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Abstract 

M.J. HAMSON - "Integral equation methods in the numerical solution 
of boundary-value problems for Laplace's equation 
for two-dimensional regions bounded by polygons" 

Although considerable research has been carried out on the 
application of integral equation methods in solving two-dimensional 
Laplace boundary problems, often the occurrence and effect of corner 
points on the boundary contour is not treated. Accordingly and also 
with regard to practical problems, this thesis concentrates on the 
case in which the boundary is polygonal. 

In Chapter I it is shown how the interior Dirichlet, Neumann 
and mixed boundary-value problems may be formulated in terms of 
integral equations. Use is made of 'single' and 'double' layer 
potentials, Green's boundary formulae and complex variable methods 
in the formulations presented, thus allowing for comparisons and 
relations to be made between these various methods. The systematic 
treatment given is a particular feature of Chapter I. 

The main investigatory work in the thesis is concerned with 
obtaining the solution of the interior Dirichlet problem through the 
use of the double layer potential and resulting boundary density 
function. In Chapter II reference is made in detail to the classical 
work of Radon in order that the existence of this density and hence 
the solution of the Dirichlet problem is justified when the boundary 
of the region possesses corner points. It is recognised that in 
practice an approximate solution will be necessary and in Chapter III 
the author proposes three alternatives leading to approximate values 
of the density based on its replacement as a piecewise constant, 
linear or quadratic function over some boundary interval. When the 
polygon is convex it is shown that the calculated density and hence 
the resulting approximate solution of the problem will converge to 
their theoretical values for all three of the proposals as the size 
of the boundary interval decreases to zero. 

These methods have been tested on a rectangular region and the 
results are given in Chapter IV. Comment is made on the suitability 
of the methods and the accuracy of the results. 
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Chapter.  I 
L►&oJh 7.  

Many authors have worked successfully to obtain a numerical 

solution of Laplace's equation in two dimensions by integral 

equation methods and full references will be acknowledged as 

appropriate. However the possibility of the boundary not being 

smooth has sometimes been avoided and thus the particular 

difficulties associated with corner points not treated. Hence 

at the outset the following polygonal boundary shape is posed 

(Fig.l) and the aim of this thesis will be to concentrate on the 

possible solution of Laplace's equation in the region interior 

to this boundary. 

The possibility of a re-entrant corner at which the interior 

angle O( exceeds ĪT is included so that the polygon can be convex 

or non-convex. No rounding of corners will be undertaken and so 

the polygon will always be entirely made up of straight edges. 

Further, cusp points will be automatically excluded so that 

0< '(<21T 

Along the boundary contour L , s will be used to measure 

length, beginning from some convenient initial point A which may 

or may not be a corner point. Denoting the total length of the 

boundary by S , then O 	s 4 S . Also the region interior 

to L will be denoted by D+  and that exterior by D (Fig.2), 
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the direction of description of L being such that D lies 

to the left and D to the right. 

2 

Q it) 

0 	> x 
Any point Q on L will have cartesian coordinates 

[s(s), 1(s)} , the functions 	i(s)  and 11(s) being piecewise 

linear due to thepolygonal boundary. A normal unit vector 

A = n(s) will be taken into D+  ; n will be piecewise constant 

with a finite discontinuity at each corner point. 

With this notation the fundamental potential theory problems 

in two dimensions for the interior region may be stated: 

To find a function u, harmonic within D+ (i.e. satisfying 
2 	2 
Ū u 	Ou  Laplace's equation axz  + 	aye = 0) and continuous in 

D + L such that either 

(a) u(s) takes prescribed values f(s) on L, (Dirichlet 

problem); 

or (b) a n(s)  takesrescribed values p 	g(s) on L, (Neumann 
problem); 

or (c) at each point on L, either u(s) or '?u(s) takes a 

prescribed value h(s), (mixed boundary value problem) 

Throughout, f(s) will be assumed continuous, g(s) and 

h(s) piecewise continuous (it being impossible to associate 

g(s) and h(s) with a value of an at a corner point). 



Each of the problems (a), (b) and (c) will be re-formulated 

as an integral equation. The question of existence of solutions 

will be discussed in Chapter II. The corresponding external 

problems will be referred to only where necessary. 

As stated in the Abstract, an effort will be made to give 

all the integral equation formulations for (a), (b) and (c). 

Thus 'single' and 'double' layer potentials are discussed as well 

as the application of Green's formula and complex variable theory. 



1.1 Single Layer Potential 

The electrostatic background to  the single layer potential 

may be found in Ll'(page 83). 

	

	It is shown there that the 

electrostatic potential at P(x,y) (Fig.3) due to a line charge 

p 
at Q is proportional to en(-

1  
), where r = ,PQ 1 . We require 

a 'single layer' of such line charges to be placed around L with 

density C'(s) so that the potential at P due to the charge 

over boundary increment ds can be taken as Crx (ds)x C.n (r)  . 

Hence using the principle of superposition, the total 

potential u at P, up, is 

up  = u(x,y) = 	Cr(s) `n (1) ds, P E D+  _ 	 r 

Since P E D+, e n(1) is bounded. Hence (1.1) will exist 

if Cr is integrable, and will define a continuous function of 

position as P moves in D+ . If Cr is allowed to become 

unbounded the integral will exist as an improper integral provided 

each 	
si+l 

6(s) I ds exists, where s < s < si+1 denotes some 
S. 
i 

interval within which d is unbounded. 

In either case we may differentiate under the integral with 
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respect to x and y to show that u is harmonic: 

2 f12 ~2 
V u

P ax2 
+ Dy 2)  

Cr(s) en( )ds 

 
0-(s)

(2 	2 
~

s) C~ 

)

x2 	
2 n 2 + 	) 	r ds 

L 

But r2 = (x -/-1;)2   + (y - 1) 2 

_ a 	2(x -)  
āx (x 	+ (y -TW 

= 	(x - )2 + (y -Y1)2J2 - 2(x -5).2(x -S)  
.()c - )2 + (y - )2 2 

2(y -T)2 - 2(x -
r.

)2  

r 
4 

Hence ( •~ 2 + a22) p r2 _ 2 (y- il) 2 - 2 (x- ) 2 + 2 (x- ) 2-2 (y- )1) 2= 0 

Ux 	~y 	 r 

so that V2u = 0 as required. 
P 

To solve any of the boundary value problems (a))(b) or (c) it 

is necessary to consider the value of this potential as P approaches 

a boundary point Qo 
	• 
of L at which s = s 

o
. (Fig.3) When P 

concides with Qo, (1.1) becomes an improper integral since 

r ---3 0 as Q-->Q0. It is therefore necessary to find whether 

LA has a value when P = Qo E L and also whether the limiting 

value of u as P-->. Q
o 

from D+ coincides with this value. 

Firstly place P at a point Q
0 

of L : then clearly the 

existence or otherwise of the integral (1.1) is determined by the 
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contribution to the integral given from the neighbourhood of 

Qo. 

It is sufficient to consider one side of Q
o 

and investigate the 
h 	p 

value of I = lim 	r Ci (s) en (1) ds where without loss s may 
C 	.JE 	r 

be measured from Qo and h is a Suitable small distance (Fig.4). 

It is clear that Qo being a corner point has no effect on the 

integral I, which can be thought of conveniently as taken along 

the x axis (Fig.5)) 

• h 	n 
so that 	• I = lim Se (Y'(x)C.n 	dx (1.2) 

Now this integral exists when u"(x) is bounded in r O,h 
rh n 

because J l"n(x)dx exists. 
0 

If c(x) is unbounded, e.g. suppose 07x) behaves as 

xa when x -40
+ 
	for some constant oC , then we may use 

h 	pp 	 d+1 n 	o ~-1 ih I x« Pri(1)dx = LX 	 Ln(1) + x  
x o(+1 	x 	(o(a-1):1 

E 	 E 

and this has a limit when e O provided x > -1. In both 



these situations, the value of I can also be made as small 

as we please by letting h •-_ . 0. 

Returning now to the polygonal contour representation, it 

follows that when P is placed at some Q on L, where Q 
0 	0  

may be a corner, then the single layer potential (1.1) possesses 

a value, notwithstanding a possible singularity at Q
0 
 in 

«(s) of the form s<  , cX > -1. We note also that u 	is Q  
0  

convergent in the ordinary sense and no 'Principal Value' integrals 

are necessary. 

To complete the investigation on the single layer potential 

as P--). QO  e L, let P be placed not on L but close to it in 

D (Fig.6). Then we are interested in lim uP  . 
P -+Q 

0  

Construct a circular arc centre Qo, radius h, intersecting 
a,va C0,67,1:hi^ 3 P 

L at Q' and Q"Las shown. This divides the boundary L into 

two parts : Q'QoQ" denoted by e , say, and the rest of the 
boundary denoted by L - e . Now take l,(p  , as defined by (1.1), 

= f43-(s)  en(r)ds 	u(L) 	= u (C) + u (LA) . 

In Fig.6, Qo  is placed at a corner point and the boundary e 
includes a length h to either side of Q.  . However it is evident 

that we need only consider the contribution to a (e) from Q Q" o 
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and there is no need of special considerations for Q 
0 

at a 

corner or otherwise. 

Thus uP (Q o0") = 	J CS-(s)   en(—r1 ) ds where r = PQ. 

QQ'I 
4 

Letting 
e 

==,QN 	, then p ( r as Q moves along QoQ" 

r 1 —
1 and, assuming that the dimensions of the 

region are such that r,e.,h `/ 1 	then 	en (r) = Cn (r) < Css (10) . 

Hence iupoQh' )1 ( J (G(s) I 1 	ds e f 
\ cÍ(s)\  ~n1 ds. 

If I (s)l  4 M on QoQ" then 

+

I 
 u(QQ) I< M 	l: n ds \ M 	e n X dx  11  I 	oQ" 	 o 

=M(h-hQnh) 

which expression tends to zero as h.-.. 0 . 

Further if C\--(s) has a singularity on Q0 Q" of type s°( 

-1 < of < 0 then we can again show that I uP (QoQ") 
1 
	O as h O. 

Hence we have that lira u (0) = 0 and, since P always lies 
h- 0 P 

within the circular region described, then 

lim u ( e ) = O. 
P-÷Qo P 

But, writing u = u (L) = u ( e ) + u (L- e) then 
Qo 	Qo 	Qo 	Qo 

(1.3) 

uP (L) - uQ (L) = u (e ) + u(L-e•) - u (~) - u (L- e) 
Qo 	Qo 

=S up ( 	- uQo (C )i + up (L- Q) - uQo (L-e )? 

up (L)- uQ (L)1 	(ue - uQ (e) + up (L_ - uQ (L_e)  	(1.4) 
o 	o 	 0 

Q
O
QI' 	 QUQ" 
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Now from (1.2) and (1.3) we have that 	up  (e) 1 and I 	I 

can both he made arbitrarily small as h 	0. Hence there is a 

small positive quantity € such that for h< hl, sufficiently 

small, then lu(E)-u Q  () 
I 
{ 

2 
(- . 

0 

Also uP 	and u9  (L-e) are proper integrals since 
0  

P, Q
o 

	Further u (L- e) _ 	1c(s)   C n (1) ds is a 

continuous function of position as P varies and so for h < h 2, 

sufficiently small, we have 

I 	
1 

up (L-e) - uQ  (L-e) j <  e 
o 

Combining these results and substituting into (1.4) gives that for 

(L) I < 2 E + 2 e = e . 
o  

P moves to the boundary point 

Q 
0 

on L. 

Further analysis can be undertaken to show that in fact u, 

as defined in (1.1), is continuous throughout the entire region 

D+u LVD . To summarise in particular, the harmonic function u 

defined by (1.1) at an internal point P of D+  by 

(3(s) e n (I) ds (1.5) 

L 

is continuous up to the boundary L, and 

lim u = u _ §0(s) 
  

en (1) ds 

P"÷ 
Qo P 	Qo 

_ 	
r 

L 

(1.6) 

Hence problem (a), the Dirichlet problem, can be solved by 

treating (1.6) as an integral equation for the unknown boundary 

density Cy-(s),  since for (a), u 	will be given equal to f(so). Q  
0  

h 	< min (hl ,h2) 

Thus we have that 

then 	
I I 

up  

up  (L) 

u Q  
O 

- un  

as 
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Having evalrated CC(s),  we return to (1.5) and insert c(s) 

to generate u for any required position of P. 

The integral equation formulation of the Neumann problem 

using the potential of the single layer will now be considered. 

As given in (1.1) and (1.5), up = u(x,y) is a function of 

position and so may be differentiated with respect to some direction 

n(Fig.7). We choose the direction 
n 

deliberately to be that 

of the normal at some boundary point N (not a corner point). The 

differentiation could be undertaken with respect to any direction, 

but n is selected so that the result may be used to solve the 

Neumann problem. 

a 	a P 
	

an 	
6(s) en(r)ds 

~n 

0 	0 L 



«(s) COS '1!  
r ds 

.14 

L 

. Du __ 

• ~n 
0 

(1.7) 
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1 

	

But a 	j1n(1 ) = d ~1n (1 ) ~r 	= - 1 s r = 1 cos 	, 

	

an 	r 	dr 	r On
o 	

r an 	r 

where "'' _ (r,n ) is the angle made by the vectors 
nno 

and r, 

0 ̀  	(ī . (By studying infinitesimals we obtain n = - cos 70 
0 

Now we want to find the value of ā 
n 

as P approaches the boundary 
0 

point Qo , Qo being taken distinct from N so that P does not 

approach along a normal (Fig.7). In order to investigate the limit 

construct a circle centre Q
0 

radius h and place P inside this 

circle at distance d from Qo. Suppose that the circle intersects 

the straight edge of L that contains Qo in two points Q') Q" 

along a diameter, assuming the circle is small enough for this to 

be the case. As before we denote that part of 

n
L between Q' and 

Q" (including the points Q'
) 
Q" themselves) by 1. and denote the 

rest of the contour by L- e. 

	

Then lim 
au 

= lim 	
(s)cos``  ~6 	ds from (1.7) 

p —r Qo ano 	P - * Qo _ 	r 
L 

= lixn 	+ lim 	- A + B . 

	

P-*Q 	P Q 
o n 	 o L_ ei 

Consider A : this integral is taken over Q'Q" and can be 

put in the form 	(5-(so + d cos 0C + x) cor N  dx 

where s = so at Qo , x = NQ measured from origin N and 

OC = PQoQ" 



- 16 - 

A 
With 9 = NPQ = Īi - 'til then the contribution to the 

integral from NQ" over which x, G 	0 can be evaluated:- 

~f ~ 	{~ 	d sin CX 
i cos 	= - cos ' = - 

r 

and x = d sin% tanB 

dx = d sine( sect e de 
SQ..= 	

(r(so + d cos~~(+ dsin% tan 0), d s~no( d sino( sec2e dC 
J N 	 r 

But from r cos 8 = d sin of we have 	d2 sin24C sect C-) _ 1 
r2  

a"-(s + d cos o{ + d sino( tan B) de 
.J 	J N 

(1.8) 

If we assume now that 0- can be expanded about Qo so that 

cr(so + d cos rX + d sinc< tang) = 0-(so) + d(coso( + sino< tan 8)c'' (so+ sl) 

d cos % < s1 ( QoQ" 

then (1.8) becomes 	-. c'(so) N Q" - 0(d) . 

iA
N 

Similar analysis gives the contribution 	= - ō(so)Q'PN - 0(d) 
Q' 

A 
Hence A becomes - d(s o),Q'PQ" - 0(d) so that as 

P --)- Qo, d -5 0 , Q'PQ" - 4 Ti' and we are left with 	- Ī j els ) 0 

1 Consider B : 	d(s) cos 	ds .srs 

L- Q. 
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This time r is never zero; also as P--= 
Q0 

it can be seen 

that for that part of L- L which is made up of the straight edge 

containing Q° 
	

Z , 	1, 	IT/2 and so cos ly--- 0. 

i.e. r only has a contribution from the contour distant 

L- 

from Qo and so it is well defined and finite. 

Hence we nave the result as follows:-

~u 

lim 
Cfu- 	

= Qo 	= 	6'(s) cos'ir ds  -T' or(s ) + PPQ ~ no 	
G o 	o 	 r 

o L_e 

~uQ 	 n 
i. e. n° = - T d(so) + 

J r 
C"(s) cos (r, ~) ds 

o r 
L 

(1.9) 

the latter integral now known to exist in the ordinary sense. This 

result provides a method for solving the internal Neumann problem 

in which the normal derivative of a harmonic function is given on 

L with the corners excepted. The equation (1.9) is an integral 

equation for the determination of CS(s) given values for 

ō uQ 
0 = g(s) on L at points Q which are not corners. Having 

obtained its solution, then cr(s) would be substituted back into 

the single layer potential up = CO (s) en(r)ds and values of 

L 

uP generated accordingly. 

As the normal derivative of u would have two differing 

limiting values either side of a corner point and would be undefined 

at a corner then (1.9) would be applied only at non-corner points Q . 
o 

The limiting value of. 
~(s) cos 1.1( ds  

could be investigated as 

L 

P approaches a corner point but the value would depend on the way 

P approached Q0. 
0 

a n 0 
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Finally to solve the mixed boundary value problem, the 

single layer potential can be used in conjunction with its normal 

derivative to form a pair of coupled integral equations:- 

The boundary L will now be divided into two parts L1 and L2 

where on L1 values of u are prescribed and on L2 values of 

a
n prescribed, (except at corners of L2). 

On L1, at a typical point Q1 we take the boundary value 

of the single layer potential 

u = Q 
1 

2 

0-(s) t  (1
r
) ds ; 	(1.10) 

while on L2 at a typical point Q2 we take the boundary value 

of the internal normal derivative of the single layer 

aQ 
2  

an 

(5-(s) cos (r, n) ds 	-n-~(sQ ) 	(1.11) 
L1+ L2 	r 	2 

Now as Q describes L it becomes in turn a point of type Q1,  then Q2 
2 

then Ql again etc. so that the left hand sides of (1.10) and 

(1.11) will be known taking up values of the prescribed boundary 

function h(s). The above equations are integral equations for 

the determination of the density function cy (s) and may be taken 

together and solved numerically for ct(s). 



L placed on both L1  and L2.  The 'right hand side' of these 
a uQ  

linear equations would be alternatively u 	then 	 and Ql 	'an 
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Discussion of the numerical methods is given in Chapter III 

but suffice here to state that an approximate solution of (1.10), 

(l.11) would be possible by replacing them by a set of linear 

equations for 6-(s,) where S, 
. 

are suitable node points around 

would take up the prescribed boundary value h(se). Having obtained 

a solution Ci(s
i
)  then the potential function would be generated 

in fl by numerical evaluation of 

up = J CS-(s) 2.n (r) ds . 

The three fundamental boundary problems having been posed as 

integral equations in terms of the potential of the single layer, 

we pass now to a similar investigation in terms of the potential 

of the double layer. 
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1.2 The Potential of the Double Layer  

As in the case of the single layer, consider first the 

electrostatic potential at a point due to two equal and opposite 

parallel line charges. When these line charges are brought into 

proximity they will constitute the two-dimensional dipole: 

P 

A is O i S 13 

 

F. 	(0 

The potential due to a single line charge +q at distance r is 

given by -2q e n r . Hence in the system displayed in Fig.lO, 

the potential at P 

uP = - 2q en r 1 + 2q en r2 

r2 
q e n ( 2 ) 

rl 

2 
r2 + (2 ) + 2r(2)cos 

q n 41  
r2 + (2 ) 2 - 2r (2) cos 

Now remembering that the line charges at A and B are to he 

brought close together, this expression is expanded in powers of s 

-1' 

uP = q  (r + 
4 2 

+ rs cos 1~i~ ) . 12. (1 + s2- 4r2 cos Lf 
r 

	

4r
2 
 

= q~n { 2 	1 2 	1 	s'- 4rs cos' 	2 (r + 4 + rs cos 	).r 	(1 	2 	+ O(s )) 
4r 

- q 

n 	(1 + 
s cos  

(1 	+ 0(s2)) (1 + s 
co s ~+ O(s2) )~ 
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Retaining only first degree terms in s , this reduces to 

~ 	` 	2 
up = 2q 

emu s cosl r + r 	) = 2q s colli — r 	+ o(s )1 . 
t. 

Now to. obtain the mathematical dipole potential let s ---> 0 and 

q-÷- cQ in such a way that the quantity 2qs tends to a finite 

quantity }A. , called the dipole moment. 

up 
_ l cos,  

Further, the potential of any number of dipoles is obtained by 

adding. Hence for a distribution of dipoles along some contour L, 

the direction of the dipoles always being normal to the contour, 

we can take 

U
P 

= 

 

(s) cosV
r 
 
•ds (1.12) 

where ~` =J 	 ` j 	
A A 

(s) is now the moment density and 	= (r , n) is 

the angle between the vector r and the inward normal n as 

before (Fig.11). 

Q 

The expression (1.12) may also be stated in terms of en(1) since 

 

	

Kn(1) 	d ~n(1) car = 1 col 

	

r 	dr 	r an 	r (1.13) 

 

u 	= 	
II U(s)COS llĪ 

= ~(,t(s) 	n 	(C n Y) 	ds 	(1 .14) ds 

We may also verify directly that up is a potential function. 
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0 
x 

2 
a2 

32 Consider `! =ā 2 + 2 operating on 

nn ( 

x 	y 

	

e_n r =2 k' n{ (x- ) 2 + (y- 	2 
3 

. Then we easily get 

V2 en r= O. But the partial derivative of en Y with respect 

to the direction J will also be harmonic i.e. V2 
- 

K n(r) = O 

since the order of differential operators may be interchanged to give 

v2 e 1 O 
-A 	

n r  

Similarly 	n(r) is also harmonic. 

Now consider the expression a ~n r 	.- 

p 	
201 r 

First 
	

= — a y 
+ 
a 	

so that ā ~n 1 is the sum of 
Zn 	a5 an ' )17 an 	 an 	r 

?c 	
. 

two known harmonic terms, 	and - being constants for a 
do 	do 

particular n. 

Hence by (1.13)  __(en 1 _ cos 	is a harmonic function 

	

an 	r 	r 

of the variables (x,y). 

Now introduce an arbitrary function j(k(s) defined on L 

where s is a measurement of arc length along L and consider 
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the expression 

n 
up = O (s) 	( Qnr) ds = 	/t(s) cos ~~^ ds 
 dn 

L / 	--L 	r 

where fU s)is chosen so that the integral exists. 

V 2 	2 4
),,/L(s)-( 	

1 Then \/ uP = ~% 	 en)ds = 
 r 

L 

)case 
r 	

ds defines a function harmonic in D+ . 

