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ABSTRACT 

This thesis is primarily concerned with methods of 

obtaining solutions of differential equations which arise 

in various branches of mathematical physics. In general 

relativity the differential equations considered describe 

scalar fields on a fixed and unquantised background space. 

The Klein-Gordon equation exterior to a rotating black 

hole is examined with a physically realistic source term, 

representing the meson field of an infalling baryon, so 

generalising previous work. We discuss the possibility of 

soliton-like solutions of a class of non-linear Klein-

Gordon equation exterior to a non-rotating black hole. We 

also examine from a physical viewpoint a known solution of 

the Einstein-Maxwell field equations describing the 

interior of an object supported against total gravitational 

collapse by an internal magnetic field. Techniques used 

previously in work on scalar meson fields are found to be 

inapplicable to these problems, but their usefulness has 

suggested their application to other differential 

equations. Accordingly, the Liouville-Green asymptotic 

method is used to obtain approximate eigenvalues and 

eigenfunctions of the Schrddinger equation with an 

anharmonic oscillator potential, and to investigate the 

propagation of electromagnetic waves in optical waveguides, 
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CHAPTER 1  

INTRODUCTION 

In recent years a substantial amount of work has been 

carried out on the problem of external fields propagating 

in a fixed and unquantised background space. Such 

considerations seem a natural prerequisite for the 

understanding of quantised fields on a fixed background 

and, ultimately, for a fully quantised theory of gravity. 

In much of the work the background considered is the space 

exterior to a black hole, a region of spacetime from 

which, classically, nothing can escape to infinity. Since 

the investigations of Oppenheimer and his collaborators 

(1939), it has been known that there exists an upper limit 

on the mass of a neutron star. Many stars with masses 

greater than this value are observed, so that in the final 

stages of their evolution no forces due to degeneracy 

pressure can prevent total gravitational collapse to a 

singularity. Such singularities are shielded from the 

universe by an event horizon, the interior being the black 

hole. That singularities are always isolated in this way 

is the as yet unproven hypothesis of cosmic censorship, 

due to Penrose (1969). 

An important feature of black hole physics is the 

existence of the so-called 'no-hair' theorem. This was 

originally a conjecture based on the work of Israel (1967), 

and was later proved by the contributions of Chase (1970), 

Carter (1971), Hawking (1972), Bekenstein (1972 a,b), 

Robinson (1974) and, more recently, Adler and Pearson 
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(1978). The theorem states that, independently of the 

initial conditions, a collapsing object will eventually 

reach a stationary state described by only three 

parameters, namely, charge, mass, and angular momentum. 

This state will be a member of the Kerr-Newman family of 

solutions of the field equations. The Kerr-Newman 

solutions therefore enjoy a special significance in the 

study of astrophysical processes near a black hole (see 

for example Bardeen et al, 1972), particularly in view 

of the recent method of testing observationally for a 

rotating black hole (Stark and Connors, 1977 a,b). 

The 'no-hair' theorem also implies that if a baryon is 

allowed to fall into a black hole, since the final 

configuration is again a member of the Kerr-Newman family, 

then the meson field of the baryon must fall to zero as 

the source crosses the event horizon. Rowan and Stephenson 

(1976 a,b) first considered the case of the meson field of 

a baryon falling into a Schwarzschild black hole. The 

problem was treated quasi-statically, so that the baryon 

was assumed to be at rest at each stage of its infall. 

Subsequently, Rowan (1977) treated the problem of infall 

into a rotating black hole, with the baryon on the axis of 

rotation. The problem can again be treated quasi-

statically, despite the existence of the ergosphere 

associated with the rotating black hole. This is a finite 

region, exterior to the event horizon, bounded by the so-

called static limit, within which no particle may remain 

at rest. The static limit and the event horizon coincide 

at the poles, so that baryon infall along the axis 

encounters no portion of the ergosphere before reaching 
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the event horizon. If the infall were along any path which 

passed through the ergosphere, it could not be treated 

quasi-statically. It is this problem which we discuss in 

Chapter 2. In Chapter 3, we consider the existence of 

solutions of non-linear equations describing self-

interacting meson fields exterior to a non-rotating black 
• 

hole. 

In the work of Rowan and Stephenson referred to above, 

the Klein-Gordon equation describing the meson field was 

solved approximately over the whole range exterior to the 

black hole by an application of the Liouville-Green 

asymptotic method (see Olver, 1974). This technique may be 

applied to second order, linear differential equations in 

normal form, and is equivalent to the method of comparison 

equations briefly discussed by Berry and Mount (1972). An 

advantage of this method over the J.W.K.B. approximation, 

also discussed by Berry and Mount (see also Frōman and 

Fr8man, 1965), is that it removes the need for matching at 

the turning points of the equation (see Appendix 1). The 

usefulness of the technique is demonstrated in this thesis 

by its application to the Schrddinger equation with an 

anharmonic oscillator potential in Chapter 5, and to a 

Schrōdinger-type equation associated with propagation 

along a dielectric waveguide in Chapter 6. In both cases 

approximate eigenvalues are obtained after a small amount 

of computing, and at the very least, these could be used 

as the starting point for more sophisticated computing 

methods. 

The Liouville-Green technique consists in the 

transformation of the differential equation of interest 
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into another, with the same number of turning points, 

which is soluble in terms of known functions, either 

exactly or approximately. In the latter case the neglected 

term appears in closed form, in contrast to the J.W.K.B. 

approximation. Despite the extensive literature on 

propagation in dielectric waveguides (see Olshansky, 1979, 

and the references cited therein), the Liouville-Green 

technique appears not to have been used in this field. 



CHAPTER 2 

NON-STATIC NUCLEAR FORCES IN A 

KERR-NEWMAN BACKGROUND SPACE  

1. Introduction 

In a series of papers (Rowan and Stephenson, 1976 a,b, 

1977 and Rowan, 1977), the Klein-Gordon equation for a 

massive scalar meson field has been examined in various 

background spaces by an application of the Liouville-Green 

asymptotic method (see Appendix 1). Rowan (1977) has 

extended the work of Rowan and Stephenson to the infall of 

an uncharged baryon down the axis of a charged, rotating 

black hole described by the Kerr-Newman metric and has 

shown that the field of the baryon source falls to zero as 

the source crosses the event horizon. By allowing the 

particle to move down the axis of rotation, Rowan was able 

to treat the infall as a series of quasi-static problems 

since the event horizon and the static limit coincide on 

the axis of rotation. 

In this chapter, we extend this work to the infall of a 

baryon along a geodesic in the equatorial plane of the 

black hole. This requires that the source term be modified 

to a time-dependent one, since the tidal forces destroy 

the static situation. By solving the geodesic equations 

near the event horizon and using the solutions of the 

Klein-Gordon equation near the event horizon as found by 

Rowan and Stephenson (1977), we have again deduced that 

the field of the baryon falls to zero as the particle 

crosses the event horizon. It has not been possible to 
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solve the basic differential equation over the whole range 

owing to the breakdown of the asymptotic method. The 

reason for this will emerge in the following analysis. 

In sections 7 and 8, we extend to massive scalar fields 

the work of de Felice (1979) on massless scalar fields in 

a Kerr background space without an event horizon. We 

compare the Klein-Gordon equation in this case to that 

obtained in the Kerr black hole case. 

2. Basic equations 

We begin with the Klein-Gordon equation 

(2.1) 

where 	_ 1(t r ) e y (p) is the scalar field, f (t)r l e p) 

represents a point source and 1l is the inverse Compton 

wavelength of the meson associated with the field. In 

generally covariant form (2.1) is 

3 	 ~ a 	+ 94- 	tta 
 ax 	ax 

= +4(t,t,e,~) (2.2) 

where 3. is the determinant of the metric tensor 9dR 

Together with the Kerr-Newman metric in Boyer-Lindquist 

coordinates describing a body of mass M , charge Q and 

angular momentum per unit mass Q, 

ās2 = *(d_sinaeF$ _ d't 2̀ — e2Clea 

a 
sin2e (fa+a2)4 — adt 	, 	(2.3) 
r I 

where 
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= Ī 2̀— aM-r + 0. + Q 	e = t 2+ a?cos2e , 	(2.4) 

equation (2.2) becomes 
2 

[(1-2+ a2) — p a2 5iri e] 	a 
p 	abz a-(L ')  Dr- 

a I 	(—a sinae)
sine a e (siro e) — 	o sinae a~z 

2a[o ` Z±C1 ] a2 
+ 	

z 
=
^ e tr 

e o a at e/A 	P 
Throughout, we take c= G= i , and until section 7, we take 

2 	a 	a 
Q. + Q so that the metric (2.3) describes a black 

ẑ 
hole. Then 0 in (2.4) is zero at y`= 1\4+ M

2 	
— 0.2 — 

the larger root being the event horizon of the black hole. 

Now write 

dui R 	(fi) S1, (e) e m̀T O `wt 
(2.6) 

( 
where SI (e) = S7, l a rl %'t a— W2 y COS ) 	is the prolate 

spheroidal harmonic satisfying 

i d sine L)  
sine de 	de 

— a2 ( 2-   w2)°Dee 

  

ma S~ 
Lr' 	sll1e 	

(e) = 

 

and /\ im is the eigenvalue corresponding 

0 	(2.7) 

to 5L (e) . 

{ 

Taking the normalisation 
2iT 	„ii 

d 	sine Sr (8) 

o Jo 

a 

Jo = I 	(2.8) 
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(
and substituting (2.6)-(2.8) into (2.5), we find that 

RL ,() satisfies 
a 

d Q 	ō 	o mz + 2 arnw (Q2— am r) + fra+ 0,) Loa  
dr d 	 A 

fALm — Q. WZ — 	RLr i (-r-) 

+oo 	 27‘ 	Ti 

__2 	dt c t 	dio P sine 5 (0)e imP̀F(t,r,0 ,T)de (2.9) 

Co 	 0 	0 

3. The geodesic equations 

We take the equations of motion along a geodesic in a 

Kerr-Newman background space (Misner, Thorne and Wheeler, 

1973, p.899) and consider the case of motion confined to 

the equatorial plane of a black hole. The equations are 

 

= AT.  

r2 	_ — (aE -L ) + aP A 

Zdt = — a a E — L,.) + ~+a2)P  
d1 	D 

(3.1) 

where 

P = E(ra+ a2 ) — aL 
R = P2 _ A —2-r2 + (L/ — 0..E)2 

(3.2) 

and where — is the rest-mass of the baryon, and E and 

LE are the energy at infinity and the angular momentum 
about the axis of rotation, respectively. Putting 
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T= 	0.E , we get from (3.2) 

P= Era — 0.T 
2 

R_ (Era —aT) — A( [Tara +Ta)  
(3.3) 

From (3.1) using (3.3) we have 

— TA ÷ a(Er2 — a~T) 

  

(3.4) 

  

dt 	a.TO + (r2 + 

 

and 

   

I 

dr 	(E a — a.T)a — d(par
z 

+ Ta)} 2  

dt 	aT~ + (ra +Q
2
)(E-r2 — an 

(3.5) 

From (3.4), we see that an inf ailing particle cannot 

follow a radial path Ī =constant, even if 
L2= 0 , unless 

a. is also zero. 

We now confine our attention to motion near the event 

horizon 1- = 1-4_== v +,J M2—R2—QZ and assume that 

0.2+Q2 M2 so that 1-4.# r = M—„/M2 —a2—Qz. Putting 

we have 

Mx = r — r+ , 2,./d = r - T- + 	, 

Q = N2x(x + ad) . 

(3.6) 

(3.7) 

Substituting (3.6) and (3.7) into (3.4) and (3.5), we may 

expand the right-hand sides in powers of X to obtain 

(3.8) 
+a ) 

and 

2 cir _ \ dx _ 	2 d M x + x2 -i- (x3) , (3.9)  
dt 	cit 	(rz + Q2) 



where the constants UC and f3 are given by 

ZM 
OC = 

± 
2 2 2 	 (M 	- ()Er: + a2Try) 
a) (Er+ -a T)  

and 

Ma 
  

[rid (1-Er+-1-aSh- +-2M dp -r -aMdT2) 
(r+2+ a2) 	

-
aT)2 

2.M  d (9-E-r+ + 2n2 E-r+ - 2 a Tr+ H- a .TM d) + I (r+ + a2 )(Er: - (AT) 
.(3.11) 
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(3.10) 

3 

4. The source term  

To get an explicit expression for 12 (t )T , B , c) , we 

choose, following Persides (1974), 

-P (t r, e yo) = I ir (sr - -r/ (4.1) 

o _ d where U. along the trajectory of the particle 

r/Ct) = (1-1(b) , e'(t) Tit)) and 3 is the source 

strength. To calculate Le , we first put (3.6) and (3.7) 
together with E)=%,  into the metric (2.3), obtaining 

ds )2. = M2x (x + ad) 	 cp )a _ (Mæ+[ct a 	(Mm+-rja 
1n 

dt  
•2 ~ I 	(Mx+r+) + a 	_ 

(Moc.+rt) 

 

(4.2) 

 

Then substituting (3.8) and (3.9) into (4.2), we see that 

to second order in 30 

I 
z = 

ds 
z _ 	 2 

u.° 	d (4.3) 



- 17 - 

where the constant 0 is given by 

x (aM -3N1) 
(-+o2)

2 
 

(i-dM +2-f-+13) 
(t2+ 0.! 

I 2 M ar+  
F L (r++ Q-2) -11- (1;2 + 0.) O(. (4.4) 

On substituting into (4.4) the expressions for OC, and 

from (3.10) and (3.11), we find, after considerable 

algebra, that 4 	is given simply by 

(1-4! + a2 )2 (E-r+ - a T)a 
	

(4.5) 

so that 

 

= K(r-- r+ ) (4.6) 
u° 

where 

_  2dMFr2 

K  (rif  + a2)(Er+ - aT) 
(4.7) 

From (4.1), using (4.6), the source term can be written 

f 	= yK(r-r+)Sfr- o(P)s(9)—IAN)b(e-Z)c4.8> 

where, from (3.8) and (3.9), 

and 

Po(t)  =
at 2  

( -:~Q) 
(4.9) 

ex  
P 	1o  (4.10) 

Hence the right-hand side of (2.9) becomes, on 

substituting (4.8), 
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d~ 
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— 29 K (r-r 	
+ao 

+} r-ro) 	è w t db 

X 	Pa . & 51 (e) ē imF o ( — 770)(3(e-129 ue 
0 

After performing the 9-integration, (4.11) becomes 

(4.11) 

+00 	2T1 

-a9 Kr2(r-rt) SS(10S(r-r) e'tdt `"n(T-FeN) 4.12) 

Now from (4.9) 
+ 

eQb.
dG 

a-n 

e i,mr S (p— p0 (b.)) cip 

2rr 

d e m? 
+.0 

e~wt (cp at 	.2 dt 
(r+-~c )1 

for __ m c~.  W 	( (-a
+0) 

' (4.13) 
t t 	J 

so that (4.12) becomes 

m — 4—iT9ā (r+.+ 0.)-ra(~`— r+) SL 	 (-r— ō) . (4.14) 

Finally, equation (2.9) becomes 

J 	d 	0. m + 2a.rnw (Qz- EMr) + fra ct2) c„)2_ 
di- dr 

ta-r.2 Rfr 

_ 	 m c —1-73 	 ~ -~- a")—r+) st (2 ) t~ er—rō) . 	(4.15) 
U 
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5. The radial equation 

Rowan and Stephenson (1977) have shown that after 

defining 3C and d by 

and writing 

, 2.Md = r+-r (5.1) 

(5.2) Z [ c ( c ± ad)TRt.„r) 	 2 

substitution of (5.1) and (5.2) into (4.15) leads to (for 

r~ro ) 

a2Z ” z 2 2 	A + g+  C   	D  
2 + M (w -ju % + M x2 x ( ±ad)2 (c - ad) Z 

dx 	 , 
0 	(5.3) 

where A , B , C and ~ are constants given by 

A — 	
M2d2 1f-d 	+ mzā 

2 + aQ awrn - q-awrrd\/ a'Cd + ) 

+coag-1-MLoZQZ(d+I)+4M 42(d+ I1 (5.4) 

B = ' s 4- 2 M4(d + Da(ad- I) - 1--wamaQ2(dZ- I ) 

+ 4-awmĪ" 12 - a eiN1+'(c1 + I )2d2 - Zd
a
(Waa.2 	Lm)M

a 

— M2d2 - ma a - 2Qcowrr, - waQ4 (5.5) 

C = I 2I W2M4(d - I )2 + # Iat2Q2 ( - I) M2-da 4d 
rn2a.2 + aQzawrn + Loa Q4-] (5.6) 

and 
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D = i-d- 4w2M4(ad + 1)(d — I )Z + 4-L3aMZCk2 (d2— 1 

0.WrrlM2 + 2 21 " I+d2(d — )2 + adZ(c.J2aa + i.m/MZ 4 	~ 
Z 2 	 2 	4 + M d + ma a.Z + 2Q awm -I- w Q 	(5.7) 

It has not been possible to solve the homogeneous 

equation (5.3) over the whole range O < x <0O due to the 

breakdown of the asymptotic method. This is due to the fact 

that the accuracy of the method depends on the existence of 

a large parameter in the differential equation which we do 

not necessarily have in (5.3), since W may be close to or 

equal to /_Å. . Also (5.3) will have, in general, four 

turning points (see Appendix 1), and we have no standard 

four-turning-point equation to which we can transform. 

However, we are chiefly interested in the behaviour of the 

solutions as Dc.--)() (that is er-4 -", ) and may use the 

solutions near the event horizon obtained by Rowan and 

Stephenson (1977). These are 

R(,) (r) = Az e 	(i --r~) 
(5.8) 

R (~`) _ 	e 	(i-- i-f )2 c2~ 	~2 

where 

l,(5.9)  
= M2 

2 
W

2\ 	C 2 z  F 	( 	4M d 271\71 

m2 = I - A 
1--M

2 
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provided F 0 . The case of F.= 0 was treated 
separately and we will not repeat the solutions here. 

We now integrate (4.15) across the singularity and 
impose continuity of Rumwfr) at r= ro to obtain 

U RLmw 	c1 R,mw 	I 

A° Jr 	dr rp+o 	r-0 ■ 

=-4119a(ri4"Qa)%Z(r—r+)SLm (121:)' 	(5.10) 

where QD -_ ( 	(') . Then for 1; near 1"+ , 
we have 

RL @i = 	(r2 + 
	 (c — +)St,(z) 

RÇa)&)R(I)() 	('q <r < ~ ò ) 

f 
R(+)(r°)R(a)(r) 	(1-0‹ -r-) 

(5.11) 

where R(,) and R(a) are given by (5.8) . 
Now from (5.4) and (5.9) 

. 	
1 

=2 	2 m a2 -I- 2C42a4)r~ — 4-awrnM(d + I) 

-M2wq(d+ I) +- 4-Mw2+ 1)2 

= 	 z 	al-dz M 

a 

ma. + WQ~ — 2c..J~01 + () ,(5.12) 

and since this is negative, 	is imaginary and we can 

write 
FFt=(,6 , (5.13) 
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where C = 'FT and 

E,_  I 	MG. HI- W Q2 — 2WM
2
(d 	1 ) 	(5.14) adM 

Hence, from (5.8), it follows that R0) and l\(2) have the 
~b 	cb 

behaviour ('Ī —'I +) and (Y'— r+) , respectively, as r--> 7-÷ . 
Alternatively, we could redefine R(1) and R(2) to be the 

171,) ) 
sin( b Ion [-r — r+] ) 	, respectively, since 

±cb 
(~- -r+) 	= ex

P 
± i,b (,rt 	i`+) 

= cos(6Lrt[r-1-+1)) ±  sif(bLn.(r —c-+~) 

Although both solutions exhibit increasingly frequent 

oscillations as 1--->174-,  they are bounded. 

