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SYNOPSIS 

A comprehensive survey of the continuous extrusion processes 

is first given. Amongst the many possibilities, the newly developed 

method of 'Context' is favoured for its sheer advantage of extruding 

almost any size and configuration of billet at any concievable 

extrusion ratio. The importance is then discussed of the indenting 

mechanism by which the billet is gripped and dragged forward in a 

Context type process. The indentation process is put forward as a 

subject to be investigated in order to explore the real potential of 

Context, or in principle, any other type of friction-actuated 

continuous extrusion which uses the same mechanism of indenting the 

billet. 

The finite element technique is the main tool for predicting 

the deformation during the indentation process under the conditions 

when plane strain prevails. The usefulness of the finite element 

technique for detailed studies of deformation-characteristics is 

demonstrated in a number of suggested problems. The load-

displacement curve, geometrical change of the billet, stress and 

strain distribution are computed and are shown to predict well the 

actual behaviour of the material. Evidently the finite element 

method is an'extremely powerful tool for analysis. 

As a further study, an analytical solution for the process of 

Context itself is developed. Using a simplified small scale model, 

the relevant experiments are conducted and the experimental and 

theoretical findings are presented and compared. The experimental 

findings reveal the great potential of Context in generating a 
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considerable amount of drag-force to enable large extrusion ratios 

to be achieved. 
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NOTATIONS 

{ } 	column vector 

[] 	row vector, or rectangular or square matrix 

[ 	
}T 
	transpose of a matrix or column vector 

ET/ -1 	inverse of a square matrix 

det[] 	determinant of a square matrix 

[B] 	strain-displacement matrix 

[D]E 	elastic stress-strain matrix 

[D] P 	plastic stress-strain matrix 

[D] EP 
	

elastic-plastic stress-strain matrix 

{f}e 	displacement matrix associated with an element 

{17}
e 	

elemental nodal forces matrix 

{F} 
eo 	

load matrix due to initial strain eo 

{F} 	load matrix due to initial stress ao 
GO 

[i] 	identity matrix 

[J] Jacobian matrix 

[K] structure stiffness matrix 

[K] e 	element stiffness matrix 

[N] 	shape function matrix 

{P} 	load matrix due to distributed body force 

{e} 	strain matrix 

{c}o 	initial strain matrix 

{a} 	stress matrix 

{a}
0 	

initial stress matrix 

a 	length 

A 	area 

b 	width 
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D diameter of billet 

D
o 	

initial diameter of billet 

E elastic modulus of material 

F 	indenting force applied to billet by the container 

Fd 	axial drag-force applied to billet by the container 

ē 
axial end-force applied to pressure pad 

H height of billet, or slope of stress-strain curve 

Ho 	initial height of billet 

k 	yield shear stress of material 

Z 	length 

L length of billet 

L0 	initial length of billet 

P mean normal pressure applied to billet by the platens 

P 	axial mean pressure 

✓ rating factor, or radius 

T 	interfacial frictional force 

Y 	yield stress of material 

✓ Poisson's ratio 

u coefficient of friction 

s 	equivalent strain 

e., 	strain component 
-74 

°Zj 	strain rate component 

ā 	equivalent stress 

a 	hydrostatic stress 
m 

a.. 	stress component sj 

az. 	
deviatoric stress component 

T 	shear stress component 
xy  



CHAPTER 1 

INTRODUCTION  

1.1 	Literature Survey  

Present day production processes tend towards automation, 

requiring little or no skilled labour. This obvious trend is sought 

especially in the heavy metal forming industry. 

Ever since the first continuous extrusion was introduced 

remarkable attention has been directed towards developing new concepts 

which can simply and effectively impart a desirable shape to an 

unlimited length of metal. In view of the fact that supply and cost 

of material is becoming critical, the expansion of continuous 

extrusion has been given considerable priority. As to the industrial 

applications, continuous extrusion is highly recommended for its 

remarkably low running cost and the continuity of its product which 

effectively reduce waste. 

In the past few years numerous concepts have been presented and 

their practical feasibility have also been verified. From an 

economical point of view, however, these concepts have not yet found 

extensive industrial application owing to such clear disadvantages 

as: large capital investment, limited extrusion pressure and limited 

capacity in utilising feedstocks having various shapes and sizes. 

Development of the continuous extrusion process falls into two 

distinct catagories, namely: 

(a) Continuous hydrostatic (or viscous drag actuated) extrusion. 

(b) Continuous conventional (or friction actuated) extrusion. 
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1.2 	Continuous hydrostatic extrusion  

Briefly, in viscous actuated systems, the feedstock is pushed 

against the die by the motion of a viscous medium which envelopes the 

feedstock. There are two known versions of such systems, both 

basically hydrostatic in operation: 

(1) Viscous drag with stationary chamber. 

(2) Viscous drag with moving chamber. 

1.2.1 Continuous hydrostatic extrusion with stationary chamber  

Fuchs (1) of the Western Electric Company developed a new 

continuous hydrostatic extrusion process which utilized a 

pressurised flowing fluid (such as beeswax) to move the feedstock 

into a chamber and through the extrusion die. The basic principle is 

illustrated in Fig. 1-1. This system consists of an extrusion 

compartment and several feed compartments. Extrusion pressure P1  

is maintained continuously in the extrusion compartment by two rams, 

working alternately. Similarly, viscous fluid is pumped into the 

first feed compartment continuously. As the viscous fluid is forced 

along axially in the feed compartment, the viscous-drag forces the 

billet into the extrusion compartment. Clearly the difference 

between the pressure of the extrusion fluid and that of the viscous 

fluid must be less than the yield stress of the billet material, in 

order to prevent plastic flow of the billet at the separating wall 

between the two compartments. Since the same principle is applicable 

for the pressure difference at the entry to the first feed compartment, 

a series of steps is needed until the pressure is reduced to the 

atmospheric pressure. Heating liners are used in the bore of the feed 

compartments to reduce the viscous drag along the walls and this 
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Fig. 1-1. Continuous hydrostatic extrusion. 
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improves the efficiency of the process. 

1.2.2 Continuous hydrostatic extrusion with moving chamber (Gear Extruder)  

This second process, also developed by Fuchs (2), employs a 

moving chamber with the viscous fluid dragging the feedstock to the 

extrusion die. 

Essentially, the device has an endless travelling block consisting 

of circumferentially quartered segments divided into short axial 

lenghts. A rack, machined on each side of the two corners of the 

segments, provides a means of driving them through the machine. The 

moving segments are coupled to the wire rod by a viscous medium which 

moves through the machine towards a fixed die. The viscous medium is 

a low molecular weight polyethylene which is coated on the billet 

before it enters the pressure chamber. The basic principle of the 

process is as follows: 

The rod is inserted into the travelling segments through the 

straightener and coating head. It is then dragged into the pressure 

chamber at the centre of the continuous extruder. As the members pass 

over the die, the rod is forced to extrude through the die. The 

moving container is then split into four segments and transported 

back to the front-end of the extruder for re-use. 

1.3 	Continuous conventional extrusion  

To date three types of friction actuated machines have been 

developed for commercial use. They are: 

(a) Conform 

(b) Extrolling 

(c) Linex 
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1.3.1 Conform  

The concept of Conform can be best explained by referring to 

the earliest method of conventional extrusion. 

In direct conventional extrusion considerable friction exists 

between the surface of the billet and the bore of its container. 

The magnitude of the frictional force is greatest at the commencement 

of the extrusion process, when the billet is of maximum length. 

Consequently, there is a limit to the length of billet in relation 

to its diameter. It is of interest to note that this limiting 

feature, which has motivated the development of hydrostatic extrusion, 

is now used in the new concept to allow the extrusion of billet of any 

length. 

Fig. 1-2 shows a conventional extrusion system consisting of a 

punch, container, die and billet. Extrusion can be brought about either 

by forcing the punch into the container (direct extrusion) or by forcing 

the die into the container keeping the punch stationary relative to the 

container (indirect extrusion). In the latter case, the frictional 

force mentioned does not have to be overcome by the die because the 

billet does not move relative to the container. If, in fact, the billet 

was above a certain critical length to diameter ratio the frictional 

force alone would be sufficient to hold the billet in the container 

against the force of the die during extrusion. In such circumstances, 

extrusion would continue only until the billet shortened to a critical 

length at which point it would then slide away through the container in 

front of the advancing die (hence one the reasons for the punch). 

However, despite this advantage of indirect extrusion the length of billet 

that may be extruded is still limited. 

Green (3) was the first to use this understanding of the 
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FIG. 1- 2. Conventional e."(/rzmon system. 
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indirect extrusion process to develop a continuous extruder, Conform. 

As shown in Fig. 1-3, the container, having a rectangular-section, is 

made up of two pieces, one of them incorporating a rectangular groove 

and the other being just a plain rectangular slab. When put together 

they form a square-section block with a square-section hole. A 

square die is fixed into the plain slab in such a way that it 

protrudes into and effectively blocks off one end of the square hole 

in the composite container. With this arrangement, the slab portion 

of the container may be held stationary while the other portion may 

slide along, and over, the stationary die. Thus three sides of the 

container may move relative to the remaining fourth side. 

In such a model one can consider a billet of round-section, 

partially contacting all four sides of the container. If the 

container is now moved as described, the frictional force existing 

between its three sides and the billet will provide a force tending 

to move the billet against the die. Clearly the frictional force 

between the fourth side and the billet will tend to oppose billet 

movement. Therefore, there will remain a residual force equal to 

that arising from friction between the billet and two sides. The 

whole of this residual force is available for use in extruding the 

billet through the die. 

In the die region the compressive stress in the workpiece is 

likely to be many times greater than the yield stress of the 

workpiece material. Consequently, the workpiece will flow until it 

completely fills the rectangular container over a proportion of its 

length immediately before the die. The length that is filled has 

similarities with the critical billet length in normal indirect 

extrusion already referred to. Now, if the contact length is 
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sufficient and the container is operated as described, extrusion 

will commence and continue until the length of the contact drops 

to a critical value. At this point slip will occur. For 

continuous extrusion, it is therefore necessary to ensure that the 

length of the contact is by some means constantly maintained 

greater than a certain critical length. The requirement for truly 

continuous extrusion is to provide for a continuous length of 

grooved container and this requirement is most easily and simply met 

by a disc or wheel having a groove machined around its perimeter. 

The fourth side of the containment is the inner curved surface of a 

'shoe' arranged to fit closely up against the wheel perimeter as shown 

in Fig. 1-4. In this method the shoe, which resembles an external drum 

brake, carries the extrusion die. It can be visualized that several 

separate shoes could be coupled on a rotating disc and also that a 

number of wheels could be assembled on a single main rotating axle. 

Either of these techniques could be employed so as to produce multiple 

products in one machine. 

1.3.2 Extrolling  

Combining extrusion and rolling Avitzur (4) invented a new 

continuous conventional extrusion called Extrolling. This process 

combines the continuity of the rolling operation with.the high 

reduction possible in extrusion. The deficiencies of rolling and 

extrusion, namely, small reduction per pass and finite length are 

eliminated. 

This concept is basically the same as Conform except that the 

sliding shoe is replaced by a roller. As shown in Fig. 1-5, the rollers 

provide the forward-moving chamber, as the billet enters the groove, 
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Fig. 1-5. Side view schematic of Extrolling process showing 

similarity to Conform. Section view y-y of a 

grooved wheel with protrusion segment. 
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it is dragged forward by friction. As in Conform, for extrusion 

to occur continuously, a minimum length of contact must be 

maintained between the workpiece and the chamber. Most materials 

that can be either rolled or extruded can also be Extrolled. The 

process can also be adapted at elevated temperatures. 

1.3.3 Linex 

The process of continuous extrusion can be performed in a linear 

fashion rather than circular as previously described in Conform. 

Voorhes (5) discovered that two-sided gripping and advancement of the 

feedstock may be utilized in a continuous extrusion process. The 

opposing ungripped surfaces of the feedstock are lubricated before 

the stock upsets against the constraining walls of a chamber. This is 

shown schematically in Fig. 1-6. Two sides of the chamber are fixed 

and are composed of the legs of a unique fork-shaped die element. 

Gripping surfaces make up the other two sides of the chamber, whilst 

supported by two guiding blocks as shown in Fig. 1-6. Usually, the 

stock is roughly rectangular in cross section. Round stock is deformed 

into rectangular feedstock by a preform stage. The objective is to 

increase the grip area and thus the friction drag. During operation, 

the stock is carried into the die by two gripping surfaces. The 

gripping surfaces are hardened steel blocks assembled on two chains 

which are pulled by drive sprockets past the die. The blocks compress 

the stock and deform it plastically to a point beyond its yield stress 

and then carry it into the die fork. The ungripped sides of the 

feedstock are lubricated to reduce the coefficient of sliding friction 

between the upset feedstock and the legs of the die fork. As in 

Conform the upset length stabilizes when sufficient pressure for 
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Overview of LINEX friction actuated linear 
continuous extruder. 

SIDE VIEW 

Side view cross section of linear continuous 
extruder. 

Fig. 1-6. Linex. 
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extrusion has been developed. When this occurs the process runs in 

a steady state manner. Comparing Conform and Linex, there are some 

differences in extrusion characteristics between the two processes. 

In Linex, the feedstock is lubricated before entering the legs of 

the die. This cuts down the amount of frictional heat going into 

the stock prior to extrusion. In Conform there is no lubrication 

where the feedstock upsets against the shoe. The frictional heat 

causes the stock temperature to increase significantly as it 

approaches the die. As a result, Linex operates at some-what lower 

temperatures. Lower output temperatures mean that the product will 

not self-anneal, but will exhibit an increase in hardness approximately 

equivalent to that obtained by wire drawing to the same reduction 

ratio. 

The Linex and Conform processes should have the following 

economic advantages over wire drawing: 1) Rapid change-over in die and 

wire sizes; 2) One die versus many dies to achieve the same reduction; 

2) Wire breakage less likely; 4) One stage of reduction; 5) Lower 

initial investment cost for a totally new system; 6) Production of 

complex sections and tubing in a continuous manner. 

The lubricator section of the Linex machine is designed to 

provide continuous application of lubricant to the two ungripped 

sides of the feedstock. A variety of lubricants may be used but solid 

lubricants are preferable since they are easy to handle on a 

continuous basis and can be applied relatively easily and tend to 

remain where applied. 
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1.3.4 Context  

The most recent idea for continuous extrusion is that proposed 

by Lengyel (6). The arrangement shown in Fig. 1-7 shows the basic 

principle of this concept. When the container walls are moved 

parallel to the billet axis. In this case only friction drags the 

stock forward towards the die. 

The moving container comprises a number of members. Each 

member of the container is built up from four parts, but alternative 

arrangements are feasible (such as those illustrated in Fig. 1-8) to 

accommodate favourably various shapes of feedstocks. These stock 

shapes would be useful when extruding products of intricate geometry, 

for example very wide thin sections which nowadays must be produced 

from round billets either at very large extrusion ratios or in several 

steps. It might often be cheaper to cast or roll the billets to a 

cross-section considered most favourable for a particular product and 

extrude them from a specially shaped container. 

The parts shown in Fig. 1-7 could be moved towards the axis and 

away from it, always forming a fully enclosed channel between them. 

A major advantage of this present configuration is its ability to 

accommodate not only stock of various sections but also many sizes 

of stock, since each part can slide on both its adjacent parts to 

create a smaller chamber. With the outer tube empty, a long billet of 

circular or other cross-section is moved into position coaxially with 

the outer tube. The four parts of the first member of the container 

are then placed into position and forced towards the axis, plastically 

deforming the billet material as shown in section B-B. This member 

together with the billet is then forced towards the die, then the four 

parts of the second member are placed into position behind the first 
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one and forced towards the axis deforming the billet. The process is 

repeated with the subsequent members until the front-end-face of the 

billet reaches the die, with one member of the container supporting 

the die in position 'e'. The container is then forced towards the 

die with the die exerting pressure on the billet-end. Provided the 

frictional force between the billet and the container is sufficiently 

large, the billet material near the die—face suffers further plastic 

deformation and fills the cross—section of the container completely 

(section C-C). The area of the interface and the interfacial pressure 

between billet and container is thus increased. The frictional force 

dragging the billet forward will also increase until the pressure 

between the die and the billet material becomes so large as to extrude 

the latter through the die orifice. As the formost member clears the 

outer tube (position 'f') it is returned to continue the process 

behind the last one (position 'a'). As the back-end of the billet 

reaches the entry section, a second billet is placed behind the back-

end of the first one and the process continues for as long as desired, 

without interruption or change of speed. 

In Fig. 1-9 another possible version of Context continuous 

extrusion is shown. Here the members are placed in position 'a' at an 

angle 'a' to the axis. The billet is indented at this angle and then 

the members are forced towards the die on a path parallel to the 

container axis. When the members reach the die in position 'd' they 

must continue to travel at angle 'a' to the axis in order to by-pass 

the die, on a diverging path. 

In the diverging version not only friction, but also the 

indenting forces assist the forward moving of the billet in building 

up pressure over the die-face. Clearly the members in positions 'b' 



c:::: 
l.LJ 
Z

 
...... 
ex: 
I--
Z

 
0 U

 

-
27 

-

U
') 

l.LJ 
U

 
c:::: 
o L.L.. 

. ~ x Q
J 

.f..,) 
s:: 
0 
u C+-
o s:: 
0 

e
r-
V

l 
~
 

Q
J 

>
 ~
 

Q
J 

..c: 
.f..,) 
0 s:: 

ex: . 
~
 

I 
,.... C

') 
e
r-

L.L.. 



- 28- 

and 'c' where they are completely filled with the stock material, 

could be regarded as dies of square cross sectional area. Before 

slip could occur between these members and the feedstock not only 

must the stock/container friction be exceeded but also the stock 

must be reduced from size D2  to D1. Consequently, a shorter 

container would be sufficient to build up a particular pressure. 

Even if the stock/container friction is small, the required pressure 

could be built up and thus lubricated extrusion would be feasible. 

From a technical point of view Context offers a wide range of 

advantages compared with the other methods of conventional continuous 

extrusion. 

Viscous actuated systems are not suitable for hot extrusion. A 

hot billet reduces the viscous drag in the feed compartment 

( viscosity is inversely proportional to temperature) where the viscosity 

is needed most. Energy is also wasted in the transportation of the 

feed fluid in the bore of the feed compartment where the viscosity must 

be as low as possible. This means that the process is considerably 
• 

inefficient. In the Gear Extruder, also a cold process, the problem of 

sealing between the members is apparent. The extrusion ratio of both 

these processes is limited. 

Conform and Linex were developed mainly for the extrusion of wire, 

i.e. feedstock of small diameter is reduced in one step into wire of 

the required dimension. 

In Conform, the billet material has to be bent and dragged towards 

the die. Clearly Conform cannot be modified to use large diameter 

feedstock as the work done in bending the billet would be, significant 

and wasted. Furthermore, it would be difficult to design a drive to 

deliver the load needed for extrusion. Additionally there is a 
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stationary shoe which opposes the forward movement of the feedstock, 

which further increases the load. 

In Linex, a worse situation arises. There are only two gripping 

faces dragging the billet forward while the arms of the diefork oppose 

it. Even for wire extrusion, the side faces have to be lubricated 

to ensure no slippage. In the continuous process, there is no 

guarantee that the lubricant would not spread to the gripping faces. 

If this were to occur, the effectiveness of the gripping force would 

be markedly reduced and so also the extrusion force. Above all, on an 

industrial scale, continuous lubrication of the feedstock might present 

an economic problem in view of the cost of lubricant. 

The concept of Context is simple and quite effective, if it is 

proved to be commercially and technically viable. In Context, all faces 

in contact with the billet are used to drag the billet forward. This 

automatically means that a much larger extrusion force can be achieved 

and a larger feedstock can be used. 

Comparing viscous actuated continuous extrusion and Context the 

latter is clearly more efficient due to the direct contact between the 

container and the feedstock. The problem of sealing the viscous fluid 

does not exist in a Context type process. It is also clear that this 

process requires a shorter grip length than the viscous fluid actuated 

process due to its direct contact with the stock. Its advantage over 

Linex is apparent as there are not forces between the container walls 

and the feedstock, to oppose the motion of the feedstock. 

1.4 	Critical assessment of the indentation process in Context  

The possibility of utilising a wide range of billets having various 

shapes and sizes is one of the most distinguishing features of Context. 
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In addition, in Context, the arrangement of the segments comprising 

the chamber can also be altered to accommodate a particular shape of 

billet in a favourable manner. 

For a given chamber length and surface condition, the shape of 

billet and the arrangement of indenting segments together with the 

amount of indentation, entirely control the magnitude of the feasible 

extrusion pressure. In order to calculate the extrusion pressure, 

therefore, the analysis of the indentation process seems of vital 

importance. This is appreciated when noting that the friction forces 

responsible for gripping the billet are related to the indenting forces 

by some unknown friction coefficent. 

By its very nature, the indentation process lacks a well-defined 

analytical treatment, since the conditions under which the metal flows 

are unpredictable and may vary enormously. During indentation, 

configuration of the feedstock and the surface friction may vary 

considerably. Plastic flow may not only occur in a plane perpendicular 

to the axis of billet but it may also occur in a direction along the 

billet. The situation is even more complex when the indenting segments 

perform their duties at an angle to the axis of the billet. 

In the indentation process, nevertheless, there are a number of 

phenomena which tend to retard the axial flow of the material, such as: 

(i) 	Elastic constraint  

Usually (but not always) when the amount of indentation is 

moderate, the plastic flow occurs only in the material adjacent to the 

indenting segments (such as shown in the illustration). Thus the 

remaining elastic region extending through the depth of indentation 

tends to prevent the plastic material from spreading. This kind of 

constraint is frequently encountered when the billet section is not 
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uniformly strained, in which case the plastic flow may not spread 

throughout the section. 

PLASTIC  
REGION 

 

ELASTIC 
REGION 

  

(ii) Frictional forces induced at the billet/container interface  

An obvious tendency of frictional forces is to prevent the material 

moving relative to the surface of the indenting segments. When the 

length of indenting segments in relation to the diameter of billet is 

sufficiently large it is reasonable to neglect the plastic deformation 

of the billet in the axial direction relative to that occuring in the 

cross-sectional area. 

(iii) Axial compressive pressure  

Due to the mechanism of indentation in Context, which combines both 

indentation and forward moving of the billet, an axial compressive 

pressure exists which retards the plastic flow of the billet in the 

axial direction. 

In the indentation process the state of stress and s ain is three 

dimensional. However, when the effects of the foregoing phenomena 
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combine to eliminate the axial extension of the billet, the 

deformation can be said to be taking place under plane strain conditions. 

In such circumstances the study of indentation under conditions of 

plane strain will result in useful and instructive information on the 

behaviour of the stock during a three-dimensional indentation process. 

1.5 	Aims of the present work  

So far as the subject of interest is concerned the main two 

objectives for further investigations should be: 

(i) To study the indentation process  

(ii) To study the maximum frictional force built up at billet/container  

interface  

This present work is an attempt to meet some of these objectives. 

For the study of the indentation process, the finite element method was 

selected. This selection was based on the strong capability of the 

finite element method in the analysis of metal working processes. 

A finite element formulation is presented. Based on this 

formulation, a computer program is developed and its applicability is 

demonstrated by examining a number of indentation processes. Its 

extensive validity is also demonstrated by comparing the theoretical 

results and the corresponding experimental findings. 

The finite element program presented is restricted by the 

following assumptions: 

(a) The magnitude of deformations remain small throughout the indentation 

process. 

(b) Absence of Bauschinger effect. 

(c) Isotropic material behaviour. 
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(d) Plane strain deformation. 

(e) Absence of thermal strains. 

To meet the second objective an analytical solution was chosen, 

to predict simply and effectively the maximum frictional forces built 

up at billet/container interface, because the finite element approach 

would have been highly demanding in terms of computing time in view 

of the immense three dimensional problem involved. 

For a particular example, the process is simulated using a 

simplified model in the laboratory. Experiments are carried out 

and the effect of the relevant parameters, on the maximum frictional 

force built up at billet/container interface, are investigated. The 

process is then analysed theoretically and the theoretical and 

experimental results are presented and compared. 
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CHAPTER 2  

A FINITE ELEMENT FORMULATION FOR THE ELASTIC-PLASTIC  

ANALYSIS OF SMALL STRAINS AND SMALL DISPLACEMENTS  

2.1 	Introduction  

The finite element method has been applied quite successfully 

to a wide range of linear structural problems and recently, the 

method has been extended to include material and geometric non-

linearities. While the analysis of linear problems is relatively 

straightforward, the non-linear problem is considerably more difficult. 

Although a great number of papers have been published on the analysis 

of non-linear behaviour, a thorough survey of the available literature 

indicates that there is considerable uncertainty regarding important 

questions such as, which solution approach is the best, which flow 

rule is correct, how should unloading be treated, and so on. Perhaps 

the most disturbing point has been that most of the computational 

procedures currently available are very inefficient and require 

excessive amounts of computer time when applied to practical, large 

scale problems. The long computer run times (ranging from minutes to 

several hours) severely limit the use of these non-linear approaches as 

design tools for the majority of users. 

The present study is concerned with presenting the solution 

techniques for the material non-linear problem with regard to accuracy 

and computational economy. The equations of equilibrium are first 

developed. Various solutions, restricted to small strains and 

displacements, which follow directly from the equilibrium equations are 

described. Based on the nature of solutions, some general comments and 

recommendations are made with regard to the accuracy and economy of each 
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method. 

2.2 	Literature survey  

The first applications of finite element method to elastic-plastic 

problems appeared over a decade ago and were restricted to infinitesimal 

strains, in general describing only the onset of plastic deformation. 

Based on the equilibrium equations, Mendelson and Manson (7) 

treated the plastic strain increments as thermal strains and developed 

a method called by them 'the thermal strain approach'. Subsequent 

papers eventually refer to the initial strain method or, in a modified 

form, to the initial stress approach. The basic concept of this method 

is that the equations of equilibrium can be modified to compensate for 

the fact that the plastic strains do not cause any change in stress. 

Gallagher (8) used this approach in the stress analysis of heated plates 

of complex shapes. Argyris (9) also used the method successfully in the 

analysis of the structural problems encountered. 

The tangent modulus approach was first used by Pope (10) and 

Marcal (11) and extensively used by Marcal and his associates (12-14). 

Later, Akyuz and Merwin (15) considered contact problems and improved 

the accuracy of the solutions by using a half-step Runge-Kutta type 

procedure. Lee and Koboyashi (16) also considered contact problems and 

compared the experimental and computed results. The same authors, in 

another work (17), attempted the problem of axisymmetric upsetting and 

the problem of plane strain side-pressing of solid cylinders (this latter 

problem will be included amongst many others considered in this present 

thesis), using the same formulation. In both cases they refer to 

possibilities of the finite element method for such a class of problems, 

but remark that there are questions still to be solved, in order to 
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improve the accuracy of the solutions, especially when large strains are 

present. Scharpf (18) also uses a finite element formulation for 

elastic-plastic problems. There, application is made to the spreading 

of the plastic zone in a plate with a central straight crack. However, 

as changes in geometry were not considered, the computation had to be 

interrupted when the deformation became considerable. In (19) the 

subject is expanded and the tangential stiffness, initial strain and 

initial stress methods are again compared, by studying the convergence 

of each of them in one particular application. 

Using the tangent modules method, Marcal and King (14) developed a 

computer program, which they used to investigate a number of problems. 

Among many problems they attempted were: thick cylinder subjected to 

internal pressure; flat tension specimen with a central hole; notched 

tension specimens under conditions of plane strain and plane stress. 

The computed results were compared with known solutions obtained by 

other methods. Although in general good agreement was obtained, the 

analysis of the deformation had to be interrupted at some stage because 

negative plastic strains were obtained. Later, Yamada and Yoshimura (20) 

modified their approach and the computer programs presented in this 

thesis are essentially based on this. In their formulation, for the 

first time, an explicit expression for the elasto-plastic stress-strain 

matrix (corresponding to the inverse of the complete stress-strain 

relations of Prandtl-Reuss) was derived. There, application was made to 

the analysis of notched tension specimens under conditions of plane stress. 

In each application they considered various mesh patterns (incorporating 

only triangular elements) and concluded that the results were highly 

dependent on the mesh pattern rather than on the mesh size. Again the 

procedure had limited application for the same reason as mentioned above. 
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A closer comparison of the algorithms used by Marcal and King (14) 

and Yamada and Yashimura (20) will be given in the theoretical 

formulation presented elsewhere. 

Blomfield (21) has shown the similarity of the thermal strain 

and tangent modules approaches, by deriving them both in terms of 

rate rather than incremental equations. Results obtained in the 

elastic-plastic analysis of pipe bends show no significant discrepancies 

when one or the other approach is used. Marcal (22) compared the two 

approaches in the case of a flat plate and compared them with existing 

solutions. He has shown that although the constitutive tensor must be 

recomputed for every load increment, the tangent modulus approach can be 

more economical in computation time than the thermal strain approach. 

In the specific example, in order to obey the prescribed stress-strain 

curve, only 10 increments in load were required by the tangent modulus 

against 2300 required by thermal strain approach. Marcal has also 

shown that, whilst the thermal strain approach is not applicable for 

perfect plasticity, not even for nearly perfect plasticity, the tangent 

modulus method does not present such restriction. 

Using Yamada's approach several Japanese investigators presented 

solutions to a number of problems. Iwata (23) applied the same 

formulation to the analysis of hydrostatic extrusion. The effect of 

frictional coefficient on the spread of plastic zone, on the pressure- 

displacement curve, and on the stress distributions were studied in 

non-steady state plane-strain and axisymmetric extrusions. In the case 

of the plane-strain extrusion, the computed extrusion pressure and stress 

states in the plastic zone agreed with the slip-line field solution. The 

extrusion pressure for the axisymmetric condition was higher than that 

for plane strain condition, and it was significantly affected by the 
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coefficient of friction. Although, in general, their results seem 

to be in good agreement with the slip-line field solution the need 

for improvements in the method is stressed by the authors. 

Nagamstsu (24) studied the compression of a block under conditions 

of plane-strain. The end-face of the block was supposed to stick to 

the tool surface (sticking friction).. Since the onset of plastic 

deformation was only considered, the influence of shape changes on 

the stiffness matrix was neglected. Besides, to shorten the 

computing time, the changes in the elasto-plastic strain-stress 

matrix was also neglected. At early stages of deformation the 

appearance and growth of the plastic region, shape of the bulge, load 

of compression, distribution of normal pressure and of tangential 

stress at the interface were calculated. Although the plastic zone 

propagated over nearly the whole block, the maximum strain achieved 

was less than 0.13%. In a subsequent work (25) the same authors 

investigated the axial compression of circular solid and hollow 

cylinders. The deformation was examined from the elastic through 

partially plastic to totally plastic stages, considering the geometrical 

change of the nodal coordinates (such consideration was neglected in the 

earlier work). Again at various stages of deformation, the shape of the 

bulge in the inside (for a hollow cylinder) and outside surfaces, load, 

distribution of pressure and tangential stress on the contact surface 

between the tool and the cylinder, distribution of strain and stress, and 

the growth of plastic zone were calculated under various conditions. 

They were able to analyse the deformation for strains up to the order of 

5% for solid, and 4% for hollow cylinders. The authors claim that still 

large values of strain could be considered at the cost of more computing 

time. Unusual large values of computed friction coefficients are 
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contributed to the improper implementation of boundary condition at 

the cylinder/tool interface. 

Geometric non-linearities, as considered by Nagamatsu (25), 

were also treated by Argyris (9), Mallet and Marcal (26), Felippa (27) 

and Turner (28), but their solutions were restricted to small strains. 

Zienkiewicz (29) introduced the initial stress method to overcome 

the computing difficulties of the tangent modulus approach and the 

limitations of the thermal strain approach at nearly perfect 

plasticity. The method was implemented in a computer program and a 

number of problems such as perforated tension strip with and without 

strain hardening, cantilever beam subjected to cycling load, plastic 

yield during metal cutting, and a few others were investigated, 

showing generally good agreement. A subsequent work by Nayak and 

Zienkiewicz (30) presents a general formulation which includes: 

associated and non-associated plasticity; strain hardening and also 

strain softening behaviour. Advantage of the initial stress method is 

emphasized for a wide range of problems. Amongst many problems 

attempted are: cyclic loading of a composite bar, notched tension 

specimen, thick sphere and cylinder subjected to internal pressure, 

plane strain extrusion, and plane strain indentation (strain softening 

and strain hardening behaviour). The authors emphasize the 

•possibility of including in one program a variety of iterative 

procedure, as they believe the best efficiency lies in a combination of 

various methods. Finally, they remark on those classes of problems, 

such as strain softening or collapse where the tangential matrix ceases 

to be positive definite whilst on the contrary the initial stress 

method presents no difficulty of that sort. On this same topic, 

Nayak's work (31) provides an extensive review of literature and covers 
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applications of the finite element method to a wide variety of fields; 

elastic-plastic problems, plate theory, complex material behaviour and 

analysis of large deformation in structural elements. 

Most of the literature reviewed so far was concerned with small 

strain plasticity, therefore predicting the onset of yielding and the 

early spreading of the plastic zone with satisfactory levels of 

accuracy. Larger strains can either not be tackled or, as in 

Nagamatsu's approach (25), incur a heavy penalty in terms of computing 

time. 

In recent years a trend towards the use of non-linear equations 

of continuum mechanics has been observed in papers on finite element 

analysis. Pian and Pin Tong (32) have shown that the finite method 

can be formulated from the variational principles in solid mechanics 

by relaxing the continuity requirements. The combination of different 

variational principles and different boundary continuity conditions 

yield numerous types of approximation methods. In their paper, 

bending problems are used to compare the relative merits of the 

various methods. Yaghmai (33) developes a general incremental 

variational method for the analysis of geometrically and physically 

non-linear problems in continuum mechanics. His variational method is 

applicable to any type of material properties, in particular non-

linear constitutive laws for elastic and elastic-plastic materials are 

considered. For the elastic-plastic materials, an incremental 

constitutive law is considered where deformations are infinitesimal 

but rotations are finite. There, applications are made to the analysis 

of elastic-plastic shells of revolution and of circular plate, and the 

convergence and accuracy of the method is presented. Oden (34) 

provides a general continuum mechanics theory for the finite element 
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method, which is then demonstrated with reference to a number of 

applications. These include the generation of finite element models 

in the time domain and certain problems in wave propagation, non-

linear continuum mechanics, and fluid dynamics. Marcal (35) 

developes incremental stiffness matrices for the small-strain large 

displacement analysis of combined non-linear (material and geometry) 

problems. The theory is demonstrated with reference to a three-

dimensional problem of an imperfect hemisphere under external pressure, 

showing very good agreement with previous known solutions. 

Hibbit, Marcal and Rice (36) derive an incremental and piece-

wise linear finite element theory for large displacement and large 

strain problems with particular reference to elastic-plastic behaviour 

in metals. The resulting equations, though more complex, are in a 

similar form to those previously developed by Marcal (35) for large 

displacement and small strain problems, the only additional term being 

an initial load stiffness matrix which is dependent on current loads. 

According to the authors, this similarity in form means that existing 

non-linear general-purpose programs may easily be extended to include 

finite strains. The general formulation is subsequently reduced to 

handle those classes of problems with large displacement and small 

strain. A similar approach is presented by Gordon and Weinstein (37). 

They examine plane strain sheet drawing, considering smooth and 

friction boundary conditions, using a Lagrangeon description based on 

a variational approach presented by Biot (38). 

In recent years extensive work in the field of elastic-plastic 

analysis by the finite element method has been carried out by Japanese 

investigators. An interesting survey, together with the analysis of 

the typical difficulties encountered has been presented by Kudo and 
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Matsubara (39). Special reference must be made to a paper by Kitagawa, 

Seguchi and Tomita (40), which analyses the problem of a finite element 

formulation, similar to the one presented by Hibbit (36), but 

referred to the current configuration of the continuum. They use a 

convected coordinate system embedded in the body and follow 

approximately the same path described in (36). 

Osias (41-43) also contributes to the subject and expands 

previous work for infinitesimal strains by Swedlow (44-45), using an 

Eulerian approach, assuming isotropic work-hardening material. Flow is 

analysed as a history dependent process, for which a computer program 

is developed. Numerical solution is obtained for a number of problems; 

simple tension, simple torsion and combined tension and torsion in a 

prismatic element under plane stress and plane strain conditions, and 

later for the problem of necking in flat tensile bars. Results in the 

first cases agree closely with known solutions. The necking results 

agree quantitatively with previous results on the subject, listed by 

the author. 

Swedlow (46) developes an elastic-plastic theory in a fairly 

general manner so that it may accommodate features such as work-

hardening, anisotropy, plastic compressibility, non-continuous loading 

including local or global unloading, and others. In another paper (47), 

the formulation is restricted to a Von-Mises work-hardening material 

and the tension of a prismatic bar is studied. Perfect plasticity and 

rigid elasticity are not covered. Computer programs based on this 

formulation are claimed to be economical. 

Different approaches have been tried in recent papers by 

Zienkiewicz and his associates (48-50). Zienkiewicz and Godbole (48) 

use a stream function formulation to describe large deformation in 
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plastic and visco-plastic conditions. A finite element solution 

is found for the non-Newtonian flow problem and application is made 

to the analysis of steady state extrusion and non-steady state punch 

indentation. In the extrusion case they improve results obtained 

by Nayak and Zienkiewicz (30-31), although at cost of using a finer 

mesh. The extrusion pressure is however still above that given by 

the slip-line solution. The indenting pressure, in the non-steady 

state application, is shown to be linearly dependant on the depth of 

penetration, and above the slip-line solution. 

Zienkiewicz and Cormeau (49) derive plasticity and creep 

solutions using a visco-plastic model of the continuum, coupled with 

the initial strain method . This allows the treatment of non-

associated plasticity and strain softening solutions which present 

difficulties in conventional plasticity approaches. Thus a standard 

program permits the treatment of a wide range of material non-linear 

problems. The paper discusses various applications of their general 

formulation and introduces certain numerical information on solution 

stability. 

Gotch (51) proposes a polynomial shape function of triangular 

element for finite element analysis of general deformation of sheet 

metals with or without orthotropic anisotropic. Based on that, a 

general formulation for large deformation and large strain analysis with 

non-linearity of material property is derived and some numerical 

examples are examined with respect to circular sheet metals subjected 

to hydraulic pressure. Values of strain are not presented, but the 

whole area of the circular sheet specimens are brought into the plastic 

range. 

Dieterle (52) recently studied the compression of tubular rings 
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using a finite element formulation as developed by Zienkiewicz (29), 

but introducing several simplifying features. Although strains are 

of the order of 0.45 and good agreement with experimental results 

are claimed to have been achieved, the use of large values of poisson's 

ratio and the use of unrealistic boundary conditions to improve the 

results seem to represent too many simplifying assumptions to retain 

the reliability of the solutions. 

Gunasekera and Alexander (53) employ a formulation which highly 

resembles that of Hibbit (36), being however described in terms of 

the instantaneous frame of reference, by systematic updating of nodal 

coordinates and recomputation of the geometrical matrices. The 

authors claim to be able to obtain a solution for large deformation 

in the problem of the elastic-plastic expansion of a hole in a plate. 

Most recently Blass (54) presented a finite element formulation, 

considering both material and geometrical non-linearities, for the 

elastic-plastic analysis of the metal working problems. The 

restrictions imposed are those of isotropic material behaviour, 

isothermal deformation, absence of Bauschinger effect and infinitesimal 

elastic deformation. The analysis is performed in a Lagrangeon frame 

of reference. There, application is made to the radial upsetting 

problem. The computed and experimental results and also upper bound 

solution (due to the author) are presented and compared. The computed 

results represent a slight improvement over the upper bound solution, 

but in general they are rather poor in accuracy, despite the generality 

of his formulation. In his conclusion, he refers to the difficulty in 

prescribing appropriate boundry conditions to the finite element model. 

He also refers to his improper model (which gives rise to a complex 

three-dimensional problem) being highly expensive in view of the 
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computing time. 

2.3 	Concept of the finite element  

In the finite element method a continuous body is considered 

as a collection of a finite number of elements connected together at 

various nodal points. A typical element can be isolated from the 

collection and its behaviour can be studied independently of the 

behaviour of other elements in the collection. This is similar to 

ordinary mathematical analysis in which an infinitely small element 

is isolated to establish a differential or integral equation. In 

the finite element method a finte element of some standard type is 

selected according to a particular problem. The choice of element 

type is very important as clearly there are many families of elements 

for each type of problem depending upon the interpolation function. 

For the element selected, variation of the required functions (such 

as in solid mechanics displacement and stress fields) are approximated 

uniquely in terms of their values at the element nodal points. The 

behaviour of the element is then approximated by the use of the 

principles of mechanics. The process of connecting elements together 

to form the complete model is purely topological and is independent 

of the physical nature of the problem at hand or its linearity or non-

linearity. The assembleage of elements fitted together at the element 

nodal points makes a final discrete model of the continuum and its 

overall behaviour is then described by a system of linear or non-liner 

algebraic equations depending upon the linear or non-linear continuum 

behaviour. 
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2.4 	Basic formulation  

To start, it is advisable to review some of the basic concepts 

and definitions of finite element method which will be required later. 

It is also worthwhile to present some considerations regarding the 

notations to be used. 

Rectangular Cartesian coordinates is used throughout. 

Incremental variables are characterised by the prefix 'd'. Vectors 

affected by the super-indices 'E', 'P' and 'EP' are referred to as 

elastic, plastic or elastic-plastic conditions, respectively. 

Finally, vectors associated with element nodal points are identified 

by subscript 'e'. 

2.4.1 Displacement function  

In the finite element method a displacement assumption is made, 

expressing displacements of any point within an element as a linear 

combination of the displacements at a finite number of nodal points in 

the same element, i.e. in matrix language 

{ f} = [N] Ole  

in which matrix [N] defines 

the nature of the assumed 

displacement field and {g}e 

represents nodal displacements 

for a particular element. In 

the case of plane strain or 

plane stress, {f} represents 

horizontal and vertical 

Fig. 2-1. 

