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(i) 

ABSTRACT  

A numerical finite-difference calculation method has been 

developed from an existing recirculating flow procedure for 

application to fully developed flow and heat transfer in straight 

passages of arbitrary cross-section. The method is formulated with 

reference to an orthogonal curvilinear co-ordinate mesh which is 

fitted exactly into each passage shape. For turbulent flows, the 

Reynolds stresses are calculated from simplified algebraic forms of 

their general transport equations, previously derived for square duct 

flow calculations and coupled, in this study, with a turbulence model 

in which transport equations are solved for turbulence kinetic energy 

and its dissipation rate. This turbulent stress model enabled 

secondary flows to be included in the non-circular passage 

calculations. 

Predictions are presented for 28 passage geometries and compared 

with available analytical or numerical solutions and experimental data. 

The laminar flow and heat transfer calculations are in good agreement 

with previous solutions. The turbulent flow predictions of local 

secondary and axial velocity, wall shear stress and Nusselt number are 

in reasonable agreement with experiment for the fully-developed flow 

cases. The predicted turbulence structure is however in less satis-

factory agreement with the measurements, particularly near the passage 

walls where turbulence kinetic energy and the anisotropy of the cross-

plane normal stresses are generally under-predicted. The calculated 

friction factors and mean Nusselt numbers are also about 10% less than 

the measurements. These shortcomings are believed to be mainly due to 



the values of the empirical constants used in the algebraic stress 

model which were selected to give reasonable secondary flows but made 

the model relatively insensitive to the damping effect of the walls. 

The calculations also show that although the secondary velocities are 

usually only about 1% of the mean axial velocity, they exert a 

considerable influence on local mean flow distributions. 
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CHAPTER 1 	INTRODUCTION 

1.1 Background to the present'wOrk  

In recent years, the rising demand for energy and the consequent 

concern for its conservation has increased the need for compact, 

highly rated and efficient heat exchangers for a wide range of 

applications. This has led to an urgent need for the detailed 

knowledge of flow and heat transfer in non-circular passages, required 

as part of the input for the optimum design of such heat exchangers. 

An involvement in the gas turbine regenerator aspect of this 

work (e.g. Bayley and Rapley, 1965; Rapley et al, 1974; Rapley, 1978) 

has led the present author into a wider interest in the problem of 

flow and heat transfer in arbitrary-shaped passages. It was readily 

apparent that the bulk of knowledge available was based on experiment, 

most of which provided only (and sometimes conflicting) overall 

characteristics. The development of non-circular passage design for 

compact heat exchangers was mainly by 'trial and error' make-and-test 

methods. 

The demand for more detailed knowledge and for more systematic 

methods of development was also apparent, particularly in such 

important applications as the cooling and heating processes in 

nuclear reactors, gas turbines, all kinds of waste-heat recovery, 

chemical and other process and power plant. An S.R.C. Round Table 

meeting on convective heat and mass transfer in September 1975 

(Science Research Council, 1975) echoed this demand as successive 
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speakers representing the Nuclear Power, Gas Turbine, Chemical 

Engineering and related industries made pleas for 'further research 

on ducts of non-circular cross-section'. 

The work reported in this thesis is the present author's 

response to this need for more research in non-circular ducts and for 

more systematic methods in the design and optimisation of passage 

flows and heat transfer. With the almost overwhelming variety of 

passage shapes, flow and heat transfer conditions that could be of 

interest, a theoretical approach, using the recently developed 

computer-based numerical methods of analysis, appeared to offer the 

most effective path. The immediate objective of the present work is 

to provide a base for such an approach by the development of a 

calculation procedure for fully developed flow and heat transfer in 

straight, arbitrary-shaped passages, capable of predicting the main 

local and overall features of these flows with the minimum of 

complexity in the procedure. This latter restriction was included 

as part of the aim to produce a realistic design tool for this class 

of flows. 

1.2 Secondary flows in non-circular. passages  

Turbulent flows in straight non-circular passages are considerably 

more complex than those in circular ducts, due to the presence of 

turbulence-driven secondary flow which causes the main flow to spiral 

in the axial direction. Here the term 'secondary flow' refers to a 

cross-flow field in a plane that is normal to the axial direction. 

These flows are relatively weak compared with the main flow, but can 
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have significant influence on the local mean flow characteristics. 

Indeed, the distortions caused to the axial velocity distribution 

were the main early evidence of the existence of these flows in non-

circular channels (see the rectangular and triangular duct isovel 

contours measured by Nikuradse (1926) and reproduced in figure 3.2.1). 

The general character of these secondary motions, as deduced from 

experiment for various passage shapes are indicated in figures 3.2.2 

to 3.2.5. In this thesis, secondary flow and cross-flow refer to 

the same motions. 

Prandtl suggested that turbulence-driven secondary flows be 

identified as of the 'second kind', to distinguish them from those of 

the 'first kind' which, unlike the former, can occur in laminar flow 

as well, being due to external influences such as convergence, 

divergence or lateral curvature of the axial flow, or to the lateral 

motion of a passage wall. Secondary flows of the first kind, if 

present, will normally dominate the usually much weaker second kind 

flows. Studies of secondary flow of the first kind have been 

reported elsewhere (e.g. Patankar et al, 1975) and are outside the 

scope of the present work. 

1.3 The present contribution  

In the present study a numerical finite-difference calculation 

procedure has been developed for application to fully developed 

steady laminar and turbulent flow and heat transfer in straight 

passages of arbitrary cross-section. The turbulent stresses are 

calculated from simplified algebraic forms of the general transport 

equations for these stresses, first proposed for the calculation of 
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square duct flows by Launder and Ying (1973) and further analysed by 

Gessner and Emery (1976). 

The equations solved for the flow, stress, turbulence and 

enthalpy fields have been formulated with reference to a curvilinear 

orthogonal co-ordinate system which is generated in such a way that 

the boundaries of the co-ordinate system coincide with the passage 

boundaries. 

The calculation method so developed has been applied to a wide 

range of laminar and turbulent passage flows, with and without heat 

transfer. The results of these calculations have been compared with 

analytical or previous numerical solutions and with experimental 

data. Such comparisons have been used to validate the calculation 

method and demonstrate its accuracy and flexibility of application. 

These comparisons have also enabled a detailed examination to be made 

of the turbulent stress model used and thus to identify its strengths 

and weaknesses. In addition the predictions obtained have enabled an 

extensive study to be made of the local and overall characteristics 

of this class of flows and, in particular, have allowed some useful 

general observations to be made on the origin and maintenance of 

turbulence-driven secondary flow. Finally, the method has been used 

to clarify the consistency of various experimental measurements and 

to investigate effects in the flow that may influence measurements, 

such as that of the containing end walls in an experimental rod-

bundle test rig. 
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1.4 Contents of the thesis  

The thesis is divided into nine chapters of which Chapters 6 to 

8 present the predictions obtained from the present calculation 

method. The initial mathematical problem is stated and formulated in 

orthogonal curvilinear co-ordinates in Chapter 2. This is followed 

by a review of relevant experimental and previous theoretical work in 

Chapter 3. This Chapter contains tables chronologically listing the 

main experimental investigations which have been performed with some 

details of the measurements made and instrumentation used. 

The methods used to calculate the turbulent stresses and heat 

fluxes required for solution of the governing equations are the 

subject of Chapter 4. This chapter also contains a summary of the 

boundary conditions for each main variable solved. The re-casting of 

the equations into a general form and the discretization into finite-

difference form is described in Chapter 5. The solution method for 

these equations is also presented in this chapter, together with an 

appraisal of its accuracy. 

Chapter 6 contains comparisons of the laminar flow predictions 

with existing theoretical solutions for three different passage shapes. 

The turbulent flow predictions are presented and analysed in extensive 

detail in Chapter 7. Flows in eight different passage shapes with a 

wide range of geometry and flow conditions are compared with 

experiment, and where possible with previous calculations to assess 

the performance of the calculation method developed. The heat 

transfer solutions, obtained for both laminar and turbulent flow in a 

variety of passage shapes are described and compared with previous 

analysis and experiment in Chapter 8. 



6 

In Chapter 9, a summary is made of the present achievements 

and limitations and some overall observations are drawn.from the 

detailed predictions of the previous three chapters. This final 

chapter then concludes with suggestions for further work. 

Lists of references and nomenclature follow the final chapter, 

together with the appendices which provide supplementary details of 

the formulation and solution of the mathematical problem. The 

thesis terminates with the figures. 
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CHAPTER 2 	THE THEORETICAL PROBLEM 

2.1 Introduction  

In this chapter the theoretical problem is stated in the form 

of time-averaged partial differential conservation equations 

representing the flow and the transport of a scalar quantity. The 

equations are first presented in Cartesian tensor notation to take 

advantage of the compactness and physical clarity which these 

equations offer. The further relationships required for closure of 

the equations is discussed and then they are finally presented in 

general orthogonal co-ordinate form appropriate to fully-developed 

flow in arbitrary shaped ducts. 

2.2 'Equations of motion  

The Reynolds equations for a steady, incompressible, time-

averaged turbulent flow can be written in Cartesian tensor notation 

as (Tennekes and Lumley, 1972): 

a(pUiUjVaxi  = - ap/axj  - a(Tipaxi 	(2.2.1) 

and the continuity equation as 

a(pUi)/axi  = 0 	 (2.2.2) 
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The stress tensor TiJ is the sum of the viscous stress tensor T ib  
and the turbulent (Reynolds) stress tensor tib. The viscous stress 

tensor is related to the mean strain rate in a Newtonian fluid 

(Hinze, 1975) by: 

Tip 
_ - u(au/axi  + auf /axi) (2.2.3) 

and the Reynolds stress tensor is, by definition, linked to the 

fluctuating velocities u by 

tij = pui uj 
(2.2.4) 

Equations (2.2.1) can be applied to laminar flow by setting 

Tib 	= 	Tij, which, together with the appropriate boundary 

conditions, yields a closed set of equations. Closure for time-

averaged turbulent flows is obtained by representing the Reynolds 

stresses in terms of calculable properties of the flow - a process 

known as 'turbulence modelling', which has been the source of much 

effort and publication in recent years. 

2.3 Scalar transport  

The steady, low speed turbulent transport of a scalar quantity 

C (e.g. enthalpy) can be represented in time averaged terms by 

partial differential equations of the form (Hinze, 1975): 

a(PUiC)/axi  = a(DcaC/axi  - uic)/axi  + Sc 	(2.3.1) 

The left-hand-side of equations (2.3.1) represents the convective 

transport, the first term on the right-hand-side the diffusive 
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transport and the term Sc  the source or sink of C. Dc  stands for 

the molecular diffusivity of C while uic is the turbulent scalar 

flux in directionxi. 

For laminar flow, the turbulent scalar flux is zero and the 

solution of equation (2.3.1) is then in principle possible for a 

given velocity field and boundary conditions. For turbulent flow 

however, the turbulent scalar flux is required to be represented 

(modelled) in terms of calculable quantities before closure can be 

obtained. 

2.4 The equations in general - orthogonal co-ordinates  

A co-ordinate frame is required for the foregoing partial 

differential equations that can be fitted exactly into any passage 

cross-sectional shape. This requirement disqualifies conventional 

systems such as rectangular and polar-cylindrical and leaves a choice 

mainly between orthogonal curvilinear and non-orthogonal co-ordinates. 

The orthogonal curvilinear system was adopted in the present study on 

the grounds that it is 	less complex, particularly near boundary 

surfaces where boundary conditions need to be applied, and thus is 

more easily incorporated into the numerical procedure originally 

devised for the conventional systems. 

The Reynolds equations (2.2.1), continuity equation (2.2.2) and 

scalar transport equation (2.3.1) can be expressed in general-

orthogonal co-ordinate form by the novel transformation procedure 

recently proposed by Pope (1978). In this procedure, vectors and 

tensors are represented in terms of their components in the direction 
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of their orthogonal co-ordinate lines relative to the Cartesian 

system. In this way a relatively compact orthogonal co-ordinate form 

of the equations can be obtained directly from the Cartesian tensor 

version. The transformation relations required are given in Appendix 

3 with any further derivations and details available in Pope (1978). 

The equations resulting from transformation of (2.2.1) and (2.2.2) 

are given as equations A3.5 and A3.6 which can now be expressed in 

terms of the orthogonal co-ordinates yl, Y2  and y3  where directions 

yi  and y2  are in the cross-plane and y3  in the axial direction as 

shown in figure 2.4.1. The corresponding metric coefficients are hi, 

h2  and h3. The local radii of curvature r1 and r2, along co-ordinate 

lines y1  and y2  respectively, are given by 

1/r1  = (1/h1h2)(ah1/aY2 ) (2.4.1) 

1/r2 = (l/h02)(ah2/aYi) (2.4.2) 

When the appropriate simplifications are invoked for fully 

developed flow (a/ayi  = 0, except ap/ay3) in straight ducts 

(h3  = 1 and r3  ; o), the momentum equations can be written for 

each co-ordinate direction as:- 

Direction 1  

a(h2pU1U1)/ayi + a(hipUjU2)/aY2 	= 	- h2aP/aYi 

- (h2T11)/y1 - a(hiT12)/aY2 + [- h1h2(pU1U2 

+ T12)/ri  + h1h2(pU2U2 + T22)/r2 (2.4.3) 



Direction 2  

a(h2pU1U2)/ay1 + a(hipU2U2)/aY2 = - heap/aY2 

- a(h2T12)/aY1 - a(h1T22)/ay2  + [hih2(PUIU1 + T11)/ri 

- h1h2(00U2 + T12)/r2. 	 (2.4.4) 

Direction 3  

a(h2pUO3)/aY1 + a(h1pU2U3)/ay2 = - hlh2ap/ay3 

- a(h2T13)/ay1 - a(h1T23)/9Y2 (2.4.5) 

These show clearly the extra terms (in square brackets), in the 

cross-plane momentum equations (2.4.3) and (2.4.4) which are due to 

the curvature of the co-ordinate lines. 

The velocity components U1 and U2 in equations (2.4.3) to 

(2.4.5) are the cross-plane secondary velocities that occur in 

turbulent non-circular passage flows as already mentioned in 

Chapter 1. 

The above set (2.4.3) to (2.4.5) can now be expressed in a form 

suitable for the solution procedure by substituting the orthogonal 

co-ordinate versions of the stress tensor relations (2.2.3) and 

(2.2.4). This leads to the following final forms:- 
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Direction 1  

a(h2pUlUt )/aYi + a(h1pU2U1)/Y2 - h2ap/ayl 

.+ 

h2( aUl ) 
a( 	aYl )/aYl 

Ul 
- 9(uhlrl)/aY2 + 

+ a(2uh2 i)/ayl 

h1 .aU2 

a(u~( aYl))a Y2 

hl aUl 
+ a CEPT 2 )) / ay2 

h U2 
a(11lr2)/aY2 

- h1h2 r2 	/h + 2uU1 /r2 - pU2U2 — pu2u2] /r2 

+ h02[11aU1/h2aY2 + uaU2/h0y1 - pUl/r1 - 02/r2 

pUlU2 — pulu21/rl — a(h2pu1111)/aY1 

a(hlpulu2)/aY2 (2.4.6) 

Direction 2  

a(h2pU1112)/aY1 

h2 aU2 
+ a(u~( aYl) )aY l 

a(h1pU2U2) /ay2 

- a(uh2r2)/aYl 

- hlap/aY2 

+ a("h2'ay2))/aY1 

U1 
a(

11h277)/aY1 

h,h2[2uaU1/hlayl 

+ hlh2[uaU2/hlayl 

hl aU2 	2uh Ul 
a(2u n2( 9Y2))/aY2 + a( 	lr2)/aY2 

+ 2uU2/rl - pUlU1 - pulul]/rl 

+ uaUl/h2aY2 — 02/r2 — al/rl 

▪ pUlU2 - pUlU2]/r2 

a(hlpu2o2)/ay2 

— a(h2pulu2)/aY1 

(2.4.7) 
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Direction 3  

a(h2PUlU3)/aY1 + 

+ 3( (ayl))/aYl 

a(h1pU2U3)/aY2 = - h1h2aP/aY3 

h1 aU3 
+ a(i2(aYz))/aY2 

- a(h2pulu3)/ay1 - a (h1pu2u3)/aY2 (2.4.8) 

The orthogonal co-ordinate form of the continuity equation becomes 

(from A3.6) 

a(h201)/aY1 + a(h1pU2)/aY2 0 	(2.4.9) 

For laminar flow, the turbulent stresses disappear and since 

there is then no source of cross-plane momentum, the velocities U1  

and U2 become zero. Thus, for laminar flow equations (2.4.6) and 

(2.4.7) disappear and there remains equation (2.4.8) with the last 

two (turbulent stress) terms absent. 

The scalar transport equation (2.3.1) can also be transformed 

(Appendix 3, equation A3.7) and written in terms of orthogonal co-

ordinates for steady fully-developed flow in straight passages as: 

a(h2pU1C)/ay1 + a(h1pU2C)/aY2 + a(h1h2pU3C)/aY3 

D h2 (— 
aC ) 	

D h l  ( 
aC ) 

= 	a( fil  aYl )/ōyl  + a( c 	
aY2 )/ay2 

- a(h2u7c)/41 - a(h1u2c)/aY2 	 (2.4.10) 

For laminar flow U1  and U2 are zero and the turbulent fluxes Lilo and 

u2c disappear to leave a balance between axial convection and cross-

plane diffusion. 
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2.5 Closure  

The mathematical problem of steady fully-developed turbulent 

flow and scalar transport in straight passages of arbitrary cross-

section is represented by equations (2.4.6) - (2.4.10). The 

velocity components U1  and U2  are identified as the cross-plane 

secondary velocities which, as mentioned in Chapter 1, are an 

important feature of turbulent flow in non-circular passages. The 

laminar flow problem reduces to the solution of equation (2.4.8) 

with U1, U2  and the turbulent stresses set to zero. To obtain a 

solution of the turbulent flow problem, the Reynolds stresses and 

the turbulent scalar fluxes have to be modelled in terms of 

calculable properties. This problem is discussed in the context of 

previous theoretical work in the next chapter, and the modelling 

used in the present work is presented in Chapter 4. 
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CHAPTER 3 	REVIEW OF PREVIOUS WORK 

3.1 Introduction  

In the first part of this chapter, a review is made of the 

published experimental work which has established the current 

picture of the characteristics of turbulent flow and heat transfer in 

non-circular passages. Particular attention is paid to the origin 

and role of turbulence-driven secondary flows. In the second part of 

the chapter, the theoretical work reported in the literature is 

reviewed, concentrating mainly on the more recent computer-based 

calculation methods for solving the fundamental conservation 

equations of the flow with the aid of mathematical models of the 

turbulence and the stresses which it produces. 

3.2 Experimental studies of the flow field  

The early experimental work reported on turbulent flow in non-

circular passages consists mainly of measurements of friction factor-

Reynolds number characteristics and, occasionally, axial velocity 

profiles. Amongst the earliest investigations are those of Schiller 

(1923) and Nikuradse (1926, 1930), both of whom measured the friction 

factor characteristics of square, rectangular and triangular ducts. 

Additionally, Nikuradse reported pitot-tube measurements of axial 

velocity profiles. In the years following this work, friction 

factors were reported for flow in a wide range of passage shapes by 

various workers. 
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A critical survey of the friction factor data available in 

1952 was made by Claiborne (1952), who attempted to correlate the 

measurements via the equivalent diameter concept and found 

deviations of more than 20% when compared with the Blasius 

(Schlichting, 1968) circular duct equation. There were no consistent 

geometric trends in the correlations and Claiborne concluded that the 

deviations from equivalent circular duct pressure drop were mainly 

due to the effects of turbulence driven secondary flow in the cross-

plane, the presence of which was evident from the distortion of the 

axial velocity profiles and from flow visualisation. The axial 

velocity contours plotted in figure 3.2.1 taken from the measurements 

of Nikuradse (1926) in a 3.5:1 aspect ratio rectangular duct show 

these distortions clearly. The contours bulge well into the duct 

corners indicating a significant secondary flow carrying high-

velocity fluid from the core region towards the corners. A similar 

effect (although not as marked) can be observed with the measured 

velocity profiles in an equilateral triangular duct (figure 3.2.1) 

indicating again secondary flow fran the core into the corners. 

In the decade or so following Claiborne's survey, there was a 

continuing effort on the measurement of friction factors and, to a 

lesser extent, pitot tube measurements of axial velocity profiles. 

Measurements of wall shear stress profiles began to appear 

following the publication of the method by Preston (1954) which 

employed surface pitot tubes. During this decade and through to the 

present time, the development and refinement of hot wire anemometers. 

and more recently laser-doppler anemometers, has enabled detailed 

investigations to be made into the structure of turbulent flow. The 

main effort in non-circular passages seems to have been made on flows 
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in square and rectangular ducts and in the axial flow passages found 

in nuclear rod bundles. A representative chronological summary of 

the experiments reported since the survey of Claiborne is shown in 

table 3.2.1 which gives an indication of the quantities measured and 

the type of instrument used. The data from these investigations 

forms the bulk of the currently available information on turbulent 

flow in straight non-circular passages and as such will be used as a 

basis for comparison and validation of predictions from the current 

method. Because of this, the results from many of these investi-

gations will be plotted and described in more detail in later 

chapters. Where appropriate in the following overall descriptions 

of this work, reference will be made to these later plots. 

All the measured axial velocity and wall shear stress profiles 

reported for the wide range of passage shapes listed in table 3.2.1 

show distortions attributable to secondary flow. In some cases the 

secondary velocities were also measured and the flow pattern 

determined. Many workers presented axial velocity distributions 

plotted on inner 'law-of-the-wall' co-ordinates along normals to 

boundary surfaces and found that the universal law 

U3 	= 	A £n(y+) + B 	 (3.2.1) 

was satisfied with constants A and B varying between geometries and 

sometimes with position around the perimeter in a particular geometry. 

Table 3.2.2 summarises the typical average values proposed for a 

range of passage shapes. With few exceptions the variation of A and 

B in table 3.2.2 is in fact not much more than the variation found in 

the literature for different flat plate and circular pipe investi-

gations. 



No. Year Author(s) Shape(s) Geometry Quant. Instr. Fluid Comments 

1 1954 Lowdermilk et al ❑ c> a = 1,5; 0 = 60°  f air 

2 1955 Le Tourneau et al 000 a = 1.12 f water 19 rod cluster 

3 1956 Eckert & Irvine C> e = 11.7°, 	24.8°  f 
w 

PT air 

4 1956 Dingee & Chastain 000 a 	= 1.12, 	1.2, f water 9 rod cluster 

1.27 

5 1956 Miller et al 000 a = 1.46 f water 37 rod cluster 

6 1956 Wantland o0  0 	00 a 	= 1.106, 	1.19 f water 100 rod clusters 

7 1957 Eckert & Irvine e = 24.8°, a = 3 f air entrance length and 
transition 

c 	um 

8 1960 Hoagland a = 1 w 
ai 

HWA air ■ 

U. ui 
sec 

9 1961 Carlson & Irvine > 0 = 	°, 8°, 12°, f air $ 
22.3', 38.8°  

Note: 	A key to the notation appears at the end of the Table 

Table 3.2.1 	A selection of turbulent non-circular passage experiments reported since 1952. 	Cont'd 



No. Year Author(s) Shape(s) Geometry Quant. Instr. Fluid Comments 

10 1961 Gessner & Jones 0 a = 1 w PT air 
u· 1 HWA 

11 1961 Pa1mer & Swanson 00 a = 1.015 f PT air 7 rod cluster 
0 w 

12 1962 Cremers & Eckert C> 0 u· HWA air same duct as 3 a = 11.7 :L 
U·U· 1 J 

13 1962 Hartnett et a1 0 D a = 1, 5, 10 f air 

14 1962 Ushakov et a1 00 a = 1 f hR & 9 rod cluster 
0 N k 

15 1963 Leutheusser 0 D a = 1, 3 w PT air 
'to 
f 

16 1964 Brundrett & 0 a = 1 w HWA air same duct as 15 
Baines ij. 

1 
U·U· 1 J sec 
f 

17 1964 Brighton & Jones @ Dd = 16, 8, 2.67, w PT water 
1.78 ui H\~A air 

ui Uj 
f 

Table 3.2.1 continued Cont'd 



No. Year Author(s) Shape(s) Geometry Quant. Instr. Fluid Comments 

18 1965 Tracy a = 6.4 w PT air mm 
Vi 
uiuj 

HWA 

19 1965 Gessner & Jones a = 1,2 sec 
uiuuj 

PT air uiu• along selected 
isotachs 

0 	mm 

20 1965 Liggett et al \/ 0 = 90° w 
sec 

PT & 
HFA 

water open channel 

To PR 

21 1965 Eifler & Nijsing ° o a 	= 1.05, 	1.1, w PT water 4 rod cluster 

1967 ° 1.15 f 

22 1968 Levchenko et al °o° a = 1.0 w 
To 

PT 
PR 

air & 
water 

23 1970 Perkins L e = 900 w 
ū~j 

HWA air open corner 

24 1971 Cain & Duffy O a = 2.67, 2.93 w 
f 

PT air 

To PR 

25 1971 Hall & °ō a = 1.217 sec HWA air 6 rod cluster 

Svenningsson 

Table 3.2.1 continued Cont'd 



No. Year Author(s) Shape(s) Geometry Quant. Instr. Fluid Comments 

26 1971 Kjellstrom O a = 1.217 w PT same rig as 25 
To  PR 

Iii 
u.u• 
sec 
f 

27 1971b Kokorev et al 0 D a = 1; 0 = 20°  sec PT air 

28 1971 Subbotin et al 000 a = 1.05, 	1.1, w PT air 3 rod channel 

1.2 To 
f 

PR 

29 1972 Launder & Ying 0 a = 1 w 
sec 

HWA air 

30 1972 Rehme °o° 
a = 1.025-2.315 f water 25 different 'a' and 

No. of rods 

31 1972 Thomas & Easter 0 a = 1 w PT air 
To 

f 
BLF & 
HFA 

32 1973 Kacker O w PT air 
To 

sec 
BLF 
HWA 

Table 3.2.1 continued Cont'd 



No. Year Author(s) Shape(s) Geometry Quant. Instr. Fluid Comments 

33 1973 Gessner a = 1 w PT air along corner bisector ■ 
Upj 
sec 

HWA 

34 1973 Marek et al o oo 
a = 1.283 f helium 

35 1974 Rehme 0° Dd = 10, 25, 50 w 
f 

PT air 

36 1974 Rowe et al o o a 	= 1.125, 	1.25 w 
ūi 

LDA 6 rod cluster 

37 1975 Rehme Qo Dd = 10, 25, 50 "di HWA 

Dij 

38 1975 Trupp & Azad °o° 
a 	= 1.2, 	1.35, 	1.5 w PT air 7 rod cluster 

To  

ii 
HFA 
HWA 

39 1976 Carajilescov & 
Todreas 

o o 

° 
a = 1.123 w 

ūi 
LDA water 4 rod channel 

uiuj 

40 1976 Melling & a = 1 w LDA water not fully developed ■ 
Whitelaw Ili 

(TU. 
sec } 

Table 3.2.1  continued Cont'd 



Gerard & Baines 

Aly et al 

w 
T°  
f 

w 
T°  
M 
ui 
ui ui 

sec 
f 

Quantity 	f 	friction factor 
measured: 	w 	axial velocity 

To wall shear stress 
Ili 	turbulence intensity 
guj Reynolds stresses 
sec secondary velocity 

Instrument 
used: PT pitot tube 

PR Preston tube 
HWA hot wire anemometer 
HFA hot film anemometer 
BLF boundary layer fence 
LDA laser doppler anemometer 

No. Year Author(s) Shape(s) Geometry Quant. Instr. Fluid Comments 

41 00 
00 air 

air 

1977 

1978 42 

a =1 

e = 60°  

PT 
PR 

PT 
PR 

Key: 	Shape: 	oo0 rod bundle, triangular array. 
oo 00 rod bundle, square array. 
I> isosceles triangular duct. 
o square duct. 
C] rectangular duct. 
CD elliptical duct. 
O eccentric pins in a circular tube. 
Qo annulus. 

	

Geometry: 	e = apex angle 
a = aspect ratio or P/D ratio 
Dd = outer dia./inner dia. 

Table 3.2.1  A selection of turbulent non-circular passage experiments reported since 1952. 
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Year Author Duct shape A B 

1968 Schlichting* Circular 2.5 5.5 

1965 Patel Circular (& Flat 2.39 5.45 
Plate 

1963 Leutheusser Square and Rectangular 2.46 5.5 
(AR = 3) 

1965 Tracy Rectangular (AR = 6.4) 1.43 6.5 

1977 Gerard & Baines Rod Bundle P/D = 1.0 2.39 5.45 

1978 Aly et al Equilateral Triangle 2.47 5.08 

1975 Trupp & Azad Rod Bundle (AR = 1.2, 
1.35, 	1.5(e = 0° & 300)) 

2.12 5.93 

e = 0° only 1.8 7.28 

1973 Cain et al Elliptical 	(AR = 1.5 2.39 5.45 
& 2.0) 

*using data of Nikuradse and Reichardt. 

Table 3.2.2 	Experimental inner-axial-velocity law 
constants 

The measured friction factors were found in many cases to be 

correlated to within ± 15% of the circular duct values when the 

'equivalent' or 'hydraulic' diameter concept was used in the 

evaluation of the Reynolds number. In closed ducts, the largest 

deviations from the circular duct data were found in duct shapes 

radically different from circular, such as narrow isosceles 

triangular ducts (Carlson and Irvine, 1961). In these ducts use of 

the hydraulic diameter increasingly over-estimated friction as the 

apex angle 2e was reduced, giving for example, an over-estimation 

of 25% at 2e = 4°. An indication of the likely spread of measured 

friction factor in all of these measurements, due to differences in 

test rigs, measurement techniques and experimental errors for 
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apparently similar passage configurations can be seen in the plot of 

friction factor measurements for a range of P/D ratio in rod bundles 

shown in figure 7.9.33. For example, for a P/D of 1.2 and Re  = 104  

the scatter is about ± 25% from the circular duct values. 

Various attempts have been made to develop universal friction 

factor equations that take passage shape into account, often on the 

basis of fully developed laminar flow behaviour where fRe  = FL = 

constant, depending only on geometry. An example of one of the more 

recent and least complex of these formulae is that developed by 

Malak et al (1975) which is written as: 

f 	= 	0.046 KT
1.12Re-0.2  

(3.2.2) 

where KT = (1 + 3KL)/4 and KL  = (FL/16)1. As with most of these 

formulae, this equation still uses the equivalent diameter concept 

and is an improvement on the Blasius equations for some geometries 

but does not appear to be universal. For example, it fails to 

correlate the square and rectangular duct data (see figures 7.3.11 

and 7.5.11). 

In the investigations where turbulent stresses were measured, 

the distributions along perpendicular bisectors of the walls were 

usually found to be broadly similar to those for a circular pipe. 

The experimental normal stress distributions for the latter are 

shown in figure 7.2.3a and can be compared with the corresponding 

distribution for a square duct (figure 7.3.10), triangular duct 

(figure 7.6.8) and a rod bundle channel (figure 7.9.9). As the wall 

is approached, the normal turbulent fluctuations are damped by the 

wall to produce anisotropic normal stresses in non-circular ducts 

generally similar to those in circular ducts. 
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Direct measurement of secondary velocities by such workers as 

Hoagland (1960), Brundrett and Baines (1964), Gessner and Jones 

(1965), Tracy (1965) and Launder and Ying (1972) has established the 

cross-flow pattern prevailing in square and rectangular ducts. 

These patterns are shown diagrammatically in figure 3.2.2 and are 

seen to be consistent with earlier deductions from the distortion of 

the axial velocity profiles (e.g. figure 3.2.1). The direction of 

secondary motion is from the core region into the corner along the 

corner bisecting planes, returning to the core along the wall and 

then the wall bisecting planes. The largest secondary velocities 

were found to be about li% of the bulk velocity and occur near the 

walls and along the corner bisecting planes. 

These flow patterns can be used to explain the distortions 

found in measured wall shear stress profiles, an example of which 

(Leutheusser, 1963) can be found in figure 7.3.3. Instead of 

decreasing monotonically from a maximum at mid-wall to zero at the 

corner, as in a laminar flow, the shear stress is uniform along the 

central half of the wall with the maximum values appearing, not at 

mid-wall, but at a point about half-way towards the corner. The 

increased wall shear stress in the corner region and the decreased 

stress in the middle are attributable to the secondary flow being 

directed towards the wall in the former region and away from the 

wall in the latter region. A more detailed discussion of these and 

other effects are given in Chapter 7 when comparisons are made 

between these experiments and the present work. 
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Measurement of secondary velocities in rod-bundles has been 

somewhat less successful than in square and rectangular ducts. 

The measurements in triangular array bundles of KjellstrUm (1971) 

and Hall and Svenningsson (1971) were too scattered to reveal any 

flow pattern and the anemometers used by Trupp and Azad (1975) and 

Carajilescov and Todreas (1976) lacked sufficient resolution to 

detect the small velocities involved. Secondary flow was, however, 

manifested as distortions of the measured axial velocity contours 

and wall shear stress profiles, as seen for example in figures 7.9.3 

and 7.9.6. Trupp and Azad postulated a secondary flow pattern from 

such distortions, although there is some uncertainty about its 

validity, as will be discussed in Chapter 7. This pattern, shown 

diagrammatically in figure 3.2.4 consists of a single cell of 

secondary flow in each symmetry element of the effectively infinite 

array, with circulation from the core region towards the gap, 

returning via the wall and the e = 30°  plane. Eckert and his co-

workers at Minnesota reported a series of investigations in narrow 

isosceles triangular ducts (Eckert et al, 1954; Eckert and Irvine, 

1956, 1960; Cremers and Eckert, 1962). Axial velocity profile 

distortions (rapid changes in gradient) were found in the narrow 

apex corner and axial velocity contours showed slight bulges into 

the corners near the base. The former effect was attributed to 

possible laminarisation of the flow due to the damping effects of the 

closely spaced walls and the latter to secondary flow, although no 

direct measurements of secondary flow were made. The more recent 

investigations of Aly et al (1978) in an equilateral-triangular duct 

did include measurement of secondary velocity which, as shown 

diagrammatically in figure 3.2.3, confirmed the earlier deductions of 
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Nikuradse (1926) and others from the axial velocity data. Six 

symmetrical counter-rotating cells of flow were detected giving 

circulations from the core into the corners that are basically 

similar to those found in square ducts. The magnitude and locations 

of the maximum secondary velocities were also found to be similar to 

those in square ducts. Consistent with these secondary motions, the 

measured axial velocity contours were found to bulge into the 

corners and the wall shear stress profile to be flat along much of 

the wall. These and other experimental measurements, including some 

from the narrow isosceles triangular ducts, are shown in figures 

7.6.3 to 7.7.6. 

The axial velocity contours and wall shear profiles measured by 

Cain and Duffy (1971) in an elliptical duct of aspect ratio 2.0 also 

showed distortions that were attributed to secondary flow although 

no attempt was made to measure the secondary velocities. 

An experimental study by Kacker (1973) of the flow in a tube 

containing one or more off-set pins revealed the presence of 

secondary flow by direct measurement. The measured cross - flow 

pattern for the single pin case is shown diagrammatically in figure 

3.2.5. The flow is from the higher axial velocity core region 

towards the lower axial velocity gap region, returning to the core 

via the pin surface. This was considered by the investigator to be 

broadly analogous to square duct secondary flows since the direction 

of flow was from the higher axial velocity core region towards a 

lower axial velocity (corner type) region. The measured axial 

,velocity contours showed extensive bulging into the gap region and 

the wall shear stress peripheral variation was found to be less than 
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10% on both the pin and the tube surfaces. These effects were both 

attributed to the secondary motions. 

It is clear from these experimental investigations that the 

distinguishing feature of fully developed turbulent flow in straight 

non-circular passages is the significant influence of the small 

turbulence driven secondary motions on the mean flow characteristics. 

This feature was apparent even from the early investigations and led 

to much speculation on how and why these flows were sustained. With 

the refinement of anemometry systems for turbulence measurement came 

the possibility of detailed investigations aimed specifically at 

determining the origins of these secondary flows. 

In what appears to be the first attack on the problem, Brundrett 

and Baines (1964) measured and mapped the various terms in the mean 

flow vorticity transport equation for the case of a square duct. 

They concluded that secondary flow represented a convective transport 

of vorticity generated by the need to balance production and 

diffusion. It was further concluded that gradients in, and 

anisotropy of, the cross-plane normal stresses were the main source 

of vorticity production and thus of secondary flows. 

This view of the dominance of normal stresses in secondary flow 

production gained further support from the experiments of Perkins 

(1970) and Eichelbrenner and Preston (1971) on turbulent boundary 

layers in corners. An alternative view was, however, proposed by 

Gessner (1973) in another direct attack on the problem. Momentum 

balances along secondary flow streamlines were determined experi-

mentally in an earlier investigation (Gessner and Jones, 1965) of 
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flow in a square duct and led to the conclusion that rather more 

than the normal stresses seemed to be involved in secondary flow 

production. Following a suggestion made by Hinze (1967), Gessner 

focussed attention on the balance of mechanical energy in the cross-

plane as well as the balance of mean flow vorticity. Meticulous 

experimental evaluations of the terms in these balances led this 

author to conclude that, contrary to Brundrett and Baines's 

suggestions, the anisotropy of normal stresses was of only minor 

consequence in the generation of secondary flows. Instead, evidence 

from the mechanical energy balance suggested that it was the 

gradients of turbulent shear stress in planes normal to the plane of 

the corner bisector that played the major role. The measurements 

showed that, along a corner bisector, the two dominant mechanical 

energy transfer mechanisms were an energy loss due to the working of 

the mean flow against the transverse turbulent shear stress gradients 

which is balanced by a gain due to convection of mean flow energy by 

secondary flow. It was further concluded that, since this balance 

was the mechanism that maintained secondary motions in fully 

developed flow, it must also be the mechanism that generates these 

motions in developing flow. 	However, it remains indisputable 

that the only source of axial vorticity in its governing equation 

is the normal stress anisotropy, which Gessner has acknowledged in 

recent unpublished work as the true source of these motions. 

3.3. Experimental heat transfer 

There appears to be paucity of detailed experimental data 

available in the literature for turbulent heat transfer in non-

circular passages. As with flow measurements, most of the published 
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heat-transfer experiments have been in square and rectangular ducts 

and in rod bundles. A representative chronological summary of the 

investigations reported is given in table 3.3.1. Although liquid 

metal flows lie beyond the scope of the present work, references to 

some rod-bundle investigations have been included as they have an 

important application in nuclear reactors. 

It is readily apparent from this table that most of the 

measurements have been of overall heat transfer in order to 

establish a Nusselt number/Reynolds number characteristic or its 

equivalent. The majority of investigations for a particular passage 

shape were with one fluid and one, or perhaps a small range of 

geometry and thus were not able to investigate the full dependence 

of the Nusselt number which would be also a function of Prandtl 

number, boundary conditions and asymmetry of heating and the mean 

temperature difference between boundary surface and fluid. It is 

probably for this reason that most authors chose to use the equiv-

alent diameter concept and compare their measured heat transfer with 

the Dittus-Boelter (1930) relationship for circular tubes: 

(Nu)DB 	- 	0.023 
Re.8 Pr.4 (3.3.1) 

Although this formula has been superseded by more recent correlations 

(e.g. see Kays (1966), p. 173) its previous extensive use makes it a 

convenient basis for comparison. 

When the passage corners are not cusped or very acute angled, 

the dependence of Nusselt number on Reynolds number appears to be 

similar to that in equation (3.3.1) i.e. NuaRe.8. This was so for 

the square and rectangular duct heat transfer measurements of 



No. Year Author(s) Shape(s) Geometry Quant. Heat Fluid Comments 

1 1954 Lowdermilk et al 0 p a = 1,5; 0 = 60°  Nu E(d) air 

2 1955 Dingee et al 0000 	00o a 	= 	1.12, 	1.2, 	1.27 Nu 
h 

E(d) water 

3 1956 Parrette &Grimble 0 0 a 	= 	1.14, 	1.2 Nu 
h 

E(i) air Naphthalene 
sublimation for h 

4 1956 Miller et al 	. 00o a = 1.46 Nu E(d) water No variation found in 
local h 

5 1956 Wantland 0 0 00 a 	= 	1.106, 	1.19 Nu E(d) water 
00 

&WW 

6 1960 Eckert & Irvine C> a 	= 11.7°  Nu 
h 

E(d) air 

T 

7 1960 Subbotin et al 00o a = 1 Nu 
q 
h 

E(i) water 
hg 

I 

8 1961 Draycott'& Lawther o0o a = 1.35-1 .6 Nu E(i) air Some roughened rods, 
geometry not clear 

Table 3.3.1 	A selection of turbulent non-circular passage heat transfer experiments reported since 1954 

Cont'd 



No. Year Author(s) Shape(s) Geometry Quant. Heat Fluid Comments 

9 1961 Friedland et al ~ a = 1.38, 	1.75 Nu E(d) hg 

10 1961 Palmer & Swanson oo a = 1.015 Nu 

q 

E(i) air 

11 1961 Hoffman et al 0 A = 1.179, 	1.447, h E(d) air Naphthalene coating 
1.715 

12 1962 Ushakov et al o o a = 1 Nu E(i) hg 
00 T Nak 

13 1964 Maresca & Dwyer oō a = 1.75 Nu E(d) hg 

14 1964 Novotny et al ■ - a = 1,5,10 Nu E(d) air Asymmetric heating 
T 
h 

15 1964 Subbotin et al o o 	oo a = various Nu 
T 
q 

E(i) water 
air 
hg 

Appears to be summary 
of other work with 
origins not clear 

Nak 

16 1966 James et al a 	= 1, 	1.5, 	2, Nu CG water Asymmetric heating ■ ■e 
2.5, 3, 4 .& glyc. 

17 1966 Redman et al oō a 	= 	1, 	1.1, 	1.25, T E(d) air Part 6 tube chan. 
1.5 h Heat influence 

functions 

18 1966 Sparrow et al a = 5 Nu E(d) air Same rig as 14- um 

Table 3.3.1 continued Cont'd 



No. Year Author(s) Shape(s) Geometry Quant. Heat Fluid Comments 

19 1966 Sutherland & Kays 0 a = 1.15, 	1.25 Nu E(d) air Superposition method 

20 1966 Wilkie Oo Dd = 1.97 Nu E(i) air Rib roughened inner 
surfaces 

21 1967 Brundrett & 
Burroughs 

a = 1 Nu 
q 

E(i) air Air temp. inner law ■ 

Tf 

22 1968 Kidd & Stelzman oo a = 1i 	(approx) Nu E(d) air Geometry not clear 
T 

23 1970 Barrow & Roberts O a = 3.52 Nu E(d) water 
T 

24 1971 Borishanskiy et o o a 	= 	1.1, 	1.3, 	1.4, Nu E(i) water 7 rod cluster 

al ° 1.5 

25 1971 Chiranjivi & Rao a = 1 Nu water 
& glyc. 

26 1972 Markoczy 00~ 
00 

a = 1.167 to 1.86 Nu E(d) air In German 

27 1972 Walker et al o o Mixed a = 1.5}2.0 Nu E(d) Nit. Roughened rods 
00 ~ T 

28 1973 Cain et al O a = 1.5, 	2.0, 	2.67, Nu E(d) air 
2.93 h water 

Table 3.3.1 continued Cont'd 



No. Year Author(s) Shape(s) Geometry Quant. Heat Fluid Comments 

29 1973 Marek et al 0 0  
oo 

a = 1.283 Nu E(d) Helium 9 & 16 rod clusters 

30 1974 Bobkov et al o a = 1 Nu E(i) water 
T 

Tf 
q 

31 1974 Pankin et al oo a = 1.05 -1.16 h E(i) air Re  = 500 - 5,000 

32 1975 Sukomel - not given Nu air Entry length 

33 1977 Lel'Chuk et al 00 a = 1.17 Nu E(d) air 7 rod cluster 
T 

Heating used: 

00 

ō 
rod bundle, triangular array. 	Quantity: 

0  
00 rod bundle, square array. 	measured 
t' isosceles triangular duct. 
❑ square duct. 
D rectangular duct. 
O elliptical duct. 
/2S Trapezoidal duct. 
Q Annulus 

Geometry: 	e = apex angle 
a = aspect ratio or P/d 

Dd = Outer dia./inner dia. 

