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1. 

ABSTRACT 

By constructing a Schrodinger picture action integral for 

the derivation of the dynamical equations of the semi-classical theory 

of gravity we attempt a systematic study of the possibility of leaving 

the gravitational field classical while quantizing all other physical 

fields. A consistent theory of this kind makes quantum mechanics 

implicitly non-linear. After formally transforming to the manifestly 

covariant Heisenberg picture we set up a perturbation scheme to 

discuss the renormalization of the theory. 

Amongst other topics one of the central points discussed in 

this thesis is the observation that in a consistent semi-classical 

theory the dynamics of the unquantized fields enable us to remove the 

renormalization ambiguities by imposing physical conditions on the 

full model. In order to clarify this point we first study two simpler 

models in flat space-time. These are the models of two real scalar 

fields V and 0  where V. is classical and 0  is quantized. 	The 
-2 

couplings are implemented through the terms <010 10> and <01a;au;Ī1P> 

in the V-field equations. In both of these models we start with the 

derivation of the dynamical field equations consistently from a 

variational principle in the Schrodinger picture. However, in the 

course of renormalization we find it convenient to transform into the 

Heisenberg picture. Then we develop a perturbation theory and show that 

at each order one can fix the constant coefficients of renormalization 

counter-terms by imposing some plausible physical conditions on the 

full model. Finally we apply this idea to the semi-classical theory 

of gravity. The existence of an action integral for the coupled set 

of Einstein-Schrodinger equation accomodates in a natural way the 

purely geometrical renormalization counter terms, whose constant 

(infinite) coefficients are fixed once and for all by imposing physical 

conditions on the linearized Einstein equations. 
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3. 

NOTATIONS AND CONVENTIONS.  

Throughout this thesis the space-time manifold denoted 

by M - is assumed to be a 4-dimensional pseudo-Riemannian manifold 

with signature (-,+,+,+) and the following convention of the 

Ricci tensor 

Rpv  aarūV. — .... 

We have used the sign := to mean definition. The factors of 2 in the 

Fourier transforms have usually been absorbed in dnp and S(p) according 

to the following definition 

-a- p •= l  dnp (2r)n 

"tn(p) :_ (27)n  8n(p) 

such that 

d"np &1(p) _ 1 

The flat Minkowskian metric is denoted by n ,,and the Euclidean 

metric by SIy  

The different flat space Green's functions are defined by 

different solutions of 

(3u3u  -u2)a (x;x') = -S 4 (x-x') 

In this thesis we will only need the Feynman and the retarded 

Green's functions. These are defined by the following contour 



integrals. 

e  iP • (x-x' ) 
A (x-x')  =1 $4p 

	
2 	2 
p +u 

R 

4. 

A 

wp  

AF  

where 

wp := + (P2  + u2)1  

We have also made use of the following notations 

E.T.C. = Equal Time Commutation. 

w.r.t. = with respect to 

r.h.s. = right hand side 

l.h.s. = left hand side 

The 3-dimensional vectors have usually been denoted as A. The 

Heisenberg picture field operators and state vectors have always 

been written as 4  and j,Po> respectively, whereas the free field 

operators are distinguished by a subscript o e.g. o  . 

The expectation values like<* F T I > have sometimes been shortened 
o uv o 

to <TUv> 	and when IN0 = lo> we have occasionally omitted 
0  

the dependence on the state vector, e.g. 

< T > 	<T > 
u"lo> 	uv 

or 

10> 
(x,x') 	d (x-x') 	etc. 
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CHAPTER I. INTRODUCTION  

1.1 	The Definition of a Semi-Classical Field Theory.  

Consider a set of dynamically interacting fields. Assume a 

subset of these fields to satisfy the E.T.C. rules of quantum mechanics 

with their instantaneous physical states being described by a normalized 

vector in a Hilbert space. Let us also assume that the time evolution 

of these states is governed by Schrodinger equation while the dynamics 

of the remaining c-number fields are governed by classical field 

equations. Both the Schrodinger equation as well as the classical field 

equations are assumed to  involve appropriate couplings of different 

fields contained in the set. 

A mathematically consistent theory of this kind will be called 

a "semi-classical field theory", 

Although there are several areas in physics where semi-classical 

theories are of practical (and phenomenological) interest(1),in this 

thesis we are mainly concerned with one specific example, namely, the 

semi-classical theory of gravity. 

The motivation for such an interest is of course the vast 

number of unsurmountable obstacles encountered right at the beginning 

of any attempt to construct a quantum theory of gravity(2). These 

difficulties which are of conceptual as well as technical nature are 

believed by some physicists to be stemming from the fundamental 

structural disparity between quantum mechanics and Einsteinian theory 

of gravity(3). In this respect one should compare the flexible pseudo-

Riemannian geometries of the Einsteinian theory of relativity with 

a priori fixed unit spheres of the Hilbert spaces of quantum mechanics. 

Some physicists (notably Mielnik) suggests that present day quantum 

theory still represents a relatively premature stage of development 



6. 

and lacks some essential evolutionary steps leading towards structural 

flexibility. For this reason they have the opinion that instead of 

modifying general relativity to fit quantum mechanics one should rather 

modify quantum mechanics to fit general relativity. One of the ways 

of performing these modifications is the convex set theoretical approach 

to quantum mechanics which we will briefly describe in the next section 

of this chapter. 

Our aim in this thesis is however more modest than shattering 

the "foundations of quantum mechanics". There has been at least two 

decades of intensive work on subjecting Einsteinian gravitational law 

to the rules of quantum mechanics, but the progress has been meagre. 

All of these efforts have been done in the absence of any experimental 

or observational necessity. Indeed there is not a single physical 

phenomenon which begs the quantization of gravity for its explanation. 

As yet even the existence of classical gravitational waves, which would 

be equivalent to the Herzian waves of Maxwell's theory is only a theoretical 

possibility. Therefore in the absence of any observational evidence 

for the necessity of postulating the existence of the counterpart of 

the photon in the arena of gravity it is relevant to ask more seriously 

than what has been done before about the possibility of living in a half 

quantized and half classical world. This does not mean a simple reliance 

on the smallness of the Newtonian constant and neglecting the 

gravitational effects in the essentially quantum mechanical situations. 

It means on the contrary incorporating gravity in the quantum domain but 

leaving it classical. Our aim in this thesis is a consistent attempt 

in this direction. 

From the outset we try to be as conservative as possible. 

We therefore assume that the usual Schrodinger picture description in 

terms of the time dependent normalizable state vectors and time 

independent operator observahles holds true. The effect of the gravity 
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field on quantum time evolution can be incorporated by formulating 

the Schrodinger picture in a curved space-time with a given metric 

tensor g 	. As we show in Chapter 3, one can obtain the Schrodinger 

equation as well as the normalization condition of the state vector 

from a variational principle. It is interesting to note that if we 

now consider the 
guv 

 as a dynamical variable and add the usual 

Einstein action integral to the Schrodinger action, then extremization 

with respect to 
guv  of the total action will yield the Einstein 

field equations for guv  with the expectation value of 
Tuv 

on its right 

hand side. The details of derivations will be given in Chapter 3. 

Here we only note that such a coupling of the "orthodox quantum 

mechanics" to the orthodox classical gravity has the important 

implication of making quantum mechanics non-orthodox. Indeed if we assume 

that Einstein field equations have been solved under some suitable 

boundary conditions, then the resultant 
gpv  will be a function of the 

state vector, which when substituted in the Schrodinger equation will 

make it non-linear. We therefore conclude that if one adopts a 

description of gravity in terms of c-number fields and couples it 

dynamically to quantum mechanical time evolution law then the latter 

becomes implicitly non-linear. 

1.2 	Non-linear quantum mechanics.  

Ever since the creation of quantum mechanics there have been 

attempts to put it on axiomatic basis. One of the universally accepted 

axioms is, of course, the superposition principle. In recent years 

there have been several attempts to go beyond these axioms and most 
(4-6) 

of these have started by questioning the superposition principle. 	This 

principle is directly related to the unitary structure of quantum time 

evolution law, and'is usually regarded to be an exact law of 

nature. In this respect the Schrodinger's linear equation is an 

outstanding exception to all other linear laws which usually are regarded 
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to be suitable approximations to more exact non-linear evolution laws. 

The scrutiny of the superposition principle usually starts 

from speculations on the measurement processes in quantum mechanics(4) 

An initial state which is a linear superposition ōf several states will 

not remain so after the act of observation is complete. Therefore the 

superposition principle is respected by the linear time-evolution law only 

as long as we do not perturb the system by subjecting it to observation . 

On the other hand in the axiomatic approach to quantum mechanics we insist 

on the unitary time-evolution precisely because we want to respect 

the superposition of states. 

In this section we want to give a brief survey of some of the 

non-relativistic models of non-linear quantum mechanics. These models 

all share the property that although they violate the superposition 

principle of the orthodox quantum mechanics they still maintain its 

statistical interpretation which is embodied in the wave function T. 

a) Mielnik's generalized Quantum Mechahics'5). 

Mielnik starts his criticism of the orthadox theory by noting 

that the whole body of observable properties derivable from the 

fundamental axioms of quantum mechanics are indeed contained in the 

geometry of the space of states of the system. This space (denoted 

henceforth by S), both in the case of classical as well as quantum 

systems, is a convex set, i.e. it has the property that any of its 

points p may be written as a linear combination 
iēl~ixi 

with 0, ~i ,1; 

.EIA. = 1 and xis S for 
V
.cI. 	Here I is some index set. The points 

for which all Ai= 0 except for one i el are called the extremal points 

of S. Physically these points represent the pure states of the system 

while their convex combinations are the mathematical representatives 

of the mixed states. 

In this language what distinguishes the classical statistical 

physics from the quantum mechanical one is the geometry of S. As 
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Mielnik asserts the possibility of a unique decomposition of a mixture 

into its constituent pure ensembles is an indication of the classical 

nature of the system. This implies (an co dimensional) simplicial 

structure for the space S of the classical systems. Therefore a non- 

simplicial structure of S will be an expression of the non-classical 

nature of the physical system under consideration. In this case a 

mixture cannot be uniquely decomposed into its constituent pure 

components. 	In the case of the orthodox quantum mechanics S is, of 

course, the set of the density matrices acting on a separable Hilbert 

space 	H , i.e. 

S H= {xeL(H)I x=x+  3 0 , T r x = 1  

The pure states are represented by the projection operators (4)><iI where 

> is a normalized vector in H. 

From what has been said Mielnik concludes that instead of 

being confined by the inflexible axioms of quantum logic to the unique 

structure S given above, let us abstract the most essential properties 

of this structure and then try to construct more generalized models 

which share these properties with the orthodox theory. 

Supplementing this attitude with the assumption that the 

manifold of the pure states (henceforth denoted by 	spans the space S 

one only needs a way of constructing 	. This space is, of course, 

the set of solutions of some equation of motion. Thus in Mielnik's theory 

one must necessarily be given a class of equations which describes 

the dynamics. Then the physical interpretation follows by investigating 

the geometrical prpperties of t and therefore those of S. 	In this 

respect Mielnik suggests the following non-linear generalizations of the 
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one-particle Schrodinger equation as possible candidates for dynamical 

laws. 

ifi 	a 
2 

- 	fi 
2m 

fit  
2m 

v2* + VI*I 	
2* 

2,p+ V *+ U I * I 	2* 

(1.2) 

(1.3) 

_ at 

ifi at 
- 2 

ifi 	at - - m V2 	(14)I 20 + V* (1.4) 

2 
ifi a t Zm V2( 2 ) + V I * 1 2* (1.5) 

In these equations V and U are external potentials. 

Since all of these equations admit the existence of some 

conserved functional of *( i.e.IIjI 
2
d
3xfor egn(1.2 to 3) and fJpJ4d3x for 

eqn. (1.4.5)), Mielnik assumed that one could simply apply the Born statistical 

interpretation of the orthodox quantum mechanics to these models. 

However, it was discovered independently by several physicists that due 

to the lack of scale invariance of these equations such an interpretation 

is indeed problematic(6-8). Of course this does not invalidate the 

whole scheme developed by Mielnik. It only suggests that the examples 

given above are not suitable candidates for a generalization of the 

ordinary one particle Schrodinger equation. 

b) The Nonlinear Wave-Mechanics of Iwo Bialynicki-Birula and  
J. 'Mycielski (6)  

Mielnik arrives at the possibility of generalized quantum 

mechanics by scrutinizing the global mobility of the orthodox theory. 

The investigations of Bielynicki-Birula and J. Mycielski are less 

formal in character. They doubt the exactness of the linearity of one-

particle non-relativistic Schrodinger equation . They therefore attempt 

to construct a non-linear equation which shares as much as possible the 

properties of she orthodox equation and reduces to it under suitable 

conditions. These restrictions immediately rule out the equations 

involving derivative non-linearity (e.g. of type 1.4 and 1.5) and leaves 
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i: a _ at L 

2 

2m
o2
+U+ F(Iv~l2)] (r,t) (1.6) 

Here U is an external potential and F(I*I2) is assumed to be a real-

valued function of its argument. 

Although sharing some of the features of the orthodox theory,equations 

of class (1.6) do also exhibit a number of undesirable features. We 

already know that for a polynomial choice of F the equation will not be 

invariant under the scale transformation* } A* where a is a constant. 

It is also obvious that the scalar product of two solutions will not be 

preserved in time. In fact this seems to be the common property of all 

non-linear equations. This means that the transition amplitudes are 

not the suitable candidates to bridge the gap between the theoretical 

predictions and experimental data. 

It is also observed by the above mentioned authors that the wave 

functions of stationary states with different frequencies are not 

orthogonal. They claim that this problem is impossible to solve for 

any choice of non-linearity. However, it is rather surprising that there 

is a unique choice of F which removes the obstacles associated with the 

scale invariance of the theory. This is the following logorithmic 

function. 

F(p) = -b .log (pan) 	 (1.7) 

where a and b are two arbitrary constants with the dimensionality of 

length and energy respectively. The iriterger; ri is the dimensioniai;ity . 

of the configuration space. The constant a is of course of no immediate 

physical significance. (It can be redefined by adding a constant to U). 

The constant b on the other hand is a measure of non-linearity. If 

it is chosen to be a universal constant independent of the specificities 

of the physical system described by (1.6) then this equation will share 
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all of the properties of the linear equation except for the violation 

of the superposition principle, lack of the time independent inner 

product and non orthogonality of the solutions corresponding to 

different frequencies. 

Bialynicki-Birula and J. Mycielski show that the non-linear 

Schordinger equation with the logarithmic non linearity has 

soliton like solutions of the gaussian shape (which they call 

gaussons) in any number of dimensions. These solutions describe 

the wave packets of freely moving particles. Unlike the wave packets 

of the linear equation the gauss'on do not spread. From the existing 

agreement between the linear theory and the experiment they 

also find an upper limit of 4x 10 
10 

eV for b which accounts for 

unobservability of the non-linearity. 

c) The Non-linear relativistic models of Kibble  

The above mentioned upper limit for b has been obtained by 

comparing the results of the measurement with the theoretical predictions 

of quantum electrodynamics (e.g. Lamb shift, hyperfine splitting). 

This is already an indication of the fact that the non-linearities may 

be important only when the inter-particle interactions take place. 

Motivated by this, Kibble constructed a class of relativistic models 

of non-linear quantum mechanics. This construction proceeds by making 

the parameters of an orthodox theory state-dependent. 

Consider a self-interacting real scalar field whose dynamics 

in the Schrodinger picture is described by the ordinary Schrodinger eqn. 

where 

i āt I P(t)> = HIi(t) > 

H = 2 Jd3 x {72 (x) + [v (x) +m2~2(X) +a~
4 () } 

(1.8) 

(1.9) 



Here 'r(x) and 4'(x) are the time-independent canonical variables 

satisfying the E.T.C. rules 

4(x),r(x')1 = i ō3(x-x') 

13. 

(1.10) 

Now let us make the following substitution 

m24)2 +44 	-+ <f (4)> tP 
 +<h(4))>

*   $2  + <g(0>
11) 

(I) 4  

where f,h and g are local functions of the field $(x) and the expectation 

values are defined in the usual way, for instance 

< (f (401V)> 
<f(40> ' = 

<4, Iip> 

 

(1.12) 

 

It is obvious that the substitution of (1.11)into (1.9) 

makes the equation (1.8) non linear. Furthermore, owing to the denominator 

in (1.12) the resulting non linear Schrodinger equation will be invariant 

under the scale transformations 1ii> - Al*> . Therefore the problems 

associated with the measurement theories of equations of the type (1.Z) 

to (1.5) will not arise here. 

The models constructed in this manner are clearly Lorentz 

invariant. Furthermore they have the peculiar property that even in the 

absence of the self-interaction terms (i.e. a choice like g = f = 0 

and h = m
2 + 2 

(x)) they will transform a single particle initial state 

into a many particle final state. 

We leave a more detailed discussion of a subclass of these 

models to the next chapter. 
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1.3 	Conclusion of the Introduction.  

According to B.d'Espagnat the two pillars of the Copenhagen 

interpretation of quantum mechanics are the following: (c.f. B d'Espagnet 

in ref.4 p.p.251). 

a) The working of measuring instruments must be accounted 

for in purely classical terms. 

b) In general quantum systems should not even be thought 

of as possessing individual properties independently 

of the experimental arrangement. 

Whatever view one may adopt in regard to the measurement theory 

in quantum mechanics, these two principles seem to be indispensible for 

a communicable interpretation of the results of the measurements. Thus 

quantum mechanics - unlike Einstein's theory of relativity - locates 

the classical physics not on its periphery (as a limitting theory), but 

right at its centre. It becomes meaningful only when it is viewed 

as a whole encompassing this centre. This is of course because of 

the singular role played by the human observer on any act of measurement. 

If an atomic system (i.e. a system capable of being in a superposition 

of several quantum states) could be used as a measuring device with no 

need for a final act of observation by a human observer then one would 

not need the above mentioned two principles. Such a hypothetical 

situation is, however, devoid of any practical scientific significance. 

A semi-classical physics defined at the beginning of §l.1 

may be viewed as an attempt in the direction of a dynamical integration 

of the classical physics into the quantum domain (or vice-versa). 

This becomes particularly more relevant when the classical part of the 

theory consists only of the gravitational field whose dynamics' 

is described by the Einsteinian field equations for the metric of space- 

time.Einsteinian law of gravity is in a sense a dynamical theory of 

the measurement of the space-time intervals, a theory to which any scientific 
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description of nature (physical theory) must ultimately be reduced 

for its comprehensibility and communicability by human observers. 

In this respect the two above mentioned principles may as well be 

regarded as the supporting pillars of the semi-classical theory 

of gravity. This might be the case at least as long as the gravitational 

field - unlike any other field in physics - describes (and is described 

by) the geometry of the space-time manifold. The plan of this 

thesis is as follows. 

In Chapter 2 we set up a perturbative scheme to study a 

specific model of the class mentioned in §l.2.c.This model will be 

defined by settling g = f = 0 and h = 2(m2+ Xg2(x)) in eqn. (1.11). 

After deriving the resulting non-linear Schrodinger equation as well as 

the normalization condition of Itp> from a variational principle, we 

will introduce suitable renormalization counter terms whose constant 

coefficients will be fixed by imposing some physical conditions on the 

Schrodinger equation. 

In Chapter 3 we will construct the action integral for the 

combined Schrodinger-Einstein field equations of the semi-classical 

theory of gravity. The remarkable result of this chapter is the 

following. 

If for a self gravitating quantized field one insists on having 

Schrodinger's equation for the temporal changes of the normalized, I> 

then the metric tensor of the space-time manifold will necessarily  

satisfy the Einsteinian field equations with the expectation value of 

T on its right hand side. 
uN 

In this chapter we will also discuss a qualitative comparison 

of semi-classical gravity with a full quantum theory of gravity. 

Owing to the non-linear nature of Einsteinian field equations 

as well as the derivative coupling of gravity and the matter field it 

is rather difficult to start a direct study of the renormalization 
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of the theory developed in Chapter 3. We therefore motivate the 

investigation of the renormalizability of the semi-classical theories 

by studying in Chapter 4, a simple model consisting of two interacting 

real scalar fields V and 4) where V is classical and ¢ is quantized. 

After deriving the coupled set of dynamical equations from a variational 

principle in the Schrodinger picture  we find it more convenient 

to discuss the renormalization theory in the Heisenberg picture. Therefore 

we transform into this picture. Then we develop a manifestly Lorentz 

covariant perturbative scheme and introduce counter-terms to cancel the 

infinities at each order of our perturbation theory. 

The model studied in Chapter 4 does not involve any derivative 

couplings ; therefore it does not share all of the complications of 

the full semi-classical theory of gravity. In Chapter 5 we study a more 

complicated model this time with derivative coupling between V and cp 

in a flat background Minkowskian space-time. We then follow the same 

program as in Chapter 4 i.e. we introduce counter-terms to remove the 

infinities order by order in a perturbation theory. 

