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ABSTRACT

Richard Durham

Investigations in geostatistical simulation

as an aid to mine planning

The geostatistical 'turning bands' simulation
technique is examined. The simulations are conditioned, and
the importance of the conditioning data points 1is shown.
The correlation between the accuracy of a simulation before
and after conditioning is examined.

The standard 'turning bands' three dimensional
simulation technique involves the use of fifteen regularly
orientated axes. A new technique for finding the fifteen
co-ordinates of a point is developed. It is tested against
other one dimensional axes configurations.

Conditional simulations are made of stopes from a lode
within South Crofty tin mine. Non-stationarity amongst the
data is found to be overcome by the conditioning process.

A block simulation method is developed which allows
the same wunconditional simulations to be used for several
sites. It produces a large number of simulations at a

relatively low cost.
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INTRODUCTICN

A simulation is a representation of reality. It 1is a
possible existing situation which exhibits imposed
characteristics.

An unconditional simulation displays the Known
characteristics of the sampled data values. A conditional
simulation goes one step further. It exhibits the same
characteristics, and at the data points the simulated value
equals the sampled real value.

The purpose of any simulation approach 1is to aid
understanding, prediction, and control of a system. When
simulating ore reserves this system 1is the geological
genesis of the rocks themselves. Cbviously, control of this
process 1is impossible, and greater wunderstanding and
prediction are left as the aims of such simulations.

Simulation is not the same as estimation. A simulation
produces a possible situation, whereas estimation derives
the most likely situation. For any given set of data
values, there exists an infinite number of simulations, but
only one estimation. The average of all the simulations
(possible situations) is equal to the estimation (probable
situation).

Since a single simulation is only one of an infinite
number of possible simulations, to create only one
simulation and to draw conclusions from it can be extremely

misleading. It is equivalent to examining a single value



from a distribution. A sufficiently large number of
simulations must be <created to give an idea of the
distribution of features around the mean discovered by
estimation. The ©possibility of taking decisions on the
basis of a single exceptional simulation 1is thereby
avoided.

The major use of simulating ore reserves is for the
investigation of possible fluctuations. These fluctuations,
for instance, can be between the grade of adjacent mining
blocks, or the hoisted production from contiguous shifts.

Consider two blocks of ore next to each other.
Estimation can inform as to whether each of them is below
or above the cut off grade. But, it can not predict what is
the probability of both of them being of the same
classification (pay or non-pay). Simulation can do this.
For instance, the results from several simulations might
show that there is only a ten percent chance of the two
mining blocks being of different classifications. Under
these conditions, the mining block size could be doubled
and the mining technique thereby simplified.

One of the problems with statistical simulation has
always been that of cost. Due to the sheer number of
figures which have to be manipulated, the use of a fairly
large computer is essential. It is the cost of the computer
time and storage which creates the expense of statistical
simulation. This 1is due to the large number, rather than

the complexity, of the calculations.



Throughout the course of this study the <cost of the
simulations was always considered. It is essential that
this cost does not exceed the saving due to a simulation
based decision.

All the computer programs used in this study are in
the FORTRAN IV language, and were compiled by a University
of Minnesota MNF 5 compiler. The computer work was
undertaken at the Imperial College computer complex. The
machinery available consisted of a CDC Cyber 174 and a CDC
6500. These two computers share 250,000 6@¢-bit words of
extended memory space. The execution time of the computer
programs used in this study are quoted in terms of <central
processor seconds (henceforth CP seconds).

This thesis has been written in two sections. The
first consists of a detailed evaluation of the simulation
method. The second shows how such a simulation technique

has been applied to some mine data.



SECTION A : THE SIMULATION METHOD

A,1.SELECTION OF THE SIMULATION MODEL

A.l.1.Traditional methods :-
There are many different types of statistical
simulation models. They broadly f£all into four categories

(Harbaugh and Bonham-Carter,1970) as follows :-

(a) Static - independent of time.

(b) Dynamic - varying with time.

(c) Deterministic - with no element of chance.
(d) Probabilistic - involving a random component.

A simulation model is either static or dynamic, and
either deterministic or probabilistic.

A model was required to produce simulations of
geological variables. For the purposes of this study these
variables were 1l1lode widths and lode assays. Both of these
parameters do not change with time, and so a static model
was needed. Also, neither of them 1s precisely known at all
points, and thus the model had to be probabilistic.

The standard approach to a static probabilistic model
is a Monte Carlo method. This involves taking samples at
random from a known distribution. Thus, it 1s a relatively
easy matter to produce simulated wvalues which exhibit a
known distribution.

However, if geological variables are to be

realistically modelled, they must be spatially correlated



as well. In other words, they must exhibit an imposed
auto-correlation function.

There are several methods for producing three
dimensional, spatially correlated simulations (Jenkins and
Watts,1968; Journel,1974). They are generally of two
types :-

(a) Simulations of orthogonal random numbers
which have a varilance density equal to the spectrum
density of the desired auto-correlation function.

(b) Moving averages, usually performed with a
sphere, over a field with a Poisson distribution.

However, these simulation methods are extremely costly
on computer space and time. Oertel and Walton (1967) in
1967 stated that their program 'exceeds the directly
accessible memory space of present computers', and 'the use
of 1indirect memory space.....would cause intolerably long
running times'. Great advances in computer technology since
1967 no doubt mean that these simulation methods could now
at least be handled, but they would still be relatively
huge undertakings. They are generally considered to be
prohibitively expensive.

However, these methods <can be used to produce one
dimensional simulations at a reasonable cost. It 1is only
when they are asked to perform in three dimensions that
they become expensive. It is the transfer from one to three
dimensions which causes an 'explosion' of computer time and

storage requirements.



Newton and Royle (1972) describe a method of producing
a two dimensional simulation at a reasonable <cost. It is
based on a trigonometrical expression and could be expanded
into three dimensions fairly simply and cheaply. Howsver,
it seems that the behaviour of the simulated wvalues can
only be found after the simulation has taken place. No
desired function, either of auto-correlation or of

distribution, can be imposed on the simulation.

A.l.2.Turning bands method :-

In 1973 Matheron (1973) first postulated the 'turning
bands' simulation approach. Later Journel and Huijbregts
{1978) presented the method in more detail, and more
comprehensibly . The 'turning bands' method does not need
enormous computer facilities to produce three dimensional
simulations, The simulations have the required
characteristics, that 1is of the imposed distribution and
auto-correlation functions. The auto-correlation function
used in the 'turning bands' method is the semi-variogram.

This function is made up of a series of figures <calculated

from :-
i=N
Gamma(h) = 1* 5[G(x)-G (x+h)]?
2% ¢
1=1
where h = vector commonly called the lag
Gamma(h) = semi-variogram value at lag 'h'
G(x) = variable value at position 'x'
G (x+h) = variable value at position 'x+h'



N =

separated by

Determination of this

produces the semi-variogram, usually presented

of 'Gamma(h)' against

The 'turning

consists of two steps.

bands'

The first is to produce

number of pairs of values

Ihl

figure for wvarious lag values

as a graph

'h'.

simulation method basically

simulations

along one dimensional lines. The second is to rotate these
lines in space and transfer their characteristics into
three dimensions. It 1is the one to three dimensions

technique which is the great originality, and

of the 'turning bands'

Journel (1974)

simulation can be made conditional.

gives details of how a

cost saver,

approach,

'turning bands'

That is, the simulated

value at any sampled point equals the actual variable value

at that point

estimation technigue, as
described by Delfiner
(1979) .

All the simulations
the

by 'turning bands'

describe and evaluate

(see figure 1).

the method

The method uses the kriging

developed by Krige (1951), and

and Delhomme (1973), and Brookar

used in this study were produced

technique. The next three sections

in detail.
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A.2.0NE DIMENSIONAL SIMULATIONS

A.2.1.The simulation technigque :-

The first step in the ‘'turning bands' simulation
method 1s to produce one dimensional simulations. Each of
these consists of a set of figures along a straight 1line.
The values on the line must exhibit the imposed
distribution and auto-correlation functions.

The 'turning bands' approach produces simulated values
which follow a Normal or Gaussian distribution. Henceforth
the notation N(M,V) will be used to denote a Normal
distribution with a mean of 'M' and a variance of 'V',

As mentioned before the auto-correlation function used
is the semi-variogram. As with distributions, there exist
several standard models for the shape of a semi-variogram
(Blais and Carlier,1968; Huljbregts,1973). The one used
throughout this study 1is the spherical or Matheron model
(see figure 2). Of all the semi-variogram models, the
spherical scheme is by far the most frequently used. David
and Blais (1972) state that 'In all the <cases we have
studied, we have been able to fit spherical schemes to our
experimental wvariogram curves'. The equation for the

spherical model is :-
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FIGURE 2 : SPHERICAL SEMI-VARIOGRAM MODELS
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= (C-E)*[1.5*H-0.5*H3] + E
A A

where C total sill

E = nugget effect

H = lag value

A = range of influence
The spherical model is defined by the three parameters of
range, sill, and nugget effect., Henceforth the notation
Spherical (A,C,E) will be used to indicate the precise shape
of any spherical model.

There are many simple ways of simulating independent
values which follow a certain distribution. The problem
arises when the values have to be spatially correlated.

The initial step is to produce a series of independent
values with a Normal distribution of N(@,1). The computer
available can produce random numbers from a uniform
distribution between 0.0 and 1.0. The sum of twelve such
numbers has a Normal distribution of N(6.0,1.0).
Subtraction of 6.0 produces the desired distribution shape.

The independent, or 'T', wvalues are placed along a
line at regular intervals of 'B'. A parallel 1line of 'Y'
values is now considered. They are also regularly spaced at
intervals of 'B' but are out of alignment with the 'T'
values by '¢.5*B'. Each 'Y' value 1is a function of the
closest 'T' figures. In fact all the 'T' figures up to a
distance of '(A-B)/2' in both directions are included (see

figure 3). By this means, two 'Y' wvalues at a small
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distance apart have a large number of common 'T' figures,
and are therefore heavily correlated. As the distance
increases the correlation reduces to a minimum of zero at
distances of 'A' or greater. Each 'Y' value is defined

as :-
3=M

= WF*Z Tj*Dj
j=1

where WF

weighting factor

M = number of 'T' values considered
in both directions

2* (A-B)

= 2 + 1 =
B

W >

TjJ 'T' value at point 'J’

Dj distance from point 'J' to the
position of 'Y'

= - (A-B) when J=1
2

= + (A-B) when J=M
2

Journel (1974) states that such 'Y' figures have a
semi-variogram of the form :-

C*[3*ﬂ‘2*ﬂg]
A A

He also shows that 1f the desired three dimensional
semi-variogram is 'S(H)' then the required one dimensional
semi-variogram equals :-

= d H*3(H)

dH



For a spherical model this becomes :-

= d H*CH[1.5%H-0.5%H; IAE’

dH A A

C*[3*H-2*H3]

A A

So the required one dimensional semi-variogram has
been produced (see figure 2). It can be shown that the sill

of these 'Y' values is :-

= WF2*a* (A%+11%32)

(12*B)

Therefore to produce a sill of 1.6 the weighting factor

"WF' is set to :-

=J/ (12#*B)
(a* (A%+11*B%)]

Thus the 'y'?' values exhibit the correct

semi-variogram, and have a Normal distribution of N(3,1).

A.2.2.Determination of 'B' :-

It will have been noted that 'B' has not yet been
sbecified. As usual a balance has to be reached between
accuracy and cost. If 'B' is very small the simulations
will be highly accurate, but expensive to produce.

The spacing of the 'Y' wvalues does not have to be
equal to 'B', in other words that of the 'T' figures. It is
a simple matter to make the 'Y' wvalues' spacing a whole
number multiple of 'B’'.

A one dimensional simulation was made of a line of one
thousand '¥Y' wvalues. The 'Y' values were regularly spaced

at an interval of 1 metre. The range of influence of the



semi-variogram was set at 25 metres. The spacing of the
independent 'T' figures was 1 metre. In all, twenty five
simulations were made under these conditions.

The accuracy of each simulation semi-variogram was
estimated by finding its closeness to the one dimensional
semi-variogram model. This was represented by the root mean
square of the residuals (henceforth called the RMS). This

was defined as :-

h=N
1% > (Oh-Eh) 2
N h=1

number of points of the semi-variogram

where N
considered

Oh

observed semi-variogram value at lag 'h'

Eh

expected or model semi-variogram
value at lag 'h'
The average RMS term for all twenty five simulations was
found to be @.23.

Similarly twenty five simulations were produced using
'T' figures spaced at 6.5, 06.25, 0.125, and 0.0625 metres.
The average RMS terms for these values of 'B' were .18,
3.15, 0.15, and 0.14 respectively. The law of diminishing
returns applies and the results with a 'B' value of 'A/1¢0'
seem acceptable. Clark and White (1975) agree with this 'B'
value of one hundredth of the range.

Throughout this study the one dimensional simulated

values have been produced at a regular interval of one

hundredth of the range. This may not prove acceptable under



different conditions. For instance, with a range of
200.0 metres the wvalue for ‘'A/108' is 2.0 metres. If the
three dimensional simulation requires points 1.0 metre
apart, this will be inadequate, and 'B' will have to be

reduced.

A.2.3.Computer subroutine SIM :-

The one dimensional simulation process has been
incorporated in a computer subroutine SIM (see Appendix 1).
Using this subroutine five one dimensional simulations were
produced. Figure 4 shows the resulting semi-variograms and
distribution frequencies. Each simulation was of a line of
one thousand points, spaced at regular intervals of
1 metre. The two models, of auto—-correlation and

distribution, are also displayed.



FIGURE 4 : ONE DIMENSIONAL SIMULATIONS
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A.3,COMPOSITION OF THE ONE DIMENSIONAL SIMULATIONS

INTO THREE DIMENSIONS

A.3.1.The composition technique :-

Having produced the simulations along one dimensional
lines, the next step 1is to transfer their features into
three dimensions.

Consider one of these 1lines as an axis in three
dimensional space. Points at regular intervals ('B') along
the axis have each been assigned a simulated wvalue ('Y").
Each point has a co-ordinate on the axis, and all points in
space with the same co-ordinate form a plane at right
angles to the axis., All the ©points on this plane are
assigned the same simulated wvalue, that is the value of the
point where the plane cuts the axis.

Repetition of this process for all simulated values
along the axis produces a family of planes. The planes are
parallel and spaced at regular intervals of 'B'. Each plane
has a simulated 'Y' value associated with it. If the axis
is considered to be infinitely long, its family of planes
covers all of space.

Each two dimensional plane is expanded, in the third
dimension, to a thickness of 'B'. The family now consists
of bands (hence the term 'turning bands'), rather than
planes., Each band has assigned to it the 'Y' wvalue where
its central plane cuts the axis. The family of bands

occupies all of three dimensional space.



[
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So, any point 1in space can now be given a simulated
value, from the band in which it lies. If several, say 'N',
axes are considered, then any point 1in space has 'N'
simulated values assigned to it. Summing these 'N' values
produces the desired three dimensional simulation value.

As has been stated before, the simul ated one
dimensional values, along the axes, follow a semi-variogram
of :-

1. 0% [3%H-2%H3]
A A

and a Normal distribution of N(8,1).

The summation of such 'Y' values from 'N' axes gives
simulated three dimensional 'Z' values which are :-
=N

Yi
=1

[

[N

where Yi = one dimensional value attributed to
'turning band' from axis number 'I1'
The 'Z' values have a semi-variogram of :-

N*[l.S*ﬂfﬂ.S*ﬂg]
A A

and a Normal distribution of N(3,N).
The variance, and therefore also the sill, of these
'2' wvalues is now altered. It is changed by multiplication

of each value by the term :-



2l6

where Co difference between the sill and
the nugget effect
= C - E
The variance and sill of the simulated values thus become
'Co’.

The nugget effect is a purely random £factor which
increases the variance but does not affect the average. So
it can be treated as having a Normal distribution of
N(@,E). A different random number from such a distribution
is added to each of the simulated 'Z' values. This changes

them to exhibit a semi-variogram of :-

CO*[1.5%H-B.5*3] + E
A A

and a Normal distribution of N(@,Co+E) = N(3,C)
The desired mean 'M' is now added to all the 'Z'
values. This has no effect on the semi-variogram but alters

the distribution to N(M,C).

A.3.2.Number and orientation of axes :-

Obviously in an ideal world the number of axes, 'N',
used in the summation to produce the three dimensional
simulation, would be infinity. So, the question provoked is
how many axes will be a sufficiently accurate
representation of infinity? Journel (1974) states that
fifteen axes, regularly positioned in space, will suffice.

The orientation of each of the fifteen regular axes is



derived from an icosahedron. This regular polyhedron has
twenty faces, and thirty edges. The centre of the
icosahedron is defined as the origin. The fifteen 1lines
joining the mid-points of opposite edges, all passing
through the origin, give the orientation of the fifteen
axes.,

Journel (1974) determined a three by three matrix,
'R', which can be used to derive the co-ordinate of a point
on each axis. The point's position 1s defined by the
co-ordinates on three orthogonal axes. Multiplying these
co-ordinates by 'R' produces three co-ordinates of another
set of orthogonal axes. In turn, these co-ordinates, when
multiplied by 'R', give another set of three orthogonal
co-ordinates. Two more multiplications complete the
required fifteen co-ordinates.

If the final set of three co-ordinates is multiplied
by 'R', the initial three co-ordinates are achieved. This
acts as evidence of the regular spacing of the axes.

A subroutine (COORDS1l) has been produced which
performs the task of deriving the fifteen co-ordinates (see

Appendix 2).

A.3.3.Unconditional simulation example :-

A computer program (SIM3D) has been written (see
Appendix 3), which produces a simulation of a cuboid of any
shape. The required input to the program is :-

(a) The spherical semi-variogram parameters,



that is the range, sill, and nugget effect.

(b) The Normal distribution averagde. The
variance since it is equal to the sill, has already
been specified.

(c) The cuboid dimensions.

The program produces a simulation consisting of a
value at every three dimensional grid point. These are at
intervals of one unit length apart. Also generated are a
histogram of all the simulated values, and the
semi-variogram of the wvalues in the three principal
directions.

An example of results from the program is given in
figure 5. The simulation was of a 20*2@*2¢ block with the
values originating from a semi-variogram of
Spherical(19,1,6), and with a WNormal distribution of
N(10,1). Even with eight thousand simulated figures the
deviations from the models are clearly visible,

So, unconditional simulations c¢an now be produced.
They exhibit the desired semi-variogram and distribution

features.

A.3.4.The uses of unconditional simulations :-

Obviously the initial step in any simulation approach
is to determine the models to be used. To do this there has
to be some known data. Since data exists, it seems sensible
to wuse it to improve the simulations by making them

conditional. In other words, there are few occasions when
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only an unconditional simulation can be produced. It is
usually possible, and desirable, to proceed to the greater
appiicability of a conditional simulation.

Unconditional simulations have limited applications.
They may be of use for global simulations, early 1in the
history of an orebody. Little or no sampling will have been
carried out in the new orebody, and the simulation models
will be taken from geologically analagous situations
elsewhere.

Similarly, unconditional simulations can be useful for
examining the behaviour of an unexplored region within an
orebody. In this case, the models would be obtained from

the well sampled areas of the orebody.



A.4.CONDITIONING OF THE SIMULATIONS

A.4.1.The conditioning technique :-

The ©process of conditioning the simulations 1is a
fairly simple one. The object 1is to make the simulated
values equal the actual values at any data points.

The result of an unconditional simulation is a set of
values which follow a certain semi-variogram and
distribution. A simulated value 1is known at every grid
point of the block under consideration. A sample will have
been taken at some grid points, and so the real value is
known there. With these data points a kriged -estimate of
the real value at any grid point can be calculated. Using
the simulated values at the same positions (and therefore
the same kriging weights) a simulated value estimate may be
found. So, for all grid points there are three known
figures :-

(1) 'S'" - value from unconditional simulation.

(2) 'Rk' - kriged estimate from real values at

data points.
(3) 'Sk' - kriged estimate from simulated values at
data points.

To make the simulation conditional all the simulated
values are replaced by the term :-

S - Sk + Rk



If the grid point considered is also a data point then the
following is true :-

Sk S

Rk = R
and the conditional simulation value becomes :-

Sk - 5k + R

= R

Thus the values of the conditioned simulation exactly
agree with the known sampled values at all the data points.

Since kriging is an unbiased estimation technique, the
average of the kriged estimates equals that of the samples
used in the kriging systems. Therefore the mean of the 'Sk'
values is the same as that of the 'S' values. Similarly for
the 'Rk' and 'R' figures. The average of the <conditioned

simulation which :-

average 'S' - average 'Sk' + average 'Rk’

thus becomes :

average 'R’

So, the conditional simulation has the same average as
that of the data points.

It can be shown that the process of conditioning a
simulation does not affect the semi-variogram of the values
(Journel,1974). They will still follow the model specified
for the unconditional simulation.

So, a conditional simulation has the following

important properties :-



(a) It coincides with the real values at data
points.

(b) It has an average equal to the average of
the real values.

(c) It has a semi-variogram of the desired
form.

The conditioning ©process can be summarised as
involving the transfer of the term :-

(S - Sk)
A possible difference between a value and 1its kriged
estimate is simulated. It 1is then added to the kriged
estimate of the real value.

It can be seen that of the two parameters defining the
distribution, only the variance survives the conditioning
process. Whatever the average of an unconditional
simulation, it will become that of the data points after
conditioning. The distribution variance is calculated using
a standard statistical formula, which assumes that all the
values are 1independent. This 1is not true for pairs of
points less than the vrange of 1influence ('A') apart.
Because of this the sill is generally a better estimate of
the true variance of the data. Therefore the only reason
for finding the distribution frequency of the data is to

check that it is a Normal distribution.

A.4.2.The importance of the number of data points :-

Five simulations were made of a line of one thousand



points, regularly spaced at 1 metre intervals. The values
came from a semi-variogram of Spherical(Sﬂ,zﬂ,Qf and a
Normal distribution of N(1060,208). The semi-variograms and
distribution frequencies of each simulation are shown in
figure 6.

The simulations were <conditioned to data ©points
regularly spaced along the line. The data points themselves
originated from a similar unconditional simulation, and had
an average of 101.34 and a variance of 17.40. Simple
alteration of all the one thousand data values to become :-

[(S-1901.34)*4.47] + 100.00
4.17

changed their average and variance to 100.00 and 20.00
respectively. The simulation then fitted the models closely
(see figure 6).

The conditioning of the simulations was carried out by
a computer program, CON (see Appendix 4). CON reads in five
unconditional simulations and one data simulation, from
previously formed computer storage files. It produces a
kriging system for all ©points of the unconditional
simulation between the third and antepenultimate data
points. The weights are then <calculated for the four
nearest data points. If any weight is less than -8.603 or
greater than 0.6, the kriging system 1is altered and new
weights calculated. 1In the former case the point with the
negative weighting is eliminated from the kriging systen.

With a 6.6 or larger weight, an extra point beyond it is
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added to the system. The output of the program includes the
semi-variogram and histogram of the conditioned values.

The number of data points to which the five
simulations were conditioned was varied between :-

(a) Fifty points at regular intervals of
20 metres. With this arrangement of conditioning
points a kriging system was found for every point,
between the third and forty eighth data points.
Using these kriging systems the average kriging
estimation variance of the kriged estimates was
4.07, or 20.4 percent of the sill. The
semi-variograms and histograms of the simulations
after being conditioned are shown in figure 7.

(b) One hundred points at regular intervals of
1% metres. The average estimation variance of the
kriged estimates was 10.0 percent of the sill. The
five semi-variograms and histograms after
conditioning are seen in figure 8.

(c) Two hundred points at regular intervals of
5 metres. The average kriging variance was 6.0
percent. The results of this data pattern are shown
in figure 9.

As expected, with a greater number of data points the
conditional simulations are closer in behaviour to the data
values. The more data points wused, the better are the
conditional simulations. So, an effort should always be

made to include as many data points as possible 1in the
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FIGURE 8 : SIMULATIONS AFTER CONDITIOGNING
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FIGURE 9 : SIMULATIONS AFTER CONBDITIOGNING

TO DATA POINTS AT & METRES INTERVALS

200 DATA POINTS SIMULATIONS

SEMI-VARIOGRAMS

S'.00 20.00 40.00 60.00 80.00 100.00
LRG

DISTRIBUTIONS

90.00 94 .00 98 .00 102.00 106.00 110.00
VRLUE



conditioning process,.

A.4.3.The importance of the position of the data points :-

The behaviour of the conditional simulations is not
due entirely to the number of data points. The arrangement
of the conditioning data points is also important. This is
shown by conditioning the five simulations to one hundred
data points in the following patterns :-

(a) Twenty points at 20 metres intervals, next
to forty points at 5 metres intervals, next to
forty points at 10 metres 1intervals. With this
arrangement the average Kkriging variance was 18.5
percent. The results are shown in figure 14.

(b) Forty points at 10 metres, forty points at
5 metres, and twenty points at 20 metres. Obviously
this is merely the last pattern reversed. Figure 11
shows the results.

Comparison of the results using these two data point
arrangements, and those with one hundred uniformly spaced
points (see figure 8), shows the importance of the
conditioning data points. The arrangement of the data
points, and their actual values, have a large influence on
the beﬁaviour of the conditional simulation.

The importance of the conditioning data points
arrangement is further emphasized by the semi-variograms
shown in figure 12. Two similar (that is using the same

models) unconditional simulations of a line of two hundred
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FIGURE 11 = SIMULATIONS AFTER CONDITIONING
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points were produced. The points were regularly spaced at
1 metre intervals. Using an adaptation of the program CON,
one simulation was conditioned to data values from the
other simulation. The data points were regularly spaced at
intervals of 13 metres. The differences between the
semi-variograms shown are due to the different positions of
the data points. The first conditional simulation had its
first conditioning point at position number 10, its second
at number 20, and so on. The second simulation started at
number 11, and again continued 1in steps of 10 metres.
Similarly, -eight other conditional simulations were
produced with the data points moved one position each time.
Thus the tenth simulation had its first conditioning point

at position number 19.

A.4.4.Merits of conditioning :-

The number, and position, of the conditioning data
points have a great effect on the conditional simulation
values. The conditioning process is the most influencial
step in the ©production of a conditional simulation. It
forces the simulations to agree with any known actual
values. This is particularly of use if a small area within
a much larger one is being simulated, since any local small
scale idiosyncrasies will be coped with by the conditioned
simulation. This 1is the great advantage of conditional
'turning bands' simulations over other, unconditional

simulation techniques.



Whilst conditioning 1is the great strength of the
'turning bands' approach, it is also the great weakness,
This 1is because it attributes one hundred percent accuracy
to the data. The conditional simulation must pass exactly
through the data wvalues without allowance for small
sampling inaccuracies. As has been shown, the values at the
data points have a great influence on the behaviour of the
conditional simulation. So, if any of the sampled data

values is incorrect its error may have large repercussions.

A.4.5.Simulations before and after conditioning :-

If no data points are wused 1in the <conditioning
process, the unconditional simulations exactly equal the
conditional simulations. So, the simulation which 1is most
accurate (with respect to the models) before conditioning
is also the most accurate after the <conditioning. The
correlation between the accuracy of the simulations before
and after the conditioning operation is total.

Similarly, at the other end of the scale, 1if an
infinite number of data points are used, all the
conditioned simulations are the same. The unconditional
simulations are totally irrelevant. The correlation between
the accuracy of the simulations before and after
conditioning is zero.

It was decided to find at what number of data points
the correlation, between a simulation's accuracy before and

after conditioning, becomes significant.



A parameter was needed to act as a measure of the
proximity of a simulation to the models. One of the models,
the distribution, is defined by the average and the
variance. As has been stated, the average of an
unconditional simulation has no effect on the average of
the conditioned values. So, the accuracy of the
unconditional simulation average before conditioning is
irrelevant. The variance of the distribution also finds
expression in the semi-variogram. Therefore, a measure of
the <closeness of the semi-variogram to the model also
checks the one important parameter of the histogram.

The deviation of a semi-variogram from the model was
expressed by the mean square of the residuals (henceforth

called the MS). This was defined as :-

h=N
= _]._*Z(Oh—Eh) 2
N p=1

number of points of the semi-variogram

where N
considered
Oh = observed semi-variogram value at lag 'h'

Eh

expected semi-variogram value at lag 'h'
Twenty five simulations were produced of a line of one
thousand points regularly spaced at 1 metre intervals. The
values originated from a Normal distribution of N (100,20},
and a semi-variogram of Spherical(50,20,0). For each
unconditional simulation the semi-variogram was calculated
up to a lag of 60 metres. The MS of the semi-variogram was

found and also the sill, as estimated by the average



semi-variogram value between lags of 50 and 50 metres. The
variance of the wunconditioned values was also calculated
using a classical statistics! formula. The twenty-—-five
simulations were <conditioned (using program CON) to one
hundred points from the altered data simulation used
previously (see figure 6). The points were regularly spaced
at 1@ metres intervals. The same three parameters (the MS
and sill of the semi-variogram , and the variance) were
calculated for the values after they had been conditioned.

The scattergram of the twenty five pairs of sill and
variance values before conditioning shows great
correlation., This is alsc true after conditioning, and all
fifty pairs are plotted in figure 13. The correlation
coefficient is .65, which, as expected, 1is highly
significant.

Figure 14 shows the correlation, for bo th the
unconditional and conditional simulation semi-variograms,
between the MS term and the deviation of the sill from the
model (that 1is the modulus of the term 'sill-20.00'). The
correlation coefficient 1is @.84 which 1is significantly
high.

So, the MS of a semi-variogram is proportional to the
accuracy of the sill. Therefore, it is also proportional to
the accuracy of the variance. It would seem to give a good
idea of a simulation's proximity to the two models of
distribution and auto-correlation.

The relationship between the MS term for the
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semi-variograms before and after conditioning is shown in
figure 15, It should be noted that the expected
semi-variogram wused in the calculation of MS was not the
model semi-variogram. It was the semi-variogram of the data
values used iIn the conditioning operation. This allows for
any deviations the selected values may have from the
models., The semi-variogram of each simulation, both before
and after conditioning, only used the values between the
third and antepenultimate data points. To avoid making the
program CON too complicated, the positions outside these
two 1limits were not conditioned. The correlation
coefficient for figure 15 is -9.20 which 1is not
significantly different from =zero. In other words, an
inaccurate simulation before conditioning, is not
necessarily an lnaccurate simulation after <conditioning.
The one hundred evenly spaced data points are too many for
this to be true. The number of data points has to be moved
further towards zero for significant correlation to exist.
The twenty five simulations were conditioned to data
points regularly spaced at intervals of 20, 30, and
4% metres. The scattergrams between the semi-variogram MS
terms before and after conditioning are shown in figures
15, 17, and 18 respectively. The results are summarised in
table 1. It shows that the correlation becomes significant
with twenty five data points. This is when the average
kriging variance used in the conditioning process 1is 44

percent. When it 1is 32 percent the correlation is only
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FIGURE 16 : SCATTERGRAM OF
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MS WITH RESPECT TO DRTR BEFORE CONDITIONING VS.

MS WITH RESPECT TO DATA AFTER CONDITIONING

CONDITIONING POINTS AT 30 METRES INTERVALS
(=]

Q
o
b
+
+
o
e + +
N
c)m
= +
—
e +
s
rvy + +
S +
So
< W +
(8 (IR
LLJv—Q
—
w | +
T + +
wne +
=< + +
® |+
+ +
o +
2 t 4+
%' 00 60 .00 120.00  180.00 240.00  300.00

MS BEFORE CONDITIONING
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TABLE 1

Conditioning
data points

Average kriging
variance during
conditioning
3 of total sill

Conditioned simulations

Characteristics

Correlation between MS before
and after conditioning

Number | Spacing
co g
100 10
50 20
33 39
25 4¢

[0} oo

0%
19%
21%
32%
44%

200%

local

glébal

R= 0.00 T= 0.00

-0.20 0.96
-0.01 .04
.25 1.25
f.54 3.06
1.00 e




significant at the 25 percent level. So, it seems that the
correlation is significant if the average kriging variance

is more than one third of the sill.

A.4.6.The cost of conditioning :-

Although the conditioning operation 1is a relatively
straightforward one, it can be time consuming. This is
because it requires the derivation of a kriging system for
every simulated point. The kriging system used in program
CON is a moderately simple one. It involves between two and
six points in any one kriging estimation. It could have
been made much more complex, but the increase in accuracy
of the estimates (as measured by the average kriging
variance) would have been insignificant.

The unconditional simulations of one thousand points
each used 63.8 CP seconds to be created. To condition all
twenty five of them to one hundred regularly spaced data
points took another 192.5 CP seconds. With a pattern of
twenty five evenly positioned data points the conditioning
process took 171.1 CP seconds. An idea of the extra cost of
conditioning a simulation is given by these increases in

execution time of 12 and 11 percent.



A.S5.ALTERNATIVE ONE DIMENSIONAL AXES CONFIGURATIONS

A.5.1.The importance of the axes configuration :-

As has been stated before, the major drawback to three
dimensional simulation 1s the excessive use of computer
time and storage space. The 'turning bands' method does, to
a large extent, alleviate this problem.

However, the aim should always be to reduce cost to a
minimum. The composition of the one dimensional simulations
into three dimensions 1s an operation normally responsible
for an explosion of computer cost. Journel (1974) gives no
reason for his choice of fifteen regqular axes. So, it was
decided that the configuration of the one dimensional axes
deserved closer scrutiny.

The icosahedron is the regular polyhedron with the
largest number of faces. 1Its thirty edges are wused to
determine the orientations of the fifteen axes. The same
results could be achieved using the thirty edges of the
twelve sided dodecahedron. Presumably the configuration of
fifteen regular axes was selected because no more complex
regular polyhedron exists, from which to deduce the
orientations of, for instance, twenty regular axes.

So, the gquestion remains; are fifteen axes too few, or

indeed, too many?

A.5.2.Ten reqgular axes :-
If fifteen axes are considered to be too many, then a

smaller number is required. The next largest number of



regular axes, possible to obtain with a polyhedron, is ten.
The orientations of these axes can be calculated from the
twenty vertices of a dodecahedron, or the twenty faces of
an icosahedron. Using the geometry of a dodecahedron, the
ten co-ordinates of any point in space can be derived (see
Appendix 5). The process has been incorporated in a
computer subroutine, COORDS2 (see Appendix 6). It differs
from that used by Journel for fifteen axes in that no
rotation matrix is involved. The three initial position
defining co-ordinates are not included in the output of ten
co-ordinates. In other words, the three standard orthogonal
grid directions are not the same as any of the ten regular

axes.

A.5.3.Fifteen regular axes :-

A similar method has been evolved for calculating the
co-ordinates with the fifteen regular axes configuration
(see Appendix 7). No rotation matrix is involved and the
initial three orthogonal co-ordinates are used to find the
fifteen extra co-ordinates. It is found that the
orientation of the fifteen axes differs from that of
Journel. Only one of the standard grid axes is included in
the fifteen axes. With Journel's method the orthogonal x,
y, and z directions are equal to axes numbers 1, 2, and 3.
With the new approach the y direction is the same as axis
number 12,

Consider, as shown in figure 19, a 1line of
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length 'L', in any direction within a simulated block. The
angle between it and one of the one dimensional simulation
axes is 'alpha'. The origin is at the centre of the block.
Therefore the co-ordinates on the one dimensional axis, of
the 1line as it enters and leaves the block, are
'-L*cos(alpha)/2' and '+L*cos(alpha)/2'. It can be seen
that the number of points, on the one dimensional axis,
which contribute to the simulated values on the line, is
proportional to 'cos(alpha)'. This 1s true for all the
fifteen axes. Therefore, the number of points used to
produce the simulated values is proportional to the sum of
the fifteen 'cos(alpha)' figures.

It is obvious that the accuracy (that is similarity to
the model) of the semi-variogram along the line is in
proportion to the number of one dimensional points
contributing to it. It is therefore proportional to the sum
of the 'cos(alpha)' terms.

With Journel's method the fifteen axes are orientated
such that the sum of the 'cos(alpha)' values 1is 7.47 in
each of the x, y, and z directions (see Appendix 8). With
the new technique the 'cos(alpha)' figures for the x, y, =z
directions total 8.67, 7.47, and 6.87 respectively (see
Appendix 7).

So, with the new approach there -exists anisotropy,
with more points contributing in the x direction. The
semi-variogram in that direction is probably more accurate

than 1In the other two principal directions. Also, it is



likely to be more accurate than that of the x direction
under Journel's axes orientation.

When simulating two or three dimensions this accuracy
anisotropy is irrelevant, since there is an infinite number
of directions possible. Semi-variograms are wusually given
for the three principal directions merely for ease of
calculation. Other directions with a different sum of
'cos(alpha)' values are just as valid.

However, with one dimensional simulations the
anisotropy is important and can be wused to advantage. A
simulation of a 1¢@¢*1*1 Dblock 1is 1likely to Dbe more
accurate than one of a 1*10090*1 or 1*1*1900 block. It will
also be better than a one dimensional simulation in any of
the three principal directions with Journel's method. Under
his fifteen axes orientation a direction with a sum of
'cos(alpha)' wvalue of 8.67 could be found. However, the
simulation of this line would be intimidatingly complex.

The new method of orientating the fifteen axes
configuration was incorporated in a computer subroutine,
COORDS3 (see Appendix 9). Comparison of computer running
time was made with the similar subroutine (COORDS1)
representing Journel's rotation matrix method. It was found
that for X, Y, Z input co-ordinates of between =-5.8 and
+5.8, Journel's technique took =six percent longer to
calculate the fifteen co-ordinates.