Quant: Nu = Nusselt number (overall) 
T = wall temperature 
h = local heat transfer coeff. 
q = local heat flux 
Tf = fluid temperature 

E(d) = Electrical, into wall 
E(i) = Electrical, indirect 

heating coils 
CG = Combustion gases 
WW = water/water recuperator 

Key: Shape: 

Table 3.3.1 	A selection of turbulent non-circular passage heat transfer experiments reported since 1954 
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Lowdermilk (1954), Brundrett and Burroughs (1967) and Sukomel (1975), 

the equilateral triangular duct measurements of Lowdermilk (1954), 

the elliptical duct measurements of Barrow and Roberts (1970) and 

Cain et al (1973) and much of the rod bundle heat transfer measure-

ments for P/D > 1.05. Further,most of the data for these 

investigations were within ± 15% or so of the Dittus-Boelter 

correlation, the differences being probably of the same order as the 

experimental error in most heat transfer measurements. The latter 

point is reinforced to some extent by the reported experimental heat 

transfer data for rod-bundles, most of which for triangular arrays is 

shown plotted in figure 3.3.1 as a ratio of the measured Nusselt 

number to the Dittus-Boelter value. The lines, which represent the 

mean values obtained by each author, are mainly horizontal and 

clustered around unity with considerable disagreement between authors 

except perhaps a common trend of increasing heat transfer with P/D 

ratio. This latter trend is shown also in figure 8.3.21 for a fixed 

Reynolds number of 5 x 104 and appears to give an increase of some-

thing like 25% for a P/D increase from 1.1 to 1.5. However, the 

large scatter of results precludes the extraction of any quantitative 

relationship between Nusselt number and P/D ratio. The case of 

P/D = 1.0 (rods touching) is strongly dependent on the thermal 

conduction between and within the rods which partly explains the wide 

differences in overall heat transfer in the three investigations of 

that case. Although there is less data available for square arrays, 

a plot of the measured Nusselt numbers with P/D ratio is no less 

scattered, as shown in figure 3.3.2. 
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When the heating was markedly asymmetric or the duct aspect 

ratio (nominally the height/base ratio with the height defined as 

the maximum dimension) is greater than about 4 or 5, the Nusselt 

number behaviour usually became rather different than implied by 

equation (3.3.1). This was also the case for rod-bundle measurements 

for P/D < 1.05. Thus, for example, the Nusselt numbers measured by 

Eckert and Irvine in an isosceles triangular duct of aspect ratio 5 

were found to be proportional to Re
.66 

and would have been over-

estimated by up to 100% by the Dittus-Boelter formula. Similarly the 

overall heat transfer measurements of Bobkov et al (1974) in rod 

bundles for P/D = 1.0 would have been over-estimated by 300% or more 

by equation (3.3.1). In the latter case, the rods were touching and 

thermal conduction was found to influence the results. 

The heat transfer data from the asymmetric heating experiments 

of Novotny et al (1964), Sparrow et al (1966) and James et al (1966) 

in square and rectangular ducts and of Chiranjivi and Rao (1971) in a 

trapezoidal duct were also not correlated by equation (3.3.1). The 

Nusselt numbers measured by the latter, were found to be proportional 

to 
Re0.4 

 and to depend significantly on Prandtl number. The 

dependence of Nusselt number on Prandtl number was also investigated 

by James et al (1966) who developed an elaborate empirical formula in 

an endeavour to correlate also the effects of Reynolds number, duct 

aspect ratio and the variation of fluid viscosity. When this formula 

is simplified for a square duct and constant property fluids it reads 

Nu 	= 	0.0283 
Re(0.0016 Pr  + .75)p  .4 e-0.013 Pr 

r (3.3.2) 
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which suggests a more complex variation of Nusselt number with 

Prandtl number than is implied by equation (3.3.1). For Prandtl 

number of 0.7 or 5.0, the Dittus-Boelter formula would over-predict 

the values given by the above equation by about 30%. 

The measured local variations of heat transfer coefficient 

around the passage periphery obtained by the various authors 

indicated in table 3.3.1 were usually less than 15% unless the duct 

aspect ratio was above about 2 to 3 or the rod bundle P/D < 1.15. A 

variation of about 30% was detected by Cain et al (1973) for an 

elliptical duct of aspect ratio 8/3, with the peak value at the minor 

axis. In rod bundles, Dingee et al (1955) and Redman et al (1966) 

found peripheral variations of about 20% for P/D ratios of 1.12 and 

1.1 respectively, with the lowest values at the gap (closest 

approach of the rods). The measured temperature along the long wall 

of the narrow heated isosceles triangular duct of Eckert and Irvine 

(1960) was found to vary by a factor of more than 2 with the lowest 

temperature near the base. It seems likely that this large wall 

temperature variation would make the overall heat transfer behaviour 

more sensitive to the boundary conditions than for most of the other 

cases of turbulent heat transfer where, due to geometry and secondary 

flow, variations are usually only a few percent. The latter part of 

this premise is partly confirmed by the results reported by Redman et 

al (1966) whose rod-bundle test channel was constructed to allow 

various boundary conditions such as constant peripheral wall 

temperature or constant peripheral heat flux to be set up. The 

difference between the two boundary conditions appeared to make only 

a few percent difference in measured local and overall heat transfer 

coefficients for assemblies with P/D of 1.2 and above where, as 
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previously mentioned, the peripheral variations of heat transfer 

coefficient etc., are relatively small. 

The direct electrical method of heating the passage wall used 

by Eckert and Irvine (1960) and by the many others shown in table 

3.3.1, is usually assumed to produce a constant peripheral heat flux 

boundary condition. However, when prompted by written discussion of 

their paper, Eckert and Irvine checked the actual peripheral wall 

heat flux variation and found it to be far from constant (see figure 

8.3.12), implying that their heat transfer data is not for the assumed 

constant heat flux boundary condition but for some condition between 

that and a constant peripheral wall temperature. It follows that, in 

this configuration, heat transfer at constant peripheral heat flux 

could behave significantly differently from that measured by Eckert 

and Irvine. 

3,4 Theoretical studies  

3.4.1 Laminar flow and heat transfer 

The bulk of flow and heat transfer information available on 

laminar flow in non-circular passages is from theoretical analysis. 

A useful summary of much of this work can be found in Shah and 

London (1978), which shows that solutions of the governing 

differential equations have been obtained by both analytical and 

numerical methods for a wide range of passage shapes and for various 

heat transfer boundary conditions. 
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Prominent in this work is a series of papers by Sparrow and co-

workers which includes studies of laminar flow and heat transfer in 

square ducts (Sparrow and Siegel, 1959), isosceles triangular ducts 

(Sparrow and Hadji-Sheikh, 1965), and axial flow in rod bundles 

(Sparrow and Loefler, 1959; Sparrow et al, 1961). The latter work 

was extended by Axford (1967) in a multi-region analysis of a finite 

rod bundle. In all these, and most other geometries such as 

elliptical ducts studied by Tao (1961), the duct shape and heat 

transfer boundary conditions were found to have a significant 

influence on heat transfer and pressure drop. For example, for fully 

developed laminar heat transfer in an isosceles triangular duct with 

an apex angle of 30°, the Nusselt number for the 'H1' boundary 

condition (constant peripheral temperature and constant axial heat 

flux) is 2.91, whereas for the 'H3' boundary condition (constant 

peripheral and axial heat flux) it becomes 0.85. This latter 

boundary condition yields a Nusselt number of 0.08 when the apex 

angle is 10°, thus demonstrating the significant effect of geometry 

in this case. 

3.4.2 Turbulent flow 

The sparsity of experimental data for turbulent flow (and also 

heat transfer) in non-circular passages revealed in sections 3.2 and 

3.3, is evidence of the severe difficulties of arranging such 

experiments. This has led to much previous and contemporary effort 

in the development of prediction procedures as an alternative method 

of filling the gap and providing methods of analysis and design. 

Indeed the present work, some of which has already been reported in 
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the literature (Gosman and Rapley, 1978,1980), can be seen as part of 

that effort (see Appendix 1). 

During the evolution of turbulent duct flow prediction methods, 

succeeding generations have tended to rely less on empirical input 

and more on solutions of the governing partial differential 

conservation equations. The key features in this development are the 

mathematical representation of the Reynoldsstresses and of turbulence 

driven secondary flow, together with numerical procedures for solving 

the derived equations. 

It must have seemed to early workers that secondary velocities 

could be neglected as a second order effect in the early non-circular 

passage analyses for this was done by, for example, Diessler and 

Taylor (1956,1958), Buleev (1964), Rapier and Redman (1964), Dwyer 

(1966), Nijsing et al (1966), Bender et al (1967) and Cook (1969). 

In these 'first generation' methods, the axial velocity was assumed 

to be the only non-zero component and the Reynolds stresses were 

usually modelled with a simple quasi-linear stress-strain relation-

ship containing an isotropic turbulent or eddy viscosity vt. The 

eddy viscosity concept was originally proposed to deal with simple 

shear flows containing a single predominant velocity gradient, e.g. 

- U2u3 	= 	vt dU3/dx2  (3.4.1) 

However, for two and three dimensional flows possessing a more complex 

strain field a co-ordinate-invariant extension of equation (3.4.1) can 

be made (e.g. Hinze, 1975) to give 

vt(aUi/axj  +aUj/axj) - Sij  umūm/3 (3.4.2) - uiuj  = 
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The term dijumum/3 ensures that the normal stresses sum to 2k. The 

eddy viscosity was, and indeed, in the case of boundary layers, 

often still is obtained from algebraic expressions based on 

characteristics of the mean flow and passage geometry. Typically, 

Prandtl's mixing length theory was employed, i.e. 

vt = 2.21aU3/ax21 (3.4.3) 

where Qm  is the mixing length. It soon became apparent however from 

these calculations that, although very small, the secondary flows 

could not be ignored, for the predictions of say, axial velocity or 

wall shear stress could be up to 100% in error for reasons which 

could not be entirely attributed to the relatively simple way in 

which the Reynolds stresses were calculated. The experimental data 

available at that time indicated that, in most cases, universal 

velocity distributions could be assumed along normals to the passage 

walls; indeed this assumption had been used to infer velocity 

profiles from local mean velocities in some of the early graphical 

methods, such as that of Diessler and Taylor, (1956). However, the 

local wall shear stress values required for calculation of the 

absolute velocities from these distributions were wrongly calculated 

when secondary velocities were neglected (recall that, as noted in 

section 3.2, secondary flows tend to flatten wall shear stress 

profiles, whereas predictions in which these flows are ignored 

indicate monotonic decay from mid-wall to the corner). Further, the 

fairly flat profiles of axial velocity observed in the regions away 

from walls were also not predicted when secondary motions were 

omitted. 
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The above deficiency gave rise to a number of what can be 

termed 'second generation' calculation procedures which attempted to 

allow for the overall effects of secondary flow. These procedures 

were usually based on measured features such as the wall shear 

stress profiles, from which the velocity field was calculated. This 

was the method used by Ibragimov et al (1960, who correlated the 

measured wall shear stress profiles in a rod bundle, a triangular 

duct and a square duct in terms of an equation which linked the local 

normalised wall shear stress around the passage wall periphery with 

the geometry of the passage shape only and was claimed to apply to 

any passage shape. The axial velocity distribution was obtained in 

the conventional way by assuming universal velocity distributions 

along normals to the passage walls, and the absolute values were 

evaluated from the local wall shear stresses derived from the 

empirical formula. The predicted axial velocity profiles, reported 

for rectangular, triangular and grooved-circular ducts and for 

eccentric annular and rod-bundle passages appear to be within 10% of 

the experimental data with which they were compared. A later 

publication (Ibragimov et al, 1967) proposed an expression based on 

the foregoing type of analysis for the ratio between the friction 

factor for passages of any specified geometry and that for a circular 

tube. The method of Ibragimov et al (1966) was further used by Bender 

and Magee (1969), Dwyer and Berry (1971) and Pfann (1973, 1975) to 

establish axial flow fields for heat transfer calculations in rod-

bundles mostly with liquid metal coolants. However, since little 

comparison of the results was made with experiment, the success or 

otherwise of the method has yet to be proved. 
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The numerical finite difference method developed by Meyder 

(1975) for rod-bundle flow and heat transfer calculation was of the 

second generation type in that secondary flow was neglected but, in 

this instance, partly compensated for by introduction of an 

anisotropic eddy viscosity field. The radial eddy viscosity was 

calculated from the Prandtl/Van Driest formula and the tangential 

eddy viscosity from a modified mixing length formula which contained 

an anisotropy multiplying factor. This factor was adjusted until 

predicted wall shear stress profiles matched experiment. The 

difference between experimental axial velocity profiles and those 

predicted with isotropic eddy viscosities was reduced by about one-

half with this anisotropic viscosity method. Ramm and Johannsen 

(1975a) also employed anisotropic eddy viscosity in a second 

generation calculation method for rod bundle flows, in which the length 

scales used to calculate the eddy viscosity components in the 

tangential and radial directions were obtained from the Buleev (1963) 

formula which has the form 

1/9, 	= 	0.5 
(27 

do  
JO s 

(3.4.4) 

where s is the distance to the boundary surface in direction 0. In 

this application, different artificial boundaries were assumed for 

the calculation of Q in each direction. These boundaries appeared to 

be postulated intuitively and mainly to match the resulting eddy 

viscosities and diffusivities of heat with turbulent pipe flow 

measurements. The results obtained (Ramm and Johannsen 1975a, 1975b) 

were not compared with experiment. 
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Kokorev et al (1971b) used their experimental measurements of 

secondary flow in a square duct to propose a 'universal' secondary 

velocity profile. This profile was inserted in the axial momentum 

equation which was then solved to yield wall shear stress 

distributions and friction factors in non-circular ducts in the first 

of what might be termed 'third generation' methods (in which 

prescribed secondary flows are included). The method of solution 

involved further simplifications which included the assumption of 

universal axial velocity profiles (Kokorev, 1971a). Predictions of 

shear stress profiles were obtained for square and equilateral-

triangular ducts, and in rod-bundle channels for the limiting case of 

rods touching. It was only possible to compare the first case with 

experiment, for which a considerable improvement on predictions 

neglecting secondary flows was obtained. Although this method 

represents a simple approach to a fairly complex problem, the full 

capabilities of it have yet to be properly assessed since the only 

validated results are for a square duct which is the geometry used to 

obtain the measurements on which the secondary velocity profile was 

based. The method is unlikely to be universal, however, in that it 

implies relatively simple secondary flow circulations in all non-

circular passages, an assumption not always supported by experiment, 

as demonstrated earlier in this chapter. 

Nijsing and co-workers have tried various methods of calculating 

axial velocity and wall shear stress in rod bundles, starting (Nijsing 

et al, 1966) with a modification of the graphical method of Diessler 

and Taylor (1956). Their calculation procedures progressed through 

several modifications to a third-generation-type proposal in which 
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secondary flows were included and also anisotropic eddy viscosities, 

which were linked to the passage P/D ratio (Nijsing, 1972). A 

phenomenological explanation of the origin of secondary flow was 

given, based on the experimental observations of Kline et al (1967) 

that the rate of fluid ejection away from a boundary wall was 

directly related to the local shear stress. It was concluded that 

this will give rise to a circular secondary motion tending to trans-

port high momentum fluid through the main flow in the direction of 

the decreasing wall shear stress. This reasoning led to expressions 

for the peripheral variations of tangential secondary velocity 

component in terms of geometry and local wall shear stress gradient 

with the radial variation to be prescribed from experiment. The 

radial velocity component was obtained from mass continuity. Lack of 

experimental data on secondary flow compelled the author to prescribe, 

arbitrarily, the secondary velocity profiles in the calculations. 

The limited axial velocity predictions obtained, however, compared 

favourably with experiment. The deficiencies of this method are 

obvious in that detailed knowledge of secondary velocity 

distributions are required before predictions can be generated. This 

means that the data required for prediction is considerably more 

difficult to obtain than the data which is supposed to be provided by 

the calculation method. Further, in the light of the work of Gessner 

(1973) on the origin of secondary flow, the peripheral variation of 

wall shear stress is more likely to be a consequence of, rather than 

the cause of, secondary flow. 
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A numerical finite element procedure developed to solve a form 

of momentum equation was reported by Gerard (1974) for the 

calculation of axial velocity distribution and wall shear stress in 

square, triangular and other shaped ducts using an isotropic eddy 

viscosity formulation based on the Van Driest mixing length equation. 

The square duct application was developed into a third-generation 

method by including secondary velocities prescribed from the 

experimental measurements of Gessner and Jones (1965). The 

predicted axial velocity and wall shear stress obtained were a 

significant improvement on the predictions without secondary flow, 

yielding wall shear stresses that matched experiment and reduced the 

error in predicted axial velocity. For example, at the point three-

quarters of the way into the corner along the corner bisector, the 

error in predicted axial velocity was reduced from 15% to under 5%. 

The main objections to this method are the same as for the previous 

method in that the experimental input required is likely to be more 

difficult to obtain than the predictions given by the procedure. 

All the methods mentioned so far rely heavily on special 

empirical input for successful calculation of turbulent flow and 

should, therefore, be regarded as empirical calculation methods 

rather than as true prediction procedures. A prediction procedure 

should calculate velocity and stresses from direct solution of the 

governing partial differential conservation equations and associated 

boundary conditions. Any empirical input should ideally be universal 

for all geometries and flows: more ideally still, there should be no 

such input required. The recently developed 'fourth generation' 

methods to be described now represent a further step towards such 

prediction procedures. 
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Currently the most effective and widely-used class of 

prediction methods for turbulent flow are the numerical procedures 

that solve the Reynolds equations by finite differences. These 

methods have now been well established for more than a decade (e.g. 

Gosman et al, 1969; Patankar and Spalding, 1970; Amsden and Harlow, 

1970) and usually employ turbulence models that enable the Reynolds 

stresses to be calculated either directly or indirectly from the 

time-averaged properties of the flow. Much of the earlier work in 

the assembly of such models was centred around determining an eddy 

viscosity vt from the Prandtl-Kol mogorov formula: 

vt 
1 

= Cv Q k2 (3.4.5) 

where C is a constant, k is the turbulence kinetic energy (i u.u~) 

and thus k is a turbulence velocity scale, and Q a turbulence length 

scale. The latter is not, in general, the same as mixing length km, 

although they can become equivalent when the mean flow and turbulence 

structure have the same length scale, such as in a local-equilibrium 

wall layer (Townsend, 1961) (see also section 4.6 in this thesis). 

Some of the transport effects on the structure of turbulence, such as 

convection and diffusion, can be included in the prediction method if 

k and . are evaluated from partial-differential transport equations, 

which can be derived from the Navier-Stokes equations. 

It has now become customary to classify the level of turbulence 

model by the number of partial differential transport equations 

solved. If k and st are both obtained from algebraic formula, the 

model is classified as 'zero' equation. In 'one' equation models, k 

is usually obtained from its own partial differential transport 
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equation and Q from an algebraic formula. In 'two' equation models, 

Q or a related variable is also obtained from its own partial 

differential transport equation. Several alternative related 

variables have been used for the calculation of 2, and a useful 

summary of these and their associated transport equations can be 

found in Launder and Spalding (1972) with a more recent review given 

by Reynolds and Cebeci in Chapter 5 of Bradshaw (1978). 

The most successful and widely used variable for the 

determination of 2 appears to be the isotropic dissipation rate c  of 

turbulence kinetic energy. This, in conjunction with k, gives rise 

to what has become known as the k - c turbulence model. Since the 

dissipation of turbulence kinetic energy occurs mainly in the smallest 

eddies in the flow, it can be assumed locally isotropic and should 

depend only on p, k and 2.. Thus, for dimensional consistency, a can 

be represented by (Launder and Spalding, 1972): 

e = CD  k / 2/Q (3.4.6) 

where CD  is an empirical constant. When this relation is substituted 

into equation 3.4.5, the Prandtl Kolmogorov formula becomes 

vt 	= 	Cu  k2/c 	 (3.4.7) 

which is the form of turbulent viscosity used in the k - c turbulence 

model with Cu  a constant. This model has been used to successfully 

predict a wide range of turbulent flows (Launder and Spalding, 1974). 

The eddy viscosity concept was, as previously noted, introduced 

primarily for application to simple flows in conjunction with the 

stress relation equation (3.4.1). In more complex flows such as 
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those in non-circular passages, the isotropic eddy viscosity stress 

relation of equation (3.4.2) fails, mainly because the stresses are 

not simply related to the local co-planer mean strain. Indeed it is 

easy to see that with such an eddy viscosity model, the cross-plane 

stresses in fully developed flows are uniquely linked to gradients in 

the cross-plane velocity field, which in turn rely on the cross-

planar stresses for their existence; thus no secondary flows are 

predicted by isotropic eddy viscosity models. This implies that 

something more elaborate than even the two-equation turbulence model 

is required for the calculation of turbulent non-circular duct flows. 

The next step upwards from the eddy viscosity model is 

apparently to calculate the required Reynolds stresses directly from 

their own transport equations. The prediction procedure of Hanjalic 

and Launder (1972), which was applied to an asymmetric channel, an 

annulus and other two dimensional turbulent flows, operated in this 

way. The stress equations are based on the exact form which can be 

derived from the Navier-Stokes equations by manipulation and time 

averaging (e.g. see Hinze, 1975) and are shown in Appendix 2 as 

equations A2.1. 

The exact equations cannot however be solved as they stand since 

they contain unknowns such as the triple correlations uiujuk. The 

arguments used by Hanjalic and Launder in the modelling process 

leading to the elimination of these unknowns are outlined in Appendix 

2 and the final modelled forms are given as equations A2.7. In their 

application of this model to thin shear flows, the required Reynolds 

shear stress was calculated from equations A2.7 with the normal 

stresses prescribed from algebraic equations obtained by reducing A2.7 



- 51 - 

to the forms appropriate to plane homogenous shear flow. The fields 

of k and c required for solution of these equations were obtained by 

solving their modelled transport equations, thus giving a 'three-

equation' model. The numerical finite-difference procedure used to 

simultaneously solve the momentum and turbulence partial differential 

equations was based on the parabolic method of Patankar and Spalding 

(1970) for turbulent boundary layers. The predictions obtained were 

in good agreement with experiment in most respects including the non-

coincidence of the planes of maximum velocity and zero shear stress 

in the asymmetric channel and annulus, a feature that could not have 

been predicted by an eddy viscosity model. 

In the case of three-dimensional flows, such as in non-circular 

ducts, all six Reynolds stresses are usually required. In the methods 

of Naot et al (1974) and Reece (1977), developed for the prediction of 

flow in square ducts, all six stresses were obtained from their own 

modelled partial differential transport equations. In addition, Reece 

(1977) solved a differential transport equation for c thus giving a 

'seven-equation' model for the solution of developing square duct flow. 

The modelled Reynolds stress equations were similar in most respects 

to those used by Hanjalic and Launder (1972) (equation A2.7) with the 

notable exception of the redistribution (pressure-strain) terms. 

These terms were modified and a wall damping correction introduced in 

an effort to obtain the redistribution between the normal stresses 

leading to the anisotropy of these stresses found from experiment in 

near wall regions. Details of these modifications and the relatively 

successful application of the stress model to various two-dimensional 

flows can be found in Launder, Reece and Rodi (1975). 
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The wall damping correction developed for two dimensional 

flows with parallel walls could not be used without further 

modification for the case of perpendicular walls found in a square 

duct. On the basis of physical argument Reece (1977) treated the two 

walls as the superposition of two orthogonal two-dimensional walls. 

This assumption appeared to be adequate as the predictions obtained 

for square duct flows were generally in good agreement with experiment, 

although no predicted Reynolds stresses were presented for comparison 

with measurements in fully-developed flow. It was therefore not 

possible to assess the success of the wall-damping correction in 

predicting the near-wall anisotropy of the cross-plane normal stresses 

in this case. The distortion of axial velocity and turbulence kinetic 

energy profiles by secondary flow were much in evidence and generally 

well predicted (see figures 7.3.5 and 7.3.6). The predictions of 

developing flow were also in good agreement with experiment. 

The numerical finite-difference procedure used by Launder, Reece 

and Rodi (1975) to simultaneously solve the partial differential 

equations representing the mean flow, stresses and turbulence was 

based on the method of Patankar and Spalding (1970) for two 

dimensional parabolic equations. In the square duct flow calculations 

of Reece (1977), the parabolic finite difference procedure of Patankar 

and Spalding (1972) for three-dimensional flows was used. In this 

method the stability and convergence of the recirculating flow 

calculations in the cross-plane was obtained by means of a hybrid 

differencing scheme which switches to upwind differencing when the 

local Peclet number Pe becomes large. 
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Naot et al (1974) evaluated turbulence length scale from a simple 

geometric formula in their 'six equation' turbulent stress model used 

to predict fully developed square duct flow. The modelled Reynolds 

stress equations used were derived independently from the equations 

used by Reece (197 7) and thus differed in some details. The main 

differences, however, appear to lie in the re-distribution terms, and 

in particular, the wall damping correction that appears in the 

equations of Reece but not in those of Naot et al. The elliptic 

numerical finite difference procedure developed by Naot et al for 

simultaneous solution of the differential equations evolved through 

several modifications before converged solutions could be obtained. 

The main problem appeared to be the elimination of instabilities 

caused by the closely-coupled, source-dominated non-linearity of the 

equations. Convergence was eventually obtained for Reynolds numbers 

less than 2 x 105  by linearising the source terms and introducing 

different differencing schemes for selected terms; details are given 

in Naot et al (1974). Most of the predictions presented compared 

reasonably with experiment, although no calculated normal stress 

profiles were shown for comparison. The predicted turbulence kinetic 

energy contours were relatively poor however, in that the character-

istic bulging of the contours into the corner due to secondary flow 

was much underpredicted (see figure 7.3.6). For example, at the 

point three-quarters of the way along the corner bisector into the 

corner, turbulence kinetic energy was overpredicted by some 30%; this 

can be compared with the prediction of Reece (1977) which was within 

a few percent of experiment. 
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In contrast to the multi-differential turbulence equation methods 

described above, Launder and Ying (1973)+  developed an approach for the 

prediction of square duct flows based on the reduction of the 

differential Reynolds stress transport equations to algebraic form and 

the use of an algebraic length scale prescription. The resulting 

method required the solution of only one differential transport 

equation for turbulence kinetic energy k. In their analysis, the 

Hanjalic and Launder (1972) formulation of the Reynolds stress trans-

port equations was used, as quoted in Appendix 2, and the equations 

were further simplified by neglecting convective and diffusive trans-

port on the basis that these effects are small in the region near the 

wall where vorticity generation has been shown to be large (Brundrett 

and Baines, 1964). This resulted in degenerate forms of the transport 

equations from which the cross-plane (kinematic) stresses could be 

extracted in the following form: 

ui - u2 
	

2Cb(k/c)(ulu3aU3/ax1 - u2u3aU3/axe) 	(3.4.8) 

ulu2  = 	G,(k/e)(u2u303/ax1 + ulu3aU3/axe) 	(3.4.9) 

The above equations exhibit an interesting effect in the flow 

with stresses in the cross-plane being a consequence of mean strain 

rates in planes orthogonal to them. The axial plane kinematic shear 

stresses ulu3 and u2u3 were calculated in the Launder and Ying (1973) 

study from the Prandtl-Kolmogorov eddy viscosity formula (equation 

3.4.5) with t prescribed by the Buleev (1963) geometric formula 

(equation 3.4.4), c calculated from equation (3.4.6) and k calculated 

from its own differential transport equation (similar to 4.3.1). 

+The earier square duct calculations of Ying (1971) were of the third 

generation type. 



-55- 

The differential equations were solved simultaneously by the 

elliptic finite difference procedure of Gosman et al (1969). In this 

procedure, the cross-plane momentum and continuity equations are 

transformed to equations for vorticity and stream function and the 

whole set solved by a point iteration method. The resulting 

predictions were encouraging in that the secondary flows generated in 

the cross-plane were of the pattern expected from experimental 

measurement and gave predictions of mean flow nearer to experiment 

than previous methods which ignored or only approximately accounted 

for secondary flow. The bulging effect of secondary flow into the 

corners was evident in the axial velocity and turbulence kinetic 

energy contours. The levels of the latter, however, were lower than 

experiment giving, for example, an underprediction of some 15% at a 

point three quarters of the distance along the corner bisector into 

the corner. The predicted Reynolds stress profiles were unfortunately 

not reported so that no comparisons can be made. The detailed 

predictions of the secondary velocity profiles were qualitatively 

correct although there were some local discrepancies of up to 200% in 

places. Nevertheless, taking into account the likely large errors in 

experimental data, particularly the detailed turbulence and secondary 

velocity measurements, the overall level of agreement was satisfactory. 

The 'algebraic stress transport' model of Launder and Ying was 

also used by Carajilescov and Todreas (1976) to predict turbulent 

flow in rod bundle passages. In this case turbulence length scale was 

prescribed from a formula based on experimental measurement of axial 

velocity gradients, turbulent shear stress and turbulence kinetic 

energy i.e. via equations (3.4.1) and (3.4.5). The cross-plane shear 
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stresses were omitted from the calculations on the basis of the 

square-duct measurements and arguments of Brundrett and Baines 

(1964) that normal stresses are dominant. Differential conservation 

equations for vorticity, stream function, axial velocity and 

turbulence kinetic energy were solved simultaneously by finite 

differences on a cylindrical co-ordinate mesh with a solution method 

similar to the elliptic procedure of Gosman et al (1969). Since a 

standard co-ordinate mesh is used for an irregular passage shape, 

special control volumes are required where mesh boundaries do not 

coincide with passage boundaries and the method thus suffers from the 

consequent disadvantages of reduced flexibility, accuracy and 

efficiency. The former usually occurs when, to avoid complications 

that could frustrate convergence of the numerical solution, location 

of the special cells are limited to simple boundaries, such as 

symmetry planes. Losses in accuracy and efficiency occur when, as in 

the Carajilescov and Todreas case, grid node spacings are partly 

dictated by the location of the special boundary cells rather than 

chosen for the optimisation of the numerical solution method. 

The empirical constants in the model were adjusted to match the 

prediction to experiment. The predictions presented for P/D = 1.123 

were mainly within the error band quoted for their experimental results. 

The poorest axial velocity prediction was in the gap (closest approach 

of the rods) where it was low by about 5%. Also in the gap, the level 

of turbulence kinetic energy in the near wall region was overpredicted 

by as much as 35% (see figures 7.9.5 and 7.9.8). 
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No predictions of Reynolds stresses were reported or even 

given in the thesis of Carajilescov (1975) for comparison with the 

experimental measurements obtained. As previously discussed, no 

measurements were made of the secondary flows, so that the predicted 

pair of counter-rotating circulations of secondary flow obtained by 

Carajilescov and Todreas (1976) for the P/D = 1.123 channel and shown 

in figure 3.4.1a could not be confirmed. Distortions consistent with 

the predicted secondary flow could be seen in the calculated contours 

of axial velocity and turbulence kinetic energy (see figures 7.9.3 

and 7.9.7). 

A further application of the Launder and Ying algebraic stress 

transport model was made by Aly et al (1978) to predict turbulent 

flow in an equilateral-triangular duct, employing in this instance, 

the length scale obtained from the Buleev (1963) formula (equation 

3.4.4). The differential equations were solved for a one-sixth duct 

symmetry element, by finite differences on a Cartesian mesh, with an 

elliptic procedure based on the vorticity/stream function method of 

Gosman et al (1969). This is another example of a standard co-

ordinate finite-difference mesh being applied to an irregular 

passage shape with the consequent limitations in flexibility and 

efficiency. Much difficulty was apparently found in obtaining a 

satisfactorily converged solution (Trupp and Aly, 1978), due mainly 

to the instabilities induced by the vorticity source terms arising 

from the turbulent stresses. This was eventually overcome by 

imposing a condition of immutable sign on the vorticity source, a 

condition which also, therefore, imposed a unique sense of rotation 

on the secondary flow (i.e. a single swirl) in the calculation domain. 
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The empirical constant in the vorticity source was adjusted to 

match predictions to their experimental data, and good overall 

agreement was obtained. The pattern of a single swirl of secondary 

flow obtained from the method was, as expected, in accordance with 

the measurements. The latter circulation was, as shown in figure 

3.2.3, from the core along the corner bisector into the corner, 

thence along the wall and back to the core via the wall bisector. 

The predicted secondary velocity profiles were mainly in accord with 

experiment except in the near-wall region where they were under-

predicted by as much as 60% towards the corner (see figure 7.6.7). 

The effect of secondary flow could be seen in distortions of the 

predicted axial velocity and turbulence kinetic energy contours, 

which bulged into the corner. The calculated wall shear stress 

profile appeared to be quite sensitive to the secondary flows in that 

the peak stress occurred at a point some 40% from mid-wall to the 

corner (see figure 7.6.6), where it lay about 8% above the more 

uniform experimental profile. No Reynolds stress predictions were 

presented for comparison with their measurements. 

Trupp and Aly (1978) repeated the rod bundle calculations of 

Carajilescov and Todreas (1976) for P/D = 1.123 and, with an 

apparently identical procedure, and obtained a single swirl of 

secondary flow in a symmetry element, as shown diagrammatically in 

figure 3.4.1b. They suggested that the Carajilescov and Todreas 

solution with two swirls (figure 3.4.1a) was probably a consequence 

of incomplete convergence of the iterative procedure. When, however, 

Trupp and Aly later included in their calculations the cross-plane 

shear stresses (omitted by Carajilescov and Todreas), they were 
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unable to obtain a converged solution without imposing the same 

immutable sign restriction on the cross-plane vorticity source as 

used by them (Aly et al, 1978) in their triangular duct predictions. 

This means that the solution method of Trupp and Aly (1978) was 

forced to predict a single swirl of secondary velocity in the 

symmetry element for all P/D ratios. The question of the validity of 

both predictions of the secondary flow pattern will therefore have to 

await the acquisition of secondary velocity measurements for this rod 

bundle configuration before it can be resolved, although as will be 

demonstrated elsewhere in this thesis, the present predictions suggest 

they are both wrong. 

The results obtained by Trupp and Aly (1978) for the rod bundle 

were similar to those of Carajilescov and Todreas (1976), with a 

slightly larger underprediction of gap velocity (11%) and a much 

increased overprediction of turbulence kinetic energy in the gap near 

wall region (60%). 

The Launder and Ying algebraic stress transport model was 

further analysed by Gessner and Emery (1976), who showed that the 

axial plane shear stresses could also be extracted from the simplified 

Reynolds stress transport equation to give a convenient form of the 

algebraic model in which all six stresses are explicitly related to k, 

E and gradients of axial velocity by the equations: 

J3 = Clk 

u2  = C3k - C2C4(k3/c2)(aU3/ax2)2  

ui = C3k - C2C4(k3/c2)(aU3/ax02  

uīu2 	_ — C2C4(k3/c2)(aU3/axl)(aU3/axe) 

(3.4.10) 

(3.4.11) 

(3.4.12) 

(3.4.13) 
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UlU3 = - C4(k2/£)(9U3/axl) 	 (3.4.14) 

U2U3 = - C4(k
2
/e)(aU3/axe) (3.4.15) 

where Cl, C2, C3  and C4  are related empirical constants such that 

only two have to be assigned (further details of the development of 

the above set will be given in Chapter 4). 

The authors then simplified the above equations using a 

prescribed length scale Q. and an algebraic equation for k obtained by 

summing equations (3.4.10) - (3.4.12) to give 

1/c4 	= 	
(k2/£2)((aU3/axl)2  + (aU3/;x2)2) 

	
(3.4.16) 

Using this equation and equation (3.4.6) k and c can be eliminated 

from equations (3.4.10) - (3.4.15) to give the final stress 

relations: 

U3 

U2 = 

= 

= 

= 

= 

alOG 

a2220U3/aX2)2 	+ 	a39-2G 

- 	a2Q2(3U3/axl)2 	+ 	a3Q2G 

- 	a2t2( 3113/axi)(aU3/ax2) 

- 	22(aU3/a(l)G1 

- 	Q2(aU3/aX2)GZ 

(aU3/axl)2 	+ 	(aU3/ax2)2  

(3.4.17) 

(3.4.18) 

(3.4.19) 

(3.4.20) 

(3.4.21) 

(304.22) 

(3.4.23) 

u1u2 

u1u3 

U2U3 

where 

G 

and al, a2, a3 are empirical constants. This simplification gives a 

zero-equation turbulent stress model when Q. is prescribed, but suffers 

from the disadvantage of most zero-equation models in that the stresses 
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become zero when the gradients of axial velocity are zero. Thus in 

contradiction with experiment, normal stresses would be zero at the 

maximum axial velocity planes in a duct. 

In an accompanying paper, Gessner and Po (1976) applied this 

algebraic model to the calculation of Reynolds stresses from experi-

mental axial velocities in a square and a rectangular duct. The 

prescribed length scale used was based on the Buleev geometric 

formula (equation 3.4.4) modified to match length scale profiles 

calculated from experimental data and then further modified with a 

near-wall damping factor (Launder and Priddin, 1973). The empirical 

constants in the model were adjusted to give the best match between 

calculated and experimental stresses. As may be expected, with so 

much adjustment to match experiment, the resulting predictions of 

Reynolds stress were in reasonable agreement with experiment. The 

anisotropy of the normal stresses near the wall was also satisfactorily 

predicted. Most of the predicted profiles, however, contained 

undulations not present in experimental data; these were attributed 

to errors in the calculated axial velocity gradients which were 

obtained graphically from the experimental data. The calculated 

normal stresses were, of course, in error at the duct centre line 

where the model forced all the stresses to zero. The empirical 

constants used by Gessner and Po in order to procure this general 

agreement with experiment were found to be quite different from the 

equivalent of those used by Launder and Ying in their mean and 

secondary flow predictions. 
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The Launder and Ying (1973) algebraic stress transport model 

was also used by Tātchell (1975) to predict developing flow in a 

square duct, with turbulence length scale calculated from the 

isotropic dissipation rate c of turbulence kinetic energy, which was 

obtained from its modelled transport equation (Hanjalic and Launder, 

1972). The predictions of fully developed flow did not appear to be 

any improvement on those of Launder and Ying. No predicted wall 

shear stress or Reynolds stress profiles were reported. 

Finally, Benodeker and Date (1978) used the Launder and Ying 

(1973) algebraic stress transport model, with length scales obtained 

via a differential transport equation for e, to predict fully 

developed turbulent flow in finite rod bundle clusters. A finite-

difference method was used with an elliptical procedure based on the 

vorticity-stream function method of Gosman et al (1969) in 

cylindrical co-ordinates. In using a standard co-ordinate mesh for 

an irregular solution domain, the method suffers from the usual 

disadvantages of reduced flexibility and efficiency. In this case 

the grid lines did not intersect the rod surfaces orthogonally and 

necessitated the development of various special treatments and 

limitations to the near-surface nodes to cope with the cases of 

laminar and turbulent flow studied. 

Predictions of local axial velocity and wall shear stress were 

reported for a symmetry sector of a seven rod bundle in a cylindrical 

casing, although no comparisons were made with experiment. The 

predicted friction factor was compared with experiment however, and 

found to be more than 30% low when the Launder and Ying (1973) 

constants were used in the stress model. 
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3.4.3 Turbulent heat transfer theoretical work 

The development of calculation methods for turbulent heat 

transfer lags behind that for turbulent flow. This is perhaps 

understandable as the turbulent flow and stress fields are a 

necessary input to the heat flux equations and thus development of 

their calculation procedures must precede that for the heat fluxes. 

A further and important factor will be obvious from section 3.3, in 

that there is a great shortage of reliable heat transfer data and 

thus, little detailed knowledge of thermal turbulence structures 

exists on which to base and validate heat flux models. 

In a direct analogy with laminar heat transfer, the turbulent 

heat flux u2c in direction 2 can be modelled with an isotropic eddy 

(turbulent) diffusivity of heat yc such that 

- u2c = cdC/dx2 (3.4.24) 

where C is enthalpy. The eddy diffusivity yc is seen to be a scalar 

counterpart of the isotropic eddy viscosity (equation 3.4.1). 	The 

ratio of eddy viscosity to eddy diffusivity is called the 'turbulent 

Prandtl number' ac thus 

~c = 

 

't/7c (3.4.25) 

which is found experimentally to have an approximately constant value 

near unity. The latter fact is commonly exploited to calculate the 

turbulent heat flux via the above equations with vt obtained from an 

appropriate model: Equation (3.4.24) implies that the heat flux 

depends mainly on the enthalpy gradient dC/dx2. This is in fact 

often the case in near-wall regions and indeed experimental measure- 
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ments have confirmed this (see review by Kader and Yaglom, 1972), 

and have also indicated that the turbulent Prandtl number is constant 

in this region with a value near 0.9. Further confirmation has come 

from successful turbulent boundary layer heat transfer calculation 

procedures using isotropic eddy viscosities and diffusivities where 

ac  has been assumed to be at or near this value (e.g. Patankar and 

Spalding, 1970; Gosman et al, 1969; Jones and Launder, 1969; Cebeci 

et al, 1970). Although this latter evidence is not as strong as 

reliable experimental measurements it is nonetheless indicative. 

In non-circular passage flows the early graphical turbulent heat 

transfer calculations of Deissler and Taylor (1956, 1958) in 

triangular and square ducts and in square and triangular array rod 

bundles, and of Nijsing et al (1966) in rod bundles evaluated the 

heat flux from relations similar to equation (3.4.24) with ac  taken 

as unity. For liquid metal heat transfer calculations, special 

empirical formulae for ac  have been developed (e.g. Dwyer, 1963; 

Bobkov et al 1968, 1970) and used in the calculations of Ibragimov et al 

(1971), Nijsing and Eifler (1972), Nijsing (1972), Dwyer and Berry 

(1972), Pfan (1975) and Meyder (1975) with moderate success 

considering secondary flow was neglected. It is probable, however, 

that due to the high thermal conductivity of liquid metals, secondary 

flow effects would be less important in these circumstances. These 

empirical formulae for ac 
 involved the laminar Prandtl number and 

other variables such as Reynolds number, local axial velocity and 

normal distance to the wall, i.e. the constancy of ac  no longer 

prevails. A review of the values and variations of ac  previously 

measured or proposed in various flows is given by Launder in Chapter 

6 of Bradshaw (1978). From this review, it is evident that 
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calculations made with ac  = constant and near unity were as 

successful as any in near wall flows. 

Some 'third generation' type heat transfer calculations, using 

mixing-length derived anisotropic eddy viscosities and diffusivities, 

have been made (e.g. Pankin et al, 1974; Meyder, 1975), but there do 

not appear to be any 'fourth generation' type calculations available 

in the literature other than some square-duct predictions by Launder 

and Ying (1973). The latter assumed ac  = constant = 0.9 and 

obtained satisfactory agreement with the measurements of Brundrett 

and Burroughs (1967). 

When the heat transfer along the perimeter of the duct is 

strongly asymmetric or otherwise non-uniform such that the enthalpy 

gradient dC/dx2  normal to the wall is no longer the only significant 

gradient, then the isotropic eddy diffusivity concept must become 

less appropriate. In this case, differential transport models may 

be required for the heat fluxes to enable all the important transport 

effects to be included. A review of recent developments in heat flux 

modelling is given by Launder in Chapter 6 of Bradshaw (1978) and 

reveal them to be in an early stage of development and, as yet, 

relatively untried. One of the most recent contributions in this 

area is the theoretical study of Samaraweera (1978) in circular pipes 

with asymmetric heating. 	His numerical study employed differential 

Reynolds stress and heat flux models and required the simultaneous 

solution of up to 12 partial differential equations which was 

achieved with an elliptical finite-difference procedure based on 

that of Caretto et al (1972). The predictions obtained were 

encouragingly much closer to experiment than previous predictions 
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using isotropic turbulent diffusivities of heat; indeed, the study 

revealed an unexpectedly complex anisotropic behaviour of the 

diffusivities confirming the inapplicability of an isotropic 

assumption. 

3.5 Closure  

A survey of past experimental work has revealed a significant 

influence of turbulence-driven secondary flow in straight, non-

circular passages. The secondary velocities have a magnitude of 

order 1% of the mean axial velocity and a characteristic pattern of 

flow from the core towards corners or regions of lower axial 

velocity, returning to the core via the walls and wall bisectors. 

In non-circular ducts, the presence of these flows causes the core 

fluid to penetrate into the corners (or towards regions of lower 

axial velocity) giving rise to characteristic bulges of measured 

axial velocity and turbulence kinetic energy contours in those 

directions. 

The origin of these secondary flows has been identified by 

detailed experimental studies as a convection of mean flow energy 

necessary to balance work done by the mean flow on axial plane shear 

stress gradients in the flow. Normal stresses are now believed to 

have only a minor role in the generation and maintenance of these 

flows. 

The development of turbulent stress models for this class of 

flows has been characterised by increasingly less dependence on 

empirical input at the expense of increased complexity. The present 
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stage of development gives a choice of models that require 

solution of from zero to seven or more partial differential transport 

equations. These equations, together with the equations of motion, 

are usually solved by finite-differences. 

