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ABSTRACT

The superalgebra and its relation to the soliton mass is
inves tigated.

Using a modified version of Dirac's method, for singular
lagrangians, the supersymmetry algebra of the supersymmetric cp"
model is derived and found to contain a central charge, composed of the
topological charge and a field dependent U(1) transtormation. This
modified algebra leads to a lower bound on the mass of the so]iton of
this model.

Such bounds are common to a large class of models which admit
soliton solutions. However in the supersymmetric models the mass formula
of- the self-dual solitons survives quantization. The controversy
concerning this phenomenon is resolved using functional integral methods
and care was taken to preserve the supersymmetry of the model, at all
stages of regularization. |

Finally the correspondence between constraints and confinement

is discussed.
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NOTATION

R
y , p-1"R

Two dimensions

re (59 - ()

metric I = dlag(+,-)
E‘O‘ = +1
Three dimensions ,},’- - L'.’d"?' ,,»" and 1' as above
. + - —
metric B = diag(+) -7)
EOlL = <+



CHAPTER 1
INTRODUCTION

1.1 Prelude

The conceptual problems of point particles, physical entities
without any dimensions, render an extended model of material particles
a very attractive one. Some particles are indeed thought to be
extended, but as bound states of point particles, at this moment there
is no consistent picture of nature, which admits a fundamental
constituent which is extended, nevertheless some progress has taken place
towards an extended particle picture. The soliton is interesting and
promising but it has short-comings; if one believes in non-derivative
interactions the soliton can only exist in 2-dimensions, its 4-dimensional
analogue has to be a magnetic monopole which has not yet been observed.
However solitons point the way for a future theory which will hopefully
be of more physical interest. Also in other branches of physics,

solitons have observable efﬂactslnl

, in fact a soliton in the shape of a
canal wave can be observed with the néked eyel]ol, thus making the soliton,
interesting enough' to be studied.

A recent development in particle physics has been the introduction
of supersymmetry, a symmetry between bosons and fermions . This will
be discussed in following sections. It is the purpose of this thesis to
investigate some of the properties of the models which are'both supersymmetric
and possess soliton solutions, such models exhibit interesting properties.

One such property is the effect that the solitons have on the
superalgebra, the symmetry algebra of the supersymmetric models is modified in
the presence of solitons to admit a central chargelzgl. The central charge

is related to the topological charge of the soliton thus leading to a

relation between the mass and the topological charge of the soh’tonl2gl .



In chapter three we shall see how the superalgebra is modified
in the case of the supersymmetric CP" model. In this case the algebra
already contains a central charge independent of the soliton, but the
presence of the soliton introduces an extra term into the central charge.
The extra term being proportional to the topological charge of the soliton.
In sections two and three of the introduction I shall review some of the
concepts that have been introduced such as the soliton, the topological
charge and the central charge of superalgebras.

The other property which will be discussed concerns the relation
between the mass and the charge of the soliton already mentioned. It
was c1aimed129’3sl that this relation remains unchanged upon quantization,
this remarkable cancellation of quantum corrections was not however left

uncontested, a recent paper by Schonfeld |29]

claims that such corrections
do not vanish and there is indeed a contribution due to quantization to the
mass. ;n Chapter 6AI shall resolve this controversy by using functional
methods. Unfortunately it is only possible to do this calculation up

to the first order in perturbation expansion due to the complexity of the
methods involved,‘thus the complete answer will not be given to this
queétion, only the first loop corrections can we say vanish,

In chapter two Dirac's formalism and its generalization for
singular lagrangians are discussed. This formalism is used for the
treatment of the CP" lagrangian., I shall prove in this chapter, that the
Dirac bracket, for a lagrangian with mixed grassmannand C number variables
always exists. |

Chapter 4 is devoted to a digression which comes out of the cp"
lagrangian and is not related to the concept of solitons. The notion of
confinement is formulated by utilizing constraints of singular
lagrangians. |

In Chapter 5 I shall review and develop the definition of the path

integral for fermions which is then used in Chapter 6.



1.2 Soliton

Let us start with the definition of the soliton, instead of
the old technical definition of a soh‘tonlnl let us adopt a definition

[12]

given by Coleman , and call a non-dissipative, non-sigular and finite

energy solution of a field theory, a soliton. Let us consider two such

examples in 1 + 1 dimensions. Consider the lagrangian density;

H 1.2.1
Lovy= 1 2,630 - V@
The energy density is;

IZ.

™D

Too = é—_ d.Dl —}-’/ZIVCP =+ V(o) 1.2.

Let us consider a time independent solution ¢s(x), the mass of this

solution is;

# 00
M= [ dx [ 4 1ve/™ + viey ] 123

but we also know from the equation of motion that;

— ‘C72'CP -t b’/k¢)) =0
or,

L | vPl® = vip) + C

thus ifC =0

1
r~1s = 2 d{ dx V/(qb) v 1.2.4
~

Equation (1.2.4) is a very useful one which will be used many

times in this work. As specific example consider the potential;



¥
- _ | i rtd* L t,ow
4 2>
= m  ((_ 2 1.2.5
(12 A F)

The stationary solution is;

d>('x) = M éané M 1.2.6
[S V—A— V__L

where'a'can take any real value. This solution is known as the

~A¢" "kink". The energy of this solution is given by (1.2.4)

3
Ms = ’—“-3@ ——’/,“’—’ 1.2.7

Another well known field theory with soliton solutions is the

Sine-Gordon model; The potential for this model is;

4
Vig) ‘_—: _V_Vl_A, ( Cos (% q)) —-1) 1.2.8

The time independent solution is;

4, mx
ey = M Lan Ce ) 1.2.9
&

The mass of the soliton is;

M, = g md/ A 1.2.10

An interesting property of the soliton is the translational
invariance of it which gives rise to a zero mode in the equation of

stability. The stability equation is;

[U . 1//2@)] ch,e) =0 1.2.11

where f is a perturbation about the given solution ¢S(x), it

is evident that one solution of {(1.2.11)is the first derivative of ¢S(x)

-5 -



d ¢.(x)
that is f(x) = —_83__' which is time independent. This arises because the

stationary solution can be shifted to move its centre of mass from x to
X + 68X, thus if ¢(x) is a solution so is ¢(x + 6x) therefore a taylor

expansion immediately indicates that

1.2.12
/
(!3‘()('*8’() = qL(x) + ¢(x) EX + .
¢'(x) will satisfy the equation (1.2.1).
iw _
Now if f(x,t) = £ e " fn(x) then (1.2.11) becomes
n
2 7 2
[*V PV () ] 100 = W, Lo 1.2.13

it is sufficient for stability that w_be real, that is w2 3 0 but & ¢ (x)
is a solution with Wy = 0 and it does not have any nodes (in the case of the
"kink" and the sine-gordon solitons) therefore it is the ground state,

thus all the other w, are positivells}: He therefore see that the solitons
are stab]e; In fact there is a fundamental reason for their stability which
is related to the tonolooical pronerties of the model, whi ch brings us to
the notion of topolegical current and changes,

A given finite eneray solution must tend to the minima of the potential
at smatial infinity at a]} times; therefore associated with each finite
energy solution is a map ¢, which maps the spatial infinity into the minima
of the potential, now if the potential has more than one minimum the set of
maps {¢_} can be divided into distinct classes where different classes are
not connected by continuous transformations. Therefore once a solution is
given with a particular asymptotic behaviour, evolution in time cannot
change its asymototic behaviour, thus it seems that there exists a conserved
quantity associated with that solution; in fact called the topological charge
is the index for the homotopy classes of ¢(x). The tonological charge can

he written as;

Q = Pl+0) - P(-w) 1.2.14

-6 -



For the A¢'t thenry with minima $(#=) = tsfﬂ N is either zero or .:gm
. »\)\ |.?\
for a kink ort-fmlfor an anti kink. In the case of sine-gordon modeT
A A )
(o) = £ 21?m T , where one can have a soliton or anti-soliton with any
D

arbitrary charge N. The existence of aconserved quantity suggests a
conserved current whose time comoonent is a density for this charge.

This current is

M Ia)\'4 ol
J7 = €D, P € = 1.2.15

where

+ 20
o
q =/JX chl‘e) = ¢(+a/'l'.) - ¢(~A’)"&\) ].2.]6
-

Evidently a soliton with a non zero tonological charge will be
prevented from decaying by virtue of its topological charge.

Finally let ué consider the possibility of ﬁaving similar solutions
in higher dimensions. Unfortunately we encounter a discouraging theorem

|45]

here due to Derrik Assume that there are no derivative interactions.

The energy of a configuration can be written as;

HLeél - TCel + VL¢] v 1.2.17

where the tyo functionals, the kinetic energy T[s] and the potential
enerqy V[qb] are both positive, For a static solution, H[¢] must be
stationary with respect to any arbitrary field variation in particular the
scale transformations X » ax. MNow such a transformation in D space

dimensions and one time dimension results in the following hamiltonian

D—2 D
H,Cél = A Tcpg+ X VLeT 1.2.18
differentiatina with respect to i and sétting i = 1 aives:
%ﬂ -o = (D-2) TL@]+ D VEPT 1.2.10
A
A=



which cannot be satisfied for D > 2 and for D = 2,V[}] has to vanish.

More elaborate arguments exclude the case of several fields as we]]l%l

and we are lead to consider gauge theories in which case finite energy
solutions can be found with an asymptotic magnetic field which resembles the

field of a magnetic monopoler47'481.

1.3 Supersymmetry

In mordern physics symmetry principles have assumed a major role,
not only do they have a practical use in deriving the lagrangians of
different interactions but also the laws of nature should be understood as
consequences of symmetries; such as the conservation laws. The primary
symmetry is of course the Poincaré invariance, arising from the structure of
space~time. Another kind of symmetry, that is one between different species
of partic]es is also thought to exist, referred to as internal symmetry.
Although it is not yet clear what is the complete internal symmetry group
of nature but it must include the groups U(1), of the electromagnetism and
SU(3) of quantum chromodynamics. An intriguing question is; can one construct
a model where the symmetry is not a direct sum of the space-time symmetry
and the internal symmetry? The answer was given in two parts, first, no,l39l
one cannot construct a model which is invariant under a nontrivial fusion of
the Poincaré group and a compact 1lie group of internal symmetries, and later,
yes, it can be done if one admits supersymmetrieslBﬁl. The other aspect of
supersymmetries which is unusual, if not radical is that it sets up a
symmetry between bosons and fermions. The starting point of the introduction
of the supersymmetries was in fact an attempt to unify these two classes of

| 38, 40-43]

particles with apparently diverse properties An example of a

supertransformation is:
5 - ey
Y - ~Fhe

1.3.1



where ¢ is a complex scalar field, ¢ a complex spinor and &€ an
infinitesimal spinor. The algebra of these transformations closes in

two dimensional space-time (with the aid of the equation of motién) if

e% are taken to be anticommuting numbers or more precisely grassmann
variables. The Noether current associated with these transformations is
known as the supercurrent, it is a Spin-% object which is conserved if the
equations of motion are satisfied. The zeroth component of this current,
the supercharge, is the generatorsof supertransformations. The supercharge,
Qa and the generator of the Poincaré group (Pu; Muv) form the extension of
the Poincaré group where Qa commutes with the momenta and transforms like a
spinor under the lorentz group. The anticommutator of two supercharges

is however given by:

{Q*' QF } = - (/XHC),,(P P}A | 1.3.2

Where C is the charge conjucation matrix. Here we have encountered the
peculiarity of having to introduce anticommutators as well as commutators
into the algebra therefore the symmetry algebra is really a graded algebra
leading to a graded lie group of symmetry. The details of supersymmetric

field theories can be found in a number of reviewsl37l, here I only intend to
|36] :

discuss the concept of central charge which is essential to what follows
in later chapters.

Let Qt be n majorana spinors, representing the supercharges of the
model, and Ji be the generators of the lie algebra of G, the group of internal
symmetries, which can be assumed to be a direct sum of a semi-simple and an

abelian part . The commutator of Ji and Qt being:

L ) M ]
[7..Q,] = ¢S Q, 1.3.3
The Jacobi identity concerning Ji’ Jk and Qt then shows that the matrices

S%M form a representation of Ji’ In this section I shall use the Jacobi

jdentity frequently and shall denote it by (Ji’ Jk’ Qt) say for the case
-9 .



Jjust discussed, the identity for a superalgebra is given by (2.3.8)(c).