If we now let r-' , we see from (5.7) that Rijmuji) , 

for To <, I-, tends to zero since RI is bounded. 
Provided the series for 1 is uniformly convergent, as 

has been proved in the case of a Schwarzschild black hole 

(Rowan and Stephenson, 1976 a) , then -40 as "r —~ 
We note that d here is an expression for the scalar 

field near the event horizon since (5.8) gives solutions 

of (5.3) only for I` near 

6. Special cases 

The case Ce--1-Q,==  
M2 

must be considered separately 

since d= o and consequently from (3.9), the term of 

order 3G in d t is zero. To simplify the algebra and to 

begin a connection with the following sections of this 

chapter, we consider the case of an extreme Kerr black hole, 

solutions with behaviour CoS 1 b and 
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and 1/ are given by 

krri 
(6.5) 

± ma 

- 23 - 

so that 1= i I , 	0 and '(+ = = M . Expanding 
to order OC.Z and Cx/jt  to order x4 and substituting into 

(4.2) with C1=0 and Q,=M, we find 

1 2 _ cis 2 _ 4- / 	2 I 	
~-2  1`'i x  

/ 	1-(EM- ~, 	
(6.1) 

to order X.4 . Hence 

tA 

M )2 
a M(EM - T) 

(6.2) 

which can be used in place of (4.6). The homogeneous 

radial equation becomes 

2 
( 

 
M 

W2_ 2 	/'~ + + 	+ D Z 
~- + x 	 2 	x3 	xq- 

= 0 (6.3) 

where 

Rl,mw ( 	= x 17 (x) 

and the constants A , D , C 

A = 4-Maw2 — a M2 2 

= 7Ma wa ._ Ma a - 

C = 8 	ctia  
= 4-M

zw2 — 4 f" Irriw 

The relation between U-) and fYl is now, from (4.13), 

_ 2.M (6.6) 

and on substituting (6.6) into- (6.5) we find 
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Ā = ma- aMapuz 
B = -;p7 rn2 — 1\17-(2. 'ALm 

= D=o 

 

(6.7) 

  

Equation (6.3) now becomes 

d2Z _ 	 A 
d x2 N 

where 
2 N =f"IZ

i
2-  

1 	4 

After defining 

(6.8) 

(6.9) 

(6.10) 

and substituting (6.10) into (6.8), we see that (6.8) has 

solutions in terms of Whittaker functions (see Whittaker 

and Watson, 1927) 

where 
Z = r/K ) -±1,(rk) 

ā 	Z_ ~ _s 

The solutions (6.11) form two independent solutions of 

(6.8) provided V is not an integer. From the asymptotic 

Mk
■ 

behaviour of I - I~,,̀  .001) as 	i A 	and the transformation 

(6.4), we have 

R (1)
( 
_r) 

ti oyz 	M (6.13) 

as T.-4M. Again, RLt,w(c) tends to zero for ro < "'Ī since 

R(,)(i) either tends to zero if 4 is real or is bounded, 

as before, if 9(.. is imaginary. 
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For the case 1\1=: 0 , we get 

z - 
c'2 Z ā (fa  i/a) 

3CC'2 Ç (j 3c"2 
(6.14) 

   

where I ā , K ā are the modified Bessel functions of 

order OC of the first and second kind, respectively, and 

0-z2 =1-4g 	j32 =--4Ā. (6.15) 

The radial solution for 17, <r has the behaviour 

Mr 	
I , 

R ` ) 'v y2 l~ — N )~ 
a 

C r Q 

as1.-->M,  and either tends to zero if OC is real or is 

bounded if OC is imaginary. 

In all cases, therefore, we have the result that the 

scalar field tends to zero as the source crosses the 

  

event horizon. Although, in general, the solutions of the 

homogeneous radial equation exhibit increasingly frequent 

oscillations as 1ō-31+̀, these are damped by a power of 

(ō __ r+) arising from the source term. 
In the next two sections, we examine the massive Klein-

Gordon equation in the Kerr metric with Q > M and study 

the radial solutions near the surface -r= I\41,  where an 

event horizon' forms when 0.= 1 - I . 

7. The Kerr metric with 0.> M  

The metric is (2.3) and (2.4) , with q==() . We shall 

take Q>M but close enough to Ni so that 

ft = 0. — M2 	 (7.1) 

(6.16) 

can be considered small; for example /CL << 1 . The work 
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of de Felice (1979) was concerned with massless fields in 

this naked singularity background, and here we make an 

extension to massive fields, while following his approach. 

First we take the radial equation (4.15) without the 

source term, putting Q = 0 , 

and 

x- ir— M  

r ) = \ I + x2f2 ' `LMw (x) . 

Equation (4.15) then becomes 

d2 + H(x
z2 (x) _ ~ dx2 	(I + x ) 

where 

(7.2) 

(7.3) 

(7.4) 

2 

H (x) _ 
2 + 
	0c + (~C.a 0ca + ~~3 ~C + R, 06m41- 	(7.5) 

and 

2 
060 = WZ (Ma 	-+- Q2 t~2 — amW V2 

K2 C Lm a2w2+f2 

oC~ = 4 )a(\/+ a2) — L{-anw 

2c.,w2 (a2 + 3r/a) — ('1m + a2wa + a2 2) 

0(.3 = 4-M W Z — 21\//2 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

04_ (,J — ~1 	, 	 (7.10) 

Equation (7.4) will again have four turning points, in 

general, and we encounter the same difficulties as in the 

black hole case regarding a solution over the whole range. 
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Putting 

	

a 	 _ c„) 

	

- aa+ 	Mz ' 	Sa (7.11) 

into (7.6)-(7.10), the constants CZo , CC' , 0! 2 , c 	and 

064_ can be written 

060 = aal - rn + k (aamn - (1  - 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

cc, = 4 ~L ^2V (N'
2+ 03 y3 1 - m) - 2Mk 2 , 

cx, = 2 a_cla + 3h/ - ("km aua ate), 

063= 4 2 a'' — 	' 

064= 202 /Az, 

Two possible large parameters in (7.12)-(7.16) are 1 
N as 

 L
in the work of Rowan and Stephenson, and /1,j,. , where if 

L is large 

(L + I) = ~2 
(7.17) 

(see Meixner and Schafke, 1954). We shall consider each of 

these possibilities. 

8. Bound states  

(i) L large 

2 
In (7.4), we expand the term H(x)(1 + x2) , using 

(7.5), in powers of ZC and retain terms up to and 

including OC , so that 

(8,1) 



where 
2. 

E =2 + 	 zz zt 
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In contrast to a corresponding expansion of (5.3) near 

0:=0,  equation (8.1) has the appearance of a harmonic 

oscillator and accordingly, we look for bound states. 

Following de Felice we demand 0.0 0 in order to have 

travelling wave solutions across x = 0 , Further, we 
LL 

require that °6°4,2  be finite in the limit of small IR. 
and 

°z° << i L2 

From (7.12) and (7.17), these conditions imply 

lp—ml .?d kc,,t 
Now from (7.14), 

(8.2) 

(8.3) 

(8,4) 

so that, using (8.2), 

a06 0 	 — l►  2 
(8.5) 

Using the result (8.5), (8.1) becomes 

_ OLo _  Jau 2 
dz 	

o6I
x 	122 

	 x + x (8.6) 

The substitution 

a= (oc 
transforms (8.6) into 

Ja8 __ 

(8.7) 

(8.8) 

(8.9) 

As IT, increases, the parabolic cylinder function solution 



and 

z}-zi2 M (ma +Q2) m -1t 
a (8.16) 
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of (8. 8) has a factor 
	

(see Abramowitz and 

Stegun, 1964, p.689). The exponential term behaves as 

t(~r-M )/2}z 
C 	and hence severely damps the solution. We 

shall therefore take the boundary condition that the 

solution of equation (8.8) is zero at infinity, giving 

E: == -2:1 
where t\.= 0,1,2, 	 Then from (8.9) 

°6° 	°C' = (art+ I)t 

Now from (7.12) and (7.13) 

(40 = Cka 	rnr 	0(ka ) 
and 

= ol12M (M2+ a)r3([3-m)t0(1tz) 
To satisfy (8.3), we put 

_ m 	 a ± (ist + E l l 	l ' 

(8.10) 

(8.11) 

(8.14) 

where E 	is a small positive quantity. From (8.12) 

and (8.13) we find that 

(8.15) 

On substituting (8.15) and (8.16) into (8.11) we arrive at 

an equation for E: • 

2 2a tE = (an + I) t 	9-SL4 	~`~+ a2) rna . 
a 

(8.17) 

The dominant term on the right-hand side is (2r1+ 1)t , so 

that 
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G = -114[1+ i) 
giving, finally, 

(8.18) 

= P1 -E- 	 ,j- A-- 	+ 	(8.19)  

to order k. . 

This is almost the result obtained by de Felice, 

despite an error in his expression for the eigenvalue E . 
The result (8.19) is seen to be consistent with the 

previous assumptions (8.2) and (8.3). 

(ii) 	large 

If the parameter tAM  is large then la. will also be 

large since Q is close to ̀ ~ . The procedure is very 

similar to that in (i) above and involves only the 

replacement of 	by either 
I 
Q or f.LNI.  . The result, to 

order k. , is 

= hit 	 (iUM  + h + ! 	(8.20) ) 

We note that as , decreases (Q.- M ), the expressions 

for 13 tend to 13== m .. From (7.11), we see that this is 

equivalent to the result (6.6) which was obtained in the 

extreme Kerr black hole case, where a= M 

9. Discussion 

The success of the Liouville-Green method when used to 

solve the radial equation for the massive scalar meson 

field (Rowan and Stephenson 1976 a,b, Rowan, 1977, see also 

Chapters 5 and 6 of this thesis) depends on the appearance 

of a large parameter in the differential equation. This was 

due to the non-zero rest-mass of the TT -meson. When 
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considering the Klein-Gordon equation in a Kerr-Newman 

background space, solutions of the radial equation over 

the whole range are known only in special cases (Rowan, 

1977); the equation may no longer contain a large parameter 

and in general will have four turning points. Although in 

principle it would be possible to match solutions so as to 

cover the whole range, the complexity is prohibitive. 

Information about the solutions in regions of interest can 

nevertheless be obtained, as in this chapter. 
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CHAPTER 3 

NON-LINEAR WAVE EQUATIONS IN 

CURVED BACKGROUND SPACES 

1. Introduction 

In Chapter 2, we were concerned with the Klein-Gordon 

scalar wave equation in curved background spaces, the 

solutions of which were related to the infall of baryons 

into black holes. In this chapter, we consider whether 

it is possible to have soliton-like solutions of the non-

linear Klein-Gordon equation containing self-interaction 

terms. 

The origin of this consideration is the work of Derrick 

(1964) who has shown that for a wide class of non-linear 

wave equations, there exist no stable time-independent 

solutions in two or more space dimensions, other than 

constant solutions. This result was established only in 

Minkowski space and is not applicable to the one-

dimensional case where stable, non-constant solutions have 

been obtained (Enz, 1963). Accordingly, in the space 

exterior to a non-rotating black hole, we investigate the 

spherically symmetric case where the wavefunction depends 

only on the radial coordinate. We shall examine the non-

linear Klein-Gordon equation in both infinite and finite 

background spaces in an attempt to generalise the results 

of Derrick. 
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2 , Minkowski space 

We begin by briefly reviewing the method and results of 

Derrick (1964) who, in Minkowski space, considers the non-

linear equation 

- 	= —1.41(§) , 
derivable from the variational principle 

sf l 	-(oe- F(I)]d-dt= o 
(2.1) 

(2.2) 

Here 	is the scalar field in one time and rl space 

dimensions, where t1,2 or 3, and primes denote 

differentiation with respect to 	. For time — 

independent solutions, (2.2) can be written 

SE = o 
where 

E = 	(IC7Ca  + 	cr-r: 

(2.3) 

(2.4) 

A necessary condition for the solution 	to be stable 

is 
(2.5) 

for all possible variations of the wavefunction. It is 

sufficient therefore to find a particular variation of 

d which violates (2.5) in order to prove instability. 

Derrick proceeded by defining 

(2.6) 

where OG is an arbitrary constant and writing 

E = I, + Iz  , (2,7) 

where 



and 

d2E0,, 
dce 

= (a- rt)(l— 	+ ri(rt+i)IZ (2.13) 
 • 
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and 

Then 

= f (v)a 	0 

=f--P() drts. . 

= f [(vÝ + 

= ,2-nIl + ~ a 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

after changing the variable from C to 06TC . Hence 

	

d
do. 	_ (a— r.)I — r11 

	

o( 	 I 	z (2.12) 

Now (2,3) and (2.5) imply that 

(a— r0I, 
and 

(2.14) 

(a— r)(i—r)I1 -}- rt ( b + () I2 >' O 	(2.15) 

We now take f()  > 0 , so that I a 	O from (2.9) . 

If rl= 1 , we see from (2.14) that"' = Z2 and that 
(2,15) is satisfied, If r.= a , then from (2.14) I2= 0 
and so from (2.9) 1 	is a constant subject to f (d5) = O . 

If n= 3 , then from (2.14) Ii— T2 = 0 , since both I, 
and Ia are positive, and we again have f()O. 

3. Reissner-Nordstrom background space 

We now consider the unbounded space exterior to a non-

rotating black hole of mass M and charge Q. described 

by the Reissner-Nordstrom metric 
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s=6 2M Ge  dt 	2M Q2 —idrz+Hk 1- 	r2 
 T2 

—r2d92 — resin.2edT2 , 
We write (2.1) in covariant form as 

Ea =,/14-3— (tr . 9`k 	—12-14) 

arising from the variational principle 

(3.1) 

(3.2) 

s/{816 - -P(cld-3 = 0 (3.3) 

where 9 is the determinant of the metric tensor 96k . 

Using (3.1) and taking j) to be a function of 1` only, 

we obtain the radial equation 

i d r2— 2Mr  
z d~ 

r2 	
) d~ 

d-r 
= 	. (3.4) 

In this case, the variational principle (3.3) is equivalent 

to 

& E = 0 
	

(3.5) 

where the energy E of the ( -field is given by 

co 
E = 1-TI" t (r2- 2Mr +Q?)(ff-Eficc-r-21 (3.6) 

and where f̀ = M ± jMa_ Qa (Gt< M2)is the event 

horizon of the black hole. Writing 

I, 
co 	

icII)2 ( 2 2Mr + Q2) (3.7) 

and 
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so that 

I2 = f(cf df- 5 

E = 47(I, +IZ) , 

(3.8) 

(3.9) 

we must require that I, and Ia be finite. 

In the original presentation of this work (Radmore and 

Stephenson, 1978), we proceeded by considering the 

variation (2.6) as in the work of Derrick. However, as was 

shown by Palmer (1979), this variation is not permissible 

since the variation in 	is then non-zero at 1 = T. . 
The following variation was proposed: 

,Cry) = 	[C(*(1-- —T.+) + Y I 	(3.10) 

and we shall 	(3.10) in this section. The variation is 

such that E(,(r) _ g(1.0  and L.= ,(-,r)  = 	. In 

(3.6), we write 

r-z am-r-+ Q2 =  (3.11) 

where '% = 	, and define 

 

= 17 oo er- 1- X-r---r 	)~o~ a+ 	3.12 + 	d'i' 	~ 1( ~oGlra d-i— 	( 	) 

In (3.12), we change the variable of integration from I-

to pC where 

CC = 0(, ("C. — r+) + 'Y'`..F , 	 (3.13) 

obtaining 
00 	 2 

	

Ec6 _   +r-    	2 4rr 	o(, o(, 	+ ,  
a 1 	 +~ ,~ 	(10:<,c+T(-1 (— 	+ + 	O(10:<,cG 

(3.14) 



(3.19) — 	+-r+) d-r 

c_ ~ 
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Now replacing the dummy variable x by -r- , we find 

°o 	2 	2 	 ~ 
Ee4, = 	

{ 

 

4-7 	 drr 

(1"- --r4-)a-pa) 
	Yfr1(1)1 1-' 

22+ (e('--r 	g) 	(3.15 ) 

To determine the first variation, we differentiate 

(3.15) with respect to OG , so that 

I dE 
4~r doc 

	 /1. oe- t dr 
3 er.-1-4-)a-rg) 

oer 

A__-(-4.(-r—er-÷)_(p 4- 	Tq)i d-r . 

From (3.5), we must have 

d 
d~ ,i 

and from (3.16), this gives 

(3,16) 

(3.17) 

r°O —,.(' 	+ f()-r(a-rdf 

A further differentiation of (3.16) leads to 

JaEx 
8 TT doc2 

and using the result (3.18) to eliminate the integral in 



(4.1) = 0 
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dI z 
(3.19) containing 	d r 	, we arrive at a concise 

expression for the second variation: 

I ~ZEx =I f()(3r)fr)~ -r -r+)  z 	— 	. 
8n d«. ce_i 

A necessary condition for stability is therefore 
00 

fq)(3f  r+)(-r-1+) Jr >, 0 
while for (3.18) to be satisfied we must have 

f7P(R-r- cs-r--2.-{—±) Jr < o . 

(3,20) 

(3.21) 

(3.22) 

We note here that the terms (31.--r+)fr—r4.) in (3.21) and 

r (3-r— 2r+) in (3.22) are both positive since Î>Ç. 

We now see that if -Fa)>,o everywhere, so that the 
energy density has the property of being everywhere 

positive, then the only solution, from (3.22), is 	= C , 

a constant, subject to -FCC) = 0 . Furthermore if -F(1) 0 

everywhere, then the stability condition (3.21) is only 

satisfied by +()0.  Hence if -f (1) has constant sign, 
then the only solutions are the vacuum states given by 

f(15_)= 0 . If no restriction is made on the sign of-RE 

then no immediate conclusion can be reached. 

4. Special cases of 42(I) 

We now examine two special cases of 41(() for which 

(3.2) becomes 

( a ±)1 ?~ 
where 21 is positive. 

With the positive sign of the µZ term in (4.1), we 
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have from (3.2) 

so that 

f(1) = 

(4.2) 

(4.3) 

The constant of integration in (4.3) has been taken to be 

zero in order that the energy integral (3.6) be finite, 

the vacuum solution 	= 0 having zero energy. Since 

f(45_) in (4.3) is everywhere positive, we have that the 

only solution is 11 _ 0 , using the result of section 3. 

With the negative sign of the 12' term in (4.1), (3.2) 

gives 

/Aq + 
	

(4.4) 

so that 

f(~) = 	 r 

	
(4.5) 

which is the form of current interest in gauge theories. 

The constant of integration is chosen so that the vacuum 

solutions 1)_.- ± /,/,/w have zero energy. From (4.5), we 

again have the result that fq) is everywhere positive, 

and the only solutions are ±t1/17.-,- 

5. Schwarzschild-de Sitter background space 

As an example of a finite background space, consider 

the Schwarzschild metric generalised to a non-vanishing 

cosmological constant / \" Q (Lake, 1979) 

cis z = 11-0ōta — 	dsrz — --2 JO' — Y-2sinaea 	(5.1) 
hf) 
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where 

h (r1 = I - zM _ n .r a 
3 

From (3.2), the radial equation in this case becomes 

(5.2) 

I 	-t 2̀ — 2Mr- nr4) ~~ _ 	' 	 (5.3) 
r2 	 3 dr 

TAI) ~1 dr 
Horizons occur where 	 and puttingo

dr
= 0 gives 

(5.4) 

and 

hCro) = I -- (9M2 A) . (5.5) 

For r> 0 , we will have two zeros of 1101  , r = rb and 

"C. _ 	rrb < r < , provided k (TO) 7 0 , which from 

(5.5) is equivalent to the condition 

A <  1 a • 9M 
(5.6) 

We shall assume that (5.6) is satisfied so that the radial 

coordinate 1 has bounds Yb < r < r , and proceed as in 

section 3. 

The energy E of the 	-field is given by 

r~ 	 2 
E = 1-7( (ra-2Mr- *r)()+ ()1a1 

rb 

 

1) (5.7) 

and we define 

4n 
2 

—2Mr—nr4 d~~, + ( i2 df (5.8) 3 dr 

the position of the maximum of h(r) as 
1/3 (3M) 
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where 

L(r)  _ 	[-r + (06 — I ) E (r)) . 	(5.9) 

In (5.9), E(-r') is a bounded, differentiable function 

satisfying 00= E(r) = 0 . This ensures that the 
variation in / at rb and -f is zero. Without loss of 

generality we take e(r)>0 for 7'6 < r< 	. 
We now change the variable of integration in (5.8) from 

Y` to R where 

R = 1- + (0 - I ) E (r) 
so that (5.8) becomes 

f 

+ f (Prz ~R } JR . 