The algebraic stress transport model is a simplification of the 

seven equation model and, in its most general form, requires the 

solution of two differential equations and the specification of six 

empirical constants in order to calculate all six Reynolds stresses 

via algebraic equations. The success of a simplified version of this 

model in the prediction of square and equilateral triangular duct 

flows, and the flow through rod bundle channels gives it much 

potential as a basis for a general prediction procedure for flow in 

arbitrary shaped passages. If empirical constants can be found that 

are reasonably independent of geometry, then no special empirical 

input will be required in the prediction method other than the 

specification of the passage shape. The remainder of this thesis 

describes the development of such a prediction procedure and presents 

the resulting predictions, which are then compared with the available 

experimental data. 
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CHAPTER 4 	CLOSURE OF THE GOVERNING 

EQUATIONS OF TURBULENT FLOW AND HEAT TRANSFER 

4.1 Introduction  

It is clear from the survey of Chapter 3 that the prediction of 

turbulent flow and heat transfer in non-circular passages must 

include calculation of the turbulence driven secondary flows. It is 

also clear that, as a consequence, the turbulent (Reynolds) stresses 

required for this purpose cannot be calculated by a simple isotropic 

eddy viscosity model. Indeed, it is possible to show that this model 

yields equations similar in form to those for non-uniform viscosity 

laminar flow which, as already demonstrated, contains no stress-

generated secondary motions. This chapter describes the method used 

to calculate these Reynolds stresses, and also the approach selected 

for calculation of the turbulent heat fluxes for heat transfer 

predictions. The mathematical formulation is then completed by 

specification of the boundary conditions and the empirical constants 

appearing in the equations. 

4.2 The Algebraic stress transport model  

The Reynolds stresses are calculated from a generalised curvi-

linear co-ordinate form of the algebraic stress transport model first 

derived and used by Launder and Ying (1972) and further analysed by 

Gessner and Emery (1976). The starting point is the full Reynolds-

stress transport model of Hanjalic and Launder (1972) given in 
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Appendix 2 as equations A2.7(auxiliary relations in equations A2.5). 

The main simplification made by Launder and Ying was to neglect 

transport by convection and diffusion on the basis of experimental 

evidence of Brundrett and Baines (1964) that the near-wall region in 

square duct flow is dominated by vorticity generation. With this 

simplification equations A2.7 became: 

- (ujukaUi/axk + uiukaUj/axk) - 2Sijc/3 

mi 
- C

0
E(u.uj - 2dijk/3)/k + a~,jaUt/axm 

mj 
+ a2iaU

2,
/axm = 0 	 (4.2.1) 

where u.u. are the Reynolds stresses and the other quantities and 

nomenclature are defined in Appendix 2. 

The above equations can now be resolved into their appropriate 

Cartesian directions neglecting all generation terms due to cross-

plane velocity gradients, since in the present class of flows these 

are some two orders of magnitude less than axial velocity gradients. 

This process yields the following six equations connecting the six 

stress components (i.e. 3 shear and 3 normal stresses): 

- CoEui/k + 2c(Cc1 - 1)/3 + 2(2Ru1u3 - C 23.Î?/k) 

(aU3/ax1) + 20u2U3 - Ccp2u2u3•ui/k)(aU3/axe) = 0 

(4.2.2) 

- C0Eu2/k + 2E(Co - 1)/3 + 2(aulu3 - Cc2ulu3.72/k) 

(aU3/ax1 ) + 2(2su2u3 - C4,2u2u3.u2/k)(aU3/axe) = 0 

(4.2.3) 
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- Ccici+3/k + 2c(Co - 1)/3 + 2((A + s)ulu3  - C(p2u03.ū3/k) 

(aU3/ax1) + 2((x + S)u2U3 - C42u2u3•4/k)(aU3/ax2) 	= 	0 

(4.2.4) 

- Coculu2/k + (8u2u3  - 2Cc2ulu3.ulu2/k)(aU3/ax1) 

+ (Sulu3 - 2CO2u2u3.u02/k)(aU3/ax2) 	= 	0 	(4.2.5) 

- Coculu3/k + (auf + 81713 + (-y + n)k - 2C(1)2u03.u03/k) 

(aU3/axi) + (xili2  - 2C(p2U2u3•u  03/k)(aU3/ax2) 	= 0 (4.2.6) 

- Cocu2u3/k + (aulu2  - 2C42u03•u2u3/k)(aU3/axl) 

+ (xu2 + su3  + (y + n)k - 2C42u2u3.u2u3/k)(aU3/ax2) 	= 0 

(4.2.7) 

where a is a constant given by 

X = a + a  - 1. (4.2.8) 

When equations (4.2.2) - (4.2.4) are summed there results the useful 

relation 

c = - uju3(aU3/axl) - u2u3(aU3/axz) (4.2.9) 

Equations (4.2.2) to (4.2.7) and (4.2.9) form a set of seven 

simultaneous algebraic equations for the six Reynolds stresses ui, 

U2, u3, U1112, uUu3, u2u3  and the turbulent kinetic energy dissipation 

rate c : solution is therefore possible and is facilitated by the 

further manipulations described below, in which the equations are 

transformed from implicit to quasi-explicit form. 
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Firstly, equations (4.2.2) to (4.2.5) and (4.2.9) are re-

arranged to give: 

ui 	= C3k + C2(k/e)Uiu3 aU3/axl  

u2 	= C3k + C2(k/c)u2u3 aU3/ax2  

u3 = Clk 

(4.2.10) 

(4.2.11) 

(4.2.12) 

ulu2 	= 	C2(k/2c) (u2u3aU3/ax1 + ulu3  a U3/ax2)(4.2.13) 

where Cl, C2  and C3  are constants defined by 

C1 	= 	2[(Co  - 1)/3 - (a + 2a - 1)]/ 

(Co  - 2C42) 

C2 	= 	2s/(C4, - 2C(2) 

C3  = (2(C0  - 1)/3 - 20/P0 - 2C,2) 

(4.2.14) 

(4.2.15) 

(4.2.16) 

When equations (4.2.9) to (4.2.13) are used to substitute for 

ui, ū2, ū3  and 571.12  in equations (4.2.6) and (4.2.7), the latter can 

be arranged in terms of u2u3  and u2u3  so that when one is divided by 

the other, there results 

U1U3/U2U3 = (aU3/ax1)/(aU3/ax2) 

i.e. ulU3aU3/ax2  = U2u3aU3/axl  

This identity then allows the equations for ulna  and u2u3  to be 

reduced to 

Ulu3  = - C4(k2/e)au3/axl 
	

(4.2.17) 

u2u3  = - C4(k2/c)aU3/ax2 
	

(4.2.18) 

where the constant C4 is given by 
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C4 	= -(3C1  + y + n  + x(C3  - C2))/(Col - 2Cc2) (4.2.19) 

Substitution of the axial-planes kinematic stresses ulu3  and 

u2u3  from equations (4.2.17) and (4.2.18) into the cross-plane stress 

equations (4.2.10), (4.2.11) and (4.2.13) gives 

ill = C3k 	- 	C2C4(k3/c2)(aU3/3x1)2  (4.2.20) 

u2 = C3k 	- 	C2C4(k3/c2)(3U3/ax2)2 (4.2.21) 

u1 112  = - 	C2C4(k3/E2)(aU3/axl)(aU3/axe) (4.2.22) 

Equations (4.2.12), (4.2.17), (4.2.18) and (4.2.20) to (4.2.22) are 

now transformed into curvilinear co-ordinate form to yield the final 

set 

u3 = C1k 

= 	C3k - C2C4 (k3/c2) (aU3/h2ay2)2  

	

ui 	= 	C3k - C2C4 (k3/E2) (aU3/h1aY1)2  

	

u02 	= - C2C4(k3/E2) (03/h1aY1) (aU3/h2aY2) 

u2u3  = - C4(k2/E)aU3/h1aY1 

U2U3  = - C4(k2/c)aU3/h2ay2 

(4.2.23) 

(4.2.24.) 

(4.2.25) 

(4.2.26) 

(4.2.27) 

(4.2.28) 

in which the individual stress components are now expressed as 

explicit functions of k, c and mean velocity gradients. This set 

will hereafter be referred to as the 'Algebraic Stress Transport 

Model' (ASTM), in which the constants Cl, C2, C3  and C4  can be 

expressed in terms of the constants Col  and CO2  using equations (A2.6) 

in Appendix 2 thus: 

C1 	= 	(22C41  - 24C(1)2  + 8)/33(Cc1 - 2Cc2) (4.2.29) 
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C2 = (12C4)2 - 4)/11(Co  - 2C12) (4.2.30) 

C3  = (2241 - 36C(§2  - 10)/33(Co - 2C(§2) (4.2.31) 

C4  = (44Cc1  - 22C0Cc2  - 128C(p2  - 36C4,5 + 10)/ 

165(Co  - 2C(§2 )2  (4.2.32) 

Two interesting features are readily apparent in the ASTM. 

Firstly the axial plane shear stress equations (4.2.27) and (4.2.28) 

are identical to those of a turbulent-viscosity model (equation 

(3.4.1)) with the kinematic turbulent viscosity vt given by 

vt = C4k2/c 	 (4.2.33) 

Comparison of this equation with the Prandtl-Kolmogorov formula of 

equation (3.4.7) shows that C4 	Cu.  Secondly equations (4.2.24) to 

(4.2.26) for the cross-plane stresses show that these are linked 

solely to mean strain rates aU3/h1aY1 and aU3/h29y2 in planes 

orthogonal to the cross-plane. This is in direct contrast to the 

axial-plane shear stresses where the planes of stress and strain are 

co-aligned. It is this cross-planar effect in the former case that 

is responsible for the generation of secondary flows of the second 

kind as now revealed in the application of the ASTM to turbulent non-

circular passage flow. The ASTM further reveals a link between the 

cross-plane and the axial plane Reynolds stresses, both of which are 

connected to axial plane strain rates. 

Compared with a multi-equation Reynolds stress model (e.g. 

Reece, 1977), the main simplifications made in derivation of the ASTM 

is the neglect of transport of stress by diffusion and convection. 

These simplifications should be acceptable in the calculation of 
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fully developed flow in straight passages since (i) diffusion should 

be small, even in the regions of high stress gradients near walls, 

as generation reaches a maximum there and should dominate, and (ii) 

convection will be due to secondary flows of the second kind and, as 

such, should be small (1% - 2% of the mean axial velocity from 

experimental evidence). It follows also from (ii) that the ASTM 

would not be valid in passage flows with strong secondary motions, 

such as those of the first kind that can be produced by axial 

curvature or by lateral motion of a passage wall. In these cases, 

however, the weaker stress-induced motions of the second kind would 

probably have little influence on the overall flow. 

4.3 Transport equations for k and c  

The values of k and c required in the ASTM are calculated in 

this study from their modelled transport equations. This is 

considered necessary since the present calculation procedure is 

intended for application to passages of arbitrary geometry, which 

precludes the more simple alternatives of using an algebraic length 

scale formula for the calculation of either c or both k and c as 

proposed by Gessner and Emery, (1976); since there is no such formula 

available that is known to calculate length scale accurately for 

arbitrary-shaped ducts. In particular the length scale formulae 

used in previous applications of the Launder and Ying (1973) ASTM 

were either obtained from experiments for the particular passage 

shape (e.g. Carajilescov and Todreas, 1976) or based on simple 

geometric formula known from measurements to be adequate for the 

particular duct shape considered (e.g. Launder and Ying, 1973; 

Gessner and Po, 1976; Aly et al, 1978). 
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The modelled transport equations here used for k and E are the 

now-accepted forms appropriate to high Reynolds number flows in 

which viscous effects are deemed negligible. The equation for k was 

0 
first proposed by Kolmogiov (1942) and is now widely used in one and 

two equation turbulence models (Launder and Spalding, 1972) and that 

for E was first formulated by Daly and Harlow (1970) and is also now 

commonly used in two and higher-order turbulence and stress models 

(Reynolds and Cebeci in Chapter 5 of Bradshaw, 1978). The equations 

are, in Cartesian tensor notation: 

(C4k2) ak 
a(Uik)axi = Weak axi)/axi + P/p - E 	(4.3.1) 

C4k2 ac 

a(UiE)axi 	= 	a((eo c )axi)/axi + E(CEiP -eCE2e)/Pk (4.3.2) 

where ak and 6E are the turbulent Prandtl (Schmidt) numbers for k and 

E respectively, Cel and Cet constants and P is the production rate of 

k given by 

P = - puiu.
j
(aU./axi) (4.3.3) 

Transformation of the above into curvilinear co-ordinate form 

via the relations of Appendix 3 and specialisation to the case of 

fully developed flow yields: 

• 
a(h2pUlk)/ayi + 9(h1pU2k)/ay2 = h1h2P - h1h2pE 

h (CkPk2)( ak ) 	hl lC4Pk2)( ak ) 
+ a(h~' akE 	Vi )/ay1 + a(h2 QkE 	aY2 )/aY2 (4.3.4) 
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a(h2pU1E)/ay1 + a(h1pU2E)/9Y2 
	h1h2CElEP/k 

h2 C_ k2 a  
- hlh2CE2pE2/k + achy' 	E )(aY1 ))/aY1 

(C~ k2)( 
aE 

+ a ( 	

P 

2 UEE aY2
)

/aY )2 

P = - pulu3aU3/h1ay1 - pu2u39U3/h2aY2 

(4.3.5) 

(4.3.6) 

where, in the expression for the production rate of turbulent kinetic 

energy P (equation 4.3.3), only gradients in axial velocity are 

retained in conformity with the overall model. 

4.4 The turbulent heat flux model  

When the scalar transport equation (2.4.10) is applied to heat 

transport, the turbulent heat fluxes u2c and u2c are required to be 

calculated. The method most commonly-used in previous calculations 

(see section 3.4.3) is also employed here; namely a gradient 

diffusion model incorporating an isotropic turbulent diffusivity of 

heat Yc i.e. 

- u1c 	= 	Yc aC/h1ay1 

- u2c = yc aC/h293,2 

(4.4.1) 

(4.4.2) 

where 

Y c = "t/ac (4.4.3) 

with a
c 
the turbulent Prandtl number for heat transport. From 

previous measurements, ac can be assumed constant at a value near 

0.9 (see section 3.4.3). 
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It is of interest to assemble an alternative model for the 

turbulent heat fluxes u in a similar way to that used to derive 

the ASTM for turbulent stresses (Launder, Chapter 6, Bradshaw, 1978). 

This involves simplifying and modelling the transport equation for 

u.c as detailed in Appendix 4 and leads to equation A4.3 quoted 

below in Cartesian tensor notation: 

- uiukaC,ēxk  - ukcaUi/axk  + Cic(c/k)uic 

+ C2c0TeaUi/axk  = 0 	 (A4.3) 

For the case of fully-developed turbulent flow through non-

circular passages considered here gradients of the cross-plane 

velocities can be neglected and since, additionally, the axial 

gradients (a/h3ay3) are zero, the turbulent heat fluxes can be 

expressed from equation A4.3, after transformation to curvilinear co-

ordinate form (Appendix 3) as: 

ulc 	= 	- k(uiaC/hiayi  + UlU2  aC/h23y2)/Cicc 

u2c 	= 	- k(uiaC/h2ay2  + ulu2  C/hayi)/Cicc 

(4.4.4) 

(4.4.5) 

Experimental measurements in a square duct (Brundrett and 

Baines, 1964) and attempts made at measurements in other ducts (e.g. 

Aly et al, 1978) have shown the cross-plane shear stresses ulu2  to be 

at least two orders of magnitude less than the normal stresses and 

they can, therefore, be omitted giving: 

ulc = - (kui/Cicc)aC/hiayi  

u2c = - (ku2/Cicc)aC/h2 ay2  

(4.4.6) 

(4.4.7) 
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The above relations will hereafter be referred to as the 

Algebraic Heat Flux Transport Model (AHFTM). Comparing equations 

(4.4.6) and (4.4.7) with equations (4.4.1) and (4.4.2), the AHFTM 

can be interpreted as a gradient diffusion model with anisotropic 

turbulent diffusivities linked to the turbulence structure via the 

relations 

	

Cl 
	ui

k/Clce  

	

YNZ 	U2k/C1Cc 

(4.4.8) 

(4.4.9) 

in which 
Yci 

 is seen to be proportional to the corresponding normal 

stress ui. 

Some comparisons will be made between predictions based on the 

above AHFTM and on the isotropic turbulent diffusivity model. 

4.5 Summary of the equations solved  

A summary can now be made of all the equations requiring 

solution for the prediction of steady, fully developed flow and heat 

transfer in straight passages of arbitrary cross-section. These are: 

(i) Direction 1 momentum 

(ii) Direction 2 momentum 

(iii) Direction 3 momentum 

(iv) Mass continuity 

(v) Heat transport 

(vi) k transport 

(vii) c transport  

(2.4.6) 

(2.4.7) 

(2.4.8) 

(2.4.9) 

(2.4.10) 

(4.3.4) 

(4.3.5) 
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(viii) ASTM 
	

(4.2.24) to (4.2.28) 

(ix) Turbulent heat fluxes 
	

(4.4.1) and (4.4.2) 

Equations (i) to (vii) can be seen to be closely coupled non-

linear elliptic partial differential equations, which require 

specification of the conditions prevailing at all lateral boundaries 

of the passages. 

4.6 Boundary conditions  

Typically, a passage flow calculation will involve one or both 

of the following two types of boundary; symmetry planes and 

stationary channel walls. At the former, the normal gradients of all 

the dependent variables are zero, apart from the velocity normal to 

the plane, which is itself zero. At the latter, although all 

variables assume known values (e.g. the Ui are all zero) the approach 

adopted here is to use 'wall functions' to match the inner solution 

to the wall conditions. This eliminates the necessity for a detailed 

calculation of the complex near wall region with its steep gradients 

of the main variables which would otherwise entail fine grids, and 

with viscous effects which would invalidate the use of the high 

Reynolds number turbulence model. 

The algebraic nature of the stress equations precludes the 

necessity to specify boundary conditions for them, and the treatment 

of the remaining variables follows the practices of earlier workers, 

as outlined by Launder and Spalding (1972) and summarised below. 
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The wall function employed for velocity is based on the well 

known logarithmic 'law of the wall' which has been experimentally 

established as applying to the near wall region in a variety of 

turbulent flows including the present class (section 3.2 and table 

3.2.2.). In this region, the shear stress can be taken as constant 

along a wall normal to a good approximation and is therefore equal 

to the local wall shear stress. The resultant shear stress To  at 

the wall is given by 

TO 	pU*Ckl (4.6.1) 

where the friction velocity U* is given by the log-law (e.g. 

Schlichting, 1968) as 

U* = UK/Q.n(Es+) 	(4.6.2) 

in which U is the resultant velocity parallel to the wall, K and E 

are the log-law constants and 

s+  = C4kls/v 	(4.6.3) 

where s is the distance normal to the wall surface. 

The value of a near the wall is obtained by neglecting trans-

port of k by convection and diffusion and assuming a length scale 

that, like mixing length in this region, varies linearly with s 

(Launder and Spalding, 1972) so that 

e 	= 	C4'* 31 k 2/Ks 	 (4.6.4) 
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This near-wall behaviour of E implies a particular value of 6E  as 

follows. Applying the E transport equation (4.3.2) to a control 

volume in the wall region, assuming gradients normal to the wall 

only, with convection transport negligible and retaining turbulent 

effects only yields: 

d((ut/6E)aE/as)/ds 	= 	E(CE1P - CE2pE)/k 

Assuming local equilibrium with P = pc, integrating twice with 

constant average values of all the variables, and substituting from 

equation (4.6.4) yields 

6E 	= 	K2/(Ct(CE2 - CE1)) (4.6.5) 

The turbulent kinetic energy k near the wall is obtained by 

neglecting convection and diffusion to the wall and calculating 

generation and dissipation from the local wall shear stress 

(equation (4.6.1)). 

A semi-logarithmic law is used for the near wall region in the 

thermal energy equation. The form used is that proposed by 

Jayatilleke (1969) from a review of a wide range of experimental 

data: 

q" 
	

pU*Cp(T - Tw)/ ac(U/U* + P*) 	(4.6.6) 

where U and T are the near wall velocities and temperature, Tw  is 

the wall temperature U* is the local friction velocity (equation 

(4.6.2)) and P* is a function devised to take account of the thermal 

resistance due to the viscous sublayer, given by Jayatilleke (1969) 
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as: 

P* 	= 	9.24(R3/4  - 1)(1 + 0.28e-.007R) (4.6.7) 

where R = P
r 
 /a
c 
 with Pr  the laminar Prandtl number. 

4.7 Empirical constants  

The various independent 'constants' appearing in the model 

equations are collected together in table 4.7.1, which shows the 

values ascribed to them in the present work. These values have been 

taken from those recommended by earlier users of the Launder and 

Ying ASTM and the k-e turbulence model. A square bracket in the 

'basis of selection' column cites a further source for the value 

used if it has evolved from that given in the original reference 

(curved brackets) by subsequent tests on other turbulent flows. 

It is of interest to note that test calculations in the present 

work showed the predictions to be relatively insensitive to changes 

in all of these constants except CO2  which controls the strength of 

the stress-generated sources in the cross-plane momentum equations. 

The values selected here for Co and C.2  were taken as a mean of 

those used by Launder and Ying (1972) in square duct calculations 

(Co = 2.6, C.2 = 0.365) and Aly et al (1978) in equilateral 

triangular duct calculations (constants used implied values of 

C,1 = 3.0, C$2 = 0.35). These two sets of values were chosen in 

preference to other previous users of the Launder and Ying ASTM since 

they either neglected cross-plane shear, calculated stresses only 

from experimental measurement or did not validate their predictions 

against experiment. 
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Table 4.7.1 The values of the universal empirical turbulence 
model constants employed in the present calculations. 

Constant Value Basis of selection 

C0 2.78 Return to isotropy in absence of mean strain 
(Launder and Ying, 1973); 	[Aly et al, 1978] 

Cf2 0.358 Plane homogenous shear flow (Launder and Ying, 
1973); 	[Aly et al, 1978] 

Cel  1.55 Measurement of turbulence near to walls 
(Launder and Spalding, 1972); 	[Tatchell, 1975] 

CE2  2.0 Decay of turbulence behind a grid (Launder and 
Spalding, 1972); 	[Tatchell, 1975] 

ak 1.0 Near unity from physical argument (Launder and 
Spalding, 1972). 

ac  0.9 Near wall measurements (Launder, Chap. 6, 
Bradshaw, 1978). 

E 9.025 Average of experimental data for smooth walls 
(Schlichting, 1968). 

K 0.4 

There are a number of constants appearing in the various 

equations solved that are dependent on those listed in Table (4.7.1). 

To assist the reader, these are summarised here, together with their 

defining equation numbers: 

C2 = 0.013 (4.2.30) 

C3  = 0.562 (4.2.31) 

C4  = 0.085 (4.2.32) 

aE  = 1.22 (4.6.5) 

All the constants in Table (4.7.1) were used, as listed, for the 

whole range of turbulent flows and passage geometries calculated in 
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the present study: i.e. no attempt was made to 'tune' them to give 

optimum agreement with experiment for particular cases, since one of 

the objectives of the present work is to determine the extent to 

which they are universal. 

4.8 Closure  

The mathematical model presented in Chapter 2 has been 

completed in this chapter by the formulation of equations for 

calculation of the Reynolds stress tensor, the turbulent scalar 

fluxes and the conditions prevailing at the passage boundaries. 

Algebraic equations were obtained for the turbulent stresses (the 

ASTM) by simplification of the Reynolds Stress Transport Equations, 

the main simplification being the neglect of transport by convection 

and diffusion. The ASTM revealed a direct link between the cross-

plane stresses and the axial plane strain rates which, in turn, are 

linked to the axial plane shear stresses. 

The boundary conditions to be used for each partial differential 

equation and the values of the universal empirical constants in these 

and the other equations are entirely conventional and based on those 

used in previously published work. The next chapter presents the 

finite difference form of the partial differential equations and the 

method developed to obtain their simultaneous solution. 
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CHAPTER 5 	SOLUTION PROCEDURE 

5.1 Introduction  

The partial differential equations which govern fully developed 

flow and heat transfer in arbitrary shaped passages are set out in 

Chapters 2 and 4. In this chapter, the numerical approximations and 

procedures used for the simultaneous solution of these equations are 

presented. A finite-difference approach has been used, in which the 

partial differential equations are approximately integrated over 

imaginary, finite control volumes which are contiguous over the 

solution domain. These control volumes surround grid nodes which are 

located at the intersection of grid lines, which in this study, are 

curvilinear and orthogonal. Detailed descriptions of the grid and 

formulation of the finite-difference equations are given in sections 

5.2 and 5.3. 

The finite difference equations obtained are algebraic in form. 

strongly coupled and non-linear. An existing solution scheme, usually 

referred to as 'SIMPLE' (Semi-Implicit Method for Pressure Linked 

Equations) has been used to simultaneously solve these equations. 

Details of this scheme are given in section 5.4, a description of how 

the boundary conditions are incorporated is provided in section 5.5 

and an outline of the solution algorithm in section 5.6. The grid 

generation methods used are outlined in section 5,8. Finally, in 

section 5.9 details are presented of the practices that have been 

introduced to aid convergence of the solution and of the methods used 

to check the accuracy of the procedure. 
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5.2 The finite-difference grid  

The finite-difference grid consists of a set of orthogonally 

intersecting grid lines in three dimensions. In the cross-plane of 

the passage, the grid lines are curvilinear and intersect orthogonally 

with each other and with the boundaries of the passage. The main grid 

nodes, designated '4)' nodes, are at the points of intersection, 

through which pass the straight axial lines which complete the three 

dimensional grid. A portion of such a grid is shown in figure 5.2.1a, 

with the cross-plane mesh in heavier lines and the $ nodes indicated 

with small filled circles. 

The '4)' grid nodes are surrounded by '4)' control volumes or 

'cells', the boundaries of which are formed, in the cross-plane, by a 

mesh of lines representing axial planes, mid-way between the main 

grid lines and, in the axial direction by a pair of cross-sectional 

planes. Figure 5.2.1b shows a typical $ cell (hatched) with the cell 

boundaries as broken lines. The methods used to calculate the 

location of the main grid nodes are presented in a later section. 

Grid nodes can be identified by grid line numbers 'i' or 'j' in 

each orthogonal direction as shown in figure 5.2.2a. The $ cell 

surrounding the node 4)p(= $i,j)  is the orthogonal curvilinear 

rectangle n-e-s-w in figure 5.2.2a. The grid line spacing is in 

general non-uniform so the cell size and shape can vary across the 

passage cross-section. 

The main variables p, U3, k, c and T are calculated and stored in 

the computation scheme at the 0  node, whereas the cross-plane 

velocities U1  and U2 are computed at intervening locations, displaced 
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mid-way between the 6 nodes in the direction of the velocity 

component in question. For example, in figure 5.2.2a, U1 is 

calculated at w, e etc. whereas U2 is calculated at n, s etc. The 

control volume cell for the U1 location in the cross-plane is bounded 

by planes represented by the nearest grid lines and the 4)  control 

volume planes each side of the location. A similar arrangement applies 

for the U2 control volume as illustrated for each case in figures 

5.2.2b and c. This staggered grid arrangement is now conventional 

practice in finite-difference procedures for fluid flow since it 

enhances stability and convergence (Harlow and Welch, 1965; Caretto 

et al, 1972) due mainly to the cross-plane velocities being located 

mid-way between the pressures which drive them. These pressures are, 

in fact, needed at the U1  and U2 control volume faces which is 

exactly where they are computed and stored in this staggered grid 

scheme. In addition to this, the velocities are available at the 0 

control volume faces which is also exactly where they are needed for 

calculation of the convective fluxes of the main variables. 

5.3 The finite-difference equations  

5.3.1 The 4)  equation 

The governing partial differential equations can all be cast 

into the following common form: 

(h2G0 ) /aY1 + a (h140 ) /ay2 	-(1124 /h1aY1)/ayl 

+ a(h1D.§/h2a312)/ay2  + Cci) 	 (5.3.1) 
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where $ stands for any of the main dependent variables U1, U2, U3, k 

and e, D4  is the exchange coefficient and C4  represents the source. 

The latter is also a receptacle for the terms not already contained 

in the other components. Table 5.3.1 summarises the terms appearing 

in C
(I) 
 and D

(1) 
 for each main variable. The two terms on the 2.h.s. of 

equation (5.3.1) are usually referred to as the 'convection' terms, 

and the first two on the r.h.s. as the 'diffusion' terms. 

5.3.2 The finite-difference scheme 

The finite-difference equivalent of equation (5.3.1) is 

obtained for each location by integrating each term over the control 

volume (appropriate to the variable considered when 	represents U1  

or U2). This micro-integration technique helps to ensure that the 

resulting finite-difference equations satisfy the relevant 

conservation principles embodied in each partial differential 

equation. (The control volumes are here all assumed to be interior; 

the modifications necessary near the boundaries will be discussed 

later). The integrated terms will contain values of ft, at each 

control volume face which are a weighted average of values at 

adjacent nodes. The weighting used depends on the differencing 

scheme adopted. In the present method a hybrid differencing scheme 

(HDS) is used for convection of and a central differencing scheme 

(CDS) for diffusion of 4  (see Caretto et al, 1972). The HDS is 

essentially a CDS with provision to switch to upwind differencing 

with diffusion neglected when the absolute cross-plane flow is such 

that the local absolute Peclet number 'Pe' is equal to, or greater 

than 2.0. This preserves the accuracy of central differencing at the 
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0 Do  C 

U1 p - h2ap/ay1 + a(ph2aU1/h1ay1)/ay1 + a(2ph2U2/r1)/ay1 

- 3(0101/rl)/aY2 + a(0U2/ay1)/aY2 

- a(ph1U2/r2)/aY2 - a(h2pu1111)/aY1 - a(hlp11020Y2 

- h1h2(2paU2/h2aY2  + 2pU1/r2 - pU2U2 - pu2u2)/r2 

+ h1h2(pBU1/h293,2 + paU2/h1ay1 - pU1/rl - pU2/r2 

- pU1U2 - pulu2)/r1 

U2 u - h1Bp/a3/2 + a(ph1aU2/h2aY2)/aY2 + B(2ph1U1/r2)/aY2 

- a(ph2U2/r2)/ay1 + a(paU1/aY2)/aY1 

- 	a(ph2U1/r1)/ay1 - a(hlpu2u2)/aY2 - a(h2pulu2)/BY1 

- h1h2(2paU1/h1ay1 + 2pU2/r1 - pU1U1 - pulul)/rl 

+ h1h2(paU2/hlay1 + paUl/h2aY2 - pU2/r2 - pUl/r1 

- pUlU2  - puu2)/r2 

U3  peff - hlh2ap/ay3 

k ut/vk h1h2P - h1h2pc 

E pt/VE  h1h2 CE1EP/k - h1h2 CE2pE2/k 

C pt/vc - a(h1h2pU3C)/ay3 

Table 5.3.1 	Coefficients of the 0  equation 

lower cross-flows and affords the stability and good convergence of 

upwind differencing at higher cross-flows. 



-90- 

In the following approximate integration of equation (5.3.1) 

CDS will be used initially for the convection, diffusion and source 

terms: then the HDS modifications to the resulting coefficients 

will be indicated. It is convenient to consider first of all, a 

variable 4 calculated at node 4i,j. With reference to figure 

5.2.2(a), the nodes adjacent to 
	
are designated as 'N' at 0i,j+1, 

'S' at ~il, 'E' at (1)i+l,j and 'W' at 4i _1,j. These letters, 

together with n, s, e, w which represent the (intermediate) locations 

of the control volume faces, will be used as suffices to indicate a 

value at that location. The axial distance between the upstream and 

downstream planes defining the control volume faces normal to the 

axial direction is constant and represented by AZ. The integrals 

are as follows: 

(i) Convection terms  

let Ici = 1n e J 
(a(h2Gi4)/ayi)iZdy2dYi 

s w 

n 
then Ici 	= 	J ((h2Gi4)e - (h2Gi4)w)oZdY2 

s 

which is approximated as 

'Cl (Gi )etZS2e - (GiOw1ZS2w 

where Si is the curvilinear arc distance fhidyi e.g. S~e is the arc 

length of the control volume boundary passing through the point e in 

the direction y2 ('deb' in figure 5.2.2a). Assuming a CDS, (I)e and 

414 can be written in terms of the value at adjacent nodes to give 

'Cl 	Gie(OE + (1)p)AZS2e/2 - Giw(4p + 4w)LZS2w/2 	(5.3.2) 
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Using a similar method, the second convection term can be written 

as 

1c2 G2n(4N + 4P)aZS1n/2 - G2s(4 + 1:1S)aZSis/2 	(5.3.3) 

It should be noted that in the above Gie, G1w , G2n and G2s denote 

the lateral mass fluxes at the 4 control volume faces. 

(ii) Diffusion terms  

let ID1 	= 	in e (a(h2D~/4/h1V1 ) /aY0AZdY2dY1 
 J SW 

then IDi 	= 	Jn ((h2D~a4/hiay1 )e - (h2D~a4/hiaY1)w)aZdY2 
s 

which is approximated as 

ID1 	= 	D4e(tE - 4p)S2e/Sipe - D
o
(4P - 4w)S2w/S1Pw 	

(5.3.4) 

where Sipe represents the arc length across the control volume 

between e and P and Sipw that between w and P. Similarly the second 

diffusion term can be integrated to give 

ID2 	- 	Dcn(4N - 4P)Sin/S2PN 	Do(4)p - cb5)S1s/S2pS (5.3.5) 

(iii) Source  

n 
let Is = Ifw C aZdy2dy1 

s  

Assuming the source to be uniform over the control volume yields 

Is - CcVp (5.3.6) 
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where Vp is the volume of the control volume, calculated as: 

Vp 	= 	(S2e + S2w)(Sin + Sls)/4  (5.3.7) 

Some examples of the evaluation of C are provided in Appendix 6. 

The complete finite difference equation for is now given by 

IC1  + IC2  - ID'  - ID2  - Is  = 0 

which can be written, from equations (5.3.2) to (5.3.6), as 

Ce(4E + ( p) - Cw0p  + Ow) + Cn(tN + gyp) 

- CsOp  + PS) - Be(4E - (1)p) + BwOp - 4w) 

- Bn(4N - (I)p) + Bs(4) - 0s) - 0  - e; 	= 	0 	(5.3.8) 

where Ce  = G1etZS2e/2 

Cw  = GiwoZS2w/2 

Cn  = G2neZS1n/2 

Cs  = G2soZS1s/2 

Be  =DoeS2e/SiPE 

Bw  = OoIS2w/S1Pw 

Bn  = D
(ti
nSin/S2PN 

Bs  = -0-1S-2PS 

(5.3.9) 

   

and the source has been linearised such that 

Cil Vp  = Op  + et 	 (5.3.10) 
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5.3.3 	The continuity equation 

Equation (5.3.8) is now manipulated into its final form by 

using the finite-difference equivalent of the continuity equation 

(2.4.9) obtained for the 0  control volume, with faces at n, e, s, w 

in figure 5.2.2a. This equation is obtained from 

j
e (a(h2G1)/aYl)AZdY2dY1 + J

n fe 
(a(h1G2)/ay2)AZdy1dY2 

s 1  w 	 s w 

i.e. 

= 0 

G1eAZS2e  - G1woZS2w  + G2ntZS1n  - G2SOZSls 	= 	0 (5.3.11) 

or 2Ce  - 2Cw  + 2Cn  - 2Cs  = 0 	(5.3.12) 

It is of interest to note that the differential continuity equation 

can alternatively be obtained from the 0  equation (5.3.1) by setting 

= 1, Do  = 0 and Co  = 0. Similarly (5.3.12) can be obtained from 

(5.3.8) by setting all 4,'s to unity, all Dl's to zero and C
(1) 
 to zero: 

this is an important consequence of ensuring that the difference 

equations correctly express the relevant conservation laws. 

5.3.4 The final form of the finite-difference equations 

Rearranging equation (5.3.8) in terms of 4 yields 

0p((Be + Ce) + (Bw - Cw) + (Bn + Cn) + (Bs - Cs ) 	g) 

_ 	cl)E(Be - Ce) + + W(Bw + Cw) + 4,N(Bn  - Cn) 

+ 4S(Bs + Cs) + e' 
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Using equation (5.3.11) this can be written as 

Op((Be - Ce) + (Bw + Cw) + (Bn - Cn) + (Bs + Cs) - 

= 	cl)E(Be - Ce) + 4W(Bw + Cw) + 4N(Bn - Cn) 

+ 45(Bs + Cs) + e' 

g) 

or more compactly as 

(Ap - g)pp 	= AĒ4E + AW~ + AON + ASOs + e/ (5.3.13) 

where Ap = AĒ + AW + AN + AS and the coefficients AĒ, AW, AN and AS 

represent the combined affects of convection and diffusion. The 

central differencing form of these coefficients as derived above is 

shown in the first column of table 5.3.2 for 'Pe' < 2.0. The other 

two columns show the HDS modifications for higher positive and 

negative Pe. 

'Pe' 	< 2.0 Pe , 2.0 Pe ,-2.0 

AE 

AW 

AN 

AS 

Be - Ce 

Cw 

Bn - Cn 

C 

0 

2Cw 

0 

2Cs 

2Ce 

0 

2Cn 

0 

Table 5.3.2 	Coefficients in the finite 
difference equation 

The final form of the finite-difference equation for 4p can now be 

written as 

(I)p 
	= 	AE4E + AOW + AN4N + AS4S + e 	(5.3.14) 
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where 

AE  = AĒ/(Ap - 9) 

AW  = AW/(Ap - g) 

AN  = AN/(Ap - 9) (5.3.15) 

AS  = AS/(Ap - 9) 

e = e'/(Ap  - g) 

Equation (5.3.14) is the finite-difference equivalent of equation 

(5.3.1) and relates 4)p to the 	values of the neighbouring nodes in 

the curvilinear orthogonal grid. 

The finite-difference form of the momentum equations are 

similar to (5.3.14). It is, however, convenient to separate the 

pressure terms from the remaining source terms in order to later 

explain the solution method more easily. The finite-difference 

equations for U1  and U2 are written, therefore, as 

U1p  = AEUE  + AWUlw  + ANU1N  + ASUis  + e" 

+ Flp(pw  - Pp) 

 

(5.3.16) 

U2p  = AEUE + AWU2W  + ANU2N  + ASU 
 

2S  + est 

 

+ F2p(ps  - Pp) 

 

(5.3.17) 

where (e" + gU1p) and (e" + gU2p) are the linearised and integrated 

sources excluding the pressure terms and 

Flp 	= 	S2wdZ/(Ap - g) 	 (5.3.18) 

F2p 	= 	s1soZ/(Ap - g) (5.3.19) 
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It should also be noted that the control volumes for U1  and for U2 

are different from those for all the other variables and thus the 

appropriate arc lengths and neighbouring values of all variables 

must be used in (5.3.16) and (5.3.17); details are given in Figure 

5.2.2. and Appendix 6. 

The main variables U3, k and a can be obtained from the 

solution of equation (5.3.14) and the cross-plane pressure and 

velocities from solution of equations (5.3.12), (5.3.16) and 

(5.3.17) with the appropriate source terms (table 5.3.1). Each set 

of equations for a particular variable is solved with a line-by-line 

iterative procedure based on the tri-diagonal matrix algorithm 

(TDMA) which is outlined later. The equation sets are solved in 

sequence with the sequence repeated in an outer iteration loop. The 

sequence starts with solution of the cross-plane continuity and 

momentum equations which are strongly linked together through the 

cross-plane pressure field. Details are provided below. 

5.4 The SIMPLE solution method  

The cross-plane continuity and momentum equations are solved 

with a 'guess and correct' procedure first proposed by Patankar and 

Spalding (1972) and commonly known as SIMPLE. In this method a 

first estimate of the cross-plane velocities is obtained by solution 

of the momentum equations for a guessed pressure field (which may be 

initial guesses or values from the previous iterations) and then 

corrections are obtained to the latter so as to drive the velocities 

in the direction of satisfying continuity. This cycle is then 
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repeated in an iteration sequence which also includes solution of 

the equation for U3, k and c and updating of the stresses until 

convergence is obtained, by which time the corrections should, of 

course, be negligible. The development of the method will be given 

here with more details obtainable in Patankar and Spalding (1972) 

and in Caretto et al (1972). 

The preliminary values of the cross-plane velocities are 

calculated from equations (5.3.16) and (5.3.17) as 

Utp = AEUtE + AWUlw 
+ 

ANUtN 
+ 

ASUt5 
+ gli 

+ Flp(pW - pp 	 (5.4.1) 

U2P 

= AEU2E + 

AWU* 

+ ANU2N + ASU2S + g,;
E 

+ F2p(ps - pp) 	 (5.4.2) 

where the superscript * denotes values obtained by using the guessed 

pressure field p* (usually the values from the previous iteration). 

These velocities will, in general, not satisfy the continuity 

equation so that, locally, there will be a finite mass inbalance Mp 

represented by (equation 5.3.11) 

Mp = pU1pLZS~e - pUiEoZ S2w + PU2NLZSin - pU2pLZSls 

(5.4.3) 

A set of pressure corrections (p') are now obtained such that 

the resulting velocity corrections (UI and U2) will reduce this mass 

source to zero i.e. 

pUipoZS2e - pUiEoZS2w + U2NtZSln - pU2poZSls = - Mp 

(5.4.4) 
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These corrections are obtained from the assumption that the velocity 

component is a linearised function of the pressure gradient in that 

direction so that 

Uip 	= 	IaU1/a(PW - pP)1(P1 - pP) 	= 	Flp(pW - pP) (5.4.5) 

similarly 

U2p 	= 	F2p(ps - p) 	 (5.4.6) 

The substitution of equations (5.4.5), (5.4.6) and the corresponding 

equations for U1E  and U6 into equation (5.4.4) leads to 

Pp  = FEpĒ + Fwpw + FNpN + FSps + gp 	(5.4.7) 

where 

FE  = LZS2eFlp/Fp 

etc. 

gp = - MP
/FP 

and F 	= poZS2eFlp + ptZS2wF1E  + poZSinF2N + poZSisF2p 

(5.4.8) 

Equation (5.4.7) can be solved by the TDMA solution method (section 

5.6) to yield a field of p`; the pressures and velocities are then 

corrected as follows 

Pp = Pp + Pp 

Ulp = U•p + Uip 

U2p = U2p + U2p 

(5.4.9) 

(5.4.10) 

(5.4.11) 
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The above corrected values of Ulp and U2p are then used in 

solution of the 0  equation for U3, k and c which is followed by the 

updating of pt, ui, u2 and ulu2  to complete an iteration sequence. 

If the solution is not converged, the corrected pressure field will 

be used as the 'guessed' pressures in the next iteration. 

5.5 The near-boundary control volumes  

This section outlines the methods used to incorporate the 

boundary conditions, particularly the wall functions, into the 

finite-difference procedure. 

At a symmetry plane, convection and diffusion across the plane 

is eliminated by setting the appropriate 'A' coefficient (equation 

5.3.14) in the finite-difference equation to zero (e.g. AE  for the 

cell 'C' in figure 5.5.1). For the 4's the gradient is then made 

zero by equating the values at the nodes each side of the plane 

(e.g. OE = Op for the 0  cell 'C' in figure 5.5.1). A velocity 

component normal to the symmetry plane is simply set to zero and 

this constitutes the appropriate boundary condition for the relevant 

momentum equation. 

Near a wall the staggered grid is modified so that the c  nodes 

and lateral velocity locations coincide with the wall surface as 

shown in figure 5.5.1 with 4  cells A and B. The wall functions for 

each main variable are entered into the finite-difference equation 

as follows: 
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(a) Axial velocity (U3)  

The resultant wall shear stress To  is calculated from equations 

(4.6.1), (4.6.2) and (4.6.3) using the latest values available at 

the near wall node (P): thus for example for the 0  cell 'A' near 

the y2  boundary surface in figure 5.5.1 (suffix 'P' indicates the 

value at the 0  node as usual), the resultant velocity U is obtained 

from 

U2 = U312, + U2P 	(5.5.1) 

Since velocity and shear stress are assumed colinear, the components 

of To  will be given by 

To3 = (To/U)U3p (5.5.2) 

To  = (To/U)U2p (5.5.3) 
2 

T
01 

 (T0/U)Ulp (5.5.4) 

Equation (5.5.2) is used to calculate the axial component of 

wall shear stress which is then used to obtain the shearing force at 

the wall control volume face. This force is a function of U3P 
 and 

is therefore entered into the finite equation through the 'g' 

component of the integrated source, with the wall-side coefficient 

(e.g. Aw  for the 0  cell A in figure 5.5.1) set to zero. 

(b) Cross-plane velocities (U1  and U2) 

The velocity component normal to the wall is, of course, set to 

zero. 
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For the velocity component parallel to the wall, the method 

used is identical to that described in (a) for the U3 component, 

except that the appropriate component of wall shear stress (either 

equation (5.5.3) or (5.5.4)) must be evaluated at the corresponding 

wall control volume face. 

(c) Turbulence kinetic energy (k)  

Convection and diffusion to the wall is set to zero by making 

the wall-side finite difference 'A' coefficient zero (e.g. Aw  for 

the IS cell 'A' in figure 5.5.1). It should be noted that this does 

not impose local equilibrium since there can be transport by 

diffusion and/or convection through the other three faces of the 

control volume. The production and dissipation of k are both 

calculated using the wall shear stress To  in this near-wall 

(constant shear layer region) control volume, as will now be 

illustrated with reference to the 4)  cell 'A' in figure 5.5.1. 

