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ABSTRACT

In this thesis the problem of the detection of
parameter jumps in stochastic systems is conéidered.
Previous work on the detection of disorders in & stochastic
process when the jump time has an exponential probability
distribution is extended to give optimal detection rules
for a class of dyﬁamical systems having autoregressive
dynamics. This leads to a sub-optimal approach to parameter
Jump detection for more complicated linear systems,
related to approaches proposea in a number of applications

oriented papers.

» The methods considered here arevappropriate when
parameter values before and after the jump time are Known
although the jJump time itself is unknown. In order to

relax these requirements a study is made of the performance
of detection rules when the parameters jump to a different
value to fhat designed for. The results obtained lead to
the identification of a set of parameter values to which,
with some restrictions, a jump is detected on average at
least as quickly as in the design case. These results are
obtained in a stronger form in the case of first order

autoregressive systems.

It is suggested that these results may enable a
detection rule having near optimal properties (in a
minimax sense) to be designed, if only a set of possible

post—-jump parameter values is specified.
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NOTATION

General Notation

R

t
A

c(%)
K(%)

s (%)

Kto(Tto)

The set of real numbers

Thé sét of intégérs

The observation procéss

A detéction time

A detection time such that %tozto
The optimal detection time
Optimal detection time if T£t,
Policy mapping (yu:uzo) w» T

The o-field generated by (yu:usp)
An enlarged 0-field permitting
randomized detection rules

Jump time of parameters
Parameter of distribution of tj
Cost function

Cost funection

Delay weighting coefficient
in (%), K(T)
Cost function

Value of P(tztj[Vt) evaluated

under the assumption of parameters

jumping to design values

State vector of system (2.5.6)

Dimension of-vt

A Wieher process (input noise process)

Dimension of-Wt

ln(“t/(l_ﬂ.t))

see

see

see

see

see

(2.2.1)
(2.2.2)
(4.1.6)
(h.1.7)

(2.2.7)



h¥(.,+) see (3.1.7)
Sy Process related to T .seé (3.1.19)
ﬂg',t) tFuncﬁion'such thet ﬂt=“(st’v{)
Y The stopping boundery (in the

appropriate space)
h(e+,*) see (3.1.22)
SY(V) inf{s:n(s,v)20}
RY(V) inf{R:h (W,V)ZO}
aAb denotes min(a,b), avb denotes max(a,b)

The abbreviation s.t. is sometimes used for "such that".

Notation used in Chapter U

®,8q,8, Parameﬁers of system (4.0.1)

(No?e: a6<0)

o(8,y) -A+(A+e)nw(s,y) see (4.1.,10)
5, In(x/(-(a+l)a +1)) see (4.2.1)
N,P,Q Regions of (S,y) space see (4.2.5)
) Common boundary of P and Q
S | see (4.2.9)
¥y see (L.2.10)
- A 22-(3a+l)a
S, 1n(:(a+1}ao) B 2(a+1)aoo
72 2A-(30+1)a,

¢ (ac-1)a§
r(y) see (L4.3.2)

In Sec#iqn 4.3 symbols with a bar correspond to those
above 1in ?he context of the first
quified problem. Similarly symbols wi?h
s%ars aré uséd for Fhe sécqnd quifiéd

problem.



In Section 4.k

¥i,v¥ are defined in (h;h.a);(h.hg3)
tg,tg,ﬁ are defined in (L4.4%.5) to (4.%.8)

Kgo(fto”K§¢‘%ﬁo) are defined in (h.h.g),(h.h.lo)

Notation used in Chapter 5

PI,E1 Deno#es probability and expectation
given that parameters Jump to "design”
values

P2 ,E? Probability and expectation given that

parameters jump to "non-design" values

Ct Process associated with transient effects
in sub-optimal detection rules see (5.1.5b)
M',ht, gt , _ see (5.1.8)

to (5.1.10)

T ,Y The superscript/subscript indicates
dependence of T,y on the coefficient ¢

Eto(') Modified cost function used in .

proofs of Lemmas 5.2 and 5.3 see (5.1.20)
Q, )= see (5.1.29)
T Bound for RYl(v), ”v"*Sp see Lemma 5.3
tg inf{tztj:thlnl,“vt“*sp} .see (5.1.4L)
ﬁg Process defined such that ﬁESRt

¥t<1%21% if (5.1.5) holds see (5.1.46)
a,,9, Defined in (5.1.65),(5.1.66)
g Defined in (5.1.6L)
Uy Process related to R, when (5.1.h) holds

see (5.1.67)



CHAPTER 1

INTRODUCTION

1.1, The detection of parameter jumps in stqchas?ic-
dynamical'systems has béen the subject of a number of
recent papers. Thé problem may involve the detection
either of failurés in control systems or simply of
changes in mode of operation of a system whose state is
being tracked. Examples are most numerous in the
aerospace field, particularly in inertial navigation
where effective detection procedures may enable reduced
redundancy levels.to be employed.

Two main approaches have been proposed for the
case of linear systems considered here. The first
involves the application of statistical tests to the
innovaﬁions process generated by a Kalman Filfér designed
with pre-jump parameter values. In the case of discrete
time systems the innovations process until a jump takes
place will be a sequence of independent normal random
variables. A chi squared test used to check this property

should, therefore, be able to identify when a parameter

change occurs. This method is simple and reguires no

assumptions about the post-jump dynamics. However, this
means that it doe%?fake advantage of all the information
available. In paréicular other approaches might be able
to distinguish better between external variatibn in the
statistical proPerties of noise entering the system and

parameter jumps.

The second approach, which is the one of inpares?



here, uses a-priori knowledge of the system struture

Fq recggnise behaviqur typical 6f a parame?er jumpr Heré,
hovever, it is generally necéssaryi?o know in advance the
values of the sys?ém parémetérs following & jump.

Unfortunatély; éxcépt in simplé casés, attempts to
cqntruct détection schemés which are in some sense optimal
lead to infinite dimensional filtering problems and so are
not feasible. Howéver, several approximations have been
proposed which in many cases should give near optimal
performance.

Because of ?hese difficul?ies work on parameter jump
detecﬁion methods has been split into theoretically
complete investigations of simple problems, in continuous
time, and practical studies mainly involving discrete
Vﬁime systems in which proposed schemes are Justified
largely by simulation. In this thesis optimal detection
rules gfe derived for a wider class of continuous time
systems (systems with an autoregressive structure) than
previously considered.

The requirement that post-jump parameter values be
known in advance is & major restriction. In order to
relax this it seems appropriate to comnsider the
robustness of detection rules: that is their performance
if the system parameters jump to values other than those
designed for. Robustness is considered in detail here
and a possible strategy for effec?ive detection is
outlined in the case where only & set of pqssible post-

jump parameter values is specified.



1.2  Organisation of Thesis

In SectianETl the parame?ér.jump de?ec?iqn problem
is in?rqduced as a special casé of tﬁé disordér problem
for stochastic processés. Suitaﬁlé cost functions are
proposed and a-priori assumptions aré discussed in Section
2.2. General properties of thesé formulations are given
In sections 2.3 and 2.4 previous theoretical work on
rarameter Jjump detection in the case of sjstems with
trivial dynamics is described. In Section 2.5 the
problems encoun?ered in ?rying ﬁo extend these results to
more complicaped systems are‘demonsﬁrated and practical
approaches to this problem are described.

| Seetion 3.1 introduces optimal detection rules for a
special class of system (autoregreséive dynamics). Some
properties are obtained for use in later chapters. In
Section 3.2 an approach due to Kushner is applied to the
problemhof synthesizing an optimal detection rule. A
simplified approach is described in Section 3.3 and in
Section 3.4 & natural sub-optimal approach (related to
previously proposed discrete time schemes) is suggested
for use with more general linear systems. Finally the
investigation of the robustness of deteétion rules is
motivated in Section 3.5 and & possible approach described
for ?he detection of jumps where post—jump parameter values
are qnly known ?9 be in a given set.

In Chapter % the robustness of detection rules for
first order au?qregressions is investigated. Roughly

speaking, the results obtained show that oPtimal or near

- 10 -



optimal detection rules will detect "larger? than

designed for jumps at least as quickly on average.

This was not previously entirely obvious as is suggested
in the discussion at the beginning of the chapter. 1In the
case in which the robustness property is'only obvtained

for a near-optimal detection rule a bound is established
on the expected performance degredation using this. This
is done in Section L.k,

In Chapter 5 the robustness properties of detection
rules designed for more general systems is investigated.
For the optimal, or, where this is not implementable, the
sub-optimal detection rule proposed in Section 3.4 a set
.of post-jump parameter values is characterized such that
the expected detection time is not increased, at least if
a coefficient in the cost fuction is sufficiently small.
This restriction corresponds to typical detection times
being long compared to system time constants. Section 5.1
develops'the robustness theory while in Section 5.2 its

application is considered.

1.3 Original Contributions

In Chapter 2 previously published results are
reformulated in the form appropriate here. In Section 3.1
the constfuction of the optimal detection rule is orginal,
though the construction of Lemmas 3.3 and 3.4 is inspired
by Shiryaev [12]. Lemma 3.1 is an application of a result
in [17]. The use of non-linear filtering is inspired by
Davis [14]. The formulation of the detection problems in
terms of the time differentiable process S; (equation
(3.1.19)) is origiﬁal, and 1t is this which enables the

application of results in [16] to the synthesis problem

- 11 -




in Section 3.2. Section 37h.is related %o approaches
listéd in [4] for discrete time prqblémsf $he discussiqn
in Section 3.5 is original.

Chapters 4 and 5 are éntirély original (Lémma 5.7
has been ob?ained indépéndénﬁly < no prévious derivation

of this result has been found).

- 12 -



CHAPTER 2

DISORDER AND PARAMETER JUMP DETECTION PROBLEMS

In this chapter the parameter jump detection problem is
introduced as a special case of the disorder problem for
stochastic processes [e.g. 1,11]. The a-priori assumptions
used later concerning the time of the jump are discﬁssed,
and various cost functions are defined and their properties
investigated. The detection of disorders in a class of
systems having trivial dynamics is discussed, &nd a summary
given of the results of [1,2,3]. Finally, practical
approaches given in [4] to the detection of parameter Jumps
in more general systems are described and some difficulties

outlined.

2.1 The disorder problem for stochastic processes

Figure 2.1.1

Consider a probability space (Q,F,P) on which is defined a
process yteRm ¥t, and a random variable tjzo. The process
Yy is interpreted as undergoing a change of regime (a dis-

order) at the time tj'



Vt is the U-field_generaped by (yu:usp)7
) ?ris a Vz—stqpping ?ime, interpreted as the time at which
the chanée of regime is "~§et¢cted" (possibly falsely)
observing ¥+ Here VE is = c—field_genérated by (yu:ust)
together, possibly, with other random variables independent
of tj end y_ ¥s. The introduction of VE enables randomized
stopping rules to be considered.

Since T is a stopping time, for any T, given
(yu,usgﬂ and that T2ty, there is a (possibly raﬁdomized) map

or policy P so that

-~

P:(yu,uzyo) » (2.1.1)

The performance of a detection scheme for the "disorder"
éccgring at time tj is usually peasured by its success in
achieving the conflicting objectives of quick detection and
infrequent false alarms while no disorder exists. In some
formulations of the problem an a-priori distribution is
assumed for tj, while in others this is avoided by =a
suitable definition of optimality, or by using & liklihood
formulation. Usually when an a-priori distribution is
assumed for tj it is the exponential distribution

At

P(tztj)=l—e- for some A>0. This greatly simplifies the

problem because of the property

P(t+u2tj|u<tj) = P(tztj) for t20.

2.2 Formulations of the disorder problem

a) With a-priori information about t.
J

In this case the performance of a detection rule may be
megsured by its expected cost. Several possible cost
functions are given here, but as is shown they are inter-

related.
_l){,_



1) The cost function C(%) is defined as [2,11]

c(%) =.1(%<pj) + b(%;tj).1($>§j) - e>0, pjzo

(2.2.1)
~ R . .
where T 1is a.yt—stopplpg time.

The use of thisleﬁiaréed d—field enables randomizéd stopping
rules to be considered. With this cost func?iqn a fixed cost
is paid if there is & false alarm, while if theré'is a dis-
order before T a cost proportional to the detection delay
is incurred, Note that only one detection attempt is allowed
end if this is & false salarm the test terminaﬁes. Since,
unless c 1s small so that long delays are permitted, ?he
probability of a false alarm is likely to bé‘nearly'oné, an
optimal detection rule is likely to give an expected cost

very close to that of stopping at time zero (i.e. 1).

2) The cost function K(T) is defined as [11]

~

K(T) = -AT + (l+c)(?-tj).1(?>tj) c>0, tjzo
' (2.2.2)

where T is a Vﬁ—stopping time.
Here there is a reward of A/unit time while the process is
alloved to continue uninterupted, but a penalty of
{A+c) /unit time after the disorder occurs. The main interest
of this formulation is its relation to C(%) which is used in
chapters 3 and 4. This result was established in [11].
Lemms 2.1
if tjzo is distributed such .that

At 40 (2.2.3)

P(tztjltj>o,vo) = l-e
E(K(T)]Y,) = E(C(T)]Y,) - P(t;>0]Y,) (2.2.4)

for any Vt—stopping time T>0



Proof

%P(ﬁje(u,u+63|u<?,yo).P(ﬁ<?lyo)du

P(T2t.|lY ) = 1lim
Jl °© Io.6+o

+ p(t.=0]¥ )

©

fOAP(u<tj|u<?,VO).P(ﬁ<¥]V6)du + P(tj=o]V°)

=

_AEI{OI(u<tj)I(u<%)du|V°) + P(t3=0]Y,)

I

AE(%Atjlvo) + P(tj=O|VO) (2.2.5)

But  E(K(T)]Y,) = B(c(T)]yy) - P(E<t;|y,) —_AE(?Atleo)
from (2.2.1) and (2.2.2).
So  E(R(T)]Y,) = E(C(D)]Y)) ~ 1+ P(Tt,]V)) -
- AE(%Atjlvo)
Then using (2.2.5), (2.2.4) follows. : 0

It follows that if the conditions of Lemma 2.1 are satisfied
and an optimal stopping time T exists such that

E(K(T)lyo) < E(K(f){yo) ¥ YS~stopping times T

then this is also optimal in the sense of the cost function

3) A further cost function is now introduced which is

appropriate if the detection procedure does not terminate
with a false alarm. The situation of interest here is the
following: The output of a system is observed and a sequence

3<o--<’fN is generated, where

. ~1 .2 .
of alarm times T <T <T
N e inf{i:%lztj} : (2.2.6)

For each alarm a fixed cost is'incurred, and there is a

. R ~N
further cost proportional to the detection delay (% —tj).

The cost Q =N + d(fN-tj) 4>0 (2.2.7)

- 16 -



This migh? be in?erpre?ed as an inspec?iqn cost fqllowing
each alarm, ?gge?her.wi?h a cost prqquiqnal to the
detection delay. This formulaetion is proposed in [3]. The
following Lemma espablishes a relationship between this

situation and that corresponding to (2.2.1).

Lemma 2.2

Suppose that for each t,u>0, conditioning on the events

Tt s 70 and b5 = ¥'4u (¥°20), and on Ya;.

Yzi+1 is identically distributed for i=0,1,-+°,N,
Mso  P(t2t,]V ) =1 - e a0, .

3

Suppose T is a stopping time which minimizes E(C(f)jyo),

where C(+) is defined in (2.2.1) with

c = a/Q° (2.2.8)
and Q° 2 inr E(Q|V,) (2.2.9)
{71

Let P be the (possibly randomized) map defined by (see(2.1.1))
P:(yu:uzo),»'.r (2.2.10)

Then & sequence of stopping times which minimizes E(QIVO)

is defined by

- - + - . ’
P:(yu:uZTl) woptth gt i=0,1,°°°,N-1 (2.2.11)

Proof

Under the conditions of the Lemma, minimization of the
expectation of (Q-i) conditioned on (?i<tj)is an identical
problem to the minimization of the expectation of Q.
Therefore only'{?i} defined by (2.2.11) for some policy P

need be considered, since the same stopping rule should be

used following each false alarm.

- 17 -



For £€>0 arbitrarily small, 3? such that when this is used

to generate {T )}

E(Q-n]%n<tj,vo) = g(a]y_) = @%ec  ¥n, (2.2.12)

~1

Now suppose T  is generated by a policy P and % »**°sT Dby

ﬁ. Then

E(QlY,)

where the

1r P=P, E(Q]Y,)

1+ B(a(E-t )T )|V )
+ (Q°+e)P(Tl<tj|VO)
1+ Q%E(c(TN) |y ) + eP(?l<tj[V0) (2.2.13)

parameter ¢ is given in (2.2.8)

Q°%+e, so 1+Q°E(c(fl)lvo) s Q%

If P is defined by (2.2.10), Q°E(c(%l)lvo) is minimized

so agailn

1+ QPE(c(TN)]Y,) s @° + ¢

As € is arbitrarily small,

17+ QPE(c(T)]Y, ) < Q° (2.2.1k)

Now choose P alsc to be the policy defined by (2.2.10),‘and

. € to be the appropriate value in (2.2.12), From (2.2.13),

using (2.2.12) and (2.2.1h)

(o]
Q +e

< q°

1+ QCE(c(h)[y,) + ep(%1<tj|yo)

~1
+ eP(% <tjlyo)

Since P(Tl<tjlyo)<l, it follows that €=0, and optimality of

P follows from (2.2.12): O

Remark

If v, is of the form

dy, = (a+61(t2tj))dt + AW, (2.2.15)

where W, is & Wiener process, then there is a one to one

t

..18_



mapping relating y, to the process 9t where

~ ) ~. ~.+1 - ~
F.= ¥y - Vi V?E(TI,TI 2], 1=Q,1,779 (1090)

(2.2.16)
§t satisfies the conditions of Lemma 2.2, whichnﬁhen defines
the optimal detection rule for cost Q, if = solﬁfion exists
for the formulation (2.2.1). Alternaﬁively if ¥y isAgenerated
by & more complicated stochastic system, and atieach alarm
time the state of the system is reset 1o Yoo Lemma 2.2 agsin

holds. As is argued later, the effect of the initial

condition y_; may not be very important in practice.
= ”

4) An alternative approach proposed by Shiryaev [1] is to
minimize the expected delay time in detecting a disorder;
E«f—tj)l(f>tj)lyo) while constréining the maximum permitted
false alarm probability, P(f<tjlyo).'This is refered to in
[2,12] as the "Variationsl Formulation". |
In the situation described above, if the conditions of
Lemma 2.2-ﬁold and'{?i} is a sequence of stopping times
defined by (2.2.,11) for some i, it follows that

P(Erety|y,) = P(Ferglrter; V) = oo

~m+l ~m
sss P(F <tj|T <tj,Vo) = p,say

(2.2.17)

Then  E(N-1]V_ ) = p(1+p(1+p(ecerer))) = 2 (2.2.18)
-p

Therefore constraining the false alarm probability is

equivalent to constraining the expected number of false

alarms - (N-1).

b) With no a-priori information about t.
J

1) In [1], Shirysev proposes an approach which avoids the
need for a-priori information sbout tj. The mean delay time

in detecting & disorder is minimized while the mean time

- 19 -



between false alarms wiFh no disgrder presen? “is
constrained to be no less than a given value. In the case
considered, thé solution to this problem turns out to be a
limiting case of the solution to the formulation (2.2.1) as

A+0 (see section 2.k4).

2) Willsky and others [h,T;BJ have proposed approaéhes
based on likelihood ratios in which no explicit assumption
is made about the distribution of tj‘ A single parameter

is then chosen to balance false alarm freguency and detect-

ion delay.

2.3 Observation processes without dynamics

Disorder problems have been investigated both where the
process yt>is a counting process [10,11], and where Yy is
a process related to I(tztj) with additive noise. The second

case is of most interest here. In this section results

concerning the situation
dy, = rI(tth) + aw, O<r<w, (2.3.1)

W, a Wiener process independent of tj
are discussed. The distribution

, -t
P(tztj‘tj>0,vo) = l-e (2.3.2)

is assumed, and except where explicitly stated, P(tj=0|V0)

is taken to be zero.
Defining M, = I(tztj) - fgk(l-l(uztj))du (2.3.3)

Mt is a Martingale (this follows from the proof of Lemma 2.2
for example). Then, as in [14], the non-linear filtering

equations (see Appendix 1) may be applied to the equations
dI(tztj) = M1-I(t2t;))at + au, (2.3.4)

dy, = rI(tz;j)at + aw, (2.3.5)

._20_



to obtain

T, = P(tztjjy

; ) = E(I(Fzyj)j¥9) . (2.3.6)

t
ary = A(1-my)dt + rm (1-m )av, (2.3.7)

where the innovations process v, (a Wiener process) is
defined by

dv, = dy, - m,rdt (2.3.8)

It is sufficient to consider optimal detection rules with
cost function (2.2.2) since Lemma 2.1 implies these are

optimal with cost function (2.2.1).

Let to be an arbitrary stopping time and define

-~

Ta .
a(®) = inf E(-A(T, -t )+(A+c)f Cog auly, ) (2.3.9)
o to ty, 'u t,

Ty
0 i3 =-Tr
to

Note that because of the form of (2.3.2) and the Markov

property of Tes Q is only & function of ¥.
Define T = inf{tzO:q(wt)ZO} (2.3.10)

T is the optimal stopping time with cost function C(%) or

K(T) as shown below.

For any Vg—stopping time T20
E(K(%)|Y,) = E(X(TaT)]Y,)
+ Etﬁ(—*k?-r);(l;é)fzﬂudulVT,T)Iffzr)IVOJ
and  E(-A(T-1)+(A+e)[Im aulV_,1) 2 0 for %2t
by definition of T (2.3.10) and of q(-) (2.3.9).
Therefore E(K(%AT)lvo) < E(k(T)]Y ) (2.3.11)
Also  E(K(%Tvt)|Yy ) = E(k(T)]|Y,)
+ BIE(-A(1-%)+(A+e) fIn au]y2)I(r27) ]y ]

and  B(-(1-F)+(A+c)fIm au|V:) < 0  if 1%
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by definition of T (2.3.10).

?herefqre E(K(TVT)jVo) < E(K(?)IVO) (273.12)

Since T here is an arbitrary stopping time, (2.3.11) and

(2.3.12) together imply
E(K(T)|Y,) = B(K(TatTvi1)|Y )
< E(x(D)]Y)) (2.3.13)

This shows the required optimality of T. Note that T is =a

Vt—stopping time, that is, it is not randomized.

Next it is shown that T is the first crossing time of e

threshold value by m,» For to an arbitrary stopping time

define th(Tto) = 7A(Tto—t0) + (A+c)(Tto—tOth)I(Ttoztj)

for Ttézto (2.3.14)

Then q(my ) = E(Kto(T)|Vto,TZto) = E(Kto(T)|"to’T2to)

(2.3.15)
from (2.3.9). Vto may be replaced in this way since m is

a Markov process.
If nto=ﬁ, say and T2t _, T is given by §ome policy (see
section 2.1)

P:(yu:ugto) " TP (2.3.16)
Suppose this policy is used in fact when nto=ﬁ..Then 19,V
such that

E(Kto(TP)lnto=ﬂ) = 3.8 + 9.(1-9) (2.3.17)

i.e. 9= E(Kto(TP)[tjsto); @=E(Kto(TP)|tj>to)

320 from (2.3.14) As g(m)<0 (consider ?=to in (2.2.2))
it follows from figure 2.3.1 that ¥<0.
Also by definition,

q(®) = 3.8 + ¥.(1-9) ¥helo0,1]
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: >
s T
a(m)
Yy
Figure 2.3.1
Let T 2 sup{m:q(m)<0} - €, >0

=N

Then q(f) < &% + ¥(1-%) < &% + ¥(1-%) = q(F)<0, f#s<
for values of € chosen arbitrarily small.

Therefore

q(ﬁj <0 ¥i<sup{m:q(n) <0} (2.3.18)
Now let f=sup{m:q(m)<0}, and suppose q(F)<0
By defini?ion of 7, 3e>0 sufficiently small so that

0 = g(fi+e) < % + ¥(1-TF) + €(3-¥) = g(#) + (8-¥) <o

This contradiction implies that q(7T)=0, and together with

(2.3.10) and (2.3.18) it follows that
T = inf{t:ntan} for some ﬂYe[O,l]. (2.3.19)

Note that, from Lemma 2.1, T is an optimal detection time

with both cost functions K(T) and C(T).

Disorders of unknown magnitude.

Up to now it has been assumed that the dynamics of the system
are known before and after the occurence of a disorder. Here
the situation

p2r>0

t

is comnsidered.
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Suppose the detection rule discussed above is implemented,
which is optimal if p=r. Then the process Ty is independent
of p up to time tj end

d = - - - -
ﬂt CA(1 “F)d? + nt(l wt)r(p wtr)dt + rﬂt(l 'nt)dwt

t2t, o (2.3.21)

Let Ry = 1n(wt/(l—nt)). Then
-Rt 1
@Ry = A(l+e "V)at + r(p-3r)at + raw, (2.3.22)

by It8's differentiation rule.

By monotonicity it follows from (2.3.19) that

T =‘inf{§:Rt2Ry} for some RYER
For a given sample path of Wy, let ° be the stopping time
T if p=p. Then from (2.3.22) tP<t® and so

(Pt )I(tP>t.) < (tF-t.)1(15>t.)

dJ Jd J J

But the event (Tp<tj) is independent of p, so that from
(2.2.1)

E(c(t)]Y,50=B) < E(C(T)]|Y ,p=r), Por

i.e. T = arg min max E(C(?)IVO) (2.3.23)
T p2r

Te Vz-stopping time,

This also holds with C(%) replaced by K(%).

2.4 Analysis of the disorder problem without dynamics.

In this section some published results on the disorder
problem are briefly described [1,2,3]. It is assumed that
(2.3.2) holds. The problem of interest is the determination

of the threshold value nY in (2.3.19).

Define “y a :
£(F) 2 B(I(t<t;) + elr=t vt )T(t>t;)|my =7, 72t )

(2.4.1)
(c as in (272,1))
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Note that since Ty is Markov, and from {2:3?19),‘f(ﬁ) is
independent of thé value of t
From (2.3.7)
amy = (l—nt)dt + rﬂf(l—ﬂt)dvt
where v, is a Wiener process. Theréfore using Ipﬁ's

differentiation rule,

T . 2
az, = D(em EEEL |y 2 )22 D] - g,
: ar 1Ty . afs 1Ty
af(w) :
+ 7w, (-7, )r——%| . _ av
t -~ = et e
7 T gs IFEmTYE (2.4.2)
if f(+) is sufficiently smooth.
But from (2.k4.1)
L g(s(m Y7, T2t) = —cT (2.%.3)
du u t? t e :
u=t
Teking expectations conditioned on Ty in (2.4.2), and
equating with -Cemy gives
2
A(l—'n‘)_é_f_(_.n.)_ + -n- (1 n)erz.g_.f_é_.r_r_). = —CT ﬁ'(ﬂ'
am am Y
(2.4.14)
and of -course ‘
£f(m) = (1-m) for LELN (2.4.5)
since in (2.4.1) =% in this case.
Assuming in addition that
ar (i) I ar(m) gt = -1 (2.4.6)
af Y aw Y

(the so-caelled smooth pasting condition) the function f(m)
is uniquely defined by the equations (2.L4.4) & (2.L4.5).

