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GRAVITATIONAL AND GAUGE INTERACTIONS  

WASEEM AHMAD SAYED  

ABSTRACT 

Some aspects of the gravitational and gauge interactions are 

studied with a particular view to their generalisation. After a brief 

review of the conventional descriptions of these interactions attention is 

first focused on the Lagrangian for torsion-containing extensions of the 

general theory of relativity. It is shown that the general structure of 

metric-torsion theories allows a parity-violating contribution to the 

complete action which is linear in the curvature and vanishes identically 

in the absence of torsion. The resulting action involves, apart from the 

Newtonian constant, an extra coupling which governs the strength of the 

predicted parity non-conserving 'interactions' mediated by torsion. This 

theory is then studied in the presence of a Proca field and shown to lead 

to a parity-violating term in the field equations in contrast to the 

Einstein-Cartan-Sciama-Kibble theory. 

The problem of coupling torsion to gauge fields in such a manner 

as to retain gauge invariance is considered next. It is shown that by 

modifying the Yang-Mills-Shaw field strength and using a generalisation 

of the minimal coupling procedure allows a simple but non-trivial type of 

dynamic torsion to couple to all gauge fields in a consistent manner. 

This allows, for the first time, a framework in which no spinning particle 

is required to be exempted from both generating and reacting to torsion. 

Apart from the introduction of a new scalar field, one may view the two 

modifications as being the replacement of all gauge couplings everywhere 

by space-time dependent gauge couplings. 
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CHAPTER ONE  

INTRODUCTION 

He who attempts to deal with questions of natural science 

without the help of geometry is attempting the infeasible, 

{Galileo, Dialogues Concerning Two New Sciences, Ch.VII} 
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1.1 	MOTIVATION 

At the macroscopic level the general theory of relativity 

appears to describe gravitational phenomena very well, while on the micro-

scopic scale the theories of quantum electrodynamics(QED), the SU(2)xU(1) 

electroweak unification scheme, and the SU(3) quantum chromodynamics 

scheme for strong interactions have attained great successes. Although 

each of these theories is built upon several important and distinct 

physical assumptions, the central idea in each case is the assumption 

that the laws being formulated to describe the particular interactions 

under study are invariant under some given set of transformations which 

form a group. 

In the former case of general relativity the assumed invariance 

is the largest and requires that the theory be invariant under general 

co-ordinate transformations of the assumed four-dimensional Riemannian 

structure of space-time, while in the latter case of various gauge 

theories, the laws governing QED and electronuclear phenomena are taken 

to be invariant under a set of local space-time dependent gauge transfor-

mations acting in appropriately chosen internal spaces. 

It is hardly necessary to even outline the experimental 

successes of these theories, suffice it to say that the ideas of general 

coordinate and gauge invariance have to date attained such a large measure 

of experimental support that their detailed study becomes imperative. 

This thesis is, therefore, devoted to the study of some aspects of these 

theories which we now describe briefly. 
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1.2 	SUMMARY OF CONTENTS 

In particular, we shall be concerned in this thesis with 

problems related to torsion-containing generalisations of Einstein's 

general theory of relativity and to problems which arise when we try to 

couple such theories to gauge fields. The next two brief chapters are, 

therefore, concerned with the presentation of those essential elements of 

these theories which we shall need later. Of course, it is not the 

purpose of these chapters to give sufficient material to enable the 

reader to master the subjects of gauge theories and extensions of the 

general theory of relativity: a basic knowledge of tensor analysis and 

group theory is assumed. 

In chapter four we consider the choice of the Lagrangian which 

is generally used for the Einstein-Cartan-Sciama-Kibble(ECSK) theory, 

viz. the curvature scalar constructed out of the asymmetric connection on 

which this theory is based. This connection contains, apart from the 

symmetric Christoffel part, an additional term called the contorsion 

which is constructed from the antisymmetric part of the full connection. 

The work carried out in this chapter shows that the traditional require-

ments for determining the action do not in fact single out the convention-

al choice and that an extra contribution, involving the pseudo-tensor 

density 
cuvas,  still linear in the curvature is allowed. The analogue 

of the additional term that we motivate has been considered in the past 

for the pure Einstein theory but is known there to vanish identically — 

leaving the standard choice of the Lagrangian for Einstein's theory as 

the unique candidate upto the addition of a cosmical term. The general-

ised action we propose does, therefore, involve, apart from the Newtonian 

constant, an additional coupling parameter which governs the strength of 

the new 'interactions'. 

It is worth pointing out, however, that the new term cannot on 



its own, be used to provide an adequate description of the gravitational 

interactions since this term is not capable of providing the dynamics 

for the metric and, being a pseudoscalar, is parity violating, whereas 

the classically observed gravitational phenomena are parity conserving. 

The new Lagrangian still only involves torsion in an algebraic form 

since it does not contain any terms involving derivatives of the torsion 

(once some divergences have been removed) as indeed must be the case for 

all theories based on Lagrangians linear in the curvature tensor. One 

consequence of this is that torsion again vanishes by virtue of the 

field equations in the absence of matter as is the case for the. ECS( 

theory. 

H8'ever, if we accept the view that torsion is the geometrical 

analogue of spin just as curvature 'represents' mass and if we accept that 

gravitation is due to a spin-two particle, then we may reasonably demand 

that some form of dynamic torsion be present even in the absence of 

matter. This 'vacuum torsion' would then, in some sense, represent the 

torsional effects due to the spin-two nature of gravitation. 

We consider possible ways of achieving this within the confines 

of a linear curvature theory and are led to examine a very restricted 

but dynamic form of torsion generated by a scalar field which makes an 

appearence also in the next chapter where it is argued to arise from a 

completely different point of view. 

In the concluding section of this chapter we go on to give an 

example of a situation where the Lagrangian we propose can give rise to 

new effects not present in the ECSK theory. The example we consider 

shows that when our theory is analysed in the presence of the Proca 

field new parity violating terms arise in the field equations which 

would be absent for the similar situation in the ECSK theory. 

The new feature of these generalised theories which disting-

uishes them from Einstein's theory is that they are, as already stated, 

11 
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based on an asymmetric torsion containing connection. The physical inter-

pretation of the new contribution is tied up with the spin angular 

momentum of matter and it is argued that just as mass, or more correctly 

the energy-momentum tensor of matter, gives rise to the gravitational 

field in Einstein's theory based on the Riemannian structure of space- 

time, the spin angular momentum of matter should be the source of the 

non-Riemannian aspects of the theory based on the torsion containing 

connection. 

A natural consequence of adopting this interpretation is that 

all spinning matter should couple to the torsion field of this theory. 

It turns out, however, as will be explicitly demonstrated in chapter five, 

that no gauge fields can be coupled to theories containing torsion in 

the usual manner of coupling matter to gravity theories without at the 

same time losing the gauge invariance of the original theory. 

The problem that we tackle in chapter five is then to search 

for a way in which this deficiency can be overcome, thereby allowing us 

to maintain the standard interpretation of torsion and at the same 

time keeping gauge invariance. The method which allows us to do this 

does, however, require the generalisation of the usual concept of minim-

ally coupling gauge fields to 'charged' matter fields and a slight 

modification of the Yang-Mills-Shaw field strength. 

Two interesting consequences of the theory which emerges are: 

(1) 	That all gauge couplings of nature become space-time dependent; 

That torsion enters the theory in the very restricted but 

dynamic form that we motivate in chapter four. 

A more detailed treatment of all this will be given in chapter 

five. 

The recurrence of this particular type of dynamic torsion leads 

us to wonder whether it plays any fundamental role in nature and whether 

there are any experimental consequences of such torsion. This question 



has been examined for the case of the work of chapter five for the 

abelian case in the literature. We discuss these results and several 

other possible lines of further research suggested by the work of 

chapters four and five in the penultimate chapter. 

The thesis ends on a rather optimistic note in the final very 

brief chapter where we record some speculative remarks provoked by the 

work detailed in the body of the thesis and some other, not altogether 

unrelated work attached as subsidiary material at the end of the thesis. 

13 
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THE GRAVITATIONAL INTERACTION  

14 

From the absolute to nothing absolutely 



15 

2.1 	EINSTEIN'S GENERAL THEORY OF RELATIVITY /F1/ 

Einstein's general theory of relativity/1-9/ is a theory of 

gravitation as fundamentally different from the Newtonian theory as it is 

possible to conceive. It abolishes the central idea of forces on which 

the extremely successful structure of Newton's theory rests. Instead it 

explains the observed phenomena of gravitation to an even greater degree 

of accuracy than the theory of Newton through geometrical means by 

providing a dynamical understanding of the structure of space-time.. 

The fundamental object with which Einstein's theory operates 

is the metric guy (the components of which we shall refer to as the 

gravitational fields) of the assumed four dimensional Riemannian structure 

of space-time. Any point of this space-time model is labelled by real 

co-ordinates x 1, with p = 0,1,2,3, where 0 refers to the time co-ordinate 

and 1,2,3, refer to the space co-ordinates. The theory further assumes: 

(1) 	The equivalence of all four-dimensional systems of co-ordinates 

obtained from any one of them by an arbitrary general co-

ordinate transformation, and 

(ii) 	That the four-dimensional continuum has a metrical connection 

impressed upon it. 

The meaning of the latter requirement is that at every point a 

certain quadratic form of the co-ordinate differntials, 

g
uv
dxudx~, 

called the square of the interval between the two points in question, 

has a fundamental meaning invariant under the aforesaid transformations. 

This last requirement determines the connection of this theory 

to be the so-called Christoffel connection which depends on the metric 

gum as follows: 

{MV} _ 'zg~o(gQu~~ + gov,p - guv,Q) (2.1.1) 



where a comma denotes partial differentiation, thus 

gap,v = agQu/ax
v . 

In order to obtain the dynamics for the gravitational fields 

from a least action principle which obeys the requirements of general co-

ordinate invariance and is such as to yield the Newtonian results in 

some limit it is necessary first to construct a tensor out of the metric 

tensor and its first and second derivatives which is also linear in the 

second derivatives of g .Remembering that the Christoffel connection has 
uv 

the following transformation law 

{ l}  e 
= 
ax ax 'P ax '6 { T}' 	axa ,2 ,T 

uv 	
9x,T9xu 31c.9Pa 	ax'T axu axv 

(2.1.2) 

it is easy to show that the only such tensor is the Riemann Christoffel 

tensor 

- Ruvao({}) = {va},u 	{ua}
~v + {u°~}{vā} - {v~}{u~}. 	(2.1.3) 

Having obtained this tensor it is straightforward to see that 

the following action for gravitation yields the desired field equations 

for g 	by requiring stationarity under infinitesimal variations in the 

metric tensor: 

IG -  1611-GN 
R({}) d4x . (2.1.4) 

Here g denotes det g 	G is the Newtonian coupling constant 
uv, N 

and R({}) = gvX guo RuvXa({}), is the Ricci curvature scalar. It.will be 

useful to record here some of the formulae needed in the derivation of 

the field equations for g uv. 

From the definition of the curvature scalar R({}) it follows 

that 

d(V:i R({})) = S(Vg) R({}) + V SgvaRva
({}) + 	gvX SR X({}) 

(2.1.5) 
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and 

pa 

S 	= z1:g guv  Sguv  , 

SQuv _ - gup gva Sg 0 

(2.1.6) 

(2.1.7) 

where Rvx({}) is the Ricci tensor. It is an old established result that 

the last term in (2.1.5) can be expressed as a pure divergence and there-

fore drops out when we integrate over all space. Using now the results: 

17 

we finally obtain 

SIG 
	167G f Vg ( Ruv({}) - iguv  R({}) ) Sguv  d4x:. 

N 

If the total action IT  is written as 

(2.1.8) 

IT  = IM  + IG 	(2.1.9) 

and if we define the matter energy momentum tensor through 

• IM  = i f d4x V g Tuv  Sguv  (2.1.10) 

then we may obtain the complete set of Einstein's field equations: 

Ruv - 	guvR({}) - 87GN Tuv = 0 . 	(2.1.11) 

So much for the material we shall later need to be familiar 

with from Einstein's theory. The next section of this chapter contains 

an equally brief account of the ECSK theory. 
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2.2 	THE ECSK THEORY 

When we venture forth into the microphysical realm of, 

matter, we find that spin angular momentum also comes 

into play ... The hypothesis is near at hand that 

spin angular momentum is the source of a field too, 

in fact the source of a gravitational field 114/. 

The basic reason behind all attempts to generalise the theory 

of Einstein has been summed up beautifully by Schrodinger /3/ which we 

now paraphrase slightly: Of the two principles on which Einstein's theory 

is based, the second - the adoption of a metrical connection straight 

away - does not seem to be the simplest way of obtaining it. The reason 

for this is that the concepts on which this theory hinges such as 

invariant differentiation, Riemann-Christoffel tensor, curvature, variat-

ional principle etc. are not at all peculiar to the metrical connection. 

Indeed, they come in in a much simpler way when one only introduces as 

much of a connection as the idea of differentiation calls out for in view 

of the general co-ordinate invariance one has admitted. This is the so-

called affine connection and leads to theories based on this more general 

connection inaugurated by Weyl as early as 1918 /10/ . 

As a digression it is amusing to note that it was in this 1918 

work of Weyl that the first local gauge invariance principle was suggested 

and amazingly enough it was introduced as an addition to Einstein's 

theory in an attempt to obtain geometrical unification of electromagnetism 

and gravitation. It should be mentioned, of course, that Weyl's attempted 

unification failed as it led to deductions in contradiction with 

experiment /F2/. The idea of gauge invariance here introduced, and from 

where it derives its name, was revived a decade or so later /11/ by Weyl 

himself, after the advent of quantum mechanics in the form of a U(1) 

gauge - a_locally space-time dependent phase factor for charged fields - 



instead of scale invariance. This abstract 'internal' gauge invariance 

was Weyl's second and much more successful definition. However, it was 

the generalisation to the non-abelian case, exactly a quarter of a 

century later, by Yang, Mills, and Shaw /12-13/ which led to gauge unifi-

cation schemes so popular today. A more complete discussion of gauge 

theories will be relevant in the next chapter. 

We return to the discussion of the ECSK theory. This theory 

/14/ differs from that of Einstein in that it employs, apart from the 

metric tensor g , an extra set of 24 independent fields which arise in 

the theory on giving up the purely symmetric Christoffel connection. The 

asymmetric connection ruv contains an antisymmetric part called the 

torsion, 

19 

suvA  = 	( ruvA  - rvuX  ) 

which is antisymmetric in its first two indices. 

The full connection may be decomposed /E3/ upon imposition of 

the requirement of metricity, i.e. the requirement that space-time be 

locally Minkowskian, into, 

A 	A 	A 
ruv = 

{Uv} - 
Kuv (2.2.3) 

where K A 
uv 	

the contorsion tensor depends on the metric and the 

torsion in the following manner: 

K 
A
= -S 

A
+S 

A  - S A  
uv 	uv 	v u 	uv 

(2.2.4) 

(2.2.5) 

and is antisymmetric in its last two indices. The extra 24 independent 

fields of this theory may be identified with either of the two 24-compo- 

A 	A  nent tensors S 	or K 	. 
uv 	uv 



A simple proof of (2.2.3) follows. Metricity implies that 

pv,P = 
0 	(2.2.6) 

i.e. 
a 	a 

guv,P - rPU gav - rpv gua = 0 . 	(2.2.7) 

We can obtain the following two equations from this by permutation: 

20 

and 

a 	a  
gvP,u 

- 
rpv 

gap - 
rpp gva 

_ 
- 0 

a 	a 
gpp,v 

- rvp gap - 
r
vp gpa = 0 . 

Adding (2.2.8) and (2.2.9) and subtracting (2.2.7) from the result 

yields, 

—r a 	a —r 
	

- r a 
gvp,p pu,v guv,p pv g 	vp 

 
g 
	pp gva

- 

	

- rvpa ga~~ + rpva g
ap + rpua gvct 	

0 	(2.2.10) 

The last six terms can be written in terms of torsion and the symmetric 

part of r as follows: 

s 
- 2 gap r 	— 2 gva Supa 	

2 gap Svpa 	(2.2.11) 

where 
$ 

rpva = z (
r pva + rvpa) . 

Multiplying (2.2.10) by igsp we obtain 

P s a 	s 	a {pv} - rpv - Sp v — Sv p = o. 

(2.2.12) 

(2.2.13) 

Adding and subtracting an antisymmetric part of the connection to this 

equation gives, 

s s 	s 	s 	s 	s 	a {uv} — r
pv 

— S
pv 

+ S
pv 

— Sp 
v 	

v p — S 	= 0 	(2.2.14) 

However, the second and the third terms together are just - rpv8 , so 



that we finally obtain the desired result that 

a 	a 	a 	a 	a r 	= {uv} + suv — sV 
u 
+ s uv . (2.2.15) 

As before, we must now construct an action which can provide 

the dynamics for gravity. For this purpose the usual choice is to work 

with the curvature tensor R
uvla (r) which has the same form in terms of 

r as the Riemann-Christoffel tensor has in terms of the Christoffel 

symbols {} ; 

R o(r) = r 6 - r v + r o r C r- 	a r T 
}1VJ1 	 VO ,jl 	IAĀ ~V 	uT 	vA 	VT 	IA 

	 (2.2.16) 

The action used conventionally for obtaining the field equations of this 

theory is then taken to be, 

IECSK 
_ 

16TrGN f 
1/-g R(r) d4x , (2.2.17) 

where now the curvature scalar is the one obtained by contracting RuVAa(r). 

It is worth pointing out here that this action does not involve 

any extra couplings apart from the Newtonian constant. It is a simple 

enough matter once again to derive the field equations for this theory. 

The only extra work needed over and above that needed ti) overcome the 

complications of the Einstein case is due to the variation of either the 

torsion or the contortion fields to obtain their field equations, though 

the techniques remain the same. 

In the next chapter we shall go on to give a brief introduction 

to gauge theories. 

22 
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3.1 	ABELIAN GAUGE INVARIANCE  /F4/ 

In the last chapter we have outlined Einstein's description of 

the phenomena of gravitation. We saw there that a successful description 

of the effects of gravity was obtained by ascribing them to the geometri-

cal structure of space-time. The dynamics of this structure then 

determined the laws of gravitation in a manner precisely dictated by the 

requirements of general co-ordinate invariance. 

In the present chapter we shall be concerned with invariances 

not altogether dissimilar to those of Einstein, the only difference 

being that now we shall ascribe the new interactions, called gauge inter-

actions, to the geometrical structure of appropriately defined internal 

spaces. At present it is believed that there are four fundamental inter-

actions in nature. In order of increasing strength these are the 

gravitational, the weak, the electromagnetic, and the strong interactions. 

With the recent successes of the electroweak unification scheme of Salam 

and Weinberg on the one hand and the very encouraging though as yet only 

qualitative successes of the quantum chromodynamics model of the strong 

interactions on the other it is now widely accepted that the last three 

of these interactions can be successfully comprehended within the frame-

work of gauge theories, while the theory of general relativity is, at 

present, the best candidate for the gravitational interaction. In view 

of the fact that all these interactions can be described in a 

'geometrical' framework it becomes clear how very prophetic were the words of 

Galileo quoted earlier that an adequate description of the workings of 

nature is impossible without the aid of geometry. 

In the present section we shall show how the laws of electro-

dynamics arise as a consequence of assuming a local abelian U(1) gauge 

invariance. This procedure shall then be generalised to non-abelian 

gauge groups in the second section of this chapter /15/ . 



For the purposes of illustrating the basic concepts of gauge 

theories let us start by considering a set of fields 	; the dynamics of 

which are determined by a Lagrange density which depends on and 8 	: 

L(a , a0.Suppose that each field (Di  has charge q. (in units of e the 

electron charge). Then define a group of transformations on the fields 

by 

0i (x) -} exp (-i qi A  ) yx) , 	(3.1.1) 

where A is a constant. This 	group is the group of unitary trans- 

formations in one dimension U(1). 

It is not hard to see that L must be invariant under these 

transformations. Every term in L is a product of the fields (I)
1 
 .... (1)

n  

Under the above transformation this term goes to 

exp (-i(ql  + (12 + . + qn)A) (1). ... (I)n  (3.1.2) 

but charge conservation requires that L be neutral; therefore the sum 

q1 +q2 + .. . + q
n  must vanish so that all such terms are invariant. 

However, some terms in L contain derivatives of the fields as well as the 

fields themselves. Nevertheless, since A is independent of x, 

B . -} exp (-i q. A )B . 	(3.1.3) 

as well so that these terms are also invariant. The infinitesimal form 

of (3.1.1) is 

ō1)i  = -iA q. 13. , 	 (3.1.4) 

where A is an arbitrary infinitesimal parameter. 

It is well known, however, that electrodynamics possesses a 

symmetry larger than global(A not function of x) transformations of the 

above type. Indeed invariance is maintained under the much larger set 

of transformations obtained by allowing A in (3.1.1) to be space-time 

24 



dependent. The invariance is much larger, not because we have enlarged 

the rank of the group, but because we have assumed that there is a U(1) 

invariance at each point of space-time whereas before we had a single 

global U(1). The finite and the infinitesimal form of these new local 

gauge transformations are, of course, just the expressions (3.1.1) and 

(3.1.4) where A is allowed to be a space-time dependent function. 

Now we note that although the terms in the Lagrangian which 

depend only on the fields are once again invariant, terms involving the 

derivatives of the fields, such as the kinetic energy term, need to be 

cosidered a little more carefully since a o. no longer transforms as 0i. 

