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PARAMETER JUMP DETECTION IN STOCHASTIC DYNAMICAL SYSTEMS 

R. C. Rogers 

ABSTRACT  

In this thesis the problem of the detection of 

parameter jumps in stochastic systems is considered. 

Previous work on the detection of disorders in a stochastic 

process when the jump time has an exponential probability 

distribution is extended to give optimal detection rules 

for a class of dynamical systems having autoregressive 

dynamics. This leads to a sub—optimal approach to parameter 

jump detection for more complicated linear systems, 

related to approaches proposed in a number of applications 

oriented papers. 

The methods considered here are appropriate when 

parameter values before and after the jump time are known 

although the jump time itself is unknown. In order to 

relax these requirements a study is made of the performance 

of detection rules when the parameters jump to a different 

value to that designed for. The results obtained lead to 

the identification of a set of parameter values to which, 

with some restrictions, a jump is detected on average at 

least as quickly as in the design case. These results are 

obtained in a stronger form in the case of first order 

autoregressive systems. 

It is suggested that these results may enable a 

detection rule having near optimal properties (in a 

minimax sense) to be designed, if only a set of possible 

post—jump parameter values is specified. 
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NOTATION  

General Notation  

R 	The set of real numbers 

N 	The set of integers 

Yt 	The observation process 

A detection time 

Tt 	A detection time such that Tt Zt0  
0 	 to 

T 	The optimal detection time 

Tt 
0 	

Optimal detection time if Tt0  

P 

Yt  

Yt  

t. 

Policy mapping (yu:u0) '} T 

The a-field generated by (yu :u<_t) 

An enlarged a-field permitting 

randomized detection rules 

Jump time of parameters 

A Parameter of distribution of tj  

C(T) Cost function see (2.2.1) 

K(T) Cost function see (2.2.2) 

Ct 	(Tt 
0 	0 

) see (4.1.6) 

K
t 	

(-7t  t0 	 0  

c 

) 

Delay weighting coefficient 

in 	C(T), 	K(T) 

see (4.1.7) 

Q Cost function see (2.2.7) 

Value of P(t>_ti lYt) 	evaluated 

under the assumption of parameters 

jumping to design values 

State vector of system (2.5.6) 

Dimension of vt 

A Wiener process (input noise process) 

Dimension of Wt  

ln(ltt/(1-7t)) 

vt  

n 

Rt  

5 



see (3.1.7) 

"see (3.1.19) 

see (3.1.22). 

h*(•,•) 

St 	Process related to Trt 

Tr( • , • ) Tunct"ion such that Trt=Tr( S 

Y 	The stopping boundary (in the 

appropriate space) 

h(•,•) 

S(v) inf{S:h(S,v)n} 

Ry(v) 	inf{R:h*(l 	+exp(-R),v)~0} 

anb denotes min(a,b), avb denotes max(a,b) 

The abbreviation s.t. is sometimes used for "such that". 

Notation used in Chapter 4  

a,ao,st Parameters of system (1+.0.1) 

(Note: ao<0) 

Q(S,y) -A+(A+c)Tr(S,y) 

Sc 	ln(X/(-(a+1)ao+A)) 

N,P,Q 	Regions of (S,y) space 

0 	Common boundary of P and Q 

S1 

y1 

Sc ln(  A  ) 2A-(3a+1)ao 
-(a+l)ao 	2(a+1)ao 

2 	2X-(3a+1) a,  
yc 	.(a2-1) ao 

r(y) 	 see . (4.3.2) 

In Section 14.3 symbols with a bar correspond to those 

above in the context of the first 

modified problem. Similarly symbols with 

stars are used for the second modified 

problem. 

see (4.1.10) 

see (4.2.1) 

see (4.2.5) 

see (1+.2.9) 

see (4.2.10) 
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In Section 4.4  

4,4 are defined in (4.4.2).,(4..4.3) 

t
J
°. ,t~,t are defined in (4.4.5) to (4.4.8) 

K.°t (Tt ),Kr•(-i't ) are defined in (4.4.9),(4.4.10) 
0 0 0 . 0 

Notation used in Chapter 5  

Denotes probability and expectation 

given that parameters jump to "design" 

values 

Probability and expectation given that 

parameters jump to "non-design" values 

Process associated with transient effects 

in sub-optimal detection rules 
	

see (5.1.5b) 

see (5.1.8) 

to (5.1.10) 

The superscript/subscript indicates 

dependence of T,y on the coefficient c 

P1 ,E1 

P2 E2 

M1 hi 

c 
T si 

C. 
0
(•) Modified cost function used in _ 

proofs of Lemmas 5.2 and 5.3 	see (5.1.20) 

2, ll•11 
	

see (5.1.29) 

rp 	Bound for R.~ (v), 01/ 465.p
1 
	 see Lemma 5.3 

is 	inf{tzt j :Rtaln71,1+vt i,*<p} 	 see (5.1.44) 

Rt 	Process defined such that RSRt 

VtTc>_T C if (5.1.5) holds 	see (5.1.46) 

al,Q2 	Defined in (5.1.65),(5.1.66) 

Q 	Defined in (5.1.64) 

lit Process related to Rt when (5.1.4). holds 

see (5.1.67) 
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CHAPTER 1  

INTRODUCTION  

1.1. 	The detection of parameter jumps in stochastic 

dynamical.  systems has been the subject of a number of 

recent papers. The problem may involve the detection 

either of failures in control systems or simply of 

changes in mode of operation of a system whose state is 

being tracked. Examples are most numerous in the 

aerospace field, particularly in inertial navigation 

where effective detection procedures may enable reduced 

redundancy levels:to be employed. 

Two main approaches have been proposed for the 

case of linear systems considered here. The first 

involves the application of statistical tests to the 

innovations process generated by a Kalman Filter designed 

with pre-jump parameter values. In the case of discrete 

time systems the innovations process until a jump takes 

place will be a sequence of independent normal random 

variables. A chi squared test used to check this property 

should, therefore, be able to identify when a parameter 

change occurs. This method is simple and requires no 

assumptions about the post-jump dynamics. However, this 
not- 

means that it doesA take advantage of all the information 
l 

aitailable. In particular other approaches might be able 

to distinguish better between external variation in the 

statistical properties of noise entering the system and • 

parameter jumps. 

The second approach, which is the one of interest 



here, uses a-priori knowledge of the system struture 

to recognise behaviour typical *of a parameter jump. Here, 

however, it is generally necessary.to know in advance the 

values of the system parameters following a jump. 

Unfortunately, except in simple cases, attempts to 

contruct detection schemes which are in some sense optimal 

lead to infinite dimensional filtering problems and so are 

not feasible. However, several approximations have been 

proposed which in many cases should give near optimal 

performance. 

Because of these difficulties work on parameter jump 

detection methods has been split into theoretically 

complete investigations of simple problems, in continuous 

time, and practical studies mainly involving discrete 

time systems in which proposed schemes are justified 

largely by simulation. In this thesis optimal detection 

rules are derived for a wider class of continuous time 

systems (systems with an autoregressive structure) than 

previously considered. 

The requirement that post-jump parameter values be 

known in advance is a major restriction. In order to 

relax this it seems appropriate to consider the 

robustness of detection rules: that is their performance 

if the system parameters jump to values other than those 

designed for. Robustness is considered in detail here 

and a possible strategy for effective detection is 

outlined in the case where only a set of possible post-

jump parameter values is specified. 



1.2 . Organisation of Thesis  

In Section 2.1 the parameter jump detection problem 

is introduced as a special case of the disorder problem 

for stochastic processes. Suitable cost functions are 

proposed and a-priori assumptions are discussed in Section 

2.2. General properties of these formulations are given 

In sections 2.3 and 2.1  previous theoretical work on 

parameter jump detection in the case of systems with 

trivial dynamics is described. In Section 2.5 the 

problems encountered in trying to extend these results to 

more complicated systems are demonstrated and practical 

approaches to this problem are described. 

Section 3.1 introduces optimal detection rules for a 

special class of system (autoregressive dynamics). Some 

properties are obtained for use in later chapters. In 

Section 3.2 an approach due to Kushner is applied to the 

problem of synthesizing an optimal detection rule. A 

simplified approach is described in Section 3.3 and in 

Section 3.4 a natural sub-optimal approach (related to 

previously proposed discrete time schemes) is suggested 

for use with more general linear systems. Finally the 

investigation of the robustness of detection rules is 

motivated in Section 3.5 and a possible approach described 

for the detection of jumps where post-jump parameter values 

are only known to be in a given set. 

In Chapter it the robustness of detection rules for 

first order autoregressions is investigated. Roughly 

speaking, the results obtained show that optimal or near 

- 10 - 



optimal detection rules will detect 'larger° than 

designed for jumps at least as quickly on average. 

This was not previously entirely obvious as is suggested 

in the discussion at the beginning of the chapter. In the 

case in which the robustness property is only obtained 

for a near-optimal detection rule a bound is established 

on the expected performance degredation using this. This 

is done in Section 4.4. 

In Chapter 5 the robustness properties of detection 

rules designed for more general systems is investigated. 

For the optimal, or, where this is not implementable, the 

sub-optimal detection rule proposed in Section 3.4 a set 
of post-jump parameter values is characterized such that 

the expected detection time is not increased, at least if 

a coefficient in the cost fuction is sufficiently small. 

This restriction corresponds to typical detection times 

being long compared to system time constants. Section 5.1 
develops the robustness theory while in Section 5.2 its 

application is considered. 

1.3 Original Contributions  

In Chapter 2 previously published results are 

reformulated in the form appropriate here. In Section 3.1 

the construction of the optimal detection rule is orginal, 

though the construction of Lemmas 3.3 and 3.4 is inspired 

by Shiryaev [12]. Lemma 3.1 is an application of a result 

in [17]. The use of non-linear filtering is inspired by 

Davis [14]. The formulation of the detection problems in 

terms of the time differentiable process St  (equation 

(3.1.19)) is original, and it is this which enables the 

application of results in [16] to the synthesis problem 



in Section 3.2. Section 3.4 is related to approaches 

listed in [4] for discrete time problems. The discussion 

in Section 3.5 is original. 

Chapters 4 and 5 are entirely original (Lemma 5.7 

has been obtained independently : no previous derivation 

of this result has been found). 

- 12 - 



CHAPTER 2  

DISORDER AND PARAMETER JUMP DETECTTON PROBLEMS  

In this chapter the parameter jump detection problem is 

introduced as a special case of the disorder problem for 

stochastic processes [e.g. 1,11]. The a-priori assumptions 

used later concerning the time of the jump are discussed, 

and various cost functions are defined and their properties 

investigated. The detection of disorders in a class of 

systems having trivial dynamics is discussed, and a summary 

given of the results of [1,2,3]. Finally, practical 

approaches given in [4] to the detection of parameter jumps 

in more general systems are described and some difficulties 

outlined. 

2..1 The disorder problem for stochastic processes  

Figure 2.1.1 

Consider a probability space (t2,F,P) on which is defined a 

process ytERm  ist, and a random variable tj?0. The process 

yt  is interpreted as undergoing a change of regime (a dis-

order) at the time t.. 

- 13 - 



yt is the a-field generated by (y  

is a 01-stopping time, interpreted as the time at which 

the change of regime is " detected" (possibly falsely) 

observing yt . Here 
Vt is a a-field generated by (y u: ust ) 

together, possibly, with other random variables independent 

of tj and ys Vs. The introduction of Vt enables randomized 

stopping rules to be considered. 

Since 't is a stopping time, for any to, given 

(yu,u<-t)) and that T~to,there is a (possibly randomized) map 

or policy P so that 

P: (yu,u>-to) ►} T (2.1.1) 

The performance of a detection scheme for the "disorder" 

occuring at time t is usually measured by its success in 

achieving the conflicting objectives of quick detection and 

infrequent false alarms while no disorder exists. In some 

formulations of the problem an a-priori distribution is 

assumed for t., while in others this is avoided by a 

suitable definition of optimality, or by using a liklihood 

formulation. Usually when an a-priori distribution is 

assumed for t. it is the exponential distribution 

P(t>-tj)=1-e-At for some X>0. This greatly simplifies the 

problem because of the property 

= P(t~t.) for t>-0. 
J 	J 	J 

2.2 Formulations of the disorder problem 

a) With a-priori information about tj  

In this case the performance of a detection rule may be 

measured by its expected cost. Several possible cost 

functions are given here, but as is shown they are inter-

related. 

-14 - 



1) The cost function C(z) is defined as [2,11] 

c(T) = .I(T<t)+ .F.(T-t.),I(T>t~) 	c>O, 	t~ZO 

where t is a Yt-stopping time. 
	(2.2.1) 

The use of this enlarged a-field enables randomized stopping 

rules to be considered. With this cost function a fixed cost 

is paid if there is a false alarm, while if there is a dis-

order before T a cost proportional to the detection delay 

is incurred. Note that only one detection attempt is allowed 

and if this is a false alarm the test terminates. Since, 

unless c is small so that long delays are permitted, the 

probability of a false alarm is likely to be nearly one, an 

optimal detection rule is likely to give an expected cost 

very close to that of stopping at time zero (i.e. 1). 

2) The cost function K(T) is defined as Ell] 

K(T) = -A + (21,4c)(T-t~),I(T>t~) 	c>0, 	t.k0 

(2.2.2) 
where -T is a Yt-stopping time. 

Here there is a reward of A/unit time while the process is 

allowed to continue uninterupted, but a penalty of 

(A+c)/unit time after the disorder occurs. The main interest 

of this formulation is its relation to C(T) which is used in 

chapters 3 and 4. This result was established in [11]. 

Lemma 2.1  

If t.0 is distributed such that 
J 

P(tt.
J
jt.

J
>0,Y0) = 1-e-at 	tM0 	(2.2.3) 

E(K(T) J Yo) = E(C('i) Yo) - P(tj>01 Yo) 	(2.2.4) 

for any Yt-stopping time T>0 

- 15 - 



Proof 

P(T~tiIY ) =-f lim 1P(t.c(u,u+Silu<T.,Y0).P(u<TIY0)du o -0 :6+0 S 	-J 

+ P(ti=OI YO) 

OD 

= f AP(u<ti Iu<T.0/0).P(u<TIY0)du + P(tj=OIYo) 
O 

= AE.(f I(u<t.)I(u<T}-dul Y0) + P(t-•=01Yo) 
0 

= AE(TAt j IY o ) + P(t.=OIYo) (2.2.5) 

But 	E(K(T)IY0) = E(C(T)IYo.) - P(T<tjIY0) - AECTAti IY0) 

from (2.2.1) and (2.2.2). 

= E(C(T)IYo) - 1 + P(T tilYo j. 

- AE(TAti lY0) 

Then using (2.2.5), (2.2.4) follows. 	 ❑  

It follows that if the conditions of Lemma 2.1 are satisfied 

and an optimal stopping time r exists such that 

E(K(T)IYo) 5 E(K(T)lYo) 	V •YI-stopping times T 

then this is also optimal in the sense of the cost function 

C(T). 

3) A further cost function is now introduced which is 

appropriate if the detection procedure does not terminate 

with a false alarm. The situation of interest here is the 

following: The output of a system is observed and a sequence 

of alarm times Tl < T2 < T3 <•••<TN is generated, where 

N = inf{i:Tzt } 	 (2.2.6) 
J 

For each alarm a fixed cost is incurred, and there is a 

further cost proportional to the detection delay ( TN 

The cost Q = N + d(TN-tj) 	.d>O 	(2.2.T) 

- 16 - 



This might be interpreted as an inspection cost following 

each alarm, together with a cost propotional to the 

detection delay. This formulation is proposed in E3]. The 

following Lemma establishes a relationship between this 

situation and that corresponding to (2.2.1) . 

Lemma 2.2  

Suppose that for each t,u>0, conditioning on the events 

T1+t <_ Ti+l  and t. = Ti+u (T°°-0), and on YTi• 

y;.0.+1  is identically distributed for i=0,1,•••,N. 

Also 	P(t?t. Y°) = 1 - e-At, X>0. 

Suppose T is a stopping time which minimizes E(C(T)IY), 

where C(•) is defined in (2.2.1) with 

c = d/Q° 
	

(2.2.8) 

and 	Qo  e inf E(QIYo) 
	

(2.2.9) 

{T1} 

Let P be the (possibly randomized) map defined by (see(2.1.1)) 

P: (y:uz0) 	T 	 (2.2.10) 

Then a sequence of stopping times which minimizes E(QIY0) 

is defined by 

P:(yu 	1)  + 
T1
+1  - T 

	i=0,1,•••,N-1 	(2.2.11) 

Proof  

Under the conditions of the Lemma, minimization of the 

expectation of (Q-i) conditioned on ([1<t.) is an identical 

problem to the minimization of the expectation of Q. 

Therefore only {T1} defined by (2.2.11) for some policy P 

need be considered, since the same stopping rule should be 

used following each false alarm. 

- 17 - 



For e>0 arbitrarily small, gP such that when this is used 

to generate. {T1} 

E(Q-n1Tn<t.,Y0) = E(Q1Y0) = Q°+e. 	Vn, 	(2.2.12) 

Now suppose Ti is generated by a_ policy P and T2,•••,Tn by 

P. Then 

E (QIYo ) = 1 + E(d(Ti-tj)I(T1>tj)1Y0) 

+ (Q°+e)p(T'<t.IY0) 

= 1 + Q°E(C(T1)1Yo) + eP(T'<ti1Y0) 	(2.2.13) 

where the parameter c is given in (2.2.8) 

If P=P., E(Q~Y) = Q°+e, so 1+Q°E(C(T1)1Y0) <_ Q°+e 

If P is defined by (2.2.10), Q°E(C(T1)1Y0) is minimized 

so again 

1 + Q°E(C(T1)1Y0 ) 5 Q° + e 

As a is arbitrarily small, 

1 - + Q°E(C('tl) 1 Y°) <- Q° 	 (2.2.14) 

Now choose P also to be the policy defined by (2.2.10), and 

e to be the appropriate value in (2.2.12). From (2.2.13)9 

using (2.2.12) and (2.2.14) 

Q0+e = 1 + Q
0
E(C(Tl)1Y

0
) + cP(Tl<t~1 Yo) 

<_ Q° + eP(Tl<t
j
1Yo) 

Since P(T1<t.IY 
o 
)<l, it follows that e=0, and optimality of 

~  

P follows from (2.2.12). 	 ❑  

Remark  

If yt is of the form 

dyt = (a+0I(t~ti))dt + .dWt 
	(2.2.15) 

where Wt is a Wiener process, then there is a one to one 

- 18 - 



mapping relating yt to the process 9 where 

?t= Yt - Yzi VtE(T,T?], i=0,1,-••  

(2.2.16) 

yt satisfies the conditions of Lemma 2.2, which then defines 

the optimal detection rule for cost Q, if a solution exists 

for the formulation (2.2.1). Alternatively if yt is generated 

by a more complicated stochastic system, and at each alarm 

time the state of the system is reset to yo, Lemma 2.2 again 

holds. 	As is argued later, the effect of the initial 

condition y.. may not be very important in practice. 

4) An alternative approach proposed by Shiryaev [l] is to 

minimize the expected delay time in detecting a disorder, 

EUT-t.
0
)I(T>t.

0
)1Y

0
) while constraining the maximum permitted 

false alarm probability, P(T<ti lYo). This is refered to in 

[2,12] as the "Variational Formulation". 

In the situation described above, if the conditions of 

Lemma 2.2 hold and {Ti} is a sequence of stopping times 

defined by (2.2.11) for some p, it follows that 

P(Tl<t~ IYo) = P(T2<tjIT'<tj,Vo) = 

P(Tm+1<t ITm<t
j
,Y0) = p,say 

(2.2.17) 

Then 	E(N-11Y0) = p(1+p(l+p( 	 ))) = _P._.. 	(2.2.18) 
1-p 

Therefore constraining the false alarm probability is 

equivalent to constraining the expected number of false 

alarms - (N-1) . 

b) With no a-priori information about tj  

1) In [1], Shiryaev proposes an approach which avoids the 

need for a-priori information about t
0
. The mean delay time 

in detecting a disorder is minimized while the mean time 

- 19 - 



between false alarms with no disorder present is 

constrained to be no less than a given value. In the case 

considered, the solution to this problem turns out to be a 

limiting case of the solution to the formulation (2.2.1) as 

A+0 (see section 2.4). 

2) Willsky and others [4,7,8] have proposed approaches 

based on likelihood ratios in which no explicit assumption 

is made about the distribution of t. A single parameter 

is then chosen to balance false alarm frequency and detect-

ion delay. 

2.3 Observation processes without dynamics  

Disorder problems have been investigated both where the 

process yt is a counting process [10,11], and where yt is 

a process related to I(t?t.) with additive noise. The second 

case is of most interest here. In this section results 

concerning the situation 

dyt = rI(t~t.) + dWt 	0<r<o, 	(2.3.1) 

Wt a Wiener process independent of tj 

are discussed. The distribution 

o) = 1-e-at 
	

(2.3.2) 

is assumed, and except where explicitly stated, P(ti=01Y0) 

is taken to be zero. 

Defining 	Mt = I(tzt) - ft0a(1-I(u>_tj))du 	(2.3.3) 

Mt is a Martingale (this follows from the proof of Lemma 2.2 

for example). Then, as in [14+], the non-linear filtering 

equations (see Appendix 1) may be applied to the equations 

dI(tzt.) = A(1-I(tzt.))dt +dMt (2.3.4) 

dyt = rI(t?tj) dt + dWt 	 (2.3.5) 

- 20 - 



to obtain 

Tr t = P(tzt~.l ly 	= E(I(t?t~ ),I Yo) 

dirt = i (1-Trt )dt + .rTrt (1-Trt) dvt 

(-2.3.6) 

(2.3.7) 

where the innovations process vt (a Wiener process) is 

defined by 

dvt = dyt - Trtrdt 	 (2.3.8) 

It is sufficient to consider optimal detection rules with 

cost function (2.2.2) since Lemma 2.1 implies these are 

optimal with cost function (2.2.1). 

Let to be an arbitrary stopping time and define 

q(Tr) = inf E(-A(Tto-to)+(a+c) fto°Trudul yto ) (2.3.9) 

Tto 	 7t=51 O 

Note that because of the form of (2.3.2) and the Markov 

property of Trt, q is only a function of 

Define 	T = inf{t~0:q(7t)a0} 	(2.3.10) 

T is the optimal stopping time with cost function C(T) or 

K(T) as shown below. 

For any yt-stopping time 1"z0 

E(K(T)IYo) = E(K(TAT)IYo) 

+ E[E(-x(T-T)+( a 	fTTiudulyT,T)I(T?T)I Yo] 

and 	E( -X(T-T)+(A+c) f ,T~ TrudulyT,T) 	>- 0 for "-CT 

by definition of T (2.3.10) and of q(•) (2.3.9) . 

Therefore E(K(TAT)IYo) < E(K(T)IYo) 	(2.3.11) 

Also 	E(K(TvT)lYo) = E(K(T)IYo) 

+ E[E(-X(T-T)+(Ā+c.) f TT rudul Y-)I(TT) I Yo] 

and 	E(-(T-T)+0,+c.) f TT r udul YT 	T ) < 0 	if TS 
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by definition of T (2.3.10). 

Therefore E(K(TvT)IY0) 5 E(K(T)D10) 	 (2.3.12) 

Since T here is an arbitrary stopping time, (2.3.11) and 

(2.3.12) together imply 

E(K(T)(Y0) = E(K(TAtTVT])lY0) 

5 E(K(T)IY0) 
	

(2.3.13) 

This shows the required optimality of T. Note that T is a 

Yt-stopping time, that is, it is not randomized. 

Next it is shown that T is the first crossing time of a 

threshold value by nt. For to an arbitrary stopping time 

define K (Tt ) _ -1~(Tt -to ) + (a+c) ( Tt -t ovt.)I(Tt 2t.) Kt 
0 	0 	o 	J 	o J 

for
- 2t0

2to 	 (2.3.111 ) 
0 

Then 	q(7rto) = E(Kto(T) Yto,T2to ) = E(Kt o (T) Into ,T2t 0 ) 
(2.3.15) 

from (2.3.9). Yto may be replaced in this way since wt is 

a. Markov process. 

If lrto=ff, say and T2to, T is given by some policy (see 

section 2.1) 

F:(y :u<-t ) 	Tp u 	o (2.3.16) 

Suppose this policy is used in fact when 'rrt 
0

'R =. :Then 3?.,Y' 
 

such that 

E(Kt0 
(TP) Int 

0
=R) = (1).t + T.(1-11')T.(1-11')) 

i.e. 415= E(Kt (Tp)t:.<to); Y'=E(Kto 	t~> (Tp)~to) 

ii20 from (2.3.111). As q(7r)50 (consider :r=to in (2.2.2)) 

it follows from figure 2.3.1 that 'Y50. 

Also by definition, 

q(f) ~ 	.ft + T.(1-1) VREEo,11 

(2.3.17) 
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7i 

Figure 2.3.1 

Let 	f a sup{Tr:q(n)<0} - e, 	c>0 

Then 	q(ft) <_ (5'i + i/0.-ft) <_ Pf + T(1-ff) = q(11)<0, 	fi~sjr 

for values of c chosen arbitrarily small. 

Therefore 

q(11) < 0 	V <sup{Tr:q(1t)<0} 
	

(2.3.18) 

Now let fr=sup{qr:q(7)<0}, and suppose q(i)<0 

By definition of Fr, 3e>0 sufficiently small so that 

0 < q(fr+e) 5 Mfr + 111(1-ff) + ca-T) = q(ff) + ea-T) 

This contradiction implies that q(1)=0, and together with 

(2.3.10) and (2.3.18) it follows that 

T = inf{t :7tt>_w } for some rr1€[0,1]. 	(2.3.19) 

Note that, from Lemma 2.1, T is an optimal detection time 

with both cost functions K(z) and C(T). 

Disorders of unknown magnitude. 

Up to now it has been assumed that the dynamics of the system 

are known before and after the occurence of a disorder. Here 

the situation 

dyt = pI(tzti)dt + dWt 	p?r>0 	(2.3.20) 

is considered. 
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Suppose the detection rule discussed above is implemented, 

which is optimal if p=r. Then the process nt is independent 

of p up to time t~ and 

dhrt = A(1-lit )dt + 7t(1-7t)r(p-71- r)dt + r7r(1-Trt)dWt 

(2.3.21) 

Let Rt = In (wt / (1-art)) . Then 

dRt = A(l+e
-R,

)dt + r(p-ir)dt + rdWt 	(2.3.22) 

by Itō's differentiation rule. 

By monotonicity it follows from (2.3.19) that 

T = inf{t:RtzR1} 	for some RYER 

For a given sample path of Wt, let TP be the stopping time 

T if p=p. Then from (2.3.22) TP<-Tr and so 

(TP-t.)I(TP>t.) 5 (Tr-t.)I(Tr>t.) 
J 	J 	J 	J 

But the event (TP<tJ ) is independent of p, so that from 

(2.2.1) 

i.e. 

E(C(T)IYo,P=P) 5 E(C(T)1Y0,p=r), Pzr 

T = arg min max E(C(T)IYo) 
T per 

(2.3.23) 

T a Yt-stopping time. 

This also holds with C(T) replaced by K(T). 

2.1 Analysis of the disorder problem without dynamics. 

In this section some published results on the disorder 

problem are briefly described [1,2,3]. It is assumed that 

(2.3.2) holds. The problem of interest is the determination 

of the threshold value 7 in (2.3.19). 

Define 
f(7i) °- E(I(T<t.) + c(T-t.vt )I(T>t.),Tr.t ~=?r,Ttc) 

(c as in (2.2.1)) 
(2.4.1) 
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Note that since 7t is Markov, and from .(2,.3.19),
, 
f(W) is 

independent of the value of to. 

From (2.3.7) 

dirt = (1-Trt)dt + rTrt(1-Trt)dvt 

where Vt is a Wiener process. Therefore using It8's. 

differentiation rule, 

df(Tr) 	
2 

df 	~A(1-Tr ). 	i 	+Tr2(1-.Bt'r 2r2 ,d f(Tr) 

t 	t dTi I iT=trt 	t d-2 : Tr=u 7 dt 

+ Trt (1-7 rdf(Tr) 	
dv 

dir i=nt t (2.4.2) 

if f(•) is sufficiently smooth. 