Row ~)

(7 =-E(C(T)[no=ﬁ,yo)

from (2.2.1) and (2.4.1), so that from Lemma 2.1 it follows
that q(F) = £(F) - (1-%)
with g(f) defined in (2.3.9).
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It follows that

wy=_inf{ﬁ:f(ﬁ)21—ﬁ} (2.4.7)

Using this approach, Shiryaev [2] deduces that ﬂY is the

unique solution of

A
'n' -
Y a+inyt
(2.4.8)
0 e_z(z+2A/r2) _ rze_h (—Ql/rz)
h 5. 92 = 55— h
- i(2+21/r )

The necessary assumptions concerning the smoothness of f£{m)

for NSNY are Jjustified im [12].

Other formulations

a) In [1], Shiryeev shows that optimal detection rules for
the "Variational formulation™ (see secpion 2.2) of the
problem (2.3.1) are also soluﬁions to the above formulation
based on cost function C(T) for some choice of c>0. With
this formﬁlation an acceptable false alarm probgbility is
fixed and a detection rule chosen to minimize the expected
delay time (inj—tj). For this particular problém the

threshold value is given simply by

L 1 ~ (acceptable false alarm probability)

He also deduces that for D(a,A) the infimum of expected -

delay times conditioning on ?ztj

D(o,A) = inf E(T-t.|%2t.) (2.4.9)
T J J

vhere the infimum is over VE—stoPPing times such that
P(?<tj)sa>0, and where A is the parameter in the distribution

for tj (2.3.2), then
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Do, A)+ g—é-[exp(E'l;/rz)(—Ei(-2?/r2)') -1
r

dz]

2)1ﬁ(l+z) )
-z (2.4.10)

27 ,o
+ :EAIOCXP(-2$Z/r

as a+l, A0 such'#h&t 1§E'= T (fixéd)

Here, -Ei(-y) = eﬁyfg dz

e
y+z
eand T is the limiting value as a*l, A+0 of the mean time
between felse alarms with no disorder present if the
detection procedure is used repeatedly.

In [1] Shiryaev shows that, with some restrictions,
this is the best expected delay time that may be qchieved
by & stopping rule having mean time between false alarms

not less than T. Using this formulation the need for an

a-priori distribution for tj is avoided.

b) Bather [3] considers the multi—stage problem of minimiz-
ing E(QIVO) where Q is defined in (2.2.7). Using a similar
approach %o that described at the beginning of this section,
he deduces that for his problem the optimal solution is to
stop (for an "inspection") at each time that m,=u_ (the

t Y
process m, being reset to zero each time s false alarm

occurs) where

, (2.4.11)
% = 2]8 x_2k-lexp(2k/x)fg yelexp(—Qk/y)dydx

2.5 Detection of disorders in systems with dynamics

The prdblems considered in the previous section were
straightforward due to the simple nature of the observation
process ﬁnd the resulﬁing Markov property of the process

Ty =P(F2tjlyt). More complicated problems arise when

considering systems with non-trivial dynemics.
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Evaluation of the posterior probability of a disorder

First, the usual state-space model is considered.

dx, = A, x 4t + g, dt + G AV,
' ' (2.5.1)

dy, = H,x, dt + d%Z,

£ %%
n m
xt,qteR ¥t; yt’ZtER ¥t

Vi 2y are independent Wiener processes, independent

of t.
J
=p 0 =n0 —1 0 =n® - . u+:
A =AT, Gt—G » H=E®, Qt‘qt | vp<tjzo (2.5.2)
-pld -l =171 P {
A =A', G.=G', H =H', q,=q, "}tztj (2.5.3)

Here AO,GO,HP;AI;GlgHy are constant matrices and

q% & q%-are control processes known to the observer.

The a-priori distribution P(tztj|t5>0)=1—eflt(is assumed,
and tj is independent of X s¥g e P(tjzo) is known.
Then as before,

o t
M, e I(t2t,) —_Ajo(l—l(tztj))du (2.5.4)

is a Martingale, and so the process

I(t2t.)]
E( Joity

Xy 1

£)

may be generated using the non-linear filtering equations

(Appendix 1) with (2.5.4),(2.5.1). Note that

M 2 P(tztjlyt) = E(I(tztj)lyt)
Then

dm, = A(l—nt)dt +

EEt(HlxtI(tztj))—Et[HlxtI(tztj)+H°xtI(t<tj)]ﬂt]Tdvt
{2.5.5)

where Et(‘)=E(-lVo) and v, is the ipnovations process,

In order to use thié expression to generate T, it is

necessary to have the estimates Et(xtI(tth)) & Et(xtl(§<tj))_

- 28 -



If x, is.Vt measurable,_(2:515) prqvides;a feasible approach
to tﬁe evaipaﬁiqn of LI Q?herwise @he nqn—linear fil?ering
equations must be appliéd egain to obtain thé néCESSary
estimaﬁes, but this in turn requires further estimates to

be provided. In fact

T T
Et(xtI(tztj)), Et(xtxtl(tztj)), E,(x, x

txtI(tth))’..ooo

Ey(x,T(t<t5)), Et(xtxfz(t<tj)), Et(xtxgxtl(t<tj)):""'

are required- that is infinite sequences of estimates.

A natural approach would be to :truncate thesg sequences

in some way. This is discussed in [13]; bﬁt it is not clear

how it should be done.

A class of system for which T, may be obtained by

finite dimensional filtering has the following form

(2.5.6)

Observations ¥y =[O0 : Im]vt

vt'is en n dimensional process (ﬁ>m)

J is en (n-m)%(n-m) constant metrix, B a constant
matrix

D, = D% F, =P, 2z, =z¢ (D°,F’constant matrices,
¢ & known process) Vt<tj

1

p! = p!, F, = F!, Z, = 2z (p!,Flconstant matrices,

zy & known process) Vtztj
W, is an m dimensional Wiener process

uy is & (n-m) dimensional known process

Again tj is aiStribubéd so that (2.5.4) holds, and is

independent of W, and of‘§oJ j.¥

vy is assumed given so that vy is Vt—measurable, since
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dvy = vedt + dt + 1 | dy, (2,5f7)

(010 +. - 0] ] " ]
001« «0 u o

dvt = - : :1 . . : v dt + t] dt + . dw, (2.5.8)
001 - -
’ T
L ¥ J th. -l_

rt=r°, zt=zz ¥t<t

=l =1
rt ro, Zy zt ¥t2t

1

+ are known.

where ut,zz,z

In addition it is shown in chapter 3 how a natural sub-
optimal approach to the detection problem for the system

(2.5.1) may be constructed based on (2.5.6).

Optimal stopping rules

In order to construct an optimal stopping time, in the sense
of the cogf functions defined in section 2.2, it is
necessary to have some a-priori information about the
controls ut,zz,z%,q%,q% in (2.5.1) or (2.5.6). For
simplicity, only the case in which these take constant,
known values is considered. With system (2.5.6) for example,
('rr,v)t is then a Markov process. In chapter 3, the

corresponding optimal stopping rule is developed.

Approaches to the detection of disorders in general systems

Although in many cases it is not possible to construct

optimal detection rules for disorders occuring in dynamical
systems (because this involves infinite dimensional filtering
as described above) several practical approaches have been

proposed [4,5,9 for examplel. The problem is of some practical
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interest, especiaglly in the serospace and inerpial
navigation fields [5,8,9]. Mostly this work concerns the
discreté time vérsion of thé problém; and sincé this
clarifies the way in which thé infinite dimensional filter-

ing problem arises a first order example is given here.

Consider the system

k

X4y = 8% F (b+61(k2kj)) + Wy

(2.5.9)

where Xy s ¥, 8re scalar processes

a,b,8¢R are constant, 6#0, |a]<l

xo~N(x°,ro)

wk,vk are sequences of normel independent zero mean
random variables such that Ewi=Evi=l ¥k

kj (the time of appearance of the disorder) is
independent of Wis Vi
P(kzkj) = 1ka (2.5.10)

¥k and of xo

By Kalman filtering the a-posteriori distribution of the

state X conditioned on observations yO"'.’yk—l and the
event kj=i may be obtained.
(i) _ =3
let gklk—'l— E(xklkj_l’yl’yg’ oo,yk_l)
5 (2.5.11)

= (i) =7 o e
In this ekample, r. is independent of 1i.
Then if y, = 2(
k k

vi}i? is a sequence of independent normal random variables

of zero mean and variance l+rk.

Defining. Pil) = P(k 1]yl,y2, ,yk) (2.5.12)
then ’ _ Pii)'= fk(vil))'é‘Piti (2.5.13)



using Bayes' Theorem, where fk(°) is the probability dengity
function associated with the distribution N(O,rk

is & normalizing factor eliminated by imposing the condition

+1), and N

z P( i) = 1.
i=1"

At each time step k, véi) will have the same value ¥i>k.
However, for each ick, it will be necessary to use (2.5.13)
separately to obtain P(l)

(i)
P (2.5.1k)
1k

ne~™8g

Then P(k'jSKIylsyao"°syk) = s

The computational load of evaluating this increases linearly
with time k, as does the memory requirement. Since k. is
unbounded, implementation of an "optimal"™ detection rule
involving the disorder probability would require an
infinitely powerful computer.

However {in this case)

(1) (§)

vl v = a(v(l) véi%) fa] <1
50 v(i) - v(j) + 0 as ko

k k
Therefore it is reasonsasble to suppose that a good sub-optimal
(i) .
X as k-1
becomes large in such & way that only a finite number of

policy could be constructed by approximating v
terms need be updated independently.

Much of the work reported in the survey paper [4] deals
with methods of approximating jump probabilities (or
equivalently liklihoods) by exploiting this type of
structure., Many of the contributiqns which have appeared on

failure detection problems in practical situations deal with

sudden Jjumps in the system state rather than in the
peremeters [e.g. 5,6]. The filtering problems which arise -

are then. similar, but there is an important difference in
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that the evidence of such a disqrder in the Qbservations
will not .continue indefinately. Because of this, the
performance of detection schemes is thén often discussed
in terms of "missed alarms" rather than of delay times.
Other contributions [e.g. 7,8] deal with "sensor" and
"actuator" failures which are permanent and correspond
more closely to the problem considered here.

In [5,6] for example, state estimates and Jjump
probabilities corresponding to jump times long before the
current time are "fused" into a single representative value,
Disorders may only be considered to occur at intervals of
several sampling periods. In[T7] sequential probability ratio
tests are used repeatedly to test the hypothesis that a
disorder is present. The possibility that the disorder
appeared at any time other than the start of one of these
tests is ignored.

Simulations carried out on the various approaches
suggested in [L4] indicates good performance in the particular
situations for which they were proposed. Also in [L4] the
issue of the robustness of these detection rules is indicated
as requiring furthervinvestigation. In chapters 4 and 5 these
aspects are considered.

A simple approach [4, ref 24] to avoiding excessive
complexity is to use a single state estimate for 2ll possible
disorder times kj before the current time, based on "steady-

stete' Kalman filtering for the post-jump system model. This

(BN

s

o

eported to work well, and seems & natural approach where

fol)

etection times are typically long compared with the system
tire constents - an inevitable situation when trying to
detect small jumps in parameters without too many false

alarms.



In [8] & sub-qp?imal solution to & problem similar
to one considered by; Shiryaév [1] (‘_t_he di.scre‘_b.e time
version of the situapion deScribéd in séction 2.3) 1is
proposed.

Davis, in [14] looks at = continuqus time problém
similar to that described in this section. He cpnsidérs an
approximation to the infinite dimensional‘filte?ing
equations which involves using for Et(xt) in equation
(2.5.5) the value calculated assuming t?ﬁj. Thefapprqximation
seems reasonable if 1t is expected that detection times will

be typicelly small - ‘compared with system time constants.
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CHAPTER 3 DETECTION RULES FOR SYSTEMS WITH DYNAMICS

In this chapter, results are given.concerning the existence
and properties of optimal detection rules in the case of
systems with dynamics of the form(2.5.6).In addition, it 1is
shown how the methods of [16] may be used to generate these
detection rules.

A natural suboptimal approach is suggested which avoids
the need for extensive computation at the design stage. The
increase in the expected cost when using this detection rule
is discussed.

An approach t; the detection of disorders in the more
general system(2.5.1) is also suggested. This is related to
fhe methods proposed in [4 ref.24] for discrete time systems.

The problem of detecting parameter Jjumps to unknown
values is considered briefly, and the study in chapters L &
5 of the robustness of detection rules‘designed for known

disorders is motivated.

3.1 Optimal detection rules

Tbe first part of this section follows the arguments of
gection 2.3, but for ¥, generated by a more complicated
stochastic differential equation. Because of this, Ty is no
longer a ﬁarkov process. The cost function K(T) defined in
(2.2.2) is used, but Lemma 2.1 relates this to the cost C(T)
wvhen the ususl distribution for tj holds.

In order to show that the optimal stopping %ime is the
first time of entry of the process (wt,vt) into é closed set
(Theorem 3.1) it is necessary to derive a continuity result.

To do this, an approximating problem is considered in which

- 35,7



|

there are only & finite number of posgible values for the
optimal stopping time. This enables a dynamic programming
approach to be used (Lemma 3.3).

Some results needed in later chapters are given in
Theorem 3.2. In addition, it is shown in Definition (3.1.19)

how if certailn conditions are satisfied the process 7, may

t
be replaced by one which is generated by an ordinary
differential equation in the definition of the optimal

detection rule.

The problem of interest here is that of the system
defined in (2.5.6) with a more general a-priori distribution

for the jump time tj. This generalization is useful in chapter

L.

(3.1.1)

Observations: Yy =[O0 : Im]Vt

vy is an n dimensional process (n=m)

J is an (n-m)x(n-m) constant matrix, B is constant

D

Dy

DY, F, = FO, zy = z® (D°,F%,z° constant) o<t

D!, F

Fl, Z

z! (D', r!,z! constant) ¥t2tj

t t

Wt is an m dimensional Wiener process

u is a constant (n-m) dimensional vector
tjzo is a random variable such that

dI(tztj) = p(vt)(l—I(tztj))dt + dM (3.1.2)

t

where M _ is a Martingale orthoganal to W_ and p(.) is

t

2 bounded non-negative function with bounded derivative.

Il.B. Unless otherwise stated it 1is assumed that P(tj=O[VO)=O.

Vo 1s assumed given, so that v, is Vt—measurable.

t

The cost function considered is that given in (2.2.2).
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i.e. .K(T) = =A% + (A+c)(%—tj).1(%?pj) g (3.1.3)
Ta Vs—stopping time.

_t-vt oI T >t.
3 o) s I(Ty > J)

. = o (= .
Define Ktp‘Tto) e _A(Ttoto) + (A+c)(Tto t
ftOZto a Vg -stopping time, t, an arbitrary stopping
time. (3.1.4%)

Lemma 2.1 shows that & detection rule which is optimal with

cost K(T) is also optimal with cost C(T) (2.1.1).

Using the non-linear filtering equations (Appendix 1) for

ﬂt=E(I(t2tj)|Vt) gives ' (3.1.5)
= 4 - - 'Dlenl.epl g0 1_,0
dw? plvy)(A-m dat + m (-7 ){ID'-D°;F!-F v +21-2%}av,
-  Irn0m0 0 -
vhere dv, = dy - {[D'F°Jv +2°}(1-7 )at

- 1nl +1
{[D'F Jvt z }ﬂtdt

aw, + (I(tztj)-wt){[D‘-D°:FI—F°Jvt+z1-z°}dt
(3.1.6)

Ve the innovations process is & Wiener process.

Lemma 3.1

(w,v)t is uniquely defined given (vﬁ;uSt),'(p,#)sz
(w,v)t is & Feller process and therefore a‘stroﬁglﬁarkov
process.

Proof

From (3¢lf5)

-
d[ ] = b(ﬂt,vt)dt + U(“t’vt)dvtA where mel[0,1]
t

T
J B u 0 0 0
and b(7m,v) = v o+ +;w§ v + }
ot F° ) pl-p®  Fl-p 21 =0
Al(1=-m)
L . J
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o(m,v) =

J'rr(l--ﬂ') {[DI-DO:F1-F'Jv + 2120}

L

n
For this proof, if MeRnxm “M”.e J( Z

JK<o s.t. '
| o] < Kmumu) s ) - ng[mn)

and for any N>0, EKN<w Bato

1T
“ b(m,v) - b(n;v‘)” < KN” :J" Z,J ” " .

o - for”[“}”,',“,}HSN
” olm,v) - G(W:V')” < KN"’ N " |

LT [T

fhen [17, Theorem 5.2.2] gives the uniqueness of ('n',v)t
given (vu,ust), (ﬂ,v)o
£L17, Theorem 5.3.6] gives the Feller and Strong Markov

property of ('n,v)t : 0

Definition

For an arbitrary stopping time t,

* o -~ e~y
tﬂ?
. . R . .
where Tto_ is a Vt-stopplng time
ty
Then h*(mw,v) =inf E(-A("ft -ty) + I (c+A)ﬂudu[Vt
T, 20 ° to 0
o

from (3.1.4).
Note that h* is independent of the value of to chosen.

Define T, _ 41nf{t_to,h*(1rtsv )20} (3.1.8)

Lemma 3.2

E(Kt (Tt )LY# ) 'S‘E(Kt (" )IV



Broof (c.f. section 2.3)

E(K (T y = %
tO Tto)l t'o) E(Kto(TtOATto)lyto)

T
+ ELE(-M(T, -1 )+ (A+e)f Yo q du|y
ty t, < u T

)ox(r, <T,_ )]V, 3
i t t
t o %o o
to o
But EL-A(F ) & ' '
u AT, -7T + (A+c o a o =
. to Tto ! )fT Ty ul&’_rt lzo0 if T 2Ty
to o

by the definition of T, (3.1.8).
° ;

Th ¥ %
erefore E(Kto(TtoATto)|yto) < E(Kto(Tto)lyto) (3.1.9)

Also, E(K. (% = (%
(Bg o (T vrs MYy ) E(Kto(xtd)lvto)

T~
. = ) 4 [}

t : T
bo tq o
’ TTt . ~
But E[fA(Titgrto),+ (A+C)I% o “hduly%t 1=o0if TtoZTto
%o & °
Lo
by definition (3.1.8) ‘
so  E(X, (%, vr, )|V, ) < B(x, (%, )]V, ) (3.1.10)
o : ?0 To 'ty I to to to l to

Cqmbining'(3.l.9) and (3.1.10) (since T is an arbitrary

to

stopping time)

E(Kto(TtO)lyto) = E(Kté(TﬁoA[Tt

5 1)y
OVTtQJ)I to)

- < E(Kto(%to)lvto) 0

It follows from Lemma 3.2 that only non-randomized stopping

times need be considered, i.e. T, is a Vt-stopping time.
o

Since K(f)=Ko(%), the optimal stopping time for the cost
function (3.1.3) is

T & inf{t:h*(nt,vt)éo} {3.1.11)

It follows from (3.1.8) that T=T1_ if T2t, {3.1.12)

to

Ty =w,vt°=v) from (3.1.7)

Also n*(#,%) = E(X_ (T, )
'O o ‘0

(3.1.13)



Definitions

N~ a4 (= _ ~t - ot
K, (T, ) & A(TtOANA ty) + (A+c)(rto pjvto).I(Tt°>tj)

(3.1.1L)

wvhere, if A 2 {iA:i=0,1,eeem}, A>0

+
t

i»

inf{ueh:uzt}

- +

t t -1

~ . R . -
TtOZto is a Vto—stopplng time

Asc,t, as before

W ey s N - .
T,¥,1) 2 inf  E(X, (T, )|w, =%,v
ty 't

o (3.1.15)

, 1=0,1,2,¢°

Lemma 3.3
N,. ~ . . . . ~ -
h (%,v,1i) is continuous in %,¥ for each i=0,1,2,+°-

Proof

First, from (3.1.1Lk), hN(ﬁ,%,i)=o for i=N

In (3.1.15) only stopping times taking values in A need be

N
t

+

to)sK

considered since KN (1

t

. (t, )

(o] o

It follows that hN(ﬁ,%,i)=ﬁN(ﬁ,?,i) defined by ﬁN(”

N ~ ~N

and b (%,%,i) = min{0,E(h

(“(i+1)A’v(i+1)A°i+l)

“A+(A+c)m =%)}

=T,V

(i+1)alTia iA
since otherwise a stopping rule giving lower expected cost
is provided by

Ty, inf{tsA:ﬁN(wt,vt,t/A)zo}

. Ui o~ . . . ~ o~ . N, ~ &
So if hh(ﬂ,v,1+l) is continuous in #,¥, so is h (F,v,i),
using the Feller property (Lemma 3.1). Wote that for each i,
hh is bounded above by zero and below by ~NAA. The reguired

result now follows by induction. : O



Lemme 3.k

v (7,%,0) ¢+ B*(F,%): as NA+w, A+0 (3.1.16)

Proof

Firstly, from (3.1.L4) & (3.1.1k)

N, . ~ R . . ~
KO(TO) 2 KO(TO) ¥ Vt—st?pplng times T

Next , Kg(? )

o) = Ko(T) + A% T A (WR))

end by (3.1.4) & (3.1.1k)

A

ho(T )

o KO(TO) + 2(A+c)A

W= =% =5 . T =T =5
So E(Ko(To)lwo—ﬂ,vo—v) < E(KO(TO)|ﬂO T,v_=%)

+E(A(TO—TOA(NA))lﬂo=w,vo=v) + 2(A+c)A
(3.1.17)
Set TO=TO defined in (3.1.8). Note that by optimality of To

and since E(tj|ﬂ0=ﬁ,vo=§)<m,

E(A(t -t A (NA)) |7 =F,v_=¥) + O as Ni»e
Therefore from (3.1.17)

N, N ..
E(KO(:O)|w0=ﬂ,vo—v) ¥ E(KO(TO)lwo—w,vo—v)
&8s NA+°°, A-+0.

(3.1.16) follows from the definition of hN and (3.1.13). O

Theorem 3.1

The set {(m,v):h¥(7w,v)20} is closed.
Proof

i iy - .t
Suppose (m ,v )e{(m,v):h*(7w,v)20} ¥ieN

and (77,v") has limit point (7,¥).

Then Lemma 3.3 implies that hN(ﬁ,;,O)ZO ¥N,A
But from Lemma 3.4
I
hh(ﬁ,V,O) + h¥(7,v) as NA»o, A-O

establishing the theorem. O
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Definitions

Ry e ln(ﬂt/(l—nt)) . (3.1.18)

Suppose (F!~F°) is symmetric in (3.1.1) and let
e . 2rp-
X, [In_m.ojvt, vy [O.Im]vt

In this case,

Tt Tinl_no T pl_po
o . 1
Sp & 1m | 7 Yo (D DN)xy = Ay (FR-F )y,

—Yg(il-z°) (3.1.19)

Using Ito's differentiation rule gives

as T T : ~ o
bt = A - iggy -g {ID":F vy +2°} - 3 E(F'-F°), .
dt T i=1 '
t
(3.1.20)
where 8¢ e [Dl—DozFl-—Fo]vt + zgl-g?® (3.1.21)

Since there is & one to one correspondance between (S,v) and
(T,v) under which any solution of (3.1.6) & (3.1.19) is
mepped into & solution of (3.1.6) & (3.1.5), it follows from
Lemma 3.1 that (3.1.6) & (3.1.19) has & unique solution.
This¢provides -3 simplef implementation for a stopping
rule, since no stochastic integral need be evaluated to
obtain 8, To avoid handling infinite initial values
(7 =0 =>So=—w) the process Ute l/(l+e-st) could be used
instead of Sy Note that if m=1, F!-F° is ﬁrivially symmetric,
This condition will a&lso be satisfied in other problems
considered later. If F!-F° is not symmetric it is not in
general possible to meke a transformation of this sort.

It St is defined

h(8,¥v) 2 n*¥(w(§,¥),¥) (3.1.22)

where 7(8,¥) is defined so that 7 =n(St,vt) (see(3.1.19))

t

i.e.
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1(8,%) = .
1 + exp[-8-F (D1-D0)%-351 (P1-F*)F-F (21-20)]

-~

_mzo]? 3 y=[0:1I_1¥v (3.1.23)

where x=[In o

Theorem 3.2

h*(w,v) is & non-decreasing function of 7 for fixed v.
h*¥(7m,v) is continuous for fixed v (except possibly at w=0)
Proof

Consider an arbitrary fixed value of v, ¥V, and stopping

time t
o

<t

Let b = E(Kto(Tto)‘tSStO’“to=ﬂ’vto= )
. (3.1.24)
Y. = E(K )

4t

to(Tto)lt5>to'“to?ﬁ’vto=

i.e. Qﬁ is the expected cost of using the policy
P:(vu,uato) -+ Tzo (see section 2.1) which is optimal if
nt°=ﬁ, conditioned on (tjsto), while Wﬁ is that conditioned
on (tj>toj;

Then  h*(%F,v) = O T+ ¥ (1-7) ' (3.1.25)

Let ﬁ%(ﬁ,?) be the expected cost of using this policy if in

fact ﬂto=ﬂ
‘.".- T 2 P = =3
h(f,7¥) E(Kto(rto)lﬁto ﬁ,vto ¥)
= 0..f + ¥..(1-%) (3.1.26)
By optimality h*(7w,¥v) < ﬁ%tn,%) ¥me[0,1] o £3.1.27)

Also  h¥(#F,%) = RX(%,¥) < 0 eas K, (t )=0
m o (o]

end $~20 since tjsto=>Kto(T)20 ¥izt (see (3.1.4))
This implies (see Figure 3,1.1) that

h*(w,¥) < h*(HF,¥) ¥n<¥



ha(m,¥)
o] i >
1 1 o
]
1
-1
~ Fi 3.1.1
Wﬁ h*(w,v) igure

So h*(m,¥) is non-increasing with decreasing 7 at T=%F.

Since T is arbitrary, h*¥(w,¥) is non-increasing with

decreasing ™ ¥wel0,1]. This proves the first part of the

theoren.

Next, suppose h¥*(7,¥) is discontinuous in w for some ¥ and
7>0. Then-3~nl,ﬂ2>0 such that
h*(ql,%)_> h*(w2,§) + §
for some §>0 (fixed) where wl,w2 may be chosen séch that
Iﬂl— T,|<e for any €>0. “ (3.1.28)
Since h*(na,V) = ﬁ:éwg,V)
h¥*(m ,¥) > ﬁ;§n2,$) + 6§ (3.1.29)
Choose 7”7 s.t. O<m”=min(m, ,m,)
From Figuré 3.1.1, @ﬂ,z ¢
Wﬂ'g wﬂa
YBecause ﬁ;,(wa,ﬁ) > h*(w2,§)

¥
So 0 <1 (1,%) <0 . -¥ . <o ¥1,2m°>0
i an T T 2

Therefore
h*(r,,¥) < h ﬂl,?)'s ﬁ:éﬂz,Q) + €.(0 .-¥_.)
for nz.nlz.n’, from (3.1.27) & (3.1.28)
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Comparing this with (3.1.29) gives a contradiction since €
. * )
is arbirerily small while §>0 is fixed. So b (w,¥) is

continuous in T for w>0. 0

Corollary 3.2.1

From Theorem 3.2, 3 a function WY(v), veR™ s.t.
h*(w,v) =2 © ¥w2wY(v)

Therefore T = inf{tZto:ﬂtsz(vt)} (3.1.30)
0

Corollary 3.2.2

When S, is defined, h(S,v) is & non-decreasing function of
S for fixed v.

h(s,v) is continuous in S for fixed v (except possibly at

S=-w) .,
Tto = inf{tztozh(st,vt)zo}
= inf{tZtO:StZSY(Vt)} (3.1.31)
where SY(V) is defined so that wY(V)=w(SY(V),?) 0
Definition

The stopping boundary YR is defined as

YR 9‘{(R,v):ﬁ*(i;ggérzﬁy,v)zo} n (3.1.32)

closuré{(R,v):h*(E;E§%T:§7,V)<O}
and if St is defined . (3.1.33)
Y5 2 {(s,v): h(8,v)20} n closure{(s,v):h(s,v)<0}

The superscripts are usually ommited as the appropriate
definition is clear.

