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ABSTRACT  

The superalgebra and its relation to the soliton mass is 

investigated. 

Using a modified version of Dirac's method, for singular 

lagrangians, the supersymmetry algebra of the supersymmetric CPn  

model is derived and found to contain a central charge, composed of the 

topological charge and a field dependent U(1) transformation. This 

modified algebra leads to a lower bound on the mass of the soliton of 

this model. 

Such bounds are common to a large class of models which admit 

soliton solutions. However in the supersymmetric models the mass formula 

of-the self-dual solitons survives quantization. The controversy 

concerning this phenomenon is resolved using functional integral methods 

and care was taken to preserve the supersymmetry of the model, at all 

stages of regularization. 

Finally the correspondence between constraints and confinement 

is discussed. 
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NOTATION  

Two dimensions 
No_ C 6 II= 

me tri c 	9r,, 
01 

dia9 ( t —) 

Three dimensions 	I,z = C''Ō•ō'1 	1° and f' as above 

metric 	st.v  = dia j (+) —1`—,) 

o►z 



CHAPTER 1  

INTRODUCTION  

1.1 Prelude  

The conceptual problems of point particles, physical entities 

without any dimensions, render an extended model of material particles 

a very attractive one. Some particles are indeed thought to be 

extended, but as bound states of point particles, at this moment there 

is no consistent picture of nature, which admits a fundamental 

constituent which is extended, nevertheless some progress has taken place 

towards an extended particle picture. The soliton is interesting and 

promising but it has short-comings; if one believes in non-derivative 

interactions the soliton can only exist in 2-dimensions, its 4-dimensional 

analogue has to be a magnetic monopole which has not yet been observed. 

However solitons point the way for a future theory which will hopefully 

be of more physical interest. Also in other branches of physics, 
solitons have observable effectsllll, in fact a soliton in the shape of a 

canal wave can be observed with the naked eye1101, thus making the soliton, 

interesting enough to be studied. 

A recent development in particle physics has been the introduction 

of supersymmetry, a symmetry between bosons and fermions . This will 

be discussed in following sections. It is the purpose of this thesis to 

investigate some of the properties of the models which are both supersymmetric 

and possess soliton solutions, such models exhibit interesting properties. 

One such property is the effect that the solitons have on the 

superalgebra, the symmetry algebra of the supersymmetric models is modified in 

the presence of solitons to admit a central charge1291 . The central charge 

is related to the topological charge of the soliton thus leading to a 

relation between the mass and the topological charge of the solitonl29l . 
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In chapter three we shall see how the superalgebra is modified 

in the case of the supersymmetric CPn  model. In this case the algebra 

already contains a central charge independent of the soliton, but the 

presence of the soliton introduces an extra term into the central charge. 

The extra term being proportional to the topological charge of the soliton. 

In sections two and three of the introduction I shall review some of the 

concepts that have been introduced such as the soliton, the topological 

charge and the central charge of superalgebras. 

The other property which will be discussed concerns the relation 

between the mass and the charge of the soliton already mentioned. It 

was claimedI
29'35I 

 that this relation remains unchanged upon quantization, 

this remarkable cancellation of quantum corrections was not however left 

uncontested, a recent paper by Schonfeld 1291  claims that such corrections 

do not vanish and there is indeed a contribution due to quantization to the 

mass. In Chapter 6 I shall resolve this controversy by using functional 

methods. Unfortunately it is only possible to do this calculation up 

to the first order in perturbation expansion due to the complexity of the 

methods involved,- thus the complete answer will not be given to this 

question, only the first loop corrections can we say vanish. 

In chapter two Dirac's formalism and its generalization for 

singular lagrangians are discussed. This formalism is used for the 

treatment of the CPn  lagrangian. I shall prove in this chapter, that the 

Dirac bracket, for a lagrangian with mixed grassmannand C number variables 

always exists. 

Chapter 4 is devoted to a digression which comes out of the CPn  

lagrangian and is not related to the concept of solitons. The notion of 

confinement is formulated by utilizing constraints of singular 

lagrangians. 

In Chapter 5 I shall review and develop the definition of the path 

integral for fermions which is then used in Chapter 6. 

- 3 



1.2 Soliton  

Let us start with the definition of the soliton, instead of 

the old technical definition of a solitonllll let us adopt a definition 

given by Colemanl
l2

l , and call a non-dissipative, non-sigular and finite 

energy solution of a field theory, a soliton. Let us consider two such 

examples in 1 + 1 dimensions. Consider the lagrangian density; 

ce4x) = 	a ~ ~~ -- vco) 

The energy density is; 

-roc = z z -+ %2 1 Q g 1 2. -1- V( 4)) 

1.2.1 

1.2.2 

Let us consider a time independent solution 4s(x), the mass of this 

solution is; 
+ ao 

Ms. J x  L 12 IC7cbjz + V(of7 
	

1.2.3 
-m 

but we also know from the equation of motion that; 

cp 	v 	0 

or; 

Jc7 PI 2 	V(4) fc 

thus if C = 0 

t4o 

MS - 2. f dX VCI) 	 1.2.4 
-00 

Equation (1.2.4) is a very useful one which will be used many 

times in this work. As specific example consider the potential; 
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Vq9 	f PA I. 	 =~ 
42 

"" 4 	— 	(1)'. .) 
 kylz 

2- 
1.2.5 

The stationary solution is; 

cX) = m 	aMh wl CX —a) 
	

1.2.6 

where'a'can take any real value. This solution is known as the 

A04 "kink". The energy of this solution is given by (1.2.4) 

~S Jr' 
—a- 1.2.7 

Another well known field theory with soliton solutions is the 

Sine-Gordon model; The potential for this model is; 

vc 95) 	1114 ( cos('~ 0) -., 
A 	►~ 

The time independent solution is; 

Wi 1 Yh 
cJ Cx ) = 	Can e 

V  

The mass of the soliton is; 

NIS = 	
yy13 f ) 

1.2.8 

1.2.9 

1.2.10 

An interesting property of the soliton is the translational 

invariance of it which gives rise to a zero mode in the equation of 

stability. The stability equation is; 

L 
	 09 7 7r c,c if) = o 1.2.11 

where f is a perturbation about the given solution (1)s(x), it 

is evident that one solution of (1.2.11)is the first derivative of qs(x) 
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d 	(x) 
that is f(x) - —ax 	which is time independent. This arises because the 

stationary solution can be shifted to move its centre of mass from x to 

x + ox, thus if q(x) is a solution so is 4(x + Ox) therefore a taylor 

expansion immediately indicates that 

C) 	 4(x) (x + Px) 	f cp(x) cPX -+ 

40(x) will satisfy the equation (1.2.1). 
iw 

Now if f(x,t) = E e n  fn(x) then (1.2.11) becomes 
n 

E— vz + v cfrS) ] 	Cx) = 1„4;.-   f  (x) 1.2.13 

it is sufficient for stability that wn  be real, that is wn 	0 but IT  4)5(x) 

is a solution with wp  = 0 and it does not have any nodes (in the case of the 

"kink" and the sine-gordon solitons) therefore it is the ground state, 

thus all the other wn  are Positive11 3
1
. We therefore see that the solitons 

are stable. In fact there is a fundamental reason for their stability which 

is related to the topological properties of the model, which brings us to 

the notion of topological current and changes. 

P. given finite energy solution must tend to the minima of the potential 

at spatial infinity at all times; therefore associated with each finite 

energy solution is a map 4.  which maps the spatial infinity into the minima 

of the Potential, now if the potential has more than one minimum the set of 

maps {6.} can be divided into distinct classes where different classes are 

not connected by continuous transformations. 	Therefore once a solution is 

given with a particular 	asymptotic behaviour, evolution in time cannot 

change its asymptotic behaviour, thus it seems that there exists a conserved 

quantity associated with that solution; in fact called the topological charge 

is the index for the homotopy classes of 4)(x). The topological charge can 

be written as; 

Q - CI) (too) - C  (-00) 1.2.14 

1.2.12 
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For the ac`' theory with minima g±o) _ ±-11  'l is either zero or 	
2m

'Ja 	' 
for a kink or - 

2m for an anti kink. In the case of sine-gordon model' 
2 Nm Ir ' J a 

g±00)_ ± 	 , where one can have a soliton or anti-soliton with any 
Ja 

arbitrary charge N. The existence of a conserved quantity suggests a 

conserved current whose time component is a density for this charge. 

This current is 

JK = E fAv av (Xrt) 
al e 	+1 

1.2.15 

where 	4-co 

a 

Q _ 	dX J Cxrf} 	4(+03,-) - 	 (-c.1 ) ) 	1.2.16 

GO 

Evidently a soliton with a non zero topological charge will be 

prevented from decaying by virtue of its topological charge. 

Finally let us consider the possibility of having similar solutions 

in higher dimensions. Unfortunately we encounter a discouraging theorem 

here due to Derrik'451. Assume that there are no derivative interactions. 

The energy of a configuration can be written as; 

I-1 C4 3 	T cO ] 4- V c 0J 1.2.17 

where the two functionals, the kinetic energy T L J and the potential 

energy Vt~1 are both positive. For a static solution, HE must be 
stationary with respect to any arbitrary field variation in particular the 

scale transformations x -- xx. Now such a transformation in D space 

dimensions and one time dimension results in the following hamiltonian 

C 3 = a
D-z 

Tc03 + Al) VC4] 	 1.2.18 

differentiating with respect to A and setting x = 1 gives: 

H —0 = (D-2_) T C ¢J -r .D V C cb7 1.2.19 
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which cannot be satisfied for D > 2 and for D = 201.4 has to vanish. 

More elaborate arguments exclude the case of several fields as well1461  

and we are lead to consider gauge theories in which case finite energy 

solutions can be found with an asymptotic magnetic field which resembles the 

field of a magnetic monopole
147-481. 

1.3 Supersymmetry  

In mordern physics symmetry principles have assumed a major role, 

not only do they have a practical use in deriving the lagrangians of 

different interactions but also the laws of nature should be understood as 

consequences of symmetries; such as the conservation laws. The primary 

symmetry is of course the Poincard invariance, arising from the structure of 

space-time. Another kind of symmetry, that is one between different species 

of particles is also thought to exist, referred to as internal symmetry. 

Although it is not yet clear what is the complete internal symmetry group 

of nature but it must include the groups U(1), of the electromagnetism and 

SU(3) of quantum chromodynamics. An intriguing question is; can one construct 

a model where the symmetry is not a direct sum of the space-time symmetry 

and the internal symmetry? The answer was given in two parts, first, no,1391  

one cannot construct a model which is invariant under a nontrivial fusion of 

the Poincard group and a compact lie group of internal symmetries, and later, 

yes, it can be done if one admits supersymmetriesl
361. 

 The other aspect of 

s upersymmetries which is unusual, if not radical is that it sets up a 

symmetry between bosons and fermions. The starting point of the introduction 

of the supersymmetries was in fact an attempt to unify these two classes of 

particles with apparently diverse properties
138, 40-431

. An example of a 

supertransfoTmation is: 

1.3.1 
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where 	is a complex scalar field, ,p a complex spinor and E an 

infinitesimal spinor. The algebra of these transformations closes in 

two dimensional space-time (with the aid of the equation of motion) if 

E are taken to be anticommuting numbers or more precisely grassmann 
a 

variables. The Noether current associated with these transformations is 

known as the supercurrent, it is a spin 
Z 
object which is conserved if the 

equations of motion are satisfied. The zeroth component of this current, 

the supercharge, is the generators of supertransformations. The supercharge, 

Qa and the generator of the Poincard group (Pu, Muv) form the extension of 

the Poincarē group where Qa commutes with the momenta and transforms like a 

spinor under the lorentz group. The anticommutator of two supercharges 

is however given by: 

1.3.z 

Where C is the charge conjucation matrix. Here we have encountered the 

peculiarity of having to introduce anticommutators as well as commutators 

into the algebra therefore the symmetry algebra is really a graded algebra 

leading to a graded lie group of symmetry. The details of supersymmetric 

field theories can be found in a number of reviews1371, here I only intend to 

discuss the concept of central charget36l which is essential to what follows 

in later chapters. 