But from (2.4.1) 

duE(f(iru) ITrt,TZt) 	= -cTrt 
u=t 

(2.4.3) 

Taking expectations conditioned on Tit in (2.4.2), and 

equating with -cwt gives 

2 )22dfw) -AU-70df(w) 	 2/ 
	e T 	T<T 

di 	 di
2 

and of course 

f(w) = (1-Tr) for Tr~TrY 

since in (2.4.1) T=to in this case. 

Assuming in addition that • 

df('ir) 

1 	
- _ df('~)  I 

=Tr + = -1 
	(2.4.6) 

dir 	Ti=TrY 	
dir 

 

(the so-called smooth pasting condition) the function f(Tr) 

is uniquely defined by the equations (2.4.4) & (2.4.5). 

f(Tr) _ .E(C(T)huo=ff,Y0) 

from (2.2.1) and (2.4.1), so that from Lemma 2.1 it follows 

that 	q(i) = f(Tf) - (1-i) 

with q(i) defined in (2.3.9). 
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It follows that 

( 2 .4.7 ) 

Using this approach, Shiryaev [2] deduces that 71.  is the 

unique solution of 

7r 	- A  
Y 	A+2hr2 

(2.4.8) 
e-z

(z+2A/r2) 	r2e-h ( -27~/r2 
h 	

) dz =  
 i(2+2A/r2) 	

2c 

The necessary assumptions concerning the smoothness of f(Tr) 

for 7r5-71 are justified in [12]. 

Other formulations  

a) In [1], Shiryaev shows that optimal detection rules for 

the "Variational formulation" (see section 2.2) of the 

problem (2.3.1) are also solutions to the above formulation 

based on cost function c(T) for some choice of c>0. With 

this formulation an acceptable false alarm probability is 

fixed and a detection rule chosen to minimize the expected 

delay time ('Cvt -t). For this particular problem the 

threshold value is given simply by 

u = 1 - (acceptable false alarm probability) 

He also deduces that for D(a,X) the infimum of expected 

delay times conditioning on Tztj 

D(a,A) = inf E(T-t .l 	tj ) 
T 

(2.4.9) 

where the infimum is over yt-stopping times such that 

P(ii<t.)Sa>0, and where A is the parameter in the distribution 

for t. (2.3.2), then 
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D(a,A)+ 22[exp(2t/r2)(-Ei( -2T/r2)) - 1 r 
2T 2 1n(1+z)  r2: IDexp (-2Tz /r ) 	dz 1 (2.4  .10 )  • 

as a-}1, A+0 such that ---a. - 

-z 
Here, -Ei(-y) = e-yl0 e 

Y
+zdz l  

(fixed) 

and T is the limiting value as a-►l, A+0 of the mean time 

between false alarms with no disorder present if the 

detection procedure is used repeatedly. 

In [1] Shiryaev shows that, with some restrictions, 

this is the best expected delay time that may be achieved 

by a stopping rule having mean time between false alarms 

not less than T. Using this formulation the need for an 

a-priori distribution for t. is avoided. 

b) Bather [3] considers the multi-stage problem of minimiz-

ing E(Q1Y0) where Q is defined in (2.2.7). Using a similar 

approach to that described at the beginning of this section, 

he deduces that for his problem the optimal solution is to 

stop (for an "inspection") at each time that wt=ny (the 

process art being reset to zero each time a false alarm 

occurs) where 

= a 
y l+a 

(2.1+.11) 
1

= 2fa 
x-2a-1

exp(2A/x).ō 	y 2~exp(-2X/y)dydx 
d 0 

2.5 Detection of disorders in systems with dynamics  

The problems considered in the previous section were 

straightforward due to the simple nature of the observation 

process and the resulting Markov property of the process 

wt =P(tzti lYt). More complicated problems arise when 

considering systems with non-trivial dynamics. 

- 27 - 



Evaluation of the posterior probability of a disorder  

First, the usual state-space model is considered. 

dxt = At xt dt + qt dt + G
t
dV
t 

(2.5.1) 
dyt =: Htxtdt + dZt 

xt , qt ERn ¥t ; yt ,z t eRm ist 

Vt,Zt are independent Wiener processes, independent 

of t. 

At=A°, Gt 	qt
-  Ht=H°s qt=qt 	- Vt<t.a0 	(2.5.2) 

At=A1, Gt=G1, Ht=H1, qt=qt 	vtzti 	(2.5.3) 

Here A°,G°,H4,A1,G1,H1 are constant matrices and 

(it & qt are control processes known to the observer. 

The a-priori distribution P(t~t.
J
It~ >0)=1-e-At is assumed, 

and t. is independent of xo,yo. P(t.~0) is known. 

Then as before, 

Mt ° I(t~t) - ajp(1-I(t~ti))du 	(2.5.4) 

is a Martingale, and so the process 

I(tat.) 
E( 	J 	ly

t 
) 

x 
t 

may be generated using the non-linear filtering equations 

(Appendix i) with (2.5.4),(2.5.1). Note that 

nt 
° P(t>_t.

j
IYt) = E(I(t>_tj)lYt) 

Then 

dTrt = A (1-1rt) dt + 

Et(H1xtI(t~ti))-Et[H1xtI(t?ti)+1°xtI(t<tj)]wt]TdVt 

.(2.5.5) 

where Et( .)=E(.IYo.) and Vt is the innovations process. 

In order to use this expression to generate wt it is 

necessary to have the estimates Et (xtI(t?ti)) & Et(xtI(t<ti)) 
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If xt is Vt measurable, (2.5.5) provides a feasible approach 

to the evaluation of art. Otherwise the non-linear filtering 

equations must be applied again to obtain the necessary 

estimates, but this in turn requires further estimates to 

be provided. In fact 

Et(xtI(tatj)), Et(xtxtI(t~tj)), Et(xtxtxtI(tzti)), 	 

Et(xtI(t<ti ) ), Et (xtxTI(t<ti ) ), Et(xtxtxtI(t<ti ) ), 	 

are required- that is infinite sequences of estimates 	 

A. natural approach would be to truncate these sequences 

in some way. This is discussed in [13], but it is not clear 

how it should be done. 

A class of system for which 7rt may be obtained by 

finite dimensional filtering has the following form 

J 	B 

Dt F 

Observations 

ut 	0 
vtdt + 
	dt + 	dWt 
zt 	Im 

(2.5.6) 

=CO : Im]vt 

vt is an n dimensional process (n>m) 

J is an (n-m)x(n-m) constant matrix, B a constant 

matrix 

Dt = D°, Ft = F°, zt = zt (D°,F°constant matrices, 

z°° a known process) ist<t. 

Dlt = D1 , Ft = F1 , zt = zt (D1 ,F1 constant matrices, 

zt a known process) ¥tats 

idt is an .m dimensional Wiener process 

ut is a (n-m) dimensional known process 

Again t, is distributed so that (2.5.4) holds, and is 

independent of Wt and of vo_,. 

vo is assumed given so that v is Vt-measurable, since 
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dvt = 

A particular 

r.t=r°, 

i rt=r , 

where ut ,zt,zt 

In addition it 

optimal approach 

J 	
lvtdt   + 

0  

example of such 

0 	1 	0 	•. -. 	0 
0 0 1 - 	• 	0 
. 	• 	• 	. 

0 0 	• 	• 	• 	1  
rT 

zt=zt 	
Vt<ti 

zt=zt 	Vt~tj 

are known. 

is shown in 

to the detection 

ut 

0 

vtdt 

chapter 

dt 

systems 

+ 

+ 

ut 

zt 

problem 

0 

I 
m 

is 

dt 

3 how 

dyt 

the 

+ 

a 

1 

for 

natural 

(2.5.7) 

autoregression 

(2.5.8) 

sub- 

the system 

(2.5.1) may be constructed based on (2.5.6) . 

Optimal stopping rules  

In order to construct an optimal stopping time, in the sense 

of the cost functions defined in section 2.2, it is 

necessary to have some a-priori information about the 

controls ut,zt,zt,gt,gt in (2.5.1) or (2.5.6). For 

simplicity, only the case in which these take constant, 

known values is considered. With system (2.5.6) for example, 

(7,v)t is then a Markov process. In chapter 3, the 

corresponding optimal stopping rule is developed. 

Approaches to the detection of disorders in general systems  

Although in many cases it is not possible to construct 

optimal detection rules for disorders occuring in dynamical 

systems (because this involves infinite dimensional filtering 

as described above) several practical approaches have been 

proposed [4,5,9 for example]. The problem is of some practical 
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interest, especially in the aerospace and inertial 

navigation fields [5,8,97. Mostly this work concerns the 

discrete time version of the problem, and since this 

clarifies the way in which the infinite dimensional filter-

ing problem arises a first order example is given here. 

Consider the system 

Xk+l = axk + (b +6I(k~k.)) + wk 

(2.5.9) 
yk = xk vk 

where xk, yk are scalar processes 

a,b,acR are constant, 600, lal<1 

xo-N(xo,ro) 

wk,vk are sequences of normal independent zero mean 

random variables such that Ewk=Evk=1 Vk 

k. (the time of appearance of the disorder) is 

independent of wk, vk Vk and of xo 

P(kzk.) = 1-Ak 	 (2.5.10) 

By Kalman filtering the a-posteriori distribution of the 

state xk, conditioned on observations y0'•••'yk-1 and the 

event kj=1 may be obtained. 

let 

	

	4f _
) - E(x 	=iv aY , 	eY 	) 1 	k 	1 2 ••• k-1 

rk = E([xk-8kik-172lk.=i,Y1 a2'm ak-1) 

In this example, rk is independent of i. 

Then if 	Yk = k~k-1 + 
v(i) 

vk ;? 1s a sequence of independent normal random variables 

of zero mean and variance 1+r k. 

Defining. 

then 

P(i) 	P(k=1,y1 'Y
2, .•. aYk ) Pk  

P(i)= fk(vkl))'N +Pkll 

(2.5.12) 

(2.5.13) 

(2.5.11) 
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Then 	P(kj<_k~yl~Y2....~yk) = E P(i) 
i=1 

CO 

(2.5 .11+) 

using Bayes' Theorem, where fk(•) is the probability density 

function associated with the distribution 17(0,rk+1), and N 

is a normalizing factor eliminated by imposing the condition 

E Pkl ) = 1. 
i=1 

At each time step k, 	will have the same value iii>k. 

However, for each i<_k, it will be necessary to use (2.5.13) 

separately to obtain P(i). 

The computational load of evaluating this increases linearly 

with time k, as does the memory requirement. Since kj is 

unbounded, implementation of an "optimal" detection rule 

involving the disorder probability would require an 

infinitely powerful computer. 

However (in this case) 

v(i) - v(j) = a(V(i) - V(j)) 

so 	Vkl ) - V(j)  -} 0 as k±00 

Therefore it is reasonable to suppose that a good sub-optimal 

policy could be constructed by approximating vk') as k-i 

becomes large in such away that only a finite number of 

terms need be updated independently. 

Much of the work reported in the survey paper [1+] deals 

with methods of approximating jump probabilities (or 

equivalently liklihoods) by exploiting this type of 

structure. Many of the contributions which have appeared on 

failure detection problems in practical situations deal with 

sudden jumps in the system state rather than in the 

parameters [e.g. 5,6]. The filtering problems which arise 

are then, similar, but there is an important difference in 
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s 	 that the evidence of such a disorder in the observations 

will not :continue indefinately. Because of this, the 

performance of detection schemes is then often discussed 

in terms of "missed alarms" rather than of delay times. 

Other contributions [e.g. 7,8] deal with "sensor" and 

"actuator" failures which are permanent and correspond 

more closely to the problem considered here. 

In [5,6] for example, state estimates and jump 

probabilities corresponding to jump times long before the 

current time are "fused" into a single representative value. 

Disorders may only be considered to occur at intervals of 

several sampling periods. In[7] sequential probability ratio 

tests are used repeatedly to test the hypothesis that a 

disorder is present. The possibility that the disorder 

appeared at any time other than the start of one of these 

tests is ignored. 

Simulations carried out on the various approaches 

suggested in [4] indicates good performance in the particular 

situations for which they were proposed. Also in [4] the 

issue of the robustness of these detection rules is indicated 

as requiring further investigation. In chapters 1+ and 5 these 

aspects are considered. 

A simple approach [14, ref 24] to avoiding excessive 

complexity is to use a single state estimate for all possible 

disorder times kj  before the current time, based on "steady- 

state"Kalman filtering for the post-jump system model. This 

is reported to work well, and seems a natural approach where 

detection times are typically long compared with the system 

time constants - an inevitable situation when trying to 

detect small jumps in parameters without too many false 

alarms. 
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In [8] a sub-optimal solution to a problem similar 

to one considered by Shiryaev [1] (the discrete time 

version of the situation described in section 2.3) is 

proposed. 

Davis, in [l4] looks at a continuous time problem 

similar to that described in this section. He considers an 

approximation to the infinite dimensional filtering 

equations which involves using for Et(xt) in equation 

(2.5.5) the value calculated assuming t<ti. The approximation 

seems reasonable if it is expected that detection times will 

be typically small 	compared with system time constants. 
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CHAPTER 3 	DETECTION RULES FOR SYSTEMS WITH DYNAMICS 

In this chapter, results are given concerning the existence 

and properties of optimal detection rules in the case of 

systems with dynamics of the form(2.5.6),In addition, it is 

shown how the methods of E 6) may be used to generate these 

detection rules. 

A natural suboptimal approach is suggested which avoids 

the need for extensive computation at the design stage. The 

increase in the expected cost when using this detection rule 

is discussed. 

An approach to the detection of disorders in the more 

general system(2.5.1) is also suggested. This is related to 

the methods proposed in [4 ref.24] for discrete time systems. 

The problem of detecting parameter jumps to unknown 

values is considered briefly, and the study in chapters 4 & 

5 of the robustness of detection rules designed for known 

disorders is motivated. 

3.1 Optimal detection rules  

The first part of this section follows the arguments of 

section 2.3, but for yt  generated by a more complicated 

stochastic differential equation. Because of this, wt  is no 

longer a Markov process. The cost function K(z) defined in 

(2.2.2) is used, but Lemma 2.1 relates this to the cost C(T) 

when the usual distribution for t. holds. 
• 

In order to show that the optimal stopping time is the 

first time of entry of the process (?rt,vt) into 'a closed set 

(Theorem 3.1) it is necessary to derive a continuity result. 

To do this, an approximating problem is considered in which 



there are only a finite number of possible values for the 

optimal stopping time. This enables a dynamic programming 

approach to be used (Lemma 3.3). 

Some results needed in later chapters are given in 

Theorem 3.2. In addition, it is shown in Definition (3.1.19) 

how if certain conditions are satisfied the process 7rt  may 

be replaced by one which is generated by an ordinary 

differential equation in the definition of the optimal 

detection rule. 

The problem of interest here is that of the system 

defined in (2.5.6) with a more general a-priori distribution 

for the jump time t.. This generalization is useful in chapter 

J B 
dvt  = 

Dt  Ft  

u 	0 
vtdt + 
	jdt + 	dWt  

f zt 	Im  

 

 

(3.1.1) 
Observations: y =[0 : I ]v 

t 	m t 

vt  is an n dimensional process (n?m) 

J is an (n-m)x(n-m) constant matrix, B is constant 

Dt  = D°, Ft  = F°, zt  = z° 	(D°,F°,z°  constant) lit<t. 

Dt  = D1, Ft  = F', zt  = z1 	(D',f1 ,zi  constant) lizt?.ti  

Wt  is an m dimensional Wiener process 

u is a constant (n-m) dimensional vector 

t.?0 is a random variable such that 
J 

dI(t?t.) = p(vt)(1-I(t>_tj))dt + dMt 	(3.l.2) 

where Mt  is a Martingale orthoganal to Wt  and p(.) is 

a bounded non-negative function with bounded derivative. 

I;.B. Unless otherwise stated it is assumed that P(t.
J
=01Y )=0. 

Yo  is assumed given, so that vt  is Vt-measurable. 

The cost function considered is that given in (2.2.2). 
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i.e. 	K(T) = —AT + (A+c)(T—t ),I(T?t ) (3.1.3) 

a Yt-stopping time. 

Define KtQ(Tto ) ° —A(Ttōt0 ) + (A+c)(Tt —t~vto ),I(Tt >t~) 
O 	 to 

Tt zto a Yt -stopping time, to an arbitrary stopping 

time. 	 (3.1.4) 

Lemma 2.1 shows that a detection rule which is optimal with 

cost K(T) is also optimal with cost C(T) (2.1.1). 

Using the non-linear filtering equations (Appendix 1) for 

7tt=E(I(tat.j)IYt) gives (3.1.5) 

d71-
t = p(vt )(1-11t )dt + 7rt (1-7t,t ){CD1~-D°;F1!-F° ]vt+z1-z °}dvt 

where dvt = dyt {[D°F° Jvt+z°} (1-7rt)dt 

- {[D1F1]vt+z1}7rtdt 

dWt+ (I(t>_t~ )-'!rt ){[D1-D° :F1-F° ]vt+z l-z °}dt 

(3.1.6) 

vt the innovations process is a Wiener process. 

Lemma 3.1  

(7r,v)t is uniquely defined given (vū;ut) 

(7r,v)t is a Feller process and therefore a strong Markov 

process. 

Proof  

From (3.1.5) 
Ni  

a 	= b(7rt,vt)dt + o(7rt,vt)dvt 
t 

.110 

where 7re[0,1] 

J B 	u 	0 0 	0 
v+ 	+ 7r 	 v+ 

DO F° 	z° 	B1 -D8 Fl -F° 	z1 _zol/  

A(1-7r) 

and b(7r,v) = 
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ī m 

7r(1-7){[D1-D°:F1-.F°]v +. z1-z°1 

n m 
For this proof, if MERnxm, 'IM'I o• /( E 	E Mid ) 

1=1 j=1 

31(<o s.t. 	

t 
II b(7,v) II < K(1+II v I1 ) 	; II Q (7,v)1 5- K(l+ll 

v 

II ) Tr 

and for any N>0, 31(N<W s.t. 

[v

i b(T,v) - b(R;v-) Il < KNII 

	

Tr 	Tr' 	
for II 

v II 11 v. 

	

Il a(Tr,v) - a(Tr;v')II ` KNIf 

v 	v' 
jII 

	

Tr 	1 

Then E17, Theorem 5.2.2] gives the uniqueness of (w,v)
t 

given (vu,u<_t), (7,v)0 

[17, Theorem 5.3.6] gives the Feller and Strong Markov 

property of (Tr,v)t 	 0 

Definition  

For an arbitrary stopping time to 

h*'(7,v) 	. iinf~OE(K (T ~o ) 1 7 =1,vto =i7)  

to 

where 	is a Yl—stopping time 
101 

(3.1.7) 

T,to 

Then 	h* ( Tr, v) =inf 	E (-A (Tt -to) + 	(c+A ) Trudu Yt ) 
T ~0 	0 	to 	0 
to. 

from (3.1.1+). 

Note that h* is independent of the value of to chosen. 

Define inf{t?ta; h* (Trt ,vt ) ?0} ( 3.1.8 ) 

Lemma 3.2  

E(K (T to) 
t4 to yt J 0 0 

t )1Vt ) V V
E-stopping times 

0 
-ir t ~t0 	(3.1.9) 
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Proof (c.f. section 2.3) 

E(Kto(Tto) I Yto) = E(Kto(~ttOATt ) I Yt ) 
0 	to 

T 
+ E[E(-A(Tt -Tto)' + (A+C) f t0 7i duJ Y 	) .I( Tt sTt ) I Yt ] o 

?t u' Tto o 0 o 
0 

But 	E[-a(Tt -Tto) + (A+C)f to 
7rudul YT ] z 0 if Tt 	

t to 
	Tt 	to 	0 0 

0 

by the definition of Tt (3.1.8). 
0 

Therefore E(Kt 
(Tt 

ATt ) 
0 O 

Yto) s E(Kto(Tto)IYto) (3.1.9) 

Also, 	E(Kt (Tt vTt ) I Yt ) = E(K ( 	) l' ) 0 	0 	.0. 	0 	t0 , to 	t0 
T- 

+ E[E(-A(T;r -Tt 	 u ) + (A+c) j Tto 7rduf Y- ) .I(Tt >Tt ) I Yt ] • .t0 O 	 T 	 t0 	Ō O O 
to 

T,t 
But 	EC A (TTf-TtO 	

T
) ., + (x+c) f to 7r du~ YT ] <_ 0 if Ttto 

0 	

t 
T
t 	0 	

o 

by definition (3.1.8) 

E(K+ (Tt
0 
VT, 0)1YtO) < E(KtQ(z(Q)IYto) 	(3.1.10) 

Combining (3.1.9) and (3.1.10) (since Tt is an arbitrary 
0 

stopping time) 

E(Kt Q  (Tt Q) I Yto) = E(Kto(TtoArt.tovTto3) I Yto) 

E(Kt (T )1Yt ) 	0 
0 0 

It follows from Lemma 3.2 that only non-randomized stopping 

times need be considered, i.e. Tt is a Yt-stopping time. 
0 

Since K(.T)=K0(T), the optimal stopping time for the cost 

function (3.1.3) is 

T = inf{t:h*(7rt,vt)~0} 

It follows from (3.1.8) that T=Tt if Tito 
0 

Also h*(7r,v) = E(Kt (Tt )kt =7i,vt =v) from (3.1.7) 
0 0 0 0 

(3.1.11) 

(3.1.12) 

(3.1.13) 
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Definitions  

N 
(T ) = -A(T ANA-to) + (A+c)(T+ 	-t vt0),I(T >t.) K

U 

 to 	tp 	 to J 	to J 
(3.1.14) 

where, if A °- {iA:i=0,1,•••~}, A>0 

t+ °- inf{uEA:u~t} 

t °- t + - 1 

Tt zt0 is a yt -stopping time 0 	0 

X,c,t0 as before 

hN(~r,v,i) °- inf 	E(KN (T 	) 17r =ir,v
to 

=v,to=iA), 	i=0,132,... 
o to to 

t 	
to  

(3.1.15) 

Lemma 3.3  

hN (tr,v,i) is continuous in 71,v for each i=0,1,2,•.- 

Proof 

First, from (3.1.14), hN(Tr,v,i)=0 for i>-N 

In (3.1.15) only stopping times taking values in A need be 

considered since Kt (Tt << )-Kt (T ) 
0 0 0 0 

it follows that hN(ir,v,i )=hN(i,v,i ) defined by hN ( 7r ,v,N)=0 

and 
	

= min{O,E(hN(7(i+1)A,v(i+1)Asi+1) 

-X+( A +c ) 7r(i+l)AI'ii. 	viern 

since otherwise a stopping rule giving lower expected cost 

is provided by 

Tt 
0 

= inf{tEA:hIJ(7rt,vt,t/A)?0} 

So if hN ('ir,v,i+1) is continuous in ~r,v, so is hN i), 

using the Feller property (Lemma 3.1). rote that for each i, 

hI is bounded above by zero and below by -NXA. The required 

result now follows by induction. 	 0 
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Lemma 3.4  

hN(fny,O) 4 h*(7i,v)= as NA-o, i-}0 

Proof  

Firstly, from (3.1.4) & (3.1.14) 

Kt(To) ~ Ko(To) 	,V yt-stopping times To 

(3.1.16) 

Next, 	KN(TO) = K:(TO) + Wo-TdN (NA)) 

and by (3.1.4) & (3.1.14) 

Ka(To) < Ko T ( o) + 2(A+c)t 

So 	E(Kō(To) 17o=T,vo=v) 5 E(Ko(To ) 170=Tf,v0=v) 

+E(X(T-Tn(No))Z1o=Ir,vo=v) + 2(X+c)o 
(3.1.17) 

Set To=To defined in (3.1.8). Note that by optimality of To 

and since E(tu I zr o=Tr,vo 

EMT O-ToA(Nt)) I7r o=~r,vo=v) 	0 as NA-- 

Therefore from (3.1.17) 

E(Ko(T:o) 17o=Tr, o=v) + E(K0(TO ) I 'rr o=',vo=v) 

as NL--o, L-}0. 

(3.1.16) follows from the definition of hN and (3.1.13). ❑  

Theorem 3.1  

The set {(7,v) :h*(1r,v)?0} is closed. 

Proof  

Suppose 	(Tri,vi)E{(Tr,v) :h*(ir,v)>_0} Vie+ 

and (71,vi) has limit point (Tr,v). 

Then Lemma 3.3 implies that hN.(Tr,v,O)>-0 VN,A 

But from Lemma 3.4 
T 

h ̀ (7r,v,0) -} h*('if,v) 	as NA-* °, A-40 

establishing the theorem. 	 0 



Definitions  

Rt  °- In (nt  / (1-7rt)) 	' 

Suppose (F1-F°) is symmetric in (3.1.1) and let 

xta[In-m:O]vt, yt°[O:Im]vt 

In this case, 
7r 

St  ° In •  - yt(D1 -D°)xt  - 3yt(F1-F°)yt  t 

-yt(z l -z ° ) 

(3.1.18 ) 

(3.1.19) 

Using Itō's differentiation rule gives 

dst =X- 1 
	-gt{C D° :F° ]vt :-+-z ° } - 	E(F1-F°)ii 

dt 	7rt 	 i=i 

(3.1.26) 

where 	gt  °- [D1-D°:F1-F°]vt  + z1-z° 
	

(3.1.21) 

Since there is a one to one correspondence between (S,v) and 

(7r,v) under which any solution of (3.1.6) & (3.1.19) is 

mapped into a solution of (3.1.6) & (3.1.5), it follows from 

Lemma 3.1 that (3.1.6) & (3.1.19) has a unique solution. 

This provides a simpler implementation for a stopping 

rule, since no stochastic integral need be evaluated to 

obtain S. To avoid handling infinite initial values 

(no=0 =>So=-o) the process Ut°- 1/(1+e-St) could be used 

instead of St. Note that if m=1, F1 -F°  is trivially symmetric. 

This condition will also be satisfied in other problems 

considered later. If F1-F°  is not symmetric it is not in 

general possible to make a transformation of this sort. 

If St  is defined 

11(5,-fl °-  (3.1.22) 

where n(S,v) is defined so that 7rt=7r(St,vt) (see(3.1.19)) 

i.e. 
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_ 

1 + expE-S-yT(D1-D ~)x-iYT(F1-F~)Y-YT(zl-z~)7 

where x=EIn-m:O]v ; 	y=C0:Im7'v 	03.1.23) 

Theorem 3.2 

h*(lr,v) is a non-decreasing function of 7r for fixed v. 

h*(Tr,v) is continuous for fixed v (except possibly at Tr=O) 

Proof  

Consider an arbitrary fixed value of v, v, and topping 

time t
o 0 

Let 	(1)- = E(Kt (Tt )lt - S.t0,7rt =7,vt =v) 
0 	O 	O 

= E(Kto(Tto) It;.>t0,7Tt0=fT,V =v)
. (3.1.2+) 

i.e.(I . is the expected cost of using the policy 

P:(vu,urto) -} Tt (see section 2.1) which is optimal if 
0 

7t =Tr, conditioned on 	 o), while ~~ is that conditioned o 	 J 
on (t.

J
>to) . 

Then 	h*(ir,v) 	+ y►~.(1-ji) 
	

(3.1.25) 

Let 14(41,x) be the expected cost of using this policy if in 

fact 7t =ft 
0 

h*(ft,v) = E(Kt0 	0 (TP )17 =ft,vt0=v) 

=~~.~ + '..(1-R) (3.1.26) 

By optimality h*(7r,v) <_ h;(ir,v) V7€[0,1] 	(3.1.27) 

Also 	h*(ir,v) = h1(ir,v) S 0 as Kt (t0 )=0 
0 

and (1)~z0 since tj.<_to=>K 0(T)z0 	VT?to (see (3.1.4)) 

This implies (see Figure 3.1.1) that 

h*(r,v) <_ h*(ijr,v) 	Vir<Tr 
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h*(7,) 	Figure 3.1.1 

So h*(Tr,v) is non-increasing with decreasing Tr at Tr='i. 

Since 	is arbitrary, h*(Tr,v) is non-increasing with 

decreasing Tr VTre [ 0,1 ] . This proves the first part of the 

theorem. 

Next, suppose h*(Tr,v) is discontinuous in Tr for some v and 

Tr>0. Then 3 .71,r2>0 such that 

> h*(Tr2,v) + S 

for some S>0 (fixed) where 7x1,72 may be chosen such that 

I Til- 1x2' <E for any E>0. 

