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ABSTRACT 

Richard Durham 

Investigations in geostatistical simulation 

as an aid to mine planning 

The geostatistical 'turning bands' simulation 

technique is examined. The simulations are conditioned, and 

the importance of the conditioning data points is shown. 

The correlation between the accuracy of a simulation before 

and after conditioning is examined. 

The standard 'turning bands' three dimensional 

simulation technique involves the use of fifteen regularly 

orientated axes. A new technique for finding the fifteen 

co-ordinates of a point is developed. It is tested against 

other one dimensional axes configurations. 

Conditional simulations are made of stopes from a lode 

within South Crofty tin mine. Non-stationarity amongst the 

data is found to be overcome by the conditioning process. 

A block simulation method is developed which allows 

the same unconditional simulations to be used for several 

sites. It produces a large number of simulations at a 

relatively low cost. 



I 

II 

1 

2 

CONTENTS 

LIST OF TABLES 

LIST OF FIGURES 

ACKNOWLEDGEMENTS 

INTRODUCTION 

SECTION A : THE SIMULATION METHOD 

1.SELECTION OF THE SIMULATION MODEL 

1.1.Traditional methods 	 5 

1.2.Turning bands method 	 7 

2.ONE DIMENSIONAL SIMULATIONS 

2.1.The simulation technique 	 9 

2.2.Determination of 'B' 	 12 

2.3.Computer subroutine SIM 	 13 

3.COMPOSITION OF THE ONE DIMENSIONAL SIMULATIONS 

INTO THREE DIMENSIONS 

3.1.The composition technique 	 15 

3.2.Number and orientation of axes 	 17 

3.3.Unconditional simulation example 	 18 

3.4.The uses of unconditional simulations 	19 

4.CONDITIONING OF THE SIMULATIONS 

4.1.The conditioning technique 	 21 

4.2.The importance of the number of data points 	23 



4.3.The importance of the position of the data points 	25 

4.4.Merits of conditioning 	 27 

4.5.Simulations before and after conditioning 	28 

4.6.The cost of conditioning 	 31 

5.ALTERNATIVE ONE DIMENSIONAL AXES CONFIGURATIONS 

5.1.The importance of the axes configuration 	33 

5.2.Ten regular axes 	 33 

5.3.Fifteen regular axes 	 34 

5.4.Randomly orientated axes 	 37 

5.5.Comparison of one dimensional axes configurations 	38 

5.6.Selection of axes configuration 	 43 

SECTION B : APPLICATIONS IN SOUTH CROFTY MINE 

1.SOUTH CROFTY MINE 

1.1.General description 	 45 

1.2.Available data 	 46 

2.DATA ANALYSIS 

2.1.Data accuracy 	 49 

2.2.Conversion of imperial measurements 	53 

2.3.Calculation of average assay values 	55 

2.4.Semi-variogram analysis 	 57 

2.5.Preparation of data for simulation 	63 

2.6.Lode widths simulation 	 63 

2.7.Lode assays simulation 	 71 

2.8.Actual widths estimation 	 74 

2.9.Actual assays estimation 	 78 



3.STOPE SIMULATION 

3.1.General approach 	 82 

3.2.Representation of the stope 	 82 

3.3.Simulation programs 	 83 

3.4.Conditional simulation results 	 84 

3.5.Susceptibility of the simulations to the models 	92 

3.6.Costs of the simulations 	 95 

3.7.Actual width and actual assay simulations 	95 

4.BLOCK SIMULATION 

4.1.General approach 	 101 

4.2.Choice of block size 	 102 

4.3.Choice of number of grid points 	 102 

4.4.Production and storage of unconditional simulations 104 

4.5.Choice of kriging pattern 
	 106 

4.6.Conditional simulation results 
	 108 

4.7.Sensitivity of the block simulation method 
	

112 

4.8.Costs of the simulations 
	 118 

4.9.Conditioning with grouped data 
	 120 

CONCLUSIONS 
	

122 

APPENDICES 
	

128 

REFERENCES 
	

148 



- I - 

LIST OF TABLES 

1 - Correlation between simulations 

before and after conditioning 

2 - Comparison of one dimensional axes configurations 

3 - Comparison of one dimensional axes configurations 

4 - Trimming the semi-variogram values 

5 - Development In lode widths trend surfaces 

6 - Stope simulation results 

7 - Accuracy of different kriging patterns 

8 - Block simulation results 

9 - Sensitivity of block simulation method 

10 - Number of simulations required 

11 - Conditioning with grouped data 



LIST OF FIGURES 

1 - Conditional simulation 

2 - Spherical semi-variogram models 

3 - One dimensional simulation axis 

4 - One dimensional simulations 

5 - Three dimensional unconditional simulation 

6 - Simulations before conditioning 

7 - Simulations after conditioning to points 

at 20 metres intervals 

8 - Simulations after conditioning to points 

at 10 metres intervals 

9 - Simulations after conditioning to points 

at 5 metres intervals 

10 - Simulations after conditioning to points 

at 20,5,10 metres intervals 

11 - Simulations after conditioning to points 

at 10,5,20 metres intervals 

12 - Different conditioning data points 

13 - Scattergram of variance vs sill 

14 - Scattergram of MS (model) vs I Si11-201 

15 - Scattergram of MS(data before) vs MS(data after) 

Conditioning points at 10 metres intervals 

16 - Scattergram of MS(data before) vs MS(data after) 

Conditioning points at 20 metres intervals 



17 - Scattergram of MS(data before) vs MS(data after) 

Conditioning points at 30 metres intervals 

18 - Scattergram of MS(data before) vs MS(data after) 

Conditioning points at 40 metres intervals 

19 - Influence of a one dimensional simulation axis 

20 - Semi-variograms of unconditional simulations 

21 - Semi-variogram of all conditioning data 

22 - Different axes configurations 

Conditioning points every 10 metres 

23 - Different axes configurations 

Conditioning points every 10 metres 

24 - Different axes configurations 

Conditioning points every 10 metres 

25 - Different axes configurations 

Conditioning points every 10 metres 

26 - Different axes configurations 

Conditioning points every 20 metres 

27 - Different axes configurations 

Conditioning points every 30 metres 

28 - Different axes configurations 

Conditioning points every 40 metres 

29 - Histogram of figures after decimal point 

for imperial lode widths 

30 - Histogram of figures after decimal point 

for metric lode widths 

31 - Histogram of last digit of imperial lode assays 

between 50 and 100 lbs/ton 



- I V - 

32 - Histogram of last digit of metric lode assays 

33 - Semi-variograms from every fifth sample 

34 - Minimum/maximum envelope from semi-variograms 

from 100 consecutive samples - simulation 2637 

35 - Minimum/maximum envelope from semi-variograms 

from 100 consecutive samples - lode widths 

36 - Minimum/maximum envelope of semi-variograms 

after random removal of samples - simulation 2637 

37 - Minimum/maximum envelope of semi-variograms 

after random removal of samples - lode widths 

38 - Histogram of [G (x) -G (x+h) ] 2  d istr ibutions 

39 - Effect of trimming the semi-variogram values 

40 - Semi-variograms in different directions 

for stope lode widths 

41 - Semi-variograms from different levels 

for lode widths 

42 - Histogram of imperial development lode widths 

43 - Semi-variograms from different levels 

for ln lode widths 

44 - Semi-variogram of residuals of development 

In lode widths cubic trend surface 

45 - Histogram of residuals of development 

In lode widths cubic trend 

46 - Semi-variograms in different directions 

for stope lode assays 

47 - Semi-variograms from different levels 

for lode assays 



V 

48 - Histogram of lode values 

49 - Semi-variograms from different levels 

for In lode assays 

50 - Semi-variogram of development In lode assays 

51 - Conditional simulations of lode widths 

for Meredew stope 

52 - Conditional simulations of lode assays 

for Meredew stope 

53 - Conditional simulations of lode widths 

for Pisowocki stope 

54 - Conditional simulations of lode assays 

for Pisowocki stope 

55 - The minimum/maximum envelope 

for Meredew stope simulation no.1 

56 - Conditional simulations of lode widths 

for Meredew stope ignoring trend 

57 - Conditional simulations of lode widths 

for Pisowocki stope ignoring trend 

58 - Conditional simulations of lode widths 

for Meredew stope ignoring trend with different models 

59 - Conditional simulations of lode assays 

for Meredew stope with different models 

60 - Conditional simulations of actual widths 

for Meredew stope 

61 - Conditional simulations of actual assays 

for Meredew stope 



- VI - 

62 - Conditional simulation of 

two horizontally adjacent blocks 

63 - Block conditional simulation layout 



- 1 - 

ACKNOWLEDGEMENTS 

By definition the work involved in attaining a Ph.D. 

degree is original and unaccompanied. However, this thesis 

would not have been written without the help of several 

people. 

Thanks are due to my supervisor, Dr. Isobel Clark, and 

to South Crofty Limited for permission to use their data. 

Paul Bearman assisted with my vocabulary, and proof 

reading was carried out by Margaret Burr. 

Grateful acknowledgement is made to the Science 

Research Council for financial support during the course of 

this research. 



- 2 - 

INTRODUCTION 

A simulation is a representation of reality. It is a 

possible existing situation which exhibits imposed 

characteristics. 

An unconditional simulation displays the known 

characteristics of the sampled data values. A conditional 

simulation goes one step further. It exhibits the same 

characteristics, and at the data points the simulated value 

equals the sampled real value. 

The purpose of any simulation approach is to aid 

understanding, prediction, and control of a system. When 

simulating ore reserves this system is the geological 

genesis of the rocks themselves. Obviously, control of this 

process is impossible, and greater understanding and 

prediction are left as the aims of such simulations. 

Simulation is not the same as estimation. A simulation 

produces a possible situation, whereas estimation derives 

the most likely situation. For any given set of data 

values, there exists an infinite number of simulations, but 

only one estimation. The average of all the simulations 

(possible situations) is equal to the estimation (probable 

situation) . 

Since a single simulation is only one of an infinite 

number of possible simulations, to create only one 

simulation and to draw conclusions from it can be extremely 

misleading. It is equivalent to examining a single value 
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from a distribution. A sufficiently large number of 

simulations must be created to give an idea of the 

distribution of features around the mean discovered by 

estimation. The possibility of taking decisions on the 

basis of a single exceptional simulation is thereby 

avoided. 

The major use of simulating ore reserves is for the 

investigation of possible fluctuations. These fluctuations, 

for instance, can be between the grade of adjacent mining 

blocks, or the hoisted production from contiguous shifts. 

Consider two blocks of ore next to each other. 

Estimation can inform as to whether each of them is below 

or above the cut off grade. But, it can not predict what is 

the probability of both of them being of the same 

classification (pay or non-pay). Simulation can do this. 

For instance, the results from several simulations might 

show that there is only a ten percent chance of the two 

mining blocks being of different classifications. Under 

these conditions, the mining block size could be doubled 

and the mining technique thereby simplified. 

One of the problems with statistical simulation has 

always been that of cost. Due to the sheer number of 

figures which have to be manipulated, the use of a fairly 

large computer is essential. It is the cost of the computer 

time and storage which creates the expense of statistical 

simulation. This is due to the large number, rather than 

the complexity, of the calculations. 
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Throughout the course of this study the cost of the 

simulations was always considered. It is essential that 

this cost does not exceed the saving due to a simulation 

based decision. 

All the computer programs used in this study are in 

the FORTRAN IV language, and were compiled by a University 

of Minnesota MNF5 compiler. The computer work was 

undertaken at the Imperial College computer complex. The 

machinery available consisted of a CDC Cyber 174 and a CDC 

6500. These two computers share 250,000 60-bit words of 

extended memory space. The execution time of the computer 

programs used in this study are quoted in terms of central 

processor seconds (henceforth CP seconds). 

This thesis has been written in two sections. The 

first consists of a detailed evaluation of the simulation 

method. The second shows how such a simulation technique 

has been applied to some mine data. 
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SECTION A : THE SIMULATION METHOD 

' A.1.SELECTION OF THE SIMULATION MODEL 

A.l.1.Traditional methods :- 

There are many different types of statistical 

simulation models. They broadly fall into four categories 

(Harbaugh and Bonham-Carter,1970) as follows :- 

(a) Static - independent of time. 

(b) Dynamic - varying with time. 

(c) Deterministic - with no element of chance. 

(d) Probabilistic - involving a random component. 

A simulation model is either static or dynamic, and 

either deterministic or probabilistic. 

A model was required to produce simulations of 

geological variables. For the purposes of this study these 

variables were lode widths and lode assays. Both of these 

parameters do not change with time, and so a static model 

was needed. Also, neither of them is precisely known at all 

points, and thus the model had to be probabilistic. 

The standard approach to a static probabilistic model 

is a Monte Carlo method. This involves taking samples at 

random from a known distribution. Thus, it is a relatively 

easy matter to produce simulated values which exhibit a 

known distribution. 

However, if geological variables are to be 

realistically modelled, they must be spatially correlated 
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as well. In other words, they must exhibit an imposed 

auto-correlation function. 

There are several methods for producing three 

dimensional, spatially correlated simulations (Jenkins and 

Watts,1968; Journe1,1974). They are generally of two 

types :- 

(a) Simulations of orthogonal random numbers 

which have a variance density equal to the spectrum 

density of the desired auto-correlation function. 

(b) Moving averages, usually performed with a 

sphere, over a field with a Poisson distribution. 

However, these simulation methods are extremely costly 

on computer space and time 	 Oertel and Walton (1967) in 

1967 stated that their program 'exceeds the directly 

accessible memory space of present computers', and 'the use 

of indirect memory space 	would cause intolerably long 

running times'. Great advances in computer technology since 

1967 no doubt mean that these simulation methods could now 

at least be handled, but they would still be relatively 

huge undertakings. They are generally considered to be 

prohibitively expensive. 

However, these methods can be used to produce one 

dimensional simulations at a reasonable cost. It is only 

when they are asked to perform in three dimensions that 

they become expensive. It is the transfer from one to three 

dimensions which causes an 'explosion' of computer time and 

storage requirements. 
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Newton and Royle (1972) describe a method of producing 

a two dimensional simulation 3t a reasonable cost. It is 

based'on a trigonometrical expression and could be expanded 

into three dimensions fairly simply and cheaply. However, 

it seems that the behaviour of the simulated values can 

only be found after the simulation has taken place. No 

desired function, either of auto-correlation or of 

distribution, can be imposed on the simulation. 

A.1.2.Turning bands method :- 

In 1973 Matheron (1973) first postulated the 'turning 

bands' simulation approach. Later Journel and Huijbregts 

(1978) presented the method in more detail, and more 

comprehensibly . The 'turning bands' method does not need 

enormous computer facilities to produce three dimensional 

simulations. The simulations have the required 

characteristics, that is of the imposed distribution and 

auto-correlation functions. The auto-correlation function 

used in the 'turning bands' method is the semi-variogram. 

This function is made up of a series of figures calculated 

from :- 

Gamma(h) = 1* 	

i

> [3(x)_G(x+h)]2

= N 

2* i=1 

where h = vector commonly called 	the lag 

Gamma(h) = semi-variogram value at lag 'h' 

G(x) = variable value at position 'x' 

G(x+h) = variable value at position 'x+h' 
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N = number of pairs of values 

separated by 'h' 

Determination of this figure for various lag values 

produces the semi-variogram, usually presented as a graph 

of 'Gamma(h)' against 'h'. 

The 'turning bands' simulation method basically 

consists of two steps. The first is to produce simulations 

along one dimensional lines. The second is to rotate these 

lines in space and transfer their characteristics into 

three dimensions. It is the one to three dimensions 

technique which is the great originality, and cost saver, 

of the 'turning bands' approach. 

Journel 	(1974) gives details of how a 'turning bands' 

simulation can be made conditional. That is, the simulated 

value at any sampled point equals the actual variable value 

at that point (see figure 1). The method uses the kriging 

estimation technique, as developed by Krige (1951), and 

described by Delfiner and Delhomme (1973), and Brooker 

(1979). 

All the simulations used in this study were produced 

by the 'turning bands' technique. The next three sections 

describe and evaluate the method in detail. 
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A.2.ONE DIMENSIONAL SIMULATIONS 

A.2.1.The simulation technique :- 

The first step in the 'turning bands' simulation 

method is to produce one dimensional simulations. Each of 

these consists of a set of figures along a straight line. 

The values on the line must exhibit the imposed 

distribution and auto-correlation functions. 

The 'turning bands' approach produces simulated values 

which follow a Normal or Gaussian distribution. Henceforth 

the notation N(M,V) will be used to denote a Normal 

distribution with a mean of 'M' and a variance of 'V'. 

As mentioned before the auto-correlation function used 

is the semi-variogram. As with distributions, there exist 

several standard models for the shape of a semi-variogram 

(Blais and Carlier,1968; Huijbregts,1973). The one used 

throughout this study is the spherical or Matheron model 

(see figure 2). Of all the semi-variogram models, the 

spherical scheme is by far the most frequently used. David 

and Blais (1972) state that 'In all the cases we have 

studied, we have been able to fit spherical schemes to our 

experimental variogram curves'. The equation for the 

spherical model is :- 



FIGURE 2 : SPHERICAL SEMI-VARIOGRAM MODELS 

ONE DIMENSIONAL MOCEI 	THREE DIMENSIONAL MODEL 

C 

TC 

ACE 
V 

A 



- 10 - 

= (C-E)*[1.5*H-0.5*H31 + E 
A 

where C = total sill 

E = nugget effect 

H = lag value 

A = range of influence 

The spherical model is defined by the three parameters of 

range, sill, and nugget effect. Henceforth the notation 

Spherical(A,C,E) will be used to indicate the precise shape 

of any spherical model. 

There are many simple ways of simulating independent 

values which follow a certain distribution. The problem 

arises when the values have to be spatially correlated. 

The initial step is to produce a series of independent 

values with a Normal distribution of N(0,1). The computer 

available can produce random numbers from a uniform 

distribution between 0.0 and 1.0. The sum of twelve such 

numbers has 	a 	Normal 	distribution 	of 	N (6.0, 1.0) . 

Subtraction of 6.0 produces the desired distribution shape. 

The independent, or 'T', values are placed along a 

line at regular intervals of 'B'. A parallel line of 'Y' 

values is now considered. They are also regularly spaced at 

intervals of 'B' but are out of alignment with the 'T' 

values by 1 0.5*B'. Each 'Y' value is a function of the 

closest 'T' 	figures. In fact all the 'T' figures up to a 

distance of '(A-B)/2' in both directions are included 	(see 

figure 3). By this means, two ' Y ' 
 

values at a small 



FIGURE 3  
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distance apart have a large number of common 'T' figures, 

and are therefore heavily correlated. As the distance 

increases the correlation reduces to a minimum of zero at 

distances of 'A' or greater. Each 'Y' value is defined 

as :- 

j=M 

= WF* 	Tj*Dj 

j=1 

where WF = weighting factor 

M = number of 'T' values considered 

in both directions 

2* (A-B) 
2 	+ 1 = A 

B 	 B 

Tj = 'T' value at point 'J' 

Dj = distance from point 'J' to the 

position of 'Y' 

= - (A-B) when J=1 
2 

= + (A-B) when J=M 
2 

Journel (1974) states that such 'Y' figures have a 

semi-variogram of the form :-  

C*[3*H-2*H3] 
A A 

He also shows that if the desired three dimensional 

semi-variogram is 'S(H)' then the required one dimensional 

semi-variogram equals :- 

= dH*S (H) 
dH 
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For a spherical model this becomes :- 

= d H*C*[1.5*H-3.5*H3]4.' 
dH 	A 	A 

= C* [3*H-2*H3 ] 
A A 

So the required one dimensional semi-variogram has 

been produced (see figure 2). It can be shown that the sill 

of these 'Y' values is :- 

= WF2*A*(A2+11*B2) 
(12*B) 

Therefore to produce a sill of 1.0 the weighting factor 

'WF' is set to : - 

(12*B)  

[A*(A2+11*B2)] 

Thus the 	values exhibit the correct 

semi-variogram, and have a Normal distribution of N(0,1). 

A.2.2.Determination of 'B' :- 

It will have been noted that 'B' has not yet been 

specified. As usual a balance has to be reached between 

accuracy and cost. If 'B' is very small the simulations 

will be highly accurate, but expensive to produce. 

The spacing of the 'Y' values does not have to be 

equal to 'B', in other words that of the 'T' figures. It is 

a simple matter to make the 'Y' values' spacing a whole 

number multiple of 'B'. 

A one dimensional simulation was made of a line of one 

thousand 'Y' values. The 'Y' values were regularly spaced 

at an interval of 1 metre. The range of influence of the 



- 13 - 

semi-variogram was set at 25 metres. The spacing of the 

independent 'T' figures was 1 metre. In all, twenty five 

simulations were made under these conditions. 

The accuracy of each simulation semi-variogram was 

estimated by finding its closeness to the one dimensional 

semi-variogram model. This was represented by the root mean 

square of the residuals (henceforth called the RMS). This 

was defined as :- 

h=N  

_ /1 *> (Oh-Eh) 2  

h=1 

where N = number of points of the semi-variogram 

considered 

Oh = observed semi-variogram value at lag 'h' 

Eh = expected or model semi-variogram 

value at lag 'h' 

The average RMS term for all twenty five simulations was 

found to be 0.23. 

Similarly twenty five simulations were produced using 

'T' figures spaced at 0.5, 0.25, 0.125, and 0.0625 metres. 

The average RMS terms for these values of 'B' were 0.18, 

0.15, 0.15, and 0.14 respectively. The law of diminishing 

returns applies and the results with a 'B' value of 'A/100' 

seem acceptable. Clark and White (1976) agree with this 'B' 

value of one hundredth of the range. 

Throughout this study the one dimensional simulated 

values have been produced at a regular interval of one 

hundredth of the range. This may not prove acceptable under 
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different conditions. For instance, with a range of 

200.0 metres the value for 'A/100' is 2.0 metres. If the 

three dimensional simulation requires points 1.0 metre 

apart, this will be inadequate, and 'B' will have to be 

reduced. 

A.2.3.Computer subroutine SIM :- 

The one dimensional simulation process has been 

incorporated in a computer subroutine SIM (see Appendix 1). 

Using this subroutine five one dimensional simulations were 

produced. Figure 4 shows the resulting semi-variograms and 

distribution frequencies. Each simulation was of a line of 

one thousand points, spaced at regular intervals of 

1 metre. The 	two 	models, 	of 	auto-correlation 	and 

distribution, are also displayed. 
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A.3.COMPOSITION OF THE ONE DIMENSIONAL SIMULATIONS 

INTO THREE DIMENSIONS 

A.3.1.The composition technique :- 

Having produced the simulations along one dimensional 

lines, the next step is to transfer their features into 

three dimensions. 

Consider one of these lines as an axis in three 

dimensional space. Points at regular intervals ('B') along 

the axis have each been assigned a simulated value ('Y'). 

Each point has a co-ordinate on the axis, and all points in 

space with the same co-ordinate form a plane at right 

angles to the axis. All the points on this plane are 

assigned the same simulated value, that is the value of the 

point where the plane cuts the axis. 

Repetition of this process for all simulated values 

along the axis produces a family of planes. The planes are 

parallel and spaced at regular intervals of 'B'. Each plane 

has a simulated 'Y' value associated with it. If the axis 

is considered to be infinitely long, its family of planes 

covers all of space. 

Each two dimensional plane is expanded, in the third 

dimension, to a thickness of 'B'. The family now consists 

of bands (hence the term 'turning bands'), rather than 

planes. Each band has assigned to it the 'Y' value where 

its central plane cuts the axis. The family of bands 

occupies all of three dimensional space. 



- 16 - 

So, any point in space can now be given a simulated 

value, from the band in which it lies. If several, say 'N', 

axes are considered, then any point in space has 'N' 

simulated values assigned to it. Summing these 'N' values 

produces the desired three dimensional simulation value. 

As has been stated before, the simulated one 

dimensional values, along the axes, follow a semi-variogram 

of .- 

1. 0* [3*H_-2*H3] 
A A 

and a Normal distribution of N(0,1). 

The summation of such 'Y' values from 'N' axes gives 

simulated three dimensional 'Z' values which are :- 

i=N 

Yi 

i=1 

where Yi = one dimensional value attributed to 

'turning band' from axis number 'I' 

The 'Z' values have a semi-variogram of :- 

N*[1.5*H-0.5*113] 
A 	A 

and a Normal distribution of N (0,N). 

The variance, and therefore also the sill, of these 

'Z' values is now altered. It is changed by multiplication 

of each value by the term :- 
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Co 
N 

where Co = difference between the sill and 

the nugget effect 

= C - E 

The variance and sill of the simulated values thus become 

'Co'. 

The nugget effect is a purely random factor which 

increases the variance but does not affect the average. So 

it can be treated as having a Normal distribution of 

N(0,E). A different random number from such a distribution 

is added to each of the simulated 'Z' values. This changes 

them to exhibit a semi-variogram of :- 

CO*[1.5*H-0.5*H_3] + E 
A 	A 

and a Normal distribution of N (0,Co+E) = N (0, C) 

The desired mean 'M' is now added to all the 'Z' 

values. This has no effect on the semi-variogram but alters 

the distribution to N (M, C) . 

A.3.2.Number and orientation of axes :- 

Obviously in an ideal world the number of axes, 'N', 

used in the summation to produce the three dimensional 

simulation, would be infinity. So, the question provoked is 

how many axes will be a sufficiently accurate 

representation of infinity? Journel (1974) states that 

fifteen axes, regularly positioned in space, will suffice. 

The orientation of each of the fifteen regular axes is 



- 18 - 

derived from an icosahedron. This regular polyhedron has 

twenty faces, and thirty edges. The centre of the 

icosahedron is defined as the origin. The fifteen lines 

joining the mid-points of opposite edges, all passing 

through the origin, give the orientation of the fifteen 

axes. 

Journel (1974) determined a three by three matrix, 

'R', which can be used to derive the co-ordinate of a point 

on each axis. The point's position is defined by the 

co-ordinates on three orthogonal axes. Multiplying these 

co-ordinates by 'R' produces three co-ordinates of another 

set of orthogonal axes. In turn, these co-ordinates, when 

multiplied by 'R', give another set of three orthogonal 

co-ordinates. Two more multiplications complete the 

required fifteen co-ordinates. 

If the final set of three co-ordinates is multiplied 

by 'R', the initial three co-ordinates are achieved. This 

acts as evidence of the regular spacing of the axes. 

A subroutine (COORDS1) has been produced which 

performs the task of deriving the fifteen co-ordinates (see 

Appendix 2) . 

A.3.3.Unconditional simulation example :- 

A computer program (SIM3D) has been written (see 

Appendix 3), which produces a simulation of a cuboid of any 

shape. The required input to the program is :- 

(a)  The spherical semi-variogram parameters, 
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that is the range, sill, and nugget effect. 

(b) The 	Normal 	distribution 	average. The 

variance since it is equal to the sill, has already 

been specified. 

(c) The cuboid dimensions. 

The program produces a simulation consisting of a 

value at every three dimensional grid point. These are at 

intervals of one unit length apart. Also generated are a 

histogram of all the simulated values, and the 

semi-variogram of the values in the three principal 

directions. 

An example of results from the program is given in 

figure 5. The simulation was of a 20*20*20 block with the 

values 	originating 	from 	a 	semi-variogram 	of 

Spherical (10, 1, 0) , and with a Normal distribution 	of 

N(10,1). Even with eight thousand simulated figures the 

deviations from the models are clearly visible. 

So, unconditional simulations can now be produced. 

They exhibit the desired semi-variogram and distribution 

features. 

A.3.4.The uses of unconditional simulations :- 

Obviously the initial step in any simulation approach 

is to determine the models to be used. To do this there has 

to be some known data. Since data exists, it seems sensible 

to use it to improve the simulations by making them 

conditional. In other words, there are few occasions when 
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only an unconditional simulation can be produced. It is 

usually possible, and desirable, to proceed to the greater 

applicability of a conditional simulation. 

Unconditional simulations have limited applications. 

They may be of use for global simulations, early in the 

history of an orebody. Little or no sampling will have been 

carried out in the new orebody, and the simulation models 

will be taken from geologically analagous situations 

elsewhere. 

Similarly, unconditional simulations can be useful for 

examining the behaviour of an unexplored region within an 

orebody. In this case, the models would be obtained from 

the well sampled areas of the orebody. 
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A.4.CONDITIONING OF THE SIMULATIONS 

A.4.1.The conditioning technique :- 

The process of conditioning the simulations is a 

fairly simple one. The object is to make the simulated 

values equal the actual values at any data points. 

The result of an unconditional simulation is a set of 

values which follow a certain semi-variogram and 

distribution. A simulated value is known at every grid 

point of the block under consideration. A sample will have 

been taken at some grid points, and so the real value is 

known there. With these data points a kriged estimate of 

the real value at any grid point can be calculated. Using 

the simulated values at the same positions (and therefore 

the same kriging weights) a simulated value estimate -.ay be 

found. So, for all grid points there are three known 

figures :- 

(1) 'S' - value from unconditional simulation. 

(2) 'Rk' - kriged estimate from real values at 

data points. 

(3) 'Sk' - kriged estimate from simulated values at 

data points. 

To make the simulation conditional all the simulated 

values are replaced by the term :- 

S - Sk + Rk 
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If the grid point considered is also a data point then the 

following is true :- 

Sk = S 

Rk = R 

and the conditional simulation value becomes :- 

= Sk - Sk + R 

= R 

Thus the values of the conditioned simulation exactly 

agree with the known sampled values at all the data points. 

Since kriging is an unbiased estimation technique, the 

average of the kriged estimates equals that of the samples 

used in the kriging systems. Therefore the mean of the 'Sk' 

values is the same as that of the 'S' values. Similarly for 

the 'Rk' and 'R' figures. The average of the conditioned 

simulation which :- 

= average 'S' - average 'Sk' + average 'Rk' 

thus becomes :- 

= average 'R' 

So, the conditional simulation has the same average as 

that of the data points. 

It can be shown that the process of conditioning a 

simulation does not affect the semi-variogram of the values 

(Journe1,1974). They will still follow the model specified 

for the unconditional simulation. 

So, a conditional simulation has the following 

important properties :- 
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(a) It coincides with the real values at data 

points. 

(b) It has an average equal to the average of 

the real values. 

(c) It has a semi-variogram of the desired 

form. 

The conditioning process can be summarised as 

involving the transfer of the term :- 

(S - Sk) 

A possible difference between a value and its kriged 

estimate is simulated. It is then added to the kriged 

estimate of the real value. 

It can be seen that of the two parameters defining the 

distribution, only the variance survives the conditioning 

process. Whatever the average of an unconditional 

simulation, it will become that of the data points after 

conditioning. The distribution variance is calculated using 

a standard statistical formula, which assumes that all the 

values are independent. This is not true for pairs of 

points less than the range of influence ('A') apart. 

Because of this the sill is generally a better estimate of 

the true variance of the data. Therefore the only reason 

for finding the distribution frequency of the data is to 

check that it is a Normal distribution. 

A.4.2.The importance of the number of data points :- 

Five simulations were made of a line of one thousand 
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points, regularly spaced at 1 metre intervals. The values 

came from a semi-variogram of Spherical(50,20,0) and a 

Normal distribution of N(100,20). The semi-variograms and 

distribution frequencies of each simulation are shown in 

figure 6. 

The simulations were conditioned to data points 

regularly spaced along the line. The data points themselves 

originated from a similar unconditional simulation, and had 

an average of 101.34 and a variance of 17.40. Simple 

alteration of all the one thousand data values to become :- 

[(S-101.34)*4.47] + 100.00 
4.17 

changed their average and variance to 100.00 and 20.00 

respectively. The simulation then fitted the models closely 

(see figure 6) . 

The conditioning of the simulations was carried out by 

a computer program, CON (see Appendix 4). CON reads in five 

unconditional simulations and one data simulation, from 

previously formed computer storage files. It produces a 

kriging system for all points of the unconditional 

simulation between the third and antepenultimate data 

points. The weights are then calculated for the four 

nearest data points. If any weight is less than -0.003 or 

greater than 0.6, the kriging system is altered and new 

weights calculated. In the former case the point with the 

negative weighting is eliminated from the kriging system. 

With a 0.6 or larger weight, an extra point beyond it is 
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added to the system. The output of the program includes the 

semi-variogram and histogram of the conditioned values. 

The number of data points to which the five 

simulations were conditioned was varied between :- 

(a) Fifty points at regular intervals of 

20 metres. With this arrangement of conditioning 

points a kriging system was found for every point, 

between the third and forty eighth data points. 

Using these kriging systems the average kriging 

estimation variance of the kriged estimates was 

4.07, or 20.4 percent of the sill. The 

semi-variograms and histograms of the simulations 

after being conditioned are shown in figure 7. 

(b) One hundred points at regular intervals of 

10 metres. The average estimation variance of the 

kriged estimates was 10.0 percent of the sill. The 

five semi-variograms and histograms after 

conditioning are seen in figure 8. 

(c) Two hundred points at regular intervals of 

5 metres. The average kriging variance was 6.0 

percent. The results of this data pattern are shown 

in figure 9. 

As expected, with a greater number of data points the 

conditional simulations are closer in behaviour to the data 

values. The more data points used, the better are the 

conditional simulations. So, an effort should always be 

made to include as many data points as possible in the 
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conditioning process. 

A.4.3.The importance of the position of the data points :- 

The behaviour of the conditional simulations is not 

due entirely to the number of data points. The arrangement 

of the conditioning data points is also important. This is 

shown by conditioning the five simulations to one hundred 

data points in the following patterns :- 

(a) Twenty points at 20 metres intervals, next 

to forty points at 5 metres intervals, next to 

forty points at 10 metres intervals. With this 

arrangement the average kriging variance was 10.5 

percent. The results are shown in figure 10. 

(b) Forty points at 10 metres, forty points at 

5 metres, and twenty points at 20 metres. Obviously 

this is merely the last pattern reversed. Figure 11 

shows the results. 

Comparison of the results using these two data point 

arrangements, and those with one hundred uniformly spaced 

points (see figure 8), shows the importance 	of 	the 

conditioning data points. The arrangement of the data 

points, and their actual values, have a large influence on 

the behaviour of the conditional simulation. 

The importance of the conditioning data points 

arrangement is further emphasized by the semi-variograms 

shown in figure 12. Two similar (that is using the same 

models) unconditional simulations of a line of two hundred 
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points were produced. The points were regularly spaced at 

1 metre intervals. Using an adaptation of the program CON, 

one simulation was conditioned to data values from the 

other simulation. The data points were regularly spaced at 

intervals 	of 	10 metres. The differences between the 

semi-variograms shown are due to the different positions of 

the data points. The first conditional simulation had its 

first conditioning point at position number 10, its second 

at number 20, and so on. The second simulation started at 

number 11, and again continued in steps of 10 metres. 

Similarly, eight other conditional simulations were 

produced with the data points moved one position each time. 

Thus the tenth simulation had its first conditioning point 

at position number 19. 

A.4.4.Merits of conditioning :- 

The number, and position, of the conditioning data 

points have a great effect on the conditional simulation 

values. The conditioning process is the most influencial 

step in the production of a conditional simulation. It 

forces the simulations to agree with any known actual 

values. This is particularly of use if a small area within 

a much larger one is being simulated, since any local small 

scale idiosyncrasies will be coped with by the conditioned 

simulation. This is the great advantage of conditional 

'turning bands' simulations over other, unconditional 

simulation techniques. 



- 28 - 

Whilst conditioning is the great strength of the 

'turning bands' approach, it is also the great weakness. 

This is because it attributes one hundred percent accuracy 

to the data. The conditional simulation must pass exactly 

through the data values without allowance for small 

sampling inaccuracies. As has been shown, the values at the 

data points have a great influence on the behaviour of the 

conditional simulation. So, if any of the sampled data 

values is incorrect its error may have large repercussions. 

A.4.5.Simulations before and after conditioning :- 

If no data points are used in the conditioning 

process, the unconditional simulations exactly equal the 

conditional simulations. So, the simulation which is most 

accurate (with respect to the models) before conditioning 

is also the most accurate after the conditioning. The 

correlation between the accuracy of the simulations before 

and after the conditioning operation is total. 

Similarly, at the other end of the scale, if an 

infinite number of data points are used, all the 

conditioned simulations are the same. The unconditional 

simulations are totally irrelevant. The correlation between 

the accuracy of the simulations before and after 

conditioning is zero. 

It was decided to find at what number of data points 

the correlation, between a simulation's accuracy before and 

after conditioning, becomes significant. 
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A parameter was needed to act as a measure of the 

proximity of a simulation to the models. One of the models, 

the distribution, 	is defined by the average and the 

variance. As has been stated, the average of an 

unconditional simulation has no effect on the average of 

the conditioned values. So, the accuracy of the 

unconditional simulation average before conditioning is 

irrelevant. The variance of the distribution also finds 

expression in the semi-variogram. Therefore, a measure of 

the closeness of the semi-variogram to the model also 

checks the one important parameter of the histogram. 

The deviation of a semi-variogram from the model was 

expressed by the mean square of the residuals (henceforth 

called the MS). This was defined as :- 

h=N 

= 1* (Oh-Eh) 2  

N h=1 

where N = number of points of the semi-variogram 

considered 

Oh = observed semi-variogram value at lag 'h' 

Eh = expected semi-variogram value at lag 'h' 

Twenty five simulations were produced of a line of one 

thousand points regularly spaced at 1 metre intervals. The 

values originated from a Normal distribution of N(100,20), 

and a semi-variogram of Spherical(50,20,0). For each 

unconditional simulation the semi-variogram was calculated 

up to a lag of 60 metres. The MS of the semi-variogram was 

found and also the sill, as estimated by the average 
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semi-variogram value between lags of 50 and 60 metres. The 

variance of the unconditioned values was also calculated 

using a classical statistics' 	formula. The twenty—five 

simulations were conditioned (using program CON) to one 

hundred points from the altered data simulation used 

previously (see figure 6). The points were regularly spaced 

at 10 metres intervals. The same three parameters (the MS 

and sill of the semi-variogram , and the variance) were 

calculated for the values after they had been conditioned. 

The scattergram of the twenty five pairs of sill and 

variance values before conditioning shows great 

correlation. This is also true after conditioning, and all 

fifty pairs are plotted in figure 13. The correlation 

coefficient is 0.65, which, as expected, is highly 

significant. 

Figure 14 shows the correlation, for both the 

unconditional and conditional simulation semi-variograms, 

between the MS term and the deviation of the sill from the 

model 	(that is the modulus of the term 'sill-20.00'). The 

correlation coefficient is 0.84 which is significantly 

high. 

So, the MS of a semi-variogram is proportional to the 

accuracy of the sill. Therefore, it is also proportional to 

the accuracy of the variance. It would seem to give a good 

idea of a simulation's proximity to the two models of 

distribution and auto-correlation. 

The relationship between the MS term for the 
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semi-variograms before and after conditioning is shown in 

figure 15. It should 	be 	noted 	that 	the 	expected 

semi-variogram used in the calculation of MS was not the 

model semi-variogram. It was the semi-variogram of the data 

values used in the conditioning operation. This allows for 

any deviations the selected values may have from the 

models. The semi-variogram of each simulation, both before 

and after conditioning, only used the values between the 

third and antepenultimate data points. To avoid making the 

program CON too complicated, the positions outside these 

two limits were not conditioned. The correlation 

coefficient 	for 	figure 15 	is 	-0.20 	which is not 

significantly different from zero. In other words, an 

inaccurate simulation before conditioning, is not 

necessarily an inaccurate simulation after conditioning. 

The one hundred evenly spaced data points are too many for 

this to be true. The number of data points has to be moved 

further towards zero for significant correlation to exist. 

The twenty five simulations were conditioned to data 

points regularly spaced at intervals of 20, 30, and 

40 metres. The scattergrams between the semi-variogram MS 

terms before and after conditioning are shown in figures 

15, 17, and 18 respectively. The results are summarised in 

table 1. It shows that the correlation becomes significant 

with twenty five data points. This is when the average 

kriging variance used in the conditioning process is 44 

percent. When it is 32 percent the correlation is only 
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TABLE 1 

Conditioning 
data 	points 

Average 	kriging 
variance during 
conditioning 

Conditioned simulations 

Correlation between MS before 

Number Spacing % of total sill Characteristics and after 	conditioning 

00 0 0% local R= 0.00 T= 0.00 

100 10 10% -0.20 0.96 

50 20 21% -0.01 0.04 

33 30 32% 0.25 1.25 

25 40 44% 0.54 3.06 

0 00 200% global 1.00 00 
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significant at the 25 percent level. So, it seems that the 

correlation is significant if the average kriging variance 

is more than one third of the sill. 

