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ABSTRACT

This thesis is primarily concerned with methods of
obtaining solutions of differential equations which arise
in various branches of mathematical physics. In general
relativity the differential equations considered describe
scalar fields on a fixed and unquantised background space.
The Klein-Gordon equation exterior to a rotating black
hole is examined with a physically realistic source term,
representing the meson field of an infalling baryon, so
generalising previous work, We discuss the possibility of
soliton-like solutions of a class of non-linear Klein-
Gordon equation exterior to a non-rotating black hole. We
also examine from a physical viewpoint a known solution of
the Einstein-Maxwell field equations describing the
interior of an object supported against total gravitational
collapse by an internal magnetic field. Techniques used
previously in work on scalar meson fields are found to be
inapplicable to these problems, but their usefulness has
suggested their application to other differential
equations, Accordingly, the Liouville-Green asymptotic
method is used to obtain approximate eigenvalues and
eigenfunctions of the Schrédinger equation with an
anharmonic oscillator potential, and to investigate the

propagation of electromagnetic waves in optical waveguides.
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CHAPTER 1

INTRODUCTION

In recent years a substantial amount of work has been
carried out on the problem of external fields propagating
in a fixed and ungquantised background space. Such
considerations seem a natural prerequisite for the
understanding of quantised fields on a fixed background
and, ultimately, for a fully quantised theory of gravity.
In much of the work the background considered is the space
exterior to a black hole, a region of spacetime from
which, classically, nothing can escape to infinity. Since
the investigations of Oppenheimer and his collaborators
(1939), it ﬁas been known that there exists an upper limit
on the mass of a neutron star. Many stars with masses
greater than this value are observed, so that in the final
stages of their evolution no forces due to degeneracy
pressure can prevent total gravitational collapse to a
singularity. Such singularities are shielded from the
universe by an event horizon, the interior being the black
hole. That singular%ties are always isolated in this way
is the as yet unproven hypothesis of cosmic censorship,
due to Penrose (1969).

An important feature of black hole physics is the
existence of the so-called 'no-hair' theorem. This was
originally a conjecture based on the work of Israel (1967),
and was later proved by the contributions of Chase (1970),
Carter (1971), Hawking (1972), Bekenstein (1972 a,b),

Robinson (1974) and, more recently, Adler and Pearson



(1978). The theorem states that, independently of the
initial conditions, a collapsing object will eventually
reach a stationary state described by only three
parameters, namely, charge, mass, and angular momentum.
This state will be a member of the Kerr-Newman family of
solutions of the field equations. The Kerr-Newman
solutions therefore enjoy a special significance in the
study of astrophysical processeé near a black hole (see
for example Bardeen et al, 1972), particularly in view
of the recent method of testing observationally for a
rotating black hole (Stark and Connors, 1977 a,b).

The 'no-hair' theorem also implies that if a baryon is
allowed to fall into a black hole, since the final
configuration is again a member of the Kerr-Newman family,
then the meson field of the baryon must fall to zero as
the source crosses the event horizon., Rowan and Stephenson
(1976 a,b) first considered the case of the meson field of
a baryon falling into a Schwarzschild black hole. The
problem was treated quasi-statically, so that the baryon
was assumed to be at rest at each stage of its infall,
Subsequently, Rowan (1977) treated the problem of infall
into a rotating black hole, with the baryon on the axis of
rotation. The problem can again be treated quasi-
statically, despite the existence of the ergosphere
associated with the rotating black hole. This is a finite
region, exterior to the event horizon, bounded by the so-
called static limit, within which no particle may remain
at rest. The static limit and the event horizon coincide
at the poles, so that baryon infall along the axis

encounters no portion of the ergosprhere before reaching



the event horizon. If the infall were along any path which
passed through the ergosphere, it could not be treated
quasi-statically. It is this problem which we discuss in
Chapter 2. In Chapter 3, we consider the existence of
solutions of non-linear equations describing self-
interacting meson fields exterior to a non-rotating black
hole;

In the work of Rowan and Stephenson referred to above,
the Klein-Gordon equation describing the meson field was
solved approximately over the whole range exterior to the
black hole by an application of the Liouville-Green
asymptotic method (see Olver, 1974). This technique may be
applied to second order, linear differential equations in
normal form, and is equivalent to the method of comparison
equations briefly discussed by Berry and Mount (1972). An
advantage of this method over the J.W.K.B. approximation,
also discussed by Berry and Mount (see also Frdman and
Froman, 1965), is that it removes the need for matching at
the turning points of the equation (see Appendix 1). The
usefulness of the technique is demonstrated in this thesis
by its application to the Schrddinger equation with an
anharmonic oscillator potential in Chapter 5, and to a
Schrodinger-type equation associatéd with propagation
along a dielectric wavegulde in Chapter 6. In both cases
approximate eigenvalues are obtained after a small amount
of computing, and at the very least, these could be used
as the starting point for more sophisticated computing
methods.,

The Liouville-Green technique consists in the

transformation of the differential equation of interest
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into another, with the same number of turning points,
which is soluble in terms of known functions, either
exactly or approximately. In the latter case the neglected
term appears in closed form, in contrast to the J.W.K.B.
approximation. Despite the extensive literature on
propagation in dielectric waveguides (see Olshansky, 1979,
and the references cited therein), the Liouville-Green

technique appears not to have been used in this field.



- 11 -

CHAPTER 2

NON-STATIC NUCLEAR FORCES IN A

KERR-NEWMAN BACKGROUND SPACE

1, Introduction

In a series of papers (Rowan and Stephenson, 1976 a,b,
1977 and Rowan, 1977), the Klein-Gordon equation for a
massive scalar meson field has been examined in various
background spaces by an application of the Liouville-Green
asymptotic method (see Appendix 1). Rowan (1977) has
extended. the work of Rowan and Stephenson to the infall of
an'uncharged baryon down the axis of a charged, rotating
black hole described by the Kerr-Newman metric and has
shown that the field of the baryon source falls to zero as
the source crosses the event horizon. By allowing the
particle to move down the axis of rotation, Rowan was able
to treat the infall as a series of quasi-static problems
Since the event horizon and the static limit coincide on
the axis of rotation.

In this chapter, we extend this work to the infall of a

baryon along a geodesic in the equatorial plane of the
black hole, This requires that the source term be modified
to a time-dependent one, since the tidal forces destroy
the static situation. By solving the geodesic equations
near the event horizon and using the solutions of the
Klein-Gordon equation near the event horizon as found by
Rowan and Stephenson (1977), we have again deduced that
the field of the baryon falls to zerb as the particle

crosses the event horizon. It has not been possible to
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solve the basic differential equation over the whole range
owing to the breakdown of the asymptotic method. The
reason for this will emerge in the following analysis.

In sections 7 and 8, we extend to massive scalar fields
the work of de Felice (1979) on massless scalar fields in
a Kerr background space without an event horizon. We
compare the Klein-Gordon equation in this case to that

obtained in the Kerr black hole case.

2, Basic equations

We begin with the Klein-Gordon equation

(Dz"‘ /“z)i = ‘HTP(E;"',BJ P) ; (2.1)
where @= é(t)‘rle,gp) is‘the scalar field,F(t,T"e)(P)

represents a point source and /i 1s the inverse Compton
wavelength of the meson associated with the field. In
generally covariant form (2.1) is

m (f——Sck 395 + /u?.§

=4-THE<E,T,9,§D) ; (2.2)

where Eh_is the determinant of the metric tensor Qik
Together with the Kerr-Newman metric in Boyer-Lindquist
coordinates describing a body of mass P4 , charge C% and

angular momentum per unit mass Q. ,

ds® = %(c”:— a.sin8 dP)a - -Z—clva — {fde

_sig‘ [1-.,_(1)&?) th] (2.3)

where
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2 2 2 2 2
A=t-2Mr+a+Q , ¢ = ¥ ddeosh, (2.4
equation (2.2) becomes

g[(ra—!-cf)a—llofsinze]ﬁ 2 (A3_>

A ot or\Tor
3 (a3 ) (A=dsinf8)d
- 55350 35) N
2o [A-(r*+)] ¥
T A wx (’/‘ﬁ ETEr 0.0l o)
Throughout, we take C=(G = | , and until section 7, we take

2 2 2
M = Q 'I‘Q so that the metric (2.3) describes a black
2 2
hole. Then Z\ in (2.4) is zero at T=Mi/~/M —Q.E—Q ,

the larger root being the event horizon of the black hole.

Now write

é Z 5 ‘lw( - S ®) emtpe—Wt) (2.6)
where Sr(e) = ‘SL (O'r//u*a_ w?* ] COSG) is the prolate

spheroidal harmonic satisfying

d 2r 2 2\ .2
{ |I6 de(smede) — Q(/‘i w")cs" 6

m

+ A, — smeJS ® = o (2.7)

m
and >\Lm is the eigenvalue corresponding to SL (8) .
Taking the normalisation

J J(PJ sinB | S

= | (2.8)
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and substituting (2.6)~(2.8) into (2.5),

Eimw

60 satisfies

&mt + 2amw(Q = 2Me) + (i d) w

we find that

2
2

Hot)+

- ?\Lm

_aj dt jclpjgsmes

3. The geodesic equations

A

— W - /uaT"a} RLN (+)

“"‘?]Dt 1.0 cp )d8. (2.9)

We take the equations of motion along a geodesic in a

Kerr-Newman background space (Misner,

Thorne and Wheeler,

1973, p.899) and consider the case of motion confined to

the equatorial plane of a black hole,

The equations are

ok
2;]}\ — —(QE—L;) + Q-A-ED— > (3.1)
adt L _ (‘f‘Z-J-Qa)P
;r_ = Q.(Q.E: L—Z) + ZX |
P = E(Ta-l— o) - Q.L
e (3.2)

R

- Al

La— QE)Z]

and where f] is the rest-mass of the baryon, and E: and

L_z are the energy at infinity and the angular momentum

about the axis of rotation,

respectively. Putting
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J_= Lz— QE , we get from (3.2)

P=Ert-ad

. _ (3.3)
R=(Ert-aJ) - Alpr®+T")
From (3.1) using (3.3) we have
é@= TA+a(Er2 —ad) (3.4)
db aJ A+ (r2+ @@)(Er2-al) °
and
dr AKET"— aJ_ A(,UaT’ +J—)} (559

db ad A\ +(re+@)Er2-ad)

From (3.4), we see that an infalling particle cannot
follow a radial path @= constant, even if LZ:O , unless
Q. is also zero.

We now confine our attention to motion near the event

horizon T = T, = ™M+ M and assume that
0.+Q # M so that T_# T1T_ = M—,/ME—QZ—QE. Putting

Me=1T-7, 2Md= T -1 , (3.6)

we have

N\ = Max(x-l- 2d) . | (3.7)

Substituting (3.6) and (3.7) into (3.4) and (3.5), we may

expand the right-hand sides in powers of X to obtain

é(E=__Q'___ e .
il oo A o

and

&5

= .AE—_MQ 2 3
= Md = ((’Tf.‘i'fla) -+ /3 )‘l‘ O(:c) , (3.9)
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where the constants & and /6 are given by

M
_ a 2 oFr?+ T, (210
" of)(Erf—aa’)(Mwﬁ ) o

oM [Md(‘}—Ea ~ 4 JEr, - 2Mdgi - 2MdT)
P e (Erf-al )

eMd (4B + 2B —2adTy + ZaJ'Md)+ |
(2 + a2 )(Erf - ad) (310

4, The source term

To get an explicit expression for‘F(t,T‘,e,?) , we

choose, following Persides (1974),

F(t,‘\“,e,?}) = 81%8(3)(5:—1:/) , (4.1)

"= -
where W = S along the trajectory of the particle
/ /
.1-_/(5) = (‘T‘/(t)) e (l;) , (P (U)) and 8 is the source
strength. To calculate u,o , we first put (3.6) and (3.7),

together with e=”/2., into the metric (2.3), obtaining

() - ezeadi- o o) - Ceslile)

— (Mgc-li-r+)?'[{(Mx+ﬁ)a+ 05}3% - ] L (4.2)

Then substituting (3.8) and (3.9) into (4.2), we see that

to second order in <C

?

o v
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where the constant ‘X is given by

g (M =8dTs) (GradMo +228)

(v2+ o )?' 2+ Ota)
2
IREE SR S
+

On substituting into (4.4) the expressions for . and X3
from (3.10) and (3.11), we find, after considerable

algebra, that X is given simply by

X ~ 4_&2M+/(721~4-

RGETiEarey o
so that
%L"_ = Kr-v.) _ (4.6)
where
ZdM,uT‘ .
K= s OET=ad) 8.

From (4.1), using (4.6), the source term can be written

Fi6,7,0,0) = gK(r—1)Sir-5@)8 (p-p,0)56-T) ca.0)

~where, from (3.8) and (3.9),

g%(t) CLt

(rE+ad) L

and

S = o+ ep[-ETEa]

Hence the right-hand side of (2.9) becomes, on

substituting (4.8),
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— 29K (r—13) S(r—n)f ei“’bdtf clgo

9 im0 SO P8P8 (0-F) b . cann

After performing the 9 ~integration, (4.11) becomes

—2qK6r-1) S (2)8e-) j‘”bdfj r3(p- Ao a.12)

Now from (4.9)

f & g / P §(p- @) dp
| em | + o Q.t
= [ dperr] e slo- gy &
_—_—2—”—(1‘24-&) for W= TE s (4.13)
Q ‘' [+ o)

so that (4.12) becomes

- 4—Tra%(fj_+ Yt te-) S (F)8tr-%) . was

Finally, equation (2.9) becomes .
d ( AJ ) oa’m” + Camw (Qa- PMr) + (F%+08) w?
dr A

—Apm — AW — /ua*aj R s )

=—4mgl (e )i S{(E)S6 7). sy
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5. The radial equation

Rowan and Stephenson (1977) have shown that after

defining X and Cl by

Me =1-7 , 2Md = -1 (5.1)

and writing

me( ) = /(= [ (% +2d )] z (5.2)

substitution of (5.1) and (5.2) into (4.15) leads to (for

T# %)
C D
4z [ ot +#(A+g+mﬁ(ﬂa&)ﬂz

=0 (5.3)

wnere A, B , C ana D are constants given by
A = g M i + 2G T ~4raumM G4 1
T T I ERL AR ICPY) S
B = Ards[dmaM (d+ Fd=1) = 42 MQd= 1)
+hraumM’ = 2 M+ N = 2w+ M
— M - e - 2Qawm - w%ﬂ, JRERS

C = M[ama M =1 + M@ (4= 1)+ M

2 4
+m?a® + 2Qawm + wQ ], (5.8

and
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D= zln| 4 (2d + 1)(d- 1+ 4 M=)

[

—gomM + Z/u -l) + 2d (co o + AM
+ M+ mia? + 2Q awm + wa@ﬁ-} . (5.7)

It has not been possible to solve the homogeneous
equation (5.3) over the whole range QKX <00 due to the
breakdown of the asymptotic method. This is due to the fact
that the accuracy of the method depends on the existence of
a large parameter in the differential equation which we do
not necessarily have in (5.3), since W may be close to or
equal to fl . Also (5.3) will have, in general, four
turning points (see Appendix 1), and we have no standard
four-turning-point equation to which we can transform.
However, we are chiefly interested in the behaviour of the
solutions as X—>Q (that is T—T,) and may use the
solutions near the event horizon obtained by Rowan and

Stephenson (1977). These are

Ry, () = (ﬂ)ﬁx " o

r

AE (r-7)
Rm ()~ | (5.8)
¢ dEi; + %'Jﬁ
R@(T) - I\/']/a € ( M)(r i )(T" T-+)

where

> 5 (5.9)

|
e=
2 C D
Fo= M(fl_wa)_ArMada“m?-dd
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provided F?é 0 . The case of F: O was treated
separately and we will not repeat the solutions here.
We now integrate (4.15) across the singularity and

impose continuity of me )at T=7T, to obtain

IR dRu
A°§AT~‘ T 3

== 4mggtrt+ ) m-r)S(F) . e

Yo+0

where Aoz (TB—T_*_)(‘{;— T‘_) . Then for Ty near YT ,

we have

R

Lmw

(1) = 4l iz + o)t (6 -1 ST(E)

Rey(aIR, (M (mergt)
XJ (5.11)

R(,)(R)Rm(f) (o T)

where Q(') and Q(a_) are given by (5.8). .

Now from (5.4) and (5.9)

—2 _ |

M= T
+ waQ+- AMRQ [+ 1) + M (d+ I)a]

méa + ZQo.wm - 4owmM (d+|)

— 4—dal\’|2{ma + wQ aw[\/\ (d + |)] (5.12)

and since this is negative, M is imaginary and we can

write

=(b (5.13)
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wherec.z'/:‘—land
b_adl\’] ma-{-wQ - 2w (d+|)l. (5.14)

Hence, from (5.8), it follows that R(I) and R(a) have the
behaviour (‘r—f,..)(:band (’f‘—'ﬁ_.)c , respectively, as T— T,
Alternatively, we could redefine R(l) and R(a) to be the
solutions with behaviour 'COS(IDLH[T - ’1‘_’_] ) and
Sir\(b LT\['{‘ - 'T__‘_] ) , respectively, since

(1‘—1“_,_)1.6}3 = egciaii b Ln ('1‘—1‘4_)}

= cos (bla[r-7)) T {sin(blnfr-1])).

Although both solutions exhibit increasingly frequent
oscillations as T —>7TL, they are bounded.

If we now let Y,—> Y, , we see from (5.7) that Qme( )
for T, < ", tends to zero since Rc,)(ﬁ) is bounded.,
Provided the series for @ is uniformly convergent, as
has been proved in the case of a Schwarzschild black hole
(Rowan and Stephenson, 1976 a), then @—%O as 'T;—-%'f’_l_.
We note that @ here is an expression for the scalar
-field near the event horizon since (5,8) gives solutions

of (5.3) only for T near Y .