Further we may write ds cosIr = rde where e is the angle 

made by QP with some fixed direction. 

13 

P 

(For in Fig.13, to the first order smallness QR = rd e = ds cos111 ). 

1iP = 

earlier forms. 

Thus we have, 

},k(s)de 

for 	P 

which is often more convenient than the two 

not on 	L, 	that 

(s) cos 
ds (1.15) r 

(s)an en (1-) 

~ 	
hh 

Ccs)  dt7 

(1.16) 

(1.17) 

L 

gives the value at P of a function harmonic throughout D+. 

l s) .~~ 	(`nr)  ds = 0 
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The notation and sign conventions are in line with those of the 

single layer potential. 

Now uP  is defined for all P 	L but if P lies on L or 

approaches L from D+  then the value of u must be investigated. 

First place P on L 

Then with reference to the diagrams in which P may be on a 

straight edge or at a corner, we consider the contributions to 

as up  as Q describes the complete polygon. Clearly only those edges 

of L which contain P will need investigation since for the rest 

of the polygonal contour Q is distant from P and thus the 

integrand is well behaved. 

Hence we examine 

the above diagrams. 

ir /l((s) cos l f 
ds with QPQ' as shown in 

r 
QPQ' 

Now in fact, the integral 
f 

 will be zero in both cases 

QPQX  

from examination of either (1.15) or (1.17). In the first instance 

7T 
2 

and so cos ljf = 0 ; and in the second instance de = 0 as Q 

A 
moves towards P since no change will occur in QPx . (Fig.11) 

Hence up  exists when P is situated on L either on a straight 

edge or at a corner. 

However this will not imply that u is necessarily continuous as 

P passes through L from D+  into D . This is now discussed:- 

as Q moves towards P along the straight line we have 
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i5 

Let P--)..Q
0 

on L where Q 
0 

will be taken at a corner. 

Instead of investigating up given by (1.15)(1.16)(1.17) directly, 

it is convenient to consider the limiting value of the modified 

double layer potential w, where 

w = 	 ~( (j{J,(_(s) - ,t(so)7de 	= Q{~il(s) - ll(soicor~ ds . 
L 	/ 	L L1 

Suppose ).(s) is continuous on L so that there exists a part 

of L around Q 
0 

upon which 

I ,(,L(s) JA. (so) ( 	E 	for an arbitrarily chosen 	. 

Then consider wp = Q = 	+ 	{ 	= wl (P) + w2 (P) . 
jjj 

L 	Q 	L-Q. 

Then w1 (P) = 	/Ws) - 	
(so)} 

d e . 

e 	. 

wil ‘ 	i f us) - ,A(so) d ® •c E d8 =6 p . (see Fig.15) 
Q 

Now 	
WE' 

- wQ 	= Wi(P) + W2(P) - Wi(Qo) 	\V2(Q0)0 

= V,/
1 
(P)- W 1(Qo) + W2(P) - W 2(Qo) 

	

wp - wQol < H'1 	+ k'1(QJ  + 1W2(P)  -W2(Qo) I . 

But I Wi (P) I ` E(3 	and W i (Qo) is zero , 

• J vip - 
wQo I < 

E 	+1w2(P)  - W2(Q0) 
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Now 
W

2(P) and 'V
2
(Qo) are integrals taken over L- e and so do 

not possess a singularity since P and Qo do not lie on L-0 . 

Also 	wp will be a continuous harmonic function for. any "arc" 

such as L- e and so we may make 

Vi 2 (P) - W"2 
(Qo) I < 	, for any arbitrarily chosen 

positive C ' , by taking P sufficiently close to Q
0 
. 

Finally 	 j wp - wQ I 4643  + E ' = E_ " say, so that 
I 	o  

for all P sufficiently close to Q
o
, 
0 

and 	wp is continuous as P passes through the corner point Qo. 

- 	 'I 

I wP 	wQ 	E 
0 

Similarly wP will be continuous across the boundary at Q 
0 

when Q
o 

is not a corner point, the only change to the above being 

that (3 	is replaced by ?T . 

However to return now to the potential of the double layer given in 

the form u = 

We have 	wp 

Now write 	wp 

o1Ws)de .- 
L 

&(s) - 
t(s) de is continuous across L. 
 o 

~,((s)do - ~)7l(so)de = up - l~i(so)de 
JL/ 	

L 	 L 

and suppose that P is placed at Q on L; then 

wQ =u Q - µ(s  
o
) d G (Q) where it is already known 

that uQ exists. But +,ILUs)dê=/VA(so) = 7Tl,l(s
o
) in 

this case assuming that Q is not a corner point 

wQ = uQ - TjJL(so) . 	 (1.18) 

Suppose, further, that P is now placed at Q
0 

on L, a corner 

point, then 

wQ = uQ - 4/J.Js)d&(Q)  where again u 	is known 
  Qo 
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to exist. 

But this time D ft(so) d(3 	= 0< 	L{.(so) where o< 
0 

is the internal 
0

L 

angle at the corner 	Qo 	(see Fig.15) 

wQ 	= UQ o ~t(so) 

0 	o 	l 
(1.19) 

Let 	Q--> 

everywhere so as 

Q
0 	

along 	L. 	We know 

__ 

that 

wQ 

w is continuous 

Q.-4 Qo, wQ 
0 

uQ -~(,~(s) }u
Qo 

- 	(so) 

uQ possesses a discontinuity of amount (1T - OCo)yk (so) 
• 

as it passes along L through a corner point; otherwise it will be 

continuous along L. 

But when P e D+, 	wp = up - 
J 
,(,& 	 jy(so) C d &' (P) = up - 21 	(so) . 

L 

Now let P 	 + -~ Qo (from within D ) , then 

w is continuous everywhere. 

wp ._ 	wQ 	since 

0 

Using (1.19) this gives u 	- 27T,LC(so) = uQ -D(o (so) 
Qo 	✓ 	o 

or u+ = (211-0(0) ,(~(so) + uQ 
o 	/ 	o 

(1.201 

where uQ is the limiting value of u as P---.Qo from the 
0 

interior D and u 	is the value of u when P is placed on 
Qo 

the boundary at Qo which may or may not be a corner. Hence we 

have the solution of the Dirichlet problem (a), by means of the 

double layer potential: 

Given f(so) = + on the boundary, (1.20) is an integral 
Q0 

equation for the determination of the double layer density )U (s). 

Having obtained its value, the required potential may be generated 

at any internal point P from the equations (1.15),(1.16) or (1.17). 
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The Neumann Problem by Double Layer Potentials will now be considered. 

Although certain authors [21 and L. 3 ] refer to the normal 

derivative of the potential of the double layer close to a boundary 

of a region, the resulting integral equation and its use in solving 

the Neumann problem seem to have been neglected. An investigation 

is given below:- 

We have, as above, from (1.15) 

u = 
P 

s 

Consider the derivative with respect to the direction n , this 
-o 

being the normal at Q0(so) (Fig.16). Then we shall be interested 

in the value of the derivative as 
	P —..~ Q

0 
in order that the 

Neumann problem can be treated. 

uP. 	~~l(s) cos 
ds 	= 	

(cosi~r)ds
r. 

7 no 	nO 	r 	 ft(s) ano 	r 
L 	L 

Whereas on taking the derivative of the single layer a term 

(r) is encountered ; on this occasion a function of two 
0 

(plane) variables r,-Ir is to be differentiated. 

As the relative positions of P, Q, Q
0 

can obscure the result it 

is convenient to proceed using vector methods: " 
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	 (cos 
Dn 0 

n . 7:7(r cos F) = n . -0 2 	--o r 

A . n ) 
2 
r 

2 r (r.n1) + 12 grad (r.n) r 	r 

-2(nA . r) (n . r\) 	no . A 
=+ 2 	2  

r 
A 

 

n . nn-o 	2(n . r) (tri. 
j r) 

r 2 r2 

cos - 2cosw cos~~  
2 r 

(1.21) 

A A where 	e = (n, no ), W _ (rfi, n ) and 1]r = (r, n) . 
` 	 up 

In order to investigate the limiting value of 	as P approaches 
no 

the contour edge, it is convenient to consider, as in the case of 

the ordinary double layer potential, the modified potential. 

w = - 	cosIF ~~(s) 	{sō 	r ds where so is the 

arc parameter of Qo, the point to which P is approaching. 

Provided that P E D+ , the derivative with respect to 

no direction may be taken so that 

a w 

a n 
0 

(s) -1(s o 
) 	(cos 

r () ds a n  
0 

Now consider 

. w 
lim 	( 	P) = lim 

(-1 
no P Qo L 

(s ) 	
(cos~~)ds 
	(1.22) J °-+L no r 

Care is necessary as these limits are investigated, for it will be 

shown that where as the limit of the composite term on the RHS 

exists and is equal to its value when P is placed at Q
0 

, the 
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limits of the separate parts do not have this property 

(' 	 co s Ir when P is placed at Qo both Q~ f(~ s) ? n ( r ) ds 	and 

o Q 0 

s ) 
~n 

(cos y) I ds diverge. 
o r 

o Qo 

Provided the limits exist, 

 

r 
iL(s) - 	(s 

o 	n 
)} 	 (cor ) ds 

/  0 r 
lim 

P --*Qo 

= lim 	O~~(s) 	 (cosy. ) ds - lim 	~{(s ) 	(cos'Ī) ds 	(1.23) 

	

P -4 Q 	a no r 	P- *- Q 	° u no r o L 	 o L 

	

But P -ten 	) 	
o

(cos 
) ds 	 P e D+ Ç}(s 

 
o n r 

o L 

r= 	lim 111(s ) p  1a 	 (co11f ) ds = lim  
V no 	 P -..Q 	no 	r 

° 	L 	 ° 

ds 

and = 211' since this integral is the two dimensional 

solid angle" obtained from the relation cos  ds = d O 
r 

cos`' 
	 ds 7z 0 for all P E D+ so (1.23) reduces to r 

L 

 

cos-1 lim 	(l µ(s) 	( 	t ) ds = lim 
P Q

o 
/ āno r 	P Q 

L 
cor { 

0,n0( 
	) ds 	(1.24) 

We show that the limit of the term on the right hand side as P 

approaches Q
0 

exists and takes the value obtained if P were 

merely placed at Qo . 

Let P approach Qo(so) along a line inclined at angle 

to the boundary edge on which Qo lies (Fig.17), as was attempted 



x  N ,QuCcl A 

C 

IC 

1W 'o 
P 

- 31 - 

for the single layer Neumann problem. Although the limit may 

exist when Q 
0 

is a corner, the normal derivative of u does 

not and so the limiting value would be of no help in solving the 

problem. The angles e = (n, n ), 	= (r, n~) and Co = (r, no) 

(Fig.16) are related by elementary triangle geometry such that 

W = 	+ lf for any position of P,Q,Qo when the polygon is 

convex. However to maintain the generality of the results it is 

more convenient to work with a 
(coY) 

O 

Now from (1.24), we are interested in 

(' 	~r 
lim 	nP = lim 	~(s) 

an (coslI) ds = lim C' Ll(s) - ((so) 	(cos) ds 
P ~ Qo o 	a o 	P =r Q 	 o 

	

o L 	 o L 

= lim 	+ jr 	= lim 	ir + lim • (1.25) 

	

1' -~ Qo AB 	L \ AB 	P -4' QO AB 	P" 4 Q0 L ÀB 

There is no difficulty encountered in evaluating from (1.25) 

cos f 	 ~~_~r 

	

lim 	fps) -t(so) an ( rr ) ds = bt(s)-t(so
a 

(corT dds 

	

 
P-~ 	/ 	 - Qp LAB 	o 	L\AB 	o 	P-Q 

0 

since r  0 and all terms in the integrand are finite. 
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coF;1i r For l 	A) (s) -)((so no (— r -) ds , we have first from (1.21) p Q 

0 

A8 
 

cos$ 	cos 	- 2cos W cos ilf 	1-2c~os2c c) 	-cost ti  that ~n ( 	) 	 2 	 = 	2 	- 	2 	since 
r 	 r 	 r 

_ ( n ,n ) = 0 and '-(ir = (r,n) = (.c} = (r,no) . (Fig.17) . it is 

convenient to set up local axes with origin at 120 (so) where 
-->  
Q 0 B is the x axis and QC the y axis. With PQ 0 = R , 

s = so + x , r2 = (x - R cos) 2 + R2sin2 to 	and 

tan W = x - R cos 	i . e. cos 2c0  	1 (1 - tan2 ū% ) 
• R sin ZS. r2 	r2 1 + tan2W 

R2sin2 . - (x - R cos7S) 2 

R2sin2 	+ (x - R cos?f ) 2] 2 

Hence consider 
B 

lira 	C U(so ) - ~lrl (s o+ x)1. R2sin2 es — (x - R cos ) 2 dx . (1.26) 
A 	 R sin 2 	+ (x - R 	 ZC) 2}. 2  

The limits of integration may be taken from x = -a at A, 

say, to x = +b at B so that if JIt and 

l

µ ' are continuous 

(~ in -a < x < b and , " exists in -a < x ( b, Taylor's theorem 

gives 

(so + x) = . j(AC (so) + x /~' (se) + 2 x21A- " S (x)} 	(1.27) 

where It is some point in so < x < so .+ x whose exact position 

will depend on x. See Chapter III, p. 102 on derivative of)), 

Hence (1.26) becomes 

lim 	b[xJ' (so) + 2 x2  L1" (~~ )J{(x -Roos ) 2- R2sin2 dx 
R--->0 

-a 	[(x_RcosX)  2 + R2sin2a1 2 
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[Note that 	" {1(x) 	is defined by (1.27) for x * 0 and is 

continuous. For f t,i 	1t(0)} we have lim /(t(so+ x)-Pso)-xx{L' (so ) 
x-----).0 	 1 2 

2 x 

= lim 	it' (so+ x)-11.(' (so  )) = lim jA" (S + x)=t,("(s ) 
x-~- O 	1 	 x —aO/_ 	o 	o 

2 °2x 

provided that 	"(x) is continuous at 

Now before examining this limit further, suppose we insert 

R = 0 so that the case where P is placed at Qo is considered. 

The contribution is 

bC x cC (so) + —x 21. " ('~~ )] . ---dx  = J b/(~ ~ (so) dx + 	J(,l " ( ) dx. (1.28) 
-La  / 	/ 	 x 

But from the above discussion on the behaviour of )l(x) and also 

provided that the singular integral is taken as the Cauchy Principal 

Value we have the existence as a finite quantity the right hand 

side of (1.28). 

Now consider the quantity I, defined by the subtraction 

-a 	-a 	11 ~a 

f-a (s )
1 x2 	(71]  (x - Rcosii) 2 - R2sin20 dx 

 L J 	° 	2 	1 (x - Rcos.6') 2 + B sinM 2 

b 

~t (s ) 
	(1 - x(x-Rcosii) 2- R2sin2~ ) dx + 

l 	o 	x 	
11(x-Rcos d ) 2+ R2sin22r 

-a 

1 b 	 2 	, 2 2 2 
2 	}k" ('1?) 1 - x

2 
	) 2- R2sin 2'  

2 1 	 '~ -a 	 (x-Rcos zi ) + R si.n 
dx 
(1.29) 

  

-a x 	-a 

sbiti„(s) 
 

	° dx + 2 l~l"71(x)jdx -  
x 
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The first integral 11 may be shown to tend to zero as R --_O, for 

b 
x (x - R cos?~) 2 - R 2sin2ū s considering 	 2 	2 dx 

-a I (x - R cos Ō 2 ) + R sin 40 
(1.30) 

0 
rsin 	-2 0 ) -n cosh 2 obtain after completing the integrations ` 	~ 

2 sin 6- 

where e 1 lies in - 2 < ~l< 0 such that tan 	_ -(a+R cos' ) 
1 	R sin 

and 	a 2 lies in 0.< Q 2 < 2 such that tan e2 = R sin • 

Hence (1.30) takes the value 

sin (' -2 02 ) - sin (X -2 el) cos 02  
2 sin 	 ~n (cos 61) 

cos./a'-( 01+ 92)}sin( el- 
sin 

cos °, 
tn ( 	2 ) cos ei 

But as R--~- 0 , & j* - 	and 82 -~ + 2- so that 

cos -{2C -(01+ 02.)`in ( 1- 6 2 ) 
sin i •-- 0 whilst 

and making the substitution x - R cosX = R sin? tame , we 

b - R cos 

nn(cose 2) 
- Q 	R since  	X ja

2+ 2aR cos. + R2  
cos b l 	n 7 b2-2bR cos i+ R2 	 R sin 1 

2 ~n a2+ 2a R cos' + R2 --~ 	~% n a2 
 = Qn (b

a 
b 2b R cosY + R 	 b 

Thus the first integral of (1.29))I1) tends to 
b 	

n (' (so ) 	x dx + ,(,(.' (so) In (b) = 0 provided the 
/ 

-a 

Cauchy Principal Value is taken. 

as R- 0. 

The second integral can be treated by the same substitution 
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2 ~u 4 (G )}y 1 + tame sin 2( -e) } sini de after 
✓ G1 

some simplification where YL(x) = ,(R cosy + R sinW tan° ), 	(s) . 

We require to show that this integral also tends to zero as R-÷ O. 
1„3 2 

Write nS 5' ( )-? r 1 + tant sin2 ( - D) sini de = I2, say, 

o ~-  
R  

2sin b- I{{ 	
~~ ~g  	c 1 + tan sin2 (~ - 6) de 

J~l 	1 

102 R 	{ 

+ 	
" 

2sinx  	J ((-) ),I1 l+ tan ° sin2 (2f -a) de 
O 

Then if M" = 	max 11~" (x)I 	and M2 = max u" (x) 	, -a<x\O 	11 	 O~ b / 

l 	
RM" 	O 	 RM" 1.0  2 

1 12 
	2 sinZr 	(1 - tame ) de + 2 sin?S 	(1 +tand ) de 

	

1°1 	 0 

RSC 	 RM 

2 sin (- 81 - en cos el) + 2 sins (0 2 - l n cos 02 ) 

RM" 	 A R 	sin' 	 RM" 	 R 	sin 

	

2 since ( 01 	Ja2+ 2aR cos +R2) + 2 sin.6( 92 	Jb2-2bR cos + R 

But as R 	0, 	~J 	- 	- 7T 

	

-~ 	1--} 	2 3 2-.., 
	

and since lira (R nR) = O 
R--O 

we see that 
1 

I21 —4 0 	as R - .. O. 

Thus returning to (1.29) we have shown that the quantity I 

tends to zero as the point P approaches the boundary point Q . 0 

Thus we have established that 

	

lim 	f &Us) - 	(s 	 (cosl1i_) ds exists equal to the value 

	

pry 	 o ~n 	r 

	

Qo AB 	/ 	o 

of the integral obtained by placing P at Qo to give 

	

- 	o •ano ( rCos4 ) ds provided that the latter integral 
AB 

is treated as a Principal Value Integral. 

to give 
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Onthe other hand it is relatively

(' 

easy to show that 

both J'_jj ,(s) 	(cos-'` ) 	ds and 	J ~LA(so)"fin 
(cos 

1,..
) ds 

'an
o 

AB 	
o 	P=Q 	AB 	o 	

P=Q 
0 	 0 

diverge. For instance in the latter case we get J(:((so) 	
2 

-cos21 
ds 

AB r W = 
2 

s 
which reduces to an integral of the form )i (so) 	!~ which not exist. 

x 
J -a 

Hence the investigation of the limiting value of the derivative of 

the modified potential 
	

w as P approaches Qo 	L leads 

finally to the result, from (1.25) 

uP 
lim 

no P—'Qo 

c0511 ~l(s) )l( s0 	(-- r -) 	ds 
c o 

P=

_

Q 
0 

(1.31) 

 

Thus given values of 
au 

on L , the equation becomes an integral 
n 

equation for the determination of the density function jOL(s). Note 

that it was necessary to stipulate that ,(,& and )' be continuous 

on L and that ik " existed. 	J 

Having obtained the solution Ll(s), a return would then be made 

to (1.17) so that u could be generated throughout D+ as required. 

Finally by making use of the previous section it is possible to pose 

the solution of the Mixed Problem in terms of double layer potentials. 

a dx 

FL . R8 
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As in the case of using single layer potentials we take L = L1+ L2 

where on L1 values of u are specified while on L2 , values 

of 	 are specified. 
an 

With a double layer density ,(1(s) defined everywhere on L , 

we already have that u = 	~{(s) cos1l,̂  	 , a harmonic function Y 	 ds defines  

up , P E D . 

With P carried onto the boundary L from D+ , we may write 

_uQ 	
= ( 27r - cc) , uQ 	+ §(s)de , Qo €_ Ll 

0 	 o 	L 

h(s)73 
 

(1.1  
'b 

fn 
	b-i(s )  - 	(soia 	Lcor r ds Qo C L2 o 	~ 

 
Qo 

(1.32) 

These equations provide a pair of coupled integral equations for 

the determination of )(s), which would then be substituted back 

into (1.17) so that u 	may be generated. 
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§ 1.3 Green's Boundary Formula 

We now turn to the third method of formulating the three 

fundamental boundary problems, namely that making use of Green's 

formulas. The results needed are based on 'Green's theorem in 

the plane' expressed as 

f(M dx + N dy) = 	
aN 

- —jdxdyTiy 

	

 JJJ 	x 
L 	 D 

(1.33) 

in relation to the polygon (Fig.3), where M(x,y) and N(x,y) 

are defined and continuous in D+  U L such that the integrals in 

(1.33) exist. The validity of the result is generally established 

in Hpp.284 - 292 , including the case here where the region is 

polygonal. 

The formula (1.33) is now converted into appropriate form by 

using vectors:- 

19 

With the usual cartesian vector notation 

Mdx + Ndy = (Mi + Nj) . (dxi + dyj) =(Mi + Nj) . dr . But we 

A 	A 
may write dr = dr ds = t ds , t piecewise constant and T ds 	— 	-  

A = A k where as usual n is the inward normal possessing two 

limiting values as a corner point is approached from either side. 
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A 
Thus ACM dx + N dy) = C~ (Mi + Nj ) • • n ~\k ds = 1> k h (Mi + Nj ) • A ds 

L 	 L 

(- Ni + Mj ) 	n ds 

JJ r
Also 

	
( x a y)dxdy = -I ( X i + y j) • (- Ni + Mj)dxdy . 

+ 	 + 
D 	 D 

Writing, say, B = - Ni + Mj and writing the symbol 7̀ in a 

two dimensional sense gives 

fB•nds = - f~• Bdxdy . 