A.4.6.The cost of conditioning :- 

Although the conditioning operation is a relatively 

straightforward one, it can be time consuming. This is 

because it requires the derivation of a kriging system for 

every simulated point. The kriging system used in program 

CON is a moderately simple one. It involves between two and 

six points in any one kriging estimation. It could have 

been made much more complex, but the increase in accuracy 

of the estimates (as measured by the average kriging 

variance) would have been insignificant. 

The unconditional simulations of one thousand points 

each used 63.8 CP seconds to be created. To condition all 

twenty five of them to one hundred regularly spaced data 

points took another 192.5 CP seconds. With a pattern of 

twenty five evenly positioned data points the conditioning 

process took 171.1 CP seconds. An idea of the extra cost of 

conditioning a simulation is given by these increases in 

execution time of 12 and 11 percent. 
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A.5.ALTERNATIVE ONE DIMENSIONAL AXES CONFIGURATIONS 

A.5.1.The importance of the axes configuration :- 

As has been stated before, the major drawback to three 

dimensional simulation is the excessive use of computer 

time and storage space. The 'turning bands' method does, to 

a large extent, alleviate this problem. 

However, the aim should always be to reduce cost to a 

minimum. The composition of the one dimensional simulations 

into three dimensions is an operation normally responsible 

for an explosion of computer cost. Journel (1974) gives no 

reason for his choice of fifteen regular axes. So, it was 

decided that the configuration of the one dimensional axes 

deserved closer scrutiny. 

The icosahedron is the regular polyhedron with the 

largest number of faces. Its thirty edges are used to 

determine the orientations of the fifteen axes. The same 

results could be achieved using the thirty edges of the 

twelve sided dodecahedron. Presumably the configuration of 

fifteen regular axes was selected because no more complex 

regular polyhedron exists, from which to deduce the 

orientations of, for instance, twenty regular axes. 

So, the question remains; are fifteen axes too few, or 

indeed, too many? 

A.5.2.Ten regular axes :- 

If fifteen axes are considered to be too many, then a 

smaller number is required. The next largest number of 



- 34 - 

regular axes, possible to obtain with a polyhedron, is ten. 

The orientations of these axes can be calculated from the 

twenty vertices of a dodecahedron, or the twenty faces of 

an icosahedron. Using the geometry of a dodecahedron, the 

ten co-ordinates of any point in space can be derived (see 

Appendix 5). The process has been incorporated in 	a 

computer subroutine, COORDS2 (see Appendix 6). It differs 

from that used by Journel for fifteen axes in that no 

rotation matrix is involved. The three initial position 

defining co-ordinates are not included in the output of ten 

co-ordinates. In other words, the three standard orthogonal 

grid directions are not the same as any of the ten regular 

axes. 

A.5.3.Fifteen regular axes :- 

A similar method has been evolved for calculating the 

co-ordinates with the fifteen regular axes configuration 

(see Appendix 7). No rotation matrix is involved and the 

initial three orthogonal co-ordinates are used to find the 

fifteen extra co-ordinates. It is found that the 

orientation of the fifteen axes differs from that of 

Journel. Only one of the standard grid axes is included in 

the fifteen axes. With Journel's method the orthogonal x 

y, and z directions are equal to axes numbers 1, 2, and 3. 

With the new approach the y direction is the same as axis 

number 12. 

Consider, as shown in figure 19, a line of 



FIGURE 19 

Block 
One dimensional 
simulation axis 

Line 



- 35 - 

length 'L', in any direction within a simulated block. The 

angle between it and one of the one dimensional simulation 

axes is 'alpha'. The origin is at the centre of the block. 

Therefore the co-ordinates on the one dimensional axis, of 

the line as it enters and leaves the block, are 

'-L*cos(alpha)/2' and '+L*cos(alpha)/2'. It can be seen 

that the number of points, on the one dimensional axis, 

which contribute to the simulated values on the line, is 

proportional to 'cos(alpha)'. This is true for all the 

fifteen axes. Therefore, the number of points used to 

produce the simulated values is proportional to the sum 

the fifteen 'cos(alpha)' figures. 

It is obvious that the accuracy (that is similarity to 

the model) of the semi-variogram along the line is in 

proportion to the number of one dimensional points 

contributing to it. It is therefore proportional to the sum 

of the 'cos(alpha)' terms. 

With Journel's method the fifteen axes are orientated 

such that the sum of the 'cos(alpha)' values is 7.47 in 

each of the x, y, and z directions (see Appendix 8). With 

the new technique the 'cos(alpha)' figures for the x, y, z 

directions total 8.67, 7.47, and 6.87 respectively (see 

Appendix 7). 

So, with the new approach there exists anisotropy, 

with more points contributing in the x direction. The 

semi-variogram in that direction is probably more accurate 

than in the other two principal directions. Also, it is 

of 
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likely to be more accurate than that of the x direction 

under Journel's axes orientation. 

When simulating two or three dimensions this accuracy 

anisotropy is irrelevant, since there is an infinite number 

of directions possible. Semi-variograms are usually given 

for the three principal directions merely for ease of 

calculation. Other directions with a different sum of 

'cos(alpha)' values are just as valid. 

However, with one dimensional simulations the 

anisotropy is important and can be used to advantage. A 

simulation of a 1000*1*1 block is likely to be more 

accurate than one of a 1*1000*1 or 1*1*1000 block. It will 

also be better than a one dimensional simulation in any of 

the three principal directions with Journel's method. Under 

his fifteen axes orientation a direction with a sum of 

'cos(alpha)' value of 8.67 could be found. However, the 

simulation of this line would be intimidatingly complex. 

The new method of orientating the fifteen axes 

configuration was incorporated in a computer subroutine, 

COORDS3 (see Appendix 9). Comparison of computer running 

time was made with the similar subroutine (COORDS1) 

representing Journel's rotation matrix method. It was found 

that for X, Y, Z input co-ordinates of between -5.0 and 

+5.0, Journel's technique took six percent longer to 

calculate the fifteen co-ordinates. 

It was decided that, if a simulation was to be 

undertaken with a fifteen regular axes arrangement, the 
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fifteen co-ordinates of a point in space would be found 

with the new technique. It has accuracy advantages for 

simulations of a line and, more importantly, it is quicker 

to operate. 

A.5.4.Randomly orientated axes :- 

The axes configurations so far examined are ten and 

fifteen axes regularly orientated in space. The ten axes 

configuration was developed in case fifteen axes are too 

many. But what if fifteen are too few? As mentioned before, 

it is impossible, using polyhedra, to determine the 

orientations of more than fifteen regular axes. So, if more 

than fifteen are required, they have to be orientated 

randomly. 

The orientation of an axis in three dimensional space 

can be determined by two angles. One is defined as being 

between the x direction and the projection of the axis on 

the x-y plane. The other angle is similarly designated to 

be between the x direction and the projection on the x-z 

plane. 

Therefore if both these angles are chosen at random, 

from a uniform distribution between 0 and 360 degrees, the 

axis is randomly orientated. 

A.5.5.Comparison of one dimensional axes configurations :-

So, there are now three different methods of 

transfering the features of the one dimensional simulations 

into three dimensions. It can be achieved with ten or 
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fifteen regularly orientated axes, or with any number of 

randomly orientated axes. 

It was decided that a comparison between the relative 

efficiency of each of these axes configurations was 

warranted. This was in keeping with the general policy of 

close scrutiny of the simulation method. The aim was to 

select the configuration which was the best compromise 

between accuracy and frugality. 

The different axes configurations studied were :- 

(a) Ten 	regularly orientated 	axes. .The 

simulations were produced by an adapted version of 

the program SIM3D. The subroutine COORDS2 (which 

calculates the ten co-ordinates of any point) was 

substituted for the subroutine COORDS1. Each 

simulation took 45.3 CP seconds to be produced. 

(b) Fifteen regularly orientated axes. The 

simulations were products of an adaptation of the 

program SIM3D, with the subroutine COORDS3 in place 

of COORDS1. This program used 63.8 CP seconds for 

each simulation. 

(c) Fifteen randomly orientated axes. This 

configuration was chosen to compete against fifteen 

regular axes. Perhaps the regular orientation of 

the axes is an unnecessary complication. The 

simulations were produced from a computer program 

RANDO (see Appendix 10). Each simulation took 48.0 

CP seconds to be produced. 
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(d) One hundred randomly orientated 	axes. 

Obviously the production of a simulation using this 

axes configuration was costly on computer time. In 

fact each simulation took 370.9 CP seconds to be 

produced by the program RANDO. It was felt that one 

hundred was a sufficiently good representation of 

infinity without being prohibitively expensive to 

produce. 

So, a comparison was made between the effectiveness of 

simulations produced with each of these four axes 

configurations. 

The simulations compared were of a line of one 

thousand points regularly spaced at 1 metre intervals. The 

models from which the values originated were a 

semi-variogram of Spherical(50,20,0) and a Normal 

distribution of N(100,20). 

It was considered that a line of one thousand 

simulated values would be more useful than a two or three 

dimensional shape. For instance, with a 10*10*10 cube the 

semi-variogram can only be drawn up to a lag of 15.6. In 

the principal directions only nine points of the 

semi-variogram can be found. However, no such limitations 

exist with a line of one thousand points. 

The line of one thousand points was in the 

direction. In other words, it was a 1*1000*1 block. It was 

felt that a simulation in the y direction was more valid 

y 

than one in the x direction. A fifteen regular axes 
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simulation in the x direction is likely to be more accurate 

than one in the y or z directions (see section A.5.3). But 

when compared with another configuration, any greater 

accuracy which a x direction simulation may exhibit might 

not occur with a y or z direction simulation. The 

conclusion that the fifteen regular axes configuration was 

superior would be bogus, since the superiority would 

disappear if the simulated shapes were two or three 

dimensional. 

The comparison was made between the simulations 

before, and after, they had been conditioned. It has been 

shown how large an effect the conditioning process has on 

the simulated values. So, it was essential for the 

comparison to include conditional simulations. 

Twenty five simulations were produced using all the 

four one dimensional axes configurations under 

consideration. There were ten formed with fifteen regular 

axes, and five each with ten regular, fifteen random, and 

one hundred random axes. The semi-variogram of each of 

these unconditional simulations is shown in figure 20. The 

semi-variograms of the simulations formed with fifteen 

random axes seem to deviate from the model more than the 

others, particularly at low lag values. Table 2 shows the 

MS terms with respect to the model before conditioning. 

They tend to confirm that the unconditional fifteen random 

axes simulations are less accurate. 

As previously, the simulations were conditioned to 
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TABLE 2 

Before conditioning After conditioning 

MS term with 
respect to model data data data data 

(figure 	20) (figure 22) (figure 23) (figure 22) (figure 23) 

10 	regular 
axes 11.9 9.1 23.4 0.70 1.08 

15 	regular 
axes 12.1 17.3 15.1 0.87 1.17 

15 	random 
axes 18.3 22.2 16.7 1.24 0.95 

100 	random 
axes 9.3 17.0 25.6 0.78 0.89 
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data from a similar unconditional simulation. This data 

simulation was formed using fifteen regular axes, and its 

values had been altered to fit the models more closely (see 

figure 21) . The computer program CON was used to condition 

the simulations. Therefore the kriging estimate for every 

point was made with between two and six data points. 

The simulations were conditioned to one hundred data 

points evenly 	spaced 	at 	10 metres 	intervals. 	The 

semi-variograms resulting from this conditioning are shown 

in figure 22. It is clear that the fifteen random axes 

configuration simulations are less accurate than the 

others. At low lag values (up to about one fifth of the 

range), their semi-variograms differ markedly from the 

desired shape, and from those of the other simulations. The 

inaccuracies show up in the MS terms of the semi-variograms 

(see table 2) . 

This finding was checked by using another data 

simulation. The values had not been altered to have an 

average of 100.00 and a variance of 20.00. Indeed, the data 

values used in the conditioning differ considerably from 

the models. The semi-variograms of the twenty five 

simulations, after conditioning to one hundred regularly 

spaced data points are shown in figure 23. Again the 

semi-variograms of the fifteen random axes simulations 

deviate at low lag values. However, on this occasion, the 

average MS terms do not reflect these inaccuracies (see 

table 2). They are distracted by the large deviations of 
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some of the other simulations at much greater lag values. 

The configuration of fifteen random axes was dropped 

from the comparison since it has no great formation time 

advantage over fifteen regular axes. Also, the 

semi-variograms of its simulations, both before and after 

conditioning, are less accurate. This is true even when the 

average kriging variance during conditioning is only 10 

percent of the sill. 

So, the remaining configurations to be compared were 

ten regular axes, fifteen regular axes, and one hundred 

random axes. Ten simulations were produced using each of 

these one dimensional axes arrangements. All thirty 

simulations were conditioned to one hundred regularly 

spaced points from the altered data simulation. The results 

are shown in figure 24. The 	simulations 	were 	also 

conditioned to the same pattern of conditioning points from 

the unaltered data simulation. Figure 25 depicts the 

resulting semi-variograms, and confirms that there are no 

visible differences between the three methods. This is 

expected with an average kriging variance of only 10 

percent of only the sill. 

As well as one hundred, the thirty simulations were 

also conditioned o fewer points from the altered data 

simulation. Patterns with points regularly spaced at 20, 

30, and 40 metres intervals were used. The semi-variograms 

of the conditioned values are shown in figures 26, 27, and 

28 respectively. 
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So, the semi-variograms of the thirty simulations 

after each of the five different conditioning points 

patterns can be seen. Visual inspection shows there to be 

no significant differences between the three sets of 

simulations. Table 3 shows the three average MS terms 

before and after conditioning with each pattern. It tends 

to confirm that no significant differences exist. 

A.5.6.Selection of axes configuration :- 

It is not certain that simulations formed from one 

hundred random axes are more accurate than those from the 

other configurations. However, it is probable that they do 

have some extra accuracy. The problem is that this extra 

accuracy is unknown, since it does not make itself distinct 

with only ten simulations of each type. It may be revealed 

with a much larger sample size. However, the fact that it 

is not revealed with ten simulations is itself an 

indication that it is not large. To be weighed against this 

unquantified extra accuracy is the greater cost of 

production. The execution time required to produce a 

simulation with one hundred random axes was 5.8 times that 

for one with fifteen regular axes. 

It was considered that for all practical purposes the 

configuration of one hundred random axes was unreasonable. 

Its extreme cost offset any increased accuracy. However, it 

may be of use under exceptional circumstances. For 

instance, if highly accurate unconditional simulations are 



TABLE 3 

MS term with respect to conditioning data before/after conditioning 

Conditioning data 	points spacing 

10 metres 20 metres 30 metres 40 metres 
(figure 	24) (figure 	26) (figure 	27) (figure 	28) 

before after before after before after before after 

10 	regular 
axes 7.1 0.58 16.6 5.34 49.1 16.8 32.2 95.5 

15 	regular 
axes 17.3 0.87 42.0 7.12 95.8 14.4 53.0 175.6 

100 random 
axes 16.5 0.57 39.0 3.55 104.4 15.8 43.6 180.1 



- 44 - 

required, and cost is of little importance. 

So, the two remaining one dimensional axes 

configurations to be considered are those with ten and 

fifteen regular axes. As usual, comparison consists of 

balancing the conflicting interests of accuracy and cost. 

Obviously fifteen axes simulations are more accurate than 

those from ten axes. Again, the problem is that this extra 

accuracy does not manifest itself with ten simulations of 

each type. To be balanced against it is the 29 percent 

saving in running time. 

There is no correlation between the accuracy of a 

simulation before and after conditioning, when the average 

kriging variance is less than about one third of the sill. 

Under these conditions it was considered that simulations 

from ten regular axes would suffice. Indeed if cost is at a 

premium fewer regular axes may be applicable. 

For all situations throughout the rest of this study, 

the average kriging variance achieved during conditioning 

was greater than one third of the sill. Under these 

conditions the accuracy of the unconditional simulations is 

important. So, it was considered that fifteen axes were 

needed for their extra, albeit unquantified, accuracy. 

The arrangement of fifteen, regularly orientated, axes 

was adopted as the most appropriate configuration of one 

dimensional axes. 
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SECTION B : APPLICATIONS IN SOUTH CROFTY MINE 

B.1.SOUTH CROFTY MINE 

B.1.1.General description :- 

South Crofty tin mine is situated in the Camborne and 

Redruth district of Cornwall. On 31st March 1979 it had 679 

employees, and in the twelve months up to that date treated 

236,300 tonnes of ore, averaging at 0.68 percent tin. 

South Crofty lies within granite overlain by 

metamorphosed sediments. The area is cut by porphyry dykes 

which strike at about 70 degrees and are generally North 

dipping. The mineralisation postdates the dykes, and 

consists of two sets of lodes intersecting approximately at 

right angles. A set of 70 degree striking lodes dip at 

angles up to 40 degrees, in either direction. They have 

been mined for both tin and copper. The tin being below the 

granite/sediments contact and the copper above. The 

mineralisation consists of cassiterite, arsenopyrite, 

wolframite, and chalcopyrite, with gangue minerals of 

chlorite, quartz, tourmaline, and hematite. The second set 

of lodes, striking at about 160 degrees, has no economic 

significance. They cut and fault the 70 degrees striking 

lodes. 

The lode used throughout this study was No.9 lode. 

Taylor (1966) provides contour diagrams (of lode width and 

lode assay), and a Conolly contour diagram for the lode. He 
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identifies six oreshoots, widely scattered and generally of 

low grade. 

At the time of data collection (November 1976), the 

workings within No.9 lode extended approximately 200 metres 

vertically, and 600 metres horizontally. It had five main 

development level drives in it, spaced at vertical 

intervals 	of about 40 metres. Extraction was chiefly 

carried out using overhand shrinkage stoping methods. There 

were a total of eighteen stopes within the lode, three of 

which were being worked. 

B.1.2.Available data :- 

Sampling results from 2366 points within No.9 lode 

were obtained. Of these 749 are stope samples, 1149 come 

from the main development drives, and 468 from raises and 

inter-level development. The stope samples were taken from 

each stope approximately after every two working weeks. 

They were obtained from the worked faces themselves, at 

intervals of either 5 feet, 10 feet, 3 metres, or 6 metres; 

depending on when the sampling was carried out. The 

development samples were taken along the drives at regular 

intervals of either 5 feet, 10 feet, or 3 metres. 

At every sampling point a channel cut was taken across 

the lode. Similarly, samples of the country rock on both 

sides of the lode were obtained. 

For all the sampling points the following information 

is available :- 
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(a) Lode 	width - Measured 	perpendicularly 

across the lode. 

(b) Lode assay - Obtained from analysis of the 

channel cut across the lode. 

(c) Lode accumulation - This is equal to lode 

width times lode assay. Thus :-

(c) = (a) * (b) 

(d) Call width - The anticipated width of stope 

needed to mine this lode width. This was defined as 

1.0 metres (or 3.0 feet), or the lode width plus 

0.2 metres (or 0.5 feet); whichever is the greater. 

Thus it allows for overmining of the lode. 

(e) Call 	accumulation - This 	is the total 

accumulation which would be achieved over the call 

width. It is calculated using the average assay of 

the adjacent country rock :- 

(e) = (c)+[ (d) - (a) ] *average country rock assay 

(f) Call assay - The average assay value over 

the call width, determined from :- 

(f) = (e) 
(d) 

For all the stope samples three more figures are available. 

These are .- 

(g) Actual width - The width of the stoping 

face. In an ideal world this would be equal to the 

anticipated, or call width. 

(h) Actual 	accumulation - This 	is 	the 
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accumulation over the actual width. Similarly to 

the call accumulation it is found from :- 

(h) = (c) + [ (g) - (a) ] *average country rock assay 

(i) Actual assay - The average assay value over 

the actual width, determined from :- 

(i) = (h) 
(g) 

Each sampling point is located by the distance along 

the stope face, or development drive, to a known surveyed 

position. Its location was recorded on a longitudinal 

section of the lode. 

The longitudinal section of No.9 lode was drawn using 

distances measured along the lode. Thus it is a projection 

of the 'unrolled' lode. 

From the section, the position of each sample point 

was fixed. The two co-ordinates, of depth and Easting, were 

determined to the nearest metre. 
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B.2.DATA ANALYSIS 

B.2.1.Data accuracy :- 

The rest of this study uses the data from the samples 

taken within No.9 lode. Thus their reliablility is of great 

importance. 

No detailed examination of the accuracy of South 

Crofty's sampling technique has ever been carried out. 

However, it is the author's opinion that the method of 

sampling employed is not open to a large bias. This view is 

supported by Taylor (1966), and also by Kuscevic, Thomas, 

and Penberthy (1972). 

Suppose that it is wished to measure the height of an 

infinite number of people. If the measurements can be made 

to the nearest 0.5 centimetres, the number of figures 

ending in .5 should equal that of figures ending in .0. 

However, if the samplers taking the measurements are not 

thorough this may not be true. They might take the 

measurements to the nearest 1.0 centimetres, and visually 

estimate the last digit. Due to human failings there would 

probably be many more figures ending in .0 than in .5. 

However, the distribution of the last digit before the 

decimal point (measuring single centimetres) would be 

uniform. This would reflect the true accuracy of the data 

measurements; that is to the nearest 1.0 centimetres. 

Using this approach the accuracy of the available data 

was examined. Of all the samples, 2038 were measured in 
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imperial units (feet and pounds per ton), and 328 in metric 

units (metres and percent). The four groups of data were 

examined separately :- 

(a) Imperial lode widths. These were measured 

to the nearest 0.25 feet. The histogram of the 

figures after the decimal point is shown in figure 

29. This is clearly not uniform, with greater 

numbers of measurements ending in .00 and .50. 

However, if the group size is enlarged the 

histogram becomes much more uniform :- 

.25 and .50 - 933 

.75 and .00 - 1111 

The imperial lode widths seem to be accurate to 0.5 

feet. For the rest of this study, any such 

measurement was rounded up to the nearest 0.50 feet 

before use. 

(b) Metric lode widths. These measurements were 

taken to the nearest 0.1 metres. The histogram of 

the digit after the decimal point is shown in 

figure 30. This is clearly not a uniform 

distribution, a fact that is confirmed by the 

chi-squared 'goodness of fit' statistic. This is 

26.43 which, with 9 degrees of freedom, is 

significant at the 0.5 percent level. Figure 30 

also shows the histogram of measurements rounded to 

the nearest 0.2 metres. The chi-squared statistic 

(4.27 with 4 degrees of freedom) is not significant 



FIGURE 29: 	HISTOGRAM OF FIGURES AFTER DECIMAL POINT FOR IMPERIAL LODE  
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FIGURE 30 : 	HISTOGRAM OF FIGURES AFTER DECIMAL POINT FOR METRIC LODE WIDTHS  
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at the 5 percent level, thus confirming the visual 

impression of a uniform distribution. 

The 5 percent level of significance is used as the 

decision level as to whether a histogram does or 

does not fit a certain distribution. The choice of 

5 percent is common for geological variables 

(Mukherjee,1975). 

The metric lode width measurements appear to be 

accurate to 0.2 metres. Before use in the rest of 

this study any such measurement was rounded up to 

the nearest 0.2 metres. 

(c) Imperial lode assays. These measurements 

were taken using standard vanning techniques, and 

they are given to the nearest 1 pound per ton 

(lbs/ton). The histogram of the last digit of all 

the sample values shows a marked skewedness. This 

is because there are genuinely more samples of 1 

lbs/ton than of 9 lbs/ton. To avoid this effect 

only sample assays between 50 and 100 lbs/ton were 

considered. The histogram of the final digit of 

these values is shown in figure 31. Its chi-squared 

statistic (23.91 with 9 degrees of freedom) is over 

5 percent significant, thus confirming the visual 

impression of a peaked behaviour. Figure 31 also 

shows the histogram after the digits have been 

placed in groups of 2 lbs/ton. This seems to be 

uniform and the chi-squared statistic (5.35 with 4 



FIGURE 31 : 	HISTOGRAM OF LAST DIGIT OF IMPERIAL LODE ASSAYS BETWEEN 50 & 100 lbs / ton 
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degrees of freedom) is not significant. 

The imperial lode assays measurements seem to be 

accurate to 2 lbs/ton. All such measurements were 

rounded to the nearest 2 lbs/ton before use in the 

rest of this study. 

Of all the imperial lode assay values, 111 were 

recorded as a 'trace' value. In other words, the 

tin content was noticeable but did not reach 1 

lb/ton. Such 'trace' values were treated as 0.5 

lbs/ton for the purposes of the rest of this study. 

(d) Metric lode assays. These measurements were 

achieved using a portable radioisotope X-ray 

fluorescence (P.I.F.) analyser (Bowie, Darnley, and 

Rhodes,1965). They are recorded to an accuracy of 

0.01 percent. 

The P.I.F. analyser produces a value which is 

converted to percentage of tin with the use of a 

graph. The method employed at South Crofty requires 

the analyst to visually interpolate from the graph. 

A line on the graph of about 30 centimetres length 

has to be estimated, and to obtain an accuracy in 

the final answer of 0.01, the end of this line has 

to be accurate to within about 0.2 centimetres. 

This is asking a lot of any analyst with typical 

human failings. It was the method of producing the 

P.I.F. assay values that first alerted the author 

to the influence of the human factor on the 
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samples. 

As shown in figure 32, the histogram of the last 

digit of the P.I.F. values demonstrates the 

influence of the human factor. There is a clear 

bias towards a second decimal digit of 0, and the 

chi-squared statistic (62.54 with 9 degrees of 

freedom) 	is highly significant. Figure 32 also 

shows these digits aligned in groups of two. Non 

uniformity persists to a large extent, with the 

chi-squared statistic (17.88 with 4 degrees of 

freedom) still significant. Grouping the last 

digits of the P.I.F. samples to the nearest 0.05, 

produces :- 
• 

. 8 and . 9 and . 0 and . 1 and . 2 - 182 

. 3 and . 4 and . 5 and . 6 and . 7 - 141 

This seems acceptable, and so throughout the rest 

of this study P.I.F. assay values were rounded to 

the nearest 0.05 percent before use. 

B.2.2.Conversion of imperial measurements :- 

It was decided to proceed with all the sample 

measurements in metric units. The conversion of the 

imperial units into metric units required :- 

(a) Feet to metres. The conversion here is 

obviously achieved by multiplication by 0.3043. 

(b) Pounds per ton to percent. The imperial 



FIGURE 32: 	HISTOGRAM OF LAST DIGIT OF METRIC LODE ASSAYS  
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measurements of lode assay values were produced by 

the vanning process. This actually records the 

content of 'black tin' in the sample. 'Black tin' 

principally comprises cassiterite, but its exact 

composition can vary between orebodies. Beringer 

and Beringer (1898) state that for Cornish mines it 

has an average cassiterite content of 92.5 percent. 

This means that it is 79 percent tin. 

The P.I.F. analyser measures the percentage of pure 

tin in a sample. 

Thus, if the 'black tin' 	is assumed to be 92.5 

percent cassiterite, conversion from a vanning to a 

P.I.F. value requires multiplication by :- 

0.79*100.0  
2240 

= 0.035 

An investigation into the vanning/P.I.F. conversion 

factor at South Crofty was carried out. Normal 

samples from underground were analysed by both 

methods. Using the results of 145 such comparisons, 

the correlation coefficient was found to be 0.97. 

It was desired to find the best line of the form :- 

P.I.F. = Constant * Vanning 

The fit of such a line to the data can be 

represented by the residual sum of squares (RSS). 

That is, the sum of the 145 values of :- 

[P.I.F. - (Constant * Vanning)]2 
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For various values of the constant, the RSS was 

found to be as follows :- 

	

Constant = 0.041 	RSS = 85.0 

	

0.042 	" 	81.3 

	

0.043 	" 	79.7 

	

0.044 	to 	80.1 

	

0.045 	" 	82.6 

Obviously, the line with the smallest RSS term is 

the closest fit to the actual data. So, a value for 

the constant of 0.043 was chosen. The standard 

deviation of this figure is found from :- 

RSS  *  1  
(N-1) SUMV2 

where N = number of'data points = 145 

SUMV2 = sum of all 'N' values of 'Vanning2' 

This was calculated to be 0.00074. Thus 90 percent 

confidence limits can be attributed to the 0.043 

constant. These are at 0.0418 and 0.0442, and show 

the conversion factor to be accurately known. 

Throughout the rest of this study to obtain the 

equivalent P.I.F. value of a vanning assay, it was 

multiplied by 0.043. 

B.2.3.Calculation of average assay values :- 

Consider a set of samples each with a known width and 

assay, and therefore also a known accumulation. 

The average width of the samples is determined by the 
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usual arithmetic method. 

The average assay value is fairly commonly defined as 

the average accumulation divided by the average width. Thus 

the average assay is a function, not only of the individual 

sample assays, but also of the widths. The assays taken at 

the larger widths are given a greater influence on the 

average assay value. An inter-relationship between the 

average width and average assay of a set of samples is 

introduced. 

The relationship between all the sample lode width and 

assay values was examined. A scattergram, from the 1036 

main development level samples where the lode assay is not 

a 'trace' value, shows a purely random pattern. The 

correlation coefficient of -0.04 confirms this, since (with 

1034 degrees of freedom) it is not even different from 0.0 

at the 25 percent significance level. Similarly, a 

scattergram from 745 stope samples only displays a random 

pattern, and has a negligible correlation coefficient 

(-0.01 with 743 degrees of freedom). 

There is no relationship between the lode widths and 

the lode assay values. They are independent variables. 

Because of this, it was felt that to introduce an 

inter-relationship between the average width and average 

assay of a sample set is unwarranted. The definition of the 

average assay value stated above was rejected. Instead it 

was defined as the total of the assay values divided by the 

number of samples. 
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B.2.4.Semi-variogram analysis :- 

The width measurements obtained at any sampling point 

were taken perpendicularly across the lode. Similarly, the 

assay values are from equally sized channel cuts across the 

lode. Considering the two dimensional longitudinal section 

of No.9 lode, all the samples were taken in the third 

dimension. Therefore, the samples can be treated as point 

samples. This means that the semi-variograms of the data 

are from punctual samples, and no regularisation needs to 

be considered. 

The mathematics of the semi-variogram function have 

still to be fully analysed. At the time of writing, there 

exists no standard method for measuring the reliability of 

any semi-variogram value. It is merely stated that the 

accuracy of a semi-variogram value is dependent on the 

number of pairs used in its calculation. 

With only intuitive justification, several methods of 

finding the reliability, or robustness, of a semi-variogram 

can be proposed. The three methods outlined below are all 

basically of the same type. The semi-variogram, from a set 

of samples, is compared with the semi-variogram calculated 

from only a certain proportion of the total set. 

(a) A proportion of the samples is removed from 

the total set at a regular space interval. 

A line of two hundred regularly spaced points was 

produced by an unconditional simulation. From this 

total sample set, every fifth sample was extracted. 
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The semi-variogram of these forty points was found. 

Repeating this, for the other four possible ways of 

extracting every fifth sample, produced the results 

shown in figure 33. 

The envelope of minimum and maximum semi-variogram 

values seems to get wider as the average 

semi-variogram value increases. The semi-variogram 

from all two hundred samples (the average of the 

five semi-variograms) lies near the centre of this 

envelope. 

(b) A proportion of the samples is removed from 

a section of the total set. Consider a line of two 

hundred regularly spaced samples. From this total 

set it is possible to take out one hundred 

consecutive points, and to find their 

semi-variogram. There are one hundred and one ways 

of extracting the consecutive points, each 

producing a slightly different semi-variogram. 

Such an operation was carried out, with the line of 

two hundred points coming from an unconditional 

simulation. To save computer time, the one hundred 

consecutive points were removed only eleven times. 

The first semi-variogram came from the one hundred 

points starting at position number 1, and the 

second from the points starting at position number 

11. Maintaining this shift the eleventh 

semi-variogram used the points between position 
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numbers 101 and 200. The minimum and maximum of the 

eleven semi-variogram values was found for every 

lag value. Figure 34 shows the resulting envelope, 

and the semi-variogram of all two hundred points. 

Figure 35 shows the result of the same removal 

operation on a line of two hundred real samples. 

These were the lode width measurements along part 

of the 310 level drive. 

The width of the minimum/maximum envelope seems to 

increase as the lag increases. Of course, this is 

also as the number of contributing sample pairs 

decreasing. 

(c) A proportion of the samples is taken at 

random from the total set. 

Five samples were extracted at random from a line 

of two hundred simulated values. The semi-variogram 

of the remaining samples was found. This is 

equivalent to extracting and examining one hundred 

and ninety five samples. This process was repeated 

many times and the minimum and maximum 

semi-variogram value for every value of lag was 

found. The minimum/maximum envelope was plotted. In 

all there are over two thousand million possible 

ways of choosing five from two hundred. Fortunately 

it was found that only fifty such extractions gave 

a smooth minimum/maximum envelope. 

The whole operation was repeated for extractions of 

is 
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ten, twenty, and forty samples. Figure 36 shows the 

results. 

Repeating the procedure with the two hundred real 

samples, of lode widths from 310 level, produced 

the results shown in figure 37. 

The minimum/maximum envelopes shown in figures 36 

and 37 indicate the robustness of the 

semi-variogram values. The wider the envelope, the 

greater is the susceptibility of the semi-variogram 

value to changes in its contributing samples. 

A semi-variogram value is half the arithmetic mean 

of a distribution. The distribution is of the 

term :- 

[G (x) -G (x+h) ] 2 	see section A.1.2 

Obviously the accuracy of such an arithmetic mean 

is proportional to the variance, or spread, of this 

distribution. If the distribution has a small 

spread the arithmetic mean is highly accurate, or 

robust. Removal of some members of the 

[G (x) -G (x+h) ] 2 	distribution 	would have little 

effect on it. 

The minimum/maximum envelopes shown in figures 36 

and 37 show the effect such removals have on each 

distribution 	arithmetic 	mean 	(twice 	the 

semi-variogram value). Clearly they are at their 

narrowest where the arithmetic mean of the 

[G (x) -G (x+h) ] 2 	distribution 	is 	most 	robust. 



62.50 87.50 100.00 
I 	 I 
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LAG 
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This is where the distribution spread is smallest. 

The robustness, or resistance to change, of a 

semi-variogram value is proportional to the 

[G (x) -G (x+h) ] 2 	distribution 	spread, 	which 

itself is proportional to the minimum/maximum 

envelope width. The robustness of any 

semi-variogram could be found by examining the 

spread of the [G (x) -G (x+h) ] 2 	distribution 	at 

every lag value. Clearly it is easier to estimate 

the robustness by plotting the minimum/maximum 

envelope. 

It was decided that the robustness of a semi-variogram 

should be estimated by drawing the minimum/maximum 

envelope. This would be defined by the minimum and maximum 

values after fifty removals of ten percent of the data. 

As stated above, every semi-variogram value is 

determined as half the arithmetic mean of the 

[G (x) -G (x+h) ] 2 	distribution. 	Examples 	of 	such 	a 

distribution are shown in figure 38. Respectively these are 

for lode widths at a lag of 7.5 metres, and for lode assays 

at a lag of 15.0 metres. Both of them have a highly skewed 

histogram. David, Dagbert, and Belisle (1977) find 

[G (x) -G (x+h) ] 2  distributions of a similar shape, 	and 

recommend 'cleaning' each one before analysis. This 

involves trimming the distribution by removing its highest 

values, which obviously has the effect of greatly reducing 

the arithmetic mean. The precise reductions achieved are 
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shown in Table 4. Also indicated is the effect a similar 

procedure has on some semi-variogram values from No.9 lode. 

It was decided to test the influence of trimming the 

[G (x)-G (x+h) ] 2 	distribution 	of all the points of a 

semi-variogram. Taking a general view of the figures in 

Table 4, any member of a distribution was removed if it was 

greater than ten times the mean. If there were many such 

values then only the top one percent was extracted. In 

other 	words, 	the [G (x) -G (x+h) ] 2  term of a pair of 

samples was not included if it was in the top one percent, 

and was ten times greater than the arithmetic mean of its 

distribution. 

The two semi-variogram plots, before and after 

trimming of the [G (x) -G (x+h) ] 2  distribution, are shown 

in figure 39 for lode widths and lode assays. The effect of 

trimming the width semi-variogram is small. However, 

smoothing of the plot does occur with the assay 

semi-variogram. It is helpful in determination of the 

range, and analysis of the semi-variogram as a spherical 

model. Very similar results to those of figure 39 were 

obtained with the semi-variogram of the natural logarithms 

(ln) of the lode widths, and of In lode assays. 

It seems that trimming a semi-variogram can make its 

underlying features more visible. However, to proceed with 

analysis using the trimmed semi-variogram, as advocated by 

David, Dagbert, and Belisle (1977), does not have any 

obvious justification. 



TABLE 4 

David + Dagbert + Belisle 

2 EW 0.4% of the pairs > 12*mean. Removal reduces mean by 19% 

3 EW 1.4% II  7 	" " 26% 

1 NS 1.6% 11 	" " 50% 

2 NS 1.0% II 12 	"  It 34% 

3 NS 1.0% " 18 	" " 55% 

No.9 lode development 

Lode widths 
lag 	= 7.5m. 1.0% of the pairs > 12*mean. Removal reduces mean by 12% 

Ln lode widths 
lag 	= 7.5m. 0.9% 10 12% 

Lode assays 
lag = 	15.0m. 2.5% 8 	" 19% 

Ln lode assays 
lag 	= 	15.0m. 0.3% " 9 II 11 

 3% 
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B.2.5.Preparation of data for simulation :- 

It was desired to present a realistic model of No.9 

lode. To do this, simulations of lode widths and assays had 

to be produced. 

It has been shown how a simulation can be made of a 

variable which follows a Normal distribution and a 

spherical semi-variogram (see sections A.2 and A.3). The 

values from such a simulation are stationary 

(Journe1,1975) . 

Therefore any variable can be simulated, so long as it 

exhibits a Normal distribution, a spherical semi-variogram, 

and is stationary. In practice a problem almost invariably 

arises because the data variable to be simulated does not 

satisfy these three requirements. To do so, the data has to 

be altered in a predictable and reasonable manner. Many 

techniques have been developed to perform this alteration. 

These include taking natural logarithms, using transfer 

functions, and removing a trend. Obviously, if such a 

technique has been used, the simulation is not of the 

required variable. To achieve this, the simulated values 

must be passed through the alteration technique in the 

reverse direction. 

B.2.6.Lode widths simulation :- 

The lode width measurements from all the samples 

within No.9 lode were examined. The sampling method used 

was the same for all the samples. Therefore, there should 
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not be any bias between the stope and development sample 

sets. The stope lode width samples should have the same 

origins (as expressed by the auto-correlation and the 

distribution) as the development samples. 

However, the stopes are not randomly positioned, but 

are sited in areas of high grade. Since widths and grades 

are independent (see section B.2.3), this in itself should 

not mean that the stope and development lode widths exhibit 

different characteristics. 

However, the selection of a block as a stope was not 

merely based on assay results. It indirectly involved the 

lode widths. 

A block was considered to be worth mining if the call 

assay value was greater than the economic cut off grade. 

The call width was defined (see section B.1.2) as the 

greater of 1.0 metre or the lode width plus 0.2 metres. 

Consider three samples with the same lode assay value but 

different widths. In each case the surrounding country rock 

has no tin content. 	The call 

Sample 

assays are 

A 	Sample 

found as 	follows 	:- 

B 	Sample C 

Lode width 0.5 1.0 1.5 

Lode assay 6.0 6.0 6.0 

Call accumulation 3.0 6.0 9.0 

Call width 1.0 1.2 1.7 

Call 	assay 3.0 5.0 5.3 

So, three samples with identical lode assays can have very 

different call assays. This may make the difference between 
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being below, or above, the pay limit. For good mining 

reasons, this method tends to prefer high grades if they 

are associated with large widths. Thus the distribution of 

the stope lode widths has a bias towards higher widths. 

Taylor (1966) notes that high lode assay values tend 

to correspond with high lode widths. He states that the 

reverse is not necessarily true. The tendency for the 

stopes to be placed where both the grades and widths are 

high, accounts for this. The high grade samples are likely 

to be stope samples, and so their corresponding widths tend 

to be high also. 

It was desired to simulate the lode widths for any 

area within No.9 lode. To do this the shape of the lode 

width distribution and semi-variogram had to be determined. 

As shown above, the stope samples are biased towards 

regions of high lode width. The same is true for the 

samples from the raises and inter-level development, since 

they also are predominantly sited in high grade areas. So, 

to achieve an unbiased sample set of the lode widths, only 

the main development level samples should be used. The 

positions of these drives were determined by mining 

considerations, and were not influenced by any sampling 

results. 

The first step in the analysis of the behaviour of the 

lode width was to test for anisotropy. This was carried out 

by finding the semi-variogram in several directions. 