From (5.10) 

dR = 	+ (06 _ I) (Jar) 
dr 	 dr 

and substituting (5.12) into (5.11), we obtain 

(5.10) 

(5.11) 

(5.12) 

Eem, _ f 
 

r2- 2  Mr - — r4J ( + [x._ 1   / d ~ 
4-7  

 

dr \dR 

}n( 
	JR I \I/

l r
l 	+ r~ ~~ dE(r) \ Jf~ • 	(5.13) 

~ 	dr 

In the integrand of (5.13), 1 is defined implicitly 

as a function of OG 	R and 	by (5.10) . As before, we wish 

to differentiate (5.13) with respect to OG and then put 
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e6 = I . We must therefore take account of the fact that 

is a function of 06, . From (5.10), we have 

0 = ar + E(r) + (o 	
~ 

- ~ der) Dr 

giving 

E(r)  

CI+(06- 1) de(r)1 
d 

-r = R when cx, = 

(5.15) 

In particular, since 

 

  

(5.16) ac‹. 04_ ~ 

Now differentiating (5.13) with respect to (x 

find 

, we 

I dE — 	(r2- 2Mr- /\_..r-4)(dE(r) E(-e)(o- l) r2  
4-~ 

 
dc‹, 	3 	dr 	[1 + (06 - 0 dE r) 

d-r J 

E(r)(2r-2M- 	3 -,31dR/ 	(I+ Coc-i) dr(r)lz 

r2 (Er 	E((r')(oC- ,) ~(Z) 

_ dcr) 2 dr- 	_ dE(-r) 	
dR 

I + (x I) 

	

	 CI 
+ (x I ) 	}j 	; 

d r 	~J 

(5.14) 

(5. 17) 

so that 

1 Ex. _ r̀ 'd)
z 

()eaM_4) e_  
r6 

--E 	-2M 4'n-r'3 — 	2fie + -~--2dEdrt(2_1- 	 3 	) __pg)[ 	 di- 
(5.18) 
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where the dummy variable R has been replaced by 1 in 

(5.18). A further differentiation of (5.17) leads to 

go, 	_ 	 LE2 
_aAra _ E d E r~_2Mr-2~ 	r2 ~ 	3 1 87T JO ,~_ I 	dr 	 d 

z 
E2+ 4 € dE + rz M+r2E 	dr .-~(~) 	di- 	dTa 

R 	
(5.19) 

Again, R has been replaced by r and E is understood 

to be E = E(r) . 
From (5.18), the variational principle SE =  0 is 

equivalent to 

i-rc
- z 

2, 	
4/\r3 

dr
E (2.-r—aM— .

3  
-f-b -' 

— eca ciE.{ ~ 
3 F 

0 , 	(5.20) 

where 

(r) = are -11- -r a dE 
dr 

while the stability condition EZE ? Q is equivalent to 

E2(1 - a Ara ) (r2 — aMr— r4)E 
4- dr 3 	d-`2 

rr)-P(11 (5.22) 

whez. 

( J-e 
2 	d2 (r) = E 2 + 4rE dE ± r2 	+ r`2E E 

Ī 	d1' 	dr 	dr 
(5.23) 

(5.21) 

• 
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We now wish to consider the case of 'MO  as in 

sections 3 and 4. For any function E satisfying 

E(c = E(;)=0 and E(r) >0 for b<Y' < -1 , we have 

p6 - 
_ dE 
 dr 

= rt. 

, 	G = de >0 lu dr r= 

1 0 , 	(5.24) 

   

   

or either or both of ti6 , f.Lc  may be zero. Assuming first 
that (5.24) is satisfied, then from (5.21) we have 

CPI) > 0 , 	< 0 . 	(5.25) 

If E(1 b) = 116 = 0 , then as r4 r,+0, we put 

E A(r--rb) 
where A> o and IR. z . Substituting r=-rb+E , where 

O<« 1 , and (5.26) into (5.21) gives 

cl,(r) 	~-~ > 0 
Similarly, if Er0= tic= 0, then as 1-->1;-(), we put 

-v B (rc — ,r)1 

(5.27) 

(5.28) 

where B> 0 and L>, z . Substituting {=,('e— , where 
0 < a «C ( , and (5.28) into (5.21) gives 

q~(r -~—arc2L~~-' < 0 . 
i 

(5.29) 

In all cases therefore, q ~^(') changes sign in the 

interval % < T < Ī . Hence, j/from (5.20) , we can draw no 

conclusions as to the existence of non-constant solutions 

since at least one term in the integrand changes sign. 

Furthermore, for any E , P(r) contains positive terms 
and consequently, the right-hand side of (5.22) contains 

at least one positive term. We can infer, therefore, no 

violation of the stability condition (5.22). 

(5.26) 
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6. Discussion  

The method presented in this chapter is a convenient 

way of writing an identity involving 	, once the 

differential equation for ( 	has been specified. For 

consider the Reissner-Nordstr/m case where the differential 

equation is 

dd (1--r+)(-r– r_) d~ 
r = -g/g) 

 

(6.1) 

  

We derived the expression 

° 	II 	2 
= 1-(-+)2~d~ df' 

c 
--P(I)r (3r – 	= 0 . (6.2) 

To see that T is identically zero if (6.1) is satisfied 

we first integrate the second term in (6.2) by parts, 

obtaining 

(r –~r+) ~~\2. dr T 	Jr) 
- r+ 

oo 
 — 	(0- rzr+ ) 	d-~-- . f~~:14 

r+ 
(6.3) 

The integrated term in (6.3) is zero at r= 	 and and also at 

CO by the requirement that the energy integral (3.6) is 

finite. Using (6.1), we eliminate fq) from (6.3) so 

f(Ecr=– r r,~ 

'r+ 

that 



2 
)2 d 	

cif dr 

("r r+ )~~ — r) 	clr . 	(6.4) 
dr 

(r—.
r+

) dd 
co 
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The second term in (6.4) may be expanded into two terms by 

partially carrying out the differentiation, and we find 

00 	 00 

T 	r- -r+ )a( d 
	— 	 ( 

00 

2('r— r+) dr 
	

Y_ ~~ (~f`—)~ (r— r+) ~~ jf-. (6.5) 
dr 	dr 

The first and second terms in (6,5) are now combined and 

the third rewritten to give 

a. 	 w 	
a ( -r -r)Zd 	 r— (r-r )~ (r—r+)~ cif . 

dr a 	 ār 	dr 

(6.6) 

Integrating the last term in (6.6) by parts, we are left 

with 

z 	 d
)2. (r -1r) 	r Cr — )  (6.7) 

and this is zero, from the finiteness of the energy 

integral (3.6). 

Similarly in the Schwarzschild-de Sitter case the 

• differential equation is 

= 
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(r2 — 2 f" 
r2 dr (6.8) 

while performing the first variation gave, in (5.20), 

11 	2 L=J Z (21- — 2M 4-A13) —(-r2-2Mr— Ari-A)dr 
dr 3 	 3'di 

6 

where 

+ K = o (6.9) 

-cc 
= 	_  (2-rE + 	dr r2 dE) cif` . 	(6.10)  ) 

rb 
Integrating (6.10) by parts and using E ('1-6) = E ere) = Q gives 

K    
	Ui- 

	

 ) 	( 6.11) 
1 

and substituting for Tq) in (6.11) from (6.8), we find 
r 	

d~ K= - 	2E dI cl  (-(1— a Mr— nr4 	dr. (6012) 

rb d~ dr 	 3 dr 
Performing the differentiation in (6.12), 

K= 2m 2-r — — ZE ~ 	— 
rb 

4n~.3 (i_fla
3 ~ 

r̀ qra— -- 	2 M,r — 
rb dr dr 

and integrating the second term by parts gives 

411 d~ K=- (2-rE -2M — 3r3) ~. dr d rb 

(6.13) 

(6.14) 
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On substituting (6.14) into (6.9), we see that L is 

identically zero, given that satisfies (6.8).' 

  

The above manipulation indicates the difficulty one 

would have in deriving the identities (6.2) and (6.9) from 

the equations (6.1) and (6.8) without recourse to a 

variational principle. 

7. Conclusions  

We have seen in this chapter that an extension of the 

method of Derrick gives a convenient way of writing 

identities involving the solutions 	of a class of non- 

linear Klein-Gordon equation, and of expressing the 

stability condition on t . For a spherically symmetric 
wavefunction in the infinite region exterior to a non-

rotating black hole, the only solutions in certain cases 

of physical interest are the vacuum solutions. However, 

for a particular spatially finite background space, we can 

find nothing to preclude the existence of non-constant, 

stable, finite energy solutions. For other topologies, 

there may well exist non-trivial, stable solutions (Avis 

and Isham, 1978). 
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CHAPTER 4  

MAGNETIC SUPPORT AGAINST  

GRAVITATIONAL COLLAPSE  

1. Introduction 

In a recent paper (Ardavan and Partovi, 1977), a static, 

axisymmetric interior solution of the Einstein-Maxwell 

equations was found. The solution describes the interior 

of an object whose mass exceeds the upper limit of the 

mass of a neutron star (see Oppenheimer and Volkoff, 1939, 

and Oppenheimer and Snyder, 1939), but is supported 

against total gravitational collapse to a black hole by 

internal magnetic stresses. In such an object, degeneracy 

pressure alone could not support collapse, and the authors 

therefore consider the case of negligible pressure, with 

the gravitational attraction balancing the magnetic forces. 

In this chapter, we examine the solution from a physical 

viewpoint by applying the so-called strong energy condition 

(see Hawking and Ellis, 1973) to the energy-momentum 

tensor. It is found that the condition reduces to the 

requirement that the density of matter should be positive, 

and is therefore satisfied by the interior solution. Other 

aspects of the problem are briefly discussed. 

2. The interior solution  

We begin by briefly reviewing the derivation of the 

interior solution found by Ardavan and Partovi (1977). 

In suitably chosen units (G= C.= I ), the Einstein- 
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Maxwell equations with negligible pressure and non-zero 

matter density ? are 

R - k v R 9 	= — s TTTtty 
v  
	 (2.1) 

where the energy-momentum tensor Thv is given by 

Trv  - I (Fe  r + ; 9 v F-,t
- 
-h u uy 	(2.2) 

and 

F 	— t.„ = Av,  	1,v 
The authors consider the particular forms of the 

electromagnetic potential and four-velocity 

(2,3) 

A = 
 

(0)0)p r , A , )) , uy _ (90'a 	0 0) 

where goo is the coefficient of Cit2 in the metric, 

which is taken to be 

a52 = a
dta _ 2(v-~)(~2+ cizza) — r2 e Za dy2 

(2.4) 

(2.5) 

In (2.5), 1- , zz and 7) are cylindrical coordinates 

and /1  and ') are functions of 1 and a 
The field equation from (2.1) which we shall need in 

this chapter is 

VaA = __ 
 

I VAI + 1-Tr 
r 	 J 

Also derivable from (2.1) are the equations 

Az(VaA — — Ar + 2V1 .VA) 
+ 	2 3 e2 (v 2?1) = 0 

Ar (~72A — ? A,+ 201 .VA 
2(y 2~ ) 

 

4-TT rr2 	0 

and 

(2.6) 

(2.7) 

(2.8) 



au. 	̀ I -12) clu 	LaU. = 0 • dia 	r(1 +r2) dr 
(2.13) 

(2.15) 

and d are arbitrary constants. The 
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where subscripts denote partial differentiation. Now (2.7) 

and (2.8) possess a non-trivial solution only if 

Ar = 0 , 	 (2.9) 

so that A must be a function of 	. The authors make 

the particular choice 

A' = (2.10) 

where prime denotes differentiation with respect to 

and eliminating J from (2.6) and (2.7), we obtain 

( ~ + r2 
)Q2/1 	= 0 	 (2.11) 

Writing ?1= U(1-ME), with a separation constant 

find 

= E 	Uk(r) 
~. 

K we 

(2.12) 

for k4:10, where the Qk are constants and (.,0) satisfies 

We note here that in the case k= 0 , (2.13) has the 
solution 

while 

where OC 

particular solution used by the authors was 

z) = U,k(r)cos (kz) . 	(2.16) 

U1(r) = oGLN(1 + r2 ) + /3 (2.14) 

From (2.6) and (2.10), the mass density P can be written 

ea(?1-v) 	2 	1 

4-TT z1V 
(2,17) 
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With A given by (2.16), the density was found to be 

positive at the centre and falling to zero at a surface 

defined by 

72a 
= r 

I 1 v (2.18) 

This surface defines the boundary of the collapsed object. 

The exterior field equations can be written 

and 

2~ 

o2a ~2 IvA l2 = 0 r 

(CAT-) +a 	A =a r 

(2.19) 

(2.20) 

A solution of (2.19) and (2.20) was not considered by the 

authors. 

3. The energy-momentum tensor 

Since the metric (2.5) is diagonal, the contravariant 

components 9 
	

are given by 

Sao _ 	 -2?) 

9" = 3aa - — e 

	

33 _ 	e 

	

9 - 	rZ 

while from (2.3) and (2.4), the only non-zero components 

of Fr. are 
' 13 = 	F3i 	' `r 

F3 ^ 	' 3 = `z 

In order to calculate 11v from (2.2), we first note that, 

(3.2) 
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from (2.4) , the term Su1,,.Li„ is non-zero only if LL = 1)= Q, 

in which case 	 J 

uoa = 	
900 _ 
	e2a 	 (3.3) 

Next, we calculate the scalar 

F2 
= FFay _ 9 0(.. Tr F0613 Fay 

(3.4) 

Using (3.1), we find 

F2 = 
	9710 

z ea(2. -v) ( A a 
r2 	

/1 

Occurring in ( 2.2) is the tensor 

C") = F F~v 
Since the metric is diagonal, 

(3.5) 

(3.6) 

C v — Qcr~ I!~ Co-v = 	~a1 	F~v 
~ J 	I~ 	I ~ I (3.7) 

From (3.1) and (3.2) , the non-zero elements of Cµv are 

2~ 
_ 933 	__ ~.7 

A
2 

C is 	 ' 13F31 	~`Z 
AY. 

-  

c12 = ca, = 933 
 F3F32 — rZ Ar r 

_ 33 	2~  2 C 
g Fa3 

F 
32 = -'z /6\ 

a )"33 	9 F31 Fla 	9 ' 32 ~23 	`' `Y' ' Z̀ 

.(3.8) 

From (2.2), (3.3), (3.5) and (3.8), the non-zero components 

of TAD are 

Too= 
I 	(3a-v) 

(Ar
2 + A

2 +Orr 
eta 

—T = 

 
(3,9a) 

ii— 	 ~fi 

2.A 

1-11   — A  s2 (Azi. } 
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 T = = Z T21 4TTr2 r ~ 
(3.9b) T = e2 c~ - v) 

(A'r+ A 
) 

33 $   

Using (2.10) to eliminate A and (2.6) to eliminate  

from (3.9), we obtain 	 J 

 

	

T 
= ~ 

e c2~ -v) 72A — 	(a
2 + n)}00 L -2 r  

	

2 	21 
Tit_

_ 	__ p 
~ 	— Taz 	oĪĪ

l 
ia 

it= T21 
4 
	r2 ~r 

2 	a 
T3 =8TTe v ("r + 	) 

• (3.10) 

Now 

  

Thv __ 1.4a 
9v~ T06 ) 	(3.11) 

and using the contravariant components 8t") given by (3.1) 

we finally obtain 

T°° =L e a' 02a 	I Z (ar + ~ ) 4rr 	2r 

snfi 
T12 = T2' _ 	 e"f-c~ -"'  4Tre 	r 

T33 

 

= 	e(4-1- 2v)(a2 

8m4- r 

(3.12) 

 

4. Energy conditions 

The strong energy condition as stated by Hawking and 

Ellis (1973) is that at any space-time point I 
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r> I TLI 
-,- v 

for each 0. and b , where T1 represents the 

(4.1) 

components of the energy-momentum tensor referred to a 

local orthonormal basis at P . As presented by Hawking 
and Ellis (1973), this condition holds for all known 

physical situations and is believed to hold in general. It 

is equivalent to the demand of positive energy and that 

S6 
	b 
= Ta V is a timelike vector for any timelike Va • 
Since the metric is diagonal, then at any point P 

we already have an orthogonal set of axes. Defining a 

tetrad ep. by 

and 
at" = (4.2) 

(4.3) 

then the metric is formed by contraction with respect to 

the Minkowski metric 110.b , 

CIS 2 = c.L.)ac.Wb a.ū — 	y ~C q~d:CV. 
 

The energy-momentum tensor transforms according to 

Tab 
— 

e ae b Tf 

From (4.4) for a diagonal metric, we have that 

W° — _ 	
d ° w~ 	dx 1 N ~J~ x 	_ 	5 

clx2 l w3=T33 dx3 

so that, from (4.3), 

eo° = 	) 	2i = —9ii 

z 	 3 _ 	 ~2 	\ J2z 	e3 = ! J33 } (4.7) 

} 

(4.4) 

(4.5) 

(4.6) 
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Using the transformation (4.5), we find 

=300 
Too = i ē ("' - v) o2 _ I 

z 
(r -A ) 

I 	1911T 	T 	e 	1 ar-~I 8 in—Ta  

1721= I T 21 l _ ~ 9►~922 T ~ 2~ = 4 I Z 	-v) 

-T331 	

~ 1 

T33I _ 1 933T33I _  

87I 2 
ea(7t - v)( 2r + 

l 
Now since 

 

~r + 	> Ar — A: 

r1r + 	>  

 

  

and 

 

then, from (4.8), 

and 

Condition (4.1) therefore reduces to 

1°°> [T33 
I 

T331 > I 	= IT i 22 

171> 7'1 . 

.(4.8) 

(4.9) 

(4,10) 

(4.11) 

(4.12) 

(4.13) 

Using the components calculated in (4.8), (4.13) can be 

written 

I 
2 

-v)

{va ~ \ >o 

  1 2
Xr 	. 

4-T 
(4.14) 

From (2.17), (4.14) is simply the condition ÿ> Q , 

and the strong energy condition (4.1) is therefore 

satisfied by the particular interior solution found by 

Ardavan and Partovi (1977). 
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5. Discussion  

The preceding analysis was based on a special solution 

of the field equations. For example, if a general 

relationship between A and 	is taken, in place of 

(2.10), of the form 

= ē2k-p) 
	

(5.1) 

then in place of (2.11), we would have the non-linear 

equation 

(I + iza)vaa — 	+ Iva = 0 (5.2) 

which would no longer be amenable to solution by 

separation of variables. In the absence of an exterior 

solution satisfying equations (2.19) and (2.20), it is not 

certain that the solution given by (2.10) and (2.16) could 

be matched at the boundary of the collapsed object. Indeed, 

if an infinite sum of the form (2.12) is used, it is no 

longer clear that there would be a solution of (2.18) 

defining the boundary. The exterior field equations have 

no simplifying feature of the form (5.1) and an analysis 

is much more difficult (Young and Bentley, 1975). 
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CHAPTER 5  

THE SCHRODINGER EQUATION WITH AN 

ANHARMONIC OSCILLATOR POTENTIAL 

1. Introduction 

In a recent paper (Stephenson, 1977), the Liouville-

Green technique (see Appendix 1) was used to obtain the 

eigenvalues of the Schr6dinger equation with a radial 

Gaussian potential. Recent work on the anharmonic 

oscillator (Gillespie, 1976, Fung et al, 1978, Banerjee et 

a1,1978) has led to computation and comparison of the 

eigenvalues of the Schrddinger equation. In view of the 

fact that the Liouville-Green technique and other so-

called semi-classical methods are not as widely applied as 

they might be (Berry and Mount, 1972), and of the 

importance of the anharmonic oscillator potential in 

nuclear structure, quantum chemistry and quark confinement, 

we now use the same method for this potential. The 

eigenvalues obtained are compared with those found by 

direct means. 

2. The basic transformation 

Setting Zrn = R = I , the one-dimensional Schrddinger 
\' 2 4 

equation with an anharmonic oscillator potential Y = X+ X 

is 

ci24) = 	 xi Z 	
~— E + xZ + 	y.) (2.1) 

where El is the energy, and the boundary conditions are 
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f(00)= TC-co) = 0 We make the Liouville-Green 

transformation (Olver, 1974) 

cc=  x() , (x) = (E') G(E) (2.2) 

where primes denote differentiation with respect to al , 

so that (2.1) becomes 

where 

and 

d2G = (P (x) 	A(,) )G_ dE 	E 	' 

P(x) = x4 + x2 - E 

(2.3) 

(2.4) 

!!/ 	112
• 2E 4 

When E is positive, P(x) has two zeros DC= 111 ) where 

~2 xo= 2 - +(I ++E
)~2 

, (2.6) 

these being the classical turning points. 

The Liouville-Green technique consists in choosing (x) 

so that 0(x) is a small bounded function and (2.3), with 

A(C) neglected, is soluble in terms of known functions. 