Since h*(Tr2,v ) = h*(.ff 
2 

h*(Trv) > h*2Tr2,v) + d 

Choose Tr' s.t. 0<Tr'5min(Trl,Tr2) 

From Figure 3.1.1, (1)n_ c1) 
72 

(3.1.28) 

(3.1.29) 

Vr'5r2 1J .5 T 
Tr - 	Tr 2 

because h4,.(Tr2,v) z h* ( Tr2,v) 

So 	0 5 dh  TrZ(Tr s v) _< 1,,r. - ''7r • < o 	VTr2 T1.'>0 
dn 

Therefore 

h*(71,v) 5 h*(Tr1,v) < h (Tr ,v) + .(.~.-~Yn.) 
2 	. 2 2 

for Tr2,Tr1z Tr', from (3.1.27) & (3.1.28) 
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(3.1.31) 

0 

Comparing this with (3.1.29) gives a contradiction since E 

is arbirarily small while d>0 is fixed. So h (rr,v) is 

continuous in it for Tr>0. 	 ❑  

Corollary 3.2.1  

From Theorem 3.2, 9 a function 711(v), van s.t. 

h'*(7r,v) Z 0 	¥1rZ7r ,(v) 

Therefore Tto = inf{tzto:7rty(vt) } (3.1.30) 

Corollary 3.2.2  

When St is defined, h(S,v) is a non-decreasing function of 

S for fixed v. 

h(S,v) is continuous in S for fixed v (except possibly at 

S=-c0) . 

= inf{tzto:h(St,vt)Zo} 

= inf{t zto :St~SY (vt )} 

where S(v) is defined so that n (v)=7r(SY(v),v) 

Definition 

The stopping boundary yR is defined as 

YR ° {(R,v)-h*(1 	+exp(-R),v)z0} n (3.1.32). 

	

closure{(R ,v):h*( 		1 	,v)<0} Ztexp(—R~ 

	

and if St is defined 
	

(3.1.33) 

YS °- {(S,v): h(S,v)~0} n closure{(S,v):h(S,v)<O} 

The superscripts are usually ommited as the appropriate 

definition is clear. 

Note that 

Tt = inf{tzto:(R,v), SYR} 
0 

if R 5R (v ) =1n(ir (v ) /(1-ir (v )) ) 

	

to Y to 	Y to 	Y to 

where Rt is defined by (3.1.18). A similar result applies 

for y. 

- 45 - 



closed 

"stopping 

set 

Figure 3.1.2 

1-dimensional 

example 

3.2 Determination of the stopping ;boundary  

A natural approach to the determination of the stopping 

boundary y  would be to consider a sequence of approximations 

of the form (3.1.14). It follows from Lemma 3.4 that 

hN(.Ir,v,0) + h*(u,v) 	as NA-400,A-}0. 

Evaluation of h*(7r,v) would enable the "stopping set" to be 

determined using the equation (3.1.11). Difficulties might 

arise however in the solution of the approximating problems 

by the dynamic programming approach of Lemma 3.3. Firstly it 

is not clear how best to construct a grid of points in the 

state space of (lr,v)t  so that an approximating finite state 

process may be constructed. Secondly, a rigorous proof of 

the convergence of the solutions as the grid size is reduced 

might be complicated. Thirdly, a great deal of computation 

would be involved, as a two stage approximation is used. 

In [16) a more direct approach is proposed to the 

solution of optimal stopping problems. This involves the 

solution of corresponding problems for an approximating 

sequence of finite-state Markov processes. However in this 

case the time between successive state transitions of the 
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approximating process varies dependent on its current state. 

In this way the first two difficulties mentioned above are 

overcome, and while the problem still requires considerable 

computation,one stage of approximation is avoided. Certain 

conditions do need to be satisfied, but this is possible at 

least when St is defined (see (3.1.19)). 

For the remainder of this chapter p(v) is set equal 

to A . 

The approximation 

Let the process Xte
n+1 
R 

	
Vt satisfy 

dXt = f(Xt)dt + a(Xt)dVt (3.2.1) 

where Vt is m dimensional Wiener process and f(-), 

v(•) are Rn+1 and (n+1)xm matrix valued functions on 

Rn-►1~ respectively satisfying the uniform Lipschitz 

condition 

(3.2.2) 

IIf(X)-f(X')JJ < KIIx-X'u, IIa(x)-0.0(I~5 ')  

for some K<o, where Pa(- )B is defined 

•n+l m 
by 	Ha(x)q°- ✓( Z 	E a(k)22.; ) 

1=1 j=1 

Let a(•)=a(•)o(•)T, and suppose that 	(3.2.3) 

n+l 

J ii 
a..(x) ~ E la

1
..(x)+ 	Vx, i=1,2,••••,n+1 

j=1 
j4i 

Let k(•) and b(•) be bounded continuous real valued functions 

on Rn and 

k(x) z ko 	for some ko>0 

Define R(x,T) = E [rT k(Xs)ds + b(XT)] x .o 

where Ex(•)=E(•IXo=x), and T is a stopping time of the a-field 
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generated by (Xs:s5t) an possibly, other random variables 

independent of Vs Vs. 

Also, (3.2.6) 

Now let Eh, h>0 be a Markov chain with state-space 

n +1 
xERn+l:x= E j(i).hei} 

1=1 

{ei} an orthonormal basis for Rn+1, j(i) integer for i=1,•••n+1 

P( e1+1—Y lE'=x) = ph(x,Y ) = Qh(x,y) /Qh(x ) (3.2.7) 

n+1 where Qh(x,xthei) = aii(x)- E ~aij(x)~ + h.f(x) 
j=1 
j i 

Qh(x,x+hei hej) = a..(x), iOj 

Qh(x,x-heifhej) = a..(x), 

Qh(x,y) = 0 for other y 

h(x) = 2E6.. (x) - E lai.(x)I + hElfi(x)I 	(3.2.9) i 
5-#j 

Here for r€R, r+trr.I(r>0), r-=-r.I(r<0) 

h(x) °.h2/Qh(x) (3.2.10) 

h 
If t is a (integer valued) stopping time for the a-field 

generated by ( 
j 
, j <-i) and, possibly other random variables 

independent of . Vj, and Ex(e)<c Vx€Rn+1 where 

Ex(•)=E(•IE0=x) 

Ch-i  then 	Rh(x,th) e E CE k( ).Lth i(E) + b( y)] 	(3.2.11) 
x i=0 	1 

Vh(x) °- inf Rh(x,th ) 	 (3.2.12) 
th 

Theorem 3.3 

For each xeR
n+1, - Vh(x) + irif.. R(x,T) as h40 

where the infimum is over all stopping times satisfying 

h>0 

(3.2.8) 

(3.2.6). 



This result is part of [16,Theorem 8.2.1]. 0 

To apply this result to the detection problem in the 

case where St is defined (see (3,1.19)), Xt is identified 

[v]
1 	iv 

with 	
U 	, where Ut .l+exp(-St) , x with U . 

t 

Then 

dt
t = Ut(1-Ut)[,—~t-gtgt - gt([D°:F°]vt+z°) 

m 
E -(F1-F°)ii] 	(3.2.13) 
i=1 

with gt defined in (3.1.21). dU t•'=0 if ¶ =0. 
dt 

Equations (3.1.1) and (3.2.13) do not have the uniform 

Lipschitz property, but if r<o, K may be found so,(3.2.2) 

does hold if 114,11v15_ 2r. 

Since it is in any case necessary to bound the state-

space of the process Xt in some way so that Vh in Theorem 3.3 

may be evaluated, an arbitrary modification to (3.1.1) may 

be made for Ilvll> 2r so that (3.2.2) holds. 

Set 	k(X) = al + (c-aa)7r 	 (3.2.11+) 

and 	b(X) = (1+M)(1-r)(1-I(11 hr) II IIsr)n6) 	0<6<-r 

(3.2.15) 
where 7r = ir(1n(U1(1 U) ),v) 	(see(3.1.23) ) 

and 	a€(0,c/a) so that (3.2.1+) is satisfied. 

Theorem 3.3 now states that Vh(x)->inf R(x,T) at each point 

in the state space of Ei defined by (3.2.7). The restriction 

(3.2.6) is unimportant since stopping times for Xt having 

infinite expectation are trivially non-optimal. Since b(X)=0 

if Ilvll= r+6, the process. El will stop before leaving the set 

on which livIls r+6 if the optimal rule is used, so that Vh(x) 

may be evaluated over only a finite number of values of x. 
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From (3.1.2) 

Ex(ir --Tro) _ .EX(7t e-a f ō 7rsds) 

for any Vt-stopping time Tz0 

Then from (3.2.5) it follows by addition that 

R (x, T ) = E C -aT + (X+c) f o  7rudu - q (TrT, vT) ] 

+ .(1+a)(1-70) 

there q(v,v) a I(fIvIIZr) (111711 r)"(1-Tr o ) 

Therefore 

(3.2.16) 

Vh (x) - (1+a)(1-7 
0 	

inf Ex[K(i)-q(TrT,v-)] as 11+0
T  

(3.2.17) 
Now 	a) Osq(Tr,v)5.1 VTr,v 

b) g(?rT,vT)=O if AvT115r 

If Px(I1vTJI>r) 	0 as r+o, then Ex(T)-3o as r+ co. From (3.1.3) 

this implies that E 
x(K(T))+o, so that a better stopping time 

exists in the infimum of (3.2.17). Hence only T such that 

c) Px(11v- Il>r)+0 as r+« 

need be considered. 

From (a),(b)&(c) it follows that 

inf Ex[K(T)-q(Tr.,v-)] + inf EXK(T) = h*(Tr o ,vo ) 
T 	 T v 

U  =x 
0 

as r+o 	(3.2.18) 

Vh(x) may be evaluated by dynamic programming, assuming an 

artificial horizon. 

Define Vh(x,N) = b(x) 

Vh(x,i) = min{[ pl(x,y)Vh(y,i+l)+ k(x)Ath(x)],b(x)} Y  

i=0,1,•••,N 

then 	Vh(x,0) -} Vh(x) as N-}° 
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This is discussed, for example, in [18,chapter 7]. 

Finally, note that it is stated in [16] that the above 

results hold if b(x) is replaced by 

(1+a)(1-70 ) 

and the process is forced to stop at t if Il
vt II

=r. This seems 

a more natural approach as h*(Tr,v) is likely to be nearer 

1-Tr than zero. The requirement that a>0 in (3.2.14) and 

(3.2.15) is probably unnecessary in this application since 

in any case the optimal stopping time has finite expectation 

(see [16]). However this is not proved. 

Once the function h*(Tr,v) has been evaluated in this 

way, the stopping boundary y  may be identified by making the 

appropriate co-ordiate changes and using the definition 

(3.1.32) or (3.1.33). 

Although it has not been explicitly assumed ,the system 

(3.1.1) would need to be stable at all times (eigenvalues 

of 	
B 

	
strictly negative ist) to avoid the need to kt Ft]   

consider large values of r. 

Remark  

If the formulation (2.2.7)is used, with, say, v 
T
i reset to 

zero for i=11•••,N so that the conditions of Lemma 2.2 are 

satisfied, the optimal detection rule could be obtained as 

above, with c determined itteratively as the solution of 

cE(C(T)170=O,v0=O) = d 	(3.2.19) 

where 	E(C(T)170=O,v0=O) = h*(0,0) + 1 

from Lemma 2.1. 

As the expectation in (3.2.19) is non-decreasing with c, 

from (2.2.1), this equation has a unique solution. 
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Alternatively a more direct approach might be 

considered, it which a finite state version of this 

formulation is constructed. [3] considers this problem with 

observations of the simpler form (2.3.1). 

In practice, the requirement that vt  be reset at 

each false alarm time is unlikely to be important if typical 

inter-alarm times are long compared to the system time 

constants. In that case the effect of these "initial 

conditions" of (Tr,v)t  would usually become insignificant 

before the stopping boundary was approached. 

Examples  

In the folowing examples a in (3.2.14), (3.2.15) was taken 

to be zero (see comments above). By making suitable trans-

formations to the state space of (Tr,v)t  a more flexible 

grid system was used. Forced stopping was employed for 

Ivt11z r. In each case the effect of this on the stopping 

boundary shape was checked by considering both the case in 

which terminal cost zero and 1-7 is paid if the process 

reaches this boundary before y. The estimates of Tib  obtained 

in this way are upper and lower bounds respectively for 

that which would be obtained without this artificial 

boundary. In the-examples here, the same stopping boundary 

is obtained in both cases. 

The system considered was 

dyt  = ayt  dt + dWt 	t<t.  
(3.2.20) 

dyt  = bytdt + dWt 	tztgi  

P(tzt.IV)= 1-e-At  
0 o 

t. independent of Wt  
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In an attempt to reduce the computation required a two 

stage procedure was used. Initial..itter.ations use a coarse 

grid size, and then the spacing of the grid points is 

halved and further itterations carried out. 

EXAMPLE 1 

a=-1, b=0, A=0.01, c=0.1 

200 itterations with coarse grid 

200 itterations with full grid 

y ~Y(y) 
6.00 • Y 1.00 
5.66 Y 1.00 
5.32 . 	Y 1.00 
5.00 Y 1.00 
4.69 Y 1.00 
4+.39 •Y 1.00 
4.11 Y 1.00 
3.83 • Y o.99 
3.56 • Y 0.97 
3.29 • Y 0.92 
3.04 • Y 0.84 
2.79 	 Y o.90 
2.55 Y 0.87 
2.32 Y 0.83 
2.09 0.83 
1.86 Y 0.79 
1.64 Y o.76 
1.43 Y 0.74 
1.22 Y o.68 
1.01 Y 	 0.67 
0.81 Y o.63 
0.60 Y 	 0.59 
0.40 Y 	 0.57 
0.20 Y 	 0.55 
0.00 I . . 	. . 	. 	1 0.55 

0 0.2 0.4 0.6 0.8 1.0 

U 
Figure.3.2.1 

Note that the stopping boundary is symmetric about the 

y=0 axis so only positive y need be considered. 
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EXAMPLE 

2 
3 
4 
5 

a 

-1 
-1 
-1 
-1 

b 

o.8 
1.3 
2.0 
1.3 

0.01 
0.01 
0.01 
0.005 

c  

0.1 
0.1 
0.1 
0.05 

" coarse 
itterations" 

180 
180 
360 
500 

"fine 
itterations" 

160 
160 
160 
300 

Below the numbers 2 to 5 are used to mark points on the 

corresponding stopping boundary. In case of co-incidence 

the lowest number is shown. 

Y 

5.34 
5.03 
4.73 

• 
• 
• 
2 
2 

2 	 3 
3 
3 

4.45 2 3 
4.17 • 2 3 
3.91 2 3 
3.66 • 2 3 
3.41 2 3 4 
3.18 • 2 3 5 4 
2.95 • 2 3 5 4 
2.74  • 2 3 5 4 
2.53 • 2 3 5 4 
2.33 •. 2 3 5 4 
2.13 • 2 3 5 4 
1.94 • 2 3 5 4 
1.76 • 2 3 5 4 
1.58 • 2 3 5.  4 
1.41 2 3 5 4 • 
1.24 • _. 2 35 4 • 
1.08 • 2 3 5 4 - 
0.92 • 2 3 5 4 • 
0.76 • 2 3 5 4 • 
0.61 • 2 3 5 4 • 
0.45 • 2 5 4 • 
0.30 • 2 5 4 - 
0.15 • 2 5 4 • 
0.00 • • • 2 5 • 4 	 

U -> 	 1 

Figure 3.2.2 

The relationship between a,b and the stopping boundary 

shape is further investigated in Chapter 4. 

Note that the relationship between U and it is not 

the same for each of the examples above: however it is the 

same for examples 3 and 5 since a,b have the same values in 

this case. The effect of reducing A and c while keeping 

their ratio unchanged is a slight shift of the boundary to 

the right. 
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0.0 0.2 0.4 0.6 0 .8 1.0 

Figure 3.2.3 

In Figure 3.2.3 the stopping boundaries are plotted in 

Tr,y space. For large y the discretization of U becomes a 

problem, especially in the case of example 2. Note that 

for the three largest values of y considered the estimate 

of 7 in this case takes its smallest possible non-zero 

value. However, the standard deviation of yt  is no more 

than 0.625 both before and after the jump so that this 

may not be too important. 
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3.3 Simplified detection rules  

As is clear from the previous section, the determination of 

the optimal stopping boundary y involves considerable 

computation, especially for systems of high order. It seems 

worthwhile therefore to consider the performance of a class 

of simpler detection rules, for example 

T = inf{t:Trt>_f} for some Re(0,1) 	(3.3.1) 

Unfortunately no concrete results could be obtained for this 

problem. The reason why, in general, the optimal stopping 

rule is not of the form (3.3.1) is that the ammount of 

information about I(t~t.) given by observations (3.1.̀1) at 

time t depends on the value of vt. If the value of vt is 

such that little new information is expected to be available 

in the near future it is more attractive to stop immediately 

than otherwise. If considerable information is expected, the 

possibility of incurring delay costs while waiting would be 

more acceptable. 

Values of vt much more than the slowest system time 

constant in the future are largely independent of the current 

value. If the "jump" in the parameters which is to be 

detected is small so that typically much longer periods of 

observation are needed to detect it, use of a stopping rule 

from the class (3.3.1) should be possible without a large 

increase in expected cost. 
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3.4 Detection schemes for general systems  

In section 2.5 the following problem was introduced. 

dxt = At xt dt + qt dt + GtdVt (3.4.1) 

dyt = Htxtdt + dZt 	 (3.4.2) 

where xtERN , ytERm ist 

Vt,Zt are independent Wiener processes, 

independent of t. 

P(tt.) = 1-e 	t~ independent of xo ,yo 

At =A°, qt =q°' Gt=G°, Ht=H° 
	

Vt <t 

At=A1, qt=q1 , G =G1, Ht=H1 	Vtzt. 

where A°,q°,G°,H°,A1,g1,G1,H1 are constant 

matrices and vectors 

A°,A1 have strictly negative eigenvalues 

As discussed in chapter 2, it is not in general possible to 

generate ut=P(t>_t.!Yt) with a finite dimensional filter, and 

so there is no realizable optimal detection rule. 

A natural sub-optimal approach is given here, follow-

ing the discrete time versions suggested by Chien [4,ref 24] . 

This involves the use of a "steady-state Kalman filter" 

designed for the system (3.4.1),(3.4.2) with post-jump 

(At=A1 ,gt=g1 ,Gt=G1 ,Ht=H1) parameters. 

Suppose that an a-priori distribution for xo is given, 

xo-N(Ro,Qo). 

Define Ri as the Kalman filter estimate of xt for the system 

dxt = A1xtdt + gidt + G1dVt 

(3.4.3) 
dyt = H1xtdt + dZt 
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go 

1 

0 

where xo-N(xo,Q°) if i=0; 	xo-"N(Ro,Q1 ) if 1=1 

and Q1 is the "steady-state" error covariance matrix 

associated with the estimate Rt, i.e. it is the unique 

positive semi-definite solution of 

Then 

0 = G1G1T - Q1H1TH1Q1 + A'Q1 + 
QIA1T 

dii = (Ai-Q1H1TH1)Rtdt + gidt + Q1HiTdyt 

Rio 	Ro 	for i=0,1 

T 
Note Al-Q1H1 H1 has strictly negative eigenvalues for i=0,1. 

This is because Al has this property (see e.g.[21, Chapter 12]). 

If rt denotes the Kalman filter estimate of xt when t, is 

known a-priori, Wt is .a Wiener process in the equation 

dyt = I(t<t.)H°rt dt + I(t~t.)Hlrt dt + dWt 	(3.4.6) 

Now suppose that instead of (3.4.2), yt is generated by 

dyt = I(t<t.)H°qdt + I(t~t.)H121 dt + dWt 	(3.4.7) 

where 	satisfy (3.4.5). In this situation the following 

equation is satisfied 

50-Q ogo ~, 
t 	t 

4t-Q1H1Tyt 

A°-Q°H°TH0 	0 	(A°-Q°H°TH°)Q°H
°T 

0 	A1-Q'H1TH1 (A1
-Q1H1TH1)Q1H1T 

d 

	

4 	1 

	

Lt 	Lt 	Ft 

" 
R°-Q°H oT y 

t 

R1-Q1H1YY t  dt + dt + 

  

0 

0 

I m 

dWt 

  

yt 

(3.x+.8) 
yt 

where L°=H°I(t<t~), Lt=H1I(t~t~ ) 

°° TI( 

	

	T t<t~) + H1 Q1H1 Ft=H°QH 	 I(t~t~ ) 
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This equation has the form (3.1.1) so an optimal detection 

rule may be constructed for the situation (3.1.7). Note that 

Ft is symmetric so that a process St may be defined as in 

section 3.1 (equation (3.1.19)). 

The sub-optimal detection rule proposed is that which 

is optimal where (3.1+.7) holds instead of (3.4.2). Comparing 

(3.4.6) and (3.1+.7), note that yt is the same in either case 

for t5t.. For t>t., 21 and r
t J 	t 	t 

dut = (A1-MtH1TH1)utdt + g1 dt + MtHhTdyt 

dyt = H1utdt + dWt 

where, as t-t.
0 

increases Mt tends to Q1 in each case. 

The differences involve transient effects at time t.. 
J 

Lemma 5.8 it is verified that,(where (3.4.2) holds) 

IIII 	 -b.(t-t•) BM  .t 	11 I tj'rt • 'Rt • ) < a( rt • ,x,it • ) e 	J Vt>t~ 
J 	J 	J 

for some a(.,.)400, b>0 such that 

E(a(rt ,A,it.)Iti) <- d < co 	lith for some d 
J 	J 

Because the differences between the actual system and that 

for which the detection rule is optimal are limited to 

transient effects it seems likely that near optimal perform-

ance is attained in the case where detection times are 

typically long compared with system time constants. 
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3.5 Detection of parameter jumps to unknown values  

The optimal and sub-optimal detection rules considered so 

far in this chapter require a-priori knowledge of the 

system parameters after the disorder has appeared. If only 

a set of possible values is specified a more complicated 

problem arises. 

Suppose yt is generated by a system with dynamics 

specified by a parameter ateA. As usual, suppose 

P(tatj)=l-e-At, and let at=a° ist<t.. 

For tat. 	at = a1EA1cA 
	

(3.5.1) 

where al is not known a-priori. 

In order to define the expected cost E(C(T)JY0),(2.1.1) it 

is necessary to assume an a-priori distribution for al over 

Al. Then to generate 7rt=P(t>_tj V ~ t ), it is in general 

necessary to evaluate the a-posteriori distribution of al 

at all times t. If Al is finite, this may be feasible, 

although it increases the complexity of the problem. Other-

wise, an infinite dimensional problem is encountered. 

An alternative formulation for this problem involves 

the minimization of the expected cost assuming that the 

parameter ai will always take the least favourable value in 

A1 - 

A yt-stopping time is required which minimizes 

max  alcAl (3.5.2) 

Min-max formulations of this sort have been investigated for 

a number of sequential and non-sequential decision problems, 

and the solution is characteristically the optimal solution 

to the previous formulation where a "least favourable" 
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a-priori distribution is assumed for the unknown parameter 

[18]. A simple example illustrates this for the disorder 

problem considered here. 

Suppose 	Al  ={S,(S) c A 	(3.5.3) 

Define F = {xER2:x1=E(C(T)IY0,a1=0),x2=E(C(T)IY0,a1=6) 

for some Vt-stopping time [} 	(3.5.4) 

Figure 

3.5 .1 

px1t(1-p) x2=constant xl  

The convexity of F is assured since randomized stopping rules 

are allowed [10]. In the example, Figure 3.5.1, the min-max 

solution with cost (3.5.2) is the stopping time correspond-

ing to the point xo, since xi=x2<_max(xl,x2) Vx€F. However, 

x°  is also a solution to the problem 

minimize E(C(T)IYo) 	
(3.5.5) 

given P(a1=0 = pl, P(a1 =6) = 1-p1  p1E[0,1] 

where plis defined by the tangent to F at x°  in figure 3.5.1. 

Note that the stopping time corresponding to x°  gives the 

same expected cost for all p, since xi=x2. Therefore the 

a-priori distribution for al  assūmed-in (3.5.5) is least 

favourable in the sense that for any other value of p the 

expected cost may be made at least as small by using the 
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stopping rule corresponding to aco. 

A second example shows that for certain parameter 

values S, the optimal solution in the sense of (3.5.2) may 

be just that which is optimal if a1=f3 w.p.l.- 

Figure 3.5.2 

In this case, min{max(xl,x2):xEF} = min{xl:xEF}.. 

Define 	AS={SEA:x2<_xi} where x is defined as above (3.5.6) 

It seems of interest to investigate the form of the set A0  

associated with optimal detection rules designed for 

parameter jumps at=a°, t<tj, at=f , tztj. A practical 

approach to the more general problem introduced in this 

section might then be to implement independently a finite 

number of such detection rules, such that the union of the 

corresponding sets A0  contains A1 . Considering systems of 

form (3.1.1) where at  is a vector composed of the elements 

of Dt,Ft,zt, suppose it is known that following a disorder 

at time t., 
j 

at  = aleAic u AS1, j<i. 
1=1 

Here AS1  is the set of parameter points defined as in 

(3.5.6) with 5=5i. 
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J 
Choose probabilities pi; i=1,•••,j; E pi=1 to maximize 

i=l 

min E(C(T)IYo), T a Yt-stopping time 	(3.5.8) 

where al=Si with probability pi, i=1,•••,j 

A min-max detection rule, where a1 is restricted to 

{Rl,•••,Rj} is also a solution to this problem, as 

previously argued in the j=2 case. 

Now 	dI(t~tj,a1=Ri) 	Api(1- E i(t~tj,a1=0i))dt + dMi
t i=1 

i=1,•••,j 	 (3.5.9) 

where Mt is a Martingale. Using the non-linear filtering 

equations (c.f. Appendix 1) with the observation process 

(3.1.1) as usual gives 

= Api(1- E Trt)dt + ( ~rtgt -Trt E Trtgt)Tdvt 
k=1 	k=1 

where = (CDt:Ft]vt+zt) 	- (tD°:F°]vt+z°) 
at =a. 

and 	Tri-= P(t?tj,at=S± ~Yt ) 	i=1,•••,j 

dvt = dyt - (ED° :F° ]vt +z ° )dt - ,E Trtgtdt 
R=1 

(3.5.10) 

An optimal solution to the problem (3.5.8), Ý, may be 

constructed using these processes (c.f. section 3.1); 

assuming it is also the unique optimal solution it is the 

min-max solution for al 	'
j } , 

In the case that the processes Trt are relatively 

insensitive to disorders of type a1= Ri, i¢k 

i.e. 	E
t does not significantly increase following 

k=1 
ki 

such a disorder, 

lit , i=1,-•-,j might be reasonably approximated by art. 
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satisfying 

dirt = .~pi(1-'rt)dt 	tgt-(7t)?gt )dvt 	(3.5.11) 

where dnt = dyt - (LD° :F°]vt t z° )dt - irtgtdt 

This seems feasible because of the way that S1,•••13. have 

been chosen. 

But 7t is just the probability, given 't' of a disorder of 

type a1 
=Si with a-priori distribution for t 

P(t~tj) = 1-exp(-Xpit) 

This suggests that implementation of independent detection 

rules for al taking each value in {S1,62,••• B.} with 
J 

corresponding parameters apl,Xp2,•••,Xpj could give 

performance close to that of the min-max approach for 

a1E{a1 ,•••,13j}. Since however each of these detection rules 

gives no higher expected cost for all a1 EAC3l than for 

a1FN., the resulting approach should be close to min-max for 

a i EA3 c u Asi . 
i=1 

In the following chapters the robustness properties of 

detection rules designed for known post-disorder parameter 

values is investigated, and sets of parameter points are 

found having properties similar to those of the sets Ar31 

above. This robustness information is therefore of interest 

in the design of more complex schemes. 

An example of this is given in chapter 5 (example 1 

section 5.2). 

- 61 - 



CHAPTER 4  

ROBUSTNESS OF 'DETECTION RULES: FIRST ORDER AUTOREGRESSIONS  

This chapter is concerned with the robustness of optimal 

detection rules for systems with very simple dynamics:. 

first order autoregressions. In this case a more complete 

analysis is possible than for the more complicated systems 

considered in the next chapter. Some structural results are 

obtained concerning the process (S,y)t, and the shape of 

the stopping boundary y introduced in the previous chapter. 