Dj 

Now introduce two further functions of position u(x,y) and v(x,y) 

having continuous derivatives up to the second order at least in 

D+ and substitute B = u Vv and V 	in in turn and subtract 

the results. This givesf(uVv -  v Vu) • n ds = ST (vV2u - uV 2v) dxdy 
L 	 D 

au 
But Vu • n is the 'directional' derivative a n . 

an
) ds = f (v 	- ur-72v) dxdy 

D 

(1.34) 

Note that since both u and v ale considered to have continuous 

first derivatives in D+ U L it follows that 
u 

is a piecewise 

continuous function having a finite discontinuity at each corner of L. 

Now suppose that u is continuous with continuous first derivatives 

in L U D+
n 

and is a plane harmonic function in D+. Let v take 

the value Q n(Y) where r is the radial distance from the origin 0 

to any point P in D+ U L. 

Then should 0 lie outside the polygon, r t 0 and (1.34)reduces 

to 

(1.35) 
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Now place the axes so that 0 lies at a corner point of L. 

Then v is no longer defined at this point and so in order 

to apply (1.35) we surround 0 by a circular arc radius rte• . 

.Z1 

2o 

C) - 
Then (1.35) may be applied to the indented contour L' + e , L' 
being that part of the original polygon from B round to A (Fig.20) 

n/~ 	nn 

Of u -i ( en r) - ā - n -, ds = 0 . 

L'+e 

But 	u 
an 

( Q n r) ds = B u 
āY 

(en r) ds =̀ I B u. -1 ds R-Ē E dw 
iA 	A 	A 

e 
where dui is the angle subtended by ds so that as e-±0  , 

this tends to - uo x O<o, where uo = u(x,y) at O. 

Also 

 

B 	 B 
Du Qn r ds =1 -ne. Cdw = -e Qn EIS  - dw which 

A 	 A 

tends to zero as 	O . 

We already have that a 
n
(e n r) is zero along straight edges OA 

and OB, while 

to give 

OS C n  ds is finite. Hence we may make E 
A 

J u 
an

( en 
r 

- 
a 
n en r ds - 000 0 = O 

L 

knowing the line integral to exist in the ordinary sense. 

(1.36) 

ie, 
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I 

Finally should the origin 0 lie in D+, describe a circle 

Q about 0 with radius E and join e to L by two 

parallel cuts AB and DE such that a new contour L + AB + e_ + DE 

is formed for which 0, the singularity lies entirely outside. 

Then for this contour, called L' say, we can apply 

i- 	
nn 

Qu 
an 

~!n r) - an en lids = 0 
L' 

ir
Breaking this into constituent parts, 	+ 

When the gap between AB and DE is closed up, we assume 

J + f = O 
AB 	DE  

Also 
J [u  ( Q n r) - an n "n r} ds = 
4L 

du 

 .E Q n EJ d8 	and as E .-j.0, u -~.0 
ae 

is undefined. 

As e log E --a. 0 as E 	, I reduces to -21T u 
0 

.
an 	

n -  ( e n r) - 
Q e n lds - 27T u = 0 	(1.37) r 	o 

The three equations (1.35)(1.36) and (1.37) can now be used as 

a framework for the solution of the three fundamental boundary 

problems by integral equation methods:- 

I+f + AB 

= o 

'%
J 
E 

u.T( Q 
Te n

e)-fin en ̀ }E.de 



(s) 	(l n 1) ds 	O 
C~ n 	r D 

f(s) n `n ( 	r ) ds - a
of (so ) , 0 C L 

i.e. 
L 

'n 1 ds 
r Q 

L 

or 

L 
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Firstly the Dirichlet problem in which u takes the value f(s) 

on L, may be solved by considering either (1.35) or (1.36) as 

integral equations for the determination of ā n on L 

Making use of the Cauchy-Riemant relation 	a (C 1) _ + a , an 	r 	s 

these integral equations may be simply stated as 

iu  ~ n — OILS = an f (s) de 0 E D (1.38) 

   

L 	L 

and au e n 1 ds = - O( f(s ) + a f(s)de  , 0 E L .  
0 	0 	 (1. 39) an 	r  

L 	 L 

In each case here the righthand side expressions will be known. 

Having solved for 
ā 

, (1.37) is used to generate u throughout 

D+ by writing it explicitly as 

u 	 ~) an ~n r f (s) - ( e 2, , 	 nrds=-1 aU Qn rds + 	Q)f (s)d~ , ` 	 ~n 	—r ) 
	21T • 

L 	 L 	 L 

since this time it is a n that is prescribed on L = g(s). 

Hence we have alternate integral equations for the determination 

of u on L :- 

u de = g (s) t'n r ds 	O E D 	 (1.40) 

  

L 
F 

and -DCō o + Oud{3 _ ~,\g(s) F_n r ds , 0 E L 
V 

L 	L 

(1.41) 

For the Neumann problem, the roles of u and a n are reversed 
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Having obtained u from either of these integral equations 

(1.37) would be used as before to generate u throughout D+. 

For the mixed problem as before let L be divided into two p;pi;t-t S 

L1 and L2 and let u be given on L1 and 
	
n on L2. Again 

either (1.35) or (1.36) may be used to set up coupled integral 

equations for the determination of 
an 

on L1 and u on L2. 

In the case of (1.35) write 

ir
---4121l'n 1 ds + 	U.. dG = + 

	
h(s) . ~~n 1 ds - 	h(s)d0 , 0 L D  n 	r 	 r 

L1 	L2 	L2 	L1 

and for (1.36) we write 

au Q, 11 	ds + 	u dQ - c( u 
?in r 	oo~ 

L1 	L2 	L2 

h(s) 
6
n 1ds - 	h(s)dH+ah(s )j 
r 	o o ! 

1 	 "1 L 

0 El. L. 

With suitable discretisation on the boundary either of these 

integral equations will yield discrete data values for u on L2 

and a n on Ll . 

Finally again return to (1.37) and generate u throughout D+. 
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1.4 Complex Variable methods. 

The representation of the fundamental boundary value problems 

in two dimensions by integral equations through the means of complex 

variable theory will now be discussed. Use of complex variable 

methods is particularly suited to the Laplace problem in two 

dimensions, but does not carry over into three dimensions; the 

representations given above are relatively easily extended into 

spatial situations. 

Most emphasis on complex variable methods has been provided 

by Russian authors[5jand[61. Also Milne Thomson [7] presents the 

key results in a concise manner. 

22 

As before suppose L is a polygonal contour (Fig.22). Let 14r(t) 

be a complex function. of the variable t , which is defined complex

NP t)k5 
at all points 	t E L 	such that O 	is bounded. 	Then 

(z) = 
	2~ i 	t 

(tZ dt 	is called a Cauchy integral where 

z \k L. 	Often -VW 	is called the 'density' function; later 

the value of d§ (z) will be discussed in the case of z E L . 
We first show that 	(z) is holomorphic , z e D+ .- 

Take zo E D+ and describe two concentric circles about 
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zo with radii 22---g  and p 	(d real), g chosen so that neither 

circle intersects L. Then when z lies within the smaller 

circle we have It - zi > 1 S 

Consider 	(z) - 	(z  	1 	 O 4/- 	(t) dt 	1 	 ij llf(t)dt 
o )= 27Ti 	t- z 	2T i 	t- z 0 

L 

(z-zo) 	1r(t) at  
2-1T i 	(t-z) (t-z ) 0 

L 

0(z) - 11(z0) I
z-zo 	(t) ds  
2ir 	1ā . 1S 

L 

~ z-zoI . 2 2 	 r(t)I ds Ī. s 	L 

 

when z lies inside smaller circle as stated. 

Hence letting z --- z0 (independent of g ) and noting the use 

of the boundedness of §iV(t)I dt , we obtain / (z) --j• 	(zo) 

so that 	(z) is continuous at each z 0 	D . 

"L 

 

(z) - (zo) _ 	1 	'1r(t) 	dt 	_ E (z) , say. 2 T i 	(t-z) (t-z ) 0 
L 

Further consider z - z 
0 

  

Then E (z) -E (z ) = 1`1~i (t) 	- 1!'(t) 	dt 0 	2i-ri 	,  (t--z) (t-zo) 	(t-z ) 
2 

0 

dt 

  

L (t-z) (t-zo) 2 

 

I z-z I 
Again, I E (z) -E (zo) I < 	2T' 

I1f(t) I  ds 
1S. (l s)2 . 

I' r(t)(ds , z e iz-zol< 1/2S' . 

L 

Hence letting z 	zo as before gives E (z) --j E (zo) . 
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But E(z ) 	1 	`ipt) dt 	= d 	1  C~ -r(t) ut 
o 	2 rri 	2 	dz • 2Tr i 	t-z 

,L(t-zo) 	L 	z=z 
0 

i.e. 	E(z) is a continuous function of z and represents the 

derivative of I (z). 

Hence lop (z) is continuous and possesses a continuous derivative. 

Similarly we may demonstrate that E(z) also possesses a continuous 

derivative and so on. 

Thus + (z) is holomorphic (or analytic) for z E D 	It may 

be shown similarly that T (z) is holomorphic for z e. D 

Now thus far, the investigation of 	(z) has concentrated 

upon z t L. We must now consider the effect of (i) placing 

z on L at some point to, say, and (ii) evaluating 1(z) 

as z- to, z E D+(or z C DT). 

First (i) : place z at t
o' 

deliberately taken as a corner point 

of L. 

FZ1 23 

JC. O 

We show that the integral 	(t
o
)   =  1  	'(t)dt  
 2Tr i _ t - to 

L 

exists as 

a Cauchy principal value. Describe a circular arc about to , 

radius E , to cut L at points t' and t" as shown. 

Denote by Q that portion of the polygon t't 
o 
t" so that L-

may denote the remainder of the polygon. 



1ff (t) . 211r 
where of is the local 

0`‹o 
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Then 
1f-4r(t)cit  

27Ti 	t - t
o 0 L- C 

possesses a limit as C j. 0, subject to 

certain conditions 

1 

on 	'Zjl (t) :- 

4rt)dt 	
1 `lpt 

o 
) dt 	

1 

Apit 

o

) dt 
Write 	

2TTi 

The latter integral 

t - t 	p- 2 	i 
L-e 

'W (to) 
becomes 

t 

dt 

t 	2 	i jr 

'if (to) [I 
= 	n(t 

l
t - 	t 	(1.42) 

t' 

-to) 

t” 
2Tr i 

L-y 
t-t 
° 	

2 Tr i 

Af (t ) P t' -t 

2
tt
11 i° 	n( t 	„ -t ) 

0 

To close the contour again so that 	i2-}r 0, we need to find the 

limit of this term as t', t" 
0 

But t'-t
o 

= e e-i °{ 	and t"-to = C e-i ac 	(Fig. 23) 

AIi(to) 	t' -to 	`1~f(to) 	G e-i oC' 	noto) 
i.e. 	21ii Pn ( t~~-t ) = 2. 	n ( 	- 	 . i "( "- ce) 

	

o 	Tii 	E e-ia 	2m-i 

interior angle at t
o
. 
0 

1r(t )dt 	x 
lim 	1 	° 	= 	° u (to) . 
Q-“),  ' 2m- 	~ i 	t-t 

L-Q ° 

of 
1 '-~/'(t) -r to) at 

Returning to the former integral (1.42), 
27Ti t-t 

• 

. (1.43 

Suppose the condition Ilf(t)-  1r(to) 1 4 A lt-torte , A> 0, OCR 4 1 049 
is imposed on '4'(t) near to, i.e. for 	(t -to I < R, say, this 

being referred to as theHolder condition by Muskhelishvili. 

Denoting the contribution to (1.43) for this region by I 

then 	I 	1 
RI 'Apt) -Into)  	ds 

11<2~- 	t-t
. 

° 



) dt 

1 ' 

- 21Ti 

1 

(u 	(z write 

L 

ir(t) - 11-(to) 
dt 	+ = 21Ti t - z  

2-tri 
L 	 L 

From 	(z) 

dt 
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e4'  Writing t-t 
0 

= re 	or re 

the corner t lies, we have 

depending on which side of 

iJ'(t) - 1r(t0)14 Ar» 	from 	(1.44) 

1 R  
(I ! -1 	- 	A 	Jll r Ar 	dr 	

2~tk 
(R - Vi'µ) which is finite 

J 
since 	} 0. Hence subject to the Holder condition, 

lim 	1 	Ç - r(t)_  - ,~ (to) 

e4.0 2•1- i 	t - 
t 	dt exists. 
o 

Thus to summarise the results, having placed z at a corner point 

t
0 

of L we have shown that 
	

(to) exists as a principal value 

and 

 

' ('(t) - `JT(t0) 	0‹.-4r(to) 
t 	- 

t0 	dt + 	
21T 	

(1.45) (t) = 	1 
0 	21, i 

 

Second (ii) Consider the limiting value of gip (z) as z - t, z E DIs 
0 

and to is a corner point. 

rt)- -r t ) 

= (to) + 2TT i 	t- z o dt , z E D+ 
L 

since 2TT i 	at = 1, 	z E D+ . 

Now let z --. to where to is a corner point of L, z E D+, 

lim 
z -+t 

0 

(z) = 11'(t0) + lim 
z -o-to 

1 '1If(t)- f(t ) 

t - z 

T(to) 
	  

-L 

(1.46) 2T-i 

Write M(z,t
o) 	2TT i (y 	t - z 	 dt 

L 



and 	I M(z,t0)_M(t0t0) t  <  21T 

ht(t)- 	(t°) lit~-z i • 

- zi I t - to' 
O 

ds . 
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1 	, Ir(t) - V' (t ) 
Then M(t

o,to) 	2iTi O 
	

t - t 
o 
dt and is known to exist 

o 

by previous discussion. 

1 	(fr~" (t) - ~!`(to)1(z-to ) Then 	M(z,to) - M(t
o ,to) 	2 Tri Cl (t - z) (t - t) dt 

L 	 ° 

L 

R _ 4- 

Now describe a circular arc radius ō centre t and let 
° t'-t 

to along the vector (to - z) where 0( = arg (z-t °) . 
0 

It is again convenient to split L into two parts for the purposes 

of the analysis:- 

That part lying inside the circle denoted by e and the 

remainder by L- 	Then we may write 

	

I~
;Lr( 	` 

t)- 
Y (to) 1 itO-z I lim zit I M(z.to)-M (toto) 	zli 	

27ī 	1 't - Tzl It - to) 	ds 

o o 	 O 

'1V(t) - i./'(to)1 (to-z 1 

	

+ lim   ds . 
z-~ t 

0 	
I t-zl J t-tol 

L_ 

But the second right hand side term here is zero since the 

integrand tends to zero as z -,.t 
0 
, for all t = z,t

0 
. 

In considering the first right hand side term, substitute 

I
t
o
- z l = 5 	and also note that It-zl ) 8 sin c(. 



1 	w` 

2-TT i 
4 
L 

t) - 11,f(t ) 
° dt = 

o(' '4r (tO) 

t — t 
0 

11- (t) 
dt (1.48) + 271-1 v 

V 
t t o 

(z) _ (1 - 2 	r(to) 
+I 

L 
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1 	 l 	t° 	f(t)- li' (to )1 
Thus lim < lim 	 j 	

Mds 
z 	27,-fz~t 2 Tr 	

t, 	S sino( -t i t-tof 0 	 0 
e 

1 	t" (V(t)- r'(t )I S 

+z- to 
2 ff t S sin `; I t-t °1 	

ds 

o  

where (X + B = D( o 
, A' , 	> 0 .  

[ f(t
)_

But with the H

o
older condition on ^r(t), near to, 

 /.(t0) ( 	A (t-t0l 	, 	0,G4 	1 (for sufficiently 

small S t 6 Q 	). 	
1 

I o f 1 
Thus lim 2TM 	lim 27r sAn c; 	t-t01 	ds + a 

z•-t 	N z-.t o o 	 ti  

similar term 

2TTJ1.L sino( 	+ 27y, sin p j 1 0 

Since as o, 	1—'3-0,    this term will tend to zero. 

Hence we have that M(z,t 
0 	0 0 	0 
) —p. M(t ,t ) as z .+ t so that 

M(z,to) is continuous onto the boundary as z G D approaches 

the corner point t
o 
. 

Thus returning to (1.46), we may write now 

-r(t) - -111(to)   
lim 	+ (z)• = l(to) + 2T i 	t - t 

	 dt, z E D+ (1.47) 
z -3-t0 from D 	 0 

But from (1.45) we have that 

A 	 .I ts 	-to I 
+ a similar term 2•TFsin aC 

,11 

ASS` 	ASS 

lim C (z) = il (to) + 

0 

p(O eW..(to) 
t0) 	2--r- 

or 
	

(z) = (1 	— ) 	(to) + 	(to) 

z .-+ t , z C D+ 
0 
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This result is known as a Plemelj formula, and a counterpart is 

similarly derived when z-4,- t, 	z E D giving 

litt( i'(t) dt  
- (

z
) = - 27r i (to) + 211-i 	t - to 

L 

These results are for the case z — to , where to is a corner 

point having interior angle 0(
o 
	0</..< oC 	2 ~'. Of course t 
00 0 

need not be a corner point of L, in which situation OC o is 

merely replaced by I 

Further results concerning the nature of 3, +(z) may be obtained 

by [6 ] page 4:5 notably that this limiting value 

(z) _ ( (to) is a continuous function of to, notwithstanding 

the lack of a smooth contour. 

The application of the above results to two dimensional 

potential theory problems follows because the real and imaginary 

parts of any holomorphic function are harmonic functions. 

4cC 

0 



- 52 - 

Now 115 (z) was seen to be holomorphic in D+ or D subject only 

to `yf' (t) being a complex function of the complex variable t 

satisfying 

(i) 	('i/'(t) I ds 	exists 

and (ii) 	the Holder condition. 

This freedom in '1;~' (t) is now used by demanding that 	i 	be 

solely real. 	

~~ 

Treating z or to as a local fixed point we have 

t - z = reA 	or 	t - t = rely 	(Fig.25) 

dt = drelCt + ire d 9 or 	dt = dreiO + ire dFi 

dt _ _dr + idg 	dt 	dr 
t-z 	r 	

or 	__ 
t-t  

0 

Hence = 27i i
(t) dt 

	
z  E D+ 	becomes 

u(x,y) + iv(x,y) = 1 21T i 

n 

o`jrt) Ir + idej 
r1 

L 

while 	
+
(z) = (1 - ~~) `1~Ī(to ) + 

2"17 i 	
(t}dt , z --4 to E L 

o 
L 

r 
 - ` 

	

Ildr becomes u (to) + iv(to) _ (1 - 2Tr lf(to)+2Tri 	pt) 	 + id8
J 

. 
L 

Extracting the real part of these equations gives 

1 u(x,y) = 2Ti .J jU,(t) d e , 
L 

(x,y) E D+ 	(1.49) 

u(to) _ (1 	24) 1(to) + ~ )A(t)de, , 	toe L (1.50) 

L 

where we write (L in place of '1~i to represent the now real 
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density defined on L. 	We note that the integral in (1.50) is 

no longer a principal value integral. 

Extracting the imaginary part of the equations gives 

v(x,y) 

v(to) 

= 

= 

1 	Jl (t) dr - (x,y) 	e 	D 

to E L 

(1.51) 

(1.52) 

21T ! 	r 
L 

Cj 21~ pY) dr 
• 

L 

where in (1.52) we now have a Cauchy principal value integral again. 

Consider separately (j  ~ (t) dr - [ (t) nr]  J r 

 

d {Ll(t1 on rds . 
ds 

L 	 L L 

 

But .&Q n r being essentially real terms, we have that 

..(t) Q n r 	= 0 no matter whether r = PQ or r = QoQ (Fig.25) 
L 

is inserted then 

e- 
d C-(s) (n r ds, 
L 

Cr(s) en 1r ds , 

	

(1.51) 	and 

	

(x,y) 	e 

t
o C, L 

(1.52) 

D+ 

become 

(1.53) 

(1.54) 

If further 	
ds 	

= - d(s) 

v (x,y) 

v(to) 

- 2~ 

1 = 2R 
L 

Thus two formulations of the Dirichlet problem in integral equation 

form are now obtained given by (1.50) and (1.54) where u(to), v(to) 

take the prescribed boundary values f(so). The results exactly reflect 

those obtained earlier by consideration of single and double layer 

potentials. 

These formulations have been obtained by inserting 11/`(t) 

as an entirely real function defined on L. Clearly if lidr (t) 

is taken as a completely imaginary function ill(t) then precisely 

the same results as (1.49), (1.50), (1.53) and (1.54) will emerge, 

with the roles of u and v exchanged. 
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Before discussing the Neumann problem in the context of the 

complex variable, it is convenient to give an alternative version 

for the Dirichlet problem in which the choice available in the 

density '41 (t) is exploited. 

It has been seen that 	(t) , originally a complex function 

defined on L and satisfying 

TT 

 the Holder condition, may be taken 

as entirely real so that the integral equations (1.50) and (1.54) 

for the solution of the Dirichlet problem arise. 

Returning now to the situation in which (t) is complex, 

we know that where F(z) is a holomorphic function in D + L , 

Cuachy's theorem gives 	F(t)dt = 0. The conditions for this 

L 

may be weakened, see for instance L-8; • 	it is sufficient that 

F(t) is merely the boundary value of F(z) holomorphic in D+  

and continuous in D + L. 

Thus in particular when 	(t) is the boundary value of ` r(z) 

holomorphic in D+  and continuous in D+  + L then Cauchy's theorem 

gives 

1 	,!. i!i (t)  dt 	E D 

	

2Tri 7't- z 	z 

L' 

the function (zz being holomorphic throughout D+  in the case 

when z e D . 
h 

However it was shown that 	(z) = 	1  P'  (t)  dt gave rise to 2Tr i 	t - z 
-L 

.(z) being holomorphic for z e D+  or D under very general 
conditions on `4r (t) . 

Hence with the above choice for 'Zfi (t) we have that 

(z) - 0 z e 
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Now working from the general Cauchy integral and taking its 

limiting values as z-y to we had from 

^

(1.48) 

g5 +(to) _ (1 - ar°)(to) + 2 1 
i 

) t1p  (t) dt 	z E D+ 
o 

(to) = 

	

'to)   + 1 	(t) 
27; i' 	27 	t t0 

dt 
L 

z C D- 

But in this situation 4; (to) being the limiting value of the 

holomorphic function "zero" must itself be zero. 