Obviously this is practically impossible to do using the 
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development samples. So all the 749 stope samples were used 

since they are not arranged in parallel lines. Although it 

has been stated that the stope samples are a biased sample 

set, it was felt that this does not preclude them from 

exhibiting any anisotropies present in the lode. The 

semi-variograms of the stope lode widths in three 

directions are shown in figure 40. Defining the vertical 

direction as 0 degrees, the three semi-variograms are for 

the 30, 90, and 150 degrees directions. The search angle 

for each one is thirty degrees. In other words, they 

include any sample pair with a lag direction between 0 and 

59, 60 and 119, and 120 and 179 degrees respectively. 

Similarly the lag distances had to be given a certain 

amount of leeway. The semi-variogram value at 10 metres 

includes all lag values between 9.51 and 10.50 metres. 

There are no significant differences between the three 

semi-variogram plots. So, the lode width population of No.9 

lode was considered to be isotropic in behaviour. 

Figure 41 shows the semi-variogram of all the 1149 

development lode width measurements. Also displayed is the 

semi-variogram of each of the four main levels. The fifth 

level drive only has 23 samples along it, and so its 

semi-variogram values were considered to be unreliable on 

their own. The four semi-variograms have similar shapes. 

However, these shapes have different vertical scales along 

the gamma axis. This is known as a proportional effect, and 

is often the result of a lognormal distribution 
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(Clark,1979). This is because with a lognormal distribution 

the variance is proportional to the mean. 

The histogram for all the imperial development lode 

width measurements is shown in figure 42. It confirms that 

the distribution is of a typical lognormal type, that is 

with a heavy positive skew. 

The behaviour of the In lode widths figures was 

examined. Figure 43 displays the four main level 

semi-variograms, and the overall semi-variogram of In lode 

widths. The semi-variograms of the four levels show that 

the proportional effect has been accounted for by using the 

logarithms. However, the overall semi-variogram does not 

exhibit the shape of any semi-variogram model. It has a 

spherical form at low lag values but does not level out at 

a sill. Instead it keeps on rising, in a parabolic curve. 

This is symptomatic of a polynomial trend in the samples 

(Clark,1979; David,1977). When this situation exists the 

samples are not stationary. The trend has to be removed and 

the analysis carried out on the residuals (Journel,1975). 

Another approach to the problem of applying 

geostatistics when a trend exists, is that of universal 

kriging (Huijbregts and Matheron,1971). In concept this is 

a fairly straightforward procedure entailing expansion of 

the usual kriging system of equations. However, it is very 

heavy on computational time (David,1977). There exists no 

theoretical or practical explanation of how geostatistical 

simulation can be carried out when universal kriging is 
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used. After a thorough examination of the theory behind 

universal kriging, no acceptable simulation method seemed 

possible. For this reason, and to avoid a sharp increase in 

cost, universal kriging was not employed. 

The trend of the In lode width values from the 

development samples was estimated by polynomial equations. 

A computer program, called SNARK (Clark,1977), was adapted 

and used to produce the 'least squares best fit' linear, 

quadratic, and cubic equations. The results of SNARK (see 

table 5) show that the cubic polynomial equation is 

significantly closer to the data than the other two 

equations. It was felt that to find an equation of a higher 

order than three would not be worthwhile. Whitten (1973) 

states that 'with equations of degree greater than three or 

four, wild extremae appear in the computed surfaces'. Table 

5 also records that the cubic trend equation explains 32 

percent of the total sum of squares. This term was defined 

as .- 

= 100.0*(TSS-RSS)  
TSS 

where TSS = Total sum of squares 

i=N  
= )R2 N*2) 

i=1 



TABLE 5 

X = Easting 	Y = Height above datum 

N.B. E+02 means *102  

SOLUTION OF LINEAR EQUATION IS : 
Z = 	1.4841E+00 + -9.7138E-04*X + -9.3974E-04*Y 

SOLUTION OF QUADRATIC EQUATION IS : 
Z = -4.4641E+02 + 	9.2733E-02*X + 	5.7388E-01*Y 
+ 6.0615E-05*X*X + 	5.9785E-05*X*Y + 	1.8431E-04*Y*Y 

SOLUTION OF CUBIC EQUATION IS : 
Z = -2.2797E+02 + 	1.9471E+00*X + 	4.8560E-02*Y 
+ -3.3145E-04*X*X + -2.4203E-03*X*Y + 	2.2078E-04*Y*Y 
+ 2.0525E-08*X*X*X + -1.0132E-07*Y*Y*Y 
+ 2.0559E-07*X*X*Y + 	7.5072E-07*X*Y*Y 

ANALYSIS OF VARIANCE TABLE 

SOURCE SUM OF SQUARES D.F. MEAN SQUARE F RATIO 

LINEAR 3.3295E+01 2 1.6648E+01 3.5826E+01 

RESIDUAL 5.3253E+02 1146 4.6468E-01 

QUADRATIC 1.4038E+02 5 2.8076E+01 7.5429E+01 

DIFF. 1.0708E+02 3 3.5695E+01 9.5898E+01 

RESIDUAL 4.2544E+02 1143 3.7221E-01 

CUBIC 1.8115E+02 9 2.0128E+01 5.9598E+01 

DIFF. 4.0772E+01 4 1.0193E+01 3.0181E+01 

RESIDUAL 3.8467E+02 1139 3.3773E-01 

TOTAL 5.6582E+02 1149 

PERCENTAGE OF TOTAL SUM OF SQUARES 

LINEAR COMPONENT 
	

5.88 
QUADRATIC COMPONENT 

	
24.81 

CUBIC COMPONENT 
	

32.02 
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RSS = residual sum of squares 

>(R_T)2= 
 

=1 

N = Number of data values 

R = Real data value 

R = Average real data value 

N = Number of data values 

T = Trend predicted value 

Harbaugh and Merriam (1968) state that if this is between 

15 and 30 percent the goodness of fit of the trend is 

considered to be low. 

The cubic trend equation value was calculated for 

every development sample position, and the residuals were 

examined. Figure 44 shows the semi-variogram of all the 

residuals, together with the fitted spherical model. 

Trimming 
	

the 	[G (x) -G (x+h) ] 2 
	

distributions 	of 	this 

semi-variogram has little effect on the shape of it. The 

minimum/maximum envelope, after fifty random removals of 10 

percent of the data, is also displayed. It shows the 

semi-variogram to be fairly robust. The effect of the trend 

has been removed, and the semi-variogram oscillates gently 

around a definite sill. The model parameters were initially 

estimated visually and the RMS terms (see section A.2.2) up 

to lag values of 40 and 80 metres calculated. Each of the 

three parameters was then changed in turn until the model 

with the minimum RMS terms was found. For the residuals of 
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the In lode width trend the closest fitting model was 

Spherical(56 metres,0.34,0.12). 

The range of the residuals model semi-variogram is 

56 metres, or 184 feet. Clark (1978) finds that the total 

range for lode widths at the geologically similar Geevor 

tin mine to be 150 feet. It is interesting to note that the 

residuals model semi-variogram has a nugget effect of 35 

percent 	of 	the 	total 	sill. 	The 	In lode 	widths 

semi-variogram has a negligible nugget effect. It seems 

that the continuity of the trend is the dominant factor at 

low lag values. This result has been achieved elsewhere, 

for instance in ground magnetism readings from the 

Steiermark region of Austria (Burger and Skala,1978). 
2 

It is obvious that a more exact fit could be made with 

two or more nested spherical models. However, it was felt 

that this is an over elaboration, of the same sort as using 

a trend equation of an order four or above. With nested 

schemes almost any semi-variogram can be fitted closely. 

Similarly a set of Normal distributions can fit most 

histograms. But it is the underlying characteristics which 

are required not the superficial random variations. 

For the purposes of geostatistical estimation it has 

been demonstrated (Krige,1976) that the exact value of each 

of the semi-variogram parameters is not of paramount 

importance. David (1977) states that the effects of 

misinterpreting the sill and range of a semi-variogram are 

not very significant. 
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The histogram of the trend residuals is shown in 

figure 45. Fitting the Normal distribution of N(0,0.34) 	to 

it produces a chi-squared statistic of 10.50, with 10 

degrees of freedom. This shows the histogram to be 

significantly different from the model only at the 42 

percent level. Since this is greater than 5 percent the 

distribution of N(0,0.34) was accepted. 

So, the prerequisites for simulation of the 

development lode widths are met. The measurements, after 

alteration by taking the natural logarithms and removing 

the trend, are stationary, fit a spherical semi-variogram 

model, and have a Normal distribution with a variance equal 

to the sill. 

B.2.7.Lode assays simulation :- 

The results from all the sample assays of lode value 

were obtained. The sampling method was constant for all the 

samples. The assay technique varied between vanning and the 

P.I.F. analyser, but purely on the basis of when the sample 

was taken. 

The stopes, the raises, and the inter-level 

development obviously occur mainly in the high grade areas. 

Therefore their samples give a biased view of the total 

lode assay population of No.9 lode. To obtain an unbiased 

sample set only the main development level sample results 

can be used. 

The exception to this is in the determination of 
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anisotropy. For this purpose the stope samples were 

considered to be acceptable, and much more useful. Figure 

46 shows the lode assay semi-variogram calculated in the 

same three directions as before (see section B.2.6). There 

seem to be no great differences. Thus No.9 lode was 

regarded as being isotropic in terms of its grade. 

The semi-variogram was calculated for all the 

development sample assays of lode value. Figure 47 displays 

the result along with the semi-variogram from each of the 

four main development levels. These semi-variograms differ 

significantly in their sills, thus exhibiting a 

proportional effect. 

The histogram of the development lode assay values, as 

shown in figure 48, displays a great positive skewedness. 

So, a lognormal distribution was felt to be the probable 

cause of the proportional effect. 

The semi-variograms of the in lode assay terms (see 

figure 49) confirm that the proportional effect has been 

overcome. The overall semi-variogram gives no indication of 

a trend in the values. To check this the computer program 

SNARK was used to find the best fitting cubic equation. 

This only accounts for 14 percent of the total sum of 

squares, and therefore was ignored. 

Displayed in figure 50 is the overall semi-variogram 

of In lode assay values. Also shown is the minimum/maximum 

envelope after fifty random removals of 10 percent of the 

samples. Trimming the [G (x) -G (x+h) ] 2  distributions has 



FIGURE 46 : SEMI-VARIOGRAMS IN DIFFERENT DIRECTIONS 
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FIGURE 47 : SEMI-VRRIOGRRMS FROM DIFFERENT LEVELS 
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FIGURE 48: 	HISTOGRAM OF LODE VALUES PLUS FITTED MODEL  

Average = 0.91% 
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FIGURE 49 : SEMI-VRRIOGRRMS FROM DIFFERENT LEVELS 

+ 	OVERALL LN LODE ASSAYS SEMI-VARIOGRAM 	LEVEL SEMI-VRRIOGRAMS 
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FIGURE 50 : SEMI-VARIOGRRM OF DEVELOPMENT LN LODE ASSAYS 
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a very similar effect to that shown in figure 39 for the 

lode assay values. The trimmed semi-variogram helped in the 

initial estimation of the semi-variogram model parameters. 

In turn each of these three model parameters was altered to 

minimise the 40 and 80 metres RMS terms. The final fitted 

model, 	as 	shown 	in 	figure 	50, 	is 

Spherical(69 metres,2.26,1.20). 

The range of the In lode assays semi-variogram is 

69 metres, or 226 feet. This is similar to the 175 feet 

determined by Clark (1978) to be the total range of ln lode 

assays at the nearby Geevor mine. 

The histogram of the lode assay values is shown in 

figure 48. It also shows a fitted lognormal distribution 

with a mean of 1.33 and a variance of 3.9. The visual 

impression of a close fit is supported by the chi-squared 

statistic of 16.38, which (with 12 degrees of freedom) is 

only 18 percent significant. So, the histogram of lode 

assays can be considered to be lognormal. This is 

equivalent to the histogram of the In lode assays following 

a Normal distribution. Converting the parameters of the 

lognormal model gives a Normal distribution of 

N(-0.85,2.26) 	for the In lode assay figures. So, the 

variance of the ln lode assays (2.26) is equal to the sill 

of their semi-variogram model. 

The prerequisites for simulation are met. The ln lode 

assay values are stationary, fit a spherical semi-variogram 

model, and have a Normal distribution with a variance equal 
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to the sill. 

The histogram of the lode assay values, as shown in 

figure 43, uses the rounded figures (see section B.2.1). 

That is the measurements were rounded to the nearest 

2 lbs/ton or 0.05 percent, before inclusion. The histogram 

is fitted by a lognormal distribution with a mean of 1.33 

and a variance of 3.9. It is interesting to note that this 

distribution does not fit the histogram of the raw, 

unrounded, lode assays. Indeed no lognormal distribution 

could be found which was not significantly different from 

the histogram at the 2.5 percent level. This was due to the 

peaked nature of the histogram. 

B.2.8.Actual widths estimation :- 

It was desired to find the relationship between the 

lode width and actual width measurements. 

As expected, a scattergram from all 749 stope samples 

shows the lode and actual widths to be highly correlated 

with a correlation coefficient of 0.75. 

The best method for predicting the actual width from 

the lode width was required. As stated before (see section 

B.1.2) , a call width was calculated at every sample point. 

This is an estimate of what the actual width of a stope 

would be at that position. For each of the stope samples 

there exists an actual width measurement which can be 

compared with the estimate. Calculation of the residual sum 

of squares (RSS; see section B.2.6) produces a measure of 
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'goodness of fit' for the estimation method. 

The actual width estimation technique practised at 

South Crofty mine is to take the greater of 1.0 metres or 

the lode width plus 0.2 metres. Testing all 749 of these 

estimates against the measured value produces a RSS term of 

246.4. The total sum of squares (TSS; see section B.2.6) of 

the stope actual widths was calculated to be 343.8. 

Therefore this estimation method explains 28 percent of the 

data TSS. 

Other estimation techniques of a similar nature were 

examined. The minimum RSS value (139.9) is obtained if the 

actual width estimate is the greater of 1.5 metres or the 

lode width plus 0.4 metres. 

Polynomial equations of the form :-  

Actual width estimate = f(LW,LW2 	LWN)  

where LW = Lode width 

N = order of the polynomial 

were examined for their ability to predict the stope actual 

width values. Using the least squares criterion, the best 

fitting line was found for every order of polynomial 

between zero and nine. With the constraint of the actual 

width estimate having to be at least equal to the lode 

width, the RSS of each of these lines was calculated to 

be .- 
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Polynomial of order 0 	RSS = 181.4 
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Obviously the polynomial of order nine is the best fit to 

the data. However, the law of diminishing returns applies 

and the difference between the RSS term from the equation 

of order nine and that of order eight is negligible. 

Division of one RSS term by another produces a 'F' 

statistic which can be used to test whether one estimation 

technique is significantly more accurate than another. 

Doing this produces the following 'F' statistics :- 

Order 0(749 degrees of freedom) 
Order 1(748 degrees of freedom) 

F = 1.20 

5 percent significantly worse 

Order 1(748 degrees of freedom) 
Order 2(747 degrees of freedom) F = 1.13 

5 percent significantly worse 

Order 2(747 degrees of freedom) 
Order 3(746 degrees of freedom) F = 1.00 

Not 5 percent significantly worse 
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Compared with the quadratic equation, the extra effort 

required to use the cubic polynomial does not produce 

significantly more accurate estimates. Even the polynomial 

of order nine is not a significantly better estimator (the 

'F' statistic is 1.01 with 743 and 740 degrees of freedom). 

So, it was decided to make the actual width estimator a 

function of lode width and lode width squared. 

It has been stated (see section B.2.6), that the 

In lode width measurements exhibit a significant cubic 

trend surface. Bearing this in mind it was decided to test 

the actual width measurements for a trend. As before, the 

computer program SNARK was adapted to produce the 'least 

squares best fitting' linear, quadratic, and cubic trend 

surfaces. The cubic trend was discovered to be 

significantly more accurate than the others, and to explain 

23.29 percent of the data TSS. 

So, it was decided that the actual width estimate 

should not only be a function of lode width to order two, 

but also of Fasting and depth to order three. Again using 

the least squares criterion, the best fit equation of this 

form was found to be :- 
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Actual width estimate = 

1.3100068 *104  + 3.5826833 *10-2*LW 

+ 1.6650438 *10-1*LW2  - 1.5468835*E 

+ 9.7820590 *10-5*E2  + 1.5368569 *10-8*E3  

- 2.5478477 *101*H + 1.6512423 *10-2*H2  

- 3.5656412 *10-6*H3  + 2.0147847 *10-3*E*H 

- 6.7110721 *10-8*E2*H- 6.5576605 *10-7*E*H2  

where LW = Lode width 

E = Easting 

H = Height above datum 

Testing this equation against the stope sample data shows 

it to have a RSS of 118.3. This is 5 percent significantly 

better than the polynomial equation of order nine. It is 

also 20 percent significantly more accurate than the least 

squares best fit line of the form :- 

Actual width estimate = f(LW,LW2,E,E2,H,H2) 

This was found to have a RSS term of 125.2. 

It was decided that for any position within No.9 lode 

the best estimate of stope width is obtained using the 

equation with the twelve terms specified above. This has a 

RSS term of 118.3, and so explains 66 percent of the data 

TSS. 

B.2.9.Actual assays estimation :- 

It was desired to find the relationship between the 

lode assay and actual assay measurements. 

Using the results from all 745 of the possible stope 
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samples, a scattergram between the lode and actual assays 

was drawn. As expected, the correlation coefficient of 0.75 

was found to be highly significant. 

As stated before (see section B.1.2) a call assay 

value was calculated at every sample point. It was derived 

from the lode width, lode assay, call width, and average 

assay of the adjacent country rock. For each of the stope 

samples there exists a true measured actual assay to 

compare with this predicted value. 

Obviously an actual assay value is a function of the 

lode assay. So polynomial equations of the form :- 

Actual assay estimate = f(LA,LA2 	LAN)  

where LA = Lode assay 

N = Order of the polynomial 

were examined. The 'least squares best fit' fit equations 

of order zero to nine were calculated. With the constraint 

that the actual assay estimate must not be less than the 

lode accumulation divided by the actual width estimate 

(calculated as in section B.2.8), the RSS of each of these 

equations was found to be :- 
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Polynomial of order 0 	RSS = 878.2 

705.6 

616.0 

617.2 

617.3 

619.7 

614.0 

582.1 

564.5 

564.6 

Now, using 'F' statistics from these figures, the order 

eight equation can be shown to be significantly better than 

that of order two (the 'F' statistic is 1.08 with 743 and 

737 degrees of freedom). However, Whitten (1973) states 

that computation should stop the first time a step up in 

order does not result in a significant increase in 

accuracy. Polynomials of higher order should not be used. 

Obeying this rule the polynomial of order two is found to 

be the appropriate one. There is a significant increase in 

accuracy between the equations of order one and two (the 

'F' statistic is 1.14 with 744 and 743 degrees of freedom), 

but not between two and three (the 'F' statistic is 1.00 

with 743 and 742 degrees of freedom) . Indeed, due to the 

constraint mentioned above, the order three polynomial is 

slightly less accurate than that of order two. 

So, the actual assay estimator was chosen to be :- 
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= 6.573*10-2  + 6.167*10-1*LA - 8.690*10-3*LA2  

This estimation method produces a RSS term of 616.0. The 

TSS of the stope data was calculated to be 3709.9. 

Therefore, the selected actual assay estimator explains 83 

percent of the data TSS. 
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B.3.STOPE SIMULATION 

B.3.1.General approach :- 

It was desired to produce simulations of some of the 

stopes within No.9 lode. The simulations would be of lode 

widths and lode values. They would be produced using the 

characteristics of these two parameters discovered in 

sections B.2.6 and B.2.7. Any relevant data from the main 

development levels would be used to condition the 

simulations. 

B.3.2.Representation of the stope :- 

The 'turning bands' simulation method produces values 

at finite points within a given area. Therefore, it is 

impossible to produce an exact simulation of any area. To 

do that a value is required at every one of the infinite 

number of points within the area. In practice the simulated 

region has to be represented by a grid of point values. 

The number of points used in such a grid clearly has a 

great effect on the cost of the simulations. It is 

necessary to have enough, but only just enough, points to 

adequately imitate the behaviour of the simulated area. 

David (1977) states that '16 points or even 9 and sometimes 

4 are adequate to obtain a stable block estimate'. Clark 

and White (1976) report that '64 points are sufficient to 

characterise the estimation of a block to within 1 percent 

accuracy'. 

It was decided to use a 9*9 rectangular grid to 
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represent each of the simulated stopes. In practice, this 

meant that the grid spacing varied between 0.6 and 

4.1 metres. 

B.3.3.Simulation programs :- 

Two computer programs were written to enable any stope 

within No.9 lode to be simulated. The simulations were 

conditioned to data from the main development levels 

immediately above and below the stope. 

The first program, CONSIM1 (see Appendix 11), requires 

the following input of data :- 

(a) The exact size and position of the stope. 

(b) The parameters of the semi-variogram model for 

lode widths and for lode assays. 

(c) The development data to be used to condition 

the simulations. In practice, any sample from a 

main level drive, within 25 metres of an edge of 

the stope, was included. This meant there were 

about one hundred conditioning data points. 

To condition the simulations a kriging system has to 

be solved for every one of the 81 grid points (see section 

A.4.1). It was considered an unwarranted expense to use all 

the data points in every kriging system. Instead, only the 

nearest three points in six segments of 60 degrees were 

included. On average, this meant that each kriging system 

used about seventeen data points. The average variance of 

the estimates produced by these systems was about 0.22 
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(65 percent of the total sill) for the lode widths, and 

1.62 (72 percent) for the lode assays. For each of the 81 

grid points CONSIM1 finds the eligible data points and 

calculates the kriging weights. This information is stored 

on a permanent file for use in the second stope simulation 

program, CONSIM2 (see Appendix 12). 

CONSIM2 produces unconditional simulations of the 9*9 

stope grid. Reading the kriging weights calculated by 

CONSIM1 off the permanent storage file, the simulations are 

conditioned to the main development level data. The output 

of CONSIM2 includes, for both lode widths and assays,the 

average of the 81 simulated values, and their 

semi-variogram and histogram. Each run of CONSIM2 produces 

five conditional simulations of the stope. It can only be 

used after CONSIM1 has been completed. The sole input 

required (apart from that created on file by CONSIM1) is a 

four digit number which acts as a trigger for the random 

number generator. If more than five simulations are needed, 

CONSIM2 merely has to be re-run with a different four digit 

trigger number. CONSIM1 does not have to be used again, 

thus saving considerable time and expense. 

B.3.4.Conditional simulation results :- 

Two typical worked out stopes within No.9 lode were 

considered. Five simulations of each stope were produced 

and the semi-variogram and histogram of each set of 

simulated values are displayed in figures 51, 52, 53, 
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and 54. Table 6 summarises the results of the simulations 

by showing :- 

(a) The arithmetic mean of the 81 simulated lode 

width values. 

(b) The percentage of the total sum of squares 

(TSS; see section B.2.6) of the simulated In lode 

width values explained by the cubic In lode width 

trend surface. This was calculated from :- 

= 100.0*(TSS-RSS) 
TSS 

It has been stated before that for all 1149 

development samples the cubic trend surface 

explains 32 percent of the TSS of the In lode width 

values. The trend surface is a global estimator 

based on the development data. The TSS value was 

defined as the total sum of squares with respect to 

the data mean. So it is the residual sum of squares 

of the sample population mean. For almost all of 

the simulations the percentage of the TSS explained 

by the cubic trend is negative. This is due to the 

RSS term being greater than the TSS value. In other 

words, the RSS of the trend surface is greater than 

that of the development data mean. Overall, for 

each set of 81 simulated In lode widths, the trend 

is a worse estimator than their arithmetic mean. 

(c) The arithmetic mean of the 81 simulated lode 

assay values. 
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TABLE 6 

Simulation results Level 
data 

Stope samples within simulated area 

Average Average Average Average 
lode % of lode % of lode width % of lode assay 

Stope width TSS assay TSS Number 90% 	limits TSS 90% 	limits 
name (a) (b) (c) (d) (e) (f) (g) (h) 

Meredew 1.30 9.0 0.76 23.3 29 1.97-2.28 -67.2 0.41-0.55 
1.59 -3.0 0.37 

310 1.20 -9.7 0.79 
1.20 -6.3 0.72 

level 0.97 -76.1 0.47 

Pisowocki 0.88 -2.8 0.94 25.9 20 1.78-1.95 -674.3 0.83-1.00 
0.78 -6.9 0.38 

360 0.69 -41.2 1.60 
1.11 -18.6 0.32 

level 1.18 -61.3 0.61 
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(d) The percentage of the TSS of the conditioning 

data In lode width values explained by the cubic 

trend. The trend surface is a global estimator 

derived from all the development samples. The 

percentage of TSS shown under (d) indicates the 

local 'goodness of fit' with respect to the 

development samples used to condition the 

simulations. 

(e) The number of stope samples sited within the 

simulated area. 

(f) The 90 percent confidence limits on an estimate 

of the average lode width of the simulated area. 

The lode width measurements, from the stope samples 

within the simulated area, were converted to their 

simulation form. That is for each lode width 

measurement the logarithm was taken and the trend 

value subtracted. The arithmetic mean of these 

figures was found. This is an estimate of the 

average value over the simulated area. Its variance 

was calculated using the values of standard 

geostatistical auxiliary functions determined by 

computer subroutines (Clark,1976). Assuming a 

Normal distribution, the 90 percent limits of the 

estimate were found by subtracting and adding 

1.6449 times the estimation standard deviation. 

These two figures were then converted back to units 

of metres. This was done by adding the average 
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trend value over the simulated area (as 

approximated by a 10*10 grid), and taking the 

exponential. The figures under (f) in table 6 show 

the two limits between which the average lode width 

of the simulated area is 90 percent likely to lie. 

(g) The percentage of the TSS of the stope In lode 

width values explained by the cubic trend surface. 

All three of these figures are negative. This 

indicates that the trend surface, derived from the 

development samples, has little application within 

the stopes. For each set of stope In lode widths 

the trend is a worse predictor than the average of 

the set. 

(h) The 90 percent confidence limits on an estimate 

of the average lode assay of the simulated area. 

The arithmetic mean of the In lode assay terms from 

all the stope samples within the area was found. 

Using auxiliary functions the variance of this 

estimate was determined. The 90 percent limits were 

calculated, and transfered back tounits of 

'percent tin' by taking their exponentials. The 

resulting limits, within which the average lode 

assay of the simulated area is 90 percent likely to 

lie, are shown. 

When considering the stope semi-variograms it should 

be borne in mind that there are only 81 point values in the 

simulation grid. The grid itself is not square which means 
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that the spacing of the points differs between the two main 

directions. In other words, the semi-variogram figures are 

calculated at different lag intervals. The semi-variogram 

figure at a certain lag value in one direction does not 

have a partner at exactly the same lag value in the other 

direction. 	Therefore, 	the 	number 	of [G (x)-G (x+h) ] 2  

figures contributing to any one semi-variogram value varies 

between nine and seventy two. This does not induce great 

confidence in the reliability of the semi-variogram. 

The reliability of the semi-variograms from one of the 

Meredew stope simulations was tested by fifty random 

removals of 10 percent of the data (see section B.2.4). 

Figure 55 shows the resulting minimum/maximum envelope, 

both for the lode width and lode assay semi-variogram. It 

indicates the fragile nature of the semi-variogram values. 

The results of the lode width simulations seem to be 

realistic (see figures 51 and 53, and table 6). The 

semi-variograms are all well within reach of the real 

development data semi-variogram. The distributions have 

smaller spreads than that of the development data. This is 

only to be expected since all the simulated values are 

close to each other. For any one point all the others lie 

well within the range of influence. Thus, the variance 

amongst them is likely to be less than that from the 

development data where samples are up to 600 metres apart. 

The simulations are of development lode widths and 

assays. For reasons explained before (see sections B.2.6 
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and B.2.7) only the development samples were used in the 

data analysis. So, the semi-variogram and distribution 

models were obtained from the five horizontal lines of the 

main development level drives. Any stope simulation 

involves the vertical interpolation of the development 

models between two of these horizontal lines. 

The errors caused by this phenomenon are particularly 

evident in the performance of the In lode width trend 

surface. It does not fit the stopes at all well, as shown 

by the percentage of the stope samples TSS explained by the 

trend ((g) in table 6). The simulations have tended to 

reflect this characteristic, rather than following the 

trend as does the development data. This is a result of the 

conditioning process. Forcing the simulations to agree with 

both horizontal lines of development data has prejudiced 

them towards certain values inbetween. 

Since the ln lode width trend is such a poor fit to 

the stopes it was decided to ignore it. The simulated 

values would be of ln lode width and the conditioning 

process would be relied upon to allow for any local 

features. 

The semi-variogram model chosen for the In lode widths 

was Spherical(30 metres,0.33,0.10), as shown in figure 43. 

Although it does not fit the actual semi-variogram closely 

above a lag of 35 metres this was felt to be insignificant. 

Almost all the work involved in stope simulation is at 

distances of less than 35 metres. The In lode width figures 
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do not fit any Normal distribution. As stated before (see 

section A.4.1) the average of an unconditional simulation 

is not important, and the true variance is best estimated 

by the sill of the semi-variogram. It was anticipated that 

any inaccuracies caused by the poorly fitting 

auto-correlation and distribution models would be coped 

with by the conditioning process. 

Using this new approach the same two stopes as before 

were simulated. Figures 56 and 57 display the resulting 

lode width semi-variograms and histograms. The overall 

average for each set of simulated values was found, and 

also the percentage of the TSS explained by the In lode 

width trend surface. The results were found to be as 

follows :- 

Meredew 

310  

Simulation 

if 

11 

" 

1 

2 

3 

4 

Lode width 

1, 

II 

1 	I 

= 1.01 

1.62 

1.64 

0.58 

%TSS 

" 

" 

" 

= 20.0 

-147.6 

-109.3 

-99.1 

level " 5 " 1.47 " -10.0 

Pisowocki Simulation 1 Lode width = 1.11 %TSS = -39.3 

It 2 " 0.57 " -278.3 

360 " 3 It 1.21 " -91.3 

II 4 11 1.22 " -149.5 

level " 5 " 0.72 " -47.2 

The results compare well with those achieved using the 

trend surface approach (see figures 51 and 53, and 
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table 6). Throughout the rest of this study the lode width 

simulations were produced in this new fashion. That is the 

In lode widths were treated as 	following 	a 	Normal 

distribution and a spherical semi-variogram. The 

conditioning operation was relied upon to cope with the 

local effects of the trend. 

At first sight the results of the lode assay 

simulations do not appear to be very realistic (see figures 

52 and 54, and table 6). In particular, most of the 

semi-variograms are lower than that from all the 

development samples. The development semi-variogram itself 

is much lower than that calculated from the stope samples. 

This is due to the proportional effect caused by the 

lognormal distribution of the lode assays (see section 

B.2.7). Obviously, the samples from the stopes have a much 

higher average assay value (2.54 percent tin) than those 

from the development drives (1.35 percent tin). This means 

that their variance, and therefore also their 

semi-variogram, is higher. 

The proportional effect explains why the simulation 

semi-variograms are so low. Strangely, neither Meredew nor 

Pisowocki stope has a high average assay. As shown in 

table 6, the average of the stope samples taken within them 

was found to be 0.47 and 0.91 percent tin respectively. 

Therefore, the simulations tend to have averages lower than 

that of all the lode development samples. Correspondingly 

their semi-variograms are lower than average. The one 
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exception to this is a simulation of Pisowocki stope with 

high semi-variogram values between 7 and 20 metres. This is 

simulation number 3 which has an unusually high average of 

1.60 percent tin. 

The distributions of the simulated lode assays are as 

expected. They exhibit a lognormal shape, and have a 

smaller spread than those from the development and stope 

samples. As with the lode widths simulations this is due to 

the simulated points being close to each other. 

B.3.5.Susceptibility of the simulations to the models :- 

The 	stope 	simulations 	are 	formed 	using 

auto-correlation and distribution models 	for 	In lode 

widths, 	and 	In lode 	assays. 	These 	models 	are 

representations of the real values calculated from the 

No.9 lode development samples. As shown in figures 42, 43, 

48, and 50, they are not exact fits to the data. It was 

anticipated that the discrepancies would become 

insignificant after the powerful conditioning process had 

taken place. 

To investigate the influence of the models five 

simulations of Meredew stope were produced. The simulations 

were created with slightly different models from those used 

previously. 

The semi-variogram model used for the In lode widths 

was Spherical(40 metres,0.33,0.10). In other words, the 

range of influence was increased by one third. The results 
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of the simulations using this model are shown in figure 58. 

The average lode width of each simulation, and the 

percentage of the TSS explained by the cubic trend surface, 

were found to be as follows :- 

Meredew Simulation 1 Lode width = 	1.71 %TSS = 	-25.6 

" 2 " 1.06 " -23.3 

310 is 3 " 1.40 " -10.8 

" 4 " 1.65 " -15.6 

level t 5 " 1.00 " -70.6 

All these results are remarkably similar to those achieved 

with a 30 metres range (see figure 51 and table 6). Tne 

semi-variograms of the conditional simulations show no 

evidence of the larger range. The conditioning operation 

has a stronger influence than the range of the 

unconditional simulations. This is as expected, since at 

any lag value the difference in semi-variogram value 

between a 30 metres and 40 metres range model is small. For 

instance, at a lag of 10 metres the two models have values 

of 0.21 and 0.18 respectively. 

The stope simulation method is resistant to an error 

of one third in estimation of the semi-variogram model 

range of influence. Any larger estimation error seems 

unlikely. 

The results shown in figure 59 were created with a 

in lode 	assay 	semi-variogram 	model 	of 

Spherical(69 metres,2.26,0.60). In other words, the nugget 

effect was halved. The average of each set of simulated 
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lode assays was calculated to be :- 

Me red ew 

310 

level 

Simulation 

II 

II 

I' 

1 

2 

3 

4 

5 

Lode assay = 

I' 

I' 

I, 

0.48 

1.13 

0.89 

0.39 

0.37 

There is only one significant difference between these 

results and those formed with a nugget effect of 1.20 (see 

figure 52 and table 6). This is in the semi-variograms. 

Those of figure 59 are lower in value for all lags. So, the 

smaller nugget effect has been transfered from the 

unconditional simulations. The conditioning process has not 

forced both sets of semi-variograms to exhibit similar 

semi-variograms. 

The stope simulation method is influenced by the value 

of the nugget effect. However, it must be borne in mind 

that both sets of semi-variograms are low. They are very 

different from the average for all the lode. This is due to 

the proportional effect which has an overriding influence 

on the lode assay semi-variogram. For any given stope its 

importance far outweighs that of the value of the 

semi-variogram model nugget effect. Thus, for small scale 

conditional simulation an error in the estimation of the 

nugget effect is not very significant. Its only effect may 

be a small change in the simulation's semi-variogram. 

However, this change is likely to be small compared to that 

caused by the conditioning data forcing the local average 
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on the simulation. 

B.3.6.Costs of the simulations :- 

For Meredew stope, the time taken for the program 

CONSIM1 to execute was 40 CP seconds. CONSIM2 required 727 

CP seconds to produce five conditional lode widths and lode 

assays simulations of the stope. This means that 153 CP 

seconds were used to create each simulation. 

The results of each set of five simulations are 

extremely variable. As stated before, it is dangerous to 

draw conclusions from only a few simulations. It was 

considered that five were not enough, and that one hundred 

was a far more useful number. To create one hundred stope 

simulations would require CONSIM2 to be run twenty times, 

since it can only produce five simulations in one 

execution. Apart from the inconvenience, the cost of such 

an operation was considered to be prohibitive. To produce 

one hundred simulations would require 40 + 20*727 = 14580 

CP seconds. Per simulation this is 146 CP seconds, which at 

current (October 1979) commercial rates costs about 

16 pounds Sterling. 

It was decided that a less costly simulation technique 

was necessary, even if it involved a slight decrease in 

accuracy. Such a technique is examined in section B.4. 

B.3.7.Actual width and actual assay simulations :- 

Section B.2.8 shows how an actual width estimate can 

be calculated at a point, given the lode width and the 
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co-ordinates. The estimating procedure is a fairly good one 

since it explains 66 percent of the total sum of squares. 

Similarly, section B.2.9 describes an estimation technique 

for actual assays using only the lode assay at the point. 

This is a more accurate predictor, explaining 83 percent of 

the TSS. 

Bearing these two good estimators in mind, it was 

decided to produce simulations of actual widths and assays. 

The possible behaviour of these stope parameters is 

probably of more interest than that of the lode widths and 

assays. 

Two potential methods of simulating actual widths and 

assays presented themselves :- 

(a) Simulate the 9*9 grid of lode values. Condition 

the simulation to the development data. At each of 

the grid points find the estimates of the actual 

values. 

(b) Produce a simulation of actual values. For 

every one of the conditioning data points calculate 

the actual value estimates. Use these to condition 

the simulation. 

It was considered that the first method was the most 

appropriate one. Analysis of the lode measurements is 

likely to be more meaningful than that of the actual, or 

stope, widths and assays. There are many more samples 

available with lode measurements. The only recordings of 

actual values occur in the preferentially placed stopes. 
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The actual widths and assays are measurements of the stope 

faces, and as such are subject to great human influence. 

Since the stope width is a factor of the efficiency of the 

mining (in terms of overmining of the lode), it is not 

merely a geological parameter. Changes in behaviour between 

stopes can be a result of having been worked by different 

mining crews. For this reason analysis of actual width and 

assay measurements was considered to be fraught with 

dangers. 

Using method (a) mentioned above, five conditional 

simulations of actual width and actual assay were produced 

for 	Meredew 	stope. 	The 	simulations 	exhibited 

semi-variograms and histograms for widths and assays, as 

shown in figures 60 and 61 respectively. Also displayed are 

the semi-variogram and histogram from all 749 of the stope 

samples. The average values of the 9*9 grid of simulated 

points were found to be :- 

Simulation 1 Actual width = 	1.88 Actual assay = 0.52 

II 2  Iv = 	2.22 1 = 0.29 

" 3 II = 	1.85 " = 	0.54 

II 4 " = 	1.85 " = 	0.49 

" 5 " = 	1.78 " = 	0.35 

Taking the arithmetic mean of the 29 stope samples within 

the simulated area produces 'real' values of 3.17 metres 

and 0.41 percent tin. 

The simulated actual widths do not exhibit the desired 
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semi-variogram or distribution shapes (see figure 60). In 

particular, the distributions are of a very different shape 

with no simulated value below 1.60 metres. This is a result 

of the actual width estimator. Its operation dominates the 

whole procedure, as shown by the great similarity amongst 

the five distributions. It produces values above 

1.60 metres and with a low semi-variogram. 

One of the faults of the actual width estimator is 

that, by necessity, it was derived from the stope samples. 

In other words, it is a function of a stope rather than a 

development lode width. As explained previously (see 

section B.2.6), and as can be seen in figure 53, the stope 

and development lode width samples behave differently. The 

simulated actual widths are derived from the grid values of 

lode width. These lode widths are simulated using the 

development auto-correlation and distribution models. Thus, 

an unavoidable and unknown error enters the operation. 

It was decided that to produce simulations of actual 

widths was not practicable. The best estimator (explaining 

66 percent of the TSS) is not perfect, and was calculated 

from the stope samples. These facts, together with the poor 

results, led to the decision to drop the actual width 

simulations. It was considered that for any given stope, a 

lode width simulation would suffice. If the actual widths 

are needed they could be estimated by the mine personnel. 

The particular circumstances of any stope are unique. As a 

result, the prediction of overmining and dilution can be 
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best carried out by an experienced miner, rather than by a 

polynomial equation. 

The results from the actual assay simulations (see 

figure 61) seem to be acceptable. The estimated actual 

assay at each point was derived from the simulated lode 

assay there. Consequently the low semi-variograms of the 

lode assay simulations (caused by the proportional effect) 

have been transfered. This is as desired since the average 

actual assay from all the stope samples was calculated to 

be 1.42 percent tin. The stope samples within Meredew stope 

show it to be of low grade (0.41 percent tin). Therefore, 

the simulations have tended to show low averages, and their 

semi-variograms are correspondingly lower than the lode 

average. 

The actual assay distributions are all of the correct 

shape, with the predictable smaller spread. The errors 

caused by the actual width estimator have been avoided by 

the accuracy (83 percent of the data TSS), and the 

simplicity of the actual assay estimator. 

Although the simulated actual assays behave in the 

correct manner, it was decided not to proceed with actual 

assay simulations. As a result of the inaccuracies of the 

actual width simulations, they would have had to be 

continued in isolation. To calculate the average assay of 

any area does not involve any width figures (see section 

B.2.3). However, it was felt to be unwise not to include 

width simulations. The anticipated width can have a great 
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influence on the decision whether and how to mine an area. 