Since the strain field in the wall region is dominated by the 

axial velocity gradient normal to the wall, equation (4.3.6) can be 

simplified to 

P - - pulu3dU3/hidyi 

which can be approximated to by replacing the turbulent shear stress 

and and then integrated to give the volume 

To  dU3/dS d(vol.) 
vol. 

(5.5.5) 

pinus  by the wall stress 

average P where 

P  

P 	- 

- 	(vol.) 

To  U3P/S 
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where 
U3P 

 is the nodal value at P and S is the distance to the wall. 

From equation (4.2.33): 

c = C4k2/vt 

Since - puu3  = vt  aU3/hlayl = To  and making the same approximation 

with the axial velocity gradient as in (5.5.5), the above can be 

integrated to give the volume average ē as 

E 	= 	1/(vol.) 
J01•

pC4k2(dU3/dS)/Tod(vol.) 

E 	- 	pC414 U3P/ToS (5.5.6) 

Equations (5.5.5) and (5.5.6) are the expressions used for the 

production and dissipation rates in the near-wall k control volume. 

(d) Dissipation rate of turbulence kinetic energy (E)  

The near-wall value of c is obtained directly from equation 

(4.6.4) i.e. the differential equation is not employed here, in 

conformity with Launder, Reece and Rodi (1975) and others. 

(e) Enthalpy (C)  

Of the many boundary conditions that can be specified for fully 

developed heat transfer in passages, the following three, designated 

H1, H2 and H3, have received the most attention in the literature: 

H1 	Constant peripheral temperature and axial heat flux. 

H2 	Constant peripheral and axial temperature (isothermal wall). 

H3 	Constant peripheral and axial heat flux. 
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The reason for such attention appears to be their amenability to 

analysis (particularly H1) rather than their practical occurrence 

which is somewhat limited (see section 8.1). Due to their common 

usage, these three conditions will be studied in the present work. 

Since, however, there are no restrictions on the heat transfer 

boundary conditions that can be imposed in numerical analysis, 

other conditions, such as might arise in experimental work will be 

imposed where appropriate. The methods used to incorporate the 

above standard boundary conditions are outlined below: 

(i) H1 boundary conditions  

The heat flux is calculated for the near wall control volume 

from equation (4.6.6) in terms of the temperature T = Tp  at the 

near-wall node (Tw  is fixed at the prescribed value), i.e. for the 

cell 'B' in figure 5.5.1 

qs 
	- Cp(Tp - Tw)SistZTo/(C, kP vc(U3p/U3P + P*)) (5.5.7) 

This is the heat flux through the wall-side control volume face 

(Launder and Ying, 1973), and is entered into the finite-difference 

equation through the 'g' and 'e' components of the integrated 

source, with the wall-side 'A' coefficient set to zero. 

(ii) H2 boundary conditions  

The near-wall modification is identical to that for the H1 

case above since the peripheral wall temperature is again constant. 

(iii) H3 boundary conditions  

The constant prescribed value of heat flux (say q 	is used, 

via equation (4.6.6), to calculate the temperature difference 
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between the near-wall node and the wall, and thus the temperature 

at the wall node, i.e. for the 	cell 'A' in figure 5.5.1 

Tw  = Tp  + qW C4 kP vc(U
3P
/U3P - P*)/To 	(5.5.8) 

5.6 The Thomas algorithm 

As mentioned in section 5.4, solution of the finite-difference 

equations is obtained by line-by-line iteration. This is accomplished 

with the well known Thomas or tri-diagonal matrix algorithm (TDMA) 

outlined in Appendix 7. The finite-difference equation for 4 

(equation 5.3.14) can be written for solution by the TDMA along a Y2 

line (figure 5.2.2a) as 

Op 	
= AN¢N 

+ As0s  + 
(AEOE 

 + 
Aw¢w 

 + e) 	(5.6.1) 

Comparing this with equation (A7.1) shows that the terms in the 

bracket (corresponding to Ci) are assumed constant i.e. the 0  values 

on adjacent y2  lines are assumed known. The equations (5.6.1) for 

each location on a y2  line constitute a linear simultaneous equation • 

set that is solved by application of the TDMA, yielding new values 

of 0  at each location on the line. A complete pass through the 

solution domain visiting and solving for new 4  values on each y2  

line successively is called a 'sweep' in the yl  direction. However 

solving each line changes the values of c  considered known in the 

solution of the previous line, so that one sweep will not yield the 

correct solution. A number of sweeps can be made, but even with 

this efficient solution method, convergence can be slow. The various 

practices developed and introduced in the present work to effect more 

rapid convergence are discussed in section 5.9. 
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5.7 Summary of the overall solution procedure  

Using the current values of all main variables, stress 

components etc., the following main sequence of operations is 

performed during an iteration of the solution procedure:- 

1. The complete fields of Ui and U2 are calculated from equations 

(5.4.1) and (5.4.2). 

2. The pressure correction at each node is then calculated from 

equation (5.4.7) and the pressure, U1 and U2 fields are 

corrected using equations (5.4.9) to (5.4.11). 

3. The axial velocity (U3) field is calculated from equation 

(5.3.14) using the corrected values of U1  and U2 from step 2 to 

evaluate the coefficients. 

4. All scalar variables (k, c and C in turbulent flow with heat 

transfer) are then calculated from equations (5.3.14) using the 

prevailing velocity field. 

5. The turbulent stresses, effective viscosity and eddy diffusivity 

are updated at each node from the new values of all variables. 

6. The residual source in each variable field solved is compared 

with that deemed acceptable for a converged solution. If the 

procedure has not converged, it proceeds to the next iteration, 

and the whole cycle 1 - 6 is repeated. 
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5.8 Grid generation  

An orthogonal curvilinear grid was required to fit the passage 

cross-sectional shape for each case (other than those where Cartesian 

meshes were used e.g. rectangular and most square duct calculations) 

studied. In some instances the grid could be specified directly as 

for the circular pipe where polar-cylindrical co-ordinates were used 

for the sector-shaped domain solved (see figure 5.8.1). This was 

also the case for the quadrant of an elliptical duct where elliptical-

cylindrical co-ordinate grids were used: in this system the Cartesian 

co-ordinates xl and x2  are related to the curvilinear co-ordinates yl  

and y2by the equations 

xl 	= 	Ce  coshylcosy2  

x2 	= 	Ce  sinhylsinY2 
(5.8.1) 

where Ce  is a constant dependent on the duct aspect ratio. Figure 

5.8.2 shows a typical mesh generated from these equations for a duct 

with an aspect ratio of 2. 

To enable the present method to be applied to arbitrary-shaped 

passages, a general method for orthogonal curvilinear grid calculation 

was adopted, similar to that described by Antonopoulos et al (1978). 

In this method, the transformation equations relating the Cartesian 

and orthogonal-curvilinear co-ordinates are solved by finite 

differences. The curvilinear mesh boundaries are made to coincide 

with the passage boundaries. 
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An outline of the method is given in Appendix 5 and examples of 

grids generated, for an equilateral-triangular half-duct and for the 

symmetry element of an infinite-array rod-bundle of triangular pitch 

are shown in figures 5.8.3, and 5.8.4 respectively. If required, 

variable spacing can be obtained by appropriate specification of the 

transformed rectangular mesh. 

To test orthogonality and convergence, the physical co-ordinates 

of the intersecting curvilinear grid lines are assumed to obey local 

quadratic functions and the angle of intersections calculated at each 

node. Orthogonality was found to improve with iteration of the grid 

generation procedure and was accepted when within 10  everywhere. 

With this criterion a 20 x 12 mesh could be generated with, typically, 

7 seconds of CPU time on a CDC 6600 computer. 

The arc lengths Sln,  See etc. required for the finite-difference 

equations, and also the local radii of curvature r1  and r2  required 

in the cross-plane momentum sources were calculated by fitting a 

parabola through three known points (e.g. a, n, b for Sin  in figure 

5.2.2a). 

5.9 Convergence and accuracy  

Convergence of the method was found to be uncertain due to the 

close coupling and non-linearity of the equations being solved. This 

was further compounded by the strong source terms in the cross-plane 

momentum equations associated with the Reynolds stresses and grid 

curvature. Indeed, this problem was found to be insoluble by Trupp 

and Aly (1978) with a less complex method (turbulence length scale 
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prescribed) based on an earlier version of the ASTM. As discussed in 

Chapter 3, Trupp and Aly were eventually forced to prescribe the 

direction of secondary motions in order to obtain converged solution. 

Remedies were developed in the present study to overcome these 

difficulties without imposing any restrictions on the flow; these and 

efforts made to maximise the accuracy of the method are now described. 

5.9.1 Convergence criteria 

The convergence criteria used in the present method were based 

on the sum of the absolute residual sources in each field of variables 

calculated. From equation (5.3.13), the residual source (error) Rs  at 

each node is defined by 

Rs 	= 	AĒ0E  + A6,4W  + AN N  + A10s  + e' - (Ap - g) 

(5.9.1) 

This was calculated at all cells and the absolute values summed for 

each variable using the prevailing values of these. The solution was 

assumed to be converged when the value of this sum, normalised by an 

appropriate overall reference quantity NR, was below a pre-set value 

er  for each variable monitored i.e. 

Er 	= 	EIRsI/NR  < er 	 (5.9.2) 

The values of Er  (hereafter called the 'residuals') for each main 

variable were printed out after every outer iteration and tests 

showed that the value of er  could normally be set at 10-3  since 

reduction of Er  below this level usually resulted in insignificant 

further changes in the solution. In addition to the above criteria, 
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the values of each variable were monitored at a 'sensitive' location 

in the field and printed out after each iteration. This, together 

with an inspection of the full field values of each main variable 

every 50 or 100 iterations, provided means of checking that the 

solution was proceeding smoothly to convergence. 

In the present work, the axial and cross-plane momentum and 

cross-plane mass continuity residuals were found to be the most 

sensitive tests for convergence and thus were monitored using the 

following values of NR: 

Axial momentum NRA = —(dp/dS3)EVp 

Cross-plane momentum NRC = 0.1 NRA 

Cross-plane mass continuity NRM = H(pNRC)
1  

where H is a dimension across the passage. 

The above 'residual source' convergence criterion was considered 

more satisfactory than the commonly used 'fractional change' 

criterion based on the maximum change in value of each variable 

between iterations. The problems of very slow convergence, mentioned 

in the previous section, often resulted in little change in the values 

of the variables for a few iterations during the course of the 

solution. This situation could be falsely taken as a converged 

solution by the latter, but not by the former, criterion. 

5.9.2 Methods used to achieve convergence 

The problem of obtaining convergence was largely overcome by the 

development of a combination of under-relaxation, careful starting 

procedures and block adjustment. The TDMA solution method (see 
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section 5.6 and Appendix 7) was also improved by the addition of a 

second sweep to give two consecutive sweeps of the entire field in 

alternate directions. This ADI version of the TDMA is widely used 

and is current practice in the solution of elliptical equations. 

The non-linearity and close-coupling effects in the finite-

difference equations were attenuated by under-relaxation of most of 

the variables solved. Typically U3, k,c and 
ueff 

 were under-relaxed 

by 0.7 with U1  and U2 usually under-relaxed by 0.3 or less. This 

attenuation was found, however, not to be enough to procure 

convergence. Further under-relaxation applied to these and other 

variables and also other quantities, such as the cross-plane momentum 

sources, invariably just slowed down any changes in the solution 

without necessarily procuring convergence. 

The following additional measures were however found to be 

effective. The six equations to be solved were divided into two 

groups and after establishing U3, k and c fields, initial calculations 

were made with not more than one group of equations being solved 

simultaneously. A typical such starting procedure involved the 

following steps:- 

1. Calculate an initial U3 field, based on the 'one-seventh power' 

law. 

2. Solve for k and a only with U3 fixed and U1, U2 and p all zero, 

for about 6 iterations. 

3. Calculate U3, k and c together, with the cross-flow solution 

still suppressed, until a converged solution is obtained (this 

prediction was also later used to illustrate the effects of 

cross-flow). 



	

4. 	Keep U3, k and c fixed and calculate U1, U2 and p' for 15 

iterations. 

	

6. 	Solve all equations simultaneously (as sequence in section 5.7) 

until the solution is converged. 

The stresses are updated after each iteration in which U3, k and e 

were involved. This approach was found to be successful, even with 

the most difficult cases (e.g. the square duct with one rough wall) 

where, if necessary, steps 4, 5 and 6 (for about 20 iterations) were 

repeated a few times before step 6 was applied to convergence. 

Consideration of the elliptical nature of the equations being 

solved led to the introduction of a 'block adjustment' procedure 

(Gosman et al, 1977). With iterative solution of elliptical 

equations, residuals can often be just moved around the field with 

little reduction rather than filtered through the boundaries. Block 

adjustment, as described below, is a means of reducing these residuals 

by simultaneous reduction of the residual source sums for strips of 

cells, spanning the cross-section of the passage. 

Following an alternating direction sweep of the TDMA for a 

variable ¢, an adjustment 6Oi  is calculated along each strip 'i' of 

cells such that when 64;  is added to the value of 0  at each node in 

the strip the residuals along that strip sum to zero. The equation 

for 60i  is derived in Appendix 8 and is seen to be of a form suitable 

for solution by the TDMA (c.f. equation A7.1). It should be noted 

that although the strip-wise residual source sums have been reduced 

to zero overall by this procedure the resulting field of 0's is not, 

in general, a converged solution since the local residuals will not 

necessarily be zero at each node. 
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5.9.3 Accuracy of the solutions 

The errors in a solution are due either to errors in modelling 

or in the subsequent numerical solution of modelled differential 

equations. Modelling errors are discussed in Chapters 7 and 8 when 

the present predictions are compared with experimental data for 

turbulent flows; clearly they are quite distinct from numerical errors. 

Numerical errors may arise from discretization assumptions, 

incomplete convergence and computer round-off. The latter depends on 

the number of significant figures used in the numerical calculations 

and will be negligible in the present work since the digital computers 

used worked to sixteen figures. 

(i) Discretization errors  

These result from approximation of the continuous distribution of 

a variable by values at a discrete number of locations (nodes) with 

interpolation approximations between them. The magnitude of these 

errors should depend mainly on the number and distribution of the 

nodes across the solution domain. However, since in the present work 

flexible curvilinear grids were used a study was also made of the 

effect of grid control volume shape, size and orientation in relation 

to the duct cross-section. This involved comparing solutions for a 

given duct obtained with different meshes and also examining for the 

expected flow symmetries. An example of such a test is described in 

section 7.3 where turbulent flow in a square duct was calculated using 

a Cartesian grid in a quadrant of the duct and a curvilinear grid in 

an octant of the duct. Satisfactory agreement was obtained between 

the two arrangements. 



- 113 - 

A typical symmetry comparison test is described in section 7.6 

for the triple symmetry case of an equilateral triangular half-duct. 

Again the results were satisfactory. 

Discretization errors were further minimised in the present work 

by concentrating nodes as far as possible in the regions of high 

gradients (the near-wall regions) and by performing grid refinement 

tests to ensure that sufficient nodes were used. Here the approach 

was to systematically increase the number of nodes until the solution 

ceases to show any significant changes. Figures 5.9.1 to 5.9.5 

show results typical of such tests, performed for the case of 

turbulent flow in a rod-bundle channel symmetry element with P/D = 1.123. 

A typical mesh of 16 x 10 grid lines (112 internal nodes) is shown in 

figure 5.8.4. This is one of the smallest P/D ratios calculated and 

thus will contain the largest gradients of the main variables. 

Evidently there is little difference between the profiles for the 

20 x 12 mesh (180 internal nodes) and the 16 x 10 mesh (112 internal 

nodes) cases. Similar results were obtained with most of the other 

geometries studied and consequently, to keep computing time and 

storage to a minimum, most predictions presented in the succeeding 

chapters of this thesis were obtained with 16 x 10 mesh (or similar 

number of internal nodes). The exceptions to this were the 

rectangular ducts and the triangular half-duct calculations, where 

grid-refinement tests showed meshes of 180 internal nodes to be 

required for grid-independent solutions. 
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(ii) Convergence errors 

The convergence criteria described in section 5.9.1, should 

have ensured that errors due to lack of overall convergence would 

not be significant in the present work. However, the symmetry tests 

mentioned above revealed that convergence may not be uniform through-

out the field in some cases, as described below. 

When the curvilinear grid arrangement was such as to cause large 

spatial variations in the finite-difference coefficients it was found 

that part of the field where the cells are small may converge more 

slowly than the remainder. This could result in an apparently complete 

solution containing significant residuals in a small part of the field. 

A case in point is the equilateral triangular half-duct mesh shown in 

figure 5.8.3, where the small size of the mesh near the corner E, gave 

rise to small finite-difference coefficients. 

This problem was overcome with the use of block adjustment and 

a novel self-adjusting multi-sweep version of the TDMA. The full ADI 

solution method was used until a converged solution was obtained 

according to standard criteria. The TDMA was then switched to a 

single direction sweep only On the sense of E to D in figure 5.8.3) 

and the residuals on each line were required to be below an 

appropriate fraction of er. As each line from D to E satisfied the 

criterion it was dropped from the sweep, which therefore covered 

fewer and fewer lines as the solution further proceeded. Eventually, 

there was only a single line remaining (that adjacent to E) which was 

duly solved by the final application of the TDMA. Although the final 

residuals on each line could be above that when it was dropped from 

the sweep (due to subsequent solution of the neighbouring line) an 

improvement in local residuals was obtained. 
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5.10 Closure  

A method of formulating the finite difference equations and 

their associated boundary conditions has been presented, together 

with practices developed to obtain satisfactory simultaneous 

solutions of these equations. The considerable care taken to ensure 

good accuracy and efficiency of the numerical procedure has been 

stressed in the latter part of the chapter. Particular attention 

has been paid in this respect to the special problems associated 

with the use of an orthogonal-curvilinear finite-difference grid. 

The next few chapters describe the results obtained from 

applying this calculation procedure to a range of flow and heat 

transfer problems and comparing them with known solutions or 

experimental data. 
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CHAPTER 6 	LAMINAR FLOW PREDICTIONS 

6.1 Introduction  

The laminar flow calculations reported in this chapter serve a 

number of purposes. The primary purpose is to test the accuracy of 

the orthogonal-curvilinear finite difference procedure presented in 

the previous chapter, in the calculation of axial velocity and wall 

shear stress in passage geometries for which analytical solutions 

are available. The flexibility of the calculation method in 

application to different passage shapes can also be demonstrated. 

Additionally, since many of the passage geometries selected for these 

tests are also those for which turbulent flow predictions have been 

made in the present work (see next chapter), features of the latter 

can be compared and contrasted with the corresponding laminar case. 

This has also some practical use in that laminar flow represents a 

limiting case and, indeed, may'even be the type of flow prevailing jn 

the small passages of some compact heat exchangers. 

Some of the work presented in this chapter can also be compared 

with previously published calculations, such as those for the axial 

passage in rod bundles, obtained by different numerical methods. 

Finally, the laminar flow velocity fields obtained here are used as 

input into laminar heat transfer calculations, the results of which 

are reported in a later chapter. 
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The bulk of the applications are to non-circular passages, 

however, preliminary calculations were made for laminar flow in a 

circular tube using a sector shaped field and a polar-cylindrical 

grid (see figure 5.8.1). With fully developed laminar flow, the 

friction factor x Reynolds number (fRe) parameter depends only on 

geometry. For the circular tube the expected value of 16.0 was 

obtained (within 0.02%) and the parabolic axial velocity profile 

obtained within 0.5% with a 3 x 18 grid. 

6.2 Elliptical ducts  

The elliptical-polar curvilinear grid used in the flow 

predictions for a one-quarter duct symmetry element was generated 

analytically using elliptical cylindrical co-ordinates as described 

in Chapter 5 and illustrated in figure 5.8.2. The ratio of major to 

minor axes (a/b) is defined as the aspect ratio (AR) of the duct. 

This duct shape provides a useful check on the calculation 

procedure since the boundary wall has a continuously changing 

curvature and the axial velocity profiles along the major and minor 

axis planes are identical when plotted on the same dimensionless 

basis. This can be readily'seen from the following analytical 

expression for the axial velocity profile, taken from Knudsen and 

Katz (1958): 

U3/53 	= 	2[1 - (xl/a)2  - (x2/b)2] (6.2.1) 

where U3 and U3 are the local and mean axial velocities respectively 

and the other symbols are defined in figure 5.8.2. 
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The predicted axial velocity profiles are shown in figure 

6.2.1 to be in good agreement with the above analytical solution and 

a considerable improvement on the numerical finite-difference 

solution (AR = 2 case) of Cain et al (1972). This latter solution 

is seriously in error around the focus point of the elliptical-polar 

grid, a shortcoming attributed by the authors to the rapid decrease 

in metric coefficient as the focal point is approached. This 

problem is avoided in the present method due to the fact that the 

finite difference equations are (a) derived by integration over 

finite volumes and (b) expressed in terms of curvilinear arc length. 

Much care was taken to identify the correct arc lengths in this 

region and thus maintain good accuracy even though the grid geometry 

changed rapidly. It is worth noting that this test represents a good 

example of how the simple laminar flow case can provide a useful 

check on the calculation method, in order to identify and eliminate 

inaccuracies, which otherwise may be difficult to trace in the more 

complex turbulent flow calculations. 

The predicted wall shear stress profiles are shown in figure 

6.2.2 to be in good agreement with the analytical profiles, and 

further show the significant effect of duct aspect ratio on these 

profiles. The profile in the higher aspect ratio duct is fairly 

uniform around the slowly curving part of the wall with a rapid 

decay as the wall curvature changes sharply near the major axis plane. 

There is a more monotonic decrease in wall shear in the lower aspect 

ratio duct with, as expected in both cases, the lower wall shear 

stresses associated with the regions of lower axial velocity gradient. 
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The fRe  parameter for fully developed laminar flow depends only 

on duct aspect ratio and the present predictions are shown in table 

6.2.1 to be almost identical (within 0.3%) to the analytical values 

for the range of aspect ratios covered. 

Aspect ratio 

fRe  

Predicted, 
this work 

Analytical, 
Tao (1961) 

1.5 

2.0 

5.0 

10.0 

16.32 

16.88 

18.55 

19.26 

16.31 

16.82 

18.60 

19.32 

Table 6.2.1 Comparison of the fRe  parameters 
for elliptical ducts 

The close agreement between the finite difference calculations 

and the analytical solutions over a wide range of duct aspect ratio 

is particularly encouraging since this is a case where grid control 

volumes vary significantly in size, shape and orientation across 

the duct cross-section. The most severe variations occur, as 

previously noted, in the region around the focus of the ellipse 

where the control volumes contract rapidly, and rotate through 90°  

on passing through the focus along the major axis (see figure 

5.8.2). Even in this region there is no detectable grid effect on 

the predictions. 
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6.3 Isosceles triangular ducts  

This flow was first solved over a domain encompassing one-half 

of an equilateral triangular duct in order to check that the 

asymmetry of the curvilinear grid did not prevent the expected 

triple flow symmetries from being obtained. The grid used was 

similar to that in figure 5.8.3 with the duct walls along EC and CD; 

the lines CF and GF have been superimposed to show the expected 

three flow symmetry elements CFD, CFG and EFG. The size, shape and 

orientation of the grid control volumes clearly will be different in 

each of the symmetry elements. 

The computed fully-developed laminar flow wall shear stress 

distribution along EC is shown in figure 6.3.1 where the expected 

symmetry about the mid-wall point has been obtained. The 

distribution of shear stress along the other wall (CD) also matches 

this and both the wall shear stress and axial velocity profiles are 

seen to be in excellent agreement with the analytical profiles. 

Laminar predictions have also been made with the present method 

for fully developed flow in isosceles triangular ducts with apex 

angles of 22.12°  and 11.7°. Comparisons have been made in figures 

6.3.2 to 6.3.4 with the experimental measurements of Eckert et al 

(1954) as well as with the analytical solutions of Sparrow (1962). 

The steep gradients of axial velocity predicted by the present method 

for these ducts are in good agreement with the analytical predictions 

and in fair agreement with the experimental measurements except in 

the core region where, as suggested by the experimenters, turbulent 

flow may exist (the possibility of simultaneous laminar and 
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turbulent flow in small apex angled triangular ducts is well known 

and has been reported elsewhere in the literature, e.g. Eckert and 

Irvine, 1956; Cope and Hanks, 1972; Bandopadhayay and Hinwood, 1973). 

The wall shear stress profiles along the main wall calculated by 

the present method are shown to be in excellent agreement with the 

analytical profiles in figure 6.3.4. 

A comparison between the analytical values of the fRe  parameter 

and those computed from the present method are shown in Table 6.3.1. 

The values of fRe  from the present work are 

Apex angle 

fRe  

Predicted Analytical 
Sparrow (1962) 

60°  

22.12°  

11.7°  

13.31 

12.7 

12.3 

13.33 

12.85 

12.54 

Table 6.3.1 	Comparison of fRe  parameters 
for isosceles triangular ducts 

slightly below the analytical values but the difference is less than 

2%. 

6.4 Axial flow in rod bundles  

Solutions have been obtained for the symmetry elements of flows 

parallel to infinite triangular arrays of rods using orthogonal 

grids similar to that shown in figure 5.8.4. The relevant symmetry 

elements are depicted in figure 3.2.4. 
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Axial velocity profiles along the limiting radial planes of 

0 = 0°  and e = 30°  calculated from the present method are shown in 

figure 6.4.1. Results for two different rod bundle P/D ratios have 

been plotted to allow comparison of flow characteristics of closely-

spaced rods (represented by P/D = 1.1) with those for wider spacing 

(represented by P/D = 1.5) both arrangements being illustrated in 

figure 6.4.2. It is evident from figure 6.4.1 that axial velocity is 

a strong function of both radial and angular position between the 

rods as well as of the P/D ratio. The effect of the narrow gap 

between rods at e = 0°  in the P/D = 1.1 geometry is quite dramatic in 

that the maximum axial velocity is reduced to less than one-quarter 

of that in the core along the e = 30°  plane. As to be expected with 

these markedly different axial velocities, the wall shear stress 

varies rapidly around the perimeter for the P/D = 1.1 case, as shown 

in figure 6.4.2. Also as expected, the lower wall stress is 

associated with the lower axial velocities in the gap (e = 00), where 

it is less than one-half of the stress at e = 30°. It is encouraging 

to note that the profiles of axial velocity and wall shear stress 

evaluated from the present method, even though varying rapidly across 

the calculation domain, are in good agreement with those calculated 

and plotted from the analytical/numerical results of Sparrow and 

Loeffler (1959). 

A comparison between the fRe  parameters obtained from the 

present calculations and those from the Sparrow and Loeffler (1959) 

method is shown in table 6.4.1 for a range of P/D ratio. Although 

the present values are slightly lower at the larger rod spacings, 

the difference is everywhere less than 2i%. 
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P/D ratio 

fRe  

This work 
Sparrow and Loeffler p 	

(1959) 

1.1 20.14 20.377 

1.2 24.64 24.95 

1.3 27.03 27.417 

1.5 30.51 30.035 

2.0 38.51 39.38 

Table 6.4.1 	Comparison of the parameters for 
rod-bundles 

6.5 Closure 

The fully developed laminar flow predictions from the present 

method are in good agreement with the analytical solutions for all 

passage geometries calculated. The good accuracy and flexibility of 

the present curvilinear finite-difference method in the calculation 

of axial velocity and wall shear stress in this class of flows is 

thereby established. 

These calculations, although of interest and value in the study 

of flow in arbitrary shaped passages are here essentially preliminary 

to the turbulent flow calculations which form the major part of the 

current work and which are presented in the following chapter. 
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CHAPTER 7 	TURBULENT FLOW PREDICTION 

7.1 Introduction  

The present prediction procedure has been applied to the 

calculation of fully developed turbulent flow in a range of basically 

different passage shapes. The results of these calculations are 

presented in this Chapter, arranged in separate sections for each 

passage shape studied. Where appropriate, and where experimental 

measurements are available for comparison, parametric studies of the 

effects of, for example, different aspect ratios or P/D ratios have been 

made for a given passage shape. Some tests have also been made of the 

accuracy and consistency of the procedure and the results of these are 

described in the section appropriate to the particular passage shape. 

The main objective of these calculations is to test the effective-

ness and flexibility of the finite-difference method, and in particular 

the Launder and Ying based algebraic stress transport model (ASTM) used 

to represent the Reynolds stresses, in predicting the axial velocity, 

local wall shear stress and mean friction characteristics of flows 

through arbitrary-shaped passages, for these are considered to be of 

primary importance to a designer concerned with such flows. However, it 

is clear from Chapter 3, that these features are much influenced by the 

turbulence driven secondary flows occurring in planes normal to the 

axial direction; thus the correct prediction of these motions and their 

influence on the mean flow are also part of the main objective of the 

present work. To highlight the effect of these cross-flows on the 

characteristics, calculations are also made with them suppressed. 



- 125 - 

7.2 Circular pipe  

Calculations were initially made for this geometry as it is the 

basic duct shape with which, as discussed in Chapter 3, much of the 

data for other geometries has been previously compared. The geometric 

simplicity of the passage shape, the absence of secondary flows and 

the availability of well-established and widely-accepted experimental 

measurements also make it a useful initial test of the turbulent flow 

method. 

Predictions have been obtained using a polar cylindrical grid in 

a symmetry sector of the duct (see figure 5.8.1) and compared with the 

widely-accepted experimental data of Laufer (1954) and also the more 

recent data of Lawn (1971) and Acrivlellis (1977). 

The present predictions of axial velocity are compared with 

experiment for two Reynolds numbers (Re) in figure 7.2.1. Agreement is 

good, with the prediction mostly within 1% of experiment and, thus, 

generally within the likely experimental error band. 

The prediction of turbulence kinetic energy (k) is shown in 

figure 7.2.2 to be in accord with the measurements in the core region 

but much lower than the measurements in the near-wall region. The 

predicted near-wall level is, as expected, near that for local 

equilibrium, which can be deduced as follows from the transport 

equation (4.3.1) for k. 

The measured turbulence kinetic energy balance in a circular pipe 

(e.g. Laufer, 1954; Lawn, 1971) shows that the near wall region is 

dominated by generation and dissipation of k, with diffusion only of 
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minor consequence. Under these conditions of approximate local 

equilibrium, equation (4.3.1) simplifies to 

753 dU3/dx1 
	E 

Near the wall, turbulent shear stress is approximately constant and 

can be made equal to the wall value To. Substituting for this stress, 

and also for a from equation (3.4.7), the above becomes 

(T0/p)(dU3/x1) = C4k
2
/vt 

which, using equation (3.4.1), can now be written as 

k/(To/p) = 1/C4 
	

(7.2,1) 

The empirical constants used in the current ASTM (see section 

4.7) yield a value of 0.085 for C4 (which is near the value of 0.09 

used to compute a wide range of turbulent flows - see Launder and 

Spalding, 1974) which, from equation (7.2.1) results in a near-wall 

equilibrium value of 3.4 for k/U3*2. The measured level of k/U3*2  is, 

however, some 35% or more above this in the measurements shown in 

figure 7.2.2. This could be due to some influence beyond that of 

local equilibrium or, perhaps, to the effect of the wall on the 

probes not being fully corrected for in the measurements, particularly 

since this effect is much exaggerated when measured turbulence 

intensities are squared and summed to obtain k; or maybe an incorrect 

value of C4. 

The individual turbulence intensities calculated from the present 

Launder and Ying based ASTM are presented in figure 7.2.3. The 

calculated axial intensity (03) and lateral intensity (t2) profiles 
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compare reasonably well with the measured profiles at Re  = 5 x 104  as 

shown in figure 7.2.3a. The damping effect of the wall on the radial 

intensity ūl is, however, not predicted. This is a consequence of 

tuning the constants in the ASTM to match equilibrium stress levels in 

plane homogeneous shear rather than near-wall shear (see table 4.7.1). 

The relevant stress levels in the former are (Champagne et a1,1970) 

ui/k = .56, u2/k = .49, u2u3/k = .3 (7.2.2) 

whereas, near the wall in a circular pipe (Laufer, 1954), these 

levels are 

ui/k 	= 	.46, 	u2/k 	= 	.29, 	u2u3/k 	= 	.29 (7.2.3) 

The main difference between these measurements is, as expected, 

in u2/k, the reduced level of which implies a value of C2  = 0.272 in 

the ASTM. The effect of using the latter value in the calculation of 

the turbulence intensities is shown in figure 7.2.4. The asymmetry of 

the cross-plane intensities is now quite well predicted, perhaps 

suggesting that 0.272 is a better value for C2 than 0.013, which is 

the value adopted in the present study (section 4.7). However, if the 

value of C2  = 0.272 is used in the ASTM for calculation of flow in non-

circular passages, the level of secondary flows predicted turns out to 

be unrealistically high. This apparent conflict in the ASTM is further 

discussed in the light of predicted secondary flows in square ducts in 

section 7.3 and also in regard to the prediction of heat transfer in 

Chapter 8. 

The predicted eddy viscosity profile shown in figure 7.2.5 is in 

fair agreement with the measured profile considering the measurements 

contain the uncertainties of calculated velocity gradients. As may be 
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expected,eddy viscosity is sensibly constant across the core where 

the influence of the wall on the formation of turbulent eddies is 

minimal. This latter influence is seen however in the approximately 

linear increase of eddy viscosity with distance from the wall in the 

near-wall region. 

More detail of the turbulent structure is shown in figure 7.2.6 

where the predicted dissipation rate c of turbulence kinetic energy is 

seen to be in accord with the experimental measurements of Laufer 

(1954). The high dissipation rate of k near the wall, referred to 

earlier in discussion of the local equilibrium level of k, is clearly 

evident here. 

Figure 7.2.7 shows a comparison between turbulence length scale 

predicted from the present method and that calculated from the 

measurements of Laufer (1954). The satisfactory agreement obtained 

is to be expected from the agreement between the k and c profiles. 

The length scale profile calculated from the Buleev (1963) formula 

(equation 3.4.4) is also seen to be in reasonable agreement for this 

simple geometry, as it was undoubtedly formulated to be. 

Finally, the calculated friction factor-Reynolds number 

characteristic is compared in figure 7.2.8 with the empirical 

equations of Blasius and Prandtl, as well as with the experimental 

measurement band given by Schlichting (1968). 

The former equations are: 

Blasius equation 	f 	= 	0.079/Re 	(7.2.4) 

Prandtl equation 	WI 	= 	2.0 log (Refz) - 0.8 (7.2.5) 
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The present result is seen to be about 5% below the Prandtl 

formula, which appears to represent the mean of the experimental 

results. This may be partly due to the calculations being for a 

theoretically 'perfect' and smooth duct whereas, in experiments with 

real ducts, any imperfections would tend to increase rather than 

decrease the measured f. This is consistent with the present 

prediction matching only the lowest experimental value of f. This 

slight apparent underprediction of f is not serious and is accepted 

here without any fine-tuning of the empirical constants in the model, 

since these are to be kept unchanged for all passage geometries. 

7.3 Square duct 

Some preliminary test calculations were made in this passage 

geometry as further accuracy checks on the present calculation method. 

In these tests, the same flow was calculated using a Cartesian grid in 

a quadrant of the duct and a curvilinear grid in a symmetry octant of 

the duct (similar to figure 5.8.3, with e = 45°). Results from these 

tests are shown in figures 7.3.1 to 7.3.3. the first of which also 

indicates the shape of the calculation domain in each case. Agreement 

between predictions is within 2% for axial velocity and wall shear 

stress and within 5% for turbulence kinetic energy. Since this latter 

calculation depends on gradients of axial velocity, and will, there-

fore, be quite sensitive to grid shape and node spacing, agreement is 

considered satisfactory. 

Since the square duct flow has been used as a test case by most 

previous authors presenting numerical fourth-generation turbulent duct 
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flow calculation procedures (e.g. Launder and Ying (1973), Naot et al 

(1974), Tatchell (1975), Reece (1977) - see section 3.4), the 

opportunity is taken here to compare the present results with these 

previous predictions and with experiment. This comparison is 

presented in figures 7.3.3 to 7.3.7. 

In accord with experiment and previous predictions, two identical 

counter rotating cells of secondary flow were predicted in a one-

quarter duct symmetry element as shown in figure 7.3.4. The largest 

secondary velocities were about 1% of the mean axial velocity and 

were located near the wall and along the corner bisector. There 

appears to be little difference between the present and earlier 

predictions of axial velocity (figure 7.3.5), secondary velocity 

(figure 7.3.7) and wall shear stress (figure 7.3.3), all of which 

are in reasonable agreement with experiment. In figure 7.3.6 

however, the turbulence kinetic energy predictions of Reece (1977) 

appear to be significantly nearer to experiment than the others, 

whereas the present method is similar to that of Launder and Ying 

(1973) in under-predicting the near-wall levels. The superior 

results of Reece may be due to the transport effects on turbulence 

kinetic energy being better represented by his multi-equation stress 

model with wall damping corrections. Alternatively it may be due to 

the near-wall boundary treatment he employed which allowed the near-

wall turbulence kinetic energy level to rise above 4 U3*2; whereas in 

the present method, as noted earlier, the level will be near that for 

local equilibrium i.e. k = 3.4 U3*2  with the present ASTM. 
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The distortion of mean flow profiles and contours by secondary 

flow is much in evidence in the results obtained. As observed by 

Brundrett and Baines (1964), the turbulence kinetic energy contours 

are considerably more distorted by secondary flow than those of axial 

velocity. Secondary flow along the corner bisector towards the wall 

flattens the axial velocity profile in the core and increases the 

axial velocity gradient near the wall as evidenced by the contours 

bulging into the corner in figure 7.3.5. The consequently smaller 

axial velocity gradients in the core results in lower turbulence 

kinetic energy levels there. Nearer the corner the increased axial 

velocity gradients augment turbulence generation and make the 

turbulence kinetic energy contours bulge markedly into the corner 

(figure 7.3.6) a feature which together with the like effect on axial 

velocity contours, have become widely recognised characteristics of 

corner flows in non-circular passages, as noted in section 3.2. 

Opposite effects occur along a wall bisector, where secondary flow is 

directed away from the wall. The overall pattern of wall shear stress 

can be seen in figure 7.3.3, where the increased velocity gradient 

near the wall in the corner region increases wall shear, and the 

decreased gradient near mid-wall decreases wall shear, causing the 

wall shear stress to be more uniform along the central two thirds of 

the wall than it would otherwise be. 

Detailed secondary velocity profiles from the available 

predictions are compared in figure 7.3.7 with the experimental 

measurements of Launder and Ying (1972) obtained with a pitot tube 

and a single hot wire probe using a method developed by Brundrett and 

Baines (1964). The main differences between calculation and 
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experiment are along the x/B = 0.2 plane where, from the centre-plane 

towards the wall, the predicted velocity changes fairly monotonically 

(all predictions agree) in comparison with the measured velocity which 

is reasonably constant for the first one-third of the distance from 

the centre-plane. This disagreement is almost certainly due to 

measurement error since continuity normal to the x/B plane is clearly 

not satisfied (more flow away from the wall than towards it) in the 

experiments whereas, it is necessarily satisfied in the calculations. 

The experimenters mentioned that probe interference from the wall 

caused some discrepancies in secondary flow continuity in this region. 

In view of this, and of the relatively small magnitude of the measured 

velocities, agreement between prediction and experiment is good. The 

present method was also used to calculate the square duct flow of 

Gessner and Jones (1965), who reported secondary velocity profiles in 

an octant of the duct, obtained with a single hot wire probe using the 

method of Hoagland (1960). The comparison between prediction and 

experiment is shown in figure 7.3.8 to be satisfactory, again taking 

into account the possibility of probe interference near the wall, and 

is further evidence of the capability of the Launder and Ying based 

ASTM used in the present method to predict secondary flow accurately. 

The turbulence length scale profile calculated along a duct 

centre-plane is shown in figure 7.3.9 compared with values calculated 

from the experimental data of Brundrett and Baines (1964) and the 

Buleev (1963) length scale formula (equation 3.4.4)). The length 

scale appears to be under-predicted by the present method although it 

may well be within the experimental error band which will include 

uncertainties in the measurement and calculation of shear stress and 
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local axial velocity gradient. The Buleev formula length scale 

profile is similar to the present one, which is consistent with the 

similarity between the present predictions and those of Launder and 

Ying (1973) who, it will be recalled, used the Buleev length scale in 

an otherwise basically similar ASTM. 

The calculated turbulent stress profiles are compared with 

experiment in figure 7.3.10. Comparison with previous predictions 

cannot be made here since none of the earlier authors presented these 

features. The present results are in agreement with experiment in the 

core but, except for u2, are too low near the wall where the anisotrow 

of the cross-plane normal stresses is also not well reproduced. Both 

failures are, it is believed, a consequence of the constants (in 

particular C2) used in the ASTM as discussed below. 

As demonstrated in the previous section, for the case of a 

circular pipe, better prediction of the normal stresses in the near 

wall region can be obtained by setting C2 = 0.272 as implied by 

measured near-wall stress levels. However, this value cannot be used 

for the calculation of mean flow and secondary flow in non-circular 

ducts as unrealistically high secondary flows are predicted. This 

follows from equations (2.4.6), (2.4.7) and (4.2.24) to (4.2.26) which 

show C2  to appear in the cross-plane momentum sources. The effect of 

a relatively small increase in C2  on secondary velocity is shown in 

figure 7.3.8 and it is clear that changing C2  by an order of magnitude 

and more will obviously result in very high secondary flows. In fact 

they are so high that in a test calculation with C2  set at 0.272, 

satisfactory convergence of the solution, which looked unrecognisably 

distorted, could not be obtained. 
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As noted by Launder (1976), it does not appear to be possible to 

predict both flow and near-wall stress satisfactorily with the same 

constants in the ASTM. In the present study, a discrepancy in near 

wall normal stress levels is therefore accepted in order to fix the 

values of the constants in the ASTM for flow prediction. This latter 

aim appears to have been satisfactorily achieved for the case of a 

square duct from the evidence of figures 7.3.3 to 7.3.7. 

The measured friction factors are shown in figure 7.3.11 to be 

reasonably well represented by the Blasius equation based on the 

equivalent diameter concept. The present predictions however, lie 

below the experiments by about 10% at the lower Reynolds numbers, as 

do those of the independent but basically similar method of Launder 

and Ying (1973). This slight underprediction of friction factor is 

similar to that obtained in the circular pipe calculations reported 

in the previous section. 

7.4 Square duct with one rough wall  

An attempt was made to calculate the asymmetric flow measured by 

Ali (1978) in a square duct with one rib-roughened wall. Details of 

the duct and the transverse ribs are given in figures 7.4.1(a) and 

(b). Measurements of axial velocity, turbulence intensity, secondary 

velocity and turbulent shear stress were made in the plane DC, mid-way 

between ribs and 36 duct widths from the entrance. From the axial 

velocity measurements, logarithmic laws were calculated (Ali, 1978) of 

the following form: 
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For rough walls U/U*  = (1/.385)Qn(2.88S/e) (7.4.1) 

For smooth walls U/U*  = (1/.385)241(13.92S+) (7.4.2)_ 

The predictions presented in this section have been made with 

equations (7.4.1) and (7.4.2) replacing equation (4.6.2) in the wall 

functions for axial and secondary velocity applied near rough and 

smooth walls respectively. These were the only modifications made to 

the calculation procedure, which was otherwise identical to that used 

for the smooth square duct cases reported in the previous section, 

with calculations made in this case for a symmetry half-duct. 

The effect of the rough wall on the measured secondary flow is 

shown in figure 7.4.2. The four symmetric counter-rotating cells of 

a fully smooth half-duct are replaced by a strong circulation in the 

smooth walled part with a much weaker circulation (just detectable) 

near the rough wall. The present secondary flow prediction is shown 

in figure 7.4.3 to have also a large circulation in the smooth walled 

part of the half-duct, and in addition, a similar, counter-rotating, 

circulation in the rough-walled part of the half-duct. The predicted 

maximum secondary velocity is, however, less than half that measured. 

The main differences in secondary flow pattern between the present 

prediction and experiment are in the rough-wall part of the half-

duct. However, it is clear from figure 7.4.2 that the measurements in 

this region clearly fail to satisfy continuity - in fact all the flow 

is towards the wall up to a distance of about 0.15 of the duct width 

from the wall. This implies a measurement error which is considerably 

more than that reported for fully smooth square ducts. If such a 

large and obvious flow continuity violation is not due to experimental 

error, it may well be due to a slight axial flow deflection effect 
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from the upstream rib as sketched in figure 7.4.1(c). A deflection 

of only 1 0  will give a cross-flow of nearly 2% of the local axial 

velocity, implying an effect that could easily account for the near-

rough-wall measurements. There is some evidence of this happening 

in the flow visualisation experiments of Mantle (1966) on similar 

discrete roughnesses which show separation of the flow at the rib 

with re-attachment at least 4 rib heights downstream (the Ali measure-

ment plane is at 5 rib heights downstream). Launder and Ying (1972) 

measured secondary velocities in a rib roughened square duct (all 

four walls rough) and satisfied continuity within about 10%. In this 

case however, the ribs were less than one-third of the height 

(relative to the duct width) of the Ali ribs and any disturbed flow 

would be much nearer the wall and thus much less detectable. 