The problem of interest here is this 

dyt = ktaoytdt + dWt, ao<0 (4.0.1) 

where yt is a scalar process 

Wt is a scalar Wiener process 

P(t>-t.It.>0) = 1-e-At, X>0 

is independent of Wt and yo 
J- 

kt = 1t<t~ 

(4.0.2) 

T is the optimal yt-stopping time derived in 

Chapter 3 with the cost function 

C(T) = I(T<t-) + c(T-t.
0
)I(T>t.

0
) 

for the case 

c>0 	(4+.0.3) 

kt = a?-l/3 ~Ft?t ~ aER 	(4.0.4) 

The response of the stopping rule is to be investigated for 

the case 

kt = t irt~t. (4.0.5) 

N.B. Except when explicitly stated, the notation P(-),E(•) 

in this chapter refers to probability and expectation given 

that (4.0.4) holds. 

Also, except where explicitly stated, P(t0
)=0. 
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Discussion  

wt denotes the a-posteriori probability that the disorder 

has occured by time t. Bearing in mind the note above, 

= P(tzt.IY ) t 	t 

Then 
dirt = A (1-Trt) dt + . 

7t (1-Wt) (a-1) aoyt l dyt- (1+fft 

by (3.1.5). 

-1))aoytdt] 

(4.o.6) 

Therefore, if in fact kt=B Vt~tj, a constant 

dirt = A (1-nt )dt + lit (1-7t)(a-1)eōyt(5-1-7rt(a-1))dt 

+ 
7rt(1

-lt) (a-1)aoytdWt 	$t?t j 

(4.0.7) 

In the case of the system considered in Chapter 2, (2.3.20) 

it is immediately clear that larger than designed for 

parameter jumps result in lit increasing more quickly. 

However, in (4.0.7) the second term which is positive and 

2 involves 	also involves the random process yt. As 

increases, the mean value of yt tends to ,zero for t>tj, 

which would appear to slow down the growth of irt. In fact 

substituting the mean value of yt, t>tj into the second 

term in (4.0.7) gives 

rrt (1-Trt) (a-l) (-ao) I1-1+w
t (( a-1)  ] dt (4.o.8) 

which does increase with 	for 0>a>l, though it is bounded 

as 0.4-co. 

In addition the contribution of the third term in 

(4.0.7) is likely - to be less important for S large since the 

mean value of yt is reduced. This could have some effect on 

the first crossing times of the stopping boundary. 
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In section 5.5 an example is given of a system for 

which the behaviour described above does appear to destroy 

the robustness property of the optimal detection scheme. 

It is also possible to demonstrate another way in 

which a jump in kt to S>a>l for tatj might not be detected 

as quickly as the design case disorder. Define Qt= :1rt/(1-1rt) 

so that, from Ito's differentiation rule applied to (4.0.7) 

then 	dQt = a(l+Qt)dt + Qt[(a-1)(0-1)a2y2dt+(a-1)aoyt dWt] 

tat. 	(4.0.9) 
J 

Suppose Tr.tj=0 => QtJ=O, and yt; is large. Also a>1. 

Yt = e
2sao(t-t4)yt2 + 2e2Rao(t-tJ 

J J 
.rt •e2~ao(tj-u)

dW 1 J u 

t 2Sa (t-u) 
u
2 + 	° [ t.e 	dW] 

-J 
(+.0.10) 

Approximate yt by its initial condition response component 

(since yt2.is large) 
J 
2 2Sao(t-tj) 2 

Yt = e 	ytj 
(+.0.11) 

Substituting for yt in (4.0.9), and again assuming that yt 

is large enough to dominate the contribution of the term 

Qt(a-1)aoytdWt 

dQt = A(1+Qt)dt + Qt[a+(a-1)(3-l)aoyd,e 2sao(t`t3)]dt 

t>t . (+.0.12) 

This has solution 

Qt = 	
t 

 .J .expEA(t-u) + 
J 

-ao(a-1).S-1.yt2.e2sao(u-t
.
)(1-e

2sao(ttj)
)]du 

2 	J 

_a ( -1) 
o 	2Sa (u-tj) 

~. Xft.exp[A(t-u) + 	2
.yt2.e 	o 	]du 

-J  
(4.0.13) 
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As S increases the second term tends to zero for each u 

(note that ao<O) tending to decrease Qt. In this way it 

seems that for small 7r
ti 

and large yt.2 quicker detection 

might occur with kt=a ¥t~tj rather than kt=s>a VtZtj. 

Of course this also depends on other factors such as the 

stopping boundary shape. The structural results in this 

chapter clarify these aspects. 

4.1 Preliminaries  

The detection rule  

Applying the results of section 3.1 to the system (4.0.1) 

the optimal detection rule for kt=a Vt~t~ is 

T =ini{t:St?51(y)} 

where St = In (trt / (1-Trt )) - i (a-1) aoyt 

(4.1.1) 

(4.1.2) 

by (3.1.19) and y is the stopping boundary in the state 

space of the Markov process (S,y)t. 

S(Y) °- ini{S:(S,Y)Ey} 

S1(y) is defined for all y,(possibly infinite valued). 

From (3.1.20) 

dSt 
= a(l+e-S

t-(a-1)aoyt
) - 1(a2-1)a2y2 - i(a-1)a d't 	 o t 	o 

As before 

Tto °- inf{t>_to:St Sy(Yt)} 

so that T=Tt if T~tO. 
O 

Note that by Lemma 2.1 the stopping time T is also optimal 

in the problem of minimizing the expectation of the cost 

K(T) = -ai + (A+c)(T-tj)I('T>ti) 
	

(4.1.5) 

T aVt-stopping time, A as in (4.0.2) 
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Define Ct . (Tt ) e .I(Tt <t.) + .c(Tt 	
-- 

-t.vt )I(Tt >t. ) to 	0 	o -J 	 o .J o 	to J 

and as before 

Kto(Tto) °- -A(Tto-tj) + (a+c)(Tto-t.vto)I(Tto>tj) 

(4.1.7) 

for TZt a VR-stopping time' 	an arbitrary time to_ o 	t 	o 

These correspond to the cost "incurred after time to", if 

'[Zto. If to is a stopping time 

Cto(Tto)' E(s~y)toKto(Tto) E(s,y)t  

are minimized for T 	T to-= t0• 

Note that C(T)=C0(T0), K(T)=K0(To 

Outline of the robustness argument  

The cases ac[-1/3,1) and ae(1,03) are treated separately. 

The case a<-1/3, for which the system would be unstable 

after time tj, cannot be handled since one of the structural 

properties required does not then hold. 

For the case ac[-1/3,1) in order to prove the robust-

ness result, Theorem 4.2, it is first necessary to show the 

function S
2 

y(y) is non-increasing with y 	This is done by 

considering the sample path properties of the Markov process 

(S,y)t and decomposing its state space into three regions in 

which special properties apply. A partial result, concerning 

the shape of the part of the -stopping boundary y lying in 

two of these regions is given in Lemma 4.1. It is more 

difficult to extend this result to the third region. This 

is done in Theorem 4.1, for which Lemma 4.2 provides a 

necessary preliminary result. 

The robustness result holds for disorders occuring 

after a V -stopping time t. This should be typically very 
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1 
yc) w(S,Y) = 1 + exp(-S-g(a-1 (x..1.8) 

small and an assesssment of this is given in Table 4.2.1.  

For the case CtE(1,m) the situation is more 

complicated. Robustness is proved for a detection rule which 

is optimal for a slightly modified problem, using the 

previous arguments. It is suggested that this indicates the 

near robustness of the true optimal detection rule. Finally, 

a (not necessarily tight) upper bound is established for the 

increase in expected cost resulting from the use of the 

guaranteed robust sub-optimal approach. 

Notes  

so that w(St,yt)-Rt 

h(S,Y) = E(S,Y)K(T) 	E(S,Y 

from (3.1.13),(3.1.22)' 

So 	h(S,Y) = E(g,Y)f a(Su,yu)du 

where a(S,y) š -A + (A+c)71.(S,y) 

-AT+(A+c)f O'T(Su,Yu)du) 

(x+.1.9) 

(4.1.10) 

(4.1.11) 

Note that 

r,
T

t a) h(St,Yt) = E(S,Y)tKt(Tt) = E(S,Y)tJt6(Su,Yu)du  

from (4.1.7) 	(+.1.12) 

b) h(S,y) < 0 	 (4.1.13) 

since by optimality of T, E(S,y)K(T) 5 E(S,y)K(0) = 0 

c) From (3.1.11) T=inf{t:h(St,yt)=0} 	(+.1.14) 

therefore 	h(S,y) < 0 	S<S1(y) 
	(4.1.15) 

h(S,y) = 0 	SS (y) 
	

(+.1.16) 

d) 6(St,yt)<0 => T>t, since otherwise if Tt=t 
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E (s,Y)+
Kt(inf {u zt :.a(Su 2 yu) ~0 } ) 

.inf{u~t:a(Su,Y )~0} 
a(S,Yu)du = E

(S,Y)t t 

= E
(S,Y)t 

which is impossible since Tt is. optimal. 

Therefore u(S,y) ? 0 if (S,y)Ey 	(4.1.17) 

e) Setting p(y)=A in (3.1.2), Theorems 3.1 and 3.2 hold. 

In particular, h(S,y) is continuous in S (except, 

possibly, at S=-o) and non-decreasing in S. 

f) h(S,y) = h(S,-y), SY(y) = S1(-y) by symmetry. 

(14.1.18) 

The cases -1/35a<1 & a>1 in (4.0.4) are now considered 

separately 

4.2 The ae[-1/3,1) case  

First some definitions are given. 

Define Sc e ln[-(a+l)a +X] 
	

(4.2.1) 

Let dS(S,Y) 8 
dSt 

dt 	dt St=S 
Yt=Y 

X(l+e
-S- (a2-1)aoy2) - (a2-1)a2 2 - i(a-1)a0 

(4.2.2) 

Then dt(S,Y) ? 0 ~FSSSc, ¥y (4.2.3) 

This only holds for a?-1/3 

Also 	
dS lt(S,y) is monotonically increasing in y2 for S>_S c 

(4.2.4) 

Note here that dS 	
AS 	_ 
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Sc  as defined in (4.2.1) is the sriallestvalue such that 

(4.2.4) holds. 

The state space of the process (S,y) is now decomposed 

into three disjoint sets 

N -° {(S,Y):S<Sc} 

P = {(S,Y):āt(S,y)O,Snc} 
	

(4.2.5) 

Q = {(S,Y)'dt(S,V)<0} 

Also 	8 n P n closure(Q) 
	

(4 .2.6) 

S 

Figure 4.2.1 

Define tc  °- inf{t:(S,y)tEPuQ} 
	

(4.2.7) 

Since dt (Sc.,y ) zo Vy, it follows that 

(S,y)tEPuQ Vt>_tc 	 (4.2.8) 

Lemma 4.1  

S1(y) is non-increasing with increasing y2 Vy such that 

(S1(Y),Y)cPuN 

Proof  

If the Lemma is not true there existsy'>_0 such that 

for S'= S1(y'), (S",y") E PuN 

and S(y) is strictly increasing with increasing y at y=y'. 

- 72 - 



Y 

    

    

   

S 

 

    

Figure 1.2.2 

Then if 	D 	{(S,Y):.SE[S',SY(y)],y'y'} 

D\y is non-empty (y is the boundary of the closed 

stopping set). 

Choose (S,y)to€D\Y => (S,y)t€D ATtE[to,Tto] 

since dt(S',y)z0 Vyzy' 

[because a) (S',y')EN=).(S',y)EN 

b) (S',y')EP=>dt(S~,y)4 

by (4.2.4)] 

a(S,y)>-0 $(S,y)ED, since a(S',y')?0 by (4.1.17) and d is 

increasing with S and with y2 from (4.1.11). 

T 
Therefore 	h(St ,yt ) = E 	! tO cs(S ,y )du a o 0 0 	(S,Y)t t„ 	u u 

But this contradicts (4.1.15), since Sto<SY(yt o). 	
0 

Definition  

Let 	r °- {(S,y)EcIrly:3(S",y')EQny with S'>S,y'2>y2} 

then inf{S:(S,y)cr} if re0 
( 0 0 	if rE0 (1.2.9) 

(see over) 
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Figure 4.2.3 

If S1<00 choose y1 °- inf{y~o:jS1,y)Ey} 	(4.2.10) 

(S11y1)Er since the stopping set is closed (Theorem 3.1). 

Note that S(y) is non-increasing with increasing y2 Vy st 

S(y)<S by (4.2.9) and Lemma 4.1. 

Lemma 4.2  

If S1 <0, h(S,y) is non-decreasing with increasing y2 

for (S,y)EP, SE[S1,Sy(y)):(i.e. in the sets "A" in Figure 

4.2.3) Proof  

Suppose the Lemma is not true. 

Then 3 S2?S1, y2>y3>0 such that 

S2<Sy(Y2), 	S2<Sy(Y3) 

(S21Y2),(S2,Y3)EP 

h(S2,Y2) < h(S2,y3) 

D' {(S,Y):y~y3,SE[S2,Sy(Y)]} 

(see Figure 4.2.4) 

(4.2.11) 

714 



S 

Figure 4.2.4 

Suppose (S,y)to = (S2,y2). Then the process (S,y)t leaves 

D' either across y or across the line y=y3, since 

dt(S2'y)0 Vyy3 by (4.2.4). 

Define t
1 = inf{tto:yt=y3} 

ll
Tt o 
	

Tt At 	Tt 

Jt 	
Q(S,Yu)du = 1 t o 	o'(Su,y u)du + ] o 	a(Su,yu)du 

0 	to 	Tt nt l 
0 

The first term on the right is positive or zero, as 

o(S,y)n ¥(S,y)€D'. This is because c7(S1,y1)?0 by.(4.1.17) 

and v is increasing with S and y2 from (4.1.11). 

As Tt 
0
ntl is a yt-stopping time 

T 
h(S2,y2) = E(S,Y)t0ftoo 6(Su,yu)du 

Tt 
r 

[E(1 	a(Su.yu)duIYT At ),J z 
E(S~Y)t0 	Tt oAtl 	t0 1 

E(S,Y)t0[h(STt0Atl ~YTtontl)ITto?t1] 

>_ h(S2,y3) 	 (4.2.12) 

The second inequality is because if Tt 0 <t1, 

h(S
T At 'YT At ) 

=0 by (4.1.16). 
to 1 to 1 

For Tt0?tl, ST At ~52, YT At -y3. 
to .1 	to -1 

Then by Corollary 3.2.2 h(ST nt 'yT At l) 	h(S2,y3) to 1 to l 
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which establishes the third inequality. But (4.2.12) 

contradicts (4.2.21). 	 0 

Theorem 4.1  

S(y) is non-increasing with increasing y 2 

Proof  

S=Sl 

Suppose the Theorem is not true. Then by Lemma 4.1 and 

(4.2.9), Sl<° . 

Y exists and is defined in (4.2.10). 

Let y'>yl be chosen so SY(y')>S1(y1). (4.2.9) gaurantees 

that such a y' exists. 

Let (S,y)t, (S,y)t both be solutions of (3.1.6) and (4.1.3) 

i.e. 	dyt = (1+(a-1)7r(St,yt))aoytdt + dvt 

dSt = l(1+e
-St- (a-1)aoyt2) 

- (a2-1)aoyt -2(a-1)ao 

(4.2.13) 

with the innovations process v.t the same in both cases but 

with 

(S,Y)t~=(Sl-e,Yl)a (S,Y)to=(S1-e,y') (4.2.14) 

Here a is chosen so that Sc5S1-E<S1. This is possible since 

S c contradicts Lemma 4.1. 

dt 
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-s Q 

Possible path of 
(S,y)t up to t2 

Y~ 

PuN 

Figure 4.2.6 

Si S 
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St, yt are defined such that (St,yt)=(S,y)t 

Note that (yt:tto) and (yt:t>to) both generate the same 

6-field yt (both processes may be reconstructed given vt - 

see Lemma 3.1). In this proof all probabilities and expect-

ations are conditioned on the initial conditions (4.2.14). 

The following Yb-stopping times are defined 

tl e inf{t~to:yt2 =yt2} 

t2 e inf{t~to:(S,y)tee,St?Sl} 

° inf{tzt o:(S,Y)tEy} 

° infltat o:(S,Y)Eil 

Tt 
0 

(4.2.15) 

(1+.2.16) 

(4.2.17) 

(4.2.18) 

Note that (4.2.17) is equivalent to (4.1.4) in this case. 

t2 is the first time (S,y)t crosses the thick line in 

Figure 4.2.5. 

Also- 	(S,y)tEPuQ ~Ft?to 	(c.f. (4.2.8)),and by (4.2.4) 

dt(S'y) 	dt(S, y) if Y2ZY2, (S,y)EPuQ (4.2.19) 

A preliminary result is now established. 

Suppose T <t, T <t to 1 to 2' 

Then since āt(S,y)<0 in Q and by definition of t2, 

(S,y)tEPu{(S,Y):S<Sl} $t<_Tto (see Figure 4.2.6). 



As Tt <tl, yt2>yt2 Vt<-Tt . Then from (4.2.19) S" St Vt5Tt. 0 	 0 	 0 

Since , from Lemma 4.1 and (4.2.9) SY(y) is non-increasing 
e 

with y2 for y2?yTt (see Figure 4.2.6) 

S" 	S 	= S (y' 	) Z S (y" 	) 
Tto 	Tto Y Tto 	Y Tto 

so that 'r" <-T t0 t0. 

Therefore Tto<tl, Tto<t2 => Tto<Tto 

The following events are defined 

A ° {w:t15min(t2,T.t0)} 

B 	{w:t2<min(t1,Ti. )} 
0 

C {w:Tt05t2,Tt0<t1} 

A,B,C are disjoint, and wcAuBuC w.p.l. 

Each event is now considered separately. 

(4.2.20) 

(4.2.21) 

EVENT A 

If wcA, t stt, tl<_T o. By (4.2.20) it follows that Tto tl. 

Also yt2~yt2, StzSt Vt5t1. 

Since a(S,y) increases with S and y2 , from 04 .1.11) 

	

f 
1 	t a(S. 

u,yu)du 	f 1 Q(Su,yu)du 

	

to 	0 

Also, since y'2=y 2tl 	t 	t and S' >_S , h(S' ,y' ) ~ h(S ,y ) 

	

tl 	ti ti 	l l 	t1 t1 

from Corollary 3.2.2. 

Then 	ECfTt° 6(S',y')du - f tO -Q(S ,y )duiwEA] 
to 	

u u 	t0  

ECf l(a(Su,yu)-a(Su,yu 	w ))du~EA] 
to 

ECh(St l,ytl)-h(Stl,ytl)IwEA1 a 0 	(4.2.22) 

since A is a Vt,-measurable event, and from (4.1.12). 

0 

t 
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EVENT B 

If wEB, t2
<tl 	

t2<Tt 
0 

If T. 
0
<t2, (4.2.20). gives a contradiction. Therefore T >t 0 2• 

Since t2<tl, as before, y.2 y 2, S.zSt 

T 	Tt E[f t° a(Su,yu)du-f ° o(Su,yu)du l WEB] 
-to 	to 

t2 
= Eli t (a(S' y')-o(Su'yu))dulwEB] 

0 

+ E[h(St2,yf2)-h(St2,yt2)'wEB] 

The first term on the right is positive or zero by the 

properties of a. 

h(St2,yt2) ? h(St2,yt2) 	h(St2,yt2) 

where the first inequality is from Corollary 3.2.2 since 

St2 St2, and the second inequality is from Lemma 4.2 using 

.2 2  
St2ZSl , 

yt2~yt2 . 

Therefore E[fTt0 a(Su,yu)du-fTt0 a(Su,yu)du'wEB] z 0 to 	to 

(4.2.23) 
EVENT C 

If w€C, 	T. <tl. 
0 	0 

From (1.2.20) Tt <t , Tt <t => Tt <_Tt , SO that Tt <Tt 
l 	0 

leads to a contradiction if w€C. 

Therefore T.t o-T.t . 

yt2 zy t2 , S. zSt Vt <Tt . 

T 	r ECf t° 	a(Sū,yū)du-f 
-to 	-to 

Q.(,S u ,yu )du1wEc] 

ECftt°(a(Su,yu)-a(Su,yu))dulwEC] + EC-h(ST~ ,y Tt ) I wEC] 
0 	 0 	0 

0 
	

(4.2.24) 

- 79 - 



COMPLETION OF PROOF 

From (1 .2.22), (1 .2..23) & (4.2..24) 

T 	Tt 
E[
f to 

u(S-,yū)du-f ° akS 	0 
to 	to 

for F=A,B,C. 

Therefore h(S' ,y. ) - h(St 	t 0 0 	0 o 

= E[f t° u(S',yū 	t 

	

)du-)du 	a(Su,yu)du] > 0 t 
to 	 to 

i.e. 	h(S1-E,y') >_ h(S1-e,y1) 

Now as a+o, h(S1-e,y1).4.0 by Corollary 3.2.2 and since 

(S1,y1)EY 

So lim h(S1-e,y )?0. By continuity of h with S (Corollary 
e+0 

3.2.2) 	h(S1,YT)?O => (S1,y')Ey. 

But y' was chosen so that S1<Sy(y') which gives a 

contradiction. 

The response of the detection rule is now investigated for 

kt=at ¥t>_t j in (4.0.1). 

Theorem 4.2  

E(Tt.-tjl(s,Y)tj,tj,kt=f3t vt>-tj) 

E(Ttj-t.I(S,Y)tj,t.,kt=a vt~tj) 

if <_at>_tj~tc 	where aEC-1/3,1). 

Proof  

Suppose 13soc Vt>_t  
j 
>_tc 

Define ys such that 

dys = Rtaoysdt + dWt 	tot.. 

Y j = Yt j 
(..2.25) 
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where Ws is a Wiener process. 

Define yt such that 

dyt = aaoyadt + dWa t~t~ 

a  
Yti __ Yt

J 

(4.2.26) 

From It6's differentiation rule, if 43=(4)2, xte(yt)2 

8 a xt j __ xt
. 

dxs = (2Stao)s+1)dt + 2V(xs).dVs 

dxt = (2aaxt+l)dt + 2✓(xt).dVt o  
(4.2.27) 

where t 
V~ _. f J(y8 )dW8 

t. 
J 
t 

Vt =. f J(ya )dWa 
t J 

tot. 
J 

J(x) = +1 if x~0 

-1 if x<0 

Vt, Vt are then Wiener processes. Suppose that Wt, WS are 

chosen so that Vt=VS=Vt. Then' 	[22, Theorem 1.1] 

xs >_ xt V-t t. 	 (4.2.28) 

Now define St,S8 so that St,=SS,=St. and (St,xt) & (Ss,x~) 
J 	J 	J 

dSt= ),(1+e
t(a-1)ao t x 	2 	2-  

dt 	
) - if -1)aoxt - 	3(a-1)ao 

As ytc St,Ss>_Sc VtZtj-.1 is an increasing function of x 

for given SzSc. Therefore 

SS z St vt?t~ 	 (4.2.29) 

Now define T' inf{t?t ~ ~Sa>SY(yt) } 

TS = inf{t?t0.:s~ SY(y~)} 
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Then 	SS > Sa _ .S (ya ) > S (Y5 ) 
Ta Ta Y Ta 	Y Ta 

The final inequality follows from (4.2.28), noting that 

xteyt, and Theorem 4.1. Therefore 

T8 < Ta 

The result of the Theorem now follows because of the way 

in which yt, yt, Ta, T8 have been defined. 

Since E 	[C(T)lk =S Vt>t.>t ] = P 	(T<tlt.>_t ) 
(S,y)o 	t t j c 	(S,Y)o J J c 

:+ 
E(S,y)0[E(TtJ

-t.I(S,y)t.,t~,kt=stet>_t~ )I(T>t~ )~t~ >_t~] 

(4.2.30) 

and the event (T<t~ ) and (S,y)t. are independent of St, it 
J 

follows that 

E(S ~ y) [C(T)jkt=st$t?t~> tc] 
0 

< E(S,Y)o[C(T)Ik
t=aft>_t~>tc] 	(4.2.31) 

if 0t5a Vt. This also holds with C(T) replaced by K(T) or 

Q (see section 2.2). 

Remark  

A similar result would apply if the simplified stopping 

boundary discussed in section 3.3 was used. 

It is not easy to be precise about the time tc in this. 

case. However it is possible to get an idea of the value of 

the probability that t.j <tc as follows. 
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Figure 11.2.7 

Let 	inf{t:nt ft} 	'REE0,1) 

2 
If yR 5 	— (a?1)a 1n(-(a+1)a0 +A.— r-) 	-2ao say 	(11.2.32) 

0   

then from (4.1..2) and (4.2.1) 

S^ ? Sc 	i.e. R 	tc 

Therefore 
2 

P(tc?tjl yo) 5 P(t?tjlyo).+ P(yR'-2a l Yo) 

5 'R + 	t -2a yo) 
0 

Now (4.2.32) may be interpreted as 

IyR1 _< e[ "steady-state" pre-jump standard deviation of yt] 

Presumably P(yt -2a 	lyo )}o as 6 increases, so ft gives a 
0 

tentative upper bound to P(tcztjlY0). Below some approximate 

values are given (X/(-a0) assumed small). 

a 'R 	(0=2) t 	(e=3) 

-1/3 5.691A' 30.128a' 
0.0 2.718A' 9.1488X 

o.4 1.301A' 2.755A' 

0.8 o.679a' 1.307A' 

where A' =A1(-a0). 

As a' would normally be very small, so would the 

probability that tc~tj. 
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S 

negative in 

regions 

4.3 The aE(1,(30) case  

In order to use arguments similar to those of section 4.2 

in this case it would be necessary to find some value 

of S, Sc  such that āt(S,y) 

with y2  for all SzSc. However the contribution of the 

as defined in (1 .2.2) decreases 

exponential term in (4.2.2) destroys 

y2  whatever value is chosen 

in Figure 1+.3.1 below. 

this property for large 

for g
c. The situation is shown 

Figure 4.3.1 

41Pr  41/111111r  Tps,y, 'dal 	i 

shaded 

/ // 

S c 

yc 

whereSc=ln(-(a+l)ao)  

_2 2A-(3c141)ao  
Y
e (a2-1)aō  

2A-(3a+l) ao  

2(a+1)ao 

By modifying the a-priori distribution 

disorder less likely to occur while y2  
t  

of t., making a 

is large, this problem 

may be avoided. The optimal detection rule for this new 

problem is guaranteed to be robust, in the sense that the 

expected detection time for a disorder is not increased if 

in fact kt=0Za Vt; in (4.0.1). Since ye t  	is large it should 

also be near-optimal in the original situation. 
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Figure 4.3.2 

r(y) for the case 

4, 	4 > 
3.0 	3.5 	4.o 	4.5 y 

Alternatively it could be argued that the true optimal 

detection rule -should be "near-robust".. In .section 4.4 

an upper bound is derived for the increase in expected cost 

due to the use of the guaranteed robust detection rule. 

In this section modified versions of the problem are 

investigated, and the appropriate robustness results 

obtained following closely the approach of section .1.2.. 

First Modified Problem 

with the The system defined in (4.0.1) 	is considered but 

random variable t~ defined so that 

dI(tzti) = r(yt)(1-I(t~ti))dt 	+ dMt (4.3.1) 

where Mt is a Martingale and 

r(y) 	=X y 
<y2 	2X-(3a4 

st y2 
c 	(a2-1)aō 

(4.3.2) 
(a2-1)aōy2(a-1)ao

y st y2>y2 
1 + exp(-Sc-g(a-1)aoy2) 

2A-(3a+1)ao  
Sc 	

ln(-(a+l)ao ) 	2(a+l)ao 	(1+.3.3) 
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P and E _denote probability 	and expectation respectively 

given that t~ satisfies (4.3.1), and, except when explicitly 

stated, that P(t~=OI YO )=0 and that kt=a iFtzt
0 

Then 	Iim —p 1- 
	= r(y) 

d-}0 
( 1 .3.4) 

Using the non-linear filtering equations (Appendix 1) 

as before, if it=P(t?t
j I Yt) 

dirt = r(Yt) (1-ītt)dt + 17t(1-Trt) (a-1)aoytdv-t (1+.3.5 ) 

dy
t = (1+ (a-1) ft) aoyt dt + dvt (4.3.6) 

vt is a Wiener process (the innovations process) 

Note that increments of Mt are orthogonal to Wt. 

