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ABSTRACT 

The method of discrete vortices is extended to the 

calculation of unsteady, axisymmetric separated flows at 

high Reynolds number. Theoretically, the problem is 

divided into three parts: calculation of the potential 

flow using bound vortex rings to model the boundary 

surfaces; analysis of separation from a sharp edge; and 

the evolution of the resultant free shear layer modelled 

by a sequence of discrete vortex rings. 

The calculation procedure is developed from the 

theoretical analysis. 	It is used to calculate both 

external and internal flows. The cases of impulsively 

started and oscillatory flow around a disc are investigated. 

Oscillatory and pulsatile flow through flat plate and 

stepped orifices in a pipe are also calculated. The 

calculated results are compared with experiments. The 

calculations predict very well the gross features of the 

flows such as the instantaneous pressure drop through an 

orifice or the unsteady drag on an impulsively started 

disc. The flow patterns and particularly the distribution 

of the primary vorticity are also described accurately. 
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1. 

1. INTRODUCTION 

In the present work we are concerned with the calcula-

tion of axisymmetric, unsteady, separated flows either 

past sharp-edged bluff bodies or through sharp-edged 

orifices at moderately high Reynolds number. 

When a viscous fluid is accelerated past a stationary 

object the motion which starts from rest is initially 

irrotational andtseparated. As the instantaneous Reynolds 

number increases the flow may separate forming a wake which 

is dominated by large, essentially inviscid, vortex patterns. 

The flow field can be divided into large regions of inviscid 

flow and small regions of viscous dominated flow. The problem 

in such a flow is to match an inner boundary-layer solution 

with an outer potential flow solution. 

If sharp edges are present, where the separation is 

expected to occur, and the Reynolds number is moderate, but 

sufficiently high, the viscosity may increase the thickness 

of the boundary layers, slightly modifying the outer 

potential flow, but it has little or no effect on the separa-

tion and on the large vortex structure of the wake. This 

suggested to several authors that the flow past sharp-edged 

bodies may be calculated by combining well-known methods to 

calculate the external potential flow about arbitrary bodies - 

and a discrete-vortex model to represent the shear layers shed 

fran fixed separation points on the surface of the body. 

It is this method which will be developed, used and 

evaluated in this thesis. 
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A cannon reason for flow separation is the presence 

in the boundaries of regions of high curvature relative to 

the local boundary layer thickness. In these regions the 

flow is unable to negotiate the curve and the boundary layers 

on either side of the separation point flow outwards and 

coalesce. A free shear layer of thickness comparable to 

that of the bo i.ary layers forms and, in the case of a flow 

starting from rest, assumes under the influence of its own 

velocity, the form of a spiral vortex which exerts a dominant 

influence on the flow around it. As the vortex originat-

ing at the sharp edge grows, the boundary layer on the 

unwetted surface experiences a deceleration due to a steep 

rise of the pressure. The boundary layer therefore separates 

and forms a secondary shear layer very near the edge, rotating 

in opposite sense to the primary vortex. This secondary 

separation becomes increasingly important with growing wedge 

internal angles (Rott, 1956). 	However, its scale remains 

small and its major effect seems to be a shift in the position 

of the primary vortex (Smith, 1966). 	Pullin & Perry (1980) 

conformed these results and also observed the existence, for 

large wedge angle, of a region near the wedge apex in which 

the streamlines form a closed loop on a scale comparable with 

the secondary vortex region. The same phenomenon was observed 

by Michael (1955) and more recently by Thompson (1975). This 

bubble lies entirely within the shear layer and seems to be 

a region of constant vorticity. However, the effects of 
To 

viscosity seem to be confined ,i~rf.:the boundary layers, and 

in the inner part of the spiral vortex and they are responsible 

for the free shear layers formation. 	Outside these regions 
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the flow field appears to depend little on the Reynolds 

number. This encourages the construction of inviscid flow 

models to describe the large-scale features of the separated 

flow and, indeed, several authors have observed that, for 

finite but sufficiently high Reynolds number, the potential 

flow theory works quite well provided that a correct distribu-

tion of vorticity is maintained. 

We assume that, in the limit of infinite Reynolds number, 

a bound vortex sheet exists on the boundary and is shed at 

the separation point, fixed at the sharp edge, as a free 

vortex sheet which is convected with the local velocity. 

In this limit the entire flow is irrotational apart from 

the vortex sheets, and the problem becomes an inviscid one 

which can be analysed using potential flow theory. The 
AT 

effects of viscosity 91.  the separation point are replaced 

by the Kutta-Joukowski condition which uniquely determines 

the properties of the free vortex sheet. The problem, 

concerning the vortex sheet formation by flow separation 

and its interaction with bodies or boundaries may be 

formulated in three parts: (a) the potential flow solution 

(b) the inviscid flow separation (c) the evolution of free 

vortex sheets. 

The vortex sheet generated either by an impulsively 

started flow or, more generally, by an accelerated flow, 

rolls up into spiral and eventually a circular vortex may 

form. As the rolling-up process continues, the spiral 

tightens and the velocity which is initially a piecewise 

continuous function on a section through the spiral centre, 
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becomes smoothly continuous as a result of viscous effects. 

The vorticity does not concentrate at a point but moves in 

concentric circles producing vortices of finite size 

(Betz, 1932). 	Moore & Saffman (19 73) have shown how the 

singular behaviour of the velocity field near the spiral 

centre is resolved by viscous action and how this is crucial 

for the axial flow in the case of laminar trailing vortices. 

According to their model, the vortex core forming at the 

edge may be divided into (a) ā .:'.tightly wound spiral-like 

thin shear layer from the edge, (b) a region in which the 

effects of decreasing spacing between turns of the shear 

layers, due to the vortex sheet stretching and the layer 

thickening by viscous diffusion, forms an essentially 

inviscid rotational core and (c) a viscous subcore. The 

radius of the first and second region depends upon the 

internal angle of the wedge and the acceleration. If the 

flow is suddenly stopped and the vortex sheet is no longer 

generated at the edge, the radius of the first region remains 

fairly constant whereas the other two regions grow and event- 

ually viscous effects dominate Pullin, 1979). 	Then, the 

vortex sheet solution may be regarded as an outer inviscid 

flow which determines the structure of the inner inviscid 

rotational core and viscous subcore. 

The features of the vortex sheet generated at the 

leading edge of a low aspect-ratio delta wing are in close 

analogy with the previously described rolling-up process. 

This suggested to Brown & Michael (1954) the useful approxi-

mation of replacing the whole vorticity region by a single 

concentrated vortex line. 	Under the condition of conical 

flow this can be analysed as a single 2-D vortex point 
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whose strength grows as we move downwards from the apex 

of the wing. By concentrating the original vortex spiral 

which does not sustain any force, into a single growing 

vortex a pressure jump is found on any line connecting the 

leading edge and the vortex. This is incompatible with 

the vorticity conservation law. 	Then, the vortex is 

subjected to a force which cancels the unbalance of force 

on the edge-vortex line, leaving only an unbalanced 

moment. 	Rott (1956), investigating the starting vortex 

produced by defraction of a weak shock wave around a sharp 

infinite edge, generalised Brown & Michael's model for 

wedge angles different from zero and for flow proportional 

to time to a general power law. Smith (1968) improved 

the treatment of the leading edge vortex sheet by adding 

to the single vortex model a finite part of the vortex 

sheet starting at the separation point. He found the 

position of the vortex and the shape of the sheet by applying 

the Kutta-Joukowski condition at the edge and by verifying 

the sum of the forces on the sheet and on the vortex were zero. 

The use of a single tip vortex bypasses the considerable 

difficulty of finding a proper representation of the spiral 

core structure (Moore, 1974). 

The use of numerical techniques to study the motion of 

continuous vortex sheets represented by discrete arrays of 

point vortices is not new. Many authors have used it since 

it was proposed by Rosenhead (19 31) . to compute the effect 

of sinusoidal perturbation on the motion of the sheet. 

Westwater (1935) used a similar approach to study the rolling 

up of a vortex sheet behind an airfoil. Fink & Soh (1974) 
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Clements & Maull (1975) and more recently Saffman & Baker 

(1979) give extensive reviews of the subject. The velocity 

field induced by the vorticity distribution may be calculated 

in two different ways. 	The 'direct siunmation' method calculates 

the velocity by summing the velocity field of each discrete 

vortex which is given by the Biot-Savart integral. In this 

method the amount of computation grows as N2, where N is the 

number of discrete vortices used. It has been extensively 

employed to study the evolution of vortex sheets and its 

advantages as well as its limitations are well known. 

In the 'cloud-in-cell' method (Christiansen, 1973), the 

vorticity is redistributed onto the grid points of an 

i,lerian regular mesh. Then the Poisson's equation for the 

stream function 'Y is solved on such a mesh by a very fast 

method. By finite difference the velocity is found at the 

grid points from the known values of Y' and then at each vortex 

point by interpolation in the cell. The advantage of this 

method is that the amount of computation is linear in N and 

far more vortices can be used to obtain a better resolution 

of vortex jumps. The disadvantages are that flow features 

of smaller scale than the grid cannot be accurately followed 

and in the case of vortex sheets disturbances of time 

that are grid dependent appear in the solution Baker, 1979). 
a 

Also, the method seems to be effected by an artificial 

viscosity inherent in the redistribution of the vorticity 

in the cell and the presence of boundaries is not easily 

included. 

In both methods, once the velocity field is known, the 
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vortices are moved by a tracking process. The cloud-in-cell 

method can be very effective in representing interaction of 

vortices where the vortices are assumed to be N delta-

functions whose sum replaces the piecewise continuous 

distribution of vorticity. No axisynunetric applications 

of the method exist. In this case it is difficult to find 

interpolations which conserve the vorticity invariants and 

an efficient fast method to solve the Poisson's equation 

with general boundary conditions. However, the fact that 

viscous effects can be properly included by adding a random 

walk to the point vortices natural convection (Chorin, 1973) 

only if the number of point vortices greatly exceeds the 

Reynold's number (Milinazzo & Saffman, 1977), encourages 

further applications of the method once its basic 

features are better understood. In one of the rare applica-

tions of the direct vortex point method to internal flows 

Evans & Bloor (1977) succeeded in representing the starting 

flow past a flat plate in a channel. They found a distinct 

and smooth vortex sheet whose growth compared well with 

experiments as well as the pressure distribution along the 

channel wall. In one of the few axisymmetric calculations 

Davies & Hardin (1973)usedan direct discrete vortex method to 

calculate the initial behaviour of an impulsively started 

circular jet. 	Starting vortices are not the only large 

scale structure generated by flow separation. In the case 

of steady flow, vortex sheets have been observed to appear from 

the instability of the free shear layers in mixing layers 

(Browand & Weidman, 19 76) in wakes (Bradbury, 19 76) and 

in:_jets (Beavers &:Wilson, 1970) . 	The effect of Helmholtz 

instability on the shear layer is to produce concentrations 



of vorticity at regular intervals which eventually creates 

vortices of finite size. 	These vortices start rotating 

about one another and then amalgamate into larger similar 

coherent structures which grow continuously by entrainement 

and eventually disappear in a turbulent mixing layer. 

This phenomenon, called pairing, was observed by Browand 

& Weidman (19 76) and by Roshko (1976). 	The growth rate 

of the Helmholtz instability is proportional to the sheet 

strength divided by the wavelength of the disturbances. 

Moore (1976) gave a general analysis of the stability of an 

arbitrary vortex sheet confirming the previous results. 

He also showed that in vortex sheets with finite thickness 

the growth rate is reduced. 	This seems to confirm early 

calculations by Michalke(1964) which showed the existence 

of a wavelength of maximum amplification of disturbances 

However, he could not find clear details of the vorticity 

concentration. 	In contrast, Levy & Hockney's (1968) 

calculations of the stability and non-linear development 

of a low density electron beam in a strong magnetic field 

by the 'cloud-in-cell' method showed the formation of 

vortices which eventually coalesce into a single vortex 

whose amplitude was limited by non-linear effects. The 

system repeated periodically along the initial vortex 

sheet. The same result was obtained by Christiansen 

(1973) . 	Moore & Saffman (1975) using the results of their 

analysis for the stability of vortices of elliptic shape 

in simple shear flows (1971), explored the conditions for 

the existence of linear arrays of vortices and of pairs 

of equal vortices rotating steadily about one another. 

The predictions are consistent with the observation. 

8. 
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Christiansen & Zabusky (1973) observed the fission of a 

vortex predicted by Moore & Saffman (1971). Acton (1976) 

using direct summation showed the formation of clumps from 

a sinusoidally perturbed thick vortex sheet and observed 

the pairing of the clumps. Abernathy & Kronauer (1962 ) 

tried to explain the essential features of the mechanism 

of formation of a 'Kaman's vortex street behind a bluff body 

as the motion of a pair of vortex sheets symmetrically 

disturbed by a periodic perturbation. Gerrard (1967) 

calculated the magnitude and the frequency of the lift on 

a circular cylinder by representing the separated shear 

layers by arrays of point vortices which were assumed to 

appear regularly at predetermined positions downstream. 

The results agree well with the available experimental tables 

More recently Sarpkaya & Schaoff (19 79) studied the wake 

behind an impulsively started circular cylinder. They 

calculated the separation points by a quasi-steady calcula-

tion of the boundary layer on the cylinder surface and the 

evolution of the shear layers by the direct summation 

method suggested by Fink and Soh (1974). Examples of 

calculations of wakes behind sharp edge bluff bodies by 

direct summation are Clements & Maull (1975) for flow behind 

a square-based body and Clements (1973), Sarpkaya (1975) 
Ar 

and Kiya & Arie (1977) for a flat plate 	incidence. 