The comparison ,of centre-plane axial velocity profiles in figure 

7.4.4 shows the prediction to have a much greater asymmetry than the 

measurements. Indeed away from the rough wall, the latter profile is 

not greatly different from the symmetric smooth duct measurement of 

Brundrett and Baines. The large error in calculated axial velocity, 

particularly near the rough wall, must be due at least in part, to 

deficiencies in the wall functions used (particularly since these 

functions were the only changes made to the fully smooth duct 

calculations). However some of the differences between the present 

prediction and the measurements of Ali can perhaps also be attributed 

to the different secondary flows if the measurements are in fact 

correct. In the secondary flow along plane DC (figure 7.4.3) in the 

rough wall part of the duct is away from the wall, reducing axial 

velocity gradient significantly below that likely to be obtained with, 

as in the measurements, secondary flow towards the wall. 
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The general trend of much increased turbulence kinetic energy 

levels near the rough wall as compared with the smooth wall measure-

ments of Brundrett and Baines, is quite well predicted, as shown in 

figure 7.4.5. A reduced k level near the smooth wall is also 

predicted with, as may be expected from the axial velocity comparisons, 

greater asymmetry in the predicted profile than in the measurements. 

The same picture is apparent in the turbulence intensity profiles shown 

in figure 7.4.6. A surprising feature of the measurements of Ali, 

however, is the decay in the cross-plane turbulence intensities (51 

and 52) near the rough wall from a maximum at about 0.3B from the wall 

to about the same as the smooth wall measurements of Brundrett and 

Baines. It is difficult to account for this reduction in both 

turbulence intensities in this region assuming uniform surface rough-

ness which would be expected to make the near-wall region highly 

turbulent giving, as in the predictions, a fairly constant and 

elevated turbulence level. Only the normal intensity ūl would be 

expected to decay near the wall, although as anticipated from previous 

discussion, this decay is not predicted by the present ASTM. The 

measured decay in 52  near the rough wall may be another indication of 

the previously suggested disturbed flow in that region due to the 

upstream rib, or some other effect of the rough wall that the present 

method has been unable to predict. 

On the latter point, the ASTM used here, with its eddy-viscosity 

form of equation for the calculation of turbulent shear stress, cannot 

be expected to simulate the full shear stress behaviour in this 

asymmetric flow. As in the case of a channel with one rough wall 

studied by Hanjalic and Launder (1972), zero shear stress and axial 

velocity gradient are not co-incident. This is shown in the present 
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case in figure 7.4.7 which compares the measured and predicted loci 

of zero shear stress (u2u3) and axial velocity gradient (DU3/axe) 

across the measurement plane. As expected from equation (4.2.28), 

and contrary to the measurements, the predicted shear stress is co-

incidentally zero with the axial velocity gradient and must be a 

significant contributing factor in the discrepancy between measured 

and calculated loci of aU3/axe  evident in figure 7.4.7. A further 

point to note is that the much increased levels of secondary flow and 

gradients of turbulent stress caused by the rough wall may make the 

assumptions of negligible transport of stress by convection and 

diffusion made in the Launder and Ying ASTM, less appropriate in this 

case. 

7.5 Rectangular ducts  

Predictions have been made for rectangular ducts of aspect ratio 

2.0, 3.0 and 6.4 and compared with the measurements of Gessner and 

Jones (1965), Leutheusser (1963) and Tracy (1965) respectively. None 

of the previously developed fourth-generation calculation procedures 

appear to have been applied to such cases. 

The published measurements of Gessner and Jones (1965) in a 

rectangular duct of aspect ratio 2.0 were confined mainly to secondary 

velocity profiles, obtained with a single hot wire probe using the 

method developed by Hoagland (1960). Measurements were however made 

at two different Reynolds numbers, thus affording an opportunity to 

check the predicted secondary velocity profiles and their Reynolds 

number dependence. The comparison is shown in figure 7.5.2 with the 

calculated overall secondary flow pattern displayed in figure 7.5.1. 
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Although there is no measured overall pattern with which to compare 

the latter, the two eddies obtained are consistent with the square 

duct case in that flow is from the now larger core region towards the 

corner along the line of the corner bisecting plane, returning via 

the walls and wall bisecting planes. 

There appears to be some underprediction of secondary velocity 

near the wall, although, as noted earlier this may well be due to 

probe interference from the wall in the measurements.' Indeed, the 

authors mention this possibility in discussion of the failure of the 

measured velocity profiles to satisfy continuity by some 20% (more 

flow away from the wall). In view of this uncertainty, and the small 

magnitude of the velocities concerned, the comparison is considered 

reasonable. The effect of increased Reynolds number on the secondary 

velocity measurements is a reduced velocity when normalised as shown 

with the maximum axial velocity 
U3CL. 

 Although there is some evidence 

of this in the predictions, the effect is not as obvious as in the 

measurements. 

The predicted secondary velocity vectors in the duct of aspect 

ratio 3.0 are shown in figure 7.5.3. Compared with the square-duct 

and aspect ratio 2.0 duct patterns, the flow from the core region is 

now. deflected more by the other, minor, counter-rotating secondary 

flow cell, before it reaches the corner. As with the other patterns, 

the return flows are along the walls and wall bisectors. It appears 

that the elongation of the duct cross-section has, not unexpectedly, 

allowed growth of the inner cell. 
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Calculated axial velocity contours are compared with the pitot-

tube measurements of Leutheusser in figure 7.5.4. The bulging of the 

contours into the corner due to secondary flow is much in evidence 

and fairly well predicted. The effect of secondary flow in making 

the wall shear stress more uniform can be seen in figure 7.5.5 which 

also shows quite good agreement between the present predictions and 

the Preston-tube measurements of Leutheusser. 

The secondary velocity measurements of Tracy (1965) in the 

corner region of a rectangular duct of aspect ratio 6.4 are shown in 

figure 7.5.6 and the corresponding predictions in figure 7.5.7. The 

predicted flow pattern continues the trend noted in the other 

rectangular ducts where, as aspect ratio increases, the flow from the 

core to the corner is increasingly deflected by the circulation cells 

before reaching the corner. The measured secondary velocity vectors 

also show the flow from the core to be deflected by the minor 

circulation cell before reaching the corner, but the effect is not 

quite as marked as the prediction since the deflection effect of the 

major cell is not present. The differences in detail between 

prediction and experiment extends to the magnitude of the velocities 

which tend to be underpredicted near the short wall and overpredicted 

near the centre-plane away from the wall. 

The calculated axial velocity profiles are plotted in figures 

7.5.8 and 7.5.9 with the measured profiles of Tracy. The predicted 

transverse profile in the central duct region xl/B = 4.0 in figure 

7.5.8) matches experiment almost exactly, whereas nearer the short 

wall of the duct, the comparison is much less satisfactory. The main 

discrepancy is that, for x1/B < 1.0, the measured maximum axial 
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velocity becomes further displaced from the centre-plane the nearer 

the profile is to the short wall, whereas in the prediction it is 

always at the centre plane. This is almost certainly due to the 

difference in secondary flows in this region and emphasises the over-

prediction of the growth of the minor circulation cell and deflection 

of the flow from the core away from the corner. As a consequence, the 

calculated secondary flow is mainly transverse from the centre-plane 

towards the long wall instead of obliquely towards the corner as in 

the measurements. The predicted secondary flow away from the short 

wall along the centre-plane is much weaker than that measured and 

explains at least part of the discrepancy between the centre-plane 

axial velocity profiles shown in figure 7.5.9. 

The measurements of turbulence intensity along the centre-plane 

made by Tracy with a constant-current hot-wire anemometer are shown 

in figure 7.5.10a. These measurements have been summed to give 

turbulence kinetic energy centre-plane profile in figure 7.5.10b. 

There is good agreement in the latter between prediction and experi-

ment except near the wall where, as also noted in the square-duct 

case, the measured turbulence kinetic energy level is higher than 

predicted. Figure 7.5.10a shows the higher measured turbulence level 

to be mainly in the axial component (ū3). The picture seen in 

previous cases, of reasonable prediction except near the wall, is 

repeated again here. 

The friction factor characteristics of rectangular ducts are 

shown in figure 7.5.11, plotted in the conventional way using the 

equivalent diameter concept. The predictions are generally some 5 - 

10% below experiment with a slight dependence on aspect ratio (an 



-142- 

increase in f with aspect ratio). There is a similar but much less 

well defined trend in the measurements of Hartnett et al (1962), 

although the differences are in any case probably within the 

experimental error band. This underprediction of friction factor is 

consistent with all the flows discussed thus far. 

7.6 Equilateral triangular duct  

The triple symmetry expected in one-half of an equilateral 

triangular duct affords a useful test of the accuracy and consistency 

of the present turbulent flow prediction method in reproducing these 

symmetries (a similar test was used for laminar flow). The curvi-

linear grid used for this test was similar to that shown in figure 

5.8.3. with the boundary walls along CE and CD, and the symmetry 

centre-plane along ED. The expected three symmetry elements (one-

sixth duct elements) are shown as CFD, CFG and EFG. The shape and 

orientation of the grid control volumes will clearly vary significantly 

in each element. The predicted secondary velocity vectors obtained 

with this grid show, in figure 7.6.1, that the required symmetries 

have been successfully obtained. The predictions of wall shear stress 

along GE, GC and DC in figure 5.8.3 are shown, in figure 7.6.2, and 

also exhibit the required symmetry as well as comparing well with 

experiment. Similar agreement was obtained with the axial velocity 

profiles. 

It is noteworthy that this type of symmetry check was found to be 

a searching test of the working of the procedure and proved very use-

ful in the development of the procedure and associated computer-code. 
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Some of the improvements made to both would almost certainly not 

have been performed without these tests. A typical example of such 

an improvement, is the method developed to calculate the.production 

term P in the turbulence kinetic energy transport equation. The 

equation for P is (4.3.6), in which the turbulent shear stresses are 

usually expressed in terms of the turbulent viscosity (in this case, 

equations (4.2.27) and (4.2.28)) to give 

P = pC4(k2/c)[(aU3/h1ay1)2  + (aU3/h2ay2)2] (7.6.1) 

which was then calculated for each control volume using central 

difference representations of the gradients. The distribution of 

turbulence kinetic energy calculated using this method was found, 

however, to be dependent on the shape and orientation of the control 

volume, producing 10% - 20% discrepancies from the required 

symmetries. Although not critical, these were considered 

unsatisfactory and were eventually removed by obtaining P directly 

from equation (4.3.6) which entailed calculating the relevant average 

turbulent shear stress at each required control volume face as shown 

in Appendix 6. This approach was adopted in the calculation of all 

stresses in the computer code and helped towards attaining the level 

of accuracy demonstrated by the results shown in figures 7.6.1 and 

7.6.2 (and also figures 7.3.1 to 7.3.3 in the square duct tests). 

After the above tests were completed, full advantage was taken 

of the available symmetries and all subsequent predictions for this 

geometry were made for a one-sixth duct element using a grid similar 

to that in figure 5.8.3. in which the boundary wall is along ED and 

symmetry planes along EC and CD. As expected, a single circulation 
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of secondary flow was obtained, consistent with the flows in figure 

7.6.1. The resulting predictions are compared in detail with the 

experiments and predictions of Aly et al (1978) in figures 7.6.3 to 

7.6.9. 

The axial velocity and turbulence kinetic energy contours and 

profiles are shown in figures 7.6.3 to 7.6.5. The distortion of the 

contours into the corner due to secondary flow is much in evidence 

with, as noted in the square duct flows, a more marked effect on the 

turbulence kinetic energy contours. A detailed inspection of these 

contours reveals a slight but consistent underprediction of the 

effect by the present method and some overprediction by Aly et al. 

This latter overprediction does not however appear to penetrate right 

into the corner, but is confined to the lower levels of k (e.g. the 

k/U3*2  = 1.5 contour) and U3/U3. This effect can also be seen in the 

wall shear stress profiles in figure 7.6.6. The secondary flow has 

made the profile more uniform for the reasons described earlier. The 

overprediction of this secondary flow effect by Aly et al is evident 

in the 'hump' in their profile at 0.2 < x/B < .5 where To  is high by 

some 7% (the present calculation is low by 22%). The opposite effect 

occurs, however, in the corner where, at x/B = .9, the calculated To  

of Aly et al is low by more than 20%, implying underprediction of the 

secondary flow effect. The present calculation is low by about 7%. 

Although it is possible to draw implications from such detailed 

differences in predictions, it should be noted that these differences 

are relatively small and likely to be of the same order as the error 

band of the measurement. This also applies to the centre-plane axial 

velocity and turbulence kinetic energy profiles in figure 7.6.5. The 
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flattening effect of secondary flow on the axial velocity profile is 

evident, particularly from the core towards the corner. The reduced 

axial velocity gradients in this region (.5 < y/H < .9) have reduced 

turbulence kinetic energy generation and hence the levels, which are 

almost half of the 'zero cross-flow' prediction. 

Secondary velocity profiles are compared in figure 7.6.7 which 

shows the present results to be in good agreement with experiment 

and an improvement on those of Aly et al. This is particularly so 

near the corner (i.e. x/B = .48 and 0.82) where the Aly et al 

velocities are only about one-half or less of the experimental 

values. This also confirms the implied underprediction of corner 

region secondary flow in the Aly et al wall shear stress profile. 

Figure 7.6.8 shows the Reynolds stress profiles along the 

centre-plane between the core and the base. There is good agreement 

between the predicted and the experimental shear stress profiles with 

the prediction following the slight undulation of the experimental 

profile. As anticipated, there is less agreement in the normal 

stresses, with the prediction showing little anisotropy of the cross-

plane near-wall normal stresses. It is of interest to note that the 

measured level of the latter anisotropy is only about one-half of 

that in the square duct, a feature that is difficult to account for 

in the difference in Reynolds numbers and geometry and is, perhaps, 

an indication of the experimental differences likely in such near-

wall measurements. The comparison is, nevertheless, broadly similar 

to that in the square duct. Unfortunately, no comparison can be made 

with the predictions of Aly et al as no calculated stresses were 

published, even though much detail was given of the measured ones. 
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The calculated turbulence (dissipation) length scale from the 

present method is compared with experiment and the Buleev (1963) 

length scale formula (equation 3.4.4) in figure 7.6.9. As with the 

square duct case, there appears to be some underprediction between the 

core and the wall although the discrepancy is unlikely to be 

significant and is perhaps within experimental error which includes 

calculation of axial velocity gradients. The profile from the Buleev 

formula is noted as being fairly similar to the present prediction. 

The overall performance of the present method for this case is 

quite good, even right down to secondary velocity detail. Although 

there are some improvements in prediction of wall shear stress and 

secondary velocity over those of Aly et al (1978), the two predictions 

are comparable in performance as should be expected with basically 

similar fourth-generation methods. The present method does, however, 

represent an improvement on that of Aly et al in one important respect. 

As discussed in section 3.4.2, the numerical procedure they employ 

forces a single swirl of secondary flow (by fixing the sign of the 

vorticity source) in the solution domain and thus suffers from a 

severe disadvantage in that it cannot be used to calculate flows where 

more than one secondary flow swirl could be present as in the example 

of figure 7.6.1. As evident from this latter figure, the present 

method does not suffer from this disadvantage. 

The dependence of the overall flow characteristics on Reynolds 

number was investigated and found to be relatively weak when the 

characteristics are normalised as presented in this section. An 

example of this is shown in figure 7.6.10 where nearly quadrupling 

the Reynolds number causes only a few percent change in the normalised 



- 147 - 

wall shear stress profile. A small decrease was also noted in 

secondary velocity (normalised with mean axial velocity) with increase 

in Reynolds number, similar to that previously discussed for 

rectangular ducts. 

The friction factor characteristics are shown in figure 7.6.11 

which compares predictions with two experiments and two empirical 

equations, all based on the equivalent diameter. The experimental 

values of f obtained by Lowdermilk et al (1954) are a little higher 

than those of Aly et al (1978). This is probably due to more care 

being taken by the latter in construction of the test duct which was 

also used for detailed measurements and, therefore, had to produce 

the required flow symmetries in the cross-plane. The present 

prediction is about 5% below the Aly et al measurements which is 

consistent with earlier results. The empirical constants in the 

calculation procedure of Aly et al were adjusted to match the 

predictions to experimental measurement for this particular duct 

shape, with the desired result over the limited measurement range. 

The Blasius equation tends to overpredict the friction factor 

(Aly et al measurements) by about 5 - 10%, whereas the Malak et al 

equation, which uses a correction based on the laminar flow fully-

developed fRe  parameter for the passage shape (see section 3.2), 

appears to be an improvement on Blasius in this case. 

7.7 Acute-angled isosceles triangular ducts  

Calculations have been made for flow in isosceles triangular 

ducts with apex angle of 22.120  and 11.7°, and the results compared 



- 148 - 

with the measurements of Eckert and Irvine (1956) and Cremers and 

Eckert (1962). These flows must represent one of the more severe 

tests of the present calculation method, particularly in the duct with 

the smaller apex angle, where the axial velocity, turbulence 

properties and stresses change rapidly across the narrow duct with 

asymmetries caused by the small-11.7°  and large-84.15°  angled internal 

corners. A further physical feature of this flow should be the 

significant damping effect of the walls on turbulence in the acute-

angled corner. The predictions have been made for a symmetry half-

duct on a grid similar to figure (5.8.3) with e = 11.7/20  and 

22.12/2°, with walls along EC and CD and a symmetry plane along ED. 

This appears to be the first reported fourth-generation calculation of 

these flows. 

The predicted secondary velocity vectors in a symmetry half of 

the 11.7°  apex angled duct are shown in figure 7.7.1 together with an 

outline of the whole duct geometry. Three swirls of secondary flow 

are predicted with two counter-rotating cells near the base and the 

other occupying the remaining 80% of the domain. Although there are 

no experimental data available for comparison, the overall pattern 

seems a logical extrapolation of the equilateral triangular duct flow 

pattern, and contains the usual features of flow from the core region 

along corner bisectors into the corners, thence returning to the core 

via the walls and their perpendiculars. The largest secondary 

velocities are about 1% of the mean axial velocity and occur along the 

corner bisectors and base wall. 

Axial velocity profiles along the duct centre plane for two 

turbulent Reynolds numbers are plotted in figure 7.7.2. The difference 
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between prediction and experiment can be attributed at least in part 

to lack of full flow development in the experiment. This was 

unexpected by the authors, who had constructed a test duct of nearly 

80 equivalent diameters in length. However, the reported plots of 

axial pressure gradient show clearly that, at these higher Reynolds 

numbers, the pressure gradient was still decreasing and thus the flow 

was still developing at the measuring section of the test duct. 

An alternative phenomenon which could affect axial velocity 

profiles is laminarisation of the flow in the test duct apex corner 

region, a feature already referred to in discussion of laminar flow in 

these ducts (section 6.3). This can be examined in two different 

ways. 	Firstly, laminarisation of the flow in the acute corner 

(x/B > 0.5) would Fn crease the axial velocity above that expected for 

turbulent flow, since the effective viscosity acting on the fluid 

would be nearer the laminar value; this appears to be the case. 

However, the flow visualisation experiments in this duct (Eckert and 
suggest that 

Irvine (1956))0aminarisation in the corner would be expected not to 

extend below x/B = 0.9 for Reynolds numbers above 5000. 

Because of the lack of full flow development, an extension was 

added to the test rig of Eckert and Irvine giving 167 equivalent 

diameters of. flow development, before turbulence measurements were 

made by Cremers and Eckert (1962). Axial pressure gradient measure-

ments apparently indicated that the flow was fully developed after 130 

equivalent diameters. Unfortunately, no further axial velocity 

measurements appear to have been published. 
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The present predictions are compared with these turbulence 

measurements in the form of centre-plane turbulence kinetic energy 

and normal stress profiles in figure 7.7.3. Agreement is good with 

the predicted turbulence kinetic energy profile showing little 

apparent effect of the secondary flow. Since, as noted previously, 

this profile is likely to be quite sensitive to secondary flow 

distortions, it implies a generally small secondary flow effect in 

this duct. This is confirmed with the axial velocity and other 

predicted profiles, none of which show any significant secondary flow 

effect. This is probably due to the relatively high mean flow 

gradients between the core and the wall, making convection a minor 

transport mechanism in the cross-plane. 

It is surprising to note that the measured cross-plane normal 

stresses (u and ui) are almost isotropic near the base wall. This is 

in contrast to the measurements of Tracy (1965) in a large aspect 

ratio duct (figure 7.5.10),a geometry not too dissimilar to that under 

consideration in the short wall region, in which the anisotropy of 

these stresses was found to be significant and fairly similar to that 

in a square duct (figure 7.3.10). The reduced anisotropy of the near 

wall normal stresses in the present case however, continues a trend 

noted in the previous section from measurements in an equilateral 

triangular duct and if not a measurement error, may imply an 

unexpected effect of the angled side walls on the transverse damping 

of turbulence near the base. 

The steep gradients of turbulence kinetic energy and normal 

stress near the base wall are well predicted as is the more gradual 

decay of turbulence, due to the dampening effect of the walls, into 

the acute corner. 
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Some values of local wall shear stress along the long wall were 

calculated by Cremers and Eckert from measured near-wall axial 

velocity gradients and these are shown in figure 7.7.4 compared with 

the present predictions. The latter are in reasonable agreement with 

the measurements and also show that, for much of the wall, the profile 

is not too dissimilar to that for laminar flow. This is, perhaps an 

indication that viscous effects have more influence in this duct than 

in less narrow ducts. 

Calculations were also made in a duct of apex angle 22.12°  for 

comparison with the pitot-tube axial velocity measurements of Eckert 

and Irvine (1956). The predicted secondary velocity vectors are 

plotted in figure 7.7.5 and show, as may be expected, a secondary 

flow pattern similar to that in the duct of apex angle 11.7°  (figure 

7.7.1). The measured axial pressure gradient indicated that the flow 

was still developing at the plane of measurement (as in the 11.7°  

apex angled duct) which could particularly account for the slight 

difference between measured and predicted axial velocity profiles in 

figure 7.7.6. The arguments marshalled above in the discussion of 

flow in the 11.7°  apex angled duct will apply again here. 

The calculated turbulence (dissipation) length scale profiles 

along the duct centre-plane are shown in figure 7.7.7 where the 

profiles from the Buleev formula (equation 3.4.4)) appear to be a 

reasonable, simplified, approximation of those from the present 

calculations. There were insufficient measurements available for 

calculation of experimental length scale profiles for comparison. 
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Finally, the friction factor characteristics for these ducts are 

presented in figure 7.7.8 where the present predictions are compared 

with the measurements and with empirical formulae. The predictions 

are 10% - 15% below experiment which is consistent with the lack of 

flow development and, thus, higher apparent friction expected in the 

measurements. However, from the comparisons between predictions and 

experiment for previous duct shapes, it is likely that not all this 

difference is due to under-developed flow. The friction factor is 

overpredicted by the Blasius formula by 10% - 15%, which is further 

evidence of the inadequacy of the equivalent diameter to correlate 

pressure drop when the duct shape is markedly different from circular. 

The correlation proposed by Malak et al (see section 3.2) appears, in 

this case, to give a result that is likely to be nearer to experiment. 

7.8 Elliptical ducts  

Calculations have been made for elliptical ducts with aspect 

ratios of 1.5 and 2.0 using curvilinear orthogonal grids similar to 

those described in section 5.8 and illustrated in figure 5.8.2. These 

calculations are compared with the experiments of Cain and Duffy 

(1971) and also, for the aspect ratio 2.0 case, with the finite-

difference predictions of Cain et al (1972). Their method neglected 

secondary flow and modelled the Reynolds stresses with an eddy 

viscosity based on a Van-Driest type mixing length. The present work 

appears to be the first application of a fourth-generation prediction 

procedure to this case. 
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The grid nodes and predicted secondary velocity vectors for a 

symmetry quadrant of a duct of aspect ratio 1.5 are shown in figure 

7.8.1. The prediction for the aspect ratio 2.0 duct is similar, as 

shown in figure 7.8.2, and indicates a single swirl of secondary flow 

in the quadrant, directed from the core towards the wall along the 

region of the major axis plane, returning via the wall and the minor 

axis plane. Although there are no measurements available for 

comparison, this circulation pattern is consistent with that found 

in ducts of other geometry in that flow is from the core towards a 

region bounded by a wall convergence (or alternatively, from the 

region of highest axial velocity towards the region of lowest axial 

velocity). The largest secondary velocities calculated along the 

major axis plane are about 1.2% of the mean axial velocity. 

The measured axial velocities were presented by Cain et al in 

the form of velocity-defect profiles along the major and minor axis 

planes. As there was insufficient data provided to convert these 

profiles into more useful plots of axial velocity normalised with 

either the mean or maximum axial velocity, the present predictions 

are compared with the measured defect law profiles in figures 7.8.3 

and 7.8.4. The effect of the secondary motions is clearly to 

increase the velocities along the major axis and to decrease them 

along the minor one. This is consistent with the secondary flow 

circulation patterns in figures 7.8.1 and 7.8.2, where the higher 

velocity core fluid is convected along the major axis and the lower 

velocity wall fluid convected along the minor axis. Agreement is 

satisfactory although there is a slight overprediction along the 

major axis in both ducts. It is difficult, however, to identify any 
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effects positively since three measurements are involved (U3, U3CL 

and Uit) and their effects cannot be separated. 

The above difficulty can be resolved for the case of the 

AR = 2.0 duct since, in the paper by Cain et al (1972), U3/U3CL 

profiles were presented from the measurements of Cain and Duffy 

(1971) for comparison with their calculations. This comparison, 

together with the present predictions, are shown in figure 7.8.5. 

Agreement between the present predictions and experiment appears to 

be much better now that only the axial velocities are involved. The 

effect of secondary flow, described in the previous paragraph, is 

evident again here, and the discrepancies between the calculations of 

Cain et al and the present prediction, mainly reflect their neglect 

of these flows and is further evidence of the necessity of including 

them in calculation procedures. 

A small feature of the measured axial velocities not predicted 

is the curious dip in the major axis profile at xl/B between .3 and 

.6. This distortion could be due to a stronger and/or more complex 

secondary flow circulation pattern than predicted. The effect of 

secondary flow on wall shear stress is shown in figure 7.8.6 which 

compares the present predictions with the Preston-tube measurements 

of Duffy and Cain (1972). The effect is quite dramatic with the 

calculations showing secondary flow to reduce the variation from 

nearly 30% to about 5%. The experimental variation is 8% and implies 

a little less strong and perhaps slightly different secondary flow 

pattern than predicted. The overall differences are, however, quite 

small and are probably the same order of magnitude as the experimental 

errors. 
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Calculated turbulence (dissipation) length scale profiles for a 

duct of aspect ratio 2.0 are shown in figure 7.8.7 compared with the 

turbulence length scale profiles from the Buleev formula (equation 

3.4.4).. The latter appear to be reasonable approximations to those 

from the present method with the largest differences along the major 

axis plane. 

The friction factors for elliptical ducts are plotted in figure 

7.8.8, which shows the present method to underpredict, by up to 20%, 

the measurements of Cain et al which are significantly above the 

Blasius equation. This latter feature is surprising and inconsistent 

with the results for other non-circular ducts, especially since 

elliptical duct cross-sections are not too different from circular, 

particularly for AR = 1.5. The measurements of Barrow and Roberts 

(1970) for higher aspect ratio elliptical ducts, although of limited 

Reynolds number range, are clearly below those of Cain et al and also 

near the Blasius equation. It seems possible therefore, that the 

friction factors of Cain et al are uncharacteristically high, due 

probably to such effects as incomplete flow development, tube surface 

roughness and inaccuracies in duct alignment etc. Few details of the 

latter are given by the authors although it must be difficult to 

accurately manufacture and assemble a long elliptical duct with its 

continuously curving walls (certainly in comparison with the flat 

walls of square, rectangular and triangular ducts), and any 

imperfection existing would tend to increase, rather than decrease, 

the measured pressure drop. It would take very little axial twist or 

change in duct cross-section to alter the cross-flow completely from 

that generated by the turbulence field, and this could also account 

for some of the differences between experimental and predicted axial 
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velocity and wall shear stress profiles. Both experimental and 

predicted friction characteristics are consistent in showing a 

tendency to increase slightly with increasing aspect ratio. This is 

also so for the Malak et al empirical characteristics. 

Any final conclusions on the differences between the measurements 

and the present predictions will probably have to be postponed until 

further experiments have been made and reported with details on the 

accuracy of the ducts and required flow symmetries, and hopefully, 

measurements of secondary flow and turbulence structure as well as 

axial velocity and wall shear stress. 

7.9 Axial flow passages in triangular array rod bundles  

This passage shape appears to have received as much, if not more 

attention than most others in experimental turbulent flow investi-

gations. This is evident from table 3.2.1, which also shows that 

most of the work has been in the more compact triangular array 

arrangement. The most comprehensive experiments appear to be those 

reported by Subbotin (P/D = 1.1 and 1.2), Kjellstram (P/D = 1.217), 

Carajilescov and Todreas (P%D = 1.123) and Trupp and Azad (P/D = 1.2 

and larger) and these have therefore been chosen for comparison with 

the present predictions. The quantities measured and instruments 

used are summarised in table 3.2.1 and the cross-sections of the 

test channels are shown in figure 7.9.1, with the measurement region 

shaded. In addition comparisons have been made with previously 

published predictions from the fourth-generation finite difference 

methods of Carajilescov and Todreas (1976) and Trupp and Aly (1978), 
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both of which used a cylindrical polar co-ordinate grid with special 

cells at the maximum axial velocity plane. These two methods and 

their results have already been discussed in section 3.4.2. 

The present predictions have been made with an orthogonal grid 

in a symmetry subchannel of an infinite triangular array rod bundle, 

similar to that shown for the P/D = 1.123 case in figure 5.8.4. 

Although the measurements have been made in similarly shaped symmetry 

subchannels (figure 7.9.1), there will be a difference in that the 

experimental rod bundle or simulated rod-bundle channel will be 

finite. This aspect has also been studied in the present work by 

calculating the effect of the end wall on the flow in the measurement 

subchannel of Subbotin's test section (figure 7.9.1a) for two 

different P/D ratios. 

7.9.1 Infinite triangular array with P/D = 1.123 and 1.1 

The calculated secondary velocity vectors for the P/D = 1.123 

geometry are displayed in figure 7.9.2, which also shows the grid 

nodes of the orthogonal mesh (tails of the vectors). The predicted 

pattern is seen to be a single swirl from the core towards the gap 

(e = 0°  plane), returning to the core parallel to the wall and then 

the e = 30°  plane. The maximum secondary velocities are about 1% of 

the mean axial velocity and occur near the wall and along the maximum 

axial velocity plane (BC). There are no measurements available with 

which to compare these calculations, although an attempt to measure 

them was made by Carajilescov and Todreas (1976) who found their 

laser-doppler anemometer lacked the resolution required for detection 

of these small velocities. 
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Previous predictions of secondary flow pattern in this geometry 

are inconclusive. As discussed in section 3.4.2, the calculations of 

Carajilescov and Todreas (1976) neglected cross-plane shear and 

obtained two counter-rotating cells of flow in the symmetry sub-

channel (figure 3.4.1a), whereas Trupp and Aly (1978) with an 

apparently identical calculation procedure, obtained a single swirl 

(similar to 3.4.1b). However, when the latter included cross-plane 

shear in their calculations, it was necessary to employ practices 

which effectively imposed a single swirl of secondary flow (see 

section 3.4.2). The present calculation is, therefore, the first to 

obtain, without prescription, a single swirl of secondary flow in this 

geometry, with all the stresses in the calculation. Although not as 

yet confirmed by experiment, this flow pattern is consistent with that 

found in other passage cross-sections in that flow is from the core 

(or higher axial velocity region) towards a wall convergence (lower 

axial velocity) region, returning to the core via the wall and wall 

normals. 

The axial velocity contours calculated from the present method 

are compared with experiment in figure 7.9.3. Since both profiles 

will obviously contain interpolation errors, agreement is reasonable 

with the contours showing the expected distortions due to secondary 

flow. These distortions are shown more clearly in figure 7.9.4 which 

compares contours calculated with and without secondary flow. The 

secondary flow from the core towards the gap and then, along the e = 0°  

plane towards the wall has caused the contours to bulge in this 

direction, whereas the secondary flow away from the wall at the e = 30°  

plane has caused the contours to move away from the wall. These effects 
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are also readily apparent in the axial velocity profiles along the 

e = 0°  and 30°  planes which are presented in figure 7.9.5. Again, 

comparing the predictions with and without secondary flow, it is 

clear that core fluid (at e = 30°, x/R > 0.4) is convected to the 

gap (e = 00), decreasing the core axial velocity and increasing the 

gap velocity. 

Comparison between the present predictions and experiments in 

figure 7.9.5 is good, except apparently in the gap, where all the 

predictions are lower than experiment. The experimenters suggested 

that the gap flow may have been too high due to incomplete flow 

development in this region. This is, perhaps, probable in view of 

the surprisingly long duct (130 equivalent diameter) needed to achieve 

fully developed flow in the narrow isosceles triangular duct 

experiments of Eckert and Irvine (1956) discussed in section 7.7. The 

gap region here, can be regarded as a similar narrow flow region with 

only about 77 equivalent diameters available for flow development. 

The various predictions are in reasonable agreement, with those of 

Trupp and Aly appearing to show less secondary flow effect, 

particularly in the gap. 

As there are no measured wall shear stress profiles for the 

P/D = 1.123 geometry, calculations have been made for the quite 

similar geometry of P/D = 1.1 for comparison with the Preston tube 

measurements of Subbotin (1971). The secondary flow pattern and 

axial velocity profiles obtained (not shown) were similar to those in 

the P/D = 1.123 geometry. The predicted wall shear stress profile is 

seen in figure 7.9.6 to be in accord with the measurements which are 

reported for a small range of Reynolds number. The predicted profile 
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did not change significantly over this Reynolds number range so the 

spread of experimental points in figure 7.9.6 may be an indication of 

experimental error. Secondary flow is seen to have a large effect 

on the profile, reducing the peripheral variation of local To  from 

over 70% to about 25%. As would be expected from the secondary flow 

pattern, the motion towards the wall in the gap region has increased 

the axial velocity gradients and hence local wall shear, whereas the 

flow away from the wall at e approaching 30°  has had the opposite 

effect. All the predictions are in reasonable agreement with, and 

are within the spread of, the experimental data. 

The turbulence kinetic energy contours are compared with 

experiment in figure 7.9.7, which shows reasonable agreement, 

considering the inevitable interpolation errors. The expected 

•distortion of these contours due to secondary flow is evident; thus 

like the axial velocity contours, but with a more noticeable effect, 

the k contours are moved closer to the wall at the gap (e = 0°) and 

further away from the wall at the e = 30°  plane. The level of agree-

ment between the present results and experiment is seen again in the 

k profiles shown in figure 7.9.8, which also usefully shows the 

typical experimental error bands indicated by the authors. There is 

more disagreement here between the various predictions than with the 

axial velocity profiles (figure 7.9.5), with the present results 

generally an improvement on the previous ones except in the gap, 

where the flow is probably not fully developed. The underprediction 

of near-wall k levels by the present method in previous cases is 

noticeably absent here. The poorest prediction is that of Trupp and 

Aly, which is consistently high, particularly at the e = 30°  plane. 
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In contrast to measurements in most other duct or channel 

geometries covered here, the cross-plane normal stress (ui and u2) 

profiles measured by Carajilescov (1975) display, in figure 7.9.9, 

almost as much anisotropy in the core as near the wall. It is 

difficult to see what effect could either dampen normal fluctuations 

or increase tangential fluctuations in the core region to give this 

effect. This central core stress anisotropy does not appear for 

other P/D ratios (see figures 7.9.16 and 7.9.23). Except for the 

usual underprediction of near-wall anisotropy in the cross-plane 

normal stresses, the present predictions of Reynolds stresses are 

roughly in agreement with the experiments, taking into account the 

error bands of the latter. The calculated turbulent shear stresses 

lie below the measurements by 35% or so, although the large error 

band associated with the latter will inevitably make the comparison 

inconclusive. There are no previous turbulent stress predictions 

with which to compare the present work, as none were presented by 

either Carajilescov and Todreas or Trupp and Aly. This is perhaps 

surprising in that such information, particularly for the e = 0°  

section, is of particular value in the study of finite rod-bundle 

flows where turbulent interchannel mixing is important. 

The above noted shear stress error band must form part of that 

for the measured length scale profile since it will be calculated 

from the same stresses with additional errors from measured axial 

velocity gradient and turbulence kinetic energy. These cumulative 

errors in the measured length scale profile are most apparent in the 

core, as shown in figure 7.9.10, where length scale apparently 

reduces rapidly, a behaviour for which there is no physical basis. 
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However, the core region is not sensitive to length scale errors, as 

evidenced by the predictions of Carajilescov and Todreas (1976) and 

Trupp and Aly (1978), both of which used an average of these measured 

profiles as a length scale prescription. The Buleev length scale 

profiles are seen to be a little higher than the present predictions, 

but otherwise a reasonable representation of them. 

Overall, the present predictions for P/D ratios of 1.123 and 1.1 

are seen to be in reasonable agreement with experiment and an improve-

ment on previous predictions, particularly since the latter required 

prescription of length scale and also, in one case, the sense of the 

secondary flow eddies. 

7.9.2 Infinite triangular array with P/D = 1.2 

The predicted secondary velocity vectors for this geometry are 

shown in figure 7.9.11, where the flow pattern is seen to be similar 

to that in the lower P/D ratio passage (figure 7.9.2) with an 

additional minor swirl near the gap. The effect of this minor 

circulation on the mean flux should not be significant, as the 

secondary flow is clearly dominated by the main swirl with (as in the 

P/D = 1.123 case) circulation from the core towards the wall near the 

gap (e = 00), along the wall, then away from it back into the core 

region near the e = 30°  plane. The maximum secondary velocities are 

0.6% of the mean axial velocity and occur near the wall and along the 

maximum axial velocity plane (note the contrast with the P/D = 1.123 

results). 
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The calculated axial velocity is compared with experiment in 

figures 7.9.12 and 7.9.13, and shows quite good agreement for both 

contours and profiles. The slight underprediction in the gap is not 

more than 3i% and, thus, likely to be within the experimental error. 

Figure 7.9.14 shows the considerable effect of secondary flow on 

the calculated wall shear stress profile, reducing the peripheral 

variation by a factor of 3 and moving the point of maximum stress from 

e = 30°  to e = 18°. As with the P/D = 1.1 case, the secondary flow 

has increased the wall shear at the gap and decreased it at e = 30°. 

Both experiments show maximum wall shear at a less than 30°, with the 

present and previous predictions in reasonable agreement, the former 

being within li% of the hot film measurements of Trupp and Azad. 

The dimensionless radial distance scales used appear to have made 

the measured turbulence kinetic energy profiles independent of e, as 

shown in figure 7.9.15. The present calculations do not show this 

independence since the gap profile is in accord with experiment, 

whilst the e = 30°  level is some 10% to 15% higher in the region away 

from the wall. This latter effect can perhaps be expected with the 

different calculated axial velocity profiles and thus k generation 

rates. The predictions of Trupp and Aly are some 10% - 15% higher 

than experiment, a trend noted in their prediction of the P/D = 1.123 

geometry, with little dependence on e. 

Figure 9.7.16 shows the measured cross-plane turbulence intensities 

to be unexpectedly isotropic, a feature in disagreement with all other 

rod bundle measurements, including the same authors' in larger P/D ratio 

ducts. There is no obvious reason for the radial component ū2 to be 
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apparently unaffected by the wall. This inconsistency must cast some 

doubt on the measurements. The present predictions do not, as 

expected, show much anisotropy of the cross-plane intensities and are 

about 25% higher than the measurements, except for the core region, 

where there is some accord with experiment in the cross-plane. 

The turbulent shear stress profiles calculated from the present 

method are in reasonable accord with the measurements at e = 0°, but 

show more dependence on a as shown in figure 9.7.17. The measured 

gap stress appears to change sign before reaching the maximum axial 

velocity plane (x/R = 1) a feature that cannot be predicted by the 

present model (in effect an eddy viscosity type for axial plane shear 

stresses) without a change in sign of the axial velocity gradient. 

There appears again to be much less dependence on a in the measure-

ments than in the predictions, although the experimental error in the 

measurements will probably be more than these differences. 

7.9.3 Infinite triangular array with P/D = 1.217 

It is of interest to compare the present predictions with a 

different set of experimental data (Kjellstrom, 1971) in a passage 

geometry not too different from that of the above case. The 

experimental test sections are different, however, (figure 9.7.1(c) 

and (d)) as are the Reynolds numbers of the flow, being, in this case, 

three times higher. 

The predicted secondary velocity vectors are seen in figure 

7.9.18 to be similar to those in the P/D = 1.2 channel (figure 

7.9.11) with a slightly larger minor swirl near the gap. The maximum 
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secondary velocities are some 0.55% of mean axial velocity, 

occurring, as in the previous case, near the wall and along the 

maximum axial velocity plane. Although there are no measured 

vectors, with which to compare this prediction, Kjellstrom did 

attempt to measure the circumferential component of secondary 

velocity. The results are rather scattered (additional measurements 

by Hall and Svenningsson (1971) in the same test rig were no improve-

ment) but, since there are no other measurements available for rod-

bundles, they have been plotted and compared with the present results 

along e = 12°, 18°  and 24°  radial planes, in figure 7.9.19. Although 

no definite conclusions can be drawn, the calculated profiles do 

follow the general trend of the data. 

The agreement in respect of axial velocity profiles is shown in 

figure 7.9.20 to be reasonable with, as in the previous case, some 

underprediction (about 7% near the wall) in the gap. The effect of 

the secondary flow in convecting core fluid into the gap can again be 

clearly seen. The calculations of Carajilescov and Todreas are also 

in reasonable agreement with experiment with slight underprediction, 

this time, in the core. The differences are however, likely to be 

within the measurement error band. It is of interest to note that 

these measured profiles are within a few percent of the Trupp and Azad 

measurements in the P/D = 1.2 duct. 

The Preston tube wall shear stress measurements of Kjellstrom 

shown in figure 7.9.21 were made around 60°  of the tube periphery in 

four test runs. The spread of data thus gives an indication of the 

reproducibility of the measurements. The general shape of the 
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measured wall shear stress profile is similar to the Trupp and Azad 

measurements with a slight difference in the point of maximum stress. 

There is, therefore, good agreement between the experiments, 

considering different measurement techniques were used, with tests at 

different Reynolds numbers. The present prediction is also in fair 

agreement with the measurements and is an improvement on previous 

predictions. Once again the considerable effect of secondary flow on 

the predicted profile is evident. 

The measured turbulence kinetic energy levels of Kjellstrom, 

plotted in figure 7.9.22 are significantly higher than the measure-

ments of Trupp and Azad, an effect unlikely to be due entirely to the 

difference in Reynolds numbers since the average friction velocity is 

used for normalisation. The measurements are similar, however, in 

showing little dependence on 0, a feature not found in the present 

predictions which are in accord with experiment at e = 30°, but low 

by some 35% at e = 0°. The previous predictions do not show much 

dependence on a either but disagree on the level of turbulence kinetic 

energy. A test was made with the present method to determine the 

sensitivity of the predicted normalised turbulence kinetic energy 

level to changes in Reynolds number. A three fold change in Reynolds 

number (from 5 x 104  to 1.5 x 105) caused less than 2% change in the 

normalised levels everywhere except in the core where the level was 

about 10% lower at the lower Reynolds number. The comparison of 

turbulence kinetic energy levels is, therefore, inconclusive, except 

perhaps to indicate an overdependence on a in the present results. 



- 167 - 

As may be expected from the above there are significant 

differences in the measured turbulence intensities from the two 

sources. The Kjellstrom measurements at e = 30°  are shown in figure 

7.9.23 (the e = 0°  measurements are similar with about 5% higher 

levels at x/k = 1.0), with the Trupp and Azad measurements appearing 

in figure 7.9.16. The main differences are (a) an anisotropy of the 

near wall cross-plane intensities that is evident in the Kjellstrom 

measurements but, as previously noted, is absent from the Trupp and 

Azad data and (b) the axial intensities are much higher in the 

Kjellstrom measurements. The present predictions are in fair agree-

ment with the latter although, as expected, the anisotropy of the 

cross-plane intensities is not predicted. 

The overall comparison between the present results and the two 

sets of measurements in fairly similar rod bundle channels shows good 

agreement on axial velocity and wall shear stress with much less 

agreement on the turbulent structure. The turbulence measurements of 

Kjellstrom, however, are perhaps more convincing than those of Trupp 

and Azad. The present predictions are also in good agreement with 

the data on axial velocity and wall shear stress, and in better 

agreement with the turbulence measurements of Kjellstrom than with 

the less consistent looking measurements of Trupp and Azad. 