(t) (to)   = 	
1 	ēJ 	dt  i_ 0( O 	t - 

_ 	J 

(1.55) 

Finally Cauchy's integral formula gives 

(z) = 	1 
	1

Rt) D+ 2'Tj i 	t - z dt 	z 

L 

By taking real and imaginary parts of (1.55) we can display the 

required integral equations as follows. 

Let 	'(z) = u(x,y) + iv(x,y) , u,v both harmonic and as 

z --. t
o 
	'1 
0 

write 	1/' (t
0
) = u(t

o
)  + iv(t

o
) where u (t 

0 
) , v(t

o
)  are 

the limiting values of u(x,y) and v(x,y) respectively. 

,', u(to) + iv(to) = i~ 
	u(t ) +v(t)  dt 
oo L  

As before, put t - t
0 

= rei° 

dt  	
dr + id B . t - t 	r 0 

u(to) + iv(to
) =ia( 	

) + 	id~3 1 

o JJ 
L 

vde + i (vdr + ud e )3 r 

Taking the real part gives 

 

u(to) _ ~1 	(v dr + ud ) 
0 

L 

(1.57) 

(1.56) 



v(t) = u dr- vd 
0.  0  0  r ) (1.58) 

r 
v dr and 
	

u dr 	
may be integrated by parts r 	 r 

L 

But the terms 

L 

L 	 L 

Similarly U  u dr 	-© 
a n c n r ds 

L 	 L 

an 
( n (r) ds 

rI 

L 

vdr ` 

L 

nn Qn (-
1) ds  
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and the imaginary part gives 

dr 
i.e. 	v -  r v ds  (en r) ds = [vQnrj Qnr ds 

L 

 

L L 

 

Now [vQnrj  = lien f v en , b- t J  - v Qn,a - t f 2 
8-)-()  	b 	 o 	a 	o , Fig. 26 , 

L 

where 	= E b - to   = (a - to/ . 

and so assuming that v(x,y) tends to a continuous boundary function 

v(t
o
) , then [vnr]=O. 

L 

Further u(x,y) and v(x,y) are conjugate harmonic functions for 

z = x + iy E D 	Thus the Cauchy Riemann equations hold between 

u' and v , 

?1.1 	v 	) u 	a v' Zs an and ān 	as 

Again in the limit as (x,y) } to  on L we have. 

u(t)  _ -bv(t)  
s 	a n 

u(t) 	v(t) and 
	 = n 	- a s 



en 1 ds + 
r 

1 1 	}} 
and v (to ) = 	n ~Jn r ds 

(1.59) 

v dO 	(1.60) 
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Substituting into (1.57), (1.58) gives the identical pair of 

equations 

Further by taking real and imaginary parts of (1.56) we obtain in 

a similar manner the pair of equations 

u(x,y) = 
1 

2fi 
cf u 
a n n r 

ds + u d 0 ) 

L 

v(x,y) = 2 
ā v Qn r ds + v 8 ) 

n 
L 

Thus this analysis yields an exact repetition of the equation obtained 

from Green's Boundary Formula. We return now to the situation in 

which the density 	(t) is a real valued function ,.(t) and 

attempt a solution of the Neumann problem: 

given 
.3
6 
n
u
(to) = g(s) at all to E L except at corner points, 

to generate u(x,y), harmonic in D+. 

As `'2u = 0 , (x,y) in D+ , there exists a harmonic conjugate 

v(x,y) and Cauchy-Riemann equations hold between them 

	

u 	āv 	1uu . v 
= 	~s and 	as - 

	

an 	
6  

corner points. 

Now au an = g(s) along L 

on L, except at 

. 	v = - g(s) 

• v(ts) = - 	g(s)ds • a 
for some arbitrary initial 

• a s 

arc point s = a, this being the sum of integrals along the straight 

boundary edges. 



Again d) 	(t) dr = (~ k(t) d—( e n r) ds = 
V / 
L 

(t) Qn 

L L 
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Note that since v(t) is taken continuous, then on integrating 

circuitously we obtain the well-known Gauss condition 

fg(s)ds  = 0 . 

Now from (1.4$) we had 

(t°) _ (1 - 2 °) (t°) + 	11 	at 
0 

Tn 
L 

Taking the real and imaginary parts gives 

1 
u(to ) = (1 - X.0)   (to) + 2iT fit(t)dO 

L 

v (to) = -- 1 4(t)dr 27r 	r 

Hence we obtain 
1 

so 
~(t) dr = 2?i 

L 	 a 

g(s)ds  where s is 

the arc length measurement at t
o
. 
0 

n r ds 	by above. 

s 
0 

Hence consider 	CT(s) Qnr ds = - 21r 	g(s)ds (1.61) 

L 
	 a 

where Cr(s) is written for 
c
7 . This gives an integral equation 
oc s 

for the determination of Cr(s)  . 

To recover u(x,y) within D it is necessary to return to 

u(x,y) = 	1 (s)dG 	as in equation (1.49) ; and the density 
2Tī 

s 

1s) here would be obtained from J(s) = 	0--(s)ds . 

b 



(1.41) 

Neumann integral equation Dirichlet integral equation 

(1.6) f (so)= C~(s) Q n(Y)ds 

(1.39) f(s)de 
JL 
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Summary of integral equation formulations  

Q CS 

0 

4/ 

Boundary conditions: 

27 

Dirichlet: u(s) = f(s) 	Neumann. 
a 

n(s) = g(s) . ob. 4122 

Formulation\ 
'` Cr(s) cos (r,n ) 

g(s°) _ 	7T6(sō+(~ 	r 	
-

O ds 

L 

(1.9) (so not a corner point) 

1((s)d9 	(1.20) 

Q} au ~n 

 

(' 	
L 

(-1-) as 
an 	r 

L 

f(s)de 
(1.38) 

r) 
u(s)d0  =ag (s) C n (r) ds 

L 	 L 

(1.40) 

f111-Qn(1)ds =-0< f(s ) +  ~n r 	o 0 
L 

( 

- OC u (s )+ u(s)d& ---0g(s) en(1)ds 0 0 
L 	 L 

f (to)=(1  °C ) 	acto) + 

COMPLEX 

VARIABLE 

METHODS 

1 
2 -n- 

f (to) = 21t 

)A(t)dB (1.50) 

Ci(s) en (1) ds 

(1.54) 

r(s) in (1) ds = 2T 
.. 	r 

ct 
6-(s) _ s (1.61) 

f (so) = (2ff- Ofo )Iil(so) + S g (so) _ L%)`(s ) -(so a () ds COrir 
L 	 o 

(1.31) Qo 

SINGLE LAYER 

DOUBLE LAYER 

GREEN'S 
FORMULA 

s
o 
g(s)ds , 

1 
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-~y 	p 	
Chapter II  

EXiS t -C. 	l kc7-Y ror Ptblyqc,+ . Req s- 
In  Chapter I the interior two dimensional boundary value 

problems for Laplace's equation were formulated as integral 

equations using various methods. The question must now be 

considered whether these equations, summarised for convenience 

of reference at the end of Chapter I, can be solved. This is 

a far reaching question for it concerns firstly the existence 

of a solution of these equations and secondly, when a theoretical 

solution is unobtainable in 'closed' form, whether an approximate 

solution can be obtained which will converge to the true solution 

in some sense. 

We concentrate only on the formulations giving rise to the 

integral equations (1.20) or (1.50), which can be seen to be 

essentially the same, and investigate in detail the existence or 

otherwise of a (theoretical) exact solution, of an approximate 

solution and then the convergence of the approximate solution. 

The latter two are investigated in Chapter III; considerations of 

the existence of a solution given below in this Chapter. It should 

be remembered that we are concerned specifically with the case in 

which the boundary contour is polygonal, which makes a considerable 

effect on all these considerations. 

With regard to the general theory of integral equations, there 

are many texts which describe in detail the occurrences and varieties 

of types of integral equation. Among the large literature available 

are the following references best known by the author: [ 5], L 61 [9]  

and [101 . It will be apparent on reference that the integral 

equations derived here are all Fredholm integral equations of 

either the first or second kind. The Fredholm equations are usually 

displayed with respect to an integration along the real x - axis, viz 
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'b 

$ 

	

X J
K(x,t)y(t)dt = h(x) , x € [a,b] 	(2.1) 
a 

K(xt)Y(t)dty(x) + 	= h(x) , x e [a,b] 	 (2.2) 
a 

where (2.1) is an equation of the first kind, and (2.2) that of 

the second kind, and y(x) is to be determined. In this simple 

form (2.1) is known to be awkward to handle and in fact may have 

no solution for general h(x) unless the kernel K(x,t) is 

singular, 6]. For (2.2), we have at the outset for a wide variety 

of kernels K(x,t) the well-known Fredholm Alternative which we 

state as follows:- 

Either 	X is a regular value and (2.2) possesses a unique 

solution for an arbitrary h(x); 

or 	a is a characteristic value of (2.2) so that the 
b 

homogeneous equation y(x) + as K(x,t)y(t)dt = 0 possesses a 
a 

denumerable number of linearly independent solutions 
4 
 1(x), 2(x),... . 

In this case the transposed homogeneous equation 
b 

'(x) + X f K(t,x)iJ''(t)dtcOalso possesses a denumerable set of 
a 

solutions '1r i (x),  ' i'2  (x) , .. . and (2.2) then has a solution if 

and only if h(x) is orthogonal to all the {lri(x)}. . 
 

The Fredholm Alternative is proved in [11] g74 for 

K(x,t) continuous on a,( x,t < b and is then carried over in 

[11] § 81 to demonstrate the existence of solution of the integral 

equation formulation of the interior Dirichlet problem. Double 

layer potentials are used and the integral equation produced is 

essentially (1.20) or (1.50). This discussion hōwever requires 

that the kernel, in its equivalent form in the Dirichlet case, 



a , 1 	cos (r ,n) 	d© 
K(s,s ) = 

 
(2.3) in i  1.2 , 
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(2.3) below, when a contour integral replaces the integration on 

the x - axis, be continuous for all points s,so,0 < s,so < S on L. 

Provided that the contour L is smooth possessing a continuously 

turning tangent, then the kernel of the integral equation (1.20) 

or (1.50) is easily shown to be continuous. This kernel was 

displayed variously as 

IC. 

FC 2 

For given so, K(s,s0) is continuous as s describes a 
smooth contour, continuity being maintained even when s passes 
through so, Ell] § 81, where it might appear that K becomes 
infinite. However this continuity is not maintained when s passes 
through any corner point of the contour, such as A in Fig.28. 
This arises due to the abrupt change in direction of iz. Moreover, 
the parameter X  in (2.2) is no longer a constant; an instantaneous 
change occurs at each corner point. Consequently we must first 
modify the demands of the Fredholm Alternative. 

This requirement will be discussed in detail below. It will 

allow the application of (1.20) and (1.50) as a means of solving the 

Dirichlet problem, showing the existence of the density function 

TLCs) as the solution of (1.20) or (1.50). By examining the list 

given at the end of Chapter I, we see that the other formulations 

of the Dirichlet problem in terms of integral equations all fall 

into a different category; all are Fredholm equations of the first 

kind with logarithmic kernels, 

i.e. K(s,s 
o ) = n(

1) 	where r is the distance between 

the points on L with arc parameter s and so. Note that (1.38) 

is actually of a different, non singular, nature since in this case 

so  is always taken to lie outside the contour in D . The existence 

of a solution for these Fredholm equations of the first kind has 
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been considered by Jaswon and Symm [12]. They establish the 

existence of a solution for (1.6) (1.39) and (1.54) but only for 

smooth boundary contours. Convergence of approximate solutions to 

the solutions is not investigated. 

With regard to the formulation (1.38), useful material appears 

in C  13] , p.253, in which the solution is shown to exist, but again 

the analysis refers to a smooth boundary contour. The author also 

gives details of the resulting approximate solution for (1.38) 

through linear algebraic methods. He is able to show that the 

approximate solution exists since, subject to a certain condition, 

the linear equations always have an invertible matrix. Some error 

analysis is given concerning the convergence of the approximate 

solution. 

It is of course to be expected that all the integral equation 

formulations can be applied successfully to polygonal regions. We 

shall however concentrate completely on the double layer formulation 

and by referring to the methods of J.Radon E14] it will be possible 

to establish the existence of a unique continuous solution. It .I_s 

probable that the ideas of Radon's work, which came to the attention 

of the author through the publication of J.Benveniste [15] can be 

extended to deal with other formulations of the two dimensional 

potential theory problem in terms of Fredholm equations of the first 

kind, but this is not investigated. 

Thus we return now to the formulation of the interior 

Dirichlet problem through double layer potentials leading to (1.20) 

and effectively (1.50). As has been stated, the fundamental Fredholm 

theorem will deal with these equations only for continuous kernels. 

Historically we have the analysis of Neumann, [16j , which 



- 64 - 

is fully described in [17] p.201 and in [ 181 p.124. This gives 

the required result in the case of a region bounded by a convex 

contour having only a finite number of corner points. Neumann's 

work pre-dates Fredhoim's but relies on certain geometrical 

constructions that apply only to convex regions, the boundary 

contours having non-zero curvature between the corner points. 

Radon's aim was to establish existence of solution for a 

wide class of boundary curve, and to this end he considers L to 

be a curve of bounded rotation, this being a natural generalisation 

of smooth curves. A curve is said to be of bounded rotation when 

the angle B  (s) (Fig.29) is of bounded variation as Q describes 

L, i.e. for 0 4 s j S. 

The contour L , shown here as smooth for convenience, can be 

parameterised with respect to arc length s, 0 < s r` S so that 

cartesian coordinates of a typical point Q on L are tx(s) ,y(s) . 

When there is no chance of misunderstanding this point will be 

denoted by Q(s). 

We recall the standard definition of a function of bounded 

variation. Let g be a real function defined in a < x b . 

Given a partition lJ' = f xo,x1, ... ,xn-1,xn ,  a = xo, b = xn, 

xo  < xl  < x2  ... < xn-1  < xn  possessing n intervals, write 

P gk = g(xk) 	g(xk-1) 
 , k = 1(1)n.  Then is of bounded variation g 
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on L a,b] if there exists a positive real number M such that 

~)Qgkl ( M for all possible partitions P (n finite). The 
k=1 

total variation of g is further defined as Vg[a,b] = sup T.. ILg
k f 

(P k=1 
taken over all possible partitions. 

The angle 8 made by the tangent at Q is defined by 

cos 9 (s) = x' (s) 	, sin B (s) = y' (s) 

for points at which x(s) and y(s) are differentiable. For other 

points where x'(s) and y'(s) are not defined (i.e. corner points) 

then ~! (s) is arbitrary. 

Hence 	x(s) = x(0) + 
S s 

0 

cos 0 (s ) ds 0 0 

(2.4) 
s 

Y(s) = y(0) + f sin @(so)dso 
J o 

We note that when L is polygonal, x(s) and y(s) defined from 

(2.4) are piecewise linear. Now the major part of Radon's paper 

is concerned with the solution of the Dirichlet problem in terms 

of double layer potentials (cf.chapter ,,q14 This gives the 

harmonic function u(x,y) at P E D+ expressed as C 'tt(s)dw, (2.5) 

where JL(s) is continuous (Fig.30) and of course an integral 

equation results when P passes onto the boundary of L at say Q 
0 

and 

D 

0 
>x 
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In place of w when P is on L, Radon defines an angle 

9r(s,so) as follows:- 

(i) for 0 4 s < so  S, define '('(s,so) by the relations 

cosir(s,so) = K x(s)-x(s)3- o  
ll 	 , K> O 

sinljl'(s,so) = K y (s)-y(so)} 
(2.6) 

(ii) for 0 .4„;s0   < s < S, define 1JJ' (s,so) = 141' (so,$) . 

i.e. in this situation, using (2.5), 1 J'(so,$) will be given by 

cos t (so,$) = K'2x(so) - x(s)3. 

sin llr (so,$) = K'.{y (so) - y (s)3. 
, K' > 0 	(2.7) 

31 

	> x 

(In the two situations drawn in Fig.31, 111- = ` (i) lies in the 

third quadrant while 	= 	 (ii)  lies in the fourth quadrant). 

To keep the points s,so  distinct, the case s = 0, so  = S is 

temporarily excluded. 

Hence (2.6) and (2.7) define a symmetric expression "Vf' (s,so) , 

continuous at all its points of definition on the polygon L. We 

have not yet defined it for the cases s = so; s = 0, so  = S; 

so  = O, s = S. 
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Now if the density }A.(s) in (2.5) is set to unity, we 

obtain what Radon calls the order 0(x,y) of the point P(x,y). (Fig.30) 

Clearly from (2.5), when P E D+, 0(x,y) = 2/T and it is easy to 

show that 0(x,y) = 0 for P E D-. 

Suppose now that P lies on L at a corner point Q0(so)  

(Fig.32). Then we may write, formally, 

0(x,y) = O(x ,y ) = 0(so) for brevity 
Qo Qo 

ds1{1 (s, so) , 	 (2.8) 

although '1J/• (so so) is not yet defined. (The notation ds is 

used here to indicate that s is varying and that s
o 

is a fixed 

point) . 	pis) 
Et 

 

  

F . 3z 

   

    

Construct a circle centre QO, radius•S , which cuts L 

in points Q',Q" (s = s', s" respectively, s' < s
o ( 

s"). Denote 
0 0   

that part of L interior to the circle by L' and the remainder 

by L". Denote also two regions of the circumference of the circle: 

ri that arc lying in D+ and r e the arc lying in D . It is 

assumed that E is sufficiently small for the configuration of 

Fig.32 to hold. 

Now we consider the value of the expression in (2.8). Taking 
n 

L = L" + r then by (2.5) 0(s 
o
) ) = 2~- . But O d 	(s 

o 
,s ) can 

e 	 s  
L"+r 

e 
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n 

be split into two parts: 
$ + 
	and we have 

L" 
e 

s' 	 s 
f (s,$ ) + 	d '11f (s,$) + 	d `yf (s,s ) 

ST 	o 	s I T" 	0 	s i 	o 
s'~ 

Fila. 	
o 

f 

	

271- =1.1/'(s',so ) -11r(o,so ) + 	ds'1(f'(s,so) +`,f(S,so)-'tjf(s",so), 

recalling the symmetry of 
1 

(s,so). Further,j ds1/J`(s,$) will 

re 

give the exterior angle at the vertex Qo. Denoting this by D( o 

we have 

' /' (S0,s0) 	r(D,s ) + ,s0) - 
	

(s",so)+c)(o = 27T- . (2.9) 

Now let E --->. 0 and write lim ~(s' , s0) =1im '~/' (so , s') = 1Jtso,s
o
).  

6_,,0 	s_.).0 

Similarly take lim i(s",s ) =ii1fr(s ,s +) so that we have 
s o 0 0 	0 0 

"~/~ (so , so+) = e (so+) and "Ili (so , sō) = ® (sō) 

where as before 

l

7 8 denotes the angle made by the tangent with ox. 

Also in the situation in which Q 
0 

were not to be a corner, 

then 0( 0 = iT and '1'(s' ,s0) ---) r (s",s0) -~ 9 (so) so that 

(2.9) would then reduce to 	

TT 

(S, s0) - iJ1` (0, s0) = iT 
	

(2.10) 

However (2.10) may be considered to hold generally for 0 ! s 0< S 

because of the continuity of 'il'(0,so) and I'(S,$) with respect 

to s
o
. Substituting (2.10) into (2.9) gives 

1.1r(s 10,s 	- '4' (s",so) + o< = Tf 	, 

or, as b —5 0, 'kj (s ,s +)- i1!'(s ,s-) = o( -ī r  00 	00 0 i  (2.11) 

L' 

d 11,r(s,s ) '= s 	o 
+ r

e e 

0 
d 

Thus in (2.11) we have a relation to indicate the discontinuity 
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in 'llf' (s,s
o
) as s passes through the corner so. The 

understanding of Alf (s,so) is completed by assigning appropriate 

limiting value meanings for `y (0,0) , it (O,S)Ar(S,O) and 

'4r (S,S). Without loss take the initial point for the measurement 

of s not at a corner. Denoting by (3 the angle made with Ox 

by the polygon edge upon which this point lies, then we have 

1r(0.0) = 	(o,o+) = 1p- (o+,o) = 
C 

`(o,$) _ T (o+,$) = 	(O,s-) = Tr +17, 

and 	iJ` (S,0) = " (S-,O) = 	(S,o+) = ĪT +C. 

Since 	is defined mod 211- then by taking '1j,(' (S,S) _ it (S-,S) 

= 'lf' (S,S-) = 2Tr + 	we have the relations 

(S,O) - r (0,0) _ 11- 	and 	(S,S)-"1.J' (O,S)=TT . 

This extends (2.10) to hold for the cases s
o 
= O,S. Finally since 

` r (O,S) = `1t/' (S,0) , adding the two latter results gives 

(S,S) - 	(0,0) = 27T . 

Having explained Radon's definition of the angle '1r (s,so), 

his treatment of the Dirichlet problem using double layer potentials 

now follows;  the treatment is of course very similar to that used 

in obtaining (1.20). 

From (2.5), u(x,y) = ,(,t(s) dwp  is harmonic for P(x,y) 

  

L 

E D+, and wP  as in Fig.30. We put 

f(s)dwp   = o{,,As) -fso)1 dw + QJ(s)dw 0s,sS, 
/  

L 	 L 	L 

where s is a variable and so  regarded as a particular value. 

    

  

Jl (s) dwP  = )-j(s0)1  dwP  + 2ir k (so) , P E D+. 	(2.12) 

L 

 



j. (s )- (so)7dwp 
s'  o +27T....A (so) 

l (s)dwP= 
L 

s ' 0 

0 

(s)-I.l(so )}dwP+ 
s" 
0 

s' 
0 

b,l(s)-1((so dwp+ 
S 

so 
y(s)- (.~(so)1 dwp <E 	dw 	(2.13) 

	

s' 	/ 	 s' 

	

0 	 0 

s" 
where now 

s' 
)(:t-(s) 	(so) dwp 

JS j

° 
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Now with so lying in, say, the interval [ s',s" ] (Fig.32), 

then given E > 0, there exists 6 = s" - so = so - s' such 
 

that IIA (s)- ,t»(so) I < E for all s e so',so, assuming I(s) 

continuous for 0 , s S. 