Note that

. . - R
Tto = 1nf{t2to.(R,v)teY }

if RtoSRY(vto) =1n(nY(vto)/(l—nY(vto)))

wvhere R, is defined by (3.1.18). A similar result applies

for Ys.
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closed
"stopping'
set
0 N - 1 ar
| NY(V)
Flm-——_——_—_ —-—— Figure 3.1.2
l-dimensionsal
Y example

3.2 Determination of the stopping boundary

A natural approach to the determination of the stopping
boundary y would be to consider a sequence of approximations

of the form (3.1.14). It follows from Lemma 3.4 that
N
h"(m,v,0) + h¥(7m,v) as NA+=, A0,

Evaluation of h*(7m,v) would enable the "stopping se?" to be
de?erminea~usipg the equation (3.1.11). Difficulﬁies might
arise however in the solution of the approximating problenms
by the dynamic programming approach of Lemma 3.3. Firstly it
~is not clear how best to construct a grid of points in the
state space of ('n,v)t so that an approximating finite state
process may be constructed. Secondly, a rigorous proof of
the convergence of the solutions as the grid size is reduced
might be complicated. Thirdly, a great deal of computation
would be involved, as a two stage approximation is used.

In [16] a mofe direct approach is proposed to the
solution of optimal stopping problems. This involves the
solution of corresponding problems for an approximating
sequence of finite-state Markov processes. However in this

case the time between successive state transitions of the
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approximating process varies dependent on its current state.
In this way the firs@ Fwo difficulties mentioned above are
overcome, and while the problem still requires considerable
computation,one stage of approximation is avoided. Certain
conditions do need to be satisfied, but this is possible at
least when S, is defined (see (3.1.19)).

For the remainder of this chapter p(v) is set equal

to A.

The approximation

1

Let the process XteRn+ ¥t satisfy

ax, = f(Xt)dt + o(xt)dvt (3.2.1)

where Vt is m dimensional Wiener process and f(-),

o(+*) are Rn+l and (n+l)xm matrix valued functions on
n+l

R, respectively&satisfying the uniform Lipschitsz
condition .
le(x) || < x(a+)ixlD, locx) | = x(a+lfx|p

(372-2)
lex)-2(x)| < xlx-x"|, Jlo(x)-o(x")]s k||x-x||

for some K<, where |lo(.)]] is definea

n+l m 2
by loGolle vz = o(x)3.)
i=1 j=1 J
Let a(-)=c(-)c(-)T, and suppose that : (3.2.3)
. n+l
a;;(x) 2 I laij(x)l ¥x, i=1,2,¢¢+,n+l
45
J#i

Let kx(+) and b(+) be bounded continuous real valued funcﬁions

on Rn and

k(x) = k for some ko>0 (3.2.4)

3 x - % : -v - 30205)
Define R(x,T) = Ex[fo k(Xs)dS + b(XT)] ( _

where E (-)=E(-|Xo=x), and T is a stopping time of the o-field
x
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generated by (Xs:sst) and, possibly, other random variables
independent of v, ¥s.

Also, EX(T)€w (3.2.6)

Now let E?’ h>0 be a Markov chain with state-space

1
J(i).hei} h>0

n
‘{xeRn+l:x=

I ™+

i=

n+l

'{ei} an orthonormal basis for R » j(i) integer for i=l,e++n+l

P(E], =7 ]Ei=x) = p"(x,y) = G (x,y)/q,(x)  (3.2.7)
where = n+l +
Qh(x,xihei) = aii(x)— T Iaij(x)l + h.f (x)
J=1
J#i
§, (x,x+he.the.) = a.%(x), i#3
n o +d (3.2.8)
— - F -
Qh(x,x—heithej) = aij(x), i#j
Qh(x,y) = 0 for other y
th?) = agaii(x) - ifjlaij(X)] + hglfi(x)l (3.2.9)
i#3
Here for reR, r+*r.I(r>O), r ==r.I(r<0)
% (x) 2 n¥/q, (x) (3.2.10)

h . . . . .
If £ is a (integer valued) stopping time for the o-field
generated by (Ej,jsi) and, possibly other random variables
independent of Ej ¥j, and Ex(ﬂh)<w ¥xeRn+l where

E (+)=E(-|E =x)

£h-1
then Rh(x,zh) e E[ X k(g?).Ath(g?) + b(ﬁhh)] (3.2.11)
X":2o i 1 L
Vh(x) e ing Rh(x,ﬂh) (3.2.12)

£
Theorem 3.3

For each xeRn+l,-Vh(x) ¥ inf.R(x,T) as ht0
. .

‘where the infimum is over all stopping times satisfying

(3.2.6). 3
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This result is pert of [16,Theorem 8.2.L4]. a

To apply this result to the detection problem in the

case where Sy 1s defined (see (3.1.19)), X, is identified

with s where U_= X with .
U N t .1+exp(-St) ’ U
Then
au A T T
E—Et = Ut(l—U‘b)[.T-T- = %81.’8.[; = gt([Do:Fo]Vt‘l‘Zo)
T m
3 E(F-F°). ] (3.2.13)
i=1
du

with 3 defined in (3.1.21). t-=0 1f “t=0'

at
Equaetions (3.1.1) and (3.2.13) do not have the uniform
Lipschitz property, but if r<e, K may be found so (3.2.2)
does hold if v, Ivis 2r.
Since it is in any case necessary to bound the state-
space of the process Xt in some way so that Vh in Theorem 3.3
may be evaluated, an arbitrary modificaetion to (3.1.1) may

be made for ||v[|> 2r so that (3.2.2) holds.

Set k(X) = aX + (c-ad)w {3.2.14)

(14a) (1-m) (11 (ollamyUlllezdngy o o
(3.2.15)

and b(X)

where 7 = w(1n(U./(1-U)),v) (see(3.1.23))

and ae(0,c/A) so that (3.2.4) is satisfied.

Theorem 3.3 now states that Vh(x)+inf R(x,T) at each point
T

in the state space of g? defined by (3.2.7). The restriction
(3.2.6) is unimportant since stopping times for X, having

infinite expectation are frivially non-optimal. Since b(X)=0
if ”v“= r+8, the process,§?>w311~stop‘before leaving the set
on which Hv“s r+6 if the optimal rule is used, so that v (x)

may be evaluated over only a finite number of values of x.
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From (3.1.2)

_ ~ 47
E (nz-m ) = E (AT-Af  m_ds)
for any Vt—stopping time T20
Then from (3.2.5) it follows by addition that
R(x,T) = E[-AT + (A+c)fg T,du = almz,v=)]
+ (1+a) (1-m ) (3.2.16)

where g(m,v) ¢ 1(”v"2r)iﬂzﬂ%£lﬁg(l—wo)‘

Therefore

vB(x) - (1+a)(1-7 ) » inf E_[K(T)-q(m:,v2)] as hto
T
(3.2.17)

Now a) O=<q(m,v)<l ¥m,v
ir Px("v%”>r)-+ 0 as r+=, then E_(%)+= as r+. From (3.1.3)
this implies that EX(K(?))+m, so that a better stopping time

exists in the infimum of (3.2.17). Hence only T such that
c) Px(“vf“>r)+o as r-w
need be considered.

From (a),(b)&(c) it follows that

i f E T)- ~ ~ 1 T = *
in x[K(T) q(ﬂT,vT)] + inf EXK(T) h (wo,vo){v]
T T =x
U
e
~as rie (3.2.18)
Vh(x) may be evaluated by dynemic programming, assuming an

artificial horizon.

Define Vh(x,N)

b(x)

<}
=3
»
»
H
"

win{EEp2(x,y )V (y,i+1) + k(x)At"(x)1,b(x))
v i=0,1,%++,N

then Vh(x,o) -+ Vh(x) as N-»w
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This is discussed, for example, in [18,chapter T].
Finally, note that it is stated in {161 that the above
results hold if b(x) is replaced by

(1+40) (1-m)
and the process is forced to stop at t if ”vt"=r. This seems
e more natural approach as h*¥(w,v) is likely to be nearer
1-m than zero. The requirement that o>0 in (3.2.1L4) and
(3.2.15) is probebly unnecessary in this application since
in any case the optimal stopping time has finite expectation
(see [16]). However this is not proved.

Once the function h¥(m,v) has been evaluated in this
way, the spopping boundary Yy may be identified by making the
appropriate co-ordiate changes and using the definition
(3.1.32) or (3.1.33).

Although i1t has not been explicitly assumed sthe system

(3.1.1) would need to be stable at all times (eigenvalues

D, F

J B} . . .
of [ ] strictly negative ¥t) to avoid the need to
t "t

consider large values of r.
Remark

If the formulation (2.2.7)is used, with, say, v_; reset to
T

zero for i=l,+-+,N so that the conditions of Lemma 2.2 are

satisfied, the optimal detection rule could be obtained as

above, with ¢ determined itteratively as the solution of
cE(C(T)|ﬂO=O,vO=0) = d (3.2.19)
vwhere E(c(t) |7 _=0,v =0) = h*(0,0) +1

from Lemma 2.1.
As the expectation in (3.2.19) is non-decreasing with c,

from (2.2.1), this equation has a unique solution.
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Alternatively & more direct approach might be
considered, in which a finite state version of this
formulation is constructed. [3] considers this problem wiph
observations of +the simpler form (2.3.1).

In practice, the requirement that v, be reset at

t
each false alarm time is unlikely to be important if typical
inter-alarm times are long compared to the system time
constants. In that case the effect of these "initial

conditions" of ('rr,v)t would usually become insignificant

before the stopping boundary was approached.

Examples

In the folowing examples a in (3.2.14), (3.2.15) was taken
to be zero (see comments above)., By making suitable trans-
formations to the state space of (1r,v)t a more flexible
grid system was used. Forced stopping was employed for
'vtﬂz r. In each case the effect of this on the stopping
boundary shape was checked by considering both the case in
which terminal cost zero and 1-T7 is paid if the process
reaches this boundary before Y. The estimates of m_ obtained
in this way are upper and lower bounds respectively for
that which would be obtained without this artificial
boundary. In the examples here, the same stopping boundary
is obtained in both cases.

The system considered was

dy, = ay,dt + aw t<tj
(3.2.20)

"

dyt bytd§ + th ?2?5

N L =Ab
P(tztj| yo) = l-e

tj independent of Wt
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In an attempt to reduce the computation required a two
stage procedure was used. Initigl..itterations use & coarse
grid size, and then the spacing of the grid points is

haelved and further itterations carried out.

EXAMPLE 1
a=-1, b=0, A=0.01, c=0.1
200 itterations with coarse grid

200 itterations with full grid
y T (y)
m (¥

6,00 . Y * @ [} . . . . . e @ . . ® . . N L] . - 1.00
5.66 T Y ® o e o s s s s s s e e e s s s s e 1.00
5.32 Y ® e ¢ s s e s e e & o s 2 e s o s e o 1.00
5;00 . ’Y s e e s e S ¢ @ & 2 e 8 € & s ® & = » 1.00
l-l'-69 . 'Y . *® & o s e e & s e e s = @ e o s e 1.00
l.l..39 * Y * s s s s e s s s 8 e e s e 2 s s o 1.00
l.l,'ll Y * * ° s e e o s s e e e s e e s s v . 1.00
3.83 S Y ® * & & 2 s 2 s e e s s e e s s s = o 0.99
3.56 Y o e s . e e o & s e s & ® & o & e e @ 0.97
3.29 ® Y * o & e o s 2 s s 2 s e s s s e o o+ . 0‘92
3‘01.1. e Y * o e s e s s e s s e e s s e s s s . O.Bh
2_79 * * e Y e e s e 2 s s s e e s o+ . e o o 0.90
2_55 ® * * s Y 2 s e 2 s s e s s s e e s e o 0.87
2.32 - - * s e Y o 2 s 2 s e s e v e s s . 0‘83
2.09 e o o e o o e 'Y e ® & ® o s e ° e+ @ o s o 0.83
1.86 e » @ & e o o = 'Y e @ ¢ ® e 5 e+ 8 e o * 0.79
1.61.1, e & o & o s s s o ’Y e e o o 8 » e e & & o 0'76
l.l_l,3 * " e s e s s s e o 'Y e ¢ o e ¢ e ® e & o O.Th
1.22 e e & ® o & s e e o Y * * s e s s e 0 0‘68
1.01 s e e & e s e e e s e Y s e 2 e s e e s o0 0.67
0.81 e & o @ & e s & & e » 'Y e o & e e e e * 0.63
0'60 AR L A L I 2 A A T D 0_59
O.Ll,o A A A A L A I I N 0.57
0.20 A A A N T 2 2 L B D T I S 0.55
0.00 L L e e N A e I N A 0.55

(o]
o
n

0.4 0.6 0.8 = 1.0

Figure 3.2.1
Note that the stopping boundary is symmetric about the

y=0 axis so only positive y need be considered.
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"coarse "fine

EXAMPLE =a b A itterations" itterations”
2 -1 0.8 0.01 - 0.1 180 160
3 ~1 1.3 0,01 0.1 180 160
L -1 2.0 0.01 0.1 360 160
5 -1 1.3 0,005 0.05 500 300

Below the numbers 2 to 5 are used to mark points on the
corresponding stopping boundary. In case of co-incidence

the lowest number is shown.

Y
5.3)4 ® 2D e @ o & e e o e o o s o s e e = * o 3
5.03 « 2 3
L.13 . 2 3
4,45 . 2 3
h.a7 . 2 3
3.91 . 2 3
3.66 . 2 3
3.42 . 2 3 4
3.18 . 2 3514
2.95 . 2 3 5 4
2.7h% . 2 3 5 i
2.53 . 2 3 5 L
2.33 . 2 3 5 L
2.13 - 2 3 5 L
1.94 . 2 3 5 4
1.76 . 2 3 5 4
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Figure 3.2.2

The relationship between a,b and the stopping boundary
shape is furthér investigated in Chapter y,

Note that the relatiqnship between U and 7 is not
the same for each of the examples above: however it is the
same for examples 3 and 5 since a,b have the same values in
this case, The effect of reducing A and ¢ whilé‘keeping

their ratio unchanged is a slight shift of the boundary to

the right,
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Figure 3.2.3

In Figure 3.2.3 the étopping boundaries are plotted in
T,y space. For large y the discretization of U becomes a
problem, especially in the case of example 2. Note that
for the three 1§rgest values of y considered the estimate
of WY in this case takes its smallest possible non-zero
value. Hovever, ?he standard devia?iop of y, is no more

than 0.625 both before and after the jump so that this

may nq? be too important.



3.3 Simplified detection rules

As is clear from the previous section, the determination of
the optimal stopping boundary Y involves considerable
computation, especially for systems of high order. It seems
worthwhile therefore to consider the performance of a class
of simpler detection rules, for example

T = inf{t:ﬂtaﬁ} for some Re(0,1) (3.3.1)

Unfortunately no concrete results could be obtained for this

problem. The reason why, in generasl, the optimal stopping

rule is not of the form (3.3.1) is that the emmount of
informaetion about I(t2t.) given by observations (3.1.1) at
. J PN .

time t depends on the value of v If the value of v, 1is

t

such that little new information is expected to be available

’t'

in the near future it is more at?ractive to stop immedia@ely
than otherwise. If considerable information is expected, the
possibility of incurring delay costs while>waiting would be

more acceptable.

Velues of vy much more than the slowest system ?ime
constant in the future are largely independent of the current
value, If the "jump" in the parameters which is to be
detected is small so that typieally much longer periods qf
observation are needed to detect it, use of a stopping rule
from the class (3.3.1) should be possible without a large

increase in expected cost.



3.4 Detection schemes for general systems

In section 2.5 the following problem was introduced.

dx, = A ,x,dt + q.dt + G 4V, (3.4.1)

dy, = Hyx,at + a2, (3.4.2)
N m

where xteR s yteR ¥t

V,»Z, are independent Wiener processes,

independent of tj

P(tztj) = l—e-kt, tj independent of x,,¥y,

—n 0 =0 —n0 =170
At-A » Qi =0, Gt—G R Ht—H Vt<tj

—pl —-p 1 =nl —mrl
A=A, o;=a', G =G!, H =H ¥t

where A%,q%,6%,H%,AY,q!,G!,H? are constant

matrices and vectors.
A% ,A! have strictly negative eigenvalues

As discussed in chapter 2, it is not in general possible to
generate “£=P(t2tj'yt) with a finite dimensional filter, and
so there is no realizable optimal detection rule.

A natural sub-optimal approach is given here, follow-
ing the discrete time versions suggested by Chien [L,ref 2L4].

This involves the use of a "steady-state Kalman filter"
designed for the system (3.4.1),(3.4.2) with post-jump

(At=A1,qt=q1,Gt=G1;Ht=H1) parameters.

Suppose that an a-priori distribution for X, is given,

xo~N(2o,Qo).

Define ii as the Kalman filter estimate of x;, for the system

_ .1 i i
dxt—Axtdt-f-q_dt-i-Gth
; (3.4.3)
dyt = H xtdt + dZt



where ;O~N(£O,Q°) if i=0; xo~N(%o,Q1) if i=1

and Q1 is the "steady-state" error covariance matrix
associated with the estimate 2;, i.e. it is the unique

positive semi-definite solution of

0 = gigit - gigiTpigi + pigqi + giail” (3.4.14)
i (pi_nigiToiyel i igiT
Then dit = (At-Q*H' H )itdt + g dt + Q'E' dy,
i (30h05)
=% for i=0,1
O O

N
Note A1-QIH' H' has strictly negative eigenvalues for i=0,1.

This is because A' has this property (see e.g.[21, Chapter 121).

1r ry denotes the Kalman filter estimate of Xy when t. 1is

known a-priori, Wt is & Wiener process in the equation

dy, = I(t<tj)H°r at + I(tth)le at + aw, (3.4.6)

t t

Now suppose that instead of (3.k.2), Yy is generated by
- ' 090 141
dy, I(t<tj)H gidt + I(tth)H gidt + aw,  (3.k.7)

vhere 2%,2% satisfy (3.4.5). In this situation the following

equation is satisfied

T [ T T 7]
ﬁ;-QOHO ,yt = AD_QOHO Ho 0 (AO_QOHO HO)QOHO
T T T T
a ﬁé_QIHI yt = 0 AI_QIHI Hl (AI“QIHI'HI)Q:{H]‘ .
0 . 1
g oo | Dy Ly Ty

[ T ] [ o]
20-Q°H® vy, q’ 0

T
ﬁ%—Qlﬁl Y| at + gllat + [0 [aw

AR N A n

(3.4.8)

0_10 1_4x1
where L =H I(t<tj), L =H I(tatj)

" T
Ft=H°Q°H° I(t<tj) + glQlH? I(tth)
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This equation has the form (3.1.1) so an optimal detection
rule may be constructed for the situation (3.4.7). Note that
LoLe tha

Fy is symmetric so that a process St may be defined as in

— -

section 3.1 (equation (3.1.19)).
The sub-optimal detection rule proposed is that which
is optimal where (3.L4.7) holds instead of (3.4.2). Comparing

(3.4.6) and (3.4.7), note that Yy is the same in either case

1 -
< - -
for t_t.j For tth, 2t and T, satisfy

dut

T T
(al-m ! B')u at + gqlat + M H! dy,

t

1
dyt H utdt + th
where, as t-tj increases Mt tends to Q! in each case.

The differences involve transient effects at time tj. In

Lemma 5.8 it is verified that,(where (3.4.2) holas)

1 )e-b.(t—tj)

t:2 %t

E(urt-ﬁéultj’rtj’ﬁéj) < a(r 3 5

¥t2t.
J

for some a(*,*)<w, >0 such that
1
E(a(rtj,ﬁtj)ltj) < d < w th for some d

Because the differences between the actual system and that
for which tﬁe detection rule is optimel are limited to
transient effects it seems likely that near optimal perform-
ance is attained in the case where detection times are

typically long compared with system time constants.




3.5 Detection of parameter jumps to unknown values

The optimal and sub-optimal detection rules considered so
far in this chapter require a-priori knowledge of the
system parameters after the disorder has;appeared. If only

a set of possible values is specified a more complicated

problem arises,

Suppose Yy is generated by a system with dynamics
specified by a parameter ateA. As ususl, suppose
At

P(t2t5)=1—ef , and let at=a° ¥t<tj.

= glealca (3.5.1)

For tztj oy

1

wvhere o’ is not known a-priori.

In order to define the expected cost E(C(T)]Vo),(Q.l.l) it
is necessary to assume an a-priori distribution for al! over
Al, Then to generate wt=P(t2tj|Vt), it is in general
necessary to evaluate the a-posteriori distribution of ol
at 8ll times t. If Alis finite, this may be feasibdble,
although it increases the complexity of the problem. Other-
wise, an infinite dimensional problem is encountered.

An slternative formulation for this problem involves

the minimization of the expected cost assuming that the

1 wiln always take the least favourable value in

parameter o
al

A Vg—stopping time is required which minimizes

mex 1E(C(T)lyo,ul)

alen (3.5.2)

Min-max formulations of this sort have been investigated for
a number of sequential and non-sequential decision problems,
and the solution is characteristically the optimal solution

to the previous formulation where a "least favourable"
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a—griori distribution is assumed for the unknown parameter
[18]. A simple example illustrates this for the disorder

problem considered here.

Suppose - A! = {B,6} c A (3.5.3)

Define F ='{xeR2:xl=E(C(f)IVO,a1=B),x2=E(C(T)IVO,a1=6)

for some VE—stopping time T} (3.5.4)
xzﬁ
)
X
— F Figure
3.5.1
Xy =X,
N 2
pxl+(l-p)x2=constant X1

The convexity of F is assured since randomized stopping rules
are allowed [20]. In the example, Figure 3.5.1, the min-max

solution with cost (3.5.2) is the stopping time correspond-

ing to the point x°, since x§=x25max(xl,x2) ¥xeF. However,

x° is also & solution to the problem

minimize E(C(f)‘yo) (3.5.5)

given P(al=g) = p,, P(al=§) = 1-p, pleEO,l]

1

where plis defined by the tangent to F at x° in figure 3.5.1.

Note that the stopping time corresponding to x° gives the

same expected cost for all p, since xi=xg. Therefore the

! assumed.in (3.5.5) is least

a-priori distribution for o
favourable in the sense- that for any o?her value of p the

expected cost may be made at least as small by using the



stopping rule corresponding to x,.

A second example shows that for certain parameter

values §, the optimal solution in the sense of (3.5.2) may

be just thet which is optimal if al=g w.p.1l.-

xe"L
¥

i
x

xl=x2

- ' XI
Pigure 3.5.2
In this case, min{max(x;,x,):xeF} = mih{xlzxeF}.

Define ABﬁ{ﬁeA:XSSxi} where x is defined as above (3.5.6)

B

It seems of interest to investigate the form of the set A
associated with optimal detection rules designed for

paremeter Jjumps at=d°, t<t :. A practical

3’ J
approach to the more general problem introduced in this

@, =B , tzt

section might then be to implement independently a finite
number of such detection rules, such that the union of the
corresponding sets AB contains A!. Considering systems of

form (3.1.1) where o, is & vector composed of the elements

t

of Dt’Ft’zt’ suppose it is known that following a disorder

at time tj’

ABi, 3<i. (3.5.7)
1

N c e

1_a1
= r c

at o €A .

i

Here ABi is the set of parameter points defined as in

(3.5.6) with B=B - ‘
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J
;s & pi=l ?9 maximize

Choose probabilities Ps 3 i=l,ece,j
) i=1

min E(C(T)IVO), T a;VE—stopping time (3.5.8)
5 ,

where a'=B. with probability Pis i=1,%00,j

! i5 restricted to

A min-max detection rule, where o
'{Bl,"',Bj} is also & solution to this problem,  as

previously argued in the j=2 case.

B J
Now di(tzt.,al=R.) = Ap.(1- %
J S 5

i=1,s00,; (3.5.9)

1. .
I(tztj,a —Bi))dt + aMlt
vhere M, is a Martingale. Using the non-linear filtering

equations (c.f. Appendix 1) with the observation process

(3.1.1) as usual gives

. J . . j
i X ii x k kT
o amy —_Kpi(l—kilﬂt)dt + (mig, -m kzlﬂtgt) vy
where g = ([Dy:Fylvy+z,) ~ ([D°:F%1v +2°)
o, =8.
t Ta
and ﬂin= P(tth’at=Bilvt) i=l, e,
0 J k k
dv, = dy, - ([D°:F%1v_+z%)dat - I = g, dt
t t t_ k=1 t=t

(3.5.10)
An optimal solution to the problem (3.5.8), %, may be
constructed using these processes (c.f. section 3.1);
essuming it is also the unigue optimal solution it is the

min-max solution for alé{Bl,82,°",Bj}.

k .
In the case that the processes 7, are relatively

t
insensitive to disorders of type al= Bi, iFk »

. d o : .
il,e. Z 7T does not significantly increase following

k=1
k#i

such a disorder,

1
T

£ i=1l,*++,J might be reasonably approximaﬁgd by ﬁi.
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setisfying

~1 _ ~1 14 ,.i.2 i, .1
dn,ﬁ .Api(l nt)d*_g + ,(wtgtf(nt .gt)dvt (3.5.11)
1 _ _ 0.0 ) _ a1 i

where dﬂt dyt (ID%:F ]vt + z')dt T 8y at

This seems feasible because of the way that Bl’..‘Bj have

been chosen.

~1 . . .. . .
But Ty 18 Just the probebility, given Vt, of a disorder of
type al =B; with a-priori distribution for tj

P(tztj) = l—exp(—Kpit)

This suggests that implementation of independent detection
rules for al taking each value in‘{Bl,Bz,---VBj} with
corresponding parameters Kpl,kpz,'-',lpj ~could give
performance close to that of the min-max approach for
alé{Bl,"°;Bj}. Since however each of these detection rules
gives no higher expected cost for all aleABi than for
alqﬁi, t@e resulting approach should be close to min-max for

¥ Re
alent ¢ oy aPi,

i=1
In the following chapters the robustness properties of
detection rules designed for known post-disorder parameter .
values is investigated, and sets of parameter points are
found having properties similer to those of . the sets ABi
above. This robustness information is therefore of interest
in the design of more complex schemes.

An example of this is given in chapter 5 (example 1

section 5.2).



CHAPTER L

ROBUSTNESS OF DETECTION RULES: FIRST ORDER AUTOREGRESSIONS

This chapter is concermned with the robustness of optimal

detection rules for systems with very simple dynamics:

first order autoregressions. In this case a more complete

analysis

is possible than for the more complicated systems

considered in the next chapter. Some structural results are

obtained concerning the process (S,y)t, and the shape of

the stopping boundary Y introduced in the previous chapter.

The problem of interest here is this

dy, = kyaoy,dt + aw,, a6<0 (4.0.1)

where Vi is & scalar process

Wt is a scalar Wiener process

P(tztj|tj>o)’= 1-eflt, A>0 (h.o.2)

'tjéo is independent of W  and Vo

-k, = 1 ¥t<t.
J

t
T is the optimal Vz-stopping time derived in
Chapter 3 :with the cost function

c(t) = I(%<tj) + c(%-tj)I(%>tj) c>0 (4.0.3)

for the case

'k, = a2-1/3 ¥t2t. ocR (L.o.k4)

t

The response of the stopping rule is to be investigated for

the case

k, = By Vtztj (4.0.5)

N.B. Except when explicitly stated, the notation P(e),E(°)

in this chapter refers to probability and expectation given

that (4.0.4) holds.