6. Special cases

The case Q.a‘*‘Qa: Ma must be considered separately
since d= O and consequently from (3.9), the term of
order I in d%t is zero. To simplify the algebra and to
begin a connection with the following sections of this

chapter, we consider the case of an extreme Kerr black hole,
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so that a.= ™ ) Q': O and 3=T_= ™M . Expanding dp/db

2
to order oL~ and d%t to order II:q- and substituting into

(4.2) with d= O and a=M, we find

MP® o

(w) (ﬁ) = B 2@m-T7 -

to order 2. Hence .
L = U (T—M) (6
e " [ eMEM-T)

which can be used in place of (4.6). The homogeneous
radial equation becomes

jZaJr{ /x)+ BZ+E+BJZ

:C;

— O (6.

where

Riu() = o'/ () | Mx=r-M
and the constants A, B , C ana D are given by
= 4MW? - EI\’l/u
M W? - /u

ol |

(6.
- 2
C = MW - 4Mmw
= e
D = MW — 4Mmw + m®
The relation between W and M is now, from (4.13),
™M
W = 7= (6.
M

and on substituting (6.6) into (6.5) we find

1)

.2)

3)

.4)

5)

6)
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(6.7)

ool
u
NI
3[“
I
<
=
o
)
g

Equation (6.3) now becomes

j;za = (N—%—%)Z , (6.8)

where
2
2 m
N =M e - M . (6.9)

After defining

n = ZNOC (6.10)

and substituting (6.10) into (6.8), we see that (6.8) has
solutions in terms of Whittaker functions (see Whittaker

and Watson, 1927)

Z = Mmiok(r\) , (6.11)

A e _ | .
Kz—é—JI—\l__ \ <1/_$ B . (6.12)

The solutions (6.11) form two independent solutions of

where

(6.8) provided 2&1,15 not an integer. From the asymptotic

behaviour of MK)‘L(I—\) as f\e O and the transformation
(6.4), we have

R(,,(T) ~ Lg—y?_ 8_@\4)&-[\4)(-{‘—[\4)%-*% (6.13)

as T-"é'M. Again, R ('{“) tends to zero for Vo< since
Lmw
Rm('ro) either tends to zero if C}/ is real or is bounded,

as before, if CV, is imaginary.
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For the case N-—-O , we get

Z _ | ac/EIa (ﬁx/z) (6.14)
ke K&(Ex'/a)

e

where IQ s K;( are the modified Bessel functions of

order & of the first and second kind, respectively, and

&Z=1-48 , ff=—4A . (6.15)

The radial solution for Ty<<Y has the behaviour
Z A
M* 2tz (6.16)

Y2

as T>M™ , and either tends to zero if O is real or is
bounded if OL 1is imaginary.

In all cases, therefore, we have the result that the
scalar field @ tends to zero as the source crosses the
event horizon., Although, in general, the solutions of the
homogeneous radial equation exhibit increasingly frequent
oscillations as 'f;—}“f’_,_, these are damped by a power of
(“Q——T'_*.) arising from the source term.

In the next two sections, we examine the massive Klein-
Gordon equation in the Kerr metric with a>M™ ang study
the radial solutions near the surface T = M , where an

event horizon forms when Q.= M .

7. The Kerr metric with QO > M

The metric is (2.3) and (2.4), with Q=O . We shall

take O.>M but close enough to ™ so that
[ 2 '
2
k_ = Qo — M (7.1)

can be considered small; for example R/Q<< l . The work
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of de Felice (1979) was concerned with massless fields in
this naked singularity background, and here we make an
extension to massive fields, while following his approach.

First we take the radial equation (4.15) without the
source term, putting Q=O ,

x = T—-M™ (7.2)

R

and

H(rx:) = (I + :x;a)'/"' Rme(x) . (7.3)

Equation (4.15) then becomes

(Cla (ll—j_( x) >3(3C) = Q0 , (7.4)

where
He) = 06°+0|:3c+o<,oc +Lzocac+hoc el (7.5)
and
2
= wa(l\/ﬁ— CLE) + ofm® — 4—QmwMa
—ha(HLer Ru? + M ) (7.6)

o, = M (M + @) - amw™ - ZME‘/B, (7.7)
= 20%(c 4 3M) = (A + R + ), e
oly= 4Muw? - 2Mpt (7.9)

(7.10)

Equation (7.4) will again have four turning points, in
general, and we encounter the same difficulties as in the

black hole case regarding a solution over the whole range.
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Putting

W
s = — 7.11
N=gFmr > =4 (7.11)
into (7.6)-(7.10), the constants o, &, ,, X, and

O 4 can be written
= (p-m) + K (2amp0 ~ 2, -
— Q®w? - /uzl\’la ), a2
o = 40 MM+ 0@)[3(/3‘”*) - EMha/f
= 2/3217_2(a2+ 3MF) = (A + B + cf/ue), (7.14)

~~

7.13)

= Ar/aap_aM -2, (7.15)
o, = /32_0_2_/(} . (7.16)

Two possible large parameters in (7.12)-(7.16) are fﬂ\q,
as in the work of Rowan and Stephenson, and atm , where if
L is large :
A~ LIL+D =5 (7.17)
(see Meixner and Schifke, 1954), We shall conside£ each of

these possibilities.

8. Bound states

(1) L large

—2
In (7.4), we expand the term "4@3)(|'+‘3Ca) , using

(7.5), in powers of X and retain terms up to and

including DCa , So that

e e o Bfy-o e
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In contrast to a corresponding expansion of (5.3) near
3:=:C), equatibn (8.1) has the appearance of a harmonic
oscillator and accordingly, we look for bound states.
Folléwing de Felice we demand ™, >0 in order to have
travelling wave solutions across X =0, Further, wé

require that 06$/h? be finite in the limit of small k/

and

%‘E&‘ < (8.2)
From (7.12) and (7.17), these conditions imply

lfg__ ml = J%%; : (8.3)
Now from (7.14),

Xy ~ — L (8.4)

so that, using (8.2),

Oczii; .jigéﬂ ~  — ta

ha (8.5)
Using the result (8.5), (8.1) becomes
2
J H ( Olg o, 2 2
-— = |{77= - T—x + . ‘
d=® R R Lo J e

The substitution

z = (Dc B E%E%Z:)JEE; é8.7)

transforms (8.6) into

% = (izz - E)t{ > (8.8)

2
E = OC°+ o, |

‘E ‘H?_ata 2Lt ' (8.9)

As ;E increases, the parabolic cylinder function solution

where




/4- zE-

of (8.8) has a factor e (see Abramowitz and

Stegun, 1964, p.689). The exponential term behaves as

ertH“—P4yéh

shall therefore take the boundary condition that the

and hence severely damps the solution. We

solution of equation (8.8) is zero at infinity, giving

C = n_i_La ; (8.10)
where MU= 0,1,2,..... Then from (8.9)

ha+%at¢ (en+ )b . an

Now from (7.12) and (7.13)

o= o(B-m) - Kt + O(K) (5.12)

o = 4 UMM+ E)BE-m)+ OK) . 310

To satisfy (8.3), we put
P:mt(%-‘- E) ; (8.14)

where é: is a small positive quantity. From (8.12)
and (8.13) we find that
Lo 2ak le (8.15)

and

oc|~+4-_()_M(M +a)m IQ't (8.16)

On substituting (8.15) and (8.16) into (8.11) we arrive at

an equation for &

aag_e = (one b — 4P EE (S ean

The dominant term on the right-hand side is (2r14-|)t , SO

that
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€= %—(I’\.-i— l‘a) (8.18)

giving, finally,

B = mi%(t+n+-,'d—) (8.19)

to order h,.

This is almost the result obtained by de Felice,
despite an error in his expression for the eigenvalue E: .
The result (8.19) is seen to be consistent with the

previous assumptions (8.2) and (8.3).

(ii) ,UM large

If the parameter rAPJ]is large then fLCL will also be
large since O. is close to i\4 . The procedure is very
similar to thaﬁ in (i) above and involves only the
replacement of t by either fLCl or rLrV1 . The result, to

order k, , 1s
[3 = mi%—(er+h+’g) (8.20)

We note that as k, decreases (Q;%>FV1), the expressions
for [3 tend to [32 M . From (7.11), we see that this is
equivalent to the result (6.6) which was obtained in the

extreme Kerr black hole case, where A = r»q_

9. Discussion

The success of the Liouville-Green method when used to
solve the radial equation for the massive scalar meson
field (Rowan and Stephenson 1976 a,b, Rowan, 1977, see also
Chapters 5 and 6 of this thesis) depends'on the appearance
of a large parameter in the differential equation. This was

due to the non-~zero rest-mass of the T| -meson., When
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considering the Klein-Gordon equation in a Kerr-Newman
background space, solutions of the radial equation over

the whole range are known only in special cases (Rowan,
1977); the equation may no longer contain a large parameter
and in general will have four turning points. Although in
principle it would be possible to match solutions so as to
cover the whole range, the complexity is prohibitive.
Information about the solutions in regions of interest can

nevertheless be obtained, as in this chapter,
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CHAPTER 3

NON-LINEAR WAVE EQUATIONS IN

CURVED BACKGROUND SPACES

1. Introduction

In Chapter 2, we were concerned with the Klein-Gordon
scalar wave equation in curved background spaces, the
solutions of which were related to the infall of baryons
into black holes. In this chapter, we consider whether
it is possible to have soliton-like solutions of the non-
linear Klein-Gordon equation containing sélf-interaction
terms,

The origin of this consideration is the work of Derrick
(1964) who has shown that for a wide class of non-linear
wave equations, there exist no stable time-independent
solutions in two or more space dimensions, other than
constant solutions. This result was established only in
Minkowski space and is not applicable to}the one-
dimensional case where stable, non-constant solutions have
been obtained (Enz, 1963)., Accordingly, iﬁ the space
exterior to a non-rotating black hole, we investigate the
spherically symmetric case where the wavefunction depends
only on the radial coordinate. We shall examine the non-
linear Klein-Gordon equation in both infinite and finite
background spaces in an attempt to generalise the results

of Derrick,
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2, Minkowski space

We begin by briefly reviewing the method and results of
Derrick (1964) who, in Minkowski space, considers the non-

linear equation
ata - Ve = /@) o (2.1)

derivable from the variational principle

Sf - (v@)a - 10(@) dr}f_:dt =0 . (2.2)

Here is the scalar field in one time and [l space
dimensions, where \=1,2 or 3, and primes denote
differentiation with respect to EE . For time—

independent solutions, (2.2) can be written

SE=0 (2.3)

where

E = f{(V@)ﬁ + 1[’(@)} C'n”f_: . (2.4)

A necessary condition for the solution g@ to be stable

SEE > 0 (2.5)

for all possible variations of the wavefunction. It is

is

sufficient therefore to find a particular variation of

EE which violates (2.5) in order to prove instability.

Derrick proceeded by defining

@x(ﬂ = @(OCT’) ; | (2..6)

where ©( is an arbitrary constant and writing

E=1,+1,, (2.7)

where
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= f(v@)a c]nﬁ > O (2.8)

and

Ifﬂ@) Ir (5.9)
= j ((v8,) +£(8.)] = (2.10)

- oL, + oI, | (2.11)

Then

after changing the variable from T to oY | Hence

I L. = @-n)l, - nl, (2.12)

IE,
d_'a'
Now (2.3) and (2.5) 1mply that

(2" h.)I‘ = ﬂIa _ ‘ (2.14)

= (2- I'\X"r\)_—l_, +n(n+ I):I:2 - (2.13)

and
C-rn)I-r)I, +nln+0I, >0 . (2.15)
We now take -P(@) > O , so that Ia 20 from (2.9).
IT N = | , we see from (2.14) that Il = Ia and that

(2,15) is satisfied, If N=2 |, then from (2.14) I,=
and. so from (2.9) @ is a constant subject tO'F(@):O .
1t N=3 , then from (2.14)I|=Ia= O , since both L

and IE‘. are positive, and we again have ‘F(@)z

3. Reissner-Nordstrgm background space

We now consider the unbounded space exterior to a non-
rotating black hole of mass M and charge Q described

by the Reissner-Nordstr¢m metric
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e ___( 21[:4 Q* )c“; (l _ M g)-ldTa

T* T
—r2dp” - ?asinaed@a : (3.1)

We write (2.1) in covariant form as

m ) f—ab(Fa*m) @, e

arising from the variational principle
29D 00 4
Sj 8( o 'F(@)}J—_S dgc = 0, (3.3)

where is the determinant of the metric tensor 3°k .
Using (3.1) and taking @ to be a function of ¥~ only,

we obtain the radial equation

L f(rmamer @2 = 418). o

T2 dr
In this case, the variational principle (3.3) is equivalent

to

§E=0 (3.5)

where the energy E of the @ ~-field is given by

4‘7‘[/00{ (+2-2Mr + @)(j—?):— F@)ri} dr, (3.6

T

and where T, = M+ /Ma— Qa (Qag Ma)is the event

horizon of the black hole. Writing

1, = jco(”ra—a\"“ + Qa)(gg)e dr (3.7)

T+

E

and
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O

T, =j F(@)'t‘a dr | (3.8)

so that
E=4m(L+1.) (3.9)

we must require that I. and Ia be finite.

In the original preseﬂtation of this work (Radmore and
Stephenson, 1978), we proceeded by considering the
variation (2.6) as in the work of Derrick. However, as was
shown by Palmer (1979), this variation is not permissible
since the variation in gi is then non-zero at T =T, .
The following variation was proposed:

@w(f) =0 [o(_,('f‘—ﬁ.) + ﬁ] (3.10)
and we shall use (3,10) in this section, The variation is
such that @o{,(-fl):_@(ﬁ) and @%zl('f') = @(‘F’) . In

(3.6), we write

Mt @F = (ron)eT)  an
where T_ = M*-,/ ME—Q’O“ , and define

= Jemre- B i

gl

In (3.12), we change the variable of integration from Y~

to L where

X =oL(T="T4) + T, (3.13)
obtaining
= [ N
q;;‘ ) " ~ + —F'{;-—YZ_ JSE>OC
+ > |
+_P(§)[(oco—cﬂ)_l_.(4 A?f (3.14)
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Now replacing the dummy variable 22 by YT~ , we find

——H<—-—+—(3i)<-i>

T

(L—i—-P _..)-F(@ ]D dr. (3.15)

To determine the first variation, we differentiate

(3.15) with respect to ©{ , so that

o Lo 1 P )
T

| dC«
41 det.

0(,2'
T,
: __ Ta
i 4_“@-(’263 Tj;).F(@) -+ O;Z.Z‘F(@)% CH‘. (3.16)
From (3.5), we must have
(i[::& = 0 (3.17)
dO(, o= | |

and from (3.16), this gives

["[tr=x3 (] + H@rier-en)fir-g.cm

A further differentiation of (3.,16) leads to

sl [ e

+‘F(@ GT” —6TT++T‘ )id'r (3.19)

and using the result (3.18) to eliminate the integral in
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dd

2
(3.19) containing (d'T') , we arrive at a concise

expression for the second variation:

LS (HG) (3o d

&« = Ir—)ir=-1.) ar . .
Lk L?( (3= 5.

A necessary condition for stability is therefore

[To@r-mlr-n) dr 30,

while for (3.18) to be satisfied we must have

foo'F(é)T(gv"a’ﬂ) dr £ O . (3.22)

We note here that the terms (3’1“-'\']_)("('-—'{;) in (3.21) and
T(3r- ?.‘Q_) in (3.22) are both positive since T > 7Y .
We now see that if ‘F(@)?O everywhere, so that the
energy density has the property of being everywhere
positivé, then the only solution, from (3.22), is @2 C s
a constant, subject to -P(C)——- O . Furthermore if -F(@)éo

everywhere, then the stability condition (3.21) is only

satisfied by «F(@):O Hence if ‘P(@) has constant sign,

then the only solutions are the vacuum states given by
‘F(@)= O . If no restriction is made on the sign of F(@) ,

then no immediate conclusion can be reached.

4, Special cases of ‘P(@)

We now examine two special cases of 'F(@) for which

(3.2) becomes

(OF+pE)3 +28° = 0 o

where ?\ is positive.

2
With the positive sign of the /U. term in (4.1), we
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have from (3.2)
I{_‘ /u@-*-“@ (4.2)

so that

f‘(@) = /f@a +- %@4 . (4.3)

The constant of integration in (4.3) has been taken to be
zero in order that the energy integral (3.6) be finite,
the vacuum solution §§==() having zero energy. Since
'F(EE) in (4.3) is everywhere positive, we have that the
only solution is @I O , using the result of section 3.

With the negative sign of the [Aa term in (4.1), (3.2)

2f (@ = - pf8 + 2,

so that

gives

PE) = 2(F-M5)

which is the form of current interest in gauge theories.
The constant of integration is chosen so that the vacuum

solutions @i_"' /%1(“ have zero energy. From (4.5), w
again have the result that {-\(@ is everywhere positive,

and the only solutions are jf/é?_..
A

5. Schwarzschild-de Sitter background space

As an example of a finite background space, consider
the Schwarzschild metric generalised to a non-vanishing

cosmological constant /\)O (Lake, 1979)

ds? = h(f)dta h()AT — - Tsanaedgp (5.1)
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where

htr) = | - %Eﬂ — %1‘3 . (5.2)

From (3.2), the radial equation in this case becomes

'ai_l(fz ZMr— dr} a.[.‘() (5.3)

Horizons occur where l’\(‘f‘)'—‘-O and putting dbé =0 gives

the position of the maximum of I’\(’r) as

L
— +~ — [3M)® (5.4)

= (/\) ,

and l
he = 1= (AMEA)® G

For T>0 , we will have two zeros of h() , Y=Y}, and
T="Te, T, <T; KT, provided htG)> O , which from

(5.5) is equivalent to the condition

|
N\ < I (5.6)
We shall assume that (5.6) 1s satisfied so that the radial
coordinate Y has bounds Yy £ 7" T, and proceed as in

section 3.