Thus (2.12) becomes 

Labelling the point on L with arc parameter s0 by Qo, as in Fig.32, 

we now let P -3 Q 0 from within D+ . 
s' 	 s' 

Then 	fit(s)- 1l(so qdwP  - 	 0 t~ (s)- u(so) ds- (s,so) 

and 	
5~~

S o4dw  _ 	f 5~~
/~,t(s)- Jvl(so) ds' 	(s,so) 

S" 	/ 	J s 0 	 0 

Hence letting E- .0 and using (2.13) we have 

1im u ( x ,y) = u+(Qo) P-3Q0 
(see the notation in ( 1.20)) 

s- 
= 	1tk (s)- Ats0)1-ds" 1(s,so)+ 5 .1(s)-̀ LL(so ds' {s,so)+21T)1(s) 

o l 

But the two integrals can be combined together as 

so+ 	so so that 

s- so and 
0  

s u+(Q0) = 
J 

{j (s)_(,~ 	 (so)Ids'1!f (s,so) + 2Tfll (so) 
o 

(`S 	 r S 
= 
 J

((.(s)dsir (s,s0)- Jl(so)
J 

ds 	(s,so)+ 2TrJl4 (so ) 
0 / 	 / 	0 

S 
= f o)lt.(s)dslr (s,s0)- p(sof ilf (S,s0)-1Ī(0,s0) + 2Tru(s0) 

s+ 
0 
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By (2.10) this reduces to 

S 
u(Q0) = iT),((so) + J )k(s)ds ' (s,so) 

0 
(2.14) 

= the prescribed boundary function .f(s °). 

This latter equation is equivalent to (1.20): essentially 

(1.20) has been re-cast into the form (2.14) which is a more 

suitable integral equation because of the constant factor Ti . 
When f(so) is continuous with respect to different positions of 

so on L we see that for the density function 	to be continuous 

on L , then it must be the case that 

S 

0 
Jl.C(s) dsnJ' (s, so) is also a continuous function of so. 

Thus defining the transformation T by 

S 
(T1.1-) (so) = I ).,t(s)ds'Il%'(s,s°) 

0 
(2.15) 

then we see that T has to be a linear transformation of the 

space of continuous functions)A(s) on L into itself. 

That this is so follows from the theorem given in [111 page 

220 which may be expressed in a form suited to the current notation 

as follows:- 

"Let 'lj(s,s ) be a function of bounded variation defined 
for 0 < s,s 	S whose total variation with respect to 
s is less t~ian some finite value independent of s , for 
which ' (0,so) = 0 and for which Apr 	and ° 

ay 	are continuous functions of. so. Then T 
0 

generated by (2.15) is a linear transformation of the 
space of continuous functions on C O,sJ into itself". 

It is clear that for a polygonal contour possessing only a 

finite number of corner points, that V is of. bounded variation 

(but not necessarily continuous).A detailed and general proof is 
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given in Radon that the total variation of '4/ for a curve of 

bounded rotation (and hence for a polygon) is less than some 

finite value independent of so. 

We can arrange for 4i (0,s o) to be zero for any given 
s
o 

by prior arrangement of L in relation to the position of the 

cartesian frame Oxy. By taking the initial point for arc 

measurement not at a corner point then .V(s 
0
,S) will be a 

continuous function of s
o
. With regard to the continuity of 

f
ijf(s,$)ds regarded as a function of s for given

o  

we denote the integral by / (E ,so) and proceed as follows:- 

El. 33 

Case 1 s
o> g 

 

This means so) s in the integrand and so 1r (s,so) is 

continuous with respect to both variables s,so. Hence d(f,so) , 

being the integral of a continuous function is continuous in both 

J and s
o
. 
0  

0 >x 



so 

j TI ds + f (Ti+ p) ds  
so 

s 
'.I(K,,so) _

C o + 
o Tso 

S = so is not defined 

Case 2 so < J 
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In this case 	(,$) =
J 

'u1(s,s 0)ds, is such that s passes 

through so. 0 
Since 111' (s,so) is a continuous function of s for so not 

a corner point then it will be sufficient to consider the continuity 

at so when so is a corner point. The essence of the analysis 

can be seen by integrating across just the one corner point so 

Et 

flr 
xim 

S 	A 
Consider then 	(,so ) = 	(s, so) ds along the path OAB 

o 
T 

where without loss we take OA along the x axis, AB inclined to 

it at angle 	,, O < < 11/2. Since we place so at A then 

OA = so, AB = J - so. 

From its definition, values for -V (s,s ) are: s <s 	'/ = Ti 
0 	 0 , 

s>so
) 

r=7T+ ~ 

Fic . 3g 

= Tr so + (īr+ 	) 	- so) 

= T ī ' + 	( r - so) 	 (2.16) 

Now consider the evaluation for so moved from the corner to say 

s' ( corner value. Again we evaluate 	( E ,sō) = I ly(s,sō) ds 
Jo 
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36 

Values for 1r (s,s, )  : 0 '141' (s,so) = Tr (as above) 

_ 	(s-s i sin 	7 
so< s < ~' , lif (s,s')= Tr + tan 1 	0  

L S +(S_so 0spLI  
so 

Thus 	(~,s') _(s,s')ds = 	+ 0  
0 	 o 	.1 s 

0 

g(' 	_1~ 	(s-so) sin (3 
	 \~ 

	

= `irs0+ 	{TT +tan 	
(s-s')+(s-s )cosfl  

sò̀ 	o0 	0J 

-1 	(s-so) sin 
(  = ii'~ + 	tan {(s -s')+(s-s )cos ds 	(2.17) 

so 	 0 0 	0 	(P' 

Now from (2.16) and (2.17) , 

p 

	

f
r 	

_1 	(s-so)sin 
( E ,s0) - 	(J ,s') _ 	~ -tan 	[ (s -s ')+(s-s )cos 

	

s0 	0 0 	0 
J d 

J 	-1 	_1 	(s-so)sin! 
 (tan$ 	 s -s ')+(s-s)cos

J5[ta 
0 	 O O 	

.1 
O 

-1 

 

(s - s')sin 
tan   ds L s 	s-s0 + °-s0) cos i 

0 

(s -s') sin r But since 	° ° 	 is positive, (s-so) + (s°-s ') cos e 

1 	(so - s')sin 	 (so - s')sin 
then tan [(s-s )+(s -s')cos ] 	(s-s )+ (s -s')cos 0 0 0 	 0 0 0 

s;)‹ s ( so, '-4J' (s, s') = 7T ) 

i.e. 

S 
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(s - s ') sin f 
, 	0 0  (y

'so) 
- 	(~,so) 	(s-s )+(s -s 1 )coste ds 

s
o 	

o 0 0 

	

Now s - so> (s-so)cose 	so (s-so)+(so-s')cosN > (s-so)cos~ +(so-s' )cos 

= (s-s' o) cos 

( ,so) - 
(s -s') sins 
0 0  

(r,$) 	(s-so)cos~ ds 
o  

g -s' 
0 

	

= (s0-s') tang 	
s -s' 

	

4 	0 0 

which tends to zero as s'--).s
o
. 

Hence lim 
s--> so- 

Y ,s0') = ,so) ; and by a similar investigation 

of 	(~ ,s"), s" y s we can show that lim 
0 	0 	o 	s" s + off' o 

~,s")= j (K) ,s 0). 

This establishes the continuity of 	( :) ,s
o
) with respect to 

varying s
0 

as required. 

Returning now to (2.14) we have 

+ (Tx) (so) = +(Qo) = f (so) (see 1.20) 

 

(I + TT) (so) 	= f(so) 

where I is the identity transformation. 

 

(2.18) 

Thus we need to establish that the operator I + 1-T  has an inverse;" Tr 

more generally we consider the existence of (I + * T)
-1 

for various 

values of the scalar a . The operator T is not completely 

continuous and so an extension of the Fredholm theory is needed. 

Radon, [11], page 222 shows that for T defined on C[O,Sj by 

(TIA) (so) = f )L(s)dnlJt(sis )  we may write T = G+H where G 
o 

is a linear transformation of integral type with degenerate kernel 

and H a linear transformation with norm (1 H  <w+E , where 
1 
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w = 	lim 
s1-s2-4-0 

sup 
s 

ir(s
1 
,$) 	- ~(s

2 
,$) (2.19) 

and E is an arbitrarily small positive quantity. 

( 
Now I + T, T = I + . E (G+H) = [i + , H}{ I + 4(I + H)

1 
G 

For I + 	to possess an inverse we require that 
I -I/)Hli < 1 

But 1)1111 < w + E 	so that li l lIH11 I w + (i.) , 

From (2.11) we have that w =
s1-s2

--:"o..0
lim 

	
sup 

1 7 (s1, s) - 	(s2 , s) 
r 
f = of -T- 

where 0( is the magnitude of the greatest exterior angle at a 

corner point of the polygon and s1 - s2-3.0 in such a manner 

that s1 and s2 are on either side of the corner. 

1
~-1 IIHJJ < 1 I 	+Tr e 

In the situation here in which X = 1, then L 1
;!Hji 

g s -+ c 

But with the omission of cusp points the of < 21 so that x 	< 1 
T - 

I ~I..IIHI) < 1 is established since E is arbitrarily small. 

Hence I + A~ possesses an inverse. 

-1 
Further we must now consider I + - (I + T H) G. But from 

[ii] page 166 we have that (I +- H)-1G is of finite rank since 

G is of finite rank (i.e. an integral operator corresponding to 

a degenerate kernel). From the establishment of the existence of 

-1 	 -1 
(I + - H) 	it can then be shown that I + — (I + 

71H) G possesses 

an inverse for the case 	A = 1 since this is known not to be a 

singular value. 

Hence on returning to (2.17) , I + 
l-- i 
T can be inverted and a unique 

solution M (s ) exists. 
o 

This establishes the existence of the double layer density 

and hence the interior Dirichlet problem has a solution 

in the case of polygonal contours. 
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Chapter III  
Ihtro J *. .rl% frr ire x+1...e~-i~. 2 AAA ss.  

§3.1 In this chapter we consider how to obtain the solution 

of an integral equation when applied to a specific boundary value problem. 

The reliability of the resulting numerical methods will be examined. 

Although there is a full hand of integral-equation representations 

for each of the boundary problems at our disposal from Chapter I, 

attention will be concentrated on solving the interior Dirichlet problem 

represented as an integral equation through the use of the double-layer 

potential. Referring back to Chapter I we take the equations (1.49) and 

(1.50), which we repeat here for convenience:- 

(1 	
~ 

Ji(.k (to) + 2iT Im Cy 	t) dt = Lt (to) t-t 
0 

L 

u(x,y) - 2 iT 
1 

(3.1) 

U(t)de (3.2) 
L 

The notations used in (3.1) and (3.2) were fully described in S 1.4; 

to represents the complex coordinate of the point Qo with arc 

coordinate so on the polygon L at which the internal angle is 

p(o , O < OC o < 2 ĪT . Also the integral term in (3.1) is expressed 

in complex form for subsequent convenience. A specific Dirichlet 

problem is defined by declaring the shape of L and giving the values 

of u(to) = f(t
o
) a f(so) for all positions of to o on L. We then 

attempt to solve (3.1) for the real-valued density function JA(t). 

From Chapter II it is known that a continuous solution

/

k(t) exists 

for any polygon L if u(t) is continuous. Having obtained u(t), 

the internal potential u(x,y) is then generated using (3.2). 

In general the determining of iLC(t) and hence u(x,y) in closed 

analytic form is usually impossible. In fact to obtain the exact solution 

for any integral equation presents difficulty in all but a few cases, 

for example when the kernel is degenerate([ 9 ] pp 
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Thus we seek an approximate solution of (3.1) for µ (t) using 

a numerical method. This gives rise to the following questions:

/11.2.(t) 

 

(i) Will the numerical method lead to a problem which can always 

be solved? 

(ii) Subject to refinements in the numerical method, will the 

approximate solution, which will be denoted by ((t), converge to 

the exact solution Jk(t)? 

A number of methods are available for obtaining an approximate 

solution of an integral equation (193,  not all necessarily suitable 

for application 

the integral term 

say, 	w
j / 

/
~ j j=1 

quantities and 

in 	(3.1). 

Im 

(,(j 
J  

... 

The method to be used here involves replacing 

(t) 
Tit 

, 	where 

tl, 	t2, 

dt 	in (3.1) by a quadrature formula, t-t 
L 	o 

= JLI (tj) , 	the 	w j 	are scalar weight 

to 	are distinct points of 	L. 	Then if 

to is taken to coincide with each of tl, t2, ... to in turn, a set 

of n simultaneous linear equations will be created whose solutions 

,Ui , j = 1(1)n hopefully approximate fL(tj). We shall refer to the 

points t. as node points. 

An approximation to u(x,y), denoted by u(x,y), can then be 

calculated for various positions of (x,y) E D+ by replacing 	
1 2 	

,(,((t)d(-i 
.4/ 

n 
in (3.2) by Ew. a_ , W. some weight quantity. 

j=1 

Hence L is to be partitioned into n intervals or seyments. We 

shall now give some general details of how the nodes are fixed and numbered 

and also explain how the evident singularity in (3.1) disappears in the 

discretised problem. Since in (3.1), t
o is to coincide with the 

t., j = 1(1)n we will replace it by ti, i = 1(1)n ; further L is of 

course a contour so that node to must fall adjacent to node tl. In 

fact we shall number the nodes subsequently from 0 to n-1 so that 

to = to. This can be seen by reference to Fig.37. We also always arrange 

r 



1 

Im 	JA(t)dt = 	,(,L(t)d 8 . t-t. 	/ 
1 

itI 
t 

tc1 
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for corner points of L to occur as nodes in any partitioning undertaken. 

Consequently any segment [t., t.+1] will always be straight. Segments 

do not need to be of equal length. 

E..37 

O 

n-1 tj+1 
Now in (3.1) the integral can be written as 	1 Im

(t)dt , 
2' t 	t 't-t. 

J 
since the boundary of L is polygonal. The singular situation arises 

when 	j = i-1, i, 	

the[t.1t.] the end of the range 

But we have 	Im 

denominator of the integral becoming 

 and the beginning of the 

~ t) Q dt 	= 

infinite at 

range 
[ t.,ti+l 

since 	ll is 
t 

4(t) Im 	, tdt 
L 	1  / 	1 

real, and as shown in Chapter I, pp. 5'2 	if we write t = ti + re1e 

dt = dre1
s 
	+ ire 	dQ 

dt 	dr O , 	have 	
- 	+ id so that we 

t-t, 	r 

.18 

Now as t moves along the straight segments [ti-J , til and ti, ti+l] ' 
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the change in e measured from t, will be zero. This is the case 

whether or not t. is a corner point. Thus the cases in the j count 

for which 	j = i-1,i 

ti, 	the term 	(1 

for any polygonal 

exactly by 

i 

may be omitted altogether. 

"thrown-out" 

equation 

tj+l 	(t) 

	

As 	t 	passes through 

of the integral so that 

	

(3.1) 	is represented 

= 	f (ti) 	(3.3) 

- 7l)(ti) 	is 

region the integral 

1 	n-.1 
(1 - 	2.̀r ) 11-4jt

i) + 	21T Im 
j=0 

(j#i-1,i) 

-t dt 
tj 	i 

(Should i=0,n then i-1 is interpreted as n-1). 

We note also that other terms of the sum in (3.3) may also be zero 

depending on the geometry of L. 

The stage is now reached at which quadrature methods must be 

applied to the integral in (3.3): 	tj+l,Ll(t)
dt. 

t t-ti 
7 

The technique used in this thesis will be to substitute an approximation 

for pt) on [t.,  tj+l] and then to evaluate the resulting integral 

exactly. Three different approximations, denoted by A, B and C will 

be considered and the corresponding approximate solutions for )(t) 

investigated in each case. In making the choice of an approximation for 

)t,.(t), we broadly follow the methods of G.T.Symm[20] and K.E.Atkinson 

f 	RANT∎  0.444N:S P rtf osink 1'o r E 'Ik, tI D k (Ja r 	1 ty  

3.2 Approximation A: 	 V 	1 

~4+1 

lj . 



(tj +1 tj) J 	t.-  t . + ' (t .J+1 - t) 1   

1 
j + 	( j +1- j ) dX . 
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In this, the simplest of the approximations we merely replace .14(t) 

on 	
tj+1J 

by the average of the end point node values, 

i.e. 1-f»(ti) + pl(ti+1)3- = 
 2 (/ j + tj+1) . 

tj+l 	 tj+1 1 	,cl(t) 	1 	1 	 dt  

	

Hence 21T Im t t-ti dt = 277 	2 (J + j13+l) . im 	t t-ti 
J 	 / 	J 

(i) 

= 21 
 1," 

-j +/1-Li +1)  ' B j , 	(Fig. 39) 

Thus (3.3) becomes 

n-1 	(i) 
(2Tī-ai)'ui + Z 1 	j 	.

+ 
e
3 . = 2Tr f(ti) 

(jai-1,i) 

The angle 0 1) will be the angle subtended at ti by the boundary 

segment 
L 
b., 

tj+1] , being positive anticlockwise as the point t 

moves round L. 

Approximation B: 

Here we take Ju (t) to vary linearly in the interval 1t..  t. 
j . The 

evaluation of 

a change of variable to the scalar X where 

t = (1-)0t. + >>tj+1 , 	0 	a ‘ 1 	(3.5) 

Thus as )(Mt) is linear over the interval, 

ilk(t) _ 

 

(1X)t. + X ,U 3+1 	 (3.6) 

t

t 
j +l    	(1 A 

	

.  

++ 
 / 	j +1~l(t)dt 	

Jl 
Hence 	

(t 
_ 

1 t) dXt-t. 	(1-) t 	i\t- t 	 j+1   j+l i  
J 

(3.4) 

$Li+1P(t)dt can then be completed and is best done by 
t 

t-ti 
J 

)1 3)  Putting 	(~J +l 	) 	= U + 	V 
t.- t, + X(t. 	- t.) 	t.- t, + X(t. - t.) , say, gives 
J 	1 	J

+ 
l 	j 	J 	1 	j+1 	j 

	

)Ui + A(luj+1 j(j) a Ù tJ ti + )\(ti.1.1- tj) 	+ V 
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/j. = U(tj- ti) + V and 
iki.j+l- 

,,lj = U(tj+l tj) 

(/'"' +1 1u) 	A (t, - t + t.- t.)-JI,I 	(t.- t. ) 
V 	= )j- (tj- ti) t. 7 - t 7 
	 _ 	J J+1 t j -Jt i 	j+l 7 	i  

J+1 	3 	3+1 	3 

Hence 1 
1 

tj+1
)1(t)dt  = (t

. 	t. ) 	U + 	\\ 
t. 

t - ti 	J+l 	7 	(t ,- t.) + n(t.- t.)/ 
0 	 7 	J+1 J 

d) 

n 	`` 	 1 

= (tj+1 tj)u + v egtj- ti + A(tj+1 t.)f 
0 

= U(t, - t ) + V. En( 
j+1 ti  

J+1 	J 	t
i 
- ti 

_ )(,lj+l / 
_ .- +ia.(t.+l ti) /"`j+1(t.- ti) 

~n(
t
ti+l ti) 

- 1 	`j 	t. 	- t
. 

 
J +1 	j 	

, 

	J 	1 

(t . 
Thus as the approximation for 

2ZT 
Im} 

7+1t it) dt we have 
t. 

1 Im J (tj+l- ti) -/ j+l (tj- ti) ~n (-+1- 	
ti 

21T 	 t. 	-t 	t. - t.  
J+l 	j 	 J 	1 

Using (3.7) with (3.3) gives 

(3.7) 

n-1 	(t, - t )-~,( 	(t - t,) 	t. - t 
(2Tr - ~i)1"`1 + 	Im 	j J+l

t. 1 - t,7+1 7 	
1 	

C 	
J+l 	i  

J~ 	 j+1 
+1 	J 	x n( t3 _ t1 ) 

jti-1,i 
= 2Trf(ti) 	(3.8) 

Approximation C: 

In this case we take )4(t) to be quadratic in the interval [ tj,tj+1] 

The analysis here requires fitting a quadratic function through three 

consecutive node points. No difficulty is encountered in arranging the 

partitioning of the boundary providing corner points always lie at the 

end of a section of boundary over which Jct(t) is to be quadratic. The 

partitioning is most conveniently achieved in fact by taking the same 

nodal points as before and merely fitting in an extra n nodes at the 

mid points of the intervals. Consequently three consecutive nodes are 

denoted by tj-1, tj, tj+l where ti-1 + tj+l =2t.
3  

and we require to 
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fit a quadratic for J.L(t) through the three points  

and {t.1i}.k. +1  •. We note in passing that this use of a piecewise 

quadratic J„i(t) is slightly more specialised than that used by Atkinson [211. 

It j+1 }k(t) For the evaluation of 	 dt , we again introduce the scalar t t-ti 
J-1 

X and write 

t = t. + >(t . 	- t.) 	, -1 < %~ 	1 	(3.9) 
J 	J +1 	j 

Remembering that ti -1 t 	= 2t. then for a = -1, (3.9) gives J-1 	j+l 	J 
t = t. - (t. - t.) = 2t. - 	= t 	as required. 

a J+l J 	J 
t. 	

J+l j-1 
For jA(t) quadratic we may now write 

_ X (X-1) 	 2. 	X (a+1) 7(t) - 	2 	1 + (1- % ) ~tl + 	2 	~l +l so that we have (3.10) 
7- 	/ J

,l~ 	

j 

collocation at X = -1, t = t
j-1' ) = / j-1' 

• = Jlj ,j  

and X = 1, t = t3. +1, u = 	 j+1• 

	

t j +1 =+1 	 ` 
Hence 	 (t)dt =  {AX_l +(l_ ) 1 u 	(tj+1-t)dX 

t-t 	j+l ~t .--t,+ \\ (t, -t .) J-1 	>=-1 	 J i n J+l J 

(t . - t.) 1  x2(~ 	j-1 )1j+ VAj+l/ + 1A( j+l-)1j.-1) +)`j 
d/1 	(3.11) J+1 	J 	t. - t. + >(t. - t.) -1 3 1 3+1 j 
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Introducing for economy the notation ōl = }-i- j+1  

OJ j-1 	2 j + 	j+l 
the integrand becomes 

12A? s2n . + 12a ā' . +JI— . 
t-ti + A (tj

+1J 	
1 	t.) J 	

= UA + V + t.- t + 	(t. - t ) 
J 	J+1 j 

where U,V and W are constants to be determined. 

1/2 x2 621 . + 1X S}k.+ ,(J.i = ui t j-ti+ Act j+l-t.) + v t.-t.+ ) (t j+1—ti ) + w J 	 J 	 J 	J 1    

Hence from the a2 coefficient, 1 S 2,I.A. = U (t . - t ); 

	

J j 	J +1 	j 

and from the X coefficient, 	11 S Ak = U(t.- t.) + V(t.+1 - tj ). 

