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Abstrggg

M.J. HAMSON -~ '"Integral eguation methods in the numerical solution
of boundary-value problems for Laplace's equation
for two-dimensional regions bounded by polygons"

Although considerable research has been carried out on the
application of integral equation methods in solving two-dimensional
Laplace boundary problems, often the occurrence and effect of corner
points on the boundary contour is not treated. Accordingly and also
with regard to practical problems, this thesis concentrates on the
case in which the boundary is polygonal.

In Chapter I it is shown how the interior Dirichlet, Neumann
and mixed boundary-value problems may ke formulated in terms of
integral eguaticns. Use is made of 'single' and 'double'’ layer
potentials, Green's boundary formulae and complex variable methods
in the formulations presented, thus allowing for comparisons and
relations to be made between these various methods. The systematic
treatment given is a particular feature of Chapter I.

The main investigatory work in the thesis is concerned with
obtaining the solution of the interior Dirichlet problem through the
use of the double layer potential and resulting boundary density
function. 1In Chapter II reference is made in detail to the classical
work of Radon in order that the existence of this density and hence
the solution of the Dirichlet problem is justified when the boundary
of the region possesses corner points. It is recognised that in
practice an approximate solution will be necessary and in Chapter III
the author proposes three alternatives leading to approximate values
of the density based con its replacement as a piecewise constant,
linear or quadratic function over some boundary interval. When the
polygon is convex it is shown that the calculated density and hence
the resulting approximate solution of the problem will converge to
their theoretical values for all three of the proposals as the size
of the boundary interval decreases to zero.

Thece methods have been tested on a rectangular region and the
results are given in Chapter IV. Comment is made on the suitability
of the methods and the accuracy of the results.
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Chapter I

[nbroduction o

Many authors have worked successfully to obtain a numerical
solution of Laplace's equation in two dimensions by integral
equation methods and full references will be acknowledged as
appropriate. However the possibility of the boundary not being
smooth has sometimes been avoided and thus the particular
difficulties associated with corner points not treated. Hence
at the outset the following polygonal boundary shape is posed
(Fig.l) and the aim of this thesis will be to concentrate on the

possible solution of Laplace's equation in the region interior

to this boundary.

The possibility of a re-entrant corner at which the interior
angle X exceeds T1 is included so that the polygon can be convex
or non-convex. No roﬁnding of corners will be undertaken and so
the polygon will always be entirely made up of straight edges.

Further, cusp points will be automatically excluded so that

0 & X< 2T

Along the boundary contour L ;. S will be used to measure
length, beginning from some convenient initial point A which may
or may not be a corner point. Denoting the total length of the
boundary by S , then O 4 s g S . Also the fegion interior

+ -
to L will be denoted by D and that exterior by D (Fig.2),




.+.
the direction of description of L being such that D lies

to the left and D to the right.

4N

O

> ¢

Any point Q on L will have cartesian coordinates

{E(s), ﬂ(s)} , the functions g(s) and ‘)“L(s) being piecewise

linear due to the polygonal boundary. A normal unit vector

Nn_A . +
n = n(s) will be taken into D ; ﬁ_ will be piecewise constant

with a finite discontinuity at each corner point.

With this notation the fundamental potential theory ﬁroblems

in two dimensicns for the interior region may be stated:

. . ‘v + ] . .
To find a function u, harmonic within D (i.e. satisfyira

. Eﬁ Ef
. u u . .
Laplace's equation + = 0) and continuous in

ox* oy?*
+
D + L such that either

(a) u(s) takes preécribed values £(s) on L, (Dirichlet

problem) ;

or (b) _%%%EQ takes prescribed values g(s) on L, (Neumann
problem) ;
. . du(s)
or (c) at each point on L, either ul(s) or Fru takes a

prescribed value h(s), (mixed boundary value problem)

Throughout, £(s) will be assumed coniinuous, g(s) and

h(s) piecewise continuous (it being impossible to associate

g(s) and h(s) with a value of —QE- at z corner point).

an



Each of the problems (a), (b) and (¢) will be re-formulated
as an integral eguation. The question of existence of solutions
will be discussed in Chaptcr II. The corresponding external

problems will be referred to only where necessary.

As stated in the Abstract, an effort will be made to give
all the integral equation formulations for (a), (b) and (c).
Thus 'single' and 'double' layer potentials are discussed as well

as the application of Green's formula and complex variable theory.
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§l.l Single Layexr Potential

4 A

O

The electrostatic background to the single layer potential
may be found in[}](page 83). It is shown there that the
electrostatic potential at P(x,y) (Fig.3) due to a line charge

. . e 1 ,
at ©Q is propcrtional to n(;ﬂ, where r = | PQ . We require
a 'single layer' of such line charges to be placed around L with
density (©7(s) =o that the potential at P due to the charge

over boundary increment ds can be taken as Crx(dsb.gn(%ﬂ .

Hence using the principle of superposition, the total

potential u at P, uP, is

1 +
u, = u(x,y) = f§ & (s) en(szs, PE€D (1.1)
L
. P L o
Since P& D , n(;) is bounded. Hence (1.1) will exist

if <« 1is integrable, and will define a continuous function of
position as P moves in D+ . If < is allowed to become
unbounded the integral will exist as an improper integral provided

5,
each g‘ i+l
s

i

O (s)

ds exists, where s s s, denotes some
! 18 < i+l

interval within which <&  is unbounded.

In either case we may differentiate under the integral with



respect to x and y to show that u is harmonic:

2 N2
2 > 1
v up =( SXZ + ay2> éﬁ’(s) En(;)ds
L

( + 2) {i?_n r2 ds

§0’(s) 52 32
2 9x? dy

L

But r2= (x—\E)"2 + (y—"L)"2

2 .
L(enr2)=5@;.§_Qn{<x—'§)2 vy ~~7U2}

ax2 ax
_ 3 _ 2(x - %¥) i
dx  (x -§)% + (y -)*
I NI VL DI IO ST 3
fx -5r2+ v -?}2
2y -’ - 2(x - §)2
4
r
2 2 2 2 . .2 2
Hence (9— 4 _?__2) 2 o 2-m)° - z<x—§)4 +2(x-$)%2(y-)%= 0
Ix? dy r

5 .
so that v uP = 0 as required.

To solve any of the boundary value problems (a)) (b) or (c) it
is necessary to consi;ier the value of this potential as P approaches
a boundary point QO of L at which s = S (Fig.3) When P |
concides with Qo' (1L.1) becomes an improper integral since
¥y —>» 0 as Q—> Qo. It is therefore necessary to find whether
t{, has a value when P = Qo € L and also whether the limiting

P

+
value of uP as P~ Qo from D coincides with this value.

Firstly nlace P at a point Qo of L : then clearly the

existence or otherwise of the integral (1.1) is determined by the
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contribution to the integral given from the neighbourhood of

F'ua. 4

L L €
S s, n\\' L j
Q da

It is sufficient to consider one side of QO and investigate the

. h
value of I = lim f G (s) En(%) ds where without loss s may
€0 Je

be measured from QO and h 1is a suitable small distance (Fig.4).
It is clear that QO being a corner point has no effect on the
integral I, which can be thought of conveniently as taken along

the x axis (Fig.S))

44

e P R"J'S

» h 1
so that "I = lim [ a(x) en(gdx (1.2)

Now this integral exists when <« (x) is bounded in [O,h]

h 1
because J Qn(;) dx exists.
o

If og(x) is unbounded, e.g. suppose ¢(x) behaves as

4 +
X when X —» O [ for some constant ¢« , then we may use

h A+1 o+l h
o (7 1 _ X 1 X
J; X ,n(x)dx = [ ) en(x) + ——(“4_1)1]6

and this has a limit when € -»0 provided X » -1. In both
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these situations, the value of I can also be made as small

as we please by letting h-.--» O.

Returning now to the polygonal contour representation, it
follows that when P is placed at some QO on L, where QO
may be a corner, then the single layer potential (l.1) possesses
a value, notwithstanding a possible singularity at Qo in

e .
O (s) of the form s y X > -1. We note also that uQ is
o

convergent in the ordinary sense and no 'Principal Value' integrals

are necessary.

To complete the investigation on the single layer potential
as P-é»QO € L, let P be placed not on L but close to it in

D+ (Fig.6). Then we are interested in 1lim u
P—-)QO

+

D
; P : '
1 %, L ‘///’,,///*
f%j\?yN ’Qﬂ i’ : th_ é;
B7 ¥

D

Construct a circular arc centre Qo' radius h, intersecting
amd ch\(rl’\t"\i'“ﬂ P
L at Q' and Q"K’as shown. This divides the boundary L into
two parts : Q'QOQ" denoted by e , say, and the rest of the

boundary denoted by L - éz . Now take up , as defined by (1.1),
= §0’(s) en(l)ds = u (L) = u (e) + u (L—Q) .
r P P P
L
In Fig.6, Qo is placed at a corner point and the boundary é

includes a length h to either side of QO. However it is evident

that we need only consider the contribution to up(g) from QOQ"
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and there is no need of special considerations for Q at a
o}

corner or otherwise.

Thus uP(QOQ") = G (s) en(%)ds where xr = PQ.

QQQ

Letting €==[QNl , then e< r as Q moves along QOQ“

1 - .
%Q‘é and, assuming that the dimensions of the

region are such that r,e,h L1 then En(i—#) = Qn(i—)Q en(%) .
Hence u (QOQ..) < j lo’(s) (/,n% ds < j ‘d’(s)\ Qn% 4as.
QOQII QOQ"
If ‘d(s) < M on QOQ" then

: h
" £ .];.
UP(QOQ )! < M j Qnst \< MJ enx ax
QOQ" o

= M(h - hQn h)

which expression tends to zero as h—» O .

Further if ¢ (s) has a singularity on QOQ" of type 5% ,

-1 X <K O then we can again show that l uP(QOQ")l —~>. 0 as h-—3o0.

Hence we have that lim u (Q) = 0 and, since P always lies .
h—>0 P

within the circular region described, then

11 (&) = o. (1.3)
S

But, writing u_ = u_ (L) = u (Q) + u (L—-e) then
o) 0 Qo Qo

Il

u, (L) - qu(L) uP(Q) +uP(L—€_) - uQO(Q) - uQO(L—Q>

{up((b - qudZ)Z +{uP(L—Q) -,

+)uch-€) - uQO(L—Q){ (1.4)

(- )Z

O
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Now from (1.2) and (1.3) we have that

up(e)[ and ‘qu({'z)’

can both be made arbitrarily small as h -3 0. Hence there is a
small positive quantity €  such that for h< hl' sufficiently

Dy - 0y | L=
small, then ‘ uP(C) qu(\_v)l < 2( .

Also u, (L—Q) and uo (L—e) are proper integrals since
O

P, Q L-{ . Further u_(1-@) = ro’(s)en(—l—)ds is a
(o] P i_.e r

continuous function of position as P varies and so for h < h?,

sufficiently small, we have

v, (=€) - u (L—Q)i {5E.

o
Combining these results and substituting into (1.4) gives that for

. l l —
hgmln(hl,h)then 456 +§€—€.

2

u, (L) -

u. (L)
%

Thus we have that uP-—) uQ as P moves to the boundary point
o

on L.
Qo

Further analysis can be undertaken to show that in fact U s
as defined in (1.1), is continuous throughout the entire region

+ - . . . . .
DuLvD . To summarise in particular, the harmonic function u

defined by (1.1) at an internal point P of bt by

s ggd(s> Qn(%)as (1.5)
L

is continuous up to the boundary L, and

lim u_ =u_ = §O/(s) en(-l—)ds (1.6)
P"")QOP Qo 1 r

Hence problem (a), the Dirichlet problem, can be solved by
treating (1.6) as an integral equation for the unhknown boundary

density @(s), since for (a), uQ will be given equal to f(so) .
o
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Having evalvated < (s), we return to (1.5) and insert & (s)

to generate uy for any required position of P.

The integral equation formulation of the Neumann problem

using the potential of the single layer will now be considered.

As given in (1.1) and (1.5), u, = u(x,y) 1is a function of
position and so may be differentiated with respect to some direction
A . : . N .

n, (Fig.77) . We choose the direction o deliberately to be that
of the normal at some boundary point N (not a corner point). The
differentiation coulid be undertaker with respect to any direction,

N
but ;% is selected so that the result may be used to solve the

Neumann problem.

2 D
'anb - Eano

G (s) en(%j) ds
L

. 3
§o’(s> < Ondres .
aly x
L
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3 1 ap 1 9r 1 Jr 1 I
But Sn gn(*) = 3 Qn(; I T T T 30 ——r*cos\r ,
o o
where "+’ = (4:\,41\ ) 1s the angle made by the vectors 41\ and Q,
o) Q’qr'é‘ﬁ'. (By studying infinitesimals we obtain g£~ = - cos §)
o
. Jdu cos
¢« o = = O’/(S) ds (1-7)
ano r
L

Now we want to find the value of as P approaches the boundary

du
gn
o
point QO ' QO being taken distinct from N so that P does not
approach along a norxrmal (Fig.7). In order to investigate the limit
construct a circle centre QO radius h and place P inside this
circle at distance d from QO. Suppose that the circle intersects
the straight edge of L that contains QO in two points Q')Q"
along a diameter, assuming the circle is small enough for this to
be the case. As before we denote that part of L between Q' and

Q" (including the points Q') Q" themselves) by Q and denote the

rest of the contour by L- e .

.
Then lim u 1im 4;5(3)2931”_ s from (1.7)
P—0 97, P—Q r
L

Consider A : this integral is taken over Q'Q" and can be

put in the form J‘Cr(so + d cos™X + x) EB_SI_'}[_ ax

where s = So at QO + X = NQ measured from origin N and



ch 3

&

A . [Ps
with € = NPQ = T - Y then the contribution to the

integral from NQ" over which x,© > O can be evaluated:-

7
i~ _d sin®¥
cos Y = - cosD = - -

and x = d sin& tan®

dx = d sin¥ secze aB
- Q"-— d sin& 25
- = C)’(so + d cosX + dsin& tan @), - — d sinX sec”0 a3

N X

2 .2 2
But from r cose =d sin®X we have d s:.n02< sec 0 =1
r

. Q!'
. j. = - O/(éo + d cosxX + d sing tan 8)a8 (1.8)

N ,

If we assume now that & can be expanded about Qo so that

c)/(so +d cosX 4+ d sinxtan®) = G'(SO) + d{cos + sinX tan8)d" (so+ sl) ,

d cosx & s) < 99"

N\
then (1.8) becomes - O’/(sO)NPQ" - 0o(q) .
N N
Similar analysis gives the contribution j = -0 (s JQ'PN - 0(d)
Q' °
/N
Hence A becomes —O/(so). Q'PQ" - 0(d) so that as
N\
P —)»QO, d-—>0, 9'PQ" —> T and we are left with - Trc’(so).

-
Consider B : J\O/(s) gQi_[_ds .
-
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This time r 1is never zero; also as P -—) QO it can be seen
that for that part of L- { which is made up of the straight edge
containing Qo p TF‘%>'ﬂ72 and so cosV{ > O,

i.e. ‘Jﬁ only has a contribution from the contour distant
L-¢

from Qo and so it is well defined and finite.

Hence we nave the result as follows:-

Ju

- le2 Mr

an aqg = — TT G(SO} 4 J\ (S)Coi 1 ds
P=>0,U % a5 L—e 7

o) r‘ AN
\ (o) - g (s)cos(x, 'n.)ds
.e. = - S (s ) + = o (1.9)
e E5no T "o Ef r
L

the latter integral now known to exist in the ordinary sense. This
result provides a method for solving the internal Neumann problem
in which the ncrmal derivative of a harmonic function is given on
L with the corners excepted. The equation (1.9) is an integral

equation for the determination of O (s) given values for

BuQ

O

o1,

obtained its solution, then ¢ (s) would be substituted back into

= g(%} on L at points QO which are not corners. Having

the single layer potential U, = §6(s) Qn(%) ds and values ot
L

uP generated accordingly.

As the normal derivative of u would have two differing
limiting values either side of a corner point and would be undefined

at a corner then (1.9) would be applied only at non-corner points Qo.

b

;
The limiting value of égchs)cosﬁi ds could be investigated as
L

P approaches a corner point but the value would depend on the way

P approached Qo'
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Finally to solve the mixed boundary value problem, the

single layer potential can be used in conjunction with its normal

derivative to form a pair of coupled integral equations:-

i w
TS%. /54////t*|

The. boundary L will now be divided into two parts L and L

1 2
where on Ll values of u are prescribed and on L2 values of
du ‘
fg;‘ prescribed, (except at corners of L2).

On Ll’ at a typical point Ql we take the boundary value

of the single layer potential
uQ = § T (s) Qn(%) ds ; (1.10)
1 Ll+ L2

while on L2 at a typical point Q2 we take the boundary value

of the internal normal derivative of the single layer

dvg_ -
9 § Glslcoslr,mds  _frexis ) (1.11)
‘ Q :

on _
L+ L, r 2

Now as Q describes L it becomes in turn a point of type Q then Q

1’ 2

then Ql again etc. so that the left hand sides of (1.10) and
(1.11) will be known taking up values of the prescribed boundary
function h(%). The above equations are integral equations for
the determination of the density function G (s) and may be taken

together and solved numerically for ¢ (s).



Discussion of the numerical methods is given in Chapter III
but suffice here to state that an approximate solution of (1.10),
(1.11) would be possible by replacing them by a set of linear
equatiéns for Cf(si) where Si are suitable node points around
L placed on both L and L.. The 'right hand side' of these

1 2
v,
an

linear equations would be alternatively u.Q then TH
2 3
would take up the prescribed boundary value h(§9. Having obtained

a solution CT(si) then the potential function would be generated

. + . .
in D by numerical evaluation of

uP = ch(s) -Q_n(}l—)ds .
L

The three fundamental boundary problems having been posed as
integral equations in terms of the potential of the single layer,
we pass now to a similar investigation in terms of the potential

of the double layer.
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§l.2 The Potential of the Double Laver

As in the case of the single layer, consider first the
electrostatic potential at a point due to two equal and opposite
parallel line charges. When these line charges are brought into

proximity they will constitute the two-dimensional dipole:

F”ﬂ to

A 35S O 4S B

The potential due to a single line charge +q at distance r is

given by -2g Qnr . Hence in the system displayed in Fig.1l0,

the potential at P

u = —Zanrl +2anr2

q nr2
1

qeg + (—S) +2r(§)cosuf} -

+ (-s) - 2r(§)cos'\[f

Now remembering that the line charges at A and B are to be
brought close together, this expression is expanded in powers of s

_l'
2
2 12 - 1 s°— 4rs cos W
b q@n{(r + 7S +rscos'q/).-—2. (1 + > )

r 4r

o
i

1 2_
a Qn { (r2 + %lsz + rs cosHLP).;Z .- E 4rszcos'ljf + O(sz)‘)’g

4r

q ln (1 +5—§‘£‘E+0(s2>)(1 +-S_r_°°SJir+ o(sz))}
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Retaining cnly first degree terms in s , this reduces to

) s cos (s cosW 2
w, = 2q by + S = 2af R ot |

Now to .obtain the mathematical dipole potential let s —» O and
g--+ &g in such a way that the guantity 2qs tends to a finite

quantity/u , called the dipole moment.

a =/LLcos‘g:r ]

P r
Further, the potential of any number of dipoles is obtained by
adding. Hence for a distribution of dipoles along some contour L,

the direction of the dipoles always being normal to the contour,

ir
u_ = M—S)——(ﬁpds (1.12)
P r

we can take

L
A A
where /L\ =/L\(s) is now the moment density and w = (r , n) is
the angle between the vector r and the inward normal {_\n_ as

before (Fig.li).

gl\—

O

> X

The expression (1.12) may also be stated in terms of Qn (%) since

d 1 a 1, 2r 1 -
—a—ﬁ- Qn(—r‘) = I en(;)$ = ;cos\{f. (1.13)

" Mts) cos WS 2 1
uP = éf_sxfc—o_s_'—ds = § (S)a—n (en 'IT) ds (1.14)
L ‘

We may also verify directly that uP is a potential function.



I

Féj. 1

Y
=

2 d°
Consider V“ = £ + 2 operating on

Qn % = _% Qn{ (x—§)2 + (y—TL)Z} . Then we easily get

2 1
v Qn < = 0. But the partial derivative of Qn }]? with respect

9
9F

since the order of differential operators may be interchanged to give

—.a-\72Qn—l—=o.

’ 2
to the direction E’ will also be harmonic i.e. v Qn(%) =0

EN r
Sir'nilarly %Qn(%) is also harmonic.
Now consider the expression %en % -
First ;—n- = 2 a§ + i B—K so that —9~Qn—if is the sum of

€ 3n " 3y 9n n
1 a3t

two known harmonic terms, B—- and B;Yl‘ being constants for a
n n

particular _/ri

9
Hence by (1.13) é—n-( en %) = ng;li-f is a harmonic function

of the variables (x,y).