Also, except where explicitly stated, P(t5=0)=0.
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Discussion

T denopés the a-posteriori probability that the disorder

has occured by time t. Bearing in mind the note above,

]

m

£ P(tztjjyt)

Then
dmy = A(L-my)dt +
ﬂt(l—ﬂt)(a—l)aoyt[dyt-(l+ﬂt(a-l))&Oytdt]

4,0.6
by (3.1.5). ( )

Therefore, 1f in fact ki =B Vtatj, B constant

dr, = M1-mg)at + wt(l—wt)(u-l)agyz(s—l-wt(a-l))dt
+ ﬂt(l—wt)(a~l)aqytdwt Vtztj
(4.0.7)

In the case of the system considered in Chapter 2, (2.3.20)
it is immediately clear that ldxger than designed for

rarameter jumps result in m, increasing more guickly.

t
However, in (4.0.7) the second term which is positive and
involves B also involves the random process yi. As B
increases, the mean value of yi tends to zero for t>tj,
which would appear to slow down the growth of Ty In fact

substituting the mean value of yi, t>tj into the second

term in (4.0.7) gives

%ﬂf(l-ﬂt)(a-l)(-ao)fl—liﬁiéglil]dt (4.0.8)

which does increase with B for B>a>1, though it is bounded:
as B,

In addition the contribution of the third term in
(4.0.7) is likely to be less important for B large since the
mean value of yi is reduced. This could have some effect on

the first crossing times of the stopping boundary.
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In secﬁign 5.5 an example is given of & system for
which the behaviqur deseribed above does appear to des@rqy
the robustnéss property of thé'optimal detection schemé.

It is also possiblé'to démonstraté anothér'way in
which a jump in k, to 8>d>1 for tztj might not be detected
as quickly as the design case disorder., Define Qte.ﬂt/(l—ﬂt)

so that, from Itd's differentiation rule applied to (L4.0.7T)

then  dQ, = A(1+Q.)at + Q. [(a-1)(B- l)a dt+(a—1)aoytdwt]

Vi
tztj (4.0.9)

Suppose ﬂtj=0 => ijzo, and yi;is large. Also a>1l.
] - Jd

2 2Bagl(t-t3;) o2 2Bap(t~t:)  ,t 28a (t;-u)
vy = ¢ J Vg * 2 J yt.[tje J

aw
J u

t 2Ba,(t-u)
v [f7 BF%0 av_1° (4.0.10)
t'a- u
d
Approximate yi by its initial condition response component
(since yt?.is large)
-d
2 _ 2Beg(t-t;) 2

Yy = € , yfj (4.0.11)

. . . 2
Substituting for yi in (4.0.9), and again assuming that yt
is large enough to dominate the contrlbutlon of the term

Qt(a—l)aoytdwt

: 2 t-t;
dQ, = A(1+qglat + Qt[l+(ajl)(6—l)aiyt§.e Bao ]dt
t>t, (L.0.12)

This has solution

Q = Af exp[l(t u) +

‘39(g_l)fsél'y 2 2Baolut) ) 2Bao(t-t5)) 4,

- 2Bag (u-t ;)
Af:_exp[l(t—u) +f59£g_£l.yt§.e aolu-ts)

"3

A

(4.0.13)
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As B 1lncreases ?he sec?nd ?erm Fends ?o ZEero for each u

(nqte that ao<Q) ?ending to decreasé Qi+ In this way it

seems that fér small":rtj and largé ytjuquickér détéction
might occur with kt=d ¥t2tj rather then kt=8?d ¥t2tj.

Of course this alsé dépends on othér factors such as the

stopping boundary shape. The structural results in this

chapter clarify these aspects.

4.1 Preliminaries

The detection rule

Applying the results of section 3.1 to the system (4.0.1)

the optimal detection rule for kt=a ¥t2tj is
T = 1nf{t:StZSY(y)} (k.1.1)
' 2
where 8, = ln(ﬂt/(l—ﬂt)) - %(a—l)aoyt (4.1.2)

by (3.1.19) and y is the stopping boundary in the state

space of the Markov process (S,y)t,
SY(Y) 2 inf{s:(S,y)ey}
SY(y) is defined for all ¥, (possibly infinite valued).

From (3.1.20)

2
dSy _ -S¢-2(0a-1)aoyy 10,2 2.2
Fre '»A(l'*‘e ) - i {a —1)aoyt 5((1—1)8.0
(k.1.3)
As before
Ty, © inf{tztozstst(yt)} (L.1.%)

so that T=Ty if tho.
(@]

Note that by Lemma 2.1 the stopping time T is also optimal

in the problem of minimizing the expectation of the cost

K(T) = -AT + _.(A+c)(’f—t_j)I(~’r.">1_:'j) (4.1.5)

-~

T 'ayi-stoppipg time, X as in (1.0.2)



]

Define ct.(rto)

I(T, <t.) + (%, -t.vt )I(F t.
5 ( to to) ( 6753 "?) (T?O> J)

- {4.1.6)

and as before

1>

K?O(T?o) fk(T?o-?j) * Kl+c)(Tto_?jvtO)I(Tto>tj)

(4.1.7)

>~ R . - . . .
for T?ozto a Yt-stopplng time, t_"an arbitrary time

These correspond to the cost "incurred after time to", if

TZtO. If t, is a stopping time
E Cy (¥4 ), E Ky (F
(S,Y)to tottte’ 2 (S’y)to to to)
are minimized for T, =T, .
to Tte
Note that C(7)=C (7)), K(T)=KO(TO)-

Outline of the robustness argument

The cases ael-1/3,1) and ae(l,») are treated separately.

The case a<-1/3, for which the system would be unstable
after time tj, cannot be handled since one of the structural
properties required does not then hold.

For the case ae[-1/3,1) in order to prove the robust-
ness result, Theorem 4.2, it is first necessary to show the
function SY(y) is non-increasing with ya. This is done by
considering the sample path properties of the Markov process
(S,y)t and decomposing its state space into three regions in
which special properties apply. A partial result, concerning
the shape of the part of the -stopping boundary Yy lying in
two of these regions is given in Lemma h.1. It is more
difficult to extend this result to the third region. This
is done in Theorem 4.1, for which Lemma 4.2 provides a
necessary preliminary result. |

The robustness result holds for disordérs occuring

after a Vt—stopping time tc. This should be typically very
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smell and an assesssment of this is given in Table hfeflf
For the case de(l;W) thé situstion is mqré'
complicated. Robustnéss is provéd for a détécﬁion rulé which
is optimal for = slightly modified problém; ﬁsing Fﬁé'
previous arguments. It is suggested that this indicatés the
near robustness of the true optimal detection rulé. Finally,
a (noﬁ necessarily tight) upper bound is establishéd for ﬁhg
increase in expecped cost resul?ipg from ?he use of the

guaranteed robust sub-optimal appraach.

Notes

2 1 ]
1 + exp(-5-2(a-1)a,y”)

m(S,¥) (4.1.8)

so that “(St’yt)=ﬂt

-~

n(8,§) = E(g iK(1) = Bz o) (-At+(A+e) fom(5, 7, )au)

S,y
from (3.1.13),(3.1.22) (4.1.9)
-~ T .
So n(s,y) = E(g’i)foc(su,yu)du (k.1.10)
where 0o(S,y) & -x + (A+e)n(S,y) (h.1.11)
Note that
Ty
a) h(st’yt) = E(S,y)th(Tt) = E(Say)tjt G(Su,yu)du
from (4.1.7) (4.1.12)
b) h(s,y) <0 (3.1.13)
since by optimality of T, E(S y)K(T) < E(s,y)K(O) =0
c) From (3.1.11) t=inf{t:h(S,,y,)=0} (h.1.14)
therefore h(s,y) < 0 S<sY(y) (4.1.15)
h(s,y) = 0 'sst(y) (4.1.16)
a) G(St’yt)<0 => ft>t, since otherwise if ft=t
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E

,(s,y)tK?(inf{uz§;o(su,yu)?Q})

cinf{u>t:0(s._,y. )20}
= E o uwou o(S.,y. )du
(Ssy)t % uu

< 0 = E( Kt(ft)

Ssy)t

which is impossible since T, is. optimal.

t
Therefore o(S,y) 2 0 if (S,y)ey (h.1.17)

e) Setting p(y)=A in (3.1.2), Theorems 3.1 and 3.2 hold.
In particular, h(8,y) is continuous in § (except,

possibly, at S=-») and non-decreasing in S.

T) h(s,y) = h(s,-y), SY(y) = SY(—y) by symmetry.
' (L.1.18)

The cases ~1/3<a<l & a>1 in (4.0.4) are now considered

separately

4.2 The 0e[-1/3,1) case

First some definitions are given.

A

) a .
Define §_ 1n[r(a+1)ao+A] (k.2.1)
Let B (5,5 2 Bt -
at at [s,.=8S
.t
Y=Y
'g—%(a2_1)80§2 1 2 2.2 17,
= A(1l+e ) - 3(a —l)aoy - g(a-l)ao
(4.2.2)
Then 2E(s,y) = 0 ¥ss<§_, ¥y )y
dt 4 - . c? ( -2-3)'

This only holds for ax-1/3

. . . 2
Also %%(S,y) is monotonically increasing in y for SZSc

(h.2.4)
as

Note here thaﬁ 3t

(S,y)=%%(s,-y).
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S, &s defined in (h.2:l) is the smallestvalue such that

(4L.2.4) nolds.

The state space of the process (S,y_')t is now decomposed

into three disjoint sets

N 2 {(8,y):8<s,}
P2 {(s,y):2(s,y)20,525} |
3 ‘dt 3 L] - c (ll’-2v5)
Q 2 {(s,y):2(s,y) <0}
Also 8 £ P n closure(g) : (L.2.6)
Ya
N
>s
5=8
Figure k4.2.1
Define ¢t £ inf{t:(s,y)tePuQ} (h.2.7)
. as .
Since Eg(sc,y)zo ¥y, it follows that
(8,y) €Puq  ¥t2t 4 (4.2.8)

Lemma 4.1

Sy(y) is non-increasing with increasing y2 ¥y such that

(SY(y),Y)éPUN
Proof
If the Lemme is not true there exists y 20 such that

for S8°= SY(y'), (8”,y") € PuN

and SY(y) is strictly increasing with increasing y at y=y~.

- T2 -



Then if D e’{(S,y):."se[s’,sY(y)],:>r2y’}

D\Y is non-empty (y is the boundary of the closed

stopping set).

Choose (S,y)toeD\Y => (S,y)teD ¥te[to,1to]
. A8 /o~ =~ ~ -

since EF(S s¥ )20 ¥ya2y

[because a) (S7,y")eN=>(8",F)eN

. - as ~» ~y.dS8 - -
b) (87,y )EP=>ag(S ,Y)ZEE(S ,¥7)=0

by (h.2.4)1]

Figure 4.2.2

0(S,y)20 ¥(S,y)eD, since o(S”,y")20 by (4.1.17) and & is

increasing with S and with y2 from (L4.1.11).
Tto

Therefore f

to to

h(S'to’yto) N E(SsY)

But this contradicts (4.1.15), since Sto<SY(yto)~

Definition

o(Su,yu)du 20

Let I & {(8,y)eQny:3(87,y " )eQny with s’>s,y’2>y2}

then 5, = %inf{S:(S,Y)eF} if Té¢®
o 1P Ted®

(see over)

_"{3_

{h.2.9)



Y A

PulN \~//
(s

Ya ~"T"”/’/ﬂﬂﬂﬂpﬂﬂ"
.

]

| ,'f\\A
! .
Figure 4.2.3
If Sl<w choose yi-e inﬁ{jzd:isl,y)eY} (k.2.10)

(S,,¥,)el since the stopping set is closed (Theorem 3.1).
1'°1 . -

Note that Sy(y) is non-increasing with increasing y2 ¥y st

sY(y)<sl by (k.2.9) and Lemma 4.1.

Lemma k.2

. . . . . 2
If 8 <=, h(S,y) is non-decreasing with increasing y

for (S,y)eP, Se[Sl,SY(y))xi_é, in the sets "A" in Figure

Proof k,2.3)

Suppose the Lemma is not true.
Then 3 82281, y2>y3>0 such that
sz<sY(y2), sé<sy(y3)
(Sz’yz)’(sz’y3)€P
& h(Se,ye)"< h(Se,yB) (k.2.11)

Df Q'{(S,y):y2y3,86[52gSY(Y)j}

(see Figure L.2.k)
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Pull

(8,,¥,)
g 171 *(A R
s

o S

Figure L4.2.14

Suppose (S,y) = (8,,¥.)- Then the process (S,y), leaves
to 2272 t
D” either across Y or across the line y=y 3> since

as
Tt (855¥) 20 ¥y2ys by (L.2.4),

Define t, = 1nf{t2to:yt=y3}

.'Tto T¢ At Tt
= o - o
. ft o(s,,y )du ft o(s .y Jau + f o(8,,y,)du
0 Yo Tto"tl

1

The first term on the right is positive or zero, as

o(S,y)20 ¥(S,y)eD”. This is because o(S )20 by (k.1.17)

1°91
and 0 is increasing with S and y2 from (4.1.11).

As Ty Aty is a Vt~stopping time
o

T
— tO
h(8,,¥,) = (8,3)4 It o(8 ,y,)du
Tt
> E [E(f ° o(s_,y. )aulVy )3
S ? t. %
(8,¥)¢ Ty Aty u*Ju Ty Aty
>t
2 E(S,y)to[h(STtoAtl,yTtoAtl)th0> l]
> h(Sz,yB) (h.2.12)

The second inegquality is because if Tto<tl’

h(s »Y ) =0 by (k.1.16).
T?oAtl TtoA?l
For T4 2t.,, S o 28,., ¥ =y..
to™ 1 Ty At 2 TtoA?l 3
Then by Corollary 3.2.2 h(S'TJc At ,y% At ) = h(Sz,y3)
to” 1 "tp 1
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which establishes the third inequality. But (L4.2.12)

contrediects (Lk.2.11). B

Theorem 4.1

SY(y) is non-increasing with increasing y2

Proo?f

 J

Figure 4.2.5
PulN

Suppose the Theorem is not true. Then by Lemma 4.1 and
(4.2.9), Si<w.

¥y, exists and is defined in (4.2.10).

Let y'>yl‘be chosen so SY(y')>SY(yl). (h.2.9)vgaurantees
that such a ¥y~ exists.

Let (8,y)y, (S,y)f both be solutions of (3.1.6) and (4.1.3)
ice. Ay, = (1+(a-1)m(8,,¥y))a vy dt + dv,

asg
at

—S;-3{a-1)agy,?
e t 2 Oyt ) _ 2 2

10,2 _ Y
3(a l)aoyt 3{a l)ao

A1+

(h.2.13)
with the innovations process vy the same in both cases but
with

(S,y)po=(81—e,yl), (S,y)£0=(sl—e,yf) (b.2.14)

Here € is chosen so0 that Séss

l—é<Sl. This is possible since

Sissc contradicts Lemma L4.1.
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S%, y; are defined such that (Sg,y;)?(s,y)%

Note that (yt:tZto) and (y;:tato) both generate the same
o-field Vt (both processes may be reconstructed given vt -
see Lemma 3.1). In this proof all probabilities and expect-

ations are conditioned on the initial conditions (4.2.14).

The following Vt—stopping times are defined

t,  inf{t2s_:y7°=y ) (h.2.15)
t, ® inf{tztoz(s,y)tee,stzsl} (h.2.16)
Ty, © inf{tZtO:(S,y)teY} (h.2.lf)
T, int(eat :(5,5) ey} (4.2.18)

Note that (4.2.17) is equivalent to (b4.1.4) in this case.

t, is the first time (S,y)t crosses the thick line in

Figure L4.2.5,

Also - (ﬁ?y)tePuQ AT (c.f. (b.2.8)),and by (b.2.k)

~ ay .. A2 A ~ .
3o (5,.¥) = %%(s,y) ir § Zye, (S,¥)ePuq (k.2.19)

A preliminary result is now established. -

Suppose Tto<t1, Tto<t2.
Then since %%(S,y)<0 in Q and by definition of %,,

(S,y)tePU{(S,y):S<Sl} FE<Ty (see Figure 4.2.6).

Possible path of PuN
(8,3)¢ up 16 t, \Q;\
Y \\\\\\

”?—-—

<. Figure 4.2.6
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2.2 .
As Tto<§l, ¥y oy, ¥§STF07 Then from (L4.2.19) sts? VFST?a

Since , from Lemme 4.1 and (h.2.9l SY(i) is non-increasing

with ?2 for ieayi (see Figure L4.2.6)
Yo

S7 z2s. =8y )=zs(y7 )

T-th | .TtO Y Tt_‘O Y 'tho
so that TEOSTtO.
Therefore T <tys Ty <ty => 75 STq (k.2.20)
The following events are defined

a - 2 -
A 2 {w'tlsmln(te’Tto)}
B e’{w:t2<min(tl,jgo)} (4.2.21)

Q
(1

{w:1t05§2,1t0<§1}

A,B,C are disjoint, and weAuBuC w.p.l.

Eech event is now considered separately.

EVENT A

If weh, tist,, t,<7g . By (4.2.20) it follows that Ty 2ty

Also yi%2y,B, sia2s, west

t7t 1

Since o(S,y) increases with S angd ya, from (4.1.11)

tl tl
. f U(Su,yu)du 2 f U(Su,yu)du
tO t
B .0
Also, since y’2=yt2 and S{ 285, , h(Sy ¥y ) = h(8; »vy, )
] Tt 1 % 177ty 177t

from Corollary 3.2.2.

T T

t t

Then E[ft ° U(S;,y;)du - ft °.U(Su,yu)du[weA]
o °

& .
= E[f£l(0(8a,ya)—c(su,yu))dulmeA]
. O B

+ E[h(Sgl,ygl)—h(Stl,yFl)lweA] >0 (4.2.22)

since A is a Vt -measurable event, and from {4.1.12).
1 T ’
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EVENT B

If weB, §2<F1,- F2<jto

if Tt§<?2’ (4.2.20) gives a contradiction. Therefore Ty 25
Since t,<t as beforé‘ y'22y 2, 8728 ¥t<t
2°71? i t t 7t e’

T T
t - - t
E[f ° U(Su,yu)du—f © o(s_,¥y )dulweB]

“to to ? u :

%
2 - -
= EEIFO(U(Suayu)-O(Su,yu))dulweB]

+ E[h(sgz,yge)-h(stz,yte)lweB]

The first term on the right is positive or zero by the

. properties of g.
B(85,5v5,) 2 B(8g,0vE)) 2 B(Sy,.v4,)
where the first inequality is from Corollary 3.2.2 since

S{zzstz, and the second inequality is from Lemma 4.2 using

.2 2 o

5 1° yt22yt2.

tzzs

”

T T
Lot t t o
- - (o) - - - o
Therefore E[fto G(Su,yu)du ft U(Su,yu)dulweB] >0

°
(4.2.23)
EVERT C
If weC, Ttostz, Tto<t1'
2. ' => 1] < that T, <17
From (4.2.20) Tto<t1’ Tto<t2 T Tto, s0 that Ty <T{
leads to & contradiction if weC.
Therefore Ty 2T
r r t’o to
.2 2 - -
yt 2¥y o StZSt Vtsrtof
T, .o Pty
E[[t:‘ U(Su,yu)du-{t~_ ULSu,yu)dulwsC]
0 Lo
T{o o _
= E[{ -,(G(Su,yu)-o(su,yu))dulwec] +'E[-h(ST€ ’yTE ) wec]
to ‘o %o
> 0 (k,2.24%)
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COMPLETION OF PROOF
From (h.2,22),(h,2,23) & (h.2.2)4)

1tr . T . . )
£ Ty _
ELf "° o(s”,y Yau-f "° g(s_,y. )aulweFl 2 0
to u n to o u

for F=4,B,C.

Therefore h(8~ ) - h(St 2 Yt )
o fo) o] (o}

i.e. h(Sl—e,yf) > h(Sl—e,yl)

Now as €40, h(Sl—e,yl)+O by Corollary 3.2.2 and since

(Sl’yl)eY

So lim h(Sl—e,y,)ZO. By continuity of h with S (Corollary
40

3.2.2)  h(8;,y7)20 => (5,,y7)ey.

But y“ was chosen so that S <SY(y’) which gives a

1

contradiction.

The response of the detection rule is now investigated for

ky=By Vtztj in (4.0.1).

Theorem L4, 2

E(th_tjl(S:y)tj:tjskt=8t Vtztj)

< E(th—tj](s,y)tj,tj,kt=a ¥t . )
if By<a ¥t2ty2t,  where ae[-1/3,1).
Proof

Suppose Bt5q Vtz?jztc

Define ys such that

B _ . B 8
d = | dt + 4aw t2t.

Vy = Byagyydt * iy 2ty (4.2.25)
B _
Y+. T V4.

t; T3
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where’WS is & Wiener process.

Define y: such that

a _ : d o
dyt = aaoytdt + dwt ?2?5
a” R ; (4.2.26)
Y+. = ¥+.
k& t o
From It8's differentiation rule, if x8°(y8)2,'xgg(yg)2
B - a
Xi . = Xg.
¥ 3
dxs = (28 a Xy +l)dt + 2/(x8) dVS
d N (h.2.27)
dxt = (2aa X +l)dt + 2/(x ). dV
where VB = ft J( B)dws
t I yu u
- -J ' tzt.
£ dJ
a _
v, = jt J(y )dwu
- 'J

J(x) = +1 if x=0
-1 1f x<0

a
Vt' VS are then Wlener processes. Suppose that Wt’ WS are

chosen so that V —VB—V Then, by [22, Theorem 1.1]

t t t°
x5 > %% gt | (k.2.28)
t - 7t 73 e

. a B a _.B _ o _o B _B
Now define 5.8, so that Stj—stj—stj and (St’xt) & (St’xt)
satisfy 5 1 |

’ as -Sg-z3(a-1)asX 2 2. -
E€£=-A(l+e t ° t) 2(a _1)aoxt - %(a—l)ao

B as . . . . ~
As thtc S StZS Vtth”'dt 1s an increasing function of X

for given SZSC. Therefore

B Qa
Sp = 5y ¥t (h.2.29)
Now define 1% =.inf{t2tj:3q25-(ya)}
= inpltat,:s gzs (y )
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B

o - ] g
Then st 28, =S8 > s
_ s 0 y(¥ o) Y(.qu)

The final inequality follows from (L4.2.28), noting that
xteyi, and Theorem L4.l. Therefore
B a

T =< T

The result of the Theorem now follows because of the way

in which y%, ys, %, t® have been defined. [

Since E( ) [c(T)[kt=6t¥t2tj2tc] = P(S’y)o(1<tj]tj2tc)

S,y 0

!+ E(S’y)o[E(th—tj[(S,y)tj,tj,kt=8tVt2tj)I(thj)Itjztc]

(k.2.30)
and the event (T<tj) and (S,y)y. are independent of Bys it
d

follows that

E(S,y)o[C(T)]kt=BtVt2tj2tC]
< E(S’y)o[C(T)lkF=th2tjztc] (k.2.31)

if B, <o ¥t. This also holds with C(T) replaced by K(T) or
t

Q (see section 2.2).

Remark
A similar result would apply if the simplified stopping

boundary discussed in section 3.3 was used.

It is not easy to be precise about the time t, in this
case. However it is possible to get an idea of the value of

.the probability that t5<tc as follows.
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.S=Sc
Ya N
m(S,y)=%
~
Figure h4.2.7
Let 2 & inf{t:ntzﬁ} fel0,1)
' o a2
2 _ .2 A 1-%y _ ©
If yg 5_—(&—1)ao'ln(—(a+17ao+A' ) = =T say  (4.2.32)

then from (4.1.2) and (4.2.1)

Therefore

P(®2t.|V ) + P( 2> 0 )
3V o y?‘—an o

IA

Pltg2t; 1Y)

1A

t + P(yge—2—|V )
(¢]

Now (4.2.32) may be interpreted as
~N
ly?l < 8["steedy-state" pre-jump standard deviation of y,]

. 2 . .
Presumably P(yTZ—ga |VO)+O s ® increases, 80 T gives a
o

tentative upper bound to P(tcztjlyo). Below some approximate

values are given (A/(-a,) assumed small).

o f (6=2) % (6=3)
-1/3 5.69117 30.128x°
0.0 2.718)17 9.4881"
0.k 1.30127 2.755)°
0.8 0.679)17 1.307A7

where A~ él/(—ao).

As A° would normally be very small, so would ?he

probebility that tcztj.
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L.3 The ae(l,®) case

In order to use arguments similar to those of section }.2

in this case it would be pecéssary to find some value

of 8, S, such that %%(é,?)‘as defined in (4.2.2) decreases
with iz for all §ZSC. However thé contribution of the
exponentiai term in (&.2.2) destroys this property for large
~2

Y vwhatever value is chosen for §c. The situation is shown

in Figure 4.3.1 below.

|

v
+7
Y .
Flgure 4.3.1
[l
=¥ o /
c 4§§(S‘ ) iy .
3T S»¥) negative in
shaded regions

17/

- A 2%—(3G+1)3o
wvhere Sc-ln(:Ta:ETZ;) - 2la+l)e

=2_ 2A-(30+l)a,
Ve (az—l)ag

By modifying the a-priori distribution of tj, meking a
disorder less likely to occur while yi is large, this problem
mey be avoided. The optimal detection rule for this new
problem is guaranteéd to be robust, in ﬁhe sense that the
expected detection time for a disorder is not increased if

in fact kt=Bt2d yotin (4.0.1). Since §§ is large it should

also be near-optimal in the original situation.

- 8L -
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Alternatively it could be argued that the true optimal
detection rule should be "near-robust".. In section 4.4
an upper bound is derived for the increase in expected cost

due to the use of the guaranteed robust detection rule.
In this section modified versions of the problem are
investigated, and the appropriate robustness results

obtained following closely the approach of section L.2.

First Modified Problem

The system defined in (4.0.1) is considered but with the

random variable tj defined so that

aI(tat,) r'(yt)(l-l('_t_ztj))d‘p + aﬁF (b.3.1)

where ﬁt is a Martingale and

2 _2 5 2x-(3a+1)ag
= t < - -
=3) =A vy se y0erl @ SRt
(k.3.2)
A2 10202 o A ().
_ z(a l)ao{ + 3 (o l)ag ¥y st y2>i§
1 + exp(-§_ ~2(a-1)asy<)
— Y 2A-(30+1)ag
8, ¢ ln(:TEFETE;) T T 2(a+1)a, (4.3.3)
r(y), Figure k.3.2

r(y) for the case




P and E denote probability and expectation respectively
~given that tj satisfies (4.3.1), and, except when explicitly

stated, that P(%;=0|V,)=0 and that k =a Ftat ;.