	

j 	J1 	~  

V = '~ ~j (1  - (t - t ) 
j 	i 	t. - t 

J+1 j 
t .J+1 - t. 

'/2(tj+1 tj) S-' j - '1(t.- ti) o -~j 
(t j+1 - t j ) 2 

Finally from the constant term, 

V(t.- t.) + W 
j 3 1 

11(t. - t) SJ.Ij - ~(t.- ti
) W = (~ - (t.- t.) 

j 	J 	1 	 (t .J+l - t j ) 2 

Returning to the integration at (3.11), we now have 

t j+l 	 1 
	(t)dt = (t. - t ) 	.{ UX + V + 	 W 

	- 	 d~ t 	t-ti 	J+1 	j 	 t.- ti + A (t j+l t.) 
J-1 	 -1 

1 

= 2V(t. 	t.) + W en
l
t.-t . + 	 (t. - t i  1 	 j 

-1 

tj+l ti  = 2v (t . - t ) + W en 	- 1 J+l 	j 	2t.-t. 	t, 

~~^^ 
	 J 	J +1 	i . 

(t.+1- ti ) Ō jA i- (t .-t,) E 	 (t r-t ) 	 2 - J 	j 	J 	J 1 	j + 	J 1 	(t, -t )s -(t.-t.)S 

tj+l tj 	" J 2(t  •+1-t.)2 J+
1 j 	j 	J 1 	j 

J 	J 

x  ~
(t. -ti ) 

n(t.-1- t2) 

2 
1 s 



85 - 

Replacing Sa and s 2 /t 	and rearranging as coefficients of 

r~ 	~,( 	this becomes r"j-l) j )J j+l 
(t.-t.) 	 t 	-t.

+ )~ -11 --Zt ( 	-2 ~ 	)+ 
tint  t 1--j-1 j j+1 jtn t-t J 	

j l i 

- 
(t.-t.) /1. 

, 
je  t 

	
-t i 	I -1 	J+l 

  
1  
)). n((t  -t.) 	

2 	
t. -t 

J+1  J 	J-1 1 

(t.-t.)2 	( 	1 t /(i + . + 	3 1 	 J-
-2L 

J
+ 	

j 1 
C n(

) 0 t J +l-ti) 
(t. -t , )2 	2 	t. -t. 

+1 J 	 J-1 1 

2  
(tJ+l-tJ-- ) 2 1 

t. -t. 

p_j-1 (tj+1-ti) (t .-ti).Qn(tJ+i_ti) (tj+1-ti) (tj+l-tj-1) 
J 

+ 	2 (t, -t, 	) (t -t , ) -2 (t 	-t , ) (t 	-t, )en (t3+1-t1) 
J j 3+1 -1 j 1 	j+1 1 j-1 1 tj-1-ti 

tj+l-ti  + JLl 	(t, 	-t.) (t ,-t,)61( 	)-(t 	-t,) (t. 	-t. 	) 
J-1 1 J 1 tj-1-ti j-1 1 J+l J-1 

(3.12) 

Before substituting this approximation for 

j-1 
(3.3) it is expedient to make a slight change in the numbering. In this, 

the boundary L is first partitioned into n segments such that every 

corner point of L is at the end of a section. We denote these points 

by the complex coordinates to, t2, t4, ... 
t2j-2' t2j „ t2n-2, t2n , 

where to = t2n since L is of course closed. The mid points of each 

segment are required as node points as well, and with this notation, 

they are denoted by t , t , t , t 	t 	, ... t 	, 
1 3 5 2j-1 2j+1 	2n-32n-1' 

note that t 	= 11(t 	+ t ), j = 1(1)n. 2j-1 	2j-2 	2j 

tj+1.
(~(t) 
--dt into 

t-t. 
1 t 

FC€ . 4-1 
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The jth trio of points contains nodes 
t2j- 2, t2'J-1 an

d t
2j 
, j=1(1)n 

and replacing J1(t) by a sequence of quadratics gives rise to the 

approximation 

irt
2j 

/LL(t)dt = 	2 	+ F t 	+ G 	(3.13) 
• 

t-ti 	(t2 -t2 2)21[7)).2j-2 	J 2j_1 
	~12j ` 

j 	j- 

i = O(1)2n-1 

where E = (t2 .-ti) (t2 . l-t. ) e_n(t2j
-tit

) 	(t2.-ti) (t2 .-t23-2  . ) , 
2J-2 1 

F = 2(t .
-t2j_2) (t2j-1-ti) - 2(t .-ti) (t2j-2-ti) tn (

t2j-ti 
) ,  • 	

t2j-2-ti 

and G = (t2j-2 -t
i ) (t

2. 
23-1 	23-21 ) (t2 . 2-ti) (t2j-t2 . 2) . 

2J-2 1 

Now we obtain two versions of (3.3) according to whether the t. node 
1 

is taken at the end of a quadratic segment or as a mid point:- 

(21r--)  a 2i-2„(t2i-2)+ Im 	
(t 

-t2  
 ) 2 

I 	
EitL(t2j-2)+FIl(t2. 1)+G~l(t2j) 

j=1 2j 2j-2 L 	// 

j#i-1,i 

= 2Trf (t2i-2) 
	

(3.14) , 

and 

~n- 
JJ•(t2i-1) + Im / (t 	2 	) 2 	Ey(t2j -2) +F i,l(t2j -1) +G fl(t 2j ) 	(3. 15) 
/ 	 J=1 	2j-t 2j-2 

= 21T'f (t
2i-1) 

It should be noted that in (3.14), the coefficient values for E, F and G 

are now adjusted so that ti is replaced by t
2i-2, 

while in (3.15), 

ti is similarly replaced by t2i-1. 

Referring now to the three discretised forms of the integral equation, 

(3.4), (3.8) and (3.14), (3.15), sets of linear equations for the 

N 
determination of the approximate solution, ,fk, at the nodal points 

concerned can be generated by taking i=0(1)n-1 in (3.4) and (3.8), and 

by taking i=1(1)n in each of (3.14) and (3.15). These sets of linear 

t2j-2 
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equations may be solved by the method of Gaussian elimination. In 

the practical examples the results of which are given in Chapter IV, 

the.well-known torsion problem of plane elasticity was used. In this 

problem the boundary data f(t.)= 11{X.2 + y
2 	

where t,= x, + iy.. 

At this point in the thesis we make a distinction between the 

situation in which the polygon L is convex or otherwise, when it 

would possess at least one re-entrant vertex. If the arguments 

presented are narrowed to the former case then it will be shown that 

the numerical solutions obtained through each of the approximations 

A, B and C are completely reliable. In fact we can effectively deal 

with the questions posed on page )$ concerning the existence and 

N 
convergence of 	(ti), i.0(1)n-1. The author is of the opinion that 

such detailed analysis has not been presented elsewhere. However 

should L not be convex the same arguments unfortunately do not apply. 

In the case of approximation A, J.Benveniste [15] has shown that the 

numerical solution converges when L is polygonal with re-entrant 

corners not excluded. It is possible his methods can be extended to 

cover B and C as well, but not simply. We note that the error analysis 

of Anselone [9:7] and of Noble [23 ] cannot immediately be applied 

because the operators we use in potential theory problems for polygonal 

regions are not compact (completely continuous). 

Consequently we shall proceed with the analysis of the numerical 

solutions in the situation where L is a convex polygon. It will now 

be shown in the following section that the coefficient matrix in the 

linear algebra is weakly diagonally dominant for each of the cases A,B 

and C. 

V-fi 	t.cP- of - 2 L-esca- 01 pPc- 
53.3 

 
  Approximation A: 	d 

Taking the equations generated by (3.4), the ith row of the resulting 

linear equations produces a diagonal coefficient 2T1 - OC . and off- 
n-1  

diagonal coefficients from the terms 	 (~lj +
j+1) ~() 

j#i-1,i 
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For simplicity and without loss in generality we can take i=0, 

at which node we assume a corner angle OC  , 0 	0‹ o  < 7T since 

L is convex. Then subject to the usual anti-clockwise-positive 

rotation around L of the field point t, we have that for all j, 

(o) ) 0. (This would no longer be true when L has re-entrant 

segments). 

0 

The equations (3.4) may be written in the matrix form K 	f where 
../ .v iv 	 T  

_L 	o)  µl)... I n-l-1 	' f =[2TTf(to), 2Trf(t1). ..., 2`ī("f(tn-1)J 

and KA  is the (nn) coefficient matrix whose typical element k . i  
J 

may be read from (3.4). With i0 then by reference to Fig.42 we 

easily see that 

k0,0 	t" = 2T - P( o  

k 	= 1 0(0) 	k 	= 1( 8 (0) + 8 (0)), k 	= x (8(0) + 
e 

 (0)) 
O,l 	1 	0,2 	1 	2 	0,3 	 2 

k 	= 1 (0 (0) + 00)),  .. 	k 	= 1 o(0) 
O,j 	j-1 	O,n-1 	n-2 

(In the case of certain polygons, it is evident that some of these 

O M  are zero, for instance possibly 8 1 (0) and & (0)
n-2 ). J  
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n-1 
Consider E lk 

j=1 	0 ►j 

= l 0)I 	+ 1 1( 810) +U (o))I + ... + 11/2 0 (0) r  

= e.(0) e + (0) 	 (0) 
1 	+ 2 	+ /1n-2 since each AjO) , 0. 

But this latter sum is equal to the internal angle O( 	at t
o. 0 

Thus lk0  O 	2 IT 0(o 

n-1 
and 27. Ik

o,jI = ~o. 
j =1 

Thus when L is convex, 0( < Tr and 2Tr - of ) of so 
n-1 	o " 	 o 	o 

that 
N0,01 
, 	Ik0,jJ . But since we shall be placing node 
 3=1 

points at each corner point, of which there must be at least three 

(when the region D+ is triangular), then this inequality will be a 

strict "greater than" for to at corners whilst being "equality" when 

to lies on a straight edge. The occurrence of strict diagonal dominance 

at certain rows of the coefficient matrix KA is sufficient for us to 

claim that KA is non-singular ([22] p.282 Ex.6). Hence K
A
-1 

exists 
w 

and ikk(t.) can be evaluated. 

Unfortunately when L is re-entrant, the diagonal dominance will 

be lost; for when to lies at a re-entrant corner, 0( 
o 

will exceed TV . 

i.e. N00! 
= 2-rr- - « < TT 

n-1 
while 	

/ f k0,j1 	
O{ 
	
(greater than corresponding to the 

j=1 
occurrence of further re-entrant 

situations around L). 
n-1 

Hence for at least one position of to, 1k0,0 I 4 Z Jk01 	, thus 
 j=1 

spoiling the nature of KA. 

Approximation B: 

From (3.8) we have that the ith row of the linear algebra produces 

a diagonal coefficient 2TT' - o(i and off-diagonal coefficients from 
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within the term 

n=1 	
N
I 1 	[.(t.+i_t)-)L1+1(t._t.

) On( J+1 i) 

30 	 j+1-t3 	 t3 - ti 

j=i-1,i 

 

(3.16) 

 

Without loss in generality it is again convenient to take i=O 

and also to simplify the algebra, to will be taken as origin of 

coordinates 

F' 4-3 

N 	 , 
Thus with (3.8) in matrix form as KB 
N^' 

Li.. = f 

[jLr'j Cjitl'"' 

 T 	J 	 T 

 t n-11 	f =[2TT'f(to), 2rrf(t1),... , 2-tT'f(tn-1) 

and KB the (nn) coefficient matrix with elements k , we are 
ij 

interested in the elements 

k0,0 1 	k0,1 ) 
kO
,2 ) ... 	

0,n-1 . 

Clearly k0,0 
	

2 -R 0( o 

From (3.16), ko. being the coefficient of U.. will be 

	

Im 
tJ
+l 	-to 	.n (tj+l

-to) 	(tj-1-to) Q1.1(
; t -to 

) 

	

t, -t, 	t.- t 	(t.-t, 	)• 	 t. 	-t 	' 

	

J+l ] 	J o 	J J-1 	3-1 0 

or remembering that t
0 

is taken as zero, 

k 	= 	Im 
O,j 

t, 
J+1 

t, 
~n( 

J+1) 
t, 
)-1 - 

t. 
,en(-■-~--) (3.17) 

t. 	-t, 7+l 	j 
t, J t.-t, 

j 	3-1 
t. 
j--1 

This expression applies for j=2,3, ... (n-2), but due to the special 

nature of the approximation around t = t
o 

we have 
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k0,1 = Im t
2- 1t2t 	 ,~n(t2 ) 
  1 

k 	= Im 	
tn
-2  , Qn (tn-1) 0,n-1 	[ tn-1-tn-2 	t

n-2 

with / l kojl     Since O < O(
o 	I km)! =  kO,O 	ĪĪ 	o - 

= 2 	- D(' 
j =1 

The coefficients kstem from the linear interpolation approximation ojj 

for ..t(t) which gave rise to (3.8). Now it is possible to show that 

all the 	k
ojj 

are non-negative and this proves to be the key in 

demonstrating diagonal dominance. 	Returning to (3.1) and remembering 

that for the moment 	t, = 0, then the integral term is 
1 	 2ir 

subsequently 

I' 
IA(t)dt 

O t 

Now to establish diagonal dominance it is necessary to compare 	
k0 O 

n- 1 

2 (t) Im ( d—tt) = 2r 	f t(t) a~ ds 
L 

1 n-2 S
. 

2ir E 	jt.) 	ds ds 
j=1 

3 

where s. is arc measurement at the node whose complex value is t., 

0 < sj < S. 

But with the substitution of a piecewise linear approximation for ,[,l(t) 

	

it is easy to see that the coefficient k 	is given by of 

1 	s3 d e s- s. l 	sj+id ® s, -s 
k 	= 	{ 	( 	3 	)ds + 	( 3+l 	)ds 	,j=2,3,... (n-2) 0 	27t ` 	ds s. - s, 	 ds s. -s 

s 	J 	7-1 	s 	3+1 j 
-1 	7 

=1 
s2 

d g 
( 

s2- s 

k0,1 2rr 	ds s2-s1) 
ds 

s1 

1 	sn-1 d e s-sn-2  
and k0,n-1 	2Tr 	ds (s 	-s 	) ds 

n-1 n-2 
sn-2 

(3.18) 

s. 
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Now all these k 	are non-negative since 
9i 

(i) for a convex polygon, d 
e 

ds 0
' s1 s s

n-1 

(ii) the quantities in brackets ( ) in (3.18) are always non-

negative. In fact of course these quantities are merely the "hat-

functions" common in the literature [23] , often written as 

. 
(s) = 

s-s. ~-1 
s 	s 	s s-s. 	j-1 ' 	j 

j 3-1 
, zero elsewhere. 

S. -s 
3 +1 J  

sj+1-s. ' 	s j 	s 	s j+l 

i.e. each and every k
j 

is the integral of the product of two non-
or 

17- 

i
negative quantities and so the koj 	j=1(1)n-1 are non-negative. We 

 

can now return to the complex form for ko. in (3.17) which proves to 

be more convenient to handle. 

Having established the non-negativity of the k 	, then the sum 
of 

of the moduli of the off-diagonal terms 

n-1 	n-1 
1 Iko,j1ko,j J 	 7 
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t 	t 	n-2 	t, 	t, 	t, 	t 
= Im t 2t  Qn ( t?) + 	Im tJ +1-t 

~n (-t±l) t -t-1 	~n (t-g--) 
2 1 	1 	j=2 	3+1 J 	J 	J j-1 	j-1 

+ Im 	-tn-2 	('/n (tn-1) 
tn-1-tn-2 l' n-2 

Picking out the term in en t. gives 

(3.19) 

	

t, 

	

t
J+1 
	t

J_ l 
	t,

J 	
tj+1-t7 

	t  -t,J-1  	J+l  7 

en t, 
7 

t,-t, 	. 
J 	J-! t 	-t. 

j+1 	J = O t-t 
J 	3-1 t, 	-t. J+1 	J 

This cancelling of the term in ` n . is valid for j=2,3,...,n-2 

when all terms of (3.19) are incorporated, leaving 

n-1 
k 	= Im 

-t2  en t + 	
tl 	

n t1 + 
tn-1 	

~n t 	tn-2 	en t oj 
 
	t -t 	1 t -t 	1 t -t 	n-1 t -t 	n-1 j=1 	2 1 	2 1 	n-1 n-2 	n-1 n-2 

= Im - en tl + C n to-1 = Im Ln (tt 1) = arg (tt-1) 

	

1 	1 

= 
0 

But lk 0,0~ 211 - a(o 
so that since 0C 0 G Tr 	( < at corner nodal 
n-1 

points) then 	
k0,0 I > 	I k 

.1 • 3=1 0 

Hence when L is convex we have a diagonally dominant coefficient 

matrix KB the representation (3.8), and so similarly to KA, we 

know that KB is non-singular. 

Approximation C:  

In order to show the diagonal dominance of the matrix derived from (3.14) 

and (3.15), it will be sufficient to consider (3.14) alone since the 

analysis of (3.15) will be essentially the same, and as before, without 

loss of generality, we take i=0, and to at the origin. Then from 

(3.14) the off-diagonal terms come from 

n-1 	2 
Im L 	/.E.7'23  

 

	+ G
J

~2i 
J 
	(t

27
-t2J-2) 2 	 -2 + F/412j-1 	

} 

where E = t2j t
22j-1 Q n 	(t2J ) - t2j (t2j-t2j-2) , 

2J-2 

(3.20) 
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F = 2 (t2j-t2j-2) t2j-1- 2t2jt2j-2 L 	2J n (t 
2J-2

) 

and G = t2j-2t2j-1 ̀  n(t2j  ) - t2j-2(t2j-t2j-2) 
2j-2 

Once again, the required result follows easily once it is shown that 

the coefficients { k
cj 

,j = 1(1)2n-1 of the matrix KC (say) are 

all positive. 

Specially, we concentrate on ko,2j and k
o,2J+1 

these being 

the coefficients of it..2j and Ll_2j+1 in (3.14). Casting (3.14) 

back in terms of real valued expressions will give that k 	and 
o,2j 

arise from the integrations 
ko,2j+1 

 

j, s2j 	s2j+2 

s 
~g(s) d e ds + 

s 
,U (s) ds ds s 

2j -2 	2j 
(3.21) 

where s measures arc length round the polygon, 0 4 s 4 S, initiating 
at the origin, s2j being arc value at the point on the polygon with 

complex coordinate t2j. Under quadratic approximation It(s) is 

replaced by quadratic functions along [s2. 2,  s2•]and [s
2j 	j
, s2 +2  

and since the polygon is convex, then the kernel 
dBs 

is non-negative 

for all values of s. In detail now we have that k 	is contributed 
o,2j 

to from both terms in (3.21) while 
ko,2j+1 only from the second. The 



s2j+2d 
P 	

(s- 	1.) (s-s2j+2) 
k 	- 2 	 ds 
o,2j 	ds 	2h 

s2j 	J 
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piecewise quadratic on [s2 	s2j2],s2j+1=(sj+s2j+2), 

= s j - s22+1+1  

(s-s2j+1) (s-s2j+2) 	(s2j+2
-s) (s-s2j) 	(s-s2 .)(s-s2j+1)

(1  LL is 	j.l(s)= 	
2h.2 	/-2J  + 	h .2 	2J+1 	2h 	—  ! _2j+2 7 	7 	7  

so that we easily obtain 

s2J+2  d c3 	(s2 +2- s) (s-s
2
j  

) 
_ 	7  

ko,2j+1 
_ 

ds  
	h 	ds 

s2j 	j

2  

S  dO 
JO  ds 2j+1(s)ds (3.22) 

 

(S2
J 
+2- s) (s-s2 J ) 

where 	2j+1(s) 	h 2 	s2j < s  < s2j+2  
J 
O all other s. 

It is evident that 'I 	
jJ 2J'+1(s) is non-negative on 	s2 ,s2'+2 

Therefore the integrand in (3.22) is the product of two quantities 

both of which are non-negative, implying that ko,2.+1 ) 
0 as required. 

The similar analysis for 
ko,2j is not so straight forward. This 

coefficient has contributions from both terms in (3.21) since the 

corresponding node links neighbouring piecewise quadratic approximations. 

However as the treatment of each side is similar it will be sufficient 

to consider the contribution to k
0,2 

from s2 ,s2.+2 	
This part 

j 	2j J 

is given by 

(3.23) 

n- 
d  e f \ (R) (s) ds 

7 
O 

where 	(R)(s) _ 	(s-s 2j+l)  (s-s2j+2)  
2j 	2h.2 

0 

, s2j 	s 	s23+2 

all other s 
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Hence the investigation concerning the positivity or otherwise of 
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(L) 
The other contribution can be written in terms of a function 	2j (s) 

similarly defined. 

 

(L) nor ~(R) are entirely non-negative Unfortunately neither 

  

k must depend on the relative behaviour of the two quantities in the o,2j  

	

integrand in (3.23) , d e 	and 	(R) (s) . Although a 8 is known to 

	

ds 	2j 	ds 

be non-negative for all s on C O,S 
j when the polygon is convex, its 

exact nature can be easily obtained from simple coordinate geometry. 

d Ei that we require it will be 
ds 

permissable to measure s for convenience from some point A on a 

typical boundary line segment ANP (Fig.47), the equation of which is 

x cos p 	+ y sin p 	= p, p>. O, 0< p K -n- . 

Since it is the derivative 
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Then if AP = s and AN = d we have 

s-d = p tan ( Q - 	) 

aē ds = p sec2 ( e - [ 	) = p f l + (s-d) 
P 

2 

 

de = 	 
ds 	p2+(s-d) 2 

 

(3.24) 

This relation gives that the maximum value of 
d~s 

is 1 and occurs 
P 

for s=d at the foot of the perpendicular N. 

Hence consideration of (3.24) in relation to the behaviour of 

(2~(s) (see Fig.46) gives that the minimum value of (3.23) will 

occur when d = 12(s27+1+ 
22j+2) i.e. the foot of the perpendicular 

to the boundary segment 
C 
s2.,s2j+2] from the origin of coordinates 

O will be at the point with arc coordinate 12(s2j+1 + s2j+2). 

In this case we are interested in 

2hj 	p. 	(s-h, ) (s-2h, ) 
	 X 	  ds 

O p~ F (s-2 hj ) 2 	2h~ 
where p. is the 

length of this perpendicular and for convenience of integration s is 

replaced by s-s2 . On completing the integrations, this expression 
J 

h. 
2._.1 

P - 	P 
2 	

1 	-1 
P. 