Two ways of achieving this will be presented. First, since 

(2.1) has two turning points, we may try to choose 	(x) 

so that, after neglecting /\() , (2.3) becomes the 

standard two-turning-point equation, namely the Weber 

equation 

d2G 	~ 2 

dE2 2-E 	, (2.7) 

the solutions of which are the parabolic cylinder functions 

where 	is a parameter. Alternatively, since P(x) depends 

(2.5) 

only on xZ , the wavefunctions J(x) will be either even 
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or odd functions and we can consider the problem for 3:;10, 

applying the additional boundary condition that either 

y0)=0 or 4)(0)= 0 . In this case, since Px) has only 
one zero for 3C?0, we may try to choose E(x) so that 

(2.3) becomes the Airy equation 

d2G 	a G 
d Ea 

1 (2,8) 

after neglecting 0(x) , where C1, is a parameter to be 

determined from the boundary conditions. 

Both approaches lead to approximate eigenvalues and 

eigenfunctions (Olver, 1974). 

3. The Weber equation method 

With the choice 

E/2(~~ 2 - ) = P(x) (3.1) 

(2.3) becomes the Weber equation (2.7), if we neglect 

L(x) . Assuming for the moment that this is justified, we 

find by integration of (3.1) that for x xp, 

I~ 
I 

E( 2 # _ 
 x 

-4- a Ln (a ) = z 	P(t) z db (3.2) 

while between the turning points 

x 	I 
— 2 l4 + z~ si n 1 	= r? — 	/2 dt . (4a 	) 	a 	P(t) 

(3.3) 

The constants of integration have been chosen so that 

= 0 when JC =0 and E _ ± 2, correspond to OC = ± 0Co. 
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Putting D2=70:0 in (3.3) we obtain 
xo 	~'a 

Irr = 2 	(E_baL) d t . 
0 

The boundary conditions 11l(00)= tf)(00) = 0 correspond to 

G-(co)= G4-00)=0 and bounded solutions of the Weber equation 

satisfying these conditions exist only if 

A = r + z 	 (3.5) 

where r1=0,1,2, 	 Substituting (3.5) into (3.4) gives 

1-1- (r+ ! _ ~(E- 2- t4 2 ~tz ) 	 t  
0 

(3.6) 

which is the Bohr-Sommerfeld quantisation formula, on 

noticing that 

2 	l2 f 
	f f (E--. 

:Co • 4 i/2 
(E- t -t

4 
/ dt =  	(3.7) 

-xo 

Table 1. 

Eigenvalue Accurate 

Eigenvalue 

.Percentage 

error 

0 1.2508 1.3924 10.17 
1 4.5926 4.6488 1.21 
2 8.6130 8.6550 0.49 

3 13.1231 13.1568 0.26 

4 18.0290 18.0576 0.16 

5 23.2725 23.2974 0.11 

6 28.8130 28.8353 0.077 

7 34.6206 34.6408 0.058 

8 40.6717 40.6904 0.046 

9 46.9477 46.9650 0.037 

10 53.4329 53.4491 0.03 

20 127.6076 127.6178 0.008 

30 214.7721 214.7797 0.0035 

40 311.8254 311.8315 0.002 

50 417.0512 417.0563 0.0012 

100 1035.5422 1035.5442 0.0002 

(3.4) 
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Using Simpson's rule and Newton iteration, the 

eigenvalues have been computed from (3.6) and in Table 1 

are compared with accurate values calculated by Banerjee 

et al (1978) using scaled bases. The two sets of values 

are in close agreement, the accuracy increasing with 

increasing 

We now examine the neglected term A(X) . From (2.4) and 

(3.1) we have 

 

(-E+x2 +cc   

 

 

(3.8) 

   

     

     

from which :11 and 	ICI can be calculated in terms of x 

and E and, using (2.5), 0(x) can be written out 

explicitly as 

(3Ea+ s )  A(x) —  

_t(r 	z~1-11 lEE +(12E+ 3)x2 + 6x4 + sr']  
4- 	_ +  xz+ x i-) 3 	(3.9) 

At the turning points, although both terms in (3.9) 

diverge, we can show that 0(c) tends to a finite limit, 

as follows: 

From (3.8) we have 

(-E + ,x2 + x`-) 
Ei 2 	—(3.10) (4 2 

 

Now x = xo corresponds to E. a 	, so that both top 
and bottom of the right-hand side of (3.10) tend to zero 

as x -4 xo. We therefore use L'Hōpital's rule to evaluate 

the limit, giving 
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'2 = Lim 	
(2x 4-x3) 

xro 	
2 

so that 

L_ = Lim 	' = i 2cc,+  
x —4 x0 

Differentiating (3.10) leads to 

r 11 = 	(4x -1- 8=3 — g13) 
C4- 

after elimination of the term (—E+  x2 + Do+) . By (3.12) , 

both top and bottom in (3.13) tend to zero as x —> xo. 

Writing 

La = Lira E;
u 

x-4 xo (3.14) 

and taking the limit in (3.13) using L'Hōpital's rule gives 

aL,L2 = 2 (3.15) 

so that 

(1- +a4 — L4)  La 	Io L2dn 
(3.16) 

By a further differentiation of (3.13) and use of 

LTHōpital's rule, a lengthy but straightforward calculation 

gives 

	

L = LIrrl 	rrr — (+8+ LiL SLLa)

T 
  

	

3 x~ 	 IL2~ 	
(3.17 ) 

Since L I , L2 and L3 are non-zero and finite, then by 

(2.5), !Nx) tends to a finite limit given by 

2 

tin L(x) — L3 — 3 L2 • ._,:co zL, 4- L~ 
(3.18) 
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Figure 1. 	L (cC) against CC , for r1 = O , I , 2 
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0.02 

Figure 2.  p(Dc) against 3Z , for rl = 5 , IO . 

O.0 I 

0 
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The values of &x) have been computed by first 

finding E for a given JC from (3.2) or (3.3) and then 

substituting in (3.9), with the value at the turning point 

given by (3.18). The results are shown in Figures 1 and 2 

for selected values of rL and indicate that Q(X) attains 

its absolute maximum at X.= 0 , this value decreasing with 

increasing r. , and that A(x) is a small, bounded, 

slowly varying function. 

4. The Airy equation method 

Here we consider x.~~ 0 , and with the choice 

e(E-a)  = P(x) 3 (4.1) 

(2.3) becomes the Airy equation (2.8) on neglecting L(X) . 

We then find by integration of (4.1) that for 3C 7x 0, 

— cx) = 	P(t)i clb 
zo 

the constant of integration being chosen so that x = xn 

corresponds to E =a..  For 0‘ x < :C.o , we , have 

2 	
2 	

1/2 

?a --(a-E)~Z = jL—P(Jdt,  3 	0 

where x = 0 corresponds to = 0 . Substituting DC= Xo 

into (4.3), we obtain 

3 	
= J °(E-  La — t# y2 	 (4.4) 

/~ 
The required solution of (2.8) is the Airy function 

A, (t— Cl.) , since this satisfies the boundary condition 

G(00)=0 . We can now find the parameter Q from the 
/~~ 
	G()=0 

	

additional condition that either GCo)— 0 or 	C 

corresponding to even and odd wavefunctions respectively, 

(4.2) 

(4.3) 



- 67 - 

since this condition implies that either Ail(-a) = 0 or 

AL(-a)= 0 . Hence -Q, is the position of either a 

turning point or a zero of the Airy function AL . The 

values of Q. obtained from Abramowitz and Stegun (1964, 

p.478) were used to compute the eigenvalues using (4.4). 

The results are shown in Table 2 and compare favourably 

with accurate values. 

Table 2. 

Q, from 	CL from 	Eigenvalue 	Accurate 

AC'( Q,)=O 	A(-oi)=O 	Eigenvalue 

0 1.01879 1.0706 1.3924 

1 2.33811 4.6573 4.6488 

2 3.24820 8.5471 8.6550 

3 4.08795 13.1605 13.1568 

4 4.82010 17.9849 18.0576 

5 5.52056 23.3000 23.2974 

6 6.16331 28.7788 28.8353 

7 6.78671 34.6428 34.6408 
8 7.37218 40.6433 40.6904 

9 7.94413 46.9666 46.9650 

10 8.48849 53.4084 53.4491 
11 9.02265 60.1310 60.1295 
12 9.53545 66.9589 66.9950 

13 10.04017 74.0371 74.0359 
14 10.52766 81.2108 81.2435 

15 11.00852 88.6115 88.6103 

16 11.47506 96.0998 96.1296 

17 11.93602 103.7966 103.7953 

18 12.38479 111.5743 111.6018 

19 12.82878 119.5454 119,5442 

The connection between (3.6) and (4.4) can be seen by 

noting that the leading order term in the asymptotic 

expansion of Q. is 
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~ 3 
^- 31T (r1 + z ) 4 (4.5) 

where I'l= 0,1,2,....(see Abramowitz and Stegun, 1964, 

p.450). 

The neglected term AW in this case is given by 

Noc.) = S 	 12E+(12E+3 2+x4 8x  ( -cx) 	 4-(-E+ x2+ xl-)3 
(4.6) 

and we can again show that L(x) tends to a finite limit 

at the turning point CC = 0Co. By the process of 

differentiation and L'Hepital's rule used in section 3, we 

obtain from (4.1) 

K, = Lin E' = (axo + 4-x J 3 
0 

and 

~~ _ (2. + 12 x0 )  
Ka ~-~ 

 
5K2,  

7 (4.8) 

///laC2 	
21 

K3= Llf1 	2 7Co -- K~K2 ) 	(4.9) 
x—~ xo 	7K) 

Finally, from (2.5), 

Lin L(x) = 8K 3 	5 (16
x)

15KiK22 	(4.10) 
 

The results of computing 0(x) for selected values of 

(1., are shown in Figures 3 and 4. Curves are labelled by 

the corresponding quantum number R. (see Table 2). 

5. Discussion 

The method presented here depends on the initial choice 

of 	. Consider for example the Weber equation method. 

The exact relation between 	and X. is given by 

(4.7) 
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n=1 

Figure 3. A(x) against x  , for selected values 
of Q (h= o,I). 
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- 0.01 - 

Figure 4.  Q(x) against x , for selected values 
of Q (n=2,3,4). 
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(I a ) 
 

P(x) E" 3 11 2 
(5.1) 

and on neglecting the right-hand side, we obtain (3.1). 

The next approximation would be 

from which we see that 

12e = 	x( )) (5.2) 

Ito r 

± 2 440 ug   (5.3) 

0 	 0 

where E.o is given by 

a 	Oc(E0)) = o . 
Numerical calculations of (3.18) indicate that, except for 

the case 11=o , Z.Yx) is negative at the turning point 

aC = x, (corresponding to E = 2 	) , so that Eo< 2~ 

Hence an upper bound for the right-hand side of (5,3) is 

a fA (1 + 	(o))a (5.5) 

which from (5.3) gives an upper bound for the eigenvalues 

in this approximation. For upper and lower bounds derived 

using the J.W.K.B. approximation, see Birx and Houk, 1977. 

The approximate eigenfunctions follow from (2.7) and 

the transformation (2.2). These solutions have been 

obtained from the equation 

jzG- = [-L-Ea — 	D(x(E))1& (5.6) 

after neglecting Ox(E)) . At the turning point E = ag , 
A(x( )) is non-zero and therefore dominates over 

. However, near E = 2JX , we put 

(5.4) 
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EH = — a j , (5.7) 

where E << I is a small parameter and 	is a variable 

of order 1 . Substituting (5.7) into (5.6) gives 

= Ea d(oc (E J  + 2g)) + E3 	-}- E4 2 G . 	(5.8) 

Now D(x(t)) tends to a finite limit as ' —4 2g , so 

that an expansion of Z (x (Ej 4' 2 fā }) in powers of E 

contains no inverse powers of E . Taking 	close 

enough to 2,7 so that EF <« 1 , we see that, 

although the term involving 0(x(E)) in (5.8) is of a lower 

order in E than the remaining terms on the right-hand 

side, the dominant term is the second derivative of G 

Equation (5.8), correct to order E 	is 

clZG  = o (5.9) 

Hence, if we neglect A(C(E)), the resulting equation is 

still correct to order E near = Zg . 

In Appendix 2, we use a modification of the analysis of 

Titchmarsh (1961) to show that for large E , the error 

in the approximate eigenfunctions obtained by the Airy 

equation method is 0(E 
—fra  

. In this case, E is known 

explicitly as a function of x from (4.2) and (4.3), 

whereas in the Weber equation case, only an implicit 

relation is known from (3.2) and (3.3), making a similar 

analysis much more difficult. 

A wide class of potentials can be treated in a similar 

manner, using the methods presented in this chapter, for 

d2G 
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example, the interaction of the type 

(Mitra, 1978, and Kaushal, 1979). 



- 74 - 

CHAPTER 6  

ELECTROMAGNETIC PROPAGATION IN  

OPTICAL WAVEGUIDES 

1. Introduction 

In view of recent advances in the manufacture of fibre 

optical waveguides and of their attractive properties, 

much work has been carried out on electromagnetic 

propagation in such fibres (see Olshansky, 1979, hereafter 

referred to as [I] , and the references cited therein). 

The waveguide consists of a cladding region surrounding a 

cylindrically symmetric core, with the refractive index of 

the core greater than that of the cladding. Ideally the 

cladding is of infinite thickness. The core of radius CU 

will be taken to lie along the positive 	-axis, and the 

configuration of refractive index in the core and cladding 

will be referred to as the 'profile' of the waveguide. 

Properties of propagation in the Z  -direction can be 

derived from the solution of a single differential 

equation, an eigenvalue problem for the propagation 

constants. Two problems of current interest [I] are the 

step-index profile and the parabolic index profile. In the 

first, the refractive index is taken to be Īt i  in the core 

and IA, in the cladding, assumed to be infinite in 
thickness, where Ī1i and ila  are constants satisfying 

rl, > na. In the second, the infinite cladding again has 

a constant refractive index R , but the core has a 

refractive index which decreases parabolically with radial 
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coordinate from hi at the centre to nia at the core-

cladding interface. Previous approaches to these problems 

have had the disadvantage of resulting in transcendental 

equations for the eigenvalues involving, for example, 

Bessel functions. This is due to the matching condition of 

solutions of the basic differential equation at the core-

cladding interface. 

In this chapter, we derive approximate eigenvalues and 

eigenfunctions using the Liouville-Green technique (see 

Appendix 1) by replacing the index profiles of interest by 

close approximations which are, however, continuous and 

differentiable throughout the core and cladding. This 

removes the need for matching at the interface, 

2. The basic differential equation 

From Maxwell's equations, we have the following wave 

equations for the electric and magnetic field vectors E 
and H (see Born and Wolf, 1975): 

a t+ V(E:71,11E,) = 0 

- /mai āZ~ + (VLRE)x(Vx H) = o 
(2.1) 

  

where /..& is the magnetic permeability, assumed constant, 

and 6  is the dielectric permittivity of the medium. We 
shall take 6 to be a function of position. Assuming time 

dependence of the form 

E(r , t) = Eo(,-)eiwt 

HCS t) = Ho(r)e`wr 

(2.2) 
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and putting 

= (8) 	) 	= is( 6(-_C) 

then from (2.1) 

02 Eo + IRn2 (_r) Eo + ii- 0(E . kyr‘)  = o 

VaHo+ ~
2
rt2(r)H0 +? (r)x (Vx H0) =0 

(2.3) 

(2.4) 

The standard procedure now is to neglect the terms in 

(2.4) containing Ort 	e This is equivalent to assuming 

that the variation of the dielectric permittivity is small 

in distances of the order of the wavelength (see Sodha and 

Ghatak, 1977). We shall discuss this assumption, in 

connection with the particular problems investigated, later 

in this chapter. Neglecting the last terms of each of the 

equations in (2.4), we can write (2.4) in terms of a 

single partial differential equation 

(2.5) 

where UM represents any one of the field components. 

We shall be concerned with problems having cylindrical 
2 

symmetry, where I. 	is a function of the radial• 

coordinate only. Expressing (2.5) in cylindrical polar 

coordinates T , e and 	, and writing 

e l a ) = yJ ("'r) e`34 cos (U eJ) , 	(2.6) 

where I is an arbitrary constant, /3 is the propagation 

constant and U =0,1,2, 	 , we obtain the scalar 

equation 
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dau( I d 	2 2 r} rt( )-  
ār

2 
~' dr 	

~ 
 "f aa)9) = 0 (2.7) 

It is equation (2.7) that is so extensively treated in 

the literature CI ] , and which we shall consider in this 

chapter. 

3. The step-index profile 

In this case, n2 ft) in (2.7) is given by 

R2 (-r) = 
rt: 	(r > a ) 

(3.1) 

where fl1 and r12 are constants satisfying ti > fl 	and 

Q is the radius of the core. In both the core and 

cladding regions, equation (2.7) can be solved exactly in 

terms of Bessel functions. Satisfying continuity 

conditions at the core-cladding interface then gives the 

transcendental eigenvalue equation for the problem (see 

Ell and Gloge, 1971,1975). A simpler equation for the 

eigenvalues can be obtained by the Liouville-Green 

technique (see Appendix 1), as follows: 

We first replace the step-function behaviour of r120`) 

in (3.1) by a continuous function 

rt2 fr) = 	- f(hf.-  riz 	+ taxtk. Cr- A,)1 	(3.2) 

in order to apply the method more readily. As the 

parameter N tends to infinity, the function tahh(N(r-Cq 
approaches a step-function of value — i for 1`< Q , 

and value -+'I for T>3.. , and so (3.2) approaches (3.1). 

Substituting (3.2) together with the transformation 
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is= at w = t J€R(t) (3.3) 

into equation (2.7), we obtain 

cl2R= 2 2— vita, d 2 	~~ t 
Q V 
2 2 

(n2- n2 ) + t~ ?Ct - ► ) I 	a 

	 R (3.4) 

where 0 = NO.. Following Olshansky [I] and Gloge 

(1971), we define the parameters 

d = Cn~2 - n2) 
a.ri z 

v2= ad k2nq a2 

b = 
(~2 kZr) 

kart.; rl 

1 

(3.5) 

Once n1 , r1z and the 

V 	
radius Q are specified, then 

the parameters d and V are fixed. The eigenvalue of 

the problem is taken as 6 , which once found gives the 

propagation constant /
3 

, from (3.5). 

Rewriting (3.4), using (3.5), gives 

I 	`/ 	`/ 	
I v 	

2 
d2R — 6 ' I) V 2 + V 

CQnh[ (b0  - ~v ~~ _ 	3.  z 	 ~ 	 2 R 	( ) dt 	 t 

Applying to (3.6) the Liouville-Green transformation 

t = t(E) 	R(t) = 	fraG(E) , 
where dots indicate differentiation with respect to t , 

(3.7) 

we obtain 
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where 

d 	— (kb—J/2)V+ P(t)y 	/l(t),G , 
l 	~ 

U2 	(v2- ~~4) Pft)  = — Lank [(t—  )J + 	a 2 

(3.8) 

(3.9) 

and 
#0• 	 .. a 

L(t) _ 	3 	. LE3 	
E4 

(3.10) 

I ~ /2 
For a range of values of b , the function (b- &\ +P(t) 

in (3.8) will have two zeros, corresponding to two turning 

points of equation (3.6). We then wish to transform 

equation (3.8) into the standard two-turning-point equation, 

namely the Weber equation 

dZG 2 
	 (3.11) 

ClEa  

where A is a parameter to be determined from the boundary 

conditions. Now Stephenson (1977), when considering the. 

SchrOdinger equation with a radial Gaussian potential, has 

shown that the choice 

2.(*E 	= (1) -0V1+ Rt) (3.12) 

leads to a form of 2L(t) in (3.10) which is divergent as 

b 0 . The correct transformation is 

12(*Ea--- a) = (b- i)va± Q(t) 
where 

() = P(t ) A- 	2 - a tarl~ ~(t- ~) + v2 • Q 	 z C 1 

(3,13) 

(3.14) 

This is equivalent to making the Langer correction (see 

Langer, 1937) and is typical of problems which contain 
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second order poles (see Rosenzweig and Kreiger, 1968). In 

accordance with the Liouville-Green technique, in equation 

(3.8) we neglect 

Rt) = L(t) — g-2 'a t ~ (3.15) 

Bounded solutions of the Weber equation (3.11) which 

vanish at infinity exist only if 

= rt -4- 2 
	

(3.16) 

where h=0,1,2, 	 Taking the square root of (3.13) and 

integrating between the turning points gives 

207. 	

112

tp Z

- 	dE = 	(2 6)Va— Q(t) d t 

where ti and b,2 are the two roots of (+_b)Va _Qft)     
 

Performing the integral on the left-hand side of (3.17) 

and using (3.16) gives 

(3.17) 

Tr(rl + 2 ) I D)V 2— Q(t) act . 	(3.18) 

For V>)) 	, the function Q(t) is shown 

qualitatively in Figure 1. 