Then  1lim ii(t.e(t;t+5)|t.>t,y =¥) = r(¥) (4.3.4)
s+0 O d J t

Using the non-linear filtering equations (Appendix 1)

as before, if ﬁ£=§(t2tjlyt)

aF, = rly,)(1-7y)at + 7 (1-7y) (a-1)ayy dVy  (4.3.5)

dy, (1+(a—l)ﬁt)aoytdt + av, (L.3.6)
ﬁt is & Wiener process (the innovations process)

Note that increments of M, are orthogonal to W

t t°
As before, §=ln(i§F), §=ﬁ—%(a—l)aoy2 (L4.3.7)
Then _ 5, 3 ). 5
-5, -3(0a-1) e,y
955 = r(y,)(14e "ETEVOTH BV
dt t
2
- 3a —l)aiy% - z2(a-1)a (4.3.8)

t

Because of the definitions (k.3.2),(%4.3.3)

af 5 ~y _ 45 a8, 5 =~ x = -
ir Fx(8,7) = T |5, =5 then Zp(8,¥)20 ¥5<5,, ¥§F (L4.3.9)
Yt=y
dS,x -~ . . . . ~2
and _E(S’y) is a non-increasing function of y for
fixed §z§c. (k.3.10)
dS,x ~y _ 4S,~ ~ 2 _2
In fact EE(S’y) = EE(S’y) for ¥7<¥, (4.3.21)

ds . . B .
Here 3¢ 15 &s introduced in section L,2,

The existence of & Y, -stopping time T which minimizes
E(g v) K(¥) follows from Lemma 3.2 with p(y)=r(y), and
1] - -
)

the existence of the stopping boundary Y from Theorem 3.2.
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Continuity in 5 and non-increasing in S properties of

B(5,y) & E(5 ,yK(T)

follow similerly from Corollery 3.2.2.

>

Then r?o 1nf{t2to:h(st,yt)20}

inf{tzto:§

vhere §?(y) & inf{S:(S,y)e¥y}

From (k.1.5)

—_—y = - T__ -—
h(S,y) = E(g,y,)foo(su,yu)du

I

vhere G(8,y) & -X +(X+c)T(S,y)

1

and ﬁ(g,y) a — >
1 + exp(-5-2(a-1)a_¥°)

so that nt=n(Sy,yt)
As in section 4.1
Ty

t

=) B(Bvy) = BB,y S (Te) RN

b) n(s,y) < 0 ¥(S,y)

o
Qi

d) E(ggy) = ﬁ(g,_y)a 57(}') = 5.7(‘}')

(4.3.12)

(4.3.13)

(4.3.1%)

(4.3.15)
(4.3.16)

(4.3.17)

6(85,,y,)du

(4.3.18)
(4.3.19)

’

(Et,yt)<o => T,>t, so that G(8,y)20 if (8,y)ey

(4.3.20)

(k.3.21)

Next it is shown that §Y(y) is non-increasing wi?h

decreasing y2. The argument used follows closely that used

in section L.2.
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As befgre ?he s?a?e—space Qf fhe process (§_,y)t is divided

into three disjoint sets.

N e'{(-s—:y):§<§c}
P 2 {(s,y):af(s,y)zo,szsc} (4.3.22)
Q & {(5,5):3%(5,y)<0,525,}
6 2 Pnclosure(Q) (4.3.23)
Figure 4.3.3 .
Ve
yl\ Q
P 0
N
s
5
Q
§=S
C
Define Ec = inf{t:(g,y)tePuQ} (4.3.24)
Since %%(§c,y)20 ¥y, it follows that (g,y)tePuQ VtzEc.
(4.3.25)

Note that (5, ,y)eP ¥y.

Lemma 4.3

= . . . . . 2
SY(y) is non-increasing with decreasing ¥y ¥y such that
(gf(y)ay)EPUN-

Proof (similer to proof of Lemma 4.1)

If the Lemma is not true Iy >0 such that for‘§'=§?(y'),

(S”,y”) éPuN and §?(y) is strictly increasing with

decreasing y at y=y~.
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Figure-hf35h4

Q

PuN

A

(9]

Then if D 2 {(§,y): §e[§',§.{(y)],~y2$y’2}
D\Y is non-empty (¥ is the boundary of the closed
stopping set).
Choose (S,y)toeD\T => (S,y)teD Vte[to,TtOJ
- d-S_ a” -~ ) -~ -~ td
since E{(S ,y)ZO ¥yel-y7,vy7]
[because a) (S57,y)elN=>(5",F)eN

as
dat

by-(4.3.10)7 .

e d S~ -~ d- -, -~
b) (57,57 )er=>S2(87,5)232(87,57)20
6(5,y)20 ¥(5;y)eD, since G(57,y")20 by (L4.3.20) &nd 5 is

. . . - - . .., 2
increasing with S and decreasing with y~ by (L4.3.16).

- T¢
Therefore h(s = B, = ° 5(3 du 2 0
( tO’ytO) (SSy)tOItO ( u’yu)

But this contradicts (4.3.12) since §t0<§7(yto)’ 0

Definition

Let I 2 {(S5,y)e@n¥:3(57,y7)eqny with §'>§,y’2<y2]

then 5. & Einf{gz(g,y)er] if T¢®

1 (4.3.26)
400 if Te® s

(see over)



Figure 4.,3.5

If §,<=» choose y, 2 sup{y20:(5,,y)e¥} (4.3.27)
(El,yl)ef since the stopping set is closed (Theorem 3.1).

. U o . - = 2
Yyi<® as Sl<87(y) for y~ large since O(S,y)+-2 as y -+,
Note that §T(y) is non-increasing with decreasing y2 ¥y st
gY(y)<§l by (4.3.26)and Lemma 4.3.
Lemma L4.4
Ir §l<w’ 3(§,Y) is non~increasing with increasing y2
for (5,y)eP, §€[§1,§7(Y)) (i.e. (S,y) in sets "a", Fig 4.3.5)
Proof (similar to proof of Lemma 4.2)

Suppose the Lemms is not true.

Then 3 szzsl, y3>y220 such that

(8,,7,),(5,,y,)ep
e E(5,,5,) < B(E,.yy) |  (4.3.28)

DT 2 {(8,5):y%sy,Bpel5,,B0() 1)

(see Figure_hf3g6)
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“h.3.6

Suppose (8,y); = (§,,¥,). Then the process (§,y)  leaves
o 2°Y2 s t
D” either across ¥ or across thelines_y=y3 or y=-¥5.

a5 . 2.2
3£ (555¥) 20 “yy sty sy3 by(k.3.10).

Define t, = 1nf{t2to;yt=iy3}
T, T, At T
to - = R te /e
] 5(5_,y )du -~ft 5(5 .y Jau + f 5(5_,v )du

t -—
o o Tse At
: to- 1.

The first term on the right is positive or zero, as

5(5,y)=20 ¥(S,y)eD”. This is because G (5 120 by (L.3.20)

1°Y1
and 0 is increasing with S and decreasing with y2 from (4.3.16).

As TtoAtl is a Vt-étopping time

T
= s to _, =
R(5,,7,) = E(Esy)tofto (8 v, )du

- .
> E, = [E(f_"° ©(5_,y. )au|V. )]
(S,y)to Tt Atl u’ u TtoAtl .
> E(§,y)t [h(S?toAtl’yTtoAtl)thOZtlj
- (4.3.29)

The second inequality is because if ?t'<tl,
o

h(B.

Y ) =0 by (l‘l’.3.18).

For T4 2t,, § 25, ¥ =ty
to°71 TtoAtl 2 TtoAtl 3

Then by Co;ollary 3.2.2 *n(S P At') 2 E(Eg,yB)
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which esteblishes the third ineguality. But (L4.3.29)

contradicts (L4,3.28). 0

Theprem 4.3

SY(y) is. non-increasing with decreasing y2

Proof (similar to proof of Theorem k4.1l)

YA Y

yl-

wm
v
<
a&
!

%.
PN/

62]]

\
\

Figure 4.3.7

2]
1l
w

Suppose the Theorem is not true. Then by Lemma 4.3 and

(4.3.26) T

<o,

1
¥y exists and is defined in (L4.3.27). yi<@.

y,e[o’yl)’is chosen so EY(y’)>§7(y1). (k.3,26) gaurantees
that such a y~ exists.

Let (B,y);, (B,y){ both be solutions of (4.3.6): and (4.3.8)
ie.  dyy = (A+(e-1)7(8 .y, ))a v at + @V,

a5,

gt-%(a—l)&oyij
dat

r(yt)(i+e_

1702 13,2.2 1o
- 3(a"=1l)a_y; -#(a-1l)a

(L.3.30)
with the innovations process 3t the same in both cases but

with
(S,y)to=(§l—e,yl), (E,y)§0=(§l—e,y’) (4.3.31)
1

Here € is chosen so that §cs§ -t<§l. This is possible since

élsgc contradicts Lemma 4.3.
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§» ¥i are defined such ﬁhat (St’yt)=(s’y)t

Note that (yt:tZto) end (y{:tzto) both generate the same
o-fTield Vt (both processes may be reconstructed given vt -

see Lemme 3.1). In this proof mll probabilities and expect-

ations are conditioned on the initial conditioms (L.3.31).

The following Vt—stopping times are defined

ty 2 inr{tat_:y;®=y %) (4.3.32)
t, ® inf{tzto:(g,y)tee,gtzgl} (4.3.33)
Ty, & inf{t2t :(8,y),eT) (4.3.34)
Tg; e inf{t2£o:(§,y)557} (4.3.35)

Note that (4.3.34%) is equivalent to (4.3.12) in this case.

t, is the first time (§,y)t crosses the thick line in

Figure h-3.7;
Also (8,y),ePuq ¥t2t_ (c.f. (4.3.25)),and by {4.3.10)

aS,x . 45, % ~y .. A2 =2 3 o~
E{(S:Y) 2 E{(S:Y) 1f ¥y Ly » (SaY)ePUQ (4.3.36)

A preliminery result is now established.

Suppose Ttp<tl, Tto<t2.

Then since'%%(%,y)<o in Q and by definition of tj,

(§,y)tePU{(§,y):§<§l} ¥tsfto (see Figure 4.3,8).
Possible path Figure 4.3.8

fér (S,y)t up
A to t2

@




- .-2 2 —_ : b A <—
As Tto<?l’ ¥, VFST?OT Then frqm(§:3th) StZSt ¥sT,

o
Since , from Lemma Q.B-and.(hr3.26)§Y(§) is non-increasing

with-decreasing ?2 for §2<y§ {see Figure h7378)7

| Yo
B, ®0r, = Sylve, ) xSl )
so that T{osTto. )
Therefore Tto<tl, ?to<t2 => ?{Osfto (4.3.37)

The following events are defined

A& {m:tlsmin(tz,Tgo)}

B 9'{w:t2<min(tl;?{o)} (4.3.38)

Q
(]

'{wzfgos?z,fgé<tl}

A,B,C are disjoint, and weAuBuC w.p.l.

Each event is now considered separately.

EVENT A
If weA, ti<t,, tlsTgo. By (4.3.37) it follows that Ttoztl.
Also y,;zs;ytz, E,;zﬁt ¥t<t, .

. -7 = . . = D . 2
Since T(S,y) increases with S and - decreases with ¥y

tl tl
.ft O(Su,yu)du 2 ft' O(Su,yu)du
0 o
- -~ - 2 -~ =1 < =X »4
A1s§, since ytl—ytl and Stlzstl, h(stl’yt ) 2 h(St Yy )

Yo - =
e O =ra~ - 0O —=
Then E[ft o(87,y])du - jto 5(5_,y )du|werl
O .
i1 -
= E[Ito(c(susyu)—O(Susyu))dulmeA]

+ E[h(8f ,y7 )-B(5, ,v, )|weal 2 0 4.3.39)
?1 ytl tl tl lm ( _ .

since A is = Vt -measurable event, and from (%.3.18).
1 » i
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EVERT E

If weB, §2<tl, t2 Tt

If %, <t,., (4.32.37) gives & contradiction. Therefore T, >t,.
t, %2 1522

Since t.<t as beforé. ~2 2 s’ § ¥t<t
2 1’ L 3 }’t yt ] t - 2’

T
kR —_ 4 rd t - b
E[f © O(Su,yu)du—f © 5(5_,y.)du]|weB]
t, tg u’Yu

t
o 2——Il———
= E[fto(o(su,yu)—o(su,yu))dulmeB]

The first term on the right is positive or zero by the
properties of G.

h(stz?y€2) 2 B(Stz’ygz) = h(stg’ytg)

wvhere the first inequality is from Corollary 3.2.2 since

§{22§t2, and the second inequality is from Lemma 4. using

- - .2 2
>
Stz— 1° Yt2<yt2.
' oo T{ _
Therefore E[f "° 3(87,y )du—j 5(5 >y JdulweB]l 2 0
to to
(4.3.40)
EVENT C
If weC, Ttostz, Tto<tl.
From (4.3.37) T, <t_, T, <t,. => %7 <T so that T, <%J
om ( 7 ) to 1° Tt 2 t, to3 t t
leads to a contradiection if weC.
Therefore Te 274
or to to
2, 2 -
Yi <¥y s s Zst ¥t<Tto'
T7 Ty
- O =(o” -~ Say _0 - .
E[{t-_ G(Su,yu)au L G(Su,yu)dulweC]
(o]
- ?‘ ~
=.E[f °(o(s Yy 2)-5(8 Ly, ))aufwec] + EL[- h(s_, i )ImeC]
- o tO tO
2 0 (b,3.%1)
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COMPLETION OF PROOF

From (h33.39);(h.3:ho);(h.3}h1)
ﬁtf¥€° (5. ,y.)a 7% 55 )du|
o, G(8,,¥, u-{to G(Su".yu u|weFl 2 0

for F=A,B,C

Therefore h(sto’yt ) - h(sto’yFo)

T
- - 1t -
= YO = » » _ (o) -—
E[ft g(8’,y )du ft (8 _,y )dul =z 0

0 e
i.e. E(gl"E,y’) 2 E(gl"esyl)

Now as €40, h(§l—e,yl)+0 by Corollary 3.2.2, and because
(§l’yl)€?.

So lim ﬁ(§l—e,y’)20. By continuity of h with § (Corollary
40

3.2.2)
E(glgy’)zo => (§l,y')e?.

But y” was chosen so that S <§Y(y'),whichbgives a

1
contradiction. - 0

Second modified problem

Before proceeding to investigate robustness a slightly
different version of the problem is introduced. Here Vi
is still generated by (L4.0.1) but the random variable tj

is defined such that

dI(tth) = [I(s§<§c)x+1(s§z§c)r(yt)](l-l(tztj))dt + aM*

t
(L.3.42)

vhere M*, is a Martingale
r(y) is defined in (L.3.2)

§c is defined in (L.3.3)

and Sz»is defined by



sk = ln(——Q—) - z(a-l)a y2 ’ where n*—P -—OlV )

ast

4 2
[I(s*<s JA+I(s¥=2§ )r(yt)](l+e Sﬁ—é(a'l)EOy?)
dt

_ 1(.2_ 2.2 _ -
2(a™-1)ay, - 2(a-1)ag
(4.3.143)
P*,E* denote probability and expectation respectively given
that tj satisfies (L4.3.42), and, unless explicitly stated,

that P*(tj=0lyo)=0 and that ky=a ¥t2t, in (k.0.1).

Then lim gP*(t .e(t t+6)]t >t st,yt)

A if S*<§
§40 | toe

3 * r—1
r(yt) 1if StZSc
(4h.3.4L)
Using as before the non-linear filtering equations

(Appendix 1) if ﬂ%QP*(tth[Vt)

dﬂ% [I(S*<S )A+I(s*zs )r(yt)](l—ﬂ*)(a -1l)e ytdv*-f

t
(.3.35)

[1+(a—1)n§]aoytdp + dv¥* . (h.3.46)

dy t

vi»is & Wiener process (the innovations process).

It turns out that 8% = R¥ - %(a-l)aoyi (4.3.47)

Note that S¥=S5. ¥t<t_ , where S, is defined by (%.1.3) and

tceinf{t:StZSc}. (4.3.48)
Also  S*=5  ¥tat , since S2(§ ,y)20 ¥y (4.3.49)
t ¢ =Te? dt *"e?Y "
dg ~ o~ ~ =
end S (3,§) = S2(8,5) %8B, Wy (%.3.50)
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For (5%,y)y =(8.v)y =(8,¥), vi=v, ¥t2t , S25,

(h.3.6),(hf3.8) and (hf3fh6),(hf3fh3) have idénﬁical

solutions for tzto.

T
N LT
Therefor§ E*(g,?)K?o(Tto) E¥ 5.5) [Tt +(A+e) f ) T¥du]
= Bz g)[-M s du] = E,x - T
for any Y, -stopping time Ty 2t (L.3.51)
)

Therefore the optimal detection time 1§ , in the sense of
o ,

the expected cost E¥, . K, (T isfi
o) (s*,y)t t0( to), satisfies

¥ = 3ni . = .
TFQ 1nf{t2to.S§ZS?(yt)}, if t 2t (L.3.52)
Note
If -(a+tl)a_zc, as would be expected, T%o=inf{t2to: ¥z SV(yt)}

‘ 3 - % : %48 = *
Tor t <t Foo, since then A+(A+c)nt<0 if s¥<8, => t¥2t ,

from (4.1.7) (e.f. (4.1.17)).

The robustness result is now derived.

Theorem U,k

* - * =
E(th tjl(s ’y)tj’tj’kt Bt Vtth)

52k = Vtzpj)

< E(1* ~-t.|(S* t
( tj Jl( ’y)tj’
if Btza>1 ¥t2tjztc
Proof (similar to proof of Theorem L4.2)

Suppose Btza ¥p2tj2tc

Define yz such that

. ’ -
ay§ = aabyidt toawg ot :
2R . (1.3.53)
. 13
Yi. = Vg
v T



vhere W: is & Wiener process. Define yB such that

t
B B B i
dyr = B,e y.,dt + aw tat, :
5 T Bymovedt v Ay By (4.3.50)
B -
Y. T ¥y
5 t; S
At ar e e L a_.ay2 B, B2
From It8's differentiation rule, if xt-(yt) s (y )
a _.B
X
by Tt
a _ o
dxg = (2aa Xy “r1)at + 2/(x ). dV
dxg = (2Btaoxt+l)dt + 2/(xt).th
where ve = It J( a)dwa
t tj yu u
t ‘tet .
B _ B B S
Vi —.fth(yu)qu
J(x) = +1 if x20
-1 if x<0
v%, v8 are tn i o w8
t2 Vg e en Wiener processes. Suppose that Wt’ Wt are
chosen so that v%=v§=vt. Then, by [22, Theorem 1.1]
B <2 west (4.3.56)
t = % %3 e
. -~ .o B ¢ _B _ax B . B
Now define 8,»5; SO that Stj—stj Stj and (St,yt) & (St’yt)
satisfy
. ~2
as* -5%-3(a~-1)a ¥
dt = r(¥,)(1+e £ vty _ é(a -l)aoyt —%(u 1)a,

As t.2t S SB_S ¥t=t.. as* is a decreasing function of iz
J- e Tttt J' dat

for given 5*2Sc. Therefore from (4.3.56)

B a
S 2 8y ¥t2t, (4.3.57)
Now define @ = ing{t2t,:50280(v5))
B _ .. .<B.3 B
T = 1nf{ﬁ2tjvst23?(yt)}
B a. ’ B.
then S a2 8 o= Sg (y a) 2 S (y 20

The final inequality follows from (4.3.56), noting that

2
xtgyt, and Theorem 4.3,
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Therefore Ts < Tq

The result of the Theorem now follows because of the way

B .o _B

in which y:, ¥Yi» T » T have been defined. 0

It follows as in section 4.2 that if stza ¥t

E c(T*)|k,=B,¥t2t.,t.>t

E o T#) |k, =o¥t2t.,t.2t
(S,y)gc( iy =o 5°%5%%

(4.3.58)
This also holds with C(t¥*) replaced by K(1¥).

Note that the distribution of the time tj at which the
disorder occurs, specified by the notation E, B or E¥ is
irrelevant in (4.3.58) because of the conditioning in
Theorem 4.4, The robustness of the detection rule T¥ is
established regardless of this distribution.

In this case it 1s possible to say something about
b defined in (4.3.48).
Since 5, = ln(ﬂt/(l-ﬂt)) - %(a—l)aoyi
and from (4.3.48)

tc < £ = 1nf{t:'nt >

A
— ST }
'.A—(a+1)aoexP(ZA;E32;};30)

[o]

Therefore P(S,y)o(tht ) < P(S’y)o(tjs?) = E(S,y)oﬂ?

< = p, say (4.3.59)

2X—{(30+l)a
A-(a+l)a_exp( 2(a+1)aon)

since tc is a Vt—stopping time.

t
c
= E “Ea(1- a from (L4.0.2
Also E(S’y)oﬂPc (S:y)dfo' ( ﬂu) u r9 )
so that P?l(l'p)E(S’y)otc'
Therefore E ‘ t S. P_ = _‘"”””””"IXf(77;i)7
: - (s,y)o c =~ Al(1-p) _(a+1)aoexp(2 ;(331)55Q
4 %0
(4.3.60)
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If A/(-e,) is small, as would be expected, this leads

to the following approximate values for the upper bounds

given in (L4 3 .59) and (L4.3.60).

upper bound for upper bound for
(0 2
E <t
‘ (SaY)otc P(SaY)o,(t?‘J< C)
1.1 1.326/(-z,) 1.3261°
1.2 1.293/(-=a) 1.293)7
1.4 1.231/(-a,) 1.23117
1.7 1.146/(-a ) 1.146)7
2.0 1.070/(-a_) 1.070A"

where A7 2 A/(—ao).

P t.<t is then typically small.
(s,y), (t5<tc) is then typically

4.4 The sub-optimal detection rule a>1

Theorem 4.4 provides a robustness result for the detection
rule T¥*, which is valid regardless of the distribuﬁion of.t..
T* is the oPtimal detection time if tj is distributed
according to (L4.3.42). Under this distribution the probability

density

lim P*(t e(t,t+48) t >b,y, = f
540 ° ITgterey

= lim 3P(tJe(t t+8) [t >4,y =y) =
§%0

. -2
for yZS?s , while it is reduced if yazyc (4.4.1)

The dlsorder is less llkely to occur whlle y§>y2 However
i is typically several tlmes the standard dev1atlon of Yy
tstj, so that most of the_tlme yt$y§3‘1q table 4, 4,1 values
of the probability that the disofder is delayed are given if

yo~N(0,-§%—) and tj is distributed according to (L.0.2). The
o
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low values obtained, together with the fact that T and T*
minimize the expected values of K(Ff) for their respective
cases suggest that the properties of T will be similar to
those of T¥. In particular, it is likely that (4.3.52) holads
for 7 as well as T¥, even if the result correspondiﬂg.to

Theorem L.4 does not hold for every (S,y)t_.
J

Here the increase in the expected cost resulting from
the use of the detection time T* with its guaranteed robust-
ness properties is investigated, where (%4.0.2) holds.

In order to do this the following situation is

congidered:

dyg = [l+(a_1)1(t2t§)]aoy§dt + dvt y y(c::yo (h.ll».e)
dy* = [1+{a- 1)1(t2t%)le yiat + aw, , y¥=y, (4.4.3)

where V., W, are Wiener processes such that V =W, ¥t<%;

(V- €) and (Wt—wg) are independent for t2%f (b.h.h)
tgzo is defined so thsat

dI(iztg) = [A+(r(y§)-l)1(tztc)](1—I(§zt§))dt + dM§

Mz a Martingale, P(t§=OJVO)‘Q : (4.4.5)
£20 is defined so that

ar(t=t) = (A-r(y$))I(e2t 3 (1-1(t28))at + ahy
o (4.4.6)

H

¢ @ Martingale, P(%=O]Vd)=0

MX . and ﬁ are orthogonal.

Here t  is defined as in (h 3. hB) with yt taken as y§ and

5, generated by (ht1.3)f

Then .
tg‘—‘t'.‘ A% (kL. T)
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s ar(e2t9) = A(2-I(t26$))at + aul (4.%.8)

o o . . .
where dM?=I(tztg)(dM%+dﬁt) v.p.l,i.e. Mz is & Ma?t1nga1e
and P(tzt§|y6)=1-eflt.

g%

The'obEErvatiqn process y, from which the processes B x

-b’
are generated using (%.1.3) anda {%.3.L43) respectively

% )
i for 811 t.

is eipher equal to yg for all t or it is equal to ¥

P°,E° are defined as probability and expectation given
= © '

that YiTY4 vgzo-

P*¥ E*¥ are defined as probability and expectation given
=~y ¥

tha# A ¥tz0,

FO f a _y(x= - A ~ _40 ~ o
htO(T‘th) = ‘A(Tto to) + (A‘*’c)(Tto .t.,jvtO)I(Tto>Fj)

with K° & K2 ' : (4.4.9)
¥ (% e A (T, - ' T, -t ¥ *
Kto(Tto) A(Tto t,) + ()\+c)('rto thto)I(Tto>t3)
with XK* 2 K; (.4.10)
for Tto aiyt—stopping time st ?tozto (Vt_generajgg'by

(y,susgt)) - ' : :

Then minimizing the expectation of Kg (Tto) with observations
o . -
yt=y$ is the original problem of sections 4.0.and. 4.1

(tg distributed as tj in (4.0.2)).

. ~ _ o] (o] ~
1.€e. E(S’y)toKto(Tto) = E [Kto(Tto){(S’y)tO]

and this i1s minimized by T€o=1£oeinf{t2to:S#ZSY(y£)}.‘
Similarly observations yt=y§,and cost K%O(Tto) correspond to
%he "second modified problem" defined by (4.0.1) and
(h.3;h2).

ie. E*(s*,v)togré(;té) =f3*{x§é(%pq)l(s*?y)?o].

end this is minimized by = 1% éinf{t2t0:5§2§

Fo : Y(yt)]

under the assumption
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Assumption 4.4.1

~(u+l)ao > c
This assumption requires that the weighting given to delays
in detection in the cost function (4.0.3) or (L.1.5) does

not force the delays to be typically of the same order as

the system time constants. In applications this seems likely.

Outline of the argument

Lemmas 4.6 and 5.8 are concerned vjth the expected~d9tection
delay using T¥* in detecting'a-disordef in obsérvatiﬁns yg at
§§=£<?§. In order to achieve a reasonable upper bound the
delay time is cqnsidered in two parts using differenp
methqu in each case.

Using Lemma 4,5, Theorem h.5'§hen establishés a bound
on the expected cost of using detection rule T*¥,with
observations yo, to detect a disorder occuring at tg.

To simplify the analysis two assumptions are made which
should hold in any practical situation.

The bound is evaluated and values given in Table L., L,1.

Lemma 4.7 provides a technical result.

meahﬁh

Eo[KO(TO)[VO] > E¥[K*(T*)|Y ]

Proof

. * —_ =¥ = _
Note: S ,S8% are VO measurable (So s¥ o),

Suppose yt?yt. Then & random variable %Vmay be generaﬁed
distributed as €, by using (L.L.6).

Generate §t st ?t =y¥ ¥§s§

a§, = aa F.at +.d?t,»¥§z%

for some independent Wiener process ?t‘
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Then observations of §t are statistically indistinguishable

from observations of yz for given tg, Since §t mey be

generatedrgivgn (yi,u5§), it follows from the optimality of

¥ that

EOLR*(7°) |V 1 > EX[K*(¥) |V ]

Since tgstg, K°(1°)2K*(7°) from (4.4.9),(4.4.10) and the

result of the Lemma follows.

The following definition is made.

A

Vt denotes the g-field generated byﬁbﬁ%yu:ust)

Lemma 4.6

~N

] a Vt—stopping time Tx2€ such that

¥

o
P¥(T 2t%|V ) =

a1 )2
T verp (et

2 1 2

Y14 = “(otl)a,. = Ye

2.1

) = O 2, -
Eo(Tx—ﬁly%) s‘hu(x_sc‘ Lo aoyg)
—(a—l)zao

for any x2§c.

Proof

2
* a"-1 2
St + _Ea-aoyt

»

Define Ut

(so that, from (4.Lh.2),

If yt=yg ¥t, ?hen VtZ%Ztc

dyt=aaoytd§ + th)

* 1 2
-Sy-3(a-1)sa
av, = r(y, )(1+e ez °¥%)at

(a=1) o -1
- aodF T aoytdvt

by (L.3.43).
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2
~ ~ —_ —’l
Now define . U, so that O =5+ th a

t e = Sc

e

. , ) 2
A -S -3 -1 )
and ally = au, - r(y,)(1+e ; 2 l)a9y§)dt

= - (&;Iiedt + in;a av (L.h.16)
= - SR+ Sgtegy,av, -

Then ﬁtsut ¥t=%, since s§z§c and from (4.4.16) (r(y)=0).