The vortex growth in jets from nozzle and square edge 

orifices have been studied extensively since the early work 

by Johansen (1929). 	If the Reynolds number, based on the 

velocity through the orifice and the orifice diameter, is 

sufficiently high, the jet boundary layer thickness is 
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small compared to the jet diameter. Then the Strouhal 

number of the vortices present in the shear layer is 

proportional to Re. The Strouhal number, St, has been 

observed to be independent of Re for orifice diameter-to-

thickness ratio greater than three and also far lower, Re 

when the laminar boundary layer occupies the whole cross- 

section of the orifice. 	Beavers & Wilson (1970) 

showed that,for 500 Re . 3000,St,is independent of Re 

for sharp-edged flat plate orifices. 	They observed 

irregularities on the jet surface for Re "-'500. A small 

increase in Re resulted in an uninterrupted street of 

vortex rings uniformly spaced. As the rings moved down-

stream, the flow pattern becomes irregular, the vortex rings 

interact and eventually the regular patterns break up. The 

length of the vortex growth region shortens as Re is increased 

and for Re 3000 only the first vortex ring was observed. 

The Strouhal number was 0.63. Beavers & Wilson try to 

simulate the vortex growth by two parallel lines of 2-D 

vortex points whose motion was calculated by direct 

summation. Unlike previous calculations, no wavelength 

was imposed and the vortex street was only initially 

disturbed. The results of their computations show that 

a region of vortex growth can remain stationary in the 

flow. The existence of such a large axisymmetric eddy 

structure and its importance is also shown by the high 

sensitivity of the jet flow to harmonic forcing. Moore 

(1977) observed that for St  < 1 there was a dramatic 

'locking-on' of the large eddies to the exitation frequency. 

Acton (1980) attempted to calculate the features of the jet 

by an axisymmetric direct summation model. Reasonable 



agreement was found between the model results and experi-

ments as far as the large scale structures are concerned. 

She also found that in the Strouhal number range .3 aSt 262 

a harmonic disturbance was able to excite the jet eddies 

at the forcing wavelengths. This effect was particularly 

distinct for St  = (.3 : .5), consistent with the experimental 

observations. 

Large scale structure can also be generated by 

oscillatory flow past bodies. This problem has received 

considerable attention in recent years because of its 

relevance to fluid-structure interactions. It has been 

recently shown (Beaman, Graham & Singh, 1978) that depend-

ing on the Keulegan-Carpenter number K, defined as the 

product of the free stream velocity peak amplitude and 

the period of oscillation divided by the body characteristic 

length, that at least two quite different flow regimes 

exist. For high K the flow past the body separates and the 

free shear layers form a vortex street which behaves as in 

the steady flow case. For low K the free shear layers roll 

up into starting vortices which,because of the shorter 

amplitude of the oscillations of the flow,are swept back 

past the body. 	They interact., coalesce and form larger 

flow structures which eventually disappear either by cancella-

tion or by viscous decay. In their study of the energy 

losses of a wave-energy device, Knott & Mackley (1979) 

have also obtained flow visualisation of vortex rings 

formed by oscillatory flow in and out of open ended tubes. 

However, no specific vortex calculations have yet been 

carried out for this case. 

11. 
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Many turbulent flows are believed to be organised 

in coherent large scale structure in which viscosity 

is relatively unimportant. They can develop either into 

periodic flow patterns in which case a mean flow exists 

and the fluctuation about its value have a physical meaning 

or into an aperiodic one. 	In this case the large scale 

unsteady mean flow must be identified and the idea of 

numerical experiments representing turbulence in terms of 

discrete elements of vorticity may be useful. The concept 

of representing the large eddies as a collection of vortices 

certainly agrees with Townsend's idea that they are 

essentially inviscid. 	It also seems to be an application 

of Taylor's vorticity transfer theory which assumes that 

the vorticity remains constant in a turbulent mixing process. 

In this sense the idea is not new. Homogeneous turbulence 

was represented by Synge & Lin (1943) as a collection 

of Hill's vortices, 	Onsager (1949) as a random array 

of point vortices and Townsend (1951) as vortex sheets 

and tubes. 	More recently direct summation and cloud-in- 

cell methods with and without random path have been used 

to study a variety of problems by Chorin (1973) , Christiansen 

& Zabusky (1973) , Clements (1973) , Acton (1976, 1980) , Kiya 

& Arie (1977) and Ashurst (1977, 1978) . 	However, the 

presence of unexplored features of the numerical methods, 

such as the smoothing of the small scales of motion in the 

direct summation_ method due to the small number of vortices 

used, or the presence of a cell induced artificial viscosity 

and a cell length scale in the cloud-in-cell method, suggests 

they may not be adequate to model the turbulent mixing process 



and that these methods may be useful only to describe the 

large scale motions. 

In this work we explore the theoretical basis of the 

extension of the direct summation model to axisymmetric 

flows. The much more complicated interaction between 

vortices and the existence of the self-induced velocity 

of a vortex sheet, among other particular features, make 

the problem non trivial. Very few other axisymmetric 

calculations have been published: Davies &Hardin C1973), 

Acton (1980) and Ashurst (1979). The latter predicted 

the flow in an axisymmetric piston cavity during a full 

cycle of a four-stroke engine and compared the results with 

some flow visualization experiments in water. 

We have firstly applied the model to the unbounded 

starting and oscillatory flow around a disc. This is the 

axisymmetric analogue of the 2-D flow around a flat plate, 

a problem which has always received consideration because 

of its importance in describing the unsteady separated 

flows past bluff bodies. Recently, the oscillatory 

case has been the object of considerable attention because 

of its relevance to wave loading (Graham, 1980). Vibrating 

discs have also been used in modern mass transfer equipment 

where the mechanical agitation results in an increase in 

the dispersed phase and the formation of many small 

bubbles or drops in the fluid mixing. This leads in 

general to an improvement of the mass transfer rate. A 

knowledge of the power dissipation and the flow patterns 

is undispensible to estimate the mass transfer characteris-

tics and to extend such contactors on the industrial 

13. 



scale (Tojo et al., 1979) . 

The second application of the model is the oscillatory 

flow through a sharp edge orifice in a circular tube. 

This flow, being bounded, is fundamentally different 

from the external flows which have been studied using 

this model. 

Research on unsteady flows through constricted tubes 

has been stimulated by the physiological importance of 

these flows. 	Caro, Fitzgerald & S.chroter (1971) and 

Fry (1973) have suggested that hydrodynamic factors may 

influence the genesis and subsequent development of 

atherosclerosis. This is a disease involving the develop-

ment of fatty deposits in the artery wall. In its 

advanced stage these deposits cause the formation of 

intravascular atherosclerotic plaques which develop and 

progressively occlude the artery.and lead to serious 

circulatory disorders such as thrombus formation (Stein & 

Sabbah, 1974) and the reduction of coronary flow (Mates 

et al, 1978) with consequent angina pectoris. 	One of the 

most important features in the reduction in blood flow to 

the distal vascular beds supplied by an obstructed artery 

is the pressure drop across the stenosis (Young & Tsai, 1973) 

Using a very simple model and forgetting numerous 

important factors such as the collateral flow, we can say 

that in the absence of stenosis and at resting conditions, 

the mean flow rate Q through an artery and its regional 

bed is equal to the ratio of the pressure difference 4,10  

between arterial and venous system and the peripheral 

resistance R. Under exercise conditions the peripheral 

14. 



flow increases several .times. For example, in the 

abdominal aorta of a large dog, the mean flow rate may 

range from 3.5 cm3/sec to 40 cm3/sec and in the carotid 

artery from 2 cm3/sec to 16 cm3/sec. 	Because olc) remains 

roughly constant the distal vascular bed must have the 

ability to change the peripheral resistance. 	There is, 

however, a minimum, Rn, below which no further adjustments 

are possible and the flow rate reaches its maximum value 

Qm' If a stenosis develops in the artery such a maximum 

value is reduced by the pressure drop across the constrjct- 

ion, &10s  , Qmn—(A10-AkityR rn, . Therefore, a stenosis which 

may have little or no effect on the blood flow under rest- 
a 

ing conditions may significantly ,dffect the maximal flow 

that can be achieved.and create a critical condition. The 

prediction of pressure drop across a stenosis has been 

the subject of several studies. 	Young & Tsai (1973) 

developed an equation for the unsteady pressure drop which 

used coefficients which were determinated from steady 

flow experiments. The predicted peak pressure drop was 

always found to be lower than that found experimentally. 

Clark (1976) introduced an apparent friction factor which 

took into account changes in momentum flux due to the 

development of the boundary layer. The prediction of both 

the pressure drop and the pressure recovery away from the 

constriction were in good agreement with steady and 

oscillatory flow measurements. Kates et al. (1978) found 

that flow separation occurs in relatively mild constrict-

ions and suggest that an appreciable portion of the pressure 

drop is a result of energy dissipation in the recirculation 

regions. 	They also observed that for severe stenoses 

15. 



the total pressure drop was primarily dependent on the 

minimum area and was relatively independent of the 

detailed geometry of the stenosis: a sharp-edge orifice 
AL)b 
Cdr a long, smooth stenosis behaved similarly. Because 

of this observation and because the problem of separa-

tion from a smooth surface is generally unsolved, even 

for the simple case of steady flow, we have restricted the 

present work to sharp edged constrictions where separation 

can be confidently assumed to occur and its position is 

fixed. 	Also, in the case of physiological flows, the 

study and better understanding of oscillatory flows is 

required and it is of relevance to the more complex 

pulsatile flows. 

16. 



2. AXISYMMETRIC UNSTEADY POTENTIAL FLOW 

2.1 Nature of the problem  

The potential axisymmetric flow of an incompressible 

inviscid flow, in either an interior or exterior region, is 

described by Euler's equation and the continuity equation. 

In cylindrical co-ordinates (x., e", 6 ) , the axisymmetric 

velocity is 

17. 

(1) 

and considering only conservative body forces 

bt 	S 

t7 v 	cfu + 1 	C6.'9•)  
a' c7 6' 

= 0 

with boundary conditions 

V m 	_ C.x.415,t) 
S 

where 3 is the boundary of the flow defined by the equation 

(5)  

'n is the unit normal to S defined as positive on the side 
of the flow and ex,e;',t,) is a function which is determined 

by the imposed boundary conditions. For stationary 

boundaries without sources or sinks, ).2.;-=0. 

The fluid density ' is assumed to be constant. It is 

easily found by introducing the velocity potential C.DCx,6',tj 

and the Stokes' stream function w (,x,6-:,t) defined so that 

(6)  

(2)  

(3)  

(4)  
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(7) 

and applying equation (3) , that both CI> and 
T 

satisfy the 

Laplace's equation 

V24— ~2c~ +  	Ī , a~ 5 ~2 c724) + c~z~U ! 	(8 ) 
acZ 

06.2+ 
 ā d~ 	— acc.Z c7~2 ~~ ° 

a, b 

From equation (2) an equation for the pressure to is derived 

4. 2 vv_ + at = SC-L) 

where (2-6) is an instantaneous constant throughout the flow 

and V is referred to the absolute frame of reference. 

Since the problem is linear, the velocity can be expressed 

as 	V= uoo Vb-1-vv (10) 

where \4o(E) is the velocity impos%ed at infinity,Vb(x)6)tb 

is the irrotational disturbance velocity due to the presence 

of the boundaries, and VAxi6is the velocity due to the 

singularities in the flow field. 	If l.19(2c)60:) is the 

potential of the disturbance velocity Vb 	then equation 

(8a) becomes 

and the boundary condtion, equation (4), becomes 

Vp. 	Vo -'1` - Vv. 	 Cx.,e,t) 	(12) 
S 	5  

Lamb (1932) gives a careful account of methods for 

solving Laplace's equation in three dimensions with different 

kinds of boundary conditions. He shows how Spherical Zonal 

Harmonics or some of their limiting forms may be used to 

(9) 
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solve the problem. However, it appears from his analysis 

that solutions can be found only when the geometry of the 

problem is simple. In general, we must solve it numerically. 

If we extend the problem to the solution of the velocity 

field for a given distribution of vorticity, (.0 , where 

p x V_ 

T 
',then the solution at a general point x is given by 

(Batchelor, 1970) 

sxw"   V(?c) _ r  4 	I Sl3  

where the volume integral is extended to all the'fluid field 

and E;===--2c)  is the distance between a point in the 

space and a point of the vorticity distribution. It is 

easily seen that the intergrand of this integral, called 

either Poisson's or Biot-Savart's integral, is singular 

for js 1 --d 

When the vorticity is distributed discretely the 

velocity V may be regarded as the sum of the contribution 

from different volume elements 60- 

CSxW)  	(15) 
T-r 4s (3 

This suggests that the boundaries may be imagined as a 

surface distribution of vorticity, fixed in space and 

prescribed in order to verify the boundary conditions (12). 

The local properties of such a surface distribution may be 

characterised by the parameter zr(,x)  also called the 

strength of the distribution, defined as 
6 

(.16) 

(13)  

(14)  

-E 



Where the strength 5 is constant, the component of the 

velocity V parallel to the surface and perpendicular to M 

has a discontinuity of magnitude IŌ1 

v c=0)_. 	(17) 
v~_  2 	 mC+) 

vXo) 	
p 

This result may be 

shown to hold locally 

when the strength tal 
is not uniform but 

dependent on =co 

Fig. 2.1. 