As before, R=1n(117 ), S=R-i(a-1)aoy2 	(4.3.7) 

Then 

= r(yt)(l+e-st-
(a

-1)aoyt) 
dt 

- i(a2 -1)aoyt - l(a-1)ao ( 1 .3.8) 

Because of the definitions (+.3.2),(4.3.3) 

if 
dt ( Y ) 	dtt - S 

then dt(S,y)z0 itS<Sc, vg 	(4.3.9) 
_ 

yt=y 

and 
	dt(Sy) is a non-increasing function of y2 for 

fixed S?Sc. 	 ( 1+.3.10) 

In fact 
dt (S,y ) - dt ( S,y) for y2y c 
	

( 1+.3.11) 

Here dt is as introduced in section 4.2. 

The existence of a Yt-stopping time T which minimizes 

E(S,y)oK(r) follows from Lemma 3.2 with p(y)=r(y), and 

the existence of the stopping boundary Y from Theorem 3.2. 
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Continuity in S and non-increasing in S properties of 

E(S~Y)x(T) 

follow similarly from Corollary 3.2.2. 

Then °- inf{t~t0:17i(St,yt)~0} 	(4.3.12) 

= inf{tkto:St S,Y(yt)} 

where S-(y) a inf{S:(S,y)€Y} 

and T=T
t0 

if Tito 

From (4.1.5) 

h(S,y) = E(g,y)f0G(5u'Yu)du 

where Q(S,y) 	-X +(a+c)5(S,y) 

1 
1 + exp(--i'(a-1)aoy2) 

so that Trt=W(Sy,yt) 

As in section 4.1 

and fr(S,y) 

(4.3.13) 

(4.3.14) 

(4.3.15) 

(4.3.16) 

(4.3.17) 

a) h(t'Yt) = E(5 Y 
t Kt(it) = E(s-0) tft 6(su,yu)du 

(4.3.18) 

b) h(S,y) < 0 r(S,Y) 	 (4.3.19) 

c) Q(St,yt)<0 => Tt>t, so that ō(S,y)n if (S,y)€Y 

(4.3.20) 

d) E(g97) = h(S,-y), 	E7(Y) = Š.7(-Y) 	(4.3.21) 

Next it is shown that S(y) is non-increasing with 

decreasing y2. The argument used follows closely that used 

in section 4.2. 
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Q 

As before the state-space of the process (S,y)t  is divided 

into three disjoint sets. 

N 	{(S,y):S<Sc} 

P o {(S,y)=dt(S,y)O,S-Sc} 

Q = {(s,y):1 (S,y)<O,Mel 

(+.3.22) 

Pnclosure(Q) 	 (4.3.23) 

Figure 4.3.3 

N 

S 

S=S c 

Define tc  = inf{t:(S,y)t€PuQ} 	(4.3.24.) 

Since āt(Sc,y)>_0 Vy, it follows that (S,y)tEPuQ $tztc. 

(4.3.25) 
Note that (S,y)EP Vy. 

Lemma 4.3  

E.-(y) is non-increasing with decreasing y2 Vy such that 

(-(y),y)EPuN. 

Proof (similar to proof of Lemma 4.1) 

If the Lemma is not true gy'>0 such that for S'=SY(y'), 

tPuN and Š-(y) is strictly increasing with 

decreasing y at y=y' . 

- 88 - 



Then if D 
c {(S,y): SEES-,B(Y)],y2 y'2} 

D\Y is non-empty (? is the boundary of the closed 

stopping set). 

Choose (S,y)tocD\Y => (S,y)tED ¥tc[to,Tta] 

dS 
since 

dt 
(S ,y)z0 ieyEL-Y ,Y ] 

[because a) (S',y')EN=>(S',y)EN 

b) (S',y')EF=4(S-,Y)1(S-',Y 0 

by (4.3.10)] 

5(S,y)>_0 V(S;y)ED, since d(S',y')~0 by (4.3.20) and B is 

increasing with S and decreasing with y2 by (4.3.16). 

Tt Therefore 	h(Sto,yto) = Err, 	o 6
(su,yu)du z-0 

to to 

But this contradicts (4.3.12) since Sto<S (yto). 	❑  

Definition  

Let 	T 	{(S y)EQn 3(S' 	.2 2 
Y= 	,Y )EQnY with S >S,y <y } 

then 	S c znf{S:(S,y)ET) if T1? 

+co 	if FE0 
(4.3.26) 

(see over) 
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S=S1 

Q 	_ 	1 

(S1,Y1) 

P 

Figure 4.3.5 

S 

Q 

Y 

if S1<w choose y1 	sup{y?o: 1,Y)EY} 	(4 3.27) 

(S1,yl)EI" since the stopping set is closed (Theorem 3.1). 

as S1<SY(y) for y2 large since b(S,y)+-a as y24.03. 

Note that S(y) is non-increasing with decreasing y2 Vy st 

B(y)<-g1 by (1L.3.26)and Lemma 4.3. 

Lemma 4 ..4 

If El<m, h(S,y) is non-increasing with increasing 
2 
Y 

for (S,y)EP, Se[S1,S (y)) (i.e. (,y) in sets "A", Fig 4.3.5) 

Proof 	(similar to proof of Lemma 4.2) 

Suppose the Lemma is not true. 

Then 3 S2>_Sl, y3>y220 	such that 

S2<SY(Y2), 	S2<sY(3r3) 

,Y2),(S2,y3)EP 

'( 2,y2) < h(S2,Y3) 

D" 
	

{(S,Y)=Y2 4,S2E[S2eY3r)]} 

(see Figure ~.3.6) 

(4.3.28) 



Suppose (S,y)
t0 

= (Š2,y2). Then the process (S,y)t leaves 

D' either across Y or across the lines y=y3 or y=-y3. 

dt(S2,Y)° Vy sty2~y3 by( 1+.3.10). 

Define t1 = inf{t>_t:yt=±y,3} 

Tt° (su,yu)du = ITt°ntl I 	6 	6(S ,Y )du -} ITto 	6(S ,Y )du t o 	 to 	u u 	T At u u 
to 1 

The first term on the right is positive or zero, as 

ō(E,y)~0 V(S,y)ED'. This is because cr(S1,y1)~0 by (4.3.20) 

and Q is increasing with E and decreasing with y2 from (4.3.16). 

As Tt 
o
ntl is a Yt-stopping time 

_ 	_ 	
jj
T 

(S2,12) = E(s,Y)toft°
° 6(Su,Y.u)du 

T t 
Ē( Y)t [Ē(IT 

°n 6(Eu,yu)duIVI At )3 ° 	
to 

tl 	° 1' 

E(S,Y)toCE CETtoAtl,YTtoAt 
1Ytort1] 

(4.3.29) 

 

The second inequality is because if Tt <t1, to 

1(ST At 'YT At ) =0 by (4,3.18). 
to l to 

For rto?tl, STtoAtlS2, YYi0At1 fy3 

Then by Corollary 3.2.2 h(ST 
nt 'YT ntt 

to 	to 
h(S2 ,y3) 
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dyt = 
dSt = 

dt 

(1+(a-1)Ti(St,yt) )aoytdt + dUt 

r(yt)(1
+e-t 2(a-1)aoY2t

) 

i.e. 

i(a2-1 
	2 aoyt -2( a-1)ao 

which establishes the third ineouality. But (1l.3.29) 

contradicts (4.3.28). 	 ❑  

Theorem 4.3  

S (Y) is non-increasing with decreasing y2 

Proof (similar to proof of Theorem 4.1) 

Y  

Y1 

   

   

   

Suppose the Theorem is not true. Then by Lemma 1+.3 and 

(1+.3.26) •l<o. 

yl exists and is defined in (4.3.27) . y1.<eo. 

y'E[0,y1) is chosen so S~(y')>SY(yl). (lt.3,26)gaurantees 

that such a y' exists. 

Let (S,y)t, (S,y)t both be solutions of (1+.3.6)': and (43.8) 

(4.3.30) 

with the innovations process vt the same in both cases but 

with 

(S,Y)to=(01-e,y1), =(S1-e,y') (1}.3.31) 

Here c is chosen so that Sc5S1-c<S1
. This is possible since 

S1SEc contradicts Lemma 1+.3. 
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t1  ° inf{tzto:yt2=yt2} 

t 	infft2to:M,y)tE9,StEi/ 

.t  n inf{tzto:(S,y)tEY} 

T' °- inf{tzto:(S,y)t€y} 

(4.3.32) 

(4.3.33) 

(4.3.34) 

(4.3.35) 

S, y; are defined such that (St,yt)=(S,y)t 

Note that (yt:tzto) and (ytto) both generate the same 

o-field Yt  (both processes may be reconstructed given Vt  - 

see Lemma 3.1). In this proof all probabilities and expect-

ations are conditioned on the initial conditions (4.3.31.). 

The following Yt-stopping times are defined 

Note that (4.3.34) is equivalent to (4.3.12) in this case. 

t2  is the first time (S,y)t  crosses the thick line in 

Figure 4.3.7, 

Also 	(n,y)EPuQ Vt?to  (c.f. (4.3.25)j and by (4.3.10) 

de - 	dB 
d:t(S,y) 2 at(S,y) if y25 y2, (s,y)EPuQ (4.3.36) 

A preliminary result is now established. 

Suppose T <t , T <t to 1 to 2.  

Then since āt(S,y)<0 in Q and by definition of t2, 

(S,y).tEPu{ (S,y) : S<S1} ¥t<-Tto  (see Figure 4.3.8) . 

Figure .4.3.8 

y 

Possible path 
for (S,y).t  up 
to t2  

Q 

P 
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As 't to<tl, yt2 <yt2 VtsTt . Then from(4.3.10) StZSt ist<_Tto 

Since , from Lemma 4.3 and (4,3..26) SY(Y) is non-increasing 

with-decreasing y2 for y2<yT 	(see Figure 14.3.8)-  
to 

SZ S
T. = s

7(yT ) z S~(yz ) 
to 	t° 	to 	to 

so that T 	T t° <t°. 

Therefore Tto<tl, Tt <t2 a> T t <_Tt 0 	0 to 

The following events are defined 

A °- {w:tlsmin(t2,Tt 
0
)} 

B °- lw:t2<min(t1,
0 
)} 

C °- {03:Tto t2,Tt0<tl} 

A,B,C are disjoint, and w€AuBuC w.p.l. 

Each event is now considered separately. 

(4.3.37) 

(4.3.38) 

EVENT A 

If wcA, tl<t2, tl~zt• By (4.3.37) 

Also yt2< t y 2,St>_St Vtst1. 

it follows that Tt 0~t1. 

Since Ū(S,y) increases with S and"decreases with y 2 

t 
f 1 ct(Sū,yū)du ? f 1 ā(Su,yu)du 
to 	to 

Also, since y'2=y 2 and S' S 
tl tl 	tl

>- t
l 

from Corollary 3.2.2. 

h(St sYt ) ~ h(St ,Yt ) il 	 1 1 

T 
Then 	EC f t° U(Sū,yū)du 

to 

T 
- f t° =Q(Su,yu)dujwEA] 

to 

ar
t, 
(ā(Sū, 

to 
-o(Eu,yu))duiwcA1 

f 2[1(4 13rt )-h(St ,Yt )1wEA3 	0 
1 1 1 

0+.3.39) 

since A is a Yt -measurable event, and from (4.3.18). 
1 
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EVENT E 

If wcB, t2<tl, t2<Tt 
0 

If 'tt <t2,(f.3:37) gives a contradiction. Therefore Tt ~t 

Since 	<tl, as before, yt2<yt29 St~St Vtst2. 

E[fTt° 6(S",Y')du-Tt 
t0 	

u u 	I ° ā S 
t 	

( u,yu)dulwEB] 
0 

t2 
= E[f (ā(5ā,Yū)-6(su'yu))du'wEB] to 

+ E[h(0t2,yt2)41(-42,y.t2)1wEB] 

The first term on the right is positive or zero by the 

properties of Q. 

h(St2~Yt2) ~ Fi(St2,yt2) z h(5t2,yt2) 

where the first inequality is from Corollary 3.2.2 since 

8t2 St2, and the second inequality is from Lemma 4.J+ using 

St2~Sle Yt2<yt2. 

• ' 	f ? 0 Therefore Ē[fTt0 ā(S
ā,yū)du-

fTt0 TICS' 
 u,yu)du l wEB] 

	

to 	to 

(1+ .3 .40) 
EVENT C 

If wEC,Tt
0
<_t2, 	 tOctl. 

From (1+.3 .37)Tto<tl, 
Tt 0

<t2 => Tt°<_T.t o, so that 

leads to a contradiction if wEC. 

Therefore 	Tt ?T 
o-  0 

yt2<yt2, St~St Vt<_Tt . 
_o 

<T' t° t° 

Tt .2Ef 

-to 
Q(Sū,Yū)du- 

T.t 

t o 
)dulwEC] 

T' 
= ĒCf t°(6(Su.Yu)-4(Su,Yu))dulwEC] + ĒC-h(ST: ,yT. )jwEC] 

-to 	 to to 

0 
	

( 	3 . )+i•) . 
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COMPLETION OF PROOF 

From (4.3.39) , (4.3:40),(4.3..41y 
_ T 	_ 	-Tt 

E[f 
t° 

Q(Su,Yu)d
-
f ° Q(S ,y )dult0EF] Z 0 

-to 	 uu 

for F=A,B,C 

Therefore TICE' ,y' ) - h( S to t° 	t ,Yt) 

T t = E[1 t° &(Sū,y')du-1 ° 6(Su,Yu)du] ~ 0 t 
o 	to 

i.e. 	h(S1-E,Y') 	h(S1-E,Y1) 

Now as c+O, h(S1-e,y1)'+0 by Corollary 3.2.2, and because 

(51,Y1) EY . 

So lim h(S1-E,y')>_O. By continuity of h with S (Corollary 
c40 

3.2.2) 
h(S1,"0 => (S1,y )EY• 

But y# was chosen so that S1<Sy(y') which gives a 

contradiction. 	 ❑  

Second modified problem  

Before proceeding to investigate robustness a slightly 

different version of the problem is introduced. Here yt 

is still generated by (1+.0.1) but the random variable ti 

is defined such that 

dI(t?tb ) _ [I(St<Sc)X+I(StSc)r(yt)](1-I(t>_tj))dt + dMt 

(4.3.12) 
where Mit is a Martingale 

r(y) is defined in (4.3.2) 

S 
c 
is defined in (1 .3.3) 

and S* is defined by 
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So = 1n(1 	) - (a-1)aDyō 	where .7ro=P(t~ =0.! yo ) 
o : 

• 

dSt  
_ .EI(st<Sc )X+I.(StZSc

) 

 dt 

2 

(Y 
)](1+e-St-i(a-1)aoyt) 

t 

- i(a2-1)aoYt - i(a-1)ao 

(4.3.43) 

P*,E* denote probability and expectation respectively given 

that t. satisfies (4.3.42), and, unless explicitly stated, 

that P*(tj=OIY0)=0 and that kt=a ¥t?ti in (4.0.1). 

Then 	
ōiō .P*(t~c(t,t+S) it~>t,St,yt) = A if St<Sc 

= r(yt) 
if St?-Sc 

(4.3.44) 

Using as before the non-linear filtering equations 

(Appendix 1) if art°-P*(t>_tj I yt ) 

dirt = [I(St<Sc ) A+I(StSc )r(yt )](1-711)(a-1)aoytdVt 

(4.3.45) 

dyt = [1+( .a-1)7t]a
oyt

dt + dvt 	(4.3.46) 

vt is a Wiener process (the innovations process). 

R* ° ln(1~~  ) 

It turns out that St = Rt - i(a-1)aoyt 
2 

(4.3.47) 

Note that St=St Vt<t c , where St is defined by (4.1.3) and 

tcninf{t:St>_Sc}. 

dS* -  
Also 	StzSc vt>>tc, since dt(Sc,y)>_0 Vy 

dff- and 	. (s,y) = t(~,y) ¥S>-Sc, Vy- 
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For (S46rY)to=(S,Y)to=(S,b'), vt=vt Vtat o' SaSc 

(4.3.6),(4.3.8) and (4.3.46),(4.3.l3) have identical 

solutions for tat 0 

. Tt 
Therefore E*(S Y)Kt (Tt ) = E S 	C-aTt +(.~+c)f ° ~rūdu] 

o o 	( ,y) 	o 	to 

_ 	T t E(ff,y)C-ATto+(a+c.)fto° udu] = 
E(S,Y)Kto(Tto) 

for any Yt-stopping time Tt 0ato 	 (4.3.51 ) 

Therefore the optimal detection time Tt , in the sense of 
0 

the expected cost E*(S*,y) Kt~(Tt0), satisfies 
to 

= inf{tato:St>-SY(y )}, if t oatc ( 1+.3.52 ) 

Note  

If -(a+l)ao>-c, as would be expected, Tt 
o 
=inf{t>-to:Stas-Y(yt)} 

forto<t c too, since then -A+(A+c)rrt<0 if St<Sc => 'cleat c, 

from (4.1.7) (c.f. ( 1+.1.17)). 

The robustness result is now derived. 

Theorem 4.1+  

E(TtJ -tj l (S*,Y), .,t.,kt=f3t ist>_tj ) uj 

s E(1.5 -t~~(S*,Y)t .
J
,t~,kt=a Vt>_tj) 

J  

if Staa>1 ¥tat.>-tc 

Proof (similar to proof of Theorem 4.2) 

Suppose Rtaa ¥t>_ti >-tc 

Define y such that 

dyt = p
,aoytdt + dWa 	tat s 

a 
Yt- 

(1+.3.53) 
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t 
! J(ya)dWa 

.J 

Vts = jt.J(ys)dW~ 	
tzt~ 

J 

where 

where Wt is a Wiener process. Define ys such that 

dyt = .st a,oy~dt + dWts 	tZtj 

Yt• 
	t. 
Y t 

From It6's differentiation rule, 

a0 xt J =xt 
J 

dxt = (2aaoxt+ l) dt + 2✓(xt)). dVt 

dxs = (2St aoxs+l)dt + 2✓(xt 	s s ) .dVt 

(4.3.54) 

(4.3.55) 

J(x) = +1 if x~0 

-1 if x<0 

Vt, VS are. then Wiener processes. Suppose that Wt, 	W
.(.t 

are 

chosen so that Vt=Vt=Vt. Then, by [22, Theorem 1.1] 

xts s xt 	Vt?t~ 	 ( 4.3.56) 

Now define SS s so that Sa =Ss =S* and (S
a 
,ys) & (Ss,ys) 

t t 	 t~ t~ 
j 
	t t 	t 	 t t  

dt = r( Yt ) (1+e-S - (a-I)aoyt ) - (a2-1)aō jrt -i(a-1)ao 

As t.>-t c St~St?S~ $t?t~. dt is a. decreasing function of y2 

for given S*>_Sc. Therefore from (4.3.56) 

Ss z stt>_t~ 	 (4.3.57) 

Now define 	Ta = inf{t?t.j:St?SY(yt)} 

Ts = inf{tti:Sts?SY(y )} 

then 	SS a Sa = .S-(yaa) ~ S-.Qr ) 
Ta Ta Y T 	Y Ta 

The final inequality follows from (4.3.56), noting that 

xtey2 and Theorem 4.3. 
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a 

X-(a+l)aoexp( 
2(a+l)ao 

2a-(3a+1)an  

'Y)otc 	X(1-p~ 	-(a+l)a exp(2a=(3a+1)ae) 0 	2(a+l)a 
0 

(4.3.60) 

Therefore T5 S Ta 

The result' of the Theorem now follows. because of the way 

in which yt, y., Ta, T have been defined. 0 

It follows as in section 4.2 that if Rt?a ¥t 

E(S~Y) 
[C(T*)Ikttitt~t~,t~ ztc] 
0 

14. E(S y)tC(T*)Ikt=aVt~t~,t?te] 
' 	o 

( 11.3.58) 

This also holds with C(T*) replaced by K(T*). 

Note that the distribution of the time t. at which the 

disorder occurs, specified by the notation E, E or E* is 

irrelevant in ( 1+.3.58) because of the conditioning in 

Theorem 1+.4. The robustness of the detection rule T* is 

established regardless of this distribution. 

In this case it is possible to say something about 

t, defined in (4.3.48). 

Since St = ln(1rt/(1-7r,t )) 	i(a-1)aoy
tt 

and from (11.3.118) 

tc _< t = inf{t:Trt ~ 	 2X-(3a+l)a, 
) -(a+l)aoexp( 2(a+l)a

o 

Therefore P(S,Y)o(Ytc) 	P(S,Y)o(t.s ) - E(S,y)o
'F
R 

= p, say 	( 1+.3.59) 

since tc is a t
-stopping time. 

t 
Also E(S,y)olttc 	E(S,y)of ocX(1-~ru)du from ( 1+.0.2) 

so that p?X(1-p)E(S,y)otc. 

Therefore E 
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If A/(-ao ) is small, as would be expected, this leads 

to the following approximate values for the upper bounds 

given in (3•9.) and (4.3.60). 

a 
upper bound for 

E(s,y)otc 

upper bound for 

P(s,Y)0(t~<
tc ) 

1.1 1.326/(-a0) 1.326A' 

1.2 1.293/(-a0) 1.293A' 

1.4 1.231(-a0 ) 1.231A' 

1.7 1.146,/(-a0 ) 1.146Ay 

2.0 1.070./(-a0) 1.070)C. 

where A' °- A/(-a0 ). 

P(s,Y) 
(t~ <tc) is then typically small. 

0 

4.4 The sub-optimal detection rule a>1  

Theorem 4.4 provides a robustness result for the detection 

rule T*, which is valid regardless of the distribution of t.
0
. 

T* is the optimal detection time if t. is distributed 

according to (4.3.42). Under this distribution the probability 

density 

lim TP *(t.ECt,t+6)'t' > 
6+0 	3 

Y+ =Y 

= lim sP(t~c(t,t+o)lt~ >t,yt=y) = A 
6+0 

for y2 yc , while it is reduced if y2 ?y
2 	(4.4.1) 

The disorder is less likely to occur while 2 2 Y 	Yt>Y. However 

is typically several times the standard deviation of yt 

t__<tJ , so that most of the time yt<y~ 	In table 4.4.1 values 

of the probability that the disorder is delayed are given if 

1  
y
o
-N(0, 

2a0) and t.0 
is distributed according to (4.0.2). The 

yc 
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low values obtained, together with the fact that T and T* 

minimize the expected values of K(T) for their respective 

cases suggest that the properties of T will be similar to 

those of T*̀ . In particular,- it is likely that (4.3.52) holds 

for T as well as T*, even if the result corresponding to 

Theorem 4.4 does not hold for every (S,y)t.. 
J 

Here the increase in the expected cost resulting from 

the use of the detection time T* with its guaranteed robust-

ness properties is investigated, where (4.0.2) holds. 

In order to do this the following situation is 

considered: 

dyt = [1+(a-1)I(t~tc.)]a ytd t + dVt , yo o 	=Yo (4.4.2) 

dY* _ [1+(a-1)I(t?tip ]aoytdt + dWt , yō=Yo (4.4.3) 

where Vt, Wt are Wiener processes such that Vt=Wt Vt<-t; 

(Vt-V€ ) and (Wt-W£ :) are independent for tA 
	

(4.4.4) 

t*Z0 is defined so that 

dI(t~tij!) = [A+(r(yt)-X)I(t~tc)](1-I(tZt*))dt + dMt 

Mt a Martingale, P(t3=O1Y0)=0 	(4.4.5) 

t20 is defined so that 

dI(t?t) = (A-r(yt))I(tZtc)(l-I(t?t))dt + dMt 

(4.4.6) 

Mt a Martingale, P(t=o1Y0)=0 

Mt . and kt are orthogonal. 

Here tc is defined as in (4.3.48) with yt taken as yt and 

St generated by (4.1.3) . 

Then 
t? °- tt A t J 	J 	- (4.4.7) 
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The observation process from which the processes St, St 

respectively 

yt 

are generated using (14.1.3) and (4.3.1+3) 

so 	di(tZt(?) = A(1-I(tzt~°.))dt + dM.°t (1i..1 .8) 
where dMt=I(ttJ)(dMt+dNt ) 	w.p.12 i.e. Mt is a Martingale 

and P(tZt~ I y0 )=1-e-fit. 

is either equal to y.°t for all t or it is equal to art for all t. 

P°,E° are defined as probability and expectation given 

that yt=yo ¥t~O. 

P*,E* are defined as probability and expectation given 

that yt=yt ¥t~0. 

-A(Tto-t + (A+c)(Tt -t3vt0)I(Tt0>t~-) 

with K° s K° 0 (4.1+.9) 
Ktoto) e -A(Tto-t0) + (A+c)(Tto-tivto)I(Tto>9) 

with K* n K* 
0 

(1.1+.10) 

for It a?t-stopping time st -7toZto (Vt generated by 
(yu:u_<t) )" 

Then minimizing the expectation of K(t) with observations 

o 
yt-

_ 
yt is the original problem of sections 1+.0, and. 1+.1 

(tj distributed as tj in ( 1 .0.2)). 

i.e. E(So1)t Kt ( ) = E°CKt (Tt )I(S,y)t 0] 
0 0  

and this is minimized by Tt
o
=Tto°-inf{tZt°:StzSy(yt)}. 

Similarly observations yt=yt. and cost Kt('[t ) correspond to 
0 0 

the "second modified problem" defined by (1 .0.1) and 

(4.3.1{2). 

i.e. E** 	-(Tt ) = E*.[Kt (It ) (S (S ,y)t .to  	*o 	*'Y)to~ 

and this is minimized by 	-Tt =ini(t~t0:St~SY(yt)) 
o 

under the assumption 
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Assumption 4.4.1  

-- (a+l.) ao z c 

This assumption requires that the weighting given to delays 

in detection in the cost function (4.0.3) or (1 .1.5) does 

not force the delays to be typically of the same order as 

the system time constants. In applications this seems likely. 

Outline of the argument  

Lemmas 4.6 and 4.8 are concerned with the expected detection 

delay using T* in detecting a disorder in observations yt at 

t~=t<tt . In order to achieve a reasonable upper bound the 

delay time is considered in two parts using different 

methods in each case. 

Using Lemma 1+.5, Theorem 4.5 then establishes a bound 

on the expected cost of using detection rule T*,with 

observations y°, to detect a disorder occuring at t°.. 

To simplify the analysis two assumptions are made which 

should hold in any practical situation. 

The bound is evaluated and values given in Table 4.4.1. 

Lemma 4.7 provides a technical result. 

Lemma 4.5  

E°[K°(T°)1Y0] ? E*CK*(T*)1Y] 

Proof 

Note: So ,So are Vo -measurable ( So=S*=-co) .  o 

Suppose yt=yt. Then a random variable t may be generated 

distributed as t, by using (4.4.6). 

Generate yt st yt = yt Vt<_-t 

dyt = aaoytdt + .d~T 	vtZ E 

for some independent Wiener process Vt. 
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a? -1 
E°(Tx-tlyt) 	

4a(x-Sc a4a aoy£) 

-(a-1)2ao 

(4.4.13) 

Then observations of yt are statistically indistinguishable 

from observations of y. for given tt. Since y may be 
t 	-J ..  

generated given (y*,u<_t), it follows from the optimality of 

T* that 

E°EK*(T°)Iy07 > E*[K*(T*)IV°J 

Since t?--<t~ , K° (T° )~K*(T °) from (4.1+.9),(4.4.10) and the 

result of the Lemma follows. 	 ❑  

The following definition is made. 

yt denotes the a-field generated by( (Ayu:u_<t) 

Lemma 4.6  

a 9t-stopping time Tx>t such that 

7 	= P*(T .t*Iy ) > Tx 	X 	Tx 

l 
( 14 .4.11) 

1+exp(-x+(
'a-1)2 

) 
4a(a-1) 

2 	1 	_2 
yTx -( a+l)ao yc 

( 4.1+.12 ) 

for any xzSc. 

 

Proof 

  

2 
Define Ut St + Taov2t 

If yt=4 ist, then Vt>t>tc (so that, from (1..1+.2), 

dyt=aaoytdt + dVt ) 

( 1+.1+.11+) 

 

dUt = r(yt )(1+e-4-
(a-1)ao3' )dt 

 

2 	
2 

(a4a 
	aodt + a2alaoytdVt 

(4.4.15) 

by (4.3.43). 
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Now define .. Ūt so that Ūt 
- ~c 

a2-1 2 
+ . 