(2.1) 

 

Y 
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movements of a typical point within the element and {d}e  the 

corresponding displacements of the element nodal points, Fig. 2-1. 

2.4.2 Strains  

With displacements known at all points within the element, 

strains at any point can be determined. These always result in a 

relationship which can be written in matrix form as 

{E} _ [B] {ō}e 	 (2.2) 

Strains are, however, defined in terms of displacements and are given' 

by 

  

e au 
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Thus from Eq. (2.1), with matrix [N] already determined, the 

matrix [B] will be easily obtained. Clearly, if a linear form of 

matrix [N] is adopted, the strains will be constant throughout the 

element. 

2.4.3 Stresses  

In general, the material within the element boundaries may be 
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subjected to initial strains such as may be due to temperature 

changes, shrinkage, crystal growth, and so on. If such strains are 

denoted by {c}o  then the stresses will be caused by the difference 

between the actual and initial strains. 

In general it is convenient to assume that at the outset of 

analysis the body is stressed by some unknown system at initial 

residual' stresses {a}o, which for instance could be measured but 

cannot be predicted without the full knowledge of the material's 

history. These stresses can simply be added on to the general 

definition. Assuming general elastic behaviour, the relationship 

between stresses and strains will be linear and of the form 

{a} = [D]E  ({c} - {c}o) + {a}o 	(2.4) 

where [DIE  is an elasticity matrix containing the appropriate material 

properties, and is given by 

1-v 	 Symmetric 

[D]E _ 	E  
(1+v)(1 —2v) 

v 1-v 

v v 1-v 

0 0 0 (1-2v)/2 

0 0 0 0 (1-2v)/2 

0 0 0 0 	0 (1-2v)/2 

(2.5) 

in which E is the elastic modulus and v is the poisson's ratio. . 

2.4.4 Equivalent nodal forces  

The nodal forces, which are equivalent statically to the boundary 
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stresses and distributed loads on the element, are expressed by {F}e. 

The distributed loads {P} are defined as those acting on unit volume 

of material. 

2.4.5 Equilibrium condition 

To make the nodal forces statically equivalent to the actual 

boundary stresses and distributed loads, the simplest procedure is 

to impose an arbitrary nodal displacement and to equate the external 

and internal work done by the various forces and stresses during 

that displacement. 

If such a virtual displacement is defined by d{S}e, Eqs. (2.1) 

and (2.2) can be expressed as 

d{f} = [N] d{S}e  and 	d{s} = [B] d{S}e 	(2.6) 

The work done by the nodal forces is equal to the sum of the 

products of the individual force components and corresponding 

displacements 

( 61{61
e 
 )T  . {F}e  

Similarly, the internal work per unit volume done by the stresses 

and distributed forces is 

d{E}T  . {a} - d{f}T  . {P} 

or by using Eqs. (2.6) 
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(d{ō} )T  . 	fcrl — [N] T{P }) 

Equating the external work with the total internal work 

obtained by integrating over the volume of the element 

( d{(3}e  )T{F}e  = ( d{s}e)T( f [B]T{a} d(vol) — f[N]
T
{P} d(vol)) 	(2.7) 

As this relation is valid for any value of the virtual 

displacement, equality of the multipliers must exist. On substitution 

of Eqs. (2.2) and (2.4), therefore 

{F}e  = (f [B]T  [D) [B] d(vol)){ō}e  — f [B]T  [D]{E} d(vol) 

+ f[BJT{Q}
0 
 d(vol) — f DIV1{P} d(vol) 

the stiffness matrix is 

[K] = f [B] T[j] [B] d(vol)   

nodal forces due to distributed loads are 

{F} = — f [N] T{p} d(vol) 

(2.8) 

(2.9) 

(2.10) 

and those due to initial strains are 

{F}EO  = — f [B T  [D] {E}o  d(vol) (2.11) 

Due to initial stresses, present at the outset of the analysis, nodal 
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forces contributed are 

{F}ao = f [B]T{ a }o  d(vol) (2.12) 

2.5 	Non-linear material formulation  

Whether the material behaviour is linear or non-linear, 

equilibrium condition between internal and external forces have to be 

statisfied. Thus, from Eq. (2.7) 

{F}e  = f[B]l{a} d(vol) - f [N]T{P} d(vol ) 

Assuming that no distributed loads exist or, if any, they have 

been distributed appropriately between the nodal points, the 

equilibrium equation then reduces to 

{F}e  = f[B]T{a} d(voZ) 	(2.13) 

For a non-linear continuum it is, however, perferable to express the 

equilibrium equation in an incremental form. If we consider two sets 

of equilibrim conditions at two loads, displacements and straining 

conditions defined by {F}e, We,  {a}  and by {F}e+d{F}e, {g}e+d{g}e, 

{a}+d{a}, we should have 

({F}e+d{F}e) = J[B]T  ({a} + d{a}) d(vol) 	(2.14) 

Subtracting Eq. (2.13) from Eq. (2.14), the equilibrium equation can be 

obtained as 

d{F}e  = J[B] T  d{a} d(vol) 	(2.15) 
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which expresses the equilibrium condition when strains and 

displacements are infinitesimal. If displacements are large the 

variation of matrix [B] must also be taken into account. Thus 

Eq. (2.13) may be rewritten as 

({F}e+d{F}e) = f ([B]T+d[B]T) . ({6} +d{a}) d(vol) 	(2.16) 

Simplifying Eq. (2.16) and neglecting second-order terms, leads to 

d{P}e  = f[B]T d{a}  d(voi) + fd[B] T{a} d(vol) (2.17) 

where matrix [B], now dependent on {s}, can be conveniently expressed 

as 

[B] = [Bo] + [BL] 	 (2.18) 

in which [Bo] is the same matrix as in small strain analysis and 

only [BE] depends on the displacement. In general [BL] is found 

to be a linear function of such displacements. 

To proceed further, matrix d{Q}  in Eq. (2.17) must be related 

to d{c} and thus to d{s}. 

The general case of elastic-plastic deformatiom (in which 

both the elastic and plastic components of strain are finite) has 

been considered by Lee (55). He has shown that, in this case the 

usual assumption of small strain plasticity is not true; i.e. the 

total strain components cannot be resolved into a purely elastic 

and a purely plastic component. Thus 

d{c} =
E  d{e}P, (2.19) 
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is not valid and must be replaced by a much more complicated matrix 

relation. However, when elastic strains are relatively small, the 

elastic matrix in Lee's formulation reduces to a unit matrix, and 

Eq. (2.19) can be accepted as the governing equation. On the basis 

of that equation then, it will be shown that it is possible to 

express the increment of stress components in terms of the increment 

of strain components, and by a similar relation used in linear 

elasticity analysis. Thus 

d
{a} 

= [D] 
	d{e} 	 (2.20) 

where matrix [D] EP is the elasto-plastic stress-strain matrix and will 

be derived later. 

By substituting for d{c} from Eqs. (2.6), we have 

d{a } = [D] EP [B] d{ d }e 

Substituting Eqs. (2.18) and (2.21) in Eq. (2.17), 

d{F}e 
= [f([ß~[ß)T [D]

EP ([Bo]+[BL]) d(vol)] d{61e 

+ fd([Bo]+[BL])T {a} d(vol) 

(2.21) 

(2.22) 

The second term on the right of Eq. (2.22) can be divided into one 

matrix that is dependent on the current displacement and one that is 

not. With some rearrangement, we obtain the element matrices 

d{F}e = ([40+[K]1+[K]2) d{d}e (2.23) 
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where N
o 
 is the small-displacement stiffness matrix, [x11  is the 

initial-displacement matrix, and [k12  is the initial stress matrix. 

Eq. (2.23) is immensely similar to Marcal's derivation (36) 

where no restriction is imposed on the magnitude of strains and 

displacements. It must be emphasized however that when large strains 

and displacements are to be considered the use of ordinary definitions 

of strain and stress are not legitimate. In this case it is generally 

recommended to carry out the formulation using Green's strain and 

Kirchoff stress. 

For a wide class of problems when small strains and displacements 

are to be considered the use of a general and complicated formulation 

is not the best strategy. Such strategy may terminate in a complete 

failure due to the considerable computing time necessary to calculate 

the immaterial matrices involved (see reference (54)). Considering 

the nature of our problems, we therefore restrict ourselves to small 

strain plasticity and adopt Eq. (2.15) as the governing equation. 

However, with the adoption of this equation if relatively large strains 

are to be tackled, some refinement will be necessary in order to minimize 

the relative size of the non-linear terms dropped. This is conveniently 

achieved (as employed by Ref. (53)) by a systematic updating of the nodal 

coordinates and geometrical matrices within the increments of loading 

procedure. Attention is here drawn to the fact that if finite strains 

and displacements were to be considered the use of a universal 

formulation, similar to Eq. (2.23), would become imperative and 

unavoidable. 

2.5.1 Derivation of the elastic-plastic stress-strain matrix [D] EP 

The incremental plasticity relations which are to be used are 
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those of Prandtl-Reuss obeying the Von-Mises yield criterion. To 

start with, some relevant relationships are briefly reviewed. 

According to the Von-Mises criterion, yielding occurs when 

the effective stress Q attains a critical magnitude, where o is 

given by 

3 
Q = 2 Qt  62j  (2.24) 

in which a2. is the deviatoric stress corresponding to stress 

component ai j. 

Effective plastic strain increment dePis defined as a combination 

of the plastic strain components 

deP = ✓  3 dem def 
	

(2.25) 

in which de. is the plastic component of strain dei.. 

The relation- between effective stress and effective strain 

is established by a uniaxial tension test such as shown in Fig. 2-2. 

where H is the slope of the effective stress-plastic strain curve 

at a particular level of effective stress. The relation between H, 
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elastic modulus E and tangent modulus ET is found by substitution of 

strain components into the relation 

de = deE + deP 

where de = d~ 	de = Ē6 and de 
= Ç . 

Increment of the effective stress will be required and in 

matrix language is given by 

dQ = {Q}T d{a} 	 (2.26) 

where 	{6} = 2~ {a' a' a' 2T 	2Tyz 2TZx} 

in which a'. = a. - a, and am is the hydrostatic stress. m 

Finally, the Prandtl-Reuss relations state that 

d{e}P = {~} dEP 
6 

(2.27) 

(2.28) 

where this defines the plastic strain increments when, under a known 

state of stress, the effective plastic strain increment deP occurs. 

As previously stated, for relatively small strains and 

displacements, changes of strain can be assumed to be resolvable into 

elastic and plastic components, thus 

d{e} = d{s}
E 

+ d{e
}P 

(2.19) 

The elastic strain increments are related to stress increments 

by a symmetric matrix [D] E as 
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d{a} =
E 
 d{e}E. 

Substituting for dfE}F  from Eq. (2.19) leads to 

d{v} = HE  (d{c} — d{e}P  ) 	(2.29) 

A relation that yields dēP  from the strain increments dfe} is 

obtained by substituting Eq. (2.28) in Eq. (2.29) and multiplying both 

sides by 4}T  , thus 

{Q}T  d{Q} = {6}T  [D]E  ( d{e} — {6.} dcP  ) (2.30) 

considering that {6} d{6} = H dēP, the increment of effective 

strain do can be evaluated as 

dc = 
f 64 HE 

d{c} = [W] d{c} 	(2.31) 
H 	[D] {} 

The incremental stress-strain relation, analogous to Hooke's 

law but valid beyond the proportional limit, is obtained by substitution 

of Eq. (2.31) into Eq. (2.28) and the result into Eq. (2.29). The 

relation is 

d{a} = ([DIE  - [DI E  { (-2-4[W]) d{c} = ([DI E  - [D] P ) d{ El = [DIEP d{e} 

(2.32) 

Examination of the matrices involved shows that the plastic 



stress-strain matrix [D]P  and hence the elastic-plastic stress-strain matrix [D] EP  are both 

symmetric. Explicitly [D] P  is given by 

at 2  
x 
s 

 

symmetric 

at at  
_x  y 	. 

s 

a1 2  
1 
s 

 

[D] P  = 	E  I+v 

	

°, °, 	°, °, 	a' 2 
x z 	. 	y  z 	. 	z  
s 	s 	s 

	

ar  T 	Or  T 	at  T T2  X xy  . 	y xy . 	a xy . 

	

s 	s 	s 	s 
2 

°xTyz  . °yTyz  . Or  T  yz . TxyTyz  . Tyz  

	

s 	s 	s 	s 	s 

	

°' T 	Or  T 	Or  T 	T T 	T T 	T2  X zx  . 	y  zx . 	a zx . 	xy zx  . 	xy zx  . 	ax 

	

S 	 S 	 S 	 s 	 s 	S 	 

(2.33) 

in which s = 3° 2(1 + I--1 ) 3 -. 



Clearly, matrix [D]EP is given by 

,2 
1-v 	6 x 
1-2v 	s symmetric 

a' a' 	 s, 2 
v _mir . 1-v ~z 

1-2v s 1-2v s 

2 
v 	x z . 	v 	y z . 1-v  Z 

1-2v s 1-2v s 1-2v s 

0
x xy 	

. 
T 

	Or xy , T 	Or 	• 1 — Txy 

	

s 	 s 	 s 	2 	s 

sXTyz 	, — 6y yz 	
0zI 	T T z . 1 	T2z y

z  
	xy y 	__  y  

	

s 	 s 	 s 	 s 2 s 

°xTZx 	. — syTzx 	. — 6zTzx 	. — TxyTZx . 	TxyTZx . 1 — Tzx 
s 	 s 	 s 	 s 	s 2 s 

(2.34) 
[D] EP _  E  

1 + v 
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Equation (2.34) corresponds to the inverse of the complete 

stress-strain relations of Prandtl-Reuss. The original stress-strain 

relations have been reduced to a single equation (2.32), and it must 

be emphasized that the elastic compressibility as well as the strain-

hardening characteristics of the material are incorporated in the 

matrix MEP  . Comparing MEP  with HE, it can be seen that the 

diagonal elements of [D]EP  are definitely less than the corresponding 

diagonal elements of [D]E. This amounts to an apparent decrease 

of rigidity due to plastic yielding. Attention is also drawn to the 

validity of Eq. (2.32) for elastic perfectly plastic materials, as 

nothing in the derivation becomes infinity if H=O. 

2.6 	Solution algorithms  

Whether the continuum is linear or non-linear, equilibrium 

conditions between internal and external forces have to be satisfied. 

This is given by 

d{F} 
e 

= [le d{a} d(vol) (2.13) 

Any plasticity problem now involves the solution of the equilibrium 

equation together with incremental stress-strain relations. 

relations may be written as 

These 

d{a} _ [D] 	d{e} (2.35) 

d{a} = HE  (d{e} - d{£}P) (2.36) 

d{a} = d{a}E  - d{a}
P  

(2.37) 
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If we now substitute various incremental stress-strain 

relationships into equilibrium equation we can obtain several forms 

of incremental equilibrium equation. 

2.6.1 Tangential stiffness method  

Substituting the stress increment d(a) from Eq. (2.35) into the 

equilibrium equation, leads to 

d{F}e  = f [3]T [D] 	d{e} d(vol) 

but d{c} = [B] d{S}e, therefore 

d{F}e  = ( f [B]T  [D]EF  [B] d(vol) ) d{S}e  = [K]EP  d{ō}e 	(2.38) 

Clearly for elastic elements, 
[D]EP 

must be replaced by N
E 
 before the 

integration is carried out. The elemental stiffness matrices can be 

assembled to form [K] of the whole body. The overall stiffness matrix 

[K] relates the nodal load-increment d{F} to the nodal displacement 

increment d{S}, as 

d{F} = [K] d{S} 	 (2.39) 

In solving Eq. (2.39) two algorithms have found wider application 

in the literature extending the finite element method to non-linear 

problems. These are proposed in the already mentioned works by 

Yamada (20) and by Marcal and King (14). 

In Yamada's formulation, small load increments are prescribed, 

and they are adequately rated in order to exactly yield one, or a few, 
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of the remaining elastic elements in the continuum. The procedure is 

schematized in Fig. 2-3, for a set of three elements. In the first 

graph points A, B and C represent the original situation of the three 

elastic elements. An arbitrary load increment is then applied, and the 

elastic solution is obtained, bringing the three elements to A', B' and 

C', respectively. In general, none of the elements will exactly yield. 

However, if the load increment is multiplied by the rating factor r, 

the minimum being taken in respect to all elements, the state of stress 

and strain will be represented by A", B" and C" exactly yielding. Note 

that during this multiplication process all the incremental variables 

must also be multiplied by this same factor (due to linear relationships 

existing between them). In the second graph, points A, B, C represent 

the situation achieved after the previous load increment. A similar 

procedure is again applied for some arbitrary load increment, the state 

of stress and strain being represented by A', B', C', with C' following 

tangent to the flow curve. 

Fig. 2-3. 
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The rating factor r is again obtained, the minimum being taken with 

respect to all elements still in the elastic range, and the new 

situation corresponding to A", B", and C", with B" now yielding, are 

obtained. This procedure is repeated with at least one element 

yielding each time, until a desirable magnitude of deformation is 

attained. 

Computational procedure for a typical increment of load is as 

follows: 

1- Let us suppose that under loads {F}A, the correct displacement 

{d}A  and structure tangent stiffness [K1 EP  are known (see Fig. 2-4 

for a single degree of freedom representation). Displacements 

produced by the next load increment are computed from equation (2.39) 

d{F}AB = {F}g - {F}A 	
CK AP 

d
{d}

AB 

	C C, 
A 

	dFc  

6A 6B 6c 

Fig. 2-4. 

F t  

Fc  

Fs  

FA T 

dFsc  

dFAB 
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2- Displacements d{d}e  of an element are extracted from d{S}
AB' 

3- For each sampling point within the element, increments of strain 

and stress are calculated by use of equations 

d{e} 	[B] d{S}e 	from Eq. (2.2) 

d P  e = [w]A  d{ e} 	 from Eq. (2.31) 

d{e}P  = { } dēP 	from Eq. (2.28) 

d{a} = [D]E  ( d{e} - d{e}P  ) 	from Eq. (2.29) 

Clearly, for elastic elements dēP  must be set equal zero. 

4- Sequence 3 is repeated over the sampling points within an element 

5- Using the appropriate relationship for [D] 
EP, 

 the stiffness matrix 

for a yielded element is evaluated. 

6- Sequence 5 is repeated for all the post yielded elements. 

7- Finally, elements are assembled in the usual way. Thus the current 

structure stiffness matrix is produced, and another load 

increment d{F}
BC 

 is applied. 

During loading some of the elements may experience unloading, this 

is indicated by a negative dēP  obtained from Eq. (2.31). For an 

unloaded element, d} is set to zero and in the next load increment the 

stiffness matrix is based on elastic modulus [D] E instead of on [D] EP. 

If isotropic hardening is assumed, plastic action is resumed only when 

the effective stress exceeds its previous magnitude. 

In the procedure outlined, increments of load were denoted by 

d{F} emphasizing small increments to be employed. However, if larger 
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increments are used a progressive drift from the actual response 

becomes unavoidable. Upon reaching B in Fig. 2-4, the computed 

displacement is too small, hence the resulting stresses are also too 

small and are not adequate to resist the applied load {F}B. If a 

corrective load d{F} were added to the previous load increment, the 

computed displacement {S}B  would be larger and more nearly correct. 

The corrective load is the difference between the applied load and 

resistance produced by distorted elements. This resistance is 

evaluated from the {a}o  term of Eq. (2.12), with {a}o  now regarded 

as the total accumulated stress {v} in the element. Therefore, 

d{F }C  = {F}B  — f [B] T  {a} d(vol). 

Correction load d{F} is then applied in the subsequent step. 

For instance, the equation, for the next step from point B is (see 

Fig. 2-4) 

d{F }BC + d{F}C  = [x]BP  d{S}BC' 

Thus we arrive at point C' instead of the less correct point C. The 

procedure is the same as the incremental method with a one-step 

Newton-Raphson correction method. This explanation suggests that for 

still greater accuracy, at some computational expense, Newton-Raphson 

iteration may be applied within a load step d{F}AB  so that essentially 

zero d{F} exists at the beginning of the following step. Thus, within 

a step we analyse for the successive loads d{F}AB, d{F}C1, d{F}C2, etc., 

updating strains, stresses and stiffnesses each time (Fig. 2-5). 
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F 

Fig. 2-5. 

Plarcal and King (14) prescribe large load increments, for which 

several elements are expected to yield. The procedure is shown 

schematically in Fig. 2-6, for one element only entering the plastic 

range in the load increment. Elements staying in the elastic range, or 

already inside the plastic range, offer no special problem. For the 

element under consideration, elastic loading brings the image of the 

stress-strain situation from A to B. Marcal uses the relative elastic 

strain increment 

Eo  EA  
m 	 

EB  EA  

to modify the elastic matrix [D] E  as, 

(2.40) 

[D] EP  = [D] E  — (1—m) [D] E  {Q} [W] (2.41) 

where {-} is based on stresses corresponding to point B. The 
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stiffnesses of the yielded elements are then modified and finally 

assembled. Actual analysis under the current load increment is now 

carried out, and stresses o{a} = [D] 	o{} are computed using the 

most recent estimate of [D] EP. The current state may now correspond 

to point C and the procedure is repeated until convergence is obtained. 

Convergence should be rapid because the transition zone is probably 

only a small portion of the structure. After convergence, calculation 

of plastic strains in Eqs. (2.31) and (2.29) must be based on 

(1—m) A{E} instead of on the full increment {E}. 

Fig. 2-6. 

Comparing the two algorithms described, Yamada's procedure can 

be uneconomical because of the large number of load increments required 

to bring the elements into the plastic range. Marcal's, on the other 

hand, requires a small number of load increments, but everyone of them 

requires an additional iterative procedure, with a new stiffness matrix 

computed at each iteration. 
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2.6.1.1 Calculation of the rating factor  

An elastic point with a given state of stresses {a} is considered. 

An arbitrary increment of load is applied and stress increments, dial, 

.are calculated. By introduction of the rating factor the aim is to 

increase or decrease the load increment in such a way to bring the 

elastic point to the point of yielding. 

Assume that the states of stresses before and after the load 

increment are represented by {a} and {a} + d{a}, respectively. If 'r' 

is the rating factor then from Eq. (2.24), we should have 

Y2 = 2 (a'. + r da''.) (a''. + r da2 . ) 

where y is the yield stress. On expansion, we have 

3 	= a'. a'. + 2r a' da''. + r2 da''. de 

Considering thata'.. a2~ is equal to the effective stress of the 

material before the load increment and rearranging of the above equation 

r2 da2. da'. + 2ra'. da''. + 	2 -12) = 3 Fa  

in which ā represents the previous magnitude of the material effectve 

stress. The rating factor is finally expressed by 

-a'.. a'.. + ✓(a'.. dc' .)2 - 2(a2 - Y 2 ) ( da'.. da'. ) r _  ZO 20 	20 Z3 	3 	Zj ZO  

da' de..  i0 
(2.42) 

In the computation if the rating factor found is greater than unity, 
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it is advisable to limit this parameter (e.g. by setting equal to unity) 

in order to avoid an unexpected increment of load. 

2.6.2 Initial strain method  

Another modification of Eq. (2.13) is based on the idea of 

modifying the right hand-side of the equation of equilibrium by 

treating the plastic strain in the same way as the thermal strains. This 

is achieved as follows: 

From Eq. (2.36), d{6} is substituted into the equilibrium Eq. (2.13), 

thus 

d{F}e  = f [B]T [OE  (d{e} - d{E}P) d(voZ) 

d{F} = J CB]T  [DIE  d{E} d(vol) - f [BJT  [D]E  d{E}P  d(vol) (2.43) 

or in a compact form 

d{F}e  = [K] e d{6 le  - d{P}e 	or 	[K] 
e 

d{S }e  = d{F}e  + d{P }e 	(2.44) 

where [K]e= f [BIT [DIE  [B] d(voZ) and d{ P}e = f [B]T  [D]E  d{ e }P  d(vol) 

(2.45) 

It should be noted that, by using Eqs. (2.28) and (2.26), d{E }P  may 

be expressed in terms of d{a}, thus 

d{e} = {=} dĒP  = 
H 
{a} {6}T 	d{Q} (2.46) 

Clearly, solution of Eq. (2.46) is impossible if the material is 
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assumed elastic perfectly plastic (i.e. H=0). 

To obtain the overall stiffness matrix of the whole body, 

stiffness matrices of-the elements, based on the elastic matrix [D] E, 

are calculated and assembled. This leads to an equation similar to 

Eq. (2.44), thus 

NE  d{s} = d{F} + d{P} 	(2.47) 

where d{P} are forces due to the increment of plastic strains. 

Gallagher (8) and Argyris (56) have effectively used equation 

(2.47) in the analysis of non-linear problems. The essential 

difference from the tangential stiffness method is the evaluation of 

d{P} by iterations. As suggested by Argyris (56) the iteration starts 

with estimation of stress increment d{a}i, where the suffix i denotes 

the iteration number. The basic steps in this method are: 

1- Assume the stress increments d{a}i  (at least for plastic zones) 

2- Compute d{e}P = 
	
{} (}T  d{a}i  

3- Compute d{P} 

4- Calculate d{s } = ([K] E)-1  (d{F} + d{P}) 

5- Calculate strain increments d{e} 

6- Calculate stress increments d{a}i+?  = [D] 
EP d{e} 

7- Repeat steps (2) to (6). 
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Here the iteration procedure has been developed for finding 

d{e}P  and the convergence is achieved when d{e}P — d{e}P is less 

than a reasonably small value. 

For solution of Eq. (2.47), ( [K] E)-1  is stored and not 

subsequently updated. The method is therefore not likely to be as costly as 

the tangential stiffness method. However, as the yielding of the 

material increases the number of iterations required are expected to 

increase rapidly. 

2.6.3 Initial stress method  

Due to the initial strain method not being applicable to ideally 

elastic-plastic material an alternative method called 'initial stress 

method' was introduced by Zienkiewicz, Valliappan and King (29). Here 

the equilibrium Eq. (2.13) is written as, from Eq. (2.37) 

d{F} = f [B]T (d{a}E  — d{a}P) d(voZ) 

where d{a}E  = HE  d{e} and d{a}P  = [D]P  d{e} 
	

(2.48) 

Thus 

d{F}e = (f [B]T HE  [B]  d(voZ)) d{d}e  - f[BJT  d{a}P  d(vol) 

or 	d{P}
e 
= HE 

d{d}e - d{P}e  

in which d{P}e  = f[8]1 d{a}P  d(vol) 
	

(2.49) 

As before, for the whole system, we may write 
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d{F} = [K]E  &{a} - d{P) 	or 	NIE  d{o} = d{F} + d{P} 	(2.50) 

For a typical load increment, the method can be summarized in 

the following way: 

The iteration cycle is started with the stresses known as {Q} , 
0 

1- In Eq. (2.50), assume d{P}=o and calculate the first displacement 

matrix from purely.elastic analysis as given by 

d{ d }o 
 = (NE)-1 d{ F}n  

where d{F}n  is the nth load increment. 

2- Calculate d{o}o = HE  d{E}0  , d{o}ō = [D]P  d{e}o  and therefore 

d{6}o  = d{alo - d{a}ō. Find the total stress {6}1  = {Q}0  + d{a}o. 

3- From increments d{a}o  calculate the initial loads d{P}o. 

4- Using Eq. (2.50), obtain the first corrective displacement matrix 

d{d }1 	(NE)
-1 
 (d{F}n f d{P}o) . 

5- Similar to step 2 obtain d{v}E  , d{Q}P  and thus {a}2.  

6- Repeat steps 3 to 5 by the sequential substitution in various 

equations for displacement-, strain- and stress-increments and also 

initial load increments until convergence is achieved. 

From the steps given above it is clear that this method is simple 
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and presents no problems for a cyclic loading case as the unloading 

proceeds on a purely elastic basis. However its preference over 

other methods such as the tangential stiffness method depends mainly 

on the rate of convergence. The initial stress method converges very 

rapidly in the beginning and becomes very slow near general yield. 

2.7 	Comparison of algorithms  

It is evident from the theory outlined that as the plasticity 

relations are formulated incrementally, the iterative process must be 

applied strictly to small load increments. Within such increments, 

however, any of the three algorithms described can be applied. 

In the earliest applications of the finite element process to 

plasticity the initial strain approach was favoured. However, this 

approach fails entirely if ideal non-strain-hardening plasticity is 

considered. In this case the strains cannot be uniquely determined for 

prescribed stress levels. In subsequent work the variable stiffness 

approach appears to have been favoured. The greatest advantage of the 

variable stiffness approach over the initial strain approach is its 

high rate of convergence. In fact, if the load increments are 

sufficiently small, no iterative procedure is needed, since 

mathematically the residuals will be considerably negligible. On the 

other hand the preference of the initial strain method over the variable 

stiffness method lies in its great potential economy due to the fact 

that the overall stiffness matrix need not to be updated within the 

process of loading. With regard to convergence, the initial stress 

method is identical to the initial strain method but the former is 

capable of handling non-strain-hardening plasticity. 
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2.8 Elements implemented in the computer programs  

One of three types of elements were used in discretizing a 

deforming continuum under conditions of plane strain, each type being 

implemented in a computer program. The types of elements implemented 

were: constant strain triangel, quadrilateral (built up from four 

triangles) and quadrilateral (isoparametric). These elements mainly 

differ in the mesh pattern and also in the polynomial terms considered 

in the expansion of the shape function. The effect of using higher 

terms gives a considerable advantage resulting in the reduction of the 

total number of unknowns for a desired accuracy, and also a saving in 

the preparation of data. 

In what follows, the fundemental features of these three types 

of elements are presented. 

2.8.1 Constant strain triangle elements  

Fig. 2-7 shows a typical triangular element. The element is 

widely used, owing perhaps to its simplicity and early widespread 

adoptions. 

The displacements within the element are uniquely defined by a 

linear shape function of the form 

{f} = Di.] {8}e 	(2.51) 

• s x 

Fig. 2-7. 
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where the shape function is usually expressed as 

[N] = [I N. 	 NiI 	, IN 

in which I is a two by two identity matrix and 

N. = (a. 4- b.x + c.y) (2.52) 

a2, b. and c. are determined by inserting the nodal coordinates 

and the corresponding nodal displacements into Eq. (2.51). 

Strain-displacement matrix [B] is given by differentiation of 

matrix H, thus 

[B] _ 

a o  

a 
ay 

a 

[N] (2.53) 

ax 

0 

a 
āy ax_  

Clearly, due to the linear shape function, matrix [B] is not a 

function of x or y. Thus, the elemental stiffness matrix reduces 

to 

[K] = [B] T  [D] [B] t 0 	 (2.54) 

in which, [D] may take either HE  , [D]P or [D]EP 
 , depending on 

the state of material, t=element thickness and A =element area. 

For plane strain elements matrices HE  and HEP  reduce to 

(from Eqs. (2.5) and (2.33) respectively), 
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1-v 	symmetric 

1-v 

0 	0 	1-2v 

CD
] 
E 	 

(1+v)(1-2v) 
(2.55) 

symmetric 

	

a' a, 	a,2 

	

x y 	- 
S 	S 

	

Ur T 	a, T 	T2 
x x?I 	u x?/ 	XJ 
s 	s 	s 

(2.56) 

where they have been obtained by deleting the three rows and three 

columns corresponding to dEz = dExz = deyz = 0. The row corresponding 

to dez has been eliminated but to trace the third component of normal 

stress a, in order to evaluate hydrostatic pressure required in 

Eq. (2.56), its increment must be seperately included in the computational 

procedure. From Eq. (2.34), this is given by 

/ ► 	 l f 

daz = 1 v (1-2v 

v 

s6z) dex 
+ (1-2v ~s~z) de f (6 	ST Xy ) dem 

Of course, for elastic elements this reduces to 

E  z 1+v 
[Iv 
-2v dEx 1-2v de 

It is interesting to notice that in spite of dez=0, its components 

exist and are related by 
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deP +dez =de =0 
z 	z 	Z 

or der) = — dez. That is the increment of plastic strain is compensated 

by the decrement of the elastic strain. 

2.8.2 Quadrilateral elements (consisting of four constant strain triangles) 

In order to improve accuracy and versatility, four constant strain 

triangles can be combined in such a way to produce a quadrilateral. By 

the combination of the triangular elements an additional degree of 

freedom for the combined element is introduced. This degree of freedom 

may be introduced to correct a specific defect of an element, or it may 

merely serve to improve accuracy by virtue of adding more terms to the 

assumed displacement field. 

In modeling a plane structure it is often convenient to use 

quadrilateral elements of arbitrary shape. Input data to the program 

consists of quadrilateral elements and the computer program automatically 

divides the elements into component triangular elements and properly 

assembles stiffnesses of the component triangles. In effect each 

quadrilateral becomes a small structure built of four elements. Usually, 

the internal node is assigned coordinates (Fig. 2-8) 

X
1 

+ x2 + x3 + x4 	
~1 } '2 	~3 + /4  

= 
4 	 4 

Y 

x 

Fig. 2-8. 
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The stiffness matrix of a quadrilateral is 10 by 10. It is 

both convenient and efficient to eliminate the two internal degrees 

of freedom before assembling the elements. The element stiffness 

matrix is thus reduced to size 8 by 8. This process is performed 

before the solution of the complete system of equations on the 

elemental level prior to assembly. This process of elimination is 

widely used, and in some elements there may be several internal nodes 

to be eliminated. These nodes may appear anywhere in the nodal 

displacement array and may be eliminated in any order. However, the 

the most common and easily described case is treated in the following, 

where all degrees of freedom to be eliminated are grouped at the end 

of the array. 

Let us partition the element stiffness equation so that {62} 

represents the internal degrees of freedom to be eliminated. 

  

K11 	K12 

K21 	K22 

(2.57) 

  

in which the right hand-side matrix represents loads applied to the 

element nodes. To eliminate the internal nodes, we first solve for 

{62} in terms of {S} 

{62} = CK22~
-1 ({F2} - [K213 {61

}) (2.58) 

then substitute this result into the other Eqs. (2.57) to get 

([K1 ] 	5K121 CK22]
-1 

[ 21]i {61} = {F1} 	CK211 [K22

]-1 

{F2} 

(2.59) 



n 

E _ -1  

x, U 

- 79 - 

The coefficient of {b1}  is the element stiffness matrix of a 

quadrilateral. The stiffness matrices are assembled and structural 

equations solved in the usual way, thus determining {61}  for each 

element. As a final step in solution of equations the internal 

degree of freedom may be found by application of Eq. (2.58) to each 

element. 

It must be noted that elimination and solution of equations 

are basically the same process. Both are processes in which unknowns 

are eliminated by substitution into the remaining equations. Indeed, 

if instead of using elimination we were to carry the internal degrees 

of freedom into the structural system of equations, exactly the same 

results would be otained. However, if elimination is avoided, the 

array of structural equations becomes longer and has a greater 

bandwidth, and the numerical effort of solution can be expected to 

increase. 

Usually, when these elements are employed the average value of 

stresses of four triangles, evaluated at the internal nodal point, is 

assigned as the value of stress of the quadrilateral element. It must 

be noted that such assignment will result in a reasonably smooth field 

of stress as the triangles are of the same areas. 

2.8.3 Quadrilateral isoparametric elements  

A typical quadrilateral isoparametric element is shown in Fig 2-9. 

y, V 

Fig. 2-9. 
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This group of elements are formulated using an intrinsic coordinate 

system En, which is defined by element geometry and not by the 

element orientation in the global coordinate system xy. There is, of 

course, a relation between the two systems for each element of the 

structure. This relation is expressed by 

{xj.  N1 

0 

0 

N
1 

N2 

0 

0 

N2 

N3 

0 

0 

N3 

N4 

0 

xl 

y1 

x2 

Y2 
x3 

y3 
x4 

y4 

(2.60) 

where 	N - (1—E) (1—n) 	N = (1+E) (1—n)  
1 	4 ' 2 	4 

N = 

 

	

(14-E)(1  +n) 	
N
4 

_ (1—~) (1+n)  

3 	4 	 4 	4 

This mapping relates a unit square in natural coordinates n to a 

quadrilateral in xy coordinates whose size and shape are determined 

by eight nodal coordinates. The mapping is also an interpolation 

scheme that yields the coordinates of any point in the element when 

the corresponding En coordinates are given. 

Displacements within the element are defined by the same 

functions as used to define the element shape. This is merely a result 

of isoparametric element definition. Thus 

{f} = DN] We 	 (2.61) 



{1= T 

 ¶1= 

 au 
 a 	 ax 

[J] 

u au 	ax 	a 	au 	au 
an an an ay 	a 

(2.63) 
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where [N] is the rectangular matrix of Eq. (2-60). 

The element matrices are formulated according to the previous' 

procedure for the triangular elements. However, the formulation is 

carried out in terms of isoparametric coordinates En, as follows: 

From the previous Eqs. (2.60) and (2.61), we may re-write 

4 	 4 
x = 	N. a . 	y= 	N. y. i =1 	 i =1 

(2.62) 
4 	4 

u= 	N. u. 	V = 	N. v. 
i=1 
	

1=1 Z Z 

Relations between derivatives in the two coordinate systems are 

established by the chain rule of differentiation 

where [J] is the Jacobian matrix. From Eqs. (2.62), matrix [J] is 

given by 

aN1 3N2  aN3  3N4 x1 

x2 

y1 

y2 
aE aE aE aE 

[J] = (2.64) 

3N1  aN2  3N3  3N4 x3 y3 

an an an an x4 Y4 

Using the inverse relation from Eq. (2.63), we may write 
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- [J] -1 [0] 

to] 	CJ7 —z 

 

au 

ac 

Du 
an 

 

aE 

av 

an 

 

 

(2.65) 

   

    

where [0] is a 2 by 2 matrix. 

The strain-displacement relation may be written as 

E 1 0 o 

X { E } = E~ = 0 	0 	0 	1 

E 0 1 1 0 xy 

 

au 

ax 

au 

ay 

av 

ax 

Dv 
ay 

 

 

(2.66) 

  

    

and, from Eqs. (2.62) 

               

 

—aN. 
Z 

          

           

au 

ac 

au 

an 

av 
aE 

av 
an 

 

0 

        

             

   

aE 

aN. 
2 

         

    

0 

        

   

an 

         

   

0 

 

aN. 

       

(2.67) 

    

aE 

aN 
2 

        

   

0 

         

     

an 

 

i=1 

 

i=2 

 

i=3 

  

               

               

               

               

               

Combination of Eqs. (2.65) through (2.67) yields the relation 

{E} _ [B] {ō}e. 
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Having established matrix [B] one may proceed to the 

integration of the expression [B]T [D] [B] , where [D] may represent 

HE  , [D]P  or [D]EP  , depending on the state of material. 

For a typical integral the change of coordinates is 

f [B]T  [D] [B] d(voZ) = f+1 f+i  [B]T  ED] [B] det[J] d dr1 	(2.68) 

where all matrices on the left hand-side of Eq. (2.68) are expressed 

in terms of x and y, whilst the ones on the right-side are expressed 

in terms of E and n. In general, the integration cannot be carried out 

explicitly because of the complexity of the expressions. 

Although, it can be easily evaluated numerically by the Gaussian 

method. 

For a one variable function, the integration is written as 

n 
I = f#1   f(E) dE _ i 	H. f f(.) 

i=1 

that is, at each sampling point the product H. f(Ei) is determined 

and the sum of these products for all the sampling points approximate 

to the integral, I. 

The Gauss method locates the sampling points so that for a 

given number of points, greatest accuracy is obtained. Sampling 

points are located symmetrically with respect to the centre of the 

interval. Figure 2-10 shows the symmetrical positions and weighting 

coefficients for Gaussian integration. 

The above procedure can be extended to evaluate a double integral. 

The most obvious way of obtaining the integral 

t1 +1 I = f-1 f-1 f(,n) d d1 
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is to first evaluate the inner integral keeping rl constant and then 

the outer integral. Thus 

n 
= _~ 	f 1f

( ~,n> dn= 	 _ H~ 2f(E~,n2 ' 
e% 	 0=1 i=1 

ABSCISSAE AND WEIGHT COEFFICIENTS OF THE 
GAUSSIAN QUADRATURE FORMULA 

J
J(i) dx = E HJ(a) 

1 	,= 1 

+a 	 11 
n = 1 

0 	 2 00000 00000 00000 

st =2 
0 57735 02691 89626 	100000 00000 00000 

n = 3 
0 77459 66692 41,183 	0 55555 55555 55556 
0 00000 00000 00000 	0 88888 88888 88859 

n = 4 
0 86113 63115 94053 	0 34785 48451 37454 
0 33998 10435 84856 

	0 65214 51548 62546 
n = 5 

090617 98459 38664 	0 23692 6S550 56189 
0 53846 93101 05683 	0 47862 86704 119366 
0 00000 00000 00000 	0 56888 88588 88889 

n = 6 
0 93246 95142 03152 

	
0 17132 44921 791 70 

0 66120 93864 66265 
	

0 16076 15730 45119 
0 23861 91860 83197 

	
0 46791 39345 72691 

Fig. 2-10. 

2.9 Conclusion  

In the proceding chapter, the incremental methods for the 

prediction of elasto-plastic deformation of a continuum by the finite 

element method were presented and compared. Amongst the methods 

presented, the method of variable stiffness matrix was selected for 

future computer implementation, owing to its rapid rate of 

convergence although at the cost of slightly higher computing time. 

The restrictions introduced are: 

a- Small deformations 
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b- Absence of Bauschinger effect 

c- Isothermal deformation 

d- Isothropic material behaviour 

Restriction 'd' could be easily lifted by abandoning the 

symmetry properties of the constitutive tensor. The final expressions 

obtained would not be applicable but alternative expressions could 

easily be produced. Clearly, using such a formulation would 

dramatically increase the computing time. Restriction 'c' and 'b' 

might also be removed without substantial difficulty in the derivation 

stage. Again one should expect the computing time to be substantially 

affected. Restriction 'a' is the most decisive one in the formulation. 