It was decided that, 1if a simulation was to be

undertaken with a fifteen regular axes arrangement, the



fifteen co-ordinates of a point in space would be found
with the new technique. It has accuracy advantages for
simulations of a line and, more importantly, it is quicker

to operate.

A.5.4.Randomly orientated axes :-

The axes configurations so far examined are ten and
fifteen axes regularly orientated in space. The ten axes
configuration was developed 1in case fifteen axes are too
many. But what if fifteen are too few? As mentioned before,
it is impossible, wusing polyhedra, to determine the
orientations of more than fifteen regular axes. So, if more
than fifteen are required, they have to be orientated
randomly.

The orientation of an axis in three dimensional space
can be determined by two angles. One is defined as being
between the x direction and the projection of the axis on
the x-y plane. The other angle is similarly designated to
be between the x direction and the projection on the x-z
plane.

Therefore 1if both these angles are chosen at random,
from a uniform distribution between 8 and 3680 degrees, the

axis is randomly orientated.

A.5.5.Comparison of one dimensional axes configurations :-
So, there are now three different methods of
transfering the features of the one dimensional simulations

into three dimensions. It can be achieved with ten or



fifteen regularly orientated axes, or with any number of
randomly orientated axes.

It was decided that a comparison between the relative
efficiency of each of these axes COnfigurations' was
warranted. This was in keeping with the general policy of
close scrutiny of the simulation method. The aim was to
select the configuration which was the best compromise
between accuracy and frugality.

The different axes configurations studied were :-

(a) Ten regularly orientated axes.  The
simulations were produced by an adapted version of
the program SIM3D. The subroutine COORDS2 (which
calculates the ten co-ordinates of any point) was
substituted for the subroutine COORDS1l. Each
simulation took 45.3 CP seconds to be produced.

(b) Fifteen regularly orientated axes. The
simulations were products of an adaptation of the
program SIM3D, with the subroutine COORDS3 in place
of COORDS1l. This program used 63.8 CP seconds for
each simulation.

(c) Fifteen randomly orientated axes. This
configuration was chosen to compete against fifteen
regular axes. Perhaps the regular orientation of
the axes 1is an unnecessary complication. The
simulations were produced from a computer program
RANDO (see Appendix 10). Each simulation took 48.0

CP seconds to be produced.



(d) One hundred randomly orientated axes.
Obviously the production of a simulation using this
axes configuration was costly on computer time. In
fact each simulation took 37@8.9 CP seconds to be
produced by the program RANDO. It was felt that one
hundred was a sufficiently good representation of
infinity without being prohibitively expensive to
produce.

So, a comparison was made between the effectiveness of
simulations produced with each o0f these four axes
configurations.

The simulations compared were of a 1line of one
thousand points regularly spaced at 1 metre intervals. The
models from which the values originated were a
semi-variogram of Spherical (59,29,0) and a Normal
distribution of N(108,282).

It was considered that a 1line of one thousand
simulated wvalues would be more useful than a two or three
dimensional shape. For instance, with a 10*10*1@d cube the
semi-variogram can only be drawn up to a lag of 15.6. In
the ©principal directions only nine points of the
semi-variogram can be found. However, no such limitations
exist with a line of one thousand points.

The 1line of one thousand points was in the Y
direction. In other words, it was a 1*1008*1 block. It was
felt that a simulation in the y direction was more valid

than one in the x direction., A fifteen regular axes



simulation in the x direction is likely to be more accurate
than one in the y or z directions (see section A.5.3). But
when compared with another <configuration, any greater
accuracy which a x direction simulation may exhibit might
not occur with a y or =z direction simulation. The
conclusion that the fifteen regular axes configuration was
superior would be bogus, since the superiority would
disappear if the simulated shapes were two or three
dimensional.

The comparison was made between the simulations
before, and after, they had been conditioned. It has been
shown how large an effect the conditioning process has on
the simulated wvalues. So, it was essential for the
comparison to include conditional simulations.

Twenty five simulations were produced using all the
four one dimensional axes configurations under
consideration. There were ten formed with fifteen reqular
axes, and five each with ten regqular, fifteen random, and
one hundred random axes. The semi-variogram of each of
these unconditional simulations is shown in figure 28. The
semi-variograms of the simulations formed with fifteen
random axes seem to deviate from the model more than the
others, particularly at low lag values. Table 2 shows the
MS terms with respect to the model before <conditioning.
They tend to confirm that the unconditional fifteen randonm
axes simulations are less accurate.

As previously, the simulations were conditioned to
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FIGURE 20 : SEMI-VARIOGRAMS OF UNCONDITIONAL SIMULATIONS
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TABLE 2

Before conditioning After conditioning

M3 term with
respect to model data data data data
(figure 20) (figure 22) (figure 23) (figure 22) (figure 23)

1@ regular
axes 11.9 9.1 23.4 D.70 1.08

15 reqgular
axes 12.1 17.3 15.1 @.87 1.17

15 random
axes 18.3 22.2 16.7 1.24 g.95

1808 random

axes 9.3 17.0 25.6 p.78 p.89




data from a similar unconditional simulation. This data
simulation was formed using fifteen regular axes, and its
values had been altered to fit the models more closely (see
figure 21). The computer program CON was used to condition
the simulations. Therefore the kriging estimate for every
point was made with between two and six data points.

The simulations were conditioned to one hundred data
points evenly spaced at 18 metres intervals. The
semi-variograms resulting from this conditioning are shown
in figure 22. It is clear that the fifteen random axes
configuration simulations are 1less accurate than the
others. At low lag values (up to about one fifth of the
range), their semi-variograms differ markedly from the
desired shape, and from those of the other simulations. The
inaccuracies show up in the MS terms of the semi-variograms
{(see table 2).

This finding was <checked by wusing another data
simulation. The wvalues had not been altered to have an
average of 100.00 and a variance of 28.80. Indeed, the data
values used in the conditioning differ considerably from
the models. The semi-variograms of the twenty five
simulations, after conditioning to one hundred regularly
spaced data points are shown in figure 23. Again the
semi-variograms of the fifteen random axes simulations
deviate at 1low lag values. However, on this occasion, the
average MS terms do not reflect these 1inaccuracies (see

table 2). They are distracted by the large deviations of
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FIGURE 21 : SEMI-VARIOGRAM OF ALL CONDITIONING DATA
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FIGURE 22 : DIFFERENT AXES CONFIGURATIGNS
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FIGURE 23 : DIFFERENT AXES CONFIGURATIONS
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some of the other simulations at much greater lag values.

The configuration of fifteen random axes was dropped
from the comparison since it has no great formation time
advantage over fifteen regular axes. Also, the
semi-variograms of 1its simulations, both before and after
conditioning, are less accurate. This is true even when the
average kriging variance during conditioning is only 148
percent of the sill.

So, the remaining configurations to be compared were
ten regular axes, f£ifteen regular axes, and one hundred
random axes. Ten simulations were produced using each of
these one dimensional axes arrangements. All thirty
simulations were <conditioned to one hundred regularly
spaced points from the altered data simula;ion. The results
are shown in figure 24. The simulations were also
conditioned to the same pattern of conditioning points from
the unaltered dzza simulation. Figure 25 depicts the
resulting semi-variograms, and confirms that there are no
visible differencss between the three methods. This is
expected with an average kriging wvariance of only 14
percent of only tha sill.

As well as one hundred, the thirty simulations were
also conditioned > fewer points from the altered data
simulation. Patterns with points regularly spaced at 24,
30, and 40 metres Intervals were used. The semi-variograms
of the conditionei values are shown in figures 26, 27, and

28 respectively.
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FIGURE 28 : DIFFERENT AXES CONFIGURATIONS
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So, the semi-variograms of the thirty simulations
after each of the five different conditioning points
patterns can be seen. Visual inspection shows there to be
no significant differences between the three sets of
simulations. Table 3 shows the three average MS terms
before and after conditioning with each pattern. It tends

to confirm that no significant differences exist.

A.5.6.Selection of axes configuration :-

It is not certain that simulations formed from one
hundred random axes are more accurate than those from the
other configurations. However, it is probable that they do
have some extra accuracy. The problem is that this extra
accuracy is unknown, since it does not make itself distinct
with only ten simulations of each type. It may be revealed
with a much larger sample size. However, the fact that it
is not revealed with ten simulations is itself an
indication that it is not large. To be weighed against this
unquantified extra accuracy 1is the greater <cost of
production. The execution time required to produce a
simulation with one hundred random axes was 5.8 times that
for one with fifteen regular axes.

It was considered that for all practical purposes the
configuration of one hundred random axes was unreasonable.
Its extreme cost offset any increased accuracy. However, it
may be of use under exceptional circumstances. For

instance, 1if highly accurate unconditional simulations are



TABLE 3

MS term with respect to conditioning data before/after conditioning

Conditioning data points spacing

10 metres 20 metres 30 metres 40 metres
(fiqure 24) (figure 26) (figure 27) (figure 28)

before!lafter | before|after | beforelafter | before|after

13 regular

axes 7.1 [0.58 16.6 |5.34 49.1 |16.8 32.2 95.5
15 regular

axes 17.3 |9.87 42.0 |7.12 95.8 [14.4 53.0 [175.6

199 random
axes 16.5 |0.57 39.08 |3.55 194.4 {15.8 43.6 {180.1




required, and cost is of little importance.

So, the two remaining one dimensional axes
configurations to be considered are those with ten and
fifteen regular axes. As usual, comparison <consists of
balancing the conflicting interests of accuracy and cost.
Obviously fifteen axes simulations are more accurate than
those from ten axes. Again, the problem is that this extra
accuracy does not manifest itself with ten simulations of
each type. To be balanced against it is the 29 percent
saving in running time.

There is no correlation between the accuracy of a
simulation before and after conditioning, when the average
kriging variance is less than about one third of the sill.
Under these conditions it was considered that simulations
from ten regular axes would suffice. Indeed if cost is at a
premium fewer regular axes may be applicable.

For all situations throughout the rest of this study,
the average kriging variance achieved during conditioning
was greater than one third of the sill. Under these
conditions the accuracy of the unconditional simulations is
important. So, it was considered that fifteen axes were
needed for their extra, albeit unquantified, accuracy.

The arrangement of fifteen, regularly orientated, axes
was adopted as the most appropriate configuration of one

dimensional axes.



SECTION B : APPLICATIONS IN SOUTH CROFTY MINE

B.1.SOUTH CROFTY MINE

B.1l.1.General description :-

South Crofty tin mine is situated in the Camborne and
Redruth district of Cornwall. On 31st March 1979 it had 679
employees, and in the twelve months up to that date treated
236,300 tonnes of ore, averaging at 0.68 percent tin,

South Crofty lies within granite overlain by
metamor phosed sediments. The area is cut by porphyry dykes
which strike at about 70 degrees and are generally North
dipping. The mineralisation postdates the dykes, and
consists of two sets of lodes intersecting approximately at
right angles. A set of 70 degree striking 1lodes dip at
angles wup to 40 degrees, in either direction. They have
been mined for both tin and copper. The tin being below the
granite/sediments contact and the copper above. The
mineralisation consists of cassiterite, arsenopyrite,
wolframite, and chalcopyrite, with gangue minerals of
chlorite, quartz, tourmaline, and hematite. The second set
of lodes, striking at about 160 degrees, has no economic
significance. They <cut and fault the 78 degrees striking
lodes.

The lode used throughout this study was No.9 1lode.
Taylor (1965) provides contour diagrams (of lode width and

lode assay), and a Conolly contour diagram for the lode. He



identifies six oreshoots, widely scattered and generally of
low grade.

At the time of data collection (November 1976), the
workings within No.9 lode extended approximately 200 metres
vertically, and 680 metres horizontally. It had five main
development 1level drives 1in 1it, spaced at vertical
intervals of about 40 metres. Extraction was chiefly
carried out using overhand shrinkage stoping methods. There
were a total of eighteen stopes within the lode, three of

which were being worked.

B.l1.2.Available data :-

Sampling results from 2366 points within No.9 lode
were obtained. Of these 749 are stope samples, 1149 come
from the main development drives, and 468 from raises and
inter-level development. The stope samples were taken from
each stope approximately after every two working weeks.
They were obtained from the worked faces themselves, at
intervals of either 5 feet, 10 feet, 3 metres, or 6 metres;
depending on when the sampling was carried out. The
development samples were taken along the drives at regular
intervals of either 5 feet, 10 feet, or 3 metres,

At every sampling point a channel cut was taken across
the lode. Similarly, samples of the country rock on both
sides of the lode were obtained.

For all the sampling points the following information

is available :-
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(a) Lode width - Measured perpendicularly
across the lode.

(b) Lode assay - Obtained from analysis of the
channel cut across the lode.

(¢) Lode accumulation - This 1is equal to lode
width times lode assay. Thus :-

(c) = (a)*(b)

(d) Call width - The anticipated width of stope
needed to mine this lode width. This was defined as
1.0 metres (or 3.8 feet), or the 1lode width plus
@.2 metres (or 0.5 feet); whichever is the greater.
Thus it allows for overmining of the lode.

(e) Ccall accumulation - This is the total
accumulation which would be achieved over the call
width. It is calculated using the average assay of
the adjacent country rock :-

(e) = (c)+[(d)-(a)]*average country rock assay

(f) Call assay - The average assay value over
the call width, determined from :-

(£) = (e

d)

—
—

For all the stope samples three more figures are available.
These are :-
(g) Actual width - The width of the stoping
face. In an ideal world this would be equal to the
anticipated, or call width.

(h) Actual accumulation - This is the
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accumulation over the actual width., Similarly to
the call accumulation it is found from :-
(h) = (c)+[(g)—-(a)]l*average country rock assay
(i) Actual assay - The average assay value over
the actual width, determined from :-

(1) = (h)

(g9)

Each sampling point is located by the distance along
the stope face, or development drive, to a known surveyed
position. 1Its location was recorded on a longitudinal
section of the lode.

The longitudinal section of No.9 lode was drawn wusing
distances measured along the lode. Thus it is a projection
of the 'unrolled' 1lode.

From the section, the position of each sample point
was fixed. The two co-ordinates, of depth and Easting, were

determined to the nearest metre.



B.2.DATA ANALYSIS

B.2.1.Data accuracy :-

The rest of this study uses the data from the samples
taken within No.9 lode. Thus their reliablility is of great
importance.

No detailed examination of the accuracy of South
Crofty's sampling technique has ever been carried out.
However, it is the author's opinion that the method of
sampling employed is not open to a large bias. This view is
supported by Taylor (1966), and also by Kuscevic, Thomas,
and Penberthy (1972).

Suppose that it is wished to measure the height of an
infinite number of people. If the measurements can be made
to the nearest @.5 centimetres, the number of figures
ending in .5 should equal that of figures ending in .@.
However, if the samplers taking the measurements are not
thorough this may not be true. They might take the
measurements to the nearest 1.8 centimetres, and wvisually
estimate the last digit. Due to human failings there would
probably be many more figures ending in .¢ than in .5.
However, the distribution of the 1last digit before the
decimal point {measuring single centimetres) would be
uniform. This would reflect the true accuracy of the data
measurements; that is to the nearest 1.6 centimetres.

Using this approach the accuracy of the available data

was examined. 0f all the samples, 2038 were measured in



imperial units (feet and pounds per ton), and 328 in metric
units (metres and percent). The four groups of data were
examined separately :-

(a) Imperial lode widths. These were measured
to the nearest @.25 feet. The histogram of the
figures after the decimal point is shown in figure
29. This 1is clearly not uniform, with greater
numbers of measurements ending in .8 and .50.
However, if the group size 1is enlarged the
histogram becomes much more uniform :-

.25 and .50 - 933

.75 and .00 - 1111
The imperial lode widths seem to be accurate to 9.5
feet. For the rest of this study, any such
measurement was rounded up to the nearest @.508 feet
before use.

(b) Metric lode widths. These measurements were
taken to the nearest #.]1 metres. The histogram of
the digit after the decimal point is shown in
figure 30. This is clearly not a wuniform
distribution, a fact that 1is confirmed by the
chi-squared ‘'goodness of fit' statistic. This is
26.43 which, with 9 degrees of freedom, is
significant at the @.5 percent level. Figure 38
also shows the histogram of measurements rounded to
the nearest @¢.2 metres. The chi-squared statistic

(4.27 with 4 degrees of freedom) is not significant
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FIGURE 30 :
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at the 5 percent level, thus confirming the visual
impression of a uniform distribution.

The 5 percent level of significance is used as the
decision 1level as to whether a histogram does or
does not fit a certain distribution. The choice of
5 percent is common for geological wvariables
(Mukherjee,1975).

The metric lode width measurements appear to be
accurate to (.2 metres. Before use in the rest of
this study any such measurement was rounded up to
the nearest (.2 metres,

(c) Imperial lode assays. These measurements
were taken using standard vanning techniques, and
they are given to the nearest 1 pound per ton
(lbs/ton). The histogram of the last digit of all
the sample wvalues shows a marked skewedness. This
is because there are genuinely more samples of 1
lbs/ton than of 9 1lbs/ton. To avoid this effect
only sample assays between 50 and 168 lbs/ton were
considered. The histogram of the final digit of
these values is shown in fiqure 31. Its chi-squared
statistic (23.9]1 with 9 degrees of freedom) is over
5 percent significant, thus confirming the wvisual
impression of a peaked behaviour. Figure 31 also
shows the histogram after the digits have been
placed in groups of 2 lbs/ton. This seems to be

uniform and the chi-squared statistic (5.35 with 4



FIGURE 31 HISTOGRAM  OF LAST DIGIT OF IMPERIAL LODE ASSAYS BETWEEN 50 & 100 lbs/ ton
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degrees of freedom) is not significant.
The 1imperial 1lode assays measurements seem to be
accurate to 2 lbs/ton. All such measurements were
rounded to the nearest 2 lbs/ton before use in the
rest of this study.
Of all the imperial lode assay values, 111 were
recorded as a ‘'trace' value. In other words, the
tin content was noticeable but did not reach 1
lb/ton. Such ‘'trace' values were treated as §.5
lbs/ton for the purposes of the rest of this study.
(d) Metric lode assays. These measurements weare
achieved using a portable radioisotope X-ray
fluorescence (P.I.F.) analyser (Bowie, Darnley, and
Rhodes,1965). They are recorded to an accuracy of
@.01 percent,
The P.I.F. analyser produces a value which 1is
converted to ©percentage of tin with the use of a
graph. The method employed at South Crofty requires
the analyst to visually interpolate from the graph.
A line on the graph of about 30 centimetres length
has to be estimated, and to obtain an accuracy in
the final answer of @¢.81, the end of this line has
to be accurate to within about %.2 centimetres.
This is asking a lot of any analyst with typical
human failings. It was the method of producing the
P.I.F. assay values that first alerted the author

to the influence of the human factor on the



samples.
As shown in figure 32, the histogram of the 1last
digit of the P.I.F., wvalues demonstrates the
influence of the human factor. There 1is a clear
bias towards a second decimal digit of @, and the
chi-squared statistic (62.54 with 9 degrees of
freedom) is highly significant. Figure 32 also
shows these digits aligned in groups of two. Non
uniformity persists to a 1large extent, with the
chi-squared statistic (17.88 with 4 degrees of
freedom) still significant. Grouping the 1last
digits of the P.I.F. samples to the nearest .05,
produces :-—

. 8and . 9 and . 8 and . 1 and . 2 - 182

. 3and . 4 and . 5 and . 6 and . 7 - 141
This seems acceptable, and so throughout the rest
of this study P.I.F. assay values were rounded to

the nearest 0.05 percent before use.

B.2.2.Conversion of imperial measurements :-

It was decided to ©proceed with all the sample
measurements in metric wunits. The conversion of the
imperial units into metric units required :-

(a) Feet to metres. The conversion here is
obviously achieved by multiplication by 0.30483.

(b} Pounds per ton to percent. The imperial
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measurements of lode assay values were produced by
the vanning process. This actually records the
content of 'black tin' in the sample. 'Black tin'
principally comprises cassiterite, but 1its exact
composition can wvary between orebodies. Beringer
and Beringer (1898) state that for Cornish mines it
has an average cassiterite content of 92.5 percent.
This means that it is 79 percent tin.

The P.I.F. analyser measures the percentage of pure
tin in a sample.

Thus, if the 'black tin' is assumed to be 92.5
percent cassiterite, conversion from a vanning to a
P.I.F. value requires multiplication by :-

p.79*100.0
2240

= 0.935
An investigation into the vanning/P.I.F. conversion
factor at South Crofty was carried out. Normal
samples from wunderground were analysed by both
methods. Using the results of 145 such comparisons,
the correlation coefficient was found to be 9.97.
It was desired to find the best line of the form :-
P.I.F. = Constant * Vanning
The fit o¢f such a 1line to the data can be
represented by the residual sum of squares (RSS).
That is, the sum of the 145 values of :-

[pP.I.F. - (Constant * Vanning)]2



For various values of the <constant, the RSS was

found to be as follows :-

Constant = §.041 RSS = 85.9
' g.042 ' 81.3
' 0.043 ' 79.7
' 0.044 v 80.1
' 8.0845 v 82.6

Obviously, the 1line with the smallest RSS term is
the closest fit to the actual data. So, a value for
the constant of @.043 was chosen. The standard

deviation of this figure is found from :-

RSS , 1
(N-T) sumMv2

number of data points = 145

]

where N

SUMV2 sum of all 'N' values of 'Vanningz‘
This was calculated to be 8.00074. Thus 90 percent
confidence limits can be attributed to the 9.043
constant., These are at 0.0418 and $.0442, and show
the conversion factor to be accurately known.
Throughout the rest of this study to obtain the

equivalent P.I.F. value of a vanning assay, it was

multiplied by 0.043.

B.2.3.Calculation of average assay values :-
Consider a set of samples each with a known width and
assay, and therefore also a known accumulation.

The average width of the samples is determined by the



usual arithmetic method.

The average assay value is fairly commonly defined as
the average accumulation divided by the average width. Thus
the average assay is a function, not only of the individual
sample assays, but also of the widths. The assays taken at
the larger widths are given a greater influence on the
average assay value. An inter-relationship between the
averadge width and average assay of a set of samples is
introduced.

The relationship between all the sample lode width and
assay values was examined. A scattergram, from the 1036
main development level samples where the lode assay is not
a 'trace' wvalue, shows a purely random pattern. The
correlation coefficient of -0.04 confirms this, since (with
1034 degrees of freedom) it is not even different from 0.0
at the 25 percent significance level. Similarly, a
scattergram from 745 stope samples only displays a random
pattern, and has a negligible correlation coefficient
(-0.01 with 743 degrees of freedom).

There is no relationship between the lode widths and
the 1lode assay values. They are independent variables,
Because of this, it was felt that to introduce an
inter-relationship between the average width and average
assay of a sample set is unwarranted. The definition of the
average assay value stated above was rejected. 1Instead it
was defined as the total of the assay values divided by the

number of samples.



B.2.4.Semi-variogram analysis :-

The width measurements obtained at any sampling point
were taken perpendicularly across the lode. Similarly, the
assay values are from equally sized channel cuts across the
lode. Considering the two dimensional longitudinal section
of No.9 lode, all the samples were taken 1in the third
dimension. Therefore, the samples can be treated as point
samples. This means that the semi-variograms of the data
are from punctual samples, and no regularisation needs to
be considered.

The mathematics of the semi-variogram function have
still to be fully analysed. At the time of writing, there
exists no standard method for measuring the reliability of
any semi-variogram wvalue. It 1is merely stated that the
accuracy of a semi-variogram value 1is dependent on the
number of pairs used in its calculation.

With only intuitive justification, several methods of
finding the reliability, or robustness, of a semi-variogram
can be proposed. The three methods outlined below are all
basically of the same type. The semi-variogram, from a set
of samples, is compared with the semi-variogram calculated
from only a certain proportion of the total set.

(a) A proportion of the samples is removed from

the total set at a regular space interval.

A 1line of two hundred regularly spaced points was

produced by an unconditional simulation. From this

total sample set, every fifth sample was extracted.



The semi-variogram of these forty points was found.
Repeating this, for the other four possible ways of
extracting every fifth sample, produced the results
shown in figure 33.
The envelope of minimum and maximum semi-variogram
values seems to get wider as the average
semi-variogram value increases. The semi-variogram
from all two hundred samples (the average of the
five semi-variograms) lies near the centre of this
envelope.

(b) A proportion of the samples is removed from
a section of the total set. Consider a line of two
hundred regularly spaced samples. From this total
set it is possible to take out one hundred
consecutive polints, and to find their
semi-variogram. There are one hundred and one ways
of extracting the consecutive points, each
producing a slightly different semi-variogram.
Such an operation was carried out, with the line of
two hundred points coming from an unconditional
simulation. To save computer time, the one hundred
consecutive points were removed only eleven times.
The first semi-variogram came from the one hundred
points starting at position number 1, and the
second from the points starting at position number
11. Maintaining this shift the eleventh

semi-variogram wused the points between position
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numbers 101 and 20@. The minimum and maximum of the
eleven semi-variogram values was found for every
lag wvalue. Figure 34 shows the resulting envelope,
and the semi-variogram of all two hundred points.
Figure 35 shows the result of the same removal
operation on a line of two hundred real samples.
These were the lode width measurements along part
of the 3180 level drive.
The width of the minimum/maximum envelope seems to
increase as the lag increases. Of course, this is
also as the number of contributing sample pairs is
decreasing.

(c) A proportion of the samples is taken at
random from the total set.
Five samples were extracted at random from a line
of two hundred simulated values. The semi-variogram
of the remaining samples was found. This is
equivalent to extracting and examining one hundred
and ninety five samples. This process was repeated
many times and the minimum and max imum
semi-variogram value for every value of lag was
found. The minimum/maximum envelope was plotted. In
all there are over two thousand million possible
ways of choosing five from two hundred. Fortunately
it was found that only fifty such extractions gave
a smooth minimum/maximum envelope.

The whole operation was repeated for extractions of
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FIGURE 35 : MINIMUM/MAXIMUM ENVELOPE OF SEMI-VARIOGRAMS
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ten, twenty, and forty samples. Figure 36 shows the
results.
Repeating the procedure with the two hundred real
samples, of 1lode widths from 318 level, produced
the results shown in figure 37.
The minimum/maximum envelopes shown in figures 36
and 37 indicate the robustness of the
semi-variogram values. The wider the envelope, the
greater is the susceptibility of the semi-variogram
value to changes in its contributing samples.
A semi-variogram value is half the arithmetic mean
of a distribution. The distribution 1is of the
term :-

[G(x)-—G(x+h)]2 see section A.l.2
Obviously the accuracy of such an arithmetic mean
is proportional to the variance, or spread, of this
distribution. TIf the distribution has a small
spread the arithmetic mean is highly accurate, or
robust. Removal of some members of the
[G(x)-G(x+h)]2 distribution would have 1little
effect on it.
The minimum/maximum envelopes shown in figures 36
and 37 show the effect such removals have on each
distribution arithmetic mean (twice the
semi-variogram wvalue). Clearly they are at their

narrowest where the arithmetic mean of the

[G(x) -G (x+h)]% distribution is most robust.
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FIGURE 37 : MINIMUM/MAXIMUM ENVELOPE FROM SEMI-VARIOGRAM
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This is where the distribution spread is smallest.
The robustness, or resistance to change, of a
semi-variogram value is proportional to the
[G(x)—G(x+h)]2 distribution spread, which
itself is proportional to the minimum/maximum
envelope width, The robustness of any
semi-variogram could be found by examining the
spread of the [G(x)-G(x+h)]2 distribution at
every lag value., Clearly it is easier to estimate
the robustness by plotting the minimum/maximum
envelope.

It was decided that the robustness of a semi-variogram
should be estimated by drawing the minimum/maximum
envelope. This would be defined by the minimum and maximum
values after fifty removals of ten percent of the data.

As stated above, every semi-variogram wvalue is
determined as half the arithmetic mean of the
[G(x)—G(x+h)]2 distribution. Examples of such a
distribution are shown in figure 38. Respectively these are
for lode widths at a lag of 7.5 metres, and for lode assays
at a lag of 15.0 metres. Both of them have a highly skewed
histogram. David, Dagbert, and Belisle (1977) f£ind
[G(x)—G(x+h)]2 distributions of a similar shape, and
recommend 'cleaning' each one before analysis. This
involves trimming the distribution by removing its highest

values, which obviously has the effect of greatly reducing

the arithmetic mean. The precise reductions achieved are
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shown in Table 4. Also indicated is the effect a similar
procedure has on some semi-variogram values from No.9 lode.

It was decided to test the influence of trimming the
[G(x)-G(x+h)]2 distribution of all the points of a
semi-variogram. Taking a general view of the figures 1in
Table 4, any member of a distribution was removed if it was
greater than ten times the mean. If there were many such
values then only the top one percent was extracted. 1In
other words, the [G(x)—G(x+h)]2 term of a pair of
samples was not included if it was in the top one percent,
and was ten times greater than the arithmetic mean of its
distribution.

The two semi-variogram plots, before and after
trimming of the [G(x)-G(x+h)]2 distribution, are shown
in figure 39 for lode widths and lode assays. The effect of
trimming the width semi-variogram 1is small. However,
smoothing of the plot does occur with the assay
semi-variogram. It 1is helpful in determination of the
range, and analysis of the semi-variogram as a spherical
model. Very similar results to those of figure 39 were
obtained with the semi-variogram of the natural logarithms
(ln) of the lode widths, and of 1n lode assays.

It seems that trimming a semi-variogram can make 1its
underlying features more visible. However, to proceed with
analysis using the trimmed semi-variogram, as advocated by

David, Dagbert, and Belisle (1977), does not have any

obvious justification.



TABLE 4

David + Dagbert + Belisle
2 EW| 0.4% of the pairs > 12*mean. Removal reduces mean by 19%
3 EW| 1.4% ' 7 " ' 26%
1 NS | 1.6% ' 11 v ' 50%
2 NS | 1.0% v 12 ¢ ' 34%
3 NS| 1.0% ve 18 ! vt 55%
No.9 lode development
Lode widths
lag = 7.5m. | 1.0% of the pairs > 12*mean. Removal reduces mean by 12%
Ln lode widths
lag = 7.5m. | 0.9% ' 1 ! ' 12%
Lode assays
lag = 15.0m. | 2.5% ' g " ' 19%
Ln lode assays
lag = 15.0m. | 0.3% ' 9 ! ' 3%




FIGURE 39 : EFFECT OF TRIMMING
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B.2.5.Preparation of data for simulation :-

It was desired to present a realistic model of No.9
lode. To do this, simulations of lode widths and assays had
to be produced.

It has been shown how a simulation can be made of a
variable which follows a Normal distribution and a
spherical semi-variogram (see sections A.2 and A.3). The
values from such a simulation are stationary
(Journel,1975) .

Therefore any variable can be simulated, so long as it
exhibits a Normal distribution, a spherical semi-variogram,
and is stationary. In practice a problem almost invariably
arises because the data variable to be simulated does not
satisfy these three requirements. To do so, the data has to
be altered 1in a predictable and reasonable manner. Many
techniques have been developed to perform this alteration.
These 1include taking natural 1logarithms, using transfer
functions, and removing a trend. ' Obviously, 1if such a
technique has been used, the simulation 1is not of the
required variable. To achieve this, the simulated wvalues
must be passed through the alteration technique in the

reverse direction.

B.2.6.Lode widths simulation :-
The lode width measurements from all the samples
within No.9 1lode were examined. The sampling method used

was the same for all the samples. Therefore, there should



not be any bias between the stope and development sample
sets. The stope lode width samples should have the same
origins (as expressed by the auto-correlation and the
distribution) as the development samples.

However, the stopes are not randomly positioned, but
are sited 1in areas of high grade. Since widths and grades
are independent (see section B.2.3), this in itself should
not mean that the stope and development lode widths exhibit
different characteristics.

However, the selection of a block as a stope was not
merely based on assay results, It indirectly involved the
lode widths.

A Dblock was considered to be worth mining if the call
assay value was greater than the economic cut off grade.
The call width was defined (see section B.1.2) as the
greater of 1.0 metre or the 1lode width plus @.2 metres.
Consider three samples with the same lode assay value but
different widths. In each case the surrounding country rock
has no tin content. The call assays are found as follows :-

Sample A Sample B Sample C

Lode width 8.5 1.0 1.5
Lode assay 6.0 6.9 6.0
Call accumulation 3.8 6.0 9.0
Call width 1.0 1.2 1.7
Call assay 3.9 5.0 5.3

So, three samples with identical lode assays can have very

different call assays. This may make the difference between
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being below, or above, the pay 1limit. For good mining
reasons, this method tends to prefer high grades 1if they
are associated with large widths. Thus the distribution of
the stope lode widths has a bias towards higher widths.

Taylor (1966) notes that high lode assay wvalues tend
to correspond with high lode widths. He states that the
reverse is not necessarily true. The tendency for the
stopes to be placed where both the grades and widths are
high, accounts for this. The high grade samples are 1likely
to be stope samples, and so their corresponding widths tend
to be high also.

It was desired to simulate the lode widths for any
area within No.9 lode. To do this the shape of the lode
width distribution and semi-variogram had to be determined.
As shown above, the stope samples are biased towards
regions of high lode width. The same is true for the
samples from the raises and inter-level development, since
they also are predominantly sited in high grade areas. So,
to achieve an unbiased sample set of the lode widths, only
the main development level samples should be used. The
positions of these drives were determined by mining
considerations, and were not influenced by any sampling
results.

The first step in the analysis of the behaviour of the
lode width was to test for anisotropy. This was carried out
by finding the semi-variogram 1in several directions.

Obviously this is practically impossible to do using the



development samples. So all the 749 stope samples were used
since they are not arranged in parallel lines. Although it
has been stated that the stope samples are a biased sample
set, it was felt that this does not preclude them from
exhibiting any anisotropies present 1in the 1lode. The
semi~-variograms of the stope lode widths 1in three
directions are shown in figure 40. Defining the wvertical
direction as @ degrees, the three semi-variograms are for
the 30, 98, and 150 degrees directions. The search angle
for each one 1is thirty degrees. 1In other words, they
include any sample pair with a lag direction between # and
59, 68 and 119, and 1286 and 179 degrees respectively.
Similarly the lag distances had to be given a «certain
amount of leeway. The semi-variogram value at 10 metres
includes all lag values between 9.51 and 10.50 metres.
There are no significant differences between the three
semi-variogram plots. So, the lode width population of No.9
lode was considered to be isotropic in behaviour.

Figure 41 shows the semi-variogram of all the 1149
development lode width measurements. Also displayed is the
semi-variogram of each of the four main levels. The fifth
level drive only has 23 samples along 1it, and so its
semi-variogram values were considered to be unreliable on
their own. The four semi-variograms have similar shapes.
However, these shapes have different vertical scales along
the gamma axis. This is known as a proportional effect, and

is often the result of a lognormal distribution
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FIGURE 41 : SEMI-VARIOGRAMS FROM DIFFERENT LEVELS
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(Clark,1979). This 1is because with a lognormal distribution
the variance is proportional to the mean.

The histogram for all the imperial development 1lode
width measurements is shown in figure 42. It confirms that
the distribution is of a typical lognormal type, that |is
with a heavy positive skew.

The behaviour of the 1n lode widths figures was
examined, Figure 43 displays the four main level
semi-variograms, and the overall semi-variogram of 1ln lode
widths. The semi-variograms of the four 1levels show that
the proportional effect has been accounted for by using the
logarithms. However, the overall semi-variogram does not
exhibit the shape of any semi-variogram model. It has a
spherical form at low lag values but does not level out at
a sill. Instead it keeps on rising, in a parabolic <curve.
This is symptomatic of a polynomial trend in the samples
(Clark,1979; David,1977). When this situation exists the
samples are not stationary. The trend has to be removed and
the analysis carried out on the residuals (Journel,b1975).

Another approach to the problem of applying
geostatistics when a trend exists, is that of universal
kriging (Huijbregts and Matheron,1971). In concept this is
a fairly straightforward procedure entailing expansion of
the usual kriging system of equations. However, it is very
heavy on computational time (David,1977). There exists no
theoretical or practical explanation of how geostatistical

simulation can be carried out when universal kriging 1is
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used. After a thorough examination of the theory behind
universal kriging, no acceptable simulation method seemed
possible. For this reason, and to avoid a sharp increase in
cost, universal kriging was not employed.