4a a
0y£ 

< Sc 

and 	dŪt = .dUt - r (yt ) (1+e-S 	(a-1) 
aoyt ) dt 

(a-14
2 

a 2a 
dt + 2  aoyt dvt 

(4.4.16) 

ThenŪt <<-U Vt~t, since S£?Sc 	 )~0 and from ( 4.4.16 ) (r(y). 

^ 
Suppose x?Sc>_Ut is fixed, and define 

Tx ° inf{tzt:Ūt~x} 

For fixed T>t 

= E° (UTAT-Ū.e j yt) + E° (11T-ITT 

Since 0
T AT ' 

it follows from (4.4.16) that 
X 

(ajla)tao(T-t) _< x - Lit + E°(CT-TxAT]C 
a
4
-1)2

a
0 

Therefore 

EK(TxnT-tj^yt) — 4a(x-N) 

(a-1)2ao 

VT >t 

T 	 ^ 

	

i.e. . f Po (Tx-t>uj yt)du <_ 4a(x-U2 ) 	VT>t 	O  

(a-1) ao 

E°(TX t) 

( a-1) 2 ao 

Using (4.4.16) yields (4.4.13). 

(4.4.17) 

Now 
^ 	2 

ātLUt Taoyt] = - (a-1)ao - x2-1)aāyt 	t>_t 

from (4.4.16),(4.4.2). 
	 (4.4.18) 

So 
2 a
47 aoyt]< 0 , if yt > -(a+l)ao 
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y 

  

U 

   

  

Figure 4.4.1 

     

So the process (Ū,y)t cannot enter the (open) sets Dl,D2 

for t<Tx (see Figure 4.4.1). 

Therefore y2 
Tx 

1  
-(a+l)ao 

which is (4.4.12). 

Finally, LJ 	Z Ū 	=x , and from (4.4.14) and (4.3.47) 
Tx 	Tx 

R* = U. + (a-1)2a y2 
Tx Tx 4a 03rTx 

Using (4.4.12) this yields (4.4.11). (Note that 

7taP*(tt~I yt)=P*(ttt19t) Vt by definition of tt,t 

(4.4.5),(4.4.6).) 	 ❑  

Lemma 4.7  

For any S/t-stopping time to 

E* (tt to I tt >t o 9C1.4.   ) < 1") -  0 

-1- 	1 
) 

where 8=P(XEC-yc,yc]) ; X-.'N(e yc' 2a0 

Proof  
.. 	_ 	 2 

Conditioning on tt, 9t0 ,yt= 1 Vt , 3't-'N( pt ,ot ) 

where t1=tp- ā 	a ln(lyto/y 'vl) 
0 	o 	c 

I ut < e-lyc 	2 < -1/2ao ¥t>tl 

(1+.4 .19) 

(4.4.20) 

from (4.4.3). and since a>1. 
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From (4.L5). ). 

P*(tttitt>t y ) 2 E*.( f AI(y2<y2)I(u<tt)du]tit>t ,y ) J J - 0 to 	
0 

t• 	u c 	J 	J 0 to 

.t 
E*.(f AP*(

Yu Y~ 	 o tJ>u,yto)I{u<t~)dult~>t,yt0 ) .t- 

i.e. if P*(ut~lt~>to,YtO)-qu 

qt 	!t A6(1-qu)du 

from (4.4.20), with 6 as defined in (4.4.19). 

CO 

( 4. 4.21) 

Now 	E*(tt-t0itj>to,yt0) _ ~t (1-qu )du s t1-t 0+1/a8 
0 

the final inequality following from (4.4.21). 

Then the result of the Lemma follows from the definition of 

t, since 

(1+1n(lYt0/Yc Jv1)) s JYto/Yc lvl 	 ❑  

Lemma 4.8  

E0(T*-tI9 ) <- (1 - A )1C1+exp(-x+  (a-1)21
7 t 	t 	6 	ao c 	 4a(a+1) 

2 
4a(x-ge a ā aoyt) 

-(a
-1)2a0 

where x>Sc 

and 	T °-inf{t?t:St >_S,Y(yt)} 

Proof  

At any 9t0 -stopping time to such that yt 0_<yo 

1 a 
E*CA(Tt ntt-to)I(Tt nt*~to ) 1 9t 7 <_ 8 	a o f 	o 	0 

from Lemma 4.7. 

Since K* (T* ) = -A(T* Att-t )I(T* .At*~t ) 
to t0 	to J 0 to J o 

+ c(.T* _-tJv.t
o
)I(T.*t >tJ) 

	

to 	0 

and by optimality E*(Kt 
0
(.Tt )J t )-<0 (as Kt (t0)=0). 

	

 0 	0 	 0 
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(4.4+.22) 

it follows that 

~^ 1 E*Cc(Tt -t3vto )I(Tt .>t1),I9t 3 < 6 ao 

Now 	c(Tt ~-t~vto)I(Tto>t~ )0 	and Tito=P*(t~<-t o.I yt ) 0 

so 	E*Cc(T* -ttvto)I(T* >tt) I yt ,t*<t]~t to J 	o J 	o J o o 

i.e. 	E*(Tt-toI t ,t4ofsto) < (- 	)c 
° to 

From (4.4.2),( 4+.4+.3) yt evolves in the same way Vt?to t~ 

whether yt=yt or yt=y,t. So 

E°(T* -to I yt ,t4t to) s (ē 	A )~ 
1 
 y 0 	o J 	"t0 

WM> 	E°(Tto-to I fto,t5to ) 	< ( 3t
a 

•) c~* 
° to 

(4.4.23) 

since (S*,y)t is a Markov process given t~t?=tAtif, o 
yu=yu Vu 

and (S*,y)t is 9 
o
-measurable. 

0  

For t
o =T x, defined in Lemma 44.6, noting that tsTx by 

definition of Tx, then 

E
°(TT 	Tx 

< 
(6 	a  1 c7i* X 	X 	TX 

and from ( 44.4 .11),(4.4.13), the result of the Lemma follows 

since T* ?T* . 	 0 
Tx t 

Assumption 44 .4.2  

(a-1)2 > ln( 	4Xac8 	)
24(44c0.1)(a+1)(a

-1)2ao 

For A small, as would be expected, this will hold. 

The bound given in Lemma 4.6 is approximately minimized by 

choosing 
a 1)2 

x = ln(
-(  

4tac 8 

 

2 
(a-l)  
ba(a+l.) 

> Sc (4+.4.24) 

  

c 

- 109 - 



if Assumption 4.4.2 holds,. Then 

E.(T£-t(Yt) 

   

1)2 (a+1.) a0 
	 ) 
4ācex 

 

1)2a0 

 

+ 
(1 _ a )(1 +- 	

 4a6  
8 	a0 c 	-

(a-1) 2a 

+ f a+l) 2 
a-1

y 
t 

= e(yt) say. 	(4.4.25) 

Theorem 4.5  

Given Assumptions 4.4.1 and 1+.1+.2 

E°(C°( T* )1Y0 ) — E°(C°(T°)IY0 ) 

= E°(K°(T*)IY°) - E°(K°(T°)IYo) 

E[(T'- .lyt;/ye l + ce(yt0))I(t3=t)IY0] 

where c(•) is defined in (4.4.25). 

Proof  

The first equalityfollows from Lemma 2.1 

If t°.}`t, then t°•=t* and K° (T* )=K (T ) J 	J J 	tj t3 	to 

where Tt0 is defined by (4.3.41+) . 

Therefore 	E°(K°(T*)Itj t,Y0,T*>_tJ°.) = E*(K*(T*)Its t,Y0,T*>t(0?) 

So EO(K°(T*)IYO,T*'-t(?) - E*(K*(T*)IYO,T* t0 ). 

E°[K°(T*)I(t°.=t 
J

)IY
°' 

T*~t°.] - E*[K*(T*)I(t°.=t)IY°,T*zt°] 
 J 	J 

= E°[K° (T*)I(t°=t)IY ,T*>t°] - E*CK -0(T*)I(t°
. 
=t)IY 

o
,T*?t~] t~ 	.J . 0 	J 	t' 	J  

(4.-4.26) 

The second equality follows from (1+.4.9),(4.1+.10), and since 

(T*ztc? when yt=y°.)<=>(T*zt~ when yt=yt). by (4.4.4). 

0 
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Now E*LK o(T*)I(t°=t )I Y°,T*~t. ] 
t-  

E*E-XE*(t -Yt*>.tj )I(t(?=t),I Y ,T*t.] 
J 	J 	€ 	J 	o 	-J 

by (4.4.10) . Note that (t J°.=t )b>(tt?E) . 

Then from Lemma 4.7, as t?=t _> y2 S72.  
J 

E*EKt9(T*)I(t3=t)IY0,T*~tJ°.] 

E*[(-1 +-a'I Ytj/YcI)I(t;=t)IY°,T*>t?] <0 
0 

( 11.4.27) 

Next, 

E°EK°o(T*)I(?=tY ,Tt°] = cE°C(T* ~-)I(t
? 
=t)IY °,T*?t~] ti 	 o 	J 	 t 	J 

scE°EE(y0I(t3=t)IY0,T* tp 0 (4.1+.28) 

where E(•) is defined in (1+.1+.25). This may be done since 

E°(Tt-ti Y) = t,t°.=t) 
t 	t 	J 

as (S*,y)t is a Markov process given t A t(j?, if yu=yu Vu. 

Note that (S*,y)t is the same Vt5.t3 whether yu=yū Vu or 

Yu=Yu Vu• 

Therefore P°(T*?t?IY°) = P*(T*~t(?IY 

( 1+.4.29) 

and 	E°(K°(T*)IYo,T*<t3) = E*(K*(T*)IY°,T*<t3) 

as t~<tj (see (4.4.9),(4.4.10)). 

So from (4.1+.26) substituting with (1+.1+.27), ( 1+.1+.28) it 

follows that 

E°(K°(T*)IY°) - E*(K*(T*)IY°) 

< EE(ē - ā It~~cl + cc(Y€))I(t3=t)IY0] 
0 

where the superscripts on E on the right hand side are 

dropped since irrelevant. The result of the Theorem follows. 



A further assumption is made to facilitate the evaluation 

of the bound provided by Theorem 4.5. 

Assumption 4.4.3  

yō N(0, 2a ) 
0 

This corresponds to yt having achieved the "steady-state" 

distribution for the system with no disorder. 

Since t°. is independent of the noise processes Vt,Wt' 

1 
YtQ\sN(0' -2-;70-) 

 

Now P(t??=tlyt9=y) = 0 for 
J 

= 1-r(Y)/a for y2 >yc (from (4+.4+.5) 

and ( 4 .4+.8)) 

a(a2-1)a2y2+ (a-1)a 
< 1 	0 	2A-(3a+1)ao 

) 
exp(i(a-1)aoy2) 

(a-(a+1)ao)exp(  2
(a+l)ao 

= 1 - p(y) say 

r ( y ) -p(YD, 
X =0.01 
a =1.4+ 
a =-1 

0.002A 

y
2.5 	3.0 	31.5  	4. 0 . 	4.5 	y 

c 
Figure 4.4.2 

2 
Therefore 	P(t°.=t) <_ 2/(.L).f (1-p(y))ea oY dy = p say 

C 

Integration by parts yields 

p = P (Yt q >Y~ ) - ✓( 3 	~~~a~+lexp (_27~'a2.-1  ) . ✓( ) 

where a'°a/(-a0). Also define c'-°c/(-a0). 

Values of p are given in Table 4.4.1. for a' small ( lim p 
X'-r0 

- 112 - 

CO 



From Theorem 4.5 

E°.C°.(T*) - E°C0(T0) <- 

Ce + aal'2 
-l(a-1)2(a+l)  

cac'6a' 

5a;-1  
(a-1)2 

+ ( ē + A') (1+ ~+a6c' ~ ) ]p 
(a-1) 

2 

~ + Y i(-a°)•j Y(1-p(Y))ea°y dy 
c 	

Ye 

-a 
+. 2

aa
+1c :(- a°)✓( ° )'f _ Y2 (1-P(Y) )e

a oY
2 

dY 
Ye 

Again integrating by parts gives 

E°C°(T*) - E°C°( T°) S Ē 

Ce + (a-1) 	 ln((a ac?6X
+1)) _ (ā=i)2 c. 

+ (1 A') (1+ 4aOc'  ) 1P 
(a-1)2 

a2-1 	X'(a-1)+(a-1)2 	2a'+3a+1 -(a-1)X'+a2-3a+2  

	

+Ca I(2X'+3a+1).a'(a+l)
+(a+l)2 

	c J( a2-1 	
)•(a-1)(a"+a+1) 

a2-1 

1 
(a 	+l)c' 	2 	2 	d(a jc- 	2X +3a+1 	2 + 	 .P(Y o>Y ) 	 exp( 	 )P(X >Y ) 

	

2(a-1) 	t~ c 	X +a+1 	2(a+i)  

where Xt)N (0, 	-1 	) . 
(a+l)ao 

Values of this bound are given in Table 4.4.1. 

Note that these are likely to be very pessimistic (higher 

than necessary). The steps leading to (4.4.30) are one cause 

of this. 
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TABLE 4.4.1 

a lim p 
X"-0-0 

1.3 0.32x10 5̀  
1.4 0.25x10-4  
1.5 0.94x10-4  
1.7 0.68x10-3  

2.0 0..29x10-2  

a c 

1.2 0.01 0.1 o.000006 

1.2 0.00001 0.1 0.0000i4 

1.2 0.00001 0.01 0.000002 

1.2 0.00001 0.001 0.000000 

1.2 	. 0.00000001 0.1 0.000022 

1.2 0.00000001 0.01 0.000003 

1.2 0.00000001 0.001 0.000000 

1.4 0.01 0.1 0.000664 

1.4 0.00001 0.1 0.00129.3 

1.4 0.00001 0.01 0.000199 

1.4 0.00001 0.001 0.000070 

1.4 0.00000001 0.1 0.001929 

1.4 0.00000001 0.01 0.000262 

1.4 0.00000001 0.001 0.000077 

1.7 0.01 0.1 0.008467 

1.7 0.00001 0.1 0.014602 

1.7 0.00001 0.01 0.002894 

1.7 0.00001 0.001 0.001537 

1.7 0.00000001 0.1 0.020781 

1.7 0.00000001 0.01 0.003511 

1.7 0.00000001 0.001 0.001599 

2.0 0.01 0.1 0.026867 

2.0 0.00001 0.1 0.0427.79 
2.0 0.00001 0.01 0.010605 

2.0 0.00001 0.001 o.006907 

2.0 0.00000001 0.1 0.058808 

2.0 0.00000001 0.01 0.012208 

2.0 0.00000001 0.001 o.007067 
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In section 2..2 a possibly more realistic formulation of the 

failure detection problem is proposed (2.2.7). It is shown 

that subject to the conditions of Lemma 2.2 the optimal 

detection rule following each false alarm is.T=T°, with an 

appropriate choice of c in (1+.0.3). 

Suppose following each false alarm yt is "reset" so 

that Y.041(0,-4 7;) as in 

unimportant in practice 

so that the inter-alarm 

Assumption 1+.1+.3 (probably 

if X & c are much smaller than -a0 

time is typically long compared to 

the system time constants). 

As in Lemma 4.5 it may be shown that 

E0(4
0 	0 

)I(S,Y)t 0=(§/g» 

E*(K* (T* )I(S*,Y)t to to 

( 1+.1 .30) 

Therefore-from Corollary 3.2.2, since St<St Vt by 

(1+.3.1+2) 

0 > h(St,yt) > h(St,Yt) > E*(K*(Tt)I(S*,Y)t ) 

ist <T ° 

T* > T0 since K*(Tt)=0 if Tt=t. 	(11.11.31) 

Let q°=P°(T°<t~) g°=E°(( T0-t0 )IT°>t j) 
(1+.1+.32) 

q*=P°(T*<t c.)) 	g*=E°((T*-t~)I T* to) 

From ( 1 .1+.31) q*q-o 

The difference between the expectation of cost Q defined in 

(2.2.7) using T* and TO following each false alarm is 

1-q* +. 

0 	0 
1_qo 

c 	l_Q*g* - .o0 	go 
1-q°_ } 1-q° 	1-q° 
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s 1  Cq* .+ 
1-q° 

- (l-e)g°] 

1 [E°K°(T*) - EaK°(T°.)] = 
1-q°  

E 

l-q° 

where a is as in Table 4.4.1 

Now if Q°  is the expected optimal cost with cost function 

Q it follows from (2.2.7) that Q°>-1/(1-q°). Therefore the 

increase in expected cost using the detection rule T*  

following each false alarm is no greater than eQ°. 

— 3.1.6 — 



CHAPTER 5  

ROBUSTNESS OF DETECTION RULES: GENERAL CASE  

In this chapter the behaviour of •the optimal detection rule 

given in Chapter 3 for the problem (2.5.6) is investigated, 

for the case where the disorder is different from that 

designed for. The result obtained is interpreted in two 

ways. Firstly a robustness result is obtained for auto-

regressive systems of general order. This specifies a set of 

post-jump parameter values such that, if c (the delay 

weighting coefficient in cost function C(T)) is chosen 

sufficiently small, the expected cost is no greater than in 

the design case. 

The second interpretation concerns the detection of 

disorders in the more general situation discussed in Section 

3.1 , where a natural sub-optimal approach is suggested. This 

approach is in fact the optimal detection rule for a related 

problem in which additional transient effects occur following 

the occurence of a disorder. The result of this chapter 

characterizes a set of post-jump parameter values for the 

system (3.4.1) such that the expected cost is no greater 

than for the problem for which the proposed detection rule 

is optimal, again if c is sufficiently small. 

It is suggested that the restriction on the value of 

c may be interpreted as a requirement that the average 

detection delay following a disorder be long compared to 

system time constants. 

5.1 The robustness result  

Problem formulation 

The following situation is considered 
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Id 

. 

(5.1.1) 

J 	B 	0 	0 
dvt  = 	 vt  dt + ' I dt + 	d.Wt  + 

Dt - Ft; 7 	zt 	Im  

Observations: yt  =.EO:Im]vt  

vt  is an n-dimensional process (n?m) 

J is an (n-m)x(n-m) constant matrix 

B is a (n-m)xm constant matrix 

Dt=D°,Ft=F°,zt=z°  (D°,F°,z°  constant) Vt<tj O 

Dt=D, Ft=F, zt=z (D, P, š constant) littj  

P(t?t.) = 1-e-At, tj  independent of vo 	(5.1.2) 

Wt  is a Wiener process independent of t.. 

.t=0 Vt <t j  

Cost function: C(T) = I(T<tj) + c(T-tj)I(T>tj) 	(5.1.3) 

T a VR-stopping time 

In this chapter vo  is assumed known, so that vt  is 

Vt-measurable. 

An optimal detection rule is designed for the case: 

D=D1 , F=F1, z=z1  
(5.1.1+) 

t•=0 Vt 

The notation P1,E1  throughout this chapter denotes 

probability and expectation respectively given that (5.1.1+) 

holds, i.e. the disorder which occurs is the design case. 

The notation P2,E2  denotes probability and expect-

ation given that 

D=D , F=F2  , z=.z2  (5.1.5a) 

is a random variable such that 	is independent 

of Wt-1-11  -Wt  for V11.0 and 
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22( I1 12Itj,vtJ ) < a(vtJ).e-6(t- _J (5.1.5b) 

for some a(•) , s>0 independent of tj and such that 

E2(a(vt.)It~) uniformly bounded i~tj 
-J 

The introduction of Ct will enable sub-optimal detection 

rules to be considered in Section 5.3. 

The detection rule  

• From Section 3.1, if 7t°P1 (t?tiIYt) 

dirt = a(l-nt)dt + nt(1-7it)([D1-D°:F1-F°]vt+z1-z°)Tdvt 

(5.1.6) 

where dvt = dyt - (CD°:F°]vt+z°)(1-7rt)dt 

- (CD1:F1 ]vt+z 1)ntdt 
	

(5.1.7) 

Defining Rt=ln(7rt/(1-70) and 

(5.1.8) 

Czl-z°]TCD±-DD1 - D°:FI-F1-F°] 

(5.1.9) 

gi °- [z1 _z 0 ]T[zi-iz1 _ z°J 

for 1=0,1,2 

dRt = A (l+e-Rt) dt + (vtMlvt+hivt+gi) dt 

+ ([D1 -D°:F1 -F°]vt+z 1 -z°)Tdw 

+ (CD1 -D°:F1 -F4) ]vt
+z 1 -z°)T tdt 

( 5 .1.10) 

(5.1.11) 

where i=0 if t<t~; i=1 if (5.1.4) holds, i=2 if (5.1.5) 

holds for t>-t .. . -J- 

As discussed in Section 3.1 the optimal stopping 

time T for the design case (5.1.4) will be of the form 

T c = inf{t:(R, v)teyc} (5.1.12) 
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where ye s a stopping boundary in the state-space of the 

process (R,v)t. The index c is used to indicate .the:depend-

ence of the stopping boundary on the weighting coefficient 

in the cost function C(''[) (see (5.1.3)). 

Tc  may also be expressed as 

inf{t:RtzR Y  (v )1 (5.1.13) 
c 

where 	Rfi, (v) = inf{R:(R,v)eyc} 
c 

Outline of the robustness argument  

The ideas leading to Theorem 5.1 are briefly introduced. 

The probability of a false alarm is independent of the 

system behaviour after the jump time, since then T<tj  and 

T is a t-stopping time. Only the delay time is affected 

by the actual form of the disorder. 

The delay time is the time taken for the process 

(R,v) to move from its value at time t. to the stopping 

boundary yc. 

Figure 

5.1.1 

As c+0, ye  moves to the right in the diagram above, as 

longer delay times may then be tolerated in order that the 

false alarm probability may be reduced. For Rt  large, the 

term ae t  in equation (5.1.11) becomes small. Therefore, 

for small c,the expected delay times are closely related to 

the mean values under disorder conditions (t>t.) of 
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A + vtMlvt + h1Tvt + gi 
	

1=1,2 

(see (5.1.11)). 

Lemma 5.1 provides the necessary result which 

bounds the effect of the tie-Rt term. It is shown that 

CO 

1 	Ae-Ru du < 00 
inf{t:RtZlnA} 

by using a probabilistic argument based on the properties 

1  of the process 
it= l+exp(-Rt )• Because of this the bound 

obtained is very weak, since no account is taken of the 

actual dynamics of ¶t: the proof of the lemma would also 

be valid if wt was the jump probability based only on 

a-priori information, in which case the integral would be 

expected to take larger values. This is not disastrous if 

only a qualitative result is required as in Theorem 5.1. 

However if a quantative result is needed, this together 

with uncertainty about the boundary shape are major 

problems. 

Lemmas 5.2 and 5.3 describe the evolution of the 

stopping boundary as c+O. Lemma 5.2 shows that 

lna -lnc < R~c(y) 5 B- (v) - inc 
1 

for some function RY (v). Here the first inequality is 
1 

an immediate property of the cost function used. The second 

inequality is obtained by considering a modified cost function 

for which the appropriate stopping boundary, defined 

by R,~ (v), retains its shape while being moved to the right 
c 

as c tends to zero. 

Lemma 5.3 is needed to show that, for t1villsp 

there is a finite upper bound r for R~ (v). Here p is an 
1 

arbitrary positive real number and 0vlI* is the norm of v 
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projected onto a sub-space of Rn. Using this definition 

instead of norm v allows a generalization to be made so 

that Theorem 5.1 may be applied to sub-optimal detection 

rules in Section 5.3. The proof of Lemma 5.3 involves the 

construction of an observation process which, up to some 

stopping time, carries more information than yt. Since 

with this observation process it is optimal to stop if 

Rt  >-r
p<«3, the same must be true with observations yt  since 

then the expected benefit of waiting for further 

observations is less. 

To establish the results of Theorem 5.1 which 

gives a condition under which 3cm  such that ¥cE(0,cm] 

E2C(Tc) 5 E1C(Tc)` 

a lower bound on the detection time is considered for the 

"E1  case" (i.e. where (5.1.4) holds) and an upper bound 

is considered for the "E2  case" ((5.1.5) holds). These are 

briefly discussed here. 

In the E2  case a process Re is considered related 

to Rt, but such that, at times of interest, RSRt. This 

process satisfies (5.1.46) which is similar to (5.1.11) 

except that the contribution of the Xe-Rt term is removed. 

Also it is arranged that Rt cannot cross the rp  level while 

"vtl,*>p. This means that at the first time R.Z crosses the 

rp  level it is certain that Rt  has reached the stopping 

boundary by the results of Lemmas 5.2 and 5.3. An equation 

involving the expectation of this time is established in the 

proof of Theorem 5.1. The laborious .proof of Lemma 5.4 is 

necessary to verify that certain terms in the equation 

corresponding to transient effects are finite. An upper 

bound is obtained for the expected detection time which is 

linearly increasing with -lnc. 
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In the E' case the first time the process Rt reaches the 

level 3nA-lnc is con-sidex.ea. At this time Rt cannot have 

reached the stopping boundary. Lemma 5.1 is used to bound 

the effect of the Ae-Rt term. It is found that the expected 

detection time again increases linearly with -Inc but,if 

the conditions are satisfied, more quickly than in the E2 

case. The result follows from this. 

-Lemma 5.1  

EX °- E1(J 	Xe-Ru.du) 

Proof  

Define a(7r,u,lt,v) = P 1 (3tto+u st 7r57r,7rt =rt,vt =v) 

	

0 	0 

for u>O, 	>ft 	 ( 5 .1.14 ) 

Note Rt=ln(7rt/(1-7rt )),. Trt=P1 (tti1Yt). 

Let Tm be the Yt-stopping time 

TM = inf{t:t>_t0+u,Trt5f} 	(5.1.15) 

(T111=00 if no such time t exists) 

Then 	P1(t•
J 	to 

 ) = E1EP 1 (t. 	
m

TmIY )'Yto ] J  

< o,vt°) ) + īra(Tr,u,Trt ,vt ) 
0 0 

(5.1.16) 

However, from the a-priori distribution of tj, (5.1.2) 

P1(tJ<
TmIYt ) 	P1(t.<t 

° +u{ Yt ) = (1-~t )(1-e-
au)+

ITt o 0 	0 

Comparing this with (5.1.16) gives 

a(?,u'7rt 'vt 
) < e-Au .exp(R-Rt ) 	(5 .1.17) 

..0 	0 	0 

where R=1n(Tī/(1-ff)). 

If T(Tr)sup{t:Trt< } 	- 	 (5.1.17) 

o 

then 	EI (T() (Trt ,vt ) 	( a(Tr,u,Trt ,vt )du' + t o 
0 0 0 	o 0 

	

< -exp(R-Rt ) + to 	(5.1.18) 
0 

inf{t:Rt>_InA} 
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— (1) 
1/(1+e - 	 . ), Now define R(1)=Rt +i , i+0,1,2,••• , and 

_o 

Let t(1)=T(1r(1) ), .i=1,2,.3,•:• 

Then 	E1(t(1)-t0IRt ,vt ) _< , from (5.1.18) (e=exp(1)). 0 0 

Replacing to by s in (5.1.18) 

E1(t(1)-sIRs=R(1-1),vs) 	Ti 

for any Vt-stopping time s>_to 	i=1,2,.3,••• 

As t(i-1)=sup{s:R=R(i-1)} it follows that 

E1(t(i)_t(i-1)IRt ,vt ) 5 	i=1,2,3 (t(0)at0) 
o O 

(5.1.19) 

Then E1 ( Xe 
t~ 

.duIRt ,vt ) 
0 0 

,vt ) .ae-Rto 1-1) 
0 0 

co 
-Rt 2 -i <_ a 	o E e 	< 00 for Rt >-oo 

1=1 	0 

Setting to=inf{t:Rt>_lna} gives the required result. 	❑  

Definition  

The cost function '5t (-1t ) ) is defined for VR-stopping times 
0 0 

Tt 0zt0 as 

Ct (Tt ) = I(Tt <t~) + 	e .(Tto-to)I(to?t .) 
0 0 	0 

(5.1.20) 

where c is as in (5.1.3), and to some fixed time. 

