagrangian density we propose can be written symbolically

as

L= Lpegg * Ly o
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where LECSK is the usual expression for the ECSK theory given in eqn.
(2.2.15) and involves the Newtonian coupling constant.

LA( ~n euvae Ruvascr) ) is the additional contribution which
will be shown to be non-zero for torsion containing theories. The standard
procedure for incorporating torsion into Einstein's theory involves working
cnly with LECSK and does not, therefore, require the introduction of
extra couplings. For L, however, an additional coupling is seen to be

necessary and governs the strength of the parity-violating effects mediated

by torsion.
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4.2 THE NEW LAGRANGIAN

Let us begin by outlining the standard considerations which
lead, for the pure Einstein case, to the unique (up to a cosmical term)

Lagrangian density
Ly v /g R (4.2.1)
The proof of this begins by noting that the Riemann-Christoffel tensor

+ LM 9 - (M DY (sa2.2)

,v” uo” VA vo© Tud

-5

K _ K
SOPTETE O T

RuvA

is the only tensor that can be constructed from the metric temnsor and

its first and second derivatives and which is linear in the second
derivatives. This tensor is, therefore, the simplest object at our
disposal when we come to write down an action for gravity. We must now
begin to contract indices in such a way as to construct all possible
scalars linear in the curvature from Ruvkc({}>' The most general
Lagrangian would then just be a sum of all these  scalars with appropriate
couélings in front.

It is an elementary exercise to show that only two such scalars

UVAC

can be constructed. However, one of them /F5/vn RuvAo({}) vanishes
identically due to following cyclicity identity
{1 | =
Ruvko({‘) + Rpkcv({}) + Rucvk({}) o . (4.2.3)

This implies that onme can only use R({}) to construct an action for .
Einstein's theory, thus the choice (2.1.4) is unique.

The generalisation to the case when torsion is present begins
with the curvature tensor formed out of the non-symmetric connection Ppg‘
The expression for this has been given alfeady in (2.2.16). It is
immediately clear from this definition that this curvature tensor is

antisymmetric in its first two indices. In the general case (i.e. without
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any assumptions of metricity, etc.) this is the only /18/ symmetry
property of Ruvue(r) . If we demand metricity, we gain, in addition,
antisymmetry in the last two indices. A simple proof follows.

Metricity implies that Fuz can be written (symbolically) as
r ={} - K, (4.2.4)

where K represents the contorsion tensor. Because of the non-tensorial nature

of {} , one can choose a co-ordinate system where it vanishes (but not
. . K
simultaneously 3{} ) and in such a system, the curvature tensor Ruvk ™

can be split as

K - K - K _
RO = RSUD - QK" -2k

)
HVA vV HA

Kp O _ o Ky P
R, Koy T K Ky ).(4.2.5)

Using the well known symmetry properties of R K({}) and Kuvk , it is

BVA

. . K .. . .
now easy to see from this equation that Ruvk (T) is indeed antisymmetric
in its last two indices also if metricity is demanded. These two anti-
symmetry properties of the curvature tensor are sufficient to ensure that

the Ricci tensor (RvXCP) =R

u .. -V
LA (I')) and the Ricei scalar (R(I) Rv )

. . K
are the only essential contractions of R .

HVA
Now, we come to the important question of whether we can form

a non-zero Scalar using the pseudo~tensor density EuvAo. Recall that

the scalar so constructed in the Einstein case vanished identically by
virtue of the cyclicity property of the Riemann Christoffel tensor

anAg({}). When torsion is present, no such relation holds and so the

HVAg

non-zero scalar density ¢ R (r) 1is a perfectly good quantity

UVAg
which can contribute to the total action of an ECSK-type theory. Indeed,
if the requirements which determine the choice of our action for a metriec-

torsion theory are just the requirements of general co-ordinate invariance

and linearity in the curvature tensor, then the general structure of



this theory requires the presence of this term and, therefore, predicts
parity violating interactions mediated by torsion which might be
expected to show up as deviations from the predictions of the general
theory of relativity at the wicroscopic level.

The new Lagrangian density may now be written as /F6/

= 1 - 1 UVAC
L, 1——6'n'GN Y-g R(T) + 16wGP€ RwM(r) R - (4.2.6)

where GN is the Newtonian coupling constant and GP is the analagous
quantity which governs the strength of the parity non~conserving inter-

actions present in L

G

In the next section we simplify the form of this expression
and compare and contrast this action with the one used in the ECSK theory.
There, we will find that when we have removed some total divergences, the
Lagrangian contains, apart from the simple Einstein expression, terms
quadratic in the contorsion tensor Kuvk . Since Kuvk is a tensor one
might consider the most general quadratic expression in the contorsion
fields as forming the Lagrangian for torsion. This is also discussed in

some detail in the next section.



4.3 OTHER LAGRANGIANS

Consider the following Lagrangian demsities

Lpcsy® ¥™8 R(D

and

© UVAg
LA nvog Ruvxc(r).

. . A
Recall that the components of the non~-symmetric connection ruv

upon imposition of metricity be written as

A LA A
ruv - {uv} - Kuv
where
: A Ag
= -+ -
{uv} g (gcu,v gov,u guv,c) ?
kR Y=g Pegt g
uv uv v U uv
[ - K A
v,
and
A A A
= 1 -
Sy 2 (ruv o ) s

(4.3.1)

(4.3.2)

can,

(4.3.3)

(4.3.4)

(4.3.5)

(4.3.6)

is the torsion. Note that for metric~torsion theories the position of

the indices is important and we work with the usual convention that in

all covariant derivatives the first of the lower indices on the
connections is the differentiating index.

In order to obtain the field equations we must choose

appropriate set of independent fields for variational purposes.

of metricity,

g = 8 -r, g =TT

= 0
HV3A HV,A Ay Ptv Av gur

we have, as has been shown in section two of chapter two, apart

ten g '

. . A
s another 24 independent components in ruv . For our
uv

an

Because

(4.3.7)

from the

present

purposes, we shall take these to be the 24 components of the contorsion

tensor Kuvk' Nevertheless, the field equations one obtains by varying

with the contorsion can easily be related to those one would obtain by
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varying with the torsion using the relationship between Kuﬁl and Sﬁv
given in (4.3.5) above.

Before plunging ourselves into variation of the Lagrangians
written above, it is advisable to first obtain their simplest form by

discarding total divergences and by using the symmetry properties of gmJ

K A, etc. This procedure yields the following simple expression for
By

Lpesk *

Lpgsg ¥ ERUD + & VR C -k VK )

HA Ho VA
+ (Total divergence); (4.3.8)
which may be written as
LECSK " LE + LC + (Total divergence) ; (4.3.9)

where LE denotes the usual Einstein-Hilbert expression and LC denotes the
terms quadratic in Kﬁvx.

Similarly, we obtain for LA the result:

HVAB K o] .
K + . (4.3,
LA N g gsK o KvA (Total dlvergence} (4.3.10)

We see that the contorsion terms enter both Lagrangians
quadratically and that no derivatives of the contorsion fields appear
once some total divergences are removed. This is a general consequence
of restriction to theories linear in the curvature and is, therefore, un-—
changed even with the addition of L,. Stated more dramatically, this

A
implies that if we use a linear combination of LA and LECSK as the
Lagrangian density of our system, then we will not be able to obtain
propagating torsionm.
The interesting thing to note is, however, that the effective

contribution of contorsion to LECSK is a particular linear combination of

two of the three possible scalars quadratic in the contorsion tensor
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. . A .
(contracting with guv>’ the third being ch KVUA . One may, at this

point, argue that an equally valid approach to determine an action for
the torsion would be to consider all possible linear combinations of
quadratics in the contorsion fields and simply add these to LE. Such an
approach would, however, necessitate the introduction of at least three
other arbitrary parameters into the theory apart from the Newtonian

coupling constant.

As regards L, one can also think of three other scalars quad-

A
. . . . . HVAC
ratic in contorsion (contracting with ¢ and guv) apart from the one

HVAG K o K , nuvkc K g © , and

selected by L,, namely n @ U VAG Qv AC

KC!

HVAT e
auv AC

n . Thus, the most general such Lagrangian density for
torsion would contain seven contractions all with different and arbitrary
coefficients. In view of this it seems much simpler, and indeed more
natural, to restrict oneself to Lagrangians obtained directly by contract-
ing Ruvkc(r) in all possible ways to form a scalar.

Having simplified the form of the expressions (4.3.1) and

(4.3.2) we now go on to consider the matter-free theory.
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4.4 NO MATTER, NO TORSION

Let us first consider the contorsion field equations for both
the ordinary and the generalised ECSK action in the absence of matter.
We have already shown that LECSK can be decomposed as in (4.3.8).

Taking guv and K. ' as our independent variables, the field

AQ

. . T . .
equations obtained by the K variation are,

AC

A
Au Au av gu - K A g”“ = 0 (4.4.1)

[+

A AL
o

These are 24 equations because of the antisymmetry property of KwA .

Contracting n - and X (or v and A ) gives

v

Kv 8 = 0 . (4.4.2)
Using this in (4.4.1) we obtain
AL S (4.4.3)

By cyclically permuting this equation we get the two equations,

Kuvk . Kkuv

]
o

(4.4.4)

and

RV . gHVA o o (4.4.5)

Adding (4.4.3), (4.4.4) and (4.4.5) and using the last equation to

simplify the sum, one can easily verify that

The same calculation can be repeated for the theory based on LG.

The analogue of equation (4.4.1) now reads,

Kkuv + Kvku _ Kaav guk _ Kaka guv _

_ Hvop A HACP v -
2a(n K0 o + 7 ch ) 0 (4.4.6)

After a certain amount of tedious algebra and index manipulation,



L3

one can again explicitly verify the result that torsion vanishes in the
absence of matter. These results follow in fact from quite general
considerations as outlined below.

If one has a Lagrangian which involves the contorsion fields
in a2 non-dynamic manner (no second derivatives of Kuvx s or equivalently,
terms quadratic in the derivatives of Kuvx ), then statiomarity umder
variations in the'contorsion fields will give rise to an algebraic
equation for these fields which can, in principle, be solved to yield

; A . . .
an expression for K v The solution of this equation must, therefore,
be expressible in terms of the other quantities that are present in the

theory. In our case we have at our disposal only the objects,

g » and g

& euvaB > Ppv,a uv,aB

uv

out of which we must be able to comnstruct a three index temsor if torsion
is not to vanish identically.

'Now, it i1s immediately clear that since the process of
contraction always removes two indices every time a contraction is made,

that no such object can be formed from the quantities

g > 8 g? and ¢

HV HV, 0 uva

only. Thus the first derivatives of the metric, AN must enter each
H

term of the expression for the contorsion field. However, we can always
choose a co-ordinate system in which guv}a vanishes since the partial
derivative of the metric is not a tensor. Thus KwA will vanish in this
co-ordinate system and, by virtue of its tensorial character, in all
co-ordinate systems. It should be noted, of course, that we are not at
liberty to use the covariant derivative of the metric, guv;a , Since
this vanishes because of metricity.

It follows, therefore, that both the (matter—-free) theories

are identical to Einstein's general theory of relativity. So long as
g ry



yn

torsion is algebraic, this identity between the two matter—free theories
and the theory of Einstein will remain.

However, as remarked in the introduction, it is reasomable to
expect torsion to be non-zero even in the absence of matter to represent
the spin effects of torsion. In the next section we go on -to consider

possible ways of implementing these ideas.



4.5 DYNAMIC TORSION AND FIELD EQUATIONS

We now wish to consider possible ways of incorporating dynamic
torsion into the matter—-free theory. One approach is to work with
Lagrangians quadratic in the curvature tensor. However these lead to
rather cumbersome higher than second order differential field equations
and in any case such Lagrangians give rise to non-positive-definite
Hamiltonians even at the classical level. Another approach consists
essentially in adding to LECSK a . scalar . density quadratic in the
covariant derivatives of the contorsion fields. However, the most
general such scalar density, Le » would contain an enormous /F7/ number
of independent terms (see Appendix A for its explicit form) involving an
equally large number of arbitrary parameters and would be quite useless
unless one is able to eliminate most of these terms on some physical
grounds - and this seems unlikely. So how else can one modify the
theory in order to obtain dynamic torsién?

Recall that torsion vanished in the absence of matter by virtue
of the field equations essentially because of the non~existence in the
theory of an odd-index object using which we could comstruct a three
index tensor. Since torsion itself is represented by a three index
tensor, the simplest possibility for having non-zero torsion is to allow
for a new one index quantity in the theory in terms of which KLNA can be
expressed, Coupled with the requirement that this new field be dynamical

we are led to examine the following form /F8/ for the contorsion:

K = by g - ¢ (4.5.1)

By oY Y gaB

In the rest of this section we shall restrict ourselves to such
a form of contorsion. We may now proceed in two different ways. One is

to simply substitute the motivated form of contorsion into Las eliminate
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KUv , and obtain the field equations for &y and & by variation. We
prefer to avoid this approach and consider it more appropriate to treat
(4.5.1) as a constraint which will be implemented by introducing an
appropriate set of Lagrange multiplier fields into LG .

Let us, therefore, consider the following Lagrangian demnsity,

Vg HA Kuo VA
gBK Kuo KvA

Y . Y Ay .
*AT (Kyg 2, 8, * % 8 g ) (4.5.2)

where the AasY are the Lagrange multipliers introduced to ensure

satisfaction of (4.5.1) and where we introduce the notation that a tilde
on any quantity indicates -that it is to be constructed from the Christoffel

connection, thus, for example,

X = RU{DH , R = R(I), etc.

Variations with respect to g , K ¥

v a8 and ¢ yield the

following equations:

g+ g (K- gk gab )+
1/ ab uA ua Ab _ ub Aa v o v oy _
+3v~g (g g YRR~ Ky Koa )
-1 ( Aaaa Qb + Aaab ¢a y + 1 ¢ Aabp + Abau ) @ +
uvia b ol uvaib a o
+ . = .
a (e Kuo Kvl + e Kuo KvA ) o (4.5.3)
A A
§K . Aabc _ /:E KKcab + Kpca _ KA bgac _ KXC gab) +
abvA _ ¢ acvi b AL
and
. ag _ ja B =0 3 (4.5.5)
88 N A I

L6



while the A variation yields the desired constraint.

and

to the special form we have taken for the contorsion and implies that the

Eliminating K and A from the above equations one obtains,

( <5 &) o= 0 (4.5.6)

B3 - 1g® X = -6 0%° - 10 0h) . (s

Note that no parity violating term now remains. This is due

vacuum theory is parity conserving.
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4.6 COUPLING TO MATTER FIELDS

In this section we wish to give an example where our Lagrangian
predicts parity violating effects but where the ECSK Lagrangian does not.
It is a little unfortunate that there are not many matter fields one can
study at the Lagrangian level. Indeed when  studying métter fields on
a Riemann-Cartan space-time one is further restricted, for example, by
the fact that one cannot couple gauge fields to to?sion /F9/ in a gauge
invariant manner, so that the study of gauge fields on a Riemann-Cartan
space-time does not lead to any new physics than on a Riemannian space-
time. We cannot use the Dirac field for our present purposes as the
ECSK theory already predicts a parity violating effect for this field
and the distinctive effects of our tﬁeory would be only blurred by this.

