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ABSTRACT

This thesis consists of two parts. Part I begins with a
description of Weyl's (1929) concept of gauge invariance as applied
to electrodynamics, along with its generalisation to non—abelian

symmetries by Yang and Mills (1954).

A generalisation of Einstein's (1915) theory of general
relativity, due principally to Cartan (1922), Sciama (1962) and
Kibble (1961) is then reviewed, both in its geometrical and physical

aspects.

It is then shown that upon trying to incorporate gauge fields
into metric-torsion theories, inconsistencies arise leading to loss of
gauge invariance. A recently suggested solution for a consistent
coupling of torsion to electrodynamics is then described and a

generalisation to non-abelian gauge fields is put forward.

Part II studies the role of variational principles and
lagrangians in metric-torsion theories of gravity. The concept of
Invariant Variational Principle (IVP) is described. The usefulness of
IVP's is detailed through the example of a second order lagrangian,
L(g,3g,39g) in the metric g. Three identities are derived and it is
shown how they can be used to reduce the Euler-Lagrange field equations
to a simple form. The method is generalised to metric-torsiom theories
of gravitation by application to a lagrangian of the form L(8,98,398,s,36),
where s is the torsion. Having simplified the field equations for this
lagrangian, the Construction of lagrangians for metric—torsion theories
is studied. In particular, it is shown that Einstein's principle of
taking his lagrangian to be linear in the curvature when generalised to
metric-torsion theories, does not lead simply to the ECSK lagrangian, but

allows an additional pseudoscalar term.



Finally, some consequences of incorporating this additional
term into the ECSK lagrangian are illustrated by coupling torsion to

the Dirac and Proca fields.
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INTRODUCTION




Einstein's theory of general relativity incorporates macroscopic
gravitational phenomena successfully into a geometrical theory based on
Riemannian geometry (by a Riemannian geometry, we shall mean a four
dimensional, smooth manifold having a symmetric metric tensor with
signature (-2) defined on it). However, it has not been very well tested
at the microscopic level. It is with this in mind, that one studies
metric-torsion theories of gravity - to extend general relativity into
the microphysical realm. But, is it necessary to introduce new geometrical
ideas for the extension?

The new quantity that comes into play in elementary particle
physics is the concept of intrinsic spin of a particle. General relativity
incorporates the concept of orbital angular momentum in its definition
of the stress-energy-momentum tensor. Is it not possible to simply
generalise this orbital angular momentum to total angular momentum by
the addition of spin? One could, but then the symmetrisation procedure
that is carried out on the energy-momentum tensor in general relativity
generally nullifies the effects of spin. Therefore, it seems simpler
and indeed, more natural, to introduce a new geometrical entity that
couples to the intrinsic spin of matter fields analogous to the coupling
of the curvature to the energy-momentum of matter fields in general
relativity. The torsion tensor having 24 independent components, is such
a geometrical quantity. In the Einstein-Cartan-Sciama-Kibble (ECSK)
theory, it is this torsion tensor which couples to the canonical spin
tensor of matter fieldé. Just as the energy-momentum tensor is defined
as the variational derivative of the matter lagrangian with

.
respect to the metric tensor, for metric-torsion theories, the canonical
spin tensor is defined as the variational derivative of the matter
lagrangian with respect to the Contortion tensor. This Contortion
tensor, also having 24 independent components, is a linear combination
of the torsion tensor and may be used to describe the deviation of the

new geometry (which we shall call Riemann-Cartan geometry) from Riemannian.



Riemannian geometry allows a unique (Christoffel) symmetric connection.

Riemann-Cartan geometry postulates an asymmetric connection,
defining its antisymmetric part to be the torsion tensor. The contortion
tensor is the difference between the asymmetric connection and the
Christoffel connection, and is hence said to describe the deviation from
Riemannian geometry. From the field equations for the Einstein-Cartan-
Sciama-Kibble theory, derived in Chapter I, we shall see that it differs
from general relativity only in the presence of spinning matter. This
is due to the fact that the field equation relating torsion to the spin
tensor is algebraic, i.e. a zeroth order differential equation, implying
that whenever the spin tensor is zero (no spinning matter), so is the
torsion. This fundamental deficiency of the theory is reflected in the
fact that within the limits of present technology, the two theories,
general relativity and the Einstein-Cartan-Sciama-Kibble theory are
experimentally indistinguishable.

In Part I of this thesis, we shall study a particular matter
field interaction with torsion, which allows the possibility of
distinguishing metric-torsion theories of gravity from general relativity.
The matter fields we shall consider are gauge fields, hence we begin
Chapter I with an introduction to gauge theories. In gauge theories,
one first considers the invariance of a matter field lagrangian in
flat space-time under the action of some global, finite-dimensional Lie
group, G. In enlarging this invariance to independent transformations
of G for each point in space-time, '"compensating" gauge fields have to be
introduced.

The electromagnetic potential is shown to be such a gauge
field, of the group U(1l) (Or, the group of unitary matrices in one
dimension). The discussion is extended to non-abelian Lie groups (Lie
groups, whose elements commute under the group multiplication law are
said to be abelian groups, while those that do not have a commutatiwe

group multiplication law are said to be non-abelian groups. As an



example, U(1l) is an abelian group, for its elements are simply 1x1
unitary matrices, while the group U(2), containing 2%2 unitary matrices ,
is a non-abelian group, for the simple reason that nxn matrices do not
commute (n#l) in general). We see that it is necessary to introduce a
collection of gauge fields, one for each generator of the group. Hence
the gauge field is labelled not only by the space-time coordinate index,
but by a group index. This additional group index on the gauge fields
will be seen to give rise to a non-linearity in their lagrangiam.

We continue in Chapter I by first giving a brief introduction
to Riemann-Cartan geometry. We go on to describe the physics of the
Einstein-Cartan-Sciama-Kibble theory, by outlining the arguments for
taking its lagrangian to be the curvature scalar of the underlying
Riemann-Cartan geometry and deriving the corresponding field equations.

In Chapter II, we first show that the only effect of general
relativity when coupled to gauge fields(let us call this the E-G.F.
coupling), is the addition of a factor of VCE. to the lagrangian of the
gauge fields (g denotes the determinant of the symmetric metric of
Riemann-Cartan space-time). However, when we attempt to couple torsion
to gauge fields (let us call this the T-G.F. coupling), we find that
gauge invariance is lost. It is then argued that loss of gauge invariance
should not even be considered; for all the present day successes of
elementary particle physics are attributable to the fact that they are
generally based on the formalism of gauge thecries. Another possibility
is to give up the coupling of torsion to gauge fields (T-G.F. coupling).
This would be carried out by coupling gauge fields to gravity through
the torsionless Christoffel connection (E-G.F. coupling), while coupling
all other matter fields to torsion through the full asymmetric connection
(i.e., Riemann-Cartan minimal coupling). This however, is rather ad hoc,
and a novel suggestion (which modifies the usual form of the gauge
covariant derivative), recently put fcrward,is described. All the

above problems are removed by this solution, and allows the coupling



of torsion to electromagnetic fields. The novel feature of this

solution is that torsion takes a special form; it comes from the gradient
of a scalar field. Another feature of this solution is that it allows
for the first time, a restricted form of dynamic (or propagating)

torsion within the confines of a theory that takes its lagrangian to

be linear in the curvature.

We also show that a generalisation of this solution to arbitrary
non-abelian gauge fields necessitates a modification to the field
strength tensor in addition to the modification of the gauge covariant
derivative. It is found that the special form of torsion, allowing
the electromagnetic field to couple to metric torsion theories of gravity
is carried through to the non-abelian case. Very briefly, we explain
why this happens.

In Part II of the thesis, lagrangians and variational principles
for metric-torsion theories are studied. Our attitude to variational
principles is outlined in Chapter III as follows. A physical field
is described by a set of field variables (e.g. the components of a
metric tensor), and we assume that the field equations governing the
behaviour of the field are identical with the Euler-Lagrange equations
of the given problem in the calculus of variations. The action integral
in the calculus of variations is supposed to be invariant under general
coordinate transformations; this implies that the corresponding integrand
(the lagrangian), is a scalar density. For any given type of physical
field variable, this is augmented by an additional assumption concerned
with invariance properties. This assumption specifies the transformation
properties.of the field variables under general coordinate transformations.

These two invariance requirements, taken together, severely
restrict the classes of admissible lagrangians and hence the type of
acceptable field equations. The two invariance requirements, along
with the assumption that the field equations are identical to the Euler-

Lagrange equations, are collectively called an Invariant variational



principle (IVP).

The restrictions on the lagrangians are expressed in terms of
some identities which must be satisfied by the lagrangians and their
. derivatives. By applying the IVP to the problem of a second order
lagrangian in the metric tensor (a lagrangian is said to be of nth order
whenever it depends on partial derivatives of at least some of the
field variables with respect to the space-time coordinates, up to and
including the nth order), we derive three identities that the lagrangian
along with its derivatives, satisfies. The third identity, in this
example, is a remarkable one, for it highlights the well known theorem
from Riemannian geometry, that any invariant function of the metric
and its first two derivatives, can be expressed in terms of the Riemannian
curvature tensor. Indeed, this identity goes much further, in that,
it demonstrates quite clearly how the given funection is to be expressed
in terms of the curvature tensor. The restriction on the type of
acceptable field equations is illustrated by reducing the Euler-Lagrange
equation for the metric example.

As our aim in this thesis is to study various aspects of
metric—torsion theories, we generalise the above procedure by applying
it to a lagrangian of second order in the metric tensor, and containing
no high;r than first derivatives of the torsion tensor. The basic
reason for considering lagrangians containing at least first derivatives
of the torsion is that they may allow the possibility of propagating
torsion, i.e., the field equation for torsion may be a differential
equation of at least the first order. WNo higher than first derivatives
are taken for simplicity only, there is no loss of generality. Once
again, the restrictions on admissible lagtrangians is expressible in
the form of three identities that the lagrangian along with its
derivatives must satisfy. The third identity tells us that any invariant
function depending on the metric, the first two derivatives of the

metric, the torsion tensor and its first derivatives can be expressed
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in terms of the curvature tensor, the torsion tensor and its derivatives.
As the expressions for the three identities are large, we illustrate
the restrictions on the type of acceptable equations by reducing the
Euler-Lagrange equation for a lagrangian which depends only on the
torsion along with the metric and its first two derivatives. The
lagrangian for the Einstein-Cartan—Sciama-Kibble theory is of this
type. Restricting to such lagrangians means the loss of propagating
torsion. This is not very important here, as our sole motivation
for taking.a reduced lagrangian is simplicity in illustrating the
restrictions on the type of field equations brought out by the identities.

Chapter IV points out first, that if we require the lagrangian
of a metric-torsion theory to be linear in the curvature, then we are
allowed the addition of a pseudo-scalar term to the Einstein-Cartan-
Sciama—-Kibble lagrangian. This term, fortunately vanishes identicélly
in general relativity due to the cyclic symmetry on the Riemannian
curvature tensor (or Riemann-Christoffel tensor). Allowing the
additional term, the field equations are derived, showing that as
expected, the torsion field equation is again algebraic (i.e., torsion
does not prppagate).

In order to observe the effects of this additional pseudo-scalar-
parity violating-term, we couple the theory to the Dirac spinor field.
We find, however, that the only effect of the additional term is to
reduce the strength of the existing parity-violating interactions in the
ECSK-Dirac theory. This is easily understood, since the parity violating
interaction term in the ECSK theory when coupled to the Dirac field
arises due basically to the Dirac algebra, leading to total antisymmetry
of the spin angular momentum tensor, and hence to the total antisymmetry
of the tomtortion tensor. While the additional term that we motivate
leads, manifestly, to a totally antisymmetric contribution to the
contortion tensor. We then discuss the Proca (or massive Maxwell) field,

and show there that we do indeed have a parity violating effect, which in



principle, would enable us to experimentally prove or disprove the
existence of torsion by observing the motion of massive elementary

particles carrying spin 1.

The thesis ends with some Conclusions and discussion.



PART I

GAUGE FIELDS AND TORSION

"Symmetry as narrow or as wide as you may
define its meaning, is one idea by which
man through the ages tried to comprehend

and create order, beauty and perfection”.

Herman Weyl.
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CHAPTER T

PRINCIPLES OF GAUGE THEORIES

AND

METRIC-TORSION THEORIES OF GRAVITATION
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GAUGE THEORIES

§1. The abelian theory

The fundamental notion of gauge invariance is a rather simple
generalisation of the concept of a continuous space-time symmetry of
a lagrangian. We shall illustrate the idea by deriving the Maxwell
lagrangian for electrodynamics as a local gauge theory of the abelian
group U(l). Suppose L($,9¢) describes a theory for a zeroth rank

tensor field ¢(x). Let us impose the following invariance on L(¢,3¢):

o(x) * ¢'(x) = e ¢(x) (1.1.1)
and

2,4(x) > {3 8(x)} = o€ 3,6 G) (1.1.2)

where € 1s an arbitrary constant.

The group of transformations (1.1.1) is the group of unitary

transformations in one dimension, U(1l).

Because ¢ 1s a constant, the transformations (1.1.1) are called

global gauge transformations.

Throughout the rest of this dissertation, we shall not be
dealing with Conservation laws and therefore we shall not demonstrate
here that the invariance of IL(¢,3¢) uﬁder (1.1.1) leads to current
conservation which is simply the electric current conservation law /1/.

Instead we shall now define local gauge transformations.
Suppose in (1.1.1), we allow ¢ to become a function on the

space—time i.e., g -e(x). Then (1l.1.1) becomes

$p(x) > ¢'(x) = eiE(x)¢(x) (1.1.3)

however,
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%a(x)

2 6(x) »{2 ()} =e 2.0 +1ie ™ (3 e} o
u H H U

(1.1.4)
These transformations are called local gauge transformations. Notice
that the second term in (l1.1.4), the inhomogeneous term, "breaks' the

invariance of L($,3¢).

Clearly, invariance of L(¢,3¢) under (1.1.3) will be assured
if a new vector field is introduced into the partial derivative such that
its transformation law under (1.1.3) acts to cancel the inhomogeneous
term in (1.1.4).

With this in mind, a new derivative, called the gauge covariant

derivative, Du is defined;

D =9 =- igA 1.1.5
y y T ieh) ( )

where q is an arbitrary coupling parameter which will be identified
with electric charge. Then, replacing 3u¢ in L ($,3%) by Du¢, invariance

ofIJ(¢,Du¢) will be ensured if we require, in accordance with (1.1.2),

D, +{Du¢}' = 18 D, (1.1.6)

Suppose that under, (1.1.3), Au - Aﬂ , then (1.1.6) gives

(3, -iqga) ¢ = D0 g b (1.1.7)

or,

(3, -ia A" ) 18y = eis(x)(au - g A)6G)  (1.1.8)

Simplifying, we find,

(BueiECX)) o ie(x) (1.1.9)

=
N-W D
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The infinitesimal form of this transformation is

1
AL = Au + a Bue(x)‘ (1.1.10)
So the new ''gauge potential" Au must transform inhomogeneously, like a
connection in order for the lagrangian L (¢, D¢) to be invariant under
the local gauge transformation (1.1.3):

The rule (1.1.5) for the gauge covariant derivative is also
known as minimal coupling.

Having introduced the new field Au , and 1ts coupling to fﬁe
matter field ¢(x), we must consider possible kinetic energy and mass
terms coupling Au to itself,

Observing the transformation laws for Au’ (1.1.10), it is easy
to see that

=3 A -3 A (1.1.11)

F
uv [VEAY v H

is invariant under (1.1.10), i.e.

§ = -
Fuv BuéAv BvéALl (1.1.12)
= Bu(Bve )y - av(Bua) (1.1.13)
= o . (1.1.14)

uv o, . .
Hence the scalar Fqu is an invariant, In fact, because we are

dealing with four-dimensional space—~time, we have one other scalar,

namely,

Fw* Y (1.1.15)
where

P s % gHveT F o (1.1.16)
and gquo is the totally antisymmetric Levi-Civita tensor density.

However, we find that (1.1.15) is a total divergence quantity, so the

kinetic energy term for the potential ALl is taken as

1 v
LEM = -3 Fu\)Fu (1.1.17)
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The numerical factor is chosen for convenience in the field equation.

A mass term for A}J is not possible because it breaks gauge invariance.
Therefore, the electromagnetic field, the photon is a massless gauge
field, Indeed, this massless property is quite general for gauge

fields as we shall see in the next section, when we generalise the above

analysis to non—abelian gauge groups.

§2. The non abelian theory.

The generalisation of local gauge invariance to non—abelian
groups was first studied by Yang and Mills (1954), who sought to explain
the conservation of isotopic spin by using the non—-abelian group SU(2).
In this section, we shall describe their idea for a general non-abelian
compact unitary group, G. The basic reason for dealing only with compact
groups is that all non-trivial irreducible continuous unitary representations
of non—compact (indeed of locally compact) groups are infinite dimensional.
Since elementary particles are assumed to be irreducible continuous unitary
representations of symmetry groups, it is more sensible to deal with
compact groups, for which we know that every irreducible continuous
representation is linearly equivalent to a unitary, and hence finite
dimensional representation.

Let us suppose our gauge group is G, with generatomTi satisfying

the following Lie algebra,

[r., T. 1= iC

i 1 ik Tk y 1,j,k=1,....,dim G (1.2.1)

where Ci' are the structure constants of the algebra. Throughout we

ik
shall take the representation matrices also to be (Ti)jk . A collection

of scalar fields ¢i(x) transforms according to

6; () > 9, (%) = eiT‘€¢i(x) (1.2.2)

where T.e = Tisi , 1= 1,...,dimG. (1.2.3)
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and the ei are arbitrary constants.
In what follows, we shall suppress matrix (group) indices
for the most part. We shall also write the transformation law, (1.2.2)

as

p(x) > ¢'(x) = U(e)o(x) (1.2.4)

if we impose the invariance (1.2.4) on a lagrangian for the multiplet

¢i(X), L (¢i’au¢i)’ we have

3, 8(0) +{au¢<x>}’ = U@ 390 (1.2.5)

As before, the transformations (1.2.4) are called global gauge
transformations. Suppose we make them local, i.e., let e, > si(x)

then we still have

$(x) » ¢'(x) = U(e(x))¢(x) (1.2.6)

However, we no longer have (1.2.5), instead,
2 9(x) ~ {au¢<x>}' = U(e() (360}

+{ BUU(E(X))} ¢ (%) (1.2.7)

so thatlL (¢i’au¢i) is not invariant under the extended, local gauge
transformations. In imposing local gaugeinvariance on L(¢i’au¢i) we
must as before, introduce new compensating gauge potentials Aui’ one
for each generator of the group. This is done by defining a new

derivative, the gauge covariant derivative;

D
u

3 - ig A T 2.
I ig y (1.2.8)

where g is a generalisation of the electric charge to non—abelian
theories. Throughout the rest of this section, we shall assume the
following notation,

A = .T = A.T,. 2.
Ay v (1.2.9)
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similarly for other fields.
The lagrangian L(¢i,Du¢i) will clearly be gauge invariant under

(1.2.6) if we have

Du¢(x) +{Du ¢(x)}’ = U(e(x)) Du¢(x) (1.2.10)
or,
8u¢'(x) - ig AL o' (x) = U(e(x)){au¢(x) - ig Au¢(x)}
(1.2.11)

Using (1.2.6),

{auu(sn 000 - ig Al UG =-ig U(e) A 0G0
or, (1.2.12)

voo =l,y_ 1 -1
Au = U(e) AUU (g) g{auU(e)} U “(e). (1.2.13)

Therefore, we see that the new gauge potentials that have been introduced,
transform inhomogeneously under a local gauge transformation.

Having introduced new fields into the theory, possible kinetic
energy and mass terms must be considered for these fields. However,
before we do that, let us note that as the multiplet fields Aui also
transform under a representation of the gauge group G, we must check

to see 1f the group property holds for Aui’ i.e., if we have

1 1(

' - _ 3._ -
Au U(e) Au U “(e) g{auU(s)} U “(g) (1.2.14)

and A: U(n) AL U-l(n) - é{auucn)} U_l(n), (1.2.15)

Can we find a parameter g, such that U(g) = U(y) U(g), and

u

It is quite a trivial matter to check that the group property does indeed

"n -1 1 -1
A = - = 2.
u(g) AuU (&) g{auU(g)} U “(&). (1.2.16)

hold and we shall not give it here.

A mass term for the gauge potentials, Aui is not possible

as 1s easily seen from the non-gauge invariant lagrangian,
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2

o AUl

1
5 A,

i (1.2.17)

mass ’

due, essentially to the inhomogeneous term in (1.2.13).
As for the kinetic energy term, because the gauge potentials

A

pj Carry a group index, there will be self-interactions among them and

the kinetic term Lo’ cannot have the simple form it did in the electro-

dynamic example. In fact, we must have the field strength tensor F

uv
defined by :
Fuv = auAv - avAu - ig [A]_1 » AT, (1.2.18)
where, in accordance with (1.2.9) we hawve
Fuv = FuviTi (1.2.19)
and,
S T, ' :
[A, .4, A ]JjAVk.[TJ’ T, iy (1.2.20)
3 . A1
= Auj Avk 1C ik (1.2.21)
In total analogy with electrodynamics, we take the kinetic emergy
term to be
1 N\Y
L = -=F .F 2.
o 7 Fuv s (1L.2.22)
for this to be invariant however, we must have
1 = + gj k
Fuvi Fuvi Cijk EV . (1.2.23)
or
"= U(e) F U le) , (1.2.24)
uv uv

i.e. the Fuv must transform covariantly under a gauge transformation.
So the total lagrangian for a set of scalar fields interacting with a

set of non—-abelian gauge fields is

L

L +L (¢, (3 -ig A .T 1.2.2
o (¢, (3 - ig A .T)¢) ( 5)
Of course, as before, the four—-dimensionality of space-time allows the

existence of one other invariant,

(1.2.26)
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*
where Fuz is the dual tensor of Fuvi and is defined by

*_uv v
Fp. = fsJ'l Pa F .
i poLl

. (1.2.27)

As in the abelian example, the invariant (1.2.26) is a total divergence
term, and is ignored, except when dealing with compact manifolds,

where surface effects cannot be thrown away. This completes our
introduction to gauge theories. Notice that the non-linearity arising
from the quadratic term in (1.2.18) is akin to the non-linearity in

the Riemann-Christoffel tensor of gemeral relativity. .These two sections

on gauge theories have been taken for the most part, from the excellent

review by E.S. Abers and B.W. Lee /1/ .
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METRIC-TORSION THEORIES OF GRAVITY

§3. The geometry.