2.2 Review of previous methods 

The analysis in section (2.1) shows that a convenient 

way to solve the Laplace equation (11) may be to convert it 

into an integral equation by means of the Biot-Savart's law 

or in general by the Green's theorem. We assume that, at a 

fixed time to, the position and the strength Ō of each free 

vortex sheet present in the flow field is known. The velocity 

Vv can be obtained by combining equation (14) and (15) and 

integrating over all the wake elements. The function 

75Cx)151,-E) is then known and it remains to find the potential 
field 	that corresponds to that boundary condition. This 

is accomplished in the following manner. A continuous 

distribution of vortex rings is assumed to exist on the 

boundary. The boundary surface S is approximated by a large 

number of straight-line surface elements and on each element 

a check point is selected where the boundary condition 

equation (12) must be satisfied. 	The strength of the 

20. 
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distribution is adjusted in order to satisfy the prescribed 

boundary conditions. 	This leads, as described in the 

following section, to a Fredholm's equation of the first 
ov 

kind. 	The process of solution may be thought/as an 

operator taking the function 	(or an equivalent one) in 

equation (12) and producing the velocity Vbor the potential 

Such an operator is independent of time if the 

boundaries are fixed. 

Hess & Smith 	(1966) developed a similar general and 

powerful method applying a distribution of sources on the 

boundaries. The problem is thus transformed to one of 

solving a Fredholm's integral equation of the second kind. 

This method was applied to a whole set of steady potential 

flow problems obtaining a good agreement with both theoretical 

and experimental results. 

Giesing (1968) and more recently Basu and Hancock (1977) 

investigating the non-linear 2-D unsteady potential flow 

around an airfoil split the problem into the quasi-steady 

motion of the airfoil itself and the flow field due to its 

wake. They solved the first one by applying the source 

method, previously described, step by step in time and 

assuming the flow field due to the wake was known at each 

step by a process of tracking. 

Chaplin (1964) investigated the axisymmetric steady 

flow through a shrouded impulse disc. He wanted to 

determine the position of the vortex sheet, assumed as a 

slipstream boundary, shed from the trailing edge of the 

shroud. Starting from an arbitrary configuration of the 

21. 
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flow field,by a step-by-step converging process, he reached 

the steady configuration. A distribution of vortex rings 

was used to simulate the entire boundary. Its strength 

was determined by applying, as usual, the boundary conditions 

which required a constant value of the Stokes' stream function 

(p at the boundary. As in the present approach, this leads 

to a Fredholm's equation of the first kind. 

2.3 Vortex ring of infinitesimally small core  

In the following work the properties of an ideal vortex 

ring are frequently used. Lamb (1932) gives full account 

of them and in this section we present a concise review of 

his articles (Art 161-163) with some convenient and more 

explicit extensions. 

Consider a vortex ring, in an unlimited fluid whose axis 

of symmetry is centred on the x-axis (see Fig. 2.2). 	The 

whole flow field is axisymmetric and there is no azimuthal 

motion. We describe (Batchelor, 1970) the velocity 

distribution in terms of the Stokes' stream function (1) 

The vector potential € is related to the velocity by 

V = V x e (18) 

It has only one non-zero component which is parallel to the 

one non-zero component of the vorticity W. In cylindrical 

co-ordinates 

(J= Cx,e); \/=(~Cx,~-);19'C~c,C~~,; -uiCx-,6);e=eCx,6'~ 
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Fig. 2.2  



Now explicitly 

24. 

c>5 `~ CB'ee)- 	&e) t- ē 6 a(Q 3—c1  
Cw) 

J 

where (i) , 

dependence 

1. 
(a) 

(ii) , and (iii) are 

n 

zero because of the non- 

on e so assuming ee=e 

V — 26' Ce. l ̀  
Using the stream function 

(19) 

v=.1--(— 	t + 
— 6' c~x 

(20) 

we get 

(21) 

We assume that the cross-section of the vortex 

where 

 

is small, constant and equal to =IA 

CAs c IY _: CW JA ds) t = T1 cast 

filament 

(22) 

A is the unit 

vector locally tangent 

to the vortex filament. 

So the vector potential Ea 

may be written 

ECx3x5= 41 17 c=1193 t ds  
ATT _ ace 

(23) 

Some other geometrical relations have to be worked out 



25. 

to make the vector potential explicit in the case of a vortex 

ring (see Fig. 2.2) 

151= Cox-x')2+5ā'31/ 2 
(24) -26ō'cosa 	a, 

n 	 n ōe t = 6' C--S1Ne- dtr -+ CO5Ad9 B) 	(25) 

By using equations (24) and (25) in equation (23) we have 

211 
(: )) = 6c 	s1Ne a 19 clIcose 'tide 

S1 
0 

(26) 

The functionfSlis an even function of Rand since ewe is 

an odd function of 8 the integral (i) is zero. Then 

211 
€ (.x x') = & dT' S Cose 8 

4T 0 

(27) 

Note that nothing changes if we assume €3=9)-8  and we use 

the periodicity of all the integrands. 

If we make c=1A-a-c5 by the assumption of an infinitesimally 

thin ring we will be able to consider 4{11--.1' without any 

extra. consideration. Then, fran the relation (21) 

T ()3 z')ō') = er6''X 
2 c de 	

(28) 
ore  

c [(x-x')2+ 6''4- era 266'coseJ v2 

where A=T/4TI . The velocity components can be easily 

derived by differentiating the relation (28). 

Tf _ 	
) 

CCS 8 UCac,6'jx')~') _ 	- 2xES' 	 da + 
1 	o 

g 4 C6-6)Co*8) cos ta  de. 
J1 	5~ 0 	C CCS 

(29) 



za 
Y 
C6+ec')Z+(x-xoa CIKCevn) 

er2-6;,2}Cx_x!)2 1E04] (32) 
(€-ro' 2+ x.-x~) z 

(..(x)6 x:36)) 
C  

	~~`~n) (33) 
(a'-e')2+ Cx-x')Z 
62, e5.1Z+Cx-x~)2 

26. 

6' 	
2C=-x)) cos& 018 

The integrals (i), (ii) and (iii) are obtained in the Appendix 

and the final explicit relations for (4), U. and V. are 

2+ CSI2+ (x=- x')2 
~kCryn) - C~Cx-36'~x')6')=2X11(6+a!')2+(x-x')2 (6.,6))2+C -x>)2 	tCnn) (31) 

(30) 

-2,\(x-x') OtX)45;xc.',e 0 
	[Jc) - 6{106+er') +(x-x02 

where (Kern) and ICem) are the complete elliptic integrals 

of the first and second kind with the argument 

4 a6~  ,m=  
(+ 5)2 

(34) 

The behaviour of the flow field near the x-axis (6.-4-0) 

may be obtained by expanding equation (31) , (32) and (33) in 

power of 6 far E5 small. 

Define .c.=x.-x. then 

,m 466) _ i 
c2 + CS~z ̀  	M.2 + 61 2 + o(63) 

(35) 



For I n1,1 4 1 

	

lkCm) _ 	Ei'Yr14. 	 ^m2+ 9 ^m2+ . • 	+ c>Cfm3) 
4 641 

	

E"Cm) _ 	I — 	— 3 1m24. ...~ + o Crm3) 
4&f 	64 

(36) 
a, b 

Using equations (35) and (36a, b) in equation (32) we have 

2 
U.(x,cr•x.',e5')= 	 \OY+es')+x.[(i- 

I 

	x~610(I-2 )+ 
 11 

+ 
(543)a- 
 2 6.I2~2 (1t S +4 SZ) - CI '̀3 + 4 S2).1 + 

620,-+cs')2+.5E2 Co4 
+ CI + 2. 4-242)(j -Cs +.--?-c.  S2)3 + 0()=  

= 4 4-'B + oC !) 

where = esc3/Cxz + '542) Eventually we have 

112 LC + 6%)24-  

-a = 

(.ez er,2)2 

-TA 	 
Cx + 6'2 ) {(es 4.6" ~)2+ _. /2 

thus for 6' «I 

U.cx. x,&) 	̀  esZ C1+2))6+ 2L3' +(x-x))2J 	  (40) 
Cc-,cd r+ er'ZZ CCe"+65)2 +cx-Dc.02] 112 

27. 

2 

(37)  

(38)  

(39)  



Note that the same result can be obtained by the following 

quite simple considerations 

AE5 

 

hence u. (pa) = A2TR/RZ= aX-rr/R 

IR 	(x -lzCs)) x 

fxt -12(s)] de 
jx-2cs)I 

O 
as before. Now we 

using Biot-Savart 

integral (2.1.14) 

Fig. 2.4  

V~(x,6' S x?)6') = 
'fT~x2 

GICe•4-6))2+7c2 

3-TTA e342.6-(=--x)) 

on the x-axis we have 

- 3/Z 
u. 	3 (xO•x'g')= 2A 12T [ct_c?)2+6'Z] 

This can be easily obtained by substituting 	= — T/2 

into equation (32). Then the velocity at the point on the 

axis in the plane of the ring is 

Cl.COI O jx)) en 2X-try e") 	 (42) 

28. 

(41) 

transform equation (33) 

[I +Sj+4 .2+ 

[c c- x'? + e2] [(e5•+  rv')2 + (x- . ) )21'/2 

(43) 



9 =.+cvn-' { 	)/Cx-X I 

es- 

and, for convenience, x'=o 

(47) 

Fig. 2.5  

Thus 

\)X.)0 x', &) =0 	(44) 

As expected the x-axis is a stream line. It is easy to 

obtain the behaviour of the stream function y1 when er.-0 

by the previous method 

~/2 
4 (x,c ',x',g') ā 2A Pses) I_Ce."1-6))2+ (x-x.')2 [ (45) 

hence 	x.', er') _ o 

Note that a positive strength of the vortex ring gives 

a positive value of the velocity on the axis. Such a 

velocity goes to zero as x --Co and presents its maximum 

for x=o The velocity 1)-0o,63. ,6)starts from 6 =o with 

zero value and increases to infinity as 6'--re' and then 

decreases to zero again as e --Y oo,x'=o 

For many purposes in the following work it is convenient 

to have series expansions of the velocity components near the 

vortex ring. Defining 

=[Cg-& +Cx—xn2T'/2/~, 	
(46) 

29. 



30. 

we transform equations (32) and (33) into 

45-'[I-e- n2s11.3e+rie/4 DK(r111)-(1+2S1k5e/r(2)1E(4701 (48) 

'12 CcSe  
6(I 	

‘/ Pqrrn)-Cti-aswein2+2/022)larri49)~ 	+ris e+ ~/4 
 

Then equations (48) and (49) can be properly expanded for (T- .o 

So we have for rrZ441 

+n2gu.39.1.1)2%4) a I - ZRn2+451Ne)41+ gC( 2̂+gsil.)e)4 ]2+ 

_ 6C(2f4S1u5) J3 	= 
4 

= 1 - 2 4- (bsifol3 -1)~2- sru9 ~3-551Je) 3-r0C~4) (50) 2 8• 16 

CI + c2 stkvatO_ 	n22/4  
~) (1 + ~st,,e+ 2Z/4) ' (.1 i. nzswe+ ~2~4) 1 - 

 *2 {1  - 4s»6+ 	451,,e f n 2 (451r.~e+ "? +••. 
(51)  

"2Z 
= 4  

- SINgr2 4-4 	7 (~FS10 -I)^22- S29(2s0.19•-I)(123+ 

+ 16 
C16 SI►a`b - 12 Sde+ 3s)09)121+ c)( 25) 

Pm 16 _ -Prn 	4rsl►Jerct2_ 4c2s109-1)T2+i ~4516~- s).~ rt 
'  

(52)  

-52 L8 s►r.~`~ - SSIN 3 -i-1) 124 + d Cre25 



An appropriate expansiong of the elliptic functions 

for rm—•-' is 

iKc )= i "r►1,7t t 1  (1V -F 61)MI'2+(!. -) 
23 

 0Crni4) + 

WA f
+ t •3 2 + 2~t •3.5 / 2 + Z + ? lnrt'+-O~_"i ) 

(53) Z T 	
)l►'2 3'4 ~'6/  ~2'4,~I.2 34} 	(2.4.6 

or explicitly 

11:((m)=-1. 	, 1 44- ern, } 9 	 ,2 
64 	

+
256 M'!' 2,+ oC wV4) 4. 

(54) 

	

+ i Nye + 2t roe + 1 	rn - oC&TD4) 
4 	128 

rr 	nn __ 
	(..k *m2 r 	1E(rrr = 2C/tL 

' Z '
rrt' + + l 4I ( ̀hri'~3+ o (,crr~'4) t + 1 + 

- t J (55) 

g.6)n7 4c 

or explicitly 

tCrrrji= 0-it 	rrit+ 3 m2,z+ 1- r111) ~- 0011)4) + I + m'1' 2 	16 	128 

- l4 e + _ ,z+ 
256 

frit5 + c (fm'4) I 
(56) 

we use 

a 
rn2' 	Ct-2  sloe rez4-g6sit2e-t)et 2 

si 
16 8 blob - 3) (12+`l.'G )] (5 7 ) 

to get finally 

kCYO _ n8+  stt.39 n2+ 16 C Pin 8-4s1u28) tga+oC23) } Jr 

-~ Om (22j I + ī"2a+ocrr2)S 

31. 

(58) 



32. 