A lode assay of 2 percent tin is much more useful if it 

occurs over a width of 1.0 metres rather than 0.2 metres. 

Due to the failure of the actual width simulations, 

the lode width and lode assay simulations were continued. 

If actual, or stope, values are needed they could be 

produced. The actual assays would be simulated, and the 

actual widths estimated manually. 
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B.4.BLOCK SIMULATION 

B.4.1.General approach :- 

In section B.3.6 the cost of conditionally simulating 

stope lode widths and assays was shown to be high. In an 

attempt to reduce the expense a new approach was developed. 

Consider the simulation of a rectangular area within 

No.9 lode, approximating to a stope (see figure 62). The 

block lies between two main development level drives and is 

of a known ,size and shape. A simulation of it can be 

produced and conditioned to data from the development 

levels. To do this an unconditional simulation is made of a 

grid of values representing the block, and also values at 

the position of every conditioning data sample (see section 

A.4.1). The conditioning data is in a known position 

relative to the block. The only difference between this 

block and one horizontally adjacent to it is in the 

conditioning data. However, since the development level 

samples are at a constant spacing, this data is in the same 

position relative to the block. So, the same unconditional 

simulation can be used for both blocks. The only difference 

between them arises from the different values of the 

conditioning data. 

By this means, one unconditional simulation can be 

used for many block simulations. The expensive procedure of 

producing the simulated values does not have to be carried 

out each time. 
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It was decided to carry out block simulation of this 

nature within No.9 lode. The precise layout was selected to 

be as shown in figure 63. The 310 and 335 levels were 

chosen because they had been more extensively sampled than 

the others. The number of sample results available from 

them is 473 and 321 respectively, out of a total of 1149 

main development level samples. 

B.4.2.Choice of block size :- 

As can be seen from figure 63 the block was chosen to 

be 47.0 metres high and 25.0 metres wide. 47 metres is the 

average difference in depth between 310 and 335 level 

drives. In fact they range between 46 and 48 metres apart. 

The block width of 25 metres was selected as being a 

typical width for a stope within No.9 lode. 

All available development samples up to 25 metres from 

the block edges were used to condition the simulations. 

B.4.3.Choice of number of grid points :- 

As shown in figure 63, the block was represented by a 

16*8 grid of points. This was selected so that the 

simulated area could be split into two equal blocks, both 

23.5 metres high, 25.0 metres wide and represented by a 8*8 

grid. 

The primary point of interest of each of the two 

blocks was its average. So, the average of the 64 simulated 

grid values has to give a sufficiently accurate idea of the 

real block average. 
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A better estimate of the true block average could be 

obtained using kriging. However, it was considered that the 

extra calculations involved would not produce a markedly 

more accurate estimate than the average of 64 evenly spaced 

samples. 

The simulated values of In lode width originated from 

a known semi-variogram model. Using its parameters, and 

standard geostatistical auxiliary functions (Clark,1976), 

the estimation variance of the arithmetic mean of the 64 

simulated values was found. It was calculated to be 

0.00007. This means that the average of the 64 logarithmic 

values is 90 percent likely to lie within 0.0138 of the 

real block logarithm average. In other words if the average 

the 90 percent limits are at 'M-0.0138' and 

'M+0.0138'. Conversion of these figures to units of metres 

is achieved by taking their exponentials. Comparison with 

the exponential of 'M' shows the 90 percent limits to be at 

-1.4 and +1.4 percent. These two figures give some idea of 

the accuracy of the arithmetic mean of a 8*8 grid under 

these conditions. 

Similarly, the accuracy of the mean of the 64 

simulated lode assay values can be determined. The mean is 

an estimate of the real block lode assay average. The 

estimation variance of this mean was found to be 0.00026. 

Proceeding as with the widths, the final 90 percent limits 

were found to be at -2.6 and +2.7 percent. 

Repetition of this process for a 7*7 grid produces 90 

is 	' M ' 
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percent limits (on the lode assay average) at -3.2 and +3.3 

percent. A 9*9 grid has similar limits at -2.2 and +2.2 

percent. 

Primarily considering the wider average lode assay 

limits a 8*8 grid was felt to be satisfactory. The real 

average lode assay of the block is 90 percent likely to lie 

between 97.4 and 102.7 percent of the mean of the 64 

simulated values. For instance, if the simulated values 

have a mean of 0.5 percent tin these limits become 0.49 and 

0.51 percent tin. 

B.4.4.Production and storage of unconditional 

simulations :- 

One hundred unconditional lode width simulations of 

the block layout were produced. Each simulation consisted 

of a value at each of the 128 grid points, and at the 100 

conditioning development data points. 

One hundred unconditional simulations of lode assay 

were also produced. 

All the simulation results were stored on computer 

files. Each of the simulated values was recorded to two 

decimal digits. The total computer storage facility 

required for all 45,600 figures was 334,080 characters. 

To condition the simulated point values a kriging 

system for each point has to be formed (see section A.4.1). 

If all the conditioning data is in the same relative 

position for every block layout, the kriging system for any 
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point would not change from layout to layout. The kriging 

weights would be identical, and therefore also the kriged 

estimate from the simulated development data ('Sk'). 

Section A.4.1 states that each conditional simulation value 

is found from :- 

S - Sk + Rk 

where S = unconditional simulation value 

Sk = kriged estimate from simulated development data 

Rk = kriged estimate from real development data 

Now it has just been shown that for any point the value of 

'Sk' does not vary with different sites of the block 

layout. Since the simulation value of 'S' is also constant 

the obvious procedure is to store values of 'S-Sk' rather 

than 'S'. For each simulation this would avoid the need to 

store 100 simulated development data values and also the 

calculation of 128 values of 'Sk'. 

As shown in figure 63 fifty consecutive development 

data samples from each level drive are required to 

condition the simulations. These samples are sited at 

regular intervals along the drive of 1.5 metres 	(or 

5 feet). It was rare for the results from fifty such 

consecutive sampling points to be available. Either no 

recordings could be taken because of intersecting dykes 

(see section B.1.1) or the sampling interval was 3.0 metres 

(or 10 feet) . 

If a block layout was sited where some of the 

development data are missing, new problems arise. The 
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kriging system for several grid points would include a 

sample which at that particular block layout position is 

absent. The missing results would have to be replaced by 

some means, possibly interpolation. 

It was considered that, due to the problems caused by 

missing development data, the idea of storing 'S-Sk' values 

had to be dropped. The procedures for resolving these 

problems would create too many inaccuracies. 

B.4.5.Choice of kriging pattern :- 

To condition the simulations a kriging system for each 

of the 128 grid points has to be formed. 

Obviously the simplest method would be to use all of 

the conditioning development samples in every kriging 

system. Equally obviously this would be exceedingly 

expensive since each system would consist of one hundred 

and one simultaneous equations. David (1977) states that 

the cost of solving simulataneous equations is proportional 

to the cube of the number of equations. In other words to 

solve one hundred and one equations costs over one thousand 

times times that for ten equations. 

Using all the development samples in every kriging 

system produces the most accurate kriging estimates ('Sk' 

and 'Rk' values). However, a large number of these samples 

can be ignored with little loss in accuracy. 

The kriging pattern used for each of the 128 

simulation grid points was developed. It consisted of 
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finding all development data within a search circle with a 

radius equal to the range of the semi-variogram. To avoid 

the 'shadow effect' (David,1977) the points within this 

circle were examined and only the nearest three in a 60 

degrees segment were retained. Therefore there could not be 

more than eighteen points in the kriging system. If there 

were less than four points the search circle radius was 

increased, and the whole process repeated. This is the 

method used in the program CONSIM1 (see section B.3.2). 

Apart from the 'nearest three in 60 degrees segments' 

technique several other methods were examined. The results 

are shown in table 7. 

The choice of 'nearest three in 60 degrees segments' 

(method (f) in table 7) was made because of its extra 

accuracy over method (e). The maximum kriging variances are 

both reduced by 3.7 percent, and the averages by 1.0 

percent. However, a further expense of 12 CP seconds only 

causes similar reductions of 0.4 and 0.7 percent. The 

method (f) was felt to be at the point of balance between 

cost and accuracy. It also makes full use of the data, with 

the outermost samples (25 metres horizontally from the 

corners) being used three times. 

It is interesting to note the results obtained if all 

100 of the development samples are used in every kriging 

system (method (h) in table 7). Compared with the adopted 

method an extra cost of 4274 percent results in decreases 

in averages and maximums of only 2.6 and 3.1 percent 



TABLE 7 

Method 
Kriging 
pattern 

No. 	of 	times 
outermost 
points used 

Kriging 	variances Execution 
time 	in 

CP seconds 
Lode width Lode assay 

Average Maximum Average Maximum 

0 
(a) 3 ~90 0 .2189 .2829 1.652 1.881 41 

(b) 2450 3 .2163 .2791 1.638 1.858 52 

(c) 
390° 1 .2160 .2833 1.631 1.891 43 

(d) 2.%45° 2 .2153 .2743 1.633 1.840 54 

(e) 3*60° 3 .2148 .2829 1.616 1.831 58 

( f) 3\,(60
0 
 3 .2123 .2722 1.604 1.812 62 

(g)  2*45° 2 .2109 .2707 1.592 1.805 74 

(h)  128d)360° 128 .2057 .2609 1.571 1.775 2712 
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respectively. 

It has been stated (see section A.5.6), that 

simulations formed with ten regularly orientated one 

dimensional axes may be of use where the average kriging 

variance is less than one third of the sill. The averages 

achieved were at 62 and 71 percent of the model 

semi-variogram sill. Thus fifteen regularly orientated axes 

were necessary to obtain accurate final simulations. 

B.4.6.Conditional simulation results :- 

A computer program, called SIM2BLO (see Appendix 13), 

was written to condition the one hundred unconditional 

simulations to the appropriate development data. 

The values of the one hundred conditioning samples are 

read into the program. For the almost inevitable missing 

samples zero values for lode width and assay are entered. 

The kriging system for every one of the grid points is 

solved, and the weights stored on a temporary file. In 

turn, each set of unconditional simulated values is read 

from the permanent storage files. For every one of the 

simulation grid points its kriging weights are found and 

used to condition that value. Once all these values have 

been conditioned the next unconditional simulation is read 

in and the process repeated. 

Table 8 summarises some of the output of the program 

SIM2BLO. The averages from all one hundred simulations are 

shown. Also displayed, for various pay grades, are the 



TABLE 8 

Simulated blocks = 50 to 125 East 

Average of all 
100 simulations 

Lower block Upper block 
Width Assay Width Assay 
1.71 1.37 1.77 0.97 

Lower block/Upper block 	P = Pay N = Non-pay 

Average assay Value of rest of block 
Pay of blocks if 2 non-pay lifts occur 

grade P/P P/N N/P N/N P/ N/ /P /N 
0.1 100 0 0 0 0 0 0 0 
0.3 98 2 0 0 1 1 5 2 
0.5 93 7 0 0 6 11 32 9 
0.7 61 27 4 8 8 23 24 45 
0.9 42 37 5 16 12 32 15 58 
1.1 22 36 6 36 19 53 13 79 
1.3 13 29 6 52 16 66 7 89 
1.5 4 29 7 60 14 73 5 91 
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number of occurences of both blocks being in the same 

category (pay or non-pay), and of the blocks being in 

different categories. The use of such figures is best 

demonstrated by those at a pay limit of 0.9 percent tin. 

With a pay grade of 0.9 percent tin, the most likely 

situation (having occured 42 percent of the time) is that 

both blocks are in the pay category. However, there is an 

equal chance that the blocks are in different categories. 

It would be prudent to use a mining technique capable of 

extracting only one of the blocks. The first step should be 

to mine the lower block on its own. If it is found to be 

above the pay limit, the odds are slightly (42 to 37) in 

favour of the upper block also being pay. Extraction of the 

upper block should then proceed. 

The obvious method suggested by such an order of 

extraction is overhand stoping. Under different 

circumstances underhand stoping may be found to give the 

best opportunity to mine only profitable blocks. 

The stoping method used at South Crofty mine involves 

the extraction of the lode in horizontal strips, or lifts. 

Each lift advances the stope face by about 3 metres. 

Samples are taken along the stope face after extraction of 

every lift. If the averages of two consecutive lifts are 

both below the pay grade the stope is stopped. 

The vertical interval between the points of the 

simulation grid is 2.94 metres. Thus, each horizontal line 

of eight simulated values represents an extraction lift. 
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The average of the simulated lode assays is an estimate of 

the real lift assay value. As before (see section B.4.3), 

the 90 percent limits of this estimate can be calculated. 

They were found to be at 92.7 and 107.8 percent of the 

estimate. 

It was decided to test the validity of the practice of 

halting a stope if two consecutive non-pay lifts occur. For 

every simulation produced by the program SIM2BLO the two 

vertically adjacent blocks were considered separately. The 

average assay of each of the eight lifts was estimated by 

the mean of the appropriate horizontal line of eight 

simulated values. If two adjacent non-pay lifts were found, 

the mean of the remaining simulated values above them was 

calculated. It was noted whether this was below or above 

the pay grade. In other words, whether for that particular 

block simulation the 'two non-pay lifts' criterion had 

saved mining an unprofitable area. Table 8 shows the 

results for all one hundred simulations at various values 

of pay grade. 

The figures show that the 'two non-pay lifts' 

criterion works for the lower block when the pay grade is 

0.5 percent tin. Seventeen simulations were found where 

there were two consecutive lifts with average assays of 

less than 0.5 percent tin. In eleven (65 percent) of these 

seventeen cases the rest of the lower block was determined 

to be non-pay. So, the existence of a non-pay area had been 

correctly anticipated. 



The 'two non-pay lifts' criterion does not work for 

the upper block at a 0.5 percent pay grade. For this block 

if two non-pay lifts occur there is only a 22 percent (nine 

out of forty one) probability that the rest of the block 

averages below 0.5 percent tin. 

The program SIM2BLO was re-run but using a 'three 

non-pay lifts' criterion to signal poor areas. The 

equivalent figures to those of table 8 were found to be as 

follows :- 

Pay P/P P/N N/P N/N 

0.1 0 0 0 0 

0.3 0 0 0 2 

0.5 1 5 7 7 

0.7 0 11 8 28 

0.9 4 26 7 67 

1.1 5 34 8 72 

1.3 4 48 5 82 

1.5 5 60 3 88 

These indicate that for a pay grade of 0.5 percent tin the 

'three non-pay lifts' criterion works for the upper block. 

There is a 50 percent (seven out of fourteen) chance that 

the rest of the block is not worth mining. 

A 'one non-pay lift' criterion was tested. The results 

were found to be :- 
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Pay P/P P/N N/P N/N 

0.1 0 0 3 0 

0.3 15 2 29 2 

0.5 29 14 70 10 

0.7 45 26 52 44 

0.9 51 36 31 67 

1.1 43 50 20 79 

1.3 32 66 10 89 

1.5 27 73 8 92 

These figures show that that using the 'one non-pay lift' 

criterion is insufficient for either block at a pay grade 

of 0.5 percent tin. The probabilities of it correctly 

forecasting a non-pay area are only 33 and 13 percent, for 

the lower and upper blocks respectively. 

So, if the pay grade is 0.5 percent a 'two non-pay 

lifts' criterion is required to correctly signal a non-pay 

portion of the lower block. If this is used for the upper 

block there is a 78 percent probability that a profitable 

area is being left. Three consecutive non-pay lifts are 

needed before the rest of the upper block can be correctly 

regarded as not worth mining. 

B.4.7.Sensitivity of the block simulation method :- 

The method used to produce block simulations 

(performed by the program SIM2BLO) is not as exact as that 

for stope simulations (carried out by CONSIM1 and CONSIM2). 

Various assumptions have been made in order that the 
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conditional simulations are much cheaper to produce. 

Inevitably these cause inaccuracies in the final results. 

It was necessary to find out whether the balance between 

cost and accuracy had been swung too far in favour of cost. 

Table 8 shows the results of block simulations for a 

certain area of No. 9 lode. The averages of the one hundred 

simulations for this area (comprising both blocks) are 

1.74 metres and 1.17 percent tin. This same area was 

simulated by the programs CONSIM1 and CONSIM2. The averages 

achieved by these simulations were :- 

Simulation 1 Lode width = 1.92 Lode assay = 2.04 

If 2 il 1.25 0.98 

11 3 1, 1.27 11 1.19 

" 4 " 1.59 II 0.71 

11 5 II 2.07 II 1.80 

These figures show that the results of the one hundred 

block simulations lie well within the bounds of possibility 

outlined by the five stope simulations. Thus, the 

assumptions made by SIM2BLO have not created any large bias 

in the results. 

Table 9 displays the results of an initial sensitivity 

analysis on the simulations formed by SIM2BLO. The first 

set of results shown (situation (a)) are from the same 

execution of SIM2BLO as those in table 8. 

The conditioning data used in the block simulations 

consists of one hundred sample points, fifty from each 

level drive. These samples are treated as being exactly 



TABLE 9 

Simulated blocks = 50 to 125 East 

Subscript L = Lower block U = Upper block 

Number 
Average 

correlation 
Correlation 

between 
of occurences between 128 100 blocks 
at pay = 0.9% simulated grid Width Assay 

Average block values Lower /Upper point values vs L  vs L 
Situation WidthL  AssayL Width  Assay P/P P/N N/P N/N Width vs Assay WidthU Assay 

(a) 1.71 1.37 1.77 0.97 42 37 5 16 0.06 0.70 0.45 
(b) 1.71 1.36 1.76 0.94 39 38 5 18 0.06 0.70 0.45 
(c) 1.70 1.36 1.74 0.95 39 38 5 18 0.06 0.70 0.44 
(d) 1.70 1.34 1.74 0.91 37 38 6 19 0.06 0.70 0.43 
(e) 1.69 1.31 1.72 0.90 37 37 6 20 0.06 0.70 0.43 
(f) 1.67 1.27 1.71 0.90 32 39 7 22 0.06 0.70 0.44 
(g) 1.71 1.34 1.77 0.95 41 37 6 16 0.06 0.70 0.44 
(h) 1.79 1.36 1.82 1.13 33 34 11 22 0.07 0.23 0.26 
(i) 1.74 1.45 1.78 1.09 33 37 10 20 0.05 0.23 0.23 
(j) 1.71 1.51 1.77 0.97 40 42 4 14 0.06 0.70 0.38 
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regularly spaced at an interval of 75/49 =1.53 metres (or 

5.02 feet). Obviously, this is never actually found to be 

true. However, it is not possible to accurately determine 

an interval between any two sample points. This is because 

it was felt that the co-ordinates of the points can not be 

found, from the longitudinal section of the lode, to any 

greater accuracy than 1 metre. To assume precise regularity 

of samples along the drives was considered to be valid. On 

average it was found that the difference in Easting between 

two points forty nine sample intervals apart was 75 metres. 

The Eastings of the outermost samples used in situation (a) 

were 52 and 124 metres (335 level) and 50 and 123 metres 

(310 level). These co-ordinates were determined from the 

longitudinal section and as such are not precise. For 

instance, the samples regarded as being at 50 metres East 

may really be at 49 metres. To test the possible effect of 

this the data from 310 level was altered. 

Situation (b) used fifty conditioning data points from 

310 level one sample further East than those for situation 

(a). In other words, the recorded Eastings ranged between 

52 and 125 metres. Similarly, situation (c) 	used samples 

between 53 and 126 metres East, situation (d) between 54 

and 127 metres, and situation 	(e) 	between 	56 	and 

129 metres. The results show that any errors made in 

determination of the sample co-ordinates would not have a 

large effect. Even if the conditioning data used differs by 

a distance of four sample intervals (situations (a) and 
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(e)) the results are very similar. The block simulation 

method seems to be robust as far as the data co-ordinates 

are concerned. The necessary approximations can be made 

with confidence. 

As stated before (see section A.4.4), the conditioning 

process is the great weakness of the 'turning bands' 

simulation method. This is because it attributes 100 

percent reliability to all the sample data values. To a 

large extent this problem was overcome by rounding the data 

measurements before use (see section B.2.1). 

To test the influence of the accuracy of the data, a 

random error was added to each measurement. Every sample 

was given a 5 percent chance of being incorrect by at least 

one measurement unit. In other words, a measurement of 

1.40 metres had a 5 percent chance of being changed to less 

than 1.30 metres or greater than 1.50 metres. This was 

achieved by adding a random number from a Normal 

distribution 	of 	N(0.0 metres,0.052). For metric lode 

assays a 	number 	from 	N(0.0 percent tin,0.0052) 	was 

added. This created a 5 percent chance of the samples being 

wrongly assayed by at least 0.01 percent tin. Similarly, 

for the imperial measurements random numbers from 

N(0.0 feet,0.1252) and N(0.0 lbs/ton,0.52) 	were 

added, for widths and assays respectively. 

So, each sample measurement was given a reasonable 

allowance for a random measuring error. The results of this 

operation are shown under situation (f) in table 9. The 
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averages of all the block values have not changed by all 

that much. This is as expected since the mean of each of 

the random error distributions was zero. There is a drop 

(of 24 percent) in the number of occurences of both blocks 

being above the pay grade. 

The results of situation (f) originate from adding a 

measurement error to the raw sample values. Another 

approach' is to round all the sample measurements, convert 

them to metric units, and then to add a random error. 

Situation (g) depicts the results of such an procedure. A 

random number from a Normal distribution of 

N(0.0 metres,0.12) was 	added 	to 	every 	lode 	width 

sample. Thus, there was a 5 percent chance of a width being 

changed by at least 0.1 metres. For the lode assays using a 

N(0.0 percent tin,0.0252) 	distribution 	gave a similar 

probability of the value being altered by at least 

0.025 percent tin. The results are very similar to those of 

situation (a). No noticeable change has been caused by 

these simulated random measurement errors. 

Overall the block simulation method seems robust to 

inaccuracies in the conditioning data. So long as any 

measurement error is random and unbiased it can be 

confidently accommodated. 

Situations (h) 	and (i) 	in table 9 represent the 

results when conditioning with every other development 

sample. These results would be obtained if only 3 metres 

(or 10 feet) sampling had been practised. They show that 
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the simulation method is fairly resistant to the loss of 

half its conditioning data. However, the average block 

assays are changed markedly. In particular, the mean of the 

one hundred upper block average assays is increased by 16 

and 12 percent. Despite this there is a marked decrease in 

the number of occurences of both blocks being above the pay 

grade. This means that the distribution of the upper block 

average assays has changed shape. Its average has increased 

as well as the proportion below 0.9 percent tin. Since 

0.9 percent tin is less than the average this indicates 

that the distribution spread has become larger. There are 

other effects of only using half the available conditioning 

data. These include the great reductions in the 

correlations between the averages of the two blocks. As a 

result of all these changes it was considered inadvisable 

to use the block simulation method in areas where 3 metres 

(or 10 feet) development sampling had been employed. The 

lack of conditioning data could create significant 

inaccuracies in the results. 

It has been mentioned (see section B.2.3), how the 

average assays were calculated throughout this study. They 

were defined as the arithmetic mean of the assay values 

under consideration. This was in preference to the commonly 

used accumulation based definition, which states that the 

average assay of a set of values is equal to the average 

accumulation divided by the average width. Situation (j) in 

table 9 depicts the results obtained when the second 
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definition was used. Relative to the results using the 

first definition (situation (a)), the lower block average 

assay has increased by 10 percent. Apart from this there 

are no substantial differences. The use of one definition 

in preference to the other does not cause any important 

changes in the final results. 

B.4.8.Costs of the simulations :- 

The cost of producing the unconditional simulations, 

and running them through the program SIM2BLO, is obviously 

dependent on the number of them. One hundred was chosen 

arbitrarily as a large, but manageable, number. There must 

be enough simulations to give a good idea of the parameter 

distributions. To test whether one hundred is enough the 

figures in table 10 were calculated. They were derived from 

the results of one hundred simulations obtained under 

situation (a) of table 9. 

The one hundred lower block average lode widths were 

split into groups of equal size. The minimum and maximum 

deviations from the overall average, for that particular 

group size, were found to be as shown. This process was 

repeated for various group sizes, and for the other three 

block averages. 

The results of table 10 indicate that fifty 

simulations suffice. The averages are extremely close to 

those of one hundred simulations. The program SIM2BLO was 

executed using only fifty simulations. The results were 



TABLE 10 

Simulated blocks = 50 to 125 East 

Number of 
simulations 
in groups 

% difference from 
average of 

100 simulations 
Lode width Lode assay 
Min Max Min Max 

100 
50 
33 
20 
10 

0 
2 
1 
0 
4 

0 
2 
3 
7 
17 

0 
0 
3 
1 
2 

0 
0 
8 
16 
22 
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found to be as close as possible to those obtained with one 

hundred simulations. 

The cost of producing fifty simulations was found to 

be 643.7 CP seconds. The total storage required was 167,040 

characters. To execute SIM2BLO with fifty simulations cost 

228.4 CP seconds. Thus, the total cost for fifty 

simulations of one block layout was 872.1 CP seconds. At 

current (October,1979) commercial rates this is about 

192 pence per simulation. It compares extrememly favourably 

with the 16 pounds Sterling per simulation achieved by the 

stope simulation method (see section B.3.6). When it is 

considered that the number of simulated values has been 

increased from eighty one to one hundred and twenty eight 

the reduction in cost is enormous. The justification of the 

block simulation approach because of its lower cost has 

been proved. 

One of the major features of the block simulation 

technique is that the same unconditional simulations can be 

used for different block layout sites. For instance, ten 

adjacent block layouts between 310 and 335 levels could be 

run through SIM2BLO. The total cost to produce fifty 

conditional simulations for each layout would be 

643.7 + 10*228.4 = 2927.7 CP seconds. Per block layout this 

is a cost of 292.8 CP seconds, or about 32 pounds Sterling. 

The expense per simulation is now only approximately 

64 pence. 
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B.4.9.Conditioning with grouped data :- 

The block simulation technique incorporated in the 

computer program SIM2BLO requires the results from one 

hundred sample points. All these measurements are used to 

condition the simulations. It was decided to test the 

effect of conditioning the simulations to groups of data. 

In other words, the conditioning data would consist of a 

number of sections of the development drives, each 

comprising several sample points. For instance, the one 

hundred samples could be split into ten groups of ten 

samples. Each group would represent a section, of 

15.3 metres in length, along a development drive. By this 

means, the influence of a single exceptionally high value 

would be reduced. 

The program SIM2BLO was adapted to carry out such an 

operation. Table 11 shows the results. The first set of 

results (one hundred groups of one sample) are those of 

situation (a) 	in table 9. The last grouping arrangement 

shown (with thirteen groups) involved the conditioning data 

being subjectively arranged. Each of the groups contained a 

different number of samples, and represented a length of a 

drive with a specific quality. This was either low width, 

or high width, or low assay, or high assay, or any 

combination of the four. 

The results shown in table 11 indicate that 

conditioning with grouped data has not worked. Even with 

the conditioning data in fifty groups of two samples the 



TABLE 11 

Simulated blocks = 50 to 125 East 

Subscript L = Lower block U = Upper block 

Number 
Average 

correlation 
Correlation 

between 
of occurences between 128 100 blocks 

Data at pay = 0.9% simulated grid Width Assay 
groups Average block values Lower/Upper point values vs L  vs L 

Number Size WidthL  AssayL  WidthU  Assay P/P P/N N/P N/N Width vs Assay WidthU  Assay 

100 1 1.71 1.37 1.77 0.90 42 37 5 16 0.06 0.70 0.45 
50 2 1.57 2.00 1.72 1.17 61 33 1 5 0.06 0.70 0.37 
25 4 1.51 1.93 1.75 1.11 52 42 0 6 0.03 0.71 0.42 
20 5 1.50 2.47 1.83 1.40 78 18 1 3 0.02 0.70 0.43 
10 10 1.42 1.60 1.80 1.35 71 12 11 6 0.01 0.71 0.59 
5 20 1.42 1.16 1.88 1.17 39 9 24 28 0.01 0.72 0.34 
4 25 1.46 1.89 1.86 1.32 66 17 5 12 -0.02 0.71 0.60 
2 50 1.86 2.28 2.00 1.40 70 16 3 11 -0.01 0.73 0.65 

13 - 1.53 1.68 1.95 1.23 62 28 4 6 0.01 0.72 0.50 
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differences from the 'correct' results are large. Once 

again the importance of the conditioning process has been 

emphasised. Any reduction in the amount of conditioning 

information causes a marked decrease in accuracy. 
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CONCLUSIONS 

The simulation method used in this study was static and 

probabilistic. It was based on the geostatistical 'turning 

bands' technique, and essentially consisted of three 

operations .- 

(a) Fifteen one dimensional 	simulations were 

formed. These consisted of point values regularly 

spaced along single axes. It was found that a 

spacing of one hundredth of the desired range of 

influence should be used. 

(b) The one dimensional simulation 	axes 	were 

regularly orientated in space, and their 

characteristics transfered into a three dimensional 

simulation. A new method was developed for deriving 

the fifteen regular axes directions. It was found 

to be quicker than the previous method (Journel, 

1974), and more accurate for simulating a line. 

(c) The 	three 	dimensional 	simulation 	was 

conditioned to any available real data. At the data 

points the simulation value was forced to equal the 

real value. The conditioning process was found to 

be the most important operation in the whole 

simulation technique. Any changes in the number, 

position, and values of the conditioning data 

points caused significant differences in the final 
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simulated values. The correlation between a 

simulation's accuracy before and after conditioning 

was found to be insignificant when the average 

conditioning kriging variance was less than one 

third of the semi-variogram sill. Under these 

conditions, an inaccurate unconditional simulation 

was not necessarily an inaccurate simulation after 

conditioning. 

The standard technique for transfering the 

characteristics of the one dimensional simulations into 

three dimensions is to use fifteen regularly orientated 

axes. This configuration's performance was compared with 

others, both before and after conditioning. A configuration 

of fifteen randomly orientated axes was too inaccurate 

under all circumstances. Using one hundred randomly 

orientated axes was prohibitively expensive. A ten regular 

axes configuration was found to be suitable where the 

conditioning process was strong, that is with an average 

kriging variance of less than one third of the 

semi-variogram sill. Under other conditions the fifteen 

regular axes configuration was the most appropriate. 

A major requirement in geostatistics is for a measure 

of the reliability of a semi-variogram value. The 

minimum/maximum envelope after fifty random removals of ten 

percent of the data gave a good impression of the 

robustness of a semi-variogram. 

Each semi-var iog ram value was calculated as 	the 
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arithmetic mean of a distribution. Trimming off the high 

values of these distributions was helpful in identification 

of the semi-variogram model parameters. 

The simulation method was applied to No.9 lode in 

South Crofty tin mine. Since the sample measurements used 

were so important to the whole procedure, great attention 

was made to their accuracy. It was found that the 

measurements' accuracy could be determined using the 

histogram of their final digits. Grouping these digits 

until a Normal distribution was achieved eliminated the 

human bias imposed during sampling. 

The logarithms of the development lode widths were 

found to follow a cubic trend surface. The standard 

geostatistical practice with non-stationary data, such as 

this, is to use the residuals of the trend. However, the 

global trend surface was inaccurate over small areas 

between the development level drives. As a result of this, 

the trend was ignored and the data was treated as being 

stationary. Conditional simulations of some stopes within 

No.9 lode justified this approach. The conditioning process 

forced the local characteristics of the global trend on the 

simulated values. 

Conditional simulations of lode assays for No.9 lode 

stopes were produced. Again the conditioning process was 

found to be dominant. It imposed the local average on the 

simulations, 	and 	correspondingly 	altered 	their 

semi-va r iog rams . 
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Both lode width and lode assay conditional stope 

simulations were resistant to change in the semi-variogram 

model parameters. 

A relationship between lode widths and actual, or 

stope, widths was found. It was used to produce conditional 

actual width simulations of stopes within the lode. Due to 

the inaccuracies of the actual width predictor, the 

simulation results were unrealistic. An actual assay 

prediction technique was also determined. It was more 

accurate than the actual width predictor. The conditional 

stope simulations of actual assays were found to be 

realistic. 

In any simulation approach it is vital to consider 

enough simulations. It is dangerous to draw conclusions 

from only a few sets of results. A block simulation 

technique was developed which produced several simulations 

at a relatively low cost. The major cost reducer was the 

fact that the unconditional simulations could be used for 

more than one block layout site. Fifty simulations of a 

single site were produced for a total cost of 32 pounds 

Sterling. The area covered by these simulations was likely 

to contain over 50 tonnes of tin (equivalent to 350,000 

pounds Sterling at October 1979 prices) . The simulations 

were of two vertically adjacent blocks between two 

development level drives. The technique calculated results 

concerning the relationship between these two blocks. The 

results were used to determine the extraction order likely 



- 126 - 

to be the most profitable. They were also utilised to 

justify the criterion for signalling the presence of a 

non-pay block. 

The simulations produced by the block simulation 

technique were conditioned to sample data from the two 

adjacent development level drives. The results of the 

technique were found to be resistant to errors in the 

estimated positions of these samples. They were also 

largely unaffected by any unbiased errors in the data 

measurements. The block average lode assays were calculated 

as the arithmetic mean of sixty four simulated values. The 

alternative definition, as the average accumulation divided 

by the average width, was tested. The results from the 

block simulation technique were similar for both 

definitions. 

Geostatistical simulation of potential stoping areas 

can be a very useful aid to mine planning. It is possible 

for its cost to be very small compared with the savings it 

may produce. 
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APPENDICES 

1 - Subroutine SIM 

2 - Subroutine COORDS1 

3 - Program SIM3D 

4 - Program CON 

5 - Determination of the co-ordinates of any point 

on ten regular axes 

6 - Subroutine COORDS2 

7 - Determination of the co-ordinates of any point 

on fifteen regular axes 

8 - Determination of sum cos alpha terms 

for Journel's fifteen regular axes 

9 - Subroutine COORDS3 

10 - Program RANDO 

11 - Program CONSIM1 

12 - Program CONSIM2 

13 - Program SIM2BLO 
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Appendix 1 : Subroutine SIM 

The listing of the subroutine SIM is shown overleaf. 

The required input to the subroutine is :- 

A - The desired range of influence. 

NS - The number of samples to be simulated 

The output of the subroutine is :- 

Y - An array containing 'NS' simulated values, 

which follow the one dimensional spherical 

semi-variogram model with a range of 'A', a sill of 

1.0, and a nugget effect of 0.0. 



00010 SUBROUTINE SIM(Y,A,NS) 
00020 DIMENSION Y(2000) , T (100) 
00030 8=0.01%KA 
00010 l.F=SGIRT (12.0%KB/ (A%K (A*A+11 .0%KB*Bi) i 
00050 DO 50 M=1,100 
00060 50 CALL RANDOM (T (M) , 1 .0) 
00070 DO 53 I=1,NS 
00080 Y(I)=0.0  
00090 DIS=-82.0 
00100 DO 52 K=1,50 
00110 DIS=DIS+B 
00120 52 Y(I)=Y(I)+DIS*(T(50+K)-T(51-K)) 
00130 Y(I)=Y(I)F 
00110 DO 54 M=1,99 
00150 54 T (M)=T (M+1) 
00160 CALL RANDOM (T (100) , 1 .0) 
00170 53 CONTINUE 
00180 RETURN 
00190 END 
00200 SUBROUTINE RANDOM(S,SD) 
00210 S=0.0 
00220 IF (SD . ED . 0.0) RETURN 
00230 DO' 10 M=1,12 
00240 10 S=S+RANF (0.0) 
00250 S= (S-6 . 0) =SD 
00260 RETURN 
00270 END 
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Appendix 2 : Subroutine COORDS1 

The listing of the subroutine COORDS1 is shown 

overleaf. The required input to the subroutine is :-

X - An array of 15 stores. The first 3 stores 

contain the X Y Z co-ordinates of the considered 

point. 

The output of the subroutine is :- 

X - The co-ordinate of the point on each of the 15 

regular axes. 



01640 SUBROUTINE COORDS1(X) 
01650 DIMENSION X(15) ,R(3,3) 
01660 DATA i iR i I , Ji , J=1 , 3i , I=1 , 3i /0.5 , -0.80901699 , 0 .30901699 , 
01670+0.80901699,0.30901699,-0.5,0.30901699,0.5,0.80901699/ 
01680 N=0 
01690 DO 1 K=1,4 
01700 DO 2 L=1,3 
01710 NL=N+L+3 
01720 X'NLU=0.0 
01730 DO 2 M=1,3 
01740 2 X (NL ) =X (NL ) +R CM, L i xX iN+Mi 
01750 N=N+3 
01760 1 CONTINUE 
01770 RETURN 
01780 END 
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Appendix 3 : Program SIM3D 

The listing of the program SIM3D is shown overleaf. 

The required input to the program is :- 

SMAX - An 	array 	of 	3 stores containing the 

dimension of the simulated block in the x y z 

directions. 

NSEED - A four digit number used to trigger the 

random number generator. 

A - The semi-variogram model range of influence. 

C - The semi-variogram model sill. 

ENUG - The semi-variogram model nugget effect. 

AVER - The distribution model average. 

VMIN - The first group endpoint in the histogram of 

the simulated values. 

VMAX - The last group endpoint in the histogram of 

the simulated values. 

NGRP - The 	number of groups in the histogram 

between 'VMIN' and 'VMAX'. 

An example of the output of the program is given overleaf. 

The output also includes :- 

V - An array of 20*20*20 stores. It contains the 

unconditional simulation values. The dimensions of 

this array can be changed if a different shape is 

to be simulated (for instance 1*1000*1). 