The supercharges Qt are assumed to commute with the momenta Pu and

transform like spinors under the lorentz group, it was shown by Haag,
Loupazanski and Sohinusl36l that one can admit supercharges which do

not commute with the momenta only if one assumes conformally

invariant space-times. Thus with the internal symmetry group being disjoint

from the Poincareé group the only bracket to be determined is that of the

supercharges:

M LM

L LM H o

for,q f=8 (F7) R «Z . 1.3.4
where I have used the majorana representation of gamma matrices thus

{C&B = -YZBI . Anticipating that momenta appear on the right hand side

of (1.3.4) I have included them, what remains to be dome is to determine
L

Q

what 7 g can be,

Consider the Jacobi identity (P, Q, Q), this leads to

L
[P ,,Zﬁ;: =0 1.3.5

thereforelztg can on]y‘contéin the generators of the lie algebra, Ji’ also
LM

ZaB can‘only be expanded in terms of YZsand (YSYo)aB where y5 = YQYLYZYB
in 4-dimensions, now in 4-dimensions and the majorana representation both
v and y5,6 are antisymmetric and since the left hand side of (1.3.4) is
symmetric under the exchange of o and B8 and simultaneously L and M it
follows that Ztg should be antisymmetric under the exchange of L and M or
a and 8. Thus in four dimensions one must have more than one supercharge
for a nonzero Ztg hence one cannot have a Ztg charge without an internal
symmetry group. In 3-dimensional space-time; the only gamma matrix left
for Ztg
in 3-dimensions as well, one must have an internal symmetry group before
2

0

is y whic is éntisymmetric in the majorana representation, thus

could exist. However, in 2-dimensions the matrix corresponding to

- 10 -



v5v? is in fact iy! which is symmetric in the majorana representation so
one can in principle have a term on the right hand side of (1.3.4)
apart from the momenta and lorentz rotations, without having a group of
internal symmetries. Although this argument rests upon the use of
majorana representation but this does not disqualify it since (1.3.4)
must hold in all of the representations of the gamma matrices.

Now consider the Jacobi identity for three supercharges

L M P .
Q,: QB’ Qy), this leads to:

[ @ ,Z,,,)3 ]- [Z QF] [Qx,'Z,P ] 1.3.5.1

since Qa are independent,(1.3.5.1)can only hold if each of the brackets

vanish independently, therefore

(25l ] -

Next, consider the Jacobi 1dent1ty for (Z B’ Q . Q ) this, using (1.3.6)

leads to:

M PN
[anp ) Zy,y ] =0 1.3.7

Finally the Jacobi identity (J, Z, Q) results in

[oy [T, z4]] = 3.8

L

therefore [ J,, ik M this result together

aB
with (1.3.7) shows that Z

] must be a linear sum of the Z

LM
aB

internal symmetr1es . ButLisa direct sum of a semi-simple algebra

form an abelian ideal of the Tie algebra of

and an abelian one,ic =£] @f.z s butlx]‘ being semi-simple does not have
any abelian ideals, thus Ztg lies entirely inJaz, therefore Ztg commutes

LM

with Ji as well. HWe therefore see that Zm6 form a centre in the superalgebra

hence known by the name central charges.

- 11 -



CHAPTER 2

SINGULAR LAGRANGIANS

2.1 Introduction

A11 the fundamental physical models have singular lagrangians, that
is, the canonical variables are not independent, for instance any gauge
theory is described by a singular lagrangian. Therefore it is necessary to
have a formalism to deal with such lagrangians. This was initially done by

D1’r‘aclw'l l]7l.

, for a bosonic system, and later generalized to include fermions
In section 2 I shall review Dirac's method (for an extensive review seellsl)

and the generalization of it in section 3.

2.2 Dirac's Method for Singular Lagrangians.

Consider a system'described by the lagrangian L(qi, éi),
i=1, ..., n, the momenta conjugate to q; are defined by:

p. . 2L | 2.2.1

[4 2“

=~

If all the momenta are independent, (2.2.1) can be solved to give

Pi as functions of q; and vice versa. However in general_Pi need not be

aP.

independent in which case the determinant —L| vanishes. This in turn

3,

implies that there exists a number of expressionsrelating q; and Pi:

Xw( ‘;; /Pi ) ~ 0 K o=y V 2.2.2

The sign " 0" throughout this chapter is read "weakly zero", to mean that
the primary constraints x“ a 0, can be set equal to zero only after all of
the poisson brackets have been worked out. The set of constraints 2.2.2

rendered the hamiltonian ambiguous since one can add any linear combination

of xa,s to the hamiltonian, so let us define the total hamiltonian to be:

- 12 ~



H.o= H. + c ) /)/o((q,P) 2.2.3

where Hc is the canonical hamiltonian, and C*(t) are to be determined.
Consistency requires (2.2.2) to be time independent, that is the poisson
brackets of x“ with the total hamiltonian have to vanish. Calculating
these poisson brackets may result either in new constraints, in which case
the new constraint is to be commuted with Hf and the process repeated until
no more new constraints are generated, or it may result in expressions for
the C¥(t). A third possibility also exists, where one obtains an
inconsistent equation in which case the lagrangian under consideration is
inconsistent and we have to abandon it.

Once this process is completed we are left with some additional
constraints to (2.2.2) called fsecondanyf constraints so let us add them to

the set (2.2.2)

o
Y %0 K=V, Vel ook 2.2.4

Now let us introduce the concept of a first class constraint.

If a constraint T has a weakly zero poisson bracket with the
rest of the constraints (2.2.4) T is called "first class" so the set
(2.2.4) decomposes into two classes, the first and second class constraints,
the two classes do not in general coincide with the primary and secondary
divisions. The division of the constraints into first and second class is
somewhat fundamental since the first class constraints are in fact

generators of the "gauge transformations" to see this let us write:

I 2 { 51
Hy = //c + ﬂ/z_,C« ) + X C e 2.2.5

where the sum over the constraints, in (2.2.3) has been broken into the

first class constraints x? and second class constraints x; » now the

- 13 -



q

Pnisson hracket of y° 2 aqeneral corstraint with HT is

ox [a5 0. T= [¥0T - [0, %7

2.2.6

as is evident, Cl(t) will remain undetermined, that is we can use
arbitrarv functions of time C;(t) in (2.2.5) and the dynamics of the
system remains unaltered. Furthermnre the variation of a2 dvnamical

variable g is given by H; that is
o 2
§9 = Lo u-J=0[9, % T/t +[3U] 8¢+, x7]c! st

54<L9,HrJ= [ 3, %5 Jciwss +[9,4.78 €[5, %] bl s

or

A3 = (6,-8)g = (ca-b)st g, x]
- &,0) La, ¥ ]

2.2.7

where in the second line we have used "different functions of time
for the coefficients nf the first class constraints, we are allowed tn
dn so hecause the coefficients of the first class constraints are
arbitrary functions of time., e can now see that exnression (2.2.7)
is indeed an infinitesiral gauge transformation.

The classical treatment of singular lagrangians now seems to:be
comnlete excent for one point: The first class constraints which are
secondary have not heen added to the Hami1tﬁnian, therefore it is not clear
wether they are generators of gauge transfofmations or not. In the case of
electrodynamics or the cP" model (see chapter 3) the first class constraint

which is secondary is included in the canonical hamiltonian, thus is a

- 14 -



generator. Dirac conjectures|]4| that these constraints should always
be added to the canonical hamiltonian, however this conjecture has not
been proved and some doubts have been raised about itl44l.

The quantization of the singular lagrangians follows the same
pattern as the canonical quantization, but the constraints must be

understood as follows:

A 1P > =o 2.2.8

where |¢> is any arbitrary state; however (2.2.8) leads to inconsistency
if Xa is a second class constraint, since if A and B are two second class

constraints we have

[ AT I¥> =o0 2.2.9

but the Teft hand side of (2.2.9) does not vanish. Therefore we must
remove the second class constraints before quantization by eijther solving
thevconstraint equations and removing the extra degrees of freedom or
using Dirac brackets. These brackets are formed as follows, consider the

matrix Cds

CMF = [9(0( 2 ?{F] o = \,-«/k 2.2.10

if this matrix were singular then there would exist a set of non zero

coefficients dOl such that:

Jd[wq’/l)(p] =0

or

[ 4eX7, 'Xﬁj=o 2.2.M1

- 15 -



that is a first class constraint; d&xa can be formed from the members

of the set y%, taking this first class constraint out of the set, we are
then left with a smaller set which may then form a non-singular Cds .
Thus taking out all of the first class constraints and then forming the

matrix CaB, we can find an inverse for it. Now define the Dirac bracket:

/__A;BJ¥= [A83]-L[AX"] C;'F [ X%, B] | 2.2.12

*
Clearly [A,x*] =0, for any arbitrary operator A. Therefore one can set
the second class constraints strongly equal to zero and use Dirac brackets

in conjunction with the hamiltonian

! o
+4T = ”c + CNLU rl 2,2.13

Where r* are first class constraints.
A useful property of the Dirac bracket is that it can be defined

[]GI. If the set of constraints is too large causing C to

iteratively
become very large, therefore difficult to invert, one can define a Dirac

bracket using a subset of the constraints and then define the final Dirac
bracket using the rest of the constraints and the previous Dirac bracket.

Let us divide the set of constraint dinto two parts, then:

s ~o X o= g Ko Rty sV
Col'g ’—"[9(0() I/Yp] £y B = ). M

L'AIBJ*, - [ae] - LA %] C;,; ['Xp; B

2,2.14

*
Now we can use [»] with the set of the constraints to define the final
R

bracket:

- 16 -



- ¥
Cas1* = CABTY - [A, %] D [ %, BY,

A
Dnzp-=[fX°‘) 9([31 o<)]3=f4+l,.v.,v
2.2.15

Clearly now [A X ]* = 0 for any x

s Xq X,

We are now ready for quantization, where the correspondence is
achieved by letting the commutator to be proportional to the Dirac bracket

of the operators:

A A

A . R
AB~éA=t*’\EA;B] 2.2.16
The generalization of these ideas to field theory is straight

forward. The matrix Cas in this case becomes space dependent, thus the inverse

of it is understood as follows:

]"3"' Caply, =) Cyp (=30 = 8, 8(4-3)

2.2.17

note that the constraints are time independent and we need not integrate

over time,

2.3 Generalization of Dirac's Method

The generalization of the method described in section 2.2 to include
fermions is necessary if we wish to study any fermionic system, since the Dirac
Lagrangian is singular. The first step inevitably is to have a consistent
dynamics of grassmann variables. This has been done by Martinlsl, Berezin
and Mar'inov“5| and Casa]buonil]7l » here I shall review the necessary points

through an example:

- 17 -



Let us consider the following Lagrangian:

~ *
L = 5 L t.E - VIE,) 2.3.1
=)

Where £, are real grassmann variables, the equation of motion is:

: 1'%
L - 2 =0
ji* 33; 2.3.2

Now to obtain a hamiltonian formulation let us define the conjugate

momenta similarly to the usual mecharnics:

p, - 2L 4 _ix )39
a 2 of
g

the equations (2.3.3) are constraints, so we are quickly Tead to ccnsider

the case of singular Lagrangians but let us define the canonical hamiltonian

first:

HC. = 'E'“ —P.( — L ' 2.3.4

note that it is necessary to define H_ with the velocities to the left
of the momenta, othervwise Hc would not be independent of velocities.

Mow the Hamiltonian equations read: ~

' 2, £ = - oH¢
= - —= 2.3.
Pa( afu v QP“ 5

clearly they do not produce the right equations of motion, the reason is
that instead of Hc we must use the total hamiltonian, we shall come to
this point later.

Of course a lagrangian in general may depend on a grassmann and
ordinary variables at the same time so we must define a graded Poissscn
bracket for such a dynamics. Let us use the notation that the grade of
a variable A, is a where a = 0 if A is even and a =1 if A is odd. Now

the graded poisson bracket is given by

- 18 -



2.3.6

24 B * 28 Ag
(23], - 1 (% B35 -0 & » )

Where the right derivative %; , is the same as left derivative for the

commuting variables but not for grassmann variables. Using (2.3.6) the
equations of motion (2.3.5) can be rewritten as

$-[%.0]. , B [Potl, .