Note that Ct (Tt ) _< Ct ('it ) 3FTt .0 o O 
(5.1.21) 

This new cost function is useful in the investigation of 

the evolution of 'yc as c+0. 
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inf E 1(C (T )IR =R_ (v)+S,v =v) 
'7t

to to to yo 	to 1+exp(R_ ,(v) +S ye 
0 

_> R- (v) 	RYc(v) 
Yc 

_< inf E1 (Cto(Tt ) Rt =RYc (v) +S, vto=v) 
T.t 

O 
(5.1.23) 

(5.1.24) 

Lemma 5.2  

Define R- :(v) A .inf{R:- 	1R <_inf E1(Ct .(Tt. ) 
Yc 	1+e it 	.o ..o 

to 

=R v,t =v) ). 
0 

(5.1.22) 
Then 

lna - lnc S RY (v) 5 R~c(v) = RY (v) 	- Inc liveRn 
c 	 1 

The final equality is interpreted as meaning R_ (v)=- o IC 

if R- (v)= co 
1 

Proof  

By definition (5.1.2 0 36<61 for any v4Rn,.5 >0 such that 

Note that if R,Y (v)=00, S may be chosen as zero, since 
c 

the right-hand side is non-negative while the left is zero. 

Therefore, by (5.1.21) and (5.1.3) 

1  
E1(C (t )IB =R_ (v)+S,v, =v) -  to o to YC 	to 	1+exp(RYe(v)+S) 

since (5.1.23) implies that T C =t if R =R- (v)+S, v =v 
to o 	to Ic 	to 

with S arbitrarily small (see(5.1.13)). 

Next consider the evolution of B- (v) as c varies. 
Ic 

Let P denote a (possibly randomized) policy (see Section 2.1) 

mapping observations of yt, t>_to into a stopping-time Tzto• 

P:(yu:u?to) H TP ato 
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ap = E 1 (Ct (TP)It  o?t .,vt 
o 	J o 

Pc - E1(Ct(TP)!to<tj,vt 

Define 

(5.1.25) 

From (5.1.20.)

P 
ac = cal and 13c = Sl 

So 	E1 ( t (TP)1R   to ,vt =v) = c7rt a1 + (1-7rt ) 13 p 
0 	 0 	0 

(5.1.26) 

where as usual 7i
to - 	1 
 l+exp(-Rto) • 

inf E1 ( t (T )IRt ,vt =v) - (1-7rt ) 
Tt 	o O O O 	O 

O 

= inf[clrt al + (1-7rt 0)(Ri-1)1 
p 	o  

= (1-7r )inf[c. 	t° aP + R -1] 
to P 1-7rt 1 1 

IL CO is the infimum of Rt such that the right-hand side 
Ye 0 

is zero or positive by (5.1.22). But then, unless

- 
7Yc 

(Y)= 1 where 

1+exp(-R_ (v)) 
IC 

it follows that 

 

is independent of c, 

i.e. 	lnc + R- (v) is constant. 
Ic 

_> R7c(v) = IL- (v) 	- lnc 
1 

It remains to show that lnA-lnc 5 B (v) Vv€Rn. 
Ye 

(5.1.27) 

If this is not so, 3 zr<~+
c F 

v such that if 7r
t"

=ir' vt" 

it is optimal to stop at t' (if Tit') when minimizing the 

expectation of C(T) 

7r_ (V) _ 
Ic 

1 
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i.e. 	1-if < inf E1 (Ct  (Tt  ) lit 	 t. .-`•v) 
O O O O 

<=> 
t o  

Tt  
O  

0 s inf E 1  (Kt  (Tt  ) 114 =ii- , v4. =i7. )   T 	..O 	O 	O 	O 
(5.1.28) 

by Lemma 2.1. 

But from definition (2.2.2) 

E1(Kt (inf{t:Trt })1Trt=7r,vto=v) 

P1 finf{t:Trt6} 
[-X-1-(a+c)Tru]du < 0 

t o  

contradicting (5.1.28). 

The Lemma is now established. 

Assumption  

It is assumed that there exists a sub-space of the 

state-space Rn  of the process vt  such that, if Qvt  denotes 

the projection of v.t, and 

II vii* = 1! Qv!! (5.1.29) 

then 	a) (R,Q.v) t  is a Markov process 

b) the system (5.1.1) is stable in the sense thai 

E1( IJ vtlI*2Iv )  i ¥t t ,tj } r o,v 	t. as t-4-00to,  

for some rl <00, i=1,2 	 (5.1.30) 

The reason for the introduction of the projection Q  is 

to facilitate the treatment of sub-optimal detection rules 

for systems of form (3.4.1). These may be put in the form 

of (5.1.1) by enlarging the state space. Then however 

(5.1.30) would not hold if the usual norm of v was used. 
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ct (T 
0 0 

Lemma 5.3 

For any p>0 3r<w such that 

R- (v) <_ r 	i¥v st +~v ff* _< p R
y1 

Therefore from Lemma 5.2 

 

 

R_ (v) _< r - inc 	$v s 
c 

IlvIl* < P 

Proof 

  

   

Let TA c .inf{tzt0.jjgt r=P+e; 3t',gt, st to<_t'<t & ggt'll*p; 

qu is a solution of (5.1.7) $uE[t',t]} 

(5.1.31) 
for some e>0. t0 is as in (5.1.20). 

For any given sample path of Wt, TP is then the first 

possible exit time of a process evolving as vt from the set 

{xER
n 
: 11xl)* 5p+E}, given that it started at some time 

t'ctto,TP) in the set {xERn: +x ~~*~A} . 

Then 3e>0 such that 

min{E1(TP-tolyto),E1(TP-tolti>t0)} > 	
(5.1.32) 

The process rat,. t~t0, is defined as follows: 

drit = I(tzt. )k + dWt 

where kERm is a constant vector such that 

(5.1.33) 

	

ki = sup 	I([D1-D0:F1-F0]v +z1-z°)i 1 	(5.1.3+) 
itvl1*<_p+c 

Here, for xcRm, xi is the ith component. 

The cost Ct (Tt ) is defined so that, for Tt zto 
o o 	 0 

= I(Tt <min{t.
J
,TP}) + c(min{Tt ,TP}- to )I(tot.) 

o - 	._ o 

(5.1.35) 

(5.1.36) 

(5.1.37) 

Then at ( Tt ) 5 Et (it ) vTt ~to 
0 0 0 0 0 

and 	Ct ( Tt ) = at (it ) for Tt <TP 
0 	0 	.o 	o 	0 
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For Tt ZT 	C.(Tt ) is independent of Tt 
o 	_o 	o 	- 

Now 

inf{E1Ct .(Tt ):Tt a 4-stopping time} 	(5.1.38) 
0 0 0 

5 inf{E1C 8 
t (Tt ):Tt a yt-stopping time) 
0 0 0 

where Ht is the a-field generated by (yu:usto)&(fu:uECt,t]) 

and, possibly, additional random variables independent of 

ti, Wt. 

This may be justified as follows: 

Given alt and Vt, an independent Wiener process, generate 

vt, tEEto,TP] using 

dv 	= A 	B t 	Do 	Fo - vtdt + 0 
z4) 
Z dt 

0 0 	1 0 dO 

( 
vt 

+ 
) 

® D 1 -D° F1-F° zl-z° k 
t 

0 
at dVt (5.1.39) 

Im 

vto 	vto 

Here, 

a 0 b 

Then 

k-1 

=  

vt 

is 

alb l . 	• . 

~mbm 

fl 

-1]i 
a vector 	that such 	.[k 1-  

is statistically 

(at . 	
k (ID1-D~:F 1-F 0 ] t 	+z1-z!)i) 

indistinguishable from vt for given 

vto,t., as may be seen from (5.1.1), (5.1.33) and (5.1.34). 

So with observations pt a stopping rule may be constructed 

which has the same expected cost as any given yt-stopping 

time, in the sense of -cost fuction Ct .(Tt ),which justifies 

(5.1.38). 
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sufficiently large (so 1-Trt is small as Tit = l+exp (-Rt ) ) 
0 

1 

1 
1 1+exp(-r) (5.1.42) 

Suppose now that nt is observed from time to istead of yt 

and that ,'vt .,I *sp. For some finite value of Rt it is not 

optimal to continue until T w..p.l since for Rt 
0 

1-Trt < E1(8(Tp) IRt 
0 
,vt 

0 
) >_ Trt 0cē 	0 

from (5.1.32). 

Defining 

Cto4.11(Y) e I(T<min{tj,Tp}) + c(min{T,T'}-to-u)I(to?ti) 

for T>_to+u 	 (5.1.40) 

(c.f. (5.1.35)) it follows that for some r<00, u~0 

1- l+exp(-r) 	E1(eeto+u(to+u)IRt+u=rp0nt0+ 

< inf 	E1(Ctn+u 	to+u-rp'nto+u) 

(5.1.41) 
where [ is a rat-stopping time. Otherwise there would allways 

be a better policy than stopping before Tp, since Rt +u<co 

Vu<00 . 

But if u>0, it is also optimal to stop at to if Rt =rp, 
0 

since 

E1(Cto(to) 
	=rp ) = E1(Cto+u( to+u)(Rt+u-rpanto+u) 

and 	inf 	E1(C (T )~E =r ) 
Tt ~to 	to to 	to p 

0 

inf 	El (et+u(T)+Rt +u-rp,nt o+u) +u  

(5.1.43) 
(T, T

to 
U-stopping times) 

from  the definition of Ct o+u, (5.1.40). 

So if Rt =rp it is optimal to stop at t with observations 

nt and cost 	 But then by (5.1.38) it is optimal to 
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stop at to with observations yt and costĒ
t 
(T, ) 	 if Rt =r.p. 
0 0 	0 

Finally (5.1.36), (5.1.37) imply that it is optimal to 

stop at to with observations yt and cost Ct (Tt 0) if 
0  

Rto=rp, since 

E1(5t0(t0)1Rto=rp,vto) = E1(Cto(to)~Rt =rp ) 
0 

Therefore B- (v) _< r 	itv st lIvll*~<p. 	 ❑  

The results of Lemmas 5.2 and 5.3 may be illustrated (for 

n=1) as follows. 

Figure 5.1.2 

The evolution of ye as c+0 is described by these two. 

results. 

Definitions  

is = inf{t?tj :Rt>_lna, Ilvt Q*gip} 
	

(5.1.44+) 

Let M+ and M be finite nxn matrices chosen such that 

vTM+v z 0, vTM v < 0 n 

and 	vTM2v = vT(M++M )v vERn 

(M2 defined in (5.1.8)) 

 

(5.1.45) 

Let [x]+. ° xI(x?0) and Lx] Vx€R 
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The scalar process Rt is defined such that 

Rt = Rt itt5t s 

dRt = (vTM vt+[h
2T 

vt ] +[.g2 ] .) dt 

+. L(ED 1-D°:F1-F°]vt+ zl-z°)TCt] dt 

+ (A+v,M+vt+Lh2Tvt ]++[g2 ]+ )I( Ilvt r<p) dt 

+ ([D1-D°:F1-F°]vt+ zl-z°)TdWt.I(Rt<rp-lnc) 

~Ftzts, p>0 (5.1.46) 

Here r is as in Lemma, 5.3 and c as in"C(T), (5.1.3). 

Remarks  

Rt has been defined to have certain properties required 

in the proof of Theorem 5.1, when (5.1.5) holds as assumed 

in the following. 

Since, while Rt<rp-Inc, d(Rt-Rt) is negative (see (5.1.11)), 

Rt is less than or equal to Rt up to the first time that 

R
c

__/. p-inc 

Then supposing that R =R <r -lnc it follows that at the R, is P 

first time that Rt>_rp-lnc, R
t

?../.
p
-inc. Because of the way 

(5.1.46) has been set up it follows that 
Re<rP

-1nc until 

Tc °- inf {t: Rt >_rp -1nc,I`vt ~~*<p} (5.1.x+7) 

The following results are required later. As usual 

C = inf{ T 	t:Rt~Rye(vt)} 

a) ~, C ) T 	 (5.1.48) 

from the above argument and Lemma 5.3 

b) Rt _< r-1nc if t 
	

( 5 . 1 . 4 9 ) 

by (5.1.44),(5.1.47) and above 
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(5.1.52) 

(5.1.53) 

ilv' II* llv' 

Lemma 5.J4  

]SER independent of c such that 

E2(Re +T-Re It~,vt.) = &T+E for Tz0 
s 	~ 

where 	ez-s-4(vt.)>-o, Eq(vt )<m, q(•)?0 
J 	i 

and 	E2(Rt-Rfljtl,tl~ts,vti) = &(t-t1)+c. for t?tl 

where 	es <o 

Proof (superscripts 2 on M,h,g are omitted) 

(5.1.5) is assumed to hold throughout the following. 

First consider the process 

t  

e R -R 	-.I [([D1-D°:FI -F°]vu+ z1-z°)T u]
_ 
du 

s s 

>_ 04C .t is 
Then Lt satisfies 

for t>-ts 	(5.1.50) 

dLt = (vtM vt+[hTvt ] +[g] )dt 

+ (a+vtM+vt+[hTvt]
+
+Cg]+)I(Hvt 11* p)dt 

+ ([DI-Da:FI-F°]vt+ z l-z°)TdWt.I(Rt<rp-lnc) 	t?ts 

(5.1.51) 

by (5.1.46) and (5.1.50), and (Lt,vt) is a Markov process 

for t>-t ' s 

Let (L ,v )t, (L ,v~ )t be solutions of (5.1.1),(5.1.51) 

for t?tizts with the same sample path of Wt for t?ti in 

each case, but with initial conditions 

(L ,vom )t = (L,v' ) 

(Lr,ve)t = (L,v~) 

for some fixed L€R, v',v°ERn s. 

By (5.1.1) and assumption (5.1.30) 

Ne
1) for some N,KE(0,00 t~tl 

(5.1.54) 

- 133 - 



Define 
t  

T1 - f (-v M_ vū-vūTM
_ 	

vū) 	du .tl 

T ft (EhT vu] +—EhTva.. 
	

Ilvu Il*<p )I 4vū ll*<p ) du 
1 

t 	a+ rr 	T f+ 	+ 	II'' r n 
T5 =-f (a+vuM vu+Eh vu] +Eg] )I( u vup* 'p)I( Ilvu i1?p) 

•
tl. 

t 
T6 = f (xtvūM+vu+[hTvū]++EB]+ )I( IIVŪ 	 p )I(ū <p ) 

tl 
6 

Then 	~ ° E2(Lt-L ) = E E2Ti 
i=1 

E2Ti, i=1,2,•••,6 are uniformly bounded $t>_tl 	for each 

vr,ve, as shown below: 

E2T : see (5.1.1) 1 

E T 	1[11 vu] 
]-_[hTv/] 	 f r a 	 -K(t-t ) 2 2 	u 	u -`IIh II* • ilVU-vu ll* <IIh ~~*.Ne 	1 

(see definition (5.1.29) and (5.1.11) to see that 

hTv=hTQv, vTMv=(Qv)TMQv ) 

E2T3: (vTM+v) has bounded gradient in. {v:IIvIl*<-p}, and 

Il
vr-vri I~#<Ne-K(t-tl) 
u u 

E2T •as for E2T3 

E2T5: (A+vTM+v+[hTv]
+
+[g]+) is bounded for IIv4*-p 

Since the p.d.f of vū is bounded Vt?tl, 

Ezftl IoIvūve(p,p+Ne-K(u-tl)))du is uniformly 

bounded as t-4-03. 

E2T6: as for E2 T5 

So 3 Ē(•,•) and EL
+
(•,•) such that from (5.1.55) 

Ē-(v/' 
	< At 

< +Ē.L(v' ,v'') < 	$t?tl 
(5.1.56) 

t 	 _ 
T2 =. ft ([hTvū]--[hTvū] )du 

r T + 	r/T + rr 	r 	ri 
T 3 = f t ( vu M vu-v,u M vu) I ( IIvu II* sp) I ( IIvu * 

<p) du 
1 

t 

(5.1.55) 

llv 1I*> p , ilvu II* S P => I~vū I~*E ( p, p+Ne-K(u-tl) ) 
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t-t1 	t (5.1.57) 1. E2(L`/ 
-E) 

= Q 

Since by. assumption (5.1,30), Qvt is an (asymptotically) 

stationary process, and by (5.1.51), it follows. that 

AaeR,v" such that 

where Lt is defined by (5.1.53). With v" chosen in this 

way, it follows from (5.1.56) that 

E2(Lt-Ltlltl,t1.?_t s,vti) = &(t-t1) + e 	(5.1.58) 

where 	-0 < -ĒL(vt ,va ) < e <_ ēZ(vt vs ) < co 
1' 

Since N,KE(0,00) may be chosen in (5.1.54) so that this 

holds iFv' =vt 
1 

such that IIv' II*<p, with v`' as above, 

IIv/ 11 *<p 
e - sup 	sLL (vi,v`~) v s (V ,v'1) < 	(5.1.59) 

Now E2(L -L It t zt v ) <_ E2(L -L
'C 	

It t >_t v ) t tl 1' 1 s' tl 	t 	p~t 1' 1 s' tl 

(5.1.60) 

where Tp°-inf{t?tl:Ilvt,I*<p}, by (5.1.50),(5.1.46), so using 

(5.1.58) .. 

-Ltt~,tl~ts,vtl 

< E2(&(t-TCAt)+ĒL(v p , l,tl~t s ,vt ) 
T At 	 1 

(5.1.61) 

So in (5.1.58) in fact S5.s<O0 irrespective of vt . 
1 

It remains to relate these results to the process Rt through 

(5.1.50). From (5.1.5b) and Assumption (5.1.30), it follows 

that 

0 < E2(JICD1-D° :F1-F° ]vt+ z1-z° II• ~I~t f1t~,vt.) _< r(vt _ )e-#-(t- 	) 

J 
(5.1.62) 

for some function r(•) s_t. E2(r(vt,)It~) is 
J 

uniformly bounded ¥t~ . 

< &(t-t). -F E 
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Therefore 

_q( vt ) 
._ j 

CO 

.z .(f E([D1-D°:F1-F°3vu+ .zl-z0, ~u] dultj,vt•) _<0 

(5.1.63) 

for some function q(•) such that E(q(vt•)it.) is uniformly 
J 

bounded Vt.. 

So using (5.1.58) 

E ^c 	fic 2(R.ts+T_Rt ,) z &T + E for T>-0 

where E 	-E-q(v t , ), since qv,t If*sp by definition of is 
s 

and (5.1.59) implies ēL(vt ,v'~)SĒ. 
s 

Also 	Ea(Re-R 1Itl,tlzts,vtl) = i4(t-t1) + c for ttl 

where E <- £ < o by (5.1.61) and (5.1.62). t1 is a stopping 

time for W . 

This establishes the results of the Lemma. 	❑  

It follows from Lemma 5.4 that 

t •+T 
ā = lim *E2f J (vN_vu+[h Tvu]_+Eg2J _. 

T+~ 	tj 

(5 .1.64) 

+(X+vTM+vu+[h2Tvu]++Cg2]+)I(I+vu II* ))du 

Definitions  
t•+T 

Define o•2 °- lim ±-E2/
J 

(x+vTM2vu+h2Tvu+g2)du 	(5.1:65) 
T+o 	tj 

Then a+ a2 as p+=. 

t • +T 
Define 

 

al = lim TE.1f ~̀ (A+vūM1 vu+h1Tvu+g1)du 	(5.1.66) 
T- 	-tj 

.t 
Also 	p t ° r ". (X+vūM1 vu+h 1 Tvu+g 1 ) du 

_tj 

t_ 

+. ftj([D1-D°:F1-F°]vu+ z1-z°)TdWu Vt?tj 

(5.1.67) 
Then a1=1im TE 

T+oo 

CQ 
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Note that from (5.1.11) if (5.1.4). holds 

t 
Rt-Rt =.jj + 1 - Xe t  

~ 	- 	t. 

Also, 	A+xTM1x+h1Tx+g1 >0 	VxeRn 

by definition of 1 l , h1, g1. 

Lemma 5.5  

E1(pt lptl,vtl,tl~tj) - utl = al(t-t1) + S 

for Wt-stopping time tl, where co<-E<S<s(vt 1)<co 

for some d(•),6 ; E(vt,))<'. 

Proof 

Follows from (5.1.1),(5.1.2) and the property (5.1.69) 	❑  

Lemma 5.6  

E2(ts-ti l s a < 00 Vt0.>-0, for some a independent of c. 

Proof  

Define t(0) = inf{t >_tj: llvt ll <p} 

and 	t(1) °- inf{t>_t(i-1)+A:IIvt Il*sp}  

for some fixed A>0. 

5.1.70) 

Sao<o such that E2(t(0)-tjlti )<ao Vtj 	(5.1.71) 

from (5.1.1) and (5.1.2) . 

Let the process Rt evolve as Rt (i.e. Rt satifies (5.1.5) 

and (5.1.11)) for tECt(i-1),t(1)), i=1,2,••• but with 

R:(i) = - co 	(7r*
(i)

=0), 	i=1,2,... 	(5.1.72) 

) 
Define Lt such that Lt(i)

=-co and for tECt
(1-1 ,t(i) ) 

i=1,2,••• 

dLt =A(1+e 	)dt + t+h2Tvt+g2)dt (. .1.73) 

(CD1-D°:F1-F°]vt+ zl-zs 
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t+t(i) 

So 	P2(lim 	(Lt -Rt)>E1t.)  

t tt (i) 

E2(lim 	IL1-Rtlltj) s .sl from (5.1.74) 

( 5.1.80) 

Comparing (5.1.11) and (5.1.73) it follows that 

- * _< 	ED1-D°•F1-F°]v + .zI-z a t* 	'du Lt Rt 
~ 	.t(i-1) ~~ 	- 	u  

where tc[t(i-1),t(i)). 	 (5.1.74) 

Now let pi = P2(lim 	Lt?lnA+£l4j<i s.t. lim 	Rtz1na) 
t-'t(1) 	t+t(1) 

for some fixed e>0. 	 (5.1.75) 

Then lim pi <0, pi>0 ¥i, so that 3p and 
i÷co 

	f > 0 Vi 	 (5.1.76) 

Define N = inf{i:lim 	Rt>-ln)t} 
t+t(1) 

(5.1.77) 

Note that 1ō<- s.t. E2(t(i+1)—t(1) It 	J 5 s >t(1),t.)  

i=0,1,2,•.. from (5.1.1) 	 (5.1.78) 

Now from (5.1.5b) E2( llcuirlt.) < ae
-0(t-t j) 	a<m,f3,>0,t >_t. 

Therefore 
00 

E 2 (It II0D1-
D°:F 1 -F°3vu+z1-z° 	.Il~u 11*dult.) < co 

J 
(5.1.79) 

]ā<0 , fl<1 so that 

t(i+1)  
E2.(f ( i ) 

	
11[D1 -D°:F1-F°]vu+ 	 I1 zl-z°,I*. ; ln l*dult j ) 

<_ ā.sl i=0,1,2,... 

since otherwise (5.1.79) would be contradicted. Therefore 

Then P2(Di>iJt.)-p (1T>.1-1Itj 	-p`.P2 (iV,>i-1lt
j
) 

(5.1.81) 
from (5.1.76),(5.1.77)&(5.1.8o). 
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_ 
P2(IZ>iIt) < (1-p) -1 + .Ē. E '1J(1-p)1 J 

< (1-5)
i-1 

 

for some ā<co, <<1 	(5.1.82) 

Since by definitions (5.1.4 4) and (5.1.77) and also by 

(5.1.70), t(N)>ts 

P2(ts
>t(i)1t.) < 

As E2(t 	t•1t - ) < E P2 (t >t(i)1t.).Ō + a s J J  0 

from (5.1.78) and (5.1.71) 

o 
E2(ts—t~1t~) <— E q„Sl.5 + a0 < a say, where a<o. ❑  

i=1 

Recall the following definitions: 

t•+T 
° lim TE 1f J (A+vuMlvu+h1Tvu-r.gl;)du 

T+oo 	
t J 

t -+T 
lim TE I! 

ti +T 
 

t. 

T_c = inf{t : Rt?RYc (vt ) } 

T}ov 
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Theorem 5.1  

If 62>al, 3cm such that ¥cC(0,cm] 

E2C(TC) < E1 C(TC) 

Proof  

Consider csl. 

Suppose that a2>6 and choose p in (5.1*.46) so that 6>c11. 

inf{t:rp-lnc,+vt ~I<pDefine 	(5.1.83) 

where rp is defined as in Lemma 5.3 Note that rp?lnA. 

If (5.1.5) holds, then TCZT C (see (5.1.18)) and 

because of Lemmas 5.2 and 5.3, for csl 

TCZt  >TCZts (5.1.811.) 

by (5.1.83) and (5..1.11.11.). 

Now choose T>0. Then 

E2(RT+ts-Rt lt~<_TC ) = E2(PT+t -R^c t~(T+t ItJ~TC) ..s 	T 	s) 

2 ^c 

	

+ E 
(RTeAkT+t

s )
-Rts 	'tj5T

c 
) 

From (5.1.49) and (5.1.83) . 
	 (5.1.85 ) 

^c 
TCn( T+ts )-Rts 

<— max(0,rp-lnc-Rt s) 	(5.1.86) 

Also Rt ?1nX by (5.1.44).  
s 

By Lemma 5.1+, from (5.1.85) 

6T+E1 <_ 6(T-E2((TC-ts)AT)Iti5TC)) + E2 +. max(O,r p-lnc-lna) 

(5.1.89) 

where 	E1?-2-E2(9.(vt.)It.5TC ) 

E2<~<+00 
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So E2[(TC-t tj<Tc] < E2[(RC-ts)ATIt- TC] 

S LrP-lnc-lnA+2ētEz(q(vt.)It. Tc)]/& 
.J 

5 [-lnc+k2+E2(q(vt•)1t. Tc)]/Q 
J 

where k2<co is independent of c. 

T 
i.e. 10P2(TC—ts<_ultj<_T~)du 5'[-lnc+k2+E2(q(vt• )Itj5Tc)]/& 

fT>0. Therefore 

E2(TC-t$It.<TC) < [-lnc+k2+E2(q(vt,) 't. T )]/6 
J 

(5.1.90) 

Next, 

E1(U 	ITC ) tj+T t.~  E1(Utj+T-U(tj+T)ATG~tj~T 

+ E1(U(t.+T)nTCjtj5TC) (5.1.91) 

where pt is defined in (5.1.67). From Lemma 5.5 

a1T+61 61(T—E1 ((TC—tj)ATItj5T C )) + 62 

 

 

c 
+ E1(U(t.+T)ATC It0 ) 

J 
5.1.92) 

where 6. = E1(S(v
tj 

) t.5Tc ) 
.. 

62 a 

Next, the last term in (5.1.92) is investigated. 

Firstly, as T÷ , stt . T+1 w.p.1 if ( 5 .1.4 ) holds. Otherwise 

pi(t.<c0)=1im
t l which contradicts (5.1.2) 

t+oo 

 Rt-+T+00 
w.p.l as T-', which implies that 

R(t.+T)AT C ? lnX-lnc 	for T sufficiently large, w.p.l, 

by Lemma 5.2. 

Lett °- inf{t:Rt~lnA) 

L 	
-} E1(R 	 c 	t •<TC ) 	lnX-lnc+£, E>0 

(t j+T)AT ]vt I 

(5.1.93) 

as T+o 

(5.1.94) 
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tx is introduced here to ensure that the expectation is 

well defined. 

Secondly 

EI(Rtjvt l tJ <'L C } 
. tjvt? 

< E 1.[ f 	(a+vTM°vu+h °Tvu+g° +Ae-R11) dul t.sT C ] + lna 

.t.vtA -R < E1(At ~ lt.<TC) + E1(f J . ae u.u't.<_TC) + lnA 
tX 

(5.1.95) 
by (5.1.11), since vūM°vu+h°Tvu+g°<0 'tu (from the 

definitions of M°,h°,g(1 ). 

Now from (5.1.67), (5.1.69) 

El(u(t+T)nTcItj<Tc) 

[(t.+T)nTc]vta 
> EI({ _ J 	(a+vuMlvu+hITvu+gl)du'tJ <TC) 

tort a 

-R El( RI(t.+T)nTc]vtx-RtJ
vt~

-It•vt ~e 
adult, TC) 

J ` 

(5.1.96) 

Then from (5.1.94),(5.1.95)&(5.1.96) substituted into 

(5.1.92) 

E1(TC-t.It~ <_Tc ) 

z Q 	d .[-S-E1((vt 1 
+At.}f

00 
	ae-R -adu lt .<TC)-1nc] 

J inf{t:RtalnA} 

(5.1.97) 

Note that P2(t.-<Tc)=P 1(t.<_TC)=E1.TC >_~+~ by Lemma 5.2, 

and that I(t,STc), vt , are the same for a given path of Wt 
J 

irrespective of whether (5.1.4) or (5.1.5) holds. 