Now having done enough preliminary exercises in Chapters 4 and 5 

we finally attempt a perturbative treatment of the full semi-classical 

theory of gravity. The existence of an action integral for the 

coupled set of Einstein-Schrodinger equation accommodates in a natural 

way the purely geometrical renormalization counter terms whose 

f. nfinite)coefficients are fixed once and then for all by imposing physical 

renormalization conditions on the linearized Einsteinian equations. 

Having renormalized the theory we investigate some of the qualitative 

features of the solutions of the linearized theory and prove that the 

solution (M, nuv,Jo>) is unstable. 



We conclude Chapter 6 by giving a unified summary of the results 

obtained in the main body of the thesis. 

We relegate the details of calculations of Chapters 3-6 to the 

appendices at the end of the thesis. Some of the results of the 

Appendix A are original. 

17. 



CHAPTER 2.  RENORMALIZATION OF A RELATIVISTIC MODEL OF NON  
LINEAR SCHRODINGER EQUATIONS.  

§2.1 	The action integral.  

Consider the following non-linear Schrodinger equation 

i 
at IP(t)> = H hp(t) > 

where H is defined by 

H4, = 2 Id3x[Tr2(2) + (Vgx))2+m2(piX)+a<$2(x)> '$2(x)J 

(2.1a) 

(2.Ib) 

Tr(x) and (1)(x) satisfy equations (1.10) and A is a coupling constant. 

The expectation value <02(x)>4, is defined as in (1.12). 

Equations (2.1) can of course be obtained from (1.9 - 1.11) 

by choosing f(cp) = 0 g = o and h($) = m2 + 
2 
 2. 

Because of the invariance of the equation under the scale 

transformation 14(+)> y1'P(-0> with a constant y , we may consistently 

impose the normalization condition 

ziP(t) l vgt) > = 1 (2.2) 

We notice that equations (2.1) together with condition (2.2) 

may be obtained from the following action integral 

t 

S[ l *>, <4l ,a]= dt{I.m 4(t) l *(t)> -<4,(t). jHol4,> +. a(t) (<*(t) l *(t)>-1) } 

0 

f - 	
Jd

4
x <V(t)14)2(x)4>

2  
(2.3a) 

where 

Ho = 2 d3   (Tr2  (x) + 	(V (x) 2  + m (I)
2
(x))    - (2.3b) 

18. 
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a(t) is a Lagrange multiplier. 

The independent variables in the action integral (2.3.) 

are <40> and a . The Euler-Lagrange equations for a will immediately 

yield the normalization condition (2.2). While the same equations for <0 

will result in the following 

1 2t [*(t)> = (HSV 	a(0)10(0> (2.4) 

where H~ is defined by (2.1b). 

Equation (2.4) can of course easily be transformed. into eqn. (2.1) 

by a time dependent phase transformation of I0(t)> . Thus a will not 

be determined. by the equations of motion. This is an indication of the 

freedom in choosing the zero point of 1111) . 

The action integral (2.3) as well as the equations (2.1) and 

(2.2) derived from it have at best a formal value. They are ill defined 

as they involve the infinite quantities <0(t)IO2I0(t)> 	To render the 

theory finite we subtract constant infinites from (2.3). This is done 

by the following substitutions. 

-, - c Ho o 1 

42(x) } X(4)2(x)  - c2) 

Then the modified action integral becomes 

S[10>;01 ,a] = S + AS 	 (2.5) 

where S is given by (2.3) and AS is defined by 
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AS = 	dt<*(t) I*(t)> c - 4 Jd4x {-2c2<~V(t) k2(x) I*(t)> + c2<11) (t) (~,(t)>} x 

t 
0 

x 	<4)(t)11G(t) > 

The Euler-Lagrange equation corresponding to the variable a in (2.5) 

will of course be the same as (2.2) while H in (2.1d) is modified 

into 

H~ = (Ho-cl) + 2 Jdx {<V~(t) (~2 (x) 	c2 ) V~(t)> (*2 (x) - c2)} (2.6) 

In writing eqn. (2.6) we have made use of eqn. (2.2). 

To fix the constants c
1 

and c2 we will consider the state 

dependent term of H as an interaction term. In order to regard this 

term as a perturbation of the free Hamiltonian Ho-c1 we also adopt 

the usual assumption that as t 	-03 we recover the free theory. Then 

the constant cl will fix the origin of the measurement of the energies 

of the free linear system. As usual we choose it to be 

cl =<0 IH
o 10 > (2.7) 

where 10> is the vacuum state of the state independent Hamiltonian H. 

This choice of c1 corresponds to the condition that I0> of the linear 

theory is independent of time. 

In order to fix c2 we make the further assumption that if at 

t = -03 the state of the non-linear theory corresponds to Jo> of the 

linear theory then the same must be true for all t > - 00 . This 

condition will fix c2 

c2 = <01 *
2(x) lo> (2.8) 



Then the renormalized H1)  will be written as 

: Ho  . + 2 fd4x <Vi(t)1 :T2(X) 	:1 1P(t)>:42(x): (2.9) 

where : : stands for the usual definition of normal ordering, i.e. 

:02: _ ¢2  - <014210> 

We notice that the choice of (2.7) and (2.8) for c1  and c2  automatically 

implies <0IHI0>I0> = 0. 

21. 
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§2.2 	Perturbation Theory.  

In this section we would like to develop a covariant perturbation 

theory for the non-linear Schrodinger equation (2.1a) with 1111) defined 

according to (2.9). To this end we perform the usual transformation into 

the interaction picture, i.e. we define 

i:H :t 

11pI(t)> = 
	e 	° 	I IP (t)> 
	

(2.10a) 

and 
i:H :t 	-i:H :t 

$o(x) = e 	° 	(1)(x) e 	
o 

i:H :t 	-i:H :t 
~o (x) = e 	° 	It(x)  e 	° 

Then as in the ordinary linear quantum theory (Po will satisfy the free 

Klein-Gordon equation 

(a u au— u2) (1)o(x) = 0. 

The state (tpI(t)> on the other hand will satisfy the following interaction-

picture non-linear Schrodinger equation 

a 
i at 1*I(t)> = 2 

Jd3x <)I(01'4)2(x)    : ] 1(t)> :4o2(x): kb1(t)> 

(2.11) 

We notice that the transformation (2.10a) will leave the Schrodinger 

picture vacuum state invariant. This is necessary for the correct 

transformation of the normal ordering of the operators. 

Our objective is to find a solution of eqn (2.11) which has 

the following form 

CC 

I I(t)> = /11q)11(0> 
n=o 
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If we insert this into (2.11) and equate to zero the coefficients of 

different powers of A we get a recursive set of equations (c.f.2.15) 

whose first term is the following 

Jio(t) > = 0 	 (2.12a) 

This implies that 111,o> is a coast. Since under our assumption the 

interaction is switched off asymptotically as t + -00 therefore the consistency 

requires that 

-> o n> 0 
t+-00 

(2.12b) 

Thus the equations 

CO 

i 	0 I n (t)> = 
n=o P1'P22P3=o 

P1+p2+P3( 
A 	 J ex<~D WI :4)2(x): 

1 	1 

111)p (t) >: •2(x):111)
P 

(t)> (2.13) 
2 	3 

must be solved under the initial conditions (2.12). To solve these 

equations up to an arbitrary order in Xwe must identify the coefficients 

of the same powers of A in both sides of (2.13). To this end we must 

convert the product of three sums on the r.h.s. of (2.13) into a single 

sum. This can be done by making use of the following identity 

A
p1+....+p

n 
pl....pn = 

pl=o P2=o Pn=o 

A  
q -r nr n qn In-rn-1 

 

gn1rn-rn-1....r3 

 

qn=o 	r=o 	rn-1=o rn-2=o 	r2=o 

U 
qri rn-rn-l....r2'r2'r3...rn 



Now if we define 

U
P P P (t)> 

	
Id3x <~p (t) 

I :41
2
(x) :14) (t)>• a2(x) • 	(t)> 

1 2 3 	1 	2 	P3 

Then by making use of (2.14) for n=3 we immeidately get 

CO 

G 	G 	
AP1+P2+P2 	co 

P 	133=° IUP1 P2 P3 
(0> = X aq3 c13 q3=r3 P 1=0 2=0 
	q3=o 	r3=o r2=o 

I Uq3 r3 r2,r2,r3 > 

Upon substitution of this into the r.h.s. of (2.13) we get 

n 1 	n-s 

I tP1. +1(t) >= 	J dx<'n
-s-r(

t)I: 0o (x)I*r(t) >: 20(x):I1Ps(t)> 

s=o r=o 

(2.15) 

Thus starting from an initial statellP 
o > we can now solve for 14/n(0> 

in a recursive manner e.g. 

i I 1(t)>= 

 

J
dx <~V I : 02 (x):j 4o>: t2 (x)4 > 	(2.16a) 

iJ 2(t)>= 2 Jd3x b1(t) 1 	 (x): I4'o"(x): 4o> + 

<11)01: 20(x) : I'lyt) > : (1)
2 (x) I Po> + 

<IPo I :$ō (x) : 11'o> : 42 (x):11111(0> (2.16b) 

24. 

similarly for I V'3> , I *4> , etc. 
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It is rather obvious from (2.15) that if we begin with a 

single particle initial state 1.0> , then in the course of time it will 

evolve into a multiparticle final state. For example if we restrict 

our attention only up to the first order correction1*1(t)> then we 

will have non-zero transition amplitudes into single particle and 

three particle final states, whereas the second order correction1p2(t)> 

would also involve non-vanishing amplitudes for the five particle 

final states, and so on. 

Obviously one may choose I.o> to be a multiparticle initial 

state and ask questions about the mutual scattering of these particles. 

For example if it is chosen to represent a two particle initial state 

then the first order correction will involve non-zero transition 

amplitudes to the vacuum, two particle and four particle final states. 

In many ways the non-linear quantum mechanics studied in this 

chapter manifests similar features to the ordinary a.4  interaction. 

The basic difference between the two theories is of course the linearity 

versus non-linearity of the quantum time evolution law. Because of the 

linearity the single particle initial states in the a.4  theory must be 

stable otherwise the energy conservation law will be violated. The 

instability of the single particle initial states of the non-linear 

quantum mechanics does not, of course, violate any conservation law. 

It is rather a consequence of the violation of the superposition principle. 

In this chapter we dealt with the non-linear Schrodinger 

equation only in the Schrodinger picture. At the moment the interaction 

like picture seems to be the nearest we can get to a covariant 

treatment of these theories. Due to the fundamental role played by the 

state I.(t)> it is rather natural to formulate the non-linear theories 

in the Schrodinger picture. It is however desirable to have a manifestly 

covariant Heisenberg picture description of these theories. This is as 

yet an unsolved problem. 



Remark:  It is of course possible to transform formally into 

the Heisenberg picture by the following operator 

t 

8 (t) = T exp Ei J  H, dt ] 

where H is defined by (2.9). This transformation is however not a 

linear one. The resulting Heisenberg equations of motion will be 

equivalent to 

0
1-1
alu2) 	(x) = A<1oi : 2 (x) : Iio> (x) 

where ICU > is the time independent Heisenberg state. Unfortunately 

this equation cannot be obtained from a variational principle which 

incorporates the dynamics of 
o
> . It also differs from the usual 

Heisenberg equation in that it involves the statelbo> . 

26. 



27. 

CHAPTER 3. THE SEMI-CLASSICAL THEORY OF GRAVITY  

§3.1 	Introduction  

In this chapter we will derive the dynamical equations of the 

semi-classical theory of gravity. 

Since the time the physicists started to realize the conceptual 

difficulties of subjecting the Einsteinian law of gravity to the rules 

of quantum mechanics, it was occasionally suggested that the gravitational 

field must be exempted from these rules(10). Indeed M6ller 

purposed a theory in which the r.h.s. of Einstein's field equations 

involved the expectation value of Tuv  of the quantized fields(9). This 

theory however did not provide any dynamical law describing the time 

evolution of the quantum states. Therefore the whole consistency of such 

proposals was questionable. At best, some physicists regarded this 

theory as a kind of approximation to a fully quantized theory of gravity. 

One of the difficulties in proving the consistency of the 

semi-classical theory of gravity is the lack of an Heisenberg pitture 

action integral which yields the covariant (quantized) matter field 

equations as well as the Einstein's field equations with <p T Itp> on 
uv 

its. r.h.s. In fact this seems to be a general characteristic of 

the theories with non-linear quantum time evolution law. A consistent 

theory of semi-classical gravity would undoubtedly involve an implicit 

non-linearity in its quantum time evolution. 

In all of the non-linear models of quantum mechanics constructed 

so far the wave function i has played a prominent role. Certainly it 

was the investigation of the Schrodinger equation which led the physicists 

to the recognition of the linear Hilbertian nature of the space of 

states in quantum mechanics. Therefore it is logically understandable 

that an attempt to go beyond the frontiers of the linearity should 
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again be carried out in the Schrodinger picture. On the other hand 

as we saw in the previous chapter at least one of the models belonging 

to the large class of Kibble's non-linear models can be derived from a 

variational principle. Indeed this is the case for all of the models. 

which admit the existence of a conserved energy functional. For example. 

the model with logarithmic non-linearity (c.f. eqn. 1.6-7) may be derived 

from the following action integral 

2 
S[ ,V►7= d4x { Im ~U (t,T)V~(t,x)-4)*(t,x)(- h v2+ u- bin al02+b)11)(tOX) 

2m 

(3.1) 

These examples may be considred as evidence to the possibility that if the 

semi-classical theory of gravity is viewed from the standpoint of the 

non-linearity of its quantum mechanics, then its appropriate treatment 

must be undertaken in the Schrodinger picture rather than in the Heisenberg's. 

The problem with such an approach is, of course, the lack of manifest 

general covariance of the whole construction, although the theory, if it 

is consistent will be independent of the choice of the coordinates in 

the space-time manifold. This aspect of the problem is not specific 

to our theory. Even in flat space-time any Lorentz invariant field 

theory - when formulated in the Schrodinger picture will lack in manifest 

covariance. 

In the sequal we will need the Schrodinger picture only to write 

down the action integral. After deriving the dynamical equations we 

will carryout the actual computations in the Heisenberg picture. 

We will formulate the theory only for a real scalar quantum 

field 4). It may be possible to extend this formalism - with appropriate 

modifications - to the fields with higher spins. We will also make 

use freely of the material contained in the appendix A. 
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§3.2 	Field theory in the Schrodinger picture.  

To start with we assume that the metric guy  is given. We then 

consider a real scalar field propagating in our fixed globally 

hyperbolic space-time manifold . As usual the dynamics of this field 

can be described by giving the Lagrangian density L . We will take L 

to be given by 

14 _ - 2 	(g"au(p av 	+ V(0)) 

V(cp) may be taken to be 

V(0) = m202  + 12a 04  

(3.2a) 

(3.2b) 

where m and a are constant real numbers. 

In the Heisenberg picture the field equations for 0  are given 

by variations of the operator action integral 

S 	= I Ld4x 
j 

The corresponding energy-momentum tensor may be defined by 

(3.3a) 

d S0  

2 	T (x) _ 
uy 	ōg uy  (x) 

= F4 (x) 

ag" (x) 
(3.3b) 

although of course this is ill-defined until a regularization scheme 

has been adopted. We will discuss this in Chapter 6. 

Our objective is to pass from this manifestly covariant 

description to a Schrodinger picture. In this latter picture with each 

simultaneity surface a(t), defined by eq. (A.1), one associates a 

state vector Mt)> and the canonical operators 4) and r satisfy 

the equal time commutation rule 
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C4'(E,t) ,ir(g,t)] = i 63(E,E1) 	E, E'c ā(t) 	(3.4) 

Assuming that the two pictures coincide on a surface a(to
) then 

the transition between them can be achieved by applying a "unitary" 

transformation U(t,t0) satisfying the equation 

i āt U(t,to) = H(t) U(t,to) (3.5) 

where the surface dgpendent Hamiltonian is given by [c.f. A.4 and A.5 ] 

H(t) = - fda T
v 
e

a(t) 	u 

Upon performing this transformation we obtain a transformed vector 

(3.6) 

IrP(t)> = U(t,t0)14)0> (3.7) 

which satisfies the Schrodinger equation 

i I41(t)> = H(t) IP  (t)> 	 (3.8) 

Correspondingly, the transformed operators U(t,to) (1)(x) U(t,t0) 

and U(t,to) 7(x)U 	1(t,t o) become independent of t, functions of the 

intrinsic coordinate g only. 

It must be emphasised that the eqn. (3.5) has at best a formal 

significance. In general there is no unitary operator satisfying this 

equation, and indeed H(t) may not exist. Nonetheless, the derivation 

has a heuristic value, and we shall pursue it further. Later we 

return to the question of how to give the resulting formalism a precise 

mathematical meaning. 

We note also that the transformation to the Schrodinger picture 

depends not only on the slicing of space-time, but also on the 



or 

• 
SI ip> 	- - 	I 	d3 .0 (C) .~.  

S 

i'> = St 	a(t) (3.9) 
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parametrization of the slices. A time-dependent change of intrinsic 

coordinates leads to a different schrodinger picture. 

The Schrodinger equation (3.8) can also be written in a local 

form. To do this we note that the variation S1i(t)> is the sum of 

infinitisimal variations, i.e. 

ti-St 

(3111)>  _ I 	dt' 	d3  xkE) 
au 

I tP> 
t a(t') 	

Sx e) 

Substituting from (3.6) and (3.9)into(3.8) we get 

S 
i 

u 

► 1P> 
Sx 

= - Yl nu TV (x)111J> (3.10) 

• 

This equation enables us to determine IJ> associated with the surface 

a (t + St) provided we know the one associated with a(t). As in 

flat space-time the equation (3.8) leaves the phase of iIP> undetermined. 

This of course corresponds to the freedom in choosing the zero point of 

H or what amounts to the same, in the conservation of the norm of 

1v» • 
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§3.3 	The action integral.  

It is obvious that if our problem was to study the dynamics 

of. the 0-field in a given background guv  field there would be no 

need to discuss the Schrodinger picture formalism. In fact because of 

its lack of manifest covariance, it could be very inappropriate to 

do so, knowing that we already have the manifestly covariant Heisenberg 

picture at our disposal. 

Our main problem, however, is to describe the dynamics of the 

classical gin)  field as well as that of the quantized 0-field. We do 

this first by noting that the eqn (3.8) together with the normalization 

condition of Ī>can by obtained from the following action integral. 

S*  = l dt {Im <4,14)>-<4,1H14,> +a(t) (<461> -1) } (3.11) 

Here H is given by eq. (3.6) and a(t) is a Lagrange multiplier. 

The independent variables are <C, (4> and a(t). Requiring that the 

first order variations of Stp  with respect to these variables must 

vanish we get 

= (H(t) - a (t) ) I *(t)> 

<OP> -1 = 0 

(3.12a) 

(3.12b) 

Note that the Euler-Lagrange equations leave a undetermined. This is 

the reflection of the freedom in choosing the phase of (*(t)> . Physically 

of course, (3.12a) is equivalent to (3.8) because an overall phase 

in the state is unobservable. In practice we may remove the arbitrariness 

by a suitable choice of the zero point of H. 

Next, we consider the dynamics of the guv  field by augmenting S 

with the Einstein action, i.e. we consider the action integral 



1 
A = 

6Sg 

(3.15) 
0= 

Sg"  (x) 

Ss 
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S = Sto  + Sg (3.13) 

where Sg is given by eq. (A.38) with the following choice of 

the parameters 

X= 1, B= C= 0= A 	 (3.14) 

167 G
N 

 

where GN  is the Newton's constant. Now we consider S as a functional 

of <* I , *> , a and guy  . Extremization of S with respect to <lP  I and a 

will, of course, yield equations (3.12), while the equation 

gives us the Einstein field equations 

Guy  _ - 87 G
N

<i(t) I Tuv(x) llp(t)> 
	

(3.16) 

To see this we note from eq. (3.11) that 

aslP 	_ 
Sg(x)  

  

f 
f dt<p(Hl> 

Sguv(x) 

Now if we insert from equation (A.37b) into the right hand side of 

this equation we get : 

SS*  

Sguv  (x) 
2 
/ <4)(01     Tuv (x)111,   	> (t)  (3.17) 

On the other hand if we substitute from (3.14) into eqn (A.51) we get 

6Sg 

G 
S guv  (x) 	16 TIGN 	uv (3.18) 
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Insertion of (3.17) and (3.18) into (3.15) immediately yields (3.16). 

Therefore we derived the Schrodinger equation (3.12) as well as 

Einstein equations (3.16) from a single action integral (3.13). 

It is interesting to note that in order to write the action 

integral (3.13) we must work in the Schrodinger picture. At the moment 

it seems to be impossible to construct a Heisenberg picture version 

of this variational principle. 