Let QL be n majorana spinors, representing the supercharges of the 
a 

model, and J. be the generators of the lie algebra of G, the group of internal 

symmetries, which can be assumed to be a direct sum of a semi-simple and an 

abelian part . The commutator of Ji and QLa being: 

[ ~t , Qq ] - 5 ( Q, 1.3.3 

The Jacobi identity concerning J. Jk and QLa then shows that the matrices 

S.  
M 
 form a representation of Ji. In this section I shall use the Jacobi 

identity frequently and shall denote it by (J. Jk, QL) say for the case 

-9- 



just discussed, the identity for a superalgebra is given by (2.3.8)(c). 

The supercharges QL are assumed to commute with the momenta Pu and 

transform like spinors under the lorentz group, it was shown by Haag, 

Loupazanski and Sohinus1361 that one can admit supercharges which do 

not commute with the momenta only if one assumes conformally 

invariant space-times. Thus with the internal symmetry group being disjoint 

from the Poincard group the only bracket to be determined is that of the 

supercharges: 

{ Q ,qj S~ 	LM(ii a 

LM 
1.3.4 

w
here I have used the majorana representation of gamma matrices thus 

t
c = -Y°°01 . Anticipating that momenta appear on the right hand side 

of (1.3.4) I have included them, what remains to be dose is to determine 

what ZLM can be. 

Consider the Jacobi identity (P, Q, Q), this leads to 

21'; 	= 0 
therefore Zaa can only contain the generators of the lie algebra, Ji, also 

ZLM 
	only be expanded in terms of ya6and (Y 0)as where y5 = Y Y 	T3 

in 4-dimensions, now in 4-dimensions and the majorana representation both 

y° and y5-r6 are antisymmetric and since the left hand side of (1.3.4) is 

symmetric under the exchange of a and a and simultaneously L and M it 

follows that ZLM should be antisymmetric under the exchange of L and M or 

a and 0. Thus in four dimensions one must have more than one supercharge 

for a nonzero ZLM hence one cannot have a ZLM charge without an internal 
a0 	 a0 

symmetry group. In 3-dimensional space-time, the only gamma matrix left 

for ZLM is y0 whic is antisymmetric in the majorana representation, thus 

in 3-dimensions as well, one must have an internal symmetry group before 

ZLM could exist. However, in 2-dimensions the matrix corresponding to 

- 10 - 
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Y5Y° is in fact iyl which is symmetric in the majorana representation so 

one can in principle have a term on the right hand side of (1.3.4) 

apart from the momenta and lorentz rotations, without having a group of 

internal symmetries. Although this argument rests upon the use of 

majorana representation but this does not disqualify it since (1.3.4) 

must hold in all of the representations of the gamma matrices. 

Now consider the Jacobi identity for three supercharges 

(QL QM~ Q
P), this leads to: 

a' 6 QY) 

PM 

 C
QP~,zaLM

~ 	_ CZāa 
PL '

QM JCQ,r , l~~] ~ --   1.3.5.1 

since QL are independent,(1.3.5.1)can only hold if each of the brackets 

vanish independently, therefore 

M 
L Z 	, Q~ 	= p 	 1.3.6 

Next, consider the Jacobi identity for (Zās, 
QP' Q1

) this, using (1.3.6) 

leads to: 

f

~ ~ P N 
 = o 

e'13 , 	IS 

Finally the Jacobi identity (J, Z, Q) results in 

.vrq 

 zJ7 

1.3.7 

1.3.8 

therefore [J.,  Z. M] must be a linear sum of the ZLM this result together 

with (1.3.7) shows that 	form an abelian ideal of the lie algebra of 

internal symmetries 	. But oL is a direct sum of a semi-simple algebra 

and an abelian one,L ='C1 ®~ 2 , but .L being semi-simple does not have 

any abelian ideals, thus ZL lies entirely inh2, therefore ZLM commutes 

with Ji as well. We therefore see that ZLM f orm a centre in the superalgebra 

hence known by the name central charges. 



CHAPTER 2  

SINGULAR LAGRANGIANS  

2.1 Introduction  

All the fundamental physical models have singular lagrangians, that 

is, the canonical variables are not independent, for instance any gauge 

theory is described by a singular lagrangian. Therefore it is necessary to 

have a formalism to deal with such lagrangians. This was initially done by 

Dirac'1 4', for a bosonic system, and later generalized to include fermionsll7l. 

In section 2 I shall review Dirac's method (for an extensive review seeIl6!) 

and the generalization of it in section 3. 

2.2 Dirac's Method for Singular Lagrangians. 

Consider a system''described by the lagrangian L(
qi, q1 ), 

i = 1, ..., n, the momenta conjugate to qi are defined by: 

2.2.1 

If all the momenta are independent, (2.2.1) can be solved to give 

P. as functions of q. and vice versa. However in general_ P. need not be 
1aP. 	1 

independent in which case the determinant 	.1 vanishes. This in turn 
aqj 

implies that there exists a number of expressionsrelating qi and Pi: 

q~ 	) 	o K ~ ~ V 2.2.2 

The sign "x 0" throughout this chapter is read "weakly zero", to mean that 

the primary constraints x°L x 0, can be set equal to zero only after all of 

the poisson brackets have been worked out. The set of constraints 2.2.2 

rendered the hamiltonian ambiguous since one can add any linear combination 

of X°L,s to the hamiltonian, so let us define the total hamiltonian to be: 

- 12 



= pc  -f- C a(f) /` of (9, P) 2.2.3 

where He is the canonical hamiltonian, and C°(t)  are to be determined. 

Consistency requires (2.2.2)  to be time independent, that is the poisson 

brackets of xa with the total hamiltonian have to vanish. Calculating  

these poisson brackets may result either in new constraints, in which case 

the new constraint-is to be commuted with HT  and the process repeated until 

no more new constraints are generated, or it may result in expressions for 

the Ca(t). A third possibility also exists, where one obtains an 

inconsistent equation in which case the lagrangian under consideration is 

inconsistent and we have to abandon it. 

Once this process is completed we are left with some additional 

constraints to (2.2.2)  called "secondary" constraints so let us add them to 

the set (2.2.2)  

'X t o 0(=1/ --)V1  v+1)  2.2.4 

Now let us introduce the concept of a first class constraint. 

If a constraint r has a weakly zero poisson bracket with the 

rest of the constraints (2.2.4)  r is called "first class" so the set 

(2.2.4) decomposes into two classes, the first and second class constraints, 

the two classes do not in general coincide with the primary and secondary 

divisions. The division of the constraints into first and second class is 

somewhat fundamental since the first class constraints are in fact 

generators of the "gauge transformations" to see this let us write: 

T  = 	-f- Az C d  (.. 	
x'a 

Coe/  (t ) 2.2.5 

where the sum over the constraints, in (2.2.3) has been broken into the 

first class constraints 	and second class constraints x2 , now the 

13 - 



Poisson bracket of xs  a general constraint with HT  is 

o ti  [ 	Or] = C 9(13) ut7 - { 	, 0( 	C+) 
2.2.6 

as is evident, C1(t) will remain undetermined, that is we can use 

arbitrary functions of time C(t) in (2.2.5) and the dynamics of the 

system remains unaltered. Furthermore the variation of a dynamical 

variable g is given by HT  that is 

S1  = E2,NrI= E , 	 Catos- t (al it]Sttf3,/41Cc:8t 

sig 	14r = L91 9(2 J Cie (-0s+ 	ilei k C[, Xr. 

or 

A 9 	 g 	Cc - bK ) g ,r C 

6,c+) ) ; 

2.2.7 

where in the second line we have used 	different functions of time 

for the coefficients of the first class constraints, we are allowed to 

do so hecauce the coefficients of the first class constraints are 
arbitrary functions of time. !oe can now see that exoression (2.2.7) 

is indeed an infinitesimal gauge transformation. 

The classical treatment of singular lagranaians now seems tozbe 

complete extent for one point: The first class constraints which are 

secondary have not been added to the hamiltonian, therefore it is not clear 

wether they are generators of gauge transformations or not. In the case of 

electrodynamics or the CP" model (see chapter 3) the first class constraint 

which is secondary is included in the canonical hamiltonian, thus is a 

- 14 - 



generator. Dirac conjectures
ll4l 

that these constraints should always 

be added to the canonical hamiltonian, however this conjecture has not 

been proved and some doubts have been raised about itl441
, 

The quantization of the singular lagrangians follows the same 

pattern as the canonical quantization, but the constraints must be 

understood as follows: 

(A''' IP 	=o 2.2.8 

where 111,> is any arbitrary state; however (2.2.8) leads to inconsistency 

if xa is a second class constraint, since if A and B are two second class 

constraints we have 

r4,8.J11b> -o 2.2.9 

but the left hand side of (2.2.9) does not vanish. Therefore we must 

remove the second class constraints before quantization by either solving 

the constraint equations and removing the extra degrees of freedom or 

using Dirac brackets. These brackets are formed as follows, consider the 

matrix C 

ce.tP = fJ  ~~ 1 	a = ~ -- /k 	2.2.10 

if this matrix were singular then there would exist a set of non zero 

coefficients d 
a 
such that: 

et 	A 

or 

d 1< x 
l O 2.2.11 

- 15 - 



that is a first class constraint; daxa can be formed from the members 

of the set Xa, taking this first class constraint out of the set, we are 

then left with a smaller set which may then form a non-singular 
Cas 

. 

Thus taking out all of the first class constraints and then forming the 

matrix Cas, we can find an inverse for it. Now define the Dirac bracket: 

L-,4 g3 _ [ Ai $_3 — [ A ,1t3 Carp [ %~ ~ B] 	
2.2.12 

* Clearly [A,Xal = 0, for any arbitrary operator A. Therefore one can set 

the second class constraints strongly equal to zero and use Dirac brackets 

in conjunction with the hamiltonian 

L 	
I 	~f }-I T = u c 1- C (.+) [' 2.2.13 

Where 
ra 

are first class constraints. 

A useful property of the Dirac bracket is that it can be defined 

iteratively 1161 . If the set of constraints is too large causing C to 

become very large, therefore difficult to invert, one can define a Dirac 

bracket using a subset of the constraints and then define the final Dirac 

bracket using the rest of the constraints and the previous Dirac bracket. 

Let us divide the set of constraint into two parts, then: 

oc r 0 
	a = ti ...l , V 

Cap = [2C0( 	'X3 	 el( r R = 	t-̀  

[A1 63 	= [ Alō-3 - cA1 ';1 cg--13.' E i3 , 3] 

2.2.14 

Now we can use [,J * with the set of the constraints to define the final 

bracket: 

- 16 - 



C A  s 	= C A , T, - CA , `Xe< ]i Das C 0. ! 1331* 33* 

D°I ~ PAC 2/ J 1 

2.2.15 

Clearly now A, x I* = 0 for any x a 	 a 

We are now ready for quantization, where the correspondence is 

achieved by letting the commutator to be proportional to the Dirac bracket 

of the operators: 

L A i B] 2.2.16 

The generalization of these ideas to field theory is straight 

forward. The matrix C~~ in this case becomes space dependent, thus the inverse 

of it is understood as follows: 

Jd3X Ca j3 (ij/ x) C
13 s 

	3) = as  
2.2.17 

note that the constraints are time independent and we need not integrate 

over time. 

2.3 Generalization of Dirac's Method 

The generalization of the method described in section 2.2 to include 

fermions is necessary if we wish to study any fermionic system, since the Dirac 

Lagrangian is singular. The first step inevitably is to have a consistent 

dynamics of grassmann variables. This has been done by MartinI51 , Berezin 

and !1arinov115l and Casalbuoni117 l , here I shall review the necessary points 

through an example: 

- 17 - 



Let us consider the following Lagrangian: 

_ V( ) 2.3.1 
ā-1 

Where
a 

are real grassmann variables, the equation of motion is: 

t sa - aV _ o 2.3.2 

Now to obtain a hamiltonian formulation let us define the conjugate 

momenta similarly to the usual mechanics: 

Pot = 
L 

ti _ '6 
got 2.3.3 

the equations (2.3.3) are constraints, so we are quickly lead to consider 

the case of singular Lagrangians but let us define the canonical hamiltonian 

first: 

2.3.4 

note that it is necessary to define Nc with the velocities to the left 

of the momenta, otherwise He would not be independent of velocities. 

Now the Hamiltonian equations read: 

rc _ 
	aN4 

a ~a 
2.3.5 

clearly they do not produce the right equations of motion, the reason is 

that instead of H
c 
we must use the total hammiltonian, we shall come to 

this point later. 

