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ABSTRACT 

This thesis consists of two parts. Part I begins with a 

description of Weyl's (1929) concept of gauge invariance as applied 

to electrodynamics, along with its generalisation to non-abelian 

symmetries by Yang and Mills (1954). 

A generalisation of Einstein's (1915) theory of general 

relativity, due principally to Cartan  (1922), Sciama (1962) and 

Kibble (1961) is then reviewed, both in its geometrical and physical 

aspects. 

It is then shown that upon trying to incorporate gauge fields 

into metric-torsion theories, inconsistencies arise leading to loss of 

gauge invariance. A recently suggested solution for a consistent 

coupling of torsion to electrodynamics is then described and a 

generalisation to non-abelian gauge fields is put forward. 

Part II studies the role of variational principles and 

lagrangians in metric-torsion theories of gravity. The concept of 

Invariant Variational Principle (IVP) is described. The usefulness of 

IVP's is detailed through the example of a second order lagrangian, 

L(g,g,33g) in the metric g. Three identities are derived and it is 

shown how they can be used to reduce the Euler-Lagrange field equations 

to a simple form. The method is generalised to metric-torsion theories 

of gravitation by application to a lagrangian of the form L(g,ag,aag,s,as ), 

where s is the torsion. Having simplified the field equations for this 

lagrangian, the Construction of lagrangians for metric-torsion theories 

is studied. In particular, it is shown that Einstein's principle of 

taking his lagrangian to be linear in the curvature when generalised to 

metric-torsion theories, does not lead simply to the ECSK lagrangian, but 

allows an additional pseudoscalar term. 



Finally, some consequences of incorporating this additional 

term into the ECSK lagrangian are illustrated by coupling torsion to 

the Dirac and Proca fields. 
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INTRODUCTION 
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Einstein's theory of general relativity incorporates macroscopic 

gravitational phenomena successfully into a geometrical theory based on 

Riemannian geometry (by a Riemannian geometry, we shall mean a four 

dimensional, smooth manifold having a symmetric metric tensor with 

signature (-2) defined on it). However, it has not been very well tested 

at the microscopic level. It is with this in mind, that one studies 

metric-torsion theories of gravity - to extend general relativity into 

the microphysical realm. But, is it necessary to introduce new geometrical 

ideas for the extension? 

The new quantity that comes into play in elementary particle 

physics is the concept of intrinsic spin of a particle. General relativity 

incorporates the concept of orbital angular momentum in its definition 

of the stress-energy-momentum tensor. Is it not possible to simply 

generalise this orbital angular momentum to total angular momentum by 

the addition of spin? One could, but then the symmetrisation procedure 

that is carried out on the energy-momentum tensor in general relativity 

generally nullifies the effects of spin. Therefore, it seems simpler 

and indeed, more natural, to introduce a new geometrical entity that 

couples to the intrinsic spin of matter fields analogous to the coupling 

of the curvature to the energy-momentum of matter fields in general 

relativity. The torsion tensor having 24 independent components, is such 

a geometrical quantity. In the Einstein-Cartan-Sciama-Kibble (ECSK) 

theory, it is this torsion tensor which couples to the canonical spin 

tensor of matter fields. Just as the energy-momentum tensor is defined 

as the variational derivative of the matter lagrangian with 

respect to the metric tensor, for metric-torsion theories, the canonical 

spin tensor is defined as the variational derivative of the matter 

lagrangian with respect to the Contortion tensor. This Contortion 

tensor, also having 24 independent components, is a linear combination 

of the torsion tensor and may be used to describe the deviation of the 

new geometry (which we shall call Riemann-Cartan geometry) from Riemannian. 
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Riemannian geometry allows a unique (Christoffel) symmetric connection. 

Riemann-Cartan geometry postulates an asymmetric connection, 

defining its antisymmetric part to be the torsion tensor. The contortion 

tensor is the difference between the asymmetric connection and the 

Christoffel connection, and is hence said to describe the deviation from 

Riemannian geometry. From the field equations for the Einstein-Cartan-

Sciama-Kibble theory, derived in Chapter I, we shall see that it differs 

from general relativity only in the presence of spinning matter. This 

is due to the fact that the field equation relating torsion to the spin 

tensor is algebraic, i.e. a zeroth order differential equation, implying 

that whenever the spin tensor is zero (no spinning matter), so is the 

torsion. This fundamental deficiency of the theory is reflected in the 

fact that within the limits of present technology, the two theories, 

general relativity and the Einstein-Cartan-Sciama-Kibble theory are 

experimentally indistinguishable. 

In Part I of this thesis, we shall study a particular matter 

field interaction with torsion, which allows the possibility of 

distinguishing metric-torsion theories of gravity from general relativity. 

The matter fields we shall consider are gauge fields, hence we begin 

Chapter I with an introduction to gauge theories. In gauge theories, 

one first considers the invariance of a matter field lagrangian in 

flat space-time under the action of some global, finite-dimensional Lie 

group, G. In enlarging this invariance to independent transformations 

of G for each point in space-time, "compensating" gauge fields have to be 

introduced. 

The electromagnetic potential is shown to be such a gauge 

field, of the group U(1) (Or, the group of unitary matrices in one 

dimension). The discussion is extended to non-abelian Lie groups (Lie 

groups, whose elements commute under the group multiplication law are 

said to be abelian groups, while those that do not have a commutative 

group multiplication law are said to be non-abelian groups. 	As an 
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example, U(1) is an abelian group, for its elements are simply lxl 

unitary matrices, while the group U(2), containing 2x2 unitary matrices , 

is a non-abelian group, for the simple reason that nxn matrices do not 

commute (nl) in general). We see that it is necessary to introduce a 

collection of gauge fields, one for each generator of the group. Hence 

the gauge field is labelled not only by the space-time coordinate index, 

but by a group index. This additional group index on the gauge fields 

will be seen to give rise to a non-linearity in their lagrangian. 

We continue in Chapter I by first giving a brief introduction 

to Riemann-Cartan geometry. We go on to describe the physics of the 

Einstein-Cartan-Sciama-Kibble theory, by outlining the arguments for 

taking its lagrangian to be the curvature scalar of the underlying 

Riemann-Cartan geometry and deriving the corresponding field equations. 

In Chapter II, we first show that the only effect of general 

relativity when coupled to gauge fields(let us call this the E-G.F. 

coupling), is the addition of a factor of 47 to the lagrangian of the 
gauge fields (g denotes the determinant of the symmetric metric of 

Riemann-Cartan space-time). However, when we attempt to couple torsion 

to gauge fields (let us call this the T-G.F. coupling), we find that 

gauge invariance is lost. It is then argued that loss of gauge invariance 

should not even be considered; for all the present day successes of 

elementary particle physics are attributable to the fact that they are 

generally based on the formalism of gauge theories. Another possibility 

is to give up the coupling of torsion to gauge fields (T-G.F. coupling). 

This would be carried out by coupling gauge fields to gravity through 

the torsionless Christoffel connection (E-G.F. coupling), 	while coupling 

all other matter fields to torsion through the full asymmetric connection 

(i.e., Riemann-Cartan minimal coupling). This however, is rather ad hoc, 

and a novel suggestion (which modifies the usual form of the gauge 

covariant derivative), recently put forward,is described. All the 

above problems are removed by this solution, and allows the coupling 
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of torsion to electromagnetic fields. The novel feature of this 

solution is that torsion takes a special form; it comes from the gradient 

of a scalar field. Another feature of this solution is that it allows 

for the first time, a restricted form of dynamic (or propagating) 

torsion within the confines of a theory that takes its lagrangian to 

be linear in the curvature. 

We also show that a generalisation of this solution to arbitrary 

non-abelian gauge fields necessitates a modification to the field 

strength tensor in addition to the modification of the gauge covariant 

derivative. It is found that the special form of torsion, allowing 

the electromagnetic field to couple to metric torsion theories of gravity 

is carried through to the non-abelian case. Very briefly, we explain 

why this happens. 

In Part II of the thesis, lagrangians and variational principles 

for metric-torsion theories are studied. Our attitude to variational 

principles 	is outlined in Chapter III as follows. A physical field 

is described by a set of field variables (e.g. the components of a 

metric tensor), and we assume that the field equations governing the 

behaviour of the field are identical with the Euler-Lagrange equations 

of the given problem in the calculus of variations. The action integral 

in the calculus of variations is supposed to be invariant under general 

coordinate transformations; this implies that the corresponding integrand 

(the lagrangian), is a scalar density. For any given type of physical 

field variable, this is augmented by an additional assumption concerned 

with invariance properties. This assumption specifies the transformation 

properties.of the field variables under general coordinate transformations. 

These two invariance requirements, taken together, severely 

restrict the classes of admissible lagrangians and hence the type of 

acceptable field equations. The two invariance requirements, along 

with the assumption that the field equations are identical to the Euler-

Lagrange equations, are collectively called an Invariant variational 
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principle (IVP) . 

The restrictions on the lagrangians are expressed in terms of 

some identities which must be satisfied by the lagrangians and their 

derivatives. By applying the IVP to the problem of a second order 

lagrangian in the metric tensor (a lagrangian is said to be of nth order 

whenever it depends on partial derivatives of at least some of the 

field variables with respect to the space-time coordinates, up to and 

including the nth order), we derive three identities that the lagrangian 

along with its derivatives, satisfies. The third identity, in this 

example, is a remarkable one, for it highlights the well known theorem 

from Riemannian geometry, that any invariant function of the metric 

and its first two derivatives, can be expressed in terms of the Riemannian 

curvature tensor. Indeed, this identity goes much further, in that, 

it demonstrates quite clearly how the given function is to be expressed 

in terms of the curvature tensor. The restriction on the type of 

acceptable field equations is illustrated by reducing the Euler-Lagrange 

equation for the metric example. 

As our aim in this thesis is to study various aspects of 

metric-torsion theories, we generalise the above procedure by applying 

it to a lagrangian of second order in the metric tensor, and containing 

no higher than first derivatives of the torsion tensor. The basic 

reason for considering lagrangians containing at least first derivatives 

of the torsion is that they may allow the possibility of propagating 

torsion, i.e., the field equation for torsion may be a differential 

equation of at least the first order. No higher than first derivatives 

are taken for simplicity only, there is no loss of generality. Once 

again, the restrictions on admissible lagrangians is expressible in 

the form of three identities that the lagrangian along with its 

derivatives must satisfy. The third identity tells us that any invariant 

function depending on the metric, the first two derivatives of the 

metric, the torsion tensor and its first derivatives can be expressed 
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in terms of the curvature tensor, the torsion tensor and its derivatives. 

As the expressions for the three identities are large, we illustrate 

the restrictions on the type of acceptable equations by reducing the 

Euler-Lagrange equation for a lagrangian which depends only on the 

torsion along with the metric and its first two derivatives. The 

lagrangian for the Einstein-Cartan-Sciama-Kibble theory is of this 

type. Restricting to such lagrangians means the loss of propagating 

torsion. This is not very important here, as our sole motivation 

for taking a reduced lagrangian is simplicity in illustrating the 

restrictions on the type of field equations brought out by the identities. 

Chapter IV points out first, that if we require the lagrangian 

of a metric-torsion theory to be linear in the curvature, then we are 

allowed the addition of a pseudo-scalar term to the Einstein-Cartan-

Sciama-Kibble lagrangian. This term, fortunately vanishes identically 

in general relativity due to the cyclic symmetry on the Riemannian 

curvature tensor (or Riemann-Christoffel tensor). Allowing the 

additional term, the field equations are derived, showing that as 

expected, the torsion field equation is again algebraic (i.e., torsion 

does not prppagate). 

In order to observe the effects of this additional pseudo-scalar-

parity violating-term, we couple the theory to the Dirac spinor field. 

We find, however, that the only effect of the additional term is to 

reduce the strength of the existing parity-violating interactions in the 

ECSK-Dirac theory. This is easily understood, since the parity violating 

interaction term in the ECSK theory when coupled to the Dirac field 

arises due basically to the Dirac algebra, leading to total antisymmetry 

of the spin angular momentum tensor, and hence to the total antisymmetry 

of the rantortion tensor. While the additional term that we motivate 

leads, manifestly, to a totally antisymmetric contribution to the 

contortion tensor. We then discuss the Proca (or massive Maxwell) field, 

and show there that we do indeed have a parity violating effect, which in 
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principle, would enable us to experimentally prove or disprove the 

existence of torsion by observing the motion of massive elementary 

particles carrying spin 1. 

The thesis ends with some Conclusions and discussion. 



-9- 

PART I 

GAUGE FIELDS AND TORSION 

"Symmetry as narrow or as wide as you may 

define its meaning, is one idea by which 

man through the ages tried to comprehend 

and create order, beauty and perfection". 

Herman Weyl. 
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CHAPTER I  

PRINCIPLES OF GAUGE THEORIES 

AND 

METRIC-TORSION THEORIES OF GRAVITATION 



GAUGE THEORIES  

§1. 	The abelian theory  

The fundamental notion of gauge invariance is a rather simple 

generalisation of the concept of a continuous space-time symmetry of 

a lagrangian. We shall illustrate the idea by deriving the Maxwell 

lagrangian for electrodynamics as a local gauge theory of the abelian 

group U(1). Suppose L(4,4) describes a theory for a zeroth rank 

tensor field 4(x). Let us impose the following invariance on L(00,4): 

and 

4(x) ->' (1)' (x) 	= eic 	(x) 

a$(x) } {a 0(x)} = eic a (p(x) 
1.1 

where c is an arbitrary constant. 

The group of transformations (1.1.1) is the group of unitary 

transformations in one dimension, U(1). 

Because c is a constant, the transformations (1.1.1) are called 

global gauge transformations. 

Throughout the rest of this dissertation, we shall not be 

dealing with Conservation laws and therefore we shall not demonstrate 

here that the invariance of u 0,a4) under (1.1.1) leads to current 

conservation which is simply the electric current conservation law /1/. 

Instead we shall now define local gauge transformations. 

Suppose in (1.1.1), we allow a to become a function on the 

space-time i.e., c -~e(x). Then (1.1.1) becomes 

0(x) -- 4'(x) 	= eic(x) 0(x) 	 (1.1.3) 

however, 
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augx) -}{ a uqb(x) }" = ei:c(x) agx) * i ei (x) {a ue(x) } qh(x) 

(1.1.4) 

These transformations are called local gauge transformations. Notice 

that the second term in (1.1.4), the inhomogeneous term, "breaks" the 

invariance of L 0, 4) . 

Clearly, invariance of L(cp,84) under (1.1.3) will be assured 

if a new vector field is introduced into the partial derivative such that 

its transformation law under (1.1.3) acts to cancel the inhomogeneous 

term in (1.1.4). 

With this in mind, a new derivative, called the gauge covariant 

derivative, D is defined; 

D 	= aU - iqA 	 (1.1.5) 

where q is an arbitrary coupling parameter which will be identified 

with electric charge. Then, replacing a uq5 in L0,4)  by DUB, invariance 

of L (4),DUci)) will be ensured if we require, in accordance with (1.1.2), 

DU$ }{DU~}~ = el e(x) DU$ (1.1.6) 

Suppose that under, (1.1.3), Au } Aū , then (1.1.6) gives 

(aU - iq A,) 4''(x) = eic(x)(au- iq Au) 4'(x) 	(1.1.7) 

or, 

(aU 
-iq 

A' 
) e

1e(x)cp.(x) = e
1e(x)

(9U - iq A)4)(x) 	(1.1.8) 

Simplifying, we find, 

A' 
= A 

(a eie(x)) e—ie(x) 
(1.1.9) 
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The infinitesimal form of this transformation is 

A' = Ap  + - auE(x) (1.1.10) 

So the new "gauge potential" Au  must transform inhomogeneously, like a 

connection in order for the lagrangian L(4, DO to be invariant under 

the local gauge transformation (1.1.3): 

The rule (1.1.5) for the gauge covariant derivative is also 

known as minimal coupling. 

Having introduced the new field A , and its coupling to the 

matter field 4(x), we must consider possible kinetic energy and mass 

terms coupling Au  to itself. 

Observing the transformation laws for Au, (1.1.10), it is easy 

to see that 

F =a A - a A uv 	u v 	v u 

is invariant under (1.1.10), i.e. 

(1.1.11) 

SF 	= 	- 3 SA 	 (1.1.12) 
uv 
	3 	v 

  

= 	3 (8 E ) - 8 (3 E) 	(1.1.13) 

	

u v 	 V 1.1 

= 	0 . 	 (1.1.14) 

Hence the scalar FMVFUV  is an invariant. In fact, because we are 

dealing with four-dimensional space-time, we have one other scalar, 

namely, 

F *Fuv 
uV 

(1.1.15) 

where 

Fuv 	1 uvpor E 	
F 

4 	pir (1.1.16) 

and Euvpc  is the totally antisymmetric Levi-Civita tensor density. 

However, we find that (1.1.15) is a total divergence quantity, so the 

kinetic energy term for the potential Au  is taken as 

L = _ 1 	uv 
EM 	

4 FuvF (1.1.17) 
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The numerical factor is chosen for convenience in the field equation. 

A mass term for A is not possible because it breaks gauge invariance. 

Therefore, the electromagnetic field, the photon is a massless gauge 

field. Indeed, this massless property is quite general for gauge 

fields as we shall see in the next section, when we generalise the above 

analysis to non-abelian gauge groups. 

§2. 	The non abelian theory. 

The generalisation of local gauge invariance to non-abelian 

groups was first studied by Yang and Mills (1954), who sought to explain 

the conservation of isotopic spin by using the non-abelian group SU(2). 

In this section, we shall describe their idea for a general non-abelian 

compact unitary group, G. The basic reason for dealing only with compact 

groups is that all non-trivial irreducible continuous unitary representations 

of non-compact (indeed of locally compact) groups are infinite dimensional. 

Since elementary particles are assumed to be irreducible continuous unitary 

representations of symmetry groups, it is more sensible to deal with 

compact groups, for which we know that every irreducible continuous 

representation is linearly equivalent to a unitary, and hence finite 

dimensional representation. 

Let us suppose our gauge group is G, with generators T
i 
 satisfying 

the following Lie algebra, 

1,j 1= iCijk  Tk  , i,j,k = 1,....,dim G 	(1.2.1) 

where Cijk  are the structure constants of the algebra. Throughout we 

shall take the representation matrices also to be (Ti)jk  . A collection 

of scalar fields 4  (x) transforms according to 

where 

pi (x) + (15'. 00 = eiT. 6
0. (x)  

T.e 	T.e 	, i= 1,...,dimG. 
1 i 
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and the ei  are arbitrary constants. 

In what follows, we shall suppress matrix (group) indices 

for the most part. We shall also write the transformation law, (1.2.2) 

as 

$(x) + $T(x) = U(e)$(x) 	 (1.2.4) 

if we impose the invariance (1.2.4) on a lagrangian for the multiplet 

$i(x);  L ($.,D 45.), we have 

D$(x) 4(  D$(x) } 	= U(e) 	(x) (1.2.5) 

As before, the transformations (1.2.4) are called global gauge 

transformations. Suppose.we make them local, i.e., let ei  -> i (x) 

then we still have 

$ (x) -> $' (x) 	= U (e (x)) $ (x) 
	

(1.2.6) 

However, we no longer have (1.2.5), instead, 

$(x) } (D$(x) } = U(e(x)) { D$(x) } 

+{ DU(c(x)) } $(x) 
	

(1.2.7) 

so thatL ($i,du$i) is not invariant under the extended, local gauge 

transformations. In imposing local gauge  invariance on L($.
,3$i) 

 we 

must as before, introduce new compensating gauge potentials A., one 

for each generator of the group. This is done by defining a new 

derivative, the gauge covariant derivative; 

Du  = 	Du- ig Au.T (1.2.8) 

where g is a generalisation of the electric charge to non-abelian 

theories. Throughout the rest of this section, we shall assume the 

following notation, 

Au  = A.T = A.T. 	 (1.2.9) 
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similarly for other fields. 

The lagrangian L(gi,DUy will clearly be gauge invariant under 

(1.2.6) if we have 

D(1) (x)  ÷{D (1)(x)} 	= U (e (x)) 	D4:,  (x) (1.2.10) 

or, 

a$'(x) — ig A' (1)'(x) 	= 11(6(x)){ 	(15(x) -  ig A(1)(x)} 

(1.2.11) 

Using (1.2.6), 

{3 U(e) } c(x) - ig A'  U(e)(1)(x) = -ig U(e) Agx) 

or, 

 

(1.2.12) 

 

A' = U(e) A U 1 (e)— 1{a U(e) } U 1(e) . 
u 	u 	g u (1.2.13) 

Therefore, we see that the new gauge potentials that have been introduced, 

transform inhomogeneously under a local gauge transformation. 

Having introduced new fields into the theory, possible kinetic 

energy and mass terms must be considered for these fields. However, 

before we do that, let us note that as the multiplet fields Aui also 

transform under a representation of the gauge group G, we must check 

to see if the group property holds for Aui. i.e., if we have 

A' = U(e) A U-1(e) - 1{3  U(E) } U-1(e) 
u 	u 	g u 

(1.2.14) 

and 

	

A" 	= U(n) A'  U
-1
(n) - {a  U(n)} U-101), 

	

u 	u 	g 
(1.2.15) 

Can we find a parameter E, such that U(E) = U(n) U(e), and 

A" 
u 

= U( ) A
uU-1( )— g{aU

(E)} U-1() (1.2.16) 

It is quite a trivial matter to check that the group property does indeed 

hold and we shall not give it here. 

A mass term for the gauge potentials, A
i 
 is not possible 

as is easily seen from the non-gauge invariant lagrangian, 
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L 	= 1 m A . Au 
i. 

mass 	2 	u1 (1.2.17) 

due, essentially to the inhomogeneous term in (1.2.13). 

As for the kinetic energy term, because the gauge potentials 

AUi carry a group index, there will be self-interactions among them and 

the kinetic term Lo, cannot have the simple form it did in the electro-

dynamic example. In fact, we must have the field strength tensor F 

defined by : 

FUv = aUAv - avAU - ig ~ AU , Av », 

where, in accordance with (1.2.9) we have 

Fuv 	
FpviTi 

(1.2.18) 

(1.2.19) 

Uv 

and, 

LA 	= A 
U 
.A 
 Avk C `T . , Tk 7i 

= AUj A
vk 

iCi jk • 

In total analogy with electrodynamics, we take the kinetic energy 

term to be 

L = — 1 F .F
Uv 

0 	4 uv 

for this to be invariant however, we must have 

= 	£j 	k 
FUvi 	FUvi + Cijk ūv 

or 

(1.2.22) 

(1.2.23) 

F' 	= U(c) F U-1(c) , 	 (1.2.24) 
uv 	Uv 

i.e. the F must transform covariantly under a gauge transformation. 
uv 

So the total lagrangian for a set of scalar fields interacting with a 

set of non-abelian gauge fields is 

L = Lo + L 0, (a — ig A.T)cp) 	(1.2.25) 

Of course, as before, the four-dimensionality of space-time allows the 

existence of one other invariant, 

F 	*FUv 
Uvi F . (1.2.26) 
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where *FU. is the dual tensor of 
Fuvi 

and is defined by 

*F~ = epvpo F 
1 	pai 

(1.2.27) 

As in the abelian example, the invariant (1.2.26) is a total divergence 

term, and is ignored, except when dealing with compact manifolds, 

where surface effects cannot be thrown away. This completes our 

introduction to gauge theories. Notice that the non-linearity arising 

from the quadratic term in (1.2.18) is akin to the non-linearity in 

the Riemann-Christoffel tensor of general relativity. These two sections 

on gauge theories have been taken for the most part, from the excellent 

review by E.S. Abers and B.W. Lee /1/ . 
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METRIC-TORSION THEORIES OF GRAVITY  

§3. 	The geometry. 