£(em)a t 1 +11-E; (29Y18-►) 122+ 8 0 Qng)sloe e2a+ o(^24)j.+ 

pDw a 	
(59) 

-
2 

Vrl 722 8 ~2-ōGI09Cre 4-dC 'G 

The desired expansions can then be obtained as before. The 

results are 

act-2,8)= 	[ Z ~+ (see +ana-1)+58 (it-89Y18-sw 2&)n + 

3yn8+ 12sweging- 2550.529+1osio49)n2+0025)}60) 

-_2 g» cYL2 	4 sitJ~ c+ 16E4 511u28-1) ~ + OCY3) 1 

and 

IYCYZje)_  A 
5 C 

+51108+5(5-668-2stt.32e)r(2+ 

+ i6(6em8 sloe - II S10E + 250e )r22 + 

+ I16 Pat {6e2- 551mi)rre+oCO23)] 

(61) 

Finally, in order to complete this point, it should be 

noticed that the non-dimensional variables (n2 ) 9 ) might 
be chosen in a different way. For example 

m'- 

 

Icer-etslf+cx-,e)z]vz/e- 	
(62a) 

e =- n-'[(&. 	 (62b) 



Under these conditions the equation (61) is invariant but 

equation (60) changes and the new relation is 

U.cl,e)= ji 9 1+ 1 (451128-3)021+ 16 

+ r2S1N6 _cos2e-8(251129-5)51tv9.(2'+ 

+ 16[251N49-9siN 84-4) 2 } + o((re) 

It is convenient to transform equation (61) in a similar 

form and give the result for the stream function too. So 

we have 

X case II ~ 641rC~'B) _ 3 c_ 3 s1~9. Z1 e) 2 	2 [4 g 

+ }6(2 51029-1 I) 5111] 8 2-3 + O 	) 

and 

(J(t9)=2tA II- Cn2
z C1 +Zslue.r9 -ī6.2s1t2e-3)ae+ 

+ ewe (2.stw2e-3) ell - t2 +-2 si me ert- i(491J2e-I)0*22+ 32 

1-48(75102e-6)srNe < + oCcre) 

33. 

(63)  

(64)  

(65)  

These expansions are the same as those obtained by Chaplin 

(.1964) . 



2. 4 Outline of the method used  

As suggested in section (2.2), we approximate a boundary 

surface by a continuous distribution of vortex rings. The 

boundary condition (12) becomes 

wc )& t) [ U F,,C 	F-ej e)= (x,e',t) 
.4TT 

where 

=r (u CV') _ A (u,V.) _ (u. ,v') 4 

is the velocity at (x  .,e0 due to a unit vortex ring at (x',ee) 

The U. and 1i' velocity are given in equations (32) and (33) . 

Equation (67) is a Fredholm's equation of the first kind. 

An approximate solution can be obtained as follows. 

The boundary is approximated by conical segments. The 

integrand between successive midpoints of the segment is 

assumed to be constant and equal to its value at the junction. 

So the function Ō Css is transformed into a finite set 

of values and the integral (67) may be evaluated. However, 

an extra contribution arises from the singular behaviour 

of the integrand and then from the principal value of the 

integral (67). 	This has to be analytically evaluated 

assuming a linear behaviour of ~('.$) on the singular element. 

Then, its contribution which as we see in the following 

increases logarit ally with the length of the singular 

segment, is expressed as a function of the discrete 

distribution of the strength 46.% 	Thus the velocity induced 

at any point by each segment may be determined up to the 

unknown multiplicative constant 6. 	Equation (67) is 

then applied at each segment midpoint and a number of 

34. 
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(67)  

(68)  



linear equationsequal to the number of unknown values 

is obtained. 

2.5 Geometrical features of the surface elements  

Let us define N+I points of the boundary surface and 

join them by straight line segments. 

A 6  

i 	 
xJ 	K3+1 

• Fig.-  2.6 

On each element we can define some geometrical parameters. 

The total length 5 of the profile is measured starting 

from 1 and the arc length associated with the joint 

13+4 and denoted by 5#, 	is 

Ss+1 = S3 -4' [a .f + ax23]1/2  3=1,...t,3+1 

s, 30 

where 	& e5 = e-j.,.1 - 8i 	and dx=xj4.1 -x3  ; then 
the slope angle functions are defined by 

S%NNS33 = oeso/os3 

cosfj =,6.x3/dsi 
(70) 
a, b 

35. 

(69) 
a, b 



36. 

where dss = ss+, -- s 	The midpoint associated with 

x` 	SLi (..x,J+1  + .i)/2 

est  °  &3 (e:i+ + 
(71) 
a, b 

\ NERE ŌZ,S t , -THE felJAClSEF, oPERATDR. 
The index i will be used in the following for the check-

points and the index j for the joints. 

When the geometry consists of more than two boundaries 

joined together a different ordering must be used as shown 
botL, 

in Fig. (2.7) . 	In this case the fluid is present on-ether 

sides of the wall leaving the main boundary at the joint 

and ends at L"J 	. We call such a wall a "thin-wall". 

We redefine the boundary in such a way that the first 

part is for j=t,z,...)Ki. 

and the second 

for j= mo3tiSi+13...314+1 

The major problem. 

is that cross points 

like -Pi,)0  are double 

stagnation points and 

are, therefore, sources 

of spurious solutions 

d 6' 

   

   

%`40 	Nt+z 

jai 

.i+ak 	°TrrIa— WAu_a  

 

      

      

   

Fig. 2.7  

  

of the type discussed by Craggs and Mangler (1971) . This 

problem can be avoided by smoothing them out into less 

concave surfaces. 

In the present investigation end points such as 1
7At{  

are separation points, where vorticity is shed into the 

main stream and vorticity is formed. This is not the only 



kind of sharp edge we are dealing with and more generally we 

treat cases of edges with non-zero internal angle 6 as shown 
in Fig. (2.8) . 

Fig. 2.8  

It is convenient to solve the behaviour of the flow 

around the edge, identified by M. joint number, in a local 

rotated Cx )Y°) frame of reference. 	Then, the point ID  

is identified by 

oc c xN.sga-  (7G sltSoC 4 y'co5«) 

er - e- -(x' cosoc - y'switx) 

cg OC — 2 -CJos, + Z  

where S is the sharp edge internal angle given by 

(73) 

37. 

(72) 
a, b 

Also, we assume that ASNg  



38. 

The velocity V of the midpoint of an element in the 

local frame of reference (m ,t) is given by 

V(x.j,ōs)=-!e[(.lstNf3j - licos5b ] m + 
L 	

ti 
[u.cosJj + 1}1 51N13j] 

where IQ= -1 for internal flows and 1:2=-.1 for external flows. 

It should be emphasized that the surface elements 

essentially define integration increments and normal direc-

tions for the numerical solution of the equation (67). It 

is only at the check points that the velocity assumes the 

prescribed value and it is not zero at any other point, 

showing a singular behaviour at the joint points. 	The 

accuracy is prescribed by the number of elements and their 

distribution. From our experience and for the kinds of 

flow analysed a number of elements between 40 for the 

simplest case and 100, fixed by the computer size, gives a 

fair approximation of the potential flow (see Fig. 2.14, 

2.15). A proper distribution of the elements is a critical 

problem. They should be concentrated where a rapid 

variation of the flow field is expected. So sharp edges 

or high-curvature regionsneed a greater concentration. 

As c1 , the distance along the boundary from the edge 

decreases, A , the size of the element should decrease. 

Using results from the next chapter, it can be seen that 

0 cC d 1/)%  where X=.2-WIT.  In general, the size of 

the elements has to change gradually without jumps. 

(74) 
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Fig. 2.9  

2.6 Matrix  of influence coefficients  

A single isolated 

vortex ring is defined 

to exist at each j1 joint. 

Its strength Ī; is given ._ 

by the total circulation 

between the mid-points of 

two successive elements. 

This is 
63(9) r~53+bs3-1 . 4 T ` 	z 

Then the velocity components induced at the ~~ mid-point 9. 

by a vortex ring of strength! /41T at the SU, point ? is given 
by the equation (68) 

_ A ui..13  

ti 

U'cxL60= 	txc,61;x3,6.0= A ~/`~J 

Part of the matrix can be now obtained by equations 

(67) , (74) , (76) and (77) 
1.1 

i4 V,:.,3 	Sw COSJ - (J 	f  
S 	~ 

or 

	

Ti CI 
	 NS 

When raj we must add the contributions of the principal 

value of integral (67) upon the two successive elements 

joined at "9 

39. 

(75) 

(76)  

(77)  

(78)  

(79)  

Let us investigate generally the P element and assume 



J•i 

40. 

that the strength of the distribution is uniform and equal 

to 6CSc) The integral (67) can then be 
6 

ōCso 

Fig. 2.10 

transformed to 

lQ -rT 
4-TT 	

Cos jbi ~U-Czi.,; ;~x',6') ds i 

s; 

--Smojec U.ex.1)€. j i631dS = 
Si 

When CCC.')6)) _ C .i. 3 (51) 	the two integrals 

Utl = 5 LA.. 86 	VL S 1). CIS 
Si 	 Si 

(80)  

(81)  
a, b 

are improper. 	Equations (2.3.63) and 	(2.3.64) show 

that the singularity of the integrands is of order 4=Ceve'1) 

where nz=d =[Cx'—x,; # (6''— G'c)23112 / rō,; 	The way 

to overcane this difficulty is to substitute (6 3) and (6 4) 

into equation (81) and then integrate term by term. 	If 

the limits of integration are symmetric with respect to 

P2i.ctO all the contributions from odd powers of 02 

are dropped. 	Then, if the point ' Cx,v) and ¶ are 

assumed to be the same point PECO,Sz) and g is taken equal 

to 53i. as shown in Fig. (2.10), explicitly we have 



41. 

PO 	64 r i s~Ni 	+ (4siN~~-5) 	+ 61 
	{ 	2 L 	,4 "2 	16 	"22~ S 	~ 

	

2 SIN53L cos2 r S IN AL (2 t 2Ī6i- 5)   	(82) 
a 

2siu4f31,- 9 siN2l3L4-4  
6 

where0= [Cx3 _ 3 )2+(5-S .- 	 Zj''4J/6•` and similarly for 

V. . Solving the integrals we eventually obtain 

U`= 7,1[i tQg(4 51102.13L-'S) r9.321 •C/Yl 1-2-1 
	(83) 

[2 SIN2 j +72 (9-235U 2f3i. 4 G51N Bi,)crlb1 + O(~o 

!I 07an (84) 
- Sl N jai, Cc~sj3i 

0 	
2 

	
+ la 

2 
+ [2— jcc_ 25IN2f3A+oCn2 ) 

These expansions provide a good approximation for `1? 44•I 
0 

Substituting equations (83) and (84) into equation (80) 

we obtain the second part of the matrix 

&, TC(3)  1R [COS jki V, - S i NS j3; U3 
L 	i ' 	4 TT 

_ 	75  
` 	 s 4Tr 	j 

Also, because of the linear dependence of 6Cs) on s 

E(so) 	i. 	+ 	 
41"H 	5(.41 - S(.-) 	se..+2 5L 

then equation (85) can be organised as 

+r. 

where 

A i3J 	gi+, -Si- 
1.3 	

t   A43: si+2
Sw S.1  

 ' Si 

(88) 
a, b 

(85)  

(86)  

(87)  



Then the matrix form of equation (67) is 

N 

L• [A••T? + A

z 	 L3) 

or 

42. 

(89) 

(90) 

which has the solution 

(91) 

Note that if the boundaries are fixed in time A and 

hence Ai depends only upon the geometry of the problem, 

then it can be stored and used every time step. Once we 

know the value of 	at each mid-point, we obtain TJ by 

a simple matrix multiplication. 

The tangential velocity \/t =\/.t at the boundary can be 

obtained by the same method. Using equations (74), (76) 

and (77), we have 

~ 	 (92) 
C U, 5I1.ssb , + u,,5 COS~t] I j c°„..,N 

Then the principal value contribution can be obtained by 

equations (83), (84). 
N cc X 

V 	 Ui,1 ō(SJ) 
L V 

, V stt1ls31+ uGOSs3; = 41T 	3 	] 

;E:~U 	"cS. • _

s 4Tr  
The analysis in section (2.1) shows that we must add 

(93) 

to the tangential velocity a contribution due to the local 

surface distribution of vorticity. 

vtL~) 
= Tc Csi.) /2 
	

(.94) 



Then, if the equation (86) is substituted into equations 

(83) and (84) and combined with equation (82) 

V,. =L. 
 

  (V sj + C. CO5~
j

)  I J• + 

&.   	)(353+~- 5J ~ 	 ~+a .1 	J 

(\200 t ) +0-4 
In matrix notation and using equation (91) 

- B A c + Vo0E Vv 

Again the matrix. IBA' depends only upon the geometry of 
the boundary.- 

If a thin wall, sharp edge is present on the boundary, 

we must take care of the occurrence of a singularity of 

43. 

(95)  

(96)  

order O(c -1I2) . We assume that on the element 

the strength of the vorticity distribution is 

)Ls.c  
a 

4TrTh = S (v'š   N 	~`-~04 Ō „o f 

(97) 

  

(98) 

1.4-2 	14-1 4.5 ra f 



=A-n- 2 k-I 
f -I 

(99) 
a, b 

_ ~rt 2:74 
~~. 	3 As 1.35; 

~ N 

44. 

Then applying equation (97) 

Ō 134-1 = 	t .~. . 61  
-T 	As/4-2. 	Les ai.-1 

(100) 

This must be used instead of equation (86). This highly 

simplified way of representing the singularity of the edge 

is valid only if a proper distribution of elements near the 

edge is used as discussed in section (2.3) 

Chaplin (1964) suggested that the normal velocity check-

point should be taken at Ī-ix/, and assumed it to be an 

interior point of the boundary. This leads to a more 

accurate evaluation of the singularity which is also fairly 

independent of the distribution of the elements near the 

edge. 	In this case the evaluation of equation (67) at the 

edge is different. 	Equation (79) applies only for 

(..a ‘ ,2,•••,P.I bN4,t•I 3...04 and the contributions of the M vortex 

principal value contribution is 
d s. 

Īō' 

I- 

Fig. 

Uj 	x'  

(101) 

 2.12  

ring is dropped. Then the 

added. 