Of course a lagrangian in general may depend on a grassmann and 

ordinary variables at the same tire so we must define a graded Poissson 

bracket for such a dynamics. Let us use the notation that the grade of 

a variable A, is a where a = 0 if A is even and a = 1 if A is odd. Now 

the graded Poisson bracket is given by 
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2A 	a6 
213- A  

ail: DR: 	ag- °1-1: āP 
Where the riaht derivative āx , is the same as left derivative for the 

commuting variables but not for grassmann variables. Using (2.3.6) the 

equations of motion (2.3.5) can be rewritten as 

 EL  A L, } Pa c ra 3 r, 
2.3.7 

The bracket (2.3.6) forms a graded algebra115 ' that is_ it satisfys 

the following properties: 

(a) DI 13 34 = — (-1)
a

6  E8, A]6 

(b) / A8 , c 1c = A C $; c1  + C-06` [ A, c]  73 

ac ab 7 ( c)(-+)[A 71a,C~G4
+ (-+) r8,(c,A]]yt (-1) EC/CA1E ] 	0 2.3.8 

Let us now turn to the question of constraints, define the total 

hamiltonian. 

NT 	 f-Ic f Y, c 	Pa + `iz Eer 2.3.9 

where the constraints (2.3.3) have been added to the canonical hamiltonian 

using grassmann coefficients a° , similar to the section 2.2. Consistency 

requires the brackets of the constraints with HT to vanish leading to 

expressions for as , 

2.3.6 

2.3.10 
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Clearly now the right equation of motion results using HT instead of He 

in (2;3.7) or (2.3.5) therefore this procedure seems to produce the 

desired results. The constraints Pa + Z ā .o are second class and if 

we wish to quantize this model we should remove them, therefore we come 

to the question of graded Dirac brackets. A direct generalization of 

the equation (2.2.12) to the graded case
117,18I 

works perfectly well 

but it is not obvious why it should. In general the matrix 
Cas 

is graded 

that is 
Cas 

contains both odd and even elements, thus the Dirac bracket 

may not satisfy the conditions (2.3.8) in general, but we shall see that 

C 	has exactly the form required for (2.3.8) to be satisfied. But let 

us first calculate C 	in the simple case of (2.3.3) constraints. Note 

that Cas must be symmetric and not antisymmetricI 201 as in the bosonic case. 

co4 f3 = C ~d ~ X~ ]C a 	ACI 
2.3.11 

The inverse of Cas is easily found leading to the following Dirac bracket: 

E 	] = — c "11 11 2.3.12 

This bracket is symmetric as it should be and the quantum version 

of it is the familiar bracket used in the quantization--of the Dirac field. 

The matrix Cas will always admit an inverse if all the first class 

constraints are extracted out of the set of second class constraints, the 

fact that Cas is graded does not make a difference here, since the 

condition of singularity of Cas is: 

e,[,X] vo 
%3 4 

-20- 
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then 

or 

which implies that the first class constraint ā ea xa has not been 

taken out of the set of the second class constraints. 

The proof of (2.3.13) for graded matrices is not as easy 

as the bosonic matricies since the existence of an inverse is a more 

stringent condition on a graded matrix, because not only should the 

determinant be non-zero but it must also not be nilpotent. To prove 

that (2.3.13) is necessary and sufficient for Cās to be singular let us 

first note that it is sufficient, because if (2.3.13) holds and Cis 

exists it follows that e = 0. Now let us write the matrix C as 
a 

follows: 

C.z 2.3.14 

where all of the nilpotent elements of C are gathered in B. If A-1 

exists then the inverse of C can be constructed by iteration as follows, 

let 

-' C  = A + 

.41 

 = 	° I — A4B 	gC 

= ~1 r BG ~ — A~~B(A ~ 4 ā ) 

cc 	r 
 = Ā' yl (S A-) r=i 

2.3.15 

Now since B is nilpotent so is BA-1 therefore the sum is convergent 

and ō exists. Thus if C is singular A should also be singular, hence 

we can find the vector v , made up of C-number elements such that, 
a 
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Ac? 1Y13 -0 2.3.16 

now if one forms the vector e = ,r 	v where ~_, are the generators i 1 a 	1 

of the grassmann algebra Gn over which Cas is defined, we shall have 

C 
04
~ e = 17 S. Aap 3 f B°`f~ l~ ~7 . 

=1 ` 	 c=~ 

0 
Where B 	Tr i vanishes because Bas are nilpotent. Therefore (2.3.13) 

i 
is also necessary. 

Let us now check the conditions (2.3.8) for the Dirac bracket, to 

do so I must assume some symmetry property for C
as otherwise the 

question cannot be addressed at all, so let us choose 

—' 	 -6ap 	—1 
C o9 	— 	C--+) 	Cisa 

where tis can be zero or one. Now one has 

2.3.18 

_1  
CA, 83* — EA/104 - [A xa74 Coc? L 

r  xrs 43(' 

db 	 ] 

2.3.15 

where ap 	a t Ct k.s. %hii -f Cb+ hp) 9c + (G,-s .r)(4org b+kp) 
-{- ap 

and qas is the grade of Cas, ka is the grade of Xa . Now if the 

Dirac bracket is to satisfy property (2.3.8) (a) gas must equal zero 

modulo 2, for all values of a and s, independent of a and b, thus one 

arri ves at: 

2.3.17 
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U 
	

n 

wt 

12, kp, 	cYoti3 y 0 

/2at 	(1d+Īei3) 	= 0 2.3.19 

thus tas = 0 if ka = k = 0 and tai =  l otherwise, therefore if the 

set of constraints is arranged such that: a = 1, ..., n correspond to 

odd constraints and a = n+l, ...,m to even constraints; then (2.3.19) 

implies that: C-1 should have the following form:  
1.14 

M Q ~+ 

QT 
2.3.20 

this form of C-1 is also adequate for the Dirac bracket to satisfy the 

other relations of (2.3.8)I171 . Surprisingly the matrix Caf3 does indeed 

give rise to such a matrix provided it is not singular: The matrix C 

has the following form by definition: 

C 

C 
U 

where S is symmetric, A antisymmetric and they are even, the matrix U 

is made up of odd elements. The inverse of CaB can then be written as 

M Q 

C = N T 
2.3.21 

then one obtains the following relations: 
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(a) MS — QUt = i t, 	(b) 	M U + CDA = 0 

(c) N5 T Ut D 	(d) 	NC/4- TR = Irn 

(a) UN Z (b) — UtM +AN = D 
2.3.22 

(c) SQ -f UT = o 
(d) — U tQ + AT = I 

2.3.23 

Where In is the unit nxn matrix using (2.3.15)(b) and (a) we find: 

M - [ s  2.3.24 

which shows that M is symmetric also (2.3.23)(b) and (2.3.22)(b) imply 

that: 

N Q~ 2.3.25 

Furthermore (2.3.23)(d) and (2.3.22)(d) imply that T is antisymmetric, 

therefore the inverse of C has the following form: 

Nl Q' 

2.3.26 
t 

where M is symmetric and T anti-symmetric therefore C-1 does have the 

desired form. 

Before closing this chapter let us note that quantization is 

effected by setting a correspondence between the graded commutator of 

two operators and the Dirac bracket of the dynamical variables: 

ab n n 

A6 -` CA / 13] 2.3.27 
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CHAPTER 3  

THE CENTRAL CHARGE IN THE SUPERSYMMETRIC  

CPn-1  MODEL  

3.1 Introduction  

The CPn  model was primarily constructed in relation with super-

gravity by Cremmer and Scherk 1211  and later studied extensively because 

of instanton solutions and confinementl24' 25, 26, 281 
	

Ins tan tons are 

classical solutions which make the euclidean action stationary, they also 

have a topological quantum number associated with them, thus one would 

expect the supersymmetric CPn  model to have a modified superalgebra1291. 

However, in an euclidean theory all the components of space enter on an 

exactly equal footing, consequently there exists an ambiguity in the choice 

of the time axis and thus the canonical momenta. In addition, the charge 

density of a current cannot be identified since all the components of a current 

can be continuously rotated into each other. These difficulties render the 

explicit calculation of the brackets of the algebra of an euclidean theory 

impossible.. Therefore I shall consider the supersymmetric CPn  over a 

Minkowski space-time. The models with instanton solutions where constructed 

over a 2-dimensional euclidean space, therefore I need a 3-dimensional space-

time, with the metric diagonal and given by 50  = di ag(+1 , -1, -1) , then 

the instanton solutions of the two-dimensional euclidean model correspond 

to time independent solitons of the three-dimensional model which minimise 

the hamiltonian. 

3.2 The Mode1I21-271 

The supersymmetric CPn  model is a particular case of a general 

class of supersymmetric models of 6hlerian manifolds 1271  . The complex 

projective space CPn-1  is defined by the equivalence classes of the 
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= complex vectors 4)a 	(41 , ..., 4)n ) which satisfy 1311  

E 4): 	K , (1)a = (1)a 	 [AI  = j 3.2.1 

where K is a positive real number. The fields 4a(x) are maps from the 

space-time into the CPn-1 manifold, the constant K is not dimensionless 

therefore it is misleading to set it equal to one. The lagrangian of this 

model is given by, I261 

.~ = L L V14 Ca D14 J + V *% 4 	r L>ZttTqrbet4 l q 	(fa  Ya) 2.] 
dos 

3.2.2 

apart from the constraint (3.2.1), the fields also satisfy the following 

constraints: 

`-k'4 To, v Oct 	o 3.2.3 

The covariant derivative Du a(x) p = 0, 1, 2 is constructed using 

an auxiliary vector field Ap(x) given by: 

At̀ ' cx ) 	z le \ `t'.1 	04)cd1 	— `' 'Ta 

The lagrangian density (3.2. is invariant under local U(1) transformations: 

3.2.4 

Ci)u (x) -.e 

i 'P n(x)

Pct„("X)

A (x) 

4 cx ) , 	—~ e 	d+ ( ) 

3.2.5 

Note that although the lagrangian density is invariant under local U(1) 

transformations, and it contains a vector field U(1) but it does not 

contain the kinetic term for Au(x) thus the equation of motion for A(x) 

does not involve any derivatives and it can be used to eliminate Ap as 

given by (3.2.4). This lagrangian density is also invariant under complex 
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supertransformations, 

E 4'o, — c E Ta 

,, I) 	 — 	t Tb b E 
7a — ~a   

3.2.6 

where E is an infinitesimal , complex, grassman spinor but in proving the 

supersymmetry of the lagrangian density we shall find it necessary to use 

the constraints (3.2.3) and (3.2.1) therefore we must first check that the 

set of constraints does not enlarge upon supertransformations, this is also 

important when one comes to treat the constraints as outlined in the last 

chapter. Since these constraints are ones which are imposed 	from 

outside they must be added to the lagrangian density using Lagrange multipliers 

a(x) and e(x): 

of r= f (x) f X(x1(44I — ) t 8 4'c 	% 1).P Ta 3.2.7 

now the constraints arise from the equations for conjugate momenta of 

a(x) and e(x) for example: 

0 3.2.8 

then the commutation relation of Pa(x) and the total hamiltoniān gives rise 

to a secondary constraint, 4;1- cba(x) - K ti o, therefore we can use!T instead 

ofL(x) and proceed with the method outlined in chapter 2. Nevertheless if 

LT is to be used instead of,6(x) we must no"prove that LT(x) is supersymmetric 

rather thanC(x), thus: 

S 27-(x) 	( 4 ~a —K) ± OC j ā (4):44),c-K).7    

-f 	et-kg itic, 

3.2.9 
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where SACT vanishes if the R.N.S. of (3.2.9) is a linear combination of 

the constraints, we shall see that 84 is a linear combination of the 

constraints, sa and se are coefficients of constraints therefore what 

remains to do is to show that the variation of the constraints is itself a 

linear combination of the constraints. Let us begin by q (1)a - K 	0, 

s 	~ — K) = i -Oct 4a 4 c ~ E a v b 

and 

3.2.10 

E Ce Ta I = - C. l 	G — `t'a T 
C)

a 	i• rb lb E 

= (6/2_.  G2'I , 	
~~a —~A )7 E 

x o 

3„2.11 

where we have Fierz transformed:and used (3.2.4). Let us now look at the 

variation of the lagrangian density (3.2.1). Note that we need not consider 

the variation of A (x) because its equation of motion is algebraic therefore 

- 0 is in fact equivalent to (3.2.4) thus 

11 

g 3 4 1. :LLIT) g 	+ ac. g 111, 

3.2.12 

using (3.2.4), in other words [ō ,Duj = 0 where S is the supertransformation. 