The bracket (2.3.6) forms a graded a]gebra|]5l that is_ it satisfys
the following proparties:

‘ b
@ [a:8], == (078,41,

by L[ AB,C‘]C = AEB,C]C + (-l)bCCA)C]CB

c) (—S[A 7[B(C]‘:L+ ("‘)46[31 [C,AJqu‘f' (—')Cb[CIEAI&ZJq =0 2.3.8

Let us now turn to the question of constraints, define the total
hamiltonian.

HT = /']c * Z q.xﬁpx "‘"/z §~)

” 2.3.9
where the constraints (2.3.3) have been added to the canonical hamiltonian

using grassmann coefficients a® , similar to the section 2.2. Consistency

requires the brackets of the constraints with Hy to vanish leading to
expressions for a°%

3

fa’ = EL?/

2.3.10
AP
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Clearly now the right equation of motion results using HT instead of HC

in (2:3.7) or (2.3.5) therefore this procedure seems to produce the
i
2
we wish to quantize this model we should remove them, therefore we come

desired results, The constraints Pd + g&y.o are second class and if

to the question of graded Dirac brackets. A direct generalization of

117,18

the equation (2.2,12) ta the graded case works perfectly well

but it is not obvious why it should. In general the matrix Cd is graded

B

that is Cd contains both odd and even elements, thus the Dirac bracket

B
may not satisfy the conditions (2.3.8) in general, but we shall see that
CaB has exactly the form required for (2.3.8) to be satisfied. But let

us first calculate Ca in the simple case of (2.3.3) constraints. Note

8
that C&B must be symmetric and not antisymmetriclzo[ as in the bosonic case.

Cup =L[%, X ] = 7 8 2.3.11

The inverse of CaB is easily found leading to the following Dirac bracket:

X
[focz EF] = —¢ 8&)3 2.3.12

This bracket is symmetric as it should be and the quantum version
of it is the familiar bracket used in the quantization-of the Dirac field.

The matrix CaB will always admit an inverse if all the first class
constraints are extracted out of the set of second class constraints, the

fact that Ca is graded does not make a difference here, since the

8
condition of singularity of CaB is:

Z, €. [ %« ’X,B ]q v 2.3.13
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which implies that the first class constraint z ey Xy has not been
taken out of the set of the second class constfaints.

The proof of (2.3.13) for graded matrices is not as easy
as the bosonic matricies since the existence of an inverse is a more
stringent condition on a graded matrix, because not only should the
determinant be non-zero but it must also not be nilpotent. To prove

that (2.3.13) is necessary and sufficient for C& to be singular let us

8
first note that it is sufficient, because if (2.3.13) holds and c;;
exists it follows that e, = 0. Now let us write the matrix C as

follows:

C“F’ = A“P - BNF 2.3.14

where all of the nilpotent elements of C are gathered in B. If Al

exists then the inverse of C can be constiucted by iteration as follows,

let
- -l
C = A + &
then
o -
cc -1 = I-AB + &C
or

wt] -‘{l ~! ul

-l x ay F
- A S (BA)
r=i
2.3.15

Now since B is nilpotent so is BA_1 therefore the sum is convergent
and 5 exists. Thus if C is singular A should also be singular, hence

we can find the vector Vo made up of C-number elements such that,
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A“P 7})@ = 0 2.3.16

now if one forms the vector e = m & v _, where g are the generators
1' .

of the grassmann algebra Gn over which Cas is defined, we shall have

n n
C“F €P = ‘/:71'56 A Ty B«P/VFQ ‘_/Zf; 2.3.17

]

)

T . vanishes because B’
81-51 a

is also necessary.

Where Ba are nilpotent. Therefore (2.3.13)

B
Let us now check the conditions (2.3.8) for the Dirac bracket, to
do so I must assume some symmetry property for C;; otherwise the

question cannot be addressed at all, so let us choose

= {x -
Coc!g = - ("’l) F Cﬁer 2.3.18

where tdB can be zero or one. MNow one has

[AIB_]* = [AIB]C - [AI/X«]C C;;;[?(P,B]C

|

b I 4
- (-;)“ g[s,A]C—(—:) FE&,X.,Y Cug [sz’\]} |

2.3.15

where

3% - ab+ Gkasbkg + (btky) Vap + 0t k) (T r bt k)

-+ éqfs
1

B!
Dirac bracket is to satisfy property (2.3.8) (a) 948 must equal zero

and q_, is the grade of C__,, k 1is the grade of x_ . Now if the
af o ] o

modulo 2, for all values of « and 8, independent of a and b, thus one

arrives at:
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kaq- k|3 + Ciqu, = O
R }ep + q""P (k,u-k,g) + L“P =0 2.3.19

thus t =0ifk =k, =0and t _ =1 otherwise, therefore if the
a a B aB

B
set of constraints is arranged such that: « =1, ..., n correspond to

odd constraints and o = n+l, ...,m to even constraints; then (2.3.19)

1

implies that: C” ' should have the following form:

-t 3“
C =
a T |

§ ] ' 2.3.20

PESAN ,-—‘“C_q

M @

L

this form of C'] is also adequate for the Dirac bracket to satisfy the
other relations of (2.3.8)]]7|. Surprisingly the matrix CéB does indeed
give rise to such a matrix provided it is not singular: The matrix C

has the following form by definition:

" wA
4 > — *""ﬁw

s U |

C = _.‘Lj{; A \} m

~ -

where S is symmetric, A antisymmetric and they are even, the matrix U

is made up of odd elements. The inverse of CaB can then be written as

M Q®

C =
N T 2.3.21

then one obtains the following relations:
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(a) Ms-qQuU'=TI, ®) ™MU + QA= 0

(@ NS-TU =0 @ NU+ TA=1I,

2.3.22

(a) SN o+ UN <Ly (b) ~— UfM +AN=D

() SQ + ur _=O (d) - Ut@ +AT = I,

2.3.23

Where In is the unit nxn matrix using (2.3.15)(b) and (a) we find:

a g
M= [Ss+ WATUY] 2 3.2

which shows that M is symmetric also (2.3.23)(b) and (2.3.22)(b) imply
that:

t
N = Q 2.3.25

Furthermore (2.3.23)(d) and (2.3.22)(d) imply that T is antisymmetric,

therefore the inverse of C has the following form:

(™M Q)

-

C = t 2.3.26
LQ T -

where M is symmetric and T anti-symmetric therefore C'] does have the
desired form.

Before closing this chapter let us note that quantization is
effected by setting a correspondence between the graded commutator of

two operators and the Dirac bracket of the dynamical variables:

A A ab A A . ¥
A — (- BA = (R CAIB] 2.3.27
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CHAPTER 3

THE CENTRAL CHARGE IN THE SUPERSYMMETRIC

cp™ ! MopEL

3.1 Introduction

The cP" fmodel was primarily constructed in relation with super-
gravity by Cremmer and ScherkI21| and later studied extensively because

tl24’ 25, 26, 28]. Instantons are

of instanton solutions and confinemen
classical solutions which make the euclidean action stationary, they also
have a topological quantum number associated with them, thus one would
expect the supersymmetric cP" model to have a modified supera]gebralzgl.
However, in an euclidean theory all the components of space enter on an

exactly equal footing, consequently there exists an ambiguity in the choice

of the time axis and thus the canonical momenta. In addition, the charge )
density of a current cannot be identified since all the components of a current
can be ¢ontinuous1y rotated into each other. These difficulties render the
explicit calculation of the brackets of the algebra of an euclidean theory
impossibiés. Therefore I shall consider the supersymmetrﬁc P over a

Minkowski space-time. The models with instanton solutions where constructed
over a 2-dimensiona1 euclidean space, therefore I need a 3-dimensional space-
time, with the metric diagonal and given by Juv = diag(+1, -1, -1}, then

the instanton solutions of the two-dimensional euclidean model correspond

to time indenendent solitons of the three-dimensional mocel which minimise

the hamiltonian.

3.2 The Mode1 21727l

The supersymmetric cP" model is a particular case of a general

27|

class of supersymmetric models of Kahlerian manifolds The complex

projective space CPn'] is defined by the equivalence classes of the
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complex vectors ¢y = (¢], -evs ¢.) which satisfy 1311

> ’ . / -
Sr ok o b= d A AG L - 3.2.1
A=)
where K is a positive real number. The fields ¢a(x) are maps from the
space-time into the CPn'] manifold, the constant K is not dimensionless
therefore it is misleading to set it equal to one. The lagrangian of this

model is given by,l26l .

n = = —
[ = L DpdiT bt Tl 4T b+ R (0.0)7]
A=)
3.2.2
apart from the constraint (3.2.1), the fields also satisfy the following

constraints:

Cb: Qka ~ {IL CPO‘ = 0 3.2.3

The covariant derivative Du¢a(x) p=0,1, 2 1s construtted using

an auxiliary vector field Au(x) given by:

APLX) = iék ( ¢u* 3,.,,(1)“ - (pabf-*q)«:( —~ ’L[)ayﬂ,l/)a )
[)fsz :Bf» -&éifi /1[* 3.2.4

The Tagrangian density (3.2.2 is invariant under local U(1) transformations:

e \x) e Alx)

bw=>e  fx) AUE tun) 3.2.5

Note that although the lagrangian density is invariant under local U(1)
transformations, and it contains a vector field U(1) but it does not
contain the kinetic term for Au(x) thus the equation of motion for Au(x)
does not involve any derivatives and it can be used to g1iminate Au as

given by (3.2.4). This lagrangian density is also invariant under complex
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supertransformations,

Sd’a\= (2 4;“
s, - —Phe -5 hhe

3.2.6

where € is an infinitesimal, complex, grassman spinor but in proving the
supersymmetry of the lagrangian density we shall find it necessary to use

the constraints (3.2.3) and (3.2.1) therefore we must first check that the

set of constraints does not enlarge upon supertransformations, this is also
important when one comes to treat the constraints as outlined in the last
chapter. Since these constraints are ones which are imposed from

outside they must be added to the lagrangian density using Lagrange multipliers

a{x) and 8(x):

L= Lo+ x(tnd—K) ¢ g%, + 990, 327

now the constraints arise from the equations for conjugate momenta of

a(x) and o(x) for example:

ML D - 3.2.8

= w o

2 x(x)
then the commutation relation of Pa(x) and the total hamiltonian gives rise
to a secondary constraint, 5; ¢a(x) - K %0, therefore we can useAfT instead
of}f(x) and proceed with the method outlined in chapter 2. Nevertheless if
ZT is to be used instead ofAC(k) we must novprove thatclT(x) is supersymmetric

rather than nC(X) , thus:

52,00 = 38+ So(d Pa-K) + al8 (&b -K)]
50t b +0LSRA)] + ...

3.2.9
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where GLT vanishes if the R.H.S. of (3.2.9) is a linear combination of
the constraints, we shall see that §Lis a linear combination of the
constraints, sa and 56 are coefficients of constraints therefore what
remains to do is to show that the variation of the constraints is itself a

linear combination of the constraints. Let us begin by ¢§ oy - Ka 0,

é(qS:‘ ¢, —K) =—a‘1¢;6 <f>a+c'¢:é“!’a X0 3.2.10
and _
8(@1}{1)=—5*/ﬁ6%'—€¢¢f - 3’1‘}’6
= (4 ‘#7’# $b ~ikA )T e

% O

!o\.-.

322.11
where we have Fierz transformediand used (3.2.4). Let us now look at the
variation of the lagrangian density (3.2.1). Note that we need not consider
the variation of Aﬁ(x) because its equation of motion is algebraic therefore

5%}-— is in fact equivalent to (3.2.4) thus

3£=._s4>+_, ¢+3L2A .

= 5\99+-— 7[’

3.2.12

using (3.2.4), in other words [& ,Dﬁ] = 0 where & 1is the supertransformation.

Therefore we have:
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s¢- Z b, T e 0.4, he
i up G e S EBEYD -4 50 4% ¥
+ (04 Phe - LT EY 6
r (P 7MY 5P 1"P)
-t (Phe+g ¢ 4t )
L (EYE + L &TRp ) #

-

X

§-

3.2.13

now noting that the product of more than four spinor fields vanishes,

and neglecting the total divergence we have:

§2 = (€D, W, D"qg"‘-ag‘@e D¢, €36 ﬁ”a '},
~< D/‘qsa 1/‘1 Ye ~i& 7"‘7"/&, ¥ 'Dfﬁﬁ*
+ Z'Zvu_¢; 77'1?25 Zﬁ,qé 14/( f4@ﬁ 1Y€5 %Lzag;4;

_&gﬁéﬁxii %¢ %ﬂég

- 4% 244

now use ES

v Vo vy
’fﬂf = SF 4-!6}W XF
3.2.14

resulting in:
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8L

cdpd —: ,«¢4’

+e6”'°7fbv4:. Db -0, € ye v,

n

— — *
= )/*6 1‘!/0' ‘)F 4>a’K + € BFG Ar' Iq)a. ¢q
- D\/E €)‘*"f,)70 42 2)4474* + (:e ng E-T‘\ fJXF AT‘ q’ﬂd?:

+ and '77’6”);{1]1¢: +  hec.