Now introduce an arbitrary function (s} defined on L
Y

where s is a measurement of arc length along &L and consider



the expression

I s
56 pokCobas - LAY g
r

L

where /L{(s) is chosen so that the integral exists.

Then ’\‘/’Zup v §/LL( )——— Qn S)ds = §/ c)n(\n-}:—)ds =0

It

r ~
s) cos
Lu, = “7’—(’&(-—)”—3)— ds  defines a function harmonic in D+ .

r
L

Further we may write ds cos”’\}/' = rde where e is the angle

made by QP with some fixed direction.

P

(For in Fig.13, to the first order smallness QR = rd® = as cosY ).

Cu, = §},{_(s)de which is often more convenient than the two
L

earlier forms.

Thus we have, for P not on L, that

§7&(iﬁ°—s- Vs (1.15)

A :
§ (S)é‘*r‘; Qn( (1.16)
L

§;}L(s) aB (1.17)
L

- N
gives the value at P of a function harmonic throughout D .
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The notation and sign conventions arxe in line with those of the
single layer potential.
Now uP is defined for all P ég L but if P lies on 1L or

+
approaches L from D then the value of U, must be investigated.

First place P on L

(cl‘l‘{-

\\ 2
<_—~
<t

|20

Then with reference to the diagrams in which P may be on a
straight edge or at a corner, we consider the contributions to

Up as O describes the complete polygon. Clearly only thosesedges
of L which contain P will need investigation since for the rest
of the polygonal contour Q 1is distant from P and thus the

integrand is well behaved.

s) cos I
Hence we examine -J\ 7t£;%___-—; ds with OQPQ' as shown in

QPQ'

the above diagrams.

Now in fact, the integral Jﬁ will be zexo in both cases

QPQ!
from examination of either (1.15) or (1L.17). 1In the first instance
: . n
as Q moves towards P along the straight line we have 'qf = 3

and so cos'\.V = 0O ; and in the second instance de = 0 as O

A

moves towards P since no change will occur in QPx . (Fig.ll)

Hence up exists when P 1is situated on 1 either on a straight

edge or at a corner.

However this will not imply that u is necessa¥ily continuous as

P

+ - .
P passes through 1L from D into D . This is now discussed:-



D Q_S’o(fw)
/ T N - Q(s)
Lo = / Feo (5
B Tﬁrlg 3

Let P «-).QO on L where QO will be taken at a corner.
Instead of investigating u, given by (1.15)(1.16) (1.17) directly,
it is convenient to consider the limiting value of the modified

double layer potential wP, where

. . ,
v, = §{/,us) -/(,k(so)}de = §{/A(s) - /“(SORCO:S: ds .
L L

Suppose /Lk(s) is continucus on L so that there exists a part

Q of L around Qo upcen which

}/LL(S) —/u(so){ Q € for an arbitrarily chosen € .

§ + J '-=W1(P) + WZ(P)

L ] L-{
Then ¥, (P) =J\§/1A(s) "/U(So)} ag .
¢

ab < ejde =€§‘(see Fig.1l5)

I

Then consider WP = §

@
=W () =W (0) + W (B) ~W (@)
;. (wp _ w%k woe| 4 ‘Wl(%)l + fw2<p> ~W2(QO)I :

But lwl(P)]\< e@ and Wl(Qo) is zero |,

]
6

W2 (p) - Wz(Qo)

W= wQ ’46\6 +

o
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Now WZ(P) and \«/2(QO) are integrals taken over L- (3 and so do

not possess a singularity since ? and QO do not lie on L- () .

Also WP will be a continuous harmonic function for any "arc

such as L—Q and so we may make

I
V4 - ; [ - . R
W 2 (P) V\/z (QO) ’ { e , for any arbitrarily chosen

positive & ' , by taking P sufficiently close to QO

. | " v o
Finally ,wP - WQO éé{b + &' = ¢ say, so that
for all P sufficiently close to QO, lw'P - wQ < e "
and WP is continuous as P passes through the corner point QO.
Similarly WP will be continuous across the boundary at QO

when QO is not a corner point, the only change to the above being
that 6 is replaced by TT .

However to return now to the potential of the double layer given in

the form u, = §/LL(s)de 1
L

We have w, = §§f\(s) - /(So)} dB is continuous across L.
L

Now write W, = §/LL(s)de - S&/A(so)dQ =u, - §/A(so)d9
L L L

and suppose that P 1is placed at Q on L; then

w =u - i ig a v
0 0 §jk(so)de(g) where it is already known

L
that U'Q exists. But §/A(so)d8 =/u(so) §d@ = Tr/b((so) in
L L

this case assuming that ©Q is not a corner point

WQ = uQ - TT/LL(SO) . (1.18)

Suppose, further, that P 1is now placed at QO on L, a corner
point, then

WQO = uQO - §/\L(so)d9(QO) where again uQO is known
L
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to exist.

But this time §L{(s )d(’) = X /L{(s ) where K is the internal
/7o o o o
L

angle at the corner QO (see Fig.15)

w.  =u._ O Mis) (1.19)
Q 0 /

o o
Let Q —>» QO along L. We know that w is continuous

everywhere so as Q-—é-QO, WQ -— wQ

o
uQ - T\'/[,L(s) S UQO - O(O/,,L(So)

O u.Q possesses a discontinuity of amount (7T'—CKOLA&(SO)

as it passes along 1 through a corner point; otherwise it will be

continuous along L.

+
But whfan PE&D, w, =u —}A(so)§de(P) =u, - 2Ti‘}&(so) .

L
. . + .
Now let P~7>-Qo (from within D ), then W ——> on since
w is continuous everywhere.
. . + _ _
Using (1.19) this gives qu - 27T)&iso) = qu c(o(so)
+
or u' = (27 -X ) (s ) +u (1.20)
Q, o/* o Q

+ . c e
where uQ is the limiting value of u, as P—€>Qo from the
o .

-+
interior D and UQ is the value of u, when P 1is placed on
o

the boundary at Qo which may or may not be a corner. Hence we
have the solution of the Dirichlet problem (a), by means of the
double layer potential:
Given f(so) = ug on the boundary, (1.20) is an integral
o
equation for the determination of the double laYer density /ﬁi(s).
Having obtained its value, the required potential may be generated

at any internal point P from the equations (1.15),(1.16) or (1.17).
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The Neumann Problem by Double Layer Potentials will now be considered.

Although certain authors)[ét}and[:Bv]refer to the normal
derivative of the potential of the double layer close to a boundary
of a region, the resulting integral eguation and its use in solving
the Neumann problem seem to have been neglected. An investigation

is given below:-

Qls) D

We have, as above, from (1.15)
r
u = Eﬁ !.((s)cos'\!, as .
P r
L ) -

Consider the derivative with respect to the direction Eo' this
being the normal at QO(SO) (Fig.16). Then we shall be interested
in the value of the derivative as P—>Q in order that the

Neumann problem can be treated.

Ju 1
o O /},L(s)cosz'tfds - }Ms) 2 (C_Oﬂ_ )ds .
ano ano r anO r

1, L

Whereas on taking the derivative of the single layer a term

o

1 , . . . :
—— (;J is encountered ; on this occasion a function of two

an
o
(plane) variables r,ﬁp’ is to be differentiated.
As the relative positions of P, Q, Qo can obscure the result it

is convenient to proceed using vector methods:
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3 i A r A
O sy L p VY, | A CVELR
an o 2 -0 2
o r r
= /-;—}o - 23 é(g.é) + ~l~2 grad (_r_.g/\l)
xr X
\ A
—2(’1\10.5)@./5\) go._lr}
= 2 + 2
r xr
Ay
_{1_\ /5_}0 Z(fr}o . I (r} /r_\)
- 2 - 2
xr xr

cosP - 2cosWcosW
<

2
r

where e = (g, _4_1\0)) w = (/r\, /r}) and ’IV (r, n)

In order to investigate the limiting value of =y as P approaches
o
the contour edge, it is convenient to consider, as in the case of

the ordinary double layer potential, the modified potential.

§{\/LL(S) —/Us(so)} 99% ds where s, is the
L

arc parameter of QO, the point to which P 1is approaching.

+
Provided that P & D , the derivative with respect to

no direction may be taken so that

a .
§&A(s) - (s )}— LAY
J S 3,

Now consider

Qw
lim (—2) = 1im {t‘\(s) (s g—-— (e r)ds (1.22)
P Q_ Bno P Q_ / x

Care 1s necessary as these limits are investigated, for it will be
shown that where as the limit of the composite term on the RHS

exists and is equal to its value when P is placed at QO ;, the
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limits of the separate parts do not have this property :-

0~—;H- ds and

when P is placed at QO both 4:/Mis)

ds diverge.

o i
SE/ Hs) S (Sifl)
L

o

Provided the limits exist,

i a cos ¥
lim { (s) - Jh(s.) (oY) gg
P—ﬁ>QO ig /ﬂ. /U\ o ark) r

N f
= 1lim }L(s)i E2E2¥ a5 - lim /ws )—§-— €25 ¥ as (1.23)
P00 4 o, p———}-QO J o'gn, T

P~>Q, P—rQ DR

3 .9 2
= lim (s )§——— (50—'5'—1[) ds = lim JA(s ) Cosq# ds
o alk) r o r
L
cos qf . ‘. , . “ . .
f§ - ds = 27 since this integral is the "two dimensional

solid angle" obtained from the relation ———jk-ds =

. 0

-
+
.- co'jll/ ds = 0 for all P € D so (1.23) reduces to

E)n
L é;/x °°i Vias = 1lim §&L(s)-/“(so}a%(s%l)ds (1.24)
P—>0Q, . o

We show that the limit of the term on the right hand side as P
[

approaches QO exists and takes the value obtained if P were

merely placed at QO .

Let P approach Qo(so) along a line inclined at angle E

to the boundary edge on which Qo lies (Fig.l?): as was attempted
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for the single layer Neumann problem. Although the limit may
exist when QO is a corner, the noxrmal derivative of u does
not and so the limiting value would be of no help in solving the
problem. The angles () = \(a, 41_\0)’ rw- _ (/\, 41\) and W= (x, Eo)
(Fig.16) are related by elementary triangle geometry such that

= e + ’k‘f for any position of P,0,Q when the polygon is
convex. However to maintain the generality of *the results it is

0 cosli
more convenient to work with ,a—-n—— (~—9}2‘H—) .

Now from (1.24), we are interested in

. auP COaW . B cosy/ N
lim -——— = 1lim jJL(s) ——)ds = lim ‘{/LL(S) /L((s )--( ) ds
P—>0 9%,  P—>Q_ P—Q,

Q- l/

There is no difficulty encountered in evaluating from (1.25)

P@QO LIAB{/J(S) /L/\(s }871— Oi LJAB{/L&(S) e %—— —-jH

since r f 0O and all terms in the integrand are finite.
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N d 57
For 1lim f§}\x(s) —/LL(S )2— (E-OM‘J—T——)ds , we have first from (1.21)
/ OJBHO r

P—>-Q_ AB
3 cos W cosfP - 2cosW cos W l—ZCDSZL‘J -cos2w ,
that ( ) = Y — = = since
an x 2 2 2
‘0 r r r
~A/\)—o d"ﬁ(AA)—w—AA) ig.17) It i
f = (_1'_1_,5_10 = an "q = (r,n) = = (_{,go . (Fig. . is
convenient to set up local axes with origin at Qo(so) where
—_— —
QOB is the x axis and QOC the y axis. With PQO =R,
2 2 2 2
s=so+x,r=(x—Rcosb’) + Rsin“ ¥ and
2
X - R cosl . cos 2w 1 1 - tan W
tan W = TReing 0 2 T2 2T 3
Y Y 1 + tan W
2., 2
- R%sin 8 - (x - R cos?)

1

ngsinZX + (x - R cosU)Z} 2

Hence consider

B
1im f/i(s ) —/\A(s + x)}. RZein’ & - (x — R cos¥)° ax .(1.26)
R~*0 1 © © 5 ) 29 2
A {Rsian+(x—RcosU)}

The limits of integration may be taken frcm x = -a at A,
say, to x =+b at B so that if /Lg and /A ' are continuous
in -a < x < b and /LL " exists in -a <« x { b, Taylor's theorem

gives

. 1 2 .
= L — [
/U.(so + X) ./(A(SO) + x M (so) + 3 X/«‘ {n(x)z (1.27)
where ’YL is some point in sy < x<£ sy + x whose exact position

will depend on ¥. See Chapter III, p.|02 on derivative of/u, .

Hence (1l.26) becomes

br 1 2,. 2.2 . 2
1im [x/A (so)+ 5 x M (71 )J{(x -Rcosg ) - R sin K} dx
R—->» 0 ~

-a {(x - R cos?()2 + stinzb}z
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[Note that /LA " {“VZ.(X)E is defined by (1.27) for X :»L— O and is

continuous. For AL ! "'L(O)} we have lim /('L st X - s ) -x AL
x>0 1 2
= X
2
= lim /LL' (so+ x)—-/(,(' (So))= lim p" (s + x)= U " (s )
X0 1 J X~ O o o
E.ZX

provided that /LL "(x) is continuous at 50 ]

Now before examining this limit further, suppose we insert
R = O so that the case where P is placed at QO is considered.

The contribution is

b 1 2 1 b (s ) st
J-_aEx/u' (so)+ 5 x/‘«k " (ﬁL)] . :2-dx =j‘_a/“ . o'dx+ 2_;“ " ("’L)dx. (1.28)

But from the above discussion on the behaviour of /-L(x) and also
provided that the singular integral is taken as the Cauchy Principal
Value we have the existence as a finite quantity the right hand

side of (1.28).

Now consider the quantity I, defined by the subtraction
b
‘( M (s)
o
-a x

- X ) 2 stinzb’ ax
f x W (s ) + = x%p (q} Rcos
- [ )A ° '/L L 2 + stinzx} i

a (x - Rcosd )

b
%‘[4& ".{“r‘L(x)} dx -

= - 2‘)dx +

b
- (s )J' (}_ x{(x-RcosX)z— stinzx}
/\A © % {(X—RCOSX)2+ stinzzf}

b

" x2 {(x—Rcos?f )2 stin2b'} )

AN (')’L) 1 - % 552 dx
-a § (x-rcos¥) %+ R sin"¥ } (1.29)



The first integral I may be shown to tend to zero as R-»0, for

1

b ,
2
considering J x{(x — R coc,.?j) ~ R sin 2’,$ (1.30)

{(x - R cost) + R slnzﬁj

—-a

and making the substitution x - R cosd = R sind tanl , we B
sin(4 -20) - en cos® 2
obtain after completing the integrations e
2 sin'g r
N
. . b ) _ ~(a+R cos )
where Bl lies in 5 < l< 0 such that tan Gl = R Sin S

_b-R cos D
R siny

and 92 lies in 0O¢ @2< % such that tan 6
Hence (1.30) takes the value

sin (¥ -2 92)— sin (¥ -2 Gl) e cos G
2 siny n(cose'

cos{‘x—( el+ 92)}sin( 91— 62) Q (cos 92

n et g o
sinyg cos el

But as R—> O , Gl"‘> —g and 82—5 +-’2—T-— so that

cos {b/ - Bl+ 62_)}Sin(al- 62)

sin X -> O whilst
Q (COSO Q R sind xJa2+ 2aR cos¥ + R2
n R sin
cosb b2=-2bR cos ¥ + R2 5
2 2
=—é— n§a2+ 2a R cos¥ +R }—-—,\% 9-2—=0n(%) as R—> 0.
b-2b R cosx + R b
Thus the first integral of (1.29))11) tends to
b
/}/l' (s ) = + /LL' (so) Qn (—g—) = O provided the

Cauchy Principal Vvalue is taken.

The second integral can be treated by the same substitution
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&,

" N .) ' h ]
to give L /l/{ n{f(&} )J{l + tan® sin Z(X—G)} oin X af after
gl
some simplification where TL(X) = ")‘((R cos¥ + R sin¥ tanb )= g (e)

We require to show that this integral also tends to zero as R —» O.

iy
~ 2
Write —]2— ‘/‘-‘- H§§(@ )?g 1 + tanf sin2(Y¥ -B) ag = 12, say,
1 -
(0]
__® ( om0 | |
= m {g) (e)ﬁg 1 + tan8 sin2(y¥ —6)} d
= (% |
ZSlnz{J ({l {f((}) gl+ tan® sin2 (¥~ az al .
Then if M!' = max " (x) and M" = max "(x) ’
1 -a{x{0 [/U” { 2 ogxb w
8
ey ey |
I2 <—2—Sl‘;5 (L - tane )de + 7 sinX (1 + tane )de
6, 0
RM" RM"
2
= ——— } -
2 smx -6, -n cos C * T einy (62 ¢n cos 62)
RM" R sind RM" R sinb’ .
-1 _ o .0, ) 45— (B a5 2’
2 sin¥ /a2+ 2aR cos +RZ2 2 sin¥ 2 jb -2bR cos + R

T
But as R-— O, e - _ 9 — — and since 1lim (R QnR) =0
1 2 ) 2 2 R—>0

we see that {12}——-5; o as R—> 0.

Thus returning to (1.29) we have shown that the quantity I

tends to zero as the point P approaches the boundary point QO.

Thus we have established that
lim J\{}l(s /Lk(g )z (‘-}Ii-) ds exists equal to the value
P—>0Q  AB

of the integral obtained by placing P at Qo to give

jg Us) /«((s }—-— (So—‘; )ds provided that the latter integral
AB

P=q,

is treated as a Principal Value Integral.



- 36 -

On the other hand it is relatively easy to show that

5 g D RV
both /u(s) - (C—OSL") ds and Wls 2S5 | as
Y o<3no r
P= =
Q AB P=Q
. . . ~cos2W

diverge. For instance in the latter case we get /}Qso) 5 ds
aB T w=§

a e
S
which reduces to an integral of the form /}L(sol[‘ §§% whichknot exist.

X
—-a

Hence the lnvestlgatlon of the limiting value of the derivative cf
the modified potential w, as P approaches QO & L leads
finally to the result, from (1.25)

P£;TQ 23n Eg{}l,s)//L.s % Eftii—

_ du . :
Thus given values of §;— on L , the eguation becomes an integral

ds (1.31)
P=0.

equation for the detexmination of the density function /}L(s). Note

that it was necessary to stipulate that Q/A_ and¥/b&' be continuous
on L and that,)k " existed.

Having obtained the solution /}k(s), a return would then be made

to (1.17) so that u, could be generated throughout D+ as requived.

Finally by making use of the previous section it is possible to pose

the solution of the Mixed Problem in terms of double layer potentials.
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As in the case of using single layer potentials we take L = L.+ L

1 2
where on Ll values of u are specified while on L2 , values
u
of a—n are specified.
With a double layer density (s) defined everywhere on L ,

i
we already have that u, = §/&(~S—)C—:§3{— ds defines a harmonic function

+
uP,Pe_D .

+
With P carried onto the boundary L from D , we may write

= (277 - at ,
i_uQO (277 ~ X ), qu + §/LL(S) QOG. Ll
L
h(s)? (1.32)
_u _ ' _ BE:OS~ r
Dno(Qo)— §/LL(S ) /A(SO}a—no—rl{:—]:s ! Qoe' L2
(o]

These equations provide a pair of coupled integral equations for
the determination of /LL(S) , which would then be substituted back

into (1.17) so that uP may be generategd.
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§ 1.3 Green's Boundary TFormula

We now turn to the third method of formulating the three
fundamental boundary problems, namely that making use of Green's
formulas. The results needed are based on 'Green's theorem in

the plane' expressed as

2
jE(M dx + N dy) = JT (g—ﬁ— - fal\yﬁ)dxdy (1.33)

L D

in relation to the polygon (Fig.3), where M(x,y) and N(x,y)

+
are defined and continuous in D U L such that the integrals in
(1.33) exist. The validity of the result is generally established

in [%]99-284 - 292 , including the case here where the region is

polygonal.

The formula (1.33) is now converted into appropriate form by

using vectors:-

R 19

With the usual cartesian vector notation

Mdx +Ndy = (Mi +Nj) - (dxi + dyj) =(mi + Nj) - dr . But we
dr
ds

A FAN
t=n 5_ where as usual

A .
ds , t piecewise constant and

A
n

may write dr =
is the inward normal possessing two

limiting values as a corner point is approached from either side.