Metric~torsion theories of gravity are a generalisation of
Einstein's general theory of relativity and are based on a simple
extension of Riemannian geometry, a geometry which we shall call
Riemann—Cartan geometry. The difference between the two geometries
appears in the differentiable structure, in the definitiom of a
connection on the manifold. It is well known that in Riemannian

geometry, the connection is symmetric and is such that

v, (D g, = 0 (1.3.1)

where A is a symmetric metric defined on the manifold and Vu({ b

is defined by its action on an arbitrary vector field as follows:

]
Q2
b

!
—~—

Q
[
b

Vu({ })Av (1.3.2)

and

1]
Q2
e
+
—~

<
——
v

v, Ha’ (1.3.3)

The property of symmetry and (1.3.1) yields a unique connection, the
Christoffel connection, determined completely by the metric and its

first derivatives,

1 op
{°%1 = = + - 3.4
uv} 2 & (gou,v gov,u guv,o) 1 )
ap . .
g ® is the inverse of gcp’
RY - oM
8y = 60 (1.3.5)

Cartan /2/ generalised Riemann's geometry by simply not imposing
symmetry on the connection symbols. The resulting antisymmetric part,
a tensor, he called the torsion tensor,

(¢

1 g o]
SLN 5 (FU\) I'vu) . (1.3.6)
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It just happens that (1.3.1) is automatically satisfied in Riemannian
geometry, it is Riceci's lemma. Upon going to general relativity, the
property (1.3.1) acquires great significance, it allows space-~time to

be locally Minkowskian, i.e., locally, the laws of special relativity
hold good. As special relativity is such a well tested theory, equation
(1.3.1) seems a very necessary assumption for any theory of gravity
based on a geometrical framework. Taking Ricci's lemma over into

Riemann-Cartan geometry, we have the postulate of metricity,

v = 0 .3.
n8vp .3.7)

. . . . . v
where guv is, as before, a symmetric metric tensor with inverse gLl s

and vu is defined by

vuAv = auAv - ruvAG (1.3.8)
and
v v v 0
vV A = 3 A + T A . 3.
H H HO (1.3.9)

The ordering of indices on F:o is important for this geometry, and

we take the convention that the differentiating index is the first index

on Pto' Just as one can derive (1.3.4) from the requirement of

symmetTy on {vuc} and (1.3.1), we can derive the explicit form of PSG

by using (1.3.6) and (1.3.7). We have,

8y, = 9.8, r° g - rY g =0 (1.3.10)

v
H % H™ve HV “ap HPp TVO

permuting indices (uvp), we have

o] o]
- - = 0 1.3.11
8\) gpu Pvp gou Pvu gpc ( )
and
o] o]

3 ~-T -T = 0 1.3.12
08y ou 8™ Tov Buo ( )

(1.3.10) + (1.3.11) - (1.3.12) implies
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g g
3 2 -3 - T +T
( Ung * vgpu DgUV) ( [5AY vu ) gDU
g g o g
r° -7 - -
+ (T w) 8ye T g, Too? Bug 0 (1.3.13)
. . 1 oap
multiplying throughout by 38
1 op 1 .0 o
= - - = (T
78 Gy " Bou v B ) T2 T v TG
1 g g ap 1 g o] ap
+ = (I =T = - =
5 Ton 1pl8 8y t 3 (va va)g 8,5 =0 -
(1.3.14)
Using equations (1.3.4) and (1.3.6),
{ o _1 r® r® g op
v u} 2 ( w T vq) * Spu & By
g op _
+ S ov & By o . (1.3.15)

. . o . . .
Now any geometrical obJect,Tuvcan be broken up into its symmetric and

antisymmetric parts,

a g g

1 1 .0
T = = T = -
v 2 ( uv+ Fvu) * 2 (Fuv rvu) (1.3.16)
with the help of (1.3.6) we can write
Te® ey = % o g @ (1.3.17)
2 Vv Vi Hv §v <

8 a o 8 a

T = + +

B SR L STt STy (1.3.18)
or, @ =y %3+s5 @-85C + g

ruv {u v} " v B b (1.3.19)

Conventionally, at this point one defines a new tensor, called the
. o . . . .
contortion, Kuv having 24 independent components just as the torsion

tensor, to describe the 'deviation'" from Riemannian geometry ,
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K = =S + S - s (1.3.20)
V. 0. V.l TRV »
So that
Y ={%*y -xg ° (1.3.21)
uv TRV uv,

Note that because the antisymmetry of the contortion tensor is on the

last two indices,

0. = a _ a a
r(uv) {u v} K(uv) s K(uv)' # 0 (1.3.22)

(round brackets denote symmetrisation), with the consequence that K
depends on the metric and torsion while the torsion temsor is a priori
independent of the metric.

The Riemann-Cartan curvature tensor Ru (I') 1s defined in

voa
analogy with that of the Riemann-Christoffel tensor Ruvpc({ }) by

-ar°+19 p* -9 po (1.3.23)
v up

[s) a
(ry =
ua " vp va - up

RUVQ- BUPVO
As in Riemannian geometry, we have antisymmetry on the first two
indices of Ruvp? (T), through the definition. We also have antisymmetry
on the last two indices of Ruvp? (T') due to metricity. However, we have
no symmetry on the pairs of indices (uv) and (po), as the connection

is no longer symmetric, i.e.

Ruvpg(r)¢ Rpcuv(r) . (1.3.24)

Hence in a Riemann-Cartan geometry, the Ricci tensor,

R (I') := R c(

- ouv. r) (1.3.25)

remains the only essential contraction of the curvature tensor. Because
of (1.3.24), the Ricci tensor is asymmetric in general. The Ricci

scalar of a Riemann-Cartan geometry,

R(I') = g"VR (I) (1.3.26)
ne :

while the Einstein tensor is given by,
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G () = R (I) -1

n " 5 R(M g, (1.3.27)

and is in general asymmetric.

The Ricel scalar, R(I) can be decomposed into its Riemannian
and non-Riemannian parts as follows (by choosing a normal coordinate

system in which {ucv} = 0);

R(I) = R({}H) +angpG -g® x % + g gV _g T Vo

o vp. ga., Vv va' g
(1.3.28)
while the Riceli tensor decomposes into
o} o o o o o
= + - -
RVO(F) RVO({}) a\)chp. acK\)p.+ Kca.Kvp. vo., Jp.
(1.3.29)

The Bianchi identities on the Riemann-Christoffel tensor upon going to

Riemann-Cartan geometry, generalise to

g

g o g
R
[uvp].

T = ZW:U S vo 1.~ 4 S[uv. Sp]a.

(1.3.30)
and

g

VraRuvlp. ° ° () (1.3.31)

T = zsfau. Rv]Bp. ’

(square brackets denote antisymmetrisation). Having described the
geometry as far as is required for this thesis, we shall, in the next
section describe the physics behind metric-torsion theories by writing
down the lagrangian for the Einstein-Cartan -Sciama-Kibble (ECSK) theory,

and deriving the corresponding field equations.
We shall now complete this section on the geometric framework
of metric-torsion theories of gravity by giving a geometrical picture
of torsion/3/. Viewing the torsion tensor as a vector valued operator,
operating on two vectors, u, Vv, we have,

Ty = Vv -7V (1.3.32)
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where [ u,v ] denotes the Lie bracket. In the picture below,

{Eﬁao)}” denotes the parallely transported vector field. Similarly

for v (Ko),
WA _+SR) 7/
>
{v(x )}
=0’
|
u(e ) /l\
ule] |
f u(e +8¢)
! =70
|
(EO,AO) X(KO)
FIG, 1

This figure shows torsion as the wrecker of parallelograms. Under
parallel transport, the vectors u,v are given an additional "twist"
by the torsion field. We note that even if the vectors u,v

commute, i.e., [ u,v] =0, the parallelogram is broken.
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METRIC~-TORSION THEORIES OF GRAVITY.

§4, Physics of Einstein-Cartan-Sciama-Kibble (ECSK) Theory.

Having briefly described the geometry of metric—torsion theories
of gravity, we come now to the question of constructing and describing
a metric-torsion theory of gravity. In this section we shall describe
the simplest possible generalisation of general relativity, the ECSK
theory. As the ECSK theory is also the simplest possible metric-
torsion theory, we shall, for later purposes, take the ECSK theory

to be the prototype of metric~torsion theories of gravity.

Cartan's /2 /idea of a relation between spin and torsion may
be supported by the following argument /4 /. In special relativity,
we have the inhomogeneous Lorentz group as the isometry group of space-
time. The Lie algebra of this group has two basic invariants which
are interpreted as the mass and intrinsic spin of elementary particles.
The inhomogeneous Lorentz group is a semi~direct product of the group
of translations in four dimensions and the homogeneous Lorentz group
of rotations. Mass arises as the invariant related to the translational
part and spin with the rotational part of the isometry group. In a
classical field theory, mass is taken to correspond to the canonical
energy-momentum tensor while spin corresponds to a canonical spin
tensor. Einstein's theory of general relativity expresses a dynamical
relation between the energy-momentum and curvature tensors. If a theory
of gravity is considered to be a generalisation of the special theory
of relativity, one would like to have a dynamical relation between
the spin tensor and any allowed geometrical entity analogous to
curvature. Having introduced the torsion tensor, we have such a
possibility, by coupling torsion to the canonical spin tensor, we
shall have the desired relation. If we have a lagrangian L , for a
matter field in general relativity, then the definition of the dynamical

energy-momentum tensor is,
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— SL
-g T = 2 — (1.4.1)
éguv ‘

where g(<0) denotes the determinant of the metric tensor I

The introduction of torsion (equivalently, contortion) allows us

to introduce a dynamical definition of spin in a straightforward

manner
V—g T'\)u = 6L (1.4.2)
g s ©
uv.
Eg and <K denote variational derivatives with respect to the

metric and contortion tensors respectively.

In constructing lagrangians for metric-torsion theories, in
particular, for the ECSK theory, it is best to start with Einstein's
theory and build upon it. The lagrangian for a matter field ¢ in
Minkowski space-time reads (suppressing all indices on the matter
field),

L (¢,3%) (1.4.3)

In coupling to Einstein's general relativity, one uses the minimal

coupling principle,

Ny T8amd 3 > vh (1.4.4)

where nuv is the Minkowski metric. The total lagrangian for the

gravitational and matter field is,
LO,7, (L D)+ g R {D (1.4.5)

As this principle works so well for the macroscopic theory it is
advisable to retain as much of this as possible. As such, the
corresponding, total lagrangian for the matter field coupled to ECSK

gravity 1s taken as,

LGy, 7, 9) V-g R(I) , (1.4.6)

and the torsion is said to be minimally coupled.
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The field equations are obtained by variations with respect

)

to the independent variables (¢,8uv,suv.

o
) or (w,guv,Kuv_). However,

since the 24 components of torsion are a priori independent of the

. .. . o}
metric, we shall take variations with respect to (¢, g S )

v’ v,
We have,
SL _
5 = 0 (1.4.7)
sL 8V -g R(T)
o = T T (1.4.8)
8L guv
and
5L §¥~g R(T)
—, = - — (1.4.9)
858 &S
uv uv
Provisionally, defining
v SL
/:g' M = 55 O (1.4.10)
v
and noting equation (1.3.20), we shall have,
uuvp = - MRy VPH P (1.4.115
or equivalently,
e Do (1.4.12)

Using equations (1.4.12), (1.4.10), (1.4.1) and (1.4.2) we can

write the field equations (1.4.8) and (1.4.9) as follows

1 § V=g R(T)

™ = -/— —_— (1.4.13)
-g Ggu\,
and
1 §V-g R (T)
™o o e ga[u _— (1.4.14)
2/= gs _ ©
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These field equations can be reduced to the following simple
form ,

¢V = M (1.4.15)
and

T = T . . (1.4.16)

where Guv(T) is the asymmetric Einstein tensor defined in equation
(1.3.27) and ™ is an asymmetric energy-momentum tensor involving
"V and Tuvp. The quantity ™" is a new combination of torsion
tensors, and is given the name of modified torsion tensor. It is
defined as

o} o}

g
Tuv. i= Suv. + 2 GEU S

o

vla. (1.4.17)

This completes our introduction to metric-torsion theories of
gravitation, in particular to the ECSK theory. (See the review of
Hehl et. al. /4/). 1In the next chapter, we shall attempt to

couple gauge fields to torsion and we will see that inconsistencies
arise. A solution for the case of electrodynamics is described and a
generalisation to non-abelian fields is given. The essential result
is that torsion is of a special form, and the gauge coupling constants

become space-time dependent functionms.
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CHAPTER II

ROLE OF GAUGE FIELDS IN GRAVITATIONAL THEORIES
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§1. Introduction of gauge fields into general relativity.

We have seen in the last chapter that introducing matter
fields into gravity is achieved simply through the minimal coupling

procedure by letting n (x) and 8u+Vu in the matter field

->
v &uy
lagrangian.

The lagrangian for a gauge field in Minkowski space—time

invariant under a group G, whose generators, Ti’ i=1l,....,dimG satisfy
[Ti,Tj] = lcijka (2.1.1)
is simply
1 i _uv
L = -=F . 1.
7 v F ; (2.1.2)
. i _ g5 41 _5 ,i i ik
with Fuv 1JA\) vAu + gC ik AM AV (2.1.3)

So, coupling to gravity modifies the lagrangian to

- 1 — i T wv

L = tv-

o s " 78 Eﬁv F ; (2.1.4)
. oi -7 i i i i k

with Fuv J{})Av Vv({}) AU + gC ik Au Av (2.1.5)

Remembering that

o
Vu({})A\) = BUA\) -{u v} A, (2.1.6)
we see that due to symmetry of { o }in (pv), F 1 remains unchanged
TRRY uv
after coupling to general relativity. The only modification is to the
lagrangian, through the incorporation of /=g , and the gauge structure
of the fields F 3 is unaffected.
u

Fboooplgal o ab s g dt, ,{u At 2.1.7)

Y uv TRV v JRTW v
One might be tempted to say that such a result should have been expected
on the grounds that the minimal coupling procedure as applied to gauge

fields is quite distinct from minimal coupling as applied to the



-31-

gravitational fields. One involves parallel transfer on the
physical space-time ome is studying, while the other has parallel
transfer defined on an "internal group space.

We shall see in the next section, that such an expectation
is false when applied to metric-torsion theories due basically to the
existence of torsion as the "wrecker of infinitesimal parallelograms"
see Fig. 1, Chapter I.

§2. Generalisation to metric torsion theories and loss of
gauge lnvariance.

As before, coupling L = = % Fut Fuz to gravity modifies
the lagrangian to
1 2 i Zuv
L = == - 2.
G 2 Tuww Py 78 (2.2.1)
with
i i i i j .k
=V - . 2.2,
Foo Ay TAL r s Al A (2.2.2)
For metric-torsion theories of gravity,
VA = 34a -T1° (2.2.3)
VRS ThaY) UG Te
so that
v A' v At = -r% Al O Al +3 Al -5 AT
U v vy uv' o vu ‘o TR v
= (19 -1% )y A' + 3 Al -5 Al
vu uv o TRV v
= 25 A +3 A' -3 A (2.2.4)
ViU, o u v vu
Therefore
~ i i i i ik o,1
F = A -3 A + .. A + 2 A 2,
uv Su V av u g C jk u Ab Svu‘ o] @ 5)

So the field strength tensor Fuvl is modified when coupled to torsionm,

~ i . .
and we have no grounds to assume Fuv is still gauge covariant.

Under a gauge transformation, we have equation (1.2.13), the

infinitesimal form of which is,



-32-

1
A, = - =3¢, - C. . e A. 2.,2.6
ui g ‘uti ik] "k w3 ( )
and we also know that
i i i i i .k
= - +
Fooo =0 A, - 34 B C AL A (2.2.7)
under a gauge transformation changes covariantly, i.e.
i _ L1 ok
SF i Fi (2.2.8)

The behaviour of Fut under a gauge transformation can therefore

be described as

SF X = SFLX + 2 Tsal
uv uv VUu
i ok 2 3 ioe Oui
Ch i SF T Suuitee 28,70 e A
(2.2.9)
Hence,
§F Y g ¢t JdFE (2.2.10)

and therefore the gauge invariance of the lagrangian LG is ruined by
allowing non-zero torsion /5/ .

We come up against this problem of either not having torsion
or abandoning gauge invariance. However, we have seen in the last
chapter, that metric-torsion theories of gravity, while differing very
little from general relativity offer great hope of carrying gravity
into the microphysical realm, and incorporating intrinsic spin into
the gravitational interaction. As the concept of intrinsic spin is
purely quantum mechanical /6/ , it would seem to suggest that if ever
a quantum theory of gravity is found, it should contain some form of
spin-gravity interaction. Clearly if one has a quantum theory of gravity,
the limit of zero gravity should be the usual quantum mechanics with
its concept of intrinsic spin, when considering particle interactions
with gravity (as opposed to field interactions). Metric—torsion theories
of gravity might therefore be simply the classical limit of this quantum

theory of gravity, showing up a remnant spin-gravity interaction in the
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form of torsion-spin interactioms.

Another possibility that suggests itself is the abandoning
of gauge invariance. With the great successes of electrodynamics as
a gauge theory of the U(l) group, since its inception in 1929 by
Hermann Weyl, and with the recent achievements of Salam and Weinberg /7 /
in unifying the electromagnetic force with the weak force (responsible
for radioactive decay of nuclei), through the use of gauge theories
(specifically the group SU(2)xU(1)) suggests that it would be foolish
to throw away such an inspiring formalism with no equally viable

alternative at hand.

So, perhaps one can keep torsion and gauge invariance, but
allow only non-gauge fields to couple to torsion, i.e. for gauge
fields we should carry out the minimal coupling procedure with the
Christoffel symbols only, whiie all other matter fields would be
minimally coupled to the full Riemann-Cartan geometry through the
asymmetric connection /5/ .

However, such an alternative is rather unsatisfactory,
for, if torsion is to couple to the spin of matter fields, it is rather
ad hoc to disallow spin one gauge fields from coupling to torsion
while at the same time allowing massive spin one fields, like the
proca field to couple to torsion. Therefore, we need to reassess the
situation.

In the next section we shall discuss an alternative
suggestion of S. Hojman, M. Rosembaum, M.P. Ryan and L.C. Shepley /8/

which overcomes all of the above objections for electrodynamics.

§3. Coupling of torsion to electrodynamics.

In this section we shall couple torsion to the U(l) gauge field,
the electromagnetic field by using a modification of the gauge minimal

coupling procedure suggested by ref. /8/ .
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In order to exhibit clearly what is happening, we shall write
out explicitly, the lagrangian for a massless complex (charged) scalar

field as /1/

=
L]

- /=g au¢*a“¢ ) (2.3.1)

The lagrangian is clearly invariant under the global gauge transformation

$ + e ) s A = constant , (2.3.2)

3 b » e 3 ¢ (2.3.3)

however, it is not invariant under local gauge transformations, for
while

b =+ ¢' = eiA(X)¢ s A =A%) . (2.3.4)

3,9 -+ eiA(X)au¢ . (2.3.5)

Requiring invariance of L¢ under local gauge transformations imposes a
compensating gauge potential Au(x) which is normally introduced by
redefining the derivative operator au:

3+ 3 —-igA 2.3.6

H UgU ( )
This, we have seen in Chapter I is the normal procedure. Incorporating
the modification suggested in /8 /, we redefine the derivative operator

3 to be
M

2> D= a, -igh¥a (2.3.7)

. o . . . .
where the function bu will in general be a function of space-time

but not of Au .
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Invariance of L¢ under (2.3.3) with au replaced by Du will

be assured if the transformation of Du is given as

A (x)
D ¢ + D¢’ et D ¢ . .3.8
KRN K (2.3.8)
or,
by Oy 1A(X) . iA(x). «
8u¢ 1gbu Aa¢ e au¢ ige bu Aa¢ s
iA(x) iA(x) S
] - b A
L0y e At
iA(x) s iA(x) o
e au¢ ig e bu Aa¢ s
and,
igh(x) _ e 1A o,
e $ auA(x) ige bu Aa¢
_ s iA(x) a
= ~ige bu Aa¢ . (2.3.9)
Therefore we have
o i o
b Al = - =3 A + b A . .3.10
b By 2ou (x) LAy (2.3.10)
or, defining Cua to be the inverse of bua:
@, ¢ _ .0
Cu ba 611 , (2.3.11)
v _i,w '
A Aa 2 Ca auA(x) (2.3.12)

This is the modified transformation law for the electromagnetic
potential.

-The field strength tensor of electrodynamics is simply

F =93 A =3 A . (2.3.13)
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So, coupling to torsion modifies this to

?

= VA =~VA (2.3.14)
uv TRV v

= 3A -23A + 25 %
uv v H VU. O

~

o .. . .
We must solve for Cu by requiring gauge invariance of Fuv under

the transformation (2.3.12):

SF =93 A -3 6A +25 9 sa
uv TR Vol Vi, o

]
[sP]

i o i o o i o
- x - - = - = 3 A
u( s cv aaA) av( : cu aaA)+ zsvu.( s Cs 2, )

= - 3c%%A-2c% sA+dy; c%opric% oy
g HV o g VvV u « gV U o g u vV
2L g Ty, (2.3.15)
g “vi. o ‘a
= 0
or,
(-2c®+dy -2 g T
uov v u g “vu
i ,a, B 1 a. B
+ (-3¢ + ¢ 5 A .3.
( z S Gu : L Gv )BB o (2.3.16)
=o.

This equation must hold for arbitrary parameter A, so we have the two

equations,

= 0 (2.3.17)

and

9.C ~-8 C ~ -28 C = 0 (2.3.18)

to solve.
The round brackets on indices «,B in equation (2.3.17) denote

symmetrisation.
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Carrying out the symmetrisation, we obtain

c 8, + ¢ -c s "-c’s =0 | (2.3.19)

4Cu + C - C - C 8 =0 (2.3.20)
or,

C = % c, ¢ (2.3.21)

we can write this as

a a
C, = flo d, (2.3.22)

where £(x) = % C B is an arbitrary function of the space-time.

