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SUMMARY  

The metal-forming processes basically involve large amounts 

of plastic deformation; and, due to the complexities of plasticity, the 

exact analysis of a process is unfeasible in most of the cases. 

In this work, finite element techniques, based on the rigid-

plastic behaviour assumption, are used in an attempt to elucidate the 

mechanics of various metal forming processes. 

The formulations - penalty function and velocity/pressure - 

are presented in detail and implemented in the form of computer 

programs written in FORTRAN IV. 

Assessment of the formulations is carried out by analyzing 

a number of conventional extrusion processes. 

The penalty function formulation is then employed to 

analyze the detailed mechanics of the hydrostatic extrusion of copper-

covered aluminium rod. Results are compared with experimental evidence 

obtained using an existing rig. 

The finite element techniques are then extended to deal with 

non-steady state problems and are employed to analyze simple upsetting 

and a simple open extrusion-forging process. 

The thesis concludes with suggestions for extending the 

theoretical models to other metal forming problems. 
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CHAPTER 1  

INTRODUCTION  



	

1.1 	General  

The working of metals is at least as old as recorded 

history; the fabrication of objects out of iron goes back more than 

3,000 years, and was extremely important for human society, in peace 

as well as in war. Forging and hammering were known and well-

developed by 1500 A.D. Extrusion and drawing of sheet and tube, 

because of their dependence upon more energy requirements than the 

former processes, were the result of nineteenth century innovation. 

Development of the different processes was initially 

dependent on accumulated experience and bold experiment and, therefore, 

fell within the realm of craft rather than science. 

The origins of the mathematical theory of plasticity are, 

within this time scale, relatively recent and can be traced back to 

Tresca, 1864, who first postulated a yield condition for the continuum 

problem. Theoretical developments have since then contributed to the 

transition from craft to technology. 

	

1.2 	Analysis of Metal Forming Processes  

The analysis of metal forming has been traditionally 

concerned with the energy requirements of any specific process. Indeed, 

the majority of the analytical tools developed to study such processes 

are mainly directed towards calculation of the forces required to carry 

out a specific deformation. 

However, in many practical situations the mode of deformation, 

together with the associated strain rates and temperature distribution, 

are of more interest than the actual forces required. Without such 

stress and deformation analysis, it would be necessary to try to make 

deductions from properties of the process as a whole. Because these 

comprise averages over a spacial stress and strain distribution, which 

• can be far from uniform, it is unlikely that criteria embodying any 



precision can be deduced in this way. 

The calculation of stresses and strains occurring in a 

component during any forming process is confronted by major mathematical 

difficulties. In handling problems of actual situations a straight 

solution of the theoretical plasticity equations can only be obtained 

by greatly simplifying the presentation of the problem. Solutions 

obtained by such simplifying methods are the so-called "elementary 

theory", the slip-line theory and the main-line theory. Fig. 1.1 gives 

a survey of the possible approximation methods used in tackling 

theoretical problems of plasticity in metal forming. 

The slip-line field theory has provided a powerful technique 

for the analysis of metal working problems in terms of deformation and 

local stress distribution, as well as overall forces. The main draw-

back of this theory is that detailed material properties cannot be 

included directly in the theoretical solutions. 

Most of the other analytical tools require, in general, a 

closed form solution. Hence, there are a number of approximations 

associated with these methods which render them inappropriate where 

accurate analysis is required. They are also less flexible in terms 

of introducing friction and the work-hardening properties of the 

material. 

With the arrival of computers as an everyday tool, it is 

becoming no longer necessary to deal with closed solutions only. The 

present trend, in common with most other fields of engineering, is 

the application of numerical techniques to the analysis of metal 

forming problems, trying to avoid as many simplifications as possible. 

These methods appear to be highly complex and unapproachable, mainly 

due to the "black-box" attitude with which engineers tend to regard 

computer based techniques. However, behind the relatively complex 

computer techniques necessary for the efficient implementation of the 



methods, the theoretical principles are conceptually logicj`and relatively 

easy to understand. 

It is important to point out that numerical methods in no 

way outdate the more traditional techniques. On the contrary, it is 

important that the analyst bears in mind the whole spectrum of methods 

available. In that way, the danger of wasting valuable computer time 

in seeking a sophisticated solution when a simpler one is more than 

adequate, can be more easily avoided. 

Quantities such as forming strength and forming efficiency 

can be predicted sufficiently well by the methods of upper and lower 

bounds (limit analysis). On the other hand, strains and stresses, as 

a rule, can only be calculated by means of numerical solutions. 

1.3 	Scope of the Work  

The initial aim of this work was to study the extrusion of 

axisymmetrical bi-metallic rods, with special emphasis on the strain 

and stress fields developed within the deforming region. 

It soon became clear that the use of numerical methods was 

the best suited tool for obtaining the required information. Among 

the existing methods the finite element method (FEM) figures 

prominently as a most efficient engineering tool of analysis. For 

elastic-plastic problems with relatively large plastic deformation, the 

FEM has proved useful*. However, despite its numerous advantages, the 

elasto-plastic FEM has severe drawbacks in terms of computation for 

the analyses of metal forming processes. 

In an attempt to overcome these drawbacks, while keeping the 

* 	A detailed review of the subject is given in Chapter 4. 



advantages of the FEM, new formulations have been derived. These 

formulations take advantage of the assumption of the rigid-plastic 

behaviour of materials, since plastic strains usually outweigh elastic 

strains in most of the metal forming processes. This assumption allows 

larger increments of deformation, reduces computational time and still 

permits reasonable accuracies of solutions required for the analysis. 

These rigid-plastic formulations were the ones chosen for 

this work, in specifically the "matrix method" of Lee and KobayasLi(l.l) 

and the "penalty function method" developed by Zienkiewicz and co-

workers(1.2)
. 

The decision to use FEM changed the character of the work, 

since it became necessary to develop the pertinent formulation and 

the corresponding computer programs. 

These programs have to be tested against known solutions. 

Therefore, a number of extrusion problems have been tackled in order 

to assess the formulations and the techniques developed to include the 

effects involving the work-hardening characteristics of the material 

and the boundary conditions. 

Once the theoretical analysis had been properly tested it 

was applied to the problem of extrusion of bi-metallic rods with the 

aim of obtaining a numerical description of the stress and strain 

fields in the deforming region. Also, experimental work was carried 

out to provide supporting evidence to test the theoretical analysis. 

It is hoped that the information provided by the numerical 

model of the process will eventually lead to a better understanding 

of the mechanisms of the joint deformation of dissimilar metals. 

An extension of the method to non-steady problems seems 

natural. This can be done by modifying the programs accordingly. 

Again, the numerical model needs to be tested, therefore, simple 

upsetting problems have been tackled and the numerical solutions 



compared with available solutions. 

The method of analysis has then been applied to simple open 

extrusion-forging with the aim of providing information regarding the 

deformation characteristics of the process under various conditions. 

As with any FEM technique, the programs and formulation 

developed here are not restricted to the problems considered and it is 

hoped that they can be used to analyse other metal forming processes, 

such as rolling, asymmetric extrusion, etc. 
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CHAPTER 2 	, 

BASIC CONCEPTS  



	

2.1 	Introduction  

This chapter is a brief review of the various concepts and 

techniques to be used throughout this work. The various properties of 

stress and strain/strain rate, stress and strain/strain rate constitutive 

relations and yield conditions as applied to rigid-plastic bodies, are 

reviewed. Also, variational techniques and the finite element method 

are summarized. The latter is more fully discussed in a subsequent 

chapter in the context of the specific problems studied. 

	

2.2 	General Considerations on Solid Mechanics  

The theories of elasticity and plasticity deal with methods 

of calculating stress and strain in most engineering solids subjected 

to deformation, and not, as a literal interpretation suggests, with 

the physical explanation of the process. 

Both theories, as applied to metals and alloys, are based 

on experimental studies of the relation between strain and stress in a 

polycrystalline aggregate under simple loading condition. The theory 

of plasticity, in particular, takes as its starting point certain 

experimental observations of the macroscopic behaviour of a plastic 

solid in uniform states of combined stress. The theory sets out to. 

attain two main objectives: first, to construct explicit relations 

between stress and strain agreeing with the experimental evidence and 

as general as need be; and second, to develop mathematical techniques 

for calculating the non-uniform distribution of stress and strain 

present in bodies permanently distorted. 

The theory of plasticity is especially concerned with 

technological forming process such as extrusion, drawing and rolling, 

to name but a few. The purpose of the analysis is often to determine 

external loads, power consumption and the non-uniform strain and 

hardening due to cold working. One challenging problem of great 



interest in metal working processes which is very difficult to solve 

is that of determining the distribution of residual stress remaining 

in a body which has suffered plastic deformation. One of the 

difficulties in applying the theory to practical problems is that 

technical materials under loads in the plastic range are dependent on 

their structure. The complete analysis of anisotropic, inhomogeneous 

solids is too complex to be solved "exactly" by present methods. Even 

when a material is initially isotropic, the moment it has undergone 

plastic deformation it becomes anisotropic. So, it must always be 

borne in mind that, although one can often go a long way assuming 

idealized solids, the metal structure will intrude sooner or later and 

lead to behaviour different from that predicted. 

It is needless to say that, even in those cases where such 

difficulties can be overcome and solutions obtained, such solutions do 

not necessarily represent the true stresses and strains. 

The general relation between stress and strain must contain:- 

1. Elastic stress-strain relation (generally Hooke's law). 

2. Yield criterion, which indicates when yielding starts under 

a complex state of stress. 

3. The plastic stress-strain or incremental stress-strain 

relations. 

This last requirement separates the mathematical theories 

of plasticity into two types: deformation theories relate the 

stresses to the strain while flow theories relate the stress to strain 

rates. Deformation theories utilize an averaging process over the 

entire deformation history and relate the total plastic strain to the 
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final strain. This type of theory is only valid when the material is 

subjected to proportional loading, but is generally considered 

unsuitable to describe the complete plastic behaviour of a metal(2'1). 

Flow theories consider a succession of infinitesimal 

increments of distortion in which the instantaneous stress is related to 

the increment of strain rate. Because of this incremental nature of 

the theory, it is better able to describe large plastic deformations. 

2.3 	Stress  

The state of stress at any point (in cartesian coordinates) 

can be defined by 9 components of the stress tensor (Cauchy's stress 

tensor)
(2'2):- 

lCxx Txy Txz 
1 

a..  = TYx ayy Tyz (2.1) 

zx Tzy azz 

with the condition aij  = aji  and where 	denotes normal stresses and 

aik  shear stresses. 

For an isotropic plastic material which is defined by the 

property that the relation between stress and deformation would not 

change if the body is rotated under a system of stress fixed in space, 

a "hydrostatic" state of stress:- 

aij 
= am sij (2.2) 

where:- 



J2 =  

J3 = DET (e.) 

Sij  = 
if i =j 

0 if i # j 

11 

(2.3) 

denotes the Kronecker delta, would produce a volume dilation only(2.3). 

Therefore, the stress tensor may be split off according to:- 

oij - am 
(3.. (2.4) 

where:- 

am = 	6ii 
1 

Moreover, because am = 0, the remaining "stress deviator" would leave 

the volume unchanged and only deform the shape of the body. 

Any tensor has invariants, that is, scalar quantities 

formed from its components and independent of the selection of axes. 

The principal invariants of the 
aij 

 tensor are given by the 

expressions:-  

J' 
1 	oi i 

= 0 

(2.5) 

At each point in the body the stresses have to satisfy the equilibrium 

equations:- 
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at V 

(2.6) 

at S 

acri  

ax. + bj  = 0 

and:- 

oi  j  ni  = TJ. 

where S denotes the surface, V the interior (say volume) of the body 

in question, ni  is a unit vector along the outer normal to the surface, 

bj  is the body force acting in the direction j and T. is a specified 

surface traction. 

For the first Equation (2.6) to hold, it has to be assumed 

that the state of stress depends continuously and in a continuously 

differentiable manner on the space coordinates x.
(2.2). 

2.4 	Strain-Rate, Strain  

In a Cartesian frame of referenc 	the normal strain rates 

are defined as:- 

Du
x 
	

▪ 	

au 	

• 	

8u 
z  

cx = 8x 	ey - 8y 	£z = āz 

and the (engineering) strain rates are:- 

Du 	au x 	y  

Yxy = ay + āx 

• Buy  au z  
Yyz = az + Dy 

• Duz  aux  

Yzx - 8x + āz 

(2.7) 

(2.8) 
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The strain rate tensor is then defined as:- 

. 	1  raui  auil 
Eij = ! axi  + axi  l (2.9) 

• 
where ui  = x. (t) are the point velocities of the field of moving 

particle. Therefore, ui  is assumed to be continuous and continuously 

differentiable with respect to xi  except for some isolated interfaces 

of discontinuity across which the velocity vector may experience a 

jump. It will be noted from Equations (2.8) and (2.9) that the 

engineering shear strain rate is double the tensor shear strain rate. 

Strain rates vanish if and only if the volume element moves 

as a rigid body and, as the stresses, they form a symmetrical tensor. 

The three principal invariants of the strain rate tensor Eii  

are:- 

J1 
= Eii 

2 	7 Eii Ejj 	2 Eij Eij 

J3  = det (Eii) 

(2.10) 

The strain rate tensor can also be expressed in terms of a deviatoric 

component eij  and a hydrostatic one Em  Su  as:- 

• 
Eii = ei  j  +Em  6.. (2.11) 

where:- 
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• 1 
Ern = Ei i (2.12) 

Note that in metal plasticity, one commonly assumes "incompressibility" 

of the material which means:- 

(2.13) 

When the strains are small, as is the case in elasticity, a 

strain tensor 
EiJ 

 of the same form as Equation (2.9) can be introduced. 

However, if the deformation becomes finite, this would cause the well-

known trouble concerning non-uniqueness and ā different formulation is 

then necessary
(2.4). 

A basic assumption of the infinitesimal elastic-plastic 

theory is that strain rate components can be expressed in terms of 

their elastic and plastic components as:- 

EiJ 
	- E.. + E. (2.14) 

For the cases where the plastic component is large compared with the 

elastic component, it is usually assumed that elastic behaviour is non-

existent, thus simplifying the formulation to:- 

• 

EiJ - EiJ - eiJ 
(2.15) 

From Equation (2.13) and using Equation (2.15) it is possible then to 

define a tensor 	with its three invariants:- 



I 1  == ei i 	0 
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(2.16) 
 • I 2  = 
2 eiJ eiJ 

I3  = det (ein ) 

2.5 	Mathematical Theory of Plasticity  

2.5.1 	Yield Function  

In the mathematical theory of plasticity a basic assumption 

is made in that the material is homogeneous with an isotropic rule of 

hardening. It is assumed that there exists a scalar function, called 

a yield function or loading function, and denoted by f (c 1 	epi, k), 

which depends on the state of stress and strain and the history of 

loading, and which characterizes the yielding of the material as follows:- 

f<0 no change in plastic deformation 	 (2.17) 

f=0 change in plastic deformation 	 (2.18) 

No meaning is associated with f > 0. The parameter k is called a work-

hardening parameter, and it is assumed to depend on the plastic 

deformation history of the material. 

Assuming an isotropic behaviour of the material before and 

during deformation, the yield condition f depends only on the invariants 

of stress, strain and strain history(2.2). If the yield function f 

is an isotropic function of stress alone, then the theory of plasticity 

is called an "isotropic stress" theory. In such theories:- 



( ii 
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f (aid ) = F (J1, J2, J) - c 	 (2.19) 

Furthermore, if the hydrostatic stress is assumed not to influence 

yielding, Equation (2.19) can be expressed independent of J and in 

terms of the invariants of the deviatoric stress tensor:- 

f (air) = F (JL, J3) - c 	 (2.20) 

where F does not depend on the strain history, which only enters 

through the parameter c. 

The two better known yield criteria, Von Mises'(2'5)  and 

Tresca' s(2'6)  fall within this category. 

(i) 	Von Mises Yield Criterion  

This is the simplest form of Equation (2.20) and is given by:- 

f=J'-k2 =0 
2 

or:- 

f=.aij ai• - k2 =0 (2.21) 

where k is a scalar function depending on plastic strain history. 

Despite the fact that physical interpretations have been given for 

this criterion, based on the shear strain energy, they should be 

merely regarded as formal (2.7). 

Tresca Yield Criterion  

In terms of principal stresses a , a , a , where a > a > 
1 	2 	3 	 1 	2 
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Q , the Tresca yield criterion is expressed by:-
3 

f = a - a - 2k = 0 
1 	3 

This criterion differs from the previous one in that it takes no 

(2.22) 

account of a and the sign of the stresses has to be taken into 
2 

consideration. 

Experiments give, in general, little support to the hypo-

thesis of isotropic hardening, necessary for the validity of this 

criterion(2.8,2.9). The permanent preference for this hypothesis is 

due to its mathematical simplicity and to the fact that, provided 

unloading is not performed during the process of deformation, the 

results are in very good agreement with experiments(2.10). 

2.5.2 	Equivalent Strain and Equivalent Stress  

It is not always possible to determine experimentally the 

stress-strain relations under conditions similar to the analysis. Use 

then has to be made of an "effective" stress-strain relationship, and 

it should be remembered that such relationships cannot, in general, 

take account of anisotropy or the Bauschinger effect. 

The equivalent stress c is defined by the expression(2
'1):- 

= ,I3J2 /13 
 • 6iJ iJ 

(2.23) 

The equivalent increment of strain dĒ is defined, using the expression 

of plastic work, as:- 

di- = ✓ ds4J 
dcpJ 

(2.24) 
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Drucker(
2.11) 

 has proved that the expression (2.24) is reasonably 

correct for any yield function of the form f (J'
2
, J'

3
) = 0. 

2.6 	Stress-Strain, Stress-Strain Rate Relation  

2.6.1 	Elastic Continuum  

For a linear isotropic elastic solid, the stress-strain 

relations are written as:- 

QX = 2G ex  

Qy = 2G ey  

QZ=2Gez  

(2.25) 
Txy  = G Yxy  

Tzx 	G Yzx 

Tyz  = G yyz  

and:- 

(a
x 
 +ay +aZ) = 3K + Ey  + EZ) (2.26) 

where K is related to the Young's modulus (E) and the Poisson's ratio 

(v) by:- 

E = 2G (1 + v) = 3K (1 - 2v) 	 (2.27) 

and G is the shear modulus. 

For incompressible viscous fluid, similar relations between 

stress and strain rate can be written, using u (coefficient of 
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viscosity) instead of G. Viscosity p is a constant for Newtonian 

fluids, but for a non-Newtonian fluid is a function of position, 

velocity gradient and temperature. 

2.6.2 	Plastic Stress-Strain Relationships  

For a material that behaves according to Drucker's 

postulate
(2.11 	2.13)

, the general expression for the plastic stress- 

strain relationship is:- 

	

d e. 	
af 	af  

ei~ - 	3Q1. 	3QRR dcrk (2.28) 

where Q is a scalar function depending on stresses, strains and 

loading history. 

For a material that hardens isotropically, Equation (2.28) 

can be written as:- 

deps = Q aQf df
ij 

or alternatively:- 

p _ af 
aaij (2.29) 

where X = Q . df. 

If Equation (2.21) is used as the yield function, Equation 

(2.29) becomes:- 

dee. = Qi dA (2.30) 
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or in terms of strain rates:- 

c
ij  = A e. ij (2.31) 

where:- 

A = 
dA 

Equations (2.30) and (2.31) are known as the 1.Q,11 -thīs 

equations. The value of A can be evaluated by substituting Equation 

(2.31) in the Von Mises' yield criterion (2.21). 

The following expression is then obtained:- 

1 4.; cp = k2  
2A2  	13  

(2.32) 

or alternatively as:- 

= k2 A2 	 (2.33) 

where I is the second principal invariant of the plastic strain rate 
2 

tensor, Equations (2.16). 

Finally:- 

A= VT-  / k 
2 

and replacing this value in Equation (2.31) we obtain:- 
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. _ k 'p _ 
aiJ ir 	

k 	'p 
Ei j 	

i  . p . p  11/2 EiJ 
2 	12 ij EijJ  

(2.34) 

If the material is assumed rigid-plastic, Epi  = 
EiJ 

= eiJ and 

Equations (2.30) and (2.31) are known as the Levy-Misesequations and 

Equation (2.34) is its associated "flow rule". 

2.6.3 	Viscoplastic Behaviour  

The relations hitherto discussed are considered within the 

frame work of classical time-independent plasticity theory. Some 

attempts to describe the behaviour of materials including time effects 

assume that the main mechanical properties of the material can be 

described with a viscoplastic constitutive equation. Since the 

elastic part of the material is neglected the simplest possible model 

which may be thought of is a Bingham type constitutive equation of the 

form(2.14,2.15):_ 

Eij = Y < 0 (F)  > Da4.  (2.35) 

where F is the description of a yield surface and Q is the definition 

of a plastic potential. 

The symbol < > means that:- 

< 0 (F) > E 0 if F < 0 and < 0 (F) > _ 	(F) if F > 0 	(2.35a) 

The most common description of viscoplastic flow of metals follows 

the assumption that both the yield surface and plastic potential 

surface are identical, and that these depend only on the second stress 

invariant, i.e.:- 



e 	=y <0 (VT J' - y) > 
2 	~13 

2 
13 	 2 

(2.38) 
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F = Q = VY ✓  - Y 	 (2.36) 

where JZ = 7 aid aid and Y is the uniaxial yield stress. If the 

plastic strain rate second invariant is defined as:- 

I2 ✓  EPJ EPJ (2.37) 

the general constitutive equation can be written as:- 

or alternatively:- 

• 1 
= ei J 	aij (2.39) 

where the viscosity 1/211 is identified by:- 

-y <0 (i VI .-Y 
2v 

(2.40) 

2 

and is a function of the stress level. 

The similarity between Equation (2.39) and the relation 

between stress and strain for an isotropic elastic solid (Equations 

(2.25)) is evident. In order to write an equivalent expression in 

terms of strain rate, we note from Equations (2.36), (2.37) and (2.39) 

that:- 

(2.41) 
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Substituting in Equation (2.40) we obtain:- 

Zu = y < ( VT 2u I 2 
 - Y) 	> (2.42) 4 I 

2 

Hence:- 

I 2 = y <( f 2 u I 2 - Y) > 27— (2.42a) 
2 

from which p can be found for any strain rate function. 

For an exponential type law, Equation (2.38) takes the form:- 

cii = y  < (
VT , 	

- Y)n > 
2 	 2/ 

2 

(2.43) 

and we can evaluate p explicitly from Equation (2.42a) as:- 

 

 

(2I 1
l/n  

Y +  
ly v3-1 

 

(2.44) 

 

2., 	I 
2 

 

Ideally plastic plastic material with a fixed yield point is simply 

obtained by taking y = co and gives:- 

Y  

u  2 IT I 
2 

(2.45) 

Substituting Equation (2.45) in Equation (2.39) we obtain the stress-

strain rate relation as:- 
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Y 
Cf • = 	 E 

13 	,T I 	i j 
2 

(2.46) 

It is evident that this equation is the same as Equation (2.34), 

namely, the associated flow rule for a material obeying the Mises 

Yield criterion. 

2.7 	Variational Principles  

The calculus of variations is a branch of mathematics, 

wherein the stationary property of a function of functions, namely, a 

functional is studied. 

The calculus of variations has a wide field of application 

in mathematical physics. This is due to the fact that the problems 

encountered can be, in general, specified in two ways. In the first, 

differential equations governing the behaviour of an infinitesimal 

region are given. In the second, a variational, extremum, principle, 

valid over the whole region is postulated and the correct solution is 

one of minimizing a "functional". 

Here, we will confine ourselves to state the variational 

principles directly related to this work. A more "in-depth" discussion 

of the subject can be found in(2.16,2.1I). 

We shall consider the variational principles for a body 

comprised of rigid-plastic material under the assumption that the 

entire body is plastic and in the absence of body forces. 

The problem is defined as follows:- 

(i) 	Equilibrium equations  

a~13 

3xj 	° (2.47) 
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(ii) Yield condition  

a a = 2k2  

(iii) 	Stress-strain rate relations  

k 
6.0 	1 	

1/2 
EiJ 

2" (EkQ ekZ)  

(2.48) 

(2.49) 

(iv) Strain rate-velocity relations  

Du. 	au. 
2 Eis  - axe (2.50) 

(v) Condition of incompressibility  

Eii  = 0 
	

(2.51) 

(vi) Boundary conditions  

cri i  nj  = Fi  

ui  = U. 

on S 
1 

on S 
2 

(2.52) 

There results two variational principles
(2.16). 

 The first one, called 

Markov's principle
(2.18) 

may be stated as follows. 

Among admissible solutions which satisfy the conditions of 

compatibility and incompressibility, as well as the geometric boundary 

conditions on S , the actual solution (except perhaps for a possible 
2 

indeterminate uniform hydrostatic pressure) renders:- 
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Tr = j2- 	/-E- .
i
.-  Eij  dv - 1  Fi  u. 	ds 

1 
v 	S 

(2.53) 

an absolute minimum. 

The second principle may be stated as follows. 

Among admissible solutions which satisfy the equations of 

equilibrium and the mechanical boundary conditions on S , the actual 
1 

solution renders:- 

Trc = - 	cYj  n. 	ds 

JS 

(2.54) 

an absolute minimum. 

This is equivalent to Hill's principle(M)  of maximum 

plastic work, which states that among admissible solutions, the actual 

solution renders:- 

ci' njūi ds 
ij 

S 
2 

(2.55) 

an absolute minimum. 

2.8 	Finite Element Method  

Although the label "finite element method" first appeared 

in 1960, when it was used by Clough
(2.18) 

in a paper on plane 

elasticity problems, the ideas of finite element analysis date back 

much further. In fact, some authors can trace three different origins, 

depending on whether one is interested in the mathematics, the physics 

or the engineering applications of the method. 
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A complete history is outside the scope of this work, the 

interested reader will find that many of the excellent books available 

will fill this gap
(2.20 	2.22). 

In a continuum problem of any size the field variable 

(whether it is pressure, temperature, displacement, or some other 

quantity) possesses infinitely many values because it is a function of 

each generic point in the body or the region of the solution. The 

discretization nature of the finite element reduces the problem to one 

of a finite number of unknowns by dividing the solution region into 

elements and by expressing the unknown field variable in terms of 

assumed approximating functions within each region. 

These approximating functions are defined in terms of the 

values taken by the field variable in question at specified locations 

within the elements called nodes or nodal points. Nodes usually lie 

on the element boundaries and adjacent elements are considered to be 

connected only at these points. 

The kinds of continuum problems that we wish to solve are 

usually formulated in general terms as follows. Consider some domain 

D bounded by the surface E. Let 0 be a scalar function defined in the 

interior of D such that the behaviour of 0 in D is given.by:- 

L (0) - f = 0 	 (2.56) 

where f is a known scalar function of the independent variables and L 

is a linear or non-linear differential operator. 

The general problem is then to find the unknown function 0 

that satisfies Equation (2.56) and some associated boundary conditions 

specified on E. 

The finite element process, being one of approximation, 

will seek the solution in the approximate form:- 
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r 
0 	0 = EN. ai (2.57) 

where Ni are shape functions prescribed in terms of independent 

variables (such as the coordinates) and all or some of the parameters 

ai are unknown. The shape functions are usually defined locally for 

elements or subdomains. Therefore, Equation (2.57) can be rewritten 

for an element, using matrix notation as:- 

1 
ai 

0 : 0e = E Ni ae = ~Ni , Nj , .. 1 

aj 

= Ne ae (2.58) 

    

where i, j, m, etc. are the nodes defining the element or subdomain in 

question. 

If we assume that the field variable 0 is thus completely 

represented in the solution domain in terms of a collection of nodal 

values, the problem of finding an approximation to 0 would be solved 

once these discrete values were found. 

Clearly, the nature of the solution and the degree of 

approximation used depend upon the size and number of elements used 

and the nature of the chosen interpolation function
(2.21). 

2.8.1 	Element Equations  

These are basically four different approaches in which one 

can formulate the properties of individual elements: direct approach, 

variational principle, weighted residuals and energy balance. 

The Direct Approach  

The origin of this approach is directly traceable to the 
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direct stiffness method of structural analysis. Although this 

approach is limited in its application to relatively simple problems, 

it is the easiest to understand when meeting the method for the first 

time. 

Variational Approach  

This approach.  relies on the calculus of variations and 

involves extremizing a functional. This extends the method to problems 

with a known function or variational statements. For problems in 

solid mechanics, the functional turns out to be the potential energy, 

the complementary potential energy or some derivative of these(2.16)  

Weighted Residuals  

This is an even more versatile approach and it has its 

basis in mathematics. It begins with the governing equation of the 

problem and proceeds without relying on a functional or variational 

statement. This enables the method to attack problems without a known 

functional. 

Energy Balance  

This approach relies on the balance of thermal and/or 

mechanical energy of a system. Like the weighted residuals it 

requires no variational statement and hence broadens considerably 

the range of possible applications of the method. 

Regardless of the approach used to find the element 

properties, the solution of a continuum problem by the finite 

element method always follows an orderly step by step process. These 

steps will be succintly summarized now; they will be developed in 

detail in a following chapter. 
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(i) Idealization  

The continuum is divided into an assemblage of discrete 

elements. 

(ii) Evaluation of element characteristics  

Nodes are assigned to each element and the interpolation 

functions chosen so that the element properties can be 

evaluated with one of the four approaches just mentioned. 

(iii) Assembly and solution of the system of equations  

The properties of the overall system modelled by the network 

of elements are found by assembling all the elemental 

properties. The matrix equations so found have the same 

form as the elemental equations. Before solving this 

system of equations, they must be modified to account for 

the boundary conditions of the problem. 

2.8.2 	Numerical Integration  

Since closed form integrations are seldom possible, the use 

of numerical techniques for the integration of the expressions 

resulting from a finite element formulation becomes necessary. For 

example, in two dimensions:- 

1 	1
r  
I f (E,  n) dE do = 1E Hi Hj f (aj,  bi) 	(2.59) 

i=1 u=1 

-1-1 

where i, j are the sampling points, f (aj, bi) is the value of the 

function at a particular sampling point (aj, bi), Hi  Hj  are the 

weighting coefficients and n is the number of sampling points in one 

direction. In finite element analysis the Gauss-Legendre quadrature 
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rule is the most often used for such evaluations( 2.20). 
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EXPERIMENTAL WORK 
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3.1 	Introduction  

The general aim of the experimental work described here was 

to obtain a composite rod of copper and aluminium by means of an 

existing apparatus for conventional hydrostatic extrusion. 

The main purpose was to design an adequate composite specimen, 

suitable for being hydrostatically extruded in the available equipment, 

and to gather relevant data for the validation or otherwise of the 

theoretical model developed to describe the stress fields and 

kinematical characteristics of the process. 

	

3.2 	Experimental Equipment  

3.2.1 	Hydraulic Press  

Hydrostatic extrusion of the bi-metal specimens was carried 

out on a 250 ton Universal Avery testing machine. 

The press has two main columns which have locating holes at 

regular distances along their length. The stationary cross-head can 

be located at any of these holes and secured to the main columns by 

two shear pins. The moving cross-head is directly attached to the 

hydraulic ram which exerts the operating force in its upward stroke. 

The downward stroke is not power assisted. 

Loading and unloading is achieved by two valves located on 

the control console. There are four capacity ranges on the chart, 

and the capacity of the press is controlled by a wheel located below 

the chart (see Plate 3.1). 

3.2.2 	High Pressure Container  

The high pressure container used consists of an outer 

container with a central bore, and tapered with a 2°  included angle. 

An inner container with a bore diameter of 44.45 cm (1.75"), 279.4 mm 
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(11") long and a matching exterior, fits into the outer container. A 

thin sheet of lead is interposed between the two containers so that 

friction can be reduced. 

The material used for the container was EN3OB steel having 

an ultimate tensile strength (UTS) of 1544 MN/m2  and a tensile yield 

stress of 1389.6 MN/m2, hardened and tempered to 52 HRC. 

The bore of the container is sealed at the bottom by a plug 

which has provisions for taking the high pressure electrical leads 

out of it. 

The container is attached to a tubular support which is 

secured at its base plate to the moving cross-head of the press. A 

2 inch (50.8 mm) wide longitudinal slot is machined out of the tubular 

support; this ensures easy access to the bottom of the container base. 

Details of the apparatus are shown in Plate 3.1 and Fig. 3.1. 

3.3 	Extrusion Fluid  

The main characteristics of an appropriate extrusion fluid 

must be: (i) a good lubricant and (ii) not to "freeze" at the high 

pressures used in the process(3.1). It is worth noting that fluids 

reduce their volumes in a 30% - 50% range at the usual working 

pressures developed during hydrostatic extrusion. 

Due to the- important increase in viscosity of fluids at 

high pressures, not all lubricants are suitable for being used in 

this process. A comparative analysis of the ones more commonly used 

is presented by Lowe and Goold(3'2)  and Pugh(3'1). An illustrative 

plot relevant to fluid behaviour is presented in Fig. 3.2. 

One of the more "efficient" fluids for transmitting the 

load acting on the plunger to the whole fluid volume and to convert 

it into hydrostatic pressure, at the highest working pressures, is 

Castor Oil. This was the fluid chosen for this work. However, the 
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addition of 10% methanol was necessary to avoid "freezing". 

	

3.4 	Billet Lubricant  

All the specimens were coated with a colloidal graphite 

emulsion so as to enhance the lubrication at the billet/die interface. 

The choice of lubricant is important since it has been found that 

certain combinations of fluid and lubricant are incompatible, e.g. 

glycerine and glycol liquid with Evostik and methylethylketone(3.3). 

	

3.5 	Pressure Measurement  

The pressure in the high pressure vessel is measured by the 

change in electrical resistance of a 100 2 manganin coil made of 42 

S.W.G. wire (0.1016 mm diameter); manganin is an alloy (roughly 84% Cu, 

12% Mn, and 4% Ni) which was developed for the production of precision 

resistors. 

The coil has to be wound non-inductively and must be 

thoroughly seasoned to remove the strains that are present. The coil 

is connected as an arm of a Wheatstone bridge and the pressure changes 

are measured as changes in the output of the bridge (see Fig. 3.3). 

Any version of the Wheatstone bridge will give acceptable 

accuracy; however, most investigators use d.c. bridges since 

generally speaking they are more precise than a.c. bridges. 

The output of the bridge is fed to an Ultraviolet Recorder 

S.E. Type 3006, with a galvanometer type A-100 (0.130 mv/cm 

sensitivity). For the calibration of the recorder a calibration 

resistor is used. This resistor, when connected to the bridge, 

produces a displacement from equilibrium equivalent to the effect of 

772 MN/m2  pressure acting on the manganin coil. 

	

3.6 	Dies 

The dies used were made of K.E.A. 180 steel (12% Cr, 1.55% C) 
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hardened to 62 RC and with a yield strength of 2316 MN/m2. Two sets 

of dies were used having included angles of 90°  and 40°  and with 

(outside) exit diameters of 0.5 in (11 mm), 0.312 in (69 mm) and 

0.408 in (9 mm). 

These dies did not have the facility for their removal after 

the extrusion was completed and some difficulty was experienced in 

this connection. Plate 3.3 shows the dies used. 

3.7 	Metals and Billet Characteristics  

Commercially pure copper and aluminium were the materials 

chosen for the billets. Their chemical composition was as follows:- 

Aluminium  

99.61% Al : 0.27% Fe : 0.01% Cu : 0.11% Si : Trace of Mn 

Copper  

99.9% Cu : 0.001% Bi : 0.001 Pb 

The stress-strain curves for both materials, shown in Fig. 

3.4, were constructed with a mixture of data obtained in this work 

and that obtained by Whitfield(3.4). 

3.7.1 	Billet Preparation  

Several techniques for billet preparation are mentioned in 

the literature. Ziemek(3'5)  mentions a process employed at Kabbel 

Metale in which an aluminium rod, after being cleaned and brushed, 

is continuously wrapped with a copper strip similarly treated. This 

process employs no heat treatment. The interfacial bond is developed 
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through reduction. 

The Texas Instruments method(3'6)  uses two separate strips 

for wrap-up instead of one, with bonding taking place in two spots. 

Dion and Hagarman(3.7)  describe a method of roll bonding of 

two copper strips upon aluminium. In the method described by 

Yamaguchi et al(3.8)  welding in a reducing atmosphere, followed by 

drawing is used to bring about the bonding. An explosive cladding 

operation is described by Dalrymple and Johnson(3'9). Bedroud et al(3.10) 
 

also describe the use of implosive welding for the fabrication of mono- 

and bi-metallic arrays of rods. 

Ahmed(
3.11) 

 uses a process in which a cleaned and brushed 

aluminium rod is introduced into a copper sleeve similarly treated. A 

compressive load is applied to the aluminium billet until both 

aluminium and copper experience plastic deformation. Upon release of 

the load both core and sleeve relax elastically and since the 

relaxation of the copper is higher, the sleeve grips firmly the 

aluminium rod. Thereafter both rod and sleeve are drawn. Matsuura 

and Takase(
3'12) 

 describe a method whereby a steel rod is enclosed 

with molten aluminium. 

The method described by Alexander and Hartley(
3'13) 

 was 

chosen in this work because of its simplicity. 

The composite billets were prepared by drilling out a copper 

billet to accept a cylindrical aluminium core. The cores were 

machined to achieve a light interference fit with the copper sleeve. 

All the billets were machined with a nose tapered 40  less than the 

included angle of the dies; this, as reported by Pugh(3.1), contributes 

to the reduction of the height of the initial peak in the pressure 

characteristic and minimizes stick-slip. 

The billets were 4.75 in (99.1 mm) long and 0.875 in (19.3 mm) 

in diameter circular cross-section, terminating in a butt threaded 1 in. 
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B.S.F. A shoulder of 0.125 in (2.8 mm) was machined in the junction 

between the tapered nose and the straight shank. 

A hole was drilled on the nose of the billets and threaded 

4 in; this was used for initial sealing arrangements. 

Core diameters were 0.750 in (16.5 mm) and 0.500 in (11 mm), 

giving aluminium fractions of 0.7347 and 0.327. Fig. 3.5 shows a 

sketch of a typical specimen. 

3.8 	Experimental Procedure  

Prior to assembly both the cores and sheaths are thoroughly 

degreased and heat treated. Aluminium cores were annealed for one 

hour in air at 360°  C 	, and the copper sheaths were annealed 

for one hour in 1/2 atm of oxygen free nitrogen at 600°  C. 

After the annealing process the sheaths and cores were once again 

degreased using Methyltetradlorene and then assembled. 

The threaded butt of the sheath is wrapped with P.T.F.E. tape 

before being threaded into the damping block. This prevented the 

pressurizing fluid reaching the core sheath interface. The damping 

block was made of mild steel, 1.75 in (38.5 mm) diameter and 1.25 in 

(27.5 mm) long. This block preserved axial alignment of the billet 

and reduced the magnitude of pressure fluctuations, due to stick-slip, 

when they occurred. 

All billets were then prelubricated with a thin coating of 

D.A.G. (suspension of colloidal graphite in water). 

The specimen nose is then lapped against the die and a screw 

threaded into the nose allows the application of a small load in order 

to create an initial seal. This assembly is put (see Plate 3.4) into 

the container which has been previously filled with the pressurizing 

fluid. The container is then raised up to the point where contact is 

made with a plunger. This operation, together with the small 
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pulling load applied through the nose, creates an initial sealing. 

Once this initial sealing is obtained, the small pulling load is 

removed. 

Pressure in the container is then increased by raising the 

container further so as to allow the die to travel inside it and the 

extrudate to emerge upwards through the hollow core of the plunger. 

The high pressure so induced is recorded in the U.V. recorder. 

Extrusion was terminated when a sudden increase in the 

chamber pressure indicated that the butt had reached the die. 

The experimental results together with their theoretical 

counterparts are presented in another chapter. 
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Plate 3.2: Hydrostatic extrusion set-up. 
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CHAPTER 4  

FINITE ELEMENT ANALYSIS IN METAL FORMING  
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4.1 	Introduction  

The finite element method is now widely accepted as a very 

powerful method in stress analysis. Progress has been made on three 

fronts, all of which contribute to the strength of the method. First 

of all, a mathematical foundation of the method has now been well 

established(4'1). Secondly, the search for and development of the 

many consistent elements has given it a wide area of application. 

Finally, extension of the method to the study of non-linear behaviour 

has resulted in more realistic models. 

Here we shall be concerned with the literature in the area 

of non-linear behaviour as it applies to metal forming problems. 

	

4.2 	Review of Elastic-Plastic Formulations  

Application of the finite element method to plasticity 

problems started immediately after its success in the solution of 

linear elasticity problems. This was done resorting to various 

computational procedures, mainly, the "Thermal strain" or "Initial 

strain" approach, and the "tangent modulus" or "direct incremental 

approach". 

In the "thermal strain" approach the elastic equations of 

equilibrium were modified to compensate for the fact that the 

inelastic strains do not cause any change in stress. This idea was 

originally proposed by Mendelson and Mason(4'2)  in 1959. Soon after 

the above work was reported, Gallagher and co-workers(,4.3,4.4)  

adapted the method to the finite element method by calculating the 

so-called initial force vector. 

Subsequent applications of the method in the area of plane 

solids were made by Percy et al (4'5), Argynis et al(4'6)  and Jensen 

et al(4'7). Parallel to the development of this approach, the method 

known as the "tangent modulus" was being developed. In this approach, 
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the stress-strain relationship is adjusted in every load increment to 

take into account the history of plastic deformation. The problem 

being then treated in a piecewise linear manner. 

The equations for the "tangent modulus" approach were 

developed by Pope(4'8)  and Swedlow and Young(4'9); these authors 

being mainly concerned with structural problems. 

Marcal and King
(4.10) 

introduced a partial stiffness concept 

and applied the tangent modulus technique to the thick walled cylinder 

problem. They compared finite element solutions with known solutions 

obtained by other methods or with known experimental results. 

Although good agreement was obtained in general, the analysis 

of the deformation had to be interrupted at some stage because 

negative strains were obtained. 

Yamada et 
al(4.11,4.12) 

modified Marcal's algorithm and 

used it to predict collapse conditions in certain categories of 

problems. Again, the procedure had limited application because of the 

development of negative strains. Nevertheless, this work by Yamada 

influenced several workers and a stream of papers, using this 

particular approach, were published. Iwata et al(4.13) carried out 

the analysis of hydrostatic extrusion and obtained detailed information 

of the process. Nagamatsu et al
(4.14) 

analyzed plane strain upsetting, 

including the effect of friction. An extensive application of the 

method to metal forming problems is due to Lee and Kobayashi
(4.15 - 4.19)  

They analyzed the problems of flat punch indentation, Brinell hardness 

test, upsetting, side pressing and extrusion. They not only followed 

the path of deformation to obtain information on the development of 

the plastic zone, stress and strain distributions and geometrical 

changes of the workpiece, but also examined unloading and calculated 

the residual stresses involved. However, these were exploratory 

applications, and doubts existed as to the real accuracy of the 
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solutions obtained, especially where large strains were present. 

Parallel to these developments, Zienkiewicz et al(4.20)  

introduced what they called the "initial stress approach" to try to. 

overcome the computing difficulties of the tangent modulus approach 

and the limitations imposed in the thermal strain approach by nearly 

perfect plasticity. To show the capabilities of the method, they 

presented results for some stress concentration problems in coil 

engineering. 