Indeed 3u0i  transforms to 

9 0. } exp(-igi  A(x) ) 3 0i  - iq.(3 A(x))exp(-iq. A(x)) 0i  . 

(3.1.5) 

The second term in this expression is the difference between the way the 

derivative of 0. and 0. transform. Note, however, that the Lagrangian 

will be invariant only if it is a product of terms all of which transform 

like (3.1.1) with the sum of qi  vanishing. 

This is achieved in electrodynamics by introducing the photon 

field according to the rule of minimal coupling which is an operator form 

of the classical p -} p - eA transformation which takes us from 

classical mechanics to classical electrodynamics of charged particles. 

This rule requires that a derivative of the charged field appear in the 

Lagrangian only in conjunction with the photon field Au  , in the 

combination (a - ie q. A ) 0.. A is a spin-one field - the photon -  
II 	1 u 1 u 

which is our first example of a gauge field. We require it to transform 

in a special way, so that the combination (8 - ie qi  Au) 0. transforms 

like 0. . That is 1 

25 

(2u  - iegi  Au) 0i(x) = exp(-iq.A(x)) (3 -ieq.Au)0.. (3.1.6) 



If this can be arranged then L(0i,(3u -ieq.AU)0.) will be invariant under 

local gauge transformations also. Substituting into (3.1.6) the 

transformation law for the fields 0. we obtain: 
1 

(D - iegiAu)exp(-iq.A)' . = exp (-iq.A) (au 	u - ieq.A)0i (3.1.7) 

or, 

exp(-igiA)(8U - iegiA11)0i - iq. Aexp(-igiA)0i - ieq.exp(igiA)OidAu 

= exp(-iq.A)(au - ieq.AU)0. , 	(3.1.8)1 1 

which solves to yield the transformation law for A 

SAU = A
P 

- Au = - 
e 

3 A (x) . (3.1.9) 

In addition to the terms coupling the photon field to the 

charged fields, we need also a quadratic kinetic energy term for the 

photon in order to provide the dynamics for this field. This term is 

constructed from the gauge invariant field strength, 

Fuv = 3 A~ - BLAU 	(3.1.10) 

and is taken conventionally to be 

_ 1 	uv Lem = 4 Fpy F (3.1.11) 

An action principle can then easily be shown to lead-to the familiar 

field equations of electrodynamics in a manner completely analogous to 

the case of the gravitational field equations we obtained in the last 

chapter. 

The generalisation of local gauge invariance to non-Abelian 

groups was considered first by Yang and Mills, and Shaw /12-13/ and is 

the subject of the next section. There it will be seen that the 

fundamental new ingredient that emerges is the possibility of self-

coupling gauge fields for non-Abelian groups - a feature which is absent 

26 



from electrodynamics because of its abelian nature which requires that 

the photon be neutral. The presence of this self-interaction term for 

non-Abelian gauge fields means that the theory is intrinsically non-

linear and therefore resembles the theory of Einstein much more than the 

Abelian case of electrodynamics. 
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3.2 	THE NON ABELIAN THEORY 

For the purposes of outlining the non-Abelian theory let us 

consider an internal symmetry group G with generators Ti which satisfy 

the commutation relations, 

[T. , T~1 = i C.. Tk , 	(3.2.1) 
1 

where the Ci.Jk are the structure constants of the group G. A collection 

of fields 0i which we shall denote simply by transforms according to 

0(x) ÷ 0(x) = exp (-iL3 A3) 0(x) 

U(A) 0(x) , 	 (3.2.2) 

where 0(x) is a column vector and L3 is a matrix representation of the 

generators of the group under which 0 transforms as above. The Lagrangian 

L is assumed to be invariant under transformations with constant A3. The 

problem is then to construct a theory which is invariant under the larger 

set of transformations obtained by replacing A3 in (3.2.2) by A3(x) 

exactly as for the Abelian case. We shall do this, in analogy with the 

case of electrodynamics by introducing a set of vector fields A3 . Under 

local gauge transformations, 

0(x) -} U(A) 0(x) 	(3.2.3) 

and therefore, 

ao(x) 	U(A) a0(x) + (aU(A)) 0(x) . (3.2.4) 

The idea is to introduce a gauge covariant derivative D0(x) which 

transforms like 0(x). Thus 

Du0 (x) -} U(A) Duc (x) 	(3.2.5) 



Then if a0(x) appears in L only as a part of D0(x), L will retain 

its invariance under transformations of the type (3.2.2) even when A is 

allowed to be a space-time dependent function. 

We define the covariant derivative as follows: 

Du0(x) _ (3u  - ig L•Au) 0(x) (3.2.6) 

where we have introduced one gauge field for each generator and where 

the coupling constant g is the analogue of the electromagnetic e. The 

transformation property of Ai  is determined by the requirement that 

Du0,(x) = 	33.10(x) - ig AL30(x) 

29 

= 	(3U(A)) 0 + U(A) 3 	- igA • L U(A) 0 
11 

is equal to 

U(A) D 	= U(A) (3 - ig A•L)D . 
1-1 

This solves straightforwardly to yield 

-igA•L U(A) 0 = -igU(A) A •1,0 - (3uU(A))0 

or, since this must hold for all 0 

Au•L = U(A) Au•L U 1(A) 	-'g (3
11
U(A)) U(A) 

= U(A) {AU •L 	
g 

U -1 (A) 3U(A) } U 1(A) . 

(3.2.7) 

(3.2.8) 

(3.2.9) 

(3.2.10) 

The appearance of L in this equation might seem to suggest that the 

transformation law for the gauge fields depends on the representation 

under which the charged fields transform, whereas infact it depends only 

on the commutators 	(L1  , L-.1 whose form is representation independent. 

This fact becomes apparent from the infinitesimal transformation law as 

follows. From (3.2.10) we obtain for the infinitesimal case, 

Li  5A3  = - 1 
 L

i@uA3  + iL1AŪAiLi  - iA3L3AŪLi 



L3 a~A3 + i 3 l 1A A CL , L3 ] 
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- 

1 L3 
~uA3 

- A
3 Au C.. Lk 

ijk 
(3.2.11) 

and since the L3 are linearly independent one obtains for (Al the 

formula, 

SAS - 	
g 9 
 Ai + C. 	A3 Ak ,

ijk 
(3.2.12) 

which shows that the transformation properties do, in fact, not depend 

on the representation matrices Li . 

Before going on to discuss the construction of the kinetic 

energy term it is worth showing that these transformations satisfy the 

group property. If we perform two gauge transformations successively on 

A then we obtain, 

and 

Au•L = U(A1)-(A•L -
g 

U 1(A1)auU(A1)} U 1(A1) 

Au~•L = U(A
2
)%11 .1, - 

g 
U-1(A2) auU(A2) } U 1(A2) . 

Upon substitution for Au from (3.2.13) into (3.2.14) we obtain, 

Au~•L = U(A2) (U(A1) {A 1.1 
	- g U 1(A1)auu(A1)} U 1(A1) - 

- 
g 
U 1(A2)auU(A2)} 

U-1(A2).(
3.2.15) 

However, the last two terms reduce to, 

- 
	
(apu(A3)) u-1(A3) 

where 

U(A3) = U(A2) U(A1) . 

So we obtain finally the result that 

A'"•L = U(A3) {AU•L -  U 1(A3) auu(A3) }ū 1(A3) 
u 

(3.2.16) 

(3.2.17) 

(3.2.18) 

which has the same form as (3.2.10) and, therefore, shows that the group 

property is indeed satisfied. 



Next we consider the problem of constructing the kinetic energy 

term for these non-Abelian gauge fields. Now we recall that unlike the 

case of electromagnetism, not all members of the gauge field multiplet 

Ai are neutral under all the generators Ti of the group. This means 

that the 'free' kinetic energy part of the gauge Lagrangian can no longer 

be of the same simple form encountered in electromagnetism. Indeed, it 

follows from (3.2.12) that 

6CapAi - BvAi1 = C. A.(3 Au - auAŪ) + Cijk1 	Ai)AA- (avAi)Ak}.(3.2.19) 

It is easy to see, however, that a kinetic energy term of the F2 type 

for non-Abelian gauge fields would be gauge invariant if it was constructed 

from a tensor 
Fuv 

which is gauge covariant. It is necessary, therefore, 

to add something to apAi - avA' which cancels the unwanted terms in 

(3.2.19). Furthermore, this term must involve a self-coupling of the 

gauge fields for the reasons discussed already. 

Now, we know from (3.2.12) that 

g Cijk SEA.AI = - Cijk{(apAj)A~ - (avAjAU} f 

* g 
C. IC 

	Cklm 
lA vAU) 	

(3.2.20) 

The first terms cancel the unwanted terms in (3.2.19) while the last 

two can be written, using the antisymmetry of the structure constants as 

L 
CimkCk 1 	C.j. C

kml I AlA~Am 
j 	p 

which can be further simplified to read 

1 
CilkCkjm Al 	A

vm 

(3.2.21) 

(3.,2.22) 

upon use of the Jacobi identity for the structure constants 

CimkCkjl CijkCkm1 - CilkCkj = 0 m 
(3.2.23) 
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So that if we define 

Fūv = B11 V -avAū
+gCi,jkAPAv , (3.2.24) 

then 

Fuv 
= CiJk 

A~ Fuv 	(3.2.25) 

which shows that Fūv transforms gauge covariantly. This allows us to 

take 

l..F
uv 
i Fi 

4' 	uv , 

as the gauge kinetic energy term. 
2 

Once again, a mass term of the form 	
m
2 Ai A violates 

gauge invariance and is, therefore not permissible. Finally, then, we 

can retain gauge invariance of the local type if we take as our Lagrangian 

LTotal = - 4 Fv I
F 	L(0,(8 -igA 	(3.2.26) 

Of course, massless gauge fields which do not correspond to 

the photon have little to do with observed phenomena. This does not mean, 

however, that they have no role to play in a successful description of 

nature. What it does mean is that several other ingredients are 

needed before they can be used with any success. These are the well-

known phenomena of spontaneous symmetry breaking and the Higgs-Kibble 

mechanism, which we shall not in fact be using in the work carried out 

in this thesis. 
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LAGRANGIANS FOR METRIC-TORSION THEORIES OF GRAVITATION  
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4.1 	MOTIVATION 

As the title of this chapter suggests we shall here be concerned 

with the choice of a suitable Lagrangian for metric-torsion theories of 

gravitation. The point being that once we give up the Einsteinian choice 

of the Christoffel connection there is no reason to assume that the 

simple choice R(r) for the metric-torsion Lagrangian will be the only 

possibility permitted by the requirement of general co-ordinate invariance 

as is the case for the choice R({}) for the Einstein theory. 

We shall consider this question 	in the following section 

of this chapter where it will be argued that the Lagrangian for such 

theories ought to be constructed solely out of linear combinations of 

the curvature tensor- thereby removing the possibility of admitting other 

tensors, such as the torsion tensor or its covariant derivatives, from 

appearing in the Lagrangian. It will be shown, however, that even this 

restriction does not limit the choice of the Lagrangian to the conventio-

nal one, viz. R(r). 

The new Lagrangian /16/ that we propose is motivated in the 

next section and involves, apart from the usual choice, an extra term 

constructed from the pseudo-tensor density cuva6  and the curvature 

tensor Ruvas(r).  The complete action is, of course, still linear in the 

curvature but leads to new parity violating effects in the presence of 

torsion which are not present in the ordinary ECSK theory. The analogue 

of the additional term our action involves has been considered before /17/ 

for the pure Einstein theory but is known there to vanish identically 

because of the cyclicity property of the Riemann-Christoffel tensor 

Ruvas 
 ({ }) 

The Lagrangian density we propose can be written symbolically 

as 

L = L- -ECSK + LA  f 



where LECSK  is the usual expression for the ECSK theory given in eqn. 

(2.2.15) and involves the Newtonian coupling constant. 

LA(  ti suvaa R
uva$(r) 

 ) is the additional contribution which 

will be shown to be non-zero for torsion containing theories. The standard 

procedure for incorporating torsion into Einstein's theory involves working 

only with LECSR  and does not, therefore, require the introduction of 

extra couplings. For L, however, an additional coupling is seen to be 

necessary and governs the strength of the parity-violating effects mediated 

by torsion. 
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4.2 	THE NEW LAGRANGIAN 

Let us begin by outlining the standard considerations which 

lead, for the pure Einstein case, to the unique (up to a cosmical term) 

Lagrangian density 

LE  n, 	R({}) . (4.2.1) 

The proof of this begins by noting that the Riemann-Christoffel tensor 

RuvaK({}) = {va}01 	{pa/
,v.+ {u6}{Vx} - 

{VQ
}{uA} (4.2.2) 

is the only tensor that can be constructed from the metric tensor and 

its first and second derivatives and which is linear in the second 

derivatives. This tensor is, therefore, the simplest object at our 

disposal when we come to write down an action for gravity. We must now 

begin to contract indices in such a way as to construct all possible 

scalars linear in the curvature from 
RuvaQ 

({}). The most general 

Lagrangian would then just be a sum of all these scalars with appropriate 

couplings in front. 

It is an elementary exercise to show that only two such scalars 

can be constructed. However, one of them /FS/tinuvAo RuvAa({1) vanishes 

identically due to following cyclicity identity 

R 	({1) + R(0)  + R(0) = 0 . uvaQ 	uaQV 	uQVa  (4.2.3) 

This implies that one can only use R({}) to construct an action for 

Einstein's theory, thus the choice (2.1.4) is unique. 

The generalisation to the case when torsion is present begins 

with the curvature tensor formed out of the non-symmetric connection r.a uv. 

The expression for this has been given already in (2.2.16). It is 

immediately clear from this definition that this curvature tensor is 

antisymmetric in its first two indices. In the general case (i.e. without 
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any assumptions of metricity, etc.) this is the only /18/ symmetry 

S 	If we demand metricity, 	 gain, 	addition, property of Rpvcz (r) 	y, we gain in addition 

antisymmetry in the last two indices. A simple proof follows. 

Metricity implies that rpv can be written (symbolically) as 

r = {} - K , 	(4.2.4) 

where K represents the contorsion tensor. Because of the non-tensorial nature 

of {} , one can choose a co-ordinate system where it vanishes (but not 

simultaneously 3{} ) and in such a system, the curvature tensor RpvXK(r) 

can be split as 

R(r) = Rpva K({ }) - (8 p Kva K - 8 vK K)  ul 

+ (KURKKvX - KvpKKp~P).(4.2.5) 

Using the well known symmetry properties of RpvXK({}) and KpvX , it is 

now easy to see from this equation that RpvAK(r) is indeed antisymmetric 

in its last two indices also if metricity is demanded. These two anti-

symmetry properties of the curvature tensor are sufficient to ensure that 

the Ricci tensor (Rva(r) = RpvAp(r)) and the Ricci scalar (R(r) = R v(r)) 

are the only essential contractions of pvXK(r). 

Now, we come to the important question of whether we can form 

a non-zero scalar using the pseudo-tensor density epvaa. Recall that 

the scalar so constructed in the Einstein case vanished identically by 

virtue of the cyclicity property of the Riemann Christoffel tensor 

R
pvaa 

({}). When torsion is present, no such relation holds and so the 

non-zero scalar density epvAa 
Rpvaa 

(r) is a perfectly good quantity 

which can contribute to the total action of an ECSK-type theory. Indeed, 

if the requirements which determine the choice of our action for a metric-

torsion theory are just the requirements of general co-ordinate invariance 

and linearity in the curvature tensor, then the general structure of 



this theory requires the presence of this term and, therefore, predicts 

parity violating interactions mediated by torsion which might be 

expected to show up as deviations from the predictions of the general 

theory of relativity at the microscopic level. 

The new Lagrangian density may now be written as /F6/ 

g 	
+ 	£uvAap 

G _ 16~rGN 
✓- R(r) 	16nG 	 Cr)uvAa L  (4.2.6) 

where GN is the Newtonian coupling constant and Gp is the analagous 

quantity which governs the strength of the parity non-conserving inter-

actions present in LG . 

In the next section we simplify the form of this expression 

and compare and contrast this action with the one used in the ECSK theory. 

There, we will find that when we have removed some total divergences, the 

Lagrangian contains, apart from the simple Einstein expression, terms 

X 	A 
quadratic in the contorsion tensor Kw . Since Kw is a tensor one 

might consider the most general quadratic expression in the contorsion 

fields as forming the Lagrangian for torsion. This is also discussed in 

some detail in the next section. 
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4.3 	OTHER LAGRANGIANS  

Consider the following Lagrangian densities 

-ECSK" 
and 

ti 
uvAQ LA E 

RuvXa(r). 

i/-g R(r) (4.3.1) 

(4.3.2) 

Recall that the components of the non-symmetric connection ruvA can, 

upon imposition of metricity be written as 

where 

A 
ruv = {} - K uv 	uv 

(4.3.3) 

{  A
} 
 _ i gAa(g 	+ g 	- 	) , 	(4.3.4) 

Uv 	6U,v 	6v,u 	
g  uv,Q 

K 	= -S 
X
+ S 	- SA  

uv 	Uv 	v u 	uv 

and 

A = - KU  V  

A 	i 	A 
s
p
y = - z (ruv  - rvu  )  

(4.3.5) 

(4.3.6) 

is the torsion. Note that for metric-torsion theories the position of 

the indices is important and we work with the usual convention that in 

all covariant derivatives the first of the lower indices on the 

connections is the differentiating index. 

In order to obtain the field equations we must choose an 

appropriate set of independent fields for variational purposes. Because 

of metricity, 

= 
_ 	_ T 

guv;A 	guv,A 	rAU gTv 	rAv guT = 0  
(4.3.7) 

we have, as has been shown in section two of chapter two, apart from the 

ten g 's another 24 independent components in r A. For our present 
IN 	 IN  

purposes, we shall take these to be the 24 components of the contorsion 

tensor KUVA. Nevertheless, the field equations one obtains by varying 

with the contorsion can easily be related to those one would obtain by 



varying with the torsion using the relationship between Ku~A and SuvA 

given in (4.3.5) above. 

Before plunging ourselves into variation of the Lagrangians 

written above, it is advisable to first obtain their simplest form by 

discarding total divergences and by using the symmetry properties of g 

KuvX, etc. This procedure yields the following simple expression for 

LECSK 

LECSK 
ti ✓  g{R({}) + guX(K v K a- K v K a)} vQ ul ua vl 

+ (Total divergence); 	(4.3.8) 

which may be written as 

LECSK 
ti 
LE + L

C + (Total divergence) ; 	(4.3.9) 

where LE denotes the usual Einstein-Hilbert expression and Lc denotes the 

terms quadratic in K X. 
uv 

Similarly, we obtain for LA the result: 

LA ti suvas gSK KuoK K, + (Total divergence).(4.3.10) 
 VA 

We see that the contorsion terms enter both Lagrangians 

quadratically and that no derivatives of the contorsion fields appear 

once some total divergences are removed. This is a general consequence 

of restriction to theories linear in the curvature and is, therefore, un-

changed even with the addition of LA. Stated more dramatically, this 

implies that if we use a linear combination of LA and 
LECSK 

as the 

Lagrangian density of our system, then we will not be able to obtain 

propagating torsion. 

The interesting thing to note is, however, that the effective 

contribution of contorsion to 
LECSK 

is a particular linear combination of 

two of the three possible scalars quadratic in the contorsion tensor 
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V6 
(contracting with guv), the third being Kva A K 

a 
. One may, at this 

point, argue that an equally valid approach to determine an action for 

the torsion would be to consider all possible linear combinations of 

quadratics in the contorsion fields and simply add these to LE. Such an 

approach would, however, necessitate the introduction of at least three 

other arbitrary parameters into the theory apart from the Newtonian 

coupling constant. 

As regards LA one can also think of three other scalars quad-

ratic in contorsion (contracting with euvAaand guv) apart from the one 

selected by LA, namely n
uvAv 

Kaau Kva6 ' nuv~o 
Kauv K

Xo
a , and 

uvAv 

Kauv K
a
XQ 
	Thus, the most general such Lagrangian density for 

torsion would contain seven contractions all with different and arbitrary 

coefficients. In view of this it seems much simpler, and indeed more 

natural, to restrict oneself to Lagrangians obtained directly by contract-

ing 
Ruvaa(r) 

in all possible ways to form a scalar. 

Having simplified the form of the expressions (4.3.1) and 

(4.3.2) we now go on to consider the matter-free theory. 

4 2 
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4.4 	NO MATTER, NO TORSION  

Let us first consider the contorsion field equations for both 

the ordinary and the generalised ECSK action in the absence of matter. 

We have already shown that 
LECSK 

 can be decomposed as in (4.3.8). 

Taking 
guv 

 and KAaT  as our independent variables, the field 

equations obtained by the KA T  variation are, 

KApv + Kvau - Kaav gpA - Kaaa guv = 0 (4.4.1) 

These are 24 equations because of the antisynmmetry property of Kuv
A 

 

Contracting p 	and A (or v and A ) gives 

Kv
v 

 

Using this in (4.4.1) we obtain 

0 	. (4.4.2) 

Kaav 	+ 	Kva1a 
= 0 (4.4.3) 

By cyclically permuting this equation we get the two equations, 

and 

KuvX 	+ 	KXuv = 0 (4.4.4) 

+ 	Ku\A  = 0 (4.4.5) 

Adding (4.4.3), (4.4.4) and (4.4.5) and using the last equation to 

simplify the sum, one can easily verify that 

KAuv  = 0 . 

The same calculation can be repeated for the theory based on LG. 