O 
I I 

a
2

- 

Figure 1. 
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In order to evaluate the integral in (3.18), we take the 

limit of large 0 . The approximate minimum value of Q(t) 

2 	2 

is v — U/2 , so that the condition on the eigenvalue 6 
is (see Figure 1) 

2 	 2 
2— 
2 

	l2 	I 
— b Va < 2 	(3.19) 

or equivalently, 

0<b<I— UZ 

As —400 	the larger root of the integrand of (3.18) 

approaches t2= I , while the smaller root is given by 

2 
Z 	2 

(f- b)v2— _ 	y ~- 
~2 

5 	 (3,21) 
I 

since the function tank [ ( t — I )) approaches the value —1 
for L< I . Hence tI is given by 

Li 
_ 	1)  

VJI—b (3.22) 

Using (3.14) in the limit 	—400 , (3.18) becomes 

2 	j2 

no-t ++) = 	L(i-b)Va+ - v2 (it  
t1 

Performing the integral in (3.23) with the aid of the 

substitution t = ~ Sece gives 

(3.23) 

where 

n(1-14_ 21 = » C X — ta.rt ' 

_ ii—t  ?  x = 
I 

(3.24) 

(3.25) 

It is now a straightforward matter to find X from 

(3.24), for example by Newton iteration, and then, using 

(3.22) and (3.25), b is found from 

(3.20) 
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Figure 2.  b against V for the step-index profile. 
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Figure 3. 	Selected results from figure 2 ( 	) 

compared with those given in [I ] (- 	). 
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6 = I- 	+x2 ) (3.26) 

The results of computing 6 using (3.24) and (3.26) 

are shown in Figure 2 for \/$... is . In Figure 3, some of 
the results are compared with those given in [ I ] . The 

two sets of results are seen to be in excellent agreement. 

4. The neglected term Fa) 

We now examine the neglected term Fit) for the step-

index profile in the limit ?--400  . From (3.13) and (3.14) 

for t,‹  I , we have 

2( I -E2 1 Al 	(b_k)va_+= 	)):t4-  

Integration of (4.1) gives 

jzI-71-Ea + sin 	+ a~ Z 

= v Alta- - ta _ tari Jta t?  

(4.1) 

(4,2) 

for t1 	< , while for 0  

dEa-zpA — 1,r1 +j a- 4a +r1Ln(2F) 

- 	Lrl 
	pit ~ t2 	

+ t t? ~2 	 (4.3) 

The constants of integration have been chosen so that 

= ti corresponds to 	. For t > ( , we have 
l  

t2 I 2— ~ = (b 4)v

2 
+ 4:2+  v (4.4) 

so that 
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= v t('t2 + D2 - D -  (J 	I + D
Z - D) 

-4- 
,f t + DZ - r I + Da 	 (4.5) 

D 
2 

where D2 =1)/6Va , and we have chosen t = 	to correspond 

to E = 2 . 
From the transformation (3.13) and use of L'Hōpital's 

rule, as in Chapter 5, we find 

_ f Q~tP} /3 
L~ ~ 	 AOF 	, 	 (4.6) 

.. 	(2 	Q (tP)  L =tin 	= 	 3 	 (4.7) z  
bp 	YOJ L~ 

and 

L3 = Ur 
t-4 tP 

_ (2Q.(L - 24JL,L2 — 
~fL2 

L3L2)  
(4.8) 

where 	represents the position of a root of the 

function (6-zjv2 + Q(t) , corresponding to either 

- - 2,J r1 or E _ + 2g Then (4.6)-(4.8) give 

Urn F(t) = 

	

L3 	3 L2 	I  

	

2L3 	T L 	4t2L2 

	

I 	I 	P 	I 

(4.9) 

At the smaller root tP = tl , Q(t) ti -v/2 -I- ~ta from 

(3.14), and since L ~ , LZ and L3 are all finite and 
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non--zero at t= 1 , we find that F7(t)  tends to a finite 

limit at t= LI , given by (4.9). The larger root, lying 

close to L 	, must be treated independently. In this 
case tp is given by 

(6—i)va± z tan~ C t —   = 0 . t 
P 

From (3.14), 

(t) _ qs eck2  s 	(tp - I)J 2 32  C P 	 tP 

(4.10) 

(4.11) 

and so on for higher derivatives of Q(t), required in 

(4.7) and (4.8). Then using (4.10) and the identity 

SeCh
2 
9 = — ta11.h,

2 
) , we can eliminate all hyperbolic 

functions, to see that as 0 	e0 , 

1 1ltp1 = o(0) 5 Q(13) = 0(e) , a(t.p) = °(33) 	 (4.12) 

Then from (4.6)-(4.8), 

L~= O(e3) , La= 0(x%) a L3 = OW/3) 
and finally from (4.9), 

(4.13) 

Lim F(t) = 0 Di43) 
t-~ tp 

which tends to infinity with 

The results of plotting F(t) against t for particular 

values of iL , v and V are shown in Figures 4 and 5. 

Also shown in each case for comparison is //4 — A 	as a 

function of t , this being the term retained in equation 

(3.8). 

From (3.8), the exact relationship between E and t 

(4.14) 

is 
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Figure 4.  F(t} and 4 2— /% against t , for h=0 , v= I ,V= 8 • 
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2 Figure 5.  F(t) and -4T: —  %1 against t , for h= 1 , v= 2 , V= 9 • 
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Q.(t) 	E 	3 ta 	1  . z 	+ E 3 	4 4 	
4t22 

= (4._se - ?\) ) (4.15) 

so that, after the original choice (3.13) and neglecting 

F(.) , the next approximation would be 

(b_)Va~  Q(t) = 	4E2- - Fq ' 	(4.16) 

Integrating (4.16) between the turning points gives 

t a 	X2 	2 	%Z 

t, 
(i.*-  b)va — Q(t) dt = 	—¢t2+ F(t( )) c 7 

(4.17) 

where ti. (L= IA are the two solutions of 

g- ~z -1- F (t ( i )) - 	0 . 	(4.18) 

It would appear from Figures 4 and 5 that, although 

F7(0-4 00 at t = 1 in the limit )1-400  , the steepness 

and size of the function e/4 "' ?1 is such that 	will 

not differ greatly from 21A and a good approximation 

results from neglecting F(t) , due to its small size 
elsewhere. 

Approximate eigenfunctions obtained from (3.13), (3.11) 

and the transformation (3.7) for large but finite values 

of 	are likely to be inaccurate in the region of rapid 

change of i(r) , due to neglecting the terms involving 

7/r17/r1
C 

in the basic equations (2.4), as well as I (1) 
Away from this region both Irk. and F(t) are small. 
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5. The parabolic index profile  

In this case, rl2(1fi in (2.7) is given by 

rt2(r) = 
rti? (I — ad 0.2) (i a) 

(5.1) 

 

n2 
(-r a.) 

   

where d is given by (3.5). In the core region i < a. , 

(2.7) becomes 

ā + d~' +(1".n2 -- 2 iz2nI ā r2 
dr2 r dr 	 ' 

1) 	= O. (5.2) 

With the transformation 

r=at , 	= by2 R(t) 5 
(5.3) 

and defining b and V as before, by (3.5), equation 

(5.2) becomes 
2  
dt

~ ) 
L z — (b — I )VZ + vatz + (v

2 —2N1- R 

In C 1] , it was shown that for 
/3 

in the range 

r12k<I/3 I 

(5.4) 

(5.5) 

one is led to an eigenvalue equation and a finite number 

of guided mode solutions, with propagating electromagnetic 

waves in the core region. From (3.5), the condition (5.5) 

is equivalent to 

o<b<I, (5.6) 

and it is this eigenvalue problem we wish to consider here. 

Exact solutions to (5.4) have been given in Il] , and 

for completeness, we give one particular form of these 

solutions. By further transformations of (5.4): 
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= xl7a 3  R — LUX) , e = Vx 
x4 

we obtain 

d2u 	i 	(I- b)V 	(v2- I)  u de2  - 4 	4e +  4-62 	• 

(5.7) 

(5.8) 

The solution of (5.8) that is well-behaved as 9-4 0 

(corresponding to r-4 O) is 

u(e) _ \/(1 --6)V   v (8) 
2 

where N/,  Oa) is the Whittaker function (Whittaker and 

Watson, 1927). From (5.7), the solution of (5.4) is then 

R(t) _ I vg  \/0  _  6)V   (Vta) .  t 	2 
(5.10) 

In a full treatment of the problem, the solution in the 

cladding region would have to be matched to (5,10), 

resulting in an eigenvalue condition involving Whittaker 

and Bessel functions. Previous approaches to this problem 

E I ] have made the assumption that the core region 

extends to infinity in order to derive eigenvalues. With 

this assumption, the Whittaker function Ki07(e) is 

bounded as e 00 only if 

4_ I - 	= 	 (5.11) 

where it = 0,1,2, 	 From (5.9), this gives 

= I - 	4- I) 
	

(5.12) 

The eigenvalues are then restricted by the condition (5.6). 

The values of b calculated from (5.12) are shown in 

Figure 6 for V< Iz, 1):›  I. 

(5.9) 
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V 

Figure 6.  6 against V  , calculated from (5.12). 
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We note here that a J.W.K.B. analysis of equation 

(5.4), with the assumption of infinite core thickness, 

would give the eigenvalue condition 

be -)  Z Z 	v2 z 
]-j rt-}-  J = 	— OVa—U 	t2 

dt , 	(5.13) 

t~ 
where ti and t2 are the roots of the integrand. With the 

aid of the substitution t
2 
= y in (5.13), the integral 

may be performed and the resulting equation solved for b 
The result is again (5.12). A Liouville-Green analysis of 

(5.4) would give the same eigenvalue condition (5.13). 

Rosenzweig and Kreiger (1968) have discussed potentials 

possessing exact quantisation conditions of the type 
2 Q 

(5.13). One of these is the potential At ± 	B /t2 appearing 

in equation (5.4). 

Using the infinite core assumption, an essential 

feature of the permittivity, that it remains finite as 

1---4 00 	is lost. In order to see how the inclusion of 

this behaviour might affect the eigenvalues, we consider 

in the next section a modified profile which approximates 

to (5.1) but which is smooth for all I` . 

6. A modified profile 

In order to approximate the profile (5.1), we consider 

na2(r ) = 	f 	zd'f'a 

-fa-Era 1 

where 9
( 

is an as yet unspecified parameter. This profile 

has the correct limits as r--(7)  and r-400 , and has the 
advantage that the turning points of the differential 

equation (2.7) can be found analytically. As a method of 

(6.1) 
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choosing Q , we set 

fl 
r~ō (r) ~ = 	n2(-) dr , 

0 	 0 

(6.2) 

where r20) is given by (5.1). From (6.2), we then find 

a 
2 r2 2 i— arz dr- , 

0 
and performing the integrals gives 

(6.3) 

(6.4) 

The approximate value of 
	
found from (6.4) is 

Qv = 0 52 	 (6.5) 

Using (6.1), equation (2.7) becomes 

2k2hZdr2 	v2 W 
(ra  9( 2) — 

	
2 T 

=o. { 6.6) 
V 

As in the case of the step-index profile, we make the 

transformations 

r= at , y = t4R(t) . 	(6.7) 

Using (6.7), the definition (3.5) and the identity 

V2 t 	
V2 `  V2 	

(6.8) 

equation (6.6) becomes  

d2R  	 -~- 	 4 	R 	(6.9) (EVa2 	2 `v?  ) 
t 	~t ~,~ 

We now follow the same procedure as in the case of the 

step-index profile. For certain values of b , equation 

(6.9) will have two turning points, and we attempt a 

transformation of (6.9) into the Weber equation (3.11). 
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The Liouville-Green transformation (3.7) together with the 

choice 
2 

22- 	= 6V2 - U ̀/  + y2 
(t + ~) 	t 

gives, from (6.9), 
2 aG 	2 — +F(t) ) G 

where 

_  	3 E  	I  

21' 	ZI-rV 

(6.10) 

(6.11) 

(6.12) 

In (6.10), we have again made the Langer correction in 

order to make F(t) bounded as b----> 0. We now neglect F(t) 
set 	=11-F—,-,  and integrate (6.10) between the turning 

points, giving the eigenvalue condition 

V ' 	y2 6V a , 2+  ~t ~) t2  

dt. (6.13) 

 

In (6.13), t i and t2 are the roots of the integrand 

which, for v0'O, are given by 

 bV 	a 
{
( I — / 29( — »a ± Afio 	»2I-- 1-6v 2))2cd 

(6.14) 
for C:=1,2  . Now writing 

S(t) = —bV 2±  
v29 	

1)2 

(ta +9,) 	t 2 ' 
(6.15) 

then 5(0 -4-00 as t----)0 and SM-4 — 6Va as t-400 . 
In order to have two roots, the maximum value of S(b) must 

therefore be positive. Setting S(to) = O gives 

La —  v~,  
° 	VJ —v (6.16) 
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and hence we must have 

> v . 

The maximum value of S(t) is given by 

S(C0) = - 6V2 + V ( - " , l ~~ 

(6.17) 

(6.18) 

and the condition on 6 for there to be two roots of 

S(t) , and for 6 to satisfy (5.6) is therefore 

< (VJ 4a 
0 	6 z 	 Vg, 

(6.19) 

with y 	Ī, since the right-hand term in (6.19) is less 

than unity, by (6.17). 

The results of calculating 6 using (6.13) are shown 

in Figure 7 for V < 12 , with the value of 9, given by 
Q (6.5). Alternative ways of choosing 	. could be 

considered. For example, taking the range of integration 

in (6.2) to be 0 to 39, gives a value Q '= 0. 3 , and a 
V  

change in the larger eigenvalues of about 1S/(0.    Comparing 

these results with those•of Figure 6, we see that, for the 

modified profile, the degenerate modes are split, and that 

a particular mode appears at a smaller value of V than 

in the case of the infinite parabolic profile. 

By integration of (6.10), we find that between the 

turning points,  

(2)ka4a - + sinI( + īc 

t2 	 2 

-6v2 + ~- (6.20) 



I2 
	C> 

— 97 — 

3 	 6 	 Q 

V 

Figure 7.  6 against V 	, calculated from (6.13). 
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0.5- 
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while outside the turning points, 

I E (Ea— -r 	— r Ln, 	( - 	)/2 + r1  Lri (a~) 

1,2Q vzz 
bV — 	+ 	~t ~o < t < t,i 

(t2.+9,)  1~  

(6.21) 

bVE tZ+V 	 + ~2 U~ (t > t2) 

where 21= n+-1-  . 

To calculate Rh) , we find the derivatives E and 
..• e from (6.10) and substitute into (6.12). At the 

turning points, we have the same results as (4.6)-(4.9) 

with Q(t) replaced by St) . Then using the results 

(6.20) and (6.21), Rt) can be calculated as a function 

of 	for any chosen values of v , rt and V . The 

expressions involved are very lengthy, so we merely give, 

in Figure 8, the result of one particular calculation, 

that for rL= Ī ,1.)=  , V= S . Other choices of the 

parameters indicate that the values obtained are typical 

for this problem. 

7. Discussion 

The results in section 6 could be improved upon if a 

closer approximation to the profile (5.1) could be found, 

in the same way as the step-index profile was approximated 

in section 3. In most physical problems, typical values of 

the parameter d are in the range 0.01 — O-OZ (see [ I ] ) 
and from (6.1), the term 7rt neglected in (2.4) is of 

order ea. . Other problems of interest include the 
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0•( 

t 

-0 •1 

Figure  8.  F(t) against 1 , for the modified profile (6.1) , 
with h= , 	,V=8 • 
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modification of the parabolic profile to the behaviour 

-1-a4   , where OG is a small parameter, and the 

consideration of an elliptical waveguide. The first is 

briefly discussed in Appendix 3, while the second results 

in a non-separable partial differential equation, for 

general profiles, and is therefore outside the scope of 

the present work. 
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APPENDIX 1  

THE LIOUVILLE-GREEN TECHNIQUE  

1. Transformation of differential equations 

We begin with a second-order linear differential 

equation in normal form 

The values of OC for which P*= Q are called the 

turning points of the differential equation (1.1). After 

performing the Liouville-Green transformation (see Giver, 

1974) 

x = x(E) 	G=EI
~2 

y c~  (1.2) 

equation (1.1) becomes 

d2G _ P(x) 
~ 
z 	+ A(X(E))  G z 

where 

7111 	3 ea 
A(X(E)) = 

 

(1.3) 

(1.4) 

Primes denote differentiation with respect to x . 

 

We now try to choose the relationship between E and 

DC so that (1.3) is soluble, exactly or approximately, 

in terms of known functions. If equation (1.1) has turning 

in (1.3), since 

does 

we choose a relationship of the type 

some k() having as many zeros as -P.M in the region of 

points, then we cannot choose 

4kx) changes sign whereas 
= -F(x) ~!2 

not. In such cases, 

k()E'2 = f (x) , for 



- 102 - 

interest. This method of transformation is used in 

Chapters 5 and 6 to find approximate solutions of certain 

differential equations. 

Since there are no standard second-order differential 

equations with more than two turning points, then, without 

resorting to matching, we can only apply the Liouville-

Green technique to equations of the form (1.1) which have 

at most two turning points. 

2. Exact solutions 

For certain equations of the form (1.1), exact solutions 

can be quickly obtained by the Liouville-Green technique. 

We now give two simple examples. 

Example 1. 

Consider the equation 

d2  _ e~ u 
dx2 

(2.1) 

where Īl 0 , — cO < x <co . Using (1.2) , equation (2.1) 
transforms to 

A(mz)ci- u, 
where A(x(e)) is given by (1.4). If we choose 

= eux 
then 

(2.2) 

(2.3) 

(2.4) 

so that 0 < <00 . 

Calculating the higher derivatives of E from (2.3) 

and substituting into (1.4) gives 
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A( 	
2 

z (E}) _ — 	erx 6 (2.5) 

Now (2.5) may be expressed in terms of E  from (2.4) as 

	 E)) = 
so that (2.2) becomes 

cl
2
G = I— 	 2  G 

Finally, (2.7) has solutions 

eI0   
G( ) 

= 	e2 	, 
K°  (E) 

(2.6) 

(2.7) 

(2.8) 

where Ip and K0  are the modified Bessel functions of 
order zero of the first and second kind respectively. 

Using (2.4) and (1.2), we obtain 

(c) = 
I (f,--2:-,1   
K C2CI eux/2 ° I  

(2.9) 

   

Example 2. 

  

Consider the equation 

 

 

d2 	x  u 
cdcca  (2.10) 

where ri - 2 , .x> O . Using (1.2) , equation (2.10) 
transforms to 

 

 

ciZG =  xe  
d2 	12 + n(x (E)) G . (2.11) 

By the same procedure as in Example 1, the choice 
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(2,12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

• (2.17) 

gives 

2 	+1 I2+n x 

and 

r1(n+4)  
Nx(E)) = 41+2)2 

Equation (2.11) becomes 

rt (r1 24) G 
4(n+Z) Ea 5 

and putting 

finally gives 

d2G  _ 	I 	rt (n. + 4) G 
doz.4 	401+ 2)2 ea 

Comparing (2.17) with the equation 

d2G __ 	I 	-( 	(012— ~4-) 
d82= 	e ea G , (2.18) 

we find that two independent solutions of (2.17) are 

where 

G(e) vo,+m (e) (2.19) 

m2 
_ 	rt (r1 + 4) 

9- 	4-0-1+(1)2 

except if 2rn is an integer, in which case 

(2,20) 

0,m
(9
) 

Wo,m(e) 

(2.21) 



2P 

a41'I (rn+ I) 	(m + ) 
P' 	F 	F/ 

(2.25) U m (Lk) = U 
m+%2 
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In (2.19) and (2.21), Uo'm and Worm are the Whittaker 

functions (Whittaker and Watson, 1927). From (2.20), 

rri = 	1  
In+a! 

(2.22) 

so that, from (2.12) and (1.2), one solution of (2.10) is 

U(X)- ' X/ 	(4  x13'2+11  . 
°2 	t n+2 In+2► i 	I 

The second solution is 

	

4 xr2+ i l 	CI +R I # integer o, 	 In+21 	) In+21 
(2.24) 

1 	
4  

xni2+ ! 
	