Therefore we have: 
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•d ,e — ~ ~ u 	~r Ta ,,~ a E ~a~ 7 - c 	cb ~µ ~a € 

-L v 9a 4 IRE —c ` E 	'a* " `ba -- āK 6 ta b b a 

4- C Dttir% Ilk Oa& -" 1 f l' T lit b r b G 
.2K 

+(iz - it (i yPEI' _sitĪ'1N)) 

_ X Atc is pL4 e ~ āK ~4, 4Pc l~ F') kt  

( -- 1C'* CFIr ihb 	1A 76 

3.2.13 

now noting that the product of more than four spinor fields vanishes, 

and neglecting the total divergence we have: 

now use 

zJ 1 - D fte LfL . ~E u ilk 

Dt, ichc, 1.-e: Y46. — 	t11/1), DiSb: 

+ C -A/ 	1-1/ 	 1"af 1'E ~a b b aK  

1'a L 	! 	b _. 7 ~, !b 

	

a 	b 	a ~ ~~r,, aK 

II) 	4 1.4 	 4 

,r1.4  = 5,kv  

3.2.14 

resulting in: 
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S. 
_ 	 ~ 1

b 	ULJ
~ 	

-,,IIY- 	 ,y 

it 

	 -.Y1 '4'4( 
	

e 	At4 go, ct,,It 

- 	l OP V„,, -?ii 	+ e a,,E evr  -Yr Ar a~a 
6 

Ta, 	4 	h. c.  

3.2.14 

Where I have used the notation np = 	pug a Av,we shall see that np is 

the topological current of this model, therefore if e is not position 

dependent SLis the sum of a total divergence and a term proportional to the 

constraints, curiously the topological current appears in the variation of the 

lagrangian density, the reason for which is not clear to me. 

The supercurrent evidently from (3.2.14) is 

tt 
J 	= r ?v 	Cx) 

All, 
I 	lre, Cx) 	 3.2.15 
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The supercharge obtained from this supercurrent does not produce the 

right supertransformation, this is due to the fact that the system is 

constrained and the Dirac bracket of the supercharge does give the 

desired supertransformation, but this current is gauge invariant although 

it does not appear to be so, because of the constraints (3.2.3). 

3.3 The Superalgebra  

The product law of the algebra is a Dirac bracket therefore the 

complete set of constraints has to be calculated and the matrix 

Cij = [Ki, K,iJ be inverted before one can look at the structure of this 

algebra. So let us start with the lagrangians density: 

dG cx ) 	D~ 0:00 D' h.jx) 	.c)  2. a 7a _ `lz 1µ'11~ 	1 d 

2̀ 	 / 

3.3.1 

Assuming that A(x) and the lagrange.multipliers a and e are 

independent degrees of freedom the following relations for the canonical 

momenta are obtained: 

 

3.3.2 

Pa, = D0 Ta 

f 

2 
3.3.2 

- 31 - 



The set of constraints (3.3.2)(e) are the typical second class 

constraints of spinor fields (as in (2.3.3) but here we have one 

constraint per point of space) which can be removed by defining Dirac 

brackets iteratively, and since there exists a correspondence between 

Dirac brackets and the commutator or anticommutator of the operators 

we shall adopt the following anticommutator for the spinor fields, 

{ 41.1 6t(x) 	
b 
 (x) } 	°ab S ar S Cx — ~) 

oc 	 p 3.3.3 

and the following commutation relations are adopted for the other fields: 

a) [4>a (x) , 774,(V  ,l = i 8 0. 6 3 (x --1) 

b) ~x, , Pv (x) 3 	= 	Cx--t ) 

c) 104(x) P ( ) 7 r 	s Cx — 

d)  
6p), Poicip ? = 	S is/ gcri—v 

.3 3.3.4 

The hamiltonian density is given by:

tk H(x) J~x) - T 	-t 10, 0l z ~~i Dy `a ~~ ̀ a r' °'~z 7 a (~Dd a A a 

('fa l ) -f e A0 ( ~A~ IJ P — 4314 '1 Q" oCPA) 
~ 

where the index j runs over the space dimensions only. The 

total hamiltonian density is: 

3.3.5 

i-I T (x i 	 -t- 	771,(x) 	e Pe 
-r 6 Pot — d Cx) ( 	— K ~ 

17,09 & — B 7a CI)o. 3.3.6 

where the primary constraints (3.4.2) (a, b, c) have been added 

to the hamiltonian density. Ncw: 
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x o 

or 

 

2 Aitx) 
āt 

arc 4)0. D; get 	TZt 	(t): 

'JP - 

D• 

b) [rid 1 	T J 	C1).0. Di ̀ f'q rk Dt 

c) Ca, )-J T ] + 

d) [ / /4r . 4 

e) [Poi , pr i 
3.3.7 

A number of secondary constraints have arisen which we must 

commute with the hami1 ton ian. 

a) L na 

b)   ) 

&T1,. 	!A 'f 1a. , 11T 	ti 

Pr J 	i 77, Di ca -t a -D'{ 

bi K — % D a ~' a ̀ ~1 t. ̀ ~, -  a d Y  

77D 	4, 1' 7 

t. ef 4D .0 

c) I~ā~a _K ~ r ~ 
	

a nā -f-  4),„ 17.) 	D 
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or, 

D D a qx) 	
ā K 

( 	-- 4)4 D'D 

d) 3 Ur] 	 1744a — 	c (1°I'Lba) 

—"%Z ci>a f°f4Ditt 	Knie ~D 

or 	9 ti 	 T -
K 	

q) a. 

e) [Ipa4a,HT] is the complex conjugate of (d) this results in the conjugate 

of the constraint, leading to: 

tg- 3.3.8 

The constraints (3.3.8) (d) and (e) when commuted with the 

hamiltonian give rise to expressions for ē and ē4. similar to (3.4.8) (b), 

':therefore the last constraint to consider is (3.3.8) (c) 

C`kt na 	epQ 77, , r I 
	

a t 77 7: 	Oat.Di iicb 0. 

D•D (14 _ AK «(x) ti 0 

3.3.9 

The constraint (3.3.9) likewise, when commuted with HT produces an 

expression for ā(x), the set of constraints has thus been exhausted. The 

classification is rather easy, 70 ti 0 is clearly a first class constraint 

since no constraint involves the zeroth component of the vector field and 

the constraint 6a 'ra 	rib
a

Tr
a 	 aY0 a ti 0 is in fact the generator of the 

U(1) transformation therefore it commutes with any gauge invariant operator, 

but all the constraints are gauge invariant, therefore the first class 

constraints are : 
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b) 	̀ f'a a — 430.710. IA, 1 	o 3.3.10 

and the rest are second class. Let me index the constraints by 

KQ,£ = 1, 	20 

K, 

K 2 /3 = PO 

K X15 — Pet 

K . 	= occx) - 1 (7z pet4e tjD; 0/2) 

K q )10 = 	`/K (Pa ' 4'a 

K n 	9 - 	D, ō
x~ ) 1.2 	LIT  

Kr3 l9 
— ~K 4a D` CPa, pK (Pa. Di (I)a + ēK 7a ' 7a 

K 	/G ~f, ~a `Ca 

~r 

K 	, IS = ia 7a 

K tq 	= 	~ - K 

~< 0 	= cl6 2 	116 1- (1)0. Tl a 

3.3.11 

This large set of second class constraints results in a cumbersome 
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0 

o 	0 

0 8 

3.3.13 

matrix Cif = 	K,i1, however an unexpected simplification comes to 

the rescue, the matrix C has the following form: 

3.3.12 

where I7 is the unit 7 x 7 matrix and 177 a diagonal matrix, such 

that q 7 	I. The unexpected development is that the inverse of the 

6 x 6 matrix B appears in the inverse of C, that is C-1 is given by, 

v 113. l 
C 

The fact that B-1 appears in C-1 surrounded by the rows of zeros 

reduces the effort of calculation in working out the bracket of the 

supercharges. The supercharge, given by (3.2,15) is 

Qa C na ti" 
3.3.14 

The supercharge commutes with the constraints K1 to K7- therefore 

the Dirac bracket of the supercharges can,be expanded as follows, (where 

star denotes Dirac bracket) 

~0 

Qt 	- 	Qa op Jdd 	QJ 
{ 	20 
	

_t 	
l 

{Qct1 Q~ _ fix 1 ~i ~LQ.c 1Ki(x)JB, (x,,)[K3 (4),Q tJ 
( 	 , 4S'  

3.3.15 

where I have also used the fact that rows 7 to 14 are zeros, from 
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column 7 onwards: Therefore all we need is the inverse of the matrix B, 

the matrix B is 

'0 
0 

I3 cx, u) - K 
0 
0 
d 

0 K o 	0 0 
0 o K. 	0 0 
0 0 0 0 
K 0 0 0 0 
0 p 0 0K 
0 0 0 -21K 0 

3.3.16 

thus the inverse is easily" found to he: 

0 0 	1/K 0 0 0 
0 	0 	0 liK 0 l7 

ifK 0 	0 0 0 0 	S Cx- LA ) 
0 'lK 0 0 0 0 
0 0 	0 0 O `AK 
0 0 	0 0 -1/2x 0 3.3.17 

   

The first point to check is the transformation law of the spinor filed 

i L Q E, a C>Q ] 

z 
_ fa& 17a —~'E~, ~~ 

-~~ d~d2~ U-Q6 / 44): t]  
J  

77:-416)A - ~ax ((- q-F6 6 l~b i 1
f

16 
 	

a b) 

Now Fierz reshuffling and using (3.2.4) results in the right answer: 

04. 	
J 	 TK 

3.3.13 

We can now calculate the Dirac bracket of the supercharges. The only 

non-vanishing terms on the right hand side of (3.4.15) are: 

J ? J 	/ 4 tP4)J [ 	`3 ) 9/1s7 
3.3.19 

The second term of (3.4.19) is: 
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_ 	 21t.(1-Tc„*02- ) 

÷i (Irfu)04)3,[e K Ax ( (124 77a — ibc,na — t ;F:rb t , 

f t/, ('~' ) Ice*? 	cara 
 

3.3.20 

Note that the coefficient of 1:(3 is a first class constraint, it 

cannot be set equal to zero. The other term in (3.3.19) is:  
a., , Q4 	= 	 soa (u 	+ [r?1  .- 0(j7Q-if 0  •W 

1 J 	

pro 
4-6'f) (rra)j(1)a 12.°%t    

+ ~° (~ e a,. 	d * 1i2.66() ; f 1/64 *'~ ).q) 

tlr ~d ot ~' Ma)  

3.3.21 

The last term in (3.3.21) is a total divergence and vanishes if 

'para vanishes at infinity, since in this work the asymptotic behaviour 

of the fermion fields is assumed trivial, this term can be neglected. But 

the coefficient of Yak cannot he neglected although it is a total divergence, 

the asymptotic behaviour of the (ka(x) is non-trivial. The final expression 

for the anticommutator of the supercharges is: 

~a , O; c (i °)? + 4z~) 3.3.22 

where 
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(a) eK fd x 	~2 )r. A i(x) 

(b) z 	- 	ō X -fit(x) a (%) ( 	* 17 - 4 77a - i 4Pcio k. .eK 

3.3.23 

Alternatively (3.3.22) can he written in terms of two majorana supercharges 

Q L L = 1,2 defined by the real and imaginary parts of Qa . 