A subsequent work by Nayak and Zienkiewicz(
4'21) 

 expands 

on the subject and condenses a series of results obtained by Nayak(4'22) 

in the analysis of pressure vessels, plane strain extrusion and 

indentation. In the case of extrusion, both Von Mises and Tresca 

criteria were considered. 

More recently, Hartley and co-workers
(4.23) 

have used the 

tangent modulus approach to solve problems of extrusion and ring 

upsetting. A. Najafi-Sani
(4.24) 

has looked at the problem of clamp 

design in the continuous hydrostatic extrusion and M. Najafi-Sani(4.25) 

has solved the problem of blanking. 

Wong and Das
(4.26) 

tried to analyze cropping, but their 

results were constrained by the nature of the small deformation 

formulation they used. Odell(4'27)  has looked into the problem of 

wall ironing, but strangely enough, he did not take advantage of the 

method and still solved the problems with the traditional plane strain 

assumption. 

Most of the literature reviewed so far is concerned with 

small strain plasticity. Therefore, it is strictly concerned with 

predicting the onset of yielding and the early spreading of the plastic 

zone. Large strains can either not be tackled or require a very 

heavy penalty in terms of computer time. 

Most Of the computational schemes are based on the calculation 
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of changes in geometry and stress distribution, in a finite element 

net, associated with small increments of deformation. The frame of 

reference is a Lagrangian one, that is, the network is considered to 

be attached to the particles of the continuum at the nodal points. 

The analysis of the sequence of the small increments allows the total 

deformation and stress distribution to be determined, and this can 

result in large (finite) deformation. 

Lee
(4.28) 

has pointed out that such formulations are not 

suitable to solve metal forming problems, especially those that 

require that a steady state mode be analyzed, e.g. extrusion, rolling. 

Quite apart from this limitation, Rice(4'29)  and McMeeking 

and Rice(
4'30) 

 have pointed out errors in the formulation of many 

existing elastic-plastic problems. 

One source of error is a lack of preciseness in defining 

increments of stress and strain. They stress the fact that care must 

be taken in the selection of stress definitions and stress-rate and 

strain-rate expressions, particularly in the common circumstance that 

the tangent modulus in plastic flow is of the order of the stress. 

They also point out that the error incurred when selecting the "wrong" 

definition is independent of the size of the increment used and, 

therefore, the common small strain assumptions are not valid for 

large strain problems, even when small increments in strain are used. 

There are available various formulations dealing with 

elastic-plastic problems which include large strains and/or large 

displacements considerations. 

Marcal(4.31) used incremental equations to form the basis 

for a general purpose program for non-linear analysis. Hibbit et 

al(
4'32

) use Marcal's work as the basic material to propose a 

formulation for large strains and large displacements, though 

restricted to isotropic material behaviour, in a Lagrangian frame of 
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reference. The overall stiffness matrix is obtained as a linearization 

of element equilibrium defined by virtual velocity equations. A 

similar approach is presented by Gordon and Weinstein
(4.33); 

 they 

examine plane sheet drawing, considering both smooth and friction 

conditions. Blass(
4.34) 

 also uses a similar approach to solve the 

problem of radial upsetting. 

Kitagawa et al
(4.35) 

analyze the problem of a finite 

element formulation similar to the one presented in Ref. 
(4.32), 

 but 

referred to the current configuration of the continuum. They use a 

convected coordinate system embedded in the body. 

0sias(4.36 - 4.38) also contributes to the subject and 

expands previous work for infinitesimal strains by Swedlow
(4.39,4.40)  

the formulation uses an Eulerian frame of reference, places no 

restriction on the amount of deformation and assumes an isotropic 

work hardening material. A number of problems were considered: 

simple extension, simple rotation, and combined extension and rotation 

of prismatic volume elements. The problem of necking was also 

considered. 

Gunasekera and Alexander(
4'41) 

 employ a formulation which 

is very similar to that of Hibbit et al, being, however, described in 

terms of the instantaneous frame of reference. They solve the problem 

of elastic-plastic expansion of a hole in a plate. This particular 

formulation is essentially only applicable to the small strain range, 

for, as already pointed out in Ref. 
(4.30), 

 no objective definition 

for the stress increments is considered. 

McMeeking and Rice(
4.30) 

 produced an apparently simpler 

formulation than the Lagrangian one proposed in Ref. 
(4.32), 

 and much 

more so than the Eulerian approach proposed by Kitagawa et al
(4.35)  

The authors use the current configuration of the continuum as the 

frame of reference for the deformation increments, that is, an up- 
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dated Lagrangian frame of reference. They consider the problem of 

necking in the tensile test, and compare their result very favourably 

with Osias'
(4.36 - 4.38)  

Lee and co-workers
(4.42 - 4.44) 

used this formulation to 

predict the steady state force and residual stresses in extrusion and 

sheet drawing, being able to achieve deformations well beyond those 

achieved by Iwata et al 4.13). 

Oh et al(
4.45

) solved the problems of a void growth model, 

and, in conjunction with solutions to drawing and extrusion problems, 

attempt to define a formability criterion. 

Yamada and Hirakawa
(4.46) 

have also developed an updated 

Lagrangian formulation and used it to solve the problem of plane 

extrusion through a doubly curved die. 

Derbalian et al
(4.47) 

discuss the advantages of using an 

Eulerian scheme, as opposed to an updated Lagrangian scheme, in the 

solution of steady-state problems. They propose to use an Eulerian 

type of mesh fixed in space and employ the McMeeking and Rice 

formulation(
4.30) 

 to find the incremental displacements and stresses. 

The difference stems from the fact that the mesh points are not up-

dated to follow material points and the stresses in the fixed mesh 

are, therefore, found by adding the incremental stresses, obtained 

for a forward Lagrangian step, to a set of interpolated stresses. In 

this way they claim to combine the best of the Eulerian and Lagrangian 

formulations. However, they only present a solution for a very 

idealized problem and comment on the still "unjustifiably high cost" 

of solving a more realistic problem. 

Yamada et al
(4.48) 

use another approach. They solve the 

unsteady elastic-plastic problem by first applying finite element 

procedures of elasto-plasticity. Then, using this solution as a 

first approximation and following the change of mechanical state of 
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material elements along assumed streamlines, pursue the steady state 

iteratively. 

A very important report, worth noting, is that of 

Nagtegaal et al(4'49). They study the over-stiffening effect of 

finite element solutions in the fully plastic range. They suggest 

that this is due to the excessive kinematic constraints imposed on the 

modes of deformation by the element types commonly used in two- and 

three-dimensional analysis. They propose using special arrangements 

of elements to alleviate the problem. However, only one of such 

arrangements has been found to date: a quadrilateral formed by four 

(4) constant strain triangles (CST). 

Argyris et al
(4.50) 

also  discuss the difficulties found when 	r i/  
using displacement finite elements to solve problems with an 

incompressible or nearly incompressible material. 

It is interesting to note that despite this highlighting of 

the problems encountered with simpler elements, some authors have 

continued to use CSTs without taking proper care as to the way they are 

arranged. 

Zienkiewicz(
4.51) 

 states that this problem of over-constraint 

can also be alleviated by using higher order elements with reduced 

order of integration. 

In a recent work, Argyris et al
(4.52) 

propose a method to 

modify the simpler elements so that they can be used in the 

incompressible regime. They use separate models for the dilatational 

and deviatoric strain energies. The method is based on a physical 

rather than a mathematical reasoning and, unlike reduced integration, 

it does not create problems due to spurious mechanisms and loss of rank. 

4.3 	Review of Rigid-Plastic Formulations  

A very interesting situation has developed recently in the 
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field of numerical methods in metal forming. When the methods first 

appeared, they were heralded as the end of the assumption of rigid-

plastic behaviour necessary for almost all of the traditional theories: 

slip-line field theory, upper-bounds, visioplasticity, etc. However, 

after the initial success, researchers started to realize that the 

implementation of elastic-plastic formulations, from the point of view 

of computer coding, was becoming highly complex, and that a realistic 

solution required "too much" computer time. 

It was then realized that the rigid-plastic behaviour 

assumption was not as bad as it was made out to be in the first place, 

and it was re-adopted as a fair assumption, and a number of 

formulations for the finite element method based on this assumption 

have come to the fore in recent years. 

This section will be concerned with a'brief review of the 

formulations available to-day. A more "in-depth" discussion of the 

formulations used in this work will be left for the next section. 

Although the various formulations are widely different as 

to the inclusion of kinematical constraints and the handling of rigid 

regions, all of them stem from the same constitutive relations between 

stress and strain increment, namely, the equations of Levy-Mises 

which can be written as follows:- 

de.. = al. dA (4.1) 

where dei  represents only the increments in plastic strain. This 

equation can be differentiated with respect to time to produce:- 

al.= 211 E..
13 

(4.2) 

This equation is called a "viscous flow" type of equation because of 
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its similarity with the equation for a viscous fluid. This fact has 

been the main catalyst in the recent development of computer codes for 

the solution of problems involving rigid-plastic materials. 

Most formulations derive the finite element equations by 

minimizing the total internal work (or work rate) given particular 

boundary conditions. This has been done, in general, by using the 

virtual work principle, although, as it will be shown in subsequent 

paragraphs, other equivalent variational statements have been used 

leading to the same equations. 

Neither of the variational principles used to derive the 

elemental equations provides for enforcing the incompressibility 

constraint, even though this is a necessary assumption. Several 

possibilities for enforcing this constraint have been presented and 

they provide the mark of identity of each different formulation. 

4.3.1 	The Stream Function Approach  

This is the most usual procedure of describing incompressible 

velocity fields in the traditional fluid mechanics literature and it 

was originally suggested by Goon
(4.53), 

 who used mapping techniques to 

obtain solutions, for metal flow problems. 

The finite element implementation for metals was done by 

Godbole
(4.54) 

and Zienkiewicz and Godbole(
4.55) 

 who treated the plastic 

and visco-plastic flow of metals as a special case of non-Newtonian 

fluids. They solved different cases of extrusion and the non-steady 

state problem of punch indentation. 

The procedure is based on the introduction of a stream 

function in two-dimensional problems or by introduction of a vector 

potential in three dimensions. 

Confining our attention to plane flow with u and v velocity 

components in the x and y directions, we can write:- 
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(4.3) 

and thus:- 

Ev  =EX+Ey= ex + āy = 0  (4.4) 

For the axisymmetric case:- 

u=-1 alp ,  v= 1 2" 
r ay 	r ax (4.5) 

and thus incompressibility is again obtained. 

The finite element equations are found using the principle 

of virtual work (see Ref.
(4.54)). 

 In the finite element code, three 

nodal variables must be found at each node if i  is to be found through-

out the body; in addition, elements whose shape functions haw.Cl* 

continuity, are required. While in two-dimensional problems the use 

of such elements presents little difficulty, in three dimensions no 

satisfactory element has yet been devised. This, coupled with the 

fact that boundary conditions are difficult to define unless the 

velocities are entirely prescribed on all the boundaries, has stopped 

this particular approach from being more widely used. 

4.3.2 	Lagrange Multiplier/Velocity and Pressure Fields  

The application of this formulation to metal flow problems 

can be traced to three different, and apparently independent sources. 

In 1972, M. Lung
(4.56) 

published a very short article, in 

German, where he outlined the method. He implemented it using 

* 	Continuity of nodal variable and its first derivatives. 
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triangular elements and presented the solution of a plane strain 

extrusion problem. In the same year, C. H. Lee and S. Kobayashi(4.51) 

presented a very similar formulation but this time implemented it using 

bilinear rectangular elements; they also proposed a linearization of 

the resulting equations by use of a simple perturbation method. They 

not only presented a solution to the problem of simple upsetting, but 

also used the method to smooth errors from visioplasticity analysis 

of the extrusion problems. 

Parallel with these developments, Godbole(
4.54) 

 proposed a 

similar formulation; however, his starting point was not an upper 

bound theorem, as in the previous two, but an extension of his work 

on the analogy of flow of viscous fluids and metal flow. This 

formulation was later extensively used by Jain
(4.58). 

Lung and co-workers
(4.59 - 4.61) 

have subsequently used this 

approach for solving the drawing problem under various conditions of 

friction in both plane-strain and axisymmetric conditions, upsetting 

of a trapeze in plane strain and axisymmetric upsetting of hardening 

and non-hardening materials. 

Lee and Kobayashi
(4.62) 

presented a more detailed formulation 

of the approach, which they christened "the Matrix Method" and used 

it to obtain new solutions in cylinder compression with regard to 

different parameters. In plane stress problems the planar anisotropy 

was taken into account and new solutions were found for non-

axisymmetric hole expansion and "easing" in flange drawing. Shah, Lee 

and Kobayashi'
4.63) 

 modified the method so that it could handle 

efficiently the rigid regions and applied it to the problem of 

compression of tall cylinders. Shah and Kobayashi
(4.64) 

analyzed the 

problem of cold heading, and Lee and Kobayashi(
4.65) 

 solved the 

problem of bore expanding and flange drawing of anisotropic sheet 

metals, being able to predict the development of "earing". 
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Shah and Kobayashi subsequently went on to solve the problem 

of axisymmetric piercing and extrusion
(4.66). 

 This work was later 

extended by Chen et al
(4.67) 

who not only solved the problem of 

extrusion and drawing, but also combined these results with 

experimental data and a void growth model and tried to define 

workability and fracture criteria for the process. 

Matsumoto et al(4.68)  improved upon the formulation by 

introducing means to handle friction conditions on surfaces whose 

direction of flow is not known a priori; this new procedure was 

applied to the problem of ring upsetting. Chen and Kobayashi(4.69) 

extended this new feature and carried out a comprehensive analysis of 

the ring upsetting problem comparing their solutions with known upper-

bounds and published experimental results. 

Gotoh and Ishire(430)  introduced a local system of convected 

co-ordinates into each element so that geometrical non-linearity could 

be taken into consideration. They also included the effect caused by 

the rotation of the principal axes of orthotropy of the material. This 

approach was used to tackle the problem of deep drawing of the flange. 

Unlike Lee and Kobayashi
(4.62), 

 the system of equations is not 

linearized but contrived to be solved by a repeated calculation. 

Tomita and Sowerby
(4.71) 

used the Lagrange multiplier 

approach for analyzing the plane strain deformation of rate sensitive 

materials, the actual process considered was frictionless, plane-

strain side extrusion. 

As can be seen from the named literature, this particular 

approach has been widely explored especially by Professor Kobayashi 

and co-workers at the University of California, Berkeley. However, 

some difficulties are associated with this method. Firstly, more 

than two variables per node have to be found, increasing the core 

and computer time needed to get a solution; secondly, zeros are 
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introduced into the leading diagonal of the stiffness matrix which 

may mean that standard solution techniques cannot be used. Experience 

has shown, however, that with a proper order of elimination this last 

difficulty can be overcome. 

4.3.3 	The Penalty Function Approach  

Penalty functions are traditionally used to modify 

variational principles in the finite element analysis to enforce 

constraint. The problem of flow of a rigid-plastic material can be 

viewed as a problem of constrained minimization of a functional. 

This approach is based on the application of a penalty to 

the square of the error, in this case the square of the compressibility 

value. Thus, when the functional is minimized, the compressibility 

will be forced to be close to zero. Therefore, the penalty approach 

in solid mechanics amounts to approximating an incompressible medium 

by a slightly compressible one. 

This approach was originally established by Zienkiewicz(4.72) 

and subsequently used by Zienkiewicz and Godbole(4.73) for problems of 

creeping flow in which they include some extrusion problems as well 

as problems involving large surface deformations. 

Zienkiewicz and Godbole(
4'74) 

 have stated that the use of 

a penalty is identical to the use of a Poisson's ratio close to 0.5 

in elasticity problems. 

Because of its simplicity of implementation, this approach 

has become widely popular and its application is under continuous 

increase. 

Sharman(
4'76) 

 applied it to the problem of hot extrusion; 

Cornfield and Johnson(4'77)  tackled the problem of hot rolling and 

studied the effect of various temperature distributions. Turner(4.78)  

and Alexander and Turner(4.79)  solved the problem of hot dieless 
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drawing; they reported some success on the prediction of the deformed 

shape, but some oscillations in stresses were also found and this was 

attributed to the use of simplex elements. Price and Alexander(4.80,4.81)  

presented solutions for various problems of isothermal forming; they 

use serendipity quadratic elements and devised a method for calculating 

the mean stress, being able then to calculate the stress distribution. 

Jain(
4'58) 

 and Zienkiewicz et al(
4'82

) extended further the 

application to various problems of extrusion, introducing a special 

element to account for the friction effects and presenting some 

comparisons with results obtained using the Lagrange multiplier 

approach. 

Zienkiewicz et al (4'83)  and Zienkiewicz and Onate(4.84) 

used the penalty function together with an analysis of the energy 

dissipation to solve the problem of coupled thermal flow in extrusion 

and hot rolling. They also extended the flow approach to problems of 

sheet forming. Kanazawa and Marcal
(4.85) 

have introduced a special 

element to include the effect of spread in the analysis of rolling 

using penalty function. 

The penalty function approach is the simplest to implement 

since, at its most basic form, it only involves a simple modification 

of existing elastic codes. Recent investigations (see Refs.(4.86,4.87)) 
 

have given mathematical formality to the approach and to its particular 

form of numerical integration. The method is also being used in other 

areas; worth noting is the work by Hughes et al
(4.88)

, where a 

comprehensive account of the theory behind the method is presented 

together with computational techniques referred to the fluid mechanics 

context. 

The penalty function and the Lagrange multiplier approach 

were selected for the investigation reported in this work and a more 

detailed discussion of the formulations is presented in a following 
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section. 

At this point, the author would like to call attention to 

some points of method which have become apparent during the research 

for this review. 

It has become evident that there is a lack of feedback 

between the people that develop the methods and the people that 

actually use them. This gap in the communication network, contributes 

to the continuous application by the "users" of tools that have been 

found to be unsuitable by the "developers". On the other hand, the 

pace at which new formulations come about does not allow for existing 

formulations to be fully tested under "real life" conditions, creating 

confusion as to the advantages or drawbacks of any specific approach. 

Also, the character of the finite element method has 

changed in the last few years. From being an engineering tool, 

developed by engineers, it has become a focus of attraction, and 

rightly so, for mathematicians. This has meant, however, that the 

language of presentation has changed and, in the opinion of this 

author, it is sometimes so esoteric as to be meaningless for every-

body except other mathematicians, having as a consequence that 

potential users simply shy away. 

Fortunately, this tendency is not universal and it is still 

possible to find workers writing within the limits imposed by the 

mathematical working knowledge of the average engineer. 

4.4 	General Formulation  

In the preceding sections, most of the existing formulations 

for plasticity problems have been reviewed. Both elastic-plastic and 

rigid-plastic formulations have advantages and drawbacks, hence, the 

choice of any specific formulation is by no means a straightforward 

one, let alone a logical one. 
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In this context, any choice has to be regarded as an 

arbitrary one, and only its later success in tackling the specific 

problems in hand will justify, or otherwise, the wisdom of the selection. 

From an engineering point of view, simplicity of formulation 

is generally felt to be an asset, although this has to be weighed 

against the number of assumptions made. Nevertheless, this simplicity 

is a relative one since any numerical method will, in general, involve 

more complexity than any non-numerical approach. Therefore, the choice 

is in degree of complexity rather than between a simple approach or a 

complex one. 

Of the existing approaches, the rigid-plastic one affords 

the inclusion of most of the parameters involved in metal forming, and 

at the same time renders a formulation that is relatively simple to 

handle on the computer. 

Therefore, rigid-plastic approaches, namely, velocity and 

pressure and penalty function formulation, were chosen as the ones to 

be used in this work. 

	

4.4.1 	Method of Analysis  

The equations for both formulations turn out to be identical 

except for the introduction of the compressibility constraint, thus, a 

general statement of the problem will first be made and the differences 

will be introduced as variations in a theme. 

The formulations can be derived from either considerations 

of solid mechanics(4.73)  or fluid mechanics(4'88). In this work the 

former will be chosen for the sake of consistency with the rest of 

the contents. 

	

4.4.2 	Formal Statement of the Problem  

Consider a body, V, whose surface, S, consists of Su  and St. 
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The body is composed of a rigid-plastic material which obeys the Von 

Mises yield criterion and its associated flow rule, under the boundary 

conditions, such that the entire body is deforming plastically. Body 

forces are assumed to be absent in the region V. Then, according to 

an extremum principle (see Ref. (4.16))  the functional (4.6) takes an 

absolute minimum value for the actual solution with respect to a 

kinematically admissible velocity field:- 

_ I 
c 	

ein dv - j Fi  ui  ds 	 (4.6) 

v 
	

ST  

This functional can be rewritten as (4.62):_ 

0= Jdv - FT Uds 

v 	sI. 

(4.7) 	l 

1) 

where z= is the effective strain rate; 6 is the equivalent stress; 

F, the traction vector specified at boundary ST. 

It is obvious that the functional 0 does not include the 

effect of the incompressibility constraint; therefore, it is necessary 

to introduce it. This can be done in various ways. Here we will 

limit the discussion to the Lagrange multiplier and the penalty 

function approaches. 

4.4.3 	Lagrange Multiplier. Velocity and Pressure  

Formulation  

In general, the problem is one of obtaining stationality of 

a functional Tr with a set of constraints C (ui) = 0. 

This constraint can be introduced by forming another 

functional:- 
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= + 
J 
 x C (ui) do 

o 

(4.8) 

in which X is some function (or set of functions) of the independent 

coordinates in domain n known as the Lagrange multiplier. 

Considering the specific problem under our consideration 

(Equation (4.7)), we can form a new functional as:- 

717 =c + 	a ;v dv (4.9) 

The problem is then identified as one of minimization of 

potential energy defined in terms of distortional strain energy and 

the incompressibility constraint. After some standard manipulation(4.51), 

the Lagrange multiplier can be identified as the hydrostatic pressure 

or mean stress:- 

= am  (4.10) 

This coqtrained variational principle was first identified 

by Hermann(4'89)  in the context of elastic stress analysis of 

incompressible media. 

It will be observed that in a problem formulated in the 

above manner the constraint introduces a new variable to the problem, 

namely, the hydrostatic stress, thus increasing the computer 

requirements when the discretization is carried out. 

Application of the stationary condition to functional (4.8) 

leads to:- 



a 
-0 

(4.11) 

which lead directly to discretization. 

4.4.4 	Penalty Function  

In this approach, which stems originally from optimization 

literature(
4'72), 

 the constraint is introduced by imposing a penalty 

on the integral of the square of the error, in this case the value of 

compressibility. 

Therefore, functional (4.7) can now be written as:- 

j _ 
a ēdv - 	FT dds+2a 

jv 
dv 

ST 	v 

or: - 

"=o +2a 

J 

. 
 ev2 dv 

v 

(4.12) 

where a > 0 is the penalty number and requires the stationality for 

the constrained solution. The solution obtained from functional (4.12) 

will satisfy the constraint only approximately. The larger the value 

of a the better the constraints will be achieved. 

It is worth noticing that this formulation does not introduce 

any additional unknown parameters. 

Examination of functionals (4.12) and (4.9) shows that the 

penalty approach is equivalent to elimination of the variable am 
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(4.15) U(m)  = 	Ni ui  = Nu  u(m)  

70 

from integral (4.9) by writing the constitutive relation (4.13):- 

U
m 
 = a Ev  (4.13) 

Indeed, the penalty approach has been shown recently, provided certain 

considerations related to problems of over-constraint are taken into 

account, to be "equivalent" to a mixed formulation (velocity-pressure), 

(4.86,4.89) 

Application of the stationary condition leads directly to 

discretization. This together with the problems arising from over-

constraint will be discussed below. 

4.4.5 	Matrix Problem. Discretization 

The domain V is discretized into M non-overlapping elements 

connected at N nodal points. If (m)  is the value of the functional 

• evaluated over the mth  element, then:- 

M 
▪ _ (m)  

m=1 
(4.14) 

The approximation of the functional 	by a functional ip  is performed 

on the elemental level by replacing U(m)  with a kinematically complete 

distribution given by:- 

where N is the interpolation function and u is the vector of nodal points 

velocities. Similarly, if the pressure is one of the variables involved:- 

P = NP p(m)  (4.16) 
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Let u, v and w describe the three cartesian components of 

velocity vector U. The strain rate vector c(m)  is then related to 

the velocities by:- 

c(m) = L U(m) 

where:- 

(4.17) 

. m T  
c (  ) = X'  cy' ce Yxy yyz' yzx (4.18) 

  

The operator L is defined as:- 

3 
ax' 

0 	0 

0 a 
āy 0 

0 0 a 
āz 

L= (4.19) 

3 	3 	0  
ay āx 

0 	a 	3 
az 	ay 

a 
āz 0 a. 

ax 

The incompressibility constraint takes the form:- 

cum) = c(m)+ 4m) 	( • + s m)  = MT  C=0 (4.20) 
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where:- 

MT L 	1, o o o] 

The effective strain rate and effective stress are defined, 

respectively, as*:- 

1 1 /2
• 

• = I

• 	

13 eT Do c l 

~J 
(4.21) 

and:- 

ā= [3 ,T 	a' 3 ~ -o 

1/2 

 

(4.22) 

  

where a' is the deviatorial stress vector, which is related to s 

according to the Levy-Mises equations by:- 

2 v - • = 3 — Do e 
e 

(4.23) 

in which Do is a diagonal matrix defined as:- 

1 
1 

1 

1/2 

1/2 

1/2 

(4.24) 

* In this and the following sections all quantities are at the 
elemental level, but for convenience, the superscript (m) is dropped 
unless otherwise specified. 
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Noting relations (4.15) to (4.23), the functionals (4.9) and 

(4.12) can now be rewritten as:- 

a (3 uT  BT  DD  B u11/2  dv - I 	(Nu  u)T  F ds + 	(MT  B u)T  N. p dv 
1 	1 J 	 J 	 J 

v(m) 	 ST(m) 	v(m) 

(4.25) 

and:- 

a 3  u
T  BT  0 B u11/2  dv - f 	(Nu  u)T  F ds + I 	(MT  B u)T  2a(MT  B u)dv 

l 	J 
v(m) 	 S

T 
(m) 	v(m) 

(4.26) 

where:- 

B = L Nu  (4.27) 

Applying the stationary condition to functional (4.26), when 

the yield stress is independent of the strain rate, leads to:- 

a (m)   '_ 	T 	T 	T 	r 	T 

8u (m) 	
B D B u dv + I 	(M

T 
 ) Np p dv - I 	Nu  F ds = 0 

v(m) 	v(m) 	ST(m) 

(4.28) 

and:- 

(m) 	T 

ap(m) - 
	Np MT  B u dv = 0 

v(m) 

(4.29) 

where:- 
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D= 36Do 
s 

(4.30) 

This results in a simple set of equations which can be 

written as:- 

Ku Kr)] 
	

u 

= 0 	(4.31) 

L T Kp 	0 

or:- 

K a + f = 0 

where:- 

(4.32) 

ki
j 

= 	B. D B~ dv 

V 

p 

r 

 

fu 

0 

  

   

   

T N~ dv (4.33) 

r T 

fi = - I Ni F ds 

S 

where i and j are element ("local") node numbers. 

Analagously, the stationary condition applied to functional 

(4.27) leads to:- 
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alp(m) _ ~ r  BT DB u dv - I 	Nu Fds+ 	BT MaMT Budv=0 
Du(m) 	1 

 

v(m) 	S1(m) 	v(m) 

(4.34) 

Again this results in a simple set of equations of the form:- 

Ku+f= (KU +Ka) u+f =0 	 (4.35) 

where:- 

r 

kib = 

J 
Bi D BO dv 

v 

ka~ = I B. Ma MT B dv 

V 

T 
ft! i = - 	Ni Fds 

(4.36) 

This process is formally identical to that of solving an 

elastic solid problem with a high Poisson's ratio v -} 0.5. 

A comparison with Equations (4.33) stresses the advantages 

of the penalty function; the only variables involved are the velocities 

and use of the constitutive Equation (4.13) renders the pressure 

variable which is then used to find the complete stress distribution. 

In coding terms this leads to considerable simplification. 

4.4.6 	Element Matrices  

Examination of Equations (4.33) and (4.36) shows that 

elements with Co continuity are required for the velocity field but 
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discontinuous functions can be used to describe the pressure field in 

the velocity/pressure formulation. Indeed, practitioners(4.51) have 

found that, generally, a lower order of interpolation of the pressure 

field compared with that of the velocity field is desirable to avoid 

over-constraints. 

The element used for the present investigation is the 4-node, 

bi-linear, isoparametric quadrilateral element. This element has 

proved to be the simplest effective one for use in both the mixed and 

the penalty function formulation
(4.62,4.88), 

For convenience of calculation it is usual practice to 

transform the actual coordinate system into a natural coordinate 

system, see Fig. 4.1*. 

Thus, the following relationship may be written:- 

4 	4 
r(E, n) _ y Ni  ri 	and 	z(E, n) = 	Ni zi 1=1 	i=1 

(4.37) 

where the shape functions, Ni, are expressed as(4.51):- 

N. + E Ei) (1  + n  ni 
(4.38) 

and (ri, zi) and (Ei  ni) are the coordinates of the'nodal points in 

actual and natural coordinate systems respectively. 

The (E, n) system shown in Fig. 4.1 is defined such that E 

and n vary from - 1 to + 1 within each element. 

The velocity components u and v in the radial (r) and 

axial (z) directions respectively are assumed to be:- 

* 	In this section all the derivation shall be made for the axi- 
symmetric case. Plane strain matrices can be found by deleting the 
appropriate terms. 
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u(E, n) = 	Ni ui 
i=1 

and 	v(, n) _ 	Ni  vi 	(4.39) 
i=1 

If the velocity vector is noted as UT  = fu, v} and the nodal 

point velocity vector as uT  = {u , v , u , v , u , v , u , v }, then 
1 	2 	2 	3 	3 	4 	4 

according to Equation (4.15) the interpolation matrix Nu  is given by:- 

Nu  = {N , N , N , N } 	 (4.40) —1 -2 -3 -4 

where:- 

N.= 

Ni 	0 

0 	Ni  
(4.41) 

   

Similarly, the operator matrix L can be defined as:- 

L={L,L,L,L } 
— -1 -z -3 -4 

where:- 

(4.42) 

0 

0 a 
' az 

(4.43) 

1/r , 0 

a 	a 
az ' ar 

Li  = 
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Therefore, matrix B in Equation (4.28) can be expressed as:- 

B- rB,B
2
,B

3
,814 	 (4.44 ) L_ 1   

where:- 

aNi  
ār 0 

aNi  
az 

0 

Bi  = (4.45) 

N. 

r 0 

	

aNi 	aNi  

	

L az 	ār 

To evaluate such matrices, two transformations are necessary. 

In the first place as Ni  is defined in terms of local coordinates it 

is necessary to devise some means of expressing the global derivatives 

of Equation (4.44) in terms of local coordinates. 

Secondly, the element volume over which the integrations are 

to be carried out needs to be expressed in terms of the local co-

ordinates. Noting that:- 

aNi 1 	
Or az (aNi 

DE 	ag ag Dr 

aNi  
an 

 

= FS] 
L 

a  az aNi 	aNi  
an an 	az 	az J 

(4.46) 

   

'aNi)  
ar 

the derivatives in Equation (4.44) can be written as:- 



79 

aNi  

ar 

aNi  

az 

  

aNi  

  

 

aE 

aNi  

an 

 

(4.47) 

      

      

in which [J] is the Jacobian matrix which can be easily evaluated 

numerically. 

Similarly:- 

dv = IJI dE dn 2rr r 

and:- 

ds = IJI dE dn 

(4.48) 

The stress strain rate relationship, matrix D°  in Equation (4.30), is 

given by:- 

1 1 
1 

(4.49) 
1 

1/2 

noticing that:- 

cr'T 	
[F, 
r, Qz, 

6e° 'r-z] 

and:- 
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.T . 
e = er, CZ

, E0, Yr`_1 

The M matrix is expressed as:- 

MT 	[1, 1, 1, 0] (4.50) 

For the element considered the pressure field is taken as constant 

within the element, hence:- 

P=Np p(m)  = am m (4.51) 

Assuming that the inverse of [J] can be found, the 

evaluation of the element properties is  reduced to finding integrals 

of the following form:- 

1 	1 

jj 1J1 f(E, TO 27 . r(, n) d do 	 (4.52) 

-1-1 

This is usually done using Gaussian quadrature, thus, Equation (4.51) 

is transformed to:- 

n n 

I I Wi  W f(q, n ) 
i=1 j=1 

(4.53) 

where Wi  and Wj  are weight coefficients and f(Ei, nj) is the value 

of the function to be integrated at the nth  point of integration. 

4.4.7 	Locking Effects in the Penalty Function Formulation  

The penalty function formulation leads to a system of 

equations of the form:- 



81 

K u + f = (Ku  + Ka) u + f = 0 	 (4.54) 

In this system the matrices Ku  and Ka  are finite, and a solution is 

sought when a (penalty number) -- o. 

It is apparent that if Ka  is non-singular, then u -'- 0 as 

a } co. 

This illustrates a problem of over-constraint which causes 

the mesh to lock, resulting in worthless results. This problem of 

over-constraint of elements in the isochoric regime has been 

extensively discussed by Hughes et al(4.90),  Fried(4'91), Malkus and 

Hughes(4.86)  and Nagtegaal et al
(4.49). 

To alleviate this condition, Ka  must be made singular so 

that:- 

Ka  u= 0 	but 	u A 0 	 (4.55) 

The singularity (or its absence) is a function of the number of 

independent relations used at each integrating point. Zienkiewicz(4.51)  

states the condition for the presence of singularity in the following 

words: "If the number of such relations introduced at all the 

integrating points is less than that of the degrees of freedom 

available, then the singularity must exist" (op. cit, p. 288). 

•It is interesting to note that the wording of this statement 

is in the context of the existence of the singularity, for, as 

Zienkiewicz readily admits, the non-singularity is more difficult to 

prove. 

It turns out that virtually all the commonly used conforming 

elements result' in non-singular Ka  when "exact" numerical integration 

is performed. It is then possible to show(4'
92) 

 that singularity of 

Ka  is introduced for bi-linear quadrilaterals with a single point 
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integration. 

Malkus and Hughes
(4.86) 

have used an heuristic theory to 

predict the behaviour of elements and integration schemes. Briefly, 

the theory suggests that the most effective elements in applications 

of the type considered here are the so-called "Lagrange" isoparametric 

elements with appropriate selective-integration schemes. Triangular 

elements and "serendipidity" quadrilaterial elements are predicted to 

exhibit inferior behaviour, which has been confirmed numerically(4.49). 

Thus, for the bi-linear quadrilateral element used in this 

work, one point integration is used to evaluate Ka. The 2 x 2 

integration is retained on Ku  so as to ensure non-singularity of K in 

Equation (4.54). 

When this element is used in axisymmetric analysis, the 

property of "incompressibility in the mean", introduced by the under- 

integration, is lost. Nevertheless, the element is still convergent
(4.88). 

Recently, Bicanic and Hinton(4'93)  have reported that reduced 

integration introducesextra zero energy modes. These extra modes can 

combine into either mechanisms, leading to singular stiffness matrices, 

or into near mechanisms which are spurious low energy modes which mask 

the solution. These zero energy modes on the element level combine 

into the well-known "hour-glassing" or "keystoning" mode for the 4- 

noded element and into the so-called "Escher" mode for the 2-noded 

element. In meshes formed from 8-noded elements these near mechanisms 

do not exist. They also found that elimination of the overall matrix 

singularity does not suppress the influence of the modes completely. 

If the modes are excited they can completely destroy the solution. 

4.4.8 	Solution Procedure  

It is obvious that the systems of Equations (4.31) and 

(4.35) are non-linear and that an iterative mode of solution is needed. 



83 

In general, the most simple and direct solution procedure 

is a direct iteration which starts from the form:- 

K u + f = 0 

in which:- 

(4.56) 

K = K (c) 

If initially a value of c = e°  is assumed, an improved approximation 

is obtained as:- 

ul = - (Ko)-1 f  

where:- 

(4.57) 

K°=K(c°) 

Repetition of this process can be written as:- 

un = - (Kn-1 )-1 	
(4.58) 

and the process is terminated when the error is sufficiently small. 

This system of solution has been applied successfully to 

metal forming problems
(4.75,4.80) 

and gives very rapid convergence, 

provided the forcing function is specified as velocities. 

4.4.8.1 	Sequence of Operation  

We start from a prescribed initial effective strain rate 

distribution, namely, a uniform distribution. The system of 
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equations is then solved and the velocities thereof computed are 

used to evaluate a new strain rate distribution which modifies the 

system of equations accordingly. 

Iterations of the type described in Equation (4.58) are 

then performed. For the analysis of non-steady state processes, the 

problem is analyzed in a step-by-step manner by treating it quasi-

linearly during each step of incremental deformation. A proper 

increment size is chosen to justify this approximation. 

The convergence is measured by the quantity IlAu fl / ~~u~~, 

where the euclidean vector norm is defined by:- 

N 

h all 	i l {(ur)i + (u z
)?} (4.59) 

The solution with a reasonable accuracy is accepted as 

the final velocity distribution. At this stage the new geometry of 

the deformed material is determined by adding the nodal point 

velocities incrementally to the current coordinates of the nodal 

points. 

In the steady-state process, since the velocity solution 

for the current geometry is also the solution for the subsequent 

steps, the process of incremental addition of the velocity 

distribution for the determination of the new geometry is not 

required. 

Computer programs based on the formulations developed in 

this chapter are presented in Appendix 2. 
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Figure 4,1: Bilinear Isoparametric Element 



CHAPTER 5  

EXTRUSION  
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5.1 	Introduction  

Extrusion is believed to be one of the more recently developed 

metal forming processes, and was probably first used at the end of the 

18th century for the manufacture of lead pipes. The book by Pearsons 

and Parkins(5'1)  gives a survey of the subject and provides a good 

account of the historical development of the process. 

In the actual operation, whether it be conducted by the 

direct, indirect or hydrostatic method, the billet is compressed as 

it is forced through the die which is shaped to give the required 

cross-section, thereby reducing the area of the cross-section and 

increasing the length of the workpiece (see Fig. 5.1). 

The important parameters of the process are: the amount of 

reduction, friction along the die and container walls, the work 

hardening properties of the material and the semi-cone angle of the 

dies (in the case of axisymmetrical extrusion). 

The complex inter-relation of all these variables makes an 

analysis of the detailed mechanics of the process very difficult, 

although a number of approximate analyses have been carried out. 

The finite element technique has the capability of analyzing 

the process in a detailed way, giving not only information on the 

power requirements of the process, but also information on the complex 

mechanics of the process. 

The object of this chapter is twofold. Firstly, it will 

present solutions to some extrusion problems using the computer codes 

developed following the theory outlined in the previous chapter (see 

Appendix 2), stressing the comparative performance of the "penalty 

function" and the "velocity-pressure" formulation. Secondly, the 

problems are chosen so that techniques for dealing with boundary 

conditions and introduction of work-hardening can be assessed. At 

the same time, results are compared with known solutions, when available. 
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5.2 	Previous Work  

For the purpose of this work, we will only consider a 

limited selection of the extensive literature available in order to 

illustrate the range of theoretical methods. 

The first rational relationship between the extrusion 

pressure and reduction in area was developed by Siebel and 

Fauymeien(5'2)  in 1931, using a deformation energy approach. Since 

then, many valuable contributions have been made to research in the 

field of extrusion. However, until recently, attention has been 

traditionally focussed mainly on predicting the extrusion pressure, 

indeed, research in this direction is all but exhausted. 

The free body equilibrium approach, i.e. the slab or force 

balance technique, has been favoured by a number of workers in the 

analysis of direct extrusion(5.3). This technique is simple to apply 

and gives useful results. However, by virtue of ignoring the effects 

of redundancy on the one hand and of the pattern of flow on the other, 

it gives an oversimplified view of the mechanics of the process. 

The upper bound approach for both plane strain and axi-

symmetric direct and indirect extrusion has been treated by Johnson 

and Kudo(5'4)  for a variety of solutions for different conditions. 

The work of Avitzur(5'5)  describes the application of the upper method 

to axisymmetric direct, indirect and hydrostatic extrusion. The 

method can provide reasonable agreement with experimental data when 

assessing the effect of the different parameters of the process on the 

extrusion pressure. Avitzur, op. cit. and Ref.(5'23) has also tried 

to extend the technique to predict the range of parameters over which 

the most common extrusion defects, such as "chevroning" and the 

formation of "dead metal zones", are most likely to occur. 

The upper bound approach does not, in general, predict stress 

distribution and, therefore, does not give an insight into the 
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mechanics of the process, excepting the assumed kinematically 

acceptable velocity field. The likelihood of a process occurring 

is determined on the basis of the energy consumed which in itself is 

dependent on the accuracy of the assumed velocity field. 

The slip-line theory(5.6)  has been extensively applied to 

plane extrusion problems and results are found to agree fairly well 

with experiments. A survey of the modern literature up to 1969 is 

provided in the book by Johnson et al. Recently, matrix techniques for 

the construction of slip-line fields(5'7)  have come to the fore and 

have been employed to tackle the problem of asymmetric plane extrusion'5'8). 

The visioplasticity technique(
5.9,5.10) 

 is particularly well 

adapted to the needs of the extrusion problem and has, therefore, 

become a major analytical tool in the study of the pattern of flow and 

the determination of redundant deformation. However, it should be 

regarded as an aid for interpreting experimental data rather than for 

prediction. 

Extrusion problems have also received attention from finite 

element workers. A survey of that work is given in the preceding 

chapter and will not be repeated here except when required. 

5.3 	Plane Strain Extrusion Through a Square Die, Reduction = 0.5  

This problem has attracted great interest in the past
(5.11). 

Here we consider a steady-state, plane, ideally plastic metal extrusion 

through a square die with 50% reduction in area. 

The walls of the container and die are assumed to be friction-

less and the product is moving in a parallel stream. The reason for 

including this problem is that a slip-line solution exists(5.6)  and 

comparison with the two finite elements techniques used in this work 

can be readily made. 



No singularity 	Singularity 

P/2k 	1.52 	1.40 

U* 2.16 	2.04 
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Computational Conditions  

The dimensions of the problem, together with the mesh and 

boundary conditions used are shown in Fig. 5.2. A constant yield 

stress value of 120 MN/m2  was used. 

A cut-off value for the rigid regions of y = 109 , where 

y = 2/3 (Q/ē), was specified. 

The extrusion pressure and the distribution of velocity at 

the die exit were chosen as the main indicators of the accuracy of the 

solution. 

The problem was first solved using the "velocity-pressure" 

formulation and dealing with the singularity at point A (Fig. 5.2) in 

two different ways. Firstly, point A was taken as belonging to the 

die and the boundary condition specified accordingly. Secondly, the 

mesh was made singular at this point; this was carried out by making 

collapse the element at the die exit as shown in Fig. 5.2b. A 

comparison of the results is made in Table 5.1. 

TABLE 5.1  

Slip line solution (after Johnson(5.6)) 

P/2k = 1.29 

P = Extrusion pressure 

U* = Velocity at exit (cm/sec) at x = 19 cm 
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It is evident that the mesh with the singularity at the die 

corner gives a better solution, particularly with respect to the 

velocity distribution at the exit. 

Next, the problem was solved using the singular mesh with 

the penalty function formulation and varying the value of the penalty 

parameter (a) to assess its influence. For this study, the hydro-

static stress distributions, calculated directly in the u/p 

formulation and by using am  = a Ev  in the penalty-function, were 

compared to assess the level of equivalence between the two methods. 