The energy E of the @ -field is given by

Te

e = an {earie- 4@+ 4@,

N

and we define
Te

£z 4 f -{(fa—ZMr—%r"f)(C‘%“‘):F@m)fa}df, (5.8)

Al
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where
@%(T) = @["‘“Jr (e - 1)6(1‘)] : (5.9)

In (5.9), €() is a bounded, differentiable function
satisfying é(ﬂ):-'E(TE): O . This ensures that the
variation in @ at Y, and T¢ is zero. Without loss of
generality we take E(T)>0 for < TL Ty

We now change the variable of integration in (5.8) from

T to R where
R = v+ (- 1)err), (5.10)

so that (5.8) becomes

f o[ {m-ae (@) E

+{3(@r2§-’3—} R (5.1

From (5.10)

dR _ _ 1) dem | .
d_r—“"(oc I)F (5.12)

and substituting (5.12) into (5.11), we obtain
A1

Eu - [ v ot 0 (8]

Al

+1Q@( - J ))}‘JR- (5.13)

|+ [x- l]f}

In the integrand of (5.13), T is defined implicitly
as a function of & and R by (5.10). As before, we wish’

to differentiate (5.13) with respect to o/ and then put
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o = l . We must therefore take account of the fact that

Y is a function of O, . From (5.10), we have

or de) 3\" '
= =— + &)+ (et — | (5.14)
giving
or €(T)
- : (5.15)
d - 1) dem)
o [l + (cc-1) — ]
In particular, since T= R when oo = |,
oT
\"ALR - — (5.16)
" €R) .

o4 = |
Now differentiating (5.13) with respect to O( , we

find

Te | d%er)
| dEe _— 2_ A Ve €M) T
A7 doc f [H({ e 3T>(dx~ [|+(o¢ )S_e;)])

T

—€r)(2r-2M- 4'/\ )}(i%)a WE@{[, j(:_e S%e;)]a

2
+[|+(x—l)%ﬂ_€r®]2( def) [|+(o(.—|)d€f{“)]>m JR,

(5.17)

so that

1 dbe
477 dee |,

| (B4

A3t

_e(ar -2M - ———T‘ } —£(3) {Zx*e + Tajf‘ H dr |

(5.18)
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where the dummy variable PQ has been replaced by T in

(5.18), A further differentiation of (5.17) leads to

g%%LI = f Q[(ﬁj—%)a {ea(l—a/\fa)—e jifz (Ta—aMr_%#)}

S

(5.19).
Again, R has been replaced by T and € is understood
to be 61==€€r).
From (5.18), the variational principle gE: Q is

equivalent to

J Q[(%)?-{E (or —2M - He3) (02— 2Mr- %mig*}

Ty

+C1/(1‘)‘F(§)J d¢ = O, (5.20)

where

CL(..r) — a,f.e + .r?._j% , (5.21)

while the stability condition SZETZ'O is equivalent to

A A poye dE
4

J {(a—r‘){ee("a’\fa)"(fa'aw"?) dre

Te

-+ P(T)]D(é)] dr > 0 , (5.22)

wherc
E(T) €* + 4re je + .f-a(_di) + r?-ecje

(5.23)



- 44 -

We now wish to consider the case of 'F(@))O as in

sections 3 and 4. For any function € satisfying

G(Tb)= 6(’Q)=O and E(T)>O for YL T (Y., we have
f‘sz—f_ >0 , /ucz—j% < 0, (5.29)

r= Tb '\"='f‘c
or either or both of /hlb , rLC may be zero, Assuming first

that (5.24) is satisfied, then from (5.21) we have

Cl,(ﬂ)> o , ﬂ/(ﬂ) < 0. (5.25)
If E(‘ﬂ,) =/U»[,= O , then as T->T+0, we put
€ ~ /l\(ﬂr—T'b)Il ) (5.26)

where /A\>O and h>,2 . Substituting T=TI,+S, where
O<8<<l , and (5.26) into (5.21) gives

(1/(1-) ~ Aﬂa}{_sk—l > 0O . (5.27)
Similarly, if E(T;)Z flﬁo, then as Y => 1.~ 0, we put
¢ ~ 8(n-T) (5.2

where B>0 and U» 2 . Substituting T=1~A , where

0 < AL |, and (5.28) into (5.21) gives

q,0) ~ =B AT < 0 (5.29)
In all cases therefore, C]/(’T‘) changes sign in the

interval | <T < T. Hence, from (5.20), we can draw no
conclusions as to the existence of non-constant solutions
since at least one term in the integrand changes sign.
Furthermore, for any & P(‘r) contains positive terms
g.nd consequently, the right-hand side of (5.22) contains
at least one positive term. We can infer, therefore, no

violation of the stability condition (5.22).
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6. Discussion

The method presented in this chapter is a convenient
way of writing an identity involving Qi , once the
differential equation for ﬂé has been specified. For
consider the Reissner-Nordstrgm case where the differential

equation is

4 [tr—g)r- )92 | = £F(@) .

=

We derived the expression

J = oo('r—n_)a -‘;@a dr

+
o0

+ ?(@)'{-(3‘""2'{1“1‘= O . (6.2)

o

To see that :I- is identically zero if (6.1) is satisfied

we first integrate the second term in (6.2) by parts,

— (f"—raﬁ){I(@)j% dr . (6.3)

The integrated term in (6.3) is zero at YT=7Y3 and also at
O by the requirement that the energy integral (3.6) is
/
finite. Using (6.1), we eliminate {1(§§) from (6.3) so

that
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The second term in (6.4) may be expanded into two terms by

partially carrying out the differentiation, and we find

oot

i

ja@-- (48)e—ord

s

(r—"y) iﬁ § dr. 6.5)

The first and second terms in (6.5) are now combined and

the third rewritten to give

Y ar_[ gl e

T T
(6.6)

Integrating the last term in (6.6) by parts, we are left

- fe-afe (] e

s

and this is zero, from the finiteness of the energy

with

integral (3.6).
Similarly in the Schwarzschild-de Sitter case the

differential equation is
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Ld - oMo L)< LD, s

while performing the first variation gave, in (5.20),

sz (%{e (2 = 2M = ) (e Mo B E e

+K = 0 , (6.9)

where

Te
= ere + T -dé) dr . '
[ 0(3)/( de (6.10)
rb .
Integrating (6.10) by parts and using E(ﬂ) E(‘Q)‘:O gives

K = _[ TZEP d@ 31“ (6.11)

b
and substltutlng for {lqgi) in (6.11) from (6.8), we find

j ae‘@CJ { - 2Mr - )C@jr. (6.12)

Performing the differentiation in (6.12),

_ Qe(rz— PMr - Dy )j

and integrating the second term by parts gives

efer e - Hhe( o

-

+[Q%€F(ra—2l\’lr—%—f+) (%)adr. (6.14)

b

@, o
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On substituting (6.14) into (6.9), we see that L_ is
identically zero, given that @ satisfies (6.8).°

The above manipulation indicates the difficulty one
would have in deriving the identities (6.2) and (6.9) from
the equations (6.1) and (6.8) without recourse to a

variational principle,.

7. Conclusions

We have seen in this chapter that an extension of the
method of Derrick gives a convenient way of writing
identities involving the solutions EE of a class of non-
linear Klein-Gordon equation, and of expressing the
stability condition on gg . For a spherically symmetric
wavefunction in the infinite region exterior to a non-
rotating black hole, the only solutions in certain cases
of physical interest are the vacuum solutions. However,
for a particular spatially finite background space, we can
find nothing to preclude the existence of non-constant,
stable, finite energy solutions. For other topologies,
there may well exist non-trivial, stable solutions (Avis

and Isham, 1978).
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CHAPTER 4

MAGNETIC SUPPORT AGAINST

GRAVITATIONAL COLLAPSE

1. Introduction

In a recent paper (Ardavan and Partovi, 1977), a static,
axisymmetric interior solution of the Einstein-Maxwell
equations was found. The solution describes the interior
of an object whose mass exceeds the upper limit of the
mass of a neﬁtron star (see Oppenheimer and Volkoff, 1939,
and Oppenheimer and Snyder, 1939), but is supported
against total gravitational collapse to a black hole byA
internal magnetic stresses., In such an object, degeneracy
pressure alone could not support collapse, and the authors
therefore consider the case of negligible pressure, with
the gravitational attraction balancing the magnetic forces.

In this chapter, we examine the solution from a physical
viewpoint by applying the so-called strong energy condition
(see Hawking and Ellis, 1973) to the energy-momentum
tensor. It is found that the condition reduces to the
requirement that the density of matter should be positive,
and is therefore satisfied by the interior solution. Other

aspects of the problem are briefly discussed.

2. The interior solution

We begin by briefly reviewing the derivation of the
interior solution found by Ardavan and Partovi (1977).

In suitably chosen units (C}::C,= | ), the Einstein-



- 50 -

Maxwell equations with negligible pressure and non-zero

matter density ?

where the energy-momentum tensor 17;» is given by

wa =4_|——TT(F;1?‘ F’Av +Z{_‘8F»Fgc.|:ac) + S) u[_*u» ) (2.

and

Fpo = Aosp= Ay,
The authors consider the particular forms of the
electromagnetic potential and four-velocity

Ap = (0,0,0,Alnz), W= (9.2,0,0,0) (2

where 8“’ is the coefficient of dt in the metric,

which is taken to be

Je? = e?sdt _ a(v ﬁ)(dfa_'_ dza) ——Tze—a?\cl?a . (2.

In (2.5), T , Z and ?D are cylindrical coordinates
and A and V are functions of T and Z&
The field equation from (2.1) which we shall need in

this chapter is

VA = |VA| + 4me et - (a.

Also derivable from (2,1) are the equations

A, (VA - 2A, + 2VA.VA)

a(»—aa)

+ 4, 12 pe o) (2.
A(TA - ZA, +2Va VA )
F4mrtee® =0, G

R}m——la'ame = —8TTTv ) (2.

AL, - (2.

1)

2)

3)

.4)

5)

6)

7)

8)
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where subscripts denote partial differentiation. Now (2.7)

and (2.8) possess a non-trivial solution only if
AR —AA, = 0, (2.9)

so that A must be a function of A . The authors make

the particular choice

[ - :
A= e (2.10)

where prime denotes differentiation with respect to A ,

and eliminating ? from (2.6) and (2.7), we obtain

(I+ T8)VA —%Af =0 . (2.11)

2
Writing A= UF)V(Z), with a separation constant l?‘ , we

find
'k
A= % qkef Z uk(f) , (2.12)

for IQ%O, where the (@) are constants and uk@r) satisfies

dﬂ_("‘fe) du LR, 2,13
dr2  r(I+r3)dr Ru =0 . o

We note here that in the case kﬁ= 0 , (2.13) has the

solution

I

U (r) on (1 + 12) ‘*‘/3 s (2.14)

while

@ - Yz + 5 (219

where O , /3 , BJ and S} are arbitrary constants, The

particular solution used by the authors was

Ale,z) = uy(r)es (kz) . (2.16)
From (2.6) and (2.10), the mass density g can be written

2(A-v)

§ = G (VA-Rwal). e
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With A given by (2.16), the density was found to be
positive at the centre and falling to zero at a surface

defined by

VEE\ = }l—i 'VA la. ' (2.18)

This surface defines the boundary of the collapsed object.

The exterior field equations can be written

2A 2
V- %]VAI =0 (2.19)

d (eahAr) L9 (QTAZ) =0 (2.20)

ol 9=\ T

A solutibn of (2.19) and (2.20) was not considered by the

and

authors.

3. The energy-momentum tensor

Since the metric (2.5) is diagonal, the contravariant

y
components 8}u are given by

00 —-2A

g = €

8” - 82?. — 88(7\—»)

? , (3.1)

~

while from (2,3) and (2.4), the only non-zero components

of F,.n) are |
o= R=A

:AE

(3.2)

B_”

Nl
|

STI

In order to calculate Fp from (2.2), we first note that,
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from (2.4), the term Sju!uuu is non-zero only if /u=>)=O,
in which case

§>u02 = ©90 = ?QZ?‘ - (3.3)

Next, we calculate the scalar

2 A A
F = F’;‘GF R — SOLSO—PFOCPFHQ‘ ) (3.4)
Using (3.1), we find '

DI
_ 2 (e (p° +A ) | (3.5)

Ta
QOccurring in (2.2) is the tensor
A

Cov = Fal'y - (3.6)
Since the metric is diagonal, '

oA F_’ _ Z 7\H

= = (3.7)
Cr:n Ff'L?‘ oy a ,‘0\ 7\» R

From (3.1) and (3.2), the non-zero elements of Clu» are
_ 33
Cy = J FI3 Fal rl A

eE%

Co=GC, = 833 F|3F32_ =z A A
Co= §°Rafi= oA
Cy = 8“ F3I |:l3 + 8&3 Ea l:a3= ea(a—n)(Ai-i-Ai)

From (2.2), (3.3), (3.5) and (3.8), the non-zero components

of T,w are
Too=4—_lﬁ{'alr—2€a(sa-v)(Ai+Ai) I 4-TI'S>€%§

llz-Taa: 8TWZ (/A\ A )

r.(s.s)

r (3.9a)
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B B eaa
_‘—I?_—TZI Ao

l (A-») 2
T=fe® (R R)

f * (3.9b)

Using (2.10) to eliminate A and (2.6) to eliminate 9

from (3.9), we obtain

To= 22677V - g + 2]

-

r - (3.10)

Now
v
W—H = 3”“3W37_P (3.11)
and using the contravariant components 8/1 given by (3.1)

we finally obtain

—l—oo=4__|_ﬁ —av{vz Erz(ﬂ +?\)}
4—(?\ )))( —-A )

~

8nfa :
_ - (3.12)
"l" TZI 4—1-[ 4‘(?‘ »)AT.?\_E
T33 87_|H_+ e(q-ﬁ ZD)(?\r ?\;) ]

4, Energy conditions

The strong energy condition as stated by Hawking and

Ellis (1973) is that at any space-time point P ,
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Too> lfahl , (4.1)

for each Q. and b , Where T-)uv represents the
components of the energy-momentum tensor referred to a
local orthonormal basis at P ‘. As pfesented by Hawking
and Ellis (1973), this condition holds for all known
physical situations and is believed to hold in general. It
is equivalent to the demand of positive energy and that
Sb =TabVCL is a timelike vector for any timelike VQ_ .

Since the metric is diagonal, then at any point P s
we already have an orthogonal set of axes., Defining a

tetrad Q/u. by

wa = Q/.LQ‘QDQ. (4.2)

and

W™ _E’__,Hq'clcac‘LL (4.3)

2
then the metric is formed by contraction with respect to
the Minkowski metric l’\al, ,

ds2 = w“wqu;, = 9w deldx” (e

The energy-momentum tensor transforms according to

T = g, T, (4.5

From (4.4) for a diagonal metric, we have that

W’ = 9 dx® , W' = -3, d=c! , |
(4.6)
2 _ 3 _ 3
W= 49 dac® y W= J_Baa dac v
so that, from (4.3),
0 l )
€s =J3_oo y & =079
. (4.7)

Q?_a = r}_a?_a ) §33= r’_333 )
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Using the transformation (4.5), we find

-

1= Soonzq‘_IF ™ "’{v A== (e +2 )}
T = 19T = 1T ==& 7 ar -2
T9=1T1 =1/3.:9 T'ZI = =7

T2 = 9T = gz €70+ 22)

-/

Now since

Ae+ Ae > (A7 -2 @

and

A+ As > 2l (4.

then, from (4.8),

I-T—aa‘ > I—T-ul _ iTaa‘ — (4,
H"-‘-sai S I—T-xal . (4

and

Condition (4.1) therefore reduces to

T > (T®| . (1.

Using the components calculated in (4.8), (4.13) can be

written

4

From (2.17), (4.14) is simply the condition §>>-O ,
and the strong energy condition (4.1) is therefore
satisfied by the particular interior solution found by

Ardavan and Partovi (1977).

i_ea(ﬂ-v){vzk__()\ + )} (4.

F(4.8)

9)

10)

11)

12)

13)

14)
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5. Discussion

The preceding analysis was based on a special solution
of the field equations. For example, if a general
relationship between /A\ and ?\ is taken, in place of
(2.10), of the form

A= et
then in place of (2.11), we would have the non-linear

equation
[
(l + g VA — %Ar + FEIV;\|2= O (5.2)

which would no longer be amenable to solution by
separation of variableé. In the absence of an exterior
solution satisfying equations (2.19) and (2.20), it is not
certain that the solution given by (2.10) and (2.16) could
be matched at the boundary of the collapsed object. Indeed,
if an infinite sum of the form (2.12) is used, it is no
longer clear that there would be a solution of (2.18)
defining the boundary. The exterior fiéld equations have
no simplifying feature of the form (5.1) and an analysis

is much more difficult (Young and Bentley, 1975).
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CHAPTER 5

THE SCHRODINGER EQUATION WITH AN

ANHARMONIC OSCILLATOR POTENTIAL

1. Introduction

In a recent paper (Stephenson, 1977), the Liouville-
Green technique (see Appendix 1) was used to obtain the
eigenvalues of the Schrddinger equation with a radial
Gaussian potential. Recent work on the anharmonic
oscillator (Gillespie, 1976, Fung et al, 1978, Banerjee et
al,1978) has led to computation and comparison of the
eigenvalues of the Schr&dinger equation. In view of the
fact that the Liouville-Green technique and other so-
called semi-classical methods are not as widély applied as
they might be (Berry and Mount, 1972), and of the
importance of the anharmonic oscillator potential in
nuclear structure, quantum chemistry and quark confinement,
- we now use the same method for this potential. The
eigenvalues obtained are compared with those found by

direct means.