AT A ( A
Thus @{Mdx + Ndy) = ((Mi + N3) - AL a8 KA + Nj) - n ds
L L
= §(— Ni + Mj) - n ds
L
!h\ g .
AN oM, . . d R . .
Also I —)dxdy = - (i +7T— 1) « (- Ni + Mj)dxdy .
j Cox T Ay Y J. Lox = dy & = TR
D D
Writing, say, B = - Ni + Mj and writing the symbol Y/ in a

two dimensional sense gives

§_B_- D as =—J~jv- B dxdy .
L D'

Now introduce two further functions of position u(x,y) and v(x,y)
having continuous derivatives up to the second order at least in

+
D and substitute B = U VV and Vv Vu in turn and subtract

the results. This gives § (u Vv - v Vu) . g ds = ff(vv2u _ uvzv)dxdy
+
L D

du
But Vu . /n: is the 'directional' derivative —

d

§(u - - vg—g Yds = f‘[(vvzu‘ - uvzv)dxdy (1.34)
D

Note that since both u and v are considered to have continuous
. . . . + . u o, . .

first derivatives in D U I it follows that é—}l— is a piecewise

continuous function having a finite discontinuity at each corner of L.

Now suppose that u is continuous with continuous first derivatives
+ . > » N

in LUD and is a plane harmonic function in pt. Let v take
Q 1 . . . .

the value n(;) where r 1is the radial distance from the origin 0O

+
to any point P in D U L.

Then should O 1lie outside the polygon, «r 7( 0 and (1.34)reduces

§{ua—'aH (Qn %}) - g—% Qn(%)} ds = 0. } (1.35)

L

to



- 40 -

Now place the axes so that O lies at a corner point of L.
Then Vv 1is no longer defined at this point and so in order

to apply (1.35) we surround O by a circular arc radius €
4

F’gﬁ. 20

G
Then (1.35) may be applied to the indented contour L' + 0 ’

being that part of the original polygon from B round to A (Fig.20)

Le, Sg{u__(@n— _Qu @ l'st--o

x dn
L'+¢

p) 1. (P2 1 {‘B 1 . Py el
But [uﬁ(gn;)dS—j ué‘r‘(en;)ds= v.-g - ds = g dw

A ~ A A
e

where dw is the angle subtended by ds so that as €& —0 ,

this tends to - uox O(o, where u = u(x,y) at o.
B
Also du Pntas = a—‘i'-Qne. caw = -e dnel ¥ 4w whicn
on r Aar a x

tends to zero as & =30 .

1 . .
We already have that éa—r—l-( en —l;) is zero along straight edges OA

and OB, while j Bn %; ds 1is finite. Hence we may make & —-0

to give

§u§l~ (Qn}-) - ng }ds - O<ouo =0 (1.36)

knowing the line integral to exist in the ordinary sense.



v
o

Finally should the origin O 1lie in D+, describe a circle

Q about O with radius € and join e to L by two

parallel cuts AB and DE such that a new contour L + AB + e + DE
is formed for which 0, the singularity lies entirely outside.

/
Then for this contour, called L say, we can apply

{u%(@n-}l?) - g—?{en -]l_;}ds = 0.
Ll

(o

Breaking this into constituent parts, f+ J‘ + f + J =
L AB DE

When the gap between AB and DE is closed up, we assume

R

DE

) "9 -CL du |
Also %{u é_ﬂ( Qn %) - %en -i;}ds = .{{u,l—é( Qn €)—.b—é'€n;,l§ e.de

= j‘{—u + %Ié € QnG} ao and as £ =0, u-%uo)%z- is undefined.

As Elogf —» 0 as £ ->0, J’ reduces to =21V u
0 S ¢
. 1 u _
. &{ué}; (en —r-) - a—; Qn ;}ds - 277 uo =0 (1.37)
L

The three eguations (1.35) (1.36) and (1.37) can now be used as

}..l

a framework for the solution of the three fundamental boundary

problems by integral equation methods:-
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Firstly the Dirichlet problem in which u takes the value £(s)

on L, may be solved by considering either (1.35) or (1.36) as

integral equations for the determination of %r% on L
au 1 'é 1 -
.e. e = d = £ = —
i.e anQan (s)an enr)ds,oeD
L L
| ?
or 2 0nlas - G & @nlyas-o¢ £6s), 0¢ L
én r 3n r o "o
L L
Making use of the Cauchy-Riemam relation 53-]_-1-( Qn ;lf—) = + % ‘
these integral equations may be simply stated as
LN I R -
> n o= ds Eigf(s) ae , 0O &€ D , (1.38)
L L
and ﬁ@n—];ds=—0( f(s ) + £(s)ab O €L (1.39)
Qn x o o ! : )
L L

In each case here the righthand side expressions will be known.

Having solved for g——i— r (1.37) is used to generate U throughout
+

D by writing it explicitly as

_ 2 )g-a__g 1 _'a__ ) 1 _ 1 3_1_1_ 1 .
u 2'"‘4; An Qn r + f(s) an(Qn r)_ ds 7 3n Qnrds + T f(s)atd ,
v L L .

+
o €D .

For the Neumann problem, the roles of u and ~L  are reversed

an
: .. .. .. Ou : .
since this time it is 3n that is prescribed on L = g{s).

Hence we have alternate integral equations for the determination

of uon L :-

%ude = §g(s) L)n—]r'—ds , o € D (1.40)

L
L

and —o{ouo +§Ud(ﬂ = §g(s) Qn%ds ;, O G L (1.41)
L L
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Having obtained u from either of these integral equations
+
(1.37) would be uced as before to generate u throughout D .

For the mixed problem as before let L be divided intoc two puf-(:s

Ll and L2 and let Y be given on Ll and g—;l on L2. Again

either (1.35) or (1.36) may be used to set up coupled integral

equations for the determination of g—: on Ll and u on L2.

In the case of (1.35) write

’“J’a—u({’nids+ jude = +‘rh(s).€)n£ds— h(s)Jdd , o€ p_
an r r
L

1 Ly Ly Ly

and for (1.36) we write

| 2wy, 1
S Q,nrds+ ude —(>(Ouo

Ll L2 L2 2 Ll

0 € L.

With suitable discretisation on the boundary either of these

integral equations will yield discrete data values for u on L2

u
d — on L_ .
an 3n 1

+
Finally again return to (1.37) and generate u throughout D .

= 4 h(s) Qn Lds - h(s) dg+% h(s )!
fal SUCRY

1



- 44 -

§ 1.4 Complex Variable methods.

The representation of the fundamental boundary value problems
in two dimensions by integral equations through the means of complex
variable theory will now be discussed. Use of complex variable
methods is particularly suited to the Laplace problem in two
dimensions, but does not carry over into three dimensions; the
representations given above are relatively easily extended into

spatial situations.

Most emphasis on complex variable methods has been provided

by Russian authorsLS]and[6]. Also Milne Thomson [7] presents the

key results in a concise manner.

{ A

Fq - 22

O

As before suppose L 1is a polygonal contour (Fig.22). Let “qf(t)
be a complex function of the complex variable t , which is defined

at all points t € L such that § l'l{f(t)‘ds is bounded. Then
(=

%(z) = L - é; 'Ly(t) dt is called a Cauchy integral where
2971 -z
L

z E L. Often |/ (t) is called the 'density' function; later
the value of @ (z) will be discussed in the case of z € L .

+
We first show that @(z) is holomorphic , z € D :-

+
Take zO e D and describe two concentric circles about
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zO with radii 12“—8 and 8 ( & real), S chosen so that neither
circle intersects L. Then when =z 1lies within the smaller

ENY
> 3

N i 1 ‘ll’ (t)at 1 l'Ljf’(t)dt
: - = - 7
Consider é (z) D (z ) 21T 3 T PRk -

L L

circle we have lt A

(=2 ) e at _
To2mi (t-z) (t—zo)
L

. ! éE(z) - @(zo) z % ’é%s(t)ds

= ez, 'TT?S . 9()1!1;/ (t)’ ds

when 2z 1lies inside smaller circle as stated.

Hence letting 2z —3 z, {independent of 8 ) and noting the use

of the boundedness of Sgl]}f(t)
L

+
so that @ (z) is continuous at each zoe D .

dt , we obtain QS (z) > i(z )
o

(2)- Pz
. 1 (t)at _
Further consider p— z = 371 ) (t'zo)_ E(z), say.

L

Then E(z)-E(zo) 1 g[/'w(t) —(w.(t) 2}dt

i Jllt-2) (e-z ) =
) L o)

_ (z-zo) ﬁqf(t) dat
To2mi

L (e-2) (t-2_ )2

z-2 o, §ljf(t)| ds

. ('28)

Again, E(z)-E (zo)

= 'Z—Z

(t)lds , 2 € Iz—zol< %S .

Hence letting z — z, as before gives E(z) ~>“E(zo) .




- 46 -

1 WYe)de _ g 1 AU(L) at
27T 2 dz " | 27ri N

But E(zo) =
L(t-—zo)

i.e, E(z) 1s a continuous function of =2z and represents the
derivative of §:’ (z).
Hence CP (z) 1is continuocus and possesses a continuous derivative.
Similarly we may demonstrate that E(z) also possesses a continuous
derivative and so on. .

. . . +
Thus @ (z) is holomorphic (or analytic) for =z € D . It may

-

be shown similarly that <P (z) is holomorphic for z € D .

Now thus far, the investigation of @ (z) has concentrated
upon =z é L. We must now consider the effect of (i) placing
z on L at some point to, say, and (ii) evaluating é(z)
as z—)to, z€D+(or zGD—).
First (i) : place =z at to’ deliberately taken as a corner point

of L.

¥

0 rx

We show that the integral @ (to) = 2'T]l:i §){(E)it exists as
o

L
a Cauchy principal value. Describe a circular arc about to '
radius € , to cut L at pt;ints t' and t" as shown.
Denote by Q that portion of the polygon t'toj:" so that L;— Q

may denote the remainder of the polygon.
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1
1 t)dat
Then ST :}‘r_( ::O possesses a limit as & -» 0, subject to
L-{

certain conditions on ’l}f"(t) -

a1 j’lif(t)—"\[f(to)dt+ 1 f‘\j}‘(to)dt

; = - .42
Write ohi t -t 211 t - t oL ) - e (142
L-{ L-{ © L-{ ©
l
‘I(f(t ) (t )
The latter integral becomes ? j‘ dt —w [Qn(t t )
27Tl -t
¢ ° £n
t t'-t
_ ¥ p
27 i t"-t :
o
To close the contour again so that Q—+ 0O, we need to find the
limit of this term as t', t" —x tO .
"iO(' " -ix" i
But t'—tO =& e and t -to = Ce (Fig. 23)
! t'-t -1
. Yie ) 0. o) . Yt )() o i¥ i ’\p{t e o)
T 2Ti t"-t 27Ti e ix" i’
o e
Xo .
= f\lf(t ). —=—= where « is the local
o 2 o)
interior angle at to.
* lim 1 ‘("l}f(to)dt = ﬁ"q.{‘(t)
. Q-,O. 2ri t-t 27 o
L-¢
¢
. - t
Returning to the former integral of (1.42) 1 fw(t) V( O)dt - (1.43
. fo2mi t-t_

L-¢

. A -
Suppose the condition ‘ "\{/‘(t)— ’\J/‘(to) , é Alt—tof + A> 0, O(/L( 41 (l-‘l—‘f)
is imposed on A/ (t) near t » i.e. for It-—tol 4 R, say, this

being referred to as theHolder condition by Muskhelishvili.

Denoting the contribution to (1.43) for this region by I,

then ,I} s,l%‘_j }W(tt—ﬂpﬁ(t o) as .
€ o
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Writing t—to = re L or re 1 depending on which side of

the corner t 1lies, we have

[y - "\V'(to),é ar M from  (1.44)

R
II' < ZTl—‘_J; Ar%—ldr = 211’& (R}— C ) which is finite

since )A) O. Hence subject to the Holder condition,

V(t) - (t)
ooy

t - t

lim

030 2rr1

dt exists.

Thus to summarise the results, having placed z at a corner point
to of L we have shown that § (to) exists as a principal value

and

Mt) - (t) o (t )
TR & L5 LS

L

+
Second (ii) Consider the limiting value of @ (z) as 2z - to’ z €D

and to is a corner point.

1 j}j[(t) .
From é (z) i § s at R write

L
r(t) - (t) (t)
$ = 3§j Ve, L Eﬂf
2‘rr1 t -z 27ri t -z
L L
qlp(t)—‘q{‘(t) +
='\|/‘(t)+2_n e t, z &p |,
L
since 21_%_,1 §t%tz = 1, z € pt .
L

+
Now let z — to where to is a corner point of L, z € D .,

(t)- (t )
Ve ) + 1im == §W Vi (1.46)

z>t © Zrt 2wl t-z

-
o
3

KA
)

I

L

(t)—'\)j‘(t )
. 1 o
Write  M(z,t) = - Sg\V — at

L
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’\1!“ t)— )

o , .
= t ! i X
Then (t t ) 2TI'J. § oy t a and is known to exist

by previous discussion.

{r, (€)= Ye ) }(z—to)
Then (Zt)‘ (tt)"2rl4 t—z)t—to) at

and (zt)Mtt)|<2Tr§‘wd_ “L-—Z’ .

t-—z“t—t,

Ry - 2%

Now describe a circular arc radius g centre t and let
t’-to
z—).to along the vector (tO - z) where ® = arg (z S ) .

It is again convenient to split L into two parts for the purposes

of the analysis:-—

That part lying inside the circle denoted by % and the

~

remainder by L—e . Then we may wvrite

L [y e | 1t —zI

lim | M(z,t )—M(t t )I( lim

zf}.to t27r ,t—z”t—tl
f[’\{/‘t)— Vi )Ht ~z|
+ 1lim ds .
et 2T | t-2] ety

But the second right hand side term here is zero since the

integrand tends to zero as z—)to, for all t =2z,t .

In considering the first right hand side term, substitute

Ito— zl = 8 and also note that lt—-z' 7/ S?in o .



Thus lim —LJ‘< lim w5 —

>t 2wl X et 2w | ., § sinu ‘t_to’
¢
t" ( R
] ir(t)- " (t l
+ lim -—l— lw,)QV‘(O)gds
zat_ 2T } . §sing [t-t |
o}
where (x+(8 = D<o ' D\.ﬁ > 0 .
But with the Holder condition on (t), near to’

"\lf(t)— ‘ﬁj‘(to){ < A!t—to,/u , 0 (/Lk é 1 (for sufficiently
small § , t & Q ).

t
1 A o} ~1
Thus lim T < lim rsine It—t ' ds + a
Z"'>to i RN z—st ™ sin e o
¢ £
similar term M
A lt"to!
- . + ..
2T sin o /,L a similar term
AA
__ a8 . agt 5
21Tj,\ siny 211'/,& sinf} ! /.L > -
Since as z-—» to, 8—9 0, this term will tend to zero.

Hence we have that M(z,to) —> M(to,to) as z-—> to so that
-+

M(z,to) is continuous onto the houndary as z € D approaches

the corner point tO .

Thus returning to (1.4§), we may write now

- (t)- Wit )
. . 1 W W [o} +
zﬁg from D+@(L) = ’I.P'(to) + 2Tri§; apa— dt, z € D (1.47)
: O L O
But from (1.45) we have that
1 ‘w‘(t)_ (V(to)dt _ @ (t ) - °<'o‘-w_(to)
27 i t -t o 2T :
L
. | X, YL
1in B (@) = Y @(to) - e

z->t
o)

o}
o]
HSH
+
D
I

(1 "%’V‘to’ + Eﬁ (t)

- X o, 1y
(1 - R 4 5 jgt_to at , (1.48)
L |

S
5
"

z>t , z€ pt
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This result is known as a Plemel]j formula, and a counterpart is

similarly derived when z —> to' z €D giving

- X o ~(n 1 QClL"‘(t)dt
@ = - m Ve oy G ‘o

~
L

These results are for the case 2z —> to’ where to is a corner
point having interior angle O(O, 0L 0(0 < 23r . Of course €,
need not be a corner point of 1L, in which situation OCO is
merely replaced by 1] .

Further results concerning the nature of 5; +(z) may be obtained
by [6] page 4L notably that this limiting value

+ +
@ (=) = @ (to) is a continuous function of t notwithstanding

the lack of a smooth contour.

The application of the above results to two dimensional
potential theory problems follows because the real and imaginary

parts of any holomorphic function are harmonic functions.
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+
Now @ (z) was seen to be holomorphic in D or D subject only

to "\y" (t) being a complex function of the complex variable t

satisfying

('i) §‘”{P"(t), ds exists
L

and (ii) the Holder condition.
This freedom in 'Ii'[‘ (t) is now used by demanding that 'W‘ be
solely real.

Treating z or tO as a local fixed point we have

t-2z-= re19 or t - tO = rele (Fig.25)
.B .Q N A
dt = dre’’ + ire” a9 or dt = drel9 + ireltj aé
dt dr . dt _ dr .
> - - idQ or - iad
(e}
3 1 Wit)dt +
Hence @ (z) 2Tri A ' z &D becomes
L
. _ 1 ot {_d_lf. .
ulx,y) + iv(xy) = 50 iqr(t) =+ 1de}
L
, —_— o 1 Y'(t) at
while @ (2) = (1 - Y () + mife-c z—>t €L
L

, X | _ o 1 {dr o
becomes u(to) + 1v(to) = (1 - ﬁ)"qf(to) + :2.ﬁ:; §'4f(t) - + ldej .
. L

Extracting the real part of these equations gives

1 ' +
’ = 5= d ’ ’ 4
u(x,y) g fﬁ}i(t) 0 (x,y) € D (1.49)
L
(k) = (1L - 2(—9—) (£ ) + —— (v)ap t 1.50)
W= 27T }'L o 2m /('L ! €L -
L

where we write /LL in place of "'.If to represent the now real
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density defined on L. We note that the integral in (1.50) is
no longer a principal value integral.

Extracting the imaginary part of the equations gives

vix,y) = - %T"Sg#%ld—r ' {x,y) € D' (1.51)
L

Il

o1 _MUt)dr
vit ) 2Tr§f =, t €L (1.52)
L

where in (1.52) we now have a Cauchy principal value integral again.

Consider separately § dityde [}k(t) ] éds{#(t?} @nrds .
L

But ),L.Qnr being essentially real terms, we have that

- —_
[),L(t) Qnr = O no matter whether r =PQ or r = QOQ (Fig.25)

If further gf- = - ¢g(s) is inserted then (1.51) and (1.52) become
vix,y) = _§€(s) Pn - ds, (x,y) € D (1.53)
v(té) = gd’(s) Qn = ds , to € L (1.54)

Thus two formulations of the Dirichlet problem in integral equation
form are now obtained given by (1.50) and (1.54) where u(to) , v(to)
take the prescribed boundary values f(so) . The results exactly reflect

those obtained earlier by consideration of single and double layer

potentials.

These formulations have been obtained by inserting ‘4/‘ (t)
as an entirely real function defined on L. Clearly if "l{/‘ (t)
is taken as a completely imaginary function i}L(t) then precisely
the same results as (1.49), (1.50), (1.53) and (1.54) will emerge,

with the roles of u and v exchanged.
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Before discussing the Neumann problem in the context of the
complex variable, it is convenient to give an alternative version
for the Dirichlet problem in which the choice available in the

density ’\.[f(t) is exploited.

It has been seen that ‘1‘/‘ (t) , originally a complex function
defined on L and satisfying the Holder condition, may be taken
as entirely real so that the integral equaticns (1.50) and (1.54)

for the solution of the Dirichlet problem arise.

Returning now to the situation in which "L]f (t) is complex,
+
we know that where F(z) is a holomorphic function in D + L ,

Cuachy's theorem gives §F(t)dt = 0. The conditions for this
L

may be weakened, see for instance [-8,:] ) it is suificient that
+

F(t) is merely the boundary value of F(z) holomcrphic in D

. . +
and continuous in D + L.
Thus in particular when "L}/‘(t) is the boundary value of '\if(z)
+ +
holomorphic in D and continuous in D + L then Cauchy's theorem

gives

1 Ut) _ -
i PezE=0 z € D
1

+
the function %V‘LZ)E being holomorphic throughout D in the case

when z €D .

However it was shown that §_3 (z) = 1 ; §M(t) dt gave rise to
2T 1 t - z
L

—

. + -
@ (z) being holomorphic for z € D or D under very general
conditions on "'Ly‘ (t).

Hence with the above choice for "L.U’ (t) we have that

@(Z)EO ., =z € b .



Now working from the general Cauchy integral and taking its

limiting values as z-> to we had from (1.48)

+ - Xo, A R A +

S e == Y ) + T Peoga . = €0
L O

- _ O<O I~ 1 &\rﬂ/\(t) -

§ (to) - T2 ‘to) * 211 J'l ?T—todt ! z €D

L
But in this situation q:, _(to) being the limiting value of the

holomorphic function "zero" must itself be zero,

‘\U‘(t ) = L AHWE 4 (1.55)
[e] J.O(O Jt - to :
L

Finally Cauchy's integral formula gives

1 +

’l{/‘(z) = Yo ac z € D (1.56)

2771 t - =z
L

By taking real and imaginary parts of (1.55) we can display the

required integral equations as follows.

i

Let "4/‘ (z}) = ux,y) + iv(x,y) , u,v both harmonic and as
z >t  write 'I}I‘(t ) =u(t ) +iv(t ) where u(t ), v(t ) are
o o o o o o

the limiting values of wu(x,y) and v(x,y) respectively.