2 100 PROGRAM SIM3D (INPL'T=131B4OUTPLT=1318, 
C31104-TAPE6=INPLT,TAPE7=OuTPuT,TOPE4,TOPE3 

1200 
71302 THIS PROGRAM SIMULATES VALUES WHICH FOLLOW SPH(A,C,ENLG) 

201402 AND N,AVER,C . 
^3:50L 
231520 THE NUGGET EFFECT COMES FROM A RANDOM N(O,ENUG). 
021700 THE REST OF THE VARIATION (=CO=C-ENLG) COMES FROM N(AVER,C0) 
^'1800 AND FOLLOWS SPH (A,C0,0) . 
001900 ADDING THESE 2 TOGETHER PRODUCES VALUES WHICH COME FROM 
22200C N (AVER,0) AND FOLLOW SPH (A,C,ENUG) . 
222102 
022202 TAPES=OUTPUT FOR SIMULATED VALUES 
20230C TAPE4=3LTPUT FOR SEMI-YARIOGRAMS, HISTOGRAMS ETC. 
22240C TAPE5=INPUT FROM TELEX 
222502 TAPE7=OUTP'`T ON TELEX 
02250C 
3'02730 THIS PROGRAM IS TO BE RUN ON TELEX. 
202500 
30290 COMMUN XINT (3) , NEXT (3) , v (20, 20 , 20) , Y (2000) , X (15) ,SMAX (3) 
30300 READ (6, 1000)NSEED 
223:0 :000 FORMAT(I4) 
20322 XSE EO=FL OAT (2:rNSEED+L 
30332 CALL RANSET(XSEED) 
20340 DO 71 I=1,100 
00350 7: T=RANF(2.rn 
223E0 WRITE(4,2000) 
20370 WRITE (7,2000) 
20380 2000 FORMAT(-: 	MAX IN X,Y,Z DIRECTIONS 3F6.1-K0 
00390 READ (6, 1001) (SMAX ( I) , I=1,3) 
30400 	ITE (4, 1001) .SMAX ' I) , I=1,3) 
010 :001 F3RMAT (3F6.1 ) 

30420 DO 8C I=1,3 
00430 NEXT (I) =IROUND (SMAX (I) ) 
0044C 80 SMAX (I) = (SMAX(I) -1 .0) /2.0 
2045; WRITE (4,200:) 
20460 .RITE (7,2001) 
20470 2001 FORMAT(:I: RANGE ,SILL,NUGGET EFFECT + AVERAGE 4F5.2) 
22480 READ6,1002A,C+ENLG,AvER 
2:492 :002 FORMAT (4F6.2) 
22522 WRI=E(4,1O03) A,2,ENUG,AVER,NSEED 
205:2 :323 F3RMAT (4 (2X, F7. 2) //5X, 14; 
32520 00=2-FNL'G 
32532 8=A/100.0 
00540 DO 32 J=l.NEXT:i) 
2=550 DO 30 K=1,NEXT (2 
20560 DO 30 '_=1 ,NEXT (3) 
32572 30 v ;,),K,L) =0.0 
20580 DO 15 1=1,15 
20590 WRITE (7 , 2003) I 
30602 2003 FORMAT(-I I AM NOW CONSIDERING AXIS NO. -';,I2) 
33E12 DO 31 =1,3 
22'62 

 
x::,=0.0 

30633 x2;=0.0  
00640 x:3,=0.2  
30553 X (J) =X :J) +1 . 0 
33663 CALL COORDS 1 (X) 
3673  
20583 31 CONTINUE 
30590 DMAX=SMAX 	ABS (XINT ( 1)) +SMAX (2) -KABS (XINT (2)) +SMAX (3) ,KABS (XINT (3) ) 
03720 NY=IROUND (2.0 DMAX/B) +2 
207:0 N0RG=IROUND (-DMAX/B) 

2,.720 CAL_ SIMY,A,NY,B) 
0013; ..4:TE •:4,2004) I,NORG,NY,DMAX 



74i7 2724  :3RMA T;•': I,NORG,NY,DMAX  
7: 	:9 1 EXT ;1' 

_ C751  
2277C 23 19 K=1,NEXT (2) 

77780 XK=FLOA-,K-D -SMAX.2) 

L'279C DO 19 L =1 , NEXT 3 ) 

22822 XL =F'LOA- ;L -1' -SMAX ;3) 
2 817 X2=XJ':':XINT+XK':XINT:2)+XL'':XIN-,3) 
02820 NC =IROLND.XC/B) -NORG+1 
"783Q 19 V ...,K,L =V._',K,L . +YNC: 
2084E 15 23N':N.:E 
20850 SLMV=0.0 
J0860 S1\'2=0.0 
00870 STD=SGRT.CD/15.0: 
2880 SDENL'G=S„RT :ENLG; 
20890 X=P" ;NEXT ;1) - ,NEXT ;2) ::NEXT ;3) 
2792C D3 21 ✓- 1 , tiE XT 1) 
00910 DO 21 K=1,NEXT2 9 

22922 D3 21 L =1 ,NEXT ;3) 
00930 20L RANDOM S , SDENL'G) 
00940 vX=v ;,.' , K , L ;.:r.S'U+S+AVER 
00950 5,2"`"V =S'L'MV-VX 
20960 S.. 1̂%/2=SLMv2,vX-I,VX 
22970 21 v .J . K , L =vX 
02982 , :"E3,2005) ((v(J,K,L ) .L=1,NEXT(3)),K=1,NEXT(2)) ,J=1,NEXT(1)) 
20992 2005 FORMAT.10(1X,F6.3)) 
21220 L.AL _ GAM:V,A,O,NEXT,ENL'G: 
C1C1C Av  5ur'v/XN 
_ _222 vAR= :SLMV2-5L'̂ Tv i:AV) / (XN-1 . 0) 
2_030 ,JR:TE 4,2006) Av,vAR,XN 
01040 .-ITE :7 ,2006)) Av,vAR, XN 
01150 2006 FORMAT ,¢ AV,VAR,XN FOR 'i ,F8.4,1X,F8.4,3X,F5.0) 
C1060 CALL DIST :V,NF XT) 
2:0-'C ENDFILE 3 
012H2 ENDF:LE 4 
2:091 ST3:- 
0a10C END 

. , , nr 

21 : % SLBROCT:NE DIST (v,NEXT) 
1:130 DI'"ENSION v (22,20,20) ,NEXT(3) 
2._4C D:'EN5:3N  
2::52 DATA 
L::6C .:-E .7,2LOC; 
L 72 2000 	WHAT ARE VMIN, VMAX, NGRP 2F6.2, I2-' ) 
_.1.P READ6,1002-IN,VMAx,NGRP 
21:9C 1200 -2RMAT2=6.2,:2; 
1:22C OO 2C 1=1.50 
2121 ✓  20 _F'a rJT  ♦ -ū 
0:220 v:N' _ :vMAX-VMIN ) /FL3AT:NGRP) 
:230 D2 10 =1,NEXT:1) 
:242 D3 12 <,71 ,NEX-T- 2) 
2:25O 23 10 _=1,NEX'3) 
2:251 :F  :v J,K.„_ ) —E.VMIN)GOTO 11 
C: 7C :F 'y' 'J,K,_ ) .G`.VMAX:GOTO 12 
C:282 	IF :X : (v :J,K.L ) -vMIN) /VINT+0.99999) +1 
C:292 IH:5`H, =IHIST(IH)+1 
1300 GO 03 10 

113:L 11 I,-1:5T.1, =1HIST .1) +1 
:322 93 T3 10 
1:330 :2 IHIST'v0RP+2; =IHIST (NGRP+2) +1 
7:34C 1C '-2N - IN .JE 
'1:352 ''1AX 

:5 a - 1,NGRP+2 
:31 	:5 IF •.1tIST;I; .G r. MAX) MAX=IHIST (I) 



3310; 	I0+dWWOO=0l,LJ0J IT O 1 o90 
!Vf `Od1+I> \- O'r' I) n=J3IC 000E3 

(9)1XN'T=)I II 00 06570 
(9.` 1XJN' T =1 i I 00 09610 

WI1't=I TT 00 OL610 
3ilNIINOO O9 39610 

W !ZZ' t 2' OZ 01 00 06t0 
0'0=0WJd9 Ov6T0 

ail- (W) 1X3N=WI 7 026t0 
WI 1J01' t =Jd 1 OT 00 09610 

009=WI1901 (009'19'W119d1) 3I 01510 
1- (W) 1XJN=WI 1Jdl 00610 

51 01 OJ ([ ' D3' (W) iX3N) JI 06910 
(TI'x =W :c)1k14b0d TOOE 099t0 

W(T009'L`31IdM OL8t0 
0'0=S-J 09910 

£'t=W 5T 00 05910 
/+HT ` 	01d0 Ob9t0 

(9) 1X3N' (00T) dd9I ' (09' 09' O9) A NOISN3WI0 09810 
(0f1N3 `1X3N' 0' d' n) WHO 3NI1,109i1S 09t0 

301910 
0NJ 00810 

NLil13d 06LTO 
3ilNI1N00 T 09L [ 0 

9+N=N OLLIO 
(W+N) Xa; (1' W) 2i+ (lN! X= (1N) X 9 09L10 

9'T=W 9 00 09L10 
0'0=(1N)X OvLtO 
9+1+N=1N 39LIC 

9'1=7 9 00 0?L 10 
b' T=)+ T 00 OTL10 

0=N 0OLTC 
/66910609'0'9'0'66910609'0'S'0-'66910609'0'66910608'0t06910 

'66910509'0'569t0609'0-'S'0/(C'T=I'(9'T=-'( 'I)~J ) 010C 089:0 
(9'9)d' (9t)X NOISN341a OL910 
(X) TS0d000 3NI1.1Od81S 09910 

009910 
0N3 Ob9t0 

Nil13d 09910 
3lNI1N0O 

 
£9 09910 

(01' (001) 1) W00NOd 71d0 01913 
([+W) 1= (W) 1 b9 00910 
66'T=W b5 00 06910 
3Ma: (I) A= (I`)l 09910 

(0I-T5)1-()4+05)1)xSIO+(I))l= (1),l 95 OL510 
9+S10=SI0 09910 

0511.=)+ 99 00 099t0 
0'9/8-=SIO 0.9t0 

0' 0= (I `., 02910 
SN'T=I 29 00 09510 

(01' (W) 1) W00NOd -1103 09 019T0 
00t't=W OS 00 00910 

(((9a:9a:0'IT+da_d)a:d)/9,:P'9[`10s=.3M 06bT0 
(00I)_,'(0009)A NOI SN3WI0 09T0 
(8' SN ` d' A) WI S 3NI1lOb9ilS OLb 10 

1109b10 
0N3 09t0 

Ndli39i 017b1O 
1lNIINO3 bT 09b10 

(tdOET't7I'E'9A'x- a;)11:3Wd00 9009 0?b10 
(HI' T=f '1SdI) ' (1)ISIHI'b3ddll/\ (9009`b` 3lldM 0tvtO 

t+XOW/O1ta_ (I) 1SIH1=HI 00bt0 
1N1\; IT-I`1HO1J+NIWt\=d3ddflA 05212 

9+ddON`T=I vt 00 09913 



02020 COUN=FLOAT (L IM- NEXT :2) - NEXT (3) ) 
02030 GO TO 25 
02040 21 07 'TINUE 
02050 DC i I=1,LIM 
02060 DO 31 J=1 ,NEXT :3' 
02070 DO 31 K=1,NEX7:i) 

02080 DI'f"=V(K,I,J)-V(K,I+LAG •.) 
02090 3: .AMMA=GAMMA+D IFF -i;D .F - 
02100 CCL' =FLOAT (L IMThEXT (3i 1EXT 
02110 GO 'O 25 
02120 22 :ONTINUE 
02130 DC 41 I=1,LIM 
02140 DO 41 J=1,NEXT:1 ) 
02150 DO 41 K=1,NEXT2) 

02160 DIF,  =V (J, K, I) -v J, K, I+LAG) 

02170 41 GAMMA=GAMMA+DIFFDIFF 
02180 COUN=FLOAT (L IMNEXT (1 ) -;,NEXT (2) . 
02190 25 CONTINUE 
02200 GAMMA=GPNMA-i`0.5/COON 
02210 SOFAR=FLOAT (LAG) 
02220 HOVERA=SOFAR/A 
02230 GMODEL =1 .5%'HOvERA- ( 0 .5 HOVERA HOvERA HOVERA) 
02243 GMODEL=GMODEL-ENUG) +ENUG 
02250 IF(HOVERA.GE.1.0)GMODEL=0 
02260 RMS=RMS+ ( (GAMMA-GMODEL) /GMODEL ) -';- 2 
02270 IMODEL=IFIX (GMODEL -1;50. 0/C) +1 
02280 IGAMMA=IFIX (GAMMPx5O .0/C', +1 
02290 DO 12 I=1,100 
02300 12 IGRA (I) =IBLNK 
02310 IF(IGAMMA.GT.100) IGRR(1O0;=IPLUS 
02320 IF(IGAMMR.LE,lOO) IGRA(IGAMMA)=IAST 
02330 IGRfl(IMODEL)=IPLUS 
02340 WRITE (4, 2000) SOFAR, GAMMA, GMODEL , (IGRA (I) , I=1 , 100) 
02350 2000 FORMAT(1X,F4.0, 1X,F7.2, 1X,F7.2,x+-i, 100A1) 
02360 10 CONTINUE 
0237C RMS=100.0 SQRT(RMS/FLOAT(LAGLIM)) 
02380 WRITE(4,2003)RMS 
02390 1-JR ITE (7,2003) RMS 
02400 2003 FORMAT (,K 	RMS = 1:, F7 .3, ;K PERCENT - ) 
02410 15 CONTINUE 
02420 RETURN 
02430 END 
024400 
02460 SUBROUTINE RANDOM(S,SD) 
02460 5=0.0 
02470 IF (SD. EQ. 0. 0) RETURN 
02480 DO 10 M=1,12 
02490 10 S=S+RANF (0.0) 
02500 5= (5-6.0) -i 5D 
02510 RETURN 
02520 END 
025300 
02540 FUNCTION IROUND(X) 
02550 Y=RBS (X) 
02560 IROUND=IFIX(Y+0.4999999) 
02570 IF(X.LT.0.0)IROUND=-IROUND 
02580 RETURN 
02590 END 



MAX IN X,Y,Z DIRECTIONS 3F6.1 
20.0 	20.0 	20.0 
RANGE ,SILL,NUGGET EFFECT + AVERAGE 

10.00 	1.00 	0 	10.07 

1234 

4F6.2 

I,NORG,NY,DMAX 1 	-95 192 9.5 
I,NORG,NY,DMAX 2 	-95 192 9.5 
I,NORG,NY,DMAX 3 	-95 192 9.5 
I,NORG,NY,DMAX 4 -154 309 15.4 
I,NORG,NY,DMAX 5 -154 309 15.4 
I,NORG,NY,DMAX 6 -154 309 15.4 
I,NORG,NY,DMAX 7 -154 309 15.4 
I,NORG,NY,DMAX 8 -154 309 15.4 
I,NORG,NY,DMAX 9 -154 309 15.4 
I,NORG,NY,DMAX 10 -154 309 15.4 
I,NORG,NY,DMAX 11 -154 309 15.4 
I,NORG,NY,DMAX 12 -154 309 15.4 
I,NORG,NY,DMAX 13 -154 309 15.4 
I,NORG,NY,DMAX 14 -154 309 15.4 
I,NORG,NY,DMAX 15 -154 309 15.4 
1. .14 .15+ + 
2. .29 .30+ + 
3. .43 .44+ 
4. .59 .57+ +:K 
5. .75 .69+ + 
6. .87 .79+ 
7. .99 .88+ 
8. 1.08 .94+ + :K 
9. 1.12 .99+ + -K 

10. 1.14 1.00+ 
11. 1.18 1.00+ 
12. 1.20 1.00+ + ;K 

13. 1.18 1.00+ + -K 
14. 1.20 1.00+ + :K 

15. 1.23 1.00+ + i 
16. 1.23 1.00+ + :K 

17. 1.19 1.00+ + ;K 

18. 1.09 1.00+ + * 
19. .98 1.00+ :K 	+ 

RMS = 	14.353 PERCENT 
1. .15 .15+ + 
2. .32 .30+ + 
3. .51 .44+ + %K 

.57+ 4. .69 + %K 
5. .88 .69+ 
6. 1.01 .79+ + x 
7. 1.12 .88+ 
8. 1.19 .94+ 
9. 1.21 .99+ 
10. 1.19 1.00+ 
11. 1.14 1.00+ 
12. 1.00 1.00+ 
13. .90 1.00+ K + 
14. .83 1.00+ 
15. .78 1.00+ K + 
16. .79 1.00+ %K + 
17. .83 1.00+ x + 
18. .87 1.00+ K + 
19. .94 1.00+ :K 
RMS = 	18.778 PERCENT 
1. .14 .15+ + 
2. .31 .30+ + 
3. .48 .44+ + %K 



x 

4. .64 .57+ + * 
5. .78 .59+ + X 
6. .90 .79+ + x 
7. .97 .88+ + x 
8. 1.01 .94+ + 	x 
9. 1.07 .99+ + x 

10. 1.11 1.00+ + x 
11. 1.17 1.00+ 
12. 1.25 1.00+ x 
13. 1.33 1.00+ 
14. 1.40 1.00+ 
15. 1.51 1.00+ 
16. 1.64 1.00+ x 
17. 1.75 1.00+ 
18. 1.73 1.00+ X 

19. 1.72 1.00+ X 
R116 = 	37.966 PERCENT 

AV.VRR.XN 	FOR V 9.9779 1.0293 8000. 
- 	8.00 
- 	8.10 
- 	8.20 
- 	8.30 
- 	8.40 

193 xxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx 
55+.,«.«„= 

XXxxxx 68 ......... .. .. 	.. . 8 
80 

- 	8.50 126 	  X XXX 	X 

- 	8.60 139 XX 
,«..,..s 	..xxx - 	8.70 131 	  

- 	8.80 145 	  azzaznXXX 	X 
axxxXXXXXZZXXXzaaaaX - 	8.90 187 

X 	X - 	9.00 177 	  XX 
XxXXXxxXXXXxxxzxzX - 	9.10 181 

XX XXXXXXXXaXxXaaaXX - 	9.20 
X X 

217 
- 	9.30 260 	  xxxxxXX 	 xxxXXXXX 

	

XX 	 xXxx - 	9.40 272 XXXXXXX 
...w.XXXXX - 	9.50 290 ....................... XXxxXXXXxxX*UXxXXx 	X 

- 	9.60 308 	  XXXXXXxxXZx...aX.s.xxXXXX 
xXxXxXXxXXXXXxxxxx - 	9.70 289 	  
x.... X 	 XXX - 	9.80 	  

• XXXX - 	9.90 266 	  
. azX . .... . .... - 10.00 295 	  

- 10.10 
- 10.20 
- 10.30 

319 	  
296 XXX 

xxxxxxxXxxxxxxxxxxxxxxzxx 272 
XaaaaXX lxaXYX 	aaaz - 10.40 287 

- 10.50 
- 10.60 

277 	  
286 	  X 	XX 

- 10.70 
- 10.80 

260 	  
xaaaXXaxxXXUXXXXXU 221 	  

• ..... 	..... .. 	. - 10.90 237 
- 11.00 
- 11.10 

205 	  
169 	  

- 11.20 182 
- 11.30 153 	  
- 11.40 129 
- 11.50 11 	  
- 11.60 93 	  
- 11.70 86 
- 11.80 68 
- 11.90 63 
- 12.00 48 
- 12.10 182 	  
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Appendix 4 : Program CON 

The listing of the program CON is shown overleaf. The 

required input to the program is :- 

NSEED - A four digit number used to trigger the 

random number generator. 

R - The semi-variogram model range of influence. 

C - The semi-variogram model sill. 

E - The semi-variogram model nugget effect. 

AVER - The distribution model average. 

GB - An array of 1000 stores. It contains all the 

data values from which the 'NDATA' conditioning 

data points are taken. 

G - An array of 1000 stores. It contains the 

unconditional simulation values. 

The output of the program includes :- 

The histogram of each simulation before and after 

conditioning. 

The semi-variogram of each conditioned simulation. 

The average, variance, sill, and MS term of each 

simulation before and after conditioning. 



00010 PROGRAM CON(OUTPUT,TAPE7=OUTPUT,TAPE2,TAPE4,TAPE62) 
00020C 
00030C 
00040C 	THIS PROGRAM CONDITIONS SIMULATIONS TO 100 DATA POINTS WITHIN 
00050C A LINE OF 1000 VALUES. THE DATA POINTS ARE LOCATED AS DEFINED 
00060C IN THE ARRAY OLOCO AND HAVE VALUES AS READ FROM TAPE2. 
00070C 	THE SIMULATIONS CONDITIONED TO THESE DATA POINTS HAVE BEEN 
00080C PREVIOUSLY PRODUCED AND SAVED ON FILES. 
00090C 	IN ITS PRESENT FORM THE PROGRAM USES 5 SIMULATIONS 
00100C 	THE OUTPUT IS ON THE LINE PRINTER AND THE KINGMATIC. 
0011OC 
00120C TAPE2=INPUT TAPE FOR ACTUAL AND SIMULATED DATA 
00130C TAPE4=TEMPORARY STORE TAPE FOR KRIGING WEIGHTS 
00140C TAPE7=OUTPUT TAPE FOR HISTOGRAMS AND RESULTS ETC. 
00150C TAPE62=N0TIFICAT:ON OF USE OF KINGMATIC DRAFTING MACHINE AND 
00160C ITS SUBROUTINES OF START,RXIS,PLOT,NUMBER,LINE,ENPLOT. 
00170C 
00180 COMMON /DICK/tOC(100) 
00190 COMMON /HARRY/GSEMI:50) 
00200 GOMMON/FRED/GACT(1000) 
00210 DIMENSION GB (1000) , G (1000) , WGT (6) 
00220C 
00230 NDATA=100 
00240 DO 121 I=1,NDATA 
00250 121 LOC (I) =I*10 
00260 LOCLOW=LOC(3) 
00270 LOCHIGH=LOC(NDATA-2) 
00280 CALL GET(5HTAPE2,5HR2123,7HUMCKA07) 
00290 READ(2,1009)NSEED,R,C,E,AVER 
00300 1009 FORMAT(3X,I4,44X,4F6.2) 
00310 CALL WEIGHT(R,C,E,NDATA) 
00320 CALL START (2) 	_ 
00330 CALL AXIS(0.0,0.0,5HGAMMA,5,10.0,90.0,0.0'3.0) 
00310 CALL AXIS(0.0,0.0,3HLAG,-3, 15.0,0.0,0.0,4.0) 
00350 CALL PLOT(1.0,12.0,3) 
00360 CALL PLOT(2.0,12.0,2) 
00370 CALL PLOT(1.0,12.0,2) 
00380C 
00390 READ (2 , 1000) (GB (I) , I=1 ,NDATA) 
00400 1000 FORMAT (10 (2X, F6.2) ) 
00410C 
00420 WR ITE(7,2003)R,C,E,AVER,NDATA 
00430 2003 FORMAT(1H1//x 	R,C,E,AVER = t,4F6.2,x 	NDATA = *,I3) 
00440 WRITE (7,2001) (IOC (I) , 1=1 ,NDATA) 
00450 2001 FORMAT(/20(1X,I3)) 
00460 WRITE (7,2002) NSEED 
00470 2002 FORMAT C5 (/) ,49X, 9HACTUAL (R, I4, 1H) /49X, 14 (1H-) ) 
00480 LH=NDATA-2 
00490 CALL DIST(GB,GB,3,LH) 
00500 DO 16 I=1,1000 
00510 16 GACT (I) =-9.99 
00520 DO 17 I=1,NDATA 
00530 17 GACT (LOC (I)) =GB (I) 
00540 LL=LOC (3) 
00550 LH=LOC(NDATA-2) 
00560 CALL SEMIB(LL,LH) 
00570C 
00580 LS0=4 
0059C DO 99 KLM=LOCLOW+1,LOCHIGH-1 
00600 IF (KLM. E0 . LOC CLSO)) GO TO 9B 
00610 READ (4, 1003) (WGT (I) , I=1 , 6) 
00620 1003 FORMAT(2X,6F6.4) 
00630 T=0.0 
00640 DO 97 J=1,6 



00650 IG=LOC (LSO-4+J) 
00660 97 T=T+GACT (IG) xWGT (J) 
00670 GACT (KLND =T 
00680 GO TO 99 
00690 98 LSO=LSO+1 
00700 99 CONTINUE 
00710C 
00720 2004 FORMAT(1H1) 
00730C 
00740 DO 13 LM=1,5 
00750 REWIND 4 
00760 IF(LM.EQ.1) CALL GET(5HTRPE2+5HR2406+7HUMCKAO7) 
00770 IF (LM. EQ . 2) CALL GET (5HTAPE2, 5HR2430 , 7HUMCKA07) 
00780 IF(LM.E0.3) CALL GET(5HTAPE2,5HR9949,7HUMCKA07) 
00790 IF(LM.EQ.4) CALL GET(5HTRPE2,5HR6946+7HUNCKR07) 
00800 IF(LM.EQ.5) CALL GET(5HTAPE2,5HR7281,7HUMIKA07) 
00810C 
00820 READ (2, 1001) NSEED 
00830 1001 FORMAT(3X,I4) 
00840 READ (2,1002) (G (I) , 1=1,1000) 
00850 1002 FORMRT(10(2X,F6.2)) 
00860 DO 14 I=1,1000 
00870 14 GB(I)=G(I) 
00880 LS0=4 
00890 DO .10 KLM=LOCLOW+1,LOCHIGH-1 
00900 IF (KLM. EQ . LOC (LSO)) GO TO 100 
00910 V=0.0 
00920 READ(41003) (WGT (I) , I=1 , 6) 
00930 DO 11 J=1,6 
00940 IG=LOC (LSO-4+J) 
00950 11 v=v+G (IG) C43T (J) 
00960 G (KLM) =G (KLM) +GACT (KLM) -v 
00970 GO TO 10 
00980 100 LSO=LSO+1 
00990 10 CONTINUE 
01000 DO 12 I=3,VDATA-2 
01010 12 G (LOC (I)) =GACT (LOC (I) ) 
01020 WRITE (7, 2000) NSEED 
01030 2000 FORMAT (7 (/) , 50X, KNSEED = *, 14/50X, 12 (1H-) ///) 
01040 CALL DIST(GB,G,LOCLOW,LOCHIGH) 
01050 CALL SEMI(GB,G,LOCLOW,LOCHIGH,XS) 
01060 XLM=FLOAT (LM) 
01070 XPAGE=15.14 
01080 CALL NUMBER(XPAGE,XS,0.07,XL M,0.0,-1) 
01090 13 CONTINUE 
01100C 
01110 WRITE (7 , 2004) 
01120 CALL ENPLOT 
01130C 
01140 STOP 
01150 END 
01160C 
01170C + t 1 t 1 	+ 1 1+ 1 1-+-+-+ 
01180 SUBROUTINE SEMIB(LOCLOW,LOCHIGH) 
01190 COMMON/HARRY/GSEMI(60) 
01200 COMMON/FRED/GACT(1000) 
01210 DIMENSION S (63) , H (63) 
01220 XRMS=0.0 
01230 RMS=0.0 
01240 DO 10 LAG=1,60 
01250 LIMLOCHIGH-LAG 
01260 GAM=0.0 
01270 X=0.0 
01280 DO 11 I=LOCLOW,LIM 



01290 IF(GACT(I).EQ.-9.99.0R.GACT(I+LAG).EQ.-9.99) GO TO 11 
01300 X=X+1.0 
01310 DIFF=GALT (I) -GACT (I+LAG) 
01320 GAM=GAM+DIFF*DIFF 
01330 11 CONTINUE 
01340 S(LAG)=-9.99  
01350 IF(X.EQ.0.0) GOTO 10 
01360 S(LAG) =0.5XGAM/X 
01370 HOVERA=FLOAT(LAG)/50.0 
01380 XMODEL=20.0* (1.5*HOVERA-0.5xHOVERA%KHOVERA%KHOVERA) 
01390 DIFF =S (LAG) -XMODEL 
01400 RMS=RMS+DIFFKDIFF 
01410 XRMS=XRMS+1.0 
01420 10 CONTINUE 
01430 DO 13 I=1,60 
01440 13 GSEMI (I) =S (I) 
01450 RMS=5QRT(RMS/XRMS) 
01460 WRITE(7,2000)RMS,RMS 
01470 2000 FORMAT(44X,1H0,5X,14HRMS WPT ACTUAL,9X,1H0/ 
01480+40X,F5.2,5X,14HRMS WRT MODEL ,5X,F5.2) 
01490 SILL=0.0 
01500 X=0.0 
01510 DO 12 I=50,60 
01520 IF (S (I) .EO. -9.99) GO TO 12 
01530 SILL=SILL+S (I) 
01540 X=X+1.0 
01550 12 CONTINUE 
01560 SILL=SILL/X 
01570 WRITE (7,2001) SILL,SILL 
01580 2001 FORMAT(40X,F5.2,5X,14HEST. OF SILL ,5X,F5.2///) 
01590 IX=0 
01600 DO 20 I=1,60 
01610 IF (S (I) . EQ .-9.99) GO TO 20 
01620 IX=IX+1 
01630 S(IX)=S(I) 
01640 H(IX)=FLOAT(I)  
01650 20 CONTINUE 
01660 DO 21 I=1,IX 
01670 S (IX+2-I) =S (IX+1-I) 
01680 21 H (IX+2-I) =H (IX+1-I) 
01690 S(1)=H(1)=0.0 
01700 IX=IX+1 
01710 S (IX+1) =0.0 
01720 S (IX+2) =3.0 
01730 H (IX+1) =0.0 
01740 H (IX+2) =4.0 
01750 CALL LINE(H1S,IX,1,-1,1) 
01760 YSCALE=1.0/3.0 
01770 CALL ARKIST(H,S,1,IX,10,0.25,YSCALE+0.0,0.0,2,1) 
01780 S (IX+1) =-10.0 
01790 CALL LZNE(H:S,IX,1,1,1) 
01800C 
01810 RETURN 
01820 END 
01830C 
01840C 	  
01850 SUBROUTINE SEMI(U,V+LOCLOW,LOCHIGH,XS) 
01860 COMMON /HARRY/GSEMI(60) 
01870 DIMENSION U(1000) , V (1000) , S (62) , H (62) , SB (60) 
01880 DO 10 LAG=1,60 
01890 LIM=LOCHIGH-LAG 
01900 GAMMB=0.0 
01910 GAMM=0.0 
01920 DO 11 I=LOCLOW,LIM 



01930 DIFF=U (I) -U (I+LAG) 
01940 GAMMB=GAMhB+DIFF*DIFF 
01950 DIFF=V (I) -V (I+LRG) 
01960 GAMM=GAMM+DIFF*DIFF 
01970 11 CONTINUE 
01980 XN=FLOAT (L IM-LOCLOW+1) 
01990 SB (LAG) =0.5*GAMMB/XN 
02000 S(LAG)=0.5*GAMM/XN 
02010 H(LAG)=LAG  
02020 10 CONTINUE 
02030C 
02040 S(61)=0.0  
02050 S(62)=3.0  
02060 H(61)=0.0  
02070 H(62)=4.0  
02080 CALL LINE(H,S,60,1,0,3) 
02090 XS=S (60) /3.0 
02100 RMSAB=0.0 
02110 RMSAA=0.0 
02120 RMSMB=0.0 
02130 RMSAA=0.0 
02140 XP=0.0 
02150 DO 13 LAG=1,60 
02160 IF (GSEMI (LAG) . EQ . -9.99) GO TO 13 
02170 XP=J(P+1.0 
02180 DIFF=SB (LAG) -GSEMI (LAG) 
02190 RMSAB=RMSAB+DIFF*DIFF 
02200 D IFF=S (LAG) -GSEMI (LAG) 
02210 RMSAA=RMSAA+DIFF*DIFF 
02220 HOVERA=FLOAT (LAG) /50.0 
02230 XMODEL=20.0*(1.5*HOVERA-0.5*HOVERA*HOVERA*HOVERA) 
02240 DIFF=SB (LAG) -XMODEL 
02250 RMSAB=RMSMB+DIFFOIFF 
02260 DIFF=S (LAG) -XMODEL 
02270 RMSAA=RMSMA+DIFF*DIFF 
02280 13 CONTINUE 
02290 RMSAB=RMSAB/XP 
02300 RMSAA=RMSAA/XP 
02310 RMSAB=RMSMB/XP 
02320 RMSMA=RMSMA/XP 
02330 IRITE (7,2001) RMSAB,RMSAA,RMSMB,RMSMA 
02340 2001 FORMAT(39X,F6.2,5X,14HRMS WRT ACTUAL,4X,F6.2/ 
02350+39X,F6.2,5X,14HRM5 WRT MODEL ,4X,F6.2) 
02360 SILLB=0.0 
02370 SILLA=0.0 
02380 DO 14 LAG=50,60 
02390 SILLB=SILLB+SB (LAG) /11 .0 
02400 14 SILLA=SILLA+S (LAG) /11 .0 
02410 WRITE(7,2002)SILLB,SILLA 
02420 2002 FORMAT(40X,F5.2,5X,14HEST. OF SILL ,5X,F5.2///) 
02430C 
02440 RETURN 
02450 END 
02460C 
02470C 	  
02480 SUJBROUTINE DIST (U, V, LL , LH) 
02490 DIMENSION U(1000) , V (1000) ,NF (22) ,NFB (22) , IPLOT (50) 
02500 DATA IBLNK,IAST/1H ,1H*/ 
02510C 
02520 LOCLOW=LL 
02530 LOCHIGH=LH 
02540 DO 30 I=1,22 
02550 NFB (I) =0 
02560 30 NF(I)=0 



02570 SUMU=0.0 
02580 SUMU2=0.0 
02590 DO 20 I=LOCLOW,LOCHIGH 
02600 UX=U (I) 
02610 SUNU =SUMU+UX 
02620 SUNU2=SUMU2+UX%a,UX 
02630 IF (UX. LE . 90.0) GO TO 21 
02640 IF(UX.GT.110.0) GO TO 22 
02650 IF=IFIX(UX-90.0+0.99999)+1 
02660 NFB (IF) =NFB (IF) +1 
02670 GO TO 20 
02680 21 NFB (1) =NFB (1) +1 
02690 GO TO 20 
02700 22 NFB (22) =NFB (22) +1 
02710 20 CONTINUE 
02720 SUMv=0.0 
02730 SUMV2=0.0 
02740C 
02750 DO 10 I=LOCLOW,LOCHIGH 
02760 VX= V (I ) 
02770 SUMV=SUMV+VX 
02780 SUMV2=SUMV2+VXXVX 
02790 IF (VX. LE. 90.0) GO TO 11 
02800 IF(VX.GT.110.0) GO TO 12 
02810 IF=IFIX(VX-90.0+0.99999)+1 
02820 NF(IF)=NF(IF)+1 
02830 GO TO 10 
02840 11 NF(1)=NF(1)+1 
02850 GO TO 10 
02860 12 NF(22)=NF(22)+1 
02870 10 CONTINUE 
02880C 
02890 DO 13 I=1,22 
02900 GRAD=89.0+FLOAT(I) 
02910 NA=49—NFB (I) /4 
02920 DO 15 J=1,NA 
02930 15 IPLOT (J) =IBLNK 
02910 DO 16 J=NA+1,50 
02950 16 IPLOT (J) =IAST 
02960 NV=NF (I) /4+1 
02970 WRITE(7,2000) (IPLOT(J) ,J=1,50) ,NFB(I) ,GRAD,NF(I) , (IAST,J=1,NV) 
02980 2000 FORMAT(1X,50A1,I3,1X,F5.1,1X,I3,50A1) 
02990 13 CONTINUE 
03000 XN=FLOAT(LOCHIGH—LOCLOW+1) 
03010 AV=SUMV/XN 
03020 VAR=(SUMV2—AVXSUMV)/(XN-1.C) 
03030 AVB=SUMIJ/XN 
03040 VARB= (SUMU2—AVB*SUMU) / (XN-1 .0) 
03050 WRITE(7,2001)AVB,LOCLOW,LOCHIGH,AV,VARB,VAR 
03060 2001 FORMAT(/39X,F6.2,5X,XAVERAGE*,I3,*,*,I3,4X,F6.2/ 
03070+40X,F5.2,5X,14HVARIANCE 	,5X,F5.2) 
03080C 
03090 RETURN 
03100 END 
03110C 
03120C 	  
03130 SUBROUTINE WEIGHT(R,C,E,NDATA) 
03140 COMMON /DICK/LOC(100) 
03150 COMMON /BILL/LOCN (6) ,B (5) 
03160 DIMENSION A(5,5) , T (7, 7) , S (7) 
03170 LS0=4 
03180C 
03190 DO 99 KLM=LOC (3) +1 , LOC (NDATA-2) —1 
03200 IF (KLM. EQ . LOC (LSO)) GO TO 100 



03210 IF (KLM.GT. (LOC (LSO-1) +1)) GO TO 111 
03220C 
03230 DO 103 I=1+3 
03240 DO 103 J=I+1,4 
03250 DIFF=FLOAT (LOC (LSO-3+J) —LOC (LSO-3+I) ) 
03260 A (I,J) =GSPH (DIFF,R+C+E) 
03270 103 A(J,I)=A(I,J) 
03280 DO 104 I=1,5 
03290 A(5,I)=1.0 
03300 A (I s 5) =1 .0 
03310 104 A(I,I)=0.0 
03320C 
03330 111 CONTINUE 
03340 DO 112 I=1,5 
03350 DO 112 J=1,5 
03360 112 T(I,J)=A(I,J) 
03370 DO 105 I=1,4 
03380 DIFF=ABS (FLOAT (LOC (LSO-3+I) —KLM) ) 
03390 105 B (I) =GSPH (DIFF, R, C,E) 
03400 B(5)=1.0  
03410 DO 109 I=1,5 
03420 109 S(I)=B(I)  
03430 CALL KARON(T,S,5+KS) 
03440 DO 115 I=1+5 
03450 1155 B(I)=S(I)  
03460 DO 116 I=1,6 
03470 116 LOCN (I) =LOC (L5O-4+I) 
03480 IF (B (1) .GE.-0.003.AND.B (1) .LE.0.6. 
03490+AND . B (4) . GE . —0.003 . AND . B (4) . L E . 0.6) GO TO 101 
03500C 
03510 CALL ACCUR(R,C,E,KLM) 
03520 GO TO 99 
03530C 
03540 101 WRITE (4+2001) (B(I)+I=1,4) 
03550 2001 FORMAT(2X,6H 	0,4F6.4,6H 	0) 
03560 GO TO 99 
03570C 
03580 100 LSO=LS0+1 
03590 99 CONTINUE 
03600C 
03610 REWIND 4 
03620 RETURN 
03630 END 
03640C 
03650C 	 
03660 FUNCTION GSPH(H,A,C,E) 
03670 GSPH=C+E 
03680 IF (H . GE . A) RETURN 
03690 X=H/A 
03700 GSPH=CX (1 . SZX-0.5*X*X*X) +E 
03710 RETURN 
03720 END 
03730C 
03740C 	  
03750 SUBROUTINE ACCUR(R,C,E+KLM) 
03760 COMMON /BILL/L3CN (6) , B (5) 
03770 DIMENSION T(77) + D :7) , F (6) 
03780 k TF=B (1) 
03790 1GTL=B (4) 
03800 DO 104 J=1,4 
03810 104 F (J+1) =B (J) 
03820 F(1)=0.0  
03830 F(6)=0.0  
03840 NR=24 



03850C 
03860 DO 102 M=1,2 
03870 MVR=NR 
03880 IF (WGTF.LT.-0.003) NR=NR+9 
03890 IF (WGTL . L T . -0.003) NR=NR-1 
03900 IF(WGTF.GT.0.6)NR=NR-9 
03910 IF (WGTL . GT. 0 .6) NR=NR+1 
03920 IF (MNR . EQ . NR) GO TO 101 
03930 NS=NR- (NR/ 10) %K10 
03940 NT=NR/10 
03950 IF C (NT+NS) . GT. 7 .OR . (NT+NS) . LT. 4) GO TO 101 
03960C 
03970 DO 110 I=1,NS-1 
03980 DO 110 J=I+1,NS 
03990 I1=NT+I-1 
04000 J1=NT+J-1 
04010 DIFF=FLOAT (LOCN (J1) -LOCN (I1) ) 
04020 T(I,J) =GSPH (DIFF,R,C,E) 
04030 110 T(J,I)=T(I,J) 
04040 DO 111 I=1,NS+1 
04050 T(I,NS+1)=1.0 
04060 T (NS+1 , I) =1. 0 
04070 111 T(1110.0 
04080 DO 112 I=1,NS 
04090 0IFF=ABS (FLOAT CLOCN (NT-1+I) -KLM) ) 
04100 112 D(I)=GSPH(DIFF,R,C,E) 
04110 D 'NS+1) =1 .0 
04120 DO 113 I=1,6 
04130 113 F(I)=D(I) 
04140 CALL KARON(T,D,NS+1,KS) 
04150 DO 116 I=1,6 
04160 116 FCI) =0.0 
04170 DO 117 I=1,NS 
04180 117 F (NT+I-1) =D CI) 
04190 WGTF=D C 1) 
04200 WGTL=D (NS) 
04210 102 CONTINUE 
04220C 
04230 101 WRITE (4,2001) (F (I) , I=1,6) 
04240 2001 FORM TC2X,6F6.4) 
04250 RETURN 
04260 END 
04270C 
04280C 	  
04290 SUBROUTINE KARON(A,D,NPAR,KS) 
04300 DIMENSION A (7, 7) , D C7) 
04310 KS=O 
04320 TOL=0.000001 
04330 N=NPAR 
04340 DO 65 J=1,N 
04350 JY=J+1 
04360 BIGA=O. 
04370 DO 30 I=J,N 
04380 IF CASS (B IGA) -ABS CA C I , J))) 35 , 30 , 30 
04390 35 BIGA=A(I,J) 
04400 IMAX=I 
04410 30 CONTINUE 
04420 IF (Af 5 CB IGA) -TOL) 10,10,40 
04430 40 DO 50 K=J,N 
04440 SAVE=A (IMAX, K) /B IGA 
04450 A (It X, K) =A (J , K) 
04460 A (J,K) =SAVE 
04470 50 CONTINUE 
04480 SAVE=D (;MAX) /BIGA 



04490 D (IMAX) =D (J) 
04500 D (J) =SAVE 
04510 IF (J-H) 55,70,55 
04520 55 DO 65 IX=JY,N 
04530 DO 60 JX=JY,N 
04540 60 A(IX,JX)=A(IX,JX)-A(IX,J);KA(J,JX) 
04550 65 D (IX) =D (IX) -D (J) %=A (IX, J) 
04560 70 NY=N-1 
04570 DO 80 J=1,NY 
04580 IB=N-J 
04590 .DO eo K=1 , J 
04600 IC=N-K+1 
04610 80 D (IB) =D (IB) -A (IB, IC) %=D (IC) 
04620 RETURN 
04630 10 K5=1 
04640 WRITE (7, 1000) NPAR 
04650 1000 FORMAT (5X, -=THERE IS NO SOLUTION WITH NPAR =x, 131* SO THERE-=) 
04660 RETURN 
04670 END 
04680C 
04690C 	  
04700 FUNCTION IROUND(X) 
04710 Y=ABS 00 
04720 IROUND=IFIX(Y+0.5) 
04730 IF (X. LT. 0.0) IROUND=-IROUND 
04710 RETURN 
04750 END 
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Appendix 5 : Determination of the co-ordinates of any point 

on ten regular axes 

Figure Al shows two projections of a dodecahedron. The 

ten pairs of opposite vertices are numbered. The standard 

orthogonal x, y, z directions are as shown. 