Metric-torsion theories of gravity are a generalisation of 

Einstein's general theory of relativity and are based on a simple 

extension of Riemannian geometry, a geometry which we shall call 

Riemann-Cartan geometry. 	The difference between the two geometries 

appears in the differentiable structure, in the definition of a 

connection on the manifold. It is well known that in Riemannian 

geometry, the connection is symmetric and is such that 

Vv" }) gup  = O 	 (1.3.1) 

where guv  is a symmetric metric defined on the manifold and Du({ }) 

is defined by its action on an arbitrary vector field as follows: 

p ({ })A 	= 	a A 	-{ o  .} A 
v 	u v 	u v 	a  (1.3.2) 

and 

Du({ })AV  = 	auAV  + {uv6}A6  , (1.3.3) 

The property of symmetry and (1.3.1) yields a unique connection, the 

Christoffel connection, determined completely by the metric and its 

first derivatives, 

	

Q 	1 ap 
{u v} = 2 g (gpu

,v + gpv,u 
OP  g 	is the inverse of gap' 6p  

	

uv 	- d u  g gva 

- guv,p) 	(1.3.4) 

(1.3.5) 

Cartan /2/ generalised Riemann's geometry by simply not imposing 

symmetry on the connection symbols. The resulting antisymmetric part, 

a tensor, he called the torsion tensor, 

S o  = 1  (ra  — ra  ) . uv 2 uv vp (1.3.6) 
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It just happens that (1.3.1) is automatically satisfied in Riemannian 

geometry, it is Ricci's lemma. Upon going to general relativity, the 

property (1.3.1) acquires great significance, it allows space-time to 

be locally Minkowskian, i.e., locally, the laws of special relativity 

hold good. As special relativity is such a well tested theory, equation 

(1.3.1) seems a very necessary assumption for any theory of gravity 

based on a geometrical framework. Taking Ricci's lemma over into 

Riemann-Cartan geometry, we have the postulate of metricity, 

✓ gvp  = 0 	 (1.3.7) 

where 
gUv 

 is, as before, a symmetric metric tensor with inverse gu, 

and V is defined by 

and 

✓ A = ōA 	- ra A 
uv 	Uv 	Uva 

✓ Av  = a Av 
 +FUAa 

u 	u 	uQ 

(1.3.8) 

(1.3.9) 

The ordering of indices on rPQ  is important for this geometry, and 

we take the convention that the differentiating index is the first index 

on rVa. Just as one can derive (1.3.4) from the requirement of 

symmetry on { U  l and (1.3.1), we can derive the explicit form of rU  
v cr 	 v Q 

by using (1.3.6) and (1.3.7). We have, 

V3.1 g
vp  = augvP  - 

r
a 
uv g 

	- 
r
a 
PP gVa 

= o 

permuting indices (pvp), we have 

(1.3.10) 

and 

av 	r 	o  gpU - VP gaU rvu gpo 
• 0 	(1.3.11) 

o 
	- a - 

aPguv 	rPU gov rpv 
g 
	= 0 	(1.3.12) 

(1.3.10) + (1.3.11) - (1.3.12) implies 
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- 6 0 (apgvp +avgpp -apgpv) 	(rpv +rvu ) gPP 

+ (r 
pu - rpp) gva 

+ (rpv - r6p) gpa = 0 	(1.3.13) 

multiplying throughout by gap 
' 

1 
aP(gvp0

u+ gpu,v- gpv ~p) - 
2 

(rp g 	 v + rap) 

1_ 	- 	P 	 p a a a 	1 a a 
+ 2 (rPP 	rPP)g gva + 2 (rpv - rvp)g

a pg 	= 0 - 

(1.3.14) 

Using equations (1.3.4) and (1.3.6), 

a 	1 a 	a 	a ap {v 
u} 

- 2 (rpv +  rvp) + SPU g gVa 

a ap 
+ S  Au g gua= 0 	(1.3.15) 

Now any geometrical object,rav can be broken up into its symmetric and 

antisymmetric parts, 

ra = 1( ra + ra 	+ 	( 1 ra - ra uv 2 uv vu) 2 uv vu) 

with the help of (1.3.6) we can write 

2 (rpv 	rpp) = ruv - Spv a 

substituting (1.3.17) into (1.3.15) we finally have, 

(1.3.16) 

(1.3.17) 

or, 

ra 	= { a }+ s a + Sa + 
sa 

uv 	u v 	uv 	uv 	vu 

ra 	={ a }+S a-Sa + Sa 
uv 	u v 	uv 	v u 	uv 

Conventionally, at this point one defines a new tensor, called the 

contortion, Kpva having 24 independent components just as the torsion 

tensor, to describe the "deviation" from Riemannian geometry , 
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So that 

a  K 	= -S a + S a  - Sa  uv. 	lav. 	v.p 	.pv (1.3.20) 

a 	a 	a r 	 (1.3.21) uv 	= {p v} 	- K 

Note that because *the antisymmetry of the contortion tensor is on the 

last two indices, 

CL 	 a 	 a 	a r(pv)  _ {p v} - K(pv)  , K(uv). 	p (1.3.22) 

(round brackets denote symmetrisation), with the consequence that K 

depends on the metric and torsion while the torsion tensor is a priori 

independent of the metric. 

The Riemann-Cartan curvature tensor R 	(r) is defined in 
pvpa 

analogy with that of the Riemann-Christoffe1 tensor R 	({ } ) by 
uvP o 

R 	a  (r) = a r Q- a ra  + ro  ra 	- ra rO
P 	

(1.3.23) 
uvP• 	p vp 	v pp 	pa vp 	va 

As in Riemannian geometry, we have antisymmetry on the first two 

a 
indices of 

RuvP. 
 (r), through the definition. We also have antisymmetry 

on the last two indices of R 
a(r) due to metricity. However, we have lave. 

no symmetry on the pairs of indices (pv) and (pa), as the connection 

is no longer symmetric, i.e. 

R pupa  (r)A RPQuv(r)  . 	 (1.3.24) 

Hence in a Riemann-Cartan geometry, the Ricci tensor, 

Rpv(r) := RQuvo(r) (1.3.25) 

remains the only essential contraction of the curvature tensor. Because 

of (1.3.24), the Ricci tensor is asymmetric in general. The Ricci 

scalar of a Riemann-Cartan geometry, 

R(r) = guvR (r) 	 (1.3.26) uv 

while the Einstein tensor is given by, 
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Guv(r) = Ruv(r) - 2 R(r)  g  

and is in general asymmetric. 

(1.3.27) 

The Ricci scalar, R(r) can be decomposed into its Riemannian 

and non-Riemannian parts as follows (by choosing a normal coordinate 

a 
system in which {uv} = 0); 

R(r) = R({}) +apK avp 	a 	
aK 	- K 	K  
.va 	a .va 

ap. 	g a  K 
	

I. K 

	

a vp. 	aa.V 	vet' a 

(1.3.28) 

while the Ricci tensor decomposes into 

R (r) = R ({ }) +a K a
-a K a+ K  aK a- K aK a  vp 	vp 	v ap. a vp. 	aa. vp. 	va. ap. 

(1.3.29) 

The Bianchi identities on the Riemann-Christoffel tensor upon going to 

Riemann-Cartan geometry, generalise to 

and 

R
[

uvP]a(r) = 27r 
u 

S vp ]a- 4 
 SCuva S

p ,aa 

0 R 	= 	(F) Ca uv3P. 
(r) 	2S

Cau. Rvi8P. 

(1.3.30) 

(1.3.31) 

(square brackets denote antisymmetrisatior. Having described the 

geometry as far as is required for this thesis, we shall, in the next 

section describe the physics behind metric-torsion theories by writing 

down the lagrangian for the Einstein-Cartan-Sciama-Kibble (ECSK) theory, 

and deriving the corresponding field equations. 

We shall now complete this section on the geometric framework 

of metric-torsion theories of gravity by giving a geometrical picture 

of torsion /3/. Viewing the torsion tensor as a vector valued operator, 

operating on two vectors, u, v, we have, 

T (u v) = v v- o u - Cu,v 7 ,  (1.3.32) 
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where [ u,v l denotes the Lie bracket. In the picture below, 

{u(ao)} 	denotes the parallely transported vector field. Similarly 

for v (X ) , 

	

—1- 	

N 

{ v(ao) }// 	T(u,v)  ` 	wu  > \N.  

u(eo) 	/̀  	 i 
41 

	

{ u(e )} 	// 	u(e +Se) 
— o // 	/ 	— o  

NNN 
v(a +SX) 	\ 
° 	7 	[u , v V v 

/ 

v(a — 0
) 

 

FIG. 1 

This figure shows torsion as the wrecker of parallelograms. Under 

parallel transport, the vectors u,v are given an additional "twist" 

by the torsion field. We note that even if the vectors u,v 

commute, i.e., r  u,vi = 0, the parallelogram is broken. 



- 2 5 - 

METRIC-TORSION THEORIES OF GRAVITY.  

§4. 	Physics of Einstein-Cartan-Sciama-Kibble (ECSK) Theory.  

Having briefly described the geometry of metric-torsion theories 

of gravity, we come now to the question of constructing and describing 

a metric-torsion theory of gravity. In this section we shall describe 

the simplest possible generalisation of general relativity, the ECSK 

theory. As the ECSK theory is also the simplest possible metric-

torsion theory, we shall, for later purposes, take the ECSK theory 

to be the prototype of metric-torsion theories of gravity. 

Cartan's /2 /idea of a relation between spin and torsion may 

be supported by the following argument /4/ . In special relativity, 

we have the inhomogeneous Lorentz group as the isometry group of space-

time. The Lie algebra of this group has two basic invariants which 

are interpreted as the mass and intrinsic spin of elementary particles. 

The inhomogeneous Lorentz group is a semi-direct product of the group 

of translations in four dimensions and the homogeneous Lorentz group 

of rotations. Mass arises as the invariant related to the translational 

part and spin with the rotational part of the isometry group. In a 

classical field theory, mass is taken to correspond to the canonical 

energy-momentum tensor while spin corresponds to a canonical spin 

tensor. Einstein's theory of general relativity expresses a dynamical 

relation between the energy-momentum and curvature tensors. If a theory 

of gravity is considered to be a generalisation of the special theory 

of relativity, one would like to have a dynamical relation between 

the spin tensor and any allowed geometrical entity analogous to 

curvature. Having introduced the torsion tensor, we have such a 

possibility, by coupling torsion to the canonical spin tensor, we 

shall have the desired relation. If we have a lagrangian L , for a 

matter field in general relativity, then the definition of the dynamical 

energy-momentum tensor is, 
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uv 	

(51'T := 2 
dg 
uv  

(1.4.1) 

where g(<0) denotes the determinant of the metric tensor g uv  . 

The introduction of torsion (equivalently, contortion) allows us 

to introduce a dynamical definition of spin in a straightforward 

manner : 

✓- T' vu 
. 	dL  

g 
o 	(SK a  

uv. 

(1.4.2) 

ōd and 
 ōK denote variational derivatives with respect to the 

g 

metric and contortion tensors respectively. 

In constructing lagrangians for metric-torsion theories, in 

particular, for the ECSK theory, it is best to start with Einstein's 

theory and build upon it. The lagrangian for a matter field V  in 

Minkowski space-time reads (suppressing all indices on the matter 

field) , 

L (iV, a ij) (1.4.3) 

In coupling to Einstein's general relativity, one uses the minimal 

coupling principle, 

ii 	-- guvand a u  } pu  ({ }) 	(1.4.4) 

where puv  is the Minkowski metric. The total lagrangian for the 

gravitational and matter field is, 

L (11),V ({ })iV) 	+ v R (0) (1.4.5) 

As this principle works so well for the macroscopic theory it is 

advisable to retain as much of this as possible. As such, the 

corresponding, total lagrangian for the matter field coupled to ECSK 

gravity is taken as, 

L (V,V V) 	+ 	R(I') , 	 (1.4.6) 

and the torsion is said to be minimally coupled. 



Sguv 

SL 

Provisionally, defining 

pally 
a 

1 	S / R(r) 

✓-g 	dg 
uv 

T1-1v 
= - (1.4.13) 

and 

Tuv6 = - 1 	aC u S~ R (r) 
g 

2/-g SS a vja. 
(1.4.14) 
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The field equations are obtained by variations with respect 

to the independent variables ( ,gpv,Spva) or (1,b,guv,KUva). However, 

since the 24 components of torsion are a priori independent of the 

metric, we shall take variations with respect to (p, g ,S a); uv uv.  . ) 
We have, 

0 	 (1.4.7) 

dy R(r) 
_ 	 (1.4.8) Sg

uv 

and 

SVR(r) 
(1.4.9) 

SS 	 a 	 (1.4.10) 
uv 

and noting equation (1.3.20), we shall have, 

uuvp 	- Tuvp+ 
TVpu _ 

T Uv (1.4.11) 

or equivalently, 

Tuvp 	= 	uC 
vu] 

(1.4.12) 

Using equations (1.4.12), (1.4.10), (1.4.1) and (1.4.2) we can 

write the field equations (1.4.8) and (1.4.9) as follows : 

o uv uv SS a 	SS 

SL 
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These field equations can be reduced to the following simple 

form , 

Guv(P) = EPv (1.4.15) 

and 

Tuvp 	
Tuvp 

(1.4.16) 

where GP  (r) is the asymmetric Einstein tensor defined in equation 

uv (1.3.27) and E 	is an asymmetric energy-momentum tensor involving 

T
uv and Tuvp. The quantity TVP  is a new combination of torsion 

tensors, and is given the name of modified torsion tensor. It is 

defined as 

	

a 	a 	o 	a 

	

Tuv. 	Suv. + 2 s[u 	Svja. 
(1.4.17) 

This completes our introduction to metric-torsion theories of 

gravitation, in particular to the ECSK theory. (See the review of 

Hehl et. al. /4/). In the next chapter, we shall attempt to 

couple gauge fields to torsion and we will see that inconsistencies 

arise. A solution for the case of electrodynamics is described and a 

generalisation to non-abelian fields is given. The essential result 

is that torsion is of a special form, and the gauge coupling constants 

become space-time dependent functions. 
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CHAPTER II 

ROLE OF GAUGE FIELDS IN GRAVITATIONAL THEORIES  
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§1. 	Introduction of gauge fields into general relativity.  

We have seen in the last chapter that introducing matter 

fields into gravity is achieved simply through the minimal coupling 

procedure by letting nuv guv(x) and au -V in the matter field 

lagrangian. 

The lagrangian for a gauge field in Minkowski space-time 

invariant under a group G, whose generators, Ti, 1=1,....,dimG satisfy 

[Ti,T.J = iCijkTk 	 (2.1.1) 

is simply 

L = - 1 F i Fuv 
4 uv i 	(2.1.2) 

with Fug = 9 A. 	
-8v Al + g Cljk Au A 	 (2.1.3) 

So, coupling to gravit

l

y

~ 

modifies the lagrangian to 

L = -1
4 g F  G 	uv F i 

with Fug = a_({ } )Av -Ov ({ }) Au + g C1 	Ai Ak 
u 	

jk 
u 

v 
 

Remembering that 

ou ({})Au = auA v - {uov} A6 (2.1.6) 

we see that due to symmetry of { o }in (uv), F 1 remains unchanged 
u \ 	uv 

after coupling to general relativity. The only modification is to the 

lagrangian, through the incorporation of /j , and the gauge structure 

of the fields F 1 is unaffected. 
uv 

Fuv 
	= Fuv .G Al -a Al + g C.  

u v 	v u  
A
v (2.1.7) 

One might be tempted to say that such a result should have been expected 

on the grounds that the minimal coupling procedure as applied to gauge 

fields is quite distinct from minimal coupling as applied to the 



so that 

L = 
G 

with 

i  
Fuv = DuA

i  i  -OvA
i 
 + g C

i 

jk  A

j p 
 A

k 
v 

For metric-torsion theories of gravity, 

VA = aA —r6 A 
uv 	p 	uv a 

(2.2.1) 

(2.2.2) 

(2.2.3) 

4 F 1  Fui '— g 
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gravitational fields. One involves parallel transfer on the 

physical space-time one is studying, while the other has parallel 

transfer defined on an "internal" group space. 

We shall see in the next section, that such an expectation 

is false when applied to metric-torsion theories due basically to the 

existence of torsion as the "wrecker of infinitesimal parallelograms" - 

see Fig. 1, Chapter I. 

§2. 	Generalisation to metric torsion theories and loss of  
gauge invariance.  

As before, coupling L = - 1 Fui Fui to gravity modifies 

the lagrangian to 

V Al  -V Al =
a 
 Al  + ra  Al +a  Al  -a Al  

u v 	v u 	pv Q 	vu o 	u v 	v u 

ra  - ra 	i 	i 	i  

= 2 S 
cr
A +a A -a A 

	

i 	i 	i 
(2.2.4) 

	

vu.Q 	u 	VJ  

Therefore 

F 1  = a Al  -a Al  + g Ci 	Aj  Ak  + 2S dA1 	(2.2.5) uv 	uv 	vu 	jk u v 	vu• a 
So the field strength tensor F 	is modified when coupled to torsion, 

uv 

and we have no grounds to assume F 
uv 

is still gauge covariant. 

Under a gauge transformation, we have equation (1.2.13), the 

infinitesimal form of which is, 
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SA 	= - 1  3 e. - C. 	e A u i 	g u  i 	i.k j k u j 
and we also know that 

F 1  =3A -DA 	+g  Cl  A3  Ak  
uv 	u v 	v u 	 jk u v 

under a gauge transformation changes covariantly, i.e. 

(2.2.6) 

(2.2.7) 

	

i 	i j k 

	

SF Uv 
	

= C jk
E Fuv 

The behaviour of Fug under a gauge transformation can therefore 

be described as 

Si 1 	= SF 1  + 2 S oSAl  
uv 	uv 	vu. a 

= 	Cl . eF 	- 2 
 S

vu63 ei-2SvuaCi  .e k  AQj  

Hence, 

SF i 	C1  ej  F k  
uv 	 j k 	uv 

and therefore the gauge invariance of the lagrangian L G  is ruined by 

allowing non-zero torsion /5/ . 

We come up against this problem of either not having torsion 

or abandoning gauge invariance. However, we have seen in the last 

chapter, that metric-torsion theories of gravity, while differing very 

little from general relativity offer great hope of carrying gravity 

into the microphysical realm, and incorporating intrinsic spin into 

the gravitational interaction. As the concept of intrinsic spin is 

purely quantum mechanical /6/ , it would seem to suggest that if ever 

a quantum theory of gravity is found, it should contain some form of 

spin-gravity interaction. Clearly if one has a quantum theory of gravity, 

the limit of zero gravity should be the usual quantum mechanics with 

its concept of intrinsic spin, when considering particle interactions 

with gravity (as opposed to field interactions). Metric-torsion theories 

of gravity might therefore be simply the classical limit of this quantum 

theory of gravity, showing up a remnant spin-gravity interaction in the 

(2.2.8) 
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form of torsion-spin interactions. 

Another possibility that suggests itself is the abandoning 

of gauge invariance. With the great successes of electrodynamics as 

a gauge theory of the U(1) group, since its inception in 1929 by 

Hermann Weyl, and with the recent achievements of Salam and Weinberg /7 / 

in unifying the electromagnetic force with the weak force ('responsible 

for radioactive decay of nuclei), through the use of gauge theories 

(specifically the group SU(2)XU(1))suggests that it would be foolish 

to throw away such an inspiring formalism with no equally viable 

alternative at hand. 

So, perhaps one can keep torsion and gauge invariance, but 

allow only non-gauge fields to couple to torsion, i.e. for gauge 

fields we should carry out the minimal coupling procedure with the 

Christoffel symbols only, while all other matter fields would be 

minimally coupled to the full Riemann-Cartan geometry through the 

asymmetric connection /5/ . 

However, such an alternative is rather unsatisfactory, 

for, if torsion is to couple to the spin of matter fields, it is rather 

ad hoc to disallow spin one gauge fields from coupling to torsion 

while at the same time allowing massive spin one fields, like the 

proca field to couple to torsion. Therefore, we need to reassess the 

situation. 

In the next section we shall discuss an alternative 

suggestion of S. Hojman, M. Rosenbaum, M.P. Ryan and L.C. Shepley /8/ 

which overcomes all of the above objections for electrodynamics. 

§3. 	Coupling of torsion to electrodynamics. 

In this section we shall couple torsion to the U(1) gauge field, 

the electromagnetic field by using a modification of the gauge minimal 

coupling procedure suggested by ref. /8/ . 



(15' = eiA(x)~ 	A = A(x) . 

a 0 -, e1A (x) a 
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In order to exhibit clearly what is happening, we shall write 

out explicitly, the lagrangian for a massless complex (charged) scalar 

field as /1/ 

L~ 	. (2.3.1) 

The lagrangian is clearly invariant under the global gauge transformation 

iA 
+ e 	$ 	, 	A = constant , 	(2.3.2) 

4 	
e 3 iA a 	a 

u 	 u (2.3.3) 

however, it is not invariant under local gauge transformations, for 

while 

Requiring invariance of 1,0 under local gauge transformations imposes a 

compensating gauge potential Au(x) which is normally introduced by 

redefining the derivative operator a : 

au } au-igAU 	 (2.3.6) 

This, we have seen in Chapter I is the normal procedure. Incorporating 

the modification suggested in /8/, we redefine the derivative operator 

a to be 

au-} D := au -ig ba Aa , (2.3.7) 

where the function bua will in general be a function of space-time 

but not of Au . 



or, 

and, 
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Invariance of L
0 

under (2.3.3) with au replaced by D will 

be assured if the transformation of D is given as 

D 	-4- D'O' = 	ēlA(x) D 	. 
u 	u 	u 

au0 1-igbuaA W =elA(x)au4 - igelA(x)buaAa0 

a (eiA(x)0) — igeiA(x) b aAT u a~ 

= eiA(x)a ° - i eiA(x) 
b aA 

u 	g 	u a0 

eigA(x)0 a A(x) - ige1A(x) b aA'0 
V 	u a 

i 	
iA(x) 

b 
aA _ e g 	
u a~ 

Therefore we have 

bua A, 	= - -3 A(x) + buaAa . 

or, defining C~a to be the inverse of b 
a
: 

a 	0 C b 
0 

= ō 
u a u ' 

A' 	= Aa - - C
ap uA(x) a 

(2.3.8) 

(2.3.9) 

(2.3.10) 

(2.3.11) 

(2.3.12) 

This is the modified transformation law for the electromagnetic 

potential. 

.The field strength tensor of electrodynamics is simply 

F
py 

= 3uAv -avAU . (2.3.13) 
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So, coupling to torsion modifies this to 

F 	= VA - V A uv 	u v 	vu 

= D Av  - aA + 2S aA v U 	vu  
a 

(2.3.14) 

We must solve for 
Cua 

 by requiring gauge invariance of Fuv  under 

the transformation (2.3.12): 

6FUv 	u 	v U 	vu  = a 6A -9 (3A + 2S 	6A6  

= 	au(— - Cva3 A) - D (— - Cua 	vu  9 A)+ 2So(-  - coa  a  aA) 
g 

= -la C aD A - i C a 
 
	a A+ i3 c a9 

 A+ - C
aa 

a A g u v a 	g v pa 	gv pa g u v a 

 

_ 2i 
S a C aa A 

g vu. a a  (2.3.15) 

or, 

0 

(_iaC a + la c a - 2i S a C a) guy gv u 	g vu a 

 

 

+ 	i a 8 i a8 
(- C + C g v  Su 	g 	u  Sv  )a D A sa  (2.3.16) 

= 0 

This equation must hold for arbitrary parameter A, so we have the two 

equations, 

C (a  ō  a) -c 	= 0 (a  ō  R) u 	v 	v 	u 	 (2.3.17) 

and 

a a o a 
a c 	— ac 	 (2.3.18) vu uv -2s c 	0 vu. a =  

to solve. 

The round brackets on indices a,s in equation (2.3.17) denote 

symmetrisation. 



or, 

a 	a 
2Svu 	= Su avinf (x) - 6 aaulnf (x) . (2.3.24) 
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Carrying out the symmetrisation, we obtain 

C a 6 S+ 
 C  S

S a -C aS  13 
CaSS

a 
=0 	(2.3.19) 

P v 	u v 	v u 	v u 

Tracing over indices v and S , we find 

4C 	+C+ 
Cua 
 - Cua  - CSS a Su = 0 (2.3.20) 

or, 

a 	1  C  S a S  
u 

2-1. 
	S 	u 

(2 .3.21) 

we can write this as 

Cua  = f(x) %c:(2.3.22) 

1 S where f(x) = 4 CS  is an arbitrary function of the space-time. 

Substitution into the second equation, equation 12.3.18) gives 

f(x)6 a  
-a f (x) S a - 2S 

a 
 f (x) S a  = 0 	(2.3.23) 

v 	u 	u 	v 	vu 	a  

Discarding the singular solution (when f(x) = 0), we see that the 

requirement that as Suva  +0, the covariant derivative defined in 

equation (2.3.7) reduce to the usual definition, i.e. that b a  + S a  
u 	u 

allows us to parameterise the function f(x) as an exponential. 

f(x) = el)  (x) 	 (2.3.25) 

The field 4'(x) is a scalar field which serves to define the torsion 

field Suva  through a gradient operation, 

2S a  
vu. 

= S aa cx)-S a  a gx) u v 	v p (2.3.36) 

so that 11)(x) acts as a potential for the torsion field. 
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So we have managed to couple a restricted form of torsion to the 

electromagnetic field by modifying the usual minimal coupling procedure 

for the gauge field. Notice also that because this torsion is given 

as the gradient of a scalar field, we can construct a theory of 

gravitation which allows a dynamical theory of torsion, where the torsion 

field is able to propagate and is non-zero in the absence of matter 

fields. This is a clear departure from the Einstein-Cartan-Sciama-Kibble 

theory (which was introduced in Chapter I) in which torsion is not 

allowed to propagate and is zero in the absence of matter fields. 