However, after deriving the equations of motion we may reverse 

the order of the transformation (3.7) and retain the Heisenberg 

picture version of the theory. If we do this, then the state vector 14)0> 

will be time independent but now the time dependent field operator • will 

satisfy the convariant field equation. 

1 
au 

(4T g
u"āv ) - 1 av = o 

2 	a 

 

✓-g (3.19) 

To check this, we remember that in the Heisenberg picture the time 

evolution of the dynamical variable 'P and T. is described by the 

Heisenberg's equation of motion i.e. 

• 

= i[H,'P] 	 (3.20a) 

r = i[H,ir] 

(3.20b) 

Upon substitution from eqn (A.33) into these equations we get 

0 (x) = i f d3x ' ' b(x') 1 y-1(x' )[ ii2 (x ? ), 43(x)] - 

Y-̀ (x') ns(x') C$s(x1 )77(x'), $(x)] + 

2
rs 
Y [ $ $S,~a +2 [v, $] 



Now we make use of the equal time commutation rule (3.4) to 

get 

(x) = i Jdx' 
	Y-1(x') (

-2 iS 3(x,x1 ) ;(x')) - 

Y -1(x')ns(x') ;s(x') (-i(53(x,x')) 
or 

0(x) ' J (y
-17T - 

Y
-! 

2 ns0s) 

or 

Y• 
7(x) = 	.._ 0 + Y ns 0 . 

s' g 
From eqn. (A.15) and (A.14) we can write 
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_g 

Y 	2 	= (-g) (-goo) 

N ~-- 

Therefore 

n(x) = ✓-g (-goo4) 
	

;s) 

= -V guo (f), 

u 

This is the same as in (A.27). 

g 
Yi 

ns = 

N 	
(-N gso) 

(3.21) 

Similarly we insert for H from (A.33) into equation (3.20n) to 

get 

. 

r (x) = if d3x' ~(x') 1-Y-1(x1 )  ns (x') E 
$s (x

') , ii (x)] 
ir (x') + 

2 

yrs(x')E r (XI )Os(x'),;(x)] + 2 [V(4),ir (x)1) 

From eqn (3.5) we can write 

C (x') , ir(x) 1 = i S3 

s

, (x' ,x) 

s 

C0r(x')$s(2'),7(x)] = i (0 (x')S3,(10,x) +0s(x1 )63r,(x1 ,x)) 

CV(4(x')),r(x)] = i aV(x') 
S3(x',x) 
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If we insert these results into the right hand side of it and 

integrate the terms involving the derivatives of 63-functions by parts 

we get 

7r (x) = 	 s Y 2 n 'r) , + (4-"i 	r, s - 	
ay 

s 	
a0(x) 

Now we make use of equation (A.11), (A.14), (A.5) and (3.21) to 

get 

• - ao (
. 

	gUo f,u) k. 	uns) 
,
s41: v(nrns+grs) r~ 

,S 

1 v.= DV 
2 8 

ac(x) 

(17-in 
 sno0 ,o) ,s + (~ g grs y-~r) ,s 	2 v 

30 

av 

_ (14.71i- gso 0'o)'s + ( / g grsgy ) s- 2 	av 
Y , 

 us 	1 f-- DV 
= (I/7i  g C6,u) ,S 

- 2 	g a¢ 

i.e. 

n 
a(~ g"(,v) — 2 %g e = 0 

Therefore we established equation (3:19) 

In this transformation from the Schrodinger picture to Heisenberg 

picture the Einstein equation retairOthe forms (3.16) but of course 

the states are now time independent and the energy-momentum operator Tav 

instead of being given by the Schrodinger picture expression (A.31) 

now is given by the Heisenberg picture eqn (A.25). 

Bianchi's identities require 

0̀
0I
TUv l ō;v = 0 	 (3.22) 

which are an expression of the general covariance of the theory. 



One of the chief virtues of the derivation from an action principle 

is that these conditions are guaranteed: They can, of course, be 

directly verified in the Heisenberg picture. In the Schrodinger 

picture, however,because of the time dependence of the states, they 

are non-trivial. Nevertheless they can also be checked by direct 

computation in the Schrodinger picture
(11). 

37. 
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X3.4. 	Incorporation of Explicit Non-linearities.  

The Schrodinger equation (3.12) is formally linear in ĪV'> if 

it is considered in conjunction with the Einstein field equation (3. 16;) 

then it becomes intrinsically non-linear. 

If the non-linearity of the quantum time evolution is admitted 

then, at least in principle, there is no reason in not adding to the 

action integral (3.13) terms which incorporate it explicitly. Under 

the restriction that the field equation must not be higher than 

second order, then the most general invariant integral which we can 

add to (3.13) is the following 

Snk  = JdxIi (Ff <fl(o>)+RF2  (<f2(0> )) (3.23) 

where 

‹f (0> 	<1V(t) Ifi(4) IiP(t)> i=1,2 

and Fl; F2  are some suitably chosen functions of the expectation 

values <V'lf1I*>  

invariant functions of the field operator *. In the absence of 

gravity the F1  term will generate the non-linear model studied 

in the previous chapter. 

From the action principle 

(SS _ d 
p =

ō<*I 	s< 	
(S8  + S*  +  Sn,R)  

<,)1f 2 I4> respectively. fl  and f2  are 

(3.24) 

we get the explicitly non-linear Schrodinger equation 

i I ii> 
	= (H -a(t)) 1V(0> - 

A 	[Fi(<fl(0>*) f1(V) + R F2(<f2($)>V)f2(*)]I* (0> 
a(t) 

(3.25) 
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Here H is given as before by eqn (A# 33) and prime over 171 
2 

denotes 

a partial derivative. 

To find the modified Einstein field equations we note that 

Sgpv 	
d4x 	F1(<f1(*)10) = - 2 

	gpvF1(<f1(0)>*) 

(x) 

 

(3.26) 

while to evaluate the variational derivative of the second term in 

(3.23) we make use of (A.38) with the following choice of the 

parameters. 

A = 1 X=F2(<f2(*)>*) 	B =C=O = A 
(3.27) 

Since now X is independent of gin) therefore inserting (3.27) into 

(A.51) yields 

S 	r 	 _ 
 	d4x /j R F

2 (<f1 (~)>*
) = 1-g [GpvF2 	

(F2,p
- 

Sgpv 
(x) 	 ,v gpvF2;

A
;A)7 

Thus the variational principle 

SS  
0 = 

  

Sgpv(x) (Sg + S + SnR) 
Sgpv (x) 

will yield the following Einstein field equations. 

1 
Gpv + 1 <*(t)ITpv(x)I*(t)> - 2 gpvF1(<fl(*)>

~) + 
16 7rGN 

a 
Gpv F2 

- 
	
- 

(F2;p;v 	gpv
F2; ;X) = 0 

(3.28) 

Notice that the effect of one term on the left hand side of (3.28) 

can be thought of as a state-dependent change in the gravitational 

constant 	The The equation can be written in the alternative form 
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G 	 = 
uv  

-87GN  

1+161-GNF2  
C
<TUv>1) - guvF1 -2 F2;u;v+ 2 guvF,

A
;X] 	(3.29)  

Because the term (3.23) added to the action integral is the integral 

of a scalar density, the conditions (3.22) are preserved. Now, 

of course, it is the right-hand side of (3.29) which has vanishing covariant 

divergence. 
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§3.5 	Interaction-like picture.  

The operator H in equation (3.25) is given by eqn (A.33) 

therefore it depends on the choice of the space like surface a(t). 

For this reason one tends to believe that the description based on the 

equation (3.25) can hardly be given a rigorous mathematical meaning. 

On the other hand we saw in section (3.3) that in the absence of the 

explicit non-linearity one could transform into manifestly covariant 

Heisenberg picture. In this section we want to explore yet another 

picture which is akin to the usual Tomonaga-Schwinger picture of 

the tranditional quantum mechanics. This picture is particularly 

useful in the presence of the explicit non-linearities. 

The transition between the Schrodinger and interaction 

picture is .implemented by the same operator U satisfying eqn (3.5). 

If we apply this transformation to the state vector 1*(t)> satisfying 

eqn (3.25) we obtain a vector 111)(t) >1 satisfying 

i l;(t)>I 	= H J V~(t)>I (3.30) 

where 

HI = -J 	d3 	[F<f( 1 f 1( ) +RF2 (<f2(;) > I)f2($) 	(3.31) 
a(t ) 

A 
The field operator (I)appearing in W will of course be time dependent 

and satis€iēs,coyariaint field-:equation (3.19).. 

Since the operator H does not contain the derivatives of 

the field operator g) it is possible to write the equation (3.30) in a local 

form which does not manifestly involve the unit normal nu . But first 

we try to write this equation in a form similar to 03.10). To do this we 

make use of equations (3.9), (A.15) and (A.7a) to get 



42. 

if 	d3ixu(E) 
	
u 	111)>I = J 	 xunYZ{F<f1>)f1 . ) + R (<f>)f114,>I

v(t) 	 ax()

p 22 	 2) 

or 

1 
1 	u 14) >1 

= nuY~` 
 [1(‹fil>)fl+RFZ(<fl>)f2J 1 'P>I 

SX 	 () 
(3.32) 

This is not exactly the form which we wanted it to be. To bring this to 

the manifestly covariant Schwinger-Tomonaga form we introduce an element 

of the world volume So(x) enclosed between the two surfaces 0(t) and 

a(t+St) at the point Eea(t). This is done by adopting the following 

definition for Sa (x) 

d3E 	
S 

~ 
	

1*> I = J 	d3 Xu 	
S 	

1 	I= ('V' o(t) 
6a(0 	0(t) 	ax (0) 

Then multiplying both sides of (3.32) by XII and integrating over the 

surface a(t) we get 

d 

i lI 	d3E/ g 	1V~' I = Jd3E xu n I Ff l .)+ RFf2] I>I 
r(t) 	` 	 J 

=- d3Yc [Ff1 )  + RFf2 ( 14)›I 

or equivalently, 

S 1 >I 
 = - 1F"(<fl(¢)>~I) fl(*) + RF2(<f2(*)>) f2j 

1*>I (3.33) i  

The right-hand side of this equation is independent of any attributes 

of the space-like surface a. So is the left hand side. 	As in the case 

of Schwinger-Tomonaga equation of traditional quantum mechanics we 

believe that equation (3.33) exhibits the coordinate independence better 

than the Schrodinger equation (3.25). 

a 



The right-hand side of the Einstein equation (3.29) will 

retain its form. We must only remember that now the states are given 

by the solutions of (3.33) and the field operators $ by the solutions 

of (3.19). 

Strictly speaking all of the equations written in this 

chapter, as they stand, are meaningless. This is because of the 

appearance in T
uv

,H, and Hio  , the products of the field operators and 

the products of their derivatives at the same point of space-time. As 

it is well known these products have always infinite expectation values. 

Unless these infinities are removed the theory is ill defined. In the 

next chapters we will talk about the renormalization of semi-classical 

field theories. But the actual discussion of removing the infinities 

of the semi-classical gravity will be postponed until the last chapter. 

We hope that the introduction of the extra terms like (3.23) 

might improve the divergence behaviour of the theory. It is also 

conceivable that these terms may affect the singularities of the solutions 

of classical Einstein equations. The reason for this latter hope stems 

from the following observation. 

If the state Ii> in eqn. (3.29) is a very populated quantum 

state then the expectation values like <4;1T 
pv

14i> would be of order 

N where N is an estimate of the number of quanta in the state Itp. Now 

if the functions F1  and F2  are chosen to be quartic inkb> ,s ay, (as is 

the case in Kibble's non-linear quantum mechanics), then F
1,2 

 will be 

proportional to N2. For large values of N one may neglect the 

contribution of <TUu>11). Then the right hand side of (3.29) will be 

independent of N. This independence of N is at least one qualitative 

difference between the theories involving the explicit non-linearities 

and the one described by the eqn. (3.16). 

43. 
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§3.6 	Comparison with fully quantized theory.  

As mentioned above the consistency of a semi-classical theory 

of gravity will imply a non-linear time evolution law for the quantum 

states of the system. (This non-linearity is of course intrinsic and 

has nothing to do with the Fl  and F2  terms which we introduced in the 

preceeding section). The only way of removing this non-linearity 

and restoring the superposition principle of the orthodox quantum 

mechanics is to quantize gravity as well as the matter fields. In 

this section we will summarize some of the techniques of doing this. 

There are several approaches to quantum gravity(2). The one 

which is mostly used in the current investigations is the path integral 

formalism (12)  This is particularly suitable if the object to be 

quantized is guy. In this approach one writes a transition amplitude 

for the quantum jumpsfrom a given initial 3-geometry (yl,al) and field 

configuration 01  on al  to a final 3-geometry (y2,a2) and field 

configuration 02 on 	As As in Appendix A y denotes the induced metric 

on the 3-dimensional space-like surface a. Then according to Feynman's 

path integral prescription such an amplitude can be written as a sum 

over all field configurations which take the appropriate values on the 

boundary surfaces al  and a2, i.e. 

<Y2,a2,021y1,a1,01> = =N1  d[guv] d[0] 	e 
-iS [g,0] (3.34) 

Here N is a normalization factor, d [g] , d[4] represent some measure 

of integration in the field configuration spaces and S [g,0] is the 

action integral of the gravitational field interacting with the real 

scalar matter field 0. The integral is taken over all fields which 

have the given values on al  and a2. 
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The integral (3.34) as it stands is ill defined. This is 

because of several reasons which we enumerate in the following: 

i) For the real action S [g,(1)] the path integral will 

oscillate and will not converge. To remove this difficulty 

in flat space-time, one usually changes t to -it, where T is 

real. Then - iS transforms into -S and therefore the 

integral will be exponentially damped. To get physical 

results one must of course at the end of the calculations 

analytically continue back to the real Minkowskian time. 

Although this procedure is problematic in the 

curved space-time but one usually adopts it. Hawking has 

some arguments for its justification(12). 

ii) Not all of the g - field configurations in (3.34) are 
uv 

physically independent. The field configurations which are 

related to each other by general coordinate transformations 

must be counted only once. To do this one usually adds a 

gauge fixing term to S which picks up a chosen class of co-ordinate 

system and thereby forbids us from doing general coordinate 

transformations. 

iii) As is well known from the theory of abelian and non-

abelian gauge fields the zero rest mass of these fields 

makes some of their components physically insignificant. For 

example in the case of gpv  field only two out of ten components 

are physically relevant. In order to quantize these theories 

consistently (i.e. preserve the unitarity) one must isolate the 

physical components and keep the unphysical ones out of the 

game at all stages of the calculations. The universally 



accepted technique for doing this is to add a new term to S 

in eqn. (3.34), called the ghost term. This term represents 

the action integral for "fictitious vector particles" which 

propagate only in the internal closed loops and never appear 

on the external legs. 

iv) After doing all of the modifications enumerated in 

(i) - (iii) above, the quantity defined by eqn. (3.34) is 

still infinite. The analogous quantity for other non-

abelian gauge field theories in the absence. of gravity is 

also infinite. However for these theories the infinity can 

be rendered finite by introducing a finite number of 

renormalization counter terms. The effect of these counter-

terms is to renormalize the "bare" parameters of the original 

action integral. 

Unfortunately the theory of gravity based on (3.34) (in which 

the pure gravitational part may be given by the Einstein action) is not 

renormalizable. This is infact one of the reasons which justifies our 

attempt in studying a universe in which everything is quantized except 

for gravity. Although even in the semi-quantized universe the problem 

of renormalization is not resolved in the traditional sense, nevertheless 

as we shall see below the theory will behave considerably better as 

far as the divergences are concerned. 

Having mentioned the basic reasons of ambiguities of (3.34) we 

will assume that it is meaningful as it stands and proceed to its formal 

manipulations. 

We notice that if our theory is going to have a well defined 

classical limit then the substantial contribution to the path integral 

46. 



47. 

(3.34) must come from those field configurations which correspond to 

the solutions of the classical field equations. Let us write the 

classical action integral of the system in the following form 

S [g,4)] = 	Sg  [g] + 	S, [g,4 (3.35) 

Then assuming that gūy  and 4)c  are local extrema of this action we 

may write 

c 
guy - guy + guy 4 _ 4.c + (3.36) 

where g and 4)  are some quantum perturbations of the classical back-

ground. Now we may expand the quantum action S[g,4)] in a Taylor'series 

about gc  and 4c  

S [g,4)] = 	S [gc

,(19

c] + S2  [g,4)] + higher-order terms (3.37) 

Here S2[g,$] is quadratic in the perturbations g,4) . The approximation 

scheme in which the terms higher than second order are ignored is called 

alternatively as the one-loop, stationary phase or WKB approximation. 

Practically all of our useful and relatively precise understanding of 

quantum gravity (ignoring the supergravity theories) is limited to this 

level of approximation. 

Perhaps it is the appropriate place to mention the simple fact 

that in our semi-classical theory - in the absence of self-interacting 

matter fields - the one loop approximation will coincide with the exact 

theory. On the other hand it is a well known fact that one needs only a 

finite number of subtractions to render the one-loop theory finite. 
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c Now we introduce a new functional S [gc,4,g,4] by the following 

definition : 

S2[g,.~'; + higher order terms := S[gc,pc, g,¢] + 

J

6 S [g ] 
d4x' 	g  

Sg 	(x' 
aT 

(3.38a) 

Then (3.37) can be written as follows : 

OS 
4 = 

S[g,y5] = sg[gc] + S[gc,e] + 

If we keep g 	and 	fixed and 

aS 	6Sg[gc] 	641"gc,0] 
+ 

aS [g] 
g d4x, goT(x) + 

c 
g=g 

we get 

6 S [g] 
g 

S[gc 	c ,(1) 	,g4.] 

(3.38b) 

°QT (x) + 

g=gc 

(3.39a) 

(3.39b) 

(3.40a) 

(3.40b) 

6gOT(x') 

vary 	g 	and 0 then 

6 	
d 4 
	' 

+ 	x 
-o- 

6g
11v

(x) 	Sgūsx) 	6gūv(x) 

6S1dc,4 	,g,4] 

agūv(x) 

- 	0 

be solutions of 

= 	0 

SgQ T(x) 

C 
aguv 

6S4[gc,4 	-I 	aS [g
0
,1
.0
,g,$] 

+ c 

s
e 	a~ 

	

We require that gc and 	0c 	to 

SSg [gc] 	as¢[gc,cpc] 
+ 

68 	(x) 	68c 
uv and 

6Sc[ gc,0c] 
 	- 	0. 

(x) 
uv 

C 
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Assuming as usual 

1 
Sgegc] = 

 

)/šC Re 	 (3.41) 

 

16irGN 

and defining the classical energy momentum tensor by (3.36) then (3.40a) 

becomes 

Ge v = -8ir GN TC (4c,,c) (3.42) 

Now by introducing the notations 

6Sg[g] FuV6T g
aT

(x) := 	
ōc 	

4x~  	goT(x') 
ōg 

uv(x)Id 

	

6g6T(x) g=g 

(3.43a) 
and 

2 
,/-gc Tuv (x) 6 

 

S Cgc,0c, g,4] 	(3.43b) 
SgC (x) UV 

one obtains from (3.39) 

Fuvvz gat(x) 	
Tuv(x) 

and 

SS 

(3.44a) 

0 	 (3.44b) 

F
uVaT is by definition a differential operator which involves only g

c
, 
C 

uv while T 	is a function of gc, 0c, g and 4) . The lowering and raising 

of the indices are carried out by gc and its inverse 
gcv 

respectively. 
Pv 

One may interpret the eqn (3.44) as describing the propagation of the 

quantum fields 	 c q 	guv and ~ in the background gravitational field g 
uv 

generated by cc via (3.42). The quantized fields interact not only 

6 4) 
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with each other but also with c ~ and the energy of this interaction is 

taken into account by the OC dependence of Tuy on the right hand 

side of (3.44a). 

If we regard guy and 	not as linear quantum field operators 

as we did above - but as merely some corrections to the classical path 

defined by c 
	c 

y g 	and 0c, then we can insert (3.38b) into (3.34) and 

integrate over all possible deviations from the classical configurations. 

The resulting generating functional will be a functional of g
c 

and Oc. 

It can be successively differentiated to yield the Green's functions 

for a theory in which the external lines are labelled by the fields 

c c 
g , 0 and in the internal loops one has the circulation of the 

quantized fields g and 0 	(as well as the ghost particles to 

guarantee the unitarity). If we require this functional to be stationary 

with respect to the first order variations of gc and ¢c and assume 

at the same time that these fields do satisfy the equations (3.40) then 

we get 

Fuv6z < goT (x) > = - 
2 

< Tuv (x) > 
(3.45a) 

SS 
< 	 > = 0. 	 (3.45b) 

60 

where the Schwinger average of any observable A is defined by 

Nfd[g] d[4] A eiS 

< A > 

	

	 (3.46) 
Z[gc,4 ] 

Equation (3.45a) looks rather like our semi-classical equation (3.16). 