Given the co-ordinates on the x, y, z axes (X, Y, Z), 

the task was to find the co-ordinate on each of the ten 

axes (C1, C2, C3,....C10)."The method adopted was 

Input of X Y Z 

Do for I=1 to 5 

Rotate X Y Z around y direction 

by angle(A+B) to give Ci 

Rotate X Y Z around z direction 

by 72°  to give new X Y Z 

Do for I=6 to 10 

Rotate X Y Z around y direction 

by angle(A) to give Ci 

Rotate X Y Z around z direction 

by 7'2°  to give new X Y Z 

When rotating the x, y, z directions around one of 

them (say the y direction as in figure A2) the new 

co-ordinates are derived from :- 



FIGURE A 1 : 	DODECAHEDRON WITH POSITION OF 10  

REGULAR AXES  

10 



FIGURE A2: TRANFORMATION OF  

CO-ORDINATES  

Positive 
rotation 

zz 	 by angle D 

xx 
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XX=Xcos(D)-Zsin(D) 

YY=Y 

ZZ=Zsin(D)+Zcos(D) 

Now from standard geometry :- 

Inscribed circle radius = r = 1.114E 

Circumscribed circle radius = R = 1.401E 

where E = length of an edge 

therefore angle B = 41.8°  

angle A = 10.8°  

So the technique becomes :- 

Input of X Y Z 

Do for I=1 to 5 

XX=X YY=Y 

Ci=XXcos(-52.6)-Zsin(-52.6) 

X=XXcos (72)-YYsin (72) 

Y=XXsin(72)+YYcos(72) 

N.B. X and Y having been rotated by 72°  5 times 

are equal to the original X and Y. 

Do for I=6 to 10 

XX=X YY=Y 

Ci=XXcos(-10.8)-Zsin(-10.8) 

X=XXco s (7 2) -YYs i n (7 2) 

Y=XXsin(72)+YYcos(72) 

Output of X Y Z Cl C2 C3 	C10 
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Using this technique the point where each axis leaves 

a 10*10*10 cube was found to be as follows :- 

Axis 
number 

Co-ordinates where 
axis leaves cube Angle to standard directions 

x y z x 	y 	z 

1 3.8 0.0 5.0 78 	90 	37 

2 1.2 -3.6 5.0 79 	55 	37 

3 -3.1 -2.2 5.0 60 	69 	37 

4 -3.1 2.2 5.0 60 	69 	37 

5 1.2 3.6 5.0 79 	55 	37 

6 5.0 0.0 1.0 11 	90 	79 

7 -1.6 5.0 -1.0 73 	21 	79 

8 5.0 3.6 -1.2 37 	55 	79 

9 5.0 -3.6 -1.2 37 	55 	79 

10 1.6 5.0 1.0 73 	21 	79 

ycos= 4.75 	4.86 	4.95 

From this information a check for the regularity of the 

spacing of the axes was carried out. The angle between all 

possible pairs of axes was calculated to be :- 



- 135 - 

Axis 
number 1 2 3 4 5 6 7 8 9 10 

1 0 41 70 70 41 41 70 70 70 70 

2 41 0 41 70 70 70 41 70 70 70 

3 70 41 0 41 70 70 70 41 70 70 

4 70 70 41 0 41 70 70 70 41 70 

5 41 70 70 41 0 70 70 70 70 41, 

6 41 70 70 70 70 0 70 41 41 70 

7 70 41 70 70 70 70 0 70 41 41 

8 70 70 41 70 70 41 70 0 70 41 

9 70 70 70 41 70 41 41 70 0 70 

10 70 70 70 70 41 70 41 41 70 0 

The 9 angles between any one axis and its colleagues 

are the same for all 10 axes. This is evidence that the 

axes are regularly orientated in space. 
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Appendix 6 : Subroutine COORDS2 

The listing of the subroutine COORDS2 is shown 

overleaf. The required input to the subroutine is :- 

X Y Z - The 3 co-ordinates of the point on the 

standard x y z axes. 

The output of the subroutine is :- 

C - An array 	of 	10 	stores 	containing 	the 

co-ordinate of the point on each of the 10 regular 

axes. 



00100 SUBROUTINE COORDS2(C,X,Y,Z) 
00110 DIMENSION C(10) ,B(2,2) 
00120 DATA (CB (I,J) ,J=1,2) , I=1,2) ,CO572,SIN72/ 
00130+.6149781,--.7885442,.9822470,-.1875924,.30901699,.95105652/ 
00140 N=0 
00150 DO 11 M=1,2 
00160 COSANG=B (M, 1) 
00170 ZSINANG=2.=K3(M,2) 
00180 DO 11 1=1,5 
00190 N=N+1 
00200 C(N)=XxCOSANG-ZSINANG 
00210 TX=X 
00220 x=x*COS72-Y'XS1N72 
00230 11 Y=TX)SIN72+YN=COS72 
00240 RETURN 
00250 END 
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Appendix 7 : Determination of the co-ordinates of any point 

on fifteen regular axes 

Figure A3 shows two projections of a dodecahedron. The 

fifteen pairs of opposite edge mid-points are numbered. The 

standard orthogonal x, y, z directions are as shown. 

Given the co-ordinates on the x, y, z axes (X, Y, Z), 

the task was to find the co-ordinate on each of the fifteen 

axes (C1, C2, C3,....C15). The method adopted was . 

Input of X Y Z 

Do for I=1 to 5 

Rotate X Y Z around y direction 

by angle(S) to give Ci 

Rotate X Y Z around z direction 

by 72°  to give new X Y Z 

Rotate X Y Z around z direction 

by 36°  to give new X Y Z 

Do for I=6 to 10 

Rotate X Y Z around y direction 

by angle(T) to give Ci 

Rotate X Y Z around z direction 

by 72°  to give new X Y Z 

Rotate X Y Z around z direction 

by -18°  to give new X Y Z 

Do for I=11 to 15 

Rotate X Y Z around z direction 

by 72°  to give new X Y Z 



FIGURE A3 . 	DODECAHEDRON WITH POSITION OF 15  

REGULAR AXES  

12 
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Now using the geometry calculated in Appendix 5 the angles 

can be found to be :- 

angle S = 26.6°  

angle T = 31.7°  

So the technique becomes :- 

Input of X Y Z 

Do for I=1 to 5 

Ci=Xcos(-58.3)-Zsin(-58. 3) 

XX=Xcos(72)-Ysin(72) 

YY=Xsin(72)+Ycos(72) 

X=XX Y=YY 

X=XXcos(36)-YYsin(36) 

Y=XXsin(36)+YYcos(36) 

Do for I=6 to 10 

Ci=Xcos (-31. 7)-Zsin(-31.7) 

XX=Xcos(72)-Ysin(72) 

YY=Xsin (72)+Ycos (72) 

X=XX Y=YY 

X=XXcos(-18)-YYsin(-18) 

Y=XXsin(-18)+YYcos(-18) 

Do for I=11 to 15 

Ci=X 

XX=Xcos(72)-Ysin (72) 

YY=Xsin(72)+Ycos(72) 

X=XX Y=YY 

Output of X Y Z Cl C2 C3 	C15 
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Using this technique the point where each axis leaves 

a 10*10*10 cube was found to be as follows :- 

Axis 
number 

Co-ordinates where 
axis leaves cube Angle to standard directions 

x y z x 	y 	z 

1 3.1 0.0 5.0 58 	90 	32 

2 1.0 -2.9 5.0 80 	60 	32 

3 -2.5 -1.8 5.0 65 	72 	32 

4 -2.5 1.8 5.0 65 	72 	32 

5 1.0 2.9 5.0 80 	60 	32 

6 5.0 -3.6 3.8 46 	60 	58 

7 1.6 5.0 -3.2 36 	36 	58 

8 5.0 0.0 -3.1 65 	90 	58 

9 -1.6 5.0 3.2 36 	36 	58 

10 5.0 3.6 3.8 46 	60 	58 

11 5.0 -1.6 0.0 18 	72 	90 

12 0.0 5.0 0.0 90 	0 	90 

13 5.0 1.6 0.0 18 	72 	90 

14 -3.6 5.0 0.0 36 	36 	90 

15 3.6 5.0 0.0 36 	36 	90 

> cos= 8.67 	7.47 	6.89 

From this information a check for the regularity of the 

spacing of the axes was carried out. The angle between all 

possible pairs of axes was calculated to be :- 
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Axis 
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 36 60 60 36 36 72 90 72 36 60 90 60 72 72 

2 36 0 36 60 60 36 36 72 90 72 72 60 90 60 72 

3 60 36 0 36 60 72 36 36 72 90 72 72 60 90 60 

4 60 60 36 0 36 90 72 36 36 72 60 72 72 60 90 

5 36 60 60 36 0 72 90 72 36 36 90 60 72 72 60 

6 36 36 72 90 72 0 60 72 72 60 36 60 60 36 90 

7 72 36 36 72 90 60 0 60 72 72 90 36 60 60 36 

8 90 72 36 36 72 72 60 0 60 72 36 90 36 60 60 

9 72 90 72 36 36 72 72 60 0 60 60 36 90 36 60 

10 36 72 90 72 36 60 72 72 60 0 60 60 36 90 36 

11 60 72 72 60 90 36 90 36 60 60 0 72 36 36 72 

12 90 60 72 72 60 60 36 90 36 60 72 0 72 36 36 

13 60 90 60 72 72 60 60 36 90 36 36 72 0 72 36 

14 72 60 90 60 72 36 60 60 36 90 36 36 72 0 72 

15 72 72 60 90 60 90 36 60 60 36 72 36 36 72 0 

The 14 angles between any one axis and its colleagues 

are the same for all 15 axes. This is evidence that the 

axes are regularly orientated in space. 
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Appendix 8 : Determination of sum cos alpha terms for Journel's 

fifteen regular axes 

Using subroutin0 COORDS1 (see Appendix 2) the point 

where each axis leaves a 10*10*10 cube was found to be as 

follows :- 

Axis 
number 

Co-ordinates where 
axis leaves cube Angle to 	standard directions 

x y z x 	y 	z 

1 5.0 0.0 0.0 0 	90 	90 

2 0.0 5.0 0.0 90 	0 	90 

3 0.0 0.0 5.0 0 	0 	90 

4 3.1 5.0 1.9 60 	36 	72 

5 -5.0 1.9 3.1 36 	72 	60 

6 1.9 -3.1 5.0 72 	60 	36 

7 -1.9 3.1 5.0 72 	60 	36 

8 -3.1 5.0 1.9 60 	36 	72 

9 5.0 -1.9 3.1 36 	72 	60 

10 -1.9 -3.1 5.0 72 	60 	36 

11 3.1 -5.0 -1.9 60 	36 	72 

12 5.0 1.9 3.1 36 	72 	60 

13 3.1 -5.0 1.9 60 	36 	72 

14 5.0 1.9 -3.1 36 	72 	60 

15 1.9 3.1 5.0 72 	60 	36 

y_co s= 7.47 	7 .47 	7.47 
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Appendix 9 : Subroutine COORDS3 

The listing of the subroutine COORDS3 is shown 

overleaf. The required input to the subroutine is :- 

X Y Z - The 3 co-ordinates of the point on the 

standard x y z axes. 

The output of the subroutine is :- 

C - An array 	of 	15 	stores 	containing 	the 

co-ordinate of the point on each of the 15 regular 

axes. 



00100 SUBROUTINE COORDS3(C,X,Y,2) 
00110 DIMENSION C(15) ,B(3,2) 
00120 DATA ((B(1,J),J=1,2),I=1,3),C0536,SIN36,C0572,SIN72/ 
00130+.52573111,-.65065061,.85065061,-.52573111,1.0,0.0, 
00140+.80901699,.56778525,.30901599,.95105652/ 
00150 N=0 
00160 DO 10 M=1,3 
00170 COSANG=B (M, 1) 
00180 ZSINANG=2*B(M,2) 
00190 DO 11 I=1,5 
00200 N=N+1 
00210 C (N) =X''COSANG-2.SINANG 
00220 TX=X 
00230 X=X*COS72-Y*SIN72 
00240 11 Y=TX*SIN72+Y*COS72 
00250 TX=X 
00260 IF (M. EQ . 1) GO TO 12 
00270 X=X*SIN72+Y*COS72 
00280 Y=Y*SIN72-TXCOS72 
00290 GO TO 10 
0030C 12 X=X*COS36-Y*SIN36 
00310 Y=TX*SIN36+Y*COS36 
00320 10 CONTINUE 
00330 RETURN 
00340 END 
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Appendix 10 : Program RANDO 

The listing of the program RANDO is shown overleaf. 

The required input to the program is :- 

NSEED - A four digit number used to trigger the 

random number generator. 

A - The semi-variogram model range of influence. 

C - The semi-variogram model sill. 

ENUG - The semi-variogram model nugget effect. 

AVER - The distribution model average. 

NAXES - The number of randomly orientated axes to 

be used. 

The output of the program is :- 

V - An 	array 	of 	1000 stores containing the 

unconditional simulation values. 

The average and variance of the simulated values. 

The semi-variogram of the simulated values. 



00100 PROGRAM RANDO(INPUT,OUTPUT,TAPE6=INPUT,TAPE7rOUTPUT,TAPE3,TAPE4) 
00110C 
00120C 	TTHIS PROGRAM SIMULATES A LINE OF 1000 POINTS WHICH FOLLOW 
00130C SPHERICAL (A,C,ENUG) AND N (AVER,C) . 
00140C 	THE SIMULATION IS PRODUCED USING 'NARES' RANDOMLY SPACED AXES 
001 
00160C TAPE3=OUTPUT FOR SIMULATED VALUES 
00170C TAPE4=OUTPUT FOR SEMI-VARIOGRAM 
00180C TAPE6=INPUT FROM TELEX 
00190C TAPE7=OUTPUT ON TELEX (SIMPLIFIED VERSION OF TAPE4) 
00200C 
00210 DIMENSION V(1000) , Y (2000) 
00220 DATA PI/3.14159265/ 
00230 READ (6, 1000) NSEED 
00240 1000 FORMAT (I4) 
00250 XSEED=FLOAT(2KNSEED+1) 
00260 CALL RANSET(XSEED) 
00270 DO 71 I=1,1000 
00280 V(I)=0.0  
00290 71 S=RANF(0.0) 
00300 READ(6,1001)A,C,ENUG,RVER,NAXES 
00310 1001 FORMAT(4F6.2,I3) 
00320 WRITE(4,3345)NARES 
00330 3345 FORMAT(* NUMBER OF RANDOM 
00340 DO 99 I=1,NAXES 
00350 XYANG=2.0WPI WANF (0.0) 
00360 	NG=2.0 PIXRANF (0.0) 
00370 WR ITE (4, 2000) XYANG, XYANG 
00380 2000 FORMAT (2 (2X, F6.4) ) 
00390 AY=TAN(XYANG) 
00400 BZ=TAN (XYANG) 
00410 8=0.01*A 
00420 XINT=1.0/SQRT(1.0+AYXAY+BZWBZ) 
00430 XLIN=499.5IXINT 
00440 NY=IROUND ( (2.0xXL IM) /B) +2 
00450'NORG=IROUND(-XLIM/8) 
00460 CALL SIM(Y,A,NY) 
00470 DO 10 J=1,1000 
00480 XJ=FLOAT (J-1) 499.5 
00490 XC=XJ3.'XINT 
00500 NC=IROUND(XC/B)-NORG+1 
00510 10 V(J)=V(J)+Y(NC)  
00520 99 CONTINUE 
00530 CO=C-€NUG 
00540 STD=SQRT(CO/FLOAT(NAXES)) 
00550 SDENUG=°.QRT (ENJG) 
00560 SUMV=0.0 
00570 SUMV2=0.0 
00580 DO 72 I=1,1000 
00590 CALL RANDOM(S,SDENUG) 
00600 V(I) =V (I) XSTD+S+AVER 
00610 SUMV=SUMP+V(I) 
00620 72 SUMV2=SUMV2+V (I) *V(I ) 
00630 AV=SUMV/1000.0 
00640 VAR=CSUMV2-SUMV=AV)/999.0 
00650 WRITE (7, 1003) AV, VAR 
00660 WRITE (4, 1003) AV, VAR 
00670 1003 FORMAT(* 	AV ,VAR K, 2 (2X, F8.4) ) 
00680 WRITE (3 , 1002) (V (J) , J=1 , 1000) 
00690 1002 FORMAT (10 (2X, F6.2) ) 
00700 CALL PLOT(V,A) 
00710 ENDFILE 3 
00720 ENDFILE 4 
00730 STOP 

50C 

AXES IS X,  I3) 



00740 END 
00750C 
00760 FUNCTION IROUND(X) 
00770 Y=ABS (X) 
00780 IROUND=IFIX(Y+0.5) 
00790 IF(X.LT.0.0)IROUND=-IROUND 
00800 RETURN 
00810 END 
00820C 
00830 SUBROUTINE SIM(Y,A,NS) 
00810 DIMENSION Y (2000) , T (100) 
00850 B=0.01*A 
00860 WRITE (7 , 2012) NS 
00870 2012 FORMAT(* NY=*,I5) 
00880 W= =SART (12.0*B/A/ (A*A+11 .O.1=B-KB) ) 
00890 DO 50 M=1,100 
00900 50 CALL RANDOM (T (M) , 1 .0) 
00910 DO 53 I=1,NS 
00920 Y(I)=0.0 
00930 DIS=0.0- (A+B) /2.0 
00940 DO 52 K=1,50 
00950 DIS=DIS+ 
00960 52 Y(I)=Y(I)+DIS*(T(K)-T(101-K)) 
00970 Y (I) =Y (I) *LF 
00980 DO 54 M=1,99 
00990 54 T (M) =T (M+1) 
01000 CALL RANDOM(T(100),1.0) 
01010 53 CONTINUE 
01020 RETURN 
01030 END 
01040C 
01050 SUBROUTINE RANDOM(S,SD) 
01060 S=0.0 
01070 DO 10 M=1,12 
01080 10 S=S+RANF(0.0) 
01090 S= (S-6 . 0) *SD 
01100 RETURN 
01110 END 
01120C 
01130 SUBROUTINE PLOT(v,A) 
01140 DIMENSION V(1000),IGRA(100) 
01150 DATA IAS7,IPLUS+IBLNK/1H*,1H+,1H / 
01160 RMS=0.0 
01170 DO 20 LAG=1,100 
01180 LIM=1000-LAG 
01190 GAM=0.0 
01200 DO 21 I=1,LIM 
01210 DIFF=v (I) -V (I+LAG) 
01220 21 GAM=GAM+DIFF*DIFF 
01230 SEMI=0.5 GAM/FLOAT(LIM) 
01240 DO 22 J=1,100 
01250 22 IGRA (J) =IBLNK 
01260 HOVERA=FLOAT (LAG) /A 
01270 XMODEL=20.0*(1.5*HOvERA-0.5*HOVERA*HOVERA*HOVERA) 
01280 IF (HOVERA. GT. 1 .0) XYI3DEL=20.0 
01290 RMS=RMS+((SEMI-XM3DEL)/XMODEL)**2 
01300 IS=IFIX(2.0*SEMI)+2 
01310 IM=IFIX(2.0*XMODEL)+2 
01320 IGRA(1)=IPLUS 
01330 IGRA (IM) =IPLUS 
01340 IGRA(IS)=IAST 
01350 	ITE (4,2111) LAG, (IGRA (K) ,K=1, 100) 
01360 2111 FORMAT(2X+I3,100A1) 
01370 20 CONTINUE 



01380 RMS=100.0%',SQRT (RMS/100.0) 
01390 WRITE (4, 2004) RMS 
01400 WRITE(792004)RMS 
01410 2004 FORMAT(* 	RMS = %+=, F7.2 , .ti  PERCENT%) 
01420 RETURN 
01430 END 
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Appendix 11 : Program CONSIM1 

The listing of the program CONSIM1 is shown overleaf. 

The required input to the program is :- 

TITLE - A title phrase of up to 80 characters. 

F - An array of 8 stores. The first 4 stores 

contain the range, sill, nugget effect, and average 

of the models of the first system (lode widths). 

The second set of 4 stores hold the same 

information for the second system (lode assays). 

NLN - The number of levels from which conditioning 

data is to be inputted. 

T B P S - The top, bottom, left, and right limits 

of the simulated area. 

XT XB XP XS - The top, bottom, left, and right 

limits of the rectangle which contains all the 

conditioning data. 

NLEVEL - The number of conditioning data points on 

this level drive. 

XLEVEL - The height above datum of this level 

drive. 

EAST - The Easting of the most Westerly sample on 

this level drive. 

EAST2 - The Easting of the most Easterly sample on 

this level drive. 

IFN - A number which defines whether a sample's 

measurements are in imperial (IFN=1) or metric 

(IFN=2) units. 
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WL - The sample lode width measurement. 

VL - The sample lode assay measurement. 

FILE - The file name for storage of the sample 

data, the lode width kriging weights, and the lode 

assay kriging weights. 

The output of the program includes :- 

The minimum, average, and maximum number of data 

points used in the conditioning kriging systems. 

The minimum, average, and maximum kriging variance 

achieved by the kriging systems during 

conditioning. 



00100 PROGRAM CONSIM1(INPUT=131B.OUTPUT=131B,TAPE6=INPUT. TAPE7=OUTPUT.. 
00710+TAPE4) 
00120C 
001300 TAPE4=OUTPUT FOR GENERAL DATA AND KRIGING WEIGHTS ONTO FILES 
001400 	DLSTOPE'WLSTOPE'vLSTOPE FOR USE IN 'CONSIM2 
00150C TAPE6=INPUT SAMPLES DATA AND BLOCK SIZE ETC. 
001600 
001700 
00180C 	DEV. DATA 
0019nC 	  XT 
00200C 
0C210C 	++-+-+++++++T 
002200 	+ 	+ 
00230C 	+ 	+ 
00240C 	+++11++t+18 
00250C 	P 	S 
00260C 	 XB 
00270C XP 	DEV. DATA 	XS 
00280C 
00290C GIVEN SUCH A BLOCK THIS PROGRAM PREPARES FOR SIMULATION OF IT 
003000 BY GIVING THE KRIGING WEIGHTS AND SAMPLE NUMBERS TO WHICH THEY 
00310C APPLY. FOR 9x9 POINTS IN THE BLOCK. 
00320C TO BE RUN ON INSTANT TURNAROUND. 
00330C 
00340C 
00350 COMMON /FRED/X (1 10) , Y (110) , IFUSED (110) 
00360 DIMENSION DATA (2.110) .TITLE (8) 
00370 DIMENSION  F (2.4) 
00380C 
00390C 	X=UPWARDS(IN) Y=ALONG(IE) 
00400C 	NEXT (1) 	NEXT (2) 
00410C 
00420 READ (6.1000) (TITLE (K) .K=1 .8) 
00430 WRITE (7.1000) (TITLE (K) ,K=1.8) 
00440 1000 FORMAT(1X,8A10) 
00450C 
00460C THE SEMIvARIOGRAM AND DISTRIBUTION DATA FOR ALL THE SYSTEMS 
004700 IS READ IN . 
00480 READ (6.1006) ((F (NV , K) 1K=1.4;  , Nv=1 .2) 
00490 .RITE (7.1006) ((F (NV.K) .K=1 .4) ,NV=1.2) 
00500 1006 FORM T(1X,4F6.3) 
00510 N=0 
00520 READ(6.1005)NLN,T,B.P.S.XT.XB,XP.XS 
00530 1005 FORMAT(1X.I1,8F6.0) 
00540C NLN=NUMBER OF LEVELS 
00550C T.B.P.S=LIMITS OF BLOCK TO BE SIMULATED 
00560C XT.XB.XP.XS=LIMITS OF BLOCK WHICH INCLUDES ALL DATA 
005700 
00580 DO 11 I=1.NLN 
00590 READ (6.1007) NLEv L . XLEVEL ,EAST. EAST2 
00600 1007 FORMIAT(1X.I3.3F6.0) 
006100 NLEvEL=NUMBER OF SAMPLES ON THIS LEVEL TO BE READ IN 
00620C XLEvEL=LEVEL(METRES) OF THE SAMPLES ON THIS LEVEL 
00630C EAST=EASTING (METRES) OF MST WESTERLY SAMPLE ON THIS LEVEL 
00640C EAST2=EASTING(METRES) OF M13ST EASTERLY SAMPLE ON THIS LEVEL 
006500 	SAMPLES WILL BE GIVEN EASTINGS INCREASING BY 
00660C 	(EAST2-EAST) / (NLEVEL-1) 
006700 
00680 DIFF= (EAST2-EAST) /FLOAT (NLEVEL-1) 
00690C 
00700 DO 11 J=1.NLEVEL 
007100 
00720 READ (6.1001) IFN , WL , VL , v1d. 
00730 1001 FORMAT(9X,I1,F5.2,F7.2,F7.2) 



00740 IF (VL . E0 .0 .0) GO TO 11 
00750 N=N+1 
00760 X (N) =XLEVEL 
00770 Y(N) =EAST+FL OAT (J-1) x;DIFF 
00780 IF( IFN .EC).2) GO TO 21 
00790 WL =0.3048x (FLOAT (IF IX (2.Ox +0.5)) /2.0) 
00800 IF (VL .NE.99. 11) VL =0.043x (FLOAT (IFIX ((VL+2.0) /2.0)) x2.0-1 .0) 
00810 IF (VL . E0.99. 1 1) VL=0.043x;0.5 
00820 IF (VW_ . ED . 99.11) V1..L =0.5 
00830 VIAL =0.043x 0.3048x;VLL 
00840 GO TO 27 
00850 21 l-L=FLOAT(IFIX(5.0xo-L+0.5)) /5.0 
00860 IF (VL . NE . 99.11) VL =FL OAT (IFIX(20.0ZVL+0.5)) /20.0 
00870 IF (VL . ED . 99.11) VL =0.025 
00880 IF (VWL .EC) .99. 11) '4-&0.005 
00890 27 DATA (1,N)=LL 
00900 DATA (2 , N) =VL 
00910 WRITE (7,2014)N,Y(N) ,X(N) ,IFN ,WL,VL,VWL 
00920 2014 FORMAT (1X,I3,2F6.1,I1,3F7.2) 
00930 11 CONTINUE 
00940C 
00950 WRITE (7,1000) (TITLE (K) ,K=1,8) 
00960C 
00970 WRITE (4,1000) (TITLE (K) ,K=1,8) 
00980 LR ITE (4,1006) ((F (NV ,K) ,K=1,4) ,NV=1,2) 
00990 SINTX=(T-8)/8.0 
01000 SINTY= (S- P) /8.0 
01010 WRITE (4,2009)T,B,P,S,XT,XB,XP,XS 
01020 2009 FORMAT (1X,8F6.1) 
01030 WR ITE (4, 2003) N 
01040 2003 FORMAT (1X, I3) 
01050 WRITE (4, 2000) (CX (J) , Y (J) , DATA (1, J) , DATA (2 , J)) , J=1 , N) 
01060 2000 FORMAT (1X,2F6.1,2F6.2) 
01070 READ (6,1002) F ILE 
01080 ENDFILE 4 
01090 CALL REPL ACE (5HTAPE4,FILE) 
01100C 
01110 DO 26 NV=1,2 
01120 RANGE=F(NV,1) 
01 130 C=F (NV, 2) 
01140 ENUG=F (NV, 3) 
01150C 
01160 XX=SIGKMAX=SUM5IGK=0.0 
01170 SIGKMIN=100000.0 
01180 NSr1RX=NSSUM=0 
01190 NSMIN=100000 
01200 DO 18 M=1 ,N 
01210 18 IFUSED(N =0 
01220 DO 99 I=1,9 
01230 XI=B+FL OAT (I-1)X,SINTX 
01240 DO 99 J=1,9 
01250 YJ=P+FLOAT (J-1) rSINTY 
01260 CALL SEARCH (RANGE •C,ENUG,XI,YJ,N,NS,SIGK) 
01270C 
01280 SUMS IGK =SUMS IGK+SIGK 
01290 IF (SIGK.GT.SIGKMAXi SIGKMAX=SIGK 
01300 IF (SIGK . L T. S IGKMIN) S IGKMIN=SIGK 
01310 XX=XX+1.0 
01320 NSSUMNSSUM+NS 
01330 IF (NS . GT. NSMAX) NSMAX=NS 
01340 IF(NS.LT.NSMIN) NSMIN=NS 
01350 99 CONTINUE 
01360C 
01370 SUMS IGK =SUMS IGK /XX 



01380 AVNS=FLOAT(NSSUM)/XX 
01390 WRITE(7,2005)SIGKMIN,SUMSIGK,SIGKMAX,NSMIN,AVNS,NSMAX 
01400 2005 FORMAT(//10X,*KRIGING WITH NEAREST 3 IN 60 DEGREE BANDS*/ 
01410+10X,*NS.GE.4 NS.LE.18*//10X,*MINIMUM AVERAGE MAXIMUM VALUES OF ;K, 
01420+/5X,*SiGK2*,3F7.4/7X,*NS *,I7,F7.4,I7//) 
01430 L4 ITE (7 , 2006) (IFUSED (M) , M=1 , N) 
01440 2006 FORMAT(5X,*NUMBER OF TIMES DATA POINTS USED FOR KRIGING*/ 
01450+10(5X,2014/)//) 
01460 READ (6, 1002) FILE 
01470 1002 FORMAT(A7) 
01480 ENDFILE 4 
01490 CALL REPLRCE(5HTAPE4+FILE) 
01500C 
01510 26 CONTINUE 
01520 STOP 
01530 END 
01540C 	If ifF411++++++++++++++ 
01550 SUBROUTINE SEARCH CRANG,C,ENUG,XI,YJ,N,NSS,SIGK) 
01560 COMMON /FRED/X(110) , Y (110) , IFUSED (110) 
01570 COMMON /TOM/A <19, 19) ,D (19) 
01580 DIMENSION L6(110) ,NEAR (18) ,DISTMN (18) ,DD (18) 
01590 THIRTY=AS IN (0.5) 
01600 HALF=THIRTY/60.0 
01610 SIXTY=THIRTY*2.0 
01620 XNINETY=THIRTY*3.0 
01630 ONE80=THIRTY 6.0 
01640 THREE60=THIRTY*12.0 
01650C 
01660 RANGE=RANG 
01670 RADIUS=RANGE 
01680 40 NS=0 
01690 DO 12 M=1,N 
01700 MM=M 
01710 XDIFF=ABS (X (ND -XI) 
01720 YDIFF=ABS (Y (M) -YJ) 
01730 IF<XDIFF.LT.0.05.AND.YDIFF.LT.0.05) GO TO 50 
01740 IF(YDIFF.GT.RADIUS) GO TO 12 
01750 IF(XDIFF.GT.RADIUS) GO TO 12 
01760 DIST=SORT(XDIFF*XDIFF+YDIFF*YDIFF) 
01770 IF (DIST. GT. RADIUS) GO TO 12 
01780 NS=NS+1 
01790 LB(NS)=M 
01800 12 CONTINUE 
01810 IF (NS . GT. 4) GO TO 41 
01820C IF THERE ARE 4 OR LESS POINTS WITHIN THE SEARCH CIRCLE , 
01830C THE RADIUS OF THE SEARCH CICLE IS INCREASED BY HALF THE RANGE 
01840 42 RADIUS=RADIUS+0.5*RANGE 
01850 GO TO 40 
01860C 
01870 41 DO 20 M=1,18 
01880 NEAR (FG =-99 
01890 20 DISTMN (NTS =100000.0 
01900C THE DATA POINTS WITHIN THE SEARCH CIRCLE ARE SORTED. THE NEAREST 
019100 3 POINTS IN EACH SWEEP OF 61 DEGREES CENTRED ON BEARINGS 0,300,60 
01920C ARE TAKEN. THEREFORE THERE CAN BE NO MORE THAN 18 POINTS IN 
019300 THE KRIGING SYSTEM. 
01940 DO 24 K=1,NS 
01950 XDIFF= (X (LB (K)) -XI) 
01960 YDIFF= CY (LB (K)) -YJ) 
01970 ANGLE=ATAN(YDIFF/XDIFF) 
01980 IF(XDIFF.E0.0.0) ANGLE=ONE80-XNINETY*YDIFF/ABS(YDIFF) 
01990 IFCXDIFF.LT.0.0) ANGLE=ANGLE+ONEBO 
02000 IF(ANGLE.LT.0.0) ANGLE=ANGLE+THREE60 
02010 ANGLE=ANGLE+THIRTY 



02020 IF (ANGLE .GT .THREE60) ANGLE=ANGLE-THREE60 
02030 DO 24 M=1,6 
02040 IF (ANGLE.LT. (SIXTY**FLOAT(M-1) -HALF)) GO TO 24 
02050 IF (ANGLE. GT. (SIXTY*FLOAT (M) +HALF)) GO TO 24 
02060 D IST=SQRT (XD IFF*XD IFF+YDIFF*YD IFF) 
02070 IF (DIST.GE.DISTMY (3%KM)) GO TO 24 
02080 IF(DIST. GE. DISTMY(3*M-1)) GO TO 23 
02090 IF (DIST.GE.DISTMM (3%KM-2)) GO TO 22 
02100 DISTMY (3*M) =DISTMY (3*M-1) 
02110 NEAR (3*r-D =NEAR (3*M-1) 
02120 DISTMN (3K`1-1) =DISTMY (3*M-2) 
02130 NEAR (3*M-1) =NEAR (3*M-2) 
02140 DISTMV(3*M-2)=DIST 
02150 NEAR (3*M-2) =LB (K) 
02160 GO TO 24 
02170 22 DISTMN (3*M) =DISTMN (3*M-1) 
02180 NEAR (3XND =NEAR (3*M-1) 
02190 DISTMN (3*T1-1) =DIST 
02200 NEAR (3*M-1) =LB (K) 
02210 GO TO 24 
02220 23 DISTMH(3*M)=DIST 
02230 NEAR (33'1 =LB (K.) 
02240 24 CONTINUE 
02250C 
02260 N5=1 
02270 DO 29 M=1,18 
02280 DO 25 K=1,18 
02290C IF A POINT IS INCLUDED TWICE (I.E. IT IS IN THE 1 DEGREE 
02300C OVERLAP BETWEEN 2 SWEEPS) THEN ONE COPY IS REMOVED 
02310 25 IF (NEAR (K) . EQ . NEAR (MD . AND .K . NE . M'i NEAP (M) =-99 
02320 IF (NEAR (M) . EQ . -99) GO TO 29 
02330 NEAR (NS) =NEAR (M) 
02340 NS=NS+1 
02350 29 CONTINUE 
02360C 
02370C IF THERE ARE LESS THAN 4 POINTS (=5 EQNS.) IN THE KRIGING SYSTEM 
02380C THE SEARCH CIRCLE RADIUS IS INCREASED AND THE SYSTEM RE-CALCULATED 
02390 IF (NS . LT .5) GO TO 42 
02400C 
02410 DO 13 K=1,NS-2 
02420 DO 13 L=K+1,NS-1 
02430 XD IFF= CX (NEAR (K)) -X (NEAR (L)) ) 
02440 YDIFF= (Y (NEAR (K)) -Y (NEAR (L)) ) 
02450 DIST=SQRT (XD IFF*XDIFF+YDIFF*YDIFF) 
02460 13 A (K,L) =GSPH (DIST,RANGE,C,ENUG) 
02470 DO 17 K=2,NS-1 
02480 DO 17 L=1,K-1 
02490 17 A (K , L) =A (L , K) 
02500 DO 14 K=1,NS 
02510 A (K,NS) =A (NS K) =1.0 
02520 14 A (K,K) =0.0 
02530 DO 15 K=1,NS-1 
02540 XDIFF= (X (NEAR (K) ) -XI) 
02550 YDIFF= (Y (NEAR (K)) -YJ) 
02560 DIST=SQRT(XDIFF*XDIFF+YDIFF*YDIFF) 
02570 D (K) =GSPH (DIST, RANGE , C, ENUG) 
02580 15 DD (K) =D (K) 
02590 D (NS) =1 .0 
02600 CALL KARON (NS,KS) 
02610 NSS=NS-1 
02620 S IGK=D (NS) 
02630 DO 32 K=1,NSS 
02640 32 SIGK=SIGK+D (K) *DD (K) 
02650 DO 19 M=1,NSS 



02660 19 IFUSED (NEAR (M)) =IFUSED (NEAR (Mi) +1 
02670 WRITE(4,4000)NSS,C(NEARM,D(M)),M=1,NSS) 
02680 4000 FORMAT (9X, I3,2 (/1X,9 (13,F6.4)) ) 
02690 RETURN 
02700C 
02710C THE POINT BEING CONSIDERED IS A DATA POINT 
02720 50 IFUSED (MMD =IFUSED (MPT) +1 
02730 WRITE (4, 2001) MM 
02740 2001 FORMAT(9X,3H 1/1X,I3,6H1.0000) 
02750 NSS=1 
02760C 
02770 SIGK=0.0 
02780 RETURN 
02790 END 
02800C 	  
02810C 
02820 FUNCTION IROUND(X) 
02830 IROUND=IFIX(ABS(X +0.49999) 
02840 IF(X.LT.0.0) IROUND=-IROUND 
02850 RETURN 
02860 END 
02870C 	  
02880C 
02890C 
0290C FUNCTION GSPH(DIST,A,C,ENUG) 
02910 IF (D IST . GE . A) GO TO 10 
02920 X=DIST/A 
02930 GSPH= (C-ENUG) * (1 .5*X-0.5*X*XxX) +ENUG 
02940 RETURN 
02950 10 GSPH=C 
02960 RETURN 
02970 END 
02980C 	 
02990C 
03000C 
03010 SUBROUTINE KARON(NPAR,KS) 
03020 COMMON /TOM/ A(1919) , D (19) 
03030 KS=0 
03040 TOL=0.000001 
03050 N=NPAR 
03060 DO 65 J=1,N 
03070 JY=J+1 
03080 BIGA=0. 
03090 DO 30 I=J,N 
03100 IF (ABS (B IGA) -ABS (A (I , J))) 35 , 30 , 30 
03110 35 BIGA=A(I,J) 
03120 IMAX=I 
03130 30 CONTINUE 
03140 IF (ABS (BIGA) -TOL) 10, 10,40 
03150 40 DO 50 K=J,N 
03160 SAVE=A(IMAX,K)/BIGA 
03170 A (IMAX,K) =A (J,K) 
03180 A(J,K)=SAVE 
03190 50 CONTINUE 
03200 SAVE=D (IMAX /BIGA 
03210 D(IMAX)=D(J)  
03220 D(J)=SAVE  
03230 IF (J-'1) 55,70,55 
03240 55 DO 65 IX=JY,N 
03250 DO 60 JX=JY,N 
03260 60 A(IX,JX=A(IX,JX)-A(IX,J) *A(J,JX) 
03270 65 D(IX=D(IX-D(J)*A(IX,J) 
03280 70 NY=N-1 
03290 DO 80 J=1,NY 



03300 IB=N-J 
03310 DO 80 K=1+J 
03320 IC=N-K+1 
03330 80 D(IB)=D(IB)-A(IB+IC)*D(IC) 
03340 RETURN 
03350 10 KS=1 
03360 WRITE (7 , 1000) NPAR 
03370 1000 FORMAT(SX+*THERE IS NO SOLUTION WITH NPAR =,I3,* SO THERE) 
03380 RETURN 
03390 END 
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Appendix 12 : Program CONSIM2 

The listing of the program CONSIM2 is shown overleaf. 

The required input to the program is :- 

NSEED •- A four digit number used to trigger the 

random number generator. 

An example of the output of the program is shown overleaf. 