Assuming O(S) as 

given in equation (97), 

the integrals (81a, b) 

become 

i(S)(u-,v) 

r=r.• 



Again, this is improper and can be evaluated by means of 

equations (63) and (64) . 	However, in this case the limits 

of integration are not symmetric with respect to n2=0 

and we have contributions from all of the powers of (v2. All 

terms are readily evaluated except for the one accounting 

45. 

for the edge singular behaviour 

e ā 
r̀z 

`~2 
"C 

This has been evaluated by Chaplin (1964) as 

`go 
V -L° (=ire 	2 

e-a o o C~-8),FT 
The results are 

U - UC') 	i- Uc2) 

where, with OC jb104,1 

co 	SItJOC l̀(~ 3 	64 + U„ 4. 1[1 — 8 $ ~° tVo 

- [BSI ()(-  (i+ >JZd) ra2o+ 48 (2 S 	3~ITZ,11+ OC"e) 

(102)  

(103)  

(104)  

(105)  

UW slot< rnz pin 4 + 
48 ..zo 	ce: 

	

`Q 	 \ 	 (106) 
+ SWDC ~2 (I+slac) 	s72 (4sik)zoc _ Ia)Ne + O(cr:) 

and 

vue VNf + vNf 

where 

COS oe 2 64 v„k= 16 n76 22+ 

+ 
C
3— q slt.)o( P90- 4S 2slnAc-I)er 

(107)  

(108)  



46. 
Vc2,= al 2 g4r. + 

° 

1 + SINOC — 48 (2 SiN?o( — 3) `~ol + 0~cv ) 
C 4 	 ° 

Equations (104) and (107) are then used in equation 

(93) and we proceed as before. 

(109) 

Care must be taken in applying this representation of 

the edge singularity. 	It can lead,depending on the geometry 

of the problem, to an ill-conditioned system of equations. 

This is a pathological feature of Fredhoim's equation of the 

first kind.whose discretization never leads to a diagonally 

dominated system of equations. However, the first way to 

represent the edge singularity always leads to a solution 

even if the solution is not always good and it depends on 

the distribution of elements. 

We assume that if an element starts (or ends) on the 

x-axis, its end point is 

a check point. Also, 

the strength 600 goes 

linearly to zero at 

such a point 

 

Fig. 2.13  

2.7 Scan calculated examples  

In this section we apply the previous section's method 

to sane examples of potential flows round axisyimetric bodies 

for which exact _analytic solutions are known. A uniform 

stream is assumed to exist at infinity, then the surface 

velocity distribution is calculated. 

Fig. (2.14) shows the results for a sphere of unit 



radius and for an oblate spheroid of thickness ratio 8 

and unit minor axis. 	They are compared with results 

obtained analytically and by applying Hess & Smith 

as described in section (2.2). 	The body surface has been 

described by 60 elements and the agreement is good. 

In Fig. (2.14) a calculation, obtained without including 

the contribution from equation (93), is also shown. This 

shows that the contribution of the integral principal value 

is not of primary importance when the number of elements 

present is large. 	Indeed, if we assume crl=t-IAx{ ;t,a1,...,r.51 

where o 	has been defined in section 2.6 , we can 0 

see from equation (83) and (84) that such a contribution 

if of order 0 (8) as 	-}-O 	. 	Given a fixed 

length of boundary 02 decreases as the number of elements 

used increases. 

The case of a disc as the extreme members of the oblate 

spheroids family (e =i) is a good example of what we have 

called a thin-wall' boundary. 	The radial velocity at 

the surface of the disc is 

Vt. - + 2Ug _~~1zT -i/2 
	

(110) 

where the 0+0 sign refers to the wetted surface. 

Assuming R=1 	the velocity has a singularity at the 

edge of O[(!-6)+11/2 J as e5-4.1 and this must be solved as 

shown in section (2.6). 	As before results are presented 

in Fig. (2.15) for the vortex method with and without the 

integral principal value contributuion. The disc was 

simulated by 36 similar elements. The agreement with the 

47. 
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analytic solution is quite good in spite of the presence of 

the singularity. As before the contribution of equation 

(93) does not make much differences. However, the singular 

behaviour near the edge is better calculated by the full 

vortex rings method. 

In conclusion the method presented in the previous 

sections for calculating axisymmetric potential flows 

appears fully satisfactory for our purposes, particularly 

because of its ability to represent sharp edge singulari-

ties and 'thin-walls'and also it is the most convenient 

because of its simplicity. 

3. SEPARATED AXISYMMETRIC FLOW 

3.1 Introduction  

The presence in the boundaries of a geometrical 

singularity or a region of high curvature relative to the 

local boundary layer thickness is a common reason for flow 

separation and for the formation of a free shear layer of 

thickness comparable to that of the boundary layer. Although 

the viscosity of the fluid is essential for this formation 

process we expect that it has little or no effect on the 

evolution of the shear layer, mainly acting through the 

Kutta-Joukowski condition which removes the singular 

behaviour of the velocity at the edge. So, assuming that 

a consistent limit for the kinematic viscosity y---o exists, 

a bound vortex sheet is present on the boundary and is shed 

at the separation point as a free vortex sheet which is 

convected away with the local velocity. The properties 

50. 
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of the free vortex sheet at the edge are uniquely described 

by the Kutta-Jcukowski condition which requires the velocity 

to be finite at the edge. 

The vortex sheet extending downstream generally rolls 

up into a continuously tightening spiral that asymptotically 

becomes a circular vortex whose core vorticity distribution 

is singular but integrable (Saffman & Baker, 1979). This process 

can be highly modified by the presence of boundaries and 

vortices produced by rolling up of previously generated 

vortex sheets and its computation still remains a challeng- 

ing problem. 

3.2 Separation from a sharp edge  

Prandtl (Smith, 1966) originally discovered the 
A 

appropriate similarity 1¢w for two dimensional (planar) 

starting flow around a wedge. Anton (1939) attempted a 

solution for the flat plate and he found that the total 

vorticity was proportional to t 3  and a characteristic 

length had to be constructed with -043  . In order to 

find the constants he approximated the inner part of the 

vortex sheet by a Kaden's spiral 

%- oC ( 6)2/b  (1) 

where is the radius vector and S is the turn angle, and 

joined it to the edge by an outer loop. The two parts 

were matched to have a common tangent and continuity of 

vorticity. For the shedding, the inner core was approxi-

mated by a single concentrated vortex point, and the Kutta 

condition was applied. The vortex sheet was convected by 
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the flow and the matching repeated by an iterative procedure. 

Wedermayer (1961) and Blenderman (1969) generalised 

these results. ?.ott (1956) investigating the vortex 

generation due to a weak shock diffraction near on infinite 

edge, obtained a Brown & Michael's (1954) single-vortex 

solution for non-zero wedge angles and he also derived the 

asymptotic form for the rolled up spiral. 

Mocre & Saffinann (1973) found the leading order asymptotic 

shape of the spiral of the vortex sheet shed from a tip • of 

a wedge of internal angle b accelerating with velocity 

proportional to )°. 	The shape of the spiral and the 

circulation around a circle of radius V- are (safftnann & Baker, 1979) 

lr ti  C (t / 2-rr 8 )ten 

P1/1 2  - I/^m ti 

where 

"fn — X C +p)/(2X —I) 

and A= 2-1,/-11 as before and 2 is a dimensional 
constant determined by matching the outer flow. 

Pullin (1978) by a highly stable calculation found 

that the sheet rolls up into a fairly circular spiral only 

for a=O . However, for 80,0 , elliptical distortion 

appears and becomes very pronounced as C5-0-1T and does not 

appear to decrease substantially over the inner part of 

the spiral. 

(2)  

(3)  

(4)  



Moore (19741 also found such. an elliptical distortion 

in calculating the classical Kaden's problem of the evolu-

tion of an elliptically loaded vortex sheet. 

In the case of axisymmetric flow the similarity 14w 

holds and also eqn. (1) seems to be valid at least for the 

case of zero wedge angle. Saffman made use of it to 

calculate the behaviour of a vortex ring produced by eject-

ing fluid through a circular nozzle. He noticed that for 

a short ejection time the characteristic length of the shed-

ding is small compared to that of the singularity and the 

axisymmetric vortex sheet behaves like a 2-D one shed from 

a semi-infinite wedge (Saffman, 1978). He found reasonable 

agreement with experimental results by Guhler & Sellet 

(1979) , Krutzsch (1939) ,Liess.  & Didden (1976), Maxworthy 

(1977) and. Sellet & Widmayer (1974) . 	however, Didden (1979) 

did not find such a similarity law and proposed that the 

horizontal displacement of the forming vortex ring should 

be proportional to 

We assume that the vortex shedding in our axisymmetric 

problem is governed by the attached flow near the singularity 

in the boundary and the region of influence is small compared 

to the radius of the singularity so that we can take the 

shedding to be locally 2-D. We split the axisymmetric 

vortex sheet in two parts: a small bit, which is the object 

of this section, close to the edge and the remaining part, 

discussed in the following section, whose induced velocity 

field is assumed to be known and well behaved near the edge. 

53. 



Graham (1977) has discussed 2-D vortex shedding from an 

infinite sharp edge in detail and this section follows his 

results closely. 

The attached flow past an edge of internal angle c~ 

can be described by-the camplex velocity 

V'CZ) = V,c.+ LVie= 2 U (2-x)ix ` 
-v
z (i 	(5) 

where U and V are real constantsdescribing the 

symmetrical and asymmetrical (relative to the median 

plane of the wedge) parts of the flow and Z = x-1' Ly The 

part of the flow due to the asymmetric velocity V is 

singular at the edge and gives rise to the flow sparation. 

Giesing (1969) has derived a relationship between V 

and the properties of the shed vortex sheet. He noticed 

that when the flow is unsteady proper dynamical and kinematic 

conditions have to be applied in order to apply the Kutta -

Joukowski condition and to describe the vortex shedding. 

He assumes that the element of vortex sheet shed in a small 

time interval at. is straight, of length S5 and uniform 

strength ō . 	On this the velocity field'YCZ)is imposed 

(Fig. -3.1) . 

Using (2.1.17) 

the modulus of 

the total velocity 

on the upper and 

lower surface of 

the sheet are 

V.± = ( v" ± = cos e )2+ (v- -~ SIN 9 )2 

54. 
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So, by applying Bernoulli's equation (2.1.9) we calculate 

the pressure drop across the sheet. 

Ap P4-to a lfft.(4- +4)4- (V+C059+ lj'ys1N8) ZS (7) 

Remembering that the total circulation of the vortex sheet 

is 
 

) cis 	s 	.:4. 
Votzrcx st4aar 

(8) 

where S is the total length of the vortex sheet and dēfin- 
ing 

Qc= ( N& COs9 + 1.iy 5tiw9) 	 (9) 

The dynamical condition d$ = o , which says that the 

vortex sheet has to be convected with the local velocity, 

becomes 

55. 

(10) 

If we apply the Kutta condition in the real plane, 

1Ī' 1 	= O because i ~ ,\ 2 , the convective velocity Xs~/sp 

Qc—.-O as we move close to the edge. Therefore, because 

drt/ dL is finite, a singular behaviour occurs at the 

edge due to an infinite vorticity strength . We assume 

Qc960 and transform the edge into a plane surface by 

the transformation 

Z = X An image 

system has to be 

introduced in the 

transformed plane 

to account for the 

presence of the wall. 
Fig. 3.2  



Then the velocity 1)42 induced by the wall is 
se 	 se' (__ era * e- a 

lraa J 	 / 	e ~ 	"Z 

56. 

0 	 0 
= Cr Re ei.o( SP ea 	=IQ. 

=le= 

where 

(Er =— 
dT_ 

-r Q dt 
(12) 

The integral can be evaluated in closed form only for 

particular values of A 	and Geising considered the 

special case b_TĪ/2 (A=1.5). So, after solving the integral 

and taking the limit for small, the wall velocity is 

1. 

U2= Or [2.4-se Cosa --R IN  v2cosC DI/2+ biT) 

3/4 Kj<o 

For =p 

rVZ—le cosoC 

1/4 rg >o (13)  
a, b, c 

(14)  

which must cancel the asymmetric velocity at the edge in 

the real plane. 	Therefore,. applying eqns. (5) , (12) , (14) 

to the general case and transforming back, the Kutta-J oukowski 

condition is 

V= 
- X sitv(- 1/>) 

(5
)CA-i)/?` 

-11 CA-I) 	J (15) 

The second term of eqn. (13a) gives us additional 

information in the physical plane. Transforming it back 

and evaluating it on the wall near the edge gives 
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\,' CY) - v"2 	
zs cos ( + Īa'iĪ 	(16) 

d z ' 
The difference of the velocity above and below the edge aAI' 

must be exactly the varticity strength ō 
8Ir. _ [cos (9Tr/.4)- cos (& 4- eTr//)-1 

Solving for OC gives 0()= /A or in general 

(17) 

which says that the vortex sheet leaves the wetted surface 

tangentially. 

The convective velocity off the edge is then given by 

the symmetric attached flow and the contribution of the vortex 

sheet itself in the limit of zero vortex sheet length 

QG 
~S O 
	 4- v-xlWAllJ 

(18)  

hence O ō >o 

QC= 2 
 

Q cr & O 
(19)  
a, b 

It is not immediately clear how the extra contribution to 

the convective velocity Q0 appears when X--2 and no stagnation 

point needs to exist on the unwetted side of the edge. 

Graham (1977) noticed that a small distance b- off the edge 

U must always control the convection velocity QAC►-). Then 

when is arbitrarily small he has shown that 

0,0,-)= 2S/2 + (u - 25/2) 	0(.2-X) 

However, experimental (Fage & Johansen, 1927) and computed 

(Graham, 1977) results indicated that the velocity on the 

unwetted side of a flat plate is generally small. That is, 

(20)  



U is only slightly greater than 6/2 and consequently it 

can be assumed empirically but not with certainty for 

axisymmetric flow that 

Qem'6/2=(U',K + \rw)/2 

Then, for a small but finite time &t. 