3.2.14
Where I have used the notation n° = %F PV 3 A ,we shall see that n°. is
the topological current of this model, therefore ife is not position
dependent.&ﬁ;is the sum of a total divergence and a term proportional to the
constraints, curiously the topological current appears in the variation of the

lagrangian density, the reason for which is not clear to me.

The supercurrent evidently from (3.2.14) is

Ko x K |
j = av CbaCx) 'XVY %(X) 3.2.15
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The supercharge cbtained from this supercurrent does not produce the
right supertransformation, this is due to the fact that the system is
constrained and the Dirac bracket of the supercharge doss give the
desired supertransformation, but this current is gauge invariant although

it does not apnear to be so, because of the constraints (3.2.3).

3.3 The Superalaebra

The product law of the algebra is a Dirac bracket therefores the
complete set of constraints has to be calculated and the matrix
Cis = [K. Kjl be inverted before one can look at the structure of this
algebra. So let us start with the lagrangians density:

Lexy = 'D,‘ dgjo D" Qo) + g, :}1; Jj 4’“ —"/,_J)_/.E’GWMLPA
ed (B o (g2, k) « G 40 &,

3.3.1
Assuming that Au(x) and the lagrange .multipliers a and o are
independent degrees of freedom the following relations for'the canonical

momenta are obtained:

a) 77,* = 2£ ~ 0 s 3z
21%;
o) R = i& % 0
J X
K (x) = 2% % O
c) 4 Ny
x o ¥
d T x) = 2—%— = Dod’a s ﬁa. = Do¢a_

°) P‘W = "‘)zjku ,PK = “"zzflﬁ

3.3.2



The set of constraints (3.3.2)(e) are the typical second class
constraints of spinor fields (as in (2.3.3) but here we have one
constraint per point of space) which can be removed by defining Dirac
brackets iteratively, and since there exists a correspondence between
Dirac brackets and the commutator or anticommutator of the operators

ve shall adopt the following anticommutator for the spinor fields,

a b 'f
{% ), 1&(” ] = 8oy Sup SCx-) 3.3.3

and the following commutation relations are adonted for the other fields:

) [b s Ty | = (8ab six~yJ

b) [A/A(x), 7,007 =i Q/W ch-aé)

c) ["((X);R(‘j)j =t 5(;(—'-3)

'S : ~-4)
d) { O ;D%CW } = gr’ﬁ berey 3.3.4

The hemiltonian density is given by:

e o w3 T4
Hoo= 7, 7% + R X AR X A
ARG S XL s as

wherz the index j runs over the space dimensions only. The

total hamiltonian density is:

Hpx) = Heo o+ loﬂfx)”f.fwﬂ“;(a "‘9/?9

.T .
_ 900 -obe 3.3.6
where the priméhy constraints (3.4.2) (a, b, c) have been added

to the hamiltonian density. Ncw:
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a) [ﬂ,,Hr] =“?<f>a¥77: —95@77“ —~1"’77{:ﬂ'°§é ¥ 0
oy [17,, Hr 1o & Db - ¢:D‘-CI)“+€'SE’X;"}; -3 ~o0

c) 1'73 ’ HT -] > € 6$a?q#¢"ﬁ{) &0

o[B . H] 3 <%d xo

. % N
e) [PGT; /‘)r] 7 ¢“ ’%" © 0
3.3.7

A number of secondary constraints have arisen which we must

commute with the hamiltonian,

g [ &' n - an %t b ] =
[j.‘- ? H J# : ﬁa Dfd’a = ¢:D¢' n: - 77;{])«' ¢a¥f;'¢ab,‘7a

b) T
- N e 3
abk -y Dk Py 41T DY
~ 0
T bW Lo D & DL i TDiR 153 DT,
M iy Ta Pre T g Ta TN i e T e gt e
_ _
g LY _ L **
s BP0 V- Lty o
= %A;w
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0 [V ] > i e (e, )

—4 & 17 Db - KXO 20

or 6 & -

e) [wa¢a,HT] is the complex conjugate of (d) this results in the conjugate
of the censtraint, leading to:
- - 7/u
0~ Dh% P.. 3.3.8
The constraints (3.3.8) (d) and (&) when commuted.with the
hamiltonian give rise to expressions for 6 and &% similar to (3.4.8) (b),

therefore the last constraint to consider is (3.3.8) (c)

[fd%?17;; + QE.EL » }{f-j = 2 ( Zé.za4(-i q&rzgijjqb(x
— ('(l‘ba,D:‘-D'jcl):‘t _aKt &(x) w0

or,
4, 3
acy » L@, 7t - D% -4 D0 ¢ )
3.3.9

The censtraint (3.3,9) likewise, when commuted with HT produces an
expression for a(x), the set of constraints has thus been exhausted., The
classitication is rather easy, m 2 0 is clearly a first class constraint
since no constraint involves the zeroth component of the vector field and
the constraint @2 n; - by T iwayowa é 0 is in fact the generator of the
U(1) transformation therefore it commutes with any gauge invariant operator,
but all the constraints are gauge invariant, therefore the first class

constraints are ;
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b) 4>:'|7: - T, - Y, 3’0%. 20

3.3.10
and the rest are second class. Let me index the constraints by
Kz,g =1, ..., 20
Ki = %

K2,3 = Pa
K"l'l5 = ng'
Ké/?' = 77(,' 5. =l
Kg = &) - ,%(774 ne +IDipr)
Kq,;o = 0 *“./K ¢: »p/ ¢a.
— . - N
Ky = 6 - C/K D/“4J7 U ¢”‘
A X 7 x> - N
K 1%/ ﬂ/ = 5%'( 4)0‘ D('Cpa, éck (pa D‘. ¢q + é’i‘c ?azté
K IS—, /6 = %af ¢d
x
K l? 1] 'g = ¢a (1[]0.
)K
Kia = 43“ d)a_ - K
¥
K %0 = c#ax ﬂd. T ¢a ﬂa,
3.3.11

This large set of second class constraints results in a cuwbersome
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matrix Cij = [kﬁ’ Kj], however an unexpected simplification comes to

the rescue, the matrix C has the followina form:
¢ 0 -iI, o)
_ L M
C =17, |
o N

where I7 is the unit 7 x 7 matrix and 07 a diagonal matrix, such

3.3.12

o~

thath7 4§ = I. The unexpected development is that the inverse of the

6 x 6 matrix B appears in the inverse of C, that is C'] is given by,
v oM,

C = |1 0 0 3.3.13

B
v 0 )

The fact that B-1 appears in C-] surrounded by the rows of zeros

reduces the effort of calculation in working out the bracket of the

supercharges. The supercharge, given by (3.2,15) is

Q‘x - dzx ( l'77a 1}"1'-}»57‘10 3‘:(1&4( LPD. )

3.3.14

The supercharge commutes with the constraints K1 to Xy therefore
the Dirac bracket of the supercharges can be expanded as follows, (where

star denctes Dirac bracket)

, 20 g
Jau, 0§ § Qa0 - B 1 Toquelcstriln g

.;,‘>I
+ - 20 -1
o] s e celiati o
3.3.15

where I have also used the fact that rows 7 tc 14 are zeros, from

_‘36_



column 7 onwards! Therefore all we need is the inverse of the matrix B,

the matrix B is

/O 0D K o O OW
o 0 0 K 0 O
Bbc,g): K 0 g 0 00 Scx-«a)
o K 0o 0O
0O o p o O Ak
ko 0 0 0 -k O/ 3.3.16

thus the 1nverse is easily found to he:

(0 o ‘/KODO\‘

0 o Wk 00
'B—'(xﬂa) = I/K. 0 0 O O O SCX“A)
6 % ¢ 0 00D
0 0 o0 0 O %K |
0 0 ©0 0 /0] | 3.3.17
N

The first point to check is the transformation law of the spinor filed
: ¥*
: 8“})“ ¢ [Qé) %;f")]
> T (3~
AE I -7, - jds& o [Qe, ¢ ‘F]S : “)[¢¢ ¢]
4 3 { \ — r
AT s (e 1 43,

|

Now Fierz reshuffling and using (3.2.4) results in the right answer:

8- e ] - -4'Dde L g T e
3.3.18

Wle can now calculate the Dirac bracket of the supercharges. The only

non-vanishing terms on the right hand side of (3.4.15) are:

faoatf = {ou 6} - 4 {a e ¥ eho. ol

3.3.19

The second term of (3.4.19) is:
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2 2 X 5 - 2
= —\/ﬁ}%&[?u};("ex AJA +2€'(¢a§%) )
o (1) gLexns Clnl-ga, -2 .14]

+ ‘}l (EQ¢A> 1’:}3 k CPJ‘T: ~dTa ~t JJ.QTA(P“) J

3.3.20
Note that the coefficient of YgB is a first class constraint, it

cannot be set equal to zero. The other term in (3.3.19) is:

{a,, af } = J I [g“ o (T il + {209 -1, )
NERUR R AN DT TRy
N /b,omF (L 6/}} al_cp* Bad) > '/Léb()-'{ﬁ%‘%g’%biw
Y= B
fyz/yoc)g 35@)4‘][)&) ]

- 3.3.21

The Tast term in (3.3.21) is a total divergence and vanishes if
LN vanishes at infinity, since in this work the asymptotic behaviour
of the fermion fields is assumed trivial, this term can be neglected. But
the coefficient of YSB cannct he neglected although it is a total divergence,
the asymptotic behaviour of the ¢a(x) is non-trivial. The final expression

for the anticommutator of the supercharges is:
+ F ). P To(z+¢€)
'{Qq, O)g} = k’X'Xuf [ 3.3.22

vihere
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() £ = ex fdlx E;a d; Aizx)
(b) Z = —l_Le..K fazx -{l!_);(x’) (A(K) ( (1)‘: T]a{—' 43q77a - Jufo(}/o.)

3.3.23

Alternatively (3.3.22) can be written in terms of two majorana supercharges

L

Qa L = 1,2 defined by the real and imaginary parts of Qa .

i@: ) Q}:} = 2 5LM6/'L/2,F P)‘ + [6"”12}3 (Z-rt) 3.3.24

this result of course depends on the fact that:

X

{QﬂzQp} v 0 | 3.3.23

3.4 The topological and the central charge

If the scalar fields ¢a(t,r) tend to a constant at spatial infinity

independent of time:

QO L] w
&, (&) —> (o) ¢, 5 \%(9)} = O
S :
then éa(t,r), in effect, maps the compactified space into ™1, In

n-1

other words ¢a(t,r) is mapping the sphere into CP" ', the homotopy classes of this

n-1

map is denoted by HZ(CP ) which is the group of integers‘zz[. The integer

associated with each map ¢a(t,r) is given by

€K 1 9N
}\/= ;:—7-7 jdx e >, AJ 3,4,2
where Aj is determined by'(3.2.4). One can also construct a current

N whose charge density is reiated to M,
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ol %4 I"_
T €7 2 A p =0 pear
If the integral of the zeroth component of this current is interpreted as
a topological charge, associated with the configuration ¢a(t,r) then one

obtains the following relation:

2 y®  _ 2TN
g = [d= T = === 3.4.4

which results in the quantization of the topological and the'%1ectric"charge:

AN

eq = ¢

3.4.5

Furthermore one can find a Tower bound for the hamiltonian by noting that:

[o:b, réesBG | yo
or

[’D{q’a’z >//c Ey 0;95 Dg.?b*/

3.4.6

now if 3,0, = = 0 and ¢ = 0 (3.4.6) can be interpreted as:
E =Jaw/m > ,zn/l\//

and the equality is achieved when

3.4.7

;
D: éa = ¢ €5 D % 3.4.8

The (anti) self-duality conditions (3.4.8) can be solved to obtain exact

IZZI. When ¢ # 0 a different bound onthe mass can be

n-soliten solutions
obtained using the superalgebra of the mode]lzgl. Consider the right hand
side of (3.3.24) as a 4 x 4 matrix, it is a positive definite matrix which
means in the rest frame:
Moy Lzt
3.4.9

where M is the mass of the soliton, and equality is achieved when some of the
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eigenvalues are zero, in other words when there exists a linear
relationship among the supercharges. In fact if the fields are self—

dual the supercharges obey the following relation in the rest frame:

1 - o 2

Q, +¢ @ @)., =0 3.4,10
which follows directly from the expressions for Qa and the self duality

expression (3.4.8). The relation (3.4.10) can be generalized to an

arbitrary frame:
(Z+.ﬁ) Ou + 5(%@%« =0 34,11

this relation suggests that a 4-dimensicnal majorana spinor can be formed

Qu
Sy = (Qi 3.4.12

by:

A

Then using 4-dimensional gamma matrices T, A =0, 1, 2, 3:

F 3 /. T, o 3.4.13
F - _ (—l 2
17" o [ o (I, |

and a four dimensional momentum PA =(Pu’ z + t) equation (3.4.11) can be

formulated in four dimensions as:

P /DA 5S=0 3.4.14

The relation (3.4.14) has been obtained by 011‘ve130l for other
models with soliton sofutions. V

This relation suacests the existance cf a massless 4-dimensional
theory which reduces to the 3-dimensional model by the compactification134|

. s . . n ., . .
of the third dimension of space. The supersymmetric CP in 4-dimensions,
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first constructed by Cremmer and Scherklz]l is in fact the right model.