7.9.4 Symmetry sub-channel in the test section of Subbotin (1971) 

This section describes the results of a study made of the 

difference between finite and infinite array behaviour. A symmetry 

quadrant of the experimental test section of Subbotin is seen in 

figure 7.9.1a to comprise two subchannels, the 'inner' subchannel in 
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which the experimental measurements were made and the 'outer' sub-

channel which contains the end wall. The authors claimed that the flow 

in the inner subchannel simulates that in an infinite array, having 

checked using an electrical analogue of laminar flow (the resistance 

paper technique). It was assumed that laminar flow would be more 

influenced than turbulent flow which would also, therefore, be 

unaffected. It is not clear which P/D ratios were checked in this way. 

The proximity of the end wall to the measurement subchannel 

(shaded in figure 7.9.1a) makes the Subbotin test channel the most 

likely of those shown in figure 7.9.1 to show finite array effects. 

Calculations were made with the present method for a symmetry quadrant 

(i.e. the combined inner and outer subchannels) of the Subbotin test 

section for two different P/D ratios and the results are compared with 

the measurements of Subbotin (who reported some axial velocity 

measurements in both the inner and outer subchannels) and with the 

present predictions for an infinite array. 

The predicted secondary velocity vectors for P/D = 1.1 are shown 

in figure 7.9.24. The circulation in the outer subchannel is seen to 

penetrate slightly into the inner subchannel and is significantly 

stronger than the circulation in that channel. However, the infinite-

array pattern of a single circulation of secondary flow (similar to 

that of figure 7.9.2) is largely preserved in the inner subchannel 

with the maximum secondary velocities reduced by about 10% compared 

with the former prediction. 

Figure 7.9.25 shows the axial velocity contours to be quite well 

predicted for the symmetry quadrant,with the influence of the end wall 
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evident but mainly in the outer-subchannel. This influence is seen 

again in the axial velocity profiles along the channel centre-plane 

(bcd in figure 7.9.25) plotted in figure 7.9.26. There is fair 

agreement between the present prediction and experiment in both sub-

channels. There is also a similar agreement between the prediction 

for an infinite array and the inner channel profile thus confirming 

the simulation of an infinite array by the inner channel for axial 

velocity. 

The wall shear stress profile for the inner channel is shown in 

figure 7.9.27 compared with the measurements of Subbotin, where the 

prediction is seen to be reasonably similar to that for an infinite 

array (within 3%) and within the band of experimental measurements. 

There are no measurements available for a comparison to be made in the 

outer channel. 

The predicted secondary velocity vectors in a symmetry quadrant 

with P/D = 1.2 are shown in figure 7.9.28. In this instance there is 

a strong circulation of secondary flow in the outer subchannel which 

clearly penetrates into and influences the much weaker circulation in 

the inner channel. The small circulation near the gap in the infinite 

array calculation (figure 7.9.11) does not appear, although the 

secondary velocities there are almost zero in any case. 

Centre-plane axial velocity profiles are plotted in figure 7.9.29 

and show quite good agreement between prediction and experiment in 

both channels. The predicted infinite array profile is about 5% below 

the inner channel measurement, showing that the end wall in the outer 

channel does have some influence in this case. The inner channel with 
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P/D = 1.2 is therefore not as convincing a simulation of the infinite 

array as for P/D = 1.1, as might be expected since the larger gap in 

the former case allows more interaction. 

Figure 7.9.30 shows the predicted wall shear stress profile in 

the inner subchannel to be influenced by the end wall such that the 

shear stress is nearly constant along most of the wall. This profile 

matches the measurements of Subbotin and, when compared with the 

infinite array prediction and the measurements of Trupp and Azad, 

apparently reveals the reason for the difference between the two 

measurements. Clearly the profile measured by Subbotin is affected 

by the end wall in the test section, whereas, that measured by Trupp 

and Azad is much nearer the infinite array condition. This conclusion 

is consistent with the test sections used (figure 7.9.1) since the 

measurement subchannel of Subbotin is, as previously noted, only one 

subchannel away from an end wall whereas that of Trupp and Azad is at 

least seven subchannels away. Although the differences between the 

two sets of measurements are small, the trend of each set is clear and 

it is most encouraging that the present method has successfully 

simulated both. 

7.9.5 Local and overall friction characteristics 

The predicted local friction velocity, or wall shear stress, was 

found to be only a weak function of Reynolds number as shown in figure 

7.9.31. For example, a four-fold increase in Reynolds number (5 x 104  

to 2 x 105) results in a reduction of peripheral variation in To  from 

22i% to 19% for the P/D = 1.1 case and from 7.6% to 7.4% for the 

P/D = 1.2 case. 
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The predicted dependence of local To  on the P/D ratio is 

however, quite strong as shown in figure 7.9.32. A change in P/D 

ratio from 1.1 to 1.2 reduces the peripheral variation of To  from 

22i% to about 7i%. The reason for this is seen in the significant 

reduction in the variation of transverse radial distance across the 

subchannel (wall to centre-plane). For example, from figures 7.9.2 

and 7.9.11, this variation from e = 0°  to 0 = 30°  is 140% for 

P/D = 1.1 and 90% for P/D = 1.2. When the P/D ratio is about 1.3 or 

higher the peripheral variation of To  is less than 3% and, as such, 

is probably within the error band of experimental measurement and 

unlikely to be significant. 

Table 3.2.1 shows that there have been many experimental 

measurements of overall pressure drop in a wide range of rod-bundle 

test rigs. Probably the most systematic and comprehensive of these 

was reported by Rehme (1972), who measured the variation of friction 

factor with Reynolds number for eleven different triangular array P/D 

ratios from 1.025 to 2.32 and with rod numbers varying from 7 to 61, 

making 25 different test sections in all. In these tests the gap 

between the outer rods and the hexagonal casing was made the same as 

the gap between the interior rods. This latter detail was a 

consequence of an observation made from the results of a survey of 

some 60 previous publications of pressure drop measurements in 

triangular array rod bundles, given by Rehme in the first part of his 

paper. The survey showed that these previous measurements were very 

scattered, as demonstrated by the plots in figure 7.9.33 which shows 

many of these pre-1972 measurements for two Reynolds numbers. Although 

no conclusions could be drawn, Rehme made the observation that the 
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method of calculation of equivalent diameter in the wide range of 

test sections could influence the final result significantly. A 

trend could apparently be detected in the survey in that some of the 

highest and lowest values of friction factor for rod bundles, with 

similar interior equivalent diameter, correlated with the gap 

between the outer rods and the shell wall. This and other 

observations appeared to be incorporated into the design of the Rehme 

test sections. 

The experimental results of Rehme (1972) are plotted in figure 

7.9.34 for P/D ratios up to 1.23 and are compared with the present 

predictions, which are seen to be in good agreement with these 

measurements and also with those of Carajilescov and Todreas (1976) 

and Subbotin (1971). The previous predictions, the empirical formula 

of Malak et al (1975) and the data of Trupp and Azad (1975) and 

Kjellstrom (1971) lie mainly above the Rehme results. There is a 

slight increase of friction factor with P/D ratio in both the latter 

and the present predictions. This trend is shown again in figure 

7.9.33. The agreement between the Rehme measurements and the present 

prediction is good, with virtually identical behaviour at Re  = 105. 

The predictions of Carajilescov and Todreas (1976) and Trupp and 

Aly (1978) with similar fourth generation methods, are 15% - 20% 

higher than the present predictions, due, most probably, to the 

different length scales and empirical constants used, and appear to 

match the experiments of Trupp and Azad (1975) and of Kjellstrom 

(1971). However, some of the findings and conclusions of Rehme are 

perhaps relevant here in that he found his measurements to approach 

an upper limit as P/D was increased. This upper limit was that given 
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by the 'equivalent annulus' solution, which can be obtained by 

neglecting the variation of To  around the perimeter and replacing the 

hexagonal elementary fluid cell around the rod by a circular cell of 

the same area and assuming a universal profile for axial velocity. 

This model was not reviewed in Chapter 3 as it applies to large P/D 

ratios only, a necessary restriction since there must be no 

significant peripheral To  variation. The model has been frequently 

used, however, in flow and heat transfer analysis in large P/D ratio 

rod bundles (e.g. Dwyer and Tu, 1959; Friedland and Bonilla, 1961; 

Maresca and Dwyer, 1964) and in this case yields the limiting curves 

shown in figure 7.9.33, which can be assumed valid for P/D greater 

than about 1.3 where, as noted previously, the peripheral variation 

of To  becomes negligible (see figure 7.9.32). The present predictions 

are in accord with this which appears to be a reasonably logical 

limiting case for the infinite array rod bundle and further,since f 

tends to decrease as P/D decreases below P/D = 1.3, must represent an 

upper limit of f for all P/D. The measurements of such as Trupp and 

Azad, Kjellstrom and the others represented by the measurements in 

figure 7.9.33 which are significantly above this limit, must be due to 

inconsistencies and effects such as (a) an equivalent diameter effect 

for the test section, (b) influence of surface roughness, spacers, 

misalignment of rods etc., (c) inaccurate knowledge of geometric 

parameters for calculation of equivalent diameter, (d) flow not fully 

developed or (e) measurement inaccuracies when, for example, pressure 

drop was measured as part of heat transfer measurements. 

The equivalent diameter concept fails to correlate the friction 

factors for P/D < 1.1 as seen by the significantly higher values 

implied by the Blasius equation in figure 7.9.33. The Malak et al 
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equation improves this for Re  = 104  and P/D < 1.08 but otherwise 

tends to over-predict. 

As a result of this examination of overall friction factor in 

rod bundles and the general agreement of the present results with 

the comprehensive measurements of Rehme (1972) some useful conclusions 

can be drawn from, what seemed at first sight, an inconclusive 

situation with a wide scatter of experimental results and different 

predictions. These conclusions can be briefly summarised as:- 

Friction factor is a strong function of P/D ratio for P/D < 1.1 

and reaches a limiting value given by the equivalent annulus 

model for P/D > 1.3. The dependence of f on Re  similar to that 

in the Blasius equation i.e. f « Re- . 

7.10 Closure  

An extensive and systematic programme of calculation and 

comparison with experiment has been carried out with the ASTM-based 

curvilinear finite difference method developed in the earlier part of 

this thesis. Predictions for fully developed flow have been compared 

with measurements in 18 different passage cross-sections, with a range 

of turbulent flow Reynolds number that has given a total of 28 flows 

for which detailed comparisons have been presented. These flow 

predictions are believed to be the first to be made with a fully 

consistent ASTM describing the complete Reynolds stress tensor. 

The present predictions of local wall shear stress and velocity 

are in fair agreement with experiment, right down to secondary velocity 
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level. The main exceptions to this were the cases where the 

experimental flows were clearly not fully developed. The present 

calculations of the detailed turbulence structure were found to be in 

less agreement with experiment particularly near the wall. In this 

region the two main differences were (a) the calculated turbulence 

kinetic levels were mostly found to be low compared with the measure-

ments, which were often much above the level predicted by the model 

for local equilibrium, and (b) the anisotropy of the cross-plane 

normal stresses was not predicted. The former deficiency may be due 

to near-wall effects in the measurement of k, or alternatively to 

inadequate wall functions for the calculation of k; the latter 

deficiency is due to the empirical constants used in the ASTM and was 

accepted in order to adequately simulate the remainder of the flow. 

A further characteristic shortcoming of the predictions, which may 

also be due to the above-mentioned constants, is the general under-

prediction of friction factor by between 5% and 10% in most cases. 

An unsuccessful attempt was made to calculate the asymmetric 

flow in a square duct with one rib-roughened wall measured by Ali 

(1978). The calculated secondary flow was much weaker than indicated 

in the measurements whereas the asymmetries caused by the rough wall 

were generally much stronger than the measurements. It is suggested 

that the failure of the predictions may be due, at least in part, to 

the flow at the measurement plane being influenced by the upstream rib 

(from evidence in the measured secondary flow) to give effects not 

possible to reproduce with the present calculation method for fully 

developed flow. In addition, the method used here of simply inserting 

special wall functions does not appear to adequately account for the 
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effect of the rough wall on the calculated flow; on particular, the 

shear stress behaviour cannot be properly predicted with the ASTM 

used. 

In addition to the validating comparisons discussed above, the 

predictions presented in this chapter have also been informative, 

particularly on the effects of cross-plane secondary flows, and also 

in revealing second order effects in the flow, such as that of the 

channel end-wall in the experiments of Subbotin (1971). These and 

other overall implications of this work are discussed more fully in 

Chapter 9. 

The general accord with experiment of the calculated flow fields 

from the present method has encouraged further calculations using 

these flow fields as a basis for a study of heat transfer in arbitrary 

shaped ducts. The results of these calculations are presented in the 

next chapter. 
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CHAPTER 8 	HEAT TRANSFER PREDICTIONS 

8.1 Introduction  

In this chapter predictions are presented of laminar and 

turbulent heat transfer in arbitrary shaped passages obtained from 

the present procedure. 

The laminar heat transfer predictions are shown in the first 

part of this chapter, for three different passage shapes and various 

boundary conditions. These calculations have been made in part as 

an accuracy check on the present method by comparison with available 

analytical solutions, and in part to compare with some of the 

previously published work, obtained by different numerical approxi-

mations. In the second part of the chapter turbulent heat transfer 

predictions are presented for five different passage geometries and 

compared with experiment for different specified boundary conditions. 

Heat transfer boundary conditions are known to effect laminar 

heat transfer significantly (Shah and London, 1978) although, as 

discussed in section 3.3, the effect on turbulent heat transfer in 

passages is less well known. The opportunity is taken to study the 

latter aspect in the present work. The three most commonly identified 

boundary conditions were designated H1, H2 and H3 in Chapter 5 and are 

re-stated here: 

H1 	Constant peripheral temperature and constant axial heat flux. 

H2 	Constant peripheral and axial temperature (isothermal wall). 

H3 	Constant peripheral and axial heat flux. 
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Examples of situations where these boundary conditions may 

approximately obtain are: 

H1 	Uniform, thin, high thermal conductivity passage walls with 

electrical resistance or external radiation heating. 

H2 Condenser and evaporator tubes, high coolant flow automotive 

type radiators. 

H3 As H1 with low thermal conductivity passage walls. 

The local heat flux q " between the passage wall and fluid is 

usually expressed in terms of the local heat transfer coefficient hL 

as 

q, ~ 	
= 	hL(Tw - Tb) 	 (8.1.1) 

where Tw is the local wall temperature and Tb is the 'bulk' fluid 

temperature defined as 

fA 
Tb 	= 	(1/U3 A) J U3TdA 

0 

(8.1.2) 

Here U3 is the local fluid axial velocity through an elementary flow 

area dA, T is the local fluid temperature, A the total flow area and 

U3 the mean axial velocity. 

The mean heat transfer coefficient h for a surface is defined in 

terms of the peripherally averaged wall heat flux W I as 

q„ 	= 	h(Tw - Tb) 	 (8.1.3) 

where Tw is the average wall temperature given by 
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im 
Tw  = (1/m) TwdS 

0 

and q" is given by 

= 	(1/m) I
m 
 q"dS 
0 

(8.1.4) 

(8.1.5) 

in which Tw  and q" are the local wall temperature and heat flux 

respectively for an elementary peripheral length dS, and m is the 

passage perimeter. It is important to note that if Tw  varies around 

the perimeter, as in the H3 case, then h is not equal to h the 

peripherally averaged value of heat transfer coefficient which is 

expressed as 

m  h = 	(1/m) I hLdS 
0 

(8.1.6) 

The peripheral variations in local heat transfer coefficient and 

temperature are of considerable interest in non-circular passage heat 

transfer, designs for which are usually required to satisfy local as 

well as overall heat transfer criteria. For example, knowledge of 

the variation in wall temperature will enable the possible 'hot' (or 

'cold') spots to be identified and checked for compatibility with the 

design. 

The mean and local heat transfer coefficients are usually 

represented in dimensionless form as mean and local Nusselt numbers 

Nu  and NuL respectively, defined as 

Nu  = hDe/kf 	 (8.1.7) 
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NuL = hLDe/kf (8.1.8) 

where De  is the equivalent diameter of the passage and kf  the fluid 

thermal conductivity. 

8.2 Laminar heat transfer 

It is noticeable that the majority of published theoretical 

laminar heat transfer analyses in non-circular passages have been 

concerned more with overall heat transfer (mean or 'asymptotic' 

Nusselt numbers) than with local variations. The present study has 

therefore concentrated on comparisons with cases where some detailed 

analytical or numerical distributions are available in addition to 

mean Nusselt numbers. Where appropriate, any gaps have been filled 

with distributions from the present work. 

8.2.1 Elliptical ducts 

Analytical solutions for fully developed laminar heat transfer 

in elliptical ducts with H1 boundary conditions were apparently first 

presented by Tao (1961) using a complex variable method. The fluid 

temperature profiles along the major and minor axes calculated from 

the present method are seen to be in excellent agreement with these 

analytical solutions in figure 8.2.1. Since only average wall 

temperatures and Nusselt numbers were presented by Tao, the peripheral 

variations of local Nusselt number are presented from the present 

method in figures 8.2.2 and 8.2.3 to complete the local heat transfer 

characteristics for this boundary condition. As can be expected from 

the similarity between the axial momentum and energy equations for the 



- 181 - 

H1 case the peripheral variations are qualitatively similar to the 

wall shear stress profiles in the corresponding ducts (figure 6.2.2). 

The H2 and H3 boundary conditions have been investigated for 

fully developed heat transfer in elliptical ducts by Dunwoody (1962) 

and Iqbal et al (1972) respectively with complex variable and 

variational methods. The average Nu  values for all three boundary 

conditions are compared with the analytical values for a range of duct 

aspect ratios in table 8.2.1. Agreement is excellent, attesting to 

the good accuracy of the present method. 

The main effect of increased aspect ratio is seen in Table 8.2.1 

to be the significant reduction of Nu  for the H3 boundary condition. 

This is due to a much increased variation in temperature around the 

periphery, an effect not present in the H1 and H2 cases where the 

peripheral wall temperature is constant. The temperature variation 

in the H3 case is caused by the increasing thermal resistance between 

the fluid core and the remoter parts of the wall which from equation 

(8.1.1) implies that hi_ must decrease since 4" is constant. This 

effect is evident in figure 8.2.3 where the H3 variation in Nub is 

more than double the others. The authors listed in table 8.2.1 

presented only mean wall temperatures and Nusselt numbers so no 

analytical profiles can be shown for comparison. 

The variation of wall temperature in the H3 case is responsible 

also for Nu  always being less than that for the H1 case with a given 

geometry. In the H1 case, the mean heat transfer coefficient is 

obtained from equation (8.1.3) with Tw  = Tw  = constant so that 

hH1 	= 	qi'/(Tw - Tb) 
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Bound. 
Cond. 

Reference 
Aspect ratio 

1.5 2.0 5.0 

H1 this work 4.438 4.558 4.967 

H1 Tao (1961) 4.438 4.558 4.962 

H2 this work 3.69 3.80 3.78 

H2 Dunwoody (1962) 3.71 3.80 3.795 

H3 this work 4.17 3.735 1.85 

H3 Iqbal et al 	(1972) - 3.742 1.82 

Table 8.2.1 Mean Nusselt numbers for elliptical ducts 

In the H3 case, equation (8.1.3) gives 

hH3 = q 
„
/(Tw  - Tb) 

Since, in the H3 case the local temperature difference 
lTw 

 - Tb l 

must increase for the remoter parts of the wall, then clearly Tw  

(equation 8.1.4) is greater than Tw. Hence, for a given q" and Tb, 

Nu  for the H3 case must be less than that for the H1 case with a 

given geometry and for any passage shape. 

8.2.2 Equilateral triangular duct 

The fluid temperature profiles calculated from the present 

method for fully developed laminar heat transfer with H1 boundary 

conditions in an equilateral triangular duct are seen in figure (8.2.4) 

to be in excellent agreement with the analytical solutions from the 

complex variable method of Tao (1961). The mean Nusselt number was 
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calculated by Tao as 28/9. The peripheral variation in local Nusselt 

number is not given by Tao, so the present prediction for the H1 case 

is compared in figure (8.2.5) with the analytical solution derived by 

Marco and Han (1955) from thin plate theory. Agreement is excellent 

and, as expected from previous discussions, the Nub profile for this 

case is qualitatively similar to the To  profile for laminar flow 

(figure 6.3.1). 

A mean Nusselt number of 2.47 has been obtained for the H2 

boundary condition by Wibulswas (1966), Schmidt and Newell (1967) and 

Nakamura et al (1972) with finite-difference methods. The mean Nu  

for the H3 boundary condition was calculated to be 1.89 by Cheng 

(1969) with a boundary point matching method and also by Shah (1975) 

with a discrete least squares method. These results are compared with 

the present calculations in table 8.2.2 which also shows the Nu  

comparison with Tao for the H1 case. Agreement is good for the H1 

and H3 cases and acceptable (within 5%) for the H2 case which compares 

values from different finite difference methods. 

Boundary conditions 
Reference 

Hi H2 H3 

Present method 3.14 2.52 1.98 

Previous work 3.11 2.47 1.89 

Table 8.2.2 Mean Nusselt numbers for an 
equilateral triangular duct 
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The variations in NuL 
are given for these cases from the 

present method in figure 8.2.5. The profile for the H3 case shows 

the greatest variation, and has a mean Nu  in table 8.2.2 lower than 

for the H1 case, as expected from discussion of the corresponding 

elliptical duct case. 

8.2.3 Rod bundles 

Fully developed laminar heat transfer for axial flow in rod 

bundles with the H1 boundary condition was first analysed by Sparrow 

et al (1961) with a boundary point-matching method. This work was 

later confirmed and extended by Dwyer and Berry (1970) using finite 

differences. The present calculations are in excellent agreement 

with these solutions as shown in the plots of local Nusselt number 

for various P/D ratios in figure 8.2.6. 

A strong dependence of 
NuL 

 on the P/D ratio is evident from 

figure 8.2.6, which shows a variation of over 150% about the mean 

Nusselt number Nu  for the P/D = 1.1 case, reducing to about 10% for 

the P/D = 1.3 case. The expected qualitative similarity between the 

Nub  profiles for this case and the To  profiles (figure 6.4.2) is 

apparent once again. 

The constant peripheral and axial heat flux (H3) boundary 

condition problem was solved by Dwyer and Berry (1970) with a finite 

difference method. The local Nusselt number profiles calculated from 

the present method are seen in figure 8.2.7 to be in good agreement 

with the Dwyer and Berry solutions. Comparing figures 8.2.6 and 

8.2.7 and noting the difference in scales, the variation in Nub  for 

the H3 case is many times that in the H1 case, particularly at the 
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lower P/D ratios. The minimum Nub  occurs at the gap (e = 00) which 

is at the greatest distance from the core and is thus subject to the 

highest fluid thermal resistance. As discussed in previous cases, 

since h
L  is low and q" constant then, from equation (8.1.1), Tw  

must be high i.e. the 'hot' spot is at the gap. 

Another feature of this (H3) boundary condition can also be 

seen in figure 8.2.7 where the peripherally averaged Nusselt number 

Nu  (with h based on equation (8.1.5)) will clearly not be equal to 

the mean Nusselt number Nu  (with h based on equation(8.1.3)) 

particularly in the P/D = 1.1 case. This situation was mentioned in 

the introduction and is a consequence of the varying wall temperature 

m 
which makes 1/(w - Tb) different from (1 /m) 	ds/ (Tw  - Tb) . This 

temperature variation is shown as a semi-logarithmic dimensionless 

plot in figure 8.2.8, which is particularly useful since the ordinate 

is actually the reciprocal of Nub. As anticipated from the previous 

comparisons, agreement between the present predictions and those of 

Dwyer and Berry is good, attesting to the accuracy of both methods. 

There is an order of magnitude difference in temperature 

variation, in figure 8.2.8 between the almost isothermal P/D = 1.5 

case and the large variation P/D = 1.1 case. As anticipated from 

previous discussion, the largest temperature difference is at the 

gap and the plot reveals the magnitude of this 'hot' spot problem for 

the low P/D case. The difference between Nu  and Nu  can be quite 

significant with, from the present calculations, Nu  = 6.3 when 

Nu  = 2.9 for the P/D = 1.1 case. Although less exaggerated, a 

difference between Nu  and Nu  for the H3 case is to be expected and is 

evident in the elliptical duct results (figure 8.2.3) and the equi-

lateral triangular duct results (figure 8.2.5). This difference has 
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an important implication in experimental heat transfer where 

measured values of Nu  have sometimes been assumed equal to Nu  

without due regard to peripheral wall temperature variation. 

There do not appear to be any previously published calculations 

for the H2 (isothermal wall) boundary condition for fully developed 

laminar heat transfer in rod bundles. Although of no interest in 

nuclear reactor design, this boundary condition is relevant in 

certain condensers, evaporators and high convection recuperators. 

The peripheral variation in local Nusselt number, calculated from 

the present method with P/D = 1.1 is shown in figure 8.2.9 compared 

with profiles for the other boundary conditions. The constant wall 

temperature constraint precludes the large variation in Nub  found in 

the H3 case. 

The present and previous predictions of mean Nusselt numbers 

for each boundary condition are given in table 8.2.3 for a range of 

P/D ratio, and show good agreement. It is apparent that there is 

Bound. 
Bond. 

Reference 
P/D  ratio 

1.1 1.2 1.3 1.5 2.0 

H1 This work 4.5 7.4 9.16 11.27 15.29 

H1 Dwyer & Berry (1970) 4.62 7.48 9.19 11.26 15.27 

H2 This work 3.27 5.76 7.75 10.23 14.33 

H3 This work 2.9 6.86 9.036 11.26 15.29 

H3 Dwyer & Berry (1970) 2.94 6.9 9.03 11.22 15.26 

Table 8.2.3 Mean Nusselt numbers for rod-bundles 
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little difference between the H1 and H3 cases for P/D > 1.3. This 

is to be expected since the peripheral variation in temperature for 

the H3 case (figure 8.2.8) and heat flux (proportional to hL) in the 

H1 case (figure 8.2.6) and thus the differences between the two 

cases are both less than 10% for P/D > 1.3. 

The Nusselt number appears to increase rapidly with P/D ratio 

in table 8.2.3 giving perhaps the impression that h increases also. 

This is however, not necessarily the case since Nu  also involves the 

equivalent diameter De, which increases rapidly with P/D. A clearer 

insight into the physical processes involved in this rod-bundle case 

can be obtained by re-calculating Nu  with De  replaced by the rod 

diameter D i.e. with Nud  = hD/kf. The variation of Nud  with P/D is 

shown in figure 8.2.10, revealing a peak in the value of Nud, 

occurring at P/D = 1.21 for the H3 case. This peak occurs as the 

effect of decreasing fluid thermal resistance is counter-acted by 

increasing circumferential heat transfer as P/D decreases. 

At the higher P/D ratios, circumferential variations will be 

negligible and heat flux is practically all in the radial direction. 

As P/D decreases from large values, the fluid thermal resistance 

(represented by the distance between the wall and the core) decreases, 

thus Nud  increases. However, for P/D < 1.3, circumferential 

variations become significant until eventually, for P/D < 1.2, 

circumferential heat transfer becomes dominant and Nud  decreases. 

The circumferential variations in the H1 are less significant than in 

the H3 case, giving a maximum Nud  at the lower P/D ratio of 1.1. 
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8.2.4 Summary of the laminar heat transfer predictions 

The accuracy, flexibility and universality of the present 

method in the prediction of fully developed laminar heat transfer has 

been demonstrated with calculations in elliptical, triangular and 

rod-bundle passages for three different boundary conditions and for 

ranges of geometry within each passage shape. Agreement with previous 

work is good for both overall Nusselt numbers and for local fluid and 

wall temperatures and Nusselt number profiles. Some of the profiles 

presented from the present work do not appear to be available in the 

current literature. This detail has, in many cases, enabled a good 

understanding of the main heat transfer characteristics in each 

passage shape. 

8.3 Turbulent heat transfer 

8.3.1 Circular tube 

Calculations were made for this simple geometry since the 

results could be compared with the well established experimental data, 

which is often used as a basis of comparison for heat transfer in 

non-circular passages. As mentioned in Chapter 3, the Dittus-Boelter 

equation (3.3.1), has been most frequently used, in conjunction with 

the equivalent diameter concept, to represent the circular tube data. 

This equation is a global correlation of the data from pre-1930 

experiments with liquid and gases and as such does not represent 

either very accurately, nor does it take advantage of the more 

recent experimental data. In addition to this, as also discussed in 

Chapter 3, the dependence of Nu  on Pr  is likely to be more complex 
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than given by the Dittus-Boelter equation. However, if the 

advantage of the relative simplicity of the Dittus-Boelter equation 

is to be retained, then different constants should at least be 

employed for various liquids and gases. This is the philosophy 

followed by Kays (1966), who also allowed for the effects of boundary 

conditions in proposing the following equations for fully developed 

circular tube heat transfer for fluids including water and air:- 

(i) 0.5 < Pr  < 1.0 (Gases) 

(a) H1 (and H3) boundary conditions Nu 	= 	0.022 Re'8Pr'6  

(8.3.1) 

(b) H2 boundary condition Nu 	= 	0.021 Re.8Pr.6  

(8.3.2) 

(ii) 1.0 < Pr  < 20 (Water and light liquids) 

All boundary conditions Nu 	= 	0.0155 Re
.83Pr.5  

(8.3.3) 

As will be seen from the above and in contrast to the laminar 

heat transfer case, the boundary conditions do not appear to have much 

influence in turbulent flow. 

The present predictions of mean Nusselt number for Pr  typical of 

air and water and with ac  = 0.9 are compared with the Dittus-Boelter 

equation and the Kays equations in figure 8.3.1. The difference 

between the Dittus-Boelter and Kays equations is about 10%, with the 

present predictions generally nearer Kays, particularly for the 

Pr  = 0.7 case. The present calculations also confirm that the heat 

transfer boundary conditions have only a negligible effect (too small 

to be shown in figure 8.3.1). 
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Figure 8.3.2 shows the calculated fluid temperature profiles 

from the present method to be in good agreement with experiment for 

two different Prandtl numbers. The predictions for a turbulent 

Prandtl number ac  of 0.8 are also shown for comparison and appear to 

be a marginal improvement. The expected result of a 'flatter' 

temperature profile with increased Pr  is well predicted. 

The eddy diffusivity profile from the present method (equation 

(4.4.3)) is compared with experiment in figure 8.3.3. There is some 

underprediction although the differences are not large taking into 

account the likely measurement error involved in calculating the 

axial and radial temperature gradients required. Agreement appears 

to be improved with ac  = 0.8, in accord with the temperature profiles. 

The air heat transfer values of turbulent Prandtl number implied 

by the combined eddy diffusivity measurements of Johnk and Hanratty 

(1962) and eddy viscosity measurements of Laufer (1954) have been 

calculated and plotted in figure 8.3.4, together with the water 

measurements of Smith et al (1967). The scatter and disagreement is 

not untypical of such measurements which show the value of ac  to be 

mainly between 0.8 and 1.0. The value of ac  = 0.9 recommended by 

Launder (Chapter 6, Bradshaw, 1978) and used in the present study 

appears, therefore, to be an acceptable average. It should also be 

noted that a slightly lower value, as found to give an apparent 

improvement in the present predictions discussed thus far, would also 

be acceptable. However, a further and important point to note is 

that, in view of the general underprediction of friction factor with 

the present method, some underprediction of heat transfer should 

perhaps be expected here. 
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The availability in the literature of measured fluid temperature 

profiles in this simple duct shape (apparently none are available for 

non-circular passages) has enabled a comparison to be made with 

predictions using the algebraic heat flux transport model (AHFTM), 

derived in Appendix 4 and described in section 4.4. This model yields 

anisotropic eddy diffusivities given by equations (4.4.8) and (4.4.9) 

with Clc  as an empirical constant. 

The values of Cic  appropriate to various heat flux models and 

heat transfer situations are extensively discussed by Launder, in 

Chapter 6 of Bradshaw (1978), who recommends a value of 3.4 for near-

wall heat transfer. Using this value in the AHFTM, the predicted 

temperature profile and eddy diffusivity are seen in figure 8.3.5 to 

be in disagreement with experiment. Comparing these results with 

figure 8.3.2 and 8.3.3 show them also to be in disagreement with the 

present predictions based on the constant turbulent Prandtl number 

heat flux model with 6c = 0.9. The reason for this disagreement can 

be made apparent by calculating the value of ac  implied by using 

Clc = 3.4 with the present ASTM. From equations (3.4.25), (4.2.33) 

and (4.4.8) we can write: 

ac = vt/yci  (C4k 2 /£)/(71k/C1c) 

or 
	cc  = C4Cick/ui 	 (8.3.4) 

With C4 = 0.085 (see section 4.7), Cic  = 3.4 and ui/k = 0.49 for 

homogenous shear flow (see section 7.2) then from equation (8.3.4) 

ac 0.59 	 (8.3.5) 

This value of ac  is much lower than that of 0.9 adopted for the 
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present predictions, and considerably lower than the main body of 

measurements in figure 8.3.4. The value in equation (8.3.5) is, in 

fact, more appropriate to heat transfer in flows remote from walls 

(see Launder, Chapter 6 in Bradshaw, 1978). The reason for this is, 

of course, the homogenous shear value of ui/k that was used above and 

in assigning the constants in the ASTM. If a wall-flow level of ui/k 

is used, such as the value of 0.29 for a circular pipe (Laufer, 

1954) then with C4 = 0.085 and Clc  = 3.4, equation (8.3.4) gives: 

ac 	= 1.0 	 (8.3.6) 

Indeed, this must be expected since the value of Cic  was deduced from 

measurements of ac  and ul/k. 

The AHFTM cannot, therefore, be used with the present ASTM since 

the empirical constants in the latter have been fixed from stress 

levels in homogenous shear flows and not the near-wall region for 

which the AHFTM has been derived. This could have been compensated 

for by calculating a value of Cic  compatible with the ASTM (it would 

be Cic  = 5.2). However, the resulting heat flux model would not be 

consistent and would anyway have little advantage over the constant 

turbulent Prandtl number heat flux model adopted in the present study, 

since the anisotropy of cross-plane normal stresses is much under-

predicted. 

8.3.2 Elliptical ducts 

Heat transfer measurements with both water and air in elliptical 

ducts have been reported by Cain et al (1973). The air flow 

experiments were conducted in ducts of aspect ratio 1.5 and 2.0 and, 

since the peripheral variations in local Nusselt number were less 



- 193 - 

than ± 2% and thus likely to be within the experimental error band in 

the former duct, only the latter will be used for comparison of local 

characteristics. This comparison is shown in figure 8.3.6 where the 

present prediction is seen to be in reasonable overall agreement with 

experiment. The experimental duct had electrically heated walls which 

were assumed to produce a constant heat flux (H3) boundary condition. 

The present calculations show, however, that there is little difference 

between the H1 and H3 profiles. This will be due to the small 

peripheral variations in either temperature or heat flux which are 

less than 10% for the latter in the H1 case (where heat flux is 

proportional to heat transfer coefficient or Nusselt number in figure 

8.3.6). 

The relatively small peripheral variations in Na  are a 

consequence of the secondary flow, as seen from the calculations in 

figure 8.3.6. A variation of more than 50% for the hypothetical case 

is reduced to only 10% by these flows. The undulation in the present 

prediction will be due to this secondary flow, which convects core 

fluid along the major axis (e = 90°) towards the wall (see figure 

7.8.2). A similar undulation may be suggested by the experimental 

measurements, although the results are too scattered for any 

certainty. 

The water flow heat transfer experiments were conducted by Cain 

et al in ducts with aspect ratios of 8/3 and 2.93 using electrically 

heated walls. The reported measurements of local Nusselt number are 

reproduced in figure 8.3.7, in comparison with the present 

predictions. The calculated profiles show, as expected, slightly 

larger variations than in the AR = 2 case but, however, much less 
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variation than in the measurements. Some inconsistencies can, in any 

case, be detected in the latter which may account in part for these 

differences. The measurements are clearly different on the upper and 

lower surfaces for both cases, due most likely to effects such as 

natural convection,flow asymmetries and heating asymmetries. Also, 

contrary to expectations, the data for the lower aspect ratio duct 

appears to have larger variations in Nu,. than the higher aspect ratio 

duct. This again, is likely to be due to one or more of the 

previously mentioned effects. 

The effect of secondary flow is evident again in the calculated 

profiles, with undulations similar to that shown in figure 8.3.6. 

The measurements appear to be too scattered to show this kind of 

detail. 

The mean Nusselt number-Reynolds number characteristics are 

shown in figures 8.3.8 and 8.3.9. The present predictions for air 

flow are some 5% - 10% low with some improvement once again implied 

with cc  = .8. The water flow prediction appears to be in good 

agreement with experiment passing right through the centre of the 

measurements. It is not clear whether, in this case, the prediction 

is improved with cc  = .8. It is interesting to note that, using the 

Dittus-Boelter equation, the equivalent diameter concept appears to 

be valid for elliptical ducts, whereas with the Kays correlations, 

there is an apparent underprediction by 10% or more. 

The effect of secondary flow on mean Nusselt number was found to 

be small (a reduction of less than 5%) and so has been omitted from 

figures 8.3.8 and 8.3.9 to retain clarity. Secondary flow appears, 
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therefore, to have much more effect on local Nusselt number than on 

the mean Nusselt number. 

8.3.3 Equilateral-triangular duct 

The overall turbulent heat transfer measurements of Lowdermilk 

(1954) in an equilateral triangular duct with electrically heated 

walls appear tō be the only ones available for this passage geometry. 

These are compared in figure 8.3.10 with the present prediction 

which is some 15% lower. This is improved, as with the previous air 

heat transfer predictions, by taking ac  = .8. 

The predicted peripheral variations in local Nusselt number are 

shown in figure 8.3.11 where, as expected from previous discussion, 

the H3 profile shows more variation than the H1 profile. The 

significant effect of secondary flow in making the peripheral 

variation more uniform is evident from these results. In contrast 

with the previous case this effect seems to increase the mean Nusselt 

number significantly as shown in figure 8.3.10 where the predicted 

characteristic with secondary flow omitted is some 25% below 

experiment. 

The close agreement between the Kays circular tube correlation 

and experiment implies that the equivalent diameter concept is valid 

for this geometry. It is interesting to note that this result would 

not have been obtained if comparison had been made with the Dittus-

Boelter equation. 
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8.3.4 Acute isosceles triangular duct 

Calculations have been made with the present method for 

comparison with the air flow measurements of Eckert and Irvine (1960) 

in an isosceles triangular duct with electrically heated walls and an 

apex angle of 11.7°. The intended experimental boundary conditions 

were constant axial and peripheral heat flux (H3), but the measurements 

showed a significant peripheral variation in both temperature and heat 

flux. In reply to written discussion of their paper, the authors 

stated the true boundary condition to be somewhere between H3 and H1. 

This is confirmed by the present calculations which show, in figures 

8.3.12 and 8.3.13, the measured heat flux variation on the long side 

of the duct to be less than that calculated for the H1 case and the 

measured temperature variation to be also less than that calculated 

for the H3 case. Further calculations were therefore made with these 

measurements as prescribed distributions. Figure 8.3.12 shows the 

calculated heat flux profile obtained by using the experimental 

temperature profile in figure 8.3.13. This latter figure also shows 

the temperature profile calculated using the prescribed measured heat 

flux variation in figure 8.3.12. This shows that, according to the 

present calculations, the measured temperature profile does not 

correspond to the measured heat flux profile. This is most likely 

due to experimental error, probably in measurement of the heat flux 

variation, which was not obtained directly but calculated from local 

temperature measurements. 

This latter conclusion is confirmed by the comparison of 

overall heat transfer given in figure 8.3.14. The measured mean 

Nusselt numbers are seen to lie, as expected from the above 
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discussion, between the present predictions for the H1 and H3 

boundary conditions. The mean Nu  calculated from the present method 

with the prescribed measured heat flux lies well below these 

measurements, whereas that calculated with the prescribed measured 

temperature profile is in reasonable accord with the measurements. 

It is noticeable that, unlike the earlier turbulent heat transfer 

cases (and the rod bundle case of the next section), the predictions 

in this duct are quite sensitive to the imposed boundary conditions. 

This is because there are large variations in wall temperature and/or 

heat flux in this geometry, caused by the rapidly changing velocity 

and temperature in the narrow corner region. The contrast between 

this and the other cases of turbulent heat transfer extends also to 

the effect of secondary flow as discussed in the previous chapter. 

In the other ducts studied, secondary flow has the effect of making 

wall shear stress (and thus heat and/or temperature) more uniform and 

hence the heat transfer more insensitive to boundary conditions. In 

this acute isosceles triangular duct, however, the effect of 

secondary flow along the wall is almost negligible (see also the 

shear stress profile section 7.7 and figure 7.7.4) and, hence, the 

temperature and heat flux profiles are also relatively unaffected. 

The measured (and present prediction using the measured 

temperature profile) mean Nusselt numbers are only some 50% of the 

values calculated from the correlation of Kays for gases, showing 

that the equivalent diameter concept is not valid for this duct. 

This is due to the acuteness of the corner and is in agreement with 

the observation made on the flow characteristics in this duct (see 

section 7.7). 
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8.3.5 Rod bundles 

Results will now be presented for heat transfer with axial flow 

in triangular and square array rod bundles of different P/D ratio and 

for a range of Reynolds numbers. Experimental investigations (see 

table 3.3.1 and section 3.3) have reported negligible variation in 

local heat transfer coefficient for triangular arrays with P/D > 1.2, 

thus detailed comparisons have been made here with the measurements 

of Dingee et al (1955) and Redman et al (1966) in rod bundles of 

P/D = 1.12 and 1.1 respectively. The former authors employed a test 

rig of conducting rods, with electrically heated walls, cooled by 

water, whereas the latter authors used air as the coolant with 

insulated rods covered by metal foil strips, that were each 

independently electrically heated. Calculations have also been made 

corresponding to the experimental situation investigated by Parrette 

and Grimble (1956) in a square array rod bundle with P/D = 1.2. 

These authors used a transient technique to determine mean Nusselt 

numbers (the 'single-blow' technique, see Kays and London, 1958 and 

Rapley, 1978) and a napthalene sublimation method to determine local 

heat transfer coefficients by analogy. 

Figure 8.3.15 compares the present calculations of local Nusselt 

number with the measurements of Dingee et al, whose heating method 

was assumed to give the constant peripheral and axial heat flux (H3) 

boundary conditions. The predictions are seen to be in reasonable 

agreement with experiment with the scatter of the latter a likely 

indication of the experimental uncertainty. As expected, the minimum 

Nusselt numbers are at the gap where the coolant velocities are lowest 

and which is also, therefore, where the temperature hot-spot will 
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occur. Secondary flow is seen to reduce the variation of Na  (and 

thus the hot spot effect) by more than half. 

The foil strip heating method of Redman et al enabled them to 

control the boundary conditions of heat transfer and to measure the 

local Nusselt number profiles reproduced here in figure 8.3.16 and 

which are claimed to be for the H1 and H3 boundary conditions. 

These measurements were obtained from the super-position of influence 

functions obtained by systematically varying the strips heated and 

measuring the influence of each one on the others. In the event, as 

discussed in section 3.3, there is little difference between the two 

boundary conditions for turbulent flow in this geometry (since the 

variation in temperature and/or heat flux is small compared with, say, 

the laminar flow case where the boundary conditions have a significant 

effect - see Chapter 6). 

The profiles calculated from the present method show more 

variation of 
NuL 

than experiment, with the H1 case much nearer the 

measurments than the H3 case. The flatter experimental profiles 

could be due to inter-channel cross-flow effects, likely to be 

present since adjacent subchannels are unlikely to be entirely 

homogenous in an experimental test rig where small misalignments, non-

uniform flow and heating etc. can occur. The considerable effect of 

secondary flow in flattening the Na  profile, as shown in figure 

8.3.16, is an indication of the likely effect if these turbulence 

driven flows are augmented by interchannel cross-flow. Since, as 

seen in section 7.7, the secondary velocities are only some 1% of the 

mean axial velocity, very little augmentation would be required to 

match the calculated profiles to experiment. 
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The 
NuL 

profile calculated by Deissler and Taylor (1958), who 

used a graphical method which neglected secondary flows, is seen in 

figure 8.3.16 to be similar to that calculated from the present 

method with secondary flow suppressed. This similarity should be 

expected as the Deissler and Taylor method effectively assumed a 

turbulent Prandtl number of unity and is another reminder of the 

necessity of including secondary flows in the calculation of local 

variations in heat transfer and temperature etc. 

Calculations have also been made for a triangular array with 

P/D = 1.25 for comparison with the measurements of Redman et al 

(1966). Although, as mentioned previously, the measured peripheral 

variation in heat transfer coefficient is small (less than 3%), it 

is still of interest to compare the present predictions as shown in 

figure 8.3.17. The latter are in good agreement with experiment and 

show that the local Nusselt number may be lower in the gap (and 

hence the 'hot-spot' higher) than the measurements imply. There is 

little difference between the calculated profiles for the H1 and H3 

boundary conditions, as expected when peripheral variations are 

small. The effect of secondary flow is significant once again, 

causing a considerable reduction in the peripheral variation from 

the hypothetical no-cross-flow case (from 20% to 7%) and moving the 

point of maximum heat transfer towards the gap. 