B

Substitution into the second equation, equation (2.3.18) gives

o

a o} o
vi(x)(Su Buf(x)sv ZS\)u f(x)(Sc = 0 (2.3.23)

or,

o o o]
6u Bvlnf(x) 6v Bulnf(x) . (2.3.24)

25
Vi,

Discarding the singular solution (when £(x) = 0), we see that the

. ol . . . . .
requirement that as Suv +0, the covariant derivative defined in

equation (2.3.7) reduce to the usual definitiom, i.e. that bua > ¢
allows us to parameterise the function £(x) as an exponential.
Fx) =™ (2.3.25)

The field Y (x) is a scalar field which serves to define the torsion
field SWc through a gradient operationm,

o}

_ . O . @
ZSvu' = 6u va(x) Sv Buw(x) (2.3.36)

so that Y(x) acts as a potential for the torsion field.
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So we have managed to couple a restricted form of torsion to the
electromagnetic field by modifying the usual minimal coupling procedure
for the gauge field. Notice also that because this torsion is given

as the gradient of a scalar field, we can construct a theory of
gravitation which allows a dynamical theory of torsion, where the torsion
field is able to propagate and is non-zero in the absence of matter
fields. This is a clear departure from the Einstein-Cartan-Sciama-Kibble
theory (which was introduced in Chapter I) in which torsion is not

allowed to propagate and is zero in the absence of matter fields.

The question we must ask ourselves now, is whether this
analysis can be extended to quite general, non—abelian gauge fields.
This is an important issue, for the modern theory of elementary
particles views the electromagnetic field, not as an entirely independent
gauge field, with the other elementary forces needing additional non-
abelian gauge fields, but rather, the electromagnetic field is to be
part of a large set of non—-abelian gauge fields /1/ . 1In the next
section we will show that indeed, it is possible to generalise the
above analysis to non-abelian gauge fields, provided Wevalso simultaneously

generalise the non-abelian gauge field strength.

84, Coupling of torsion to non-abelian gauge fields.

Taking the gauge group to be G, with dimG generators Ti

satisfying a Lie algebra

[Ti,Tj ] = lcijka (2.4.1)

with structure constants Cijk’ we have seen in Chapter I that the

usual gauge covariant derivative is,

= - ig (T.A 2.4.2
Du Bu ig ( u) ( )
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Let us generalise this to /9/

o
=3 - i : .
D, =3, -igb " (T.A) (2.4.3)

o . . . i .
where bu is a function of the space—time and not of the Aal in
total analogy with the generalisation in §3. To find the transformation

. i .
law for the potential Aa , We require that under

v > U(e(x)) ’ (2.4.4)
Duw > U(se(x)) Du¢ (2.4.5)
i.e.,
ryt = s o
Duw - Duw U(e) {au¢ ig b, (T.Aa)w} (2.4.6)
or
) o ] 1] - s (o4
{aunp 1g_bu (T.Aa)lp } = U(e)auq; ig bu U(e) (T.Aa)w
(2.4.7)
or,
s a ' - _ 3 o
('au 0Ny - ig bu (T.A'Q) Uy ig bu U(T.Aa)w , (2.4.8)
and, ig bua(T.A&) U=3U+ ig buaU(T.Aa) (2.4.9)
defining Cua to be the inverse of bua s
N o _ 1M -1 -1
(T.Aa) 2 Cy (auU) U + U(T.AQ)U . (2.4.10)

At this stage we must first check to see if the product rule still

holds, i.e;

1f (T.A) = - é ¢ M35 1T + u(e) 1.8y U
(2.4.11)
and
Ay = -t um) vTHm + v AT,

(2.4.12)

then we must show that there exists a transformation U(£) such that
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i
n - —-— —
(T'Aa) -3z

¢, (3 () UTHE) + U (T.AUTHE)

(2.4.13)
with U(g) = U(n) U(e) (2.4.14)
only if such a group property holds, are we allowed to go to an
infinitesimal transformation. This property is a manifestation of the
Lie algebra that the group satisfies. In appendix II(A), it is proved
that this property is indeed satisfied for this modified gauge covariant
derivative.

From equation (2.1.3) we see that the field strength tensor

for non-abelian gauge fields is

A~ (2.4.15)

Coupling this to torsion leads to

-~

i

Fl=5 aA'-sat+gc . ala* +235 94 (2.4.16)
Hv v Vv jku v VU, O
remembering that
.t :
[T,T) = iC,T (2.4.17)
we can write F © as :
Hv
T.F L =5 T.A" -3 m.A + goc. 'r.al A¥+ 25 Talr,
1 uv g 1w v iy jk "ip v VH. 0 1
=3 T.A -5 T.A -ig [T.A ,T A% 11 r425 94 .7
v v Ty T 2Tk i "Tvpe 7T
(2.4.18)

For the rest of this Chapter, except where otherwise stated, we shall
take the convention that all gauge potentials and field strengths have
associated with them a generator of the group G although not explicitly

written, e.g.

~

11
i ?
3
11
]
(=W
o
=
1]
.
3

w = Fuy (2.4.19)
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Then, eqn. (2.4.18) .can be written

ing g
= - -1 + A .4.20
Fuv Bu Av Bv AU ig [AU’ Av] 2 S\)U s (2.4 )

Now the question we must answer is, can we by using the transformation
. . . o
law for Au given in eqn. (2.4.10), consistently solve for CU

o} .. -~ .
and S\)U by requiring Fuv to be gauge covariant?

The answer turns out to be /9/ (see also appendix II(B)) trivial.

We find that the modified gauge covariant derivative when used to
require gauge covariance of (2.4.20) gives the trivial result that

bu = 5u and Svu. = 0, (2.4.21)
Therefore we cannot couple non-zero torsion through the modified gauge
covariant derivative to the unmodified Fuv . It is this last statement,
that we have used the unmodified Fuv in the case of non-abelian
gauge fields that gives us the solution. Let us modify the non-abelian

field strength Fuv to

_ ~ s @ o B
Fuv = BuAv BvAu 1gBu B, [iAa,AB] (2.4.22)

and now couple this to torsion, while still retaining the modified

covariant derivative. We have introduced the two arbitrary functions

th= th

a o
i i (x) and Bu = Bu (x) . (2.4.23)

Coupling this modified Fuv to torsion, we find

B o]

[Aa,AB] + 2 S\)U Ao' (2.4.24)

F =295 A -3A -igB%B
38Y S VvV U ooV

Under a gauge transformation we suppose

= . o, B g
=93 A -3 A - B~ [A' ,A'1+25 "A'
Fuv - Fuv au v avAu 18 Bu v : a B vu. ag°

(2.4.25)

From equation (2.4.10) we have that under @ gauge transformation,
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A > A = -2 ¢ vl +uaut (2.4.26)
u u g H a u

o . o
where, as before, Cu denotes the inverse of b

Hence,
F' = =-2%3 (¢ %5 wul} +3 {va v
uv gu v a nov

1y

+iy o™ 3 wauh
g vV u o v U

- ig Buans[- = Cac(acU)U—l + U AaU-l 1

a9 1+

1 o) -1 -
-—= C 9 U "+UA U
» g Cg ( 0 ) g

ceumuls 9 +ua2s % yl
c o VU VH c

2i
- = 2.4.27
g ( )

= uls A -3A -igB% B ,Aa7+28 a3yl
JTREIRY] v H nov a’ B VH.

-1 -1 -1 -1
+ (auU) AvU (avU)AuU + UAv(auU ) -U Au(avU )

i o -1 i o -1
g(aqu ) (SaU) ) + 2 (E)\)C].l ) (aaU) U

lce% s mut+d:oc% s mut
g Vv ua g u va

1

. o _
Cv (aaU) (8uU )+

L
g

i

Br- 1
S

. %)
- ig Buan c Guu, -

. o, B -~
- 1ig Bu Bv -

- ig BuanB (VAU , -

o -1 (o]
o (aaU) U svu. . (2.4.28)

.
g

-~

Gauge covariance of Fuv is simply

F' = UF vt (2.4.29)
v ny

~

So, requiring gauge covariance of Fuv tells us that
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Gwmis%%-s%Yhs ula 6% 4 6% ol
o] v v Ty v ou oV o]

-~ ombB e3¢ Ut Uy {c% 9 -¢ % %l
g g Hov v U g oo vV oy nov
rromic®* %-c% % puh
g o Uy v o g
. a. B 1 o, p -1 “1. 1 AP p Opn il -
- - L £ C (WU (3 U
ig B, B, { 5 C, Cg (31U (apU)U +—5C, Cg (3 U ( 5 u 'l
g g
) a, B ;i o -1, i o,.-1 -1
- ig B B, { g Cq (1) A, U T + s U4l U UU }
s U«B{_i g -1 -1 i a -1}
ig B B . UAC, U (3 U " + 5 Cq (3 U) A U
-2 %y yuls ©
g 0 a (TR
=0 , (2.4.30)
or, remembering that
w! = vlhy=1, (2.4.31)
implies
-1 -1
(auU) U = - U(auu ) (2.4.32)
or
v Pemul = 3yl (2.4.33)
H U
we find
G Wis % -s% -23¢9+1; c%9_p%Bc,
o) TRV VT g uv gv u H v o B8
+ 3% B8c% - Z 9% o 3yl
U v B o g a VU,
+ulas%-a 6%-8B"Bc%+ 8%Bs c%puh
v u MV H v Ba H v o B o4
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o mic% P-¢c% -8 Pc 9+ 5% B¢ 9% Pt uTh
g o uov vV ou u v o B U v B o o]

= 0, (2.4.34)

So, the solution we are seeking is a simultaneous solution to the

following set of four equations

( ) ( )
c% 9-¢*s59%=0 (2.4.35)
v o u v
c% P -c%P+B%BcPc-8%B: %P0 (2.4.36)
[TRNRY) v o ¥ v a B M v o B
o _ o] a. B o _go B o_
Avau Aud + BB a.Cq B, "AC, =0 (2.4.37)
and
s -5 % + 3% Bc % -B%pBgI,
uv v U ¥ v B a u v a B
¢ 25 cOoly o0 2L 05 @ _ g (2.4.38)
g VvV H g U v g o Vi

The first of these, equations (2.4.35) is identical to that obtained

in the electrodynamic case, and its solution is

a a
c = f A
" (x)6u (2.4.39)

where £f(x) is an arbitrary function of the space-time, Substituting

this sclution into equation (2.4.36) yields;

a. P _ . P 2 Pp O_c2 Oa Po
f(x)&u Sv f(x)&v Gu + £7(x) Bu Bv £7(x) Bu Bv 0
or (2.4.40)
lo ¢ p]_ 22 o, p1 _
f(x) Gu dv f (x)Bu BT = 0 (2.4.41)
where the square brackets denote anti-symmetrisation. So we have

the reduced equation

£ 6 %% - 20 38 = o, (3.4.42)
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tracing over indices vand p

g g, v _
48 °-£)B 77 =0 . (2.4.43)

Taking a further trace over u and ¢ gives

Mo v 16
BB, = e (2.4.44)
or,
BY = + —— . (2.4.45)
v ViE(x)

Substitution of this back into equation (2.4.42) finally allows us
to write

B%= + s % (2.4.46)

- AS =0 (2.4.47)

i.e., an identity.

While equation (2.4.38) is

AS9 -a8%+46%-46%+%%% £(x) -5 % £(x
vou TRy TRRY vor o ogou %y gv ‘u
S35 9 oy = 0 (2.4.48)
g\)u. 9 ot
or,
G _ .0 .o :
2 Svu. = 6u Bvln f(x) Gv 3u Inf (x) . (2.4.49)

Once again, discarding the singular solution (£(x) = 0), and requiring

that in the limit S ° - 0, we have b * » ¢ ¢ and B %+
' S3Y H H H H

in order for the modified gauge covariant derivative and the modified

gauge field strength tensor given in equations (2.4.10) and (2.4.22)

respectively reduce to their unmodified counterparts, tells us that f(x)



-46-

is an everywhere non-zero, positive valued function. Therefore, we

parameterise it in the form

f(x) = V(X (2.4.50)

In terms of y(x), we can write the modified gauge field strength as,

F =3 A -3 A -ig eV (A ,A J+25s %A (2.4.51)
ny TERY] VU H v VUH. ©
with
o o o .
Sy =8, 30 JRERTCOR (2.4.52)

Thus, we have accomplished what we started out to do. The remarkable
fact is that the special type of torsion that was found in §3 in
coupling to electrodynamics is carried through to the non-abelian case.
Torsion is still determined by a scalar field, ¥(x) acting as a

potential for the torsion temsor field /9/ .

This is easily understood, if one remembers that the gauge
potentials A]J are simply connection symbols on a principle bundle
with its structure group being the gauge group. While the field strength
tensor 1s nothing but the curvature tensor of these connection symbols.
In generalising the gauge covariant derivative, one may imagine that
the gauge coupling parameter has been allowed to become a function on
the space-time. If one evaluates the curvature tensor of such a
covariant derivative, some additional terms containing partial derivatives
of the logarithm of the coupling function arise. In coupling to torsionm,
we equate these additional terms with the torsion tensor, and hence the

torsion tensor is always of the form (2.4.52).
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PART 1T

VARIATIONAL PRINCIPLES AND LAGRANGIANS

"Whenever any action occurs in nature, the quantity

of action employed by this change is the least possible”

Pierre Moreau de Maupertuis (1746)
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CHAPTER III

INVARIANT VARIATIONAL PRINCIPLES
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§1l. Invariant Variational Principles

At the time Einstein proposed field equations for his theory
of general relativity /10/ , Hilbert was preoccupied with an axioma-
tisation of physics, having declared that "physics is much too difficult
for the physicists'". It was this that led him to propoée an elegant
derivation of Einstein's field equations through variational principles.
Through this work too, he stimulated the work of Klein and Nother.
Klein's work culminated in an extensive study of "the differential laws
for the conservation of momentum and energy in Einstein's theory of
gravitation" using the theory of invariants, while Nother's work led to
her well known theorems relating continuous symmetries of the classical
equations of motion to conservation laws for the lagrangian from which
they are derived.

The variational principle itself consists of writing down an
action integral for a lagrangian that depends on the field quantities

one is dealing with :
I =j{Ldx (3.1.1)

The variational integral is said to be of the nth order whenever the
integrand depends on partial derivatives of at least some of the field
functions with respect to the space-time coordinates, upto and including

the nth order.

One then seeks field equations for the dependent quantities,

for the solutions of which, the action integral assumes extreme values.

However, in this classical treatment, it is usually assumed
that the dependent field functions are unaffected by coordinate

transformations of the type

D - (3.1.2)

under which the action integral I is taken to be invariant.
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In many physical applications, this assumption is not
justified,for instance, the classical electromagnetic field is described
by a vector field satisfying field equations derivable from a variatiomal

principle.

In the study of invariant variational principles /11/, in
addition to requiring the field functions to transform according to their
tensorial/spinorial character, we impose a further conditiom om the
action integral by requiring it to be invariant under the transformation
(3.1.2). This invariance implies that L must be a scalar density of
weight 1. if we denote our field functioms as Y with indices suppressed,

then we must have

L&, 5,25 9,925 9) =3 LGS ,0,3,9,3,0.9) (3.1.3)

under the coordinate transformation (3.1.2).

Where L has been taken to be of the 2nd order, and

B = : . (3.1.4)

We shall also assume that L satisfies the appropriate Euler-Lagrange
equations and that these equations are identical to the field equatioms
satisfied by the dependent functions. Clearly these two invariance
requirements may be expected to impose severe restrictions on the form

of L and on the field equatioms that L satisfies, i.e. the Euler-Lagrange
equations. In the next section, we shall show that this is indeed the
case for Einstein's theory by taking a 2nd order lagrangian in the metric.
We shall see that one has to comsider 2nd order lagrangians, as one

of the restrictions on L will be that ome cannot have a non-zero first

order L ., In addition we shall derive three identities for L/11/.
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§2. IVP's in general relativity.

Einstein's theory is based on a four-dimensional Riemannian
manifold endowed with a symmetric, covariant metric tensor of the
second rank, and having signature (+,-,—,-) . The lagrangian
is - chosen through physical arguments to be linear in the second
derivatives of gij and taken to contain no higher than second derivatives
of g.. . For our purposes, we shall consider a lagrangian

1]

L = (3.2.1)

where a comma denotes partial derivatives, and a semi-colom denotes

covariant derivatives with respect to the symmetric Christoffel

connection.
agij azgij
8: . = 3 8. = — (3.2.2)
ij,k axk ij,kl 5 kaxl

We shall also assume that g.. = 0, so that we have a local Minkowskil

i1k
structure . We have seen in the last section, that the requirement of
invariance under
= b (3.2.3)
of I = Jd4xL (3.2.4)

tells us that

qul
T A LI N S IR X2

Remembering that gij is a 2nd rank covariant tensor field, we have,

under (3.2.3),

z.. = B2 8P

i i ; 8.b (3.2.6)
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where
. x> . 32x?
B, = — , B.. = —r/— , etc. (3.2.7)
t ox 1] dX 3x
Similarly for gij,k and gij,ki

From equation (3.2.5) we notice that the right hand side is independent

of B , 80 we have
m

3L
- = 0 (3.2.8)
3Bt
him
or, »
Ot e R G V) . L %81k, 4m o (3.2.9)
- i = i - i .
3 B
B OB npq aghk,JL3 npq aghk,JLm 3Bnpq
Let us define
L 3L L
AR o pbksp ang  pBk.gm  _
8y %8k, 2 %8k, om
(3.2.10)

So we can write equation (3.2.9) in the form;

_hk  3g _ 3g -hk,2m Og
T hk . Fhko? ?k,ﬁ .1 hk,tm _ o
5Bt 9B ): 3 (3.2.11)
npq npq npq

In Appendix III (B), it is shown that this reduces to

-h

ank, dm g?k m (3.2.12)

B
npq

because of the transformation laws for éhk 2 and éhk'

We also show there that a further reduction in equation (3.2.12) leads to,
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fkn,pq . gkpsan | gka,pn 0, (3.2.13)

ij,k8 _ dike _ ,if,%k

which, by noting that A , can be used to

yield the required identity in the form,

zhk,2m ' -%m,hk

= 1 (3.2.14)

bk, im is that

From Appendix III (A), the transformation law for A
of a tensor density of weight 1 and contravariant rank 4, so we can

remove the '"bars" om equation (3.2.14) and write the first identity,

satisfied by L as

hk , 2m m,hk

A

i
-

(3.2.15)

§2.1 The second identity.

The right hand side of equation (3.2.5) is also independent of

B1 so we have
Pq

oL

‘ -0 (3.2.16)
apt
Pq
Or’
5L S oL g 3L og
° grilk . - filk,l b &i’@_‘& =0 (3.2.17)
3 3
81 B a %hk,1 B pq Bk,em P pq
As before,
Y _ og - °g
gk bk, ghlof Thiok o oghkodm Thigin | (3.2.18)
apt 3B 3
hk,2m

At this point, we notice that although A

L
ik and AP (c.f. Appendix III(A)).

is a tensor density, the
same 1is not true of A
Hence, in order to write our second and third identities in a tensorial

fashion, we must construct tensorial analogues of Ahkand Ahk’l
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This is done in Appendix ITI (A), and we denote the corresponding
tensor densities by Hhk and Hhk’l respectively.
In Appendix III(B), we use the following two simplifications

in deriving the identities.

(i) Because equation (3.2.5) holds for coordinate transformations
of the form (3.2.6), it is true, in particular, that (3.2.5) holds

for transformations of the form;

(ii) Because our metric satisfies 8.

3k = 0, we can choose our
bl

local coordinates to be such that the Christoffel comnection symbols
vanish, i.e. that our coordinates be gaussian normal coordinates.

Returning to equation (3.2.18), we see that it can be reduced to

gpk.a | k. _ 4 (3.2.19)

As before, this is a tensorial equation and therefore if it holds in

one frame, it holds true in any frame. Hence,

pPked . pakep _ o (3.2.20)

In Appendix III(B), we show that (3.2.20) implies

e L (3.2.21)

remembering that Hpk’q

is symmetric in indices (pk) . This is a most
remarkable identity. Suppose for the moment that L depends solely on

the 8hi and their first derivatives. Then, by equation (3.2.10) we have
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hk,im k

A 0. According to the definition of NP9’ (c.f. Appendix III(A)),

hk,% £ L, hk,jm

Lo k AhJ,2m+ h ,kj,&m
jm

200 ars A , (3.2.22)

hk,2

L . . .
>“reduce to the partial derivatives A s

.. h
so the quantities 1

which now wvanish by (3.2.21). We therefore have

There does not exist a scalar density L(ghk ) depending

*Ink, 1

on the Ik and their first derivatives only.

Because of this amazing identity, we are forced to comsider
second order variational problems when faced with a field function which

is a symmetric metric tensor.

§2.2 The third identity.

For the third and final identity, we return to equation (3.2.5)
and differentiate it with respect to the quantities Blj . Remembering

that if Alj denotes the inverse of Blj ,

Alj BJk = alk , (3.2.23)
then
éﬁi = B AJi , (3.2.24)
3B*,
j
we find,
. - P 5T g - 3g
3L g
BL ATy = — T 5% igﬁ,z - 22 PR (3.2.25)
98, 9B ; hk, % j 3k, im 3B 5
or,
B LAJi - Rk agy . k2 98k, . thk,om 98k, um
gt BL, 3BL,
9% j %3 j

(3.2.26)
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After a large amount of tedious calculations, this equation is reduced

in Appendix III (B) to ;

1 i ik 4 ip,q?
2L - , 4o ,
2 b9 g * 3 Rygp (D A

or in terms of tensorial quantities,
1. .3 jk 2 jm, k2
-L - — b ]
3L8 g 3 RygmH A

(3.2.27)

(3.2.28)

This is the required third identity, where Rikml({}) is .the

Riemann~Christoffel curvature tensor.

§2.3. Reduction of Euler-Lagrange equations for L(g,3g,33g).