So we are left with the Proca (massive vector) field, which
due to its non-zero mass does not présent problems of gauge (non-) invar~
iance when coupled to torsion. We take the usual Lagrangian for the

Proca field:

= = - l HY - 1 2 H
L Y=g ( 7 6.6 | Im AuA) (4.6.1)

with the field strength tensor Guv given by (Vu denotes the full
space—-time covariant derivative),

G = VA -VA
Hv H WV v Ul

= 2A -3A -24 587
v vu g uv °?

where it should be noted that only the antisymmetric par: of the full
connection enters Guv . This can be written in terms of the Christoffel

3 » - ’\]
covariant derivative V as follows:

ny g
Gy = VA, - ?ivAu - 24,8, » (4.6.2)

where the antisymmetry of Gﬁv removes the Christoffel contribution to Guv'



Let us now define

B = VA -VA (4.6.3)
uv THRY) v

then 5
B - 2A 8§ °, (4.6.4)
TRV uv oSBTV

G

1

and Lm can, therefore, be written as,

. =1 W, paBs 0, _
L Y=g (- 7B B BYS o A
- g"%%s %5 Paa - ulaa™) . (4.6.5)
@B “wv Top P Ty, )

Now the spin-angular momentum tensor of matter is defined by

f1 6Lm
s Tkj = —_—— (4.6.6)
k
GKij
where %E' denotes the wvariational derivative.
For the Lagrangian in (4.6.5) it is easy to show that
ki - Cingte o (4.6.7)
or " -
kit - M Viitin T A Yoy — 2 Sits M1 %5 ¢ (4.6.8)

Let us now write for the total Lagrangian,

L = LECSK + LA + Lm . (4.6.9)

As L does not contain any derivatives of the torsion, the Euler-Lagrange

equations obtained by variation of Kijk are simply,

3L

k= 0 * <4-6.10)
oK. .
1]
And since,
ji BLm
vers T = = (4.6.11)
aK..
1]

(4.6.10) gives,



] oL ‘s
LECSi + A = = - V-g Tk31 . (4.6.12)
3K, . 3K. .
1] 1]
Note also that
3 . .
TEsK Lyl ey
aK, .
1]
where Tijk is the so-called modified torsion temsor /14/ , and is

defined as follows,

1
o = .. + N . - N N . O
TiJk Sle glk SJl ng Sll (4.6.14)
Writing
- — _HVAB p o
L, 2aV/=g n ngKuc R\ (4.6.15)
it is not difficult to show that
8Ly o dA L 5L _ivAj
- = 2av-g (n— K KvA + 7 Kvkk) (4.6.16)
3K..
1]
Therefore equation (4.6.12) finally gives,
e GL i dvA j 1VA] _—
/'E(Tk Ty 2a(n™" K ;7 +n Kin)) 0 (4.6.17)
or, VA o.p o.p
. = .. F . . = 8. . .b.
Tkjl Tle 2a n 1chAp(5k53 GJGk) (4.6.18)

As the Proca field is just a massive Maxwell field, the field equatioms

for this field can be written down immediately as,

veP-w"A =0 |, (4.6.19)

or, vBP -2v (A 5°P°)-m’A =0 . (4.6.20)
pou p o Tu u

In order to eliminate the non-Riemannian part of equation
(4.6.20), we must first invert equation (4.6.18) for the torsion. Remem-

bering the definitions of Tijk and Kv 0 as given in equations (4.6.14)

A
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and (4.3.5) respectively, we can write equation (4.6.18) as,

1 1
Seii T %i 551 T 841 Sk

VA .dp _ _
Tkji * 2an icakjcsxpv Svlp Spvl)
~— (4.6.21)
. VA .
Now, because of the antisymmetry of n io in vaA,
vaA ‘ - vaA
T g Skpv R Sva ’ (4.6.22)

and antisymmetry of Svpl

vA _ VA
n id S}\p'\) n ]._U Sp\)A . (4.6.23) .

Substituting this into equation (4.6.18) gives,

1 1
Skt ¥ B S51 T 851 S

vA
=T .. - 2an op

kii io 6kj Svlp' (4.6.24)

At this stage we note that by putting a equal to zero we can
recover the result that the ECSK theory does not predict any parity
violating effects when it is coupled to a massive vector field.

For the purposes of solving equation (4.6.18) for the torsiom,

we simlify equation (4.6.24) with the help of equation (4.6.14) to

obtain
T .. = t. +2an’. 6% s . (4.6.25)
k]l kJ:L 1 k_] vAp
Multiplying this by ndeB gives,
kiaB = kiag vic _kjaB .op S
nT Tegg T oz n o TRy o T &l Sy

(4.6.26)

in its first two indices further implies that,
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Now,

2 ndeB ase. - ncpae _ npcaB

k]
2 oPoB (4.6.27)
and VA opaf vip opaf
2 n Oi n = 2 giu nd n
- - VAU,paf
2 giu 8 (4.6.28)

which can be written interms of the metric alone upon further use of the

identities given in footnote five as follows,

A A
= <2 giu{gvpg aguB _ gvpg Bgua+

+ gghBghP - g %M 0gHEy

+ OB gHe o VB ANy (4 6. 29)

Therefore, we finally find that

| VA kjaB .op VA opaf
2 oi 1 ij Svlp 2 oi 1 Svkp

= =2 o. {gPY upg _ SpB Moo SaBu _
glu{ 08 i

- Sappguﬁ + ghP gHa _ gBouy

pg
= _zgiufzcsdsu + SBgua - SaguB)
af
= =4 T i (4.6.30)

Substituting this result back into equation (4.6.26) gives

AL T * hagkOgdBr = o . KI%E . : (4.6.31)

Multiplying this now by 7 yields
aBpo

ndeB T ..+ 4a gka gJB

aBpo kil "

n aBpo Tiji

= kjad



or,

kj kj kj
.. = .. 67 - ce .6.
2 Tle Spc 2Tle 05 4a n 05 Tle (4.6.33)
which can be further simplified to,
- - kj
Tpci = Tpci 2an - Tkji , (4.6.34)
or .
? e _ kjaB _ oB
T i 2a n Tkji T s . (4.6.35)
From equation (4.6.31) we see that
kjaB + 2 ke 3B -
2an Tkji 8§a g g Tkji
- kjoB
2a Tkji n . (4.6.36)
Substituting this into equation (4.6.35) we obtain
o8 2 o8 _ kjeB _ _oB
T it 8a" T - 2a Tkji n = T > (4.6.37)
or, . :
2 _ .08 o8 kjeB
(1 + 8a7) Tkji = T (akaj + 2an ) (4.6.38)
We have therefore,
1 1
+ -
Skat T Bki S51 T 851 Sk
T . .
= 2B 6%6f v 22 %) | (406,39
(1+8a") ]
Tracing over the i and j indices gives,
2.-1 icB
= <l +
Sk 1(1+8a") {Tk 2a TaBi N } (4.6.40)

Substitution of Sk into equation (4.6.39) finally gives the solution for

torsion as

kji aBl

yoB
1
) + 2gik(Tj+23nj TQBY)} ]

(4.6.41)
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where we have used the abbreviatioms,

A, = a, !t and A = gt AL

where A is some arbitrary temsor, £for the traces of the torsion and
spin-angular momentum tensors .

It is clear that upon substitution of the expression for torsion
given in equation (4.6.41) into equation (4.6.20) we shall indeed have
parity~violating interaction terms, which would not be present in the
usual ECSK theory — thus demonstrating that the new Lagrangian
proposed in the present work predicts new parity violating effects.

In the next chapter we go on to consider the problem of
coupling torsion to gauge fields and leave a discussion of the results of

the work of this and the following chapter to chapter six.



CHAPTER FIVE

COUPLING TORSION TO GAUGE FIELDS
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5.1 MOTIVATION

The motivation for introducing torsion into Einstein's theory
of general relativity is well known and has been discussed briefly in
the Introduction and in the last chapter. In a sentence, torsion is
argued to arise naturally if we are to incorporate the spin-angular
momentum of matter into a theory of gravitation, or in other words if we
are to understand spin in a geometrical fashion analogous to the
understanding which Einstein's theory provides for mass.

An immediate consequence of adopting the above interpretation
is that all spinning matter is required to both generate and react to
torsion. However, and this fact is not so strongly emphasised in the
literature as it deserves, it 1s not possible to consistently couple
torsion to gauge fields in the conventional manner using minimal coupling
(as applied to the coupling'of gravity to matter) in such a way as to
retain gauge invariance (what is meant precisely by this will become
clear in the next section).

The general attitude to this problem /14/ has been to simply
abandon the notion of a coupling between torsion and all gauge fields by
using only the Christoffel part of the full asymmetric torsion contain-
ing connection in the space-time covariant derivatives which are needed
when coupling gravity to gauge fields. For coupling gravity to other
spinning matter, though, the full connection may be employed. This
prescription leads, of course, to several amusing situations. For example,
when coupling to a photon one must use only the Christoffel connection,
but if coupling to a massive vector boson is desired one should use the
full connection.

The argument generally put forward for adopting this procedure
being that when faced by the choice between either gauge invariance or

torsion-gauge field coupling, then the natural thing to do is to opt for
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the more fundamentally justifiable of the two — namely gauge invariance —
and forget about coupling torsion to any gauge fields. The fact that
there is no obvious way of getting round this problem has indeed led to
the adoption of the view that gauge invariance infact forbids the coupling
of torsion to gauge fields just as gauge invariance forbids the appear-
ance of a mass term for gauge fields.

Such a solution is, however, unappealing on two counts. Firstly,
because of the different way in which it treats the coupling of metric-
torsion theories to matter of the gauge variety and other non-gauge
matter. Secondly, and more importantly, because such a procedure runs
counter to the basic reasoning which goes into incorporating torsion into
a gravitational framework in the first place.

The first attempt at resolving this problem in a satisfactory
manner was made by Hojman, Rosenbaum, Ryan and Shepley /19/. These
authors showed that by using a slight generalisation of the standard
minimal coupling procedure for the coupling of electrically charged
fields to the electromagnetic potential, it is infact possible to couple
a simple, though non—-trivial type of dynamic torsion to the photon. An
extremely intereéting feature of this approach is that not only does it
resolve the problem of coupling torsion to gauge fields in a gauge
invariant manner but it also provides restrictions on the type of torsion
that can infact couple to gauge fields.

With the quantitative experimental successes of the Salam-
Weinberg theory of electroweak interactions on the one hand and the very
encouraging, though as yet only qualitative successes of quantum chromo-
dynamics on the other, it is now widely believed that non—-Abelian gauge
fields have as central a role to play in any successful and complete
description of nature as the one experimentally verified abelian gauge

field — namely the photon.
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It is natural, therefore, to enquire whether it is possible to
extend the work of Hojman, Rosenbaum, Ryan and Shepley to encompass a
self-consistent coupling between all (Abelian and non-Abelian) gauge
fields and some form of torsion /20/ . Clearly if the methods of Hojman
et. al. do not allow any successful generalisation which allows
us to achieve this, we shall have to face the same problem as before,
only now for non-Abelian gauge fields. It is this question to which we
shall address ourselves in the present chapter.

It will be shown that it is possible to answer this question
in the affirma£ive provided that we use, apart from the generalisation
of the usual minimal coupling procedure introduc;d by Hojman et. al., a
modified form of the Yang~Mills-Shaw field strength for non-Abelian
gauge fields.

Apart from the introduction of a new scalar field, named the
tlaplon in ref. 19, which acts as a potential for the torsion, the two
modifications lead to a particularly interesting consequence in that
they require the replacement of all gauge coupling constants of nature

everywhere by an effective space-time dependent coupling:
g + g/f(x) ;

where the space-time dependence is given by the function £(x) which is
determined by the same scalar field the derivatives of which also
determine the type of torsion that this procedure allows to couple to
all gauge fields.

Interestingly enough the form of torsion that is found for
both the Abelian and the non-Abelian theories is the same and has the
form that we motivated in the last chapter as the vacuum torsion that
ought to exist even in the absence of matter to represent the

torsional effects expected to be present because of the spin—2 nature of
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gravitation,

In conclusion, therefore,the work here carried out allows us
to present a completely consistent way of coupling all gauge fields to
a metric-torsion theory of gravitation containing a specified type of
dynamic torsion provided that we are willing to accept that all gauge
couplings must appear as being space-time dependent in a manner dictated

by torsion.
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5.2 THE PROBLEM

To begin, let us recall some essentials of gauge theories and
the usual procedure for coupling gravity to matter. For this purpose

let us consider a Lagrangian density of the form /F10/

L¢ = L, 8u¢) (5.2.1)

where the wi are a set of complex scalar fields which transform
according to some representation © of an internal space symmetry group,
G . Now suppose that this Lagrangian density is invariant under a set

of global gauge transformations,
> Y o=e ] (5.2.2)

G+A =9, A" , (5.2.3)

where the A's are a set of arbitrary, but space-time independent, real
parameters. Consistent with the physical requirement that all dynamical
laws must be local in nature, we now demand invariance under the larger
group of transformations given in (5.2.2) but where the A's are now
arbifrary, but well behaved, functions of space-time.

In order to retain invariance under these transformations, L¢
has to be modified, as already shown in chapter three, in such a way as
to account for the misbehaviour of Buw under these new local gauge
transformations. The standard procedure, known as minimal coupling, is
to replace all partial derivatives au which appear in the Lagrangian by
gauge covariant derivatives Du which is defined in such a way as to
ensure that the covariant derivative of Y transform in the same manner

as the fields y themselves, i.e.

S 1oy |
DU P = e Duw . (5.2.4)

This is achieved by introducing in Du a field (or a set of fields) —
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the gauge field(s) —— which compensates, or corrects, for the ill
behaviour of the partial derivatives under the local transformations.
Carrying out the standard algebra of chapter three, one finds that if

the covariant derivative is required to be linear in the gauge connection

Au and has the following form,

= 3 = 1g A . 2.
Du , ig . ] (5.2.5)

then the compensating set of gauge potentials must transform in the

following manner in order to satisfy (5.2.4)

) i Ai A (5.2.6)
)

This procedure then ensures that the Lagrangian density
L D

obtained from L¢<w s Buw) by replacing Bu everywhere by Du’ is now invariant
under the local gauge transformations. Of course, one must supplement
Lw with a part that describes the dynamics of these gauge fields. This

is constructed using the Yang-Mills-Shaw field strengths F- ,. Where
uv

i i i i3 .k
F- = - Ar o+ . 2.
w = ALy TAL L e A A (5.2

and where the Cljk are the structure constants of the group G, and the
F:v transform gauge covariantly under the gauge transformations (see
chapter three for the details). The Lagrangian density for the complete

system is then,

. R T
Lw,A Lw(w R Duw) A Fw P (5.2.8)

All this is, of course, in flat space. We consider next the
usual formalism for coupling gravity (without torsion) to this system.

This proceeds in two steps. First, one replaces all /F11/ nuv's in the
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flat space Lagrangian density by a gemeral space-time metric g

X).
uv( )
Second, one replaces all partial derivatives by the space-time covariant

derivatives defined in an analogous manner to the gauge covariant

derivative /F12/ :

nuv > guv
($.R.) - (G.R.) . (5.2.9)
] > 3
u H
For a scalar "
Vu¢ = 8u¢ R (5.2.10)

while for a vector field A\) we have that

[s)
?iuAv o4, - LAy | (5.2.11)

where {US} are the components of the Christoffel connection defined
already in (4.3.4). /

It should be stressed again that the above procedure entails
the replacement éf all partial derivatives by the space~time covariant
derivatives and that this procedure is guaranteed (or, rather so const-
ructed as) to take full care of the space~time invariance properties
which we wish to maintain. The gauge invariance properties of the flat
space Lagrangian are quite separate and unconnected to this process.

The question then is: Does this procedure for constructing a
general relativistic Lagrangian from a given special relativistic ome
leave any gauge invariance of the original flat space Lagrangian un—
disturbed? It will be shown presently that for the Einstein theory -
which employs the Christoffel connection in all space-time covariant
derivatives the answer is in the affirmative. It should not be concluded
though that this renders the earlier observations trivial, since, as we

shall see later, when torsion is present in the space-time connection

and the full torsion containing connection is used in the space~time



covariant derivatives, the gauge invariance of the flat space Lagrangian
is in fact lost and one has to search for ways of retaining it if the
coupling of torsion to gauge fields is still desired.

Let us now make these points clearer by considering -the
coupling of gravity to the Lagrangian system (5.2.8). First, it should
be noted that for that part of the complete Lagrangian which only
involves the scalar fields nothing is changed as far as the gauge
invariance properties of this part are cocerned by carrying out the
procedure of equations (5.2.9) - (5.2.11) since the space-time covariant
derivative for a scalar field is Jjust the ordinary derivative and
gravity couples to the scalar fields only inasmuch as the space-time
dependent metric must be used to contract all indices instead of the

flat space metric.

As far as the gauge part is concerned, such a procedure respects

the local gauge invariance properties so long as no torsion is present,
and the form of Fuv given in (5.2.7) remains gauge covariant when the
partial derivatives are replaced by the covariant derivative given in
(5.2.11). It is easy to see how this comes about.

Under (5.2.11),

i “i i v o1 i ik
> = VA - + .
Fy Fo Ay T VAL T 8 CT A A
i .0, .1 g, .1
= - +
Fuv {uv} Al {vu} A
i
= Fuv R (5.2.12)

due to the symmetry in the lower two indices of the Christoffel symbols

{

o . i . . , ‘i
uv} . So that if F, is gauge covariant, then so is F .