3 h? 	
12(h]) 	+ 8 

	
where 	= tan 	

]h 
2 	(3.25) 

7 	
J 

 

1-T-
4 2 
Pi 

is the angle subtended by the segment [s2.1s2.+2]  at O. 

Now for any given convex polygonal boundary shape, the value of 

h. can be made as small as is necessary in comparison to p. by 
hj 

introducing more boundary nodes. Thus writing q = / , the sign of 
7 

(3.25) can be investigated from the expansion in powers of q of 

takes the value 
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1 
	(8 + 	12)tan-1( 	2q 2) 

q 	2q 	1 3q 

4 

1 = q — -  (8 + 12)( 2q 2) 	3 ( 
2q 2 )3 

... 
2q 	, 3q 	1 3q 

	

4 	4 

= 1 q - (1 + 	
1 

2g (1 
2 

3q ) 8 	2q2 ) 4 

-1 	
8q
3 	2 -3 

- 8q (1- 3q ) 	+ O(q5) 3 	4 

3 1 = - (8 + 2) (2q - 76 + 0 (q5) 	) 
q 	2q 

= (q11 - q11) + 3 q + 0(q
3
) = 3 q + 0 (q3) (3.26) 

h. 	3 
(3.26) shows that neglecting q = ( J/ ) 	then the value of the 

pJ 

required integral is positive. Hence we claim that this contribution 

to ko,2j can be taken as positive provided that h. is sufficiently 

small; and this can always be achieved through taking extra node points. 

In fact by direct calculation of (3.25)when h.= gip,, it can be verified 
J 	J 

that the result is positive. It is clear that the other contribution 

to ko,2j through consideration of the function 	(2
)
J
(s) will 

behave in a similar manner and hence we proceed with the investigation 

of the diagonal dominance of the matrix KC taking all its elements 

to be non-negative. 

Taking the off-diagonal coefficients fk 	, j = 1(1)2n-1, 
 o,j/ 

we have 
2n-1 	2n-1 

E 	
ko,j 

I = 	k 
o,j J=1 	J=1. 

n-1 	2 
= Im (t 	- t 	) 2 (E + F + G) from (3.20) 

j=2 23 2j-2 

N 

by putting ] = 1 , j = 2(1)2n-2 , 

n-1 	 n t 
= Im 2 	

2 t2j t2j- 1 ui( t2~ ) - t2 At .-t-t 
2j 

2 ) 
j=2 (t2j-t2. 2) 	2j-2 	j 	- 
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+ 2 (t2.-t2,-2) t2j-1- 2t2 . t2j-2 e n (t2 	) 
2J-2 

+ t 	t 	Q n (t2J ) - t 	(t -t 	)1 
2j-2 2j-1 	2j-2 2j 2j-2 

Making use of t2 1 = 2 (t2' 	+ t ), this simplifies to 
j- 	7-2 	2 j 

n-1 

Im j=2 

= Im I
1 

j=2 

n-1 
= Im  

j=2 

2 (t 	.+ 
t2j-2)2e (t27 	t22 

(t2.-t2 
-2)2 

7 	7 

2 

n — 	C 2 	t2j-2 	2t2j t2j-2 	n`t2j-2 

(t2
j -t

2
j- 2

) 2 
j 

` 	
• C n 

(t2 	) 

(t2,-t2. 	2)2 

t 
~n 	I m 

2 

= 	
n 

(en t2n-2-  

t2j-2 

en t2 ) (
2J) 2j-2  

= 0(0 (see fig.45) 

But the diagonal term = 27r - 0C2i-2 	(by (3.14) ) 

= 21T - of 	in this case, and so the diagonal 
0 

coefficient is greater than or equal to the sum of the moduli of the 

diagonal coefficients; equality being achieved when t
o 

lies on a 

straight portion of boundary, but inequality must occur at least three 

times for various to. This establishes the diagonal dominance of K 

similar to KA and KB . 

To summarise, when the polygon is convex, the discrete solution Wt.) 

can always be calculated since each of KA, KB and KC is non-singular. 

For non-convex polygons this claim cannot be made since for at least 

one nodal position, one row of the matrix will not be diagonally dominant. 



- 100 - 

3.4 Convergence  

Having constructed three different ways of approximating solutions 

of (3.3), we now consider whether the computed density function 

calculated at points on the boundary L will converge to the theoretical 

solution as the number of boundary nodes increases 

ti 
i.e. whether 	eim 	

/
l(t.) - A.(t.) ( = 0 , 

n-3 	1 / 1 

for each 	i=1,2,...,n. 

The analysis will be similar in all three cases but for clarity 

we shall examine in detail approximation A first. This means a 

comparison must be made between the values ,,L(.(ti) satisfying equation (3.3);-  

n-1 	tj+1 .(t) 
(2 17 - oe i),M (ti) + im L 	"t-t. dt = 21i"f (ti) 	(3.27) 

jos f j#i--1,i 	t • 	1 J 

N 
and the values , (t.) satisfying the approximate form 

1 

N 	n-1 	... 	N 	tj +1 
(2TT - 0/.) Ak(ti) + Im > 	1/2t,/U (t j )+ ,u_(t j+l ) 	tats = 2Trf (ti) 	(3.28) 

j 	 / 
ji-1,i 	t. 

obtained from (3.4) by re-expressing it in complex form. 

Now (3.27) can be written in the fc'rm 

n-1 	tj +l 
t  (2Tr- OC i) Act. ) + Im 	-1/2{,JA(t) +p(t1) C aj=0 J 	J tJ 	1 

ji-1, i 

n-1 	tj~.]_ 	
J l (t)a1 = 2f(t.) + Im 	1/2 J((t.)+»t, ) 	dt   t  j=0 J / 3+1 	t-t 	t-ti 

j#i-1,1 	t. 	t. 

where the imaginary part of the expression in square brackets here 

represents the local truncation error for approximation A when 

integration along [t.,tj+1  is replaced by quadrature. Representing j
n-1 

the expression by r_., and then the aggregate Im I. 	r, 	by r,, 
13 	

j~ 
lj 1 

j#i-1,i 
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we now have 

(2Tr - °C) 	 (t.) + Im 	12 {,iA(t )+  Ll(t 1 ) 	 dt =2Tff(t)+ ri (3.29) 
j=0 J / 7 

t 	1 jti-1,i 	7 

Subtracting (3.29) and (3.28) gives 

n-1 	 t
j +1 

(2'R- - rX .)e(ti) + Im I 1 f e(t.) + e(t.+
l)2 	t~t. - ri 7=0 	7 	7 i 

j#i-1,i 	
t. 

na 
where e(ti) = ,L1 (ti) - ).1. (t .) . 

1 

(3.30) 

But with i=0(1)n-1, (3.30) is a set of n linear equations for the 

determination of the error vector e with components e(ti)=f(ti)-/(ti). 

Moreover the coefficient matrix of the set/the same as that in (3.4) 

itself, proven earlier to be weakly diagonally dominant with non-negative 

elements. Thus in matrix form (3.30) becomes 

K e = r A— _ 

where r is the vector 

whose ith component is given by r,. 
i 

To evaluate r, consider first the contribution r „ due to the 
1 

	[t. single boundary segmnt 	tj+1] . For convenience let the segment 

be taken as the interval [ -h,h] of the x axis on the Oxy plane. 

Thustj is assigned to -h, tj+1 to +h and we take ti as the 

remote complex point z, (Fig.48). Introduce the notation RA r pt) 

to represent the operation 	

L/ 	. 

h 	 rh 
Im 	- 	/t (Z) dt + 1 (J (-h) +/ 1.(h)) 	Z 

-h 	 -h 

n-1 	 tj +1 



= x(s) + iy (s) , we have 

n-1 tj+1 
Tr ..(1c) + Im 

j~ 
3 

dt = 2 'rr- f ('C) , (3.31) 
t-t) 

t. 

,k(t) 
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Then the evaluation of RA ikk(t) 	will enable the local truncation 

error for approximation A to be measured. 

Now we note that (3.27) applies generally for all t
i 

on L. 

Thus for an internodal boundary point with complex coordinate 

where the summation omits the boundary segment containing `c . If 

we assume the boundary function f is differentiable at an internodal 

point, 	then (3.31) can be differentiated along the direction 

s of the boundary to give 

n-1 tj+l 
TVA' (`G) x' (s)+ iy' (s) + Im 	( 	~ 2 x` (s)+ iy' (s)}. dt 

t. 

= 27jf' ('Aix' (s)+ iy' (s)3 

Thus JC'(r) exists and, in fact, assuming f is sufficiently 

differentiable, further differentiation will give the existence of 

p " (72.) and u. " (`r) for all points 	on the interior of a boundary 

segment. It is further assumed that these derivatives remain bounded 

as 15 approaches a corner point of L from either side. 

Returning to the evaluation of RA[~.l(t)] , the first mean value 

theorem may then be applied to give 	/1 

11 (t) = JUL (0) + t & ' ('f) , 0 ( `t (t) < t. 	(Fig.48) 

Thus since RA is a linear operator we have 

RA [it  (t)] = RAC (0), + RA t LL' ( '~ 

= RA [ tJ' (`C) J since RA is exact' when used on a 

constant. 



- 103 - 

jj~~ 
RAL (t) = Im 

h 

-h ir

t.).l.' 

- 

h 
11~~ 

h 

 / 
	-h 

h 

Im(tlZ)dt 

-h 

-~ 

d 
t t_()dt ' + 	h

( (_h))( h))I 
-h 	

/ 

('C( 

z 

(T)Im( --)dt - 1/2h1

/

,.' 	-h) 

h 

+ 1/2h .P ('-(h) 	Im (tlZ) dt . 

J 	-h 

Now by direct integrationIm(tlZ)dt = 8 
-h 

Hence if Mh = max 
I 

/e (t)I 	, 	then 
(-h,h) J 

(see Fig.48). 

I
RA ()l(t) ) I / MI; ©p + 	h 6p + '~hNh C?p = 2hNi; ep. (3.32) 

Returning to the term r., this is now easily bounded since it 

is the sum of (n-2) terms of type (3.32). 

Let M' = sup M' h J 
and H = max t,

J+1 
-t

J 	
where h. j 	 J 

j+1 t j I 

then J 
ril 	M'H x (total angle subtended at node ti) 

= M'H OC. 1 

and this quantity can be made as small as desired by increasing n and 

so decreasing H. Now although this analysis just described applies only 

to approximation A, it is simple to carry across the ideas to 

approximations B and C as well. In the case of B we are comparing 

the exact equation (3.27) with the approximate form (3.8):- 

ra 	 n-1 p.,(t.) (t.
+l-ti)-}.C(t.+l)(t.-t ) 	t. 	-t. 

(2'tr-C(.)A(t.) + Im 7 	
J 	J 	J 	J i Q n (  J +l 1

).= 2nf(t.) i 	i 	 t. +1 - t 	t. - t 	1 j=0 	 j 	J 	i 
 

j#i-1,i 

By similar manipulations to those above we shall arrive at the equation 

for the error which is the counterpart of (3.30), 
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n-1 

C 

e(t.)(t.+ -t.)-e(t. 	)(t -t.) 	t,,+1-ti  	n-1 
(2Tī- IX ) e (ti) + Im 	J 	J lt.l - tJ

+l 	j 1 .0 n ( 	  ) =Im 	r.. , 
j=0 	 j+1 	j 	

tj - ti 	
j~ 

1J 
j#i-1,i 	 j#i-1,i 

(t, -t )- 	(t -t.) Q t 	-t, 	tj+1 
where r, , = lJ 7+1 i 	j+1 j 1 

Cn( 
j+1 1) 	jukt)dt . 1J 	tj+1 	tj 	 tj - ti 	t-ti 

t. 
3 

(3.33) 

But again with i = 0(1)n-1, (3.33) is a set of linear equations for 
N 

 the determination of e
i 

=.14-i-)11 
  having the matrix form KBe = r , 

the coefficient matrix KB being identical with that in (3.8), proven 

earlier to be weakly diagonally dominant with positive elements. 

Hence the only problem is concerned with evaluating the truncation 
n-1 

error Im 	r.. . This is best done by again arranging for the 13 
30  

j=i-1,i 

interval [t. 1t.1 
J 

to coincide with the interval [_h,I]  of the 

x axis, and defining 

	

h 	 h 
R r (t) = Im 	(h-t)}.L(-h) + (h+t)~Lt(h) dt - 	,u(t) dt 

1 
B[ 	 -h 	 2h 	 t-z 	-h t-z 	j ' 

J 

recalling that the first integral Wars evaluated AA.Cn (3.8). 

h 

We write RB[,U.(t)I = Im[ - - (t) dt + { (3.34) 
JJ 	JJJ   

	

h 	 h 

where U. = 2h 	t-Z dt and V = 
Zh 	

h+t dt 

	

-h 	 -h 

Now using Taylor's theorem to expand J.l(t) we have 

ill (t) = / ,la(0) + 	(0) +; ,AL 	71(t)<:t,  t"(15) , n5 = 	the 

existence of 	" justified from differentiating (3.31). Also there is 

no error when (3.34) is applied to a linear function, so 



Then I RBC1 ~(t)J I 	h2 Mh 
	

+ 12h2M" I Im (U) I + 121121", I Im (V)1 

~h 	
h 	

h 
But ( Im (U)I =1

2 J 
h (h-t) Im (tlz) dt 	= 2h -h (h-t) Im (t-z) dt since 1 

Now let Mh = max I d1" (t)I . 
(-h,h) l 
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RB Di( 	= RB[ A(0)' + RB ` t µ.' (0) I + RBL1t2 ." ( -d  

= RB[' t21A" (Z )] 
lI h  

2  
= Im - 	

12t,lt,( " (if)  dt + U.
Yh2)..t " (C (-h)+V. h2J..l." ('-C(h)) 

t-z 
-h 

h 

= - 	11t211." (T.) Im. (tlz) dt + 3 h211 " ( 	m. (-h)) I (U) 

2 
+ ~h j,t " (i (h)) Im (V) (see Fig.48) 

on C -h,h] , h ) t and Im(tlz) is positive taking z in the 

upper half plane. (Fig.48) 

(̀ h 
Similarly I Im (V)I =

J 2
h J 	(h+t) Im (tlz) dt so that - 

h 

(' 
(h+t)Im 	) at . ` 	2h Im (V)I = 	J 	(tyz  

-h 

'. IIm(U)I 	+ I Im(V) f = 2h 	2h Im (tlz) dt = 0 
-h 

• RB [1„)((t)] 	< 11112 Mh2 8 p = Mh h2 6p (3.35) 

n-1 
Finally we can bound Im I r,. = r, since it is the sum j0 " 	1 

j #i-1, i 

	

of (n-2) terms such as (3.35). Taking M" = 	sup Mh 	and H as 
J 	j 

before, we have 

Ir.I < M" H2 x (total angle subtended at node ti) 

= 	M" H2 O<. 

This quantity can be made as small as desired by increasing n 

and thus decreasing H . 
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Finally, for the quadratic approximation C, we are comparing 

(3.27) with (3.14),(3.15). Although the algebra looks more formidable, 

the nature of (3.14) and (3.15) has been investigated so that it 

suffices to comment that by similar manipulation prior to (3.30) and 

(3.33) we arrive at the error equation 

KC e = r 	 (3.36) 

where e = (el ,e2 , ... ,ei , ...,e2n )T , ei =e(ti) =  

KC is the matrix resulting from the quadratic interpolation, shown 

earlier to be weakly diagonally dominant, 

r = (rl,r2,...,r211)T where r. = Im 	ri.=  
j=1 	j=1 

and Im(r..) is the truncation error resulting from the replacement 13 

t2j ~U (t) 	2  of 	t-ti dt by (t -t 	) 
t 	

2 
[Eý2j 

-2 FJ 2j-1 '. GJ(23 
2j-2 	2j 23-2  

as given in (3.13). 

Calculation of this truncation error is again handled by taking 

	

the jt h boundary segment t2j-2,t2j 	to be on the real x axis, 

-h < x < h. Then ti is taken as the remote complex point z. 

Referring to Fig.48) 1(t) is replaced by the quadratic function 

interpolating i,11(ih), i= -1, 0,1. It is easily seen that 

2 2 
Jz(t) 	

t (t-2 	(-h) + (ht  ) 	
(0) + t (t+2 ) u 

2h 	
(h) 

2h 	h 	J 

h 	h 

and hence 	Im 	~µ(t) dt = Im 	t (t-h) (-h) + (h2-t2) (0) +t (t+h) (h) dtl 
t-z 	

2h2 	h2 	2h2 	t-z 
-h 	-h 	 J 

h 	h 

	

çh 
= Im 12 

Lt(-Wir  t (tzh) dt + j„(,(0) 	2 (ht-
z

2) dt + J,l (h) 	t 	t+h) dt 
2h J 	-h 	/ 	-h 	i -h

t-z 

which we denote for simplicity as Im h2 
LuŸ_ h) + Vf(0) + w µ(h)J 

2n 	2n 
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Following earlier notations the truncation error is 

R
CL
ii(t) = im - 	/t (Z) dt + 12 U L((-h) + V t.(0) + W tl(h) 

-h 	2h 	J 
(3.37) 

But (3.37) measures truncation error in the case where ,l1 is 

approximated by a quadratic and so is zero when A. (t) is quadratic. 

Further on [ -h,hJ we can write 

	when} 

1(t) 	+ t,l,C' (0) + 2 t2~.1" (0) + 6 t3 A 	(•t.), 0 < -C.(t) < t, 

the existence of µ "' following from differentiating (3.31) and the 

assumption that the boundary function f is three times differentiable 

at internodal points. 

RCL 	
(t)J = RC [,l(0) + t j,,: (0) + 4t2y1 " (0) 	+ Rcr 6 t , 	(,C) 

rl 3 
= R IL~t1(,1~~~ (,rj  

h lt3 	,,, ( 	) 

Im 	- 6 t - z 	dt + 	U2 	6 	,~ (-h)) + V ' O + W2 6 h 	"1(  ,~ (1 )~ 
-h 	2h 	2h 

	
2h
2 
 

h 

6
t3k

"' (rt ) Im(l )dt + 1-2- hp. ( 'C(-h)) . Im( U)+ 12 l' 
(,,t (h). Im(W) 

-h 

Now let IC' = 	max 1I "' (t)I (-h, f"' 

RC+- (t ~ 	6 h3 h~ O p + 121 I Im (U)I 	+ 	12 ' Im (W) I 	(Fig.48) 

f Im(U)J 	
h 

But 	+ I Im(W)1 = Im 	ttth) dt 	+ Imttt+h) d 

 -h 	-h 

	

sh 	 h 

= 	t(t-h)Im(tlz)dt + 	t(t+h)Im( --)dt
t-z 

	

-h 	-h 

	

h 	h 

	

2h2 	
I 
Im(tlz) I 	2 dt + 2h 	Im(tl ) dt z 

111 	I 

	

-h 	-h 



n-1 	j 	n-1 
O < «  < ĪĪ . 	0( I = 	o(ij = o{ i 

j=0 	ij 	j=0 
(jPi) 	(3=i) 
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RC (,(t], 6h3 h ~ p + 12 hMh' 4h2~p = 2h3 h G 	(3.38) 

Hence finally with r
i 

being the sum of (2n) such terms it is 

clear that I r I/ 3
M"2 	O(i , 

i 

where M" = sup Mh' 	, 2H the greatest step width and 0 i the 
j 

total angle subtende:3 at the node t,. 

As before this quantity can be made as small as required by increasing 

the number of node points n so that H-4.0. 

To complete the argument we must now show that e 	0 as n-)- co . 

In all three approximations we have essentially the same equation for 

the error vector, namely Ke = r where we can take the matrix K, 

representing KA, KB and KC in the form 

	

271--0( 	a 01 	« 02 	' ' ' 0,n-1 

	

C0(
10 	27t- -«1 	« 12 	 1,n-1 

	

a20 	<21 	
2-r7-- a

2 	
Co( 

2,n-1 

	

0< n-1,0 
	O

n-1,1 	0<n-1,2 	' ' ' 	
2nr 

-an- 

i = 0(1)n-1. 

since all of 
ij are non-negative. (In approximation C the count is 

carried to 2n, but this will not affect the general argument). Also 

since we are now concerned with the behaviour of K, e and r as n 

increases it is convenient to write the error equation as 

K e 	= r 
n—n 	— n 

(3.39) 
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We know that K
n 

has an inverse for all n, but the question 

remains whether the norm of this inverse is bounded as n--*. co . If 

this is so then writing 

e = K-lr 
--n 	n n 

and taking some appropriate norm gives 

(3.40) 

To investigate the required bound on K-1
n 

we recall first the 

standard theorem on bounded linear operators ([24]pp.233) that "if d.. 

is a bounded linear operator mapping a normed space X into a normed 

or -1 
space Y, then a necessary and sufficient condition for 	to exist 

and be a bounded linear operator in Yl, the range of 	, is that 

there exists a constant m > 0 such that for all elements x e X,Il 	= 1, 

Vr•Ila ° . I 
r-1 
 1 " 

in which case !I 	~ 	. 
m 

In our situation, K is a bounded linear operator mapping Rn 
n 

into itself. Moreover taking the maximum norm defined by 

11 1-c II = 	11 xis 
= max x 	= 1 	, where x 	(xo,x1"." n-1) E Rn 

00 

t 	n-1 
and I~ K 

n 
i+ 
1 	

= I! K
n 
11 = max 	 jk..j 

i~ 	
, the maximum absolute row 

sum, then we see from the nature of K 
n 

that 

j 	i  00 	 j=0 

00 

= 2-n- , independent of the increase in n. 

Now consider the quantity II K x II 
	

where 
II 
x IJ 	= 1. From the 

r 	n --  
00 	03 

form of K
n 

we see that 

= max I « 
ioxo 

+o(i ~ lx1 + ... + 
O('. x. 00 Kn 

+ (27r - C1( )xi + ai,i+1xi+1 + ." + 	 i,n-lxn-l' (3.41) 



the min 
j 
Kn x j( 	; and this occurs by taking x0 = x1 = .. . 