The analogue of equation (4.4.1) now reads, 

Kauv + KvXP - K av  glA  
a 

 -K Xa guv  
a  

-2a (nuvc' K A + rluAap 
o p 

KQpv) = 0 	(4.4.6) 

After a certain amount of tedious algebra• and index manipulation, 



one can again explicitly verify the result that torsion vanishes in the 

absence of matter. These results follow in fact from quite general 

considerations as outlined below. 

If one has a Lagrangian which involves the contorsion fields 

in a non-dynamic manner (no second derivatives of KpvA  , or equivalently, 

terms quadratic in the derivatives of KpvA  ), then stationarity under 

variations in the contorsion fields will give rise to an algebraic 

equation for these fields which can, in principle, be solved to yield 

an expression for K
Pv

A. The solution of this equation must, therefore, 

be expressible in terms of the other quantities that are present in the 

theory. In our case we have at our disposal only the objects, 

gpv ' cpvas ' gpv,a , and gpv,as 

out of which we must be able to construct a three index tensor if torsion 

is not to vanish identically. 

Now, it is immediately clear that since the process of 

contraction always removes two indices every time a contraction is made, 

that no such object can be formed from the quantities 

gpv 	gpv,as' and epva$  

only. Thus the first derivatives of the metric, g 	must enter each 
pv,a 

term of the expression for the contorsion field. However, we can always 

choose a co-ordinate system in which g
pv 

 vanishes since the partial , a  
derivative of the metric is not a tensor. Thus K A  will vanish in this 

pv 

co-ordinate system and, by virtue of its tensorial character, in all 

co-ordinate systems. It should be noted, of course, that we are not at 

liberty to use the covariant derivative of the metric, 
gpv;a 

 , since 

this vanishes because of metricity. 

It follows, therefore, that both the (matter-free) theories 

are identical to Einstein's general theory of relativity. So long as 
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torsion is algebraic, this identity between the two matter-free theories 

and the theory of Einstein will remain. 

However, as remarked in the introduction, it is reasonable to 

expect torsion to be non-zero even in the absence of matter to represent 

the spin effects of torsion. In the next section we go on •to consider 

possible ways of implementing these ideas. 
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4.5 	DYNAMIC TORSION AND FIELD EQUATIONS 

We now wish to consider possible ways of incorporating dynamic 

torsion into the matter-free theory. One approach is to work with 

Lagrangians quadratic in the curvature tensor. However these lead to 

rather cumbersome higher than second order differential field equations 

and in any case such Lagrangians give rise to non-positive-definite 

Hamiltonians even at the classical level. Another approach consists 

essentially in adding to LECSK a . scaler density quadratic in the 

covariant derivatives of the contorsion fields. However, the most 

general such scalar density, LK , would contain an enormous /F7/ number 

of independent terms (see Appendix A for its explicit form) involving an 

equally large number of arbitrary parameters and would be quite useless 

unless one is able to eliminate most of these terms on some physical 

grounds - and this seems unlikely. So how else can one modify the 

theory in order to obtain dynamic torsion? 

Recall that torsion vanished in the absence of matter by virtue 

of the field equations essentially because of the non-existence in the 

theory of an odd-index object using which we could construct a three 

index tensor. Since torsion itself is represented by a three index 

tensor, the simplest possibility for having non-zero torsion is to allow 

for a new one index quantity in the theory  in terms of which Kilv can be 

expressed. Coupled with the requirement that this new field be dynamical 

we are led to examine the following form /F8/ for the contorsion: 

a sY = a gay - ~y g (4.5.1) 

where = 
a 	,a' 

In the rest of this section we shall restrict ourselves to such 

a form of contorsion. We may now proceed in two different ways. One is 

to simply substitute the motivated form of contorsion into LG, eliminate 



X 
Kuv , and obtain the field equations for gpv and 	by variation. We 

prefer to avoid this approach and consider it more appropriate to treat 

(4.5.1) as a constraint which will be implemented by introducing an 

appropriate set of Lagrange multiplier fields into LG . 

Let us, therefore, consider the following Lagrangian density, 

L = ✓--g {R + gpa vav KpAa - Kuav KvXa) + 

+ 2a E
uvas gsK KuaK Kva

a} + 

+ Aas Y (Kc s — 0s Sa + ~X 	g kY gas) 	; 	(4.5.2) 

where the 	are the Lagrange multipliers introduced to ensure 

satisfaction of (4.5.1) and where we introduce the notation that a tilde 

on any quantity indicates that it is to be constructed from the Christoffel 

connection, thus, for example, 

R = R({1) , R = R(r) , etc. 

Variations with respect to gpv , Kas' and yield the 

following equations: 

Sg 	ab - 	Rgab ) + 

+Z 	(gab guX gua 
gXb 

- 
gpb 

gXa)(Kpav ic a 
- Kvov Kp~ a) - 

_ 2 ( Aa a ~b + Aa b 
0
a ) + 	(Aabp + Abap ) 	+ 

	

a 	a 	 p 

+a (epvAa 
K

b K a + Epvab 
K

a K o' 
pa 	vl 	pa 	va ) 

= 0 	(4.5.3) 

SK 	Aabc - 	{(Kcab + Kbca - 
K 

Abgac - K cagab) + 

and 

+ 2a (nabva KvcX + nacva Kvab)} = 0; (4.5.4) 

SO 	 ( Aas _ Aa B ) 	0 
a a ,B 

(4.5.5) 
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and 

ab 
igab R = -6 wob - igabx' ~~) 

a 
	• (4.5.7) 

while the A variation yields the desired constraint. 

Eliminating K and A from the above equations one obtains, 

( 	0$ ) 
13
= 0 (4.5.6) 

47 

Note that no parity violating term now remains. This is due 

to the special form we have taken for the contorsion and implies that the 

vacuum theory is parity conserving. 
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4.6 	COUPLING TO MATTER FIELDS 

In this section we wish to give an example where our Lagrangian 

predicts parity violating effects but where the ECSK Lagrangian does not. 

It is a little unfortunate that there are not many matter fields one can 

study at the Lagrangian level. Indeed when studying matter fields on 

a Riemann-Cartan space-time one is further restricted, for example, by 

the fact that one cannot couple gauge fields to torsion /F9/ in a gauge 

invariant manner, so that the study of gauge fields on a Riemann-Cartan 

space-time does not lead to any new physics than on a Riemannian space-

time. We cannot use the Dirac field for our present purposes as the 

ECSK theory already predicts a parity violating effect for this field 

and the distinctive effects of our theory would be only blurred by this. 

So we are left with the Proca (massive vector) field, which 

due to its non-zero mass does not present problems of gauge (non-) invar-

iance when coupled to torsion. We take the usual Lagrangian for the 

Proca field: 

Lm  = irš (- 4 GuvGpv  - 
zm2 

 AuAU) (4.6.1) 

with the field strength tensor 
Guy  given by (VII  denotes the full 

space-time covariant derivative), 

G 	= VA -VA  
uv 	u v 	vu 

= a A -A - 2A S 6  
u \) 	V u 	 uv ' 

where it should be noted that only the antisymmetric part of the full 

connection enters G uv  . This can be written in terms of the Christoffel 

covariant derivative d as follows: 

V 
	o 

Gpv 	oUAv  - vAu - 2 AQ  Suv ,  (4.6.2) 

where the antisymmetry of 
Guv 

 removes the Christoffel contribution to Gov. 



• (4.6.10) 

Let us now define 
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then 

B 	
ti 
	-VA 

 ti 
Uv 	

UAv 	v U 

G 	= B - 2 A S
a
' 
 

Uv 	Uv 	a Uv '  

(4.6.3) 

(4.6.4) 

and Lm  can, therefore, be written as, 

Lm  = C (- 4 BUvBUv  + 
BaSSaa Aa - 

guagvSS
aSaSUvPAaAP - zm2AUAU) . 	

(4.6.5) 

Now the spin-angular momentum tensor of matter is defined by 

i TkJ 
dL m  

SK..k  
13 

(4.6.6) 

where 
ōR 

 denotes the variational derivative. 

For the Lagrangian in (4.6.5) it is easy to show that 

or 

Tkj i = G. 1 Lj k] ' 

Tkj i 	- k C3Ai] - Aj LkAi] - 2 Si Lja-k]  A . 

Let us now write for the total Lagrangian, 

L  = LECSK + LA + Lm • 
(4.6.9) 

As L does not contain any derivatives of the torsion, the Euler-Lagrange 

equations obtained by variation of K..k  are simply, 

-0 
K. 
13 

And since, 

ji _  m  
Tk 	

aL 

 BK..k 
1J 

aL 

(4.6.11) 

(4.6.10) gives, 
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3LECSK 	3LA 	~---- j i + 	 _ - y -g T 
	• 

	

aK..k 	aK..k 	k 
2.3 13 

(4.6.12) 

Note also that 

3-ECSK - vj Tjki 
3K.. 

(4.6.13) 

where T.. 	is the so-called modified torsion tensor /14/ , and is 
ijk  

defined as follows, 

Ti 	
- 	

S.. 	
+ 

g. 	
S. 	

g. 

Writing 
LA 	= 	2a~ 

nuvASgSpKuo. 	
K 

it is not difficult to show that 

3LA 

S.11 	. 

• 

= 	0 

(4.6.14) 

(4.6.15) 

(4.6.16) 

(4.6.17) 

(4.6.18) 

_ 	
2a 	

K 	j } (ni va 	nivAj 
K 	) k 	v1 	vkl 

3K..k 
iJ 

Therefore equation (4.6.12) finally gives, 

- 	(Tkji - Tkji -2a(n
ivak 

KvAj + ni
vXi K

vkl)) 

or, 
Tkji 	= 	Tkji 	2a 

n' 	. KvJ~p (6 6. - S~Sk) 

As the Proca field is just a massive Maxwell field, the field equations 

for this field can be written down immediately as, 

VG p -m2 A = 0 
PP  

or, V BUp - 2 V (A Supo ) - m2 Au = 0 

(4.6.19) 

(4.6.20) 

In order to eliminate the non-Riemannian part of equation 

(4.6.20), we must first invert equation (4.6.18) for the torsion. Remem- 

bering the definitions of 	andd K
V 
,
P 

as given in equations (4.6.14) 



and (4.3.5) respectively, we can write equation (4.6.18) as, 

1 1 
Skji +gki 0.1 -gji Skl = 

= Tkji  + 2anvAlosk
.(SApv 

 - SvAp  - SpvA) . 

(4.6.21) 

Now, because of the antisymmetry of 
nvXia 

in vA, 

vA _ vA 

. SApv 	:n iQ SvpA 
(4.6.22) 

and antisymmptry of Svpx  in its first two indices further implies that, 

vA 	vA 
 Ti. SApv = 	n 

ia sa 

Substituting this into equation (4.6.18) gives, 

1 	1 

Skji + gkJ1 - gji S  kl 

vA 	ap 
= Tkji  - 2a n i 

s  Q kJ S 	. vAp  

(4.6.23) 

(4.6.24) 

At this stage we note that by putting.a equal to zero we can 

recover the result that the ECSK theory does not predict any parity 

violating effects when it is coupled to a massive vector field. 

For the purposes of solving equation (4.6.18) for the torsiōn, 

we simlify equation (4.6.24) with the help of equation (4.6.14) to 

obtain 

vA 	ap Tkji  = Tkji  + 2a n ai 
ak j S

vAp 

Multiplying this by nkjas  gives, 

(4.6.25) 

kjas T 	= 	kja$ + 2a vAd kjas ap s n 	kji 	Tkji  n 	n 	i n 	dkj vAp . 

(4.6.26) 
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Now, 

2  nkja6 dap =  apa6 - npaaa 
kj 
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= 2 napa6 (4.6.27) 

 

and 
2 nvA 	napa6 = 2 g. 	vap Ti ci 	 ip a 

  

 

-2 gi d vap,pa6 p   (4.6.28) 

 

which can be written internis of the metric alone upon further use of the 

identities given in footnote five as follows, 

_ -2  g.  {gvP gaagp6 - gvP gX gpa+  
Ip 

+ ggg  - ggg  va aspp 	vaapps+  

+ gv6gapgpa - gv6gaagpp3  (4.6.29)  

Therefore, we finally find that 

2 vX 
	kja6 dcp S 	= 

 2 
nva 	napa6 S ai n 	kj vXp 	ai 	vap 

= -2 g . {SPa  gu6  - SP6 gua  + Sa6p  - 

	

1p 	P 

- SaP p  gu6  + S6p  gpa  - S6ap} 

_ -2g. {2(SaaP + S6gpa - Sagp6) 
3.1.1 ,  

= -4 Tab  
i 
	(4.6.30) 

Substituting this result back into equation (4.6.26) gives 

kja6 T 	+ 4agkagj 6T 	= Tkji 
	. 

kji 	kji kji (4.6.31) 

Multiplying this now by n 	yields 
a6Pc 

kja6 	 ka j6 	 = 
a6pa n 	Tkji + 4a g g na6pc Tkji 

kj a$ 
Tkji  n 	

na6pa 
(4.6.32) 



zpai  
_ 	kj 

	

Tpa1 	2a 	r1 pa Tkji 

Ta - 2a nkjas  T 	
= zas 

1 	 kji. 	 1 

or, 

(4.6.34) 

(4.6.35) 

or, 
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2 Tkji  Spa = 2Tkji  Skpj - 4a nkJpa Tkji  , 

which can be further simplified to, 

(4.6.33) 

 

From equation (4.6.31) we see that 

2a 
nkj as 

T 	8 a2 
kc j 

 S  T 	= 
kji + 	g ,g 	kji 

= 2a Tk nkjaa . 

ji  

Substituting this into equation (4.6.35) we obtain 

Tas 
+ 8a2 

 Tas  - 2a T 	nkjas = zas 
i 	i 	kji 	 1 ' 

or, 	
(1 + 8a2) Tkji  = zasi  (SkS. + 2a nkjas) . 

(4.6.36) 

(4.6.37) 

(4.6.38) 

We have therefore, 

1 1 
Skji + gk1 jl - gji Skl = 

(8 8.
a 
 + 2a nk3as) . 	(4.6.39) 

(1+8

1.

a4)   	j 

Tracing over the i and j indices gives, 

Sk 	-1(1+8a2)-1
{Tk 

+ 2a Tasi nk as1 	
(4.6.40) 

Substitution of Sk  into equation (4.6.39) finally gives the solution for 

torsion as 

Skji  = (1+8a2)-1{Ti (aa( + 2a n") ) 

-Zgi.(Tk+2ankYasTay 
+ 

2gik(T
j+2an.YaszasY)1  ' 

(4.6.41) 



where we have used the abbreviations, 

A. = A. 1 
1 	~1 

and 	A = gJl Al, 

where A is some arbitrary tensor, for the traces of the torsion and 

spin-angular momentum tensors . 

It is clear that upon substitution of the expression for torsion 

given in equation (4.6.41) into equation (4.6.20) we shall indeed have 

parity-violating interaction terms, which would not be present in the 

usual ECSK theory — thus demonstrating that the new Lagrangian 

proposed in the present work predicts new parity violating effects. 

In the next chapter we go on to consider the problem of 

coupling torsion to gauge fields and leave a discussion of the results of 

the work of this and the following chapter to chapter six. 
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CHAPTER FIVE 
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COUPLING TORSION TO GAUGE FIELDS  
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5.1 	MOTIVATION 

The motivation for introducing torsion into Einstein's theory 

of general relativity is well known and has been discussed briefly in 

the Introduction and in the last chapter. In a sentence, torsion is 

argued to arise naturally if we are to incorporate the spin-angular 

momentum of matter into a theory of gravitation, or in other words if we 

are to understand spin in a geometrical fashion analogous to the 

understanding which Einstein's theory provides for mass. 

An immediate consequence of adopting the above interpretation 

is that all spinning matter is required to both generate and react to 

torsion. However, and this fact is not so strongly emphasised in the 

literature as it deserves, it is not possible to consistently couple 

torsion to gauge fields in the conventional manner using minimal coupling 

(as applied to the coupling of gravity to matter) in such a way as to 

retain gauge invariance (what is meant precisely by this will become 

clear in the next section). 

The general attitude to this problem /14/ has been to simply 

abandon the notion of a coupling between torsion and all gauge fields by 

using only the Christoffel part of the full asymmetric torsion contain-

ing connection in the space-time covariant derivatives which are needed 

when coupling gravity to gauge fields. For coupling gravity to other 

spinning matter, though, the full connection may be employed. This 

prescription leads, of course, to several amusing situations. For example, 

when coupling to a photon one must use only the Christoffel connection, 

but if coupling to a massive vector boson is desired one should use the 

full connection. 

The argument generally put forward for adopting this procedure 

being that when faced by the choice between either gauge invariance or 

torsion-gauge field coupling, then the natural thing to do is to opt for 



the more fundamentally justifiable of the two --namely  gauge invariance.—

and forget about coupling torsion to any gauge fields. The fact that 

there is no obvious way of getting round this problem has indeed led to 

the adoption of the view that gauge invariance infact forbids the coupling 

of torsion to gauge fields just as gauge invariance forbids the appear-

ance of a mass term for gauge fields. 

Such a solution is, however, unappealing on two counts. Firstly, 

because of the different way in which it treats the coupling of metric-

torsion theories to matter of the gauge variety and other non-gauge 

matter. Secondly, and more importantly, because such a procedure runs 

counter to the basic reasoning which goes into incorporating torsion into 

a gravitational framework in the first place. 

The first attempt at resolving this problem in a satisfactory 

manner was made by Hojman, Rosenbaum, Ryan and Shepley /19/. These 

authors showed that by using a slight generalisation of the standard 

minimal coupling procedure for the coupling of electrically charged 

fields to the electromagnetic potential, it is infact possible to couple 

a simple, though non-trivial type of dynamic torsion to the photon. An 

extremely interesting feature of this approach is that not only does it 

resolve the problem of coupling torsion to gauge fields in a gauge 

invariant manner but it also provides restrictions on the type of torsion 

that can infact couple to gauge fields. 

With the quantitative experimental successes of the Salam-

Weinberg theory of electroweak interactions on the one hand and the very 

encouraging, though as yet only qualitative successes of quantum chromo-

dynamics on the other, it is now widely believed that non-Abelian gauge 

fields have as central a role to play in any successful and complete 

description of nature as the one experimentally verified abelian gauge 

field --namely  the photon. 
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It is natural, therefore, to enquire whether it is possible to 

extend the work of Hojman, Rosenbaum, Ryan and Shepley to encompass a 

self-consistent coupling between all (Abelian and non-Abelian) gauge 

fields and some form of torsion /20/ . Clearly if the methods of Hojman 

et. al. 	do not 	allow any successful generalisation which allows 

us to achieve this, we shall have to face the same problem as before, 

only now for non-Abelian gauge fields. It is this question to which we 

shall address ourselves in the present chapter. 

It will be shown that it is possible to answer this question 

in the affirmative provided that we use, apart from the generalisation 

of the usual minimal coupling procedure introduced by Hojman et. al., a 

modified form of the Yang-Mills-Shaw field strength for non-Abelian 

gauge fields. 

Apart from the introduction of a new scalar field, named the 

tlaplon in ref. 19, which acts as a potential for the torsion, the two 

modifications lead to a particularly interesting consequence in that 

they require the replacement of all gauge coupling constants of nature 

everywhere by an effective space-time dependent coupling: 

g 3 g/f(x) ; 

where the space-time dependence is given by the function f(x) which is 

determined by the same scalar field the derivatives of which also 

determine the type of torsion that this procedure allows to couple to 

all gauge fields. 

Interestingly enough the form of torsion that is found for 

both the Abelian and the non-Abelian theories is the same and has the 

form that we motivated in the last chapter as the vacuum torsion that 

ought to exist 	even in the absence of matter to represent the 
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torsional effects expected to be present because of the spin-2 nature of 



gravitation. 

In conclusion, therefore.,the work here carried out allows us 

to present a completely consistent way of coupling all gauge fields to 

a metric-torsion theory of gravitation containing a specified type of 

dynamic torsion provided that we are willing to accept that all gauge 

couplings must appear as being space-time dependent in a manner dictated 

by torsion. 
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5.2 	THE PROBLEM 

To begin, let us recall some essentials of gauge theories and 

the usual procedure for coupling gravity to matter. For this purpose 

let us consider a Lagrangian density of the form /F10/ 

L 	= L(11, , af) (5.2.1) 

where thetpi are a set of complex scalar fields which transform 

according to some representation 0 of an internal space symmetry group, 

G . Now suppose that this Lagrangian density is invariant under a set 

of global gauge transformations, 

* 	
} 	= e-i0•A 

* 	(5.2.2) 

0•A = 0. Ai 2. (5.2.3) 

where the A's are a set of arbitrary, but space-time independent, real 

parameters. Consistent with the physical requirement that all dynamical 

laws must be local in nature, we now demand invariance under the larger 

group of transformations given in (5.2.2) but where the A's are now 

arbitrary, but well behaved, functions of space-time. 

In order to retain invariance under these transformations, L, 

has to be modified, as already shown in chapter three, in such a way as 

to account for the misbehaviour of a4 under these new local gauge 

transformations. The standard procedure, known as minimal coupling, is 

to replace all partial derivatives Du which appear in the Lagrangian by 

gauge covariant derivatives Du which is defined in such a way as to 

ensure that the covariant derivative of ip transform in the same manner 

as the fields ip themselves, i.e. 

~~ D 	= e-i0•A Di . (5.2.4) 

This is achieved by introducing in Du a field (or a set of fields) — 



6I 

the gauge field(s) 	which compensates, or corrects, for the ill 

behaviour of the partial derivatives under the local transformations. 