We have just the one field function, gij , and the Euler-

Lagrange equations for

L =L . ..
(gij,gij’k , glj’kl)

read
.. a [ a1 d L 3L
gy = — ) —/— - = | -
i ) 3 ax® 3 3
81,k gij,sz i3
or, ok o7 SRS L R LI R E N RS SRR AR £ & R
The relations
_ i,k . plik ij
e A B esn i By * 0 b, s
_ L ii,ke i,k i
and e A Biseg * A hys o+ A ng

(3.2.29)

(3.2.30)

(3.2.31)

(3.2.32)

(3.2.33)

from Appendix III (A) can be used to derive some surprising results

for (3.2.31);
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We first note that

13,k

h A = (h.. AMKy k= p,, pAlIoK

. .2.34
ij,k ij ij -k (3 34)
ij,ke _ ij,k&, , _ i,k
and hij,kl A (hij,k A ),2 hij,k A L2
} ij,kl, . _ ij,k2 .\ ij,ke
(hij,ﬂA ),k (hijA 0,k hijA >k
(3.2.35)
so that (3.2.33) is expressible as
G =-h,, E@) + [h,, A%oF wp,, atdekE _p o pddnkd g
1] 1] 11,4 1] .
(3.2.36)

We can repeat the calculations, by replacing the partial derivatives by
covariant derivatives and the A's by their tensorial counterparts,

allowing us to rewrite (3.2.32) as

ij,k4 k

G = ~h,, {-A*3:Fi,e + ¥l Ky
i

h AlJ,kQ

sk - 133 +Ln,.ntd ..
1] 13;4

- h,, AMRY

i : (3.2.37)

The quantities in square brackets are clearly the components of a temsor
density of weight 1 and contravariant rank 1. Now, by the rules of tensor
calculus, the divergence of a contravariant vector density is an invariant
density, therefore we can replace the covariant derivative of the square
bracket (with respecttcxxk), by a partial derivative.

Having done this, we shall now demonstrate that the quantities in
square brackets in equations (3.2.36) and (3.2.37) are equivalent.

To see this, we have
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DS o EL TS L
ij ij;2 ij

-{Alj,k N Aaj,k£F1 + op0iskLL +A¥J)lark }
] La La La

h,
i

ij,k& _ ,ij,kt, a _ ,ij,k2 o
(hys ot ATy by — AT By )

+

ij,k4 k2 iokl , ok ,ij,al

- i,aj, h
hij<A WL+ TzaA + TzaA an A
Using the symmetry of hij .
h,, T0K 4, atIRE g ik
1] 1332 1]
- h..{Alj,k + 4 T Aa;,ki + Alj,lark - or t Aa],k£
1] La La La
_ Alj,k£’£ —ori Aa;,ki _ Fk AlJ,ia}+ h.. A
La La 13,4
= h,, AYDK o atDRE gk
i3 ij,% ij

So we have, by subtracting equation (3.2.36) from (3.2.37) that

h.. {Elj(L) - (—AlJ’ki;k;£+H ij’k;k - Hij)}

1]

ij,k%

(3.2.38)

(3.2.39)

(3.2.40)

and since hij is an arbitrary symmetric tensor, we have the identity

() = -mtd o iRy o ptioRb g

(3.2.41)

This clearly shows that the ElJ(L ) are the components of a symmetric

tensor density of weight 1 and contravariant rank 2. We further have,

from the second identity, (3.2.21) that
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iy = -t oo ptkRE (3.2.42)

while from the third identity, in equation (3.2.28),

i2 ,km

LSS

ey - -2rgt 2w (b

3 kil

. (3.2.43)
So we have the remarkable result, that in order to obtain the field
equations for a second order variational problem, one simply needs to
evaluate AlJ’kl.

Indeed, from (3.2.42) and (3.2.43) it is a trivial matter to

show that

EY ()33 = o, (3.2.44)

i.e., the Euler-Lagrange expressions of any such lagrangian density are
divergence free.

This result tells us that any gravitational theory based on a
lagrangian of the form L(g,3g,33g), with gij being a symmetric, second
rank, metric tensor will lead to what we might term automatic conservation
laws. That the energy-momentum tensor is divergence free - hence
conserved — because of geometrical identities. In the next section, we
shall generalise the above formalism to metric-torsion theories, and
derive three identities,for a second order lagrangian in the metric
and torsion containing no higher than first derivatives in the torsion

tensor.

§3. IVP's in metric-torsion theories of gravity.

In this section, we shall generalise the previous procedure of
using invariant principles to the case of Riemann-Cartan geometry. We
shall take the field functions to be the symmetric metric tensor gij

k .
and the torsion tensor Sij defined as

- % .. -1,y (3.3.1)
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where Pijk 1s an asymmetric connection defined on the space-time.

Since we have seen in the last section that whenever we need to deal

with a variational problem involving a symmetric metric tensor, we

must go to a second order problem, we shall take the lagrangian in

this example to be of the form:

L = L<gij’gij,k,gij,kl ,Sijk’ Sijk,l) .

(3.3.2)

There is no particular reason for including the first derivatives of

Siix

in L., We cannot expect a result stating that "there does not

exist a scalar density that depends on the metric, its first two

derivatives and the torsion'", because a counter example exists in the

ECSK lagrangian itself. Note that after the removal of total divergence

terms from the ECSK lagrangian, we are left with a (

of the form L(g,3g,90g,S) (cf. Chapter I).

Requiring invariance of the action integral
I = [L d4x

under coordinate transformations of the form,

= = x (&),

we note that L must be a scalar density, i.e.,

L(gij’gij ,k’gij,kl’sijk’ Sijk,l) = BL(gij s 8

Hxl

X

where, as before, B =

(3.3.4).

non-zero) lagrangian

(3.3.3)

(3.3.4)

15,67815, k22515651 5k, 2

(3.3.5)

is the jacobian of the transformation

In this section, a comma will denote partial derivatives as

before, while a semi-colon is used to denote covariant differentiation

with respect to the asymmetric connection P;k.
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Now, since Si' is a tensor,

ik

= _ na b o
ijk B iB 3 B k Sabc
and
= _ La b ¢ a ,b c
513k, 2 128 58k Sabc BB 508k Sabe
a b c a b c d
B B B eSabe BY 85 Bk Sabe,dBy
where,
a
a ox a )
B, = — s B,. = — B, , etc.
t 3% ] 3%
We shall need the following definitions
ij oL ij,k oL ij,ks
A = 35 , A 5 s A
83 811,k
and
1k i iik,4 i
N T > M T
ijk ijk,%
. ij,k4
From the work in 82, we know that A

we define ntJ and HlJ’k

and AlJ’k respectively.

Before going on to derive the identities for L , we shall

i1k .2
demonstrate that Mle’

tensorial counterpart for Mle, which we shall demnote by NtI¥,

_ dL
ag. .
gl],kz

is a tensor density, and

is a tensor density and then construct a

jk

ij . . . .
show that M ik, 2 1s a tensor density, we simply construct Lts

transformation law under (3.3.4).

Now,

(3.3.6)

(3.3.7)

(3.3.8)

. ij
to be the temsorial counterparts of A ]

(3.3.9)
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while from (3.3.7) we have

38, .
2
—igk,t _ g3 gb ¢ gd (3.3.10)
38 1 h| k "2
abe,d
so that,
oL ..
giik,% ga gb  gpc nd (3.3.11),
38 1 b k "2 .
abc,d

Finally, from (3.3.5), we find

5 L
oL 2 (3.3.12)

3 3

Sabc,d Sabc,d

]
s

Therefore, we have, using Blj Al (3.3.13)

ﬁijk,l - i

B AY Al A% A" M (3.3.14)

the transformation law for a tensor density of weight 1 and contravariant

rank 4.
To construct a tensorial counterpart for Mle, we shall use the
P . . ik ik,
same indirect method used in Appendix III (A) to comstruct II and 1I .
Let Qijk be a totally arbitrary tensor field having the same
symmetries as the torsion tensor Sijk'
We define
.. ) l
- piik + ptik,
G M Qi]k M Qijk,l (3.3.15)
It is an easy task to show that G is a scalar demsity,
G = BG . (3.3.16)
We must now find quantities Ntk such that G can be exprassed as
ik ..
¢ = NIFq... + MIkY, (3.3.17)

ijk;e



-63-

We have,
o o o
. = Q.. -r .Q ., =T .Q. - .. . 3.
QiJk;Z Qle,Z llQaJk QJQLuk PQ kquu (3.3.18)
so that
abc ., a ibc,2 b ajc,f _ c abk, 2
G =@ Ty iM szM To ™ )Qupe
ijk,2
+
M Qijk’l (3.3.19)
Identifying suitably symmetrised coefficients of Qabc and Qijk,l
with those in (3.3.15), we have
Nle - Mle + Fl Majk,l + 7l Mlak,2+ Pk Mlja,l (3.3.20)
fLa La La
and Var A Ve L (3.3.21)

Confirming our proof above that Mijk’2 is a tensorial quantity. To
demonstrate that Nijk is indeed a tensor density, we note from (3.3.16)
and (3.3.14) that
ijk, 2

(G -M ) (3.3.22)

Qijk;l
is a scalar density, hence it follows that
Nijk

Q.. (3.3.23)

ijk

is a scalar density.

But our assumption was that Qijk was a third rank tensor with
the same symmetries as the torsion tensor, Sijk'

By the quotient theorem of tensor calculus, we therefore have
the result that Nijk is a tensor density of weight 1 and of contravariant
rank 3.

. . ijk .
We also have the a posteriori result that M ik is not a temnsor

density.
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Having constructed all the required tensorial quantities, we can
go on to derive the first identity.

We have the right hand side of (3.3.5) being independent of

Bljkz’ so that

oL
—i =0, (3.3.24)
9B ixs
or,
3L g, . 3 L 2g. . 3 L g. . L 3S
o __%l + ;J,k . — 1J,k£-+ jk +
- - - a = a
95 B pea  Bi5.k B bea  %815,k0%® bed  %Sijk 2Pbed
2 L 38, .
P -_iiﬁiﬁ = o. (3.3.25)
Biik,e 2B bed

Looking at the transformation equations of g, 9g,939g, S and 9S,we see

that (3.3.25) reduces to

— —

L 981 ke :
— ———ﬁfh—- = 0 (3.3.26)
3 3
8i5,k2 B bed
or,
i3, k2 dg
Alj,k g..
ALk, (3.3.27)
ap?
bed
But this is simply equation (3.2.12), and there it was shown that
it led to the identity
Akn,pq + Akpsqn + Akq,pn = o0, (3.3.28)
and was further reduced to
- 0 s
LIE o gk (3.3.29)

So this first identity is simply carried over from the second order
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metric variational problem.

§3.1 The second identity.

Going back to equation (3.3.5), using independence of the

right hand side on Babc we have

aL
— =0 (3.3.30)
dB be
or,
-ij  og.. .. . dg.. -ij, k& 9g.. _i:. 98,
At i3 ¢ plisk 81j,k . A I gl],k2+ Mle ijk
a a a a
9B be 9B bc 9B bc aBbc
.. 38. .
T LSRN 5 | 7.3 0. (3.3.31)
)
bc
Since the first three terms are carried through from §2.1, we have
equation (3.3.31) reducing to
a ,tbj,ec . =cj,b a  =ib,ck a +=jec,bk
BaaB 5 (A FATT) s 2g, B A 28,85 A
B a =ib,ck o _B =jc,bk
+ : + 2
Zgaa,B BB ; A Zgaa,BB F B X A
8 o <kj,bc
+ gaB,a B k B i A
=ijk,% ,_B_ ¥ ab.c a_y B b.c
+ M (B.Bk SGBY 8 5152 BinSaBYGa Gjal
a B Y.b .c _
+ B 5 Bj SGBY Gaak 62 ) 0 . (3.3.32)

This holds for all coordinate transformations of the form (3.3.4), in

particular, we can choose the transformation such that
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B, 8. and BY., = 0, etec. (3.3.33)
] J jk

For such a transformation, (3.3.32) reduces to

+bj,c ., 7ej,b —-ib,ck ~je,bk
gy (M7 + AT 2y M 285 A

<kj,bec ~bjk,c + =jbk,c . T jb e, _
+ gy ok + M S * M 5,k T Seia = ©
(3.3.34)

k , equation (3.3.34) is

k

. . ij
Except for the two terms involving A 3>

. . 1] .
tensorial, so we must substitute for A 3> in terms of the tensor

density HlJ’k.

In Appendix III(A), we have shown that

HlJ,k - AlJ,k + ZAaJ,klrl 2Aa1,klrj + AlJ,alrk (3.3.35)
La Lo La
so that substitution into (3.3.34) yields,
=bj,c ~aj,cl= b <ab,clz] ~bj,al=c
gaj (n + 2A an + 2A P2a+ A an
+ ﬁCJ,b + ZKaj,bEFc + zxac,blfj + Kc;,az}b )
La La Lo
=ib,ck ~je,bk ~kj,be + =bjk,c
Tk M T By T e, N 2 Sajk
~kjb,c
+ . =0, .3.36
T Seia (3.3.36)

We have postulated earlier that metric~torsion theories are based omn
the sound physical assumption that a local Minkowskian tangent space

exists. This was expressed through the requirement of metricity,

g.. = 0 (3.3.37)
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which allows us to choose a local coordinate system in which the
partial derivatives of the metric, and the Christoffel symbols can
be set to zero.

Choosing such a gaussian normal coordinate system, we can

write equation (3.3.36) as

b

=bj,ec , =cj,b ~j,ch +xcj;a2 =
8 (I + I ) + 843 (2 A ). K,

aj,bl. =bj,al.z ¢

=ab,cl Kac,bl + 7 )E
La

= ] -
?
+ Zgaj(A + )Kla + gaj (24

=bjk,c =kjb,c _
- i Scia = O (3.3.38)
where we have used the fact that, in a Riemann-Cartan space—time
i i i
r—., = 1. - K. . . 3.
ik {J " KJk (3.3.39)
k k . .
Kij = —Ki i being the contortion tensor.

Finally, since the identity (3.3.38) is a tensorial equation,
we can remove the "bars" on the tensors.

It is in this second identity, that we see the first complexities
arising in allowing non-zero torsion to be present. We will also
see in the next section, that these complexities multiply when deriving
the third identity and there are no miraculous reductions leading to

general results.

§3.2, The third identity.

For the third identity, we take the derivatives of equation

(3.3.5) with respect to Bab .

oL
22 o pgb (3.3.40)

9B
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and,
AL ) 7] agij . Klj,k agi.’k . A1J,k28g 3,k .
a a a a
9B b 9B b 9B b B b
.. 38, . . 3S. .
ﬁl]k ;Jk . ﬁljk,l 1ik,2 (3.3.41)
3B b 9B b
from (3.3.6) we have,
-1ik 8§"k =bjk_B —1bk o iib _a _B
giik _ijk _ gbikgB gy o gibkgapy o, 5iib g% g8 g
ypd ] k "aBy 1 k Taay i 7] "aBa
B
b
(3.3.42)
while (3.3.7) yields,
.. 33, .
Mljk,R 1ik,2
9B b
_ 1bk Lo Yy =ijb,R B -bjk,R B ¥y
= B. RBk S aay + M B RBJ SaBa + M JRBk S aBy
-1Jb L B . -bjk,2_ Y _B ~ibk, R a
* JR i SaBa M BkRBjSaBy M kRB i SaaY
=bjk,R_B _Y § =ibk,% - Y .8
+
M B. B X BR SaBY, + M Bk BR SaaY,5
+ b tgr g8 gl g + qik.b g BB B S . (3.3.43)
i~ j "L TaBa,s 3 aBy,a

Noting that the first three terms of equation (3.3.41) carry over from

the example in §2, we can, by taking the coordinate transformation (3.3.4)

to be such that

3 I B ik = 0, etc, (3.3.44)

write (3.3.41) as,
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Ldba = 2™ a3 * A3 8aj * b 8aj,k © APk 8ia,k
ik ik,a APk 8aj ke * S 8ia, ke * Ajk’b%gjk,al
+ pdk,2b Bix pa * Ik Saic ¥ 1 OK Siar * i <P S:a
* Mbjk’zsajk,z r 0t Sjak,2 ¥ L Sika,g
. Mjkz,b Sjkl,a . (3.3.45)

The non-tensorial terms involving Aij’k will vanish when we go to a
local gaussian normal coordinate system, in which gab,c = 0. Hence,
in order to obtain a tensorial equation from (3.3.45), we need only
substitute for A.:Lj and Mijk , their tensorial counterparts, Hij and
Nijk respectively, before going to gaussian normal coordinates.

As can be seen from Appendix III (A), the expression for Hij in

the presence of non-zero torsiom, is not reduced to simply Aij on

going to gaussian normal coordinates. So, we shall only write down the

final expression for the third identity that one obtains upon going

to such a coordinate system, We find,

b b 6o bo Lk,
L = —-— b
Sa 21 gaj 3 R ({}) A
aj,k, b ab N b k
o Kkugaj Keaa * " Kega
: kb aj, k2 _ B, b
+ 20T R Byt A Kea. K28, 8aj

_ ab,k2 &kz b
4A za Kk oB * 28a Kka

aj,k% b ab y kL
* 4A Kka ;lgaj * Kkaa 2
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bjk,% «a

T2 M R Saik
* 2Mbjk,253jk;2+ Mjkb,zsjka;ﬂ,+ Ngkz’b Sjkz;a * ZMajk,szabSajk
Mjkb’zKlaaSjka - Mjkz,bKajaSakl— Mjkl’bKakaSjal
Mjkz’bKazaSjka + et Kzabsjka + I Sika
+ 2 nPIE S ik - (3.3.46)

This is the tensorial form of the third identity for metric-torsion
theories with a lagrangian of the form L(g,3g,99g, S$,8S). It has been
written in such a manner that the limit of zero-torsion can be seen
immediately. We note that, as expected, the limit of zero-torsion leads
to the third identit§ obtained in the example given in §2, equation
(3.2.30).

Of course, in (3.3.46), we could, by combining some more terms,
write it in terms of the full Riemann-Cartan curvature tensor rather
than the Riemann-Christoffel curvature tensor, but as no new insights
are gained by doing this, we shall be content with the equation as
it stands .

In the next section, we shall reduce the Euler-Lagrange field

equations obtained fromIl(g,dg,39g, $,3S) for gij and Sijk as much

as possible-
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§3.3 Reduction of the Euler-Lagrange equations ofI{g,ag,aag, 5,35) .

Since we have two sets of independent field functions, namely,
the metric tensor and the torsion tensor, we shall have two Euler

Lagrange field equations. The field equation for the metric is
simply,
d L oL

- .
9855 kg 98, ;

ElJ(U - dk _ oL
dx og

ij,0 9

(3.3.47)

This equation is identical to that derived in §2.3., Hence we can
borrow the tensorial form of Eij(L) that has been obtained there,
while noting that the covariant derivatives will now be with respect
to the asymmetric comnection with non-zero torsién. The tensorial

form of the equation is ;
() = -t - ptRE e gtk g S o (3.3.48)

In the previous example, this equation was further simplified to an

. . . . . ij,ke
expression containing derivatives of A I» as the only unknown

quantitaties due, mainly to the result given in equation (3.2.23). This

reduction is no longer possible. So, rather than try to "simplify"

this equation by substitution of HlJ’k;k and 17 , through the second

and third identities, we note that indeed after substitution, we shall

have a field equation, requiring only the evaluation of AlJ’kz,HlJ’k,Mle’l

and Nle to obtain the explicit form of the equation for any given lagrangiam.

Further, we shall see now that by combining the two, metric and torsiom

field equations, one reduces the requirement, to evaluation of only

ijk,2

A

lJ’kQ,HlJ’k and M
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The second field equation that we have is for the torsion field;

ik d oL 9L
e I - — =0 (3.3.49)
dx asijk,l asijk

or,

etk ) wtdo b o oMtik oo (3.3.50)
In order to write this in a tensorial form, we note first, that

ijk,% _ ijk,2, _ ijk,2
Q 1y oM @ M) - M e (3.3.51)

where, Qijk is a tensor, having the symmetries of the torsion tensor.

Going back to equation (3.3.15), we can write

_ ijk,e ijk _ i3k,
G (QijkM ),2 + M Qijk QijkM .2 (3.3.52)
_ ijk,8, , _ ,djk,2 , _  ijk
(Q 5, ), = (M 4 -7 (3.3.53)
_ ijk,2, ,_ _ijk
or, G = (@ )22m EEM) Q. (3.3.54)

Similarly, we can write equation (3.3.17) as

ijk,2 ijk _ dik,2,

G = (Qijk M )i * Qijk(N 2) (3.3.55)
so that, comparison of coefficients of Qijk in equations (3.3.55) and
(3.3.54) yields

k) = kR o ik (3.3.56)
We have shown earlier that G is a scalar density, we also note that

ik, . . . . .
because Mle’ is a tensor density, while Qijk 1s a tensor, their product

is a tensor density and hence the covariant divergence of the product is
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a scalar density. We have therefore that

¢ - Qg ik Ay g (3.3.57)

is a scalar density. Hence

ijk _ iik,4

(N T2) » (3.3.58)

Q 5k
is a scalar density. Since Qijk is a tensor, by the quotient theorem,
i1t follows that

k@) = mtiket o ytik (3.3.59)

is a tensor density of weight 1 and contravariant rank 3.

§3.4. A simple example.