I 4f o0 

= xi-1 = xi+1 	... 	= xn-1 

min max 10( x + ... 
x i 	10 o 

-1 

+ (27i 

in 

- 

(3.41) 

C‹ 	) x , i 	1 
+ 

so that 

... 	+ O( 
i,n-1 

x 
n-1 

- 110 - 

The values of this expression are to be investigated over all possible 

x such that ii x1100 = 1. Thus it is maximised by taking, without 

loss in generality, x, _ +l and O( , as the minimum corner interior 
1 	 1 

angle which we denote by O( . Then with regard to the above theorem, 

the required value of the constant m will be achieved by considering 

= 271' (O(i3O + 0<. 	+ ... + CXi,i-1+ ai,i+1+...+C4i,n-1) 

= 27 - 2of = 2(3 (where 8 is the greatest exterior angle 

of the polygon). 	 1 

Thus 	II K x II 	2~ 	and so I( K
nlll 	21 	Returning 

00 

to (3.40) we now have, using the maximum norm, that 

I1 eni` 	\ 2g Ifni! ao 
(3.42) 

But 112:n 11 
	

= 	
max Ir.i 	

where we recall from the truncation 
03 0<i< n-1 1 

error analysis that for approximation A, 
iril 

(M'H 0(i , for 

approximation B, Ir.1 	H
2 

1 
<, M" O(. and for approximation C, 

1 \  

(riI < ~H3M"' 0(i where O(
i 

is the interior angle of the polygon 

at the node t
,1 
. 

Thus for approximation A, 
it 
e n II 	< 2  

a0 

approximation B, II e n ii 	. 2 	M"H2Tr 	(3.43) 
f 

and approximation C, ~~ e n11 00 < 2s ''2M"' H3lr . I 	\ 	
L 

As n increases, H will decrease as required and we conclude 

that 11
—
e
n

il 00--~ 0 as n --mai 00 for each of the cases A,B and C. 

na 
Thus the convergence of (,L(t.) to / M (t,) is established. 1 	 1 



N 	1  n-1 s7+1 
u(x,y) = 27T  3=0/ 

jt (s)d0 
S. 

(3.45) 

3 3.5 Error in Calculation of internal potential function u(x,y) 

The ultimate aim of the proposed numerical methods is to calculate 

reliable approximate values of the potential function u(x,y) at 

internal points E D ; and having analysed the behaviour of the 
na 

approximations )U.(t) to the boundary density ,Lt(t) we are now in a 

position to examine the reliability of the subsequent calculation of 

the internal potential. Denoting the calculated quantity by u(x,y) 

and the exact by u(x,y) then we are interested in obtaining some 

measure of the error between the two quantities 

i.e. 	I u(x,y) - u(x,y)I 	, 	(x,y) e D+  
N 

Now in order to evaluate u(x,y) , we merely return to (1.17) or 

its equivalent and write 

u(x,y) = 1 	^' 
2-rr 	IL(s)dbi , 	0 	s < S, (3.44) 

(see Fig.11). Having completed the earlier calculations given by the 

various approximations for )1(s),  then the integral in (3.44) can be 

evaluated by "filling in" values of itk at points on the boundary L 

of the polygon between nodal points according to whether approximation 

A,B, or C has been pursued. We can then write from (3.44) 

3 

where a typical integration along the straight boundary segment between 

nodes at s. ands
j+l 

 can be carried out exactly as appropriate to 

the three approximations. 

Sj-1 

rozme. S- 



on 

and 

by a 

to 	(3.12) 

where 

and 

O xy , 	z = x+iy , 

s 
jil(s)de 	= 	Ira 

s 
J 

for 	C, 	where Jk 

piecewise quadratic 

that 

sJ+

),(s)de 	= 

S
. 

E = 	(tj+l- z) (t ,- 

F 	2 (t . 	- t 
3+1 	j-1 

G = 	(t
J-1

-z) (t-z) 
j 

Now it is known that 

that 

)k(t. ) (t. 	-z) 	~(t. 	) (t -z) 	(~ 	t. 	-z 	'j 
J 	J+1 	J+1 	j 	J+1 

Cn ( 	) 
I 	' 

dt, 

t. 	- t 
J +1 	j 

was approximated over says.
-1 < J 

function, we have following the 

2 
Im 

(t, 	-t 	)
2[E,a(ti -1 ) +F ~il(tj 

t. 	- z 
J 	 ~ 

s 	s. 
j 	J+1 

work prior 

N 
/

) +G 
,j+l 

tj_1 ) 

t, 	-z 
( 	J+1 _) 

J+1 	j-1 	l 

tj +1- z 

	

z).Qn( 	) 	(t j+1- z) (t . 
tj -1

- z 

	

) (t - z) 	- 2 (t. 	- z) (t 	- z) Q n j 	J+1 	3-1 

 tJ +1 -z  ) 

tj-1
-z 

) 

tj+1 '.i 
}(t)  
t- z 

(tJ 
-1

-z) (t 	-t. . 	t 	-z 	 j+l 	3-1 
J-1 

 

any function of the form 	Im 

t, 

(3.46) 
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i.e. for A, where ,(L was approximated by a piecewise constant, 

s 	
+~ 

we have 	ÿ(s)dO~  = 	Ll.(s.) + L,l,(s. 	
e 

) 
t/ J 	/ 	J +1 

J +1 	

1   
s. 
J 

where 	3 is the angle subtended at P by the segment C 5.15. 1 , ' 
for B, where 

/

fit. was approximated by a piecewise linear function 

we have, following the work providing (3.7) in terms of complex points 

nJ 
where )1(t) satisfies very general conditions, gives rise to a harmonic 

function for all z in O xy , z not on the contour. Further, the sum 

of a number of such functions being also harmonic, we have that u(x,y) 

calculated from (3.45) by any of our approximations will be harmonic. 
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Thus both u(x,y) and u(x,y) are harmonic for any (x,y) E D+ 

and hence their difference u .- u is also harmonic. By the 'Maximum 

Principle' ([3) page 255) for two-dimensional harmonic functions ) 

max 
I 
u(x,y) - u(x,y)I will occur for some (x,y) on 

OW 
N 

L. But u(x,y) and u(x,y) coincide at nodal points so that this 

gives the useful result that the maximum error between u(x,y) 

and the calculated u(x,y) can be estimated numerically by merely 

examining the difference u - u at points on the boundary between nodes. 

For instance we may refer to the exact equation (3.3), which for 

a point t., not a nodal point, so that oc' = Tr , can be written as 

1 	n-1 	tj+1 
(t) u (ti) = ~, (ti) + 271E Im _ 	t t 

dt 

jti-1,i tj i 

For simplicity, let us take ti between t0 and tl so that 

n-1 tj+1 
(ti) = 1 Jll (ti) + 2~ im 	J"'tt) dt 

j=1 t 

j 

(3.47) 

Again bearing in mind that the calculated density function it (t) 

gives rise to the harmonic function u(x,y) in (3.44) it follows that 

n-1 tj+l^' 
u(ti) = 1/27(t.) + 21 Im L 	t t) dt 	 (3.48) 

j=1 t 
3 

N 

where the integral term in (3.48) is variously calculated for 
	

being 

now generated for all boundary t as piecewise constant, linear or 

quadratic. 

 N 
	n-1 I i+l (t)_,X(t)

u(ti) -(ti) = 1 i i} + 2~ Im dt. (3.49) 
j=1 1 t 

j 

But we had earlier for the density error vector e = }i.- µ 
'-' n 	J T 

OO' %L1 )41' ' "n-1 d kn-1 } 	
that ei 
	i i --'l 

0 for 
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all i as 	DO . 

However in (3.49), ti is not a node point, so we cannot immediately 

replace }k(t)- Jl.l(t). But on any interval of the boundary [c., tj+1 

in the case of approximations B and C we have the difference between 

N 
two continuous functions ,/t(t) and 	(t). This difference must also 

be continuous at any intermediate point t, so we may write 

lift) -}k(t) = ~l(tj) - ~.1(tj ) + hj A: ( ] ) - ,U,' (`C j )} 	3.50) 

where if h = I t -t 	then O < h_ < h and t . = t . (h. ) . 
J+l j 	 J 	J J 

(We already have existence of ).A.' from differentiating (3.31) and l ' 

exists being the derivative of a polynomial). 

But (3.43) will imply that liWti )-iAk(ti)1  < kHp , p = 2,3, k a 

M" W 	 M"' 
Tr 

positive constant equal to 
2e 	

in approximately B and 	
4 	

in C 

and so we have 

I )u(t)- Ll(t)1 	' tIl(t. )-~,l(t j}I + h j ly' ('rj)- 1,L' ('r j )( 

kHp + HM where as before H is the 

maximum step width and M is taken as max I JiA.' 	, )
1 all j 	J 	J 

Hence in (3.49) we now have 

_-I t •
J 

+1 

1 
u(ti) - ū(ti) I < 	I 	+ ~Ll(t)- .(t) fIm( at) 

 t
2rr 

j  / J 

'k Hp + 1/211M + 
2 Tr 

(k Hp + HM)1T 

kHp + HM (3.51) 

For approximations B and C, as the maximum step width H is decreased, 

then lu(t.)-  ū(t.)C can be made as small as we please as is required. 

N 
For approximation A we proceed a little more warily since t(t) 

being a piecewise constant is not continuous at nodal points. We have that 

)l(t) -ft(t) = il(t) -' ,tJ (tj) + 	)l(tj+l)1 	for intermediate t. 
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But ).L(t) is a continuous function and so we may write by applying 

the mean value theorem 

(t) _ JL(t) + hj at (ti ) 

and also 	k(t) = ill(tj+1) - (h - hj) ,: ('tj+1). Adding these equations 

gives 

tj) + }(tj+l) + 1hj LC ') (rj - 1 (h-hj) LCA ('~j+l) 	(3.52) 

^a 	eNI 
Hence finally 	l.l(t) -./01.1,(t) = ~ (LL- 	) + 12 (7ji_1 Jj+l) + 

 4
- M'HTr i.e. 1k(t)-(t) 	< 	+ 'HM' + IHM' , M' as previously defined. 

= HM' + 	 HM' 

Thus returning to (3.49) this gives for approximation A that 

~-✓ 	 21.7._-) 	
1 	n-1 ' tj +1 	,,~ 	 dt (u (t) -u (ti) I 	IHM' (l+ 2~ 	+ 2~ ii(k(t) 

  
- ~.C(t) I Im (t-ti) 

-1 	J 

'HM' (1+ 2r ) + 2 	x HM' (1+ 2e 

= HM' (1+ (3.53) 

But again as H is decreased this expression for f u(t)-ū(t.)J 	can 

be made.as small as we please so that overall we have achieved the desired 

aim of showing that for increasing discretisation.refinement on the 

boundary, then 

N 
u(x,y) --p u(x,y) 

in the case of all of our approximations. 

all P(x,y) C D+ 

t. 
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Chapter IV 

In this chapter we give numerical results obtained through 

applying the methods described in Chapter III. This means that (3.4), 

(3.8) and (3.14) and (3.15) are used to generate sets of linear equations 

which are then solved for _pt.) by the use of computer programs. 

Finally further computer programs are used to enable U_(x,y) to be 

generated. Tables of values of ilk and u are given at the end. 

As stated earlier, the well known torsion problem in elasticity 

has been used to provide the example considered. Hence in each of the 

representations the boundary data f(t.) is taken as 1(x. + y.) where 

t. = x. + iyi  . The polygonal boundary L is taken to be rectangular, 

of size 2 units X 1 unit, this being a suitable shape for trial since 

the analytic solution is available in the form of an infinite series. 

Comparison can then be made between the analytic solution, u(x,y), and 

the various approximate solutions u(x,y). 

To simplify the computation and. make use of symmetries, the 

position of L is as given in Fig.50. This means that four-fold 

symmetry is exhibited for a (2 x 1) rectangle, so that if (x,y) are 

coordinates of a typical boundary point then 

(x,y) = /L(-x,y) = 
1%a
(x,-y) = 	(-x,-y) . 

Also for any point (x,y) in D+, we have 

u(x,y) = u (-x,y) = 0".." (x, -y) = u(-x,-y). 
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This four-fold symmetry has been incorporated into the computer 

programs. Hence although we require a discretisation of L around its 

entire length we can in fact work solely with the quadrant x 	O, y ) 0. 

Node points have now to be placed on L, and a flexible system is 

required so that the number of node points can be easily increased 

without the necessity for a new computer program each time. Also the 

nodes do not need to be at equally spaced intervals (apart from the 

requirement in approximation C) and it is possible to arrange for them 

to be clustered more densely if desirable around a corner point of L. 

A typical situation is shown in Fig.51:- 
( 	2cf. 23 22 ?j 20 19 IS n   

1 	l 6 
Lu) ~/ 

15 
1c4-
t3 

0 .04,25 

0 

	 12 
	 I I 
	 ic 

	 9 
8 

	 7 
	 6 

	 5 

	 4- 
	 3 
	 2 

	Q 

Cz, o) 

Po 

}x 

In this case nodes are spaced equally at distance 6 = 0.0625. 

Thus around the quarter rectangle there is a total of 25 nodes, numbered 

as shown from 0 to 24. The values u
i0► / 1' « J 24 

are found by 

solving a set of 25 linear equations. Bearing in mind the four-fold 

symmetry, this is equivalent to placing a total of 96 nodes around the 

entire boundary L. 

The mesh shown in the interior D+ of the rectangle occurs naturally 

as a suitable framework for points at which u(x,y) can be calculated. 
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Thus in Fig.51, an array of size (8x 16) can be set up to hold calculated 

values for ū(x,y) in each of the approximations A,B, and C. 

As mentioned at the beginning of this chapter, comparisons are 

possible with the analytic solution of this problem. This is so since 

2 	 + the classical problem "solve `% u = 0 within D  such that u(x,y) 

continues onto L as 1(x2+ y2)" may be solved by the methods of 

"separation of variables of a partial differential equation" and the 

use of Fourier series. The solution may be expressed in the form 

00 

u(x,y) = 1 (x2- y2+2)+ 32 	(-1) n+1 
Cosh (2n+1) 71-x/2 

 cos (2n+1) Tiy 
IT 3 n=0 (2n+1) 3 cosh (2n+1) 1 /4 	 2 

This series can be summed for given input of (x,y) by suitable 

computer program. 

Although we can make-direct comparisons between the values of 

u(x,y) and u(x,y) and the reliability of the numerical methods then 

assessed, no similar comparison is possible for the calculated boundary 

density ll(ti). For the Dirichlet problem in the case of a region 

with a circular or elliptic boundary, exact solutions are available 

for 	A(t), see [ 5] and [18] . But in general, including the case 

here, we have no analytic expression available. This calculation of 

an intermediate quantity j is one of the main draw-backs of casting 

the interior Dirichlet problem in terms of the double layer potential 

since the double layer density 11. is not of any physical interest. 

Surveying the integral equation formulations described in Chapter I, 

let us consider the alternative choices available. 

1. The single layer formulation gave rise to the integral equation 

(1.6) for the determination of the single layer density «(s), followed 

by the evaluation of ū(x,y) from (1.5). Here 0-(s) is the solution 

of a Fredholm equation of the first kind with logarithmic kernel. As 

(4.1) 



119 - 

with li(s) the calculation of d(s) is of minimal interest in 

solving the interior Dirichlet problem. The discretisation of (1.6) 

will lead to a problem in linear algebra for the determination of  

This alternative has been used chiefly by Jaswon and Symm [12] in which 

it is proved that (1.6) has a solution for smooth boundary contour L 

apart from an exceptional contour which can be avoided by scaling. 

Assuming this theory can be extended to polygonal contours, then on 

discretising (1.6), the resulting matrix does not possess the convenient 

form of that found through use of the double-layer. A further numerical 

difficulty is presented by the logarithmic kernel which requires the 

evaluation of inproper integrals. No such difficulty occurs for the 

kernel of the double layer formulation as explained in (3.3). 

2. The other alternative is the use of Green's boundary formulas. 

In this case the solution of the Dirichlet problem is obtained through 

the use of the integral equations (1.38), (1.39) and (1.37). It is 

convenient to list them here again 

(1.38) : @  ān n (r) ds f (s ) de 0 e D 
L 

  

(1..39): au .`  n(r1)ds y  an  
L 

f(s)dG - OC f(s ) 	, 0 e  L 
0 0 

and (1.37) : 	u (x,y) = 
1 

 

f(s)de (r)ds 1 , (x,y) e. D+  2 Tr 

 

     

where 0 is the pivot point. 

Clearly an outstanding advantage of this formulation is the 

absence of any density function, the calculations yielding approximations 

to the normal derivative 
an 

 . Either (1.38) or (1.39) may be used 

au  as Fredholm integral equations of the first kind. Having obtained 
an , 

it would then be substituted into (1.37) and the generation of the 
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internal potential u(x,y) completed. The differing positions of 0 

mean that the evaluation of 
	

f(s)de is completed separately for 

each of (1.38), (1.39) and (1.37). We may refer in passing to the 

paper by P.Swartztrauber [25] where an integral equation method is 

used derived from Cauchy's integral formula. However as explained in 

Chapter I of this thesis, equations (1.59), ( 1.60) etc., this is 

equivalent to Green's Boundary Formula and essentially no new formulation 

is obtained. 

Now it is clear that since the kernel of (1.39) is identical 

with that of (1.6) then the discretisation of (1.39) will lead to the 

same matrix. Thus the same comments on the difficulties in the 

numerical linear algebra apply again. Also allowance must be made for 

discontinuity in 
a 
 n at corner points. 

With regard to (1.38), we have a different situation, inspite 

of the apparently identical kernel Q n(r). The placing of the pivot 

0 in D removes worries concerning the calculation of p  n(1) since 

in this new situation r is never zero. This formulation of the 

Dirichlet problem, ostensibly the simplest and most concise of all, has 

almost completely escaped attention of most workers in this field. It 

may be found as far as the author is aware in only one source, namely 

the book by V.Kupradze [13] . The existence of a solution a n , 

provided that L is smooth, is established by Kupradze in [ 13], 

page 253. There seems no doubt this can be extended to a polygonal 

contour. With regard to obtaining a numerical solution by carrying 

out the usual boundary discretisations there is the added facility of 

being able to place the collocation points anywhere throughout D-. 

Some analysis is given by Kupradze (p.254) in which it is shown that 

the resulting linear equations can be solved provided the points are 

taken on a contour lying in D that is concentric with L and 

sufficiently close to it. This accords with results obtained by one 
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of the author's undergraduate project students [2 6] in which it was 

found that the solution of the torsion problem for a rectangular 

region through the application of (1.38) was inaccurate unless the 

concentric contour was moved up close to L. It is clear that as 

this external contour moves up into coincidence with L then the 

integral equation formulation (1.39) will be recovered. 
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Results Section 

In TABLE 1, calculated values of the boundary density A,l, are 

listed for each of the three approximations A,B and C. In TABLE 2, 

the resulting potential u(x,y) is displayed at selected points within 

the rectangular region. At each point four values are listed corresponding 

to approximations C,B,A and the analytic solutions respectively. Each 

value is quoted correct to six decimal places. In TABLE 3, the errors 

have been calculated and listed at the same selected points as in 

TABLE 2. Both the raw error, u(x,y) - u(x,y), and the percentage error 

are given, as explained in the key to TABLE 3. 

It will be noticed that the results are generally satisfactory with 

a small percentage error when any of approximations A,B or C is applied. 

An error pattern is also established throughout the rectangular region 

with the exception of the part lying near to the corner point. This 

pattern shows the reward expected by the greater sophistication of 

approximation C over approximation B and also that of B over 

approximation A. In fact it is clear from the data in TABLE 3 that the 

respective errors, EA, EB, EC  to six decimal places, fall naturally 

into the pattern 

EA  ; EB 	EC  = 2 : 1 : 0 . 

This satisfactory state of affairs is rather spoilt as we examine 

the approximate potential values obtained close to the corner point. 

To get an idea of the fluctuations, the results are quoted in TABLE 4 

for a number of interior points close to the corner. It can be seen 

from examination of TABLE 5 that the general error pattern suggested 

above collapses. Some of the approximate solutions ū(x,y) fall below 

the exact u(x,y) for the first time and although approximation C 

is generally the most accurate, this is not always the' case. 

As discussed in Chapter 3, the positioning of the original boundary 

nodes can always be adjusted. We do not require equal spacing between 
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them save only that in approximation C, a mid point node has to be 

used. Hence it is possible to cluster the nodes more closely near 

to corner points as appropriate on the assumption that greater refinement 

near to a corner will lead to more accurate results. In the case of 

the rectangle, effectively one corner only has to be considered, with 

the nodes placed more closely along each arm enclosing the angle. 

Three different node clusters were tried leading to new calculations 

na 
for 

)1  in each case. The derivation of new positions for nodal points 

was incorporated into the computer programs written for the application 

of approximation C. Thus new data is available for ū(x,y) based 

upon the quadratic variation in }.l(t) around the boundary. For each 

of the clusters tried there were still in fact only 25 distinct nodal 

points. 

The results obtained form this refinement are displayed in 

TABLES 6-10. It LI.  clear from the results for this example that a 

mild clustering of nodes is preferable, this being listed as "1st cluster" 

with corresponding calculations of the double-layer density and final 

interior potential denoted by )-C
I 

and u(x,y)C  respectively. 

One further table is incorporated, giving data generated in an 

attempt to check the conclusions drawn from the 'Maximum Principle' 

outlined in Chapter III on page 113 . This establishes that the greatest 

error lu - ū I will occur at points on the boundary L of the rectangle. 

It is seen from the end of Chapter III that as the distance between the 

node points decreases that then this maximum error can be made as small 

as we please. Hence we may attempt to find mix Iu(tQ) - ū(tQ)1 where 

tQ  is some point on L, not a node point. The theory will not tell 

us where absolute maximum is obtained, but it would seem sensible for 

the calculations to be performed at points mid way between nodes. The 

attendant results are given in TABLE 11, and were computed only with 
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respect to approximation C, the node points being equally spaced, 

at interval 0.0625 as before, around the rectangle. The table gives 

values of u(t ,) and u(t) where it is worth recalling that 

u (ti) = 1/2(x.2  + y.) and, from (3.48) , 

N 	N 	1 	n
[
-1 tj N +1 (t)  =1/211.(t.)   + 2 tr Im L 	"t-t , 

dt ' 
j=0 t 

j#i-1,i j 

na
~t. being interpolat::d at t, from its quadratic nature in the case 

of the first term in this expression. 

From TABLE 11 we see the worst situation at the point denoted 

by (ix) at which the % error can be calcualted as 0.58 % . 

Conclusion  

This thesis attempts to show the complete reliability in posing 

the interior Dirichlet problem for convex polygonal regions in terms 

of double layer potentials leading to a Fredholm integral equation of 

the second kind. The error analysis developed has shown that complete 

faith may be placed in the resulting numerical solutions attempted. 

Although the solution of two dimensional 'potential' problems is more 

popularly considered nowadays through the Green boundary formulas, 

nevertheless it must be recognised that the traditional double-layer 

method will produce a completely sound theoretical basis which can be 

translated into an equally reliable approximate firm. 
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