. . _ 1 ult) + iv(t)
RS u(to) + 1v(to) = Ix é‘; ra— at .
o o
L
As. before, put t - to = rele ’
dt dr + 1id© .

ult ) +ivit ) = —= §{u(t) + iv(t)}{g—r- + ide}
[e) o 10(0 r

il
1
|.~
o
Hla.
=
t
<
Q
(€]
+
l_l
|<1
Q
R
+
[
Qs
[@pd
ey

Taking the real part gives

ult ) = —= § w3 4 wae) (1.57)
o o(o r
L
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and the imaginary part gives

vt ) =—~7l—SE(ug—£—vde ) (1.58)
o o\o r
L
vdr udr .
But the terms 5 and 7 may be integrated by parts
L L
. dr d _[ ] dv
i.e. §v < _iﬁvds (Qnr)ds— inr §BS Qnr ds
L L L L
Now [v Qnr] = %ijo{vbgn [ b - tol - ann’a — to!}, Fig. 26,
: L
where S=’b—t|=(a-t,.
o o

LN, D Ry 26

and so assuming that v(x,y) tends to a continuous boundary function
v(to), then Lvenrj =0 .
L

Further u(x,y) and v(x,y) are conjugate harmonic functions for
. +
z=x+1iy € D . Thus the Cauchy Riemann equations hold between

u''and v ,

au _ 'av Bu dv*
—é—s- = and —

3n Jn

Again in the limit as (x,y) —> to on L we have

dut) _ dviv) . Buw) _ _ dvir)
ds 9 n dn ds
vdr _, ..au _ du 1
§'—r— = -§a—n enr ds = - —B-H Qn‘ (;)ds
L L L

Similarly§y—g—r = -§_§_‘I§ gnr das =§% Qn (%)ds
L L

L
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Substituting into (1.57), (1.58) gives the identical pair of

equations
L
u(to) _ 1 \%en %ds + &l——d} udh (1.59)
O<o - o
L L
\
and v(to) = ~ % —C—;’;Qn%ds + —-lm§ v al (1.60)
Fo I %o L

Further by taking real and imaginary parts of (1.56) we obtain in
a similar manner the pair of equations

1 du 1
u(x,y) = ?1? (—":d";;Qn-;ds + ud@)

L
) L '
I ann—ds + vab)
vix,y) = 2T 86(——3-—5 r
L

Thus this analysis yields an exact repetition of the equation obtained
from Green's Boundary Formula. We return now to the situation in
which the density 'l}j‘(t) is a real valued function /u(t) and

attempt a solution of the Neumann problem:

given —gi(t = g(s) at all to € L except at corner points,

)
n o
C +
to generate u(x,y), harmonic in D .
52 . + . , .
As K/ u=0, (x,y) in D , there exists a harmonic conjugate

v(x,y) and Cauchy-Riemann equations hold between them

OQu__ v . 2u_2v

on s s on

corner points.

on L, except at

Now -g——g-=g(s) along L

. 3dv
Y g(s)
s
v(ts) = ~ j. g(s)ds for some arbitrary initial
a

arc point s = a, this being the sum of integrals along the straight

boundary edges.
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Note that since v(t) 4is taken continuous, then on integrating

circuitously we obtain the well-known Gauss condition

§g(s)ds =0 .

Now from (1.48) we had

o+ _ _ Xo _ jj(t)
@ (to) = ( 2Tr)/'k(to) * 2Tr1 §t - t

[

Taking the real and imaginary parts gives

_ o, 1 4 :
u(to) = (1 - 2Tr)/1&(to) e }{(t)de
L
vt = - §&<_t_>dr :
o 2‘rr
So
Hence we obtain ?Lé:#—(—gdr = J‘ g(s)ds where s is
m r
L a

the arc length measurement at t .

Again 4;73‘;(3) dr é/l,((t) —-(Qnr)ds [/Lk(t) Qn r] é qr ds

L
=‘§%Qnr ds by above.
L
o
Hence consider §O’(s) Qnr ds = - 21T g(s)ds (1.61)
a

where (¢ (s) 1is written for I% . This gives an integral equation

for the determination of & (s) .

Ca s + ...
To recover ul(x,y) within D it is necessary to return to

u(x,y) = 5—%{_— Hg/k(s)d@ as in equation (1.49) ; and the density

).L(S) here would be obtained from /kk(s) =j g (s)ds .
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Summary of integral

equation formulations

Boundary conditions:

F(:a -7

P
a\;(s) = g(s) .

Neumann:

Neumann integral equation

D Dirichlet: u(s) = f(s)
l“ObJ% _
Formulation~] Dirichlet integral equation
SINGLE LAYER f(so)=S€<5(s)Qn(%)ds (1.6)
L
DOUBLE IAYER f(so) = (2rr—0<0)/LL(so)+
§/A(s)de (1.20)
L
GREEN'S §-§-% Qn (-1r—)ds =§f(s)de
FORMULA L L (1.38)
-E-EQn(l)ds = - f(s ) +
Jn r o o
L
§f(s)d9 (1.39)
L -
- Ko
f(to)—(l 2.TT_)/(A(tOH
COMPLEX L t)aB .50
27T }’k -
L
VARIABLE
R 1
METHODS f(to)— - §O’(s) Qn(;) ds
L (1.54)

o0 (s) cos (g,é\o)

gi{s )= = TT((S)+E¥;
o o

ds
x
L
(1.9) (sO not a corner point)
_ D cosY
g(so)—§{/.k(5)—/*(so?(a—n— (——rlf—) ds
L - ° o

(1.31)

\
§u(s)de =S€g(s)Qn (—i_—)ds (1. 40)
L L

- Ou(so) +§u(s)d6 =§]‘g(s) Qn(%)ds

L L

(1.41)

a

. .
o

§0’(s) Qn(%)ds = ZTTJ g(s)ds ,

L

(1.61)
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Chapter II
Exisbe~ce Theory for Polynonod Reqions

In Chapter I the interior two dimensional boundary value

problems for Laplace's equation were formulated as integral
equations using various methods. The question must now be
considéred whether these equations, summarised for convenience
of reference at the end of Chapter I, can be solved. This is

a far reaching question for it concerns firstly the existence

of a solution of these equétions and secondly, when a theoretical
solution is unobtainable in 'closed' form, whether an approximate
solution can be obtained which will converge to the true solution

in some sense.

We concentrate only on the formulations giving rise to the
integral equations (1.20) or (1.50), which can be seen to be
essentially the same, and investigate in detail the existence or
otherwise of a (theoretical) exact solution, of an approximate
solution and then the convergence of the approximate solution.

The latter two are investigated in Chapter III; considerations of
the existence of a solution given below in this Chapter. It should
be remembered that we are concerned specifically with the case in
which the boundary contour is polygonal, which makes a considerable

effect on all these considerations.

With regard to the general theory of integral equations, there
are many texts which describe in detail the.occurrences and varieties
of types of integral equatipn. Among the large literature available
are the following references best known by the author: [5],[:6],[:9]
and [10] . It will be apparent on reference that the integral
equations derived here are all Fredholm integral equations of
either the first or second kind. The Fredholm equations are usually

-

displayed with respect to an integration along the real x - axis, viz



b
%S Kix,t)y(£)dt = h(x) , x € [a,b] (2.1)
a
b
y(x) + Aj. K(x,t)y(t)dt = hi{x) , x & [a,b] (2.2)
a

where (2.1) is an equation of the first kind, and (2.2) that of

the second kind, and y(x) 1is to be determined. In this simple
form (2.1) is known to be awkward to handle znd in fact may have

no sclution for general h(x) unless the kernel K(x,t) is
singular,[:GJ. For (2.2), we have at the outset for a wide variety
of kernels K(x,t) the well-known Fredholm Alternative which we

state as follows:-

Either % is a regular value and (2.2) possesses a unique

solution for an arbitrary h(x);

or A is a characteristic value of (2.2) so that the

b
homogeneocus equation y(x) + XJ. Kix,t)y(t)dt = O possesses a
a

denumerable number of linearly independent solutions Cbl(x), dE(X)""
In this case the transposed homogeneous equation

b
QVYX) + >i[ K(t,x)q*”(t)dt=0also possesses a denumerable set of
a

solutions ﬂf l(x),'l]fz(x), ... and (2.2) then has a solution if

and only if h(x) is orthogonal to all the {jﬁp”i(x)}-.

The Fredholm Alternative is proved in!jll] §‘74 for
K(x,t) continuous on a £ X.t $ b and is then carried over in
[li] § 8l to demonstrate the existence of solution of the integral
équation formulation of the interior Dirichlet problem. Double
layer potentials are used and the integral equation produced is
essentially (1.20) or (1.50). This discussion however requires

that the kernel, in its equivalent form in the Dirichlet case,
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(2.3) below, when a contour integral replaces the integration on
the x - axis, be continuous for all points s,so,o 6 s,sc)g S on L.
Provided that the contour L 1is smooth possessing a continuously
turning tangent, then the kernel of the integral equation (1.20)

or (1.50} is easily shown to be continuous. This kernel was

displayed variously as

A A
r )

K(s,s ) = EE--Qn(}-) = cos (L1 = a8 in § 1.2,

o on r

Ya

(2.3)

Feq 28

XK
S\

For given s,, K(s,sp) 1is continuous as s describes a
smooth contour, continuity being maintained even when s passes
through s, [ll] § 81, where it might appear that K becomes
infinite. However this continuity is not maintained when s passes
through any corner point of the contour, such as A in Fig.28.

This arises due to the abrupt change in direction of Q. Moreover,
the parameter >\ in (2.2) is no longer a constant; an instantaneous
change occurs at each corner point. Consequently we must first
modify the demands of the Fredholm Alternative.

This requirement will be discussed in detail helow. t will
allow the application of (1.20) and (1.50) as a means of solving the
Dirichlet problem, showing the existence of the density function
/LMS) as the solution of (1.20) or (1.50). By examining the list
given at the end of Chapter I, we see that the other formulations
of the Dirichlet problem in terms of integral equations all fall

into a different category; all are Fredholm equations of the first

kind with logarithmic kernels,

. 1

i.e. K(s,so) = Qn(;? where r is the distance between
the points on L with arc parameter s and S, Note that (1.38)
is actually of a different, non singular, nature since in this case

Sy is always taken to lie outside the contour in D . The existence

of a solution for these Fredholm equations of the first kind has
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been considered by Jaswon and Symm [}2]. They establish the
existence of a solution for (1.6) (1.39) and (1.54) but only for
smooth boundary contours. Convergence of approximate solutions to

the solutions is not investigated.

With regard to the formulation (1.38), useful material appears
in [li] + P.253, in which the solution is shown to exist, but again
the analysis refers to a smooth boundary contour. The author also
gives details of the resulting approximate solution for (1.38)
through linear algebraic methods. He is able to show that the
approximate solution exists since, subject to a certain condition,
the linear equations always have an invertible matrix. Some error
analysis is given concerning the convergence of the approximate

solution.

It is of course to be expected that all the integral equation
formulations can be applied successfully to polygonal regions. We
shall however concentrate completely on the double layer formulation
and by referring to the methods of J.Radon[:l4] it will be possible
to establish the existence of a unigque continuous solution. It is
probable tﬁat the ideas of Radon's work, which came to the attention
of the author through the publication of J.Benveniste [15] can be
extended to deal with other formulations of the two dimensional
potential theory problem in terms of Fredholm equations of the first

kind, but this is not investigated.

Thus we return now to the formulation of the interior
Dirichlet problem through double layer potentials leading to (1.20)
and effectively (1.50). As has been stated, the fundamental Fredholm

theorem will deal with these egquations only for continuous kernels,

Historically we have the analysis of Neumann, [16] ;, which
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is fully described in [17] p-201 and in [18:;" p.124. This gives
the required result in the case of a region bounded by a convex
contour having only a finite number of corner points. Neumann's
work pre-dates Fredholm's but relies on certain geometrical
constructions that apply only to convex regions, the boundary

contours having non-zero curvature between the corner points.

Radon's aim was to establish existence of solution for a
wide class of boundary curve, and to this end he considers L to

be a curve of bounded rotation, this being a natural generalisation

of smcoth curves. A curve is said to be of bounded rotation when

the angle e (s} (Fig.29) is of bounded variation as Q describes

L, i.e. for 0 { s £ S.

I

FC3 29

The contour L , shown here as smooth for convenience, can be
parameterised with respect to arc length s, O £s QS so that
cartesian coordinates of a typical-point @ on L are {x(s) ,y(s)} .
When there is no chance of misunderstanding this point will be

denoted by Q(s).

We recall the standard definition of a function of bounded
variation. Let g be a real function defined in a ¢ x 4 b .
Given a partition CP ={xo,xl,...,xn_l,xn} , a = xo, b = xn,

X £ x) < Xy ee (xn_l< x ~ possessing n intervals, write

Agk = g(xk) - g(xk_l)  k = 1(1)n. Then g is of bounded variation
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on [a,b] if there exists a positive real number M such that

n
Z‘Agk] 4 M for all possible partitions (P (n finite). The
k=%

As, |

. n
total variation of g is further defined as Vg a,b] = sup Z
P k=1

taken over all possible partitions.

The angle Q made by the tangent at Q is defined by
cos B(s) = x'(s) , sin B(s) = y'(s)

for points at which x(s) and y(s) are differentiable. For other

points where x'(s) and y'(s) are not defined (i.e. corner points)

then @ (s) is arbitrary.

Hence x(s)

s
x(0) + J cose(s )ds
o o
o
(2.4)

s
and y(s) v (0) +J~ sin Q(so)dso

o
We note that when L 1is polygonal, x(s) and y(s) defined from
(2.4) are piecewise linear. Now the major part of Radon's paper
is concerned with the solution of the Dirichlet problem in terms
of double layer potentials (cf, Chapter I,§|-2). This gives the
harmonic function u(x,y) at P € D+ expressed as &/L{(s)dwp, (2.5)
where jL(s) is continuous (Fig.30) and of course an ]JE_Jntegral

equation results when P passes onto the boundary of L at say Qo.

Y

7
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In place of w_ when P 1is on L, Radon defines an angle

'qf(s,so) as follows:-—
(i) for 0¢ s £ S { 8, define ’l_lf(s,so) by the relations
cos"lp‘(s,so) K{x(s)—x(so)}

sin Y (s,s) = K {y(s)-—y (so)}

L]

, K> 0 (2.6)

{(ii) for O ‘\<So { s < S, define ’l‘f(s,so) = 1".’J‘(so,s) .

i.e. in this situation, using (2.5), 'Ij/“ (so,s) will be given by

K'{x(so) - x(s)}
Kv{y(so) - y(s)}

cos ’\;/‘ (so,s)

sin 'll/“ (so,s)

K'> 0 (2.7

It

(In the two situations drawn in Fig.31, ’V\ = (w\(i) lies in the
third quadrant while '\}f = .ly\(ii) lies in the fourth quadrant).

To keep the points TN distinct, the case s = O, s, = S is

temporarily excluded.

Hence (2.6) and (2.7) define a symmetric expression "qr (s,so) ’
continucus at all its points of definition on the polygon L. We
have not yet defined ‘1}!‘ for the cases s =8 ; s = 0, Sy = S;

s =0, s = 8.
e}



Now if the density jbt(s) in (2.5) is set to unity, we
obtain what Radon calls the order 0(x,y) of the point P(x,y). (Fig.30)
+
Clearly from (2.5), when P € D, 0(x,y) = 277 and it is easy to

show that O(x,y) =0 for P € D .

Suppose now that P lies on L at a corner point Qo(so)

(Fig.32). Then we may write, formally,

N

o(x,y) = O(xQO,yQO) = O(so) for brevity
= § ds'\{f (s,5)) s (2.8)
L

although ’\!/’ (soso) is not yet defined. (The notation ds is

used here to indicate that s 1is varying and that so is a fixed

point). QLS>
YA

Construct a circle centre Qo' radius-S , which cuts L
in points Q',Q" (s = sé, s(')' respectively, s"3 £ S, L s;) . Denote
that part of L interior to the circle by L' and the remainder
by L". Denote also two regions of the circumference of the circle:
M L + r . . -
i that arc lying in D and e the arc lying in D . It is

assumed that S is sufficiently small for the configuration of

Fig.32 to hold.

Now we consider the value of the expression in (2.8). Taking

L =1L" +r‘e then by (2.5) O(SO) = 2317 . But § ds’\*[‘(s,so) can

L"+[‘e
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be split into two parts: + f and we have

L" ,‘|e

S

ds"qf(syso) +J‘ds’1+f(s,so) + ds"qf(s,so)
e %

21 = Yisys) ~Y.s) + At +Ys,s )= Y st

[

recalling the symmetry of '\,}/‘ (s, s ). Further, d '\P"(s s ) will

8

give the exterior angle at the vertex Qo. Denoting this by ¢ o

s!
o]

§QS’\V(S'SO) =
"+ r‘e

we have

'\V ,s ) '14)'-‘(0 s ) +1}f‘(s , S )—'\U"(s",s )+O< = 27 . (2.9)

Now let 8 —=3 0 and write 11m (s 'Sy ) 11rn (s ,s')=‘4ﬂs ;8 )
_}o (o] (o]

Similarly take 1lim (s",s ) ="4f‘(s S +) so that we have
S—LO o o] (o]

‘\}/‘ (so,so+) = 9 (so+) and "Qf (Solsg) = @ (55)

where as before 9 denotes the angle made by the tangent with OX.

Also in the situation in which Qo were not to be a corner,
= d SI ' " i 5
then o(o T an ’\(f‘( o,so)—fllj‘(so,so)—* e(so) so that

(2.9) would then reduce to

'-H[r (S,5.) - ’\I/‘(O,so) =17 (2.10)

However (2.10) may be considered to hold generally for 0 £ < S
because of the continuity of "ql‘ (O,so) and '1{}" (S,so)' with respect
to S - Substituting (2.10) into (2.9) gives
] - ] —
Y (sis) ’1’/‘ (st,s) +oX_ =TT ,
or, as f —> O, ”q}‘ (so,so+)—‘q)"(so,so) = O(o-Tr (2.11)

Thus in (2.11) we have a relation to indicate the discontinuity
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in ’IP" (s,so) as s passes through the corner so. The
understanding of '\V‘ (s,so) is completed by assigning appropriate
limiting value meanings for 'L‘/‘ (0,0), ’\V (O,S))'\V(S,O) and

'1}(‘ (S,S). Without loss take the initial point for the measurement
of s not at a corner. Denoting by ? the angle made with Ox

by the polygon edge upon which this point lies, then we have

Yr 0.0 = Yro,04) =Y (0+,00 = B,
"1';‘(0,5) = Y (0+,8) = “qj‘ (0,s-) = T +P'
and ’\p‘(s,o) = Y (s-,0) = Y (s,00) = T +§.

Since “qf ‘is defined mod 29r then by taking ’ll/‘ (s,8)= "(;/‘(S—,S)
= '\{f (s,8-) = 21 +§ we have the relations . .

rq/‘ (s,0) - ’Ly' (0,0) = 1T and ‘\U‘ (s,s)—’q)“(o,s)=’rr .
This extends (2.10) to hold for the cases S, = 0,S. Finally since

'\!f {(0,8) = '\‘(f {(5,0), adding the two latter results gives
’qf (s,s) - “qf (0,0) = 27T .

Having explained Radon's definition of the angle "lp‘ (s,so) ;
his treatment of the Dirichlet probiem using double layer potentials
now follows; the treatment is of course very similar to that used

in cobtaining (1.20).

From (2.5, u(x,y) = §/A(s)dwp is harmonic for P(x,y)
L

+
€ p, and w, as in Fig.30. We put

§)L(s)dwp = ﬁ)‘i/u(s)—}k(so)} de + §/LL(so)de, 04 s,so(\ s,
L

L L

where s 1is a variable and s, regarded as a particular value.

,-;3€)us)awp = f{f\(s)—ju(so)} du, + 2 M(s ), P € p’. (2.12)
L

L
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Now with so lying in, say, the interval [sé,sg] (Fig.32),
then given € > O, there exists §=s"-s =s -s' such
(o] (@] O o

that !/-ﬁ(s)-/i(so)(< € for all s e[s('),s;], assuming /,L(s)

continuous for O ¢ s é S.