The trend of the 1n lode width wvalues from the
development samples was estimated by polynomial equations.
A computer program, called SNARK (Clark,1977), was adapted
and used to produce the 'least squares best fit' 1linear,
quadratic, and cubic equations. The results of SNARK (see
table 5) show that the <cubic polynomial equation is
significantly closer to the data than the other two
equations. It was felt that to find an equation of a higher
order than three would not be worthwhile. Whitten (1973)
states that 'with equations of degree greater than three or
four, wild extremae appear in the computed surfaces', Table
5 also records that the cubic trend equation explains 32

percent of the total sum of squares. This term was defined

as :-
= 100.0* (TSS-RSS)
TSS
where TSS = Total sum of squares

i=N
i=1



TABLE 5

X = Easting Y = Height above datum

N.B. E+4+02 means *102

SOLUTION OF LINEAR EQUATION IS
Z = 1.4841E400 + -9.7138E-04%*X +

SOLUTION OF QUADRATIC EQUATION IS
Z = ~4.4641E+02 + 9.2733E-02*X +
+ 6.0615E-05*X*Y + 5.9785E-05%X*Y +

SOLUTION OF CUBIC EQUATION IS

Z = =2.2797E+402 + 1.9471E+00%*X +

+ =3.3145E-04*X*X + -2.4203E-03#*#X*Y +
+ 2.0525E-08#*X*X*X 4+ -1.0132E-07*Y*Y*Y
+ 2.0559E-07*%X*X*Y + 7.5072E-07*X*Y *Y

ANALYSIS OF VARIANCE TABLE

-9.3974E-04%Y

5.7388E-01%*Y
1.8431E-04*Y4*Y

4.8560E-02%*Y
2.2078E-04%Y*Y

SOURCE SUM OF SQUARES D.F. MEAN SQUARE F RATIO
LINEAR 3.3295E+01 2 1.6648E+01 | 3.5826E+01
RESIDUAL 5.3253E+02 1146 4.6468E-01

QUADRATIC 1.4038E+02 5 2.8076E+01 | 7.5429E+01
DIFF. 1.0708E+02 3 3.5695E+01 | 9.5898E+01
RESIDUAL 4.2544E402 1143 3.7221E-01

CUBIC 1.8115E+02 9 2.0128E+01 | 5.9598E+01
DIFF. 4.0772E401 4 1.0193E+01 | 3.0181E+01
RESIDUAL 3.8467E+02 1139 3.3773E-01

TOTAL 5.6582E+02 1149

PERCENTAGE OF TOTAL SUM OF SQUARES

LINEAR COMPONENT 5.88
QUADRATIC COMPONENT 24.81
CUBIC COMPONENT 32.02




RSS = residual sum of squares

i=N

S

i=1

N = Number of data values

R = Real data value

R = Average real data value

N = Number of data values

T = Trend predicted value
Harbaugh and Merg}am (1968) state that if this is between
15 and 30 percent the goodness of £fit of the trend |is
considered to be low,.

The cubic trend equation value was calculated for
every development sample position, and the residuals were
examined. Figure 44 shows the semi-variogram of all the
residuals, together with the fitted spherical model.

2 distributions of this

Trimming the [G(x)~-G (x+h)]
semi-variogram has little effect on the shape of 1it. The
minimum/maximum envelope, after fifty random removals of 10
percent of the data, 1is also displayed. It shows the
semi-variogram to be fairly robust. The effect of the trend
has been removed, and the semi-variogram oscillates gently
around a definite sill. The model parameters were initially
estimated visually and the RMS terms (see section A.2.2) up
to lag wvalues of 4¢ and 38 metres calculated. Each of the

three parameters was then changed in turn until the model

with the minimum RMS terms was found. For the residuals of
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the 1ln lode width trend the closest fitting model was
Spherical (56 metres,$.34,8.12).

The range of the residuals model semi-variogram is
56 metres, or 184 feet., Clark (1978) finds that the total
range for lode widths at the geologically similar Geevor
tin mine to be 150 feet. It is interesting to note that the
resiauals model semi-variogram has a nugget effect of 35
percent of the total sill. The ln lode widths
semi-variogram has a negligible nugget effect. It seems
that the continuity of the trend is the dominant factér at
low lag values. This result has been achieved elsewhere,
for instance in ground magnetism readings from the
Steiermark region of Austria (Burger and Skala,1978).

It i; obvious that a more exact fit could be made with
two or more nested spherical models. However, it was felt
that this is an over elaboration, of the same sort as using
a trend equation of an order four or above. With nested
schemes almost any semi-variogram can be fitted closely.
Similarly a set of Normal distributions <can fit most
histograms. But it is the underlying characteristics which
are required not the superficial random variations.

For the purposes of geostatistical estimation it has
been demonstrated (Krige,1976) that the exact value of each
of the semi-variogram parameters 1is not of paramount
importance. David (1977) states that the effects of
misinterpreting the sill and range of a semi-variogram are

not very significant.



The histogram of the trend residuals 1is shown in
figure 45. Fitting the Normal distribution of N(9,8.34) to
it produces a chi-squared statistic of 16.56, with 108
degrees of freedom. This shows the histogram to be
significantly different from the model only at the 42
percent level. Since this is greater than 5 percent the
distribution of N(8,0.34) was accepted.

So, the prerequisites for simulation of the
development lode widths are met. The measurements, after
alteration by taking the natural logarithms and removing
the trend, are stationary, fit a spherical semi-variogram
model, and have a Normal distribution with a variance equal

to the sill.

B.2.7.Lode assays simulation :-

The results from all the sample assays of lode value
were obtained. The sampling method was constant for all the
samples. The assay technique varied between vanning and the
P.I.F. analyser, but purely on the basis of when the sample
was taken.

The stopes, the raises, and the inter-level
development obviously occur mainly in the high grade areas.
Therefore their samples give a biased view of the total
lode assay population of No.9 lode. To obtain an unbiased
sample .set only the main development level sample results
can be used.

The exception to this 1is 1in the determination of
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anisotropy. For this purpose the stope samples were
considered to be acceptable, and much more wuseful. Figure
46 shows the 1lode assay semi-variogram calculated in the
same three directions as before (see section B.2.6). There
seem to be no great differences. Thus No.9 1lode was
regarded as being isotropic in terms of its grade.

The semi-variogram was calculated for all the
development sample assays of lode value. Figure 47 displays
the result along with the semi-variogram from each of the
four main development levels. These semi-variograms differ
significantly in their sills, thus exhibiting a
proportional effect.

The histogram of the development lode assay values, as
shown in figure 48, displays a great positive skewedness.
So, a lognormal distribution was felt to be the probable
cause of the proportional effect.

The semi-variograms of the 1ln lode assay terms (see
figure 49) confirm that the proportional effect has been
overcome. The overall semi-variogram gives no indication of
a trend in the values. To check this the computer program
SNARK was wused to find the best fitting cubic equation.
This only accounts for 14 percent of the total sum of
squares, and therefore was ignored.

Displayed in figure 58 is the overall semi-variogram
of 1n lode assay values. Also shown is the minimum/maximum
envelope after fifty random removals of 10 percent of the

samples. Trimming the [G(x)—G(x+h)]2 distributions has
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FIGURE 47 : SEMI-VARIOGRAMS FROM DIFFERENT LEVELS
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FIGURE 48 . HISTOGRAM OF LODE VALUES PLUS
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FIGURE 50 : SEMI-VARIOGRAM OF DEVELOPMENT LN LODE RASSAYS
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a very similar effect to that shown in figure 39 for the
lode assay values. The trimmed semi-variogram helped in the
initial estimation of the semi-variogram model parameters.
In turn each of these three model parameters Qas altered to
minimise the 40 and 82 metres RMS terms. The final fitted
model, as shown in figure 54a, is
Spherical (69 metres,2.26,1.28).

The range of the 1ln lode assays semi-variogram is
69 metres, or 226 feet. This is similar to the 175 feet
determined by Clark (1978) to be the total range of 1ln lode
assays at the nearby Geevor mine.

The histogram of the 1lode assay values is shown in
figure 48. It also shows a fitted 1lognormal distribution
with a mean of 1.33 and a variance of 3.9. The visual
impression of a close fit is supported by the chi-squared
statistic of 16.38, which (with 12 degrees of freedom) is
only 18 percent significant. So, the histogram of 1lode
assays can be considered to be 1lognormal. This |is
equivalent to the histogram of the ln lode assays following
a Normal distribution. Converting the parameters of the
lognormal model gives a Normal distribution of
N(-9.85,2.26) for the 1ln lode assay figures. So, the
variance of the 1ln lode assays (2.26) is equal to the sill
of their semi-variogram model.

The prerequisites for simulation are met. The 1n lode
assay values are stationary, fit a spherical semi-variogram

model, and have a Normal distribution with a variance equal
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to the sill.

The histogram of the lode assay values, as shown in
figure 48, uses the rounded figures (see section B.2.1).
That 1is the measurements were rounded to the nearest
2 1lbs/ton or g.95 percent, before inclusion. The histogram
is fitted by a lognormal distribution with a mean of 1.33
and a variance of 3.9. It is interesting to note that this
distribution does not fit the histogram of the raw,
unrounded, lode assays. Indeed no 1lognormal distribution
could be found which was not significantly different from
the histogram at the 2.5 percent level. This was due to the

peaked nature of the histogram.

B.2.8.Actual widths estimation :-

It was desired to find the relationship between the
lode width and actual width measurements.

As expected, a scattergram from all 749 stope samples
shows the lode and actual widths to be highly correlated
with a correlation coefficient of 4.75.

The best method for predicting the actual width from
the lode width was required. As stated before (see section
B.1.2), a call width was calculated at every sample point.
This is an estimate of what the actual width of a stope
would be at that position. For each of the stope samples
there exists an actual width measurement which can be
compared with the estimate. Calculation of the residual sum

of squares (RSS; see section B.2.6) produces a measure of



'goodness of fit' for the estimation method.

The actual width estimation technique practised at
South Crofty mine is to take the greater of 1.0 metres or
the lode width plus 0.2 metres. Testing all 749 of these
estimates against the measured value produces a RSS term of
246.4. The total sum of squares (TSS; see section B.2.6) of
the stope actual widths was calculated to be 343.8.
Therefore this estimation method explains 28 percent of the
data TSS.

Other estimation techniques of a similar nature were
examined. The minimum RSS value (139.9) is obtained if the
actual width estimate is the greater of 1.5 metres or the
lode width plus 0.4 metres.

Polynomial equations of the form :-

Actual width estimate = f(Lw,sz.....LwN)
where LW = Lode width
N = order of the polynomial

were examined for their ability to predict the stope actual
width wvalues. Using the least squares criterion, the best
fitting line was found for every order of polynomial
between =zero and nine. With the constraint of the actual
width estimate having to be at 1least equal to the 1lode
width, the RSS of each of these lines was calculated to

be :-
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Polynomial of order @ RSS = 181.4

' 1 ' 151.5
' 2 ' 133.8
' 3 ' 133.0
' 4 ' 132.3
' . 5 v 132.3
' 6 ' 132.3
' 7 ' 131.4
' 8 't 131.4
' 9 ' 139.9

Obviously the polynomial of order nine is the best fit to
the data. However, the law of diminishing returns applies
and the difference between the RSS term from the equation
of order nine and that of order eight is negligible.
Division of one RSS term by another produces a 'F'
statistic which can be used to test whether one estimation
technique is significantly more accurate than another.
Doing this produces the following 'F' statistics :-

Order @ (749 degrees of freedom)

Order 1 (748 degrees of freedom) F=1.20

5 percent significantly worse

Order 1(748 degrees of freedom)
Order 2(747 degrees of freedom)

F=1.13

5 percent significantly worse

Order
Order

(747 degrees of freedom)
(746 degrees of freedom)

F=1.00

WM

Not 5 percent significantly worse



Compared with the quadratic equation, the extra effort
required to use the cubic polynomial does not produce
significantly more accurate estimates. Even the polynomial
of order nine is not a significantly better estimator (the
'F' statistic is 1.061 with 743 and 740 degrees of freedom).
So, it was decided to make the actual width estimator a
function of lode width and lode width squared.

It has been stated (see section B.2.6), that the
ln lode width measurements exhibit a significant cubic
trend surface. Bearing this in mind it was decided to test
the actual width measurements for a trend. As before, the
computer program SNARK was adapted to produce the 'least
squares best fitting' 1linear, quadratic, and cubic trend
surfaces. The cubic trend was discovered to be
significantly more accurate than the others, and to explain
23.29 percent of the data TSS.

So, it was decided that the actual width estimate
should not only be a function of lode width to order two,
but also of Easting and depth to order three. Again using
the least squares criterion, the best fit equation of this

form was found to be :-
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Actual width estimate =

1.3100068%10° + 3.5826833*1p 2*Lw

+ 1.6650438*10 1*Lw? — 1.5468835*E

+ 9.7820590*18 °*E2 + 1.5368569*%10 S#g>

- 2.5478477*101*n + 1.6512423*%19 2%

6xn3 4+ 2.0147847*10

- 6.7110721%18 C*E%*H- 6.5576605*%10  *E*H

q2

3

- 3.5656412*10 *E *H

2

where LW Lode width

E Easting

H

Height above datum
Testing this equation against the stope sample data shows
it to have a RSS of 118.3. This is 5 percent significantly
better than the polynomial equation of order nine. It is
also 20 percent significantly more accurate than the 1least
squares best fit line of the form :-
Actual width estimate = f(Lw,LWZ,E,EZ,H,HZ)

This was found to have a RSS term of 125.2.

It was decided that for any position within No.9 lode
the best estimate of stope width 1is obtained using the
equation with the twelve terms specified above. This has a

RSS term of 118.3, and so explains 66 percent of the data

TSS.

B.2.9.Actual assays estimation :-
It was desired to find the relationship between the
lode assay and actual assay measurements.

Using the results from all 745 of the possible stope
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samples, a scattergram between the lode and actual assays
was drawn. As expected, the correlation coefficient of 8.75
was found to be highly significant.

As stated before (see section B.l.2) a call assay
value was calculated at every sample point. It was derived
from the lode width, lode assay, call width, and average
assay of the adjacent country rock. For each of the stope
samples there exists a true measured actual assay ¢to
compare with this predicted value.

Obviously an actual assay value is a function of the
lode assay. So polynomial equations of the form :-

2 ....1aY

Actual assay estimate f(LA,LA

where LA = Lode assay
N = Order of the polynomial
were examined. The 'least squares best fit' fit equations

of order zero to nine were calculated. With the constraint
that the actual assay estimate must not be 1less than the
lode accumulation divided by the actual width estimate
{calculated as in section B.2.8), the RSS of each of these

equations was found to be :-



Polynomial of order ® RSS = 878.2

' 1 ' 705.6
re 2 v 616.0
' 3 v 617.2
v 4 ' 617.3
' 5 v 619.7
re 6 ' 614.0
v 7 ' 582.1
v 8 v 564.5
' 9 v 564.6
Now, wusing 'F' statistics from these figures, the order

eight eguation can be shown to be significantly better than
that of order two (the 'F' statistic is 1.8 with 743 and
737 degrees of freedom). However, Whitten (1973) states
that computation should stop the first time a step up in
order does not result in a significant 1increase in
accuracy. Polynomials of higher order should not be used.
Obeying this rule the polynomial of order two is found to
be the appropriate one. There is a significant increase 1in
accuracy between the equations of order one and two (the
'F' statistic is 1.14 with 744 and 743 degrees of freedom),
but not between two and three (the 'F' statistic 1is 1.00
with 743 and 742 degrees of freedom). Indeed, due to the
constraint mentioned above, the order three polynomial |is
slightly less accurate than that of order two.

So, the actual assay estimator was chosen to be :-
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= 6.573%1072 + 6.167*10 L*LA - 8.690%10 S*LAZ

This estimation method produces a RSS term of 616.8. The

TSS of the stope data was calculated to be 3709.9.

Therefore, the selected actual assay estimator explains 83

percent of the data TSS.



B.3.STOPE SIMULATION

B.3.1.General approach :-

It was desired to produce simulations of some of the
stopes within No.9 lode. The simulations would be of 1lode
widths and 1lode values. They would be produced using the
characteristics of these two parameters discovered in
sections B.2.6 and B.2.7. Any relevant data from the main
development levels would be used to condition the

simulations.

B.3.2.Representation of the stope :-

The ‘'turning bands' simulation method produces values
at finite points within a given area. Therefore, it is
impossible to produce an exact simulation of any area. To
do that a value is required at every one of the infinite
number of points within the area. In practice the simulated
region has to be represented by a grid of point values.

The number of points used in such a grid clearly has a
great effect on the cost of the simulations. It is
necessary to have enough, but only just enough, points to
adequately imitate the behaviour of the simulated area.
David (1977) states that 'l16 points or even 9 and sometimes
4 are adequate to obtain a stable block estimate'. Clark
and White (1976) report that '64 points are sufficient to
characterise the estimation of a block to within 1 percent
accuracy'.

It was decided to use a 9*9 rectangular grid to



represent each of the simulated stopes. In practice, this
meant that the grid spacing varied between @.6 and

4.1 metres.

B.3.3.Simulation programs :-

Two computer programs were written to enable any stope
within No.9 lode to be simulated. The simulations were
conditioned to data from the main development 1levels
immediately above and below the stope.

The first program, CONSIM1l (see Appendix 1l1), requires
the following input of data :-

(a) The exact size and position of the stope.
(b) The parameters of the semi-variogram model for
lode widths and for lode assays.
(c) The development data to be used to condition
the simulations. In practice, any sample from a
main 1level drive, within 25 metres of an edge of
the stope, was included. This meant there were
about one hundred conditioning data points.

To condition the simulations a kriging system has to
be solved for every one of the 81 grid points (see section
A.4.1). It was considered an unwarranted expense to use all
the data points in every kriging system. Instead, only the
nearest three points in six segments of 60 degrees were
included. On average, this meant that each kriging system
used about seventeen data points. The average variance of

the estimates produced by these systems was about @.22
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(65 percent of the total sill) for the lode widths, and
1.62 (72 percent) for the lode assays. For each of the 81
grid points CONSIM1 finds the -eligible data points and
calculates the kriging weights. This information is stored
on a permanent file for use in the second stope simulation
program, CONSIM2 (see Appendix 12).

CONSIM2 produces unconditional simulations of the 9%*9
stope grid. Reading the kriging weights calculated by
CONSIM1 off the permanent storage file, the simulations are
conditioned to the main development level data. The output
of CONSIM2 1includes, for both lode widths and assays,the
average of the 81 simulated values, and their
semi-variogram and histogram. Each run of CONSIM2 produces
five conditional simulations of the stope. It can only be
used after CONSIM1 has been completed. The sole input
required (apart from that created on file by CONSIM1l) is a
four digit number which acts as a trigger for the random
number generator. If more than five simulations are needed,
CONSIM2 merely has to be re-run with a different four digit
trigger number. CONSIM1 does not have to be wused again,

thus saving considerable time and expense.

B.3.4.Conditional simulation results :-

Two typical worked out stopes within No.9 lode weré
considered. Five simulations of each stope were produced
and the semi-variogram and histogram of each set of

simulated values are displayed in figures 51, 52, 53,
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FIGURE 52 : CONDITIONAL SIMULATIONS
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FIGURE 53 : CONDITIONAL SIMULATIONS
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and 54. Table 6 summarises the results of the simulations
by showing :-
(a) The arithmetic mean of the 81 simulated lode
width values,
(b) The percentage of the total sum of squares
(TSS; see section B.2.6) of the simulated 1n lode
width values explained by the cubic 1n lode width
trend surface. This was calculated from :-

= 100.0* (TSS-RSS)
TSS

It has been stated before that for all 1149
development samples the cubic trend sur face
explains 32 percent of the TSS of the 1ln lode width
values. The trend surface 1is a global estimator
based on the development data. The TSS wvalue was
defined as the total sum of squares with respect to
the data mean. So it is the residual sum of squares
of ‘the sample population mean. For almost all of
the simulations the percentage of the TSS explained
by the cubic trend is negative. This is due to the
RSS term being greater than the TSS value. In other
words, the RSS of the trend surface is greater than
that of the development data mean. Overall, for
each set of 81 simulated 1ln lode widths, the trend
is a worse estimator than their arithmetic mean.

(c) The arithmetic mean of the 81 simulated lode

assay values,
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TABLE 6

Simulation results Level| Stope samples within simulated area
data
Average Average Average Average
lode % of lode $ of lode width $ of lode assay
Stope width TSS assay | TSS Number | 90% limits TSS 99% limits
name (a) (b) (e) (d) (e) (£) (g9) (h)
Meredew 1.30 9.0 .76 | 23.3 29 1.97-2.28 -67.2 3.41-8.55
1.59 -3.0 B.37
3190 1.20 -9.7 B.79
1.290 -6.3 B.72
level 0.97 (-76.1 0.47
Pisowocki .88 -2.8 #.94| 25.9 20 1.78-1.95 |-674.3 #.83-1.00
p.78 -6.9 f.38
360 §.69 | -41.2 1.60
1.11 |-18.6 .32
level 1.18 |-61.3 g.61




(d) The percentage of the TSS of the conditioning
data 1n lode width wvalues explained by the cubic
trend. The trend surface is a global estimator
derived from all the development samples. The
percentage of TSS shown under (d) indicates the
local 'goodness of fit' with respect to the
development samples used to condition the
simulations.

(e) The number of stope samples sited within the
simulated area.

(f) The 90 percent confidence limits on an estimate
of the average lode width of the simulated area.
The lode width measurements, from the stope samples
within the simulated area, were converted to their
simulation form. That 1is for each 1lode width
measurement the logarithm was taken and the trend
value subtracted. The arithmetic mean of these
figures was found. This 1is an estimate of the
average value over the simulated area. Its variance
was calculated using the wvalues of standard
geostatistical auxiliary functions determined by
computer subroutines (Clark,1976). Assuming a
Normal distribution, the 96 percent limits of the
estimate were found by subtracting and adding
1.6449 times the estimation standard deviation.
These two figures were then converted back to units

of metres. This was done by adding the average



trend value over the simulated area (as
approximated by a 18*1@ grid), and taking the
exponential. The fiqgures under (f) in table 6 show
the two limits between which the average lode width
of the simulated area is 98 percent likely to lie.
(g) The percentage of the TSS of the stope 1ln lode
width values explained by the cubic trend surface.
All three of these figures are negative. This
indicates that the trend surface, derived from the
development samples, has little application within
the stopes. For each set of stope 1ln lode widths
the trend is a worse predictor than the average of
the set.

(h) The 98 percent confidence limits on an estimate
of the average lode assay of the simulated area.
The arithmetic mean of the 1ln lode assay terms from
all the stope samples within the area was found.
Using auxiliary functions the wvariance of this
estimate was determined. The 90 percent limits were
calculated, and transfered back to units of
'percent tin' by taking their exponentials. The
resulting limits, within which the average 1lode
assay of the simulated area is 90 percent likely to

lie, are shown.

When considering the stope semi-variograms it should

be borne in mind that there are only 81 point values in the

simulation grid. The grid itself is not square which

means



that the spacing of the points differs between the two main
directions. 1In other words, the semi-variogram figures are
calculated at different lag intervals. The semi-variogram
figure at a certain lag value in one direction does not
have a partner at exactly the same lag value in the other
direction. Therefore, the number of [G(x)-G(x+h)]2
figures contributing to any one semi-variogram value varies
between nine and seventy two. This does not induce great
confidence in the reliability of the semi-variogram.

The reliability of the semi-variograms from one of the
Meredew stope simulations was tested by fifty random
removals of 10 percent of the data (see section B.2.4).
Figure 55 shows the resulting minimum/maximum envelope,
both for the lode width and lode assay semi-variogram. It
indicates the fragile nature of the semi-variogram values.

The results of the lode width simulations seem to be
realistic (see figures 51 and 53, and table 6). The
semi-variograms are all well within reach of the real
development data semi-variogram. The distributions have
smaller spreads than that of the development data. This is
only to be expected since all the simulated values are
close to each other. For any one point all the others lie
well within the range of influence. Thus, the wvariance
amongst them is 1likely to be 1less than that from the
development data where samples are up to 600 metres apart.

The simulations are of development 1lode widths and

assays. For reasons explained before (see sections B.2.6
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and B.2.7) only the development samples were wused in the
data analysis. So, the semi-variogram and distribution
models were obtained from the five horizontal lines of the
main development level drives. Any stope simulation
involves the wvertical interpolation of the development
models between two of these horizontal lines.

The errors caused by this phenomenon are particularly
evident in the performance of the 1n lode width trend
surface. It does not fit the stopes at all well, as shown
by the percentage of the stope samples TSS explained by the
trend ((g) in table 6). The simulations have tended to
reflect this characteristic, rather than following the
trend as does the development data. This is a result of the
conditioning process. Forcing the simulations to agree with
both horizontal lines of development data has prejudiced
them towards certain values inbetween.

Since the 1n lode width trend is such a poor fit to
the stopes it was decided to ignore 1it. The simulated
values would be of 1n lode width and the conditioning
process would be relied upon to allow for any local
features.

The semi-variogram model chosen for the 1n lode widths
was Spherical(30 metres,9.33,0.108), as shown in figure 43.
Although it does not fit the actual semi-variogram closely
above a lag of 35 metres this was felt to be insignificant.
Almost all the work 1involved 1in stope simulation is at

distances of less than 35 metres. The 1ln lode width figures
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do not fit any Normal distribution. As stated before (see
section A.4.1) the average of an unconditional simulation
is not important, and the true variance is best estimated
by the sill of the semi-variogram. It was anticipated that
any inaccuracies caused by the poorly fitting
auto-correlation and distribution models would be coped
with by the conditioning process.

Using this new approach the same two stopes as before
were simulated. Figures 56 and 57 display the resulting
lode width semi-variograms and histograms. The overall
average for each set of simulated values was found, and
also the percentage of the TSS explained by the 1ln lode
width trend surface. The results were found to be as

follows :-

Meredew |Simulation 1 |Lode width = 1.01 | 8TSS = 20.9
v 2 ' 1.62 v -147.6

319 ' 3 ' 1.64 ' -109.3

v 4 ' 9.58 ' -99.1

level v 5 ' 1.47 ' -190.9
Pisowocki |Simulation 1 |Lode width = 1,11 | %TSS = -39.3
' 2 ' .57 v -278.3

360 v 3 v 1.21 ' -91.3

' 4 ' 1.22 ' -149.5

level v 5 v g.72 ' -47.2

The results compare well with those achieved wusing the

trend surface approach (see figures 51 and 53, and
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FIGURE 57 = CONDITIONAL SIMULATIONS
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table 6). Throughout the rest of this study the lode width
simulations were produced in this new fashion. That is the
ln lode widths were treated as following a Normal
distribution and a spherical semi-variogram. The
conditioning operation was relied upon to cope wi;h the
local effects of the trend.

At first sight the results of the 1lode assay
simulations do not appear to be very realistic (see figures
52 and 54, and table 6). In particular, most of the
semi-variograms are lower than that from all the
development samples. The development semi-variogram itself
is much lower than that calculated from the stope samples.
This is due to the proportional effect caused by the
lognormal distribution of the lode assays (see section
B.2.7). Obviously, the samples from the stopes have a much
higher average assay value (2.54 percent tin) than those
from the development drives (1.35 percent tin). This means
that their variance, and therefore also their
semi-variogram, is higher.,

The proportional effect explains why the simulation
semi-variograms are so low. Strangely, neither Meredew nor
Pisowocki stope has a high average assay. As shown in
table 6, the average of the stope samples taken within them
was found to be 0.47 and 0.91 percent tin respectively.
Therefore, the simulations tend to have averages lower than
that of all the lode development samples. Correspondingly

their semi-variograms are lower than average. The one



exception to this is a simulation of Pisowocki stope with
high semi-variogram values between 7 and 20 metres. This is
simulation number 3 which has an unusually high average of
1.68 percent tin.

The distributions of the simulated lode assays are as
expected. They -exhibit a 1lognormal shape, and have a
smaller spread than those from the development and stope
samples. As with the lode widths simulations this is due to

the simulated points being close to each other.

B.3.5.Susceptibility of the simulations to the models :-

The stope simulations are formed using
auto-correlation and distribution models for In lode
widths, and In lode assays. These models are

representations of the real wvalues <calculated from the
No.9 lode development samples. As shown in figures 42, 43,
48, and 50, they are not exact fits to the data. It Qas
anticipated that the discrepancies would become
insignificant after the powerful conditioning process had
taken place.

To 1investigate the influence of the models five
simulations of Meredew stope were produced. The simulations
were created with slightly different models from those used
previously.

The semi-variogram model used for the 1ln lode widths
was Spherical (40 metres,®.33,08.18). In other words, the

range of influence was increased by one third. The results



of the simulations using this model are shown in figure 58.
The average lode width of each simulation, and the
percentage of the TSS explained by the cubic trend surface,

were found to be as follows :-

Meredew | Simulation 1 | Lode width = 1.71 |8%TSS = -25.6
v 2 v 1.06 ' -23.3

310 v 3 v 1.40 v -19.8
' 4 ' 1.65 v -15.6

level ' 5 v 1.00 v -70.6

All these results are remarkably similar to those achieved
with a 39 metres range (see figure 51 and table 6). The
semi-variograms of the <c¢onditional simulations show hno
evidence of the 1larger range. The conditioning operation
has a stronger influence than the range of the
unconditional simulations. This 1is as expected, since at
any lag value the difference 1in semi-variogram value
between a 30 metres and 40 metres range model is small. For
instance, at a lag of 10 metres the two models have values
of 6.21 and ¢.18 respectively.

The stope simulation method is resistant to an error
of one third in estimation of the semi-variogram model
range of influence. Any 1larger estimation error seems
unlikely.

The results shown in figure 59 were created with a
l1n lode assay semi-variogram model of
Spherical (69 metres,2.26,0.60). In other words, the nugget

effect was halved. The average of each set of simulated
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FIGURE 59 : CONDITIONAL SIMULATIONS
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lode assays was calculated to be :-

B

Meredew | Simulation 1| Lode assay = $.48
v 2 v 1.13

319 ' 3 " g.89
b 4 ' .39

level e 5 ' B.37

There 1is only one significant difference between these
results and those formed with a nugget effect of 1.28 (see
figure 52 and table 6). This is in the semi-variograms.
Those of figure 59 are lower in value for all lags. So, the
smaller nugget effect has been transfered from the
unconditional simulations. The conditioning process has not
forced both sets of semi-variograms to exhibit similar
semi-variograms.

The stope simulation method is influenced by the value
of the nugget effect. However, it must be borne in mind
that both sets of semi-variograms are low. They are very
different from the average for all the lode. This is due to
the proportional effect which has an overriding influence
on the lode assay semi~-variogram. For any given stope its
importance far outweighs that of the wvalue of the
semi-variogram model nugget effect. Thus, for small scale
conditional simulation an error in the estimation of the
nugget effect is not very significant. Its only effect may
be a small change in the simulation's semi-variogram.
However, this change is likely to be small compared to that

caused by the conditioning data forcing the local average



on the simulation.

B.3.6.Costs of the simulations :-

For Meredew stope, the time taken for the program
CONSIM1l to execute was 40 CP seconds. CONSIM2 required 727
CP seconds to produce five conditional lode widths and lode
assays simulations of the stope. This means that 153 CP
seconds were used to create each simulation.

The results of each set of five simulations are
extremely variable. As stated before, it 1is dangerous to
draw conclusions from only a few simulations. It was
considered that five were not enough, and that one hundred
was a far more useful number. To create one hundred stope
simulations would require CONSIM2 to be run twenty times,
since it can only produce five simulations in one
execution. Apart from the inconvenience, the cost of such
an operation was considered to be prohibitive. To produce
one hundred simulations would require 46 + 20*727 = 14580
CP seconds. Per simulation this is 146 CP seconds, which at
current (October 1979) commercial rates costs about
16 pounds Sterling.

It was decided that a less costly simulation technique
was necessary, even if it involved a slight decrease 1in

accuracy. Such a technique is examined in section B.4.

B.3.7.Actual width and actual assay simulations :-
Section B.2.8 shows how an actual width estimate can

be calculated at a point, given the 1lode width and the



co-ordinates. The estimating procedure is a fairly good one
since it explains 66 percent of the total sum of squares.
Similarly, section B.2.9 describes an estimation technique
for actual assays using only the lode assay at the point.
This is a more accurate predictor, explaining 83 percent of
the TSS.

Bearing these two good estimators in mind, it was
decided to produce simulations of actual widths and assays.
The possible behaviour of these stope parameters is
probably of more interest than that of the lode widths and
assays.

Two potential methods of simulating actual widths and
assays presented themselves :-

(a) Simulate the 9*9 grid of lode values. Condition

the simulation to the development data. At each of

the grid points £find the estimates of the actual

values.

(b) Produce a simulation of actual wvalues. For

every one of the conditioning data points calculate

the actual value estimates. Use these to condition

the simulation.

It was considered that the first method was the most
appropriate one. Analysis of the 1lode measurements is
likely to be more meaningful than that of the actual, or
stope, widths and assays. There are many more samples
available with lode measurements. The only recordings of

actual wvalues occur in the preferentially placed stopes.
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The actual widths and assays are measurements of the stope
faces, and as such are subject to great human influence.
Since the stope width is a factor of the efficiency of the
mining (in terms of overmining of the lode), it is not
merely a geological parameter. Changes in behaviour between
stopes can be a result of having been worked by different
mining crews. For this reason analysis of actual width and
assay measurements was considered to be fraught with
dangers.

Using method (a) mentioned above, five conditional
simulations of actual width and actual assay were produced
for Meredew sStope. The simulations exhibited
semi-variograms and histograms for widths and assays, as
shown in figures 60 and 61 respectively. Also displayed are
the semi-variogram and histogram from all 749 of the stope
samples. The average values of the 9*3 grid of simulated

points were found to be :-

Simulation 1 Actual width = 1.88 Actual assay = #.52
' 2 ' = 2.22 v = 0.29
vt 3 ' = 1.85 ' = @.54
vy 4 ' = 1.85 ' = @.49
' 5 ' = 1.78 't = @.35

Taking the arithmetic mean of the 29 stope samples within

the simulated area produces 'real' wvalues of 3.17 metres
4

and @.41 percent tin.

The simulated actual widths do not exhibit the desired
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FIGURE 61 : CONDITIONAL SIMULATIONS
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semi-variogram or distribution shapes (see figure 68). In
particular, the distributions are of a very different shape
with no simulated value below 1.608 metres, This is a result
of the actual width estimator. Its operation domirates the
whole procedure, as shown by the great similarity amongst
the five distributions. It produces values above
1.60 metres and with a low semi-variogram.

One of the faults of the actual width estimator is
that, by necessity, it was derived from the stope samples.
In other words, it is a function of a stope rather than a
development lode width. As explained previously (see
section B.2.,6), and as can be seen in figure 53, the stope
and development lode width samples behave differently. The
simulated actual widths are derived from the grid values of
lode width. These 1lode widths are simulated using the
development auto-correlation and distribution models. Thus,
an unavoidable and unknown error enters the operation.

It was decided that to produce simulations of actual
widths was not practicable. The best estimator (explaining
66 percent of the TSS) is not perfect, and was calculated
from the stope samples. These facts, together with the poor
results, led to the decision to drop the actual width
simulations. It was considered that for any given stope, a
lode width simulation would suffice. If the actual widths
are needed they could be estimated by the mine personnel.
The particular circumstances of any stope are unique. As a

result, the prediction of overmining and dilution can be



best carried out by an experienced miner, rather than by a
polynomial equation.

The results from the actual assay simulations (see
figure 61) seem to be acceptable. The estimated actual
assay at each point was derived from the simulated lode
assay there. Consequently the low semi-variograms of the
lode assay simulations (caused by the proportional effect)
have been transfered. This is as desired since the average
actual assay from all the stope samples was calculated to
be 1.42 percent tin. The stope samples within Meredew stope
show it to be of low grade (0.41 percent tin). Therefore,
the simulations have tended to show low averages, and their
semi-variograms are correspondingly lower than the lode
average.

The actual assay distributions are all of the correct
shape, with the predictable smaller spread. The errors
caused by the actual width estimator have been avoided by
the accuracy (83 percent of the data TSs), and the
simplicity of the actual assay estimator.

Although the simulated actual assays behave in the
correct manner, it was decided not to proceed with actual
assay simulations. As a result of the inaccuracies of the
actual width simulations, they would have\ had to be
continued 1in isolation. To calculate the average assay of
any area does not involve any width figures (see section
B.2.3). However, it was felt to be unwise not to include

width simulations. The anticipated width can have a great
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influence on the decision whether and how to mine an area.
A lode assay of 2 percent tin is much more wuseful if it
occurs over a width of 1.0 metres rather than 0.2 metres.
Due to the failure of the actual width simulations,
the lode width and lode assay simulations were continued.
If actual, or stope, values are needed they could be
produced. The actual assays would be simulated, and the

actual widths estimated manually.
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B.4.BLOCK SIMULATION

B.4.1.General approach :-

In section B.3.6 the cost of conditionally simulating
stope lode widths and assays was shown to be high. 1In an
attempt to reduce the expense a new approach was developed.

Consider the simulation of a rectangular area within
No.9 lode, approximating to a stope (see figure 62). The
block lies between two main development level drives and is
of a known size and shape. A simulation of it can be
produced and conditioned to data from the development
levels. To do this an unconditional simulation is made of a
grid of wvalues representing the block, and also values at
the position of every conditioning data sample (see section
A.4.1). The conditioning data 1is in a known position
relative to the block. The only difference between this
block and one horizontally adjacent to it 1is 1in the
conditioning data. However, since the development level
samples are at a constant spacing, this data is in the same
position relative to the block. So, the same unconditional
simulation can be used for both blocks. The only difference
between them arises from the different values of the
conditioning data.

By this means, one wunconditional simulation can be
used for many block simulations. The expensive procedure of
producing the simulated values does not have to be carried

out each time.
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It was decided to carry out block simulation of this
nature within No.9 lode. The precise layout was selected to
be as shown 1in figure 63, The 318 and 335 levels were
chosen because they had been more extensively sampled than
the others. The number of sample results available from
them is 473 and 321 respectively, out of a total of 1149

main development level samples.

B.4.2.Choice of block size :-

As can be seen from figure 63 the block was chosen to
be 47.0 metres high and 25.08 metres wide. 47 metres is the
average difference in depth between 318 and 335 level
drives. In fact they range between 46 and 48 metres apart.
The block width of 25 metres was selected as being a
typical width for a stope within No.9 lode.