Q" Ppri 	- 	5`M6Ni)estp 
~r -~ i E~M-y 	

(z-rt) 	3.3.24 

this result of course depends on the fact that: 

Qa 1 Qf3 I 	N D 3.3.23 

3.4 The topological and the central charge  

If the scalar fields 4)~.1(t,r) tend to a constant at spatial infinity 

independent of time: 

~o 
~a 

LEI r)--~ ice) a 	, 1 l61 a 1 	epo. 	K 3.4.1 

then ¢a(t,r), in effect, maps the compactified space into CPn-1. In 

other words (pa (t,r) is mapping the sphere into CPn-1 , the homotopy classes of this 

map is denoted by 1t2(CPn-1) which is the group of integers1221 . The integer 

associated with each map cpa(t,r) is given by 

r ex Jd x  C ~ )► j 	 3.4.2 

where Aj is determined by (3.2.4). One can also construct a current 

qv whose charge density is related to tI, 

- 39 - 



~r ra O 	u n 0pp_ 
3.4.3 

If the integral of the zeroth component of this current is interpreted as 

a topological charge, associated with the configuration oa(t,r) then one 

obtains the following relation: 

_ = dx 	(x) _ .271N  
eK 	 3.4.4 

which results in the quantization of the topological and the electric"charge: 

e 
3.4.5 

Furthermore one can find a lower bound for the hamiltonian by noting that: 

z 
I Dc i,+ t 6~ D'Cba 	) o 

or 

IDr (hi 1 ~J ~i ~,~ D̀ ~ D~1 
3.4.6 

now if 3o(pa = 0 and Ilia = 0 (3.4.6) can be interpreted as: 

	

H =Jd xik 	n/N f 	
3.4.7 

and the equality is achieved when 

	

D~ (ka._ + 	Di. «. 	 3.4.8 

The (anti) self-duality conditions (3.4.8) can be solved to obtain exact 

	

n-soliton solutionsi22 I. When 	0 a different bound onthe mass can be 

obtained using the superalaebra of the mode1l29L. Consider the right hand 

side of (3.3.24) as a 4 x 4 matrix, it is a positive definite matrix which 

means in the rest frame: 

3.4.9 

where M is the mass of the soliton, and equality is achieved when some of the 
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eigenvalues are zero, in other words when there exists a linear 

relationship among the supercharges. In fact if the fields are self-- 

dual the supercharges obey the following relation in the rest frame: 

3.4.10 

which follows directly from the expressions for Qa and the self duality 

expression (3.4.8). The relation (3.4.10) can be generalized to an 

arbitrary frame: 

a 4 LC QZ/at 	O 3.4.11 

this relation suggests that a 4-dimensional majorana spinor can be formed 

by: 

3.4.12 

Then using 4-dimensional gamma matrices rA, A = 0, 1, 2, 3: 

11L 
~7 3  -i T2 b 

0 ilz ) 

and a four dimensional momentum PA =(P, z + t) equation (3.4.11) can be 

formulated in four dimensions as: 

rApa S -o 3.4.14 

The relation (3.4.14) has been obtained by Olivel30I for other 

3.4.13 

models with soliton solutions. 

This relation suacests the existance cf a massless 4-dimensional 

theory which reduces to the 3-dimensional model by the compactification
1341 

of the third dimension of space. The sunersymmetric CPn in 4-dimensions, 
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first constructed by Cremmer and ScherkI211 is in fact the right model. 

This model is described by the following lagrangian density: 

oG (% ) = (;4ý(D qba) "~ 
t/Z 2 4 	/` a 3.4.15 

where ^a are n-rnajorana spinors satisfying: 

[' 	1- r pd )J 
j~j ~ x'°7 - 2 

3.4.16 

The covariant derivatives are given by: 

D4` ~~ c se-8A4a A a 	Aā 

E /~ A 	~~q Ya ^ j ~ f 53A 9(a 

where 

 

3.4.17 

 

fi c 1 
A = 	a A ~a - q A ̀q /` 

X/ 
: Ā j T x J 

3.4.18 

The lagrangian density is invariant under the following transformations: 

S 	le ACX) +4 

xa = — 	A1rP <)1's NQ 

3.4.19 

and the supertransformations: 

3.4.20 
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As before it is possible to show that the set of constraints (3.4.15) is 

left invariant by the transformation (3.4.20)121  . The supersymmetry 

in four dimensions is simple but enlarges to an 1(2) supersymmetry in 

three dimensions on cannactification. This is in accordance with the 

result obtained by Zumino 1271 . From (3.4.15) we can arrive at (3.2.2) 

by the following identification: 

3.4.21 

and compactifying the third axis of space. Then the superalgebra of the 4-

dimensional model should transform into the superalgebra of the 

3-dimensional model. Therefore the third component of the 4-momentum 

should produce the same transformation as the central charge: 

chQ 	e 8 (t0. 3.4.22 

but from 3.4.18 we have: 

 

 

---- 	1.1".:(kck eK 
ror n'ra 

3.4.23 

Therefore the operator Z is exactly the gauge transformation required to 

make the fourth component covariant. 

- 43 - 



3.5 Summary  

As was expected the suoeralgebra of the CPn  model does contain 

a term due to the existence of solitons, which is directly proportional 

to the topological charge; however the central charge of the algebra is 

not entirely composed of this topological charge but it also includes a 

field dependent U(1) transformation. Since the CPn  model in three 

dimensions has an extended supersymmetry it is not surprising that it 

should have a central charge. The three dimensional model can be obtained 

by compactifying the third dimension of a four dimensional model, but 

the four dimensional version is symmetric only under simple supersymmetry, 

thus the central charge has to arise out of the third component of the 

momentum, hence we saw (3.4.22) that the third component does indeed 

produce the required U(1) transformation. 
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CHAPTER 4 

CONSTRAINTS PND CONFINEMENT  

4.1 Introduction  

The CPn  model has received most of the attention devoted to 

it confines its constituents, that is to say the fundamental 

in terms of which the lagrangian is written, interact with 

each other with a potential which increases with distance1261 . The 

arguments leading to this conclusion involve complicated arguments using 

functional integrals. But the canonical approach provides a simple 

insight into this property of the CPn  model, furthermore, it points the 

way for a more realistic model with quarks and gluons in 4-dimensions which 

would have confining properties as well. This chapter is devoted to this 

question. 

4.2 Confinement and CP 

In chapter 2 we saw that a consistent quantization requires the 

second class constraints be removed using Dirac brackets but the first 

class constraints remain and we thus have to require all physical states 

to be annihilated by first class constraints. This is similar to Q.E.G. 

where the longitudinal photon is decoupled by requiring physical states 

to be annihilated by a first class constraintl14! . The first class 

constraints of CPn  are Tr ti o , 
c'a 7a 	Latta 	 aY 11'a ti o , thus the 

conditions physical states have to satisfy are: 

a) lbo  jPhysi cal > 	_ 0  

b ) 0:14 	— 43„174-4a 7a )(?hysi cal > = 0 	 4.2.1 

The condition (4.2.1) states that all the physical states with "electric 

charge” are unphysical, in other words confined - therefore the 
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fundamental particles of the fields oa and oa will be confined since they 

have an electric charge, but their bound states with zero total charge 

will not be confined. The reference to "electric charge" is however to he 

qualified since the lagrangian density does not contain a kinetic term for 

the gauge field, therefore no electric flux either. Here the word "electric" 

only signifies the U(1) nature of the local invariance of the lagrangian 

density. 

The condition (4.2.1)(a) does not however mean that the fundamental 

excitations of ¢a and oa can not be involved in virtual processes, on the 

contrary as the constraint of Q.E.D. does not prohibit the existence of 

virtual longitudinal photon, there is no reason why a virtual oa should 

not exist. 

The first class constraint (4.2.1)(a) has its origin in the 

auxiliary vector field Ap(x), defined by (3.2.4), therefore we may be able 

to obtain similar results if a model is considered over 4-dimensional space 

time which has non-abelian local invariance, realized through auxiliary fields. 

4.3 Colour Confinement  

The generalized version of the CPn mode1 132l involves k x n 

complex scalar fields :
a 

which which transform under the global group U(n) 

and the local group (U(k), a. = 1, ..., k and a = 1, ..., n, and the fields 

are subject to the constraint: 

Cs. 
eF 4.3.1 

The lagrangian density describing the model is: 

oL = ` ( I 	~ za ) 
Dr-zā = aZQ -~ A z? 

4.3.2 
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where the matrix gauge potential AŒ13 is given in terms of the fields 

Zā by virtue of its equation of motion 

(p 
	—c (zā) D~Za -~ za (D) 	p 

aAt, 

or, 

a — z: ~ za ) 4.3.3 

The fields Zā undergo two different transformations a global 

U(n) transformation Vab: 

4.3.4 

and a local U(k) transformation k.<-n: 

a 	D~ rr 
Z 	

Ucx)  

Evidently the transformation (4.3.4) leaves 	invariant but the 

transformation (4.3.5) does transform Aūs , according to (4.3.3) : 

4.3.5 

Pt 	 --> ~ -c u 01.+ U At U fi 	
4.3.6 t~ 	i' 

which is the right transformation to keep (Dula)a covariant, the process 

leading to the first class constraints is identical to the CPn case except 

that the equations are profilerated with indices in this case, so let me 

just quote the first class constraints 

a) 70 	N 0 

tep 
b)  

40i 	-73 

c,. a T 	N o 4.3.7 
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where es ti  o are also the k2  generators of U(k), therefore the physical 

condition: 

Physical = p 	 4.3.8 

implies that all physical states are "colourless". The particles Zā and Ac8  

are thus confined and only their bound states which are colourless are 

observable. In this model the fermions are not included but that is not 

too difficult to achieve, it can be done using k x n complex spinors ipā(x) 

which transform similar to Zā under U(n) and U(k). However, the addition 

of fermions intorduces four fermions interactions into the lagrangian density, 

therefore the theory becomes non-renormalizable in 4-dimensions. The way 

out may be to couple the fermions in a supersymmetric way1331 to the scalars 

Zā , and hope that the cancellations which occur in supersymmetric models 

may help to make the model renormalizable. However this model is fairly 

complicated and requires further work. 
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..CHAPTER 5 

FERMIONIC  PATH INTEGRAL  

5.1 Introduction  

The path integral formulation of quantum mechanics provides a very 

convenient frame work for a number of approximation methods. However 

there exists a certain amount of confusion with regards to the definition 

of the path integral and how it is to be performed particularly in the 

case of fermions. Although there are a few articles in the literature12,3,  

4,5,7,8,15, they do not all obtain the same results, consequently I would 

like to obtain the necessary results here, which shall be used in the 

following chapter. 

Since the path integral provides an expression for the transition 

matrix elements in terms of the classical action, it is necessary to have 

a classical mechanics for the system under consideration, but in the case 

of the fermions a "physical" classical dynamics does not exist because 

the action, on the classical path, vanishes, thus can never be much 

bigger than plank's constant, and the classical limit is not attained. 

Nevertheless the non-existence of classical dynamics does not ban a path 

integral formulation as long as a formal lagrangian for the fermions can 

be given. Let us consider the lagrangian describing a fermionic 

oscillator: 

5.1 .1 

where E  is a complex grassmann variable. This lagrangian is singular 

(see chapter 2) and upon the removal of the constraints, using Dirac 

brackets, one finds that the phase space is described by the pair 

(*). The striking similarity between this lagrangian and the 

holomorphic representation of the harmonic oscillator° I indicates that 

a similar approach to quantization of (5.1.1) should be takenI 21 . 
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Therefore let us first review the holomorphic representation. 

5.2 The Holomorohic Representation  

The familiar harmonic oscillator lagrangian is: 

5.2.1 

now upon setting 	Z = 1 	(q - iwq), (5.2.1) can be written 
✓2w 

(+)'7- —ZZ) — W zz 
5.2.2 

the two'expressions (5.2.2) and (5.2.1) differ by a total derivative, 

hence they result in the same dynamics, the conjugate momenta are: 

5.2.3 

~z* = āZ 
. 
	 5.2.4 

The pair of second class constraints (5.2.3 and 4) can be removed leading 

to the Dirac bracket, 

,7.*] = 

Now the hamiltonian takes the form: 

W = (24 (z 	-+Z4z ) z 

5.2.5 

5.2.6 

where the product z * z is symmetrized. Following the rules of the 

canonical quantization, we replace z by the operator a whose eigen-values 

are the complex numbers z, and the commutation relation ( i = 1) 

ā a* 5.2.7 
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is obtained using (5.2.5). The hamiltonian operator is given by 

Lk) a a t `.0/2 5.2.8 

we can now verify the following commutation relations: 

[a, H = wā 	, [a+, N _ -w cx 	5.2.9 

establishing a as the annihilation operator and a as the creation operator, 

acting on the energy eigenstates In> , 

ā IYt > _ 	)h-i> 

ā* ) A> = F-7:1 t n -r f% 
5.2.10 

1eading to 

14 I n > 	(rt I/7.) co > 

The ground state is characterized by 

A 

a l o > = d 

5.2.11 

5.2.12 

leading to a compact expression for the n-particle state: 

1Y1> R 	~a+"i)J-711 I o > 5.2.13 

The eigenstates of the operator a can be expressed in terms of the 

basis vectors In> 
n t 

e 	10 > 5.2.14 

Clearly, 
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5.2.15 

where z can take all the complex values. The eigenstates of a+ can be found 

by conjugating 5.2.16; 

n ik 

434'1 -zoie a 3 5.2.16 

Note that the two vectors defined by (5.2.16) and (5.2.14) are not 

orthogonal: 

ct 3 3'~ A ' 	33 

5.2.17 

An arbitrary state If> can be represented by an analytic function of z, given 

by: 

<31 > _ 2n 

n=a ni < If> rt.:-  5.2.18 

This representation is accompanied by the following representation 

of the brackēt(5,1,7): 

a`- 	
ā _ ā + d3 

5.2.18.1 	• 

04 

where z is the argument of the function on which a and a+ are acting and 

since z can take complex values, we may have also written a 	 and 

a = z* , depending on the function under consideration. We must now 

define an inner product under which, a and a+,are conjugate : 

< 	> _ (f12) _ jcit4 	`5 ) 5.2.19 

where 

e 

and we understand the product [dz*dzz as d x dy where z = x + iy. The 
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scalar product (5.2.19) is positive definite, this can be seen by noting 

that, 

r n PY% 	-(e(n-  e 	e 

5.2.20 

To check the adjointness of a and a+, let us write: 

C~ 
ā+ 

n) = 	clirv f(i) 	1(.30 ) 

1ci„. f(s) ( dd3 	~e 
33 

5q) 

n J d3 

(ā ~~) 
5.2.21 

Where we have used the Cauchy-Rieman condition and the fact that the 

exponential factor rapidly damps any analytic function at infinity. 