The question we must ask ourselves now, is whether this 

analysis can be extended to quite general, non-abelian gauge fields. 

This is an important issue, for the modern theory of elementary 

particles views the electromagnetic field, not as an entirely independent 

gauge field, with the other elementary forces needing additional non- 

abelian gauge fields, but rather, the electromagnetic field is to be 

part of a large set of non-abelian gauge fields /1/ . In the next 

section we will show that indeed, it is possible to generalise the 

above analysis to non-abelian gauge fields, provided we also simultaneously 

generalise the non-abelian gauge field strength. 

§4, 	Coupling of torsion to non-abelian gauge fields.  

Taking the gauge group to be G, with dimG generators Ti  

satisfying a Lie algebra 

[Ti ,T. ] = iCijkTk (2.4.1) 

with structure constants C.. , we have seen in Chapter I that the Ljk 

usual gauge covariant derivative is, 

Du 	= 8 - ig (T.A) (2.4.2) 



If 
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Let us generalise this to /9/ 

D 	= 2
u 
- ig b 

u 
a (T.A 

a
) (2.4.3) 

where 
bua 

is a function of the space-time and not of the Aai in 

total analogy with the generalisation in §3. To find the transformation 

law for the potential 
Aa1 

, we require that under 

or 

-' U(e(x)) 

Du4, + 	U(e(x)) Du* 

D 	D'4' = U(s) {34 -ig b a(T.Aa)4,} 

(2.4.4) 

(2.4.5) 

(2.4.6) 

{a 1.1 4, 	'-ig b ua(T.Aā)~'} = U(E)3114) -ig buaU(c) (T.Aa)4U 

(2.4.7) 

or, 

(a 	U)4, - ig b a(T.A'a)Uip = - ig b aU(T.Aa)1P , (2.4.8) 

and, 

defining 

ig b a(T.A') U = 8U + 	ig b aU(T.Aa) 

Cua 
to be the inverse of 	bu

a , 

(T.A') = 	- 
g 

CaU(3 U) U-1 	+ 	U(T.Aa)U-1 

(2.4.9) 

(2.4.10) 

At this stage we must first check to see if the product rule still 

holds, i.e; 

(T.A') = - 
-

Cau(auU(c)) U-1(e) + U(s) (T.Aa) U-1(e) g 

(2.4.11) 

(T.A) = - 
g 

Cau(au U(n)) U-1(n) + U(n)(T.A'a)U-10), 

(2.4.12) 

then we must show that there exists a transformation U() such that 
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(T.Att) = - 
-

Cap(apU(i;)) U-1(E) + U(E)(T.Aa)U-1(E) g 

(2.4.13) 

with 	U(E) = U(11) U(e) 	 (2.4.14) 

only if such a group property holds, are we allowed to go to an 

infinitesimal transformation. This property is a manifestation of the 

Lie algebra that the group satisfies. In appendix II(A), it is proved 

that this property is indeed satisfied for this modified gauge covariant 

derivative. 

From equation (2.1.3) we see that the field strength tensor 

for non-abelian gauge fields is 

 
Fpv = ap  Av  -avAU  + g C

i 
jk A

j  
p Ak 

v • 

Coupling this to torsion leads to 

(2.4.15) 

F 
	
= a Al  - a Al  + g Cl 	Aj  Ak  + 2 S a  Al 	(2.4.16) uv 	p v 	v p 	jk p v 	vp. a 

remembering that 

[T.,Tk] = i C1jkTi 	 (2.4.17) 

we can write F 
u 
v as ; 

T.F 	=a T.A1 -3 T.A1  + g C. 1T.A3  Ak  + 2S aA1T. 1 	 p 1 v 	V 1 1.1 	 jk 1 p v 	vp. a 1 

=aT.A -a T.A -ig [T.A3  ,T Ak  ]1  T.+2S aA .T u v v  
J p 	k v 	1 	vu. a 

(2.4.18) 

For the rest of this Chapter, except where otherwise stated, we shall 

take the convention that all gauge potentials and field strengths have 

associated with them a generator of the group G although not explicitly 

written, e.g. 

F 	= F 1  T. and A = Al  T. pv 11v 1 	p p 1 (2.4.19) 
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Then, eqn. (2.4.18)., can be written 

F 	= a A -a A - ig [A , A ] + 2 S aA 
pv p v v p 	p v 	vp a 

(2.4.20) 

Now the question we must answer is, can we by using the transformation 

law for A 	given in eqn. (2.4.10), consistently solve for C
pa 

and Svpa by requiring Fpv to be gauge covariant? 

The answer turns out to be /9/ (see also appendix II(B)) trivial. 

We find that the modified gauge covariant derivative when used to 

require gauge covariance of (2.4.20) gives the trivial result that 

b a d aand S 
a = 	 =0. 

p 	p 	vp. 
(2 .4.21) 

Therefore we cannot couple non-zero torsion through the modified gauge 

covariant derivative to the unmodified Fpv . It is this last statement, 

that we have used the unmodified F in the case of non-abelian 
pv 

gauge fields that gives us the solution. Let us modify the non-abelian 

field strength Fpv to 

Fpv =Av -Ap -igBpa Bvs[ Aa,AS ] (2.4.22) 

and now couple this to torsion, while still retaining the modified 

covariant derivative. We have introduced the two arbitrary functions 

b a = b a (x) and B a = B a (x) 
p 	p 	 p 

Coupling this modified Fpv to torsion, we find 

(2.4.23) 

F 	= 3 A -a A - ig B aB S [A ,A 1 + 2 S aA . (2.4.24) 
pv 	p v 	vp 	p v 	a R 	vp. a 

Under a gauge transformation we suppose 

F 	-} F' 	= 3 A' -3 A' -ig B 	[Aa ,A' 1 +2SvpaA~ pv 	 p v . 

(2.4.25) 

From equation (2.4.10) we have that under a gauge transformation, 



1.10 

-1 Fuv 	= U Fuv  U . (2.4.29) 
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A -' A' = - - C a  (a U) U-1  + U A 
U-1 

u u 	g u a 	 u 

where, as before, 
Cua 

 denotes the inverse of bua. 

Hence, 

F' 	_ — la {C a(a U)U-1} +a {UA u-1} 
uv 	gp v a 	u v 

+ g 
av{CUa(aaU) U1}  —av{U AuU 1} 

(2.4.26) 

- ig BuaBvs[- 
g  C

a6(9 U)U
-1  + U AaU-1, -g CsP(aPU)U 1+UASU-1 ] 

- 
2g C6a(aaU)U

-1Svu
. + U 2SvuGAQ 	U-1a  (2.4.27) 

= U{a A —a A -ig B GB [A ,A ] + 2S o  A } U-1  
p v 	v u 	u v 	a a 	vu. a 

+ (auU) AvU-1  - (avU)AUU-1  + UAv(auU-1) -U Au(avU-1) 

- g(auCva) (aaU) U-1 + 
g 

(avCUa) (a au)
U-1  

 —— C a (a a U) U-1 + - C a (3a U)U-1  g v 	pa 	g 	u 	v a 

- - 
Cva( 3  U) (auU-1) + 

g  C
ua(3 U) (3 U-1) g 

	

- ig B aB s  [— 1 C  a 
(a U) U 	C —1 , - 1 	P  (3 U) U-1  ] u v g a a 	 g s P 

- ig BuaBvs [- g Caa(aaU)U-1 , U AS  U-1  ] 

- ig BuaBvs [U AaU-1 	- 
g 

Cso (3 U)U-1  

2g a(aU)  U  1 Svua - CQ 	a  (2.4.28) 

Gauge covariance of Fuv  is simply 

So, requiring gauge covariance of Fuv  tells us that 
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(aaU){ 6uaAv- 6vaAU}u-1 + U
{Av  6

ua- Au 6va} (aa
U-1) 

— 
g 

(aaU){aucva —avcua} U-1 — 
g 

(aaaaU)  { Cvaaua — C ua6va}U-1 

+ 
g 
 (aaU){ Cua6va  - Cva6 a} (aaU-1) 

— ig BuaBv s1— 
2 

CaaCsp(aaU)U-1(apU)U-1+ 
 2 

Cap  Csa(aaU)U-1(aU)U } 
g 	 g 

— 	ig BuaBvs {—g Caa(aaU) AS U-1 + 
	

U A$CaaU-1(aaU)  U-1} 

— ig B aB S{—  l U A C aU—l (a U) U-1  + 1  C a (a U) A u-1} p v 	g 	a s 	a 	g s 	a 	a 

- 2i C a (a U) U-1  g a 
g a a 	vp. 

= 0 , 	 (2.4.30) 

or, remembering that 

implies 

UU-1  = U—lU = I , 

(B U) U-1 = - U(aU-1) 

(2.4.31) 

(2.4.32) 

or 

U-1  (B U) U-1  = -DU-1  (2.4.33) 

we find 

(3aU){6uaAv -6vaAU 	
gauCva  + gay Cua 	BpaBv$CaaA5  

+ B aB sC aA - 21 C  as  a } U-1 
p v s a g a vu. 

+ U{ Av6ua  - A u6va- BuaBv 8ASCaa + BpaBv 3Aa  C8a}(9aU-1) 

—
g (a

a aa  U){ Cva6ua  - Cuaava } U-1 
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+ 10 U){ C aS P-  C 
aS P

- B ŒB sC a
CP+ B  aB  5C  aC P }(a U-1) 

g a 	U v v P u v a R u v B a P 

= 0. (2.4.34) 

So, the solution we are seeking is a simultaneous solution to the 

following set of four equations : 

C  (ad  a)- C  (a S a)
= 0 

V p 	u v (2.4.35) 

Cua5vP  - CvO5 	+ BuaBv5CaPC5a  - 
BpaBv5CaaCSP=  0 	(2.4.36) 

Avdua - A
u6va  + BuaBv$AaCSa  -BUa  Bv$ASCaa= 0 	(2.4.37) 

and 

6 A -S aA +B aB SC aA  -B a  B $C aA 
u v 	v p 	u v 8 a 	P 	v a s 

+ 	a C a- l3 C a- 2i C aS a  = 0. g  V u g u V 	g a vu 
(2.4.38) 

The first of these, equations (2.4.35) is identical to that obtained 

in the electrodynamic case, and its solution is 

Cua = f (x) S ua (2.4.39) 

where f(x) is an arbitrary function of the space-time. Substituting 

this solution into equation (2.4.36) yields; 

f(x)6  a6 P  -f(x)6 a6 P + f2  (x) B PB a-f2  (x) B aB P = 0 
p v 	V u 	P V 	P v 

or 

 

(2.4.40) 

 

f(x) S  Ca 	P]-f
2(x)B  Ca  P] = 0 

u v 	u v 
(2.4.41) 

where the square brackets denote anti-symmetrisation. So we have 

the reduced equation 

f(x) SuaSvp  - f2(x) BuGBvP  = 0, (3.4.42) 
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tracing over indices v and p 

4Sua-f(x)BUaBvv  = 0 . 

Taking a further trace over u and a gives 

B uB  v =  16 
u v 	f (x) 

(2.4.43) 

(2.4.44) 

or, 

B 
v = +  4  

(2.4.45) 

Substitution of this back into equation (2.4.42) finally allows us 

to write 

a 	a B = 
+ 	1 S   

u -) u 
(2.4.46) 

Equation (2.4.37), after using the solutions for C aand B 
a 
 is 

u 	u 

A S a- A S 
a 

+ A S a  - A iS a ✓ u 	31V 	u v 	v u 
= 0 	(2.4.47) 

i.e., an identity. 

While equation (2.4.38) is 

Av6ua 	
- Au6va  + 

Auiva 
 - AviS a + -Suaavf(x) - g6•a auf( x) 

- 2g S vu a 
f(x) = 0, 	 (2.4.48) 

or, 

2 Svua = Suaavin f(x) -6va9U  lnf(x) . 	(2.4.49) 

Once again, discarding the singular solution (f(x) = 0), and requiring 

that in the limit S a  -- 0, we have b a  -} S a 	and B a -} S  a 
uv 	u 	u 	u 	u 

in order for the modified gauge covariant derivative and the modified 

gauge field strength tensor given in equations (2.4.10) and (2.4.22) 

respectively reduce to their unmodified counterparts, tells us that f(x) 



with 

S
vp 
a = 6 aav (x) — sv`~au*(x) . (2.4.52) 
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is an everywhere non-zero, positive valued function. Therefore, we 

parameterise it in the form 

f(x) 	= eti' (x) . 	 (2.4. 50) 

In terms of ip(x), we can write the modified gauge field strength as, 

F 	=a A —a A -ig e-4) (x) [ A ,A ]+ 2 S 6 A 	(2.4.51) Uv 	u v 	v p 	 1-1 	v 	vp. a 

Thus, we have accomplished what we started out to do. The remarkable 

fact is that the special type of torsion that was found in §3 in 

coupling to electrodynamics is carried through to the non-abelian case. 

Torsion is still determined by a scalar field, 11)(x) acting as a 

potential for the torsion tensor field / 9/ . 

This is easily understood, if one remembers that the gauge 

potentials A are simply connection symbols on a principle bundle 

with its structure group being the gauge group. While the field strength 

tensor is nothing but the curvature tensor of these connection symbols. 

In generalising the gauge covariant derivative, one may imagine that 

the gauge coupling parameter has been allowed to become a function on 

the space-time. If one evaluates the curvature tensor of such a 

covariant derivative, some additional terms containing partial derivatives 

of the logarithm of the coupling function arise. In coupling to torsion, 

we equate these additional terms with the torsion tensor, and hence the 

torsion tensor is always of the form (2.4.52). 
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PART II 

VARIATIONAL PRINCIPLES AND LAGRANGIANS 

"Whenever any action occurs in nature, the quantity 

of action employed by this change is the least possible" 

Pierre Moreau de Maupertuis (1746) 
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CHAPTER III 

INVARIANT VARIATIONAL PRINCIPLES 
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§l. 	Invariant Variational Principles  

At the time Einstein proposed field equations for his theory 

of general relativity /10/ , Hilbert was preoccupied with an axioma-

tisation of physics, having declared that "physics is much too difficult 

for the physicists". It was this that led him to propose an elegant 

derivation of Einstein's field equations through variational principles. 

Through this work too, he stimulated the work of Klein and N6ther. 

Klein's work culminated in an extensive study of "the differential laws 

for the conservation of momentum and energy in Einstein's theory of 

gravitation" using the theory of invariants, while Ndther's work led to 

her well known theorems relating continuous symmetries of the classical 

equations of motion to conservation laws for the lagrangian from which 

they are derived. 

The variational principle itself consists of writing down an 

action integral for a lagrangian that depends on the field quantities 

one is dealing with : 

I L d4x (3.1.1) 

   

The variational integral is said to be of the nth order whenever the 

integrand depends on partial derivatives of at least some of the field 

functions with respect to the space-time coordinates, upto and including 

the nth order. 

One then seeks field equations for the dependent quantities, 

for the solutions of which, the action integral assumes extreme values. 

However, in this classical treatment, it is usually assumed 

that the dependent field functions are unaffected by coordinate 

transformations of the type 

= ;.1 (xi) 

under which the action integral I is taken to be invariant. 

(3.1.2) 
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In many physical applications, this assumption is not 

justified,for instance, the classical electromagnetic field is described 

by a vector field satisfying field equations derivable from a variational 

principle. 

In the study of invariant variational principles /11/, in 

addition to requiring the field functions to transform according to their 

tensorial/spinorial character, we impose a further condition on the 

action integral by requiring it to be invariant under the transformation 

(3.1.2). This invariance implies that L must be a scalar density of 

weight 1. 	if we denote our field functions as tp with indices suppressed, 

then we must have 

TV,aj 
	

v),akaj 
 To 	= B 	L(xj,V,y,30j1P) (3.1.3) 

under the coordinate transformation (3.1.2). 

Where L 

B 

has been 

a xi  

taken to be of the 2nd order, and 

(3.1.4) 
ax1  

We shall also assume that L satisfies the appropriate Euler-Lagrange 

equations and that these equations are identical to the field equations 

satisfied by the dependent functions. Clearly these two invariance 

requirements may be expected to impose severe restrictions on the form 

of L and on the field equations that L satisfies, i.e. the Euler-Lagrange 

equations. In the next section, we shall show that this is indeed the 

case for Einstein's theory by taking a 2nd order lagrangian in the metric. 

We shall see that one has to consider 2nd order lagrangians, as one 

of the restrictions on L will be that one cannot have a non-zero first 

order L . In addition we shall derive three identities for L/11/. 



gij,k 
axk 	gi j ,kL 

2 
a g13 

axkaxk 

agij 
(3.2.2) 
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§2. 	IVP's in general relativity.  

Einstein's theory is based on a four-dimensional Riemannian 

manifold endowed with a symmetric, covariant metric tensor of the 

second rank, and having signature (+,-,-,-) 	. The lagrangian 

is chosen through physical arguments to be linear in the second 

derivatives of gij and taken to contain no higher than second derivatives 

of g.. . For our purposes, we shall consider a lagrangian 

L = L 
(gij ' gij ,k ' giJ ~kQ) 

(3.2.1) 

where a comma denotes partial derivatives, and a semi-colon denotes 

covariant derivatives with respect to the symmetric Christoffel 

connection. 

We shall also assume thatg... = 0, so that we have a local Minkowski 
iJ ,k 

structure . We have seen in the last section, that the requirement of 

invariance under 

xJ = xJ (xi) 

of 	I = 
J 

d4x L 

tells us that 

(3.2.3) 

(3.2.4) 

(gij 'gij ,k ' gij 
,kz) 

=I a-i 
`L 

(gij ' gij ,k ' gij ,kZ) 
(3.2.5) 

Remembering that g.. is a 2nd rank covariant tensor field, we have, iJ 

under (3.2.3), 

B.B.a b 
gij __  	gab (3.2.6) 
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where 
axa 	a2xa a 

B
a 	

= 	_ 	B 	- 	  , etc. 
1 ax 	 J 	ax1aXJ 

(3.2.7) 

Similarly for gi. 	and 
g.. k2 ' J,k 	J~ 

From equation (3.2.5) we notice that the right hand side is independent 

of Bh2m so we have 

a L 

a 
Bh 2m 

= 0 	 (3.2.8) 

or, 

DE 	aghk 	+ 	
aL 	

aghk,2 + 	
aL 	

aghk,2m 	(3.2.9) 

ag 	aBl 	ag 	aBl 	a 	aBl hk 	npq 	hk,2 npq 	ghk,2m npq 

Let us define 

nhk 
= 	L 	

nhk , 2 - aL 	
and 

Ahk , 2m 
= 

aL 

aghk 	aghk,2 
	

aghk,2m 

(3.2.10) 

So we can write equation (3.2.9) in the form; 

nhk 	aghk 	+ nhk,2 aghk'2 + -hk,2m aghk,2m 
= 0 . 

i 
aB 
i 

aB 
i 	

(3.2.11) DB 
npq 	npq 

	
npq 

In Appendix III (B), it is shown that this reduces to 

nhk,2m ghk,2m 

aB1 
npq 

= 0 	 (3.2.12) 

because of the transformation laws for 
ghk,2 and ghk' 

We also show there that a further reduction in equation (3.2.12) leads to, 
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Akn,Pq + AkP,gn + 1-‘kq,Pn = 0 	(3.2.13) 

which, by noting that 
Aij,kQ = Aji,kk = Aij,Qk , can be used to. 

yield the required identity in the form, 

Xhk,Qm = -Qm,hk 

hk,Qm From Appendix III (A), the transformation law for A 	is that 

(3.2.14) 

of a tensor density of weight 1 and contravariant rank 4, so we can 

remove the "bars" on equation (3.2.14) and write the first identity, 

satisfied by L as 

Ahk ,  Qm = 
A  Q,m ,  hk 

(3.2.15) 

§2.1 	The second identity. 

The right hand side of equation (3.2.5) is also independent of 

B1  so we have 
Pq 

aL 

  

= 0 	 (3.2.16) aBi 
Pq 

or, 

aL 	aghk 	aL 	
aghk,Q  + 	BE 	a ghk,Qm  = 0 (3.2.17) i 	i 

aghk 	aB pq 	aghk,Q aB pq 	aghk,2m aB pq 

As before, 

Āhk  aghk  + 	 hk,2 Gghk,2  + -hk,Qm 	aghk,Qm  = 0 	(3.2.18) 
3134* aB 	 aB' 

Pq 	Pq 	Pq 

At this point, we notice that although Ahk,Qm  is a tensor density, the 

same is not true of Ahk  and Ahk'Q  (c.f. Appendix III(A)). 

Hence, in order to write our second and third identities in a tensorial 

fashion, we must construct tensorial analogues of Ahkand Ahk
,2 
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This is done in Appendix III (A), and we denote the corresponding 

tensor densities by 
Bhk 	

and 
 1hk,2 

respectively. 

In Appendix III(B), we use the following two simplifications 

in deriving the identities. 

(i) Because equation (3.2.5) holds for coordinate transformations 

of the form (3.2.6), it is true, in particular, that (3.2.5) holds 

for transformations of the form; 

xl  = xi  , i.e. Blc  =. and B . 	= 0, etc. 

(ii) Because our metric satisfiesg
i. 	

= 0, we can choose our 

local coordinates to be such that the Christoffel connection symbols 

vanish, i.e. that our coordinates be gaussian normal coordinates. 

Returning to equation (3.2.18), we see that it can be reduced to 

fpk' q  + IIgk' p = O. (3.2.19) 

As before, this is a tensorial equation and therefore if it holds in 

one frame, it holds true in any frame. 	Hence, 

IIpk'q  + IIgk'p  = 0 . 	 (3.2.20) 

In Appendix III(3), we show that (3.2.20) implies 

BPq,k = 0 	 (3.2.21) 

remembering that 11pk'q  is symmetric in indices (pk) . This is a most 

remarkable identity. Suppose for the moment that L depends solely on 

the ghk  and their first derivatives. Then, by equation (3.2.10) we have 



then 

i j 	i A j B k  = S k'  

= B AJ  

(3.2.23) 

(3.2.24) 
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Ahk,km 	0. According to the definition of Iipq' S 	 k (c.f. Appendix 111(A)), 

Bhk '  Q = t hk '  Q+ F 	Ahk '  J m+2 rk Ahj ' im+2 rh Ak J , 2m 
Jm 	Jm 	Jm 

so the quantities IIhk'Qreduce to the partial derivatives hk ,9 

which now vanish by (3.2.21). We therefore have : 

(3.2.22) 

There does not exist a scalar density L(gh,g 2) depending 

on the ghk  and their first derivatives only. 

Because of this amazing identity, we are forced to consider 

second order variational problems when faced with a field function which 

is a symmetric metric tensor. 

§2.2 	The third identity.  

For the third and final identity, we return to equation (3.2.5) 

and differentiate it with respect to the quantities B1 	Remembering 

that if A1. denotes the .inverse of B1. 

we find, 

BL AJ 	= al, 	aghk  + a 
L 	

aghk ,k + aL 	aghk,Rm 
_ 	

- 
(3.2.25) 1 	aghk 	aB1 	aghk,i aB1j 	aghk Qm aB1 j 	 j 

B LAJ 
i 

= Ahk 
aghk 	-hk,Z 	ghk,2 -hk,Qm  aghk,im + A 	+ A 
3B1. aB1. 	BB1. 

or, 

(3.2.26) 



2 L 8 i = A gik + 3 Rigp2(0) 
AJPgQ 1 	j 	jk 	4 

(3.2.27) 
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After a large amount of tedious calculations, this equation is reduced 

in Appendix III (B) to ; 

or in terms of tensorial quantities, 

2 L 6J i 	Bjk gik + 3 Rikmk({}) A
Jm,l 

(3.2.28) 

This is the required third identity, where Riker({}) is .the 

Riemann-Christoffel curvature tensor. 

§2.3. 	Reduction of Euler-Lagrange equations for L(g,8g,33g).  

We have just the one field function, g.. , and the Euler- 
1J 

Lagrange equations for 

L =L (g
13 ,giJ ,k ' gij ,kQ) (3.2.29) 

read 

E1J (L) = 
8L 	d 	aL 	aL 

3gij,k dx 3gij,k2 	agij 
J 

= 0 

(3.2.30) 

or, 	E1j (L) = 	A1j ,k ,k - A1j ,k Q, 2 ,k _ A1J 	0 

The relations 

G = A1J' 	
h.. k,2 + IIij ,

k 1113;k   
+ I[1J h.. 