The present predictions for heat transfer in a square array rod 

bundle with P/D = 1.2 are compared with the measurements of Parrette 

and Grimble (1956) in figure 8.3.18 where agreement is seen to be 

poor. However, since the variation in flow cross-section is greater 
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in this arrangement than in the equivalent P/D ratio triangular 

array, the effect on coolant velocity, wall shear stress and hence 

NuL  should be correspondingly larger. Thus, more variation in N
uL  

should be expected for this geometry, than in a triangular array with 

a similar or larger P/D ratio. Although this expectation is 

confirmed in the predictions it is not apparent in the measurements. 

This could be due to the turbulence driven secondary flow being 

augmented by inter-channel cross-flow etc. in the test rig. 

Obviously, more detailed experiments will be necessary before any 

firm conclusions can be drawn. 

The predicted mean Nusselt numbers from the present method are 

compared in figure 8.3.19 with the measurements of Dingee et al 

(1955) at two Prandtl numbers of the water coolant. An indication of 

the reproduceability of the experimental measurements is given by the 

re-test results for the P/D = 1.2 case, which are between 20% and 50% 

higher than the original test results for that P/D ratio. The 

predictions are in general agreement with the measurements and show a 

weak dependence on the P/D ratio that is not apparent in the 

experiments - probably because the variation is within the measure-

ment error band. The scatter of experimental results precludes any 

deductions on whether an improvement in predictions would be obtained 

with a decreased value of 	The The equivalent diameter concept used 

with the Kays circular pipe correlation appears to represent the 

average of the measurements reasonably well in each case. 

The work of Redman et al was mainly concerned with establishing 

local Nu  variation and influence functions and, as such, no mean 

Nusselt number characteristics were presented. From their plots of 
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local Nu,  the mean Nusselt numbers could be expected to be some 25% 

or more above the Kays correlation for circular pipes. This is in 

agreement with the experiments of Sutherland and Kays (1966) who 

measured mean Nusselt numbers in electrically heated triangular array 

rod bundles with P/D = 1.15 and with air as the coolant. The results 

are shown in figure 8.3.20 to be some 20% - 30% above the Kays 

correlation, with the present predictions lying between these two 

characteristics. As in the previous cases with heat transfer to air, 

the present predictions under-estimate Nu  (by 10% - 15% in this case) 

and are apparently improved by assuming a slightly lower value of ac. 

The experimental mean Nusselt number characteristic of Parrette 

and Grimble (1956), for a square array rod bundle with P/D = 1.2 and 

air coolant, is shown in figure 8.3.21. The comparison with the 

present predictions and with the Kays correlation is similar to that 

described for the Sutherland and Kays experiments in the previous 

paragraph. 

Table 3.3.1 shows there to be many investigations of overall 

heat transfer in rod bundles, in addition to those already discussed 

above. It is of interest to correlate these measurements on some 

convenient basis for an overall comparison with the present work. 

Since, as mentioned in the review in section 3.3, most of the 

measured mean Nusselt numbers have approximately the same dependence 

on Reynolds number as the Dittus-Boelter equation (3.3.1), a popular 

method of representing the results is to calculate a constant C for a 

correlation of the form: 

Nu  = CRe
'8Pr'4  

(8.3.7) 
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Indeed, from only a few previous measurements, Weisman (1959) 

produced a simple formula relating Nu  to P/D. Figure 8.3.22 shows a 

plot of the values of C obtained from the present predictions and 

those obtained or estimated from, the various triangular array rod-

bundle experiments in which either water or air were used as the 

coolant. The present calculations are seen to show a dependence of 

Nu  on both the P/D ratio and the coolant. Although scattered, the 

measurements show a similar variation with P/D, that of increasing 

Nu  with increasing P/D. This effect does not necessarily imply an 

increase in heat transfer coefficient, however, since De  also 

increases with P/D ratio. Although the majority of the water 

measurements are higher than the air measurements, the dependence 

of Nu  on the coolant is not as clearly marked as in the predictions 

and remains inconclusive. The Weisman empirical formula shows a 

greater variation of Nu  with P/D than perhaps suggested by the 

measurements (for P/D > 1.1). However, the scatter in the measure-

ments precludes any final statement except perhaps that the commonly 

used correlation method in figure 8.3.22 is not very successful, 

even taking into account probable experimental error. The most 

likely reason for the scatter (which is least ± 25%) is the 

unrealistically simple dependence of Nu  on Pr  implied in equation 

(8.3.7). As discussed in section 3.3, this is likely to be more 

complex, and its correlation will have to await more carefully 

controlled and systematic experimental investigations than are 

available at the present. 
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8.4 Closure  

The present method has been used to predict laminar and 

turbulent heat transfer in a range of passage flows and for various 

heat transfer boundary conditions. The laminar calculations 

demonstrated the flexibility and accuracy of the method and 

confirmed the significant effect of both passage shape and boundary 

conditions on the mean and local heat transfer. 

The initial turbulent heat transfer calculations, made for 

circular tubes, showed that the algebraic heat flux transport model 

(AHFTM) would not have any advantage over the constant turbulent 

Prandtl number for enthalpy (ac) model in the symmetric heating 

problems calculated with the present method. The latter heat flux 

model was therefore adopted with ac  set at the recently recommended 

value for wall heat transfer of 0.9. 

Predictions for turbulent heat transfer have been made and 

compared with measurements in elliptical and triangular ducts and in 

rod-bundle passages (10 different geometries in all). These 

calculations showed the significant effect of secondary flow in 

reducing peripheral variations in local Nusselt number, thus making 

the mean Nusselt numbers relatively insensitive to the boundary 

conditions in most cases. The calculated local and mean Nu  were 

seen to be in fair agreement with the measurements, with some under-

prediction (around 10%) of the latter indicated, mainly in 

comparison with the air flow heat transfer measurements. Some 

underprediction can, however, be expected since the flow 

calculations from the present method tended to underpredict friction 

factor (by a similar amount). Some improvement in the calculated air 
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flow heat transfer was implied with the assumption of a lower value 

of 6c (e.g. 0.8) although it is believed that this effect may be 

compensating for the flow field or even for the wall function for 

enthalpy rather than suggesting a better value of 6c. 
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CHAPTER 9 	SUMMARY AND CONCLUSIONS 

9.1 Introduction  

In this the final chapter a summary is made of the achievements 

and limitations of the present work and then some overall conclusions 

are drawn from a comparison between the predictions made in the 

various passages studied. The chapter concludes with recommendations 

for further research. 

9.2 Achievements and limitations of the present work  

A computer based, numerical, orthogonal curvilinear finite-

difference solution method capable, in principle, of simultaneously 

solving the governing equations of flow in arbitrary shaped passages 

has been developed from an existing procedure employing a Cartesian 

mesh and an eddy-viscosity-based two equation (k - c) turbulence 

model. The main advantage of the orthogonal curvilinear co-ordinate 

system was that it enabled the finite-difference mesh to be fitted 

exactly into the solution domain with the minimum of complexity in the 

calculations, both in the interior and at the boundaries. 

The two-equation turbulence model was combined with an algebraic 

stress transport model (ASTM) originally developed by Launder and Ying 

(1973) for square duct calculations and used in the present method for 

the calculation of all the required Reynolds stresses. The resulting 

method was applied to the calculation of fully developed flow and heat 

transfer in a wide range of passage shapes and the results compared in 
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detail with the available measurements and previous predictions. 

These validating applications enabled an examination to be made of 

the performance of the Launder and Ying ASTM and also showed the 

method to be flexible in accommodating the various passage cross-

sectional shapes, and universal in that the same empirical constants 

were used throughout so that no special information was required for 

a particular passage other than the geometry and type of boundary 

planes. 

Laminar flow and heat transfer calculations were made in some 12 

non-circular passage geometries with various heat transfer boundary 

conditions, demonstrating the accuracy of the present method to be 

acceptable since close agreement was obtained with available 

analytical and numerical solutions. 

Turbulent flow calculations were made in some 17 different 

passage geometries which included the following passages that do not 

appear to have been studied theoretically this way before: elliptical 

ducts, rectangular ducts, square duct with one rough wall, isosceles-

triangular ducts and two cases of finite rod bundle passage. In the 

smooth walled passages the local mean and secondary flow character-

istics were found to be in reasonable agreement with the measurements 

when the latter were confirmed to be for fully developed flow, and 

showed the considerable effect of turbulence-driven secondary flow on 

the mean flow. This latter observation underlines the importance of 

including the effects of these secondary motions in the calculation of 

this class of flows. A weakness in the present method was detected 

however in the bulk flow since friction factors were generally under-

predicted by some 10%. This appears to be a characteristic of the 
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ASTM used since a similar under-prediction was obtained in the square 

duct calculations of Launder and Ying (1973). 

The calculated turbulence structure was found generally to be in 

less satisfactory agreement with the measurements, although in some 

cases the differences were little more than those found between the 

various measurements for a particular passage shape. The most obvious 

and consistent shortcoming was the lack of anisotropy displayed in the 

calculated near-wall cross-plane normal stresses. This was attributed 

to the values of the empirical constants used in the ASTM since these 

were selected for prediction of mean and secondary flow, rather than 

for calculation of near-wall stresses. This conflict between 

predictions of stresses and flow with the Launder and Ying ASTM has 

been referred to before by one of its originators (Launder, 1976). It 

is likely that some form of modification simulating the damping effect 

of the wall on the normal stresses will be required in the ASTM before 

the stresses and flow can both be predicted satisfactorily with the 

same empirical constants. Another fairly consistent shortcoming was 

the under-prediction of near-wall turbulence kinetic energy levels, 

which in the present work were near those for local equilibrium. If 

the higher experimental levels are correct, this deficiency may be a 

further consequence of the constants used in the ASTM or of inadequate 

wall functions. 

The present method failed to predict the asymmetric flow 

measured by Ali (1978) in a square duct with one wall rib-roughened. 

It is believed that this was due, as least in part, to the 

simplifications made in the ASTM used for turbulent stress calculation 

(particularly shear stress) and to inadequate representation of the 
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near-rough-wall region by the wall function used. From evidence in 

the measured secondary flow however, this region may have been 

disturbed at the measurement plane by the upstream rib, producing in 

any case a situation not able to be calculated by the present method 

which assumes uniform roughness and fully developed flow. 

A constant turbulent Prandtl number isotropic eddy diffusivity 

heat flux model was used to calculate heat transfer in 6 different 

passage shapes with a range of 15 different geometries and various 

boundary conditions. The under-prediction of friction factor noted 

in the flow, was reflected to some extent in the calculated mean 

Nusselt numbers which were found in most cases to be 10% or more below 

the measurements. The predicted local Nusselt numbers were however 

found to be in fair agreement with the limited measurements available 

and showed, once again, the significant effect of secondary flow on 

the calculated profiles. These calculations appear to be the first 

'fourth generation' type theoretical heat transfer studies to be made 

in non-circular ducts since the limited square duct calculations of 

Launder and Ying (1973) with a similar heat flux model. 

The present method was also successfully used to calculate some 

second-order effects in the flow, such as that of the end wall on the 

flow characteristics in the measurement sub-channel of a rod-bundle 

test rig. Additionally, calculations made with the present procedure 

were used to help resolve apparently confused and scattered friction 

factor measurements in rod-bundles and also to indicate a possible 

inconsistency between the measured wall temperature and heat flux 

profiles in a narrow isosceles triangular duct. 
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The present work has therefore achieved the general objectives 

of the development of a finite-difference procedure for the calculation 

of fully developed turbulent flow and heat transfer in straight non-

circular passages, that should be compact and flexible enough to be of 

use to a designer concerned with such problems. The examination made 

of the Launder and Ying algebraic stress model showed that reasonable 

mean and secondary flow and heat transfer characteristics can be 

obtained if incomplete prediction of normal stress levels is accepted, 

together with a little under-prediction of friction factor and mean 

Nusselt number. 

9.3 Overall comparison of predictions  

The present work has enabled, apparently for the first time, 

the characteristics of fully developed flows in a wide range of 

passage geometries to be predicted from the same calculation 

procedure, and compared. In this section the opportunity is taken to 

make a comparison between these predicted characteristics, focusing 

in particular on the similarities and differences found in the 

various passage flows studied. 

The laminar heat transfer calculations showed, as expected, the 

mean Nusselt number to be mainly dependent on the passage geometry 

and heat transfer boundary conditions. Of the three types of the 

latter investigated, the largest peripheral variations of local 

Nusselt number and the lowest mean Nusselt number, for a given 

passage geometry, were obtained with the constant peripheral and 

axial heat flux (H3) boundary condition. This was attributed to the 
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variations in wall temperature present in the H3, but not in the H1 

case, and was seen in the predictions for all the cases calculated. 

It follows that when the peripheral variations in temperature become 

small, the values of Nu  for the two cases become similar (e.g. as in 

Table 8.2.3 as P/D increases). 

The predicted axial velocity and wall shear stress distributions 

obtained for the 28 cases of turbulent flow in non-circular passages 

studied were generally found to be flatter than might be expected 

from the equivalent laminar flow calculations, taking into account 

the increased shear due to turbulence. The reason for this was 

clearly revealed by taking advantage of the facility in the present 

method of being able to make calculations for the hypothetical 

situation in which the turbulence driven secondary flow is suppressed. 

This showed for example that, although only 2%  to l2% of the mean 

flow, these secondary velocities were responsible for making the 

variation of wall shear almost negligible along much of the passage 

wall in many of the cases studied. A characteristic secondary flow 

circulation pattern emerged that was applicable to all the non-

circular passages calculated. This was a circulation from the core 

into the corners or regions of lower axial velocity caused by 

converging passage walls, thence returning to the core via the walls 

and planes normal to the walls. The effect of these flows on axial 

velocity was evident in the contour and profile plots which showed, 

in the former, the constant velocity contours to bulge into duct 

corners or, more generally, into regions of lower axial velocity 

bounded by converging passage walls. These effects were even more 

marked with turbulence kinetic energy contours. 
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The calculated turbulence kinetic energy levels in most of the 

passage flows were in reasonable agreement with experiment in the 

passage core, but were well under-predicted near the walls. This 

under-prediction revealed an apparent conflict between the measured 

near-wall levels of turbulence kinetic energy (k) and the expected 

levels for local equilibrium. This latter condition is expected to 

dominate the near-wall region, according to the various measured 

turbulence kinetic energy balances that have been made, all of which 

show the only significant transport mechanisms to be production and 

dissipation in this region. However, many of the measured near-wall 

levels of k are significantly higher than this and are thus, also 

higher than the present predictions. The implication of this is that 

if the k and E equations are modelled satisfactorily then either there 

are near-wall effects not properly corrected for in some of the 

measurements of k, or the generation and dissipation of k near the 

wall are not as dominating as the previous measurements and present 

predictions imply. 

The turbulence length scale profiles calculated from the Buleev 

formula showed a remarkable similarity to those obtained from the 

present method in all the cases studied. This uniform agreement 

suggests that, for fully developed turbulent passage flows, transport 

effects on length scale may not be significant and further, that the 

Buleev formula may represent a limiting or simplified form of the 

transport equations involved in its calculation. Such a form (the 

Buleev or similar type of formula) could effect a useful saving in the 

replacement of a partial differential equation by an algebraic one in 

the calculation of this class of flows (thus giving the one-equation 

model used by Launder and Ying (1973) in their square duct calculations). 
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The failure of the present method to reproduce the near-wall 

anisotropy of the cross-plane normal stresses could, in fact, result 

in poor prediction of the secondary flows according to the views of 

Brundrett and Baines (1964) on the origin of these flows. There is, 

however, no such conflict with the view of Gessner (1973), who linked 

the origin and maintenance of secondary flow with the gradients of 

turbulent shear, rather than with the anisotropy of the cross-plane 

normal stresses. This link between turbulent shear stress gradients 

and secondary flow is also evident in the present method, since the 

controlling source terms in the cross-plane momentum equations contain 

normal stress gradients which are linked in the ASTM to the shear 

stress gradients (equations (4.2.10) and (4.2.11)) through axial 

velocity gradients (see however, comments in section 3.2, page 30) 

The Launder and Ying based ASTM used in the present calculations 

thus appear to simulate the mechanism for the origin and 

maintenance of secondary flow in straight, non-circular passages. 

Indeed, 	from Launder and Ying and the present work, it is possible 

to make the following simple deductions about the secondary flow 

patterns that are likely to appear in a particular smooth passage, 

and the resulting effect of these flows on the mean flow 

characteristics: 

A pair of converging walls will produce gradients 

of normal stress anisotropy, concentrated near the 

focus of the wall convergence. The work done by the mean flow 

on these stress gradients will give rise to a balancing 

convection of mean flow energy, namely the secondary flow, from 

the core in a direction along the bisecting plane into the wall 
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convergence. This secondary flow will have maximum velocities of 

between i% and 2% of the mean axial velocity and will recirculate 

to the core, via the walls, such that symmetry and continuity are 

satisfied. The secondary motions so generated, will distort the 

mean flow since axial velocity gradients, turbulence kinetic 

energy and wall shear stress will tend to increase in regions 

where secondary flow is directed towards the wall, and decrease 

in regions where it is directed away from the wall. This effect 

will be seen in axial velocity and turbulence kinetic energy 

contours which will bulge into a wall convergence, and in wall 

shear stresses which will be made more evenly distributed. 

It is of interest to compare the friction factors in the various 

passages, calculated from the present method, notwithstanding the 

slight (but consistent) under-prediction when compared with experiment. 

With one exception the equivalent diameter concept correlates the non-

circular passage values to the circular pipe prediction within 5%. 

The exception in the narrow isosceles triangular duct where the values 

were 15% or more below this for an apex angle of 11.7%. This trend is 

in fact similar to that noted within the scatter of the measurements 

(in Section 3.2) and thus lends support to the suggestion that the 

equivalent diameter concept can be used to correlate friction factors 

in fully developed turbulent flow in non-circular ducts, provided 

there are no acute angled internal corners in the cross-section. In 

the latter case the values of f would be expected to be less than in 

the equivalent circular pipe case. 

The calculated mean Nusselt numbers for air flow were found to be 

consistently 10% or more lower than the measurements, a situation 
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apparently improved with a slightly lower value of ac  in the heat 

flux model. Although this and lower values of ac  may be more in 

agreement with that implied by the constants used in the ASTM 

(equation (8.3.5)), it is more likely to be compensating for 

limitations in the calculations due to, for example, (i) the flow 

field in which the friction factor is also underpredicted, (ii) the 

wall function for enthalpy which was formulated from experimental data 

over a wide range of Pr  mainly well above that for air and (iii) the 

simple isotropic eddy diffusivity heat flux model. On this latter 

point, if an improvement can be made in the prediction of cross-plane 

normal stresses, the use of the algebraic heat flux transport model 

(see Sections 4.4. and 8.3.1) may effect an improvement in heat 

transfer prediction, as evidenced by the recent calculations made by 

Chieng and Launder (1979) with this anisotropic eddy viscosity model 

in asymmetrically heated circular pipe flow. 

Finally, it is of interest to check on how the equivalent 

diameter concept correlates the calculated Nu-Re  characteristics for 

the various passages. Comparing only the air flow calculations (to 

eliminate the uncertain effect of Pr), the elliptical duct and rod-

bundle passage characteristics are within 10% of the circular pipe, 

but the triangular duct characteristics are lower and increasingly so 

with smaller apex angle (- 15% with e = 60°  to - 50% with 0 = 11.7°). 

Although far from conclusive with this limited evidence, the heat 

transfer calculations are consistent with the conclusions concerning 

equivalent diameter drawn from the predicted friction factors. 
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9.4 Recommendations for further work  

In addition to the further studies that can usefully be made 

with the present method, many improvements are required in the 

turbulent stress modelling and computative procedures currently 

employed. In conjunction with these developments further experiments 

will be required. The suggested further work in each of these areas 

is summarised below: 

(i) Further predictions  

An extension can be made to enable multi-region analysis of 

finite rod bundles, following the lead of Benodeker and Date (1978) 

and using the data of, for example, Rowe (1973) to study the effects 

of interchannel flow and turbulent mixing. Some further studies can 

also usefully be made by developing the grid generation procedure for 

application to passages of more severe curvature such as the triangular 

or square array rod bundles with rods touching (P/D = 1.0). 

Comparisons can be made with the measurements of Levchenko et al (1968) 

and Gerrard and Baines (1977). 

The square duct work of Tatchell (1975) and Reece (1977) can be 

followed-up by extending the present method to the calculation of 

developing flows in various non-circular passages. 

A detailed study of turbulent length scale prediction and 

comparison with that from the Buleev and other formulae can be made, 

to discover any possible links and whether an algebraic formula for 

length scale can reasonably be deduced from, and used in place of, 

the partial differential equation for c for non-circular passage 

flow calculations. 
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The present method can also be usefully adapted for the 

calculation of flow and heat transfer with temperature dependent 

fluid properties and non-Newtonian fluids in non-circular passages. 

Such problems are of considerable interest in the process industry. 

The development of wall functions for enthalpy suitable for very low 

Prandtl number fluids will also enable the present procedure to be 

used for the calculation of liquid metal flow and heat transfer in 

non-circular passages - particularly rod bundles for Nuclear power 

applications (Tables 3.2.1 and 3.3.1 show some sources of available 

experimental data). 

(ii) Turbulent stress and heat flux model improvements  

Normal stress prediction with the ASTM needs to be improved by 

the development of a wall damping modification that, if possible, 

still allows algebraic formulation of the stress transport equations. 

It may be that the empirical constants in the model became 

coefficients that vary across the flow. The note by Rodi (1975) and 

the work of Launder, Reece and Rodi (1975) could provide a useful 

starting point. An improvement in the normal stress prediction would 

also enable the AHFTM to be used in place of the isotropic eddy 

viscosity for a probable improvement in heat transfer calculations. 

An investigation could also usefully be made into the reasons for the 

apparent under-prediction in near-wall levels of turbulence kinetic 

energy with the present method. 

As an alternative to the above (or in any case) an orthogonal 

curvilinear co-ordinate multi-equation stress and heat flux model 

approach can be made by extending the work of Reece (1977) and 
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Samaraweera (1978) to the calculation of flow and heat transfer in 

various non-circular passages. This would also require the develop-

ment of the wall damping functions into a form suitable for 

arbitrary multiple walls. 

(iii) Computational improvements  

The flexibility of the finite-difference mesh can be improved by 

relaxing the orthogonality constraint although the increased 

complexities of a non-orthogonal mesh may ultimately be counter 

productive. 

The stability and convergence of the numerical method can be 

improved by development of a more efficient solution algorithm for 

the finite-difference equations. Some form of simultaneous solution 

method should be aimed at, in place of the sequential method in the 

present procedure. 

(iv) Experimental investigations  

Detailed flow and heat transfer measurements are always required 

for the development and validation of turbulent stress and heat flux 

models. These measurements should include axial and secondary 

velocity, wall shear stress, turbulence intensity and turbulent shear 

stress. Such measurements for fully developed flow in elliptical 

ducts and some unsymmetrical ducts such as a 600/300  right-angled 

triangular duct would be particularly useful. Developing flow 

measurements are also required in a good range of non-circular ducts. 

Secondary velocity measurements in rod bundle geometries are also 

needed to resolve the present uncertainty over secondary flow 

circulations. 
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Heat transfer measurements, both local and overall are required 

for a range of passage cross-sections, flows and fluids. Some 

detailed measurements in a few passages will be vital to the 

development of heat flux models. These measurements should include 

wall and fluid temperatures, wall heat flux and if possible fluid 

temperature fluctuations, as well as overall Nusselt numbers. 
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NOMENCLATURE 

Symbol 	 Meaning  

a 	Half major axis length of an ellipse 

mi 
ajk 	Fourth order tensor defined in equations (A2.5) 

AR 	Aspect ratio 

AN, AS, 	Coefficients in the finite-difference equations defined in 
AE, Aw 	equations (5.3.15) 

b 	Half minor axis length of an ellipse 

Be, BW, 	Diffusion coefficients in the finite-difference equations, 
Bn, Bs 	defined in equation (5.3.9) 

c 	Enthalpy fluctuation 

C 	Time-averaged enthalpy 

Ce, CW, 	Convection coefficients in the finite-difference equations, 
Cn, Cs 	defined in equation (5.3.9) 

CD 	Constant in turbulence energy dissipation rate formula, 
equation (3.4.6) 

Cp 	Specific heat 

C1, C2, 	Constants in ASTM, defined by equations (4.2.29) to 
C3, C4 	(4.2.32) 

Cu 	Constant in turbulent viscosity formula,equation (3.4.7) 

Cv 	Constant in turbulent viscosity formula, equation (3.4.5) 

C~ 	Source in the 4 equation (5.3.1) 

Clc 	Constant in AHFTM (equations (4.4.6) and (4.4.7)) 

CE1, CE2 	Constants in the E transport equation (4.3.5) and table 
4.7.1 

C, C(1)2 	Constants in the ASTM, equations (4.2.29) to (4.2.32) and 
table 4.7.1 

D 	Rod or tube diameter 

Dc 	Molecular diffusivity of enthalpy 

De 	Equivalent diameter 
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D~ Diffusion (exchange) coefficient of 4 

e 	Component of linearised source in the finite-difference 
equation (5.3.14) 

er 	Convergence residual equation (5.9.2) 

E 	Constant in velocity log-law of the wall, equation (4.6.2) 
and table (4.7.1) 

Er 	Residuals, equation (5.9.2) 

f 	Friction factor 

FE etc. 	Coefficients, defined in equations (5.4.8) 

g 	Component of linearised source in the finite difference 
equation (5.3.10) 

G. 	Mass velocity in direction i 

hi 	Metric coefficient in co-ordinate direction i 

hL 	Local heat transfer coefficient, equation (8.1.1) 

Peripherally averaged heat transfer coefficient, 
equation (8.1.6) 

H 	Product of metric coefficients 

Hi(j) 	Inverse of local radius of curvature of j line 

i 	Co-ordinate direction 

Co-ordinate direction 

Turbulence kinetic energy 

kf 	Fluid thermal conductivity 

Turbulence length scale 

k
m 
	Mixing length 

Nu 	Mean Nusselt number, equation(8.1.6) 

NuL 	Local Nusselt number, equation (8.1.8) 

Nu 	Peripherally averaged Nusselt number 

NR 	Reference quantity for normalising the residuals, 
equation (5.9.2) 

p 	 Time averaged pressure 
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p' 	Pressure fluctuation 

P* 	Guessed time-averaged pressure 

P 	Rod or tube pitch, also production rate of turbulence 
kinetic energy 

Pe 	Grid cell Peclet number (= GSS/D4)) 

Pr 	Laminar Prandtl number 

P* 	Jayatilleke (1959) sub-layer function, equation (4.6.7) 

q " 	Heat flux 

q " 	Average heat flux, equation (8.1.5) 

r 	Rod or tube radius 

ri 	Local radius of curvature for co-ordinate direction i 

Re 	Reynolds number (based on U3) 

Rs 	Residual source, equation (5.9.1) 

s, S 	Curvilinear arc length 

5+, S+ 	Dimensionless curvilinear arc length, equation (4.6.3) 

tib 	Turbulent stress tensor 

T 	Time-averaged temperature 

Tb 	Bulk time-averaged fluid temperature, equation (8.1.2) 

Tw 	Local wall temperature 

Tw 	Average wall temperature, equation (8.1.4) 

TCL 	Passage time-averaged centre-line temperature 

ui 	Velocity fluctuation in direction i 

u.u~ 	Reynolds stress tensor 

Z. 	Turbulence intensity in direction i 

U 	Resultant time averaged velocity 

U. 	Time-averaged velocity component in direction i 

Ui 	Mean time-averaged velocity in direction i 

U* 	Mean friction velocity (equation 4.6.1) 
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U.* etc. 

Ui L 

UiCL 

U. 
1max 

Guessed time-averaged velocity in direction i 

Local friction velocity in direction i 

Time-averaged centre-line velocity in direction i 

Maximum time-averaged velocity in direction i if it is 
not UiCL 

Dimensionless velocity (= Ui/U*) 

Volume of a control volume 

Cartesian co-ordinate direction i 

Orthogonal curvilinear co-ordinate direction i 

Dimensionless distance from a surface (see s+) 

Incremental length in the axial direction 

GREEK SYMBOLS 

a 	Constant in Reynolds stress transport equations (A2.5) 
and (A2.6) 

al, a2, 	Constants in Gessner and Emery (1976) ASTM, equations 
a3 	(3.4.17) to (3.4.20) 

Constant in Reynolds stress transport equations, (A2.5) 
and (A2.6) 

Constant in Reynolds stress transport equations, (A2.5) 
and (A2.6) 

Yc 	Turbulent (eddy) diffusivity of enthalpy 

sib 	Kronecker delta 

K 	Constant in velocity log-law of the wall, equation 
(4.6.2) and table 4.7.1 

Constant in Reynolds stress transport equations, 
equation (4.2.8) 

Laminar viscosity 

ut 	Turbulent (eddy) viscosity (= pvt) 

ueff 	
Effective turbulent viscosity (= u + Pt) 

Laminar kinematic viscosity 

vt 	Turbulent (eddy) kinematic viscosity 

U+  

VP  

xi  

yi 

y+ 

Az 
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e 	 Turbulence kinetic energy dissipation rate 

Constant in Reynolds stress transport equations, (A2.5) 
and (A2.6) 

Fluid density 

a
c 
	Turbulent Prandtl number for enthalpy, table 4.7.1 

Q 	Turbulent Prandtl number for turbulence kinetic energy, 
table 4.7.1 

v E 	Turbulent Prandtl number for dissipation rate of 
turbulence energy, table 4.7.1 

6 	Angular co-ordinate 

Tij 	Viscous stress tensor 

To 	Resultant local wall shear stress 

Tō 	Average wall shear stress 

TOi 	Local component wall shear stress in direction i 

Tomax 	Maximum local wall shear stress 

Tib 	Total stress tensor 

Scalar quantity, also angular co-ordinate direction 

ABBREVIATIONS  

AHFTM 	Algebraic heat flux transport model, equations (4.4.6) 
and (4.4.7) 

ASTM 	Algebraic stress transport model, equations (4.2.23) to 
(4.2.28) 

H1, H2, 	Heat transfer boundary conditions, defined in section 
H3 	5.5 

SIMPLE 	Semi-implicit method for pressure-linked equations, 
section 5.4 

TDMA 	Tri-diagonal matrix algorithm, Appendix 7 
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A PREDICTION METHOD FOR FULLY-DEVELOPED FLOW THROUGH NON-
CIRCULAR PASSAGES. 

A.D. Gosman and C.W. Rapley 

Mech. Eng. Dept., Imperial College, University of London, U.K. 
Mech. Eng. Dept., Sunderland Polytechnic, U.K. 

INTRODUCTION 

There is an urgent need for detailed predictions of fluid flow 
and heat transfer in straight passages of non-circular cross-
section. Such predictions would enable designs of compact heat 
exchangers and the many other non-circular passages in cooling 
and other engineering component systems to be made directly on 
the basis of the fluid flow and thermal performance required, 
so enabling optimum use of the available space. 

For certain shapes of passage cross-section the overall heat 
transfer and pressure drop performance for turbulent flow can 
be adequately predicted by using the equivalent diameter of the 
passage in conjunction with the well established circular duct 
correlations. For example, the square duct friction measure-
ments of Hartnett et al (1962) are well predicted by the 
Blasius equation, as are the friction measurements of Barrow 
and Roberts (1970) for elliptical ducts. The friction factor 
for triangular ducts however is over-predicted by the Blasius 
equation by some 20% for acute-angled isosceles triangles 
(Carlson and Irvine, 1961) and by about 10% for the equilateral 
triangular duct of Aly et al (1976). It seems that when the 
passage shape involves an acute-angled internal corner, not 
even the overall performance can be obtained from circular duct 
data. Furthermore, even if overall prediction can be obtained 
in this way for a particular duct, little or no information is 
available on local values of quantities such as wall shear 
stress and heat transfer coefficient. 

Considerable work has been done on the analysis of fully devel-
oped laminar flow through a wide range of non-circular passages. 
A useful summary can be found in Shah. and London (1974). When 
it comes to turbulent flow, however, there is little either 
experimental or predicted fluid flow and heat transfer informa-
tion available for non-circular passage shapes other than 

square or rectangular. 

A feature of turbulent flow in non-circular passages which is 
absent from laminar flow is the 'secondary flows' that are 
generated in the cross-sectional plane In 	Lo maintain 
equilibrium between the Reynolds stresses and pressure 
gradients. These flows have the effect of transporting some of 
the core fluid into the corners of the duct, causing the flow 
to spiral in the axial direction in separate cells located 
across the cross-section. Although the secondary velocities 
are usually not more than 1% or 2% of the mean axial velocity, 
evidence from comparison of prediction and experiment in 
rectangular ducts (e.g. Launder and Ying,1972) indicates that 
they can influence local values of axial velocity and wall 
shear stress by as much as 30% and certain turbulence prop-
erties by more than 50%. Any prediction procedure must there-
fore include secondary flow effects if it is to produce 
realistic results. 

Detailed measurement of turbulent flows has been possible 
since about 1960 due to the refinement of anemometry tech-
niques. Investigations of turbulent flow in non-circular 
passages seem to have been concentrated on square and rect-
angular ducts (see e.g. references in Melling and Whitelaw, 
1976) and the axial flow passages in rod bundles (see e.g. 
references in Carajilescov and Todreas, 1975). Apparently the 
only other goemetries to receive any detailed attention are 
the 11.7 vertex-angled isosceles triangular duct of Cremers 
and Eckert (1965) and the equilateral triangular duct of Aly 
et al (1978). 

Prediction techniques capable of simulating the important de-
tails of turbulent flow in non-circular passages appear to 
have been mainly developed for square and rectangular passages 
(e.g. Hanjalic and Launder, 1972, Launder and Ying, 1973, Naot 
et al, 1974, Tatchell, 1975, Gessner and Emery, 1976). The 
prediction method of Launder and Ying (1973) has recently been 
applied to two other geometries, an equilateral triangular duct 
(Aly et al, 1978) and the axial flow channel in triangular rod 
bundles (Carajilescov and Todreas, 1975). The predictions all 
show effects of secondary flow which are in general agreement 
with the expected behaviour. There are however some discrep-
ancies between the predicted and experimental distributions of 
turbulence quantities and secondary velocities. Nevertheless 
there is sufficient encouragement in these predictions to seek 
a prediction procedure that is capable of application to a 
variety of passage shapes. 

In the present paper, a general procedure is described for the 
calculation of flow and heat transfer in straight passages of 
arbitrary cross-section. The procedure contains some elements 
of the earlier work of Launder and Ying (1973), Tatchell (1975) 



and Gessner and Emery (1976). 

THE PRESENT PROCEDURE 

In essence, the present method solves tis mean flow momentum 
equations by finite differences on an orthogonal curvilinear 
grid generated to fit the passage shape. The Reynolds stresses 
are calculated with an algebraic model which links the stresses 
to mean velocity gradients through the turbulence kinetic 
energy and its dissipation rate, whose values are obtained by 
solving their modelled transport equations by finite differences 
on the orthogonal curvilinear grid. Sample predictions are 
here presented for laminar and turbulent flow in ducts of 
equilateral triangular cross-section and comparisons are made 
with existing analytical and experimental data. 

Differential Equations and turbulence model  
For steady flow of an incompressible fluid, the Reynolds equa-
tion with negligible body forces can be written in vector nota-
tion as 

V.GU + V.r + Vp = -V.puū 

and the mass conservation equation as 

VG=0 

where p, U, G and p are the time averaged density, velocity, 
mass velocity and pressure respectively, t the molecular stress 
tensor and pUT the Reynolds stress tensor. 

grid lines 

control volumes 

U2 location 

U1 location 

U3,p,k.E location 

w 
	

Gst 

v direction-1 Xi 

Figure 1. Part of orthogonal grid showing the co-ordinate 
system and grid notation 

These equations are expanded in general orthogonal co-ordinates 
X1, X2 and X3 for fully-developed flow in straight passages and 
re-cast in terms of arc lengths dS1, dS2 and dS3 where dS1 = 
ttdX1, dS2 = Lox, and dS3 = .f3dX3 (t1,f2 and L3 being the 
metric coefficients in co-ordinate directions X1, X2 and X3 

respectively). Co-,adivatru H, and X2 are in direction-1 and 
2 respectively in the cross-flow plane as shown in figure 1 and 
X3 in the (straight) axial direction-3. In the following equa-
tions, suffices 1, 2 and 3 are used to indicate directions I, 
2 and 3 respectively with the second ciff,x of holecular stress 
T indicating the direction of the normal to the plane on which 
the stress acts. The expanded Reynolds equations for directions 
1, 2 and 3 respectively ares 

a(G1U,) 	a(G2u1) 	3111 	ar12 	a(pu12) 	a(pulu2) 	ap 

as, 	+ as,
+ 

as, + as, 
+ 	as,

+ ās2 
 

2 
(GlU1-G2U2+711-722+PVirPn21) + r;G2U,+t,2+pu1u2) = 0 	(I) 

a(G,U2) 	ra,~-(G2u2) 	air, 	a122 	a(,IU,L2) 	a(6-2-7 ) 	ap 

452 	+ ds, + ās2 + as, 	+ as, 	+ as2 

=~G2U2-Gllil+122-tll+Pūi7-Pu12 ) + =(G,U2+t12+pu,u2) = 0 

a(G1D2)a(G2u3) DTII ~at23 3(pulu3) a(pŪ2Ū3) ap 

as1 	+ ās2 	+ .21 + Ob2 + Tit 	+ ās2 	
+ 
ās3 

+ 

(G2 t13+123+pu2U3) + 1(GIU3+tI3+ediu3) = 0 r2 

The mass conservation equation becomes 

ac, 	2G2 + GI + E2 = 
aS2 r2 I, 

For laminar flow the terms containing the Reynolds stresses 
pūt 	p67112 etc. disappear from equations (I) to (3) and since 
the molecular stresses are related only to gradients of U, and 

U2 with respect to S, and S2, equations (1) and (2) disappear 
and there are no secondary flows. This also implies that for 
turbulent flow it will be insufficient to model the cross-flow 
plane Reynolds stresses on the molecular stresses using an 
isotropic turbulent viscosity )rt; (e.g. pūt = Ittau,/aSI) since 
no secondary flows will be generated. 	. 

In onder to produce secondary flows in turbulent flow the 
prediction procedure of Launder and Ying (1973) used an algebra-
ic stress Model developed from a degenerate form of the cross-
flow plane Reynolds stress transport equation in which trans-
port by convection and diffusion are neglected. By inking 
dissipation of Reynolds stress to be locally isotropic (fine 
scale motions) and using the ,lanjalic and Launder (1972) 
pressure-strain relationship, Launder and Ying reduced the 
differential transport equation to algebraic equations from 
which the cross-flow plane Reynolds stresses could be extracted. 

0 

X2 

} 

-.,- 

(2) 

(3)  

(4)  



a U.3 = -C4 k~U3 
ase 

(9) 

Gesener and Emery (1976) showed that the axial flow plane 
Reynolds stresses could also be extracted to give the following 
set of equations for the five (kinematic) Reynolds stresses 
appearing in equations (1) to (3): 

k' aU3 0303 -C4ē āS, 

U1 = C3k - C2CaE, ~as, 

V2 = C3k - C2c4Ē, (as3)1 2 

u,u2 = -2c2c4Eas~,~,(982' 

where k is the turbulence energy and E its dissipation rate, 
and C2, C3 and Cr, are empirical constants. The Reynolds stress 
model represented by equations (5) to (9) has been adopted in 
the present procedure. 

The quantity pC4k'/c can be identified as a turbulent viscos-
ity pt (Launder and Spalding, 1972) i.e. 

µt = C4pk'/c 

which means that equations (5) and (6) reduce to a simple 
isotropic viscosity model for the Reynolds stresses puju3 
and puiu3 in the axial planes. This is not so however for the 
cross-flow plane Reynolds stresses pu?,pu, and pūlū2 which are 
seen to depend on mean strain rates in planes normal to the 
cross-flow plane. It is this cross-planar effect that produces 
secondary flows in the cross-flow plane. 

In the application of the Reynolds stress model to particular 
geometries by Launder and Ying (1973), Aly et al (1978) and 
Carajilescov and Todreas (1975), the dissipation rate of tur-
bulunce energy c was calculated from the algebraic relation c e 
C1,k 3'2/L where CD is an empirical constant and L a turbulence 
length scale, the spatial distribution of which must be speci-
fied. Alt) ,rrh Launde, and Ying (1973) and Aly et al (1916) 
obtained ::.jme success by calculating L from a formula proposed 
by Buleev (1963), Carajilescov and Todreas (1975) found it 
necessary to resort to experimental measurements in order to 
produce a satisfactory length scale prescription. This need 
for a complex empirical input was considered undecrr,ble in a 
prediction procedure for general non-circular passage shapes 
and so, following the practice of Tatchell (1975), it is 
removed in the present procedure by calculating E from its, 
modelled transport equation (Ilanjalic and Launder, 1972). The 
turbulence energy k is also calculated from its modelled 

transport equation, in a form used by many previous workers 
(e.g. Ilanjalic and Launder, 1972). Both modelled transport 
equations have the following general form: 

38 	18 
a(G18) + 3(62B) 	3(DB3S1) 	a(°U3S2) + F 	0 
as. 	as2 	as 	as: 

where for turbulence energy, D k and F = pE-P and for dis-
sipation rate E of turbulence energy, B = E and F = C,.;ki'/k-
CEpEP/k. CE1 and CE2 are empirical constants, P is the genera-
tion rate of turbulence energy and DB the turbulent diffusivity 
given by: 

DB - (1+ Pt/all 

where 00 is the effective turbulent Prandtl number. 

Equations (1) to (10), together with the boundary conditions 
(discussed below) form a closed set representing steady fully 
developed turbulent flow through non-circular passages. 

In order to be consistent with the aim of obtaining a predic-
tion procedure for general geometries, no attempt has been 
made to optimise the empirical constants, whose values have 
simply been taken from previous studies. (Launder and 
Spalding, 1972) Launder and Ying, 1973) and we summarise below: 

C2 	0.0185, C3 e 0.57, Cr, m 0.09 

CE1 " 1.55, CE2 ° 2.0, ok 	1.0, oE = 1.185 

It is recognised that more appropriate values of these constants 
may well emerge from future comparisons of predictions and 
experimental data as it becomes available for different passage 
geometries. 

Treatment of boundary conditions at walls 
Wall functions are user: to match the interior flow with the 
wall conditions and thus avoid the large number of grid nodes 
that would otherwise be necessary in this region of high 
gradients. These wall functions are applied to the grid cells 
next to the wall, which is assumed to be a region of constant 
shear so that the wall shear stress TO and velocity variation 
with normal distance from the wall y are related by the well 
known log-law: 

U/Ui = (1n(Ey4))/x 
1/4 1/2 

' where UT is the local friction velocity (=1e/pC4 	k 	), 

Y+ yin /U
i and constants E and w are chosen according to the 

texture of the wall surface. For a smooth plane wall the 

(10) 



values assigned (Sc1tlichting, 1960) are: 

e = 9.025, 	11 - 0.4 

The turbulence energy k near the wall is oLtain,d as for the 
interior nodes with generation and dissipation calculated using 
the local value of wall shear stress. 

The value of E near the wall is obtained by neglecting trans-
port of c by convection and diffusion and assuming a length 
scale that varies linearly with y (Launder and Spalding, 1912) 
so that 

C = C43/4k/Hy 

Finite-difference equations  
When the velocity gradient relationships are substituted for 
the molecular stresses in the differential equations (1) to 
(3), these together with equations (10) may be compactly 
represented in terms of the single transport equation: 

a(Gr 	+ a(GZ¢) 	a(D  t) 	roast) 	a(D4,ā ) 	 (il) 9S1 	
C  

ase 	3s1 	ase 	'C 

where m  stands for any of the main dependant variables Ui, U2, 
Ur, k and Ci and Do and Core respectively the corresponding 
diffusivity and source, although the latter is really a catch-
all for all the terms not already contained in the general 
equation. 

An element of the curvilinear grid system employed in the 
calculations is shown in figure 1 (an example of a complete 
grid numerically computed by a simple method similar to that 
described by Antonopoulos et al (1978) is shown in figure 2b). 
The variables p, U3, k and C are calculated at the grid nodes 
but following what is now conventional practice, the cross-
flow velocities U1 and U2 are computed at intervening locations, 
mid-way between the pressures which drive them. 

The finite difference equivalent of equation (11) is der'ved, 
for each grid location, by approximate integration over imag-
inary, contiguous control volumes surrounding each location, 
examples of which are shown in figure 1. The main approxima-
tion involved concerns the variation of the dependant variable 

between the nodes: generally a linear variation is assumed, 
this 'central difference' representation being adrp.o.}le when, 
as in the present case, the cross-flow velocities are small 
(strictly the relevant quantity is the cross-flow Peclet number 
Pe=UdS/D, where U,dS and D are the local velocity, grid spacing 
and eddy diffusivity respectively). However, provision is made 
to switch over to upwind differencing if Pe becomes large, in  

the manner described by Caretto et al (1972), in order to 
preserve accuracy and computational stability. 