Let us next consider the completeness relation for the states Iz> 

From the scalar product 5.2.19 we can write: 

< 15> _ 

 

$c) 4zIf> 	I1> 

Scittco  <ci3'(> <3I1> 
leading to the completeness relation: 

~d t (3)  J 5.2.22 
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or alternatively, if we consider the analytic functions of z* 

Å ()I > 	I =1 	5.2.23 

The two measures used in (5.1.23) and (5.1.22) are of course identical. 

We therefore see that despite (5.2.17) the states Iz> do satisfy a 

completeness relations, this is caused by the fact that 
eztz* 

acts like a 

delta function. To see this consider: 

f(1) = 41 ) f> = 

 

JA()<3tS>  fcl/) 

= f d1.k( ) e 	F ~~r~ 
5.2.24 

Thus eZZ ~ when integrated with the measure (5.1.19) acts like a delta 

function. 

Finally before deriving the path integral for this system; let us 

obtain a trace formula in terms of the states Iz> since this will indicate 

the form of the transition element which is to be calculated. 

Using the energy eigenstates [n> the trace of an operator U is 

given by: 

U 	
L n I U In> 5.2.25 

now inserting the completeness relation (5.2.23) and noting the property 

(5.1.24) we are lead to: 

-Ly U=Jdc ) 	I UI3> 5.2.26 

Therefore note that the diagonal elements of the evolution operator 

correspond to Q*, t" (z, t'> which we shall consider in the next section . 
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5.3 The path integral in the Holomorphic Representation  

We wish to obtain an expression in terms of the classical action for 

the expression <z'* t" Iz' , t'> , to do so we shall divide the interval 

t" - t' into N equal parts E, such that: 

f-f 	N6 	Lei., - Li = 6 	~~= 6 	4i= ei 5.3.1 

then insert the completeness relation 5.3.23 (N-1) times in between the 

transition element Q'*, t"Iz, t'>, to give: 

< O! ) // ' 	t'> - 
N-1 	 1 	

j 	 >  
~7 dig 	< Y r' tNI ~N ~l-I ><  

N-, 

5.3.2 

We now consider the elements: 	
-ii-1E 

> 0'1 	~i ~i> 	I e  

;33z)6 E 
C 

5.3.3 

Thus (5.2.2) becomes: 	