Should this one be lifted a substantially new formulation would be 

required and for that prupose Marcal's work (36) might prove to be of 

invaluable help. 
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CHAPTER 3 

THE COMPUTER PROGRAMS  

	

3.1 	Introduction  

The computer programs presented in this thesis are based on an 

approach similar to that due to Yamada (20), described in the previous 

chapter. In the present approach, however, an instaneous frame of 

reference is used to describe the incremental elasto-plastic deformation 

of the continuum. As previously described, this kind of strategy to 

some extent offsets the effect of omitting the non-linear terms and 

therefore strains of higher magnitude may be tackled within a certain 

degree of accuracy. Moreover, in the present approach, negative plastic 

strains are treated and considered to indicate the elastic unloading of 

the material. 

The computer programs developed (written in Fortran IV) are mainly 

restricted to small strain plasticity. They can, however, be modified 

to perform a similar analysis on a large strain and large displacement 

formulation, such as derived by Marcal (36). The modifications, as 

Marcal believes, are minor and can be implemented easily in an available 

elastic-plastic computer program. 

	

3.2 	Computation procedure  

The computer programs were developed on the following sequence of 

computations: 

1- For the boundary condition imposed, nodal displacement and thus 

elastic strains, stresses and equivalent stresses (Q) within each 

element were calculated. 

2- All elastic values were scaled up in order to induce yield in the 
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element with the maximum equivalent stress. The rating factor 

was r - āY  , where Y denotes the yield stress of the material max 
under consideration and &max  is the maximum equivalent stress. 

3- The nodal displacements and forces and also the element strains 

and stresses were multiplied by rating factor r. 

4- Matrix [D] and hence [K] were updated for the yielded elements. 

5- The overall stiffness matrix of the whole body was modified. 

6- The geometrical matrices were updated using the current nodal 

coordinates. Clearly, this is not a mandatory sequence at the 

beginning of the loading procedure. 

7- The instantaneous boundary conditions were read-in. 

8- The modified system of equations were solved and strain-, stress—

and equivalent stress-increments within each element were 

calculated. 

9- The rating factor r was calculated for every element remaining in 

the elastic state. 

10- The minimum value of the rating factors was found and designated 

r1. If r1  was larger than some prescribed value limiting the 

amount of deformation, then r1  was set equal to the prescribed 

value (this is explained further below). 

11- The nodal displacement- and force-increments and also the elemental 

strain- and stress-increments were multiplied by the latest value 

of the rating factor. 

12- Strain- and stress-increments for unloaded elements were recalculated. 

13- The nodal displacement- and force-increments and also the strain- and 

stress-increments were added to the previous displacements, forces, 

strains and stresses, respectively. 

14- Matrix [D] was updated for the yielded and unloaded elements. 



Billet configuration in the 
nth load increment 

dv. 
Z 

Billet configuration in 
\the n+lth load increment 

du. 
eJ 
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15- The elemental stiffness matrices of all elements were updated. 

16- The overall stiffness matrix of the whole body was modified. 

17- Sequences 6 through 16 was repeated until a desirable deformation 

was attained. 

Sequence 11 is explained further as follows: 

There are circumstances for which the rating factor r1  may have to be 

reduced in order to avoid an undesirable increment of deformation. 

For instance, if the rating factor is found to be very large, it must 

be reduced to a prescribed 'value (e.g. by setting it equal to unity) 

in order to prevent the possibility of a large and unexpected amount 

of deformation severely influencing the accuracy of the calculation. 

As a further example, when a round billet is indented in a rectangular-

shaped chamber, at some stage of deformation the rating factor must be 

set equal to a prescribed value in order to avoid any violation of the 

physical nature of the deformation (see the illustration) 
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It can be deduced from the illustration that in order to bring back 

the violating node (denoted by i+1) to within the imposed upper 

boundary, we should have 

yi + vi + r2 dvi = yi+1 + vi+1 + r2 dvi+1 

where: 

r2 is the required rating factor 

yi, yi+1 
are the initial y coordinates of nodes i and i+1 

vi, vi+1 are the vertical displacements of nodes i and 
i+1 at the end 

of the nth load increment 

dvi, dvi+1 are the increments of vi and vi+1 at the end of (n+1)th 

load increment 

Rearranging the above equation gives 

yi - yi+1 + vi -  vi+1 
dui - dvi+1 

Similarly, to bring back the violating node (denoted by j+1) to within 

the imposed boundary on the right, we should have 

x~j - x. +1 + u~ j - u~j +1 
r3 	du. - du j+1 

The minimum values of r1, r2 and r3 determine the admissible rating 

r2 

factor. 
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3.3 	Description of the programs  

The computer programs presented, include one of each the three 

types of elements previously described. This avoids involving all 

three types of elements in a single cumbersome program. This kind 

of presentation not only simplifies the description of the programs 

but also gives a good estimation of the effort required to introduce 

a new type of element into an available computer program. 

The general name of the program is' 'EPFEAX', standing for 

Elastic-Plastic Finite Element Analysis. The symbol 'X' indicates 

the type of element implemented and may take the values 1, 2 or 3 

for constant triangular, quadrilateral and quadrilateral isoparametric 

elements, respectively. 

3.4 Analysis of the program EPFEA 1  

This program was developed to analyse elasto-plastic deformation 

of a continuum by using constant strain triangular elements. The 

listing of the program and variables involved are presented in appendix 

A. The flow chart is shown in Fig. 3-1. As shown, the program can be 

roughly subdivided into seven main subroutines, in each of which 

specific operations are performed. The basic features of these 

subroutines are as follows: 

3.4.1 Subroutine GDATA  

This routine concerns the entering of data, via punched cards. 

The data includes number of elements, number of nodes, nodal connections 

of the elements, material properties and many other specifying 

information. The data is subsequently used to compute additional but 

related data. Nodes are scanned, the nodal coordinates being scaled 
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CALL GDATA 

       

  

t 

   

     

 

CALL SKFORM 

       

  

t 

   

       

 

CALL BOND1 

 

       

  

t 

   

     

     

 

CALL YIELD1 

       

  

t 
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STOP 

I = 1+1 

Fig. 3-1. 
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down. Elements are scanned and geometrical matrices related to the 

elements are computed. Finally, elemental elastic matrices are 

initialised. 

3.4.2 Subroutine SKFORM  

The general purpose of this routine is to create the elastic 

elemental stiffness matrices. All necessary data is transmitted to 

it from routine GDATA. The elements are scanned and the basic 

operations are: 

1- To construct the strain-displacement matrix [B]. 

2- To construct the stress-strain relationship [D]. 

3- To multiply the transpose of [B] by [D] and then by [3], i.e.  

obtaining the H T  [D] [a] . 

4- To multiply the product matrix by the area of the element. 

5- To add appropriately the elemental stiffness matrix to the overall 

stiffness matrix. This is achieved by an internal routine called 

SADD, which adds the elemental stiffness matrices in a banded form 

to the overall stiffness matrix. 

3.4.3 Subroutine BOND 1  

This routine prepares the initial boundary conditions by 

allocating integer values to a pointer vector NP which is then used to 

modify the system of equations prior to solving them. 

Boundary conditions are read-in as either '0' or '1' for each degree 

of freedom, with '0' denoting a prescribed force and '1' denoting a 

prescribed displacement. It is worth mentioning that the corresponding 

elements of vector NP due to the node i are 2i-1 and 2i in the X and Y 

directions, respectively. 
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3.4.4 Subroutine YIELD 1  

Plastic deformation is initiated by a call made to this routine. 

The system of equations and boundary conditions created by the 

previous routines and transmitted to this subroutine are transferred 

to an internal routine called SOLVE. The routine SOLVE (or equation 

solver routine) modifies the system of equations prior to solving them. 

The modification procedure involves the miltiplication of the 

appropriate diagonal term by a large number (e.g. 1020) when a 

prescribed displacement is encountered and then modification of the 

corresponding load vector. 

The system of equations are solved using the direct method of 

Gauss elimination, although the Gauss-Seidal iterative method is 

preferable for its ease of programming and also for its undeniable 

saving in computing time when using the optimum relaxation factor. 

In plasticity the relaxation factor must be successively redefined in 

order to take into account the decrease of rigidity of the system of 

equations. There is not a definite method of determining the relaxation 

factor and hence the convergence is neither likely to be achieved nor 

the time taken to be economical. Particularly when the system of 

equations becomes ill-conditioned owing to the bulk plastic yielding of 

the continuum. 

Having obtained the nodal displacements, elements are scanned and 

using the appropriate relations, strains and hence stresses within the 

elements are calculated. The element with the maximum equivalent stress 

is determined and the rating factor r= Y 	
is calculated. The 

max 
variables such as nodal forces and displacements and also elemental 

strains, stresses and equivalent stresses are then multiplied by the 

rating factor r. In the subsequent operation, the element with the 
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maximum equivalent stress is considered yielded and its stiffness 

matrix is calculated according to the appropriate elasto-plastic 

relationships. In EPFEA 1, however, a provision was made for some 

elements to be included amongst the yielded elements just prior to 

yielding. This allowance is advantageous for saving computing time. 

In the program, elements of 6> 0.98 Y are considered to be plastic. 

When an element yielded, the corresponding element of a status 

vector called NP1 is set equal to 1. There-by, the status of the 

post-yield elements can be simply distinguished from the remaining 

elastic elements. At the end of this routine, the elemental 

stiffness matrices of the post-yield elements are deleted from the 

overall stiffness matrix and new values are substituted. 

3.4.5 Subroutine CHANGE  

The geometry of the continuum is updated by a call made to- this 

routine. Nodes are scanned and the initial nodal coordinates are 

added to the corresponding nodal displacements. Subsequently, elements 

are scanned and geometrical matrices related to the elements are 

recalculated. 

3.4.6 Subroutine BOND 2  

The instantaneous boundary conditions are provided by a call made 

to this routine. This is a compulsory routine if the initial boundary 

conditions are to be redefined in order to deform the continuum in a 

particular manner. For instance, when a billet is indented between two 

approaching platens, the peripheral nodal points must be maintained 

below the surfaces of the platens in order to avoid violation of the 

physical nature of the process (see the illustration a). Alternatively, 
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if the billet is indented as shown in illustration b, the initial 

boundary conditions have to be appropriately redefined in order to 

prevent any of the peripheral nodes passing the imposed surfaces. 

Conversely, if during deformation the initial boundary conditions 

remain unchanged as shown in illustration c, then this routine can 

be either by-passed or eliminated altogether. 

	

t 

	

t 

	

(a) 	

1 
	(b) 

t 
(c) 



-96- 

3.4.7 Subroutine YIELD 2  

This important routine is successively called until a desirable 

magnitude of deformation is attained. Briefly, it performs the 

following operations: 

1- The system of equations and instantaneous boundary conditions 

transmitted to this routine are passed to the routine SOLVE 

and the incremental variables are calculated. 

2- Elements are scanned and the strain- and stress-increments are 

obtained. 

3- The rating factors, for those elements remaining in the elastic 

state are obtained and the maximum is designated YP. 

4- In the indentation of the round billet in a rectangular-shaped 

chamber, the peripheral nodes are scanned. If any of the nodes 

violate the imposed boundary, factors YP1 and YP2 are calculated 

as described in order to bring back the nodes within the 

specified boundary. The minimum value of YP, YP1 and YP2 is 

taken as the allowable rating factor. 

5- The incremental variables such as displacement- and load-increments, 

etc. are multiplied by the recent value of the rating factor. 

Using the same allowance as before, elastic elements with a> 0.98 Y 

are considered to be plastic. 

6- Elements are scanned, the effective strain- and stress-increments 

being obtained. For the post-yield elements, the effective plastic 

strain increments are also calculated. If, any of the post-yield 

elements unloaded, del)  is set equal zero and on the basis of elastic 

matrices, the strain-, stress- and effective stress-increments are 

recalculated. The unloaded elements are considered elastic and their 

yield stresses are changed to their latest attained values of 
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effective stresses. 

7- Nodes are scanned and the current nodal coordinates are added 

to the corresponding nodal displacement-increments. 

8- Elements are scanned and the current elemental stresses, strains, 

effective stresses and effective plastic strains (for the post-

yield elements) are obtained. 

9- Depending on the recent state of elements the elemental stiffness 

matrices are recalculated, so modifying the overall stiffness 

matrix of the whole body. 

10- Having applied a number of increments, the total forces applied 

by the platens and their contact widths with the billet and other 

required information are written on the tape for further processing. 

11- Having obtained a particular amount of deformation, nodes are 

scanned and the average effective stresses and effective plastic 

strains of the elements associated with that particular node are 

calculated and printed out. 

3.5 	Analysis of the program EPFEA 2  

This program was developed to analyse elasto-plastic deformation 

of a continuum by using quadrilateral elements. Although the structure 

of EPFEA 2 differs substantially from EPFEA 1 they both perform basically 

the same operations, since in EPFEA 2 each quadrilateral element is 

subdivided into four constant strain triangles. The general feature 

of this program is outlined below, the listing of the program including 

the variables used being shown in appendix B. It is worth mentioning 

that in the following, only substantial differences from EPFEA 1 are 

presented and discussed. 
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3.5.1 Subroutine GDATA  

Elements are scanned, average nodal coordinates of the element 

under consideration being calculated and assigned as the coordinates 

of the internal node (see the illustration), i.e. 

x = 
x1 + x2 } x3 + x4 

 and 	
= y1 4. y2 + y3 4-  y4  

5 	4 	y5 

In the subsequent operation the element is subdivided in 

anticlockwise and according to the elemental node numbering. The 

subdivided element is node-numbered corresponding to the node 

numbering of the original element. Thus the internal node is 

designated the last node in the substructure comprising four triangles. 

As described, this has the effect of grouping all the degrees of 

freedom to be eliminated in the 9th and 10th rows of the substructure 

stiffness matrix. Having numbered the resulting four triangular 

elements, the geometrical matrices corresponding to the triangles are 

calculated. 

4 
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3.5.2 Subroutine SKFORM  

Elements are scanned and the stiffness matrices of the triangles, 

comprising the quadrilateral element under consideration, are calculated 

and assembled. Rows corresponding to the internal node are then 

eliminated obtaining the stiffness matrix of the quadrilateral element. 

In the usual way, the stiffness matrices of quadrilateral elements 

are assembled and thus the overall stiffness matrix of the whole 

body is built up. 

3.5.3 Subroutine YIELD 1  

A substantial change in this routine is the introduction of two 

additional vectors to resume the displacement of the internal nodes 

when required. 

The system of equations are solved. Elements are scanned and 

using the appropriate relations the internal nodal displacements are 

calculated and stored. As usual, for the resulting triangles the 

strains; stresses and effective strains are calculated. Elements 

are scanned and if any of the comprising triangular elements are found 

to have yielded, the quadrilateral stiffness matrix is recalculated 

and substituted in the overall stiffness matrix of the whole body. 

3.5.4 Subroutine YIELD 2  

This routine functions basically on the same principle as YIELD 1. 

In YIELD 2, however, provision is made to treat the unloaded 

quadrilateral elements. Elements are scanned and if any of the 

comprising triangular elements are found to be unloaded, the elemental 

stiffness matrix is recalculated and substituted in the overall stiffness 

matrix of the whole body. 
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When a desirable magnitude of deformation is attained, the 

elements are scanned and average values of the effective plastic 

strains and also effective stresses of the comprising triangular 

elements are calculated and assigned as the mean values of the 

element under consideration. 

3.6 	Analysis of the program EPFEA 3  

This program was developed to analyse elasto-plastic 

deformation of a continuum by using quadrilateral isoparametric 

elements. Although, in the present program only quadrilateral 

isoparametric elements were implemented, slight modifications would 

allow higher order elements such as quadratic or cubic isoparametric 

elements to be implemented also. 

The flow chart of this program is essentially identical to that 

of EPFEA 1, although some additional routines have been introduced in 

order to perform appropriate operations (mostly now in the form of 

numerical integrations) attributed to the quadrilateral isoparametric 

elements. The listing of the program and variables involved are 

presented in appendix C. 

The description of substantial changes, as compared with EPFEA 1, 

are as follows: 

3.6.1 Subroutine GDATA  

To generate the element stiffness matrix a call is made to an 

internal routine called STIFF. In this routine the element stiffness 

matrix is initially set equal to zero. The Gaussian points (four, in 

the present case) within the element under consideration are then 

scanned and calls are made to routine SHAPE. Subsequently, stiffness 
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matrices corresponding to the Gaussian points are generated and 

assembled, forming the element stiffness matrix. In the usual way 

element stiffness matrices are assembled and the overall stiffness 

matrix of the whole body is built up. 

It should be noted that routine SHAPE calculates the shape 

functions, derivatives of the shape functions and determinant of the 

Jacobian matrix, for a Gaussian point under consideration. 

3.6.2 Subroutine YIELD 1  

When the displacements are found, the Gaussian points are scanned. 

For the point under consideration a call is then made to routine SHAPE 

obtaining the shape functions. Strains are then calculated by 

multiplication of the shape functions and the corresponding element 

nodal displacements. Stresses and effective stresses are determined in 

the usual way. 

Having obtained effective stresses, the Gaussian points are 

scanned and the point with the maximum effective stress and hence the 

rating factor, are determined. For any element in which one or more 

points have yielded, the element stiffness matrix is recalculated and 

substituted in the overall stiffness matrix. 

It is of interest to note that quadrilateral isoparametric 

elements resemble quadrilateral elements if the four Gaussian points in 

the former are assumed to be representative of the four triangles 

involved in the latter. That is, irrespective of numerical integrations 

involved in the isoparametric elements, the two elements resemble each 

other in many respects when being implemented in a computer program. 
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CHAPTER 4  

EXPERIMENTAL WORK 

4.1 	Introduction  

The first and main objective of the present work was to 

analyse the indentation process for the particular condition when the 

chamber and billet were respectively rectangular and circular in cross-

section. The billet was assumed to undergo plane strain deformation. 

During the course of indentation the geometry of the billet cross-

section was measured and recorded in the central region of the billet 

length. The loads applied to the different segments of the chamber 

were also measured and recorded. This study will be presented in the 

first part of the chapter. 

The study of the maximum axial frictional force induced at the 

interface of the billet and chamber was the second objective of the 

present work. The billet was first indented, and then deformed by a 

pressure pad moving coaxially with the clamped billet, until slippage 

occured. The maximum load applied to the pad was measured and recorded 

for various initial amounts of indentation and initial lengths of 

billet. This study will be considered in the second part of the 

chapter. 
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PART 1  

STUDY OF THE INDENTATION PROCESS  

4.2 	Introduction  9 
As described in section 10, in a friction actuated continuous 

extrusion process such as 'Context', the amount of indentation is 

determined by the minimum transverse distance that the segments have 

to travel in order to enter the tube which holds them together as 

they move towards the die. It is worth noting that in some friction 

actuated continuous extrusion processes such as 'Linex', the chamber 

segments are held together by means of guiding blocks which, 

nevertheless, in effect, constitute a tube. The following text 

therefore not only applies to a process such as 'Context' but also in 

principle to any other type of friction actuated continuous extrusion 

employing a similar mechanism to indent the billet. In such systems 

four different types of indentation can be distinguished, depending on 

the size of the billet relative to the chamber cross-section. These 

are shown in Fig. 4-1. In order for the segments to enter the tube 

for the cases shown in (a) and (c) the billet need only be indented by 

segments A and B. In (a), the billet does not make any contact with 

segments C and D during the course of indentation, which is in 

contrast to the case shown in illustration (b). In (c), the billet is 

in contact with segments C and D from the first moment of indentation. 

In (d), all four segments must indent the billet in order for them to 

enter the tube. 

In the experimental work presented here, only the cases shown in 

(a) and (c) were considered. The deformation of the billet in these 

cases is entirely dependent on the transverse movement of segments 
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(b)  

(c)  

Fig. 4-1. Different modes of indentation. 

+- 
(d)  
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A and B. In the rest of this work, those cases shown in illustrations 

(c) and (a) will simply be referred to respectively as indentation with 

and without side-restraint. The deformation of the billet for the 

cases shown in illustrations (b) and (d) is more complicated. In (b) 

it will be required to know the moment at which the billet makes contact 

with the segments C and D in order to define its state of deformation, 

and in (d) the transverse movement of these segments will also be 

required. 

	

4.3 	Design considerations  

As described in section 1.6, deformation of the billet during the 

course of indentation may reasonably be assumed to take place under 

conditions of plane strain and this was one of the major requirements 

considered in designing the test-rig. The main design requirements 

were as follows: 

1- The chamber length in relation to the size of the chamber cross-

section should be sufficiently large to ensure plane strain 

deformation. 

2- Instrumentation should be provided for the instantaneous recording 

of loads applied to the chamber segments. 

	

4.4 	Experimental set-up  

The experimental set-up which served to indent the billet with 

and without side-restraint is shown in Fig. 4-2. The chamber was 

comprised mainly of segments A and B which were fixed to the upper and 

lower platens of a two pillar die-set. Segments C and D, fixed on 

blocks E and F, formed the other two sides of the chamber and were only 

employed for the case of indentation with side-restraint. The blocks 
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BILLET 

FLOATING 
SIDE-PLATES 

RUBBER 
PAD 

/ 

DEFORMED BILLET 

LOAD CELL 

I 

Fig. 4-2. Experimental set-up for billet indentation with and 

without side restraint. 
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E and F, at their two extreme ends, were connected together by means 

of rods G and H. These rods also served as load-cells in measuring 

the restraint forces applied to the billet by segments C and D. 

In order to eliminate any lateral frictional forces which would 

be exerted on segments C and D, their supporting blocks E and F 

were designed to float on two rubber pads. Clearly, this provided 

the particular condition in which segments A and B would indent the 

billet at equal speed. The segments forming the chamber were made of 

EN24 steel and heat treated to 52 RC. After heat treatment the inside 

surfaces of the chamber were ground to C.L.A. of 0.25 um (10 pin). 

The load-cells G and H were also made of EN24 steel but in annealed 

condition. Each of the load-cells were provided with four strain 

gauges forming a full Wheatstone bridge. Before calibration, the load-

cells were subjected to alternate loading in order to stabilize the 

readings. The load-cells were finally calibrated under tension and 

the calibration curves are shown in Fig. 4-3. 

The experiments were conducted on a 540 KN (120 000 Ib) Tinus-

Olsen testing machine. Throughout the experiments the speed of the 

press-ram was maintained at 1 
mm 
 (0.04  in 

min 	min)' 

4.5 Specimens  

The cylindrical specimens were manufactured from commercially 

pure aluminium and lead. The aluminium specimens were machined from 

standard bars to diameter of 38.1 (1.5), 50.8 (2) and 63.5 mm (2.5 in) 

and to lengths of 130 and 190 mm. 

To produce the lead billets, blocks of lead were melted and cast 

in the form of long cylinders. The lead specimens were then 

manufactured from these ingots to the same dimensions as those used in 
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Fig. 4-3. Calibration curves for load-cells 'G' and 'H'. 
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the manufacturing of the aluminium specimens. 

The aluminium and lead specimens were eventually annealed at 

400 °C and 200 °C respectively for two hours. 

4.6 	Instrumentation  

4.6.1 Data logger 

A Solartron digital data recorder was used to measure and record 

strain or load with up to 100 analogue input signals. The inputs 

could be scanned in sequence at a speed which could be adjusted to 

various values between 10 samples per second and one per four seconds. 

A single channel could be selected and continually sampled or 

alternatively a number of channels. 

The analogue signals were converted to digital form and their 

values could be observed on an in-line illuminated display unit. A 

high speed numeric printer was connected to the data logger from which 

the channel identity, polarity of the readings and digital voltage 

values could be printed out. 

4.6.2 Measurement of dimension and area  

To measure the variables involved in the experiments a number 

of mechanical instruments were used. The instruments and measuring 

procedures employed were as follows: 

1- A bench micrometer was used to measure the billet height, i.e. 

distance between segments A and 8 (see Fig. 4-2). The accuracy 

of the instrument was ± 0.0025 mm (± 0.0001). The measurement was 

carried out when the billet was unloaded and removed from the 

chamber since the elastic recovery was assumed negligible in 

comparison with the extent of the plastic deformation. 
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2- A standard vernier was used in measuring the widths of the 

contact surfaces. The measurement was carried out at the central 

region of the billet length, where the deformation was most 

likely to be under conditions of plane strain. 

3- A planimeter was used in measuring the areas of the contact 

surfaces. The accuracy of the instrument was ± 1 mm2. 

4.6.3 Surface profile measurements  

A Talysurf machine was used in measuring the roughness of a 

desired surface. Essentially, the instrument consists of a pick-up 

unit having a sharply pointed stylus which is transversed across the 

surface by means of a motorised driving unit. 

The up and down movements of the stylus are converted into 

corresponding changes in an electric current which are amplified by 

means of a valve amplifier, and then used to control: 

1- A graph recorder which provides a profile of the surface. 

2- An average meter which shows the centre-line-average (C.L.A.) 

index of all irregularities coming within a standardised length 

of surface. 

4.7 	Parameters defining the state of deformation  

In order to pursue the state of deformation a number of 

parameters during the course of indentation were measured and recorded 

(see Fig. 4-4). The measured parameters in indentation of round 

billets without side-restraint were as follows: 

1- H = height of billet 

2- W1  = width of contact surface with the chamber top segment 

3- D = diameter of billet 



F1 

Al  

INITIAL BILLET LENGTH•= L 
0 

DIAMETER = Do  

Fig. 4-4. Definition of various parameters in indentation of 

round billets with and without side restraint. 
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4- F1  = indenting force applied by the top segment, or vertical 

indenting force. 

5- Al  = area of contact surface with the top segment. 

In the indentation of round billets with side-restrain the 

parameters measured were as follows: 

1- H = height of billet. 

2- W1,  W2  = widths of contact surfaces with the top and side segments 

respectively. 

3- F1,  F2  = indenting forces applied by the top and side segments, or 

vertical and horizontal indenting forces respectively. 

4- A
l' 
 A2  = areas of contact surfaces with the top and side segments. 

It is worth commenting that in theory, for plane strain 

deformation the parameters W1 , W2, D, F1  and F2  are related linearly 

to the initial diameter of the billet, and also that the parameters 

F1  and F2  are related linearly to the length of the billet. The 

parameters used in representing the experimental data were as follows: 

H -H 
1- __ - - amount of indentation. 

0 

2- -1 , p2  = widths of contact surfaces. 
0 	0 

D-D 

3- D
o 
 = increase in the billet diameter. 

0  

	

F
1 	

F
2  

4 	L xD 	L xD - vertical and horizontal indenting forces. 
0 0 0 0 

F1 
 5- P1  (= 	) , P2  (= Ā2  It--) ) = mean normal pressures applied by the top 

	

1 	2 
and side segments. 
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4.8 	Experimental procedure  

An incremental procedure was employed for the indentation of 

the billets. Incremental loading was continued until a desirable 

amount of indentation was obtained or in some cases until the load 

required exceeded the capacity of the press. 

For indentation of billets without side-restraint the side-

segments from the die-set were removed. The experimental procedure 

was as follows (see Fig. 4-2 as required): 

The billet was first symmetrically placed on the lower segment of the 

chamber. After applying an increment of load, the billet was unloaded 

and removed from the chamber and the required measurements were taken. 

The billet was then replaced in the die-set and then re-set for the 

next increment of load. 

For indentation of billets with side-restraint the side-segments 

were inserted in the die-set. The experimental procedure was as 

follows: 

The billet was placed on the lower segment of the chamber as before. 

The rubber pads, which were supporting segments C and D, were adjusted 

in height in order to level the axis of symmetry of the billet and 

those of the load-cells G and H. This was to eliminate any eccentric 

forces which would be applied to segments C and D. If these were 

to occur the bending moments induced could drastically affect the 

load-cell readings. Nuts I and J were then uniformly tightened until 

segments C and D embraced the billet without any slackness. The billet 

was then incrementally indented as before. At intervals, however, the 

billet was removed from the chamber by first retracting segments A 

and B. The residual forces applied to segments C and D were then 

recorded and finally by slackening nuts I and J the billet was removed 
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from the chamber for the required measurements. At the beginning of 

the next increment of load the reverse procedure was followed. 

Initially the billet was symmetrically placed between segments C and D 

and nuts I and J were tightened until reaching the same level of 

residual forces recorded by load-cells G and H. Finally, the billet 

which was clamped between segments C and D was symmetrically placed in 

the die-set between segments A and B. 

The experiments were conducted on both dry and lubricated billets. 

Dry billets were prepared by cleaning with trichloroethylene, and 

leaving to dry completely before starting the experiments. Lubricated 

billets were prepared by coating the specimens with a thin film of 

molybdenum disulphide. During the course of the experiments no 

additional lubrication was provided. 

4.9 	Experimental results and discussions  

The results obtained from the indentation of round billets without 

and with side-restraint are shown in Figs. 4-6 to 4-13. The symbols 

used and the specification of the billets are shown in Fig. 4-5. In 

the results shown, the main parameter against which the other parameters 

were plotted was the amount of indentation, (Ho-H)/Ho. 

In Figs 4-6-A to 4-6-D the results obtained for the case of 

indentation of round billets without side-restraint are shown. The 

relationships between contact width W1 /Do  and the amount of indentation 

(Ho-H)/Ho  and also between (D-D0)/D0  and (Ho-H)/Ho  are shown in Figs. 

4-6-A and 4-6-B respectively. For billets of different sizes, the values 

of both W1 /Do  and (D-Do)/Do  lie on unique curves when plotted against 

(Ho-H)/Ho, as shown in Figs 4-6-A and 4-6-B (dotted lines). From the 

uniqueness of these curves it is concluded that these parameters are both 



x 
O 
W 
0 

- 115 - 

BILLETS SPECIFICATIONS  

Lo  (mm) 	Do  (mm) {in} 

130 	 38 {1.5} 

130 	 51 {2.0} 

130 	 64 {2.5} 

190 	 38 {1.5} 

190 	 51 {2.0} 

190 	 64 {2.5} 

PUNCH LENGTH = 150 mm 
F 

IN THE CALCULATION OF  D x L IF Lo> PUNCH LENGTH, THE 
0 0 

PUNCH LENGTH WAS INSERTED. 

Fig. 4-5. Specications of the billets used for experiments. 
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pure aluminium under dry condition. 
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Fig. 4-6-C. Variation of indeting force 'F1 ' with height 'H' for commercially 

pure aluminium under dry condition. 
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related linearly to the initial diameter of the billets. This is 

consistent with the theoretical requirement for plane strain conditions. 

Furthermore it is also concluded that during the course of deformation 

the central region of the billet length was subject to conditions of 

plane strain. 

By reference to the propagation of plastic deformation, as 

described in (57), it is possible to explain the behaviour of the 

parameters W1 /Do  and (D-Do)/Do. When the amount of indentation is 

sufficiently small, plastic deformation occurs most intensely in the 

proximity of the segments, as shown in the illustration below (this type 

of deformation is usually 

referred to as mode I). 	 I 	PLASTIC 
REGION 

As illustrated, in this 
RIGID 

mode of deformation a 	17 	REGION 

portion of the free-

surface is pushed out 

and hence accelerates 

contact between the 

billet and the segment-

surface, Also, since 

the free-surface is 

tangential to the 

segment-surface, the 

rate at which it makes contact with the latter is a maximum. This, 

together with the above fact accounts for the initial sudden rise in 

the curve shown in Fig. 4-6-A. Since during this period of indentation 

the diameter of the billet is subject to hardly any plastic deformation 

it sustains negligible deformation (as shown in Fig. 4-6-B). When the 
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amount of indentation is increased beyond a critical value, a plastic 

region, as shown in the illustration below, develops in the material 

between the upper and lower 

segments (mode II deformation). 

As shown, in this mode of 

deformation the sides of the 

billet move apart as rigid 

masses. During this period of 

indentation the contact width 

'W1 ' increases almost at a 

constant rate, whilst the rate 

of increase of diameter 'D' 

accelerates. When the amount 

of indentation is increased beyond the critical value for which W1  > H, 

the plastic deformation extends to the billet-sides as shown in the 

illustration below (mode III). 

During this mode of deformation 

the contact width 'W1 ' and 

diameter 'D' begin to increase 

rapidly. Clearly, when the 

height of the billet has been 

greatly decreased the contact 

width 'W1 ' and diameter 'D' 

will increase drastically 

since any further decrease 

in height will cause a large volume of material to be displaced outwards. 

The contact width 'W1 ' and diameter 'D' will tend to infinity as the 

height of the billet is reduced to negligible values. 

PLASTIC 
REGION 

RIGID 
REGION 

PLASTIC 
REGION 

RIGID 
REGION 
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The relationship between the indenting force F1 /(L0xD0) and the 

amount of indentation (H0-H)/H0  is shown in Fig. 4-6-C. As it can 

be seen the results are to some extent dependent on the initial size 

of the billet. The dependence of the results on the billet size is 

due to the non-uniformity of deformation along the length of the 

billet, particularly near the ends. It is worth mentioning that 

billets of different diameters, which were cut from standard rods 

of different sizes, were found, from a hardness survey, to have 

slightly different mechanical properties. This explains the greater 

dependence of the results on the billet initial diameter rather than 

the billet initial length. 

The indenting force curves, shown in Fig. 4-6-C, vary 

approximately in the same manner as the contact width curves shown 

in Fig. 4-6-A. The rate at which the indenting forces increase first 

rises rapidly, then remains constant, and finally increases 

considerably. These various rates come into effect as different 

modes of plastic deformation described above are developed in the 

billet cross-section. 

The relationship between the normal pressure 'Pl' and the amount 

of indentation (Ho-H)/Ho  is shown in Fig. 4-6-0. As it can be seen, 

the results are markedly dependent on the billet size, and hence 

do not precisely represent the variation of pressure during plane 

strain indentation. Under conditions of plane strain, the variation 

of pressure will be represented by that obtained from the billet of 

greatest length and smallest diameter, since for this case deformation 

was least influenced by the end-effect. As it can be seen from Fig. 

4-6-D, the pressure at first decreases, then remains constant, and 

finally increases. Similarly these various intervals correspond to 
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the regions when the various modes of deformation take effect. 

The results obtained from the indentation of lubricated 

aluminium billets and dry lead billets without side-restraint are 

shown in Figs. 4-7 (A to C) and 4-8 (A to D) respectively. These 

show the same trend as those obtained from the indentation of dry 

aluminium billets shown in Fig. 4-6 (A to D) above. As can be seen, 

the results obtained from the indentation of dry lead billets are 

more scattered than the corresponding ones obtained from the indentation 

of dry aluminium billets. This can be attributed to the metallurgical 

defects developed during the casting of the lead billets. Examination 

of the indented lead billets revealed defects such as internal voids 

and inclusion of foreign metals. 

The best curves fitted to those shown in Figs. 4-6, 4-7 and 4-8 

are shown in Figs. 4-9 (A to C) for comparison. These results merely 

represent the trend of those narrow bands within which the previously 

presented curves fall and hence. for example, are not representative 

of any particular billet size. The relationship between the contact 

width W1 /Do  and the amount of indentation (Ho-H)/Ho  is shown in Fig. 

4-9-A. As it can be seen, the contact width for the case of lubricated 

billets falls slightly below that for the case of dry billets (in 

contrast to the theoretical prediction which will be presented in the 

next chapter). This erroneous trend is due to the violation of conditions 

of plane strain for the case of indentation of lubricated aluminium 

billets. Measurement of the longitudinal extension for the two cases 

of dry and lubricated aluminium billets indicated that the lubricated 

billets suffered comparatively higher axial extension. The contact widths 

W1  for the case of lead billets compared to those of aluminium billets 

with and without lubricant can be seen to show some discrepency, as shown in 
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pure aluminium under lubricated condition. 
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Fig. 4-7-C. Variation of indenting force 'F1' with height 'H' for commercially 

pure aluminium under lubricated condition. 
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Fig. 4-8-B. Variation of diameter 'D' with height 'H' for commercially pure 

lead under dry condition. 
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Fig. 4-9-A. This discrepancy may be attributed to the material 

properties of the lead and aluminium from which the billets were 

made. The extension in diameter, (D-Do)/Do, for the cases of dry 

and lubricated aluminium and also for dry lead billets are observed 

to be identical. 

The relationship between the indenting force F1 /(LoxDo) and 

the amount of indentation is shown in Fig. 4-9-C. The curve for the 

case of dry aluminium slightly falls below that for lubricated 

aluminium (in contrast to the theoretical prediction which will be 

presented in the next chapter). As was previously described, this 

erroneous trend is due to the violation of conditions of plane strain 

whilst indenting the lubricated aluminium billets. 

Figs. 4-10 (A to F) show the results for the case of indentation 

of dry aluminium billets with side-restraint. Despite the previous 

cases (in which the deformation was interrupted when the force required 

for indentation exceeded the press capacity) here the process was 

interrupted when it was observed that conditions of plane strain were 

drastically violated as indicated by excessive axial extension of the 

billet. The degree of violation of conditions of plane strain can be 

appreciated if the limiting values of the - parameters H, 
W1 , W2, Fl 

and F2  (for which the billet is deformed into a rectangle) under plane 

strain conditions are obtained and compared with those of experiments. 

If the volume constancy assumption is adopted, then the limiting values of 

H, W1  and W2  can be obtained by equating the cross-sectional area of 

the billet to that of the resulting rectangle (see the illustration 

below). Thus, 

4 Do = Do  H 
	

H = 4  Do 
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and also 

W1  =Do,  W2 
 =H=4Do 

The limiting values for (Ho-H)/Ho, 

W1 /Do  and W2/Do  are 

(Ho—H)/Ho  = 1 — 4 = 0.215 

WI/Do  = 1.00 W2/Do  = 4 = 0.785 

and, of course, the limiting values for the indenting forces F1 /(LoxDo) 

and F2/(LoxDo) are both infinity. To assess the degree of violation 

of plane strain conditions, at (Ho-H)/Ho  = 0.215 the experimental 

findings for W1 /Do, W2/Do, F1 /(LoxDo) and F2/(LoxDo) can be obtained 

and compared with the theoretical values given above. A comparison 

such as this for the results shown in Figs. 4-10 (A to D) reveal that 

the billets did not exactly undergo plane strain deformation. As seen, 

in contrast to the previous cases, the results are noticeably scattered. 

The scatter of the results can be attributed to the shortcomings of 

the test-rig and the loading procedure employed. These shortcomings 

can be summarized as follows: 

1- The length of the chamber in relation to the size of the chamber 

cross-section was not sufficiently large and as a result the billets 

did not exactly undergo plane strain deformation. 

2- Rods G and H (which served to restrain the side-segments, see 

Fig. 4-2) undesirably deflected allowing the segments to move apart, 

despite the test-rig requirements. This movement (which varied 
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with the size of billet) had a greater effect on the indenting 

forces than on the contact widths. 

3- In re-setting the billet after unloading, the loads recorded by 

the load-cells G and H (measured before the removal of the billet 

from segments C and D) could not be precisely attained. Thus 

the state of deformation at the beginning of the next step of 

load was slightly different from that of the preceding step. 

4- During the unloading procedure, at intervals in which segment A 

(see Fig. 4-2 if needed) was first withdrawn, the billet underwent 

additional plastic deformation due to the remaining forces imparted 

by the side-segments. The amount of this plastic deformation 

varied depending on the size of the billet and the amount of 

indentation. 

The variations of normal pressures 'P1 ' and 'P2' are shown in 

Figs.4-10-E and 4-10-F respectively. As the amount of indentation 

increases both pressures 'P1 ' and 1 P2' can each be seen to approach 

relatively constant values. This is in contrast to the theoretical 

predictions presented in the next chapter for which both pressures 

approach infinity as the amount of indentation approaches its limiting 

value of 0.215. This erroneous trend can again be contributed to the 

shortcomings of the test-rig. The test-rig used had limited ability 

to withstand high pressures which would have caused the side-segments 

to move apart drastically and also the billet to be extruded out from 

the open-ends of the chamber. 

The results for the cases of lubricated aluminium and dry lead 

billets with side-restraint are shown in Fig. 4-11 (A to D) and 4-12 

(A to.F) respectively. The results in both cases show the same trend 

as those which were previously presented for the case of dry aluminium 
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Fig. 4-11-A. Variation of contact width 'W1 ' with height 'H' for commercially 

pure aluminium under lubricated condition. 
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billet with side-restraint, shown in Fig. 4-10 (A to F). At 

(Ho-H)/Ho  = 0.215, from Figs. 4-12-A and 4-12-B, the values of W1 /D0  

and W2/Do  for the case of dry lead billets are found to be 0.70 and 

0.40 respectively. Although these values are slightly higher than 

those for the case of dry aluminium billets, they are still far less 

than the limiting values of 1.00 and 0.785 for conditions of plane strain. 

The best fitted curves to those shown in Figs. 4-10, 4-11 and 

4-12 are shown in Figs. 4-13 (A to D) for comparison. These results 

merely represent the trend of those narrow bands within which the 

previously presented curves fall and hence, for instance, are not 

representative of any particular billet size. As it can be seen, in 

general, the results obtained for the cases of dry and lubricated 

aluminium billets and dry lead billets show the same trend. Attention is 

however drawn to the shortcomings of the test-rig and the loading 

procedure which caused the test-rig-response for the cases of dry and 

lubricated aluminium billets to be hardly distinguishable. In the case 

of lubricated billets the conditions of plane strain were violated to a 

greater extend than in the case of dry billets. 

The following modifications could have brought to light the effect 

of lubricant more noticeably: 

1- The test-rig could be modified, e.g. by providing V-shaped protrusions 

across the faces of the segments. If this were done the deformation 

of the billet in the longitudinal direction could be drastically 

reduced, if not stopped. 