This medel is described by the following Tagrangian density:

Ly = (DAQ)*@)A d%) + Y Z %ﬂ/a

3.4.15
where X are n-majorana spinors satisfying:
X
AR ¢
~ Y X s
& Nyos h=ilt-&"+ ra-d)]
3.4.16
The covariant derivatives are given by:
DACE‘: EACE#‘ ¢ e BACIJQ
N, ~ie [°BX
[DArXA = ﬁ)‘\ a 1€ BA a
3.4.17
where
R : L ¢
’BAz ‘1—%.6( ( ¢a BA¢6L -t ¢QBA¢Z‘ N%\’:F ?(a) 3418

The lagrangian density is invariant under the following transformations:

S(t. = reN\ix) ¢q

S'Xa = —1€ I\(x)!"gﬂ’a_

3.4.19

and the supertransformations:

3.4.20
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As before it is possible to show that the set of constraints (3.4.16) is

left invariant by the transformation (3.4.20)'2]I .

The supersymmetry
in four dimensions is simnle but enlarges to an (2) supersymuetry iﬁ
three dimensions on compactification. This is in accordance with the
result obtained by Zumino |27] . From (3.4.15) we can arrive at (3.2.2)

by the following identification:

X, = (\{ﬁﬂl{;‘) - 3.4.21

a "\l

and compactifying the third axis of space. Then the superalgebra of the 4-
dimensional model should transform into the superalgehra of the
3-dimensional model. Therefere the third component of the 4-momentum

should produce the same transformation as the central charge:
L/P& , (Pa"‘)] = tDg, =€, @ 3.4.22

but from 3.4.18 we have:

B, - L (CHETA,)

——._ —_— g-z_o[.,lnl
“élk%% = rrer

3.4.23

Therefore the operator Z is exactly the gauce transformation required to

make the fourth comnonent covariant.
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3.5 Summarz

As was expected the suoeralgebra of the cP" model does contain
a term due to the existence of solitons, which is directly nroportional
to the topological charge; however the central charge of the algebra is
not entirely composed of this topological charge but it also includes a
field dependent U(1) transformation. Since the CP" model in three
dimensions has an extended-supersymmetry it is not surnrising that it
should have a central charge. The three dimensjonal model can be obtained
by compactifying the third dimension of a four dimensional model, but
the four dimensional version is symmetric only under simple supersymmetry,
thus the central charge has to arise out of the third component of the
momentum, hence we saw (3.4.22) that the third component does indeed

produce the required U(1) transformation.
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CHAPTER 4

CONSTRAINTS AND CONFINEMENT

4.1 Introduction

The CP" model has received most of the attention devoted to
it because it confines its constituents, that is to say the fundamental
fields ¢4 in terms of which the lagrangian is written, interact with

|26] . The

each other with a potential which increases with distance
arguments leading to this cenclusion involve complicated arguments using
functional integrals. But the canonical approach nrovides a simple

insight into this property of the cp" model, furthermore, it points the

way for a more realistic model with quarks and gluons in 4-dimensions which

would have confining properties as well. This chanter is devoted to this

question,

4.2 Confinement and cp"

In chapter 2 we saw that a consistent quantizaticn requires the
second class constraints be removed using Dirac brackets but the first
class constraints remain and we thus have to require all physical states
to be annihilated by first class constraints, This is similar to Q.E.D.
where the longitudinal photon is decoup1éd by requiring physical states
to be annihilated by a first class constraintl]4! . The first class
constraints of CP" are T, N 0 »d¥ n¥ - ¢ana-~iwayowa Y% o , thus the

a a
conditions physical states have to satisfy are:

a) ﬂo]Physica] > =o0

o) (&F 1, - @ﬂq‘fﬁmﬁé )physical> =0 4.2.1

The condition {4.2.1) states thet all the physical states with “"electric
charge" are unphysical, in other words confined - therefore the
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fundamental particles of the fields b and wa will be confined since they
have an electric charge, but their bound states with zero total charge

will not be confined. The reference to "electric charae" is however to be
qualified since the lagrangian density does not contain a kinetic term for
the cauge field, therefore no electric flux either. Here the word "electric"
only signifies the U(1) natura of the local invarianfe of the lagrangian
density.

The condition (4.2.1)(a) does not howevar mean that the fundamental
excitations of da and ¥, can not be invp]ved in virtual processes, on the
contrary as the constraint of Q.E.D. does not prohibit the existence of
virtual longitudinal photon, there is no reason why a virtual ¢s should
not exist.

The first class constraint (4.2.1)(a) has its origin in the
auxiliary vector field Au(x), defined by (3.2.4), therefore we may be able
to obtain similar results if a model is.considered over 4-dimensional space

time which has non-abelian local invariance, realized through auxiliary fields.

4.3 Colour Confinement

The generalized version of the CP" mode]l321 involves k x n
complex scalar fields : Zg which transform under the g10b51 gréup U{n)
and the local group (U(k), oo =1, ..., kanda =1, ..., n, and the fields

are subject to the constraint:

¥ o('
:Zc: iZZ‘f = & F o ‘ 4.3.1

The Tagrangian density describing the model is:

¥ ol
oL = (DPZ:) DH Za 4.3.2
o o . Q’F F
D.ZX = ke +iATZ,
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where the matrix gauge potential Azs is given in terms of the fields

ZZ by virtue of its equation of motion
oL YN 7 S
C RGNS

or,

4.3.3

P22 - 20

The fields Zg undergo two different transformations a global

U(n) transformation Vab:

o [ 4
Za = Vab Zb 4.3.4

and a local U(k) transformation k. <'n:
® xf QZ.F
—> (i)
Za . & 4.3.5

Evidently the transformation (4.3.4) leaves AiB invariant but the

transformation (4.3.5) does transform AﬁB , according to (4.3.3) :

) + T N i
Ap — CBPUU + uAI*U 4.3.6

which {s the right transformation to keep (DuZa)“ covariant, the process
leading to the first class constraints is identical to the cP” case except
that the equations are profilerated with indices in this case, so let me

just quote the first class constraints
ap

a) I, ~ O
Q"

- | Za‘: Wf - 7. 770}3) %0 4.3.7

b)
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where Q“B v 0 are also the k2 generators of U(k), therefore the physical

condition:

O s> = o 4.3.8

implies that all physical states are "colourless". The particles Zg and A33
are thus confined and only their bound states which are colourless are
observable. In this model the fermions are not included but thgt is not

too difficult to achieve, it can be done using k x n complex spinors wg(x)
which transform similar to Z: under U(n) and U(k). However, the addition

of fermions intorducgs four fermions interactions into the lagrangian density,
therefore the theory becomes non-renormalizable in 4-dimensions. The way

out may be to couple the fermions in a -supersymmetric way|33| to the scalars
Zg , and hope that the cancellations which océur in supersymmetric models

may help to make the model renormalizable. However this model is fairly

complicated and requires further work,
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.CAAPTER 5

FERMIONIC PATH INTEGRAL

5.1 Introduction

The path integral formulation of quantum mechanics provides a very
convenient frame work for a number of apnroximation methods. However
there exists a certain amount of confusion with regards to the definition
of the path integral and how it is to be performed particularly in the

case of fermions. Although there are a few articles in the 1iterature|2’3’

4’5’7’8’]5|, they do not all obtain the same results, consequently I would
Tike to obtain the necessary results here, which shall be used in the
following chapter, |

Since the path integral provides an expression for the transition
matrix elements in .terms of the classical action, it is necessary to have
a classical mechanics for the system under considefation, but in the case
of the fermions a "physical" classical dynamics does not exist because
the action, on the classical path, vanishes, thus can never be much
bigger than plank's constant, and the classical limit is not attained.
Nevertheless the non-existence of classical dynamics does not ban a path
integral formulation as long as a formal lagrangian fo} the.fermions can

be given. Let us consider the lagrangian describing a fermionic

oscillator:

L) = 2(§*§" E”g)-wixi_ - 5.1.1

where £ is a complex grassmann variable., This lagrangian is singular
(see chapter 2) and upon the removal of the constraints, using Dirac
brackets, one finds thét the phase space is described by the pair
(£,£*). The striking similarity between this lagrangian and the
holomorphic representation of the harmonic osci]]atorl]l indicates that

a similar approach to quantization of (5.1.1) should be taken'zl.
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Therefore let us first review the holomorphic representation.

5.2 The Holomornhic Representation

The familiar harmonic oscillator lagrangian is:

4) = .2 2o 5.2.1
Lo = 145 1y
now upon setting Z = 1 (9 - iwq), (5.2.1) can be written
2w
, v . Y ¥
Zu)-f(zz-zz_)-wz.z

5.2.2

the two ‘expressions (5.2.2) and (5.2.1) differ by a total derivative,

hence they result in the same dynamics, the conjugate momenta are:

- 2L T
?2 = 22—2', =4 Z 5.2.3
5.2.4

Pz-'ﬁ = a?izé; = —U}LZ

The pair of second class constraints (5.2.3 and 4) can be removed leading

to the Dirac bracket,

[Z ' Z*J = - 5.2.5

Now the hamiltonian takes the form:

» ¥
H= W(zz +Z72) 5.2.6

where the product z * z is symmetrized. Following the rules of the
canonical quantization, we replace z by the operator a whose eigen-values

are the complex numbers z, and the commutation relation (£ = 1)
A Pa
L&, a1 =1 5.2.7
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is obtained using (5.2.5). The hamiltonian operator is given by

- N
H = wola 4+ wy, 5.2.8
we can now verify the following commutation relations:
A L 3 _ A ,\+ A A+
[a,H]) = wa , La ,H] = W O\ 5.2.9

-

establishing a as the annihilation operator and a as the creation operator,

acting on the energy eigenstates |n> ,

aln> = /n [na>
a+,n> = n+ Jﬂ+1>

5.2.10
leading to
Hln> = (n+l/2’_)w/n>
5.2.11
The ground state is characterized by
a lo> =0 5.2.12
leading to a compact expression for the n-particle state:
l pE AL
nS = — )a o >
) In> A f t 5.2.13

The eigenstates of the operator a can be expresséd in terms of the

basis vectors |n>
N

3 a’
I'g) = e lo > 5.2.14

Clearly,
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A
-+

A Ta A
a |E> = 5 e 1o > = 'ab \%> 5.2.15

where z can take all the complex values. The eigenstates of at can be found

by conjugating 5.2.16;

A
a 3"

L] =<Loj e 5.2.16
Note that the two vectors defined by (5.2.16) and (5.2.14) are not
orthogonal:

A /‘x A /

azl* 3o’ 3R

¥ - -
{7 ]3> =<L]e e Jo> -¢ 5 517

An arbitrary state |f> can be represented by an analytic function of z, given

« n

% .
<§1F> =:§D T < nyf> 5.2.18

This representation is accompanied by the following representation

of the brackét(5.1.7):

A d /‘_,.
a = 3 a =3 o 5.2.18.1

where z is the argument of the function on which a and at are acting and
since z can take complex values, we may have also written a za%p and

a = z* , depending on the function under consideration. We must now

define an inner product under which, a and a+,are conjugate :

<Flg> = () - férm@ 13) 5 2 10

where
]

43*d i
du(z) = L T%] €

and we understand the product [dz*dé] as d x dy where z = x + iy, The
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scalar product (5.2.19) is positive definite, this can be seen by noting

that,

¥

..3 3 n
J[di;éa%] e S’t —SW‘-

[ LN _ _ -
_ J\f rér_[ 1o rnnn etQCn m) _p

T / e
= Sn m niji
! .
5.2.20
To check the adjointness of ; and ;+, let us write:
AL -
(. a i) = fi,ulg) f3) 3 93)
X
127 T [ =33
):13'33 dfi)
?] d3
- (af9)
5.2.21

Where we have used the Cauchy-Rieman condition and the fact that the
exponential factor rapidly damps any analytic function at infinity.