In the presence of torsion, however, the covariant derivative

for a vector field becomes,

vV A = 34 -1 %a (5.2.13)
H v
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where the Fuv 's are the components of the full non—-symmetric connection,

a g

o} -, 0 o)
T = - (S - S - S 2. :
1o {ua} ( o 1 " uoz) (5.2.14)
A . . . . .
where S , the torsion, is the antisymmetric part of the connection.
Ny

It is worth pointing out, however, that in theories containing
an asymmetric contribution to the connection one has the possibility of
defining two types of space-time covariant derivatives - each giving
rise to a generally co-ordinate invariant theory. This 1is due to the
fact that one can use either only the Christoffel part of the full
connection — since this part on its own possesses all the properties
required of a connection —— or one can employ the full comnection
containing contributions from the torsion. The two choices lead, of
course, to different physics, for example, one leads to problems when
attempting a gauge in§ariant coupling between torsion and gauge fields
while the other does not. No problems arise if one uses the Christoffel
connection.

The interesting case, which we shall now examine, is,

therefore, the case when we use the full connection. For this we have

that
F oo oyl gty g et ad 4k
(Y BV vV Uu k TH TV
i o i o .1
v Puv Ac + Fvu Ac (5.2.15)

Once again the contribution from the Christoffel part of ruvc will

cancel out to yield

oo opt ek Tartox At

v v w2 Ao (5.2.16)

. . g . .
Substituting for Kuv , the contorsion tensor, we obtain,

FL = F- +5 %A% -5 %% -g% a4t

TAVIS uv vVuag TAVERN. uv o
-s %At + g A+ 59 AY ., (5.2.17)

vu @

Hvoao vg ©

6L
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which, using the antisymmetry of Snvc in its first two indices finally

gives

FL = F- -24A*s
uv uv G uv

g (5.2.18)

*

For the purposes of not having to write down factors of 2 everywhere,

let us define another tensor for torsion by
T = =28 . (5.2.19)

. . g
We shall now use this Tcuv throughout instead of Suv . In terms of
this the expression for Fui becomes,

i S i o

For non-zero torsion, the presence of the last term in this
expression ruins the gauge covariance of F;i , which is necessary if a
gauge invariant Lagrangian for the gauge fields is to be constructed
from it. The fact that F;i does not now .transform gauge covariantly is
easily seen, since, on the r.h.s. of (5.2.20) the first term transforms
gauge covariantly, while the last term transforms like the gauge fields.

Here, then, is the dilemma. If one wants torsion to couple to
gauge fields through the usual mechanisms, one must give up the very
fundamental notion of gauge invariance.

There are two ways out of this impasse. One is the rather
unsatisfactory approach of abandoning the notion of a coupling between
torsion and gauge fields , to which we have referred already, by constr-
ucting all field strengths etc. wusing only the symmetric Christoffel
part of the full connection. However this is tantamount to rejecting
the fundamental reason for which one would like to incorporate torsion
into Einstein's theory. We are, therefore, more inclined towards the

second approach which consists of trying somehow to modify the usual

definition(s) of the gauge covariant derivative and/or Fuv , S0 as to



retain both gauge invariance and the coupling of torsion to gauge fields.
The rest of this chapter is devoted to showing that such a procedure
can in fact be set up and leads to several interesting results which

we promised in the introduction.
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5.3 MODIFIED MINIMAL COUPLING

Let us consider first the work of Hojman, Rosenbaum, Ryan and
Shepley (HRZS) who modified the minimal coupling procedure for electro-
magnetism in order to solve the above problem for the photon. Interpre-
ting the principle of minimal coupling as applied to the coupling of
electromagnetism and the charged matter filelds in the Lagrangian density
to mean that the new derivative should depend linearly on the gauge
connection Au but not on its derivatives, they proposed that the gauge

¥

covariant derivative be defined as

. o
D = - L] .
" Bu iq bu Aa (5.3.1)

where it is to follow the transformation law for the charged fields as
before, wviz.

oy = A (5.3.2)

In (5.3.1) the bz(x) are sixteen functions of space-time (but not of A
With this definition of Du » We must now repeat the calculations of

chapter three to determine the new transformation law for the compensat-—

ing gauge field AiJ . The requirement which determines this is
- - - iqA(x)
Du P e Du‘P , (5.3.3)
which implies that
~iq A )el®y = AW _ g Ay (5.3.4)
(au iq b 0L)e v e (a11 Qb a)
or
iqA . . . iga igA
e 3 A - igb"6A )*e"*'Dy= e Dy , (5.3.5)
v(mqu iqb » b "
where SA = A - Au and where we assume that the fields bg are
a o U

invariant under the gauge transformations.

This expression simplifies to give
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B> A =M " (5.3.6)
which upon multiplication by Ct , the inverse of bY , yields
u

SA
v

U ~
Cv (BUA) . (5.3.7)

Note, however, that CS is still hot fixed and it is this
extra degree of freedom introduced by generalising the usual procedure of
minimal coupling which allows a restricted form of dynamical torsion to
interact with gauge fields without destroying gauge invariance. We
shall now use this freedom of choice of Ci to choose it in such a way

as to ensure that
F = A - A + Ac T s (5.3.8)

be gauge invariant (since for the Abelian case the Maxwell field
strength is gauge invariant as well as gauge covariant) under this
modified transformation property of Au

This requires that the variation in Fuv be zero under (5.3.7)

for arbitrary A , i.e.

-

§F = 3. (c® A )-3 A )+c*1® 4
uv o s O vV U sa g ouv,a
= (% =~-c¢® +c%% Hy +c% -c%
V,yH H,V g u ,a Vv ,au H Qv
= 0 s (5.3.9)
where A denotes 3 3 _A .
»aB a B
This is possible only if the coefficients of A o and A ananish

bl t]

separately. This implies that we must solve the following two equatioms,

¢ -c* +c¢*1® = o0 |, (5.3.10)
V,u U,V o] uv
and
cle 6B _gle B g (5.3.11)



where round brackets denote symmetrization.

Multiplying (5.3.11) byéé we obtain

o 1 B .o
Cu 4 CB au
= f(x)éﬁ (5.3.12)

where £(x) is some function of space-time. Substituting this into

(5.3.10) we get

§" £ - 5u £ +fT = 0 , (5.3.13)

which may be written as

o o o
T W Gu (1n f>,v Gv(ln f),u . (5.3.14)

Discarding the singular solution (when £ =0 ) , we find that

the requirement that

o g ;
bu + when T w o , (5.3.15)
(which ensures that we recover the ordinary torsion free theory as ome

limit) allows us to write

where & — the tlaplon field — is a scalar field which acts as a
potential for the torsiom.
So for the Abelian case we can retain gauge invariance and the

coupling of torsion to the photon if we follow the prescription

b o> u =etthy (5.3.16)
3 > D = 3 -1iq e_(15 Ay
H H H
q
= 9, -1 OB (5.3.17)
where - 3
A =+ A = A . +e” A (5.3.18)
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and where the usual procedure is employed for coupling gravity to the

system with torsion being given (in terms of & ) by

- c _ v
Ty = 8, 00 -8 (8 . (5.3.19)

We consider now the non~Abelian case. In order to see how
to proceed, we try to see if the non—-Abelian form of the modified

minimal coupling law of Hst given in (5.3.1);

. o '
D = 3 - A 13.20
. y ig bu o (5 )

1s sufficient to allow F;j to transform gauge covariantly for a suitable
choice of torsion and bz . Such a procedure turns out not to be
sufficient but this exercise does give us a hint as to how to solve the
problem.

The above definition for Du means that if Duw is to trans-
form like ¢ , then following the same sort of procedure as for the

Abelian case, it is easy to show that the gauge fields A; must transform

as

A - oAt = At -Llemt oot Al AR, (s.3.21)
g ¥ La jk “u

i . P ; . ;
where the A7's are arbitrary infinitesimal functions of space-time.
. . . . . ‘1 .
Using this , we obtain the following expression for GFuv (some details

of the calculations needed to arrive at this result have been collected

in Appendix B):
gt s
g H

(CC! - CG. - CG ¢4 )

1.1
+{— T
{8 Gk H,yV Vi ) uv

i i, o i i, Gy, k
+ C . A ~CY) +C . A - +
o 5K u(sv v) (cu Su)}A o

jkv

+rcho@al <Al -l oy -
Jk Tusv Vo o uv
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_ s 3,1 i @m ,J L,k
g(C jmc lkAuAv +C ¢ jkAu Av)}A . (5.3.22)

: “i
Now, however, we must ensure that F transforms gauge co-
variantly, thus

I S j ok
GFuv c ik & Fuv . (5.3.23)

This leads then to the following equations for C: and Tcuv which we

obtain by requiring the coefficients of At g Ak q and Ak to
N E] H
vanish separately.
(1) Coefficient of A" :
»aB
(o B) _ (o B _
Cu 6v Cy Gu = 0 (5.3.24)

where round brackets () again denote symmetrisation over the indices

enclosed.
‘e . . k
(ii) Coefficient of A
H
Lee® - -1yl 4
g U,V v,u o " ouv Tk
i j,.0 o i j,.a .0
+ C. §” - . ) = 0. .3.
c JkAu( N Cv) +C JkAv(Cu u) 0. (5.3.25)
(iii) Finally, the coefficient of Ak , using equatiom

(5.3.24) in equation (5.3.23) can be reduced, after some tedious index

manipulations, to the following,

-c.. - .= .3.2
CimkCmi1 ~ Cijelmik T CimiCmik 0 (5.3.26)

which is satisfied identically, due to the Jacobi identity (3.2.23)
satisfied by the structure constants. Indeed (5.3.26) is the Jacobi
identity.

Equation (5.3.24) is identical to equation (5.3.11)
encountered for the Abelian case, and which has been shown already to

solve to yield,
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Vv v
clJ = f£(x) au . (5.3.27)

Substituting this into (5.3.25) we obtain,

L -8 %-£1" Vs
g v Sty ne

+

A

i Ly eado® _ LJcC _
+ C jk(f 1)(A\)6u AUGU) o . (5.3.28)

However, the only solution to these equations is the trivial one,

which gives the ordinary torsionless gravity theory coupled to thé usual

non-Abelian gauge fields.

Clearly, something more than just the HR?S modification of

minimal coupling is called for.



5.4 MODIFIED FIELD STRENGTH

We saw in the last section that on its own the generalisation
of the usual gauge covariant derivative as proposed by Hojman et. al. was
not sufficient to allow us to couple torsion to non—Abelian gauge
fields. The work of the last section does suggest, however, that if we
modify the Yang-Mills—-Shaw field stréngths, Fiv , in the fo}lowing way,
we may obtain a satisfactory solution of the problem.

Let us define,

Fly = Ai,u - At’v +g cijkaiagAi Ag (5.4.1)
Replacing the partial derivatives by covariant derivatives and
carryiﬁg out all the above calculatipnal ‘procedures for these modified
field strengths and the modified minimal coupling of equation (5.3.20),
we find that instead of equations (5.3.24) - (5.3.26) we must solve the
following set of equatioms:

(5.3.24) and (5.3.26) remain the same as before while (5.3.25)

is modified to:

1 c* -¢* -¢*T1% ) sF o+
g v Vsl o MV k

i i . Y nB ad A0 .
+ C7, A §7 - B! BY AY C +
Jk( TR vy )

B
i Y o8 W0 o _ 0 g0 _
+ C jk( Bu Bv AB CY Av U ) o . (5.4.2)

It is a straightforward matter to discover that the following

is a solution to these equations;

AY) AY)
= 6 . -
c, £(x) N (5.4.3)
1
Bﬁ = £ 3(x)eY , (5.4.4)
u
£1° = £ §% - & (5.4.5)

uv STARY sV U’
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Equation (5.4.3) implies that since,

e eV §Y , (5.4.6)
u

(@]
Q
1]

o
u

£l 53 . (5.4.7)

As (5.4.7) is singular for £(x) = 0, we shall require £(x) to
be non-zero everywhere in space-time. Further, requiring (5.3.20) to
reduce to its usual definition ( b: - 6: for zero torsion ) fixes the

sign of f£(x) to be everywhere positive. Hence we write

f(x) = e®<x) . (5.4.8)
The expression for torsion then takes the form

° = s ¢ +68%9 (5.4.9)

r =19 -5%¢ +g o°° (5.4.10)

We have found, therefore, that it is necessary to modify the

Yang-Mills-Shaw field strength to

Fr o= al _at sgct, Pl pk o plge
uv V,u TR Jk "p v "o B o T ouv

(5.4.11)

where the Bz are functions of space-time but not of the gauge fields,

in order to solve the problem of coupling gauge fields to torsion for the

non-Abelian case. Making this modification and using the modified
minimal coupling procedure for gauge fields (5.3.20) we see that it is
possible to retain gauge invariance while coupling torsion to all gauge

fields provided that

-1
B° = fi(x) §° (5.4.12)
u u
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wvhere £, bz (or Cz ) , and Tcuv are as for the Abelian case. Substitu—

. . . . - R
ting our solution back into the expressions for D and F ~ gives us
H HV

D =23 -i%A-G (5.4.13)
and s

g i i,k _ ,ic
* C jkAuAv AGT v’ (5.4.14)

where T"w is given by (5.3.19).

‘e .t

. i,
We have written DU and Fuv in the above form to make the
point that the effect of coupling our particular form of torsion to

gauge fields by the method described above is essentially equivalent to

defining an effective coupling constant

glx) = g/f)

which is a function of the space-time point at which the interaction
takes place. A more complete discussion of the implications of this will
be given in the next chapter.

| The total Lagrangian density for a system of complex scalar
fields, metric, and gauge fields considered above can, then, be easily

shown to take the form,

- X .. - e A *
=8 & - 60°M0 - Fuv-F LG uw'“) s

L= 16m SH

.where the dot before an index (thus .u ) implies use of the modified

covariant derivative (5.4.13).
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0f all the fundamental interactions observed in nature, the
gravitational interaction is by far the weakest and though all present
day evidence from macrophysics attests to the validity of Einstein's
general relativistic description of it, at the microscopic level it is
the least well understood. Almost all generalisations of the general
theory of relativity, therefore, tr? to modify the theory in such a
way as to allow deviations from it in the small — at the elementary

particle scale.

At this scale we find, however, that gauge theories describe
the other observed fundamental interactions, namely the elecronuclear
interactions. These theories assume for the space-time symmetries the
Poincaré group and classify the particles by means of the irreducible
unitary representations of this group. These representations are

labelled by the mass m, and spin s of the elementary particles.

Now, mass, which is connected with the translational part of
the Poincaré group, finds a beautiful interpretation in terms of the
éeometrical notion of the curvature of space~time in the general theory
of relativity. However, spin, the other parameter necessary for a
complete classification of these elémentary particles and oné which is
associated with the rotational part of the Poincaré group, is not
afforded a similar geometric interpretation in Einstein's theory of

gravitation.

This notion of spin, s, of the elementary particles is,
therefore, the quantity which the Einstein-Cartan—Sciama-Kibble theory
tries to incorporate into a geometrical framework more general than
that of Riemann which Einstein employed. The ECSK theory achieves this
by introducing an asymmetric contribution, called the contorsion, in
addition to the Christoffel connection into the space-timé connection

which it employs. The non-Riemannian aspects introduced in this way are



then attributed to the spin—angular momentum of matter.

In chapter four we have considered the choice of a suitable
action for this theory which could determine the dynamics of both the
metric By and the contorsion vak fields. There we have shown that
the Lagrangian density which is conventionally employed for this purpose
is not the most general allowed, even if it is required to be linear in
the curvature tensor formed out of the complete asymmetric connection.

We have argued that another parity violating contribution constructed from

8

the pseudo-tensor density e"Y* and the curvature tensor RuvaB(P) ought

to contribute to the complete action for such a theory.

Pseudoscalar actions for the ECSK theory have been considered
before by Purcell /21/ who generalised this theory by the addition of the
most general action which is bilinear in the antisymmetric part of the
connection and linear'in the Levi-Civita density. For his theory the
net effect of the new additions to the action was to reduce the spin-
spin coupling constant of the ECSK theory. There are two points worth
mentioning with regard to the connection between the work of Purcell and
the work here reported. Firstly, it is worth noting that whereas Purcell
has allowed the contorsion tensor a role analogous to that of the
curvature tensor inasmuch as they are both allowed to appear in the actiom,
we have argued that the action ought, for the sake of a reduction in the
number of arbitrary parameters that would be needed, to be constructed
solely out of the linear combinations of the curvature tensor. The second
point we wish to make is that the introduction of the Levi-Civita density
into the theory does not only imply a reduction in the . _ strength
of the spin-spin interaction. Indeed, we have shown in section six of
chapter four that new effects not at all predicted by the ECSK theory may

be expected.