Ss ZS 
(S-E. 2 

The total circulation STI of the element shed 

by equation (10) and (22) 

(.22 ) 

time St is 

(23) 

Combining equations (15) and (22) it follows that 

Ss 	Lv 

where a depends only upon the wedge angle S 
_ 	T CA-1) 	N/C2),-i~ 

2) 	C r /)• ) 

and Lis a characteristic length associated with the 

asymmetric part of the attached flow past the edge 

L v _ (\/ (St)/C2A-1) 

When the fluid has just been set into motion, the vortex 

sheet appears at the edge and starts rolling up at its free 

end into a tight spiral. It behaves like a two-dimensional 

vortex sheet. This can be represented by a single point 

vortex collocated at the centre of the growing spiral .Zo 

joined to the edge at Ze 	by a cut representing the sheet. 

58. 

(21) 

(24)- 

(25) 

(.26) 



This simplified model, first suggested by Brown & Michael 

(1954), has been extensively discussed by Graham (1977). 

Using the previously described transformation Z = ~k the 

Kutta-Joukowski condition in the transformed plane becomes 

' 1 Z0  4- Zo VA 

Zo Z, 
	 C27) 

In the present case where the whole vortex sheet is 

represented by a single point vortex of strength ō the 

dynamical condition o o' ocan be conveniently substituted by 

the simpler condition of zero total force on the vortex 

59. 

plus cut 

•= Sil.pc=s_=co 
cur 

(28) 

Combining equations (7) , (8) and C28) and considering for 

simplicity the )(component  of the total force 

	

~Y = S4qc"':6c.—) cj s ( 	~)ōx+ g S VxŌds=o 
GuT 	 cc7T 	 cUT 

A more general result can be obtained if the cut is 

generally assumed to be a vortex sheet of length bs=sō se 

of strength 6(.5) 

S s 

1

-16  dg caix + Vxb ds 

5e so 	Se CCL) 

Solving the integral C i.) by parts 

	

so s 	so So 
tlds clx = [x.c6(=l5] - x~cig 

	

Se 5° 	50 	Se se 

5O 	 (31) 

Se 

Let Z =(x )r) be the centroid of vorticity of the sheet 

(29)  

so 

(30)  



5e  

S=15  ca a 
ee 

Expanding J = \) , + irxix 4-••- 	the integral can 

be solved 
50 	So 

 61);:::15.  ~ T` + ilxi x.6 cis .. • a v"T+ UxXīT 
5e 	 se 

=Cv"x+U-xX)r+••• ---- TJ-xr 

where1.7x 	is 	the mean velocity in the x direction 

experienced by the whole sheet. Therefore the condition 

Fy . O shows 

c' , 
[roc  - x el i- Ū-x1 - 

A similar relation can then be obtained from the condition 

1:7=e0  or in general 

 Z&{( _Ze)T + T1 
 J 	~Z z = = O 

where c w /bz x \J - LAY- 	This result% assumes that the 

sheet is approximately aligned with the free stream direc-

tion which is only a reasonable approximation for the start-

ing sheet. 

In the case of Brown & Michaelb model the centroid of 

vorticity is at the point vortex position, then equation 

(35) becomes 

cyt [(ze —ze-yrol + [-.6.y. z=Zo 
(36) 

60. 

(32)  

(33)  

(34)  



Graham applied the equation (36) with. 4o=0 and calculated 

the position Zo  and the strength of the growing vortex for 

an attached flow with 0..0,  V_ \/±.' 

	

20=1‹ 
x/caA- 0 ei. 9 	 (37 ) 

	

_ 2T K t C2A— s)  L2 	
(38) 

61. 

where Cx-, )C2A-1) 
2X2(10X+At i) 

C39) 

and 
e = -i1cos 1 ( Vn /Z) 
	

(40) 

Finally, we can obtain an estimate of the inner core 

size Co  assuming a Kaden's type spiral and applying 

equations (2),(3) and (4) 

(41) 

where 
icr.c  _ 	tic2x _I) i x 

fx- (42) 

3.3 Vortex ring formation  

Recently Saffman (1978) discussed the process of ring 

formation at sharp-edged tube and orifice openings utilising 

a two-dimensional similarity theory. Pullin (1979) 

extended his model to properly account for the axisymmetric 

geometry. 

Vortex rings are commonly produced by ejecting fluid 

through an opening of diameter D by means of an impulsively 
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started piston of diameter Dp. 	The 

flow separates at the sharp edge and 
Dp Do 

when the piston is stopped the vortex 
iS.. s 	I 

sheet breaks away from the orifice 
ss 

C . 

edge to form a vortex ring which is 

convected downstream by its self- 

induced velocity. VJe 	vorttctty 	op,Posrre 

Fig. 3.3 

 

L =  Arc+) cit (43) 

where 
11(t) a Vo.-b 

 

The velocity potential of an attached flow around a sharp 
Ly /..-- 1 

edge is given in polar 	 $CII  
~~1 

co-ordinates (?)9) 	 \ n Fig. 3.4  
	dx 

= —oc+ q /2coS(812) 	 (44) 

2~ x + y a 2 where ? 	 and a is determined by matching 

to the flow far from the edge 

o(=
Eava Dv' (45)  

For flow through a circular orifice in an infinite plane 

the normal velocity at the orifice is given by Lamb (1932, 

p.144) 

(46)  
18= cr Ī 	-ri 1)5/a to-1/2 

where Q is the flux through the hole 

Q ° Nrct)Ti DT;AM 
	 (47) 

6 stc~h cr.trteto rd 4 . o~14,1otern.4 e I+tz'cm 
The piston moves through a short distance 
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By comparing this with 

be obtained 

2> 401 
  

	an estimate of O( can 
1 	e=r ~~  

oc= 2Q  Tr ,2  

and then 

(Ea • 5 (Dp/D)2 	 (49) 

Pullin (1979) gives the approximate solution for the 

tube case Dp=D 

2 cLoc = (2- Y~
/ 

 

Then for small times, the vortex sheet depends on OC and 

±, only. When b=c, its centre (x0)y0), the circulation 

roC ') about a small circle centred on the v, tex of the 

spiral, and the total circulation-1-cl shed from the edge are 

given by 

X0= (Li («T)2/3 %_ (C2 (OCT)2/3 	
(51) 

To C )= (13o4 ?I/2 T= c4 C44/37.1/3 
	a,b,c,d 

An estimate of the constants can be obtained from Pullin's 

(1978) calculations as 

C..54 (C . -08 (3c4.08 (E4^2.4 

Saffman (1978) matched the edge solution with the flow 

through a two-dimensional channel of width D then 

~« = e-rt 2 

(48) 

(50) 

(52)  
a,b,c,d 

(53)  

He obtained an estimate for the constant from Anton (1939) 
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(54) 

and Wedermayer's (1961) calculations 

(E.Z •5 
	(r. 2z= •09 	5 3.3 c.4=2.5 

Combining equations (51c) and (51d) , we have an estimate 

for the core size 

Co = (~4 /(E3)Coc T)2" = O 5 (OC 	
) 2/3 

The constant CU5 can be evaluated O'5•35 and Ca5 = •57 (56 ) 
a,b 

Pullin (1979) gives two more general relations for 

total circulation and the core size 

«4' T 40+6)-1 
_ ~3Cb)OC4/5 c 

CI - b) I/
1+b)-1 	(57) D_ .4 	2 ~ 	4  

2 CI + b) 

Co = •33 

a ,.. 2~3 , 	
— Ca(b)OC2To+b) 

(58) 

In the same condition ).\=,2)  equations (38) and (41) 

give slightly different results 

4/3 ā Cl 	4 
= 2.49 a T 	1/3 = C44(b) c< -r 3(1 . b)-1 	

(59 ) (2b+') 

C°_ .57 « T 213 
	 _ (C̀  Cb) 	

T2,~(I+ b) 	(60) 
(2b+ 1) 

With b=o the constant (4(0) and u,5(0) are very close to 
the estimates (52) , whereas the constants ( (0) 	and 

~5(0)get values close to Saffman's prediction. This shows 

that the predictions of Brown & Michael's simpler single 

vortex model are comparable to those of more sophisticated 

approaches. 

(55) 



3.4 Vortex sheet evolution  

Numerical representations of a continuous vortex sheet 

ha0 been offered since 1932 when Rosenhead investigated 

the Helmholtz instability of a two-dimensional vortex sheet 

by an equivalent distribution of discrete vortices. 

Substantial reviews of the subject has been published by 

Clements & Ma11L (1975) , Fink &. Soh 
	

(1974) and recently 

by Saffman & Baker (1979). 

The point vortex approximation can be interpreted as 

a trapezoidal quadrature ;scheme  for the principal value 

integral of the non-linear integro-differential equation 

governing the vortex sheet motion, in which the vortices 

are markers for the position of the interval. Many calcula-

tions using different forms of discretization have been 

attempted but, in spite of its simplicity, the method was 

found to lead to a chaotic  vortex motion. 

Moore (1971) found a pathological behaviour in the 

response of a vortex sheet to small disturbances. Because 

the growth rate was found to be inversely proportional 

to the wave length of sinusoidal disturbances and because 

the discretization imposed a lower bound to such wave-

length, he concluded that using more vortices could make 

the situation worse, not better. He (Moore & Griffith-

Jones, 1974) also found that if stretching was present the 

method was more stable and in particular if the stretching 

was proportional to -E71  disturbances were damped. 

But still within the rolling-up process, the vortices near 

the centre of the spiral rather than smoothly following 
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the expected path tended to orbit about themselves and 

this orbiting movement could propagate along the sheet. 

Clements & Maul' (1973) delayed such a disruption by 

using a time step comparable with the orbital period of 

neighbouring vortices. Moore (1974) succeeded in follow-

ing the evolution of the vortex sheet also by a careful 

choice of the time steps but mainly by using a tip vortex 

that could grow by amalgamation. Maskew (1977) showed 

that the core of the spiral cannot in any way be 

represented accurately with a finite number of vortices. 

Fink & Soh (1974) claimed that the point vortex 

representation of a 2-D vortex sheet produces a logarithmic 

error in the self-induced velocity field,unless the point 

vortex remains in the centre of the interval which it 

represents. Sarrkaya (1975) claims that this error is 

relatively unimportant compared to other errors inherent 

in the method. 

Baker (1977) extended Fink & Soh's work by taking 

account of the sheet curvature and applied it to the 

evolution of a circular non-uniform vortex sheet without 

singular behaviour. He found that by increasing the 

number of vortices unrealistic features appeared in the 

solution. 

Gerrard (1967) , Clements (1973) ,Sa.rpkaya (1975) , 

Kiya & Arie (1977) , 	Evans & Bloor (1977) and Graham 

(1980) have applied discrete vortices modelsto problems 

involving periodic vortex shedding and even if these 

calculations produced clouds of vortices or ill-behaved 
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vortex sheets useful results could be obtained as well as 

reliable information about the evolution of the vorticity 

field. These results were frequently obtained by employ-

ing some empirical methods or, less artifically, by 

providing a fine balance between using a large number of 

vortices to represent the fine scale and a crude integration 

scheme to suppress the chaotic motion. 

In spite of the many disadvantages the point vortex 

representation is still a powerful tool. It is the simplest 

form of discretization and therefore it minimises the 

computing time. The continuity of the pressure-field 

across the vortex sheet is easily satisfied by convecting 

the vortices in a Lagrangian fashion. Also, giving a good 

approximation of the velocity field far from each element, 

it describes the general behaviour of the velocity field. 

Thus, we look at the representation of an axisymmetric 

vortex sheet by a discrete distribution of elementary vortex 

rings. Each vortex has an infinitesimally small core with 

fixed circulation -TM a 16(t) Ss«) 	and its position is 

taken to be at the centre of the discretisation interval 

of length GSa2S0  . A basic difference between the 

behaviour of the 2-D and the axisymmetric vortex sheet is 

an additional contribution to the self-induced velocity 

arising from the circular symmetry. This can be interpreted 

as a net contribution to the quadrature scheme for the 

principal value integral 
00 

(61) 
4Tr 00 
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where C = ClA@c,es;xg,);k.r(x,g5x;6))] is given by equations 
(2.3.32) (2.3.33). 	We have shown in section (2.3) that 

if n2=  ICāc-x') + (.y-y')21V22AP.s the Green's function I 1 is 

of order (3(` Z ') as 02-0.40. 	Then the net self-induced 

velocity contribution is given by 
s 

) ° s
O. 

 bv,) Cj c=l  6)  = 
-s° 	 co 	 (62) so  

= u. Cx, 6) - J Z5 C5') tes' - j Ō(.`') -oo 	so 
The LHS integral has been already evaluated in section (2.6) 

and the results are presented in equations (2.6.83) (2.6.84) 

At the leading order 

U*(^?0,00 — Q-rr 	"9d 
I. To GYI 64 + 2 S1m2a + 0(n t) 

V*(ne/o,«0 _— 	25IN0(Co5o< (120  + 0("Z) 
q ī7 

We note that if a vortex sheet of defined strength 6(s) 

is represented by a sequence of conical elements of locally 

uniform strength, the self-induced velocity of each element 

decreases as er eyol 	as the number of elements is 
0 	0 

increased, thus decreasing n70  

In the point vortex method each element of vortex sheet 

is approximated by a vortex ring of infinitesimally small 

core. Theoretically, the self-induced velocity of an 

Helmholtz vortex ring 

U*=. _A4 	Pin 8-5' --..25) 4-r 6 	Co  
(65) 

increases weakly to infinity as its core radius Co 

decreases to zero.. However, these vortex rings are being 
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used to represent small elements of vortex sheet whose 

self-induced velocity decreases to zero as the element 

length goes to zero. Also, if an element of fixed total 

circulation -T.; is stretched in time so that its length 

increases, the vortex strength Ea) decreases as Trn/bS(t) 

and the self-induced velocity increases only logarithmally. 