2, The basic transformation

Setting 2h1==Ti= l, the one-dimensional Schrddinger
2 4-
equation with an anharmonic oscillator potential\ﬁ=36+ﬂx
is
42
¥ _ (—E + x* + ac"’)LP : (2.1)

doc?

where E: is the energy, and the boundary conditions are
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K’J(OO)——- LF(-'-OO)= O . We make the Liouville-Green

transformation (Olver, 1974)

x=x(E) ,Yee)= (E’)-%G(g) , (2.2)

where primes denote differentiation with respect to T ,

so that (2.1) becomes

where

Ple)= xt+ x2- E (2.4)

and

] e
ANOE a%s - 43_:2,4 : (2.5)

When E is positive, P(?C) has two zeros 3c=iaco where
l,
acc,=2—é—[—l+(|+“rE)LéHa , (2.6)

these being the classical turning points.

The Liouville-Green technigque consists in choosing ECI)
so that ZS(dﬂ is a small bounded function and (2.3), with
ZCSCIO neglected, is soluble in terms of known functions.
Two Ways of achieving thig will be presented. First, since
(2.1) has two turning points, we may try to choose E(DC)
so that, after neglecting Zﬁﬁ@n) , (2.3) becomes the
standard two—furning—point equation, namely the Weber

equation

2

dG | 2

J—E?‘= '4TE _}G.) (2.7)
the solutions of which are the parabolic cylinder functions

where ‘A is a parameter. Alternatively, since IQhﬂ depends

only on 3:2 , the wavefunctions qJ@C) will be either even
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or odd functions and we can consider the problem for XX2>0,
applying the additional boundary condition that either
\F(O)=O or ‘.{J’(O)= Q. In this case, since P(I) has only
one zero for 3C>/O , We may try to choose E(::c) so that

(2.3) becomes the Airy equation

j—ag—; = (E-a)G, (2.8)

after neglecting Z\(x) , where O_ is a parameter to be
determined from the boundary conditions.

Both approaches lead to approximate eigenvalues and

eigenfunctions (Olver, 1974).

3. The Weber equation method

With the choice

2( | w2
E! (Z——E — }) = Plx) (3.1)
(2.3) becomes the Weber equation (2.7), if we neglect

ZCS&IO . Assuming for the moment that this is justified, we

find by integration of (3.1) that for X 2 X,

Le(e-aaft - eatnlE+ (8- 4—%5@'

+ealn(2fd) = f Jt (3.2)

while between the turning points

é—g(% —Ea)l/z - axsm-'(-a%> = a[;{_
(3.3)

The constants of integration have been chosen so that

E_—_ O when X=0 and g=i— 2,/7\— correspond to 2C= T,
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Putting X = Xy in (3.3) we obtain
/a

ATT = ZJ O(E— F-t%) db . (3.4)

The boundary conditions kV(OO)= \{J(—OO) = OQ correspond to
G—(OO)= G(“OO)=O and bounded solutions of the Weber equation

satisfying these conditions exist only if

_ [
A= n+ = (3.5)

where N=0,1,2,..... Substituting (3.5) into (3.4) gives

=0 ’
2 4-\2
-Tal(n+%)=f E-F-67)d, e
o _
which is the Bohr-Sommerfeld quantisation formula, on

noticing that
Y

o x, - "
/ (E—ta"tdr)edt = ‘Ia'f (E‘ta—tar) & . @

(] =,
Table 1.
N Eigenvalue Accurate .Percentage
Eigenvalue error

0 1.2508 1.3924 10.17

1 4.5926 4,6488 l1.21

2 8.6130 8.6550 0.49

3 13.1231 13.1568 0.26

4 18.0290 18.0576 0.16

5 23,2725 23.2974 0.11

6 28.8130 28.8353 0.077

7 34.6206 34.6408 0.058

8 40.6717 40.6904 0.046

9 46,9477 46.9650 0.037
10 53.4329 53.4491 0.03
20 127.6076 127.6178 0.008
30 214.7721 214,7797 0.0035
40 311.8254 311.8315 0.002
50 417.,0512 417.0563 0.0012
100 1035.5422 1035.5442 0.0002
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Using Simpson's rule and Newton iteration, the
eigenvalues have been computed from (3.6) and in Table 1
are compared with accurate values calculated by Banerjee
et al (1978) using scaled bases. The two sets of values
are in close agreement, the accuracy increasing with
increasing n .

We now examine the neglected term A(ZI:) . From (2.4) and
(3.1) we have . ,/?.

El — (—E + " + X )

G2 - 2)

from which E" and Em can be calculated in terms of X

’ (3.8)

and E and, using (2.5),A(x) can be written out

explicitly sas

L (3E+2))
A) ST AT

2E +(12E + 3)x® + 6t + B
_(74%52—%>L 4_(_Ei xa+xx4-)3 ]'(3°9)

At the turning points, although both terms in (3.9)
diverge, we can show that A(x) tends to a finite limit,
as follows:
From (3.8) we have
Eta o (E+ x4 ")
aE - 7)

Now X =X, corresponds to E = Eﬁ , so that both top

(3.10)

and bottom of the right-hand side of (3.10) tend to zero
as X —> Xy, We therefore use L'H’dpital's' rule to evaluate

the limit, giving



- 63 -

bm B = i LA

——

X — X, T —> Ko j%EEEI

(3.11)

so that

4
|_, = Lim El = (ex‘j—;—é}-ﬁ) : (3.12)

Differentiating (3.10) leads to

e (4= + 8> — £5")
. 2(F-7)

after elimination of the term (—E’f‘ x*+ 1124') . By (3.12),

? (3,13)

both top and bottom in (3.13) tend to zero as X —> C,.

Writing

el
L, = Lim § (3.14)

x> X,
and taking the 1imit in (3.13) using L'H8pital's rule gives

, 2 _ 4'__ 2
aL|L2 — (4“*‘ 84‘130 ELL]X Gﬁ'—l L—a) , (3.15)
l

so that

ENCERLE TN
2

|OLT,]_?$- (3.16)

By a further differentiation of (3.13) and use of

L'Hopital's rule, a lengthy but straightforward calculation

gives
2 3
et (4824l — 9L L)
L=l ® [4L5 % (210
Since Lﬂ , l_a and 1_3 are non-zero and finite, then by

(2.5), /=) tends to a finite 1limit given by

Lim A) = L _3_|—aa . (3.18)
AN et 40
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Figure 1,

A(CXZ) against XC , for N=0,l,2 .
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Figure 2.

A (¢ ) against ¢

y, for n=95,10 .
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The values of A(x) have been computed by first
finding E for a given 2C from (3.2) or (3.3) and then
substituting in (3.9), with the value at the turning point
given by (3.18). The results are shown in Figures 1 and 2
for selected values of . and indicate that A(:’C) attains
its absolute maximum at 2X=( , this value decreasing with
increasing N , and that A(x') is a small, bounded,

slowly varying function.

4, The Airy equation method

Here we consider X > O, and with the choice

1z _
S (E‘ Q«) = P(ac) ) (4,1)
(2.3) becomes the Airy equation (2.8) on neglecting A(x—) .

We then find by integration of (4.1) that for L 3> 2Cp,

%(E—Q)% - jxip(t)}va &t (4.2)

>0
the constant of integration being chosen so that 2C = X,

corresponds to E =Q& . For 0 ¢ £ X,, we have
- |

2o goeh- [oufe, s

where XX =0 corresponds to E = 0 . Substituting C = 2,

into (4.3), we obtain

%o y
g - [(E-r-tfu . s

The required solution of (2.8) is the Airy function
AL(E-Q.) , Since this satisfies the boundary condition
G("O):O . We can now find the parameter Q from the
additional condition that either GH0)=0 or G-(0)= O ,

corresponding to even and odd wavefunctions respectively,
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Since this condition implies that either /A\[I(—O.) =0 or
AL(_Q)= O . Hence —Q. is the position of either a
turning point or a zero of the Airy function AL . The
values of O. obtained from Abramowitz and Stegun (1964,
p.478) were used to compute the eigenvalues using (4.4).
The results are shown in Table 2 and compare favourably

with accurate values,

Table 2.

n Q. from Q. from Eigenvalue Accurate
AC/(—Q)=O AC(—Q)‘—'O Eigenvalue

0 1.01879 1.0706 1.3924
1 2.33811 4.6573 4.6488
2 3.24820 8.5471 8.6550
3 4.08795 13.1605 13.1568
4 4.82010 17.9849 18.0576
5 5.52056 23.3000 23,2974
6 6.16331 28,7788 28.8353
7 6.78671 34,6428 34,6408
8 7.37218 40.6433 40.6904
9 7.94413 46.9666 46.9650
10 8.48849 53,4084 53,4491
11 9.02265 60.1310 60.1295
12 9.53545 66.9589 66.9950
13 10.04017 74,0371 74,0359
14 10.52766 81.2108 81,2435
15 11.00852 88.6115 88,6103
16 11.47506 96.0998 96.1296
17 11.93602 103.7966 103.7953
18 12,38479 111,5743 111,6018
19 12.82878 119.5454 119.5442

The connection between (3,.,6) and (4.4) can be seen by

noting that the leading order term in the asymptotic

expansion of QU
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3 E

|
Q ~{¢ﬂ(n+§)} (4.5)
where N=0,1,2,....(see Abramowitz and Stegun, 1964,

p.450).

The neglected term A(I:) in this case is given by

_ 5 (e [2E+(RE+3)oc® + Gacte 8°)
AN~ vy Gl R s s R
(4.6)

and we can again show that A(I) tends to a finite limit
at the turning point 2C= X,. By the process of
differentiation and L'H8pital's rule used in section 3, we

obtain from (4.1)

K= i £ = (200 +4c ¢ \ (4.7)
2
i Es CEEE

and

K= Lim §' = 7 (axo-m) (1.9)

x— 2,
Finally, from (2.5),
x[i\,mxo A(x) = 28K5(l6x° |5K,K:)- (4.10)
The results of computing /MX) for selected values of
Q. are shown in Figures 3 and 4. Curves are labelled by

the corresponding quantum number [ (see Table 2).

5. Discussion

The method presented here depends on the initial choice

of E(:I:) . Consider for example the Weber equation method.

The exact relation between E and X is given by
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~ Qe

Figure 3,

A(OC) against X , for selected values
of @ (N=0,1).
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— 00} 4

Figure 4, A(UC) against X ,
of Q (n=2,3,4~).

for selected values
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ne

) i |
(—E ?\) z.(;z = %3“%%’2’ (5.1)

and on neglecting the right-hand side, we obtain (3.1).

The next approximation would be

(":—-EZ—A) - %35_2) = A(:’C(g)) ; (5.2)

from which we see that

[F[ P e = [t Do) s

o}

where 56 is given by

}\_4!_:2:- + A(I:(Eo)) = 0. (5.4)

Numerical calculations of (3.18) indicate that, except for
the case liﬁlO , [ktn) is negative at the turning point
XL =X, (corresponding to E= ZJ_?\_ ), so that E°< Z,J_A— o
Hence an upper bound for the right-hand side of (5.3) is
| 2[7\_(3 + A(O))I/a o (5.5)

which from (5.3) gives an upper bound for the eigenvalues
in this approximation. For upper and lower bounds derived
using the J.W.K.B. approximation, see Birx and Houk, 1977,

The approximate eigenfunctions follow from (2.7) and
the transformation (2.2). These solutions have been

obtained from the equation

%E—G; b_g -A+ Alx E))} (5.6)

after neglecting ZSﬁxig)). At the turning point E = EJ?; ,

ZS(QC(E)) is non-zero and therefore dominates over

E/ . However, near E = aﬁ , we put
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EH = £-2/2 , (5.7)

where & << 1 is a small parameter and LJ is a variable

of order I . Substituting (5.7) into (5.6) gives

2
j?% = EZA(I(63+2J7))+€35'/A_+‘{~_6432 G. (5.8
Now A(x(g)) tends to a finite limit as E% a,jﬁ , SO

that an expansion of A(x(ey'l‘aﬁ)) in powers of €
contains no inverse powers of e . Taking E close
enough to 2.[7\_ so that Eﬁ << | , we see that,
although the term involving A(x(g)) in (5.8) is of a lower
order in & than the remaining terms on the right-hand
side, the dominant term is the second derivative of G‘ N

Equation (5.8), correct to order S , is

[
%‘j% = O (5.9)
Hence, if we neglect A(JC(E)), the resulting equation is
still correct to order € near E= Eﬁ .

In Appendix 2, we use a modification of the analysis o:t’A
Titchmarsh (1961) to show that for large E , the error
in the approximate eigenfunctions obtained by the Airy
equation method is O(E‘Va) . In this case, E is known
explicitly as a function of X from (4.2) and (4.3),
whereas in the Weber equation case, only an implicit
relation is known from (3.2) and (3.3), making a similar
analysis much more difficult,.

A wide class of potentials can be treated in a similar

manner, using the methods presented in this chapter, for
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~|
2
example, the interaction of the type -Paca(l + 83(3 )

(Mitra, 1978, and Kaushal, 1979).
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CHAPTER 6

ELECTROMAGNETIC PROPAGATION IN

OPTICAL WAVEGUIDES

1. Introduction

In view of recent advances in the manufacture of fibre

optical waveguides and of their attractive properties,

much work has been carried out on electromagnetic

propagation in such fibresi(see Olshansky, 1979, hereafter

referred to as El] , and the references cited therein),.

The waveguide consists of a cladding region surrounding a

cylindrically symmetric core, with the refractive index of

the core greater than that of the cladding. Ideally the

cladding is of infinite thickness. The core of radius QL

will be taken to lie along the positive Eg-—axis, and the

configuration of refractive index in the core and cladding

will be referred to as the 'profile' of the waveguide,

Properties of propagation in the EE —-direction can be

derived from the solution of a single differential

equation, an eigenvalue problem for the propagation

constants,
step-index
first, the
and na in
thickness,
n > n,.
a constant

refractive

Two problems of current interest I:I] are the
profile and the parabolic index profile. In the
refractive index is taken to be r\| in the core
the cladding, assumed to be infinite in

where r\, and rla are constants satisfying

In the second, the infinite cladding again has
refractive index I\, , but the core has a

index which decreases parabolically with radial
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coordinate from I\I at the centre to TTZ at the core-
cladding interface. Previous approaches to these problems
have had the disadvantage of resulting in transcendental
equations for the eigenvalues involving, for example,
Bessel functions., This is due to the matching condition of
solutions of the basic differential equation at the core-
cladding interface.

In this chapter, we derive approximate eigenvalues and
eigenfunctions using the Liouville-Green technique (see
Appendix 1) by replacing the index profiles of interest by
close approximations which are, however, continuous and
differentiable throughout the core and cladding. This

removes the need for matching at the interfé.ce°

2. The basic differential equation

From Maxwell's equations, we have the following wave
equations for the electric and magnetic field vectors _E__

and tj (see Born and Wolf, 1975):

/“—EgtE +V(E.Vine) = 0

( 5 (2.1)

/u +(VL e)x(VxH) = |

where fl is the magnetic permeability, assumed constant,
and E: is the dielectric permittivity of the medium., We
shall take 8, to be a function of position. Assuming time
dependence of the form

E(c.b) = Eo('f_‘)ea*’t

> (2,2)

He,6) = Hy et
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and putting
k=% , n(x) = pe (2.3)
then from (2.1)

V'E, + kntmE, + %V(Eo.'ﬁVn) =

re (2.4)

Iun_( Vn)x (Vx H,) = ,

The standard procedure now is to neglect the terms in

VeH, + kreeH, +

(2.4) containing §7rL . This is equivalent to assuming
that the variation of the dielectric permittivity is small
in distances of the order of the wavelength (see Sodha and
Ghatak, 1977). We shall discuss this assumption, in
connection with.the particular problems investigated, later
in this chapter; Neglecting the last terms of each of the
equations in (2.4), we can write (2.4) in ferms of a

single partial differential equation

VP + kel = o, (2.5)

where g?Cf) represents any one of the field components.
We shall be concerned with problems having cylindrical

symmetry, where TI? is a function of the radial

coordinate only. Expressing (2.5) in cylindrical polar

coordinates T , 6 and Z , and writing
SQ(’T"S)Z) = Llj(’(‘)ec[az cos (\)e +J) , (2.6)

where J is an arbitrary constant, /3 is the propagation
constant and ¥V =0,1,2,....., we obtain the scalar

equation
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%+'F£}-+(|§na(f)—/32—%>w =0. (2.7)

It is equation (2.7) that is so extensively treated in
the literature EI ] » and which we shall consider in this

chapter.

3. The step-index profile

2
In this case, N°(r) in (2.7) is given by

. > (o¢r<a)
n(’r) = > ) (3.1)
n, (r>a)
where n| and.ha are constants satisfying f1|:> r\a and
Q. is the radius of the core. In both the core and
cladding regions, equation (2.7) can be solved exactly in
terms of Bessel functions. Satisfying continuity
conditions at the core-cladding interface then gives the
transcendental eigenvalue equation for the problem (see
El j and Gloge, 1971,1975). A simpler equation for the
eigenvalues can be obtained by the Liouville-Green
technique (see Appendix 1), as follows:
. . . 2
We first replace the step-function behaviour of N (T)

in (3.1) by a continuous function

nfee) = nf -5 (n-ng)f |+ tank[NG‘-Q)] y o (3.2)

in order to apply the method more readily. As the
parameter {\J tends to infinity, the function t&hhﬂQGx'Qﬂ
approaches a step-function of value —| for T< @ ,

and value +| for T>Q , and so (3.2) approaches (3.1).