2- The loading procedure could also be altered, e.g. continuous instead 

of incremental. Clearly, if a continuous loading procedure is 

employed, for the dry condition the induced frictional forces and 

their effects will be greater, since in the incremental loading 
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procedure, the induced frictional forces are automatically released 

at intervals, irrespective of the experimental conditions (i.e. 

lubricated or dry). 
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Part II  

Study of the maximum drag-force induced at the interface  

of the billet and the chamber in Context continuous extrusion  

4.10 Introdution  

The present study was aimed at determining both practically and 

theoretically the maximum drag-force developed at the interface of the 

billet and chamber in a Context type extrusion machine. The indenting 

mechanism of the machine, consisting of four segments, was assumed 

to indent the billet in the direction indicated by the arrows as shown 

in illustration. The machine was also 

assumed to be fed by a round billet 

with its initial diameter precisely 

equal to the distance between its 

two stationary segments. 

The practical model which was 

used to simulate such a Context machine 

is shown in Fig. 4-14 which, although 

simplified, still retained all the 

characteristics of the actual machine _ 

from the point of view of the billet. 

Although in the actual machine the 

chamber and the clamped billet advance towards a stationary die, here 

a reverse order was employed in which the die advanced towards the 

billet clamped in the stationary chamber. Axial force was applied to 

the billet by a pressure pad simulating a die so that the pressure on 

the pad increased until the billet retreated into the chamber. The 

drag-force developed in the model used was dependent on three 
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parameters: 

i- Initial amount of indentation. 

ii- Initial length of billet. 

iii- Friction coefficient. 

The 'initial amount of indentation' parameter affects both the 

interfacial area and the normal pressure between the billet and chamber. 

Any increase in this parameter will increase the contact widths 'W1 ' 

and 'W2' though the normal pressure may decrease or increase depending 

on the amount of indentation, see Figs. 4-12-E and 4-12-F. The 'initial 

length of billet' parameter merely affects the interfacial area and 

clearly the effect is linear if indentation of the billet is carried 

out under conditions of plane strain. The 'friction coefficient' 

parameter is undoubtedly the most important one since a slight decrease 

in this parameter could drastically decrease the drag-force developed. 

4.11 Design considerations  

The main design requirements for the test-rig were as follows: 

1- The billet, made of commercially pure lead, should be precisely 

30 mm in diameter. 

2- The chamber length should be at least 300 mm. 

3- The experiments should be carried out on a Tinus-Olsen testing 

machine with a maximum capacity of 540 KN (120 000 lb). 

4.12 Experimental set-up  

Fig. 4-14 shows the experimental test-rig, which for the sake 

of low cost and ease of machining was made from mild steel. 

The chamber, comprising the four closely-fitted segments A, B, 

C and D, was vertical. The main indentors, segments A and B, were 
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TOP VIEW 

Fig. 4-14. Experimental set-up for indentation and axial deformation of round 

billets. 
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tapered on their outside faces and could be driven inwards by means 

of the wedges E and F. The wedge G was provided to facilitate 

adjustment to the stationary segment D. By adjustment to G any 

slackness in the mechanism could be eliminated, or by removing it, 

the billet could be ejected at the end of the process. The wedges 

and segment C were supported externally by the thick-walled tube I 

standing on the platform H. This platform, which held the segments 

in the vertical position, was provided with three locating cut-outs 

placed round the periphery at 90°  intervals. These cut-outs matched 

accurately to slots machined along the vertical length of the segments, 

thereby maintaining the squareness of the chamber during the indentation 

process. The pressure pads allowed various settings between segments 

A and B but maintained a constant distance between segments C and D. 

The initial amount of indentation was determined by the dimensions 

of the pad in use. 

The internal faces of the chamber were cross-ground and a 

roughness test indicated a C.L.A. of 0.25 um  (10 uin). The friction 

coefficient between the billet and the inside walls of the chamber 

was also determined by the ring-test suggested by Male and Cockcraft 

(58). The mean value of friction coefficient was found to be 

approximately equal to 0.2. 

4.13 Specimens  

Billets made from commercially available pure lead were used for 

the trials. As the test-rig had a constant width of 30 mm, it was 

necessary for the billets to be made with a diameter of precisely 

30 mm in order to fit the chamber. In the production of the billets, 

initially lead billets were cast in the form of long cylinders and then 
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machined until their oxidised and porous surface was completely 

removed. The machined cylinders were then extruded by conventional 

direct extrusion to produce straight rods of good surface finish of 

the specified diameter. The billets were cut from the extruded 

products into lengths of 210, 230 and 240 mm and annealed at 200 °C 

for two hours. 

4.14 Experimental procedure  

Initially the segments of the chamber were placed in their 

precise positions inside the tube I on top of the platform H. The 

billet was then held vertically over the mouth of the chamber and 

lowered inside until it was resting on a cylindrical rubber pad 

placed at the bottom-end of the chamber, see Fig. 4-14. The ejecting 

wedge G was then pressed down until the segments fitted closely 

together. At this stage segments C and D precisely embraced the billet. 

Segments A and B were then adjusted by moving them inwards or outwards 

until the upper ends of the wedges E and F were levelled. The object 

of this was to indent the billet in a symmetrical manner. The pad was 

then placed in the mouth of the chamber and the wedges E and F were 

pressed down at a ram speed of 7.5 mm/min until the segments closely 

embraced the pressure pad. The speed of the ram was calculated such 

that segments A and B indented the billet with a relative speed of 

0.05 mm/min, consistent with that used for the previous experiments 

presented in 'Part I'. 

Finally axial load was applied to the pressure pad by the ram of 

the press at a ram speed of 0.05 mm/min, and continued at constant speed 

until the billet retracted into the chamber, at which point a sudden 

drop in the load was observed. After recording the maximum load atta ined, 
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the billet was unloaded by withdrawing the pad, and then withdrew 

from the chamber after first removing the wedges. 

Prior to each experiment the billet and inside walls of the 

chamber were thoroughly cleaned with trichloroethylene. A thin film 

of molybdenum disulphide was then applied to the contact surfaces 

between the wedges and segments in order to decrease the load needed 

for indentation. 

In what follows, a simple theoretical solution is first 

developed for a pattern of deformation the same as that imparted by 

the test-rig described above. The experimental and theoretical findings 

are then presented and compared. 

4.15 Theoretical solution  

The gradual deformation of a billet inserted in the test-rig 

described above, is shown in Fig. 4-15. In the first stage of 

deformation (illustration b) the billet inserted in the chamber is 

indented. During indentation the billet suffers an axial 

extension depending on its initial length, friction coefficient and 

the amount of indentation. Amongst the parameters mentioned, the 

axial extension of the billet is highly dependent on the amount of 

indentation. When this is moderate the amount of extension in 

comparison with the initial length of the billet will be negligible. 

In the next stage of deformation, shown in illustration (c), the 

solid pad advances towards the billet which is clamped in the chamber 

and the billet is deformed axially. If the initial amount of indentation 

is sufficient, the drag-force developed between the billet and chamber 

will be negligible and the billet will retreat before receiving any 

major plastic deformation. For a moderate amount of indentation, 
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however, the drag-force developed is higher and thus the billet will 

upset into the chamber before it retreats. The advancing of the 

pressure pad causes a deformation along the billet which from the 

geometrical point of view can be divided into three regions as shown 

in illustration (c). In region '1', the geometry of the billet remains 

almost constant despite the axial stress which slightly increases 

along the billet towards the pad. In region '2' an abrupt change in 

the cross-section occurs and the axial stress increases, but not 

noticeably, since the billet is not yet fully deformed in the chamber. 

In region '3', the billet completely fills the chamber cross-section 

and the axial stress increases drastically. 

TThe lengths of the regions mentioned above are dependent on the 

amount of advance of the pressure pad into the chamber. At the 

beginning of the process when the pad starts to advance, the length 

of region '1' is at its maximum whilst the lengths of the other two 

region (i.e. regions '2' and '3') are zero. Provided, of course, that 

the billet does not retreat, regions '2' and '3' appear as the pad 

advances, and cause the length of region '1' to be shortened. Further 

advance of the die causes a further increase in the lengths of regions 

'2' and '3' and also a further decrease in the length of region '1'. 

The advance of the pad will continue until the length of region '1' 

is shortened to a critical value, indicated by 
'Xmin' 

 shown in 

illustration (d). At this point the axial force existing at the 

intersection of regions 'l'and '2' exceeds the drag-force supplied by 

the contact surfaces of this region and thus the billet will retreat. 

To determine the maximum drag-force induced at the billet and 

chamber interface, the lengths of the regions mentioned must first be 

determined. As there are a great number of unknowns involved it will 
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(a) 

(b) 

(c) 

BILLET 	PRESSURE PAD 

(d) 

Fig. 4-15. Progressive plastic deformation of billet during indentation and 

axial deformation. 
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be complicated, although possibly feasible, to develop a general 

solution. The strategy which is followed here is to eliminate some 

of the unknowns involved by making some simplifying assumptions. 

It will be assumed that: 

1- The Tresca Criterion holds. 

2- The billet material, i.e. lead, is rigid and perfectly plastic. 

3- During indentation of the billet, the axial extension in comparison 

with the billet length is negligible. 

4- The plastic deformation in region '1' during the advancing of the 

pressure pad is negligible (i.e. the billet cross-section in this 

region remains constant as the pad advances into the chamber). 

5- In region '1', the normal pressures acting at the interface of the 

billet with the sides of the chamber are equal in value and remain 

constant throughout the indentation process, i.e. P1  = P2  = constant. 

This is a reliable assumption when the amount of indentation is 

moderate (see Figs. 4-12-E and 4-12-F). 

6- Region '2' is eliminated by extending regions '1' and '3' towards 

each other (see Fig. 4-16). This is a vital assumption since along 

this region neither the cross-section variations nor the interfacial 

pressure variations are known. 

7- In region '3', the interfacial pressure at any plane perpendicular 

to the billet axis is uniform. 

8- The normal stresses acting at the perpendicular faces of the billet 

are principal stresses. 

By referring to Fig. 4-16 and using the Tresca Criterion, the 

axial pressures at sections 'A' and 'B' (i.e. PA  and 	can can be expressed 

in terms of their normal interfacial pressures PA  and PB. Thus 
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Transient zone shown i~ dotted line 

Fig. 4-16. Pattern of deformation at the instant of retreat. 
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PB = 2u(W1 + W2)  min PC 	min 2u(W1 + W2) PC 

ab PB  
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PA  - PA  = Y PA - 
 

PA + Y (4.1) 

in which 'Y' is the yield stress of the material. Similarly at section 

'B' 

PB - PB - Y • • 
PB =PB + Y (4.2) 

P 
Noting that PB  = PC  and by defining a =-7-  , PB  can be expressed as 

PB  = Y(a 4- 1) (4.3) 

As the billet is on the point of sliding, the equilibrium equation 

for region '1' becomes 

where X Ln  and u are the length of region '1' and the friction 

coefficient respectively. Substituting PB  from Eq. (4.3) leads to 

X 
-  ab(a+1)  

min 2u (W1  + W2) a (4.5) 

In region '3', the equilibrium equation, for an infinitesimal 

element of length 'di' becomes 

ab dT = 2(a + b) uP dl 	(4.6) 

but from the Tresca Criterion 
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- P = Y 	• 	P = P - Y 	(4.7) 

Substituting Eq. (4.7) into Eq. (4.6) leads to 

ab dT = 2u (a + b) (P - Y) dl 	
dP  - 211(a

ab 
b) dZ 

- Y 
(4.8) 

Integrating equation (4.8) between P = PB at Z = 0 and P = P at 

Z = Z , gives 

fP 	
dP  = 21_1(a + b) jZ dZ 

PB P - Y 	
ab 	

0 

Integrating Eq. (4.9) and inserting PB from Eq. (4.3) 

P=Yj3+ a 
exp r2u(a+b) 

Z~ 
fl 
	ab 

and from Eq. (4.7) 

P = aY exp [24(a +b) Z] 
ab 

(4.9) 

(4.10) 

(4.11) 

The variation of the shear stress, in region '3', can be found 

by substituting P from Eq. (4.11) into the relation T = pP , thus 

T = uaY exp [ 
2u (a + b) Z 

ab 
(4.12) 

Clearly, the shear stress can not exceed the shear yield stress 

of the material (i.e. k = Y) , thus 

2 
= uaY exp [211(a 

b) 
1Cr 	

(4.13) 
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in which 
ZCr is the critical value of Z for which the shear stress 

reaches its maximum value of k. From Eq. (4.13), ZCr can be calculated 

as 

—ab En(2ua)  
ZCr 	2u(a + b) (4.14) 

The normal pressure 
PCr 

and the axial pressure 
Cr

P, at this critical 

value of 
Cr' 

are given by 

PCr p 2u 
(4.15) 

and PCr = Y(1 + 2u) (4.16) 

The shear stress, for the values of Z exceeding ZCr, is no longer 

proportional to the normal stress. For Z >Z Cr the shear stress remains 

constant and equal to k (=2). The equilibrium equation for Z > 
ZCr 

becomes 

ab dP = 2(a + b) Y dl 	(4.17) 

where uP in equation (4.6) has been replaced by 	. .Integrating 

Eq. (4.17) between PCr at ZCr and P at Z 

P  
f abdP=2(a+b) Y J 

	
dl 

2 
pCr 	ZCr 

(4.18) 

Simplifying and then substituting 
Cr
P 	from Eq. (4.16) gives 

_ 	1 	(a + b) (1 —
Cr

) 
P = Y~1 +

2u 
+ 	

ab 	] 	 (4.19)  
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It is worth mentioning that for Z < 	 the axial pressure P varies 

exponentially whilst for Z > ZCr it varies linearly with respect to Z. 

The length 'Xf' of region '3' can be expressed in terms of its 

undeformed length 'Xi' from the volume constancy assumption (see the 

illustration below), thus 

4 b2 
. = ab X f  .. Xf - 

Trb 
 4a . (4.20) 

To determine the maximum end-pressure, or the maximum drag-force 

developed between the billet and the chamber, Eqs. (4.5), (4.10) , 

(4.19) and (4.20) can be solved as follows: 

1-_ By solving Eq. (4.5), the length 'X Win' of region '1' is calculated. 

2- If the initial length of the billet is shorter than 'X n', the 

billet will retreat before the appearance of region '3'. However, 

if the billet length is greater than min', there will exist a 

fully filled region (i.e. region '3'). The length,'Xf', of this 

region is then calculated from Eq. (4.20). 

3- The maximum end-pressure 'PA' is finally calculated from Eqs. (4.10) 

or (4.19) depending on the length of region'3'. 
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The maximum end-pressure can alternatively be determined 

from the graphical representation of Eqs. (4.5), (4.10), (4.19) and (4.20). 

The graphical representations for these equations are shown in Figs. 

4-18 to 4-22. In the computation of these graphs, the following 

assumptions were made: 

1- The width of the chamber, 'b', was assumed to be 30 mm. 

2- The pressure 'PC' was assumed constant and equal to 27 MN/m2. 

This was approximated from Figs. 4-12-E and 4-12-F presented in 

'Part I'. 

3- The yield stress of the material, for an effective strain taken 

as 0.4, was found to be 19 MN/m2  (see Fig. 4-17). The value taken 

for effective strain was quite arbitrary and any other values 

could have been taken. 

4- For the variations of 'W1' and 'W2' in Eq. (4.5), theoretical 

values were inserted. These values were in their analytical forms 

and will be presented in the next chapter. Alternatively the 

experimental findings, presented in 'Part I' could have been used, 

but since these were in graphical form, implementation would have 

more difficult. 

In what follows, some numerical expamples are given to clarify 

the procedure of determining the maximum end-pressure by using the 

graphs illustrated in Figs. 4-18 to 4-22. 

Example 1  

Assuming that p = 0.2, the initial length of the billet Lo  = 200 mm and 

the amount of indentation (Ho  - H)/Ho  = 0.04. 

From Fig. 4-18, the length 'x n' of region '1' is determined 

as x 	= 300 mm. Since x 	> L , then the length 'X.' of region '3' min 	 min o 	 2 
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Fig. 4-22. Variation of maximun end-pressure 'PA' with amount of indentation 

'(Ho-H)/Ho ' and length of region (3), 'Xf ' . 
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becomes 
.

= xf  = 0. 

From Fig. 4-21 the maximum end-pressure is obtained and found 

to be PA  = 40 MN/m2. 

Example 2  

Assuming that u =0.2, the initial length of the billet Lo  = 200 mm 

and the amount of indentation (Ho  — H)/Ho  = 0.15. 

From Fig. 4-18, the length of region '1', is determined as 

X 	= 100 mm. Since X 	< L , then 
min 	min o 

X. = L - X . = 200 - 100 = 100 mm 
2 o mfn 

From Fig. 4-19, the length of region '3' can be calculated, 

thus X f  = 92.5 mm. 

Finally, from Fig. 4-21, the maximum end-pressure is obtained 

and is given by PA  = 170 MN/m2. 

4.16 Experimental and theoretical results and discussions  

Due to the non-uniform distortion of the chamber, which caused the 

amount of indentation to vary along the billet and relatively large 

gaps to be created between the pad and segments, the following 

refinements in computing the experimental results were introduced: 

1- The maximum pressure, TA, applied to the pad-face was obtained 

by dividing the maximum end-load by the cross-sectional area of the 

billet, rather than by the pressure pad cross-section which was 

slightly smaller. The slight overestimation of the maximum drag-

force 'Fd',  through the measuremant of the end-load 'Fe', was 

therefore to some extent offset (see the illusration below). That 
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Fd 
PA = ------------------------------

Cross-sectional area of the pad at A 

F 
e 

~ ----------------------------------
Cross-sectional area of the billet at A 

F = maximum end-load e 

Fd = maximum drag-force 
Td = drag-force applied to the die by the 

extruded metal 

PRESSURE PAD 

2- In the measurement of the amounts of indentation, the mean values 

at the top- and bottom-ends of the billet were calculated and 

assigned to be the amount of indentation imparted. 

In computing the theoretical predictions the friction coefficient 

was assumed to be 0.2. For a given length and an amount of indentation, 

the maximum pressure was determined from the graphs shown in Figs. 

4-18,4-19 and 4-21. 

The experimental and theoretical findings of the maximum pressure 

developed on the pad-face are shown in Fig. 4-23. As can be seen, 

within the considered range of indentation, both the experimental and 

theoretical findings vary almost linearly with respect to the amount of 
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Fig. 4-23. Comparison of experimental and theoritical data. 
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indentation. When the amount of indentation is moderate, the 

experimental and theoretical curves are in good agreement. However, as 

the amount of indentation increases, particularly towards large values, 

the experimantal curves deviate from those obtained theoretically. The 

deviation can be attributed to the shortcomings of the test-rig and to 

the numerous assumptions used in the theoretical solution. The following 

shortcomings whilst conducting the experiments were observed: 

1- The conditions of plane strain during indentation of the billet 

were violated. In Fig. 4-23 a value of 0.225 for the amount of 

indentation is reported. As it was previously explained in 

'Part I', if the indentation process had been subject to plane 

strain conditions the limiting value of 0.215 could not have been 

exceeded. 

2- The chamber distorted in a non-uniform manner due to the high 

pressure induced at the top-end of the test-rig. Therefore the 

maximum drag-force, which in the theoretical solution was assumed 

to be dependent only on the frictional forces induced at the billet 

and chamber interface, was also dependent on the slight angle 

formed between the segments and the billet axis (see the illustration 

below). 

back extruded 
metal 
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3- The back extrusion of the billet into the gaps formed between the 

pad and chamber, created an additional drag-force, causing the 

measured end-load to be slightly higher than the actual drag-force 

developed between the billet and chamber. 

The following assumptions in the theoretical solution may also 

have contributed to the deviation observed between the theoretical and 

experimental findings: 

1- The billet material was assumed to be a rigid, perfectly plastic 

material. This can be regarded as a relatively unrealistic 

assumption since the billet material (even though lead) work-

hardens depending on the extent of plastic deformation. 

2- In the physical model, only regions '1' and '3' were assumed to 

exist along the billet. The elimination of region '2', by extending 

regions '1' and '3' towards each other, clearly increased the 

length of region '3' and thus the maximum pressure developed on 

the pad-face. 

3- The principal planes were assumed to coincide with the internal 

faces of the segments. This, in practice, would certainly not occur 

since the frictional forces existiog on the segment faces would 

cause the principal planes to rotate. 

4- The contact widths 'w1' and 'W2' were assumed to be related to the 

amount of indentation by formulae based on the volume constancy 

assumption. In the next chapter it will be shown that such formulae 

predict variations for 'W1' and 'W2' which are slightly higher than 

those obtained by experiment. Had the experimental variations of 

'W1' and 'w
2
' been substituted in Eq. (4.5), a longer length for 

region '1' would have been obtained, resulting in a decrease in the 

length of region '3' and in turn, a decrease in the maximum pressure 
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developed on the pad-face. 

4.17 Conclusions and further work  

From the experimental and theoretical predictions the following 

conclusions can be drawn: 

1- The magnitude of the drag-force developed between the billet and 

chamber was considerable when both the length of the billet and the 

initial amount of indentation were moderate. This automatically 

implies the possibility of achieving very large extrusion ratios 

through the process of Context. 

2- The theoretical solution, based on a simple and straight-forward 

approach and using many simplifying assumptions, could well predict 

within a certain degree of accuracy the maximum pressure developed 

on the pad-face. The discrepancies, particularly at high amounts 

of indentation, will diminish even further if some of the 

assumptions are removed. 

For any further work it is suggested: 

1- To avoid the back extrusion of the billet in the gaps formed 

between the pad and segments. The back extrusion could be avoided, 

or at least minimised, either: i) by reinforcing the outer tube, 

in which case the segments will be restrained from excessive 

movements, or ii) by introducing a V-ring device, such as that used 

in direct conventional extrusion, to stop the flow of fluid between 

the punch and the container on the perimeter of the punch-tip, or 

of course by a combination of both i and ii. The drag-force 

developed between the billet and chamber can be determined more 

accurately if back extrusion of the billet is avoided. 

2- To avoid the non-uniform distortion of the outer tube by 
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proportionately reinforcing it where distortion is higher. If 

this is done the drag-force will only be dependent on the frictional 

forces developed between the billet and the chamber. In the 

experiments carried out, the drag-force was not only dependent on 

the frictional forces developed but also on the slight unknown 

angle formed between the segment and the billet axis (see the 

illustration below). 

 _t.  	 A_Le  

11.1  

3- To modify the test-rig by reinforcing the outer tube and the 

segments, or to design an entirely new test-rig in order to carry 

out similar experiments on billets with higher yield stress, such 

as aluminium, copper or mild steel. 

4- A heating facility can be provided for the test-rig, e.g. by 

inserting heating coils around the outer-tube to enable experiments 

to be carried out at elevated temperatures. 
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CHAPTER 5  

Results and discussions  

5.1 	Introduction  

In the present work the computer program presented in 'Chapter 3', 

section 3.5 was applied to a number of indentation processes. In the 

processes analysed, the effects on the deformation of the billet were 

studied when varying the shape of the billet, mechanical properties of 

the billet, configuration of the chamber, mode of indentation and 

boundary conditions. The processes analysed can conveniently be divided 

into the following cases (see Fig. 5-1 for illustrations): 

Case (a) The chamber was assumed rectangular and comprised four platens. 

The moving platens were driven at equal speed in the direction 

indicated by the arrows in order to indent an initially round 

billet. During deformation the billet was assumed to be 

deformed by the vertical platens only. 

Case (b) The chamber was assumed rectangular and comprised four platens, 

the moving platens being driven at equal speed to indent an 

initially round billet as above. In this case, the initial 

diameter of the billet was assumed to be equal to the distance 

between the stationary platens. In contrast to case (a), the 

stationary platens also contributed to the deformation of the 

billet. 

Case (c) The chamber was assumed rectangular and comprised four platens, 

and all four platens were driven at equal speed in the direction 

indicated by the arrows to indent an initially round billet. 

In this case, all four platens equally contributed to the 
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Fig. 5-1. Various kind of indentation analysed. 
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deformation of the billet. 

Case (d) The chamber was circular and comprised two similar platens. 

The moving platens were driven inwards at equal speed to indent 

a billet with an initially rectangular cross-section. The 

indentation was continued until the platens were brought 

together. 

For the analysis of these cases some prior investigations on the 

presented computer programs in 'Chapter 3' were conducted. From the 

preliminary computer runs the following conclusions were drawn: 

1- In terms of computing time the program 'EPFEA2' was, for the same 

degree of accuracy, more economical than 'EPFEAI'. 

2- The program 'EPFEA3' was, for the same number of elements, more 

demanding in terms of computer time than 'EPFEA2'. However, the 

results from 'EPFEA3' were found to be slightly more accurate 

than those from 'EPFEA2'. 

For the analysis of the cases (a) to (d) mentioned above, the 

computer program 'EPFEA2', using quadrilateral elements, was used. 

The choice of program 'EPFEA2' was based on a compromise of the two 

factors of economy and accuracy. 

In what follows, the theoretical predictions for cases (a) to 

(d) for load versus displacement, current configuration of the billet, 

distribution of velocity, distribution of effective strain, etc., 

are presented and discussed. The theoretical predictions are then 

compared with the relevent experimental results where these are available. 

Although the theoretical prediction were in the main obtained from the 

finite element method, in some cases other methods of analysis were also 

used. In cases (a), (b) and (c), for instance, the current configuration 

of the billet was also obtained from the volume constancy assumption. 
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In cases (a) and (b), the mean normal pressure applied by the vertical 

platens was also determined respectively from the theories of slip-

line field and upper-bound. 

5.2 	A study of case (a)  

As described in section 5.1, the chamber was assumed to be 

rectangular and comprised four platens (see the illustration below). 

The moving platens were driven at 

equal speed in the direction 

indicated by the arrows to indent 

an initially round billet. The 

diameter of the billet was assumed 

smaller than the distance between 

the stationary platens, such that 

during indentation it would not 

come into contact with these platens. 

In the computation, only one 

quarter of the billet cross-section 

was considered owing to the symmetry 

of the deformation. The mesh configuration (which was also used in 

cases 'b' and 'c') was comprised of 67 quadrilateral elements and 87 

nodal points, see Fig. 5-2. As it can be seen in Fig. 5-2, finer 

divisions were provided in the regions where contacts were to occur since 

here the stresses produced in the billet were higher. Although the 

elements were numbered arbitrarily, the nodal points were numbered in 

such a way as to minimize the bandwidth of the overall stiffness matrix. 

The mesh used had a bandwidth of 34. 

The stress-strain characteristics of commercially pure aluminium 
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Fig. 5-2. Finite element mesh for a billet with round cross-section (quarter 

of cross-section shown). 
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and lead, shown in Figs. 5-3 and 5-4, were obtained from uniaxial 

compression tests. For the computer analysis, the stress-strain 

curve of the material was approximated by two straight lines. The 

material properties used in the computation were as follows: 

For aluminium  

E = 0.07 X 106  MN/m2 
	

v = 0.345 

a- = Yo  f Ho  (eP) 	for 	0.1 > eP  > 0 

Q = Y1  f H
o 

(E
P
) 	for 	eP  > 0.1 

where 	Yo  = 40 MN/7772 	 Ho  = 500 MN/7772  

Y1  = 90 MN/7772 	H1  = 75 MN/7772  

For lead  

E = 0.01 X 106  MN/m2 
	

v = 0.431 

Q  

- 

= Yo  + H
o 

(E
P
) 	for 	0.05 > eP > 0 

Q 

- 

= y1  + Ho  (eP) 	for 	eP  > 0.05 

where 	Yo  = 6 MN/7722 
	

H = 180 MN/7772  

Y = 15 MN/7772 	 H1  = 26 Mill/m2  

The following parameters were calculated and recorded during the 

computation (see also the illustration below): 
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Fig. 5-3. Stress-strain curve for computer analysis of plane-strain indentation for commercially pure 

aluminium. 
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H -H 
1- H 	- amount of indentation. 	 F1 

0  

the flat. 

D-D 
3- - D  0  - amount of increase in 

0 
diameter 'D'. 

F 

4 	L xD - indenting force in the 
0 0 

y direction. 

Ti w 
2- Q1  = non-dimensional width of 	

.4116.=

0  

x direction. 

where Do  = Ho  = the initial diameter of the billet. 

L0  = 	the initial length of the billet. 

Do  and L0  were arbitrarily taken as 20 and 10 mm respectively. 

In the computation two types of boundary conditions were 

considered. In one type, nodal points in contact with the platen 

were permitted to move freely along the surface of the platen. In 

practice this condition prevails when the platens, in a well 

lubricated process, have a smooth surface. In the other type of 

condition, nodal points in contact with the platen were not permitted 

to move along the surface of the platen at all. In practice this 

condition prevails when the platens have a rough surface and is 

sometimes referred to as complete sticking. Although in the present 

study only these limiting boundary conditions (i.e. frictionless and 

complete sticking) were considered, any other types of friction 
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condition could also be considered by the technique outlined in (59). 

In that technique, a layer of elements is considered to exist between 

the contact area and the surface 
PLATEN 

of the platen as shown in the 

illustration. The properties 

of the layer are usually 	
ADDITIONAL LAYERS 

' 	' 	OF ELEMENTS 

specified in the following 

way, using an interface factor 

'm 1; ari  = man, EZ  = mEb, 

Hi = mHb. Where aYb , Eb  and 

Hb are the material properties 

of the billet and ayZ, E'2  and 

Hi are those of the layer. 

Various conditions of friction are imposed by the interface factor m; 

with m=0 there is no influence of the layer and with m=1 influence of 

the layer is greatest (i.e. infinite stiffness). Although not considered 

here, the technique is easily adoptable without requiring major changes, 

to the formulation presented in Chapter 2. 

5.2.1 Results obtained by the finite element method  

The computed results using the material properties of aluminium 

are shown in Figs. 5-5-A to 5-5-D. 

The relationship between the contact width W1 /Do  and the amount of 

indentation (Ho-H)/Ho  is shown in Fig. 5-5-A. The reason for the steps 

in the calculated curve is due to the discrete manner in which the 

billet cross-section was divided into elements. Clearly, the continuity 

of the curve will increase by decreasing the element sizes along the 

free-surface. By decreasing these element sizes the consecutive nodes 
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Fig. 5-5-A. Variation of contact width 'W1' with height 'H' for commercially 

pure aluminium obtained by the finite element method. 
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commercially pure aluminium obtained by the finite element method. 
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along the free-surface will be closer, and thus increments in contact 

width will be smaller whenever a nodal point comes into contact with 

the platen. 

In the finite element model of the billet, deformation was 

produced by the displacement of those nodal points lying on the line 

of contact with the top platen. The contact width therefore changes 

in a stepwise manner whenever a new node makes contact with the top 

platen. In Fig. 5-5-A, the lines such as AB represent the period 

through which the number of nodes which take part in the deformation 

remains constant. At a point B where a new node contacts the platen, 

another line, CD is started. If the platen is assumed to be smooth, 

on moving from A to B, the contact width increases by an amount 

depending on the tendency of the contact nodes to move along the platen 

surface. The greater this tendency is, the higher will be the frictional 

force when the platen is partially or completely rough. 

As described above, the discontinuity of the curves shown in 

Fig. 5-5-A is due to the finite size of the elements along the free-

surface. Clearly, if the elements were of infinitesimal size, then the 

continuous curves illustrated would have been obtained. These 

continuous curves pass through points ...., A, C, ... or ...A , C , .... 

depending on the roughness of the platens. As expected, the contact 

width 'W1 ' for a particular height 'H' is larger for the frictionless 

case than for a perfectly rough platen. 

The relationship between (D-D0)/D0  and the amount of indentation 

is shown in Fig. 5-5-B. At first, the curve rises very slowly, and 

this rise corresponds to that interval through which plastic deformation 

occurs entirely in the material close to the top platen. The curve 

later rises rapidly when plastic deformation propagates through the 
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material between the platens. The effect of friction, particularly 

at high amounts of indentation, is clearly shown by the slight rise in 

the curve. The effect of friction on the variation of billet 

diameter 'D' can be explained by revealing the pattern of deformation 

through the billet cross-section. The flow patterns established by a 

smooth and a rough platen are shorn in the illustrations. 

Smooth 	 Rough 

A smooth platen establishes a shallow stream of metal flow which is 

immediately diverted away from the axis of the platens. However, a 

rough platen establishes a deeper flow which is diverted midway between 

the platens. Clearly the diameter of the billet 'D' (=2 x ŌA) 

sustains higher deformation when the metal flow is deeper. 

The relationship between the indenting force Fl/(LoxDo) and the 

amount of indentation (Ho-H)/Ho  is shown in Fig. 5-5-C. The effect of 

friction on the indenting force F1  is negligible, despite a rather 

significant frictional force induced at the interface of the billet and 

platen, see Fig. 5-5-D. The negligible effect of friction on the 

indenting force is perhaps due to the fact that the effect of a deeper 

flow established by a rough platen offsets the effect of larger contact 
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width obtained for a smooth platen. It is quite clear that a higher 

indenting force will be required if a deeper flow of metal is to be 

established, or if a billet with a greater contact width is to be 

indented. 

The manner in which the original mesh, shown in Fig. 5-2 was 

distorted after an average amount of indentation of 0.145 is shown 

in Fig. 5-7. The distorted mesh for smooth platens is shown in 

Fig. 5-7-A. Comparing this with the original mesh it becomes clear 

that angular distortion, and hence shear strain and shear stress 

within those elements adjoining the platen, increases in moving 

outwards along the contact width. The elements with the highest 

angular distortions, the marked elements, are those positioned between 

the centre of the billet and the edge of the contact width. As will 

be discussed later in the application of the slip-line theory, one of 

the velocity discontinuties in the slip-line field passes through these 

(the marked) elements with highest angular distortion. The unmarked 

elements, particularly those positioned on the right hand-side of those 

marked, are either distorted slightly or not at all. The distorted mesh 

for completely rough platens is shown in Fig. 5-7-B. In general, the 

distortion of the elements is identical to that shown in Fig. 5-7-A for 

a smooth platen, except that the elements adjoining the platen are 

slightly less distorted than those in Fig. 5-7-A. 

The flow patterns for the indentation of a round billet by a 

smooth and a rough platen are shown in Figs. 5-8 and 5-9 respectively. 

In the computation the velocity of the platen was assumed to be -1. 

In Fig. 5-8, the flow field established by a smooth platen is shown. 

The speed of the metal particles increases slightly above the speed of 

the platen in moving outwards along the contact width. Along the 
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Fig. 5-6. Original finite element mesh. 
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X 

Fig. 5-7-A. Deformation of original mesh in frictionless condition at 

(H0-H)/H0=0.145. 

X 

Fig. 5-7-B. Deformation of original mesh in sticking condition at (H0-H)/H0=0.145. 
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Components of velocity vectors in the 	Components of velocity vectors in the 
x direction 
	

y direction 

Fig. 5-8. Flow pattern at (H0-H)/H0=0.145 in frictionless condition, velocity 

of the platen being -1. 
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free-surface the velocity vectors are in general in the x direction. 

The speed along the free-surface first increases, and later becomes 

uniform, particularly near the right bottom corner. The flow field 

established by a rough platen is shown in Fig. 5-9. The major effect 

of friction on the flow pattern is perhaps the appearance of a rigid 

region near the top platen which is shown in dotted lines. All the 

particles within this region move in the y direction and with the same 

speed as the platen. 

The distribution of effective strains for the case when the 

billet is indented by a smooth platen is shown in Fig. 5-10-A. The 

largest effective strains occur at the billet centre and near the edge 

of the contact surface. In the neighborhood of the platen the effective 

strain increases towards the free-arc of the billet. Half-way between 

the platens the effective strain decreases towards the free-arc and it 

becomes zero-near the billet surface. In this field the least strained 

region is positioned just beneath the surface of the billet. Comparing 

Figs. 5-10-A and 5-10-B it becomes clear that the effect of friction on 

the distribution of effective strain is negligible. 

5.2.2 Results obtained from volume constancy  

The current configuration of the billet can be determined from 

volume constancy by assuming the behaviour of the free-surface of the 

billet. Perhaps the simplest assumption (which is almost in agreement 

with the flow fields shown in Figs 5-8 and 5-9 obtained by the finite 

element method) is that the free-surface will remain undeformed during 

the course of indentation. As the deformation is symmetrical with 

respect to the x axis (see the illustration below) it is concluded that 

during such deformation the centre of the free-surface will remain on this 



-209- 

0 x 

Fig. 5-10-A. Distribution of effective strain at (H0-H)/H0=0.145 in 

frictionless condition. 

Fig. 5-10-B. Distribution of effective strain at (H0-H)/H0=0.145 in 

sticking condition. 
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axis of symmetry. The original and final cross-sections of the billet 

are shown in the illustration. 

As it was assumed that the free-surface will remain undeformed, every 

point lying on this surface will move by the same amount as the centre 

of the surface itself. The new position of the centre of the free-

surface can therefore be determined by drawing the line B'O' parallel 

to BO. If the initial radius of the billet is Ro, then from volume 

constancy 

. 
1 R2 1 R2 ~0 ) + 1 H 

(2W1-H) 

4 0 
= 2 	o 2 2 2 	2 
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where the first and second terms are the areas of the sector 0'B'C' 

and.the trapezoid OAB'C', respectively. 

On simplifying the above equation 

but 

and also 

H W1 = 22 
[

2._ 	(8 - 
H X)~ 222  
0 

H=2Ro Sin( }) 

X = 2Ro Cos( }) 

Substituting Eqs. (5.2) and (5.3) in Eq. (5.1) yields 

H W1 = R2 [-4 Tr - (0 - Sin 81 

or 

2 

w1 = Ho [.. Tr -(0 - cos 8)] (5.4) 

where 8 = 2 Sin-1(R ) 
0 

(5.5) 

By solving Eqs. (5.4) and (5.5), the contact width 'W1 ' is 

determined. Having determined 1 141 ', from Eq. (5.3) and using 

D = Do t W1 — X, the values of 'X' and '0' can also be determined. 

These values may then be used to compute W1 /Do, X/Do and (D-Do)/Do. 

The computed results are shown in Figs. 5-11 and 5-12. The relationships 

between W1 /D0 and (Ho-H)/Ho and also between X/Do and (Ho-H)/Ho are 

shown in Fig. 5-11. The difference between the two curves represents 

that portion of contact width which has been produced by the displaced 

material. As shown the contribution of this portion to the contact 

width increases as the amount of indentation increases. When the billet 
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Ho—H 
Ho 

Fig. 5-12. Variation of diameter 'D' with height 'H' obtained by the 

volume constancy assumption. 
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is highly indented the contact width will increase drastically, 

since any small movement of the platen causes a large volume of 

material to be displaced. 

By applying Eq. (5.4), the current configuration of the billet 

during the course of indentation can be determined. To substantiate 

the assumption that the free-surface of the billet during indentation 

remains undeformed, the current billet configuration determined from 

Eq. (5.4) can be compared with the corresponding one obtained from 

experiment. 

In an experiment which was conducted, a number of points were 

selected on the periphery of a section situated at the central region 

of the billet. The billet was incrementally indented and the current 

positions of the selected points were measured and recorded. The 

theoretical predictions together with the current positions of the 

experimental points during the course of indentation are shown in 

Fig. 5-13. At the beginning of the indentation process the current 

positions of the experiment points well coincide with the surface 

predicted from volume constancy. Later, however, the experimental 

points, particularly those near the contact with the platen, deviate 

from the predicted surface. At all stages of deformation the 

experimental points define an area which is slightly smaller than that 

defined by the theoretical solid line. The discrepancy observed, 

particularly when the amount of indentation is high, is due to the 

slight violation of plane strain conditions in the experiments and also 

to some plastic deformation of the free-surface occuring during the 

course of indentation. It is worth noting that the movement of the 

free-surface obtained by experiment is in agreement with that obtained 

from the finite element method, see Figs. 5-8 and 5-9. There the upper 
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Fig. 5-13. Comparison of billet configurations obtained by the volume constancy assumption and experiment at 

various heights, 'H'. 
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part of the free-surface moves more slowly than the lower part. 

5.2.3 Results obtained from slip-line theory  

In a well lubricated process, in which the interfacial frictional 

forces are absent, the indenting force 'F1 ' during the course of 

indentation can be determined by applying the slip-line theory. In 

the problem of billet indentation three types of deformation must be 

distinguished depending on the amount of indentation. When the amount 

of indentation is sufficiently small plastic deformation occurs only 

in the material adjacent to the platen. The well-known slip-line 

field (usually referred to as type I) for this kind of deformation 

is shown in Fig. 5-14. Here, since the process is assumed to be 

frictionless, the slip-lines meet the surface of the platen at 45°. 

Due to the absence of shear stress on the free-surface the slip-lines 

also meet the free-surface of the billet at 45°. The indenting force 

'F1 ' can be determined as follows: 

Using Hencky's equation along a-line CBA 

PA  - PC  = 
2k SAC 	PC - PA  - 2k SAC 

but PA  = -k and 
0AC = oA - oC 2 - t'• Thus 

PC =-k - 2k l2 - ). 

For the y direction, the equilibrium equation for the infinitesimal 

element DCE becomes 

dP1  PC  (L4 - k 	 = 0 
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On substituting for PC and integrating along the contact width 

WI 	 W1 

+ 2f~ [-k - 2k(2-~y)] dw- 2f5 kd did =0 

or after simplification 

1 

F1 = 2k W1 + 2k 2 W1 - 2k12-  dw (5.6) 

The indenting force F1 is normally expressed in terms of mean normal 

pressure P1. Thus, from F1 = P1 W1 

WI 

P1 W1 = 2k W1 f 2k 2 W1 - 2k12 dm 

or 
1 

2k 
1 
	1 	2 	W f0 ~' 

aw (5.7) 

in which the integral must be evaluated along the free-surface of the 

billet as shown in Fig. 5-14. This solution is valid up to the point 

at which the stress field due to the upper platen begins to influence 

the stress field due the lower platen. Plastic deformation then occurs 

in the material between the platens, and the ends of the billet move 

apart as rigid masses. The well-known slip-line (referred to as type 

II) for this kind of deformation is shown in Fig. 5-15. Here again 

the slip-lines meet the surface of the top platen at 45°. Due to the 

absence of shear stress along the horizontal axis of the billet, the 

slip-lines also meet this axis at 45°. The indenting force 'F1 ' can 

be determined as follows: 

Using Hencky's equation for s-line OB, the pressure P can be expressed 

as 



I It  

dF 

p 

Fig. 5-14. Slip line field when (Ho-H)/Ho  is sufficiently 	Fig. 5-15. Slip line field when (H0-H)/H0  is moderate 

small (type I). (type II). 
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P=C-2klp 	 (5.8) 

where the unknown 'C' can be determined from the equilibrium equation 

of the rigid region in the x direction, thus 

2 f 
11)° 

(C - 2k 0 Sin tp ds + 2 f ° k Cos i) ds = 0 

4 

from which 'C' is determined as 

k W 
C = H f ~° Sin ds - H 1 

4 

(5.9) 

From Eqs. (5.8) and (5.9), the pressure 'PB' at B is given by 

k W 
4k o 

PB H' ~i Sin ,y ds - 	 1 2k '~o 
4 

(5.10) 

On moving from B to C, Hencky's equation becomes 

PB - PC = 2k(p - 
4 

from which PC can be calculated by substituting for PB from Eq. (5.10). 