To show that evaluation of the field equations will involve
only partial derivatives of a given lagrangian with respect to the field
quantities, we shall substitute the third identity intp the‘field
equations for a simple lagrangian of the form L(g,9g,33g,S). Since no

derivatives of torsion are present, we immediately have

oL

3

it o (3.3.60)
Siik,2
The second field equation (3.3.59) reduces to,

N = 0. (3.3.61)

Using these two equations in the third identity, (3.3.46), we shall

have,
b bj 4 ba,k? _-aj,k . b
= - A ’ I s
LS 21 8.5 * 3 Rakaﬁ({}) + 2 K, 243
ab,k ba,k ja,k b
+ o2 Kkaa * 20 Kkaa 20 Ko gaj
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aj,k&, B, D _ 4p0bske, B af, ke b
* 4h Kka KRB gaj 4h la Kka8+8A KQBaKka '
aj,ki . b ab, k2
* 4h Kka ;lgaj + 4A Kkaa;2 (3.3.62)
or,
ba,kl ac,k b
L g =2 4 2 RS kag (IDATT+ 4R,
+ 4Hab,k Kkac
2o¢ Sk ab,kl c B
* Kka KQB Kka
as,kl ac Sk b
+ 8A 28 Kk + Kka 2 (3.3.63)
+ 4p OPoKE Kea ag -

Substitution into (3.3.48) yields

be - _. Jbc é ba,k2 ac,k_ b
(L) Lg +3 kaz({})A + 41 Ko
ab,k, ¢ ac,kl B b ab,k c B
+ H 2 2 ’
4 Kka + 4h KkaKZB 4l KQB Kka

aB,kl c, b ac,k?

b
+8A Kzs Kka + 4A77? Kka'.Q

+ 4Aab,kz Kkac.g _ Abc,kIL skt +I be,k ik

=0, (3.3.64)

while the second equation is

ky = wiik o pik 3L _ 4 (3.3.65)

35,5k

We see clearly from these equations that, given a lagrangian, we need

only evaluate partial derivatives of the lagrangian in order to obtain

the explicit form of the field equations. It is interesting to note
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that similar work has been carried out by P. von der Heyde /12/ ,
who has derived a general form of the lagrangian for metric-torsion

theories by imposing conditions on the form of the field equatioms.
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CHAPTER IV

HOW LINEAR IS LINEAR?

OR

——

THE ART OF CONSTRUCTING LAGRANGIANS




-7 7=

§1. Lagrangians for general relativity.

In the last Chapter we have seen how one can exploit the
invariance of the action functional

S =|L d4x (4.1.1)
under general coordinate changes to derive identities satisfied by the
lagrangian density L. We have further shown how we can use these
identities to reduce the Euler—~Lagrange equations of L into a
simple form involﬁing only partial derivatives of L with respect to
its arguments, especially in the case of general relativity.

In this chapter, we shall study the general criteria used to
write down lagrangian densities for a theory. In particular, we shall
show that the criterion used by Einstein for his lagrangian, that it be
linear in the curvature, when extended to the ECSK theory does not
yield the usual lagrangian chosen for the theory. Instead, we find

uvpa

that we can include an additional term of the form ¢ R c(F) involving

Hvo
the totally antisymmetric Levi-Civita tensor density in four—dimensions
and the full curvature tensor of the Riemann—-Cartan geometry.

We shall begin in this section by outlining some of the

important points that led Einstein to his lagrangian for general relativity,

Einstein /10/ having adopted Riemannian geometry and the
absolute differential calculus of Riccl and Levi-Civita, to describe
the phenomenon of gravitation, argues for a non-degenerate metric;

"Should /:EA vanish at a spot in the four-dimensional continuum
then it signifies that a finite coordinate volume there corresponds to an
infinitesimal "natural" volume. This, however, may not be so anywhere,
and therefore the sign of g cannot change. Following special relativity,
we shall assume that g always has a finite negative value. This
represents a hypothesis about the physical nature of the continuum under
consideration and at the same time a determination of the choice of

coordinates. If, however, v-g is always positive and finite, then it
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is obvious that a posteriori the choice of coordinates can be made

such that this quantity is equal to 1".
While concerning his field equatioms,

- 21 -
Gij = Rij 2 Rg. . < T.. , (4.1.2)

he writes /10/

"It must be pointed out that only a minimum arbitrariness is
connected with these equations. For, other than Rij’ there is no tensor
of the second rank connected with it which can be constructed from the
gij and their derivatives, which does not contain higher than second
derivafives, and is linear in them'".

From this, it is usually stated that Einstein's lagrangian must
be linear in the second derivatives of the metric. The main reason
for requiring linearity in the second derivatives of the metric, is that
field equations for the metric would then be of the second order. 1In
recent times, however, it has been shown that linearity in the second
derivatives of gij is not a necessary assumption /11/. Indeed, David

Lovelock /13/ has shown that assuming the field equation is of the form

Gij = g Tij , (4.1.3)

being symmetric in (ij) and containing only second derivatives of 8;;

leads, by requiring conservation of Tij’ i.e,

Tij;J = 0. (4.1.4)

uniquely to the lagrangian
L =7/-g R({}) + /=g, (4.1.5)

where A  is a cosmical constant.

Having established that to describe general relativity, one

must use the Riemann tensor, and the lagrangian is indeed taken to be
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simply
g R ({}) , (4.1.6)
the question we have to ask ourselves now, is, is this the only
scalar, linear in the curvature, that one can construct in Riemannian
geometry?
The answer.is yes. For, although, we implicitly have the

possibility of constructing the following scalar,

uvpo
€ Ruvpc({}) s (4.1.7)

we remember that the Riemannian curvature tensor satisfies a set of
Bianchi identities, one of them is /14/

Rvpo (I + R D +R U =0 (4.1.8)

which can also be written as :

Avpo _
£ Ruvpc({}) =0 (4.1.9)

Hence, the additional term that might have contributed to the lagrangian,
vanishes by virtue of one of the Bianchi identities.

We shall show in the next section, that a reduction
in the symmetries of the curvature tensor in generalising the geometry

from Riemannian to Riemann-Cartan, allows us to add the additional

term

VP9 R (r)

o (4.1.10)

to the usual ECSK lagrangian.
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§2. Generalisation to metric-torsion theories /15/.

We have seen in Chapter I that the curvature tensor of a

Riemann—-Cartan geometry is defined by
L 2 L L m L m
.. =3, T. - 3.T, + T, T, -T,7 T, 2.

Rle (r) a1 jk j ik im jk jm ik '(4 2.1)
The definition of the curvature tensor is such that it is antisymmetric
in the first two indices. In general this is the only symmetry on the
curvature tensor that one has. If, however, we demand metricity, i.e.
that the geometry be locally Minkowskian, we gain the additional
symmetry

(T) ) . (4.2.2)

R.. -R,.
1jke 1j2k

For metric-torsion theories, these are the only symmetries one has

on the curvature tensor. In contrast, in Einstein's general relativity,
symmetry of Christoffel connection symbols gives rise to a third

symmetry

Rijki({}) = szij({}) . (4.2.3)

In Chapter I, it was seen that the lagrangian for the ECSK theory was

taken to be

Loogk = Y=g R (T) (4.2.4)

on the grounds that it was the absolute minimal deviation from Einstein's
lagrangian. However, in §1 we saw that, potentially, Einstein's

lagrangian can be written as

_ - Uvpo
L = Y=g RUD + PR (D) (4.2.5)

with the Bianchi identity allowing us to equate the second term to

ZE€TYO.,
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In the case of Riemann-Cartan geometry, however, we see that the

Bianchi identities take the form (equations (13.30) and (13.31)).

g = o_ o o}
R[uvp](r) 2v[usvp] 4 ?uv Sp]a (4.2.6)

and

B ag

(o}
[ou Rv]Bp

v[aRuv]p () =28

(r) . (4.2.7)
We realise that in generalising Einstein's lagrangian to metric—torsion

theories of gravity, one must in reality, generalise L_ given in

E
equation (4.2.5).
The Bianchi identity from equation (4.2.6) tells us that

while

uvpo -
€ R uvpc({}) = 0, (4.2.8)

uvpao
[ Ruva ) 0, (4.2.9)

Let us write the lagrangian for our metric-torsion theory as

L = Lgesg * W
where LECSK = /:E R () (4.2.10)
and
_ P _Mvpo
L, B M9 (D) . (4.2.11)

uveo

The coupling parameter, p, determines the relative strengths of the

gravitational forces obtained from L, and L Hvea

A ECSK" We note that ¢

is a pseudo-tensor density, and changes sign upon a coordinate trans-—

formation of the form ;

X+ -x ; t-+t , where <M = (x,t), (4.2.12)

uvpo

i.e. the term involving ¢ is a parity violating term, and the

coupling parameter, p, governs the strength of these parity violating
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interactions.

§3. The Generalised lagrangian.

Having outlined the reasons for incorporating the additiomal,
parity violating term into the usual ECSK lagrangian, we shall now go on

to simplify the total ktagrangianm.

Leesk ¥

- p _Hvpo
g R+ BMR @)

(4.3.1)

In chapter I we saw that the scalar curvature R(I') can be decomposed
into the scalar curvature constructed from the Christoffel symbols and
the 24 component contortion tensor.

So that we can write

T o, va _ o, Vo
Lecsk = g RUD o+ Kca 5 Kva Kc

p, O vp
K - K
35(3 vp

o
ap )

+ 3 . (4.3.2)
The terms involving derivatives of K can be discarded, as they are pure
divergence terms and hence will not contribute to the field equations
(we are ignoring any surface effects which might arise when dealing
with compact manifolds).

From the Bianchi identity for Riemann—Cartan geometries, given

in equation (4.2.6), we can write

wpa =2e™P9%xk kK *+ 3K 4.3.
MR ) (R agfop * 3800 (4.3.3)

where again, the second term can be ignored as it gives rise to a

total divegence term,
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"VPY 9k =3 (e"P% )

WKupo N Hpo (4.3.4)

As expected, we can see that contortion appears quadratically in the
total lagrangian, with no derivatives of the contortion appearing,
after the total divergence terms are removed. Indeed, this is a
general restriction for theories incorporating lagrangians linear
in the curvature. This in turn tells us that as in the usual ECSK
theory, the field equations for torsion will be algebraic, i.e. they
will be zeroth order differential equations, and hence will not allow
propagating torsion.

We note at this point,that from the contortion tensor, one
can construct only three scalars quadratic in the contortion, namely

o, Vo _ A_VO
K1 = Kca Kv ,K2 = Kva Kc and K3 = ch K \ (4.3.5)

The interesting feature of our lagrangian is that the simple requirement
of linearity in the curvature picks out two of these three scalars

namely, K1 and K2.

At this stage, one may say that an equally valid approach to
construct a lagrangian for the torsion would be to write down linear
combinations of all the possible scalars, quadratic in the contortion
KUVO and simply add these to Einstein's lagrangian LE. Clearly such
an approach is unsatisfactory, since each term would necessitate an
associated coupling parameter, In general, this would mean the introduction
of at least three parameters. In appendix IV(A), we show that taking

. e eqs . v
into account the possibility of allowing eHvea

to enter the lagrangian
increases the number of scalars, quadratic in the contortion, that

one can include in the lagrangian to five. In the same appendix, it is
also shown how further complications arise if one tries to incorporate

all possible scalars quadratic in the first derivatives of contortion.

In view of this, it seems much simpler, and perhaps more natural, to
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restrict the total lagrangian to be linear in the curvature, and
consider only the scalars obtained from Ruvpc(r) through all possible

contractions.

84, Field Equations for the New Lagrangian.

We have seen in Chapter I that variations with respect to the
torsion SLNcr are more fundamental in the sense that torsion is a priori
independent of the metric. However, the variations with respect to the
torsion are equally as good as variations with respect to the contortion
tensor K. As we have written out the new lagrangian, equations (4.3.2)
and (4.3.3) in terms of the contortion tensor, it will be easier for
the purposes of this chapter, to take variations of the action with
respect to the contortion tensor, K.

The action functional for the new lagrangian is;

_ 4
S ‘J Lpesg T Ly d=

or,

s =|{r~g RUD +K "R -xr K +p MRk Y ha'x,

(4.4.1)
The field equations obtained by variations with respect to the metric

are simply
— 21 Y-g po_p _O_p O B ©
Y=g {Ruv({}) 3 RUD g 1+ —le 8 -8 L ByTE 8 HK K

poa 8 poo 8

+ +
p (e U pBV aga € vasuKoa

) = 0. (4.4.2)

while variations with respect to the contortion temsor yield



-85-

— v v v
/o (kM . PV Kcop AL Kguo g”°
vpoo . U _Vuoo o) -
+ 2p (n KU o 0 Kga )} 0. (4.4.3)
. uvpo . . . .
The quantity n » intrdduced into (4.4.3) in a tensor constructed
out of the tensor density gHvee it satisfies the following properties,
uvpo L uvpao /e €
n = /g ¢ wog VT8 THvpo (4.4.4)
and we have,
HVAC = _Gvkc
" TuaBy aBy
HVAC Ag
= =24
n nuvBY By
(4.4.5)
HVAC g
= -6§
n Tuvay Y
uvig _
and, n nu\)}\o, - 24 ’
HVA. .,

where the tensor § is a generalised Kronecker symbol obeying

OBYs s
the following rules:
If u,vyA,.... are all different and «,B8,y,.... are obtained
from them by a certain permutation, then its value is +1 or -1

depending on whether the permutation ( HVA. . ) is even or odd.

aBY...
In the remaining cases it is equal to zero.

At this point we shall give a rather simple and quite
general argument for the vanishing of contortion in the vacuum , if one
begins with a lagrangian which contains the contortion in a non-dynamic
manner, i.e. it does not contain second or higher derivatives of the

contortion, or equivalently, terms quadratic in the derivatives of the

contortion /15/.
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Now, the Euler-Lagrange equations for a lagrangian not containing

any derivatives of the contortion fields, reads

__QLG_O’
oK
HV

(4.4.6)

and hence will be an algebraic equation for K. In principle, this
equation can be solved for K, and this solution must then be expressible
in terms of the other quantities in the theory. In our present example,

we have at our disposal, 8,28 £ Since contraction

nd .
uv,o’ guv,as a uvaf

of indices always removes indices on a pairwise basis, no third rank

and . Thus, g must

tensor can be constructed from g ,g £
u uvag Uv,a

v?2uv,af
enter each term of the expression for K. But, because of our assumption

of metricity, = 0, we can always choose, locally, a coordinate

guv;a
system in which guv,a = 0. Therefore, K will vanish in this coordinate
system, and by virtue of its tensorial character, in all coordinate systems.
It is for this reason that all matter-free metric-torsion theories
exhibiting an algebraic field equation for the torsion are identical to
the matter-free theory of general relativity.

To begin to see the effects of torsion, one must therefore
consider the coupling of matter fields to torsion.

In the next section we shall couple our metric—~torsion theory,
using the generalised lagrangian, to the Dirac spinor field and we shall

see that the ECSK theory itself predicts parity violating effects for

the Dirac field.
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85, Coupling to Matter Fields : The Dirac Field.

In the last section we have seen that the general structure
of metric-torsion theories of gravitation allows us to include an
additional term in the action of the ECSK theory, while still keeping
the lagrangian linear in the curvature. In this section we shall couple
the torsion field arising from this new lagrangian, to the Dirac spin-}

field; the lagrangian for the Dirac field in flat space-time is

- i - i -
L, = Gy - vy G, - mpy (4.5.1)
i i
The y"are the Dirac matrices, satisfying the following algebra:

’ .

N e B T AL (4.5.2)

and it is spanned by the sixteen independent elements,
Yy oYs ,Y[lej 15 YjYS » 1, where Yg =Y Y{YoV3 -

In minimally coupling to gravity, the Dirac algebra is generalised by
simply replacing nlJ, the Minkowski metric,by glJ while, the lagrangian

is modified to
Ly = e {0y - W' () - mpy 3, (4.5.3)

where e = det(eia), and eia 0 = 1,2,3,4 1s a tetrad chosen at each
point of the space-time. The index o labels the four linearly independent

tetrad vectors.

It is necessary to introduce local orthonorifal tetrads when
dealing with spinor fields for the simple reason that while tensorial

fields are representations of the group of general coordinate transformationms,

spinorial fields are representations of the Lorentz group. Therefore,
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when dealing with spinorial quantities incurved space-time, we are
compelled to(introduce at eaéh point of the space-time, a targent
Minkowski space-time via the tetrads eia . The basics of anholonomic
orthonormal tetrads and their relationship to the Dirac field are explained
in appendix IV(B).

In the same appendix, the covariant derivative of a spinor is

defined to be

= a3 -1 - Y. B
v, b =2 7 Tagy? 1Y (4.5.4)
with FGBY = —QGBY +QBYQ - QYGB- KGBY (4.5.5)
_ _ 1 B .Y
and Vo= Y- T Y Y (4.5.6)
while the torsionless theory has
VUDY =y s @, -0+ ) vy Ty (4.5.7)
a a 4 “TaBy Bya yaB : U

In terms of Va({}), the lagrangian LD is

L= e T, AV - 5@ ADY - mhy )

- Lex 7 FONELIYT, (4.5.8)

The spin—angular momentum Tijk’ of the Dirac field is given by

.. 6Ly
e ndt - 2 . (4.5.9)

GK“k
1]

Equation (4.5.8) immediately gives



it _ 1 i iz fal g 1yl
T =" 5 Sy o3 vy Yy v (4.5.10)
or, equivalently,
1 - [l (V|
Y8 5 by oy Yy (4.5.11)

We can use the Dirac algebra to simplify this expression /16/.

we have,

a By

oL ]
R A R I I & BY 4 - g p

+ gy + g Y -8 ¥y (4.5.12)

or,

yol o vl fe B vl (4.5.13)

Hence, we have that the spin-angular momentum tensor is totally

antisymmetric:

la B8 v1

T[aBY]=“% vy Yooy v - (4.5.14)

Now the torsion field equation for the total lagrangian

L = LECSK + LA + LD (4.5.15)
is,
oL oL L
—EER Ao+ 2 -0 . (4.5.16)
oK, . oK, . oK. .
1] 1] 1]
From the expressions for LECSK and LA’ we have that
I L LT Ioiwg .
k P k wA € Vi

+ Tle =0 , (4.5.17)
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where Tle is the modified torsion tensor defined in Chapter I

From the Dirac algebra, we have the relation

a_ 1 aBy$
Yo = 3¢ Yg YY " (4.5.18)

So that equation (4.5.14) takes the form

[8Y] o _3p e“BY‘sys Ys U s (4.5.19)

while the field equation for the torsion, equation (4.5.17) can
be solved to yield,
iik
2 6 € ... T
TYCﬂB - P gY [Cﬂ lelk (4 5 20)
2 .5.
(1+p7) (1 + p?)

Kagy =

which clearly shows that -

(1) The ECSK theory allows a parity violating term
when caeupled to the Dirac field, which, as we mentioned
in the introduction, is due to the Dirac algebra and the
total antisymmetry of the spin angular momentum tensor
and is well illustrated by equations (4.5.18) and

(4.5.19).

(ii) Although equation (4.5,20) shows an additional

term which vanishes as p+~+0, substitution of this expression
into the Dirac field equation shows quite clearly that the
effect of the additional parity violating term in the
lagrangian is simply to alter the strength of the parity

violating effect in the Dirac field equation. We have /19/,
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YT DY+ = GrgYW vgrgh rm = 0L (4.5.21)

8(1+p™)
In the next section, we shall couple our new lagrangian to the Proca
field lagrangian and derive an explicit parity violating term that is

not present in the ECSK-Proca caupling.

§6. Coupling to matter fields : The Proca field.

We have seen in the last section that coupling of torsion
to the Dirac field gave rise to a parity-violating term in the field
equations which persisted even in the absence of the new parity-
violating term that we have added to the ECSK lagrangian i.e., that the
usual  ECSK lagrangian when added to the Dirac lagrangian gives rise
to a parity violating term in the field equations. We also saw that
this was basically due to the fact that the spin-angular momentum tensor
for the Dirac field is a totally antisymmetric quantity. In this
section, we shall carry out a similar analysis for the Proca—or massive
Maxwell-field and show that here we have a new parity violating term
in the field equations which is not present in the coupling of LECSK
to the Proca field. The lagrangian for the Proca field in flat Minkowski

space-time 1is

= -1 ny 1 2 H
Lp A Gqu + 3 m AUA , (4.6.1)
with Guv 1= apAv —3VAu . (4.6.2)

Introducing torsion through minimal coupling modifies Guv to B ;

)
B = 3A -39 A + 2085 © (4.6.3)
) v v g vp

and, B = ¢ + 25 %94 (4.6.4)
133Y uv Vi [+

In terms of Buv’ Lp can be writtem /15/,



— 1 uv 1 2 u
=}/— - +
Lp g ( 4BWB 2mAuA)
=-""8 ¢ ¢"-"28 ¢ AsVHI - TZB HVp g O
4 uv 2 uv o 2 oV
- Vg As P oA sUMT . YIB 2y p¥ (4.6.5)
o v o] 2 u
or,
/= /=
L = =28 ¢ "+ "8 g2 4 A* - /g eMs %a
P 4 uv 2 u VU O
-/~ s Ps¥M9aa . (4.6.6)
VY po
The spin-angular momentum of a matter field is defined by
. SL
g Tt = —2 (4.6.7)
‘ SK, .
1]
Since L contains only S ° , but no derivatives of S 0,
P vu Vi
4L aL
-2 = —P
dK, .k K, .k
1] 1]
— S\mc . g Mo
= /=g ¢*'a s Paa
3K, .~ VE PO gg K
ij ij
as. P
- /g s'H% a MM
& o k
aK. .
1]
3Sy,,° 3s P
U JR—
= -/~g c¢"¥a = -2 /g sVM7 oA A M
3K, . po kg K
i %43
S e BN Wt L
3 At 3 A
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o jiao — Jijo
V-g 8 aA, + g s7% A

or,

.

- V-g ¢*J + 2 /-g SlJzAkAz . (4.6.8)

Therefore, we have the result that the spin—-angular momentum of the
Proca field is given by ,
iy _ _ Aij ij2
Ty = -G Ak + 28 AkAz . (4.6.9)

The lagrangian for the total system is

and, again the field equations obtained by variations with respect to

k .
Kij are simply
oL
- 0 (4.6.10)
BK..k
1]
oL oL oL
or, EﬁSK . Ak + ___Rk = 0, (4.6.11)
5K K, . oK
1] 1] 1]

from equatiohs (4.3.2), we see that

oL .. . . .. .
_ ECSK _ — 1] j i, _ 2 ij 23 1

x K g & WKL) - Ry g 4K g)

ij
(4.6.12)
while, writing

= —— _HVA8 P o

L, =P /-g 1 ng Kuc Kvk . (4.6.13)

we obtain,
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L .
A ivA
— = p’-g (n

K, .
1]

h ivAj
+ 1 K\)k}\) . . (4.6.14)

kaA
Substitution of equations (4.6.9), (4.6.12) and (4.6.14) yields
the desired field equation for the spin—angular momentum

iva 3

K

L ivaj
Tx = -p (n Ko n K

vkk>

-+

* a ] » e o - 2"
- (Kli + KJkl) + (glJng£+ gleg 1y (4.6.15)

The field equation for the Proca field reads

veP 4+ 2v 4sP%) +mPA = 0 | (4.6.16)
oou o “ou u

In order to exhibit a parity violating effect in the Proca field equation,
we must solve equation (4.6.15) for the 24 components of the torsion
in terms of the spin-angular momentum. Then, substitution into (4.6.16)

will reveal the desired term..