Thus (2.12) becomes

§ (s)dw —I {;us th(s }dw +I {}1(5) /A(s aw +g { (s)- }dwp
L % +21T}L(s
where now J {)L(s /L(s )}dw j

Labelling the point on L with arc parameter ,so by QO, as in Fig.32,

s"

o

aw £ Ejs'dwp (2.13)
o

}L(s) }L(s

saq s +
we now let P——)Qo from within D

S(') Sé
Then fo{/u'(s)_/’uso)}dwp—i‘ J.O{}L(s)—)}(so)} a1 (s,
s s
js“ {}i(s) —/l(so)}dwp-» j.s"{/u(s)—llk(so)}ds'qf (s,so)
o o

Hence letting € -0 and using (2.13) we have

lJ_m u(x,y) = u (Q ) (see the notation in({-20))

J‘ {/\A(s)— }d ss)+j‘ {/(A(s;— (s jd‘\;{'ss 2T s )

But the two integrals can be combined together as s - So and

+ S so that
st —>s_ so

rS
u*(Q ) {/u(s)-//\(so)}ds\;f(s,so) + 2 A (s )

< O

~S S
= O/l(s)ds"q/‘ (s,s_)- }L(so)Jods'\,f(s,so)+ 21 M (s )

S .
Jo/lk(s)ds'q/‘ (s,so)— /l(so){'llf (S,so)—-IV\(O,so)}Jr 2Tr}+(so)
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By (2.10) this reduces to

S

4

u(QO) ‘w/u(so) +J /LL(s)dS’IP‘ (s,so) (2.14)
O

the prescribed boundary function f(so).

This latter equation is equivalent to (1.20): essentially
(1.20) has been re-cast into the form (2.14) which is a more
suitable integral equation because of the constant factor TT .
When f(so) is continuous with respect to different positions of
s, on I. we see that for the density function /ﬁk to be cohtinuous

on L , then it must be the case that

S
/;L(s)d ﬂp“(s,s ) 1is also a continuous function of s .
S s o o

Thus defining the transformation T by

S
(;7;)(50) = Jkdjk(s)ds“Qf(s,so) (2.15)

then we see that T has to be a linear transformation of the

space of continuous functions'/i(s) on L into itself.

That this is so follows from the theorem given in [ll] page

220 which may be expressed in a form suited to the current notation

as follows:-

"Let Y (s,s ) be a function of bounded variation defined
for ()4 s,5 &£ S whose total variation with respect to
s is less than some finite value independent of s , for
which “QP(O,SO) = 0 and for which Wy‘(so,s) and

"F(s,so)ds are continuous functions of s - Then |
o
generated by (2.15) is a linear transformation of the
space of continuous functions on E O,S:] into itself".
It is clear that for a polygonal contour possessing only a

finite number of corner points, that QU“ is of. bounded variation

(but not necessarily continuous). & detailed and general proof is
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given in Radon that the total variation of Wy‘ for a curve of
bounded rotation (and hence for a polygon) is less than some

finite value independent of so.

We can arrange for an~ (O,so) to be zero for any given

S5 by prior arrangement of L in relation to the position of the

cartesian frame Oxy. By taking the initial point for arc
measurement not at a corner point then Wy”(so,s) will be a
continuous function of S, With regard to the continuity of

1y
Hf ﬂp"(s,so)ds regarded as a function of sy for given AY .
o

we denote the integral by §§ (§,so) and proceed as follows:-

SI

[+]

1A g

Fig. 33

Y
R

0]
Case 1 so>§

This means so;; s in the integrand and so 4) (s,so) is

continuous with respect to both variables s,so. Hence gg(zf,so) ’

being the integral of a continuous function is continuous in both

S: and so.

Y 4

A}

>

Fg - 3%
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Case 2 S .
case 2 s, < § ¢
In this case i (§,s°) =f’qf(s,so)ds, is such that s passes
e}

through s .

g e}
Since 'ql" (s,s ) 1is a continuous function of s for s not

e} o

a corner point then it will be sufficient to consider the centinuity
at S when So is a corner point. The essence of the analysis

can be seen by integrating across just the one corner point So t-
)
|
,‘ FL& 35
I
i
{

)

Consider then gg (§’So ) = JO'\V(s,so)ds along the path OAB
where without loss we take OA along the x axis, AB inclined to
it at angle F . O<§ £ M/2. Since we place S5 at A then
OA = s , AB = - s .

o o

From its definition, values for 'Il,f (s,so) are: s £ So '\‘/‘ =TT
)

s}soj’qf‘=-ﬂ'+[3

s = s is not defined
o) :
S, LY
. é( Ylso) = +
“ o s
o
rS, P
= T as + (Tr+§)ds
“Jo s

o]

s, + (T+ (8- s

s o+ g (8 - s ) | (2.16)

Now consider the evaluation for So moved from the corner to say

L
Sc; ¢ corner value. Again we evaluate @ (S’ ,sé)):J~ “L)f(s,sc'))ds
o
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Y

Fg - 36

Values for "\,}/‘(s,sc')) : O < s Q sc'), ".V(s,sc')) =T (as above),

sé(s(so, ’l}/‘(s,sc')) =TT’ L _7

-1 (s s,/ sin P !
s § ' ’1}f(s,so)=T]' + tan (s=s') +(s-s )cos R
[o2Ne] o] ‘_f
s0 §’
+
o s
o
AY (s~s )sinfp
Trs + {‘IT +tan_l( 9 F \) =
o (s~s')+(s-s )cos
s0 o o o fsJ

(s-s )sing

i.e. @ (r 'Sc'>) - -IT§ j‘ (s s 'Y+(s-s )cosF] ds (2.17)

¥
Thus § (c,sc')) = J.o’l‘f(s,sc'))ds

Now from (2.16) and (2.17),

@ (f 'so)'— @(E ')

”r{ __1 (s-s )s:LnF ]
- tan

Js F (s—s)+ss cos
o

”S‘ (s-s )snlﬁ ']
= {tan (tan§ )-tan LS -s')+(s-s )cos }ds
: o IR

~¥ %o

Y (s -~ ) ')sin
= tan—l[s-—s d @?] ds

+ \s -s )cos
J s o

(so-—sc')) sin @

(s—s )+(s —s')cosP
o o o

But since is positive,

then tan [

-s )sm@F] o-s')sinp

s—s )+ s -s')cos (s-s )+(<; -5 )cos@
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f (s - s')sinﬁ
. o o
l i(y’so) - §(§'So) g (s-s )+(s -—s')cosﬁ ds
3 o o o
o
Now si- so> (s-so)cos(S so (s-—so)+(so—sé)cos(>’>(s—so)cosl¢;+(so-sé)cosf}
= (s-s('))cos(%
- é (So_ScI))Sin
‘@(f'%’ T RIS ], Eepeesg
s o
o
._s'
= (s -s )tanF Qn — ?
56" %

which tends to zero as s(')-—a. S,

Hence 1lim é(f,s') = @(g’,s ) ; and by a similar investigation
s'._? SO-‘ O O
o

of é(f,s"), s“> S we can show that lim @(Y ")-giL f,s ).
(o] [o] o] S"—}~S + o]
o o
This establishes the continuity of @ (f,so) with respect to

varying so as required.

Returning now to (2.14) we have
TT/IA(SO) + (T}L) (so) = LL+’(QO) = f(so) (see 1.20)

1
I +=T s = f(s 2.18
( T )/.L( o) ( O) ( )
where I 1is the identity transformation.
Thus we need to establish that the operator I + Ter has an inverse; -

A

. -1
moxre generally we consider the existence of (I + _'—TT) for various
values of the scalar>\ . The operator T is not completely
continuous and so an extension of the Fredholm theorxry is needed.
Radon, [ll , page 222 shows that for T defined on C[O S] by
(T/u) (so) = J\ /LL(s)d "\Jf(s S ) we may write T = G+H where G

is a linear transformation of integral type with degenerate kernel

and H a linear transformation with norm ” H ” §w+6 , where
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w = lim 40 sup
~S
51772 s

'llr(sl,s) -‘llf(sz,s)! (2.19)

and & is an arbitrarily small positive guantity.

- Ao LA _{ by Ao At
Now I+1—TT-—I+_",(G+H)- I+,n_H I+ (I+TT'H) G

For T +2‘_§ to possess an inverse we require that '3—;_[ ”H” < 1
IM 1l o 1M
But nH" é w+ e so that T_f H”é T (w +&) .
From (2.11) we have that w =Sifx£2~}0 sgp, '\’f(sl,s)— v(sz,s)’ = (-1

where & is the magnitude of the greatest exterior angle at a

corner point of the polygon and sl - sz-—;» O in such a manner

that sl and 52 are on either side of the corner.

sl < 13 e v

V/a)
Jim

In the situation here in which >\ =1, then ll! I) H' ‘ K=TC +
N1} ! T
X - :r._ < 1 ‘

mw

But with the omission of cusp points the & { 27 so that

!_%‘J”H” < 1 is established since £ is arbitrarily small.

M H

Hence I + _'E: possesses an inverse.

Further we must now consider I + ™ (I + T_I"H) G. But from
-1
[ll] page 166 we have that (I + %_H) G 1is of finite rank since

G 1is of finite rank (i.e. an integral operator corresponding to

a ‘degenerate kernel). From the establishment of the existence of

-1 . -1
(I + — H) it can then be shown that I + — (I + ->\— H) G possesses
i T ™
an inverse for the case >\ = 1 since this is known not to be a

singular value.
1 .
Hence on returning to (2.17), I + ‘I_TT can be inverted and a unique

solution /&k(so) exists.

This establishes the existence of the double layer density
and hence the interior Dirichlet problem has a solution

in the case of polygonal contours,
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Chapter IIT

§ Tbroduchon & @ mumerisal  aralysis
3.1

In this chapter we consider how to obtain the solution
of an integral equation when applied to a specific boundary value problem.

The reliability of the resulting numerical methods will be examined.

Although there is a full hand of integral-equation representations
for each of the boundary problems at our disposal from Chapter I,
attention will be concentrated on solving the interior Dirichlet problem
represented as an integral equation through the use of the double-layer
potential. Referring back to Chapter I we take the equations (1.49) and

(L.50), which we repeat here for convenience:-

1 Mty
(1L - —-)/u =@ P = i) (3.1)
@]
. L
ulx,y) = »lr—r gg 8 (3.2)
L

The notations used in (3.1) and (3.2) were fully described in § 1.4;
to represents the complex coordinate of the point (Qo with arc
coordinate s, on the polygon L at which the internal angle is

X, .0 < C{cf< 277 . Also the integral term in (3.1) is expressed
in complex form for subsegquent convenience. A specific Dirichlet
problem is defined by declaring the shape of I, and giving the values
of u(to) = f(to) = f(so) for all positions of to on L. We then
attempt to solve (3.1) for the real-valued density function /}A(t).
From Chapter II it is known that a continuous solution /fi(t) exists
for any polygon L if wu(t) is continuous. Having obtained MW (t),

/
the internal potential u(x,y) is then generated using (3.2).

In general the determining of }A(t) and hence u(x,y) in closed
analytic form is usually impossible. In fact to obtain the exact solution
for any integral equation presents difficulty in all but a few cases,

for example when the kernel is degenerate([:9 Y ep HE).
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Thus we seek an approximate solution of (3.1) for /uwt) using
a numerical method. This gives rise to the following questions:

(1) Will the numerical method lead to a problem which can always
be solved?

(ii) Subject to refinements in the numerical method, will the
approximate solution, which will be denoted by ’;Z(t), converge to

the exact solution '/A(t)?

A number of methods are available for obtaining an approximate
solution of an integral equation [IE)}, not all necessarily suitable
for application in (3.1). The method to be used here involves replacing
the integral texm 5%;—Im Eﬁ aééég)dt in (3.1) by & quadrature formula,

L

n .
say, z:vv. ., Where . = MA(t,), the w. are scalar weight
jzljflj /uj J J ]

quantities and t., t

1 PUAREE tn are distinct points of L. Then if

t0 is taken to coincide with each of ¢t , t

1 o e tn in turn, a set

of n simultaneous linear equations will be created whose solutions
nJ
//Lj, jJ = 1(1)n hopefully approximate /}L(tj). We shall refer to the

points tj as node points.

Va4
An approximation to u(x,y), denoted by u(x,y), can then be

+
calculated for various positions of (x,y) € D by replacing 5%;—§;}Ut)de
L

§ . - [ .

Hence L 1is to be partitioned into n intervals or segments. We
shall now give some general details of how the nodes are fixed and numbered
and also explain how the evident singularity in (3.1) disappears in the
discretised problem. Since in (3.1), t0 is to coincide with the
tj, j = 1(1)n we will replace it by ti, i=1(1l)n ; further I is of

course a contour so that node tn must fall adjacent to node t In

1
fact we shall number the nodes subsequently from O to n-1 so that

tn = to. This can be seen by reference to Fig.37. We also always arrange
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for corner points of L to occur as nodes in any partitioning undertaken.
Consequently any segment [tj, tj+l] will always be straight. Segments

do not need to be of equal length.

~

Ly

v
o]

o

Now in (3.1) the integral can be written as -——=— Im

t.
n-1 j+]/'A_L_(_t_)dt )
27T

jode, ¥YH
J

since the boundary of 1L is polygonal. The singular situation arises
when 3j = i-1, i, the denominator of the integral becoming infinite at

the end of the range [ti——l'ti] and the beginning of the range [ti’ti+l]°

JA(t) dt

h t = . s

But we have Im égt"ti d ﬁ/x(t)lm since /Lk is
L L

t-t, !
i
real, and as shown in Chapter I, pp. 52 if we write t = ti + re” '
18 i
at = drel + ire ae , Wwe have tdt = dTr + ide so that
i

Im§€uét)dt = /u(t)ae )
=3 .
Sk,

—

tt~ \

T
B}
ti_ tL-H

9
g
L
e

Now as t moves along the straight segments [t, p t,_, and | t,, t. '
i-1 i i i+l
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the change in e measured from ti will be zero. This is the case
whether or not ti is a corner point. Thus the cases in the j count
for which j = i-1,1 may be omitted altogether. As t passes through
ti, the term (1 - -——0/k(t ) is "thrown-out" of the integral so that
for any polygonal region the integral equation (3.1) is represented

exactly by

I+l
(1 - —)/L&(t )+ == Im z j Ag—t—)dt = £(t;) (3.3)

(Jfl l i)

(Should i=0,n then i-1 is interpreted as n-1).
We note also that other terms of the sum in (3.3) may also be zero

depending on the geometry of L.

The stage is now reached at which guadrature methods must be

j+1 uit)it

applied to the integral in (3.3): J‘ i t

The technique used in this thesis will be to subsntitute an approximation
for j&it) on l:tj' tj+l] and then to evaluate the resulting integral
exactly. Three different approximations, denoted by A, B and C will
be considered and the corresponding approximate solutions for /}k(t)

investigated in each case. In making the choice of an approximation for

)u(t), we broadly follow the methods of G.T.Symm{jZO] and K.E.Atkinson 2#].

Approsimations proposed  For e Weble layer Demsity
3.2 Approximation A: ¥ '
£,
YA i i+

L. | F‘ﬂ .39

v
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In this, the simplest of the approximations we merely replace /u(t)

on [tj, tj+l] by the average of the end point node values,

. 1 1
Leee E{P(tj) * /'((tj+l)} = 2O +/'(j+1)‘

t
J+ ( i+l
& t) _ 1 1 at
Hence dt = S (}LJ 3+l . Im ‘[ rnrs
t. i
J
1 (i)

= X .1 ;
= z(ﬂj +}'Lj+l)'ej' (Fig. 39)

Thus (3.3) becomes

n-— (i)
(2 - ) L %(/«AJ LD 93 = 2w (e (3.4)

(j#l—l i)
The angle S j(l) will be the angle subtended at ti by the boundary
segment [tj, tj+l] » being positive anticlockwise as the point t

moves round L.

Approximation B:

Here we take /u.(t to vary linearly in the interval [t-j’ tj+l] . The

J+LA(E)

ram t dt can then be completed and is best done bv

evaluation of j
t.
J
a change of variable to the scalar >\ where
€= =), + >\tj+l ., 0o &K1 (3.5)

Thus as /,L(t) is linear over the interval,

) = A-M) gy + >‘/“j+1 ~ (3.6)
t, 1
Hence J J+1-Lt ét)dt J “ A)/Aj +A/‘kj+l
t, = i

o 1= N\) tj + >\tj+l— t,

(b5, € a

3 + >\(/'Lj-!-]_—/l'kj)

= (t, .- d)\ .
+1 - + -
J 3 Jo tj tt N (t:,|+l t;)
Putting ] A (/b(j+l_ /uj) = U+ say, gives
-t + t,, .- t, h -t + ... . ! !
t Y A\ 341 J) t- )\(t:|+l J)

-

}

Fy o Ay ) oyt Ay tj’} vV
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U(tj~ t;) +V and /Alj+1—,/lj = U(tj+1_ tj)

(/uj+1 /LL ) /uj(tjﬂ— tj+ tj- ti)-/Mj+l(tj— ti)

=

vV = - (.- t, =
/ij J 1 3+l t] tj+l - tj
tj+l ' ri
ME)dt _ \'/
Hence — 5 by T Ty TN, -t a)
J t. i Jo ] i j+1 J
= (t, “t.)U+Vre,ngt-t + A, - t))
j+1 J j i j+1 3
t
- _.J_tl__i_
= U(tj+l ) + V. Qn( .y )
, i
_ My ey g7 By /LL 41 (857 &) 0. fivi B
= }l'+l_}i' + T — . n(E“-iji-ﬁ
J J j+1 j J i
Thus as the approximation for —}—-I JHLALE) dt we have
27T £ t- t
J
- t - AL - -
1 Mty = t) = Mgy e e n(ti+l ti).] (3.7
27 t... - t. ’ t, - t, :
j+1 j 3 i _J
Using (3.7) with (3.3) gives
n-1 G R o R AR & - t., - t,
(2 - o) U, + Im 24 3+lt = _/::LJH 12 Qn(—jt—l————lﬂ
30 341 7 5 , 370
J¥i-1,1
= 2Trf(ti) (3.8)

Approximation C:

In this case we take ‘/x(t to be quadratic in the interval [t: J+l] .
' The analysis here requires fitting a quadratic function through three
consecutive node points. No difficulty is encountered in arranging the
partitioning of the boundary providing corner points always lie at the
end of a section of boundary over which /}A(t) is to be quadratic. The
partitioning is most conveniently achieved in fact by taking the same
nodal points as before and merely fitting in an extra n nodes at the
mid points of the intervals. Consequently three consecutive nodes are

denoted by tj—l' tj' t, where t. + t, = 2tj and we require to

j+1 j-1 j+1
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. - . ints § | {t
fit a quadratic for /U.( ) through the three points tj-—l'/uj—-l’ j}Lj
and {tj+l'}"’j+lg . We note in passing that this use of a piecewise

quadratic /,L(t) is slightly more specialised than that used by Atkinson[Zl-'.

iA £
£
4
t
t\i‘l
Y
o X
t
1 ()
For the evaluation of —t dt , we again introduce the scalar
tj-l i

>\ and write

\
= + -_— - .
et r Meg, -t) , LE AL, (3.9
. 4t - - ) 5
Remembering that tj—l Lj+l tj then for >\ 1, (3.9) gives
t=¢t. - (t, .- t.) =2t, - t, = t, as required.
3 j+l ] J J+l j-1 4

For ju.(t) quadratic we may now write

>‘(>‘ l)/U. 4t (1- )\2/“- >\(2>\+l)}kj+l so that we have (3.10)

Lot =ty e MM
>\ = 0, t tj ’-/‘L::/Aj ’

and >\= 1, t = t, ,/L(=/L(j+l.

j*(t) =

- collocation at )\

1l

j+1
s v 20 A
(t) o, _ { (A-1) (A+1) } —t ) d
Hence t = . L+ (1- >\ j+l
£, . Tty _ 2 /.Lj_l 5" /LL Tt +>\(t )
i-1 =-1 J
1 (2
= (t. .- t,) A (%}kj e e +l) %A(ﬂjﬂ /uj"l e ah (3.11)
IR R U Tty F AT ) .

-1 J
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Introducing for economy the notation S}lj =/*Lj+l _/ﬁLj—l

r
200, _
O = My oy M
the integrand becomes

%)\2 SZJ(LJ + %Xgﬂj +/uj i U)\ W

+ vV o+
-t + - - t, + -
£m t A (tj,1= &) £ty A (6457 €5

where U,V and W are constants to be determined.

%)\2 S/LL + 45 ) S}L +j}.3 = U)\{ .t +>\(t -tj)}+ v{tj—ti;)\(tjﬂ—tj)} + W

2
Hence from the coefficient, % .= U, - t.);
>\ Sﬁ] Jj+1 J
d from th fficient = - t + t. .- t.).
and from the >\ coefficient, L 8},{.3 U(tj i) v ( 341 J)
2
v=5§ —(t—t)lﬁg}kj
M j g ¢
- t
tJ+l J

2
By - e Sy - s e §T

-t )4
(tj+l j)

Finally from the constant term,

M

vit,- t,) +w ,
3 i

=
It

' 2
: H(t, .~ t, .= (e -t .
M, - (£,- t)) (J+l J)S}“J (J 1)8}13
j j 1 (t, .- t)?