Carrying out the standard algebra of chapter three, one finds that if 

the covariant derivative is required to be linear in the gauge connection 

A and has the following form, 

D = up - ig Ap•0 (5.2.5) 

then the compensating set of gauge potentials must transform in the 

following manner in order to satisfy (5.2.4) : 

Al 4. A'1 = Al - 1 Al - C1 Al Ak . 	(5.2.6) p 	p 	p g 	 jk N 

This procedure then ensures that the Lagrangian density 

obtained from L(ip , aer) by replacing ap everywhere by Du, is now invariant 

under the local gauge transformations. Of course, one must supplement 

L with a part that describes the dynamics of these gauge fields. This 

is constructed using the Yang-Mills-Shaw field strengths 
Fūv , where 

i __ i 	i 	i j k 
Fpv 	Ai - Ai 	p + g C C. 

A Av (5.2.7) 

and where the C1.k are the structure constants of the group G, and the 

Fūv transform gauge covariantly under the gauge transformations (see 

chapter three for the details). The Lagrangian density for the complete 

system is then, 

L~,A = L (11, , Dp*) - 4 Fpv •Fpv (5.2.8) 

All this is, of course, in flat space. We consider next the 

usual formalism for coupling gravity (without torsion) to this system. 

This proceeds in two steps. First, one replaces all /F11/ fl 's in the uv 



flat space Lagrangian density by a general space-time metric guv(x). 

Second, one replaces all partial derivatives by the space-time covariant 

derivatives defined in an analogous manner to the gauge covariant 

derivative /F12/ : 

(S.R.) 
-r n uv 	guv 	> 	(G.R.) . 	(5.2.9) 

  

  

a 
u 	u 

 

For a scalar ti 
vue = aut (5.2.10) 

while for a vector field A we have that 

A
v 
 = apAv  - {uv} Aa 	, (5.2.11) 

where { a} are the components of the Christoffel connection defined 
uv 

already in (4.3.4). 

It should be stressed again that the above procedure entails 

the replacement of all partial derivatives by the space-time covariant 

derivatives and that this procedure is guaranteed (or, rather so const-

ructed as) to take full care of the space-time invariance properties 

which we wish to maintain. The gauge invariance properties of the flat 

space Lagrangian are quite separate and unconnected to this process. 

The question then is: Does this procedure for constructing a 

general relativistic Lagrangian from a given special relativistic one 

leave any gauge invariance of the original flat space Lagrangian un-

disturbed? It will be shown presently that for the Einstein theory 

which employs the Christoffel connection in all space-time covariant 

derivatives the answer is in the affirmative. It should not be concluded 

though that this renders the earlier observations trivial, since, as we 

shall see later, when torsion is present in the space-time connection 

and the full torsion containing connection is used in the space-time 
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covariant derivatives, the gauge invariance of the flat space Lagrangian 

is in fact lost and one has to search for ways of retaining it if the 

coupling of torsion to gauge fields is still desired. 

Let us now make these points clearer by considering the 

coupling of gravity to the Lagrangian system (5.2.8). First, it should 

be noted that for that part of the complete Lagrangian which only 

involves the scalar fields nothing is changed as far as the gauge 

invariance properties of this part are cocerned by carrying out the 

procedure of equations (5.2.9) - (5.2.11) since the space-time covariant 

derivative for a scalar field is just the ordinary derivative and 

gravity couples to the scalar fields only inasmuch as the space-time 

dependent metric must be used to contract all indices instead of the 

flat space metric. 

As far as the gauge part is concerned, such a procedure respects 

the local gauge invariance properties so long as no torsion is present, 

and the form of 
Fuv 

given in (5.2.7) remains gauge covariant when the 

partial derivatives are replaced by the covariant derivative given in 

(5.2.11). It is easy to see how this comes about. 

Under (5.2.11), 

i -- "i 	ti i ti i 	i j k 
Fuv 	Fuv 

= oPAv - OvAu + g C 
jk 

Au Av 

= Fi - { o} Ai + { } Ai uv uv Q vu a 

Fuv 
(5.2.12) 

due to the symmetry in the lower two indices of the Christoffel symbols 

{u~} . So that if 
Fuv 

is gauge covariant, then so is F. 

In the presence of torsion, however, the covariant derivative 

for a vector field becomes, 

a 
Du 

Av 	U AV - ruv 
Ao (5.2.13) 
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where the ruvo's are the components of the full non-symmetric connection, 

ruaa 
a {uā} - (Saau  - Suaa  - Saua) 	(5.2.14) 

where SuvA  , the torsion, is the antisymmetric part of the connection. 

It is worth pointing out, however, that in theories containing 

an asymmetric contribution to the connection one has the possibility of 

defining two types of space-time covariant derivatives - each giving 

rise to a generally co-ordinate invariant theory. This is due to the 

fact that one can use either only the Christoffel part of the full 

connection — since this part on its own possesses all the properties 

required of a connection -- or one can employ the full connection 

containing contributions from the torsion. The two choices lead, of 

course, to different physics, for example, one leads to problems when 

attempting a gauge invariant coupling between torsion and gauge fields 

while the other does not. No problems arise if one uses the Christoffel 

connection. The interesting case, which we shall now examine, is, 

therefore, the case when we use the full connection. For this we have 

that 

__ 	i 	i 	j k 
Fuv 	

V AV 
- 

oVAU 
 + g C  jk Au  Av  

i 	a i 	a i 
Fuv - ruv A * rvu A 

	

a 	a  (5.2.15) 

Once again the contribution from the Christoffel part of ruva  will 

cancel out to yield 

F'1 
= F1  + K a  Al  - K a  Ai  

uv 	uv uv a vu a 

Substituting for Kuva  , the contorsion tensor, we obtain, 

(5.2.16) 

F = F1 +S a  Al  -S 
aAl 

 - Sa  Ai  
uv 	uv 	v u a 	uv a 	uv a 

- S a  Al  + S aA1  + Sa  Al  , (5.2.17) 
u v a 	vu a 	vu a 
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which, using the antisymmetry of Suv° in its first two indices finally 

gives 

	

1 	
Q 

F 	F1 - 2 A~' S 

	

uv 	uv 	a uv • 
(5.2.18) 

For the purposes of not having to write down factors of 2 everywhere, 

let us define another tensor for torsion by 

To 	= -2 S a (5.2.19) 

We shall now use this T
a 
uv throughout instead of Savo. In terms of 

this the expression for 
Fuv 

becomes, 

F'i = Fi + Ai To }lv 	uv a ].iv • 
(5.2.20) 

For non-zero torsion, the presence of the last term in this 

expression ruins the gauge covariance of 
Fuv 

, which is necessary if a 

gauge invariant Lagrangian for the gauge fields is to be constructed 

from it. The fact that Fuv does not now transform gauge covariantly is 

easily seen, since, on the r.h.s. of (5.2.20) the first term transforms 

gauge covariantly, while the last term transforms like the gauge fields. 

Here, then, is the dilemma. If one wants torsion to couple to 

gauge fields through the usual mechanisms, one must give up the very 

fundamental notion of gauge invariance. 

There are two ways out of this impasse. One is the rather 

unsatisfactory approach of abandoning the notion of a coupling between 

torsion and gauge fields , to which we have referred already, by constr-

ucting all field strengths etc. using only the symmetric Christoffel 

part of the full connection. 	However this is tantamount to rejecting 

the fundamental reason for which one would like to incorporate torsion 

into Einstein's theory. We are, therefore, more inclined towards the 

second approach which consists of trying somehow to modify the usual 

definition(s) of the gauge covariant derivative and/or Fuv , so as to 
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retain both gauge invariance and the coupling of torsion to gauge fields. 

The rest of this chapter is devoted to showing that such a procedure 

can in fact be set up and leads to several interesting results 	which 

we promised in the introduction. 
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5.3 	MODIFIED MINIMAL COUPLING 

Let us consider first the work of Hojman, Rosenbaum, Ryan and 

Shepley (HR2S) who modified the minimal coupling procedure for electro-

magnetism in order to solve the above problem for the photon. Interpre-

ting the principle of minimal coupling as applied to the coupling of 

electromagnetism and the charged matter fields in the Lagrangian density 

to mean that the new derivative should depend linearly on the gauge 

connection Au but not on its derivatives, they proposed that the gauge 

covariant derivative be defined as 

D = 8u - iq ba Aa (5.3.1) 

where it is to follow the transformation law for the charged fields as 

before, viz. 

eiq A (x) (5.3.2) 

In (5.3.1) the ba (x) are sixteen functions of space-time (but not of A4). 

With this definition of Du , we must now repeat the calculations of 

chapter three to determine the new transformation law for the compensat-

ing gauge field Au . The requirement which determines this is 

D 	= elq A (x) D 	, 

which implies that 

(2 u - iq baA A)elgAip = e1gA (a u - iq ba ~A) 

or 

(5.3.3) 

(5.3.4) 

elgn (iq3 A - igbaSA )+eigA D 1p= e1gA D 	, 	 (5.3.5) u 	u a 	u 	u 

where OAa = A - Au and where we assume that the fields ba are 

invariant under the gauge transformations. 

This expression simplifies to give 



ba
p 
6Aa = ōpA , (5.3.6) 
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which upon multiplication by Cu , the inverse of by , yields 
v 	 p 

dAv = C' (apA) . 	(5.3.7) 

Note, however, that Cv is still not fixed and it is this 

extra degree of freedom introduced by generalising the usual procedure of 

minimal coupling which allows a restricted form of dynamical torsion to 

interact with gauge fields without destroying gauge invariance. We 

shall now use this freedom of choice of C to choose it in such a way 

as to ensure that 

Fpv 
= Av,u - A

p ~ v + Ao T
Q 
uv, 	(5.3.8) 

be gauge invariant (since for the Abelian case the Maxwell field 

strength is gauge invariant as well as gauge covariant) under this 

modified transformation property of Au . 

This requires that the variation in Fuv be zero under (5.3.7) 

for arbitrary A , i.e. 

SF 	= a ( Ca A 	) - a (Ca A ) + Ca Tc A 
pv 	p v ,a 	v p ,a 	a pv ,a 

(Ca ,p - 
Ca + CaTo pv)A,a + COA,au 

- CūA,av 

= 0 	 (5.3.9) 

where A pas denotes aaaaA . 

This is possible only if the coefficients of A ga and A
0s

vanish 

separately. This implies that we must solve the following two equations, 

Ca 	- Ca 	+ Ca To 	= 0 	, 	(5.3.10) 
V,p 110) o pv 

and 

C (a 6 	- C (a S~) = 0 	(5.3.11) 
v p p v 



where round brackets denote symmetrization. 

Multiplying (5.3.11) bySS we obtain 

Ca = 1 CS Sa 4 s u 

= f(x) Sū (5.3.12) 

where f(x) is some function of space-time. Substituting this into 

(5.3.10) we get 

Sa f - Sa f +f Ta 	- 0 
v ,u u ,v 	uv 

(5.3.13) 

which may be written as 

T
a uv = a (ln f),v - dv(ln f)  	. 	(5.3.14) 

Discarding the singular solution (when f = 0 ) , we find that 

the requirement that 

bū } when T
a 
uv -} 	0 	, 

	 (5.3.15) 

(which ensures that we recover the ordinary torsion free theory as one 

limit) allows us to write 

f = e~ 

where — the tlaplon field — is a scalar field which acts as a 

potential for the torsion. 

So for the Abelian case we can retain gauge invariance and the 

coupling of torsion to the photon if we follow the prescription 

$=e iq A (5.3.16) 

where 

a } D = au - iq e Au 

q 
= 	au 	f (x) Au 

A -} A= A.+eA u 	u 	u 	,u 
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and where the usual procedure is employed for coupling gravity to the 

system with torsion being given (in terms of 0 ) by 

pv = Sū (av~) - Sv 0p0) . 	(5.3.19) 

We consider now the non-Abelian case. In order to see how 

to proceed, we try to see if the non-Abelian form of the modified 

minimal coupling law of HR2S given in (5.3.1); 

Du 	= 8p - ig ba Aa 	(5.3.20) 

is sufficient to allow Fpv to transform gauge covariantly for a suitable 

choice of torsion and ba . Such a procedure turns out not to be 
1.1 

sufficient but this exercise does give us a hint as to how to solve the 

problem. 

The above definition for D means that if Dp4i is to trans-

form like 4, , then following the same sort of procedure as for the 

Abelian case, it is easy to show that the gauge fields Al must transform 

as 

Al -> A~1 = Al - 1 CaA1 - Cl A3 Ak' (5.3.21) p 	u 	p g p ,a 	jk p 	
, 

 

where the Al's are arbitrary infinitesimal functions of space-time. 

Using this , we obtain the following expression for SFpv (some details 

of the calculations needed to arrive at this result have been collected 

in Appendix B): 

'i = 1 a R a 	i + 
pv 	

g ( Cp Sv - Cv Sp ) A 
,a$ 

1 i a 	a 	a a 
+( g Sk (Cp,v - Cv,p - Ca T pv) + 

+ C . A3(Sa - Cy) + Ci. A3(Ca - ō
a)}Ak,a 

j 	j Ta + { C
jk(Ap,v

- Av,p - Aa Tpv) - 
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g(C1. Cmlk U AAv } C1m1C jkAU Av)}Ak • (5.3.22) 

7I 

-11 
Now, however, we must ensure that F 	transforms gauge co- 

uv 
variantly, thus 

	

'i 	i j 'k 

	

dFUv 	C jk A Fuv (5.3.23) 

This leads then to the following equations for Cv and T
a which we 

obtain by requiring the coefficients of 
A1,«s , Ak,a 

, and Ak to 

vanish separately. 

(i) Coefficient of Al 

C 	6R) - C(a d~) 	= 	0 	(5.3.24) u 	v 	V 	1.1 

where round brackets () again denote symmetrisation over the indices 

enclosed. 

(ii) Coefficient of Ak 

g ū,v - 
Ca, .1 - 

C
a 
To uv ) Sik + 

+ Ci.kAŪ(ō.) - Ca) + Ci.kAv(C« -da) = 0. (5.3.25)   u u 

(iii) Finally, the coefficient of Ak , using equation 

(5.3.24) in equation (5.3.23) can be reduced, after some tedious index 

manipulations, to the following, 

CimkCm31 - Cijm mlk CimlCmj = 0 k (5.3.26) 

which is satisfied identically, due to the Jacobi identity (3.2.23) 

satisfied by the structure constants. Indeed (5.3.26) is the Jacobi 

identity. 

Equation (5.3.24) is identical to equation (5.3.11) 

encountered for the Abelian case, and which has been shown already to 

solve to yield, 



Cv  = f(x) dv  . p 	u (5.3.27) 
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Substituting this into (5.3.25) we obtain, 

g ,v  p 	,u v 	Uv (fdd - f Ta  ) dk f 

+ Cijk(f-1) (A jdū - Aida) = 0 . 	(5.3.28) 

However, the only solution to these equations is the trivial one, 

namely, 

Taut/ 	0  

which gives the ordinary torsionless gravity theory coupled to thē usual 

non-Abelian gauge fields. 

Clearly, something more than just the HR2S modification of 

minimal coupling is called for. 
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5.4 	MODIFIED FIELD STRENGTH  

We saw in the last section that on its own the generalisation 

of the usual gauge covariant derivative as proposed by Hojman et. al. was 

not sufficient to allow us to couple torsion to non-Abelian gauge 

fields. The work of the last section does suggest, however, that if we 

modify the Yang-Mills-Shaw field strengths, 
Fuv 

 , in the following way, 

we may obtain a satisfactory solution of the problem. 

Let us define, 

Fuv 	Av,u - A1
,v  + g C1jkBp v a  AS 	(5.4 .1) 

Replacing the partial derivatives by covariant derivatives and 

carrying out all the above calculational procedures for these modified 

field strengths and the modified minimal coupling of equation (5.3.20), 

we find that instead of equations (5.3.24) - (5.3.26) we must solve the 

following set of equations: 

(5.3.24) and (5.3.26) remain the same as before while (5.3.25) 

is modified to: 

g (CU,v 	Cv,u - Ca 
TQ 	) uv   Sk 

+ C1. (Aūdv 
 
- Bū BSAYCS ) + 

+ Cljk( Bū BS A S CY 	- 	A v Sū )  = 0 	(5.4.2) 

It is a straightforward matter to discover that the following 

is a solution to these equations; 

Cu  = f(x)6
v 

-' Bvu = f (x)dū  , 

f To 	= f da  - f Sa. 
Uv 	,u v 	,v u 

(5.4.3) 

(5.4.4) 

(5.4.5) 



Equation (5.4.3) implies that since, 

ba Cv 	Sv 
P 

by = f-1(x) Sy  . 
u 	 u 

As (5.4.7) is singular for f(x) = 0, we shall require f(x) to 

be non-zero everywhere in space-time. Further, requiring (5.3.20) to 

reduce to its usual definition ( b
y 
 + S

y 
 for zero torsion ) fixes the 

sign of f(x) to be everywhere positive. Hence we write 
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f(x) = e0(x) 

The expression for torsion then takes the form 

To 	= Sa 	+ So  0 
pv 	u ,V v ,u 

and the connection is, therefore, given by 

r 6  = { 6} — s6  0 +g 	'° 
Pv 	Pv 	u ,y Pv 

(5.4.8) 

(5.4.9) 

(5.4.10) 

We have found, therefore, that it is necessary to modify the 

Yang-Mills-Shaw field strength to 

,i  F 	
= Ai  - Ai  + g Cl  Ba  BS  A3  Ak  - Ai  Tcr  

Pv 	v,u 	u,v 	jk u v a S 	o uv 

(5.4.11) 

where the Ba  are functions of space-time but not of the gauge fields, 

in order to solve the problem of coupling gauge fields to torsion for the 

non-Abelian case. Making this modification and using the modified 

minimal coupling procedure for gauge fields (5.3.20) we see that it is 

possible to retain gauge invariance while coupling torsion to all gauge 

fields provided that 

-1 
Ba  = f 2(x) s u  (5.4.12) 
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where f, bū (or Cū ) , and T
a uv are as for the Abelian case. Substitu-

ting our solution back into the expressions for Du and F gives us 

a a  Du 	u - i 3A f l • (5.4.13) 

and 

Fuv Ai -Ai  -AU,v f f Cl AA - ATc 	(5 4 14) 
jk
Pv 	a uv~ ..  

where T
a 
uv is given by (5.3.19). 

We have written D and F 	in the above form to make the 

point that the effect of coupling our particular form of torsion to 

gauge fields by the method described above is essentially equivalent to 

defining an effective coupling constant 

g(x) = g/f(x) 

which is a function of the space-time point at which the interaction 

takes place. A more complete discussion of the implications of this will 

be given in the next chapter. 

The total Lagrangian density for a system of complex scalar 

fields, metric, and gauge fields considered above can, then, be easily 

shown to take the form, 

L = 	 (R - 60'110 	- F •F v - 41P* 	u) , 16v 	u 	uv 	.0 

where the dot before an index (thus .p ) implies use of the modified 

covariant derivative (5.4.13). 
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CHAPTER SIX 

DISCUSSION  



Of all the fundamental interactions observed in nature, the 

gravitational interaction is by far the weakest and though all present 

day evidence from macrophysics attests to the validity of Einstein's 

general relativistic description of it, at the microscopic level it is 

the least well understood. Almost all generalisations of the general 

theory of relativity, therefore, try to modify the theory in such a 

way as to allow deviations from it in the small — at the elementary 

particle scale. 

At this scale we find, however, that gauge theories describe 

the other observed fundamental interactions, namely the elecronuclear 

interactions. These theories assume for the space-time symmetries the 

Poincarē group and classify the particles by means of the irreducible 

unitary representations of this group. These representations are 

labelled by the mass m, and spin s of the elementary particles. 

Now, mass, which is connected with the translational part of 

the Poincarē group, finds a beautiful interpretation in terms of the 

geometrical notion of the curvature of space-time in the general theory 

of relativity. However, spin, the other parameter necessary for a 

complete classification of these elementary particles and one which is 

associated with the rotational part of the Poincarē group, is not 

afforded a similar geometric interpretation in Einstein's theory of 

gravitation. 

This notion of spin, s, of the elementary particles is, 

therefore, the quantity which the Einstein-Cartan-Sciama-Kibble theory 

tries to incorporate into a geometrical framework more general than 

that of Riemann which Einstein employed. The ECSK theory achieves this 

by introducing an asymmetric contribution, called the contorsion, in 

addition to the Christoffel connection into the space-time connection 

which it employs. The non-Riemannian aspects introduced in this way are 
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then attributed to the spin-angular momentum of matter. 

In chapter four we have considered the choice of a suitable 

action for this theory which could determine the dynamics of both the 

metric g 	, and the contorsion K v
X 
 fields. There we have shown that 

the Lagrangian density which is conventionally employed for this purpose 

is not the most general allowed, even if it is required to be linear in 

the curvature tensor formed out of the complete asymmetric connection. 

We have argued that another parity violating contribution constructed from 

the pseudo-tensor density 
Euvaa 

and the curvature tensor 
Ruvas(r) 

 ought 

to contribute to the complete action for such a theory. 

Pseudoscalar actions for the ECSK theory have been considered 

before by Purcell /21/ who generalised this theory by the addition of the 

most general action which is bilinear in the antisymmetric part of the 

connection and linear in the Levi-Civita density. For his theory the 

net effect of the new additions to the action was to reduce the spin-

spin coupling constant of the ECSK theory. There are two points worth 

mentioning with regard to the connection between the work of Purcell and 

the work here reported. Firstly, it is worth noting that whereas Purcell 

has allowed the contorsion tensor a role analogous to that of the 

curvature tensor inasmuch as they are both allowed to appear in the action, 

we have argued that the action ought, for the sake of a reduction in the 

number of arbitrary parameters that would be needed, to be constructed 

solely out of the linear combinations of the curvature tensor. The second 

point we wish to make is that the introduction of the Levi-Civita density 

into the theory does not only imply a reduction in the . 	strength 

of the spin-spin interaction. Indeed, we have shown in section six of 

chapter four that new effects not at all predicted by the ECSK theory may 

be expected. 