l 
N~1 	x 

TI ~~~~ d~~ 7 
~~~ n J 

N ~N 

nF-r 

I ( ) 
 

L.b 

4 	-v — 
 (

6,:+1 	di. )3,- 
6 

'L 6 

5.3.4 

Now let N- 	and C-4-o such that NE = t" - t' l l 
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U C D, o, et ki) 

< 3/A, t' 	,t > _ fitlEd3w4r13fti . 
j ~ (-61)  

g-03/0 -t`j  it ") 	5.3.5 

where L(t) is the lagrangian (5.2.2), minus the zero point energy. The 

extra term in the exponent is due tothe fact that at t = t' and t = t" we 

have fixed the value of non-commuting operators, and z*(t') cannot be 

interpreted as the complex conjugate of z(t') since they both cannot be 

fixed simultaneouslyI 2 l . This unusual property becomes clear when we try 

to evaluate the integral (5.3.5). To evaluate (5.3.5) let us expand about 

a classical solution: 

&E) = ā _iw&-t') 

34 (+) _ .3f 2 
c`w (~—t 	

+ lc.) (t) 
5.3.6 

where w(t) signifies quantum corrections about the classical solution. 

It is clear from the set (5.3.6) that the boundary conditions 

z(t') = z and z*(t") = z'* are observed and that z(t) and z*(t) are not 

complex conjugates of each other'. 

Now: 

5.3.7 

The trace of the evolution operator is obtained, using (5.3.25): 

'55 e-fw (fr-trj 
r U = fd) e 

U(6 / 0 1 1"- gr) 

I  
 u 
 U ~ol o;~ 

	
) 

I` -i(41 art-t) 
5.3.8 
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To evaluate U(0, 0, t"-t') we shall use expression (5.3.4) with the 

boundary conditions zo = 0, zN = 0 and note that each integration over 

zi is a gaussian of the form: 

ct 	
—114 l 

1_3, 	to 31.s a 

-T-7- = 	 5.3.9 

thus the only contribution from U(0, 0, t"-t') is e-iw(t"-t') since the 

hamiltonian used in (5.3.3) contains a zero point energy. The final 

result for the trace is 

-8/1 w (tt t) 

4u ° 5.3,10 

Note that we did not need to impose any periodicity conditions on the 

paths over which we integrated. 

The above results can easily be extended to a system containing a number 

of oscillators each having a different frequency. Let the phase space 

coordinates of each oscillator be given by zz, Q,=1, ...,N, then (5.3.5) 

is generalized toll1 : 

£ be 5 ,t ~~ + L~ej' > 

%l 

 

tiV,t)3"t
J 41 61 { 

A 
S(~ 4 (4)f pf>gr(f)# ~Jdt2t) 

5.3.11 

where the lagrangian is simply the sum of the individual lagrangians. 

The trace of evolution o?Erator for this system is simply the product of 

the individual oscillator result (5.2.10), therefore: 

liz we (-61/— ') 
e 

Formula (5.3.12)naves 	the way for a quantum field theory. Let us 

consider the simplest case, that of single real scalar field (10(x) and 

5.3.12 
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its conjugate momentum r(x). Consider an orthonormal set of functions 

fn(x) which satisfy: 

..f d x -rho() 41M r x) — g, w, 

 

(- V2. -t w∎) tM ( x ) _ (On g, (x) . 
5.3.13 

The index n is not discrete, as is implied by (5.3.13), but it can be made 

discrete by quantizing in a box. Now the variables zn are defined by: 

Z L+ _ ' l! 	c x -~ t L T% (X) - c w~ c (%) 
z 5.3.14 

Consequently the Lagrangian for the field decomposes into an infinite sum 

of harmonic oscillator lagrangians, thus the formalism which has already 

	

been developed can be used, setting N 	111. The transition element 

is given by (5.3.11) and the partition function is an infinite product: 

77 e 	w„ Gf
„ t.) 

 ce -e) 5.3.15 

The product (5.3.15) is in fact ill 'defined when wn becomes a 

continuous variable. These results can also be written in terms of the 

field \'(x) defined by: 

v(t) x) _ 	12.,(x) Zhc+) 	
5.3.16 

Then the transition elen nt becomes; h 1 l 
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U( / 't 	 /~ 

	

U~ 	, V i-.ōd , 	Lt, ) _ 

	

=f 	P'x'p 	J dx (V1(.113 s)V( i.d..0 +  
J 

-t 	
lI -t- ( d~ Jf ß(v_V V) —(V

v)j 

5.2.17 

where`{ is the Hamiltonian density expressed in terms of V* and V. 

5.4 The Fermionic Oscillator 

We can now proceed with the quantization of a fermionic oscillator15 '41 

following the setps of sections (5.2) and (5.3). However in this case we 

shall consider the oscillator ensemble straight away since the anti-

commutivity of the grassmann variables may cause new effects which could 

be overlooked in generalizing the single oscillator results. Therefore the 

lagrangian to consider is: 

N 

~t+) 2 L2( š -  
~=1 

5.4.1 

The momenta conjugate to hand q* are: 

e 	
a .e 	

e 	
a §~ 

The pair of second class constraints (5.4.1) can be removed using 

generalized Dirac brackets (see chapter 2) to yield: 

5.4.2 

5.4.3 
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Canonical quantization (see chapter 2) now replaces (5.4.2) by the 

following anticommutator: (h=1) 

A 	A 

e , 	k 	gek 5.4.3 

where is an operator with eigenvalue. The hamiltonian is given 

by:
nJ

^ 	N 

5.4.4 

The usual representation of (5.4.3) is by pauli matrices117Ibut to be able 

to derive the path integral formalism we have to construct a representation 

which admits grassmann eigenvalues in which case, h.ermiticity is not the only 

condition an observable has to satisfy but it must also have real numbers as 

eigenvalues. 

Then the operators whose eigenvalues are odd or even members of 

the grassmann algebra will be called odd or even operators. The odd 

grassmann variables anticommute with odd operators, for instance if 	is 

a grassmann variable, 

lk se k 5.4.5 

As a consequence of this modification, odd operators which do not 

anticommute with each other cannot be diagonalized simultaneously.. let us 

now work out the energy eigenstates, the following brackets designate 

Q as annihilation operator and R. 
as creation operator 

A 	^ 	 A 	 I' 

C 	1-17 	~~ 

	

5 	3 C e , k% _ -wie 
Q  

5.4.6 

starting Leith, lo> the ground state, which satisfies 
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0> 	( -1/2.E we) IO > 
	 5.4.7 

we can construct the energy states: by: repeated application of the 

creation operators iQ , 

,ā,•~ ~ _ ~~~
-
' 1°> 

CI 1 0/03.1Y, 	 y 	— J 	We) 1011 11,-K> 

5.4.8 

The order of indices a,s,y ... in the ket is crucial since the states 

are antisymmetric with respect to interchange of indices: 

lo.1 p› 	- }p,a> 5.4.9 

evidently as a consequence of (5.4.9) la,a> vanishes. Now we can construct 

the eigenstates of the annihilation operator by expanding it in terms of 

the energy eigenstates defined by (5.4.8), it turns out to be similar to 

(5.2.14) 

)0> 
5.4.10 

The fermionic coherent state (5.3.10) has been constructed by 

Montonenl6 I , Ohnuki and Kashiwa'O'' The left eigenstate of 	can be 

constructed by conjugating expression (5.3.10), leading to 

_ <1'1 5.4.11 
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where I have used n to represent the set of N grassmann variables 

Y = (il, r12 5 •••)• This construction corresponds to a representation of the 

algebra, (5.4.3) by EQ = 
a 	

, EQ = E~ , one can also construct left 

eigenstates of EQ and right eigenstates of EQ 141 but that corresponds to 

a different representation of the algebra (5.4.3) where 	is represented 

by Et, , therefore the two representations should not be mixed. Wave 

functions can be defined as functions of grassmann variables, f(11) by; 

-Pn)= <nlf> 	 5.4.12 

also-an inner product for f(n ) exists ' 	such that itis positive definite, 

and under which E~ and 
e 

- are conjugate 121 ; 
Q 

<fiO> 	(f,) = 	-Ft(ri) C() `3Crj) 
~- n 

5.4.13 

To check that Et and 
aEt 

are conjugate to each other under (5.4.13) 

let us consider the -following 

A : 	— 014 

= Tl ULM 'A ) a te 	f,(1)] 

f
~~ 

 

C1(}1) 	 fzul) 

fI ' z.) 
5.4.14 

where we have used f dE 	x(6 = 0 for a grassmann variable E. 

The following conpeteness relations can be obtained using (5.4.13) 
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<-c- p 	Pr(1) < f 1 11> < 
thus 

40-1) 	> < 	= 
5.4.15 

or alternatively if f and g are defined over tj* 

d(14) If\><►i-Y 1 = 1 

ttc\;14) 	
N dy~ ~

dy~ 	e 
	 5.4.16 

Note that in constrast to the bosonic case where the two measures 

(5.2.23) and (5.2.24) where identical, here the two measures (5.4.16) and 

(5.4.15) are not identical. 

Similar to the bosonic case the coherent states t are not 

orthogonal in the usual sense. Since 
T ā ~LtK —Z.14 gK 

> = <0I e 	e 	l0> 

= e — 

5.4.17 

but when integrated with the measure du(j) (5.4.17) acts like a delta 

function: 	
1 

r(1) 	di/(f) <g Ii-`> f t s) 5.4.18 

The final point to discuss before we can derive the path integral is the 

trace formula in the basis.The trace of an "even" operator U is given 

in terms of the energy eigenstates {a}> 
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trace() = E < -(. 1 U I L > 5.4.19 

where the general energy eigenstate is represented by (a)>, and the 

sum is over all possible sets {a) excluding the permutations. Now 

inserting the completeness relation (5.4.16), we obtain 

4-- u = 	jcIP(174)d14e) <f° 2̀19) <r1I  I vl.§><svl Ceq 	5.4.20 I 

now commuting the wave functions da) II> through <11)4 1 Ul k> ; all the 

wave functions with an even number of indices do not`change sign, but those 

with an odd number of indices change from kk> to 1- > and <1*1 to <-41*1 , 

then with a change of variables from 	to - we get the result, 

p7
e 
	!§> 

fd () < - 51/ U/5 > 	
5.4.21 

The calculation can be easily done for N = 3, where the wave functions 

are 

<110 > = 1 <1 I 	= -17.11 	<111239_-73T71  <1  1 113)  ` _'1317, 
z, 3> 	13'2. 

5.4.22 

Thus (5.3.21) for N = 3 becomes: 
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or 

<I'  u 	1- <-147145›Olf+72N5 
a 3 

-ir (J ̀ Jd)d) 	< ) u1.>  

f (1 J. v1.c>  + i3< ~ 

* n,n2<n* I ul >3 K,* 

< 	1 u > 3 z 

t I 	93< n* uI > ~3 	- 14̀   

+ 	4(111l1>(71 12 2.A(§11(÷ 7113 ~3 	7a rX5:1 L 

+<-1710/-",1)  (71112.13 'E31( s gN) 

5.4.23 

Changing the variable from J to -17 and 	to -E in the second and third 

terms of the R.H.S. of (5.4.23) produces the desired result: 
3 

ibt 
<1741u155  

dAt(fX)<-fi u /1> 

5.4.24 

This result was also obtained by Ohnuki and Kashiw a'4' where the trace 

of the operator is given by summing over all elements <-E*ItJ > rather 

than < E* I UI E> as was the case for the bosonic oscillator. This minus 

sign plays an important role in obtaining the right result for the 

"r u 	f/(7) olp(0 
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partition function, but it cannot be interpreted as an antiperiodic 

boundary condition for the fermions. 

5.5 The Path Integral for Fermions  

We wish to evaluate the transition matrix element: 

<r~*, t"IE,t'>, t">t', to do so we shall adopt the same method used in section 

(5.3) and divide the interval t"-t' into K small parts each of duration E 

- K E 
5.5.1 

then using the completeness relation; (5.4.16) 

K-I 
<7 ,t°/ ,~, ti f c1/4(gc.4 )<►,tI . ic- 

{K-~ ~ .. 
0-1 

5.5.2 

now for small E , we have 

<~{ , ~~t~ 1~ {~ > 
H(E6i1 7 Ki)E 

5.5.3 

Therefore (5.5.2) results in 

i * )1.n ! I -L ) = jc ,Z1 d iA (1 ) 	p Z [~< E]1 
5.5.4 

where Eo = (t') and k = ,*(t"), now expanding the measure and rearranging, 

we finally obtain; 

(J (-1 4/ ., t" ) = 	,~~ 	x fll clEi~ exp 	( o;~ ~o + Co; ~Ki°~) 

[ 	 - l 	 I 	% (E./4,r( 	)7E  } 
5.5.5 
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now let k- ,E-)-o such that Ke= t"-v, expression 5.5.5 leads to 

d x(0 J pct) 	['Z»'štf') 
 

{/K 

tZ ~ (-f") fe('0 4- (: 	0C (4) d& J 4 
K 

5.5.6 

whereZ(t) is the lagrangian given by (5.4.1) minus the zero point energy. 

Note that a *(t') and a (t') can not be fixed simultaneously since they are 

the eigenvalues of two non-anticommuting operators12I . To evaluate the 

partition function we shall follow the same approach as in section (5.3) 

and expand (t) about a classical solution with the desired asymptotic 

behaviour, 

(~) _ ; 	+ (4), 	z 
(4) = - 	e 	+ cc+) 

5.5.7 

Clearly EQ(t) and EQ(t) can not be complex conjugates of each other 

because of the boundary conditions, furthermore one can not say that the 

paths are antiperiodic. Inserting (5.5.7) into (5.5.6) leads to 

5.5.8 

performing the integration results in: 

-11-U - 77 (1+e 	)U(0,0,£.-t, wat) 5.5.9 

The gaussian integral U(0,0, t"-t' , wa) can be evaluated in a manner 

similar to the bnsonic case resulting, 

U(o,o, 	= e 	 5.5.10 
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which is the zero point energy contribution. The complete answer for 

the partition function is:1191 

Y= 77 e L l -f e 	 J 	5.5.11 

Note that in this calculation too we did not need to impose anti-

periodicity on fermionic paths, therefore the periodicity conditions 

usually imposed on the pathsI91 appear to have only a heuristic value. 

The field theoretic representation is somewhat simpler in this 

case, let us assume the existance of anorthonormal basis Il,n(x) such that, 

1 d3c q) 1( ) 	n or) -  -- 	S iI n 

~ . - m 
J 	

n ( x) = - f wn 11),,,(x) 
I  

5.5.12 

Where j runs over the space indices. Now expanding V(x) in terms of the 

basis Ipn(x) ; 

`t" 	k 	h 
	 5.5.13 

expresses the Dirac lagrangian in terms of an infinite sum of fermionic 

oscillators; thus the results (5.5.6) can be carried over to the field 

theoretic case; 

	

-1/4(4 4.) 	 f lx < ►„aI ~ e 	j ;nib-a( > fDL Igo ,J 

e-xfr d (.1- (45.) ik«;x) t (F ;X) Ib(elx)~ 
2 

t+f s 
	l 	C -4/) 	`z( ~̀t`' 1 tom) 

5.5.14 
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5.6 The Super Oscillator 

A supersymmetric lagrangian for a bosonic and fermionic 

oscillator can be found: 

Cf} = ~~ 	g'`iz 	r`i~ Zz — z2.-wC~ -rZZ) 5.6.1 
z 4. 

where 	is a grassmann and z a complex variable. The lagrangian (5.6.1) 

is invariant under the transformations: 

5.6.2 

where V is a unitary matrix with grassmann variables for its anti-diagonal 

elements. The functional integral for this system is simply the product 

of (5.3.5) and (5.5.6) with N = 1, which is invariant under (5.6.2). Since 

the zero point energies of the two oscillators have different signs they 

cancel each other and the trace of the evolution operator for (5.6.1) is: 

LY V 

. 	n l 
r W C{ 

6) 
= t+a. 
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CHAPTER 6 

SOLITON MASSES  

6.1 Introduction  

An intriguing property of the supersymmetri c models with soliton 

solutions is that the classical mass of the soliton is exact to any order 

of perturbation expansion. There is however a certain amount of controversy 

concerning this phenomenon. Formal arguments given by Olive and Witten I 29 I 

indicate that, if the quantized theory observes the supersymmetry of the 

classical version then the mass of the self-dual soliton is equal_to its 

classicalmass. In support of this claim, D'Adda, Di Vecchia and 

Horsley1351 have demonstrated that the one loop correction to the classical 

mass vanishes. Their argument rest upon the semi-classical approximation 15i1  

M << + 	( Z 1,0 

2 	g kip ) 	 6.1.1 

where wB (W F) are the Boson (Fermion) eigenfrequencies of the excitations 

about the soli ton, and the vacuum energy vanishes due to supersymmetry 
150'421 . 

Since the number of Fermion and Boson models are equal and wB  = WF  around 

a self-dual solution it follows that M = Mcl . However the counter argument 

put forward by Schonfeld 1511  is that upon regularization of the infinite 

sum over the frequencies a finite remainder is obtained, which is independent 

of the form of the potential. 

But a non-vanishing contribution to the mass implies that the 

quantum theory does not respect supersymmetry since there is no reason for 

this effect, it appears that the non-zero correction to the mass is the 

by-product of the regularisation scheme. Indeed one can show that the 

inequality of ,eB  and wE  or that of the number of modes (both obtained by 

Schonfeld) lead to a breakdown of supersymmetry. However one may argue 