(a_ 
inte9er) 

111+2.1(In+21 

We can also demonstrate that (2.23) reduces to known 

solutions in simple cases using the Kummer series 

(Whittaker and Watson, 1927) 

(2,23) 

valid provided it is not an integer. Consider for example 

the case of 11== 0 in (2.10). From (2.23), one solution is 

u ( ax) o, Z 	' (2.26) 

Using (2.25) we find 
o ar 

P-I 	P.~2 	(+ p))  
zr 

x 
I+ EZP 1 3X) 	 (Z5 	.+I P=I 	P CP 
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(ap + I )! 

sink 

which we recognize as a solution of d _ Jx 	• 

From the form of equation (2.15), we would expect to 

obtain a simple solution if 11=-4 . In this case, one 
solution is 

(2.27) 

Using (2.25), we find 

2r ~' 

P z P■ t2 ) (z P} 

0 

P I + 	me P (2 + I )I 
P -~  

P _0 	2 P(2P+ I)I 

= x s i Rk 1 x 

3. Non-linear differential equations 

Generalising a result of Pinney (1950), Reid (1971) has 

noted that an exact solution of the non-linear differential 

equation 

d + (x) = m(x) -2r~ 

āx2 	I  
(3.1) 

is 
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F im m 	C 	m = u + (rn _ )1"J2 

 

(3.2) 

where U. and V- are two independent solutions of 

 

d2~ 	u = d x2 + P(x) 	— 0 

and where 

 

(3.3) 

W = L ' "— Vu.
/ 
= constant , 

9,m) =
Ca

' 

and C is an arbitrary constant. This result can be 

obtained by a Liouville-Green transformation of (3.1), 

Applying (1.2), and using (3.5), (3.1) becomes 

Jac 	
/ n

( 
) 	E NI 	3 is 	m-2 x 

	

	 r 	d-zsn+ ~4 G — C l uV /) 	(3.6)  Tr_ 

Choosing 

uvT 
3 (3.7) 

we can calculate the derivatives g ! and t 	, and on 

substituting into (3.6) we find 

d2G _ W2G + CGi - a 
tlE2 (3.8) 

The particular form of 9/400  given by (3.5) is 

therefore such that (3.1) can be transformed to an equation 

with constant coefficients (3.8). By suitable choices of 

the constants of integration in (3.8), we should obtain 

the result (3.2). A first integral of (3.8) is 
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dG 2 _ ~zG2  	c  
G2

-~► 
(3.9) 

on setting the constant of integration to zero. Separating 

the variables in (3.9) we obtain 

ciG 	= 	+A G il+ 4-c GZm 2 
,J 	(i-m)W2 

where A is an arbitrary constant. Performing the 

integral in (3.10) gives 

(3,10) 

r
~ Ln 

2 ! +~~- 	G m - I 
Z W 

+ - 	(3.11) 

   

   

Now, from (3.7), 

(3.12) 

and (3.11) becomes 

	 _ 	 ~a I 
+ 

I—n1C zG 2m — I = D(~` ( 	)w 	V 
(3.13) 

where D is arbitrary. Solving (3.13) for G and using 

the transformation 3(c) = uv- G 	, from (1.2) and 

(3.7), we obtain 	J 

1m 

--= 0GLC ±  -C 	Vm 
(I - ►n)W

2 
OC 

(3.14) 

where OC.= — D% is arbitrary. The choice OC= I gives the 

result of Reid, (3.2). 
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APPENDIX 2 

THE ERROR IN THE APPROXIMATE EIGENFUNCTIONS  

CALCULATED IN CHAPTER 5  

1. Preliminary calculations 

In this appendix, we modify the method of Titchmarsh 

(1961) to find, for large eigenvalues, the order of the 

error in the eigenfunctions calculated by the Airy 

equation method in Chapter 5. We begin by reviewing some 

of the results of that chapter. 

We write the basic equation as 

2 

doca 

where 

q = cvx) = 	x4 (1.2) 

and Q < DC <00 . Transforming (1.1) by the Liouville-

Green method gave 

d2G = 	a 	/~(x( ) G 	\ 	) 	, 

where / \(x(g)) can be written 

\ 	5 	

e 591/a A(x()) = 	 l Ig( -a? 4 	
3 	(1.4) 

f) 	ly,
-E 
	

16 	
C~,

_E  
primes denoting differentiation with respect to 'DC . The 

relationship between 'E and x , 

(1.3)' 

— 	Ela = 	E) ) (1.5) 



gives, on rewriting (4.2)-(4.4) of Chapter 5, 

x 	 %Z 

9i(t) 
- E 	dt 

xo 

[E —(t)J dt 

(c . xo) 

z 
xo (1.7) 
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(1.6) 

where 

Substituting 

G() = CI (E)AL (E- Q) H- c2(t)BL( - a) (1.8) 

into (1.3) gives, by the standard method of variation of 

parameters, 

G-(} =ocA(( - Q)- A(m(V)GM 

X AL ( - a.) Qi, ( - a) - 	a)At (E- a) d . (1.9) 

In (1.9), we change the variable of integration, using 

(1.5), to obtain 

G(E(x)) = xAc(‘E(x) - a) 
- I 	(t)G(~(t))( ~t~ 

 \ 'E(t)-a/ 

X AL((t)-- a)Bi(E(m)  -a) - BL( (t)-a)AL('(x) - a) dt . 

(1.10) 

We now consider the quantity 



tlDC 	(1.12) 

(1.13) 

   

%2 

 

    

   

    

A(a) 

  

~x . 

    

    

    

Substituting the expression (1.4) for A(X) into (1.11) 

and splitting up the range of integration gives 

Ja 

 

_ 	5 	
9// 	

592  
160(x)- a) 	4(9,- 	E) 

where d is in the range, say,(o) i 

44 Now for large E , xp E 	from (1.7), while for 

large DC , Cr-34 , 9/e--4-30 , and so on for higher 

derivatives. Expressing these results more formally, we 

have that, for each small E > 0 , there exists X(E) such 
that when CC > X(E) , 

	

c4 < q < (I + €) 	, 

1-cc3 < c C 	e) X3 

I2 xa 	< I2(I + E) x2 

We will assume that E is large enough so that 

(1.14) 

a ) Xo > /0E) . Also, there exists 8(E) such that when 

(—E)E< x0 < (I+E  (1.15) 



xo 

and 

clY   9;
5 

(2.3) 
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2. The behaviour of __!_ for large E  
We treat each ZJ (J = 1 to 4) in (1.12) and (1.13) 

separately. In what follows, we will use A to represent 

a generic positive number which is 00) . 

(a) I , c0 : DC 	(I+ d)xa 

Integrating by parts twice in the first equation of 

(1.6) gives 

2 (E _  42. 	a (9- E)3' 	z(9._E)~1 ye 5c, 
where 

( — E 
~2 

(t) (t) dt  91, (2.2) 

Now by the mean value theorem 

E) _ (x—xo)9;(Z) (2.4) 

where t,, < Z < x. Since Q! is a monotonically increasing 
function, replacing the right-hand side of (2.4) by its 

maximum value for X0 x C ( + d ) CCo gives 

(— E) 	[(i+ )x— xoJ '{(1+d)xo~ 
= dxoci;1.0 ± d)xol 

4dxo(1 + E)(1 + d)3xo , 
from (1.14). Therefore, from (1.15), 
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E) < AdE • 
From (1.14), 

	 A A ~2 	x4 \ xō- 

so that, from (1.15), 

oli A 
qr z ~ E 

Hence 

2.(ct'— E9;' < A(9,-0 < Ad 592 	 E 

(2.5) 

(2.6) 

(2.7) 

where, in the last inequality, we have used the result 

(2.5). A similar procedure applied to Q , defined by - 

(2.3), gives 

IQI c Ē . Y4 (2.8) 

Substituting the result (2.8) into (2.2), and then using 

(1.14), we have the inequalities 

I S A9' 	(9,— 

~2 
A( E)2  

• ~~, ) E 	E 
Then from (1.15) and (2.5), 

2 

S ) < Art'Ē E ~ < AdZ . (2.9) 

To estimate the size of the integrand in (1.12), we use 

the relationship (2.1) to write 

5 	591: 	+ 2-(9_ E)91,1 
IG(qV - E)3 	5 	.. (2.10) 



-E(x) — a.  
~,- E 

4. 0(9/;_i8) 
A. 

and (1.13) gives 

d)10 

 

(2.12) 

  

(2,13) 

I3 

Finally, from (2.1), 
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By virtue of the inequalities (2.7) and (2.9), we perform 

a binomial expansion of (2.10), since the terms in large 

brackets decrease in order (for sufficiently small d ). 

Hence 

lo( - 0)3 	5 ~2 	+~ E 40)1~~ 	( 2.11) 

Substituting (2.11) into the expansion for 13 from (1.12) 

and substituting (2.13) into (2.12) leads to 

d)xo 
C A 

Ea 

= 0 	2 :Co (X0 
~
3 ) 

using (1.14). Hence from (1.15), 

1 

I 
__ 

3 	O Eja • (2.14) 

The integral I2 with range (F — dNC0 < x 	000 can be 

treated in the same way as Z3 , and we obtain a 

corresponding result 

(2.15) 
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(b) 14,(l +d)x0<x <00 

From the definition of 1.4_ in (1.12) and (1.13), we 

obtain the following bound by replacing the negative term 

by its absolute value: 

0o  

IG J ((x)- GO% T-
(i+d)~o 

fra 
((x) --al āx (9,-

11,
E)%  

	

5 
	

91: 	'2 

	

+ 16 	— 5/a (t() —a) āx . 
0+doxo 

(2.16) 

From the transformation (1.4), the first term in (2.16) 

can be rewritten and evaluated: 

5 
C 

'(x) 5 	 
2 āx 

16 	
= 

((x)—a) 	I6 
{E[(l~d)oJ—a1 

(I+d) c 

(2,17) 

Now 

(`L— E) 	(x4— E) 
x4 	x4 (2.18) 

and the right-hand side of (2.18) is an increasing 

function of x and so is larger than its value at the 

lower end of the range (k + d )3C0 C DC <00 . Hence 

(9,— E) ~ (I + d ) 4- — E  x4 	(I + d) cco 

> (►—€)(i +d)4E-- E  
(1 — E)(I + d tE 

the last inequality being derived from (1.15). Provided 

d 	is chosen so that () — E )(i + 8)4> I , then 
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9,— E > Ax . 

Now expression (2.1) is valid for all XC > xo . In 

particular at x = (I +d)x0, 

(2,19) 

3 

[ERI-1-4x01
- 	{q[O+d)xo) — E 2 .  0. 	> A 	 (202o) 

9, ~(►+ d) ~ 

Using the results (2.19), (1.14) and (1.15), we find 

+d)x~ — a > '~' 2° > AE . ~~ 	1 	xa (2.21) 

Substituting (2.21) into (2.17), we have a bound for the 

first term in (2.16): 

	

 6/25 	(`/   d), 	A 

	

166 	(E(x)-0-)5' 	E'2 
(I+d)x° 

(2.22) 

In order to bound the remaining terms in (2.16), we need 

 ~2 a bound on [:(:)c) — 0. 	. First, we note that for x ] xo , 

E < 9 =   x4 -}- x2 < 2 x4 , 

so that 

— E < cif + E < 2$ < 4x4. 	(2.23) 

Substitution of (2.23) into the first expression of (1.6) 

gives 

.((x)—Q)
z 

3 at ~t < 3x3 
(2.24) 

Hence, from (2.24), 



A( IP 
Ea 

xz x x4 3~ & 

(Ī+d)oco 

w 

-~- 	x6x dx 
(Cel-rt 

(►+ d)xo 
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[E(x) - a 2 < x. (2.25) 

Finally, the results (1.14), (2.19), (2.22) and (2.25) 

enable a bound on 14_ to be found from (2.16): 

< A 	 + I 2 
E 	xo 

Hence 

= o(N 
(c) II , o<x< (I — d)xo 

From (1.12), we bound 1:I by 

((— d) xo 

(Œ- (x)) 

(2.26) 

Q"- E(I)) (E—~,~ 

(a — `E(x)) dx . (2.27) 

Now 

E — ~ > E — ~ [(I — cl) x,3 

E [(1 — (1)+4 

Taking E large enough so that 

(I — d)xo > z 

(2.28) 

then 



3/  

3(0. —  E(u—  doxoJ)Z cl,(t)} dt 
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(I— d)xō > 40- d)2x0 
and hence 

( 	45(I -- d73c 
Substituting (2.29) into (2.28) gives 

E qv  > E — 5  (I — d fr  04-  
> E — 54:0 — 41- 0 +€)E 

from (1.15). Therefore 

E-9, >AE , 
provided 70-0-(1 + E) < I 	(for example, this 

condition would give d ) 0.066 for E = 0.05). 

(2.29) 

(2.30) 

From the transformation (1.6) for OC < 3CO3  we have 

3,2  
3 (a - Z(x)) < 

xo 	1/2 

E— ci,(t) dt 

< E2 x0 
< AE414  

I 
(Q—Ex < AO' . 

from (1.15), and so 

Also from (1.6), we find 

(2.31) 

> AEC. 
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> A E4 

using the result (2.30), and (1.15). Then 

A . 

[a - E[(l-d)x0) 	Eye 
(2,32) 

The first term in (2.27) may be rewritten, from (1.5), 

(I - d) 

5 ~~x) z d 	= 5 	1 	. l 	[a- (x) 	16 Jo- — ER1— d)Dco)} 	a 

16 {a— ( 

(2.33) 

from (2.32). Using (2.31), the third term of (2.27) has 

the upper bound 

d)xo 
All,[(I—   dx r/a  

< AE 	 -  
‘{E  — $(0— d)x0) i4/a 	0- 

E 

 

 

(2,34) 

where we have used (1.14) and (1.15) to replace the factor 

ciii ( 	— d )Dco and (2.30) to give the order of the terms. 

The only remaining term is the second term of (2.27). 

Again using (2.31), this has the upper bound 



1 

• (2.35) 
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(I —d)xa 	rl 	
,2

I
(~-d) 

	3 (Q 	< A E4-  4 0 	(E (0 	(E cfr
g~Z 

 

Integrating the right-hand side by parts, we obtain 

v-(►-d)x0 

(E cp3/2,0 

Finally, using (1.14), (1.15), (2.30) and the method of 

deriving (2.34) , we see that (2.35) is 0(E42-) 

The results of this section show that the integral 

defined by (1.11) satisfies 

(2.36) 

for large values of E • 

3. The error in the approximate eigenfunctions 

By successive approximations in (1.10), we find that 

the first correction C to the basic solution A(.(E(x)-a) 
is given by 

C = 	I at)(9/('-' 	I'K(x) b) clt 
Et) 0. 

(3.1) 

where 

K(x) t) = AL (E(t)- 	(E(t) - a) BC (E(x) - a) 

— CBc ( (t) — Q) Ac ((x) — a.) (3.2) 

From (3.1), 
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I~2 

  

lc 1 < riT-1 A(t) 
Vt)— E  
(t)—a. 

at (3.3) 

      

where 

Writing 

m= max 	KCx,t)) . 
o<x : t <oo 

u = E( t)— 

V= Cx)—a 

(3,4) 

(3.5) 

then for t > 3C , we have a > V . As E--) 00 , then 
00 (see Table 2, Chapter 5) and so —00 < V-< U. < 00 , 

We express in , from (3.2) , as 

h'1= Max 
—co< v-< U. <co 

where 

K I , 	(3.6) 

(3.7) K = 	A M BLV) - BaL) A. V) 
In Figure 1, we plot I K I as a function of l,t,. for 

selected values of V . For all values of U. and \Ī 

satisfying \% < u. , I KI is a bounded function, which 

the numerical results indicate is less than unity. 

Finally, from (3.3) and the result (2.36), we find that 

for large E , the solution G() of (1.3) satisfies 

G-()_ 	- a) ±o ~~ 
(3,8) 

As the Airy function AL C - Q-) - AC (v) in (3.8) tends to 

zero for large values of its argument E--a=  "% , then 

the corresponding value of m also tends to zero, from 

(3.6). 



U 

 

	D 

 

Figure 1. 	I K 1 against U for selected values of V". 
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APPENDIX 3 

SMALL PERTURBATIONS FROM THE PARABOLIC REFRACTIVE 

INDEX PROFILE IN OPTICAL WAVEGUIDES  

1. Introduction  

In Chapter 6, we discussed the differential equation 

d2EdE 
dfiz + 
	+ A — Br2 — v2r2 E = 0, (1.1) 

dfi  

where the term Bra arose from the parabolic refractive 

index profile. Problems of current interest (Olshansky, 

1979) are concerned with profiles in which the 'i2 nature 

is modified to 1'2+"4 , where OG is a small parameter. We 

expect that the solutions for the modified profile do not 

differ substantially from those for the parabolic profile, 

if O(. is sufficiently small. 

An exact solution of equation (1.1) was presented in 

Chapter 6, but the modified equation 

2 E +
+ A_ Br2+°`_ 	

E _ o, (1.2) 
dr2 	r ~~`  

does not appear to be exactly soluble in terms of known 

functions. Although we could find an approximate solution 

of (1.2) using the Liouville-Green method, we would not 

know if the difference between this solution and the exact 

solution for the parabolic profile was mainly due to the 

introduction of the parameter OC. or to the approximation 

method. Accordingly, we consider the somewhat unphysical 

case of A = 0 , since equation (1.2) is then exactly 

soluble for all OC, 
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2. Exact solutions 

With A=- 0 , (1.2) becomes 
d2 E 	dE _ (B2 +  v22 

E . 0 . 	(2.1) 
ā-s2 	fi d~- 	r 

We make the transformation 

-r = xP , E = 3C ) (2.2) 

where P its a constant to be chosen. Using (2.2), equation 

(2.1) ils transformed to 

day, — 2 B x~ + Joe 	P 	x2 	' 	(2.3) 

where 

= [D(4+00 — a . 
Choosing 'A = 0, so that 

2-  
P = (4+a) 

then (2.3) becomes 

2 
d2 1 4-B 	aC)a 4  

a 	} 

(2.4) 

(2.5) 

(2.6) 

The solution of (2.6) that is well-behaved as S.-40 is 

~~C) = x~2 2v 	
2~  

x j 	(2.7) 
(4, )(4+0,, 

where ifIX is the modified Bessel function of the first 

kind of order 	, The solution of (2.1) is then 

Eft)  = ma 12v 	21 	o .,.(4+~2 
( +x) (q- +C)6) 	(2.8)     

the solution for OC = 0 being 



ā(r) = E0(r) — L(fi) 
Putting d IC-r, ) =  0 to find the maximum gives 
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r1oI 	1-2 
2 2 

(2.9) 

where 1144 and 010 are constants. 

3. Numerical estimates  

As a particular example, we consider the problem of 

fields confined to a core region of the waveguide 1 	7ō , 

with the values (from Olshansky, 1979) 

To= 30
/m 

AIN = 0.09-9-7 

= — 0.Oa+ 

 

(3.1) 

  

We apply the boundary. condition that the field is equal to 

a fixed value at r== Yō , say E(r) = C . Then from 

(2.8), 

C 

121) ( 
aJ 	

( -fs++1-)  
(4-+o) o 

(3.2) 

C  

Iv  r°2) a 

To obtain some measure of the difference between the 

solution for 06=0 and that with OC given by (3.1), we 

consider 

_ 

[n0 

(3.3) 

r 	(Æ a)  ~oly 
2  

M~  i 12~ (~r1+V~> 	Z 

(4+) 
(3,4) 
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where primes denote differentiation with respect to 

argument. Now with the values given by (3.1), the quantity 

J U ro2~2 

 

2.0. 11 5 	, so that r lies in the region 
of asymptotic behaviour of the modified Bessel function, 

where 

ee 

I(
(9
) ~ Jane • (3.5) 

We look for a solution of (3.4) which is also in the 

asymptotic region. Using (3.1) and calculating all 

quantities in (3.2) and (3.4) from the relation (3.5), 

we find that a solution of (3.4) is 

-r1 = 28' 4'l- .m 	(3.6) 

Since 1-15-"ci2/2 ^—' 18.08  , then (3.6) is consistent 

with a solution in the asymptotic region. 

With the value of IT given by (3.6) and again using 

(3.5), we find that I O(1 ji 1( from (3.3) is about 8.4' 

of the value ( E(rd I . 



- 127 - 

REFERENCES  

CHAPTER 1 

Adler S.L. and Pearson R.B. 1978 Phys. Rev. D 18, 2798. 

Bardeen J.M., Press W.H. and Teukolsky S.A. 1972 Ap. J. 

178, 347. 

Bekenstein J.D. 1972a Phys. Rev. D 5, 1239. 

Bekenstein J.D. 1972b Phys. Rev. D 5, 2403. 