We have also argued in chapter four that torsion should be present 
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in a dynamic form even in the absence of matter to represent the 

torsional effects due to the spin-2 nature of gravitation. We arrived 

at a particularly simple form of this vacuum torsion which is generated 

by a scalar field and for which the parity-violating effects due to the 

additional term in the action we motivated vanish. 

In order to illustrate that the generalised theory we have put 

forward does lead to effects not present in the ordinary ECSK framework, 

we went on to show that parity-violating effects not required by the 

ECSK theory for the Proca field are expected to be present in a theory 

based on our action. This example is not altogether an academic exercise 

and devoid of any physical content, since massive spin-one particles, such 

as the p,w, and c  are known to exist for which, at least in principle, 

our discussion in section six of chapter four might have some relevance. 

Some further work in this direction is, therefore, conceivable and might 

center on trying to explain some of the observed features of these massive 

spin-one objects. 

The presence of the parity-violating contribution appears to us 

to be the most distinctive feature of torsion-containing theories which 

could serve to distinguish them from Einstein's theory and which could 

provide the basis for the experimental verification or rejection of such 

theories. 

However, in the present work we have not developed the theory 

to a stage where it can be confronted with experiment. Further work in 

this direction is also possible. The first task that one might carry 

out in order to bring the theory closer to making experimentally testable 

predictions is to incorporate fermions into the theory and then discuss 

a particular laboratory situation in which the distinguishing features 

of this theory would be illustrated. The extreme weakness of the effects 

expected does, however, mean that there is, at present, little hope for 
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a direct confrontation between experiment and the predictions of this 

theory. 

The work that we carry out in chapter five is, however, much 

closer to experimental testing since it makes definite statements about 

the coupling of photons to a particularly simple form of dynamic torsion 

that we motivated also in chapter four. 

The work of chapter five concentrated on trying to resolve the 

problem of coupling torsion to all spinning matter - in particular matter 

of the gauge field variety. The problem arises, as was illustrated in 

the second section of this chapter, because a straightforward attempt 

to achieve such a coupling leads to the loss of gauge invariance. We 

found that a coupling between gauge fields and a simple form of torsion 

could be achieved provided that one generalised the usual concept of 

minimal coupling of gauge fields to charged matter and provided that a 

modified form of the gauge field strengths was employed. 

This approach led to one particularly interesting consequence 

in that the whole procedure could be viewed as the replacement of all 

space-time independent gauge 	coupling by ones which depended on space- 

time in a manner determined by the strength of the torsion. Of course, 

this means for the Abelian case that test bodies with different electro-

magnetic energy contents would behave differently and therefore -have 

implications for the null experimental results of the Eotvos-Dicke-

Braginsky experiments. 

This question has been considered in detail by Wei-Tou Ni /22/ 

who has claimed that for the Sun, the scalar field 	, which generates 

the torsion, would be around O.67x 10-4  U where U is the Newtonian 

potential at the surface of the earth. This, he further claims would. 

lead to the prediction from this theory that the gravitational 

80 



accelerations of aluminium and gold would differ by 

2x10-7  VU, 

which disagrees with the null experiments of precision 

-11 

	

	
-12 

}VU and 10 10 
	
PU 

performed respectively by Roll, Krotkov, and Dicke and by Braginsky and 

Panov /23-24/. 

One may draw two conclusions from this - both somewhat 

discouraging. 

The most straightforward, and perhaps honest, is to conclude 

that the modified form of minimal coupling proposed by Hojman, Rosenbaum, 

Ryan, and Shepley in reference 19 is not made use of by nature and that 

one ought after all to leave gauge fields uncoupled to torsion, or at least 

one should look for other ways of achieving it. 

Of course, one might also conclude that perhaps the generalisation 

of Einstein's theory to include torsion is not a useful one in the first 

place and that, therefore, torsion has no role to play in a description 

of the gravitational interactions. Both these conclusions are, therefore, 

negative and somewhat discouraging though, of course, one can think of 

more exotic situations which would explain away these negative results. 

It is conceivable, for example, that the region of space-time 

that we happen to be in is a zero torsion region and that perhaps non-

zero torsion exists in other regions of the universe, where the effects 

studied in chapter five might in fact occur. This rather optimistic 

situation might appear less unrealistic if, for example, the ideas of 

Hanson and Regge /25/ turn out to be right and the - absence of torsion 

in conventional gravity could be explained in a dynamical manner. These 

authors have suggested that a gravitational Meissner effect might be 
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responsible for producing instanton-like vortices of non-zero torsion 

concentrated at four-dimensional points. Such torsion vortices would be 

the analogues of magnetic flux vortices in a type II superconductor, while 

ordinary torsion-free space-time would correspond to the field-free 

superconducting region of a superconductor. 

However, no convincing demonstration of the occurence of such 

effects in a metric-torsion theory have been reported as yet. 

We shall end this discussion here since we are already 

bordering on the very speculative which is the subject of the next very 

brief chapter. 
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CHAPTER SEVEN 

SPECULATIONS 



In this very brief chapter we discard all pretences of rigour 

and make some speculative remarks and suggest possible lines along 

which further work might proceed. 

Torsion containing theories are not only useful for describing 

gravitational interactions. It has been known for some time that torsion 

containing geometries have a very useful role to play in continuum 

physics. Based mainly on the work of Kondo, Bilby, Bullough and Smith, 

and Kroner /26/ it has become clear that torsion plays a central role in 

the continuum theory of crystal dislocations where the torsion is 

identified with the physical notion of a dislocation density. It is 

amusing to speculate whether the generalised Lagrangian density we have 

proposed in chapter four and the concepts outlined in chapter five may 

not in fact find some more useful applications in such theories of 

crystal dislocations. 

Another possible link between the work of chapter four and some 

physical situations might arise if we compare this work with the specula-

tive and rather vague remarks of Stueckelberg /27/ who tried to explain 

the experimental results of parity violation observed in the weak inter-

actions in 1957 by ascribing them to a cosmological distinction between 

left and right. He claimed that a cosmological asymmetry was perfectly 

compatible with Riemannian space-time of ordinary general relativity and 

tried to explain this by proposing the existence of a 'field' caByd(x) 

whose covariant derivative vanished everywhere. However the major 

problem faced by us while trying to work along these lines has been to 

actually understand what exactly Stueckelberg had in mind - this not being 

clear from his extremely brief work of reference 27 . 

It is also interesting to consider the possibility of including 

an ER type term in the Lagrangian for the theory of supergravity which 

is based simply on the Einstein Lagrangian and the use of the torsionless 
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Christoffel connection when coupling to matter. It is also worth asking 

whether it would still be possible to write down a theory of supergravity 

in which the full torsion containing connection was employed for the 

purposes of coupling to matter rather than the 'minimal' approach 

traditionally adopted. Still with supergravity, it may be useful to 

examine in a superspace formulation of the theory the field content of 

an ER type term, where the E field is now the superspace analogue of the 

simple Levi-Civita density of ordinary general relativity. 

It would also be very interesting to see if the concepts of 

modified minimal coupling etc. employed in the work of chapter five can 

be made use. of in supergravity or even in an ordinary global super-

symmetric framework. 

Finally, we wish to close by speculating about the possible role 

torsion might play in strong interaction physics. It has been suggested 

by Isham, Salam and Strathdee /28/ that the spin-2 aspects of 	strong 

interaction phenomena may be understood from a geometrical point of 

view by a two-tensor f-g theory. 

This theory is the gravitational analogue of the vector-meson 

dominance hypothesis for hadron electrodynamics and attempts to describe 

the gravitational interactions of hadrons and leptons through an f-g 

mixing which resembles the po-w mixing of lepton hadron interactions. The 

action which this theory employs uses, apart from the Einstein-Hilbert 

expressions for each of the two spin-2 fields, a generally covariant 

f-g mixing term and may be written symbolically as 

Lfg = LEH (g) + LEH(f) } LPF , 

where LPF  is the mixing term and is just a generally covariant form of 

the well known Pauli-Fierz expression for a massive spin-2 field. 
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The point to note is that we are, here, concerned with phenomena 



at the microscopic level where, as we have repeatedly emphasised, the spin-

angular momentum of matter might be expected to play a significant role. 

In view of this the idea comes immediately to mind that one should attempt 

to incorporate torsion into the strong metric (f) part of this theory 

and study any consequences to which this modification might give rise. 
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APPENDIX A 

In this appendix we give the most general form for LK mentioned 

in section five of chapter four. The Gi are arbitrary parameters and we 

have only given the terms for the ordinary ECSK theory. Allowing the 

additional term LA the situation can only get more complicated. 

16 	1 

LK 	i t 16rtGi Q. 	
with 

Q1 = Ka0A K 	a Q 	= K
SQa Ka 

;a aas; 9 	;a Qa;s 

= K aA K 
Sa 

$6 
Q 

_ Bcta a 

	

Q2 	a ;6 	 10 	
K 	

;aKQ A;ā 

Ka$X K 	o 	__ 6aa 	$ 

	

Q3 	= 	;6 asa; 	Q11 	
K 	

;c a AO 

aSQ 	 __ aaA a 

	

Q4 	= K 	
;aKX ;S 	Q12 	

K 	
;aKQ a;s 

K$aa 
K 

X 	_ 6aa 	S 

	

Q5 	;a ao ;a 	Q13 	
K 	

;aKa 6;S 

aa 	A 	 __ ~aa a 

	

Q6 	= K 	;aKacr ;~ 	Q14 	
K 	

;aKA a;R 

	

Q7 
	KaoA Ks 
	 = 

Kaa I A 

	

7 	;a QA;S 	Q15 	a;a A;s 

= K
aaa K a 	_ aR 	aa 

	

Q$ 	;a a X;(3 Q16 	K 
a;aK A 

88 



APPENDIX B 

In this appendix we derive the expression for SFA given in 

(5.3.22) using the expression for SA1 given in (5.3.21), viz. 

SA1 - -  Ca Al - Cl Ai Ak P 	g u ,a 	jk u 

and go on to show that use of (5.3.23) yields the equations (5.3.24) - 

(5.3.26). 

Now, 

so that 

However, 

F~1 = F1 + Al To 
uv 	uv 	Q 	Iv 

= 9 Al - 9 Al + g Cl k v 	a opv 
j _

li 	+ A T 
 

SF
U~ v = 9 SA6A5. - BSA1 + g Cljk(SAAAv + 	AJ SAk) 

+ SAl T6 
Q uv 

(B.2)  

(B.3)  

8 SA1 = - 1(Ca Al + CaA1 ) - C1 (A~ Ak+ AjAk ) P v 	g v,11 ,a 	v ,au 	C
. v,p 	v ,u 

(B.4)  

Inserting this into (B.3) yields, 

SF 	= - 1{(Ca Al 	+ CaA1 	) - (Ca Al 	+ CaA1 	)} + 
uv 	g 	v, i ,a 	v ,a1a 	u,v ,a 	u ,ay 

+ g C1jk{Al (- g CaAJ ~a - CJlm lA ) + 

+A(- 
g —CA k,a Ck1m vAm) } 

+ 

+ To 	(- 1 CaA1 - C1 AiAk) 	(B.5) 
uv 	g o ,a 	jk o 

Finally, collecting terms linear in Al as, 
Ak ,a 

, and Ak gives 

us the result that 

SFU~ 	
g 

(CŪS6 - C~ Sū 
) A1,0 
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(B.1) 



} g sk(CU,v - Cv,u C
a  Ta  uv) f 
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+ C. AJ (Sa  - Ca) + C1  AJ  (Ca  - Sa) Ak  } + 
jku v v 	jkv u p 	,a 

+ {Ci 	j 	
- A 

j 	
- 

Ai  Ta 	
) 

-  
j (A  k t,v v,u a uv 

- g(C1jm0mlkAŪAv  + c Cm  3 v k 

	

jkAA ) 
}A 	. (B.6)  

 

Now requiring the gauge covariance of Fuv under (B.1) will lead 

to equation (5.3.23) : 

'i 	i 	k J SFUv  = C kj AFuv  (B.7)  

The r.h.s. of this equation does not involve any derivatives 

of A , so that when we come to obtain equation (5.3.24) - (5.3.26) by 

setting the coefficients of Alas  , Ak a  , and Ak  in (B.7) equal to 

zero, the first two of these equations can be read off simply from (B.6). 

The last equation does, however, require that we subtract from the co-

efficient of Ak  in (B.6) the quantity on the r.h.s. of (B.7). This 

then easily leads to equation (5.3.26). 
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Fl. 	The material for this section is taken essentially from 

references 3, 6 and 9. 

F2. A very useful and concise account of this attempted unification 

of electromagnetism and gravity is given by W. Pauli /4/ in 

section 65 of his book on relativity, where he also discusses 

in detail why the theory led to contradictions with experimental 

results. 

F3. This is proved on the next page. 

F4. The material for this section is essentially taken from the 

excellent review on gauge theories by Abers and Lee in 

reference 15. 

F5. For convenience we define the pseudo-tensors 
nuvaa 

and n 
uva6  

from the usual Levi-Civita (pseudo-) tensor densities e
uvac  

and euvAa as 

(-g)-2 euvXQ 

nuvla 	= (-g) 	euvAa 	'  

They satisfy the following properties: 

uvaa -SvAc 
n nuaSY - «SY ' 

n 	nuvi3Y 

nuvao n 
uvAY  

uvAa 

= 

= 

-2 6aY 	, 

-6 6a  
Y 

nuvAcr = -24 

uva.... where the tensor S aSY.... is a generalised Kronecker symbol 

obeying the following rules: If u,v,A,••• are all different and 

a,S,Y,•.. are obtained from them by a certain permutation, then 



it is equal to +1 or -1 depending on whether the permutation 

uva... 
a6Y.. is even or odd, in the remaining cases it is equal to 

zero. 

F6. 	For later purposes we define 

a = (167rGp)-1. 

For the most part we shall work with (167rGN) set to unity. 

F7. This is illustrated beautifully in the work of Michael Hovak 

and Pemeter Krupka (Int. J. Theor. Phys. 17(1978) 543 ) in 

which these authors consider the problem of finding all first 

order invariant Einstein-Cartan structures. They consider 

Lagrangians containing terms linear or quadratic in the following 

objects: obj  
~ 	gij 	gij ;k ' T

jk , Sjk ( the latter two are in their 

notation the antisymmetric and symmetric parts of the connection) 

Rijkl' 
and Tijk;1. Assuming compatibility they deduce that 

for a four-dimensional theory there exist at most 194 such 

functionally independent generally invariant Lagrangians. If 

we allow for the use of the tensor density Ei.kl, not 

considered by them, the number of such independent Lagrangian 

structures would increase further. In view of this the genera-

lised action we propose (by restricting ourselves to linear 

curvature theories) seems to be a very reasonable choice. 

F8. We may here point out that (4.5.1) is not the most general form 

for the contorsion that we can write if we allow the use of 

Eijkl
. In fact it is possible (while still only introducing one 

index fields) to consider the following choice for Kijk: 

Kijk = (1) gik 	 k gij + Eijkl 11) 
1 

where we have introduced a pseudoscalar field tt) ( 	bein 	 ) 

which, like 0 would be a dynamical field 
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once we incorporate this type of contorsion into our Lagrangian. 

For simplicity, however, we do not consider this choice in the 

present work. 

F9. We shall in fact be considering this problem in the next chapter 

where modifications of the usual minimal coupling procedure and 

the use of a modified Yang-Mills-Shaw field strength does enable 

us to couple a simple form of torsion to gauge fields. For the 

present, however, we shall not complicate the discussion by 

considering such a possibility. 

F10. Wherever possible we shall suppress all internal indices. 

Fil.nut  is the Minkowskian metric, diagonal (+,-,-,-). 

F12. 	Here S.R. stands for special relativitivistic and G.R. for 

general relativistic. 
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• Monopole solutions for strong gravity coupled to SO(3) gauge fields 
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We find a class of static spherically symmetric monopole solutions to the coupled Einstein-SO(3) gauge 
field equations for f -g theory in the limit that weak gravity is neglected. These solutions reduce, in the 
appropriate limits. to the Salam-Strathdee class of solutions and the Wang solutions For the pure Einstein-
SO(3) theory. We comment on possible extensions and the relevance these solutions may have for hadronic 
physics. 

Exact spherically symmetric solutions for the 
pure f -g theory of Isham, Salam, and Strathdeet 
have recently= '' been obtained. In this note we 
incorporate SO(3) gauge fields in the theory and 
obtain static spherically symmetric monopole 
solutions for the gauge fields and the f metric. 
The full Lagrangian density for such a system is 
given by 

Z=---l Z 47-7g R(g)- -i v7 R(f)+.C fr 
x~ 	xf 	

(1) 
that is, the Einstein expressions for the g and f 
fields, a generally covariant mixing term which,. 
at the linearized level, is responsible for the f 
field mass, and a Yang-Mills part for the 50(3) 
gauge fields. This latter contribution to L is 
constructed using f,,,, as a metric tensor. Such 
a procedure is consistent with the prescription 
employed in f -g theory. Hadronic matter parts 
of the Lagrangian are to be formed using f as 
a metric tensor, while for the leptonic parts one 
must use g,,,,. The underlying physics is that while 
leptons interact directly with gravitation, hadrons 
do so only through an f -g mixing, analogous to the 
p"-y mixing in hadron electrodynamics. f -g 
theory without leptons may thus be described as 
hadron geometrodynamics. In detail, 

21' - 	la 	; 	) a  » 	-~ " 4x 	 )(f pO -gPO ) 
l~ 

X ( g5Pgw — g„„gtx,) , 	 (2) 
• 

.evw = - ; I-7/"/ O F°vp Fyo , 	 (3) 

where 
Ff,„=a„IVai, -a„ , .eEa,e 	 (4) 

We use the following notation. Greek indices 
run from 0 to 3, while Latin indices denote 1, 2, 
and 3. E.,,a is the usual E symbol, with E,_a =1. 
x f 2= SeGs , x ( 2 =8rG N, where C S -1 GeV-1, 
G N -10”" Ger2. gr. det(I gµ„I ), f =det(I f pl) and 
c =1 is assumed throughout. 

We are interested in solutions of (1) in the limit 
that weak gravity is neglected. In this case (1) 
reduces to 

1 
2 --; 	R(J) 	Zvu 

where .C,,,A„ is the expression given in (2) but with 
gu„ everywhere replaced by 11„„, the flat space-
time metric. For convenience we choose to work 
in spherical polar coordinates, where our signs 
are such that rl,.,, =diag(1, -1, -r2, -r2 
We have dropped the f label from x f2. 

It should be noted that y n,,,, is not generally co-
variant; it is the flat-space approximation to (2). 
Restricting ourselves to the static spherically 
symmetric case and considering monopole-type 
solutions, we write' 

WI= 0 W° — 0 1V° = E 	r°i (t.) p — f 	 — 	i 	IaD y: 

and 

fu „dvt' dz`=Cdt 2-2Ddt dr -Adr2 

-B(d02 + sin'ed¢2) . 

where A, B, C, D, and U are functions of r only, 
and where TV,„ denotes the time derivative of WT. 

Using (6) and (7) and performing the 9, ¢ inte-
grations we obtain (the prime denoting differentia-
tion with respect to r) 

(5) 

(6)  

(7)  

- E= 	
J 	

.edrd9(1¢ 

4r 
= - — f (2v' - B'C' 	B i2C M~; 	r5 

`O 1-- [ -2B 4- 6B(A +C)- 4v5(A +C)17E 
 ~~0 )

, f x- 	
~B ) 

(1.27~- 
2r' -12B)']drf2;t 	

L
2 ~ 1- (tu2 I- 2u)Z 	]dr, (8) 
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where A=AC+DZ (> 0). We note that in (8) D always occurs in the combination a =AC + D2. Making use of 
this, we shall exchange D fora as the variable of choice. It is clear that stationarity of E under small 
variation of A, C, and A will yield independent equations only when D= 0. Krive and Sitenko5 have con-
sidered the D= 0 solutions of the linearized equations obtained from E. In this note we confine our atten-
tion to solving the full equations, but with D* 0. Variations with A, B, C, A, and U yield Eqs. (9)-(13): 

D*0, 6B-4r2 =0 , 	 (9) 

( C' 	2C l' 	2C 	9K 2 	 Df2 i 3 	r 2 	 3Jō 
`Ja 	/ }±'--'~ (eu 2 +2u)2 + — I 	I V 	(3A +3C- l +e) -- 

	

r-'A Sri 	` 	T 	 2 

a'/a =zK2 U'2/r, 

	

2(rC)' ;t-12(--.3.--11-2-    	, 	z- KZ 	 Cuea 
1 	3a 	4 2J3 (1*  a)+ī(1 -o )]r 	2 Car (eu2.2u)'- a 	-0 , 

2u)(eu+1)=0. (13) 

We have used the solution 
(10)-(13). 

The following forms for 
• easily be shown to satisfy 

B=4  rz, 

U=-f3/e, 0=0,1,2 , 

A =A,, a constant of integration , 

+ r 3K13 (3 -2) ]2~ 

2 

(

r t 	4e 

122 \2 	f a it+`~+34 (1+a)]r2 

and A(r) =I 	- C(r) determines A(r). Co is 
another constant of integration. 