Substituting (3.2) together with the transformation
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+~=af , y = t—%‘Q(t) (3.3)

into equation (2.7), we obtain

jitgz{ﬂﬁ i)+ Ko )[Hm{m-:j]

_|_(U2EZ'4F) }R = 0, (3.4)

where X‘-’ NO.. Following Olshansky [ |_-_| and Gloge

(1971), we define the parameters

_ (nf-ng)
d = 2n?
Vi= 2dkn%? [ (3:%)
b _ (ﬁ?é—-hﬁwf)
" 2dken® J

Once r\ , rla and the core radius (. are specified, then
the parameters d and.\/ are fixed. The eigenvalue of
the problem is taken as b , which once found gives the
propagation constant f3 , from (3.5).

Rewriting (3.4), using (3.5), gives

{t@:{(b V4 Yiafe-1] + ¢ DR =0,

Applying to (3.6) the Liouville-Green transformation

b= 5E) , RE) = EG() | (3.7)

where dots indicate differentiation with respect to b s

we obtain
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=2

ie—g = ({(b—ya)vz—*_ () + A(b))G , (3.8)

where

P(t)=\{tank[x(t‘|)] + @%al/ﬁ-)v (3.9)

and
e Dna

—E—SE . 3.10
A(t)—zgg 4‘_? (3.10)

For a range of values of b , the function(b—~%)J34-P&)
in (3.8) will have two zeros, corresponding to two turning
points of equation (3.6). We then wish to transform
equation (3.8) into the standard two-turning-point equation,

namely the Weber equation
G
> _
& - @e-2), (0.1
where A is a parameter to be determined from the boundary
conditions. Now Stephenson (1977), when considering the

Schrddinger equation with a radial Gaussian potential, has

shown that the choice

éa(iga“ A) = (b‘ IE)V?'-F M) (3.12)

leads to a form of ZCS(t) in (3.10) which is divergent as

t'—é 0 . The correct transformation is

EE(ZIZEE* A) = (b——'a—)v2+ RE), (3.13)

Q(6) = P(t)‘*'z}?lt—a = '\?/fato.nk[x(t-l)l +'1t>—i ©(3.14)

This is equivalent to making the Langer correction (see

Langer, 1937) and is typical of problems which contain
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second order poles (see Rosenzweig and Kreiger, 1968). In
accordance with the Liouville~Green technique, in equation

(3.8) we neglect
F(6) = AL - g_—tla? : (3.15)

Bounded solutions of the Weber equation (3.11) which
vanish at infinity exist only if

N\ = n+'—a , (3.16)

where =0,1,2,..... Taking the square root of (3.13) and

integrating between the turning points gives

B o G A
f (A“Z%IEZ) dE = f {(—é—-— E)Va— Q(t)} &b, Gan
3 b,
-Where q- and b are the two roots of G___ >\/a CQ(E)

Performing the integral on the left-~hand side of (3.17)

and using (3.16) gives

5, !
e g) = | (F-oy-Qofd. s
Gy
For \/>)) > | , the function Q(t) is shown

qualitatively in Figure 1.

Figure 1.
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In order to evaluate the integral in (3.18), we take the
limit of large X . The approximate minimum value of Q(t)
3 _
2
is YV — \//2 , SO that the condition on the eigenvalue b

is (see Figure 1)

2 2
eV I 2 V
- = - — O 3.19
5 < (a b)\/ < 5 (3.19)
or equivalently,
va
0< b« |- v (3.20)
As X—QOO , the larger root of the integrand of (3.18)
approaches b?_: l , While the smaller root is given by
2 2
- — = — 5 5 (3.21)
(z i

since the function tanln [X(t— l)] approaches the value —|

for t< | . Hence tl is given by

t,= v'j%—b— ' (3.22)

Using (3.14) in the limit ¢— 0O , (3.18) becomes

l 7
2 2
1 e V& )R
T"(n_*_La) = f {(g—b)v-i‘—a——ﬁ} (Jt (3.23)
G
Performing the integral in (3.23) with the aid of the
sSubstitution t= U,sece gives
ﬂ(““L_la) = D(X— Car™! X) , (3.24)

where

2
X = _I_U—tL - (3.25)
|

It is now a straightforward matter to find X from

(3.24), for example by Newton iteration, and then, using

(3.22) and (3.25), b is found from
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3
L1 I
o) 3 6 q 2
N —b

Figure 2, b against V  for the step-index profile,



b

Figure 3.

Selected results from figure 2 (——)

compared with those given in [| ] (~——--).
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b = ——%aa(l + X%) . (3.26)

The results of computing I) using (3.24) and (3.26)
are shown in Figure 2 for \/< 12 . In Figure 3, some of
the results are compared with those given in E | ] . The

two sets of results are seen to be in excellent agreement.

4, The neglected term F(t)

We now examine the neglected term F(t) for the step-
index profile in the limit § —©°0 . From (3.13) and (3.14)
t< I , we have

éa(iEa-A) = (b"‘é‘)\/a -\f %2 (4.1)
Integration of (4.1) gives
’§F e + Asm(-ﬁaﬁ) + A0

= vz————‘“ tzt— b _ tan"(————hta— ta)g (4.2)
|

for U< 6 <1, wnile for 0< b <G,
—4% }EE—A]-)\ —?\LnlE'*‘JEZ—Z}-A'—f—RLn(EJT)

| |

(4.3)

The constants of integration have been chosen so that

b_— t corresponds to Ez_ EJ For t> I , we have
|
z

E.Z(Zi_‘zz‘ 'A) — (l) )\/ + t" (4.4)

so that
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%/——‘Ee_% — AR+ /R + AR

= vztn(ﬁz?—‘)) — n(/T+D* - D)

~-

Jta+Da6,/I+DE§ o sy

D =72 £= |
where = b\/ , and we have chosen = to correspond

to §=EA/—P\-

From the transformation (3.13) and use of L'HSpital's

. rule, as in Chapter 5, we find

. 2
L|= Lim E = (-Q'/%ﬁ) ) (4.6)

" - _ (BQ.(tP) — l—f) 1
Et, 03 LS

(4.7)

and

L. = lim E — (Eé(té'a‘]‘ﬁh‘_:_ quaLa) , . s
>S5t 4L e

where t? represents the position of a root of the
2
function ( —-la-)\/ -+ Q(t) , corresponding to either

E=—2[ or E=+2[% . Then (4.6)-(4.8) give

. _Looal 1
At the smaller root tr= t' , Q(t) = _\//aa -+ D}ba from

(3.14), and since L‘I , La and [_3 are all finite and
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non— zero at th t' , we find that F(t) tends to a finite
limit at t= tl , given by (4.9). The larger root, lying
close to t= | , must be treated independently., In this

case tP is given by

(b2 )V + Lbanh (3, 1)) + =0 o

From (3.14),

Q) = Bk (V0-1] - 285
P .

and so on for higher derivatives of Q(t), required in

(4.7) and (4.8). Then using (4.10) and the identity
e 2

SBC;‘L 6 = I - tanl'xe , we can eliminate all hyperbolic

functions, to see that as X—%oo,
Q) = 00 , Q= 0%, At =06).  (a.12)
Then from (4.6)-(4.8),
L= 0%, L,=00%), L, = 0(3%)  (a.1m
and finally from (4.9),

':Li_r)r\t F(t) = O(X%), (4.14)

which tends to infinity with X .
The results of plotting F(t) against t for particular

values of N , V and \/ are shown in Figures 4 and 5,

. . Ea
Also shown in each case for comparison is /4_— ?\ as a
function of t , this being the term retained in equation
(3.8).

From (3.8), the exact relationship between E and t

is
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F(t)

Figure 4, F(b) ana :%_—Ez—?\ against [ , for h=0, V=1 ,V=8.
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F(6)

Figure 5. Ht) ana :4:%1"‘ A against t , for h=|,v=2,V=9 .
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£ 0f At 4T
- (T;_Ea— %) ) (4.15)

so that, after the original choice (3.13) and neglecting

(-3lF+Qe |, E s |

>[:(b> , the next approximation would be

(b4 )V + Q) = B FE-2-FOf . ceo)

Integrating (4.16) between the turning points gives

f:a{(é—b)va-— Q(C’}yadt =fa{h—é{—_za+ F(t(s))}yaéz ,

! § (4.17)

where 356 (C= ha) are the two solutions of

“4{.‘“‘&5‘*’ F(t(&-)) = 0 . (4.18)

It would appear from Figures 4 and 5 that, although
Fxt)'——§ o at =1 in the limit X-—%OO , the steepness
and size of the function Ei/ ~ A is such that E; will
not differ greatly from a/ﬁ_ and a good approximation
results from neglecting F(t) , due to its small size
elsewhere,

Approximate eigenfunctions obtained from (3.13), (3.11)
and the transformation (3.7) for large but finite values
of ‘x are likely to be inaccurate in the region of rapid
change of NU(T) , due to neglecting the terms involving
Y]n_ in the basic equations (2.4), as well as F(B) .

Away from this region both KJ}L and F(t) are small,
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5. The parabolic index profile

In this case, rﬁfr) in (2.7) is given by

| nE(l-2d %) <o)
) = o (5.1)
n, . (r>a)

-

L

where CJ is given by (3.5). In the core region T £ Q

2

(2.7) becomes

2 2 2 2 '
dv +‘_<J_W+<l§nf - Eknfd—g—; -3 = %f;_)lfl = 0. (5.2)

drt T dr
With the transformation

T = O.t ) kP'—‘ t‘j’zR(t) 3 (5.3)

and defining b and \/ as before, by (3.5), equation
(5.2) becomes

{TE - {(b-l)\/a+ VEE 4+ (‘)—%‘;@}R | (5.4)

In [ |] , it was shown that for /3 in the range

I’Iak < |/3| < n,fa , (5.5)

one is led to an eigenvalue equation and a finite number
of guided mode solutions, with propagating electromagnetic
waves in the core region. From (3.5), the condition (5.5)

is equivalent to

0« b <€ | (5.6)

b]
and it is this eigenvalue problem we wish to consider here.
Exact solutions to (5.4) have been given in E l] , and
for completeness, we give one particular form of these

solutions. By further transformations of (5.4):
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t = xl/a ; R— (x) 3 9 = \/.'I: (5.7)

)

we obtain

Ju _ (_I _(=bV X (v2- 1) 0.

(5.8)

o \+ 48 4-6°

The solution of (5.8) that is well-behaved as B — O

(corresponding to T—>0) is

ue) = M('a_bhf,ﬁ(e) : (5.9)

o

where MK‘Q(G) is the Whittaker function (Whittaker and
Watson, 1927). F;‘om (5.7), the solution of (5.4) is then
2
R(E) t/E M(l—b)v P_(\/t ) . (5.10)
42

In a full treatment of the problem, the solution in the
cladding region would have to be matched to (5,10),
resulting in an eigenvalue condition involving Whittaker
a;id Bessel functions. Previous approaches to this problem
[ | ] have made the assumption that the core region
extends to infinity in order to derive eigenvalues., With
this assumption, the Whittaker function MH,,’(G) is

bounded as O —>CC only if

—La-*-l'ﬂ—fl = N, (5.11)
where N=0,1,2,..... From (5.9), this gives
b = l——(2n+))+ ). (5.12)

The eigenvalues are then restricted by the condition (5.6).

The values of b calculated from (5.12) are shown in

Figure 6 for V< 2, v>
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Figure 6. b against V , calculated from (5.12).
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We note here that a J.W.K.B. analysis of equation
(5.4), with the assumption of infinite core thickness,

would give the eigenvalue condition

by 2 22 %
Mned) = [ -V-VE-2%1, s,

|
where tl and ta are the roots of the integrand. With the

aid of the substitution ta== 3 in (5.13),»the integral
may be performed and the resulting equation solved for b .
The result is again (5.12). A Liouville-Green analyéis of
(5.4) would give the same eigenvalue condition (5.13).
Rosenzweig and Kreiger (1968) have discussed potentials
possessing exact quantisation conditions of the type
(5,13). One of these is the potehtial /XEaﬁ‘féﬁz appearing
in equation (5.4).

Using the infinite core assumption, an essential
feature of the permittivity, that it remains finite as
T— 0 , 1s lost. In order to see how the inclusion of
this behaviour might affect the eigenvalues, we consider
in the next section a modified profile which approximates

to (5.1) but which is smooth for all Y .

6. A modified profile

In order to approximate the profile (5.1), we consider

2dr? > |

_— 6.1
1‘24—%&2 (6.1)

4 [
No6r) = n, (l—
where q/ is an as yet unspecified parameter. This profile
has the correct limits as Y —>0 and T—>00 , and has the
advantage that the turning points of the differential

equation (2.7) can be found analytically. As a method of
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choosing , we set

f nZ6r) dr =/ R3e) dr (6.2)

0 0

2
where N°(T) is given by (5.1). From (6.2), we then find

) A Ty,
=] =
j' 4-%9. Jf & o (6.3)
[+]

and performing the integrals gives

fy o (75)

The approximate wvalue of q/ found from (6.4) is

‘% ) (6.4)

q/ = 0-52 . - (6.5)
Using (6.1), equation (2.7) becomes
A‘V iq_’_;_ ke — = _ 2knidet v =0. (6.6)
et T dr " red) ~ YO
As in the case of the step-index profile, we make the

transformations

= al ) L|J= EJ/ER(C) . (6.7)
Using (6.7), the definition (3.5) and the identity

AV AR VL Vi 2

(65+9,) (6°+9)
equation (6.6) becomes

2

¥ - - PR e

We now follow the same procedure as in the case of the

y (6.8)

step—-index profile. For certain values of b , equation
(6.9) will have two turning points, and we attempt a

transformation of (6.9) into the Weber equation (3.11).
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The Liouville-Green transformation (3.7) together with the

choice

EE(Z{;EE— ?\) = bV- ﬁ-&- v (6.10)

gives, from (6.9),

0% = (4E-n + FO)G (5.1

where

' o
- 2E Ll e
g 48 4Lt

In (6.10), we have again made the Langer correction in
order to make F(C) bounded as t%O We now neglect F(t),
set >\=h+—l2- and integrate (6.10) between the turning

points, giving the eigenvalue condition

be 2t
[+ 5y :j {—bv +(t\2/f;//) - E)a} &b . (6.13)

{
In (6.13), tl and ta are the roots of the integrand

which, for Y # O, are given by

5 = i [0-9V, —7 £ v B

(6.14)

for (= [[2. Now writing

SE) = —b\/2+(by+il’/) - )E:. ; (6.15)

then S(b)—)“oo as [L— O and S(C)—%—b\/a as L—00
In order to have two roots, the maximum value of S(b) must

therefore be positive. Setting S(to)=0 gives

toa = _L\/J%—D (6.16)
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and hence we must have

Vg > v. (6.17)

The maximum value of S(L') is given by
2 Y ¥
S(G) = — bV + (\/ _JT> , (6.18)

and the condition on }3 for there to be two roots of

S(t) , and for li) to satisfy (5.6) is therefore

0< b < (V'/?/a;/p)a ) (6.19)

with V3 |, since the right-hand term in (6.19) is less

than unity, by (6.17).

The results of calculating b using (6.13) are shown
in Figure 7 for \/ < '2 , with the value of Ci’ given by
(6.5). Alternative ways of choosing Cl/ could be
-considered. For example, taking the range of integration
in (6.2) to be O to 3% gives a value Cl/’}‘—o'3 , and a
change in the larger eigenvalues of about ‘80/ . Comparing
these results with those of Figure 6, we see that, for the
modified profile, the degenerate modes are split, and that
a particular mode appears at a smaller value of \/ than
in the case of the infinite parabolic profile.

By integration of (6.10), we find that between the
turning points, L_l \< t £ ba, |

ZI_E(AFA - Ee)a + Asin”!

+ A

ro|=

G Y

15

2
_ L V9 v
— (%)Eét

,  (6.20)
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Figure 7. [) against V , calculated from (6.13).
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while outside the turning points,

FE(E- 4) ~ AnfE + (8- 43)*] + 2bn (247)

" %
_ 2 V9 v bshgt
@/ +$+ﬁ§ o<t <t)

I
where A =N+ > . )

To calculate F(t) , we find the derivatives E and

£ from (6.10) and substitute into (6.12). At the
turning points, we have the same results as (4.6)-(4;9)
with Czaﬂ replaced by S(t) . Then using the results
(6.20) and (6.21), F(t) can be calculated as a function
of t for any chosen values of WV , N and V . The
expressions involved are very lengthy, so we merely give,
in Figure 8, the result of one particular calculation,
that for =1, v=| ,\/=(8 . Other choices of the

parameters indicate that the values obtained are typical

for this problem.

7. Discussion

The results in section 6 could be improved upon if a
closer approximation to the profile (5.1) could be found,
in the same way as the step-index profile was approximated
in section 3. In most physical problems, typical values of
the parameter C] are in the range 00Ol —0-02 (see L | J )
and from (6.1), the term :JV\ neglected in (2.4) is of

order d . « Other problems of interest include the
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O-l ;

F(B) — &

—0-]

Figure 8, F(t) against t , for the modified profile (6.1),
with h=1,v»=1{,V=8.
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modification of the parabolic profile to the behaviour
1~2+¢6, where O 1is a small parameter, and the
consideration of an elliptical waveguide. The first is
briefly discussed in Appendix 3, while the second results
in a non-separable partial differential equation, for
general profiles, and is therefore outside the scope of

the present work,
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APPENDIX 1

THE LIOUVILLE-GREEN TECHNIQUE

1. Transformation of differential equations

We begin with a second-order linear differential

equation in normal form
2
dy _
i 10(35)3 - (1.1)

The values of IOC for which F(I:)=O are called the
turning points of the differential equation (1.1). After
performing the Liouville-Green transformation (see Olver,

1974) |
%
x = x(§) , G:(E/) 3 , (1.2)
equation (1.1) becomes
G T
d x)
By T A, 5.9
where
i G
A=E) = = - 25, 1.0)
?_EIS 4 El °
Primes denote differentiation with respect to L
We now try to choose the relationship between E and
X so that (1.3) is soluble, exactly or approximately,
in terms of known functions. If equation (1.1) has turning
2
points, then we cannot choose E/ = *F(x) in (1.3), since
2
‘P(x) changes sign whereas E’ does not. In such cases,

2
we choose a relationship of the type I’\(E)E/ =‘P(3C), for

some l'\(E) having as many zeros as P(x) in the region of
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interest. This method of transformation is used in
Chapters 5 and 6 to find approximate solutions of certain
differential equations.