The process for solving equation (4.6.15) is simple but laborious
(see appendix TV(C)) . Let us first write out (4.6.15) in a suggestive

form by using the modified torsion tensor, it is,

0.0 _ 0.0
(Gksj stk) . (4.6.17)

Now it is quite a simple matter to show that the solutiom to this

equation is,

S,.. = {
KIT (148p2)

I
3]
V]
H
(o
~
-
~
o
+
o
3
=~
~

(4.6.18)

+
N
HUQ
=~
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+
o
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[
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Here we see that the coefficients of the term containing nijkz ,
are non-zero, hence,when (4.6.18) is substituted into the field equation
for the Proca field, we shall have parity violating interaction terms
present. That the usual lagrangian for the ECSK theory does not contain
these parity violating terms when coupled to the Proca field /5/, is
easily seen: In (4.6.18), the limit p=o does not contain any parity

violating terms.
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CONCLUSIONS AND DISCUSSION
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What can we conclude from the last four chapters? Firstly, in
the introductory chapter, Chapter I, we saw how gauge theories were
defined, in terms of what might be called an "internal symmetry". We
also saw how gauge fields were introduced as connections on the Lie
(symmetry) group manifold, in total analogy with the definition of
Christoffel symbols on space-time, in particular, we saw that electro-
magnetism could be derived as a gauge theory. Metric-torsion theories,
in particular the ECSK theory was seen to be a simple and natural
generalisation of Einstein's general relativity, when attempting to
extend the gravitational phenomenon to the microphysical realm of
elementary particle physics.

An immediate, surprising problem arose with this programme of
extending general relativity into microphysics when we attempted to
couple gauge fields to the new torsion field of metric-torsion theories.
This coupling, we saw in Chapter II, was possible only if gauge
invariance is given up. As gauge theories are a very important
part of present day elementary particle physics, it was afgued that one
must resist loss of gauge invariance to the last! One alternative
to this loss of gauge invariance, suggested by /5/ is to couple gauge
fields to the torsionless, Christoffel conmection. This is allowed
because of the generalised geometry; we have the freedom to choose
either of two connections which can now be defined on the manifold,
namely, the Christoffel comnection and the full, asymmetric connection.

0f course, as explained in the introduction, this defeats
the purpose of introducing torsion into general relativity. S. HOjman
et, al. /8/, determined to couple torsion to electrodynamics, modified
the gauge covariant derivative of electrodynamics, thus introducing a
new variable, which Wwas then determined by requiring gauge invariance.
This, we saw, led to two consequences. One was to make the new variable
into a scalar field and the second was to restrict the possible types

of torsion that could couple to gauge fields. Indeed, torsion was required
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to be essentially, the gradient of the new scalar field. An added
bonus was pointed out, namely that the torsion being the gradient

of a scalar field, could be used to construct a metric-torsion theory
that allowed for the first time, propagating torsion (albeit in a
restricted form through propagation of the scalar field), within the
confines of a linear R theory.

However, the joblof coupling torsion to gauge fields was only
half done. For, according to modern theories of elementary particle
physics, the electromagnetic field is not the only gauge field. Instead,
the electromagnetic field is just one of a large number of gauge fields
that are introduced in order to explain the elementary forces. With
this in mind, we set out to generalise the procedure of Hojman et. al.
/8/ to non-abelian gauge theories /9/.

It was shown that a generalisation of the non-abelian gauge
covariant derivative in blind analogy with /8/, led us back to the
torsionless example of general relativity upon requiring gauge invariance.
A successful generalisation was carried out by modifying the gauge
field strength tensor of non—abelian gauge fields in addition to
modifying the non-abelian gauge covariant derivative. One curious
aspect of this generalisation was that even though two new variables
were introduced, in the final analysis, we were left with only one
scalar field. Furthermore, torsion was restricted to be of a special
form, the gradient of the scalar field. That is, the special form of
torsion derived in the electrodynamic example was carried through to
the non-abelian case.

This effect was briefly explained as being due to the fact that
the two modifications were equivalent to allowing the gauge coupling
parameters, or gauge charges to become space-time functipns. This
would mean for example, that two electrons would repel each_other with
a force that depends on their position in space-time. In particular,

it would mean that the electromagnetic energy of an atom of say, Gold
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would be different from that of an atom of say, aluminium. Indeed,
W.T.Ni (Physical Review D19 (1979) 2260) has shown that if the ECSK
theory is taken to be the correct theory of gravitation and if torsion
is coupled to electrodynamics in the form suggested in Chapter II and
ref./8/ then the equivalence principle would hold up to %10_?ZU
(where U is the newtonian potential and V denotes the gradient), i.e.,

the accelerations suffered by Gold and aluminium atoms in the earth's
gravity field would differ by %10_?zp. However, we know that the
equivalence principle has been tested experimentally to 12 orders of

magnitude, 10—12

VU (see for example, V.B. Braginsky and V.I. Panov,
JETP 34 (1972) 463). So we are forced to abandon the coupling of
torsion to gauge fields. Rather than throwing away torsion completely,
it may be better to accept the suggestion of /5/ and couple torsion
to matter fields ather than gauge fields, and leave gauge fields to
couple to the Christoffel connection as in general réelativity. We
need not be totally disheartened by this result, for we know that since
1952, several workers in solid state physics, particularly, Kondo and Bilby,
Bullough and Smith (see e.g. refs. in /5/) have taken up Riemann—Cartan
geometry to describe the theory of continuous dislocations of crystals.
So we may hope that althéugh the theory of Chapter II cannot be
defended as a description of space-time, it may lead to new effects in
the continuous dislocation theory of crystals.,

Chapter III was devoted to a new form of variational principles.
The conventional variational principle, studies small variations of an
action integral over four-volume. The integrand is taken to be an
invariant function of the field variables and their partial derivatives.
It is well known that most physical field variables have specific
geometrical properties. e.g., the components of a vector field form
the electromagnetic potential, while the gravitational field is described
by a metric tensor, whose components transform like those of a second

rank symmetric tensor under general coordinate transformations. The
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conventional variational principle is insensitive to the transformation
propetties of the field variables. Invariant variational principles

are defined to remove this defect in the conventional variational
principle. The technique, when applied to a metric variational problem,
by taking a lagrangian of the form L(g,9g,93g) imposed restrictions on
the form of admissible lagrangians in requiring the lagrangian and its
partial derivatives to satisfy three identities. It was shown that some
of these identities were remarkable extensions of well known theorems in
Riemannian geometry.

Despite the expected complexities in the calculations, the
invariant variational principle was generalised to metric-torsion
theories by applying the method to a lagrangian of the form L(g,9g,39g, S,9S).
S being the torsion tensor. Once again, the restrictions on the form
of admissible lagrangians were derived in the form of three identities
satisfied by the lagrangian and its partial derivatives. Due to the
large number of terms in the identities, we showed how the method could
be applied to derive field equations by deriving them for a simplified
lagrangian of the form L(g,d3g,35%g,s). No generality is lost in doing
this, except of course, the theory would not allow propagating torsion.
This is an important feature of any metric-torsion theory, for without
it, we have the result that in the vacuum (absence of matter), it is
equivalent to general relativity.

Lastly in Chapter IV, a new metric-torsion theory, allowing
a parity-violating interaction was put forward. There, we saw that
one could add an additional, pseudo-scalar term to the ECSK lagrangian
while still keeping it linear in the curvature. Because of this
linearity in the curvature, by virtue of the field equations, this
theory is equivalent to general relativity, in the absence of any

matter fields. Some suggestions to alleviate this problem are as
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follows
(1) Use the special form of torsion, derived in
Chapter II as an ansatz to obtain a restricted

form of dynamic, propagating torsion .

(11) Add terms to the ECSK lagrangian that would allow
propagating torsion. These terms could simply be
either second derivatives in the torsion, or
quadratics in the first derivatives of the

torsion.

This second possibility was discussed, and ruled out on the
grounds that each additional term should, in general, carry an arbitrary
coupling constant, analogous to the Newtonian constant., The parity-
violating effects were explicitly exhibited for two matter fields, the
Dirac and Proca field.

The parity-viclation terms in the Proca field equations are
the ones that should be looked at if one wishes to check them
experimentally, for they offer the possibility of not only establishing
the existence or non-existence of torsion, but offer the possibility
of distinguishing between the ECSK theory and the theory we have put
forward.

In this thesis, we have concerned ourselves with the purely
classical aspects of metric—torsion theories of gravity. It is to be
hoped that the results contained herein will find some significance in

a quantum theory of gravity.
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APPENDIX II (A)

In this appendix we shall prove that the group property on
Au(=Ai Ti) holds, i.e. if under a gauge transformation U(g), Au is
transformed into AL and if under a further gauge transformation U(n),
AL is transformed into A: , then, can we find a parameter £, such
that the gauge transformation U(E) = U(n) U(e) carries Au into A: ?
Clearly this is an important group property, for without it,
we cannot, beginning with series of infinitesimal gauge transformations,

build up a finite gauge transformation.

From equations (2.4.11) and (2.4.12) we have;

Cau(auU(e)) U ey + ue) AaU‘l(e) (A.1)

e I+

and A" o= -1 Cdu(auU(n)) Uiy o+ u(nAl L) (A.2)

0Q {2

Upon substitution for A& we obtain

e u -1
Al = . c, (auU(n)) u ~(m

+ U= 20 uE) UTHE + U AT} v
(A.3)

- - Ie MG U ue +ume et TN vTim

+ U(n) U(e) AaU_l(e) U_l(n) (A.4)
or,
AT = -2 M) U} (UM Ul T
+u () vt alumue} 7 (4.5)

-1

we have used the relations that U_l(e) U_l(n) ={U(M)Uu(e)} (A.6)
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and,
(auU(n)) U(e) + U() auU(E) = BL{IU(n) u(e)} . (A.7)
Defining U(g) = U() U,
we have,
" . i u -1 -1
AL = z C, (auU(E)) U “(g) + U(E)AGU (8) (A.8)

Therefore, we see that altering the gauge covariant derivative has
not spoiled the underlying Lie algebra structure, and we can carry

through the analysis as if nothing had changed.
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APPENDIX II (B)

As mentioned in §4, we shall prove in this appendix, that
coupling of torsion through the modified gauge covariant derivative,
o

D =3 =-1ighb T.A . B.1
y =8 T isb (T.A) (B.1)

to the unmodified field strength tensor,

F = - - i L ] o
Fuv au Av avAu ig Au ’Av + 2 Svu' Ac (B.2)
leads to the trivial result that

a a o]
bu = Su and Svu- = 0 . _ (B.3)

From equation (2.4.10), remembering the notation that

A, = A; T, , (B.4)

we have that under a gauge transformation, Au transforms as

V- } u -1 -1
Aa = z Ca (BUU) U + U Aa U (B.5)
Suppose, under this transformatiom, Fuv - Fﬂv , then
I::' = t _ 3 ' _ = 1 ' + G .
v auAv N Au 1g[:Au ’Av] 2 Svu - (B.6)
__ 1 a -1 -1
gau{cv (3, 1)U "} o L
v i3 0oy ) - U AU
LN Cy (B ,0u 1} 3] y }
-1 - l Q -1 -1 i -1 -1
igl~- = U + UA _ L.
g z G (s U U'UU ), ( gcv(aau)u + UAU ) ]
21 . O -1 g -1 o
-2 U +
2 o (aaU) Svu 2U AG U SVU . (B.7)
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or,

F' = ula A -3 A -ig[A , A 1+25 .43yt
BV TR v u’ v vu o]

i Oy -1 _ i o -1 i o -1
s (aucv )(BQU)U 5 C, BJ(BQU)U } o+ s (avcu )(BQU)U
i a -1 -1 -1
+ 5 cu aQKaaU)U } o+ (auU) A U - (3,0 AuU
+ UABU T ~uas Ul - g puls ©
vV u u v ag a Vil
- igl-f ctoout, -Lcp ety (B.8)
g H o ’ g VvV o '
. i o -1 -1 . -1 i o -1
igl- 3¢, (30U °, VAU " I-ig Cua v =3 Gy (3, 1V ]

. a .. v .
We must determine Cu by requiring Fuv to transform gauge covariantly,
as the preserving of gauge invariance is our primary concern. The
statement of gauge covariance 1s simply
-1

- -
Foo = UELU (B.9)

From equation (B8), we must therefore have,

Q (e} o (s)
(BaU){au C, -avcu + 2 c0 s\)u lu

-1

0 1

+

o i

a. O
(3,8, 1)1 cu §,” = G, 5u }u

i oa. g 0. O -1
+ s (3,0 {cu 8, C, au }(acu )

a g,.—-1 o] o) -1
+ (3,1) {Avﬁu Auﬁv ot o+ uf A8, Auﬁv }(BGU )
_i.aB ‘ -1 i . .8 -1
m C, (3,13 U0) + o c, Cu(BaU)(BBU )
<*omAaurt-c%auh
% a AV s Vv Q
+C % A (3 U~1) +C %y W AuU_l (B.10)
v H oo \Y a

= 0,
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where we have used the following results:

Since U(€) is a unitary matrix operator, we have

wl = vl-1,
differentiating with respect to xu,
-1 -1
3y U = -U(3. U
oW @™
and, @uh = -vten ot

Equation (B.10) can be further simplified, by collecting terms, to

a

i o o} g . o} .
g(aau){aucv 3,6, + 2C,7S, - ig C A + ig

. a , ] -1
+ 1chu Av ig Gv Au }u

+ T Gawmic® 9-¢% %t

g “ga TRV v oou
+ 20w ic%~c%%c% %+ c%°

g " a uowv v U uov v ou
+u{as? -468%c% -c%} uh

v u Vv v u H v g

= 0.

c %a
A u

} (BGU

1

So, we must solve for the following four simultaneous equations

a a a g . a a R a
8,Cy = 3,0, *2C, 8, Teigh (CT-8 H+ig A (5

C =0
3 \Y 3
a ag a a a g
Cu (6v Cv ) + C (Cu § 7)Y =0
and
g g g
A (Gu —Cu )+ Au(Cv —6v ) =0

)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

Equation (B.15) is a complex equation, so its solution is obtained by

equating its real and imaginary parts separately, to zero.

We then

see that equation (B.18) is contained in (B.15). Noting that equation

(B.16) is identical to the one obtained in the electrodynamic example

allows us to write down its solution immediately as
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o o
Cu = f(x)ﬁu . (B.19)

Substitution into (B.17) reveals that either
f(x) =0, or f(x) =1 (B.20)

The solution f(x) = O is singular (remember that Cua is the inverse

o . . \ . . . .
of bu ), and we discard it, leaving us with the trivial solution that

C =28 and b =8 (B.21)

The real part of equation (B.15) is

3¢ -3¢+ 2¢% %= o0 (B.22)
v o “vu
or,

Svu = o, (B.23)
after using equation (B.21).

While equation (B.18), or equivalently, the imaginary part of
equation (B.15) is satisfied identically due to equation (B.21). So
we see that in the blind generalisation of the gauge covariant derivative
from electrodynamics to non-abelian gauge fields, we have lost something.

In reality, we have not gone far enough in the generalisation, leaving

us with nothing but the torsionless case of general relativity /9/ .
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APPENDIX III (A)

Construction of tensorial quantities /11/.

The lagrangian scalar density that we have, satisfies the

following transformation law,

L(g. .38 . 8. = BL(g...g.. .. .
L(8i59855 12855 ko) BL(gii-8i5 12815 ko) (A.1)
under x = x (xJ) s (A.2)
Bxl
where B =l — I . (A.3)
9X
i o i 9 :
we shall also define B . = - B",, = — B"., etec. A.4
B S A o

Since one of the important features of IVP's is the exploitation of the

tensorial properties of the field functions, the transformation rules

for gij’ gij,k and gij,kl are found to be;
- a b
Bk - 2nbBy By ¢ (4.5)
- 2 éhk a _b a _b a Bb c
Bhic,a” Sk B e Bab ¥ B n BiaBap ¥ B P kBab, e
(A.6)
and
- _ P a b P a_b 3 a . b
Bk, om - —m® neP kBan) t om BB keBap) * Tom® nf k8ab, B
X 9x X
(A.7)
Let us also define
ij _ 2L ij,k _ _°L ij, kg oL
K™ = 55, A = 3 s A = 3 (A.8)
ij 8ij,K 813 ,ke
17,ke

and their tensorial counterparts will be denoted by HlJ, HlJ’k and A

ke

respectively. The last, because At is already a tensor density. We

c
L ).
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s T 13,k
shall now show that A and AlJ’k are not tensor densities while A 1

is, by evaluating their transformation laws. Differentiate (Al) with

respect to 8ab . cd’ gab c and gab’
3 L]

= 3g. -
BAab,cd - - aL ij,k& (A.9)
aglJ,kz agab,cd
w’;
ab,cd -ij,k% _a_b_c_d
BA A _ BiBjBkBZ (A.10)

having used (A.7),

Equation (A.1Q0) demonstrates clearly that AlJ’kz is a tensor density

of weight 1 and contravariant rank 4.

We also have

- ag. . - Bg. .
ppabse . oL ijake , 3L _ij,k (A.11)
agij k2 agab,c agij sk agab,c
or, - -
s 3g. . Yy 3g. .
padboc _ L piivke Pijuke o ozifk Pk (A.12)
agab,c agabyc

we need go no further, for we see that this first term in equation

(A.12) spoils that tensorial character of Aab’c.

Similarly, we have

—

s 3g: - s 5g. . Lrs 38
BAab _ AlJ,kz 8 , kg + AlJ,k ijLk + AlJ ij
agab agab agab

(A.13)

. . . ij
Here, the first two terms spoil the tensorial character of A J.

There was a purpose in deriving equations (A.10), (A.12) and (A.13).
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We shall need the equations in order to derive their tensorial forms .
The method we shall use is an indirect one, and is based on the
definition of a scalar quantity G,

k

i3, ij
hij,kz + A hij,k + A hij’ (A.14)

¢ o pbikR

where the hij are components of an arbitrary second rank tensor having

the same symmetries as the metric tensor. This quantity, G, is a scalar

density :
_ ab,c ab,c ab
BG = BA dhab,cd RISt WIES I s S (A.15)
or, _ _ _
.. g, . dg. . dg. .
BG = Fiisk2 8ij, k2 . L Bijk . Bk .
ab,cd 3 ab,c 3 ab
gab,cd gaB,c 8ab
. 3g. . 3g. .
+ KlJ,k glJ,k h + gll,k h
’g ab,c 5 ab
ab,c gab
e 3g. .
+ A —— n_
a
agab (A.16)

From equations (A.5), (A.6) and (A.7), it is easy to see that the

terms in square brackets in equation (A.16) are simply h, and

i3,k2 i3k

hij respectively,

We have therefore,

BG = G, (A.17)

i.e., G is ascalar density.
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Now what 1s required is the construction of quantities HlJ, HlJ’k 50
that G can be written as
¢ = atiekby gtk iy (A.18)

17;:ke ijsk i]j

where the semi-colon denotes covariant differentiation. As we shall
. ij i,k .
be needing I and I » later on for the non-zero torsion example,
ij ij,k . .
we shall evaluate I and II here, without assuming any symmetry on

. i
the connection symbols I,

ik In reality, for the metric example, we

always have the Christoffel symbols in mind. We know that

[0
Bisse = Mgk T Tki Pay Tis Pia (4.19)

Similarly for hij,kz .

Substitution into (A.18) yields

= lJ + l],k - HiJ K Pa h - HiJ ’k o

LY RS B P ki Paj ki Pig
15,k i3,kea _ijkea Cdikia

A T TPy e T AT Tysha ke ToxPii,a

_aiike _ai3,ke o . . ij,k& B @ ij,ke B @

A Pki haj,l A ij hia,2 A szrsihaj+A PﬁiPkB aj
ij,k&, B0 ij,ke B o + plisk2 Boa

AT T Pag AT T Ty Pia T AT Tl Pig
ij,ke_B.a _ aijk2a _ po ij,ke

. A Leles hg, = Tt e Bos = Toy il (A.20)

Collecting together terms, and equating coefficients of hij and

hij K after suitable symmetrisations, we find that
b
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phisk o pt3sk gpadok® pd g pedikRd o gdet ko
La La La
while
I[ij IS BERECH I ria , ik ria _ Aaj,klrik Péa
- A“i’klrik rga - 2A“B’k£riB ria - A%k rfa.rie
_ Aai,klria rie R ria,2+ RERT! Fia,z 8. 22)

k

where the symmetries of At . have been used and also the symmetry

of Hlj’k in indices (ij).
The proof that the quantities HlJ’k and HlJ, given in equatioms
(A.21) and (A.22) are temsorial is quite easy. We have that G, as

defined by equation (A.18) is a scalar density.

We also know that

ARIKE (A.23)

ij3ks
is a scalar density, so we have
G - Alj,kZ

hij;kz (A.24)

being a scalar density. Hence

1] ij,k
I°h, . I . .
hyo * By (A.25)

are components of a scalar density, and by a simple generalisation
. 17

of the quotient theorems of tensor calculus, we have that I J

. . . . . ij,k

is a tensor density of weight 1 and contravariant rank 2, while I

is a tensor density of rank 3.
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APPENDIX III (B).

Construction of identities for L = L(g,5g,59g) /11/.

We have,
with
- a _b
g = Bn Bk 8 (3.2)
- _,a b a _b a b c
Bkt ~ Pje B Bab * Pn Big Bap By B8y By (B3
and
- ) a _b 9 a_b 9 a_b_c
= — -+ —— —
ghk,!Lm a;m (BhZB kgab) N (Bthlgab) * x (BthBlgab,c

(B.4)

The first identity.