We have also argued in chapter four that torsion should be present
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in a dynamic form even in the absence of matter to represent .the
torsional effects due to the spin-2 nature of gravitation. We arrived
at a particularly simple form of this vacuum torsion which is generated
by a scalar field and for which the parity-violating effects due to the

additional term in the action we motivated vanish.

In order to illustrate that the generalised theory we have put
forward does lead to effects not present in the ordinary ECSK framework,
we went on to show that parity-violating effects not-required by the
ECSK theory for the Proca field are expected to be present in a theory
based on our action. This example is not altogether an academic exercise
and devoid of any physical content, since massive spin-one particles, such
as the p,w, and ¢ are known to exist for which, at least in principle,
our dis;ussion in section six of chapter four might have some relevance.
Some further work in this direction is, therefore, conceivable and might
center on trying to explain some of the observed features of these massive

spin-one objects.

The presence of the parity-violating contribution appears to us
to be the most distinctive feature of torsion-containing theories which
could serve to distinguish them from Einstein's theory and which could
provide the basis for the experimental verification or rejection of such

theories.

However, in the present work we have not developed the theory
to a stage where it can be confronted with experiment. Further work in
this direction is also possible. The first task that one might carry
out in order to bring the theory closer to making experimentally testable
predictions is to incorporate fermions inteo the theory and then discuss
a particular laboratory situation in which the distinguishing features
of this theory would be illustrated. The extreme weakness of the effects

expected does, however, mean that there is, at present, little hope for
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a direct confromtation between experiment and the predictions of this

theory.
]

The work that we carry out in chapter five is, however, much
closer to experimental testing since it makes definite statements about
the coupling of photons to a particularly simple form of dynamic torsion

that we motivated also in chapter four.

The work of chapter five concentrated on trying to resolve the
problem of coupling torsion to all spinning matter - in particular matter
of the gauge field variety. The problem arises, as was illustrated in
the second section of this chapter, because a straightforward attempt
to achieve such a coupling leads to the loss of gauge invariance. We
found that a coupling between gauge fields and a simple form of torsion
could be achieved provided that one generalised the usual concept of
minimal coupling of gauge fields to charged matter and provided that a

modified form of the gauge field strengths was employed.

This approach led to one particularly interesting consequence
in that the whole procedure could be viewed as the replacement of all
space-time independent gauge .coupling by ones which depended on space-
time in a manner determined by the strength of the torsion. Of course,
this means for the Abelian case that test bodies with different electro-
magnetic energy contents would behave differently and therefor; ‘have
implications for the null experimental results of the Eotvos—Dicke-

Braginsky experiments.

This question has been considered in detail by Wei-Tou Ni /22/
who has claimed that for the Sun, the scalar field g , which generates
the torsion, would be around 0.67x 10_4 U where U is the Newtonian

potential at the surface of the earth. This, he further claims would.

lead to the prediction from this theory that the gravitational
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accelerations of aluminium and gold would differ by
2 x 10_7 VU R

which disagrees with the null experiments of precision

-11 12

> - >
10 VU and 10 vu

performed respectively by Roll, Krotkov, and Dicke and by Braginsky and

Panov /23-24/.

One may draw two conclusions from this - both somewhat
discouraging.

The most straightforward, and perhaps honest, is to conclude
that the modified form of minimal coupling proposed by Hojman, Rosenbaum,
Ryan, and Shepley in reference 19 is not made use of by nature and that
one ought after all to leave gauge fields uncoupled to torsion, or at least

one should look for other ways of achieving it.

Of course, one might also conclude that perhaps the generalisation
of Einstein’s theory to include torsion is not a useful one in the first
place and that, therefore, torsion has no role to play in a description
of the gravitational interactions. Both these conclusions are, therefore,
negative and somewhat discouraging though, of course, one can think of

more exotic situations which would explain away these negative results.

It is conceivable, for example, that the region of space-time
that we happen to be in is a zero torsion region and that perhaps non-
zero torsion exists in other regions of the universe, where the effects
studied in chapter five might in .fact occur. This rather optimistic
situation might appear less unrealistic if, for_example, the ideas of
Hanson and Regge /25/ turn out to be right and the -absence of torsion
in conventional gravity could be explained in a dynamical manner. These

authors have suggested that a gravitational Meissner effect might be



responsible for producing instanton-like vortices of non-zero torsion
concentrated at four-dimensional points. Such torsion vortices would be
the analogues of magnetic flux vortices in a type LI superconductor, while
ordinary torsion-free space-time would correspond to the field-free

superconducting region of a superconductor.

However, no convincing demonstration of the occurence of such

effects in a metric-torsion theory have been reported as yet.

We shall end this discussion here since we are already
bordering on the very speculative which is the subject of the next very

brief chapter.
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In this very brief chapter we discard all pretences of rigour
and make some speculative remarks and suggest possible lines along

which further work might procceed.

Torsion containing theories are not only useful for describing
gravitational interactions. It has been known for some time that torsion
containing geometries have a very useful role to play in continuum
physics. Based mainly on the work of Kondo, Bilby, Bullough and Smith,
and Kroner /26/ it has become clear that torsion plays a central role in
the continuum theory of crystal dislocations where the torsion is
identified with the physical notion of a dislocation density. It is
amusing to speculate whether the generalised Lagrangian density we have
proposed in chapter four and the concepts outlined in chapter five may
not in fact find some more useful applications in such theories of

crystal dislocatioms.

Another possible link between the work of chapﬁer four and some
physical situations might arise if we compare this work with the specula-
tive and rather vague remarks of Stueckelberg /27/ who tried to explain
the experimental results of parity violation observed in the weak inter—
actions in 1957 by ascribing them to a cosmological distinction between
left and right. He claimed that a cosmological asymmetry was perfectly
compatible with Riemannian space-time of ordinary genmeral relativity and

(%)

tried to explain this by proposing the existence of a 'field' eaBYG
whose covariant derivative vanished everywhere. However the major
problem faced by us while trying to work along these lines has been to

actually understand what exactly Stueckelberg had in mind -~ this not being

clear from his extremely brief work of reference 27 .

It is also interesting to consider the possibility of including
an R type term in the Lagrangian for the theory of supergravity which

is based simply on the Einstein Lagrangian and the use of the torsionless
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Christoffel connection when coupling to matter. It is also worth asking
whether it would still be possible to write down a theory of supergravity
in which the full torsion containing connection was employed for the
purposes of coupling to matter rather than the 'minimal' approach
traditionally adopted. Still with supergravity, it may be useful to
examine in a superspace formulation of the theory the field content of

an eR type term, where the ¢ field is now the superspace analogue of the

simple Levi~-Civita density of ordinary general relativity.

It would also be very interesting to see if the concepts of
modified minimal coupling etc. employed in the work of chapter five can

be made use of in supergravity or even in an ordinary global super-

symmetric framework.

Finally, we wish to close by speculating about the possible role
torsion might play in strong interaction physics. It has been suggested
by Isham, Salam and Strathdee /28/ that the spin-2 aspects‘of strong
interaction phenomena may be understood from a geometrical point of

view by a two-tensor f-g theory.

This theory is the .gravitational analogue of the vector—-meson
dominance hypothesis for hadron electrodynamics and attempts to describe
the gravitational interactions of hadrons and leptons through an f-g
mixing which resembles the po-m mixing of lepton hadron interactions. The
action which this theory employs uses, apart from the Einstein-Hilbert
expressions for each of the two spin-2 fields, a generally covariant

f-g mixing term and may be written symbolically as

Leg = Lgg(@) * Lpy(E) * Lpp

where LPF is the mixing term and is just a generally covariant form of

the well known Pauli-Fierz expression for a massive spin-2 field.

The point to note is that we are, here, concerned with phenomena
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at the microscopic level where, as we have repeatedly emphasised, the spin-
angular momentum of matter might be expected to play a significant role.

In view of this the idea comes immediately to mind that one should attempt
to incorporate torsion into the strong metric (f) part of this theory

and study any consequences to which this modification might give rise.
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In this appendix we give the most general form for LK mentioned

in section five of chapter four.

have only given the terms for the ordinary ECSK theory.

The Gi are arbitrary parameters and we

Allowing the

additional term LA the situation can only get more complicated.

Q = KO‘B;\;GI%LB;0
QW = Kaak;cKsAB;c
Qy = Kusk;cKaex;c
Q4 = 0‘Bw;cxK'lc:}\;B
B = KB&U;QKKUA;B
Q6 = KUQB;aKch;s
Q7 - chA;aKBUA;B
Qg - Kacl;aKUBl;B

[



APPENDIX B
. . . . “i, .
In this appendix we derive the expression for SFuv given in

(5.3.22) using the expression for GAi given in (5.3.21), viz.

ol - ‘éc Al gh ik

o
I M ,0 jk u (3.1)

and go on to show that use of (5.3.23) yields the equations (5.3.24) -

(5.3.26).
Now,
‘1. 1 i @
Fuv Fuv + Ab T Hv
P S | i k. ,i.0
A, - B,A +gC A AT (B.2)
so that
SF > =5 sAY - 5 sa’ + g b, (sadak + adgaky 4
Y TRV v ou JkTTuMy TRV
i
+8a T . (B.3)
g uv
However,
3 sar = - L@ at e oMt oy odh @l pke adpk )
uov g8 VU ,a Vo osau jk v, voo,u
(B.4)
Inserting this into (B.3) yields,
‘1 1,0 i o, L o i o, i
SF = - = (C" A + CA ) - (€7 A + CA )+
v g  VyH »a Vo 0l U,V 0 U0V
i k, 1 a,j J 1
+ - = - +
g Cryla-gand - 1mAuAm)
J 1 ok k 1 m
+ - = - +
Au( z CvA o c luﬁbA )}
1 @i i ] k
+ -=C - C7, A . B.5
T"w(gcz\’cl chIA) (B.5)

. i k .
Finally, collecting terms linear in Al s Ak 0 and A gives
H

»af
us the result that

§F * = L (%P - % s

B i i
A
Hv g WV v ou ) » 08

+
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1,.1,.0 o o g
+ 87 (C =-C -C T +
E{ k( u,Vv V,H c u\’)

i ,j,.¢ o i ,j,.a a, .k
+ . - + . - +
c JkAu(sv cv) c JkAv(c11 5u) A ’a}
i i _ 3 _ .0 -
+ {C ik ( Au’v Av’u AT v )
_ i m ,3,1 i m 3,1,k
- g(C jmc .lkAuAv *C ;¢ jkAuAv) W, (B.6)

Py

Now requiring the gauge covariance of Fut under (B.1l) will lead

to equation (5.3.23)

i _ 1 k 3

The r.h.s. of this equation does not involve any derivatives
of A, so that when we come to obtain equation (5.3.24) - (5.3.26) by
k

A , and Ak in (B.7) equal to

setting the coefficients of A’ y
» 0B » O

zero, the first two of these equations can be read off simply from (B.6).
The last equation does, however, require that we subtract from the co-
efficient of Ak in (B.6) the quantity on the r.h.s. of (B.7). This

then easily leads to equation (5.3.26).
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F2,

F3.

F4.

F5.

92

The material for this section is taken essentially from

references 3, 6 and 9.

A very useful and concise account of this attempted unification
of electromagnetism and gravity is given by W.vPauli /4/ in
section 65 of his book on relativity, where he also discusses
in detail why the theory led to contradictions with experimental

results.
This is proved on the next page.
The material for this section is essentially taken from the

excellent review on gauge theories by Abers and Lee in

reference 15.

. . HVACQ
For convenience we define the pseudo-tensors n and n

UVAGQ
: e s .. UVAC
from the usual Levi-Civita (pseudo—) tensor densities ¢
and euvkd as
UV AQ -1 pvio
n = (-g) ¢ ¥ ;
- S
nuvAc (-2) Euvkc )

They satisfy the following properties:

WvAg n - _6vkc
uoRY aBy ?
o Mgy T 72 -6;3 ’
nuvkc nuvAy = -6 63 ,
UVAg nuvlg 24 i

where the tensor Guzi"" is a generalised Kronecker symbol
a LI

obeying the following rules: If p,v,\,e++ are all different and

a¢,B,Y,*** are obtained from them by a certain permutation, then



F6.

F7'

F8.

it is equal to +1 or -1 depending on whether the permutation

u\)Auon

By is even or odd, in the remaining cases it is equal to

Zero.

For later purposes we define
= -1
a = (16ﬂGP) .

For the most part we shall work with (16wGN) set to unity.

This is 1llustrated beautifully in the work of Michael Hovak
and Pemeter Krupka (Int. J. Theor. Phys. 17(1978) 543 ) in
which these authors consider the problem of finding all first

order invariant Einstein-Cartan structures. They consider

Lagrangians containing terms linear or quadratic in the following
i

. i . .
objects: gij s gij;k s Tjk s Sjk ( the latter two are in their

notation the antisymmetric and symmetric parts of the connection)

Rijkl’ and Tijk;l' Assuming compatibility they deduce that
for a four-dimensional theory there exist at most 194 such
functionally independent generally invariant Lagrangians. If
we allow for the use of the tensor density eijkl’ not
considered by them, the number of such independent Lagrangian
structures would increase further. In view of this the genera-

lised action we propose (by restricting ourselves to linear

curvature theories) seems to be a very reasonable choice.

We may here point out that (4.5.1) is not the most general form
for the contorsion that we can write if we allow the use of
&4 i1’ In fact it is possible (while still only introducing one

index fields) to consider the following choice for Kijk:

1
Kigk = 95 8y = O Bi5 *oegqig ¥

where we have introduced a pseudoscalar field ¢ (ws bein w’é)

which, like ® would be a dynamical field
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F9.

F10.

F1l.

Fl2,

once we incorporate this type of contorsion into our Lagrangian.
For simplicity, however, we do not consider this choice in the

present work.

We shall in fact be considering this problem in the next chapter
where modifications of the usual minimal coupling procedure and
the use of a modified Yang-Mills-Shaw field strength does enable
us to couple a simple form of torsion to gauge fields. For the
present, however, we shall not complicate the discussion by

considering such a possibility.
Wherever possible we shall suppress all internal indices.
nuv is the Minkowskian metric, diagomal (+,-,—,-).

Here S.R. stands for special relativitivistic and G.R. for

general relativistic.
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Monopole solutions for strong gravity coupled to SO(3) gauge fields
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We find a class of static spherically symmetric monopole solutions to the coupled Einstein-SO(3) gauge
field equations for f-g theory in the limit that weak gravity is neglected. These solutions reduce, in the
appropriate limits. to the Salam-Strathdee class of solutions and the Wang soiutions for the pure Einstein-
SO(3) theory. We comment on possible extensions and the relevance these solutions may have for hadronic

physics.

Exact spherically symmetric solutions for the
pure f -g theory of Isham, Salam, and Strathdee!
have recently® * been obtained. In this note we
incorporate SO(3) gauge fields in the theory and
obtain static spherically symmetric monopole
solutions for the gauge fields and the f metric.
The full Lagrangian density for such a system is
given by .

=_;1:;\/——_g R(g)-i—z- VTF R+ 2, 2,

(1)
that is, the Einstein expressions for the g and f
fields, a generally covariant mixing term which,
at the linearized level, is responsible for the f
field mass, and a Yang-Mills part for the SQ(3)
gauge fields. This latter contribution to £ is
constructed using f,, as a metric tensor. Such
a procedure is consistent with the prescription
employed in f -¢ theory. Hadronic matter parts
of the Lagrangian are to ve formed using fu,, as
a metric tensor, while for the leptonic parts one
must use g,,. The underlying physics is that while
leptons. interact directly with gravitation, hadrons
do so only through an f -g mixing, analogous to the
p"~¥ mixing in hadron electrodynamics. f-g
theory without leptons may thus be described as
hadron geometrodyna.mics In detail,

YA
Bt =ier T TEF) T U e -
x (gupgua 'guugpn) ) ] (2)
= - {/=F frfrors Fe (3)
where

Fiy=9,W) -3, ,W5 e, WIWS. (4)

-t

. E=- Ldrdode
4

--3 (2\/’—-7_'-_—'»—2%%““’: f (57——) [[ ZB~SB(A+C)-4Y'(A+C)]T}—-

We use the following notation. Greek indices
run from 0 to 3, while Latin indices denote 1, 2,
:md 3. €. 1s the usual ¢ symbol, with €,,,=1.