The results are shown in Fig. 5.3 and Table 5.2. 

It is clearly seen that a low value of a renders useless 

results, due to the fact that too great an error is introduced in the 

compressibility. This is reflected in the values of the velocity at 

the exit. An increase of the value of a results in a noticeable 

improvement not only in the extrusion pressure and exit velocity but 

also in the hydrostatic stress. For a value of a = 108  the results of 

both methods are practically equal and compare favourably with the 

slip-line results. 

Fig. 5.4 shows the velocity distribution and the flow lines 

calculated in comparison with the slip-line field. It is clear that 

this also compares very well. Worth mentioning is the fact that the 

velocities in the dead zone (predicted by the slip-line theory) are 

indeed very small, and that the velocity vectors at the exit are in 

fact parallel to the horizontal plane. 

5.4 	Plane Strain Extrusion Through a Wedge Shaped Die,  

R = 0.5, aD  = 45°  

This problem was chosen for two main reasons. First to check 

the capability of the computer code to deal with skewed boundaries, 

and second, because it has a known slip-line solution and presents 
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another chance of comparing the "velocity-pressure" and "penalty 

function" formulations. Moreover, similar problems to these have been 

previously solved with finite elements using various different 

approaches
(5.12,5.15,5.16) 

so comparisons can be readily made. 

The continuum to be discretized and boundary conditions are 

shown in Fig. 5.5. 

   

   

   

  

x 

   

Fig. 5.5 

The problem was initially solved using the velocity-pressure 

formulation and taking singularity points A and B as part of the die 

face, i.e. the velocities parallel to it. Again a constant yield 

stress of 120 MN/m2  and a cut-off factor (y) equal to 109  were 

selected. 

The results obtained, although giving a satisfactory 

velocity distribution showed a gross over-evaluation of the extrusion 

pressure when compared with the slip-line solution as given by Ref.
(5.12)  

An increase in the number of elements produced a slight improver an+=In + 

results. Table 5.3 gives the results for various meshes and Fig. 5.6 

shows the finest mesh used together with the calculated velocity 



100 

distribution. 

TABLE 5.3  

No. of 
Elements 

P/2k 

84 1.080 

120 1.030 

156 0.994 

300 0.985 

Slip-line* 0.950 

k=Y/4 

The problem was then solved using the "penalty function" 

formulation and similar results were obtained. 

It appeared, then, that the bi-linear quadrilateral element 

was inadequate for this kind of problem, especially in view of the 

results reported by Godbole
(5.12) 

for the same problem using the 

"penalty function" and under-integrated quadratic elements. 

It was then decided to implement the aforementioned elements 

within the existing program (penalty-function). The mesh was the same 

as the one used in Ref.(
5'12), 

 and with the same boundary conditions 

as before, see Fig. 5.7. 

The solution, shown in Fig. 5.8, was completely different 

from the one presented by Godbole (see Fig. 5.9) or the one 

* 	This value for the slip-line solution is given in 
Ref.(5.12) 

and it was wrongly taken, as it will be shown, as the standard to 
compare our initial solution. 
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(apparently misprinted) in Refs.
(5.13,5.14).  

A closer look into Godbole's solution suggests that he used 

a different boundary condition, namely, assuming the direction of the 

velocity at the exit singularity to be horizontal. This, of course, 

is no more than an educated guess since the treatment of the die 

corners is not explicitly stated in his work. This boundary condition 

was implemented and the results are shown in Fig. 5.10. The velocity 

distributions compare now very well but the load is still far from 

close. 

This failure to duplicate previous work led to a careful 

examination of the computer code. This examination revealed no 

apparent errors; indeed, solution of the problem discussed in the 

previous section, using quadratic elements, produced an identical 

solution to that of Jain(
5'15) 

 who used a computer code similar to 

that of Godbole. 

On the other hand, a careful analysis of Godbole's work 

revealed that his results reported as slip-line solution were, in 

fact, wrong, when compared to the ones reported in Johnson's 

definitive work(5'17). The slip-line solution of the problem was 

then recalculated and the result confirmed that of Johnson (see Table 

5.4). 

TABLE 5.4  

P/2k 

Godbole(5'12) 0.950 

Johnson(5.16) 0.900 

Our solution 0.903 

Slip-line Solutions  
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This mis-quotation (or mis-calculation, as the case may be) 

in Godbole's work was traced back to an earlier paper by Nayak and 

Zienkiewicz(
5.15). 

 Furthermore, Godbole's results converged to his 

slip-line solution from below, whereas the rest of his solution to 

other extrusion problems converged from above, showing an inconsistency 

that was not explained. All this casts doubts over Godbole's 

reported solution of this specific problem, or at least, what boundary 

conditions were used. 

Thus, there is still a problem to be solved and ways to 

improve the solution will now be discussed. 

5.4.1 	Boundary Conditions at the Entry and Exit Corners  

In the previous section, we have seen how a change in the 

boundary condition at the exit corner caused the estimated extrusion 

pressure to be reduced. This suggests that these conditions play a 

major part (apparently not previously considered) in the solution of 

the extrusion problem. 

Of course, it is not feasible to try and obtain an identical 

solution to that of the slip-line field because of the basic difference 

between that theory and the finite element method. Nevertheless, some 

improvement in the solution by finite elements is possible and, indeed, 

desirable. 

The initial choice of boundary conditions at points A and 

B (see Fig. 5.5) stems from the finite element elasto-plastic solutions 

of similar problems (see Refs.
(5.15,5.16). 

These solutions solve the problem in a "Lagrangian" frame 

of reference, i.e. the elements are part of a continuum and deform with  

it. On the other hand, the formulation used in this work is an 

"Eulerian" description, that is, the elements are fixed in space. This 

basic difference seems to be the cause of the failure of the boundary 
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conditions. 

To understand more fully the mechanics of the process let 

us look in more detail at a region close to the entry corner (see 

Fig. 5.11). 

Fig. 5.11 

To facilitate the discussion let us assume that both the 

container and the die are frictionless. 

It can be safely assumed that material close to the outer-

most boundary is moving parallel to the container just before A. 

Equally, material after A is moving parallel to the die. However, 

the direction of flow at point A is far from known a priori, indeed, 

the slip-line: theory predicts a singularity at this point. 

In a Lagrangian frame of reference it could be assumed 

that when material comes into contact with the die it slides along 

it. However, in the Eulerian frame such an assumption would involve 

the velocity at that point being parallel to the die and this will 

have an entirely different physical meaning which now will be 

discussed. 

If it is assumed that the direction of flow at the point A 

is parallel to the container, what this actually implies, in the 

finite element context, is that material does not begin to distort 

until it has crossed into the region represented by element RE 
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(Fig. 5.11). Consequently, the redundant strain at the die corner is 

being under-estimated, and the extrusion pressure will be accordingly 

under-estimated. 

On the other hand if material at point A is assumed to be 

moving parallel to the die, the opposite will occur: material will 

begin to shear when entering the region represented by element LE, 

resulting in a corresponding over-estimation of the redundant strain 

and extrusion load. 

Obviously, one simple way of reducing the problem will be 

to use a finer mesh around the corner A. This seems to be a rather 

simplistic way of solving the problem because of the corresponding 

complication of the strain rate integration procedure (this will be 

discussed in another section), and the boundary condition at the 

point will still have to be chosen arbitrarily. 

Another more formal way is to introduce the singularity 

into the formulation. This has been done by Shen et al
(5.18) 

 for 

fluid problems using a special element whose trial functions are 

only the corner eigenfunctions. This seems an unnecessary complication 

to solve a problem which, although theoretically predicted, does not 

necessarily occur in "real-life" problems. 

Problems, in practice, seldom present sharp cornered dies 

which will impose the mathematical singularity present in the slip-

line field solution. More often than not, the transition of flow is 

a "smooth" one and this is up to a point, what the above analysis of 

the flow around the corner suggests. It would seem that a boundary 

condition somewhere between the two extremes discussed would be more 

realistic and this condition could be chosen on an ad hoc basis for 

each problem. However, this would obviously be as arbitrary as the 

original choice and a more formal argument',is then required. 
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5.4.1.1 	Modification of Boundary Conditions  

Case A  

Let us consider a stream-line J sufficiently close to the 

die and container walls as to justify the assumption that it is 

straight before and after the die corner. 

Fig.. 5.12 

The slip-line solution predicts discontinuities in the 

velocity field. In real metals, of course, such a discontinuity is 

not present and the "velocity jump" occurs in a narrow band. This 

is represented in the flow-line by a curve described by a second 

order polynomial (see Fig. 5.12):- 

Y = ax2  + bx + c 	 (5.1) 

using the origin of coordinates shown in Fig. 5.12. This may be 

reduced to:- 

Y = ax' 	 (5.2) 
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where a can be evaluated from:- 

ay 	= tan S = 2ax = 2a . 2x = 4ax 
ax 	 i 	1 

Ix = 2x 
1 

(5.3) 

Therefore:- 

a = 	tan g 

and:- 

y tan S x  2 
4x 

1 
(5.4) 

where tan S  is the slope of the flow-line after the transition has 

taken place. 

Hence, the direction of flow at the middle of the transition 

zone is given by the equation:- 

ayl 	= tan S/2 
ax 

x = x 
1 

(5.5) 

Tt may be noticed that this value is independent of the 

width of the transition zone as long as the zone is symmetric about 

the point A. As x -} 0 the flow-line gets closer to the container  

and die, and in the limit the direction of flow takes the form:- 

ay  - tan ap  
5x (5.6) 
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where ap  is the die semi-angle. 

An analogous study can be made of the exit corner which 

gives similar results. 

These boundary conditions were implemented and the problem 

solved again using the "velocity-pressure" formulation (with bi-linear 

elements) and the mesh shown in Fig. 5.13. The results, shown in 

Fig. 5.14 are very much improved as comparison with the slip-line field 

solution indicates. 

Fig. 5.15 shows the effective strain rate distribution for 

both the traditional and the modified boundary conditions. As 

expected, both distributions are almost identical except for the 

decrease in the strain rate concentration found at the die corners. 

Case B  

Another possible method of overcoming this problem is to 

take advantage of the discretization character of the finite element 

technique and eliminate the corner altogether (see Fig. 5.16). 

Fig. 5.16 
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This boundary condition has also been investigated and the 

results were very similar to those just described. This last 

technique, however, has the advantage of not having to define 

"fictitious" boundary conditions at the corners for it is only 

necessary to modify the mesh slightly. 

Both techniques are simple to implement, only requiring 

specification of data and, therefore, not involving any change in the 

logic of the computer code. The choice between the two is a subjective 

one since both render almost identical results and, it may be argued, 

represent basically the same physical situation. 

The same problem was also solved using the "penalty-function" 

formulation varying the values of the penalty coefficient (a). The 

extrusion pressure, velocity distribution and hydrostatic stress 

distribution were compared with those found using the "velocity/pressure" 

formulation. The results, shown in Fig. 5.17, reveal the same trends 

as those of the problem discussed in the previous section: the larger 

the penalty parameter, the closer are the solutions. For a 

sufficiently large value of a the two solutions are not noticeably 

different. It is worth mentioning that, if the value of a is too 

large, the systems of equations resulting from the penalty formulation 

will be ill-conditioned. Evidence of this phenomenon was not 

encountered with the values used in this study. 

5.5 	Rod Extrusion  

Axisymmetric extrusion is a process of particular interest 

since it forms, in effect, the basis for considering the forming of 

other components. This is a more complicated problem than plane-

strain extrusion and it is extensively documented(5'19). Here, one 

specific geometry will be considered and the effects of die friction 

and strain hardening of the material investigated. For the latter 
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it is necessary to implement a procedure to integrate the strain 

rates and this will be discussed below before proceeding to look in 

detail at the problem. 

5.5.1 	Integration of Strain Rates  

The solution obtained by the methods discussed in this work 

is in terms of velocities and hence, strain rates. For non-steady- 

state problems, the effective strain rates are added incrementally 

for each element in order to evaluate the effective strains after a 

certain amount of deformation. However, extrusion is analysed as a 

steady-state process, and hence, an alternative technique is 

necessary for the determination of the effective strains. The 

technique used in this work is similar to the one suggested by Shah(5.21), 

however, for the sake of completeness a detailed description is given 

here. 

The strain rates for the elements are assumed to be the 

values at the centroid of each element (which is the best sampling 

point for the bi-linear isoparametric element(
5'20)). 

 The velocities 

are known at the nodal points on the corners, with a bi-linear 

distribution within the element. The coordinates of the centroid of 

the element, as well as those of the nodal points, are also known. 

To begin the integration, a point is selected along the entrance 

boundary so that it can be safely assumed that no straining has 

occurred before it and, therefore, the effective strain is zero. 

Given the coordinates of this point, then the radial and axial 

components of the velocity and the effective strain rate at that 

point can be determined by interpolation from surrounding nodal 

point values and centre values respectively. These velocities are 

then used to find the new position of the point. The effective 

strain rate is also added incrementally to the effective strain to 
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determine the effective strain at the new location and the procedure 

repeated. This procedure, in effect, is the integration of the strain 

rates along the path of the point from its starting point to its 

current position, that is:- 

t 

T= ē dt 	 (5.7) 

0 

where t stands for time. 

This procedure of adding velocity and strain rate 

incrementally is continued until the point reaches a position beyond 

the deforming zone such that it can be assumed that no further 

straining occurs beyond it. Choosing another point on the entrance 

boundary and following the same procedure allows the determination of 

another flow-line and the values of effective strain along it. This 

procedure gives the whole network of grid distortion and effective 

strain distribution. The value of the effective strain at each 

elements' centroid can then be determined by interpolating from the 

network of flow-lines. 

5.5.2 	Non-Hardening Material  

The results obtained for the problems discussed in the 

preceding sections showed that the results for both "penalty-function" 

and the "velocity/pressure" formulations were almost identical when 

the penalty parameter was sufficiently large. In what follows, 

therefore, only the penalty function will be used, since it is 

conceptually easier to understand. 

As a first step, the problem of the axisymmetric extrusion 

of a circular rod is considered. The extrusion ratio, defined as the 

ratio of original to final cross-sectional area, was selected to be 
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R = 4.0 and the half-cone angle for the die was a0  = 45°. 

The problem has been solved for various conditions of 

friction to assess the influence of friction. Friction is introduced 

via tangentially applied nodal forces at the nodes in contact with the 

die. 

The mesh used is shown in Fig. 5.18 where it can be seen 

that modification of the mesh (Case B - previous section) around the 

die corners is the method used to deal with the singularities. The 

accuracy desired is set at Null/Hull < 0.005, and a cut-off value 

of y = 109  is chosen to deal with the rigid regions. 

5.5.3 - 	Work-Hardening Material  

The next problem considered is that of extrusion of a work-

hardening material. For the sake of comparison the same process 

conditions, namely, R = 4.0, a0  = 45°, are used, although only the 

frictionless case is considered. Also, the mesh is the same as for 

the previous case. The calculation is performed using the stress-

strain relationship:- 

= Yo (1 + T/0.3  0,25 

where Yo  is the initial yield stress. 

In this case, the flow-lines, corresponding to the current 

velocity field, are constructed after each iteration using the 

procedure described previously. The effective strains for all 

elements are also determined and using the stress-strain relationship 

a corresponding flow stress distribution for the elements is 

calculated. For the first iteration, the flow stress for all 

elements is set to be equal to its value at zero strain, i.e. Yo. 

Taking this new flow stress distribution, the next iteration 
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for the velocity field is carried out and the same procedure repeated 

until convergence is achieved. 

Since the solution depends not only on the velocity 

distribution but also on the flow stress distribution, when the 

velocity solution has converged, the flow stress and effective strain 

distribution also conform to the initially defined relationship. Thus, 

convergence of the velocity solution gives the correct solution for the 

work-hardening material. 

5.5.4 	Results  

The finite element analysis of the axisymmetric extrusion 

gives very extensive data describing the detailed mechanics of the 

process. However, in order not to confuse the issue with an in-

ordinate amount of graphs and curves, only a few selected results 

will be presented and discussed in this thesis. 

(a) 	Non-Hardening Material  

As stated earlier the axisymmetric extrusion of a rod of 

non-hardening material was solved using various friction factors, 

namely, m = 0.0, 0.5 and 1.0; where m is defined by:- 

T = m Yo/T (sub-surface layer mode) 	(5.8) 

The effective strain rate distributions for various 

frictional conditions are shown in Fig. 5.19. As might be expected, 

there is some degree of strain rate concentration near the die corners. 

The strain rate increases gradually from the entrance towards the 

exit and drops sharply very near the die exit. This suggests the 

existence of a shear zone close to the exit boundary. It is also 
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evident that the zone of plastic deformation moves backwards 

considerably (towards the extrusion plunger) with increasing friction 

along the die interface, which is consistent with experimental 

evidence(5'22). 

The flow-lines obtained from integration of the velocity 

field, shown in Fig. 5.20a, reveal the same effect with increasing 

friction and are qualitatively similar to those obtained by Lambert 

and Kobayashi(5
'23) 

 who used a velocity field without discontinuities. 

The distortion of a line which was originally straight is 

plotted in Fig. 5.20b for two different conditions of friction. 

Avitzur(
5'24) 

 calculated the grid distortion, using a simple pattern 

of radial velocity, and found 2.1 to be the maximum relative dis-

placement, compared with 1.00, 1.80 and 2.65 found by Lambert and 

Kobayashi, and values of 1.03, 1.65 and 2.4 for m = 0.0, 0.5 and 1.0 

respectively, in the present work. Experimental grid distortion has 

yielded values of the order of 1.7(5'25). It can also be seen that 

the grid distortion considerably increases with friction. 

The nodal point forces along the die-workpiece interface 

are calculated from the stiffness equations. Since these components 

are in the r and z directions, a transformation has to be carried 

out to convert them to the direction normal to the die, and from them 

the normal pressure distribution is obtained. Fig. 5.21 shows the 

normal die pressure for the various frictional conditions. It can 

be seen that the pressure is highest at the entrance and it gradually 

decreases towards the exit, increasing by a small amount just near 

the exit. This behaviour conforms with the fact that the hydrostatic 

component of the stresses is expected to be decreasing towards the 

exit. The trend of the curves for the various frictional conditions 

is identical and, as expected, reflects the effect of increasing 

friction as 	increases in the pressure normal to the die. 
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The extrusion pressures are also calculated from the stiffness 

equations. Table 5.5 shows the comparison between the pressures 

obtained in this work and those obtained from well-known upper-bound 

analyses. It can be seen that the finite element pressures are an 

improvement over most of the upper bounds and are in very close 

agreement with the best upper bound. 

Fig. 5.22 shows the distribution of stresses along the axis, 

for two different frictional conditions. It can be seen that the 

hydrostatic component becomes less compressive towards the exit. 

This trend for all the stress components towards tensile behaviour has 

been argued to be responsible for the occurrence of extrusion defects. 

It is interesting to notice that the analysis predicts that increase 

of friction at the die face has the effect of diminishing this trend 

and hence reducing the possibility of a defect occurring. This last 

argument is consistent with experimental evidence, as a matter of fact. 

(b) 	Hardening Material  

As seen from the calculated vertical grid distortion, shown 

in Fig. 5.23, the distortion and, therefore, the amount of redundancy 

of the process is greater for a work-hardening than for a non-work-

hardening material. This is because the difference between the 

velocities at the axis and the periphery at a given section are, as 

expected, larger when hardening is taken into consideration. 

The extrusion pressure is again calculated via the reactions 

and results in the expression P/Yo  = 2.36. The die pressure 

distribution is shown in Fig. 5.24. It may clearly be noticed that 

the die is subjected to a greater pressure by the hardening material, 

but the trend is almost identical to that obtained for the non-

hardening material which is shown in the same figure for comparison. 

The stress distribution along the axis for both the 



TABLE 5.5  

Values of >s/Y for R = 4, a = 45°, Axisymmetric Condition 

Source 
Frictionless 

m = 0.0 
Rough dies 
m = 1.0 

Type of solution 

Avitzur(5.5) 

Kobayashi(5.27) 

Halling and Mitchell(5.26) 

Pierce(5'28) 

Lambert and Kobayashi(5.23) 

Pacheco and Alexander 

Lambert and Kobayashi(5.23) 

2.08 

1.90 

2.08 

2.08 

1.69 

1.68 

1.39 

2.87 

2.88 

2.54 

2.50 

Upper bound 

Upper bound 

Upper bound 

Upper bound 

Upper bound 

Present F.E.M. 

Lower bound 
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hardening and non-hardening materials is shown in Fig. 5.25. The 

analysis predicts higher stresses, in the compressive sense, for the 

former and by implication a less likelihood for common extrusion 

defects to occur. 

5.6 	Final Remarks  

The rigid-plastic finite element method has been applied 

successfully to the analysis of various extrusion problems. The effect 

of different treatments for the die corners was assessed leading to 

what seems a satisfactory way of modelling them. For the plane-strain 

problems two types of formulations were employed, giving almost 

identical results for the cases studied. This indicates that one of 

the formulations, namely, the penalty-function formulation is the best 

choice because it requires less computer core and less time to get a 

solution as well as being conceptually simpler to understand. 
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Figure 5.2: Mesh and boundary conditions for plane strain extrusion through frictionless square die 
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(a) 

(b) 

Figure 5.4: (a) Velocity vectors and (b) Flow lines for the problem 

of plane strain extrusion. R=2, 0(1 900 
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Figure 5.6: (a)Mesh and(b) Velocity vectors 

R=2, Die semi-angle= 45° 



Figure 5.7: Mesh used for analysis of plane strain extion ( isoparametric quadratic elements) 

R=2, Die semi-angle =45° 
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Figure 5.8: Velocity distribution and extrusion pressure obtained using isoparametric 

quadratic elements. R=2,Die-semi angle=45° 
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Figure 5.10: Velocity distribution and extrusion pressure (modified exit boundary condition) 

R=2,Die semi-angle:45° 



Figure 5.13: Mesh used for recalculation plane extrusion problem with modified 

boundary conditions. R=2,Die semi-angle=45o 
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Figure 5.14: Velocity distribution and extrusion pressure. Modified boundary conditions. 

R=2,Die semi-angle:45° 
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Figure 5.15: Effect of boundary conditions on the effective strain 

rate . (a) unmodified,(b) Modified. 

R=2, Die semi-angle:45°  
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Figure 5.18: Mesh and dimension for the axisymmetric extrusion problem. 
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Figure 5.19: Strain rate distribution,£/for different frictional 

conditions.R=4,Die Semi-angle=45° 
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Figure 5.20: (a) Flow lines; (b) Vertical grid distortion 
R=4,Oie semi-angle=4So 



4. 

a 

Pn  
Yo  

136 

Non -Ma - aeniny 	IvIQief - Iul 

1 I 

L 

4s _ Pw  

R. 
• 
Z 

•--m = 0.5- 

'-rn= 0 

.lr, 
4 	I 

ZIRo 

Figure 5.21: Normal die pressure distribution for different 

frictional conditions. R=4,Die semi-angle=450 

0.2 8 0. 



0.2 	0.4 	0.6 	0~.8 	1.0 
(b) 	z/Ro 

0 

0.5- 

- 0.5- 

0.5 

0 

-0.5 

0'z 

Om 

-1.0 

-1.5 

-2.0 -20- Fricri ant ess(m=0.) 

~r 0e 

m=0.5 

-2.5 	. -2.5 
0 	0.2 	0.4 	0.6 	0.8 	1.0 

(a ) 	 z/Ro 

Figure 5.22: Stress history along the axis. Non hardening material. R=4,Die semi-angle=45° 

(a) m=0.0; (b) m=0.5 



Pn 
Yo 

138 

/' 
Hardening Material 

Non Hardening Material 

Figure 5.23: V~rtical grid distortion.Effect of work-hardening 
Frictionless extrusion. R=4,Die semi-angle=45° 

, 

3.8 
1\ 
\ hardeninq r P", 

4S· 

\' V 
2R. --r-

10 
-

! ~l 
Pi ! -'\ 

'" I 

" ~ / 
2.8 

~ '" ./ 
[7 

r---. 

\ 
1\ 

'\ non-harden i ng 
~ 

1\ 
~ 

r-..... J 

"" "-- V -
02 04 06 08 1 0 z/Ro 

Figure 5.24: Normal die pressure distribution. 

R=4, Die semi-angle=45 



-0.5 

-1.0- 

-1.5- 

- 20- 

Axi-symmetric frictionless extrusion 

0.5 0.5^ 	 

-0.5- 

Or. (re 

-1.5-  

- 2.0-  

Qm 

0 

Non-hardening Material 	 Hardening Material 

	

-2.5. 	2.5 	 , 

	

O. 	0.2 	0.4 	d.6 	0.8 	1.0 	0. 	0.2 	0.4 	0.6 	0.8 	1.0 
z/Ro 	 z/R° 

Figure 5.25: Stress history along axis.Effect of work-hardening.R=4,Die semi-angle=45° 



CHAPTER 6  

HYDROSTATIC EXTRUSION OF BI-METALLIC RODS  
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6.1 	Introduction  

There are a number of requirements in industry which cannot 

be met satisfactorily by one material and call for the use of 

combinations of materials either because of structural soundness or 

because of economic reasons. Bi-metal rods (also called clad metal 

rods), which are rods or wire of two dis-similar metals, are one of 

such composite materials. The core, a cylindrical body of one metal, 

is surrounded by a concentric cylindrical sleeve of another metal. 

The two metals are usually required to be effectively "interlocked" 

so as to function effectively together. The usefulness of such 

materials stems from the possibilities presented by the combination 

of qualities of dis-similar metals. 

A typical example is the case of wire manufacture. 

Fluctuations in the price of copper and its availability have led 

manufacturers to search for substitutes. Aluminium was introduced as 

a substitute material for copper about twenty years ago. Its abundant 

availability, good conductivity (60% of pure copper), and low price 

made it very attractive. However, the surface of aluminium oxidizes 

readily making it difficult to achieve proper contact between 

aluminium conductors. 

To circumvent this difficulty, and still utilize the economy 

of aluminium, copper-clad aluminium was introduced around 1963. This 

metal system offers a 50% reduction in weight for equivalent 

conductivity, as compared to copper, and combines the ability of 

copper to make good contacts with the light weight and easy availability 

of aluminium. This kind of bi-metallic rods is usually produced by 

metal forming operations, frequently drawing or extrusion, following 

cladding. 

The object of this chapter is to present an analysis for the 

mechanics of the hydrostatic extrusion of copper-covered aluminium rods 
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using the finite element techniques described in the two preceding 

chapters, comparing the results with experimental data obtained using 

the procedure described in Chapter 3. 

6.2 	Previous Work on the Deformation of Composite Sandwich Materials  

Arnold and Whitton(6'1)  in 1959 are credited with being the 

first to publish their findings on sandwich rolling of hard materials. 

The process involved placing a hard metal strip between two layers of 

softer material. 

The rolling process was analysed theoretically on the 

assumption that plane sections remain plane and that the percentage 

reduction in both hard and soft materials was the same. Classical 

theories of rolling were used for the calculation of roll load and 

torque employing an equivalent yield stress Yeq  defined as:- 

2hs  Ys  + hh  Yh  

Yeq = 	2hs  + hh  (6.1) 

where h = thickness, Y = yield stress and sub-indices s, h indicate 

soft and hard materials respectively. 

This equivalent yield stress was derived by a simplified 

analysis of the stresses acting on the sandwich strip. 

Alexander(6'2)  in his discussion to Arnold and Whitton's 

paper proposed a more formal approach to the problem based on the 

analysis of plane strain compression of a sandwich and pointing out 

the inherent difficulties that had to be surmounted if a more detailed 

analysis of the problem was to be carried out. 

Weinstein and Pawelski(6'3), following an approach very 

similar, in principle, to that proposed by Alexander, developed a 

theory that could describe the main characteristics of the plane 
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drawing of sandwich materials. 

This theory is simple to understand and it is worth looking 

into it in some detail, since the basic concepts serve as a basis for 

almost all the other published work. The specific problem considered 

was the plane strain drawing of a strip of hard material cladded with 

a softer material and undergoing uniform deformation. 

In considering the plane of entry, if the materials were to 

be deformed separately (i.e. not in sandwich), the Mohr's circles would 

appear as in Figs. 6.1a and 6.1b, where the plane strain rigid-perfectly 

plastic shear yield strength of the matrix, Km, is assumed greater than 

that of the surface cladding, Kc. Then, if no sideway stresses are 

present, ideally, only normal pressures Pm  and Pc  equal to twice the 

shear strength exist. 

For the sandwich material undergoing uniform deformation, it 

follows that the lower strength clad material must transmit a 

compressive stress of magnitude Pm  to the matrix material in order to 

initiate plastic flow. However, it is evident that the cladding 

material cannot sustain a vertical compressive stress larger than Pc. 

Thus it becomes necessary to shift the Mohr's circle for the cladding 

material to the left, as in Fig. 6.1c, so that the transverse 

compressive stress through both materials can be Pm. Whilst this 

shift of the Mohr's circle of the weaker material ensures compatibility 

of the transverse stresses, it also indicates that a longitudinal 

compressive stress must act on the weaker material in order to satisfy 

equilibrium conditions. This compressive stress must be generated 

across the interface of the two materials since no sideways tension 

or compression exists. This means that the stronger material must be 

subject to a tensile stress to regain overall force equilibrium, that 

is, both Mohr circles must now shift to the right as shown in Fig. 

6.1d. A shear stress Tm  must, therefore, exist at the sandwich inter- 
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face as the mechanism for generating the different stress components. 

This theory was elaborated in detail for the plane drawing 

problem and its predictions compared favourably with experimental 

evidence. 

Atkins and Weinstein(6'4)  further extended this work and 

proposed models to describe the plastic behaviour of sandwich 

composites in tension, compression, rolling, drawing and extrusion, 

including work-hardening effects. 

It is worth pointing out that although these analyses were 

somewhat more formal than that of Arnold and Whitton, they arrive at 

the same concept of using an equivalent yield stress which is a 

function of the volumetric fractions of each material, i.e. Equation 

(6.1). Also, the analysis suggests that the individual rates of 

hardening are of little or no consequence. 

Afonja and Sansome(6'S)  studied the problem of sandwich 

rolling, arriving at similar results to those of Atkins and Weinstein. 

In fact, these last authors have said that both analyses are identical(6.6)  

Chia and Sansome(6'7), following the same basic assumptions, 

dealt with the problem of the axisymmetric drawing of bi-metallic rod. 

Helman(
6.30) 

 has also used the same approach to tackle the 

augmented hydrostatic extrusion of bi-metallic rod. 

A preliminary experimental investigation of the extrusion of 

rod, tube and can from combinations of dissimilar materials has been 

made by E. Whitfield(6'$)  at N.E.L. The results showed that flow of 

metals during the co-extrusion process is dependent on their relative. 

mechanical properties and dimensions, and on the geometrical disposition 

of the dissimilar metals in the original billet as well as the die 

geometry. 

Whitfield also carried out experiments in order to assess 

the minimum value of the initial cladding thickness for successful 
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extrusion of copper-covered billets of mild steel into rods, tubes and 

cans(6'9). He found this value to be dependent on the extrusion ratio 

of the particular experiment and that the ratio of initial cladding 

thickness/extrusion ratio was approximately constant. 

B. Avitzur(
6.10) 

 made a very comprehensive analysis of the 

mechanical conditions of the bi-metallic extrusion (drawing) process, 

using the upper bound method and his well-tried spherical velocity 

fields. He aimed at producing a criterion for the analysis of failure 

modes. The main variables defining the process were:- 

(i) Percentage reduction in area. 

(ii) Semi-cone angle of the die. 

(iii) Die land length. 

(iv) Friction. 

(v) Relative size of the core related to the cladding tube. 

(vi) Ratio of the flow stress of the core to the flow stress of 

the tube. 

(vii) Prescribed body tractions (front tension in extrusion and 

back tension in drawing). 

He reasoned that when the process departed from homogeneous 

deformation some sort of fracture was to be expected even though each 

material separately is a highly ductile material. The two metals 

chosen for the study were aluminium and copper using them both as tube 
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and core materials. The results were presented in graphs and agreed 

favourably with some selected experimental evidence. 

The paper presented some general trends to apply as failure 

criteria, even if these tendencies may be violated occasionally:- 

The harder the cladding, for Yc/Yt  < 1, the more likely it is 

that fracture will occur. 

The harder the core, for Yc/Yt  > 1, the more likely it is 

that core fracture will occur. 

(iii) The greater the departure of the strength ratio from unity, 

the more likely it is that fracture will occur and the 

narrower becomes the range of process variables within which 

sound flow is likely to occur. 

(iv) The higher the mean pressure (higher back pressure, lower 

front tension), the wider the range of variables for which 

sound flow is expected. Thus in extrusion, the range of 

sound flow is wider than that in drawing. 

(v) In general, the higher the friction, the narrower the range 

for sound flow, except that core fracture in extrusion is 

deferred by higher friction. 

This analysis was restricted, in the sense that only one mode 

of deformation was studied (uniform deformation) and no means of 

predicting alternative modes were presented. 

Zoerner et al
(6.11) 

studied experimentally the hydrostatic 

extrusion of hard core clad rods with special consideration to the 

(1) 

( ii 
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influence on the mechanics of the process of the bond between core and 

sleeve. The results showed that fracture in hard core clad rod is not 

controlled by an inherent brittleness of the materials but by process 

variables. 

Osakada et al(6.12) developed a theoretical analysis to 

predict the mode of deformation of bi-metallic rods with a hard core 

during hydrostatic extrusion using the upper bound method. The 

effects of the end of the billet, yield stress ratio, fraction of the 

harder core, extrusion ratio, die angle and frictional shear factors 

at the interface and die surface were considered in the analysis. 

They proposed a velocity field different to that of Avitzur's 

in the sense that it could describe more than one mode of deformation. 

This general velocity field was used to calculate the extrusion 

pressure and the field giving the lowest extrusion pressure was taken 

as the mode of deformation most likely to occur for the given 

conditions. 

The theoretical analysis predicted that uniform deformation 

will be attained when the die angle is low and the frictional stress 

at the interface is high. The cladding type of deformation will 

occur when the inner material is hard and the interface friction is 

relatively low and the die angle is large. 

Osakada and Niimi(
6.13) 

 derived a general expression for 

the radial flow field which includes all possible boundary shapes and 

applied it to the extrusion of composite materials. 

Hartley
(6.14) 

also proposed a velocity field for the 

extrusion of piecewise tubes, but unlike that of Osakada et al
(6.12)  

he assumed that the flow of the materials converged to the same point. 

Lugosi et al
(6.15) 

have recently combined features of the 

velocity fields proposed by Osakada et al and Osakada and Niimi to 

permit the core and tube to converge to different points while 
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incorporating general expressions for the boundaries of the deforming 

regions. 

They assumed that the core and tube emerge from the die with 

the same velocity and allowed for relative slip between the 

constituents during deformation. This model was used for a 

preliminary analysis of the effect of interfacial friction on the 

deformation process characteristics. 

Story et al
(6.16) 

have carried out an experimental analysis 

in order to assess the influence that the combination of variables 

leading to failure has on the hydrostatic extrusion of a niobium-

titanium superconducting alloy, in a pure aluminium matrix, into a 

back (receiver) pressure. Results showed that increasing the receiver 

pressure increased the range of acceptable process variables to 

produce sound flow. 

Alexander and Hartley(6.17)  carried out a comparative study 

of experimental results obtained from the hydrostatic extrusion of 

copper covered aluminium rods with the prediction of theories of 

increasing complexity, including one based on a finite element 

analysis. The experimental results were shown to be characterised 

by an equation of the well-known form:- 

P = W + K Rn R 	 (6.2) 

where P = extrusion pressure, W and K are constants, and R is the 

extrusion ratio. The constants W and K were found to be a linear 

function of the volume fraction of the core. The extrusion pressures 

calculated using these "equivalent" constants were in satisfactory 

agreement with the experimental values. The finite element analysis 

of the problem was carried out using the penalty function approach. 

They were able to predict the shape of the interface which was in 
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remarkable agreement with the experiments. 

Holloway et al
(6.18) 

analyzed primarily the conical 

deformation modes that were found within their tests of conventional 

extrusion of bi-metallic rods. Their main contribution was a semi-

empirical approach to find an upper bound for the extrusion pressure. 

This approach was based on the graphical evaluation of the velocity 

discontinuities after considering plane strain slip-line solutions, 

or the observed flow pattern. These velocities were then simply 

squared and assumed to be the velocity discontinuity pattern of the 

axisymmetric situation. Substitution of these velocity dis-

continuities in the appropriate expressions (Equation 3, Ref.(6.18)) 

and use of an equivalent yield stress resulted in upper bound 

extrusion pressures which were found to be in good agreement with 

experimental values. However, this approach neglects the rate of 

internal energy dissipation in diametrical compression of the 

deformable material between each of the pairs of assumed tangential 

velocity discontinuity surfaces. 

Matsuura and Takase(6'19)  carried out experiments to study 

the hydrostatic extrusion of aluminium-covered copper rods. Thej 

presented some general conclusions:- 

The relation between the extrusion pressures and the die 

semi-angle is different from that existing for the 

extrusion of a single metal. 

Within the limits of the experiments (Yc/Yt  < 4), the 

empirical relation P = A + B Qn R can be used to estimate the 

hydrostatic extrusion pressure. 

(i) 

(1 i 

(iii) 	The greater the reduction imposed on the rod the larger the 
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volumetric fraction of copper in the product. 

iv) 	The application of a back pressure prevented failure of the 

core. 

(v) 
	

Experimental values of the compressive yield stress agree 

very well with results calculated by the "Law of Mixture", 

namely,. Yeq 	Yc.f  + (1 - f) . Yt,  which is none other than 

the equivalent yield stress used by earlier authors (see 

Equation (6.1)). 

The same authors
(6.20) 

have recently analysed the problem 

using the finite element technique. They adopted an elastic-plastic 

approach based on Yamada's theory(6.21) and restricted their analysis 

to the initial stages of the process, presenting in graphical form the 

development of the plastic deformation zones and the relation between 

the extruding pressure and the displacement of the billet end. This 

was to be expected due to the fact that the limitations of the 

formulation employed (see Chapter 4) do not permit the steady state 

mode of deformation to be analysed. 

Chitkara and Crawford
(6.22) 

carried out an experimental 

investigation into the forward extrusion of short length billets of 

composite materials through square dies under both plane strain and 

axisymmetric flow conditions. Aluminium and copper were the materials 

chosen, using them in turn as either core or cladding. They present 

some modes of deformation which had not tech reported before. Most of 

these modes are due to the very particular configuration of the 

sandwich employed and are not likely to be encountered in practical 

situations. 

They also modified the work of Adie and Alexander(6
'23

)'and 
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Hailing and Mitchell(6.24) on the extrusion of single materials to 

find a graphical upper bound for the extrusion of sandwich materials. 

N. Ahmed(
6'25) 

 carried out investigations in the hydrostatic 

extrusion of copper clad aluminium wire trying to assess the influence 

of die design, extrusion ratio, extrusion pressure, product velocity, 

percentage of core and the ratio of flow stress of copper to aluminium, 

presenting definite results for the limited number of cases studied. 

Holloway et al
(6.26) 

extended earlier work by Sheppard and 

Raybould(6.27)  and calculated the rate of heat transfer and the average 

temperature rise during the extrusion of composite materials. They 

assumed that the heat generated was also a function of the core 

volumetric fraction. Theoretical predictions of the temperature rise 

experienced at the die throat agreed very well with experiments. 

Hawkins and Wright(6.28)  present experimental evidence in 

an effort to justify the use in theoretical analysis of an equivalent 

flow stress related to the individual yield stresses and volume 

fractions of the sandwich components. They also put forward an 

explanation for the reported existence of an optimum cladding to core 

thickness ratio in sandwich rolling (see Refs.(6.1),(6.4),(6.5))• 

Blazynski and Townley(6.29)  have modified approximate upper 

bound, force equilibrium (slab method) and Shield-type
(6.31)  

axisymmetrical analyses to account for the effects of friction and 

strain hardening in plane-strain, plug drawing of coaxially, 

integrally welded bi-metallic tubing without back-pull. They found 

that the upper bound approach was more accurate in the lower range 

of strains, whereas, the lower bound theorems were a better 

approximation in the higher range. They concluded that a Shield-

type analysis is to be preferred because of its ability to indicate 

the distribution and magnitude of shear stresses. 

Helman
(6.30) 

tackled the problem of drawing assisted 
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hydrostatic extrusion of copper-covered stainless steel rod. He 

adapted the method of weighted residuals to integrate the Prandtl-

Reuss equations and obtained an approximate polynomial solution for 

the stress distribution associated with Avitzur's well-known spherical 

velocity field. These stresses together with the strains were used 

to calculate, using the same numerical technique, the temperature 

distribution inside the deforming region. The loads calculated were 

shown to agree satisfactorily with experimental results. The stress 

distribution and, by implication, the temperature distribution are 

incorrect, in the writer's opinion. The reason for this is that he 

assumed incorrect boundary conditions, namely, that the shear, 

radial and circumferential stresses were zero at the axis of symmetry. 

Although the first of these conditions is true because of the axi-

symmetric condition, the other two are undoubtedly incorrect. 

6.3 	Finite Element Analysis  

As is evident from the literature just reviewed, a fair 

amount of effort has been put into the study of the deformation 

processing of composite rods, especially to problems similar to the 

ones considered here. Indeed, calculation of the pressures required 

to extrude (or draw) bi-metallic rods can be accomplished by a 

number of methods, from simple semi-empirical approaches to complex 

upper bounds requiring the use of the computer. However, there is 

still a need to understand the detailed mechanics of the process 

especially those concerning the stress and strain fields developed 

inside the deformation zone. 

The finite element techniques developed in the last two 

chapters provide a way to carry out a detailed analysis of the problem 

with a minimum number of assumptions. 
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6.3.1 	Statement of the Problem  

The billets considered for this analysis are composite 

materials in which the inside material (aluminium) is softer than the 

outside material (copper). A typical configuration of the process is 

shown in Fig. 6.2. In cross section, the inner core is a circular 

solid rod and the surrounding harder material is an annular tube of 

internal and external radii Rc  and Rt  , respectively. The fraction of 

1 	1 
the cross-sectional area of the inner material, f, is, therefore, 

defined as:- 

f = 	/Rt 
1 

(6.3) 

The total extrusion ratio is given by:- 

R =Rt /R2  
1 	2 

(6.4) 

where Rt  is the radius of the tube after extrusion (the die semi-angle 
2 

is denoted by an). 

Both materials are assumed to be rigid-plastic whose 

experimentally determined stress-strain relations (Chapter 3) are 

fitted for the purposes of the finite element analysis by polynomials 

of the form:- 

= A + Bē + Ce2  + Dc3  + Es'` + Fc5  + Ge6  (6.5) 

where Q is the yield stress, Ē is effective strain and the polynomial 

coefficients take the following values, if a is in MN/m2:- 
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Copper (MN/m2 ) 	Aluminium (MN/m2 )  

A = 	94.880 	A = 	53.207 

B = 	944.890 	B = 	169.210 

C = - 1408.200 	C = - 200.930 

D = 	1143.900 	D = 	166.960 

E = - 504.760 	E = - 77.530 

F = 	114.670 	F = 	18.119 

G = - 	10.492 	G = - 	1.673 

It is assumed that no relative movement between the two metals 

occurs at the interface and, hence, the interface is considered as the 

superposition of the limit surfaces of both metals. Furthermore, both 

materials are assumed to be sub8.cted to the same pressure at the jec 
billet  end'(the open end) and moving at the same entry velocity. 