Since there are no standard second-order differential
equations with more than two turning points, then, without
resorting to matching, we can only apply the Liouville-
Green technique to equations of the form (1,1) which have

at most two turning points.

2. Exact solutions

For certain equations of the form (1.1), exact solutions
can be quickly obtained by the Liouville-Green technique.
We now give two simple examples.

Example 1,

Consider the equation
2
4y
dc®

where n?-L-O,-OO<'r' <oO, Using (1.2), equation (2.1)

ehxtj ’ (2.1)

;

transforms to

£ -[S v ARG

where A(OC(&)) is given by (1.4). If we choose

2
gf = ¥ ' (2.3)

then

2.4
M : (2.4

£ = [ enx/é

so that O<E <cO .
Calculating the higher derivatives of E from (2,.3)

and substituting into (1.4) gives
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2

N\(x=E) = — “@%& : (2.5)

Now (2.5) may be expressed in terms of ‘E' from (2.4) as

&(x(&)) = - 4_l~£a ’ (2.6)

so that (2.2) becomes

% = (l— 4_L§a)6 . (2.7)

Finally, (2.7) has solutions

G(E) = £ L,(®) , (2.8)

£2 K ()

where ]:0 and P<o are the modified Bessel functions of

order zero of the first and second kind respectively,

Using (2.4) and (1.2), we obtain

2 "%
Tolfre ™)
Ye) = 4 - (2.9)
2 “/a)
K°(|n|e’
Example 2,
Consider the equation
&Y n
- = o
e . 4y o (2.10)

where r\?é—a, >0 . Using (1.2), equation (2.10)

transforms to

—:% = [—;—Z + A(DC(E))}C- . (2.11)

By the same procedure as in Example 1, the choice



gives

and

\(*(E)

Equation (2.11) becomes

Aee_{,

de*
and putting

et =

. finally gives

104 -

n(n+4)

4n+2)E

6

n(n+4)
- 4{h+aFEa}G 1

n{n+4)

4 dh+2)re?

Comparing (2.17) with the equation

& 14

we find that two independent solutions of (2.17) are

JZG_{_L

K

S/

(me—4%)

G‘(e) = Mo,tm(e) )

where

2 I

i

n(n+4)

Y N WL

§<;
e

except if M is an integer, in which case

G(8) =

Mo,m(8)
Wo,m(®)

(2,

(20

(2.

(2,

12)

13)

.14)

.15)

16)

.17)

.18)

.19)

20)

.21)
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In (2.19) and (2.21), PJLJn and Wy m are the Whittaker

functions (Whittaker and Watson, 1927). From (2.20),

I
m = — 2,22
so that, from (2.12) and (1.2), one solution of (2.10) is

. Do+ |
H(x) = I%M"»ﬁm(m_lx ) (2.23)

The second solution is

~

| A et 2 4

=% M""l’n-{l-_al (In+2\ * J (Reva inleger)

H(x) = ] (2.24)
| 4 et 2

e

We can also demonstrate that (2.23) reduces to known
solutions in simple cases using the Kummer series

(Whittaker and Watson, 1927)

rvw LQ B Lf%ﬁ% - ii lJ?P
o) = &2 plm 1) (m+p))’ (2-2%)

valid provided M is not an integer. Consider for example

the case of N= 0 in (2.10). From (2.23), one solution is

Yx) = Mo,é(ax) . | (2.26)

Using (2.25) we find

N (Ex)aF
yor = =1+ L 2w )




- 106 -

oo EF‘I'I
= Z + )l
= (ZP )
= Sl'nh:r- 3
2
which we recognize as a solution of i = H

From the form of equation (2.15), we would expect to

obtain a simple solution if rl==—'4' . In this case, one

solution is

H(DC) = JCMQ,a( ) (2.27)

Using (2.25), we find

(=) +
v 2.

[
™
3
o
o=
T
-
..I..

Il
+
1]
t
o
2
+

P=I
= |
- PZ;O 3C2P(2P+ )l

3. Non-linear differential equations

Generalising a result of Pinney (1950), Reid (1971) has

noted that an exact solution of the non-~linear differential

equation

d x)y M 3.1
Eﬂa + Py = ch(JEj'a (3.1)

is
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l/m
y=|u+ (r,c)wz\f"‘ ) (3.2)
where W and V are two independent solutions of
A—H + p(ac)ﬂ = 0O, (3.3)
and where

W= uv’'—vu = constant , (3.4)

%m(x') = C (u'v-)m-a; (3.5)

and C is an arbitrary constant. This result can be
obtained by a Liouville-Green transformation of (3.1).

Applying (1.2), and using (3.5), (3.1) becomes

(- Bt T e

Choosing

/ |
— —— k) 307
3 07 (3.7)
. . I ]
we can calculate the derivatives E and ‘E , and on

substituting into (3.6) we find

96 - LG + G

clEa = 7 + C (3.8)
The particular form of qu:ﬂ given by (3.5) is

therefore such that (3.1) can be transformed to an equation

with constant coefficients (3.8). By suitable choices of

the constants of integration in (3.8), we should obtain

the result (3.2), A first integral-of (3.8) is
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(dG;f B ‘\AJE 2 + _J;__Gf‘Zm
H—E—. - q: G’ (I_m) R (3.9)

on setting the constant of integration to zero. Separating

the variables in (3.9) we obtain

|
/ ,/ + 4c 4—c —am - EW_E A (3.10)
(- m)\/\!a

where /\ is an arbitrary constant. Performing the

integral in (3.10) gives

L e

= 'é“\/\IE‘I‘A o (3.11)

G_—m
Now, from (3.7),
E = \/“JLR(—K—) ; (3.12)
and (3.11) becomes
2 n)/a;.m
/l + W?_G' " | = D('\%) G: (3.13)

where E> is arbitrary. Solving (3.13) for C; and using

the transformation H(ac) = /u\/‘ G— , from (1.2) and
(3.7), we obtain

e
y = [OCLL +< )\/\/a Vm] ; (3.14)

where OC=:—-C%E is arbitrary. The choice (= | gives the
result of Reid, (3.2).
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APPENDIX 2

THE ERROR IN THE APPROXIMATE EIGENFUNCTIONS

CALCULATED IN CHAPTER 5

1. Preliminary calculations

In this appendix, we modify the method of Titchmarsh
(1961) to find, for large eigenvalues, the order of the
error in the eigenfunctions calculated by the Airy
equation method in Chapter 5. We begin by reviewing some
of the results of that chapter.

We write the basic equation as

. .
% = (‘1/— E)Lr ) (1.1)

where
q = q) = x4 ot (1.2)

and Q< ¢ <00 , Transforming (1.1) by the Liouville-

Green method gave

dc%i :{E -a + A(x(’c‘))}cf , (1.3)

where A(x(g)) can be written

5 ¢ 5¢
A(x(E» = (E"'Q> I@(E_cﬁg, + 4_((:[/_E)a — E@/—:-E—)g y (1.4)

primes denoting differentiation with respect to L . The

relationship between E and 2C

(£- )8 = (5-E) ,
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gives, on rewriting (4.2)-(4.4) of Chapter 5,

I - PR

3

c,:cc, Iy (1.6)
2(a-)" = / [E-g0f & (=< ?

where

acf:—li(,/H—é}-E - l). (1.7)

Substituting

G(E) = ¢(E)AL(E-a) + C,(BBi(E-a) (1.8)

into (1.3) gives, by the standard method of variation of

parameters,

G(E) = AL(E—a) - f A\ (<(E))G(E)
13

X {AL(E-Q)BL (£-a) - Bi(E- @Aa(&@j IE . (1o

In (1.9), we change the variable of integration, using

(1.5), to obtain

0 ]

G(Ex) = o AL(Ex) - o) = T j A\() G(E(t))(ﬂé%ﬁ)/a

x{Ac(E(b)—a)BL(E(x) —a) — Bi(E()-o)AL(Ex) - q)} d;.

(1.10)

We now consider the guantity
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%
CJDC . (1.11)

QQ
E(x)-a
o .
Substituting the expression (1.4) for A(x) into (1.11)

and splitting up the range of integration gives

(1—d)x, Cq (+d)=, oo y
( +[ 'ﬂ/' +/.)EM—QQ
0 (-d=, > (+d)=, ‘

i

_FE| 5 9 _ 59
Xlg-E ll6(€(x)—a)3 +4—(C1,- Ef le@q-Ef

= I, + 1, +1, + I, , (1.13)

where CJ is in the range, say, (O, —é-]

X (1.12)

7
Now for large E ,:)CorvK‘ from (1.7), while for
4 I~4_ 3 . .
large 2C , C]/N S UL CL 2L , and so on for higher
derivatives. Expressing these results more formally, we
have that, for each small € > O , there exists X(E) such
that when 2C > X(E) ,
.
xf< g < (I + €)axct,

+mh<ﬂf<éHr+ax3,

12 xt< qﬁ < [2(l +€)x?,

~

(1.14)

o

We will assume that E is large enough so that

(|—CI)3C° > X(E) . Also, there exists E(E) such that when

E>E(e),

(I-E)E < b < (l+€)E . (1.15)
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2. The behaviour of I for large E

We treat each _Lj (J‘ = 1 to 4) in (1.12) and (1.13)
separately. In what follows, we will use /A\ to represent

a generic positive number which is O(l) .
(a) 1, , o< < (I+d)x

Integrating by parts twice in the first equation of

(1.6) gives

E(E_Q) 2 (9- E) {I N (%—E)({' —S}mz.n

3 3 q SCf
_ _E&I___ ) - & ' Q) db 2.2
S - 5(%{)%%(%@ PEACIND (2.2)

N/ e
q - (&4 - 397 )

q//b' ) (2.3)

Now by the mean value theorem
(q,—E) = (3‘3—3%\)%/(13) | (2.4)

where ¢, < _C £ X, Since qf is a monotonically increasing
function, replacing the right-hand side of (2.4) by its

maximum value for Xo & X £ (| +d)x, gives
(9-E) < {(1+ &)= =} {0+ )
d,q [0+ 4) =)
< Aday (1 + €)1+ ) =2

from (1.14). Therefore, from (1.15),
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(%_E) < AdE . (2.5)

From (1.14),
' i
Y oA A
NN
so that, from (1.15),
ﬂf
q < T (2.6)
Hence
U _
23 ,Eq’ < A(E:;E) < Ad, (2.7)

>9

where, in the last inequality, we have used the result
(2.5). A similar procedure applied to (;L , defined by -

(2.3), gives

Q| < —/[_:3‘—.5;r : (2.8)

Substituting the result (2.8) into (2.2), and then using

(1.14), we have the inequalities

F%
Then from (1.15) and (2.5),

S| < A(—q%E)a < Ad. (2.9)

To estimate the size of the integrand in (1.12), we use

the relationship (2.1) to write
-2

5 _ 5¢ 2(4-E)g _ } |
6E-a) |6(CL_ ){I + 5%,2 S (2.10)
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By virtue of the inequalities (2.7) and (2.9), we perform
a binomial expansion of (2.10), since the terms in large
brackets decrease in order (for sufficiently small d ).

Hence

5 _ 59% [ _ 48, (aEfq)
6(E—af — le(q-EF {I Bcl”a +< E )O(l)}- (2.11)

Substituting (2.11) into the expansion for :[3 from (1,12)

and (1.13) gives
(+d)x, %

_ A Ty —al°
:[3_ EZ/ C1/_E
X,

Finally, from (2.1),

2
(1// doc . (2.12)

|

5
Ex)-a | _ Ay
——CL_——E—— = Q(% ) ) (2.13)
and substituting (2.13) info (2.12) leads to

(I + d)aco

A % o
| IS < Ea | CL CJ
x,

%
l 3y3
= O{'E'éxo(xo) j )
using (1.14). Hence from (1.15),

T- o)

The integral Ia with range (I—d)xoé 2 K X% can be
- treated in the same way as ]:3 , and we obtain a

corresponding result

Ia = O(E,Ta) , (2.15)
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) L., (+d)x, <x <o

From the definition of ]:+ in (1.12) and (1.13), we
obtain the following bound by replacing the negative term

by its absolute value:

6] (Ex)—af: 4+ (g-Ep
(+d)x, (+d)x,
5 i &
4 = m (E(x) — a? dx . (2.16)
(I4+d)x,

From the transformation (1.4), the first term in (2.16)

can be rewritten and evaluated:
o0

_5_j E'Gx) e - 5 | |
©/ (ECc)-af 6 [E[1+d)=)—a] (2.17)
(+d)x,

Now

(4E) | &*=E)

:x:4- fx_‘,4'

(2.18)

and the right-hand side of (2.18) is an increasing

function of L and so is larger than its value at the

lower end of the range (I-i—d):x:o £ ¢ <00 , Hence

(4-5) y (+di'<t-E

x* (1+d )43(:{,4'

(—e)i+d'E-
(I-e)i+d)fE
the last inequality being derived from (1.15). Provided
CJ is chosen so that (I—G)(H—c‘f-) |, then
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q,— E > Ax* | (2.19)

Now expression (2.1) is valid for all X > 2C, . In
particular at XX = (l +CJ)3C0,

3

% {CL[(Hé)xo] — E}/a
{E[U-i-c”xo] - Qj > A ﬂ{/[(l-#d)xo] (2.20)

Using the results (2.19), (1.14) and (1.15), we find

2
L,

4
El+d=) —a > A% s AEE. (2.21)

Substituting (2.21) into (2.17), we have a bound for the

first term in (2.16):

s B . A
| (*»;‘<>—)d<'€7a

(1 +d)x,

(2.22)

In order to bound the remaining terms in (2.16), we need

a bound on {E(x) - Q}/é . First, we note that for X > .,
E< g = Yoo < 2xt
so that

g-F < g+ E <2q<4xt o

Substitution of (2.23) into the first expression of (1.6)

gives
<

<I ot db < -%—:x:g. (2.24)

Lo

¥

(€@ - )

Hence, from (2.24),



- 117 -

l

{E(::c) - O-}a < x. (2.25)

Finally, the results (1.14), (2.19), (2.22) and (2.25)

enable a bound on :[4_ to be found from (2.16):

| 14_< A(—El_"a +/ a(cqa_t)‘,%d +j (x‘%;? clac)

(I+d)x, (+d)x,

<A(;:g +3'C—0)

I4 = O(E—l—u_,_) ' (2.26)

() L, 0¢xg (I-d)x,

Hence

From (1.12), we bound I‘ by

. (1— d)xo( ), (-d)x, '
5 - Y s de
1< a@/ o e VA +4f ———)-%( ~¥R) -

(I—d)x, 12 A
18] me-wf k. e

0

Now

-9 > E- cL{a-d)xo}
= E - {(I -d)drx;’” + (l—d)aacfj . (2.28)
Taking E large enough so that
(I—d)aco > 2

then
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(I1=d) :>C"r > 4|~ df=?

and hence

(l 1:4‘ + ( cJ):x: < 4_(1 x"f. (2.29)

Substituting (2.29) into (2.28) gives
4
E_Ci/ > E—i(l——d) xF

> F - (1 (J+e)

from (1.15). Therefore

E_q/ > AE , (2.30)
provided 5;0—-df-(|-+ e) < , (for example, this
condition would give d > 0.066 for € = 0.05).

From the transformation (1.6) for ¢ < 2C,, we have
% = d
fed 2 _
Se-te) < | [E-q0) &
o
Y
< F%x,
*.
< At
from (1.15), and so
Y L
(a-E=))* < AE* . (2.31)

Also from (1.6), we find

—%—(Q —E[(I-—d)xo];/a =/ {E - %(t)}l/?- dt

(1-d)x,

> A Eléoco
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3,
4.
>AET ,
using the result (2.30), and (1.15). Then

| A

- (2.32)

- E(-d=)] B

The first term in (2,27) may be rewritten, from (1.5),

(I-d)xo
‘S'I o) g _ g[ 1
) [a-Eaf 6lla—Ef0-def] o

0

{a—§[<: ~d)x)]

= O(éﬁ) , (2.33)

from (2.32). Using (2.31), the third term of (2.27) has

<<

o U

the upper bound
(I—d)=x,

| J
Ag (- =) | e

0

< AE{{E-%[(:-J)%H% B é’a]

- O(’é—) , (2.34)

where we have used (1.14) and (1.15) to replace the factor

/ _
q,{(l db‘-‘o% and (2.30) to give the order of the terms.

The only remaining term is the second term of (2.27).

Again using (2.31), this has the upper bound
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(I-d)xg i

(-0 )I/ad Tl
Zj ‘—?Ls (0- E(x) dx < AEJ (- Cl/)a/a .