The right hand side of equation (B.1l) is independent of B;pq

so, differentiating (B.1l) with respect to B;

oL

"B, L aghk;2+ L g m
= 1= I = 1

5
%k °Papq %8hk,2 Papq %%hk,m 98 pq

=0 (B.5)

Inspection of equations (B.2) and (B.3) shows that éhk and éhk .
]

are independent of B: s SO we have
npq

Fhk, 2m %%k, im
3B*
npq

=0 (B.6)

Explicitly writing out (B.4), it is easy to show that
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g a n p .9 4b a .b .n .p .q
£ .
TPhkom 678 6) 8 B g, o+ B 8 8 &8 g, (BT
i
9B
npq
so that (B.6) can be written as
pok>pa o gP . FhR,Pa gb }(npq) =0 (B.8)
, 8ib® h 8ib :
or,
(oksPa ,  7kn,pa, gD @pa) _ 4 (B.9)
&iv “ K
This is true for arbitrary Bbk, so, in particular, it is true for
b _ .b
By = 8%
We therefore have
~ (npq)
[ kP, gknspa ] =0 (8.10)

Also, since this is a tensorial equation, we can remove the '"bars"

(npq) _
( Ank,pq . Akn,pq } =0 (B.11)

[ ](npq)

where we have used the notation , to denote symmetrisation in

indices (npq) because Blnpq is totally symmetric in (@mpq).

So,we have

pok,pq  kn,pq , ,pk,qn ,kp,qn  ,qk,pn  kq,pn _

or, (B.12)

pkmspa o kpyan o kqump (B.13)

upon using the symmetries
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piokE ik dj,0k (B.14)

From equation (B.13) ,
Aknqu = - AkP,qn - Akq’np (B.15)
- aPska apa,nk | an,kp o qpska (B.16)
= Zqu ’nk + AnP 1kq + Anq ’kp (B.17)
= 9 pP9mk _ ,mk,qp . (B.18)

therefore,

pfkspa _ ,Pg,mk (B.19)

This is the first identity that was written down in §2.

The second identity.

In deriving the second of the three identities, we use the fact

that equation (B.l) is independent of Blpq . We have,

L aghk L aghk’z L aghk’Zm

1

1 = i =
aghk aqu thk,2 aqu aghk,zm aqu

=0 , (B.20)

v

looking at the functional form of equation (B.2) we are left with

og og
i, % “Bnk,p . shk,im ghg,zm - 0 (B.21)
aBL 3Bt
Pq Pq

Using equation (B.3), we find
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~ hk,? Og _ _
A Bkt pk,q b 5. + NP gb o (B.22)
i k ib
3B
Pq

while equation (B.4) yields

.
fhk ,2m gpkzzm

=g é'\Pk,qm Bb + jPk.qm BC Bb
9B

i i km m ok gib,c

Pq

~hp,2q _b -pk,%2q _b ~hp,qm _b
A BeBip * 4 Beg 8ip * A Bum Bib

+hp,qm _b_c -pk,2q _b,c
oA BBn Bib,e A BBy Bin,ec

~hp,2q.b _c +hk,pq .,a _b
A B By Bip,e t A By B 8ap,i (B.23)

Substituting (B.22) and (B.23) into (B.21) and simplifying, we obtain

b ~pk,q ., 7dk,p b <kp,qm b <kq,pm
gibB k(A + A ) + ZgibB m A + Zgib B Km A

¢ b =kp,aqm ' b c 7kq,pm
* 2gib,c B m B k A * 28ib,c B k B m A

+g. . B 8% 1 0 (B.24)

cb,1 m k

(after symmetrisation in (pq) indices due to symmetry of Blpq in (pq)).

Equation (B.24) is true for all B; , in particular, it is true for

B, = 61., so that
] ]

~pk,q _ 7qk,p 7kp,qm +kq,pm
8y (A AT ¢ 28 b * 285 A

b

Amk,Pq 0 (B.25)

* 8 i
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From Appendix III(A), equation (4.21) we have

HlJ,k = AlJ,k + 2AaJ,k2 R zAal,klr I, AlJ,aQFk
La Lo fa
(B.26)
so that in a gaussian normal coordinate system,
p Hek L gtk (B.27)

. i
remembering that in this example, Fljk = {j k} .

Evaluating equation (B.25) in a gaussian normal coordinate

system, we obtain

8k (ﬁpk,q + ﬁqk,p) = 0 (B.28)

But this is a tensor equation,removing the "bars",

ij,k , fki,i

1 0 (B.29)
or,
H]‘J ’k = - HkJ ’l - -— HJk’l = Hlk,J - Hkl’J = _HJl’k s
(B. 30)
so that,
i R (B.31)

In (B.30), we have repeatedly used (B.29) and the symmetry property

gk o Ik (B.32)
Equation (B.32) is the second identity we set out to prove, and we have

shown, that indeed, equationm (3.2,20) does imply equation (3.2.21) in

§ 2.1
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The third identity.

To obtain this last identity, we differentiate equation (B.1)

with respect to Blj .
2&1 - B AL, (B.33)
3B’ *
i
i,j  _ i
where, Bj A K 8 K (B.34)
therefore,
3 )
__ai = Bl . (B.35)
3B,
i
Now,
oL _ ok Bk ohic,2%%hk,n |, shk,em *8nk,em (B.36)
3BT, 3B, 3B, 3B .
i ] i i
Equation (B.2) and (B.3) imply
~hk  9g .
A & _ —ik.b -kj b
- = A°"B WBip t A B k Bib (B.37)
3B,
i
and
~hk,2 9g ) . .
AT hk,2 _ +kj,2 _b -jk,2_Db -ik,2_b _c
i A BuaBip T AT T B By FATTTUB By gy o
3
~kj,2. b _c -2k,j _b c
+ A BBy Bip e * A By By 8y g (B.38)

hk,2m  °8hk,&m

3Bt

]

while equation (B.4) allows us to evaluate A

However, as this term is rather cumbersome, we shall not
write it down, except to say that after substitution into (B.36)

and using (B.33) we can write
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Jk L

BL Aji Rk, gy Bbk + (RRIE, y B 28ib
s @R 79 Bkaz 8ib,e * R B B} Beb,i * I e &b
* Bah2 Khj,lm ai,c Cm * ahJLBbk thle ab,1 * Bbklm Kjk’zmgib
* Bb Kjk’zm ib,c cm BkaBah Kﬁk’zJ ab,1 * Bahm Khj,lm Bi ai,c
* Bahm Bbk th’jm ab,i * Bbkm Kjk’gm B ib,c ¥ Bbkm Bah th’jmgab,i
* Bgm Jk Emek 1b c * BEmBah Khj’zmgai,c * AJk szb BC ‘ glb cd
* KhJ’RmBahB Bd gal ed th’ijathk Bdmgab,id * Ahk RJ athkBR ab ci

As it stands,

simplify by taking

Equation (B.39)

LsJ
1

then reduces to

~ik | 7kj
(A7 + A B

Kjk,lm + 1

gik,zm

&3,
1

hj,4m

y etce

(B.39)

this is not a nice expression!, but we can, as before

(B. 40)
=ik, 2 *j,R =2k ,]
@ A7) gy ot A 8ok, i
~hk,jm ~hk,2j
i, om T A Bhy,im T A Bk ,2i
(B.41)

We can simplify further, by taking our coordinate system to be gaussian

normal.

We then have,
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+ Ajk,lm + Akj,J?.m

I _ 4k K]
L6, = (A7 +A) gy 8ik,2m 8ik,2m

2k, jm + pMk,mj

+ A 8o,im T 2 8ok, mi

The presence of second derivatives of the metric tensor in

(B.42)

equation (B.42) tells us that some function of the Riemann-Christoffel

tensor is going to come in.

In a gaussian normal coordinate system, the Riemann-Christoffel

curvature tensor is given by

Rk T By am * Bam,ik T Sek,im T Bim,2k (B.
From equation (B.13), we have that
pleomt itk dmke 3.
multiplying throughout by gik,zm ’
jk,mg jL,mk jm,k2
8k, om * 8ik,am ? = “Bik,om D (8.
or since gik,zm is symmetric in (Zm),
jk,mR - - jm,k2
gik,zm A 2 gik,gm A (B.
- - jk,m2
2 gim,zk A . (B.
Similarly, we have
jk,m _ jk,me
ym,ik A = "2 8ok,im A (B.

Putting together equations (B.43), (B.47) and (B.48), we obtain,

43)

44)

45)

46)

47)

48)
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205, () = T )

(gik,lm * gJlm,ik

_ ajk,m2
A &gk ,im ¥ Bim, 2k’ (B.49)

or, using (B.47) and (B.48)

& ik,mb _ Jk.me

30T R () &1 ,em * Bom, ik’ (B.50)
In equation (B.42) we have the following terms:
pdieaan ik,am ptem 8ok ,mi
* Akj’lm gik,lm +A2k’jm gSLk,im
or, S 8ix,im plietm 8im,ik
v p KA Bik,tm At im 8m,ik °
where we have used the identity Aij’kz = Akz’ij derived earlier,.
Therefore, we can rewrite equation (B.42) as
L sji = (3% 1pkdy g * 2Ajk’1m(gik’lm g ) (8.51)
Substituting from equation (B.50),
L 5ij = (Ajk + Akj)gik + % pJkome R D) (B.52)

From appendix III(A), equation (A.22) we have, in a gaussian normal

coordinate system,
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aj,k2 1 j
rka,l rka,l (B.53)

1t = At s

remembering that in this example rljk = {j'x }.

Also, in gaussian normal coordinates,

th’g = {pkq},z = % gkm(gmp,q2+ 8nq,pL -gpq,ml), (B.54)
So we have that

A0d sk rika’g . Aai,klrjka’z

= % {gimAaj,kR(gmk’az N - . gka N

+ gim Aai,kz(gmk,ag + gma’kz _ gka,ml)} (B.55)

With the use of equation (B.47), (B.53) can be reduced, after using

(B.55), to

15 ij im  aj,ke
I A=+ 8 A C,at * Ban,mk

B

s 1ogIm gk ). (B.56)

mk ,0l * gal,mk

e

Equation (B.50) allows us to write this as

I

ij _ ,ij .1 _im ,aj,ks
1 = A 4 g A mMk({})

gim ai,kl ({})

A mzak (B.57)

N
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or,

ij _ ,ij l,0i,ke i 1 ,ai,kt
I A + =A R zak({}) + 3 A

b
3 R zak({}) (B.58)

Finally, substituting (B.58) into equation (B.52),

i jk _ 1 ,ek,mt ] 1 ,0j,mi k
L Bip| T 3 R pamth =34 R am(tH
kj _ 1 ,oj,mt _k _ 1 ,ok,mf _j
+ I 3 A R e — 34 R o (D)
8 ,ik,mt
+ 3 A Rizkm({}), (B.59)

ij . . . . . .
but now, we note the II I s symmetric in (ij), so, symmetrising,

i ik _ 4,aj,me _k 8 ,aj,me k
L8, = gy 21 31 R zam({}) *3 A R zam({})
(B.60)

Therefore, we have

Lgd =t + % A3 mh Rlzam({}) (8.61)

M=

which was the identity we set out to prove.
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APPENDIX IV (A)

The possible scalars quadratic in contortion ome can

construct in the usual ECSK theory, we have shown in the text to be

three 3
- a vo
K1 Kca Kv , (A1)
a va
K2 = Kva KO , (A2)
and
K - x A ch (A3)
3 Vo Al

Upon allowing the possibility of including the pseudoscalar density

vpao . .. ,
eHVP , we have four additional terms, quadratic in the contortion

tensor, that can be allowed. They are,

i, = ghVeo K uo Koo > (A4)

i, = VP Ka"‘u K oo (A5)

I, = ehveo KaprO“ (A6)
and,

i, = gHVeo Koy KO‘pc (A7)

So it seems that one can add seven terms, quadratic in the contortiom
tensor to the Einstein lagrangian, to form a mew lagrangian for a metric—

torsion theory. This would in general, necessitate the introduction

of seven arbitrary parameters, governing the strength of each of the
interactions. However, closer examination of equations (A.4) to (A.7)

reveals that there are identities among them /19/:
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It
(@]

+ 4Jl +4J, (A8)

I3

and

[}
(@]

J + 2J1 + J (49)
These identities reduce the number of possible linearly independent
scalars to five. It still is not a satisfactory situation, for we
have six coupling parameters in the theory, including the Newtonian

gravitational constant.

The situation gets even worse if we now try to build a theory
with propagating torsion. The least requirement on the lagrangian for
such a theory, is simple dependence on quadratics in the derivatives
of the contortion. We have no physical reason for picking one such
scalar over any other., The proper valid procedure in constructing
such a lagrangian is to write down all such possible scalars, and
incorporate them into the lagrangian, taking note to add a coupling
parameter to the theory for each of the scalars put into the lagrangian.
The situation now is ludicrous, for we have sixteen (!) possible scalars,

as 1llustrated below: We can write

16 1
iy = L Ta %o (A10)
1=1
where
_ LOBA K _ BOA o o
Ry = K50k, o3 Ky = K~ ;0K 0A;8
_ o O Bio _ wBoA oo,
K, = K, ~"30Kgy Kyg= K 750K _"A38
~ wOBA oo = wO0A o Bl
K3 K ;yKaBA K11 K ,aKc A3B
_ »0BOo, A, _ OBX, o,
K4 =K ’aKAc 5B Klz— K ,aKG AsB
- »Boo. AL _ 00\, B .
K5 K ,ach ;8 K13— K ,aKA ;B
_ 008, A, _ ,OBA, a
Rg = K*°" 30K, "8 Ky ,= K 30K, 038
K, = K29 s okBoa ;8 R = k%% ;akPAs8
_ LOgA 8,. _ 0B _Aa.
K8 =K ,aKO AsB K16 K g;aK " A38 (A11)



-127-

. Voo, .
Allowing for e:l'l P in such a theory would make things even

worse, so clearly the approach we have adopted is a reasonable one.

For not only do we allow for gHVPo

, but we also, through requiring
linearity in the curvature tensor, pick out only one additional scalar,

quadratic in the torsion, namely Jl'
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APPENDIX IV (B)

Elements of anholonomic tetrad.

In a Riemann—Cart;n geometry, just as in Riemannian geometry we
are compelled to introduce a (pseudo-) orthonormal basis of four vectors
e, » the greek indexa= 1,2,3,4 labels the tetrad, at each point of the
space-time as anholonomic coordinates.

In component form,

e = e 9. , (B1)

& = e . dx , (B2)

Because the tetrad is taken to be (pseudo-) orthomormal, we have the

relations
o j i 8 i 8
= 6, =
e . e, 10 e, e, Ga (B3)
d = ea 8 (B4)
an 8 1 %3 B
among the components e®i and their reciprocals eal. The 848

are components of the Minkowski metric tensor;

eyl = BygE ) €0 3 g gm diag (-1,-1,-1,+1) (85)

The object of anholonomity, QYQ is defined by

g

R =etedael.; . =g .0 (B6)

The covariant derivative

Suppose we have a matter field ¢ which, under an infinitesimal

Lorentz transformation 6x' , behaves as follows

, Yye B
Sy BB (8% )fY v, (B7)
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B

fY is an operator determined by the Lorentz group. The covariant

derivative of ¢ is then defined as

_ Y 8
VY =00 4T anY " (B8)
Remembering that
i _ .1 _ i
T ik = {i"k} Kjk (B9)

and using (B3), (B5), the connection FYG can be expressed in

B

anholofcmic coordinates as

$
r = r = -Q +Q  -Q -
aBy Sy§ a B aBy gya” “yag TaBy (B10)
where

‘e i i k
KGBY : e, eg eY Kijk (B11)

equation (B10) gives rise to the following symmetries

FG(BY) =0 (B12)

F[aBy] - Q[aBy]FK[aBY] (B13)
and we also have

By _ _ »oB 8

g FBYG— 20 B + KBa (Bl4)
I1f ¢ is a spinor field, we have from /16/ , that

£ o= 2oy (B15)

a8~ & '[a'B]

So that the covariant derivative of a spinor field is given by
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_ _ 1 B.Y
vy o=3 Y ilagy Y YV (B16)
. ] - *
since the Dirac adjoint is defined by ¢ =y Yo We have
7 =33 -1 7 B

This completes our rather brief introduction to tetrads. Most of

this appendix is contained in Hehl and Datta /16/, also Hehl et al /5/.
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APPENDIX IV (C)

In this appendix, we shall show how one can solve equation

(4.6.17);

VA

0P _ 0P
ichAp(skaj §.87) (C1)

Jk
to obtain equation (4.6.18).

We first note that,

VA . op
2pn chvAp Kj

VA, .0p _ _
2pn 106kj (Sxpv vap Sva) (c2)

o
k

-2pn"? igs g S (C3)

VAD

. P . . .
from antisymmetry of nv 10, which implies

Mo s, = 0o s (c4)

and antisymmetry of Svpk in its first two indices further implies

VA. _ _VA.
n ic SApv =.7 1oSva . (C5)

Substitution of (C3) into (Cl) yields ,

T .. =1... + 2p nvkciécp S . (c6)

kj vAp

kjaB

Multiplying (C6) by n and simplifying, we find that

o

L N (c7)

ail k] “vip
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so that substitution back into equation (C6) multiplied by nkJaB

gives

nkJGBT = 1 nkjas_ ka 318

Wi o Tkii 8 Tea o (€8)
Further multiplication of (C8) by naqu gives, after simplification,

o.f

85 - 2p nkJGBT - TuB

from (C8) we have

kjaB - kjaB_ o2 ka jB
2pn Tkji 2p Tkji“ 8p g g Tkji (C10)
substituting into (C9) yvields
af 2 ka jB _ _aB kjaB
T it 8p g g Tkji =Tt ZPTkji n . (C1L)
Therefore we have finally,
T
L L aBi a.B kjaB
S, .. + .S. "-g..S = ———F (878, + 2pn ) (C12)
kii T Bki®je T83iks (1+8p2) k°j
with
S, %= o e b ogp g it ) (c13)
i% 2 (1+8) k2 P M Tagi

Together (Cl2) and (Cl3) yield the desired equation, namely equation

(4.6.18).
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INVARIANT DEDUCTION OF THE GRAVITATIONAL EQUATIONS FROM THE

PRINCIPLE OF HAMILTON

by Attilio Paletini

Rendiconti del Circolo Matematico di Palermo

10 August 1919, L3, 203-212

[Translation by Roberto Hojman and Chandrasekher Mukku]

TRANSLATOR'S NOTE

In this translation of Palatini's article, we have tried to
adhere as closely as possible to the original, not only as regards
the original text, but also the choice of english equivalents for
technical expressions. It should be noted that Palatini not only
uses superscripts for contravariant indices but appends round
brackets to them. This is not to be confused with the modern use

of round brackets - denoting symmetrization. {%3} is the
historical-form of the Christoffel symbols. In keeping with the
summation convention, they are nowadays written as {;k} . We
retain the historical form. To avoid sources of confusion, we have
introduced extra lsbelling of equations. These are with greek

indices. We would like to take this opportunity to thank Professors
P.G. Bergmann and V. De Sabbatae for their kind hospitality at Erice.

INTRODUCTION

It is already well known that in the general theory of
relativity, physicel space is characterized by a quadratic
differential form (that mixes space and time)

as® = Z 8 4 axt axd (1)
i
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in the differentials of the four co-ordinate veariables xg = t,x7,
XD,X35 whose coefficients g4 are the gravitstional potentials

of Einstein. The discriminant of (1) - essentisally negative - will
be denoted by (g).

The mutual interdepéndence of all physical phenomena and the
geometric nasture of the space is completely determined by the ten
gravitational equations

Gy - [EG + A] By = K Ty o (2)

: 3

where G.k = E {ih,hk} is the Riemann curvature tensorj;

3 * 5h

G = E Gik g(ik) is the mean curvature of the four-dimensional
ik

space (1); T, is the energetic tensor that is determined from all
the elements = stresses, quentity of motion, energy density and
flux - that characterize the physical phenomena; « and A are
two universsl constants.

After these gravitational equations were discovered by Einstein,
efforts were made to derive them from a variational principle Just
as one derives the equations of Lagrange from Hamiltonian's principle
in ordinary mechanics.

This goal was reached by Einstein himself, establishing a ne
Hamiltonian principle that was made precise by Hilbert and Weyl 1),

However the procedures followed by these authors do not conform
to the spirit of the sbsolute differential calculus, because in
deriving the invariant equations, one must use non-invariant
formulae.

My aim is to reach the same goal, while preserving the in-
variance of all the formulae at every step. 1In doing this, I will
take advantage of the results obtained in my note: "On the
foundations of the absolute differential calculus" (see the
preceding note in this volume; Rend. Circ. Mat. Palermo, Vol.u3,
1919); Hereafter referred to as N.

1. FUNDAMENTAL POSTULATE

We begin by introducing with Hilbert, the following fundasmental
postulate: The laws of physics depend on & unique, universal
function H heving the following properties:

(a) It is invariant with respect to general co-ordinate
transformations;



(b) It depends on the gravitational potentials g(ik) and on
the corresponding Christoffel and Riemann symbols and

(¢) it depends on the elements that characterize the physical
phenomena.

However, we have no a priori knowledge of the explicit form of
the universal function H and must therefore introduce some
hypotheses.

From the point of view of the synthesis of all physical
phenomena, it is convenient to suppose that

H = G+ L+ 2 s

where )\ is & universal constant, G (the mean curvature of the
four-dimensional space) is a term that contains the information
and characterizes the influence of the space~time on the behaviour
of the phenomena, and L is & term that includes all the «
manifestations of physical origin except those that are intimately
related to the structure of space-time itself.

2. BSTRUCTURE OF THE FUNCTION L. REDUCED MECHANICAL SCHEME

From the speculative point of wview, it seems desirable to
attribute to all these manifestations (direct or indirect) an
electromagnetic origin (as should be the case for the luminous and
thermodynamic phenomena). - The expression for L should depend in
a complicated way on the parameters fixing the electromagnetic
state of the system, and the gravitational equations should not be
isolated from those governing the behaviour of all the other
Phenomena.