The latter assumption is justified by the experimental 

arrangement used in this work (see Chapter 3). 

6.3.2 	Interface Shape  

One of the unknowns of the problem is the position and shape 

of the interface. Of course, this shape could be assumed a priori or 

an experimentally determined one could be used. However, neither of 

these alternatives takes full advantage of the method and in fact 

reduce its predictive character. Besides, if the interface can be 

predicted, an additional comparison with experimental results is 

available for the purposes of validation of the theoretical model. 

As has been stated before, the results of the finite element 

analysis are given in terms of a set of axial and radial velocities 

at each nodal point. Since the direction of material flow is defined 

by these velocities, this data can be used to find the position of 

the metal interface. 
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Price(
6'32), 

 when analyzing the dieless drawing problem, 

considered various schemes to modify the position of nodal points 

using the velocities. He found that the best scheme was the one 

proposed by Alexander and Turner(6.33).  This scheme was chosen for 

this work and it will be described below for the sake of completeness. 

In Fig. 6.3 the arrowed lines represent the directions of 

material flow which may be expressed as a slope, S given by:- 

S = V   (6.6) 

The intermediate nodal point, I, has a slope, SI, represented by the 

dotted line IA. IB is the slope, SJ, of the adjacent nodal point. 

The new radial coordinate of nodal point J is in position midway 

between points A and B defined by:- 

(SJ + SI  ) 
r
J
=r

l
+ 	2  	. Zn  (6.7) 

where Zn  is the axial distance between the points and remains 

unaltered. The solution procedure starts with a "guessed" shape and 

position, namely, a conical interface and uniform reduction (see Fig. 

6.2). After each iteration the velocities are used to modify the 

radial position of the internal nodal points. Since the solution 

depends on the distribution of the metals within the deforming region, 

when convergence is achieved for the velocities the position of the 

interface conforms with them. Thus, it can be argued that convergence 

of the velocity solution also gives the correct position of the 

interface. 

6.3.3 	Computational Conditions  

Following the experimental work, various configurations were 
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analyzed using the finite element method. Table 6.1 shows the conditions 

used. 

TABLE 6.1  

Die semi-angle (DD) Reduction (R) Core percentage (f) 

200 
2, 

3.05 
 and 

0.735 and 0.327 

45° 
2, 4.08 and 

0.735 and 0.327 

It was shown in the previous chapter that, provided the 

incompressibility condition was properly satisfied, both the penalty 

and velocity-pressure formulation give almost identical solutions. 

Hence, only the penalty function formulation is used in this chapter 

together with the techniques developed to include strain hardening 

effects. Bi-linear isoparametric elements with appropriate selective 

integration schemes are used. 

Figs. 6.4 and 6.5 show some of the meshes employed. It is 

important to notice that the singularities at the corners of the die 

are dealt with using the "Case B" method introduced in the previous 

chapter, namely, by "eliminating" the corner from the continuum to 

be modelled. 

The process was analyzed assuming zero friction at the die-

tube interface; this is warranted by experimental evidence concerning 

friction in hydrostatic extrusion(6.34). 

A cut-off value, y = 3 ā/ē, 	of 109  was specified in order 
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to deal with the "rigid regions". Convergence value was set at 

II Aril I/IIuII < 0.0005. A penalty coefficient (a) of 109  was chosen. 

6.4 	Finite Element and Experimental Results  

6.4.1 	Extrusion Pressure  

The theoretical extrusion pressures are calculated from the 

reactions derived from the stiffness equations. These are plotted 

against the natural logarithm of the extrusion ratio in Figs. 6.6 and 

6.7. 

It is clear that irrespective of the values of the core 

fraction f and the die semi-angle a0  and in common with conventional 

monometallic hydrostatic extrusion, the level of energy involved in 

the process increases with reduction. It can also be seen that the 

effect of the core fraction is correctly predicted. 

Correlation between experiment and theory is excellent for 

the 40°  die, but not so good for the 90°  die. This is perhaps due 

to the fact that, for the latter case, the elements used in the 

analysis are more distorted, which, in general, lowers the accuracy 

of the element. Because of this, and in order to save space, the 

rest of the results will only be presented for the 40°  die. 

6.4..2 	Interface Shape  

The main attraction of the finite element method is its 

ability to predict the fine detail of the behaviour. Plate 6.1 shows 

billets that have been split on a meridional plane to show the 

detailed shape of the interface between the aluminium core and the 

copper tube. In Figs. 6.8 and 6.9 the measured shape of the inter-

faces for different core fractions and reduction is shown in detail 

and compared with the shape predicted by the finite element analysis 
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using the technique described in Section 6.3.2. The agreement is 

quite good, even though this could be improved if a more accurate 

convergence were set. Simple analyses of the upper bound type give 

no information at all in this respect. Moreover, the simple conical 

interface often assumed can be seen not to conform with the actual 

behaviour. 

Another feature worth mentioning is that the finite element 

method predicts, for the given conditions, the same reduction for both 

materials, which is indeed what the experimental evidence shows. 

6.4.3 	Kinematics of the Process  

Figs. 6.10 and 6.11 depict the effective strain rate (s) 

distribution for different reductions and core fractions. As might 

be expected, there is some degree of strain-rate concentration near 

the die corners. As in monometallic extrusion the strain rate 

increases gradually from the entrance towards the die exit and drops 

sharply near the exit, suggesting the existence of shear zones. It 

can also be seen that the boundaries between the rigid and deforming 

regions differ from the often assumed spherical shape, especially at 

the die entry. This agrees with experimental evidence(
6.15)_ 

 The 

effective strain rate distributions also suggest that, for a given 

reduction, the effect of different core fractions is more marked 

towards the die exit and close to the die wall. 

Integration of the velocity field and the strain rate 

distribution yields the grid distortion and the effective strain 

distribution respectively. 

Figs. 6.12 - 6.15 show the grid distortions and corresponding 

effective strain distribution for the cases considered. The grid 

distortions suggest that the outer material (the tube) is "pulled 

forward" by the core. This is revealed by the convex shape of the 
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grid distortions in the tube. Analagously, the flow in the core 

seems to be restricted by the outer material, and this is also 

reflected in the shape of the grid distortions near to the metal 

interface, especially at greater reductions (see Figs. 6.14, 6.15, 

6.24 and 6.25, for example). The amount of strain hardening in the 

outer material is greater near the die than near the interface. This 

trend seems to be slightly reversed towards the exit when the initial 

core fraction is small (see Figs. 6.13b and 6.15b). Equally, the 

amount of strain in the core is greater near the interface than near 

the axis of the workpiece at the beginning of deformation and the 

trend seems to reverse towards the exit. However, for all the 

conditions considered, and in common with monometallic extrusion, in 

the product the strain is lowest near the axis and gradually,increases 

towards the periphery. 

6.4.4 	Stress Distribution  

The stress distributions are readily derived from the finite 

element analysis and are shown in Figs. 6.16 to 6.19. 

These distributions are more difficult to discuss due to the 

impossibility of measuring stress experimentally. However, some 

trends are identifiable and these can be discussed. 

As expected, all the normal stresses show a tendency to 

become, less compressive towards the die exit. This is in sharp contrast 

to the results reported in Helman's thesis(
6.30) 

 where, as previously 

discussed, incorrect boundary conditions led to illogical stress 

distributions. 

The radial stress distribution for all conditions exhibit 

different characteristics. In the middle of the deforming region the 

radial stresses are fairly constant across a given section and a 

slight concentration appears, as expected, at the exit corner. Near 
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the entry region the stress concentration at the die corner seems to 

extend well inside the specimen. A possible explanation for this is 

that at the beginning of plastic flow the change of slope of the 

metal interface acts as a die corner creating additional radial stress 

concentrations. These characteristics in the radial stress distributions 

are more evident at large reductions, see Figs. 6.18a and 6.19a. The 

axial stress distribution is very important since this stress is 

considered to have a great influence on the occurrence of fracture. 

It is very difficult to identify a general trend across a given section 

because of the effect of the interface and because of the nature of 

the technique used for averaging the stresses used in the drawing of 

the contours, namely, averaging the stresses at the nodes. However,. 

some specific features can be identified. The stresses close to the 

interface tend to be less compressive in the tube which agrees with 

the elementary theory explanation of the softer (core) material 

"pulling" the harder (tube) material. It can also be noticed that 

for the greater core fraction the axial stresses in the tube become 

less compressive earlier, which suggests a great likelihood of 

fracture occurring (see Figs. 6.16b and 6.18b). In the core the 

stresses become more compressive as we move away from the axis, but 

this trend is reversed close to the interface. 

The.shear stress distributions show that the stresses are 

greater near the die surface and steadily decrease towards the axis 

of the specimen. An exception to this trend is the case shown in 

Fig. 6.19d, where the maximum shear stress occurs on the interface 

near the die exit. The contours also give an insight as to where the 

material starts shearing. 

Figs. 6.20 and 6.21 show the normal stress distribution at 

the interface for different conditions. The normal stress is always 

compressive and, except for a small increase at the beginning of 
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deformation, it decreases (in the compressive sense) towards the 

exit. This suggests that the metal interface behaves as a die 

surface with respect to the core material. 

6.5 	The Use of the Finite Element Analysis as an Experimental Tool  

The relatively good agreement between the experimental and 

theoretical results warrants the use of the theoretical analysis as a 

tool in the study of the hydrostatic extrusion of composite materials. 

The one feature of the process chosen for closer study here 

is the effect of interfacial friction in the process. 

In order to carry out such a study an hypothetical case has 

been analysed. For convenience, one of the configurations already 

analysed is chosen, namely, copper-covered aluminium rod, f = 0.327, 

ap = 20o  and R = 3.05. 

6.5.1 	Introduction of Interface Friction  

Introduction of friction at the interface presents a problem 

due to the Eulerian character of the finite element formulation. At 

low friction it is impossible to guess a priori the relative position 

of nodal points at the interface (the contact surface of both metals); 

furthermore, it can no longer be assumed (as in the previous cases) 

that contact points belonging to both the sheath and the core have thea 

same velocity. 

The simplest way to overcome this difficulty is to take 

advantage of the main considerations of the friction model most often 

used in metal-working analysis. This model considers that the work-

piece in contact with the tools can be represented as a material of 

constant shear strength Tc. However, instead of letting Ti = k, as 

for sticking friction, we consider that the interface shear strength 

may be some constant fraction m of the yield strength in shear where m 



Ti 	interface shear strength 
m = k  - 	  

yield stress in shear 
(6.8) 
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is called the interface friction factor:- 

Values of m vary from 0 (perfect sliding) to 1 (sticking). 

It is then simple to extrapolate this model to finite element 

analysis by considering a thin layer of elements with elemental 

properties in accordance with relation (6.8). These kinds of elements 

were originally proposed by Zienkiewicz et al(6.35) and have been used 

successfully by Hartley et al
(6.36) 

for the study of ring compression. 

It seems, however, that the problem under consideration does 

not fall within the limits of the model just mentioned, since, at the 

interface, it is not at all clear what should be regarded as workpiece 

and what as tool. surface. However, it appears logical to think of the 

softer material as the workpiece. Therefore, a thin layer of elements 

is interposed at the interface with elemental properties according 

to:- 

Ti T-
s 

(6.9) 

where ks  is the current yield shear stress of the softer material. 

This will apply independently of the sandwich configuration. 

This technique eliminates the problems outlined before and 

in fact reduces the problem to the extrusion of a composite rod with 

an additional component fixed to the original two. The interface 

friction factor is varied between 0.1 and 1.0 and the other 

computational conditions are kept the same. 

Two different end conditions are considered. First, both 

sheath and core are assumed to have the same entry velocity, and 
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second, the products are assumed to have the same exit velocity; this 

last assumption is equivalent to solving the drawing problem. 

6.5.2 	Results  

It has been shown experimentally (5'15)  that interfacial 

friction plays a major role in this process, especially on the 

occurrence of fracture. Fig. 6.22 shows the axial stress distribution 

across the tube thickness and the exit. This section was chosen 

because the results from previous work suggest that this is where the 

higher tensile stresses are likely to occur. It can be seen that for 

all frictional conditions the stresses are more compressive near the 

die surface than near the interface, becoming more tensile at the 

interface at low friction. This suggests that fracture of the tube 

material is more likely to occur when the interfacial shear yield 

strength is low. This is in agreement with existing experimental 

evidence(
6.15). 

 In fact the only fracture encountered in the 

experimental part of this work, see Plate 6.2, was found to be in a 

specimen where oil had seeped through to the interface. 

Fig. 6.23 shows the variation of extrusion pressure with 

interfacial friction: a small variation of about 6% is observed 

across the range considered and, conforming to elemental theory, it 

takes more energy to extrude a composite with low interfacial shear 

yield strength. Although the results presented hitherto are for the 

first end condition (see previous section), the trend is the same for 

both end conditions. 

Figs. 6.24 and 6.25 show the grid distortion and position 

of the interface for different interface friction and for the 

extrusion and drawing end conditions respectively. For the extrusion 

end condition, the finite element analysis predicts that at low 

interfacial friction the softer material (core) moves faster than the 
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harder material (tube) within the deforming region since it is less 

restricted. However, both materials leave the die at the same 

velocity and suffer the same reduction, the shape of the interface 

not being noticeably affected, which seems to suggest a stick-slip 

situation at the interface. 

For the drawing end condition, the grid distortion suggests 

a completely different mode of flow at low interfacial friction. 

The softer material (core) moves slower than the harder material (tube) 

within the deforming region. In fact, the entry velocities of both 

material are different which implies that a low friction non-uniform 

deformation is present. Further evidence of this is shown in Fig. 

6.26, where it can be seen that the core suffers more deformation than 

the tube. 

It is also worth noticing that for high interfacial friction 

the grid distortions for both end conditions are almost identical. 

6.6 	Final Remarks  

The finite element analysis of the extrusion of composite 

rod-tube combinations gives information which cannot be provided by 

any other theoretical method. The extrusion pressures predicted 

(which are usually taken as a measurement of the accuracy of 

theoretical models) are in good agreement with experiments. However, 

this is only a minimal part of the data that the method can produce. 

The kinematical characteristics of the process together with the 

stress distributions are all described for the first time, to the 

author's knowledge, and should be helpful for establishing the 

conditions necessary to give effective metallurgical bonding at the 

interface. 

The finite element technique can be used as a theoretical 

tool to study the effect of varying the different parameters of the 



163 

process, rendering information that otherwise is not possible to 

predict theoretically. 

Various general conclusions can be drawn from the results 

presented here:- 

(a) For all the conditions studied uniform deformation of both 

components occurs. 

(b) The interfacial shape is not conical, as is often assumed. 

(c) There seems to be evidence to suggest that fracture of the 

sheath material is more likely when the core fraction is 

large and/or when the interfacial shear yield strength is 

low. 

(d) The assumption that both materials have the same entry or 

exit velocity seems to affect the finite element results, 

and should be very carefully considered before trying to 

extrapolate results to accommodate specific actual conditions. 
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Figure 6.1: Stress Mohr circles for 
simple plane strain drawing. 
(After Ref.6.3) 
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Figure 6.2: Geometry of a composite specimen. 
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Figure 6.3: Modification of nodal coordinates according to velocity slopes (After Ref.6.33) 



O 

1.2 1•I 0.0 1.0 0.8 0.6 0.4 0.2 

Figure 6.4: Mesh used for finite element analysis. R=3.05,Die semi-angle =20° 
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Figure 6.5: Mesh used for finite element analysis. R=7.865,Die semi-angle=20°  
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Figure 6.6: Extrusion pressure versus natural logarithm of reduction. 

Die semi-angle=20° 
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Figure 6.7: Extrusion pressure versus natural logarithm of reduction. 

Die semi-angle=45° 
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Figure 6.10: Effective strain rate distribution. 

R=3.05,0ie semi-angle=20°. 

(a) f=0.735 (b) f=0.327 
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Figure 6.11: Effective strain rate distribution. 

R=7.865,Die semi-angle=20°  

(a) f=0.735 (b) f=0.327 
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Figure 6.12: (a) Grid distortion; (b) Effective strain distribution 

R=3.05, f=0.735, Die semi-angle=20° 
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Figure 6.13: (a) Grid distortion; (b) Effective strain distribution. 

R=3.05, f=0.327, Die semi-angle=20° 
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Figure 6.14: (a) Grid distortion; (b) Effective strain distribution 

R=7.865,f=0.735,Die semi-angle=200 
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Figure 6.15: (a) Grid distortion; (b) Effective strain distribution. 
R=.7.865, f=0.327, Die semi-angle=20° 
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Figure 6.16: Iso-stress contours (MN/m2). 

R=3.05,f=0.735,Die semi-angle=20° 
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Figure 6.16 (Cont.) 
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Figure 6.17: Iso-stress contours.(MN/m2) 

R=3.05,f=0.327,Die semi-angle=20° 
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Figure 6.17 (Cont.) 
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Figure 6.18: Iso-stress contours (MN/m2) 

R=7.865,f=0.735,Die semi-angle=20° 
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Figure 6.18 (Cont.) 
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Figure 6.19: Iso-stress contours (MN/m2) 

R=7.865,f=0.327,Die semi-angle=20° 
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Figure 6.19 (Cont.) 
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CHAPTER 7  

NON-STEADY STATE PROBLEMS  
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7.1 	General  

All the processes considered so far in this work have been 

of the steady-state type, i.e. problems where the mode of deformation 

remains constant throughout most of the duration of the process. 

If steady-state conditions do not exist, the problem has to 

be analyzed as a transient one. Furthermore, if body forces are not 

introduced by inertia (acceleration) effects, so that dynamic terms 

can be neglected, the problem can be treated as quasistatic. The 

present chapter is concerned with using finite element techniques for 

this type of process. 

For such problems the velocity of flow is first established 

for the initial configuration and then these velocities, determined at 

the nodal points, allow the new position of the mesh to be determined 

at a subsequent time increment At, by a suitable updating procedure. 

With the new boundary and altered mesh, new flow conditions are 

established. 

As each new flow solution starts in an "Eulerian" manner 

from the present configuration, very large deformations can be readily 

followed by a simple process of repetition of the solution in updated 

coordinates. 

Clearly, for accuracy, small time intervals need to be 

considered, but as all calculations are restarted at each new 

configuration the question of incrementing Eulerian type stresses, 

which often presents difficulty in elasto-plastic analyses, does not 

arise. 

The field of application for this kind of analysis is 

obviously vast, ranging from the simple upsetting of a cylinder, to 

forging problems presenting complicated flow patterns. Some of these 

problems are analyzed in what follows. 
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7.2 	Plane Strain Compression of a Block  

Although this problem is not analyzed as a transient one, 

it is included in this chapter because it provides a good starting 

point towards assessing the accuracy of finite element solutions for 

this class of problem, since exact slip-line field solutions exist for 

a plastic-rigid material. 

The problem of compressing a rectangular block of metal 

between rough parallel dies was first investigated by Prandtl(7'1)  who 

deduced that the slip-lines were cycloids. Later Prager(7.2)  showed 

that this type of field can be obtained by using a simple geometric 

property of the Mohr's circle. Alexander(7'3)  considered the effect 

of Coulomb friction at the faces of parallel rigid dies on the 

compression load, providing an "intermediate" solution between the 

perfectly rough and frictionless dies. 

The specific problem considered here is the plane strain 

compression of a rectangular block of rigid-perfectly material between 

rough dies which approach each other with a relative speed of two units, 

see Fig. 7.1a. 

The problem is analyzed using the penalty-function 

formulation developed previously. Because of symmetry, only one 

quadrant needs to be modelled and this was done using bi-linear quad-

rilateral elements. The mesh used, together with the assumed boundary 

conditions, is shown in Fig. 7.1b. Two configurations were analyzed, 

namely, w/h = 1.6 and w/h = 3.6; a constant yield stress of 120 MN/m2 , 

a cut-off factor (y) equal to 109  and a penalty coefficient a = 108  

were selected. 

The results are presented as velocity distributions and 

upsetting loads and compared with existing slip-line solutions(7'4), 

see Fig. 7.2. It can be seen that the velocity distribution conforms 

well with the slip-lines, even though the finite element method does 
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not allow for the discontinuities that the slip-line theory considers. 

The upsetting pressures also compare well with the slip-line values. 

7.3 	Upsetting of Cylindrical Billet  

7.3.1 	Introduction  

The frictionless compression of a circular, solid cylinder 

between parallel flat dies as shown in Fig. 7.3a is a relatively simple 

operation. This simplicity makes it useful as a test for measuring the 

stress-strain properties of materials when this data is required for 

high strains. Unlike the tension test no instability due to necking 

is present. Furthermore, the test can be carried out to strains in 

excess of 2.0 if the material is ductile. Upsetting, as compression 

is often called, is also one of the major manufacturing processes in 

metal forming. 

The apparent simplicity turns into relative complex 

deformation when, as is usual, friction is present at the die-workpiece 

interface. The deformation is homogeneous when there is no friction, 

but with friction the distribution of the compressive stress is non-

uniform, and the average compression stress differs from the flow stress. 

Moreover, the frictional resistance restricts the flow at the contact 

surface, whilst the metal at the specimen mid-height can flow outward 

undisturbed. This leads to a "barrelled" specimen profile, and 

internally a region of undeformed metal is created near the platen 

surfaces. 

The complexity of non-uniform deformation is also manifest 

by the fact that a part of the initially free surface comes into 

contact with the die during compression: this is known as "folding". 

7.3.2 	Previous Work  

Due to the importance of compression as a test for 
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determining properties, most of the early work was mainly concerned 

with the average pressure required by compression. In recent 

investigations, however, attention has been directed toward finding 

the detailed deformation characteristics in relation to the occurrence 

of surface cracks
(7.5-7'7), 

 with a view to imposing knowledge of 

fracture mechanics in large strain deformation processes. 

Some of the analyses worth mentioning are the analysis by 

Siebel(7'8), the slab method analysis by Schroder and Webster(7'9)  and 

the upper-bound solutions by Johnson
(7.10), 

Kudo(7
'
11), Kobayashi(7'12) 

and Avitzur(7'13). 

A number of experimental investigations have also been 

undertaken for the determination of pressure distribution, deformation, 

etc. For specimens of height to diameter ratio larger than 1.6, a 

double bulge was observed by Nagamatsu et al
(7.14)

_ The pressure pin 

technique was employed by Van Rooyen and Backofen(
7'15) 

 to obtain the 

pressure distribution on the dies. This distribution was also 

determined experimentally by Takahashi
(7.16). 

 Both these studies show 

that when the height to diameter ratio is greater than 0.6, the pressure 

distribution has the form of a reversed friction-hill; the pressure 

distribution is of the normal form for ratios smaller than 0.6. The 

finite element method has also been extensively used (in its various 

forms) to analyze this problem. A survey of that work was presented 

in Chapter 4 and it will not be repeated here except when required. 

7.3.3 	Computational Conditions  

In 1976 Kudo and Matsubara(7'17) proposed a joint 

programme under the auspices of C.I.R.P* to analyze the different 

* 	The "Collbge Internationale Recherche et Production". 
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numerical methods available for the analysis of metal forming processes. 

In that connection they proposed a test problem which is the one chosen 

here to demonstrate and assess the capabilities of the penalty-function 

formulation used in this work. 

The problem is that of upsetting of a cylindrical billet 

having a diameter of 20 mm and a height of 30 mm between perfectly 

rough parallel platens (see Fig. 7.3a). 

Both non-hardening and hardening material are considered 

(see Fig. 7.3b), the yield stress being defined as:- 

Yo  = 0.7 	(KN/mm2) 	(non-hardening) 	(RPN) 

Y = Yo  + 0.3 ē 	(KN/mm2) 	(hardening) 	(RPH) 

Because of symmetry only one quadrant needs to be modelled. 

The continuum is divided into 150 bi-linear quadrilateral elements as 

recommended in Ref.(
7'17). 

 This idealization is shown in Fig. 7.3b 

together with the boundary conditions used. The problem is first 

solved for the frictionless condition, thereby providing a further 

check of the formulation since the exact solution is known in this 

case. 

A penalty coefficient (a) equal to 108  and a cut-off factor 

(y = ā/ē) of 109  were chosen; a one-percent reduction in height was 

selected as the size of an increment. The solution with the 

convergence norm l'AuI!/hull less than 0.005 was considered acceptable 

for each step. The calculations were continued up to 60% reduction in 

height in both cases. The average number of iterations for each step 

was two and four to five for the frictionless and the sticking 

friction cases respectively. 
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7.3.4 	Results and Discussion  

(a) Frictionless Compression  

The results given by the finite element method for the 

frictionless case show that homogeneous deformation is modelled very 

well, the mesh deforming uniformly and remaining completely cylindrical 

throughout the deformation process. Fig. 7.4 shows the deformed mesh 

at two different stages, namely, 30% and 60% reduction in height. The 

results also show that there is no detectable departure from constant 

volume, proving that the "penalty" is behaving in the correct way. 

The upsetting loads, calculated via the reactions obtained 

from the stiffness equations, are shown in Fig. 7.5. Agreement with 

the analytical solution is excellent. In Fig. 7.5 et seq, RPN means 

rigid-plastic-non-hardening material and RPH means rigid-plastic-

hardening material. The stresses at the equatorial outside surface 

are shown in Fig. 7.6. Again, agreement with the "exact" solution is 

excellent. 

(b) Sticking Friction  

A more complicated pattern of deformation is found when the 

material is assumed to stick to the platens. The grid distortions 

for various reductions in height are shown in Fig. 7.7. It can be seen 

that a rigid region of almost spherical shape is formed below the 

platen face, the size of this zone reducing with increase of reduction. 

A phenomenon in simple compression, known as "folding", is 

that of a part of the original free surface coming into contact with 

the die during compression. This tendency can be seen to start at 

about 20% and material folds between 30% and 40% reduction. If a 

finer mesh were to be used near the surfaces, it WouAA be found that 

the folding will occur earlier in the process. 
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The amount of folding can be more clearly seen in Fig. 7.8 

where some typical profiles of the side surface of the upset specimen 

are reproduced. No appreciable difference in the side profiles for the 

hardening and non-hardening materials is observed. Careful examination 

of the bulge factor (see Fig. 7.9) reveals, however, that bulging is 

slightly more marked for the non-hardening material 	(Bulge factor is 

defined as maximum diameter/initial diameter). 

The variation of stresses in the element at the equatorial 

surface is shown in Fig. 7.10 for both materials. The tensile 

circumferential stress develops and the compressive axial stress 

decreases its magnitude as the reduction in height increases. At 

large reductions the axial stress becomes tensile. These results are 

in agreement with experimental evidence
(7.18). 

The upsetting loads calculated via the reactions are shown 

in Fig. 7.11 for both materials. The analysis again predicts the 

expected trend for the two materials. However, the curves lay above 

those for the friction-free condition only after folding has occurred. 

The curves of load versus reduction in height found in this thesis 

coincide with those found by other formulations (see Ref.
(7.18)).  

7.4 	Extrusion-Forging  

Many hot and cold forging and extrusion processes involve 

flow in more than one major direction. Knowledge of these modes of 

flow is of importance in the design of the optimum size and shape of 

the billet. However, until recently, this type of problem was regarded 

as too complex for accurate analysis leaving the analyst at the mercy 

of "rule of thumb" methods. One simulative test often used involves 

the formation of a central boss on a disc by compression between a 

platen and a die having a central orifice (see Fig. 7.12). The length 

of boss formed under given conditions gives a guide to flow behaviour. 
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In this section the finite element method is applied to this 

relatively simple problem of compound flow under various conditions. 

7.4.1 	Previous Work  

Although the open extrusion-forging problem is a relatively 

simple problem very few analyses of it are available. Kudo(7.11)  

considered the analagous plane-strain operation using the concept of 

unit rectangular regions with an assumed kinematically admissible 

velocity field which satisfied the boundary conditions. The rate of 

energy dissipation was computed through optimization of a pseudo-

independent parameter. Burgdorf(7.19)  carried out experimental and 

analytical work. His analysis was based on an approximate stress state 

and was only concerned with billets having a low height-diameter ratio 

such that the deformation was almost entirely confined to one mode. 

A similar problem in which holes in the upper and lower die 

permitted simultaneous extrusion from both ends of the workpiece was 

considered by Pomp et al(
7'20

). The experimental results were reported 

in terms of the actual amount of extrusion and hence the presence of 

different modes of flow was not identified. Saida et al(
7'21

) applied 

an upper-bound approach to the problem and analyzed the problem for 

various frictional conditions. Jain et al(
7'22

) modified the work of 

Saida et al and analyzed the problem of simple extrusion-forging, 

identifying three different modes of flow which depended on frictional 

and geometrical characteristics. Newham and Rowe(
7'23) 

 used the slip-

line field theory to analyze the problem and were able to predict the 

transition between the different modes of flow. 

Recently, Osman and Bramley used the UBET (Upper Bound 

Elemental Technique) to solve the problem incrementally finding good 

agreement with Jain's work. Price and Alexander(
7'24) 

 have analyzed a 

similar problem using the finite element (penalty-function formulation) 



206 

presenting the results in terms of the deformed geometry. 

	

7.4.2 	Computational Conditions  

The calculations were carried out for a cylinder with a 

height-diameter ratio of 0.75 (Ho  = 0.75 in (19.05 mm), Do  = 1 in 

(25.4 mm)). Three different hole sizes were considered, namely, 

d = 0.75 in (19.05 mm), d = 0.5 in (12.7 mm) and d = 0.25 in (6.35 mm). 

Conditions of "sticking friction" were assumed at both die and platen. 

However, one of the geometries was also considered with the frictionless 

condition at the platen. A penalty coefficient (a) equal to 10' and a 

cut-off factor (y) of 109  were chosen. 1% reduction in height was 

selected as the size of the increment and the calculations were 

continued up to 80% reduction in height in most cases. A solution with 

the convergence norm 	< 0.01 was considered acceptable for 

each step; an average of two to six iterations for each step was enough 

to obtain that convergence. 

The material was assumed to be rigid-perfectly plastic with 

a yield stress of Yo  = 0.7 KN/mm2. 

	

7.4.3 	Mesh Updating  

Initially, the problem was solved using the most logical and 

simple updating scheme, namely, the new position of the nodal points 

was determined using the velocity at each nodal point. This scheme 

worked satisfactorily for small reductions in height. However, at 

relatively large reductions the elements tended to be badly shaped, 

reaching a point where they crossed over each other causing the 

calculations to be stopped. Fig. 7.13 illustrates the sequence just 

described; note that because of symmetry, only half the specimen needs 

to be modelled. 

Price and Alexander(
7'24) 

 encountered the same difficulty 
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when solving a similar problem. They circumvented the difficulty by 

updating only the boundary nodes and then redefining the interior 

elements arbitrarily. A scheme on the same lines was implemented in this 

study and the problem re-analyzed. The scheme was successful in the 

sense that the crossing of elements was eliminated. However, some 

badly shaped elements were still encountered during the calculation, 

resulting in illogical modes of flow. This was mainly due to the fact 

that the element nearest to the die corner (element C in Fig. 7.13f), 

because of the boundary condition imposed (full friction), will always 

remain badly shaped no matter what internal rearrangements are made. 

A new scheme was then developed to modify the mesh and enable 

the analysis to be carried out up to large reductions eliminating the 

crossing of elements and avoiding, as much as possible, highly 

distorted elements. The basis of the scheme is similar to the one just 

described, namely, updating of the boundary nodes with a subsequent 

arbitrary redefinition of the internal elements. The procedure was 

mainly directed towards modelling the complex flow pattern occurring 

at the die corner. This was carried out by including a new layer of 

elements to the metal surface that is going to form the extrudate and 

using a very small element at the die corner to justify the assumption 

that the model represents the shearing that is likely to occur. The 

procedure is better understood by studying the schematic description 

depicted in Fig. 7.14. The scheme was successful and the results are 

discussed below. 

Price and Alexander argued that the shape of the deformed 

elements was the only "memory" they had of their previous deformation 

hence, modifications of the mesh should be as few as possible. This 

would be correct if a pure "Lagrangian" frame of reference was used. 

In the "penalty-function" formulation used by them and in this work 

the current configuration is chosen as the reference state and thus, 
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the "memory" of previous deformation is "stored" in the material 

properties (if they are history-dependent). Therefore, if some way 

could be found of interpolating the material properties from the 

"unmodified" mesh to the "modified" mesh, problems involving material 

whose flow stress is history-dependent could be easily tackled. This 

is not necessary for the problems treated in this thesis since only 
tlaAc 

rigid-perfectlyjmaterials are used. 

7.4.4 	Results and Discussion  

The problem of open extrusion forging is a compound flow 

process where the material may flow radially through the gap between 

the die and the platen or extrude into the cavities. The main 

characteristics of the flow are better represented by plotting the 

percentage total height as a function of percentage reduction of the 

flange (see Fig. 7.15). 

It can be seen that, in general, there is an initial stage 

during which the total height decreases. As deformation proceeds, this 

is followed by a stage in which the total height remains constant, 

until finally a rapid. increase in height is observed. It is seen in 

Fig. 7.15 that the range for the first stage becomes narrower with 

increasing hole size, and at a 	in (19.05 mm) hole diameter this 

upsetting stage vanishes. The transition from the second to the third 

stage is delayed with increasing hole size, thus giving a wider range 

of the second stage for the larger hole diameter. These characteristics 

deduced from the finite element analysis are in good agreement with 

experimental results and upper bound analyzes of similar geometries (7.22) 

(see Fig. 7.16). 

However, this is not the only information that the finite 

element solution gives; the velocity distribution and shape of the 

deformed billet are readily derived from the analysis and these are 
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shown in Fig. 7.17 for a specified geometry at various reductions in 

height. 

The three different stages already described are easily 

identified together with their associated velocity fields. During the 

first stage (Figs. 7.17a - 7.17c) the velocity field suggests that 

metal will feed out of the zones beneath the hole and that the total 

height will decrease as deformation proceeds. Two rigid zones can be 

identified: one directly beneath the die hole and one near the platen 

which is, in fact, a zone of very small velocity (dead zone). This 

dead zone extends in both the vertical and horizontal (into the flange) 

directions until it occupies all the material beneath the hole, 

including the extrudate and the lower part of the flange, signalling 

the transition to the second stage (see Fig. 7.17d). Further reduction 

in height results only in deformation of the flange in an upsetting 

mode with the central core remaining rigid. The velocity fields 

suggests that deformation takes place by metal shearing against a rigid 

core (see Figs. 7.17d - 7.17g), which accounts for the crossing of 

elements encountered when no rearrangement of the mesh is used. 

Further reduction in height brings about the third stage, 

where the predicted velocity field shows upsetting on the outside and 

extrusion in the central core, with a neutral zone in the flange that 

tends to move outwards. The net result is a rapid increase in total 

height (see Figs. 7.17h - 7.17i). 

Another interesting comparison readily available is between 

the profile of the outside surfaces predicted for the three different 

hole sizes considered (see Fig. 7.18). The most striking characteristic 

is the mode of deformation for the larger hole size which, as shown in 

Fig. 7.15, only deforms in the second stage mode. This results in a 

rather unsymmetric bulging when compared with the other two. Also, it 

can be seen that folding is more pronounced in the early stages (Figs. 
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7.18a and 7.18b) and is localized on the die, the rest of the billet 

being practically undeformed until the flange reduction is relatively 

large. The bulged surfaces for the two other geometries are relatively 

similar at low reductions (see Figs. 7.18a and 7.18b) with folding 

occurring at both the die and the platen. The similarity disappears 

at large reductions, the bulging and folding being more pronounced for 

the smaller hole size (see Figs. 7.18c and 7.18d). 

It can also be seen that at low reductions the larger the 

hole the larger the total height; the trend being reversed at large 

reductions. 

In order to study the effect of friction in the process, one 

of the geometries, namely, Ho/Do  = 0.75 and d = 0.5 in (12.7 mm), was 

analyzed for a frictionless platen. The effect of this on the total 

height is shown in Fig. 7.19 together with the variation for the full 

friction case for comparison. It can be seen that the transition from 

the first stage to the second stage takes place at a larger reduction 

than with sticking friction. The extent of the second stage is 

shortened and the transition to the third stage occurs at a higher 

flange reduction. Furthermore, the total height is always less than 

for the sticking friction condition. 

The deformed billet and the corresponding velocity fields 

for various reductions are shown in Fig. 7.20. The velocity fields 

suggest that the main effect of reduced friction is to facilitate 

radial flow in the upsetting mode of deformation (see Figs. 7.20a - 

7.20d) which delays both transitions. It can also be seen that, unlike 

the case of full friction at the platen, no dead zones are easily 

identifiable during the early stages of deformation. Also, when the 

second stage sets in, the dead zone does not extend as much into the 

flange (see Fig. 7.20e). 

It is worth mentioning that the velocity fields for this 
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problem are also a solution for the problem in which a hole in the 

upper and lower die permits extrusion from both ends, in which case 

the geometry shown in Fig. 7.20 is, for reasons of symmetry, one 

quadrant. 

7.5 	Concluding Remarks  

This chapter has shown the successful application of the 

penalty-function to non-steady state problems. The implementation of 

computational schemes for continuum modelling extended the method to 

problems of compound flow. Indeed, such schemes are necessary if 

processes where internal shearing is present are to be modelled. 
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8.1 	General Conclusions  

At the beginning of the work, the first objective wa3 to 

analyze the stress and strain fields developed during the extrusion 

of bi-metallic rods. It was decided that the most suitable tool for 

the analysis was the finite element method, in specific, rigid-plastic 

formulations that have been recently developed. 

The formulations were presented in detail and various computer 

programs were written and implemented using the FORTRAN language. The 

formulations chosen as the most adequate, namely, the penalty-function 

and the velocity-pressure approach, were assessed as to their 

suitability by solving a number of simple extrusion problems in both 

plane-strain and axisymmetric conditions. The analysis provided 

information about the detailed mechanics of the process giving velocity, 

strain and stress fields. The extrusion pressures, which are in 

general the only information obtained from relatively complex analyses, 

are only a small part of the information given by the finite element 

analysis and compare favourably with existing solutions. 

The results also indicated that, for the elements used in 

this work (bi-linear Lagrangian quadrilaterals), there was no 

appreciable difference between the solutions given by the two 

formulations. Therefore, it was decided to use the penalty-function 

formulation for the rest of the work, since it requires less computer 

resources and is conceptually easier to visualize and implement. 

Whilst dealing with simple extrusion problems, techniques 

to handle the die corners and include work-hardening effects were 

developed and implemented. The treatment of the die corners, although 

not strictly formal, was found to be an improvement over previous 

techniques. 

The finite element method was then used to analyze the 

complex deformation process developed during extrusion of bi-metallic 
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rods. Various configurations were analyzed and the resulting 

predictions were compared with experimental evidence obtained using 

an existing experimental set-up. The experiments were by no means 

exhaustive, but fulfilled the main objective of providing data to 

assess the theoretical solutions. 

The predicted extrusion pressures were in good agreement 

with the experimental ones, especially for dies with a relatively 

small included angle. Comparisons of the interfacial shape also 

showed good agreement between experimental results and finite element 

predictions. It can be argued that since the extrusion pressure 

(energy requirement) and the interfacial shape (kinematical 

characteristic ) are correctly predicted, the stress and strain fields 

given by the solution represent a fair description of the process. 

The formulations were then extended to deal with non-steady 

processes. They were used to analyze the simple upsetting problem and 

the incremental extrusion forging process. The main characteristics 

of the complex deformation patterns were predicted and found to be in 

good agreement with available experimental data and theoretical 

analyses. 

It would seem, therefore, that the rigid-plastic finite 

element formulations, especially using the penalty-function approach, 

can be used with success in the analysis of metal forming problems. 

However, the solutions presented in this thesis are by no means "exact" 

and should be judged in the light of the mathematical and physical 

approximations intrinsic in the model. Indeed, one must be aware of 

the limitations of the model and avoid falling a prey to the "Computer 

equals Oracle" syndrome. For example, if it were desired to predict 

residual stress distributions in products subjected to large 

deformations.(to predict fatigue strength, for example), then it would 

be necessary to use an elastic-plastic formulation of the finite 
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element method. 

8.2 	Suggestions for Further Work  

The programs developed in this thesis are readily applicable 

to the analysis of any steady-state process, e.g. asymmetric extrusion, 

rolling, tube extrusion, rolling of sandwich plates, etc. (Some 

preliminary results for the rolling problem are presented in Appendix 

1). 

A logical extension of the model is the prediction of 

temperature distributions developed during the deformation processes. 

In order to do that, the temperature development dependent 

on the energy dissipation in the process must be considered and hence 

the thermal equilibrium equation must be solved. For plane flow, this 

equation takes the form:- 

r
aizir 	2

pCu āX vāyl -K 	 a2  Q=0 
ax 	ay 

(8.1) 

where p is the density, C is the specific heat, K is the thermal 

conductivity, T is the temperature, Q = oil  ein  is the rate of heat 

generation and u and v are velocity components in the x and y directions 

respectively. 

The numerical solution of this equation is discussed in 

standard finite element texts(8'1). The problem can be solved either 

as an uncoupled flow(8.2)  or as a coupled flow(8.3)  

Once the temperature distribution is found, it is a simple 

matter to introduce the dependence of the flow stress of the material 

on temperature (and strain and strain rate). In order to do this, 

various relations have been proposed. Inouye(8.4)  has used the 

expression:- 
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ā = ao  Ē Ēm  exp (A/Tk) (8.2) 

where ao, n, m, A and k are constants. Samantha(8.5)  has succeeded 

in establishing an empirical law of the form:- 

cs =A+B tn ē +T (C+Dtn ē +E to Ē+Ftnē to s) 	(8.3) 

where A, B, C, D, E and F are constants. Recently, Tay et al(8.6)  

have assumed the well-known empirical equation:- 

(8.4) 

and introduced the effects of strain rate and temperature by making 

ao  and n in Equation (8.4) functions of a velocity modified temperature 

defined as(8'7):- 

TMOD = T (1 - m tn ē/ ĒO ) (8.5) 

Other formulae are discussed in the book by Thomsen et al(8'7). 

It should also be possible to include the dependence of the 

thermal properties on the temperature. 
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APPENDIX 1  

ANALYSIS OF FLAT ROLLING : PRELIMINARY RESULTS  



A1.1 

	

A1.1 	Introduction  

The rolling process is of fundamental importance in metal 

forming and has been the subject of a great deal of attention throughout 

the years. A number of theories have been proposed for both hot and 

cold rolling, varying in complexity and accuracy. The problem, in 

general, is not one of steady-state flow, but if the sheet to be rolled 

is long enough, it can be approximated as such and, therefore, it can 

be analyzed using the methods presented in this thesis. 

	

A1.2 	Finite Element Analysis of a Hot Rolling Problem  

The present investigation was prompted by discrepancies 

existing in the literature. Zienkiewicz et al have, in a recent 

publication*, attempted to solve the hot rolling problem. They chose 

the same configuration used by Alexander** in his definitive account 

of the various rolling theories and applied the velocity/pressure 

finite element formulation with the aim of obtaining the torque and 

roll force encountered during the process. Their results compared 

poorly with the "exact" solution of Alexander and led them to the 

conclusion that more research was necessary before the rolling problem 

could be tackled. 