Thus 

k W 

PC H f~r ° ~Sin ds-  H1 	4k~o + 2k 4 
4 

(5.11) 

The indenting force F1 can be determined from the equilibriom equation 

of element CDE in the y direction, thus 

F 
2

1 a C 21- k 21 = 0 
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by inserting Pc from Eq. (5.11), the indenting force F1 becomes 

F1 = 1 [k (1 f H) - 2k 4 f 4k ~,° - H ~~° i(, Sin 4, ds] 	(5.12 ) 
4 

Also, the mean normal pressure can be determined from F1 = P1 W1, 

thus 

P1 W I = W1 [k (1 f H ) - 2k 4 4k t° - H fem° ~y Sin ~, ds 
4 

or 	-2-77 = 2 (1 + ) 	4 + 2~y° - H f~° ,y Sin * ds 
4 

(5.13) 

where the integral must be evaluated along the line ABD. This solution 

is valid up to the point at which the contact width 'W1 ' of the billet 

becomes equal to its height 'H'. At this point the apex, C, of the 

triangle EDC will coincide with the billet centre and thus the sector 

DBC will vanish 'completely. Plastic deformation then propagates 

through the rigid-ends of the billet, and the slip-line field (referred 

to as type III) changes shape slightly depending on the ratio W1 /H. 

In practice, this type of deformation is seldom encountered and will 

not be discussed here. Reference is made to a paper by Kobayashi (57) 

in which a study is also made of type III deformation, for the case when 

'W1 ' exceeds H. 

When W1 < H, depending on the amount of indentation, the indenting 

pressure 'P1 ' is either given by Eq. (5.7) or Eq. (5.13). The 

variations of mean normal pressure 'P1 ', shown in Fig. 5-16, were 

computed on the following basis: 
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Fig. 5-16. Variation of mean normal pressure 'Pl' obtained by the slip-line 

field theory. 
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Type I deformation  

1- Within a narrow range, H < 0.96 Ho, the height H of the billet was 

incrementally decreased and using Fig. 5-11 the contact width 'W1' 

was obtained. 

2- A slip-line field similar to that shown in Fig. 5-14 was then 

graphically constructed and using Eq. (5.7) the pressure 'P1 ' 

was calculated and steps 1 to 2 were repeated over the whole 

range. 

Type II deformation  

1- Within a wide range, but still H > W1, the height H of the billet 

was incrementally decreased and using Fig. 5-11 the contact width 

'W1' was obtained. 

2- A slip-line field similar to that shown in Fig. 5-15 was then 

graphically constructed and using Eq. (5.13) the pressure 'P1 ' was 

calculated and steps 1 to 2 were repeated over the whole range. 

In Fig. 5-16, the intersection of the two curves indicates the 

amount of indentation at which the type I slip-line field changes into 

type II. Clearly, below the intersecting point, a type II slip-line 

field cannot exist since a pressure higher than that for type I would 

be required to maintain it. For the same reason, above the intersecting 

point, a type I slip-line field cannot exist. 

5.2.4 Comparison of the results  

The best curves fitted to the experimental and theoretical results 

are shown in Fig. 5-17. In the construction of these curves slight 

discrepancies, e.g. due to friction, were neglected and the curves shown 

merely represent the general trend of those narrow bands within which 
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the experimental and theoretical curves fall. 

The relationship between the contact width 141 /D0  and the amount 

of indentation (H0-H)/H0  are shown in Fig. 5-17-A. At the beginning 

the experimental curve is in good agreement with the curve obtained 

by the finite element method. As the amount of indentation increases, 

however, the former slightly deviates from the latter. The deviation 

observed is due to some discrepancies with regard to the material 

stress-strain curve used in the computation. The curve obtained from 

volume constancy deviates slightly from those obtained by experiment 

and the finite element method. The deviation is due to the rather 

unrealistic assumed behaviour of the free-surface used in the former 

theoretical method. There, with the assumption that the free-surface 

would remain undeformed, it was concluded that all the particles along 

the free-arc would move at an equal speed. It was previously shown in 

section 5.2.2 that in reality the particles positioned in the lower 

part of the free-arc move much faster than those in the upper part as 

shown in Fig. 5-13. 

The relationship between the amount of increase in the billet 

diameter (D-D
o 
 )/D

o 
 and the amount of indentation (Ho-H)/Ho  is shown in 

Fig. 5-17-B. In general the experimental curve and the curve obtained 

by the finite element method are in good agreement. The curve obtained 

from the volume constancy assumption deviates, particularly at large 

amounts of indentation, both from the curves obtained by experiment and 

by the finite element method. 

The relationship between the indenting force F1 /(LoxDo) and the 

amount of indentation (Ho-H)/Ho  is shown in Fig. 5-17-C. The 

theoretical and experimental curves are seen to be in good agreement. 

The slight deviation of the results is due to some discrepancies with 
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regard to the material stress-strain curve used in the computation 

and also to the lack of complete specification of experimental 

conditions. 

5.3 A study of case (b)  

As described in section 5.1, in this case the chamber was 

rectangular in shape and comprised four platens (see the illustration 

below). The moving platens were driven in the direction indicated 

by the arrows at equal speed to indent 

an initially round billet. The diameter 

of the billet in this case was assumed 

to be precisely equal to the distance 

between the stationary platens. 

As before in section 5.2, owing 

to the symmetry of deformation only 

one quarter of the billet cross- 

section was considered in the computation. 

The finite element mesh was the same as 

that used in case (a), see Fig. 5-2. The 

computation was carried out using the 

material properties of commercially pure aluminium and lead. The 

stress-strain characteristics were those previously used in case (a), 

see Figs. 5-3 and 5-4. 

To pursue the history of deformation the following parameters 

were calculated and recorded (see also the illustration below): 

H -H 

1 - 	H 	= amount of indentation 
0  
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w 	w 
2- pl  and ō2  = non-dimensional widths of the flats 

0  

FxD and L
1 	

F
2
- 	indenting forces 

3- L  
0 0 	0 0 

4- Tl 	and 
T2 	

- frictional forces at billet/chamber interface Loxō Loxō 

As in case (a), two types of boundary conditions were considered 

in the computation. In one type, nodal points in contact with the 

platens were permitted to move freely along the platen surfaces and in 

the another type such nodal points were not permitted to move at all. 

As described before, in practice, the former condition prevails when 

the platens, in a well lubricated process, have smooth surfaces. The 

latter condition, which is sometimes referred to as 'complete sticking 

condition', prevails when the platens have rough surfaces. 
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5.3.1 Results'obtained by the finite element method  

The computed results using the material properties of aluminium 

are shown in Figs. 5-18-A to 5-18-F. As was previously mentioned the 

discontinuity of the results is due to the finite sizes of elements 

along the free-surface of the billet. 

The relationships between W1 /Do  and (H 
0 
 -H)/H

0 
 and also between 

W2/Do  and (Ho-H)/Ho  are shown in Figs. 5-18-A and 5-18-B. The effect 

of friction on the results, particularly when the amount of indentation 

is large, is quite clear. Friction has the effect of decreasing the 

contact width W1 /D0  but increasing the contact width W2/Do. The effect 

of friction on the contact width curves can be considered as being due 

to its direct and indirect effects. The direct effect of friction is 

concerned with the prevention of extension or contraction of the contact 

width. This effect is important if the contact widths sustain a great 

extension or contraction during indentation between smooth platens, since 

such extension or contraction will be completely prevented during 

indentation between rough platens. The indirect effect of friction is 

concerned with the additional deformation of the free-surface due to 

friction, which may accelerate or decelerate the rate at which the free-

surface comes into contact with the surface of the platen. 

It follows from the above argument that the difference in the 

values of contact width W1 /Do  at points such as A and B, see Fig. 5-18-A, 

is a measure of the direct effect of friction. As the amount of 

indentation increases the direct effect of friction becomes markedly more 

important. Conversely, the direct effect of friction on the contact width 

W2/Do  is negligible (i.e. W2 at B - 
W2 at A)

' see Fig. 5-18-B. Thus 

friction, which causes some discrepancies between the two-curves shown in 

Fig. 5-18-B, has only an indirect effect on the contact width W2/Do. 
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Fig. 5-18-B. Variation of contact width 'W2' with height 'H' for commercially 

pure aluminium obtained by the finite element method. 
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Fig. 5-18-E. Variation of interfacial frictional force 'T; with height 'H' 

for commercially pure aluminium obtained by the finite element 

method. 
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The relationships between the indenting forces and the amount 

of indentation are shown in Figs. 5-18-C and 5-18-D. As seen, the 

effect of friction on the indenting forces is negligible when the 

amount of indentation is less than 0.08. For amounts of indentation 

greater than 0.08, friction takes effect and the indenting forces 

obtained for rough platens become considerably greater than those 

obtained for smooth platens. The relationships between the frictional 

force T1 /(LoxDo) and the amount of indentation (Ho-H)/Ho  and also 

between the frictional force T2/(LoxDo) and the amount of indentation 

(Ho-H)/Ho  are shown in Figs. 5-18-E and 5-18-F. As the amount of 

indentation increases the curves of frictional forces rise markedly. 

It is worth mentioning that the discontinuity of the curves is due to 

the finite sizes of elements positioned along the free-surface of the 

billet. 

The manner in which the original finite element mesh (shown in 

Fig. 5-2) was distorted after receiving an indentation of nearly 0.14 

is shown in Fig. 5-19. The distorted mesh, for the case when the billet 

was indented between smooth platens, is shown in Fig. 5-19-A. 

Comparing this with the original mesh, it becomes clear that elements 

beneath the top platen and the stationary platen on the right are those 

with maximum angular distortions. The least distorted elements are 

those positioned along the free-surface and the diameters of the billet 

in the x and y directions. Other elements within the mesh, particularly 

those positioned near the moving platen, are noticeably distorted. The 

distorted mesh for the case when the billet was indented between rough 

platens, is shown in Fig. 5-19-B. Comparing this with the original mesh, 

it becomes clear that the.  angular distortions of elements adjoining the 

moving platen and the stationary platen are less than those of the 
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X 

Fig.5-19-A. Deformation of original mesh at (H0-H)/H0=0.135 in frictionless 

condition. 

X 

Fig. 5-19-B. Deformation of original mesh at (H0-H)/H0=0.14 in sticking 

condition. 
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corresponding elements in the previous mesh shown in Fig. 5-19-A. 

Thus, friction has the effect of decreasing the angular distortion of 

these elements and in turn their shear strains. In Fig. 5-19-B the 

least distorted elements are those positioned along the free-surface 

and the diameters of the billet in the x and y directions. Other 

elements within the mesh, particularly those positioned near the 

moving platen are distorted noticeably and more than the corresponding 

elements in Fig. 5-19-A. Hence, friction has the effect of increasing 

the distortion of these elements. 

The flow fields for indentation of a round billet between smooth 

and rough platens are shown in Figs. 5-20 and 5-21 respectively. In 

the computation the velocity of the top platen was assumed to be -1. 

In Fig. 5-20, the flow field established by smooth platens is shown. 

It can be seen that in moving outwards the speed of metal particles 

along the contact width AB increases rather noticeably above the 

reference speed of the top platen. Along the free-arc the particle- 

speed is generally in the x direction. The speed along the free-arc, in 

moving from C to B, rapidly increases and then, over most of the free- 

surface becomes almost uniform. In this flow field the existance of a 

dead zone between the stationary platen and the diameter of the billet 

in the y direction is quite clear. In Fig. 5-21 the flow field 

established by rough platens is shown, where all the particles in contact 

with the moving platen move with the same speed as that of the platen. 

Along the free-arc the speed of the particles, despite the previous field, 

is not only in the x direction but also in the y direction. Comparing 

the flow fields shown in Figs. 5-20 and 5-21, the establishment of an 

entirely different flow field when friction comes into effect is quite 

clear. In Fig. 5-21 the metal flows in a deep pattern affecting almost 
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Components of velocity vectors in the 	Components of velocity vectors in the 
x direction 
	

y direction 

B 

Absolute velocity vectors 

Fig. 5-20. Flow pattern at (Ho-H)/H0=0.135 in frictionless condition, velocity 

of the top platen being -1. 
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Components of velocity vectors in the 	Components of velocity vectors in the 
x direction 	 y direction 

Absolute velocity vectors 

Fig. 5-21. Flow pattern at (H0-H)/H0=0.14 in sticking condition, velocity 

of the top platen being -1. 
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the entire volume of the billet, in contrast to that shown in Fig. 

5-20 in which the metal flows in a shallow pattern with a significant 

portion of the billet material remaining stationary. 

The distribution of effective strains for the case when the 

billet was indented by smooth platens is shown in Fig. 5-22-A. 

The largest effective strains occur close to the moving platen. 

The least strained regions are those positioned beneath the free-

surface and along the diameter of the billet in the x direction. 

Comparing this with Fig. 5-10-A, it is seen how the constant strain 

lines change direction when the flow of metal in the x direction is 

prevented by adding a stationary smooth platen on the right. In Fig. 

5-10-A the contours are directed towards the y direction whilst in 

Fig. 5-22-A they are approximately towards the x direction. It is an 

interesting matter to observe how the adding of the stationary platen 

prevents the straining of the billet centre. In Fig. 5-10-A the centre 

of the billet is one of the most strained regions whilst in Fig. 

5-22-A one of the least. The distribution of effective strains for the 

case when the billet is indented by rough platens is shown in Fig. 

5-22-B. The region with the maximum effective strain is that adjoining 

the moving platen. As in Fig. 5-22-A, the least strained regions are 

those positioned beneath the free-surface and along the diameter of the 

billet in the x direction. Comparing this with Fig. 5-22-A, it is 

observed that the constant strain lines, particularly those adjacent to 

the platens, change considerably when friction comes into effect. 

5.3.2 Results obtained from volume constancy  

If the behaviour of the free-surface during the course of indentation 

is known, the current configuration of the billet can be determined from 
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Fig. 5-22-A. Distribution of effective strain at (H0-H)/H0=0.135 in frictionless 

condition. 

Fig. 5-22-B. Distribution of effective strain at (H0-H)/H0=0.14 in sticking 

condition. 
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volume constancy. 

As previously shown in section 5.3.1, from the results obtained 

by the finite element method, the behaviour of the free-surface in 

this kind of indentation is highly dependent on the surface condition 

of the platen. Fig. 5-21 shows that in the flow field established by 

rough platens the free-surface of the billet moves in a changing 

direction, although the velocity vectors along this surface are 

approximately parallel and equal in magnitude. In the flow field 

established by smooth platens, however, the free-surface generally 

moves uniformly and only in the x direction, see Fig. 5-20. 

In what follows, the volume constancy assumption is applied to 

an indentation problem in which the platens are smooth. In accordance 

with the flow field shown in Fig. 5-20 it is assumed that the free-

surface of the billet during the course of indentation will move 

uniformly and only in the x direction. For such an assumed behaviour 

of the free-surface it is quite clear that the centre of curvature of 

the free-surface during deformation will remain on the horizontal axis 

of symmetry of the billet. The original and distorted configurations 

of the billet 'are shown in the illustration below. As before, the 

centre of the free-surface in the deformed state can be determined 

by drawing CO' parallel to B0. If the initial radius of the billet 

is called Ro, from volume constancy 

1 R2 _ 1 R2 (6 + a - 1r)  + 1 g (2W1  - X)  

4 	o 2 0 	2 	2 2 	2 

X - W 
+ 7 Ro  (Ro  + 2  1 ) Sin (W  - 

 
2  aI 

where the first, second and third terms on the right are the areas of 
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the sector O'DC, the trapezoid 00'CA and the triangle O'ED respectively. 

Simplifying the above equation, the contact width '141 ' can be determined 

by 

R
2 

W" = 
	
~_« 	4 	(8+a-Tr)- Sin 8-2 [1+cos( )] Sin ( 	) 	(5.14) 

H-Ro Sin ( 2 ) 

in which W1, a and a are unknowns. From triangles O'ED and OAB it 

can also be written 

X - w1 

a O'E Ro + 2 	X W1 
Sin (2) = 0'D = 	R 	- 1 + 2R 	2R 

0 	0 	0 
(5.15) 

Cos(- ) 2R 
0 

(5.16) 
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Cos(--) 
2R 

 0 
	 (5.17) 

Substituting Eq. (5.16) into Eq. (5.15) leads to 

W 
Sin (2) = 1 f Cos (2 ) 	

2R 
 0 
	(5.18) 

By solving Eqs. (5.14), (5.17) and (5.18), the contact width 

'W1 ' was computed. The method of computation used was as follows: 

1- For a given height 'H', from Eq. (5.17), 'e' was calculated. 

2- As a first approximation, 'W1 ' was set equal to 'X'. 

3- From Eq. (5.15), 'a' was calculated. 

4- By inserting 'a' and 'e' into Eq. (5.14), a more correct value for 

'W1  ' was calculated. 

5- Steps 3 to 4 were repeated until convergence was achieved. Having 

calculated the correct values of 'W1 ' and 'a', the value of 'W2' 

was calculated from triangle O'ED. Thus 

W2  = 2 0'D Cos (2) = 2Ro Cos (2) 
	

(5.19) 

The relationships between the computed W1 /Do  and (H0-H)/H0  and 

also between the computed W2/00  and (Ho-H)/Ho  are shown in Fig. 5-23. 

The contact width W1 /Do  increases rapidly at first then almost linearly, 

and finally increases markedly, reaching its maximum value of unity as 

the amount of indentation approaches the limiting value of 0.215. The 

contact width W2/Do  increases linearly at first and then increases 

markedly, reaching its maximum value of 0.875 as the amount of 

indentation approaches the limiting value of 0.215. 

By using Eq. (5.14), the current configuration of the billet can 
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Fig. 5-23. Variations of contact widths 'Wl' and of 'W2' with height 'H' 
obtained by the volume constancy assumption. 
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be obtained. To substantiate the assumed behaviour of the free-surface 

the current configuration of the billet can be compared with the actual 

one obtained from experiment. In the experiment a number of points 

were selected on the periphery of a section positioned at the central 

region of the billet. The billet was incrementally indented and the 

current positions of the selected points were measured and recorded. 

The theoretical predictions together with the current positions of the 

experimental points during the course of indentation are shown in Fig. 

5-24. At the beginning of indentation the current positions of the 

experimental points coincide well with the surface predicted from 

volume constancy. Later, however, the experimental points, particularly 

those near the edge of the top contact surface, deviate from the 

theoretical surface. At all stages, particularly those for which the 

amount of indentation is high, the experimental points define an area 

smaller than that defined by the theoretical solid line. The 

discrepancy observed is due to the violation of plane strain conditions 

in the experiments. 

5.3.3 Results obtained by the upper-bound theorem  

In a well lubricated indentation process, for which the current 

configuration of the billet was just obtained, the indenting force 'F1 ' 

was determined by applying the upper-bound theorem. The velocity field 

used, which was in reasonable agreement with the flow field shown in 

Fig. 5-20 obtained by the finite element method, consisted of three 

regions as shown in the illustration below. The velocities within the 

regions were assumed to vary as follows: 



(H0-H)/H0=0.044 (Ho-H)/H0=0.078 

— Volume constancy assumption 

+ Experiment 

(H0-H)/H0=0.10 (H0-H)/H0=0.13 

Fig. 5-24. Comparison of billet configurations obtained by the volume constancy assumption and experiment at 

various heights, 'H'. 
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F1 I T 

2 

1 

2 

F 

>_1 

Region 1  

U1 
= V1  = 0 

which was assumed to be a dead zone. 

Region 2  

2x 	2y-W  2 
U H-W2 2 _ 
	

and V - 2 H-W2  

where the velocity components U2  and V2  were assumed to vary by the 

given linear functions. The velocity of the top platen was assumed to 

be -1. 

Region 3  

W 

U3 1-11-Ti-  and V3  = 0 
2 
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where this region was assumed rigid. It is worth mentioning that the 

assumed velocity components will satisfy the mass conservation law at 

any point within any of the regions or on the boundary of any two 

adjacent regions. An upper bound to the indenting force 'F1' is given 

by 

F1  1 
0 

= E11  
0 

+ E12 
0 
E22 

0 	0 	0 

f  E23 
+ 
E33 

 + 
E31 (5.20) 

where the term on the left is the rate at which work is done by the 

platen force equal to half 'F1', and the terms on the right are 

0 
E. = rate of dissipated energy within region i (when i=j) 
se 

E. = rate of dissipated energy at the boundary (when i j) 
sj 

between regions i and j 

0 	0 

Clearly in Eq. (5.20), energy dissipation rates E11  and E33  will vanish 

since regions 1 and 3 were assumed rigid masses. The energy dissipation 

rate E22  is given by 

0 	0  
E22  = f Y £ 2 dV 

where the effective strain rate e2  is determined from 

0 
	/2/3 

 0 0 0
e2 = 	icx +sy +ax )2  

in which 
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o aU
2 	2  

Ex ax H-W2 

0 
E 
y 

9V
2 _ -2 

Dy H-W2 

and also 
0 	a U2 	a V2 
Exy = ay f ax = O. 

Thus 

02 = v4/3 (H 2  
W) 2` = 	4  

2 	iT (H-W2) 

and hence the energy dissipation rate in region 2 is 

0 	0 	
4 	 

W1 (H-W2) Y W1 
E
22 

	JY E dV =Y   -  22 	2 	~(H-W2) 	4 

The energy dissipation rates at the boundaries of the regions are 

E = Y fW1/2 2x dx - Y W1 

	

21 2 )° 	H-W2 	8 (H-W2 ) 

o 1 	Wx = Y 
(H—W2 ) 

	

31 = 2 Y 
W /2 H-W2 

1 
	d 	8 

1 

o H/2 	 -W2 	Y (H-W ) 

F2 3 2 W /2 H-W2 4 = 	
8 2  

2 

Substituting the energy dissipation rates in Eq. (5.20) leads to 

2 H-W2 4-W1 
F1 = W1 Y [ } 4W1 + 4 (H-W2) 

(5.21) 

The mean normal pressure 'P1 ' applied by the top platen can be determined 

from F1 = P1 WZ , thus 

2 H-W2 4-W1 
P1 = Y ~~ f 4W1 

+ 
4 (H-W) ] 

2 
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or 1:1
1 2 

H-W 4-W1  
= Y 	+ 4W1 

+ 
4 (H-W2  ) (5.22) 

The variation of pressure 'P1 ' during the course of indentation 

can be computed by inserting the variations of 'W1' and 'W2' in terms 

of 'H'. These variations, which were already found from volume 

constancy, are shown in Fig. 5-23. The computed variation of pressure 

'P1' is shown in Fig. 5-25. The pressure at first decreases rapidly, 

then after reaching a minimum, increases markedly as the amount of 

indentation approaches the limiting value of 0.215. The predicted 

pressure at the early period of indentation is unrealistic since then 

plastic deformation occurs only in regions adjacent to the platens, 

which is not reflected by the assumed velocity field. 

5.3.4 Comparison of the results  

The best curves fitted to the experimental and theoretical results 

are shown in Fig. 5-26. As before the curves shown merely represent 

the trend of those narrow bands within which the experimental and 

theoretical curves fall. The theoretical results presented here are 

those obtained for smooth platens, since this was the approximate 

condition during the experiments. 

The relationships between the contact width 111 /Do  and the amount 

of indentation (Ho-H)/Ho  and also between the contact width W2/Do  and 

the amount of indentation are shown in Figs. 5-26-A and 5-26-B 

respectively. At the beginning, the experimental curves are in good 

agreement with those obtained by the finite element method. As the 

amount of indentation increases, however, the finite element curves 

deviate from those obtained by experiments. The deviation observed 

is due to some discrepancies with regard to the material stress-strain 
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Fig. 5-25. Variation of mean normal pressure 'Pl' with height 'H' obtained 

by the upper bound.theory. 
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Fig. 5-26. Comparison of experimental and theoritical data. 
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used in the computation, and also because plane strain conditions were 

not strictly maintained during the experiment, particularly at large 

amounts of indentation. The curves obtained from volume constancy 

noticeably deviate from those obtained by experiment and by the finite 

element method. The higher predictions from volume constancy are due 

to the slightly unrealistic assumed behaviour of the free-surface 

which was used in this method, where it was assumed that all particles 

along the free-surface would move at the same speed in the x direction. 

As previously shown in section 5.3.2, this is in conflict with the 

actual movement of the free-surface obtained from experiment, 

particularly at large amounts of indentation, see Fig. 5-24. 

The relationship between the indenting force Fl/(LoxDo) and the 

amount of indentation (H
o 
-H)/Ho  and also between the indenting force 

F2/(LoxDo) and the amount of indentation (Ho-H)/Ho  are shown in Fig. 

5-26-D. It can be seen that at small values of (Ho-H)/Ho  the 

theoretical results appear to be in good agreement with those obtained 

by experiment. As (Ho-H)/Ho  increases, however, deviation between 

these two sets of results becomes noticeable and is mainly due to some 

discrepancy with regard to the boundary conditions used in the 

computation. In the computation the deformation was considered under 

conditions of plane strain, contrary to the experimental conditions. 

As was previously argued in chapter 4, the conditions of plane strain 

were violated during the experiments, particularly at large amounts of 

indentation. Furthermore, the distance between platens A and B (see the 

illustration), used in the computation was considered constant during 

the course of indentation despite the fact that during the experiments 

the platens moved apart slightly. Clearly, if in the experiments the 

outward movement of platens A and B had been prevented, then greater 
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forces would have been sensed by all the platens and particularly by 

A and B. This explanation justifies the significant differences 

observed between the theoretical and experimental curves for the indenting 

force 'F2
1

• 

I 
I 

~-----+--- ---+-~-..,. 
, 

I 
I 

5.3.5 Supplementary computer runs 

For this kind of indentation, some additional computer runs were 

performed to clarify the following two problems: 

1- The effect of different approximations of the actual stress-strain 

curve of the material on the computed results. 

11- The variations of the mean normal stress and mean shear stress at 

the interface of the billet and platens. 

In what follows the computational results for these two problems 

are presented. 

5.3.5.1 Problem 11' 

The computation was carried out using the material properties of 



- 255 - 

of commercially pure aluminium and assuming no friction at the interface 

of the billet and platens. For the computation, two alternative linear 

approximations for the actual stress-strain curve of the material were 

used as shown in Fig. 5-27. The numerical values used for the two-

straight-line approximation to the stress-strain curve were the same 

as those used before in case (a), section 5.2. For the single-straight-

line approximation the numerical values used were as follows: 

a =Yo  +Ho  (sP ) 

where o  = 90 MN/m2  and Ti = 78 MN/m2. 

The computed results using the two different approximations of 

the material actual stress-strain curve are shown in Figs. 5-28-A to 

5-28-D. The relationships between Fl/(LoxDo) and (Ho-H)/Ho  and also 

between F2/(LoxDo) and (Ho-H)/Ho  are shown in Figs. 5-28-A and 5-28-B 

respectively. As previously described in section 5.2 the discontinuity 

of the curves is due to the finite sizes of elements along the free-

surface of the billet. It is seen that the curves tend to become more 

continuous when the stress-strain curve is approximated in a more 

continuous manner (i.e. by approximations employing a greater number of 

straight lines). At low values of (Ho-H)/Ho  the indenting forces 

obtained by using the single-straight-line approximation are considerably 

larger than those obtained by using the two-straight-line approximation. 

This is because at small strains a much higher yield stress was used 

for the former approximation. At higher values of (Ho-H)/Ho'the indenting 

forces begin to converge. This occurs when the significant initial 

discrepancy between the two approximations of the actaul stress-strain 

curve disappears at large plastic deformations. It is thus clear that 
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Fig. 5-28-A. Variations of indenting force 'F1 ' with height 'H' for two 

different stress-strain curves approximating the commercially 

pure aluminium stress-strain curve. 
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different stress-strain curves approximating the commercially 
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at large plastic deformations approximately the same results can be 

obtained from either a simple or a higher order approximation of the 

stress-strain curve. It is quite clear from the computation procedure 

that the rate at which deformation is imparted to the billet will 

increase if the stress-strain curve is a simple one. Clearly, the 

higher the rate of deformation, the less is the cost of computation. 

It is worth remembering that within the increments of displacement, 

the prescribed displacements must be decreased appropriately in order 

to allow the elements to pass one by one through the sharp corners of 

the assumed stress-strain curve. For a higher order curve (i.e. with a 

higher number of straight lines) a higher number of sharp corners must 

be passed, thus increasing computing time. 

5.3.5.2 Problem II  

The computation was carried out using the material properties of 

lead and assuming two types of boundary conditions. In one type the 

platens were assumed smooth and thus there is no shear stress induced 

at the interface of the billet and the platens. In another type of 

boundary conditions the platens were assumed rough and the contact nodes 

were restrained from any movement along the platen surfaces. The 

computation was continued until a large amount of indentation of nearly 

0.20 was achieved. It is worth mentioning that in all the problems 

analysed so far, due to the high cost of computation the billets were 

not indented by an amount greater than 0.14. 

The computed results are shown in Figs. 5-29-A to 5-29-J. The 

best fitted curves which were subsequently used in the calculation of 

mean normal stress and mean shear stress, acting at the interface of 

the billet and the platens, are those shown in dotted lines. The 
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Fig. 5-29-G. Deformation of original mesh at (H0-H)/H0=0.20 in frictionless condition. 



Fig. 5-29-H. Deformation of original mesh at (H0-H)/H0=0.20 in sticking condition. 
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Fig. 5-29-I. Flow pattern at (H0-H)/H0=0.20 in frictionless condition, velocity of the top platen 

being -1. 
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Fig. 5-29-J. Flow pattern at (H0-H)/H0=0.20 in sticking condition, velocity of the top platen 

being -1. 
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calculated mean normal stress and mean shear stresses are shown in 

Fig. 5-30 (for definition of the stresses used see the illustration 

below). 

F1 
F1 ' P1' W1  x L 0 

The relationship between the mean normal stress 'P1 ' and the 

amount of indentation (H0-H)/H0  is shown in Fig. 5-30-A. As seen the 

curve decreases to a minimum and then increases towards infinity as the 

amount of indentation approaches the limiting value of 0.215. The 

effect of friction, which in general displaces the whole curve upwards 

• can clearly be seen. It is worth noting that the general trend of the 

curve for the case without friction is in good agreement with that 

obtained from the upper-bound theorem, see Fig. 5-25. 

The relationship between the mean normal pressure 'P2' and the 

amount of indentation (H0-H)/H0  is shown in Fig. 5-30-B. As seen the 

curve first decreases, then remains constant over a relatively long 

period of indentation, and finally increases towards infinity as the 
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amount of indentation approaches the limiting value of 0.215. The 

effect of friction on the curve over the first period of indentation 

is not significant, but at high amounts of indentation friction takes 

effect and displaces the curve slightly. 

The relationships between the shear stress 'S1 ' and the amount 

of indentation (Ho-H)/Ho  and also between the shear stress 'S2' and 

the amount of indentation (H0-H)/H0  are shown in Fig. 5-30-C. The 

shear stress 'S1 ' first rises rapidly and then increases at a constant 

rate. In general, the shear stress 'S2' increases at a constant rate 

and nearly equal to the rate of the shear stress 'S1 1 . 

5.4 	A study of case (c)  

As was previously described in section 5.1, in this case the 

chamber was comprised of four platens (see the illustration below). 

the moving platens 

being driven in the 

directions indicated by 	 V 	Axis of 
symmetry 

the arrows to indent an 

initially round billet. 

As before, in the 

computation only one 

quarter of the billet 

cross-section was 

considered. Although 

in this case, due to 

the symmetry of 

deformation, one 

eighth of the cross- 
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section could also have been used, but at the expense of generating 

a new mesh entirely different from that shown in Fig. 5-2. The 

computation was carried out using the material properties of lead, the 

stress-strain curve was that previously used in case (a), section 5.2. 

To persue the history of deformation the following parameters 

were computed and recorded (see also the illustration below): 

H -H 
1- —Flo  - amount of indentation. 

0 

W1 	W2 
2- p and -0--- = non-dimensional widths of the flats. 

0 	0 

3 	
LFxD 

 and 
 LFxD 	 - indenting forces. 

0 0 	0 0 

4- LTXD  and LTXD 	 - frictional forces at billet/chamber interface. 
0 0 	0 0 

where D0  = H0  = initial diameter of the billet and L0  = initial length 
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of the billet. 

Although the parameters W1 , Fl  and T1  were theoretically 

sufficient to describe the billet deformation, the parameters W2, F2  

and T2  were also computed and recorded. Clearly any discrepancy in 

the symmetric parameter (e.g. in W1  and W2) will be due to the non-

symmetric nature of the mesh. The discrepancy in the results obtained 

thus provides a means of studying the effect of mesh pattern. 

As before in the computation two types of boundary conditions 

were considered. In one type, the billet was indented by smooth 

platens, and the nodes in contact with them were permitted to move 

freely along the surface of the platens. In the other type of the 

boundary condition the billet was indented by rough platens and the 

contact nodes were restrained from moving. 

5.4.1 Results obtained by the finite element method 

The computed results using the material properties of lead are 

shown in Figs. 5-31-A to 5-31-F. The relationship between the contact 

width W1 /Do  and the amount of indentation is shown in Fig. 5-31-A. 

The curve shows the same trend as that obtained in case (b), Fig. 5-29-A, 

in which the platens positioned on the sides of the billet remained 

stationary during the course of indentation. The effect of friction 

on the curve is quite clear. Friction in general is seen to displace 

the whole curve upwards particularly when the amount of indentation is 

large. 

The relationship between the contact width W2/Do  and the amount 

of indentation is shown in Fig. 5-31-B. It was previously argued that 

that due to the symmetry of deformation the contact widths 'W1 ' and 

'W2' should theoretically be equal, and that any discrepancy in 1 141 ' and 

'W2' would be accounted for the non-symmetric nature of the mesh used. 
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Fig. 5-31-8. Variation of contact width 'W2' with height 'H' for commercially 

pure lead obtained by the finite element method. 
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Comparing Figs. 5-31-A and 5-31-B, the discrepancy in the contact 

widths 1 W1' and 1 142' is negligible. It is worth mentioning that the 

finite element mesh was not drastically non-symmetric with respect to 

the axis of symmetry shown in the illustration, see the finite element 

mesh in Fig. 5-2. The 

discrepancy in 'W1 ' and 

'W2' would have been 

noticeable if the two 

halves (I and II) had 

been provided with 

entirely non-symmetric 

mesh. 

The relationship 

between the indenting force 

F1 /(LoxDo) and the amount of 

indentation is shown in 

Fig. 5-31-C. As seen the curve shows the same trend as that obtained 

in case (b), Fig. 5-29-C, in which the platens positioned on the sides 

of the billet remained stationary during the course of indentation. 

The effect of friction on the curve, over the considered range, is not 

significant particularly when the amount of indentation is less than 

0.04. 

The manner in which the original finite element mesh, shown in 

Fig. 5-2, was distorted after receiving 0.07 amount of indentation is 

shown in Fig. 5-32. The distorted mesh for the case when the platens 

were smooth is shown in Fig. 5-32-A. Comparing this with the original 

mesh it is clear that the elements adjoining the platens are those 

with maximum angular distortions. The least distorted elements are 
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Fig. 5-32-A. Deformation of original mesh at (H0-H)/H0=0.07 in frictionless 

condition. 

Fig. 5-32-B. Deformation of original mesh at (H0-H)/H0=0.07 in sticking 

condition. 
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those positioned along the free-surface and the diameters of the billet 

in the x and y directions. The distorted mesh for the case when the 

platens were rough is shown in Fig. 5-32-B. Comparing this with the 

original mesh it is quite clear that the angular distortions of the 

elements adjoining the platens are not as high as those of the 

corresponding elements in the previous mesh shown in Fig. 5-32-A. Thus 

friction has the effect of decreasing the angular distortions of these 

elements and in turn their shear strains. In Fig. 5-32-B, the least 

distorted elements are the same as those in Fig. 5-32-A. Elements 

within the mesh, particularly those positioned along the axis of 

symmetry, are distorted rather noticeably and more than the corresponding 

elements in the previous mesh shown in Fig. 5-32-A. Thus friction has 

the effect of increasing the distortion of these elements. 

The flow fields for indentation of a round billet between smooth 

and rough platens are shown in Figs. 5-33 and 5-34 respectively. In 

the computation the speed of the platen were both assumed to be -1. The 

flow field for the case of indentation with smooth platens is shown in 

Fig. 5-33. The absolute velocity of metal particles in moving outwards 

along the contact widths increases well above the reference'velocity of 

the platens. Comparing this with the flow field shown in Fig, 5-20, 

for which the platens positioned on the sides of the billet remained 

stationary, it is observed how the movement of the free-surface changes 

when the stationary platens are also driven with the same speed as the 

other two, operating in the y direction. Along the free-surface, moving 

from A to B, the velocity vectors first change direction abruptly and 

then become almost parallel at the middle. The flow of metal is seen 

to be confined to the regions near to the platens, and to quickly 

divert towards the free-surface of the billet. In this field the 
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Fig. 5-33. Flow pattern at (H0-H)/H0=0.07 in frictionless condition,velocity 

of platens being -1. 
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Fig. 5-34. Flow pattern at (H0-H)/H0=0.07 in sticking condition, velocity 

of platens being -1. 
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existance of a large dead zone in the central region of the billet 

cross-section is quite clearly seen. The flow field established by 

rough platens is shown in Fig. 5-34. The velocity vectors along 

the free-surface, moving from A to B, change direction abruptly and 

become parallel over the most part of the free-surface. A major 

part of the free-surface seems to be moving outwards with an almost 

uniform speed. Contrary to the previous case shown in Fig. 5-33, in 

this field the metal flow at first penetrates deeply into the billet 

cross-section and then diverts towards the free-surface of the billet. 

As in the previous field, a dead zone in the central region exists but 

is considerably smaller in size. 

The distribution of effective strains for the case when the 

billet was indented by smooth platens is shown in Fig. 5-35-A. 

' Regions with the largest strains adjoin the platens. The least 

strained regions are positioned beneath the free-surface and near the 

centre of the billet. Comparing this with Fig. 5-22-A, it becomes 

clear how the constant strain lines change when the stationary platens 

are also driven with the same speed as the other two operating in the 

y direction. The distribution of effective strains for the case when 

the billet was indented between rough platens is shown in Fig. 5-35-B. 

Regions with the largest strains are those positioned beneath the 

platens. As before, regions beneath the free-surface and near the billet 

centre are the least strained regions. Comparing this with Fig. 5-35-A, 

the only substantial effect of friction seems to be the change in the 

constant strain lines adjoining the platens. 

5.4.2 Results obtained from volume constancy  

To obtaine the current configuration of the billet from volume 
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Fig. 5-35-A. Distribution of effective strain at (H0-H)/H0=0.07 in frictional 

condition. 

Fig. 5-35-B. Distribution of effective strain at (H0-H)/H0=0.07 in sticking 

condition. 
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constancy the behaviour of the free-surface must first be known. 

As it was previously argued in the results obtained by the finite 

element method the behaviour of the free-surface in this kind of 

indentation is highly dependent on the surface condition of the 

platens. When the billet is indented by smooth platens the velocity 

vectors along this surface, though almost equal in value, change 

direction abruptly, see Fig. 5-33. By contrast, when the billet is 

indented by rough platens the behaviour of the free-surface is 

approximately known since the velocity vectors along this surface 

are in general parallel and equal in value, see Fig. 5-34. 

In the following, the volume constancy is applied to an 

indentation problem in which the platens are rough. In accordance 

with the flow field shown in Fig. 5-34, it is assumed that the free- 

surface of the billet during the course of indentation will be 

displaced outwards. This, of course, requires the radius of curvature 

of the free-surface to remain constant. For such an assumed behaviour 

of the free-surface it is quite clear that during indentation the 

centre of curvature of the free-surface will remain on the axis of 

symmetry of the two halves. The undistorted and distorted configurations 

of the billet are shown in the illustration below, 0' being the centre 

of the free-surface in the distorted state. 

If the radius of the billet is called Ro, then from volume constancy 

4 n R2  = z AB (BC + AO') + OA . OG + GF (FD + GO') 

—  + '/ R2 (2 -  20) 

where the last term on the right is the area of sector O'CD. Considering 
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H 	

VIL 	 

B17777/77 11 	Axis of 
symmetry 

W2 
i1 2 

I 
H 
2 

the symmetry of deformation the above equation can be written as 

ā Tr R2 =AB (BC +ĀO') +0A2  +z R2 (2 R2  o 

but AB = Ro  Cos 0, BC = i WZ  and OA = i H - 
o 
 Cose. Thus 

4TrR2 =Ro Cos e (iW1 +iH-Ro Cos 6) +(iH - Ro Cos 8)2  

+iR2 (2-28) 
o 

From which the contact width 'Irll' can be determined by 

2R2  8 - (H - 2R Cos 8)2 
W = ° 	0 	+2R Cos e -H 1 	

R
o 
Cos e 	°  

(5.23) 
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The angle '6' can be expressed in terms of 'W1' and 'H'. From triangle 

0'ED 

DE W1 -Hf2Ro  Cos e 
Tan e — 	- 

d'E 	2R Cos 6 
0 

or 6 	 -1 
W1  -H+2Ro  Cos 6 

Tan 
2Ro  Cos 6 

(5.24) 

By solving Eqs. (5.23) and (5.24), the contact width 'W1 ' was 

computed. The method of computation used was as follows: 

1- For a given 'H', '0' was assumed equal to zero. 