All available development samples up to 25 metres from

the block edges were used to condition the simulations.

B.4.3.Choice of number of grid points :-

As shown in figure 63, the block was represented by a
16*8 grid of points. This was selected so that the
simulated area could be split into two equal blocks, both
23.5 metres high, 25.0 metres wide and represented by a 8*8
grid.

The primary point of interest of each of the two
blocks was its average. So, the average of the 64 simulated
grid values has to give a sufficiently accurate idea of the

real block average.
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A better estimate of the true block average could be
obtained using kriging. However, it was considered that the
extra calculations 1involved would not produce a markedly
more accurate estimate than the average of 64 evenly spaced
samples.,

The simulated values of 1ln lode width originated from
a known semi-variogram model. Using its parameters, and
standard geostatistical auxiliary functions (Clark,1976),
the estimation wvariance of the arithmetic mean of the 64
simulated values was found. It was calculated to be
0.00007. This means that the average of the 64 logarithmic
values is 90 percent likely to lie within 6.0138 of the
real block logarithm average. In other words if the average
is 'M' the 90 percent 1limits are at 'M-0.0138' and
'M+0.0138', Conversion of these figures to units of metres
is achieved by taking their exponentials. Comparison with
the/exponential of 'M' shows the 90 percent limits to be at
-1.4 and +1.4 percent. These two figures give some idea of
the accuracy of the arithmetic mean of a 8*8 grid under
these conditions.

Similarly, the accuracy of the mean of the 64
simulated 1lode assay values can be determined. The mean is
an estimate of the real block 1lode assay average. The
estimation wvariance of this mean was found to be 0.000Z26.
Proceeding as with the widths, the final 90 percent limits

were found to be at -2.6 and +2.7 percent.

Repetition of this process for a 7*7 grid produces 99
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percent limits (on the lode assay average) at -3.2 and +3.3
percent. A 9*%9 grid has similar limits at -2.2 and +2.2
percent.,

Primarily considering the wider average lode assay
limits a 8*8 grid was felt to be satisfactory. The real
average lode assay of the block is 98 percent likely to lie
between 97.4 and 102.7 percent of the mean of the 64
simulated values. For instance, if the simulated wvalues
have a mean of #.5 percent tin these limits become 8.49 and

#.51 percent tin,

B.4.4.Production and storage of unconditional
simulations :-

One hundred unconditional 1lode width simulations of
the block layout were produced. Each simulation consisted
of a wvalue at each of the 128 grid points, and at the 100
conditioning development data points.

One hundred unconditional simulations of 1lode assay
were also produced.

All the simulation results were stored on computer
files. Each of the simulated values was recorded to two
decimal digits. The total computer storage facility
required for all 45,600 figures was 334,080 characters.

To condition the simulated point wvalues a kriging
system for each point has to be formed (see section A.4.1).

If all the <conditioning data 1is 1in the same relative

position for every block layout, the kriging system for any
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point would not change from layout to layout. The kriging
weights would be identical, and therefore also the kriged
estimate from the simulated development data ('Sk').
Section A.4.1 states that each conditional simulation value
is found from :-

S - sk + Rk

where S = unconditional simulation value
Sk = kriged estimate from simulated development data
Rk = kriged estimate from real development data

Now it has just been shown that for any point the value of
'Sk' does not wvary with different sites of the block
layout. Since the simulation value of 'S' is also constant
the obvious procedure is to store values of 'S-Sk' rather
than 'S'. For each simulation this would avoid the need to
store 100 simulated development data values and also the
calculation of 128 values of 'Sk'.

As shown in figure 63 fifty consecutive development
data samples from each 1level drive are required to
condition the simulations. These samples are sited at
regular intervals along the drive of 1.5 metres (or
5 feet). It was rare for the results from fifty such
consecutive sampling points to be available. Either no
recordings could be taken because of intersecting dykes
(see section B.1l.1) or the sampling interval was 3.0 metres
(or 10 feet).

If a block layout was sited where some of the

development data are missing, new problems arise. The
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kriging éystem for several grid points would include a
sample which at that particular block layout position is
absent. The missing results would have to be replaced by
some means, possibly interpolation.

It was considered that, due to the problems caused by
missing development data, the idea of storing 'S-5k' values
had to be dropped. The procedures for resolving these

problems would create too many inaccuracies.

B.4.5.Choice of kriging pattern :-

To condition the simulations a kriging system for each
of the 128 grid points has to be formed.

Obviously the simplest method would be to use all of
the conditioning development samples 1in every kriging
system. Equally obviously this would be exceedingly
expensive since each system would consist of one hundred
and one simultaneous equations. David (1977) states that
the cost of solving simulataneous equations is proportional
to the cube of the number of equations. In other words to
solve one hundred and one equations costs over one thousand
times times that for ten equations.

Using all the development samples in every kriging
system produces the most accurate kriging estimates ('Sk’
and 'Rk' values). However, a large number of these samples
can be ignored with little loss in accuracy.

The kriging pattern wused for each of the 128

simulation grid points was developed. It <consisted of
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finding all development data within a search circle with a
radius equal to the range of the semi-variogram. To avoid
the 'shadow effect' (David,1977) the points within this
circle were examined and only the nearest three in a 69
degrees segment were retained. Therefore there could not be
more than eighteen points in the kriging system. TIf there
were less than four points the search circle radius was
increased, and the whole process repeated. This 1is the
method used in the program CONSIM1 (see section B.3.2).

Apart from the 'nearest three in 60 degrees segments'
technique several other methods were examined. The results
are shown in table 7.

The choice of 'nearest three in 60 degrees segments'
(method (f) in table 7) was made because of 1its extra
accuracy over method (e). The maximum kriging variances are
both reduced by 3.7 percent, and the averages by 1.0
percent. However, a further expense of 12 CP seconds only
causes similar reductions of ®#.4 and @.7 percent. The
method (f) was felt to be at the point of balance between
cost and accuracy. It also makes full use of the data, with
the outermost samples (25 metres horizontally from the
corners) being used three times.

It is interesting to note the results obtained if all
198 of the development samples are used in every kriging
system (method (h) in table 7). Compared with the adopted
method an extra cost of 4274 percent results in decreases

in averages and maximums of only 2.6 and 3.1 percent



TABL

E 7

No. of times Kriging variances Execution
Kriging| outermost Lode width Lode assay time in
Method| pattern|points used |Average|Maximum|Average|Maximum|CP seconds
o]
(a) 3 F% ) .2189 | .2829 | 1.652 | 1.881 41
(b) 2;’§450 3 .2163 .2791 1.638 | 1.858 52
(c) 3><900 1 L2160 .2833 | 1.63] 1.891 43
(d) 2%@50 2 .2153 .2743 | 1.633 | 1.848 54
(e) 3>'<600 3 .2148 | .2829 | 1.616 | 1.881 58
o]
(£) 3>é60 3 .2123 .2722 | 1.604 1.812 62
(9) 2%@450 2 L2189 | .2707 | 1.592 | 1.8085 74
(h) 128@ 368°] 128 .2057 | .2689 | 1.571 | 1.775 2712
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respectively.

It has been stated (see section A.5.6), that
simulations formed with ten regularly orientated one
dimensional axes may be of use where the average kriging
variance is less than one third of the sill. The averages
achieved were at 62 and 71 percent of the model
semi-variogram sill. Thus fifteen regularly orientated axes

were necessary to obtain accurate final simulations.

B.4.6.Conditional simulation results :-

A computer program, called SIM2BLO (see Appendix 13),
was written to condition the one hundred unconditional
simulations to the appropriate development data.

The values of the one hundred conditioning samples are
read into the program. For the almost inevitable missing
samples zero values for lode width and assay are entered.
The kriging system for every one of the grid points |is
solved, and the weights stored on a temporary file. In
turn, each set of unconditional simulated values 1is read
from the permanent storage files. For every one of the
simulation grid points its kriging weights are found and
used to condition that value. Once all these values have
been conditioned the next unconditional simulation is read
in and the process repeated.

Table 8 summarises some of the output of the program
SIM2BLO. The averages from all one hundred simulations are

shown. Also displayed, £for various pay dgrades, are the



TABLE 8

Simulated blocks = 58 to 125 East

Lower block | Upper block
Average of all Width|Assay | Width|Assa
1808 simulations 1.71) 1.37 1.77| 0.97

Lower block/Upper block P = Pay N = Non-pay

Average assay Value of rest of block

Pay of blocks if 2 non-pay lifts occur
grade | P/P|P/N[N/P[N/N P/ N/ /P /N
g.1 100 ) ) ) ) ) ¢ @
2.3 98 2 ) ) 1 1 5 2
8.5 93 7 ¢ ¢ 6 11 32 9
8.7 61| 27 4 8 8 23 24 a5
2.9 42| 37 51 16 12 32 15 58
1.1 221 36 6! 36 19 53 13 79
1.3 13} 29 6| 52 16 66 7 89
1.5 41 29 71 60 14 73 5 91




- 199 -

number of occurences of both blocks being in the same
category (pay or non-pay), and of the blocks being in
different categories. The use of such figures is best
demonstrated by those at a pay limit of @.9 percent tin.

With a pay grade of 0.9 percent tin, the most likely
situation (having occured 42 percent of the time) is that
both blocks are in the pay category. However, there is an
equal chance that the blocks are in different categories.
It would be prudent to use a mining technique capable of
extracting only one of the blocks. The first step should be
to mine the lower block on its own. If it is found to be
above the pay 1limit, the odds are slightly (42 to 37) in
favour of the upper block also being pay. Extraction of the
upper block should then proceed.

The obvious method suggested by such an order of
extraction is overhand stoping. Under different
circumstances underhand stoping may be found to give the
best opportunity to mine only profitable blocks.

The stoping method used at South Crofty mine involves
the extraction of the lode in horizontal strips, or 1lifts.
Each 1ift advances the stope face by about 3 metres.
Samples are taken along the stope face after extraction of
every 1lift. 1If the averages of two consecutive lifts are
both below the pay grade the stope is stopped.

The vertical interval between the points of the
simulation grid is 2.94 metres. Thus, each horizontal line

of eight simulated values represents an extraction 1lift.
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The average of the simulated lode assays is an estimate of
the real lift assay value. As before (see section B.4.3),
the 9@ percent limits of this estimate can be calculated.
They were found to be at 92,7 and 107.8 percent of the
estimate.

It was decided to test the validity of the practice of
halting a stope if two consecutive non-pay lifts occur. For
every simulation produced by the program SIM2BLO the two
vertically adjacent blocks were considered separately. The
average assay of each of the eight lifts was estimated by
the mean of the appropriate horizontal 1line of eight
simulated values. If two adjacent non-pay lifts were found,
the mean of the remaining simulated values above them was
calculated. It was noted whether this was below or above
the pay grade. In other words, whether for that particular
block simulation the 'two non-pay 1lifts' «criterion had
saved mining an  unprofitable area. Table 8 shows the
results for all one hundred simulations at wvarious wvalues
of pay grade.

The figures show that the 'two non-pay 1lifts'
criterion works for the lower block when the pay grade is
@.5 percent tin. Seventeen simulations were found where
there were two consecutive lifts with average assays of
less than 0.5 percent tin. In eleven (65 percent) of these
seventeen cases the rest of the lower block was determined
to be non-pay. So, the existence of a non-pay area had been

correctly anticipated.



- 111 -

The 'two non-pay 1lifts' criterion does not work for
the upper block at a 6.5 percent pay grade. For this block
if two non-pay lifts occur there is only a 22 percent (nine
out of forty one) probability that the rest of the block
averages below 0.5 percent tin.

The program SIM2BLO was re-run but wusing a 'three
non-pay lifts! criterion to signal poor areas. The
equivalent figures to those of table 8 were found to be as

follows :-

Pay | P/P | P/N | N/P | N/N
8.1 ) ) ) )
2.3 ) ) ) 2
6.5 1 5 7 7
0.7 ) 11 8 28
6.9 4 26 7 67
1.1 5 34 8 72
1.3 4 48 5 82
1.5 5 60 3 88

These indicate that for a pay grade of 0.5 percent tin the
'three non-pay lifts' criterion works for the upper block.
There 1is a 50 percent (seven out of fourteen) chance that
the rest of the block is not worth mining.

A 'one non-pay lift' criterion was tested. The results

were found to be :-
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Pay | P/P | P/N | N/P | N/N

g.1 2 2 3 2
2.3 15 2 29 2
8.5 29 14 70 19

a.7 45 26 52 44
.9 51 36 31 67
1.1 43 59 20 79

1.3 32 66 10 89

L}.S 27 73 8 92

These figures show that that using the ‘'one non-pay 1lift'
criterion is insufficient for either block at a pay grade
of 8.5 percent tin. The probabilities of it correctly
forecasting a non-pay area are only 33 and 13 percent, for
the lower and upper blocks respectively.

So, if the pay grade is 9.5 percent a 'two non-pay
lifts' <criterion is required to correctly signal a non-pay
portion of the lower block. If this is used for the upper
block there 1is a 78 percent probability that a profitable
area is being left. Three consecutive non-pay 1lifts are
needed before the rest of the upper block can be correctly

regarded as not worth mining.

B.4.7.5ensitivity of the block simulation method :-

The " method used to produce block simulations
(performed by the program SIM2BLO) is not as exact as that
for stope simulations (carried out by CONSIM1 and CONSIM2).

Various assumptions have been made in order that the
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conditional simulations are much cheaper to produce.
Inevitably these cause inaccuracies in the final results.
It was necessary to find out whether the balance between
cost and accuracy had been swung too far in favour of cost.

Table 8 shows the results of block simulations for a
certain area of No. 9 lode. The averages of the one hundred
simulations for . this area (comprising both blocks) are
1.74 metres and 1.17 percent tin. This same area was
simulated by the programs CONSIM1 and CONSIM2. The averages

achieved by these simulations were :-

Simulation 1 Lode width = 1.92 Lode assay = 2.04
v 2 ' 1.25 v g.98
' 3 ' 1.27 ' 1.19
v 4 ' 1.59 v g.71
v 5 v 2.07 v 1.80

These figures show that the results of the one hundred
block simulations lie well within the bounds of possibility
outlined by the five stope simulations. Thus, the
assumptions made by SIM2BLO have not created any large bias
in the results.

Table 9 displays the results of an initial sensitivity
analysis on the simulations formed by SIM2BLO. The first
set of results shown (situation (a)) are from the same
execution of SIM2BLO as those in table 8.

The conditioning data wused in the block simulations
consists of one hundred sample points, fifty from each

level drive. These samples are treated as being exactly



Simulated blocks

TABLE 9

58 to 125 East

Subscript L = Lower block U = Upper block
Average Correlation
Number correlation between
of occurences between 128 1@ blocks
at pay = 2.9% simulated grid widthL Assay
Average block values Lower/Upper point values Vs Vs
Situation widthL AssayL WidthU AssayU P/P|P/N|N/P |N/N | Width vs Assay widthU AssayU
(a) 1.71 1.37 1.77 .97 42| 37 5| 16 g.026 .70 .45
(b) 1.71 1.36 1.76 .94 39| 38 5] 18 g.06 .70 2.45
(c) 1.70 1.36 1.74 .95 39| 38 5 18 2.6 .70 g.44
(d) 1.79 1.34 1.74 g.91 37| 38 6| 19 g.026 g.70 .43
(e) 1.69 1.31 1.72 @.90 374 37 6| 20 .06 g.70 .43
(£) 1.67 1.27 1.71 2.90 32| 39 71 22 g.06 .70 p.44
(g) 1.71 1.34 1.77 .95 41| 37 6| 16 0.06 .70 g.44
(h) 1.79 1.36 1.82 1.13 33| 34} 11| 22 g.87 @.23 g.26
(i) 1.74 1.45 1.78 1.09 33} 37| 18| 290 g.85 .23 .23
(3) 1.71 1.51 1.77 .97 4p) 42 41 14 2.06 g.70 g.38
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regularly spaced at an interval of 75/49 =1.53 metres (or
5.82 feet). Obviously, this is never actually found to be
true. However, it is not possible to accurately determine
an interval between any two sample points., This is because
it was felt that the co-ordinates of the points can not be
found, from the 1longitudinal section of the lode, to any
greater accuracy than 1 metre. To assume precise regularity
of samples along the drives was considered to be valid. On
average it was found that the difference in Easting between
two points forty nine sample intervals apart was 75 metres.
The Eastings of the outermost samples used in situation (a)
were 52 and 124 metres (335 level) and 50 and 123 metres
(318 level). These co-ordinates were determined from the
longitudinal section and as such are not precise. For
instance, the samples regarded as being at 50 metres East
may really be at 49 metres. To test the possible effect of
this the data from 310 level was altered.

Situation (b) used fifty conditioning data points from
319 level one sample further East than those for situation
(a). In other words, the recorded Eastings ranged between
52 and 125 metres. Similarly, situation (c) used samples
between 53 and 126 metres East, situation (d) between 54
and 127 metres, and situation (e) between 56 and
129 metres. The results show that any errors made in
determination of the sample co-ordinates would not have a
large effect. Even if the conditioning data used differs by

a distance of four sample intervals (situations (a) and
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(e)) the results are very similar. The block simulation
method seems to be robust as far as the data co-ordinates
are concerned. The necessary approximations can be made
with confidence.

As stated before (see section A.4.4), the conditioning
process is the great weakness of the 'turning bands'
simulation method. This 1s because it attributes 100
percent reliability to all the sample data values. To a
large extent this problem was overcome by rounding the data
measurements before use (see section B.2.1).

To test the influence of the accuracy of the data, a
random error was added to each measurement. Every sample
was given a 5 percent chance of being incorrect by at least
one measurement unit. In other words, a measurement of
1.40 metres had a 5 percent chance of being changed to less
than 1.30 metres or greater than 1.50 metres. This was
achieved by adding a random number from a Normal
distribution of N(@.@ metres,ﬂ.ﬂSz). For metric 1lode
assays a number from N(P.d percent tin,@.@ﬂsz) was
added. This created a 5 percent chance of the samples being
wrongly assayed by at least #.01 percent tin. Similarly,
for the imperial measurements random numbers from
N(G.0 feet,g.125%) and N(8.8 1lbs/ton,8.5°) were
added, for widths and assays respectively.

So, each sample measurement was given a reasonable
allowance for a random measuring error. The results of this

operation are shown under situation (f) in table 9. The
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averages of all the block values have not changed by all
that much. This 1is as expected since the mean of each of
the random error distributions was zero. There is a drop
(of 24 percent) in the number of occurences of both blocks
being above the pay grade.

The results of situation (£f) originate from adding a
measurement error to the raw sample values. Another
approach'is to round all the sample measurements, convert
them to metric wunits, and then to add a random error.
Situation (g) depicts the results of such an procedure. A
random number from a Normal distribution of
N(G.D metres,@.lz) was added to every lode width
sample. Thus, there was a 5 percent chance of a width being
changed by at least @.1 metres. For the lode assays using a
N(@.0 percent tin,@.ﬂ252) distribution gave a similar
probability of the wvalue being altered by at least
§.025 percent tin. The results are very similar to those of
situation (a). No noticeable change has been caused by
these simulated random measurement errors.

Overall the block simulation method seems robust to
inaccuracies in the <conditioning data. So 1long as any
measurement error is random and unbiased it can be
confidently accommodated.

Situations (h) and (1) in table 9 represent the
results when conditioning with every other development
sample. These results would be obtained if only 3 metres

(or 10 feet) sampling had been practised. They show that
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the simulation method 1is fairly resistant to the loss of
half its conditioning data. However, the average block
assays are changed markedly. In particular, the mean of the
one hundred upper block average assays is increased by 16
and 12 percent. Despite this there is a marked decrease in
the number of occurences of both blocks being above the pay
grade. This means that the distribution of the upper block
average assays has changed shape. Its average has increased
as well as the proportion below 0.9 percent tin. Since
9.9 percent tin 1is 1less than the average this indicates
that the distribution spread has become larger. There are
other effects of only using half the available conditioning
data. These include the great reductions 1in the
correlations between the averages of the two blocks. As a
result of all these changes it was considered inadvisable
to use the block simulation method in areas where 3 metres
(or 18 feet) development sampling had been employed. The
lack of conditioning data could create significant
inaccuracies in the results.

It has been mentioned (see section B.2.3), how the
average assays were calculated throughout this study. They
were defined as the arithmetic mean of the assay values
under consideration. This was in preference to the commonly
used accumulation based definition, which states that the
average assay of a set of values is equal to the average
accumulation divided by the average width. Situation (Jj) in

table 9 depicts the results obtained when the second
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definition was wused. Relative to the results using the
first definition (situation (a)), the lower block average
assay has 1increased by 10 percent. Apart from this there
are no substantial differences. The use of one definition
in preference to the other does not cause any important

changes in the final results.

B.4.8.Costs of the simulations :-

The cost of producing the wunconditional simulations,
and running them through the program SIM2BLO, is obviously
dependent on the number of them. One hundred was chosen
arbitrarily as a large, but manageable, number. There must
be enough simulations to give a good idea of the parameter
distributions. To test whether one hundred is enough the
figures in table 10 were calculated. They were derived from
the results of one hundred simulations obtained under
situation (a) of table 9.

The one hundred lower block average lode widths were
split into groups of equal size. The minimum and maximum
deviations from the overall average, for that particular
group size, were found to be as shown. This process was
repeated for wvarious group sizes, and for the other three
block averages.

The results of table 19 indicate that fifty
simulations suffice. The averages are extremely close to
those of one hundred simulations. The program SIM2BLO was

executed wusing only fifty simulations. The results were



TABLE 140

Simulated blocks = 508 to 125 East

% difference from
average of
Number of 1808 simulations
simulations{Lode width|Lode assay

in groups Min | Max Min | Max
100 ] )] 2 )]
50 2 2 2 2
33 1 3 3 8
20 2 7 1 16
10 4 17 2 22
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found to be as close as possible to those obtained with one
hundred simulations.

The cost of producing fifty simulations was found to
be 643.7 CP seconds. The total storage required was 167,040
characters. To execute SIM2BLO with fifty simulations cost
228.4 CP seconds. Thus, the total cost for fifty
simulations of one block layout was 872.1 CP seconds. At
current (October,1979) commercial rates this 1is about
192 pence per simulation. It compares extrememly favourably
with the 16 pounds Sterling per simulation achieved by the
stope simulation method (see section B.3.6). When it Iis
considered that the number of simulated values has been
increased from eighty one to one hundred and twenty eight
the reduction in cost is enormous. The justification of the
block simulation approach because of its lower cost has
been proved.

One of the major features of the block simulation
technique is that the same unconditional simulations can be
used for different block layout sites. For instance, ten
adjacent block layouts between 318 and 335 levels could be
run through SIM2BLO. The total <cost to ©produce fifty
conditional simulations for each layout would be
643.7 + 19*228.4 = 2927.7 CP seconds. Per block layout this
is a cost of 292.8 CP seconds, or about 32 pounds Sterling.
The expense per simulation is now only approximately

64 pence,
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B.4.9.Conditioning with grouped data :-

The block simulation technique incorporated in the
computer program SIM2BLO requires the results from one
hundred sample points. All these measurements are used to
condition the simulations. It was decided to test the
effect of conditioning the simulations to groups of data.
In other words, the conditioning data would consist of a
number of sections of the development drives, each
comprising several sample points. For instance, the one
hundred samples could be split into ten groups of ten
samples. Each group would represent a section, of
15.3 metres in length, along a development drive. By this
means, the influence of a single exceptionally high value
would be reduced.

The program SIM2BLO was adapted to carry out such an
operation. Table 11» shows the results. The first set of
results (one hundred groups of one sample) are those of
situation (a) in table 9. The last grouping arrangement
shown (with thirteen groups) involved the conditioning data
being subjectively arranged. Each of the groups contained a
different number of samples, and represented a length of a
drive with a specific quality. This was either low width,
or high width, or 1low assay, or high assay, or any
combination of the four,.

The results shown in table 11 indicate that
conditioning with grouped data has not worked. Even with

the conditioning data in fifty groups of two samples the
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TABLE 11

50 to 125 East

Subscript L = Lower block U = Upper block
Average Correlation
Number correlation between

of occurences between 128 108 blocks
Data at pay = 2.9% simulated grid WidthL AssayL

|__groups Average block values Lower/Upper point values Vs Vs
Number| Size | Width |Assay widthU Assay P/P|P/N|N/P[N/N | Width vs Assay widthU Assay
100 1 1.71 1.37 1.77 @.90 421 37 51 16 g.06 g.70 @3.45
50 2 1.57 2.00 1.72 1.17 61| 33 1 5 g.06 .70 g.37
25 4 1.51 1.93 1.75 1.11 52| 42 @ 6 @.93 g.71 @.42
20 5 1.59 2,47 1.83 1.49 78| 18 1 3 g.02 g.70 .43
10 19 1.42 1.60 1.8¢0 1.35 71( 12} 11 6 @.01 g.71 g.59

5 20 1.42 1.16 1.88 1.17 39 9| 24| 28 g.01 g.72 g.34

4 25 1.46 1.89 1.86 1.32 66{ 17 51 12 -g.02 g.71 .60

2 50 1.86 2.28 2.00 1.49 70| 16 3] 11 -g.01 9.73 .65

13 - 1.53 1.68 1.95 1.23 62| 28 4 6 .01 9.72 .50
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differences from the 'correct!' results are large. Once
again the importance of the conditioning process has been
emphasised. Any reduction in the amount o0f <conditioning

information causes a marked decrease in accuracy.
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CONCLUSIONS

The simulation method wused 1in this study was static and
probabilistic. It was based on the geostatistical 'turning
bands' technique, and essentially consisted of three
operations :-
(a) Fifteen one dimensional simulations were
formed. These consisted of point values regularly
spaced along single axes. It was found that a
spacing of one hundredth of the desired range of
influence should be used.
(b) The one dimensional simulation axes were
regularly orientated in space, and their
characteristics transfered into a three dimensional
simulation. A new method was developed for deriving
the fifteen regular axes directions. It was found
to be quicker than the previous method (Journel,
1974), and more accurate for simulating a line.
{(c) The three dimensional simulation was
conditioned to any available real data. At the data
points the simulation value was forced to equal the
real value. The conditioning process was found to
be the most important operation in the whole
simulation technique. Any changes in the number,
position, and values of the <conditioning data

points caused significant differences in the final
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simulated wvalues. The correlation between a
simulation's accuracy before and after conditioning
was found to be 1insignificant when the average
conditioning kriging variance was 1less than one
third of the semi-variogram sill. Under these
conditions, an inaccurate unconditional simulation
was not necessarily an inaccurate simulation after
conditioning.

The standard technique for transfering the
characteristics of the one dimensional simulations into
three dimensions is to use fifteen regqularly orientated
axes. This confiquration's performance was compared with
others, both before and after conditioning. A configuration
of fifteen randomly orientated axes was too inaccurate
under all circumstances. Using one hundred randomly
orientated axes was prohibitively expensive. A ten regular
axes configuration was found to be suitable where the
conditioning process was strong, that is with an average
kriging variance of less than one third of the
semi-variogram sill. Under other conditions the fifteen
regular axes confiquration was the most appropriate.

A major requirement in geostatistics is for a measure
of the reliability of a semi-variogram value. The
minimum/maximum envelope after fifty random removals of ten
percent of the data gave a good impression of the
robustness of a semi-variogram.

Each semi-variogram value was calculated as the
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arithmetic mean of a distribution. Trimming off the high
values of these distributions was helpful in identification
of the semi-variogram model parameters.

The simulation method was applied to No.9 lode in
South Crofty tin mine. Since the sample measurements used
were so important to the whole procedure, great attention
was made to their accuracy. It was found that the
measurements' accuracy could be determined using the
histogram of their final digits. Grouping these digits
until a Normal distribution was achieved eliminated the
human bias imposed during sampling.

The logarithms of the development lode widths were
found to follow a cubic trend surface. The standard
geostatistical practice with non-stationary data, such as
this, is to use the residuals of the trend. However, the
global trend surface was 1inaccurate over small areas
between the development level drives. As a result of this,
the trend was 1ignored and the data was treated as being
stationary. Conditional simulations of some stopes within
No.9 lode justified this approach. The conditioning process
forced the local characteristics of the global trend on the
simulated values.

Conditional simulations of lode assays for No.9 lode
stopes were produced. Again the conditioning process was
found to be dominant. It imposed the local average on the
simulations, and correspondingly altered their

semi-variograms.
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Both lode width and 1lode assay conditional stope
simulations were resistant to change in the semi-variogram
model parameters.

A relationship between 1lode widths and actual, or
stope, widths was found. It was used to produce conditional
actual width simulations of stopes within the lode. Due to
the inaccuracies of the actual width predictor, the
simulation results were unrealistic. An actual assay
prediction technique was also determined. It was more
accurate than the actual width predictor. The conditional
stope simulations of actual assays were found to be
realistic.

In any simulation approach it 1is wvital to consider
enough simulations. It 1is dangerous to draw conclusions
from only a few sets of results. A block simulation
technique was developed which produced several simulations
at a relatively low cost. The major cost reducer was the
fact that the unconditional simulations could be used for
more than one block layout site. Fifty simulations of a
single site were produced for a total cost of 32 pounds
Sterling. The area covered by these simulations was 1likely
to contain over 58 tonnes of tin (equivalent to 350,000
pounds Sterling at October 1979 prices). The simulations
were of two vertically adjacent blocks between two
development level drives. The technique calculated results
concerning the relationship between these two blocks. The

results were used to determine the extraction order 1likely
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to be the most profitable. They were also utilised to
justify the criterion for signalling the presence of a
non-pay block.

The simulations produced by the block simulation
technique were conditioned to sample data from the two
adjacent development level drives. The results of the
technique were found to be resistant to errors 1in the
estimated positions of these samples. They were also
largely unaffected by any unbiased errors in the data
measurements. The block average lode assays were calculated
as the arithmetic mean of sixty four simulated values. The
alternative definition, as the average accumulation divided
by the average width, was tested. The results from the
block simulation technique were similar for both
definitions.

Geostatistical simulation of potential stoping areas
éan be a very useful aid to mine planning. It is possible
for its cost to be very small compared with the savings it

may produce.
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APPENDICES

Subroutine SIM

Subroutine COORDS1

Program SIM3D

Program CON

Determination of the co-ordinates of any point
on ten regular axes

Subroutine COORDS2

Determination of the co-ordinates of any point
on fifteen regular axes

Determination of sum cos alpha terms

for Journel's fifteen regular axes

Subroutine COORDS3

19

11

12

13

Program
Program
Program

Program

.RANDO

CONS IM1

CONSIM2

SIM2BLO
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Appendix 1 : Subroutine SIM
The 1listing of the subroutine SIM is shown overleaf.
The required input to the subroutine is :-
A - The desired range of influence.
NS - The number of samples to be simulated
The output of the subroutine is :-
Y - An array containing 'NS' simulated values,
which follow the one dimensional spherical
semi-variogram model with a range of 'A', a sill of

1.0, and a nugget effect of 9.4.



00010
00020
00030
00040
00050
00060
00070
00080
00080
00100
00110
00120
00130
00140
00150
00160
00170
00180
00180
00200
00210
00220
00230
00240
00250
00260
00270

SUBRBUTINE SIM{YsAsNS)
DIMENSION Y ({2000 » T (100)

B=0.01*A

WF=SART (12.0%B/ (A% (AXA+11 . OKBXB) ) )
DB 50 M=1,100

50 CALL RANDBM(T (M) »1.07

D@ 53 I=1,NS

Y(I)=0.0

DIS=—B.2.0

DB 52 K=1,50

DIS=DIS+B

52 YD) =Y I 4D ISKT (50+K) =T (51—K))
Y (I =Y D) R

D@ 54 M=1,99

54 T =T (M+1)

CALL RANDGM(T (1005 5 1.0)

53 CONTINUE

RETURN

END

SUBRBUTINE RANDBM(S,SD3

S=0.0

IF {<SD.EQ.0.0> RETURN

DO 10 M=1,12

10 S=S+RANF (0.0}

S=(S—6.0) ¥SD

RETURN

END



Appendix 2 : Subroutine COORDS1
The 1listing of the subroutine COORDS1 1is shown
overleaf. The required input to the subroutine is :-
X - An array of 15 stores. The first 3 stores
contain the X Y Z co-ordinates of the considered
point.
The output of the subroutine is :-

X - The co-ordinate of the point on each of the 15

regular axes.



C1640 SUBROUTINE COORDS1 X

01650 DIMENSION X{15) sR{3,3)

01660 DATA ((RI»Jy»Jd=1533,1=1,3) /0.5,-0.80801693,0.30801699,
01670+0.809016939,0.30901699,-0.5,0.30801688:0.5,0.809016393/
01680 N=0

01680 DO 1 K=1:4

01700 DB 2 L=1,3

01710 NL=N+L+3

01720 X<{NL)=0.0

01730 DB 2 M=1,3

01740 2 XINLJ =XI{NLI +R My L3 KX IN+M)

01750 N=N+3

01760 1 CONTINUE

01770 RETURN

C1780 END
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Appendix 3 : Program SIM3D
The listing of the program SIM3D 1is shown overleaf.
The required input to the program is :-
SMAX - An array of 3 stores containing the
dimension of the simulated block in the x y =z
directions.
NSEED - A four digit number used to trigger the
random number generator.
A - The semi-variogram model range of influence.
C - The semi-variogram model sill.
ENUG - The semi-variogram model nugget effect.
AVER - The distribution model average.
VMIN - The first group endpoint in the histogram of
the simulated values.
VMAX - The last group endpoint in the histogram of
the simulated values.
NGRP - The number of groups in the histogram
between 'VMIN' and 'VMAX'.
An example of the output of the program is given overleaf.
The output also includes :-
V - An array of 20%28%29 stores. It contains the
unconditional simulation values. The dimensions of
this array can be changed if a different shape is

to be simulated (for instance 1*19000%*1).



20100 PRAGRAM SIM3D UINPUT=I131B,.0UTPUT=1318,
CToIN+TARER S INPUT, TAPE 7=0LTRPUT s TAPES4, TAPES)

-oi20C

CTIROC ThIS PROGRAM SIMULATES VALUES W-ICH FBLLOW SPHA-CHENUG
21400 AND N.(AVER.CH .

ooie0C

JCOLBCC THE NUGGET EFFECT COMES FROM A RANDOM NOENUGS .

T0172C THE REST BF THE VARIATION (=CO=C-ENUG» CBMES FROM N{AVER,COS
TC18CC AND FOLLOWS SPH(AR,CO.0: .

J0190C ADDING THESE 2 TOGETHER PREDUCES VALUES WHICH CCME FROM
Z0200C NAVERSC) AND FOLLBW SPHIA.CLENUGH .,

2Ce10C

CC2Z0C  TAPE3=0ULTPUT FBR SIMULATED VALUES

QACZ230C TAPE4=3LTPUT FOR SEMI-VARIBGRAMS, HISTOAGRAMS ETC.

ZCZ40C  TAPEB=INPUT FROM TELEX

Z2250C TARPEZ=CUTPUT ON TELEX

oC2edc

JUZ270C  THIS PREGRAM IS TC BE RUN ON TELEX.

co2slC

0230 COMMEN XINT{(3) WyNEXT (3 »v20,20,:20) » Y 20005 » X {155 » SMAX (3]
CO30C READ 6. 1000:NSEED

ZC3:10 1000 FORMAT (IS

CC32C XSEZD=FLOBAT (2NSEED+1.

C333C0 ZALL RANSET (XSEED)

ZC24C DC 71 I=1,10C

20355 7: T=RANF (2.0

-C23ed ITE (4, 20C0y

JC370 WRITE(7,20C0)

Z038C 2C00C FERMAT ¢x MAX IN X, Y,2 DIRECTIONS 3FB. 1%

22392 REAC B, 10017 (SMAX I I=1,3)

3040C WRITE 4, 1001 SMAX 1) »1=1+3)

204.1C 001 FORMRT (3FHB. 15

20420 22 80 I=1+3

00430 NEXT (I = IROUND (SMAX I )

ZC44C 80 sMAaxXIr = sMAxXKI -1.0, 2.0

204957 WRITE4,20015

2C4eC WRITE7,2001)

20472 2C0C1 FORMAT & RANGE +SILLWNUGGET EFFECT + AVERAGE 4FB.27%
CC48C READ B.1002)AsCHENUGYAVER

2CA48C :0C2 FORMAT (4F6.2)

ZCeC0 WRITE (4, 1003, AsCHENUGAVERINSEED

T05:C 10C3 FARMAT Q4 2XHF7.2) 775X, I4)

ZI5Z0 CC=C-ENUG

20537 B=A-100.0

TCH4C D3 3C J=1,.NEXT L)

ZC550 20 3C X=1.NEXT 2’

ZCTH6Q0 T2 30 =1 NEXT(3)

TO57C 30 v Ukl =0.0

2058C DO 15 I=1415

206580 WRITE(7,20030 1

TC6CSC 2003 F2RMAT UK I AM NOW CONSIDERING AXIS NO. %, I2)

ZZELC 20 31 L=1,3

ZZe2l Xil.=
—Ce3l X2 =C.
23e40 X (3., =0.
c0ebl XIiJy=XJdy+1.,C

Z0Be6C CALL CCORDSI O

T2E7C XINT Uy =X{I.