Although further research is clearly needed before any 

problem, in any field of endeavour, is fully solved, their failure to 

attain a solution was apparently not due to the unsuitability of the 

method, but to their unfortunate misinterpretation of the geometric 

characteristics of the problems as proposed by Alexander. 

* 	ZIENKIEWICZ, 0. C., JAIN, P. C. and ONATE, E. 
"Flow of Solids During Forming and Extrusion : Some Aspects 
of Numerical Solutions". 
University College of Swansea, Civil Engineering Department, 
Rep. C/R/283/76, (1976). 

** 	ALEXANDER, J. M. 
"On the Theory of Rolling". 
Proc. Roy. Soc. Ln. A. 326, pp. 535-563, (1972). 
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Because of symmetry, only half the continuum has to be 

modelled. This they did, but failed to realize that the values of 

initial and final thickness given by Alexander were for the whole slab 

and used them as the dimensions for the half-continuum they modelled. 

Obviously this is another problem altogether and, inevitably, led to 

their reported bad agreement with the analytical solution presented by 

Alexander. Moreover, they failed to realize that the values given by 

Alexander for the roll force were for unit width (inches) and, 

consequently, the equivalence between Imperial units and S.I. units 

they carried out was mistaken (see Fig. A1.1). 

Thus, in order to show that the rigid-plastic finite 

element formulations are adequate for the analysis of rolling, the 

problem has been re-analyzed and the results are discussed below. 

	

A1.3 	Computational Conditions  

The problem was analyzed using the penalty function 

formulation with bi-linear quadrilateral elements. A penalty 

coefficient (a) of 108  and a cut-off factor for the rigid regions 

(y = . 5/s) of 109  were selected. The material is assumed to be 

rigid-perfectly plastic with a yield stress, Yo  = 8546 N/cm2. No slip 

is assumed to occur between the roll and the metal (sticking friction). 

The mesh and boundary conditions used are shown in Fig. A1.2. 

	

A1.4 	Results and Discussion  

The torque and roll force are readily obtained from the 

finite element analysis and are shown in Table A1.1. It can be seen 

that they compare well with the analytical and numerical solution 

presented by Alexander (op. cit.). 

Obviously, it is not possible to produce results that are 

in complete agreement, since the two solutions are vastly different in 



Alexander (op. cit.) 	FEM 

Torque 24311 N.cm/cm 	24291 N.cm/cm 

Roll Force 43078 N/cm 	38989 N/cm 

A1.3 

their assumptions. 

TABLE A1.1  

The roll pressure is readily calculated from the numerical 

analysis, see Fig. A1.3. It is seen that the well-known friction-hill 

is obtained and it suggests that the neutral surface is somewhere just 

after the middle of the contact arc. 

The velocity distribution and the grid distortion obtained 

from the finite element analysis are presented in Fig. A1.4. It can be 

seen that the surface expands practically to its final dimension within 

a relatively small region around the plane of entry. In this region the 

inside parts of the slab are still undeformed. The grid distortion 

also suggests that as the slab moves along the arc of contact the 

surface suffers little deformation while the plastic region seems to 

extend more and more deeply into the slab. This is in qualitative 

agreement with experimental evidence* and to the writer's knowledge, 

it has never been predicted theoretically. 

* 	OROWAN, E. 
"The Calculation of Roll Pressure in Hot and Cold Flat 
Rolling". 
Proc. Instn. Mech. Engrs., 150, p. 152, (1943). 
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Figure A1.4 (a) Velocity distribution and (b) Grid distortion for the flat rolling problem. 



APPENDIX 2  

COMPUTER PROGRAMS  



A2.1 

	

A2.1 	Introduction  

The finite element formulations presented in this thesis 

are readily programmed for digital computers and in fact they would 

be of little use if computers were not available to solve the large 

number of equations that result from the discretization process and 

to handle the large output that the procedure generates. 

A number of programs have been written during the course 

of this work for both steady and non-steady state problems. The 

final version of these programs are presented and briefly described 

here. 

Programs are written in standard FORTRAN IV and, with the 

exception of the plotting routines, are machine independent. Single 

precision was used throughout; this was found to give enough accuracy 

when using the CDC 6500 computer at the Imperial College Computer 

Centre (ICCC). 

The layout and the various parts of these programs are 

described in what follows. 

	

A2.2 	General Description of the Programs  

The programs are divided into a number of subroutines and 

a master program which controls the flow of operation (see Figs. 

A2.1 and A2.2). The programs use bi-linear quadrilateral elements 

with numerical integration, however, other kinds of elements could be 

easily implemented. 

The programs are built around a band solver which, 

although not the most sophisticated, is the most simple to implement. 

The writer believes that the argument for simplicity is very strong 

and it should be the over-riding aim when no economical pressures are 

present. 

Thus, the programs are by no means the most efficient that 
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could have been written and they could be greatly improved. However, 

this is beyond the scope of this work and will be left to potential 

users. 

The listing of the programs presented at the end of this 

appendix are compiled copies and, therefore, free of programming 

errors. Comment cards have been used generously and it is hoped that 

they make the programs self-explanatory to anyone fluent in the 

Fortran language. 

(a) Program 1  

This program is designed to solve steady-state problems 

using the penalty function formulation. Both plane strain and 

axisymmetric problems can be treated as well as hardening and non-

hardening materials. The program has facilities for plotting the flow 

lines and the grid distortion. 

(b) Program 2  

This program is also aimed at solving steady-state problems 

and is based on the velocity/pressure formulation. Since this program 

was only used in the initial stages of the work it was not developed 

to the extent Program 1 was and it can only deal with non-hardening 

materials. However, it can easily be extended to deal with hardening 

materials by the inclusion of the appropriate subroutines. 

(c) Program 3  

This program is designed to solve non-steady state problems 

in a quasistatic manner using the penalty function formulation. Both 

plane strain and axisymmetric problems can be treated as well as 

hardening and non-hardening materials. 

As discussed in Chapter 7, some modification has to be made 
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to the mesh at intermediate stages, but since these modification 

procedures are problem dependent, only the simplest one is presented 

here. 

The program has facilities for plotting the deformed. 

geometry and the velocity fields at different stages of the calculation. 

All programs have facilities for punched output which is 

used for contouring and plotting with existing computer packages. 

A2.3 	Program Terminology  

Here we present the meaning of the variables most common 

to all the programs:- 

ALPHA 	Penalty coefficient 

IPLAX 	00 Plane Strain 

01 Axisymmetric 

NP 	Number of nodal points 

NE 	Number of elements 

NB 	Number of restrained boundary nodes 

NPC 	Number of loaded nodes 

NMAT 	Number of element material types 

NEQ 	Number of equations 

NBAND 	Bandwidth 

NBF 	Number of nodes where reactions are calculated 

NITER 	Iteration counter 

TITLE(8) 	8 word title array 

CORD(NP,2) 	Nodal point coordinate array 

NOP(NE,4) 	Element correction array 

IMAT(NE) 	Element material type array 

NBC(NB) 	Array of restrained nodes 
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NREST(NB) 	Boundary condition type 

01 Restricted in the x (r) direction 
02 Restricted in the y .(z) direction 
11 Restricted on both directions 

03 Skewed boundary 

XPRE(NB) 	x (r) velocity imposed at nodal point 

YPRE(NB) 	y (z) velocity imposed at nodal point; angle of the 

skew when NREST = 03 

NQ(NPC) 	Array of loaded nodes 

R(NPC,2) 	Array of nodal loads 

NF(NBF) 	Array of nodes where reactions are calculated 

SK(NEQ,NBAND) 	Master stiffness matrix 

R1(NEQ) 	Load vector. After elimination the space is used 

for the solution vector. 

EST(2*NBF,2*NBAND) Array containing the stiffness equations for reaction 

calculation 

EPS(NE,6) 	Strain rate array 

STR(NE,5) 	Stress array 

TEPS(NE) 	Effective strain vector 

VEL(2,Np) 	Velocity array 
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,Read and Print Input Data 

Construct Load Vector 

c 
Form Elemental Stiffness Matrix, k = ku  

Assemble Overall Stiffness Matrix 

l 
Use Previous 
Solution as 
Initial Guess 

Introduce Boundary Conditions I 

NO 

Solve Equations System 

r 

'Calculate Strain Rate and Stress Distributions 

1.  

Has Desired Accuracy Been Reached? 

YES 
r 

'Print  and Plot Output Information 

YES 
Has Desired Deformation Been Reached? 

NO 

	 Update Mesh Using Velocity Solution 

i  

Fig. A2.2 Flow chart for the finite element solution of non-steady 
state problems (penalty function) 
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PROGRAM 1  

SOLUTION OF STEADY-STATE PROBLEMS  

(PENALTY FUNCTION)  



	READ MATERIAL INFORMATION 

READ (5.1140) (N.YIELD(N).L=1.NMAT) 
WRITE (6.1240) 
WRITE (6.1160) 
WRITE (6.1100) (N.YIELD(N).N=1,NMAT) 

READ NODAL INFORMATION. 

READ (5.1050) (N. (CORD (N.MA .M=1.2) .L=1.NP) 

	READ ELEMENTS INFORMATION. 

READ (5.1060) (N.(NOP(N.M).M=1.4),IMAT(N).L=1.NE) 

	READ BOUNDARY CONDITIONS 

(NBC (I) .NREST (I) , XPRE (I) . YPRE (I) r I=1 , NB) 
GO TO 10 
(NF (I) . I=1. NBF) 

	PRINT INPUT INFORMATION IF REQUIRED. 

C 
C 
C 

C 
C 	 
C 

C 
C 
C 

C 
C 
C 

C 
C 

READ (5.1070) 
IF (NBF.EQ.0) 
READ (5.1080) 

C 
•C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 

C 
C 
C 

C 
C 

C 

PROGRAM MAIN (INPUT.OUTPUT.TAPE6=OUTPUT,TAPE5,TAPE4.TAPEI.TAPE62) 

ICCIM CK:K:K :I^.KrK:K:K1."3=K:K:K:1:4=k:K :K:K:=* *:C***:K*:N̂C:K* :X:K:K:K:K:G:K:I::I Z***X.K:K**3:Y::K:Y.:K:I: 
* THIS PROGRAM HAS BEEN DESIGNED TO SOLVE STEADY—STATE PROBLEMS IN = 
* METAL WORKING USING THE FINITE ELEMENT METHOD. 
* THE MATERIAL IS ASSUMED TO BE RIGID—PLASTIC AND INCOMPRESSIBLE,THIS* 
* LATTER CONSTRAINT BEING INTRODUCED BY MEANS OF A PENALTY FUNCTION. :K 
* THE PROGRAM USES BILINEAR ISOPARAMETRIC ELEMENTS WITH REDUCED/SE— * 
* LECTIVE INTEGRATION. 	 ac 
***:Y*******:1,.K:K*:K*:K**X'K*********:1:*:K:K***=*S******:K**:K**:K**:I:****:K:K:K*== 

* WRITTEN BY LUIS A. PACHECO. ING. MEC., M.SC.(MANC) * 
*IMPERIAL COLLEGE UNIVERSITY OF LONDON* 

FINAL VERSION SPRING 1979* 

COMMON /BLK1/ NP,NE,NB,NPC.NMAT,NEQ.NBAND.NITER.TITLE(8),NBF.NEDGE 
COMMON /BLK2/ CORD (297,2) , NOP (260.4) , IMaT (260) +ELOAD (260, 8) 
COMMON /A/ VRIG.IPLAX,ALPHA,IHARD 
COMMON /B/ NTIMES,NDI.NDJ,NMIAX.YSTART.YDIE.YEXIT.YMAX.RENTER.REXIT 
1.RCORE.STEP.NLIN.VSCAL 

C 
C 	READ NECESSARY INPUT INFORMATION 
C 

ALPHA = 10.E+07 
CALL PRELIM 

C 
C 	DETERMINE BANDWIDTH AND NUMBER OF EQUATIONS 
C 

NEQ = NP*2 
J = 0 
DO 20 N = 1.NE 
DO 20 I = 1.4 
DO 10 L = 1.4 
KK = IABS (NOP (N r I) —NOP (N. L) ) 
IF (KK—J.LE.0) GO TO 10 
J = KK 

10 CONTINUE 
20 CONTINUE 

NBAND = 2*(J+1) 
VRIG = 1.E+09 

	READ THE EXTERNAL LOADS IF ANY.FORM VECTOR LOAD 

NITER = 0 
30 CALL LOAD 
	FORM AND SOLVE THE EQUATION SYSTEM 

CALL FORMK 
CALL SOLVE 

	CHECK THE CONVERGENCE. 

CALL CONVER (NCONV) 
CALL STRAIN 
IF (NLIN.EQ.1) NCONV = 1 
IF (NITER.E0.20) NCONV = 1 

	FIND THE EFFECTIVE STRAIN DISTRIBUTION IF REQUIRED. 
	FIND THE FLOW LINES AND GRID DISTORTION 

IF (IHARD.EQ.1.AND.NCONV.EQ.0) CALL FLOW (0) 
IF (NCONV.EQ.1) CALL FLOW (1) 

	CALCULATE BOUNDARY FORCES IF REQUIRED. 
CALL CFORC  

f 	 MODIFY MESH ACCORDING TO VELOCITY SLOPES. 
IF (NCONV.EQ.0) CALL MODMES 
IF (NCONV.EQ.1) GO TO 40 
NITER = NITER+1 
GO TO 30 

C 
C 	WRITE RESULTS 
C 

40 CALL STRAIN, 
CALL DOUT 
STOP 
END 

SUBROUTINE PRELIM 
C 
C 	THIS SUBROUTINE READ AND PRINT THE NECESSARY 
C 	INPUT INFORMATION 
C 

COMMON /BLK1/ NP,NE.NB,NPC.NMAT.NEQ.NBAND,NITER.TITLE(8).NBF.NEDGE 
COMMON /BLK2/ CORD (297. 2) . NOP (260, 4) . IMAT (260) . ELOAD (260, 8) 
COMMON /BLK3/ YIELD (4) , NBC (65) ,NREST (65) . NQ (40) , R (40.2) . XPRE (65) , Y 

1PRE (65) ,NF (25) 
COMMON /BLK4/ STR(260.5).EPS(260.6),VEL(2,297).TEPS(260) 
COMMON /A/ VRIG.IPLAX.ALPHA.IHARD 
COMMON /6/ NTIMES.NDI.NDJ.NMAX.YSTART.YDIE.YEXIT.YMAX.RENTER.REXIT 
1,RCORE,STEP.NLIN,VSCAL 

C 
C 	READ TITLE AND CONTROL VARIABLES 
C 

READ (511090) TITLE 
WRITE (6.1170) TITLE 
READ (5,1040) NP.NE.NB.NPC.NEDGE.NBF.NMAT.I1.IPLAX 
IF (IPLAX.EQ.0) WRITE (6.1110) 
IF (IPLAX.EQ.1) WRITE (6.1130) 
WRITE (6.1120) NP.NE.NB.NPC.NEDGE.NBF.NMAT.I1 
READ (5.1000) NLIN.IHARD.NTIMES.NDI.NDJ.NMAX 
WRITE (6,1010) NLIN.IHARD,NTIMES.NDILNDJ.NMAX 
READ (5,1020) YSTART.YDIE,YEXIT.YMAX.RENTER.REXIT.RCORE.STEP.VSCAL 
WRITE (6,1030) YSTART,YDIE,YEXIT.YMAX.RENTER,REXIT,RCORE.STEP.VSCA 

1L 
WRITE (6,1150) ALPHA 



C 
10 IF (I1.E0.0) GO TO 20 

IF (IPLAX.E0.0) WRITE (6.1190) 
IF (IPLAX.E0.1) WRITE (6.1230) 
WRITE (6.1050) (N.(CORD(N,M).M=1.2).N=1.NP) 
WRITE (6.1200) 
WRITE (6.1060) (N. (NOP (N.M) .M=1.4) . IMAT (N) .N=1 .NE) 

20 IF (NBF.EQ.0) GO TO 30 
WRITE (6.1220) 
WRITE (6.1180) (NF(I),I=1.NBF) 

30 WRITE (6.1210) 
WRITE (6.1070) (NBC(I) .NREST(I) ,XPRE(I) .YPRE(I) .I=1.NB) 
RETURN 

C 
C 
1000 FORMAT (6I5) 
1010 FORMAT (1H0.'NLIN=".I1,/.1H ,"IHARD=".I1./.1H ."NTIMES=".I2./.1H 

1"NDI=".I2./.1H ."NDJ=".I2,/.1H ."NMAX=".I3) 
1020 FORMAT (9F8.3) 
1030 FORMAT (1H0,"YSTART=".E12.5,/.1H ."YDIE=".E12.5./,1H ."YEXIT=",ElZ 

1.5./,1H ."YMAX=".E12.5./.1H ,"RENTER=".E12.5./.1H ."REXIT=".E12.51 
2/$1H ."RCORE=".E12.5./.1H ."STEP=",E12.5,/,1H ."USCAL=".E12.5) 

1040 FORMAT (9I5) 
1050 FORMAT (I10.2F10.4) 
1060 FORMAT (6I5) 
1070 FORMAT (2I10.2F10.3) 
1080 FORMAT (16I5) 
1090 FORMAT (8A10) 
1100 FORMAT (1H .I5.F15.4) 
1110 FORMAT (1H0."PLANE STRAIN PROBLEM"./,1H ,20(1H*)) 
1120 FORMAT (1H0,"NUMBER OF NODES=",I3./.IH ."NUMBER OF ELEMENTS=".I?,/ 

1.1H ."NUMBER OF NODES WITH BOUNDARY CONDITIONS=".I3./.1H ."NUMBER 
20F LOADED NODES=".I3./,1H ."NUMBER OF LOADED EDGES=",I3."NUMBER 'IF 
3 NODES WHERE REACTIONS ARE CALCULATED=",I3./.1H ,"NUMBER OF MATERI 
4ALS=".I3,/,1H ."PRINT CONTROL VARIABLE(I1)=".I2) 

1130 FORMAT (1H0."AXISYMMETRIC PROBLEM"./.1H ,20(1H*)) 
1140 FORMAT (I5.F15.4) 
1150 FORMAT (1H0."PENALTY COEFFICIENT=".E12.5) 
1160 FORMAT (IH .2)(."MAT".3X."YIELD POINT") 
1170 FORMAT (1H1.8A10) 
1180 FORMAT (IH .20I5) 
1190 FORMAT (1HO,6X."NODES".3X."COORD X",3X,"COORD Y") 
1200 FORMAT (1H0."ELEMENT",4X."NODES".9)(."IMAT") 
1210 FORMAT (1H0."BOUNDARY CONDITIONS"./,1H ,5X,"NODES".4X."CONDITION", 

13X."XPRE".5X."YPRE") 
1220 FORMAT (1H0."THE NODAL POINTS AT W-IICH FORCE CALCULATIONS ARE DESI 

1RED") 
1230 FORMAT (1HO,6X,"NODES",3X."COORD-R".3X."COORD-Z") 
1240 FORMAT (1H0."MATERIAL PROPERTIES.") 

END  

DO 10 J = 1.NE0 

10 R1(J) = 0.0 
IF (NPC.E0.0.AND.NITER.GT.O.AND.NEDGE.E0.0) RETURN 
IF (NITER.GT.0) GO TO 50 
IF (NPC.E0.0.AND.NEDGE.E0.0) GO TO 110 
IF (NPC.E0.0) GO 10 30 
IF (IPLAX.EQ.0) WRITE (6.1020) 
IF (IPLAX.E0.1) WRITE (6.1010) 
DO 20 N = 1.NPC 
READ (5.1030) N0(N) . (R (N. K) . K=1 .2) 

20 CONTINUE 
WRITE (6.1030) (NQ (N) . (R (N,K) .K=1,2) ,N=1 .NPC) 

30 IF (NEDGE.EQ.0) GO TO 50 
C 	DISTRIBUTED LOADING. 

DO 40 N = 1.NE 
DO 40 J = 1.8 

40 ELOAD(N.J) = 0.0 
CALL SURF 
WRITE (691000) (N.(ELOAD(N.J),J=1.8),N=1.NE) 

50 IF (NPC.EQ.0) GO TO 70 
DO 60 N = 1.NPC 
DO 60 K = 1.2 
IC = (NO (N) -1) *2+K 

60 R1 (IC) = R(N.K)+R1 (IC) 
70 IF (NEDGE.EQ.0) GO TO 120 

NNE = 4 
DO 100 N = 1,NE 
DO 90 J = 1.NNE 
NLOCAL = NOP(N.J) 
DO 80 M1 = 1.2 
IC = (NLOCAL-1) *2+MT1 
JC = (J-1)X2+MM 

80 R1CIC) = R1(IC)+ELOAD(N.JC) 
90 CONTINUE 
100 CONTINUE 

GO TO 120 
110 WRITE (6.1040) 
120 RETURN 

C 
C 
1000 FORMAT (1H .I5.2)(.8E12.5) 
1010 FORMAT (1H0."PRESCRIBED EXTERNAL LOADS".///."NODES"93X."FORCE-R".3 

1X."FORCE-Z") 
1020 FORMAT (1H0."PRESCRIBED EXTERNAL LOADS".///,"NODES".3X,'FORCE-X".3 

1X."FORCE-Y") 
1030 FORMAT (I10.2F10.3) 
1040 FORMAT (SHD."NO EXTERNAL LOADS PRESCRIBED") 

END 

SUBROUTINE LOAD 
C 
C 	THIS SUBROUTINE FORMS THE VECTOR LOAD R1. 
C 

COMMON /BLKI/ NP.NE.NB.NPC.NMAT.NEQ,NBAND,NITER.TITLE(8).NBF.NEDGE 
COMMON /BLK2/ CORD(297.2).NOP(260.4),IMAT(260).ELOAD(260.8) 
COMMON /BLK3/ YIELD(4).NBC(65).NREST(65).NO(40),R(40.2)+XPRE(65).Y 
1PRE (65) ,NF (25) 
COMMON 5K (594.30) .R1(594) .EST(50.60) ,FR (25) .FZ(25) .FPUR (50) 
COMMON /A/ VRIG.IPLAX.ALPHA,IHARD 

C 
C 	ZERO LOAD ARRAY. 
C 

SUBROUTINE SURF 
C 	THIS SUBROUTINE CALCULATES THE NODAL LOADS DUE TO 
G 	SURFACE LOADING. 

COMMON /BLK1/ NP.NE,NB.NPC,NMAT.NEQ.NOANDrNITER.TITLE(B).NBF.HEDGE 
COMMON /BLK2/ CORD (297, 2) , NOP (260.4) , IMAT (260) . ELOAD (260.8) 
Comm /A/ VRIG.IPLAX.ALPHA,IHARD 
DIMENSION NOPRS(3). PRESS(3.2), ELCOD(2.3). SHP(3.9). PGASH(2). DG 
IASH(2), XL(1), YL(1), 5G(9). TG(9), WG(9) 
NODEG = 2 
NODFN = 2 
XL(1) = 1. 
YL (1) = 1. 
WRITE (6.1000) 

C 	LOOP OVER EACH LOADED EDGE. 



DO 60 IEDGE = 1+NEDGE 
C 	READ DATA LOCATING THE EDGE AND APPLIED LOAD. 

READ (5.1010) NEASS.(NOPRSCIODEG),IODEG=I.NODEG) 
WRITE (6.1020) NEASS,(NOPRSCIODEG),IODEG=I,NODEG) 
READ (5.1030) ((PRESSCIODEG.IDUFN),IODEG=1,NODEG),IDOFN=1+2) 
WRITE (6.1030) ((PRESSCIODEG,IDOFN),IODEG=I.NODEG),IDOFN=1.2) 

C 	COORDINATES OF THE NODES OF THE ELEMENT EDGE. 
DO 10 IODEG = 1.NODEG 
LNODE = NOPRSCIODEG) 
DO 10 IDIME = 1.2 

10 ELCOD(IDIME.IOCEG) = CORD(LNODE.IDIME) 
C 	ENTER LOOP FOR NUMERICAL INTEGRATION. 

NGAUSS = 2 
CALL PGAUSS (NGAUSS+LINT,SG.TG,WG) 
DO 70 IGAUSS = 1.NGAUSS 

C 	EVALUATE SHAPE FUNCTION AT SAMPLING POINTS. 
CALL SHAPE (SG(IGAUSS).-1.1)(L,YL,SHP,DETJAC+2) 
REAR = 0.0 
DO 20 KI = 1.NODEG 

20 REAR = RBAR+SHP(3,Ki)*ELCODC1.KI) 
IF CIPLAX.E0,0) REAR = 1.0 

C 	CALCULATE COMPONENTS OF THE EQUIVALENT NODAL LOADS 
DO 30 IDOFN = 1+2 
PGASH(IDOFN) = 0.0 
DGASHCIDOFN) = 0.0 
DO 30 IODEG = 1.NODEG 
PGASH(IDOFN) = PGASH(IDOFN)+PRESS(IODEG.IDOFN)*SHP(3.IODEG) 

30 DGASH(IDOFN) = DGASH(1DOFN)+SHP(1,IODEG)*ELCODCIDOFN,IODEG) 
DVOLU = WGCIGAUSS)*RBAR 
PXCOM = DGASH (1) -~PGASH (2) -DGASH (2) *PGASH (1) 
PYCOM = DGASH (1) PGASH (1) +DGASH (2) *PGASH (2) 

C 	ASSOCIATE THE EQUIVALENT NODAL EDGE LOADS 
C 	WITH AN ELEMENT. 

NNE = 4 
DO 40 INODE = 1.NNE 
NLOCA = MOPCNEASS.INODE) 
IF (NLOCA.EQ.NOPRSC1)) GO TO 50 

40 CONTINUE 
50 JNODE = INODE+NODEG-1 

KOUNT = 0 
DO 60 KNODE = INODE+JNODE 
KOUNT = KOUNT+1 
NGASH = (KNODE-1)*1ODFN+1 
MGASH = CKNODE-1)*NODFN+2 
IF (KNODE.GT.NNE) NGASH = 1 
IF CKNODE.GT.NNE) MGASH = 2 
ELOAD(NEASS,NGASH) = ELOAD(NEASS,NGASH)+SHP(3'KOUNT)*PXCOM*DVOLU 

60 ELOAD(NEASS.MGASH) = ELOAD(NEASS,MGASH)+SHP(3,KOUNT)*PYCOMMDVOLU 
70 CONTINUE 
80 CONTINUE 

RETURN 
C 
C 
1P00 FORMAT . C1H015X+38HLIST OF LOADED EDGES AND APPLIED LOADS) 
1010 FORMAT (3I5) 
1020 FORMAT C1H +I10.5X02I5) 
1030 FORMAT (4F10.3) 

END 

SUBROUTINE FORMK 
THIS SUBROUTINE FORMS THE OVERALL STIFFNESS MATRIX 
AND STORES IT IN RECTANGULAR FORM. 
COMMON /BLK1/ NP,NE,NB,NPGNNAT,NEO,NBAND.NITER.TITLE(8),NBF,NEDGE 
COMMON IBLK2/ CORD(297.2).NOP(260.4),IMATC260).ELBAD(260.8) 

COMMON /BL K3/ YIELD(4) . NBC C65) . NREST (65) , N0 (40) . R (40.2) r XPRE C65) r Y 
1PRE (65) , NF (25) 
COMMON 5K (594.30) +R1 (594) .EST C50+60) . FR (25) . FZ (25) . FPUR (50) 
DIMENSION SE(8.8) 

	INITIALIZE THE ARRAYS 
DO 10 N = 1+NEQ 
DO 10 N = 11NBAND 

10 SK (N,M) = 0.0 

SCAN ELEMENTS 

DO 80 II = 1+NE 
CALL DUAD2 (5E.II) 

FORM THE STIFFNESS MATRIX SK 

	FIRST ROWS 

DO 70 JJ = 1+4 
NROWB = (NOP (I I.JJ) -1) *2 
IF (NROWB) 70.20+20 

20 DO 60 J = 1r2 
NROWB = NROWB+1 
I = (JJ-1) m2+ J 

C 
C 	THEN COLUMNS 
C 

DO 50 KK = 1.4 
NCOLB = (NOP (II.KK) -1) *2 
DO 40 K = 1.2 
L = (KK-1)*2+K 
NCOL = NCOLB+K+1-NROWB 

C 
C 	SKIP STORING IF BELOW BAND 
C 

IF (NCOL) 40,40+30 
3U SK(NROWB.NCOL) = SKCNROWB+NCOL)+SE(I.L) 
40 CONTINUE 
50 CONTINUE 
60 CONTINUE 
70 CONTINUE 
80 CONTINUE 

C 
C 	PREPARATION FOR FORCE CALCULATION 
C 	STORE THE ROWS OF SK WHICH ARE NECESSARY. 
C 

IF (NBF.E0.0) GO TO 140 
NBAND2 = 2mNBAND-1 
DO 90 I = 11NBF 
IZ = 2%',I 
IR = IZ-1 
DO 90 J = 1.NBAND2 
ESTCIZ.J) = 0.0 

90 EST(IR.J) = 0.0 
DO 130 I = 1.NBF 
II = NFU) 
IZ = 2*II 
IR = IZ-1 
IIZ = 2*I 
IIR = IIZ-i 
DO 100 J = NBAND.NBAND2 
JJ = J-NBAND+1 
EST(IIR.J) = SKCIR.JJ) 

100 EST(IIZ.J) = SKCIZ,JJ) 

C 
C 

C 

C 
C 	 
C 

C 
C 	 
C 
C 
C 



DO 120 J = 1.NBAND 	 C 	 COMPUTE GAUSS POINTS AND WEIGHT FACTOPS 
NR = IR-J+1 	 40 CALL PGAUSS (NINT.LINT.SG.TG.WG) 
NZ = IZ-J+1 	 C 	FORM STRAIN DISPLACEMENT MATRIX B. 
JJ = NBAND-J+1 	 DO 200 L = 1,LINT 
IF (NR.LE.0) GO TO 110 	 XBAR = 0.0 
ESTCIIR.JJ) = SK(NR.J) 	 DO 50 NN = 1.3 

110 IF (NZ.LE.0) GO TO 120 	 DO 50 LL = 1.NNE 
EST(IIZ.JJ) = SK(NZ,J) 	 50 SHP(NN.LL) = 0.0 

120 CONTINUE 	 CALL SHAPE (5GCL).TG(L).XL.YL.SHP.DETJAC,NNE) 
FPUR(IIR) = R1CIR) 	 IF (DETJAC) 60.60.70 

130 FPUR(IIZ) = R1CIZ) 	 60 WRITE (6,1000) N 
C 	 WRITE (6.1010) 

C 	 INSERT DISPLACEMENT BOUNDARY CONDITIONS 	 WRITE (6.1020) (KF,CCORD(KF,LF),LF=1,2),KF=1,NP) 
C 	 STOP 

140 DO 150 N = 1,N8 	 70 DO 80 LI = 1.NNE 
I = NBC (N) 	 J = 2=L I 
IR = 2*I-1 	 I = J-1 
IZ = IR+1 B(1,I) = SHPC1,LI) 
NC = NREST(N) 	 B(1.J) = 0.0 

C 	 B(2.I) = 0.0 
C 	CHECK IF THE X VELOCITY IS PRESCRIBED 8(2.J) = SHP(2.LI) 
C 	 6(3.1) = 0.0 

IF (NC.EQ.1.OR.NC.E0.11) CALL CONDE (IR.XPRECN)) 	 B(3,J) = 0.0 
C 	 6(4.1) = B (2. J) 
C 	CHECK IF THE Y VELOCITY IS PRESCRIBED 	 80 BC4.J) = B(1.I) 
C 	 C 	 IN CASE OF PLANE STRAIN ANALYSIS DO NOT INCLUDE 

IF (NC.E0.2.OR.NC.EO.11) CALL CONDE (IZ.YPRECN)) 	 C 	 THE NORMAL STRAIN COMPONENT 
C 	 IF CIPLAX.EQ.0) GO TO 130 
C 	CHECK IF THE POINT IS ALONG AN INCLINED BOUNDARY DO 90 KI = 1.NNE 
C 	 90 XBAR = XBAR+SHPC3.KI)*L(KI) 

IF (NC.EQ.3) THETA = XPRE(N)*3.1415927/180. 	 C 	EVALUATE THE HOOP STRAIN DISPLACEMENT RELATION 
IF CNC.E0.3) CALL BCMIX (I.THETA) 	 IF (XBAR.GT.0.00000001) GO TO 110 

150 CONTINUE 	 C 	FOR THE CASE OF ZERO RADIUS EQUATE RADIAL TO HOOP STRAIN 
RETURN 	 DO 100 KI = 1,NNE2 
END 	 100 B(3.KI) = B(1.KI) 

GO TO 130 
SUBROUTINE OUAD2 (SE.INE) 	 C 	NON-ZERO RADIUS 

C 	 110 DUMB = 1./XBAR 
C 	 THIS SUBROUTINE FORMS THE ELEMENTAL STIFFNESS MATRIX. 	 DO 120 KI = 1.NNE 
C 	 LH = 2*KI-1 

COMMON /BLK1/ NP,NE.NB.NPC,NMAT.NEQ+NBAND,NITER.TITLE(8).NBF.NEDGE 	 120 B(3.LH) = 5HPC3rKI)*DUMA 
COMMON BLK2/ CORD(297.2).NOP(260.4),IMAT(260),ELOAD(260.6) 	 C 	FORM THE PENALTY MATRIX 
COMMON /BLK3/ YIELD(4).NBC(65),NREST(65).NQC40),R(40.2).XPRE(65)1Y 	 130 IF (IPEN.EO.0) GO TO 150 

1PRE(65).NFC25) 	 DO 140 I = 1.4 
COMMON BLK4/ STR (260.5) , EPS C260, 6) .VEL (2.297) . TEPS (260) 	 DO 140 J = 1.4 
DIMENSION D(4.4).  5E8.8), A(4,8), XL (4) . YL (4) 	 D(I,J) = ALPHA 
COMMON /A/ VRIG.IPLAX.ALPHA,IHARD 	 140 IF (I.E0.4.OR.J.E0.4) DCI.J) = 0.0 
DIMENSION BC4,8). SHP(3.9), SG(9), WG(9). TG (9) 	 GO TO 160 
N = INE 	 C 	FORM THE STRESS-STRAIN MATRIX 

C 	 INITIALIZE THE ARRAYS 	 150 IF (NITER.EQ.0) EPSR = 1.0 
NNE = 4 	 IF (NITER.EQ.0) TEPS(N) = 0.0 
IF (NOP(Nr4).E0.0) NNE = 3 	 IF (NITER.GT.0) CALL STINT (NNE.N.B,EPSR) 
NNE2 = NNE*2 	 LL = IMaT(N) 
DO 10 I = 1.4 	 CALL HARD (LL.TEPS(N),YYLD) 
DO 10 J = 1.4 	 DUM3 = 2.*YYLD/C3.*EPSR) 

10 D(I,J) = 0.0 	 IF (DUM3.GE.VRIG) DUM3 = VRIG 
DO 20 I = 1,NNE2 	 DC1.1) = DUM3 
DO 20 J = 1.NNE2 	 DC2.2) = DUM3 

20 SECI.J) = 0.0 	 D(3.3) = DUM3 
DD 30 MM = 1.NNE 	 D(4.4) = DUM3/2. 
XL(t1) = CORD(NOP(N.MM).1) 	 C 	 COMPUTE THE PRODUCT 0*8 

30 YL OTD = LORDCNOP(N,MD.2) 	 160 DO 170 I = 1.4 
HINT = 2 	 DO 170 J = 1.NNE2 
IPEN = 0 	 A(I,J) = 0.0 



SUBROUTINE SHAPE CSS, TT.XL.YL.SHP.DETJAC.NNE) 

ELEMENTS 

C 
G 	THIS SUBROUTINE PERFORM THE MATRIX CONDENSATION WHEN 
C 	THE VALUE OF A COMPONENT OF X IN AX=6 IS SPECIFIED. 

C 
C 	 SHAPE FUNCTION SUBROUTINE FOR TWO DIMENSIONAL 

DO 170 K = 1,4 
170 A(I,J) 	A(I,J)+D(I.K)*B(K.J) 

C 	COMPUTE (B**T *(D*B) AND ADD CONTRIBUTION TO ELEMENT STIFFNESS 
IF (IPLAX.E0.0) XBAR = 1.0 
WT = XBARA(WG (L) R ETJAC 
DO 190 NROW = 1.NNE2 
DO 190 NCOL = NROW.NNE2 
DUM2 = 0.0 
DO 180 LI = 1.4 

180 DUM2 = DUM2+B(LI,NROW)*A(LI.NCOL) 
SE(NROW.NCOL) = SE(NROW,NCOL)+DUM2*WT 

190 CONTINUE 
200 CONTINUE 

IPEN = IPEN+1 
MINT = 1 
IF (IPEN.E0.1) GO TO 40 

C 	COMPLETE SE BY SYMMETRY. 
DO 210 K = 2.NNE2 
DO 210 L = 1.1( 

210 SE(K,L) = SE(L,K) 
RETURN 

C 
C 
1000 FORMAT (//."PROGRAM HAS HALTED IN SUBROUTINE QUAD2",//,"ELEMENT",I 

15,2X,"HAS ZERO OR NEGATIVE AREA") 
1010 FORMAT (1H ."COORDINATES AT THE TIME OF ERROR",//) 
1020 FORMAT (1H .I5.2F10.4) 

END 

C 
C 	GAUSS POINTS AND WEIGHTS FOR TWO DIMENSIONS 
C 

REAL LR (9) , LZ (9) . LW (9) , R(9).  Z(9). W(9) 
DATA LR/-1..1.,1..-1.,0.,-1..0..-1..0./ 
DATA LZ/-1..-1..1..1..-1..0..1..0..0./ 
DATA LW/4*25.,4*40.164./ 
LINT = L*L 
GO TO (10.20.40). L 

C 	1X1 INTEGRATION 
10 R(1) =0. 

Z(1) = 0. 
W(1) = 4. 
RETURN 

C 	2X2 INTEGRATION 
20 C = 1./SQRT(3.) 

DO 30 I = 1.4 
R(I) = G*LR(I) 
Z(I) = G.Z(I) 

30 W(i) = 1. 
RETURN 

C....3X3 INTEGRATION 
40 G = SQRT(0.6) 

H = 1./81. 
DO 50 I = 1.9 
R(I) = GR(I) 
2CI) = G*L2CI) 

50 W(I) = H*LW(I) 
RETURN 
END  

C 
REAL SHP (3.9) , XL (4) . YL (4) , S (4) , T (4) , JAL (2.2) 
DATA S/-0.5.0.5,0.5,-0.5/.T/-0.5.-0.5.0.5.0.5/ 

C 	FORM 4 NODE QUADRILATERAL SHAPE FUNCTION 
DO 10 I = 1,4 
SHP (3. I) _ (0.5+S (I) *S5) * (0.5+I (I) *TT) 
SHP(1,I) = S(I)*(0.5+T(I)*TT) 

10 SHP(2,I) 	T(I)*(0.5+S(I)*SS) 
IF (IINE.E0.2) RETURN 

C 	FORM TRIANGLE BY ADDING THIRD AND FOURTH TOGETHER. 
DO 20 I = 1.3 

20 SHP(I,3) = SHP(I.3)+SHP(I,4) 
C 	CONSTRUCT JACOBIAN. ITS INVERSE AND ITS DETERMINANT. 

DO 30 I = 1.2 
DO 30 J = 1.2 

30 JAC(I.J) = 0.0 
DO 40 K = 1.NNE 
JAC (1.1) = JAC(1.1)+SHP(1,K)*XL (K) 
JAC(1.2) = JAC(1.2)+SHP(1,K) *YL (K) 
JAC (2. 1) = JAC (2.1) +SHP (2.K) *XL (K) 

40 JAC (2.2) = JAC (2.2) +SHP (2. K) *YL (K) 
DETJAC = JAC(1,1) tiJAC(2,2)-JAC(1,2)1JAC(2,1) 
DUM1 = JAC(111)/DETJAC 
JAC(1.1) JAC(2.2)/DETJAC 
JAC(2,1) = -JAC(2,1)/DETJAC 
JAC (1, 2) = -JAC (1. 2) /DETJAC 
JAC(2,2) = DUM1 

C 	FORM GLOBAL DERIVATIVES 
DO 50 I = 1,NNE 
TP = SHP(1,I)*JAC(1,1)+SHP(2,I)*JAC(1,2) 
SHP (2, I) = SHP (1, I) *JAC (2. 1) +SHP (2. I) *JAC (2.2) 

50 SHP (1 . I) 	TP 
RETURN 
END 

SUBROUTINE STINT (NNE,M,BA.EPSR) 
C 
C 	THIS SUBROUTINE CALCULATES THE STRAIN RATES AT THE GAUSS POINTS 
C 	50 THAT THE ELEMENTAL STIFFNESS MATRIX CAN BE EVALUATED. 
C 

COMMON /BLK1/ NP,NE.NB.NPC.NMAT.NEQ.NBAN0,NITER.TI7LE(8),NBF.HEDGE 
COMMON /BLK2/ CORD(297.2),NOP(260.4),IMRT(260).ELOAD(260,8) 
COMMON /BLK4/ STR(260.5).EPS(260.5).VEL(2,297).TEPS(260) 
DIMENSION BA C4.8) . E(4). RAND 
NK = NNE 
DO 10 J = 1.NK 
KK = NOP(M,J) 
KI = (J-1) *2 
DO 10 JJ = 1.2 
IJ = JJ+KI 

10 RA CIJ) = VEL (JJ.KK) 
DO 20 KK = 1.4 
E(KK) = 0.0 
NNE2 = NNE*2 
DO 20 J = 1.NNE2 

20 E(KK) = E (KK) +BA (KK. J) *RA (J) 
EPSR = RBAR (E (1) , E (2) . E (3) . E (4) ) 
RETURN 
END 

SUBROUTINE PGAUSS (L,LINT,R,Z.W) 

SUBROUTINE CONDE (N.U) 



C 
COMMON BLKI/ NP, NE 'NB ,NPC ,NMAT.NEQ.NBANG /NITER . TITLE (8).NBF.NEDGE 
COMMON SK (594.30) , R1 (594) . EST (50.60) . FR (25) . FZ (25) .FPUR (50) 
DO 10 M = 2.NBAND 
KK = N+M-1 
IF (KK.GT.NEQ) GO TO 10 
RI(KK)  = RI (KK) —SK (N . M) *U 

10 CONTINUE 
DO 20 M = 2.NBAND 
K = N—M+1 
IF (K.LE.0) GO TO 20 
R1 (K) = R1 (K) —SK (K.Fl U 
SK(K.M) = 0. 

20 SK(N.M) = 0. 
SK (N. 1) = 1. 
R191) = U 
RETURN 
END 

SUBROUTINE BCMIX (N.THETA) 
C 
C 	SINCE UR=UZ*TAN(THETA) ALONG THE DIE.ACORRESPONDING CHANGE 
C 	 IS MADE IN THE STIFFNESS EQUATIONS FOR ROWS AND COLUMNS CORRESPOND 
C 	 TO THESE COMPONENTS...THEN THE EQUATIONS CONTAINING UR ARE ELIMINA 
C 

COMMON /BLKI/ NP ,NE.NB ,NPC.NMAT.NEQ,NBAND.NITER,TITLE(6).NBF.NEDGE 
COMMON SK (594.30) . R1 (594) .EST (50.60) . FR (25) . FZ (25) ,FPUR (50) 
COWON /A/ VRIG.IPLAX,ALPHA,IHARD 
nZ = 2*N 
NR = NZ-1 
ALPA = 1./TAN(THETA) 
IF (IPLAX.EQ.1) ALPA = TAN(THETA) 
DO 10M= 1.NBAND 

10 SK (NR. M) = SK (NR. M) ALPA 
SK (NR. 1) = SK (NR, 1) *ALPA 
SK(NR.2) = SK(NR,2)*2. 
DO 20 M = 2.NBAND 
KR = NR—M+1 
IF (KR.LE.0) GO TO 30 

20 SK (KR.M) = SK (KR,M) *ALPA 
30 R1 (NR) = RI(NR)*ALPA 

DO 50 M = 2.NBAND 
KZ = NZ—M+1 
IF (KZ.LE.0) GO TO 40 
SK(KZ.M) = SK(KZ.M)+SK(KZrM-1) 

40 IF (M.EQ.NBAND) GO TO 50 
KZ = NZ+M-1 
IF (KK.GT.NEQ) GO TO 50 
5K(NZ.M) = SK(NZ,M)+SK(NR,M+l) 

50 CONTINUE 
SK (NZ.1) = SK (NZ.1) +SK (NR.2) 
5K (NR.1) = 1.0 
DO 70 M = 2,NBAND 
KR = NR—M+1 
IF (KR.LE.0) GO TO 60 
SKG:R,M) = 0. 