The resulting sets of finite difference equations for each 
variable are conservative and givo rise t•. oro nditiunally 
diagonally-dominant coefficient matrices, these being desirable, 
if not essential, requirements toe a general numerical procedure. 
The equations are, In the notation of figure 1, of the form: 

aP$P - a2iE + aWn  w + NAN + a05.4.  CO 

where ap - ag+aW+an+aS-Cp. The a's are coefficients expressing 
the combined effects of convection and diffusion and the C's 
are coefficients of a linearised approximation to the Cy inte-
gral. 

Departures from the above practices are made in the case of the 
continuity equation (4) which, after integration, i:, ccmlrined 
with the cross-flow momentum equations to yield a finite dif-
ference equation for pressure (strictly a pressure correction) 
of the form of (11) above. Details of the derivation are given 
in Caretto et al (1972). 

Solution Procedure  
For a given computational grid (which, as mentioned earlier, 
is itself computed numerically), the finite difference equations 
are assembled and solved by two nested iteration sequences. The 
outer sequence causes the variables to be updated sequentially 
and repeated until convergence is achieved, the order being 
to solve the momentum equations for the cross-flow velocities, 
the 'continuity' equation for the pressures (which are then 
used to bring the velocities into continuity balance), the 
axial momentum equation for the axial velocity and the tur-
bulence equations for the turbulence parameters. The inner 
sequence effects the solution of the (linearised) equations for 
each variable by a line-iteration of 'ADI' procedure based 63 
the tri-diagonal matrix algorithm. 

Convergence of the overall procedure is by no means assured, 
due to the coupling and non-linearity of the equations, the 
former feature being particularly prominent in the Reynolds 
stress modelling here employed. However, experience has Lhuwn 
that a combination of under-relaxation and a special starting 
procedure wherein a nearly converged solution is obtained before 
the cross-flow equations are brought into the calculation, is 
invariably successful. When, as in the test cases presented 
later, the grid is such as to cause large wrrati •.. in the 
finite difference coefficients over the field, it has also 
proven beneficial to apply extra 'sweeps' of the line-iteration 
procedure in regions of small coefficients. 

The calculations are taken as converged when the sums over the 
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field of the absolute mass and momentum residuals are less than 
a small prescribed fraction (usually of order 10-x) of the 
axial mass and momentum fluxes. Further, tests with various 
sizes of grids revealed that the solutions obtained are 
substantially grid independent for mesh numbers of about 250 
and greater. 

APPLICATION OF THE PROCEDURE TO PREDICTION OF FLOW IN AN 
EQUILATERAL TRIANGULAR DUCT 

Flow in an equilateral triangular duct was selected as a useful 
test of the prediction procedure since recent turbulent flow 
experimental data was available (Aly et al, 1978) and the many 
symmetry flow elements in the duct could be used to check the 
consistency of the finite difference procedure across the 
orthogonal mesh. With regard to the latter point, in this 
particular geometry there are six symmetry elements of flow, 

E 	 F 
Figure 2. 	(b) Orthogonal grid for half-duct domain 

each bounded by corner bisectors as shown in figure 2a. This 
figure also shows the secondary cells expected with turbulent 
flow (Schlichting, 1968) where each symmetry element contains 
a cell. A solution to the flow through the duct is represented 
by a solution for just one of these symmetry elements. The 
predictions of turbulent flow made with the present procedure 
and shown in figures 5 to B (and also the predictions of Aly 
at al, 1978) were obtained from solution of a symmetry flow 
element such as CFD in figure 2a. However initial tests of the 
present procedure were made by solving the flow in a one-half 
duct domain, and then examining for the required symmetry, as 
described below. 

Tests for symmetry of the numerical solution  
Checks were made to ensure that the asymmetry of the curvilinear 
grid did not prevent the expected flow symmetries from being 
obtained. This was done by solving the flow in one half of an 
equilateral triangular duct where a triple flow symmetry should 
prevail. A typical orthogonal grid generated to fit the half-
duct domain is shown in figure 2b with lines CF and GF super-. 
imposed to divide the domain into the expected three flow 
symmetry elements CFD, CFG and EFG. The size, shape and 
orientation of the control volumes will clearly be different 
in each of the symmetry elements. 

The computed fully developed laminar flow wall shear stress 
distribution (along EC) is shown in figure 3 where the 
expected symmetry about the mid-wall point 2/28=0.5 has been 
obtained. A more sensitive test however is the prediction of 
the three similar counter-rotating cells of secondary flow in 
fully developed turbulent flow. The result of this calculation 
is shown in figure 4 where the secondary flow velocity vectors 
are drawn to scale at each grid node. Evidently the symmetries 
have been successfully obtained. 

Figure 3. Laminar flow 

To complete the symmetry assessment the fully developed tur-
bulent flow distributions of axial velocity, turbulence energy 
and wall shear stress calculated for the half-duct domain are 
compared in figures 5 and 6 with distributions calculated for 
a single flow symmetry element. Satisfactory agreement has 
been obtained. 

H 

Comparison of predictions with published data  
The predicted wall shear stress and the axial velocity across 
a symmetry plane for fully developed laminar flow are shown in 
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The effect of secondary flows in transporting some of the core 
fluid along corner bisectors into the corners is clearly shown 
in the axial velocity distribution of figure 5 as is the 

figure 3 to be in excellent agreement with the analytically-
derived distributions of Sparrow (1962). The computed axial 

Figure 4. Secondary Flow Vectors 

velocity and turbulence energy distibutions along a symmetry 
plane and the wall shear stress distribution for fully developed 
turbulent flow are shown in figures 5 and 6 respectively (U9 
is the mean friction velocity) together with experimental data 
and predictions from Aly et al (1978). To assess the effect 
of secondary flows, predictions in which secondary calculation 
has been suppressed are also indicated. 

Figure 5. Axial velocity and turbulence energy  
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Figure 6. Wall shear stress 

equalising effect on the wall shear stress distribution in 
figure 6. The effect of neglecting secondary flows is typical-
ly shown in figure 6 where local wall shear stress into the 
corner is under-estimated by more than 25%. The prediction of 
Aly at al (1978) using prescribed length scale reduces this to 
about 18% and the present procedure gives a further reduction 
to a more acceptable 10%. In accord with the findings for 
square ducts (Launder and Ying, 1972), the turbulence energy 
distribution is seen to be more sensitive than axial velocity 
and wall shear to secondary flows with reduction in local 
turbulence energy of more than 75% along the centre-plane at 
Y/H between 0.6 and 0.8. This reduction can be mainly attri-
buted to the reduced generation of turbulence energy due to 
lower axial velocity gradients in this region. The comparison 
of the present prediction with experiment is quite satisfactory 
when it is considered that the experimental data is obtained 
as the sum of the squares of separate measurements of tur-
bulence intensity, each with its own uncertainties. 

The calculated turbulence intensities along a symmetry plane 
are compared in figure 7 with the experimental data of Aly at 
al (1978) (who do not themselves show predictions). Reasonable 
agreement is obtained between prediction and experiment, both 
of which show the expected departure from isotropy of the tur-
bulence as the wall is approached. 

The computed friction factor/Reynolds number characteristic 
is compared in figure 8 with the limited experimental data and 
the predictions of Aly et al (1978) and the Blasius equation 
(using the equivalent diameter). The friction factors produced 
by the present method lie below the measurements by some 8t at 
the lower Reynolds numbers, with the discrepancy decreasing as 
Reynolds number increases. This trend is consistent with the 
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Figure 7. Turbulence Intensities 

high turbulence Reynolds number assumption inherent in the 
Reynolds stress model used. Undoubtedly better agreement 
could be obtained, as in the study of Aly et al (1978), by 

Figure 8. Friction Factor Characteristic 

adjusting the empirical constants in the turbulence model. 
However, we prefer not to make such adjustments until a wider 
range of passage geometries have been investigated. 

SUMMARY AND CONCLUSIONS 

A procedure has been developed for computer prediction of fully 
developed laminar and turbulent flow in non-circular passages. 
Tests show that the procedure produces the expected symmetries 
in the flow and yields excellent agreement with exact solutions 
for laminar flow. The algebraic stress model used has produced 
the expected secondary flow effects in the turbulent flow pre-
dictions which are generally in accord with experiment. 

The paucity of detailed experimental data avaiable for tur-
bulent flow in non-circular passages other than square or 
rectangular is an indication of the difficulty and expense of 
building accurate test rigs and obtaining reliable experimental 
data. The alternative of simulating the performance on the 
computer must be considered very desirable in view of the vast 
number of possible non-circular passage shapes and arrangements. 
The authors believe that the present method has many of the 
features required for such a prediction procedure. Currently, 
the method is being applied to other passage geometries, 

including the axial flow passage in rod bundles and is also 
being extended to include heat transfer. A study is also being 
made of more recently proposed Reynolds stress models (e.g. 
Reece, 1976) to see if they have any advantage over the model 
used in the present method. 
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CHAPTER 11 

FULLY-DEVELOPED FLOW IN PASSAGES OF ARBITRARY CROSS-SECTION 

A.D. GOSMAN, Mechanical Engineering Department, Imperial College 

C.W. RAPLEY, Mechanical Engineering Department, Sunderland 
Polytechnic. 

1. INTRODUCTION 

The general field of 'duct' or 'passage' or 'confined' 
flows as they are variously called is a very large one, 
embracing as it does an infinite variety of geometrical con-
figurations, fluids and flow rates, whose various combinations 
give rise to virtually every kind of flow structure imaginable. 
Thus, at the lower end of the scale of complexity there are the 
familiar steady, laminar, fully-developed single-phase flows 
in straight circular tubes, whose accessibility to straight-
forward analysis has made them a standard feature of introd-
uctory textbooks and courses on fluid mechanics. Towards the 
other end of the scale, where lies many of the duct flows 
encountered in practical circumstances, the fluid motion is 
almost invariably unsteady, due to the onset of turbulence and 
other phenomena and sometimes consists of more than one phase, 
while the enclosing duct is often curved and exhibits changes 
of shape and size of cross-section, which may be so abrupt as 
to provoke separation: by contrast with the earlier example, 
problems of this kind lie at the frontiers of current research 
and are only beginning to be accessible to predictive analysis. 

The obstacles to prediction of all classes of duct flows 
are of two kinds: firstly, it is necessary to be able to 
translate them into a closed mathematical problem, consisting 
of the governing equations of motion and the associated 
boundary conditions. If the motion is laminar, this presents 
no especial difficulties, for the equations are well known: 
however it is equally known that the practical necessity to 
describe turbulent motion in terms of its time-averaged 
behaviour gives rise to formidable problems of closure (see, 
e.g. Bradshaw, 1978). 

The second kind of obstacle relates to the solution of 
the equations, which must invariably be done numerically for 
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APPENDIX 2 	THE MODELLED REYNOLDS STRESS 

TRANSPORT EQUATIONS 

The exact form of the Reynolds Stress Transport Equations can be 

derived from the Navier-Stokes equations (see Hinze, 1975 p. 324) and 

arranged in the following way: 

Uk  a(uiuj)/axk  = - (uukaUi/axk  + uiukaUJ/axk) 

(convection) 	(generation) 

- 2v(aui/axk) (auj/axk) 

(dissipation) 

+ (p'/p) (aui/axj  + auj/axi) 

(re-distribution) 

- 4UIUjUk  - vauiuj/axk  

+ (p'/p) (ajkui + sikuj),/axk  

(diffusion) 	(A2.1) 

The accepted physical significance of the various terms is 

indicated. The modelled equations are obtained by replacing the 

unknown quantities in the dissipation, diffusion and re-distribution 

terms by expressions containing calculable ones. In the present work, 

the modelling used follows closely that developed and used success-

fully by Hanjalic and Launder (1972), which is summarised below. 
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The small-scale motions responsible for dissipation of the 

stresses may be assumed reasonably isotropic, particularly at high 

Reynolds numbers. Consequently the dissipation term in equation A2.1 

can be related directly to the isotropic dissipation rate c of 

turbulence energy as: 

2v(auff /axk)(auj/axk) = 2aijc/3 	(A2.2) 

For high Reynolds number flows, the viscous diffusion term can 

be neglected and the implication of experimental measurement 

(Hanjalic and Launder, 1972) is that diffusion due to pressure 

fluctuations is also unlikely to be significant and so that term is 

also neglected. Hanjalic and Launder (1972) showed that the triple 

correlations could be approximated in terms of double correlations 

from a systematic simplification of the triple correlations transport 

equations. Subsequent experiments by Irwin (1973) have confirmed 

this approximation which is written as: 

- uiujuk  = Cs(k/c)(uiuQaujuj/axQ  + ujuQaukui/axQ  

+ ukuQauiuj/axQ) 
	

(A2.3) 

Finally, Hanjalic and Launder (1972) dealt with the 're-

distribution' or 'pressure-strain' terms by developing some 

proposals made by Rotta (1951) in which pressure could be eliminated. 

This eventually led to the following expressions in terms of the 

kinematic stresses and mean strain rates: 
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(W /p)(aui/axj  + auj/axi) 	= 	- Cc1(c/k) (uiuj  - 26ij1/3) 

mi 	mi 
+ atjaUy/axm  + atiaUQ  /ax m  (A2.4) 

Here Sij  is the Kronecker delta, Co  is a coefficient taken to be 

constant and the fourth order tensors are given by the following 

approximation: 

mi 
atj 	= ā umui ski + B(umuk 

 dij + 
umuj sin, 

+ umuj  6m2. + umut  Smj  ) + (YSmi  60 

+ n(SmeSij + SmjSidk 
 + 0,1)2(umui . 

uQUj  - umuj  . u.uR  - umuQ  . uuj)/k (A2.5) 

As shown by Hanjalic and Launder, constraints arising from symmetry 

and mass continuity requirements allows the further coefficients a,  

y and n to be expressed in terms of C402 as: 

a 	= 	(10 - 8 C42)/11, 	a 	= 	- (2 - 6 C4,2)/11, 

Y 	= 	- (4 - 12 C4,2)/55, 	n 	= 	(6 - 18 C412 )/55 	(A2.6) 

Substitution of equations A2.2 to A2.4 into equations A2.1 

yields: 
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Uka(ujuj)/axk 	= 	- (ujuk  aUi/axk  + uiukaUJ/axk) 

	

(convection) 	(generation) 

- 26ijE/3 

(dissipation) 

mi 
- Co(c/k)(uiuj  - 26ijk/3) + atjaU,/axm  

m.7 
+ aij 3UL/axm  (re-distribution) 

+ Cs(k/c)at(uiutaujuk/axt  + ujuzaukui/axt  

+ ukutauiuj/axe,/axk  (diffusion) 

(A2.7) 

Equations A2.7 in conjunction with equations A2.5 and A2.6 are the 

modelled Reynolds Stress Transport equations as proposed and used by 

Hanjalic and Launder (1972). 
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APPENDIX 3 	GENERAL ORTHOGONAL CO-ORDINATE 

TRANSFORMATIONS 

In the transformation method of Pope (1978), vectors and 

tensors are represented in terms of their components in the 

direction of their orthogonal co-ordinate lines relative to the 

Cartesian system. Distances ds in the orthogonal co-ordinate system 

yi  are related to the Cartesian system xi  by 

ds2  = dxi2  = (hidyi)2  = (dy(i))2 	(A3.1) 

where the scale factors hi  are excluded from the summation convention. 

The transformations used are:- 

scalar 4): Waxi  } aq/ax(i) (A3.2) 

vector Ai: aAi/axi  -} v(i) 	A(i) (A3.3) 

tensor Tij: aTij/axi  -> v(i) Tij  - Hi(j) 	T(ii) 

+ Hj(i) 	T(ij) (A3.4) 

where v(i) - (hi/H)a/ay(i)l/hi  with H as the product of the scale 

factors (thus R represents the volume ratio between co-ordinate 

systems). Hi(j) is the inverse of the local radius of curvature of 

the j co-ordinate line. The derivation and further details of 

these transformations are given in Pope (1978). 

The above transformations enable equations written in Cartesian 

co-ordinates to be transformed directly into the general orthogonal 

system. 
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Applying these transformations to the Renolds equations (2.2.1) 

and continuity equation (2.2.2) there results:- 

v(i) (pU(i)U(j)) 	= 	- ap/ax(i) - v(i) (T(ij)) 

+ Hi (j) tpU(i)U(i) + T(ii )] 

- Hj(i)[pU(i)U(j) + T(ij)] 

v(i) (pU(i)) 	= 	0 

(A3.5) 

(A3.6) 

In this compact general orthogonal form, the terms in the 

Reynolds equations (A3.5) retain their clear physical significance, 

as in the original Cartesian tensor version. In addition, the 

physical significance of the extra terms (with square brackets), 

gained as a consequence of co-ordinate curvature and momentum being 

conserved in a straight line only, is clearly evident. 

The scalar transport equation 2.3.1 transforms into orthogonal 

co-ordinates as 

v(i)(pU(i)C) 	= 	v(i)(DcBC/ax(i) - uic) + Sc 	(A3.7) 
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APPENDIX 4 	MODELLING THE TURBULENT HEAT FLUX 

TRANSPORT EQUATIONS 

An exact transport equation for uic can be obtained by 

multiplying the instantaneous thermal energy equation (with 

dependant variable (C+ c)) by ui  and adding it to the xi  component of 

the Navier-Stokes equation multiplied by c. The time-averaged 

result, simplified by neglecting body forces and steady incompressible 

turbulent flow with negligible fluctuations in molecular viscosity and 

thermal conductivity is: 

	

Uk  a(uic)/axk 	= 	- uiukaC/axk  + ukcaU./axk  

	

(convection) 	(generation) 

- (DC  + v)(ac/axk)(aui/axk) 

(dissipation) 

- a(ukuic + (p'c/p)(Sik)/axk 

(diffusion) 

+ (p'/p ac/ax. 

(redistribution) 

(A4.1) 

where p' is the fluctuating component of the instantaneous pressure, 

C is the enthalpy and c its fluctuating component. As in the 

derivation of the ASTM, local equilibrium is assumed so that 

convection and diffusion can be neglected and dissipation can be 

assumed negligible if the Reynolds number is high. The re-distribution 
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term can be modelling analogously to its pressure-strain counter-

part in the Reynolds stress transport equation, as proposed by Launder 

(Chapter 6, Bradshaw, 1978) 

(p /p ac/axi 	= 	C1C(e/k)ukc + C2CukcaUi/axk (A4.2) 

This gives a modelled turbulent heat flux transport equation of: 

- ukukaC/axk  - ukcaUi/axk  + CiC(e/k)uic 

+ C2CukcaUi/axk = 0 	(A4.3) 

The turbulent heat fluxes ukc can be extracted from equation (A4.3) 

as algebraic equations involving k, a and gradients of velocity and 

enthalpy. 
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APPENDIX 5 	ORTHOGONAL CURVILINEAR GRID 

CALCULATION METHOD 

A simple numerical finite-difference method (Antonopoulos et al, 

1978) was used to calculate the orthogonal curvilinear co-ordinate 

grids required to fit each passage cross-sectional shape. A 

rectangular mesh of straight lines yl and y2 in transformed space is 

mapped into a set of orthogonal curvilinear lines with Cartesian co-

ordinates xl  and x2  in the required non-rectangular physical field, 

as illustrated in figure A5.1. This basic concept has, of course, 

been used many times before (e.g. Winslow, 1967; Barfield, 1970, 

Thompson, Thames and Mastin, 1974, Pope, 1978). The condition of 

orthogonality leads to the following pair of Laplace equations 

linking the two co-ordinate frames: 

a2x1/ayi + a2x1/ayi = 0 

a2x2/ayi + a2x2/ayi = 0 	 (A5.1) 

In these equations, the metric coefficients have all been assumed 

unity to simplify the calculation method for the cases presented in 

this thesis (this has the effect of making the transformation 

conformal). It is noted that these would need to be included if the 

present method is applied to passage geometries of more extreme 

curvature. 

At the boundaries of the domain, the mesh must satisfy the 

shape equation of the boundary and, for orthogonality, the Cauchy-

Riemann equations. The latter are satisfied by applying the 
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conditions 

(ax2/axl)yl(ax2/axl)y2 	- 1 	 (A5.2) 

The Laplace equations (A5.1) are solved by finite-differences 

with equations obtained by integration over the appropriate cells. 

With reference to figure A5.2, the equation for x1p is 

((xiE - xip)/(YiE - Yip) - (xlp - x1W)/(Yip - Y1W))/(YiE - Yij) 

+ ((xiN - xip)/(YiN - Yip) - (xlp - xis)/(Yip - Y1S))/(YiN - Y1S) 

yielding 

x1P = ((x1E oEP + x1W  oPW)AEW + (x1 NeNP + x1$LPS)oNS) 

/((oEP + oPW)AEW + (ANP + tPS)eNS)) 	(A5.3) 

where oEP = 1/(y1E - YiP) 

oPW = 1/(YiP - YiW) 

oEW = 1/(Y1E - YiW) 
(A5.4) 

ANP = 1/(Y2N - Y2P) 

APS = 1/(Y2P - Y2S) 

ANS = 1 /(Y2N - Y2S) 

A similar equation can be derived for x2p. These equations are 

solved by point iteration with the boundary nodes updated before each 

iteration by applying the conditions of orthogonality (equation A5.2) 

mid-way between the boundary and the nearest interior node and 

simultaneously with the shape equation for the boundary. An example 

boundary is shown in figure A5.3 with the boundary node 'b' required 
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along the y2  line through interior node 'a'. Equation A5.2 is 

written 

(dx2/dx1)ylm(dx2/dx0y2a = 1 	(A5.5) 

Integrating between a and b yields 

(dx2/dxl)y
lm(x2b 	x2a)/(xlb - xla) 	= 	- 1 	(A5.6) 

The boundary shape equation is in this case 

x2b = 0 	 (A5.7) 

From A5.6 
	

xlb 	= 	xla  + x2a  tan (a/2) 	(A5.8) 

which are the Cartesian co-ordinates of the boundary node 'b'. The 

approximations involved with this method enabled the boundary nodes 

to be calculated directly, as shown in the above illustration, and 

did not appear to cause a noticeable error in the solution for the 

passage shapes calculated. 

In order to procure good convergence it was found necessary to 

calculate initial locations for the grid nodes in the physical plane. 

This was usually achieved with a combination of cylindrical polar and 

rectangular meshes calculated to fit the domain. 
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APPENDIX 6 	SOURCE TERMS IN THE FINITE- 

DIFFERENCE EQUATIONS 

A6.1 Introduction  

In the formulation of the finite-difference equation for 4), the 

source is assumed constant over the area of integration in each 

control volume (see section 5.3 and equation (5.3.6)). The methods 

used to obtain the required finite-difference equivalent of various 

source terms with the orthogonal curvilinear mesh used in the 

present procedure are described in detail in this Appendix. 

A6.2 Generation of turbulence kinetic energy 

This part of the turbulence kinetic energy source received 

special attention in the present work as described in section 7.6. 

Referring to figure 5.2.2a, the finite-difference equivalent of 

equation (4.3.6) was obtained as follows: 

n `e 
let P 	= 	(1/Vp) 

J J 
PLZdyldy2 

sw 

then P 	- 	- (pulu3)m(aU3/oSl)m  - (pu2u3)m( 3113/3S2)m  

where (— pulu3)m 	= 	[4te (3U3/aS1)eS1PW 

+ utw(aU3/aS1)WS1PE]/(S1PE + S ipw )  

and 	(aU3/aS1)m 	
= 	I(aU3/aSl)eS1PW + (aU3/aS1)wS1PE]  

/(SlpE + Sipw) 
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with ute  = (utE + utp/2 

utw = 	(utP + utW)/2  

( aU3/as1)e  

(aU3/DSOw  

and where 	- (pu2u3)m  

(U3E - U3P)/S1PE 

(U3P U314 ) /S ipw 

[utn(aU3/as2)ns2Ps + uts(au0s2)/sS2PN] 

/(S2pN  + S2Ps) 

	

(aU3/as2)m 	= 	[(au3/as2)ns2Ps + (aU3/aS2)sS2PN]  

/(S2pN  + S2ps) 

	

utn 	= 	(utN  + utp)/2 

	

uts 	= 	(utP + utS)/2  

	

( aU3/as2 )n 	= 	(U3N - U3P)/S2PN 

	

(aU3/aS2)s 	(U3P U3s)/S2Ps 

A6.3 Cross-plane momentum source  

The U1 momentum source as shown in Table 5.3.1 but excluding 

the pressure gradient and laminar viscosity terms was treated in the 

following manner: 

let C1 = - a(h2putul)/ay1 - a(h1pulu2)/aY2 

- h1h2(- pU2U2 - pu2u2)/r2 

+ h1h2(-  pUlU2 - pulu2)/r1 

and 

with 
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nie 
if 	C1 	= 	(1/Vp) I J CioZdyldy2 

J s w 

then C1 	- 	- [a(pului)/asl]m  - [a(pulu2)/aS2]m  

+ [(pU2U2 + pu2u2)/r2]m  

+ [(pUlU2  - pulu2)/rl]m  

where (referring to the U1  cell in figure 5.2.2b) 

- [a(pului)/aSi]m 	= 	- ((pulul)e  - (pulul)w)2  

/(S15  + Sln) 

- [a(pulu2)/aS2]m 	= 	- ((0u02)n  - (pulu2)5)2  

/(S2e + S2w) 

	

[(pU2U2 + pu2u2)/rl]m 	= 	(pU2p + (pu2u2)p)/rip 

	

[(pU1U2 + pulu2)/r2]m 	(pU1pU2p + (pulu2)p)/r2p 

with 	(pulu2)n 	= 	((pulu2)e  + (pulu2)w  + (puīu2)f 

+ (puīu2)g)/4 

	

(pulu2)5 	= 	((pulu2)e + (pulu2)w + (puiu2)h 

+ (pulu2)k)/4  

	

U2p 	= 	(U2a + U2b + U2c + U2d)/4  

	

(pu2u2)p 	= 	((pu2u2)e + (pu2u2)0/2  

	

(pulu2)p 	= 	((pulu2)e + (pulu2)0/2  

	

rip 	= 	(rue + riw)/2  

	

r2  p 

	= 	(r2e  + r2W)/2 
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A6.4 Enthalpy source  

From Table 5.3.1 let 

Ch =  - 	a(h1h2pU3C) 

ne 

/ay3 

if Ch  = (l/Vp) 	
J J sw 

ChEZdyldY2 

then Ch 	= 	- [9(pU3C)/aS3]
m  

Ch  = - pCpU3 (aT/aS3)
m  (A6.4.1) 

Also let 

eT 	= 	(Tw  - T)/(Tw  - Tb) 	 (A6.4.2) 

For fully developed temperature profiles 

aeT/aS3  = 0 	 (A6.4.3) 

and aT/aS3  depends on the boundary conditions as follows: 

(i) H1 (constant peripheral temperature and axial heat flux) 

An energy balance for incremental axial length dS3  of passage 

with perimeter M and with constant axial heat flux 4" yields: 

rA 
q " M 	= 	d(J pCpU3TdA)/dS3 	= 	

171C
pdTb/dS3  

0 

i.e. 	dTb/dS3 	= 	q " M/mCp 	= 	constant 	(A6.4.4) 

From (A6.4.3) it follows that 

aT/aS3  = dTb/dS3  = constant = B 	(A6.4.5) 
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with 	(aT/aS3)m  = B 	 (A6.4.6) 

(ii) H2 (constant peripheral and axial wall temperature) 

From equation (A6.4.2), with Tw  = Tw  = constant, then 

since 

then 

with 

dTw/dS3 - aT/S3  = eTdTw/dS3 - eTdTb/dS3  

dTw/dS 3  = 0 

aT/aS3  = eTdTb/dS3 = eTB 	(A6.4.7) 

(aT/aS3)m 	= 	B(Tw  - Tp)/(Tw  - Tb) 	(A6.4.8) 

(iii) H3 (constant peripheral and axial heat flux) 

As with the H1 boundary condition 

aT/aS3  = dTb/dS3 = constant = B 

(A6.4.5) 

and 
	

(aT/aS3 )m  = B 	 (A6.4.6) 
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APPENDIX 7 	TRI-DIAGONAL MATRIX ALGORITHM (TDMA) 

The TDMA (see for example, Forsythe and Wasow, 1960) solves a 

set of simultaneous linear equations of the general form: 

(1)i 	= 	A1(1)i+1 
	+ 

	Bi 41_1+ Ci (A7.1) 

where Ai, Bi and C. are constants and the subscript i runs from 1 to N 

with AN  = B1  = 0. If the equation set is re-written as 

Oi = Aici+1 + Bi 
	 (A7.2) 

where 

Ai 	= 	Ai/(1 - BiAi-1) 	
(A7.3) 

Bi 	
= 	(BiBi-

1 + Ci)/(1 - BiAi-1) 
	

(A7.4) 

then equations (A7.3) and (A7.4) become recurrence relations and 

equation (A7.2)can be solved by successive substitution. 
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APPENDIX 8 	BLOCK ADJUSTMENT 

In this 'block adjustment' procedure (Gosman et al, 1977), the 

sum of the residual sources are reduced to zero (i.e. the relevant 

conservation equation is satisfied) along strips of cells which cover 

the solution domain. From equation (5.3.13), for any variable c, an 

increment sci added to the value of (1)1D at each node along a strip 'i' 

of cells will reduce the sum of the residual sources in that strip to 

zero if 

l(Ap - 9)(cp 	= I EAW(4W 	TOE + 64i+1) 

+ Ai1ON + 600 + AS(4S + sei ) + e'] 	(A8.1) 

where 	indicates the sum along a strip of cells. Re-arranging in 

terms of 4i yields: 

s~i~(AE + AW 	g) 	= 	(54i+11AĒ + sei-1~AW 

+ I[ANON - Op) + AS(4S - 4p) + TOE - Op) 

+ Ai'MW - 4p) + Op - e] 	 (A8.2) 

which has the form 

d&1 
= as~i+1 + bi

4
1-1 + Ci 

where ai, bi, ci and di are coefficients which can be deduced from 

equation (A8.2). 

(A8.3) 
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Figure 2.4.1 The orthogonal co-ordinate system. 
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Figure 3.2.1 Experimental axial velocity contours 
(Nikuradse, 1926, 1930) 

(a) square(e.g. Launder & 
Ying, 1972) 

(b) rectangular(Gessner & 
Jones, AR = -2, 1975) 

Figure 3.2.2 Secondary flow patterns in rectangular ducts from 
experiment. 

Figure 3.2.3 Secondary flow 
pattern in an equi-
lateral triangular 
duct from experiment 
(Aly et al, 1978) 

Figure 3.2.4 Secondary flow 
pattern in a tri-
angular array rod 
bundle, postulated 
by Trupp & Azad 
(1975) 
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Figure 3.2.5 Secondary flow pattern from experi-

ment in a circular tube containing 

on offset pin (Kacker, 1973) 

Reference: a Bobkov et al(1974) 

b Borishansky et al(1971) 

c Dingee & Chastain(1956) 

d Draycott & Lawther(1961) 

e Kidd & Stelzman(1968) 

f Lel'chuk et al(1977)  

g Miller et al(1956) 

h Palmer & Swanson(1961) 

i Redman et al(1966) 

j Subbotin et al(1960) 

k Wantland(1956) 

1 Sutherland & Kays(1966) 

 

water ---air 

 

Figure 3.3.1 Experimental triangular-array rod brindle heat transfer 
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Figure 3.3.2 Experimental square-array rod bundle heat 
transfer with Re  = 5 x 104. 

\ ‘ 

 

  

(a) Carajilescov (1975) 	(b) Trupp and Aly (1978) 

Figure 3.4.1 Calculated secondary flow patterns in a rod 
bundle with P/D = 1.123. 
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(a) a portion of the finite-difference grid 

0 cell for node'P' 

(b) a 0  control-volume cell in the passage cross-plane 

Figure 5.2.1 The main orthogonal curvilinear grid. 



(c) U2  control 
volume 

Ui ,j(U1p) 	oi,j 

(b) U1  control volume 

(a) 0 control volume 

Arc lengths: 

• locations for p, U3, k, c, T and stresses 

x locations for U1 

O locations for U2 

	 boundaries of control volume cells 
between nodes 	cell faces  

NP = S2PN 	EP = SIPE 	awc = S2w 	anb = Sin 
PS = S2PS 	PW = S1PW 	bed = S2e 	csd = Sls 

Figure 5.2.2 The staggered grid arrangement. 
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Figure 5.5.1 Near-boundary control volume cells 
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Figure 5.8.1 Polar-cylindrical grid for a circular tube 

Figure 5.8.2 Curvilinear-orthogonal grid for a quadrant of an 
elliptical duct with AR = 2.0. 
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Figure 5.8.3 Curvilinear-orthogonal grid for an equilateral 
triangular half-duct. 

Figure 5.8.4 Curvilinear-orthogonal grid for a symmetry element of 
a triangular-array rod bundle with P/D = 1.1. 
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Figure 5.9.1 	Grid refinement tests for axial 
velocity in a rod bundle with 
P/D = 1.1 and Re  = 2.7 x 104. 
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grid 

10,,7 ] 
12)(9 
16x10 
20x12 

Predicted, this work 

'-2 
X Experiment, Carajilescov(1975) 

I Typical experimental error 
band 

O~ 

~\ 
Pe\\ A 

.~ 
0-2 

]8=0. 

Figure 5.9.2 Grid refinement tests for turbulence 
kinetic energy in a rod buna1e with 
P/D = 1.1 and Re = 2.7 x 10 • 
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20 e 25 

Figure 5.9.3 	Grid refinement tests for wall shear stress 
in a rod bundle with P/D = 1.1 and Re = 
2.7 x 104. 
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V B 12x9 Predicted, 
O C 16x10 this work 
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0.4 	0.6 	x~R 0.8 02 

-1.0 

Figure 5.9.4 	Grid refinement tests for second- 
ary velocity (U2) in a rod bundle 
with P/D = 1.1 and Re = 2.7 x 104. 
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Figure 5.9.5 	Grid refinement tests for local Nusselt 
number in a rod bundle with P/D = 1.1, 
Re  = 5 x 104  and Pr  = 0.7. 
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Figure 6.2.1 Laminar centre-plane axial velocity profiles in elliptical ducts. 
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Predicted, this work 

60 e 80 

Figure 6.2.2 Laminar wall shear stress in 
elliptical ducts. 



Figure 6.3.1 Laminar axial velocity and wall shear stress profiles in an 
equilateral triangular duct. 



x1B 
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X 	Experiment, Eckert et al (1954) 

Analytical, Sparrow (1962) 

Q 	Predicted, this work 

Figure 6.3.2 Laminar centre-plane axial velocity in an isosceles triangular 
duct of apex angle 22.1°. 
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Figure 6.3.3 Laminar centre-plane axial velocity in an isosceles triangular 
duct of apex angle 11.7°. 



Figure 6.3.4 Laminar wall shear stress in isosceles triangular ducts 
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Analytical, Sparrow & Loeffler (1959) 

Q P/D = 1.1 
Predicted, this work ❑  P/D = 1.5 

Figure 6.4.1 Laminar axial velocity in rod bundles. 

Figure 6.4.2 Laminar wall shear stress in rod bundles. 
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Figure 7.2.1 Axial velocity in a circular tube. Figure 7.2.2 Turbulence kinetic energy in a 
circular tube. 
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(b) Various Re 

Figure 7.2.3 Turbulence intensities in a circular tube. 
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Figure 7.2.4 Calculated turbulence intensity 
profiles in a circular tube with 
C2 = 0.272 and Re = 5x104. 

Figure 7.2.5 Eddy viscosity in a circular tube 
with Re = 5x104. 
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Figure 7.7.5 Predicted secondary velocity vectors in an isosceles triangular duct of apex angle 22.1° and with 
Re  = 3.0x104. 
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Figure 7.8.1 Predicted secondary velocity vectors in an elliptical duct with AR = 1.5 

and Re  = 1.2x105. 



Figure 7.8.2 Predicted secondary velocity vectors in an elliptical duct with AR = 2.0 and Re  = 1.2x105. 
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centre-planes in an elliptical duct 
with AR = 2.0 and Re  = 1.2x105. 
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Figure 7.8.6 Wall shear stress in elliptical 
ducts with Re  = 1.2x105. 
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Figure 7.9.1 Experimental rod bundle test sections of various authors. 
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Figure 7.9.2 Predicted secondary velocity vectors in a rod bundle with P/D = 1.123 and Re = 2.7 x 104. 
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Figure 7.9.3 Axial velocity contours in a rod bundle with P/D = 1.123 and Re = 2.7 x 104.. 
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Figure 7.9.4 Predicted axial velocity contours in a rod bundle with P/D = 1.123 and Re  = 2.7 x 104. 
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Figure 7.9.5 Axial velocity profiles in a rod bundle 
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Figure 7.9.6 Wall shear stress in a rod bundle with P/D = 
1.123 and Re  = 4.27x104. 
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Figure 7.9.7. Turbulence kinetic energy contours in a rod bundle with P/D = 1.123 and Re = 2.7 x 104. 
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= 1.123 and Re  = 2.7x104. 
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Figure 7.9.10 Length scale profiles in a rod 
bundle with P/D = 1.123 and Re = 
2.7x104. 
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Figure 7.9.11 Predicted secondary velocity vectors in a rod bundle with P/D = 1.2 and Re  = 3.5 x 104. 
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Figure 7.9.13 Axial velocity profiles in a rod 
bundle with P/D = 1.2 and Re = 
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Figure 7.9.14 Wall shear stress in a rod bundle with P/D 
=1.2 and Re = 4.9 x 104. 
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Figure 9.7.15 Turbulence kinetic energy profiles 
in a rod bundle with P/D = 1.2 and 
Re = 4.9 x 104. 
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Figure 7.9.16 Turbulence intensities in a rod 
bundle with P/D = 1.2 and Re  
= 4.9 x 104. 

Figure 9.7.17 Turbulent shear stress in a rod 
bundle with P/D = 1.2 and Re = 
4.9 x 104. 
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Figure 7.9.18 Predicted secondary velocity vectors in a rod bundle with P/D = 1.217 and Re  = 1.49 x 105. 
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Figure 7.9.19 Circumferential secondary velocity in 
a rod bundle with P/D = 1.217 and 
Re = 1.49 x 105. 
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Figure 7.9.20 Axial velocity profiles in a rod bundle 
with P/D = 1.217 and Re  = 1.49 x 105. 
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Figure 7.9.21 Wall shear stress in a rod bundle with P/D = 
1.217 and Re = 1.49 x 105. 
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Figure 7.9.22 Turbulence kinetic energy profiles 
in a rod bundle with P/D = 1.217 
and Re  = 1.49 x 105. 
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Figure 7.9.23 Turbulence intensity profiles 
along the 8 = 30° radial plane in 
a rod bundle with P/D = 1.217 and 
Re = 1.49 x 105. 



Figure 7.9.24 Predicted secondary velocity vectors in a symmetry quadrant of the 
Subbotin et al (1971) test channel with P/D = 1.1 and Re  = 4.27x104. 
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Figure 7.9.25 Axial velocity contours in a symmetry quadrant of the Subbotin et al 
(1971) test channel with P/D = 1.1 and Re  = 4.27 x 104. 
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Figure 7.9.26 Axial velocity profiles along the centre-
plane(bcd) of a symmetry quadrant of the 
Subbotin et al(1971) test channel with P/D 
= 1.1 and Re  = 4.27 x 104. 
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Figure 7.9.27 Wall shear stress in the inner channel of a 
symmetry quadrant of the Subbotin et al 
(1971) test channel with P/D = 1.1 and Re  
= 4.27 x 104. 



Figure 7.9.28 Predicted secondary velocity vectors in a symmetry quadrant of the 
Subbotin et al(1971) test channel with P/D = 1.2 and Re  = 3.48 x 104. 
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Figure 7.9.29 Axial velocity profiles along the centre-
plane(bcd) of a symmetry quadrant of the 
Subbotin et al(1971) test channel with P/D 
= 1.2 and Re  = 3.48 x 104. 

Figure 7.9.30 Wall shear stress in the inner channel of a 
symmetry quadrant of the Subbotin et al 
(1971) test channel with P/D = 1.2 and Re  
= 3.48 x 104. 
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Figure 7.9.31 Predicted variation of local wall shear 
stress with Reynolds number in rod 
bundles. 
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Figure 7.9.32 Predicted variation of local wall shear 
stress with P/D ratio in rod bundles 
with Re = 5 x 104. 
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Figure 7.9.33 Variation of friction factor with P/D ratio in 
rod bundles. 
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Figure 7.9.34 Friction factor characteristics for rod bundles. 
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Figure 8.2.1 Laminar temperature profiles in elliptical 
ducts for the H1 boundary condition. 
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Figure 8.2.2 Local laminar Nusselt numbers 
in elliptical ducts with the 
H1 boundary condition. 

Figure 8.2.3 Local laminar Nusselt numbers 
in an elliptical duct with 
AR = 2. 
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Figure 8.2.4 Laminar temperature profiles in an equilateral triangular duct with the H1 boundary condition 
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O 	Analytical(H1), Marco & Han (1955) 
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Figure 8.2.5 Local laminar Nusselt numbers in an 
equilateral triangular duct. 
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Figure 8.2.6 Local laminar Nusselt numbers in rod bundles 
with the H1 boundary condition. 

Figure 8.2.7 Local laminar Nusselt number in rod bundles 
with the H3 boundary condition. 



- 0.06 

Ow 

- 0.5 
PID=1.1 

(Tw-Tb) kf 
- q" De  

- 0.3 

1.2 

- 0.1 
A A A A A AA AA A A  A: 

—0.08 

— Predicted, Dwyer & Berry (1970) 

O PID=1'•1 

o P/ D =1.2 Predicted, this work 

A P/ 0=1'.3 

10 	15 	20 e 25 
t 	 I 	t 	1  

- 0.04 

5 
1 

- 375 - 

Figure 8.2.8 Local laminar wall temperatures in rod 
bundles with the H3 boundary condition 
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Figure 8.2.9 Local laminar Nusselt numbers in a rod 
bundle with P/D = 1.1. 

Figure 8.2.10 Rod-based mean Nusselt numbers in 
rod bundles with the H3 boundary 
condition. 
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Figure 8.3.3 Eddy diffusivity in a circular 
tube with Pr  = 0.7 and Re  = 71200. 
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Figure 8.3.4 Turbulent Prandtl number in a circular tube 
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Figure 8.3.6 Local Nusselt numbers in an 
elliptical duct with AR = 2, 
Pr  = 0.7 and Re  = 6.7x104. 

Figure 8.3.5 Temperature and eddy diffusivity 
profiles in a circular tube, pre-
dicted with the AHFTM with CiC = 
3.4 and Pr  = 0.T(Re  = 7.12x104) 



- 380 - 

A 

 

H3 

H1 

-1.0 

D  
H3 

V 
0 	

A , 
r 	20 	I 	40 	18  6i0 	,. 	80  'VA  

(a) AR = 8/3 and Re  = 8 x 104  

(b) AR = 2.93 and Re  = 6.47 x 104  

U upper surface Experiment, water, Cain et al(1973) 
Q lower surface, 

Predicted, this work, Pr  = 5 

11 
Nu  

-0.8 
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Figure 8.3.8 Mean Nusselt numbers in elliptical ducts with 
Pr  = 0.7. 
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Figure 8.3.10 Mean Nusselt numbers in an equilateral 
triangular duct with Pr  = 0.7. 

Figure 8.3.11 Predicted local Nusselt numbers in 
an equilateral triangular duct with 
Pr  = 0.7. 
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Figure 8.3.12 Peripheral heat flux in an isos-
celes triangular duct of apex 
angle 11.7° and with Re  = 1.5 x 104. 
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Figure 8.3.13 Peripheral wall temperature in an 
isosceles triangular duct of apex 
angle 11.7°. 
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Figure 8.3.15 Local Nusselt numbers in a tri-
angular array rod bundle with P/D 
= 1.12, Pr  = 1.75 and Re  = 6 x 104. 

Figure 8.3.16 Local Nusselt numbers in a tri-
angular array rod bundle with P/D 
= 1.1, Pr  = 0.7 and Re = 2.2 x 105. 
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Figure 8.3.17 Local Nusselt numbers in a triangular 
array rod bundle with P/D = 1.25, 
Pr = 0.7 and Re = 4.7 x 105. 
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Figure 8.3.18 Local Nusselt numbers in a square 
array rod bundle with P/D = 1.2, 
Pr = 0.7 and Re = 1.5 x 105. 
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O AR = 1.2(retest) 
Kays equation (8.3.3) 
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Figure 8.3.19 Mean Nusselt numbers in triangular array rod 
bundles with water flow. 
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Figure 8.3.20 Mean Nusselt numbers for a triangular array 
rod bundle with P/D = 1.15 and Pr = 0.7. 

Figure 8.3.21 Mean Nusselt numbers in a square array rod 
bundle with P/D = 1.2 and Pr  = 0.7. 
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X Dingee et al (1955), water 

O Miller et al (1956), water 
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Figure 8.3.22 Mean heat transfer in triangular array 
rod bundles. 
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A5.1 The transformation 
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Figures A5 The grid generation procedure. 