,*=87Cg, «,*=81G,, where Gg~1 GeV™?,

,,-10'” Gevs, g=det{lg,l), f= det(lfuyl) and
¢ =1 is assumed throughout.

We are interested in solutions of (1) in the limit
that weak gravity is neglected. In this case (1)
reduces to

z:-;ﬁ- V=T R(F Ve 8 + &yu » (5)

where £,... is the expression given in (2) but with
&y everywhere replaced by 3,,, the flat space-
time metric. For convenience we choose to work
in spherical polar coordinates, where our signs
are such that n_, =diag(l, -1, -7 =r*sin’g),
We have dropped the ; ladel from «,*,

It should be noted that £, is not generaily co-
variant; it is the flat-space approximation to (2).
Restricting ourselves to the static spherically
svnimetric case and considering nionopole~type
solutions, we write!

x? ()

Wwi=0, w§,,=0, W'i’=€‘“'—;3-— (8)

and

J wdxtdc? =Cdt?=2D dt dr =A ar®
- B(d0* + sin*8 d¢?) . (7)

where A, B, C, D, and U are functions of r only,
and where W7, denotes the time derivative of W¢{.

Using (6) and (7) and performing the 8, ¢ inte-
grations we obtain (the prime denoting differentia-
tion with respect to 7)

"4

va B

t Ny
P(IZT:—Z%—IZB)\/K]([TFZHI [ZLU ‘-(L'uzbbxzf‘;} ar, (8
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where A =AC + D? (> 0), We note that in (8) D always occurs in the combination 4 =AC + D%, Making use of
this, we shall exchange D for A as the variable of choice. It is clear that stationarity of £ under small
variation of 4, C, and & will yield independent equations only when D# 0. Krive and Sitenko® have con-
sidered the D=0 solutions of the linearized equations obtained from E. In this note we confine our atten-
tion to solving the full equations, but with D# 0. Variations with4, B, C, A, and U yield Egs. (9)-(13):

D#0, 6B-4r*=0,

’ ’ D] 2
(c 2c> 2C 9% fE(eu%ze)%T

o "ris /T PVa Ters

a'/a=32U%r,

2A7C) M2, 3 \*[2 N
A [t

I, 'y
(%:- 2L (eut e 2ueu + 1) =0 .

We have used the solution to (9) to simplify Eqgs.
(10)-(13).
The following forms for B, U, A, C, and A can
- easily be shown to satisfy these equations:

B=1 7,
=—5/2, ;3:0,1,2 y

A=A, a constant of integration,
38, C {w(ﬁ-m Téz
=220 0 bl oL
¢ 7 " de re
M3

M _3 \* 3a 1
() [e Sl

and A{(7) =% + 3a, - C(7) determines A(7). C, is
another constant of integration.

We note that the function D(= (& ~AC)*/?) may
become imaginary for some values of r unless
we restrict the parameters in our solution in such
2 way as to make D real everywhere. Requiring
a -AC>0 implies

C*~(3+3a,)C+4,>0. (14)

One particularly simple way of satisfying (14) is
to choose &4,=+ and (so as to exclude D=0) C

# 2. This latter condition may be satisried by
suitably restricting the other parameters which
appear in C. This is only one way of ensuring
that D is real everywhere—other more complica-
ted possibilities exist and a particular choice may
be relevant for a discussion of confinement in
hadron physies."

(9)

-TSE—> [‘i (3A+30-1+a)-3‘/§— (a+5)]=0,
(10)
(11)

k2 3 2 ., Cul .

5[ o= & ], (12)
(13)

We note also that in the limit that the gauge
fields vanish (3=0 or 2)" our solutions reduce to
those obtained by Salam and Strathdee.? Recently,
Wang? considered the analogous problem in the
Einstein-SO(3) theory (essentially the M — 0 limit
of our theory). In this limit, our solutions reduce
to those found by him. Note that 3=1 must be
chosen to obtain the explicit solutions presented
by Wang. ' Further, a transiormation of the time
coordinate (which diagonalizes /') is necessary
for a formally identical resuit,

We end with a few comments on possible exten-
sions of the work presented here. As has been
pointed out,* although g,,=n,, may be a physically
reasonable approximation, many important ques-
tions cannot be answered within this framework—
the role played by coordinate singularities being
one. Extension to the g,,# n,, case would, there-
fore, be worthwhile. We do not anticipate any
difficulty in this extension. Another possible ex-
tension, and one perhaps more relevant to hadron-
ic physics, is to the more reasonable group
SU(3). Yet another possibility is to consider non-
singular 't Hooft” type solutions for the gauge
fields~-whether such solutions are possible in the
context of f -g theory is an interesting question
to examine. We hope to be able to consider these
problems in the near future.
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\Ye show that the strong gravity theory of Salam et al. places severe restrictions on black hole evaporation. Two major
implications are that: mini black holes (down to masses ~ 1016 kg) would be stable in the present epoch; and that some
suggested mini biack holz mechznisms to explain certain astrophysical phenomena would not work. The first result implies
that f-gravity appears to muake black holes much safer by removing the possibility of extremely violent black hole explosions

sugsested by Hawking,

1. Introduction. Within the framework of the two-
tensor {—g theory of Isham et al. [1], gravity couples
to hadrons via an f—g mixing 2nalogous to the y—30
coupling of the vector meson dominance model of
hadror clectrodynamics. At the simplest level the
theory incorporates two spisni-2 particles (the f and the
g) which are governed by a moditied Einstein-type
lagrangizn containing 2 mixing term, which provides
the f—g coupiing, and tire usual Einstein lagrangians
for the fand g fields. For our purposes the essentiai
difference between the g and the f is that the coupling
for gis G =6.67 X 10~ {mks), while for f it is the
hadronic coupling Gy~ 1028 (mks).

It has been suggested that if hadrons are pictured
as f-black holes [2], Hawking radiation [3,4] type
ideas may provide an interesting explanation of the
concept of hadronic temperature {S] in particle phy-
sics. In the present work we wish to pursue these jdeas
with reference to neutron stars and big-bang cosmolo-
gies, where hadronic environments exist and hence
f—g theory may be expected to play an important role.
The suggestion that black holes may be formed in the
cores of neutren stars has been put forward [6] as a

1 Address after 1 December 1978: Physics Department,
University of Texas, Austin, Texas, USA. Permanent address:
Mathematics Department, Quaid-i-Azam University,
Islamabad, Pakistan.

2 permanent address: Blackett Laboratory, Imperial College of
Science and Technology, London, England.

possible explanation of various astrophysical phenomena.
We analyse these suggestions and consider the implica-
tions of f-gravity in such a discussion.

Strong gravity may also play a vital role in black
hole evaporation processes to determine whether a
mini black hole of a given mass would evaporate away
[7.8]. We find that, if f-gravity is accepted, much
smaller mini black holes from the initial big bang could
be expected to have survived up to now than is other-
wise supposzd {7.9]. .

Our basic argument is that at sufficiently small dis-
tances the { and the g can be regarded as equivalent
(for our purposes) except for the difference of couplings
—G¢/G, ~ 1039, Thus, for distances within the range
of the fsmeson, f-gravity would be expected to domi-
nate, [t follows that the surface temperature of an_f-
black hole would be some thirty-nine orders of magni-
tude lower than that of an equally massive g-black hole,
Thus much smaller mini black holes could be expected
to survive to the present epoch. This sharp reduction
of the masses of mini black holes also makes it much
less unlikely that such holes may be forming now.

By comparing f-gravity predictions for neutron stars
with those obtained by using g-gravity only [6], it may
be possible to test the validity of f-gravity theory
(assuming black hole evaporation to be valid) using the
ideas presented in this note.

After discussing the concept of hadrons as f-black
holes, in the next section we go on to investigate the
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implication of f-gravity in some astrophysical situa.
tions. The li.st section consists of 3 summary of our
results and a brief discussion.

2. Hadrons as f-bleck holes? Following Salam and
Strathdee [5], we assume that we can obtain results
for f-black holes from the formulae for g-black holes
by replacing G, by Gy, while leaving everything else
unaltered. However, we must bear in mind that the
range of distances over which f-gravity may be assumed
to be applicable is (approximately) given by

Range ~ #fmgc~10-16m, . 1)

7t being Planck’s constant, ¢ being the speed of light, -
and mg— the mass of the f meson — is a typical spin-2
mass from the particle data booklet [10]. For greater
distances, f-gravity effects will obviously be negligible.
Taking over the g-gravity formulze, we find that
the surface temperature of an f-biack hcle is given by

T=Kh[2wkc, )

where k is Boltzmann’s constant 2nd K — the surface
gravity — is given by

K =4n(Rc? - Gp)A~1, @)

The radius R and area 4 of the trapped'surface being
given by

R =GeM+(GEME = 22 (M2~ G QD2 (4)
Act=anGy [2Gpa2 ~ Q2
+2(GIMY - S22~ Goatl QP )

where M, J and Q are the mass, angular mgmentum and
charge of the Kerr—Newman black hole (in mks units).

Assuming that hadrons may be regarded as f-black
holes and that Hawking radiation ideas apply, the ques-
tion arises whether the proton — treated as an f-black
hole — is stable, or will it evaporate away? A simple
calculation using the above formulae shows that an
f-black hole having proton mass, charge and angular
momentum radiates at a temperature of ~2 X 1011 K.
The radius of its event horizon is ~3 X 10~16m.

Of course, there is nothing sacred about the value
of G taken here. It could even be an order of magni-
tude different from the value taken. Thus, it could be
argued that if G~ 5 X 1028 (mks) hadrons of ~5
GeV/c? mass could be treated as f-black holes, having
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the correct radii. The problem, however, is that the
surface temperature of these “hadrons” is of order
1011 K. If this picture of the hadronic world is to sur-
vive it is clear that we must assume the hadrons are

in a heat bath of 7~ 101 K. It turns out that the con-
cept of temperature already exists in hadron physics
[11]. One of the latest manifestations of the use of

this concept is in the work of Bartke et al. {12], who
show that hadronic spectra, when expressed in terms
of the transverse energy, can be fitted with a universal
type of thermodynamical distribution with one common
temperature which is approximately kT = 120 MeV or
T= 1012 K. If one now assumes that this is the temper-
ature of the hadronic world, then hadrons may be
thought of as stable f-black holes.

One may, however, question the stability of single
hadrons. For these it may, at first sight, be argued that
in a bootstrap type model each hadron, being composed
of many others, is automaticalily in a hadronic environ-
ment. On closer examination, however, this explana-
tion breaks down, as the black hole temperature is
viewed from outside, where only the mass, charge and
angular momentum of the black hole are apparent but
no other internal structure. If the black hole surface
temperature is much above the ambient temperature,
the black hole would evaporate away violating baryon-
number conservation. Thus, unless some mechanism
can be found, whereby decaying hadrons preserve ba-
ryonic number as they evaporate away, it does not
seem possible to construct a black-hole picture of
hadrons. Even if we could construct such a mechanism,
it is not entirely clear how the stability of the proton
could be accounted for, in view of the fact that the
temperature of radiation increases as the mass of the
black hole decreases.

3. f-black holes, neutron stars and the big bang. So
far, we have been considering hadrons in free space, but
it is inside a neutron star that the concepts of f-black
holes reaily come into their own — in a hadronic envi-
ronment. Thus, when considering mini black holes
forming inside neutron stars we can expect f-gravity to
have a decisive influence. We shall consider this situa-
tion next. '

Let us define the minimnum mass, m, of a black hole
as that mass at which a black hole will be stable (ie. in
thermodynamic equilibrium with its environment) at
some given temperature. Using egs. (2)—(5) we may
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write this minimum mass for a Schwarzschild black
hole as

my = he3f8nk G,T. (6)

A less massive black hole would have a higher tempera-
ture than its environment and would radiate away all
its energy more and more rapidly. The minimum mass
for an f-black hole would be

mg=hc3/8nk G;T, : )]
so that
mglmg=GglGp~T7X 10733 ®

This is the basis of our clzim that the minimum mass
of an f-black hole is much less than that of a g-black
hole at the same temperature.

The radius of a g-black hole (Schwarzschild) is

= 2
R, ZGg4l/c . 9
Thus, for just-stable f-black holes compared with just-
stable g-black holes we see that
Ry 2Gmgc?:  Gymg
Rg ZGgIYZg/(.‘2 Ggmg
Also, the density of the black hole is given by

=1t (10)

p=3¢c8/327G3312 . (11)
Thus for the minimum mass black hoies
3.2
pr G,m; G,
._f=_=__§=_=_~7x10—39_ (12)

Py G?m% Gy
So mini f-black holes are much less dense than mini
g-black holes.

It is interesting to consider whether f-black holes
might reproduce the Jacobs—Seitzer [6] mechanisms
with lower densities. [t should be noted that these
authors require “density spikes™ of ~7 X 1055 kg/m3
for their largest black holes (1012 kg) in an average
density of ~1018 kg/m3, their “spike density” is
thirty-eight orders of magnitude larger than the sur-
rounding density! For their smaller black holes

~10-8%g the “spike” density would be ~7 X 1095 kg/m3.

It could be expected that {-black holes would form at
much lower densities.

For f-black holes the usual ideas of collapse, based
on a long-range gravitational force cannot be used.
Instead, here we require that the matter to be collapsed
should be inside a volume of radius ~10-16 m. Fora
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single nucleon this would mean that it should be com-
pressed to a density of ~103 times the nuclear density,
ie. 102! kg/m3. For more nucleons, a proportionately
higher density would be required. It is obvious that be-
fore the density could be reached where many nucleons
would be compressed, individual nucleons would col-
lapse to f-black holes. Certainly, long before the
Jacobs—Seitzer “spike” could be reached, nucleons
would form f-black holes, at densities ~1053-1093
lower than theirs.

What could be expected to happen when the f-black
holes start forming? If the core temperature were much
below the black hole’s temperature, ~5 X 10! K, the
black hole would radiate its energy away, thereby
causing a reduction in the density. Thus, even if 103
nuclear densities were to occur in the core of the neu-
tron star, they would disappear. If the core tempera-
ture did not allow the black hole to evaporate, the
stable f-black hole would have an event horizon en-
compassing ~103 nucleons, which would presumably
also collapse forming a much larger (and hence more
stable) black hole, which would take in many more
nucleons and so collapse the whole star. We must con-
clude that this process does not occur, as neutron stars
are seen to exist. Thus, on the basis of Hawking radia-
tion and f—g theory we must conclude that either den-
sities ~ 103 nuclear densities do not occur, or the tem-
perature of the core of a neutron star is much less than
5x 101K,

Let us now briefly consider the effects of f-gravity
on black holes produced in a big-bang cosmology. We
have already shown that f-black holes of a given mass
radiate at a much fower temperature than g-black holes.
Thus, whereas a g-black hole of 10~16 kg would radiate
at a temperature of 1022 K and thus disappear instantly,
f-black holes would be stable, at a background tempera-
ture of 2.7 K. Thus very much smaller black holes pro-
duced in the big bang could be expected to survive to
this day!

4. Conclusion. We have seen that mini black holes,
which would be expected to “evaporate” by the

" Hawking process according to ordinary gravity theory,

might be “‘held together™ as it were by f-gravity. This
could be regarded as being due to a “higher potential”
through which the radiation must tunnel for the black
hole to evaporate. It would not matter whether the

" hole was formed by f-gravity processes or not — it would
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be held together by f-gravity. Thus, if f-gravity is valid
then very small black holes could exist.

The very attractive mechanisms of Jacobs and
Seitzer would have to be discarded if f—g theory holds,.
since the energy released by a few nucleons collapsing
into an f-black hole and radiating would be ~10—-10017,
which would not be adequate for any of their mecha-
nisms, except for avoiding neutron star collapse. The
extremely high “spike™ required for their mechanisms
might anyhow make their theory unlikely. If, however,
their theory can be validated, it would disprove f—g
theory.

It should be remarked that f-gravity appears to make
mini black holes much safer in that they are not likely
to evaporate with such violencz as they would if f-
gravity did not exist. This implies that we cannot hope
to see an explosion of a mini biack hole as it would
pass utterly unnoticed.

We {inally point out that whereas the radius of a
hadron is apgroximately its f-gravity Schwarzschild
radius and its f-black-hole temperature is the hadronic
temperature, it dees not, at present, appear to be feas-
ible to regard 2 hadron as an {-biack hole.