J;  

(3.2.31) 

(3.2.32) 

and G = A1J'k~ h.. 	+ A1J ,k h.. 	+ A1J h.. 1J ,k,2 	 1J ,k 	1J (3.2.33) 

from Appendix III (A) can be used to derive some surprising results 

for (3.2.31); 
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We first note that 

h.. 
13, 

,k = (hi j Aij'k),k = hij Aij,k ,k (3.2.34) 

and 
hij ,kQ A

lj ,k2 = 
(h.. ,k 

Aij ,kQ) Q - 
h.. ,k A

13 ,kQ ,Q 

= (h. 	Aij'kQ) ,k -(h..Aij,kQ,Q),k + h..Aij,kQ,Qk 

(3.2.35) 

so that (3.2.33) is expressible as 

G = -h. . E13 (L) + [h. . Alj ,k + h.. A13 ,kQ - h.. Ai 'kQ ,Q] ,k 
13 	13 	~3 Q 	13 

(3.2.36) 

We can repeat the calculations, by replacing the partial derivatives by 

covariant derivatives and the A's by their tensorial counterparts, 

allowing us to rewrite (3.2.32) as 

G.  -hi j {-Aij ,kQk;Q + n13 ,k;k -II13 } +[hijII ~3 ,k + 

- hij A13'1cQ;Q ];k 

Aij ,k2 

(3.2.37) 

The quantities in square brackets are clearly the components of a tensor 

density of weight 1 and contravariant rank 1. Now, by the rules of tensor 

calculus, the divergence of a contravariant vector density is an invariant 

density, therefore we can replace the covariant derivative of the square 

bracket (with respect to x ), by a partial derivative. 

Having done this, we shall now demonstrate that the quantities in 

square brackets in equations (3.2.36) and (3.2.37) are equivalent. 

To see this, we have 



- h.. (Alj ~ k20 
+ r1 Aaj ,k2 + rj Aia,la, + rk Aij ,a2 

1J 	2a 	2a 	2a 	) 
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h.. 11i j,k + h.. 	A'12 
- h.. A

1j,k2;2 
3.3 	1J;2 	1 

i k 	aj k2 i 	ai k2 j 	iJ 2a k 
= 	hi.{A ]' + A ~ r2a + 2A 

	
r2a +~ 	r2a} 

+ 	ij,k2 	ij,k2 a 	ij,k2 a 
(hij 22A 	- A 	r

2i haj - 
A 	r

Zj 
hia) 

(3.2.38) 

Using the symmetry of h. 1j , 

h.. 111j ,k + h.. A1J ,k2 
_ h.. A13 ,k2 ;2 

13 	1] ;2 	 1J 

	

= hij 	
a 	ta 

{Alj'k + 4 ri Aaj,k2 + A1],2ark 
	

2ri Aaj,k2 

- A13'k2 	Q ,L -2r aAa]'k2 
- rka 

A13'2a}+ h 
	

k2 
1 2

Aij, 

J~ 

= h.. A13,k + h.. Ali' la - h.. A13,k2~2 

	

13 	1J ,2 	1J (3.2.39) 

So we have, by subtracting equation (3.2.36) from (3.2.37) that 

h.. { Eij (L) - (-A13 
,k2;k;2+R ij ,k;k - 1I1]) } _ 

1J 
0 	(3.2.40) 

and since hij is an arbitrary symmetric tensor, we have the identity 

E1J (L) _ 	 1J + nij ,k;k - Aij ,k2 ;k ; 2 (3.2.41) 

This clearly shows that the E1](1, ) are the components of a symmetric 

tensor density of weight 1 and contravariant rank 2. We further have, 

from the second identity, (3.2.21) that 
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E1J(L) = - n1J - A ,k2 ;k;k,  (3.2.42) 

while from the third identity, in equation (3.2.28), 

E1J (L) = 
	1 

2 Lgl]  + 3 R,kLm({ }) Ai  'km 
_Aij ,kQ ;k;k 	(3.2.43) 

So we have the remarkable result, that in order to obtain the field 

equations for a second order variational problem, one simply needs to 

evaluate AlJ'k2  

Indeed, from (3.2.42) and (3.2.43) it is a trivial matter to 

show that 

E13  (L)  ;J = 0,  (3.2.44) 

i.e., the Euler-Lagrange expressions of any such lagrangian density are 

divergence free. 

This result tells us that any gravitational theory based on a 

lagrangian of the form L(g,ōg,8ag), with gid  being a symmetric, second 

rank, metric tensor will lead to what we might term automatic conservation 

laws. That the energy-momentum tensor is divergence free - hence 

conserved - because of geometrical identities. In the next section, we 

shall generalise the above formalism to metric-torsion theories, and 

derive three identities,for a second order lagrangian in the metric 

and torsion containing no higher than first derivatives in the torsion 

tensor. 

§3. 	IVP's in metric-torsion theories of gravity.  

In this section, we shall generalise the previous procedure of 

using invariant principles to the case of Riemann-Cartan geometry. We 

shall take the field functions to be the symmetric metric tensor g.. 
1J 

and the torsion tensor Silk  defined as 

k 	1 (rk 	_ rk  ) Sij . = 2 	ij 	ji (3.3.1) 
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where r.jk is an asymmetric connection defined on the space-time. 

Since we have seen in the last section that whenever we need to deal 

with a variational problem involving a symmetric metric tensor, we 

must go to a second order problem, we shall take the lagrangian in 

this example to be of the form: 

L = L(gij'gi j ,k 'gij ,kQ 'Sijk' Sijk,Q,) (3.3.2) 

There is no particular reason for including the first derivatives of 

Sijk in L. We cannot expect a result stating that "there does not 

exist a scalar density that depends on the metric, its first two 

derivatives and the torsion", because a counter example exists in the 

ECSK lagrangian itself. Note that after the removal of total divergence 

terms from the ECSK lagrangian, we are left with a (non-zero) lagrangian 

of the form L(g,ag,aag,S) (cf. Chapter I). 

Requiring invariance of the action integral 

I = L d4x 

under coordinate transformations of the form, 

x = x (x J), 

we note that L must be a scalar density, i.e., 

(3.3.3) 

(3.3.4) 

L (gi'gi j ,k'gi j ,kQ.'Si jk' Sijk,Q) = BL(gij'gij k~gij ~kQ'Sijk'Sijk~Q) 

(3.3.5) 

ax i 

9x-3 
where, as before, B = 

(3.3.4). 

is the jacobian of the transformation 

In this section, a comma will denote partial derivatives as 

before, while a semi-colon is used to denote covariant differentiation 

with respect to the asymmetric connection r
.Jk. 



and 

a b c + B i
B  j RB 	k Sabc 

Ba b c SijkR 	
B iRB  jB  k Sabc 

aL 	Aij ,kR _  aL 

agij ,k 	agij ,kR 
Aij'k = 

aL 
A 
ij 

13 3g.. 

Mijk 	DL 	Mijk,R = DL 
aS
ijk 

• as
ijk,R 

-61- 

Now, since S. 	is a tensor, 

_ a b c 
Sijk  = B 

iB  j B  k Sabc (3.3.6) 

+ 	
Bai Bbj BC Sabc + Bai  Bb. Bck 	Sabc,dBR 

(3.3.7) 

where, 
a 

Ba. 	
ax 	a 	a 	a B 	- 	B 	- 	B 	, etc. 

1 	Dx' 	iJ 	
a
-1 	1 

We shall need the following definitions 

and 
	 (3.3.8) 

From the work in §2, we know that A1J'kR  is a tensor density, and 

we define 
B1J 

 and 	to be the tensorial counterparts of A1J 

and 
A1J,k 

respectively. 

Before going on to derive the identities for L , we shall 

demonstrate that M1Jk,  is a tensor density and then construct a 

tensorial counterpart for Mhjk, which we shall denote by NUJk. To 

show that M1Jk'R  is a tensor density, we simply construct its 

transformation law under (3.3.4). 

Now, 

aL 	= 	
aL 	asijk,R  

9sabc,d 	aSijk ,R 	3sabc,d 

(3.3.9) 



• 
(3.3.12) 
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while from (3.3.7) we have 

a5ijk,Q  = Ba. Bb  Bc Bd 
i j k Q aS

abc,d  

so that, 

aL 

aS
abc,d  

Finally, from (3.3.5), we find 

aL 	aL 
B 

asabc,d 	aSabc,d 

Therefore, we have, using Bi
j AJ k 	Sik , 

Mlik 'Q  = B Al  A3 Ak A
Z Mabc,d 

a b c d 

• 

(3.3.10) 

(3.3.11), 

(3.3.13) 

(3.3.14) 

Mijk 'Q  Ba. Bb . 	Bc  Bd  k 

= B Mabc,d 

the transformation law for a tensor density of weight 1 and contravariant 

rank 4. 

To construct a tensorial counterpart for Mijk, we shall use the 

same indirect method used in Appendix III (A) to construct Bik 
 and 

 Bik,Q. 

Let Q. k  be a totally arbitrary tensor field  having the same ij 
symmetries as the torsion tensor Si'k. 

We define 

ijk 	ijk ,Q G = M 	Qijk  + M 	Qijk,Q • 

It is an easy task to show that G is a scalar density, 

(3.3.15) 

G = BG . 	 (3.3.16) 

We must now find quantities Nl3k  such that G can be expressed as 

	

ijk 	 ijk,Q 

	

G = N
ijk 

	+ M 	Qijk;Q • (3.3.17) 
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We have, 

-F 	-ra 	-r
a 

Qijk;i = Qijk,i 	QiQajk 	Q jQiak 	Q k4ija 

so that 

G 	
(Nabc -r a Mibc,Q _rb ajc 	c 	M'i -F 	Mabk,i 

Q i 	2,j i k 	)Qabc 

+ Mijk,Q 
Qijk,i • 

Identifying suitably symmetrised coefficients of Q 	and 
abc 	Qijk,i 

with those in (3.3.15), we have 

ijk = 	ijk 	i 	ajk Q 	j 	iak,i 	k ija,i N 	- M 	+ rQa M ' + rLa M 	+ rLaM 

(3.3.18) 

(3.3.19) 

(3.3.20) 

and 
M1Jk,i = M1~k 'i ` 

(3.3.21) 

Confirming our proof above that Mljk'i is a tensorial quantity. To 

demonstrate that Nljk is indeed a tensor density, we note from (3.3.16) 

and (3.3.14) that 

(G - M1Jk'Qijk;2, 

is a scalar density, hence it follows that 

(3.3.22) 

NiJkQ
ijk 

(3.3.23) 

is a scalar density. 

But our assumption was that Qijk was a third rank tensor with 

the same symmetries as the torsion tensor, S... 
Jk  

By the quotient theorem of tensor calculus, we therefore have 

the result that N1Jk is a tensor density of weight 1 and of contravariant 

rank 3. 

We also have the a posteriori result that Mhjk is not a tensor 

density. 
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Having constructed all the required tensorial quantities, we can 

go on to derive the first identity. 

We have the right hand side of (3.3.5) being independent of 

B jk2, so that 

aL 

DB 	
= 0, 

jk2 
(3.3.24) 

or, 

aL agij 	a L 	3gij,k 	a L 	agij,kk 	DI, DS.  

agij 
aBabcd 	

a ij,k aBa
bcd 	agij,k23Babcd 	

aSijk 
 aBbcd 

a L 

aSijk,2 

a Sijk,Q 
a 

DB 
bcd 

= 0. 	 (3.3.25) 

Looking at the transformation equations of g, ag,aag,  S and aS,we see 

that (3.3.25) reduces to 

aL 	
agij,kR  

a 
agij ,k2 	

aB 
bcd  

0 	 (3.3.26) 

or, 

Āi j ,k2  
agi',k2 

aBa 
bcd  

= 0 	 (3.3.27) 

But this is simply equation (3.2.12), and there it was shown that 

it led to the identity 

Akn,pq + Akp,gn + Akq,pn = 0 	(3.3.28) 

and was further reduced to 

AIj,kZ - Ak2'ij • (3.3.29) 

So this first identity is simply carried over from the second order 
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metric variational problem. 

§3.1 	The second identity. 

Going back to equation (3.3.5), using independence of the 

right hand side on Babc we have 

aL 

aBa
bc 

= 0 	 (3.3.30) 

or, 

A1J 	ag1J + di j ,k agij 
~k 

+ dij ,kQ agij 
,kQ+ Mijk aiJ.k 

a 	a 	a 	a DB 
bc 	

aB 
bc 	

aB 
bc 	 bc 

+ Mljk,9 	
aSijk,t 

a
a 
B 
bc 

= 0. 	(3.3.31) 

Since the first three terms are carried through from §2.1, we have 

equation (3.3.31) reducing to 

	

gaaBa (A
bJ'c + īlcj,b) + 2g Ba 	Tjb,ck+2g Ba T jc,bk 

j 	 aa jk 	 aa Jk 

+ 2gaa,R B
S BaJ njb,ck + 2gaa SBa 

j B
13

k AJc,bk 

+ BS Ba 
Xkj ,bc 

gas,a k j 

+ 
Mijk, Q 	( Y 	a b c 	a Y 	$ b c 

(Bj Bk SaaY 
dadidL 

+ BiBkSa8y a dj a!l 

+ Ba. B. 
Sas s

y
6
b 

dQ ) = 0 	 (3.3.32) 1 J Y 

This holds for all coordinate transformations of the form (3.3.4), in 

particular, we can choose the transformation such that 
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Bij  = si. and Bijk  = 0, etc. 	 (3.3.33) 

For such a transformation, (3.3.32) reduces to 

g (AbJ'c  + -ci ,b) + 2g 	Tjb,ck + 2
g 	-jc,bk 

aj 	aj,k 	aj  ,k  

+ 	Xkj,bc + Mbjk,c S 
	

+ Mjbk,c S. 	+ 
g jk,a 	 ajk 	 j ak b'c  Skj = 0 . 

a 

(3.3.34) 

Except for the two terms involving AiJ,k  , equation (3.3.34) is 

tensorial, so we must substitute for Ai]'k  in terms of the tensor 

density II
ij,k. 

In Appendix III(A), we have shown that 

ij ,k 	ij ,k 	aj ,kL 	ai,kQ j 	ij ,aQ k li 	= A 	+ 2A 	
rLa 

+ 2A 	
rLa + A 	rLa 	(3.3.35) 

so that substitution into (3.3.34) yields, 

gaJ (rbj,c + 2AaJ,c2
La  + 2Aab,cQrka+ 	

A  -bj ' 
	La 

+ ncj ,b + 2AaJ ,bL c 
 + 2Aac,bL j + Acj 

,aL b  

+ 2ga 	
AJb,ck + 2ga 

	
AJc

,bk + g'k 	AkJ,bc + 2Mbik,c S 
j,k 	j,k 	J ,a 	a jk  

+ Mkjb,c S
kja 	0. (3.3.36) 

We have postulated earlier that metric-torsion theories are based on 

the sound physical assumption that a local Minkowskian tangent space 

exists. This was expressed through the requirement of metricity, 

0 	 (3.3.37) gi j ;k 
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which allows us to choose a local coordinate system in which the 

partial derivatives of the metric, and the Christoffel symbols can 

be set to zero. 

Choosing such a gaussian normal coordinate system, we can 

write equation (3.3.36) as 

ga . 
(-bj ,c 	cjb 	ci a2 + II , ) + g 	A j (2 	J'c2 +A ''. K 

+ 	2ga. (A 	' 2 + -ac,bL)
- j + gaj 

(2Aai ,b2+ Abj ,a2)K2aC 

+ 2Mb~k' 
ajk 

cS 	+ Mk~b'c Skja = 0, 	 (3.3.38) 

where we have used the fact that, in a Riemann-Cartan space-time 

r1 
jk 	~ 

= {,1 
k
1 - K

jk  
. (3.3.39) 

K..k = -K.k. being the contortion tensor. 

Finally, since the identity (3.3.38) is a tensorial equation, 

we can remove the "bars" on the tensors. 

It is in this second identity, that we see the first complexities 

arising in allowing non-zero torsion to be present. We will also 

see in the next section, that these complexities multiply when deriving 

the third identity and there are no miraculous reductions leading to 

general results. 

§3.2. 	The third identity. 

For the third identity, we take the derivatives of equation 

(3.3.5) with respect to Ba
b ' 

aL 
= BAb 

aBa 	a 
b 

(3.3.40) 
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and, 

DI 	 Āij 	a 	,k Dg.. 	dij ,kQaggij 	Xij 	ij k  	 ij ,kR - 	 + 	 + 
	
+ 

aBab 	aBab 	aBab 	aBab 

+ Mljk 	asijk + Mijk'Q 	
aSijk,i 

aBab 	aBab 

from (3.3.6) we have, 

(3.3.41) 

Mi jk 

aBa

aSi'k 	-bjk S y 	-ibk a y 	-ijb a R 
= 
M Bj  B k 

s 	
M BiBk s 	

M
aay + 	

Bi  Bj  Sa$a  
b 

(3.3.42) 

while (3.3.7) yields, 

ijk,i as..k k 

DBab 

M
ibk,2Ba By S 	+ MIjb,2  Ba B$ S 	+ 	Mbjk,tB$ By  SM 

iQ k aay 	it j a$a 	jt k aSy 

+ 	Mljb'QB.
f3 a 
 B. Sasa + MbJk'Q  kQB.Sasy + M

1bk' 
'BB. Saay 

+ Mbik'2'B. By  B6  S 	
+ Mibk,2.B.  By 

B 
 S 

j k k a$y,6 	1 k k aaY,S 

+ Mljb'QB. BS  B6  S 	+ Ml3k'b  Ba  BS  By  S 1 B. 	aRa,6 	1 j k a$y,a • (3.3.43) 

Noting that the first three terms of equation (3.3.41) carry over from 

the example in §2, we can, by taking the coordinate transformation (3.3.4) 

to be such that 

Bid  = did 	, 	B1jk  = 0, etc, 	 (3.3.44) 

write (3.3.41) as, 
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L db 	= Abj 	+ A jb 	+ Abj ,k 	+ Ajb,k 
a 

	g 
	gaj 	 gaj ,k 	 gja,k 

+ Ajk,b 	+ Abj ,k2 	+ A jb,k2. 	+ Ajk,b2 
gjk,a 	 gaj ,k2 	 gja,k2, 	 gjk,aQ 

+ AJk,Qb 	+ Mbjk S 	+ Mjbk S 
	+ Mjkb

j 
S gjk,2a 	ajk 	jak 	ka 

+ Mbjk'QSa k 
k + 

MJbk,2 S. 
	

+ MJkb,Q 
S.
ka 2 j , 	 Jak2 	J 

+ 
MJkk,b 

SjkQ,a (3.3.45) 

The non-tensorial terms involving Aij'k will vanish when we go to a 

local gaussian normal coordinate system, in which-ab c = 0. Hence, 

in order to obtain a tensorial equation from (3.3.45), we need only 

substitute for A1J and M1Jk 
, their tensorial counterparts, ll 	and 

N
1Jk respectively, before going to gaussian normal coordinates. 

As can be seen from Appendix III (A), the expression for Hij in 

the presence of non-zero torsion, is not reduced to simply A1J on 

going to gaussian normal coordinates. So, we shall only write down the 

final expression for the third identity that one obtains upon going 

to such a coordinate system. We find, 

Ldb = 21IbJga + 3 RakaQ
({}) AbakR 

a 	j 

+ 2Haj ,kK b J + 21ab,k K 	+ 2 11ba,
k Kkaa a 

a ~k K~ b 	+ 	aj , k!C 	S 	b 
+ 2 	Kka gaj 	4A 	Kka.K28.gaj 

4Aab,k2 K 
S 	+ 8Aa8,kZK 	b 

Qa Kkas 	u a Kka 

+ 4Aaj'kJ K b 	+ 4Aab,k2 
ka ; Q gaj 	Kkaa; Q 
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-2 Mbjk'Q 	a K S 2.a ajk 

+ 2M
bjk' S 	+ Mjkb,QS 

	+ Mjk2 'b 
S. 	+ 2Ma~k'QK 

bS 
a jk;2 	jka;k 	~k2.;a 	Qa, ajk 

- M
jkb,Q

K aS 	- MjkQ,bK aS 	- MjkQ,bK S. Qa jka 	 aj ak2 	ak jaQ 

- Mjki,bK as 	+ Mjka,2 K b
S 	+ Njkb S. ak jka 	Qa jka 	jka 

+ 2 Nbjk
Sajk 

. (3.3.46) 

This is the tensorial form of the third identity for metric-torsion 

theories with a lagrangian of the form L(g,ag,aag, S,3S). It has been 

written in such a manner that the limit of zero-torsion can be seen 

immediately. We note that, as expected, the limit of zero-torsion leads 

to the third identity obtained in the example given in §2, equation 

(3.2.30). 

Of course, in (3.3.46), we could, by combining some more terms, 

write it in terms of the full Riemann-Cartan curvature tensor rather 

than the Riemann-Christoffel curvature tensor, but as no new insights 

are gained by doing this, we shall be content with the equation as 

it stands . 

In the next section, we shall reduce the Euler-Lagrange field 

equations obtained from L(g,ag,88g, S,3S) for g.. and S..k as much 
3.3 

as possible 
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§3.3 	Reduction of the Euler-Lagrange equations of L(g,ag,aag, S,as). 

Since we have two sets of independent field functions, namely, 

the metric tensor and the torsion tensor, we shall have two Euler 

Lagrange field equations. The field equation for the metric is 

simply, 

E1 (L) = d I  DI,
d 	aL 	

- aL = 0 . 
dxk 	agi j ,k 	dx 	agi j ,k2 	agij 

(3.3.47) 

This equation is identical to that derived in §2.3. Hence we can 

borrow the tensorial form of E1J(L) that has been obtained there, 

while noting that the covariant derivatives will now be with respect 

to the asymmetric connection with non-zero torsion. The tensorial 

form of the equation is ; 

E1J ( L) _ - Hij - A1J ,k2 ;k2 + nij ,k ;k = 0 (3.3.48) 

In the previous example, this equation was further simplified to an 

expression containing derivatives of A1J'"  as the only unknown 

quantitaties due, mainly to the result given in equation (3.2.23). This 

reduction is no longer possible. So, rather than try to "simplify" 

this equation by substitution of II1J'k;k and 
Hij 

 , through the second 

and third identities, we note that indeed after substitution, we shall 

have a field equation, requiring only the evaluation of Aij,kQ,IIij,k,Mijk,Q 

and Nijk to obtain the explicit form of the equation for any given lagrangian. 

Further, we shall see now that by combining the two, metric and torsion 

field equations, one reduces the requirement, to evaluation of only 

Aij,kz,IIij,k and Mijk,Z 
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The second field equation that we have is for the torsion field; 

d 	aL 
Eujk(L) 	= 

a L 

that 

(3.3.49) 

(3.3.50) 

(3.3.51) 

d 
xQ 

	{3Sjk,2
i 

or, 

 

E1Jk (L) 	= 	Mijk,2 	Q - Mujk , 

In order to write this in a tensorial 

Qi jk,QMlJ' 	= (QijkMlJk'
2
),Q- 

= 	0 
 aSl . 	k J 

= 	0 

form, we note first, 

'Q ,~ Qijk MlJk 

where,Qijk is a tensor, having the symmetries of the torsion tensor. 

Going back to equation (3.3.15), we can write 

G = (Qijkmijk'2),Q 
	
M1JkQijk 

- QijkMlJk'2,2 

= (Q.. MlJk'R),~ - (MlJk'Q,2 - M'Jk) Qijk 

(3.3.52) 

(3.3.53) 

or, G = (QijkM1 'Q),L Eiik(L) Qijk. (3.3.54) 

Similarly, we can write equation (3.3.17) as 

= (Q.jk MlJk'Q) 	Qijk(Nijk - Mijk,2 ) (3.3.55) 

so that, comparison of coefficients of Q. 	in equations (3.3.55) and ijk 

(3.3.54) yields 

E1Jk(L) = Mijk'2;2 - Nijk • (3.3.56) 

We have shown earlier that G is a scalar density, we also note that 

because M1Jk'Q is a tensor density, while Qijk is a tensor, their product 

is a tensor density and hence the covariant divergence of the product is 



-73- 

a scalar density. We have therefore that 

G - (Qijk  MiJk'Q)02 

is a scalar density. Hence 

(Nijk  - Q. 	M1.Jk ';Q) 

(3.3.57) 

(3.3.58) 

is a scalar density. Since Qijk  is a tensor, by the quotient theorem, 

it follows that 

Eijk(L) = Mijk'•2, - Nijk  

is a tensor density of weight 1 and contravariant rank 3. 