However this similarity is only formal as the content of (3.45) is by no 

means different from that of (3.44) and therefore in contrast to the 

semi-classical theory here the quantum superposition principle is not 

violated. Now it is clear that the effect of taking into account the 

contribution from gravitons as well as the matter loops in the right 
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hand side of (3.45a) is the restoration of the linearity of the 

quantum time evolution law of the states. However, this is done in 

the expense of the non-renormalizability of the theory. On the 

other hand if we dispense with the superposition principle of the 

quantum states, then we obtain a theory with no graviton loops on 

the right hand side of (3.45a) and therefore less violent divergences. 

We will return to further discussions of this point in the 

final chapter. 



CHAPTER 4. 
	 52. 

THE SIMPLEST SEMI-CLASSICAL MODEL (The aV<(1)2> theory).  

54.1 	Introduction.  

The theory developed in the preceeding chapter involves the 

highly divergent quantity <01T 10> on the r.h.s. of the Einstein 

field equations. The divergent structure of this quantity, or rather that 

of <o,out JTUv Jo,in> has been under an intensive study in recent years. 

However, most of these studies have been done in a fixed background 

space time and all of them have led to the conclusion that the subtraction 

of infinities of this matrix element is ambiguous. We will postpone the 

proper study of this point to the final chapter. In the mean time 

we will try to show that if the dynamics of the background field is taken 

into account then the ambiguities can be removed. 

In this chapter we examine this idea on the simplest of all semi-

classical field theories, namely the theory of two interacting real scalar 

fields V and in which V is left classical while is quantized. The 

space-time is assumed to be flat Minkowskian. As in semi classical 

gravity here also theddynamics can be derived from a variational principle, 

which of necessity is formulated in the Schrodinger picture. We will 

assume that V and 0  have a non-derivative interaction. Thus the only 

similarity of the XV <02> model and the semiiclassical theory of gravity 

is the non-linearity of quantum mechanics in both of them. In the next 

chapter we will study a model which is more akin to the semi-classical 

gravity. 

The renormalization of the theory will be carried out by introducing 

counter-terms into the action integral. The constant infinite coefficients 

of these counter-terms will be fixed by imposing two physical conditions 

on the full model. 
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§4.2. 	The action integral.  

We begin with the Schrodinger picture action integral 

S = S+Sv + S
ipy 

(4.1) 

where S is the action integral yielding the Schrodinger equation for the 

free real scalar field (P, i.e. 

I  
S 	= 

J 
dt {Im < f~U>- < II HoJ*>+ a(t) (<*(t) I (t) > -1)} (4.2a) 

with Ho defined as usual by 

Ho = 2 fd3x (Tr2 + (V(1))
2 
+

2(I)2) (4.2b) 

and a(t) is a Lagrange multiplier. 

Similarly Sv is the action integral for the real scalar classical 

field V, i.e. 

Sv = -  J dx (aVauV + m2V2) 

and Sy* is the interaction term which we take to be 

Sy* = - 
	J 

d4x V(x) <* (t) I *21* (t) > 

(4.3) 

(4.4) 

Here l is a coupling constant. One must regard S as a functional of 

liP>, a and V. The Schrodinger picture field operators gx) and Tr(x) 

are assumed to satisfy the canonical commutation relations 

B5 (x) Tr(X) =1S3(x -x') (4.5) 

C*(x), *(x')] = 0 = {Tr(x), Tr(x1 )3 	(4.5b) 
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By requiring S to be stationary with respect to the first order 

variations of the independent variables <0I, a and V one gets the following 

equations 

iI0> 	= (Ho  + Hv) IiP(t)> - a(010 (t) > 

<0(t) Igt)> — 1 = o 

(a all—m2)V = 	
<j)  (01$2(x)10 (t) > 

In equation (4.6a) the interaction Hamiltonian Hy  is defined by 

Hv(t) := 2 	d3   V(x,t) c2(x) 

(4.6a) 

(4.6b) 

(4.6c) 

(4.7) 

We will absorb a in the definition of a zero point of H and thereby omit 

it from the Schrodinger equation (4.6a). 

If we ignore the eqn (4.6c) for a moment then equation (4.6a) 

is the Schrodinger equation for a quantum real scalar field interacting 

with a fixed external source V. We make use of this observation to define 

a 'unitary' operator 

U(t,to) = T exp 	- i 

J 	

H(t`) dt'j 

t 

(4.8) 

where T denotes a chronological product and H = Ho  + Hv(t). 

Now we can define a Heisenberg picture state vector 

100> = U-1(t, tdI tp (t) > 	 (4.9a) 

and Heisenberg picture field operators 0(x), r(x) 



0 (x) = ū 1(t,to) (p (x) U(t,to) (4.9b) 

55. 

r(x) = U (t, to)r(x) U(t,t) (4.9c) 

The time evolution of 0  and r will be given by Heisenberg's equations 

of motion - 

 = i [H,$ J 

• 
7r = i [H,rr a 

(4.10a) 

(4.10b) 

If we insert for H and make use of (4.5) then we can immediately show 

that eqns. (4.10) imply the following manifestly Lorentz covariant 

field equation for the quantized field 0 

(auap-p2- lv(x)) 0(x) = o 

Now we require that the field V which had been assumed to be known 

and fixed - to be given by the solutions of the eqn (4.6c) i.e. 

(a-au 
-m2) V(x) = 	<1pol 02(x)11P0> 

(4.11a) 

(4.11b) 

The Heisenberg state vector liyo> will of course satisfy the constraint 

eqn. (4.6b). The right hand side of equation (4.1lb) is - as usual - infinite 

and one of our main problems is to render it finite in an unambiguous way. 

We will show in the following that in the absence of a dynamical eqn. like 

(4.11b) for the V-field there is no unambiguous way of rendering the 

quantities like<IPoIc2(x)14)0  > finite. The same remark applies equally 

well to the propagation of a quantized field in a fixed background 

gravitational field. In other words although in a fixed g background 

field one can isolate the infinities of <T
pv
> in an unambiguous way, 

the elimination of these infinities is always ambiguous up to finite 
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additive transformations of the renormalization parameters. We 

will clarify this point in the sequal. In order to do this first 

we will have to develop a perturbation theory for formal handling of our 

equations. 
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g4.3. The perturbation theory. 

Let us assume for the time being that V is a given external 

field. Then assuming that at t- - = the field approaches the free 

field 0o one may write the equation (4.11a) in the following integral 

form 

0(x) = 00(x) -X Jd4 	R(x-y,u) V(y) , (y) 	(4.12) 

This form of the equation incorporates the initial condition at t = -03 . 

The initial field cho satisfies the free Kelin-Gordon equation, while 

the retarded Green's function Q R(x-y,u) is a solution of the inhomogenous 

equation, i.e. 

f~ūu u 2) O R(x-y,u) = -6 4(x-x), (4.13) 

We are mainly interested in the perturbation expansion of the diagonal 

matrix elements <q,o102(x)1po> . To achieve this we define the following 

two point function 

°(x,x') 	
4 <4)0 1{ ¢,(x), cp(x')}111)0 >, (4.14) 

A 
Here {0(x), 0(x)1 denotes the anticommutator of 0(x) and 4(x'). We 

know that as long as x x' the two point function 1 °(x,x') is finite 

and well defined. It is only in the coincidence limit x,-)-x' that we 

recover </p o 10 (x)11pō and the infinities associated with it. Therefore 

in order for our expressions in all of the intermediate steps to make 

sense we will develop a perturbative scheme for order by order treatment 

of 	° (x,x') rather than<p 
0 
10 (x)111)

o
> and then only after isolation 

of the infinities we will let x->x'. This procedure is called 

"regularization". A prescription for the elimination of the infinities 
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will be called "renormalization". 

If we substitute for 4)(x) from (4.12) into (4.14) we get 

0 °(xa x') = ~ō(x,x') - AJ d4y ~R(x-y,U) V(y) 	°(y,x') 

where ~o
po 

(x,x') is defined by 

11) 

to o (x,x') 	4<i1i l { go (x) , cp (x') } I Vpo> 

(4.15) 

(4.16) 

The equation (4.15) incorporates the initial conditions only w.r.t. one 

of the variables, namely, x. It shows that for all finite values of t' 

as t -} -co then(1) °(x,x') approaches (I)o °(x,x'). Now in order to 

incorporate the initial conditions w.r.t. the x' variable as well we 

substitute for 4(x') from (4.12) into (4.16). Thus we get 

to -(x,x') = t°O°(x,x') -aJ d4y AR(x'-y,u) V(y) o o(x,y), 

Here the zeroth order solution (D *° 00 (x,x') is defined by 

~oo
1P
o(x,x') := 

 

1 <1P
0

1{(1)°(x) 	~o(x1 )11*o> 

(4.17) 

(4.18) 

This two point function defines the initial value fo o (x,x') as t and 

t' both approach - co. Thus our perturbation expansion for (4.14) must 

be carried out in two steps. Starting with a given initial value defined 

by (4.18) we can solve (4.17) up to an arbitrary order in A . In the 

second step we can substitute the solutions of (4.17) into (4.15) and 

iterate up to the desired order. These steps may be summarized conveniently 

by introducing the following set of diagrammatic notations 
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§4.4 The Renormalization conditions.  

Until now we had assumed that V is a given background field. 

It is clear that if this was truly the situation it would be meaningless 

to talk about the counter term (4.23). This counter term is useful 

precisely because we are going to functionally differentiate it w.r.t. 

V which would be impossible for a fixed external V. Thus in the absence 

of the dynamics of the V-field the best one can do is to arbitrarily 

subtract the infinite graphs (4.22). However this can be done in an 

infinite number of different ways each leading to a different finite 

remainder . To see this point more clearly let us consider the following 

two graphs which would lead to the infinite loop graphs of (4.22b) when 

cr -~ 

 

0, 

1 0> 	 10> 
• T + 

- 4 Jd4y V( Y)( AR(x'-Y,u) A(x-Y,11) + AR(x-Y,u)A(x'-Y,01 = 

A 	4 	4 	4 	4 	$(k2+p2) V(q)elq-Y 	ip.(x'-Y)+ik.(x-y)  
-- dy4gd"pdq 	 {e 	+e 

2 	2 
p + p 

t(k2+p2) 
_ - 4 Jq  V(q) f ~4k 	2 

q -2k.q 

eix'.(q-k)+ix.k+ eix(q-k)+ix'.k 

=- A 4 	ix.q 
$q e V(q)J 

( 	4 	ō(k +p 2) io. (k-q 	) 	-ic(k-q/ ) e 	2 	+e 	2 ftk 	2 
q -2k.q 
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oo°(x,x') 	x ° 	 

 

(4.19a) 

~ 	 o 

O
(x,x')  X 	 x (4.19b) 

VA 	 o 
(X,x') 

 

(4.19c) 

 

-XAR(x-y,u) 

 

• (4.19d) 

 

V (x) I (4.19e) 

Note the symbol indicating dependence on the quantum state 	For For 

technical reasons it is more convenient to associate the powers of the 

coupling constant A with the "propagators"A R rather than with the 

vertices. The arrow on & 	indicates the flow of time from past into 

the future. With the help of these conventions we can write equations 

(4.15) and (4.17) in the following form 

 

'o 
	 ea 
x' x •• x' x 

  

~o 

  

(4.20a) X 

    

x' 

    

. 
x 

• 

      

O f ---)"— X► 
(4.20b) 

x 

  

X' 
X' 

 

X 

   

In diagrammatic notation the r.h.s. of eqn (4.11b) will simply be 

given by A multiplied by the coincidence limit of (4.20a), i.e. 

11) 
o 	_ 	1.1'

o 	 *o 

x; 	_} x1 	+ x 	- x 

0 

 

(4.21) 
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To analyse the divergence structure of these loops we may choose 111,0> 

to be the vacuum of the free field 0o. Then as is evident from 

eqn. (4.18) the dashed line on the r.h.s. of (4.21) will be associated 

with 4 
of a(x-y,u), where 

A(x-y,u) = <of( 40(x) , 00(x')11 o > 

= I ~ k t(k
2
+11
2) ei.k(x-y) 

Therefore a naive power counting indicates that only diagrams up to 

one V-insertion are infinite, all the rest being finite. These diagrams 

are given by 

x f 	
Ī l o> = 

4 	J 	
d4k$(k2+u2) eik.a 

i 	v+o 
(4.22a) 

_ - 4 I d4y AR(x-y,u) V(y) A(x'-y,u) 
o } o 

(4.22b) 

where 

a 	x-x'. 

Hence in order to make the theory finite we must introduce the following 

counter action 

AS = - Jd4x 	m2 V2 (x) + A S (D V (x) } , (4.23) 

Here 	Sm2 and 64) are constant (infinite) numbers, 



(eia.(k-q /2) + e-5-"(11/2))  } 
1 

q2-2k,q  
• 

2 
oa.q 

where x .- x+30 
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2 

 

Clearly in the limit of a -} o the integral 

t0:  2  2) 	ia . (k-q/ ) 	-io . (k-q/ ) 
I(q,a) := J a.4k 	2 	(e 	2 	+ e 	2 )  

q -2k.q 
(4.24a) 

becomes infinite. Because of the Lorentz invariance in this limit it 

can only be a function of q2. In fact if we make use of the 6-function 

to carry out the k°-integration we get 

= j 
dk 

I(q,a) 	2  wk  

 

1  	(ei.o. (k-q/2) 	+ ē io. (k-q/2) 	+ 

q2-2k.q 

  

where 

ku  = (-k°,k) = (-w1,,k). 

By changing k into -k in the second bracket of I(q,a) we get 

r d3k 	1 
I(q,a) 	) 2wk q

4
-4(q.k) 

2 g2(eik.a+ ē  ika)  cos
aq - 
2 

4i k(e
ik.o_ ē ik. 	a.qq} _ q• 	sin 2 

d•3k 	1 

	

4     { q2  cos k. a cos  o=q  + 2q.k sink. a in 
2wk 	

q
4-4(qk)2 
	2 

In the limit of a -}o the second term inside the bracket will not 

contribute anything. Thus 



I(q,o) = 4q2 
  

63k 	cosk.a 

2wk q4-4(q.k)2 
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(4.24b) 

Now if we choose a frame in which q = (qo o) then we get 

CO 

I(q,a) = G (q2+m2)n In(a) 

n=o 

(4.24c) 

where 

   

 

In = 	1 	2 n I(g2,a) 

	

n. 	d(q) 

 

(4.24d) 

 

2 	2 
q = -m 

	

( d3k 	cosk.a 
= 4(-1)n 

J 	-  
2wk (-m

2+4wk)
n+1 

n = 0,1,2,3,'. 

We see that as ct--o only I
0 
becomes infinite and all other terms 

are finite. Thus we obtain the following equation 

I .  

xi 	+ x 	= - 	~'4q e1 	1(q) I0(a) - 

10> 

CO 

In d¢q eiq.x (q2+m2)n V(q), 
n=1 

(4.25) 

We see that if V was a fixed background field the subtraction of any 

combination of the r.h.s. of (4.25) which includes the first term would 

make the eqn. (4.21) finite (We assume that the constant infinity (4.2aa) 

has already been eliminated). Since all of these subtractions must 

J 



+x \ 

lo> 

+x / 	+ 	 (4.26) 
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necessarily include the first term of the r.h.s. of (4.25) therefore 

their difference will be finite. This ambiguity will thus be reflected 

in the ambiguity of the finite remainders. In the absence of a 

dynamical equation for the V- field there does not seem to be any way 

of resolving this ambiguity. However, when the V-field satisfies the 

eq. (4.Ilb) then we can demand it to fulfil certain physical conditions. 

Let us re-write the equation (4.11b) and in doing this let us also 

take into account the contribution of (4.23). Hence if we insert from 

(4.11b) we get the following modified V-field equation 

(auaum2) V(x) = 4 
1 d'4k $(k 2+u2) eik.a + x64, 
o.o 

2 
(dm 2 - 

~4 I
o(Q+ o)) V(x) - 

2 	0' cc 	

1 4 	n1l 
In 	cinq 

eiq.x (q
2+m2)V(q) + 

Before going any further we note that if instead oflo> we had 

considered any arbitrary normalizable Io> then we would get the same 

infinite parts but different finite parts. Thus in the first line of 

(4.26) we would get an additional finite term equal to 

x ` 	~ - 4 	
d4k $ (k2 + p2) eik.a 

0»o 



and in the third line In  must be replaced by In  ° defined by 
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+ x + 4V(:x)Io(a +0) , 

O 

With these qualifications we can assume that the state on the r.h.s. 

of (4.26) is an arbitrary normalizable 1'0> rather than 1°> . This 

equation involves two arbitrary parameters S  m2  and S4 which may be 

fixed by imposing two physical conditions on the solutions of the 

equation. We therefore demand all of the solutions of the V-field 

equation to satisfy the following two conditions. 

1). 	We require that when the initial V-field is 

Vo= o and*o  >is the vacuum state lo> of the quantum 

field cpo  then nothing happens, i.e. V(x) = 0 and 

=
0. This requires that 

S0 =- 	J4k k2 + i2)  eik.a  
4 (4.27) 

ii) 	We again choose 140> = 10> but take the initial 

Vo-field to be a non-zero solution of the Klein-Gordon 

equation. Now the r.h.s. of (4.26) no longer vanishes so that 

V is not equal to Vo. Its Fourier transform 

V(q) = 
J 
d4x e 

1q . x V(x), 

is not confined, as Vo(q),is, to the mass shell. However, we may require 

that-g2=m2  be a solution of the Fourier transform of (4.26). Then this 



Io> 

condition - after we have substituted (4.27) into (4.26) - will 

require that 

2 
Sm = 

~4 I
o (a -}o) , 
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(4.28) 

Therefore we will have the following renomalized V-field equation 

for the initial 1o> state 

CO 

	

2 	r 
(a tau-m2)V(x) 

	iq.x 
_ — A4 	11-1.G11-1. In 

J 
6 q e 	(q2+m2)n V(q) + u 

A 	x 	I o> 	+Z ~ 

1o> 

(4.290) 

Here In's are given by a+ o limit of (2.24d), i.e. 

In = 4(-1)n 
C3k 1 

n = 1,2,3,... 2w 
k 

2 	2 n+1 
(-m +4wk) 

(4.29b) 

The equation (4.29a) can now be solved order by order in a power 

series of A . By introducing the following additional diagrammatic 

notions 

CO 

In 
ft4q elq.x (g2+m2)n V(q) 

n=1 
(4.30a) 

- A AR(x-y,m) 	= 

V 
0 

x 	 y 
(4.30b) 

(4.30c) 



V(X) = o + -" 0 - 

= 0 + rv....,..N..•~o 
0 

- n."...".N► 
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We may write (4.29a) in the following integral form which incorporates 

the initial value V
o 

of the V-field 

+ 	(4.31) 

Provided we know the initial V-field, i.e. Vo, which is assumed 

to satisfy the free Kelin-Gordon equation with mass m then the 

series (4.31) will yield V to any desired order in X. Having thus 

specified V we can then substitute it into (4.12) or equivalently into 

the Schrodinger equation (4.6a) and obtain a quantum mechanical problem 

of interaction of the quantum field 0 with the given classical field V. 

Our theory then is ready to answer physical questions about the system. 

We may for example consider an initial state in which V vanishes 

asymptotically as t + -co while 100> is some normalized many 

particle state and ask for the probability that the system will be found 

in some designated set of states in the distant future. This is a 

meaningful question provided that V also vanishes in some suitable 

sense as t -} + co, so that free "out" states exist (an assumption 

which can and of course must be checked). It is Straightforward to compute 

the "scattering amplitude" <x,out 100,in> for any designated process. 

As in chapter two here also the non-linear dependence of<x,out F~po,in> 

on 100,in> will cause the single particle states to be unstable. 



68. 

CHAPTER 5: A SEMI-CLASSICAL MODEL WITH DERIVATIVE COUPLING. 

§5.1. 	Introduction. 

2  The aV<0> model which we considered in the fourth chapter 

does not exhibit the real difficulties inherent in the semi-classical theory 

of gravity. These difficulties have essentially two inter-related sources: 

i) The object of the prime importance in the semi-classical theory of 

gravity is<I,oITUvI* >. This symmetric second rank tensor appears in a 
natural way in our variational principle and it involves the product of the 

derivatives of the field: operators at the same point of space-time. As is 

well known these products and hence their expectation values are ill defined. 

ii) The XV <*2> model does not share the intrinsic non-linearity of the 

gravitational field equations. This non-linearity is a reflection of universality 

of the gravitational coupling. This difficulty however is only a technical 

one. In fact in both chapters five and six the linearized theories will 

suffice to clarify our techniques and our viewpoint. 

We will deal with semi-classical gravity proper in the next 

chapter. In this chapter we would like to construct a model which exhibits 

only the first of the above mentioned aspects. In constructing this model 

the requirement of simplicity will be our only guide. We therefore begin 

with flat space-time with the Minkowskian metric ii 	and consider two real 
uv 

scalar fields V and $ . We also assume that the propagation of the 0-field 

is governed by quantum mechanical rules whereas the field V is left classical. 