We note that the function D(= (A -AC)1' 2 ) may 
become imaginary for some values of r unless 
we restrict the parameters in our solution in such 
a way as to make D real everywhere. Requiring 
A -AC>0 implies 

C 2 -(1 .44 A0)C+a,,> 0 . 	 (14) 

One particularly simple way of satisfying (14) is 
to choose ao = 4-, and (so as to exclude D= 0) C 
* 33 . This latter condition may be satisfied by 
suitably restricting the+ other parameters which 
appear in C. This is only one way of ensuring 
that D is real everywhere—other more complica-
ted possibilities exist and a particular choice may 
be relevant for a discussion of confinement in 
hadron physics." 

We note also that in the limit that the gauge 
fields vanish (13=0 or 2)' our solutions reduce to 
those obtained by Salam and Strathdee.2 Recently, 
Wang' considered the analogous problem in the 
Einstein-SO(3) theory (essentially the M -0 limit 
of our theory). In this limit, our solutions reduce 
to those found by him. Note that 3= i must be 
chosen to obtain the explicit solutions presented 
by Wang. 'Further, a transformation of the time 
coordinate (which diagonalizes f,„) is necessary 
for a formally identical result. 

We end with a few comments on possible exten-
sions of the work presented here. As has been 
pointed out,' although g,,, = 77 4 ,, may be a physically 
reasonable approximation, many important ques-
tions cannot be answered within this framework—
the role played by coordinate singularities being 
one. Extension to the g * n4, case would, there-
fore, be worthwhile. We do not anticipate any 
difficulty in this extension. Another possible ex-
tension, and one perhaps more relevant to hadron-
ic physics, is to the more reasonable group 
SU(3). Yet another possibility is to consider non-
singular 't Hooft' type solutions for the gauge 
fields—whether such solutions are possible in the 
context of f -g theory is an interesting question 
to examine. We hope to be able to consider these 
problems in the near future. 
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We show that the strong gravity theory of Satam et aI. places severe restrictions on black hole evaporation. Two major 
implications are that: mini black holes (down to masses —10-t6  kg) would be stable in the present epoch; and that some 
suggested mini black hole mechanisms to explain certain astrophysical phenomena would not work. The fust result implies 
that ftravity appears to mike black holes much safer by removing the possibility of extremely violent black hole explosions 
suggested by Hawking. 

1. Introduction. Within the framework of the two-
tensor f—g theory of Isham et al. [1], gravity couples 
to hadrons via an f—g mixing analogous to they p0 
coupling of the vector meson dominance model of 
hadron electrodynamics. At the simplest level the 
theory incorporates two spin-2 particles (the f and the 
g) which are governed by a modified Einstein-type 
lagrangian containing a mi.Ling term, which provides 
the f—g coupling, and the usual Einstein lagrangians 
for the f and g fields. For our purposes the essential 
difference between the g and the f is that the coupling 
for g is G,= 6.67 X 10-11  (rnks), while for fit is the 
hadronic coupling Gf  1028  (mks). 

It has been suggested that if hadrons are pictured 
as f-black holes [2], Hawking radiation [3,4] type 
ideas may provide an interesting explanation of the 
concept of hadronic temperature [5] in particle phy-
sics. In the present work we wish to pursue these ideas 
with reference to neutron stars and big-bang cosmolo-
gies, where hadronic environments exist and hence 
f—g theory may be expected to play an important role. 
The suggestion that black holes may be formed in the 
cores of neutron stars has been put forward [6] as a 

I  Address after 1 December 1973: Physics Department, 
University of Texas, Austin. Texas, USA. Permanent address: 
Mathematics Department, Quaid-i-Azam University, 
Islamabad, Pakistan. 

2  Permanent address: Brackett Laboratory, Imperial College of 
Science and Technology, London, England. 

possible explanation of various astrophysical phenomena. 
We analyse these suggestions and consider the implica-
tions of f-gravity in such a discussion. 

Strong gravity may also play a vital role in black 
hole evaporation processes to determine whether a 
mini black hole of a given mass would evaporate away 
[7,8]. We find that, if f-gravity is accepted, much 
smaller mini black holes from the initial big bang could 
be expected to have survived up to now than is other-
wise supposed [7,9]. 

Our basic argument is that at sufficiently small dis-
tances the f and the g can be regarded as equivalent 
(for our purposes) except for the difference of couplings 
—Gf/Gg  ^-10'9. Thus, for distances within the range 
of the f meson, f-gravity would be expected to domi-
nate. It follows that the surface temperature of an,f-
black hole would be some thirty-nine orders of magni-
tude lower than that of an equally massive g-black hole, 
Thus much smaller mini black holes could be expected 
to survive to the present epoch. This sharp reduction 
of the masses of mini black holes also makes it much 
less unlikely that such holes may be forming now. 

By comparing f-gravity predictions for neutron stars 
with those obtained by using g-gravity only [6], it may 
be possible to test the validity of f-gravity theory 
(assuming black hole evaporation to be valid) using the 
ideas presented in this note. 

After discussing the concept of hadrons as f-black 
holes, in the next section we go on to investigate the 
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implication Bof f-gravity in some astrophysical situs- 
tions. The 1:::.t section consists of a summary of our 
results and a brief discussion. 

2. Hadrons as f-black holes? Following Salam and 
Strathdee [5], we assume that we can obtain results 
for f-black holes from the formulae for g-black holes 
by replacing G~ by Cr, while leasing everything else 
unaltered. However, we must bear in mind that the 
range of distances over which f-gravity may be assumed 
to be applicable is (approximately) given by 

Range --ft/mf c~10-1bm, 	 (1) 

Ii being Planck's constant, c being the speed of light, 
and mf — the mass of the f meson — is a typical spin-2 
mass from the particle data booklet [i0]. For greater 
distances, f-gravity effects will obviously be negligible. 

Taking over the "g-gravity formulae, we find that 
the surface temperature of an f-black hole is given by 

T = Kht/2;r kc , 	 (2) 

where k is Boltzmann's constant and K — the surface 
gravity — is given by 

K = 42r(Rc2 — G f.lf)A-1 . 	 (3) 

The radius R and area A of the trapped surface being 
given by 

_ Rc2 = G fM + (G2;M2 — J2 c2,1Mbf2 — G, Q2)1/2 , 	(4) 

Ac4= 4irGf [2GfM2 — Q2 

+ 2(Gp1/4 J2c2 — G1M2Q22)112] 	 (5) 

where M, J and Q are the mass, angular momentum and 
charge of the Kerr—Newman black hole (in mks units). 

Assuming that hadrons may be ►egarded as f-black 
holes and that Hawking radiation ideas apply, the ques-
tion arises whether the proton — treated as an f-black 
hole — is stable, or will it evaporate away? A simple 
calculation using the above formulae shows that an 
f black hole having proton mass, charge and angular 
momentum radiates at a temperature of —2 X 1011 K. 
The radius of its event horizon is ^'3 X 10-16 m. 

Of course, there is nothing sacred about the value 
of G f taken here. It could even be an order of magni-
tude different from the value taken. Thus, it could be 
argued that if Gf 5 X 1028 (mks) hadrons of ~5 
GeV/c2 mass could be treated as f-black holes, having  

the correct radii. The problem, however, is that the 
surface temperature of these "hadrons" is of order 
1011 K. If this picture of the hadronic world is to sur-
vive it is clear that we must assume the hadrons are 
in a heat bath of T ^- 1011 K. It turns out that the con-
cept of temperature already exists in hadron physics 
[11]. One of the latest manifestations of the use of 
this concept is in the work of Bartke et al. [I2], who 
show that hadronic spectra, when expressed in terms 
of the transverse energy, can be fitted with a universal 
type of thermodynamical distribution with one common 
temperature which is approximately kT 120 MeV or 
T~ 1012 K. If one now assumes that this is the temper-
ature of the hadronic world, then hadrons may be 
thought of as stable f-black holes. 

One may, however, question the stability of single 
hadrons. For these it may, at first sight, be argued that 
in a bootstrap type model each hadron, being composed 
of many others, is automatically in a hadronic environ-
ment. On closer examination, however, this explana-
tion breaks down, as the black hole temperature is 
viewed from outside, where only the mass, charge and 
angular momentum of the black hole are apparent but 
no other internal structure. If the black hole surface 
temperature is much above the ambient temperature, 
the black hole would evaporate away violating baryon-
number conservation. Thus, unless some mechanism 
can be found, whereby decaying hadrons preserve ba-
ryonic number as they evaporate away, it does not 
seem possible to construct a black-hole picture of 
hadrons. Even if we could construct such a mechanism, 
it is not entirely clear how the stability of the proton 
could be accounted for, in view of the fact that the 
temperature of radiation increases as the mass of the 
black hole decreases. 

3. f-black holes, neutron stars and the big bang. So 
far, we have been considering hadrons in free space, but 
it is inside a neutron star that the concepts of f-black 
holes really come into their own — in a hadronic envi-
ronment. Thus, when considering mini black holes 
forming inside neutron stars we can expect f-gravity to 
have a decisive influence. We shall consider this situa-
tion next. 

Let us define the minimum mass, m, of a black hole 
as that mass at which a black hole will be stable (i.e. in 
thermodynamic equilibrium with its environment) at 
some given temperature. Using eqs. (2)—(5) we may 
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write this minimum mass for a Schwarzschild black 
hole as 

mg  = tic3187r  Gg7' . 	 (6) 

A less massive black hole would have a higher tempera-
ture than its environment and would radiate away all 
its energy more and more rapidly. The minimum mass 
for an f-black hole would be 

m f  = 32c3 /8rrk G fT, 	 - (7) 

so that 

mf/mg  = Gg/Gf  7 X 10-39 _ 	 (8) 

This is the basis of our claim that the minimum mass 
of an f black hole is much less than that of a g-black 
hole at the same temperature. 

The radius of a g-black hole (Schwarzschild) is 

Rg  = 2GGM/c2  . 	 (9) 
Thus, for just-stable f-black holes compared with just-
stable g-black holes we see that 
Rf 2Gf mf

/c2 G
f mf 

Pg  Gfmf Gf 

So mini f-black holes are much less dense than mini 
g-black holes. 

It is interesting to consider whether f-black holes 
might reproduce the Jacobs—Seitzer [6] mechanisms 
with lower densities. It should be noted that these 
authors require "density spikes" of —7 X 1055  kg/m3  
for their largest black holes (1012  kg) in an average 
density of —1018  kg/m3, their "splice density" is 
thirty-eight orders of magnitude larger than the sur-
rounding density! For their smaller black holes 
^-10-8  kg the "spike" density would be -7 X 1095  kg/m3. 
It could be expected that f-black holes would form at 
much lower densities. 

For f-black holes the usual ideas of collapse, based 
on a long-range gravitational force cannot be used. 
Instead, here we require that the matter to be collapsed 
should be inside a volume of radius —10-18 m. For a  

single nucleon this would mean that it should be com-
pressed to a density of ^-103  times the nuclear density, 
i.e. 1021  kg/m3. For more nucleons, a proportionately 
higher density would be required. It is obvious that be-
fore the density could be reached where many nucleons 
would be compressed, individual nucleons would col-
lapse to f-black holes. Certainly, Iong before the 
Jacobs—Seitzer "spike" could be reached, nucleons 
would form f-black holes, at densities ^'1053-1093  
lower than theirs. 

What could be expected to happen when the f-black 
holes start forming? If the core temperature were much 
below the black hole's temperature, —5 X 1011  K, the 
black hole would radiate its energy away, thereby 
causing a reduction in the density. Thus, even if 103  
nuclear densities were to occur in the core of the neu-
tron star, they would disappear. If the core tempera-
ture did not allow the black hole to evaporate, the 
stable f-black hole would have an event horizon en-
compassing —103  nucleons, which would presumably 
also collapse forming a much larger (and hence more 
stable) black hole, which would take in many more 
nucleons and so collapse the whole star. We must con-
clude that this process does not occur, as neutron stars 
are seen to exist. Thus, on the basis of Hawking radia-
tion and f—g theory we must conclude that either den-
sities ^-103  nuclear densities do not occur, or the tern-
perature of the core of a neutron star is much less than 
5 X 1011K 

Let us now briefly consider the effects of f-gravity 
on black holes produced in a big-bang cosmology. We 
have already shown that f-black holes of a given mass 
radiate at a much lower temperature than g-black holes. 
Thus, whereas a ;black hole of 10-16  kg would radiate 
at a temperature of 1022  K and thus disappear instantly, 
f-black holes would be stable, at a background tempera-
ture of 2.7 K. Thus very much smaller black holes pro-
duced 

 
 in the big bang could be expected to survive to 

this day! 

4. Conclusion. We have seen that mini black holes, 
which would be expected to "evaporate" by the 
Hawking process according to ordinary gravity theory, 
might be "held together" as it were by f-gravity. This 
could be regarded as being due to a "higher potential" 
through which the radiation must tunnel for the black 
hole to evaporate. It would not matter whether the 
hole was formed by f-gravity processes or not — it would 

— 1 Rg 
2Gg mg 

	/c2  Ggmg   

Also, the density of the black hole is given by 

p = 3 c6/32 ;rG3hf2  . 

Thus for the minimum mass black hoses 

pf —  G3 2  rn 	 = C° 
7 X 10-39  

(10)  

(11)  

(12)  
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be held together by f-gravity. Thus, if f-gravity is valid 
then very small black holes could exist. 

The very attractive mechanisms of Jacobs and 
Seitzer would have to be discarded if f—g theory holds,. 
since the energy released by a few nucleons collapsing 
into an f-black hole and radiating would be —10-100J, 
which would not be adequate for any of their mecha-
nisms, except for avoiding neutron star collapse. The 
extremely high "spike" required for their mechanisms 
might anyhow make their theory unlikely. If, however, 
their theory can be validated, it would disprove f—g 
theory. 

It should be remarked that f-gravity appears to make 
mini black holes much,safer in that they are not likely 
to evaporate with such violence as they would if f-
gravity did not exist. This implies that we cannot hope 
to see an explosion of a mini black hole as it would 
pass utterly unnoticed. 

We finally point out that whereas the radius of a 
hadron is approximately its f-gravity Schwarzschild 
radius and its f-black-hole temperature is the hadronic 
temperature, it does not, at present, appear to be feas-
ible to regard a hadron as an f-black hole. 

The authors would Iike to thank Professor Abdus 
Salam, the International Atomic Energy Agency and 
UNESCO for hospitality at the International Centre 
for Theoretical Physics, Trieste. One of them (W.A.S.) 
gratefully acknowledges the financial support of the 
Science Research Council of the UK. 
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The relevance of finite-temperature gauge-theory effects on computations of the 
cosmological baryon-to-entropy ratio is discussed. 

Recently, several authors`-' have invoked an 
interesting synthesis of big-bang cosmology on 
the one hand and unified gauge theories on the 
other to achieve a dynamical understanding of the 
observed baryon-to-entropy ratio of the present 
day universe. It would appear that there are 
three essential ingredients to the problem of 
baryon-excess generation: (a) The existence of 
an epoch in the evolution of the universe during 
which certain of the respective number densities 
of the various species of particles present (pho-
tons, leptons, intermediate vector bosons, 
quarks, and Higgs bosons) were out of thermal 
equilibrium; (b) that this epoch coincided with a 
CP- and C-nonconserving phase.' (c) The exis-
tence of baryon-nonconserving interactions. The 
first of these (a), is largely a question of cos-
mology and statistical mechanics, while the other 
requirements are met within the framework of 
current grand unified models of strong and elec-
troweak interactions which predict such exotic 
interactions. Evidently, the relevant epoch is 
thought to have occurred at approximately 10-' 
sec after the initial singularity when the ambient 
temperature was of the order of 10' GeV or 10=" 

K. What we wish to remark is that in considering 
requirement (c) it may reasonably be expected, 
in view of the extremely high temperatures in-
volved, that finite-temperature gauge-theory ef-
fects play a significant role. The point of this 
note is to make a rough estimate of such correc-
tions. 

Before proceeding, it is important to first dis-
tinguish the purely thermodynamic aspects of the 
baryon-excess computation from the unified-
gauge-theory input. The former has been dealt 
with at considerable length'-3  and need not con-
cern us here. Following the procedure and nota-
tion of Weinberg' one obtains for the baryon-num-
ber—to—entropy ratio: 

kn b/s=0.13(Nx /N)AB, 	 (1) 

where N is the total number of particle states 
with masses less than m a  and Nx  is the total 
number of X- and k-boson states of mass nil, 
while AB is the mean net baryon number generat- 
ed in a single 	or X decay. 

It should be noted that the above analysis has 
thus far had to do with thermodynamics and cos-
mology only; it is in the computation of the quan- 

• 
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:ity AB that recourse has to be made to a particu-
lar unified gauge theory. Thus it is here that 
finite-temperature gauge-theory effects may be 
expected to be relevant. 

The main contribution to AB is thought' to come 
from X-boson decay. Weinberg and Nanopoulos f  

have computed the various baryon-number-non-
conserving decay amplitudes (in the zero-tempera-
ture gauge-theory limit) which contribute to AB. 
To illustrate our point that a finite-temperature 
gauge theory may change the estimate of AB, it 
will be sufficient to consider (see Ref. 3), for 
example, X, decay only. Symbolically, one has 

GB -(TrI-, T r,Y'{Imf( ri, g)Im1:„1.(rnx„),/ (In x),J+Im f(r „g, ) Im1,„•1(,nx„,),/(mxs ), l 
+Imf(r1, r)Imi„,[(m,$),/(m xs),Jj+... 	(2) 

with species i not the same as species j. Here, 
the f's are complex functions of the various 
couplings involved in the respective processes 
that contribute; i, j denote various species of 
bosons X  . (gauge bosons) and X , (Higgs bosons), 
and also summation over fermion and internal 
symmetry indices. The important point to note is 
that the only place finite-temperature corrections 
would be

( 
 anticipated is in the Feynman integrals, 

lsL'.U'l(%nXu.v,),/(mxs)i ] and ls,'1(mx')j/(mx),.l• 

This is because, as is known,' the leading con-
tribution of nonzero temperature is to the mass 
terms in- the effective Lagrangian [stated differ-
ently, the effect of finite temperature can be ac-
counted for, to leading order, by replacing the 
zero-temperature mass m by an effective tem-
perature-dependent mass m(T) I. 

It may be argued that since only ratios of mass-
es are involved, finite-temperature effects would 
tend to cancel. However, to have a nonzero AB 
in the first place, the gauge vector and Higgs 
structure of the theory must be sufficiently com-
plicated so as to include at least two species (see 
Ref. 3 for a discussion of this point) with their 
respective different couplings, etc. Thus, at 
finite temperatures the numerator and denom-
inator in 1m x „ „,(T)I,/Lm xs(T)f, and (m xs (T)),/ 
[rn xs(T)I, might vary appreciably differently 
under temperature changes for their ratio to de-
part from its zero-temperature value. 

To make this quantitative let us consider a 
local 0(n) gauge theory with one a vector of Higgs 
fields. The potential (p.,2  .0 and is the bare 
mass) is given by  

1  where 

µ`(T) =-µ2(0)+ ZAT2(2+n)+-`g2T 2(n- 1) 	(5) 

for T<7'c . Here AO) is the renormalized mass 
and g is the gauge coupling.' Extrapolating to 
the more complicated grand unified theory re-
sponsible for baryon-nonconserving processes, 
one will obtain something like the following ex-
pression for the ratio of the temperature-depen-
dent masses discussed earlier: 

[mxs(T)I, -17nx,2(0)I,+T2l (x,,.g,)  
t n xs(T)1, -17nx 5 2( 0 ))i+T 2f(X ,gi) 

where f and h are some functions of the couplings 
and group theoretic parameters. Since the cou-
plings' X„ g, are different from x,, g,, the finite-
temperature ratio could, in principle, be differ-
ent from the corresponding zero-temperature 
ratio. 

In order to see if this is likely to happen, let us 
examine the ratio of finite-temperature to the 
zero-temperature Higgs mass in the 0(n) exam-
ple. This is given by 

,b12(T)/X2(0) =-2µ2(T)/-242(0) = 1 - T2/TT 2 ; 

T <TT 	(7) 

and the values of this ratio just below the sym-
metry restoration temperature are exhibited in 
Table I. 

It can be seen that one has to be extremely 

TABLE I. a1-(T)/3t2(0) as a function of T for 71 
= 10'' GeV. 

(6) 

V( ti )_— 24.2,P;,, +1,\01,(P,)2 	 (3) 
T(GeV) 112(T)/112(0) 

One-loop temperature corrections can be taken 
into account by working with the finite-tempera-
ture effective potential 

10' 
t0"' 
10":' 
10" 

0 
0.6 
0.9 
0.99 

Verr(w)='.;. (T) y-, p1- ,A(4)i'p,)'", 	 (4) 
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close to the critical temperaturee  to obtain a 
significant departure from unity. By the time 
the temperature has fallen below T, by about one 
order of magnitude the scalar (and gauge) field 
has acquired its full zero-temperature field-
theory mass. 

Assuming the same sort of qualitative behavior 
to pertain for a more realistic grand unified 
model, one would be tempted to conclude that 
finite temperatures would not cause any substan-
tial modification; i.e., the temperature-depen-
dent corrections in Eq. (6) are negligible. How-
ever, one is prevented from doing so because, 
lacking a more specific unified gauge model than 
is available at present, one does not know the 
precise masses of the X bosons and hence how 
close in fact these masses are to the symmetry 
restoration temperature I. 