In practice, there is a small self-induced velocity for 

a finite length element which we neglect. It is best to 

consider the vortex ring distribution as a representation 

of a continuous vorticity distribution. 

In our case the vortex sheet is shed from a sharp edge 

so that the strength and the initial position of the vortex 

ring is determined by the shedding previously discussed. 

Using equation (23) , the strength of the mth vortex Tin= ,Ssm  
m 

shed in the time cunt can be written 

77:n  
where ōsn,is given by equation C24). 	The initial position 

is taken as the mid-point of the element of vortex sheet 

shed during the interval btm. This leads to a small 

violation of the Kutta condition and the vortex should be 

placed at a distance 1r,1  from the edge along the line 

element 

1rM- (1- l/X)>‘Ssm  

Graham (1977) pointed out that despite this small error 

this procedure allows a better description of the convec-

tion of the element off the edge. 

A strong condition on the length of the shed element 

S Sep, and hence on the time step &tat is provided if we 

69. 
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required that the self-induced velocity of the element 

be small compared to the characteristic convective velocity 

U*_ Lv/Sten of the edge. Using equations (63) and (64) , 

for O( -Vz we obtain 

st U 
~

L„k 252 e2+2 Lv -4Tc 	Ly 

This requires that Lv/6 Qin(Lv/6-) be small whereas the 

assumption that the shedding is 2-D requires only that Lv/Y 

be small. 

Similarly, when the first vortex is shed by using 

equations (65), (41) , (42) , (37) and (38) , we obtain 

i(2A-l) Lv 	pn 	g .25] 
Lv Z~6' ~Lv 

(69) 

Where, in this case 6 = 6=pit+ 6'0 	using equation (37), 

when 6^.0(1) and V'vO(I) and assuming a non-dimensional 

time step .)"1t/'-r where T is a characteristic time scale, 

the two equations give: 

St/,r 
S .01 .05 .10 

0 .04 .10 .13 

-11/2 .02 .05 .08 

0 .07 .11 .15 

Tr/,2 .03 .10 .15 

(68) 



3.5 Amalgamation process  

Moore (1974) has pointed out that the representation 

of the inner part of the core by a single vortex reduces 

numerical disturbances in the calculation of the rolling 

up process. Also, several others (see, for example, 

Clements, 1973: aerpkaye, 1975: and Graham, 19771 have 

suggested that the amalgmation of vortices'into a single 

vortex point is not a source of large errors in calcula-

tions involving periodic vortex shedding and it allows 

a sensible reduction in the number of vortices 

present in the calculation and therefore saves computing 

time. 

This is a sensible procedure in 2-D flow.. The core 

is assumed to be joined to the outer part of the vortex 

sheet by a cut through which vorticity is fed into the core 

according to some criterion. Then, the growing core must 

follow a Brown & Michael's type of equation; for example, 

equation (36) where 274,(t) is at the outer end of the cut. 

If two vortices amalgamate, the strength and position of 

the resultant vortex can be determined by conservation of 

the total circulation and total impulse. An amalgamation 

process can be also applied to a cluster of vortices. 

In the case of axisymmetric flow, however, such a 

representation of the rolling up process may not be 

appropriate, unless a proper calculation of the self-induced 

velocity of the resultant vortex ring can be obtained. This 

is a very difficult problem and instead we assume that the 

core of the resultant vortex is circular, and that its 
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radius is equal to the distance between the centre of 

the vortex and the outer vortex of the sheet. Also, the 

vorticity is assumed to be uniformly distributed in the 

core and the vortex ring volume is conserved. The position 

and the strength of amalgamating vortex rings is given in 

Lamb(1932) p.239. 

The amalgamation process is only applied when the 

rolling up process is a dominant feature of the flour and 

the spiral is not affected by the presence of boundaries 

(Pullin .,. 1978) or by any other distribution of vorticity 

with flows. The errors involved in this process are not 

easily evaluated and this raises doubts about its validity. 

The validity of the amalgamation process becomes even 

more doubtful when it is applied to clusters of vortices. 

For axisymmetric flows, the self-induced velocity depends 

strongly on the shape of the cluster and the distribution 

of vorticity in it. Therefore, general amalgamation should 

be used only when isolated and concentrated clusters are 

present and only when far field interactions are important. 
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4. UNSTEADY VORTEX SHEDDING FROM A CIRCULAR DISC 

4.1 'St'arting 'flow 

The method developed in the previous chapters is used 

in this section to calculate the external flow around a 

plane disc of radius R* which starts moving normal to 
A 

itself with constant speed U*. The introduction of the 

following substitutions enables the problem to be non-

dimensionalised 

n 
c=.A =(x*,0*)/R`; z= Ut*/1 *;T'=  (1) 

a,b,c 

where the 4' denotes dimensional quantities. 

It is most convenient to calculate the motion of the 

fluid relative to the disc by assuming that the fluid is 

set in motion impulsively from rest and then calculating 

the potential flow as discussed in Chapter 2. The disc 

is simulated by a distribution of 40 annular elements 

consistent with the discussion in sections (2.5) and (2.7). 

Once the velocity field is known, the asymmetric edge 

velocity V can be evaluated. 	In general, this is expressed 

in terms of the tangential velocities Qyr  andQu at the 

midpoints of the conical segments on the wetted and unwetted 

side of the edge 

V  t, 1 
A-i/A 

Qw+Qu  "-13  
where Lie  is the length of the elements either side of the 

edge, assumed to be the same and Ow and Qu  , measured 

in the direction of the positive arc lengths are 

calculated by means of equation (2.6.95). 
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For the special case, (5==0  , each annular element 

represents either the wetted or the unwetted side of the 

disc. It contributes twice to the arc lengths and the 

positive direction is assumed, as in section (2.5), to be 

clockwise (anti-clockwise) round the edge in the case of 

external (internal) flows. 	Therefore, for the problem 

under investigation, the velocity Qe is given by the first 

term of equation (2.6.95) without any contribution of Vv 

and Vao . Then the first vortex is shed using equations 

(3.2.26) , (3.2.37) and (3.2.38) and the potential flow is 

calculated again. 

In general, once the strength of the bound vortices 

and hence the tangential velocity has been calculated, 

equation (2.1.9) can be used to calculate the pressure 

distribution acting on the disc surface. The velocity 

potential cl,(6:t0 is defined as 

74. 

`t) (S,Z) _ dP Co ,Z) 1-  
S 

4- 	\fi (S','t) 
0 

where the integral is 

evaluated on the 

instantaneous stream-

line (51 (see Fig. (4.1.) ) 
~u 	 - 

Combling equations (3) and 

(3.2.8) we have that for 5a:52. 
Fig. 4.1  

(3) 
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Çv cip c s,2') _ (0;z") ") + 	(.s',' #) + r(z) 
52 

1 en= c52,z) - Cs „'~) ~'( c'`.) 	(5) 

where T'(-) is the total circulation of the vortex sheet. 

The arc lengths is now assumed to be taken along the disc 

surface , j (S,wS2) 

The integral in equations (3) and (4) is evaluated 

by the single trapezoidal rule using the values of the 

tangential velocity at the midpoint of the annular elements. 

IK= Vbcls = 	
Cvt~i.+ i -4 CV-0z Cse+ 2- s~) 

. S►c, 

gkz 	kz-4 

Fc, 	 2 

where 
i. = le 	12 g N 

(7) 
a,b 

(4) 

(6) 

Also 

(v{ ),=d 

<k(SN.H)- (S)=  

(8)  

(9)  

where 
Su 	a+4 

46,4e= Nit c1& + V CIS) 

SN 	Sm 

(10) 

and 

= Csi.ti + SE )/a 	4e=  (11) 
a, b 

The velocity distribution near the edge shows 



a very low velocity on the separated side and a rapid 

rise towards Qw -' Ō on the wetted side. This makes it 

difficult to estimate LS-4e . 	However, in general, we 

can assume that such a feature is due to the just shed 

vortex which induces an asymmetric tangential velocity 

round the edge 

Y'; 244a5, 1*h 

where h is the distance from the edge .along the thin- 

wall. 	Thein:, equation (10) can be transformed so that 
ae 

c)e.AcI t o ~~ = tCsN,r)+ ~ ~.s+. )1 c+2 Q0.-)dt- 
11 	a 

where V% is the tangential velocity evaluated without the 

contribution of the rn ' free vortex.. Using equation (12) , 

we have 

.) 2-rm 2 .5 en C ā+ + FAA 	(14) 
Ti 

where d=A1S 	However, numerical calculations have 

shown that if p 4C1 equation (13) can be approximated by 

4e ['4Cš 3') + \/t ( S►otl 3"e.)] 
(15) 

where the tangential velocity is assumed to be constant 

on the two sides of the edge element. 

Once the pressure distribution is known, the pressure 

coefficient 

C (s,~)=2 [icks,-t)- pcoo;e)1/ Ū*2 	(16) 

and the unsteady drag coefficient 

CpCz) IT 
Cps'.) ds 	(17) 
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can be calculated. 

The subsequent position of the first vortex or, in 

general, of each free vortex is calculated from the total 

velocity (Um) ,n) induced by all other vortex elements 

	

and computed by equations (2.3.32) and (2.3.33) . 	The new 

position is given approximately by 

.(k+~) 
	)CT Ur n U 	

(k)& 
	2) 	(18) 

ern ) t a C~C~ne 	C m v^n ) %" t o (S~ 

where °F<+ 1 1 indicates the solution at the time (2r+ 81' ) . 

This is a coarse intergration scheme and an improvement was 

tried by using 

(Xen eer CKfa(z
m,e

.„) )+45(.0m)Venr:. PM'Vmri)J~o() ( 19 ) 

However, the calculations did not show any sensible 

difference between equations (18) and (19) fora large set 

of different EZ and therefore the order of the error 

introduced by equation (18) was assumed to be consistent with 

the order of approximation given by the general method under 

investigation. 

At the new time step the potential flow and the 

asymmetric edge velocity V are calculated again and a new 

vortex is shed into the free vortex sheet, using equations 

(3.2.24), (3.2.26) and (3.4.66). 	Then, the process is 

continued as described before and it is repeated at the next 

time step. The vortex release and integration time steps 

are assumed to be the same. 

The calculated initial shear layer behind the disc, 

at 	2'=m I • , is shown in Fig. (4.2) . 	The calculation 
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was made with SZ'=•N and a vortex was wound into the core 

every five time steps. The shed vortex sheet rolls up 

into a spiral which shows a smooth behaviour as well as the 

growth of a few kinks of the type discussed by Moore (1974) . 

These disturbances are due to the unrealistically fast 

growth of the core which forces the innermost turns of the 

spiral to be too close. 	Then, an orbitting process is 

obtained if the angle & between the three innermost 

vortices is examined at each time step and a vortex is 

absorbed into the core when 9 exceeds 21-17r1 where 

r1 is minimum number of vortices on each turn (Moore, 

1974). 

A series of numerical calculations were made with 

different time steps cS?' to find an optimal value. As & 

decreases the number of free vortices increases giving a 

better approximation for the free shear layer and for the 

convection process. 	However, the total computing time 

increases as the square of the total number of vortices. 

The results are shown in the upper half of Fig. (4.3) . 

The lower half of Fig. (4.3) shows the results for 

a single flat plate started impulsively from rest obtained 

by Kamemoto & Beaman (1978). 	In their calculations, 

they have employed a discrete vortex method to simulate 

the evolution of the shear layer and the method of "fixed 

points", as introduced by Kiya and Arie (1977), to calculate 

the vortex shedding process. In this method, the nascent 

vortices are introduced at two fixed points near the edges 

in the plane of the flat plate every two integration time 

steps and their strength is determined from the Kutta 
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condition. 	However, the method is strongly dependent 

on the integration time step 827 as shown by the analysis 

in section (3.2). 	Kiya and Arie carried out several 

calculations with c&i2's.O6 and for several distances 6s and 

in view of the reasonable results for the Strouhal number 

and the nature of the vortex formation, they recommend 

•0054 55 •0125 

Kamemoto & Beaman investigated the relation between the 

distance and the time interval by transforming the flat 

plate into a circle and applying the method in the trans- 

formed plane. 	They concluded that the non-dimensional 

number c$/Ōte where 6s' is the transformed distance is 

an important parameter and that there exists a lower limit 

to the acceptable value of the parameter. Their results 

for the cases presented in Fig. (4.3) are 

or Os ōs/Sr Symbols. 

.2 .05 .93 0 

.1 .05 1.86 0 

.2 .01 .38 A 

.1 .01 .76 • 

As expected the agreement between the 2-D and the 

axisymmetric case is very good for a short time ( e74-5) 

After this time the self-induced velocity becomes important 

and keeps the developing circular vortex filament closer. 



to the unwetted wall. The axisymmetric case also shows 

a marked insensitivity to the choice of the time step when 

8.e'<• 	On the contrary, the 'fixed points' method 

gives quite different results for different values of the 

parameters. 	There are different shapes of the free shear 

layer, and even if the vortex clusters are similar it seems 

quite difficult to decide the right set of parameters. 

Fig.(4.4) shows the initial growth of the total strength 

of the axisymmetric vortex sheet compared with the curve 

obtained for the 2-D flat plate by Kamemoto & Bearman (1978) 

Fink & Soh (1974) and Graham (1977) . 	It is interesting 

to observe again that for Zr <•5 1 • the axisymmetric and 

the 2-D curves presents an high similarity, but in general 

the disc produces a weaker wake. 