Berry M.V. and Mount K.E. 1972 Rep. Prog. Phys. 35, 315. 

Carter B. 1971 Phys. Rev. Lett. 26, 331. 

Chase J.E. 1970 Comm. Math. Phys. 19, 276. 

Frōman N. and Frōman P.O. 1965 J.W.K.B. Approximation; 

Contributions to the Theory, North-Holland, Amsterdam. 

Hawking S.W. 1972 Comm. Math. Phys. 25, 152. 

Israel W. 1967 Phys. Rev. 164, 1776. 

Olshansky R. 1979 Rev. Mod. Phys. 51, 341. 

Olver F.W.J. 1974 Introduction to Asymptotics and Special 

Functions, Academic Press, New York. 

Oppenheimer J.R. and Snyder H. 1939 Phys. Rev. 56, 455. 

Oppenheimer J.R. and Volkoff G.M. 1939 Phys. Rev. 55, 374. 

Penrose R. 1969 Nuovo Cim. 1, special edition, 252. 

Robinson D.C. 1974 Phys. Rev. D 10, 458. 

Rowan D.J. 1977 J. Phys. A 10, 1105. 

Rowan D.J. and Stephenson G. 1976a J. Phys. A 9, 1261. 

Rowan D.J. and Stephenson G. 1976b J. Phys. A 9, 1631. 

Stark R.F. and Connors P.A. 1977a Nature 266, 429. 

Stark R.F. and Connors P.A. 1977b Nature 269, 128. 



- 128 - 

CHAPTER 2  

Abramowitz M. and Stegun I.A. 1964 Handbook of Mathematical 

Functions, Dover Publications Inc., New York. 

de Felice F. 1979 Phys. Rev. D 19, 451. 

Meixner J. and Schafke F.W. 1954 Mathieusche Funktionen 

und Spheroid Funktionen, Springer, Berlin. 

Misner C.W., Thorne K.S. and Wheeler J.A. 1973 Gravitation, 

Freeman, San Francisco. 

Persides S. 1974 J. Math. Phys. 15, 885. 

Radmore P.M. 1978 J. Phys. A 11, 1105. 

Rowan D.J. 1977 J. Phys. A 10, 1105. 

Rowan D.J. and Stephenson G. 1976a J. Phys. A 9, 1261. 

Rowan D.J. and Stephenson G. 1976b J. Phys. A 9, 1631. 

Rowan D.J. and Stephenson G. 1977 J. Phys. A 10, 15. 

Whittaker E.T. and Watson G.N. 1927 A Course of Modern 

Analysis, Cambridge University Press, Cambridge. 

CHAPTER 3 

Avis S.J. and Isham C.J. 1978 Proc. Roy. Soc. Lond. A 

363, 581. 

Derrick G.H. 1964 J. Math, Phys. 5, 1252. 

Enz U. 1963 Phys. Rev. 131, 1392. 

Lake K. 1979 Phys. Rev. D 19, 421. 

Palmer T.N. 1979 J. Phys. A 12, L17. 

Radmore P.M. and Stephenson G. 1978 J. Phys. A 11, L149. 

CHAPTER 4  

Ardavan H. and Partovi M.H. 1977 Phys. Rev. D 16, 1664. 

Hawking S.W. and Ellis G.F.R. 1973 The Large Scale Structure 

of Space-Time, Cambridge University Press, Cambridge. 



- 129 - 

Oppenheimer J.R. and Snyder H. 1939 Phys. Rev. 56,455. 

Oppenheimer J.R. and Volkoff G.M. 1939 Phys. Rev. 55, 374. 

Young J.H. and Bentley S.L. 1975 Phys. Rev. D 11, 3388. 

CHAPTER 5  

Abramowitz M. and Stegun I.A. 1964 Handbook of Mathematical 

Functions, Dover Publications Inc., New York. 

Banerjee K., Bhatnagar S.P., Choudhry V. and Kanwal S.S. 

1978 Proc. Roy. Soc. Lond. A 360, 575. 

Berry M.V. and Mount K.E. 1972 Rep. Prog. Phys. 35, 315. 

Birx D.L. and Houk T.W. 1977 Am. J. Phys. 45, 1070. 

Fung Y.T., Chan Y.W. and Wan W.Y. 1978 J. Phys. A 11, 829. 

Gillespie G.H. 1976 Lett. Nuovo Cim. 16, 86. 

Kaushal R.S. 1979 J. Phys. A 12, L253. 

Mitra A.K. 1978 J. Math. Phys. 19, 2018. 

Olver F.W.J. 1974 Introduction to Asymptotics and Special 

Functions, Academic Press, New York. 

Radmore P.M. 1980 J. Phys. A 13, 173. 

Stephenson G. 1977 J. Phys. A 10, L229. 

Titchmarsh E.C. 1961 Eigenfunction Expansions, Oxford 

University Press, Oxford. 

CHAPTER 6  

Born M. and Wolf E. 1975 Principles of Optics, Pergamon 

Press, Oxford. 

Gloge D. 1971 Appl. Opt. 10, 2252. 

Gloge D. 1975 IEEE Trans. Microwave Theory Tech. MTT-23, 106. 

Langer R.F. 1937 Phys. Rev. 51, 669. 

Olshansky R. 1979 Rev. Mod. Phys. 51, 341. 

Rosenzweig C. and Krieger J.B. 1968 J. Math. Phys. 9, 849. 



- 130 - 

Sodha M.S. and Ghatak A.K. 1977 Inhomogeneous Optical 

Waveguides, Plenum Press, New York. 

Stephenson G. 1977 J. Phys. A 10, L229. 

Whittaker E.T. and Watson G.N. 1927 A Course of Modern 

Analysis, Cambridge University Press, Cambridge. 

APPENDIX 1 

Olver F.W.J. 1974 Introduction to Asymptotics and Special 

Functions, Academic Press, New York. 

Pinney E. 1950 Proc. Amer. Math. Soc. 1, 681. 

Reid J.L. 1971 Proc. Amer. Math. Soc. 27, 61. 

Whittaker E.T. and Watson G.N. 1927 A Course of Modern 

Analysis, Cambridge University Press, Cambridge. 

APPENDIX 2 

Titchmarsh E.G. 1961 Eigenfunction Expansions, Oxford 

University Press, Oxford. 

APPENDIX 3 

Olshansky R. 1979 Rev. Mod. Phys. 51, 341. 



J. Phys. A: Math. Gen., Vol. 11, No. 6, 1978. Printed in Great Britain 
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Abstract. In the Kerr-Newman background space, an explicit expression for the source 
term due to a particle moving along a geodesic near the event horizon in the equatorial 
plane of the black hole is found. This is used, together with the solutions of the Klein-
Gordon equation near the event horizon (found elsewhere) to show that the meson field 
near the black hole vanishes as the source crosses the event horizon. 

I.Introduction 

In a recent series of papers (see Rowan and Stephenson 1976a, b, 1977 and Rowan 
1977), the Klein-Gordon equation for a massive scalar meson field has been 
examined in various background spaces. Rowan (1977) has extended the work of 
Rowan and Stephenson to the in-fall of an uncharged baryon down the axis of a 
charged rotating black hole described by the Kerr-Newman metric, and has shown 
that the field of the baryon source falls to zero as the source crosses the event horizon. 
By allowing the particle to move down the axis of rotation, Rowan was able to treat 
the in-fall as a series of quasi-static problems since the event horizon and the static 
limit coincide on the axis of rotation. 

In this paper we extend this work to the in-fall of a baryon along a geodesic in the 
equatorial plane of the black hole. This requires that the source term be modified to a 
time-dependent one, since the tidal forces inside the ergosphere destroy the static 
situation. By solving the geodesic equations near the event horizon and using the 
solution of the Klein-Gordon equation near the event horizon as found by Rowan and 
Stephenson (1977), we have again deduced that the field of the baryon falls off to zero 
as the particle crosses the event horizon. It has not been possible to solve the basic 
equation over the whole range owing to the breakdown of the uniform asymptotic 
method. The reason for this will emerge in the following analysis. 

2. Basic equations 

We start with the Klein-Gordon equation 
(02+ 

	0, 0) 	 (2.1) 

where 	is the scalar field and f(t, r, 0, 0) represents a point source. In generally 

0305-4770/78/0006-1105S01.00 © 1978 The Institute of Physics 	1105 
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covariant form (2.1) is 

1 a 	 a~} 
ax`( 	

ga )g;k ax,k 	
Z 

 
+ µ 4=4or((t, r, 9, 0). . 

Together with the Kerr-Newman metric in Boyer-Lindquist coordinates 

z 	 2 

ds2= 
0 

(dt-a sin2 e d~i)2-sin2e[(r
2+a2)d0-a dt]2- Ō dr2—p2 de2 

where 

0=r2 -2Mr+a2 +Q2, p2 = r2 + a2 cost 0, (2.4) 

equation (2.2) becomes 

[(r2 +a 2)2-Aa2 sin2 0] az at a \ 	1  a 	a \ (~-az sinz 
	0) 02 L 	o 	ate Or\~ar) sin e ae 

(si e
ael 	A sin2 9 	ace 

2a [A - (r2+ a 2)] a2 	2 z 
A 	a~ at+P µ i0=4~rP z f(t, r, B, 0) (2.5) 

Write 

I = E J do) (Rim,,(r)Sr(0)elm° e-'°') 	 (2.6) 
l,m 

where SM (0)= 	(a20.4, 2 — (02), cos 0) is the oblate spheroidal harmonic satisfying 

[ 	 
1 
	( 	

2 

Lsine dB\
sin 0de}+Aim -a 2(µ2-CO )cos2 0 

sin 0]Sr (0)=0 (2.7) 

and Aim is the eigenvalue corresponding to ST (0). Taking the normalisation 

2/7- 	,r J d0 J sin 0 d0ISM(0)12 =1 	 (2.8) 
0 

and substituting (2.6)-(2.8) into (2.5), we see that Rrmco(r) satisfies 

r d /Q d\ +a 2m 2 +2amw(Q2-2Mr)+(r2 + a2)2,0z 

Ldr` dr 	 a Arm - a 2w 2 — t.L 2r2 JRimo(r) 

= -2 J dt e "` J d~ J p2 sin OS/ (0) ē im f (t, r, 0, 0) do. 
0 	0 

3. The geodesic equations 

(2.2) 

(2.3) 

(2.9) 

We take the equations of motion along a geodesic in a Kerr-Newman background 
space (Misner et al 1973) and consider the case of motion confined to the equatorial 
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plane of a black hole. The equations become 

r2 dA 
— V R, 

2d~ 	 aP 
r d _—(aE—Lz.)+Q , 

z 	z 

	

r2 d~1 
—a(aE—Les)

+(r 	) P, 

where 

P = E(r2+a2 )—Lza, 

R = P2 — a[I12r2 + (Lz — aE)2 ] 

and where {ī, is the rest mass of the baryon, and E and LZ are the energy at infinity and 
the angular momentum about the axis of rotation, respectively. 

Putting G = LZ — aE, we get from (3.2) 

P=Ere —aG, 
R= (Er2 —aG)2 —t Ca2r2+G2 ). 

From (3.1) using (3.3) we have 

d4 	GA+a(Er2—aG) 	 (3.4) 
dt aGO+(r2+a2 )(Er2 —aG) 

and 

dr AREr2— aG)2 — A(µ2r2 + G2)]112 

 

(3.5) dt 	aG +(r2+a2 )(Er2 —aG) • 

We now confine our attention to motion near the event horizon r = r+ _ 
M+[M2—(a2+ 02)}112 and assume that a2+Q2 ~M2 so that r+ fi r_= 
M—[M2— (er 2 4.Q2)]1 /2 

Putting 

we have 

Mx=r—r+, 2Md = r+— 	 (3.6) 

=M 2x(x +2d). 	 (3.7) 

Substituting (3.6) and (3.7) into (3.4) and (3.5), we may expand the right-hand sides in 
powers of x to get 

drt, 	a 
	 ax 0(x2) 

dt (r2~ + a '̀) 

and 

dr — ~~ 	+dx — 2dM2x 
x2 +O x3 

dt 	dt 	\(rue +a - ) 	( )' 

(3.1) 

(3.2) 

(3.3) 

(3.8) 

(3.9) 



1108 	PMRadrnore 

taking the minus square root in (3.5), and where the constants a and 13 are given by 

2M _ 
a 

(r+ +a2 )2(Er+ -a 

and 

M 2  (Md(4E2r+ -4aGEr+-2Mdi 2r+ -2MdG2 ) _ 
P (r+ +a2) 	 (Er+ — aG)

2 

2Md(4Er++2a2Er+-2aGr++2aGMd)+ 
1} 

(r+ + a 2)(Er+ — aG) 

for Er+ — aG O. 

(3.11) 

4. The source term 

To get an explicit expression for f(t, r, 0, 0), we choose, following Persides (1974), 

f(t,r,0,qS)=g 8 (3)(r r' ) 	 (4.1) 

where u°= dt/ds along the trajectory of the particle r'(t) _ (r'(t), 8'(t), j '(t)) and g is 
the source strength. To calculate 1/u° we first put (3.6) and (3.7), together with 
8 = 7r/2, into the metric (2.3), obtaining 

f ds\2 _ M2x(x +2d) 	dci\2 	1 	 2 2 dQ, 	2 
\dtl 	(Mx+r+)2 \1 a dt) (Mx+r+)2\((Mx+r+) +a ] dt — a) 

(Mx +r+)2  M2(dx}2 

M2x(x +2d)\-c-id  

Then substituting (3.8) and (3.9) into (4.2), we see that to the second order in x, 

\u°~2— `dr12=7x 2 

where the constant y is given by 

(2M2r+ -8dM3r+) (4adM 2a+2r+0) if  2Mar+ 	2 2 + r +a a y 	(r++a2)2 	(r++a2 ) 	r + \(r + +a2 ) (+ 	)a) 

On substituting into (4.4) the expressions for a and s from (3.10) and (3.11), we find, 
after considerable algebra, that y is given simply by 

4d 2M'µ+  2r _ 
' (r + + a 2 )2 (Er + — aG )2 

so that 

1°= K(r — r+) 

where 
2dM,ūr+  

K _ (r++a2)(Er+—aG). 

(MG dr+ — aEr+ + a2 Gr+) 	 (3.10) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 



Non-static nuclear forces 	 1109 

From (4.1), using (4.6), the source term can be written 

f(t, r, 0, 0)=gK(r — r+)5(r — ro(co))8(c 	 00(0)8(0 --17r) 	 (4.8) 

where, from (3.8) and (3.9), 

at 
00(0= (r++a2) 

ro(00) = r++ exp 
(r+—r_) ) 

0o 
a  

(4.9) 

(4.10) 

Hence the right-hand side of (2.9) becomes on substituting (4.8) 

—2gK(r—r+ )6(r—ro )
J 	

dt 	d0 
J 

p2 sin 0S7' (0)e-Im68(0 — go)5(0 — i?r) do. 
0 	0 

(4.11) 

After performing the 0-integration (4.11) becomes 

m 	2a 
—2gKr2(r—r+ )Si (17r)8(r—ro) f ekwrdt ( e-imm8(0 -00(t))d0. 	 (4.12) 

Now from (4.9) 

2xr 
dt 	e-rmeS

( —4o(t)) dd~ J~ 	Jo 

tar 	 co 
= 

 f
d0 e-im6 f e(mts(

Sb 
	at 

) dt 
0 	 m 	 (r + +a2 ) 

211* —(r+ +a2 ) 	
for co — 

2ma 2  
a 	 (r+ + a ) 

so that (4.12) becomes 

—47rg K (r+ + a 2)r 2(r —r+ )Si (17r)8(r—ro ). 
a 

(4.13) 

(4.14) 

Finally equation (2.9) becomes 

rr
d 	d l a2m2+2amw(Q2-2Mr)+(r2+a2)2w2 	2 2 	2r 

Ldr(drl + 
	—a w — µ r ].121„,,,,(r) 

—47rgh
a

(r+ +a2)r2(r—r+)Si (17)5 (r — To). 

5. The radial equation 

Rowan and Stephenson (1977) have shown that after defining x and d by 

Mx= r —rte, 	2Md=r+ —r- 

and writing 

(4.15) 

(5.1) 

Z(x)[x(x+2d)j-"2, 	 (5.2) 



Rimm(r)= 4Trgā (r++a2 )rō(ro-r+)S (z,r){ K
(1)(ro)R(z)(r) 

r+ Er_ro 
ro Er 

R(2)(ro)R(1)0 (5.7) 

1110 	P M Radmore 

substitution of (5.1) and (5.2) into (4.15), leads to (for r 0 ro ) 
z d Z+ I M2(w2 —Fc 2)+ 

12 A
+B+ C 

2 + 	 llZ =0 	(5.3) 
dx2 L 	 M (x x (x+2d) (x +2d)IJ 

where A, B, C and D are constants. It has not been possible to solve (5.3) over the 
whole range 0 , x < co due to the breakdown of the uniform asymptotic method. This 
is due to the fact that the method depends on the existence of a large parameter in the 
differential equation which we do not necessarily have in (5.3) since w may be close to 
or equal to ,u. However, we may use the solutions obtained by Rowan and Stephen- 
son for x 	0 (that is r 

where 

r+). These are 
112 

(Fi/z/Mxr—r+ )( 2 ( r 
+m 

r+ )) 

!-m 
r+ )) 

(5.4) 

(5.5) 

R(1)(r) = QM e— 
111.1 

112 
r~)(2 -(FI /z/M)(r- R(2)(=. 1 2 e 	 (r r) 

_2 	1 	A m = 4-M2 , 

provided F 0 0. The case of F = 0 was treated separately and we will not repeat the 
solutions here. 

We now integrate (4.15) across the singularity and impose continuity of R)m,,(r) at 
r =1.0 to get 

	

Ao~
dR1m.,, 	dRrmc , I 	K 2 	2 2 	 m l 

	

I 	- 	l 	=-4rrg—(r++a)ro(ro-r+)S, (z71 ) dr ro+o dr ro-0 	a 
where Qo = fro- r+)(ro - r_). 

Then for ro near r+ we have 

(5.6) 

C 	D l F = (M 2( 2 - w2 ) -4M 2d 2 2M 2  1 

where R(1) and R(2) are given by (5.4). If we now let ro -> r+ we see from (5.7) that 
Rim,,,(r) (for ro _ r) tends to zero since R(1)(ro) either tends to zero if ►n is real, or is 
bounded if rn is complex. Provided the series for cb is uniformly convergent, (13-> 0 as 
ro ->. r+. We note that (ID here is an expression for the scalar field near the event horizon 
since (5.4) are solutions of (5.3) only for r near r+. 

6. Special cases 

The case where a2 + 02 =M2 must be considered separately since d = 0 and 
consequently from (3.9) the term of order x in dx/dt is zero. To simplify the algebra, 
we consider the case of an extreme Kerr black hole, so that a = M and Q = 0. 
Expanding dq/dt to order x2 and dx/dt to order x4 and substituting these into (4.2) 
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with d = 0 and a = M we find 

( \
2 	2 	p2 2 4 

\ u°l = \āt) 4(EM G)2 

to order x4. Hence 

1 _ tī(r—M)2 
u° 2M(EM — G) 

which can be used in place of (4.6). 
The homogeneous radial equation becomes 

2 d Z
+(M z(w 2 —Ec'-- )+—+ B+ C+D)Z =0 	 (6.3) 

dx ` 	 x x x x 

where 

R rm,, (x) = Z (x ), 
x 

Mx=r—M 	 (6.4) 

and the constants A, B, C and]) are given by 

A= 4M2w 2 — 2M211, 2 

= 7M2W 2 M2p,2 A rm 
C = 8M 2w 2-4Mmw 

D = 4M2w 2-4Mmw+m2. 

The relation between w and m is now 

w = m/2M 

and on substituting (6.6) into (6.5), we find 

Ā = m 2-2M2g2 

B =ām2 —M 2 p. — Arm 
C=17=0. 