Let us next consider the completeness relation for the states |z> .

From the scalar product 5.2.19 we can write:

<{flg> = jdg(g) L21f> €2194>

- [dpp) <O13F> <x19>

leading to the completeness relation:

J(C[I‘(S) I3¥ > <.5I = | 5.2.22
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or alternatively, if we consider the analytic functions of z*

fiwvb") 13><43* ] =1 5.2.23

The two measures used in (5.1.23) and (5.1.22) are of course identical.

We therefore see that despite (5.2.17) the states |z> do satisfy a
z2'z*

completeness relations, this is caused by the fact that e acts like a
delta function. To see this consider:
Ve / /
fimy = <3)f> = fdy(3)<513*> )
y _
f / 85 F /
= (duiz) e (2)
18 L 5.2.24

Thus e??  when integrated with the measure (5.1,19) acts Tike a delta
function,

Finally before deriving the path integral for this system; let us
obtain a trace formula in terms of the states |z> since this will indicate
the form of the transition element which is to be calculated.

Using the energy eigenstates |n> the trace of an operator U is

given by:

t, U =§;—<”|U'“> 5.2.25

now inserting the completeness relation (5.2.23) and noting the property

(5.1.24) we are lead to:

£ty U = fcffMg) {3 10l3™> 5.2.26

Therefore note that the diagonal elements of the evolution operator

correspond to <*, t"|z, t'> which we shall consider in the next section .
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5.3 The path integral in the Holomorphic Representation

We wish to obtain an expression in terms of the classical action for
the expression <z'* t"[z', t'> , to do so we shall divide the interval

t" - t' into N equal parts €, such that:

/

/! / 7
t'-£ = Ne Lio ~trs e ta= bt dys { 5.3.1
then insert the completeness relation 5.3.23 (N-1) times in between the
transition element <'*, t"|z, t'>, to give:

' 7 ’ -1 ,.*
<2>)A.>{- I_b > = LZ J/"(S‘) < 3 3'69\1‘}”_;{:?\/-;><§:J{N-,I'"

" 6]3, k>

5.3.2

We now consider the elements: )
” . _iHE
£ %gﬂ » Bem ] ¢ ti> = (561\ | e ]3a>
33, - HO %€
€

(te

5.3.3
Thus (5.2.2) becomes:

&y, t”,ab, t/> = Y [JSJ%J ‘”"f{ Zg% | Z(g 3-:He)}

- [T T Lt L[

- @tﬁ -3 )3 - H(3 )J < f

5.3.4

Now let N+« andé€-o such that Ne= t" - t'|]|
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<3 . 31t> fﬂ[d?;&}iS"‘i/ Mfzr; 3 («e)g(f)
,/ 3/(—:')-1'-:/4&'8(6) f 5.3.5

T3
whereoz;(t) is the lagrangian (5.2.2), minus the zero point energy. The
extra term in the exponent is due tothe fact that at t = t' and t = t" we
have fixed the value of non-commuting operators, and z*(t') cannot be
interpreted as the compliex conjugate of z(t') since they both cannot be

fixed simu]taneous]y|2I

This unusual property becomes clear when we try
to evaluate the integral (5.3.5). To evaluate (5.3.5) let us expand about

a classical solution:

- 00({' t)
36y = 3¢ cw B

3 = 3 gl ()  WHE)
5.3.6
where w(t) signifies quantum corrections about the classical solution.
It is clear from the set (5.3.6) that the boundary conditions
z{t') = z and z*(t") = z'* are observed and that z(t) and z*(t) are not

compiex conjugates of each other!

Now:
. / / 173 4 ‘
U(S/*) —5,{’_{:) = <37 Lt 150t
v /
)‘l cb.){‘[“—{')
35‘3 ,
N UCoo, t-t)
5.3.7
The trace of the evolution operator is obtained, using (5.3.25):
¥ —cw (¢ )
Ly U - 3 oe .
Jarp e Utero, £-t)
l ( tzi_é/)
_ — U (007 .
- -iw(t"—t)

|~ ¢ 5.3.8
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To evaluate U(0, 0, t"-t') we shall use expression (5.3.4) with the
boundary conditions z, = 0, zﬁ = 0 and note that each integration over
Z; is a gaussjan of the form:

_%-\!% +%4% _{U 5’3‘6 '
d3*d3 1 Oy 2 0 £
j L l? | € = | 5.3.9

3 H_ 41
thus the only contribution from U(0, 0, t"-t') is e iw(t"-t')

since the
hamiltonian used in (5.3.3) contains a zero point energy. The final
result for the trace is
-y w(tT t)
LU= ¢ | 5.3.10

| o WE-E)

Note that we did not need to impose any periodicity conditions on the
paths over which we integrated. |
The above results can easily be extended to a system containing a number
of oscillators each having a different frequency. Let the phase space
coordinates of each oscillator be given by p 2=1, ...,N, then (5.3.5)
is generalized to“| :
’
SR

'4

¢
¥ X / ',0 .‘n . J{_-Z({.)
677{ flgecf) 436“7 %70557/- ej(}{“) Zﬁ)f sz);;{fjf ‘f' j
I w

5.3.11

where the lagrangian is simply the sum of the individual lagrangians.
Tne trace of evolution operator for this system is simply the product of
the individual oscillator vresult (5.2.10), therefore:

~ 1 W (€'~ )

Ly -7 ¢

oo — e_,.ue“.,,g)— 5.3.12

Formuia (5.3.12)paves  the way for a quentum field theory. Let us

consider the simplest case, that of single real scalar field ¢(x) and
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its conjugate momentum x(x). Consider an orthonormal set of functions

fn(x) which satisfy:

fo%urﬁw)= 5w

Z {k(x) fo. <y = 8(x-x/)

[

(-V?'-tw\z) Lo = Wy £ oo
5.3.13
The index n is not discrete, as is implied by (5.3.13), but it can be made

discrate by quantizing in a box., Now the variables z, are defined by:
{ 43 [ . ]
= o= ¢ {x) -
ZW = = j z f uo] Ty ~iw, ¢y 5 3.14

Consequently the Lagrangian for the field decomposes into an infinite sum
of harmonic oscillator lagrangians, thus the formalism which has already
been developed can be used, setting N=« ]]l. The transiticn element

is given by (5.3.11) and the partition function is an infinite product:

~ ‘g
Lu. T e B

h (o (£5€) 5.3.15
e

I

The product (5.3.15) is in fact i111idefined when W becomes a
continuous variable. These results can also be written in terms of the

field V(x) defined by:

Vit, x) = Z, ﬁ.,"‘) L, 5.3.16

Then the transition elemant becomes;ll[
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4 -
UVt , Viikat , £-1) =
3 X 4 L {‘u
=jDEvcx)] %P{S'_jdx (V (£, x ) Vitx) +V (£.x) VI ,ze))
. t o * %
+chE fo[g_(vbe\/—VétV ) —cH(V,V)J }
-tl

5.2.17

where54 is the Hamiltonian density expressed in terms of V* and V.

5.4 The Fermionic Oscillator

KWe can now proceed with the quantization of a fermionic osci]lator|5’4|

following the setps of sections (5.2) and (5.3). However in this case we
shall consider thg oscillator ensemble straight away since the anti-
commutivity of the grassmann variables may cause new effeéts which could

be overlooked in generalizing the single oscillator results. Therefore the

lagrangian to consider is:
N , X - R ¥
,fmzez [6/1( £,8,°5 3%, ) - Wy Ee §€) 5.4.1
€= ‘ -~

The momenta ccnjugate to £_and gz are:

2

*. 24 ‘
_ek _ g P =25 =-98
R - JE, ‘4 S¢ ¢ 2% =T 5.4.2

The pair of second class constraints (5.4.1) can be removed using

generalized Dirac brackets (see chapter 2) to yield:

5.4.3
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Canonical quantization (see chapter 2) now replaces (5.4.2) by the

following anticommutator: (h=1)

A A
{ 3o, §,: }= >k 5.4.3

vhere 22 is an operator with eigenvalue £y The hamiltonian is given
by: N A N
G - ez-, Wes, 8, 2 W

5.4.4
The usual representation of (5.4.3) is by pauli matrices|]7]but to be able
to derive the path integral formalism we have to construct a representation
which admits grassmann eigenvalues in which case, hermiticity is not the only
condition an observable has to satisfy but it must also have real numbers as
eigenvalues.

Then the operators whose eigenvalues are odd or even members of

the grassmann algebra will be called odd or even operators. The odd
grassmann variables anticommute with odd operators, for instance if is

/\

As a consequence of this modification, odd operators which do not
anticommute with each other cannot be diagonalized simultaneously. 1let us
now work out the energy eigenstates, the following brackets designate

%2 as annihilation operator and E; as creation operator
A N A Af A A
- - -WE"?
[g JH - Wg, [§, H]--wg, 5.4.6
14
starting with, |o> the around state, which satisfies
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§€|0> = O

A 5.4.7
H o> = ("l/z);we) [0 >
we can construct the energy states: by:repeated application of the
creation operators %Z .
N Ta) A
+ +
\N)ﬁ,«)'“>= o Fg,x“ | o>
H \oelpm > ‘?C‘U«*“ﬁ*“w*‘" _v/l% W) )um,%—}
5.4,8

The order of indices a,B,y ... in the ket is crucial since the states

are antisymmetric with respect to interchange of indices:

) B> = = | Bsx> 5.4.9

evidently as a consequence of (5.4.9) |a,a> vanishes. Now we can construct
the eigenstates of the annihilation operator by expanding it in terms of
the energy eigenstates defined by (5.4.8), it turns out to te similar to
(5.2.14)

AN
In>= ¢ 10> 5.4.10

The fermionic coherent state (5.3.10) has been constructed by
Montonenlsl, Chnuki and Kashiﬁal4l' The Teft eigensfafe of %Z can be
constructed by conjugating expression (5.3.10), leading to

AR |

lole °f - <N 5.4.11



where T have used Ml to represent the set of N gréssmann variables

y =y Nys -..). This construction corresponds to a representation of the

algebra, (5.4.3) by £, = 32 s %+ = £,, One can also construct left
eigenstates of E and r1qht eigenstates of g 4] but that corresponds to

a different representation of the algebra (5.4.3) where Ez is represented
by £, therefore the two renresentations should not be mixed. Wave

functions can be defined as functions of grassmann variables, f(q) by;

fy) = <nif> 5.4,12

also-an inner product for f{n) exists = -~ such that it:is positive definite,

and under which £, @ and are conjugate 2]

5&'

<flg> =hg) = fiwq) FT]) 3(n)

rl")
dpin) = ﬂ dn dn

5.4.13

To check that £, and Séi are conjugate to each other under (5.4.13)
i)

let us consider the following

(f, &F) = [T e fa 2 b
Sﬂ&'l"l rf('\ 9[6 *fw]

+J“l Vl‘”[ ‘Z( E”]AA ]fo))

(£¢, 4;_)

where we have used f dg ——-X(g, = 0 for a grassmann variable &.