22680 21 CONTINUE

COESGC DMAX=SMAX (1) RABS (XINT (100 +4SMAX (27 FABS (XINT (25 ) +4SMAX (3 #ABRS (XINT (355
TO700 NYZIREUND (2.00DMAX/B) +2

TC7:0 NORG=IROBUND (-DMRxXB)

L7250 CRo. SIMIYLAWNY, B

LT3 ARITE C4,2004) IyNORGHNY,DMAX

000
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> 18 L=1.NEXT (3
X_=FLOART (L -1 -SMAX (3

XX ICINT (1) XK INT (20 +XU X INT (3
NC=TROUND (XCB: —NORG+!

1G Vv L Ke L=V e XL +Y (NG
15 CZONTINUE

SuMv=3.C

SeMve=0.0

STO=SGRT LS/ 15.00
SOENUG=SGRT ENLG

LOAT INEXT (1) NEXT (23 NEXT (355
1 LT IaNEXT L
1 K=1.NEXT (20

> 20 21 L=1.NEXT 3

CfL . RANDCM S SDENUGH
VXZV (U KL LD RS TD+S+HAVER
SIMV=SUMV-VX

SNV 2=SUMY2 + VXV X

2L vidaKsLr=vX

2008 FORMAT (IDUIXHWFB.305
AL . CAM IV AL CHNEXTSENUGE
AvV=3UMV XN

VAR= (SUMV2-SUMVIKAV) ~ (XN=-1.0)
WRITE 14,2006 Av, VAR, XN

] WRITE (7,200865 AV, VAR, XN
} 2006 F2RMAT K Av, VAR XN FOR VK, FB8.4, 1XsF8.4,3XyF5.0)

CALL DISTVaNEXT)
ENDFILE 3
ENDFILE 4

STeR

ENT

SUBRIUTINE DIST (VA NEXT)
CIMENSION Vvi2C, 20,200 «NEXT 3
SIMENSIAN IHIST BN

SRTA IRST Lk

ARITE (7.2030

Z0CC FARMRT O WHAT ARE VMIN, vMAXLNGRP  2FE6.2»

RERD (B 1202 vMINY VMR X, NGRP

(CCC FIRMART2-B.2y 120

o 2C 1=1.80 ’

2C IRIST =0

VINTZ IvMAX-VMING AFL3AT (NGRPS

C2 1T JElaNEXT L

SO LT K=1aNEXT 2

T3 10 C=1aNEXT G

IF OV kG0l LLELVMING GOTO 1

FV ek, Ls LGTLVMARXS GOTO L2

T4z IF IX v idsKy Ly =VMING ~VINT+0.888388) +1
IHIST Ik, = IHIST (IHL #+1

G2 T2 IO

11 IHIST L 2 IHIST L)+

G2 7@ 10

1C IRISTINGRP 42, =ITHIST (NGRP+2) +1
1T CCHTINCE

“¥+X =
C0Ols 151 aNGRP 2

5 IFVIRISTILLLGT.MAXS MAX=IHIST L

V22X FB.

1

 WNRITE (35200590 SOV Ky Ly L=y NEXT (355 K21, NEXT (255 » J=1NEXT (15

12



C1380 DO 14 1=1,.NGRF+2
101380 VUPPER=VMIN+FLORT «I—-1: WVvINT
C1400 IH=IWIST(I)R110/MAX+1
1410 WRITE 4,2002) VIUPPER, IHISTIS » {IAST»J=1,y IH)
01420 2002 FERMAT &8 =L, FB.25 145 120R 10
01430 14 CONTINUE
01440 RETURN
01450 END
01460C
01470 SUBROLUTINE SIMIY.PsNSsB)
01480 DIMENSION Y2000 » 71007
01490 WF=SART (12.0 B/ (AKL{RIR+11.0KBXBL 5
Q01%C0 D@ 50 ™M=1,100
01510 50 CALIL RANDCMIT M) 1.0
01520 DB B3 I=1,NS
01530 Y1 =0.0
01540 DIs=-B/2.0
01550 DO 52 K=1,50
C1560 DIS=DIS+B
01570 52 Y (I =Y ) +DISHIT BO+K) =T B 1-K3 )
01580 Y (I, =Y (1) KF
0159C D@ 54 M=1,99
01600 54 TM =7 M+1%
C1610 CRLL RANDBMITI0O0) +»1.0)
01620 53 CANTINUE
01630 RETURN
01640 END
C1650C
01660 SUBRCALTINE COCRDS! (X
C1673 DIMENSION X155 ,R<3,3)
01680 DARTA (RI+J) +J=1,3,1=1,35,/0.5,-0.80801693,0.30801659,
01696+0.83580168¢,0.30801699,-0.5,0.309801688+0.5,0.80801693/
017C0 N=C
01710 BB 1 K=1,4
01720 DB 2 L=1,3
J1730 NL=N+L+3
31740 XNL’=0.0
01750 DB 2 M=1,3
01760 2 XINL7 =X NL) 4R (ML, I IN+MJ
C1770 N=N+3
01780 1 CONTINUE
0173C RETURN
0180C END
01810C
01820 SUBROLTINE GAMIV,A,CyNEXT,,ENUG)
31830 DIMENSICN Vv<20,20:207 » IGRA (1005 s NEXT (35
01840 DATR IARST, IBLNK,,IPLUS/1HI, 1H » 1H+/
01850 DB 15 M=1,3
01860 RMS=0.0
01870 WRITE(7,2001:M
1880 2001 FORMAT &8 M= K, 1)
01880 IF NEXTM, .EQ.1> GO TP 15
C180C LAGL IM=NEXT (M -1
C1610 IFLLAGL IM.GT.200> LAGL IM=200
C182C DB 10 LAG=1+sLAGLIM
01930 L IM=NEXT M) -L ARG
01840 GRAMKR=0.0
01850 GB TO 20:21,22: M
0:86C 20 CONTINUE
01970 D2 11 I=1,LIM
3198C DB 1! J=1,NEXT (2>
01690 DB 11 K=1,NEXT 3
C2000 DIFF=v I JsKi =VIIHLAG JiKD
D2C:i10 11 GRAMA=GAMM+DIFFXDIFF



02020 COUN=FLOAT L IMKNEXT (25 =NEXT (33 )
0z03C GO 10 25

02040 21 T°PMTINUE

02050 DG Zi I=1,LIM

02060 DO 31 J=1,NEXT 3

02070 DO 31 K=1,NEXT {1

02080 DIFF=v K I, =v K, I+LAG .}

2090 3. GAMMA=GAMMA+DIFFIDI¥”

02100 CLL" =FLOAT (L IMENEXT (3% NEXT {133
02110 G&Z 73 25

G212C 22 T3NTINUE

0213C DC 41 I=1.LIM

02150 DO 41 K=1,NEXT 2

02160 DIFF=Vv K, I) =V JsK,s I+LAGS

C2170 4: GAMMA=GAMMA+DIFFIDIFF

02:80C COUN=FLOAT L IMNEXT (15 NEXT (25 4
02180 25 CONTINUE

02200 GArMMA=GAMMAKD ., 5/CCUN

02210 SOFAR=FLIAT (LAGY

02220 HOVERA=SOFAR/A

02230 GMADEL=1.5HHOVERA- 0.5 HOVERANHOAVERANKHAVERA)
02240 GMADEL =GMJIDEL ™ " —ENUG) +ENUG

02250 IF (HBVERA.GE.1.0°3MBDEL=C

02260 RMS=RMS+ ({(GAMMA—EMODEL ) ~GMOADEL) #e2
02270 IMADEL=IFIX(GMCDEL*S0.0/Ci+1

02280 IGAMMA=IF IX ({GAMMRKSQ.0/CH +1

02280 DO 12 I=1,100

02300 12 IGRAIY =IBLNK

02310 IFJIGAMMA.GT. 1007 IGRAIOG) =IPLUS
02320 IF {IGAMMA.LE. 100y IGRAJIGAMMAL =IAST
02330 IGRAIMADELY =IPLIS

02340 WRITE (4, 2000 SOFAR:GAMMA, GMBDEL s (IGRA(IY + I=1, 1000
02350 2000 FORMAT (IXsF4.041X6F 7.2, 1X,F7.24K43, 100A 1)
02360 10 CONTINUE

0237C RMS=100.0%SART RMSFLOBAT (LAGL IM) &
02380 WRITE (4, 2003)RMS

02330 WRITE (7,2003) RMS

02400 2003 FBRMAT &K RMS = WG F7.3,k PERCENTH
02410 15 CONTINUE

02420 RETURN

02430 END

02440C

02450 SUBROBUTINE RANDOMIS.SD)

02460 S=0.0

32470 IF(SD.EG.Q.0) RETURN

02480 DB 10 M=1,12

02430 10 S=S+RANF (0.07

02500 S={5-6.0KSD

02510 RETURN

02520 END

02530C

02540 FUNCTION IROBUND X

02550 Y=ABS (XJ

02560 IRBUND=IFIX{Y+0.48938399)

02570 IFX.LT7.0.0) IRBUND=—IRCUND

02580 RETURN

02580 END



MAX IN X,Y,Z DIRECTIONS 3F6.1
20.0 20.0 20.0
RANGE sSILL,.NUGGET EFFECT + AVERACGE 4FB.2

10.00 1.00 0 10.C3
1234
I,NORG:NY,DMAX 1 -85 192 8.5
I NORGHNY,»DMAX 2 -85 192 9.5
IsNBRG»NY, DMAX 3 ~85 192 8.5
I,NBRGNY,DMAX 4 -154 309 15.4
I, NBRGsNY,»DMAX 5 —-154 309 15.4
I.NORGsNY DMAX 6 -154 309 15.4
IsNBRG NY; DMAX 7 -154 309 15.4
I»NBRG s NY DMAX 8 -154 309 15.4
IyNORG NY:DMAX g -154 309 15.4
IsNORGSNY,OMAX 10 -154 3098 15. 4
I.NORG:NY,DMAX 11 -154 309 15.4
I.NORGsNY,DMAX 12 -154 309 15.4
I.NORGSNY:OMRX 13 —-154 308 15.4
I,NORG:NY:DMAX 14 —-154 309 15.4
I,NORGNY,OMAX 15 —-154 309 15.4
1 .14 .15+ +
2 .29 30+ +
3 .43 .44+ +
4. .58 57+
5. .75 .69+
B .87 .79+
7. .99 .88+
8. 1.08 .94+
g. 1.12 .99+
10. 1.14 1.00+
11. 1.18 1.00+
12. 1.20 1.00+
13. 1.18 1.00+
14. 1.20 1.00+
15. 1.23 1.00+
16. 1.23 1.00+
17. 1.19 1.00+
18. 1.08 1.00+
19. .98 1.00+
RMS = 14.353 PERCENT
1. .15 .15+ +
2. .32 .30+ + X
3. .51 .44+ +
4, .68 57+
5. .88 .69+
6. 1.01 .79+
7. 1.12 .88+
8. 1.19 .94+
g. 1.21 .99+
10. 1.189 1.00+
11. 1.14 1.00+
12. 1.00 1.00+
13. .80 1.00+
14, .83 1.00+
15. .78 1.00+
16. .79 1.00+
17. .83 1.00+
18. .87 1.00+
18. .94 1.00+
RMS = 18.778 PERCENT
1. .14 .15+ +
2. .31 .30+ +XK

3

+++++++++ 4

+H 4+ o+

3. .48 .44+ + K



MS =

.64 57+ + x

.78 .69+ + x
.90 .79+ + x
.97 .86+ + =
1.01 .94+ + %
1.07 .99+ + %
1.11 1.00+ + B
1.17 1.00+ + =
1.25 1.00+ + =
1.33 1.00+ + x
1.40 1.00+ + x
1.51 1.00+ + =
1.64 1.00+ + x
1.75 1.00+ + x
1.73 1.00+ + x
1.72 1.00+ + x

37.966 PERCENT

AV) VﬂR XN FOR v 9.8779 1.0243 8000.

L N T T O S O B

B.00
B8.10
8.20

@
8

PR b BRI

S50V VPPPVLVOI VDD ®
BoRB83385488538838538

2Bk

__
oo
33

88

11,10

B

19 3mmxmxmxxmxxxmmxxxxxxxxxxmxxxxz Lo ety 4

it et rsrrererocrrrorrrerereiitsssaveeeroert it e e st e L L bt a e e St Y
%onommmmxmmmmxnmxxxmmzmx

272 mmmmmxmxmmnnxmmnmm

260 TR IR K AT O KR RCKR o S K R R IR I S I OISR

266 O A O o X X I8 XS OO K K A IO R R KK I SOOI KRR R 0K
295 OO sreseaccoevrore oy IO A AR R ICK0K SOOI

&mmmmmmm

272%xxX x IO TR I R R R K A O O ISR XK R EICICOCCICEE
287 xrrx x = XK A SO O OO T R IOt 2O0Rny
277 ECOCTER: )T oY e s s s st o e R EXOOKKK s A A K A A O OISO

DB AR A A R A AR A R R AR X X S X A A R A X X N I K R R R A K A A XA AR R IR KR AT T A FAK
260 AR R AR AR AR R R TSI KRR XS soos0vee o R AR R OISR RIS SOIIOIONns.

22 1 O R OO A K K A IO R A R SO OO K R R RO RO

277xx IR IIRK s OO ORI
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1 B 2 OO O I O R KA KOOI R R RGO
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Appendix 4 : Program CON

The listing of the program CON is shown overleaf.

required input to the program is :-

The

NSEED - A four digit number wused to trigger the
random number generator.

R - The semi-variogram model range of influence.

C - The semi-variogram model sill,

E - The semi-variogram model nugget effect.

AVER - The distribution model average.

GB - An array of 1009 stores. It contains all the
data wvalues from which the 'NDATA' conditioning
data points are taken.

G - An array of 1008 stores. It contains the
unconditional simulation wvalues.

output of the program includes :-

The histogram of each simulation before and after
conditioning.

The semi-variogram of each conditioned simulation.
The average, variance, sill, and M5 term of each

simulation before and after conditioning.

The



00010
0Qo20C
0oQ30c
00040C
QoosQoc
0Q0060C
QoQ7ac
oQoosoC
00oQsoc
00100C
00110C
0Q120C
00130C
00140C
001s50C
0Q160C
go170C
00180
00190
00200
00210
00220C
00230
Q0240
00250
00260
00270
00280
00280
00300
00310
00320
00330
00340
00350
00360
00370
00380C
G0390
00400
00410C
00420
00430
00440
00450
00460
00470
00480
00430
00500
00510
00520
Q0530
Q0540
00550
00560
00570C
00580
0058C
00600
00610
00620
00630
00640

PROGRAM CON(BUTPUT, TRPE7=BUTPUT, TAPEZ2s TAPE 4 TAPEGZ)

THIS PROGRAM CONDITIGNS SIMULATIANS TG 100 DATA PAINTS WITHIN
A LINE OF 1000 vALUES. THE DATA PAINTS ARE LACATED AS DEFINED
IN THE ARRAY OLECO AND HAVE VALUES AS READ FREM TAPEZ.

THE SIMULATIGNS CANDITIGNED TO THESE DATA PAINTS HAVE BEEN
PREVIQUSLY PRODUCED AND SAVED OGN FILES.

IN ITS PRESENT FORM THE PROGRAM USES 5 SIMULATIOBNS

THE QUTPUT IS OGN THE LINE PRINTER AND THE KINGMATIC.

TAPE2=INPUT TAPE FOR ACTUAL AND SIMULATED DATA
TAPE4=TEMPORARY STORE TAPE FOBR KRIGING WEIGHTS

TAPE7=QUTPUT TAPE FBR HISTOAGRAMS AND RESULTS ETC.
TAPEG2=NQTIFICAT.0ON OF USE OF KINGMATIC DRAFTING MACHINE AND
ITS SUBRBUTINES GF STARTsAXIS,PLAT, NUMBER,L INE, ENPLOT.

coMoeN ~DICKAADBC100)

COMON /HARRY /GSEMI (60>
CoMOGNFRED/GACT (10003

DIMENSION GB (10003 »G {1000} + WGT (6)

NDATA=100

DB 121 I=1,NDATA

121 LACKI =I*10

LOACLOW=LBC (3

LOCHIGH=LAC{NDATA-2)

CALL GET{(S5HTAPEZ2:5HR2123, 7THUMCKARO7)

READ (2, 1009 NSEED»R»CHEsAVER

1009 FORMAT (3XyI4,44X,4F6.2)

CALL WEIGHT{(R,C,E»NDATA)

CALL START &) .

CALL AXIS<0.0,0.0+5HGAMAR,:5,10.0,90.0,0.0:3. 0
CALL AXIS(0.0,0.0,3HLAG,-3,15.0:,0.0:0.0,4.0)
CALL PLOT(1.0,12.0:3

CALL PLOT(2.0:12.0,2)

CALL PLOT{1.0,12.0:2)

READ (2, 1000 (GBI) » I=1,NDATA
1000 FORMAT(I02XFB.2))

WRITE (7,2003)RsC:E+AVERNDATA

2003 FORMAT (1H1//X RsCyiEsAVER = X,4F6.2,% NDATAR = %, I3)
WRITE (7,2001> {LBC(I) s I=1,NDATA)

2001 FORMAT (,20{1Xs I35>

WRITE (7520025 NSEED

2002 FORMAT (5 () s48Xs9HACTUARL (R I4, 1H) /49X 14(1H-3)
LH=NDATA-2

CALL DIST(GBsGBs»3sLH)

DO 16 I=1,1000

16 GACT (I3 =-3.99

DB 17 I=1,NDATA

17 GACTLOC(IY) =GB (D)

LL=LBC (3)

LH=LOBC{NDATA-2)

CALL SEMIBLLsLH)

LSB=4

DO 99 KLM=LOCLOW+1,LBCHIGH-1
IF (KKLM.EQ.LOC(LSB)> GB TG 98
READ (4, 1003) NGT(ID) » I=1,6)
1003 FORMAT(2X,6F6. 4

T=0.0

DB g7 J=1.:6



00650 IG=LBC {LSB—-4+4)

00660 97 T=T+GACT {IG) KGT (WD

00670 GACTKKLM =T

00680 GO TO g8

00680 98 LSB=LSB+1

00700 99 CONTINLE

00710C

00720 2004 FORMAT(IHD

00730C

00740 DB 13 LM=1,5

00750 REWIND 4

00760 IFLM.EQ.1> CALL GET{(BHTAPEZ2,5HR2406, 7THUMCKAD7)
00770 IF(LM.EQ.2)> CALL GET(BHTAPEZ2,5HR2430 7HUMCKARO?)
00780 IF (LM.EQ.3> CALL GET{(BHTAPEZ2,5HRE349, 7HUMCKAD7)
00790 IF{(LM.EQ.4 CALL GET(BHTAPEZ2,5HR63846, 7THUMCKAD7)
00800 IF (LM.ER@.S) CALL GET(BPHTAPEZ2,5HR?7281, 7HUMCKAD7)
00810C

00820 READ (2, 1301) NSEED

00830 1001 FORMAT (3X, I

008490 READ<(2,1002; <G(I) ,I=1,1000)

00850 1C02 FORMART (102X, FB.2))

00860 DB 14 I=1,1000

00870 14 GB(I)=G<D

0osB0 LSE=4

00880 DB 10 KLM=LOCLBW+1,LBCHIGH-1

00800 IFKLM.E@.LBCILSB:> GB TGO 100

00810 v=0.0

00820 READ (4, 1003 UGTI> » I=1,6)

00930 DB 11 JU=1,6

00840 IG=LOC (LSB—4a+D>

00950 11 v=V4GIGRKREGTWUD

00860 G KLM =G(KLM +GACT KKLM —V

00870 GB 76 10

00980 100 LSB=LSB+1

00980 10 CONTINUE

01000 DB 12 I=3:NDATAR-2

01010 12 GIBCI»)»=GACTLBC (I

01020 WRITE (7,20005 NSEED

01030 2000 FORMAT (7 () »SOXs XANSEED = *,I4,/50X;s 12 (1H-) ///)
01040 CALL DIST(GB,GsLOBCLOBW, LOACHIGH)

01050 CALL SEMI(GB,G:LOBCLGBWsLBCHIGH, XS)
01060 XLM=FLOBATILM

01070 xXPAGE=15.14

01080 CALL NUMBER (XPAGEs»XS5,0.07,XL.M,0.0,-1>
01090 13 CONTINUE

p01100C

01110 WRITE(7,200%

01120 CALL ENPLOT

01130C

01140 STOP

01150 END

01160C

01170 +—+—+—+—+—+—+—+—+—+—+—+—+—+—+

01180 SUBRBUTINE SEMIB(LBCLGW,LBCHIGH)
011390 COCMMONHARRYAGSEMI (60>

01200 CGMMON/FRED/GACT (1000

01210 DIMENSIBN S (B3’ sH (B3

01220 xRM5=0.0

01230 RMS=0.0

01240 DG 10 LAG=1,60

01250 LIM=LGBCHIGK-LAG

01260 GAM=0.0

01270 x=0.0

01280 DB 11 I=LBCLOW,LIM




01290 IF(GACT (I} .EQR.-9.99.08R.GACT(I+LAG .EQ.-9.99 GB T8 11
01300 X=X+1.0

01310 DIFF=GACT (DD -GACT{I+LAG>

01320 GAM=GAM+DIFF*DIFF

01330 11 CONTINUE

01340 S{AGY=-9.99

01350 IF(X.EQ.0.0> GoTOo 10

01360 S{LAG) =0.5%GAM X

01370 HOVERA=FLOAT {(LAG) ~50.0

01380 XMADEL=20.0%{1.5%HBVERA-O.5KHBVERAKHBVERAXHBVERA)
01390 DIFF=S{LAG: -XMADEL

01400 RMS=RMS+D IFFXDIFF

01410 XRMS=XRM5+1.0

01420 10 CONTINUE

01430 DB 13 I=1,60

01440 13 GSEMI{I)=S{D

01450 RMS=SQRT (RMS/XRMS)

01460 WRITE (7,2000)RMS,RMS

01470 2000 FORMAT (44X, 1HO»5Xy 14HRMS WPT ACTUAL »SX,s 1HO/
01480+40X,F5.2,5Xs 194HRMS LWRT MBDEL +5X:F5.2)

01480 SILL=0.0

01500 X=0.0

01510 0O 12 I1=50,60

01520 IF (S .EQR.-8.89 GO TOQ 12

01530 SILL=SILL4SD

01540 X=X+1.0

01550 12 CONTINUE

01560 SILL=SItLL/X

01570 WRITE(7,2001> SILL.SILL

01580 2001 FORMAT(40X1F5.2:5X+14HEST. BF SILL »5XsF5.2///)
01590 IX=0

01600 0B 20 I=1,60

01610 IF(SD .EQR.-8.99 G2 T8 20

01620 IX=IX+1

01630 S(IX=S(D

016490 H({IXC =FLBAT(I)

01650 20 CONTINUE

01660 OB 21 I=1,IX

01670 S{IX+2-I) =S (IX+1-D

01680 21 H(IX42-I)=H (IX+1-I)

01690 S{1)=H{1>=0.0

01700 IX=IX+1

01710 S{IX+1=0.0

01720 S(IX+2)=3.0

01730 H{IX+1>=0.0

01740 H(IX+2)=4.0

01750 CALL LINEHIS»IXs1y-141)

01760 YSCALE=1.0,3.0

01770 CALL ARKIST(H,Ss1,IXs10+0.25,YSCALE»0.0+0.0,2, 17
01780 S (IX+1,=-10.0

01790 CALL LINE(H:SsIX»1s1410

01800C

01810 RETURN

01820 END

01830C
01840C
01850 SUBRBUTINE SEMI (UsVsLOBCLBWsLOCHIGH, XS)
01860 COMMBN /HARRY GSEMI (BO)

01870 DIMENSION U (10003 »V (10007 »S (B2} sH (B2) +SB (60>
01880 DB 10 LAG=1,60

01890 L IM=LOCHIGH-LAG

01900 GAMB=0.0

01910 GAM+=0.0

01920 00O 11 I=LOBCLOW,LIM




01930 DIFF=U{D U IHAG)

01940 GAMB=GAMB+D IFF*D IFF

01850 DIFF=V(D -V{IH AG

01960 GAME=GAMHD IFF*D IFF

01970 11 CONTINUE

01980 XN=FLOAT{L IM-LOCLOBW+1)

01990 SB {(LAG) =0.5%GAMB . XN

02000 S<{LAG) =0.53%GAM1/ /XN

02010 H{LAG) =LAG

02020 10 CONTINUE

02030C

02040 S{61>=0.0

02050 si62)=3.0

02060 H{B1>=0.0

02070 H (B2 =4.0

02080 CALL LINEH:S»60:1,0:3)

02090 X5=S (60 /3.0

02100 RMSAB=0.0

02110 RMSAA=0.0

02120 RMSMB=0.0

02130 RMSMA=0.0

02140 XP=0.0

02150 DO 13 LAG=1,60

02160 IF (GSEMILAG .EQ.—9.99) GB 70 13

02170 XP=xXP+1.0

02180 DIFF=SB (LAG) —GSEMI (LAG)

02190 RMSAB=RMSAB+D IFF*D IFF

02200 DIFF=SLAG) —GSEMI (LAG)

02210 RMSAA=RMSAA+D IFFXDIFF

02220 HOVERA=FLOAT (LAG) ,50.0

02230 XMADEL=20.0%{1.5%HOVERA-D .5 HOVERAXHBVERAXHBVERA)
02240 DIFF=SB (LAG) —XMBDEL

02250 RMSMB=RMSMB+DIFFXDIFF

02260 DIFF=S{LAG) —XMBDEL

02270 RMSMA=RMSMA+DIFF*DIFF

02281N 13 CONTINUE

02290 RMSAB=RMSAB./XP

02300 RMSAA=RMSAA/XP

02310 RMSMB=RMSMB./XP

02320 RMSMA=RMSMA./XP

02330 WRITE (7,2001) RMSAB s RMSAA RMSMB » RMSMA
02340 2001 FORMAT(39X:F6.2:5Xy 14HRMS WRT ACTUAL »4X,FB.2/
02350+39X,F6.2:5X 144RMS WRT MBCEL +4XsF6.2)
02360 SILLB=0.0

02370 SILLA=0.0

02380 DO 14 LAG=50,60

02330 SILLB=SILLB+SB(LAG) /11.0

02400 14 SILLA=SILLA+S(LAG) ~711.0

02410 WRITE (7,2002, SILLB,SILLA

02420 2002 FORMAT (40XsF5.2,5X,14HEST. OF SILL +5XsF5.2///)
02430C

02440 RETURN

02450 END

02460C
02470C
02480 SUBROUTINE DISTWsVsLLsLH)

02490 DIMENSION U (1000 »V (1000 »NF (225 »NFB (22) ,» IPLOT (5O
02500 DATA IBLNK, IAST/1H , 1H*/

02510C

02520 LOCLOW=LL

02530 LOCHIGH=LH

02540 D@ 30 I=1.,22

02550 NFB (1) =0

02560 30 NF {I>=0




02570 sSuMUt=0.0

02580 suUM!2=0.0

02590 DB 20 I=LBCLEBW,LBCHIGH

02600 UX=U(Id

02610 SumMt=sumMi+HIX

02620 SUMUI2=SUMI2-+UXRUX

02630 IFUX.LE.S0.0) GO T8 21

02640 IF(UX.GT.110.05 GO TO 22
02650 IF=IFIX{UX-80.0+0.99999 +1
02660 NFB (IF) =NFB (IF) +1

02670 GO TO 20

02680 21 NFB (1) =NFB (1) +1

02690 GO TO 20

02700 22 NFB (22 =NFB {22 +1

02710 20 CONTINUE

02720 sSuMv=0.0

02730 sUMvV2=0.0

02740C

02750 DO 10 I=LOCLCBW,LBCHIGH

02760 VX=V<{iD

02770 SUMV=SUMV+VX

02780 SUMV2=SUMV2+VXKVX

02790 IFVX.LE.S0.0) GO TO 11

02800 IF {(VX.GT.110.0) G0 TO 12
02810 IF=IFIX{VX-80.0+0.983999) +1
02820 NF {IF)=NF (IFJ +1

02830 GO TO 10

02840 11 NF (1) =NF {1) +1

02850 GO TO 10

02860 12 NF (22) =NF (22) +1

02870 10 CONTINUE

02880C

02880 DO 13 I=1,22

02900 GRAD=BS.0+ LOATI)

02910 NA=49-NFB (I) /4

02820 DO 15 J=1:NA

02930 15 IPLOT(J) =IBLNK

02840 DO 16 J=NA+1,50

02950 16 IPLOT(J =IAST

028960 NV=NF (I) /4+1

02970 WRITE(7,2000) (IPLOT (J) »J=1,50) » NFB (I) sGRAD,NF (I) s (IARSTsJ=1,NV)
02880 2000 FORMAT (1Xs50R1, I35 1X,F5.1,51X, I3,50A1)
02880 13 CONTINUE

03000 XN=FLOAT (LOCHIGH-L OCLOW+1)
03010 AV=SUMV/XN

03020 VAR= (SUMV2-AVXSUMV) / (XN-1.0)
03030 AVB=SUMJ/XN

030490 VARB= (SUMU2-AVBXSUMS / OGN-1.0D
03050 WRITE (7,2001) AVBsLOCLOW: LOCHIGH»AV, VARB VAR
03060 2001 FORMAT (/33X FbH.2+15Xs ¥*AVERAGE*, I3+ X, %, I3+4X,FH6.2/
03070440X,F5.2:5X, 14HVARIANCE '' +5X:F5.2)
03080C

03090 RETURN

" 03100 END

03110C
03120C
03130 SUBROUTINE WEIGHT{(RsC>EsNDATA)
03140 COMIBN DICKL0OC (100;

03150 COMEBN BILL/LOCN(E) sB 5

03160 DIMENSION R5s5) «T{(7:75 57
03170 LSO=4

03180C

03190 DO 98 KLM=LOC (3) +1,LOBCNDRTA-2) —1
03200 IF (KLM.EG.LOC{LS®»> GB T8 100




03210 IFKLM.GT.LOBCILSO-1,+133 GO 7O 111
03220C

03230 DO 103 1=1,3

03240 DO 103 J=1+1.4

03250 DIFF=FLBATLOBC{LSB-3+J) -LOC{LSB-3+1D))

03260 A{IsJ)=GSPH (DIFFsR,C,E>

03270 103 AW D =ATI+D

03280 DO 104 I=1.,5

03280 ABLI>=1.0

03300 A{I»X5)=1.0

03310 104 A{I,I15=0.0

03320C

03330 111 CONTINUE

03340 DO 112 I=1.5

03350 DO 112 J=1,5

03360 112 T, D =AI,D

03370 DO 105 I=1,4

03380 DIFF=ABS (FL.BAT (LBC {LSB-3+1) KLM>
033380 105 B (1) =GSPH(DIFF,R,C+E>

03400 B{5y=1.0

03410 DO 108 I=1,5

03420 109 S =B

03430 CALL KARDBN(T,S,:5+1KS)

03440 DO 115 I=1,5

03450 115 B(I)=S<I)

03460 DO 116 I=1.6

03470 116 LOCN{I)=LBC(LSO—4+I

03480 IF{(B(15.GE.-0.003.AND.B (1) .LE.D.B.
03480+AND.B (4 .GE.-0.003.AND.B{4 .LE.D.B)
03500C

03510 CALL ACCUR(RCHE KLM

03520 GO TO SS

03530C

03540 101 WRITE (4,2001) B »I=1,4
03550 2001 FORMAT (2X,6H 0»494F6.4,6H
03560 GO TO SS

03570C

03580 100 LSO=LS0+1
03530 99 CONTINUE
03600C

03610 REWIND 4
03620 RETURN

03630 END

03640C
03650C
03660 FUNCTION GSPHHsA:C,E)
03670 GSPH=C+E

03680 IF (H.GE.A> RETURN

03680 X=HA

03700 GSPH=C*({1.5%X~0.5¥XKXX*X +£
03710 RETURN

03720 END

03730C
03740C
03750 SUBROBUTINE ACCUR{(R,CsEKLM
03760 COrrBN BILL/LICN B s B 5
03770 DIMENSION T(757) D7) +F (B>
03780 WGTF=B{1)

03780 WGTL=B (4

03800 DO 104 J=1.4

03810 104 F {J+1)=B (WD

03820 F(15=0.0

03830 F 6 =0.0

03840 NR=24

Ga 10 101

o



03850C

03860 DO 102 ™M=1.2

03870 MNR=NR

03880 IF (LGTF.LT.-0.003> NR=NR+9

03830 IF WGTL.LT.-0.0033 NR=NR-1

03900 IF GdGTF.GT.0.6) NR=NR-Q

03910 IF GNGTL.GT.0.65 NR=NR+1

03920 IF(MNR.EQ.NR) GO T0O 101

03930 NS=NR-(NR10) *10

03840 NT=NR-10

03950 IF ¢((NTHNS) .GT.7.0R. (NT+NS> .LT.4 GB T0 101
033960C

03970 DO 110 I=1,NS-1

03980 DO 110 J=I+1:NS

03880 I1=NT+I-1

04000 J1=NT+J-1

04010 DIFF=FLOAT{LBCN{J1)—LOCNIL)
04020 T{I,J> =GSPHDIFF,s;R,C,»E>

04030 110 TiJs D =TI, D

04040 DO 111 I=1:NS+1

04050 T{I.NS+15=1.0

04060 TINS+1,I15=1.0

04070 111 T{I,I>=0.0

04080 DO 112 I=1:NS

04080 DIFF=ABS{FLBAT (LBCN (NT-1+I) ~KLM )
04100 112 DI{I)=GSPHDIFFsRsCsE>

04110 DINS+15=1.0

04120 DG 113 I=1,6

04130 113 FL(D =D

04140 CALL KARCGN (T,D,NS+1,KS>

04150 D@ 116 I=1.6

04160 116 F(I>=0.0

04170 D@ 117 I=1,NS

04180 117 F(NT+I-1)=D(I)

04180 WGTF=D(1)

04200 WGTL=D{NS)

04210 102 CONTINUE

04220C

04230 101 WRITE4,2001) (FL(D) ,»I=1,6)
04240 2001 FORMAT(2Xs6F6.4

04250 RETURN

04260 END

04270C
04280C
04290 SUBROUTINE KARGN (ADsNPARKS)
04200 DIMENSIGN A(7,7) DD
04310 KS=0

04320 TeL=0.000001

04330 N=NPAR

04340 DG 65 J=13N

04350 Jy=J+1

04360 BIGA=D.

04370 DO 30 I=J»N

04380 IF (ABS(BIGA) —-ABS(R(I,+J’))35,30,30
04380 35 BIGR=AI,JJ

044900 ImMAX=I

04410 30 CONTINLE

04420 IF (APS(BIGA -TAL) 10,10,40
04430 40 D@ 50 K=JsN

04440 SAVE=A (IMAX,K> /BIGA
044950 A (IMAX,K) =A (JsK)

04460 A (JyK) =SAVE

04470 50 CONTINUE

04480 SAVE=D {(IMAX BIGA




04490 D {(IMAXS =D (b

04500 D (4’ =SAVE

04510 IF (J-N> 55,70,:55

04520 55 DO 65 IX=JY,N

04530 DB 60 JX=JYsN

04540 B0 AIXy X =A{IX, X ~AIXs B KA Uy X

04550 65 D {IX =DIIX D (U KA IX, D)

04560 70 NY=N-1

04570 DB 80 J=1,NY

04580 IB=N-J

04580 -DB 80 K=1,J

04600 IC=N-—X+1

04610 80 D {IB’ =D {IB)-A {IB, IC) *®DIC)

04620 RETURN

04630 10 KS=1

04640 WRITE (7,1000)NPAR

04650 1000 FORMAT (BX,XTHERE IS NB SOLUTIBN WITH NPAR =%, I3:% SA THERE:K)
04660 RETURN

04670 END

04680C
046390C
04700 FUNCTIBN IRGBUND OO

04710 Y=ARBS O

04720 IRGBUND=IFIX{Y+0.5)

04730 IF{X.LT.0.05 IRBUND=-IRBUND
04740 RETURN

04750 END
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Appendix 5 : Determination of the co-ordinates of any point
on ten regular axes
Figure Al shows two projections of a dodecahedron. The
ten pairs of opposite vertices are numbered. The standard
orthogonal x, y, z directions are as shown.
Given the co-ordinates on the x, y, z axes (X, ¥, 2),
the task was to find the co-ordinate on each of the ten

axes (€1, €2, C3,....Cl1l08). The method adopted was :-

Input of X Y Z
Do for I=1 to 5 )
Rotate X Y Z around y direction
by angle(A+B) to give Ci
Rotate X Y Z around z direction
by 72° to give nele Y 2
Do for I=6 to 190
Rotate X Y Z around y direction
by angle(A) to give Ci
Rotate X Y Z around z direction

by 72° to give new X Y Z

When rotating the x, y, z directions around one of
them (say the vy direction as in figure A2) the new

co-ordinates are derived from :-



FIGURE A1 DODECAHEDRON WITH POSITION OF 10
REGULAR AXES

w‘——"—
g




FIGURE A2: TRANFORMATION OF

CO-ORDINATES
7 Positive
rotation
2z by angle D
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XX=Xcos(D)~-Zsin (D)
YY=Y
ZZ=Zsin(D)+Zcos (D)

Now from standard geometry :-

Inscribed circle radius = r 1.114E

Circumscribed circle radius R = 1.401E

where E = length of an edge

¢]

therefore angle B 41.8

19.8°

angle A

So the technique becomes :-

Input of XY 2

Do for I=1 to 5

XX=X YY=Y
Ci=XXcos(-52.6)-Zsin(-52.6)
X=XXcos(72)-Y¥sin(72)
¥=XXsin(72)+YY¥cos(72)

o .
5 times

N.B. X and Y having been rotated by 72
are equal to the original X and Y.