Then one of the simplest Lorentz invariant couplings between the two fields 

which involves the derivatives of the *-field is the following 
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0311—m2) V(x) = 	<Vo Ia p  (1)(x) 311  4 (x) I4,0 '> 	+ 

2 
X (u+a V(x)}<4,oJ 	2(x) I1Po> (5.1) 

The r.h.s. of this equation has been written in the Heisenberg picture. 

In the next section we will see that there is inf act a Schrodinger picture 

action integral yielding a V-field equation which reduces to (5.1) in 

the Heisenberg picture. There we shall also see why we have preferred this 

particular coupling rather than the seemingly simpler one in which the 

second term on the r.h.s. of (5.1) is absent. The corresponding Schrodinger 

.(or Heisenberg) equation governing the dynamics Qf the 4-field is considerably 

more complicated than the one which we had for the XV <02>  model. Nevertheless 

we shall see that as far as the elimination of the infinities are concerned 

our programme is again applicable. 
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§5.2 	The equations of motion.  

We consider the semi-classical theory of two real scalar 

w 
fields V and $ whose dynamics is described by the following Schrodinger 

picture action integral 

SCV~, SVI, , V 1= dt{ Im 4 > 	< H >+ a t < t 	> -1)}- 

i d4x (auvauv 
+m2 v2) 
	

(5.1a) 

where H is defined by 

w2(x) 
H = 

2 d3x C 	 + (I+AV(x))(V (x)2 + (1+AV(x))2u242(x)1— 1+AV(x) 	- 	- 

(5.1b) 

Here A is a coupling constant. The reason for this particular choice of 

H will become clear shortly. 

With considerations similar to those of §4.2 we can easily get the 

following equations of motion 

i ātl iV(t)> = OR – a(t))I*(t)> (5.2a) 

–r2(x) 
(a115um2) V(x) = 2 <V)(t)I{ 	2 + (0~(x))2 + 2u2(1+AV(x))4'2(x)}I~V(t)> 

(1+AV(x) 
(5.2b) 

Now we would like to transform into the Heisenberg picture. Along similar 

lines to those of (§34we can easily show that the Heisenberg field $ satisfies 

the following covariant equation 

A 
(aūu u2)~ – Au2V4' -+— a v a; = 0 

1+AV 
u 

 
(5.3a) 
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In this picture the r.h.s. of the V-field equation also becomes manifestly 

Lorentz invariant, i,e. 

(auu m2)V (x) = 	<4)0 l au; (x) au 0̂ (x)1  11)0> + 

2(l+ XV(x))< *000 2(x) L1P0> (5.3b) 

It is work! mentioning that if we introduce a field gpu by the definition 

with 

gpv := anpV , 	 (5.4a) 

a 	1 + AV , 	 (5.4b) 

then equation (5.3a) may be written in the following form 

1 

V.";
ap( 	gpva v ) 

- u2 ;= 0 	(5.5) 

This is of course the main reason for the choice 45.1b) of the Hamiltonian. 

For a fixed V-field this equation may be derived from the usual Lagrangian 

density 

L = - 
- 
T 	

(gpvap av + p2 ~2) 
(5.6) 

In this form it is easy to discuss the divergence structure of the theory 

Infact it has been established that for a real scalar field operat or 

whose dynamics in a given background g -field is given by (5.5) the most 

general counter-term which is needed for the elimination of the infinities 

has the following form . 
(14) 

L = = / g (A ,+. AR + BR2 + CRpvR ") 	(5.7) 
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where A,A,B and C are (infinite) constants and the R's are the 

curvature tensors associated with the metric g uVCc.f. eqn 
(

A(59))] . 

However for a metric of the form (5.4) theJ d4x ✓-g R2  and J d4x i=g RIVRUV  

differ only by a constant. (This is because of the vanishing of the Weyl 

tensor). Thus we need only the following 

AL = - / (A+ AR + BR2) 	(5.8) 

Up to now we have assumed thatthe V-field is given. However in order 

to fix the regularized forms of the constants A,A and B we will have to 

use the dynamic character of this field. This is indeed in conformity 

with our general idea. Thus first we must develop a perturbative scheme 

for our model. In principle we can do this exactly in the same way 

as we did in the preceeding chapter. However in practice it is more 

convenient to deal with the Feynman propagator rather than the retarded 

one. It is also worth mentioning that in dealing with the gravitational 

field it is more suitable to employ a regularization scheme which respects 

the general coordinate invariance of the theory. Although the covariant 

point splitting technique does have this property it nevertheless gives 

rise to direction dependent terms, which in ordet to be got rid of one 

must arbitrarily average over all directions(15). The dimensional 

regularization scheme of 'tHooft and Veltman, on the other hand, have the 

property that it employs only one regularization paramater c = 2 -- 2 ,with 

h> being the space-time dimension, rather than four components of all  

which are needed in the covariant point splitting technique. (Here Qu  is the 

tangent vector to the geodesic line connecting the neighbouring points x and 

x' and its length is half of the geodesic distance between the two points)(15). 

For these reasons we will use the dimensional regularization in this and 

in the next chapter. To this end we define a two point function 



Ao °(x,x') := i <4olT (4 (x) 4060))14J0
> 

iI 
(5.12) 
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A*0 (x-x ') = i<Vo I T (;(x) (x') I ibo> 	(5.9) 

notice that when I1Po> = 10:m then d ° reduces to the exact Feynman 

propagator relative to the in-in vacuum states. As long as x#x' 

this function is well defined and in both variables x and x' it satisfies 

the following inhomogenous equation- 

1 	 -8 4(x,x') 
	a (mag guva ) - p2JA °(x,x') _  	

'/-g (x) 
(5.10) 

where, for the model studied in this chapter g v is given by eqn. (5.4) 

If we substitute for 
guv in terms of V and multiply both sides by 

we get the following equation 

(a au- 11-
)Q~

U°(x,x') = —84(xx') - AV(x)(aau _u 2)o~~°(x,x') + 

Ap2V(x) (1+XV(x) )A °(x,x') -xauV(x)a 'A°(x,x') , 

(5.11) 

In the next chapter we will discuss a general way of expanding A °(x,x') 

in terms of the zeroth order solution A4 °(x,x') defined by 

For the time being we will discuss only the linearized theory and take 

liP cs> to be the "in" vacuum lo> . We will require that the first order 

solution of (5.11) approach the free Feynman propagator A F(x-x') as both t and 

t' } - 	Under this condition equation (5.11) may be written in the 

following form 

A(x,x') = AF 
(x-x') - 

J d4y 
A F (x-y) H(y) dF (x'-y) 

+ I d4y A(-) (x-y) H(y).A (-) (x'-y), (5.13) 
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here H(y) is the following linearized operator 

H(y) :_ -XV(y) (a au - 11 2) + Xu2V(Y) - A
au 
(V(y)) 	au , (5.14) 

ay 	ay 

and 0(-) is the negative freauency function. (In the next chapter 

we will give a general formula which reduces to (5.13) in the linearized 

theory). It is obvious that (5.13) satisfies the linearized form of (5.11) 

w.r.t. both of its arguments and approaches A F(x-x') as t and t' } - 00. 

We will be interested in the coincidence limit of IX(x-x') 

and 8u3ur p(x-x').. It is not difficult to check that in this limit the 

term involving A(-) is finite and it is only the first two terms of (5.13) 

which become infinite. By substituting the Fourier transforms of 

the A(-), i.e. 

6, (-) (x-Y) = i Jð4p  6 (po) ā (p2+112) e-ip (x Y) 

we can show that 

Ah(x-x' ) := I d4y A(-)(x-y)  H(Y) d (-) (x2..7) = 

f
?4q V(q) I ~4p e-ix.p + ix' . (p+q){e (po)  

2 
$ (p2+1.12) 3 (q2+ 2p.q) (42 -2-- )} . 

(5.15) 

(5.16a) 

(The subscript h on Ah is to remind us that this function is a solution 

of the homogeneous equation). In writing (5.16 a)we made use of the 6-functions 
2 

to substitute -u2 for p2 and _ 2 for p.c. 

From (5.16a)we may easily evaluate 
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nAo 

	a 	
d h (x,x') = 	

J 
d4d401V(q)I d P e

-ix.P+ix'•(P+g){e(Po) 

DX 	8x 'o  

4 

e(-po-go)$(p2+12)$ ,q2+2p•(1)(u4 - 4 
)} 

Now we can let x=x' in (5.16). Then we will need to evaluate the 

following integral 

1(q2) = 

J 
I a

4
p{e(po) e (-po-qo) 

_6024112).6__ 
(q2+2p.q) ) 

 4 
p 	t(p°-w ) e(- P-g 
F 	

2)3 (q2+2p•q) ) 
= J 2w . 

where wp := + (?~'+u2) 

(5.16b) 

(5.17) 

To calculate this integral we choose a frame in which q = (q°,0). 

Then 

e(-wQ 140) 6(q2+2p.q) _ 

1 
6 (q° + 2 w) 

2w
P 

and we get 

I(q2) - 

   

-2) e(-(10-20 

  

Ig
o 4 T 

 

4 

1 

q 
(5.18) 
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If we substitute (5.18) 	into (5.16) we get 

= a J(x) 	ā4q elq' Ī(q) 	(112- q2 )I(q2) (5.19a) 

a d h (x, x' ) = AJd'4q 
eiq.x ?(q)(114_ 

4) I(q2) (5.19b) nAo Q ax 	axe 

x=x' 



A 
J 4q 

 V (q) fdAp 	eix.p-ix'. (P-q) 2p 2+p•(p-q) 

(P2+1.1) [ (p-q) 2+u27 
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Unlike these finite quantities the contribution of the first two terms 

of (5.13) - denoted by A 
inhomo is infinite. Indeed if we substitute 

the Fourier expansions of p F in A. 	weet inhomog 	g 

4 eip.(x-x') 

A  inh (x' x') 
__ 	

P 	p2+u  

(5.20a) 

Similarly 

p2 eip.(x-x') 
Au 	a 	a  

n 	8 x a 3x' o inh (x'  x') 	u4P 	2+u 2  
P 

A 
J •
4q V(q) f ct4

q eix.P-ix' . (p-q 

 

P • (P-q)[ 2 u2+P • (13-q)1  
(5.20b) (p21.112)[ (p_02+112 ] 	' 

Clearly eqns (5.20) become ill defined when x=x'. To give them meaning 

first we must regularize the integrals. To this end first we make use 

of the Feynman identity 

1 = f da ab 	jo 
1 

( a a+(1-a)b12  

1 

(5.21a) 

with a = (p-q) 2 I. 11 2 
	

and b = p2-111
2 	

(5.21b) 

to write 

4 f(P) 1 4 f(P) 

d 
P 

(p2 f 2) C(P—q) 2 2  o 
d P 	

( 2+2k. +M2  2  

where 

k := - aq and M2  aq2  + 112  (5.21c) 



16 Tr 	o 	[ u2-q2 (a2- a)  ] e 

Xr (e) 	 1  {g2[a2(3+e)-a(3+e)]- 4 
	2 	!q elq 'x  V(q) da 	 

f 2 
b (a) = a2 (-6-6 e) + a(6+6 e) - 1+ e (5.23c) 
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then we apply the technique of dimensional regularization whereby we 

substitute p°  = -ip4  and then make the space-time dimension an arbitrary 

complex number n. This amounts to the following 

4p•-+ -i dnp 	 (5.21d) 

Having gone through all of the steps (5.21a-21d) (and making use of 

the formulae in Appendix B), the equations (5.20) may be written in 

the following form 

reg 
4 
inh (x) = ic + 

(5.22a) 

 

re g 
a A 

ā 	a inh (x-x') am ax' 

  

Xcr 

 

= -iu2c + 

 

x=x t  

 

AT (e) 	
q elq' (g) da {a(a)g

4+b(a) u2g2—p4I 

16.72 	 ° 	[u2-g2(a2-a) ] 
(5.22b) 

Here a := 2- - is the regularization parameter. The new symbols a,b 

and c are defined by 

( 	 1 • 	r (e) 
c :_ - 

J 
eP 	2 	- 	2 	u2[ 14 -ea 	] , 	(5.23a) 

P
2
+ u

2 16ir 

a(a):= a4(10+6e)+a3(-20-120+ a ( ?2 + ---e ) - a 12 e (5.23b) 



Except for the first terms in eqns (5.22) which are constant infinities, 

in the V-dependentterms it is only maximum up to the q4 terms which are 
infinite. To see this and to write (5.22) in a form which is more suitable 

for our renormalization prescription we expand these equations in a power 

series of (q2+m2). In doing this we make use of the following 

approximation 

s 

[ u2-q2(a2-a)7 =1 +clog [11
2-q2(a2

-a)] + 0(c
2
), 

We also introduce the expansion coefficients f.(a,) through 

-.CO 

log[p2-g2(a2-a) ]_ 	/ f. (a) (q2+m2)j, 
j =o 

(5.24a) 

(5.24b) 

where 

fo(a) log[p2+m2(a2-a)] , (5.24c) 

Now with some straightforward algebraic calculations we can show that 

reg 
-ipinh (x) = c + c~ V - is rclnq elq' x V(q) { c1(g2+m2) + 

c2(g2+m2)2} + a (x) , (5.25a) 

and 

reg 

_i nXa. 	
~- 	(x,x') 	= -11

2
c + d

o 
	-  

	

a xA a x' a 	inh 	x=x' 	o 

ia Jqe1q'x V (q) {d1(g2+m2)+d2(g2+m2)2 } + a(x) (5.25b) 

The infinite numbers ci and di are given in (B-7) to (B-12). The finite 

functions a (x) anda (x) are defined by . 

78. 
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(1(x) 	_ 

a (x) - 

—3xr(e+ 1) 
~4q elq 'x V{q) 

i 	x 	1 e q' 	V(q) 	da 
o 

1 

da(a2-a) 
o 

m2fj+1(a) 

o 2 	2 (q +m ) 
j=1 

°° 

j=2 

], 

j+2 

(q2+m2)J+1[ f. (a) -  

(5.26a) 

[ a(a) 	f. (a) 	+ 

16 r 2 

-xr(e+l) 

1 

4 
d' q 2 

161T 

(1.12 11W -2m2a(2)) f.+1(a) + (m4a(a) - m2112b(a) -u4)fj+2(a) ] 

(5.26b) 

Finally we define <oI 2(x)(o > reg through 

< o ( ( 	(x) ( o> reg _ -i Qreg(x,x • 

(5.27a) 

similarly, 

< o (au (x) aus (x) > 
reg 	 inaa a~ 

	xa 

Q reg(x,x') 	(5.27b) 
ax ax 

x=x' 

where 

Q reg(x,x,) = 0 reg 
(x,x') + A h(x,x') 

inh 
(5.28) 

In substituting from (5.19) and (5.28) we must remember first to 

reg analytically continue back the finite part of a inh into the 4-dimensional 

Minkowskian space-time then add it with A h. 

Now we substitute (5.27) as well as the contribution of the 

counter term (5.8) into the r.h.s. of the V-field equantion. Thus the 

modified V-field equation will be the following: (the contribution of the 

curvature terms have been calculated in (A.59) to (A.69). 

* [On the question of reality of the regularized <oI 2(x)lo > reg and 

<o( auf (x)au (x) ( o > reg see §4 of Appendix B.1 
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(332m2)V(x) = a {- u2 2 + (u2c + 2A) (1+AV) + 

d 
C (u2cō 2)  + 

112 (-3A+18Bm2) + go] x1,7 - 

d 
ix  J&nq e

1q' 7(q) C (q2+m )2(u2c2+ 2 + 18 B+g2) + 

(q2+m )kp c1  + 2 + 3A - 36m2B +: i) ] + 	(x) } (5.29) 

where the finite numbers go,g1  and g2  are defined by 

d 
T(g12) gi 	

d(g2)1 	q
2
=-m

2 
 

with T(q2) given by 

r 
T(q2) _ _if d4x 

 ēiq.x ( 2 p h 	(x,x') + 2 
u 
  

a 	a 

axu axtu 
4_ 	(x,x')) 

 

 

x=x' 

and the finite function 	(x) is given by 

(1)(X) = u a(X) + 2 6  (X) - 

2 
f 4

i d- q.e1q'x  { T(q2) 	- 	. G 
cc gi(42+m2)1 } , 

1=0 

A 

with a and 0  defined by (5.26) 

(5.30) 
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§5.3 	The renormalization conditions.  

As stated several times before,in our programsin order to give 

an unambiguous expression for the finite remainders we fix the regularized 

renormalization parametersby imposing physical conditions on equation (5.29). 

In principle any three conditions may be imposed on the solutions of this 

equation. In practice however we choose the most convenient ones, e.g. 

i) We demand that the coefficient of (q2+m2)2 to vanish. 

ii) If the initial V-field satisfies the free Klein-Gordon 

equation then the coefficient of (q2+m2) in the Fourier 

expansion of (5.29) must be -1. 

iii) If the initial V-field is zero and the initial quantum 

state is to> so must they be for all future times. 

As we see all of these three conditions - particularly the 

last one - depend on the dynamic character of the V-field. For a fixed back-

ground field these conditions would be meaningless. 

The first condition immediately implies that 

d 
B= - 18 (u2  c2 + 2 + g2' 

The second condition plus equation (5.31a) yield 

d 
A = - 	[2  c1  + 	2 

 + 2m2 
(u2c2 	

+ 
2 
 + g2) + g1] 

(5.31a) 

(5.31b) 

In order to implement the third condition we first evaluate the pole 

parts of A and B. We do this in order to show that the coefficient of XV  in the 

end lime of(5.29) is of the form u2 2 + 6m2, where ;ōm2  is finite. 

Therefore the non-derivative infinite terms in (5.29) occur only through 



with 
_u4 	r (c) • 

P•P[A] = 4 1672  
(5.34h) 
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the combinations (1+XV), which is obtained from 6lg =4(1+XV)2  in 

the counter action. This is of course essential for the renormalizability 

of the theory. Otherwise we would have needed the non-polynomial counter- 

terms 	L A..Vn  , for the determination of whose constant coefficients we n=o , 

would have required an infinite number of physical conditions 

Since c2  and g2  are finite the pole part of B is the same as that 

of 
1

d2, which may easily be calculated from eqn (B.13) and (5.23) to be 

-1 13'4.'12]
I 	_ -1 	r (c) 	1 

P•P[B] = 36 'Ptd2) 	-36 	2  16r 
(5.32a) 

similarly 

P•P[A] = 
+ 2  

1 r(e) u  
3 16r2 	4 (5.32b) 

Therefore the pale part of the coefficient of XV in the 2nd line "of (5.29) will b 

d
o  

13.10( u2  co  + 2 + m2(-3A+18m2B)+gō - 2 	2 
1671 

which is the same as - u2  /2  p.p [ c ] . Thus if we make use of (5.31) 

in eqn. (5.29) we get 

(3 au m2  )A% = A{ (u
2 2 + 2A) (1+XV) + 6m2AV + (x) } 

	
(5.33) 

Here Sm is a finite number and is given by 

d 	 2 
SIT := (u 2co+  2) + m2(-3A-18Bm2) + go  + 	2  , 

Now we can impose the third renormalization condition on (5.33). This 

will imply 

A = -p 2 4 	 (5.34a) 



 Tr{ 
24 

YUV 
Y+ 4 X2 11 RX + 

811.2 (n-4) 	 uv 
AL - 

1 
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§5.4 
	Comparison with the results of 'tHooft.  

'tHooft has given a master formula which removes the 

infinities of the class of the models whose dynamics is described by the 

following Lagrangian density.(19) 

L =.)./7g{-    
2 

(a u $+ N15 .) gUv (av 4)•  + 
Njlc 

)̀ k )+ 2 iXij 4j 1, (5.35a) 

where- N13 = - Nil g► X,. = X . 
u 	 31 

Note that L is bilinear in 0 . The i=j are the internal indices. 

'tHooft argues that all one-loop infinities as n44 (or c-} o) are 

absorbed by the counter-Lagrangian 

120 ' RRUvl + 	
R2 I } 

uv 	240 
	(5.35b) 

where 

Tr I = number of fields 

Yuv =a
u Nv 

-av 
NU + NU Nv - Nv NU 

Now if we compare (5.35b) with (5.8) then we can make the following 

identifications 

N = 0 
	

Y=0, X= -ū 

If we also use the fact that for the metric (5.4) we have 

f d4x T (R U R U~ 3 R2) = total divergence 

then (5.35b) becomes 
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AL 	= 

where 

✓-g {A'-FA'R + 	B'R2} (5.36) 

1 11 4  -11 4r (e) 
A' (5.37a) 

87r2(n-4) 4 4x167r2  

A'  1 2_ 
2r (e) (5.37b) 

8 71(n-4) 12 12x 167f2  

B'  
1 1 _ —r (c) 

(5.37c) 
8 7(n-4) 24x6 4x36x16712  

Recalling that the definition of our Ricci tensor R differs 

by .a minus sign from that of 'tHooft's we observe that (5.37) is exactly 

the same as the pole parts of A, A and B - given by eqn (5.34b), 

(5.32b) and (5.32a) respectively. 