The follewing competeness relations can be obtained using (5.4.13)
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<flg> = jJH('))< w[l*f'><q}3>

thus

XJMY]) "> <ny =
5.4.15

or alternatively if f and g are defined over #*
. . { —
fd}‘(n") la><n*l =1

\ N ¥
‘JI‘W‘) - 0(7__7, dn dn, e

Note that in constrast to the bosonic case where the two measures

- 2 N 5.4.16

(5.2.23) and (5.2.24) where identical, here the two measures (5.4.16) and
(5.4.15) are not identical,

Similar to the bosonic case the coherent states [n> are not

orthogonal in the usual sense. Since

-3 B8 X8,

Lg° N> = <ol e e 10>

- 82
= e -

5.4.17

but when integrated with the measure du(q) (5.4.17) acts like a delta

function:

Lin) - f&y(_g) <g|nW™> 1{3(3-) 5.4.18

The final point to discuss before we can derive the path integral is the
trace formula in the gbasis.The trace of an "even" operator U is given

in terms of the energy eigenstates [{al}>
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tracel/ = iz}: iy ) Ull<3> 5.4.19

where the general energy eigenstate 1is represented by |{a}>, and the
sum is over all possible sets {a} excluding the permutations. Now

inserting the completeness relation (5.4.16), we obtain

iU = g jdﬂ(vf)d}l(’g*) <£«}/q><q‘lU!§><§'[i°<§> 5.4.20

now commuting the wave functions <a}|q> through <iflUl£> 5 all the
wave functions with an even number of indices do not‘change sign, but those
with an odd number of indices change from |&> to 1-£> and <ur| to <-q*[ ,

then with a change of variables from £ to - we get the result,
X
tr U = fJﬂ(q")dﬂg‘) <q”[u/§> eat'[«‘i
=fdwf*) <-57/U[E> 5.4.21

The calculation can be easily done for N = 3, where the wave functions

MUey = <fiy =1 > ey
M2y = - <l h3d= -1,
<y113$e—V|3 123> =07,

5.4,22
Thus (5.3.21) for N = 3 becomes:
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4l < /Jy(q*)dp(g*) {W’ UIE> 41, (nflulss,
e, <1 ule> 5+ 1< UTE> 5
00, <IUIES 878" <0 ("  UlRDETE”
) N ¢ n*ulg> 53,

F MK NTIUIE> B E T

or

U - / de(n®) dpg”) / VIS + <1 lUR D5z

2
LTSI, 805 0,8, 3 TI8E)
+<_’7/ U/-{3> ( 71171}73 %ygzyglx)
| 5.4.23

Changing the variable from "] to ~# and £ to -t in the second and third

terms of the R.H.S. of (5.4.23) produces the desired result:

R
LU = [qutpy dptgn <y lUIE > e

_ /a/mg') <-2 )V IE>
5.4.24.

This result was also obtained by Ohnuki and KashiwéI4| where the trace
of the operator is given by summing over all elements <-g*|U|g> rather
than < g£*|U|&> as was the case for the bosonic oscillator. This minus

sign p1ays;an important role in obtaining the right result for the
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partition function, but it cannot be interpreted as an antiperiodic

boundary condition for. the fermions.

5.5 The Path Integral for Fermions

Yle wish to evaluate the transition matrix element:
<qf, t"|g,t'>, t">t', to do so we shall adopt the same method used in section

(5.3) and divide the interval t"-t' into K small parts each of duration &

{”.—'ﬁ'-’Ké .é‘~", -—'6" = & -t”> {,k-‘>--- £’>'6/ 5.5,]

then using the completeness relation; (5.4.16)

o E s 2 /mmg‘)q,tlg S -

<5‘Ta’°\ ]Scf/> 5.5.2

now for small € , we have

. T & - H(RL 5 )e
< §C—H > él‘-ﬂ /E{) .61' > = € 5.5.3

Therefore (5.5.2) results in
, K-l . K-t
(qh U s e > - l.jdﬂ<§z> ep § 5 [R5 'H(&,,f)e]}

5.5.4

14

where £y = g(t') and EE = qf(t"), now expanding the measure and rearranging,

we finally obtain;
k-1 N

VIGNERAIE (7,7 ZNE B e“/’[ Z(gwg,ﬁ +§'</°‘§'<°<)}

¢\ ' * g x -
D 3 CEACHE R T 2y Y0 )

5.5.5



now let k+w,€ o such that KE€= t"-t', expression 5.5.5 leads to

X ,_/_t’ - x * s ’
U g, t-t) fZ,?« 1700 45w exp | 4 2L 05K

't.
+2}£§:Uc")§;(t") +l-'£,a£ ) dt j

5.5.6
where.ﬂ(t) is the lagrangian given by (5.4.1) minus the zero point energy.
Note that gg(t') andgu(t') can not be fixed simultaneously since they are

!2! To evaluate the

the eigenvalues of two non-anticommuting operators
partiticn function we shall follow the same approach as in section (5.3)
and expand £(t) about a classical solution with the desired asymptotic
behaviour,
_«'we(f-t/) , x _itp (€8
5,0 =%¢ AN Tw=-% ¢ +g’(+)
M 5.5.7

*
Clearly gl(t) and gz(t) can not be complex conjugates of each other

because of the boundary conditions, furthermore one can not say that the

naths are antiperiodic. Inserting (5.5.7) into (5.5.6) leads to

~iWy (EEE) )
* a g0 ‘*Zg:ghce w
U(FE 5,t-t)- e U( 20, £-t)
5.5.8
performing the integration results in:
N —[&)‘(k"’-t) M /
= 17 (1 + e U (0,0, ¢t-t , wu) 5.5.9
4 U nay ( )

The gaussian integral U(0,0, t"-t', wa) can be evaluated in a manner

similar to the besonic case resulting,

iy We(t=1)

Ulo,0, 2¢,w,) = ¢ 5.5.10
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which is the zero point energy contribution. The complete answer for

the partition function 1'5:“9|

£ Wy (£~ )

— (W, £t
‘LYU:Z]@ [+ e ( )] 5.5.11

Note that in this calculation too we did not need to impose anti-
periodicity on fermionic paths, therefore the periodicity conditions
usually imposed on the pathsl9| appear to have only a heuristic value.

The field theoretic representation is somewhat simpler in this

case, let us assume the existance of anorthonormal basis wn(x) such that,

jds" hq:mbi) g 'l‘ht") = Owmn

I

- TY1QJH 1£L(x)

(14, = m) Fucw

5.5.12

Where j runs over the space indices. Now expanding y(x) in terms of the

basis wn(x);

Tf/zx) = Z g ) ’LP\«()'S)
h n

~ 5.5.13

expresses the Dirac lagrangian in terms of an infinite sum of fermionic

oscillators; thus the results (5.5.6) can be carried over to the field

theoretic case;
~H (-9
< -Cmal I e Ifn('#lh{> = fD[ ¢:¥) }b(l’)]

% Mf{ fd?b(’a’_(ﬁ’é) etz + ‘/:-(f',/x) ’}[’(fo))

+i]4+ff’x [1’ “?(W-MHL “z'("‘)ﬂiqﬂ”") }L]f

NN

(=

7

5.5.14
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5.6 The Super Oscillator

A supersymmetric lagrangian for a bosonic and fermionic

oscillator can be found:

. . ) ¥
L4y=¢ EE-0E'E <4 22 —s2-w(xkzz) 5.6
2 2 2

2
where ¢ is a grassmann and z a complex variable. The lagrangian (5.6.1)

is invariant under the transformations:

(Z:) =V (2) 5.6.2

3

where V is a unitary matrix with grassmann variables for its anti-diagonal
elements. The functional integral for this system is simply the product
of (5.3.5) and (5.5.6) with N = 1, which is invariant under (5.6.2). Since
the zero point energies of the two oscillators have different signs they

cancel each other and the trace of the evolution operator for (5.6.1) is:

. 7 s
Tl (=) O _nw (e 5.6.3
‘l[,vU"‘ l+e ) =l+a?.ze ¢ )
) g W=t Ay
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CHAPTER 6

SOLITON MASSES

6.1 Introduction

An intriguing property of the sunersymmetric models with soliton
solutions is that the classical mass of the soliton is exact to any order
of perturbation expansion. There is however a certain amount of controversy
concerning this phenomenon. Formal arguments given by Olive and Nitten|29|
indicate that, if the quantized theory observes the supersymmetry of the
classical version then the mass of the self-dual soliton is equal_to its
classicalmass. In supﬁort of this claim, D'Adda, Di Vecchia and
Hors1eyl35|have demonstrated that the one loop correction to the classical

mass vanishes. Their argument rest upon the semi-classical approximationlg]I

M = Mg + .7‘:( T owy - ZWr) 6.1.1
2

whére WB(WF) are the Boson (Fermion) eigenfrequencies of the excitations
about the soliton, and the vacuum energy vanishes due to supersymmetry|50’42|.
Since the number of Fermion and Boson models are equa[ and Wg = W around

a self-dual solution it follows that M = M.y- However the counter argument

put forward by SchonfekilmI

is that upon regularization of the infinite
sum over the frequencies a finite remainder is obtained, which is independent
of the form of the potential.

But a non-vanishing contribution to the mass implies that the
quantum theory does not respect supersymmetry since there is no reason for
this effect, it appears that the non-gero correction to the mass is the
by-product of the regularisation scheme. Indeed one can show that the
inequality of ¥ and We or that of the number of modes (both obtained by
Schonfeld) lead to a breakdown of supersymmetry. However one may argue

that regularization inevitably breaks supersymmetry, for instance
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quantizing in a box of finite length can lead to a breakdown of super-
symmetry since the superalgebra relates the supercharges to translations
and a system in a finite box is not translationally invariant. But box
quantization does not necessarily break supersymmetry, indeed supersymmetric
boundary conditions were employed in the theory of dual strings‘szl.

In the presence of a soliton some of the supersymmetry is lost and
only a subset of the full symmetry remains vah‘dIzgl which does not contain
translations, and it is this remnant symmetry which is responsible for the

vanishing of quantum corrections.

6.2 Supersymmetric Solitons in Two Dimensions

Let us consider the supersymmetric extension of the models

described in section 1.2 . The supersymmetric version of (1.2.1) 151531

L o< { arkq;é”cj; V()T . ﬂ?(c‘@LvZ@)m}J} 6.2.1

where the potential V(¢) here is proportional to the square root of the

potential of (1.2.1) and V'(¢) = %% . This lagrangian is invariant under

the transformations;
S¢ = € 2
59 = (-¥b -vid))e

-

6.2.2

The super current is;
7", [aqs -tc‘VufD)] /5“’(’/ 6.2.3

The equations of motion are:
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Od + vedyvid) + Viey B =0

fﬂqp'- Vf¢)’¢ = O

6.2.4

The set of equations (6.2.4) is satisfied if, y = 0, ao¢ =0 and

%é; =+ Vi) 6.2.5

Thus this lagrangian admits the self-dual solution. 0live and Witten]291
observed that if one derives the commutation relation between two supercharges
by using (6.2.3) a different algebra is obtained to the algebra derived from
(6.2.2). The modified algebra contains an extra term which commutes with

all the generators of the algebra hence named a "central charge". In terms

of the Chiral components of Q, the supercharge, the commutation relations are;l29|

Q;L '='P+ Cp: = E
¢(+co)

{_Q“Qz} = ‘Qf :LQSV((fD) = T
(-00)

6.2.6
where P, =P P,

Clearly T vanishes if ¢(-=) = ¢(+~) but when ¢(x) does not have the same
value at the two spatial infinities it must be a topologically non-trivial
soliton, however T does not count the number of solitons. Now-we can see

that for a solution which satisfies %% = V(¢) we have,

(]-&(‘3') QR =0
or .
@ - .o
6.2.7
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But we can derive a relation for the mass of the soliton using 6.2.7,

since

2})0 = (Q_Qz)z-’- 77

or M ';?'L IT}
6.2.8

where MC is the classical mass and the absolute value of T allows for
anti-soliton as well. Now if one could construct a soliton state |S> say,
(6.2.7) would be interpreted as an operator relation;

(@ -®&) (s> =o0 6.2.9

and from (6.2.8) we have;

M = ¢S Pls> = B ITI = M

However this reasoning assumes the quantum theory to respect the super-
symmetry. Conversely, a non-vanishing correction to the mass of the self-
dual soliton, indicates that the quantization has been carried out in a way

which breaks the supersymmetry.

6.3 The Quantum Corrections

Let us expand the action about a self-dual solution ¢C(x)

<™. fa’x L - ”ﬁuﬂ vihys VidoVid)) Y
+ P (¥ —v/(cbc))ll’} 6.3.1

where y = ¢ - ¢c(x). The term linear in y vanishes, because ¢c(x) is a
stationary point of action, and we have neglected terms higher than
quadratic. The quadrafic action (6.3.1) is the source of one-loop
corrections to the soliton mass so let us investigate some of its properties.