-Returning to the integration at (3.11), we now have

t
j+1
MAE) o W
J et OF U)‘ VYT TET A Alt, - t)) a\
t i 3 i j+1 3

-1
2V(tj+l— tj) + w[&{tj-ti + )\ (tj+l— tj)}

1

-1
= _ 3+l i
= 2V (tj+l 3 + WQn{ Ty t}
i j+1 17 .
2
(k= £ S -ttt § 2, (t ~t.)
S s S J 3 1 J -3 i - t -t
- i + }Lj AT { 1 )ij ( ij:}
3+ ] j+17 75
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' 2
Replacing 8 . and . and rearranging as coefficients of
P . /Ll. 3 ging

}Aj—l) /Lj),}lj+l this becomes

(t. t

-t
j+l i
}13+1 )lj 1 t -t E}Lj l-%}kj /ij+l) /uj€ e i)

(t -ty (/“3+l/t3 l)Q - 3+1 ti)

(tj+l j j -1 i
, .

- -2 -t

+ (tj ti) (/ij 1 ,}kj /LL3+1 Q ( j+l i

12 .

(tj+l tj) 3 175

-t
- 41 i _ _ _

o t_“ LLL] l{(t -ty )(t -t.). Qn( i) (t3+1 t) (tj+l tj_l)}
+ 2(t, -t, )(t.~t )-2(t, -t )(t, -t )Q (—Ji'—l——t—i-)
}'Lj 3L 3-1 3 i S e

-t
- - Il i, - -
j.L +l{(t )t )gn( TE0 ey (e tj_l)}

j -1 1
(3.12)

Before substituting this approximation for /Uigldt into
1
j—l
(3.3) it is expedient to make a slight change in the numbering. 1In this,

the boundary L is first partitioned intoc n segments such that evexry
corner point of L is at the end of a section. We denote these points

t

by the complex coordinates to’ t2, t4, . t2j—2’ t2j reectn . ot t2n ’

where tO = t2n since L 1is of course closed. The mid points of each

segment are required as node points as well, and with this notation,

they are denoted by tl’ t,, tS’ t We

3 29-1" T23417 *°° tan-37 fong

note that t_. = X (t

4/

+t. .), J =1(1l)n.

23~-1 23-2 23
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t and t._., j=1(1)n

The jth trio of points contains nodes t2j—2’ 24-1 23

and replacing /Uit) by a sequence of gquadratics gives rise to the

approximation

j‘ A‘L)d 2{}1L32+r/u_23 1+G)42} (3.13)

i =0(1)2n-1

t —
_ _ - 23 i, - -
where E = (t2j t,) (th—l ti)_Qn(t sy (t2j t,) (t2j t2j—2)'
2j-2 i
t23~ i
=2 -t - -2 - - ————
F o= 206yt o) (b, gt = 20kt (6, -t) On )
t,. ,~t
23-2 i
and G = (t -t.) (t -t.) Qn(Egi:—i——J—(t -t.)(t,.-t )
2j-2 i’ 7231 iTY e, -t 2j-2 71 ' T23 T23-27°

i
Now we obtain two versions of (3.3) according to whether the ti node

is taken at the end of a quadratic segment or as a mid point:-

2
(27 - °<2i—2)}“t ,)+ Im Z Tt 2 E/LL(t2j_2)+F/th2j_l)+G/L((t2j)}
j=1 23 23-2
j#1~l i
= 21Tf(t2i_2) (3.14) ,

and

gl

E 3 F A(t,, G (L, . 3.15

Tr),k(tzi_l) + Im Z (?___2{ /LA 2)+}\( 2J_l)+/,t( 23) ( )

371 37552

ifi

= 2Trelt,, )

It should be noted that in (3.14), the ccefficient values for E, F and G

are now adjusted so that ti is replaced by t while in (3.15),

2i-2'

. o 1 .
ti is similarly replaced by t2i—l

Referring now to the three discretised forms of the integral equation,
(3.4), (3.8) and (3.14), (3.15), sets of linear equations for the
~/
determinaticn of the approximate solution,/pL, at the nodal points

concerned can be generated by taking i=0(l)n-l1 in (3.4) and (3.8), and

by taking i=l(l)n in each of (3.14) and (3.15). These sets of linear
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equations may be solved by the method of Gaussian elimination. In
the practical examples the results of which are given in Chapter IV,

the-well-known torsion problem of plane elasticity was used. In this

. 2 2
blem the bound data f(t,)= R t.=x, + 1y, .
problem e boundary data (tl) %{%1 yl}, where I iy,

At this point in the thesis we make a distinction between the
situation in which the polygon L is convex or otherwise, when it
would possess at least one re-entrant vertex. If the arguments
presented are narrowed to the former case then it will be shown that
the numerical solutions obtained through each of the approximations
A, B and C are completely reliable. In fact we can effectively deal
with the questions posed on page '78 concerning the existence and

~s
convergence of /LL(ti), i=0(1)n-1. The author is of the opinion that
such detailed analysis has not been presented elsewhere. However
should L not be convex the same arguments unfortunately do not apply.
In the case of approximation A, J.Benvenistel:lS:}has shown that the
numerical solution converges when L 1is polygonal with re-entrant
corners not excluded. It is possible his methods can be extended to
cover B and C as well, but not simply. We note that the error analysis
of Anselone [9:7] and of Noble [23] cannot immediately be applied
because the operators we use in potential theory problems for polygonal

regions are not compact (completely continuous).

Consequently we shall proceed with the analysis of the numerical
solutions in the situation where L 1is a convex polygon. It will now
be shown in the following section that the coefficient matrix in the
linear algebra is weakly diagonally dominant for each of the cases A,B

and C.
:Ikv1u£iquﬁdb~ 5F-£LQ Likeai Aeigbro\

§3.3 Approximation 2:

Taking the equations generated by (3.4), the ith row of the resulting
linear equations produces a diagcnal coefficient 2 - 0<i and off-

diagonal coefficients from the terms
g le( j+/u3+l)8

J%i— ,i
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For simplicity and without loss in generality we can take i=0,
at which node we assume a corner angle & o’ 0 £ 0<o £ TU  since
L is convex. Then subject to the usual anti-clockwise-positive
rotation around L of the field point t, we have that for all j,

ej(O) } 0. (This would no longer be true when I has re-entrant

segments) .

44

FC(] , 42

o d
The equations (3.4) may be written in the matrix form K f{= f where

/L_L= }Lo)jil)... J net , £ = 2~nf(to), 2rrf(tl), ey 2~rrf(tn_l)]
and KA is the (nxn) coefficient matrix whose typical element kij

may be read from (3.4). With i=0 then by reference to Fig.42 we

- easily see that

kO,O = 270 - (Xo
_ (0) _ (0) (0) _ (0) (0)
ko, = 50 ko2 = (B, + 8,7, ko3 =200, + 85 ),
_ (0) (0) _ (0)
6,5 ~ ;’(ej—l * 8j )ooee *o,n-1 = ;’en-z

(In the case of certain polygons, it is evident that some of these

9;0) are zero, for instance possibly 91(0) and er(l(—))Z ).
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n-1
Consider Ik I
25 [%,3

(o)l (0) (0) (0)
]%91 + %(61 +82 )) +...+,%en_2

= e.l(O) + 82(0) + ... + er(:—))Z since each Q;O) ) 0.

But this latter sum is equal to the internal angle 0(0 at to'

Thus ko,OI = 27T - o(o
n-1
and Z IkO,jI = 0(0.
j=1
Thus when L nii convex, 0(0 4 T and 27t - 0(0 >/ O(O so
k . B i i e
that lk0,0’ >/ Z o, ] ut since we shall be placing nod

J=1
points at each corner point, of which there must be at least three

(when the region D+ is triangular), then this inequality will be a
strict "greater than" for to at corners whilst being "equality" when
to lies on a straight edge. The occurrence of strict diagonal dominance
at certain rows of the coefficient matrix KA is sufficient for us to
claim that KA is non-singular ([22] p.282 Ex.6). Hence K;l exists

o~/
and /LL(tj) can be evaluated.

Unfortunately when L is re-entrant, the diagonal dominance will

be lost; for when to lies at a re-entrant corner, o(o will exceed TT .

i.e. ,k0,0I = 2T|—-o<o £ TT

n-1
while z [ kO jl ? 4 o (greater than corresponding to the
=1 0
occurrence of further re-entrant

situations around L).

n-1

Hence for at least one position of t , Ik ’( X lk , , thus
o 0,0 2 Vs

spoiling the nature of KA.

Approximation B:

From (3.8) we have that the ith row of the linear algebra produces

a diagonal coefficient 270 - & i and off-diagonal coefficients from
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~ within the term

~/
n=1 - - -t
ZE Im [ﬁ“j 341 ti )Lj+l(tj ti) Q (t3+l iy (3.16)
t -t, . - t -
J=0 i+l 3 J
j=i-1,

Without loss in generality it is again convenient to take i=0
and also to simplify the algebra, to will be taken as origin of

coordinates

v
s

~s
Thus with (3.8) in matrix form as quf.= £,

E-Uops Fonl’, T
) '"'/J‘_ =[ - . ]
o/ 1 n-11, £ 2wl ), 2milt,), p 2mEle )
and KB the (nxn) coefficient matrix with elements k'j' we are
, i

interested in the elements

= 2 - .
Clearly k0'0 - % o

,\J
From (3.16), k . being the coefficient of /pL. will be
o] J

t. .-t t, .-t (t. .-t ) ~ t -t
m| 3+ o (34 o il o (niie |
-t t -t (t. -t ) t., |-t
j+1 3 3 [o) j j-1 j-1 o

or remembering that to is taken as zero,

t t
_ 41 j+L, Y1
k, 5= | T Da ) - Qn(—J—] (3.17)

j+1 3 3 j 3-1 3-1
This expression applies for 3j=2,3, ... (n-2), but due to the special

nature of the approximation around ¢t = to we have



- 91 -~

Im[ t2 Qn(f-g-)]
0,1 t2--tl tl

-t t
n-2 0 n-1
= Im ¥n( )
O,n-1 [ tn--l tn—2 tn—2 ]

ta
]

=
]

Now to establish diagonal dominance it is necessary to compare Iko O,
14

n-1

k

with .
0,3

. Since 0/ O(O<TT, ’kOO

=k = 2 - .
sy 0,0 w Cxo
j=1

The coefficients ko' stem from the linear interpolation approximation
for )ﬁk(t) which gave rise to (3.8). Now it is possible to show that

all the ko' are non-negative and this proves to be the key in subsequently

demonstrating diagonal dominance. Returning to (3.1) and remembering

1 M(t)

that for the moment ti = 0, then the integral term is s T dat
e L
1 dt 1 d
= ——— I —_— —_—
S é}i(t) m(t) oy ),L(t) a5 0s
L L
= 1 2 I+ (t)géi ds
2w o J}A‘ ds
] s,
3

where sj is arc measurement at the node whose complex value is t,_,
o <L sj-< S.
But with the substitution of a piecewise linear approximation for /}L(t)

it is easy to see that the coefficient koj is given by

s, s
K =__1_{ a8 2% JJ’l<519(sj+1s)dp o3 o)
i 2T ds 's, - s, a5 (s =5 )ds §.372,3,... (n
i j-1 F+1
s s.
J—l J
s
(%ag 528
k 1 o “as s o5 ) ds
o, 2.". s 52 1
s
! (3.18) .
s
n-1 s-s
1 ab -2
and kO el= I ——E.(S n— ) ds
' w s n-1 n-2
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Now all these k 3 are non-negative since

. ae
(i) for a convex polygon, e v o, s, £ s < S

n~-1 )
(ii) the quantities in brackets ( ) in (3.18) are always non-

negative. 1In fact of course these quantities are merely the "hat-

functions" common in the literature [23] , often written as

S—Sj_l
@j‘s’ “\aen s Ly

, Zzero elsewhere.

5 5’ s.<s<5j+l

i.e. each and every: ko. is the integral of the product of two non-
negative guantities and so the {ko)j} j=1(l)n-1 are non-negative. We
can now return to the complex form for koj in (3.17) which proves to
be more convenient to handle. ’

Having established the non-negativity of the {ko,j} ;, then the sum
of the moduli of the off-diagonal terms

n-1 n-1
= 2 |x, -
52 17003

B Zko,j

i=1
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t t n-2 t, t, t, t.
= Im[t_z_ Qn(—2J + Im[ J+l Qn( 3;1)— -1 Qn(t .

t k t. -t , t.~t .
o H Y j=2 341775 j 3 el j-1
-t t
+ Im| ¢ r_‘;z Qn(t“'l) (3.19)
n-1 n-2 n-2

Picking out the term in Qn tj gives

t. t. t, t,
Qnt J S L S e + J
j] t.-t. t., -t t.-t. t., _-t,
j 3-1 j+1 3 j J-1 j+1 73
t.-t, . £yt
= Qo [ 2 i
j 3-1 J+L ]

This cancelling of the term in Qn tj is valid for 3j=2,3,...,n-2

when all terms of (3.19) are incorporated, 1leaving

n-1 ' [ -t t t t
2_{ 1 Q n-1 Q n-2
Z k = Im nt, + nt, + -— —{nt ——|
' -t - -t - -
=1 ' °J % Loty LS L N
t t
=Im| - Qnt + Qnt = Im Qn( n—l) = arg (__n_—-_l_)
1 n—-1 t t
, 1 1
= o(()
But ,k l= 2Tr -& _ so that since & ¢ TI ( £ at corner nodal
0,0l o ne1 o
i k
points) then ‘k0,0l >/ jz=1 , -

Hence when L 1is convex we have a diagonally dominant coefficient
matrix KB the representation (3.8), and so similarly to KA' we

know that KB is non-singular.

Approximation C:

In order to show the diagonal dominance of the matrix derived from (3.14)
and (3.15), it will be sufficient to consider (3.14) alone since the
analysié of (3.15) will be essentially the same, and as before, without
loss of generality, we take i=0, and tO at the origin. Then from

-

(3.14) the off-diagonal terms come from

nZ-_l 2 { K i } 3.20)
Im ———— 23 E __+FA_ . +G/LL. (3.20
j= (t2j t2j~2) }23 2 /u'2j 1 23
t
- 23
wheré E = t2j t2j-—l Qn ( ) - t2j(t2j—t2j-2) ’

t25-2
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t2j
to5-2

o]
I

2ty 52" Fayo1” 2505%052 On ¢ )

t..
and G = t2j_2t2j_l.Qn( 25 ) t2j—2(t2j t2j-2)
2§-2

Once again, the required result follows easily once it is shown that

the coefficients {]ﬂyj}' j = 1(1)2n-1 of the matrix KC (say) are

all positive.

4p e
———— 't .
tl\j'l'[ - 2\1{:

t 2;

=1

. FL{\'.HLS

Specially, we concentrate on ko,2j and ko,2j+l these being

the coefficients of ,}sz and /LL2j+l in (3.14). Casting (3.14)

back in terms of real valued expressions will give that k0 23 and
4
k . arise ffom the integrations
0,2j+1
®23 S25+2
(S)gji'ds + /}L(s)g——-ds (3.21)
s ,}l ds s ds
25-2 23

where s measures arc length round the polygon, O g s £ S, initiating
~

at the origin, s2j being arc value at the point on the polygon with

complex coordinate t2j’ Under quadratic approximation /uis) is

replaced by gquadratic functions along [TSZj—Z’ s2j] and [SZj’ 52j+2] ;

. . d . .
and since the polygon is convex, then the kernel &5 s non-negative

for all values of s. In detail now we have that k0 25 is contributed
14

to from both terms in (3.21) while only from the second. The

ko,2j+l
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- piecewise quadratic on [jszj, 52j+2] , S.. = k(s j+ s 3 ).

hy = S50 52411

(s—szj+l)(s—s : ) (s.. —s)(s-szj) (S—SZJ)( 23+1)

2942
)}Us)= on 2 - .}sz + h 2 /#L2j+1 + on. 2 /12j+2

so that we easily obtain

. _ 23+2 . (52j+2_ s) (S—Szj)ds
0,27+l h_2
J
_ G
= ]. s 2j+l(s)ds (3.22)
here o = (523+2 s) (s 523) ]
29+1 h 2 v 834 8¢ 52342
J
o] ’ all other s.

It is evident that 'ﬂ? 2j+l(s) is non-negative on SZj’52j+2 .

Therefore the integrand in (3.22) is the product of two quantities

both of which are non-negative, implying that k 0 as required.

0,23+l }

The similar analysis for k is not so straight forward. This

0,23
coefficient has contributions from both terxrms in (3.21) since the
corresponding node links neighbouring piecewise quadratic approximations.
However as the treatment of each side is similar it will be sufficient

ci i + 1 + . .
to consider the contribution to ko,2j from [ SZj'52j+2J This part

is given by

S2j+2de ) (s=s_. . .) (s=s )

_ 23+1 2j+2 3
kolzj = 2h.2 ds (3.23)
(R)
= 2j(s)ds
(s-s,. .)(s-s,_ . .)
(R), . _ 2j+1 2j+2
where '@ 24 (s) 2hjd ’ Szj S S é 52j+2j

0 ' all other s .
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(L)

The other contribution can be written in terms of a function Yl‘i (s)

similarly defined.

L R
Unfortunately neither '?( ) nor “l}.:/‘( ) are entirely non-negative

gquadratics: -

|

|

|

|
B
|

-~ ——
|

|

I
|
?
|
|
o s

Hence the investigation concerning the positivity or otherwise of

ko 25 must depend on the relative behaviour of the two quantities in the
’

: . af (R) ag .

integrand in (3.23) , as and '\:]'[zj (s). Although 3o 1s known to

be non-negative for all s on [O,S] when the polygon is convex, its

exact nature can be easily obtained from simple coordinate geometry.

Yl
P

~

N
‘\d A FLQ"(V
g

o \>?C
ao

Since it is the derivative s that we reguire it will be

permissable to measure s for convenience from some point A on a

typical boundary line segment ANP (Fig.47), the equation of which is

xcosp +ysinF = p,p>0,0<?£‘n".
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Then if AP = s and AN = d we have

i
o
I

p tan ( E)— ﬁ )

2
ds _ 2 _ (s-d)
a—e—psec(e—P)—p{li—?}

g£?= B (3.24)
p +(s-4) )

d , 1
This relation gives that the maximum value of —— is 5— and occurs

for s=d at the foot of the perpendicular N.

Hence consideration of (3.24) in relation to the behaviour of

j}?(gg(s) (see Fig.46) gives that the minimum value of (3.23) will

+ i.e. i
82j+l 22j+2) i.e. the foot of the perpendicular

occur when d = %(
to the boundary segment [:SZj'S2j+2] from the origin of cocordinates

O will be at the point with arc coordinate (s ).

2941 © S2942

In this case we are interested in

2h

J p, (s~h.) (s-2h))
) X 2 1 as . where p., 1is the
p2t(s->h, )2 21 J
o "3 273 J

x

length of this perpendicular and for convenience of integration s is

replaced by s-s . ©On completing the integrations, this expression

23
takes the value h
P p, 2 252'

< X 1;(——3—) + L where K = tan_l -2 2 (3.25)

h, h. 8 h.

] ] 1_2 2

4 2

Py

is the angle subtended by the segment [S2j’52j+2] at oO.

Now for any given convex polygonal boundary shape, the value of

h, can be made as small as is necessary in comparison to p. by
h-
introducing more boundary nodes. Thus writing gq = Jé} ;, the sign of
J
(3.25) can be investigated from the expansion in powers of q of
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1 1 1,2
-+~ tan (21
4 2q _3q
4

1 1 1 2q 1, 2q 3
=== (T + —=)( ) - 5 ) RN

q 8 o 2 2 3 2

29 [, 39 1-39
4 4
2 -1 3 2 -3

1 1 1 3q 8q 3q 5
B —_— —— ——— - —_ - ——

. (8 5 2){: 2q(1 2 3 (1 ) + o(q")

q

1 1 1 7 3 5
=2 - g+ 3 (2q - T~ + o))

q 2q

1 1 1 3 1 .3
= (q - =)+ Ta + o(gq™) = 5-9 + 0(g") (3.26)
3 h, 3
(3.26) shows that neglecting q = ( j(p } then the value of the
J
required integral is positive. Hence we claim that this contribution
to ko 23 can be taken as positive provided that hj is sufficiently
’

small; and this can always be achieved through taking extra node points.
In fact by direct calculation cf (3.25)when hj=%pj, it can be verified
that the result is positive. It is clear that the other contribution
to k .  through consideration of the function ‘ﬂ?(L?(s) will

°,2] 23
behave in a similar manner and hence we proceed with the investigation

of the diagonal dominance of the matrix KC taking all its elements

to be non-negative.