192

PHYSICS LETTERS

18 June 1979

The authors would like to thank Professor Abdus
Salam, the International Atomic Energy Agency and
UNESCO for hospitality at the International Centre
for Theoretical Physics, Trieste. One of them (W.A.S.)
gratefully acknowledges the financial support of the
Science Research Council of the UK.

References

[1] CJ. Isham, Abdus Salam and J. Strathdee, Phys. Rev.
D3 (1971) 867.
[2] Abdus Salam, Ann. N. Y. Acad. Sci. 294 (1977) 12.
(3] S.W. Hawking, Quantum gravity, eds. CJ. Isham,
R. Penrose and D. Sciama (Clarendon, Oxford, 1974).
[4] J.D. Beckenstein, Phys. Rev. D7 (1973) 2333. -
[5] A. Salam and J. Strathdee, Phys. Lett. 66B (1977) 143.

. [6] K.C. Jacobs and P.0. Seitzer, Gen. Rel. Grav. 8 (1977) 7.

{7} S.W. Hawking, Mon. Not. R. Astron: Soc. 152 (1971) 75.
[8] S.W. Hawking, Nature 248 (1974) 30.
[9] S.W. Hawking and B.J. Carr, Mon. Not. R. Astron. Soc.
168 (1974) 399.
[10] Particle Properties Data Booklet (April 1978).
(11] R. Hagedorn and U. Wombach, Nucl. Phys. B123 (1977)
382.
[12] J. Bartke etal., Nucl. Phys. B120 (1977) 14.



PHYSICAL REVIEW
LETTERS

VoLUME 44

25 FEBRUARY 1980

NuUMBER 8

Finite-Temperature Gauge-Theory Effects on Calculations of
the Cosmological Baryon Excess

M. A. Namazie
International Centre for Theoretical Physics, Trieste, Italy

W. A. Sayed
Blackelt Laboratory, Imperial College. London SW72BZ, England. @) gnd nternational Centre Jor
Theoretical Physics. Trieste, [taly )
(Received 30 November 1979}

The relevance of finite-temperature gauge~theory effects on computations of the
cosmological baryon-to-entropy ratlo is discussed.

Recently, several authors:™ have invoked an
interesting synthesis of big-bang cosmology on
the one hand and unified gauge theories on the
other to achieve a dynamical understanding of the
observed baryon-to-entropy ratio of the present
day universe. It would appear that there are
three essential ingredients to the problem of
baryon-excess generation: (a) The existence of
an epoch in the evolution of the universe during
which certain of the respective number densities
of the various species of particles present (pho-
tons, leptons, intermediate vector bosons,
quarks, and Higgs bosons) were out of thermal
equilibrium; (b) that this epoch coincided with a
CP- and C-nonconserving phase.* (c) The exis-
tence of baryon-nonconserving interactions. The
first of these (a), is largely a question of cos-
mology and statistical mechanics, while the other
requirements are met within the framework of
current grand unified models of strong and elec-
troweak interactions which predict such exotic
interactions. Evidently, the relevant epoch is
thought to have occurred at approximately 107"
sec after the initial singularity when the ambient
temperature was of the order of 10'* GeV or 10"

K. What we wish to remark is that in considering
requirement (c) it may reasonably be expected,

in view of the extremely high temperatures in-
volved, that finite-temperature gauge-theory ef-
fects play a significant role. The point of this
note is to make & rough estimate of such correc-
tions., .

Before proceeding, it is important to first dis-
tinguish the purely thermodynamic aspects of the
baryon-excess computation from the unified-
gauge-theory input. The former has been dealt
with at considerable length!™ and need not con-
cern us here., Following the procedure and nota-
tion of Weinberg® one obtains for the baryon-num-
ber—-to-entropy ratio:

kn,/s=0.13(Ny/N)AB, (n

where ¥ is the total number of particle states
with masses less than my and ¥ is the total
number of X - and X-boson states of mass m,,
while AB is the miean net baryon numboer generat-
ed in a single X or X decay.

It should be noted that the above analysis has
thus far had to do with thermodynamics and cos-

mology only, it is in the computation of the quan-
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ity AB that recourse has to be made to a particu-
lar unified gauge theory. Thus it is here that
{inite-temperature gauge-theory effects may be
2xpected to be relevant.

The main contribution to AB is thought® to come
{rom X-boson decay. Weinberg and Nanopoulos ¥

have computed the various baryon-number-non-
conserving decay amplitudes (in the zero-tempera-
ture gauge-theory limit) which contribute to AB.
To illustrate our point that a finite-temperature
gauge theory may change the estimate of a8, it
will be sufficient to consider (see Ref. 3), for-

example, X, decay only. Symbolically, one has

AB~(TrT,'T )" Y{Imf(T; &) Im!,u[(mxv),/(mxs)i]+Imf(I’i,g,) Im 1‘"’1('"“');/("1,‘3),.]

with species ¢ not the same as species j. Here,
the f's are complex functions of the various
couplings involved in the respective processes
that contribute; i, j denote various species of
bosons X, . (gauge bosons) and X ; (Higgs bosons),
and also summation over fermion and internal
symmetry indices. The important point to note is
that the only place finite-temperature corrections
would be anticipated is in the Feynman integrals,

!su.u'[(mx,,_u')z/(mxs)i } and Issl(mx,)i/(mxs)ij-

This is because, as is known,® the leading con-
tribution of nonzero temperature is to the mass
terms in the effective Lagrangian [stated differ-
ently, the effect of finite temperature can be ac-
counted for, to leading order, by replacing the
zZero-temperature mass m by an effective tem-
perature-dependent mass m(7T)].

It may be argued that since only ratios of mass-
es are involved, finite~temperature effects would
tend to cancel. However, to have a nonzero AB
in the first place, the gauge vector and Higgs
structure of the theory must be suificiently com-
plicated so as to include at least two species (see
Ref. 3 for a discussion of this point) with their
respective different couplings, etc. Thus, at
finite temperatures the numerator and denom-
inator in [my, (T)|;/lmy (7)) and [my (T)],/
[ x (T)]; might vary appreciably differently
under temperature changes for their ratio to de-
part from its zero-temperature value,

To make this quantitative let us consider a
local O(n) gauge theory with one x vector of Higgs
fields. The potential (,® -0 and is the bare
mass) is given by

V{w) == duPwiw;+ Mg, w;)2. (3)
One-loop temperature corrections can be taken
into account by working with the finite-tempera-
ture effective potential

Verrlw) = 068Dy 0= My g3, (4)
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SImf(Ty, TN ImlJ0m ), /me ) 3+ (2

—

where

pHT) = = p¥0) +5ATH2 +0) + (£T (e =-1)  (5)

for T<7,.. Here p*0) is the renormalized mass
and g is the gauge coupling.? Extrapolating to
the more complicated grand unified theory re-
sponsible for baryon-nonconserving processes,
one will obtain something like the following ex~
pression for the ratio of the temperature-depen-
dent masses discussed earlier:

[ (D, =lm e 2O ], + TN, )
{my (D, _[”[st(o)li +Tf (N, 80

where f and k are some functions of the couplings
and group theoretic parameters. Since the cou-
plings™ A, ¢, are different from 1,, g,, the finite-
temperature ratio could, in principle, be differ-
ent from the corresponding zero-temperature
ratio.

In order to see if this is likely to happen, let us
examine the ratio of finite~temperature to the
zero-temperature Higgs mass in the Q(n) exam-~
ple. This is given by

MYTY/ M¥0) = =23 T)/-2u%(0) =1 - T/ T2
T<T. (M

(6)

and the values of this ratio just below the sym-
metry restoration temperature are exhibited in
Table I,

It can be seen that one has to be extremely

TABLE . MY TY M0 as a function of T for T
=10'"" GeV.

T(GeV MATI/3%0)
10'% 0

ot 0.6
Lot 0.9

1ot 0.99
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close to the critical temperature® to obtain a
significant departure from unity. By the time
the temperature has fallen below T, by about one
order of magnitude the scalar (and gauge) field
has acquired its full zero-temperature field-
theory mass.

Assuming the same sort of qualitative behavior
to pertain for a more realistic grand unified
model, one would be tempted to conclude that
finite temperatures would not cause any substan-
tial modification; i.e., the temperature-depen-
dent corrections in Eq. (6) are negligible. How-
ever, one is prevented from doing so because,
lacking a more specific unified gauge model than
is available at present, one does not know the
precise masses of the X bosons and hence how
close in fact these masses are to the symmetry
restoration temperature T.

In this note we have contented ourselves with
pointing out the possible relevance of finite-
temperature gauge-theory effects on the baryon-
excess calculation. A less superficial treatment
than the one above does not seem to be merited
at the present juncture, in the main because the
zero-temperature gauge-theory value for &n /s
is at best determined to be in the fairiy wide
range of 1072 to 107".° QOne really has to await
a specific grand unified model vefore deciding
the issue. The burden of our remarks here has
been to suggest that, given such 2 unified gauge
model, ' finite-temperature effects should be
taken into account before deciding whether the
mechanisms proposed can really explain the
baryon-to-entropy ratio.

The authors would like to thank Professor
Abdus Salam, the International Atomic Energy
Agency, and UNESCO for hospitality at the Inter-
national Center for Theoretical Physics, Trieste,
where part of this work was performed. We are
indebted to Professor T. W, B. Kibble for a criti-
cal reading of the manuscript. The first author
wishes to thank the Scuola di Perfezionamento in
Fisica, Trieste, Italy, and in particular, Profes-
sor Luciano Fonda, for making available a fellow-
ship. This work was supported in part by the
Science Research Council of the United Kingdom.

Nole added.~—One thing to note from the above
cornsiderations is that at temperatures greater
than T, the Higgs scalars become physical mas-
sive particles with masses'! of order 2T while
all other species of particles (vector busons,
fermions, and photons) are muassless.' [t is
reasonablie then to conclude that these Higgs

scalars would be as abundant, at these early
~—

stages of the evolution of the universe,'® as pho-
tons and other massless particles. Such a pic-
ture of the universe close to ¢=0 is drastically
different from the conventional assumption that
at these early times the universe consisted only
of massless radiation.

It is intriguing to pose the question whether
such a scenario would have any cosmological
consequences which might have left some present-
day residual effects. If such were the case, one
would have independent cosmological evidence
for the existence or otherwise of the Higgs scalar.
We shall return to this point elsewhere.
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'The necessary C nonconservation may de either
hard (compiex phases are introduced into the Lagran-
gian by hand) or soft (spontaneousi. Although at temp-
eratures of 10'° GeV or so one would have expected
symmetries such as CP to have been restored, R. N.
Mohapatra and G. Senjanovié [Phys. Lett. 898, 57
(19791 have recently demonstrated that multiple phase
transitions can occur, thereby allowing CI° noncon-
servation at temperatures of order 105 GeV to he snit.
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0ne expects the symmetry to be restored at a temp-
erature 7. given approximately by p(0) divided by the
gauge coupling. At this temperature, leading contribu-
tions come from mass renormalizations; thus the
coupling-constant renormalization of A is irrelevant
for our purposes and it is taken to be renormalized
from the beginning.

TStrictly one should be working with the running,
or effective, values of these couplings at the mass
scale relevant for the energies at which the baryon
excess is produced.

8 word of warning; it should be noted that in the
perturbative framework (see Ref. 5) with which we
have treated the Of#) example, perturbation theory is
not expected to remain valid within an order of magni-
tude or so of T, . Howevcer, this inadequacy can pre-
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sumably be transcended by the use of a renormaliza-
tion~group-improved formalism,

*This value has been obtained by Weinberg and Nano-
poules (see Ref. 3) in the limit in which vector boson
contributions to scalar decay are neglected. If the
former are, in fact, included, the baryon-to-eutropy
ratio is shifted to the range 10°° to 10°*. This is to
be compared with the present experimental value of
=107,

0The strategy then would be to determine precisely
which (if any) of the X bosons are close (say within
an order of magnitude) to the symmetry restoration
temperature. I there are none such, finite-temper-
ature effects can presumably safely be ignored. How-
ever, if this is not the case, finite-temperature ef-
fects would certainly seem to be crucial. Furthermore,
in the latter event, a renormalization-group formalism
would have to be used because of the breakdown of vali-
dity of the naive perturbative approach near T,.

The finite-temperature mass of the Higgs scalar
is proportional to the product of the temperature and
the (running) coupling constants of the theory. If
asymptotic-freedom arguments persist beyond 7.,
then one may conclude that x(7') < 2T unless the non-
asymptotically-free self-couplings become extremely
large. With u{(T)<kT the Higgs secalars would cer-

tainly be copiously produced thermally.

2The masslessness of the vector bosons above Te
has been called into question by certain authors |M. B.
Kislinger and P. D. Morley, Phys. Rev. D 13, 2765
(1976)1. However, the difficulties in handling the in-
frared divergences of a non-Abelian theory renders
their conclusious suspect {see A. D. Linde, Rep. Prog.
Phys. 42, 389 (1975) for a discussiou of this point] .

The lack of a sensible field-theoretic description
at such high energies (10%<7 < 10" GeV) and in parti-
cular the absence of a satisfactory quantum theory of
gravity confine one to making only very general
speculative remarks. Having said this, it is rather
remarkable all the same the Hawking (see the Pro-
ceedings of the Marcel Grossmann Meeting, Trieste,
1979}, from completely different (topological) con-
siderations, has envisaged a primordial scenario (at
a length scale of Moyinex ') in which scalar flelds
have “induced” masses of U(Mpyanck) whereas fer-
mioas and vector bosons are effectively massless.
There is thus a highly suggestive similarity between
this and the emergent scenario from grand unified
gauge theories above 7, (in which the Higgs scalars
are not oaly the only massive particles, but also have
masses tending towards Mpiiqck a5 the temperature
rises).

Spontaneous CP Nonconservation in Theories with More Than Four Quarks

Gustavo C. Branco
Carnegie ~Mellon University, Pilisburgh, Peunsylvania 15213
(Received 8 January 1980)

It is shown that the requirements of spontaneous CP breaking and natural flavor con~
servation lead to a class of theories where CP nonconservation is due solely to Higgs
exchange, for an arbitrary number of fermion generations.

Although CP nonconservation can be easily in-
corporated in unified gauge theories, one is still
faced with the challenge of understanding the
smallness® of the violation. It has been pointed
out by Lee® and Weinberg,* that within unified
gauge theories of weak and electromagnetic inter-
actions, the Higgs bosons can provide a mecha-
nism for a naturally small CP-invariance viola-
tion. In unified gauge theories, the fermion Yu-
kawa interactions are such that Higgs-boson ex-
change leads to an effective Fermi interaction of
strength G¢ m¢*/m® (where G¢ is the Fermi
coupling constant, and »¢ and mu;, are the fermi-
on and Higgs-boson masses, respectively). Thus,
in theories where Higgs-particle exchanges are
solely responsible for CP nonconservation, the
smallness of the violation is naturally understood;
it merely reflects the fact that Higgs bosons are
much heavier® than the light fermions. It is clear
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that in order for this explanation of the size of
CP nonconservation to hold, it is necessary that
CP nonconservation arises only through Higgs-
boson exchange and from no other sector of the
theory. An example of this class of theories has
been given by Weinberg,’ in a model with four
quarks and three Higgs doublets. It is well known
that if there are only four quarks and no right-
handed currents,’ the gauge interactions of the
vector mesons automatically conserve CP. How-
ever, for three or more Higgs doublets,* CP in-
variance will be violated through Higgs-particle
exchange. In a theory with three quark doublets
(as it seems to be required by experimental evi-
dence), the situation is more complicated, since
in general the Cabibbo-like mixing matrix con-
tains a CP-nonconserving phase 4. In this case,
one loses control over the strength of CP noncon-
servation, since the phase 6 is is general arbi-

© 1980 The American Physical Society
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ABSTRACT
We consider the question of hierarchies in a simple 0(3) model
completely broken to 0(1). It is shown that the one loop upper bound to

the hierarchy is not independent of the scalar potential parameters. We

discuss higher loop effects but point out that, as at the tree level, order
of magnitude estimates can be misleading. Our analysis, which proceeds
along the Tines of Gildener, is of considerable help in determining whether,
if at all, recent arguments put forward by some authors are in contradiction

with the results of Gildener.