60 SK(NR.M) = 0. 
70 CONTINUE 

RI (NZ) = RI (NZ) +R1 (NR) 
RI 01R) = 0. 
RETURN 
END 

SUBROUTINE SOLVE  

C 
C 	 THIS SUBROUTINE PERFORMS THE SOLUTION OF THE 
C 	EQUATION SYSTEM AX=B,4HERE A IS A BANDED SYMMETRICAL MATRIX 
C 

COMMON /BLK1/ NP,NE,NB.NPC,NMAT.NEO,NBAND,NITER.TITLE(8) , NBF.NEDGE 
COMMON /BLK3/ YIELD (4) .NBC (65) ,NREST (65) , N0 (40) . R (4D. 2) , XPRE (65) . Y 

1PRE (65) . NF (25) 
COMMON SK (594, 30) . R1 (594) .EST (50.60) . FR (25) . FZ (25) ,FPUR (50) 
COMMON /A/ nRIG.IPLAX.ALPHA.IHARD 

C 
C 	REDUCE MATRIX 
C 

DO 50 N = l.NEQ 
I = N 
DO 40 L = 2,NBAND 
I = I+1 
IF (SK(N,L)) 10,40.10 

10 C = SK(NoL)/SK(N,l) 
J = 0 
DO 30 K = L,NBAND 
J = J+1 
IF (SK(N.K)) 20.30.20 

20 SK(I.J) = SK(I,J)—C*SK(N.K) 
30 CONTINUE 

SK (NIL) = C 
C 
C 
C 	 AND LOAD VECTOR FOR EACH EQUATION. 

R1 (I) = R1 (I) —C*R1 (N) 
40 CONTINUE 
50 RI (N) = R1 (N) /SK (N. 1) 

C 
C 	BACK SUBSTITUTION 
C 

N = NEQ 
60N=N-1 

IF (N) 100,100.70 
70 L = N 

DO 90 K = 2.NBAND 
L = L+1 
IF (SK(N.K)) 60.90.80 

80 RIM) = R1(N) -5K(N.K)rR1(L) 
90 CONTINUE 

GO TO 60 
100 DO 110 I = I.NB 

IZ = 2*NBC(I) 
IR = IZ-1 
IF (NREST(I).EQ.3) THETA = XPRE(I)*3.1415927/160. 
IF (NREST(I).EQ.3.AND.IPLAX.EQ.0) ALPA = 1./TAN(THETA) 
IF (NREST(I).EQ.3.AND.IPLAX.E0.1) ALPA = TAN(THETA) 

110 IF (NREST(I) .EQ.3) RI (IR) = R1 CIZ) *ALPA 
RETURN 
END 

SUBROUTINE CFORC 
COMMON BLKI/ NP,NE,NBrNPC.NMAT,NEO,NBAND,NITER.TITLE(0),NBF.NEDGE 
COMMON BLK2/ CORD(297,2),NOP(260.4),IMAT(260).ELOAD(260.8) 
COMMON /BLKS/ YIELD(4).NBC(65),NREST(65).NQ(40).R(40.2) , XPRE(65) , Y 

1PRE C65) .NF (25) 
COMMON SK (594. 30) . R I (594) . EST (50.60) . FR (25) , FZ (25) , FPUR (50) 

C 	 THIS SUBROUTINE DETERMINES FORCES ON THE BOUNDARIES. 
C 

IF CNBF.LE.0) GO TO 40 



NBAND2 = 2*NBAND-1 
DO 30 I = 1.NBF 
IR = 2IF (I) —1 
IIZ = 2yI 
IIR = IIZ-1 
SUMR = 0.0 
SUMZ = 0.0 
DO 20 J = 1,NBAND2 
JR = IR+J—NBAND 
JZ = JR+1 
IF (JR.LE.O.OR.JR.GT.NEQ) GO TO 10 
SUMR = SUMR+EST(IIR,J)*R1(JR) 

10 IF (JZ.LE.O.OR.JZ.GT.NEQ) GO TO 20 
SUMZ = SUMZ+EST(IIZ,J)*R1(JZ) 

20 CONTINUE 
FR (I) = SUMR—FPUR (IIR) 
FZ(I) = SUMZ—FPUR(IIZ) 

30 CONTINUE 
40 RETURN 

END 

SUBROUTINE STRAIN 
C 
C 	THI5 SUBROUTINE CALCULATES STRAIN RATES.STRESSES AND COORDINATES 
C 	AT SAMPLING POINTS(CENTROIDS IN THE CASE OF BILINEAR ELEMENT.) 
C 

COMMON /BLK1/ NP.NE.NB.NPC,NMAT.NEQ.NBAND.NITER,TITLE(8).NBF.NEDGE 
COMMON /BLK2/ CORD (297.2) . NOP (260.4) . IMAT (260) . ELOAD (260.8) 
COMMON /BLK3/ YIELD(4),NBC(65).NREST(65),NQ(40).R(40.2),XPRE(65).Y 

1PRE (65) ,NF (25) 
COMMON /BLK4/ STR (260.5) .EPS (260, 6) ,VEL (2.297) . TEPS (260) 
COMMON /A/ VRIG.IPLAX.ALPHA,IHARD 
DIMENSION SHP (3.9) . 50(9), TG (9) . I.3(9) . U(2.9) 
DIMENSION XL(9)0 YL (9) . E (6) 
REWIND 1 
DO 100 N = 1.NE 
NNE = 4 
IF (NOP(N.4).EQ.0) NNE = 3 
DO 10 M1 = 1.NNE 
XL (M'D = CORD (NOP (N,M'D , 1) 
YL(M'D = CORD(NOP(N.MD,2) 
U(1.M`D = VEL(1,NOP(N.M-D) 

10 U(2.M-) = VEL(2.NOP(N,MM)) 
L = 1 
CALL PGAUSS (L.LINT,SG.TG.WG) 
DO 90 JJ = 1.LINT 
DO 20 NN = 1.3 
DO 20 LL = 1.NNE 

20 SHP(NN.LL) = 0.0 
C 	COMPUTE ELEMENT SHAPE FUNCTIONS. 

CALL SHAPE (SG(JJ).TG(JJ).XL.YL.SHP.DETJAC.NNE) 
C 	COMPUTE CORDINATES AND STRAINS. 

DO 30 I = 1,6 
30 E(I) - 0.0 

XBAR = 0.0 
YEAR = 0.0 
DO 40 J = 1.NNE 
XBAR = XBAR+SHP (3. J) *XL (J) 

40 YEAR = YBAR+SHP(3.J)=YL(J) 
DO 50 J = 1.NNE 
E(1) = E(1)+SHP(1.J)*U(1,J) 
E (2) = E (2) +SHP (2. J) *U (2, J) 
E (3) = E (3) +SHP (3. J) /XBAR*U (1. J) 
IF (IPLAX.EQ.0) E(3) = 0.0 

50 E(4) = E(4)+5HP(1,J)*U(2,J)+SHP(2,J)*U(1,J) 
DO 60 J = 1,4 

60 EPS (N . J) = E (J) 
EPS (N .6) = RBAR (E (1) , E (2) , E (3) . E (4) ) 
EPS(N.5) = E(1)+E(2)+E(3) 
CALL HARD (IMAT(N),TEPS(N),YYLD) 

C 	CALCULATE STRESSES 
DO 70 KK = 1,4 

70 STR(N.KK) = EPS(N,KK)*2./3.*YYLD/EPS(N.6) 
STR(N.4) = STR(N,4)*0.5 
STR (N,5) = EPS (N.5) *ALPHA 
DO 80 KK = 1,3 
5TR(N.KK) = STR(N,KK)+STR(N,5) 

80 IF (IPLAX.E0.0) STR(N,3) = 0.0 
C 	SAVE INFORMATION FOR LATER PUNCHING. 

WRITE (1,1000) XBAR.YBAR,EPS (N. D .EPS (N.2) ,EPS (N,3) ,EPS (N.4) .EPS (N 
1,6) 
WRITE (1,1010) ((STR(N,I),I=1,5),TEPS(N)) 

90 CONTINUE 
100 CONTINUE 

RETURN 
C 
C 
1000 FORMAT (2F10.5.5E12.5) 
1010 FORMAT (6E12.5) 

END 

SUBROUTINE FLOW (IPLOT) 
C 	THIS SUBROUTINE FINDS THE FLOW LINES AND INTEGRATES 
C 	ALONG THEM TO FIND THE EFFECTIVE STRAIN DISTRIBUTION. 

COMMON /BLK1/ NP,NE,NB.NPC,NMAT,NEQ,NBAND,NITER.TITLE(8).NBF,NEDGE 
COMMON /BLK2/ CORD(297,2),NOP(260.4),IMAT(260).ELOAD(260.8) 
COMMON /BLK1/ STR (260.5) .EPS (260.6) ,VEL (2, 297) . TEPS (260) 
COMMON SK (594.30) , R1 (594) , EST (50, 60) . FR (26) , FZ (25) . FPUR (50) 
COMMON /A/ VRIG,IPLAX,ALPHA,IHARD 
COMMON /B/ NTIMES.HDI.NDJ,NMAX.YSTART,YDIE,YEXIT.YMAX,RENTER.REXIT 
1,RCORE.5TEP.NLIN.VSCAL 
DIMENSION  RR (4) , ZZ (4) , URR (4) . UZZ (4) 
DIMENSION X(13,30). RA(13,30), U(13.30). V(13.30). STRR(13.30), A( 
1260)o B(260),  Y(30) . 88(30), XARB(13) 
DIMENSION XX(131400), YY(13,400), EE(13.400). PX(402), PY(402) 
EQUIVALENCE (STR(1.1),X(1.1)), (STR(133.2).RR(1,I)), (STR(1.4).U(1 
161)). (57R(131+5).Y(1)). (STR(161.5),BB(1)>. (57R(191.5).XARB(I)) 
EQUIVALENCE (EP5(1r1).V(1r1)), (EP5(131.2).STRR(1.1)), (EPS(1.4),A 
1 (1)) , (EPS(1,5) .B(1)) 
EQUIVALENCE (SK(1,1).XX(1.1)), (SK(449,9).YY(1.1)), (SK(303,18).EE 
1 (1. 1)) . (SK (157.27) .PX(1)) . (SK (559.27) ,PY (1) ) 
NIM1 = NDI-1 
NJM1 = NDJ-1 
IF (IPLAX.E0.1) GO TO 20 
DO 10 I = 1.NP 
DUM1 = CORD(I.1) 
DUM2 = VEL (1.I) 
CORD(151) = CORD(I.2) 
CORD(I,2) = DUM1 
VEL (l, I) = VEL (2. I) 

10 VEL (2.I) = DUM2 
C 	ARRANGE THE AVAILABLE INFORMATION IN PROPER FORM. 

20 K = 1 
L = 0 

30 L = L+1 
Y(L) = CORD(K.2) 
DO 40 I = 1.NIM1 
X(I.L) = CORD(K.1) 



RR(3) = X(L+1,M+1) 
RR(4) = X(L+1.M) 
ZZ(1) = Y(M) 
ZZ(2) = Y(M+1) 
ZZ (3) = ZZ (2) 
22(4) = 22(1) 
URR(1) = U(L,M) 
URR(2) = U(L,M+1) 
URR(3) = U (L+1 , M+1) 
URR(4) = U (L+1 ,M) 
UZZ(1) = V(L.M) 
UZZ(2) = V(L.M+1) 
UZZ(3) = V(L+I.M+1) 
UZZ(4) = V(L+1,M) 
GO TO 160 

C 	THE POINT IS LOCATED IN THE SAME ELEMENT IT WAS IN THE LAST STEP 
150 IFLAG = 1 

C 	DETERMINE U AND V AT THE POINT ON FLOW LINE 
160 CALL INTRPOL (RR,2.2,URR.XXX,YYY.UU.IFLAG) 

IFLAG = 1 
CALL INTRPOL (RR,22,U22,XXX,YYY.VV,IFLAG) 

C 	DETERMINE THE NEXT LOCATION OF POINT ON FLOW LINE. 
XX(N,NCOUNT+1) = XXX+UU*STEP 
YY(N.N000MT+1) = YYY+VV*STEP 
LOLD = L 
MOLD = M 
IF (N.NE.1) GO TO 190 
IF (YY(N,NCOUNT+1).LT.YDIE) GO TO 190 
DO 170 KL = 1.NJM1 

170 IF (YY(N,NCOUNT+1).GE.Y(KL).AND.YY(N,N000NT+1).LE.Y(KLt1)) ML = KL 
TANTH = (X(N,MLt1)-X(N,ML))f(Y(ML+1)-Y(ML)) 
RARB = X(N,ML) 
YARB = YY(N.N000NT+1)-Y(ML) 
XX(N,NCOUNT+1) = RRRB+YARB*TANTH 
IF (TANTH.E0.0.) XX(N,NCOUNT+1) = REXIT 

C 	THE POINTS HAS GONE PAST THE DIE EXIT 

GO TO 190 
180 XX(N,NCOUNT+1) = XXX 

NOPI = N+(NDJ-1)X(NDI-1) 
YY(N.N000NT+1) = YYY+VEL(2.NOPI)*STEP 

190 IF (NCOUNT.L7.NMAX-1) GO TO 100 
C 	DETERMINE THE VALUES OF EFFECTIVE STRAIN AT EACH 
C 	POINT FOR ALL FLOW LINES. 

NCOUNT = 0 
EE(N.1) = 0.0 
MOLD = 1 
LOLD = 1 

200 NCOUNT = NCOUNT+1 
YYY = YY(N,NCOUNT) 
XXX = XX(N.N000NT) 
IF (YYY.GT.YEXIT) GO TO 270 

C 	DETERMINE THE LOCATION OF FOUR SURROUNDING CENTROIDS. 
DO 210 IN = MOLD.NJM1 

210 IF (YYY.GE.BB(IN).AND.YYY.LE.BB(IN+1)) M = IN 
DO 220 IJ = 1,NDI 

220 XARB (IJ) = AA (IJ .M)- (AA (IJ ,M) -AA (IJ,M+1))*(YYY-BB(M))/  (BB (M+1) -BB ( 
1M) ) 
DO 230 IK = 1,NIM1 

230 IF (XXX.LE.XARB(IK).AND.XXX.GE.(XARB(IK+1))) L = IK 
IF (NCOUNT.EQ.1) GO TO 240 
IF (M.EO.MOLD.AND.L.EO.LOLD) GO TO 250 

C 	INTERPOLATE THE VALUES OF THE STRAIN RATES 
240 RR(1) = AA(L,M) 

U(I.L) = VEL(1.K) 
V(LL) = VEL(2.K) 

40 K = K+1 
X(NDI,L) = X(NIM1,L) 
U(NDI,L) = U(NIM1,L) 
V(NDI,L) = V(NIM1,L) 
IF (K.LT.NP) GO TO 30 

C 	DETERMINE COORDINATES OF THE CENTROIDS. 
DO 50 N = 1,NE 
I] = NOP(N.1) 
I2 = NOP(N.2) 
I3 = NOP(N.3) 
I4 = NOP (N, 4) 
A(N) = (CORD (I 1 . 1) +CORD (I2 . 1) +CORD (I3 .1) +CORO (I4. 1)) /4 . 

50 B(N) _ (CORD(II,2)+CORD(I2r2)+CORD(I3.2)+C0RD(I4,2))/4. 
C 	ARRANGE THE NEWLY DETERMINED VALUES IN A PROPER FORM. 

K = 1 
L = 0 

60 L = L+1 
BB (L) = B (K) 
STRR(1,L) = EPS(K,6) 
DO 70 I = 2,NIM1 
AA(I,L) = A(K) 
STRR(I,L) = EPS(K,6) 

70 K = K+1 
AA (NDI.L) = RCORE 
IF (BB(L).LE.YDIE) AA(1,L) = RENTER 
IF (BB(L).LE.YDIE.OR.BB(L).GE.YEXIT) GO TO 90 
DO 80 KL = 1.NJM1 

BO IF (BB(L).GE.Y(KL).AND.BB(L).LE.Y(KL+1)) ML = KL 
TANTH = (X(1,ML+1)-X(11ML))/(Y(ML+1)-Y(ML)) 
RARB = X (1 . ML) 
AA(15L) = RARB+ (8B (L) -Y (M_)) *TANTH 
IF (TANTH.E0.0.) AA(1,L) = REXIT 

90 IF (BB(L) .GE.YEXIT) AA(1.L) = REXIT 
STRR (NDI, L) = EPS (K-1.6) 
IF (K.LT.NE) GO TO 60 

C 	DETERMINE THE FLOW PATTERN 
DO 290 N = 1,NTIMES 

C 	SET COORDINATES OF THE STARTING POINT 
XX(N,1) = CORD(N.1) 
YY(N.1) = YSTART 

C 
C 	DETERMINE THE LOCATION OF THE PRESENT COORDINATES OF 
C 	THE POINT IN TERMS OF THE FOUR SURROUNDING POINTS. 

IFLAG = 0 
NCOUNT = 0 
MOLD = 1 
LOLD = 1 

100 NCOUNT = NCOUNT+1 
XXX = XX(N.M000NT) 
YYY = YY(N.N000NT) 
IF (N.E0.1.AND.YYY.GE.YEXIT) GO TO 180 
IF (YYY,GE.YMA)0 GO TO 180 
DO 110 I = MOLD,NJM1 

110 IF (YYY.GE.Y(I).AND.YYY.LE.Y(I+1)) M = I 
DO 12J I = l.HDI 

120 XARB(I) = X(I.M)-(X(I,M)-X(I,M+1))*(YYY-Y(M))/(Y(M+1)-Y(M)) 
DO 130 I = 1,NIM1 

130 IF (XXX.LE.XARB(I).AND.XXX.GE.XARB(I+1)) L = I 
IF (NCOUNT.E0.1) GO TO 110 
IF (M.EQ.MOLD.AND.L.EO.LOLD) GO TO 150 

140 RR(1) = X(L,M) 
RR(2) = X(L,M+1) 



RR(2) = AA(L.M+1) 
RR(3) = FSA (L+1, M+1) 
RR(1) = AA (L+1 , M) 
ZZ(1) = BB(M) 
Z2(2) = BB(M+1) 
22 (3) = ZZ (2) 
ZZ(4) = ZZ(1) 
URR(1) = STRR (L .M) 
URR(2) = STRR (L . M+1) 
URR(3) = STRR (L+1.M+1) 
URR (4) = STRR (L+1 , M) 
GO TO 260 

250 IFLAG = 1 
260 CALL INTRPOL (RR,ZZ,URR,XXX,YYY.ESTEP.IFLAG) 

C 	ADD THE INTERPOLATED VALUES TO THE VALUES OF 
C 	EFFECTIVE STRAIN AT THE PREVIOUS LOCATION. 

EE(N.NCOUNT+1) = EE(N.N000NT)+ESTEP*STEP 
LOI.D = L 
MOLD = M 
GO TO 260 

270 EE(N.N000NT+1) = EE(N,NCOUNT) 
280 IF (NCOUNT.LT.NMAX-1) GO TO 200 
290 CONTINUE 

C 	INTERPOLATE THE EFFECTIVE STRAIN DISTRIBUTION FOR 
C 	ELEMENTS FROM VALUES OF EFFECTIVE STRAIN ALONG FLOW LINES 

DO 350 N = 1,NE 
IF (B(N).LT.YY(1,1)) GO TO 340 
DO 320 J = 2,NTIIES 
DO 300 I = 1.NMAX 
IF (B (N) . GT. YY (J. I)) GO TO 300 
L = I 
G3 TO 310 

300 CONTINUE 
310 IF (XX(J.L) .GT.A (N)) GO TO 320 

K = J 
GO TO 330 

320 CONTINUE 
330 IFLAG = 0 

RR(1) = XX(K-1,L) 
RR(2) = XX(K-1.L-1) 
RR(3) = XX(K.L-1) 
RR(4) = XX(K.L) 
ZZ(1) = YY(K-1.L) 
Z2(2) = YY(K-1,L-1) 
22(3) = YYCK.L-1) 
Z2(4) = YYCK.L) 
URR(1) = EE(K-1,L) 
URR(2) = EECK-1,L-1) 
URR(3) = EE(K.L-1) 
URR (4) = EE(K,L) 
CALL INTRPOL (RR,ZZ.URR,A(N),B(N),TEPS(N),IFLAG) 
GO TO 350 

340 TEPS(N) = 0.0 
350 CONTINUE 

C 	PLOT FLOW LINES AND GRID DISTORTION 
IF (IPLOT.E0.0) GO TO 360 
CALL DRAW (PX.PY) 

360 IF (IPLAX.E0.1) RETURN 
DO 370 I = 1.NP 
DUM1 = CORD(I.1) 
DUM2 = VEL (1 . I) 
CORD (I,1) = CORD <I.2) 
CORD CI .2) = DUM1 
VEL (1. I) = VEL (2, I)  

370 VEL(2.I) = DUM2 
RETURN 
END 

SUBROUTINE INTRPOL (X.Y.U.XX.YY.UU.IFLAG) 
C 
C 	THIS SUBROUTINE INTERPOLATES THE VALUE OF UU AT (XX.YY) 
C 	BY KNOWING THE VALUE OF U AT FOUR SURROUNDING POINTS. 
C 

DIMENSION X (4) . Y (4) . U (4) . A (4.4) . COEF (4) 
C 	 DETERMINE THE MATRIX A, THE INVERSE OF THE INTERPOLATION MATRIX. 
C 	IF IFLAG=1 THE MATRIX A IS ALREADY KNOWN 

IF (IFLAG.E0.1) GO TO 10 
XI = X(1) 
X2 = X(2) 
X3 = X(3) 
X4 = X(4) 
Yl = Y(1) 
Y2 = Y(2) 
Y3 = Y(3) 
Y4 = Y(4) 
X12 = X1—X2 
X13 = X1—X3 
X14 = XI—X4 
X23 = X2—X3 
X24 = X2—X4 
X34 = X3—X4 
Y12 = Y1*Y2*X12 
Y13 = YI*Y3*X13 
Y14 = Y1*Y4*X14 
Y23 = Y2-'Y3',X23 
Y24 = Y2*Y4*X24 
Y34 = Y3*Y1*X34 
A(1,1) = X2)Y34—X3*Y24+X4*Y23 
A(1,2) = —X1*Y34+X3*Y14—X4*Y13 
A(1.3) = X1';Y24—X2*Y14+X4*Y12 
A(1,4) = —X1*Y23+X2*Y13—X3*Y12 
A(2.1) _ —Y23+Y24—Y34 
A(2.2) = Y13—Y14+Y34 
A(2.3) = —Y12+Y14—Y24 
A(2.4) = Y12—Y13+Y23 
211 = Y1%'X23 
Z12 = YI*X24 
213 = YI X34 
221 = Y2iX13 
222 = Y2*X14 
223 = Y2*X34 
231 = Y3*X12 
232 = Y3*X1-f 
233 = Y3*X24 
Z41 = Y4rX12 
242 = Y4*X13 
243 = Y4*X23 
A(3,1) = X2*Z23—X3*Z33+X4*243 
A(3,2) = —X1.213+X3*Z32—X4K242 
A(3,3)  = X1*212—X2*222+X4*Z41 
A(3,4) = —X1;I211+X2*221 —X3*Z31 
A(4.1) = —223+233-243 
A(4.2) = 213-232+242 
A(4.3) = —Z12+222-241 
A(414) = Z11--221+231 
DETER = AC1,1>+A(1.2)+A(1,3)+A (Is 4) 

10 IFLAG = 0 



IF (DETER.E0.0.) GO TO 40 
DO 30 J = 1.4 
COEF(J) = 0.0 
DO 20 I = 1,4 

20 COEF (J) = COEF (J) +A (J. I) *U (I) 
30 COEF (J) = COEF (J) /DETER 

UU = COEF (1) +COEF (2) -KXX+COEF (3) *YY+COEF (4) *XX*YY 
RETURN 

40 UU = (U(1)*(YY-Y(2))+U(2)*(Y(1)-YY))/(Y(1)-Y(2)) 
RETURN 
END 

SUBROUTINE DRAW (PX,PY) 
C 
C 	THIS SUBROUTINE PLOTS THE FLOW LINES AND 
C 	GRID DISTORTION 

COMMON BLK1/ NP,NE,NB.NPC.NMAT.NEQ.NBAND.NITER.TITLE(8).NBF,NEDGE 
CW - 3N /6/ NTIM£S,NDI,NDJ.NMAX.YSTART.YDIE.YEXIT,YMAX.RENTER.REXIT 
1,RCORE,STEP,NLIN,VSCAL 
DIN£NSION PX(402), PY(402) 
CALL START (2) 
CALL SYMBOL (2.0.1.090.15.TITLE.0..80) 
CALL SYMBOL (3.0.0.7.0.15,10HFLOW LINES.0.,10) 
CALL PLOT (2.0.2.0.-3) 
DO 10 I = 1.NMAX 
PX(I) = 0.0 

10 PY(I) = 0.0 
PX(NMAX) = VSCAL 
PY(NMAX) = VSCAL 
CALL SCALE (PX.12..NMAX,1) 
CALL SCALE (PY.12..NMAX.1) 
XS = 1./PX(NMAX+2) 
YS = 1./PY(NMAX+2) 
XA = -PX(NMAX+1)/PX(NMAX+2) 
YA = -PY(NMRX+1)/PY(NMRX+2) 
CALL AXIS (0.,0..6H2-AXIS.-6. 12..0..PX(NMAX+1).PX(NMAX+2)) 
CALL AXIS (0.,0..6HR-AXIS.6.12.090..PY(NMRX+1).PY(NMAX+2)) 
DO 30 N = 1.NTIMES 
DO 20 I = 1.NMAX 
PX(I) = YY(N.I) 

20 PY(I) = XX(N,I) 
IF (N.E0.1) CALL LINE (PX.PY.NMAX.1.0.1) 

30 IF (N.NE.1) CALL ARKIST (PX.PY.I.NMAX.10.XS.YS.XA.YA.2.1) 
CALL NEWPAGE 
CALL SYMBOL (2.0.1.0.0.15.7S7LE.0..80) 
CALL SYM:,OL (3.0.0.7.0.15.15BGRID OISTOR7IOI00..15) 
CALL PLOT (2.0.2.0.-3) 
CALL AXIS (0..0.06BZ-AXIS.-6.12..0..PX(NMAX+1).PX(NMAX+2)) 
CALL AXIS (0..0.06HR-AXIS.6112.,90..PY(NMAX+1),PY(NMAX+2)) 
DO 40 I = 1.NMAX 
PX(I) = YY(1.I) 
PY(I) = XX(1.I) 

40 CONTINUE 
CALL LINE (PX.PY+NNAX.1.0.1) 
DO 50 I = 1.NMAX 
PX(I) = YY (NTIhES. 1) 

50 PY(I) = XX(NTIhES.I) 
CALL LINE (PX.PY.NNAX.100.1) 
PX(NTIMES+1) = PX(NhAX+1) 
PX(NTIMES+2) = PX(NMAX+2) 
PY(NTIMES+1) = PY(NPAX+1) 
PY(NTIMES+2) = PY(NNRX+2) 
DO 70 N = 1.NMAX 
IF (((N-1) /15) K15.NE.N-1) GO TO 70  

DO 60 I = 1.NTIMES 
PX(I) = YY(I,N) 

60 PYCI) = XX(I.N) 
CALL RRKIST (PX,PY.1,NTIMES.20.X5.YS+XA.YR+2+1) 

70 CONTINUE 
CALL ENPLOT 
RETURN 
END 

SUBROUTINE DOUT 
COMMON /BLK1/ NP.NE.N6,NPC.NMAT.NEO+NBAND,NITER.TITLE(B).NBF,NEDGE 
COMMON 8LK2/ CORD (297.2) . NOP (260.4) . IMAT (26D) , ELOAD (260.8) 
COMMON /BLK3/ YIELD(4) .NBC (65) . NREST (65) . NQ (40) , R (40, 2) . XPRE (65) . Y 

1PRE (65) , NF (25) 
COMMON /BLK4/ STR(26005).EPS(260,6),VEL(2.297),TEPS(250) 
COMMON 5K (594.30) , R1 (594) . EST (50, 60) . FR (25) , F2 (25) . FPUR (50) 
COm`13N /A/ VRIG.IPLHX.ALPHA,IHARD 

C...SRVE MESH DESCRIPTION FOR LATER PUNCHING.. 
REWIND 4 
WRITE (4.1000) (N, (CORD(N.M) .M=1.2) , (VEL (M,N) ,M=1.2) ,N=1.NP) 
WRITE (4.1010) (N. (NOP(N,M) .M=1.4) ,IFIAT(N) .N=1.NE) 
WRITE (6.1020) TITLE 

C 
C 	WRITE VELOCITY DISTRIBUTION 
C 

WRITE (6,1030) 
I~ (IPLAX.E0.0) WRITE (6.1050) NITER 
IF (IPLAX.E0.1) WRITE (6.1040) MITER 
WRITE (6.1060) (10(VEL(J.M),J=1,2)+(CORD(N+J).J=1.2).M=1.NP) 

C 	WRITE STRAIN RATE AND STRESS DISTRIBUTION. 
WRITE (6.1070) 
IF (IPLAX.E0.0) WRITE (6.1090) 
IF (IPLAX.E0.1) WRITE (6,1080) 
WRITE (6,1070) 
WRITE (6.1100) (N.(EPS(N.J).J=1,6),TEPS(N).N=I.NE) 
WRITE (6.1110) 
IF (IPLAX.E0.0) WRITE (6,1120) 
IF (IPLAX.E0.1) WRITE (6,1130) 
WRITE (6.1110) 
WRITE (6.1140) (N,(STR(N.J).J=1,5).N=1,NE) 
WRITE (6.1110) 

C 
C 	WRITE FORCES AT NODES IF DESIRED 
C 

IF (NBF.LE.0) GO TO 10 
IF (IPLAX.F0.0) WRITE (601150) 
IF (IPLAX.E0.1) WRITE (6.1160) 
WRITE (601170) (NF(I) .FR(I) .FZ(I) .I=1,NBF) 
WRITE (4.1170) (NF (I) .FR (I) .FZ(I) . I=1.NBF) 

10 RETURN 
C 
C 
1000 FORMAT (I10.2FI0.4.2E15.6) 
1010 FORMAT (6I5) 
1020 FORMAT (1H1.0A10) 
1030 FORMAT (///.15X."VELOCITIES") 
1040 FORMAT (1H .13X."NUMBER OF ITERATIONS".I3.//.1H .4X."NODES".7X,"VE 

3LOC-R",BX."VELOC-Z") 
1050 FORMAT (1H .15X."NUMBER OF ITERATIONS",I30//.1H .4X."NODES".7X,"VE 

1LOC-X".8X."VELOC-Y") 
1050 FORMAT (I10.2E15.6.5X.2F10.4) 
1070 FORMAT (1H0.120(1H*)) 
1000 FORMAT (1H0.3X,"ELEMENTS".6X,"R-STRATE",7X."2-STRATE".7X."0-STRATE 

1",6X."RZ-STRATE".9X."COMIPRE".6X."EF-STRATE".6X."EF-STRAIN") 



FUNCTION RBAR (RX,RY+RZ,RXY) 
THIS FUNCTION CALCULATES THE EFFECTIVE STRAIN RATE. 
Si = RX-SRX 
52 = RYN RY 
53 = RZ-rRZ 
54 = RXY*RXY 
RBAR = 2.*SART(3.*(51+52+53)/2.+(3.*S4/4.))/3. 
RETURN 
END 

C 

1090 FORMAT (1H0,3X."ELEMENTS"s6X."X-STRATE",7Xr"Y-STRATE"r7Xr"Z-STRATE 
1",6X,"XY-STRATE"+9X,"COMPP.E",6X."EF-STRATE".6)WEF-STRAIN") 

1100 FORMAT (1H rI10.7E15.9) 
1110 FORMAT C1H0.90(1H)) 
1120 FORMAT (1H0.3)WELEMENTS",6Xr"X-STRESS".7X,"Y-STRESS".7X."Z-STRESS 

1".6X."XY-STRESS"15X,"HYD-STRESS") 
1130 FORMAT (1H0.3X+"ELEMENTS".6X,"R-STRESS",7X."Z-STRESS",7)(."0-STRESS 

1",6X."RZ-STRESS".5X."HYD-STRESS") 
1190 FORMAT (IH v110.5E15.4) 
1150 FORMAT (IHO,"FORCES CALCULATED AT BOUNDARY NODES".///.5X,"NODES"15 

1)(9"FORCE-X"r3X."FORCE-Y") 
1160 FORMAT (1HO."FORCES CALCULATED AT BOUNDARY NODES".///.5X."NODES".5 

1)6"FORCE-R"r3X.'FORCE-Z") 
1170 FORMAT (1HO,II0r2X,2E10.3) 

END 

SUBROUTINE CONVER (NCONV) 
COMMON /BLK1/ NP,NE,NB,NPC,NMRT,NEQ,NBAND,NITER,TITLE(8),NBF.NEDGE 
COMMON /BLK4/ STR(260.5),EPS(260.6).VEL(2,297),TEPS(260) 
COMMON SK(594,30).R1(594).EST(50.60).FR(25).FZ(25),FPUR(50) 
DIMENSION RC(594) 
EQUIVALENCE (5K.RC) 

C 
C 	THIS SUBROUTINE CHECKS THE CONVERGENCE. 
C 

NCONV = 0 
VCONV = 0.0 
IF (NITER.EQ.0) GO TO 30 
DO 10 N = 1.NP 
NZ = 2*N 
NR = NZ-1 
RC (NZ) = VEL (2. N) 

10 RC(NR) = VEL(1.N) 
ACONV1 = 0. 
ACONV2 = 0. 
DO 20 I = 1.NP 
IZ = I*2 
IR = IZ-1 
DVZ = RI(IZ)-RC(IZ) 
DVR = R1(IR)-RC(IR) 
ACONV2 = ACONV2+(DVR**2+DVZ**2) 
ACONV1 = ACONV1+(RC(IZ)mx2+4C(IR)' 2) 

20 CONTINUE 
VCONV = SORT(ACONV2/ACONV1) 
IF (ABS(VCONV).LE.0.005) NCONV = I 
WRITE (6.1000) NITER. VCONV 

30 DO 40 K = 1.NP 
DO 40 M = 1,2 
IC = (K-1)=241 

40 VEL(MIK) = R1CIC) 
RETURN 

C 
C 
1000 FORMAT (1H0."NITER=".I2,"VCONV=",E10.4) 

END 

SUBROUTINE MODMES 
COMMON /8LK1/ NP,NE.NB.NPC.NMAT,NEQ.NBAND,NITER.TITLE(8)11NBF.NEDGE 
COMM /BLK2/ CORD(29712).NOP(260,4),IMAT(280).ELBAD(260r8) 
COMMON /BLK4/ STR (260, 5) , EPS (260, 6) , VEL (2, 297) , TEPS (260) 
COMMON /A/ VRIG,IPLAX,ALPHA,IHARD 
COMMON /8/ NTIMS.NDIDNDJ,NI1 X,YSTART,YDIE,YEXIT.YMAX,RENTER,REXIT 
1.RCORE,STEP,NLIN.VSCAL  

C 	THIS SUBROUTINE MODIFIES THE MESH ACCORDING TO THE VELOCITIES 
C 

IF (NITER.LT.5) RETURN 
IF (IPLAX.E0.1) GO TO 20 
DO 10 I = 1+NP 
DUM1 = CORD(I.1) 
DUM2 = VEL(11I) 
CORD(I.1) = CORD(I,2) 
VEL(1,I) = VEL(2,I) 
CORD(I.2) = DUM1 

10 VEL (2. I) = DUM2 
20 NIM1 = NDI-1 

NJM1 = NDJ-1 
DO 40 N = 2.NIMI 
HOPI = N 
DO 30 M = 1,NJMI 
NOPJ = NOPI+NIMI 
SLOPEI = VEL(1,NOPI)/VEL(2,NOPI) 
SLOPEJ = VEL(1,NOPJ)/VEL(2.NOPJ) 
ZETA = CORD(NOPJ.2)-CORD(NOPI.2) 
CORD (NOPJ, 1) = CORD (NOPI.1) +0.5%KZETA%r (SLOPE I+SLOPEJ) 

30 NOPI = NOPJ 
40 CONTINUE 

IF (IPLAX.EQ.1) RETURN 
DO 50 I = 1.NP 
DUM1 = CORD(I,1) 
DUM2 = VEL(1,I) 
CORD(I,1) = CORD(I.2) 
CORD(I.2) = DUM1 
VEL(1,I) = VEL(21I) 

50 VEL(2,I) = DUM2 
RETURN 
END 

SUBROUTINE HARD (L.EFST.F1) 
C 
C 	THIS SUBROUTINE CALCULATES THE YIELD STRESS FROM A 
C 	EQUATION OF THE FORM A+B*X+C*X=*2+0*X**3+E*X=*4+ 
C 	 F*X=*5+G*X**6 
C 

DIMENSION COEF(7) 
GO TO (10.20), L 

C 	ALUMINIUM (TONS/IN.IN) 
10 COEF(1) = 3.5182 

COEF C2> = 9.998 
COEF(3) = -9.6414 
COEF(4) = 6.0298 
COEF(5) = -1.8814 
COEF(6) = 0.2202 
COEF(7) = 0.0 
GO TO 30 

C 	COPPER 	(TONS/IN.IN) 
20 COEF(1) = 5.7168 

COEF(2) = 67.7022 
COEF(3) = -111.7871 
COEF(4) = 98.7455 
COEF(5) = -46.0875 
COEF(6) = 10.7608 
COEF(7) = -.9872 

30 Fl = COEF(1) 
XT = EFST 
DO 40 JJ = 2.7 
Fl = Fl+COEF (JJ) *XT 
XT = XT'tFST 

10 CONTINUE 
RETURN 
END 



PROGRAM 2  

SOLUTION OF STEADY-STATE PROBLEMS  

(VELOCITY/PRESSURE)  



PROGRAM VELPRE (INPUT.OUTPUT,TAPE6=OUTPUT,TAPES,TAPE4,TAPEI) 

C  : . ::K 	xxxx xxxxxx******x**XXXxx*x*XXXXXx**zx.xxx:KN:K:K: xxxxxxxx** 
C - THIS PROGRAM HAS BEEN DESIGNED TO SOLVE STEADY-STATE PROBLEMS IN * 
C * METAL WORKING USING THE FINITE ELEMENT METHOD. 
C * THE MATERIAL IS ASSUMED TO BE RIGID-PLASTIC AND INCOFPRESSIBLE,THIS* 
C * LATTER CONSTRAINT BEING INTRODUCED USING A LAGRANGE MULTIPLIER. 	* 
C * THE PROGRAM USES BILINEAR ISOPARAMETRIC ELEMENTS 
C ***x*x***********x*x*****xxxx:r*******Xx****1COCOCxx***x*x**:ter****•xx*** 
C 	* WRITTEN BY LUIS A. PACHECO, ING.FEC.. M.SC. (MANC) * 
C 	 *IMPERIAL COLLEGE UNIVERSITY OF LONDON* 
C 	 *FINAL VERSION SUMMER 1978* 

C 
C 

COMMON /BLK1/ NP.NE.NB,NPC,NMAT.NEQ,NBAND.NITER.TITLE(18),NBF 
COMMON /BLK2/ CORD(234,2).NOP(204.4),IMAT(204) 
COMtti3N /A/ VRIG.IPLAX 

C 
C READ NECESSARY INPUT INFORMATION 
C 

CALL PRELIM 
C 
C DETERMINE BANDWIDTH AND NUMBER OF EQUATIONS 
C 

NEO = NP*3 
J = 0 
DO 20 N = JANE 
DO 20 I = 1.4 
DO 10 L = 1.4 
KK = IABS (NOP (N. I)-HDP (N, L) ) 
IF (KK-J.LE.0) GO TO 10 
J=KK 

10 CONTINUE 
20 CONTINUE 

NBANG = 3*(J+1) 
VRIG = 1.E+09 
NLIN = 0 

C 
C READ THE EXTERNAL LORDS IF ANY.FORM VECTOR LOAD 
C 

NITER = 1 
30 CALL LOAD 

C FORM AND SOLVE THE EQUATION SYSTEM 
C 

CALL FORMK 
CALL SOLVE 
CALL CONVER (NCONV) 
IF (NCONV.EQ.1) GO TO 40 
IF (NLIN.EQ.1) GO TO 40 
IF (NITER.E0.12) GO TO 40 
NITER = NITER+1 
GO TO 30 

C 
C CALCULATE FORCES AT BOUNDARY NODAL POINTS IF REQUIRED 

40 CALL CFORC 
CALL STRAIN 

C 
C WRITE RESULTS 
C 

CALL DOUT 
STOP 
END  

SUBROUTINE PRELIM 
C 
C THIS SUBROUTINE READ AND PRINT THE NECESSARY INPUT INFORMATION 
C 

COMMON /BLK1/ NP.NE.NB,NPC.NMAT.NE0.NBAND.N:TER,TITLE(19).NBF 
CON MON /5I_K2/ CORD (234, 2' . NOP (204.4) . IMAT (204) 
COMMON /BLK3/ YIELD (4) .NBC (66) .NREST (66) . ND (40) . R (40, 2) , XPRE (66) . Y 

1PRE (66) . NF (25) 
COMMON /A/ VRIG,IPLAX 
COMMON /6/ INTF,NINTF(50) 

C 
C READ TITLE AND CONTROL VARIABLES 
C 

READ (5.1050) TITLE 
WRITE (6,1120) TITLE 
READ (5,1000) NP,NE,NB,NPC,NBF,NMRT,II,IPLAX 
IF (IPLAX.EQ.0) WRITE (6.1070) 
IF (IPLP.X.E0.1) WRITE (6.1090) 
WRITE (60030) NP.NE,NB.NPC.NBF,NMRT,I1 

C. 
C READ MATERIAL INFORMATION 
C 

READ (5.1100) (N.YIELD(N).L=1,NMAT) 
WRITE (6.I1E0) 
WRITE (6.1110) 
WRITE (6.1060) (N.YIELD(N) .N=1.NMAT) 

READ NODAL INFORMATION. 

READ (5, 1010) (;. (CORD (N,MD ,M1=1,2) ,L=1.NP) 

READ ELEMENTS INFORMATION. 