Suppose ngczﬁg is fixed, and define

Ty = inf{tzt:Utzx} (L. h,17)

For fixed T>t

EO(U$—ﬁ£|?£) = Eo(ﬁT —ﬁ£[V£) + EQ(ﬁT—ﬁTxATl?F)

AT
x
Since U <x, it follows from (4.4,16) that
THAT
2 2 ,
(a-1) s ~ ° _(o-1) 5
" g 8o(T-t) < x - Up + E([T-T ATI[-—a,1]|V¢)
Therefore N
E%(r, aT-E[0g) - 00xU8) g
: (a-1)2ag
. T o ~ ~ ha(x-04) ~
ice. . f P (T .-tsulVp)aw <— £ ¥r>t
0 ’ ’ 2
(a-1) &,
=> EO(T —%[VA) S__ha(x—U%)
X t _—
2
(a-1)"ag

Using (4.4.16) yields (4.k.13).

az*l 2

dr - 2 2.2 ~
Now  SxlUi- —g5=ao¥¢d = -%(a—l)ao - 3o -1llagyy » t=t
(4.4.18)
from (4.4.16),(k.k.2).
o drn o -1 2. ) . ) SRR O
So glUy~ Tpg eo¥plc 0 5 if vi > “atlla,
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4

vyt D

. 1

—za+l§ao N
. x p
x >0

i

gad=1, 2 ia-1 LD,

LU-"g58oY Lo
Figure 4.4.1

So the process (ﬁ,y)t cennot enter the (open)'sets D.,D

1*72

for teT_ (see Figure L4.4.1).

C2 1 . .
Therefore Yo, < :TEIETE; which is (L4.L4.12).

Finally, U =2 U_ =x , and from (L4.4.1L4) and (4.3.L47)
Tx .. Tx

2
R¥ = U_ + Lg:;l—aoyz
Tx Tx Lo Tx

Using (4.4.12) this yields (4.4.11). (Note that

% - o e 2
Wt%P*(tZtglV?)-P*(t2t§lyt) ¥t by definition of t%,%
(L.4.5),(4.4.6).) 0
Lemma L4.7

For any ?t—stopping time to

E*(t%¥—t |t¥>t ,V ) e L oL (|Zralyn)
J o' i e te’ T AB aq | ¥,
vhere 8=P(Xel-¥,,¥.1) ; X~N(e_1§c,—§§—) (4.4.19)
)

Proo?f

~ o 2
Conditioning on tg, yto YL SYE ¥t , _yth(ut,ot)

where t1=t'?>l~ - l—ln([yto/- le)
_ ‘o ag 8o “Ya
(4.4.20)
..l_

. >
lptl < e ¥ 30 0, < -1/2a_  ¥taty

from (4.4.3) and since a>l.
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From (hfh:5)

%
A - 2 _2 ) . A
¥ * ¥
P (tztj]x§>§o,yto) > E*(ft;AI(yuSyc)I(u<t§)du{tj>to,yto)
Q

.t
> E*!I£
.0

2 2. ~ . : ~
AP*(yusyt}?§>u,yto)1(u<t§)du]t§>to,yto)

. - * - - =
i.e. if P (u2t§|t§>to,yto) 4,
t

CIS ftlle(l—qu)du (L.h.21)

from (4.4.20), with 6 as defined in (4.4.19).

o0
®(4% x v = - -
Now E (tj to[tj>t0,yto) fto(l qu)du sty t0+1/xe

the final inequality following from (4.4.21).
Then the result of the Lemma follows from the definition of

t since
1?2

(1+1n(|yto/yc|v1)) < lyto/§c|v1 0
Lemma 4.8
E°(rx-2|03) < (3 - %o)%[uexp(-x; ';0‘;}({2)3
. bo(x-8,- ulaoyg)
—(a—l)ea0

%634 £.g9%>5
and‘ % 1nf{t2t.St287(yt)}

Proof

5 . . 2 =2
At any Vto—stopplng time t  such that ytosyc

o 1 A
* * % * ¥ L _ 24
E [A(rtoAtt to)I(TtoAtjzto)‘Vtoj <3 e,
from Lemma 4.T.
i ¥ (¥ = - ¥ At¥- ¥ At¥z2t
Since Kto('rto X(Tto tJ tO)I(Tto 3 o)

% —t%v T* >t¥%)
+ C(Tto ~JV?0)I(TFO>~J)

and by optimality E*(Kzo(Tzo)Jyto)so (as K%o(t°)=0).
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it follows that

, _ . 1
E¥[c(T* ~t%vt )I(T* >t%¥)|Y, 1 == - =

A L ™

N % _i% Stk * =pk (L% v

ow c(TFo pJvto)I(Tto>tJ)zo end mf =P (t3=<t |V,)

50 E*[c(T¥ —t¥vt )T(T* >t%)|P, ,t¥<t In* < & 2
ty o) ( t, J)l L tod to b " Eg

i.e. ®(1x -t |V % 1 _ 2,y 1

e E (TFO to|y?o’tasto) < (5 ao)EFfd . (k.4.22)

From (4.4.2),(4.4,3) Y, evolves in the same way ¥t2t°2t§

whether yt=y§ or yt=yz. So

O - v % el Ay 1
E (Tto t°|Vto,tjsto) < (3 oy °“§o
o o s 1 A l- '
E (Tto tolyto,tsto) = (3 ad)cni (4.4,23)

o
since (S*,y)t is a Markov process given t2t§=€At§, yu=y§ ¥u

”~

and (8%,y), is Y. -measurable.
o o

For §0=Tx;'defined in Lemma 4.6, noting that %STX by

definition of T,» then

-2, 2
8q cw%x

ol

E°(T§X—TXI?TX) < (

and from (4.4.11),(4.4.13), +the result of the Lemma follows

s % >T%
since T* 2T¥%. O
Tx ¢t

Assumption 4.4.,2

2 C
S 111( h)\ace )

(¢+1>(¢-1>2a§

For A small, as would be expected, this will hold.

The bound given in Lemma 4.8 is approximately minimized by
choosing - S ey
: L oa2 2
Cacten®eg ) L @en®

AR TTY " La(a+1) = Sc

92]]

(k.. 2L)
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if Assumption 4.4.2 holds. Then

| (a+112(¢+1)a§
1n( -

) < ko

1x-8]72) < — 5
(0-1) &,

~ . i )
3 hac 02

R N R 1:
+ (5 —-go)(g +
+(Eyg o= elyg) say.  (k.h.25)

Theorem 4.5

Given Assumptions 4.4.1 and 4.L4.2

E°(c®(t*) |y ) - E°(c®(z°) |V )

E°(K%(t*) |y, ) - EO(KO(TO)IVO)

A

. -A o, - a o_o
EL (5 -'gslyﬁalycl + c€(ytg))1(tj6t)lyo]
where e€(+) is defined in (4.k.25).
Proof

The first.equality follows from Lemma 2.1

If tg#%, then t§=t§ end K_ (t*_ )=k*(r*

t. Y Q
v 3 tJ tJ
where Tzo is defined by (4.3.L44).

23 .
Therefore E°(K°(r*)|t§#%,vo,r*ztg) = E*(K*(T*)[tg#%,yo,r*ztg)

o EC(kO(v*) |V ,t*2t0) - BX(R*(r*) |y ,T¥283),

= E°[K°(r*)1(t§=£)IVO,T*Ztgj - E*[K*(r*)l(tg=%)[Vo,r*ztgj

E°LKC (t*)1(+9=%) |y ,t*2t%] - E*[K*t*)1(+%=}) |V ,7*2t03
tg 2 1o - d tjl - d © dJ

(4.4.26)
The second equality follows from (hfhf9),(hfhle), and since

(T*ztg when yt=y§)<=>(x*2F; when yt=y§) by (hfhfh)f
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Now EX[K¥o(1*)1(t%=%) |V ,1*2t%1]
t3 J o J

. _VA_:_—>A' . O_ o]
> E*[—ng(t§—t|t§§t,?£)1(tj-§)1YO,T*ztj]
by (4.4.10). Note that (t§=£)=>(;§z%).

Then from Lemma 4.7, as t§=€ => y§02i§
) J

*® Oo_ ¥5+9
E*[th(I*)I(tj ) Ygst¥2t5]

1 _ .
> B¥[ (-3 +-%;]yt3/yc[)I(tg=t)[VO,T*2tg] <0

(k.h.27)
Next,
0..,0 0o - o o x o o) o]
ET[K * = ¥>t.3 = - L= ¥>% .
L tg(r )I(tj t)lvo,r atJ] cE [(rtg t)I(tJ %)[VO,T 2t 4]

<cE°Te(yg)I(t3=E) [y ,T*2677 20 (k.}.28)

vhere e€(+) is defined in (4.4.25). This may be done since

as (S*,Y)t is a Markov process given;tz%ztg, if yu=yﬁ ¥u.

Note that (S*,Y)t is the same Vtstg whether yu=yﬁ ¥u or
_.0 .

yu“’yu Vu *

Therefore PO(T*ztglVO) = P*(r*ztglvo)'

(h.k%.29)
and BO(KO(T) [y ,T¥<t3) = E* (K% (%) |V, 7%<t0)

as tgstg (see (4.4.,9),(Lk.%k.10)).

So from (4.4.26) substituting with (Lk.4k.27),(L4.4.28) it
follows that

EC(KC(T*) [V ) — EX(k*(t*)]Y )
A R
< E[(% -on ytglycl + ce(yg))l(§§=€)lyo]

where the superscripts on E on the right hand side are
drqpped since irrelevan?. The result of the Theorem follows.

0
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A further assumption is made to facilitate the evaluation
of the bound provided by Theorem L.5.
Assumption 4.L4.3

1

¥ o0, 55—

This corresponds to Yy having achieved the "steady—state"

distribution for the system with no disorder.

Since tg is independent of the noise processes V_,W

L
¥, oVN(0,-5—)
tg 2a0
o_2 Y ~2 __2
Now P(tj-tlytg-y) = 0 for ¥ <¥,
_ . .2 -2
= 1-r(§) /A for §°>¥, (from (4.4.5)
and (L4.4.8))
1(a -1l)a 2 2+%(a—l)a
< 0

b exp(3(a-1)a ")
_ 2A-(3a+l)a P oY
(A (a+l)ap)exp( 2Ta+1)a0°

=1 - p(§) say

r(y)ip(.v).x

0.0024%

O T — 14

Tots 30 3.5 ¥.0 . 4.5 |y

Figure b4.4.2

2
Therefore P(t‘§=€) < 2/('a°) j (l-p(y))e%y dy = p say

Integration by parts yields

2 _=2 3a+1 227 +30+1 1
b = P(yt§>yc) - ( }A +a+1exp(“—'—;g:z—)7/(;)

where A~ AA/(—a ). Also define c'ec/(—a ).
Values of p are glven in Table h 3.1, for A7 small ( 1im p).

270
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From Theorem L.5 .

E°c®(1*) - E°°(%%) <

1, _boe” ((a l) % (as1) _ Sa- 1 o
6 " (a-1)2 Y kg ‘82 T (e-1)2¢
s (2 + a0 (e %%%%%g)]p
2
+ /( 0). f y(1-p(y))e™°¥ ay

Ye

+ 2220 (~ay ) V(2 )f y2(1-p(y))e™

Ve
Again integrating by parts gives

OcO(t*) - % °%(1°) < & &

1 bac” (a~1)2(a+1) _ 5@-1
5 * to-12 *C a7 ) (a-1)2 ¢
4oBe”

+ (l

5 + A7) (14 TE:IYZ)JP

2_ - - 2 -~ : - - 2_
+[)\/‘/( Ci. 1 ) A7 (G. l)+(a 1)2 + c,/(2A2+3a+l).'(a l))\ +0Q 3o+2
2A7+30+1 l (a+l)+(a+l) Cac-1 (a~1) (A7+a+1)

[

X/( )exp( 2}1 +3Cl+l)

a-1
, lorl)e” oo 2 .72) V(E%I)c‘n (BAT4304Ly 0 2 22
2(a-1) J T X T+a+l P e (a+1) FI2 2V

vhere X&N(o,ﬁn—) .
(8]

Velues of this bound are given in Teble 4.k.1.
Note that these are likely to.be very pessimistic (higher

then necessery). The steps leading to (L4.4.30) are one cause

of this.
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TARLE L4.4.1

n B
O 1 Uy = W

1.2
1.2
l.2
l.2

1.2

1.2

N i
P =

©

O O O 0.0 O 0O 1 -1 <1 < <9493 &5 F

RS R R T T S T T R SR S R ST T T I

1im P

0.32x10"2
0.25x107%
0.9kx10™4
0.68x10”3
0.29 x10~2

. k -

0.01
0.00001
0.00001
0.00001
0.00000001
0.00000001
0.00000001
0.01
0.00001
0.00001
0.00001
0.00000001
0.00000001
0.00000001
0.01
0.00001
0.00001
0.00001
0.00000001
0.00000001
0.00000001
0.01
0.00001
0.00001
0.00001
0.00000001
0.00000001
0.00000001
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0.1
0.1
0.01
0.001
0.1
0.01
0.001
0.1
0.1
0.01
0.001
0.1
0.01
0.001
0.1
0.1
0.01
0.001
0.1
0.01
0.001
0.1
0.1
0.01
0.001
0.1
0.01
0.001

0.000006
0.00001k
0.000002
0.000000
0.000022
0.000003
0.000000
0.00066L4
0.001293
0.000199
0.000070
0.001929
0.000262
0.000077
0.008k46T7
0.014602
0.00289%
0.001537
0.020781
0.003511
0.001599
0.02686T7
0.0%2779
0.010605
0.006907
0.058808
0.012208
0.00T7067



In sec?ign 2.2 & éqssibly more realistic formulation of the
failure de?ec?iqn problem is prqpqséd (2f2.7)7 It is shown
that subjec? to thé conditions of Lémma 2.2 Fhé op?imal
detecﬁion rulé follbﬁing éach'falsé'alarm is.f=f°, wiﬁh an
appropriaté choicé of ¢ in (4.0.3).

Suppose following each false alarm y, is "reset" so
that ytﬂN(O,—éig) as in Assumption 4.4.3 (probably
unimportant in prectice if A & ¢ are much smaller than -a,
so that the inter-alarm time is typically long compared to

the system time constants).

As in Lemma 4.5 it may be shown that
0,.,0 o o
E-(ky (T S =(8
tO to)l( ay)to ( ,Y))
2 E*(Kio(Tzo)l(S*,y)to«=(S,?))

Therefore.from Corollary 3.2.2, since S%sSt ¥t by
(4.3.42)

0 > n(s,,y,) = h(s¥,y.) 2 E*¥(k*(t¥)|(s*,y).)

¥t<T°
=> t* 2 1° since K¥(t¥)=0 if T¥=t. (4.4.31)
Let q°=P°(T°<tg) go=Eo((To—tg)|TOZtg)
(L.h.32)
q*=P0(1*<tg) g*=E°((T*—tg)|T*ztg)

From (4.4.31) q¥*<q°
The difference between the expectation of cost Q defined in

(2.2.7) using T¥ and t° following each false alarm is

* (o]
S * _,_g_s - g°
I-g% T8 T I-g0 B

¥ Y—g¥® * 00 - o
< . -

1-g© ,l—qog',, 1-q° .'g :
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l ’
< ¥ + (l-g* * o _ 1-g© O
=7 O[q B ( q_.)_g” q. ( q_)g,]

1 £
ECKO(T%) - E®K9(1° =
l-q‘?[ (%) 2(t9) 3 T-g0

A

where € is as in Table L.}4.1.

Now if Qo is the expected optimal cost with cost function
Q it follows from (2.2.7) that Q°21/(1-g°). Therefore the

increase in expected cost using the detection rule T¥

following each false alarm is no greater than £Q°.
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CHAPTER 5

ROBUSTNESS OF DETECTION RULES: GENERAL CASE

In this chaptér the béhavipur-of thé optimal détection rule
given in Chapter‘B for'thé<problém (2.5.6) is investigated,
for the case where thé disorder is différént from that
designed for. The result obtained is interpreted in two
ways. Firstly = robustness résult is obtailined for auto-
regressive systems of general order. This specifies a set of
post-jump parameter values such that, if c (the delsay
weighting coefficient in cost function C(T)) is chosen
sufficiently small, the expected cost is no greater than in
the design case.

The second interpreﬁapion concerns the detection of
disorders in the more general situation discussed in Section
-37h, where a natural sub-optimal approach is suggested. This
approach is in fact the optimal detection rule for a related
problem in which additional transient effects occur following
the occﬁrénce of a disorder. The result of this chapter
characterizes a set of post-jump parameter values for the
system.(B.h.l) such that the expected cost is no greater
than for the problem for which the proposed detection rule
is optimal, again if ¢ is sufficiently small.

It is suggested that the restriction on the wvalue of
¢ may be interpreted as a requirement that the average
detectiqn delay following & disorder be long compared to

system time constants.

5.1 The robustness result

Problem formulation

The following situation is considered
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Observations: Vi =‘IO:Im]vt (5.1.1)

vy is an n-dimensional process (n2m)
J is an (n-m)x{(n-m) constant matrix
B is & (n-m)xm constant matrix

Dt=D°,Ft=F°,zt=z° (p%,F%,2% constant) vt<t320

-
d
1
-]}
.
5]
d
I
)
v
N
]
Ny
vl
-
)

s Z2 constant) Vtztj'
tj independent of v (5.1.2)

W is a Wiener process independent of tj.

£y=0 i<ty

Cost function: C(TF) = I(?<tj) + c(?—tj)I(?>tj) (5.1.3)

T a Vz—stopping time

In this chapter v, is assumed known, so that Vi is .

Vt~measurable.

An optimael detection rule is designed for the case:

D=p!, F=r!, z=z!
(5.1.4)
£,=0 ¥t

The notation P!,E! throughout this chapter -denotes
probability and expectation respectively gi&en that (5.1.4)
holds, i.e. the disorder which occurs is the design case.

The notaﬁiqn p?,E? denq?es probability and expect-
ation given that

D=D?, F=r?, z=22 (5.1.5a)
Ty is a random variable such that 7, is independent
of W

t+u—wt for ¥uz20 and
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E%(“CJalﬁj‘v?j)'§'q(v?j)Tefs(?_?') (5.1.50)

for some a(°), B>0 independent of ts and such that
Ez(d(vt')lt-) uniformly bounded ¥t.
F RS "3

The introduction of Ly will enable sub-optimal detection

rules to be considered in Section 5.3.

The detection rule

From Section 3.1, if ntQPl(tztjlyt)

t
(5.1.6)

- _ _ 1_10.m1_m0 1_,03T
am, = A1 nt)dt + nt(l ﬂt)([D DO:Fl-F ]vt+z 2%} av

= - 0,10 470 -
vhere dv, dyt - ([DY:F ]vt 29)(1 ﬂt)dt

= ([Dl:Fljvt+zl)wtdt (5.1.7)

Defining Rt=ln(“t/(l_“t)) and

M* @ [D -D°:F!-F°1T[D 3D -}D0: P ~3F1-}F0]  (5.1.8)
T : .
hi'e [21-2°77 D -p?-{D%: F -F!-}F0]
4 [Zl—%zl—%z°]T[DI—DD:FI—F°] (5.1.9)
gt 2 [21-2°1T[2 -321-32] (5.1.10)

for i=0,1,2

- -R¢ T, i i T, i
dRy = A(l+e "F)at + (v M v +h v o+g )dt

+ ([DI—DO:Fl—Folvt+z1—z°)Tth

+ ([DI—D°:F1fF°]vt+zl—z°)T;tdt (5.1.11)

where i=0 if t<tj; i=1 if (5.1.%) holds, i=2 if (5.1.5)

holds for tztj.

As discussed in Section 3.1 the optimal stopping

time T for the design case (5.1.%) will be of the form

©° = inffe:(R,v) ev,} (5.1.12)
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where Y is a S??pping boundary in ?hg s?a?g-space of ?hg
process (R’v)tf The index c is used to indicate the depend-
ence of the s%oppipg boundary on Fhé'wéighting coéfficiént
in the cost function C(%).Lséé (5.1.3)).
Tc may also be éXprésséd as

¢ = inf{t:RtZRYé(vt)} (5.1.13)
where RYC(V) = inf{R:(R,v)eYc}

Outline of the robustness argument

The ideas leading to Theorem 5.1 are briefly introduced.
The probability of a false alarm is independent of the
system behaviour after the Jjump time, since then ‘r<tj and
T is a_Vt—stopping time. Only the delay time is affected
by the actual form of the disorder.

The delay time is the time taken for the process
(R,v)t to move from its value at time tj to the stopping

boundéry Yoo
v A ' Ye

: (R’v)
+ ¥

Figure
5.1.1

As c¥0, Y, moves to the right in the diagram above, as
longer delay times may then be tolerated in order that the
false alarm prqbabili@y may be reduced. For Rt large, the
termrle_Rt in equaﬁion (5.1.11) becomes small. Therefore,
for small c,the exPecped delay times are clgsely related to

the mean values under disorder conditions (t>tj) of

- 120 -



T.,.1 ;1T i
A+ viMTvy + b v, t g

H
l
(=]

>
n

(see (5.1.11)).
Lemmsa 5.1 provides the necessary result which

bounds the effect of the Ae—Rt term. It is shown that

> R
_ Ae U du < =
inf{t:Rg21ni}

by using & probabilistic argument based on the properties

= 1 .
of the process Ty = l+expT—R£7‘ Because of this the bound

obtained is very weak, since no account is taken of the

actual dynamics of L the proof of the lemma would also
be valid if T, vas the jump probability based only on
a-priori information, in which case the integral would be
expected to take larger values. This is not disastrous if
only a qualitative result is required as in Theorem 5.1.
However if a quantative result is needed, this together
with uncertainty ﬁbout the boundary shape are major
problems.

Lemmas 5.2 and 5.3 describe the evolution of the

stopping boundary as c+0. Lemma 5.2 shows that
lnXd -1lnc < R (yv) £ R- (v) - 1nc
Ye Y1

for some function va(v). Here the first inequality is

an immediate property of the cost function used. The second
inequality is obtained by considering a modified cost function
for which the éppropriate stopping boundary, defined

by R, (v), retains its shape while being moved to the right

Te
as ¢ tends to zero.

Lemma 5.3 is needed to show that, for “v“*sp

there is a finite upper bound T, for RYl(v). Here p is an

arbitrary positive real number and “v"* is the norm of v
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projected onto & sub-space of R". Using this definition
instead of norm v allows & generalization to be made so
that Theorem 5.1 may be applied to sub-optimal detection
rules in Section 5.3. The proof of Lemma 5.3 involves the
construction of an observation process which, up to some
stopping time, carries more information than Yg . Since
with this observation process it is optimal to stop if
Rter<w, the same must be true with observations Yy since
then the expected benefit of waiting for further
observations is less.

To establish the results of Theorem 5.1 which

gives a condition under whiech aém such that Vca(o,cm]

E2c(7°) s Elc(1®)"
a lower bound on the detection time is considered for the
"E! case" (i.e, where (5.1.4) holds) and an upper bound
is considered for the "E2 case" ((5.1.5) holds). These are

briefly discussed here.

¢
t

to R, but such that, at times of interest, R{<R . This

In the E? case a process RS is considered related
process satisfies (5.1,.46) which is similar to (5.1.11)

except that the contribution of the Ae_Rt term.is removed.
Also it is arranged that R{ cannot cross the r, level while
”vt"*>p. This means that at the first time ﬁ; crosses the

r, level it is certain that'Rt has reached the stopping
boundary by the results of Lemmas 5.2 and 5.3. An equation
involving the expectation of this time is established in the
proof of Theorem 5.1. The laborious .proof of Lemma 5.4 is
necessary to verify that certain terms:jn'the equation
corresponding to transient effects afé finite. An upper
bound is obtained for the expected detection time which is

linearly increasing with -lnc.
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In the E! case the ;i:st?jime the proceés'Rtvrgachés the
level~1nk—lpc,is,gpnsidé;ga. At this time Rt-banhot have
reaeched the;stopping boundary; Lemma 5.1 is &sed to bound
the effect df the Aeth'term. It is found that the expected
detection time(again increases linearly with -lnc but, if

case. The result follows from this.

Lemme 5.1

« -R
EA a EI(I Ae u.du)>< o«
: inf{t:thlpA}
Proof
Define o(7,u,®,¥) = P1(3t2t +u st « SFIWt =f, vy =%)

o t o o

for u>0, W>% (5.1.14)

Note Rt=1n(nt/(1—nt)), T =P1(t2tj|Vt).

t
Let & be the Vt—st0pping time

<7} (5.1.15)

m .
T = 1nf{t:t2to+u,wt_

~m . , o, C .
(1=~ if no such time t éxists)

1 m - 1 1 m
Then Pl(t <t |Vto) = BMP'(t <t |VTm)tho]

< l.(l—a(i,u,wto,vto)) + ﬁu(ﬁ,u,wto,vto)

(5.1.16)

However, from the a-priori distribution of tj, (5.1.2)

t

1 m - —Ku
Pt <t lyto) ; Pl(tjsto+ulyto) = (l—nto)(l-e )+ .

Comparing this with (5.1.16) gives

=-Au

a(T,u,m, ,v, ) < e .exp(R-R, ) (5.1.17)
FO to . to
where R=1n(7/(1-7)).
If T(7)2sup{t:m <7} ) (5.1.17)
1 = _ o= , :
then E (T(ﬂ)(ﬂto,vto) _'foa(ﬂ’u’ﬂFo’vio)du + oty
1 _
S‘Xexp(R—Rto) + b (5.1.18)
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Now define R(l.)=Rt +i , 1i40,1,2,°** , and ﬂ(¥)= 1/(1+e
. Yo : .
Let t(l)=T(n(l)), i=1,2 3, .
Then El(t(l)—t R, svy ) £ = from (5.1.18) (e=éxp(l)).
' ol Tty "ty T A :

Replacing t_ by s in (5.1.18)
B (t{1) g)r r(1-2) 5 ) <&

for any Vt—stopping time szt , 1=1,2,3,

l—l ’ . ._ . . ) -
As t(l )=sup{s:Rs=R(l l)} it follows that
(i i-1 e . 0
ENt ) g )IRto,vto) <+  i=1,2,3 (t( )eto)
(5.1.19)
Then E (j ._.dulmc vy )
to .
< Z E ('t(l) t(l l)IR.t ,vt ) Ae Rto (l 1)
©oi=1 ;
-R *® -3
< e #0 z e2 1 <o for R, >-«
i=1 ©
Setting t6=inf{t:Rt21nl} gives the required result. 0
Definition

The cost function Et (?t ) is defined for Vz—stopping times
: o o

TtOZto as
= I(Tto<tj) + chto-to)I(toztj)

(5.1.20)
vhere ¢ is as in (5.1.3), and t, some fixed time.