A large hierarchy, or the much stronger breaking of some gauge symmetries
than otﬁers, is an essential ingredient of all grand unified gauge models
incorporating spontaneous symﬁetry breaking. The latter is usually studied
at the semiclassical level where one assﬁmes that the minima of the tree-
lTevel effective potential give the true minima of the theory. It turns out
however, as was amply demonstrated in the paper of Co]eman and
E.Weinberg 1 » that radiative corrections to the tree-level potential can
drastically change the vacuum structure of a theory. Indeed, as these
authors showed, in certain cases, r;diative corrections can even be the
dominant force causing symmetry breaking.

Several other interesting results have been obtained using the jdeas
developed in ref. 1. One of the more recent is contained in a paper of

Gildener 2

who has conjectured that a superstrong hierarchial breakdown
cannot be obtained in the usual way. It is claimed that one cannot
artificially establish a gauge hierarchy of any desired magnitude by
adjusting the scalar-field parameters in the Lagrangian and using the tree-
lTevel approximation to the potential. Radiative corrections set an upper
bound on such a hierarchy which is independent of the scalar field tachyonic
masses and their self couplings.

The problem of gauge hierarchies has, more recently, been discussed by

3.4 who evidently obtain differeht results. Unfortunately,

several authors
none of these authors follow.the work of ref., 2. closely enough to allow

one to ascertain precisely where, if at all, their arguments are in
contradiction with those of ref. 2. We present in this letter the results

of an explicit investigation of this problem to the one-vector loop level
which was carried out along the lines of Gi]denerfs 2 work for the case of

an 0(3) model, which is the simplest O(N) model allowing the study of
hierarchies. Such an analysis provides interesting insight into the probiem.

Qur treatment shows clearly that although one-vector-loop corrections

provide an upper bound to the allowed hierarchy, the bound is not independent



of the scalar potential parameters. It is in fact possible to choose a
set of parameters which allows an arbitrarily large hierarchy both at the

tree and at the one-loop level.

He also point out that order of magnitude estimates of higher loop effects
used by some authors 4 can, as at the tree level, give misleading results.
Consider , for simplicity, an 0(3) mode] whiéh contains, in addition to
the gauge fie]ds_ﬂu, two scalar fields A and B which transform as vectors
under 0(3). Assuming the theory possesses the discrete symmetry A - - A,

the tree level approximation to the effective potential is

3 1 % ' 2

4% 2 * ! s
S RS AV BT S RCOES LA NSRRI,

o\

2 2

We take m, my~ > 0 to ensure that the origin is unstable and spontaneous

symmetry breaking occurs. The requirement of a hierarchy is that
A = H&/M: » 4 (2)

wnere MH and ML are the masses of the heavy and light gauge bosons. At

2

the tree level it can be shown “ that R is given by

R= %n= B(1-Fw)

b - (3)
AF3 £} W‘l
2 _ 2 .2 _ 2 . . .
where 3~ = < A >%, b™ = < B >” in the symmetric non-trivial vacuum
, = 2
Af3 = fng? - f3, and where < A > is associated with the initial stage of
m
1

the breaking. The various constraints to which the minimization is subject

then show that Afs > 0 and that R <« Zfz , where f, has been assumed to be

2
afy
greater than or equal to f] so as to maximise the tree level hierarchy.
Gildener 2 now argues that one-loop contributions to the effective

potential will set a lower bound on Af3 (which we denote by 8f3) which is

independent of the parameters appearing in (1) so that,

< lf,/sf ()

~3-



Arguing on the basis of order of magnitude estimates of one-loop

effects he further claims that

R.< l‘c’/s% << o (5)

if the gauge coupling is taken to be the electromagnetic coupling. This,
of course, implies that the upper bound on the hierarchy cannot be
transcended by adjusting the scalar potential parameters. The essential
result of this letter is to show by an explicit evaluation of §f5 that this
is not so.

To do this we repeat the above analysis for the one-loop corrected
potential but take into account only the vector loops which, for weakly
coupled scalars, are the most important.

The same problem has been treated by the authors of ref. 4. who arrive
at the final conclusion that there are no limits on gauge hierarchies due
to radiative corrections contrary to the assertions of Gildener. Qur work
seems to indicate disagreement with this last conclusion, though we too find
that the one-loop bound can be transcended.

Following Coleman and E.Weinberg 1 , we write down the ane-loop
corrections to the effective potential induced by vector particles. In the
Landau gauge these are

v, = ézmT [ e M%] (6)

where Mv2 is the vector boson mass matrix and A2 is an arbitrary renormalisation

subtraction point Explicitly,

‘4 + _ vt >
V= e bede e ke +(ﬁ+.8.)¢«..___(5;ﬁ>} )

where Ay = jf‘[ 1+3 i/A-—S )+ 4 (A )X (8)

alfm



A ] *
The new extrema are now determined. Following some tedious algebra

one arrives at the result that in the true vacuum of the theory, R is given

by (we work with A2 = < A2 > in the true vacuum).

] L'[i- i_m_J ’

af/ J[; mt | (9)
vhere / - | 4 4
A J[.,, - )E_ + ‘%’};‘ = -}?Zifc'"p )
(10)
| .
- 1qt
}; Jtz * iiiif’ ) 1)

o
Ny
i
D
gy
+
[w
as
\—F‘
[
————
~
3
(LN
)
t—
—

3
B
and L = pL. >€> 1 .
Ifg = e then éﬁi = 3a2 , and we obtain our main result that
w2 T
T
1 %L
§f, = 3.0.(.(1»1, _ 1)
3 2 \ T (13)

cmm emm emm emm e e e SR Gmm NP SR st et mmta  enS Gmmm  mmm o  omed S mmaa e mmm  Smmm E  Em S SR MR S e AR e e S e e e - —— - w—

*  We have restricted ourselves to the case < A >-< B > = 0 but it should

be noted that such a condition is more stringent than is required for the
existence of a hierarchy. Consider
V(s 2, 3) s V(A ) 51, (é‘g)z) , then at the stationary points,
ALV, + (4-8)8y v, =0
and OBV, F(A8) ALY,

1)

O

The requirement of a hierarchy demands that < A > is not parallel
to < B >. This is satisfied if
= - = or LA =
V=0, V,=0 and V;=0 7 <87=0.
For the tree-level potential the last two constraints are, of course,

jdentical, but this need not be the case for higher Tloops.

-5-



He see that the one-vector-loop contributions to the effective potential
provide a lower bound on Afg given by (8) which is not independent of the
scalar parameters. Indeed, it is possible to consistently obtain an arbitrarily
large gauge ~ hierarchy at both the tree and the one-vector-loop levels.*)
What of higher loops? Some authors 4 have argued that higher vector

Toops will be negligible if
37'}5 <! (14)

and that this, using g ~ e, "leads" to 8 <<100; And since R = exp{g}, the
higher loops do not really limit the hierarchy. e wish to point out that
such an order of magnitude estimate of the power of e is extremely dangerous.
For illustrative purposes let us return to egn.(i4) from which it is
concluded 8 << 100, Since the authors of ref. 4. (as indeed we) have been
using the results of ref. 1., if we use their definition of a (deducible
from eqn. 6.14 of ref. 1) we find that the bound on the hierarchy provided
by (k) is ~ 0(10%) rather than (10)%9:
What we wish to state simply is that without an accurate analysis of
higher loop effects a definite statement of the bound on the hierarchy

cannot be made. Thus the question of whether there is an inherent bound

on the gauge hierarchy for any particuiar model is still 2 completely open.

o

(a)

*) Assuming the f's to be O(q), we see that R ~ -—' r; arbitrary if

ES
2 3 : oy s
1 Of course, another possibility

(=)

Af3 is set to zero and choosing 2m2 m

x
is to choose Sf; = 0. which implies the less stringent constraint
3a2 M2
3+ %)= 5
- m
1
seem to be tc determine the bound imposed on the hierarchy cttainable at the

However, the point of Gildener's analysis would

tree level by contributions to the effective potential of all higher loops.
In this approach one fixes the parameters so as to give the maximum possible
hierarchy at the tree level, this being the usual practice in constructing
unified gauge models. Using these tree level constraints one then tries to
determine the bound which higher loops impose on the tree level hierarchy.
In the particular example considered here this would mean taking 2m§ ~ mf,

in addition to Af3 = Q.

6



It is worth ccmmenting, however, that had 5f3 been equal to
2

3a 2, 2 .
-E—-(Eml/m2 - 1) rather than as in (13), the upper bound on R would have been

-1 .
O(a =), since we have chosen frcm the outset to work with mi > mg. It is
deep reason for 6f3

to construct a model

interesting to pose the question whether there is any
being as in (13), If not, then it should be possible
in which the one-loop effects limit R to be O(a™T). Nothing is to be
gained, of course, by working with mg > mi‘ since what we call m,  or m,
is a matter of choice.
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Isham, Salam, and Strathdee, are obtained in the limit that weak gravity

is neglected.
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1. INTRODUCTION

The two tensor f-g theory of Isham, Salam, and Strathdee 1 was
proposed some time ago to describe the gravitational interactions of
hadrons and Teptons through a gravitational analogue of the vector meson
dominance hypothesis for hadron electrodynamics. The theory is based on
a Lagrangian principle and uses, apart from the Einstein-Hilbert expressions
for each of the two spin-2 fields, a generally covariant mixing term which
provides the analogue of the JPi-X' direct coupling between the f and g
spin-2 fields. This mixing term is also required to give the f-meson a
mass in the Tinearised limit of the theory and is, therefore, just the
generally covariant form of the well known Pauli-Fierz (P-F) expression 2
for a massive spin-2 fie]d.*

The Lagrangian density for the simple "matter-free" theory may

thus be written symbolically as

r){ag = I}EH(?PY)_*.LEH(.JC}N)-%”&FF (1)

where

Leu(s) = -5 Fr R4,
jnvolving the Newtonian coupling constant,

‘Leu(FrV):“‘;g}ﬁ R(fw) (3)
involving the strong coupling constant, and

P a'<.~
Lﬂ: —-:"'% 3) ( } q ('\> A’urls’t (4)

*  The theory is invariant under general co-ordinate transformations acting
simultaneously on both metrics. It is for this reason that a
generally covariant form of the P-F expression can be written.



involving the mass M of the massive spin-2 f meson. In the last

“p X
expression we have used <¥ “P to denote the combination { E—]-?

and g‘o(o'f:’C to denote ( § .- %P't - Tup %5__,__)
The parameters U and V appearing in (4) are constants restricted such
that their sum equals 1/2 to ensure that i; PE has the correct tensor
density weight. |
It should be pointed out, however, that the choice of the mixing
term is by no means unique. 3 Indeed, several other choices were already
suggested in ref.1. and different motivations led Salam and Strathdee 4 to
propose a model Lagrangian combining Yang-Mills fields with tensor fields
for the dynamical generation of masses of all particles invo]ved.* For
the present we shall restrict our attention to the mixing term given in (4).
With the recent discovery of spherically symmetric so]utiéns 6
to the classical field equations of f-g theory interest in the theory has
been revived and several physical applications have been proposed. It
has been suggested 7 that f—gravity black holes might represent hadrons
and that inside hadrons the geodesics associated with the f-metric may
provide a clue to understanding confinement in hadron physics. It is
also argued that Hawking radiation concepts applied to strong gravity may
provide an explanation of the thermal spectrum in ET observed in high
energy collisions. These ideas have been applied also in the context of .
f-g theory to black hole evaporation and some astrophysical situations. 8
At the same time the continuing experimental successes of both
the Salam-Weinberg Electroweak theory and the strong interaction theory

of QCD show that any successful description of the fundamental interactions

*  The work of Boulware and Daser > shows that the addition of a
P-F type mass term leads to the appearance of an additional (ghost)
scalar degree of freedom in f-g theory. Ref. 4 argqued that using
the following f-g Lagrangian v ks 2 '
- ia -'-g LEn(}pv) +L;,,(.F|-~1>+§ ‘FE&( § F’,,,' Fa .
where the F.. are the Yang-Mills field strengths, one might‘g1ve mass
to f., and the gauge fields while avoiding  the ho t



of nature must incorporate non-abelian gauge fields. It is interesting,
therefore, to couple SU(2) gauge fields to strong gravity and attempt to
obtain solutions 6f the classical field equations of the resulting theory.
In the next section we write out the complete Lagrangian we
shall use and obtain the field equations. Section 3 is devoted to
looking for solutions in the 1imit that weak gravity is neglected. In

the last section we conclude with a brief disucussion.

II  LAGRANGIAN AND FIELD EQUATIONS

Before writing the Lagrangian we shall consider, it is worth-
while giving, briefly, the physical picture employed for constructing
the Lagrangian for any given system in f-g theory - if not being clear
which metric one should use for the various fields under consideration.

The implication of the f-g hypothesis that the Einstein graviton
g, and some»mixture of the known, massive, strongly interacting, spin-2
particles represents a complete analogue of the ,fe-photon scheme in vector
meson dominance models of hadron electrodynamics is that the graviton
interacts directly with leptons, but only indirectly - through the f~g mixing
term - with hadronic matter. This idea is implemented at the Lagrangian
level by postulating that in all hadronic matter parts of the.Lagrangian
one must use the strong metric to contract indices while all leptonic
matter parts are constructed as usual with the ?’rv .

Taking the SU(2) gauge fields to belong to the hadronic world

the Lagrangian density for our system may be written as

i)l = j:ls "f‘dﬁl‘{ﬂ (5)

[N

where Lm = - _A_:ﬁ{:t“(?"? FPL\/ Fa\’) (6)

Lo ikl pk
B‘»Av - DVA\**— et Al) P‘V (7)

and Ft:v

4



L1k
where e is the gauge coupling and £l are the structure constants
for SU(2).
In (5) JL is as in (1) with

R(?[Fv): gvr Rrvro" (8)

where -

t als . i T
RkAv,\t" = ‘1\/.7',;\—‘ vie T \ T r‘vr - 'crrv,\
' (9)

'and rv,\ = lz (}\”‘( 3}\/',\""%;;1,\/’ %v;\,d‘) _(]0)

and similarly for R(f) constructed using everywhere 'FYV instead of
%PV in the last three expressions.
We obtain the field equations by requiring stationarity of the
action

S fond IL c{q.)( = 55“(3‘_“,.) - S.EH({P“’} + S|’F -+ S‘ﬁ"‘l (].I)

under infinitesimal variations of the fields appearing in the action.
The changes due to the first two terms in (11) are well known, while the

changes in SP-F and SYM are given by
— M earea d? 9 LB e
sspp = j‘( 41 CH C{X{ W “TP }‘“(oj 'H/ﬂ.,gg )+

+13«y3prvt S}FV] + lglﬁrvt g¢t‘"]§ (]2)

gl

= = TPyt
and %S“ﬂ'\ _—:-12'.5 {F(F (d ‘4~§\‘V [':(F"‘ )gk' + (]3)
s (P, —efF AP SR

where in (13) we have used the usual three-dimensional vector notation.

We may now easily write the field equations for grv ,fkv , and the



gauge fields KP :

R -7 i RU= .‘*&,L(.;_)Vqs“"[«f"(u%w}wt-rza{ra};m\ 2 e

T (14)
I T A LT R SR S B
-G (PR LB F D,
and
(FFFY), - efF BoxF =0 -

Equations-(14) and (15) may be written in the standard form

‘ t "
¥ - K
G‘ l»v - "2- Trv

if we define the g and f energy momentum tensors as

“F \.4’ U’ 3}“ arpl - "'o:«g}(s.rvfl "'}}"“’I"\

qrr;

T . M
2"\3;_

(17) -

o
3
o

.r‘

L= (5 [“’fwc o] - (1)
28

}
(PP m b Fay PP
In the next section we shall look for static spherically symmetric
solutions to these equations in the Timit that weak gravity is neglected.
We shall Teave to the discussion the question of obtaining exact

spherically symmetric solutions to the three cdup]ed set of equations

(14) and (16).