0

Integrating the right-hand side by parts, we obtain

CLI {I—-d)x, 3 (1-d)x, /2
AE}/% [H)'S}elo - ‘a"oj (——L_—E C!/) CJCC§ (2.35)

Finally, using (1.14), (1.15), (2.30) and the method of
deriving (2.34), we see that (2.35) is Q(E %)
The results of this section show that the integral

defined by (1,11) satisfies

I = O(—ELJ-(:_) (2.386)
for largé values of E

3. The error in the approximate eigenfunctions

By successive approximations in (1.10), we find that
the first correction ( to the basic solution A(,(E(JC)—Q)

is given by

C = _ﬂ[ A )@i )K(x,t) d6 (3.1)

where

K= t) = Al (E(t)-a){Ac(E(b)—a) Bi(E= - a)

— B (E(6) - a) A (BGe) — Q)§ ' (3.2)

From (3.1),



- 121 -

oo 2
ic|< MTTI |A(t),‘j—’(%;—:—f— dr, (3.3)
where 0
m=0\<r2g<w|}<(ac,t)f . (3.4)
Writing
w=Eb& - a
V= glx)-a | o

then for [ > , we have UW>V . As E—>® | then

Q.—> 0O (see Table 2, Chapter 5) and so —00o<V S WU <O,

We express [N , from (3.2), as
M= max IKI , (3.6)
—w< VYV £ U<
where
K= A ABW) - BWAM] - o
In Figure 1, we plot lKl as a function of L. for

selected values of V . For all values of W and V
satisfying V< W , IKl is a bounded function, which
the numerical results indicate is less than unity.

Finally, from (3.3) and the result (2.36), we find that

for large E , the solution G(E) of (1.3) satisfies
GE) = xAi(E-a) + O(LE'E-&) - (3.8)

As the Airy function Ai(E—Q)z A(_(\f) in (3.8) tends to
zero for large values of its argument E—a =V , then
the corresponding value of M also tends to zero, from

(3.6).
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Figure 1.

II(I against (4 for selected values of V .
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APPENDIX 3

SMALL PERTURBATIONS FROM THE PARABOLIC REFRACTIVE

INDEX PROFILE IN OPTICAL WAVEGUIDES

1. Introduction

In Chapter 6, we discussed the differential equation
e 2

%:Ea + T'—j—E + (A—‘BTZ—%)E = 0, .1
where the term Bfi' arose from the parabolic refractive
index profile, Problems of current interest (Olshansky,
1979) are concerned with profiles in which the ’Fa nature
is modified to T2¥%* | where 0C is a small parameter. We
expect that the solutions for the modified profile do not
differ substantially from thoserfor the parabolic profile,
if oL is sufficiently small.

An exact solution of equation (1.1) was presented in
Chapter 6, but the modified equation

dE | dE st _ W \p
FJPTEN_(A_BT - YJE=0, @2

does not appear to be exactly soluble in terms of known
functions. Although we could find an approximate solution
of (1.25 using the Liouville-Green method, we would not
know if the difference between this solution and the exact
solution for the parabolic profile was mainly due to the
introduction of the parameter O or to the approximation
method. Accordingly, we consider the somewhat unphysical
case of /\‘= O , Since equation (1.2) is then exactly

soluble for all o .
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2. Exact solutions

With /A\= O , (1.2) becomes

ﬂ L dt (BTE*“+ %—)E = Q. (2.1)

2 T de
We make the transformation
Y
N = xP 3 E= xaLP 3 (2.2)

where P is a constant to be chosen. Using (2.2), equation

(2.1) is transformed to
2 vi—J
d {P B + P 4_>KKIJ ) (2.3)

where
fs(4~+oc) -2 . (2.4)

Choosing A = Q, so that

2 -

P= (4__}_0(‘) 3 (2.5)
then (2.3) becomes
4-0* I
fv (48 +(<m>av¢) b e
doc? A+ocf x® '

The solution of (2.6) that is well-behaved as XX — 0 is

l’
W) = I(%)(m-m) (2.0

where IX is the modified Bessel function of the first

kind of order X . The solution of (2.1) is then

E () = oc:[@__<—42;% 4—+o(,)) -

G+o0)

the solution for & = O being
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EQ(T) = moI%(Jgfa> ) (2.9)

where PLL and hﬁo are constants.

3. Numerical estimates

As a particular example, we consider the problem of
fields confined to a core region of the waveguide T L T, ,

with the values (from Olshansky, 1979)

-

T;= 30 /um
JB = 0-0447 L (3.1)
ol = — 0024

J

We apply the boundary condition that the field is equal to

a fixed value at T = T, , say E(’Q): C . Then from
(2.8),
C
Iav (‘——afB— “f‘m— 06/2-)
G+ul) (G+u) °
ro (3.2)
M. — C
T LB
» \75 To
s \2

To obtain some measure of the difference between the
solution for & =0 and that with & given by (3.1), we

consider

der) = E ) - E ) . (3.3)

/
Putting d(‘ﬁ)z' O to find the maximum gives

4
T () - T 6

(3.4)

==\t
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where primes denote differentiation with respect to
argument. Now with the values given by (3.1), the quantity
J—B—T'oa/a >~ 20119 , so that T; 1lies in the region
of asymptotic behaviour of the modified Bessel function,

where

eG
Ix(e) 'fa—ﬂ_—e . (3.9)

We look for a solution of (3.4) which is also in the
asymptotic region. Using (3.1) and calculating all
quantities in (3.2) and (3.4) from the relation (3.5),

we find that a solution of (3.4) is
Ti = 2344 /um . (3.6)

Since ,/_B-'{“a/a ~ |8+08 , then (3.6) is consistent
with a solution in the asymptotic region,

With the value of Y| given by (3.6) and again using
(3.5), we find that 'CJ(T])I from (3.3) is about 8‘4'0/:
of the value 'Eo('r,)l .
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Non-static nuclear forces in a Kerr-Newman background
space

P M Radmore
Department of Mathematics, Imperial College, London SW7 2BZ, UK
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Abstract. In the Kerr-Newman background space, an explicit expression for the source
term due to a particle moving along a geodesic near the event horizon in the equatorial
plane of the black hole is found. This is used. together with the solutions of the Kiein-
Gordon equation near the event horizon (found elsewhere) to show that the meson field
near the black hole vanishes as the source crosses the event horizon.

L.Introduction

In a recent series of papers (see Rowan and Stephenson 1976a, b, 1977 and Rowan
1977), the Klein-Gordon equation for a massive scalar meson field has been
examined in various background spaces. Rowan (1977) has extended the work of
Rowan and Stephenson to the in-fall of an uncharged baryon down the axis of a
charged rotating black hole described by the Kerr-Newman metric, and has shown
that the field of the baryon source falls to zero as the source crosses the event horizon.
By allowing the particle to move down the axis of rotation, Rowan was able to treat
the in-fall as a series of quasi-static problems since the event horizon and the static
limit coincide on the axis of rotation.

In this paper we extend this work to the in-fall of a baryon along a geodesic in the
equatorial plane of the black hole. This requires that the source term be modified to a
time-dependent one, since the tidal forces inside the ergosphere destroy the static
situation. By solving the geodesic equations near the event horizon and using the
solution of the Klein-Gordon equation near the event horizon as found by Rowan and
Stephenson (1977), we have again deduced that the field of the baryon falls off to zero
as the particle crosses the event horizon. It has not been possible to solve the basic
equation over the whole range owing to the breakdown of the uniform asymptotic
method. The reason for this will emerge in the following analysis.

2. Basic equations

We start with the Klein-Gordon equation
(@ +p ") =47(t1, 6, ) (2.1)

where @ is the scalar field and f(z, 1, 8, ¢) represents a point source. In generally

0305-4770/78/0006-1105501.00 © 1978 The Institute of Physics 1105
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covariant form (2.1) is

0P
T ool 6-e0¢’ ——)+u2¢ T

R

Together with the Kerr—Newman metric in Boyer-Lindquist coordfnates .
dsz— S(dt—a sin 0 dgp )’ — pz 810> +a%) dg—a dif ——~—dr -p%de> (@.3)

where
A=r—2Mr+a*+Q?, p’=r*+a’cos’ 6, (2.4)

equation (2.2) becomes

in 86—

[(FP+a®’—Aa’sin®0] &* a9/, 8y 1 8 3\ (A—a’sin’§) &
[ (85) =5 200 %56) " 2einTe

A o at ar\"ar/ sin6 o8 80 Asin’6 3>
2a[A-(*+a?)] & ) 2] 2
- + = . .
A sea P O=4mpft, 1, 0, ¢) (2.5)
Write
o=Y jdw (Rums (F)ST (8) €™ &=1) 2.6)
Lm R

where S7'(6) = ST'(a*(u*—w?), cos 6) is the oblate spheroidal harmonic satisfying

[_1__1(”9“
sing do\ " Vdg

2

)+/\,,,, —a (ﬂ —w )cos 0——]3, NH=0 (2.7
and Ay, is the eigenvalue corresponding to S7°(8).  Taking the normalisation
2@ T )
| dqﬁL sin 0 dO|ST(O) =1 2.8)
0

and substituting (2.6)-(2.8) into (2.5), we see that Ry, (r) satisfies

dy. d\ a’m*+2a Q> -2Mr)+(r* +a*) o
[E;(Ag;)Jf m mw( - )+ ( Yo _/\Im_azwz_“zerlew(r)

a2

=-2 j ds e J d¢J' p* sin 6ST'(0) e "™*f (1, 1, 6, &) d6. (2.9)
00 0 0

3. The geodesic equations

We take the equations of motion along a geodesic in a Kerr-Newman background
space (Misner et al 1973) and consider the case of motion confined to the equatorial
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plane of a black hole. The equations become

dr

e =VR,
do¢ aP
2
v _ +__
r T (aE—-L,) 3.1)
d: (r*+a*)P
2———:— — ————— e
r an a(aE—L.)+ A .

where
P=E({*+a*)~L.a,

3.2)
R=P*—Alg**+(L.—-aE)}]
and where £ is the rest mass of the baryon, and E and L, are the energy at infinity and
the angular momentum about the axis of rotation, respectively.

Putting G =L, —akE, we get from (3.2)

P=Er’—aG, 3.3)

R =(Erf-aGyY—A@@*r*+ G?). G-
From (3.1) using (3.3) we have

d¢_ GA+a(Er’-aG) 34

dt  aGA+ (@ +a* ) Er* —aG) (3.4)
and

g_A[(ErZ_aG)Z_A(ﬁZrz_{__ GZ)]1/2 25 .

dt  aGA+(*+a>)Er'-aG) 3-5)

We now confine our attention to motion near the event horizon r=r.=
M+ [Mz—(a2+ C)Z)]”2 and assume that a’+Q*#M® so that r.#r.=
M—[M?*—(@*+ QY
Putting
Mx=r—rs., 2Md=r,—r_ (3.6)
we have
A= M’ x(x +2d). (3.7)

Substituting (3.6) and (3.7) into (3.4) and (3.5), we may expand the right-hand sides in
powers of x to get

d¢

a 2
T T )+ax+0(x ) (3.8)

and

dr A dx ((Zde

= —_ = 3
- 5+ B )+O(x ), (3.9)

T
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taking the minus square root in (3.5), and where the constants @ and B8 are given by

) M
(rk +a’Y(Eri —aG)

(MG dr% —aEr} +a®Gr,) . (3.10)

and
M* (Md(AE’r} —4aGEr.—2Mdi’*ri —2MdG’)
(2 +ad)\ (Er: —aG)
_2Md(4Er’ +2a”Er, —2aGr. +2aGMd) | )
(r% +a*)(Er: —aG)

B:

(3.11)

for Er: —aG #0.

4. The source term

To get an explicit expression for f(t, r, 8, ¢), we choose, following Persides (1974),
1
f6r,0,)= =587 1) @.1)

where u®=dt/ds along the trajectory of the particle r'(f)=(r'(t), 6'(t), ¢'(+)) and g is
the source strength. To calculate 1/ u® we first put (3.6) and (3.7), together with
8 = /2, into the metric (2.3), obtaining

(&) =Gt 0-ag) ~Garey

e (@)

Then substituting (3.8) and (3.9) into (4.2), we see that to the second order in x,

(Y- ‘

where the constant v is given by

@M*ri—8dM’r.) (4adM’a+2riB) 1 ( 2Mar,
(ri+a%’ (2 +a?) AA\(: +a?)

On substituting into (4.4) the expressions for & and B from (3.10) and (3.11), we find,

after considerable algebra, that v is given simply by

4d*M* @l

([(Mx +r )+ az]c:l—‘l{)—.a)2

4.2)

ye - 1 (i ta )a) . (4.4)

Y ¥ a* Y (Er: —aGY (4.5)
so that
1
?=K(r—r+) (4.6)
where
d - 2
2aMpr @.7)

- (r3 + a*)Er’ —aG)’
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From (4.1), using (4.6), the source term can be written

£(t, 1, 8, @)= gK (r —r.)8(r — ro($0))8 (¢ — do(1))5(6 —37) (4.8)
where, from (3.8) and (3.9),

at
¢o(t)=m 4.9)
r0(¢o)=r++exp(—&—;—r:2¢o). (410)

Hence the right-hand side of (2.9) becomes on substituting (4.8)

g

<) 27
—2gK(r—r+)5(r—ro)J e““'d:J' quJ' p”sin 6ST(8) €7 5(d — o) (8 —37) d6.
—00 0 (]

(4.11)
After performing the #-integration (4.11) becomes
=3} 2m
—2gKr*(r—ry)ST 3m)8(r —ro) J e dzJ' e " *5(d — do(t)) deb. (4.12)
-00 0
Now from (4.9)
-] 29
[ ear] e - gor)ds
—0 0
2 « at
— d —imd)J iwts( _ ) d
L e —ooe ¢ (r3 +a®) f
2 2 2 ma
="—(r: + =
p (ri+a®) for w Zxa) (4.13)
so that (4.12) becomes
K
—41rg;(ri +a*)(r—r )87 Gm)8(r—ro). (4.14)

Finally equation (2.9) becomes
[ d ( d ) +azm2+2amw(02—2Mr)+(r2+az)2w2

dr\"dr A

—Atm —azwz—y.zrz]lew(f)

K
= —4mg— (r2 +a>)r(r—r)STEm)8(r — ro). (4.15)

5. The radial equation

Rowan and Stephenson (1977) have shown that after defining x and 4 by
Mx=r—r., 2Md=r,—r_ (5.1)
and writing

Rimo(x)=Z (x)[x (x +2d)] '3, (5.2)
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substitution of (5.1) and (5.2) into (4.15), leads to (for r # rg)

&EZ [ ., » ... 1(A B. C D)]_
?’L[M(“’ “)+M2<x2+x+(x+2d)2+(x+2d) Z=0 63

where A, B, C and D are constants. It has not been possible to solve (5.3) over the
whole range 0= x <0 due to the breakdown of the uniform asymptotic method. This
is due to the fact that the method depends on the existence of a large parameter in the
differential equation which we do not necessarily have in (5.3) since @ may be close to
or equal to u. However, we may use the solutions obtained by Rowan and Stephen-
son for x » 0 (that is r > r,). These are
1/2 b+m
(r—r +))

—(F1/2/M)(r—r+)(2F

M
Ray(r)= NG i

Ry (1)~ - 5.4)
; ( ) . M —(F1/72/M)r—r.) 2F1/2 _ ' (
R(Z)(’)—ATEQ M (r=rs)
where
,;12:1_.._4_
4 M¥ 55
C D )
= 2 2_ 2 ==
F (M =) 2M2d)

provided F # 0. The case of F =0 was treated separately and we will not repeat the
solutions here.

We now integrate (4.15) across the singularity and impose continuity of R, (r) at
r=rp to get

demm
dr

_ demw
ro+0 dr

¥

} - —4wg§(ri +a e (ro—r2)ST o) (5.6)
ro—0

where Ao = (f() - f+)(f0 —f_).
Then for rq near r, we have

R(z)(ro)R(l)(f) i+ <r<sry
Ray(ro)R2(r) rosr

where Ry and R, are given by (5.4). If we now let ro— r; we see from (5.7) that
Ry,...(r) (for ro=<r) tends to zero since Rg(ro)-either tends to zero if i is real, or is
bounded if # is complex. Provided the series for ® is uniformly convergent, ® -0 as
ro - r+. 'We note that ® here is an expression for the scalar field near the event horizon
since (5.4) are solutions of (5.3) only for r near r,.

Ripo(r)= 41rg§ (r3 +a*ri(ro— r+)s;"(%1r){ (5.7)

6. Special cases

The case where a’+Q>=M" must be considered separately since d=0 and
consequently from (3.9) the term of order x in dx/d¢ is zero. To simplify the algebra,
we consider the case of an extreme Kerr black hole, so that a=M and Q=0.
Expanding de¢/d¢ to order x> and dx/d¢ to order x* and substituting these into (4.2)
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with d =0 and a = M we find

() (&) -rorsy
u’} \dt/  4(EM-GY

4
to order x”. Hence

1 glr—-My

1’ 2M(EM-G)

which can be used in place of (4.6).
The homogeneous radial equation becomes

&z ,, 2 . A B C 15)

—+ —uY =t S5+ 1Z2 =

dxz (M (w ) * xz x3 x4 0
where

lew(x)=Zi_x), Mx = r—M

and the constants A, B, C and D are given by
A=4M*0*-2M*y?
B=TM0*-~M*pn* = A
C =8M’w’—4Mmuw
D =4M’w’—4Mmw +m®.
The relation between w and m is now
w=m/2M
and on substituting (6.6) into (6.5), we find
A=m*—2M*y?
B =%mz—M2p.2—)um
C=D=0.

Equation (6.3) now becomes

where

N =M2,u2—%m2.
After defining

n=2N"x

1111

6.1)

6.2)

(6.3)

(6.4)

(6.5)

(6.6)

6.7)

(6.8)

6.9)

(6.10)

and substituting (6.10) into (6.8) we see that (6.8) has solutions in terms of Whittaker

functions

Z =Mx,:—n‘1(n)

(6.11)
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where
-2 w=i-B (6.12)
For the case N =0 we get
Z={l el 6.13)

where Iz, K; are the modified Bessel functions of order @& of the first and second kind
respectively and

@’=1-4B, B>=—4A. 6.14)

7. Conclusions

The success of the Liouville-Green asymptotic method when used to solve the radial
equation for a massive scalar meson field (Rowan and Stephenson 1976a, b, Rowan
1977), and also when applied to the Schriodinger equation with a Gaussian potential
(Stephenson 1977), depended on the appearance of a large parameter in the differen-
tial equation. This was due, in the first case, to the non-zero rest mass of the sr-meson.
When considering the most general black hole, solutions of the radial equation over
the whole range are known only in special cases (Rowan 1977, Linet 1977); the
equation may no longer contain a large parameter and in general will have four
turning points. Although in principle it would be possible to match the solutions in the
five regions, these problems together with the complexity of the differential equations
for the geodesics give rise to great difficulties in any further work in this direction.
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Non-linear wave equations in a curved background space

P M Radmore and G Stephenson

Department of Mathematics, Imperial College, London, UK
Received 9 May 1978

Abstract. Derrick’s theorem concerning the existence of soliton-like solutions of non-
linear scalar wave equations in Minkowski space is extended to the curved background
space exterior to a charged, non-rotating black hole.