READ (5,1020) (N.(NOP(N.M).M=1.4),IMAT(N).L=1.NE) 

READ BOUNDARY CONDITIONS 

READ (5.1030) (NBC(I) .NREST(I) .XPRE(I) ,YPRE(I) .I=1.NB) 
IF (NBF.EU.0) GO TO 10 
READ (5.1040) (NF (I) . I=1 “(EF) 

PRINT INPUT INFORMATION IF REQUIRED. 

10 IF !1.1.E0.0) GO TO 20 
WRITE (6.11-:0) 
WRITE (6.1010) (N,(CORJ(N.MD.M=1.2).N=1.NP) 
WRITE (6.1150) 
WRITE (6.1020) (N. (NOP(N.M) .f1 1.4) ,Il- T(N) .N=1,NE) 

20 IF (NBF.EQ.0) GO TO 30 
WRITE (6,1170) 
WRITE (6,1130) (NF(I),I=1,NBF) 

30 WRITE (6,1160) 
WRITE (5.1030) (NBC(T).NREST(I).XPRE(E.YPRE(I),I=1.NB) 
RETURN 

C 
1000 FORMAT (015) 
1010 FORMAT '110.2F10.3) 
1020 FORMAT (C(5) 
1030 FORMAT (2I10.2F10.3) 
1040 FORMAT (16I5) 
1060 FORMAT (18A4) 
1060 FORMAT (1H •15.F16.4) 
1070 FORMAT (1H0,"PLANE STRAIN PROBLEM"./.1H ,20(1H*)) 
1080 rORMAT (1H0."NUMBER OF NODES=",I3./,1H ,"NUMbF^ (iF ELEMENTS=",I3./ 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 



1,1H ."NUMBER OF NODES WITH BOUNDARY CONDITIONS=".I3,/.1H ."NUMBER 
20F LOADED NODES=",I3./.1H ."NUMBER OF NODES WHERE REACTIONS ARE CA 
3LCIJLATED=".I3,/,1H ,"NUMBER 3F MATERIALS=".I3r/,1H ."PRINT CONTROL 
4 VI RIABLE(I1)=",I2) 

1090 I-ORN1T (1H0,"AXISYM`ETRIC PROBLEM"./.1H ,20(1H*)) 
1100 FORMA" (I5.F15.4) 
1110 FORMAT (1H .2X,"MAT".3X."YIELD POINT"./.1H .9X."(KG/CM++2)") 
1120 F3RMAT (1H1.18A4) 
1130 FORMAT (1H .20I5) 
1140 FORMAT (1HD.6)(."NODES".3X."CDORD X".3X."COORD Y"./.1H ,14X,"(CMS)" 

1.5X. " (CMS) ") 
1150 FORMAT (1H0."ELEMENT".4X."NODES".9X."IM1AT") 
1160 FORMAT (1H0."BOUNDARY CONDITIONS"./.IH ,5)(."NODES".4X."CONDITION". 

13X,"XPRE".SX."YPRE") 
117() FORMAT (1H0."THE NODAL POINTS Al WHICH FORCE CALCULATIONS ARE DESI 

1RED") 
1180 FORMAT (1HOr"MATERIAL PROPERTIES") 

END 
SUBROUTINE L6A) 

C 
C THIS. SUBROUTINE FORM THE VECTOR LORD R1. 
C 

COMMON /BLK1/ NP.NE.NB,NPC.NMAT,NE0,NBAND.NITER.TITLE(18).NOF 
COMMON /8LK3/ YIELD(4).NBC(66).NREST(66),N0(40).R(40.2).XPRE(66).Y 

1PRE(66).NF(25) 
COMMON SK (468.39) . R 1 (468) .EST (50.70) . FR (25) , FZ (25) . FPUR (50) 

C 
C ZERO LORD ARRAY. 
C 

DO 10 J = 101E0 

10 R1(J) = 0.0 
IF (NPC.E0.0.AND.NITER.GT.1) RETURN 
IF (NPC.E0.0) GO TO 50 
IF (NITER.GT.1) GO TO 30 
WRITE (6.1000) 
DO 20 N = 1.NPC 
READ (5.1010) NQ(N) . (R (N. K) . K=1.2) 
WRITE (6.1010) NO(N) . (R(N.K).K=1.2) 

20 CONTINUE 
30 DO 40 N = 1.NPC 

DO 40 K = 1,2 
IC = (NU(N)-1)41+K 

40 RI CIC) = R (N+K)+Al (IC) 
GO TO 60 

50 WRITE (6.1020) 
60 RETURN 

C 
1000 FORMAT (1H0."PRESCRIBED EXTERNAL LOADS".IHO."NODES".3X."FORCE-X".3 

1X."FORCE-Y") 
1010 :.RMAT (I5.2F10.3) 
1020 FORMAT (IHO."NO EXTERNAL LOADS PRESCRIBED') 

END 
SUBROUTINE FORMK 

C 
C 	 THIS SUBROUTINE FORMS THE OVERALL STIFFNESS MATRIX. 
C 

carton /BLK1/ NP,NE.NB.NPC,NMAT.NE0.NBAND.NITER.TITLE(18).NBF 
COMMON  /BLK2/ CORD (234.2) . NOP (204, 4) , IMAT (204) 
COMM /BLK3/ YIELD(4) .NBC (66) ,NREST (66) . NO (40) . R (40.2) . XPRE (66) . Y 

IPRE (63) .NF (25) 
COIL-ON SK(468.39).R1(468).EST(50.78).FR(25),FZ(25),FPUR(50) 
DIMENSION SE(12,12). ICODE(234) 

C INITIALIZE THE ARRAYS  

DO 10 I = 1.NP 
10 ICODE(I) = 0 

DO 20 N = 104E0 
DO 20 M = 1.NBAND 

20 SK(N,M) = 0.0 
C 
C THE PRESSURE. VARIABLE IS ASSIGNED TO THE HIGHEST NUMBERED NODE 
C 

DO 30 N = 1.NE 
MID = MRXO(NOP(N.1)+NOP(N+2)+NOP(N,3).NOP(N.4)) 

30 TCODE(MID) = 10 
C 
C SCAN ELEMENTS 
C 

NDF = 3 
DO 100 II = 1.NE 
CALL OUAD2 (SE.NITER.II) 

C 
C FORM THE STIFFNESS MATRIX SK 
C 
C FIRST ROWS 
C 

DO 90 JJ = 1.4 
NROWB = (NOP(II,JJ) -1)*iDF 
IF (NROWB) 90.40.40 

40 DO 80 J = i.NDF 
NROWB = NROWB+1 
I = (JJ-1) NDF+J 

C 
C THEN COLUMNS 
C 

DO 70 KK = 1.4 
NCOLB = (NOP (II. KK) -1) *NDF 
00 60 K = 1.NDF 
L = (KK-1) *NDF+K 
NCOL = NCOLB+K+1-NROWB 

C 
C SKIP STORING IF BELOW BAND 
C 

IF (NCOL) 60.60.50 
50 SK(NROWB,NCOL) = SK(NROI. .NCOL)+SE(I.L) 
60 CONTINUE 
70 CONTINUE 
80 CONTINUE 
90 CONTINUE 

100 CONTINUE 
C 
C PREPARATION FOR FORCE CALCULATION 
C STORE THE ROWS OF SK WHICH ARE NECESSARY. 
C 

IF (NBF.E0.0) GO TO 160 
NBAND2 = 2NBAND-1 
DO 110 I = 1.NBF 
IZ = 2*I 
IR = I2-1 
DO 110 J = 1.NBAND2 
ESī(IZ.J) = 0.0 

110 EST(IR,J) = 0.0 
DO 150 I = 1.NBF 
II = NF (I) 
IZ = 3-KII-1 
IR = IZ-1 
II2 = 2*I 
IIP = IIZ-1 



i'FP (I) = 0.0 

DO 120 J = NBAND,NBAND2 	 DO 20 J = 1.NNE2 

JJ = J-NBAND+1 	 20 SEU(I+J) = 0.0 

EST(IIR,J) = SK(IR.JJ) 	 DO 30 I = 1.3 

120 EST(IIZ,J) = SK(IZ,JJ) 	 30 M(I) == 1.0 

DO 140 J = 1,NBAND 	 M(4) = 0.0 

NR = IR-J+1 	 DO 40 I = 1.12 

NZ = I2-J+1 	 DO 40 J = 1,12 

JJ = NBAND-J+1 	 40 SE(I.J) = 0.0 

IF (NR.LE.0) GO TO 130 	 DO 50 MM = 1.NNE 

EST ( I IR. JJ) = SK (NR. J) 	 XL (MM) = CORD (NOP (N. MM) , 1) 

130 IF (NZ. LE .0) GO TO 140 	 50 YL (MM) = CORD (NOP (N, MM) .2) 

EcY(IIZ, JJ) = SK(NZ.J) 	 MINT = 2 

140 CONTINU' 	 C 	COVPUTE GAUSS POINTS AND WEIGHT FACTORS 

FPUR(IIR) = RICIR) 	 CALL PGAUSS (NINT.LINT,SG,TG,WG) 

150 FPUR(I':2) = R1(I2) 	 C 	FORM STRAIN DISPLACEMENT MATRIX B. 
C 	 DO 170 L = 1,LINT 

C INSERT DISPLACEMENT BOUNDARY CONDITIONS 	 XBAR = 0.0 
C 	 DO 60 NN = 1,3 

160 DO 170 N = 1.NB 	 DO 60 LL = 1,NNE 

I = NBC(N) 	 60 SHP(NN,LL) = 0.0 

IR = 3*I-2 	 CALL SHAPE (SG(L),TG(L),XL,YL,SHP,DETJAC.MNE) 

IZ = IR+1 	 DO 70 LI = 1,NNE 

NC = NREST(N) 	 J = 2*LI 
C 	 I = J-1 

C CHECK IF THE X VELOCITY IS PRESCRIBED 	 B(1.I) = SHP(1,LI) 
C 	 B(1.J) = 0.0 

IF (NC.EQ.1.OR.NC.E0.11) CALL CONDE (IR.XPRE(N)) 	 B(2.I) = 0.0 
C 	 B(2.J) = SHP(2.LI) 

C CHECK IF THE Y VELOCITY IS PRESCRIBED 	 B(3,I) = 0.0 
C 	 B(3,J) = 0.0 

IF iNC.EQ.2.OR.NC.E0.11) CALL CONDE (IZ.YPRE(N)) 	 B(4,I) = 8(2.J) 
C 	 70 B(41.1) = B(1.I)  

C CHECK IF THE POINT IS ALONG AN INCLINED BOUNDARY 	 C 	IN CASE OF PLANE STRAIN ANALYSIS DO NOT INCLUDE 
C 	 C 	THE NORMAL STRAIN COMPONENT 

IF (NC.E0.3) THETA = XPRE(N)*3.1415927/180. 	 IF (IPLAX.E0.0) GO TO 120 

IF (NC.E0.3) CALL BCMIX (I.THETA) 	 DO 80 KI = 1.NNE 

170 CONTINUE 	 80 XBAR = XBAR+SHP(3,KI)*XL(KI) 
C 	 C 	EVALUATE THE HOOP STRAIN DISPLACEMENT RELATION 

C 	CHECK THE POINTS WITH INFORMATION ABOUT THE MEAN STRESS. 	 IF (XBAR.GT.0.00000001) GO TO 100 
C 	 C 	FOR THE CASE OF ZERO RADIUS EQUATE RADIAL TO HOOP STRAIN 

DO 180 N = 1.NP 	 DO 90 KI = 1.NNE2 

IC = ICODE(N) 	 90 B(3.(I) = B(1.1(I) 

IP = 3 1 	 GO TO 120 

180 IF (IC.NE.10) CALL CONDE (IP.O.) 	 C 	NON-ZERO RADIUS 

RETURN 	 100 DUMB = 1./XBRR 

END 	 DO 110 KI = 1,NNE 

SUBROUTINE OUAD2 (SE.NITER.N) 	 LH = 2TKI-1 
C 	 110 B(3.LH) = SHPC30(I) DUMA 

C 	THIS SUBROUTINE FORMS THE ELEMENTAL STIFFNESS MATRIX. 	 C 	FORM THE STRESS-STRAIN MATRIX 
C 	 120 IF (NITER.E0.1) EPSR = 1.0 

COMMON /BLK2/ CBRD(234,2),NOP(204.4),IMAT(204) 	 IF (NITER.GT.1) CALL STRA (NNE.N.B.EPSR) 

COMM /BLK3/ YIELD(4) .NBC (66) . NREST (66) . NQ (40) . R (40, 2) , XPRE (66) , Y 	 LL = MATCH) 

1PRE(66),NF(25) 	 DUM3 = 2.*YIELD(LL)/(3.*EPSR) 

DIMENSION D(4.4). SE(12.12). A(4,8). XL(4), YL(4) 	 IF (DUM3.GE.VRIG) DUM3 = VRIG 

REAL SEU (8,8) . M(8) , SEP (8) 	 D(1.1) = DUM3 

COMMON /A/ VRIG,IPLAX 	 D(2.2) = DUM3 

DIMENSION B(4.6). SHP (3,9) , SG (9) . L13(9). Tao) 	 D(3,3) = DUM3 

C 	INITIALIZE THE ARRAYS 	 D(4,4) = DUM3/2. 

NW = 4 	 C 	COMPUTE THE PRODUCT D*8 

NNE2 = NNE*2 	 DO 130 I = 1.4 
DO 10 I = 1.4 	 DO 130 J = 1.NNE2 

DO 10 J = 1.4 	 A(I,J) = 0.0 

10 D(I.J) = 0.0 	 DO 130 K = 1.4 

DO 20 I = 1.NNE2 



10 R(1) = 0. 
130 A(I,J) = A(I.J)+D(I.K)*P(K,J) 	 Z(1) = 0. 

C 	COMPUTE (B**T *(0*B) h'D ADD CONTRIBUTION TO ELEMENT STIFFNESS 	 W(1) = 4. 
IF (IPLAX.E0.0) XBAR = 1.0 	 RETURN 
WT = XBAR4.G(L)*GETJAC 	 C 	2X2 INTEGRATION 

C 	SEP IS PRESSURE STIFFNES MATRIX 	 20 G = 1./SORT(3.) 
DO 140 I = 1.NNE2 	 DO 30 I = 1.4 
DO 140 J = 1,4 	 R(I) = GrLR(I) 

140 SEP(I) = SEP(I)+M(J)*B(J,I)*WT 	 Z(I) = GitZ(I) 
DO 160 NROW = 16NNE2 	 30 W(I) = 1. 
DO 150 NCOL = NROW,NNE2 	 RETURN 
DUM2 = 0.0 	 C....3X3 INTEGRATION 

C 	SEU IS VELOCITY STIFFNESS MATRIX 	 40 G = SORT(0.6) 
DO 150 LI = 1,4 	 H = 1./91. 

150 DUM2 = DUM2+B(LI,NROW)*A(LI,NCOL) 	 DO 50 I = 1,9 
SEU(NROW.NCOL) = SEU(NROW,NCOL)+DUM2*WT 	 R(I) = GLR(I) 

160 CONTINUE 	 Z(I) = GLZ(I) 
170 CONTINUE 	 50 W(I) = H*LW(I) 

C 	COMPLETE SE BY SYMMETRY. 	 RETURN 
DO 180 K = 2.NNE2 	 END 
DO 180 L = 1,K 	 SUBROUTINE SHAPE (SS.TT.XL.YL.SHP,DETJAC.NNE) 

180 SEU(K,L) = SEU(L.K) 	 C 
C 	 C 	SHAPE FUNCTION SUBROUTINE FOR TWO DIMENSIONAL ELEMENTS 
C 	ASSEMBLE ELEMENTAL STIFFNESS FROM THE SEU AND SEP 	 C 
C 	 REAL SHP (3.9) . XL (4) . YL (4) . S(4),  T(4). JAC (2.2) 

IXYZ = MAXD(NOP(N11).NOF(N,2),NOP(N13),NOP(N,4)) 	 DATA S/-0.5.0.5.0.5.-0.5/.T/-0.5.-0.5.0.5,0.5/ 
DO 220 I = 1.NNE 	 C 	FORM 4 NODE QUADRILATERAL SHAPE FUNCTION 
IF (NOP(N.I).NE.IXYZ) GO TO 200 	 DO 10 I = 1.4 
IP = 3*I 	 514P(3.1) = (0.5+S (I) *SS) * (0.5+T (I) *TT) 
DO 190 J = 1.NNE 	 SHP(1.I) = S(I)*(0.5+T(I)*TT) 
IX = 3*..1-2 	 10 SHP (2. I) = T (I) * (0.5+S (I) *SS) 
IIX = 2*J_1 	 C 	CONSTRUCT JACOBIAN. ITS INVERSE AND ITS DETERMINANT. 
IY = 3*J-1 	 DO 20 I = 1.2 
IIY=2M..1 	 DO 20 J = 1,2 
SE(IX.IP) = SEP(IIX) 	 20 JAC(I.J) = 0.0 
SE (IY. IP) = SEP (IIY) 	 DO 30 K = 1.NNE 
SE (IP. IX) = SE(IX.IP) 	 JAC (1. 1) = JAC (1,1) +SHP (1,K) *XL (K) 

190 SECIP.IY) = SE(IY.IP) 	 JAC.(1,2) = JAC(1,2)+SHP(I,K)*YL(K) 
200 LX = 3*I-2 	 JAL (2, 1) = JAC (2,1) +SHP (2, K) *XL (K) 

LY = LX+1 	 30 JAC (2.2) = JAC (2.2) +SHP (2. K) *YL (K) 
LLX = 2*I-1 	 DETJAC = JAC (1.1) *.JAC (2.2) —JAC (1, 2) *JAC (2.1) 
LLY = LLX+1 	 DUM1 = JAC(1,1)/DETJAC 
DO 210 K = 1.NNE 	 JAC(1.1) = JAC(2.2)/DETJAC 
KX = 3*K-2 	 JAC(2.1) = —JAC(2.1)/DETJAC 
KY = KX+1 	 JAC(1.2) = —JAC(1,2)/DETJAC 
KK:: = 23,K-1 	 JAC (2.2) = DUM1 
KKY = KKX+1 	 C 	FORM GLOBAL DERIVATIVES 
SE(LX,KX) = SEU(LLX.KKX) 	 DO 40 I = 1.NNE 
SE(LX.KY) = SEU(LLX.KKY) 	 TP = SHP (Is I)*JAC(1,1)+SHP(2,I)*JAC(1,2) 
SE (LY. KX) = SEU (LLY. KK)0 	 SHP (2. I) = SHP (1. I) *JAC (2, 1) +SHP (2, I) *JAC (2 . 2) 

210 SE(LY.KY) = SEU(LLY.KKY) 	 40 SHP(1.I) = TP 
220 CONTINUE 	 RETURN 

RETURN 	 END 
END 	 SUBROUTINE STRA (NNE.M.BA.EPSR) 
SUBROUTINE PGAUSS (L.LINT.R,Z,W) 	 C 

C 	 C 	CALCULATE STRAIN RATES AT THE INTEGRATION POINTS. 
C 	GAUSS POINTS AND WEIGHTS FOR TWO DIMENSIONS 	 C 
C 	 COMMON /BLK1/ NP,NE,NB.NPC,NMAT,NED,NBAND.NITER.TITLE(18).NBF 

REAL LR(9), LZ(9), LW(9), R(9), Z(9), 14(9) 	 COMMON /BLK2/ CORD(234,2).NOP(204.4),IMAT(204) 
DATA LR/-1..1.,1.,-1.,0.,-1.,0.,-1.,0./ 	 COMMON /BLK4/ SfR(204,6),EPS(204,6).VEL(2.234) 
DATA LZ/-1.,-1..1.,1.,-1.,0..1..0.,0./ 	 DIMENSION BA(',8", E(4). RA(8) 
DATA LW/4*25..4*40..64./ 	 NK = NNE 
LINT = Lxt 	 DO 10 J = 1,NK 
GO TO (10.20.40). L 	 KK = NOP(M,J) 

C 	1X1 INTEGRATION 



KI = (J-1)=2 
DO 10 JJ = 1.2 
IJ = JJ+KI 

10 RA (IJ) = VEL (JJ.KK) 
DO 20 KK = 1.4 
E CKK) = 0.0 
DO 20 J = 1.NNEx2 

20 E (KK) = E CKK) +BA CKK. J) *RA (J) 
EPSR = RBAR (E (1) . E (2) . E (3) . E (4) ) 
RETURN 
END 
SUBROUTINE CONDE (N.U) 

C 
C THIS SUBROUTINE PERFORM THE MATRIX CONDENSATION WHEN 
C THE VALUE OF A COMPONENT OF X IN AX=B IS SPECIFIED. 
C 

COMMON /BLK1/ NP.NE.NB, NPC ,NMAT,NEQ,NBAND,NITER,TITLE(IB),NBF 
COMMON SK(468.39).RI(468).EST(50.78),FR(25),FZ(25),FPUR(50) 
DO 10 M = 25NBAND 
KK = 
IF (KK.GT.NEQ) GO TO 10 
Rl CKK) = R1 (KK) -SK (N,M) xU 

10 CONTINUE 
DO 20 M = 2.NBAND 
K = N-M+1 
IF (K.LE.0) GO TO 20 
R100 = R1 CK) -SK (K,M) xU 
SKCC,M) = 0. 

20 SK(I:,h) = 0. 
SK(N,1) = 1. 
R1 (N) = U 
RETURN 
END 
SUBROUTINE BCMIX (N.THETA) 

C 
C SINCE UR=UZKTAN(THETA) ALONG THE DIE.ACORRESPONDIHG CHANGE 
C IS MADE IN THE STIFFNESS EQUATIONS FOR ROWS AND COLUMNS CORRESPONDING 
C TO THESE COMPONENTS..THEN THE EQUATIONS CONTAINING UR ARE ELIMINATED. 
C 

COMMON BLK1/ NP.NE.NB.NPC.NMAT.NEQ.NBAND,NITF.R,TITLE(18).NBF 
COMMON SK (468 + 39) .R1(465).EST(50.78).FR(25).FZ(25).FPUR(50) 
COMMON /A/ VRIG.IPLAX 
NZ = 3xN-i 
NR = NZ-1 
ALPA = 3./TAN(THETA) 
IF CIPLAX.EQ.1) ALPA = TAN(THETA) 
DO 10 M = 1.NBAND 

10 SK (NR.M) = SK (NR.M) xALPA 
SK (NR+ 1) = SK (NR, 1) .ALPA 
SK(NR.2) = SK (NR.2) x2. 
DO 20 M = 2.NBANJ 
KR = NR-M+1 
IF (KR.LE.0) GO TO 30 

20 SK (KR.M) = SK (KR.M) xALPA 
30 R1(NR) = R1(NR)ALPA 

DO 50 M = 2.NBAND 
KZ = NZ-M+1 
IF (KZ.LE.0) GO TO 40 
SK(KZ,M) = SK(KZ.M)+SK(KZ.M-1) 

40 IF (M.EQ.NBAND) GO TO 50 
KZ = NZ+M-1 
IF (I;Z.GT.NEO) GO TO 50 
SKCHZ.M) = SK(HZ.M)+SK(NR.M+1) 

50 CONTINUE  

SK (NZ, 1) = `K (NZ.1) +S), (NR.2) 
SK (NR. 1) = 1.0 
DO 70 M = 2.NBAND 
KR = NR-M+1 
IF (KR.LE.0) GO TO 60 
SK(KR.M) = D. 

60 SK(NR.M) = 0. 
70 CONTINUE 

R1 (NZ) = RI (NZ)+R1 CNR) 
R1(NR) = 0. 
RETURN 
END 
SUBROUTINE SOLVE 

C 
C THIS SUBROUTINE PERFORMS THE SOLUTION OF THE 
C 	EQUATION SYSTEM AX=B. 
C COMMON /BLKI/ NP.NE.NB.NPC.NMAT. NM, NBAND 'NITER .TITLE UM .NBF 

COMMON /BLK3/ YIELD (4) . NBC (66) .NREST (66) . NO (90) , R (40.2) . XPRE (66) . Y 
1PRE (66) . NF (25) 
COMM SK (968.39) . R1 (468) . EST (50.78) +FR (25) , FZ (25) , FPUR (50) 
COMMON /A/ VRIG.IPLAX 

C 
C REDUCE MATRIX 
C 

DO 60 N = 1,11E0 
IF (SK (N. 1)) 10.60.10 

10 I = N 
DO 50 L = 2.NBAND 
I = I+1 
IF (SK(N.L)) 20.50.20 

20 C = SK(N.L)/SK(N,1) 
J = 0 
DO 40 K = L.NBAND 
J = J+1 
IF (SK(N,K)) 30.40.3D 

3C SK(I.J) = SK(I.J)-CxSK(N.K) 
40 CON-INUE 

SK(I..L) = C 
C 
C 
C AND LOAD VECTOR FOR EACH EQUATION. 

RI(I) = R1(I)-C R1(N) 
50 CONTINUE 

R101) = R1 (N) /SK (N, 1) 
60 CONTINUE 

C 
C BACK SUBSTITUTION 
C 

N = NEQ 
70 N = N-1 

IF (N) 110.110.80 
80 L = N 

DO 100 K = 2,NBRND 
L = L+1 
IF (SK(N,K)) 90.100.90 

90 R104) = RI (N) -SK (N,K) *R1 (L) 
100 CONTINUE 

GO TO 70 
110 DO 120 I = 1.NB 

IZ = 337NBC (I) -1 
IR = IZ-1 
IF (NREST(I).00.3) THETA = XPRE(I)x3.1415927/180. 
IF (NREST(I).EQ.3.AND.IPLAX.EQ.0) ALPA = 1./TANCTHE1A) 



C 	SAVE INFORMATION FOR LATER PUNCHING. 
WRITE (1.1000) 	AR.YBAR.EPS (N. 1) .EPS (N+2) .EPS (N.3) ,EPS (N.4) +EPS (N 

IF (NREST(I).E0.3.AND.IPLAX.EQ.1) ALPA = TAN(THETA) 	 1.6) 
120 IF (NREST (I) . EQ.3) RICIR) = R1(IZ)ALPA 	 WRITE (1,1010) ((STR (N. I) . I=1 .5) . TEPS (N) ) 

RETURN 	 90 CONTINUE 
END 	 100 CONTINUE 
SUBROUTINE STRAIN 	 RETURN 

C 	 C 
C 	 THIS SUBROUTINE CALCULATES STRAIN RATES,STRESSES AND COORDINATES 	 C 
C 	 AT SAMPLING POINTS(CENTROIDS IN THE CASE OF BILINEAR ELEMENT.) 	 C 
C 	 1000 FORMAT (2E10.5.5E12.5) 

COMMON /1311(1/ NP.NE.NB,NPC,NMAT,NEQ.NBAND.NITER.TITLE(18).NOF 	 1010 FORMAT (6E12.5) 
COMMON /BLK2/ CORD(234.2),NOP(204.4),IMAT(204) 	 END 
COMMON /BLK3/ YIELD(4),NBC(66).NREST(66).N0(40).R(40.2).XPRE(66),Y 	 SUBROUTINE DOUT 

1PRE(66).NF(25) 	 COMMON /BLK1/ NP.NE.NB.NPC.NMAT.NEQ.NBAND.NITER.TITLE(18).NBF 
COMMON /BLK4/ STR(204.6).EPS(204.6).VEL(2.234) 	 COMMON /BLK2/ CORD(234.2),NOP(204.4),IMAT(204) 
COMMON /A/ VRIG. IPLAX 	 COMMON BLK3/ YIELD(4) .NBC (66) .NREST (66) , N0 (40) . R (40.2) . XPRE (66) . Y 
COMMON SK (468.39) , R1 (468) . EST (50.78) . FR (25) . F2 (25) , FPUR (50) 	 1PRE (66) , NF (25) 
DIMENSION SHP (3.9) . SG(9) . 111(9) . IC(9) . U(2.9) 	 COMMON BLK4/ STR (204.5) .EPS (204.6) .VEL (2.234) 
DIMENSION XL(9). YL(9). E'6> 	 COMMON 5K(468.39).R1(468),EST(50,60),FR(25).F2(25).FPUR(50) 
REWIND 1 	 COMMON /A/ VRIG.IPLAX 
DO 100 N = 1.NE 	 C...SAVE MESH DESCRIPTION FOR LATER PUNCHING.. 
NNE = 4 	 RE'dIND 4 
IF (NOP01.4).E0.0) NNE = 3 	 WRITE (4.1000) (N.(CORD(N.M .M=1.2).(VEL(M.N).M=1.2).N=1,NP> 
00 10 MM = 1,NNE 	 WRITE (4+1010) (N.(NOP(N.M),M=l.4),IMAT(N),N=1.NE) 
XL (MM) = CORD (HOP (N, MM) .1) 	 WRITE (6,1020) TITLE 
YL(MM) = CQRD(NOP(N,MM).2) 	 C 
U(1,MM) = VFL(l,NDP(N,MM)) 	 C 	WRITE VELOCITY DISTRIBUTION 

to U(2011) = VEL(2,NOP(N,MM)) 	 C 
L = 1 	 WRITE (6,1030) 
CALL PGAUSS (L,LINT,SG,TG.WG) 	 IF (IPLAX.E0.0) WRITE (6.1050) NITER 
DO 90 JJ = l,LINT 	 IF (IPLAX.E0.1) WRITE (6.1040) NITER 
DO 20 NN = 1.3 	 WRITE (6.1060) (M,(VEL(J,M),J=1,2).(CORD(M.J),J=1.2),M1.NP) 
DO 20 LL = 1,NNE 	 C 	WRITE STRAIN RATE AND STRESS DISTRIBUTION. 

20 SHP(NN.LL) = 0.0 	 WRITE (6.1070) 
C 	CONAUTE ELEMENT SHAPE FUNCTIONS. 	 IF (IPLAX.EQ.0) WRITE (6,1090) 

CALL SHAPE (SG(JJ).TG(JJ),XL.YL.SHP,DETJAC,NNE) 	 IF (IPLAX.E0.1) WRITE (6,1080) 
C 	COMPUTE CORDINATES AND STRAINS. 	 WRITE (6.1070) 

DO 30 I = 1.6 	 WRITE (6.1100) (N,(EPS(N.J),J=1.6).TEPS(N),N=1+NE) 
30 E(I) = 0.0 	 WRITE (6,1110) 

XBAR = 0.0 	 IF (IPLAX.E0.0) WRITE (6.1120) 
YBAR = 0.0 	 IF (IPLAX.EQ.1) WRITE (6,1130) 
DO 40 J = 1.NNE 	 WRITE (6.1110) 
XBAR = XBAR+SHP(3,J)*XL(J) 	 WRITE (6.1140) (N.(STR(N,J).J=1.5).N=1.NE) 

40 YBAR = YBAR+SHP(3.J)*YL(J) 	 WRITE (6,1110) 
DD 50 J = 1,NNE 	 C 
E(1) = E(1)+SHP(1,J)*1I(1.J) 	 C 	WRITE FORCES AT NODES IF DESIRED 
E (2) = E (2) +SHP (2. J) *U (2. J) 	 C 
E(3) = E (3) +SHP (3. J) /XBARXU (1. J) 	 IF (NBF.LE.0) ū0 TO 10 
IF (IPLAX.E0.0) E(3) = 0.0 	 IF (IPLAX.E0.0) WRITE (6.1150) 

50 E(4) = E(4)+SHP(1.J) J(2.J)+SHP(2,J)XU(1.J) 	 IF (IPLAX.E0.1) WRITE (6.1160) 
00 60 J = 1.4 	 WRITE (6.1170) (NF(I) .FR(I) ,FZ(I) .I=1.NBF) 

60 EPS(N,J) = E(J) 	 WRITE (4.1170) (NF(I),FR(I),F2(I)1=1.NBF) 
EPS (N, 6) = RBAR (E (1) . E (2) . E (3) , E (4)) 	 10 RETURN 
EPS(N,5) = E(1)+E(2)+E(3) 	 C 
YYLD = YIELD(IMAT(N)) 	 C 

C 	CALCULATE STRESSES 	 C 
DO 70 KK = 1.4 	 1000 FORMAT (I10,2FI0.4,2E15.6) 

70 STR(N.KK) = EPS(N.KK)*2./3.*YYLD/EPS(N,6) 	 1010 FORMAT (515) 
STR (N.4) = STR (N.4) *0.5 	 1020 FORMAT (1H1.8A10) 
MID = MAXO(NeF1/4N.1).NOP(Nr2).NOP(N.3),NOP(N,4)) 	 1030 FORMAT (///.15X,"VELOCITIES") 
IP = 3XMID 	 1040 FORMAT (IH ,15X,"NUMBER OF ITERATIONS",I3,//,1H ,4)(."NODES",7X."VE 
STR(N,5) = RICIF) 	 ILOC-R".8X,"VELOC-2") 
DO 80 KK = 1.3 	 1050 FORMAT (1H 1115X."NUMBER OF ITERATIONS",I3,//,1H 1,4X."NODES",7X."VE 
STR(N,KK) = STR(N.KK)+STR(N.5) 

80 IF (IPLAX.E0.0) STR(N.3) = 0.0 



C 

1LOC-X".BX,"VELOC-1") 
1060 FORMAT (I10,2E15.6.5X.2F10.4) 
1070 FORMAT (1H0.121.(1H*)) 
1080 FORMAT (1H0,31."ELEMENTS" ,6X , "R-STRATE",7X,"Z-STRATE".7X."0-STRATE 

1".6X."RZ-5TR'4TE".9X."COMPRE".6)6"EF-STRATE".6X."EF-STRAIN") 
1090 FORMAT (1H0.3X."ELEMENTS".6)6"X-STRATE",7X,"Y-STRATE",7X,"Z-STRATE 

1".6X."XY-STRATE" , 9X."COMPRE".6X."EF-STRATE".6X."EF-STRAIN") 
1100 FORMAT (1H ,I10.7E15.4) 
1110 FORMAT (1H0,90(1H*)) 
1120 FORMAT (1H0.3X."ELEMENTS".6X."X-STRESS".7X."Y-STRESS",7X,' -STRESS 

1".6X , "XY-STRE55"15Xr"HYD-STRESS") 
1130 FORMAT (1H0.3X."ELEMENTS".6)(6"R-STRESS".7X,"Z-STRESS".7X."0-STRESS 

1".6X."RZ-STRESS".5X."HYD-STRESS") 
1140 FORMAT (IH .I10.5E15.4) 
1150 FORMAT (1H0."FORCES CALCULATED AT BOUNDARY NODES",///.5X."NODES".5 

IX,"FORCE-X",3X,"FORCE-Y") 
1160 FORMAT (1H0."FORCES CALCULATED AT BOUNDARY NODES",///.SX."NODES".5 

IX. FORCE-P",3X."FORCE-Z") 
1170 FORMAT (1HO.I10.2X,2E10.3) 

END 
SUBROUTINE CFORC 
COMMON /BLK1/ NP.NE ,NB , NPC ,NMAT.NEQ.NBAND.NITER,TITLE(18).NBF 
COMMON /BLK3/ YIELD(4) .NBC (66) , NREST (66) . NQ (40) , R (40, 2) . XPRE (66) . Y 

1PRE (66) . NF (25) 
c0r"1DN SK (468.39) . R1 (468) .EST (50.78) . FR (25) . FZ (25) .FPUR (50) 

C THIS SUBROUTINE DETERMINES FORCES ON THE BOUNDARIES. 
C 

IF (NBF.LE.0) GO TO 40 
NBAN02 = 2*NBAND-1 
DO 30 I = 1.NBF 
IR = 3*NF(I)-2 
IIZ = 2*I 
IIR = IIZ-1 
SUMR = 0.0 
SUMZ = 0.0 
DO 20 J = 1.NBAND2 
JR = IR+J-NBAND 
JZ = JR+1 
IF (JR.LE.0) GO TO 10 
SUM = SUhR+EST(IIR.J)*R1(JR) 

10 IF (JZ.LE.0) GO TO 20 
SUMZ = SUMZ+EST(IIZ.J)*Ri(JZ) 

20 CONTINUE 
FR (I) = SUMP fPUR (IIR) 
FZ(I) = SUMZ-FPUR(IIZ) 

30 CONTINUE 
40 RETURN 

END 
SUBROUTINE CONVER (NCONV) 
COMMON BLK1/ NP.NE.NB.NPC ,NMA7rNEQ.NBAND,NI7ERrTI7LE(18).NBF 
COMMON /BLK2/ CORD(234.2).NOP(204.4),IMAT(204) 
COMMON BLK4/ STR(204.6).EPS(204.6).VEL(2.234) 
COMMON 5K (468.39) . R 1 (468) .EST (50.78) . FR (25) . FZ (25) . FPUR (50) 
COMMON B/ INTF.NINTF(50) 
DIMENSION RC(648) 
EQUIVALENCE (5K.RC) 

C 
C THIS SUBROUTINE CHECKS THE CONVERGENCE. 
C 

NCONV = 0 
IF (NITER.EQ.1) GO TO 30 
DO 10 N = 1,NP 
NZ = 3*N-1 

NR = NZ-1 
RC (NZ) = VEL (2. N) 

10 RC (NR) = VELUM) N) 
ACONV1 = 0. 
ACONV2 = 0. 
DO 20 I = 1.NP 
IZ = I*3-1 
IR = IZ-1 
DVZ = R1 (IZ) -RC (IZ) 
DVR = R1(IR)-RC(IR) 
ACONV2 = ACONV2+(DVR*-i2+DVZ* 2) 
ACONVI = ACONV1+(RC(IZ)**2+RC(IR)K 2) 

20 CONTINUE 
VCONV = SGRT(ACONV2/ACONVI) 
IF (ABS(VCONV).LE.0.003) NCONV = 1 
WRITE (6.1000) NITER.VCONV 

30 DO 40 K = 1.NP 
DO 40 M = 1.2 
IC = (K-I) *3+M 

40 VEL (M.K) = R1 (IC) 
RETURN 

C 
1000 FORMAT (1H0,"NITER=",I2,"VCONV=",E10.1) 

END 
FUNCTION RBAR (RX,RY,RZ.RXY) 

C THIS FUNCTION CALCULATES THE EFFECTIVE STRAIN RATE 
Si = RX*RX 
52 = RY*RY 
53 = RZ RZ 
S4 = RXY*RXY 
RBAR = 2.*SQRT(3.*(51+52+53)/2.+(3.*S4/4.))/3. 
RETURN 
END 



PROGRAM 3 

SOLUTION OF NON-STEADY STATE PROBLEMS  

(PENALTY FUNCTION)  



READ MATERIAL INFORMATION 

READ (551120) (N.YIELD(N).L=1.NMAT) 
WRITE (6.1210) 
WRITE (6.1130) 
WRITE (651080) (N.YIELD(N).N=1.NMAT) 

READ NODAL INFORMATION. 

READ (551030) (N. (CORD (N,M).M=1.2).L=1.NP) 

READ ELEMENTS INFORMATION. 

READ (5.1040) (N. (NBP(N.M) .M=1.4) MAT (N) .L=1.NE) 

	READ BOUNDARY CONDITIONS 

C 
C 
C 

C 

	

C 	 
C 

C 

	

C 	 
C 

C 
C 
C 

PROGRAM INCRE (INPUT.OUTPUT.TAPE6=OUTPUT.TAPE5.TAPE4,TAPE62) 
C******X*X*******X********** * * **x***x* 	1:****:kx.x:1;r x:K:K:C Cl 
C* THIS PROGRAM IS DESIGNED TO SOLVE NONSTEADY-STATE PROBLEMS IN NE- * 
C* TAL FORMING USING THE FINITE ELEMENT METHOD. 
C* THE MATERIAL IS ASSUMED TO BE RIGID-PLASTIC AND INCOMPRESSIBLE. * 
C* THIS LATTER CONSTRAINT BEING INTRODUCED BY MEANS OF A PENALTY 
C* FUNCTION. 
C* THE PROGRAM USES BILINEAR ISOPARAMETRIC ELEMENTS WITH REDUCED/SE- * 
C* LECTIVE INTEGRATION. 
C 	 ===4:=K*X.**********X***********:K *******301*:K*=:** 
C 	* WRITTEN BY LUIS A. PACHECO, ING.NEC., M.SC.* 
C 	* 	IMPERIAL COLLEGE.UNIVERSITY OF LONDON * 
C 	* 	FINAL VERSION SUMMER 1979 
C 
C 

COMMON BLK1/ NP.NE5NB.NPC,NMAT5NEQ.NBRNDrNI7ER,TITLE(6).NBF 
COMMON /BLK2/ CORD(234.2),NOP(204.4),IhWT(204) 
COMMON /ELKS/ STR (204.6) .EPS (204.6) .VEL (2.234) , TEPS (204) 
C0NEN /A/ VRIG IPLAX 
COMMON B/ INTF,NINTF(50).NSTEP,STEP.ISTEP 

C 
C 	READ NECESSARY INPUT INFORMATION 
C 

CALL START (2) 
CALL PRELIM 

C 
C 	CALCULATE BANDWIDTH AND NUMBER OF EQUATIONS. 
C 

NEO = NP*2 
J = 0 
DO 20 N = 1.NE 
DO 20 I = 1,4 
DO 10 L = 1.4 
KK = IABS(NOP(N.I)-NOP(N.L)) 
IF (KK-J.LE.0) GO TO 10 
J=KK 

10 CONTINUE 
20 CONTINUE 

NBAND = 2*(J+1) 
NL IN = 0 
VRIG = 1.E+09 
ISTEP = 1 
DO 30 N = 1.NE 

30 TEPS(N) = 0.0 
C 
C 	READ THE EXTERNAL LOADS IF ANY.FORM VECTOR LOAD 
C 

NITER = 0 
40 CALL LOAD 

C 	FORM AND SOLVE THE EQUATION SYSTEM 
C 

CALL FORMK 
CALL SOLVE 
CALL CONVER (NCONV) 
IF (HCONV.EQ.i) GO TO 50 
IF CNCIN.EQ.1) GO TO 50 
IF (NITER.EQ.12) GO TO 50 
NITER = NITER+1 
GO TO 40 

C 
C 	CALCULATE FORCES AT BOUNDARY NODAL POINTS IF REQUIRED 
C 

50 CALL CFORC 
CALL STRAIN 

C 
C 	WRITE RESULTS 
C 

CALL DOUT 
CALL MODMES 
IF (ISTEP.EQ.NSTEP) GO TO 60 
ISTEP = ISTEP+1 
NITER = 1 
GO TO 40 

60 CALL ENPLOT 
STOP 
END 
SUBROUTINE PRELIM 

C 
C 	THIS SUBROUTINE READ AND PRINT THE NECESSARY INPUT INFORMATION 
C 

COMMON /BLK1/ NP,NE,NB.NPC,NMAT,NEQ.NBAND,NITER.TITLE(B).NBF 
EOM-UN /ELK2/ CORD(234.2),NOP(204.4),IMAT(204) 
CON1-  N BLK3/ YIELD (4) .NBC (60) .NREST (60) . NQ (40) . R (40, 2) . XPRE (60) . Y 
1PRE(60).NF(25) 
COMMON /A/ VRIG,IPLAX 
COMMON /5/ INTF.NINTF(50).NSTEP.STEP.ISTEP 

C 
C 	READ TITLE AND CONTROL VARIABLES. 
C 

READ (5.1070) TITLE 
WRITE (6.1140) TITLE 
READ (511020) NP.NE,N8,NPCrN8F,NMAT,II,IPLAX,INTF 
IF (IPLAX.EQ.0) WRITE (651090) 
IF (IPLAX.E0.1) WRITE (6.1110) 
WRITE (6.1100) NP,NE.NB,NPC.NBF,Nr1 T,I1 
READ (5.1000) NSTEP.STEP 
WRITE (6.1010) NSTEP5S7EP 

READ (5.1050) (NBC(I).NREST(I) rXPRE(I) TYPRE(I).l=1.NB) 
IF (INTF.EQ.0) GO TO 10 
READ (5.1060) (NINTF(I),I=1.INTF) 

10 IF (NBF.EQ.0) GO TO 20 
READ (5.1060) CNF (I) .I=1,NBF) 

C 
C 	PRINT INPUT INFORMATION IF REQUIRED. 
C 

20 IF (I1.EQ.0) GO TO 30 
WRITE (6.1160) 
WRITE (6.1030) (N.(CORD(N5M).M=1.2)5N=1,NP) 
WRITE (6.1170) 
WRITE (6,1040) (N, (NOP(N.M) .M*1,4) .IMAT(N) .N=1,NE) 



30 IF (INTF.E0.0) GO TO 40 
WRITE (611200) 
WRITE (6.1150) (NINTF(I),I=1.INTF) 

40 IF (NBF.E0.0) GO TO 50 
WRITE (6,1190) 
WRITE (6,1150) CNF (I) .I=1.NBF) 

50 WRITE (6.1180) 
WRITE (6.1050) (NBC (I) .NREST (I) . XPRE (I) . YPRE (I) . I=1, N8) 
RETURN 

C 
1000 FORMAT (I5,F10.3) 
1010 FORMAT _(1H0."NSTEP=".I3.2X."INCREMENT=",E12.5) 
1020 FORMAT (9I5) 
1030 FORMAT (I10.2F10.4) 
1040 FORMAT (6I5) 
1050 FORMAT (2I10.2F10.3) 
1060 FORMAT (16I5) 
1070 FORMAT (8A10) 
1080 FORMAT (1H .I5.F15.4) 
1090 FORMAT (1H0,"PLANE STRAIN PROBLEM"./.1H .20(1H*)) 
1100 FORMAT (1H0."NUMBER OF NODES=".I3./.1H ."NUMBER OF ELEMENTS=".I3,/ 

1.1H ."NUMBER OF NODES WITH BOUNDARY CONDITIONS=".I3,/,14 ."NUMBER 
23F LOADED NODES=".I3./.1H ."NUMBER OF NODES WHERE REACTIONS ARE CA 
3LCULATEO=".I3./.1H ."NUMBER'OF MATERIALS=".I3./.1H ."PRINT CONTROL 
4 VARIABLE(I1)=".I2) 

1110 FORMAT (1H0,"AXISYMTETRIC PROBLEM"./11H .20(1H*)) 
1120 FORMAT (I5.F15.4) 
1130 FORMAT (1H .2)6"MAT",3X."YIELD POINT") 
1140 FORMAT (1N1.8A10) 
1150 FORMAT (1H .20I5) 
1160 FORMAT (1H0,6X."NODES",3X."COORD R".3X."COORD Z") 
1170 FORMAT (1H0,"ELEMENT".4X."NODES",9X."IMAT") 
1180 FORMAT (1H0."BOUNDARY CONDITIONS"./.1H .5X,"NODES",4X."CONDITION". 