2- From Eq. (5.23), 'W1 ' was calculated. 

3- By substituting for 'W1 ', 'e' and 'H' in Eq. (5.24), a more correct 

value for '8' was calculated. 

4- Steps 2 to 3 was repeated until convergence was achieved. 

It is worth noting that the height 'H' cannot be smaller than 

a critical value at which the initial quadrant is fully converted into 

a square. If the initial diameter of the billet and the side of the 

square are assumed Ro  and 2H respectively, it can be written (see also 

the illustration): 

wi  

1TR2  = (H)2 
	.. 	H 

= 0 

Thus 

(Ho-H) /Ho  - 2 
 2 

IT 
 = 0. 11, 

w
1 
 /D
o 
 = W2/Do  = 2 = 0.89 

	 H 
2 
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Fig. 5-36. Variations of contact width 'W1' and of 'W2' with height 'H' 

obtained by the finite element method and volume constancy 

assumption. 
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The computed results are shown in Fig. 5-36. The slope of the 

curve first decreases, then remains almost constant, and finally 

increases markedly as the amount of indentation approaches the limiting 

value of 0.11. The curve obtained from volume constancy appears in 

good agreement with that obtained by the finite element method. The 

slight discrepancy observed is due to the assumed behaviour of the 

free-surface which was not fully in agreement with that obtained by the 

finite element method. 

5.5 	A study of case (d)  

As was previously described in section 5.1, in this case the 

chamber was comprised of two circular-shaped platens (see the 

illustration below), 

the moving platens 

being driven in the 

direction indicated 

by the arrows to 	 / 	 1 26max 

indent a billet with 

an initially 

rectangular cross-

section. 

In the 

computation, due to 

the symmetry of 

deformation, only one quarter of the billet cross-section was considered. 

The finite element mesh comprised of 80 elements and 99 nodal points and 

is shown in Fig. 5-37. Due to the high extent of plastic deformation 

near the contact corner, finer divisions were provided in the nearby 
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Fig. 5-37. Finite element mesh for a billet with rectangular cross-section 

(quarter of cross-section shown). 
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region. The computation was carried out using the material properties 

of aluminium and assuming complete sticking conditions at the interface 

of the billet and platens. The geometrical specifications of the 

billet used in the computation were as follows (see also the illustration 

below): 

The maximum amounts of 

Case I  

a = 5 mm 

b = 22 mm 

r = 20 mm 

Case II  

a=10mm 

b = 20 mm 

r=20mm 

indentation 6
max 
 , for which 

the platens are brought together, were determined from 

d 
max 

=OA =0B -AB 

where ŌB = b and ĀB = / AC2  - BC2  = )r2  - a2t  

The maximum amounts of indentation in cases I and II were 2.64 and 

2.68 mm respectively. 

To pursue the history of deformation the following parameters 

were calculated and recorded (see also the illustration below): 

1- 6 = amount of indentation 

F 	F 

2- L

,
--A- and -I = components of indenting force in the x and y directions 
0 	0  

where Lo  is the initial length of the billet. 
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Plastic 
region 

Elastic 
region 

5.5.1 Results obtained from the finite element method  

The computed results are shown in Figs. 5-38 and 5-39. The 

relationship between the vertical component of indenting force Fy  /L
o 
 , 

and the amount of indentation is shown in Fig. 5-38. The initial 

size of the billet can be seen to have a marked effect on the manner 

in which the load-displacement curve varies. In case I, the curve 

remains almost unaffected whenever a nodal point comes into contact 

with the platen. In this curve, A is the point at which plastic regions 

(which are first nucleated at the top two contact points) begin to merge 

as shown in the illustration. 

Point B is when the plastic 

regions fully merge, which 

occurs when the material 

comes into complete contact 

with the platen. In case 

II, the curve rises markedly 

whenever a nodal point comes 

into contact with the platen. 
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Fig. 5-38. Variations of indenting force 'F y' with movement 's' for commercially 

pure aluminium obtained by the finite element method. 
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Fig. 5-39. Variation of indenting force 'FX' with movement 'd' for commercially 

pure aluminium obtained by the finite element method. 
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In this curve points such as A and B do not exist, since the two 

plastic regions never merge and the uninterrupted interface between 

the billet material and platen, which signifies case I, is absent. 

This is because the billet width in this case was twice as large as 

that in case I. 

The relationship between the indenting force FX/Lo  and the 

amount of indentation is shown in Fig. 5-39. 

In case I the curve almost remains unaffected whenever a nodal 

point comes into contact with the platen. In this curve, point A 

represents the point when the two plastic regions begin to merge, and 

point B, when this merging is complete. Immediately after point B 

the curve is seen to drop slightly. The drop is perhaps due to the 

reversing of interfacial shear stresses when the billet top surface 

entirely comes into contact with the platen (see the illustration A 

and B). 

A 
	

B 

The manner in which the original finite element mesh was distorted 
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is shown in Figs. 5-40 and 5-41. In case I, the distortion of the 

billet top surface into a circular shape is quite clearly seen. In 

this case elements with maximum angular distortions are those 

positioned near the top right corner. In case II, only a part of the 

billet top surface is seen to have been deformed into the shape of the 

platen, the rest remaining almost undeformed. In this case the angular 

distortions of the elements positioned near the top right corner are 

extremely high. Here only part of the billet free-surface has come 

in contact with the platen. 

The flow fields for this kind of indentation are shown in Fig. 

5-42. In the computation the velocity of the platen was assumed to be 

-1. The flow fields are self-explanatory. The only matter of interest 

is the rather unusual movements of some particles within the circle shown 

in dotted lines. Here the velocity vectors are slightly diverted to 

the left. 

The distributions of effective strain for cases I and II are shown 

in Fig. 5-43. In case I almost the entire cross-section of the billet 

has undergone a large amount of plastic deformation. The region with 

the largest effective strains is that positioned near the right top 

corner. The least strained region is positioned near the top left 

corner of the billet cross-section. In case II only a small part of 

the billet cross-section has undergone plastic deformation markedly. 

In this case the region positioned near the top right corner is 

considerably more strained than the corresponding one in case I. 

5.5.2 Upper-bound solution  

Although not reviewed here, an upper-bound solution to this kind 

of billet indentation has been presented by Chitkara and Johnson (60), 
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CASE (I) 

Fig. 5-40. Original and distorted finite element mesh at 6=2.64 mm in case I. 
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CASE (11) 

Fig. 5-41. Original and distorted finite element mesh at 0=2.68 mm in case 11. 
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CASE (II) 

Fig. 5-42. Flow pattern at 6=2.64 mm in case I and at 6=2.68 mm in case II, 
velocity of the platen being -1. 
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CASE (I) 
	

CASE (II) 

x o 	x 

YI 

yI 	 
0 

Strain (x10-2)  

Fig. 5-43. Distribution of effective strain at 6=2.64 mm in case I and 

at 6=2.68 mm in case II. 
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• 

where an assumed deformation flow field is used to predict the billet 

current configuration as well as the pressure required for indentation 

during the course of indentation. 

5.6 	Conclusions  

The finite element method is a convincing and powerful tool for 

the solution of elasto-plastic problems. The method removes many 

restrictions imposed by other methods and offers the possibility of 

obtaining information that the other methods cannot provide. 

The method of finite element is applicable to problems with 

complex geometry and easily takes into account the actual material 

properties. The method can reveal many features such as the load-

displacement curve, continuum current configuration, distribution of 

velocity, distributions of stress and strain, and many others. However, 

questions will still remain with regard to the accuracy of the 

solutions and the efficiency of the computation. 

The following conclusions can also be drawn: 

1- Although the finite element formulation, presented in chapter two, 

was developed for small strains and displacements, the predicted 

results showed reasonably good agreement with the experiments even 

when strains and displacements were both rather noticeable. 

2- The updating of nodal coordinates prove to be imperative when the 

theory of small strain and displacement are to be used for strain 

and displacement of a higher order. 

3- The quadrilateral elements proved to be remarkably efficient in the 

analysis of two-dimensional problems. 

4- The solution times for those problems studied indicated that the 

finite element method was rather expensive. The solution times may 
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however be reduced if a smaller number of higher order elements 

are used. In terms of the CDC 6400 computer units, the 

computation cost for the problems studied was 4000. 

5- Simpler techniques of analysis in the field of metal working such 

as slip-line or upper-bound can easily provide realistic solutions 

and although not as accurate as those obtained by the finite element 

technique, their extreme low computation cost and implementation 

simplicity should not be disregarded if these simple techniques are 

to be compared with the finite element method. 

6- Flow fields obtained by the finite element technique can be used to 

provide extremely reliable flow fields for later use in the upper 

bound technique. 
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APPENDIX 'A'  

LISTING OF THE COMPUTER 

PROGRAM EPFEA 1 

USING TRIANGULAR ELEMENTS 
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NOMENCLATURE  

Variable Place in labelled Definition 

common 

II 

II 

C4 

NE 

NN 

NB 

NEQ 

X,Y 

NI ,NJ,NK 

AI,AJ,AK, 

BI,BJ,BK 

AREA 

NP 

NP1 ,NP2 

NX,NY 

EP 

El 

XU 

H 

G 

NOR 

SK 

SKET 

DST 

SS 

DSS 

TS TP 

DTSTP 

TSS 

DISS 

TSSO 

Number of elements 

Number of nodes 

Band width of the overall stiffness matrix 

Number of equations 

Coordinates of nodal points 

Nodal connection of elements 

Local coordinates of elements 

Area of elements 

Pointer vector for imposing boundary 

conditions 

Pointer vectors for indicating state of 

elements 

Peripheral nodal points matrices, due to 

the side and upper segments 

Stress-strain matrix of elements 

Modulus of elasticity 

Poisson's ratio 

Tangent modulus 

Shear modulus of elasticity 

Number of load increments 

Overall stiffness matrix 

Strain increment of elements 

Stress of elements 

Stress-increment of elements 

Effective plastic strain of elements 

Effective plastic strain-increment of 

elements 

Effective stress of elements 

Effective stress-increment of elements 

Yield strength of elements 

Cl 
II 

II 

II 

II 

II 

11 

II 

II 

C2 

II 

C3 

11 

C3 

11 
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Stress of elements in the z-direction' 

Stress-increment of elements in the 

z-direction 

Stress-strain matrix in the z-direction 

SSZ 

DSS Z 

EPZ 

 

II 

  

   

Local 

Variable 

D 

SKE 

ST 

TS T 

 

Place in 

Subroutine 

Definition 

 

 

GDATA 

SKFORM 

YIELD 1 . 
U 

Elastic material matrix 

Element stiffness matrix 

Strain of elements 

Effective strain of elements 

    

Variables of main 

program 

Definition 

Displacement of nodal points 

Force of nodal points 

Displacement-increment of nodal points 

Force-increment of nodal points 

U 

F 

DU 

DF 
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PROGRAM 'EPFEAI'  
**************** 

C*********************************************************************** 
C***** MAIN PROGRAM ************************************************** 

C***** ELASTIC-PLASTIC FINITE ELEMENT ANALYSIS *********************** 
C***** WRITTEN BY ALI NAJAFI-SANI IN THE FIRST SEMESTER OF 1978 ****** 
C***** DEVELOPED FOR TRIANGULAR ELEMENTS. ***************************** 
C*********************************************************************** 

PROGRAM EPFEA1(INPUT,OUTPUT,TAPE5=INPUT,TAPE6oUTPUT,TAPE1=113B, 
*TAPE 2=113B) 
DIMENSION U(230),DU(230),F(230),DF(230),D(3,3) 
COMMON /C1/ NE,NN,NB,NEQ,X(115),Y(115),NI(162),NJ(162),NK(162),AI( 
*162),AJ(162),AK(162),BI(162),BJ(162),BK(162),AREA(162),NF(230),NP1 
*(162),NP2(162),NX(30),NY(30),EP(3,3,162),B(3,6) 
* , E 1, XU, H, G, NOR 
COMMON /C2/ SK(230,40),SKET(6,6,162) 
COMMON /C3/ DST(3,162),SS(3,162),DSS(3,162),TSTP(162),DTSTP(162),T 
*SS(162),DTSS(162) 
COMMON /C4/ TSSO(162),SSZ(162),DSSZ(162),EPZ(3,162) 
COMMON/C5/KS,LS 

C*********************************************************************** 
C***** INPUT OF DATA ************************************************* 

CALL GDATA(D) 
C*********************************************************************** 

C***** GENERATION AND ASSEMBLY OF STIFFNESS MATRICES ***************** 
CALL S KFORM (D ) 

C******************************************** 
C***** 	INPUT OF INITIAL BOUNDARY CONDITIONS 

CALL BOND 1(U, F) 

*************************** 

************************** 

C****************************************** ** ** ** ** ** ** ** ** ** ** ** ** ** *** 
C***** 	INITIATION OF PLASTIC DEFORMATION ** ** ** ** ** ** ** ** ** ** ** ** ** *** 
C**************************************** ** ** ** ** ** ** ** ** ** ** ** ** ** ** *** 

CALL YIELD 1(U, F, DU, DF, D ) 
NOR=1500 

C*********************************************************************** 

C***** INITIATION OF LOAD INCREMENTS ********************************* 
DO 1 I=1, NOR 

C*********************************************************************** 

C***** UPDATE OF GEOMETRICAL MATRICES ******************************** 
CALL CHANGE(D,U) 

C*********************************************************************** 

C***** INPUT OF INSTANTANEOUS BOUNDARY CONDITIONS ******************** 
CALL BOND2(I,U,F,DU,DF) 

C*********************************************************************** 

C***** INITIATION OF INCREMENTAL PLASTIC DEFORMATION ***************** 
CALL YIELD2(U,F,DU,DF,D,I) 

1 	CONTINUE 
REWIND 1 
REWIND 2 
STOP 
END 
SUBROUTINE GDATA(D) 
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WRITE(6,10)(I,NI(I),NJ(I),NK(I),AREA(I),I=1,NE) 
10 	FORMAT (1X, I3, 7X, 13, 7X, I3, 7X, I3, 5X, E15. 5) 

FACT=E1*(1.0-XU)/(1.O+XU)/(1.0-2,0*XU) 
D (1, 1)=FACT 
D(2, 2)=FACT 
D (1, 2 )=FACT*XU / (1. 0-XU ) 
D (2, 1)=D (1, 2) 
D (1, 3)=0. 0 
D (3, 1)=0.0 
D (2, 3)=0. 0 
D (3, 2)=0.0 
D(3, 3)=E1/2.0/(1.O+XU) 
DO 11 N=1,NE 
EPZ(1,N)=D (1, 2) 
EPZ (2,N)=D (1, 2) 
EPZ (3,N)=0. 0 
DO 11 K=1, 3 
DO 11 M=1, 3 

11 	EP(K,M,N)=D (K,M) 
RETURN 
END 
SUBROUTINE SKFORM(D) 
DIMENSION SKE (6, 6),D (3, 3),W4(3, 6),W5(3, 6),W6(6, 3) 
COMMON /C1/ NE,NN,NB,NEQ,X(115),Y(115),NI(162),NJ(162),NK(162),AI( 

*162),AJ(162),AK(162) ,BI (162),BJ(162),BK(162),AREA(162) ,NP (230),NP1 
*(162),NP2(162),NX(30),NY(30) ,EP (3,3,162),B(3,6)' 
* , E 1, XU, H, G, NOR 

COMMON /C2/ SK(230, 40),SKET (6, 6, 162) 
COMMON /C3/ DST(3,162),SS(3,162) ,DSS (3,162),TSTP(162),DTSTP(162),T 

*SS (162),DTSS(162) 
DO 4 I=1,NEQ 
DO 4 J=1,NB 

4 	SK(I, J)=0.0 
DO 2 I=1, 2 
DO 2 J=1, 6 

2 	B(I,J)=0.0 
DO 1 N=1,NE 
B(1, 1)=BI(N) 
B(1, 3)=BJ(N) 
B(1, 5)=BK(N) 
B(2,2)=AI(N) 
B(2, 4)=AJ(N) 
B(2, 6)=AK(N) 
B(3, 1)=AI(N) 
B(3, 2)=BI(N) 
B(3, 3)=AJ(N) 
B(3, 4)=BJ(N) 
B(3, 5)=AK(N) 
B(3, 6)=BK(N) 
CALL MULT1(D,B,W5, 3, 3, 6) 
TT=4. 0*AREA(N) 
DO 5 K=1, 6 
DO 5 M=K, 6 
SKE (K,M)=0. 0 
DO 6 L=1, 3 

6 	SKE (K, M) =S KE (K, M)+B (L, K) *W5 (L, M ) 
SKE (K,M)=SKE (K,M) /TT 
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SKET (K,M,N)=SKE (K,M) 
5 	CONTINUE 

CALL SADD (N, SKE ) 
1 	CONTINUE 

RETURN 
END 
SUBROUTINE BOND1(U,F) 
DIMENSION U(230),F(230) 
COMMON /C1/ NE,NN,NB,NEQ,X(115),Y(115),NI(162),NJ(162),NK(162),AI( 
*162),AJ(162),AK(162),BI(162),BJ(162),BK(162),AREA(162),NP(230),NP1 
*(162),NP2(162),NX(30),NY(30),EP(3, 3, 162),B(3, 6) 
*,El,XU,H,G,NOR 
ND=5 
NP(230)=1 
NP(229)=1 
NP(203)=1 
NP(181)=1 
NP(161)=1 
NP(141)=1 
NP(107)=1 
NP(137)=1 
NP(135)=1 
NP(136)=1 
NP(102)=1 
NP(74)=1 
NP (50)=1 
NP(52)=1 
NP (76)=1 
NP(106)=1 
NP(139)=1 
NP(140)=1 
DO 1 I=1,NEQ 
U (I)=0.0 

1 	F(I)=0.0 
KK=2*NY(1) 
U (KK) =- (Y (NY (1)) -Y (NY (2))) /FLOAT (ND ) 
RETURN 
END 
SUBROUTINE YIELD1(U,F,DU,DF,D) 
DIMENSION D(3, 3),SSD(1, 3),TSSD(3, 1),W1(1, 1),W2(1, 3),W3(3, 1),W4(3, 3 
*),W5(3, 6),W6(6, 3),SKEO(6, 6),SKE (6, 6),ST(3, 162),TST(162) 
DIMENSION U(230),DU(230),F(230),DF(230) 
COMMON /C1/ NE,NN,NB,NEQ,X(115),Y(115),NI(162),NJ(162),NK(162),AI( 
*162),AJ(162),AK(162),BI(162),BJ(162),BK(l62),AREA(162),NP(23O),NP1 
*(162),NP2(162),NX(30),NV(30),EP(3,3,162),B(3,6) 
*,E1,XU,H,G,NOR 
COMMON /C2/ SK(230, 40),SKET(6, 6, 162) 
COMMON /C3/ DST(3,162),SS(3,162),DSS(3,162),TSTp(162),DTSTP(162),T 
*SS(162),DTSS(162) 
COMMON /C4/ TSSO(162),SSZ(162),DSSZ(162),EPZ(3,162) 
H=0.86E03 $ YSR=500.0 
YS=400.0 
DO 300 I=1,NE 

300 TSSO(I)=YSR 
C*********************************************************************** 

C***** SOLVE OF THE SYSTEM OF EQUATIONS ****************************** 
CALL SOLVE (U, F) 
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C***** EVALUATION OF THE RATING FACTOR YP **************************** 
BIG=D. 0 
DO 1 N=1,NE 
INI (N) 
J=NJ(N) 
KNK (N ) 
ST (1,N)=0,5*(BI (N )*U (2*I-1)+BJ(N)*U (2*J-1)+BK(N)*U (2*K-1)) /AREA(N ) 
ST (2, N)=0.5* (AI (N) *U (2*I)+AJ (N) *U (2*J)+AK(N) *U (2*K) )/AREA(N) 
ST(3,N)=0,5*(AI (N)*U (2*I-1)+BI (N )*U (2*I )+AJ(N)*U (2*J-1 )+BJ(N )*U (2* 

*J)+AK(N)*U (2*K-1 )+BK(N )*U (2*K))/AREA(N) 
SS (1,N)=D (1, 1)*ST(1,N)+D (1, 2)*ST(2,N)+D (1, 3)*ST(3,N) 
SS(2,N)=D (2, 1)*ST(1,N)+D (2, 2)*ST(2,N)+D (2, 3)*ST(3,N) 
SS (3,N)=D (3, 1)*ST(1,N)+D (3, 2)*ST(2,N)+D (3, 3)*ST(3,N) 
SSZ (N)=EPZ (1,N)*ST (1,N)+EPZ (2,N)*ST (2,N)+EPZ (3,N)*ST (3,N) 
TSS(N)=SQRT((SS(1,N)-SS(2,N))**2+(SS(1,N)-SSZ(N))**2+(SS(2,N)-SSZ( 

*N))**2+6.0*SS(3,N)**2)/SQRT(2.0) 
TST (N )=TSS (N ) /El 
IF(BIG.LT.TSS(N)) BIG=TSS(N) 

1 	CONTINUE 
YP=TSSO(1)/BIG 
IF(Y (NY (1))+U(2*NY(1)).GT.Y(NY(2))+U(2*NY(2))) GO TO 38 
YP1=(Y (NY (1 ) )-Y (NY (2 ) ) ) / (U (2*NY (2 ) )-U (2*NY(1 ) )) 
IF (YP 1. LT. YP) YP YP 1 

38 	IF(NP(2*NX(1)-1).EQ.0) GO TO 39 
IF(X(NX(1)).GT.X(NX(2))+U(2*NX(2)-1)) GO TO 39 
YP 1=(X (NX(1))-X (NX(2))) /U (2*NX(2)-1) 
IF(YP1.LT.YP) YP=YP1 

39 	TT:).O 
DO 2 N=1,NE ' 
ST(1,N)=YP*ST(1,N) 
ST(2,N)=YP*ST(2,N) 
ST (3,N)=YP*ST (3,N) 
SS(1,N)=YP*SS(1,N) 
SS (2,N)=YP*SS (2,N) 
SS(3,N)=YP*SS(3,N) 
SSZ (N)=SSZ (N) *YP 
T ST (N )=YP*T ST (N ) 
TSS(N)=YP*TSS (N) 
IF (TSS (N) /TSSO (1) .GE. O. 995) NP2(N)=1 
IF(NP2(N).EQ. 1) NP1(N)=0 

2 	CONTINUE 
DO 6 I=1,NEQ 
DU (I)=0.0 
DF(I)=0.0 
U (I)=YP*U (I ) 

6 	F(I)=YP*F(I) 
WRITE (6, 10000) 

10000 FORMAT (//, 2X, 2HNO, 23X, 2HUX, 23X, 2HUY, 23X, 2HFX, 23X, 2HFY, /, 120 (1H*) , / 
*/) 
LU 
DO 20000 N=1,NEQ,2 
L=L+1 
X1=U(N) 
X2 =U (N+1) 
Y1=F(N) 
Y2=F (N+1) 
WRITE (6, 30000 )L, X1, X2, Y1, Y2 
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30000 FORMAT (1X, 13, 10X, 4 (E 15. 5, 10X)) 
20000 CONTINUE 

DO 100 K=1, NE 
DT STP (K)=0. 0 
TSTP(K)=0. 0 

100 CONTINUE 
A=E 1/(1. CH-XU ) 
B1=(1.0-XU)/(1.0-2.0*XU) 
C=XU / (1.0-2,0*XU ) 
DO 14 N=1, NE 
IF(NP2(N).EQ.0) GO TO 14 
S=2. 0/3. 0*TSS (N)*TSS (N )* (1.0+H/3.0/G ) 
SM=(SS(1,N)+SS(2,N)+SSZ(N))/3.0 
S1=SS(1,N)-SM 
S2=SS (2, N)-SM 
S3=SS (3,N) 
S 4=S SZ (N)-SM 
EP(I, 1,N)=A*(B1-S1*S1/S) 
EP(2, 1,N)=A*(C-S 1*S2/S) 
EP (2, 2,N)=A*(B1-S2*S2/S) 
EP(3, 1,N)=-A*S1*S3/S 
EP(3, 2,N)=-A*S2*S3/S 
EP(3, 3,N)=A* (O. 5-S 3*S3/S) 
EP(1, 2,N)=EP(2, 1,N) 
EP(1, 3,N)=EP(3, 1,N) 
EP(2, 3,N)=EP(3, 2,N) 
EPZ (1, N)=A* (C-S I*S 4/S) 
EPZ(2,N)=A*(C-S2*S4/S) 
EPZ(3,N)= A*S3*S4/S 
DO 8 K=1, 3 
DO 8 M=1, 3 

8 	W4(K,M)=EP(K,M,N) 
B(1, 1)=BI(N) 
B(1, 3)=BJ(N) 
B(1, 5)=BK(N) 
B(2, 2)=AI(N) 
B(2, 4)=AJ(N) 
B(2, 6)=AK (N ) 

- B(3, 1)=AI(N) 
B(3, 2)=BI(N) 
B(3, 3)=AJ(N) 
B(3, 4)=BJ(N) 
B(3, 5)=AK(N) 
B(3, 6)=BK(N) 
CALL MULT 1(W4, B, W 5, 3, 3, 6) 
TT=4. 0*AREA(N ) 
DO 10 K=1, 6 
DO 10MK,6 
SKE (K,M)=0. 0 
DO 161 L=1, 3 

161 SKE(K,M)=SKE(K,M)+B(L,K)*W5(L,M) 
SKE (K,M)=SKE (K,M) /TT-SKET(K,M,N) 
SKET(K,M,N)=SKET (K,M,N)+SKE (K,M) 

10 CONTINUE 
CALL SADD (N, SKE ) 

14 	CONTINUE 
RETURN 



- 317 - 

END 
SUBROUTINE CHANGE (D,U) 
DIMENSION D(3,3),U(230) 
COMMON /C1/ NE,NN,NB,NEQ,X(115),Y(115),NI(162),NJ(162) 

*162),AJ(162),AK(162),BI(162),BJ(162),BK(162),AREA(162) 
*(162),NP2(162),NX(30),NY(30),EP(3,3,162),B(3,6) 
* , E 1, XU, H, G, NOR 

DO 5 N=1, NE 
IF(NP2(N).NE.1) GO TO 5 
I=NI 

 
(N) 

J=NJ(N) 
K=NK(N) 
AI (N )= (X (K)+U (2*K-1 ))- (X (J)+U (2*J-1)) 
AJ(N)=(X(I)+U (2*I-1 ) )- (X (K )+U (2*K-1 ) ) 
AKIN )= (X (J )+U (2 *J-1) )- (X (I )+U (2 *I-1) ) 
BI(N)=(Y(J)+U (2*J))-(Y(K)+U(2*K)) 
BJ(N)=(Y(K)+U(2*K))-(Y(I)+U(2*I)) 
BK(N)=(Y(I)+U(2*I))-(Y(J)+U(2*J)) 
AREA(N)=0. 5*(AK(N )*BJ(N)-AJ(N )*BK(N) ) 

5 	CONTINUE 
RETURN 
END 
SUBROUTINE BOND 2(IO,U,F,DU,DF) 
DIMENSION U(230),DU(230),F(230),DF(230) 
COMMON /C1/ NE,NN,NB,NEQ,X(115),Y(115) ,NI (162),NJ(162) 

*162),AJ(162),AK(162),BI(162),BJ(162),BK(162),AREA(162) 
*(162),NP2(162),NX(30),NY(30),EP(3,3,162),B(3,6) 
*,E1,XU,H,G,NOR 

COMMON/C5/KS,LS 
IF(IO.NE.1)GO TO 1 
KS =1 
LS =1 

1 	DELTA). 0002 
DO 10 KK=1,30 
DI=Y (NY(1))+U(2*NY(1))-Y(NY(KK))-U(2*NY(KK)) 
IF(DI.LT.O.0000O0O1) KS=KK 
IF (DI. LT. 0.00000001) DU (2 *NY (KK) )=-DELTA 
IF (DI. LT. 0. 00000001) NP (2*NY (KK))=1 

10 CONTINUE 
IF(NP(2*NX(1)-1).EQ.0) GO TO 7 
DO 20 KK=1, 30 
DI =X (NX(1))-X (NX(KK) )-U (2*NX(KK)-1) 
IF (D I. LT. 0. 00000001) L5 KK 
IF (DI. LT. 0.00000001) DU (2*NX(KK)-1 )=0 . 0 
IF (DI . LT. 0. 00000001) NP (2 *NX (KK)-1)=1 

20 CONTINUE 
7 	RETURN 

END 
SUBROUTINE YIELD2(U,F,DU,DF,D,IO) 
DIMENSION U(230),DU(230),F(230),DF(230) 
DIMENSION D(3, 3),SSD(1, 3),TSSD (3, 1),W1(1, 1),W2(1, 3),W3( 

*),W5(3, 6),W6(6, 3),SKEO(6, 6),SKE(6, 6),ST(3, 162),TST(162) 
COMMON /C1/ NE,NN,NB,NEQ,X(115),Y(115),NI(162),NJ(162), 
*162),AJ(162),AK(162),BI(l62),BJ(162),BK(162),ARFA(162), 
*(162),NP2(162),NX(30),NY(30) ,EP (3, 3, 162 ) ,B(3, 6) 
* , E 1, XU, H, G, NOR 

COMMON /C2/ SK(230, 40) , SKET (6, 6, 162) 

3, 1),W4(3, 3 

NK(162),AI( 
NP(230),NP1 

,NK(162),AI( 
,NP (230),NP1 

,NK(162),AI( 
,NP (230),NP1 
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DST (3,N)=DST(3,N)*YP 
DSS (1,N)=DSS (1,N)*YP 
DSS (2,N)=DSS (2,N)*YP 
DSS (3, N)=DS S (3, N) *YP 
DSSZ (N)=DSSZ (N )*YP 

2 	CONTINUE 
DO 3 N=1,NE 

4 	DTSS(N)=SQRT((SS(1,N)+DSS(1,N)-SS(2,N)-DSS(2,N))**2+(SS(1,N)+DSS(1 
*,N)-SSZ (N )-DSSZ (N))**2+(SS (2,N)+DSS (2,N)-SSZ(N) DSSZ(N))**2+6.0*(S 
*S(3,N)+)SS(3,N))**2)/SQRT(2.0)-TSS(N) 
IF(NP2(N).EQ.0) GO TO 5 
IF(DTSS(N). GE. O.0) GO TO 6 
TSSO (N)=TSS (N) 
NP2 (N)=0 
NP1(N)=1 
DO 15 K=1, 3 

15 	DSS (K,N)=D (K, 1)*DST(1,N)+D(K,2)*DST(2,N)+D(K,3)*DST(3,N) 
DSSZ(N)=D (1, 2)*DST(1,N)+D (1, 2)*DST(2,N) 
GO TO 4 

6 	DTSTP(N)=DTSS(N)/U 
GO TO 3 

5 	DTSTP (N )=0.0 
3 	CONTINUE 

DO 90 N=1, NEQ 
U (N )=U (N )+Y P *DU (N ) 

90 	F(N)=F(N)+YP*DF(N) 
DO 11 N=1,NE 
TSS (N)=TSS (N )+DTSS (N) 
TSTP (N)=TSTP (N )+DTSTP (N ) 
SSZ (N )=SSZ (N )+DS SZ (N) 
DO 110 K=1, 3 
SS (K, N) =S S (K, N)+D S S (K, N) 

110 CONTINUE 
11 	CONTINUE 

A=E1/(1. 0+XU) 
B1=(1.O-XU)/(1.0-2.0*XU) 
C XU / (1.0-2,0*XU ) 
DO 12 N=1, NE 
IF (NP2 (N) . EQ. 1) GO TO 14 
IF (TSS (N) /TSSO (N) . GE. O. 995) NP2(N)=1 
IF(NP2(N) .EQ. 1) NP1(N)=0 
IF (NP2 (N) .EQ. 1) GO TO 14 
IF(DTSS(N).GE. 0. 0) GO TO 12 
EPZ(1,N)=D (1, 2) 
EPZ (2, N)=D (1, 2) 
EPZ (3,N)=0. 0 
DO 13 K=1, 3 
DO 13 M=1, 3 
EP(K,M,N)=D (K,M) 

13 	W4(K,M)=D (K,M) 
GO TO 19 

14 	S=2.0/3. 0*TSS(N)*TSS(N)*(1.0+11/3.0/G) 
SM=(SS(1,N)+SS(2,N)+SSZ(N))/3.0 
S 1=SS (1,N)-SM 
S2=SS (2,N)-SM 
S3=SS(3,N) 
S 4=SSZ (N) -SM 
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EP(1, 1,N)=A*(B1-S1*S1/S) 
EP(2, 1,N)=A*(C-S1*S2/S) 
EP (2, 2,N)=A*(B1-S2*S2/S) 
EP (3, 1, N)=-A*S 1 *S 3/S 
EP (3, 2, N)=-A*S2*S3/S 
EP(3, 3,N)=A* (O. 5-S 3*S3/S ) 
EP(1, 2,N)=EP(2, 1,N) 
EP(1, 3,N)=EP(3, 1,N) 
EP (2, 3, N)=EP (3, 2,N) 
EPZ(1,N)=A*(C-S1*S4/S) 
EPZ(2,N)=A*(C-S2*S4/S) 
EPZ(3,N)=-A*S3*S4/S 
DO 16 K=1, 3 
DO 16 M=1, 3 

16 	W4(K,M)=EP(K,M,N) 
19 	TT=O.O 

B(1, 1) =BI(N) 
B(1, 3) =BJ(N) 
B(1,5)=BK(N) 
B(2, 2)=AI (N) 
B(2, 4)=AJ(N) 
B(2, 6)=AK(N) 
B(3, 1)=AI(N) 
B(3,2)=BI(N) 
B(3, 3)=AJ(N) 
B(3, 4)=BJ(N) 
B(3, 5)=AK(N) 
B(3, 6)=BK(N) 
CALL MULT 1(W4; B , W 5, 3, 3, 6 ) 
TT=4,0*AREA(N) 
DO 17 K=1, 6 
DO 17 M=K, 6 
SKE (K,M)=0. 0 
DO 170 L=1, 3 

170 	SKE (K,M)=SKE (K,M)+B (L, K)*W5(L,M) 
SKE (K,M)=SKE (K,M) /TT-SKET (K,M,N) 
SKET (K,M,N)=SKET (K,M,N)+SKE (K,M) 

17 	CONTINUE 
CALL SADD (N, SKE ) 

12 	CONTINUE 
IF (MOD (10,10) .NE. 0) GO TO 80 
SUMI=ABS(U(2*NY(1))) 
SUM6=ABS (U (2*NX(1)-1)) 
SUM 2=0.0 
SUM20=0.0 
SUM3=0.0 
SUM30=0. 0 
DO 220 KK=1, 30 
SUM2=SUM2+F (2*NY (KK) ) 
IF (KK. EQ. 1) GO TO 212 
SUM20=SUM20+F (2*NY (KK)-1) 
SUM30=SUM30+F (2*NX(KK) ) 

212 	TT*3. 0 
220 SUM3=SUM3+F(2*NX(KK)-1) 

SUM2=ABS(SUM2) 
SUM3=ABS(SUM3) 
SUM20=ABS (SUM20) 
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SUM30=ABS(SUM30) 
SUM 4=X (NY (KS ))+U (2 *NY (KS )-1 )  
SUM5 =Y (NX (LS ))+U (2*NX(LS) ) 
WRITE (1, 230) SUM1, SUM2, SUM3, SUM4, SUM5, SUM6, SUM20, SUM30 

230 	FORMAT (8 (E 12.5) ) 
80 	TT=0.O 

IF (MOD (I°, 20) .NE. 0) GO TO 330 
WRITE (6, 26)I0 

26 	FORMAT (/,1X,13HLOADING STEP=,14) 
WRITE (6, 4000) 

4000 FORMAT ( / / , 50X, 13HPLASTIC ZONES, / , 120 (1H*) ) 
WRITE (6,40O1)((N,NP2(N)),N=1,NE) 

4001 FORMAT (7 (I4, 4X, 12, 8X) ) 
WRITE (6, 1990) 

1990 FORMAT (/) 
WRITE (6, 10000) 

10000 FORMAT (2X, 2HNO, 16X, 2HUX, 16X, 2HUY, 16X, 2HFX, 16X, 2HFY, 13X, 5HDTSTP, 14X 
*,4HTSTP,15X,3HTSS,/,130(1H*)) 
DO 41 I=1, NN 
NOF 
SUM1=0. 0 
SUM2=0.0 
SUM3=O.0 
DO 42 N=1, NE 
IF (NI (N) . EQ. I) GO TO 43 
IF (NJ (N) . EQ. I) GO TO 43 
IF (NK(N) . EQ. I) GO TO 43 
GO TO 42 

43 NO=N0+1 
SUM1=SUM 1+TSS (N ) 
SUM2=SUM2+TSTP (N) 
SUM3=SUM3+DTSTP (N ) 

42 	CONTINUE 
SUMI=SUM1/FLOAT(NO) 
SUM 2=SUM 2 / FLOAT (NO ) 
SUM3=SUM3/FLOAT (NO ) 
X1=U (2*I-1) 
X2=U (2 *I ) 
Y1=F(2*I-1) 
Y2=F(2*I) 
WRITE (6, 32) (I, Xl, X2,Y1,Y2, SUM3, SUM2, SUM1) 

32 	FORMAT (I4, 7(6X, E12. 5)  ) 
41 CONTINUE 
330 	IF(IO.NE.NOR) GO TO 33 

WRITE (6, 45) 
45 	FORMAT (///, 2X, 2HNO, 24X, 1HX, 24X, 1HY, /, 60 (1H*) , //) 

DO 44 I=1, NN 
XX=X (I )+U (2*I-1) 
YY Y(I)+U(2*I) 
NO=0 
SUM1=O. 0 
SUM2=0.0 
SUM3=0. 0 
DO 62 N=1, NE 
IF(NI(N).EQ.I) GO TO 63 
IF(NJ(N).EQ.I) GO TO 63 
IF (NK(N ) .EQ. I) GO TO 63 
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GO TO 62 
63 	NON0+1 

SUM1=SUM1+TSS (N) 
SUM2=SUM2+TSTP (N ) 
S1=SS(1,N)$S2=SS(2,N)$S3=SS(3,N) 
TA=S QRT ((S 1-S 2) **2 /4. O+S 3**2 ) 
SUM3=SUM3+TA 

62 	CONTINUE 
SUMI=SUM1/ FLOAT (NO ) 
SUM2=SUM2/ FLOAT (NO) 
SUM3=SUM3/FLOAT(NO) 
V1=J(2*I-1)$V2=U(2*I)$V3 DU(2*I-1)$V4 DU(2*I) 
WRITE(6, 46) (I,XX,YY) 

46 	FORMAT (1X, I3, 10X, E15.5, 10X, E15.5) 
WRITE (2, 102) I, X(I) , Y (I) , V1, V2, V3, V4, SUM 1, SUM2, SUM3 

102 	FORMAT (I 10, 9 (E 10.3) ) 
44 	CONTINUE 
33 RETURN 

END 
SUBROUTINE SOLVE (U, F) 
DIMENSION SKI (230,40) ,FI (230),F(230),U(230) 
COMMON /C1/ NE,NN,NB,NEQ,X(115),Y(115),NI(162),NJ(162),NK(162),AI( 

*162),AJ(162),AK(162),BI(162),BJ(162),BK(162),AREA(162),NP(230),NP1 
*(162),NP2(162),NX(30),NY(30),EP(3,3,162),B(3,6) 
* , E 1, XU, H, G, NOR 

COMMON /C2/ SK(230, 40) , SKET (6, 6, 162 ) 
COMMON /C3/ DST (3, 162) , SS (3, 162 ) ,DSS (3, 162) ,TSTP (162 ) ,DTSTP (162 ) ,T 

*SS(162),DTSS(162) 
DO 1 I=1,NEQ 
IF(NP(I).EQ.0) FI(I)=F(I) 
IF(NP(I).EQ. 1) FI(I)=SK(I, 1)*U(I)*10.0E20 
IF(NP(I).EQ. 1.AND.U(I).EQ.O.0) FI(I)=SK(I, 1)*10.OE10 
DO 2 J=1, NB 

2 	SKI (I, J)=SK(I, J) 
IF(NP(I).EQ.1) SKI (I, 1)=SKI (I, 1)*10. 0E20 

1 	CONTINUE 
DO 300 N=1,NEQ 
IN 
DO 290 L=2, NB 
I=I+1 
IF(SKI(N,L)) 240,290,240 

240 	C=SKI (N, L) /SKI (N, 1) 
J=0 
DO 270 K=L,NB 
J=J+1 
IF (SKI (N, K)) 260, 270, 260 

260 	SKI (I, J)=SKI (I, J)-C*SKI (N, K) 
270 CONTINUE 
280 	SKI. (N, L)=C 

FI (I )=FI (I )-C*FI (N ) 
290 CONTINUE 
300 	FI(N)=FI(N)/SKI(N, 1) 

NNEQ 
350 N=N-1 

IF(N) 500, 500, 360 
360 L=N 

DO 400 K=2, NB 
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L =L+1 
IF (SKI (N, K)) 370, 400, 370 

370 	FI (N)=FI (N)-SKI (N, K) *FI (L ) 
400 CONTINUE 

GO TO 350 
500 TTN.O 

DO 3 N=1,NEQ 
IF (NP (N) . EQ. 1) GO TO 3 
U(N)FI(N) 

3 	CONTINUE 
DO 4 N=1, NEQ 
IF (NP (N).EQ.0) GO TO 4 
SUMN . 0 
K=N+1 
L~ 
DO 5 J=1, NB 
K=K-1 
L=L+1 
IF(K.EQ.0) GO TO 6 