Note that Et (T, ) = ¢y (T, ) ¥i, =2t (5.1.21)
' ) o O o o o -

This new cost function is useful in the investigation of

L3

the evolution of Y, 8s c+07
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Lemma 5.2
Define R- .(¥) inf{R; , <inf EY(C, (%, )|R, =R,v, =9%)}
Ye 1+éB‘ ¥, et | to Tt
-0 '

n»

(5.1.22)
Then

l1nA - 1nc < R_ (v) < R, (v) = BR. (v) - inc ¥veR"
’ Yc YC Yl
The final equality is interpreted as meaning R7 (v)= o
c
if RYI(V)= ©
Proof

By definition (5.1;22) 33<61 for any ?sRn,.61>O such that

1 .
l+exp(Ro ($)+6)J
e

< inf E'(C, (%, )|R, =R, (¥)+46,v, =%)
T o to | to Ye >ty
o
Note that if R7 (V)= ©, 8§ may be chosen as zero, since
' c
the right-hand side is non-negative while the left is zero.

Therefore, by (5.1.21) and (5.1.3)

1
= l+exp(RYc($)+6)

E‘(Cto(fc_o)]Rt: (3)+8, vy _=%)

R_
o Ye
< inf El(cC =

(¥, J)|R
Tt to "to l to
(o]

RYC

. « - (] . ~ ~
since (5.1.23) implies that Tto=to if Rto=R7c(v)+6’ v, =V

with 6 arbitrarily small (see(5.1.13)).

Next consider the evolution of R7 (v) as c varies.
: : c
Let P denote a (possibly randomized)  policy (see Section 2.1)

. . . . . P
mapping observations of Vi tzto into & stopping-time T_zto-

P:(yu:uzto) » TP 2t
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. P 1/5 P _a
Def1n§ ag ?“(QFO(T.)i?OZt' v t"?)

SERE
- (5.1.25)
80 = 51T, (V) |t <t. vy =) o
e = EHC (T tgctavy =
From (571.20)
dz = Cdi and BZ = BE
1ir= P _~ _ P P
So E (CPO(T )lRto,vto—v) = oy oy ¥ (1—1rto)8l
‘ (5.1.26)
_ 1
where as usual nto— l+exp(FRt°7 .
inf EY(C,. (%, )|R, ,v. =%) - (1-m, )
% to tO I t_o 1_'?0 ( to
tO
= inffem, of + (1-m, )(BP-1)1
> t,%1 I PRALS]
= (1-m, )inflo.—to P 4+ gP .1
Wt_’o in c.l .Otl 1 -

-T
P Tto

RY,(G) is the infimum of R, such that the right-hand side
c o

is zero or positive by (5.1.22). But then, unless

w—c(9)= 1 where

Y (s 1
™ v = )
7.\ = Teexp (=R )
. Ye
it follows that
em= (¥
Yc(V)
1-m- (%)
c
is independent of c,
i.e. lnc + R- (¥) 1is constant.
Ye
=> R, (¥) = R- (¥) - 1nec (5.1.27)
Ye Y1

It remains to show that 1lnA-lnc < RY (v) ¥veRn.
. .. - c

A v such that if nt,=ﬁ, vt,=$

If this is not so, 3 ﬁ<A+c .
it is optimal to stop at t7 (if T#t”) when minimizing the

expectation of C(7T)
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i.e. 1-% < inf EI(Ct (Ty ) |my =%,vy =%)
T o ‘o o o

T
1:O

IA

¥) (5.1.28)

<= 0 < inf E‘(Kto(%t )My =W, vy
' T K o o

T -
tO

by Lemma 2.1.
But from definition (2.2.2)

. A o~ -
El(Kto(lnf{t:ﬂt?X?E})]ﬂto=ﬂ’vto=v)

.. A
infl{t:myzyig}
= pl SAte [-A+(A+c)m Jdu < O

to

contradicting (5.1.28).

The Lemma is5 now established. g

Assumption

It is assumed that there exists a sub-space of the

state-space R" of the process vy such that, if Qv, denotes

the projection of Vi and :
Joll* = Jovll . (5.1.29)
then a) (R,Qv)t( is a Markov process

b) the system (5.1.1) is stable in the sense theat

Ei(”vp”*zlYto’tj) > ri ’¥to,vto,tj as T

for éome ri<w,‘i=l,é ’ . (5.1.30)
The reéson for the introduction of the projection 0 is
to facilitate the treatment of sub-optimal detection rules
for systems of form (3.h;l). These may-be put in the form
of (5;1.1)'by enlarging the state spﬁce. Then however

(5.1.30) would not hold .if the usual norm of v was used.
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Lemma 5.3

For any p>0 Hrp<w such that

va(v) ST, ¥vost viF <o

Therefore from Lemma 5.2

RYC(V) < Ty - lnc  ¥v st Ivl* < p

Proof

Let TP %.inf{tzto:"qt“*=p+s; it7,q.- st tos§’<t'& "qt,"*sp;
9y is a solution of (5.1.7) Vue[t',t]}

(5.1.31)

for some €>0. t, is as in (5.1,20).

For any given sample path of Wi 7P is then the first
‘possible exit time of & process evolving as v, from the set
'{xeRn:"Xﬂ*Sp+€}, given that it started at some time

t7elt_,7°) in the set {xeR": |x[*<p}.

Then 3€>0 such that

. 1 P 1 p ’ —
min{B (5 -to[t =t ), B (17—t [t,>8 )} > €

(5.1.32)
The process Ny, t2t , is defined as follows:
dn, = I(tztj)k + dWF (5.1.33)
vwhere keR™ is a constant wvector such that
k; = sup ([D'-D°:F!'-F%Iv +z'-2°%).| (5.1.3L)
[vi*<p+e

Here, for xeRm, Xs is the ith component.

The cost C (T, ) is defined so that, for ?t 2t
to to o ©

Cp (%¢ ) = I(%, <min{t.,7"}) + c(min{Ty ,tP}-t )I(t 2t:)
"o "o vo J -0 :

. .VJ

, (5.1.35)

Th C, (. ) < €, (F. ) %%, =2t (5.1.36)
€en to" b, ot Tty t Vo

a ¢ T = C (? ) for 7, <1P (5.1.37)
a0 to( to) to to t?
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- o ~ .. ~
For T, 27T C; (T4 ) is independent of T, .

: ?o g ~?o .?o T .FO'
Now ' '

inf{Elat.(?t ):?t a:HE—stopping time} (5.1.38)
.0 o} Co b o -
< inf{B'C, (3, ):% yE stopping time}
< in £, (Tt .Tto a Y. ~stopping time
' R . . ) )
vhere Ht is the o-field generated by (yu:usto)&(nu:ue[to,tj)

and, possibly, additional random variables independent of

This may be justified as follows:

Given n, and Vt’ an independent Wiener process, generate

%t’ te[to,Tp] using

dv, = 7.dt° + it
t Do FO L z?
0 0 0] dao
+ Y. o+ ) ®
p'-p® Fl-pt| ¥ [ g1_p0 xloan,
10
+
c 1% % (5.1.39)
m
Vi, = Vig
Here, k—l is a vector such that [k—lji = %T ;
i
a.b
1.1 ' = 1 1_10.pl_p0as 1 .02
e b =77 (a,); = /(21- kg(ED -D0:FI-F01v, +2'-20)7)
ambm

Then Vv, is statistically indistinguishable from v for given

t
as may be seen from (5.1.1), (5.1.33) and (5.1.3L4).
So with observations N, & stopping rule may be constructed

. R B R .
which has the same expected cost as any glven_yt—stopplng
time, in the sense of c2ost fuction Et'(%t )y which Jjustifies
N N , . Tt b .

(5.1.38).
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Suppose now that nt is observed from time to istead of Yy

and that "vt f|¥<p- For some finite value of Ry it is not
M ty N : 20 - - S

Lo
optimal to continue until 7P W.p.l since for Ry
- TR o - -
- . L 1
sufficiently large (so 1-T 1s small as T, =
tly terge { t, to” T¥exp(-m, )

El(ﬁ(to)lRto’vFo) = l—w?o < EI(G(TD)IRtO,VtO) > ntoc€;> 0

from (5.1.32).

Defining

Cy_4u(T) & T(Tmin{t;,7°}) + clmin{T,17)-t -w)I(t 2t ;)
for T2t +u (5.1.%0)

(c.f. (5.1.35)) i? follows that for some rb<m, uEQ

!

1 = pl =
1+exp(—rp7 = E (ato+u(to+u)lRto+u_rp’nto+u)

< inf  EBMNCy L, (F) Ry . =To-Ny L.)

i (5.1.4%1)
where T is & ni-stopping time. Otherwise there would allways
be a better policy than stopping before Tp, since Ry +ﬁ<m
0 Ad . o
¥Fu<=,

But if u>0, it is also optimal to stop at t, if Ry =T,
o . . = .. M °
since
1( 4 o= ) = RI(E =
E (Cto(tO)lRFo—rp) = E (Cto+u(to+u)lﬁto+u ToaMg )
1
- Tren(or) (5.1.42)
p
and inf EY(C, (¥, )|R, =r )
¥, 2t to to | to 7P
to -0
> inf EY(C (T)|R =r_,MN )
T2t0+u to+u to+u p? totu
R (5.1.43)
(T,7T H. -stopping times)
to t - . -
from the definition of Et 1 {(5.1.%0).
. .. . » o
So if Ry =r it is optimal to stop at t with observations
o . ! B A A

n. and cost G, (¥, )~ But then by (5.1.38) it is optimal to
t e PN N L bl , A ¢ _
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stop at t

o

with observations y, and cost Et.(Tt ) if R
o o

tQ

Finally (5.1.36), (5.1.37) imply that it is optimal to

stop at t, with observations y, and cost Eto(%t ) if

to p°

=r since

El(cto(to)lRto=rp,vto) = E (cto(to)lxto=rp)

Therefore RY (v) £ r_ ¥v st |lv]*=p.
c

p

The results of Lemmas 5.2 and 5.3 may be illustrated (for

n=1l) as follows.

VA

- s g St aman — — —— — —— —

Figure 5.1.2

The evolution of'yc as c+0 is desc¢ribed by these two.

results.

Definiti

ons .

t+ # inf
5

{tth:RtalnA,"vtn*sp}

(5.1.44)

Let M+ and M ©be finite nxn matrices chosen such that

and
(M2 defi

Let [x17

vIuty 2 0, viM v <0

vTMav = vT(M++M—)Y

ned in (5.1.8))

¥veRn

¥veR™

e xI(x20) and [x] 2 xI(x<0)
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The scalar process RS is defined such that

[ e

I\C‘ .
Ry = Ry ¥tstg

;;C_.T“ 2T - 2. -
dBt = (vtM vt+[h th +g ].)dt
+ [(ID}-DP:F}-F v, + zl-zﬂ)TgtJ'dp
T, + oT +. . 2.+ -
+ (A+viM vy +[h= v, 17 +[g"] )I(“vt“*Sp)dt
1_70.pl_m0 1_,0yT - -
+ ([D!-D%:Fl-F vyt z'-z ) th.I(Rt<rp lne)
¥tzt_, p>0 (5.1.46)
Here rp is as in Lemma 5.3 and ¢ as in C(T), (5.1.3).
Remarks
ﬁ; has been defined to have certain properties required

in the proof of Theorem 5.1, when (5.1.5) holds as assumed

in the following.

Since, while R <rp—lnc, d(ﬁE_Rt) is negative (see (5.1.11)),

t
ﬁg is less than or equal to R; up to the first time that
c ..
tzrp Inc. |
Then supposing that Ry =R°
s s

first time that ﬁEer—lnc, Rizrp—lnc. Because of the way

9>

<rp—lnc it follows that at the

(5.1.46) has been set up it follows that ﬁESrp—lnc until

?c\? inf{?:ﬁEer—lnc,“vt“*SD} (5.1.47)

The following results are reguired later. As ususal

& = inf{t:thRYc(vt)}
a) ¢ > ¢ (5.1.48)

from the above argument and Lemma 5.3

b) Re < ro-lnc  if t <t<T° (5.1.49)

by (5.1.44),(5.1.47) and above
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Lemme 5.4

38cR independent of ¢ such that

o

2 AC _Ac ’ = A
E (Rts+T,3ts|?j’vtj) qT+e for T20
where ea—E—q(vtj)>—w, Eq(vt,)<m, "a(+)20
? J
2 "C_"c . ) - _
and E*(R, Rtl[tl,tlats,vtl) = 0(t-t;)+e for tzt,
where Esg<m

2

Proof (superscripts on M,h,g are omitted)

(5.1.5) is assumed to hold throughout the following.

First consider the process

t
a fC_aC 1_n0.pl_po + g1_,037T -
L, & R Ry .jt [([D*-D%:F!~-FO1v_+ z!-2%)"¢ 7 du
- vl b
cC acC
Z'ﬁt ?ts | | for tzts (5.1.50)
Then Lt satisfies
aL, = (vIM v, +[hTv,1 +[gl”)at
t t t t - ,

T, + T + +
+ (A+viM v +[h7v, 1 +g] )I("vt"*Sp)dt

1_n0.pl_pmo 1_,04T : _
+ ([D*-D:F*-F v+ 27~z ) th.I(Rt<rp lnc) t2t

(5.1.51)
by (5.1.46) and (5.1.50), and (Lt’vt) is a Markov process

for t2t .
5

¢ be solutions of (5.1.1),(5.1.51)

Let (If,vf)t,v(lf,v')
for t2t 2t with the same sample path of W, for t2%, in
each case, but with initial conditions

(" ,v), = (L,%°) (5.1.52)

t,
(L’,v’)

¢, (L,v?) (5.1.53)

for some fixed LeR, v’ ,v eR" s.t. lvr 1%, Iv? I <

By (5.1.1) and assumption (5.1.30)

e_K(t_tl)

”vg-v”"* <N for some N,Ke(0,=), ﬁaﬁl

v
(5.1.54%)
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Define

v LT - - //T -z
T, ='It‘(vu”M VLTV M vu)du
: 4y
.t
T2 =.f£ ([th;]_-[hivil—)du
B §
.t
Ty = f, LV VD o) Tl v o) au
1
T S UL
Ty = f, (Ih'v 1 -In"v YI( vy F<e) T vy J*<p)du
1
t
T5 =_ft (A+ #M+v/+[th ]++[g]+)I("véﬂ*>p)l(“vﬁﬂ2p}
'l
t
/. + s, T /s.+ . + .
Te = {tl(A+vuM vieln v 1 #el )I( v F<e) T( [v7 [<p)
Then A, e EZ(L L”) = ¥ E27T, (5.1.55)
: i=2 1

EzTi, i=l,2,¢++,6 are uniformly bounded Vtztlztj, fqr each

/
v ,v”, as shown below:

E>T :  see (5.1.1)

E2T,: 'IEhTV;]—'[h?Vﬁ]_|th”*o"V;-Vgﬂ*s"hﬂ*.ne’K(t’tl)
(see definition (5.1.29) and (5.1.11) to see that
hlv=hT v, v Trv=(0v) TM0v )

E2T3: (v M*v) has boundead gradient in'{v:“vn*SQ}, and

e g freme TELETEL)
2q, . 2
E Thf as for E T3
E2T5: (vTtv+[nTv 1t +0g1?) is bounded for |v|*sp
~K{u-tq)
v e, lvZlFso = [vl[*e(o,psme ™ 27717

Since the p.d.f of va is bounded ¥tzt,,

-K(u—tl)

gle I(“v;“*f(p.p+Ne })du is uniformly

bounded as t*+x.,
2 2
: T
E T6 as fqr E s
- -+ . ]
So 3 EL(-,-) and eL(w,-) such that, from (SflfSS)
: ==’ I ,
@ < —g (v ,v") < Ap < +E (v v ) < @ ¥ty

t
) (5.1.56)
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Since by assumption (5.1.30), Qvt is an (asymptotically)
s?a?iqnary.prqcess, and by (5.1.51), it follows. that

EaeR,v” such that

T . = |
?'tlE (Lt—L) = ? : . (5.2.57)

wheré Lg is définéd by (5;1;53). With v” chosen in this

vay, it follows from (5.1.56) that
Ez(Lt-Ltl[tl,tlzts,vtl) = 5(t-t,) + € (5.1.58)

where - < —E;(vtl,v”) < g < E;(vPl,v')‘< o

Since N,Ke(0,®) may be chosen in (5.1.54) so that this

'
holds ¥v =vél such that “v'"*Sp, with v? as above,

A —— —
e 2 sup E(v/,v") v Ef(v vV <= (5.1.59)
v i *<p
2 - 2 _
Now E*(Ly-Ly |ty,t12b5,vg ) < EX(Dy-Tp, [ 81,5720, 7))
(5.1.60)

where Tpeinf{tztlznvt"*Sp}, by (5.1.50),(5.1.46), so using

(5.1.58) .

- to2t v, )
1°%21%%s0 Vg

2 1 -}
E (L, Ltlit

21 A P -+ "
< BX(B(e-1oat)+E (v o ov ) [ By, b2t .y

< Q(t-tl) + E (5.1.61)

So in (5.1.58) in fact £ <E<® irrespective of vtl.

It remains to relate these results to the process ﬁg through

(5.1.50). From (5.1.5b) and Assumption (5.1.30), it follows

that 8

. . -z(t-t‘)

0 < E*(JID*-D°:F!-F Iv, + z‘-z°“-“€tﬂl?j,v?j) < r(vtj)e -
(5.1.62)

for some function r(e+) s.t. Ez(r(vtj)[?j) is

uniformly bounded th.
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Therefore

-~a < -q(v, )
t;

} <0
¥

(5.1.63)
for some function g(°) such that E(q(vt,)[tj) is uniformly
: | J

< Ez(ft‘[([DI'DO;FI‘Fnjvu+-ZI'Z°)$CQJ—duI?j’V
Y

bounded th.
So using (5.1.58)

E2( RS

AC A
Rts+T~RtS[tj,vtj) 2 0T + € for T20
where € 2 -g-q(v, ), since uv “*sp by definition of t

tj ts S
and (5.1.59) implies €,(v, ,v")Se.

_ L tg
2 /4C AC _ o~

Also E (Rt—Rtlltl,tlzts,vtl) = o(t-t,) + € for t2t,
where € < £ < ® by (5.1.61) and (5.1.62). t, is a stopping

time for W

_t.
This establishes the results of the Lemma. 0
It follows from Lemma 5.4 that | (5.1.64)
~ t:+T _ _ _
G = lim %Ezf J (VEM vu+[h2TvuJ +[g21™

T + 2T + 2 o+
+(A+v MV 4[R2V 17 +[g?] )I(“vu“*Sp))du

Definitions

1,03 T
Define 0, 2 1im TEzjt_ (k+v szu-l-h2 vu+gz)du - (5.1.65)

T+00 3 u
Then 8+02 as pxo,
t:4T
Define 0, £ 1im %E?I”J (A+vTMlvu+h1$v +gl)au - . (5.1.66)
-t . : u u .
T © |
¢* Tod. 4317 144
& /- + -
Also Wy .{t.ﬁk+vuM v,th v te )du
- t; .
fE 1_p0.pd_p0 1_,0)7T  yist.
+ [tj([n —D:F -FOv + zl-z®) VAW, F2ty
(5.1.67)

P U
Then o.,=1im =E‘y,  ,;m°
1 >0 ? tJ+$
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Note that from (5.1.11) if (5.1.4) holds

. t -R .
_ - u .
R,-Ry = +.Itale du (5.,1.68)
'3 : b3
Also, _A+xTM1x+h1Tx+gl >0 ¥xeR" (5.1.69)

by definition of M!,nl!,g?t.

Lemma 5.5

1 = -
for W -stopping time t,, where ®<-35653(vt1)<w
for some 6(+),8 ; E(S(vt_))<m.

X . > 3

Proof

Follows from (5.1.1),(5.1.2) and the property (5.1.69) O

Lemma 5.6

Ez(ts-tj[tj) < a <o vtjzo, for some a independent of c.

Proof
Define t'0) 2 int{t2t.: [Iv, [[*<p}
(i) eay (101) (5.2.70)
and t 'Y 2 inf{t2t +A: v E<p} i=1,2,-¢+
for some fixed A>O0.
Jag<® such that Ez(t(o)—tjltj)<ao,th (5.1.71)

from (5.1.1) and (5.1.2).

Let the process R¥ evolve as Ry (i.e. R} satifies (5.1.5)

and (5.1.11)) for te[t(l'l),t(l)), i=l1,2,¢** but with
¥ .y = - ¥ .= | = coe .72
Ro(d) (m0(3)=0)s  i=1,2, (5.1.72)
. i i-1 i
Define L¥ such that L¥*,. =~ and for te[t(l ),t( ))
) t . t(l) - ’ ;
i=l’2,."

av} =A(1+e E)at + (vEszt+hz?vt+gz)d? (5.1.73)

. o\ T
+ ([D’—D“:FI-F°]vt+ zl-2°%) aw,
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Compering (5.1.11) and (5.1.73) it follows theat

.t ' :
R N L e W LN

vhere te[t(l-l),t(i)). (5.1.7k4)
Now let ;pie P3(lim Lgalnk+s|35<i s«t. lim . R¥21n})
g4t (3 t4g(3) |
for some fixed €>0. (5.1.75)
Then lim pi‘<0, p;>0 ¥i, so that 3P and
i-+0o ' .

p; 25 >0 ¥ (5.1.76)

Define N £ inf{i:lim _ R%alnl} (5.1.77)

t4t (3
Note that Jé<= s5.t. Ez(t(i+1)—t(i)Its>t(i),tj) <96

i=0,1,2,¢++ from (5.1.1) (5.1.78)

A

Now from (5.1.5b) Ez(ﬂguneltj) ae Blt-t5) &<w,3>o,tztj
Therefore
(=]
E?(jtj"[DI-D°:F1—F°3vu+z1-z°"*."cu“*du[tj)'< w

A (5.1.79)
Jd<=, B<l so that
EZ(jt(i+l)'| 1 0 1 0 1 0 [
T (L) [D'-D":F -F 1v + z -z "*.“cu“*dultj)

< §.B% i=0,1,2,e°-

since otherwise (5,1.79) would be contradicted. Theréfore

2 . _ o~ =i .
E (11m(_)[L§ R§[[tj) < &.8° from (5.1.7k)

t4gtd
So P2(1im  (L* -R*)>elt.) < Z.&.B% (5.1.80)
(i) t t J £ S
t4t :
2= 5 1. YEe ol - 52(F. s ' 1l oo
Then P (N>1}tj)~P_(h>1—l[tj)”$ -p.P (N>1-1lpj) +2.5.8
(5.1.81)

from (5.1.76),(5.1.77)&(5.1.80}.
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. -~ 1
PA(R>ift) = (1-8)7F +-°é‘- z EJ(l 5)* 7
. .- e - - . J=
< (1-5)17t 4 %[‘é”l (1-p) 7182 “1/1B-(1-7)1
< E,Bi for somé‘a<m,§<l' (5.1.82)

Since by definitions (5.1.4%) and (5.1.77) and also by

(W)
(5.1.70), t°" ">t
Pz(ts>t(i)|tj) < &.ﬁi
v (i)
As Ez(?s"?j'?j) siilpz(ts>t |tj).6 e

from (5.1778) and (5.1.71)

@« .
) < a.B*.6 + a
i=1

< a say, where a<wo, []

2
E%(tg tj[t. o

d

Recall the following definitions:
' t 4T

a 75 loip d T 1 T 1.
oy # lim TE.ft._ (A+vuM vu+h vu+g Jdu
T—co 3 . i
t:4+T
a s, Lo1p d T, 2 2T 2
O, & linm FE ft. (A+vuM v, th®7v +g )du

T-yea

c . .
T & 1nf{t:Rt2RYc(vt)}
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Theorem 5.1

If o acm such that Vce(Q,cm]

27712

>0
E2¢(t%) = Elc(t®)
Proof

Consider c<l.

Suppose that 0,>0, and choose p in (5.1.46) so that 6>cl.

Define 7% 2 inr{t:RS2r -1nc "v lk<b} (5.1.83)
- t p L] t — . .

where rp is defined as in Lemma 5.3 Note that rpzlnk.

If (5.1.5) holds, then T°27° (see (5.1.48)) and

because of Lemmas 5.2 and 5.3, for c<l

o4 ‘AC AC
T 2t. =T 2t. = t 1.
5 T 2t T 2tg (5.1.8%4)
by (5.1.83) and (5.1.k4k),
Now choose T>0. Then

E2(RS

Brig R

c _ 2 c _I\C c
ts #jST ) = E (ﬁT+?s R%c ]thT )

A(T+ts)

+ E2(RS -R, |t.<1°
( TcA(T+ts) tsl 3 T )

. Lo (5.1.85)
'From,(s.l.h9) and (5.1.83).

AC . '
R% < max(O,rp—lnc—Rt ) (5.1.86)

CA(T4+tg) Rtg .

Also Ry 21nA by (5.1.44),
s

By Lemma 5.4, from (5.1.85)

Gr4e, < 8(T—EZ((%°-tS)AT)ItJSTC)) + €, + max(0,r ~lnc-1n})
(5.1.89)

~ 2 c
where €,2-€-E (q(vtj)lthT )

A

€

§<+m
2 .
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So E2[(7%-t_)aT|t.<1%] < EZE(?C-tS)ATItjsTCJ
sl[rp—lnc—lpk+2€+E?(q(vﬁ,)]thTc)J/S
. ~d -
< [-lnc+k,+E*(q(v, )[t.2<1%)1/0
2 tj J
vhere ké<co is independent of c.
T .
. 2¢..c - C - 2 €y7/5
.e. —tgo<ult.< -lnc+k,+E t.<1)1/0
i.e IOP (tC-tg=ul 5 T.)du < [-lnec+k, (q(vtj)] ; /
c<l, ¥T>0. Therefore

EZ(Tc-tsltjsrc) < [-lnc+k2+E2(q(vtj)ltjsrc)]/a , c<l

(5.1.90)

Next,

1 Cy _ @l - . c
E (utj+T tJST ) =E (utj+T“u(tj+T)ATglthT )

o L
+ E (u(tj+T)AT°]thTc) (5.1.91)

where W, is defined in (5.1.67). From Lemma 5.5
-l e .<1©
0,T+8, 2 oy (T-E*((1 tj)Amlthr )) + 8,

¥ El(u(tj+T)AT°lthTC) (5.1.92)

where §, = E1(§(vtj)|tjsrc)

62 2 ~§>—0

Next, the last term in (5.1.92) is investigated.

Firstly, as T-w, +1 w.p.1 if (5.1.4) holds. Otherwise

ﬂ .
t3+T

Pl(tj<w)=lim E!m, #1 which contradicts (5.1.2)

10

Therefore R += w.p.l as Tsw, which implies that

ts+7T

J

R(tj+T)AfC 2 lnA-lnc for T sufficiently large, w.p.l,

by Lenmma 5.2.
Let ty & inf{t:R 21n)} (5.1.93)

EX(R

]tjsTc)”+ lni—lnc+g,e}b,as Treo
u ;

(t:+T)az vt
[(”J+‘)AT ]v‘ (5.1.94)
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tk is introduced here to ensure that the expectation is
well defined.
Secondly
c
E! (Rtavt [t5<T¢)
. A Vt)\

- " —-R
El[f ' (A+V$M°vu+h°Tvu+g°fle u)dulthTc] + 1nA
A

IA

‘thtl - =R .
E’(At-lt-STc) + BN(f 7 - Txe Pault.s1®) + 1mx
: d' 4 -t)\ : - d '

A

(5.1.95)
by (5.1.11), since vEM°vu+h°Tvu+g°sO ¥u (from the

definitions of M°,n%,g?).
Now from- (5.1.67), (5.1.69)

5 ' e
E (“(tj+T)ArCItJST )
[(t +T)AT Jvtl

v

ENJ . (A+v Mlv +n' Ty . )du[t <t€)

3Vt

® ~-R
. -f Ae  Yduft.st%)
BIVEN Tesvey v J

v

1
E (R[(tj+T)ATc]vFA-R
(5.1.96)
Then from (5.1.9%),(5.1.95)&(5.1.96) substituted into
(5.1.92)
1/ .C_ c
E'(T pjlthT )

2 %.[gS—El(S(vt_)+xt’§f —Xe—Rudult.STc)—lnc]
S J J inf{s: Rt_lnl} J

(5.1.97)
; 2 Cy.pl Cy_pl A
Hote that P*(t,<17)=P (b, <t )=E Toc 23 by Lemma 5.2,

and that I(thTc), v, . are the same for a given path of Wy

. d
irrespective of whether (5.1.4) or (5.1.5) holds.