Thus the two counter Lagrangians (5.8) and(5.35a)differ only 

by finite quantities. This finite difference is actually unambiguously 

fixed by our renormalization conditions. 
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CHAPTER 6.  THE RENORMALIZATION OF SEMI-CLASSICAL  

THEORY OF GRAVITY.  

§6.1 	Introduction  

The model studied in Chapter 5 - if fully quantized -.is 

clearly non-renormalizable. We saw however that leaving one of the 

fields classical permits us to eliminate the infinities by introducing 

a finite number of renormalization counterterms. This observation 

is of course of a paramount importance for the semi-classical theory 

of gravity. 

In recent years there has been an extensive study of the 

propagation of the linear quantum fields in a fixed background space-

time. All of these studies have indicated that in order to give the 

theory a meaning one must add the counterterm (5.7) to the 

action integral. Apart from the fact that for a fixed guv  field such a 

procedure is meaningless, as we saw in the last two chapters in the 

absence of the dynamics of the guy -field  the finite remainders are 

also ambiguous. 

In our theory however the existence of the action integral (3.13); 

and therefore the dynamical character of g 
uv 

 solves both of these 

preblems simultaneously. Thus the renormalized action 

Sren = Sg + S
, + d4x A L (6.0) 

with AL given by (5.7) will lead to the renormalized Einstein-field 

equation. By imposing four renormalization conditions on this equation 

we will be able to fix the regularized values of the parameters, A ,A,B 

and C unambiguously and thereby obtain uniquely defined finite 

renormalized field equations. 

The procedure will be exactly as in Chapter 541 Only the 

computations will be somewhat more involved. 
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§6.2 	The regularization of<ii T ol ub 

In recent years there has been considerable amount of interest 

in the matrix elements of Tug -operators of the quantized fields 

propagating in a given back-ground space-time. These matrix elements 

are infinite and in order for them to be meaningfully handled their 

infinities must be isolated by some regularization scheme and then 

removed by a renormalization prescription. For a given quantized 

field the singular structure of the matrix elements of Tug is independent 

of the choice of states although the finite parts depend on them
(14). 

In order to study the divergence structure of these matrix elements 

it has proved technically simpler to work with <out.o1TUv l in,o> rather than 

with any other; and therefore all of the regularization schemes 

developed so far have been so constructed that they only yield the finite 

4 
part of this particular matrix element. Of course if our purpose was 

just to investigate the nature of the counter-terms to be introduced 

for the elimination of infinities this would be quite sufficient. 

However, in the semi-classical theory of gravity an off-diagonal 

matrix element on the right hand side of the Einstein's equation in 

general would lead to complex solutions for guy which from a physical 

point of view are very undesirable. On the other hand in our 

theory-based on a variational principle - we are forced to have the 

diagonal matrix elements of 
T
uv as the source of the gravitational 

field. This calls for a systematic treatment of the infinite as well as 

the finite parts of these quantities. 

o 
Let us consider the two point function A (x,x') defined by 

eqn (5.9) . As in Chapter 5 we will define the la $ 2(x)~ 
It) 
o > 

eg 
and 

<g,o I 3u. (X) 3v1 1(X)1 U o > reg through 
reg 

<4,0 14) 2 (x)I * 0>eg :_ [-iA o(x,x') 7 
X=X' 
	 (6.1a) 
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re 	 a 	.a 	ō 	reg 
• <ipo I a u cp(x) av gx) (,b o> 	g := [-i 

āx 	 ~ A 
(x,x') 

3x11 x 
	
x=x' 

(6.Ib) 

Having got these regularized quantities we can easily construct 

<*oI Tuv1* >. Thus the main problem is to evaluate A °(x,x') and  o 

then regularize it. For a real field satisfying the eqn (5.5) this 

function will satisfy the inhomogeneous equation (5.10). Our objective 

is to solve this equation with the condition that as t and t' 	- °° then 

A °(x,x') approaches A  °(x,x') defined by (5.12). To this end we 

choose a class of coordinate systems in which the following conditions are 

satisfied 

au (Vj g/1.9) = 0, v ; 0,1,2,3 	 (6.2) 

We also introduce a new field 
hu' 

(x) through 

guv(x) _ 
~µv 

- huv (x) , 	 (6.3a) . 

We may also write 

4-g(x) = 1 + 	
h(x), 	 (6.3b) 

We remark that in the linearized theory h(x) will be given by 

h(x) =11 h uv (x) , (6.3c) 

uv 
In general however h will be a complicated function of h (x) 

which we do not need to specify. If we substitute from (6.2),(6.3a) and 

(6.3b) into (5.10) then this equation may be wiitten in the following 

integral form 

A °(xx') = A °o(x,x') - d4y4 R(x-y) H(y) A °(y,x') 	(6.4a) 
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where H(y) is defined by 

H(y) 	- 2 h(y) (auau -u2) + (1+Zh( y))huv(y) auav (6.4b) 

Equation (6.4a) incorporates the initial condition w.r.t. the x 

variable. However as it stands it is not symmetric w.r.t. the inter-

change of x and x'. Thereforeit does not satisfy the eqn (5.10) 

w.r.t. its x' variable. On the other hand if we symmetrize this 

equation w.r.t. the interchange of x and x' then it will not satisfy 

(5.10) in neither of its variables. However, we may force it to satisfy 

this equation by symmetrising and adding a new term to it, i.e. 

we write :instead of (6.4a) the following equation 

A °(x,x~) = 0 0O(x,x7) J d4y {A R(x-y) H(y) o °(y,x') + 

A R(x'-y) H(y) A (y,x) + 

4 R(x-y) F
~Uo (y) R(x'-y) } , (6.5a) 

then we can choose F(y) such that °(x,x') meets all of our demands. 

Before going any further let us write (6.4a) in a slightly different form. 

We do this first by inserting (6.3a) and (6.3b) into (6.2) to get 

where 

au H uv = 0, 

H u'  := Z nuv h - 	v- 2 h h u 

(6.6a) 

(6.6b) 

Next we substitute (6L4b) into (6.4a). After doing some integration 

by parts and making use of (6.6) we get 



89. 

°(x, x' ) 	_ 	°° (x, x' ) - I d4Y { 2 u 2 R (x-y) h (Y) pzy , x' ) + 

a 

u p 
R(x-y) H 	ā ~ 

uv a
Y, x' )} 

aY 	aY

V 

 

Now we symmetrize the expression under the integral sign w.r.t. 

the interchange of x and x' and add the additional terms. This 

yields 

A ° (x, x') = A °o (x, x') - ( d4y { 2 p A (x-y) h (Y) A ° (Y, x') + 
J 

a 	

°(Y, a 
~R(x-y)HUV 	a 	x) + 

ayu 	aY" 

2 u2 A (x'-y) h(Y) 0 °(y,x) + 

a 	oR(x'-y) H(Y) 	
a 	

°(Y,x) + 
aYU 	aY 

AR(x-Y) F °(Y) AR(x'-Y)} (6.7) 

„here the unknown function F ° is to be determined from the condition 

that (6.7) satisfies (5.10) w.r.t. x and x'. Thus if we act on (6.7) 

by (aaux -u2 ), say, we obtain the following 

A R(x'-x) F'P°(x) = f d4Y{ u2A R(x'-Y)h(Y) (a x2-r )6 °(Y,x) + 
1

Ilj 
a 
u A

R(x' —y) 111"(y)
a y~ 

(aX —u2 )A ° (y,x)} , 

Hence the verturbative solution for L°(x,x') must be obtained in the 

following order. First we substitute the zeroth order solutionsAo 

(6.8) 



90. 

of eqn (6.7) into (6.8) to get the first order solution for F then 

we replace it into (6.7) to obtain the first order solution for A ° 

which in turn must be put into (6.8) to yield the second order 

solution . These steps may be repeated up to any arbitrary order. 

It is worth mentioning that here we are dealing with perturbation 

expansion for 4l°. At each stage of this expansion we may in turn 

expand guv in a power series of some parameter, the Newtonian 

constant, say. In solving the equations of the semi-classical theory 

of gravity these two expansions must bf course go hand-in-hand. 

Now as an example (and for use in the next section) let us 

choose 1 1Po> = l o,in> and calculate the a ° (x,x') up to lowest 

non-trivial order. 

The lowest order solutions is of course trivial. It is the free 

Feynman propagator AF(x-x'). If we substitute this into (6.8) we 

get 

2 

AR(x-x' ) F(x) = — A R(x'-x) h(x) + 
2 

a 	a A R 	u~ (x'-x) H (x), 

To get the next order solution this expression as well as AF forA ° 

must be replaced into (6.7). If in doing this we also make use of 

the identity 

A R (x-y) = AF (x-y) - A(-) (x-y) 

where A(-) is the negative frequency function defined by (5.15) then 

after some algebraic manipulations we get 



Alo(I)(x,x') = AF(x-x') - 

By introducing 

61,1(x, x') 

we may write 

l o> 

2 
d4Y { 2 	AF (x-y) h(y) AF (x'-Y) 	+ 

OF (x-y) HPv °F(x' 

+ 

} 

(6.9) 

(6.10) 

(6.11) 

(y) 	yv 	—y) -  ayu 	a 

V2 	(-) u 	(-) 2 	(x-y) h(y) 	A(x1-y) 	- 

a 	
~(-) 
	

a 	-) (x-y) 	
Hpv

(Y) 	A( (x'-y)} , ayu 	ayV 

the function 	ah(x,x') 	through 

: = ( 	d4Y{ 	 2 	A(-) 	(x-y) h(y) A(-) 	(x' -y) 

	

aV 	
(-) 

a 	A(-)(x-y) (x-Y) 

	

Huv 
(Y) 	(x' -Y) 

°(1) (x'x' ) 

ay
u 	

ay 

(6.9) in the following form 

6 inh(x'x') 	+ 	6h(x'x' ) 

The subscript h on 6h is to remind us that it satisfies the homogeneous 

Klein-Gordon equation in either of its variables, i.e. 

(auau -u2)6h = 0. 

Thus the 6h term in (6.11) is just to ensure the right boundary conditions 

satisfied by All) (x,x') 

91. 
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§6.3 The linearized theory.  

The linearized theory is an approximation in which h is given 

by Wuyhuu and HPv is given by 

Huv = lnuv 
h - h 

2 (6.12a) 

In this approximation any term involving second or a higher power of 

h will be ignored. Thus 
guv the inverse to g , will be given by 

guv =nuv + huv 	 (6.12b) 

where 

ao 
huv := nuanvv h (6.12c) 

From now on we will restrict our attention only to this approximation. 

What we want to do in the remaining of this chapter is to study the 

general structure of solutions of the linearized Einstein's equations. 

To this end the first task is evidently to have an unambiguous expression 

for <TUv> . Therefore first we must renormalize the theory. 

As mentioned in the beginning of the previous section as far as 

ios 

the divergent structure of<iPo IT tiv  1' o> is concerned the choice of the 

state 111,0> is immaterial. However, it is the finite part which we are 

interested in; and that depends on the choice ofliP >. We shall choose 1~
0 
> 

to be lo,in> . 

Let us first calculate the contribution of Ah to 
<TUv>o 

. If we 

substitute from (5.15) and (6.12a) into (6.10) we get 
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h(x,x, ) 	
= 

$4q h,1Q (q) 
J 

f d4p 	e
-ix.p + ix`. (P+q) {6(po)$(p2+U2)  

e(-po-qo)ō (q2
+2q•P) px 

pa 

	
} (6.13a) 

From this we easily get 

3uav ~h(x,x1 ) 	= for 4q hXa(q) 	Id4p 	e-ix.P + ixt •(P+q) (6.13b) 

{ e (Po) $(P2+
1
12) e (-Po-qo) d'(P2+2p.opXpa (PPv + Pugv) } 

Now we may let x } x'. In this limit the p-integrals in (6.13) can 

easily be evaluated. Let us consider (6.13a). On the basis of Lorentz 

invariance the p-integral of (6.13a) can only have the following form 

Iao 
== fp  e(po)t(P2+u2)e(-Po-go)$(g2+2p.q) pXPa = 

q 
al (q) 	

~2o 
	a2 (q) naQ 

q 

where a1 and a2 are invariant functions of q. These functions can be 

determined by forming the following tensor contractions 

11 	
Iao = - 112 I(q) 

al(q) + 4a2(q), 

X6 

	

q q 	2 

	

2 	

IA6 = 	I (q) 

= al (q) + a2 (q) , 

where I(q) has been defined by (5.17) and evaluated in (5.18). 

Thus we obtain the following value for a1 and a2 



al(q) = 
3 

0
2 + 

(1
2)I(0, 

-1 
 

a2(q) = 3 (u2  + g4)I(q) 
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Upon substitution of al  and a2  into IXo  and the resultant expression 

into (6.13a) we get 

Oh(x) =Z f
q eiq.x h(q) (-

1
2  + 

q2
2
)  „co 

, 

On the other hand the p-integral in (6.13b) - after being 

symmetrized w.r.t. the interchange of u  ++ v - may be written in 

the following form 

I
uv,XQ

: 
	

f 4pcop°)  $(P2-112) eq-p° - (1°) 	x 

	

$(q +2q•P) pxpa(PUPv+ 	2 	)} 

= a1 nuv nav+  a2 (npX  nva  npanvA) + 

a 
qugv 	gAgo n + 

3 	Ti 	+ a 
q2 Aa 	4 	q2 	uv 

1 

q
2 a5  (gvgo  npA  + qu4a  nVa  + gvq),  npa+ 

o qo„nVX ) 

qugv (IX `o- 
a6 	4 

q 

2 	Pug +v Pvqu 

(6.14) 

(6.15) 

where a 
1 	a6 

are invariant functions of q. To determine these 

functions we evaluate the following tensor contractions- 



2 
nuv 

TiXa Iuvaa - u2 (u2  + q2  ) „co _ 

16a1  + 8a2  + 4a3  + 4a4  + 4a5  + a6 ,  

2 
nua 

Ti
va 

IuvXa =  u
2 

Cu2  + 2 ) I(q) =  

=4a1 +20a2 +a3 +a4 +10 a
5 +a6  

1J v 
q q 	Xc 

g2 	 n 	IuvXa 4 u2g2I(q) = 

= 4a1  + 2a2  + 4a3  + a4  + 4a5  + a6  

X a 	2 	
2 

42g 
	 nuv 	

Iµvaa 	4q 	
(u2  + 	) I(q) = 

q 

= 4a1  + 2a2  + a3  + 4 a4  + 4a5  + a6  , 

quga 	-g4  

	 nVa  I 	= 
g2 	uvaa  

= al  + 5a2  + a3  + a4  + 7a
5 
 + a

6, 

qugvga 	4 
4444 	-4 

-q  

95. 

I(q) = 
16 

 

4 	IuvXa  

 

I(q) = 

  

q 
16 

= al  + 2a2  + a3  + a4  + 4a5  + a6  , 

These equations can easily be solved to yield the following 

2 

al  = a2  = -a5  = 
5 

(I2 	2  + 4— )I(q) 
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2 
a3 = 15 (u2 + 	) (-u2 + q2) I(q) 

2 
a4 = 15 (u2 + 2 ) (-u2 - 2 q2) 1(q) 

2 	4 
a6 = 5 (u2 + 	)2 1(q2) - 16 I(q) 

After substituting a1....a6 into (6.15) and then putting I uvaa 

into (6.13b) we get 

( 	 2 

aavoh(x,x') I 	15 J~4q eiq'x I(q) { (u2 + q4 ) x 
x=x' 

2v (u2-2) q h(q) + qu2v (- 2 p2 + s q2) h(q) 
q 

15 
32 qugvg2 

1 2 
h(q) + 2 (u2 + 4) hu)(q)J} (6.16) 2 

112+ q 2  
2 

4 

To calculate the contribution of All to < olTUvJo>, we substitute 

(6.14) and (6.16) into the following*  

<01 Tuv(x)Io>h = —i limit { a 	a  

ax(u ax'v 

1 2 nuv( ~a n 	aX 	a + u2
)} ah(x,x') , 

ax ax' 

* On the question of the reality of <oJ Tuv(x) lo>h see §4 of Appendix B. 
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From which we get 

< 
Q! T (x) I o>h 	15 ) 

d.4q eiq. x 
I(q) { - qu2v(U2 + q4)(-2u 2 + 

7 g2)h(q) 
q 

2 

32 quq q 2 h(q) + 2 (p2 + 	
)2 hpv  (q)} 

2q2 

--'L 	d4q eiq.x 
I(q) ~(q) (u3 + u 6 + q8 ) 

10 j 
(6.17). 

In a similar manner we can calculate the contribution of 
ainh 

to 
<oFTUvlo> 

. 

We denote this by 
<o F TUv I o> 	. The result of a relatively long calculation 

i5 the following 

r (e) 	4 
<olTUv(x)lo>i 	2 	u C1 + e(2  - logp2) ]guv + 

nh 
1671. 	4 

i & geiq.x hAo(q) {q
4C -A 	+ 

2 
1 S (By 	+ u2ES 	)] 

	

uvaa 	pv yav 	Xa 

gpgvAao+ q2 C-BUvXa 
+ 16

py
(B
7.0ta 

+ p2ES )] 

- 
pv 
(x) + 

SPv [u
24) (x) + 4)Y (x) ] (6.18) 

Here 	c = 2 - - 	with n as the spacetime dimension. The constant 

tensors A's and B' are defined in §3 of Appendix B. The finite function - 

'' 	is defined by 
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N 	1 

pv

(x
) = _ ft q eiq.x hav(q) 	da DpvAa(g2'a) ' 

o 

(6.19a) 

where 

co 

Duvao(g2'a) :_ - s G 	(q2)j {fj(a) [(q2 )2 apvAa) 
j =1 

q2qp qv aAo (a) ] 	+ 

fj+1(a) E(q
2
)2 bpvAo(a) + q2 qugvbAo(a)] + 

fj+2(a) (q2)2 cpvAo 

The f.(a) in this expression are defined by (5.24b-c) with m2=0. 

The tensors a's and b's are also defined in Appendix B. Similarly 

for the finite function 1)(x) we have 

1 

	

fZ 

2 	
~4q 

eiq.x h (q) 	da y 
(q2)j+2 

16~r 	j=1 0 

2 
C fj+1(a) (a2 - 

32 + 2) _ u2 fj+2(a)
] 

(6.19b) 

(6.20) 

Now we are in a position to calculate the total 	<olTpv(x)lo> 

<olTpv(x) to>
reg = <olTpv(x)lo> reg + <oJTpv(x)la>reg 

inh 	h 
(6.21) 



§6.4 	The renormalization.  

The eqn. (6.21) must be inserted into the modified Einstein 

field equations. These equations are obtained from the extremization of 

(6.0) w.r.t. guv. With the help of eqn. (A.38) and (A.51) we get 

99. 

6Sren 

6g 
uv = 0 = 

1 

 

Guv + 
2 <01 Tuv(0> 

reg — 

16m-GN 

[ 

-p 
g + AG + 

2 uv uv 

(B + 2) 6Av auav
a2hAa(x) - 

4 aa 
(B 6uv61~a + 4 Auvaa) a h (x)J 

or equivalently C recall that huv(x) = -if 
eq elq'x huv(q) ] 

r (e) 	4 
	3 	2 0 = guv{ 2 + 	2 	[ 1 +e (2 - logu) ] } + 

167r 	8 

{( 1 	A) .(. 	AuvXa 
	2 (Suv6Xa)+ 

16TrGN 

2 
[- Buvav + auv(Bryxa + u2E 6Xa)] 3 h~o(x) 

+ 	[(B 6 6 	+g A 	) 
uv aa 4 uvao 

[- 
Auva6 + 26uvOjYa6 + A

Xa+ u2 D Exa) ] a4 hXa(x) 

d 

2 ~uv(x) + 	4v C u2 ~(x) 
441,y 

(x)] + 1 ò(TUv(x) (O> Y (6.22) 



( 	 AuvaQ + 2 4 	pv S6A)32 hAu(x) = 0, 16zrGN 

1 
(6.24) 
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We mention that since <olTpvlo>h involves I(q) - which together with 

all of its derivatives vanish at q2 = 0, therefore this term will only 

contribute to the finite part of <olTpv(x)lo> . 	The renormalization 

parameters A,A, B and C may be fixed as in Chapter 4 and 5, namely by 

requiring that all solutions of the linearized Einstein equations to satisfy 

four physical restrictions. 

i) As before the first condition is imposed by demanding 

that if we start from an initially flat spacetime and the 

vacuum state of the 4-field then nothing should happen, i.e. 

the spacetime should remain flat and the quantum state should 

remain vacuum. This implies 

r (e) 	4 
A =- 	u 	[A + e(2 - logu2)7 

16T r
2 
	4 

(6.23) 

ii) The second condition will essentially say that the 

coupling constant GN in equation (6.22) is the true 

Newtonian constant. This is implemented by requiring that 

if the initial hyo satisfies the free field equation 

then the coefficient of 32hao in eqn (6.22) should always 

be the same as in (6.24). This immediately implies the 

following 

I 	I 
A( 

- 4 	ApvAo+ 	
2 SpvSA~)- 

1 
2 C— Bpvao + 2 Spv (B

Y 
yaa + p2 E6Aa) 1= 0 , 

(6.25) 
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The solution of this equation yields A. 