(3.3.59) 

53.4. 	A simple example.  

To show that evaluation of the field equations will involve 

only partial derivatives of a given lagrangian with respect to the field 

quantities, we shall substitute the third identity into the field 

equations for a simple lagrangian of the form L(g,ag,aag,S). Since no 

derivatives of torsion are present, we immediately have 

aL 
= Mljk'Q  = 0 (3.3.60) 

 

 

The second field equation (3.3.59) reduces to, 

Nijk  = 0. (3.3.61) 

Using these two equations in the third identity, (3.3.46), we shall 

have, 

LSa = 2lIbj  gaj  + 
3 

Rakaz({}) Aba'1  it  + 211aj'k _ ab  gaj  

+ 2Hab k KK 	+ 2rtba k 	+ 2rrja,k K  b 
lcaa aa 	K  a gaj 



-74- 

+ 4A
aj,kk 	SK b 	- 4A

ab,kkK S 	8Aa,kkK 
Klca ks gaj 	ka kas

+ 
 2,8a ka 

+ 4Aaj ,kk 	b 	+ 4Aab,k2K 
ka ;Qgaj 	lcaa;k (3.3.62) 

Lbc = 2ilbc + 4 
Rc.kak({})Aba,kk+ 4Hac,kKk ab 

g 	3  

+ 4Eab ,k Kk 
a 

+ 	4Aac,kkK RK b + 4A. ab,kk K c K 'S 
ka 2 	 u. ka 

or, 

+ 	8AaS,kkK c K b + 4Aa.c,kk 
2a ka 	. ;k 

(3.3.63) 

+ 4A ab ,kk g c 
Ka k . 

Substitution into (3.3.48) yields 

2Ebc (L) = -L gbc+ 4 Rc 	 ({})Abakk+ 4Hac,k 
kak 

+ 4IIab'k
Kkac

+ 4A
ac,k2 k:Kksb + 4 Aab'1'KQScKka

~ 

+8AaS,kkK cK, b + 4Aac,kk v 
243 lca 	 ka; 

+ 4Aab,kk K c 	_ Abc,kk 
;k2, +1 bc,k ;k 

= 0, 	 (3.3.64) 

while the second equation is 

E uJk(L) = Nujk = Mijk 
- aL = 0 	(3.3.65) 

S. 

We see clearly from these equations that, given a lagrangian, we need 

only evaluate partial derivatives of the lagrangian in order to obtain 

the explicit form of the field equations. It is interesting to note 
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that similar work has been carried out by P. von der Heyde /12/ , 

who has derived a general form of the lagrangian for metric-torsion 

theories by imposing conditions on the form of the field equations. 
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CHAPTER IV 

HOW LINEAR IS LINEAR? 

OR 

THE ART OF CONSTRUCTING LAGRANGIANS 
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§1. 	Lagrangians for general relativity.  

In the last Chapter we have seen how one can exploit the 

invariance of the action functional 

S =IL d4  	 (4.1.1) 

under general coordinate changes to derive identities satisfied by the 

lagrangian density L. We have further shown how we can use these 

identities to reduce the Euler-Lagrange equations of L into a 

simple form involving only partial derivatives of L with respect to 

its arguments, especially in the case of general relativity. 

In this chapter, we shall study the general criteria used to 

write down lagrangian densities for a theory. In particular, we shall 

show that the criterion used by Einstein for his lagrangian, that it be 

linear in the curvature, when extended to the ECSK theory does not 

yield the usual lagrangian chosen for the theory. Instead, we find 

that we can include an additional term of the form eu"poR 	(r) involving 
uvpo 

the totally antisymmetric Levi-Civita tensor density in four-dimensions 

and the full curvature tensor of the Riemann-Cartan geometry. 

We shall begin in this section by outlining some of the 

important points that led Einstein to his lagrangian for general relativity, 

Einstein /10/ having adopted Riemannian geometry and the 

absolute differential calculus of Ricci and Levi-Civita, to describe 

the phenomenon of gravitation, argues for a non-degenerate metric; 

"Should 	vanish at a spot in the four-dimensional continuum 

then it signifies that a finite coordinate volume there corresponds to an 

infinitesimal "natural" volume. This, however, may not be so anywhere, 

and therefore the sign of g cannot change. Following special relativity, 

we shall assume that g always has a finite negative value. This 

represents a hypothesis about the physical nature of the continuum under 

consideration and at the same time a determination of the choice of 

coordinates. If, however, / is always positive and finite, then it 
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is obvious that a posteriori the choice of coordinates can be made 

such that this quantity is equal to 1". 

While concerning his field equations, 

he writes /10/ 

G.. = R.. - 2 Rg.. = K T.. ,
13 	13 13 (4.1.2) 

"It must be pointed out that only a minimum arbitrariness is 

connected with these equations. For, other than R.., there is no tensor 
ij 

of the second rank connected with it which can be constructed from the 

g.. and their derivatives, which does not contain higher than second 
1j 

derivatives, and is linear in them". 

From this, it is usually stated that Einstein's lagrangian must 

be linear in the second derivatives of the metric. The main reason 

for requiring linearity in the second derivatives of the metric, is that 

field equations for the metric would then be of the second order. In 

recent times, however, it has been shown that linearity in the second 

derivatives of g.. is not a necessary assumption /11/. Indeed, David 

Lovelock /13/ has shown that assuming the field equation is of the form 

G.. = K T.. , 	 (4.1.3) 

being symmetric in (ij) and containing only second derivatives of g.. 
1.1 

leads, by requiring conservation of T.., i.e. 
ij 

T..;j = 0. 	 (4.1.4) 

uniquely to the lagrangian 

L = 147i R({}) + V A , 	(4.1.5) 

where A 	is a cosmical constant. 

Having established that to describe general relativity, one 

must use the Riemann tensor, and the lagrangian is indeed taken to be 
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simply 

R ({ }) , 	 (4.1.6) 

the question we have to ask ourselves now, is, is this the only 

scalar, linear in the curvature, that one can construct in Riemannian 

geometry? 

The answer_ is yes. For, although, we implicitly have the 

possibility of constructing the following scalar, 

pvp6 
RpvAQ

({}) (4.1.7) 

we remember that the Riemannian curvature tensor satisfies a set of 

Bianchi identities, one of them is /14/ 

R 	({ }) + R 	({ }) +R 	({ }) = 0 	(4.1.8) 
pupa 	ppm) 	pervp 

which can also be written as : 

s XVp6  R 	({ }) = 0 
pvpo 

(4.1.9) 

Hence, the additional term that might have contributed to the lagrangian, 

vanishes by virtue of one of the Bianchi identities. 

We shall show in the next section, that 	a reduction 

in the symmetries of the curvature tensor in generalising the geometry 

from Riemannian to Riemann-Cartan, allows us to add the additional 

term 

Epvp6
R 	(r) 
pvpa 

(4.1.10) 

to the usual ECSK lagrangian. 
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§2. 	Generalisation to metric-torsion theories /15/.  

We have seen in Chapter I that the curvature tensor of a 

Riemann-Cartan geometry is defined by 

	

R..k£(r) = ai F. 	- a rik + rimr.km - 
r.m 

F. 	. (4.2.1) J 	 J 	J 	 J 	J 

The definition of the curvature tensor is such that it is antisymmetric 

in the first two indices. In general this is the only symmetry on the 

curvature tensor that one has. If, however, we demand metricity, i.e. 

that the geometry be locally Minkowskian, we gain the additional 

symmetry 

RijkQ(r) = 
-Rij2k(r) 	 (4.2.2) 

For metric-torsion theories, these are the only symmetries one has 

on the curvature tensor. In contrast, in Einstein's general relativity, 

symmetry of Christoffel connection symbols gives rise to a third 

symmetry 

Rijkk ( { }) = Rkkij ({}) . (4.2.3) 

In Chapter I, it was seen that the lagrangian for the ECSK theory was 

taken to be 

ECSK 	'rg R (r) (4.2.4) 

on the grounds that it was the absolute minimal deviation from Einstein's 

lagrangian. However, in §1 we saw that, potentially, Einstein's 

lagrangian can be written as 

	

LE 
	R({}) + su~PaR 	(0) 

	

E 	 uvPa 
(4.2.5) 

with the Bianchi identity allowing us to equate the second term to 

zero. 



and 

V Rpvlpa 
(r) = 2S~au

s Rv1RPa (r) 
(4.2.7) 

L  = E PvpaR A 	2 	
Pvpa 

(r) (4.2.11) 

-81- 

In the case of Riemann-Cartan geometry, however, we see that the 

Bianchi identities take the form (equations (13.30) and (13.31)). 

a 	a 	a 
RIpv

p1(r)= 20
f1 vp1 S 	-4 LIN 

Sp1a (4.2.6) 

We realise that in generalising Einstein's lagrangian to metric-torsion 

theories of gravity, one must in reality, generalise LE given in 

equation (4.2.5). 

The Bianchi identity from equation (4.2.6) tells us that 

while 

euvpaR 	({}) = 0, 
Pupa 

£PvpaR 	(r) 
Pvpa 	0. 

(4.2.8) 

(4.2.9) 

Let us write the lagrangian for our metric-torsion theory as 

L = LECSK + LA 

where 

and 

LECSK = v'-g R 
(r) (4.2.10) 

The coupling parameter, p, determines the relative strengths of the 

gravitational forces obtained from LA and LECSK. We note that euvpa 

is a pseudo-tensor density, and changes sign upon a coordinate trans-

formation of the form ; 

x 	-x ; t -} t , where 	xP = (x,t) , 	(4.2.12) 

i.e. the term involving 
EPvpa 

is a parity violating term, and the 

coupling parameter, p, governs the strength of these parity violating 
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interactions. 

§3. 	The Generalised lagrangian.  

Having outlined the reasons for incorporating the additional, 

parity violating term into the usual ECSK lagrangian, we shall now go on 

to simplify the total bagrangian. 

L = LECSK + LA  

= /Li R(r) + P euvpaRUvpa(r) 
• (4.3.1) 

In chapter I we saw that the scalar curvature R(r) can be decomposed 

into the scalar curvature constructed from the Christoffel symbols and 

the 24 component contortion tensor. 

So that we can write 

Q va 
LECSK = 

'!-g R(0) }) + Kaa  Kv 	va ŒK va a  

+ B K 
a  -a (gvpK a) . GP 	o 	vp (4.3.2) 

The terms involving derivatives of K can be discarded, as they are pure 

divergence terms and hence will not contribute to the field equations 

(we are ignoring any surface effects which might arise when dealing 

with compact manifolds). 

From the Bianchi identity for Riemann-Cartan geometries, given 

in equation (4.2.6), we can write 

suvpaR 
uvpo 

(r)= 2 euvpa(K 
uao 

 K 
vp  a+  v 

 K 
upo

) (4.3.3) 

where again, the second term can be ignored as it gives rise to a 

total divegence term, 
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uvpa8 K 	= 8 (EuvpoK 	) 	• v upo 	v 	upo  
(4.3.4) 

As expected, we can see that contortion appears quadratically in the 

total lagrangian, with no derivatives of the contortion appearing, 

after the total divergence terms are removed. Indeed, this is a 

general restriction for theories incorporating lagrangians linear 

in the curvature. This in turn tells us that as in the usual ECSK 

theory, the field equations for torsion will be algebraic, i.e. they 

will be zeroth order differential equations, and hence will not allow 

propagating torsion. 

We note at this point,that from the contortion tensor, one 

can construct only three scalars quadratic in the contortion, namely 

K1  = 
Kact  Kvva,K2 

 = Kva°Kavaand K3  = KVaAKvaA  . 	(4.3.5) 

The interesting feature of our lagrangian is that the simple requirement 

of linearity in the curvature picks out two of these three scalars 

namely, K1  and K2. 

At this stage, one may say that an equally valid approach to 

construct a lagrangian for the torsion would be to write down linear 

combinations of all the possible scalars, quadratic in the contortion 

KuvQ  and simply add these to Einstein's lagrangian LE. Clearly such 

an approach is unsatisfactory, since each term would necessitate an 

associated coupling parameter. In general, this would mean the introduction 

of at least three parameters. In appendix IV(A), we show that taking 

into account the possibility of allowing Euvpa  to enter the lagrangian 

increases the number of scalars, quadratic in the contortion, that 

one can include in the lagrangian to five. In the same appendix, it is 

also shown how further complications arise if one tries to incorporate 

all possible scalars quadratic in the first derivatives of contortion. 

In view of this, it seems much simpler, and perhaps more natural, to 
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restrict the total lagrangian to be linear in the curvature, and 

consider only the scalars obtained from R 	(t) through all possible uvPa 

contractions. 

§4. 	Field Equations for the New Lagrangian. 

We have seen in Chapter I that variations with respect to the 

torsion Suva are more fundamental in the sense that torsion is a priori 

independent of the metric. However, the variations with respect to the 

torsion are equally as good as variations with respect to the contortion 

tensor K. As we have written out the new lagrangian, equations (4.3.2) 

and (4.3.3) in terms of the contortion tensor, it will be easier for 

the purposes of this chapter, to take variations of the action with 

respect to the contortion tensor, K. 

The action functional for the new lagrangian is; 

_ L_~ 	
d4x ECSK + LA d x 

or, 

S = 	R({}) + Koa6Kvva - KvaaK6va + p EuvpoK K 
a 

}._d
4
x . paa vp 

(4.4.1) 

The field equations obtained by variations with respect to the metric 

are simply 

{R ({ }) - 1 R({ }) g }+ 	{g gPa_gp ga-gp ga _ }{K. I3K a 
uv 	2 	uv 2 uv 	u v v u pa WI 

a  
- Kas KpaS } 

+ p (cpoauKohlKaas+ EpoavK0311 
K 
 aa ) = 0. (4.4.2) 

while variations with respect to the contortion tensor yield 
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✓-g { Kuvp + Kpuv - K 6p gvu - K 
pa gvp 

a 	 Q 

+ 2p (n
vpaa 

K 
u +nvu6a 

K p )} = 0. a a 	oa 
(4.4.3) 

The quantity r11N 	, introduced into (4.4.3) in a tensor constructed 

out of the tensor density 
Euvpo 

it satisfies the following g properties, 

1 
uvpQ — uvpo 	s 
n 	= 	 e 	nuvpa = 	uvp6 (4.4.4) 

and we have, 

uvXa 	__ vXa 
n 	

nua8Y 	 ciRy 

nuvaQ 	
= -2S~o 

uv8y 	8y 

(4.4.5) 

nuvXa n 	= -66a 
uvAy  

and 	
nuvao 	

n 
u 	

= -24 and, 
	vA6 	' 

where the tensor ōuva" ' 	is a generalised Kronecker symbol obeying aSY... 

the following rules: 

If u,v;a,.... are all different and a,S,y,.... are obtained 

from them by a certain permutation, then its value is +1 or -1 

depending on whether the permutation ( uva"' ) is even or odd. 

In the remaining cases it is equal to zero. 

At this point we shall give a rather simple and quite 

general argument for the vanishing of contortion in the vacuum , if one 

begins with a lagrangian which contains the contortion in a non-dynamic 

manner, i.e. it does not contain second or higher derivatives of the 

contortion, or equivalently, terms quadratic in the derivatives of the 

contortion /15/. 
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Now, the Euler-Lagrange equations for a lagrangian not containing 

any derivatives of the contortion fields, reads 

DL 

 

0 , (4.4.6) 
DK 

pv 

and hence will be an algebraic equation for K. In principle, this 

equation can be solved for K, and this solution must then be expressible 

in terms of the other quantities in the theory. In our present example, 

we have at our disposal, gpv,guu,a' gliv,(18 and epvas. Since contraction 

of indices always removes indices on a pairwise basis, no third rank 

tensor can be constructed from g ,g 	and e 	. Thus, g 	must pV pv, as 	]JVas 	 11V ,a 

enter each term of the expression for K. But, because of our assumption 

of metricity, g 
uv~ 

a= 0, we can always choose, locally, a coordinate 

system in which g 	= 0. Therefore, K will vanish in this coordinate pv,a 

system, and by virtue of its tensorial character, in all coordinate systems. 

It is for this reason that all matter-free metric-torsion theories 

exhibiting an algebraic field equation for the torsion are identical to 

the matter-free theory of general relativity. 

To begin to see the effects of torsion, one must therefore 

consider the coupling of matter fields to torsion. 

In the next section we shall couple our metric-torsion theory, 

using the generalised lagrangian, to the Dirac spinor field and we shall 

see that the ECSK theory itself predicts parity violating effects for 

the Dirac field. 
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§5. 	Coupling to Matter Fields : The Dirac Field. 

In the last section we have seen that the general structure 

of metric-torsion theories of gravitation allows us to include an 

additional term in the action of the ECSK theory, while still keeping 

the lagrangian linear in the curvature. In this section we shall couple 

the torsion field arising from this new lagrangian, to the Dirac spin--'z 

field; the lagrangian for the Dirac field in flat space-time is 

LD = (ailT) YV~ - 	Yi (air) - =TIP (4.5.1) 

The y are the Dirac matrices, satisfying the following algebra: 

{1'1,Yj } := I ¥ + I ji  I =2,13 (4.5.2) 

and it is spanned by the sixteen independent elements, 

Yi ,Y5 ,YEk Yj 1, YjY5 , 1, where Y5 = 1o111213 . 

In minimally coupling to gravity, the Dirac algebra is generalised by 

simply replacing nij, the Minkowski metric,by gij while, the lagrangian 

is modified to 

LD = e { (V . )Y1Vp - 	 1 (Dio - 
=Tip 

} , (4.5.3) 

where e = det(eia), and 
e.a 

,a = 1,2,3,4 is a tetrad chosen at each 

point of the space-time. The index a labels the four linearly independent 

tetrad vectors. 

It is necessary to introduce local orthonorPal tetrads when 

dealing with spinor fields for the simple reason that while tensorial 

fields are representations of the group of general coordinate transformations, 

spinorial fields are representations of the Lorentz group. Therefore, 
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when dealing with spinorial quantities incurved space-time, we are 

compelled to introduce at each point of the space-time, a tarca2mt 

Minkowski space-time via the tetrads e.a  . The basics of an holonomic 

orthonormal tetrads and their relationship to the Dirac field are explained 

in appendix IV(B). 

In the same appendix, the covariant derivative of a spinor is 

defined to be 

Va)  = aa* 	4 raf31* YYYS 

with 	
rally 	-la8Y 

+S2sic  - 	 - K  
Kc y 

and 
VaI 
	

4 raSY Ys  YY* (4.5.6) 

while the torsionless theory has 

	

V 
a 	 a 	4 

({})lp := a 4) + 1  (S c y -c SYa +S  yas) YSYY* . 

In terms of Va({}), the lagrangian LD  is 

	

LD  = 	e {(Va({})V6)Yaip — 	Ya(Va({})*) — 44 } 

1   
eKc 	

,E a I YS y 1 Y ]  
— 2 	y 

(4.5.7) 

(4.5.8) 

The spin-angular momentum Tick, of the Dirac field is given by 

e TkJ i — 
SLD  

(4.5.9) 

 

K.  13 

Equation (4.5.8) immediately gives 
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T ji 	 j = - - e el  e i Y
Ca l yS y  I y lp 

k 	2 kY a S 

or, equivalently, 

Ysa 	- 1  p YCa  I $ T 	= 	 Y  I ) . 

(4.5.10) 

(4.5.11) 

We can use the Dirac algebra to simplify this expression /16/. 

we have, 

a S Y.  [a S Y] 	as Y 	a 	Ya S 
Y Y Y =  Y 	Y Y + g Y + gay 	-  g Y 	(4.5.12) 

or, 

Y  Ca I YS Y I Y ] = YCa  YS  Y y (4.5.13) 

Hence, we have that the spin-angular momentum tensor is totally 

antisymmetric: 

CaSY ]=   
Z

Y Ca 
 I 	I 	4) . 

Now the torsion field equation for the total lagrangian 

L = LECSK +  LA + LD  

(4.5.14) 

(4.5.15) 

is, 
aL
EC 

 

K  + 
	aLA 

  
	

+ 	aLD 

	
= 0 	(4.5.16) 

2K

k 	

BK
k 	

3K ij 	ii 	ii 
 

From the expressions for 
LECSK 

 and LA,  we have that 

Tkji + p  (eiva
k KvX 

 + £ivaj 
Kvka) 

+ T.  i 
k 

= 0 (4.5.17) 
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where Tkjl  is the modified torsion tensor defined in Chapter I . 

From the Dirac algebra, we have the relation 

a 1 c yS 
Y5Y _ 3. 	YS YY YS . 

So that equation (4.5.14) takes the form 

T  [aY] _ 	saSYSYS 
YS 0 

(4.5.18) 

(4.5.19) 

while the field equation for the torsion, equation (4.5.17) can 

be solved to yield, 

2 T 

a8y = 	
Y 	 a —Y_aR  _ 6p g  	

s KSli  T 

(1+p2) 	(1 + p2) 

ijk 

(4.5.20) 

 

which clearly shows that - 

(i) The ECSK theory allows a parity violating term 

when coupled to the Dirac field, which, as we mentioned 

in the introduction, is due to the Dirac algebra and the 

total antisymmetry of the spin angular momentum tensor 

and is well illustrated by equations (4.5.18) and 

(4.5.19). 

(ii) Although equation (4.5.20) shows an additional 

term which vanishes as p-,+0, substitution of this expression 

into the Dirac field equation shows quite clearly that the 

effect of the additional parity violating term in the 

lagrangian is simply to alter the strength of the parity 

violating effect in the Dirac field equation. We have /19/, 
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Ya  v ({})1P + 	3 	OVY y ) Y Y b + mip = 0 . 	(4.5.21) a 	8(1+p2) 	5 	5 B  

In the next section, we shall couple our new lagrangian to the Proca 

field lagrangian and derive an explicit parity violating term that is 

not present in the ECSK-Proca coupling. 

§6. 	Coupling to matter fields : The Proca field.  

We have seen in the last section that coupling of torsion 

to the Dirac field gave rise to a parity-violating term in the field 

equations which persisted even in the absence of the new parity-

violating term that we have added to the ECSK lagrangian i.e., that the 

usual ECSK lagrangian when added to the Dirac lagrangian gives rise 

to a parity violating term in the field equations. We also saw that 

this was basically due to the fact that the spin-angular momentum tensor 

for the Dirac field is a totally antisymmetric quantity. In this 

section, we shall carry out a similar analysis for the Proca-or massive 

Maxwell-fieId and show that here we have a new parity violating term 

in the field equations which is not present in the coupling of L
ECSK  

to the Proca field. The lagrangian for the Proca field in flat Minkowski 

space-time is 

L = - 
4  G

uvGUV  + 
1 
 m2  AuAU  ,  

P 
(4.6.1) 

with G 	.= a A -a A . 	 (4.6.2) uv 	u v 	v u 

Introducing torsion through minimal coupling modifies G to B ; 
uv 	UV 

Buv= auAv 
-avAU + 2AaSvu 

a 	 (4.6.3) 

and, B = G + 2 S o  A 
uv uv 	vu a (4.6.4) 

In terms of Buv, L
P 
 can be written /15/, 
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=1-g (- 1 BuvBUv + I m2AUAU) 

= - 	 G Gpv- -g G A 
Svpa 

- 	GpvA S a 
4 	pv 	2 	pv a 	2 	a vp 

- 	ApSvpp AaS
vpa 

+ 1=-
1 
m 2AUAp (4.6.5) 

or, 

L = -la G Gpv + va m2 A Ap - /j GpvS aA 
p 	4 pv 	2 	p 	vp a 

- 	S P 
Svpa 

AA vp 	p a , 

The spin-angular momentum of a matter field is defined by 

(4.6.6) 

✓-- T 
k
j i 

g  

OL 

OK..k 
13 

(4.6.7) 

Since Lp contains only Svpa , but no derivatives of Svpa, 

81, 	3L 

OK..k 	aK..k 
13 	13 

as a 	asvpa 

	

_ —vj GUVA vp 	
S PA A 

	

a aK. k 	vp 
p 

a 
aK..k 

	

1
.
~ 	i~ 

as p 
-,/- SvpaA A 	vp  

p a 3K..k 
1~ 

	

v asvpa 	as p 
_ -1/7-7EGp Aa 	k — 2 ,/-g Svpa A A 

 

	

ax.. 	p 
aaK.. 

= -2 	G1J Ak + 1 
V GJ 1 Ak 
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- 	Si icIA. 
A 	

1
o + ,~ g S 'A.A6 

or, 
(SL  
-P k 	= - 	

G13Ak + 2 ✓--g S13 zAkAQ 	(4.6.8) 
K. 	• 
13 

Therefore, we have the result that the spin-angular momentum of the 

Proca field is given by , 

Tk13 = - G13 Ak + 2 S~3 QA,AQ 	 (4.6.9) 

The lagrangian for the total system is 

L = LECSK + LA + L P 

and, again the field equations obtained by variations with respect to 

K..k are simply 
1 

DL 

= 0 	 (4.6.10) 
aK..k 

13 

or, 	
aLECSK 	+ 8LA + —

P 
DL 	

= 0,  (4.6.11) 
aK..k 	aK..k 	aK..k 

13 	13 	13 

from equations (4.3.2), we see that 

	

aLECSK 	= ~-- ij 	j 	
- 
	R, ij 	Qj i 

	

k 	g r-- -K 	+ K k ) 	(KQk g 	
+ K   gk) 

BK.. 
 