Then from (5.1.90) and (5.1.970. : i? follows that

EZ(TC-tslt.sTc)-El(TC_t.|t.grc) < (—l— =)1lnc tkp /6 + §/0y

Ate

+ E[wq(vt )+— (S(v+ )+kt +5A)j (5.1.98)
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From Lemmas 5.1, 5.4, 5.5 the expectation on the right is
finite. Therefore de >0 such that
2,0 c 1,..C c .
- < - =t.lt.<T £ -8
B2t -t leysto) B (0ot [ 6 5T0)
¥c<c , @ as in Lenmna 5.6.
As Pl(thTc)=P2(tjsTc) and from Lemma 5.6,.£hen

Ez((rc—tj)I(tjsrc))-El((rc—tj)l(tjsTc)) < 0 ¥esc

The result of the Theorem now follows from (5.1.3). 0

Remarks

Theorem 5.1 does not specify the value of cp- In the

proof, & lower bound for T  in the case where (5.1.k)

holds is compared to an upper bound for T° in the case

where (5.1.5) holds. These boundé are very weak, especially
with respect to the_xe‘Rt term in (5.1.11). The contribution
of this a?fer time tj is completely neglected in one case.
The result is that in the proof of the Theorem very small
values of ¢ need to be considered.

The arguments given in the outline at the beginning
of the section suggest that ¢ need only be sufficiently
small so that detection times are typically long compared
with system time constants. Also it 1is likely thaﬁ necessity
holds in Theorem 5.1 as well as sufficiency. To improve the
results a more quantative approach seems necessary.

If the system (5.1.1) becomes unstable following
a parameter Jump it is unclear whether the Theorem holds

because of the effect of the shape of the boundary Y.
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5.2 Robustness for autoregressive systems

The problem of interest here is thet described in Section

3.1.
01, o
ay, = -, |Fpat #P ot o+ aw, (5.2.1)
o _1 " -
T
Ty Zy 1

where iteRn ¥t, ueR" T is constant
Wt is & scelar Wiener process independent of t.

dJ
l"e'—}\t (502.2)

P(pzpj)

and (rt,zt) (r%,29) ¥§<tj

= (r,z) vtztj (5.2.3)

where r¢R"™ is constant, and z%¢R is constant (known).

?o is known, so that it is V£-measur§ble,‘#hére observations
y,=[00++-01]F, .

The optimal detection rule (see Section 3.1) is implemented,

in the sense of the cost function (5.1.3), for the case

where

(F,2) = (r!,z?) (5.2.4)
rler™ constent, and zleR constent (known).

P!,E! denotes probability and expectation given (5.2.L)

holds. PZ,E2 denotes probability and expectation given
(¥,z) = (r?,z%) (5.2.5)

r2eR™ constant, and z2%e¢R constant (known).

(5.2.1) is strictly stable for r =rl, i=0,1,2

t
This is & special case of the problem of Section 5.1, such
that

=F. 3 Cﬁ = 0 ¥t (5.2.6)
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: T

[p*:F*1 = r1° , i=0,1,2 (5.2.7)
So Mt = .(rl-ro)(rl—%rl-iro)T

hi = (21—20)(1‘1-%1‘1—%1‘0) + v(zl_%zl__%ZO)(_rl_rﬂ)

_gi =.(z1-z°)(zi-%zl—%zo) (5.2.8)

for i=0,1,2.
Let Ql be the steady-state covariance matrix of the state
vector §t in (5.2.1) with (rt,zt) = (rt,z)

i.e Q' is the unique positive definite solution of

01, o ° 1y 0. |
oderelr, e % %120 (5.2.9)

00 1 - ' |

riT 0 A _6~li

i
and let q be the steady state mean value of the state

vector it’ i.e.

-1
. 01, O
1 .
Q" = - .. "
00 _ 1 —. (5.2.10)
I‘iT z:L

From (5'2f8)’ (5.1.66) and from (5.1.65)
op = A+ Hart-r)T (@ et ) (x1-r0) + (21-20)(r1-r0) Ty
+ 3(21-22)2 (5.2.11)

A+ (rtor)T(g24q22T) (r2-3rl-120)

]

# (2V-z0)(r2-3r-3r%)Tq? + (22-321-320)(rl-r%)q?
+ (21-29)(22-3z1-329) (5.2.12)

Then from Theorem 5.1, if 0,>0, Hcm>0 such that ¥ce(0,cm]

E2¢c(t) < Blc(t%) (5.2.13)

It is therefore possible to characterize a set of disordered
parameter values for the system(S.E.l),'{(rz,zz):gz>cl}

such that the expected cost of using the detection rule
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designed assuming (szfh) holds is not increased, with ¢
sufficien?ly small;'?he.rgmarks fqllgwing ?heqrem 5-1
discuss the réstric?ions on the value of c.

Although from thé argumén? of Séctiqn 5.1 it
appears likély that Ezc(fc)>EIC(TC) if dé<ol; c small;

this has not been proved.

Examplel
5 o 1] 0
aF, = o (Tyat + aw, (5.2.1k4)
1"t 1 .
h ~L4+8 “L+p_]
r? = s T = 1 , T2 = 1
-3 -3+§, —3+p,
1
Lo 1/6 ° 20557
[ 1 o
2 _ 2("*'91)(3*9?
Q° = 1
0 2(3—02)
q0=q1=q2=0

2

Figure 5.2.1 i1llustrates sets of r° parameter values such

that 0,>0,, for various choices of 61,62.
Note that Theorem 5.1 only applies if (5.2.1) is stable for

. T
rt=r2 ( i.e. rlgo, r2<0 where r2=[rl,r2] ).
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Figure 5.3.1

(W J0%
2 0,=0, comtour
1.03' 2 71 o
6
AA : 51=l.0 62=0,5
BB : 61=0.5 52=7o,5
cCc : 61=~170 62=0.0

Figure 5.3.1 indicates how a detection rule of the type
described in Section 3.5 might be constructed to detect
jumps to unknown parameter values by combinngAthe~three

"known. jump" detection rules above. '
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Example 2
A second exemple is given to illustrate the discussion

in Section 4.0 concerning the first order autoregression

case.
Suppose
dyy = ree ygat + pdt + W,
r®=1 : rl=q : r?=g , B>a>l
1 1 2 1
Then @Q'= —— : Q%= ——
—2aao —28&0

and from (5.2.11), (5.2.12)

1, p%
~20ag aaaé

2
oy = A + 3(a-1)]

2
2 1 b
2 ) A + (a—l)(B-%a_%)ao(_asao + Bzag)

Q
]

if

%(a+l)ab2/(-ao)

B »

_ "o ) -
CHe-1)b7/(~eg) ~ia(ar)

The robustness property of Chapter 4 appears to break down

(essuming necessity in Theorem 5.1 as previously discussed)

if b2 ig sufficiently large.
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5.3 Robustness for general systems

In this section,Theorem 5.1 is applied to the problem

described in Section 3.L.

dx A x dt + g ,dt + G, _4V

t t7t t Tt t

- - b , _ (5.3.1)
dyt Htxtdt +dZ~b

where xteRN, yteRm ¥t

Vt’ Zt are independent Wiener processes, independent of tj

P(pzpj) = l-e (5.3.2)

=40 =q0 =n0 =0
A =A%, q,=a°, G ,=G°, H =H ¥t
; ; (5.3.3)

A =k, q,=q, ' Gg,=G, H,=H ¥t2t,

where A%,q%,6°,H%,4,5,G,8 are constant matrices and vectors.

A%, K hayve strictly negative eigenvalues.

The innovations formulstion

Suppose x_

o has a-priori distribution N(rO,QO) where

Q, is a covariance matrix.
For given tj, rteE(thyt) satisfies the Kalman Filtering

equations

dr. = A%r dt +.q%at + o H®Tay Vi<t .
T t & % Yt J (5.3.4)
= - =T .
o = Argat + gat +q Flav, w2t

o
-
n

= 00T _ 0T o 0 oT b <t .
Qt = GG QtH H Qt + A Qt + QtA Vt<tJ

(5.3.5)
d, = GGT - q fiTHQ, + AQ, + Q. AT ¥tat, (5.3.6)
t t t T L J
y 1
dv, = dy, - I(t<tj)H°rtdt - I(tth)H r,dt
) ) ; © (5.3.7)

V¢ . is a Wiener process

Define Q' &s the asymptotic solution of (5.3.6) for

A=A, E=x*, G=G¢', H=H' i=0,1,2. (5.3.8)
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ﬁi is defined as the Kelman Filter estimate for X, assuming

(x ) satisfy

27

ax Alx

Ldt + qldt + crav

t
- ;-
H Xtdt + 4z

t

It

dyy %

where the covariance of (xo—ﬁ;) is Ql, the asymptotic
solution of the corresponding Ricatti equation (A:L essumed
negative definite) i=0,1,2 {5.3.9)

. A. - . ,.T . . . - -T R
i.e. azy = (a*-q'm? Hl)&idt + grat + q'mt dy,, %

. i 1 iT i . . -
Note that since A"-Q H™ H™ has strictly negative
eigenvalues, if y, is actually generated by (5.3.1) then.

the covariance of ﬁ% is uniformly bounded ¥t=0, for any

In Section 3.4 a neatural sub-optimal approach to
detection of & disorder in (5.3.1) is discussed for say

A=Al, k=k!, G=G!, H=H!. This involves the estimates %

ko

and ié. Here, the robustness of this approach is . .
investigated. First, some preliminary results are required

so thet Theorem 5.1 may be applied.

Assumption ‘ (5.3.10)

For simplicity it is assumed that Qo=cov(ro-xo)=Q°.

Note that then %?

t=rt Vtstj.

Lemma 5.7
In equation (5.3.6) if A=A*, k=k?, G=G2, H=H?

oo u2Tx20  _ a20 - 2T -

2 _ ~2,2T
Qt = G°G

Then if Qt;=Q° 3d<» . §>0 such that
. d C - -

&e_B(?—?j)

he,-e* 1 = ¥t2t;
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Note

Here |1 ?-.'fsupN IMx|]  for Meg™N - (5.,3.11)
- XeR 4 o
fixll=1
Proof

Consider the system

o]
al
n

2 2 2
" A xtdt + q dp + G th

(5.3.12)

tzt -

dy, Hzxtdt + 4z, 3

Ihe associated Kalman Filter is (for tj known) (5.3.13)

a%, = (A%-q

2T2A zT 2 .
b H*"H >¥tdt«* QtH dy, + g at, t;tj

t
and Qtsatisfies the Ricatti equation in the statement of
the Theorem.

Since AZ—QZHZTH2 has strictly negative eigenvalues and

Qt*Qz as t+», 3t,8>0 such that

max eigenvalue of (AZ—Q HZTHZ) < —E ¥t 2E <o

t
B (5.3.1h4)

?;qm (5.3.12) and (5.3.13), if €t=§t—xt
dey = (AZ—QtHZTHZ)et + QtHszZt - ,szvt (5.3.15)

The following Kalman estimates of x, are defined for the

system (5.3.12).
~(0}) .
N

- . ~
X estimate of X, assuming X

iél): estimate of x, assuming

where A20 is chosen so that Q%+A2Q?

2),

estimate of x, assuming i( W (x,  ,Q2%)
- t -t tJ

dJd
Here C2D means C-D is positive semi-definite. C>D, C<D

and C<D are defined correspondingly.

Eéi)e iéi)_xt , i=Q’l’2-‘ | | (5.3.16)
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E(eé 0) éO) 1e(g)mN(o Q0 +A)) > E(e(l) él |e(1)mN(o Q°+A))
P - - - - N - J
| > 5(e{e{®) M e{Bhinco,02))
. - J
(5.3.17)
The firsp inequality holds becausé of thé optimality of ﬁ(l).

The second ineguality holds because of the optimality of

ﬁ(z)and because Q%+A=Q2.
Now let §’=§(O)Where ﬁ(o)mN(x ,Q%)
. t 7t t. t
- . -~ d ~d
and §4;§(O)where §(0)=§, +6, 6WN(0,A),independent r.v
t 7t tj tj
(5.3.18)
Then it”‘%N(x ,Q9+A) (5.3.19)
. t.
d dJ
ol x ol _ =0 _xf _
Define E =X —x, , E =X -x, 8O ;tj etj 8
From (5.3.15)
2 ZT ~lr S
d(et et) (A -Q H*"H )(e -€;)dat (5.3.20)

where Q is the covariance matrix appropriate to the

~(0)

estlmate X . Therefore
i - oy ~ ~p(t-t:

BL(2]-80) (50-8)TT s 1.5e7P 070 (5.3.21)
tor some y<o,
so E(e? ”T)—E( ‘ 'T) < I.?e_g(t_tj) by the independence

t t t t
of & in (5.3. 18) and therefore
T
£(e{ el c{0n(0,q04a))

-J

- E(eio)eio)T|e£§)®N(o,Q°)) si#e;g(t*tj)

Using (5.3.17)

E(Eie)e(g)rl6(2)&N(0,Q2)) - E(s(o)e(o)Tl (O)WN(O Q%))
v ey g

-B(t-t3)

< I.ye (5.3.22)
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(2) (2)T (2)
v %o 1€

s E(e ‘1)e§1)T| e (1
~d

5(e{00e(07 o,

Also E( v (0, Q°+A))

wN(0,Q%+A))

2

“N(O, Q )) (5.3.23)

The final inequality holds by the optimality of x(o)
because Q°+A2Q%. Since Q®+A2Q? it may be shown (see the

argument of (5.3.18) tc (5.3.21)) that

5l (@) 2lan(o,004n)) - m(e{2e{2) e (j)%N(O Q%))
J
< I.?e_E(t-tj) (5.3.24)

Therefore from (5,3.23)
(2) _(2)T
Bleg™ eg™" leg] "t

A - t—t' i
2 -I.Ye B( ~J) {5;3.25)

el®)an(0,02)) - 5(ef{®e{0F|e{nn(0,q0))
~d R

But by definition of 8(2) (see(5.3.16)) and of Q2

£(e{2e(21%1c{2un(0,02)) = @2

. J
and the covarisance matrix Qt satisfies

(0) (0) ‘ (O)%N(O Q )) if Qt _Qo
J J
Therefore from (5.3.22) and (5.3.24)

-B(t-t3)

Q = E(e

-I.Y¥.e < Qz—Qt < I.Ye—B(t—tJ)

ir Q. =f
J
i.e. sup [rT(Qt—Qz)r[ < max(?,?)e_g(t_tj)

(5.3.26)
fir <1

Since Qt—.Q2 is symmetric HMERNXN such that Qt-Q2=MTM.

Therefore

" Qt_Q ” = sup I'TMTMS = sup IrTMTMrI

firhl, JIsil <1 fr) <1

The result of the Lemma now follows from (5.3.26).
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Lemnea STB

If r

& defined in

is the Kalman filter estimate of X,

(5-3.h);,(xt,y£) aré generatéd by (5.3.1) with A=A%,

a=g?, G=G?, H=H?; ﬁ%,i% are defined as in (5.3.9), %2,2;
known a priori, then o
Ja(e,*)<o and b>0 such that
a2 2 a0 A2 AQ AD -b(t-tj)
E("rt—xtﬂltj,xtj,xtj) < a(xtj,xtj)e oo ¥t2tj

2

E(a(x?j’xfj)ltj) d < = ¥t; for some d

Proof

From (5.3.9) anda (5.3.4) with A=A?, §=q2, G=0%, H=n?

. . T R T
ad(r, -%2) = (a%-qQ%n? H2)(r -R2)at + (Q,-Q*)H*"dv, ¥txt.

t g
where Q, is the solution of (5.3.6) with Qt-=Q0'
- "d
Note that r, =%? .
tJ 'tj
N T
Let stertfzi ¥t2t; and M2A2 -q2H2 "g? (5.3.27)
Let B ,a be such that "eMtx"s&e—B?“x“ ¥xeRN, t20, B>0.
' (5.3.28)
t
= JM{t-ts) M(t-u) _n2yy2T
5, = e '8, o+ ft.e (Q, -Q%)E* "av
- | 3
Therefore
T
T 0 AD M(t-t:) T M (t-t:)
E(6,6,]|t.,&) ,x2 ) = e J'8, 8, e J
el by Reye b5t
t T
- T M*(t-u
o+ f Mt u)(Qu—Qz)H2 H?(q, -Q%)e ( )au
t -
J

T A0 a2 —2 -2B(t-ts)llo0 _a2 g2
So E(S?thfj,x?j,x?j) < a e R "??j xtj"

_2 T -t ~ -
+ o [lu? H?”ﬁ?fé.exp(<28(u—§j)-28(§~u))du
-

where Lemma 5.7 has béén uséd to bound “Qquznr
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Choosing B so that R#B.

T 20 2 < 52, -EB(t—t ) 2 2
E(S, 67 t.,%0 ., < 37 Jlx? |
(Be8elty & yg) oS R tJI
T2 [j52: 52 - - - _ .
Lo Je2e [5%62 [ -2B(-t5)_ -2B(t-t;),

2(8-8)
(5.3.29)

Since for any random variable ueBN
E(”u"z) = trace E(uul) < N"E(uuT)”

Choose b as 2min(B,R)

: £Tya) 52
and a{%x? ,%x2.) as N.[|lx, -x l ﬂg—————~—
657705 b tj' 2(3-6) °

The result of the Lemma is now established, since

T - . L . .
(A2-Q%H27H?) nas strictlly negative eigenvalues. 0

Application of Theorem 5.1
From (5.3.7) if v, is generated by (5.3.1) with A=a2,
a=q2, G=G2%, H=H?, then
- ; 0 2
dy, = I(t<tj)H r,dt + I(tztj)H r dt +dvg (5.3.30)
Let Ct be defined by
' lat + I(t2t,)H%

dy, = I(t<t YH® % zdt +av, + T dt

Xy, Xy t
(5.3.31)
From Lemma 5.8, and since §£=rt Vtstj
Ly = 0 ¥ty : )
2 ~ A 2 A A2 -b(t~t : .
W("gt“ J,X%,,X§,) < |22 l%a(X] ,xt e o 73 w2t
dJ Jd 0
<@ (5.3.32)

From (5.3.9) it follows that
ol _gigit iT ) t o+ dt
a(Ry-QE yy) = (at-o¥riTrd) (3 t -otu* Ylat +oa

A T
4+ (at-olrirt)ete vy

- A. - ‘T
so if v 2 %' - QlHl ¥y
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T
{§o FA°—Q°H°HH° 0 (a°-qoHoTHo)qogoT
. e e . . T . . . .
; o1 _ o Al-glElTy! (AI_Qlﬂl?HJ)Q;Hl .
0 . T, T ,
Yo Ly Ly ot Ty
| I J
- - -— r- -
Fvo q_n 0
1 U R
vilat + |2 Jag + [ © -av, (5.3.33)
2 2
0
¥ 4 1
LY 1y | 2t L
where Lg = H°I(£<tj)
1 _
Lt =0
2 _ 2
Lt =" I(tatj) L
F, = H“Q“H“Tl(t<tj) + H2Q2H2TI(t2tj)

?he sub—op?imal detection scheme proposed in Section 3.k
for the problem (5.3.1) when A=A', g=q!, G=G!, H=H! is that
which is optimal for detecting the disorder described by

(5.3.33) with

0 - go . = glpogeT :

L# H I(t<t3) Fo H'Q H I(t<tj)

Ll = R'I(t2t;) + H‘Q‘H‘TI(tatj)
2 _ -

L =0 T, = 0 ¥t

The system (5.3.33) has the same form as (5.1.1) with

Di=[HY 0 o03; p'=f0 H! 031; D%2=[0 O H?]

F°=H°Q°H°T . F1=H1Q1H1T . F2=H2Q2H2T (5.3.34)
The requirements(5.1?5b) are satisfied by Lemma,5:8
Assumption (5.1.30) holds. Theorem 5.1 then specifies a set
of disordered parame?er pqin?s (A%2,9%,6%2,H%) such ?haﬁ the
expec#ed cosﬁ is no_gréatér, for ¢ small, than that whén the

scheme is used to detect the disorder for which it 1is

optimal.
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Exemple

Consider the following system

ax

t atxtdt + gtht

dyt xtdt + dZt

where Xg»Yy &re scalar processes

Vt’zt are independent scalar Wiener processes, independent

of t.
J

"

a, = -2, gy =1 Vt<tj

a? = &, gt = g ¥t2tj

P(tth) = 1-e7At
xq%N(xo,—2+/5)

A (sub-optimal) detection scheme is implemented for the

case
a =-3, g=1
Suppose the actual post-jump parameters are E=a2,§=g2.
From (5.3.1) and (5.3.24)
D%=[1 0 0] ; D'=[0 1 0] ; D2=[0 0 1]
From (5.1.66)
t 34T
J
o, = lim 3E!] (A+vimlv_)du
1 T t . u u
T3>0 ‘3 .
1, tj+T 5 o
= lim 281 ° (341(21-29)%)au by (5.1.11)
and from (5.1.65)
: t 4T
= sy lpop 90 T »
o, = lim ZE jt (A+vuM vu)du
T>o j

t.+T AQD A A 2
1im lﬁzflJ ‘(X+%(i2—x°)2f%(x2-x1)“)du_
t g . .u R S
T ---j '

by (5.1.11)
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Here E'denotes expectation given that the disorder is that
for-which the detection rule is optimal, and E® denotes

expectation given the-disorder %s the actual oné defined

above.

dig = -/5.% dt + (- 2+/5)dyt
0 S al _
dx, = /lO.xtdt + 3+/1o)dyt
ax2 = -/(a2%+g2%).22at + (a%+/(a2%+g2%))ay,
"O_’\l_'\z_"
XoTXoTX5T %0

This leads to cl=o.00131 +A

If a?=-2=al, g2=/(2/3), then 0,~0.00046 +A

The. conditions of Theorem 5.1 are not satisfied: although
this is only a sufficiency result, from the argument at the
end of Section 5.1 it is conjectured that necessity also
holds.In’t§is case, the above disorder would not be detected
as guickly as the design case disorder. This is of inperest,

since with this choice of a?,g?

lim E2? (x 2y= 1im E (x 2)
T+co - T‘* -

Hence the detection rule is capable of rejecting transient
effects due to decreases in the externslly generatéd noise
covariance, and picks out output paths corresponding to
changes in the dynamics of the system.

The case g2?=g'’=1 was also investigated. Figure
5.3.2 shows that the response of the detection scheme for
small ¢ imprqves if a%<-3, ife: the jump is larger than
that designed for. Im Fhis case,. & rqbus#ness property is

exhibited.
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CHAPTER 6 CONCLUSIONS

6.1 The work presented in this thesis has two main
objectives. Firstly some results are given on detection
rules for systems with simple dynamics which extend
those previously available. Also a number of results
concerning the Baysian formulation of the detection
problem are collected in Chapter 2, concerning the
relationship between different cost functions.

It is hoped that this may help to bridge the gap
between practical and theoretical studies. The sub-
optimal approach for general systems proposed in Section
3.k fqllows napurally from the opﬁimal schemes discussed
.in earlier sections.

Secqndly, the re;?ricpion on the formulation of
Section 3.1 or 3.4 is obvious in that previous
knowledgg of the post-Jjump parameter is necessary. The
robustness studies of Chapters 4 and 5 go some way
towards the possibility of constructing effective
detection rules with less precise advance information.
Chapter 4 gives a detailed study of the first order
sutoregression case, which in fact has a fairly complicated
structure.

Chapter 5 deals with more general systems, and provides
e result which is felt should be useful in practical
situations. The theory is however, somewhat incomplete

and might be capable of some refinement.

6.2 Outstanding points for further research

It would be of interest to investigate the effect
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of initial conditions in the construction of detection
rules with cost function Q in Section.272.

It is felt that providing A is small this should not

be important (see:?hearemark in ‘Section 3.2) and this
would enable the tﬁéory developed using costs C(T) and
K(TY) to be applied to this problem. Alternatively it
might be possible to make a similar study of detection
rules with cost Q directly.

b) The importance of the stopping boundary shape needs
further investigation. It seems likely that it would be
important to have a correctly shaped boundary i1f extremely
quick detection was required. However, if this was not
the case (more attention being atﬁétched to the

reduction of false alarms), the computationally

demanding problem of generating the boundary shape would
probably not be worthwhile except in simple cases. Even
in the former case & method of approximating the bhoundary
shepe other than with a straight line in (mw,v) space might
be found to be satisfactory. No real progress was made 1in
investigating these questions here.

¢) Although the sub-optimal stopping rule of Section 3.k
seems to be a natural approach when ¢ is small, it would
be useful to have some quantative information on the
increase in expected cost due to using this approach., It
might be possible to obtain some information on this by
considering the process Ry = 1n (mg/(1-mg)).

d) A more complete result on the robustﬁess of detection
rules for general systems than that obtained in Chapter 5
is desirable., It would be useful to obtain a guide to

the value of ¢y in Theorem 5.1 which corresponds to each
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parameter point.

e) If no progress is possible on point (4d) aﬁove, it
would be of interest to reconsider the way in which the
exponential term in (5.1.11) is handled in Theorem 5.1.
The remarks at the end of Section 5.1 explain how the
present approach is rather unsatisfactory. Alsoc it should
be possible to prove necessity as well as sufficiency in
Theorem 5.1.

f) Finally it would be of interest to investigate the
relationship between the parameter sets characterized in
Thecrem 5.1 and the corresponding system structure., It
might be possible then to use the ideas of Section 3.5 to

construct near min-max detection rules.,
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APPENDIX NON-LINEAR FILTERING

In this Appendix, the necessary result of non-linear
filtering theory, as applied to the evaluation of the
probability m, is stated. This approach follows [1k]

and the filtering result is taken from [15].

Suppose Vi is a stochastic process, and that_Vt is the

o-field generated by (y _,ust). Also yteRm ¥t.
Suppose'that tj is a random variable such that thO and

lim P(t.e(t,t+81|t.>t,Y.) = g
550 | e 37 t t

vhere g, is & Vt—measurable process.,

.
Define M, & I(t2t.) - [ g, -(1-I(u2t;))du , t2u
v Jd 0 u . d

and let Mt denote the o-field generated by (Mu,ust).

Then
3 tj/\t
E(M?+stt,Vo) = P(t;el0, 6] Mg,V ) - E(fo g dul M,V )

. ' . . ‘bj/\(t'i's)
+ P(tje[t,t+sllMt,Vo) eAE(]tjAt g, dulM, .Y )

by definition of B+

Therefore, if Vo is given a priori, M is a Martingale.

Kow suppose that Yy satisfies

dyt = ftdt + th
where f, is measureble with respect to the g-field generated
by (I(tétj),yu;ust), and W, is an m-dimensional Wienmer .

process. M, W,  is & Mertingale, and from [15:Theoren h,11 -

-

ie m, & P(tztjlyt) = B(X{s2t,)|Y)
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then

-t
M= T+ ,fdgu.(l—ﬂu)du

t
+ J'

u - u T
0(E (fuI(tZ‘tj))-E (fu)wu) av,,

vhere Eu(')=E(‘IVﬁ)
and = “groa
- Vo Yy ~ fO sts®®

In addition, v, is a Wiener process.
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