In this note we have contented ourselves with 
pointing out the possible relevance of finite-
temperature gauge-theory effects on the baryon-
excess calculation. A less superficial treatment 
than the one above does not seem to be merited 
at the present juncture, in the main because the 
zero-temperature gauge-theory value for kn 8/s 
is at best determined to be in the fairly wide 
range of 10-L2  to 10-7.9  One really has to await 
a specific grand unified model before deciding 
the issue. The burden of our remarks here has 
been to suggest that, given such a unified gauge 
model,1D  finite-temperature effects should be 
taken into account before deciding whether the 
mechanisms proposed can really explain the 
baryon-to-entropy ratio. 

The authors would like to thank Professor 
Abdus Salam,  the International Atomic Energy 
Agency, and UNESCO for hospitality at the Inter-
national Center for Theoretical Physics, Trieste, 
where part of this work was performed. We are 
indebted to Professor T. W. B. Kibble for a criti-
cal reading of the manuscript. The first author 
wishes to thank the Scuola di Pertezionamento in 
Fisica, Trieste, Italy, and in particular, Profes-
sor Luciano Fonda, for making available a fellow-
ship. This work was supported in part by the 
Science Research Council of the United Kingdom. 

(`role adder'.--One thing to note from the above 
considerations is that at temperatures greater 
than T„ the Higgs scalars become physical mas-
sive particles with masses" of order kT while 
all other species of particles (vector bosons, 
ff•rmions, and photons) are massless.12  It is 
reasonable then to conclude that these Higgs 
scalars would be as abundant, at these early  

stages of the evolution of the universe,'' as pho-
tons and other massless particles. Such a pic-
ture of the universe close to 1= 0 is drastically 
different from the conventional assumption that 
at these early times the universe consisted only 
of massless radiation. 

It is intriguing to pose the question whether 
such a scenario would have any cosmological 
consequences which might have left some present-
day residual effects. If such were the case, one 
would have independent cosmological evidence 
for the existence or otherwise of the Higgs scalar. 
We shall return to this point elsewhere. 

(a)Present address. 
A. Yu. Ignatiev, N. V. Krosnikov, V. A. Kuzroin, 

and A. N. Tavkhelidze, Phys. Lett. 76B, 436 (1978); 
M. Yoshimura, Phys. Rev. Lett. 41, 381 (1978); 
S. Diniopoulos and L. Susskind, Phys. Rev. D 18, 4500 
(1978); B. Toussaint, S. B. Treiman, F. Wilczek, and 
A. Zee, Phys. Rev. D 19, 1036 (1979); J. Ellis, M. K. 
Gaillard, and D. V. Nanopoulos, Phys. Lett. 8011, 360 
(1979), and 82B, 464(E) (1979). 

2S. Weinberg, Phys. Rev. Lett. 42, 850 (1979). 
D. V. Nanopoulos and S. Weinberg, Harvard Uni-

versity Report No. HUTP-79/A023 (to be published). 
The necessary CP nonconservation may be either 

hard (complex phases are introduced into the Lagran-
gian by hand) or soft (spontaneous). Although at temp-
eratures of 1015  GeV or so one would have expected 
symmetries such as CP to have been restored, R. N. 
Mohapatra and G. Senjanoviā (Phys. Lett. 893, 57 
(1979)1 have recently demonstrated that multiple phase 
transitions can occur, thereby allowing CP noncon-
servation at temperatures of order 1015  GeV to be soft. 

'D. A. Kirzhnits and A. D. Linde, Phys. Lett. 42B, 
471 (1972); S. Weinberg, Phys. Rev. D 9, 3357 (1974); 
L. Dolan and 11. Jackiw, Phys. Rev. D 9, 3320 (1974); 
C. Bernard, Phys. Rev. D 9, 3312 (1974). 

sone expects the symmetry to be restored at a temp- 
erature 	given approximately by WO) divided by the 
gauge coupling. At this temperature, leading contribu-
tions come from mass renormalizations; thus the 
coupling-constant renormalization of A is irrelevant 
for our purposes and it is taken to be renormalized 
from the beginning. 

7Strictly one should be working with the running, 
or effective, values of these couplings at the mass 
scale relevant for the energies at which the baryon 
excess is produced. 

AA word of warning; it should be noted that in the 
perturhativc framework (see lief. 5) with which we 
have treated the Of n) example, perturbation theory is 
not expected to remain valid within an order of magni-
tude or so of T. . However, this inadequacy can pre- 
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sumably be transcended by the use of a renormaliza-
tion-group-improved formalism. 

9This value has been obtained by Weinberg and Nano-
poulos (see Ref. 3) in the limit in which vector boson 
contributions to scalar decay are neglected. If the 
former are, in fact, included, the baryon-to-entropy 
ratio is shifted to the range 10"9  to 10-4. This is to 
be compared with the present experimental value of 

10-9. 
10 rhe strategy then would be to determine precisely 

which (if any) of the X bosons are close (say within 
an order of magnitude) to the symmetry restoration 
temperature. If there are none such, finite-temper-
ature effects can presumably safely be ignored. How-
ever, if this is not the case, finite-temperature ef-
fects would certainly seem to be crucial. Furthermore, 
in the latter event, a renormalization-group formalism 
would have to be used because of the breakdown of vali-
dity of the naive perturbative approach near TT  . 

"The finite-temperature mass of the Higgs scalar 
is proportional to the product of the temperature and 
the (running) coupling constants of the theory. If 
asymptotic-freedom arguments persist beyond 
then one may conclude that (T) < kT unless the non-
asymptotically-free self-couplings become extremely 
large. With µ(T) <kT the Higgs scalars would cer- 

tainly be copiously produced thermally. 
12The masslessness of the vector bosons above TT  

has been called into question by certain authors IM. B. 
Kislinger and P. D. Morley, Phys. Rev. D 13, 2765 
(1976)1. However, the difficulties in handling the in-
frared divergences of a non-Abelian theory renders 
their conclusions suspect (see A D Linde, Rep. Prog. 
Phys. 42, 389 (1975) for a discussion of this point] . 

13The lack of a sensible field-theoretic description 
at such high energies (1016 <T <10t9  GeV) and in parti-
cular the absence of a satisfactory quantum theory of 
gravity confine one to making only very general 
speculative remarks. Having said this, it is rather 
remarkable all the same the Hawking (see the Pro-
ceedings of the Marcel Grossmann Meeting, Trieste, 
1979), from completely different (topological) con-
siderations, has envisaged a primordial scenario (at 
a length scale of.tiTpl3nck-'  1 in which scalar fields 
have" induced" masses of U ("Mlptanck) whereas fer-
mions and vector bosons are effectively massless. 
There is thus a highly suggestive similarity between 
this and the emergent scenario from grand unified 
gauge theories above 7, (in which the Higgs scalars 
are not only the only massive particles, but also have 
masses tending towards.1,1ptao tk as the temperature 
rises) . 

Spontaneous CP Nonconservation in Theories with More Than Four Quarks 
Gustavo C. Branco 

Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 
(Received 8 January 1980) 

It is shown that the requirements of spontaneous CP breaking and natural flavor con- 
servation lead to a class of theories where CP nonconservation is due solely to Higgs 
exchange, for an arbitrary number of fermion generations. 

Although CP nonconservation can be easily in-
corporated` in unified gauge theories, one is still 
faced with the challenge of understanding the 
smallness' of the violation. It has been pointed 
out by Lee' and Weinberg,' that within unified 
gauge theories of weak and electromagnetic inter-
actions, the Higgs bosons can provide a mecha-
nism for a naturally small CP-invariance viola-
tion. In unified gauge theories, the fermion Yu-
kawa interactions are such that Higgs-boson ex-
change leads to an effective Fermi interaction of 
strength G F  m F 2/'n „2  (where G F  is the Fermi 
coupling constant, and m F and m il  are the fermi-
on and Higgs-boson masses, respectively). Thus, 
in theories where Higgs-particle exchanges are 
solely responsible for CI' nonconservation, the 
smallness of the violation is naturally understood; 
it merely reflects the fact that Higgs bosons are 
much heavier' than the light fermions. It is clear  

that in order for this explanation of the size of 
CP nonconservation to hold, it is necessary that 
CP nonconservation arises only through Higgs-
boson exchange and from no other sector of the 
theory. An example of this class of theories has 
been given by Weinberg,' in a model with four 
quarks and three Higgs doublets. It is well known 
that if there are only four quarks and no right-
handed currents,' the gauge interactions of the 
vector mesons automatically conserve CP. How-
ever, for three or more Higgs doublets,' CP in-
variance will be violated through Higgs-particle 
exchange. In a theory with three quark doublets 
(as it seems to be required by experimental evi-
dence), the situation is more complicated, since 
in general the Cabibbo-like mixing matrix con-
tains a CP-nonconserving phase 6. In this case, 
one loses control over the strength of CP noncon-
servation, since the phase 6 is is general arbi- 
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ABSTRACT 

We consider the question of hierarchies in a simple 0(3) model 

completely broken to 0(1). 	It is shown that the one loop upper bound to 

the hierarchy is not independent of the scalar potential parameters. 	We 

discuss higher loop effects but point out that, as at the tree level, order 

of magnitude estimates can be misleading. 	Our analysis, which proceeds 

along the lines of Gildener, is of considerable help in determining whether, 

if at all, recent arguments put forward by some authors are in contradiction 

with the results of Gildener. 
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A large hierarchy, or the much stronger breaking of some gauge symmetries 

than others, is an essential ingredient of all grand unified gauge models 

incorporating spontaneous symmetry breaking. 	The latter is usually studied 

at the semiclassical level where one assumes that the minima of the tree- 

level effective potential give the true minima of the theory. 	It turns out 

however, as was amply demonstrated in the 	paper of 	Coleman and 

E.Weinberg 1  , that radiative corrections to the tree-level potential can 

drastically change the vacuum structure of a theory. 	Indeed, as these 

authors showed, in certain cases, radiative corrections can even be the 

dominant force causing symmetry breaking. 

Several other interesting results have been obtained using the ideas 

developed in ref. 1. 	One of the more recent is contained in a paper of 

Gildener 2  who has conjectured that a superstrong hierarchial breakdown 

cannot be obtained in the usual way. 	It is claimed that one cannot 

artificially establish a gauge hierarchy of any desired magnitude by 

adjusting the scalar-field parameters in the Lagrangian and using the tree- 

level approximation to the potential. 	Radiative corrections set an upper 

bound on such a hierarchy which is independent of the scalar field tachyonic 

masses and their self couplings. 

The problem of gauge hierarchies has, more recently, been discussed by 

several authors 3'4  who evidently obtain different results. 	Unfortunately, 

none of these authors follow the work of ref. 2. closely enough to allow 

one to ascertain precisely where, if at all, their arguments are in 

contradiction with those of ref. 2. 	We present in this letter the results 

of an explicit investigation of this problem to the one-vector loop level 

which was carried out along the lines of Gildener's 2  work for the case of 

an 0(3) model, which is the simplest 0(N) model allowing the study of 

hierarchies. 	Such an analysis provides interesting insight into the problem. 

Our treatment shows clearly that although one-vector-loop corrections 

provide an upper bound to the allowed hierarchy, the bound is not independent 



of the scalar potential parameters. 	It is in fact possible to choose a 

set of parameters which allows an arbitrarily large hierarchy both at the 

tree and at the one-loop level. 

We also point out that order of magnitude estimates of higher loop effects 

used by some authors 
4 
 can, as at the tree level, give misleading results. 

Consider , for simplicity, an 0(3) model which contains, in addition to 

the gauge fields Wu, two scalar fields A and B which transform as vectors 

under 0(3). 	Assuming the theory possesses the discrete symmetry A -- - A, 

the tree level approximation to the effective potential is 

z    2. 

	

1
V 	 AM ā - 	4 ( A1` 4  4 (67-1+.1-f ?1  +1 (A . g) 

	

, 	 zya  
 

(1) 

We take 
m12,  m22 

> o to ensure that the origin is unstable and spontaneous 

symmetry breaking occurs. 	The requirement of a hierarchy is that 

lk = M»,
ML }› 1 	 (2)  

where MH  and M
L 
 are the masses of the heavy and light gauge bosons. 	At 

the tree level it can be shown 2  that R is given by 

(3) 

where a2  = < A >2, b2  = < B >2  in the symmetric non-trivial vacuum 
2 -  

Af
3 
 = fl  m2 	- f3, and where < A > is associated with the initial stage of 

m
1 

 

the breaking. 	The various constraints to which the minimization is subject 

then show that of3  > o and that R < 2f2 ,  where f2  has been assumed to be 

0 

greater than or equal to f1  so as to maximise the tree level hierarchy. 

Gildener 2  now argues that one-loop contributions to the effective 

potential will set a lower bound on of3  (which we denote by Sf3) which is 

independent of the parameters appearing in (1) so that, 

Q < 	s2/ 	s f

3 
	 (.4) 
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Arguing on the basis of order of magnitude estimates of one-loop 

effects he further claims that 

2.f 3 	O(a-') 
3 (5)  

if the gauge coupling is taken to be the electromagnetic coupling. 	This, 

of course, implies that the upper bound on the hierarchy cannot be 

transcended by adjusting the scalar potential parameters. 	The essential 

result of this letter is to show by an explicit evaluation of Sf3  that this 

is not so. 

To do this we repeat the above analysis for the one-loop corrected 

potential but take into account only the vector loops which, for weakly 

coupled scalars, are the most important. 

The same problem has been treated by the authors of ref. 4. who arrive 

at the final conclusion that there are no limits on gauge hierarchies due 

to radiative corrections contrary to the assertions of Gildener. 	Our work 

seems to indicate disagreement with this last conclusion, though we too find 

that the one-loop bound can be transcended. 

Following Coleman and E.Weinberg 
1 
 , we write down the one-loop 

corrections to the effective potential induced by vector particles. 	In the 

Landau gauge these are 

y 

-e+ti M/y 

where Mv2  is the vector boson mass matrix and A2  is an arbitrary renormalisation 

subtraction point. 	Explicitly, 

4 	
% 1. z 

1 	2n 	 A' 	( 7) 

z 
where 	Xi _ 	LA-tB± /(L )t 	

4- 4 ( 12:1 

(6)  

(8) 



* 
The new extrema are now determined. 	Following some tedious algebra 

one arrives at the result that in the true vacuum of the theory, R is given 

by (we work with A2 = < A2 > in the true vacuum) . 

where 

T
1 	~ z 

z 	~ - f3 MZ 

 hit 

z f 
+ 3 1111-1- 	1,A'*P Prr 

J31 	13 t 3ZdTC1 

46,1 1 = Lf 	-31L 1,%12.2 
3 	3 	3Z7t l~ ~ 

n 	
, 

and 	e! — Q, ~~ 1 . 

   

4.10 1) 

If g = e then 3g4 = 3a2 , and we obtain our main result that 

321.2 

30cl
r (13) 

* 	We have restricted ourselves to the case < A >.< B > = o but it should 

be noted that such a condition is more stringent than is required for the 

existence of a hierarchy. 	Consider 

2., 3) 	V(6.1 7 	( R' 
6 
)Z) , then at the stationary points, 

Ati V/ + (6' g) g;, V33 = o 

and 	Q, V, z + (A' ) Ai V, 3 -o 

The requirement of a hierarchy demands 
	

that < A > is not parallel 

to < B >. 	This is satisfied if 

I;)[ o , V, 2. =o 	and. 	V 	rnr 4A• <6}=o 
For the tree-level potential the last two constraints are, of course, 

identical, but this need not be the case for higher loops. 

-5- 



We see that the one-vector-loop contributions to the effective potential 

provide a lower bound on of3 given by (8) which is not independent of the 

scalar parameters. 	Indeed, it is possible to consistently obtain an arbitrarily 

large 	gauge 	hierarchy at both the tree and the one-vector-loop levels.*) 

What of higher loops? 	Some authors 
4 
have argued that higher vector 

loops will be negligible if 

11P (14) 

and that this, using g ti e, "leads" to a «100. 	And since R = exp{a}, the 

higher loops do not really limit the hierarchy. 	We wish to point out that 

such an order of magnitude estimate of the power of e is extremely dangerous. 

For illustrative purposes let us return to egn.(14) from which it is 

concluded a « 100. 	Since the authors of ref. 4. (as indeed we) have been 

using the results of ref. 1., if we use their definition of a (deducible 

from eqn. 6.14 of ref. 1) we find that the bound on the hierarchy provided 

by (14) is ti 0(104) rather than (10)4Q 1 

What we wish to state simply is that without an accurate analysis of 

higher loop effects a definite statement of the bound on the hierarchy 

cannot be made. 	Thus the question of whether there is an inherent bound 

on the gauge hierarchy for any particular model is still 2 completely open. 

df3 is set to zero and choosing 2m2 _ mi . Of course, another possibility 

is to choose m~f3 = 0. which implies the less stringent constraint 

(f3 + 32. )= 	2 (fl + 3a2). However, the point of Gildener's analysis would 
ml 

seem to be t. determine the bound imposed on the hierarchy attainable at the  

tree level by contributions to the effective potential of all higher loops. 

In this approach one fixes the parameters so as to give the maximum possible 

hierarchy at the tree level, this being the usual practice in constructing 

unified gauge models. Using these tree level constraints one then tries to 

determine the bound which higher loops impose on the tree level hierarchy. 

In the particular example considered here this would mean taking 2m2 = mi, 

in addition to of3 = 0. 

*) Assuming the f' 	
0(a) 

s to be 0(a), we see that R 	
ō 	

arbitrary if 
13 
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It is worth commenting, however, that had df3  been equal to 
2 
(2m2  /m2  - 1) rather than as in (13), the upper bound on R would have been 

Oka 	since we have chosen from the outset to work with n >, m2 a 	 . 	It is 

interesting to pose the question whether there is any deep reason for 6f3  

being as in (13). 	If not, then it should be possible to construct a model 

in which the one-loop effects limit R to be 0(a-1). Nothing is to be 

gained, of course, by working with m2 mi , since what we call ml  or m2  

is a matter of choice. 
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1. 	INTRODUCTION 

The two tensor f-g theory of Isham, Salam, and Strathdee 1 was 

proposed some time ago to describe the gravitational interactions of 

hadrons and leptons through a gravitational analogue of the vector meson 

dominance hypothesis for hadron electrodynamics. 	The theory is based on 

a Lagrangian principle and uses, apart from the Einstein-Hilbert expressions 

for each of the two spin-2 fields, a generally covariant mixing term which . 

provides the analogue of the f= ā direct coupling between the f and g 

spin-2 fields. 	This mixing term is also required to give the f-meson a 

mass in the linearised limit of the theory and is, therefore, just the 

generally covariant form of the well known Pauli-Fierz (P-F) expression 2 

for a massive spin-2 field.
* 

The Lagrangian density for the simple "matter-free" theory may 

thus be written symbolically as 

its = 	i ~~J +L 	''"FF 

where 

LEH 01.4) - Mil J- B( N~) 

involving the Newtonian coupling constant, 

LLE14 ( frv) 	hf d -7 R(f r v) 

involving the strong coupling constant, and 

L 

f (4) 

* 	The theory is invariant under general co-ordinate transformations acting 
simultaneously on both metrics. 	It is for this reason that a 
generally covariant form of the P-F expression can be written. 

-2- 	 , 

(1)  

(2)  

(3)  



involving the mass M of the massive spin-2 f meson. 	In the last 

expression we have used 
	

" 
	to denote the combination 

,°92. 

and 2-a 	-c 	to denote ( 	~ ~- . 	~. 

The parameters U and V appearing in (4) are constants restricted such 

that their sum equals 1/2 to ensure that 1_, pF 	has the correct tensor 

density weight. 

It should be pointed out, however, that the choice of the mixing 

term is by no means unique. 3 	Indeed, several other choices were already 

suggested in ref.l. and different motivations led Salam and Strathdee 4 to 

propose a model Lagrangian combining Yang-Mills fields with tensor fields 
* 

for the dynamical generation of masses of all particles involved. 	For 

the present we shall restrict our attention to the mixing term given in (4). 

With the recent discovery of spherically symmetric solutions 6 

to the classical field equations of f-g theory interest in the theory has 

been revived and several physical applications have been proposed. 	It 

has been suggested 	that f-gravity black holes might represent hadrons 

and that inside hadrons the geodesics associated with the f-metric may 

provide a clue to understanding confinement in hadron physics. 	It is 

also argued that Hawking radiation concepts applied to strong gravity may 

provide an explanation of the thermal spectrum in ET observed in high 

energy collisions. 	These ideas have been applied also in the context of 

f-g theory to black hole evaporation and some astrophysical situations. 8 

At the same time the continuing experimental successes of both 

the Salam-Weinberg Electroweak theory and the strong interaction theory 

of QCD show that any successful description of the fundamental interactions 

* 	The work of Boulware and Deser 5 shows that the addition of a 
P-F type mass term leads to the appearance of an additional (ghost) 
scalar degree of freedom in f-g theory. 	Ref. 4 argued that using 
the following f-g Lagrangian 

where the Fe... are the Yang-Mills field strengths, one might give mass 
to f. ,,, and the gauge fields while avoiding; 	the ho t 

• 



of nature must incorporate non-abelian gauge fields. 	It is interesting, 

therefore, to couple SU(2) gauge fields to strong gravity and attempt to 

obtain solutions of the classical field equations of the resulting theory. 

In the next section we write out the complete Lagrangian we 

shall use and obtain the field equations. 	Section 3 is devoted to 

looking for solutions in the limit that weak gravity is neglected. 	In 

the last section we conclude with a brief disucussion. 