IIT  SOLUTIONS

Setting K§~’° and ¢ .= Tu, we look for solutions for fﬁv

1 *
and the gauge fields A" of the form :

S,'Pv&xl‘ulx'/: C c“'f—— 2DA~tc\Y‘- A"Lv - B(AG-&—%:&JLP ) (]9)
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The inverse of

(20)

is given by

f,,w

- . -2 e (2])
P 0 2 2 o 050075 )

Following Salam and Strathdee, we shall exchange D for A as

the choice of variable where A = AC + D2 >0 .A, B, C, D, and W are
all functions of r only. After a tedious calculation one can show that

for this choice of f,, , the only non-vanishing components of the Ricci

- 4

tensor are:
Bl = L fcts £ £ (22)
w =" Rt = 7 4 5C X
< g’ A ‘al) ., B (23)
- £ _ & _ 2ns, 2 zﬁl/.+ e
- 2 2 i ‘-‘ 5 L
z8 &

2~ l 7 ‘7 Ie/
?ezzz,ouf'e‘ZED = /-'ézf/zg + %ﬁg - é%%—
where the prime denotes differentiation with respect to r.
. W 2 .. . . ' .
Note that in the K = =01 = 4 h
in the g 0 Timit g/,‘, [/w implies that (14) is
automatically satisfied, so that we have only to consider equations (15)

and (16) with g/“v being replaced everywhere by /%yp,

The next task is to work out the various non-vanishing components

of T/‘u for ?5““= d(r" . Before doing this noti’that with our
ansatz for Af: the only non-vanishing components of F .. are
5,02 - Fer = Wi (25)

* e work in spherical polar co-ordinates so that 2§M,= diag

(1,-1,-r%,-r% sin%e )

** Since we are working in the Timit that weak gravity is neglected we shall
drop all labelling used so far to separate quantities referring to the

L Ave M Mmoo~



Using this we find that

[t is now immediately obvious from the ten equations (15) that

the (02), (03), (12), (13) and (23) component equations are automatically

satisfied.  Further, it is clear from (19) and (22) that

DGN““CCJ“::O (30)
From (15) it then follows that

-

T L)
Do+ CTouz 2p052-3)=0 (31

(]

So that either D =0 or B8 = %-rz. Salam and Strathdee 6 refer to the

Tatter as Class I and the former as Class II type solutions. We shall
consider Class I solutions with D # 0 and B = %-rz. Substituting this

into the (00),(01), (11), and (22) components equations of (15) we obtain |

2 Y e 2
= 3 ct // J-f‘—-—g_/ = £
G2z 7al7» 7T 74 700 (32)
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With _"B = ':-‘%‘/)":-' , the components of T/v become
-

- - (5 - o - 27 ~” . 2 {_’ ’2
2= fTa=-FTu= CA[E0 s 2leej]+ 2 Lw

and
- - — L}"‘q‘r’ e #'_C) ; E;r,z ‘”" 'V/’
! / [(.A ~ Pal / / 2 "Ii

Now we note from (36) that -

ATor— DT =0

Equations (33) and (34) then imply that

/
L2 a _
w7 =0

&

and since D # 0 we obtain the result that

A=A, = cow,

Let us now consider the field equations for the gauge fields ﬁ;h .

our ansatz equations (16) reduce to
W ez. 8 Jw=o
*Et

]
which, for A=z o0 gives

(rew) <o

(34)

(35)

(39)

(42)



This integrates at once to yield

Wimi= 2oy (43)

where ofb and &~ are constants of integration. Putting all this

into (32) gives the following equation for C

¢lel 2380 4 Lalow— 3 oo (44)

>

R \\\

where, for convenience we have introduced the symbols A and «> which

denote the following combinations:

A= - %f'z[_%ﬂ:.a 'ZZ—G‘!}'Z] (45)

w = £547 (46)
24,

Equation (44) can be integrated easily to give

= 34 2 . :’./ Z
Cows ’z‘.’g//“"é,/--‘f,%+l/f (47)

where //ﬁs is another arbitrary integration constant. Only A(r) remains
to be determined . For this we use the only remaining equation, viz

equation (35), which gives, after a 1little algebra,

— _ 80 /_ ¥ o, 4% 1 z) (48)
A== %= (- 5% ”‘%f;{“%wﬂ”

Along with Sg::é?/rz , equations (40), (43), (47), and (48) represent
the complete set of solutions to the classical equations of f-g theory
coupled to a strongly interacting SU(2) set of gauge fields in the absence

of weak gravity.

10—



A

IV DISCUSSION

We have obtained the analogue of the Salam-Strathdee solution 6
in the presence of a set of strongly interacting SU(Z)‘gauge fields. The
solution reduces in the absence of the gauge fields to the solutions
obtained in ref. 6. The gauge fields do introduce the extra feature
of the 12 dependence in C and the lh dependence in A.

’ Salam and Strathdee 9 haCe shown by studying the Klein-Gordon
equation in the f.» background found by them that a scalar hadron is
confined. It would be interesting to see what modifications occur to
this picture when we use the solution for fuv we have found as the
background. Particularly interesting would be the changes in the energy
levels and wave-functions obtained by Salam and Strathdee 3 for their
case.

One might also attempt to obtain the exact solutions taking
into account the effects of weak gravity in the manner of Isham and Storey.6
It is simple enough to supplement (19) and (20) with an ansatz for g pv

of the form:
‘(}'t“ dxfdx¥ = :j_cU:A—- Kdeo & (_0\9’.-1— S«'wz@ d (.{)L)

and attempt to solve the complete set of equations (14) - (16). A
preliminary effort in this direction does, however, seem to indicate that
the ansatz for f,, g,, . and A;, we have used is not consistent with
the field equations. This would suggest that exact spherically symmetric
solutions to the complete set of equations do not exist. This peculiar
situation seems to arise from the fact that whereas hadrons contribute

to T';v their presence is not felt at all by the 9 v part of the field
equations. In the case of the "matter-free" theory, of course, the f-g
mixing term contributed to both T'f, and T g, in such a manner as
to allow a consistent spherically symmetric ansatz which permitted an

exact spherically symmetric solution.

=17 -



We have already mentioned that it might be worthwhile looking
at another Lagrangian proposed in ref. 4. which combines Yang-Mills
fields with f-g theory in a different manner to that considered in this paper.
It +turns out that +this Lagrangian does not suffer from the problem
mentioned above - at least insofar as the gauge fields are concerned.
It may be possible, therefore, to obtain exact spherically symmetric
solutions in this case. We hope'to be able to consider this problem

in the future.
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Some interesting consequences of the effects of gravitation and
finite temperature on quantum field theory are presented which have
important implications for experimental high energy physics and the
status of the '"No-Hair'' Conjecture for black holes. We point out
two consequences for laboratory situations in high energy physics
which disfzrove the usual assertion that quantum gravitational effects
are only important at planckian energies. The first of these is that
beams of particles in circular accelerators cannot be cooled to below
a certain temperature determined simply by the acéelerator’s radius,
while the second shows that spontaneously broken gauge symmetries
may be restored by quantum gravitational effects. We end by describing
briefly circumstances under which these effects might have a bearing

on the '"No-Hair'' conjecture.



Two paré.llel sets of investigations have been carried out in
the last few years to study the effects of gravitation and temperature
on quantum field theory. One set of investigations initiated by
Khirznits and Linde(l) has considered what happens when a system of
particles described by a spontaneously broken local gauge invariant
quantum field theory is placed in a heat bath or strong electric or
magnetic fields(z). The authors of refs. (1) and (2) have found that
gauge symmetries which are spontaneously broken at zero temperature
via the Higgs-Kibble mechanism (for example, those of the Salam-
Weinberg electroweak theory) may be restored at sufficiently high
temperatures, or in sufficiently strong electric or magnetic environ-
ments, and they have calculated the critical temperatures and fields

at which such restoration would take place.

The basic idea of this approach is that at finite temperatures
(or field strengths) the effective potential of the theory picks up terms
of the type +'I'2;52 (where T is the temperature and ¢ is the Higgs-
Kibble scalar field). For sufficiently high temperatures, this term
becomes larger than the negative (mass)z;é2 term which drives the
symmetry breaking in the zero temperature theory. As a consequence,
the scalar field 4 becomes a real physical particle degree of freedom

and the symmetry is restored.
(3)

carried out a study of the effects of gravitation and space-time topology

Parallel to the study of these effects, several authors have
on quantum field theory. A number of interesting results have been
obtained but the two which concern us in this essay are outlined below.
Firstly, it has been shown that an observer accelerating uniformly
through empty Minkowski space-time appears to find himself in a heat
bath at a temperature given by

_ha -20

T = rR e ~ 10 a Kelvin (1)

where ‘F\ is Planck's constant, a is the acceleration, k is Boltzmann's

constant and c is the velocity of light.



In order to illustrate this let us consider a uniformly accelerating
observer in Minkowski space-time. If we assume that an inertial
observer and the accelerating observer use the same transition ampli-
tudes to describe objectively the same processes, it can be shown that
the free Feynman propagator for the inertial observer, when trans-
lated into the accelerating observer's frame, is identical with that
of a free finite temperature propagator with the relationship between

the acceleration and the temperature being that given by (1).

This result can be understood on the basis of quantum gravita-
tional effects (through non-simply connected topologies) in flat Min-
kowski space-time. To try and understand how this arises, let us
use coordinates (t,x,y,z) and (T , ‘& , ¥, 2z) to describe the inertial
and accelerating observers respectively. If, for simplicity, we assume
that the accelerating observer moves in the ('C','g ) plane with a con-
stant uniform acceleration a, then his world-line is given by the hyper-
bola '8 = i with asymptotes 'i = 0. The coordinate transformation

from the inertial to the accelerating observer's frame reads

x="g,coshat., t=‘ssinha'c.

In contrast to the inertial observer, the accelerating observer
has a very restricted range of vision. The surface x = | t| forms an
event horizon, and any signals sent from the origin O, after t = 0 never
reach the accelerating observer. It is the existence of this event hori-
zon which causes the space-time to seem multiply connected when the
two observers translate themselves into euclidean coordinates
(t = it, T —>iT ) with periodic complex time coordinates, and leads to

the above-mentioned thermal effect.

Secondly, by considering quantum fields in the exterior region
of a black-hole, Hawking has shown that when a star collapses to a
black-hole, the formation of the event horizon around the singularity
enables the black-hole to absorb one of a pair of virtual particles
created just outside the horizon, thus leaving its partner, which is now

a real particle, free to travel to an arbitrarily large affine distance



from the horizon. This continuous process is observed asymptotically
as a net flux of radiation, and after all transient effects which arise
during the collapse die out, the left-over radiation has been shown to

be that which would be produced by a hot body at a temperature given by

K

2wce

kT = (2)
where K is the surface gravity of the black-hole. Thus, a black-hole

can be considered to be a black-body radiating at a temperature T
given by (2).

Both the above results may be understood mathematically by
noting that spacetimes with event horizons are periodic in an appropriate
time coordinate with an imaginary period. The Green's functions of
a quantum field theory in such a spacetime are, therefore, also periodic
in imaginary time. Coupled with the observation that the thermal
Green's functions of a field theory at a finite temperature T also possess
this property, one arrives at the result that field theories in spacetimes
with event horizons may be considered to be in thermal equilibrium at

some finite temperature.

All that follows is based essentially on the intrerplay between the
various effects we have discussed briefly above. We will now describe

a couple of laboratory situations in which it might be possible to detect

effects of quantum gravitation.

The first observation we wish to make concerns the recent
attempts being made at CERN and other high energy particle physics
laboratories to cool particle beams in accelerators. We shall show
that equation (1) implies a lower bound to the extent to which such a
cooling can be achieved. It is clear that a bunch of relativistic elemen-
tary particles going round at a constant velocity v(a c, the velocity of
light) in a circular accelerator of radius r experience a uniform
acceleration a, given by

2
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We see, therefore, that such a bunch of relativistic elementary
particles would find themselves in a heat bath at temperature

T ~fic/27kr. Since this temperature is due simply to their accele-
ration, it would be impossible for accelerator beams to be cooled to
temperatures below this lower bound. This bound does not apply, of

course, to linear accelerators.

In order to remove any doubts as to whether such effects are
''real'', it would perhaps be helpful to show that such observer depen-
dent effects are already very familiar. Indeed, it is only natural to
expect such observer dependent effects in general relativity when one
remembers that in special relativity one has a similar situation
arising due to the effect of time dilation. This is illustrated beauti-
fully by the experimental verification of time dilation effects :chrough
measurement of the lifetimes of a p-meson at rest, and in motion in
the laboratory. The results of such experiments show clearly that
a p-meson that is stationary in the laboratory decays at a much faster
rate than one which is travelling at a speed reasonably close to that of
light. This observer dependence arises in special relativity through
requiring equivalence of all inertial observers. In cont:.;ast, general
relativity requires equivalence of all observers, inertial and non-
inertial, and thus gives rise to the effects we are considering in this

essay.

The second effect that we shall now discuss concerns the concept
of symmetry restoration, which we have outlined earlier, but with the
added significance that the restoration will now be due to quantum
gravitational effects. Let us consider the situation illustrated

schematically in Fig. 1.

If we introduce a set of relativistic, charged particles, the
interactions of which are described by a spontaneously broken gauge
theory, into a region containing an extremely high magnetic field,
then they will all experience an acceleration, a, perpendicular to the
plane defined by the directions of B and v, the velocity of the particles,

given by



v x B,

a=2 v
where q and m are the charge and mass of the particle respectively.
Assuming that v is perpendicular to B and is close to ¢ in magnitude,
we obtain for a the value a2 S?Cné. However, equation (1) tells |
us that such a2 bunch of particles will experience a heat bath of

temperature

= 2rkm 2k’ m °

Assuming, for simplicity, that such a bunch of particles is composed
of electrons, we obtain the result thata 2o 5 x 1019 B. So that the

temperature for this set of electrons would be T 22 0.5 B.

Now, if one combines this information with the knowledge that
the symmetry of the Salam-Weinberg theory is restored at temperatures
of O(lOlS) Kelvin, we see that magnetic fields of strength around 1015
Tesla would suffice for restoring the Salam-Weinberg theory.
Comparison of the data obtained from an experiment of the type
illustrated in Fig. 1 in the presence and absence of B would allow us
to determine whether such a restoration has taken place, and whether
the accelerating observer does indeed see a heat bath at temperature T
given by (1) much as the observations of the lifetime of the p-meson
allowed us to vindicate the time-dilation effect of special relativity.

It is encouraging to note that experiments involving such strong fields

have already been suggested by Salam and Strathdee in ref. 2.

We will now go on to study the possible relationship of the effects
described above to the '"No-Hair'"' Conjeci:ure5 for black-holes. It
will be shown that they allow a possible mechanism for transcending
the ''"No-Hair'' Conjecturein the quantum regime. For this purpose,
let us consider a black-hole in thermal equilibrium with a heat bath at
temperature T, and let us introduce into the heat bath a system of
particles interacting through some spontaneously broken gauge fields,

e. g. SU(2) x U(1), while maintaining thermal equilibriu.m4. This means



that if the mass of the black-hole is sufficiently small, the corres-
ponding temperature will be sufficiently large to allow the initial
spontaneously broken gauge symmetry to be restored and the corres-
ponding gauge fields become long range due to their masslessness.
We further obtain conserved charges, apart from those associated
with electromagnetism. This means that the interacting particles
we are considering will have associated with them conserved gauge
charges and the corresponding Gaussvlaw for the system. The exis-
tence of Gauss' law immediately raises the possibility for the black-
hole to carry the gauge charge if the system of interacting particles
falls through its event horizon. Let us take the example of

SU(2) x U(1). The restoration temperature for this gauge group is

~ 1015 Kelvin. Taking the black-hole to be of the Schwarzschild

type, the mass can be found from (2) to be A 108 kg. So as longas
the interacting particles have Compton wavelengths less than the size
of the black-hole (i. e. its Schwarzschild radius), the possibility of

transcending the ''No-Hair'' Conjecture exists.

it is known6 that small primordial black-holes possibly formed
by fluctuations in the early universe, with masses A 101l kg, would
just decay away through Hawking radiation (with a characteristic
spectrum) within the present age of the universe. It is found7 that
for electrically charged primordial black-holes, fluctuations in the
charge will cause the average emission rate for charged particles to
be lower than that for similar uncharged particles. Coupled with the
arguments presented above for the transcendance of the '"No-Hair!'!

Conjecture, it is clear that the emission rate will be further reduced

(after the mass of the black-hole reaches ~ lO8 kg) due to the accumu-

lation and subsequent fluctuations of the new gauge charges acquired
by the decaying black-hole. This, we suggest, will lead primordial
black-holes not to an explosive death but rather to a slow, ''quiet''

death.

So we see that in principle it is possible to transcend the ''No-

Hair'* Conjecture. However, it remains to be seen if the arguments



can be extended to more realistic situations, as in stellar collapse,

for example to form a black-hole.
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Fig. 1

Schematic experiment to demonstrate symmetry restoration
through acceleration a.nd.temperature effects. The shaded
region contains a magnetic field directed perpendicular to the
pPlane of the paper. For large B , the motion of particles
entering the shaded region will be confined to it and subsequent

decay products are observed by detectors.