4 
iii) and iv) The coefficients of a a 

v
a 2hAa and D h of 

u 

course can not be determined by renormalizing any of the 

physical parameters of the original action integral. Originally 

our hope was that by an appropriate choice of the coefficients 

of these two terms we could perhaps get rid of some of the 

undesirable features of the theory. However as we shall see at the 

end of this chapter the worst of these, namely the existence of 

solutions which grow exponentially in time can not be avoided 

by any choice of these coefficients. For the time being we assume 

that they are given by the following. 

(B +_ 2) d Xa 	AJIa 	
E 

(Sxa 
(6.26a) 

(BSsXa 	4 ~pvia) pv  

2 
[- AuvxQ + 2 Suv (A + AXa U a6 )J 

Apvaa' (6.26b) 

where E and n are some fixed real finite members. These two equations 

must be solved for B and C. 

It is not hard to see that the equations (6.23), (6.25) and (6.26) yield 

the same pole parts for A,A,B and C as those of 'tHooft in eqn (5.36b). Thus the 

difference between the two renormalization counterterms is a finite local 

function of the space-time point x. 



If we now substitute from (6.23) - (6.26) into (6.22) we 

get the following renormalized linearized gravitational equation 
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Guv (x) = - 8w GN <oĪ Tpv
(x)1 o> ren 

where 

< ol Tuv(x) lo >ren = 	uv (x) + 
• 

2njivF p2 
0(x) 

+ 
nAa Ao (x) ] + 

<01 Tuv(x) to> h + 

uava2h(x) + n °uvAQ 
a4hAQ (x), 

(6.27a) 

(6.27b) 

here 4)uv20(x) and <oITuv(x)Io>h are respectively given by eqns (6.19a), 

(6.20) and (6.17). We notice that the sums over j in eqn. (6.19a) and (6.20) 

may be simplified. This is done by making use of the following idenity 

~ 	
2 	

u2- 	g2(a2-a) 	
kcl 

(q2)j f.(a), (q ) f(a) = log 	 G 
j=k 	 u2 	- j=1 

If ewe also change the Feynman parameter into x := a - 
2 

then aftet 

some straightforward but lengthy calculation we get the following Fourier 

transform of (6.27b). 
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2 2hy,i (q) - 4 n012 Sq) q 	 = - 8 rGN 
<Tuv (q) >h - 

I 
2 	 2 .• 

2N ) dx log C(1+ ~2) - g2 x2 7 4 C -
4 

(x4 y- +lb) hv+ 
_ 	 4u 

— n uv h ( x4 16 x2 64 ) + g2qugvh (-2x4+ 2x,2) + 

2 
q2u 2 [ ā ( x2 - 	 ) huv + nuv h (-x2 + 8 ) _ 1+ 

2 	~' 	3 	
Pt' 

N r 1% qv h ( 2 x2 1 - 8) - 	h  } 

2N { ( 80 + 2n) q uv + 6 - 80 q4 n~,h + 

( 120 +) q~,gy g2h + 24 g2u2 huv} (6.28) 

where <T uv (q)>11 is the Fourier transform of <o ITIv (x) I o>h given by 

(6.17) . We mention that because of the factor I(q) in < T uv(q)>h 

this function vanishes at q2 = 0. For this reason we see clearly that 

2 
q = 0 and htx= 0 and satisfying the gauge condition 

ghuv(q) = 1 q h (q) , 

is a solution of (6.28). Physically these are the gravitational waves 

propagating with the velocity of light. It is not hard to see that almost 

all of the results obtained by Horowitz(16) for the coupling of 

classical gravity and quantum Maxwell field can infact be deduced from 

our equation (6.28). In particular we will check the existence of solutions 

which grow exponentially in time. Thasesolutions correspond to 

q = (w, o) where W is a complex number. For these solutions the 

contribution of <TUv(q) >h again does vanish. If we substitute from 
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uv (q) = 1 q h u~(q) - 1 n~v q2 h (q) , 

p 
for h 

uv 
in terms of ū v in eqn (6.28) then we can easily check that 

subject to the linearized Bianchi identities 

GoJ (w) = 0 	v= o,1,2,3, 

the only consistent way of satisfying (6.28) with a non-zero G 
uv 

and 

w= o leads to G(9) = n G uv(q) = 0.. Thus eqn (6.28) 

reduces to: 

2 	2 4 
w 2 = 	dx log E 1 — cu 2 + w 2 x2 ] {— x 	+ 

N 	 u 	u 	2 _ 	4  

2 	 4 
1) 4 w ū (x2 - 1) - u + 4 	32 	 4 	2 

( 40 + n ) w 	w 4 - 12 2►►t2 (6.29) 

To investigate the question of existence of solutions to this equation 

first we carry out the x-integration to get 

2 	2 	23 	4 	4 2 2 	8 4 
G w -{ (450 +n) w 	- 45u 

w + 15 u + 
N 

4u2-w2  
4 	_ 	log 

2 _ 4 

+ 2 _ 	w ) (w + 1
5 w21~ _ 

15u4) ) 60 
(6.30) 

For a pure imaginary wsatisfying 2f> 1 one m ay approximate 
2u 

the logarithmic term by 
 

1 log 
w 
2 . Then if we neglect w ū and 11

4 
 

u 
terms on the r.h.s. of (6.30) we get 



2 
21T

co2  " 	{ ( , 0 + n) — 30 log —w2 }  
N 	 u 

It is rather evident that for any choice of n this equation has 

a solution for negative w2. It is also interesting to note that this 

equations has exactly the same structure as the stability equation of 

Horowitz (c.f. eqn 32 of ref. 16). 

105. 
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CONCLUSION.  

In the first half of this thesis I tried to show that if 

one insists on integrating the classical Einsteinian theory of 

gravity into Schrodinger's quantum mechanics then the time 

evolution law of the quantum state of the system becomes implicitly 

non-linear. Once this was admitted then we obtained the coupled 

set of Schrodinger + Einstein field equation from a single variational 

principle. The action integral of this variational principle also 

has been used not only to incorporate the explicit non-linearities 

of the type introduced in §3.5 but also to accommodate the 

renormalization counterterms which are necessary to eliminate the 

infinities of the theory. We also saw in §3.6 that if one wishes 

to restore the linearity of the quantum time evolution law one 

must quantize gravity as well as the matter fields with which it 

interacts. 

Having renormalized the theory in Chapter 6 now we may employ 

it to make physical predictions. 

One of the areas in which this theory may be of considerable physical 

significance is cosmology. In fact the preliminary investigations on 

the problem of back-reaction on the metric of space-time of the 

particles created by a back-ground gravitational field out of the vacuum 

state of a quantized matter field have already been able to account 

- at least partially - for the present day homogeniety and isotropy 

of the large scale structure of the universe(17). 

However most of the investigations of this kind have employed 

the semi-classical theory as a sort of approximation to a fully yet 

undiscovered quantum theory of gravity. It is principally for this 

reason that until now attention has been usually confined to the 

gravitational "vacuum polarization" effects. Comparatively there 

has been very little study of the semi-classical theory of gravity in 
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which the quantum state is anything different from the vacuum. 

In all of these investigations the main object to be used is the 

matrix elements of T 
uv . 

In the last ten years or so there has been a considerable 

amount of work on one particular matrix element of 'Illy - namely 

o,out1T uv lo,in > . These studies usually have been directed towards 

the isolation of the infinite structure of this quantity, the structure 

which one expects to be independent of the choice of the quantum state. 

However, if one is to avoid complex solutions to the classical 

Einsteinian equations one must use the diagonal matrix elements of Tin)  

as the source term. Furthermore regarding the semi-classicaltheory 

as a theory in its own right (i.e. not as an approximation to a fully 

quantized theory) would demand a general technique,of handling an 

arbitrary diagonal matrix element of the type < ,01T1t : in which ō>  

is an arbitrary normalizable Heisenberg state. We developed such 

a technique in 56.2  . This enables us to investigate the perturbative 

solutions of the theory for a wide range of choices of the initial 

state ) ō > . We did infact obtain some qualitative results regarding 

the weak field limit in which IP > has been chosen to be lo, in >. 

The outcome of these studies was that (M, fl y, 10>  ) is an unstable 

solution of the theory. For a massive real scalar field - with no 

self-interaction except via its own gravitational field - this 

unstability occurs at very high frequendies. This might be an 

indication of the fact that our theory is essentially a theory of 

comparatively large space-time intervals. There is infact a wide 

spread belief that at the space-time intervals of the order of Planck 
* * 	1 

length (L = c3 )2  = 1.616 10 33cm) and Planck time (T = (ē5)2  = 5391 

x 10
-44  sec) the quantum effects of gravity do become important. 

However it could also indicate that the semi-classical theory of 

gravity has no weak field limit. After all being a Bose field it is 

only in the limit of intensely populated states that one expects 
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the would be quantum theory of gravity to satisfy Bohr's correspondence 

principle, namely to be approximated by a classical field. In this 

case the results of the weak field approximation will certainly be 

doubtful. 

One of the qualitative differences of the 	classical 

theory of gravity + quantum matter fields with a fully quantized theory 

is the instability versus stability of the single particle states. In 

a hypothetical situation in which the state of the universe consists 

of a single particle surrounded by its own gravitational field if the 

wave function of the particle becomes sharply localized at a particular 

time it can generate a strong enough gravitational field to produce 

additional particles. This phenomenon - if it happens - would be 

strictly due to the inherent non-linearity of the quantum time evolution. 

In other words in a fully quantized theory of gravity + matter fields 

one can not generate a many particle final state out of a single 

particle initial state merely by subjecting the particle to the 

influence of its own gravitational field. This is because of the 

stability of..the momentum eigenstates and hence by superposition 

principle the stability_of any single particle state obtained from 

their linear combination. 

The rate of such a particle production can be expanded in a 

power series of the Newtonian coupling constant GN  . In this expansion 

the leading term will be the zeroth order term which will correspond 

to the orthodox linear quantum mechanics. The non-linearity of quantum 

mechanics will only appear in the coefficients of higher powers of 

GN  . Thus the smallness of GN  may account for the unobservability 

of such a non-linearity. 

One other problem of cardinal importance which may be 

attacked in the framework of our perturbative expansion for 

<11)0ITpvlbo7 is the possibility of a solution (M,guv
,1 ip0>  ) for which 
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< II'o ITUv 14) o> does not satisfy the Hawking - Penrose energy conditions. 

In fact the preliminary studies of L. Parker and S. Fulling conducted 

on a self gravitating massive scalar field have shown that for an 

appropriate choice ofIll'o> such that the metric of M is restricted 

to be of the Robertson-Walker form 

3 
ds2  = dt2  - R2(t) 	/ 	S..(xl,x2,x3) dxldx3  

i, j=1 	3  

- where S..(x ,x2  ,x3) is the (fixed) metric of a 3-sphere-one can 3.3 

obtain a solution R(t) which possesses the remarkable feature that 

the system does not exhibit the classical gravitational collapse 

but rather `bounces off' the singularity of R=0 with the radius 

R(t) achieving a minimum of the Compton wavelength of the massive 

scalar particle. It is interesting to note that for a pion field this 

would mean a radius of IO-13  cm which is much greater than the Planck 

length 10
-33 

cm. 

However, there are several technical ambiguities in the 

renormalization procedure of Fulling and Parker. It would be interesting 

to carry out an analogous kind of investigation in the framework 

of our approach. 

Finally it might also be interesting to investigate the 

contribution of the explicit non-linearities introduced in §3.4. 



APPENDIX A 

In this appendix we collect all of the geometrical properties 

of the space time manifold which are essential for the derivation of 

the equations in Chapters 3 and 6. 

Although the method of the presentation of the material in 

Sections A.1 and A.2 is rather new the results are, however, well known. 

The material of the sections A.3, A.4 and A.5 are (so far as 

I know) original. 
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The section A.6 contains only well known results. 
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APPENDIX A 

§A.1 	3+1 slicing of the space-time manifold.  

We shall assume that the space-time continuum is 4-dimensional 

globally hyperbolic manifold with signature (-,+,+,+). Let the 

metric guv of M be given. Then the equations (A.l) given below will 

define a family a(t) of 3-dimensional space-like surfaces. 

xu = xu(E1,t2,E3,t) 	 (A.la) 

guv nun 	= -1 	 (A.lb) 

and 

= 0 	r = 1,2,3 	 (A.lc) 

(A.ld) 

Here 	are the coordinate functions on a domain of N and Eu , for a 

fixed t are the intrinsic coordinates on the surface a(t). We also 

introduce the lapse function N and the shift vector N by means of the 

following equations 

dxu 

(A.2) 
dt 

(ET) onst 

The definitions (A.1) will give a(t) an induced metric geometry which 

enables us to decompose any tensor field on M into normal and tangential 

components to a. Indeed for a fixed t we can write 

ds2 = gu~dx11 dxv = y s d ir dEs 

where 

Yr s 	= 	NJ x1 , x v, s 	,s = 1,2,3 	(A.3) 

:= xu = Nnu + N x 	. 
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is the induced metric on the surface a(t). 

For any tangent vector AcTx(M) we define the tangent and the 

normal components by 

Au = Al nu + xur A 
, . 

where 

Al = - nTAT 

and 

A = A xu 
11 	,r 

(A.4a) 

(A.4b) 

(A.4c) 

Since A is a covariant vector field on the 3-dimensional manifold a(t) 

Therefore we can use the yS, the inverse of the metricYrs to raise 

its index, i.e. 

Ar = r. s 
s 

(A.4d) 

The inner product of any two tangent vector A,BcTx (M) can be written 

A.B = guvAUBv = -A.B + ArBr 

Inserting from eqn (A.4b) and (A.4c) for A1,B1 and Ar,Br we get 

guv 
= _1111n +yr- s XP xv sy 	,s 

(A.5)  

(A.6)  

Expressions similar to (A.4b) and (A.4c) can also be written for N and Nr 

which are introduced through equation (A.2). 

N = -n xu u 

_ 	r _ 

Y guv xx ~'r : 	N' - y rsNs 

(A.7a) 

(A.7b) 

Note that xu is not a vector field on M , but (NI') defines a vector field 

on the surface a(t). 



-goo 

ro so 
yrs — g g  + grs 

(A.11) 
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gA.2 	Standard parameterization  

One way of parameterizing the surfaces v(t) is to write the 

equation 

Then 

and 

Inserting 

(A.la) in the following form: 

r = 1,2,3 = xr 

t 	= x 

x 	= 1 	and 	xr 	= 	0 	r = 1,2,3 

x ,r= 	0 	and 	xs,r = as 
r 

from equations (A.8) into eqn. 	(A.3) and (A.7) yields 

(A. 8a) 

(A.8b) 

(A.8c) 

rs 	grs 

N = -no 

Nr 	gor 

To evaluate yrs we make use of the following identity 

g 
gva _ guo 

goa + gPp gpa = ex 

We once let p = r and A = s then 

(A.9 a) 

(A.9b) 

(A.9c) 

(A.10a) 

gro gso + g g SP = as = yrp yps 

= y~p g ps 

Next time we let p= O,A = s then we get 

op 
oo 	+ op 	= 0 	g gPs 
g gos g gps 
	

g 

 oo 

(A.10b) 

(A.10c) 

Upon insertion from (A.10c) into (A.10b) we get 



Now we want to determine the components of the unit normal n in 

terms of guy . If we substitute from (A.8c) into (A.lc) then we get 

n 
r 

= 0 (A.12a) 

Insertion of this result into (A.lb) yields 

-1 
n 
0 _goo 

[We take the -ve root to agree with the Minkowski M, where n = (-1,o)] 

Therefore nu is given by : 

-1 

n (A. 12b) 

✓-g 0 

 

By raising the index of nu we get 

u 	guo 
n = 	n - 

o ~o 	 (A.12 c) 

Upon insertion from (A.9c) and (A.11) into Nr = YrsN ~e get 

N
+-

- g

rpg 	
grogPog0  

00 
g 

Now we make use of the eqn. (A.lOa) with the values of p = r and X = 0 to 

get 

rp gop 
	-g g 	

g oo 

By substituting this result into the previous equation we get 

ro 	 ro 
r " 	00 	po 	_ 	g  

N = 	g00 (g g00 + g gop) 	_goo 
(A.13) 

By comparing the equations (A.9b), (A.12) and (A.13) we obtain the 

following relations between np and (N,Nr) 
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_guo 

op 



p 
n = (N , - N

P 

np  = (-N, 0) 

gp0 - 
np 	-n  

n 
0  
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(A.14a) 

(A.14b) 

(A.14c) 

Finally from the definition 

00 
g = 

cofactor of g 
00 det g 	detyrs  

   

g 	g 	g 	g 

we get 

y 2  

i.e. 

= NA7 
	

(A.15) 

In the sequel we will only use this standard representation. 
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§A.3 	The variation of g 
v 

To obtain the results of chapter 3 we must vary g
uv 

while 

keeping XI' and x14' fixed. This will induce variations in nu, nu , and Y, 

Now we attempt to evaluate these variations. The final aim of these 

calculations is to obtain eq (A.37). 

The variations of guV will be subjected to the condition that 

they preserve the validity of equations (A.lb) and (A.lc). Then 

0 = S(guv env) = dguvnlnv + 2guvnuSnv 

i.e. 

nu Gnu = - 
1 nunvSguv 

On the other hand from equation (A6) we derive 

(A.16)  

Sg~v= - Snunv - nu Snv + 
Syrs 

x ,Y
v 
'Y 

By multiplying both orders of this relation by n and making use 

of (A.lb-c) we get 

Snv = nudguv + n dnu n 

Substitution of 

dguv = - gpX gvo Sg 
ao 
	 (A.18) 

and (A.16) into (A.17) yields 

(A.17)  

=-nX (gVa+ nvn) dgao 	
(A.19) 

By making use of 

v 
nX = n gva 

we get 
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SnA  = Sg
Av n 	gav 

Snv 

We substitute from eqn. (/A.18) for Snv  to get 

nA 
dnA 	- 	n nvdg

Yv  
2 

Multiplying both sides of (A.19) by 	yieldss dN (c.f. eqn (A.7a) 

6N = - dnAxA  

i.e. 

SN = - 
N nY nvdgYv 

(A.19)  

(A.20)  

Now we subject both sides of equation (A.15) to the variations of guy, 
uv 

then we get 

2 	
gYv Sg 

Y v 
 = SN Y2  + 2 N Y 25y 

Upon insertion for i=i from eqn. (A.15) and for SN from eqn (A.20) 

we get 

5y = Y(gYv  + nYnv) Sgyv 

The eqn (A.3) immediately yields 

u v 
dYrs 

__ 
x,r x,s Sg  ty 

(A.21)  

(A.22)  

and substituting this result into S( Yrs 
Yst)  = 0 gives us 

SYrs = - Yrp . sq xu  xv  S 
,p ,q guv 

(A.23)  
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§A.4 	The energy-momentum tensor in terms of the covariant variables.  

Consider a real scalar field $ whose dynamics onaq may be 

obtained from an action principle with the following lagrangian density 

L = - - v g (v$vu$+ v()) (A.24)  

Here V($) is a function of $ only. The energy-momentum tensor may be 

defined by 

- - 1—g Tuv - 8 
a guv (x) 

TP
v 
 = — Vu$vv$ + 

i.e.; 

1 guv( Vx$VA$ +V($)) (A.25)  

The canonical conjugate to $ is defined as usual by 

_ aL  
7 _  

where 

• 
= as 

at 

In what follows we will use the standard parameterization defined 

by eqn. (A.8) . Then inserting from (A.24) into (A.26) yields 

- 	gliov $ u 

Bysubstituting from (A.14c) for g'O  and (A.15) for V we get 

(A.26)  

(A.27)  

(A.28) 

where $1  is defined by 

$1  =-nuvu$ 

Applying the formula (A.4a) to the vector Vu$ yields 

vu$  = 0 nu + rXu 
,r 

(A.29) 
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Here r is given by eqn (A.4c) i.e. 

r 
rs Y 	

Os 

and 

u 	u 	4 
= vue x,S = auf x~S - 	axS 

Substituting from (A.28) into (A.29) expresses 	in in terms of the 

Hamiltonian variables r and (P, i.e. 