13 

(4.6.12) 

while, writing 

P V A8 	 P 	Q LA = p V-g n 	
gSP Ku6 K~ a , 

(4.6.13) 

we obtain, 



aLAk 
= p47.1g7 (rlivakKvXj +  nivaj

Kvka) .  
(4.6.14) 

3K.. 
lJ 
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Substitution of equations (4.6.9), (4.6.12) and (4.6.14) yields 

the desired field equation for the spin-angular momentum 

TklJ = -P ( 
iva nkKvA 	+ nivajK

vka) 

- 
(KkiJ 

 + KJk1) + (g1JKkkk+ giKk
kJ)  ' (4.6.15) 

The field equation for the Proca field reads 

V G 	+ 2V (A S Pa) + m2A = 0 	(4.6.16) 
P u 	P 	a u 	u 

In order to exhibit a parity violating effect in the Proca field equation, 

we must solve equation (4.6.15) for the 24 components of the torsion 

in terms of the spin-angular momentum. Then, substitution into (4.6.16) 

will reveal the desired term.. 

The process for solving equation (4.6.15) is simple but laborious 

(see appendix TV(C)) . Let us first write out (4.6.15) in a suggestive 

form by using the modified torsion tensor, it is, 

T  i = T 	
+ pnvA K 

	(6kS S.  -6.6k) k  j 	ji 	vap 	J 	j 
(4.6.17) 

Now it is quite a simple matter to show that the solution to this 

equation is, 

Skj  i = 	1 2{Tasi  (60j 	Pnas  k) 
(1+8p ) 

_  1 	k + 	Yas 
2 gij (Tkk 	P  nk 	Tai3Y' 

Ya  
2 -ik (T  j k +  P fl . 	T )  } cty 

(4.6.18) 
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Here we see that the coefficients of the term containing n
ijkk  

are non-zero, hence,when (4.6.18) is substituted into the field equation 

for the Proca field, we shall have parity violating interaction terms 

present. That the usual lagrangian for the ECSK theory does not contain 

these parity violating terms when coupled to the Proca field /5/, is 

easily seen: In (4.6.13), the limit p=o does not contain any parity 

violating terms. 
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CONCLUSIONS AND DISCUSSION  
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What can we conclude from the last four chapters? Firstly, in 

the introductory chapter, Chapter I, we saw how gauge theories were 

defined, in terms of what might be called an "internal symmetry". We 

also saw how gauge fields were introduced as connections on the Lie 

(symmetry) group manifold, in total analogy with the definition of 

Christoffel symbols on space-time, in particular, we saw that electro- 

magnetism could be derived as a gauge theory. Metric-torsion theories, 

in particular the ECSK theory was seen to be a simple and natural 

generalisation of Einstein's general relativity, when attempting to 

extend the gravitational phenomenon to the microphysical realm of 

elementary particle physics. 

An immediate, surprising problem arose with this programme of 

extending general relativity into microphysics when we attempted to 

couple gauge fields to the new torsion field of metric-torsion theories. 

This coupling, we saw in Chapter II, was possible only if gauge 

invariance is given up. As gauge theories are a very important 

part of present day elementary particle physics, it was argued that one 

must resist loss of gauge invariance to the last! One alternative 

to this loss of gauge invariance, suggested by /5/ is to couple gauge 

fields to the torsionless, Christoffel connection. This is allowed 

because of the generalised geometry; we have the freedom to choose 

either of two connections which can now be defined on the manifold, 

namely, the Christoffel connection and the full, asymmetric connection. 

Of course, as explained in the introduction, this defeats 

the purpose of introducing torsion into general relativity. S. H ojman 

et, al. /8/, determined to couple torsion to electrodynamics, modified 

the gauge covariant derivative of electrodynamics, thus introducing a 

new variable, which was  then determined by requiring gauge invariance. 

This, we saw, led to two consequences. One was to make the new variable 

into a scalar field and the second was to restrict the possible types 

of torsion that could couple to gauge fields. Indeed, torsion was required 
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to be essentially, the gradient of the new scalar field. An added 

bonus was pointed out, namely that the torsion being the gradient 

of a scalar field, could be used to construct a metric-torsion theory 

that allowed for the first time, propagating torsion (albeit in a 

restricted form through propagation of the scalar field), within the 

confines of a linear R theory. 

However, the job of coupling torsion to gauge fields was only 

half done. For, according to modern theories of elementary particle 

physics, the electromagnetic field is not the only gauge field. Instead, 

the electromagnetic field is just one of a large number of gauge fields 

that are introduced in order to explain the elementary forces. With 

this in mind, we set out to generalise the procedure of Hojman et. al. 

/8/ to non-abelian gauge theories /9/. 

It was shown that a generalisation of the non-abelian gauge 

covariant derivative in blind analogy with /8/, led us back to the 

torsionless example of general relativity upon requiring gauge invariance. 

A successful generalisation was carried out by modifying the gauge 

field strength tensor of non-abelian gauge fields in addition to 

modifying the non-abelian gauge covariant derivative. One curious 

aspect of this generalisation was that even though two new variables 

were introduced, in the final analysis, we were left with only one 

scalar field. Furthermore, torsion was restricted to be of a special 

form, the gradient of the scalar field. That is, the special form of 

torsion derived in the electrodynamic example was carried through to 

the non-abelian case. 

This effect was briefly explained as being due to the fact that 

the two modifications were equivalent to allowing the gauge coupling 

parameters, or gauge charges to become space-time functions. This 

would mean for example, that two electrons would repel each,other with 

a force that depends on their position in space-time. In particular, 

it would mean that the electromagnetic energy of an atom of say, Gold 
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would be different from that of an atom of say, aluminium. Indeed, 

W.T.Ni (Physical Review D19 (1979) 2260) has shown that if the ECSK 

theory is taken to be the correct theory of gravitation and if torsion 

is coupled to electrodynamics in the form suggested in Chapter II and 

ref./8/ then the equivalence principle would hold up to ti10-70U 

(where U is the newtonian potential and V denotes the gradient), i.e., 

the accelerations suffered by Gold and aluminium atoms in the earth's 

gravity field would differ by ',10-70U. However, we know that the 

equivalence principle has been tested experimentally to 12 orders of 

magnitude, 10 120U (see for example, V.B. Braginsky and V.I. Panov, 

JETP 34 (1972) 463) . So we are forced to abandon the coupling of 

torsion to gauge fields. Rather than throwing away torsion completely, 

it may be better to accept the suggestion of /5/ and couple torsion 

to matter fields other than gauge fields, and leave gauge fields to 

couple to the Christoffel connection as in general relativity. We 

need not be totally disheartened by this result, for we know that since 

1952, several workers in solid state physics, particularly, Kondo and Bilby, 

Bullough and Smith (see e.g. refs. in /5/) have taken up Riemann-Cartan 

geometry to describe the theory of continuous dislocations of crystals. 

So we may hope that although the theory of Chapter II cannot be 

defended as a description of space-time, it may lead to new effects in 

the continuous dislocation theory of crystals. 

Chapter III was devoted to a new form of variational principles. 

The conventional variational principle, studies small variations of an 

action integral over four-volume. The integrand is taken to be an 

invariant function of the field variables and their partial derivatives. 

It is well known that most physical field variables have specific 

geometrical properties. e.g., the components of a vector field form 

the electromagnetic potential, while the gravitational field is described 

by a metric tensor, whose components transform like those of a second 

rank symmetric tensor under general coordinate transformations. The 
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conventional variational principle is insensitive to the transformation 

properties of the field variables. Invariant variational principles 

are defined to remove this defect in the conventional variational 

principle. The technique, when applied to a metric variational problem, 

by taking a lagrangian of the form L(g,g,D g) imposed restrictions on 

the form of admissible lagrangians in requiring the lagrangian and its 

partial derivatives to satisfy three identities. It was shown that some 

of these identities were remarkable extensions of well known theorems in 

Riemannian geometry. 

Despite the expected complexities in the calculations, the 

invariant variational principle was generalised to metric-torsion 

theories by applying the method to a lagrangian of the form L(g,8g,aag, s,8s). 

S being the torsion tensor. Once again, the restrictions on the form 

of admissible lagrangians were derived in the form of three identities 

satisfied by the lagrangian and its partial derivatives. Due to the 

large number of terms in the identities, we showed how the method could 

be applied to derive field equations by deriving them for a simplified 

lagrangian of the form L(g,3g,aag,$). No generality is lost in doing 

this, except of course, the theory would not allow propagating torsion. 

This is an important feature of any metric-torsion theory, for without 

it, we have the result that in the vacuum (absence of matter), it is 

equivalent to general relativity. 

Lastly in Chapter IV, a new metric-torsion theory, allowing 

a parity-violating interaction was put forward. There, we saw that 

one could add an additional, pseudo-scalar term to the ECSK lagrangian 

while still keeping it linear in the curvature. Because of this 

linearity in the curvature, by virtue of the field equations, this 

theory is equivalent to general relativity, in the absence of any 

matter fields. Some suggestions to alleviate this problem are as 
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follows : 

(i) Use the special form of torsion, derived in 

Chapter II as an ansatz to obtain a restricted 

form of dynamic, propagating torsion . 

(ii) Add terms to the ECSK lagrangian that would allow 

propagating torsion. These terms could simply be 

either second derivatives in the torsion, or 

quadratics in the first derivatives of the 

torsion. 

This second possibility was discussed, and ruled out on the 

grounds that each additional term should, in general, carry an arbitrary 

coupling constant, analogous to the Newtonian constant. The parity-

violating effects were explicitly exhibited for two matter fields, the 

Dirac and Proca field. 

The parity-violation terms in the Proca field equations are 

the ones that should be looked at if one wishes to check them 

experimentally, for they offer the possibility of not only establishing 

the existence or non-existence of torsion, but offer the possibility 

of distinguishing between the ECSK theory and the theory we have put 

forward. 

In this thesis, we have concerned ourselves with the purely 

classical aspects of metric-torsion theories of gravity. It is to be 

hoped that the results contained herein will find some significance in 

a quantum theory of gravity. 
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APPENDIX II (A)  

In this appendix we shall prove that the group property on 

Au(=Ai  Ti) holds, i.e. if under a gauge transformation U(e), A is 

transformed into Aū and if under a further gauge transformation U(n), 

A' is transformed into Au  , then, can we find a parameter E, such 

that the gauge transformation U(E) = U(n) U(e) carries A into A" ? 
u 

Clearly this is an important group property, for without it, 

we cannot, beginning with series of infinitesimal gauge transformations, 

build up a finite gauge transformation. 

From equations (2.4.11) and (2.4.12) we have; 

A' = - g Ca
p  (3 U(e)) U-1(e) + U(c) AaU-1(e) 

a (A.1) 

and A" = - - Cau(auU(n)) U-1(n) + U(n)A' U
-1
(n) a 	g (A.2) 

Upon substitution for Ac' we obtain 

A' = --
g C

au(a uU(n)) U
-1
(n) a 

+ U(n){ - g Cau(auU(e)) U-1(e) + U(E) AaU-1(E)} U-1(n) 
(A. 3) 

- g Ca 	
-1U(E) + 110)a U(e)}U(E)} U-1(E) U-1(n) 

+ U(n) U(e)  AaU-1(e) U-1(n) (A.4) 

or, 

A" 	_ - 
g Capav{U(n) U(E) } 	{U(n) U(6)} -1 a 

+{U (n) U(E)}  Aa{U(n)U(e)} -1 

we have used the relations that U-1(e) U-1(n) = { U(n)U(e)} -1 
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and, 

(auU(n)) U(E) + U(n) auU(E) = DV(n) U(E)} . 	(A.7) 

Defining 	U(E) 	U(n) U(E), 

we have, 

A� 	_ 
- - 

Cau(3 U(E)) U-1(E) + U(E)AaU-1(E) (A.8) 

Therefore, we see that altering the gauge covariant derivative has 

not spoiled the underlying Lie algebra structure, and we can carry 

through the analysis as if nothing had changed. 
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APPENDIX II (B)  

As mentioned in g4, we shall prove in this appendix, that 

coupling of torsion through the modified gauge covariant derivative, 

D 	= a - ig b a  (T.A 
a
) , 

u 	u 	u  

to the unmodified field strength tensor, 

F 	=a A -aA - ig[A ,A ]+2 S a A 
uv 	p v 	v p 	u 	v 	vu. o 

(B.1)  

(B.2)  

leads to the trivial result that 

b a = ō 
a 
 and S Q = 0 	 (B.3) 

u 	u 	vu. 

From equation (2.4.10), remembering the notation that 

A = Ai  Ti  , 	 (B.4) 

we have that under a gauge transformation, Au  transforms as 

A' = - g Cau(a uU) U-1  + U Aa  U-1  

	

Suppose, under this transformation, F 	-} F' , then 
Pv 	Pv 

F' 	= a A' - a A' - ig [ A' ,A' ] + 2 S aA' uv 	u v 	V u 	 P 	v 	vu a 

(B.5)  

(B.6)  

= - gau{Cva (aaU)U } +au  {U AvU-1  } 

+ gav{CUa (aaU)U1 } - a4 7  AuU-1  

ig [ - g C a( aa )U-1 + UA U-1) , (- -Ca (a U)U-1+ UA U-1) ] u 	g v a 	v 

- 
2g  
C ,Q (aaU)U-1  Svu6  + 2U Aa U-1  Svuo. (B.7) 
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or, 

F' 	= U{3 A -a A -ig [ A , A ] + 2S a.A }U-1  
uv 	u v v u 	u v 	vp 	a 

—g 
(au  cva)(3 u)13-1 — g cva(a 3 	aU)U-1} + g 

(avCU()(3 U)U-1 
a 

+ g Cua3 {(a u)U-1} + (3 U) Av  U-1 - (avU) AuŪ 
1 

v a 

+ UAaU-1  -UA3 U-1 - 2i 
C a 	-1 	a 

v p 	p v 	g a (aaU)U 	Svp 

 

 

- ig [ - 1  C 11 0  U)U-1  , - 1  C a(3 U)U-1  ] g u a 	g v a (B.8)  

- ig [- g Cua(aaU)U-1, UAvU
-1 
 ]-ig [UAuU-1 	

- C
va(aaU)U-1  ] 

We must determine 
Cua 

 by requiring Fuv  to transform gauge covariantly, 

as the preserving of gauge invariance is our primary concern. The 

statement of gauge covariance is simply 

. r 	-1  

Fuv = U FuvU 

From equation (B8), we must therefore have, 

(B.9)  

- - (a U){ a C a  —a C a+ 2 C aS a } U-1  
g 	a 	u v 	v p 	o up 

+ g 
 (aaaaU){ Cuadva  - Cvadua}U-1  

+ g 
(aaU) {cu  ad - Cvad ua }(aaU-1) 

+ (aaU) {Avdua-  Au6va}U-1  + U{ 
Av6ua 

 - A
u6va

}(aaU-1) 

- g  CuaCs(aaU)(3SU-1) + g Cv aCs(3 U)(3 U-1) 

-CUa(3 U) AvU-1  - CuaU Av  (aaU 1) a
+C aUA (a U 1) +Ca(3  U) A U 1  

v Pa 	v a  u 
(B.10) 

= 0. 
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where we have used the following results: 

Since U(£) is a unitary matrix operator, we have 

UU-1  = U-1U = I, 

differentiating with respect to xu, 

(auu) u-1  = — u(aU-1) 

(B.11)  

(B.12)  

and, (auU-1) = - 	-1 U-1(auU)  U  
(B.13) 

Equation (B.10) can be further simplified, by collecting terms, to 

- 
g(aaU){a

u  Cv  a-avCUa+ 2CaaSvua- ig C
u 	

v 
aAv 

+ ig C aA 

+ ig6 a  A - ig S aA } U-1 
v 	v 

+ 1  (a a u)( c a6  a- c 
 a6  a}U-1 

g a a 	p v 	v u 

+ 1  (DU) {Ca6a-CaSa-CaCa+ C ac a } (aU 1) 
g a 	u v v u u v 	 v u 	 a  

+ U {Av6ua  - Au6va+ 
CvaAU 

 - CuaA}  (aaU 1) 

= 0. 	 (B.14) 

So, we must solve for the following four simultaneous equations 

a C a- a Ca+2C aS a+igA (C 
a
-S a)+ig A (5 a-  C a) = 0 	(B.15) v 	v u 	a vu 	u v 	v 	v u 	u  

 

C  (a6 a)  - 	(a 	a)  C 	S 	= 0 u v 	v p 

Cu
a (6va- C

v 
a) + Cva  (Cua- Gua) = 0 

A (Sua  -Cu  a ) + 	Cv  A  ( a  -5va ) = 0 

and 

(B.18) 

Equation (B.15) is a complex equation, so its solution is obtained by 

equating its real and imaginary parts separately, to zero. We then 

see that equation (B.18) is contained in (B.15). Noting that equation 

(B.16) is identical to the one obtained in the electrodynamic example 

allows us to write down its solution immediately as 
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C~a = f(x)Sua. 

Substitution into (B.17) reveals that either 

(B.19) 

f(x) = 0, or f(x) = 1 	 (B.20) 

The solution f(x) = 0 is singular (remember that Cua is the inverse 

of b a), and we discard it, leaving us with the trivial solution that 

Ca =S 
a 

and b
a =S a 

u 	u 	u 	u 

The real part of equation (B.15) is 

3 Cva -3 CUa + 2C6aS~ua = 0 

(B.21)  

(B.22)  

or, 

S a = 	0, vu  (B.23) 

after using equation (B.21). 

While equation (B.18), or equivalently, the imaginary part of 

equation (B.15) is satisfied identically due to equation (B.21). So 

we see that in the blind generalisation of the gauge covariant derivative 

from electrodynamics to non-abelian gauge fields, we have lost something. 

In reality, we have not gone far enough in the generalisation, leaving 

us with nothing but the torsionless case of general relativity /9/ . 



B =I
ax 	. 
ai 

(A. 3) 
i 

where 
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APPENDIX III (A)  

Construction of tensorial quantities  111/. 

The lagrangian scalar density that we have, satisfies the 

following transformation law, 

ij 1],k gij ,kk) = B L (gij .gij ,k'gij ,k2) 

under 	xl = xl (xj) 

(A.1)  

(A.2)  

axi 	a 
we shall also define B1 	=B1 	- 

-k 
B
i
., J 	axJ 	' 	j k 	8-k 	~ ' (A.4) 

Since one of the important features of IVP`s is the exploitation of the 

tensorial properties of the field functions, the transformation rules 

for gij' gij ,k an
d gij ,k2 are found to be; 

- = 
a  

ghk 	
B 
h 

lab 
k gab • 

(A.5) 

 g
h 

_ 	a - 

ghk,2 	
a -2

k 	
BahQ.Bbk gab 

+ 
Bah BbkQgab + Bh Bbkgab,cB2. 

(A.6) 

and 

D 	a b 	a 	a b 	a 	a b 
ghk,Zm ax 

m(B 
11213 kgab) + axm (B hB kZ ab) + 

axm(B 
hB kgab,cBQ 

). 

(A.7) 

Let us also define 

ij 	aL 	ij,k 	DL 

' agij 	
ag
ij,k 

DL 

 

(A.8) Dg.. ,k2, 

and their tensorial counterparts will be denoted by fij, Iij'k and 
Aij,k2 

1j respectively. The last, because A'kQ is already a tensor density. We 
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shall now show that Aij  and Aij,k are not tensor densities while Aij,kR 

is, by evaluating their transformation laws. Differentiate (Al) with 

respect to gab cd' gab c 
and g

ab' 

BAab ,  cd @L 	a 
gij ,kQ, 

@gij,kQ 	 gab,cd 

(A.9)  

(A.10)  
BAab,cd =  A

ij,kk BaBbBcBd 
i k 

having used (A.7), 

Equation (A.10) demonstrates clearly that A
id id. 

is a tensor density 

of weight 1 and contravariant rank 4. 

We also have 

BAab ,  c = 	@L 	@gij ,k2 + 	@L 	Di.. ,k 
gij,kZ gab ,c 	agij,k 	@gab,c  

(A.11) 

or, 

BA ab , c nlj ,kR  @gij  ,k2.  + Tij ,k 	agij ,k 

agab,c 	agab,c 

(A.12) 

we need go no further, for we see that this first term in equation 

(A.12) spoils that tensorial character of A
ab,c. 

Similarly, we have 

BAab = dij ,k2,  agij ,kR  + -ij,k ag
ij ,k + 	-ij 251_ 

@gab 	agab 	@gab 

(A.13) 

Here, the first two terms spoil the tensorial character of Ali. 

There was a purpose in deriving equations (A.10), (A.12) and (A.13). 



We shall need the equations in order to derive their tensorial forms. 

The method we shall use is an indirect one, and is based on the 

definition of a scalar quantity G, 

G = A1i 
'kQh 	

1] k 
.. 	+ A  ' hi 	+ A1J 	hi  . ' 
J'k1t 	 J'

k 	
J 

(A.14)  

where the h.. are components of an arbitrary second rank tensor having 
i 

the same symmetries as the metric tensor. This quantity, G, is a scalar 

density : 

BG = BAab'c ab,cd + BA
ab'c 

hab,c + BAabhab '  (A.15)  

agi
J' kQ 	

agi, 
k 	agij,k  h 	

+ 	 L 
 hab ,c + 	

g 	
hab 

agab,cd 	agab,c 	a ab 

agij ,k 	8g _k 
2g 	hab,c + 

Dg 
hab 

ab , c 	ab  

or, 

BG = Aii,kk 

+ Ali 'k  

  

hab  

 

 

a g  ab (A.16)  

  

From equations (A.5), (A.6) and (A.7), it is easy to see that the 

terms in square brackets in equation (A.16) are simply -.. kQ hi' 
	and 
J,k  

h.. respectively. 

We have therefore, 

BG = G , (A.17)  

i.e., G is ascalar density. 
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Now what is required is the construction of quantities Hij, fij,k so 

that G can be written as 

G= A1j,kZh1. 
k2 

+ fij,khl 
k 

+ 111Jh.. 
J~ 	J; 

(A.18)  

where the semi-colon denotes covariant differentiation. As we shall 

be needing II1J and II1J'k , later on for the non-zero torsion example, 

we shall evaluate II1J and 
IIi.,k 

here, without assuming any symmetry on 

the connection symbols rljk . In reality, for the metric example, we 

always have the Christoffel symbols in mind. We know that 

hi. k = h.. k - r
ki h a 	-r 	hia J~ 	J, 	j 	k j 

(A.19)  

Similarly for h.. 1J ,k2 
Substitution into (A.18) yields 

G = II 1J 	k hij + II1J' hi- k 1J ,k rki haj - 
II1j 'k 

rkj hia J, 

+ A13,k2h.. 	-A
1j,k2ra h 	- A13 ,k2r

a h 	-Aij,k2ra.h. 1J ,k2 	2i aj ,k 	 2j la,k  

i k2 a 	i k2 ,- _ 	i k2 S 
r 
a
h 	

i k2 S a 
-A J' rki haj,2-A J' r cvkj 

hi 	
+ 

	

a,Q A J' r2.k si aj+A J' 	 r2,rkshaj 

+ Aij,kLr Rra h + A1J'k2rs ra h 	+ Aij'k2rra h. 
2j ki aS 	2k Sj ia 	2J kS 1a 

+ AiJ'k2r.r
a h 	- Aij ikira 	h 	- ra 	h. A 1J'k2(A.20) kj Sa 	 ki,2 aj 	kj 	,2 1a 

Collecting together terms, and equating coefficients of h.. and 

h.. 	after suitable symmetrisations, we find that 
1J,k 
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Hij,k = A1J'k + 
2Aaj,kkrQa 

+ 2. Aal'kkrj 	+ 
Aij,a2. 

rka 	
(A.21) 

while 

Hij = Aij + Haj,k rka + Ha1,k rka 
	

AaJ,k9,rQk 
ria 

ai k2. s 	j 	as,k2 j 	i 	aj,k9, s 	i - A 	
r£k rka - 2A 	r 	rka 

- 	
rQa ~s 	rkS 

Aai,kQra rj + Aaj'kk ri 	Aai,kQ rj 
Qa ka 	ka,Q 	ka,2 

(A.22) 

where the symmetries of Au3,kk have been used and also the symmetry 

of Hij'k in indices (ij). 

The proof that the quantities Hij,k and Hij, given in equations 

(A.21) and (A.22) are tensorial is quite easy. We have that G, as 

defined by equation (A.18) is a scalar density. 

We also know that 

Aij,k2 
h.. 
1J;kk 

is a scalar density, so we have 

G - Aij'h. . 
1J ;k2. 

being a scalar density. Hence 

H ij 	ij  + HiJ'k 
h. ;k 

(A.23)  

(A.24)  

(A.25)  

are components of a scalar density, and by a simple generalisation 

of the quotient theorems of tensor calculus, we have that H1J 

is a tensor density of weight 1 and contravariant rank 2, while Hij'k 

is a tensor density of rank 3. 



and 

a-m (B

a 
h2Bbk 

gab ) + ghk,2m 
axm (BhBkQgab)  + a-xm (BhBkBQgab,c)  
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APPENDIX III (B).  