Do for I=6 to 10

XX=X YY=Y

Ci=XXcos(-10.8)-Zsin(-16.8)
X=XXcos(72)-Y¥sin (72)
Y=XXsin(72)+YY¥cos(72)

Qutput of X Y Z C1 C2 C3.....C10



- 134 -

Using this technique the point where each axis leaves

a 10*19*108 cube was found to be as follows :-

Co-ordinates where

Axis axis leaves cube |Angle to standard directions

number X Y z X Yy z
1 3.8 6.6 5.0 78 90 37
2 1.2{-3.6{ 5.0 79 55 37
3 -3.11-2.2 5.0 60 69 37
4 -3.1{ 2.2 5.0 60 69 37
5 1.2, 3.6 5.0 79 55 37
6 5.0 6.0 1.0 11 90 79
7 -1.6| 5.0 |-1.0 73 21 79
8 5.0/ 3.6(-1.2 37 55 79
9 5.0|-3.6-1.2 37 55 79
10 1.6 5.6 1.0 73 21 79

Zcos= 4.75 4.86  4.95

From this information a check for the regularity of the
spacing of the axes was carried out. The angle between all

possible pairs of axes was calculated to be :-



Axis
number 1 2 3 4 5 6 7 8 9 10

1 g 41 790 78 41 41 78 76 70 79
2 41 @ 41 78 76 78 41 786 70 70
3 76 41 @ 41 7¢ 76 76 41 76 70|
4 76 76 41 @ 41 79 76 79 41 79
5 41 7¢ 76 41 @ 70 786 76 76 41
6 41 76 78 76 79 @ 76 41 41 70
7 76 41 78 76 78 76 @6 76 41 41
8 79 70 41 7@ 76 41 70 @ 70 41
9 76 76 76 41 76 41 41 76 @ 70

19 76 76 76 76 41 76 41 41 79 ]

The 9 angles between any one axis and 1its <colleagues
are the same for all 19 axes. This is evidence that the

axes are regularly orientated in space.
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Appendix 6 : Subroutine COORDS2
The 1listing of the subroutine COORDS2 1is shown
overleaf. The required input to the subroutine is :-
XY Z - The 3 co-ordinates of the point on the
standard x y z axes.
The output of the subroutine is :-
C - An array of 19 stores containing the

co-ordinate of the point on each of the 18 regular

axes.



00100 SUBROUTINE COORDS2{CsXsYs2)

00110 DIMENSION C<10) 2B 242D

00120 DATA (BT, 0 +J=1,2>,1I=1,2),C0572,SIN72/
0D130+.6148781,--. 7885442, .8822470,—. 1875924, . 30801688, .895105652/
00140 N=0O

00150 DO 11 ™M=1.2

00160 COSANG=B (M, 13

00170 ZSINANG=Z*B (M) 2)

00180 DB 11 I=1,5

00180 N=N+1

D0D200 C (N> =X*COSANG—ZS INANG

00210 TX=X

00220 X="CKCOS72-Y*XSIN72

00230 11 Y=TXXSIN72+YKCOS72

00240 RETURN

00250 END
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Appendix 7 : Determination of the co-ordinates of any point
on fifteen regular axes
Figure A3 shows two projections of a dodecahedron. The
fifteen pairs of opposite edge mid-points are numbered. The
standard orthogonal x, y, z directions are as shown.
Given the co-ordinates on the x, y, z axes (X, ¥, 2),
the task was to find the co-ordinate on each of the fifteen

axes (Cl, C2, C3,....Cl5). The method adopted was :-

Input of X Y Z

Do for I=1 to 5

Rotate X ¥ Z around y direction
by angle(S) to give Ci

Rotate X Y Z around z direction
by 72° to give new X ¥ 2

Rotate X Y Z around z direction
by 36° to give new X Y Z

Do for I=6 to 18

Rotate X Y Z around y direction
by angle(T) to give Ci

Rotate X Y Z around z direction
by 72° to give new X Y Z

Rotate X Y Z around z direction
by -18° to give new X Y 2Z

Do for I=11 to 15

Rotate X Y Z around z direction

by 72° to give new X ¥ 2



FIGURE A3.  DODECAHEDRON WITH POSITION OF 15
REGULAR AXES




Now using the geometry calculated in Appendix 5 the angles

can be found to be :-

26.6°

angle S

(¢]

angle T 31.7

So the technique becomes :-

Input of X Y 2

Do for I=1 to 5
Ci=Xcos(-58.3)-Zsin(-58.3)
XX=Xcos(72)-Y¥sin(72)
YY=Xsin(72)+Ycos(72)

X=XX ¥Y=YY
X=XXcos(36)-Y¥sin(36)
Y=XXsin(36)+YY¥cos (36)

Do for I=6 to 10
Ci=Xcos(—3l.7)—Zsin(—31.7)
XX=Xcos(72)-Ysin(72)
YY=Xsin(72)+Ycos(72)

X=XX Y=YY
X=XXcos(-18)-Y¥sin(-18)
Y=XXsin(-18)+Y¥Ycos(-18)

Do for I=11 to 15

Ci=Xx

XX=Xcos(72)-¥Ysin (72)
YY=Xsin(72)+Ycos (72)

X=XX ¥Y=YY

Qutput of X Y Z C1 C2 C3.....C15
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Using this technique the point where each axis leaves

a 18*19*1@ cube was found to be as follows :-

Co-ordinates where

Axis axis leaves cube jAngle to standard directions
number X Y Z X Y Z
1 3.1, 0.0 5.8 58 90 32
2 1.8|-2.9| 5.0 80 60 32
3 -2.5|-1.8| 5.8 65 72 32
4 -2.5} 1.8| 5.0 65 72 32
5 1.9 2.9 5.0 8p 60 32
6 5.0(-3.6{ 3.8 46 60 58
7 l1.6| 5.0|-3.2 36 36 58
8 5.0| 6.6|-3.1 65 90 58
9 -1.6{ 5.0 3.2 36 36 58
10 5.8 3.6 3.8 46 60 58
11 5.0{-1.6| 0.0 18 72 99
12 g.0| 5.0 0.0 99 @ 99
13 5.8 1.6 0.0 18 72 90
14 -3.6] 5.0| 9.0 36 36 99
15 3.6 5.0 0.0 36 36 90

Zcos= 8.67 7.47 6.89

From this information a check for the reqularity of the
spacing of the axes was carried out. The angle between all

possible pairs of axes was calculated to be :-
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Axis
number!{ 1 2 3 4 5 6 7 8 9 1¢g 11 12 13 14 15

1 @ 36 60 60 36 36 72 99 72 36 60 90 68 72 72
2 36 @ 36 60 60 36 36 72 99 72 72 60 90 60 72
3 60 36 @ 36 60 72 36 36 72 90 72 72 60 90 60
4 60 60 36 © 36 90 72 36 36 72 60 72 72 60 99
5 36 60 60 36 @ 72 99 72 36 36 90 60 72 72 69
6 36 36 72 90 72 B 68 72 72 69 36 60 60 36 90
7 72 36 36 72 99 680 @ 69 72 72 90 36 60 60 36
8 99 72 36 36 72 72 60 @ 69 72 36 90 36 60 60
9 72 90 72 36 36 72 72 60 © 69 60 36 90 36 60
19 36 72 99 72 36 68 72 72 60 @ 60 60 36 99 36
11 60 72 72 60 90 36 90 36 68 60 @ 72 36 36 72
12 99 60 72 72 60 60 36 90 36 60 72 9’72 36 36
13 60 90 60 72 72 60 60 36 90 36 36 72 @ 72 36

14 72 60 90 60 72 36 60 68 36 98 36 36 72 @ 72

15 72 72 60 99 60 99 36 60 68 36 72 36 36 72 ¥

The 14 angles between any one axis and its colleagues
are the same for all 15 axes. This is evidence that the

axes are regularly orientated in space.
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Appendix 8 : Determination of sum cos alpha terms for Journel's
fifteen regular axes
Using subroutine COORDS1 (see Appendix 2) the point

where each axis leaves a 18*1¢*10 cube was found toc be as

follows :-
Co-ordinates where

Axis axis leaves cube | Angle to standard directions
number X Y z X Y zZ
1 5.8/ 60.8; 0.0 9 99 99
2 g.0} 5.8 0.0 99 a 99
3 0.0 9.6 5.0 ) ) 90
4 3.1} 5.0| 1.9 60 36 72
5 -5.8| 1.9 3.1 36 72 60
6 1.9(-3.1| 5.0 72 69 36
7 -1.9| 3.1 5.¢ 72 60 36
8 -3.1( 5.8} 1.9 60 36 72
9 5.9|-1.9| 3.1 36 72 60
10 -1.9({-3.1| 5.8 72 60 36
11 3.1j-5.9|-1.9 60 36 72
12 5.4 1.9 3.1 36 72 60
13 3.1}-5.¢ 1.9 60 36 72
14 5.0; 1.9;-3.1 36 72 60
15 1.9 3.1| 5.8 72 60 36

Zcos= 7.47 7.47 7.47
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Appendix 9 : Subroutine COORDS3
The 1listing of the subrcutine COORDS3

overleaf. The required input to the subroutine is

is

shown

XY 2Z - The 3 co-ordinates of the point on the

standard x y z axes.
The output of the subroutine is :-

C - An array of 15 stores containing

the

co-ordinate of the point on each of the 15 regular

axes.



00100 SUBROUTINE CBBROS3(CHX:Y, )

00110 DIMENSIOGN C15).,B(3,2)

00120 DATA (BI»DH»Jd=152),1I=1,3),COS36+SIN36:COS72,SIN72/
00130+.52573111,-.85065081, .85065081,—-.52573111,1.0,0.0,
00140+.80801699, .58778525, . 30801693, .85105652/
00150 N=0

00160 DB 10 M=1,3

00170 COSANG=B (Ms 1)

00180 ZSINANG=Z*B (M, 2)

00180 DB 11 I=1,5

00200 N=N+1

00210 C (N> =X*CBSANG—ZS INANG

00220 Tx=X

00230 X=X¥COS72-Y*SIN72

00240 11 Y=TX®SIN72+YXC0OS72

00250 TX=X

00260 IF (M.EQ.1> GO TO 12

00270 X=X*SIN72+YXC0OS72

00280 Y=Y*S IN72-TX*C0S72

00280 G@ TG 10

O030C 12 X=X*CDBS36-Y*xS IN36

00310 Y=TX*SIN36+Y*C0BS36

00320 10 CONTINUE

00330 RETURN

00340 END
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Appendix 10 : Program RANDO
The listing of the program RANDO is shown overleaf,.
The required input to the program is :-
NSEED - A four digit number wused to trigger the
random number generator.
A - The semi-variogram model range of influence.
C - The semi-variogram model sill.
ENUG - The semi-variogram model nugget effect.
AVER - The distribution model average.
NAXES - The number of randomly orientated axes to
be used.
The output of the program is :-
V - An array of 1000 stores containing the
unconditional simulation values.
The average and variance of the simulated values.

The semi-variogram of the simulated values.



00100
00110C
00120C
00130C
00140C
00150C
00160C
00170C
00180C
00190C
00200C
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00430
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730

PROGRAM RANDO (INPUT,BUTPUT, TAPEG=INPUT, TAPE7=0UTPUT, TAPE3, TAPE4

THIS PROGRAM SIMUILATES A LINE OF 1000 POINTS WHICH FOLLOW
SPHERICAL (A C+ENUG) AND N(AVER,(C) .
THE SIMULATIOGN IS PRODUCED USING 'NAXES' RANDBMLY SPACED AXES

TAPE3=BUTPUT FBR SIMULATED VALUES

TAPE4=0QUTPUT FOR SEMI-VARIBGRAM

TAPEG=INPUT FROM TELEX

TAPE7=0UTPUT ON TELEX (SIM-LIFIED VERSIGN BF TAPE4

DIMENSIOBN V(1000) +Y (2000}
DATA PI./3.14159265/

READ (6 1000> NSEED

1000 FORMAT (I4)
XSEED=FLBAT (2XNSEED+1)
CALL RANSET (XSEED)

D@ 71 I=1,1000

Vi{I>=0.0

71 S=RANF (0.0

READ {6+ 1001) A, C+ENUG » AVER , NAXES
1001 FORMAT (4F6.2, I3
WRITE (4,3345) NAXES

3345 FORMAT (X NUMBER OF RANDBM AXES IS *,I3)
D@ 99 I=1,NAXES
XYANG=2. 0P IXRANF (0. 0)
XZANG=2 . 0*P IXRANF (0.0’
WRITE (4, 20005 XYANG: XZANG
2000 FORMAT (2 (2X,F6.4))
AY=TAN (XYANG)

BZ=TAN (XZANG)

B=0.01%A
XINT=1.0/5QRT (1. 0+AYXAY+BZ*¥BZ)
XL IM=499. 5%XINT

NY=IRAUND ((2.0%XL IM /B +2
NORG= IROUND (XL IM/B)

CALL SIM(Y,A;NYT

D@ 10 J=1,1000
XJ=FLBAT (J-1) —499.5
XC=XJ¥XINT

NC= IRGUND (XC./B) ~NBRG+1

10 V(J) =V () +Y (NO)

99 CONTINUZ

CO=C-ENUG

STD=SGERT (CO/FLBAT (NAXES) )
SDENUG=S.GRT (ENUG)
SUMV=0.0

SUMV2=0.0

DB 72 I=1,1000

CALL RANDBM(S , SDENUG)

V (I} =V (D) XSTD+S+AVER
SUMV=SUMVAV ()

72 SUMV2=SUMV2+V (I3 %V (D)
AV=SUMV,/1000.0

VAR= (SUMV2-SUMV*AV) ~999. 0
WRITE (7,1003) AV, VAR

WRITE (4, 10033 AV, VAR

1003 FGRMAT (X AV,VAR X,2 (2X,FB.4))
WRITE (3,1002) (V(J) +J=1,1000)
1002 FORMAT (10 (2X,F6.2))
CALL PLBT(V.A)

ENOF ILE 3

ENDFILE 4

STOP



00740 END

00750C

00760 FUNCTION IROGUND OO

00770 Y=ABS O

00780 IROUND=IFIX(Y+3.5)

00790 IFX.LT.0.05 IRBUND=-IROUND
00800 RETURN

00810 END

00820C

00830 SUBROBUTINE SIMIY»AsNS)

00840 DIMENSION Y {20005 ,T<100
00850 B=0.01*A !

00860 WRITE(7,20125NS

00870 2012 FORMAT (X NY=%, I5)
00880 WF=SERT12.0%B A/ {(AKA+11.0KB*B) )
00880 DB 50 M=1,100

00900 50 CALL RANDOMIT(M »1.00
00810 DB 53 I=1,NS

00820 Y(I»=0.0

00930 DIS=0.0-(A+B) 2.0

00840 DB 52 K=1,50

00850 DIS=DIS+

00860 52 YD) =Y(D +DISK(TK) -T101-K>)>
00870 Y(I) =Y (D) ®XF

00980 DB 54 M=1,88

00890 5S4 T (D =T (M+1)

01000 CALL RANDOBMI{T (100> +1.0)
01010 53 CONTINUE

01020 RETURN

01030 £ND

01040C

01050 SUBRBUTINE RANDOM{S:SD
01060 $=0.0

01070 DO 10 ™M=1,12

01080 10 S=S+RANF 0.0

01090 S=(5—6.0 *XSD

01100 RETURN

01110 END

01120C

01130 SUBRBUTINE PLOT(V,A)

01140 DIMENSIOGN V10005, IGRACI0D
01150 DATA IAST, IPLUSs IBLNK/1HXs 1H+s1H ~
01160 RMS=0.0

01170 DB 20 LAG=1,100

01180 LIM=1000-LAG

01180 GAM=0.0

01200 DB 21 I=1,LIM-

01210 DIFF=V{(D —VI+H AG

01220 21 GAM=GAMDIFFXDIFF

01230 SEMI=0.5%GAMFLBAT L IM
01240 DO 22 J=1,100

01250 22 IGRA(J) =IBLNK

01260 HRVERA=FLBAT (LAG) /A

01270 XMBDEL=20.0%(1.5%HOVERA-O.5*HOVERAXHBVERAXHBVERA)
01280 IF (HBVERA.GT.1.0)XMBDEL=20.0
01290 RMS=RMS+ ( (SEMI-XMBDELJ /XFMODEL > K%2
01300 IS=IFIX{(2.0%SEMI) +2

01310 IMFIFIX2.0%XMBDEL) +2

01320 IGRA (1> =IPLUS

01330 IGRACIM =IPLUS

01340 IGRACIS) =IAST

01350 WRITE (4,2111)LAG, (IGRA (K3 yK=1, 100>
01360 2111 FORMAT (2X, 13,1000 13
01370 20 COBNTINUE



01380 RMS=100.0*SQERT (RMS-100.0%

01380 WRITE (4,2004 RMS

01400 WRITE (7,2004 RMS

01410 2004 FORMAT K RMS = *,F7.25% PERCENTX)
01420 RETURN

01430 END



- 144 -

Appendix 11 : Program CONSIM1
The listing of the program CONSIM1 is shown overleaf.
The required input to the program is :-
TITLE - A title phrase of up to 88 characters.
F - An array of 8 stores. The first 4 stores
contain the range, sill, nugget effect, and average
of the models of the first system (lode widths).
The second set of 4 stores hold the same
information for the second system (lode assays).
NLN - The number of levels from which conditioning
data is to be inputted.
TB PS - The top, bottom, left, and right limits
of the simulated area.
XT XB XP XS - The top, bottom, 1left, and right
limits of the rectangle which <contains all the
conditioning data.
NLEVEL - The number of conditioning data points on
this level drive.
XLEVEL - The height above datum of this level
drive.
EAST - The Easting of the most Westerly sample on
this level drive.
EAST2 - The Easting of the most Easterly sample on
this level drive.
IFN - A number which defines whether a sample's
measurements are in imperial (IFN=1) or metric

(IFN=2) units.
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WL - The sample lode width measurement.

VL - The sample lode assay measurement.

FILE - The file name for storage of the sample
data, the lode width kriging weights, and the lode
assay kriging weights.

output of the program includes :-

The minimum, average, and maximum number of data
points used in the conditioning kriging systems.
The minimum, average, and maximum kriging variance
achieved by the kriging systems dur ing

conditioning.



00100 PROGRAM CONSIMI1 (INPUT=1318,0UTPUT=131B, TAPEB=INPUT,» TAPE7=0UTPUT.
001 10+TAPES)

00120C

00130C TAPE4=0BUTPUT FOR GENERAL DATA AND KRIGING WEIGHTS ONTO FILES
00140C DLSTBPE 'WLSTOPE 'VLSTOPE FOR USE IN 'CONSIM2'
00150C TAPEB=INPUT SAMPLES DATA AND BLQRCK SIZE ETC,.
00160C

00170C

00180C DEV. DATA

oo180nC XT

00200C ! !

ocz210C ! T !

00220C ! + + !

00230C ! + + !

00240C ! ++++H++++B !

00250C ! P S !

00260C XB

00270C xP DEV. DATA xS

00280C

00290C GIVEN SUCH A BLOCK THIS PROGRAM PREPARES FOR SIMULATION OF IT
00300C BY GIVING THE KRIGING WEIGHTS AND SAMPLE NUMBERS TO WHICH THEY
00310C APPLY, FOR S9¥38 POINTS IN THE BLOCK.

00320C TO BE RUN BN INSTANT TURNAROAUND.

00330C

00340C

00350 COMMON FREDAX(1105 »Y (1105 » IFUSED (1100

00360 DIMENSION DATA2:1100 »TITLEB)

00370 DIMENSIOBN F2:+4

00380C

00330C X=UPWARDS (IN)  Y=ALONG(IE)
00400C NEXT (15 NEXT {2)
00410C

00420 READ 610005 (TITLE(K) »K=1,8)

00430 WRITE (7,1000) <TITLE(K) ,K=1,:8)

00440 1000 FORMAT (1X,B8R10J

00450C

00460C THE SEMIVARIBGRAM AND DISTRIBUTIOGN DATA FBR ALL THE SYSTEMS
00470C IS READ IN .

OO%O REQD (6|1006) CF (NVK) s K=1,4) yNVv=1 -2)

00990 WRITE (7,1006) ((F (NV,K) K=1,49) ,Nv=1.,2)

DOS00 1006 FORMAT(1X,49F 6.3’

00510 N=0

00520 READ (65 10053 NLN: TsBPsSXT+XB XP:1 XS

00530 1005 FORMRT(IX, I1.8F6.0;

00540C NLN=NUMBER OF LEVELS

00550C T.8.P,S=LIMITS OF BLOCK TO BE SIMULATED

00S60C XT,XB,XP,XS=LIMITS OF BLOCK WHICH INCLUDES ALL DATA
00570C

00580 DO 11 I=1.NLN

00580 READ (6. 1007) NLEVEL «+ XLEVEL ,EAST/,ERST2

00600 1007 FORMAT (1X, I3:3F6.0:

00610C NLEVEL=NUMBER 0OF SAMPLES ON THIS LEVEL T0 BE REARD IN
00620C XLEVEL=LEVEL (METRES) 0OF THE SAMPLES ON THIS LEVEL
00630C EAST=EASTING(METRES) 0OF MAST LESTERLY SAMPLE ON THIS LEVEL
00640C EAST2=EASTING (METRES) OF MIST EASTERLY SAMPLE BN THIS LEVEL
00650C SAMPLES WILL BE GIVEN EASTINGS INCREASING BY
00660C (EAST2—EAST) #(NLEVEL-1)

00670C

00680 DIFF={ERST2-EAST) /FLOAT (NLEVEL-1>

00630C

00700 DO 11 U=1,NLEVEL

00710C

00720 READ (6, 10015 IFN, WL » VL, VIL

00737 1001 FORMAT (9X, I1.F5.2:F7,.2:F7.2>



00740 IF{VL.EG.C.0) GO TO 11

00750 N=N+1

00760 X{N) =XLEVEL

00770 YIN) =EAST+FLOAT (J-1) XDIFF

00780 IF {IFN.EQ.2) GO 70O 21

00790 WL=0.3048%FLOATIIFIX{2.0\L +0.5,52.0)
00800 IF(VL.NE.99.11) VL=0.043%(FLOATIIFIX{{(VL+2.0) 72.055%2.0-1.05
00810 IF(VL.EQ@.99.11> V0L=0.043%0.5

00820 IF VWL .EQ.99.11) VlL=0.5

00830 VL =0.043%0.3048%xVIL

00840 GO TO 27

00850 21 WL =FLOATI(IFIX{B.0RL+0.5)3 5.0
00860 IF (VL.NE.9S.11) VL=FLOBATIFIX{20.0*vL+0.5)) 20.0
00870 IF {VL.E@.99.11> VML.=0.025

00880 IF (ML .EQ.88.11) VvHL=0.005

008380 27 DATA (1,N) =L

00800 DATA (2+N> =VL

00910 WRITE (752014 N2 Y IN) o XINJ » IFNs LWL 5 VL » VL
00820 2014 FORMAT1X,I3,2F6.1511,3F7.2)
00830 11 CONTINUE

00840C

00950 WRITE (7,10005 (TITLE (K) »K=1,8)

00s60C

00870 WRITE {(4,1000) (TITLE (K)»K=1,8)

00880 WRITE (4»1006) ({F (NVsK) »K=1,49) s Nv=1,2)
00990 SINTX=(T-8).8.0

01000 SINTY=(S—P) 8.0

01010 WRITE (452009 TsBsPsS»XTXB\»XPs X5
01020 2008 FORMAT(1X,8F6.1J

01030 WRITE (4,2003) N

01040 2003 FORMAT (1X, I3)

01050 WRITE (4,20005 ((X(J) s Y (U sDATA L) sDATAZ2:J) 0 s J=1 N
01060 2000 FORMAT(1Xy2F6.1:2F6.2)

01070 READ (6, 1002 FILE

01080 ENDFILE 4

01090 CALL REPLACE (SHTAPE4,FILE>

01100C

01110 OB 26 Nv=1,2

01120 RANGE=F (NVs 1)

01130 C=F (NV+ 2

01140 ENUG=F (NV,3)

01150C

01160 XX=SIGKMAX=SUMSIGK=0.0

01170 SIGKMIN=100000.0

01180 NSMAX=NSSUM=0

01190 NSMIN=100000

01200 DG 18 M=1,N

01210 18 IFUSED (M =0

01220 DB 99 I=1,9

01230 XI=B+LOAT (I-1)*SINTX

01240 OB 99 J=1:9

01250 YJ=P+FLOAT(J-1) XSINTY

01260 CALL SEARCH (RANGEsCsENUG s XI s YJsNsNSsSIGK)
g1270C

01280 SUMSIGK=SUMSIGK+SIGK

01290 IF (SIGK.GT.SIGKMAX> SIGKMAX=SIGK
01300 IF (SIGK.LT.SIGKMIN) SIGKMIN=SIGK
01310 XX=XX+1.0

01320 NSSUM=NSSUM+HNS

01330 IF(NS.GT.NSMAXD NSMAX=NS

01340 IF (NS.LT.NSMIN> NSMIN=NS

01350 99 CONTINUE ’

01360C

01370 SUMSIGK=SUMS IGK /XX



01380 AVNS=FLOAT INSSUM /XX

01380 WRITE {(7,2005) SIGKMIN s SUMSIGK » SIGKMAX,NSMIN s AVNS s NSMAX

01400 2005 FORMAT (/710X *KRIGING WITH NEAREST 3 IN 60 DEGREE BANDS*/
01410410X,3NS.GE. 4 NS.LE.18%/-/10X, *MINIMUM AVERAGE MAXIMUM VALUES OF X,
01420+/5X, XSIGK2¥s3F7.4/7XsF NS Xy I7+F7.4,17//

01430 WRITE(7,2006) {IFUSED M sM=1,N)

01440 2006 FORMAT (5X,XNUMBER OF TIMES DATA POAINTS USED FOR KRIGING*/
01450+10(5X, 2014/ /3

01460 READ (64 1002) FILE

01470 1002 FORMAT (A7)

01480 ENOFILE 4

01490 CALL REPLACE (BHTAPE4,F ILED

01500C

01510 26 CONTINUE

01520 STGP

01530 END

015490C ———————————+++++++H+++H++ -+

01550 SUBROUTINE SEARCH (RANGCHENUG» XIs YJsNsINSS,SIGKD

01560 COMMGN /FRED/X{110) ,Y(110) » IFUSED (110}

01570 coMMOGN /TOMA (18519 40 (19D

01580 DIMENSIGN LB (110) sNEAR18 sDISTMN{18) ,0D(18)

01590 THIRTY=ASINO.5)

01600 HALF=THIRTY/60.0

01610 SIXTY=THIRTY*2.0

01620 XNINETY=THIRTY*3.0

01630 ONEBO=THIRTY*5.0

01640 THREEBO=THIRTY*12.0

01650C

01660 RANGE=RANG

01670 RADIUS=RANGE

01680 40 NS=0

01680 03 12 M=1,N

01700 MMM

01710 XDIFF=ABS (XM —XID

01720 YDIFF=ABS (Y (M =YD

01730 IF(XDIFF.LT.0.05.AND.YDIFF.LT.0.05) GO TG 50

01740 IF (YDIFF.GT.RADIUS) GO TO 12

01750 IF OXDIFF.GT.RADIUS) GB 16 12

01760 DIST=SART (XDIFFXXDIFF+YDIFFXYDIFF)

01770 IFDIST.GT.RADIUS) GB T8 12

01780 NS=NS+1

01790 LB (NS =M

01800 12 CONTINUE

01810 IF(NS.GT.4) GO TO 41

01820C IF THERE ARE 4 BR LESS PBINTS WITHIN THE SEARCH CIRCLE .
01830C THE RADIUS BF THE SEARCH CICLE IS INCREASED BY HALF THE RANGE
01840 42 RADIUS=RADIUS+0.5*RANGE

01850 GO TG 40

01860C

01870 41 DB 20 ™M=1,18

01880 NEARR (M =-—G99

01880 20 DISTMN (M =100000.0

01800C THE DATA PBINTS WITHIN THE SEARCH CIRCLE ARE SORTED. THE NEAREST
0191CC 3 PBINTS IN EACH SWEEP OF 61 DEGREES CENTRED ON BEARINGS 0,300,860
01920C ARE TAKEN. THEREFBRE THERE CAN BE NG MBRE THAN 18 PBINTS IN
01930C THE KRIGING SYSTEM.

019490 DB 249 K=1,NS

01950 XDIFF=(X{LBK)I~-XI)

01960 YDIFF=(Y LB (K) I =YJ)

01970 ANGLE=ATAN (YDIFF /XDIFF

01980 IF (XDIFF.EQ.0.0) ANGLE=ONEBO-XNINETYXYDIFF./ABS (YDIFF)

01990 IF OXDIFF.LT.0.0> ANGLE=ANGLE+ONEBO

02000 IF (ANGLE.LT.0.0) ANGLE=ANGLE+THREEED

02010 ANGLE=ANGLE+THIRTY



02020 IF (ANGLE.GT.THREEBQO) ANGLE=ANGLE-THREEGO
02030 DO 24 M=1,6

02040 IF (ANGLE.LT. (SIXTY®FLOATM-1)—HALFY> GO TO 24
02050 IF (ANGLE.GT. (SIXTY*FLOBAT M +HALFY ) GO T8 24
02060 DIST=SART (XDIFF*XDIFF+YDIFFXRYDIFF)

02070 IF(DIST.GE.DISTMN(3*%M ) GB TO 24

02080 IF(DIST.GE.DISTMN(3¥M-1)) GO TG 23

02090 IF (DIST.GE.DISTMN (3*¥M-2)) GO T8 22

02100 DISTMN3*M =DISTMN (3*M-1)

02110 NEAR (35D =NEAR {(3*M-1)

02120 DISTMN (3%X"M-1) =DISTMN (3%M-2)

02130 NEAR {(3*%M—1) =NEAR {(3*M-2

02140 DISTMN{3¥M-2) =DIST

02150 NEAR (3*%M-2) =LB (K

02160 GB TO 24

02170 22 DISTMN (3D =DISTMN (3¥M-1)

02180 NEAR (3*¥M) =NEAR (3*M—1)

02190 DISTMN (3%M-1) =DIST

02200 NEAR (3xM-13 =LB (K)

02210 GO TG 24

02220 23 DISTMN3®MD =DIST

02230 NEAR (3% =LB K>

02240 24 CONTINUE

02250C

02260 NS=1

02270 DB 28 M=1,18

02280 DB 25 K=1,18

02290C IF A PBINT IS INCLUDED TWICE (I.E. IT IS IN THE 1 DEGREE
02300C OVERLAP BETWEEN 2 SWEEPS) THEN ONE COPY IS REMOVED
02310 25 IF (NEAR(K) .EQ.NEAR (M .AND.K.NE.M) NEAR (M) =-99
02320 IF(NEAR (M .EQ@.-S9) GB TB 29

02330 NEAR (NS) =NEAR (M)

02340 NS=NS+1

02350 29 CONTINUE

02360C

02370C IF THERE ARE LESS THAN 4 POINTS (=5 EQNS.) IN THE KRIGING SYSTEM
02380C THE SERRCH CIRCLE RADIUS IS INCREASED AND THE SYSTEM RE-CALCULATED
02390 IF(NS.LT.5) GB 7O 42

02400C

02410 DB 13 K=1sNS-2

02420 DO 13 L=K+1sNS-1

02430 XDIFF=(XI{NEAR (K} =X (NEAR (L)’

02440 YDIFF=(Y{NEAR (K)) =Y {NEAR (L))

02450 DIST=SQRT (XD IFFXXDIFF+YD IFFXYDIFF)

02460 13 AK,L) =GSPH(DIST,»RANGE,C:sENUG>

02470 DO 17 K=2:NS-1

02480 DB 17 L=15K-1

024980 17 AWK,LY=AL K>

02500 DB 14 K=1,NS

02510 A (K,NS>=ANS,K)=1.0

02520 14 AKK>=0.0

02530 DB 15 K=1,NS-1

02540 XDIFF={X{(NEAR (K} —XIJ

02550 YDIFF=(Y(NEAR (K3 ) -YJ)

02560 DIST=SART (XDIFFXXDIFF+YDIFFXYDIFF)

02570 D (K) =GSPH (DIST»RANGE :C»ENUG)

02580 15 DD (K =D (K>

02580 D (NS> =1.0

02600 CALL KARDBN (NS,KS)

02610 NSS=NS-1

02620 SIGK=D (NS’

02630 DB 32 K=1,NSS

02640 32 SIGK=SIGK+D (K) XDD (K3

02650 DB 18 M=1,NSS



02660 19 IFUSED (NEAR M) =IFUSED(NEAR (M) +1

02670 WRITE {4,4000) NSS» ({NEARM DM ) ,M=1,NSS)
02680 4000 FBRMAT(GX, 3,2 {/1X,3{I3,FB.4)3)

02680 RETURN

02700C

02710C THE PBINT BEING CONSIDERED IS A DATA POBINT
02720 50 IFUSED (MDD =IFUSED (M +1

02730 WRITE(4,2001>MM

02740 2001 FBRMAT(SXH,3H 1/1X I3,6H1.0000)

02750 NSS=1

02760C

02770 SIGK=0.0

02780 RETURN

02780 END

02800C
02810C
02820 FUNCTIBN IRBUND OO

02830 IRBUND=IFIX{ABS (>C +0.49389)
02840 IF (X.LT.0.0> IRBUND=-IRBUND
02850 RETURN

02860 END

g2870C
gz2880C
02890C
0280C FUNCTIBN GSPH(DIST,A:C,ENUG)

02910 IFODIST.GE.A) GO T8 10

02920 X=DIST/A

02930 GSPH= (CENUG) ¥ {1.5%X-0.5KCRX*RX) +ENUG
02940 RETURN

02950 10 GSPH=C

02960 RETURN

02970 END

02980C
02980C
Q3000C
03010 SUBRBUTINE KARDBN (NPAR,KS)

03020 COMDON TOM” A(19,198),D U1

03030 Ks=0

03040 TOL=0.000001

03050 N=NPAR

03060 DO 65 J=1»N

03070 Jy=J+1

03080 BIGA=Q.

03090 DO 30 I=JsN

03100 IF (ABS (BIGAR) -ABS(A(I,J>>335,30,30
03110 35 BIGA=A(I,D

03120 IMAX=I

03130 30 CONTINUE

03140 IF (ABS (BIGA) —TOL)> 10,10,40

03150 40 DO 50 K=JsN

03160 SAVE=A (IMAX,K) BIGA

03170 AIMAXHK) =A{JsK)

03180 A (JsK) =SAVE

03180 50 CONTINUE

03200 SAVE=D(IMAX /B IGA

03210 D (IMAXD =D {JJ

03220 D (J =SAVE

03230 IF (JN) 55,70,:55

03240 55 DB b5 IX=JY,»N

03250 DO 60 JX=JYsN

03260 60 AIX,JXO =A (IXs X0 A IXs ) XA (U IXO
03270 65 DIX0 =D (IX —D (J) kA (IXs )

03280 70 NY=N-1

03280 DO B0 J=1,NY




Q3300
Q3310
03320
Q3330
03340
03350
03360
03370
03380
03390

IB=N-J
DO 8Q K=1,J

IC=N—K+1

80 D {IB> =D <IB) —A (IB» IC) XD (IC)

RE TURN

10 KS=1

WRITE (7, 10005 NPAR

1000 FORMAT (5X, XTHERE IS NO SOLUTION WITH NPAR =, I3, SO THERE
RE TURN

END
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Appendix 12 : Program CONSIM2
The 1listing of the program CONSIM2 is shown overleaf.
The required input to the program is :-
NSEED - A four digit number wused to trigger the
random number generator.

An eéémple of the output of the program is shown overleaf.



00100 PROGRAM CONSIMZ (INPUT=1318,BUTPUT=131B, TAPEB=INPUT, TAPE7=0BLITPUT,
800110+TAPES, TAPEZ2 s TAPE4)

gs120C

00130C USED AFTER 'CONSIM1 ' THIS PREBGRAM PRODUCES SIMULATIOGNS OBF THE
800140C BLOCK WITH 9%3 POINTS.

00150C T8 BE RUN BN INSTANT TURNARBUND.

80160C

00170C TAPE7=0UTPUT FOR RESULTS {(HISTOGRAMS VARIOGRAMS)

00180C TAPE2=INPUT FOR GENERAL DATA AND KRIGING WEIGHTS FRBM FILES

00180C DLSTBPE 'WLSTOPE 'VLSTBPE PRODUCED BY PRBGRAM 'CONSIM1:
00200C TAPES=TEMPOBRARY STBRE FBR 1-D AXIS SIMULATIBNS FORMED IN
8o210C 'SIM2D15 ' AND USED IN 'CONSIMZ2 ' TO PRODUCE SDATA(NVsN>
p0220C

00230 DIMENSIGN V(9,9 ,NEXT (2)

00240 DIMENSIGN FILE (2),4(9,8),F (2,4) s AXIS (1000

00250 DIMENSIOBN DATA2,110) ,X (1103 ,Y{110) »SDATA110) »NEAR (18 ,D (18>, TITLE (8
00260 DATA FILEL) »FILE(2) /7HWL.STBPE s 7HVLSTOBPE/

80270C

00280C X=UPWARDS (IN>  Y=ALONG (IEY
00280C NEXX NEXY
00300C

00310 CALL GETPF (BHTAPE.2s 7HDLSTOPE s 7ZHUMCKAQ?7)
00320 READ (2, 1000 <TITLEXK) +K=1,8)

00330 1000 FORMAT (1X,8R100

00340C THE SEMIVARIBGRAM AND DISTRIBUTIGN DATA FOR ALL THE SYSTEMS
00350C IS READ IN .