00100 PROGRAM CONSIM2(INPUT=1318,OUTPUT=1318,TAPE6=INPUT,TAPE7=OL!TPUT, 
00110+TAPES,TAPE2,TAPE4) 
00120C 
00130C USED AFTER 'CONSIM1' THIS PROGRAM PRODUCES SIMULATIONS OF THE 
00140C BLOCK WITH 9*9 POINTS. 
00150C TO BE RUN ON INSTANT TURNAROUND. 
00160C 
00170C TAPE7=OUTPUT FOR RESULTS (HISTOGRAMS VARIOGRAMS) 
00180C TAPE2=INPUT FOR GENERAL DATA AND KRIGING WEIGHTS FROM FILES 
00190C 	DLSTOPE 'WLSTOPE 'VLSTOPE PRODUCED BY PROGRAM 'CONSIMI ' 
00200C TAPES=TEMPORARY STORE FOR 1-D AXIS SIMULATIONS FORMED IN 
00210C 	'SIM2D15 ' AND USED IN 'CONSIM2 ' TO PRODUCE SDATA (NV, N) 
00220C 
00230 DIMENSION V(9,9) ,NEXT (2) 
00240 DIMENSION FILE (2) , W (9, 9) , F (2, 4) ,AXIS (1000) 
00250 DIMENSION DATA(2110) ,X(110) ,Y(110) ,SDATA (110) ,NEAR(18) ,D (18) ,TITLE (8) 
00260 DATA FILE(1) ,FILE (2) /7HWLSTOPE,7HVLSTOPE/ 
00270C 
00280C 	X=UPWARDS(IN) Y=ALONG(IE) 
00290C 	NEXX 	NEXY 
00300C 
00310 CALL GETPF(5HTAPF2,7HDLSTOPE,7HUMCKA07) 
00320 READ (2, 1000) (TITLE (K) , K=1 , 8) 
00330 1000 FORMAT(1X,8A10) 
00340C THE SEMIVARIOGRAM AND DISTRIBUTION DATA FOR ALL THE SYSTEMS 
00350C IS READ IN . 
00360 READ(2i006) ((F (NV , K) , K=1 , 4) , NV=1 , 2) 
00370 WRITE(7,1006) (CF(NV,K) ,K=1,4) ,NV=1,2) 
00380 1006 FORMAT(1X,4F6.3) 
00390 READ(2,1009)T1,81,P1,51,T2,82,P2,S2 
00400 1009 FORMAT(1X,8F6.1) 
00410 SINTX= (T1-B1) /8.0 
00420 SINTY= (S1-P1) /8.0 
00430 NEXT(1)=9 
00440 NEXT(2)=9 
00450 SMAXX= (T2-B2) /2.0 
00460 SM4XY= (S2-P2) /2.0 
00470 WRITE (7 , 2006) (TITLE (K) , K=1 , 8) 
00480 2006 FORMAT (10 (/) , 5X, 8A 10) 
00490 READ (2 , 1007) N 
00500 1007 FORMAT(1X,I3) 
00510 TSS=RSS=SS=0.0 
00520 DO 68 I=1,N 
00530 READ (2, 1008) X(I) ,Y(I) ,DATA (1 • I) ,DATA (2, I) 
00590 1008 FORMAT(1X,2F6.1,2F6.2) 
00550 TSS=TSS+ALOG (DATA (1 , I)) **2 
00560 SS=SS+ALOG (DATA (1 , I) ) 
00570 DATA (1 , I) =ALOG (DATA (1 , I) ) 
00580 RSS=RSS+0ATA(1,I)**2 
00590 68 DATA (2, I) =ALOG (DATA (2, I) ) 
00600 SS=100.0*(1.0-RSS/(TSS-SS*SS/FLOAT(N))) 
00610 WRITE (7,4321) SS 
00620 4321 FORMAT(5X,*PERCENT TSS FOR DATA *,F8.3) 
00630C 
00640 READ (6 , 1010) NSEED 
00650 1010 FORMAT(I4) 
00660 DO 101 NSIM=1,5 
00670C 
00680 TSS=RSS=SS=0.0 
00690 DO 60 NV=1,2 
00700 RANGE=F (NV, 1) 
00710 C=F (NV, 2) 
00720 ENUG=F (NV, 3) 
00730 AVER=F (NV, 4) 



00740 NSEED=NSEED+1 
00750C 
00760 BB=81-82 
00770 PP=P1-P2 
00780 CALL SIM2D15(V,NEXT,SINTX,SINTY,BB,PP,SMAXX,SMAXY, 
00790+RANGE,C,ENUG,AVER,NSEED) 
00800C 
00810 WRITE(7,2003) (TITLE(K) ,K=1,8) ,NSIM,NV,NSEED 
00820 2003 FORMAT(1H1/10X,8A10//30X,XSIMULATION NO. %1=,I2,X SYSTEM NO. *,I1, 
00830+r NSEED = X, 14/30X,44 (1H-) //) 
00840 WRITE (7,2007) 
00850 2007 FORMAT(30X,*BEFORE CONDITIONING (I.E. SHOULD FIT MODELS)*) 
00860 CALL VDIST(V,NEXT,-2.1,1.9,20) 
00870 CALL GAM(V,NEXT,SINTX,SINTY,RANGE,C,ENUG) 
00880C 
00890 B=RANGE/100.0 
00900 STD=SART C(C-ENUG) /15.0) 
00910 SDENUG=SQRT(ENUG) 
00920 DO 51 M=1,N 
00930 REWIND 5 
00940 XI=X (Mi -B2-SMAXX 
00950 XJ=Y (M) -P2-SMAXY 
00960 G=0.0 
00970 DO 69 I=1,15 
00980 READ(5,1002)NORG,XINTX,XINTY,NY 
00990 1002 FORMAT(1X,I5,2E12.6,I5) 
01000 READ (5, 1001) (AXIS (J) ,J=1,NY) 
01010 1001 FORMAT(1X,10E12.6) 
01020 XC=XIXXINTX+XJ*XINTY 
01030 NC=IROUND(XC/B)-NORG+1 
01040 69 G=G+AXIS (NC) 
01050 CALL RANDOM(R,SDENUG) 
01060 51 SDATA(M)=GXSTD+R+AVER 
01070 CALL GETPF (5HTAPE2, FILE (NV) , 7HUMCKA07) 
01080 DO 61 I=1,9 
01090 DO 61 J=1,9 
01100 READ (2 , 1003) NS 
01110 1003 FORMAT(9X,I3) 
01120 READ (2, 1004) ((NEAR (K) , D (K)) , K=1 , NS) 
01130 1004 FORMAT(1X,9(I3,F6.4)/1X,9(I3,F6.4)) 
01140 AK=SK=0.0 
01150 DO 52 M=1,NS 
01160 AK=AK+DATA (NV, NEAR (M)) XD (M) 
01170 52 SK=SK+SDATA (NEAR (M)) XD (M) 
01180 V(I,J)=V(I,J)+AK-SK 
01190 61 CONTINUE 
01200C 
01210 WRITE (7,2008) 
01220 2008 FORMAT(1H1,7(/)),30X,XAFTER CONDITIONING BEFORE TAKING EXPX) 
01230 CALL VDIST(V,NEXT,-2.1,1.9,20) 
01240 CALL GAM(V,NEXT,SINTX,SINTY,RANGE,C,ENUG) 
01250C 
01260 IF (NV . EQ . 2) GO TO 65 
01270 DO 67 I=1,9 
01280 XI=81+FLOAT(I-1)XSINTX 
01290 DO 67 J=1,9 
01300 YJ=PI+FLOAT(J-1)XSINTY 
01310 RSS=RSS+V (I , J) XX2 
01320 WLL=V(I,J)+TREND(YJ,XI) 
01330 TSS=TSS+{.LL*X2 
01340 55=5S+WL L 
01350 WLL=EXP(V(I,J)) 
01360 W(I,J)=WLL 
01370C W(I,J)=.13100068E+05-.15468835E+01XYJ-.25478477E+02-KXI+ 



01380C+.35826833E-01*WLL+.97820590E-04*YJ*YJ+.16512423E-01*XI*XI+ 
01390C+.16650438E+00*WLL*WLL+.20147847E-02*YJ*XI+ 
01400C+.15368569E-07*YJ*YJ*YJ-.35656412E-05*XI*XI*XI- 
01410C+.67110721E-07*YJ*YJ*XI-.65576605E-06*YJ*XI*XI 
01420C IF(V(I,J) .LT.WLL) W(I,J)=WLL 
01430 67 CONTINUE 
01440 GO TO 60 
01450 65 DO 66 I=1,9 
01460 DO 66 J=1,9 
01470 VLL=EXP(V(I,J)) 
01480 V(I,J)=VLL 
014900 V(I,J)=.65726173E-01+.61670581*VLL-.86895918E-02*VLL*VLL 
01500C IF(V(I,J) .LT. (WLL*VLL/W(I,J))) V(I,J)=WLL*VLL/W(I,J) 
01510 66 IF(V(I,J) .GT.100.0) V(I,J)=100.0 
01520C 
01530 60 CONTINUE 
01540C 
01550 WRITE (7,2009) 
01560 2009 FORMAT(1H1,7(/),30X,*AFTER TAKING EXPONENTIALS*) 
01570 CALL VDIST(W,NEXT,0.0,4.0,20) 
01580 CALL GAM(W,NEXT,SINTX,SINTY,F(1,1) ,F(1,2) ,F(1,3)) 
01590 CALL VDIST(V,NEXT,0.0,10.0,20) 
01600 CALL GAM(V,NEXT,SINTX,SINTY,F(2,1) ,F(2,2) ,F(2,3)) 
01610C 
01620 WRITE (4,3000) ((W(I,J) ,J=1,9) ,I=1,9) , ((V(K,L) ,L=1,9) ,K=1,9) 
01630 3000 FORMAT(1X,9F7.2) 
01640 SUMN=SUMWL=SUMVL=0.0 
01650 DO 70 I=1,9 
01660 DO 70 J=1,9 
01670 SUMWL=SUMWL+W(I,J) 
01680 SUMV1_=SUMVL+V(I,J) 
01690 70 SUMN=SUMN+1.0 
01700 SUMWL=SUMWL/SUMN 
01710 SUMVL=SUMVL/SUMN 
01720 WRITE(7,2004)SUMN,NSIM,SUMWL,SUMVL 
01730 2004 FORMAT(/,10X,*FOR ALL*,F6.0,* SIMULATED SAMPLES*, 
01740+* OF SIMULATION NO. *,I2/12X,2HLW,4X,2HLA/10X,2F6.2) 
01750 SS=100.0*(1.0-RSS/(TSS-SS*SS/SUMN)) 
01760 WRITE (7,2000) SS 
01770 2000 FORMAT(10(/),10X,*LODE WIDTHS PERCENT TOTAL SUM OF SQUARES*,F7.2) 
01780C 
01790 101 CONTINUE 
01800C 
01810 ENDFILE 4 
01820 CALL REPLACE (5HTAPE4, 41-ISIMS) 
01830 WRITE (7, 1234) 
01840 1234 FORMAT(1H1) 
01850 STOP 
01860 END 
01870C 	4 + 1 r-+-+  I I t I-+-+-+ +-+ +-+ +-+ +-+-+-+-+ +- 
01880C 
01890C 
0.1900 FUNCTION IROUND CO 
01910 IROUND= IF IX (ABS (X) +0.49999) 
01920 IF(X.LT.0.0) IROUND=-IROUND 
01930 RETURN 
01940 END 
01950C 	  
01960 SUBROUTINE VDIST(V,NEXT,VMIN,VMAX,NG) 
01970 DIMENSION V(9,9)  ,NEXT(2) 
01980 DIMENSION IHIST(50) 
01990 DATA IAST/1H*/ 
02000 NGRP=NG 
02010 DO 20 I=1,50 



02020 20 IHIST CI) =0 
02030 Av=o.0 
02040 VINT=(VMAX-VMIN)/FLOATCNGRP) 
02050 DO 10 J=1 , NEXT C 1) 
02060 DO 10 K=1 , NEXT C2) 
02070 AV=AV+V CJ,K) 
02080 IF (V CJ , K) . LE . VMIN) GOTO 11 
02090 IF CV (J, K) . GT. VMAX) GOTO 12 
02100 IH=IFIX C CV CJ, K) -'MIN) /VINT+0.99999) +1 
02110 IRIST(IH)=IHIST(IH)+1 
02120 GO TO 10 
02130 11 IHIST C1) =IHIST C1) +1 
02140 GO TO 10 
02150 12 IHIST CNGRP+2) =IHIST CNGRP+2) +1 
02160 10 CONTINUE 
02170 MAX=O 
02180 DO 15 I=1,NGRP+2 
02190 15 IF(IHISTCI) .GT.MAX) MAX=IHISTCI) 
02200 DO 14 I=1,NGRP+2 
02210 VUPPER=VMIN+FLOATCI-1)*VINT 
02220 IH=IHISTCI)*110/MAX+1 
02230 -R ITE C7 , 2002) VUPPER, IH IST C I) , C IAST, J=1 , IH) 
02240 2002 FORMAT(* -*,F6.2,I4,120A1) 
02250 14 CONTINUE 
02260 AV=AV/FLOAT (NEXT (1) *NEXT (2) ) 
02270 -RITE C7,2000) A' 
02280 2000 FORHATC12X+*ARITHMETIC AvERAGE IS *,F6.2) 
02290 RETURN 
02300 END 
02310C 	  
02320C 
02330C 
02340 SUBROUTINE GAMCV,NEXT,SX,SY,RANGE,C,ENUG) 
02350 DIMENSION V(9,9) ,NEXTC2) ,SINTC2) 
02360 DIMENSION IGRA C 100) , GAMM C75) , D IR C2) 
02370 DATA IAST,IBLNK,IPLUS/1H*,1H ,1H+/ 
02380 DATA DIR (1) , DIR (2) /10H VERTICAL , 1OHHORIZONTAL/ 
02390 SINT (1) =SX 
02400 SINT C2) =SY 
02410 DO 15 M=1,2 
02420 RMS=0.0 
02430 IF CNEXT CPT) . EQ . 1) GO TO 15 
02440 LAGL IM=NEXT CPT) -1 
02450 IFCLAGLIM.GT.75) LAGLIM=75 
02460 DO 25 LAG=1,LAGLIM 
02470 LIM=NEXT(MD-LAG  
02480 GAM1A=0.0 
02490 IF(M.EQ.2) GO TO 21 
02500C 
02510 DO 11 I=1,LIM 
02520 DO 11 J=1,NEXTC2) 
02530 DIFF=v C I , J) -V (I+LAG, J) 
02540 11 GAMMA=GAM`1A+OIFF*DIFF 
02550 COUN=FL OAT CL IMYEXT C2) ) 
02560 GO TO 25 
02570C 
02580 21 DO 41 I=1,NEXTC1) 
02590 DO 41 J=1,LIM 
02600 DIFF=VCI , J) -v C I , J+L AG) 
02610 41 GAMMIA=GAM1A+DIFFrDIFF 
02620 COUN=FL OAT CL IM*NEXT C 1) ) 
02630C 
02640 25 GAM1 CL AG) =GAMMAx0.5/000N 
02650 BIG=C 



02660 DO 14 LAG=1,LAGLIM 
02670 14 IF (GAMM (LAG) . GT .BIG) BIG=GAMM (LAG) 
02680 A=RANGE 
02690 WRITE (7,2001) DIR (M) 
02700 2001 FORMAT(///10X,*SEMI—VARIOGRAM IN ,o+fl10,* DIRECTIONX) 
02710 DO 10 LAG=1,LAGLIM 
02720 GAMMA=GAMM(LAG) 
02730 SOFAR=FLOAT (LAG) *S INT (M) 
02740 HOVERArSOFAR/A 
02750 GMODEL=(1.5*HOVERA—(0.5*HOVERA*HOVERA*HOVERA))*(C—ENUG)+ENUG 
02760 IF(HOVERA.GE.1.0)GMODEL=C 
02770 RMS=RMS+ ( (GAMMA—GMODEL) /GMODEL) ,K,$ 2 
02780 IMODEL=IFIX(GNODEL*98.0/BIG)+1 
02790 IGAMMA=IFIX(GAMMA*98.0/BIG)+1 
02800 DO 12 I=1,100 
02810 12 IGRA (I) =IBLNK 
02820 IGRA(IGAMMA)=IAST 
02830 IGRA(IMODEL)=IPLUS 
02840 IC= (NEXT (M) —LAG) *NEXT (3-1) 
02850 WRITE(7,2000)LAG,IC,GAMNA+GMODEL,(IGRA(I)+I=1,100) 
02860 2000 FORMflT(1X,I3,IX,I5,1X,F7.2,1X,F7.2,*+*,100A1) 
02870 10 CONTINUE 
02880 RMS=100.050RTCRMS/ALOAT(LAGLIM)) 
02890 WRITE (7,2003) RMS 
02900 2003 FORMAT(* RMS = *1F6.1,* PERCENT*////) 
02910 15 CONTINUE 
02920 RETURN 
02930 END 
02940C 	  
02950C 
02960C 
02970 SUBROUTINE SIM2D15(V,NEXT,SINTX,SINTY,BB,PP,SMAXX,SMAXY, 
02980+A,C,ENUGsAVER,NSEED) 
02990C 
03000C THIS SUBROUTINE SIMULATES VALUES WHICH FOLLOW SPH(A,C,ENUG) 
03010C AND ARE N(AVER,C)  . 
03020C 
03030C THE NUGGET EFFECT COMES FROM A RANDOM N(0,ENUG). 
03040C THE REST OF THE VARIATION (=CO=C—ENUG) COMES FROM N(AVER,C0) 
03050C AND FOLLOWS SPH (A, C0 s 0) . 
03060C ADDING THESE 2 TOGETHER PRODUCES VALUES WHICH COME FROM 
03070C N(AVER,C) AND FOLLOW SPH(A,C,ENUG). 
03080C 
03090 DIMENSION V(9,9) ,NEXT (2) 
03100 COMMON /DICK/Y(1000) 
03110 DIMENSION X(15) 
03120 XSEED=FLOAT (2'ISEED+1) 
03130 CALL RANSET(XSEED) 
03140 DO 71 I=1,100 
03150 71 B=RANF(0.0) 
03160C 
03170 DO 30 J=1,NEXT(1) 
03180 DO 30 K=1, NEXT (2) 
03190 30 V (J, K) =0.0 
03200C 
03210 REWIND 5 
03220 B=A/100.0 
03230 DO 15 I=1,15 
03240 X(1)=1.0  
03250 X(2)=X(3)=0.0  
03260 CALL COORDS(X) 
03270 XINTX=X(I) 
03280 X(1)=X(3)=0.0  
03290 X(2)=1.0 



03300 CALL COORDS(X) 
03310 XINTY=X(I) 
03320 DMAX=SMAXXxABS (XINTX) +SMAXY-rABS (XINTY) 
03330 NY=IROUND (2.0*DMAX/B) +2 
03340 NORG=IROUND(—DMAX/B) 
03350 CALL S_IM(A,NY,B) 
03360 DO 19 J=1 ,NEXT (1) 
03370 XJ=BB+FLOAT (J-1) *S INTX—SMAXX 
03380 DO 19 K=1 ,NEXT (2) 
03390 XK=PP+PL0AT(K-1)*SINTY—SMAXY 
03400 XC=XJ*XINTX+XK*XINTY 
03410 NC=IROUND (XC/B) —{'IOR.G+1 
03420 19 V (J, K) =V (J, K) +Y (NC) 
03430 WR ITE (5 , 2002) NORG, XINTX, XINTY, NY 
03440 2002 FORMAT(1X,I5,2E12.6,I5) 
03450 6RITE(5,2001) (Y(M) ,M=1,NY) 
03460 2001 FORMAT(1X,10E12.6) 
03470 15 CONTINUE 
03480 ENDFILE 5 
03490C 
03500C 	V HERE SHOULD BE NORMAL(0,15) 
03510C 
03520 STD=SART ((C—ENUG) /15.0) 
03530 SDENUG=SQRT(ENUG) 
03540 DO 21 J=1,NEXT(1) 
03550 DO 21 K=1 ,NEXT (2) 
03560 CALL RANDOM(S,SDENUG) 
03570 VX=V (J, K) *STD+S+AVER 
03580C 
03590C V HERE SHOULD BE NORMAL(AVER,C) 
03600C 
03610 21 V (J, K) =VX 
03620 RETURN 
03630 END 
03640C 	 
03650C 
03660C 
03670 SUBROUTINE SIM(A,NS,B) 
03680 COMMON /DICK/Y (1000) 
03690 DIMENSION T(100) 
03700 lF=SQRT (12.0x8/ (A* (A*A+11 .0*B*B)) ) 
03710 DO 50 M=1,100 
03720 50 CALL RANDOM (T (M) , 1 .0) 
03730 DO 53 I=1,NS 
03740 YY=0.0 
03750 DIS=-8/2.0 
03760 DO 52 K=1,50 
03770 DIS=DIS+B 
03780 52 YY=YY+DIS* (T (50+40 —T (51—K) ) 
03790 Y (I) =YYXa,.F 
03800 DO 54 M=1,99 
03810 54 T (M)=T (M+1) 
03820 CALL RANDOM (T (100) , 1 .0) 
03830 53 CONTINUE 
03840 RETURN 
03850 END 
03860C 	 
03870C 
03880 SUBROUTINE COORDS(C) 
03890 DIMENSION C(15) ,B (3,2) 
03900 DATA ((B(I,J),J=1,2),I=1,3),C0S36,5IN36,C0572,SIN72/ 
03910+.52573111,—.85065081,.85065081,—.52573111,1.0,0.0, 
03920+.80901699,.58778525,.30901699,.95105652/ 
03930 X=C (1) 



03940 Y=C (2) 
03950 Z=C (3) 
03960 N=0 
03970 DO 10 M=1,3 
03980 COSANG=B (M, 1) 
03990 ZSINANG=Z*8 (M,2) 
04000 DO 11 I=1,5 
04010 N=N+1 
04020 C (N) =X COSANG-ZS INANG 
04030 TX=X 
04040 X=XZCO572-Y*SIN72 
04050 11 Y=TX*SIN72+YKCO572 
04060 TX=X 
04070 IF (M. EQ . 1) GO TO 12 
04080 X=X*'SIN72+YZCO572 
04090 Y=Y*5IN72-TXxCOS72 
04100 GO TO 10 
04110 12 X=XCOS36-Y'-KSIN36 
04120 Y=TXrS IN36+Y'-KCO536 
04130 10 CONTINUE 
04140 RETURN 
04150 END 
04160C 	  
04170C 
04180C 
04190 SUBROUTINE RANDOM(5,5D) 
04200 5=0.0 
04210 IF(5D.EQ.0.0)RETURN 
04220 DO 10 M=1,12 
04230 10 S=S+RANF (0.0) 
04240 5= (5-6.0) *5D 
04250 RETURN 
04260 EtID 
04270C 	  
04280C 
04290 FUNCTION TREND(X,Y) 
04300C CALCULATES CUBIC TREND FOR LN DEVT. LODE WIDTHS (32.02TBS) FOR 
04310C POINT AT IE=X IN=Y 
04320 TREND=-2.2797E+02+1.9471*X+4.8560E-02*Y-3.3145E-04=KX*X-
04330+2.4203E-03xX*Y+2.2078E-04*Y*Y+2.0525E-08 *X*X-KX-1 .0132E-07 %KYRYKY+ 
04340+2.0559E-07*X*X*Y+7.5072E-07*X*Y*Y 
04350 RETURN 
04360 END 



- -2.10 

SIMULATION NO. 	1 SYSTEM NO. 	1 	NSEED = 1234 

BEFORE CONDITIONING 	(I.E. SHOULD FIT MODELS) 
O* 

- -1.90 0* 
- -1.70 0* 
- -1.50 0* 
- -1.30 O* 
- -1.10 Ox 
- 	-.90 Ox 
- 	-.70 2x*******xx*x**** 
- 	-.50 8x*x**x********xx**xx*************x**********x***************x*x 
- 	-.30 9**x************************x*******************************xx********** 
- 	-.10 10**x*x**U******************************************************xxx********x**x* 
- 	.10 8**4.x..:x***x*x***************************x*********************xx 

.30 14XAK***xM*************************************************x*****x******************************* 

.50 11xxx*********x******xx***xxxx*xx****xx*xx**xxx*********xxx*x***x*xx**x*****xx*x**x*****x 

.70 14x*x*******x****************************x*********************x****x*x***************x**=x********:r**********xx 

.90 1*x***x** 
- 	1.10 2* 	*x***** 

1*** - 	1.30 
- 	1.50 1xx**xx*x 
- 	1.70 0* 
- 	1.90 Ox 
- 	2.10 0* 

ARITHMETIC AVERAGE IS 	.11 

SEMI -VARIOGRAM IN 	VERTICAL DIRECTION 
1 72 .16 .14+ + 	* 
2 63 .17 .15+ + * 
3 54 .21 .17+ + 
4 45 .26 .18+ + * 
5 36 .27 .20+ + * 
6 27 .32 .21+ + * 

7 18 .40 .22+ + 
8 9 .31 .24+ + * 

RM5 = 41.6 PERCENT 

SEMI -VARIOGRAM IN HORIēONTAL DIRECTION 
1 72 .18 .13+ + * 
2 63 .17 .15+ + 
3 54 .13 .16+ * + 
4 45 .18 .17+ +* 
5 36 .26 .19+ + X 
6 27 .15 .20+ * + 
7 18 .15 .21+ * + 
8 9 .26 .22+ + X 
RM5 = 24.5 PERCENT 



- -2.10 
- -1.90 
- -1.70 

AFTER CONDITIONING BEFORE TAKING EXP 
0* 
O* 
D* 

- -1.50 0* 
- -1.30 0* 
- -1.10 0* 
- 	-.90 3*********************** 
- 	-.70 6********************************************* 
- 	-.50 7**************************************************** 
- 	-.30 10************************************************************************** 
- 	-.10 10************************************************************************** 

.10 15************************************************************************************************** ** ** ** ** ** *** 
- 	.30 15**********************************************************************:******::******************** ** ** ** ** ** *** 

.50 6********************************************* 
- 	.70 6********************************************* 
- 	.90 3*********************** 
- 	1.10 0* 
- 	1.30 0* 
- 	1.50 0* 
- 	1.70 0* 
- 	1.90 0* 
- 	2.10 0* 

ARITHMETIC AVERAGE IS 	-.08 

SEMI-VARIOGRAM IN 	VERTICAL DIRECTION 
1 72 .16 .14+ + * 
2 63 .16 .15+ + * 
3 54 .20 .17+ + 
4 45 .23 .18+ 
5 36 .23 .20+ * 
6 27 .26 .21+ * 
7 18 .31 .22+ 
8 9 .23 .24+ *+ 
RMS = 22.0 PERCENT 

SEMI-VARIOGRAM IN HORIZONTAL DIRECTION 
1 72 .18 .13+ + * 
2 63 .18 .15+ + * 
3 54 .14 .16+ * + 
4 45 .18 .17+ + 	* 
5 36 .25 .19+ + 
6 27 .12 .20+ * + 
7 18 .13 .21+ * + 
8 9 .24 .22+ 
RMS = 28.3 PERCENT 



MEREDEH 310 LEVEL 

SIMULATION NO. 1 SYSTEM NO. 2 NSEED = 1235 

BEFORE CONDITIONING (I.E. SHOULD FIT MODELS) 
3 	 XXXXXXXXXXXXXXXXXXXX 
1 XXXXXXXXXXXXX 
SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
1 XXXXXXXXXXXXX 
3XxTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
4XXXX*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
5WOCCACCXXXICICKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
4XXCCCXXXXXXXX***.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
6*XC:CCOCCI XXXXXXXXXXXXX.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
9 	 + + + + • XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.7.XXZXXXXX:ICCMXXXXXX;ICC 

g 	 WICK*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
3 	 XXa XXX.XXXXXXXXXXXXXXXXXX 

KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
6 	 XXXXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
3 	,:XX.XXXXXXXXXXXXXXXXXXXXXX 

X 
23XX 	 XXXXXXX 

ARITHMETIC AVERAGE I5 	-.17 

SEMI-VARIOGRAM IN 	VERTICAL 	DIRECTION 
1 72 1.12 	1.26+ X + 
2 63 1.43 	1.32+ + * 
3 54 .99 	1.38+ X + 
4 45 1.29 	1.44+ * + 
5 36 1.40 	1.50+ X + 
6 27 .89 	1.56+ * + 
7 18 1.61 	1.61+ + 
6 9 2.34 	1.67+ + 
RMS = 23.9 PERCENT 

SEMI -VARIOGRAM IN HORIZONTAL DIRECTION 
1 72 1.45 	1.25+ + X 
2 63 1.27 	1.30+ X+ 
3 54 1.25 	1.36+ * + 
4 45 1.29 	1.41+ * + 
5 36 1.44 	1.16+ X+ 
6 27 1.95 	1.51+ X 
7 18 1.25 	1.56+ 
8 9 .87 	1.61+ X 
RMS = 21.7 PERCENT 

- -2.10 
- -1.90 
- -1.70 
- -1.50 
- -1.30 
- -1.10 
- -.90 
- -.70 
- -.50 
- -.30 
- -.10 

	

- 	.10 

	

- 	.30 
- .50 
- .70 

	

- 	.90 
- 1.10 2 
- 1.30 
- 1.50 2 
- 1.70 3 	  XXXX 

- 1.90 1*:**:claaccim 
- 2.10 	 X1^XXXXXXXX.XXXXX =cm** 

X 



AFTER CONDITIONING BEFORE TAKING EXP 
- -2.10 16*xx*xxx*xxx**xxxx*xxxxxxx**xxx**xxxxxxxx*xxx***xxxxxxxxx*xxx***x*x*xxx*xxxx*,cr.xx==xxxxxxxx**xxxxxxxxxxcxxxxxx 
- -1.90 5**xxx*x********x**xxx******x***x*** 
- -1.70 2***xxxxx****xx 
- -1.50 5*xx**xxx****xxxxxxxx*******x*x**xxx******* 
- -1.30 4x*xxx**xxxxxx**xxx***x****** 
- -1.10 5***xxx*Zxxxxx**x*x*zxxxxxx***x***** 
- -.90 5xxx*****x****xxxxxxx**xxxx*4xxxxxxxxxx*x** 
- -.70 7xxxx*xxxx**xxxxxxxx*****x*xxx***xxxx***xxxx*****x 
- -.50 7xxxx****xxx*x*x*x*******xxx***xxx*****x*x**x***** 
- -.30 5xx*xxxx**x**xxx**x*******xxxxxx***x 
- -.10 3xxx**xx*xx*xx*****x** 
- .10 4xxxxxxx**xxxxxzxxz**x******* 
- .30 0* 
- .50 -xxx*********** 
- .70 0* 
- .90 0* 
- 1.10 2x**xx***x*x*** 
- 1.30 4xx**x*********x**x**x******* 
- 1.50 2xxxx******x**x 
- 1.70 0* 
- 1.90 j*XZX*x* 
- 2.10 0* 

ARITHMETIC AVERAGE I5 -1.03 

SEMI- VARIOGRAM IN 	VERTICAL DIRECTION 
1 72 1.18 	1.26+ * + 
2 63 1.53 	1.32+ * 
3 54 1.04 	1.38+ 
4 45 1.36 	1.44+ * + 
5 36 1.44 	1.50+ 
6 27 1.04 	1.56+ * 
7 18 1.66 	1.61+ 
8 9 2.23 	1.67+ 
RMS = 19.9 PERCENT 

SEMI -VARIOGRAM IN HORIZONTAL DIRECTION 
1 72 1.58 	1.25+ + * 
2 63 1.40 	1.30+ + * 
3 54 1.46 	1.36+ 
4 45 1.68 	1.41+ 
5 36 1.57 	1.46+ 
6 27 2.03 	1.51+ 
7 18 1.37 	1.56+ 
8 9 .75 	1.61+ 
RMS = 26.0 PERCENT 



AFTER TAKING EXPONENTIAL5 
0 0* 

.20 	0* 

.40 2***xx**xx*x*x*** 

.60 14*xx*x**x**x**x**xxx*xxxx****xxx*xxxx**x**xx*x**xx*xxxx**xx*xx**xxxxxxxx*xxx*xxx*x**xx***x*xx*x*x*****x***x****x 
- .80 14******xxx*x*x***xxxx***xxxx*x*xxxx**xxx*x*x*xxxxxxxxxxxxxxxxxx*x**xxxxxxxx*xxxx*x***xxx*xxx***xxxx*****xxxx**** 
- 1.00 14xx****x*x**x*xxx**x*xxxxxxxx***xxxxxxxx*xxxx*:xxx*xxxxxxxx*xxxxxx*xxxx*xxxxxxxxx**xxxx*xxx***xxx****xxxxx******x 
- 1.20 13x**x*xxxxxxxx*xxxx***xxx*xxx*x****xxxx**xxxx***xxxxxxxxx*x*xxxx****xxxx****xxxx**xxx***x*xxxx****xxxx** 
- 1.40 10**xxx****x**xxxx*xxxxxxxx*xxxx*xxxx*xxx*xxxx********xxxxxxxxx*xxxx******xxxx*** 
- 1.60 5*x****x*********x******xxxx***xxxx***x*x 
- 1.80 2****x*xxxx****** 
- 2.00 4*****xxx*xxxx**xxxx****x******xx 
- 2.20 1***x**** 
- 2.90 1******x* 
- 2.60 1******** 
- 2.80 0* 
- 3.00 0* 
- 3.20 0* 
- 3.40 0* 
- 3.60 0* 
- 3.80 0* 
- 1.00 0* 
- 4.20 0* 

ARITHMETIC AVERAGE IS 	1.02 

1 	72 
2 63 
3 54 
4 45 
5 36 
6 27 
7 	18 
8 	9 
RMS = 

SEMI-VARIOGRAM IN VERTICAL 	DIRECTION 
.19 .14+ + * 
.19 .15+ + * 
.19 .17+ + * 
.24 .18+ + * 
.23 .20+ + * 
.26 .21+ + * 
.31 .22+ + * 
.29 .24+ + * 

27.7 PERCENT 

SEMI-VARIOGRAM IN HORIZONTAL DIRECTION 
1 	72 
2 63 
3 54 
4 45 
5 36 
6 27 
7 	18 
8 	9 
RM5 = 

.19 .13+ + * 

.18 .15+ + * 

.15 .16+ * + 

.19 .17+ + * 

.25 .19+ + * 

.14 .20+ * + 

.17 .21+ * + 

.25 .22+ + x 
26.2 PERCENT 



0 
- 	.50 
- 	1.00 

0x 
52***x****x:xxx*x*******xx***xx****xxxxxx*x;xxxxxx***x*xxxx*x****xxx*xxx*xxxxxxx*x**********x***xxxxxxxxxxxxx 
16********************************** 

- 	1.50 2**xxx 
- 	2.00 2***** 
- 	2.50 Ox 
- 	3.00 2xx*x* 
- 	3.50 2xxx** 
- 	4.00 3x****** 
- 	4.50 1*** 
- 	5.00 or 
- 	5.50 Ox 
- 	6.00 or 
- 	6.50 lx*x 
- 	7.00 Ox 
- 	7.50 Ox 
- 	8.00 Ox 
- 	8.50 0* 
- 	9.00 0* 
- 	9.50 Ox 
- 10.00 or 
- 10.50 Ox 

ARITHMETIC AVERAGE IS .76 

SEMI-VARIOGRAM IN 	VERTICAL DIRECTION 
1 72 1.07 	1.26+ x + 
2 63 1.28 	1.32+ x + 
3 54 1.23 	1.38+ * + 
4 45 1.35 	1.44+ * + 
5 36 1.35 	1.50+ x + 
6 27 1.30 	1.56+ * + 
7 18 1.02 	1.61+ * 
8 9 1.01 	1.67+ x 
RMS = 21.5 PERCENT 

SEMI-VARIOGRAM IN HORIZONTAL DIRECTION 
1 72 .95 	1.25+ x 
2 63 1.17 	1.30+ 
3 54 1.26 	1.36+ X + 
4 45 1.36 	1.41+ 
5 36 1.64 	1.46+ x 
6 27 1.88 	1.51+ 
7 18 2.47 	1.56+ 
8 9 2.46 	1.61+ 
RMS = 31.1 PERCENT 

FOR ALL 	81. SIMULATED SAMPLES OF SIMULATION NO. 1 
LW LA 
1.02 	.76 

x 



- 147 - 

Appendix 13 : Program SIM2BLO 

The listing of the program SIM2BLO is shown overleaf. 

The required input to the program is :- 

TITLE - A title phrase of up to 80 characters. 

IY1 IX1 IY50 IX50 - The Easting and height above 

datum of the most Westerly and most Easterly 

samples on the lower level (335) drive. 

IY51 IX51 IY100 IX100 - The Easting 	and 	height 

above datum of the most Westerly and most Easterly 

samples on the upper level (310) drive. 

F - An array of 6 stores. The first 3 stores 

contain the range, sill, and nugget effect of the 

semi-variogram model of the first system (lode 

widths). The second set of 3 stores contains the 

same information for the second system (lode 

assays) . 

IFN - A number which defines whether a sample's 

measurements are in imperial (IFN=1) or metric 

(IFN=2) units. 

D1 - The sample lode width measurement. 

D2 - The sample lode assay measurement. 

N2 - The number of simulations to be considered. 

An example of the output of the program is shown overleaf. 