Construction of identities for L = L(g,ag,aag) /11/.  

We have, 

L(gij'gi j,k, ij,k2 = BL(gij'gi j,k,gij,k2)  (B.1) 

with 

- 	 a b 
= ghk 	Bh Bk gab 	' (B.2) 

a b 	a b 	a b 
ghk = Bj2  B k gab + Bh nb gab + Bh Bk gab , cB2 (B. 3) 

(B. 4) 

The first identity.  

The right hand side of equation (B.1) is independent of B 
npq  

so, differentiating (B.1) with respect to B1  
npq 

aL 	aghk+ 	aL 	
aghk,2+  aL 	 ghk,2m = 0 

	(B.5) 
aB 

i 	i 	i 
aghk aBnpq 

 aghk,2 aBn
pq 	 ghk,2m npq 

Inspection of equations (B.2) and (B.3) shows that 
ghk 

 and g
hk 2 ,  

are independent of B1 	, so we have npq 

hk,2m 
= 0 	 (B.6) 

Explicitly writing out (B.4), it is easy to show that 



or, 

C 	

(npq) = 
(~nk,pq + xkn,pq) g Bb 	0 

ib k 
(B.9) 
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aghk'Qm 
= Si Sh d2m S Bk gab + 

B
a 
si 

6
n d2 sm gab 

aBi 
npq 

(B.7) 

so that (B.6) can be written as 

 

 

Ank,pq 	Bb + hn,Pq Bb 	
1(npq) = 0 

gib k 	 h gib 

 

 

(3.8) 

   

This is true for arbitrary Bbk, so, in particular, it is true for 

b 	b 
B k - ō k. 

We therefore have 

 nk,pq + Tkn,Pq 	
I(npq) 

= 0 	 (B.10) 

Also, since this is a tensorial equation, we can remove the "bars" 

(
Ank,Pq + Akn~Pq 

1 
(nPq) = 0 (B.11) 

where we have used the notation [ ](npq), to denote symmetrisation in 

indices(npq) because B npq is totally symmetric in (npq). 

So,we have 

Ank,Pg + nkn,Pg + APk,gn + AkP,gn + Agk'pn + Akq'
pn 

= 0 

or, 
	 (B.12) 

Akn,Pq + AkP,gn + Akq,nP = 0 	 (B.13) 

upon using the symmetries 
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Ai.7 ,k2 = AJ i ,kk = Ai3 ,kk 

From equation (B.13) , 

Akn,Pg = - Akp,gn - Akg,nP 

Apn,kq 	APg,nk + Agn,kp 	AgP,kn 

= 2APq,nk + AnP,kg + Ang,kP 

= 2 APq,nk - Ank,gP 

therefore, 

(B.14)  

(B.15)  

(B.16)  

(B.17)  

(B.18)  

Ank,Pg = Apq,nk (B.19)  

This is the first identity that was written down in §2. 

The second identity. 

In deriving the second of the three identities, we use the fact 

that equation (B.1) is independent of Bi pq . We have, 

8L aghk 	8L 	
aghk,Q 	

aL 	
aghk,km 

= 0 i 

aB 
i 	- 	i 

aghk aBpq 	aghk,k aBpq 	ag~k,km 	Pq 

(B.20)  

looking at the functional form of equation (B.2) we are left with 

-hk,k aghk,k + nhk,km 	3-ft  
i 	i 

aBPq 	aBPq 

= 0 	(B.21) 

Using equation (B.3), we find 
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hk, 	a 
A 	ghk,2 _ 	~Pk,q 

Bbk glb 
+ 71kP,q Bbk gib, 	(B.22) 

while equation (B.4) yields 

Thk ,2m aghk,2m 

aB1 

Pq 

= g -pk,gm Bb + Apk'gm BB Bb 	g. km 	m k ib,c 

-hp,2q b 	-pk,2q b 	-hp,gm b + 	
h2 	 hm gib 	k2 gib 	gib 

+ -hP,gm BbBC 	+ Apk'2q BbBc 
h m gib,c 	k 2 	g ib,c 

+ pp,kciBb Bc + Āhk,Pq Ba Bb 
h 2 gib,c 	h k gab,i (B.23) 

Substituting (B.22) and (B.23) into (B.21) and simplifying, we obtain 

g Bb (APk'q + Āgk'p) + 2g Bb 	XkP,gm + 2g. Bb 	Akq,Pm 
ib k 	 ib km 	ib km 

c bkp,gm 	b c kq,pm 
+2gib,c B i B k A 	+2gib,c B k B m 

A 

+ g 	B c B
cb,i 	m 

71..mk,Pq = 0 	(B.24) 

(after symmetrisation in (pq) indices due to symmetry of Bi 	in (pq)). 
Pq 

Equation (B.24) is true for all B1: , in particular, it is true for 

Bi. = d l. , so that 

511k
(Apk'q 	Agk'p) + 2g. 

	A
kP,gm + 

2gik,m 
Akq,Pm 

DB 
Pq 

+ 	nmk,Pq = 0 gmk,i (B.25) 
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From Appendix III(A), equation (A.21) we have 

ij ,k 	ij ,k 	aj ,k2 i 	ai,k2 j 	ij ,a2 k 
T[ 	= n 	+ 2n 	

r2a + 2A 	r2a + A 
	rla 

(B.26)  

so that in a gaussian normal coordinate system, 

II 
ij,k = Aij,k (B.27)  

remembering that in this example, rljk  = {j k} . 

Evaluating equation (B.25) in a gaussian normal coordinate 

system, we obtain 

gik  (IIpk,q  + IIgk,p) = 0 (B.28)  

But this is a tensor equation,removing the "bars", 

nij ,k +  Bkj ,i = 0 	 (3.29) 

or, 
Bij ,k = 	Bkj ,i = - Bjk,i = 11ik,j = Bki,j = -Bji,k 

(B.30)  

so that, 

Bij ,k = 0 (B.31)  

In (B.30), we have repeatedly used (B.29) and the symmetry property 

Bij,k = Bji,k (B.32)  

Equation (B.32) is the second identity we set out to prove, and we have 

shown, that indeed, equation (3.2.20) does imply equation (3.2.21) in 

§ 2.1 
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The third identity.  

To obtain this last identity, we differentiate equation (B.1) 

with respect to B1  

aL 
= B Aj L, 

DB. 	1 

J 

where, 	B. A3 
	

= alk' 

therefore, 

= B A3. .  
1 

aL  =  hk  aghk +  -hk,taghk,Q 
 + -hk,Rm  aghk,Qm 

DB 1 	DB1 	DB 	aBl  
j 	j 	j 	j 

Equation (B.2) and (B.3) imply 

Thk 
 aghk 	_  -jkBb 	+ nkj Bb 

aBi 	kgib k 	gib 
3 

(B.33)  

(B.34)  

(B.35)  

(B.36)  

(B.37) 

and 

nhk,Q Dg 
hk,R 	Akj'R  Bb 	+ A3k 'QBb 	+4ik,QBb Bc 

aBi 

	

	ktgib 	kRgib 	k Q gib,c 
J 

+ nk,  ,QBbkB 	b Q gib,c 
+ AQk'J B k  B

g 
R 

cb,' 	
(B.38) 

hk Qm 	aghk,Qm while equation (B.4) allows us to evaluate A ' • aBi 
3 

However, as this term is rather cumbersome, we shall not 

write it down, except to say that after substitution into (B.36) 

and using (B.33) we can write 
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BL A. = (A3k+ Ak3) B
bk gib + (Ak3't+ A3k'k) Bbkkgib 

+ (Ājk,t+ Ākj,k) Bb B 	
i 

c g 	+ Akk'J Bb Bc g 	+ Bb 	Āhj'km g. 

	

k 	b,c 	
B
k 

B
k cb,i 	hkm 	ib 

+ Ba 
Ahj,km 

g 	Bc + Ba Bb hk'k3g 	+ Bb 	Ājk,kmg 
hk 	ai,c m 	hk k 	ab,i 	kkm 	ib 

+ 
Bb Ājk,km

g. 	B
c 	+ Bb Ba Thk

'
tj g 
	

+ Ba 	Āhj,km Bc g 
k2 	ib,c m 	kk h 	ab ,i 	hm 	k al 

+ Ba Bb Ahk, jm g 	+ Bb Ā jk,km 	Bc g 	+ Bb 	Ba Ahk,~mg 
hm k 	 ab,i 	km 	k ib,c 	km h 	ab,i 

+ Bc ĀJk,kmBb g. 	+ c Ba -hj km g 	+ A3k'ku~b B
cBd g. km 	k ib,c 	km h 	ai,c 	k 2 m ib,cd 

+ Āhj,kmBa Bc Bd g 	+ Āhk,jmBa Bb Bd g 	+ Āhk,2jBa Bb 
Bcg h k m ai,cd 	h k m ab,id 	h k k ab,ci 

(B.39)  

As it stands, this is not a nice expression:, but we can, as before 

simplify by taking 

Bi 	i = S 	, A. = Si 	, etc (B.40)  

Equation (B.39) then reduces to 

LS1 = (A3k + Ak3 ) gik + (Ā3k'k+ Āk3'k) gik k+ A
k
k,J gkk i 

+ Ājk,km 	+ 

 

-hj ,km 	+ Ahk'3m 	+ Āhk '2'3 
gik,km 	ghi,tm 	ghk,im 	ghk,ki 

(B.41)  

We can simplify further, by taking our coordinate system to be gaussian 

normal. We then have, 
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LS3. = (AJk 
+Aki) glk + Ajk,2m g

i 	
+ Akj,Qm 

k,2m 
	
gik,Qm 

+ A2"k'jm + Atk'mj 
gtk,im 	gQk mi 

(B.42) 

The presence of second derivatives of the metric tensor in 

equation (B.42) tells us that some function of the Riemann-Christoffel 

tensor is going to come in. 

In a gaussian normal coordinate system, the Riemann-Christoffel 

curvature tensor is given by 

2R
ia,km({ }) 	gik,Lm + g2m,ik 	ga,im 	gim,2k 

From equation (B.13), we have that 

Ajk,mQ + AJR,mk 	-Ajm,k2 

(B.43)  

(B.44)  

multiplying throughout by g. 
ik,2m 

	

Ajk,mQ + 	AjR,mk = _ 	Ajm,k2 
gik,tm 	gik,tm 	gik,tm 

or sinceg
ik,2m is symmetric in (2,m), 

Ajk,m2 = -2
A jm,k2 

gik,tm 	gik,tm 

	

= 	
jk,mt 

-2gi 	
A 

m,tk 

(B.45)  

(B.46)  

(B.47)  

Similarly, we have 

g 	Ajk,m~. = -2 g 	Ajk,mt 
2m,ik 	2k,im 

(B.48)  

Putting together equations (B.43), (B.47) and (B.48), we obtain, 
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211ik' 	iQkm({}) = A3k'm
i(

gik,£m + gkm,ik)  

- Aik,mQ
(gkk,im + gim,Qk)  

(B.49)  

or, using (B.47) and (B.48) 

Ajk,m2
R. km({ }) = AJk'l(gik,Rm + aQm,ik)  (B.50)  

In equation (B.42) we have the following terms: 

Ajk,Qm 	+  A2k,mj 
gik,km 	ga ,mi 

+ Akj ,Qm 	 +Akk,jm 
gik,Rm 	ga ,im 

or, 
jk,Qm 

+ A 
jk,km A 	

gik,Qm 	gRm,ik 

+ 
A 

kj ,Qm 	 + A jk,2m 
gik,Zm 	gtm,ik 

where we have used the identity A
ij,kk = AkZ,ij  derived earlier. 

Therefore, we can rewrite equation (B.42) as 

L Si. = (Aik  +Aki) gik  + 2Aik,Qm(gik,2m + gQm,ik) 	(B.51) 
1 

Substituting from equation (B.50), 

L Sie  = (Ajk  + AkJ)gik + 3 Ajk,m2 RiQkm`C}) • 
(B.52) 

From appendix III(A), equation (A.22) we have, in a gaussian normal 

coordinate system, 
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Bij = Aij + Aaj ,kQr  i 	+ Aai,kk 
r j 

ka,9 	ka,Q 

remembering that in this example rijk  = {jk }. 

Also, in gaussian normal coordinates, 

rpq,t = {p
kq},Q = 2 

gkm(gmp,gQ
+ g

mq,pt gpq,m2.), 
 

So we have that 

Aaj kQ r  i 	+ Aa.i ,kJr  j 
ka,Q 	ka,Q 

j = 
1 
{gim

A
a , 	_ kQ(gmk,ak + 

gma,kk 	gka,mQ 

im ai.,kQ + gim 	(g
mk,a£ 

+ g
ma,kQ 

 - gka,mt) }  

(B.53)  

(B.54)  

(B.55)  

With the use of equation (B.47), (B.53) can be reduced, after using 

(B.55), to 

ij 	 ij 	1 	im aj ,kQ II 	= A 	+ 
	

g 	(gmk,aQ  + gat,mk)  

+ 	
g
j m 

Aal kt(gmk,aQ 
+ g

at,mk).  (B.56)  

Equation (B.50) allows us to write this as 

Eij = Ali + 	gim Aa3,kQ Rmtak({}) 

1 im A 	Rai,kQ 	4  
+ 4 g 	mQak

({}) 
 3 (B.57)  



or, 

Bij = A1J +3 
	
R1JZak 

({ }) + 
3 

Aai,' 'R j Zak  ({ }) (B.58) 
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Finally, substituting (B.58) into equation (B.52), 

  

1,6.j = gik l BJk - 3 Aak,mk RJRam({ }) - 
3 

Aaj 
 'mQRk2am({}) 

 

+ Rkj - 3  Aaj  ,mk Rkkam({ }) - 3 Aak, 	RJ 
2am

({ }) 

  

8 	Jk,mA' 	
({ }) 7 

 

(B.59) 

but now, we note the IIij is symmetric in (ij), so, symmetrising, 

j Lā1 	
g ik 

2II 
jk 

- 3
aJ,

ml R
k
2am({}) + 8 

AaJ'mQRkQam
({})  

  

Therefore, we have 

1 2  L  g1J _ R1J + 3  AaJ,mL R1
Qam

({})  

(B.60)  

(B.61)  

which was the identity we set out to prove. 
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APPENDIX IV (A)  

The possible scalars quadratic in contortion one can 

construct in the usual ECSK theory, we have shown in the text to be 

three ; 

K = K a K va 
1 aa v  

a va 
K2  = Kva  Ka  

and 

A va 
K3  = Kva K A  

Upon allowing the possibility of including the pseudoscalar density 

Euvpa , we have four additional terms, quadratic in the contortion 

tensor, that can be allowed. They are, 

Jl 
 = euvpa 

Kpaa  Kvp 
a 	

(A4) 

J2  = EP  vPa Kaau  Kvpa 	 (A5) 

J3  = euvpa  KauvKpaa 	 (A6) 

and, 

= 
 pupa 

K 	Ka  
apv pa 

(A7) 

So it seems that one can add seven terms, quadratic in the contortion 

tensor to the Einstein lagrangian, to form a new lagrangian for a metric-

torsion theory. This would in general, necessitate the introduction 

of seven arbitrary parameters, governing the strength of each of the 

interactions. However, closer examination of equations (A.4) to (A.7) 

reveals that there are identities among them /19/: 

(Al) 

(A2)  

(A3)  



-126- 

and 

J3 + 4J1 +4J2 	0 

J4 +2J1 +J2 =0 

(A8)  

(A9)  

These identities reduce the number of possible linearly independent 

scalars to five. It still is not a satisfactory situation, for we 

have six coupling parameters in the theory, including the Newtonian 

gravitational constant. 

The situation gets even worse if we now try to build a theory 

with propagating torsion. The least requirement on the lagrangian for 

such a theory, is simple dependence on quadratics in the derivatives 

of the contortion. We have no physical reason for picking one such 

scalar over any other. The proper valid procedure in constructing 

such a lagrangian is to write down all such possible scalars, and 

incorporate them into the lagrangian, taking note to add a coupling 

parameter to the theory for each of the scalars put into the lagrangian. 

The situation now is ludicrous, for we have sixteen (:) possible scalars, 

as illustrated below: We can write 

16 	1 

LK 	=1 16,
11-
G 	

Ri (A10)  

where 

K1 = Ka ;aK
aa6'Q 
	K9 = K

$aX;aKaaX;s 

K2 = Ka
aa

;crKsX so ' 	
K10= K$aX

;aK6aX;8 

asA 
K3 = K 	Kas~'o 	K11_ KaaX

;aK6$X;(3 

K = Ka$a;aK X;$ 	K = KaaX 	
a 

4 	Xa 	12 	
;aKa a;g 

K = KsaQ;aK X;$ 	K = K
aaa 

	
$ 

S 	~ 	13 	;aKx 6, 0  

K6 = Kaa$;aKXa ;s 	K14= K
6Ra

;aKxaa; 

K7 = K
aaX

;aK8aA; 	
K15- Kaaa;aKXaX;a 

K8 = K
daX

;aKaa X;$ 	K16= Ka$a;aKXaa;6 	(All) 
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vpu 
Allowing for Ell 	in such a theory would make things even 

worse, so clearly the approach we have adopted is a reasonable one. 

For not only do we allow for euvpa, but we also, through requiring 

linearity in the curvature tensor, pick out only one additional scalar, 

quadratic in the torsion, namely J
1
. 
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APPENDIX IV (B)  

Elements of anholonomic tetrad.  

In a Riemann-Cartan geometry, just as in Riemannian geometry we 

are compelled to introduce a (pseudo-) orthonormal basis of four vectors 

ea  , the greek index a= 1,2,3,4 labels the tetrad, at each point of the 

space-time as anholonomic coordinates. 

In component form, 

ea  = ea 	a. , 
i 

while the dual basis of one-forms is, 

8a  = ea. dx 

Because the tetrad is taken to be (pseudo-) orthonormal, we have the 

relations 

ea  e 	= Sj 
i a 	i es  e 1  = S s 

i a 	a (B3)  

and 
a S 

gij = e i 	e j gas 
(B4)  

among the components eai and their reciprocals eat. The gas  

are components of the Minkowski metric tensor; 

i 	 ij 
ea _ gang 	

es 
j ; gas= diag (-1,-1,-1,+1) 

The object of anholonomity, eaa is defined by 

Y 	i j 	Y 	 S 
as = ea e 	

a  
6 	Cie  j]'

• 
	

0 
	

_ 
asY- gy3 	as 

The covariant derivative  

Suppose we have a matter field 'p  which, under an infinitesimal 

Lorentz transformation dxY  , behaves as follows : 

4 = as (dxY)fYscp , 	 (B7) 

(B1)  

(B2)  

(B5)  

(B6)  
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f $ is an operator determined by the Lorentz group. The covariant 

derivative of * is then defined as 

Vab = 
aa

tp  +rYasf s4, 
Y 

Remembering that 

rl.k = {j k}- K. 

and using (B3), (B5), the connection 
r1as

can be expressed in 

anholonomic coordinates as 

ra8Y -gYS 
ra  s 	-S2

asy 
 + SZsya- S2Yas-K

asy  

where 

KasY 	eal 
esJ 

eYk K..  

equation (B10) gives rise to the following symmetries 

(B10)  

(B11)  

ra(sY) = 0 	 (B12) 

rCa ] = - 0[aay]
-K

Casy] 	
(B13) 

and we also have 

gsY rsYa= -  2c2sas  + Ksas 

If tp is a spinor field, we have from /16/ , that 

(314) 

1 
f  as 

__ 
	YCaYs] 

(B15) 

(B8)  

(B9)  

So that the covariant derivative of a spinor field is given by 
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oa = aa4 - 1rasy yYY~V 

* 
since the Dirac adjoint is defined by T 	yo, we have 

__ 	_ 1 	Y i3 
vab 	aa'' 	4 ra$y V~ Y Y 

(B16)  

(B17)  

This completes our rather brief introduction to tetrads. Most of 

this appendix is contained in Hehl and Datta /16/, also Hehl et al /5/. 
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APPENDIX IV (C)  

In this appendix, we shall show how one can solve equation 

(4.6.17); 

vA 	a 	a  
Tkji = Tkji + pn iaKvap(dkdj 

-djdk) 

to obtain equation (4.6.18). 

We first note that, 

2pnvA iaK 	(S
ap
.

kj 

vA. ap 
= 2p n Lad kj (S 	- S 	- Spva) 

_ -2pnvA iad
k~ Svlp 

from antisymmetry of nvl̀ ia, which implies 

vxia S~pv= -nv~i n 	a SvPA 

and antisymmetry of SvpA in its first two indices further implies 

vA. 
S~pv = nvai n 	aS

pvA 

Substitution of (C3) into (C1) yields , 

Tkji 
= Tkji + 2p nvAaldki Svap 

Multiplying (C6) by nkjaR and simplifying, we find that 

nva 	
nkja~ dap S 	= -2 Taai ai 	kj vap 

(Cl) 

(C2)  

(C3)  

(C4)  

(C5)  

(C6)  

(C7)  



with 
1 

S. 	=  	CTkQ~ + 2p 
nkiasTasi] 

JZ 2(1+8p
2
) (   

(C13) 
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so that substitution back into equation (C6) multiplied by n
k'as 

gives : 

kj as 	kj as 	ka j$ 
n 	Tkji =Tk ji n 	- 4p g g Tkji (C8)  

Further multiplication of (C8) by 
naspo 

gives, after simplification, 

T 	- 2p nk3aST 	= Tas i 
kji 	' 

from (C8) we have 

kjas 	kjas 	2 ka js 
2pn 	Tkji = 2P Tk jin 	- 8p g g Tkji 	(C10) 

substituting into (C9) yields : 

Tas 	2 ka j$T 	
= 
T 

i 	
n as +2 T 	
kjas 

. +8 P g g kji 	 P kji (C11) 

Therefore we have finally, 

Sk,l + 	
is. -g..Sk2 = 

	Ta$1 	(6 S. 
+ 2pnkias) 	(C12) 

(1+8p
2
)

k 

(C9)  

Together (C12) and (C13) yield the desired equation, namely equation 

(4.6.18). 
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PRINCIPLE OF HAMILTON 

by Attilio Palatini 

Rendiconti del Circolo Matematico di Palermo 

10 August 1919, 43, 203-212 

[Translation by Roberto Hojman and Chandrasekher Mukkuj 

TRANSLATOR'S NOTE 

In this translation of Palatini's article, we have tried to 
adhere as closely as possible to the original, not only as regards 
the original text, but also the choice of english equivalents for 
technical expressions. 	It should be noted that Palatini not only 
uses superscripts for contravariant indices but appends round 
brackets to them. This is not to be confused with the modern use 

of round brackets - denoting symmetrization. {lk,is the 

historical form of the Christoffel symbols. In keeping with the 

summation convention, they are nowadays written as {jk}  . We 

retain the historical form. To avoid sources of confusion, we have 
introduced extra labelling of equations. These are with greek 
indices. We would like to take this opportunity to thank Professors 
P.G. Bergmann and V. De Sabbata for their kind hospitality at Erice. 

INTRODUCTION 

It is already well known that in the general theory of 
relativity, physical space is characterized by a quadratic 
differential form (that mixes space and time) 

ds2  = >dxi gij 	dxj 

ij 
(1) 
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in the differentials of the four co-ordinate variables x0  = t,xl, 
x2,x3, whose coefficients gi 	are the gravitational potentials 
of Einstein. The discriminant of (1) - essentially negative - will 
be denoted by (g). 

The mutual interdependence of all physical phenomena and the 
geometric nature of the space is completely determined by the ten 
gravitational equations 

Gik 	[--
2 
G + aJ gik 	-K T. 

\\
3  

	

where Gik  = I 	{ih,hk} is the Riemann curvature tensor; 3 	p  h 

G = (ik)  i 

	

Gik 
 g 	is the mean curvature of the four-dimensional 

O 	ik 

space (1); T, is the energetic tensor that is determined from all 
the elements lkst resses, quantity of motion, energy density and 
flux - that characterize the physical phenomena; is and A are 
two universal constants. 

After these gravitational equations were discovered by Einstein, 
efforts were made to derive them from a variational principle just 
as one derives the equations of Lagrange from Hamiltonian's principle 
in ordinary mechanics. 

This goal was reached by Einstein himself, establishing a ney 
Hamiltonian principle that was made precise by Hilbert and Weyl 1   

However the procedures followed by these authors do not conform 
to the spirit of the absolute differential calculus, because in 
deriving the invariant equations, one must use non-invariant 
formulae. 