In a recent series of papers (Rowan and Stephenson, 1976a, b, 1977, Rowan 1977,
Radmore 1978) solutions of the Klein—-Gordon scalar wave equation in curved back-
ground spaces were obtained using Liouville-Green techniques. These solutions were
related to the infall of baryons into black holes. We now consider whether it is
possible to have soliton-like solutions of the non-linear Klein—-Gordon equation
containing self-interaction terms in the space exterior to a charged, non-rotating black
hole as described by the Reissner—Nordstrdm metric. It is well-known (Derrick 1964)
that if @ is a scalar field in one time and D space dimensions satisfying the non-linear
equation
3’®

7V e=-3f(®) (1)

derivable from the variational principle

P J [(@® /31— (VDY ~ f(@)]d’rdt=0 )

then for D =2 and f(®)=0 the only non-singular time-independent solutions are the
vacuum (or ground) states for which f(®)=0. This result, however, was established
only in Minkowski space and we now extend this work to the space exterior to a
non-rotating black hole of mass m and charge ¢ defined by the metric

ds*= (1 _._rz_*_e ) dr*— (1 —:—'B+e ) dr®—r* d6*—r”sin® 6 d¢’. 3
r r
We first write (1) in covariant form as
1 a ( /_' ik a(p)
\V-gg*—)=—1f @) CY
V=g ax’ ax 2
which arises from the variational principle
P 9P
s [ (542 2 pia) V=g x - ©)

0305-4770/78/0007-9149501.00 (© 1978 The Institute of Physics L149
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Using (3) and taking & to be a function of r only, we obtain from (4) the radial

equation

rli((r —-2mr+e )"—) 1 (@)

In this case the variational principle (5) is equivalent to
8E =0,

where the energy E of the @ field is given by

"+

E=4n r [(r2—2mr+e2)(%?)2+f(d))r2] dr

(6)

™

@

and where r, = m +v (m*=e?) (e2 < m?) is the event horizon of the black hole.

Writing

® ddy2
Il=[ (r2—2mr+e2)(—dT) dr

"+

and

L= r f(®)* dr

+

so that
E=47(I,+1,)

we must require that I; and I, converge.
We now define

Do (r)=D(ar),

where « is an arbitrary constant and

E,=4x J;w ((r2 —2mr +e2)(d§im)2 +f(fI).,)r2) dr

+

Then on changing the variable of integration from r to ar we have

f_;_[,, (r*=2mar +e*dA— (99) dr +L’+f(q))

Differentiation of (14) with respect to a gives

1d g o 1 2 «©
1 4E =J- (—2mr+2e2a‘)-(2) dr+J (r2—2mar+e2a2)(

47 da er s .,

+[ o)~y ar-E ray

r=ar,

so that

1 d'E,

I =—1,-3L+I;—rf(®)

a=1

r=ry

€)

(10)

(11)

(12)

(13)

(14)

&) o

(15)

(16)
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where

L= r (=2mr+2¢* )(d‘f) dr. a7)
Now from (7) we must have

T =0 (18)
which gives from (16)

3o=-L+1— ) (19)

Similarly, differentiating (14) twice with respect to « and setting « = 1 we obtain

1 d&°E,

— 5 =L,-2L+21
47 da” a=1 ¢ 3 !

¢ do

+r.(2mr.—2e )(dr> —ri[f'(‘b)d—] (20)
where

14=J 2e2(d—) dr. @1)

- dr
Now using (19) we eliminate I, from (20) to get
1 d&°E, dd\2 dd
L= =14+213—211+r+(2mr+—2e2)(—) —rs [f’(‘b)——] : (22)

477 da a=1 dr r=ry dr r=ry

From (6) we have

do 4(r+ m)(dd
@ —] (& ) 23
[f( )dr rer. ri dr/ =1, (23)
and substitution of (23) into (22) leads to
i ddy?
L dEl a2l —2r(mr—e )( ) . (24)
da a=1 dr r=r,
Finally, inserting the expressions for I}, Is and I, from (9), (17) and (21), equation (24)
becomes
2 o , dq—)
817 ‘Zf G=I=L (;:fr—rz)(‘:1 ) dr—ro(mre—e )( r) D
A necessary condition for the solution of (6) to be stable is
d-Ei' =0 (26)
da” a=1
which from (25) is
x 2 ddy2
J (2e*—r?) (d—(-b—> dr—r+(mr+—ez)(—) =0. 27)
d]' dr r=r,

T+
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We can now establish a general result. If f(®)= 0 then from (10)

L=0. (28)
We also have from (9) and (17)

Ii=0, I;<0. (29)
On substituting (28) and (29) into (19) we see that we must have (since f(®)=0)

Li=L=f(®)=0 30

giving that the only solutions of (6) are those where @ is a constant C satisfying
f(C)=0. :
We now consider two special cases. Firstly, suppose that
LA(@)=AD>+p D, A, p constant. (31)

Since then f(®)=3A®*+ 1 *®? is non-negative, (30) gives that (6) has only the trivial
solution ® = 0. Secondly, suppose that

f (@)=AD*—p"® (32)
which is the form of current interest in gauge theories. Then again

f@)=4A[®°— /1) (33)
is non-negative. The only solutions of (6) are therefore the vacuum states

®=+u/VA. (34)

For compact spatial topologies there may well exist non-trivial stable vacuum solu-
tions (Avis and Isham 1978).

Finally, if no restriction is made on the sign of f(®), then we may have non-
constant, finite energy solutions of (6). If (27) is to hold for such solutions, we must
have 2e®—r*> 0 for some part of the range r, < r < o0 since the second term in (27) is
non-positive. This gives v2e >r, or

m?>e?>5m’. (35)

In particular (35) shows that there will be no such solutions in a Schwarzschild
background space.

The authors are grateful to Dr C J Isham for helpful discussions.
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The Schrodinger equation with an anharmonic
oscillator potential

P M Radmore
Department of Mathematics, Imperial College, London, UK.

Received 4 January 1979

Abstract. The Liouville-Green uniform asymptotic method is used to obtain approximate
eigenvalues and eigenfunctions of the one-dimensional Schrodinger equation with an
anharmonic oscillator potential. The term neglected in the basic differential equation, in
accordance with the method, is studied in some detail.

1. Introduction

In a recent paper (Stephenson 1977), the Liouville-Green technique was used to obtain
the eigenvalues of the Schrodinger equation with a radial Gaussian potential. Recent
work on the anharmonic oscillator (e.g. Gillespie 1976, Fung et al 1978, Banerijee et al
1978) has led to computation and comparison of the eigenvalues of the Schrodinger
equation. In view of the fact that the Liouville-Green technique and other so-called
semi-classical methods are not as widely applied as they might be (Berry and Mount
1972), and of the importance of the anharmonic oscillator potential in nuclear struc-
ture, quantum chemistry and quark confinement, we now use the same method for this
potential. The eigenvalues obtained are compared with those found by direct methods.

2. The basic transformation

Setting 2m =h =1, the one-dimensional Schrodinger equation with an anharmonic
oscillator potential V =x*+x*is
dz
—if= (—E+x*+x%, 2.1
dx
where E is the energy and the boundary conditions are ¢(00) = ¢y(—00) =0. We make
the Liouville-Green transformation

x=x(8), v(x)=(£)*G(&), 2.2
where primes denote differentiation with respect to x, so that (2.1) becomes

d*G/dg* = (P(x)/ € +Ax)G, (2.3)
where

P(x)=x*+x*-E (2.4)

0305-4470/80/010173+07501.00 (© 1980 The Institute of Physics 173
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and
A(x)=¢"/26°~3¢7/4¢". (25)
When E is positive, P(x) has two zeros x = £x where |
xo={[~1+(1+4E)"?)/2}'/?, | (2.6)

these being the classical turning points.

The Liouville-Green technique consists in choosing £(x) so that A(x) is a small
bounded function and (2.3), with A(x) neglected, is soluble in terms of known functions.
Two ways of achieving this will be presented. First, since (2.1) has two turning points,
we may try to choose £(x) so that, after neglecting A(x), (2.3) becomes the standard
two-turning-point equation, namely the Weber equation

G/ =(£*/4-))G, o 2.7)

the solutions of which are the parabolic cylinder functions, where A is a parameter.
Alternatively, since P(x) depends only on x?, the wavefunctions ¢ (x) will be either even
or odd functions and we can consider the problem for x =0, applying the additional
boundary condition that either ¢(0) =0 or ¢'(0)=0. In this case, since P(x) has only
one zero for x =0, we may try to choose £(x) so that (2.3) becomes the Airy equation

&*G/dE* = (£-a)G, ‘ (2.8)

after neglecting A(x), where a is a parameter to be determined from the boundary
conditions. . .
Both approaches lead to approximate eigenvalues and eigenfunctions (Olver 1974).

3. The Weber equaﬁon method

With the chdice
£%(£2/4—A)=P(x), (3.1)

(2.3) becomes the Weber equation (2.7), if we neglect A(x). Assuming for the moment
that this is justified, we find by integration of (3.1) that for x = x,,

16(£2— 402 =20 In|¢+(£2—40) Y+ 21 In(2VA) =2 J P)" ds, (3.2)

X0
while between the turning points

£\ 2 --1_‘5__= x_ 1/2
Z(@A=£)"2+ 21 sin (2 JX) 2]0( P2 at, (3.3)

The constants of integration have been chosen so that £ =0 when x =0 and £ = £2VA
correspond to x = =£xp. Putting x = xo in (3.3) we obtain
*g

A;r=2j (E-—rHY2 qs, (3.4)

0]
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The boundary conditions ¥ (c0) = ¢/(—c0) = 0 correspond to G(0) = G(—e0) =0 and
bounded solutions of the Weber equation satisfying these conditions exist only if

A=n+3, (3.5)
where n=0,1,2,....
Substituting (3.5) into (3.4) gives

—’2-"(n +4 =J (E-12—rHY2 qy, (3.6)

0

which is the Bohr-Sommerfeld quantisation formula, on noticing that

Xo XO
J (E—-1?~rH'? dt=%J (E-F—rH"?dr. (3.7)
(¢] —xp
Using (3.6), the eigenvalues have been computed and in table 1 are compared with
accurate values calculated by Banerjee et al (1978) using scaled bases. The two sets of
values are in close agreement, the accuracy increasing with increasing n.

Table 1. Eigenvalues computed using equation (3.6) are compared with accurate values
calculated by Banerjee et al (1978) using scaled bases.

n Eigenvalue Accurate Approximate
eigenvalue percentage error
0 1.2508 1-3924 10-17
1 4.5926 4-6488 121
2 8-6130 8-6550 0-49
3 13-1231 13-1568 0-26
4 18-0290 18:0576 0-16
5 23-2725 232974 0-11
6 28-8130 28-8353 0-077
7 346206 34-6408 0-058
8 40-6717 40-6904 0-046
9 46-9477 46-9650 0-037
10 53-4329 53-4491 0-03
20 127-6076 127-6178 0-008
30 214-7721 214:7797 0-0035
40 311-8254 311-8315 0-002
50 417-0512 417-0563 0-0012
100 1035-5422 1035-5442 0-0002

We now examine the neglected term A(x). From (2.4) and (3.1) we have
¢ =[(-E+x>+x%)/(e*14- )12, (3.8

from which &’ and £ can be calculated in terms of x and £ and, using (2.5), A(x) can be
written out explicitly as

_ (3£°+81)
AR =GaeTa—1)

At the turning points, although both terms in (3.9) diverge, we can show that A(x) tends
to a finite limit, as follows:

[2E +(12E+3)x*+6x* +8x%]
4(—E+x*+x% '

—(£%/4-2) (3.9)
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Using L'Hépital’s rule in (3.8), we have

L,= kglo &= (2(—0\—7_;45—8) 1/3. (3.10)
By differentiation of (3.8) and use of L'Hdpital’s rule, we find
and

L= lim ¢~ (48x0VA —241;515%3 —9VALIL) (5.12)

Lj, L, and L; are non-zero and finite so that by (2.5), A(x) tends to a finite limit given by

. L 2
lim A(x) L 3L

Bm 32 3L (3.13)

The values of A(x) have been computed by first finding £ for a given x from (3.2) or
(3.3) and then substituting in (3.9), with the value at the turning point given by (3.13).
The results are shown in figures 1 and 2 for selected values of # and indicate that A(x)
attains its absolute maximum at x = 0, this value decreasing with increasing n, and that
A(x) is a small, bounded, slowly varying function.

008

Alx)

Figure 1. A(x) against x, forn=0,1, 2. Figure 2. A(x) against x, for n =5, 10.

4, The Airy equation method

Here we consider x =0, and with the choice

¢%(¢—a)=P(x), @.1)
(2.3) becomes the Airy equation (2.8) on neglecting A(x). We then find by integration
of (4.1) that for x = xo,

%(f—a)3/2=r (P@)" ds, (4.2)

X0
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the constant of integration being chosen so that x = x, corresponds to £=a. For
0=<x=<xo, we have

ta¥ 3= | (-Pu)" 4 4.3)
0
where x =0 corresponds to ¢ =0. Substituting x = x; into (4.3), we obtain
2a°%= J (E—-1*—1%"24r. (4.4)
0

The required solution of (2.8) is the Airy function Ai(£—a), since this satisfies the
boundary condition G(c0)=0. We can now find the parameter a from the additional
condition that either G'(0) =0 or G(0) =0 corresponding to even and odd wavefunc-
tions respectively, since this condition implies that either Ai'(—a)=0 or Ai(—a)=0.
Hence —a is the position of either a turning point or a zero of the Airy function Ai. The
values of a obtained from Abramowitz and Stegun (1964, p 478) were used to compute
the eigenvalues using (4.4). The results are shown in table 2 and compare favourably
with accurate values.

Table 2. Values of ¢ obtained from Abramowitz and Stegun (1964) were used to compute
the eigenvalues using equation (4.4).

a from a from Accurate

n Ai'(-a)=0 Ai(—a)=0 Eigenvalue eigenvalue
0 1-01 879 1-0706 1-3924
1 2:33811 4-6573 4-6488
2 3.24 820 8-5471 8:6550
3 4-08795 13-1605 13:1568
4 4-82010 17-9849 18:0576
5 5-52056 23-3000 23-2974
6 6-16331 28-7788 28-8353
7 6:78671 34.6428 34-6408
8 7:37218 40-6433 40-6904
9 7-94413 46-9666 46-9650
10 8-48 849 53-4084 53-4491
11 9:02 265 60-1310 60-1295
12 9:53 545 66-9589 66-9950
13 10-04 017 74-0371 74-0359
14 10-52 766 81:2108 81-2435
15 11-00852 88-6115 88-6103
16 11-47 506 96-0998 96-1296
17 11-93 602 103-7966 103-7953
18 12-38 479 111-5743 111-6018
19 12-82 878 119-5454 119-5442

The connection between (3.6) and (4.4) can be seen by noting that the leading order
term in the asymptotic expansion of a is

a~[rn+)1"? (4.5)

where n =0, 1,2, ... (see Abramowitz and Stegun p 450).
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The neglected term A(x) in this case is.given by

A= (e )[2E+(12E+3)x2+6x4+8x6]
0)=Tge—ayp ¥~ ¢ A—E++x) ’

(4.6)

and we can again show that A(x) tends to a finite limit at the turning point x = xo. Using
the results

K= lim & =(2xo+4x3)"?, (4.7)
(241243
o= i ¢ =S5 “8
. 1" 12 2 ]
K3=lir£10 £ =7K;{_(2xo—K1Kg), . 4.9)
we obtain from (2.5)
xliEO Alx)= Eg%(léxo —15K,K3). (4.10)

The results of computing A(x) for selected values of a are shown in figures 3 and 4.

n=1 oM
0 1 X 2
=
P n=0
K
<J
-01
-001
Figure 3. A(x) against x, for selected values of Figure 4. A(x) against x, for selected values of
a (n=0,1). . a(n=2,3,4).

5. Discassion

The method presented here depends on the initial choice of £(x). Consider for example
the Weber equation method. The exact relation between £ and x is given by

e ”2
(%§2_,\)_£QC_).-—_§_._§£ (5.1)

and on neglecting the right-hand side, we obtain (3.1). The next approximation would
then be )

G2 ~A)—P(x)/ £*=A(x(£), - (5.2)
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from which we see that
Xo &0
[Py = "0 -l A2 dg (5.3)
[s] 0

where & is given by
A —3£5+A(x(&)) =0. (5.4)

Except for the case n =0, A(x) is negative at the turning point x = x, (corresponding to
&= 2\/;\-), so that §0<2\/;\-. Hence an upper bound for the right-hand side of (5.3) is

WA +A0)3, (5.5)

which, from (5.3), gives an upper bound for the eigenvalues in this approximation. For
upper and lower bounds derived using the WKB approximation, see Birx and Houk
19717.

The approximate eigenfunctions follow from (2.7) or (2.8) and the transformation
(2.2).

A wide class of potentials can be treated in a similar manner, for example the
interaction of the type Ax?/(1 +gx?) (see Mitra 1978).
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