II 	LAGRANGIAN AND FIELD EQUATIONS 

Before writing the Lagrangian we shall consider, it is worth-

while giving, briefly, the physical picture employed for constructing 

the Lagrangian for any given system in f-g theory - it not being clear 

which metric one should use for the various fields under consideration. 

The implication of the f-g hypothesis that the Einstein graviton 

g, and some mixture of the known, massive, strongly interacting, spin-2 

o 
particles represents a complete analogue of the fe-photon scheme in vector 

meson dominance models of hadron electrodynamics is that the graviton 

interacts directly with leptons, but only indirectly - through the f-g mixing 

term - with hadronic matter. 	This idea is implemented at the Lagrangian 

level by postulating that in all hadronic matter parts of the Lagrangian 

one must use the strong metric to contract indices while all leptonic 

matter parts are constructed as usual with the T
r
, . 

Taking the SU(2) gauge fields to belong to the hadronic world 

the Lagrangian density for our system may be written as 

 

= Ls + 

where 

and F, = r A' — ~ae /-\~Av 
~-  
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where e is the gauge coupling and [`]k 
	

are the structure constants 

for SU(2). 

In (5) 	,5 is as in (1) with 

R ( 	 g'RI-̀ vr cr 

where 

(8) 

Rt4 ,r 	_ flF 	+ 1-1r t 	{L 	r 

v'r 	2rrVA 
(9)  

(10)  and 	rV 	
y, 

c 	 ,~ 	 c~ 
A = 1 dr ~ QsvA+ ā'Ta,v 	6 v:,,

4-
} 

and similarly for R(f) constructed using everywhere 	C y.v instead of 

in the last three expressions. 

We obtain the field equations by requiring stationarity of the 

action 

S = ,%, 	x = ScIt l 	v} + SER (1l w) + SnF 	S`(1`1 

under infinitesimal variations of the fields appearing in the action. 

The changes due to the first two terms in (11) are well known, while the 

changes in Sp_F and SYM are given by 

S 	= 	? ~('~')UCf)yd4x c 31. 4)yr[ ~rp, (9.(,,, j."V+vfr„Of 1)+ 

+Z
ccTT
ci~~ 
	'j rvr  rV 	'~~rvr c 

ryo 	

(12) 
r  

 

--247  y.'' ~'"~ : 	) Sf + 	(13) 

 
+ [(R F r),, — e_ 	a g, x  

where in (13) we have used the usual three-dimensional vector notation. 

We may now easily write the field equations for gr„ ,f 	, and the 

and 
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C 
(16) 

gauge fields A 1), : 

` 
Rfi) —~ ~r.R( )= K  a'-_

ac(,1-,4 '1S
is
TT

)-Lr+ F0-vc J 
(14) 

R ' — Z ~r ~R(f) _ Si 1. 

y' (jD Jrv~Kcrp 	~6v Ī 

K.- 	C 	
F• ĪaC V 	} ~rv J oe iS F ~ ' i 

(15) 

and 

(iiF 	— e. 	A', x  

Equations (14) and (15) may be written in the standard form 

G-  h 

if we define the g and f energy momentum tensors as 

F t 
v = 	,; \) 	` Tv CL`4r~.rF rT'`S~r~ssvtl'~t f zs~~ 

r 	 L 	 (17) 

and 
` F = 	

()
U 

sr 
~qE 

F 
(18) 

—4f~ F~~ F a In 

In the next section we shall look for static spherically symmetric 

solutions to these equations in the limit that weak gravity is neglected. 

We shall leave to the discussion the question of obtaining exact 

spherically symmetric solutions to the three coupled set of equations 

(14) and (16). 

III SOLUTIONS  

Setting K.3-+ o 	and L„. '~„ we look for solutions for f f,, v 

and the gauge fields Ai of the form: 

IX 14 a k'' = C a.tZ — 2 D t ~~ Y -- A 	— b (l 6'4_ 5 ...̀  e ~l 1,4)  (19) 



and (20) 
'5, — w1.i "0/ 

The inverse of fr. , 	is given by 

Following Salam and Strathdee, we shall exchange D for 	as 

the choice of variable where A = AC f D2 > 0 . A, B, C, 0, and W are 

all functions of r only. 	After a tedious calculation one can show that 

for this choice of f v , the only non-vanishing components of the Ricci 

** 
tensor are: 

rt 

r. 
oo D 

(22)  

(23)  

(24)  

2 	4 / ,P "/ 	) 

gurza 

where the prime denotes differentiation with respect to r. 

Note that in the Kg2 = 0 limit gie, = 1%4A0 implies that (14) is 

automatically satisfied, so that we have only to consider equations (15) 

and (16) with g f ~, being replaced everywhere by /Itt,Y . 

The next task is to work out the various non-vanishing components 

of T t', 	for 	c~,, _ ~.~,~ . 	Before doing this note that with our 

ansatz for A, 	the only non-vanishing components of F, , 	are 

(25) 

* 	We work in spherical polar co-ordinates so that Z'oly=  diag 

(1,-1,-r2 ,-r2 Sin2 ) 

** Since we are working in the limit that weak gravity is neglected we shall 
drop all labelling used so far to separate quantities referring to the 
f nr n mnfri r 



Using this we find that 

To = .i6[{3- "~rZ)~C ~q r)V ̂ ' I 
} ~lrl Q C- 4'2 )_G] 1Q (I-;!')f + = C ifi1,(26) 

a G 	 a 

	

G 	? 	o ~~- ( 27 ) 
(4 ( 	t r 0E6- (.- 8 z) 	~:~ il f — =  

,,Z 1 	.4 	3 	
fem. 	(28) 

and 	• 

? = 	1 	
Cr

(.44C)( Z- 3) + 8~~~ Z- 4-) ā ij- 4-444-c- 4. #7 	'82-71-2131.   (29 ) 
t 

where 

~  (̀ 

It is now immediately obvious from the ten equations (15) that 

the (02), (03), (12), (13) and (23) component equations are automatically 

satisfied. 	Further, it is clear from (19) and (22) that 

OLIN V 67,4-z: O 

From (15) it then follows that 

C7n, C70- 2D( - 3J'-̀  

So that either D = 0 or B = 	r2. 	Salam and Strathdee 6 refer to the 

latter as Class I and the former as Class II type solutions. 	We shall 

consider Class I solutions with D r 0 and B = . r2. 	Substituting this 

into the (00),(01), (11), and (22) components equations of (15) we obtain 

- -I ..--- J = zn 
Arid 	G d 	L ° 

(30)  

(31)  

(32)  

fig.(' 	,_4/ ) 4 (33) 



(34) 

and 

G:2= 3d L ,rc ( — ~Jc / G'67 7 - f:_ 7 G 

 ~' 	
/! ̀r-} 	X. 

 (35) 

With , the components of 	becomee 

7 	
.4 Z.-- 	~ 	( 36 ) 

and 	 (37) 

Ī z f ā (: ā - -)sr ``~ — ā e s4-17 	z 
3 ā 

71— =o 

Equations (33) and (34) then imply that 

Now we note from (36) that 

(38) 

(3.9) 

and since D 	0 we obtain the result that 

Q= o = rcxul. (40) 

Let us now consider the field equations for the gauge fields Ai, . 	With 

our ansatz equations (16) reduce to 

"~ l z „ a~ ~~' • D 
rr zn 

which, for Li= 0 	gives 

= (2 AZ- 

(41)  

(42)  



(47 ) + 2/7=) qt- 

This integrates at once to yield 

r 

(43) 

where ce.., and at, are constants of integration. 	Putting all this 

into (32) gives the following equation for C 

C 
	, 	3 Llo 	9 2 LA z, 	3 tv ~.la (44) 

where, for convenience we have introduced the symbols 	and c.Jo which 

denote the following combinations: 

(45) 

6) 26L 
OLi a 

Equation (44) can be integrated easily to give 

(46) 

where 	is is another arbitrary integration constant. 	Only A(r) remains 

to be determined . 	For this we use the only remaining equation, viz 

equation (35), which gives, after a little algebra, 

rfJ °    ,L4,= (48) 

260 	rZ 4~do r7.4 

Along with 	2= -,►%, , equations (40), (43), (47), and (48) represent 

the complete set of solutions to the classical equations of f-g theory 

coupled to a strongly interacting SU(2) set of gauge fields in the absence 

of weak gravity. 
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IV 	DISCUSSION  

We have obtained the analogue of the Salam-Strathdee solution 6  

in the presence of a set of strongly interacting SU(2) gauge fields. 	The 

solution reduces in the absence of the gauge fields to the solutions 

obtained in ref. 6. 	The gauge fields do introduce the extra feature 

of the 
12 

 dependence in C and the -4 dependence in A. 
9  

Salam and Strathdee 	have shown by studying the Klein-Gordon 

equation in the fr. background found by them that a scalar hadron is 

confined. 	It would be interesting to see what modifications occur to 

this picture when we use the solution for f i. „ 	we have found as the 

background. 	Particularly interesting would be the changes in the energy 

levels and wave-functions obtained by Salam and Strathdee 
9 
 for their 

case. 

One might also attempt to obtain the exact solutions taking 

into account the effects of weak gravity in the manner of Isham and Storey.6  

It is simple enough to supplement (19) and (20) with an ansatz for 

of the form: 

x 	x" = J cl€Z— K c.lr`—  rt  ( 6,  L-4. s;,, ZE cpt ) 

and attempt to solve the complete set of equations (14) - (16). 	A 

preliminary effort in this direction does, however, seem to indicate that 

the ansatz for fr.', gt„, , and A l',„ we have used is not consistent with 

the field equations. 	This would suggest that exact spherically symmetric 

solutions to the complete set of equations do not exist. 	This peculiar 

situation seems to arise from the fact that whereas hadrons contribute 

to T ri„ 	their presence is not felt at all by the g r„ part of the field 

equations. 	In the case of the "matter-free" theory, of course, the f-g 

mixing term contributed to both Tr 	and T r" 
	

in such a manner as 

to allow a consistent spherically symmetric ansatz which permitted an 

exact spherically symmetric solution. 



We have already mentioned that it might be worthwhile looking 

at another Lagrangian proposed in ref. 4. which combines Yang-Mills 

fields with f-g theory in a different manner to that considered in this paper. 

It turns out that this Lagrangian does not suffer from the problem 

mentioned above - at least insofar as the gauge fields are concerned. 

It may be possible, therefore, to obtain exact spherically symmetric 

solutions in this case. 	We hope to be able to consider this problem 

in the future. 
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Summary  

Some interesting consequences of the effects of gravitation and 
finite temperature on quantum field theory are presented which have 

important implications for experimental high energy physics and the 
status of the "No-Hair" Conjecture for black holes. We point out 
two consequences for laboratory situations in high energy physics 

which disprove the usual assertion that quantum gravitational effects 
are only important at planckian energies. The first of these is that 
beams of particles in circular accelerators cannot be cooled to below 

a certain temperature determined simply by the accelerator's radius, 

while the second shows that spontaneously broken gauge symmetries 
may be restored by quantum gravitational effects. We end by describing 

briefly circumstances under which these effects might have a bearing 
on the "No-Hair" conjecture. 

1. 



Two parallel sets of investigations have been carried out in 

the last few years to study the effects of gravitation and temperature 
on quantum field theory. One set of investigations initiated by 
Khirznits and Linde(1)  has considered what happens when a system of 
particles described by a spontaneously broken local gauge invariant 
quantum field theory is placed in a heat bath or strong electric or 
magnetic fields(2). The authors of refs. (1) and (2) have found that 
gauge symmetries which are spontaneously broken at zero temperature 

via the Higgs-Kibble mechanism (for example, those of the Salam-

Weinberg electroweak theory) may be restored at sufficiently high 

temperatures, or in sufficiently strong electric or magnetic environ-
ments, and they have calculated the critical temperatures and fields 
at which such restoration would take place. 

The basic idea of this approach is that at finite temperatures 
(or field strengths) the effective potential of the theory picks up terms 
of the type +T2 f2 (where T is the temperature and 0 is the Higgs-
Kibble scalar field). For sufficiently high temperatures, this term 
becomes larger than the negative (mass)202 term which drives the 
symmetry breaking in the zero temperature theory. As a consequence, 
the scalar field 6 becomes a real physical particle degree of freedom 
and the symmetry is restored. 

Parallel to the study of these effects, several authors(3)  have 

carried out a study of the effects of gravitation and space-time topology 
on quantum field theory. A number of interesting results have been 
obtained but the two which concern us in this essay are outlined below. 
Firstly, it has been shown that an observer accelerating uniformly 
through empty Minkowski space-time appears to find himself in a heat 

bath at a temperature given by 

T - 2 Kc 	10-20  a Kelvin (1) 

where -t1 is Planck's constant, a is the acceleration, k is Boltzmann's 

constant and c is the velocity of light. 

2. 



In order to illustrate this let us consider a uniformly accelerating 

observer in Minkowski space-time. If we assume that an inertial 
observer and the accelerating observer use the same transition ampli-

tudes to describe objectively the same processes, it can be shown that 
the free Feynman propagator for the inertial observer, when trans-

lated into the accelerating observer's frame, is identical with that 
of a free finite temperature propagator with the relationship between 
the acceleration and the temperature being that given by (I). 

This result can be understood on the basis of quantum gravita-

tional effects (through non-simply connected topologies) in flat Min-
kowski space-time. To try and understand how this arises, let us 
use coordinates (t, x, y, z) and ('C , ' , y, z) to describe the inertial 
and accelerating observers respectively. If, for simplicity, we assume 

that the accelerating observer moves in. the (Z , " ) plane with a con-
stant uniform acceleration a, then his world-line is given by the hyper- 

bola 1= I with asymptotes 1= 0. The coordinate transformation a 
from the inertial to the accelerating observer's frame reads 

x=`i. cosh at , 	t=' ,r sinhaz. 

In contrast to the inertial observer, the accelerating observer 
has a very restricted range of vision.. The surface x = 1 tt forms an 
event horizon, and any signals sent from the origin 0, after t = 0 never 

reach the accelerating observer. It is the existence of this event hori-
zon which causes the space-time to seem multiply connected when the 

two observers translate themselves into euclidean coordinates 
(t it, Z 	i'= ) with periodic complex time coordinates, and leads to 

the above-mentioned thermal effect. 

Secondly, by considering quantum fields in the exterior region 
of a black-hole, Hawking has shown that when a star collapses to a 

black-hole, the formation of the event horizon around the singularity 
enables the black-hole to absorb one of a pair of virtual particles 

created just outside the horizon, thus leaving its partner, which is now 

a real particle, free to travel to an arbitrarily large affine distance 

3. 



from the horizon. This continuous process is observed asymptotically 

as a net flux of radiation, and after all transient effects which arise 

during the collapse die out, the left-over radiation has been shown to 
be that which would be produced by a hot body at a temperature given by 

kT= 	K 

2zrc 
(2) 

where K is the surface gravity of the black-hole. Thus, a black-hole 
can be considered to be a black-body radiating at a temperature T 

given by (2). 

Both the above results may be understood mathematically by 
noting that spacetimes with event horizons are periodic in an appropriate 

time- coordinate with an imāginary period. The Green's functions of 
a quantum field theory in such a spacetime are, therefore, also periodic 
in imaginary time. Coupled with the observation that the thermal 
Green's functions of a field theory at a finite temperature T also possess 

this property, one arrives at the result that field theories in spacetimes 
with event horizons may be considered to be in thermal equilibrium at 
some finite temperature. 

All that follows is based essentially on the interplay between the 
various effects we have discussed briefly above. We will now describe 
a couple of laboratory situations in which it might be possible to detect 

effects of quantum gravitation. 

The first observation we wish to make concerns the recent 
attempts being made at CERN and other high energy particle physics 
laboratories to cool particle beams in accelerators. We shall show 

that equation (1) implies a lower bound to the extent to which such a 
cooling can be achieved. It is clear that a bunch of relativistic elemen- 

tary particles going round at a constant velocity 	c, the velocity of 

light) in a circular accelerator of radius r experience a uniform 

acceleration a, given by 

c2  a r 

4. 



We see, therefore, that such a bunch of relativistic elementary 

particles would find themselves in a heat bath at temperature 
T .$ c/2irkr. Since this temperature is due simply to their accele-
ration, it would be impossible for accelerator beams to be cooled to 
temperatures below this lower bound. This bound does not apply, of 
course, to linear accelerators. 

In order to remove any doubts as to whether such effects are 
"real", it would perhaps be helpful to show that such observer depen-

dent effects are already very familiar. Indeed, it is only natural to 

expect such observer dependent effects in general relativity when one 

remembers that in special relativity one has a ,similar situation 
arising due to the effect of time dilation. This is illustrated beauti-
fully by the experimental verification of time dilation effects through 
measurement of the lifetimes of a1.1.-meson at rest, and in motion in 

the laboratory. The results of such experiments show clearly that 
a 4-meson that is stationary in the laboratory decays at a much faster 
rate than one which is travelling at a speed reasonably close to that of 
light. This observer dependence arises in special relativity through 
requiring equivalence of all inertial observers. In contrast, general 
relativity requires equivalence of all observers, inertial and non-
inertial, and thus gives rise to the effects we are considering in this 
essay. 

The second effect that we shall now discuss concerns the concept 

of symmetry restoration, which we have outlined earlier, but with the 
added significance that the restoration will now be due to quantum 
gravitational effects. Let us consider the situation illustrated 

schematically in Fig. 1. 

If we introduce a set of relativistic, charged particles, the 
interactions of which are described by a spontaneously broken gauge 

theory, into a region containing an extremely high magnetic field, 
then they will all experience an acceleration, a, perpendicular to the 

plane defined by the directions of B and v, the velocity of the particles, 
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given by 



a = -g vxB, _. m  

where q and m are the charge and mass of the particle respectively. 
Assuming that v is perpendicular to B and is close to c in magnitude, 
we obtain for a the value a'r qcB 	However, equation (1) tells — 	m 
us that such a bunch of particles will experience a heat bath of 
temperature 

T= 	qB 	= ( 	) aB  27rkm 	2ii k m 

Assuming, for simplicity, that such a bunch of particles is composed 
of electrons, we obtain the result that a = 5 x 1019  B. So that the 
temperature for this set of electrons would be T ^ 0. 5 B. 

Now, if one combines this information with the knowledge that 
the symmetry of the Salam-Weinberg theory is restored at temperatures 
of 0(1015) Kelvin, we see that magnetic fields of strength around 1015  

Tesla would suffice for restoring the Salam-Weinberg theory. 

Comparison of the data obtained from an experiment of the type 

illustrated in Fig. _ 1 in the presence and absence of B would allow us 
to determine whether such a restoration has taken place, and whether 

the accelerating observer does indeed see a heat bath at temperature T 

given by (I) much as the observations of the lifetime of the ii-meson 
allowed us to vindicate the time-dilation effect of special relativity. 

It is encouraging to note that experiments involving such strong fields 

have already been suggested by Salam and Strathdee in ref. 2. 

We will now go on to study the possible relationship of the effects 
described above to the "No-Hair" Conjectures  for black-holes. It 
will be shown that they allow a possible mechanism for transcending 
the "No-Hair" Conjecture in the quantum regime. For this purpose, 
let us consider a black-hole in thermal equilibrium with a heat bath at 

temperature T, and let us introduce into the heat bath a system of 

particles interacting through some spontaneously broken gauge fields, 
e. g. SU(2) x U(1), while maintaining thermal equilibrium. u m . This means 
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that if the mass of the black-hole is sufficiently small, the corres-

ponding temperature will be sufficiently large to allow the initial 
spontaneously broken gauge symmetry to be restored and the corres-

ponding gauge fields become long range due to their masslessness. 
We further obtain conserved charges, apart from those associated 

with electromagnetism. This means that the interacting particles 
we are considering will have associated with them conserved gauge 
charges and the corresponding Gauss law for the system. The exis-

tence of Gauss' law immediately raises the possibility for the black-

hole to carry the gauge charge if the system of interacting particles 
falls through its event horizon. Let us take the example of 
SU(2) x U(1). The restoration temperature for this gauge group is 

1015  Kelvin. Taking the black-hole to be of the Schwarzschild 
type, the mass can be found from (2) to be 	108  kg. So as long as 
the interacting particles have Compton wavelengths less than the size 
of the black-hole- (1. e. its Schwarzschild radius), the possibility of 
transcending the "No-Hair" Conjecture exists. 

It is known6  that small primordial black-holes possibly formed 
11 'v 10 kg, would 

just decay away through Hawking radiation (with a characteristic 
spectrum) within the present age of the universe. It is found7  that 
for electrically charged primordial black-holes, fluctuations in the 
charge will cause the average emission rate for charged particles to 

be lower than that for similar uncharged particles. Coupled with the 

arguments presented above for the transcendance of the "No-Hair" 
Conjecture, it is clear that the emission rate will be further reduced 
(after the mass of the black-hole reaches ry 108  kg) due to the accumu-
lation and subsequent fluctuations of the new gauge charges acquired 

by the decaying black-hole. This, we suggest, will lead primordial 

black-holes not to an explosive death but rather to a slow, "quiet" 
death. 

So we see that in principle it is possible to transcend the "No-
Hair" Conjecture. However, it remains to be seen if the arguments 
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by fluctuations in the early universe, with masses 



can be extended to more realistic situations, as in stellar collapse, 
for example to form a black-hole. 
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Fig. 1 

Schematic experiment to demonstrate symmetry restoration 
through acceleration and temperature effects. The shaded 
region contains a magnetic field directed perpendicular to the 
plane of the paper. For large B , the motion of particles 
entering the shaded region will be confined to it and subsequent 
decay products are observed by detectors. 