00100 PROGRAM SIM2BLO(INPUT=131B,TAPE3=INPUT,TAPE7, 
00110+TAPE1=131B,TAPE2=131B,TAPE4=131B) 
00120C 
00130C TAPE1=INPUT FOR WL SIMULATED VALUES 
00140C TAPE2=INPUT FOR VL SIMULATED VALUES 
00150C TRPE3=INPUT FOR GENERAL DATA AND DEV. DATA 
00160C TAPE4=TEMPORARY STORE FOR KRIGING WEIGHTS 
00170C TAPE7=OUTPUT FOR SIMULATION AVERAGE ETC. 
00180C 
00190C 	DEV. DATA 
00200C 	 -47M. 310FM. LEVEL 
00210C 	+ 	+ 
00220C 	+ 	+ 
00230C 	+ 	+ 
00240C 	111111114123.5M. 
00250C 	+ 	+ 
00260C 	+ 	+ 
002700 	+ 	+ 
00280C   -0M. 335FM. LEVEL 
00290C 	DEV. DATA 
00300C 	0 	25 	50 	75M. 
00310C 
003200 THE BLOCK IS REPRESENTED BY A 16=8 GRID (I.E.3M. GRID WITH 
00330C POINTS AT 26.56,48.44,3.13 AND 1.47,45.53,2.94) 
00340C THE 100 SIMULATED DEVELOPMENT DATA POINTS ON THE 2 LEVELS ARE SITED 
00350C EQUALLY EVERY 75/49=1.53M.=5.02FT. (I.E. POINTS ARE AT 
00360C 0.0,75.0,1.53). 
00370C 100 ACTUAL DEVELOPMENT DATA SAMPLES ARE READ IN AND ASSIGNED THESE 
00380C SAME LOCATIONS (I.E. THERE MAY BE A SMALL POSITIONAL ERROR). 
00390C THE CONDITIONISATION PROCESS MUST USE THE SAME SAMPLE PATTERN OF 
00400C SIMULATED AND ACTUAL DEVELOPMENT DATA FOR FINDING 'SK' AND 'AK' 
00410C 
00420 COMMON X(100) ,Y(100) ,WL (2,100) ,VL (2,100) 
00430 COMMON DATA (2 , 100) , SDATA (2 , 100) 
00440 COMMON TITLE (8) , F (2 , 3) ,NEAR (18) , D (18) , W (8) , V  (8) 
00450 COMMON LIFT(204) , 5WL (8) , SVL (8) 
00460 READ (3, 1000) (TITLE (K) , K=1,8) 
00470 1000 FORMAT(1X,8A10) 
00480 READ(3,1006)IY1,IX1,IY5O,IX50,IY51,IX51+IY100,IX100 
00490 1006 FORMAT (1 X , 6 I 4) 
00500 READ(3,1001) ((F(NV,K) ,K=1,3) ,NV=1,2) 
00510 1001 FORMAT(1X,3F6.3) 
00520 	ITE (7, 1000) (TITLE (K) , K=1 , 8) 
00530 WRITE(701006)IY1,IX1,IY50,IX50,IY51,IX51,IY100,IX100 
00540 WRITE(7,1001) ((F(NV,K) ,K=1,3) ,NV=1,2) 
00550 N=0 
00560 XLEVEL=0.0 
00570 DIFF=75.0/49.0 
00580C 
00590 DO 10 1=1,2 
00600 EAST=-OIFF 
00610 DO 11 J=1,50 
00620 READ(3,1002) IFN,D1,D2 
00630 1002 FORMAT(9X,I1,F5.2,F7.2) 
00640 IF(D1.EQ.0.0) GO TO 11 
00650 IF (IFN.EQ.2) GO TO 12 
00660 D1=0.30482(FLOAT(IFIX(2.0*01+0.5))/2.0) 
00670 IF (D2.NE.99. 11) D2=0.043*(FLOAT(IFIX((D2+2.0) /2.0)) *2.0-1.0) 
00680 IF(D2.EQ.99.11) D2=0.043=0.5 
00690 GO TO 13 
00700 12 D1=FLOAT(IFIX(5.0X01+0.5)) /5.0 
00710 IF (D2. NE.99. 11) D2=FLOAT (IFIX (20.0=D2+0.5)) /20.0 
00720 IF(D2.EQ.99.11) 02=0.025 
00730 13 N=N+1 



00740 SDATA (1 , N) =D 1 
00750 SDATA (2, N) =D2 
00760 DATA (1 , N) =AL OG (D 1) 
00770 DATA (2, N) =ALOG (D2) 
00780 X (N) =XLEVEL 
00790 Y (N) =EAST+FLOAT (J) *'RIFF 
00800 11 WRITE (7,2002) N,D1,D2 
00810 2002 FORMAT(2X,I4,F5.2,F7.2) 
00820 10 XLEVEL=47.0 
00830C 
00840 SINTX=47.0/16.0 
00850 SINTY=25.0/8.0 
00860 S1SIGK2=S2SIGK2=0.0 
00870C 
00880 DO 15 I=1,16 
00890 XI=FLOAT(I-1)*SINTX+0.5*SINTX 
00900 DO 15 J=1,8 
00910 YJ=25.0+FLOAT(J-1)*SINTY+0.5*SINTY 
00920 CALL SEARCH(X,Y,N,F(1,1) ,F(1,2) ,F(1,3) ,XI,YJ,SIGK2) 
00930 S1SIGK2=S1SIGK2+SIGK2/128.0 
00940 CALL SEARCH(X,Y,N,F(2, 1) ,F(2,2) ,F(2,3) ,XI,YJ,SIGK2) 
00950 S2SIGK2=S2SIGK2+SIGK2/128.0 
00960 15 CONTINUE 
00970C 
00980 ENDFILE 4 
00990 WRITE(7,3004) 
01000 3004 F3Rr T (1H1/////10X, * DATA WL VS. DATA VL*/11X, 19 (1H-) // 
01010+32X, *DATA WL*) 
01020 DO 88 I=1,N 
01030 X(I) =SDATA (1, I) 
01040 88 Y (I) =SDATA (2, I) 
01050 CALL PLOTY(X,Y,N) 
01060 READ(311008)N2 
01070 1008 FORMAT(1X,I3) 
01080 WRITE(7,2006)SISIGK2,S2SIGK2 
01090 2006 FORMAT(///SX,KAVERAGE SIGK2 OVER BOTH BLOCKS FOR*/, 
01100+10X,2  WL 	VL */,10X,2F6.4) 
01110 CALL GETPF(SHTAPEI,7NWSIM100,7HUMCKA07) 
01120 CALL GETPF(5HTAPE2,7NVSIM100,7HUHCKA07) 
01130 WRITE (7,2000) 
01140 2000 FORMAT(1H1////,18X,*LOWER BLOCK 	UPPER BLOCK*, 
01150+/5X,*SIMULATION%K,5X,*WL VL*,9X,*1-4L VL*/5X,40(1H-)) 
01160 DO 50 I=1,20 
01170 DO 50 J=1,4 
01180 50 LIFT(I,J)=0 
01190 SR=ST=0.0 
01200 RECN2=1.0/FLOAT(N2) 
01210C 
01220 DO 101 NSIM=1,N2 
01230 SUMXY=SUMX=SUMY=SUMX2=SUMY2=0.0 
01240 READ (1,1003) (SDATA (1,M) , M=1,100) 
01250 READ (2, 1003) (SDATA (2, M) , M=1 , 100) 
01260 1003 FORHAT(1X,10F6.0) 
01270 DO 20 M=1,100 
01280 SDATA (1, M) =SDATA (1 , M) /1000.0 
01290 SDATA (2,M =SDATA (2,M) /1000.0 
01300 20 CONTINUE 
01310 REWIND 4 
01320 NB=1 
01330 NT=B 
01340C 
01350 DO 19 NBLOCK=1,2 
01360 SUMVL=SUMVL=0.0 
01370C 



01350 DO 16 I=NB,NT 

01390 INB=I-NB+1 

01400 SWL (INB) =SVL (INB) =0.0 

01410 READ (1,1003) (IA (K) ,K=1+8) 

01420 READ (2, 1003) (V (K) ,K=1,8) 

01430 DO 14 J=1,8 

01440 READ (4,1004) NS 

01.450 READ (4,1005) ( (NEAR (K) , D (K)) , K=1, NS) 

01460 AK=SK=0.0 

01470 DO 17 K=1,NS 

01480 SK=SK+D (K) *SDATA (1 NEAR (K) ) 

01490 17 AK=AK+D (K) *DATA (1 , NEAR (K) ) 

01500 WLL=  (W (J) /1000 .0-SK+AK) 

01510 WLL=EXP(WLL) 

01520 W (J) =WLL 

01530C 14(J) =.13100068E+05-.15468835E+01*YJ-.25478477E+02*XI+ 

01540C+.35826833E-01*WLL+.97820590E-04*YJ*YJ+.16512423E-01*XI *XI + 

01550C+.16650438E+00*LLL *WL L+.20147847E-02*YJ*XI+ 

01560C+.15368569E-07*YJ*YJ*YJ-.35656412E-05*XI*XIXXI- 

01570C+.67110721E-07*YJ*YJXXI-.65576605E-06*YJ*XI*XI 

01580C IF(W(J) .LT.WLL) W(J)=WLL 

01590 5WL (INB) =SWL (INB) +W (J) 

01600 SUMX=SUMX+W(J) 

01610 SUMX2=SUMX2+W (J) *W (J) 

01620 READ (4,1004) NS 

01630 1004 FORMAT (9X,I2) 

01640 READ (4, 1005) ( (NEAR (K) , D (K)) , K=1 , NS) 

01650 1005 FORMAT(I2,F6.4,8(I3,F6.4)/I2,F6.4,8(I3,F6.4)) 

01660 AK=SK=0.0 

01670 DO 18 K=1, NS 

01680 SK=SK+D (K) *SDATA (2, NEAR (K) ) 

01690 18 AK=AK+D (K) DATA (2, NEAR (K) ) 

01700 VLL=EXP (V (J) /1000.0-SK+AK) 

01710 IF(VLL.GT.100.0) VLL=100.0 

01720 V (J) =VLL 

01730C V(J)=.65726173E-01+.61670581*VLL-.86895918E-02XVLL*VLL 

01740C IF (V (J) .LT. (WLL*VLL/W (J))) V (J) =WLL*VLL/W (J) 

01750 SVL (INB) =SVL (INB) +V (J) 

01760 SUMXY=SUMXY+W (J) *V (J) 

01770 SUMY=SUMY+V (J) 

01780 14 SUMY2=SUMY2+V (J) *V (J) 

01790 SUMWL =SUMWL +SWL (INB) 

01800 SUMVL=SUMVL+SVL (INB) 

01810 16 CONTINUE 

01820C 

01830 VL (NBLOCK,NSIN) =SUMVL/64.0 

01840 WL (NBLOCK I NS IM) =SUMWL/64. 0 

01850 DO 21 NPAY=1,20 

01860 PAY=FL OAT (NPAY) /10.0 

01870 I=-1 

01880 22 I=I+1 

01890 23 I=I+1 

01900 IF (I.GT.6) GO TO 21 

01910 IF ((SVL (I) /8.0) . GE . PAY) GO TO 23 

01920 IF ((SVL (I+1) /8.0) .GE.PAY) GO TO 22 

01930 SN=S3=0.0 

•01940 DO 24 J=I,8 

01950 SN=SN+8.0 

01960 24 S3=S3+SVL (J) 

01970 IF ((53/SN) . GE . PAY) GO TO 25 

01980 L IFT (NPAY, 2HBLOCK) =L IFT (NPAY, 2XNBL OCK) +1 

01990 GO TO 21 

02000 25 L IFT (NPAY,2*NBLOCK-1) =L IFT (NPAY, 2*NBLOCK-1) +1 

02010 21 CONTINUE 



C2J20 NB=9 
02030 NT=16 
02040 19 CONTINUE 
02050C 
02060 IRITE(7,2001)NSIM,LL (1,NSIM) ,VL (1,NSIM) ,WL (2,NSIM) ,VL (2,NSIM) 
02070 2001 FORMAT(9X,I3,6X,F5.2,1X,F5.2,5X,F5.2,1X,F5.2) 
02080 T=SUMXY-(SUMNXSUMY/128.0) 
02090 TT=T/SART(CSUMX2-SUMXXSUMX/128.0)*(SUMY2-SUMY*SUMY/128.0)) 
02100 ST=ST-+-RECN2*ABS (TT) XSQRT (126.0) /SART (1 .0-TT*īT) 
02110 SR=SR+RECN2*TT 
02120 IF(NSIM.NE.65) GO TO 101 
02130 CALL GETPF(5HTAPE1,7HWEBLOCK,7HUNCKA07) 
02140 CALL GETPF(5HTAPE2+7HVLBLOCK,7HUMcKA07) 
02150 101 CONTINUE 
02160C 
02170 SDMWL=SUMXL=SUM.L2=SUMVL2=0.0 
02180 DO 70 NSIM=1,N2 
02190 SUM-L=SUMW'L+4L(1,NSIM) 
02200 SUMVL=SUMVL+VL (1 , NS IM) 
02210 SUMWL2=SUMWL2+WL(2,NSIM) 
02220 SUMVL2=SUMVL2+VL(2,NSIM) 
02230 70 CONTINUE 
02240 SUMVL =SUMVL XRECN2 
02250 SUM,L=SUKLLXRECN2 
02260 SUMVL2=SUMNL2XRECN2 
02270 SUMLL 2=SUMWL2XRECN2 
02280 WR ITE (7 , 2003) SUM6L , SUMVL , SUM6JL 2 , SUMVL 2 
02290 2003 FORMAT(9X,36(1H-)/9X19HAVERAGE ,F5.2,1X,F5.2,5X,F5.2,1X,F5.2//// 
02300+16X,19(1H-)/16X,1H!,3X,xLOWER/UPPER*,3X,*! 2 NON-PAY LIFTS WHEN%K, 
02310+X REST OF BLOCK IS*/10X,25(1H-)/ 
02320+10X,*! PAY ! P/P P/N N/P N/N ! P/ N/ 	/P /N*/10X,25(1H-)) 
02330 DO 72 NPAY=1,20 
02340 PAY=FLOAT(NPAY3/10.0 
02350 NYESYES=NYESNO=NNOYES=NNON0=0 
02360 DO 71 NSIM=1,N2 
02370 IF (VL (1, NS IM) . GT .PAY. AND . VL (2 , NS IM) . GT. PAY) NYESYES=NYESYES+1 
02380 IF (V'L (1,NSIM) .GT.PAY.AND.VL (2,NSIM) .LE.PAY) NYESNO=NYESNO+1 
02390 IF (VL (1, NS IMG . LE. PAY. AND. VL (2, NS IM) . GT. PAY) NNOYES=NNOYES+1 
02400 71 IF(VL (1,NSIM) .LE.PAY.AND.VL (2,NSIM) .LE.PAY) NNONO=NNON0+1 
02410 72 WRITE(7,2004)PAY,NYESYES,NYESNO,NNOYES,NNONO, (LIFT(NPAY,J),J=1,4) 
02420 2004 F0RMAT(10X,2H! ,F3.1,2X,4(1X,I3),2H !,4(1X,I3)) 
02430 WRITE(7,2005)N2,SR,ST 
02440 2005 FORMAT(////10X,XAVERAGE CORR. COEFF. BETWEEN WL AND VL*, 
02450+* OVER *,I3,X SIMULATIONS = X,F6.4/10X,*AVERAGE T-TEST VALUE = *,F5.2) 
O2460C 
02470 WRITE(7,3000) 
02460 3000 FORMAT(1H1/////10X,XWL LOWER VS. VL LOWER*/10X,21(1H-)// 
02490+31X,8HWL LOWER) 
02500 DO 30 I=1,N2 
02510 X(I)=WL(1,I) 
02520 30 Y(I)=VL(1,I) 
02530 CALL PLOTY(X,Y,N2) 
02540 WRITE (7, 3001) 
02550 3001 FORMAT(1H1/////10X,XWL UPPER VS. VL UPPERX/10X,21(1H-)// 
02560+31X,8HWL UPPER) 
02570 DO 31 I=1,N2 
02580 X (I) =WL (2, I) 
02590 31 Y(I) =VL (2, I) 
02600 CALL PLOTY(X,Y,N2) 
02610 WRITE(7,3002) 
02620 3002 FORMAT(1H1/////10X,n4L LOWER VS. WL UPPERX/10X,21(1H-)// 
02630+31X,8HWL LOWER) 
02640 DO 32 I=1,N2 
02650 X(I)=WL(1,I) 



02660 32 Y(I)L(2I) 
02670 CALL PLOTY(X,Y,N2) 
02680 WRITE(7,3003) 
02690 3003 FORMAT(1H1/////10X,*VL LOWER VS. VL UPPER=K/10X,21(1H-)// 
02700+31X,8HVL LOWER) 
02710 DO 33 I=',N2 
02720 X (I) =VL (1 , I) 
02730 33 Y (I) =vL (2, I) 
02740 CALL PLOTY(X,Y,N2) 
02750C 
02760 ENDFILE 7 
02770 CALL REPLACE(SHTAPE7,7HSIM2OUT) 
02780 STOP 
02790 END 
0280064444444+441 4441114441411+++++++++++++++++++++ 
02810C 
02820 SUBROUTINE SEARCH(X,Y,N,RANG,C,ENUG,XI,YJ,SIGK2) 
02830 DIMENSION X(100) ,Y(100) 
02840 DIMENSION A(19,19) , D (19) , DD (19) 
02850 DIMENSION LB (100) ,NEAR (18) ,DISTMN (18) 
02860 THIRTY=ASIN (0.5) 
02870 HALF=THIRTY/60.0 
02880 SIXTY=THIRTY*2.0 
02890 XNINETY=THIRTY*3.0 
02900 ONE80=THIRTY*6.0 
02910 THREE60=THIRTY*12.0 
02920C 
02930 RANGE=RANG 
02940 RADIUS=RANGE 
02950 40 NS=0 
02960 DO 12 M=1,N 
02970 MM=M 
02980 XDIFF=ABS (X(M) -XI) 
02990 YD IFF=ABS (Y (M' -YJ) 
03000 IF(XDIFF.LT.0.05.AND.YDIFF.LT.0.05) GO TO 50 
03010 IF (YDIF F. GT. RADIUS) GO TO 12 
03020 IF(XDIFF.GT.RADIUS) GO TO 12 
03030 DIST=SORT(XDIFFKIFF+YDIFF*YDIFF) 
03040 IF (D IST. GT. RAD IUS) GO TO 12 . 
03050 NS=NS+1 
03060 LB(NS)=M 
03070 12 CONTINUE 
03080 IF (NS. GT. 4) GO TO 41 
03090C IF THERE ARE 4 OR LESS POINTS WITHIN THE SEARCH CIRCLE 
03100C THE RADIUS OF THE SEARCH CICLE IS INCREASED BY HALF THE RANGE 
03110 42 RADIUS=RADIUS+0.5*RANGE 
03120 GO TO 10 
03130C 
03140 41 DO 20 M=1,18 
03150 NEAR(M)=-99 
03160 20 DISTMN(M)=100000.0 
03170C THE DATA POINTS WITHIN THE SEARCH CIRCLE ARE SORTED. THE NEAREST 
03180C 3 POINTS IN EACH SWEEP OF 61 DEGREES CENTRED ON BEARINGS 0,300,60 
03190C ARE TAKEN. THEREFORE THERE CAN BE NO MORE THAN 18 POINTS IN 
03200C THE KRIGING SYSTEM. 
03210 DO 24 K=1,NS 
03220 XD IFF= (X (LB (K)) -XI) 
03230 YDIFF= (Y (LB (K)) -YJ) 
03240 ANGLE=ATAN(YDIFF/XDIFF) 
03250 IF(XDIFF.E0.0.0) ANGLE=ONE80-XNINETY*YDIFF/ABS(YDIFF) 
03260 IF(XDIFF.LT.0.0) ANGLE=ANGLE+ONE80 
03270 IF(ANGLE.LT.0.0) ANGLE=ANGLE+THREE60 
03200 ANGLE=ANGLE+THIRTY 
03290 IF(ANGLE.GT.THREE60) ANGLE=ANGLE-THREE60 



03300 DO 24 M=1,6 
03310 IF (ANGLE. LT. (SIXTY-KFLOAT (M-1) -HALF)) GO TO 24 
03320 IF (ANGLE .GT (SIXTY*FLOAT CM) +HALF)) GO TO 24 
03330 DIST=SQRTGXDIFF*XRIFF+YDIFFxYDIFT) 
03310 IF (DIST. GE. DIS1TN (3*M)) GO TO 24 
03350 IF CD IST .GE. DISTPTI (3*M-1)) GO TO 23 
03360 IF CD IST .GE.DISTMY (3*M--2)) GO TO 22 
03370 DIST11'1 C3xN =DISTMN (3x11-1) 
03380 NEAR (3*M) =NEAR (3*M-1) 
03390 DISTMl (3x1-1-1) =DISTMY (3*1-1-2) 
03400 NEAR (3xM-1) =NEAR C3311-2) 
03410 D ISTMV (31-2) =DIST 
03420 NEAR C3*11--2) =LB (K) 
03430 GO TO 24 
03410 22 DISTMN (3xM) =DISTM1 (3 M-1) 
03450 NEAR (3xM) =NEAR (34-r1--1) 
03960 DISTMN (311) =DIST 
03170 NEAR (311-1) =LB (K) 
03480 GO TO 24 
03490 23 DISTMN(3xM)=DIST 
03500 NEAR (3 -1) =LB (K) 
03510 24 CONTINUE 
03520C 
03530 NS=1 
03540 DO 29 N=1,18 
03550 DO 25 K=1,18 
03560C IF A POINT IS INCLUDED TWICE (I.E. IT IS IN THE 1 DEGREE 
03570C OVERLAP BETLEEN 2 SWEEPS) THEN ONE COPY IS REMOVED 
03580 25 IF (NEAR (K) . EQ . NEAR (M) . AND . K . NE . M) NEAR CM) =-99 
03590 IF (NEAR (M . EQ. -99) GO TO 29 
03600 NEAR (NS) =NEAR (M) 
03610 NS=NS+1 
03620 29 CONTINUE 
03630C 
03640C IF THERE ARE LESS THAN 4 POINTS (=5 EONS.) IN THE KRIGING SYSTEM 
03650C THE SEARCH CIRCLE RADIUS IS INCREASED AND THE SYSTEM RE-CALCULATED 
03660 IF(NS.LT.5) GO TO 42 
03670C 
03680 DO 13 K=1 NS-2 
03690 DO 13 L=K+1,NS-1 
03700 XD IFF= (X (NEAR (K) ) -X (NEAR (L)) ) 
03710 YDIFF= CY (NEAR (K) ) -Y (NEAR CL)) ) 
03720 DIST=SQRT(XDIFF*XDIFF+YDIFF*YDIFF) 
03730 13 A (K ,L) =GSPH CD IST, RANGE , C ,ENUG) 
03740 DO 17 K=2,NS-1 
03750 00 17 L=1,K-1 
03760 17 A(K,L)=A(L,K) 
03770 DO 14 K=1,NS 
03780 A (K NS) =A (N5,K) =1.0 
03790 14 A(K,()=0.0 
03800 DO 15 K=1,NS-1 
03810 XDIFF= CX (NEAR (K)) -XI) 
03820 YDIFF= (Y (NEAR (K)) -YJ) 
03830 DIST=SQRT (XDIFF*XDIFF+YDIFF*YDIFF) 
03840 15 D (K) =DD (K) =GSPH (DIST, RANGE, C, ENUG) 
03850 D (NS) =DD (NS) =1.0 
03860 CALL KARON (A,D,NS) 
03870 SIGK2=0(NS) 
03880 NS=NS-1 
03890 DO 10 N#1, NS 
03900 10 SIGK2=S IGK2+D (M) *DD CM) 
03910 WRITE (4, 4000) N5 , ( (NEAR (M) ,D (M)) , M1 , NS) 
03920C NEAR(1) OR NEAR(10) SHOULD NOT BE 100 SO SPACE CAN BE SAVED BY USING I2 
03930 4000 FORMAT(9X,I2,2(/I2,F6.4 ,8(13,F6.4))) 



03940 RETURN 
03950C 
03960C THE POINT BEING CONSIDERED IS A DATA POINT 
03970 50 LRITE (4,2001) MM 
03980 2001 FORMAT(9X,2H 1/1X,I2,6H1.0000) 
03990 SIGK2=0.0 
0400DC 
04010 RETURN 
04020 END 
04030C 	 
04040C 
0405DC 
04060 FUNCTION IROUND (X) 
04070 IROUND=IFIX (ABS (X) +0.5) 
04080 IF(X.LT.0.0) IROUND=—IROUND 
04090 RETURN 
04100 END 
04110C 	 
04120C 
04130C 
04140 FUNCTION GSPH(DIST,A,C,ENUG) 
04150 IF (D IST. GE . A) GO TO 10 
04160 X=DIST/A 
04170 GSPH= (C—ENUG) ;r  (1 .S*X-0.5xXa=X-gX) +ENUG 
04180 RETURN 
04190 10 GSPH=C 
04200 RETURN 
04210 END 
04220C 	 
04230C 
04240C 
04250 SUBROUTINE KARON(A,D,NPAR) 
04260 DIMENSION A(19,19) ,D(19) 
04270 TOL=0.000001 
04280 N=NPAR 
04290 DO 65 J=1,N 
04300 JY=J+1 
04310 BIGA=0. 
04320 DO 30 I=J,N 
04330 IF (ABS (RIGA) —ABS (A (I, J))) 35, 30, 30 
04340 35 BIGA=A(I,J) 
04350 IMAX=I 
04360 30 CONTINUE 
04370 IF (ABS (RIGA) —TOL) 10, 10,40 
04380 40 DO 50 K=J,N 
04390 SAVE=A (IMAX, K) /RIGA 
04400 A (IM1AX, K) =A (J, K) 
04410 A (J,K) =SAVE 
04420 50 CONTINUE 
04430 SAVE=D (IM1AX) /RIGA 
04440 D (IMA)) =D (J) 
04450 D(J)=SAVE  
04460 IF (J—N) 55170,55 
04470 55 DO 65 IX=JY,N 
04480 DO 60 JX=JY,N 
04490 60 A (IX, JXi =A (IX, JX) —A (IX, J) ;KA (J , JX) 
04500 65 D (IX) =D (IX) —D (J) *A (IX, J) 
04510 70 NY=N-1 
04520 DO 80 J=1,NY 
04530 IB=N—J 
04540 DO 80 K=1,J 
04550 IC=N—K+1 
04560 80 D (IB) =D (IB) —A (IB, IC) *D (IC) 
04570 RETURN 



04580 
04590 
04600 
04610 
046200 

10 WRITE(7,1000)NPAR 
1000 FORMAT(5X,*THERE I5 NO SOLUTION WITH 
STOP 
END 

NPAR =*,I3,* SO THERE*) 

04630 SUBROUTINE PLOTY(X,Y,N4) 
04640C PLOTS X(N2) ACROSS AGAINST Y(N2) 	DOWN 
04650 DIMENSION X(100) ,Y(100) 
04660 DIMENSION IP (53) , IG (53) 
04670 SUMX=SUMX2=SUMXY=SUMY2=SUMY=0.0 
04680 N2=N4 
04690 DO 20 I=1,N2 
04700 NCH=O 
04710 DO 21 J=1,N2-1 
04720 IF (Y (J) . LE . Y (J+1)) 	GO TO 21 
04730 T ī =Y (J) 
04740 Y (J) =Y (J+1) 
04750 Y(J+1)=TT 
04760 TT=X (J) 
04770 X (J) =X (J+1) 
04780 X(J+1)=TT 
04790 NCH=1 
04800 21 CONTINUE 
04810 IF (NCH . EQ . 0) 	GO TO 22 
04820 20 CONTINUE 
04830 22 WLMAX=-100000.0 
04840 DO 23 I=1,N2 
04850 SUMX=SUMD(+X(I) 
04860 SUM X2=SUM X2+X (I) *X (I) 
04870 SUM XY=SUM XY+X (I) *Y (I ) 
04880 SUMY2=SUMY2+Y (I) *Y (I) 
04890 SUMY=SUMY+Y(I) 
04900 23 IF(X(I) .GT.WLMIAX) 	WLMAX=X(I) 
04910 W1=t.LMAX/4.0 
04920 W2=1-LMAX/2.0 
04930 W3=WLM1AXX3.0/4.0 
04940 WRITE(7,2002)W1,W2,W3+WLMAX 
04950 2002 FORMAT (9X, 3H0 	, 4 (8X, F5.2) /8X, 2H+ ! , 4 (12 (1H+) , 1H !) ) 
04960 JSOFAR=1 
04970 VL INT=Y (N2) /40.0 
04980 DO 24 I=1,41 
04990 ABOVE=FLOAT(I)XVLINT 
05000 DO 25 J=1,53 
05010 25 IG (J) =1 
05020 IF (JSOFAR. GT. N2) 	GO TO 27 
05030 DO 26 J=1,N2-JSOFAR+1 
05040 IF (Y (JSOFAR) . GT. ABOVE) 	GO TO 27 
05050 XK=52.0* (X (JSOFAR)) / (WLMAX) 
05060 K= IROUND 0(K) +1 
05070 IG (K) =IG (K) +1 
05080 JSOFAR=JSOFAR+1 
05090 26 CONTINUE 
05100 27 DO 28 J=1,53 
05110 IF (IG (J) . GT. 11) 	IG (J) =1 1 
05120 GO TO (30,31,32,33,34,35,36,37,38,39,40) IG(J) 
05130 30 IP(J)=1H 
05140 GO TO 28 
05150 31 IP(J)=1H1 
05160 GO TO 28 
05170 32 IP(J)=1H2 
05180 GO TO 28 
05190 33 IP(J)=1H3 
05200 GO TO 28 
05210 34 IP(J)=1H4 



05220 GO TO 28 
05230 35 IP(J)=1H5 
05240 GO TD 28 
05250 36 IP(J)=1H6 
05260 GO TO 28 
05270 37 IP(J)=1H7 
05280 GO TO 28 
05290 38 IP(J)=1H8 
05300 GO TO 28 
05310 39 IP(J)=1H9 
05320 GO TO 28 
05330 10 IP (J) =1H* 
05310 28 CONTINUE 
05350 WRITE (7,2003) ABOVE, (IP (J) ,J=1,53) 
05360 2003 FORMAT(2X,F6.2,1H+,53A1) 
05370 24 CONTINUE 
05380 T=SUMXY- (SUMX*SUMY) /FLOAT (N2) 
05390 R=T/SARTC(SUMX2-SUMX*SUMX/FLOAT(N2))*(SUMY2-SUMY*SUMY/FLOAT(N2))) 
05400 T=R*SQRT (FLOAT (N2-2)) /SART (1 .0-R*R) 
05410 EJPIiE(7,2000)R,N2,T 
05420 2000 FORMAT(//////5X,*CORRELRTION COEFFICIENT BETWEEN THESE 2 *, 
05430+*SETS OF VALUES = *,F6.4/19X,*THIS GIVES A T-TEST VALUE ( *, 
05440+I3,* SAMPLES) = *,F5.2) 
05450 
05460 RETURN 
05470 ENO 



0 

DATA WL VS. DATA VL 

DATA WL 
1.52 

+++!++++++ 
2.29 	3.05 

++++++'++++++++++++! +'.++++++++++++!+++++++++ 
.76 

29+ 	1 	2 1 	x  9 2 6 1 	1 	2 	3 	2 
.58+ 1 	2 2 2 1 2 1 6 1 2 	2 
.87+ 1 3 2 1 
1.16+ 1 2 1 1 1 
1.45+ 1 2 1 
1.74+ 1 2 1 
2.02+ 1 1 1 2 
2.31+ 1 
2.60+ 1 1 1 
2.89+ 
3.18+ 1 
3.47+ 1 1 
3.76+ 
4.05+ 
4.34+ 
4.63+ 1 
4.92+ 
5.21+ 
5.49+ 1 
5.78+ 1 
6.07+ 
6.36+ 
6.65+ 
6.94+ 
7.23+ 
7.52+ 
7.81+ 
8.10+ 
8.39+ 
8.68+ 
8.96+ 
9.25+ 
9.54+ 1 
9.83+ 
10.12+ 
10.41+ 
10.70+ 
10.99+ 
11.28+ 
11.57+ 1 
11.86+ 

CORRELATION COEFFICIENT BETWEEN THESE 2 SETS OF VALUES = .0711 
THIS GIVES A T-TEST VALUE ( 100 SAMPLES) = 	.71 

AVERAGE SIGK2 OVER BOTH BLOCKS FOR 



SINULATI3N 
LONER BLOCK 

WL 	VL 
UPPER BLOCK 

WL 	VL 

1 1.75 1.12 2.17 1.03 
2 2.28 1.08 2.08 .96 
3 1.95 1.06 1.59 1.69 
4 2.12 .70 2.19 .69 
5 1.34 1.35 1.41 .71 
6 2.04 1.55 1.96 .89 
7 2.29 .64 2.63 .46 
8 1.28 .80 1.64 .52 
9 1.69 1.63 1.77 .65 

10 1.68 3.22 1.86 1.27 
11 1.37 1.71 1.20 1.17 
12 1.54 2.05 1.26 2.11 
13 1.57 1.49 1.70 1.32 
14 1.67 4.58 1.40 2.45 
15 1.54 .61 1.20 .58 
1E 1.76 2.03 1.22 .53 
17 1.41 .73 1.48 1.11 
18 1.86 .92 1.88 .81 
19 1.49 .96 1.41 .50 
20 1.49 1.92 1.58 .57 
21 1.62 .90 1.44 .62 
22 1.56 1.07 1.39 1.12 
23 1.77 1.39 1.43 .81 
24 1.22 1.26 1.77 .69 
25 3.14 4.27 2.39 2.06 
26 1.49 1.52 1.96 .83 
27 2.23 1.45 2.59 1.02 
28 1.94 1.90 2.30 1.48 
29 1.07 .68 .99 .57 
30 2.29 1.73 1.59 .76 
31 1.87 .71 2.18 .85 
32 1.51 .91 1.88 .85 
33 1.10 1.33 1."i4 .64 
34 1.64 4.10 2.25 .64 
35 1.42 .60 1.23 .28 
36 2.19 3.28 1.82 1.45 
37 1.37 1.83 1.38 .45 
38 1.57 1.07 1.35 .73 
39 1.42 .77 1.56 1.23 
40 1.93 1.44 1.78 1.61 
41 2.01 1.11 2.77 2.43 
42 1.66 1.03 1.79 .69 
43 1.40 1.45 1.35 1.14 
44 1.44 1.29 1.86 .63 
45 1.36 1.26 1.44 1.14 
46 1.92 1.44 1.79 1.14 
47 1.34 1.44 1.70 .49 
48 1.17 1.49 1.50 1.33 
49 1.54 1.35 2.15 .54 
50 1.65 1.75 2.06 1.31 
51 1.19 .80 1.42 .72 
52 1.89 1.16 2.11 .49 
53 1.62 1.18 1.29 .70 
54 2.09 .94 2.10 .65 
55 1.98 1.46 1.92 1.48 
56 1.99 .94 1.58 1.09 
57 2.44 1.51 2.61 .92 



58 2.21 2.11 2.11 1.81 
59 1.17 1.08 1.42 .88 
60 1.64 1.46 1.79 .89 
61 1.66 .98 1.97 .73 
62 1.23 3.19 1.33 1.05 
63 1.35 1.09 1.47 .65 
64 1.28 2.87 1.75 .68 
65 1.27 .53 .96 .48 
66 1.83 1.86 1.88 1.40 
67 1.44 1.71 1.69 1.24 
68 1.28 2.38 1.78 1.06 
69 1.63 1.20 1.81 .70 
70 1.23 4.07 .96 .89 
71 1.78 2.01 1.96 .59 
72 1.62 .70 1.68 .97 
73 1.54 1.67 1.03 1.00 
74 2.06 2.81 2.33 .77 
75 1.61 1.00 1.51 .46 
76 1.51 1.32 1.25 .45 
77 1.92 2.74 2.45 2.04 
78 2.50 1.99 2.45 1.22 
79 1.66 .62 1.51 1.17 
80 1.50 1.12 1.38 .84 
81 1.98 .64 1.69 .67 
82 1.63 1.05 1.40 .79 
83 2.11 1.02 1.58 .64 
84 1.84 1.79 2.06 1.03 
85 1.60 .98 1.88 .65 
86 2.29 2.17 2.17 1.20 
87 1.32 2.05 1.29 .68 
88 1.95 1.22 2.26 .71 
89 2.15 1.31 1.82 1.82 
90 1.89 .57 1.86 .22 
91 1.36 1.21 1.90 1.06 
92 1.73 .63 2.08 .82 
93 1.37 1.28 1.11 1.17 
94 1.72 1.74 2.09 1.35 
95 1.64 1.94 1.87 .78 
96 2.67 2.27 3.07 1.11 
97 1.57 .78 1.64 .64 
98 1.58 1.56 1.15 1.26 
99 1.93 1.17 2.54 .57 
100 2.37 .98 2.85 2.57 

AVERAGE 1.71 1.51 1.77 .97 

2 NON-PAY LIFTS WHEN REST OF BLOCK 

P/ 	N/ 	/P 	/N 

L3WER/UPPER 	! 

PAY ! P/P P/N N/P N/N 	! 

! 	.1 100 0 0 0! 0 0 0 0 
.2 100 0 0 0! 0 0 1 0 
.3 98 2 0 0! 4 1 5 2 
.4 98 2 0 0! 7 3 24 2 
.5 90 10 0 0 	! 6 11 27 12 
.6 82 15 0 3 	! 8 13 31 24 
.7 63 27 2 8 	! 10 18 30 39 
.8 49 35 6 10 	! 9 25 22 57 
.9 40 42 4 14 	! 13 31? 17 68 
1.0 35 39 5 21 	! 14 41 18 70 

. 	1.1 27 37 6 30 	! 20 46 15 77 

IS 



1.2 19 39 4 38 16 55 14 82 
1.3 15 36 3 46 12 61 10 87 
1.4 10 35 4 51 12 65 8 89 
1.5 5 31 5 59 9 71 6 92 
1.6 5 27 5 63 9 76 6 92 
1.7 5 25 3 67 9 79 5 93 
1.8 5 19 3 73 7 83 6 93 
1.9 4 17 2 77 6 85 4 95 
2.0 4 14 2 80 7 86 4 95 

AVERAGE CORR. COEFF. BETWEEN WL AND VL OVER 100 SIMULATIONS = .0587 
AVERAGE T-TEST VALUE = 1.03 



WL LOWER VS. VL LOWER 

WL LOWER 
0 	.78 	1.57 	2.35 	3.14 
+!++++++++++++!++++++++++++!++++++++++++!++++++++++++'. 

.11+ 

.23+ 

.34+ 

.46+ 

	

.57+ 	1 	1 

	

.69+ 	1 	1 1 1 1 	1 	1 

	

.80+ 	1 11 11 	1 	1 

	

.92+ 	1 	1 1 

	

1.03+ 	 1 21 1 1 2 	1 

	

1.15+ 	1 1 12111 11 1 

	

1.26+ 	1 1 2 12 

	

1.37+ 	1 	12111 	1 

	

1.49+ 	 11 11 1 21 	1 

	

1.60+ 	1 	11 	1 	1 

	

1.72+ 	 11 1 1 

	

1.83+ 	 1 	11 1 	1 

	

1.95+ 	 1 1 1 1 

	

2.06+ 	 1 1 11 	1 

	

2.18+ 	 11 

	

2.29+ 	 1 

	

2.41+ 	1 
2.52+ 
2.63+ 

	

2.75+ 	 1 

	

2.86+ 	 1 

	

2.98+ 	1 
3.09+ 

	

3.21+ 	1 

	

3.32+ 	 1 	1 
3.44+ 
3.55+ 
3.66+ 
3.78+ 
3.89+ 
4.01+ 

	

4.12+ 	1 	1 
4.24+ 

	

4.35+ 	 1  
4.47+ 

	

4.58+ 	 1 
4.70+ 

CORRELATION COEFFICIENT BETWEEN THESE 2 SETS OF VALUES = .1632 
THIS GIVES A T-TEST VALUE i 100 SAMPLES) = 1.64 



WL UPPER VS. VL UPPER 

3.07 
+++++++++++! 

WL UPPER 
0 	.77 	1.53 	2.30 
+!+++++IIIII4+!++++++++++++!++++++++++++!+ 

.06+ 

.13+ 

.19+ 

.26+ 	 1 

.32+ 	1 

.39+ 

.45+ 	 1 

.51+ 	1 	1 	1 	1 	1 	1 1 

.58+ 	1 	11 	11 	1 1 

.64+ 	 1 	11 	1 	11 	1 

.71+ 	 2 	1 	1411 	11 

.77+ 	 12 	1 	1 	1 	1 

.84+ 	 2 	21 	1 

.90+ 	1 	11 	1 	11 	1 

.97+ 	 1 1 
1.03+ 	1 	1 	1 1 
1.09+ 	 1 	1 	1 	1 	1 
1.16+ 	 121 	1 1 
1.22+ 	11 	1 	1 1 
1.29+ 	1 	1 	1 	1 
1.35+ 	 1 	1 	1 
1.42+ 	 1 	1 
1.48+ 	 1 	1 
1.54+ 	 1 
1.61+ 	 1 
1.67+ 
1.74+ 	 1 
1.80+ 
1.87+ 	 1 	1 
1.93+ 
2.00+ 
2.06+ 2 
2.12+ 	1 
2.19+ 
2.25+ 
2.32+ 
2.38+ 
2.45+ 	 1 1 
2.51+ 
2.57+ 1 
2.64+ 

CORRELATION COEFFICIENT BETWEEN THESE 2 SETS OF VALUES = .2662 
THIS GIVES A T-TEST VALUE ( 100 SAMPLES) = 2.73 



WL LOWER VS. WL UPPER 

2.35 	3.14 
+!++++++++++++!++++++++++++!++++++++++++! 

0 
+!+ 

.78 
WL LOWER 

1.57 

.08+ 

.15+ 

.23+ 

.31+ 

.38+ 

.46+ 

.54+ 

.61+ 

.69+ 

.77+ 

.84+ 

.92+ 
1.00+ 1 11 
1.07+ 1 
1.15+ 1 
1.23+ 1 	11 	1 
1.30+ 11 	111 
1.38+ 1 	2 	11 
1.46+ 11 	11 	11211 
1.53+ 1 	11 	2 
1.61+ 11 11 1 1 
1.69+ 1 	11 
1.76+ 1 11 	1 	1 1 
1.84+ 11 	22 2 2 
1.92+ 111 	21 12 
1.99+ 1 	1 1 11 
2.07+ 1 1 
2.15+ 11 1 1 11 
2.22+ 1 	1 1 1 1 
2.30+ 1 2 
2.38+ 1 
2.45+ 1 1 1 
2.53+ 
2.61+ 1 1 
2.68+ 1 1 
2.76+ 
2.84+ 1 
2.91+ 1 
2.99+ 
3.07+ 1 
3.14+ 

CORRELATION COEFFICIENT BETWEEN THESE 2 SETS OF VALUES = .6965 
THIS GIVES A T-TEST VALUE ( 100 SAMPLES) = 9.61 



vL LOWER VS. VL UPPER 

3.44 	4.58 
+++!+++++! 

VL LOWER 
0 	1.15 	2.29 

++ +!++ 	+++++!++++++++++++!++++++++++++++ 
.06+ 
.13+ 
.19+ 
.26+ 	1 
.32+ 	1 
.39+ 
.45+ 	1 
.51+ 	11 	2 	1 	11 
.58+ 	111 	1 	1 	11 
.64+ 	11 	1 	2 	1 1 
.71+ 	11 	2212 	1 	1 	1 
.77+ 	1 	11 	11 	1 	1 
.84+ 	1 	1 	1 	11 	1 
.90+ 	1 	1 	11 	11 1 
.97+ 	1 	1 
1.03+ 	1 	1 	1 	1 
1.09+ 	1 	1 	1 	1 1 
1.16+ 	1 	1 	1 	2 	1 
1.22+ 	1 	1 	1 	1 	1 
1.29+ 	1 	11 1 
1.35+ 	2 	1 
1.42+ 	11 
1.48+ 	 1 1 
1.54+ 	1 
1.61+ 	1 
1.67+ 
1.74+ 	1 
1.80+ 
1.87+ 	1 	1 
1.93+ 
2.00+ 
2.06+ 	 1 1 
2.12+ 	 1 
2.19+ 
2.25+ 
2.32+ 
2.38+ 
2.45+ 	1 1 
2.51+ 
2.57+ 	1 
2.64+ 

CORRELATION COEFFICIENT BETWEEN THESE 2 SETS OF VALUES = .3783 
THIS GIVES A T-TEST VALUE ( 100 SAMPLES) = 4.05 
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