The action (6.3.1) is supersymmetric under the following transformations;
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&Y = ey
8‘4’= (-‘C'?f— v/(d)c))yl €

6.3.2
if ¢ satisfies;
A¢Cm)= iV(d)(x’
Ix ) 6.3.3
and the parameter of transformation should satisfy;
vt »
(12 %) e =o 6.3.4

Assuming the positive sign in (6.3.3) and (6.3.4) the transformations can
also be written as;

sm o= €Y7
S = —a'qr"eaorz
§% = D €
" 6.3.5
where |

/
D= & - Vidw)

6.3.6
The transformations (6.3.5) closes, using the equation of motion;

D =-1iy"5 vy . The algebra of (6.3.5) is

2.

® - ar - T
@.,r] = [@.T] =[5, T]=0
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which is a subset of (2.2.6) and of course to be able to know about T

one has to know the full algebra (6.2.6). Therefore translations in

space are no longer related to the conserved supercharge and box
quantization will not necessarily break the supersymmetry of (6.3.1). The
boundary conditions on the ends of a box of length L which are left

invariant by (6.3.5) are;

+
XEQL x“O)L
Y=
A=qt 6.3.8
where 8 is an arbitrary spinor which satisfies i y' 6 =-¢ . It is not

difficult to see that (6.3.8) is left invariant by (6.3.5).
With these boundary conditions we can now proceed to decompose the
fields of (6.3.1) into their eigenmodes.

The equations governing the excitation modes are;

—dl / . ” _ B\?
(a) [ ;\_XL-&\/(dJC) + V(¢C)Vl¢<):[ylk () Un

(b) [“'5:% - V,”m] /4)“ - - T 1})'* 6.3.9

Mu]t1P1.V1ng 6-3-9) b) by -i Y! d - V(4 ) and decomposing IIJk into
g ™« c ‘

Y = & iy wi..we get;

(a) DD Te = w;’”lk
_ + > +
v DDY - w

(g DD h - 4})"’

6.3.10



Where D is the adjoint of the operator D. The difference in the spectrum

of w; and w: ~ 15 the zero modesl54l. In the case of a single soliton there

is only one zero mode as described in section (1.2). Since w: and Y

satisfy the same differential equation and identical boundary conditions they
B _F

k= Y -

At this point it is clear from (6.1.1) that the corrections to the

must have identical spectrums, thus w

soliton mass yanish, since the spectrum is discrete and we can impose an
ultraviolet cut-off, then every term in (6.1.1) will be well behaved and
the cut-off can be let to tend to infinity without causing: any problems.
However for the sake of completeness let us carry out the decomposition of the

fields in terms of K and wk;

. yl(a:,{-)‘—' Z ak({:) ’V[k(x)

ko
P x k) = 2 E B0
k 6.3.11
where gﬁ(t) = g_k(t) are grassmann variables. Now the eigenfunctions
47K and wk are orthonormal sets since DD is a self-adjoint operator, thus
inserting (6.3.11) into (6.3.1) results in;

—r . e - .
¢ 2 2 gl L €% 1
s™ .1 [ {Z (a¢ - wity *(EECIENE08E, )
© Ry»

'f"/' (Q.: +(.§o‘go)
2
6.3.12

Note that the boundary conditions (6.3.8) do not exclude the zero mode.
The quadratic action 5(2) is supersymmetric if and only if the fermionic
and the bosonic frequencies are identical, and the supertransformations

are,



5, = ' 5., ~ie§g!*

S8, = A€ — ‘Wea,€ 6.3.13

Let us now look at the trace of the evolution operator for the

lagrangian density (6.2.1);

-tH L'gEd),lP]
L (e T) =f4(¢°.¢.) fDWPJ e

6.3.14

Where we have integrated over all end points of the paths over which the

path integration is performed. Now'Sfé;Q] is expanded about the classical
solution ¢C(x) and all the terms higher than quadratic are dropped,
then we are left with

AT — M. T
L, ¢ = € DCT) 6.3.15

Where D(T) is trace of the evolution operator of the quadratic
action (6.3.1) and M. is the classical mass of the so];tonlssl. The
factor D(T) represents the-one Toop corrections to the propagator and
it can be ca]cu]ated using the results of chapter 5.

The result obtained in section (5.6) can be extended to the case

of an ensemble of super oscillators giving rise to
A 00 —inweT

D(r)= 77 [/+2 L e 6.3.16
k»o n=I

where the product is over a discrete spectrum of frequencies since the
length of the box, L, is finite and the ultra~violet cut-off A keeps the

product finite. We thus see that there is no zero point energy
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contribution, thus there are no corrections to the soliton mass. We can

now let A and L tend to infinity and this result will not be affected.

6.4 The Supersymmetric cP" Soliton

We can now look at the corrections to the mass of the CP" soliton.
This model was described in section 3.2. Following the calculations of
the last section what we must demonstrate is that, first there exists a
remnant supersymmetry which leaves the soliton invariant and when the field
is shifted to}za = ¢a - ¢i (x,y) the resulting quadratic lagrangian
density remains supersymmetric under it, secondly the equations of the
excitation modes are identical for fermions and bosons, and finally that
there exists supersymmetric boundary conditions.

The self-dual soliton ¢i(x,y) is static and satisfies;

Dl. de(xl%) = C- él‘a. D’} ¢a(x' la') ‘-‘/3. e \IZ . 6-4-]

where we have chosen the positive sign in (3.4.8). Now if ¢i[(x)yJ
satisfies (6.4.1) and y° = 0 the solution $a(x.y) is left invariant

by the supertransformations (3.2.6) since;

g'q)a - DHD; d)jcxua) &

L (7 ey D

e e w0

6.4.2

Now let us expand (3.2.2) about ¢i(x), but note that the constraints
(3.2.1) and (3.2.3) must first be added to the lagrangian density using

-two lagrange multipliers « and 8, then the quadratic action is given by;
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S.ct-) - fdzx { _ ﬁa -Der‘»y)a ~+4 o((d;c(x)) P_’Iaqu
< VB - D7) )

6.24.3

Yhere the covariant derivative and o are evaluated at the

background field ¢a = ¢i(x) and y = 0., The quadratic action (6.4.3) is

invariant under the following transformations:
Jv\a= (é_'t_l,ra

a
Sq/a:_ _'¢V]G

6.4.4
if the sninor € satisfies the equation;

(; + 1 )e =0 6.4.5

To show the invariance of (6.4.3), it is enough to note that « is given

in terms of ¢2(x) hy:

—‘a M g
o<..7<—¢or‘z>d>

i

r J o
- & VA ()
6.4.6
Where the dependence of Au on ¢2 is given by (3.2.4). Therefore

the first requirement is satisfied. Now let us write the stability

equations:

(2) :
(’- D" D‘ t q/) ,\Yka = —_ L\)Kz. ‘471:1'

(b) ; - A
;’XD:"'L&(X) = =N T,L,gcx)

6.4.7
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multiplying (6.4.7) (b) by iTJDj and resolving wi into wia = 1(1 tro)wﬁ ,
we get,

. L +Q + Q0

t 2Ny, n - 2
(a) ( — D[ D - S ), Aj \> ‘L!/k = f‘dk e

- Q 2 -Q

(b) (—‘DC’D‘._ C—_"J BLAg) 1})“3 = - Wy Tk

6.4.8
In terms of the operator V. = -l—-(-D. +'iE..Dj) and its adjoint V. the
Ty 1 1
equations (6.4.8) and (6.4.7) can be rewritten:
I a PR x
Ve Vi 1 e = Wk My
— — . - a
vx' \/l 1}{( = Wi, ’qu
_ ‘e
Vi W L{/k = (AJ;: 'SL‘: @
6.4.9

Clearly w;a and E satisfy the same equation thus will have the
same spectrum, and the difference in the spectrum of w:g and w;a are

Just the zero modes|54l.

The equations (6.4.9) admit a range of different
zero modes arising from scale invariance, translational iﬁQariance,etc.
however since the zero modes do not contribute to the poles of the
propagator they do not affect the quantum corrections.

Finally, to find the right boundary conditions Tet us write (6.4.4)

as follows:

s < eV

5 = — 1 37e
t_ oAy

ng/ ~ﬁ76%7

6.4.10
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Note that since the soliten is static Ao(x) = 0,
It is clear from (6.4.10) that the supertransformation leaves

the following boundary conditions invariant;

M'w“/ - \A.?—q} = 0

H,x =0,L zl%:oll__

#ja | - 3 6.4.11.

ey =00t

. . . s +
where g; is an arbitrary spinor which satisfies yog; =& . Hence the
quantum corrections to the mass of the multi-soliton solutions of cp"

vanish

6.5 Conclusions

A classical model may have several quantum versions, indeed if one
could think of the classical limit at the limit of H tending to zero any
operator which is multinlied by fi can be added to the algebra of the
quantum model and the classical limit remains unchanged. A prescription
for removing this ambiguity is to preserve as much of thé symmetry of the
classical model as possible in the process of quantization.

The choice of boundary conditions (6.4.11) is one such occasion
where a different set of boundary conditions would have led to a non-zero
correction to the soliton mass hence a different quantum model.

The exactness of the classical mass of the soliton appears to be
a universal property of the supersymmetric models with topological charge, we
also know that solitons are stable due to the existance of the tonological
charge. The inter-relation between tonological charge and the quantization

of solitons is nerhaps worthy of seme further inquiry.
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- SUMMARY

We have seen that the Dirac's method for singular lagrangians can be
extended to the lagrangians which contain both C numbers and grassmann
varisbles. The Dirac bracket for such a dvnamics cah be defined and it was
proved that in the general case the Dirac bracket exists and possesses the
right symmetry properties.

Using this extended scheme we treated the supersymmetric cP" model.

In deriving the suneralgebra of the model, we found that the algebra contains
a central charge, which is comnosed of two parts a field dependent U(1)
transformation which is the central charge of the 0(2) extended supersymmetry,
and a term proportional to the topological charge of the configuration. The
central charge can be understood as the extra component of the momentum of

a four dimensional model which reduces to the 2 + 1 dimensional CP” model

on compactification of the extra dimensicn,

The central charge leads to a bound on the mass which is saturated for
self-dual solutions, resulting in a mass relation for the soliton reminiscent
of all the models with topologically non-trivial solutions.

The other question addressed was the quantum corrections to the soliton
mass. The corrections were found to vanish for solitons which obey a
“self-duality" condition, that is a first order different{al equation
instead of the second order differential equation of motion, The soliton
is not invariant under the full extended Poincaré group but only under a
sub-group of it, however, this remnant symmetry is adequate to guarantee
the vanishing of the corrections, if the regularization is carried out in a
supersymmetric fashion . Although we must not forget that the methods used
in chapter six are semi-classical and a fully guantized model of solitons
may have some very different features but the semi-classical methods can be
trusted to aive some indications of the properties of the model , and this

result stands a cood chancz of persisting in a fully quantized version.
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APPENDIX

THE GRASSMANN ALGEBRAS!3!

The grassmann algebra Gn has n-generators oo L = 1, ..., n, where

§, 5, 5 = o Al

2

since A.1 is true for all k and & it implies that £, =

0. Any element

ge Gn may be represented by a finite sum of homogenous monomials;

A k, - k
g0 = I %} 3. B E, A.2

where g{k} can be real or complex numbers. The set of elements for which
r
only terms with even n are present are called "even" and thoe with odd r,

named "odd". Complex conjugation can be defined over Gn as follows

»*

(99" =9 > (38) ~ 9597 , («g*- "3 .

where o is a complex number. The reversing of order when conjugating, is

necessary to keep the mocdulus real, that is

(g*a)" = 99 "‘

A real grassmann algedbra is one with g; = g "Two kinds of derivatives can

¢
be introduced a left and a right derivative;
—P

2 _ s B n
g-ge( Ek‘ Ek.-) = Sek, gk; §le, ektgk\iks §kv
&«
0 ~F - 5%, T 4o
(gk;" gkr) é_g‘_g = gkv"‘g gk\fk}‘ Ebr_' glk{" gkl K. Ry, \qv-f
A.5
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5 5 satisfy (A.1
in other words —2— and —>— satisfy (A.1).
9, 9E,

Integration can be introduced Sut it will not be the inverse of

derivation but equivalent to derivation:

jdfg g, = O A.6
l3l

Finally an integral similar to the Gaussian integral, can be done;'

d;' gl?S- V)
faen e (o™

Aij is an anti-symmetric matrix thus this result holds for n even only.
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