13)."XPRE".SX."YPRE") 
1190 FORMAT (1H0."THE NODAL POINTS AT WHICH FORCE CALCULATIONS ARE DESI 

1RED") 
1200 FORMAT (1H0."THE NODAL POINTS AT THE FREE SURFACE") 
1210 FORMAT (1H0."MATERIAL PROPERTIES") 

END 
SUBRGU7_I`IE LOAD 

C 
C 	THIS SUBROUTINE FORM THE VECTOR LOAD RI. 
C 

COMMON /BLKI/ NP.NE.NB,NPC,NMAT.NEO.NBAND,NITER.TITLE(8),NBP 
COMMON /8LK3/ YIELD (4) .NBC (60) .NREST (60) . NO (40) . R (40.2) . XPRE (60) . Y 

1PRE (60) . NF (25) 
COMMON 5K(468,30).R1(468).EST(50+60),FR(25).FZ(25).FPUR(50) 

C 
C 	ZERO LOAD ARRAY. 
C 

DO 10 J = 1.NEO 

10 R1(J) = 0.0 
IF (NPC.E0.0.AND.NITER.GT.0) RETURN 
IF (NPC.E0.0) GO TO 50 
IF (NITER.GT.0) GO TO 30 
WRITE (6.1000) 
DO 20 N = 1.NPC 
READ (5.1010) NO (N) . (R (N, K) . K=1.2) 
WRITE (6.1010) NO (N) . (R (N. K) . K=1.2) 

20 CONTINUE 
30 00 40 N = 1,NPC 

DO 40 K = 1.2 
IC = (NO (N) -1) *2+K  

40 R1(IC) = R(N.K)+RI(IC) 
GO TO 60 

50 WRITE (6.1020) 
60 RETURN 

C 
1000 FORMAT (1H0."PRESCRIBED EXTERNAL LOADS",1H0."NODES".3X.'FORCE-X".3 

1X."FORCE-Y") 
1010 FORMAT (I5.2F10.3) 
1020 FORMAT (1H0."NO EXTERNAL LOADS PRESCRIBED") 

END 
SUBROUTINE FORMK 

C 
C 	THIS SUBROUTINE FORMS THE OVERALL STIFFNESS MATRIX 
C 	AND STORES IT IN A RECTANGULAR FORM. 
C 

COMMON /8LK1/ NP.NE,NB,NPC.NM1AT.NEO,NBAND.NITER.TITLE(8).NBF 
COMMON /BL K2/ CORD (234.2) , NOP (204, 4) , IMAT (204) 
COMMON /BLK3/ YIELD (4) .NBC (60) .NREST (60) , NO (40) . R (40.2) . XPRE (60) , Y 

1PRE (60) . NF (25) 
COMMON SK (468.30) . R 1 (468) . EST (50.60) , FR (25) , FZ (25) . FPUR (50) 
DIMENSION SE(B.8) 

C 	INITIALIZE THE ARRAYS 
DO 10 N = 1,NE0 
DO 10 M = 1.NBAND 

10 SK(N.MD = 0.0 
C 
C 	SCAN ELEMENTS 
C 

DO 80 II = 1.NE 
CALL OUA02 (SE.II) 

C 
C 	FORM THE STIFFNESS MATRIX SK 
C 
C 	FIRST ROWS 
C 

DO 70 JJ = 1.4 
NROWB = (NOP(II.JJ)-1)*2 
IF (NROW6) 70.20.20 

20 DO 60 J = 1.2 
NROWB = NROWB+1 
I = (JJ-1) *2+J 

C 
C 	 THEN COLUMNS 
C 

DO 50 KK = 1.4 
NCOLB = (NOP(II,KK)-1)*2 
D040K= 1.2 
L = (KK-1)*2+K 
NCOL = NCOLB+K+1-NROWB 

C 
C 	SKIP STORING IF BELOW BAND 
C 

IF (NCOL) 40.40.30 
30 SK(NROWB,NCOL) = SK(NROWB.NCOL)+SE(I,L) 
40 CONTINUE 
50 CONTINUE 
60 CONTINUE 
70 CONTINUE 
80 CONTINUE 

C 
C 	PREPARATION FOR FORCE CALCULATION 
C 	STORE THE ROWS OF SK WHICH ARE N:.CESSARY. 
C 

IF (NBF.E0.0) GO TO 140 



NBAND2 = 2*NBAND-1 	 C 	INITIALIZE THE ARRAYS 
DO 90 I = 1.NBF 	 N = IEL 
IZ = 2*I 	 NNE = 4 
IR = IZ-1 	 NNE2 = NNE*2 
DO 90 J = 1.NBAND2 	 DO 10 I = 1.4 
EST(IZ.J) = 0.0 	 DO 10 J = 1.4 

90 EST(IR.J) = 0.0 	 10 D(I.J) = 0.0 
DO 130 I = 1.NBF 	 DO 20 I = 1.NNE2 
II = NF(I) 	 DO 20 J = 1.NNE2 
IZ = 2*II 	 20 SE(I.J) = 0.0 
IR = IZ-1 	 DO 30 MM = 1.NNE 
IIZ = 2*I 	 XL (MM) = CORD (NOP (N. Ft1 .1) 
IIA = IIZ-1 	 30 1LUtO = CORD(NOP(N.MM).2) 
DO 100 J = NBAND.NBAND2 	 HINT = 2 
JJ = J-NBAND+1 	 IPEN = 0 
EST(IIR.J) = SK(IR.JJ) 	 C 	COMPUTE GAUSS POINTS AND WEIGHT FACTORS 

100 EST(IIZ.J) = SK(IZ.JJ) 	 40 CALL PGAUSS (NINT.LINT.SG,TG,WG) 
00 120 J = 1.NBAND 	 C 	FORM STRAIN DISPLACEMENT MATRIX B. 
NR = IR-J+1 	 DO 200 L = 1.LINT 
N2 = I2-J+1 	 XBAR = 0.0 
JJ = NBAND-J+1 	 DO 50 NN = 1,3 
IF (NR.LE.0) GO TO 110 	 DO 50 LL = 1,NNE 
EST(IIR.JJ) = SK(NR.J) 	 50 SHP(NN.LL) = 0.0 

110 IF (NZ.LE.0) GO TO 120 	 CALL SHAPE (SG(L)+TG(L),XL.YL.SHP.DETJAC.NNE) 
EST(IIZ,JJ) = SK(NZ.J) 	 IF (DETJAC) 60.60.70 

120 CONTINUE 	 60 WRITE (6.1000) N 
FPUR(IIR) = R1(IR) 	 WRITE (6.1010) 

130 FPUR(IT2) = R1 (IZ) 	 WRITE (6.1020) (LH.(CORD(LN.LT) ,LT=1,2) ,LH=1,NP) 
C 	 CALL DRAW 
C 	INSERT DISPLACEMENT BOUNDARY CONDITIONS 	 CALL ENPLOT 
C 	 STOP 

140 DO 150 N = 1+NB 	 70 DO 80 LI = 1,NNE 
I = NBC(N) 	 J = 2*LI 
IR = 2*I-1 	 I = J-1 
IZ = IR+1 	 B(1,I) = SHP(1,LI) 
NC = NREST(N) 	 B(1.J) = 0.0 

C 	 B(2,1) = 0.0 
C 	CHECK IF THE X VELOCITY IS PRESCRIBED 	 8(2.J) = SHP(2+LI) 
C 	 B(3,I) = 0.0 

IF (NC.EQ.1.OR.NC.E0.11) CALL CONDE (IR.XPRE(N)) 	 B(3.J) = 0.0 
C 	 B (4. I) = B (2.J) 
C 	CHECK IF THE Y VELOCITY IS PRESCRIBED 	 80 B(4.J) = B(1.I) 
C 	 C 	IN CASE OF PLANE STRAIN ANALYSIS DO NOT INCLUDE 

IF (NC.EQ.2.OR.NC.EQ.11) CALL CONDE (IZ.YPRE(N)) 	 C 	THE NORMAL STRAIN COMPONENT 
C 	 IF (IPLAX.EQ.0) GO TO 130 
C 	CHECK IF THE POINT IS ALONG AN INCLINED BOUNDARY 	 DO 90 KI = 1,NNE 
C 	 90 XBAR = XBAR+SHP (3+(I) *XL (KI) 

IF (NC.EQ.3) THETA = XPRE(N)*3.1415927/180. 	 C 	EVALUATE THE HOOP STRAIN DISPLACEMENT RELATION 
IF (NC.EQ.3) CALL BCMIX (I,THETA) 	 IF (XBAR.G7.0.00000001) GO TO 110 

150 CONTINUE 	 C 	FOR THE CASE OF ZERO RADIUS EQUATE RADIAL TO HOOP STRAIN 
RETURN 	 DO 100 KI = 1.NNE2 
END 	 100 B(3.KI) = B(1.KI) 
SUBROUTINE QUAD2 (SE,IEL) 	 GO TO 130 

C 	 C 	NON-ZERO RADIUS 
C 	THIS SUBROUTINE FORMS THE ELEMENTAL STIFFNESS MqTRIX. 	 110 DUNA = 1./)BAR 
C 	 DO 120 KI = 1.NNE 

COMMON /BLK1/ NP.NE+NB.NPC,NMAT.NEQ.NBAND.N17ER,TITLE(8),NBF 	 LH = 2*KI-1 
COMMON BLK2/ CORD (234.2) , NOP (204.4) . IMAT (204) 	 120 B (3+LH) = SHP (3, KI) *DUMA 
COMMON /BLK3/ YIELD(4) +NBC (60) . NREST (60) . NQ (40) . R (40.2) . XPRE (60) +Y 	C 	FORM THE PENALTY MATRIX 
1PRE(60).NF(25) 	 130 IF (IPEN.EQ.0) GO TO 150 

COM~ON BLKS/ STR (204.6) .EPS (204.6) .VEL (2.234) . TEPS (204) 	 ALPHA = 10E+07 
DIMENSION D(4.4).  SE (8,8) , A(4.8);  XL (4) , YL (4) 	 DO 140 I = 1.4 
COMMON /A/ VRIG.IPLAX 	 DO 140 J = 1.4 
DIMENSION B(4.8) , SHP (3.9) , 5G(9). WG (9) , TG (9) 	 D (I r J) = ALPHA 



140 IF (I.EQ.4.OR.J.EQ.4) D(I,J) = 0.0 	 R(I) = G)LR(I) 

GO TO 160 	 Z(I) = G*LZ(I) 

C 	FORM THE STRESS-STRAIN MATRIX 	 30 Wi1) = 1. 
150 IF (NITER.EQ.0) EPSR = 1.0 	 RETURN 

IF (NITER.GT.0) CALL STRA (NNE,N.B.EPSR) 	 C....3X3 INTEGRATICN 

LL = MATCH) 40 G = SORT(0.6) 

YYLD = YIELD(LL) 	 H = 1./81. 

DUM3 = 2.*YYLD/(3.*EPSR) 	 DO 50 I = 1.9 
IF (DUM3.GE.VRIG) DUM3 = VRIG 	 R(I) = G'*LR(I) 

D(1.1) = DUM3 	 2(I) = G LZ(I) 

D(2.2) = DUM3 	 50 W(I) = HW(I) 
D(3.3) = DUM3 	 RETURN 

0(4.4)  = DUM3/2. 	 END 

C 	COMPUTE THE PRODUCT DMB 	 SUBROUTINE SHAPE (SS,TT.XL.YL.SHP.DETJAC.NNE) 
160 DO 170 I = 1.4 	 C  

DO 170 J = 1.NNE2 	 C 	SHAPE FUNCTION SUBROUTINE FOR TWO DIMENSIONAL ELEMENTS 

A(I.J) = 0.0 	 C  
DO 170 K = 1,4 	 REAL SHP (3.9) . XL (4) , YL (4) . S(4).  T(4). JAC (2. 2) 

170 A(I.J) = A(I,J)+D(I,i()(K,J) 	 DATA S/-0.5.0.5.0.5.-0.5/.T/-0.5.-0.5,0.5,0.5/ 

C 	COMPUTE (BST *(DXB) AND ADD CONTRIBUTION TO ELEMENT STIFFNESS 	 C 	FORM 4 NODE QUADRILATERAL SHAPE FUNCTION 
IF (IPLAX.EQ.0) XBAR = 1.0 	 DO 10 I = 1,4 
WT =X3ARAG (L) XDETJAC 	 SHP (3. I) = (0.5+5 (I) *SS) * (0.5+T (I) *TT) 
DO 190 NROW = 1.NNE2 	 SHP (1 . I) = S (I) * (0.5+T (I) *TT) 
DO 190 NCOL = NROW.NNE2 	 10 SHP (2. I) = T(I) *(0.5+5 (I) *SS) 
DUM2 = 0.0 	 C 	CONSTRUCT JACOBIAN, ITS INVERSE AND ITS DETERMINANT. 
DO 180 LI = 1.4 	 DO 20 I = 1,2 

180 DUM2 = DUM2+B(LI,NROW)*A(LI.NCOL) 	 DO 20 J = 1,2 
SE(NROW.NCOL) = SE(NROW.NCOL)+DUM2*WT 	 .20 JAC(I.J) = 0.0 

190 CONTINUE 	 DO 30 K = 1,NNE 
200 CONTINUE 	 JAC(1.1) = JAC(1,1)+SHP(1,K)*XL(K) 

IPEN = IPEN+1 	 JAC (1 ,2) = JAC (1.2) +SHP (1.K) *YL (K) 
MINT = 1 	 JAC(2,1) = JAC (2,1) +SHP (2,K) *XL (K) 
IF (IPEN.EQ.1) GO TO 40 	 30 JAC(2.2) = JAC(2.2)+SHP(2.K)*YL(K) 

C 	COMPLETE SE BY SYMMETRY. 	 DETJAC = JAC (1.1) .JAC (2.2) -JAC (1 , 2) *JAC (2. 1) 
DO 210 K = 2.NNE2 	 IF (DETJAC.LE.0.) RETURN 
DO 210 L = 1.1( 	 DUMI = JAC(1,1)/DETJAC 

210 SE (KID = SE(L,K) 	 JAC(1.1) = JAC(2.2)/DETJAC 

RETURN 	 JAC(2.1) = -JAC(2.1)/DETJAC 
C 	 JAC(1.2) = -JAC (1.2) /DETJAC 

1000 FORMAT (//."PROGRAM HAS HALTED IN SUBROUTINE QUAD2",//."ELEMENT".I 	 JAC(2,2) = DUM1 
15.2X."HAS ZERO OR NEGATIVE AREA") 	 C 	FORM GLOBAL DERIVATIVES 

1010 FORMAT (1H0,"COORDINATES AT THE TIME OF HALTING") 	 DO 40 I = 1,NNE 
1020 FORMAT (1H .I10.2F10.4) 	 TP = SHP (1. I) .IAC (1.1) +SHP (2. I) *JAC (1 .2) 

END 	 SHP (2. I) = SHP (1. I) *JAC (2. 1) +SHP (2. I) *JAC (2, 2) 
SUBROUTINE PGAUSS (L.LINT.R.Z.W) 	 40 SHP(1.I) = TP 

C 	 RETURN 

C 	GAUSS POINTS AND WEIGHTS FOR TWO DIMENSIONS 	 END 
C 	 SUBROUTINE STRA (NNE.M.BA.EPSR) 

C 
C 	 THIS SUBROUTINE CALCULATES THE STRAINS AT THE GAUSS POINTS 
C COMMON /BLK1/ NP,NE.NB,NPC.NMAT.NEQ,NBAND,NITER.TITLE(8),NBF 

COMMON BL K2/ CORD (234.2) . NOP (204.4) . IMRT (204) 
COMMON BL K5/ STR (204.6) .EPS (204.6) . VEL (2. 234) . TEPS (204) 
DIMENSION BA(4.8), E(4). RA(8) 
NK = NNE 
NK2 = NK*2 
DO 10 J = 1.NK 
KK = NOP(M.J) 
KI = (J-1) *2 
DO 10 JJ = 1.2 
IJ = JJ+KI 

10 RA (IJ) = VEL (JJ. KK) 
DO 20 KK = 1.4 

REAL LR (9) , LZ (9) . LW(9) , R(9).  Z(0). W(9) 
DATA LR/-1..1..1..-1..0..-1..0..-1..0./ 
DATA L2/-1..-1..1.,1.,-1..0..1..0..0./ 
DATA LW/4*25..4*40..64./ 
LINT = L*L 
IF (L.E0.1) GO TO 10 
IF (L.E0.2) GO TO 20 
IF (L.EQ.3) GO TO 40 

C 	1X1 INTEGRATION 
10 R(1) =0. 

Z(1) = 0. 
W(1) = 4. 
RETURN 

C 	 2X2 INTEGRATION 
20 G = 1. /SART (3 . ) 

D0301 =1.4 



C 
C 	SINCE UR=UZ*TAN(THETA) ALONG THE DIE.ACORRESPONDING CHANGE 
C 	 IS MADE IN THE STIFFNESS EQUATIONS FOR ROWS AND COLUMNS CORRESPODING 
C 	 TO THESE COMPONENTS.THEN THE EQUATIONS CONTAINING UR ARE ELIMINATED 
C 

E (KK) = 0.0 
DO 20 J = 1,NK2 

20 E (KK) = E (KK) +BA (KK . J) =RA (J) 
EPSR = MAR (E (1) . E (2) . E (3) . E (4) ) 
RETURN 
END 
SUBROUTINE CONDE (N.U) 

COMMON /BLK1/ NP,NE,NB.  NPC ,NMAT, NUJ .NBRND, NITER , TITLE (8),NBF 
COMMON 5K(468,30).R1(468).  EST (50,60).FR(25).FZ(25).FPUR(50) 
DO 10 M = 2.NBAND 
KK = N+M-1 
IF (KK.GT.NEQ) GO TO 10 
R1 (KK) = R1 (KK) -SK (N. MD *U 

10 CONTINUE 
DO 20 M = 2.NBAND 
K = N-M+1 
IF (K .LE .0) GO TO 20 
RI (K) = R1(K) -SK (K,M*U 
SK(K.M) = 0. 

20 SK(N.PU = 0. 
SK (N. 1) = 1. 
R1 (N) = U 
RETURN 
END 
SUBROUTINE BCMIX (N THETA) 

COMMON /BLK1/ NP.NE.NB, NPC .NMAT. NEU ,NBAND, NITER ,TITLE CEO .NBF 
COMMON 5K(468.30).R1(468),  EST (50.60).FR(25),FZ(25).FPUR(50) 
COMMON /A/ VRIG.IPLAX 
NZ = 2=14 
NR = NZ-1 
ALPA = 1./TAN(THETA) 
IF (IPLAX.EQ.1) ALPA = TAN(THETA) 
DO 10 M = 1.NBAND 

10 5K (NR .MD = SK (NR .M) *ALPA 
SK (NR 1) = SK (NR I) *ALPA 
SK (NR.2) = SK (NR.2) *2. 
DO 20 M = 2.NBAND 
KR = NR-M+1 
IF (KR.LE.0) GO TO 30 

20 SK (KR .M) = SK (KR .M) *ALPA 
30 RI (NR) = R1 (NR) *ALPA 

DO 50 M = 2.NBAND 
KZ = NZ-M+1 
IF (KZ.LE.0) GO TO 40 
SK (KZ. M) = SK (KZ, M) +SK (KZ. M-1) 

40 IF (M.ED.NBAND) GO TO 50 
KZ = NZ+M-1 
IF (KZ.GT.NE0) GO TO 50 
SK (NZ .M) = 5K (NZ, MD +SK (NR M+1) 

50 CONTINUE 
SK (NZ 1) = SK (NZ .1) +SK (NR.2) 
SK (NR .1) = 1.0 
DO 70 M = 2.NBAND 
KR = NR-M+1 
IF (KR.LE.0) GO TO 60  

SK (KR 'MD = 0. 
60 SK(NR.M) = 0. 
70 CONTINUE 

R1 (NZ) = R1 (NZ) +R1 (NR) 
R1(NR) = 0. 
RETURN 
END 
SUBROUTINE SOLVE 

C 
C 	 THIS SUBROUTINE PERFORMS THE SOLUTION OF THE 
C 	EQUATION SYSTEM AX=B. 
C 

COMMON /BLKI/ NP.NE.NB ,NPC ,NMAT.NE0 .H0AHD.H ITER .TITLE CEO .NBF 
COMMON /BL K3/ YIELD (4) , NBC (60) ,NREST (60) , NO (40) . R (40.2) , XPRE (60) , Y 

1PRE (60) .NF (25) 
COMMON SK (468, 30) . P1 (468) , EST (50,60) . FR (25) , FZ (25) . FPUR (50) 
COMMON /A/ VRIG, IPLAX 

C 
C 	REDUCE MATRIX 
C 

DO 50 N = 1.NEQ 
I = N 
DO 40 L = 2,NBAND 
I = I+1 
IF (SK(N,L)) 10,40,10 

10 C = SK(N,L)  /SK (N.1) 
J = 0 
DO 30 K = L,NBAND 
J = J+1 
IF (SK(N,K)) 20,30.20 

20 SK(I,J) = SK(I,J)-CZSK(N,K) 
30 CONTINUE 

SK(N.L) = C 
C 
C 
C 	 AND LOAD VECTOR FOR EACH EQUATION. 

R1 (I) = R1 (I) -C*1;21 (N) 
40 CONTINUE 
50 R1 (N) = R1 (N) /SK CN. 1) 

C 
C 	BACK SUBSTITUTION 
C 

N = NEU 
60 N = N-1 

IF (N) 100.100.70 
70 L = N 

DO 90 K = 2.NBAND 
L = L+1 
IF (SK(N,K)) 80,90,80 

80 RI (N) = R1 (N) -5K (N,K) *R1 (L) 
90 CONTINUE 

GO TO 60 
100 DO 110 I = 1.NB 

IZ = 2*TIBC (I) 
IR = IZ-1 
IF (NREST(I).E0.3) THETA = XPRE(I)*3.1415927/180. 
IF (NREST(I).E0.3.AND.IPLAX.E0.0) ALPA = 1./TAN(THETA) 
IF (NREST(I).EQ.3.AND.IPLAX.EQ.1) ALPA = TAN(THETA) 

110 IF (NREST (I) .E0.3) R1(IR) = R1 (IZ) *ALPA 
RETURN 
END 
SUBROUTINE CFORC 
COMMON /BLKI/ NP.NE.NB.NPC.NMAT.NEO.N8AND,NI7ER.TITLE(0),NBF 
COMMON /BLK3/ YIELD (4) , NBC (60) .NREST (60) , NQ (40) . R (40.2) . XPRE (60) . Y 

C 
C 	 THIS SUBROUTINE PERFORM THE MATRIX CONDENSATION WHEN 
C 	 THE VALUE OF A COMPONENT OF X IN AX=B I5 SPECIFIED. 
C 



1PRE (60) . NF (25) 
COMM SK (468.30) . R1 (468) . EST (50,60) . FR (25) . FZ (25) ,FPUR (50) 

C 
C 	THIS SUBROUTINE DETERMINES FORCES ON THE BOUNDARIES. 
C 

IF (NBF.LE.0) GO TO 50 
NBAND2 = 2BAND-1 
DO 40 I = 1.NBF 
IP = 2^IF (I) -1 
IIZ 2*I 
IIR = IIZ-1 
SUMP = 0.0 
SUMZ = 0.0 
DO 30 J = 1.NBAND2 
JR = IR+J-NBAND 
J2 = JR+1 
IF (JR.GT.NEO) GO TO 20 
IF (JR.LE.0) GO TO 10 
SUMR = SUMR+EST(IIR.J)=R1(JR) 

10 IF (JZ.LE.0) GO TO 30 
20 IF (JZ.GT.NEQ) GO TO 30 

SUMZ = SUNZ+FST(II2,J)=R1(J2) 
30 CONTINUE 

FR(I) = SUMR-FPUR(IIR) 
FZ(I) = 5UM2-FPUR(IIZ) 

40 CONTINUE 
50 RETURN 

END 
SUBROUTINE STRAIN 

C 
C 	 THIS SUBROUTINE CALCULATES STRAINS.STRESSES AND COORDINATES. 
C 

COMMON BLK1/ NP.NE,NB.NPC,NMAT,NEQ.NBAND.NITER.TITLE(B).NBF 
COMMON BLK2/ CORD (234.2) , NOP (204.4) . IMAT (204) 
COMMON BLK3/ YIELD (4) .NBC (60) , NREST (60) . NQ (40) . R (40.2) . XPRE (60) . Y 

1PRE(60).NF(25) 
COMMON /BL K5/ STR (204.6) .EPS (204, 6) .VEL (2, 234) .TEPS (204) 
COMMON /A/ VRIG,IPLAX 
COMMON B/ INTF.NINTF(50)1NSTEP.STEP,ISTEP 
DIMENSION SHP (3, 9) . SG (9) . TG (9) . W0(9), U(2.9)  
DIMENSION XL (9) , YL (9) , E (6) 
NNE = 4 
DO 100 N = 1.NE 
DO 10 M1 = 1,NNE 
XL (MED = CORD (NOP (N.MD ,1) 
YL (MTD = CORD (NOP (N. MTD .2) 
U(l.M`D = VEL(1.NOP(N411)) 

10 U(2.MD = VEL(2.NOP(N,PT1)) 
L = 1 
CALL PGAUSS (L1,LINT.SG.TG.1E) 
DO 20 NN = 1.3 
DO 20 LL = 1.NNE 

20 SHP(NN.LL) = 0.0 
C 	COMPUTE ELEMENT SHAPE FUNCTIONS. 

CALL SHAPE (SG(L),TG(L).XL.YL.SHP.DETJAC.NNE) 
C 	COMPUTE CORDINATES AND STRAINS. 

DO 30 I = 1.6 
30 E(I) = 0.0 

XBAR = 0.0 
YEAR = 0.0 
DO 40 J = 1.NNE 
XBAR = XBAR+SHP(3,J)*XL(J) 

40 YEAR = YBAR+SHP(3,J)*YL(J) 
DO 70 J = 1,NNE  

E(1) = E(1)+SHP(1.J)*U(1.J) 
E(2) = E(2)+SHP(2,J)*U(2.J) 

C 	FOR THE CASE OF ZERO RADIUS EQUATE RADIAL TO HOOP STRAIN 
IF (XBAR.GT.0.0000001) GO TO 50 
E(3) = E(1) 
GO TO 60 

50 E(3) = E(3)+SHP(3,J)/XBAR*U(1,J) 
60 IF (IPLAX.EQ.0) E(3) = 0.0 
70 E(4) = E(4)+SHP(1,J)*U(2.J)+SHP(2,J)*U(1,J) 

DO 80 J = 1.4 
80 EPS (N.J) = E(J) 

EPS (N . 6) = RBAR (E (1) . E (2) . E (3) . E (4) ) 
EPS(N.5) = E(1)+E(2)+E(3) 
KK = IMAT (N) 
YYLD = YIELD(KK) 
DO 90 I = 1.4 
ALPHA = 10E+07 

90 STR (N. I) = 2. *YYLD/ (3. *EPS (N, 6)) *EPS (N , I) +ALPHA-KEPS (N, 6) 
STR(N,5) = ALPHA*EPS(N,5) 
TEPS (N) = TEPS (N) +EPS (N, 6) STEP 

100 CONTINUE 
RETURN 
END 
SUBROUTINE DOUT 
COMMON BLK1/ NP,NE.NB,NPC,NMAT,NEQ,NBAND,NITER.TITLE(8),NBF 
COMMON BLK2/ CORD (234, 2) . NOP (204, 4) . IMAT (204) 
COMMON /BLK3/ YIELD (4) ,NBC (60) , NREST (60) . NQ (40) , R (40, 2) , XPRE (60) , Y 

1 RRE (60) , NF (25) 
COMMON BLK5/ STR (204.6) .EPS (204. 6) .VEL (2.234) .TEPS (204) 
COMMON 5K(468,30)1R1(468),EST(50,60).FR(25),FZ(25),FPUR(50) 
COMMON B/ INTF,NINTF(50).NSTEP,STEP.ISTEP 
REWIND 4 

C 	PRINT NwAL POSITION FOR THIS STEP 
IF (ISILP.E0.1) GO TO 10 
IF (((ISTEP-1)/5)*5.NE.(ISTEP-1)) GO TO 20 

10 RED = FLOAT(ISTEP-i)*STEP*100. 
WRITE (6.1000) TITLE 
WRITE (C.1010) RED 
WRITE. (6.1020) 
WRITE (6,1030) 
WRITE (6.1040) (N, (CORD (N,MD .Mk1.2) , (VEL (M.N) ,M=1,2) .N=1.NP) 
WRITE (6.1020) 

C 	PLOT THE DEFORMED MESH 
IF (ISTEP.EQ.I.OR.((ISTEP-1)/5)*5.EQ.ISTEP-1) CALL DRAW 
WRITE (6.1050) NITER 

C 
C 	WRITE FORCES AT NODES IF DESIRED 
C 

IF (NBF.LE.0) GO TO 20 
WRITE (6,1060) 
WRITE (6.1070) (NF(I).FR(I).F2(I),I=1.NBF) 
WRITE (4,1070) (NF (I) , FR (I) . FZ (I) . I=1. NBF) 

20 CALL FOLD 
RETURN 

C 
1000 FORMAT (1H1.8A10) 
1010 FORMAT (1H ."NODAL COORDINATES AT".F6.2."PERCENT REDUCTIOfr',/.1H . 

142(1H*)) 
1020 FORMAT (1H0.100(1H-)) 
1030 FORMAT (IHO.6X."NODES"13X.'COORD-R".3X."000RD-Z".20X. VEL-R'.SX."V 

IEL-Z") 
1040 FORMAT (1H .I10.2F10.4.2E12.E) 
1050 FORMAT (1H .15X."NUMOER OF ITERATIONS".I3) 
1060 FORMAT (1H0."FORCES CALCULATED AT BOUNDARY NODES".///.SX,"NODES".5 



1X,"FORCE-X".3X."FORCE-Y") 
1070 FORMAT (1HO.I10.2X.2E10.3) 

END 
SUBROUTINE DRAW 

C 	THIS SUBROUTINE PLOTS THE DEFORMED MESH. 
COMMON /BLKI/ NP. NEINB, NPC ,NMiiT, NEO rNBAND, NITER . TITLE (8),NBF 
COMMON /BLK2/ CORD (234.2).NOP(204.4),IMAT(204) 
COMMON /BLK5/ STR (204, 6) , EPS (204,6) , VEL (2, 234) , TEPS (204) 
COMMON /B/ INTF.NINTF(50),NS7EP. STEP .ISTEP 
DIMENSION X(20). Y(20) 
IF (ISTEP.GT.1) CALL NEWPAGE 
RED = FLOAT (ISTEP-1)*STEP*100. 
CALL SYMBOL (3.0,2.0,0.14. TITLE, 0.0.80) 
CALL SYMBOL (3.0,1.6,0.14.57HDEFORP£D MESH AND VELOCITY FIELD AT 
1 PERCENT REDUCTION .0.0,57) 
CALL NUMBER (8.1,1.6,0.14,RED,0.0,0) 
CALL PLOT (2.0.4.0.-3) 
DO 10 I = 1.5 
X(I) = 0.0 

10 Y(I) = 0.0 
X(5) = 1.2 
Y(5) = 1.2 
CALL SCALE (X16.0,5,1) 
CALL SCALE (Y.6.0.5.1) 
CALL AXIS (0.0.0.0,6H -AXIS.-6 6..0.0,X(6).X(7)) 
CALL AXIS (0.0.0.0,6H -AXIS .6.6.,90.0,Y(6),Y(7)) 
DO 30 N = 1.NE 
DO 20 J = 1,4 
X (J) = CORD (NOP (N . J) . 1) 

20 Y(J) = CORD (MOP (Ns J).2) 
X(5) = CORD (NOP (N.1) ,1) 
Y (5) = CORD (NOP (N.1) .2) 
CALL LINE (Xs Y,511,0.1) 

30 CONTINUE 
C 	CALCULATE SCALING FACTOR 	 

VMAXI = VEL (2.1) 
DO 40 I = 2.NP 
DUMY = ABS (VEL (2. I)) 
VMRX = ANAX1(VMAX1.DUNY) 
VMAX1 = VMAX 

40 CONTINUE 
VMAX1 = VMFlX1+VNAX1*0.1 
SF = 0.05/V' X1 
DO 50 I = 1.NP 
DO 50 J = 1.2 

50 VEL (J, I) = VEL (J, I) *SF 
Y (3) = Y (6) 
X (3) = X (6) 
X(4) = X(7) 
Y(4) = Y(7) 
CALL PLOT (7.5.0.0.-3) 
AL = 20.*3.14159/180. 
DO 70 I = 1,NP 
X(I) = CORD (I.1) 
Y(1) = CORD (192) 
X(2) = X(1)+VEL (1.1) 
Y(2) = Y(1)+VEL (2, I) 
CALL LINE (X,Yr2.10001) 
PI = 3.14159 
IF (VEL (1,I).EQ.0.. AND . VEL (2,I).EQ.O.) GO TO 70 
IF (VEL (1,I) .EQ.0..  AND .VEL (20 I) .LT.0.) PHI = -0I/2. 
IF (VEL (I.I) . ED . 0 . . AND . VEL (2, I) .GT.0.) PHI = PI/2. 
IF (VEL(2,I).EQ.0.. AND . VEL (1,I). GT. 0.) PHI = 0.0 
IF (VEL (2,I) .E0.O.. AND. VEL (III) .LT.0.) PHI = PI 

IF (VEL (1, I) .NE.0..AND.VEL (2r I) .NE.0.) PHI = ATAN (VEL (2, I) /VEL (1, I 
1)) 
IF CVEL(1,I).LT.0..AND.VEL(2,I).LT.O.) PHI = PHI+PI 
IF (VEL (1, I) .LT.0..AND.VEL (2, I) .GT.O.) PHI = PHI+PI 
VELO = SORT (VEL (1, I) **2+VEL (2, I) **2) 
D = VELO*0.2 
X(1) = X(2) 
Y(1) = Y(2) 
X(2) = X(1)-COS(PHI-AL)*D/CO5(AL) 
Y(2) = Y(1)-SIN(PHI-AL)*D/COS(AL) 
CALL LINE (X.Y,2.1.0.1) 
X(2) = X(1) -0OS (PHI+AL) *D/COS (AL) 
Y(2) = Y(1)-SIN(PHI+AL)*D/COS(AL) 
CALL LINE (X.Y.2,1,0,1) 
DO60J= 1.2 

60 VEL (J, I) = VEL (J. I) /SF 
70 CONTINUE 

RETURN 
END 
SUBROUTINE FOLD 

C 
C 	THIS SUBROUTINE CHECKS IF THE POINT IN THE FREE SURFACE 
C 	IS FOLDING AND MODIFIES THE BOUNDARY CONDITIONS ACCORDINGLY. 
C 

COMMON /BLK1/ NP,NE.NB,NPC,NMaT.NEQ.NBAND,NITER.TI7LE(8).NBF 
COMMON /BLK2/ CORD(234,2),NOP(204,4),INRT(204) 
COMMON /BL K3/ YIELD (4) .NBC (60) ,NREST (60) . N0 (40) . R (40,2) . XPRE (60) . Y 

IPRE (60) .NF (25) 
COMMON /BLK5/ STR(204.6).EPS(204,6)IVEL(2,234).TEPS(204) 
COMMON /B/ INTF,NINTF(50).NSTEP.STEP,ISTEP 
IF (INTF.E0.0) RETURN 
NRAD = NINTF(INTF) 
HEIGHT = CORD(NRAD,2)+VEL(2,NRAD)*STEP 
DO 40 I = I.INTF 
DO 10 J = 1.NB 
IF (NINTF (I) . EQ. NBC (J)) GO TO 40 

10 CONTINUE 
HEI = CORD (NINTF (I) .2) +VEL (2.NINTF (I)) *STEP 
IF (HEI.LT.HEIGHT) GO TO 20 
VEMDF = (HEIGHT-CORD(NINTF(I).2))/STEP 
FTES = VEMDF/VEL(21NINTF(I)) 
VEL(I.NINTF(I)) = VEL(1.NINTF(I))*FTES 
VEL (2. NINTF (I)) = VEL (2, NINTF (I)) *FTES 
NB = NB+1 
NBC(NB) = NINTF(I) 
NREST (NB) = 11 
XPRE(NB) = 0.0 
YPRE (NB) = -0.75 
NBF = NBF+1 
NF(NBF) = NINTF(I) 
WRITE (6.1000) NINTF(I),ISTEP 

20 IF (HEI.GT.O.) GO TO 40 
VEM)F = -CORD (NINTF (I) .2) /STEP 
FTES = VEMDF/VEL(2,NINTF(I)) 
DO 30 J = 1,2 

30 VEL (J,NINTF (I)) = VEL (J.NINTF (I)) *FTEs 
NB = NB+1 
NBC (NB) = NINTF (I) 
NREST(NB) = 11 
XPRE(NB) = 0. 
YPRE(NB) = 0. 
WRITE (6.1000) NINTF(I),ISTEP 

40 CONTINUE 
RETURN 



C 
1000 FORMAT (IH ."NODE NO".I3."HAS FOLDED AT STEP NO".I3) 

END 
SUBROUTINE CONVER (NCONV) 
COMMON BLK1/ NP.NE.NB.NPC.NMAT.NEQ.NBAND.NITER.TITLE(8).NBF 
COMMON BLK5/ STR (204.6) .EPS (204.6) .VEL (2.234) . TEPS (204) 
COMMON SK (468.30) . R1(166) .EST (50.60) .FR (25) . FZ (25) .FPUR (50) 
COMMON /B/ INTF.NINTF(50).NSTEP.STEP.ISTEP 
DIMENSION RC(466) 
EQUIVALENCE (SK.RC) 

C 
C 	 THIS SUBROUTINE CHECKS THE CONVERGENCE. 
C 

NCONV = 0 
IF (NITER.E0.0) GO TO 30 
DO 10 N = 1.NP 
NZ = 2*N 
NR = NZ-1 
RC (NZ) = VEL (2. N) 

10 RC (NR) = VEL (1. N) 
ACONVI = 0. 
ACONV2 = 0. 
0O 20 I = 1.NP 
IZ = I*2 
IR = IZ-1 
DVZ = R1(IZ)-RC(IZ) 
DVR = R1(IR)-RC(IR) 
RCONV2 = ACONV2+(DVR**2+DVZ**2) 
RCONVI = ACONVI+(RC (IZ) **2+RC (IR) **2) 

20 CONTINUE 
VCONV = SQRT(ACONV2/ACONVI) 
IF (ABS(VCONV).LE.0.001) NCONV = 1 
WRITE (6.1000) NITER.VCONV 

30 DO 40 K = 1.NP 
0O40 M= 1.2 
IC = (K-1) *2+M 

40 VEL (M.K) = RI (IC) 
RETURN 

C 
1000 FORMAT (1H0."NITER=".I2."VCONV=".E10.4) 

END 
SUBROUTINE MODMES 
COMMON BLK1/ NP.NE.NB.NPC.NMiT.NEQ.NBAND.NITER.TITLE(8).NBF 
COMMON /BLK2/ CORD(234.2).NOP(204.4),IMAT(204) 
COMMON BLK3/ YIELD (4) .NBC (60) . NREST (60) . NQ (40) . R (40.2) . XPRE (60) . Y 

1 PRE (60) . NF (25) 
COMMON BL K5/ 5TR (204.6) . EP5 (204.6) .VEL (2.234) . TEPS (204) 
COMMON /8/ INTF.NINTF(50).NSTEP.STEP.ISTEP 

C 	MODIFY COORDINATES 
DO 10 I = 1.NP 
DO 10 J = 1.2 

10 CORD(I.J) = CORD(I.J)+VEL(J.I)*STEP 
RETURN 
END 
FUNCTION ROAR (RX.RY.RZ.RXY) 

C 
C 	CALCULATE EFFECTIVE STRAIN RATE. 
C 

Si = RXXRX 
52 = RY*RY 
53 = RZ*RZ 
S4 = RXY*RXY 
ROAR = 2.*SQRT(3.*(51+52+53)/2.+(3.*54/4.))/3. 
RETURN 