5 	SUM=SUM+SK(K, L)*U (K) 
6 	TTN.O 

DO 7 J=2,NB 
IF(SK(N,J) .EQ. O. 0) GO TO 7 
SUM=SUM+SK(N, J)*U (N-1+J) 

7 	CONTINUE 
F(N)=SUM 

4 	CONTINUE 
RETURN 
END 
SUBROUTINE SADD (N, SKE) 
DIMENSION NO(3), SKE (6, 6) 
COMMON /C1/ NE,NN,NB,NEQ,X(115),Y(115),NI(162),NJ(162),NK(162),AI( 

*162),AJ (162),AK(162),BI (162),BJ (162),BK(162),AREA(162),NP(230),NP1 
*(162),NP2(162),NX(30),NY(30),EP(3, 3, 162),B(3, 6) 
* , E 1, XU, H, G, NOR 

COMMON /C2/ SK(230, 40) , SKET (6, 6, 162 ) 
NO(1)=NI(N) 
NO (2 )=NJ (N ) 
NO(3)=NK(N) 
DO 1 JJ=1, 3 
NROW=(NO (JJ)-1) *2 
DO 1 J=1, 2 
NROW=NROW+1 
I=(JJ-1)*2+J 
DO 2 KK=1, 3 
NCOLB = (NO (KK)-1 )*2 
DO 3 K=1, 2 
L=(KK-1)*2+K 
NC OLNCOLB+K+1 NROW 
IF (NCOL) 3, 3, 4 

4 	IF(L.LT.I) SKE (I,L)=SKE (L, I) 
SK(NROW,NCOL)=SK(NROW,NCOL)+SKE (I,L) 

3 	CONTINUE 
2 	CONTINUE 
1 	CONTINUE 

RETURN 
END 
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SUBROUTINE MULT I (A, B , C,M,N, L) 
DIMENSION A(M,N),B(N,L),C(M,L) 
DO 1 I=1,M 
DO 1 J=1, L 
C (I, J)=0. 0 
DO 1 K=1, N 

1 	C(I, J)=C(I, J)+A(I, K)*B(K, J) 
RETURN 
END 
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APPENDIX 'B' 

LISTING OF THE COMPUTER 

PROGRAM EPFEA 2 

USING QUADRILATERAL ELEMENTS 

(COMPRISING OF FOUR TRIANGULAR ELEMENTS) 



NE 

NN 

NB 

NEQ 

X,Y 

NOP 

AI,AJ,AK, 

BI,BJ,BK 

AREA 

NP 

NP1,NP2 

NX,NY 

EP 

SK 

SKEQ 

DST 

SS 

DSS 	• 

TS TP 

DTSTP 

TSS O 

SSZ 

DSSZ 

EPZ 

SM 

Variable Place in labelled 
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NOMENCLATURE  

Definition 

common 

C4 

C3 

II 

C2 

Cl Number of elements 

Number of nodes 

Band width of the overall stiffness matrix 

Number of equations 

Coordinates of nodal points 

Nodal connection of elements 

Local coordinates of elements 

Area of elements 

Pointer vector for imposing boundary 

conditions 

Pointer vectors for indicating state 

of elements 

Peripheral nodal points matrices, due to 

the side and upper segments 

Stress-strain matrix of elements 

Overall stiffness matrix 

Stiffness matrices of quadrilateral 

elements 

Strain-increment of elements 

Stress of elements 

Stress-increment of elements 

Effective plastic strain of elements 

Effective plastic strain-increment of 

elements 

Yield strength of elements 

Stress of elements in the z-direction 

Stress-increment of elements in the 

z-direction 

Stress-strain matrix in the z-direction 

9th and 10th equations of eliminated 

element stiffness matrices for recovery of 

internal nodes 

C4 

C6 
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XU 

El 

H1,H2 

YS1 ,YS2 

NEQ1 

NT 

G 

NOR 

  

C7 
II 

II 

Il 

II 

 

Poisson's ratio 

Modulus of elasticity 

Tangent moduli of stress-strain curve 

Yield stresses of stress-strain curve 

at breaking points 

Number of degree of freedom of internal 

nodes 

Number of triangular elements 

Shear modulus of elasticity 

Number of load increments 

      

Local 

Variable 

D 

SK10 

SK 

NO 

  

Place in 

Subroutine 

  

   

Definition 

   

  

GDATA 

SKFORM 

 

Elastic material matrix 

Stiffness matrix of four triangular 

elements comprising a quadrilateral 

Stiffness matrix of a triangular element 

Nodal connection of a triangular element 

     

Variables of main 

program 

Definition 

Displacement of nodal points 

Force of nodal points 

Displacement-increment of nodal points 

Force-increment of nodal points 

Displacement of internal nodal points 

Displacement-increment of internal nodal points 

U 

F 

DU 

DF 

UM 

VM 
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PROGRAM 'EPFEA2'  
**************** 

C*********************************************************************** 
C***** MAIN PROGRAM ************************************************** 
C***** ELASTIC-PLASTIC FINITE ELEMENT ANALYSIS *********************** 
C***** WRITTEN BY ALI NAJAFI-SANI IN THE FIRST SEMESTER OF 1978 ****** 
C***** DEVELOPED FOR QUADRILATERAL ELEMENTS ************************** 
C*********************************************************************** 

PROGRAM EPFEA2(INPUT,OUTPUT,TAPE5=INPUT,TAPE6OUTPUT, TAPE1=113B, 
*TAPE2=113B) 
DIMENSION U(174),DU(174),F(174),DF(174),D(3,3) 
DIMENSION UM(174),VM(174) 
COMMON /C1/ NE,NN,NB,NEQ,X(87),Y(87),NOP(4,67),AI(268),AJ(268),AK( 

*268),BI(268),BJ(268),BK(268),AREA(268),NP(174),NP1(268),NP2(268),N 
*X(].2),NY(12),EP(3, 3, 268),B(3, 6) 
COMMON /C2/ SK(174,34),SKEQ(8,8,67) 
COMMON /C3/ DST(3,268),SS(3,268),DSS(3,268),TSTP(268),DTSTP(268),T 

*SS (268) ,DTSS (268) 
COMMON /C4/ TSSO(268),SSZ(268),DSSZ(268),EPZ(3,268) 
COMMON/C5/KS,LS 
COMMON /C6/ SM(2, 10, 67) 
COMMON /C7/XU,E1,H1,H2,YS1,YS2,SP2,NEQI,NT,KKU,G,NOR,A,B1,C 

C*********************************************************************** 
C***** INPUT OF DATA ************************************************* 

CALL GDATA(D) 
C*********************************************************************** 
C***** GENERATION AND ASSEMBLY OF STIFFNESS MATRICES ***************** 

CALL S KFORM (D ) 
C*********************************************************************** 
C***** INPUT OF INITIAL BOUNDARY CONDITIONS ************************** 

CALL BOND1(U,F,UM) 
C*********************************************************************** 
C***** INITIATION OF PLASTIC DEFORMATION ***************************** 

CALL YIELD 1(U, F, DU, DF, D, UM, VM) 
NOR=1500 

C*********************************************************************** 
C***** INITIATION OF LOAD INCREMENTS ********************************* 

DO 1 I=1, NOR 
C*********************************************************************** 
C***** UPDATE OF GEOMETRICAL MATRICES ******************************** 

CALL CHANGE (D, U, UM) 
C*********************************************************************** 
C***** INPUT OF INSTANTANEOUS BOUNDARY CONDITIONS ******************** 

CALL BOND 2 (I, U, F, DU, DF, UM, VM) 
C*********************************************************************** 
C***** INITIATION OF INCREMENTAL PLASTIC DEFORMATION ***************** 

CALL YIELD2(U,F,DU,DF,D,I,UM,VM) 
1 	CONTINUE 

STOP 
END 
SUBROUTINE GDATA(D) 
COMMON /C1/ NE,NN,NB,NEQ,X(87),Y(87),NOP(4,67),AI(268),AJ(268),AK( 
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*268),BI(268),BJ(268),BK(268),AREA(268),NP(174),NP1(268),NP2(268),N 
*X(12),NY(12),EP(3, 3, 268),B(3, 6) 
COMMON /C2/ SK(174, 34),SKEQ(8, 8, 67) 
COMMON /C3/ DST (3, 268),SS (3, 268),DSS (3, 268) ,TSTP (268) ,DTSTP (268) ,T 

*SS (268) ,DTSS (268) 
COMMON /C4/ TSSO(268),SSZ(268),DSSZ(268),EPZ(3,268) 
COMMON /C7/XU, El, H1,H2,YS1,YS2,SP2,NEQ1,NT,KKU,G,NOR,A,B1,C 
DIMENSION D (3, 3) 
DATA 	NP/174*0/,NP1/268*1/,NP2/268*0/,NE/67/,NN/87/,NB/34/,NEQ/17 

*4/ 
DATA NY/80, 81, 82, 83, 84, 85, 86, 87, 78, 79, 64, 65/ 
DATA NX/9, 18, 20, 32, 31, 43, 42, 51, 50, 58, 65, 64/ 
XU*). 345 $ E1N.7E06 $ YS1=400.0 $ YS2=900.0 $ SP2=0.1 $ H1=5000,0 
H2=750. 0 
SP2=0. 09 
XUN.431 $ El::). 1E06 $ YS1=60.0 $ YS2=150.0 $ SP2=0.05 
H1=1800,0 $H2=260.0 
SP2=0. 045 
NEQ1=2*NE 	$ 	NT=4*NE 
WRITE (6, 1) 

1 	FORMAT (/ // / / / / / , 1X, 28HINDENTATION OF ROUND BILLETS,/,30(1H*)) 
READ (5, 3) ((NOP(1, I),NOP(2, I),NOP(3, I),NOP(4, I) ), I=1,NE) 

3 	FORMAT(415) 
READ (5, 2) ( (M, X(M) ,Y(M)) ,I=1,NN) 

2 	FORMAT (2 (I2, 3X, 2F 10.2) ) 
R=14.0 
DO 22 N=1,NN 
IF (Y (N) . EQ. 1.0) Y (N)=S QRT (R**2 -X (N) **2 ) 
IF(X(N).EQ.1.0) X(N)=SQRT(R**2 Y(N)**2) 

22 CONTINUE 
SC=R 
DO 12 K=1, NN 
X(K)=X(K)/SC 
Y(K)=Y(K)/SC 

12 CONTINUE 
NN 
DO 5 NQ=1,NE 
XM=(X (NOP (1, NQ))+X (NOP (2, NQ))+X (NOP (3, NQ))+X (NOP (4, NQ))) /4.0 
YM=(Y (NOP (1, NQ))+Y (NOP (2, NQ))+Y (NOP (3, NQ))+Y (NOP (4, NQ))) /4.0 
DO 50 M=1, 4 
NI-1-1 
INOP (M, NQ ) 
IF(M.LT.4) J=NOP(M+1,NQ) 
IF(M.EQ.4) J NOP(1,NQ) 
AI (N )=XM X (J ) 
AJ (N )=X (I)-XM 
AK(N )=X (J)-X (I) 
BI (N)=Y (J)-YM 
B J (N)=YM Y (I ) 
BK(N)=Y (I )-Y (J) 
AREA (N )=0. 5*(AK(N )*BJ (N )-AJ (N )*BK(N ) ) 
IF(AREA(N). GT. 0.0) GO TO 50 
WRITE (6, 6) N 

6 	FORMAT(1X,15,26HELEMENT WITH NEGATIVE AREA) 
STOP 

50 CONTINUE 
5 	CONTINUE 
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B(2, 4)=AJ(N) 
B(2, 6)=AK (N ) 
B(3, 1)=AI(N) 
B(3, 2)=BI(N) 
B(3, 3)=AJ(N) 
B(3, 4)=BJ(N) 
B(3, 5)=AK(N) 
B(3, 6)=BK(N) 
CALL MULT 1(D, B,W5, 3, 3, 6) 
TT=4. 0*AREA(N) 
DO 13 K=1, 6 
DO 13 M=K, 6 
SKE(K,M)=0.0 
DO 14 L=1, 3 

14 	SKE (K,M)=SKE (K,M)+B (L, K)*W5(L,M) 
SKE (K,M)=SKE (K,M) ITT 

13 CONTINUE 
NO (1)=M0 $ NO (2)=M0+1 $ 	NO (3)=5 
IF(MO. EQ. 4) NO (2)=1 
DO 350 JJ=1,3 
NROWB=(NO (JJ)-1 )*2 
DO 350 J=1, 2 
NROWB =NROWB+1 
I.---(JJ-1 )*2+J 
DO 330 KK=1, 3 
NCOLB= (NO (KK)-1 )*2 
DO 320 K=1,2 
L= (KK-1)*2+K 
NC OL =NC OLB+K 
IF(NCOL+1-NROWB) 320,320,310 

310 	IF(L•LT.I) SKE (I,L)=SKE (L, I) 
SK10 (NROWB,NCOL)=SK10 (NROWB,NCOL)+SKE (I, L) 

320 CONTINUE 
330 CONTINUE 
350 CONTINUE 
11 	CONTINUE 

SK10 (10, 9)=SK10 (9, 10) 
DO 400 I=1, 2 
K=I+8 
DO 300 J=1, 10 

300 	SM(I, J, NQ)=SK10 (J, K) 
400 CONTINUE 

DO 200 K=1, 2 
LL=10 K 
KK=LL+1 
DO 200 L=1,LL 
T=SK10 (L, KK)/SK10 (KK, KK) 
DO 100 M=L, LL 

100 	SK10 (L,M)=SK10 (L,M)-SM(3-K,M,NQ)*T 
IF(L• NE. 9) GO TO 200 
DO 2567 M=1, 9 

2567 SM (1,M,NQ)=SM(1,M,NQ)-T*SM(2,M,NQ) 
200 CONTINUE 

DO 500 I=1, 8 
DO 500 J=I,8 
SKEQ (I, J, NQ)=SK10 (I, J) 

500 CONTINUE 
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I NOP(MO,NQ) 	$ 	K=NQ 
IF(MO.LT.4) J=NOP(MO+1,NQ) 
IF(MO. EQ. 4) J NOP(1,NQ) 
ST (1, N)=0,5*(BI (N)*U (2*I-1)+BJ(N)*U (2*J-1 )+BK(N )*UM(2*K-1 ) ) /AREA(N 

*) 
ST (2, N)=0. 5* (AI (N) *U (2 *I )+AJ (N) *U (2*J )+AK(N )*UM(2*K)) /AREA(N ) 
ST (3, N)=0 . 5*(AI (N )*U (2*I-1 )+BI(N)*U (2*I)+AJ(N )*U (2*J-1 )+BJ(N)*U (2* 

*J)+AK (N) *UM (2 *K-1)+B K (N) *UM (2 *K)) / AREA (N ) 
SS (1,N)=D (1, 1)*ST(1,N)+D (1, 2)*ST(2,N)+D (1, 3)*ST(3,N) 
SS(2,N)=D (2, 1)*ST(1,N)+D (2, 2)*ST(2,N)+D (2, 3)*ST(3,N) 
SS(3,N)=D (3, 1)*ST(1,N)+D (3, 2)*ST(2,N)+D (3, 3)*ST(3,N) 
SSZ (N)=EPZ(1,N)*ST(1,N)+EPZ(2,N)*ST(2,N)+EPZ(3,N)*ST(3,N) 
TSS (N)=SQRT ((SS (1,N)-SS (2,N) )**2+(SS (1,N)-SSZ (N))**2+(SS (2, N)-SSZ ( 

*N))**2+6.0*SS(3,N)**2)/SQRT(2.0) 
TST(N)=TSS(N)/E1 
IF (BIG. LT. TSS (N)) BIGYSS (N) 

5005 CONTINUE 
1 	CONTINUE 

YP=TSSO (1 ) /BIG 
IF(Y(NY(1))+U(2*NY(1)).GT.Y (NY (2))+U(2*NY(2))) GO TO 38 
YP1=(Y (NY (1 ) )-Y (NY (2 ) ) ) / (U (2*NY (2 ) )-U (2*NY (1 ) ) ) 
IF (YP 1. LT . YP) YP YP 1 

38 	IF (NP (2*NX(1)-1).EQ.0) GO TO 39 
IF(X(NX(1))+U(2*NX(1)-1).GT.X(NX(2))+U(2*NX(2)-1)) GO TO 39 
TT=U (2*NX(2)-1)-U (2*NX(1)-1) 
YP1=(X (NX(1 ) )-X (NX (2 ) ) ) /TT 
IF(YP1.LT.YP) YP YP1 

39 TTZ.O 
N=0 	 . 
DO 2 NQ=1,NE 
DO 2 M0=1, 4 
N=N+1 
ST(1,N)=YP*ST(1,N) 
ST(2,N)=YP*ST(2,N) 
ST(3,N)=YP*ST(3,N) 
SS(1,N)=YP*SS(1,N) 
SS(2,N)=YP*SS(2,N) 
SS (3,N)=YP*SS (3,N) 
SSZ (N )=SSZ (N )*YP 
TST (N)=YP*TST (N ) 
TSS (N)=YP*TSS (N) 
IF (TSS (N) /TSSO (1) .GE. O. 995) NP2 (N)=1 
IF(NP2(N).EQ.1) NP1(N)=0 

2 	CONTINUE 
DO 6 I=1,NEQ 
DU(I)=0.0 
DF(I)=0.0 
U (I )=YP*U (I) 

6 	F(I)=YP*F(I) 
DO 141 I=1,NEQ1 

141 VM(I)=0.0 
WRITE(6,10000) 

10000 FORMAT(//, 2X, 2HNO, 23X, 2HUX, 23X, 2HUY, 23X, 2HFX, 23X, 2HFY, /, 120(1H*),/ 
*/) 

L=0 
DO 20000 N=1, NEQ, 2 
L=L+1 
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X1 U (N ) 
X2=J (N+1) 
Y1=F(N) 
Y2=F (N+1) 
WRITE (6, 30000 )L, X1, X2, Yl, Y2 

30000 FORMAT (1X,13, 10X, 4 (E 15. 5, 10X)) 
20000 CONTINUE 

DO 100 K=1,NT 
DTSTP (K)=0. 0 
TSTP(K)=0. 0 

100 CONTINUE 
G=E 1/2. 0/(1. 0+XU ) 
AE1/(1.O+XU) 
B1=(1. 0-XU)/(1.0-2,0*XU ) 
C=XU/(1. 0-2. 0*XU) 
N=0 
DO 14 NQ=1,NE 
IF (NP2 (N+1) . EQ. 1. OR. NP2 (N+2) . EQ. 1. OR. NP2 (N+3) • EQ. 1. OR. NP2 (N+4) . EQ. 

*1) GO TO 1409 
N N+4 
GO TO 14 

1409 TT=D.O 
DO 1009 I=1, 10 
DO 1009 J=I, 10 

1009 SK10 (I, J)=0 . 0 
DO 1004 MO=1, 4 
N=N+1 
IF (NP2 (N) . EQ.,O) GO TO 140 
S=2. 0/3. 0*TSS (N)*TSS (N)*(1.0+H1/3.0/G) 
SH=(SS(1,N)+SS(2,N)+SSZ(N))/3.0 
S1=SS (1,N)-SH 
S2~S (2, N)-SH 
S3=SS (3,N) 
S 4=S SZ (N)-SH 
EP(1, 1,N)=A*(B1-Sl*S1/S) 
EP(2, 1,N)=A*(C-S1*S2/S) 
EP(2, 2,N)=A*(B1-S2*S2/S) 
EP(3, 1, N)=-A*S 1*S 3/S 
EP(3, 2,N)=-A*S 2*S 3/S 
EP(3, 3,N)=A*(0. 5-S 3*S 3/S) 
EP(1, 2,N)=EP(2, 1,N) 
EP(1, 3,N)=EP(3, 1,N) 
EP(2, 3,N)=EP(3, 2,N) 
EPZ(1,N)=A*(C-S l*S4/S) 
EPZ(2,N)=A*(C-S2*S4/S) 
EPZ (3,N)=-A*S3*S 4/S 
DO 8 K=1, 3 
DO 8 M=1, 3 

8 	W4(K,M)=EP(K,M,N) 
B(1, 1)=BI(N) 
B(1, 3)=BJ(N) 
B(1, 5)=BK(N) 
B(2, 2)=AI (N) 
B(2, 4)=AJ(N) 
B(2, 6)=AK(N) 
B(3, 1)=AI(N) 
B(3, 2)=BI(N) 
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B(3, 3)=AJ(N) 
B(3, 4)=BJ(N) 
B(3, 5)=AK(N) 
B(3, 6)=BK(N) 
CALL MULT 1(W4, B,W5, 3, 3, 6) 
TT=4. 0*AREA(N ) 
DO 11 K=1, 6 
DO11MK,6 
SKE (K,M)=0. 0 
DO 118 L=1, 3 

118 	SKE (K,M)=SKE (K,M)+B (L, K)*W5 (L,M) 
SKE (K,M)=SKE (K,M) /TT 

11 	CONTINUE 
GO TO 151 

140 TTN. 0 
B(1, 1)=BI(N) $ B(1, 3)=BJ(N) $ B(1, 5)=BK(N) 
B(1,1)=BI(N) $ B(1,3)=BJ(N) $ B(1,5)=BK(N) 
B(2, 2)=AI(N) $ B(2, 4)=AJ(N) $ B(2, 6)=AK(N) 
B(3, 1)=AI(N) $ B(3, 2)=BI(N) $ B(3, 3)=AJ(N) 
B(3, 4)=BJ(N) $ B(3, 5)=AK(N) $ B(3, 6)=BK(N) 
CALL MULT 1(D, B,W5, 3, 3, 6) 
TT=4,0*AREA(N) 
DO 101 K=1, 6 
DO 101 M K, 6 
SKE (K,M)=0. 0 
DO 1019 L=1, 3 

1019 SKE (K,M)=SKE (K,M)+B (L, K) *W5 (L,M) 
SKE (K,M)=SKE (K,M) /TT 

101 CONTINUE • 
151 TTN. 0 

NO(1)=M0 $ NO(2)=M0+1 $ NO(3)=5 
IF (MO. EQ. 4) NO (2)=1 
DO 3500 JJ=1, 3 
NROWB= (NO (JJ)-1 )*2 
DO 3500 J=1, 2 
NROWB =TROWB+1 
I=(JJ-1)*2+J 
DO 3300 KK=1,3 
NCOLB = (NO (KK)-1 )*2 
DO 3200 K=1, 2 
L= (KK-1)*2+K 
NC OL =NC OLB+K 
IF(NCOL+1 NROWB) 3200, 3200, 3100 

3100 IF(L.LT.I) SKE (I,L)=SKE (L, I) 
S K10 (NROWB , NC OL)=S K10 (NROWB, NC OL)+S KE (I, L) 

3200 CONTINUE 
3300 CONTINUE 
3500 CONTINUE 
1004 CONTINUE 

SK10 (10, 9)=SK10 (9, 10) 
DO 3001 I=1, 2 
K=8+I 
DO 3001 J=1, 10 

3001 SM(I, J, NQ)=SK10 (J, K) 
DO 2081 K=1, 2 
LL.-K 
KK=LL+1 
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IF (DI. LT. 0.00000001) DU(2*NY(KK))=DELTA 
IF (D I . LT. 0.00000001) NP (2*NY(KK) )=1 
IF (D I. LT. 0.00000001) DU (2*NY(KK)-1)=0.0 
IF (DI. LT. 0.00000001) NP(2*NY(KK)-1)=1 

10 	CONTINUE 
IF (NP (2*NX(1 )-1 ) •EQ. 0) GO TO 7 
DO 20 KK=1, 12 
DI X(NX(1))+U(2*NX(1)-1)-X(NX(KK))-U(2*NX(KK)-1) 
IF (D I. LT. 0. 00000001) LS KK 
IF(DI• LT. 0.00000001) DU(2*NX(KK)-1)=DELTA 
IF (DI. LT. O. 00000001) NP (2*NX(KK)-1)=1 
IF (DI. LT. O. 00000001) DU (2*NX(KK))=0. 0 
IF (DI. LT. 0.00000001) NP (2*NX(KK) )=1 

20 	CONTINUE 
7 	RETURN 

END 
SUBROUTINE YIELD2 (U, F, DU, DF, D, I0, TJM, VM) 
DIMENSION U(174),DU(174),UM(174),VM(174),F(174),DF(174) 
DIMENSION NO(3) 
DIMENSION D(3, 3),SSD(1, 3),TSSD(3, 1),W1(1, 1),W2(1, 3),W3(3, 1),W4(3, 3 

*),W5(3, 6),W6(6, 3),SKE0(6, 6),SKE(6, 6),SK10(10, 10) 
COMMON /C1/ NE,NN,NB,NEQ,X(87),Y(87),NOP(4,67),AI(268),AJ(268),AK( 

*268) ,BI(268),BJ(268),BK(268) ,AREA(268) ,NP (174) ,NP1 (268) ,NP2 (268) ,N 
*X(12),NY(12);EP(3, 3, 268),B(3, 6) 

COMMON /C2/ SK(174, 34) ,SKEQ(8, 8, 67) 
COMMON /C3/ DST(3,268),SS(3,268),DSS(3,268),TSTP(268),DTSTP(268),T 

*SS (268 ) ,DTSS (268) 
COMMON /C4/ TSSO(268),SSZ(268),DSSZ(268),EPZ(3,268) 
COMMON/C5/KS,LS 
COMMON /C6/ SM(2, 10, 67) 
COMMON /C7/XU, El, H1, H2, YS 1, YS 2, SP2, NEQ 1, NT, KKU, G, NOR, A, Bl, C 
YP=1000,0 
CALL SOLVE (DU,DF) 
NN 
DO 1 NQ=1,NE 
DO 5002 J=1, 2 
JJ=8+J 
SUM=O. 0 
K=JJ-1 
DO 5003 I=1, 4 
SUM=SUM+SM(J, 2*I-1, NQ)*DU(NOP (I, NQ)*2-1 )+SM(J, 2*I,NQ)*DU (NOP (I, NQ) 

**2) 
5003 CONTINUE 

IF (K. EQ. 9) SUM=SUM+SM(2, 9, NQ)*VM(NQ*2-1 ) 
5002 VM(NQ*2-2+J )=-S UM/ SM(J, JJ, NQ) 

DO 1001 M=1, 4 
N=N+1 
INOP (M, NQ) 
IF (M. LT. 4) JNOP (M+1, NQ) 
IF (M. EQ. 4) JNOP (1, NQ) 
KNQ 
DST (1, N)=0. 5*(BI(N)*DU(2*I-1)+BJ(N)*DU (2*J-1)+BK(N)*VM(2*K-1)) /ARE 

*A(N) 
DST(2,N)=0.5*(AI(N)*DU(2*I)+AJ(N)*DU(2*J)+AK(N)*VM(2*K))/AREA(N) 
DST (3, N)=0. 5*(AI (N)*DU (2*I-1)+BI (N )*DU (2*I )+AJ (N)*DU (2*J-1)+BJ(N )* 

*DU (2*J )+AK(N )*VM ( 2*K-1 )+BK(N )*VM ( 2*K ) ) /AREA(N) 
DSS (1,N)=EP (1, 1,N)*DST (1,N)+EP (1, 2,N)*DST(2,N)+EP(1, 3,N)*DST (3,N) 
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DSS (2,N)=EP(2, 1,N)*DST(1,N)+EP(2, 2,N)*DST(2,N)+EP(2, 3,N)*DST(3,N) 
DSS(3,N)=EP(3, 1,N)*DST(1,N)+EP(3, 2,N)*DST(2,N)+EP(3, 3,N)*DST(3,N) 
DSSZ (N)=EPZ (1,N)*DST (1, N)+EPZ (2,N)*DST (2,N)+EPZ ( 3, N)*DST (3,N) 
IF (NP2 (N) . EQ. 1.AND.TSTP(N).GE.SP2) GO TO 1001 
TT=SQRT ((SS (1, N)+DSS (1, N)-SS (2, N)-DSS (2,N) ) **2+(SS (1, N)+DSS (1, N)-S 

*SZ (N)-DSSZ (N))**2+(SS (2, N)+DSS (2, N)-SSZ (N)-DSSZ (N))**2+6. 0* (SS (3,N 
*)+DS S (3,N) )**2) / SQRT (2.0)-TSS (N ) 

IF (TT. LT. 0. 0) GO TO 1001 
Al=(DSS(1,N)-DSS(2,N))**2+(DSS(1,N) DSSZ(N))**2+(DSS(2,N)-DSSZ(N)) 

***2+6. 0*DSS (3,N)**2 
B2q)SS(3,N)*SS(3,N)*6.0+(DSS(1,N)-DSS (2,N))*(SS(1,N)-SS(2,N))+(DSS 

*(1,N)-DSSZ(N))*(SS(1,N)-SSZ(N))+(DSS(2,N)-DSSZ (N))*(SS (2,N)-SSZ(N) *) 

C1=2. 0* (TSS (N)**2-TSSO (N) **2 ) 
BIG= ( -B 2+S QRT (B2**2 Al*C1)) /A1 
IF(BIG.LT.YP) YP=BIG 
IF(YP. LT. 0.0) WRITE (6, 103) KKU,NQ 

1001 CONTINUE 
1 	CONTINUE 
103 	FORMAT (//,20X,Al2,4X,I4,2(2X,E10.3),/,50(1H*)) 

IF (YP. LT. 0. 0) STOP 
IF (YP. GT. 1.0) YP=1.0 
DO 180 KK=2 , 12 
IF (NP (2 *NY (KK)) .EQ. 1) GO TO 180 
IF( (Y (NY (1))+U(2*NY(1))+DU(2*NY(1))) .GT . (Y(NY(KK))+U(2*NY(KK))+DU( 

*2*NY(KK)))) GO TO 180 
YP 1= (Y (NY (1 ) )+U (2*NY (1 ) )-Y (NY (KK) )-U (2*NY (KK) ) ) / (DU (2*NY (KK) )-DU (2 

**Ny(1))) 
IF(YP1.GT. 0. O.AND.YP1.LT.YP) YP=YP1 

180 CONTINUE 
IF (NP (2*NX(1)-1).EQ.0) GO TO 39 
DO 190 KK=2 , 12 
IF (NP (2*NX (KK)-1 ) .EQ. 1) GO TO 190 
TT X(NX(1))+U(2*NX(1)-1)+DU(2*NX(1)-1) 
IF (TT 	.GT .  (X (NX(KK))+U (2*NX (KK)-1 )+DU (2*NX (KK)-1 ) ) )GO TO 190 
TTq)U (2*NX(KK)-1 )-DU (2*NX(1)-1) 
YP1=(X(NX(1 ) )-X (NX(KK) )-U (2*NX(KK)-1 ) ) /TT 
IF(YP1.GT.O.O. AND .YP1.LT.YP) YP YP1 

190 CONTINUE 
39 	'2T O. 0 

N~ 
DO 2 NQ=1,NE 
DO 5004 M=1, 4 
N N+1 
DST (1, N)=DST (1,N)*YP 
DST (2,N)=DST (2,N)*YP 
DST (3, N)=DST (3, N) *YP 
DSS(1,N)=DSS(1,N)*YP 
DSS (2, N)=DSS (2, N) *YP 
DSS(3,N)=DSS(3,N)*YP 
DSSZ (N)=DSSZ (N)*YP 

5004 CONTINUE 
2 	CONTINUE 

N r,) 
DO 3 NQ=1,NE 
DO 3 M=1, 4 
N =N+1 
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IF (NP2 (N) .EQ. 1) NP1(N)=0 
IF (NP2 (N) .EQ. 1) GO TO 14 
IF (DTSS (N) .GE. O.0) GO TO 120 

2345 TT=0.O 
EPZ (1, N)=D (1, 2) 
EPZ (2, N)=D (1, 2) 
EPZ(3,N)=0.0 
DO 13 K=1, 3 
DO 13 M=1, 3 
EP(K,M,N)=D (K,M) 

13 	W4(K,M)=D(K,M) 
GO TO 19 

14 	IF(TSTP(N).LT.SP2) TSSO(N)=YS2 
IF(TSTP(N).LT.SP2) S=2,0/3.0*TSS(N)*TSS(N)*(1.0+H1/3.0/G) 
IF(TSTP(N).GE.SP2) S =2,0/3.O*TSS(N)*TSS(N)*(1.0+H2/3.0/G) 
SH=(SS(1,N)+SS(2,N)+SSZ(N))/3.0 
S1=SS(1,N)-SH 
S2-SS (2, N)-SH 
S3=SS (3,N) 
S 4=S SZ (N)-SH 
EP(1, 1,N)=A*(B1-S1*S1/S) 
EP(2,1,N)=A*(C-S1*S2/S) 
EP(2, 2,N)=A*(B1-S2*S2/S) 
EP(3, 1,N)=-A*S1*S3/S 
EP(3, 2,N)=-A*S2*S3/S 
EP (3, 3, N)=A* (0. 5-S 3 *S 3 / S ) 
EP(1, 2,N)=EP(2, 1,N) 
EP(1, 3,N)=EP(3, 1,N) 
EP(2, 3,N)=EP(3, 2,N) 
EPZ(1,N)=A*(C-S1*S4/S) 
EPZ(2,N)=A*(C-S2*S4/S) 
EPZ(3,N)=-A*S3*S4/S 
DO 16 K=1, 3 
DO 16 M=1, 3 

16 	W4(K,M)=EP(K,M,N) 
19 	B(1, 1) =BI(N) 

B(1, 3) =BJ(N) 
B(1,5)=BK(N) 
B(2, 2)=AI(N) 
B(2, 4)=AJ(N) 
B(2, 6)=AK(N) 
B(3, 1)=AI(N) 
B(3, 2)=BI(N) 
B(3, 3)=AJ(N) 
B(3, 4)=BJ(N) 
B(3, 5)=AK(N) 
B(3, 6)=BK(N) 
CALL MULT 1(W4, B,W5, 3, 3, 6) 
TT=4. 0*AREA(N ) 
DO 18 K=1, 6 
DO 18 M=K, 6 
SKE (K,M)=0.0 
DO 1888 L=1, 3 

1888 SKE (K,M)=SKE (K,M)+B (L, K)*W5(L,M) 
SKE (K,M)=SKE (K,M) /TT 

18 CONTINUE 
GO TO 151 
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120 TTA. 0 

B(1,1)=BI(N) $ B(1,3)=BJ(N) $ B(1,5)=BK(N) 
B(2, 2)=AI(N) $ B(2, 4)=AJ(N) $ B(2, 6)=AK(N) 
B(3, 1)=AI(N) $ B(3, 2)=BI(N) $ B(3, 3)=AJ(N) 
B(3, 4)=BJ(N) $ B(3, 5)=AK(N) $ B(3, 6)=BK(N) 
CALL MULT1(D,B,W5, 3, 3, 6) 
TT=4. 0*AREA(N ) 
DO 101 K=1, 6 
DO 101 M=K, 6 
SKE (K,M)=0. 0 
DO 1012 L=1,3 

1012 SKE (K,M)=SKE (K,M)+B (L, K)*W5(L,M) 
SKE (K,M)=SKE (K,M) /TT 

101 CONTINUE 
151 TTA. 0 

NO (1)=140 $ NO(2)=M0+1 	$ 	NO(3)=5 
IF(MO.EQ.4) NO(2)=1 
DO 3500 JJ=1,3 
NROWB= (NO (JJ ) -1 )*2 
DO 3500 J=1, 2 
NROWB NROWB+1 
L=(JJ-1)*2+J 
DO 3300 KK=1,3 
NCOLB=(N0 (KK)-1 )*2 
DO 3200 K=1,2 
I=(KK-1)*2+K 
NCOL=TCOLB+K 
IF(NCOL+1-NROWB) 3200, 3200, 3100 

3100 IF (L. LT. I) SKE (I, L)=SKE (L, I) 
SK10(NROWB,NCOL)=SK10(NROWB,NCOL)+SKE(I,L) 

3200 CONTINUE 
3300 CONTINUE 
3500 CONTINUE 
5005 CONTINUE 

SK10 (10, 9)=SK10 (9, 10) 
DO 3001 I=1, 2 
K=8+I 
DO 3001 J=1,10 

3001 SM(I, J,NQ)=SK10 (J, K) 
DO 2001 K=1, 2 
LL=10-K 

" KK=LL+1 
DO 2001 L=1,LL 
T=SK10 (L, KK) /SK10 (KK, KK) 
DO 1501 M=L, LL 

1501 SK10(L,M)=SK10(L,M)-SM(3-K,M,NQ)*T 
IF(L.NE.9) GO TO 2001 
DO 2567 M=1,9 

2567 SM(1,M,NQ)=SM(1,M,NQ)-T*SM(2,M,NQ) 
2001 CONTINUE 

DO 6001 I=1,8 
DO 6001 J=I, 8 
SK10 (I, J)=SK10 (I, J)-SKEQ (I, J, NQ) 
SKEQ(I, J, NQ)=SKEQ (I, J, NQ)+SK10 (I, J) 

6001 CONTINUE 
CALL SADD (NQ, SK10 ) 

12 	CONTINUE 
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IF(MOD(I0, 10).NE.0) GO TO 80 
SUM1=ABS (U (2*NY(1)) ) 
SUM6=ABS(U (2*NX(1)-1) ) 
SUM2=0.0 
SUM20=0.0 
SUM3=0.0 
SUM30U.0 
DO 220 KK=1,12 
SUM2=SUM2+F (2*NY (KK) ) 
IF (KK. EQ. 1) GO TO 212 
SUM20=SUM2O+F(2*NY(KK)-1) 
SUM30=SUM3O+F(2*NX(KK)) 

212 	TT=0.0 
220 SUM3=SUM3+F(2*NX(KK)-1) 

SUM2 ABS(SUM2) 
SUM3=ABS(SUM3) 
SUM20=ABS (SUM20) 
SUM30=ABS(SUM30) 
SUM4=X (NY(KS))+U (2 *NY (KS )-1) 
SUMS Y(NX(LS))+U(2*NX(LS)) 
WRITE (1, 230) SUM1, SUM2, SUM3, SUM4, SUM5, SUM6, SUM20, SUM30 

230 	FORMAT (8 (E 12.5) ) 
80 	TT=0.O 

IF (MOD (I0, 20) .NE. 0) GO TO 330 
WRITE (6, 26)I0 

26 	FORMAT(/,1X,13HLOADING STEP=,I4) 
WRITE (6, 4000 ) 

4000 FORMAT(//,5OX,13HPLASTIC ZONES,/,120(1H*)) 
WRITE(6,4081)((N,NP2(N)),N=1,NT) 

4081 FORMAT (7 (I4, 4X, I2, 8X) ) 
WRITE(6, 1990) 

1990 FORMAT(/) 
WRITE (6, 10000 ) 

10000 FORMAT (2X, 2HN0, 16X, 2HUX, 16X, 2HUY, 16X, 2HFX, 16X, 2HFY, 13X, 5HDTSTP, 14X 
*,4HTSTP,15X,3HTSS,/,130(1H*)) 
NU 
DO 420 NQ=1,NE 
SUM1=0.0 
SUM2=0.0 
SUM3=0.0 
DO 42 MO=1,4 
N=N+1 
SUM1=SUMI+TSS(N) 
SUM2=SUM2+TSTP (N ) 
SUM3=SUM3+DTSTP (N ) 

42 	CONTINUE 
SUM1=SUM1/4.0 $ SUM2=SUM2/4.0 $ SUM3=SUM3/4.0 
X1=U (2*NQ-1) $ X2 U (2*NQ) $ Y1=F(2*NQ-1) $ Y2=F(2*NQ) 
WRITE (6 , 32) (NQ, X1, X2, Y1, Y2, SUM3, SUM2, SUM 1) 

420 CONTINUE 
32 	FORMAT(I4, 7(6X,E12.5)) 

K1=NE+1 $ K2=NN 
DO 430 I=K1, K2 
X1 U (2*I-1) 
X2=U(2*I) 
Y1=F(2*I-1) 
Y2=F(2*I) 
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WRITE (6, 32) (I, X1, X2, Y1, Y2 ) 
430 CONTINUE 
330 	IF(ABS(U(2*NY(1))).LT.0.08) GO TO 33 

WRITE (6, 45) 
45 	FORMAT(///,2X, 2HNO, 24X, 1HX, 24X, 1HY, /, 60(1H*),//) 

N*) 
DO 44 NQ=1, NE 
INQ 
XX%(I)+U (2*I-1) 
YY Y(I)+U(2*I) 
SUM1=0.0 $ SUM2=0.0 $ SUM3=0.0 
DO 62 MO=1, 4 
N=N+1 
SUM1=SUM1+TSS(N) 
SUM2=SUM2+TSTP (N) 
S i=SS (1,N)$S2=SS (2,N)$S3=SS (3,N) 
TA=SQRT ((S 1-S 2)**2/4.0+S 3**2 ) 
SUM3=SUM3+TA 

62 CONTINUE 
SUM1=SUM1/4.0 $ SUM2=SUM2/4.0 $ SUM3=SUM3/4.0 
V1 =U (2*I-1 )$V2=U (2*I )$V3=DU (2*I-1 )$V4 DU (2*I ) 
V5=UM(2*I-1) 	$ 	V6=UM(2*I) 
WRITE (6, 46) (I, XX, YY) 

46 	FORMAT(1X, I3, 10X, E15.5, 10X, E15. 5) 
WRITE (2, 102) I, X (I ) , Y (I ) , V1, V2, V3, V4, V5, V6, SUM1, SUM2, SUM3 

102 	FORMAT (I10, 11(E 10. 3) ) 
44 CONTINUE 

K1 NE+1 	$ 	K2 NN 
DO 63 I=K1, K2 
XX=X (I )+U (2*I-1) 
YY=Y (I )+U (2*I ) 
V1=U (2*I-1 )$V2=U (2*I )$V3 DU (2*I-1 )$V4=DU (2*I ) 
WRITE (6, 46) (I, XX, YY) 
WRITE(2, 102) I, X(I ) ,Y(I) ,V1, V2, V3, V4 