00360 READ {2+ 10067 ({F (NV,K) »K=1,49) s NV=1:+2)
00370 WRITE (7,1006) ((F (NVyK) yK=1,4) ,NV=1,2>
00380 1006 FORMAT{(1X,»4F6.3)

00390 READ (2,1009> T1,B81,P1,51,T2:B2,P2:52
00400 1008 FORMAT(1X,8F6. 1)

800410 SINTX=<(T1-B1> 8.0

00420 SINTY=({S1-P1> 8.0

00430 NEXT (1> =9

00440 NEXT (2) =9

00450 SMAXX=(T2-B2) /2.0

00460 SMAXY= (S22 2.0

00470 WRITE (7,2006> (TITLE {K) ,K=1,8)

00480 2006 FORMAT {10 s5X,8AR1D

00490 READ(2,1007)N

00500 1007 FORMATIX, ID

00510 TSS=RSS=55=0.0

00520 DO 68 I=1,N

00530 READ(2,1008) X(I) »Y (D) »DATA(1-I ,DATA 2, I
00540 1008 FORMAT{1X,2F6.1,2F6.2>

00550 TSS=TSS+ALBGDATA (1, Is) XXK2

00560 SS=SS+ALOG (DATA (1, 1)

00570 DATAC1, ID =ALBG (DATA1, 1>

00580 RSS=RSS+DATA (1, ) Xx2

00590 68 DATA (2, I) =ALBG (DATA (2, 10>

00600 SS=100.0%(1.0-RSS/(TSS-SSXSSAFLBAT N )
00610 WRITE (7,43215SS

00620 4321 FORMAT (5X, ¥XPERCENT TSS FOGR DATA X,F8.3)
80630C

006490 READ (b 1010) NSEED

00650 1010 FORMAT (14

00660 DO 101 NSIM=1,5

0o670C

00680 TSS=RS5=55=0.0

800680 DB 60 Nv=1,2

00700 RANGE=F (NV,s1)

00710 C=F (NV:2)

00720 ENUG=F (NV,3)

800730 AVER=F (NV, 4



00740 NSEED=NSEED+1

00750C

Q0760 BB=B1-B2

00770 PP=P1-P2

Q0780 CALL SIM2DIS(VINEXTH»SINTX,SINTY,B8B,PP,SMAXX,SMAXY
QO790+RANGE » C» ENUG»AVER yNSEED)

00800C

00810 WRITE (7520033 {TITLE (K) »K=1,8) yNSIM,NV,NSEED
00820 2003 FORMAT (1H1/10X»8R10//30X, *xSIMILATION NO. K, I2,% SYSTEM NO. K, I1,
00B830+%X NSEED = *,I4,30X»44 (1H-) /)

00840 WRITE (7,2007

00850 2007 FORMAT (30X, *BEFORE CONDITIBGNING (I.E. SHOULD FIT MBDELS)HK)
00860 CALL WDIST{V,;NEXT,—-2.1+1.9,20

00870 CALL GAMIV,NEXT»SINTX,SINTYsRANGE»CH»ENUG)
00880C

00830 B=RANGE.100.0

00900 STD=SGRT{{C—ENUG) /15.0)

00910 SDENUG=SGRT (ENUG)

00920 DO 51 M=1,N

00930 REWIND 5

00940 XI=X{M —-B2-SMAXX

00950 XJ=Y (M —P2-SMAXY

00960 G=0.0

00970 OB 69 I=1,15

00880 READ (5, 1002) NORG s XINTX» XINTY s NY

00990 1002 FORMAT {1X, I5,2E12.6, I5)

01000 RERD (5, 1001; (AXIS U sJ=1+NY)

01010 1001 FORMAT(1X,10E12.6)

01020 XC=XIXXINTX+XJXXINTY

01030 NC=IROUND (XC.,B) -NOBRG+1

01040 69 G=GHAXIS (NO)

01050 CALL RANDOMIR,SDENUG)

01060 51 SDATA (M =GXSTD+R+AVER

01070 CALL GETPF (BHTAPE2,FILE (NV) s THUMCKAO?
01080 DO 61 I=1,9

01080 DO 61 J=1,9

01100 REARD (21003 NS

01110 1003 FORMATI(IX, I3

01120 READ {2+ 1004) ((NEARK) »D (K3 ) »K=1,NS)

01130 1004 FORMAT(IXs9(I3+F6.4) /1X,9(I3:F6.9
01140 AK=SK=0.0

01150 DO 52 M=1.NS

01160 AK=AK+DATA NV NEAR (M) XD (M

01170 52 SK=SK+SDATA (NEAR (M) ) *D (M

01180 VIIsJ) =V IIsJ)+AK-SK

01190 61 CONTINUE

01200C

01210 WRITE (7,2008)

01220 2008 FORMAT{1H1+7 (7 »30Xs *AFTER CONDITIOBNING BEFQORE TAKING EXPX)
01230 CALL VDIST(V,NEXT»-2.1,1.9,20)

012490 CALL GAMIVyNEXT s SINTXs SINTY s RANGE »C+ ENUG)
01250C

01260 IF (NV.EQ.2) GB TO 65

01270 00 67 I=1,9

01280 XI=B1+FLOBAT{I-1)XSINTX

01280 DO 67 J=1+9

01300 YJ=P1l4FLDAT(J-1) XSINTY

01310 RSS=RSS+V (I, J) £X2

01320 HLL=V{I»J)+TREND (YJ» XI}

01330 TSS=TSSHALL®EX2

01340 SS=SSHAL

01350 WLL=EXP (V(Is+J})

01360 W{I»J) =L

01370C W{I,J)=.13100068E+05—.15468835E+01XY J—,25478477E+02kXI+



01380C+.35826833E—01MILL+.97820530E-04KYJKYJ+. 165 12423E-01 X I*XXI+

01390C+. 16650438E+00KL LKA L+.20147847E-02KY KX I+

01400C+. 15368569 -0 7K YJRKYJIXY J—. 3565641 2E 05 KX IRKXI®RX]I -
01410C+.67110721E-07XYJXRYJXXI~.B5576605E -06KY KX I*X]

01420C IF NI LT WLy WTs D =Wl

01430 67 CONTINLE

01440 GO TO0 60

01450 65 DO 66 I=1,9

01460 DO 66 J=1,9

01470 VLL=EXP (V{Is D)

01480 Vv<I{IsJr=VLL

014990C VIIsh=.65726173E-01+.61670581%VLL—.8683959 18E-02XVLL *KkvLL

01500C IF (VT sJr JLT. QaLLRVLLACTI I 0y VAT s Jy sWLLARVLL AT s )

01510 66 IF (VT J) .GT.100.00 Vv<I,J)=100.0

01520C

01530 60 CONTINLE

01540C

01550 WRITE(7,2009)

01560 2009 FORMAT (1H1s7 () »30Xs *AFTER TARKING EXPONENTIALS*

01570 CALL VDIST{WNSNEXT,0.0,4.0:,20

01580 CALL GAMUNsNEXT SINTXsSINTYsF (141) sF 1420 »F {15333

01590 CALL VDIST(VWNEXT,0.0,10.0,20)

01600 CALL GAM{VINEXTsSINTXSINTYsF (2915 sF (2+2) »F (2:33)

01610C

01620 WRITE (4,3000) (WN{IsJy»J=159)5I=1+s9),» {VK,HL)L=1+,9) yK=1,3)

01630 3000 FORMAT (1X9F7.2>

01640 SUMN=SUML=SUMVL=0.0

01650 DO 70 1=1,9

01660 DO 70 J=1,9

01670 SUML=SUMALL +J (I, D

01680 SUMVL_=SUMVL+V (I, J)

01690 70 SUMN=SUMN+1.0

01700 SUMAL =SUMAL /SUMN

01710 SUMVL=SUMVL./SUMN

01720 WRITE (7,2004 SUMNsNSIM,SUMAL s SUMVL

01730 2004 FORMAT (/s 10Xs¥*FOR ALL*,F6.0»* SIMULATED SAMPLESX,

01740+% OF SIMULATION NO. *,I2/12X2HLW:4Xs2HLA/10X,2F6.2)

01750 SS=100.0%(1.0-RSS/ (TSS-SS*SS./SUMN )

01760 WRITE (7,2000)SS

01770 2000 FORMAT (10 () + 10X, XKLODE WIDTHS PERCENT TOTAL SUM OF SQUARESH®,F7.2)
01780C

01780 101 CONTINUE

01800C

01810 ENDFILE 4

01820 CALL REPLACE (BHTAPE<4,4HS IMS)

01830 WRITE (7,123%

01840 1234 FORMATUIHD

01850 STOP
01860 END
01870C——+—
01880C
018380C
Q1900 FUNCTIOGN IRQUND OO

01910 IROUND=IFIX{ABS (X0 +0.49999’
01920 IF{X.LT.0.0) IROGUND=-IROUND
01930 RETURN

013940 END

01950C
013960 SUBROUTINE WVDIST(V,NEXT,VMIN, VMAXsNG)
01970 DIMENSION V(9,95 yNEXT (2

01980 DIMENSION IHIST (B0

019390 DATA IAST/IHX/,

02000 NGRP=NG

02010 DO 20 I=1,50

+
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02020 20 IHIST{I»=0

02030 Av=0.0

02040 VINT= (VMAX-VMIN) AFLBAT (NGRPS

02050 DB 10 J=1,yNEXT (1)

02060 DB 10 K=1,NEXT (2)

02070 AV=AV+HV (UKD

02080 IF (V{JsK) .LE.VMIN'GOTOG 11

02080 IF (V{JsK) .GT.VMARX GOTB 12

02100 IH=IFIX{(VIJsK) =VMIN) ~VINT+0.89999) +1
02110 IHIST {IH)=IHISTIIH) +1

02120 GO TO 10

02130 11 IHIST(L =IHIST(1)+1

02140 GB 70 10

02150 12 IHISTI(NGRP+2) =IHIST(NGRP+2) +1

02160 10 CONTINUE

02170 MAX=0

02180 DO 15 I=1,NGRP+2

02190 15 IFKIHISTID .GT.MAX MAX=IHIST (I
02200 DO 14 I=1,NGRP+2

02210 VUPPER=VMIN+FLOAT(I-13*KVINT

02220 IH=THIST(D *110/.MAX+]

02230 WRITE (7:2002) VUPPER, IHIST (ID » (IAST,»J=1, IH>
02240 2002 FORMAT (X —-%,F6.2y14,120A1)

02250 14 CONTINUE

02260 AV=RAV/FLOBAT INEXT (1) "NEXT (2) )

02270 WRITE (7,20007 AV

02280 2000 FORMAT (12X, ¥*ARITHMETIC AVERAGE IS *,F6.2)
02280 RETURN

02300 END

02310C
02320C
02330C
02340 SUBROUTINE GAMIV,NEXT,SX»SY,RANGEsCsENUG)
02350 DIMENSION VI9,9) ,NEXT (2) »SINT (D)

02360 DIMENSIOGN IGRA100) :GARMM{75) »DIR(2)

02370 DATAR IAST, IBLNK, IPLUS/1HX, 1H , 1H+/

02380 DATA DIR(1),DIR2) #10H VERTICAL +1DHHORIZONTAL.
02390 SINT (1) =SX

02400 SINT (2)=SY

02410 DO 15 M=1,2

02420 RMS=0.0

02430 IF(NEXT (M .EQ.1> GO TO 15

02440 LAGL IM=NEXT (M —1

02450 IF (LAGLIM.GT.75) LAGLIM=75

024960 DB 25 LAG=1,LAGL IM

02470 LIM=NEXT (M ARG

02480 GAMRA=0.0

02430 IF (M.EG.2) GO T0O 21

02500C

02510 DO 11 I=1,LIM

02520 DO 11 J=1,NEXT 2}

02530 DIFF=vI,Ji—-VIIH ARG J)

02540 11 GAMA=GAMR+DIFFXDIFF

02550 COUN=FLOAT (L IMNEXT 2))

02560 GO TO 25

02570C

02580 21 DB 41 I=1,NEXT (15

02590 DB 41 J=1.LIM

02600 DIFF=V{IsJ) -V (I,JH ARG

02610 41 GRMMR=GAMR+DIFFXDIFF

02620 COUN=FLOAT (L IMNEXT (15

02630C

02640 25 GAMMILAG) =GAMMARX0.5./COUN

02650 BIG=C




02660
02670
02680
02680
02700
02710
02720
02730
02740
02750
02760
02770
02780
027380
02800
02810
02820
02830
02840
02850
02860
02870
02880
02890
02900
02910
023820
02930
023840C
02950C
02960C
02970

DB 14 LAG=1,LAGLIM

14 IF (GAMMLAG) .GT.BIG BIG=GAM1{LAG)

A=RANGE

WRITE(?7,2001>DIR M

2001 FORMAT (/10X *SEMI-VARIBGRAM IN X, R10,X DIRECTIBN:K)
DO 10 LARG=1,LAGLIM

GAMMA=GAMM (LARG)

SOFAR=FLBAT (LAG) XSINT (M

HOVERA=SOF AR/A

GMODEL = {1.5*HBVERA— (0. 5XHBVERAXHBVERAKHBVERR) » K ({C—-ENUG) +ENUG
IF (HBVERA.GE. 1.0 GMADEL=C

RMS=RMS+ ( (GAMA—GMADEL) ~GMBDEL) kK2

IMADEL=IF IX{GMBDEL*88.0BIG) +1

IGAMMA=IF IX(GAMMRXBB.0BIG) +1

0O 12 I=1,100

12 IGRA{D =IBLNK

IGRA (IGAMMAY =IAST

IGRA (IMBDEL) =IPLUS

IC=NEXT (M LARG) XNEXT (34D

WRITE (7,2000)LAG IC GAMM,»GMOBDEL s {IGRACI) »I=1,100>
2000 FORMATIX, I3 1Xy IS5, 1XsF7.251XsF7.2y%+%,100R1>
10 CONTINUE

RMS=100.0%SQGRT (RMS/FLBATLAGLIM 3

WRITE (7,2003) RMS

2003 FORMAT (X RMS = X,F6.1yX PERCENTX////)

15 CONTINLE

RETURN

END

SUBRBUTINE SIM2D15 (VHNEXT»SINTXsSINTYBB,PP,SMAXX)SMAXY

02980+A,C»ENUGs AVER,y NSEED)

02980C
03000C
03010C
03020C
03030C
03040C
03050C
03060C
03070C
03080C
03090
03100
03110
03120
03130
03140
03150
03160C
03170
03180
03190
03200C
03210
03220
03230
03240
03250
03260
03270
03280
03290

THIS SUBROUTINE SIMULATES VALUES WHICH FOLLOW SPH{A:C,ENUG
AND ARE N({AVER:DO)

THE NUGGET EFFECT COBMES FRBM A RANDOM N (0,ENUG) .

THE REST BF THE VARIATIOBN (=CO=C-ENUG> COMES FROM N(AVER,CO)
AND FOLLOWS SPH<(R,CO-0’ .

ADDING THESE 2 TOGETHER PRBODUCES VALUES WHICH COME FROM
N(AVER,C) AND FOLLOW SPHA,CHENUG) .

DIMENSION V(9,9 sNEXT (2
coMoON DICK/Y (10007
DIMENSION X(15)
XSEED=FLOBAT (2XNSEED+1>
CALL RANSET (XSEED>

be 71 I1=1,100

71 B=RANF (0.0

DB 30 J=1,NEXT (D)
DB 30 K=1sNEXT (D
30 VUK =0.0

REWIND 5
B=A/100.0

b8 15 I=1,15
xX(1»=1.0
X(2)=X(3>=0.0
CALL CBORDS OO
XINTX=X(I)
X(15=X(35=0.0
X2=1.0



03300 CALL COBRDS X

03310 XINTY=X{IJ

03320 DMAX=SMAXCCKABS (XINTX) +SMAXYHABS (XINTY)
03330 NY=IRQUND (2.0*DMAX/B) +2

03340 NORG=IROUND (-DMAX/B)

03350 CALL SIM{AsNY,B’

03360 DO 18 J=1,NEXT {1

03370 XJ=BB+FLOAT (J-1) ¥SINTX-SMAXX

03380 DO 19 K=1.NEXT(2)

03390 XK=PP+FLOAT (K—-1) XS INTY-SMAXY

03400 XC=XJ*XINTX+XKEXINTY

03410 NC=IROUND (XCB) -NORG+1

03420 19 VI{JyKi =V UK} +Y (NC)

03430 WRITE (5,2002) NGRG» XINTX, XINTY s NY
03440 2002 FORMAT{1X:15,2E12.6, 15

03450 WRITE (5,20017 (Y M sM=1,NY)

03460 2001 FORMAT1X,»10E12.6)

03470 15 CONTINUE

03480 ENDFILE 5

03480C

03500C v HERE SHOULD BE NORMAL (0,15)
03510C

03520 STD=SQERT ({C—ENUG) 715.0)

03530 SDENUG=SGERT{ENLG:

03540 DO 21 J=1,NEXT (1)

03550 DO 21 K=1,NEXT 2

03560 CALL RANDOMIS,SDENLGS

03570 VX=V {J,K)XSTD+S+AVER

03580C

03590C v HERE SHOULD BE NORMAL (AVER,C)
03600C

03610 21 Vv I{Js»K)=VX

03620 RETURN

03630 END

03640C
03650C
03660C
03670 SUBROUTINE SIMCASNS,B)

03680 COMDON DICK./Y (10005

03680 DIMENSION T1005

03700 WF=SQRT(12.0*B/ (AX{AXA+11.0%B*B)>)
03710 DG 50 ™M=1,100

03720 50 CALL RANDOM(T(M ,1.05

03730 DO 53 I=1:NS

03740 Yr=0.0

03750 DIS=-8B.2.0

03760 DG 52 K=1,50

03770 DIS=DIS+B

03780 52 YY=YY+DIS®(T(50+K) —-T(51-K))
03790 Y (I) =YYHRF

03800 DO 54 ™M=1,99

03810 54 T =T M1

03820 CALL RANDOM(T (100 +1.05

03830 53 CONTINUE

03840 RETURN

03850 END

03860C
03870C
03880 SUBROUTINE COORDS (C’

03880 DIMENSION C(155,B8¢3:25

03800 DRATA ((B(IsJ)sJ=1+25+1=1+3),C0OS36,SIN36,COS72:SIN72/
03910+.52573111,-.85065081, .85065081,-.52573111,1.0,0.0:
03920+.80901698, .58778525, . 30901699 .95105652/

03930 X=C 1>




03940 Y=C (2
03950 2=C (3>

03960 N=0

03970 DG 10 M=1,3

03980 COSANG=B (Ms 1)

03990 ZS INANG=Z*B (M, 2)
04000 DB 11 I=1.5

04010 N=N+1

04020 C (N) =X-CASANG-ZS INANG
04030 TX=X

04040 X=X*COS72-Y*¥SIN72
04050 11 Y=TXXSIN72+YXCOS72
04060 TX=X

04070 IF (M.EQ.1> G@ T8 12
04080 X=X*¥SIN72+YXCOS72
04090 Y=Y¥SIN72-TX*CES72
04100 G@ T@ 10

04110 12 X=X*¥COS36-Y*¥SIN36
04120 Y=TX*S IN36+Y*COS36
04130 10 CONTINUE

04140 RETURN

04150 END

04160C
04170C
04180C
04190 SUBRGUTINE RANDBM(S,SD)
04200 $=0.0

04210 IF ¢SD.EQ.0.0> RETURN
04220 DO 10 M=1,12

04230 10 S=S+RANF (0.0>

04240 S=(S—6.0) ¥SD

04250 RETURN

04260 END

04270C
04280C
04290 FUNCTIGN TREND (X Y»

04300C CALCULATES CUBIC TREND FGR LN DEVT. LBDE WIDTHS (32.02TSS) FOR
04310C PBINT AT IE=X IN=Y

04320 TREND=-2,2797E+02+1.947 1%X+4. 8560E—02%Y-3 . 3145E -0 4K XKX~

0433042 . 4203E—03XXXY+2 . 2078E-04XYXY+2, 0525E 08K XHKXKX-1 . 0132E -0 TKYKYKY+
0434042 . 0559E -0 7KXCEXXY+7 . 5072E —0 7T KXXYXY

04350 RETURN

04360 END




SIMULATION NG. 1 SYSTEM NG. 1 NSEED = 1234

BEFORE CONDITIOGNING (I.E. SHOULD FIT MODELS)

- -2.10 ox
- -1.90 (023
- -1.70 ox
- -1.50 ox
- —1.30 ox
- -1.10 ox
-~ —.90 (028

- -.70 DR XA AR R KATICK

- -.50 B R R R A I IR K SR S R K 20 K I R S SO R OO R 0 S KK AR O R AR IR SRR

—_ -.30 O R A A A A R K I K I S KR SR IR OO R IR R 0RO O R AR RCIOK IO IO IOIOICKOR

- —-.10 1 O A A R R A A o K S S S S 0 A I 2 K 4 S SO I 0K O RO IO SO R K IR RCOR ORI KK

- L10D BRI AR IO I K I R XK KR KK K MK IR OO KOOI R KK

- 30 1 QRO K KK R KK K K K S K KK K KKK KK K R A O K K K K K X A R R K R O MO K CIO0OK
- .50 1 L R R R S R R R R A R R R S K 0 R S S K 0 S R S IR IR IR 0 S K S SO K K K SRR IOR HOK ORI RO IO

- .70 1 R R I R A I SR S S S S 0 0K 2 0 0 0 R R S R S 0 S S S S S I M R O S 0 K S M R S K R M SR A SO KU IR ORI K K IO
- .90 1 R K

- 1.10 2FTRRRIEKEKKOE

- 1.30 1 EAICRRK

- 1.50 1 KKK

- 1.70 0%
- 1.90 (028
- 2.10 ox
ARITHMETIC AVERAGE IS .11

SEMI-VARIOGGRAM IN VERTICAL DIRECTION

1 72 .16 . 144 + x
2 63 .17 .15+ + *
3 54 .21 A7+ + *
4 6 .26 .18+ + x
5 36 .27 .20+ + x
6 27 .32 21+ + x
7 i8 +40 .22+ +
8 g .31 244 + *
RMS = 41.6 PERCENT
SEMI-VARIOGRAM IN HOBRIZBNTAL DIRECTION
1 72 .18 .13+ + x
2 63 .17 .15+ + x
3 54 .13 .16+ x +
4 % .18 A7+ +X
5 36 .26 .19+ + x
6 27 .15 .20+ x +
7 18 .15 21+ x +
<] <] .26 .22+ + x
RMS = 24.5 PERCENT



AFTER CONDITIGNING BEFORE TRAKING EXP

- =-2.10 0%
- -1.90 0%
- -1.70 0%
- -1.50 0%
- -1.30 o=
- -1.10 0%

- -.90 BRI OO

- -.70 B R KR KK KA R KR KKK OO

- -.50 PEZ L LS P TI LIRSS PRSP PP PR P S P P P P P e PP TP S e

— =30 10X R K K R K K KKK R SR R K RO R

~ =10 10RO K K K K R R KK OO KUK

- 10 1S R R KA K K I K R K K KK K K K I K K K KK K KR R S KR KK S S K SO SRR SRR
- L300 1S R K K R I K K K K I K K K I S K K K K KR K R K G OO ORI
- .50 B R K K K K KRR ORI

- .70 B KKK KK KRR

- g0 AR OO OO

- 1.10 oOx

- 1.30 ox
- 1.%0 ox
- 1.70 0%
- 1.90 ox
- 2.10 0%
ARITHMETIC AVERAGE IS -.08

SEMI-VARIOBGRAM IN VERTICAL DIRECTION

1 72 .16 .14+ + *®
2 63 .16 .15+ + X
3 54 .20 A7+ + x
4 45 .23 .18+ + X
5 36 .23 .20+ + ®
[5) 27 .26 2l+ + x
7 18 .31 22+ + x
8 =] .23 . 249+ X+
RMS = 22.0 PERCENT
SEMI-VARIOGRAM IN HORIZONTAL DIRECTION
1 72 .18 .13+ + x
2 63 .18 .15+ + x
3 54 .14 .16+ x +
4 45 .18 174 + X
5 36 .25 .19+ + x
6 27 .12 .20+ x +
7 18 .13 21+ x +
8 g .24 .22+ + x
RMS = 28.3 PERCENT



MEREDEW 310 LEVEL
SIMULATION NO@. | SYSTEM NO. 2 NSEED = 1235

BEFGRE CONDITIONING (I.E. SHOULD FIT MBDELS)

L A T O O A A O A A A A B A |

=-2.10 T3 R ACROR ORI IR A A R R K T IR R KA KOO K
-1.80 1 IR AT XN XK
-1.70 5 SETH SRTACR N S R A R ST AT 23T I K B I S SR I K R IR S8 KR SRR K IOR K SR R KK KK
-1.50 1 STICCIORR XK AR
-1.30 T RO AR R S S IROA R R R K AR OO KA K
-1.10 LEeetoetd e tetrers sttt sttt ttteed sttt et ettty
-.90 B BRI AR A O R TR RN ST A SR I K S 0 M I R I SR IR K AR KR AR K
-.70 AT A I A ATAC A I A S0 2 A R I 0 K AT IR AKX
-.B0 15 AR AR AR AR T AR A IR IR BT R BT S0 B0 0 20 0 0 A 0 S 25 8 8 20 A R AR A AR K
-.30 ORI ACK IR R MK AR KT A 30 0K K R K K R SRR OISR K SR IR SR 0T R RO R S R R 30K K R K RO KR IR R IR A RO KK ICICICK
-.10 prlectesr oot rre e st
10 B AR AR RCAACSOR IR I IR R RK ST S 0 K IR R 8 R 20 I 0 R SR 280 K 830 K 38 3 S0 S0 80 53 IR K R AR KK 30K KRR KK R IR AR ACK
A0 3 RKAOKACATIACA X RO R X RO ACR RO AT AT T AR SRR 300K
.50 AR RO A ISR K AR IR AT A AR K R AT F0KOK 3K K KR K
.70 5 XRAACK TR R IR AR R A IR K A I 2K I K R 00 0K 0 K I 202 K SR IR X K KK
.90 AR AR OO IR A K RO A ORI K KA K AR AKX
1.10 Lo e s res re st et d
1.30 Prlevtorsesess et e st vt
1.50 2 FATEICICEACK IR KR R SOOI IR
1.70 T AR AR RIS R KA AR R R K
1.90 1 BAAEICKACICRORCE
2.10 A AR A A A RO A K OO R AR I AT SO AR TR KK
ARITHMETIC AVERAGE IS  -.17
SEMI-VARIOGRAM IN VERTICAL DIRECTION
1 72 1.12 1.26+
2 63 1.43 1.32+ +
3 54 .99 1.38+ +
4 1.28 1.49+
5 36 1.40 1.50+ +
6 27 .89 1.56+
7 18 1.61 1.61+
8 8 2.34 1.67+
RMS =  23.9 PERCENT
SEMI-VARIGGRAM IN HORIZGNTAL DIRECTION
1 72 1.45 1.25+ x
2 63 1.27 1.30+ x+
3 84 1.25 1.36+ x
4 1.29 1.41+ x
5 36 1.49  1.46+ x4
6 27 1.95 1.51+
7 18 1.25 1.56+ x
8 8 .87 1.61+
RIS =  21.7 PERCENT



AFTER CONDITIBNING BEFBRE TAKING EXP
w =2.10 O R R R K R R R K R IR R SR R S K R SR O R S SR R R IO R R R R K R K SR SRR SR SR SR SR S SR ICICICICICICR K KK
- -1.90 (R ELLELELL LS LT LELEELELELE LS EES S50+
- -1.70 2RI KRR XK
- -1.50 [EELLELELELLELELEL L L EESLELELESLEEESE LTSS LS+
- -1.30 AR R K KRR KRR ORK
- -1.10 (PR ELLLLEFEEELFELSE LS EEELF LSS LSS
- =-.90 [ELR L LT L LT L L LI L LI P T E L LS LTS ELLEE LS
- =,70 FELSTE L LIV CES LSS L L L L L LLELELETLEEFSLE LS ESEE S L EF £
- =.50 FELEL L SLEELELTLESELELESELLOELLLELEIFELLESLELSEEES & 49
- =.30 LRSS L ELTELEFELELTELLEFLEE S LS &+
- ~.10 RELLL S EEEF LS EELEF ST S+ 4
- .10 EECPL S ELS LTS LSS IS S LSS & £

- .30 ox
_ 50  "EREOORRROORORRK
- .70 ox
- .90 ox

.10 pPErT e £ 4L P
.0 QAR KR KK KKK KK AR SO K
.50 2 AR KKK

|
N e e s b b

.70 ox
- .90 1 KK
- .10 ox

ARITHMETIC AVERAGE IS -1.03

SEMI-VARIOBGRAM IN VERTICAL DIRECTIOGN

1 72 1.18 1.26+ x4+
2 63 1.53 1.32+ + x
3 54 1.04 1.38+ x +
4 %5 1.36 1.449+ x4+
5 36 1.44 1.50+ * +
6 27 1.04 1.56+ * +
7 18 1.66 1.61+ + X
8 9 2.23 1.67+ +
RMS = 19.9 PERCENT
SEMI-VARIBGRAM IN HORIZONTAL DIRECTIGN
1 72 1.58 1.25+ + x
2 63 1.40 1.30+ + x
3 54 1.46 1.36+ + x
4 45 1.68 1.41+ + x
5 36 1.57 1.496+ + x
6 27 2.03 1.51+ + x
7 18 1.37 1.56+ X +
8 9 .75 1.61+ x +
RMS = 26.0 PERCENT



AFTER TAKING EXPGNENTIALS
0] 0Ox
.20 ox
.40 AR KKK
B0 1 R K R R K K K K O K K K K S R K O R K K R SR K O K K K K K K R O O K O K MK IR SRR K
LB0 1 4R R R R K K K K R K K R K K K K K K K KK K K A K K R R K K K K O K K K K K R K IO IR

1.00 1 9RRRR K R A R K K R KK K K R R K K R K K K S K R K R KK K KK R KK KK K R K I RO OR SR A
1.20 13RO R K R K K R K KK R R K K KK R KKK K RO KK K KK KR IR K KRR IR KRR
1.40 10X RERR I R R K K K K K K R K R K K KKK K KKK RO K KKK
1.60 CEeessscsessesesrdereressdvisdrreEees s ery
1.80 2ELRRCCRRK KKK
2.00 GEEIIK R KK RO RK
2.20 1 REREKRKK
2.40 | KRR
2.60 | KX
2.80 0%
3.00 ox
3.20 ox
3.40 0x
3.60 0x
3.80 ox
4.00 ox*
4.20 ox
ARITHMETIC AVERAGE IS 1.02
SEMI-VARIOGRAM IN VERTICAL DIRECTION
1 72 .19 .14+ + x
2 63 .19 .15+ + x
3 54 .19 L174 + x
4 bl .24 .18+ + x
5 36 .23 .20+ + x
6 27 .26 21+ + x
7 18 .31 .22+ + *
a 9 .29 . 29+ + ES
RMS = 27.7 PERCENT
SEMI-VARIBGRAM IN HBRIZBNTAL DIRECTIOGN
1 72 .19 .13+ + x
2 63 .18 .15+ + x
3 54 .15 .16+ x4
4 445 .19 17+ + x
5 36 .25 .19+ + x
6 27 .14 .20+ x +
7 18 .17 .21+ x +
8 9 .25 .22+ + x
RMS = 26.2 PERCENT



0 ox

50 B2 R KR R A R AR KK A K R K K KK R K KK K KK SO K R K R KR K R K KSR K K K KR KK R O KK AR
1.00 16XCERCKRRCKICCK RO RO KKR
1.50 2FREEXK
2.00 SREEFER
2.50 o*
3.00 SEFRKER
3.50 SERERER
4.00 TREARK R
4.50 1R%x

5.00 ox
5.50 o%
6.00 ox
6.50 17X
7.00 o*
7.50 ox
8.00 ox
8.50 0%
9.00 0%
9.50 0x
10.00 0x
10.50 ox
ARITHMETIC AVERAGE IS .76

SEMI-VARIOBGRAM IN VERTICAL DIRECTICGN

1 72 1.07 1.26+ x +
2 63 1.28 1.32+ L
3 54 1.23 1.38+ ® +
4 45 1.35 1.44+ x +
5 36 1.35 1.504 ® +
6 27 1.30 1.56+ * +
7 18 1.02 1.61+ ® +
8 <] 1.01 1.67+ * +
RMS = 21.5 PERCENT
SEMI-VARIBGRAM IN HORIZONTAL DIRECTION
1 72 .95 1.25+ x +
2 63 1.17 1.30+ ® +
3 54 1.26 1.36+ x4+
4 45 1.36 1.41+ I
5 36 1.64 1.46+ + x
6 27 1.88 1.51+ + ®
7 18 2.47 1.56+ +
8 9 2.46 1.61+ +
RMS = 31.1 PERCENT

FOR ALL 81. SIMULATED SAMPLES OF SIMULATIOGN NO. 1
LW LA -
1.02 .76



Appendix
The
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- 147 -

13 : Program SIM2BLO
listing of the program SIM2BLO is shown overleaf.

ired input to the program is :-

TITLE - A title phrase of up to 80 characters.

IY1

IX1 IYS@ IX50 - The Easting and height above

datum of the most Westerly and most Easterly

samples on the lower level (335) drive.

1Y51

abov

IX51 1Y100 IX190¢ - The Easting and height

e datum of the most Westerly and most Easterly

samples on the upper level (318) drive.

F - An array of 6 stores. The first 3 stores

contain the range, sill, and nugget effect of the

semi

-variogram model of the first system (lode

widths). The second set of 3 stores contains the

same

assa

IFN

information for the second system (lode
¥S) .
- A number which defines whether a sample's

measurements are in imperial (IFN=1) or metric

(IFN=2) units.

D1 - The sample lode width measurement,

D2 - The sample lode assay measurement.

N2 - The number of simulations to be considered.

An example of the output of the program is shown overleaf.



00100 PROGRAM SIM2BLO (INPUT=131B, TRPE3=INPUT. TRPE7,
00110+TAPE1=131B, TAPE2=1318, TAPE4=1318)

00120C

00130C TAPELI=INPUT FOR WL SIMUILATED VALUES

00140C TAPE2=INPUT FOR VL SIMULATED VALUES

00150C TAPE3=INPUT FOR GENERAL DATA AND DEV. DATA
00160C TAPE4=TEMPORARY STORE FOR KRIGING WEIGHTS
00170C TAPE7=0UTPUT FOR SIMULATIGN AVERAGE ETC.
00180C

00190C DEV. DARTA

00200C —47M. 310FM. LEVEL
00210C + +

00220C + +

00230C + +

00240C +—H+H+++++23.5M.,

00250C + +

00260C + +

00270C + +

00280C —0OM. 335FM. LEVEL
00280C DEV. DARTR

00300C 0 25 50 75M.

00310C

00320C THE BLOCK IS REPRESENTED BY A 16%8 GRID (I.E.3M. GRID WITH

00330C PORINTS AT 26.56,48.44,3.13 AND 1.47,45.53,2.99

00340C THE 100 SIMULATED DEVELQGPMENT DATAR POBINTS ON THE 2 LEVELS ARE SITED
00350C EQUALLY EVERY 75.,49=1.53M.=5.02FT. (I.E. POINTS ARE AT

00360C 0.0,75.0+,1.53) .

00370C 100 ACTUAL DEVELCPMENT DATAR SAMPLES ARE READ IN AND ASSIGNED THESE
00380C SAME LBCATIBNS (I.E. THERE MAY BE A SMALL POSITIGNAL ERROR) .