Then from (5.1.90) and (5 .1.97) . 	it follows that 

E2(TC-tslyTC)-E1(TC-tJ
It.<TC) < (1 - 1)lnc 	+k2/6 + '6/al 

1 

+ E[1q(vt .)+1:($(v~.:)+at+e~Ī]Xjc 	(5.1.98) Q J a1 

t~ 

CO 
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From Lemmas 5.1, 5.4, 5.5 the expectation on the right is 

finite. Therefore 	 m>0 such that 

E2(Tc-tslt.sTC)-E1( 

lic<cm, a as in Lemma 5.6. 

As P1(tjsTC)=P2(t,<TC) and from Lemma 5.6, then 

E2((T
C
-t.)I(t. TC))-F1((Tc-tj)I(tjsTC)) _< 0 $c..cm  

The result of the Theorem now follows from (5.1.3). 	0 

Remarks  

Theorem 5.1 does not specify the value of cm. In the 

proof, a lower bound for TC  in the case where (5.1.4) 

holds is compared to an upper bound for Tc  in the case 

where (5.1.5) holds. These bounds are very weak, especially 

with respect to the Xet term in (5.1.11). The contribution 

of this after time t, is completely neglected in one case. 

The result is that in the proof of the Theorem very small 

values of c need to be considered. 

The arguments given in the outline at the beginning 

of the section suggest that c need only be sufficiently 

small so that detection times are typically long compared 

with system time constants. Also it is likely that necessity 

holds in Theorem 5.1 as well as sufficiency. To improve the 

results a more quantative approach seems necessary. 

If the system (5.1.1) becomes unstable following 

a parameter jump it is unclear whether the Theorem holds 

because of the effect of the shape of the boundary y. 

< -a j j 
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5.2 Robustness for autoregressive systems 

in Section 

dWt 	(5.2.1) 

of tj 

The problem of 

3.1. 

dyt = 

where ytERn $t, 

Wt is a 

interest 

0 1• 
• • 

0 0 	1 ~t_ — 

ucRn -1 

scalar Wiener 

here is 

Yt dt + 

is 	constant 

process 

u 

zt 

that 

dt 

described 

+ 	0 

1 

independent 

P(tZt _ ) = 1-e7At 	 (5.2.2) 

and 	(rt,zt) _ (r°,z°) Vt<t
j 

= (r, E) 	vtt (5.2.3) 

where r°ERn is constant, and z°ER is constant (known). 

Yo is known, so that gt is Vt-measurable, where observations 

yt =[00•••01]yt. 

The optimal detection rule (see Section 3.1) is implemented, 

in the sense of the cost function (5.1.3), for the case 

where 
(r,Z) 
	

(r1,z1) 	 (5.2.4) 

r1 ERn constant, and z1ER constant (known). 

P1,E1 denotes probability and expectation given (5.2.4) 

holds. P2,E2 denotes probability and expectation given 

	

= (r2,z2) 	 (5.2.5) 

r2ERn constant, and z2ER constant (known). 

(5.2.1) is strictly stable for r=r1, 1=0,1,2 

This is a special case of the problem of Section 5.1, such 

that 

Vt = yt , = 0 lit (5.2.6) 
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IDi:Fia = r1T , i=0,1,2 	(5.2.7) 

So 	Mi = (rl-r°)(r
i-irl-ir°)T 

hi = (zl-z°)(ri-ir1-3r°) + (zl-izl-iz°)(r1-r°) 

gi = (zl-z°)(zi-izl-iz°) 	(5.2.8) 

for i=0,1,2. 

Let Qi be the steady-state covariance matrix of the state 

vector yt in (5.2.1) with (rt,zt) = (ri,zi) 

i.e Qi is the unique positive definite solution of 

0̂ 1 	0 
• Q + Q 

0 0 ~1 
-

r 

O 1 
jri 
1 

O 11 

l
o  = 0 	(5.2.9) 

jl 

   

and let 

vector 

qi 

yyt, 

be the 

i.e. 

0 

steady 

1• 	0 
-1 

state mean value of the state 

q = • 
u 

0 0 1 (5.2.10) r17 zi 

From (5.2.8), (5.1.66) and from (5.1.65) 

a1 = a + i(rl-r°)T(Q1 +g1 g1T)(rl-r°) + (zi-z°)(rl-r°)Tgl 

+ i'(z1-z0)2 
	

(5.2.11) 

= a + (rl-r°)T(.Q2+g2g2T)(r2-irl-2r°) 

+ (z1-z°)(r2-ir1-ir0)Tg2 + (.z2-1z1-2z°)(rl-r°)q2 

+ (z1-z 0 )(z2-iz1-$z 0 ) (5.2.12) 

Then from Theorem 5.1, if a2>a1 3cm>0 such that VcE(0,cm] 

E2C(Tc)<_ El C(Tc) 	 (5.2.13) 

It is therefore possible to characterize a set of disordered 

parameter values for the system(5.2.1), {(r2,z2):iY2>QI} 

such that the expected cost of using the detection rule 



- 

r1  

[134]  

[-44-61] 	2  - -4+P1 
, r - 

-3+62 	-3+P2 

designed assuming (5.2.4) holds is not increased, with c 

sufficiently small. The remarks following Theorem 5.1 

discuss the restrictions on the value of c. 

Although from the argument of Section 5.1 it 

appears likely that E2C(TC)>E1C(TC) if a2<al, c small, 

this has not been proved. 

Examplel  

0 1 	0 
dyt = 	T  igtdt + 	dWt  

rt 	1 

(5.2.14) 

Z  

Q°. = 

1/24 0 	
Q1 = 2(4-61)(3-62) 	0  

0 1/6 	0 	1  
2(3-62) 

= 2(4-P1)(3-P2) 	0  
1  

0  
2(3-p2) 

q O  =q1= 2  =0 

Figure 5.2.1 illustrates sets of r2  parameter values such 

that a2>Q1, for various choices of 61,62. 

Note that Theorem 5.1 only applies if (5.2.1) is stable for 

rt=r2  ( i.e. rl< 0, r2<0 where r2=[r1,r2]T) . 

1 
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Figure 5.3.1 

6=a1 contour 

AA : 61=1.0 	52=0.5 

BB : 1=0.5 	d2=-0.5 

cc : 51=-1.0 52=0.0 

Figure 5.3.1 indicates how a detection rule of the type 

described in Section 3.5 might be constructed to detect 

jumps to unknown parameter values by. combining the-three 

".kn.o. n. jump'.' detection- rules above. 
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Example 

A second example is given to illustrate the discussion 

in Section 4+.0 concerning the first order autoregression 

case. 

Suppose 
dyt  = rtaoytdt + bdt + dWt  

r°=1 . ri =a . s2=0 
	

13>a>1 

Then Q 
i_  1 	Q2_  1  

-2aao 	-20ao  

and from (5.2.11), (5.2.12) 

2 
al  = A + i(a-1)2aō(-2aao  + ab 	ao)  

2 
a2  = A + (a-1)(R-ia-2)aō(-2Sao  + s2a2)  

0 

Then a2<a1  if 

.i(a+1)ab2/(-ao) 
R > 

	

	  > 1 
i(a-1)b2/(-a0) -4a(a+i) 

The robustness property of Chapter 4 appears to break down 

(assuming necessity in Theorem 5.1 as previously discussed) 

if b2  is sufficiently large. 
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5.3 Robustness for general systems  

In this .section,Theorem 5.1 is applied to the problem 

described in Section 3.4+. 

dxt = At xt dt + qt dt + .Gt dVt 

dyt = Htxt dt +dZt 

where xtERN, ytERm Vt 

(5.3.1) 

Vt, Z are independent Wiener processes, independent of tj 

P(t~t.
0
) = 1-e-at 	(5.3.2) 

At=A°, qt=q°, Gt=G°, Ht=H° 	ist<t. 

At=A, qt=q, =G, Ht=H 
(5.3.3) 

where A°,q°,G°,H°,A,q,G,H are constant matrices and vectors. 

A°, A hate strictly negative eigenvalues. 

The innovations formu1 tion  

Suppose xo has a-priori distribution N(ro,Qo) where 

Q0 is a covariance matrix. 

For given tj, rt°-E(xtlyt) satisfies the Kalman Filtering 

equations 

drt = A°rtdt +.q°dt + QtH°Tdvt Vt<t. 
J 	( 5.3.x+) 

drt = Artdt + Fiat + QtHTdvt vt>_t ~ 

Qt = G°G°T -QtH°TH°Qt + A°Qt + QtA°T Vt<tJ 

(5.3.5) 

Qt = GGT - QtfTHQt + AQt + QtAT vtzti 	(5.3.6) 

dvt = dyt - I(t<ti )H°rtdt - I(t?ti )Hlrtdt 

(5.3.7) 
is a Wiener process 

Define Q1 as the asymptotic solution of (5.3.6) for 

A=A1, k=k1, G=G1, H=H1 i=0,1,2. (5.3.8) 
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xt is defined as the Kalman Filter estimate for xt assuming • 

(xt,yt) satisfy 

dxt = Aixt dt + ql dt + G1 dVt 

dyt = H1xtdt + dZt 

where the covariance of (x 
0-R-') is Q1, the asymptotic  o 

solution of the corresponding Ricatti equation (A1 assumed 

negative definite). 1=0,1,2 	 (5.3.9) 

i.e. 	dxt = (A1-QuH1TH1)I dt + gidt + Q1HiTdyt, xo=ro 

Note that since 
Ai-QiHiTHi 

has strictly negative 

eigenvalues, if yt is actually generated by (5.3.1) then. 

the covariance of Xi is uniformly bounded ¥t~0, for any 

,i 
xo,xo. 

In Section 3.4 a natural sub-optimal approach to 

detection of a disorder in (5.3.1) is discussed for say 

A=A1, 11=k 1, G=GI, 171=H1. This involves the estimates x°° 

and Š. Here, the robustness of this approach is 

investigated. First, some preliminary results are required 

so that Theorem 5.1 may be applied. 

Assumption 	 (5.3.10) 

For simplicity it is assumed that Qo=cov(ro-xo)=Q°. 

Note that then xt=rt Vt <_t~ . 

Lemma 5.7  

In equation (5.3.6) if A=A2, k=k z, 5=G2 3 .H=Iī 2 

Qt = .G2.G2T -Qt-2TH2 Qt - A2 Qt - QtA2T- 
_ 

Then if Qt =Q° aā<oo 

11 Qt-Q2 il < ae-S (t
-t4 ) VtZt~ 

>0 such that 
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Note 

• 	Here 	HMO = :sup N JJMx ~! 	for MER
NxN. 

xcR 
lix ((=1 

( 5:3.11) 

 

Proof  

 

 

Consider the system 

 

  

dxt = A2xtdt + .q2 dt + .G2dVt 

dyt = H2xtdt + dZt t>-ti 
(5.3.12) 

The associated Kalman Filter is (for t.
0 
known) 	(5.3.13) 

dxt = (A2-QtH2TH2 )2.tdt + QtH2Tdyt + .g2 dt', tzt
J 

and Qtsatisfies the Ricatti equation in the statement of 

the Theorem. 

Since A2-Q2H2TH2 has strictly negative eigenvalues and 

Qt4-Q2 as tom, gE,"fI>o such that 

max eigenvalue of (A2-QtH2TH2 ) 

(5.3.111 ) 

From (5.3.12) and (5.3.13), if et=xt-xt 

det = (A2-QtH2TH2)Et + QtH2TdZt - G2dVt (5.3.15) 

The following Kalman estimates of xt are defined for the 

system (5.3.12). 

xt0): estimate of xt assuming xt~)tiN(xt ,Q° ) 
J 

X(1): estimate of xt assuming xtl)'LN(xt J,,Q~+A) 
 

where 0?0 is chosen so that Q°+p~Q2 

x 2): estimate of xt assuming xt2)tiN(xt ,Q2) 

_J 	J 

Here C?D means C-D is positive semi-definite. C>D, C<_D 

and C<D are defined correspondingly. 

eti)a xt -xt , 1=0.,1, (5.3.16) 
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E(et 0) et • -1et9 ) tiN( 0,Q ° +~.)) 	E(etl)et l)Tl e ( j ) tiN(O,Q° +A.)) 

• z E(e (
t

2).42) • c( 2)n(,N 	' 0 .Q 2.) ) t 	~ t~   

(5.3.17) 

The first inequality holds because of the optimality of 2(1). 

The second inequality holds because of the optimality of 

2(2)and because Q°+d~Q2. 

Now let x =xt0)where xt0)1iN(xt.,Q°) 

	

J 	J 

and xt xt0 )where xt0) =xt.+d, d% N(0,A),independent r.v. 

	

J 	J 

(5.3.18) 

Then 
	:,LN(xt •'Q°+i) 	 (5.3.19) 

_J 	J 

Define Ēt=Xt-xt 	Et= Xt-xt so Et -Et =S 
J 

From (5.3.15) 

d(st-e ) = (A2-Q02TH2 )(Ēt-Ēt)dt 	(5.3.20) 

where Qt is the covariance matrix appropriate to the 

estimate x(0). Therefore 

E[iEt Ēt')(Et
a_Ēt.i )T] < I.Ye-f(t-ti) 

	
(5.3.21) 

for some Y<co. 

So E(4e'~T ) -E ( et e' T ) < i. e- (t-t j ) by the independence 
t t 	t t 

of S in (5.3.18) and therefore 

E(et0)Et0)T161 °)tiN(0,Q°+d)) 

 E(s(0)e(0)T'e(0LN(0,Q°)) <~
Ye- (t-t- 

- 
t 	t 	t - 

Using (5.3.17) 

E(e 2)£ 2)T ~e2 )tiN ( oQ2))- E(e(0)e( 0) T l 	) e°n,N(0,e))tt 	t
J 	' 	tJ 

 

< i.e 	
) 
(5.3.22) 
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Also 	E(E(2)e(2)T1e(2)q,N(0,0tA)) 

> E(e(1)E11)T16(1: LN(O,Q°+A)) 

> E(E(o)e(0)TIE(0)'LN(O,Q°)) 	(5.3.23) t 	tj 

The final inequality holds by the optimality of x(0) and 

because Q°+A?_QC. Since 0+11?Q2 it may be shown (see the 

argument of (5.3.18) tc (5.3.21)) that 

(2) (2)T, 
	° 	 (2)T(2)E(EE 	e

tj 
LN( O,Q +-A)) — Eket 	Et 	l et- ~  

	

< I.ye - (t-tj) 	(5.3.24) 

Therefore from (5.3.23) 

2)2)T 2)E( e. et let LN(O,Q2 )) - E(Et°) E (o)T IEto ) 'LN 
J 

z -I.ye-(t-t-) 

But by definition of E(2) (see(5.3.16)) and of Q2 

E(e(2.).
e(2)TIe(2)̀LN(0,Q2)) = Q2 

J 
and the covariance matrix Qt satisfies 

Qt = E(et°)e(o)TIE; 
In) 

(0_1, 
	if Qt = Q ° j 
	J 

Therefore from (5.3.22) and (5.3.21) 

-I.y.e 	J < Q2-Qt < I.ye (t-tJ) if Qt =Q0 

J 

•) i.e. 	sup 	IrT(Qt-Q2)rl < max(Y(,y)e
-(t-t 

J 
~J r II <-1 

(5.3.26 ) 

Since Qt-Q2 is symmetric 3 MeR NX uch thathatQt-Q 2=M M. 

Therefore 

Qt-Ia2 1l = sup 	rTMTMs = sup I rTMTMr I II  
ll rli 11 sjI <1 	It rjl <_1 

The result of the Lemma now follows from (5.3.26). 

O,Q°)) 

5.3.25) 
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Lemma 5.8  

If rt is the Kalman filter estimate of x
t 

defined in 

(5.3.4); .(xt,y.t) are generated by (5.3.1) with A=A2, 

q=.q2, G=.G2, HT$2; x,Xt are defined as in (5.3.9), 2° 12 

known a priori, then 

9a(•,•)<03 and b>0 such that 

i( 	o 	b (t-t • ) 
E(Iir -x2Jl t. x° x2 ) _< a(x 	x2 )e  t t 	J' t ' t 	t~ '    

E( a(xt,,~ct,
J
)It .) <- d < ml N't- for some d 

J 

Proof 

From (5.3.9) and (5 .3.4+) with .Ā=A2 , cq=.qz , G=.G2 , 17=H2 

(rt-x2t) = (A2-Q21-12T112)(rt-1.2t)dt + (Qt -.Q2)H2Tdvt Itzttj 

where Qt is the solution of (5.3.6) .with Qt =Q° . 

J 

Note thatrt _=x°t.. 

J 	J 

Let St =rt-x.2 Vtkt.
J 

and M°-A2-Q2H2TH2 	 ( 5.3.27) 

Let 	, ā be such that lieMtx ii<āe-st i'x ll 

(5 .3 .28) 

S = e M(t-t•) 	+ t eM(t-
u)(Q -Q2)H2Tdv t 	t4 It. 	u 	u 

J 

Therefore 

6T It 	~2 	M(t-t •) 	T MT(t-t • ) 
E(StSt ~tj,^xt.,xt.) - e 	

J J 

	

J 	

J St,
tJ 

e 

+ 
f 

eM(t-u)
(Qu-Q2 )H2TH2(Qu-Q2)eMr(t-u)du 

J t. 0 

T 	..° .,2 	2 -2S(t-t ) ,.o ~2 112 
So E(StSt lt.,xt ,,xt , ) 	ā e 	J ~~xt ,-2.2 11 J 	.3 	 - . J 	J 

-t 	_ 	_ 
t ā2h2TH2 H 21 exp(-2"6(u-t,)-2-6(t-u))du 

.t. 
-J 

where Lemma 5.7 has been used to bound lIQu--Q2 II. 

$xERN, 

—15x+— 



Choosing S so that 

 
ā 
2 
e 
-2.¢(t-t') 

ItIx
..0- x2... 

J 	u 2 t t 	tJ 	 0  

+'"UHZ HZ IIā2'āz.Le 
•2( ,~ l-) 

(5.3.29) 
Since for any random variable uERN 

E(11u1I2) = trace E(uuT) _< N IIE(uuT) II 

Choose b as 2min(T,S) 

and a(xt ,xt , ) as N.[ JJxt . —Xt . 
J 	.J 	J 	J 

11 2 IIH21H2IIā2  
-2(F4) ) 

The result of the Lemma is now established, since 

(A2-Q2H2TH2) has strictly negative eigenvalues. 	0 

Application of Theorem 5.1  

From (5.3.7) if yt is generated by (5.3.1) with A=A2., 

q=q2, 5=G2, H=H2, then 

dyt = I(t<ti)H°rtdt + I(t~t.)H2rtdt +dvt (5.3.30) 

Let Ct be defined by 

dyt = I(t<tj )H°xtdt + I(t ~ti )H2xtdt + dvt + Ctdt 

(5.3.31) 

From Lemma 5.8, and since X°t=rt $t5t
0 

~ t = 0 	Vt <t 5 

E( k 	 t II2 .,X° X2 ) 	H2 Il2a(x° x2 	—b(t—ti) > I 	t.' t. 	1~ 	t,, t .)e t_tJ 

	

J 	J 	...J 	J 
< co (5.3.32) 

From (5.3.9) it follows that 

d(X2t—Q1g1Ty2t ) _ (A1—QlH1YHl)(xt—Q1HlYyt)dt + q1dt 

A1—Q1H1TH1 )Q1H1Tytdt 

T 
so if V

1 e xl — Q1H1 yt 
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d 

 

A°—QoH°TH 	 Q° o 	0 	(A°- H°TH°)Q°H°T 
0.. 	

A1 —Q1
(A1-Q_1x1Tg1)Q1H1 

0 	0

.. .. 	
A2-Q2H2TH2 (

A2-02TH2) Q?H2T 

° 	1 	2 
Lt 	Lt 	I't 	Ft 

  

y 

 

t 

     

      

    

dt + 

0 

0 

0 
I 

•dvt (5.3.33) 

   

   

where Lt = H°I(t<t . ) 

LI = 0 

12 = H2I(t ~t. ) 

Ft = HQ Q°HQTI(t<t.) + H2.Q2H2TI(t>_t.) 

The sub—optimal detection scheme proposed in Section 3.4+ 

for the problem (5.3.1) when A=A1, q=q1, G=G1, H=H1 is that 

which is optimal for detecting the disorder described by 

(5.3.33) with 

L°t = H°I(t<tj) 	Ft = H°Q°H°TI(t<t.) 

L = iilI(t>_ti )+ H1Q1H1 TI(t~t. ) 

L
e

t = 0 	Ct = 0 Vt 

The system (5.3.33) has the same form as (5.1.1) with 

D°=[H° 0 0]; D1=[0 H1 0]; D2=[0 0 H2] 

F°=H0Q 0 H 0T 	F1=H1Q1H1T ; F2=H2.Q2112T 
(5.3.3+) 

The requirements(5.1.5b) are satisfied by Lemma_5.8 

Assumption (5.1.30) holds. Theorem 5.1 then specifies a set 

of disordered parameter points (A2,_g2,.G2,H2) such that the 

expected cost is no greater, for c small, than that when the 

scheme is used to detect the disorder for which it is 

optimal. 
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Example  

Consider the following system 

dxt = atxtdt + gt dVt 

dyt = xtdt + dZt 

where xt,yt are scalar processes 

Vt,Zt are independent scalar Wiener processes, independent 

of t 

at = -2, gt = 1 Vt<tj 

at = ā, 	gt = g 3it?t~ 

P(t~t.) = 1-e-At 

x01,N(X0,-2+)/5) 

A (sub-optimal) detection scheme is implemented for the 

case 

ā = -3, g = 1 

Suppose the actual post-jump parameters are ā=a2,g=g2. 

From (5.3.1) and (5.3.24) 

D Q =[1 0 0] ; D 1 =[0 1 0] ; D2=[0 0 1] 

From (5.1.66) 
tj+T 

al = lim TEI L 	(X+vTMlvu)du 
T}co 	tj• 

r
t • +T 

= lim TE 1 J 	J (1+2 (.x 1-xQ ) 2.) du by (5 .1.11) 
T-►oo 	t. 
	

-u .0 

and from (5.1.65) 
tj+T 	T 

a2 = lim .?-72f 	(X+vTl vu )du 

T-►w 	t j 
1.._2 . tj+T 	

^^0 
2 i ~2_..1 2 

= lim E 	(.a+1(222- xu) (xu xu) )du 

_J T+o 	-t 

by (5.1.11) 
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Here El denotes expectation given that the disorder is that 

for which the detection rule is optimal, iand E2  denotes 

expectation given the. -disorder 1s-the :actual one 'defined 

above. 

axt = —✓5 . Xt at + (-2+45) dyt  

dxt = —✓10 . xt dt + (-3+410) dyt  

dxt = —1/(a22+g22) .22dt + (.a2+1/(.a22+.g22) )dyt  

X o =X1=X2=X 
0000 

This leads to Q1.110.00131 +X 

If .a2=-2=0 , g2=1/(2/3), then a2-0 .0001+6 +A 

The conditions of Theorem 5.1 are not satisfied: although 

this is only a sufficiency result, from the argument at the 

end of Section 5.1 it is conjectured that necessity also 

holds.In this case, the above disorder would not be detected 

as quickly as the design case disorder. This is of interest, 

since with this choice of a2,g2 

lim E2(xt2)= lim E1(xt2  
T+00 	T-}ou 

Hence the detection rule is capable of rejecting transient 

effects due to decreases in the externally generated noise 

covariance, and picks out output paths corresponding to 

changes in the dynamics of the system. 

The case g2=g1=1 was also investigated. Figure 

5.3.2 shows that the response of the detection scheme for 

small c improves if a2<-3, i.e. the jump is larger than 

that designed for. In this case, a robustness property is 

exhibited. 
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CHAPTER 6  CONCLUSIONS  

6.1 The work presented in this thesis has two main 

objectives. Firstly some results are given on detection 

rules for systems with simple dynamics which extend 

those previously available. Also a number of results 

concerning the Baysian formulation of the detection 

problem are collected in Chapter 2, concerning the 

relationship between different cost functions. 

It is hoped that this may help to bridge the gap 

between practical and theoretical studies. The sub-

optimal approach for general systems proposed in Section 

3.4 follows naturally from the optimal schemes discussed 

in earlier sections. 

Secondly, the restriction on the formulation of 

Section 3.1 or 3.4+ is obvious in that previous 

knowledge of the post-jump parameter is necessary. The 

robustness studies of Chapters 4 and 5 go some way 

towards the possibility of constructing effective 

detection rules with less precise advance information. 

Chapter 4 gives a detailed study of the first order 

autoregression case, which in fact has a fairly complicated 

structure. 

Chapter 5 deals with more general systems, and provides 

a result which is felt should be useful in practical 

situations. The theory is however, somewhat incomplete 

and might be capable of some refinement. 

6.2 Outstanding points for - further research  

It would be of interest to investigate the effect 
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of initial conditions in the construction of detection 

rules with cost function Q in Section 2.2. 

It is felt that providing A is small this should not 

be important (see-  the .remark in -Section 3.2) and this 

would enable the theory developed using costs C(T) and 

K(T) to be applied to this problem. Alternatively it 

might be possible to make a similar study of detection 

rules with cost Q directly. 

b) The importance of the stopping boundary shape needs 

further investigation. It seems likely that it would be 

important to have a correctly shaped boundary if extremely 

quick detection was required. However, if this was not 

the case (more attention being attatched to the 

reduction of false alarms), the computationally 

demanding problem of generating the boundary shape would 

probably not be worthwhile except in simple cases. Even 

in the former case a method of approximating the boundary 

shape other than with a straight line in (n,v) space might 

be found to be satisfactory. No real progress was made in 

investigating these questions here. 

c) Although the sub-optimal stopping rule of Section 3.4 

seems to be a natural approach when c is small, it would 

be useful to have some quantative information on the 

increase in expected cost due to using this approach. It 

might be possible to obtain some information on this by 

considering the process Rt = In (nt/(1-Trt)). 

d) A more complete result on the robustness of detection 

rules for general systems than that obtained in Chapter 5 

is desirable. It would be useful to obtain a guide to 

the value of cm  in Theorem 5.1 which corresponds to each 
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parameter point. 

e) If no progress is possible on point (d) above, it 

would bei  of interest to reconsider the way in which the 

exponential term in (5.1.11) is handled in Theorem 5.1. 
The remarks at the end of Section 5.1 explain how the 

present approach is rather unsatisfactory. Also it should 

be possible to prove necessity as well as sufficiency in 

Theorem 5.1. 
f) Finally it would be of interest to investigate the 

relationship between the parameter sets characterized in 

Theorem 5.1 and the corresponding system structure.. It 

might be possible then to use the ideas of Section 3.5 to 

construct near min-max detection rules. 
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APPENDIX 	NON-LINEAR FILTERING  

In this Appendix, the necessary result of non-linear 

filtering theory, as applied to the evaluation of the 

probability Trt is stated. This approach follows [l'] 

and the filtering result is taken from [15]. 

Suppose yt is a stochastic process, and that Vt is the 

a-field generated by (yu,u<-t). Also ytERm Vt. 

Suppose that t. is a random variable such that t.?0 and 
J  

lim P(t.E(t,t+67It.>t,Y
t) = gt 

6}0 

where gt is a Yt -measurable process. 

t 
Define Mt e I(t?tj) - f gu.(1-I(u>_t~))du , t>_u 

0 

and let Mt denote the a-field generated by (M
u,u <_t) . 

Then 
tant 

E(MtsIMt,YO) = P(t.0E [0,t]IMt ,Y0) - E(f 	g.udulMt ,Yo ) 

t~n(t+s) 
+ P(t~E[t.,t+s]IMt ,Yo ) 	E'(:f 	gudulMt .,yo ) 

tant 

= Mt + 0 

by definition of g . u 

Therefore, if Yo is given a priori, Mt is a Martingale. 

Now suppose that yt satisfies 

dyt = ft dt + dWt 

where ft is measurable with respect to the 6-field generated 

by (I(t>_t.),yu , and Wt is an m-dimensional Wiener 

process. MtWt is a Martingale and from [15:Theorem 4.1] 

if 
	

P(t~t. I Yt ) = E(I,(t>t. )I Yt) 
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then 

Wt = 7o ..
1 g . (1-7 ) du 
0 

j (Eu(f uI(tti ))-Eu (f u )Tr u ) Tav u 

where Eu(•)=E(• 

and vu  =yu  - f 0u 
	

Esfsds 

In addition, vu  is a Wiener process. 
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