63 CONTINUE 
STOP 

33 RETURN 
END 
SUBROUTINE SADD(N,SKE) 
DIMENSION SKE(10,10) 
COMMON /C1/ NE,NN,NB,NEQ, X(87) ,Y(87),NOP(4, 67),AI(268),AJ(268),AK( 

*268),BI (268),BJ(268),BK(268),AREA(268),NP(174),NP1(268),NP2(268),N 
*X(12),NY(12),EP(3, 3, 268),B(3, 6) 

COMMON /C2/ SK(174, 34),SKEQ(8, 8, 67) 
DO I JJ=1,4 
NROW=(NOP(JJ,N)-1)*2 
DO 1 J=1, 2 
NR OW NROW+1 
I=(33-1)*2+3 
DO 2 KK=1, 4 
NCOLB=(NOP (KK, N)-1 )*2 
DO 3 K=1, 2 
L=(KK-1)*2+K 
NC OL =NC OLB+K+1-NROW 
IF (NCOL) 3, 3, 4 

4 	IF(L.LT.I) SKE (I,L)=SKE (L, I) 
S K (NROW , NC OL )= S K (NROW , NC OL)+S KE (I, L) 
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DO 5 J=1,NB 
K=K-1 
L=L+1 
IF(K.EQ.0) GO TO 6 

5 	SUM=SUM+SK(K, L) *U (K) 
6 	TT=3.O 

DO 7 J=2, NB 
IF (SK(N, J) .EQ. O. 0) GO TO 7 
SUM=SUM+SK(N, J)*U (N-1-kJ) 

7 	CONTINUE 
F (N )=SUM 

4 	CONTINUE 
RETURN 
END 
SUBROUTINE MULT1(A,B,C,M,N,L) 
DIMENSION A(M,N),B(N,L),C(M,L) 
DO 1 1=1,14 
DO 1 J=1, L 
C (I, J)=0. 0 
DO 1 K=1, N 

1 	C(I,J)=C(I,J)+A(I,K)*B(K,J) 
RETURN 
END 
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APPENDIX 'C'  

LISTING OF THE COMPUTER 

PROGRAM EPFEA 3 

USING ISOPARAMETRIC ELEMENTS 



NE 

NN 

NB 

NEQ 

X,Y 

NOP 

NP 

NP1,NP2 

NX,NY 

EP 

SI,TI 

SII,TII 

WG 

SK 

SKEQ 

DST 

SS 

DSS 

TSTP 

DTSTP 

TSS 

DTSS 

TSSO 

SSZ 

DSSZ 

Variable Place in labelled 
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NOMENCLATURE  

Definition 

common 

C4 

II 

C2 

II 

II 

11 

Cl Number of elements 

Number of nodes 

Band width of the overall stiffness matrix 

Number of equations 

Coordinates of nodal points 

Nodal connection of elements 

Pointer vector for imposing boundary 

conditions 

Pointer vectors for indicating state of 

elements 

Periphery nodal-points matrics, due to 

the side and upper segments 

Stress-strain matrix of elements 

Natural coordinates of the Gaussian points 

Natural coordinates of element nodal 

points 

Weight coefficient of the Gaussian 

quadrature formula 

Overall stiffness matrix 

Stiffness matrices of quadrilateral 

elements 

Strain-increment of elements 

Stress of elements 

Stress-increment of elements 

Effective plastic strain of elements 

Effective plastic strain-increment of 

elements 

Effective stress of elements 

Effective stress-increment of element 

Yield strength of elements 

Stress of elements in the z-direction 

Stress-increment of elements in the 

z-direction 

C3 

II 



GDATA 

II 

YIELD 1 

SHAPE 

STIFF 
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EPZ 

XF,YF C5 

Stress-strain matrix in the z-direction 

Current coordinates of nodal points 

   

Local 

Variable 

Definition Place in 

Subroutine 

D 

SK8 

SHP 

XS 

S 

Variables of main 

program 

Elastic material matrix 

Element stiffness matrix 

Matrix of shape functions and their 

derivatives 

Jacobain matrix 

Element stiffness matrix 

Definition 

Displacement of nodal points 

Force of nodal points 

Displacement-increment of nodal points 

Force-increment of nodal points 

U 

F 

DU 

DF 
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PROGRAM 'EPFEA3'  
**************** 

C********************************************************** ************* 
C*** ** MAIN PROGRAM 	************************************* ************* 

C*** ** ELASTIC-PLASTIC FINITE ELEMENT ANALYSIS 	********** ************* 
C*** ** WRITTEN BY ALI NAJAFI-SANI IN THE FIRST SEMESTER OF 1978 	****** 
C*** ** DEVELOPED FOR ISOPARAMETRIC QUADRILATERAL ELEMENTS ************ 
C*********************************************************************** 

PROGRAM EPFEA3(INPUT, OUT PUT,TAPE5=INPUT,TAPE6 OUTPUT,TAPE1=113B, 
*TAPE2=113B) 
DIMENSION U(174),DU(174),F(174),DF(174),D(3, 3) 
COMMON /CL/ NE,NN,NB,NEQ,X(87),Y(87),NOP(4,67),NP(174),NP1(268),NP 
*2(268),NX(12),NY(12),EP(3,3,268),SI(4),TI(4),SII(4),TII(4),WG(4) 
COMMON /C2/ SK(174,34),SKEQ(8,8,67) 
COMMON /C3/ DST(3,268),SS(3,268),DSS(3,268),TSTP(268),DTSTP(268),T 

*S S(268),DTSS(268) 
COMMON /C4/ TSSO(268),SSZ(268),DSSZ(268),EPZ(3,268) 
COMMON/C5/KS,LS,XF(87),YF(87) 

C****************************************************** ** ** ** ** ** ** ** *** 
C***** INPUT OF DATA AND 	**************************** ** ** ** ** ** ** ** *** 
C***** GENERATION AND ASSEMBLY OF STIFFNESS MATRICES ** ** ** ** ** ** ** *** 

CALL GDATA(D) 
C*********************************************************************** 

C***** INPUT OF INITIAL BOUNDARY CONDITIONS ************************** 
CALL BOND 1(U, F) 

C*********************************************************************** 

C***** INITIATION OF PLASTIC DEFORMATION ***************************** 
CALL YIELD1(U,F,DU,DF,D) 
NOR=1500 

C*********************************************************************** 

C***** INITIATION OF LOAD INCREMENTS ********************************* 
DO 1 I=1,NOR 

C*********************************************************************** 

C***** UPDATE OF GEOMETRICAL MATRICES ******************************** 
CALL CHANGE (D, U) 

C*********************************************************************** 

C***** INPUT OF INSTANTANEOUS BOUNDARY CONDITIONS ******************** 
CALL BOND2(I,U,F,DU,DF) 

C*********************************************************************** 
C***** INITIATION OF INCREMENTAL PLASTIC DEFORMATION ***************** 

CALL YIELD2(U,F,DU,DF,D,I) 
1 	CONTINUE 

REWIND 3 
REWIND 4 
STOP 
END 
SUBROUTINE GDATA(D) 
DIMENSION D(3, 3),SK8(8, 8) 
COMMON /C1/ NE,NN,NB,NEQ,X(87),Y(87),NOP(4,67),NP(174),NP1(268),NP 
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*2(268),NX(12),NY(12),EP(3,3,268),SI(4),TI(4),SII(4),TII(4),WG(4) 
COMMON /C2/ SK(174, 34),SKEQ(8, 8, 67) 
COMMON /C3/ DST (3,268),SS(3,268) ,DSS (3,268),TSTP(268),DTSTP(268),T 

*SS (268) ,DTSS (268) 
COMMON /C4/ TSSO(268),SSZ(268),DSSZ(268),EPZ(3,268) 
COMMON /C5/KS , LS, XE' ( 87),YF(87) 
DATA 	NP/174*0/,NP1/268*1/,NP2/268*0/,NE/67/,NN/87/,NB/34/,NEQ/17 

$4/ 
DATA NY/80, 81, 82, 83, 84, 85, 86, 87, 78, 79, 64, 65/ 
DATA NX/9, 18, 20, 32, 31, 43, 42, 51, 50, 58, 65,64/ 
DATA SI/-0.5, O.5, O.5, -O. 5/,TI/-0.5, -O.5, 0.5, 0.5/ 
DATA SII/-1.0, 1.0, 1.0, -1,0/,TII/-1.0, -1.0, 1. 0, 1.0/ 
DATA WG/4*1.0/ 
WRITE (6, 1) 

1 	FORMAT (////////, lx, 28HINDENTATION OF ROUND BILLETS , / , 30 (1H *) ) 
READ(5,3)((NOP(1,I),NOP(2,I),NOP(3,I),NOP(4,I)),I=1,NE) 

3 	FORMAT(415) 
READ (5, 2) ((M,X(M) ,Y(M) ) ,I=1,NN) 

2 	FORMAT (2 (I2, 3X, 2F 10. 5) ) 
R=14.0 
DO 22 N=1,NN 
IF(Y(N).EQ. 1.0) Y (N )=SQRT (R**2-X (N )**2) 
IF(X(N).EQ.1.0) X(N)=SQRT(R**2 Y(N)**2) 

22 CONTINUE 
SC=R 
DO 12 K=1,NN 
Y(K)=Y(K)/SC $ 	X(K)=X(K)/SC 
XF(K)=X(K) 	$ 	YF(K)=Y(K) 

12 CONTINUE 
DO 13 1=1, 4 
SII (I)=SII (I) / SQRT (3. 0) 

13 	TII (I )=TII (I )/SQRT (3. 0) 
XU=0.345 	$ E1=0. 7E06 	$ 	H1=0.86E03 $ H=H1 
WRITE (6, 7) 

7 	FORMAT (/// , 2X, 2HNO, 24X, 1HX, 24X, 1HY, / , 60 (1H*) , //)  
WRITE(6,8)((I,X(I),Y(I)),I=1,NN) 

8 	FORMAT (1X, 13, 10X, E15. 5,  10X, E15. 5 ) 
WRITE (6, 9) 

9 	FORMAT (//, 2X, 2HNO, 9X, 1HI, 9X, 1HJ, 9X, 1HK, , 9X, 1HP, /, 60 (1H*) , //) 
WRITE(6, 10) (I,NOP (1,I),NOP (2, I) ,NOP (3, I) ,NOP (4, I) ,I=1 ,NE) 

10 	FORMAT (1X, I3, 7X, 13, 7X, 13, 7X, 13, 7X, 13) 
FACT=E1*(1.0-XU)/(1.O+XU)/(1.0-2,0*XU) 
D (1, 1)=FACT 
D (2, 2)=FACT 
D (1, 2)=FACT*XU/(1.0-XU) 
D (2, 1)=D (1, 2) 
D (1, 3)=0.0 
D (3, 1)=0.0 
D (2, 3)=0.0 
D (3, 2)=0. 0 
D (3, 3)=E1/2.0/(1.O+XU) 
NH 
DO 11 NQ=1,NE 
DO 11 MO=1, 4 
N N+1 
EPZ(1,N)=D (1, 2) 
EPZ (2,N)=D (1, 2) 
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EPZ(3,N)=0.0 
DO 11 K=1,3 
DO 11 M=1,3 

11 	EP(K,M,N)=D(K,M) 
DO 15 I=1,NEQ 
DO 15 J=1,NB 

15 	SK(I,J)=0.0 
DO 5 NQ=1,NE 

C*********************************************************************** 

C***** EVALUATION OF THE ELEMENTAL STIFFNESS MATRIX ****************** 
CALL STIFF(NQ,SK8) 
CALL SADD (NQ, SK8) 
DO 14 1=1,8 
DO 14 J=I,8 

14 	SKEQ(I, J,NQ)=SK8 (I, J) 
5 	CONTINUE 

RETURN 
END 
SUBROUTINE BOND1(U,F) 
COMMON /C1/ NE,NN,NB,NEQ,X(87),Y(87),NOP(4,67),NP(174),NP1(268),NP 
*2(268),NX(12),NY(12),EP(3,3,268),SI(4),TI(4),SII(4),TII(4),WG(4) 
DIMENSION U(174),F(174) 
ND=5 
NP (2)=1$NP (4)=1$NP (6)=1$NP (8)=1$NP (10)=1$NP (12)=1$NP (14)=1 
NP(16)=1$NP(18)=1$NP(1)=1$NP(19)=1$NP(41)=1$NP(65)=1$NP(87)=1 
NP(103)=1$NP(117)=1$NP(131)=1$NP(141)=1$NP(159)=1$NP(160)=1 
NP (17)=1 
DO 1 I=1,NEQ 
U(1)=0.0 	' 

1 	F(I)=0.0 
KK=2 *NY (1) 
U (KK) =- (Y (N Y (1)) -Y (N Y (2))) /FLOAT (ND ) 
RETURN 
END 
SUBROUTINE YIELD1(0,F,DU,DF,D) 
DIMENSION U(174),DU(174),F(174),DF(174),SHP(3,4) 
DIMENSION D(3, 3),SSD(1, 3),TSSD(3, 1),W1(1, 1),W2(1, 3),W3(3, 1),W4(3, 3 
*),W5(3, 6),W6(6, 3),SKEO(6, 6),SKE(6, 6),SKB(8, 8),ST(3, 268),TST(268) 
COMMON /C1/ NE,NN,NB,NEQ,X(87),Y(87),NOP(4,67),NP(174),NP1(268),NP 
*2(268),NX(12),NY(12),EP(3,3,268),SI(4),TI(4),SII(4),TLI(4),WG(4) 
COMMON /C2/ SK(174, 34),SKEQ(8, 8, 67) 
COMMON /C3/ DST(3,268),SS(3,268),DSS(3,268),TSTP(268),DTSTP(268),T 
*SS(268),DTSS(268) 

COMMON /C4/ TSSO(268),SSZ(268),DSSZ(268),EPZ(3,268) 
XU=0.345 	$ E1=0.7E06 	$ 	H =0.86E03 
NT=4 *NE 
YSR=500.0 
DO 300 I=1,NT 

300 TSSO(I)=YSR 
CALL SOLVE (U, F) 
BIG. 0 
N=0 
DO 1 NQ=1,NE 
DO 5005 L=1,4 
N =N+I 
DO 5003 1=1,3 

5003 ST (I, N)=0.0 
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SB=SII(L) $ TB=TII(L) 
CALL SHAPE (SB, TB, XSJ, SHP,NQ) 
DO 5002 J=1, 4 
ST(1,N)=ST(1,N)+SHP(1, J)*U(NOP(J,NQ)*2-1) 
ST (2,N)=ST (2, N)+SHP(2, J)*U (NOP(J, NQ)*2) 

5002 ST(3,N)=ST(3,N)+SHP(1, J)*U(NOP(J,NQ)*2)+SHP(2, J)*U(NOP(J,NQ)*2-1) 
SS(1,N)=D(1, 1)*ST(1,N)+D(1,2)*ST(2,N)+D(1, 3)*ST(3,N) 
SS (2,N)=D (2, 1)*ST(1,N)+D (2, 2)*ST(2,N)+D (2, 3)*ST (3,N) 
SS (3, N)=D (3, 1) *ST (1, N)+D (3, 2)*ST (2, N)+D (3, 3) *ST (3,N) 
SSZ(N)=EPZ(1,N)*ST(1,N)+EPZ(2,N)*ST(2,N)+EPZ(3,N)*ST(3,N) 
TSS (N)=SQRT( (SS (1,N)-SS(2,N))**2+(SS(1,N)-SSZ(N))**2+(SS(2,N)-SSZ( 

*N))**2+6.0*SS(3,N)**2)/SQRT(2.0) 
TST(N)=TSS(N)/E1 
IF (BIG. LT. TSS (N)) BIG=TSS (N) 

5005 CONTINUE 
1 	CONTINUE 

YP=TSSO (1) /BIG 
N 
DO 2 NQ=1,NE 
DO 2 M0=1, 4 
N N+1 
ST(1,N)=YP*ST(1,N) 
ST (2, N)=YP*ST (2,N) 
ST (3,N)=YP*ST (3,N) 
SS(1,N)=YP*SS(1,N) 
SS (2, N)=YP*SS (2,N) 
SS (3,N)=YP*SS (3,N) 
SSZ (N)=SSZ (N)*YP 
TST (N)=YP*TST (N) 
TSS (N)=YP*TSS (N ) 
IF (TSS (N)/TSSO (1) .GE. 0. 995) NP2(N)=1 
IF (NP2 (N ) .EQ. 1) NP1(N)=0 

2 	CONTINUE 
DO 6 I=1,NEQ 
DU(I)=0.0 
DF(I)=0.0 
U (I)=YP*U (I ) 

6 	F(I)=YP*F(I) 
WRITE (6, 10000) 

10000 FORMAT (// , 2X, 2HNO, 23X, 2HUX, 23X, 2HUY, 23X, 2HFX, 23X, 2HFY, / ,120 (1H*) , / 
*/) 
LU 
DO 20000 N=1,NEQ, 2 
L=L+1 
X1=U(N) 
X2 U (N+1) 
Y1=F(N) 
Y2=F(N+1) 
WRITE (6, 30000 )L, X1, X2, Yl, Y2 

30000 FORMAT (1X, 13, 10X, 4 (E15. 5, 10X) ) 
20000 CONTINUE 

DO 100 K=1,NT 
DTSTP(K)=0. 0 
TSTP(K)=0. 0 

100 CONTINUE 
G=E1/2.0/(1. CH-XU ) 
A=E1/(1.0+XU) 
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B1=(1.0 XU)/(1.0-2,0*XU) 
C=XU / (1. 0-2. 0*XU ) 
NN 
DO 14 NQ=1,NE 
IF (NP2 (N+1) . EQ. 1. OR. NP2 (N+2) . EQ. 1. OR. NP2 (N+3) • EQ. 1. OR. NP2 (N+4) . EQ. 

*1) GO TO 1409 
N=N+4 
GO TO 14 

1409 TTN.O 
DO 1004 MO=1, 4 
N=N+1 
IF(NP2(N).EQ.0) GO TO 1004 
S=2.0/3.0*TSS(N)*TSS(N)*(1.0+41/3.0/G) 
SH=(SS (1,N)+SS (2,N)+SSZ (N))/3. 0 
S1=SS(1,N)-SH 
S2=SS (2,N)-SH 
S3=SS(3,N) 
S 4=S SZ (N)-SH 
EP(1, 1,N)=A*(B1-S1*S1/S) 
EP(2,1,N)=A*(C-S1*S2/S) 
EP(2, 2,N)=A*(B1-S2*S2/S) 
EP (3, 1, N)=-A*S 1*S 3/S 
EP(3, 2,N)=-A*S2*S3/S 
EP (3, 3, N)=A* (O. 5-S 3*S3/S) 
EP(1, 2,N)=EP(2, 1,N) 
EP(1, 3,N)=EP(3, 1,N) 
EP(2, 3,N)=EP(3, 2,N) 
EPZ(1,N)=A*(C-S1*S4/S) 
EPZ(2,N)=A*(C=S2*S4/S) 
EPZ(3,N)=-A*S3*S4/S 

1004 CONTINUE 
CALL STIFF (NQ, SK8) 
DO 6001 I=1, 8 
DO 6001 J=I, 8 
SK8 (I, J)=SK8(I, J)-SKEQ(I, J,NQ) 
SKEQ(I, J, NQ)=SKEQ(I, J, NQ)+SK8 (I, J) 

6001 CONTINUE 
CALL SADD (NQ, SK8) 

14 	- CONTINUE 
RETURN 
END 	 • 
SUBROUTINE CHANGE (D,U) 
DIMENSION U(174) 
COMMON /C1/ NE,NN,NB,NEQ,X(87),Y(87),NOP(4,67),NP(174),NP1(268),NP 

*2 (268) ,NX(12),NY(12) ,EP(3, 3, 268) ,SI (4 ) ,TI (4 ) ,SII (4 ),TII (4) ,WG(4) 
COMMON /C5/KS , LS , XF (87 ) ,YF (87 ) 
INTEGER P 
DO 5 N Q=1, NE 
I NOP(1,NQ) $ J NOP(2,NQ) 	$ K NOP(3,NQ) 	$ P NOP(4,NQ) 
XF (I )=X (I )+U (2*I-1 ) $ 	XF(J)=X(J)+U(2*J-1) 
XF (K)=X (K )+U (2 *K-1) 	$ 	XF (P )=X (P )+U (2 *N Q-1) 
YF (I )=Y (I )+U (2*I) 	$ 	YF(J)=Y (J)+U (2*J) 
YF(K)=Y(K)+U(2*K) $ YF(P)=Y(P)+U(2*P) 

5 	CONTINUE 
RETURN 
END 
SUBROUTINE BOND 2 (10, U, F, DU, DF ) 
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TT=SQRT((SS(1,N)+DSS(1,N)-SS(2,N)-DSS(2,N))**2+(SS(1,N)+DSS(1,N)-S 
*SZ(N)-DSSZ(N))**2+(SS(2,N)+DSS(2,N)-SSZ(N)-DSSZ(N))**2+6.0*(SS(3,N 
*)+DSS (3,N) )**2) /SQRT (2. 0)-T SS (N) 

IF (TT. LT. O.0) GO TO 1001 
A=(DSS(1,N)-DSS(2,N))**2+(DSS(1,N)-DSSZ(N))**2+(DSS(2,N)-DSSZ(N))* 

**2+6. 0*DS S (3, N ) **2 
B1NSS(3,N)*SS(3,N)*6.0+(DSS(1,N)-DSS(2,N))*(SS(1,N)-SS(2,N))+(DSS 

*(1,N)-DSSZ(N))*(SS(1,N)-SSZ(N))+(DSS(2,N)-DSSZ(N))*(SS(2,N)-SSZ(N) 
*) 

C =2,0*(TSS(N)**2 TSSO(N)**2) 
BIG=(-B 1+S QRT (B 1**2-A*C)) /A 
IF(BIG.LT.YP) YP=BIG 
IF (YP . LT . O. 0) WRITE(6, 103) KKU,NQ,A,C 

1001 CONTINUE 
1 	CONTINUE 
103 	FORMAT ( // , 20X, Al2, 4X, I4, 2(2X, E10. 3) , / , 50 (1H*) ) 

IF (YP. LT. 0. 0) STOP 
DO 180 KK=2, 12 
IF (NP (2*NY (KK) ).EQ. 1) GO TO 180 
IF ( (Y (NY (1 ) )+U (2*NY (1 ) )+DU (2*NY (1 ) )) .GT. (Y (NY (KK) )+U (2*NY(KK) )+DU( 

*2*NY(KK)))) GO TO 180 
YP 1=(Y (NY (1))+U (2*NY (1))-Y (NY (KK))-U (2*NY(KK))) / (DU (2*NY (KK))-DU (2 

**Ny(1))) 
IF(YP1.GT.O.O. AND .YP1.LT.YP) YP YP1 

180 CONTINUE 
IF(NP(2*NX(1)-1).EQ.0) GO TO 39 
DO 190 KK=2, 12 
IF (NP (2*NX(KK)-1 ) .EQ. 1) GO TO 190 
IF (X (NX (1 ) ) .GT. (X (NX (KK))+U(2*NX(KK)-1)+DU(2*NX(KK)-1)))GO TO 190 
YP 1=(X (NX(1))-X (NX(KK) )-U (2*NX(KK)-1)) /DU (2 *NX(KK)-1) 
IF(YP1.GT.O. O. AND. YP1.LT.YP) YP=YPI 

190 CONTINUE 
39 	TT=O. 0 

IF (YP. GT. 1. 0) YP=1.0 
N=0 
DO 2 NQ=1,NE 
DO 5004 M=1, 4 
N N+1 
DST (1, N)=DST (1, N) *YP 
DST (2, N)=DST (2, N)*YP 
DST (3,N)=DST(3,N)*YP 
DSS (1,N)=DSS (1,N)*YP 
DSS (2,N)=DSS(2,N)*YP 
DSS (3, N)=D SS (3, N) *YP 
DS SZ (N )=DSSZ (N )*YP 

5004 CONTINUE 
2 	CONTINUE 

NN 
DO 3 NQ=1,NE 
DO 3 M=1, 4 
N=N+1 

4 	DTSS(N)=SQRT((SS(1,N)+DSS(1,N)-SS(2,N)-DSS(2,N))**2+(SS(1,N)+DSS(1 
*,N)-SSZ(N)-DSSZ(N))**2+(SS(2,N)+DSS(2,N)-SSZ(N)-DSSZ(N))**2+6.0*(S 
*S (3,N)+DSS (3,N))**2)/SQRT (2. 0)-TSS (N) 
IF(NP2(N).EQ.0) GO TO 5 

1:1=111  
IF(DTSS(N).GE.O.0) GO TO 6 
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TSSO (N )=T SS (N ) 
NP2 (N)=0 
NP1(N )=1 
DO 15 K=1, 3 

15 	DSS (K,N)=D (K, 1)*DST (1, N)+D (K, 2)*DST (2,N)+D (K, 3)*DST (3,N) 
DSSZ(N)=D (1, 2)*DST(1,N)+D (1, 2)*DST(2,N) 
GO TO 4 

6 	DTSTP (N)=DTSS (N) /H 
GO TO 3 

5 	DT STP (N)=0.0 
3 	CONTINUE 

DO 90 N=1, NEQ 
U (N )=U (N )+YP*DU (N ) 

90 	F(N)=F(N)+YP*DF(N) 
NN 
DO 11 NQ=1,NE 
DO 11 M=1, 4 
N=N+1 
TSS (N)=TSS (N)+DTSS (N ) 
TSTP (N )=TSTP (N)+DTSTP (N ) 
SSZ (N )=SSZ (N )+DSSZ (N) 
DO 110 K=1, 3 
SS (K, N)=SS (K, N)+D S S (K, N) 

110 CONTINUE 
11 CONTINUE 

A=E1/(1.0+XU) 
B1=(1. 0-XU)/(1. 0-2. 0*XU) 
C XU/(1.0-2.0*XU) 
NN 
DO 12 NQ=1, NE 
IF (NP2 (N+1) • EQ. 1. OR. NP2 (N+2) . EQ. 1. OR. NP2 (N+3) . EQ. 1. OR. NP2 (N+4) . EQ. 

*1) GO TO 999 
KN *:1 
IF (TSS (N+1) /TSSO (N+1) • GE. O. 995) KN=1 
IF (TSS (N+2) /TSSO (N+2) •GE. O. 995) KN=1 
IF (TSS (N+3) /TSSO (N+3) • GE. O. 995) KN=1 
IF (TSS (N+4) /TSSO (N+4) • GE . O.995) KN=1 
IF (KN • EQ. 1) GO TO 999 
N=N+4 
GO TO 12 

999 TTN.0 
DO 5005 MO=1, 4 
N N+1 
IF(NP2(N).EQ.1) GO TO 14 
IF(TSS (N)/TSSO(N).GE. 0.995) NP2(N)=1 
IF(NP2(N).EQ. 1) NP1(N)=0 
IF (NP2 (N) .EQ. 1) GO TO 14 
IF (DTSS (N) . GE. O. 0) GO TO 5005 
EPZ (1, N)=D (1, 2) 
EPZ(2,N)=D (1, 2) 
EPZ (3, N)=0. 0 
DO 13 K=1, 3 
DO 13 M=1, 3 

13 	EP(K,M,N)=D (K,M) 
GO TO 5005 

14 	TTN. 0 
S=2.0/3.0*TSS (N) *TSS (N)*(1. 0+/1/ 3. 0/G ) 
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SH=(SS(1,N)+SS(2,N)+SSZ(N))/3.0 
S1=SS(1,N)-SH 
S2=SS(2,N)-SH 
S3=SS(3,N) 
S 4=S SZ (N)-SH 
EP(1, 1,N)=A*(B1-S1*S1/S) 
'EP(2, 1,N)=A*(C-S1*S2/S) 
EP(2, 2,N)=A*(B1-S2*S2/S) 
EP(3, 1,N)=-A*S1*S3/S 
EP(3, 2,N)=-A*S2*S3/S 
EP(3, 3,N)=A*(0.5-S3*S3/S) 
EP(1, 2,N)=EP(2, 1,N) 	. 
EP(1, 3,N)=EP(3, 1,N) 
EP(2, 3,N)=EP(3, 2,N) 
EPZ(1,N)=A*(C-S1*S4/S) 
EPZ(2,N)=A*(C-S2*S4/S) 
EPZ(3,N)=-A*S3*S4/S 

5005 CONTINUE 
CALL STIFF(NQ,SK8) 
DO 6001 1=1,8 
DO 6001 J=I,8 
SK8(I, J)=SK8(I, J)-SKEQ(I, J,NQ) 
SKEQ(I, J, NQ)=SKEQ(I, J, NQ)+SK8 (I, J) 

6001 CONTINUE 
CALL SADD(NQ,SK8) 

12 	CONTINUE 
IF(MOD(I0,10).NE.0) GO TO 80 
SUM1=ABS(U(2*NY(1))) 
SUM6=ABS (U (2*NX(1)-1) ) 
SUM2=0.0 
SUM20=0.0 
SUM3=0.0 
SUM30=0.0 
DO 220 KK=1,12 
SUM2-SUM2+F (2*NY(KK) ) 
IF (KK. EQ. 1) GO TO 212 
SUM20=SUM2O+F(2*NY(KK)-1) 
SUM30=SUM3O+F(2*NX(KK)) 

212 TTA. 0 
220 SUM3=SUM3+F(2*NX(KK)-1) 

SUM2 ABS(SUM2) 
SUM3=ABS(SUM3) 
SUM20=ABS(SUM20) 
SUM30=ABS(SUM30) 
SUM4=X (NY (KS))+U (2 *NY (KS)-1) 
SUM5=Y (NX (LS))+U (2 *NX (LS) ) 
WRITE (3, 230) SUM1, SUM2, SUM3, SUM4, SUM5, SUM6, SUM20, SUM30 

230 	FORMAT (8 (E 12.5) ) 
80 	TT=0.O 

IF (MOD (I0, 10) .NE. 0) GO TO 330 
WRITE (6, 26 )I0 

26 	FORMAT(/,1X,13HLOADING STEP=,I4) 
WRITE (6, 4000 ) 

4000 FORMAT(//,50X,13HPLASTIC ZONES,/,120(1H*)) 
WRITE (6, 4081) ((N, NP2 (N)) ,N=1, NT ) 

4081 FORMAT (7 (I4, 4X, I2, 8X) ) 
WRITE (6, 1990 ) 
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1990 FORMAT(/) 
WRITE (6, 10000) 

10000 FORMAT (2X, 2HNO, 16X, 2HUX, 16X, 2HUY, 16X, 2HFX, 16X, 2HFY, 13X, 5HDTSTP, 14X 
*, 4HTSTP, 15X, 3HTSS, / , 130 (1H*) ) 
NU 
DO 420 NQ=1,NE 
SUM1=0.0 
SUM2=0. 0 
SUM 3=0.0 
DO 42 M0=1, 4 
NN+1 
SUM1=SUM1+TSS (N) 
SUM2=SUM2+T STP (N) 
SUM3=SUM3+DTSTP (N ) 

42 	CONTINUE 
SUM1=SUM1/4.0 $ SUM2=SUM2/4.0 $ SUM3=SUM3/4.0 
Xl=U (2*NQ-1) $ X2=U (2*NQ) $ Y 1=F (2*NQ-1) $ Y2=F(2*NQ) 
WRITE (6, 32) (NQ, Xl, X2, Y1, Y2, SUM3, SUM2, SUM1) 

420 CONTINUE 
32 	FORMAT (I4, 7(6X, E12. 5) ) 

K1=NE+1 $ K2=NN 
DO 430 I=K1,K2 
X1 =U (2*I-1) 
X2 U(2*I) 
Y1=F(2*I-1) 
Y2=F(2*I) 
WRITE (6, 32) (I, Xl, X2, Y1, Y2) 

430 CONTINUE 
330 	IF (I0. NE. NOR )' GO TO 33 

WRITE (6, 45) 
45 	FORMAT (/ / / , 2X, 2HNO, 24X, 1HX, 24X, 1HY, / , 60 (1H*) , //)  

ND 
DO 44 NQ=1,NE 
INQ 
XX=X (I )+U (2 *I-1) 
YY Y(I)+U(2*I) 
SUM1=0.0 $ SUM2=0.0 $ SUM3=0.0 
DO 62 M0=1, 4 
N=N+1 
SUM1=SUM1+TSS (N) 
SUM2=SUM2+TSTP(N) 
S1=SS(1,N)$S2=SS(2,N)$S3=SS(3,N) 
TA=SQRT ((S 1-S 2)**2 /4. 0+S 3**2 ) 
SUM3=SUM3+TA 

62 CONTINUE 
SUM1=SUM1/4.0 $ SUM2=SUM2/4.0 $ SUM3=SUM3/4.0 
V1 U(2*I-1)$V2=U(2*I)$V3 DU(2*I-1)$V4=DU(2*I) 
V5=0.0 	$ 	V6=0.0 
WRITE (6, 46) (I, XX, YY) 

46 	FORMAT (1X, 13, 10X, El 5. 5, 10X, E15. 5) 
WRITE (4, 102) I, X (I) ,Y (I) , Vl, V2,173, V4, V5, V6, SUM1, SUM2, SUM3 

102 	FORMAT (110, 11 (E 10. 3) ) 
44 CONTINUE 

K141E+1 $ K2=NN 
DO 63 I=K1, K2 
XX=X (I )+U (2 *I -1) 
YY=Y (I )+U (2 *I ) 
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VI-4J (2*I-1)$V2=U (2*I )$V3 DU(2*I-1)$V4 DU(2*I) 
WRITE (6, 46) (I, XX,YY) 
WRITE(4, 102) I,X(I),Y(I),V1,V2,V3,V4 

63 	CONTINUE 
33 RETURN 

END 
C*********************************************************************** 
C***** EVALUATION OF THE SHAPE FUCTION AT POINT (S,T) **************** 

SUBROUTINE SHAPE(S,T,XSJ,SHP,N) 
DIMENSION XS (2, 2) ,SHP (3, 4 ) 
COMMON /C1/ NE,NN, NB ,NEQ,X(87),Y (87),NOP(4,67),NP(174),NP1(268),NP 

*2(268),NX(12),NY(12),EP (3,3,268),SI(4),TI(4),SII(4),TII(4),WG(4) 
COMMON /C5/KS,LS,XF(87),YF(87) 
DO 100 I=1, 4 
SHP(3, I)= (O. 5+SI (I )*S )*(0. 5+TI (I)*T) 
SHP(1, I)=SI(I)*(0.5+TI(I)*T) 

100 SHP(2,I)=TI(I)*(0.5+SI(I)*S) 
DO 200 1=1, 2 
DO 200 J=1, 2 
XS (I, J)=0. 0 
DO 200 K=1,4 
IF(J.EQ.1) TT XF(NOP(K,N)) 
IF(J. EQ. 2) TT YF(NOP(K,N)) 

200 	XS (I, J)=XS (I, J)+TT*SHP (I, K) 
XSJ=XS (1, 1)*XS (2, 2)-XS (1, 2)*XS (2, 1) 
DO 300 1=1, 4 
TEMP= (XS (2, 2)*SHP (1, I)-XS (1, 2)*SHP (2, I)) /XSJ 
SHP (2, I )_ (-XS (2, 1)*SHP (1, I)+XS (1, 1) *SHP (2, I)) /XS J 

300 	SHP (1, I )=TEMP ' 
RETURN 
END 

C*********************************************************************** 
C***** EVALUATION OF THE ELEMENTAL STIFFNESS MATRIX ****************** 

SUBROUTINE STIFF(NQ, S) 
DIMENSION S (8, 8) ,SHP (3, 4) 
COMMON /C1/ NE,NN,NB,NEQ, X(87) ,Y(87) ,NOP (4, 67) ,NP(174) ,NP1 (268) ,NP 

*2(268),NX(12),NY(12),EP(3, 3, 268),SI(4),TI(4),SII(4),TII(4),WG(4) 
DO 50 I=1, 8 
DO 50 J=I, 8 

50 	S (I, J)=0.0 
S (2,1)=0.0 $ S (3, 2)=0.0 $ S (4, 3)=0.0 $ S (5, 4)=0.0 $ S (6, 5)=0.0 
S (7, 6)=0.0 $ S (8, 7)=0.0 
DO 100 L=1, 4 
SB=SII(L) $ TB=TII(L) 
CALL SHAPE (SB, TB, XS J, SHP, NQ) 
D V=XSJ*WG (L ) 
N=4*(NQ-1 )+L 
D11=EP(1, 1,N)*DV $ D12=EP(1, 2,N)*DV 	$ 	D13=EP(1, 3,N)*DV 
D22=EP(2, 2,N)*DV 	$ D23=EP(2, 3,N)*DV 	$ D33 EP(3, 3,N)*DV 
DO 100 J=1, 4 
DB11 D11*SHP(1,J)+D13*SHP(2,J) $ DB12 D12*SHP(2,J)+D13*SHP(1,J) 
DB21 D12*SHP(1,J)+D23*SHP(2,J) 	$ DB22 D22*SHP(2,J)+D23*SHP(1,J) 
DB31 D13*SHP(1,J)+D33*SHP(2,J) $ DB32 D23*SHP(2,J)+D33*SHP(1,J) 
DO 100 I=1, J 
S (I+I-1, J+J-1)=S (I+I-1, J+J-1)+SHP (1, I) *DB 11+SHP (2, I) *DB 31 
S(I+I-1,J+J )=S (I+I-1,J+J )+SHP(1, I)*DB12+SHP (2, I)*DB 32 
S (I+I , J+J-1)=S (I+I , J+J-1)+SHP (1, I) *DB 31+SHP (2, I) *DB 21 
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100 	S (I+I ,J+J )=S (I+I, J+J )+SHP(1, I ) *DB 32+SHP (2, I)*DB22 
RETURN 
END 
SUBROUTINE SADD (N, SKE ) 
DIMENSION SKE (8, 8) 
COMMON /C1/ NE,NN,NB,NEQ, X(87) ,Y(87) ,NOP(4, 67) ,NP (174) ,NP1 (268) ,NP 
*2(268),NX(12),NY(12),EP(3,3,268),SI(4),TI(4),SII(4),TII(4),WG(4) 
COMMON /C2/ SK(174, 34),SKEQ(8, 8, 67) 
DO 1 JJ=1,4 
NROW=(NOP(JJ,N)-1 )*2 
DO 1 J=1, 2 
NROW=NROW+1 
I=(JJ-1)*2+J 
DO 2 KK=1, 4 
NCOLB=(NOP(KK,N)-1 )*2 
DO 3 K=1, 2 
L=(KK-1)*2+K 
NC OL =NC OLB+K+1 -NROW 
IF(NCOL)3, 3, 4 

4 	IF(L.LT. I) SEE (I,L)=SKE (L, I) 
SK(NROW,NCOL)=SK(NROW,NCOL)+SKE  (I , L) 

3 	CONTINUE 
2 	CONTINUE 
1 	CONTINUE 

RETURN 
END 
SUBROUTINE SOLVE (U, F) 
DIMENSION SKI (174,34),FI(174),F(174),U(174) 
COMMON /C1/ NE,NN,NB,NEQ,X(87),Y(87),NOP(4, 67),NP(174),NP1(268),NP 
*2(268),NX(12),NY(12),EP(3, 3, 268),SI(4),TI(4 ),SII(4),TII(4) ,WG (4) 
COMMON /C2/ SK(174, 34),SKEQ(8, 8, 67) 
COMMON /C3/ DST (3, 268),SS(3, 268),DSS (3, 268) ,TSTP(268),DTSTP(268),T 

*SS (268) ,DISS (268) 
DO 1 I=1,NEQ 
IF (NP (I ) .EQ. 0) FI(I)=F(I) 
IF(NP(I).EQ.1) FI(I)=SK(I, 1)*U(I)*10.0E20 
IF (NP (I). EQ. 1. AND. U(I).  EQ. O.0) FI(I)=SK(I, 1 )*10. 0E10 
DO 2 J=1,NB 

2 	SKI (I, J)=SK(I, J) 
IF (NP (I).EQ. 1) SKI (I, 1)=SKI(I, 1)*10.0E20 

1 	CONTINUE 
DO 300 N=1, NEQ 
I=N 
DO 290 L=2, NB 
I=I+1 
IF ( SKI (N, L)) 240, 290, 240 

240 	C=SKI (N,L)/SKI (N, 1) 
J=0 
DO 270 K=L, NB 
J=J+1 
IF (SKI (N, K)) 260, 270, 260 

260 	SKI (I, J)=SKI (I, J)-C*SKI (N, K) 
270 CONTINUE 
280 	SKI (N, L)=C 

Ft (I )=FI (I )-C*FI (N ) 
290 CONTINUE 
300 	Fl (N)=F I (N ) /SKI (N, 1) 
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N NEQ 
350 N=N-1 

IF(N) 500,500,360 
360 L=N 

DO 400 K=2,NB 
L=L+1 
IF (SKI (N, K)) 370, 400, 370 

370 	FI (N)=FI (N)-SKI (N, K) *FI (L ) 
400 CONTINUE 

GO TO 350 
500 TT=0.0 

DO 3 N=1, NEQ 
IF (NP (N) . EQ. 1) GO TO 3 
U (N)=FI (N) 

3 	CONTINUE 
DO 4 N=1,NEQ 
IF(NP(N).EQ.0) GO TO 4 
SUM . 0 
K=N+1 
L=0 
DO 5 J=1,NB 
K=K-1 
L=L+1 
IF (K. EQ. 0) GO TO 6 

5 	SUM=SUM+SK(K,L)*U(K) 
6 	TT=O.O 

DO 7 J=2,NB 
IF (SK (N, J) .EQ.,0. 0) GO TO 7 
SUM=SUM+SK(N, J) *U (N-1+J ) 

7 	CONTINUE 
F (N)=SUM 

4 	CONTINUE 
RETURN 
END 
SUBROUTINE MULT 1(A, B, C,M, N, L) 
DIMENSION A(M,N),B(N,L),C(M,L) 
DO 1 I=1,M 
DO 1 J=1,L 
C (I, J)=0. 0 
DO 1 K=1,N 

1 	C(I,J)=C(I,J)+A(I,K)*B(K,J) 
RETURN 
END 
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