00380C THE CONDITIBNISATION PRECESS MUST USE THE SAME SAMPLE PATTERN QOF
00400C SIMULARTED AND ACTUARL DEVELBPMENT DATA FOR FINDING 'SK' AND 'AK’

00410C

00420 COMMBN X (100>, Y (100, (2, 100> » VL (2,100

00430 COMMBN DARTA (2, 1000 »SDATA (2, 100

004490 COMMON TITLEB) +F (2,3) s NEARR(18) ,D (18) , L (B> »V (8
00450 COMMDN LIFT (20,9 »SWL (B) »SVL (8)

00460 READ (3,10005 (TITLE (K) +K=1,8)

00470 1000 FORMAT (1X,8R107

00480 READ (3, 1006> IY1,IX1,IYS0,IX50,IY51,IX51,1Y100,IX100

00490 1006 FCRMAT{(1X:8I%

00500 READ (35 1001) ((F (NVsK) s K=1,3) yNV=1,2)
00510 1001 FORMAT(1IX:3F6.3)

00520 WRITE(7,1000) (TITLE (K) sK=1+8)

00530 WRITE (7,10063 IY1,IX1,IY50,IX50,1IY51,IX51,IY100,IX100

005490 WRITE (7, 1001) ((F (NVyK) sK=1,3) sNv=1.,2)
00550 N=0

00560 XL EVEL=0.0

00570 DIFF=75.0.,49.0

00580C

00580 DO 10 I=1,2

00600 EAST=-DIFF

00610 DO 11 U=1,50

00620 READ (3,1002) IFN:sD1,D2

00630 1002 FORMAT(8X,I1:,F5.2,F7.2)

00640 IF (D1.EQ.0.0) GO 7O 11

00650 IF (IFN.EQ@.2) GB 1O 12

00660 D1=0.3048%X (FLAAT(IFIX(2.0XD1+0.5)3 /2.0)

00670 IF (D2.NE.SS.11) D2=0.043%x((FLBART (JFIX(D2+2.00/2.0)3*2.0-1.03

00680 IF (D2.£@.99.115 D2=0.043%0.5
00690 GO TO 13
00700 12 DI=FLOARTC(IFIX(5.0%XD1+0.5)) /5.0

00710 IF(D2.NE.S9.11) D2=FLBAT (IFIX(20.0%D2+0.5) /20.0

00720 IF (D2.EQ@.99.11> D2=0.025
00730 13 N=N+1



00740 SDATA(1.,N)=D1

00750 SDATAR (2:N)=D2

00760 DATA{1,M)=ALBG D1

00770 DATAZ2sN) =ALBG (D2

00780 X (N> =XLEVEL »

Q0790 Y (N) =EASTHLBAT {J> ¥XDIFF

00800 11 WRITE (7,2002)N»D1,D2

00810 2002 FORMAT (22X, I4,F5.2:F7.25

00820 10 XLEVEL=47.0

00830C

00840 SINTX=47.0-16.0

00850 SINTY=25.0.8.0

00860 S1SIGKZ2=S2SIGK2=0.0

ogs70ocC

00880 DO 15 I=1,16

00880 XI=FLBAT{I-1)*SINTX+0.5%SINTX

00800 be 15 J=1,8

00810 YJ=25.0+HLBAT{(J-1) XSINTYHI.5KSINTY
00820 CALL SEARCH {(XsYsMNsF (1413 sF (1+2) sF (1+33:XI»YJrySIGK2)
00930 S1SIGK2=S1SIGKZ+SIGKZ2-128.0

008940 CALL SEARCH (XsYsNsF (2313 sF (2425 sF {2+3) +XIs»YJsSIGK2)
00850 S2SIGK2=S2SIGK2+SIGK2/128.0

00860 15 CONTINUE

0Qasz7oc

00980 ENDFILE 4

00980 WRITE (7,3004

01000 3004 FORMRT (1H1/////710X,% DATA WL VS. DATA VL*¥/11X,191H- /7
01010+32X,*DATA LWL*

01020 DB B8 I=1,sN

01030 X(IY=SDATA(1,I)

01040 88 Y(I)=SDATA (2, I}

01050 CALL PLOTY(X>YsN>

01060 RERD (3, 1008) N2

01070 1008 FORMAT(1X, I3

01080 WRITE (7,2006) S1SIGK2:S2SIGK2

01080 2006 FORMAT (///5Xs*AVERAGE SIGK2 BVER BOBTH BLOCKS FBR*/s
01100+10X,* WL VL X/ 10X 2F6.49

01110 CALL GETPF (SHTAPE1l: 7HWSIM10Q, 7HUMCKAO7)
01120 CALL GETPF (SHTAPEZ2,7HVSIM100, 7HUMCKAO?)
01130 WRITE (7,2000)

01140 2000 FORMAT (1H1///7+18Xs ¥ OWER BLOCK UPPER BLOCKX,
01150+/5X, XSIMULATIBNX, 5X, KL VL *, GXs KL VLEBX»40 (1H-))
01160 bO 50 1=1,20

01170 DB 50 J=1,4

01180 50 LIFT{I.D =0

01190 SR=ST=0.0

01200 RECN2=1.0,FLBAT(N2)

01210C

01220 DB 101 NSIM=1,N2

01230 SUMXY=SUMX=SUMY=SUMX2=SUMY2=0.0

01240 READ (1,1003) (SDATA1:M sM=1,10Q)

01250 RERAD (2, 1003 (SDATA(2:M »M=1, 1005

01260 1003 FORMAT (1Xs 10F6.07

01270 DO 20 M=1,100

01280 SDATA1,M =SDATAI M ~1000.0

01290 SDATA (2:M =SDATA (2, ~1000.0

01300 20 CONTINUE

01310 REWIND 4

01320 NB=1 -

01330 NT=8

01340C

01350 DO 18 NBLOCK=1,2

01360 suML=sSuMvL=0.0

01370C



0138C 0B 16 I=NBNT

01330 INB=I-NB+l

01400 SKL (INB) =SVL (INB) =0.0

01410 READ {1,1003) (WK) 1K=1:8)

01420 READ {(2,1003) (VIK) sK=148)

01430 00 14 J=1,8B

01440 READ (4, 1004 NS

01450 READ {4, 10055 (NEARK) sD (K} ) sK=1,NS)

01460 AK=SK=0.0

01470 DB 17 K=1:NS

01480 SK=SK+D (K) XSDATA (1,NEAR{K))

01490 17 AK=AK+D (K) XDATA {1 sNEAR (K) )

01500 WLL= () #1000.0-SK+AK>

01510 WLL=EXP (WLL)

01520 WD =L

01530C W<J> =.1310006BE+05~. 1546B835E+01*XY . 254947B477E+02%XXI+
01540C+.35B826B833E-01KdLL+.97820590E-04%XY XY +. 16512923E-01*XI*XXI+
01550C+. 16E504938E+00FAL L KLL +.20147847E-02XYJXX I+
01560C+. 1536856SE—-07XYJXYIXYJ~-. 35656491 2E-05F X IXXI*XI -
01570C+.67110721E-Q7XYJXYJRXI-.65576605E-06 KXY J*RXXI*XI
01580C IF (W) LT HLL) W =HLL

01580 SKL (INB) =ShL (INB) HA (D

01600 SUMX=SUMXHA{D

01610 SUMX2=SUMX2HA () X (3

01620 RERD (4,1004 NS

01630 1004 FORMAT(IX, I2)

01640 READ (4,1005) ((MEAR (K3 +D{K) ) +K=1,NS)

01650 1005 FORMAT (I2+FB6.49,8(I3:,F6.49) /I12,F6.4:B(I3+FB6.9)
01660 AK=SK=0.0

01670 DB 1B K=1,NS

01680 SK=SK+D (K) *SDATA (2+NEARK))

016390 18 AK=AK+D (K> *DATA (2, NEAR (K) )

01700 VLL=EXP (VL) ~1000.0-SK+AK)

01710 IF(VLL.GT.100.0 WVLL=100.0

01720 VU =VLL

01730C v =.65726173E-01+.61670581*VLL~-.86835318E-02KVLL*XVLL
01740C IF (VD) LT, GLRVLLAND )Y ) V() sHLLARVLL AW (D)
01750 SVL (INB) =SVL (INB) +V (WD

01760 SUMXY=SUMXY+A (J) XV (J)

01770 SUMY=SUMY+V (WD

01780 14 SUMY2=SUMY2+V (J) XV (J)

01730 SUMAL =SUMAL+SHL (INBD

01800 SUMVL=SUMVL+SVL (INB>

01810 16 CONTINUE

01820C

01830 VL (NBLOBCK,NSIM =SUMVL/64.0

01840 WL (NBLOCKsNSIM =SUMAL /64.0

01850 DB 21 NPAY=1,20

01860 PAY=FLBAT (NPAY> ~10.0

01870 I=-1

01880 22 I=I+1

01880 23 I=I+1

01900 IF(I.GT.6) GO TO 21

01810 IF (VL (D> /B.0) .GE.PRY> GB TO 23

01920 IF ((SVL(I+1),8.0) .GE.PAY) GO TO 22

01830 SN=53=0.0

-01840 0O 24 J=I1.8

01850 SN=SN+8.0

01860 24 S3=S3+SVL W)

01970 IF ((S3/SN) .GE.PAY> GB TO 25

01980 LIFTNPAY,2XNBLOCK) =L IFT (NPAY, 2XNBLOCK) +1
01880 GO T0 21

02000 25 LIFT(NPAY,2XNBLOCK—-1) =L IFT (NPAY 2*NBL BCK-1) +1
02010 21 CONTINUE



Cz2220 NB=9

02030 NT=16

02040 138 CONTINUE

02050C

02060 WRITE(7,2001) NSIM,LL (1 sNSIM s VL (1,NSIM sWL (2sNSIM VL (2:NSIMD
02070 2001 FORMAT(8X: I3:6X:F5.2y 1XsF5.2:5XsF5.25 1X:F5.2)

02080 T=SUMXY-— (SUMX*SUMY/128.00

020890 TT=T/SART { (SUMX2-SUMXKSUMX-128.0) X (SUMY2-SUMYKSUMY/128.0))
02100 ST=ST+RECNZ2XABS (TT) *SART (126.0) »/SORT1.0-TTXRTT>

02110 SR=SR+RECN2XTT

02120 IF (NSIM.NE.B5 GOG TO 101

02130 CALL GETPF (5HTAPE1 s 7HWL BLOCK » 7HUMCKARO7)

02140 CALL GETPF (SHTAPEZ2, 7HVLBLOCK , 7HUMCKARO7:

02150 101 CONTINUE

02160C

02170 SUMAL=SUMVL=SUMA 2=SUMVL2=0.0

02180 DB 70 NSIM=1,N2

021380 SUMAL=SUML +H& (1,NSIM

02200 SUMVL=SUMVL+VL {1,NSIM

02210 SUMAL2=SUMAL 2HL (2yNSIM

02220 SUMVL2=SUMVL 2+VL (2sNSIM

02230 70 CONTINUE

02240 SUMVL=SUMVLXRECN2

02250 SUMAL=SUMMLXRECNZ

02260 SUMVL2=SUMVL2*RECN2

02270 SUMAL2=SUMAL 2FRECNZ2

02280 WRITE (7,2003> SUMAL » SUMVL » SUMAL 2, SUMVL 2

02290 2003 FORMAT (3X»36 (1H-) /88X, HAVERAGE +F5.251X,F5.2:5X4F5.2,1XsF5.2//7//
02300+16X5s 183 (1H-) /16Xs 1H ! 13X, XL OWER/UPPERX*, 33Xy ¥ ! 2 NON-PAY LIFTS WHENX,
02310+% REST BF BLOCK IS*X/10X,25 (1H-) /

02320+10X, %! PAY ! PP PN NP NN | P/ N/ /P MNX/10X, 25 (1H-))
02330 DB 72 NPAY=1,20

023490 PRY=FLOAT (NPAY’ #10.0

02350 NYESYES=NYESNO=NNOYES=NNGNG=0

02360 DB 71 NSIM=1,N2

02370 IF (VL (1,NSIM .GT,.PAY.AND.VL (2,NSIM .GT.PAY) NYESYES=NYESYES+1
02380 IF (VL (1.NSIM .GT.PAY.AND.VL (2:NSIM .LE.PAY) NYESNO=NYESNO+1
02380 IF (VL (1sNSIM .LE.PAY.AND.VL (2:NSIM .GT.PAY) NNOYES=NNOYES+1
02400 71 IF (VL (1sNSIM .LE.PAY.AND.VL (2,NSIM .LE.PAY> NNONO=NNOGNG+1
02410 72 WRITE (75,2004 PAYsNYESYES »NYESNG,NNBYES, NNONG, (LIFTNPRY»J) s J=1+4)
02420 2004 FORMAT (10X 2H! +F3.1,2Xi 41X I3)»2H [-,4d1X I3))

02430 WRITE (7,2005)N2,SR»ST

02440 2005 FORMAT (////710X, *AVERAGE CORR. COEFF. BETWEEN WL AND VLX*,
02450+% QVER *, I3,X SIMULATIONS = ¥*,F6.4/10Xs ¥*AVERAGE T-TEST VALUE = *,F5.2)
02460C

02470 WRITE (7,3000)

02460 3000 FORMAT (1H1/////10Xs X LOWER VS. VL LOKER*/10X,21 (1H-) //
02480+31X,BHIL LOWER)

02500 DB 30 I=1,N2

02510 X(I> =W (151D

02520 30 YO =VL (1.1)

02530 CALL PLOTY (X»YsN2D

025490 WRITE (7,300

02550 3001 FORMAT (1H1////710Xs ¥4 UPPER VS. VL UPPER*/10X,21 (1H- /~/
02560+31X,8HI4. UPPERS

02570 DB 31 I=1,N2

02580 X(Ii=WL (2,

025380 31 YD =wL 2,1

02600 CALL PLBTY (X,Y:N2)

02610 WRITE (7,30023

02620 3002 FORMAT (1H1/////710Xs 0 LOWER VS, WL UPPERX/10X,21 (1H=) s/
02630+31X,8H4L LOLER?

026490 DB 32 I=1.N2

02650 X (D)=L (1, D)



02660 32 Y{I)=lL 2, D}

02670 CALL PLOTY (Xs YiN2)

02680 WRITE (7,3003>

02680 3003 FORMAT (1H1// /710X RXVL LBWER VS, V0L UPPERX/10X»21 (1H-) //
02700+31X,8HVL LBLER)

02710 DB 33 I="sN2

02720 X{H=vL {1, D

02730 33 Y{Ii=vL{2: D

02740 CALL PLOTY {X»YsN2)

02750C

02760 ENDFILE 7

02770 CALL REPLACE (SHTAPE7, 7HSIM20UT)

02780 STOP

02790 END

02800C +++++++++t++rt+ -ttt e

02810C

02820 SUBRBUTINE SEARCH {(XsYsNsRANG C, ENUG» XTI YJs SIGK2)
02830 DIMENSION X {100y ,Y{100)

02840 DIMENSIGN A{19,19),D(19) ,DD (1D

02850 DIMENSION LB (100) sNEAR(18) »DISTMN(1B)

02860 THIRTY=ASIN{0.5)

02870 HALF=THIRTY./B0.0

02880 SIXTY=THIRTY*2.0

02890 XNINETY=THIRTY*3.0

02800 ONEBO=THIRTY*G.0

02910 THREEBO=THIRTYX12.0

02820C

02930 RANGE=RANG

02940 RADIUS=RANGE

02950 40 NS=0

02960 DO 12 M=1,N

02970 Mt=M

02980 XDIFF=ABS (X (M —-XI)

02990 YDIFF=ABS{(Y M =YD

03000 IF(XDIFF.LT.0.05.AND.YDIFF.LT.0.05) GO TO S0

03010 IF(YDIFF.GT.RADIUS) GB TO 12

03020 IF OGDIFF.GT.RADIUS) GB TO 12

03030 DIST=SART(XDIFF*:XDIFF+YDIFFXYDIFF)

03040 IF (DIST.GT.RADIUS) GO TO 12

03050 NS=NS+1 '

03060 LB (NS) =M

03070 12 CONTINUE

03080 IF (NS.GT.4 GO TO 41

03090C IF THERE ARE 4 BR LESS POINTS WITHIN THE SEARCH CIRCLE
03100C THE RADIUS BF THE SEARCH CICLE IS INCRERSED BY HALF THE RANGE
03110 42 RADIUS=RADIUS+I.5*RANGE

03120 GB T8 40

03130C

03140 41 DO 20 ™M=1,18

03150 NEAR (M =-99

03160 20 DISTMN (M =100000.0

03170C THE DATAR POBINTS WITHIN THE SEARCH CIRCLE ARE SBRTED. THE NEAREST
03180C 3 POINTS IN EACH SWEEP OF 61 DEGREES CENTRED BN BEARINGS 0,300,60
03190C ARE TAKEN. THEREFBRE THERE CAN BE NB MCRE THAN 18 PBINTS IN
03200C THE KRIGING SYSTEM.

03210 DB 24 K=1,NS

03220 XDIFF=(X(LB Ky —XI>

03230 YDIFF=(Y{LB(K)) =YD

03240 ANGLE=ARTAN(YDIFF /XDIFF>

03250 IF(XDIFF.EQ.0.0) ANGLE=ONEBO-XNINETYXYDIFF /RBS (YDIFF;
03260 IF ODIFF.LT.0.0) ANGLE=ANGLE+ONESO

03270 IF (ANGLE.LT.0.0) ANGLE=ANGLE+THREEGD

03280 ANGLE=ANGLE+THIRTY

03290 IF (ANGLE.GT.THREEBO0) ANGLE=ANGLE-THREEGQ



03300 DO 24 M=1,6

03310 IF ANGLE.LT. (SIXTYHFLOBAT (M-1) HALF)> GO T3 24
03320 IF (ANGLE.GT. (SIXTYRFLBATM +HALFY > GB TG 24
03330 DIST=SART(XDIFFKXDIFF+YDIFFXYDIFF)

G3340 IF(DIST.GE.DISTMN (33D GO TG 24

03350 IF(DIST.GE.DISTMN(3xM-1)) GB TG 23

03360 IF (DIST.GE.DISTMN(3¥M-253 GO TB 22

03370 DISTMN (3XD =DISTMN (3%M-1)

03380 NEAR (3% =NEAR (3xM-1)

D3330 DISTMN(33M—-1) =DISTMN (3XM-2)

03400 NEAR (3*M-1) =NEAR (3*¥M-2)

03410 DISTMN (3xM-2) =DIST

03420 NEAR (3¥M-25 =LB (K)

03430 GO TO 24

034490 22 DISTMN(3XD =DISTMN (3*M-1)

03450 NEAR (3D =NEAR (33 ™M—13

034960 DISTMN (3315 =DIST

03470 NEAR (3 ™M-1) =LB K3

03480 GO TO 24

034380 23 DISTMN 3R =D IST

03500 NEAR (33X =LB K)

03510 249 CONTINUE

03520C

03530 NS=1

03540 DO 29 M=1,18

03550 DB 25 K=1,18

03560C IF A PEINT IS INCLUDED TWICE <(I.E. IT IS IN THE 1 DEGREE
03570C DOVERLAP BETWEEN 2 SHEEPS) THEN GNE CGBPY IS REMBVED
03580 25 IF (NEARK) .EQ.NEARM .AND.K.NE.M NEARR{M =-99
03590 IF (NEARMMD .EGQ.-89) GB TG 29

03600 NEAR (NS) =NEAR (M

03610 NS=NS+1

03620 29 CONTINUE

03630C

03640C IF THERE ARE LESS THAN 4 PBINTS (=5 EGNS.) IN THE KRIGING SYSTEM
03650C THE SEARCH CIRCLE RADIUS IS INCREASED AND THE SYSTEM RE-~CALCULATED
03660 IF(NS.LT.5 GO 7O 42

03670C

03680 DO 13 K=1,N5-2

03690 DB 13 L=K+1,N5-1

03700 XDIFF={(X(NEARK) ) =X (NEAR (L))

03710 YDIFF=(Y(NEAR(K)) =Y (NEAR(L)))

03720 DIST=SGRT(XDIFF*XDIFF+YDIFFXYDIFF)

03730 13 ALY =GSPH{DIST,»RANGE s CrENUGS

03740 DO 17 K=2,N5-1

03750 DO 17 L=1:K-1

03760 17 AKLI =ALKD

03770 DO 14 K=1,NS

03780 AKsNS)=A(NS,K)=1.0

03790 14 A{K,»K>=0.0

03800 DO 15 K=1,N5-1

03810 XDIFF={X(NEAR (K} ) —-XI)

03820 YDIFF= (Y (NEAR (K) ) =YJ)

03830 DIST=SERT(XDIFFXXDIFF+YDIFF*YDIFF)

03840 15 D (K =DD (K3 =GSPH (DIST:RANGE . C,ENUGS

03850 D(NS) =DD (NS> =1.0

03860 CALL KARBN(A,DINS)

03870 SIGK2=D (NS>

03880 NS=NS-1

03890 DO 10 M=1,Ns

03800 10 SIGK2=SIGK2+D (M XD (M

03910 WRITE (4,49000) NS, ((NEAR (M »D (M > 1+ M=14NS)
03920C NEAR{1) BR NEAR (10> SHBULD NBT BE 100 SG SPACE CAN BE SAVED BY USING I2
03930 4000 FORMAT(9X,I2,2(/12:F6.4:8(I3,F6.9))



0338490 RETURN

03850C

03960C THE PBINT BEING CONSIDERED IS A DATA PEGINT
03970 50 WRITE (4,2001> MM

03880 2001 FORMAT (8X»2H 11X, I2,6H1.0000

0338380 SIGK2=0.0

04000C

04010 RETURN

04020 END

04030C
04040C
04056C
04060 FUNCTIOBN IROBUND OO

04070 IRGUND=IFIX{ABS O +0.5)
04080 IFX.LT.0.0) IRGUND=-IRBUND
04080 RETURN

04100 END

g4110C
04120C
04130C
041490 FUNCTION GSPH{DIST,A,CsENUG)

04150 IF(DIST.GE.A) GO TG 10

04160 X=DIST/A

04170 GSPH= (C-ENUG) *{1.5%X-0. 5FXCRCX) +ENUG
04180 RETURN

04190 10 GSPH=C

04200 RETURN

04210 END

D4220C
04230C
042490C
04250 SUBROUTINE KARGN (AsDsNPAR)

04260 DIMENSIGN A18,19),D (19

04270 TOL=0.000001

04280 N=NPAR

042380 DB B5 J=1)N

04300 Jy=J+1

04310 BIGA=0.

04320 DB 30 I=JsN

04330 IF (ABS{BIGA) —ABRSA (I, )51 35,30+30
04340 35 BIGR=AI,N

04350 IMAX=1I

04360 30 CONTINUE

04370 IF (ABS{BIGA»—TOL)> 10:10,40

04380 40 DB 50 K=JsN

043390 SAVE=RIMAX:K) /BIGA

04400 A {IMAXHKI =A(JsK)

04410 A (JsKI =SAVE

04420 50 CONTINUE

04430 SAVE=D (IMAXO /BIGA

04440 D (IMAXS =D WD

04450 D (J> =SAVE

04460 IF (UM 55,70:55

04470 55 DB 65 IX=JYsN

04480 DB B0 JUX=JY:N

04480 60 A{IXs XD =A{IXs JX —AIXyJI KA (s IXD
04500 65 D(IX=D{IXy DI *AIX, )

04510 70 NY=N-1

04520 DB 80 J=1,NY

04530 IB=N-J

04540 DB 80 K=1,J

04550 IC=N-K+1

04560 80 D (IB> =D {IB) -A{IB, IC: *D (IC

04570 RETURN




04580 10 WRITE (7,10005 NPAR

04590 1000 FORMAT (5X,*THERE IS NO SOLUTION WITH NPAR =¥, I3,* SO0 THEREX)
04600 STOP

04610 END

04620C
04630 SUBROUTINE PLOTY (X5 YsN4)

04640C PLOTS X (N2) ACROSS AGAINST YIN2> DOWN
04650 DIMENSION X (1000 ,Y <100

04660 DIMENSION IP (535, IG(53)

049670 SUMX=SUM2=SUMXY=SUMY2=SUMY=0.0
049680 N2=N4

04690 DB 20 I=1,N2

04700 NCH=0

04710 DO 21 J=1,N2-1

04720 IF YD LLELYU+1)) GO 7O 21
04730 Ti=Y WD

04740 Y (J) =Y {J+1s

04750 Y (J+15 =TT

04760 TT=X{(J

04770 X (U =X{J+1

04780 X (J+1) =TT

04790 NCH=1

04800 21 CONTINUE

04810 IF(NCH.EQ.O0> GO T0O 22

04820 20 CONTINUE

04830 22 W.MAX=-100000.0

04840 DO 23 I=1,N2

04850 SUMX=SUMX+X(I)

04860 SUMX2=SUMX2+X{I) *X (I

04870 SUMXY=SUMXY+X (I XY (I

04880 SUMY2=SUMY2+Y (I} XY (I)

04890 SUMY=SUMY+Y (DD

04900 23 IF (XD .GT.HWLMAX WLMAX=X (I
04910 Wi=lLMAX 4.0

04920 KW2=HlLMAX 2.0

04930 W3=LMAXX3.0-4.0

049490 WRITE (75,2002 W1, 2, W3 WLMAX
04950 2002 FORMAT(9X>3HO s4(BX;F5.2) /BXs2H+!,4(12UHP »1H!I
04960 JSOFRR=1

04970 VLINT=Y (N2} ,40.0

04980 DO 24 I=1,41

04990 ABOAVE=FLOBAT(I) X*VL INT

05000 DO 25 J=1,53

05010 25 IG(hH =1

05020 IF (JSOFARR.GT.N2) GO TO 27

05030 DO 26 J=1sN2-JSOFARR+1

05040 IF (r{(JSOFRR) .GT.ABOVE) GO TO 27
05050 XK=52.,0% (X(JSOFAR) > / (HLMAXS
05060 K=IROUND (XK} +1

05070 IG(K)=IG(K)+1

05080 JSOFAR=JSOFARR+1

05090 26 CONTINUE

05100 27 DO 28 J=1,53

05110 IFCIG(L .GT.11) IGW =11

05120 GO TO (30,31.32+»33,34+35,36,37,38,39,40) IG(J
05130 30 IP(J =1H

05140 GO T0 28

05150 31 IP (U =1H1

05160 GO 710 28

05170 32 IP(J =1H2

05180 GO T0 28

05190 33 IP(J)=1H3

05200 GO TO 28

05210 34 IP(J)=1H4




05220 GO 710 28

05230 35 IP{Ji=1H5

05240 GO 1O 28

05250 36 IP({Ji=1H6

05260 GO TO 28

05270 37 IP{UJi=1H7

05280 GO TO 28

05290 38 IP{J)=1H8

05300 GO TO 28

05310 38 IP{J)=1HSY

05320 GO 7O 28

05330 40 IP(J =1HX

05340 28 CONTINUE

05350 WRITE (7,2003) ABAVE, (IP{J)»J=1,53)

05360 2003 FORMAT (2XHLF6.25 1H+353A 1)

05370 24 CONTINUE

05380 T=SUMXY- {SUMXCKSUMY) /FLBAT (N2)

05380 R=T/SART { (SUMX2-SUMXCKIUMCFLOAT (N2) ) X (SUMY2-SUMYKRSUMY /FLOAT(N2) 7))
05400 T=R*SOERTFLOAT (N2-2)) /SGRT (1.0-R*R)

05410 WRITE(7,2000)RsN2sT

05420 2000 FORMAT (/7 /75Xy ¥CORRELATION COEFFICIENT BETWEEN THESE 2 X,
05430+%SETS OF VALUES = *,FB6.4/19X,XTHIS GIVES A T-TEST VALUE ( X,
05440+I3s ¥ SAMPLES) = *,F5.2)

054950

05460 RETURN

05470 END



.28+

.58+

.87+
1.16+
1.95+
1.74+
2.02+
2.31+
2.60+
2.89+
3.18+
3.47+
3.76+
4.05+
4,34+
4.63+
4.92+
5.21+
5.49+
5.78+
6.07+
6.36+
65.65+
6.949+
7.23+
7.52+
7.81+
8. 10+
8.39+
8.68+
8.96+
9.25+
9.54+
9.83+
10.12+
10.41+
10.70+
10.99+
11.28+
11.57+
11.86+

CORRELATICGN CCEFFICIENT BETWEEN THESE 2 SETS BF VALUES

0

DATA WL VS, DATA VL

1

DATA WL
.76 1.52

21 =
1 2
1

S 2
22 1
1
1

=N WO
o

—
—_

THIS GIVES A T—-TEST VALUE

AVERAGE SIGK2 GVER BATH BLBCKS FOR

~Ng T
g

—
e
S NEVR!

2.28

11 2 3
16 12 2

( 100 SAMPLES)

3.05
R e T o o o B S L S e S

2

.0711
.71



LCBWER BLOCK

UPPER BLOCK

SIMULATIGN WL VL W VL

1 1.75 1.12 2.17 1.03
2 2.28 1.08 2.08 .96
3 1.95 1.06 1.8 1.69
4 2.12 .70 2.189 .69
S 1.34 1.35 1.41 .71
6 2.09 1.55 1.86 .89
7 2.29 .64 2.63 .46
8 1.28 .80 1.64 .52
9 1.68 1.63 1.77 .65
10 1.68 3.22 1.86 1.27
11 1.37 1.71 1.20 1.17
12 1.4 2.05 1.26 2.1
i3 1.57 1.49 1.70 1.32
14 1.67 4.58 1.40 2.45
15 1.54 .61 1.20 .58
1€ 1.76 2.03 1.22 .53
17 1.41 .73 1.48 1.11
18 1.86 .92 1.88 .81
19 1.49 .96 1.41 .50
20 1.43 1.92 1.58 .57
21 1.62 .90 1.44 .62
22 1.6 1.07 1.39 1.12
23 1.77 1.39 1.43 .81
24 1.22 1.26 1.77 .69
25 3.14 4.27 2.38 2.06
26 1.48 1.52 1.96 .83
27 2.23 1.45 2.59 1.02
<8 1.94 1.90 2.30 1.48
29 1.07 .68 .99 .57
30 2.29 1.73 1.59 .76
31 1.87 .71 2.18 .85
32 1.51 .91 1.88 .85
33 1.10 1.33 1.74 .64
34 1.64 4.10 2.25 .64
35 1.42 .60 1.23 .28
36 2.19 3.28 1.82 1.45
37 1.37 1.83 1.38 .95
38 1.7 1.07 1.35 .73
39 1.42 .77 1.6 1.23
40 1.93 1.449 1.78 1.861
41 2.01 1.11% 2.77 2.43
42 1.66 1.03 1.79 .69
43 1.0 1.45 1.35 1.14
44 1.44 1.29 1.86 .63
i 1.36 1.26 1.44 1.14
46 1.92 1.44 1.79 1.14
47 1.34 1.44 1.70 .49
48 1.17 1.49 1.50 1.33
49 1.4 1.35 2.15 .54
S0 1.65 1.75 2.06 1.31
51 1.19 .80 1.42 .72
52 1.89 1.16 2.11 .43
53 1.62 1.18 1.29 .70
54 2.09 .94 2.10 .65
55 1.98 1.46 1.92 1.48
56 1.99 .94 1.8 1.09
57 2.949 1.51 2.61 .92



2 NON—PAY LIFTS WHEN REST OF BLOCK IS

P

58 2. 2.11 2.11 1.81
59 1. 1.08 1.42 .88
60 1.64 1.46 1.79 .89
61 1.66 .98 1.97 .73
62 1.23 3.19 1.33 1.05
63 1. 1.09 1.47 .65
64 1.28 2.87 1.75 .68
65 1. .53 .96 .48
66 1.83 1.86 1.88 1.40
67 1.494 1.71 1.69 1.24
68 1.28 2.38 1.78 1.06
69 1. 1.20 1.81 .70
70 1. 4.07 .96 .89
71 1. 2.01 1.86 .59
72 1.82 .70 1.68 .97
73 1.4 1.67 1.03 1.00
74 2. 2.81 2.33 .77
75 1.1 1.00 1.51 .46
76 1.51 1.32 1.25 .45
77 1.92 2.74 2.95 2.04
78 2.50 1.99 2.495 1.22
79 1.66 .62 1.1 1.17
80 1.50 1.12 1.38 .84
81 1. .64 1.69 .67
82 1.63 1.05 1.40 .79
83 2. 1.02 1.58 .64
84 1.84 1.79 2.06 1.03
85 1.60 .98 1.88 .65
86 2.29 2.17 2.17 1.20
87 1.32 2.05 1.29 .68
88 1.85 1.22 2.26 .71
89 2. 1.31 l1.82 1.82
a0 1.89 .57 1.86 .22
g1 1.36 1.21 1.0 1.06
a2 1.73 -63 2.08 .82
a3 1.37 1.28 l.11 1.17
94 1. 1.74 2.08 1.35
g5 1.64 1.94 1.87 .78
g6 2.67 2.27 3.07 1.11
97 1.57 .78 1.64 .64
98 1. 1.56 1.15 1.26
99 1.83 1.17 2.549 .57
100 2. .98 2.85 2.57
AVERAGE 1. 1.51 1.77 .97
' L3WERUPPER !
! PAY ! PP PN NP NN ! Pr N/
I | 100 o o o ! o 0
L2 100 o 0] o 0 0
! 3 a8 2 o 0! 4 1
.4 96 2 0 (O 7 3
.5 90 10 0 o ! 6 11
. 82 15 0 3! 8 13
i 63 27 2 8! 10 18
! .8 49 35 6 10! 9 25
.9 40 42 4 14 ! 13 3%
' 1.0 3% 39 5 21 ! 14 41
D U | 27 37 6 30! 20 46

/N



11,2 18 138 4 38 ! 16 55 14 82
' 1.3 15 36 3 46 ! 12 61 10 87
1.4 10 35 4 51 ! 12 65 8 89
‘1.5 5 31 5 859 ! g 71 6 892
'1.6 5 27 5 63 ! g 76 6 82
' 1.7 5 25 3 67 ! 9 79 5 83
' 1.8 5 18 3 73! 7 83 6 93
' 1.9 4 17 2 77 ! 6 85 4 g5
' 2.0 4 14 2 80 ! 7 86 4 395
AVERAGE CORR. CREFF. BETWEEN WL AND VL OVER 100 SIMULATIBNS = .0587

AVERAGE T-TEST VALUE = 1.03



WL LOWER VS. VL LOWER

WL LOWER
0 .78 1.57 2.35 3.14
+ ! b b e e

11+

.23+

.34+

. 46+

57+ 1 1

.68+ 1 1111 1 1

.80+ 111 11 1 1

.82+ 1 11
1.03+ 121 112 1
1.15+ 1 1 12111 11 1
1.26+ 1 1 2 12
1.37+ 1 12111 1
1.49+ 11 111 21 1
1.60+ 1 11 1 1
1.72+ 11 11
1.83+ 1 11 1 1
1.95+ 11 11
2.06+ 1 1 1 1
2.18+ 11
2.28+ 1
2.491+ 1
2.52+
2.63+
2.75+ 1
2.86+ 1
2.88+ 1
3.08+
3.21+ 1
3.32+ 1 1

3.55+

3.66+

3.78+

3.88+

4.01+

4,12+ , 1 1
4.249+

4.35+ 1
4.47+

4.58+ 1
4.70+

CORRELATION COEFFICIENT BETWEEN THESE 2 SETS OF VALUES
THIS GIVES A T-TEST VALUE { 100 SAMPLES)

. 1632
1.64



PRV NN NN N = b 2 b s a b s s b b b b

WL UPPER VS. VL UPPER

WL UPPER

0 .77 1.53 2.30 3.07

+ !+t b b b
.06+
.13+
.18+
.26+ 1
.3+ 1
.39+
.45+ 1
51+ 1 1 11 1 1 1
.58+ 1 11 11 1 1
.64+ 1 111 11 1
71+ 2 1 1411 11
77+ 12 1 1 11
.84+ 2 21 1
.80+ 1 11 1 11 1
.97+ 1
.03+ 1 1 1
.08+ 1 1 11 1
.16+ 121 1 1
22+ 11
.29+ 1
.35+ 1
.42+ 1
.48+ 1 1
.59+ 1
.61+ 1
.67+
. 749+ 1
.80+
.87+ 1 1
.93+
.00+
.06+ 2
12+ 1
.19+
.25+
.32+
.38+
.45+ 1 1
BHl+
57+ 1
.69+

—

[SAFEN

.2662
2.73

CORRELATION COEFFICIENT BETWEEN THESE 2 SETS OF VALUES
THIS GIVES A T-TEST VALUE ( 100 SAMPLES)



I o e o o o taanan a2 B e e R A

.08+

.16+

23+

31+

.38+

.45+

.54+

.51+

.69+

7+

.84+

.82+
1.00+
1.07+
1.15+
1.23+
1.30+
1.38+
1.496+
1.53+
1.61+
1.69+
1.76+
1.84+
1.92+
1.99+
2.07+
2.15+
2.22+
2.30+
2.38+
2.495+
2.53+
2.61+
2.68+
2.76+
2.8494+
2.91+
2.899+
3.07+
3.14+

CORRELATION COEFFICIENT BETWEEN THESE 2 SETS OF VALUES

0

WL LOWER VvS. WL LUPPER

WL LOKER
.78 1.57 2.35

111
1
1
111 1
11 111
1 21
11 11 11211
1 11 2
11 111 1
1 11
1 1111 1
11 22 2 2
111 21 12
1 11 11
1 1
11 1 1 11
1 11 1 1
1 2
1
1 1
1 1
11

THIS GIVES AR T-TEST VALUE ( 100 SAMPLES)

3.14

.6965
9.61



VL LOBWER VS. VL UPPER

VL LOWER
0 1.15 2.29 3.44 4.58
+ ' e e
.06+
.13+
.18+
.26+ 1
.32+ 1
.38+
.45+ 1
51+ 11 2111
.58+ 111 11 11
B4+ 111 2 1 1
71+ 11 2212 1 1 1
77+ 111 11 1 1
.84+ 1 11 11 1
.90+ 1111 11 1
.97+ 1 1
1.03+ 1 1 1 1
1.09+ 1 1
1.16+ 1 112 1
1.22+ 1 1
1.29+ 1 11 1
1.35+ 2 1
1.42+ 11
1.48+ 1 1
1.54+ 1
1.61+ 1
1.67+
1.74+ 1
1.80+
1.87+ 1 1
1,93+
2.00+
2.06+ 1 1
2.12+ 1
2.19+
2.25+
2.32+
2.38+
2.495+ 1 1
2.51+
2.57+ 1
2.649+

.3783
4.05

CORRELATIGN COEFFICIENT BETWEEN THESE 2 SETS OF VALUES
THIS GIVES A T-TEST VALLE (¢ 100 SAMPLES)
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