Having in mind the possibility of adopting the study to
concrete cases, it is convenient to limit oneself to the con-
sideration of the gravitational field by itself and to collect
everything that arises from the set of physical phenomena (ex-
cluding gravitation), into a specific function of position and
time, precisely in an energetic tensor Tik'

A similar situation is found in ordinary mechanics when wishing
for instance, to study the motion in a conservative field, of &
material point on a frictional surface, the energetic analysis of
the phenomena (that might lead one to consider the thermal aspects
of the problem when teking into account the heat dissipated due to
friction) is replaced by introducing a position dependent non-
conservative frictionel force.

In the usual mechanical approach, tsking into account a whole
set of circumstances (giving rise to loss of kinetic energy) would
be impossible, or at least guite laborious to analyse with profit.
Instead, one is led to consider as given, forces that are not

-3~



derivabvle from a potential. In the same way, in the Einsteinien
scheme, it is satisfactory to study, instead of L (whose precise
expression should depend on a whole on a set of phenomena, making
its explieit study impossible or undesirable) the tensor Tik'

By using Tik’ an appropriate matter Lagrangian *)

3
E (ik)
L=« T.. g (3)
— ik ik

can be constructed so as to lead us to the gravitational equations.
¥ denotes a universal constant of homogeneity. The given elements
of the tensor T, are not to be considered as independent of the

glik) | instead, dne should take the products g Tik =?afik (which
conititute the so-called tensor of volume associated to the tensor

Tik )

3. PRINCIPLE OF HAMILTON

With these assumptions, and taking the form of the universal
function to be

H=G+ L + 2
with 3
L = K T-k g(lk) ]
Zik 1
0

we want to show that the gravitetional equations follow from the
variational prineiple

SJ‘HdS=O . (L)
s _

*) For such a purpose one can again invoke the mentioned analogy
with elassical mechanics, by noting that from Hamilton's variational

principle 6 [ (T + U) 4 = 0 [T kinetic energy, U potentiall

is valid for the case of conservative forces, one can go to the

generalized principle, valid for any force with components

¥; (i = 1,2,3) by substituting for U the linear expression

~3 - .

§ X;x; end assuming GXi = 0. The expression (3) for L is in

i 37

alsense the analogue of E Xix..

i

i
1

. -



Here S denotes an arbitrery region of the four-dimensionel spece-
t%me and & denotes a variation w%ph respect to the potentials

g ik) with the condition thet &g ik) (end their first and second
derivatives) venish on the boundary of S.

Before proceeding with the proof of our proposition, it is
necessary to establish some preliminary formulee.

L. PRELIMINARY FORMULAE
Variaetion of the Christoffel symbols: Let us begin with the
identities ¥)

og
nk nJ kJ =
5 D [t )0 ©

essentislly expressing the well-known lemma of Riceci. They can be
easily verified by using the expressions for the Christoffel
symbols of the second kind.

With the above definition of 6 , we write
epplying & to (5) one gets ’

de
nk _ nJ kJ _ nJ k3| -
ij E 5 [{p} €1k + {p } enp] Zp [gpké{p} + gnPG{P }] 0.

The first two terms constitute the covariant derivative of the
system ey (cf. formula (14) of N for the particular case m = 2),
therefore

ngk = ey and

_ nJ kJ
enkl,j = Zp (gpkﬁ{p} + gnpﬁ{p }] . (a)

Permuting k with J and then h with Jj, and summing up the
two equations thus obtained and then subtracting (a) one gets

hk
= E 8

where
= 3 e + e e
Tk 3 2| %njle 7 “kiln T Tmkl3) -

*)

In this section, summation indices heve no limits, so that all
considerations here, will be valid not only for the four-
dimensional ds2 of Einstein, but for any ds2.



Multiplying (6) with g(lj) and summing over J, we immediately

obtain

s = nli) (7)
where

n}(ﬂi{) = ZJ g(ij) Mkg - (8)

Variation of Riemann symbols a?d explicit expression for G:
Eq.(8) immediately reveals nﬁ% to be a mixed system, twice co-
variant and once contrevariant.

From the fundamental formula that defines the covariant
derivative of & mixed system (cf. formula (13) of N) we get

(1) oy }: (1) () (2)
i) _ _hk hj, (i k3, (4 23, (2
x|y T ox, 2 [{2 g * U I = 4 Iy J ‘ (9)
Let us now consider the Riemann symbols of the second kind
. _ _9_ (hk 9 hj § hk | (2] hj, 2k

and act on them with the symbol 6 . Having in mind Eq.(7) one
finds

Bn(i) Bnh
6{hi,kj} = bk _ h

ij Bxk

(2),83 (i) ,/hk (2) 2k (1),nJ
+ Zz{nm{ {iJ}+n9,J {2}'“h3 {i}—nzkil}] .

Applying({9) [adding and subtracting E né;) {ﬁ?} from the
right-hand sides] we get [

s{hi,kj} = néiiJ - n;;?k

Since Ghj = E {nk,kJ}, it follows that
k

_ l(x) (x)
%Gy = E:kVMU'”mmy

—6-



Therefore, for the variation of the mean curvsature

(ik)
o S el
one has ik ik .
_ (ik) (ix) [_(n) (h)
6G = Zikcik Se * Xihkg [nih|k-nik|hl - (10)

Defining
(X)) | _ E (ikx)_(n) (in) (k)
1 - = in [g ﬂih - B * ﬂih ] P

it can be immediastely verified that

(ix) [ (n) (n) )} _ (k)
D b i) < 2,

then by virtue of formula (17) of N, Eq.(10) can be written as

. (k)
ik g k

5. DEDUCTION OF THE GRAVITATIONAL EQUATIONS

Defining dw : = dxo dxl dx2 dx3, one has

ds = Jg dw

and (4) can be written as

3
GJ‘ (G + 21) Jg + }: . (ik)}dw=0 ,
s{ I "'O;@Elkg

or, remembering that ?ﬂ;.k should be regarded as being independent
of g(lk 1

- 3
I {50 Je + (c+21) 67 + « E D . sg(ik)} dw=0 . (12)
S ik '
0

Now

) Jg = E—%§§T Sg(ik)
ik 9g
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but as is well known

Therefore

s Je = -%JE Z By 5g' 1)
ik

Let us now substitute this into Eg.(12), and use (11) for &G.
Also, writing

J.s;k oy dm—zk'[s 9% w

allows one to use Green's lemma to convert the volume integral into
a surface integral. Consequently, the integral vanishes by virtue
of the expression for j(k) and the essumption that the variation
of the potentials and their derivatives vanish on the boundary of

S .

So one is left with

3
J. E k{Gi - [%G + A]gik + x Tik} sgli%) as =0 .
s 1

0

Given the arbitrariness of S and Gg(lk)

gives

s the usual prescription

1 -
Gy ™ [2 G+ A] B = K Ty - (8)

Thus, the gravitational equations have been derived from the
variational principle while keeping the calculations invariant
throughout. |

6. DIFFERENTIAL CONDITIONS FROM CONSERVATION PRINCIPLES

Let us recall that the elements of the energetic tensor Ti
are open to a simgle physical interpretation; stresses, density
and energy flux 2 , and we should not forget that such a tensor
is constructed from all physical phenomena except gravitation. It
then follows that the so-called conservation theorems must hold,
that is to say for each material system considered, and for each
of its elementary portions, the components of the external force

-8



applied to the system and the power density (rate of energy trans-
ferred to the system from external sources) must vanish. In other
words, the Tjx components constitute a double system with
vanishing divergence. This can be expressed, in the notation of
the absolute differential calculus, as

3

(k) _

0

,If we now denote by Aik’ the left-hand side of Egs.(B), then
we must have

3

Zk A:(,Li) = 0 . (13)

0

One might be led to imagine that these relations between the
g4 's, impose a restriction on the possible forms of dsz,
characterizing the Einstein manifold.

However, it is easy to prove that Eqs.(13) are satisfied
identically. In order to prove this, one may use the same methods
that allowed us to deduce the gravitational equations, following =a
criterion already indicated by Weyl 3

Under a change of varisbles, the parameters xo,xl,xz,x3 are
substituted by new ones related to the old ones by

x; =%t g, 120,23, (1k)

where E(l) denote four arbitrary infinitesimsl functions of
xo,xl,xe,x3 and constitute a simple contravariant system.

Let us now determine the variations Ggik suffered by the
coefficients of the fundamental form

under the transformations (1h4).

Subjecting ds® to variation, it is found that
3
98- 3e(J)
6d52 = E { 5 1K éj) + 2g.j GX.dxk s
— 1k X5 149X 1

or,by defining Ei to be the reciprocal elementé of the elements

E(i)

, 1.e.

-9~



3

(3 _ (i3) '
E. - Z g E'l 3

0

3 3

2 } %8s } ik
8ds” = 2 ’ —aa - {J}g‘j dx; dx
O lk O Ij
The term in parenthesis is immediately recognized as the

covariant gerivative of the system Ei and therefore we can re-
write d&ds as

3
2 E
dds = 2 E dx ’
ik 1|k dxk
0
or, using symmetry,
3
2
8ds = } By * By Ay axg
. o ik

Therefore for the veriations Ggik’ one gets

= -+ .
To get the variation of the reciprocal elements g(lk), one
uses the following identity:

§3 )
(ip L
. =4 g Eiq .

0
Applying the symbol &6 to this identity, we find

3 3
E 6g(1p) 8., * E g(lp) 6., = 0
p _ ap p ap
0 0
. . (kaq) . .
or, multiplying by g and summing over the q index
3 .
ik ' ' i k
sl IE) = _ E gip) (ka) sg
0 .

and finally (y) gives

-10-



3

(ik) _ Z (ip) (kq)
68 b £ 2 (Eplq + qup) . (15)

We now consider the expression I = f (G + 1) a5 (where G and
S .

A are defined sbove). I is an invariant under any change of
varisbles, in particular under the transformation (1L).

One then deduces that the variation 6I +that I suffers
under the transformation (1b) must vanish, i.e.

81 = 6§ I (G + 1) ds = 0.
S

Proceeding as in Sec.5 one gets

Substituting the expression for Gg(lk) from Eq.(15), and

noting that Aik is & symmetric system, one obtains

3
5 45 ikpq rlq

Integrating by parts and using the formula (23) established
in N )

3 3
(ip) (kq) _J (k) (1) -
| Aoy &g P " as = E aF e s =0 .
J‘Sgikpq ixla P s Lo—ix

(1)

Since the region of integration § ‘and the functions §
are arbitrary, one concludes that ‘
3

>,

0

Padove, August 1919.
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Sufrlinlla',ry-

Some interesting consequences of the effects of gravitation and
finite temperature on quantum field theory are presented which have
important implications for experimental high energy physics and the
status of the ''No-Hair'' Conjecture for black holes. We point out
two consequences for laboratory situations in high energy physics
which disprove the usual assertion that quantum gravitational effects
are only important at planckian energies. The first of these is that
beams of particles in circular accelerators cannot be cooled to below
a certain temperature determined simply by the accelerator's radius,
while the second shows that spontaneously broken gauge symmetries
may be restored by quantum gravitational effects. We end by describing
briefly circumstances under which these effects might have a bearing

on the '"No-Hair'' conjecture,



Two parallel sets of investigations have been carried out in
the last few years to study the effects of gravitation and temperature
on quantum field theory. One set of investigations initiated by

(1)

Khirznits and Linde has considered what happens when a system of
particles described by a spontaneously broken local gauge invariant
quantum field theory is placed in a heat bath or strong electric or
magnetic fields(z). The authors of refs. (1) and (2) have found that
gauge symmetries which are spontaneously broken at zero temperature
via the Higgs-Kibble mechanism (for example, those of the Salam-
Weinberg electroweak theory) may be restored at sufficiently high
temperatures, or in sufficiently strong electric or magnetic environ-

ments, and they have calculated the critical temperatures and fields

at which such restoration would take place.

The basic idea of this approach is that at finite temperatures
(or field strengths) the effective potential of the theory picks up terms
of the type +T2¢2 (where T is the temperature and @ is the Higgs-
Kibble scalar field). For sufficiently high temperatures, this term
becomes larger than the negative (mass)zgﬁ2 term which drives the
symmetry breaking in the zero temperature theory. As a consequence,
the scalar field d becomes a real physical particle degree of freedom

and the symmetry is restored.

(3)

Parallel to the study of these effects, several authors have
carried out a study of the effects of gravitation and space-time topology
on quantum field theory. A number of interesting results have been
obtained but the two which concern us in this essay are outlined below.
Firstly, it has been shown that an observer accelerating uniformly
through empty Minkowski space-time appears to find himself in a heat
bath at a temperature given by

_ Ra -20

T = P ~ 10 a Kelvin (1)

where T\ is Planck's constant, a is the acceleration, k is Boltzmann's

constant and c is the velocity of light.



In order to illustrate this let us consider a uniformly accelerating
observer in Minkowski space-time. If we assume that an inertial
observer and the accelerating observer use the same transition ampli-
tudes to describe objectively the same processes, it can be shown that
the free Feynman propagator for the inertial observer, when trans-
lated into the accelerating observer's frame, is identical with that
of a free finite temperature propagator with the relationship between

the acceleration and the temperature being that given by (1).

This result can be understood on the basis of quantum gravita-
tional effects (through non-simply connected topologies) in flat Min-
kowski space-time. To try and understand how this arises, let us
use coordinates (t,x,vy,z) and (T , 'ﬁ ,Y,2z) to describe the inertial
and accelerating observers respectively. If, for simplicity, we assume
that the accelerating observer moves in the ('C','s ) plane with a con-
stant uniform acceleration a, then his world-line is given by the hyper-
bola 'ﬁ =§ with asymptotes ‘g= 0. The coordinate transformation

from the inertial to the accelerating observer's frame reads

x="gcosha'c, t='gsinha;c.

In contrast to the inertial observer, the accelerating observer
has a very restricted range of vision. The surface x = |t] forms an
event horizon, and any signals sent from the origin O, after t = 0 never
reach the accelerating observer. It is the existence of this event hori-
zon which causes the space-time to seem multiply connected when the
two observers translate themselves into euclidean coordinates
(t = it, T—>iT ) with periodic complex time coordinates, and leads to

the above-mentioned thermal effect.

Secondly, by considering quantum fields in the exterior region
of a black-hole, Hawking has shown that when a star collapses to a
black-hole, the formation of the event horizon around the singularity
enables the black-hole to absorb one of a pair of virtual particles
created just outside the horizon, thus leaving its partner which is now

a real particle, free to travel to an arbitrarily large affine distance



from the horizon. This continuous process is observed asymptotically
as a net flux of radiation, and after all transient effects which arise
during the collapse die out, the left-over radiation has been shown to

be that which would be produced by a hot body at a temperature given by

Rk

2mc

kT = (2)
where K is the surface gravity of the black-hole. Thus, a black-hole
can be considered to be a black-body radiating at a temperature T

given by (2).

Both the above results may be understood mathematically by
noting that spacetimes with event horizons are periodic in an appropriate
time coordinate with an imaginary period. The Green's functions of
a quantum field theory in such a spacetime are, therefore, also periodic
in imaginary time. Coupled with the observation that the thermal
Green's functions of a field theory at a finite temperature T also possess
this property, one arrives at the result that field theories in spacetimes
with event horizons may be considered to be in thermal equilibrium at

some finite temperature.

All that follows is based essentially on the interplay between the
various effects we have discussed briefly above. We will now describe
a couple of laboratory situations in which it might be possible to detect

effects of quantum gravitation.

The first observation we wish to make concerns the recent
attempts being made at CERN and other high energy particle physics
laboratories to cool particle beams in accelerators. We shall show
that equation (1) implies a lower bound to the extent to which such a
cooling can be achieved. Itis clear that a bunch of relativistic elemen-
tary particles going round at a constant velocity v(as c, the velocity of
light) in a circular accelerator of radius r experience a uniform
acceleration a, given by

2

c
ax—.
r



We see, therefore, that such a bunch of relativistic elementary
particles would find themselves in a heat bath at temperature

T ~fc/2rkr. Since this temperature is due simply to their accele-
ration, it would be impossible for accelerator beams to be cooled to
temperatures below this lower bound. This bound does not apply, of

course, to linear accelerators.

In order to remove any doubts as to whether such effects are
""real'', it would perhaps be helpful to show that such observer depen-
dent effects are already very familiar. Indeed, it is only natural to
expect such observer dependent effects in general relativity when one
remembers that in special relativity one has a similar situation
arising due to the effect of time dilation. This is illustrated beauti-
fully by the experimental verification of time dilation effects i:hrough
measurement of the lifetimes of a p-meson at rest, and in motion in
the laboratory. The results of such experiments show clearljr that
a p-meson that is stationary in the laboratory decays at a much faster
rate than one which is travelling at a speed reasonably close to that of
light. This observer dependence arises in special relativity through
requiring equivalence of all inertial observers. In contrast, general
relativity requires equivalence of all observers, inertial and non-
inertial, and thus gives rise to the effects we are considering in this

essay.

The second effect that we shall now discuss concerns the concept
of symmetry restoration, which we have outlined earlier, but with the
added significance that the restoration will now be due to quantum
gravitational effects. Let us consider the situation illustrated

schematically in Fig. 1.

If we introduce a set of relativistic, charged particles, the
interactions of which are described by a spontaneously broken gauge
theory, into a region containing an extremely high magnetic field,
then they will all experience an acceleration, a, perpendicular to the
plane defined by the directions of B and v, the velocity of the particles,

given by



a = 1 vx B,
— m — e

where q and m are the charge and mass of the particle respectively.
Assuming that v is perpendicular to B and is close to ¢ in magnitude,
we obtain for a the value a2 ang- However, equation (1) tells

us that such a bunch of particles will experience a heat bath of

temperature

= 2rkm 2nk’ m °

Assuming, for simplicity, that such a bunch of particles is composed
of electrons, we obtain the result that a2~ 5 x 1019 B. So that the

temperature for this set of electrons would be T 22 0.5 B.

Now, if one combines this information with the knowledge that
the symmetry of the Salam-Weinberg theory is restored at temperatures
of O(1015) Kelvin, we see that magnetic fields of strength around 1015
Tesla would suffice for restoring the Salam-Weinberg theory.
Comparison of the data obtained from an experiment of the type
illustrated inFig. 1 in the presence and absence of B would allow us
to determine whether such a restoration has taken place, and whether
the accelerating observer does indeed see a heat bath at temperature T
given by (1) much as the observations of the lifetime of the p-meson
allowed us to vindicate the time-dilation effect of special relativity.

It is encouraging to note that experiments involving such strong fields

have already been suggested by Salam and Strathdee in ref. 2.

We will now go on to study the possible relationship of the effects
described above to the '"No-Hair'"! Conjecture5 for black-holes. It
will be shown that they allow a possible mechanism for transcending
the '"No-Hair'' Conjecturein the quantum regime. For this purpose,
let us consider a black-hole in thermal equilibrium with a heat bath at
temperature T, and let us introduce into the heat bath a system of
particles interacting through some spontaneously broken gauge fields,

e.g. SU(2) x U(1l), while maintaining thermal equilibrium4. This means



that if the mass of the black-hole is sufficiently small, the corres-
ponding temperature will be sufficiently large to allow the initial
spontaneously broken gauge symmetry to be restored and the corres-
ponding gauge fields become long range due to their masslessness.
We further obtain conserved charges, apart from those associated
with electromagnetism. This means that the interacting particles
we are considering will have associated with them conserved gauge
charges and the corresponding Gauss law for the system. The exis-
tence of Gauss' law immediately raises the possibility for the black-
hole to carry the gauge charge if the system of interacting particles
falls through its event horizon. Let us take the example of

SU(2) x U(1). The restoration temperature for this gauge group is

~ 1015 Kelvin., Taking the black-hole to be of the Schwarzschild
type, the mass can be found from (2) to be A~ 108 kg. So as long as
the interacting particles have Compton wavelengths less than the size
of the black-hole (i. e. its Schwarzschild radius), the possibility of

transcending the ''No-Hair'' Conjecture exists.

It is known6 that small primordial black-holes possibly formed
by fluctuations in the early universe, with masses ~~ 1011 kg, would
just decay away through Hawking radiation (with a characteristic
spectrum) within the present age of the universe. It is found7 that
for electrically charged primordial black-holes, fluctuations in the
charge will cause the average emission rate for charged particles to
be lower than that for similar uncharged particles. Coupled with the
arguments presented above for the transcendance of the ''No-Hair'"'
Conjecture, it is clear that the emission rate will be further reduced
(after the mass of the black-hole reaches ~ 108 kg) due to the accumu-
lation and subsequent fluctuations of the new gauge charges acquired
by the decaying black-hole. This, we suggest, will lead primordial
black-holes not to an explosive death but rather to a slow, ''quiet'

death.

So we see that in principle it is possible to transcend the '"No-

Hair'' Conjecture. However, it remains to be seen if the arguments



can be extended to more realistic situations, as in stellar collapse,

for example to form a black-hole.

References

1.  D.A. Kirghnits and A.D. Linde, Phys. Lett. 42B (1972, 471.

2. S. Weinberg, Phys. Rev. D9 (1974), 3357.

A. Salam and J. Strathdee, Nucl. Phys. B90(1975), 203.
D.A. Kirzhnits and A.D, Linde, Ann. Phys. (N.Y.), 101
(1976), 195, and references therein.

3. S.M. Christensen and M. J. Duff, Nucl. Phys. B146 (1978), 11.
W. Troost and H. Van Dam, Phys. Lett. 71B (1977), 149.
G.W. Gibbons in General Relativity: An Einstein Centenary
Survey, ed. S.W. Hawking and W. Israel, Cambridge Univ.

Press, 1979, and references therein,

4, G.W. Gibbons and M. J. Perry,Phys. Rev. Lett. 36 (1976), 985.

J.A. Wheeler, Atti del Convegno Mendeleeviano, Accademia
della Scienze di Torino, Accademia Nazionale dei Lincei,
Torino-Roma, 1969.
6. S.W. Hawking, Mon. Not. R. Astron. Soc., 152 (1971), 75.
7. D.N. Page, Phys. Rev. D16 (1977), 2402.



Accelerator Detectors

A 4

Z

Fig. 1

Schematic experiment to demonstrate symmetry restoration
through acceleration and.temperature effects. The shaded
region contains a magnetic field directed perpendicular to the
plane of the paper. For large B , the motion of particles
entering the shaded region will be confined to it and subsequent

decay products are observed by detectors.