Taking the off-diagonal coefficients -{ko j}" 3 = 1(1) 2n-1,
[4

we have
] -

j=l 0’3 j=l Olj

n-1 2
=Im ) ——"——— 2 (E+F+G) from (3.20)

L (6, .- t.. )
=2 23 2j-2

~S

by putting ,}Lj =1, 3 2(1)2n-2 ,

n-1

2 p £

=1 [, . E— L S, -

m 22 T . €95 t25-1 n(tz'_z) £ay (Epymtyy y)
J 2357 "2§-2 J



t

23
.ot - 2ttt Qn(———- )
2j-2" "23-1 23 23-2 t2j—2

+ t t eréiﬁl )=t ( t )
2§-2"23-1 t5-2 23-2" 23" "29-2
) _ 1 ) . ;e
Making use of t2j—l =3 (t2j—2 + t2j)' this simplifies to
2
n-1 (b, + t,. ) t.. t,_.
I S 2 . 23 . 2j-2 &(53 )_ 2t2j €252 en(tza )
j=2 (t2j—t2j_2) 23-2 232
n-1 (t, .-t )2 t
_ 2 . 2) 2j-2 Q 23
= Im 5 > - {n (t )
j=2 (t2j—t2j—2) 2§-2
n-1 t..
=Ingn(23)=1m(gnt —Qnt)
h t.. 2n-2 2
j=2 2j-2

O{O (see fig.45)

But the diagonal term 2m -~ oK, (by (3.14}))

2i-2

27 - G(o in this case, and so the diégonal
coefficient is greater than or equal to the sum of the moduli of the
diagonal coefficients; equality being achieved when to lies on a

straight portion of boundary, but inequality must occur at least three
times for various to. This establishes the diagonal dominance of K

Cc

similar to K and K
imi A B

: ~
To summarise, when the polygon is convex, the discrete solution /}L(ti)
can always be calculated since each of KA, KB and KC is non-singular.

For non-convex polygons this claim cannot be made since for at least

one nodal position, one row of the matrix will not be diagonally dominant.
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3.4 Convergence
Having constructed three different ways of approximating solutions
of (3.3), we now consider whether the computed density function JI
calﬁulated at points on the boundary L will converge to the theoretical
solution as the number of boundary nodes increases

~s
i.e. whether Cim ,/u(ti) - Fep| o= 0,

n-> oo

for each i=1,2,...,n.

The analysis will be similar in all three cases but for clarity
we shall examine in detail approximation A first. This means a

comparison must be made between the values /L(ti) satisfying equation (3.3):-

(T - & ) M) + In 2 ﬁﬁ)dt = 2mE(t)  (3.27)
i
J%l 1,1

~/
and the values ‘}k(ti) satisfying the approximate form

3=0
iti-1,1

t
n-1 j+1
(27r - o )N(t ) + Im Z % /’I(t )+ M(t ) ’ ac_ 2 E(t,)  (3.28)
i ME ; I M = i
t. ‘ ' )
obtained from (3.4) by re-expressing it in complex form.

Now (3.27) can be written in the form

t
§+1
dt
(27 - o()(t)+1m {(t)+ (t .2
}‘L Z /’( /‘A t—ti
%1 l i tj
t t
j+l j+1
= 2TrE(t, ) + Im z l: {/LL(t )+/LL(t +1} tft - %E_t_)dt
i i
j+1 1,1 tj tj

where the imaginary part of the expression in square brackets here

represents the local truncation error for approximation A when

integration along [:t,, J+l] is replaced by quadrature. Representing
n-1
the expression by ri_ and then the aggregate Im 2{ r,, by r.,
3 io- ij i
j*i‘lri
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we now have

n-1 tj+1 at
(277 - &) JAM(t;) + In JZ;O ;, {/u(tj)+ }L(tjﬂ)} poe, = ATMEEEr (3.29
J#i-1,i £y
Subtracting (3.29) and (3.28) gives
n-1 tj+1 ae
21 - D(i)e(ti) + Im JZO 3 {e(tj) + e(tj+l)} t-ti =r, (3.30)
j#i-1,i ty

Fa ¥

where e(t,) =./1(t.) - ().
i - i _ i
But with i=0(1)n-1, (3.30) is a set of n 1linear equations for the
. . , ~
determination of the error vector e with components e(t_)=/Uit_)—/#it_).
_ :S i 1 1
[ %

Moreover the coefficient matrix of the set[Fhe same as that in (3.4)
itself, proven earlier to be weakly diagonally dominant with non-negative
elements. Thus in matrix form (3.30) becomes

K. e = r

A - —

where r 1is the vector

.th . .
whose 1 component is given by r, -

To evaluate r, consider first the contribution L due to the
J
single boundary segment [tj' tj+l] . For convenience let the segment
be taken as the interval [T—h,h] of the x axis on the Oxy plane.

Thus tj is assigned to -h, to +h and we take ti as the

t
j+1
remote complex point z, (Fig.48). Introduce the notation RA[}LHﬂ]

to represent the operation .
r h ~h
A (t) dt
Im) - T at + s pem +/U.(h)) — { -
J -h -h

\
i/ PZ

3],

e R
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Then the evaluation of RAL}LU?] will enable the local truncation

error for approximation A to be measured.

Now we note that (3.27) applies generally for all ti on L.
Thus for an internodal boundary point with complex coordinate

T = x(s) + iy(s), we have

"t
n-1 J+1
T M) + In Zoj %dt = 21 £(0), (3.31)
3
t.

where the summation omits the boundary segment containing “C . If
we assume the boundary function - £ is differentiable at an internodal

point, then (3.31) can be differentiated along the direction

s of the boundary to give

j+
™ ('K){x'(s)+ iy'(s) ¥ Imz f (E{“—‘%;z{x‘mn iy'(s)} at

= Zﬁf'(r){x' (s)+ iy (S)} .
Thus /u_'(qj) exists and, in fact, assuming £ is sufficiently
differentiable, further differentiation will give the existence of

/ﬁL"(1:) and /}A'" () for all points < on the interior of a boundary
segment. It is further assumed that these derivatives remain bounded

as - approaches a corner point of I from either side.

Returning to the evaluation of RA[)i(t{] , the first mean value

theorem may then be applied to give

/.Ut) =/Ut(o) + t/.L'("lf) , 0 £ ) t. (Fig.48)

Thus since R is a linear operator we have

[}L (t)] RAD,{(O)] + RA[tj,L'('tf]

v : . .
RA[t}A (’U)] since RA is exact when used on a

constant.
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_ j "tﬂ%l‘zmdt + %{—h).l,l ('U(-h))fﬂ}kl('ﬂh))} =
-h

RA[}L(t)]

h

t},L (’[)Im( ydt - *zh/u T h)J Im(—- at

h
, ;,hﬂ.mhgj e ac
-h

~h

1 .
Now by direct integration Im(E:EJdt = e p (see Fig.48).

/}L'(t4 , then

Hence if Mﬂ = max
(-h,h)

'RA(},((t))’ é hM,;lGP + limg-lep + %hM};ep=2hM}'lep.(3.32)

Returning to the term Lie this is now easily bounded since it

is the sum of (n-2) terms of type (3.32).

1 = ' H = lt, -t,l where h, =]|t. .- t, ;
Let M S%Pth and PR j 5417 &5

then l ri' Q M'H x (total angle subtended at node ti)
= wMmu,
i

and this quantity can be made as small as desired by increasing n and
s0 decreasing H. Now although this analysis just described applies only
to approximation A, it is simple to carry across the ideas to
approximations B and C as well. In the case of B we are comparing

the exact equation (3.27) with the approximate form (3.8):-

Lo ~J .
351{ }L(tj)(tj+l—ti)—}L(tj+thj—ti) 0. tj+l—ti)}
t

o~/
(21T -0, ) (t,) + Im = 27f(t))
i }J i §=o 541 tj tj ti i

JFi-1,i

By similar manipulations to those above we shall arrive at the equation

for the error which is the counterpart of (3.30),
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- 3y - - - —- -
nzl { e(tj, (tj+l ti) e(tj+l) (tj ti)Q tj+l ti)z n-1

(2Tr-o .)e(t,) + Im Xno
i i $=o0 tj+l tj tj - ti 5=
J#i-1,1 Jfi-1,1
(3.33)

L (e —t - gk (et -t 541
where r'.=/(LJ j+1 i j+l 3 i e (j+l 1 J }H:——dt.

1] tj T tj

But again with i = 0(1l)n-1, (3.33) is a set of linear equations for
"nS
the determination of e, =/~L_—/L_ having the matrix form K_ e = r ,
i i i B— -
the coefficient matrix KB being identical with that in (3.8), proven

earlier to be weakly diagonally dominant with positive elements.

Hence the only problem is concerned with evaluating the truncation

error Im Z rij . This is best done by again arranging for the

J
j=i"lpi
interval [tj’tj+l] to coincide with the interval [-—h,h] of the

x axis, and defining

h

h
_ _ 1
RB[ (t)] = Im[j‘ (h-t) JA(-h) + (htt) JL) de A—t_(?dtj .
-h

2h t-z -h

recalling that the first integral WwasS evaluated as. i.;\_ (3.8).

h
. _ (t)
We write RB[ (tﬂ = Im[ —J:};&-— dt + {U/(L(-h) +Vj,k(h)}_\, (3.34)

h h
ere U,:-l-f bt oo oo 1| meae .

h t-z 2h -h t-z

.

Now using Taylor's theorem to expand ).,L {t) we have

JRE) = RO+ ) +1zt2/lL"("C) , = T)<t, the
existence of/.k " Jjustified from differentiating (3.31). Also there is

no error when (3.34) is applied to a linear function, so
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RBD_((t)] RB[/LL(O):I + RB[t/u'(O)] + RBEztzj.L"("CZ’
RB[%tzju" m:)]

h .
2w
Im[ -J 2t t_z(":) atc + U.lzhzj.l " (’L’,(—h»+v.%hiU." ("C(h>)]
-h .

h .
—JA s () i at + A (e () ()

-h
+ %hf}&"(ﬁ:(rn>1m(v) (see Fig.48)
Now let " = max "(t)l .
NNV |
2 11} 2 "% 2 11
Then RBE},L(t)]' { %h Mhep + %h Mhl Im(U)l + %h My ’ Im(V),
h h
But | Im(U), = zif (h-t) Im(—at| =) m-v)miyat since
] h -h t-z 2h - t-z

. 1 . o . :
on [-&hh] ;, h ),t and lm(E:E) is positive taking =z in the

upper half plane. (Fig.48)

1

E so that

h
Similarly lIm(V)’= .f (h+t)Im(E%;Jdt
-h

1 (P 1.
IIm(V), = EKJ‘ (h+t)Im(—£—:—E) at .
-h

h
1 1
< I = — =
« IIm(U)‘ + | mw | e Gp
~h
. R[ (t)] ¢ sh® M20 = ' h20 (3.35)
R A X My p "h p
n-1
Finally we can bound Im :Z r ., = ¥, since it is the sum
jo 1] i
j4i-1,1
of (n-2) terms such as (3.35). Taking M" = sup Mﬂ and H as
J | '

before, we have

r.
1

2
é{ M" H  x (total angle subtended at node ti)

= B’ :
1

This quantity can be made as small as desired by increasing n

and thus decreasing H .
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Finally, for the quadratic approximation C, we are comparing
(3.27) with (3.14),(3.15). Although the algebra looks more formidable,
the nature of (3.14) and (3.15) has been investigated so that it
suffices to comment that by similar manipulation prior to (3.30) and

(3.33) we arrive at the error equation
Koe = ¢ (3..36)

T ~
where e = (el,e2,...,ei,...,e2n) N —e(ti) = },L(ti)-)A(ti).

KC is the matrix resulting from the quadratic interpolation, shown

earlier to be weakly diagonally dominant,

2n

T
r = (rl,r2,...,r2n) where r, = Im Z r. .= jzl Im(rij)

and Im(rij-) is the truncation error resulting from the replacement

t

23

(t) 2

M) g0 _ L

of e, by o )2 {E/-k2j_2 + Fjj‘zj-l G)L 23}
t2j-2 23 2j3-2

as given in (3.13).

Calcu)ation of this truncation error is again handled by taking

.th .
the jt boundary segment to be on the real x axis,

t29-27 %23
-h S b4 < h. Then ti is taken as the remote complex point =z.
Referring to Fig.48) }"‘(t) is replaced by the quadratic function

interpolating /LL(ih) , i=-1, 0,1. It is easily seen that

. t{t~h) (h t h™-t") t(t+h)
= -h
/.L(t) 2h2 /M( ) o+ /LL o) + 5 M (h)
! M) (t=h) (h%-t2) tiem ‘i
and hence Im t—z { /Ll( -h) + —;2——/u }A(h)}
-h
h h p h
_ 1 _ (t- h) 2(h"-t%) N t (t+h)
= Im 2h2 ).L( h)J dt + /u.o) s dt 4 ju.(h) RS d
-h -h

: e 1 )
which we denote for simplicity as Im -2—;5[ U/u.(—h) + V/U(O) + W/Lk(h) .
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Folleowing earlier notations the truncation error is

[(t

But (3.37) measures truncation error in the case where ,/l

[ f,&-—dt+— U ;(-B) +V JL(0) +w/u(h);{ (3.37)

approximated by a quadratic and so is zero when /}L(t) is quadratic.

Further on [ —h,h] we can write

JLB) = JL©) + U () +%—t2/1k"(o) + %tiw" (¥), 0« Tt < ¢,

the existence ofj}& "'  following from differentiating (3.31) and the
assumption that the boundary function f is three times differentiable

at internodal points.

o o]

3

] _:!'_ 2 1] _]; "y
RC[),L(O) FEMTO) # LT H R B M ()

1.3 "e 3
Rc[gt/u (TZ’

h 13
__dt me (’E) -‘
6" M u L3 v \
=1l | - . dt + can (e en) o+ e 20 ()
j‘ b=z om?  © H ( ) 2h2 2h? M j]
~-h
h
1 3 "y 1 1 ,ny e
=J - gt)l (’[)Im(;::)dt + ]—-Ehj.( ('t (—h)). Im(U)+ —'—h/ll (’C (h)/. Im(W)
-h

Now let Mg = ( gaﬁ)[}L"'(t)l

hM"' hM"!
RC[ (t)] < ——h M e Im(U)I + 1—; Im(W)! (Fig.48)
h h
But lIm(U)" + I Im(W)’ Imj —té—f-;—}—l)— dt[ + | Im E-t%-g—}l)dt
-h -h

h
- t{t-h) Im(—)dt | + £ (t+h) Tm (——) dt
- { t-z2 teZ

. h h
2h2‘{ , Im(~l—0 dt 2
t-2
J -h

2
—4hep

+
N
=

m ()

dt
tez
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Rc[/u(t)] < Mi'le +-——h 4h26 =-;—h3Mﬁ'@p (3.38)

p

Hence finally with r, being the sum of (2n) such terms it is

clear that , r I < L 3M"' <. ,
T ) i

where M" = quMﬁl , 2H the greatest step width and O<i the
J ; A

total angle subtended at the node ti.
As before this quantity can be made as small as required by increasing

the number of node points n so that H-O.

To complete the argument we must now show that e =—>» 0 as n-> oo .
In all three approximations we have essentially the same equation for
the error vector, namely Ke = r where we can take the matrix K,

representing K_, KB and KC in the form

A
.- X
2 o( o<01 02 c oo o<o,n-1
27!‘-0(1 °<l2 . .. °<l,n—l
X1 A R P
O(n—l,l O<n-l,2 <o ar -,/
n-1 -
o< X, LT ., ) [X - Z ; = Xy i=on-l.
3=0 ij j=0
(3#4) (3=1)

since all i are non-negative. (In approximation C the count is
carried to 2n, but this will not affect the general argument). Also
since we are now concerned with the behaviour of X, e and r as n

increases it is convenient to write the error equation as

.

K e = r (3. 39)
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We know that Kn has an inverse for all n, but the guestion
remains whether the norm of this inverse is bounded as n— o0 . If

this is so then writing
-1
e = K r
-n n n

and taking some appropriate norm gives
| < s

-1
To investigate the required bound on Kn we recall first the

K»l
n

Kty (3. 40)

n n

|

f

r
-

e
-

standard theorem on bounded linear operators ([24Jpp.233) that "if I
is a bounded linear operator mapping a normed space X into a normed
space Y, then a necessary and sufficient condition for I i to exist
and be a bounded linear operator in Yl' the range of i , 1s that

there exists a constant m » O such that for all elements x € X, “ x” =
-1
Ix > m , 1in which case I

In our situation, Kn is a bounded linear operator mapping Rn

1
<5

into itself. Moreover taking the maximum norm defined by

" 3{_" = ” 3{_” = max Ixil , where x = (xo,xl, “es ’Xn—l) ¢ Rn
[\%) 1
" n-1
and IK “ = K = max Z ’k, } ; the maximum absolute row
n } n i J=0 1]

sum, then we see from the nature of Kn that

“K } = 27 , 1independent of the increase in n.
N o0
Now consider the guantity Kn_:f_ ] where ” i” = 1. From the
0 [ve)
form of Kn we see that
K x = X X + X + .. +
, 27| o max | & %, * Xy 0% X115

lam - Xx + o<i,i+lxi+l

1,
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The values of this expression are to be investigated over all possible
x such that ”_)5“ 00 = 1. Thus it is maximised by taking, without
loss in generality, xi = +1 and X i as the minimum corner interior
angie which we denote by ¢&{ . Then with regard to the above theorem,

the required value of the constant m will be achieved by considering

the min]|K x ; and this occurs by taking x_ = x = i
% n-— 0 1
= O
=X 47 Xipgg = v = Xn-l = -1 in (3.4l1) so that
i ; X 4+ ... + (20 - + ...+
m}l{n m?,{ O<io o (21 o(i-)xi i,n-1 Xn—l

= 2 - X - + & + ... o+
m (X, 0 i1 tO it i X1
= 2T - 2 = 2@ {where P is the greatest exterior angle
of the polygon).
Thus I K_x 2 and so ,K_l £ L Returnin
n= oo ? & { n X 2@ CT g

to (3.40) we now hzave, using the maximum norm, that

(3.42)

Zn
20

e, < 7]

But ” r n“ = max ' ri
Vel Oglg n-1

error analysis that for approximation A, 'riléM'HD(i , for

where we recall from the truncation

; . wepl . .
approximaticn B, ’ri < M"H O(i and for approximation C,
3 . .
‘r.l { W M" X, where & . is the interior angle of the polygon
1 AN 1 1

at the node ti .

.
Thus. for approximation A, " e, © < $ M'HTT,
approximation B ” e L M"HZTT‘ {(3.43)
PP ! —n o0 \<\ 2@ )
. . l " 3
and approximation C, lg_n o < 2@ EM™ H 91

As n increases, H will decrease as required and we conclude
that ” Sn" m->o as n —> o0 for each of the cases A,B and C.

~/
Thus the convergence of )‘L(ti) to /-L (ti) is established.
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§ 3.5 Error in Calculation of internal potential function ul(x,y)

The ultimate aim of the proposed numerical methods is to calculate
reliable approximate values of the potential function u(x,y) at
’ +
internal points &€ D ; and having analysed the behaviour of the
~

approximations ‘fl(t) to the boundary density J}L(t) we are now in a
position to examine the reliability of the subsequent calculation of
the internal potential. Denoting the calculated quantity by u(x,y)
and the exact by wu(x,y) then we are interested in obtaining some

measure of the error between the two quantities

~ +
i.e. u(x,y) - u(x,y) ' (x,y) € D .

~t
Now in order to evaluate u(x,y) , we merely return to (1.17) or

its equivalent and write

W,y =50 Qusrab , o ¢ s ¢ s, (3.44)

(see Fig.11l). Having completed the earlier calculations given by the
~J
various approximations for /}L(s), then the integral in (3.44) can be
~/

evaluated by "filling in" values of //i. at points on the boundary L
of the polygon between nodal points according to whether approximation
A,B, or C has been pursued. We can then write from (3.44)

5,

Tex,y) = 5= n}il 7 (6108 (3.45)
X,y 2-rr £ }J. ] -
3=0
s,
J

where a typical integration along the straight boundary segment between

nodes at _sj and s can be carried out exactly as appropriate to

j+1
the three approximations.

44

| Fcﬁ : Lﬁ
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i.e. for A, where /LL was approximated by a piecewise constant,
S:41
h T (9100 S e + Ts, 1 B
we have S = S, S. .
M ey M 3
s,
3
where Gj is the angle subtended at P by the segment [Sj’sj+l];
for B, vwhere /LL was approximated by a piecewise linear function
we have, following the work providing (3.7) in terms of complex points
on Oxy, 2z = x+iy , that
~ ~ v
e ey q=2) = e, ) (E-2) e tj+l_z"
n {(—=——") H
t. - t. t, -z
vl 7§ j d

S.
J

+Ly

jL(s)dG = Im
S.