Equation (6.3) now becomes 

d2Z IIt r A BI Z 
dx

2— 
\ 	x x21 

where 

N =M 2ti 2 — '4m 22. 	 (6.9) 

After defining 

= 2N112x 	 (6.10) 

and substituting (6.10) into (6.8) we see that (6.8) has solutions in terms of Whittaker 
functions 

(6.1) 

(6.2) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

Z =MK,~ri,(17) 	 (6.11) 
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where 

  

m 2=ā-B. (6.12) 

For the case N = 0 we get 

  

Z  =1
x1/2Ia(i x"2) 	

(6.13) 
x t,2Ka(Rx

in
) 

where Ia, Ka  are the modified Besse/ functions of order ā of the first and second kind 
respectively and 

ā2=1-4B, 	
1:7-2  (6.14) 

7. Conclusions 

The success of the Liouville-Green asymptotic method when used to solve the radial 
equation for a massive scalar meson field (Rowan and Stephenson 1976a, b, Rowan 
1977), and also when applied to the Schrōdinger equation with a Gaussian potential 
(Stephenson 1977), depended on the appearance of a large parameter in the differen-
tial equation. This was due, in the first case, to the non-zero rest mass of the or-meson. 
When considering the most general black hole, solutions of the radial equation over 
the whole range are known only in special cases (Rowan 1977, Linet 1977); the 
equation may no longer contain a large parameter and in general will have four 
turning points. Although in principle it would be possible to match the solutions in the 
five regions, these problems together with the complexity of the differential equations 
for the geodesics give rise to great difficulties in any further work in this direction. 
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Non-linear wave equations in a curved background space 
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Abstract. Derrick's theorem concerning the existence of soliton-like solutions of non-
linear scalar wave equations in Minkowski space is extended to the curved background 
space exterior to a charged, non-rotating black hole. 

In a recent series of papers (Rowan and Stephenson, 1976a, b, 1977, Rowan 1977, 
Radmore 1978) solutions of the Klein—Gordon scalar wave equation in curved back-
ground spaces were obtained using Liouville—Green techniques. These solutions were 
related to the infall of baryons into black holes. We now consider whether it is 
possible to have soliton-like solutions of the non-linear Klein—Gordon equation 
containing self-interaction terms in the space exterior to a charged, non-rotating black 
hole as described by the Reissner—Nordstrom metric. It is well-known (Derrick 1964) 
that if is a scalar field in one time and D space dimensions satisfying the non-linear 
equation 

a24) 
ār2 — V 43= —I f1(43) (1) 

derivable from the variational principle 

8
J 

[(aWa02 — (V1)22 —f(4)]d3rdt=0 	 (2) 

then for D 2 and f (0) 0 the only non-singular time-independent solutions are the 
vacuum (or ground) states for which f((13)=  0. This result, however, was established 
only in Minkowski space and we now extend this work to the space exterior to a 
non-rotating black hole of mass in and charge e defined by the metric 

e2 2 	2rn e2 
ds` = (1-2rn 

	
z 	z 	z ;) dt —(1--+ z) dr2—r2 

r 	r r 

	

d6 —r2 sin 6 d¢ . 	 (3) 
r  

We first write (1) in covariant form as 

_ 	 f, 
g g 	

2 (43) 
-gg ax 	ax k~ -  

which arises from the variational principle 

	

 

J

(gik acl) a(13 
—f(d))) 	d°,r = 0. 	 (5) ` ax` ax 

(4) 
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Using (3) and taking 1 to be a function of r only, we obtain from (4) the radial 
equation 

2 d ((r2-2mr+e2)—)=z f'(0). 	 (6) 
r dr 	dr 

In this case the variational principle (5) is equivalent to 

SE=0, 	 (7) 

where the energy E of the 1 field is given by 

E = 47T 
f 

[(r2_2mr+e2)()2+f(It)r2
] 

dr, (8)  
rt 

and where r+= m+✓(m2-e2) (e2' m2) is the event horizon of the black hole. 
Writing 

/1 = 

and 

°O 
  (r2-2mr+e2)(12 dr (9)  

/2 = 

so that 

f 	f(43)r2 dr 
r+ 

(10)  

E= 477-(/1+ /2) (11)  

we must require that /1 and I2 converge. 
We now define 

(1)0,(r)= Car), (12)  

where a is an arbitrary constant and 
2 

Ea =47r f 	(( r2 _2mr+e2)(dd a°̀ ) (13)  +f(ca)r2) dr. 
r+ 

Then on changing the variable of integration from r to ar we have 
2 	oo 

E477- = f 	(r2-2mar+e2a )
1(d ) dr+f 	f(I)7-3 dr. 

a,+ 	 a 	dr 	a ,~ 	a 
(14)  

Differentiation of (14) with respect to a gives 

477- daa

– fao 

(-2mr+2e20)a (d
d
-43)2 	a dr+ fy (7-2 -2mar+e2a2)( a2)(d0) 2d r 

+ °° f 
f( 0:11)(

-3r4) dr– r±f(0) 
ar, 	a 	sr 

so that 

1 dkEa 
47r dr 

   

=–I1-3I2 +I3 – r+f01) a=1 r=r+. 
(16) 
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where 

f 	 dO 2 
I3 = 

J 
(-2mr+2e`)( ) dr. 	 (17) 

r+ 	

dr 
 

Now from (7) we must have 

dE
r, =0 

da a= 1 

which gives from (16) 

312= -11+I3 — r+f(43)I 
r=r+ 

Similarly, differentiating (14) twice with respect to a and setting a = 1 we obtain 

1 d2Ea l 	
3 =14-213+211 + 1212+4r+f(~) 

47r da` a = 1 

 ll+r+(2mr+-2e2)
(dcI)

2 	—r+ [f'(c:ITl) —
J dr r=r+ 	 dr 

where 

1 d2Ea 
a=1 

2 (dt)2 
2mr+-2e 	J =I4+213-211+ r+( 
	) 

dr r=r+ 

4 [f , ( 	dol 
—r+ 	~)—J 	• dr 	r=r+ 

z 
47r da 

From (6) we have 

Ef ( )dc, 	=4(r 	+—m)(dt)2 I P)—dr r=r 	r+
z 	

dr r= r+ 

and substitution of (23) into (22) leads to 

r=r+ 

(18)  

(19)  

(20)  

z 
I4= 	2e2 ( d ) dr. 	 (21) 

r+ 

Now using (19) we eliminate I2 from (20) to get 

(22)  

(23)  

1 d2Ea 
47r da` 

d~ 
=I4+2I3-271-2r+(rnr+—

e2 
)(dr)

z 

I r=r+ a=1 

 

(24) 

 

Finally, inserting the expressions for I1, 73 and I4 from (9), (17) and (21), equation (24) 
becomes 

1 	d`Ea 
= 

 _ J 
a=i 

rr 	
d~ 2 	 d~2 

 (2e2 —r2)(dr) 	
dr—r+(mr+— e2)( 

r+ r=r+ 87r da` 

A necessary condition for the solution of (6) to be stable is 

d2Ea ) 	0 

da '̀ a= 1 

which from (25) is 

rx z z dcI z 	 2 ((MT 2 
J 

(2e —r)(—) dr—r+(mr+—e )(—) I 	0. 
dr 	 dr r = r+ 

(25)  

(26)  

(27)  
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We can now establish a general result. If f ((D) ' 0 then from (10) 

I2~0. 	 (28) 

We also have from (9) and (17) 

I1.0, 	I3 _0. 	 (29) 

On substituting (28) and (29) into (19) we see that we must have (since f (I). 0) 

I1 = I3= AO) =0 	 (30) 

giving that the only solutions of (6) are those where 1 is a constant C satisfying 
f(C)=0. 

We now consider two special cases. Firstly, suppose that 

	

f' (0) = A t13 + /c 2~ 	A, It constant. 	 (31) 

Since thenf. (I) = Z A Ci)+ a 2q2 is non-negative, (30) gives that (6) has only the trivial 
solution 1 = 0. Secondly, suppose that 

2f'(40)=A433 —tt 2(I) 	 (32) 

which is the form of current interest in gauge theories. Then again 

f (c) = z A ['2 — 012/A )12 	 (33) 

is non-negative. The only solutions of (6) are therefore the vacuum states 

= ±A/VA. 	 (34) 

For compact spatial topologies there may well exist non-trivial stable vacuum solu-
tions (Avis and Isham 1978). 

Finally, if no restriction is made on the sign of f(0:13), then we may have non-
constant, finite energy solutions of (6). If (27) is to hold for such solutions, we must 
have 2e2 — r2 > 0 for some part of the range r+ r < oo since the second term in (27) is 
non-positive. This gives .12e> r+ or 

m2 >e2>gm2. 

In particular (35) shows that there will be no such solutions in a Schwarzschild 
background space. 

The authors are grateful to Dr C J Isham for helpful discussions. 
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The Schrōdinger equation with an anharmonic 
oscillator potential 

P M Radmore 
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Abstract. The Liouville—Green uniform asymptotic method is used to obtain approximate 
eigenvalues and eigenfunctions of the one-dimensional Schrōdinger equation with an 
anharmonic oscillator potential. The term neglected in the basic differential equation, in 
accordance with the method, is studied in some detail. 

1. Introduction 

In a recent paper (Stephenson 1977), the Liouville-Green technique was used to obtain 
the eigenvalues of the Schrōdinger equation with a radial Gaussian potential. Recent 
work on the anharmonic oscillator (e.g. Gillespie 1976, Fung et al 1978, Banerjee et al 
1978) has led to computation and comparison of the eigenvalues of the Schrōdinger 
equation. In view of the fact that the Liouville-Green technique and other so-called 
semi-classical methods are not as widely applied as they might be (Berry and Mount 
1972), and of the importance of the anharmonic oscillator potential in nuclear struc-
ture, quantum chemistry and quark confinement, we now use the same method for this 
potential. The eigenvalues obtained are compared with those found by direct methods. 

2. The basic transformation 

Setting 2m = fi = 1, the one-dimensional Schrōdinger equation with an anharmonic 
oscillator potential V = x2 + x4  is 

d20 
dx2 = (-E+x2+x4 )0, 	 (2.1) 

where E is the energy and the boundary conditions are cli(oo) = 0(-00) = 0. We make 
the Liouville-Green transformation 

x = x(6), 	0(x) = (0-112G(e), 	 (2.2) 

where primes denote differentiation with respect to x, so that (2.1) becomes 

d2G/d62  = (P(x)/ '2+ a(x))G, 	 (2.3) 

where 

P(x)=x4 +x2 -E (2.4) 

0305-4470/80/010173+07S01.00 © 1980 The Institute of Physics 	173 



174 	P M Radmore 

and 
0(x) = r/2e'3-3.,,2/4  ,4. 	 (2.5) 

When E is positive, P(x) has two zeros x = ±xo  where 

x0  = {[-1 + (1 +4E)112]/2}1/2, 	 (2.6) 

these being the classical turning points. 
The Liouville—Green technique consists in choosing e(x) so that 0(x) is a small 

bounded function and (2.3), with 0(x) neglected, is soluble in terms of known functions. 
Two ways of achieving this will be presented. First, since (2.1) has two turning points, 
we may try to choose e(x) so that, after neglecting A(x), (2.3) becomes the standard 
two-turning-point equation, namely the Weber equation 

d2G/de2 = (e2/4-A )G, 	 (2.7) 

the solutions of which are the parabolic cylinder functions, where A is a parameter. 
Alternatively, since P(x) depends only on x2, the wavefunctions '(x) will be either even 
or odd functions and we can consider the problem for x 0, applying the additional 
boundary condition that either 0(0) = 0 or 0'(0) = 0. In this case, since P(x) has only 
one zero for x , 0, we may try to choose e(x) so that (2.3) becomes the Airy equation 

d2G/de2 = (—a)G, 	 (2.8) 

after neglecting L(x), where a is a parameter to be determined from the boundary 
conditions. 

Both approaches lead to approximate eigenvalues and eigenfunctions (Olver 1974). 

3. The Weber equation method 

With the choice 

e2(62/ —A ) = P(x), 	 (3.1) 

(2.3) becomes the Weber equation (2.7), if we neglect a(x). Assuming for the moment 
that this is justified, we find by integration of (3.1) that for x , xo, 

'īe(e2-4A)1/2-2A lnle+( 2-4A)1/2I+2A ln(2')=2 
JX 

(P(t))1/2  dt, 	(3.2) 
xo 

while between the turning points 

(4A — e2)112+ 2A sin_1(2 
/ 
= 2 J (—P(t))112  dt. 	 (3.3) 

The constants of integration have been chosen so that 6 = 0 when x = 0 and e = t2-47( 
correspond to x = ±xo. Putting x = xo in (3.3) we obtain 

Air =2 .1  (E — t2 — t4)1/2 dt. 
n 

(3.4) 
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The boundary conditions w(co) = (-oo) = 0 correspond to G(oo) = G(-co) = 0 and 
bounded solutions of the Weber equation satisfying these conditions exist only if 

A = n +Z 	 (3.5) 

where n = 0, 1, 2, ... . 
Substituting (3.5) into (3.4) gives 

2(n +Z)= Jox~(E- t 2 - t4)112dt, 	 (3.6) 

which is the Bohr-Sommerfeld quantisation formula, on noticing that 

Jx"(E- t2- t4)1 /2dt =i 
Jxo 	z a I/z (E - t - t) 	dt. 	 (3.7) 

0 	 xo 
Using (3.6), the eigenvalues have been computed and in table 1 are compared with 

accurate values calculated by Banerjee et al (1978) using scaled bases. The two sets of 
values are in close agreement, the accuracy increasing with increasing n. 

Table 1. Eigenvalues computed using equation (3.6) are compared with accurate values 
calculated by Banerjee et al (1978) using scaled bases. 

n Eigenvalue Accurate 
eigenvalue 

Approximate 
percentage error 

0 1.2508 1.3924 10.17 
1 4.5926 4.6488 1.21 
2 8.6130 8.6550 0.49 
3 13.1231 13.1568 0.26 
4 18.0290 18.0576 0.16 
5 23.2725 23.2974 0.11 
6 28.8130 28.8353 0.077 
7 34.6206 34.6408 0.058 
8 40.6717 40.6904 0.046 
9 46.9477 46.9650 0.037 

10 53.4329 53.4491 0.03 
20 127.6076 127.6178 0.008 
30 214.7721 214.7797 0.0035 
40 311.8254 311.8315 0.002 
50 417.0512 417.0563 0.0012 

100 1035.5422 1035.5442 0.0002 

We now examine the neglected term a(x). From (2.4) and (3.1) we have 

6'=[(-E+x2+x4 )/(Stt2/4-A)]t/2, 	 (3.8) 

from which 6" and f"' can be calculated in terms of x and and, using (2.5), 0(x) can be 
written out explicitly as 

2 	 [2E+(12E+3)x2+6x4+8x6]  
0(x)=64(62/4

8 
~))z (z/4-A) 	4(-E+x2+x4)3 	

(3.9) 

At the turning points, although both terms in (3.9) diverge, we can show that a(x) tends 
to a finite limit, as follows: 
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Using L'Hōpital's rule in (3.8), we have 
xō 1~3 

L1= urn F— (
2xo+4  

x .xo 

By differentiation of (3.8) and use of L'Hōpital's rule, we find 

L2= lim r=
(4+24xō—Li) 

x-.xo 	10L VA 
and 

L3 = urn e'° = 
(48xo'— 24AL1L2 — 9VLiL2) 

x-axo 	 14AL1 

(3.10) 

(3.11) 

(3.12) 

L1 , L2 and L3 are non-zero and finite so that by (2.5), 0(x) tends to a finite limit given by 

L3 3 
lira A(x) =  
x.xp 	 2Li 4 Li 

The values of A(x) have been computed by first finding e for a given x from (3.2) or 
(3.3) and then substituting in (3.9), with the value at the turning point given by (3.13). 
The results are shown in figures 1 and 2 for selected values of n and indicate that A(x) 
attains its absolute maximum at x = 0, this value decreasing with increasing n, and that 
A(x) is a small, bounded, slowly varying function. 

002 

0.08 	 n=5 

(3.13) 

Figure 1. A(x) against x, for n = 0, 1, 2. 

4. The Airy equation method 

Here we consider x 0, and with the choice 

e2(e — a)=P(x), 

a 00 

Figure 2. 0(x) against x, for n = 5, 10. 

(4.1) 

(2.3) becomes the Airy equation (2.8) on neglecting A(x). We then find by integration 
of (4.1) that for x 

3(S — a )3/2= x (P(t))1/2 drs 
xo 

(4.2) 
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the constant of integration being chosen so that x = xo corresponds to e = a. For 
0 x , xo, we have 

3 a3/2-3(a - St)3/2 = ~x (-p(0)112 dt, 

where x = 0 corresponds to 4 = 0. Substituting x = xo into (4.3), we obtain 

3a3/2= r xo 
(E-t2- t4 )1/2 dt. 	 (4.4) 

0 
The required solution of (2.8) is the Airy function Ai(e-a), since this satisfies the 

boundary condition G(co) = 0. We can now find the parameter a from the additional 
condition that either G'(0) = 0 or G(0) = 0 corresponding to even and odd wavefunc-
tions respectively, since this condition implies that either Ai'(-a) = 0 or Ai(-a) = 0. 
Hence -a is the position of either a turning point or a zero of the Airy function Ai. The 
values of a obtained from Abramowitz and Stegun (1964, p 478) were used to compute 
the eigenvalues using (4.4). The results are shown in table 2 and compare favourably 
with accurate values. 

Table 2. Values of a obtained from Abramowitz and Stegun (1964) were used to compute 
the eigenvalues using equation (4.4). 

n 
a from 
Ai (-a) = 0 

a from 
Ai(-a) = 0 Eigenvalue 

Accurate 
eigenvalue 

0 1.01879 1.0706 1-3924 
1 2.33 811 4.6573 4.6488 
2 3.24 820 8.5471 8.6550 
3 4.08 795 13.1605 13.1568 
4 4.82 010 17.9849 18.0576 
5 5-52 056 23.3000 23.2974 
6 6.16 331 28.7788 28.8353 
7 6.78 671 34.6428 34.6408 
8 7.37 218 40.6433 40.6904 
9 7.94 413 46-9666 46.9650 

10 8.48849 53.4084 53.4491 
11 9.02265 60.1310 60-1295 
12 9.53 545 66.9589 66-9950 
13 10.04 017 74.0371 74.0359 
14 10.52 766 81.2108 81-2435 
15 11.00 852 88.6115 88.6103 
16 11.47 506 96-0998 96.1296 
17 11.93 602 103.7966 103-7953 
18 12.38 479 111.5743 111.6018 
19 12.82 878 119-5454 119.5442 

The connection between (3.6) and (4.4) can be seen by noting that the leading order 
term in the asymptotic expansion of a is 

a -[ā7r(n -1'1)]2/3 
	 (4.5) 

where n = 0, 1, 2, ... (see Abramowitz and Stegun p 450). 

(4.3) 
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The neglected term 0(x) in this case is given by 

5 	[2E+(12E+3)x2+6x4+8x6] 	(4.6) A(x)-16(— a)2 ( -a) 	4(—E+x2+x4)3 

and we can again show that z(x) tends to a finite limit at the turning point x = xo. Using 
the results 

K1 = lim ' = (2x0+44113, 	 (4.7) 
x*xo 

(2  + 12xō)  K2= lim e„  = 5K1 	
(4.8) 

x*xo 

12  K3 = lim ern =7KZ
(2xo—K1Kz) > 	 (4.9) 

x*xo 	i 

we obtain from (2.5) 

3  
Um A(x) = 

28K
i (16xo 

-• 	
—15K1K2). 

xxo 
(4.10) 

The results of computing A(x) for selected values of a are shown in figures 3 and 4. 

Figure 3. A(x) against x, for selected values of 
a (n =0,1). 

Figure 4. A(x) against x, for selected values of 
a (n =2,3,4). 

5. Discussion 

The method presented here depends on the initial choice off (x). Consider for example 
the Weber equation method. The exact relation between a and x is given by 

(4S2—.1)-P(x) C„ -3 e
„2 

2e,s 4 ,a (5.1) 

and on neglecting the right-hand side, we obtain (3.1). The next approximation would 
then be 

(ā 2-A) — P(x)/ =å(x (6)), 	 (5.2) 
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from which we see that 

J s° (-P(x))ti2 dx = 
J 

£° {A — t62 +o(x(e))} tie  de, 	 (5.3) 
0 	 0 

where 6 is given by 

A — āa+O(x(o)) = O. 	 (5.4) 

Except for the case n = 0, a(x) is negative at the turning point x = xo  (corresponding to 
6= 2,47), so that Co < 	Hence an upper bound for the right-hand side of (5.3) is 

2,1,T(A +.(0)) t?2, 	 (5.5) 

which, from (5.3), gives an upper bound for the eigenvalues in this approximation. For 
upper and lower bounds derived using the WKB approximation, see Birx and Houk 
1977. 

The approximate eigenfunctions follow from (2.7) or (2.8) and the transformation 
(2.2). 

A wide class of potentials can be treated in a similar manner, for example the 
interaction of the type Ax 2/(1 + gx 2 ) (see Mitra 1978). 
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