My aim is to reach the same goal, while preserving the in-
variance of all the formulae at every step. In doing this, I will 
take advantage of the results obtained in my note: "On the 
foundations of the absolute differential calculus" (see the 
preceding note in this volume; Rend. Circ. Mat. Palermo, Vol.43, 
1919); Hereafter referred to as N. 

1. FUNDAMENTAL POSTULATE 

We begin by introducing with Hilbert, the following fundamental 
postulate: The laws of physics depend on a unique, universal 
function H having the following properties: 

(a) It is invariant with respect to general co-ordinate 
transformations; 

(2) 
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(b) It depends on the gravitational potentials g(ik)  and on 
the corresponding Christoffel and Riemann symbols and 

(c) it depends on the elements that characterize the physical 
phenomena. 

However, we have no a priori knowledge of the explicit form of 
the universal function H and must therefore introduce some 
hypotheses. 

From the point of view of the synthesis of all physical 
phenomena, it is convenient to suppose that 

H = G+L+2A 

where A is a universal constant, G (the mean curvature of the 
four-dimensional space) is a term that contains the information 
and characterizes the influence of the space-time on the behaviour 
of the phenomena, and L is a term that includes all the 
manifestations of physical origin except those that are intimately 
related.to the structure of space-time itself. 

2. STRUCTURE OF THE FUNCTION L. REDUCED MECHANICAL SCHEME 

From the speculative point of view, it seems desirable to 
attribute to all these manifestations (direct or indirect) an 
electromagnetic origin (as should be the case for the luminous and 
thermodynamic phenomena).-  The expression for L should depend in 
a complicated way on the parameters fixing the electromagnetic 
state of the system, and the gravitational equations should not be 
isolated from those governing the behaviour of all the other 
phenomena. 

Having in mind the possibility of adopting the study to 
concrete cases, it is convenient to limit oneself to the con-
sideration of the gravitational field by itself and to collect 
everything that arises from the set of physical phenomena (ex-
cluding gravitation), into a specific function of position and 
time, precisely in an energetic tensor Tik. 

A similar situation is found in ordinary mechanics when wishing 
for instance, to study the motion in a conservative field, of a 
material point on a frictional surface, the energetic analysis of 
the phenomena (that might lead one to consider the thermal aspects 
Pi* the problem when taking into account the heat dissipated due to 
friction) is replaced by introducing a position dependent non-
conservative frictional force. 

In the usual mechanical approach, taking into account a whole 
set of circ»mstances (giving rise to loss of kinetic energy) would 
be impossible, or at least quite laborious to analyse with profit. 
Instead, one is led to consider as given, forces that are not 
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derivable from a potential. In the same way, in the Einsteinian 
scheme, it is satisfactory to study, instead of L (whose precise 
expression should depend on a whole on a set of phenomena, making 
its explicit study impossible or undesirable) the tensor Tik. 

By using Tik, an appropriate matter Lagrangian *) 
3 

L = K 
>   ik Tik 

 g
(ik) 

0 

can be constructed so as to lead us to the gravitational equations. 
K denotes a universal constant of homogeneity. The given elements 
of the tensor Tik  are not to be considered as independent of the 
g(ik), instead, one should take the products fi Tik = raik (which 
constitute the so-called tensor of volume associated to the tensor 
Tik) . 

3. PRINCIPLE OF HANIILTON 

With these assumptions, and taking the form of the universal 
function to be 

H = G + L + 2X 
with 3 

 

L = K 
> 	

Tik  g(lk)  ,• 
0  ik 

we want to show that the gravitational equations follow from the 
variational principle 

d J HdS=O 	 (4) 

*) For such a purpose one can again invoke the mentioned analogy 
with classical mechanics, by noting that from Hamilton's variational 

principle d f(T  + U) dt = 0 [T kinetic energy, U potential] 

is valid for the case of conservative forces, one can go to the 
generalized principle, valid for any force with components 
Xi (i = 1,2,3) by substituting for U the linear expression 
:3- 

 . Xixi  and assuming 3Xi  =0. The expression (3) for L is in 

a1sense the analogue of >Xixi. 

1 1  

(3) 
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here S denotes an arbitrary region of the four-dimensional space-
tlme and 6 denotes a variation with respect to the potentials 
glik) with the condition that dg`1k) (and their first and second 
derivatives) vanish on the boundary of S. 

Before proceeding with the proof of our proposition, it is 
necessary to establish some preliminary formulae. 

4. PRELIMINARY FORMULAE 
Variation of the Christoffel symbols: Let us begin with the 

identities *) 

8 
~nk 	j 	I { p } gpk + 	Pi } gnp, = 	0 , 	( 5 ) 

	 p L 

essentially expressing the well-known lemma of Ricci. They can be 
easily verified by using the expressions for the Christoffel 
symbols of the second kind. 

With the above definition of 6 , we write 6g
nk 

= enk and 
applying 6 to (5) one gets 

De 
 gpk60,1  } + gnp6 {pj }1 = 0. 

/ 
(Inj) 

 P 	epk + { p } enpj - axnk j P 	 P 

The first two terms constitute the covariant derivative of the 
system enk (cf. formula (11+) of N for the particular case m = 2), 
therefore- 

enk I j 
=  [Bpk [P } + g np {Pj }1 	P 

(a) 

Permuting k with j and then h with j, and summing up the 
two equations thus obtained and then subtracting (a) one gets 

hk 
nhk j = 

	P 
g.6{} 

where 

nnkj 	2 (e njlk 	ekjl n - enkl jJ . 

*) 
In this section, summation indices have no limits, so that all 

considerations here, will be valid not only for the four-
dimensional ds2 of Einstein, but for any ds2. 

(6) 
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Multiplying (6) with g(lj)  and summing over j, we immediately 
obtain 

6{  hk) = n(1)  
hk 

where 

  

(i) . _ \ 
	

(ii) n(i)  j g 	nhk  j  . 

Variation of Riemann symbols aKid explicit expression for G: 
Eq.(8) immediately reveals nhto be a mixed system, twice co-
variant and once contravarianc. 

From the fundamental formula that defines the covariant 
derivative of a mixed system (cf. formula (13) of N) we get 

(i)  

nhkIj 	ax   (L kj}
nik ) + {

kj}
Q) 
 {ij}nhk)J 	(9) 

jJ 

Let us now consider the Riemann symbols of the second kind 

{hi,kj} - 

and act on 
finds 

hk Xk  hj 	( hk ij 	hj R.k ) 

j 

them with the symbol 6 . Having in mind Eq.(7) one 

6{hi,kj} 

(i) 
anhk  
axj  

{ 	(9.) 	kJ 
nhk { i + 	(i) hk 

nk  j 	Q } - (2.) 	-k 
hj 

	i  
 (i) hj 1 
nkk { L  } 

+ \ 
/ k 

Applying(9) [adding and subtracting > n(i)  {Qj} from the 
	 kh 

right-hand sides] we get 	£ 

6{hi,kj} = n(i) 
 nhjIk 

Since Ghj  = ) 	{hk,kj}, it follows that 
	k 

(k) 	(k) 
J  I

6Ghj 	k nhklj  

. 
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Therefore, for the variation of the mean curvature 

one has 
G = 	) 	G

. 
g(ik) 

!!!  ik 
k 

(ik) > 
	

(ik) lh~ 
	kidG = 	 ~ •(10)  ih 

	ik
ik 	

ihk  

Defining 

i(k) 	-  	

(g(ik)n(h) 
— g

(ih)
n(k)I ih 	

ih 	ih 

it can be immediately verified that 

(ik)( 	(h) 	_ 	.(k) 
	ihk g 
	 nihlk — niklh 	>  k '1k 

then by virtue of formula (17) of N, Eq.(10) can be written as 

(ik) 	1 	a(ji i(k))  

5. DEDUCTION OF THE GRAVITATIONAL EQUATIONS 

Defining dw : = 0 
dx
1 

dx2 d"3' one has 

ds = J dw 

and (4+) can be written as 
3  

c~ 
6 f (G + 2A) / + K 

S 	O  ik 
g(ik) 	

dw = 0 , 

or, remembering that c4  
J .ik should be regarded as being independent 

of g(ik) 
3  

I 	
\ 	l 

J f IG ,r + (G+2X) 6J • + K ) i~ k ik dg
(ik) l dw = 0 	(12) 

S 	 /0 	J 

Now 

6 	
= 	a 	d (ik) 

f ik Dg(ik) g 

6G = 	G. dg 
	ik 

Zk 
	k 	Xk 
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but as is well known 

a 	1 
ag(ik) = 2 Jā gik 

Therefore 

6 	= - 2 	> 	
gik 6g(ik)• 

	ik 

Let 
Also, writing 

us now substitute this into Eq.(12), and use (11) 

w 

for 6G. 

3 	
3 4ga( (k)a( )T i(k) ) f dm = } 	axk

f axk kkS 
0 	 0 

allows one to use Green's lemma to convert the volume integral into 
a surface integral. Consequently, the integral vanishes by virtue 
of the expression for i(k) and the assumption that the variation 
of the potentials and their derivatives vanish on the boundary of 
S . 

So one is left with 

3 	
ll 

~Gik l2 G + 
aJ gik O 	

+ K 
Tik 

6g(ik) dS = 0 
S 	ik 	 jjj 

Given the arbitrariness of S and 6g(ik), the usual prescription 
gives 

Gik - f 2 G + A I gik = -K 
Tik (R) 

Thus, the gravitational equations have been derived from the 
variational principle while keeping the calculations invariant 
throughout. 

6. DIFFERENTIAL CONDITIONS FROM CONSERVATION PRINCIPLES 

Let us recall that the elements of the energetic tensor Tik 
are open to a simple physical interpretation; stresses, density 
and energy flux 2), and we should not forget that such a tensor 
is constructed from all physical phenomena except gravitation. It 
then follows that the so-called conservation theorems must hold, 
that is to say for each material system considered, and for each 
of its elementary portions, the components of the external force 
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0 
or,by defining 

Ei 
to be the reciprocal elements of the elements 

t(1), i.e. 

2 	`
3 	

dgik 	aE(j) 

	 ikj 

	

das = > 	3 	2gij a 	} d"iaxk  

applied to the system and the power density (rate of energy trans-
ferred to the system from external sources) must vanish. In other 
words, the Tik components constitute a double system with 
vanishing divergence. This can be expressed, in the notation of 
the absolute differential, calculus, as 

3  
\ 	Tik) = 0 
/  k ik 
0 

,If we now denote by Aik, the left-hand side of Egs.(R), then 
we must have 

3 

k 
A(k) = 0 	 (13) 

One might be led to imagine that these relations between the 
gij's, impose a restriction on the possible forms of ds2, 
characterizing the Einstein manifold. 

However, it is easy to prove that Eqs.(13) are satisfied 
identically. In order to prove this, one may use the same methods 
that allowed us to deduce the gravitational equations, following a 
criterion already indicated by Weyl 3). 

Under a change of variables, the parameters 
x13
'2 

,x are 
substituted by new ones related to the old ones by 

1 	(i) x. = x. + (i), i = 0,1,2,3_ , (14) 

where E
(1) 

denote four arbitrary infinitesimal functions of 
x0'xl,x2,x3  and constitute a simple contravariant system. 

Let us now determine the variations dgik  suffered by the 
coefficients of the fundamental form 

3 

ds2  = 	gik dxi xk 
0 

under the transformations (14). 

Subjecting ds2  to variation, it is found that 
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0 

Therefore for the variations agik, one gets 

6ds2 = 	> 	(ilk 	Ek l i) dxi dxk • 
	 ik 

0 	0 

or, multiplying by g(kq) and summing over the q index 

3 	 3 
6g(1P) g 	+ 	g(IP) ag 	= 0 , 

	P 	 qp 	qp 

3  
~(i) 	> 	g(lj) 

0 

3 	3  

6as2 = 2 } 	
axk 

- } 	{ } i 	dxi 
d"k 

0 	 ik 	0 	 j 
• 

The term in parenthesis is immediately recognized as the 
covariant Aerivative of the system Ci and therefore we can re- 
write ads as 	3 

6ds2 = 2 
I 	Cilk dx

i dxk , 

or, using symmetry, 
3 

0 	 ik 

(Y) agik 	ilk + klj 

To get the variation of the reciprocal elements g(ik), one 
uses the following identity: 

3 

g 
(ip) g 	= E. 	• 

0 

Applying the symbol 6 to this identity, we find 

3  
6g(ik) = - 
	g(iP) g(kq) ag 
	pq 	Pq 
0 

and finally (y) gives 
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dg 

3  
(ik) _ _ > 

0 	 pq 

(iP) (kq) g 	g 	(E
piq + ~

q l p) 	(15) 

We now consider the expression I = I (G + A) dS (where G and 
S 

A are defined above). I is an invariant under any change of 
variables, in particular under the transformation (14). 

One then deduces that the variation 61 that I suffers 
under the transformation (14) must vanish, i.e. 

61 = 6 
J 

(G + x) dS = O. 
S 

Proceeding as in Sec.5 one gets 

3 

Gik 	(Z G + A) gikJ 6g(ik) as 

3  
(ik) Aik 6g (ik) 

JS 0 	ik 

Substituting the expression for 6g(ik) from Eq.(15), and 
noting that Aik is a symmetric system, one obtains 

3 

IS 	ik Aik g 
0 pq 

(ip) g(kq) 	dS = 0 . 
PIq 

Integrating by parts and using the formula (23) established 
in N 

pq

3  

lqg 	
g(iP)(kq)EpdS

Aik 	
= 	) 	A 	dS = 0 . 

is;  ik 	 ~S / 	ik 
0 	 0 

Since the region of integration S and the functions E(1) 
are arbitrary, one concludes that 

3 

= /  k Aik
(k) 

0 

fs 	 ik 
0 

0 

Padova, August 1919. 
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Summary  

Some interesting consequences of the effects of gravitation and 

finite temperature on quantum field theory are presented which have 

important implications for experimental high energy physics and the 

status of the "No-Hair" Conjecture for black holes. We point out 

two consequences for laboratory situations in high energy physics 

which disprove the usual assertion that quantum gravitational effects 

are only important at planckian energies. The first of these is that 

beams of particles in circular accelerators cannot be cooled to below 

a certain temperature determined simply by the accelerator's radius, 

while the second shows that spontaneously broken gauge symmetries 

may be restored by quantum gravitational effects. We end by describing 

briefly circumstances under which these effects might have a bearing 

on the ''No-Hair" conjecture. 

1. 



Two parallel sets of investigations have been carried out in 

the last few years to study the effects of gravitation and temperature 

on quantum field theory. One set of investigations initiated by 

Khirznits and Linde(1)  has considered what happens when a system of 

particles described by a spontaneously broken local gauge invariant 

quantum field theory is placed in a heat bath or strong electric or 

magnetic fields(2). The authors of refs. (1) and (2) have found that 

gauge symmetries which are spontaneously broken at zero temperature 

via the Higgs-Kibble mechanism (for example, those of the Salam-

Weinberg electroweak theory) may be restored at sufficiently high 

temperatures, or in sufficiently strong electric or magnetic environ-

ments, and they have calculated the critical temperatures and fields 

at which such restoration would take place. 

The basic idea of this approach is that at finite temperatures 

(or field strengths) the effective potential of the theory picks up terms 

of the type +T2$2 (where T is the temperature and $ is the Higgs-

Kibble scalar field). For sufficiently high temperatures, this term 

becomes larger than the negative (mass)202 term which drives the 

symmetry breaking in the zero temperature theory. As a consequence, 

the scalar field 6 becomes a real physical particle degree of freedom 

and the symmetry is restored. 

Parallel to the study of these effects, several authors(3)  have 

carried out a study of the effects of gravitation and space-time topology 

on quantum field theory. A number of interesting results have been 

obtained but the two which concern us in this essay are outlined below. 

Firstly, it has been shown that an observer accelerating uniformly 

through empty Minkowski space-time appears to find himself in a heat 

bath at a temperature given by 

2. 

Z, - a 
21TKc 10-20  a Kelvin (1) 

where 11 is Planck's constant, a is the acceleration, k is Boltzmann's 

constant and c is the velocity of light. 



In order to illustrate this let us consider a uniformly accelerating 

observer in Minkowski space-time. If we assume that an inertial 

observer and the accelerating observer use the same transition ampli-

tudes to describe objectively the same processes, it can be shown that 

the free Feynman propagator for the inertial observer, when trans-

lated into the accelerating observer's frame, is identical with that 

of a free finite temperature propagator with the relationship between 

the acceleration and the temperature being that given by (1). 

This result can be understood on the basis of quantum gravita-

tional effects (through non-simply connected topologies) in flat Min-

kowski space-time. To try and understand how this arises, let us 

use coordinates (t, x, y, z) and ('c , ' , y, z) to describe the inertial 

and accelerating observers respectively. If, for simplicity, we assume 

that the accelerating observer moves in the (t 	) plane with a con- 

stant uniform acceleration a, then his world-line is given by the hyper- 

bola = - with asymptotes 1= 0. The coordinate transformation a 
from the inertial to the accelerating observer's frame reads 

x = cosh aZ , 	t = ' sieh at' 

In contrast to the inertial observer, the accelerating observer 

has a very restricted range of vision. The surface x = I ti forms an 

event horizon, and any signals sent from the origin 0, after t = 0 never 

reach the accelerating observer. It is the existence of this event hori-

zon which causes the space-time to seem multiply connected when the 

two observers translate themselves into euclidean coordinates 

(t -.+ it, t ---y iZ) with periodic complex time coordinates, and leads to 

the above-mentioned thermal effect. 

Secondly, by considering quantum fields in the exterior region 

of a black-hole, Hawking has shown that when a star collapses to a 

black-hole, the formation of the event horizon around the singularity 

enables the black-hole to absorb one of a pair of virtual particles 

created just outside the horizon, thus leaving its partner, which is now 

a real particle, free to travel to an arbitrarily large affine distance 
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from the horizon. This continuous process is observed asymptotically 

as a net flux of radiation, and after all transient effects which arise 

during the collapse die out, the left-over radiation has been shown to 

be that which would be produced by a hot body at a temperature given by 

kT= 	K 
2rrc 

where K is the surface gravity of the black-hole. Thus, a black-hole 

can be considered to be a black-body radiating at a temperature T 

given by (2). 

Both the above results may be understood mathematically by 
noting that spacetimes with event horizons are periodic in an appropriate 

time coordinate with an imaginary period. The Green's functions of 

a quantum field theory in such a spacetime are, therefore, also periodic 

in imaginary time. Coupled with the observation that the thermal 

Green's functions of a field theory at a finite temperature T also possess 

this property, one arrives at the result that field theories in spacetimes 

with event horizons may be considered to be in thermal equilibrium at 

some finite temperature. 

All that follows is based essentially on the interplay between the 
various effects we have discussed briefly above. We will now describe 

a couple of laboratory situations in which it might be possible to detect 

effects of quantum gravitation. 

The first observation we wish to make concerns the recent 

attempts being made at CERN and other high energy particle physics 

laboratories to cool particle beams in accelerators. We shall show 

that equation (1) implies a lower bound to the extent to which such a 
cooling can be achieved. It is clear that a bunch of relativistic elemen-

tary particles going round at a constant velocity v(, c, the velocity of 

light) in a circular accelerator of radius r experience a uniform 

acceleration a, given by 

c2  
a — . r 
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We see, therefore, that such a bunch of relativistic elementary 

particles would find themselves in a heat bath at temperature 

T . c/2Trkr. Since this temperature is due simply to their accele-

ration, it would be impossible for accelerator beams to be cooled to 

temperatures below this lower bound. This bound does not apply, of 

course, to linear accelerators. 

In order to remove any doubts as to whether such effects are 

"real", it would perhaps be helpful to show that such observer depen-

dent effects are already very familiar. Indeed, it is only natural to 

expect such observer dependent effects in general relativity when one 

remembers that in special relativity one has a similar situation 

arising due to the effect of time dilation. This is illustrated beauti-

fully by the experimental verification of time dilation effects through 

measurement of the lifetimes of a p.-meson at rest, and in motion in 

the laboratory. The results of such experiments show clearly that 

a p.-meson that is stationary in the laboratory decays at a much faster 

rate than one which is travelling at a speed reasonably close to that of 

light. This observer dependence arises in special relativity through 

requiring equivalence of all inertial observers. In contrast, general 

relativity requires equivalence of all observers, inertial and non-

inertial, and thus gives rise to the effects we are considering in this 

essay. 

The second effect that we shall now discuss concerns the concept 
of symmetry restoration, which we have outlined earlier, but with the 

added significance that the restoration will now be due to quantum 

gravitational effects. Let us consider the situation illustrated 

schematically in Fig. 1. 

If we introduce a set of relativistic, charged particles, the 
interactions of which are described by a spontaneously broken gauge 

theory, into a region containing an extremely high magnetic field, 

then they will all experience an acceleration, a, perpendicular to the 

plane defined by the directions of B and v, the velocity of the particles, 

given by 
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a =- vx 
— m 

where q and m are the charge and mass of the particle respectively. 

Assuming that v is perpendicular to B and is close to c in magnitude, 

	

we obtain for a the value a qm 	However, equation (1) tells — 	 m 
us that such a bunch of particles will experience a heat bath of 

temperature 

T= qB 	= ( - 	) 2,rrkm 	27r k m 

Assuming, for simplicity, that such a bunch of particles is composed 

of electrons, we obtain the result that a a. 5 x 1019  B. So that the 

temperature for this set of electrons would be T = 0. 5 B. 

Now, if one combines this information with the knowledge that 

the symmetry of the Salam-Weinberg theory is restored at temperatures 

of 0(1015) Kelvin, we see that magnetic fields of strength around 1015  

Tesla would suffice for restoring the Salam-Weinberg theory. 

Comparison of the data obtained from an experiment of the type 

illustrated inFig._1 in the presence and absence of B would allow us 
to determine whether such a restoration has taken place, and whether 

the accelerating observer does indeed see a heat bath at temperature T 

given by (1) much as the observations of the lifetime of the [I.-meson 

allowed us to vindicate the time-dilation effect of special relativity. 

It is encouraging to note that experiments involving such strong fields 

have already been suggested by Salam and Strathdee in ref. 2. 

We will now go on to study the possible relationship of the effects 

described above to the "No-Hair" Conjectures  for black-holes. It 
will be shown that they allow a possible mechanism for transcending 

the "No-Hair" Conjecture in the quantum regime. For this purpose, 
let us consider a black-hole in thermal equilibrium with a heat bath at 

temperature T, and let us introduce into the heat bath a system of 

particles interacting through some spontaneously broken gauge fields, 

e. g. SU(2) x U(1), while maintaining thermal equilibrium um. This means 



that if the mass of the black-hole is sufficiently small, the corres-

ponding temperature will be sufficiently large to allow the initial 

spontaneously broken gauge symmetry to be restored and the corres-

ponding gauge fields become long range due to their masslessness. 

We further obtain conserved charges, apart from those associated 

with electromagnetism. This means that the interacting particles 

we are considering will have associated with them conserved gauge 

charges and the corresponding Gauss law for the system. The exis-

tence of Gauss' law immediately raises the possibility for the black-

hole to carry the gauge charge if the system of interacting particles 

falls through its event horizon. Let us take the example of 

SU(2) x U(1). The restoration temperature for this gauge group is 

1015  Kelvin. Taking the black-hole to be of the Schwarzschild 

type, the mass can be found from (2) to be 	108  kg. So as long as 

the interacting particles have Compton wavelengths less than the size 

of the black-hole (i. e. its Schwarzschild radius), the possibility of 

transcending the "No-Hair" Conjecture exists. 

It is known6  that small primordial black-holes possibly formed 

by fluctuations in the early universe, with masses ev 1011  kg, would 

just decay away through Hawking radiation (with a characteristic 

spectrum) within the present age of the universe. It is found7  that 

for electrically charged primordial black-holes, fluctuations in the 

charge will cause the average emission rate for charged particles to 

be lower than that for similar uncharged particles. Coupled with the 

arguments presented above for the transcendance of the "No-Hair" 

Conjecture, it is clear that the emission rate will be further reduced 

(after the mass of the black-hole reaches ry 108  kg) due to the accumu-

lation and subsequent fluctuations of the new gauge charges acquired 

by the decaying black-hole. This, we suggest, will lead primordial 

black-holes not to an explosive death but rather to a slow, "quiet" 

death. 

So we see that in principle it is possible to transcend the "No-

Hair" Conjecture. However, it remains to be seen if the arguments 
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can be extended to more realistic situations, as in stellar collapse, 
for example to form a black-hole. 
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Accelerator 

Fig. 1 

Schematic experiment to demonstrate symmetry restoration 

through acceleration and temperature effects. The shaded 

region contains a magnetic field directed perpendicular to the 

plane of the paper. For large B , the motion of particles 

entering the shaded region will be confined to it and subsequent 

decay products are observed by detectors. 