3

and for C, where jJ. was approximated over say sj 1 Z sj < sj+l

by a piecewise quadratic function, we have following the work prior

to (3.12) that

S

j+lN 2 ~ ~ ~
JL(S)de = Im[(m)z{E}l(tj_l)+F/A(tj)+G/(,L(tj+l)}

S

j-1
t - 2
- - - 3+ - -
where E (tj+l z) (tj z),gn( ) (tj+l z) (tj+l tj—l) ’
t. ,— 2
j-1
t -z
J+1
= - - -2 - - -
F 2(tj+l tj—l) (tj z) (tj+l z) (tj_l Z).Qn( )
t., ,—2
J=1
t -2
P 3+1
= -z —z2) ¥ n( 1= _ - -t .
and G (tj_l z) (tj z). X n( j_l_z) (tj_l z) (tj+l j-l)
t'+l
o : I e \
Now it is known that any function of the form 1Im - dt, (3.46)
t.
]

~/
where }L(t) satisfies very general conditions, gives rise to a harmonic
function for all z in Oxy, =z not on the contour. Further, the sum
. . . ~/
of a number of such functions being also harmonic, we have that u(x,y)

calculated from (3.45) by any of our approximations will be harmonic.
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~ +
Thus both u(x,y) and ul(x,y) are harmonic for any (x,y) € D
and hence their difference u -4 is also harmonic. By the 'Maximum

Principle'’ ([3] page 255) for two-dimensional harmonic functions)

~
?aﬁ l u(x,y) - u(x,y) will occur for some (x,y) on
Y

L. But u(x,y) and 'E%x,y) coincide at nodal points so that this
gives the useful resﬁlt that the maximum error between ul(x,y)

~J
and the calculated u(x,y) can be estimated numerically by merely

o~
examining the difference u - u at points on the boundary between nodes.

For instance we may refer to the exact equation (3.3), which for

a point ti' not a nodal point, so that « i = TJr , can be written as

t
n—1 j+l
1 (£)
e g I ) j‘ e
i=0 i
55

j#i-1,1

It

u(t,)
i

For simplicity, let us take ti between tO and tl so that

t
n-1 j+1
1 (t)
= 1 t+ o ,L. .
W) =% A(E) + 5= 1n 2 J co dt (3.47)
j=1 i

) t.

J
Again bearing in mind that the calculated density function.;;((t)

gives rise to the harmonic function ’K(x,y) in (3.44) it follows that

n-1 tj+rV

= —_ Panted
(e,) = Hpiey) + 5= In ) = at (3.48)
j=1 i
t.
]
. ~J
where the integral term in (3.48) is variously calculated for'fk being

now generated for all boundary t as piecewise constant, linear or

quadratic.
~ n-1 tj+l ~/
e - - 1 (£) = ML(t)
u(ti) - u(ti) = %{}Li /Ml} + T Im jZlJ‘ €%, dt. (3.49)
t.
J

But we had earlier for the density error vector e ?‘15.—

=(/*o —}Jko’/u“l"/ﬁil’ ""/’Ln-l"}rn—l)T that e, = M - A —0 for
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all i as n—» 00 .
However in (3.49), ti is not a node point, so we cannot immediately
~J/
replace ).k(t)—j&(t) . But on any interval of the boundary [tj, tj+l]
in the case of approximations B and C we have the difference between
~S
two continuous functions ji(t) and /(A(t) . This difference must also

be continuous at any intermediate point t, so we may write

0 - e = me)- Ky +n S - Kol 3.50
ju j.* }L J jl J J }L J /Lk J

where if h = —t_‘ then O h. h and . =7T. (h.).
j < 5 < j i3

I tj +1
(We already have existence of )_k ' from differentiating (3.31) and j(( !

exists being the derivative of a polynomial).

~
. . - p =
But (3.43) will imply that ,/u.(tj) /LL(tj) < kH o) 2,3, k a

M" . , ny
positive constant equal to 22 in approximately B and Mo

4(5 in C)

< ka + HM where as before H 1is the

~s
maximum step width and M is taken as max ‘ (L) - un! (’?5.)! .
arn gl A E AT

Hence in (3.49) we now have

)

' | B
-~ ~ 1 J ~ dt
,u(ti)— u(ti)i é 3 ,jL(ti)—/UL(ti)’ + = j [ },L(t)—jk(t) l Im(t*ti
Ll
J

p 1 p
< Lk H +LHEM  + S (kH +HM)T‘_

= k& + HM (3.51)

For approximations B and C, as the maximum step width H is decreased,

n/
then u(ti)— u(ti) can be made as small as we please as is required.

~
For approximation A we proceed a little more warily since /,L(t)

being a piecewise constant is not continuous at nodal points. We have that

~ ~
jl(t) -jk(t) = Qe - %{}L(tj) +7k(tj+l)} for intermediate t.
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But }L(t) is a continuous function and so we may write by applying

the mean value theorem

/.k(t) =/A(tj) + hj /u'm:j)

and also j}‘(t) =).A(tj+l) - (h - hj)/,k (’tj_'_l). Adding these equations

gives
t) = t,) + t, + %h, ' )= %(h-h.) o' . 3.52
}A( ) %{/LL( J) /.L( j+l)’} 5 J/u (’2,’3) 5¢( J)/,L (’CJ+1) ( )
finall Ky = Y % :
Hence finally ),L(t) —}L(t) = %(}lj-}kj) + %(})-:.”_l-/uj_'_l) + lzhj}.k (’rj)
- 1z(h—hj)).,L (’tj+l)
!)L(t)—/lk(t)l < 55— M'HTr + LHM' + %HM' , M' as previously defined.
S YU LU U,

’g

Thus returning to (3.49) this gives for approximation A that

~ : 1 n-1 (" 5541 at
t)-u(t LAM' (1+ =) + —— t)
| ut)-ul i)l < L F) Z_ 'j{L(t) ;l Im(t—t.)
_ J—l 1
' L 1 ' L

Q LHM' (1+ 2@ ) + 5 X HM' (1+ 2? )TV

= HM'(l+ “2'(3") (3.53)
But again as H 1is decreased this expression for lu(t)—(ﬁl(ti) can

be made.as small as we please so that overall we have achieved the desired
aim of showing that for increasing discretisation- refinement on the
boundary, then

Lovd +

u(x,y) —s ulx,y) , all P(x,y) € D

in the case of all of our approximations.
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Chapter IV
In this chapter we give numerical results obtained through
applying the methods described in Chapter III. This means that (3.4),
(3.8) and (3.14) and (3.15) are used to generate sets of linear equations
which are then solved for ‘jIkti) by the use of computer programs.
Finally further computer programs are used to enable ‘ti(x,y) to be

o~ s .
generated. Tables of values of /pL and U are given at the end.

As stated earlier, the well known torsion problem in elasticity
has been used to provide the example considered. Hence in each of the
representations the boundary data f(ti) is taken as %(xi + yi) where
ti = xi + iyi . The polygonal boundary L is taken to be rectangular,
of size 2 units X 1 unit, this being a suitable shape for trial since
the analytic solution is available in the form of an infinite series.

Comparison can then be made between the analytic solution, u(x,y), and

. ~ .
the various approximate solutions u(x,y).

To simplify the computation and make use of symmetries,.the
position of L 1is as given in Fig.50. This means that four-fold
symmetry is exhibited for a (2x1) rectangle, so that if (§,§) are
coordinates of a typical boundary point then

~ - - ~ . = ~ - Y, - -
/}L(x,y) = //i(—x,y) = /}A(i,-y) = /}*(—x,—y) .
Also for any point (x,y) in D+, we have

Tix,y) =N(x,9) =0lx,~y) = Tl-x,-y).

Ya

bt,.g) (% ,E)
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This four-fold symmetry has been incorporated into the computer
programs. Hence although we require a discretisation of L around its
ent?ire length we can in fact work solely with the quadrant x >/ 0o, v ? 0.
Node points have now to be placed on L, and a flexible system is
required so that the number of node points can be easily increased
without the necessity for a new computer program each time. Also the
nodes do not need to be at equally spaced intervals (apart fror;l the
requirement in approximation C) and it is possible to arrange for them
to be clustered more densely if desirable around a corner point of L.

A typical situation is shown in Fig.5l:-
2% 23 22 2 2 1948 17

(o)) © ()

o, & 20

1o
13
2

Fi . 5!

00625 '

O = P WF 0 o ®D0 G

In this case nodes are spaced equally at distance Tlg = 0.0625.

Thus around the quarter rectangle there is a total of 25 nodes, numbered
~ ~s

as shown from O to 24. The values /LO'/LLI' ...1%24 are found by

solving a set of 25 linear equations. Bearing in mind the four-fold

symmetry, this is equivalent to placing a total of 96 nodes around the

entire boundary L.

. . , +
The mesh shown in the interior D of the rectangle occurs naturally

as a suitable framework for points at which "1\1/(x,y) can be calculated.
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Thus in Fig.51, an array of size (8x 16) can be set up to hold calculated

values for 'Ekx,y) in each of the approximations A,B, and C.

As mentioned at the beginning of this chapter, comparisons are
possible with the analytic solution of this problem. This is so since
. " 2 A
the classical problem "solve ‘7 u =0 within D such that u(x,y)
' 2 2
continues onto L as %(x '+ y )" may be solved by the methods of
"separation of variables of a partial differential equation" and the

use of Fourier series. The solution may be expressed in the form

[«%.]
(-1 cosh(2n+1) Trx/2

2 2
ulx,y) = 5(x - y2+2)+3— cos (2n+1)

3 3 b (2n+l) /4 RIS
TT° 1=0 (2n+1)> coshien

2

This series can be summed for given input of (x,y) by suitable

computer program.

Although we can make-direct comparisons between the values of
?ﬁx,y) and u(x,y) and the reliability of the numerical methods then
assessed, no similar comparison is éossible for the calculated boundary
density ;ﬁkti). For the Dirichlet problem in the case of a region
with a circular or elliptic boundary, exact solutions are available
for /u(t), see [5} and [:18] . But in general, including the case
here, we have no‘analytic expression available. This calculation of
an intermediate quantity ,71 is one of the main draw-backs of casting
the interior Dirichlet problem in terms of the double layer potential

since the double layer density ’/L is not of any physical interest.

Surveying the integral equation formulations described in Chapter I,

let us consider the alternative choices available.

1. The single layer formulation gave rise to the integral equation
(1.6) for the determination of the single layer density o'(s), followed
by the evaluation of beny) from (1.5). Here o (s) 1is the solution

of a Fredholm equation of the first kind with logarithmic kernel. As
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with }i(s) the calculation of @ (s) is of minimal interest in
solving the interior Dirichlet problem. The discretisation of (1.6)
will lead to a problem in linear algebra for the determination of ??(si).
This alternative has been used chiefly by Jaswon and Symm [12] in which
it is proved that (1.6) has a solution for smooth boundary contour L
apart from an exceptional contour which can be avoided by scaling.
Assuming this theory can be extended to polygonal contours, then on
discretising (1.6), the resulting matrix does not possess the convenient
form of that found through use of the double-layer. A further numerical
difficulty is presented by the logarithmic kernel which requires the
evaluation cf inproper integrals. No such difficulty occurs for the

kernel of the double layer formulation as explained in (3.3).

2. The other alternative is the use of Green's boundary formulas.
In this case the solution of the Dirichlet problem is obtained through
the use of the integral equations (1.38), (1.39) and (1.37). It is

convenient to list them here again

1 -
(1.38): §—%%~Qn(;)ds § f(s)al ;, O ED
L L

1
(1:39): §—a—%.en(;)ds §f(s)de - O<Of(so) , O €L
L L

and (1.37):  u(x,y) =§lﬁ§{f(s’de - %-&(%)ds} , (x,9) € D'
L

where O is the pivot point.

Clearly an outstanding advantage of this formulation is the
absence of any density function, the calculations yielding approximations

2
to the normal derivative <4 . Either (1.38) or (1.39) may be used

on

as Fredholm integral equations of the first kind. Having obtained —=— ,

on
it would then be substituted into (1.37) and the generation of the
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internal potential wul(x,y) completed. The differing positions of O
mean that the evaluation of f£(s)d8 1is completed separately for
each of (1.38), (1.39) and (1.37). We may refer in passing to the

paper by P.Swartztrauber [25] where an integral equation method is

used derived from Caﬁchy's integral formula. However as explained in
Chapter I of this thesis, equations (1.59), ( 160) etc., this is
equivalent to Green's Boundary Formula and essentially no new formulation

is obtained.

Now it is clear that since the kernel of (1.39) is identical
with that of (1.6) then the discretisation of (1.39) will lead to the
same matrix. Thus the same comments on the difficulties in the
numerical linear algebra apply again. Also allowance must be made for

u .
discontinuity in -%%H at corner points.

With regard to (1.38), we have a different situation, inspite
of the apparently identical kernel Qn&%ﬂ. The placing of the pivot
O in D removes worries concerning the calculation of Qn(%) since
in this new situatisn r 1is never zero. This formulation of the
Dirichlet problem, ostensibly the simplest and most concise of all, has

almost completely escaped attention of most workers in this field. It

may be found as far as the author is aware in only one source, namely

du
dn’

provided that L is smooth, is established by Kupradze in| 13J ,

the book by V.Kupradze [13] . The existence of a solution

page 253. There seems no doubt this can be extended to a polygonal
contour. With regard to obtaining a numerical solution by carrying
out the usual boundary discretisations there is the added facility of
being able to place the cﬁllocation points anywhere throughout D .
Some analysis is given by Kupradze (p.254) in which it is shown that
the resulting linear equations can be solved provided the points are
taken on a contour lying in D that is concentric with L and

sufficiently close to it. This accords with results obtained by one
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of the author's undergraduate project students [26] in which it was
found that the solution of the torsion problem for a rectangular
region through the application of (1.38) was inaccurate unless the
concentric +contour was moved up close to L. It is clear that as
this external contour moves up into coincidence with L then the

integral equation formulation (1.39) will be recovered.
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Results Section

~
In TABLE 1, calculated values of the boundary density /u. are
listed for each of the three approximations A,B and C. In TABLE 2,

, . ~ . . . s
the resulting potential wu(x,y) is displayed at selected points within
the rectangular region. At each point fcur values are listed corresponding
to approximations C,B,A and the analytic solutions respectively. Each
value is quoted correct to six decimal places. 1In TABLE 3, the errors
have been calculated and listed at the same selected points as in

~
TABLE 2. Both the raw error, u(x,y) - u(x,y), and the percentage error

are given, as explained in the key to TABLE 3.

Tt will be noticed that the results are generally satisfactory with
a small percentage error when any of approximations A,B or C is applied.
An error pattern is also established throughout the rectangular region
with the exception of the part lying near to the corner point. This
pattern shows the reward expected by the greater sophistication of
approximation C over approximation B and also that of B over
approximation A. 1In fact it is clear from the data in TABLE 3 that the
respective errors, .EA' EB' EC to six decimal places, fall naturally

into the pattern

E ¢ E * E = 2 : : .
A ¢ B - C ! °

This satisfactory state of affairs is rather spoilt as we examine
the approximate potential values obtained close to the corner point.
To get an idea of the fluctuations, the results are quoted in TABLE 4
for a number of interior points close to the corner. It can be seep
from examination of TABLE 5 that the general error pattern suggested
above collapses. Some of the approximate solutions 'E%x,y) fall below
the exact u(x,y) for the first time and although approximation C

is generally the most accurate, this is not always the case.

As discussed in Chapter 3, the positioning of the original boundary

nodes can always be adjusted. We do not require equal spacing between



them save only that in approximation C, a mid point node has to be

used. Hence it is possible to cluster the nodes more closely near

to corner points as appropriate on the assumption that greater refinement
near to a corner will lead to more accurate results. 1In the case of

the rectangle, effectively one corner only has to be considered, with

the nodes placed more closely along each arm enclosing the angle.

Three different node clusters were tried leading to new calculations
N .
for /P- in each case. The derivation of new positions for nodal points
was incorporated into the computer programs written for the application
of approximation C. Thus new data is available for 'E%x,y) based
. 3 . . N
upon the quadratic variation in .jk(t) around the boundary. For each

of the clusters tried there were still in fact only 25 distinct nodal

points.

The results obtained form this refinement are displayed in
TABLES 6-10. It is clear from the results for this example that a
mild clustering of nodes is preferable, this being listed as "1lst cluster"
with corresponding calculations of the double-layer density and final

interior potential denoted by /fLC and u(x,y)C respectively.

One further table is incorporated, giving data generated in an
attempt to check the conclusions drawn from the 'Maximum Principle'
outlinea in Chapter III on page I3 . This establishes that the greatest
error lu —'ﬁl, will occur at points on the boundary L of the rectangle.
It is seen from the end of Chapter III that as the distance between the

node points decreases that then this maximum error can be made as small

~/
as we please. Hence we may attempt to find msx ‘u(t } = u(

Q

t is some point on L, not a node point. The theory will not tell

Q

us where absolute maximum is obtained, but it would seem sensible for

t ) where
Q

the calculations to be performed at points mid way between nodes. The

attendant results are given in TABLE 11, and were computed only with
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respect to approximation C, the node points being equally spaced,

at interval 0.0625 as before, around the rectangle. The table gives
o~

values of u(ti) and u(ti) where it is worth recalling that

u(t,) = %(X?-+ y?) and, from (3.48),
i i i

t
n-1 F+1 7
~ ~ 1 (t)
= 4+ —
ult,) lzju(ti) 2w im j=Oj tt, at
jzfi_lri tj

o .
/}L being interpolat=d at ti from its guadratic nature in the case

of the first term in this expression.

From TABLE 11 we see the worst situation at the point denoted

by (ix) at which the % error can be calcualted as 0.58 % .

Conclusion

This thesis attempts to show the complete reliability in posing
the interior Dirichlet problem for convex polygonal regions in terms
of double layer potentials leading to a Fredholm integral equation of
the second kind. The error analysis developed has shown that complete
faith may be placed in the resulting numerical solutions attempted.
Although the solution of two dimensional 'potential' problems is more
popularly considered nowadays through the Green boundary formulas,
nevertheless it must be recognised that the traditional double-layer
method will produce a completely sound theoretical basis which can be

translated into an equally reliable approximate form.
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NoD& NodE | K, g K.
CooRDINATES [LABEL |(nerren. A) |(prrrex B) [(weiex. C)
0:5ceef © | O [-0-155299[-0' 154879 [-0-155 164
0.5cce|c-c625| 1 |-0-15202% [-0- 151604 -0-151 890
o.sceclo i2se| 2 |0 1w 19T |-0: 141769 -0 142061
0.5¢co|C-1875 3 |-0-1257751-C- 125383 1-0-125653
O -50c0|Q- 2520 4 |=0-102742 |=0-102317 |-0-10263]
0-5otelo3125| S |-0.073040[|-0-072612 -_9‘_9»‘7‘3_‘_13_‘3
0-500c 03750 £ |-0 0386C7|-C 036174 |-0- 036528 |
¢.8eeo |G R7Y 7 |+0-006629 [+ C.007068 +O . ug;é.é%g
O-5oel |G BT 8 | S 056746 0057193 | © 056774
0-secc|e§625| 9 | 0-113323] 0-11«28 | ©-113315 |
Q.5ccr|c.6288 (0 | Q- 177935 | ©-178407) O 177531
G-Scec|g 6978 1) | C- 24145 | 0 244633 | O-24Tedl
o-5eee|C.TIs5e {2 | 0-327sce | ©-328024 | 0327306
O Feet|t SIS 13 | ©- 413037 | G-&I3815 | ¢ 4273 ]
O.§eet |0 -g750 (¢ | S-505a53 | O-5C06551 | ©O-505433
O 5eet|e-9374 15 | ©-606455 | ©-60T76T] | 04066217 |
O -Sece|i-oott le | C-726511 | ©-126490 | ©-726619 |
Cc-4375)i-vece 171 766283 | 0767566 | © 76%202
©-375c -0t 18 | ©:753991% | 0.788317 ) C S154 44
0-325|i-cece i49 | O« 7bB493 | O-74551« | O 746575
Q.28cc i Sotn 20 [ ©-73{975 | 0.73]142 | G-732144
O.ig75 |1 sece 20 | 0718385 | @ .2%1Ch | ©- 719070
Q -125¢| | cead 22| ©-7085%] | 0-707459 | © IeS¥a%
0.0625(i-tere| 23| ©-T702I53| ©.ICISIL ]| O 701%‘7(:

o |lscce| 24| ¢ 699404 | 6 -(95398] 0. 700316 |

I Tasle  oF W lx,4)
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