that regularization inevitably breaks supersymmetry, for instance 
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quantizing in a box of finite length can lead to a breakdown of super-

symmetry since the superalgebra relates the supercharges to translations 

and a system in a finite box is not translationally invariant. But box 

quantization does not necessarily break supersymmetry, indeed supersymmetric 

boundary conditions were employed in the theory of dual stringsl521. 

In the presence of a soliton some of the supersymmetry is lost and 

only a subset of the full symmetry remains validI
291 

which does not contain 

translations, and it is this remnant symmetry which is responsible for the 

vanishing of quantum corrections. 

6.2 Supersymmetric Solitons in Two Dimensions  

Let us consider the supersymmetric extension of the models 

described in section 1.2 . The supersymmetric version of (1.2.1) is
1531 

{ ~ p 	V ( 	Ciiy-Vo) ) '1)) 6.2.1 

where the potential V(4)) here is proportional to the square root of the 

dV 
potential of (1.2.1) and V`O) _ 	. This lagrangian is invariant under 

the transformations; 

s~rĒ) 

(- X44-v( 4)) & 

The super current is; 

r_[Id t evc))j i'~ 

6.2.2 

6.2.3 

The equations of motion are: 
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cl>+ V c cl)) V/64) 	Y 	i) 

- V op)111 =o 
6.2.4 

The set of equations (6.2.4) is satisfied if, p = 0, a04, = 0 and 

l =±V(c) 6.2.5 

Thus this lagrangian admits the self-dual solution. Olive and Wittenl29! 

observed that if one derives the commutation relation between two supercharges 

by using (6.2.3) a different algebra is obtained to the algebra derived from 

(6.2.2). The modified algebra contains an extra term which commutes with 

all the generators of the algebra hence named a "central charge". In terms 

of the Chiral components of Q, the supercharge, the commutation relations are;1291 

Q'- - 	_ ~+ 	Qz 

Q' , Q2 = a 
	

d, V( cp) = T 
07(—ao) 

where P = Po 
± P1 

6.2.6 

Clearly T vanishes if (1(-.0) = c(+co) but when 4x) does not have the same 

value at the two spatial infinities it must be a topologically non-trivial 

soliton, however T does not count the number of solitons. Now .we can see 

that for a solution which satisfies 
	
= V(4) we have, 

( 	= o 

or 

— Qz = O 

6.2.7 
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But we can derive a relation for the mass of the soliton using 6.2.7, 

since 

or 

z a Po - (Qj  - QZ) -* T 

T 
6.2.8 

where Mc  is the classical mass and the absolute value of T allows for 

anti-soliton as well. Now if one could construct a soliton state IS> say, 

(6.2.7) would be interpreted as an operator relation; 

C Q, - Q1.) [s> = o 

and from (6.2.8) we have; 

6.2.9 

I pa  I  s> _ 1/2_ 11 I = MG  

However this reasoning assumes the quantum theory to respect the super-

symmetry. Conversely, a non-vanishing correction to the mass of the self-

dual soliton, indicates that the quantization has been carried out in a way 

which breaks the supersymmetry. 

6.3 The Quantum Corrections  

Let us expand the action about a self-dual solution oc(x) 

s -̀) = f d x z 1- 1 (a -t v  i n'_+ 440 VV4,)) 

- v /(4)) 6.3.1 

where y = 	- cpc(x). The term linear in y vanishes, because oc(x) is a 

stationary point of action, and we have neglected terms higher than 

quadratic. The quadratic action (6.3.1) is the source of one-loop 

corrections to the soliton mass so let us investigate some of its properties. 

The action (6.3.1) is supersymnetric under the following transformations; 
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D — 

51. 	I)) 

— V( ))IG 

if 
sc 
 satisfies; 

4,(X) = # V( d Cx1) 
d x 

6.3.2 

6.3.3 

and the parameter of transformation should satisfy; 

6.3.4 

Assuming the positive sign in (6.3.3) and (6.3.4) the transformations can 

also be written as; 

= 	M 

E 

6.3.5 

where 

6.3.6 

The transformations (6.3.5) closes, using the equation of motion; 

D + _ - i yo  ao  ,y . The algebra of (6.3.5) is 

QZ =2?o —T 
[Q- , a] = CQ-,T] _ [P01T]o 
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which is a subset of (2.2.6) and of course to be able to know about T 

one has to know the full algebra (6.2.6). Therefore translations in 

space are no longer related to the conserved supercharge and box 

quantization will not necessarily break the supersymmetry of (6.3.1). The 

boundary conditions on the ends of a box of length L which are left 

invariant by (6.3.5) are; 

  

9- 1 

x°OL 
DI = D 1' 

  

X-D)L 
6.3.8 

where a is an arbitrary spinor which satisfies i y' 0 = -0 . It is not 

difficult to see that (6.3.8) is left invariant by (6.3.5). 

With these boundary conditions we can now proceed to decompose the 

fields of (6.3.1) into their eigenmodes. 

The equations governing the excitation modes are; 

-~ (~~'- + V ~4c) 184),)  1 	(4 1k 
(a) 

L 
	v 

a F 
r d  

(b) L 	dX — vi( ~c ) ] 	- 
U 

~k 	 6.3.9 

Multiplying (6.3.9)(b) by -i y' 	- V'((j)c) and decomposing ipk
, 

into 

k

± iy' Ipk..we get; 

(a) D D '~ = wk Yik 

z ~ 
(b) D D k = to; `Ck 

(c)  

6.3.10 
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Where b is the adjoint of the operator D. The difference in the spectrum 

of Ipk and ipf 	is the zero modes
l54[

_ In the case of a single soliton there 

is only one zero mode as described in section (1.2). Since 4 and yk 

satisfy the same differential equation and identical boundary conditions they 

must have identical spectrums, thus wk = wk . 

At this point it is clear from (6.1.1) that the corrections to the 

soliton mass vanish, since the spectrum is discrete and we can impose an 

ultraviolet cut-off, then every term in (6.1.1) will be well behaved and 

the cut-off can be let to tend to infinity without causing_: any problems. 

However for the sake of completeness let us carry out the decomposition of the 

fields in terms of k and I,k; 

y~ C x,.-) 	kU:) 1/k (K ) 

` 	 >io 

(4) r̀-t ) c  
6.3.11 

where Ek(t) = c_k(t) 	are grassmann variables. Now the eigenfunctions 

q/
K 

and I'k are orthonormal sets since DD is a self-adjoint operator, thus 

inserting (6.3.11) into (6.3.1) results in; 

T 	z S(z 	 ? r ōi- 
LX  ( a — Wa

o 	k>6 

+I~ (Q6 4 i 
Z 

6.3.12 

Note that the boundary conditions (6.3.8) do not exclude the zero mode. 

The quadratic action S(2) is supersymmetric if and only if the fermionic 

and the b osonic frequencies are identical, and the supertransformations 

are; 
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60,t 	— E gk 

k 	Q k 6 — GJ pea,, E 
6.3.13 

Let us now look at the trace of the evolution operator for the 

lagrangian density (6.2.1); 

~-, 

 

(e-iHT
) 	JU0t)~Drc,41 e 	 41 
 = 

6.3.14 

Where we have integrated over all end points of the paths over which the 

path integration is performed. Now S (,,y7j is expanded about the classical 

solution cpc(x) and all the terms higher than quadratic are dropped, 

then we are left with 

'Er 
- i HT 	— i 1"1cT 

z e 	D(T) 	 6.3.15 

Where D(T) is trace of the evolution operator of the quadratic 

action (6.3.1) and Mc is the classical mass of the soliton1551. The 

factor D(T) represents the-one loop corrections to the propagator and 

it can be calculated using the results of chapter 5. 

The result obtained in section (5.6) can be extended to the case 

of an ensemble of super oscillators giving rise to 

A r 	 in WK T 1 

1D (r) = 77 [/+  2 	e 	J k)o 	 r1=~ 
6.3.16 

where the product is over a discrete spectrum of frequencies since the 

length of the box, L, is finite and the ultra-violet cut-off A keeps the 

product finite. We thus see that there is no zero point energy 
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contribution, thus there are no corrections to the soliton mass. We can 

now let A and L tend to infinity and this result will not be affected. 

6.4 The Supersymmetric CPn Soliton  

We can now look at the corrections to the mass of the CPn soliton. 

This model was described in section 3.2. Following the calculations of 

the last section what we must demonstrate is that, first there exists a 

remnant supersymmetry which leaves the soliton invariant and when the field 

is shifted to e = e - e (x,y) the resulting quadratic lagrangian 

density remains supersymmetric under it, secondly the equations of the 

excitation modes are identical for fermions and bosons, and finally that 

there exists supersymmetric boundary conditions. 

The self-dual soliton 	(x,y) is static and satisfies; 

- 	a D 	cc1 1.) 	) 6.4.1 

where we have chosen the positive sign in (3.4.8). Now if ef(x)y1 

satisfies (6.4.1) and e= 0 the solution ~~(x,y) is left invariant 

by the supertransformations (3.2.6) since; 

S 	_ b( D; cbacK6~-1) 6 c 	0 

  )D-49baG 

o}} 

0 	 ~ f 	# 	
_

~ E _ 0 

6.4.2 

Now let us expand (3.2.2) about 4(x), but note that the constraints 

(3.2.1) and (3.2.3) must first be added to the lagrangian density using 

-two lagrange multipliers « and e, then the quadratic action is given by; 
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s" ) = f d x. rD~17Q 
-ti ((t)c"/) ick% 

C,Z 	 — (:,, bru u ) 
6.4.3 

Where the covariant derivative and a are evaluated at the 

background field (1)a = ~a(x) and p = O. The quadratic action (6.4.3) is 

invariant under the following transformations: 

da 	(.ē 'Lk a 

s 	-- 	'1 E 

6.4.4 

if the sninor E satisfies the equation; 

C 6.4.5 

To show the invariance of (6.4.3), it is enough to note that a is given 

in terms of cpac(x) by: 

ā _ 	
e Dµ cpa 

 E. )' Il i ( 	) 
6.4.6 

Where the dependence of A on (pa is given by (3.2.4). Therefore 

the first requirement is satisfied. Now let us write the stability 

equations: 

(a) 

(b) 

7)i D` t a') 	a 
4 	0. 

A/% tk(x) _ 

0. _ WK k 

P 4JK'k cz ) 

6.4.7 
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multiplying (6.4.7) (b) by iT'Di and resolving k into 	= = (l ±r°),yk , 

we get, 

4 (a) _ t` D` { 	̀6 )t 11 	,, f', a 	wk 'lit 
a 

a 
(b) (—~D;D` — e- "̀),A) ~ Q — — wK tR  

6.4.8 

In terms of the operator V. = - 2 ( 0. + ie ijD3) and its adjoint Vi the 1 1

equations (6.4.8) and (6.4.7) can be rewritten: 

z V~. Vi li 	= 	w k 	k 

`~ ° 	w ' 1): ut~ k — ,~ j~'~ 

6.4.9 

Clearly 
uqa 

and 
	
satisfy the same equation thus will have the 

same spectrum, and the difference in the spectrum of ±a 
and

-

k

a 
are 

is  

just the zero modes 154'. The equations (6.4.9) admit a range of different 

zero modes arising from scale invariance, translational invariance,etc. 

however since the zero modes do not contribute to the poles of the 

propagator 	they do not affect the quantum corrections. 

Finally, to find the right boundary conditions let us write (6.4.4) 

as follows: 

b '1 
= 

-= —_°ao1E 

V-7 167 

6.4.10 
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Note that since the soliton is static Ao(x) = 0. 

It is clear from (6.4.10) that the supertransformation leaves 

the following boundary conditions invariant; 

vl a l V~ 	
I !, 'x = o,C 

 0 

• t 

j 	. atō .01 L 

6.4.11. 

where a is an arbitrary spinor which satisfies y°Eā = ~a 	. Hence the 

quantum corrections to the mass of the multi-soliton solutions of CPn 

vanish, . 

6.5 Conclusions  

A classical model may have several quantum versions, indeed if one 

could think of the classical limit at the limit of 'fi tending to zero any 

operator which is multiplied by 4i can be added to the algebra of the 

quantum. model and the classical limit remains unchanged. A prescription 

for removing this ambiguity is to preserve as much of the symmetry of the 

classical model as possible in the process of quantization. 

The choice of boundary conditions (6.4.11) is one such occasion 

where a different set of boundary conditions would have led to a non-zero 

correction to the soliton mass hence a different quantum model. 

The exactness of the classical mass of the soliton appears to be 

a universal property of the supersymmretri c models with topological charge, we 

also know that solitons are stable due to the existance of the topological 

charge. The inter-relation between topological charge and the quantization 

of solitons is Perhaps worthy of some further inquiry. 
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SUF"'GARY 

We have seen that the Dirac's method for singular lagrangians can be 

extended to the lagrangians which contain both C numbers and grassmann 

variables. The Dirac bracket for such a dynamics can be defined and it was 

proved that in the general case the Dirac bracket exists and possesses the 

right symmetry properties. 

Using this extended scheme we treated the supersymmetric CPn  model. 

In deriving the su'eralgebra of the model, we found that the algebra contains 

a central charge, which is composed of two parts a field dependent U(1) 

transformation which is the central charge of the 0(2) extended supersymmetry, 

and a term proportional to the topological charge of the configuration. The 

central charge can be understood as the extra component of the momentum of 

a four dimensional model which reduces to the 2 + 1 dimensional CPn  model 

on compactification of the extra dimension. 

The central charge leads to a bound on the mass which is saturated for 

self-dual solutions, resulting in a mass relation for the soliton reminiscent 

of all the models with topologically non-trivial solutions. 

The other question addressed was the quantum corrections to the soliton 

mass. The corrections were found to vanish for solitons which obey a 

"self-duality" condition, that is a first order differential equation 

instead of the second order differential equation of motion. The soliton 

is not invariant under the full extended Poincar group but only under a 

sub-group of it, however, this remnant symmetry is adequate to guarantee 

the vanishing of the corrections, if the regularization is carried out in a 

supersymmetric fashion . Although we must not forget that the methods used 

in chapter six are semi-classical and a fully quantized model of solitons 

may have some very different features but the semi-classical methods can be 

trusted to give some indications of the properties of the model , and this 

result stands a good chance of persisting in a fully quantized version. 
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APPENDIX 

THE GRAS SMANN ALGEBRAS 1 3  

The grassmann algebra Gn has n-generators EQ, Q = 1 , ... , n, where 

Et 	-f ~ re = 0 	 A.1 

since A.1 is true for all k and Q it implies that Q = 0. Any element 

g e Gn may be represented by a finite sum of homogenous monomials; 

O () = Eo 	
g k ' --• k.. 	

k,---k z 
n 

k} 
	 A.2 

where g{k) can be real or complex numbers. The set of elements for which 

only terms with even n are present are called "even" and thor with odd r, 

named "odd". Complex conjugation can be defined over Gn as follows 

jt
)4 1

= , (ei 30 ` 92. g -I( ' (9) = °` 	A.3 

where a is a complex number. The reversing of order when conjugating, is 

necessary to keep the modulus real , that is 

( * )x - 943 	
A.4 

A real grassmann algebra is one with Eli = 	. Two kinds of derivatives can 

be introduced a left and a right derivative; 

—s~ 

( 	L1 -.. g`2r 	_ Snk, F ... ~t_` — 8LĪZ~ ~1 "k3~ sky +... 

~
e 

IC 	 C J 	K 

C 	
ā 	&kr , 	 ~ ~~. krr' ~~kr 

1 k~ kz ~Y ~ 
~ 	

,-t - 

A .5 
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in other words 
e 	

and 
DC 

satisfy (A.1). 
Q 	Q 

Integration can be introduced gut it will not be the inverse of 

derivation but equivalent to derivation: 

A.6 

Finally an integral similar to the Gaussian integral, can be done;131  

dg... dgn  e 	
cul. 
	ii)] 
	

A.7 

Aid  is an anti-symmetric matrix thus this result holds for n even only. 
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