_! 	z 
, u

4) 
= - Y 2 1Tnu 

+ 4 xu 

$r 

(A.30)  

Now in order to express Tuv in terms of Tr and 	we substitute buy 

into eqn (A.25) and then we make use of Eqn. (A.lb) and (A.lc). 

Then we get the following 

P
v 	-1 u v, uv 2 -z r u v 	v u 	u v 1 uv 	r s guv  T = -Y (n n +īg )7r +y $ (n x

,r
+n x'r)Tr-(x$rxs-zg Yrs)cp 	+ 2 V(4) 

(A.31)  

The Hamiltonian is defined by 

H= - J da TP Iv 

a(t) 

(A.32)  

Here da := ny2 d3  is a surface element in the normal direction to a(t) 

For the standard parameterization defined by eqn. (A.8) eqn. (A.32) 

reduces to 

H= Jo d3xjTo° 

x=const 

Upon substitution into T
o

o 
= go1 To from eqn (A.31) and then substituting 

the result into H we get 

_1 

H = d3x 
	(ly-1 ,~2-y 4s nsr + 1 yrs 4rcps+ 

	v(0) (A.33)  

In deriving the 2nd term inside bracket we have made use of the following 



two identifications 

g x 
pA  ,Y g0  . 

rs o 	s Y ngo = -n 
u 

120. 
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§A.5 	Variation of H w.r.t. the variations of g  
pv 

It is obvious that if we keep$ and rr fixed and let g 
pv 

vary then H will also vary. This variation of H is calculated as 

follows: 

SH = Jdxoffi (2 Y-17r2 - y
_ 
2
1 

	

$snsfr+ 	Yrs$r$s + 2 V($)) + 

3 	1 	-2 2 	-3/2 s 	s 	1 rs d x 47g C - 2SYY r 	1 
+ 2(SYY 	n -2y (Sri )$sn + ZSY 01.0s) 

Now we can substitute Sns,Sy and Syrs from eqn (A.18), A.21) and (A.23) 

respectively [we also insert S~ = 
2 	

gpvdgpv1, then we get 

SH = 1 
fd3xv_gg

uvSg (1
y-111.2

-Y 2$ nsr+ 1 Yrs + 1 V($)) + 2_ pv 2 	s 	2 	r s 	2 

2 Jd ì-3 	
C-Y_

lr2
(gpv+ npnv)+ Y 2((gpv+t~pnv)ns+2np(gsv+ 	nsnv))$s r+ 

rp s q 

x 
p v 

Y 	Y 	
,p ,q$r$s]Sgpv 

1Jd3xvi 	 -1 1 pv 	v 2
r-Y 	(Z.g +n

p
n )Tr + 2y- n

p 
(g
sv 
+n

v
n
s 
)$sir + 

(2 Yrs guv- Yrp Ysq 
xpPx~q)$r$s + 2 

gpvV($)] Sgpv 

(A.34) 

Now by making use of eqn (A.6) we can write the bracket in the coefficient 

of$r $S in the following form 

rp s 	v 	rp s v 
gsv+ nsnv = 

Y 
x ,r x~P 

_ 
= y S p x,r 

rs v 
= y x 

,r 

This expression must be multiplied by np and then symmetrized w.r.t.p and v 

(bec anse Sgpv is symmetric w.r.t. the interchange of p and v). Therefore 

the coefficient of $sn in equation (A.34) will have the following form 
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_1 
Y z 

I (nux,r + nvx~r)dguv (A.35)  

Similarly we manipulate the term in eqn (A.34) which involves the term 

T s 

(1 rs 
guv- Yrp Ysq xu xv ) 	$ , p ,q 	r s 

2 guvYrs (Pr°s 	e$q 
xuP xVq 

_ _ ( xp x,s - 
2 5'guvYrs) Arys (A.36)  

Insertions of (A.35) and (A.36) into (A.34) yields 

SH = 
2 I

d3xI_g [_y_1( 1 guv+ nunv) n2 +Y-2 y (nuxvr+ nvx~r)4) 	- 

(xur x - 2 guv Yrs) 4) 4) 
	2 gPVV(4) 3 Sguv 

Now comparing the term inside bracket with eqn (A.31) gives us the 

following 

SH = 2 Jdx 1.17g7TuvSguv 

If we insert for dguv = -gpa gvs dgas we get 

OH = - Id3x✓-g Tuv (x) dguv(x) 

This equation plays a central role in deriving the Einstein field 

equations in the semi-classical gravity. 

(A. 37a) 

(A.37b) 
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§A.6 The higher order action integrals.  

In this section we will derive some mathematical formula 

which are needed in chapters 5 and 6. 

The most general functional of gin)  which is needed in our 

future treatment is the following 

S = Id4x 	{A + ARX  + BR2  + CR R"} (A.38) 

Here/ ,B and C are some constant numbers. X is a scalar function of the 

space-time point x which may or may not be a function of g 
uv 

R = gu'RUv  and Ruv  is defined by 

	

a a 	a 6 a S 
Ruv 

= P
uv,a 

I'ua,V  + r
$  a ruv 

- rs V  ru a 
 

X 1  aa 

	

I'uv  = 2 g (g 
	
+ 

gva,u guv,a 

(A.39)  

(A.40)  

The comma denotes partial derivative. Under a small variation Sga6  

of the metric tensor S changes by the following 

SS == I d4x 6 {.A + ARX + BR2  + CR RuV} + 
))) 	 uv 

(A.41)  

J
d4x v {A (SRX + RSX) + 2BR 6R + C 6(guAgvoR

uv 
R ) 

JJ 	Xa 

In order to calculate SS we calculate the variation of each term 

individually. 

First we note that 

1 as 6 
1-g 

 =- 2 V:i gafMg (4.42) 



and 

X 	1Aa 
Sr
uv 	

= 2 Sg (gua,v+ 
gva,u 

- guv,a) + 

1 2 gaa((Sgua)
•,v + (6gva),u 	(Sguv) ,a) 
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(A.43)  

Or upon insertion from (A.40) and by making use of 

Sgaa = - gXygaa Sg 
Ya 

eqn (A.43) becomes 

(A.44)  

SruvX 
_ -g 

AY ruv dg 
Ya 

+-g1a [(5gua)'v+ (Sgua)
,u
-(5guv)~a] 

The expression inside bracket can be written in a covariant tensor form 

Sr
uv 	Pa 	va A 	

= 1 
gaa 

(Sg);v + (Sg);u 	(5guv);a 
(A.45a) 

This expression clearly shows that although rūvis not a tensor but SruvX 

is. If we contract the X and v indices in SruvA we get : 

Srux = 2 
gaa 

(6gJ1a) •,u 
(A.45b) 

Similarly the eqn. (A.39) gives us the following 

SR =Sr a -Sr a + Sr a r S +r a Sr S -Sr a r S +r O sr S 
pv uv,a ua,v Sa uv Sa uv Sv pa Bv ua 

Since Sruais a tensor we can write this eqn in the following form. 

aRpv 	(Sruv)
;a 	

(Srpa );v 	 (A.46) 
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Now we go back to the equation (A.41) and evaluate each term 

separately, 

We start with 

61 = Jd4x ~ g XSR = 
1  

Jd
4x 1471i X 

{SgasRaR 
+ guv SRUV} 

Upon insertion for SRuv from eqn. (1.46) we get 

SIl = Jd4x TX{SgasRas + guv(Sruva) ~ā guv(sruaa) ~ v} 

By making use of the fact that 

(guv);(x 
= 0 	 (A.47) 

One can integrate the terms involving the covariant derivatives by 

part. This is done by noting that 

I x guv(Sr a) = (/j x guvsr 
a 

) - 	guvX, Sr a 
uv ;a 	uv ; 	;a 	uv 

= i=i (X guv6ruC )
;a 	guvx~a Sr a pv 

= 
	1 8cy x guvOfa )- I guvX; Sr a 

uv 	,a uv 

( 	X guvSrūv)- 	guvX ~ a Sr a uv 

The integral of the first term over the 4-volume can be transformed 

into a surface integral and assuming that all of the variations vanish 

on the boundary surfaces we get 
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SI1  = Id4x V {SgaBXRas -  gu"(x;asrpv  — X: sr uā 	) } 

Now we insert for 8''s from eqn (A.45) and carry out the covariant 

integration by parts to get 

dIl = Jd4x/{gR 
X + 2  guv 

 Ex;X  LX; 	+ X;X;p(SgvX)  - 

X;X;adguv 	gXaX;v;udgAa. } 

Finally by making use of eqn (A.44) we get 

SI1  = Jd4x. /j X6R 

= Jd4xV 	{XR
as-(X;a;s-  X;A;X g

ad} 6g as 

If we let X=R in eqn (A.48) then we get 

I d4x /j RSR = id4x 	{RRas  - (R ;a;R - ga8R;X;X)}dgas  

(A.48) 

(A.49)  

(A.50)  

In a similar manner we can calculate 

J d4x 	g(guAgu(I
RuvB

AcT) = 

2Id4x 	{RaaRSa- 	(211Ua;a;p - Ras;X;a - gaRUv;uv)} Sgas 

Upon substituting from (A.42), (A.48), (A.49) and (A.50) into (A.41) 

we get 

SS = J d4x 	CA CX Gas-(X;a,;s- gasX;A ;A) + R ctf3 
7 - 2. l. s+  

de 
(x) 

a 	1 	2 2B RGas  - (R ;a0- gaSR 	;a) + 4  gsSR + 



then 

SI = Jdx ,r-- .- 2 gasF + 
SF 

as 	
] 6g"

Sg (x) 
(A.54) 

C t- 2 gasRUvRU'+ 2Rv
aRso - 2R

(a 0);P+ Ras;~;a + ga8RpV; "114143 
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(A.51) 

where the Einstein tensor Gas is defined by 

Gas = Ras 
gasR (A.52) 

Now we investigate the necessary and sufficient condition for the 

quantity 

J
d4x 	F(x) 

(A.53) 

to be invariant under general coordinate transformations on M . 

Assume that Sgas is caused by an infinitesimal coordinate transformation 

xa x -~ a + Ea(x) 	 (A.53) 

Under the transformation (A.53) one gets 

Sgas = a's Es'a 

Upon insertion in (A.54) and integrating by parts we get 

SF 
SI = Jd4x 	[- 2 ga F;a + ( 	a 	) ;a ] 

s 	sgs(x) 

Since, -0 are arbitrary therefore the necessary and sufficient condition 
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for 6I=0 is 

1 	SF 	
a 

[- 2 gasF + ( 

	

dg as (x) 
) J; 	0 	 (A.55) 

If F=R , then equation (A.48) implies that (let X=1) 

dR 
 Sgas(x) 	R as 

and the identity (A.55) becomes 

(Ras - 2 gasR);« = Gas;" = 0 	 (A.56) 

Similarly if we take R = R2 then (A.55) becomes 

- 	- 	a 	1 2 a 
F.

[RGas 	(R ;a;a gasR ; ;a) + 4 gasR I; 	0 (A.57)  

and if we assume F = RuvRUv then the same identity requires 

[ - 2 gaeuvev + 2Ra6Rsa - 2RPa;s;u + 
Ras;a 

;a + gasRUv;pv1 ;a=0 

(A.58)  

FinallyifF=A+AXR + BR2 + CRUVR IV then it is the covariant divergence 

of the expression inside the bracket in (A.51) which vanishes identically, 

We notice that when gpv = an uv then because of the vanishing 

of the Weyl tensor we get Jdx/-g4 	R2 = 3) d4 jx-g vR1v+ total div, 

where  

 

R = a-2 [ 3 a 	- 1 a,A a ' 	- 3 aua~a ] (A.59)  

and 

aX nAu ao_ u 

 



Then upon inserting c = 0 and 6ga$ = - a 2 6 nas in (A.51) 

we get (we also put X=1) 

SS = - Jdx Sa{A naSGas - 2 na~gas + 

2B [RGasnas 	- nas(R ;a;6 - ga$R ;X 
;A ) + 4naSgaRR2j 

= - Jd4x Sa{Aa Gaa - 2Aa + 

2B [aRG s -a(R;s;s - 	4R;a;a) + aR2y} 

I d4x 6a{2Aa + Aa R - 6B R;a;6} . 
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R;8 	= 
1 

3
a 

(✓-g g81 R. 

 

a-2 a,Y 
R, 

+ a-13 3_ R 

Y 	 u 

SS = Jd4x {2Aa + A aR - 6B ( a-2 JR, + a-12 3uR}Sa 
Y 	u' 

(A.60) 



dnp 	

pupvpApa 	1 	1 	1 

(p2+2k.p+M2)a (4Tr)"2 (M2-k2)a- n/2 	r(a) 
x 

130. 

APPENDIX B  

§B.l The n-dimensional integrals.  

In Chapter65 and 6 we have made use of the dimensional 
(13 ) 

regularization scheme of 't'Hooft and Veltman. In evaluating various 

integrals of these chapters we have employed the following formulae: 

J
n 	1 	1 	1 

	

r(a_ 2) 
p 	2 	2 a 	 2 2 a-n/ 	

(B.1) 
(p +2k.p+M ) 

 
(4r)

n/2  	(M -k ) 	2 	r(a) 

ttnp P 
	1 	1 	r(a- 2) 

2+2k 	2 a 	n/ 	2_ 2 a-n/  
 (-k ), 

(p 	 .p+M ) 	(4zr) 2 (M k ) 	2 	r(a) 
(B.2) 

	

gnp 	ppv 	- 	1 	1 	1 

(P2+2k.p+M2)a 	(4w)
n/
2 (142_k2)a - n/2 	r(a) 

S 
- 

2)kukv 
+ 	uv r(a- 1 - 2) 

2 	
(M2-k2) 

} 

	

 n
p 	pulyx  	1 	1 	1 

,(p2+2k.p+MZ)a (4r)
n/
2 (M2-k

2)a- n/2 	r(a) 

x 	 (B.3) 

x 

-r(a- 2) kukvku - r(a-1-2) 2 
(SU~kx +Suakv +6 xk)(M2-k2) (B.4) 

  

(B.5) 

{r(ā- 
2) 

kukvkxka + 2 r(a-1- 2)E6pvkAko + 

SuAkvka+ S
vakuka 

+ 6
pakakv 

+ 6
Xakvku 

+ 

6 kukA3 (M2-k2) + 
4 
r(a-2 - 

2)AuvAa (14
2
-k)2 }, 



where 

ApvAa : (suvsAu+ apA va + apadvA ) (B. 6) 
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§B.2 APPENDIX TO CHAPTER V. 

The coefficients c's and d's in (5.25) are defined by the 

following : 

c 	= - 
n 

r(e) 

1 	r (e) 	2 	2 
(B.7)  

(B.8)  

tr p  u 	C1 +e (1-loge) ] 	, 
p2

+u2 	
16ff2 

J10 
 da(1 -efo(a)) {-m

2Ca2(3+e 	-a 3+e)] -cut} 	, 

1 

co = 	2 
167r 

r(c) 
daCl -c(fo(a) + m2f1(a))Ca2(3+c)- (3+0] (B.9)  = cl 	

2 
1611. o . 

-3r (c+1) 1 
da(fl(a) -m2 f2(a)) 	(a2-a), 

o 
(B.10)  c2 - 	

2 
16 	Tr 

Notice that as a 4. o, c, co, c1 -} = but 	c2 <= . 

r(c) 1 
d= 

0 

da (1-ef 
0(a)) 	(m4a(a)-in p b(a)-u4), (B.11)  

o 16 2 ~r 

r(c) 1 
= 2 da{a.(a) 	[-2m+cm2(2 fo(a) - m2f1(a))] d1 	

2 
1671- 

+ p2b(a) Cl -e(fo(a) - m2f1(a)) + eu4 fl(a)il , 	(1:12) 

0 

d2 
r(e) JI 

16lr2 0 
a {a(a)C 1-c(fo(a) - 2m2f1(a) + 

m4f 2 (a) ] + cp2b (a) C- fl (a) + m2f 2 (a) ] + 

cp4 
f2 (a) } 

(B.13) 



-i Areg (x) _ 
inh 

u2 [1 + e(1 - logp2)] 	+ 
167r2 

r(e) 

§B.3 APPENDIX TO CHAPTER VI. 

The formula (6. ) have been. obtained from insertion of 

-ip reg into 
inh 

reg 	a 
<o) T (x) Jo > 	._ -ilimit {C 

uv 	inh 	x -} x 	axu 	ax" 

1 	?to- 	a 	a 	
2 	reg

+11 

	

ax axe 	inh 
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(B.14) 

It is not hard to see that 

i 
dnq eiq.x h(q) £Dq4 + E q2] + 

	
~(x) , 	 (B.15) 

where (1)(x) has been defined by (6. ) and 

-er(e) 	
2 3 1 2 D 

:= 161r2 	
da C f1(a) (a - -a + -) - 	 2 

f
2 
(a)] , 

0 

1 
r(e) 

E 	
16n2 o 	

da{(1-Elogu2)Ca2 (1+ 2) - 	2 (3+E) + 2 7 

+ - fl(a) p2} , 

Similarly one can show that 

reg 
- 1 1 	 a 	a 	(x-x')I 

axu ax'v inh 
x=x' 

	

—r(e). 	4 

2 
	 u 	C1 + E( 

2 — log U2)] guv 
+ 

16~r 	4 

(B.16)  

(B.17)  



r(e) 
b~Q(a) 	

2 	
u2d6[- 

2 
a2 + 2a -2 7(l+e), 

16ff 

134. 

(B.25) 

	

r(e) 	4 

cuvlcr 	2 	u Auvaa 	
(1 + 2e), 	 (B.26) 

16m8 

We notice that as e+o all of these coefficients become infinite. 

However, we also remark that 

da bx (a)= o, 	 (B.27) 

J1 

0 



—>  
x.._x' -ifeg 

 p p2 
+u2 _ 

1 
AF(x-x') (B.29) 

§B.4 	THE REALITY OF i 0 (x, x')  1 x+x' 

In this section we want to show that the regularized 

quantities such as (5.27) are indeed real functions of x. We 

need to consider only the following generic form of the two 
LJ 

point function A °  (x,x )  

A*  (x,x') = AF  (x-x') - Id4y H(y){AF(x-y) AF(20-y) - 

A(-)(x-y)  (-) (x' -Y)1 
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(B.28) 

It must be mentioned that if the real function H did involve 

any derivative operator - such as (6.4b) - we first carry out some 

appropriate integration by parts to bring it to a form similat to 

(B.28). see e.g. (6.9) . The Feynman propagator Lip   (x-x') when 

regularized according to d4p -* -idnp becomes 

Therefore i 	AF,eg(o) is real.  

• 

Now consider the integrand of the second term in (B.28). 

By making use of the identity 

°F  (x-y) = - e (x-y) A (+)  (x-y) + e (Y-x) (-)  (x-Y) , 
	(B.30) 

we envisage the following three possibilities 
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i) The region for which y> x and y > x' . Then 

A F(x-Y) A F(x'-Y) - A(-)  (x-y)  A( )  (x'-y) 

ii) The region defined by x> x' > y 	Then 

A F(x-Y) 	F(x'Y) = d(+)  (x-y) p(+)  (x'-y) , 

therefore 

AF(x-y) AFW-y) - A()  (x-y) p(-)  (x'-y) _ 

ti Im a(+)  (x-y) A(+)  (x'-y) 

where we made use of the following 

A(-)(x-y) = L A(+) (x-y) ]* 

* denoting a complex conjugate 

Thus 

C AF(x-Y) j(x'-Y) - A (-)  (x-y) A (-) (x' -Y) 7 

is real. 

iii) Finally the region x>y >x' which will not contribute 

anything in the limit of x -} x'. Thus the quantity i 4(x,x'){ 
II x x' 

is either zero or real in any point of space-time. 
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Let us introduce the following notations 

F(x,x') := if  d4y H(y) AF(x-y) A F(x'-y) - 

A(-)  (x-y) A(-)  (x -̀y) 

G(x,x') := i Jd4y Q
(-)

(x-y) A(-)  (x'-Y) H(y) 

We want to show that as x -÷x', Greg(x,x') is real. If we 

insert F and G into (B.31) we get 

F(x,x') + G(x,x') = i 
J
d4y H(y)AF(x-y)AF(x'-y), 

(B.31)  

(B.32)  

when x } x' the r.h.s. will give the following regularized integral 

N 
i 8nq eiq'x  H(q) K(q2) (B.33)  

where 

1 

K(q2) := I d a Id
n
p 	 

. 	o 	(p2+2k.p + M2)2  

1 

with k = -aq and M2  = u
2 + aq2. Because of the reality 

of H(x) we have H" (q) = H(-q) therefore if we continue (B.33) back 

to the physical Minkowskian space-time we get the following real 

quantity 

-j tt,4q eiq •x  H(q) K(q2). 

Since we have already proved that F(x,x')I 
	

is. real therefore 
x 4-x' 

G(x,x') must be real. 
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