For a longer time disturbances grow and a chaotic 

cluster of vortices replaces the inner spiral. Only the 

free shear layer close to the edge presents a smooth 

behaviour. 	Fig. (4.5) shows the flow patterns for Z':=1°' 

The 2-D starts developing an asymmetric wake whereas by 

our method the disc is forced to keep its axisymmetric 

behaviour. 	This is quite wrong (Goldstein, 1965). 	A 

stationary separated region behind the disc where the 

viscosity dissipates the vorticity produced at the sharp 

edge was observed to exist only for Re <100:195, where. 

Re= 2R*Ū'/1) and U is the kinematic viscosity. 	This region 

of permanent circulation behaves more like an Hill's 

vortex than a circular vortex ring and, indeed, as the 

Reynolds number is increased, the vortex grows becoming 

unstable, 	discharging fluid downstream at regular 
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intervals in time. This unstable process presents 

similarities with the Hill's vortex instability analysed 

by Moffatt& Moore (1978) . At a higher Reynold's number, 

the wake behind the disc presentsan axisymmetric vortex 

sheet on which a 3-D disturbance grows and makes part of 

the vortex sheet break away. This starts the formation 

of 3-D vortex loops which are the main feature of the far 

wake. Then, if the Reynolds number is increased again, 

the vortex loops on the vortex sheet, existing only for a 

very short distance downstream, break very rapidly and 

eventually turbulence appears. 

In spite of the unrealistic behaviour of the numerical 

simulation, the instantaneous drag coefficient CDC) 

shown in Fig. (4.6) , tends to the experimental value, Cpm l •l 

as the non-dimensional time increases. 	This may be due to 

a good representation of the velocity field near the walls 

and of the vortex shedding rate. 	Fig. (4.6) also shows 

the 2-D curves calculated by Kamemoto & Bearman (197 8) and 

Fink & Soh (1974) , for comparison. 

Bearman & Fackrell (1975) calculated the incompressible 

potential flow external to a steadily moving disc and its 

wake by using a generalised Parkinson & Jandali's (1970) 

source method. This suggested that the position of the 

shear layer, replaced by a free streamline may be found 

by adding a source system on the unwetted side of the body 

which satisfies the boundary conditions and by specifying 

the base pressure in the separated region. They 

represented the disc surface by a distribution of vortex 

rings and superimposed a ring source. Then, they found 
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the distribution of. vorticity, the source position and 

strength. consistent with_ the boundary condition of zero 
normal velocity on the disc surface and a given base. 
pressure C1°6 • The method calculates the flow 
external to the free streamline on the wetted surface but 
does not model the mean flow in the wake.Fig. C4,7L shows 

the pressure distribution on the disc wetted surface 
calculated by the present method for Z  9. , io• , and by 

Bearman. & Fackrell source method. They are almost 
identical and both agree well with the experimental value 
of Fail, Lawford and Eyre 019571. 
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4.2 Oscillating disc flow 

In this section the fluid is assumed to start 

Uir oscillating normal to the disc plane with speed_ ,5102TTZ 
L 

where 	' = C/7* 	is the time non-dimensionalized 

by the period of oscillation T* and I ° U*T~2* is the 
Keulegan-Carpenter number Upon which the inviscid problem 

depends. However, the real problem will be characterized 

by an additional dimensionless group, either the Reynolds 

number 1e —2R '~/') 	or the frea'uency parameter 

p~ = R* E2 l / vT*jI i2 . However, Keulegan & Carpenter 

(1958) studying the oscillatory flow round flat plates and 

circular cylinders, showed that 	the force F in the flow 

direction was in the form of Morison's equation 

QR*Cbcflo*{+ R*2CM 	 (20) 

In the case of sharp-edged body, the drag and the inertia 

coefficients CD and CM were functions of K without any 

significant effect of the Reynolds number. 

Experiments by Maull & Milliner (1978) and Beaman, 

Graham and Singh (1978) on various cylindrical bodies, 

have shown that two quite different flow regions exist. 

If we define Kc to be a critical valve depending .on_the shape 

of the body, for K> Kc the flow past the body separates 

forming a limited wake. The length of this wake and 

resemblance of the flow to the corresponding steady free 

stream case grows with increasing K. When K( K0, vortices 

shed at the separation point, are swept back past the body 

because of the shorter amplitude of the flow oscillations 

and they are forced to interact with successive vortices 
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of opposite sign to .form regular flow :patterns. 

When K) KC equation (20) with a suitable choice of the 

coefficients offers accurate predictions of the in-line force. 

However, the predictions are not so good for K.<  Kc. Graham 

(1980) , following Maull & Milliner's suggestion (1978) , 

calculated the force from the complex potential due to distri-

buted point vortices through Blasius's theorem. He conveniently 

assumed that the force arose from two contributions, one 

associated with the inertial force occuring for the attached 

flow around the body and the other from the distribution of 

shed vortices. 	Thus, 

F _ TT Crio12. 2 *+ 
where C.HO is the value of the inertia coefficient for the 

attached flow and ; 	is the vortex force. component. 

The unsteady axial force acting on the disc is 

AC?) = 	)=:'*C 3')ds 

then equation (21) can be generalised to the disc case as 

F(29-4 rr ŸÙ*R*CHo~  Tr  4 
where C. Fv 	

is the vortex force coefficient, non- 

dimensionalized by the disc area and the inertial coefficient 

C Ho on a sphere of equal radius can be calculated 
remembering that the disc energy is 

43 ,R-*3U*2 Tes=  

(211 

(2 21 

(23)  

(24)  

and the inertial force acting on the disc is 



dTg. 
Ū* d t* 

Then, using equations (251, (24) , and the first inertial 

term of equation (23), we have 

CH° 2/-T 	 (26) 

A large number of preliminary calculations were carried 

out with the same K to determine the dependence of the 

calculated force upon the time step (St . It was found that 

5V-4.05 produced satisfactory results and, in general, the 
features of the force F are quite independent of 61.)r. 

Fia. (4.8) shows the calculated 611:.v(2:') with K = 3.5 and 

for s'; = ..05, .04, .03, .05. 

Fia.(4.91 shows a plot calculated for the first 11 cycles 

starting from rest, for different values of K. The amplitude 

decreases with increasing K and the zero crossing points are 

remarkably constant up to a value of K. about 3. The peak 

amplitudes after an initial transition in the first half 

of the cycle, remain fairly constant. 

Equation C23) can be written in the form of Morison's eqn. 

Fet) = TĪ R*ic,MU* + 2 ?R ZCp USI U*1 	(271 

by taking the appropriate Fourier integral over one cycle of 

the flow. Then substituting for U*3 6* 51 is3 & where a=21Tt 

         cC 	
T

A* '2 
T._ 872 U*

QR~G05Qt 7-1-1"-LER pnNe15UJ8l (28) 
3T

* 	t-i  

Multiplying equation C28) by- and integrating between zero 
and T'' and noting that 

SIN61S(tJBt costa clt =o 	 (29) 

91. 

(_25) 

T 
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and 
T 

I ( cos9 dt c2 T 
0 

we have 
A**3

441 S-1- FC±)dt= 3T" 
" u ~~ T  

Then, using equation (23) 

94. 

(30)  

(31)  

(32) 
0 

Similarly, multiplying equation (28) by 51.1138/T integrating 

and noticing that 
T 

..r S 611.5°9 1511001 '=it= 4 
0 

we have 

3TC ( ( 	C'e•) S1 N 2TI t dZ 
D 4 c Tv 

For small values of K, the vortex shedding close to 

the disc should be similar to that for a single plane edge. 

For this case Graham (1980) has shown that 

D A K (3-2x)/C2%-1) 	 (35) 

and 
CMS Cri01- B k a/C2X-0 (36) 

where A and B are fixed coefficients given by the Fourier 

integrals. 	Fig. (4.10) shows the calculated values of 

CD and CC H - ~) K-' compared with the values for a 

single edge with A=2 . 	The disc results show the k -~~3 

(33)  

(34)  
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Fig. 4.10 



behaviour predicted up to a value of K of about 3 above 

which they diverge rapidly. 

The only data available on the force acting on an 

oscillating disc are those obtained by Tojo et al (1979) 

for a vibrating disc column. 	This consists of a vertical 

cylinder divided in four horizontal cells by circular flat 

plate orifices. 	In each cell, whose height is comparable 

to the cylinder diameter 2Rc is a disc of radius 1R0=.78.3 

which is oscillated to produce agitation in the column. 

They represented the total force by Morison's equation (27). 

They found values for CM and Cb considerably higher than 
in the case of an isolated oscillating disc and strongly 

influenced by the presence of the walls. Remarkably, 

they observed that both the coefficients were almost 

independent of the Reynolds number Re, ranging from 102 

to 105 and expressed such a dependence as 

C M
= 55.3 

 
/RonRc.)2.5R,e o61 

cc, 141 (Rb/~.0 i2
•04 

They did not present any analysis of the dependence of 
e 

the coefficients on the Lel g an-Carpenter number K which 

ranges between .9 and 3.5. Such a dependence cannot be 

recovered from the presented results. 

The flow patterns for the disc also show remarkable 

similarity with the 2-D flow. Preliminary calculations 

with 62: _ .05 and amalgamation (M=3) showed that after 
a few cycles an asymmetric wake was formed behind the disc 

due to a pairing process between vortices of opposite 

96. 

(28)  

(29)  
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strength. Fig. (4.11) shows the distribution of the centres 

of the primary vorticity of opposite sign after four cycles. 

An experiment was performed to check these calculations. 

A disc of 4 can radius and 0.16 an thick was fixed at the end 

of a long rod about 0.3 cm radius and oscillated sinusoidally 

in the centre of a circular tank, 50 an diameter by 80 cm. 

The tank was filled with a saline solution in which 

neutrally buoyant polystyrene beads were suspended. The 

beads were illuminated by two collimated slit lamps (about 

3 mm wide) which illuminated a plane containing the axis 

of symmetry normal to the camera. Particle tracks were 

obtained by taking photographs of relatively long exposure 

(1125 s.) 	The experimental and calculated results for 

K = 3.5 are canpared in Fig. (4.12). The line joining 

two vortex rings indicates that the distance between the 

two sequential vortices has remained less than four times 

the characteristic shedding length. This is a good 

indication that that part of the vortex sheet retained an 

identifiable structure. 

In comparing calculations and experiments, it must 

be remembered that the experimental photographs show 

particle tracks while the theoretical results show the 

instantaneous distribution of vorticity, so that they 

cannot be compared directly (Clements, 1973). 	However, 

the point vortices also serve as fluid markers and the 

experimental results give a qualitative indication of the 

location of the primary vorticity. In this qualitative 

sense, the results agree quite well. 
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The vorticity shed during the first half cycle tends 

to roll up into a single vortex ring. As the free stream 

slows down, the flow at the edge of the disc reverses and 

a second vortex sheet of opposite sign starts and continues 

to be shed during the second half of the cycle. Meanwhile, 

the first vortex is convected around the disc by both its 

self-induced velocity and by the reversed free stream. 

This vortex interacts with part of the second vortex sheet 

to form a vortex pair which moves away from the disc. The 

residual of the second vortex sheet is not as strong nor 

as organised as the first vortex and so when the flow 

again reverses at the start of the second cycle it does 

not interact very strongly with the third vortex. This 

third vortex sheet develops into an organised vortex ring 

very much like the first one and the process is repeated 

in succeeding cycles. 

The predicted formation of vortex pairs and their. 

unidirectional convection away from the disc, were observed 

in the experiments. The asymmetric wake whose direction 

depended only on the starting direction of the flow was 

certainly established and seemed to be quite stable. The 

flow was observed to be axisymmetric to a distance of about 

one diameter front the disc. Because of diffusion and 

possibly }instabilities of the vortices, it was difficult 

to follow their motion at greater distances. Also, because 

the tank was relatively small, a secondary motion was 

rapidly established which also obscured the long-term motion. 

The pattern of the flow is closer to that observed for 

a single, 2-D edge (Graham, 1980) , then that of double 



101. 

edged body. In the latter case, the vorticity from one edge 

tends to migrate around the body to join with the vortex of 

the same sign growing on the opposite edge. This process 

appears to revolve around the body with the vortex pairs 

convecting away fray the edges at an angle of about 45°. 

Because of the axisymmetry of the disc flow,this cannot happen. 

Results of calculations for K = .5, 1, 2, 3, 5 are shown 

in Figs. (4.13) , (4.14) , (4.15) , (4.16) , (4.17), where the 

time is shown by the small clock in the lower right corner 

of each frame. At the end of each velocity cycle the 

pointer is at the 12 o'clock position. For K = 0.5, the 

displacement of particles in the undisturbed flow is small 

compared to the scale of the body and the flow behaves truly 

like a 2-D one. However, for K = 5 the large scale rolled up 

vortices move very far from the edge of the disc and even if 

there is not a radical change of the flow patterns, the rolling 

up process during half a cycle showsclose resemblance to the 

corresponding steady free stream situation (Section 4.1).This 

suggests that the flow is not very far from a new regime (K,Kc) 

and that Kc 
is smaller in the disc case than in the 2-D case 

(Kcti 20) . 

We conclude this section with a comparison in Fig. (4.18) 

between two calculations where, for the case (a), the vortex 

rings have not been amalgamated whereas for the case (b) the 

amalgamation process has been used (N& = 3). They are for the 

same case and the same time step bZ=.0875. In general, the 

gross features of the flow, such as the predicted centres of 

circulation, are similar in both cases. However, as discussed 

in section 3.4, amalgamation obliterates same finer features 

of the flow and eventually could lead to unrealistic representa-

tion of the flow. 
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5. UNSTEADY FLOW THROUGH. SHARP-EDGED ORIFICES 

In this chapter we apply the discrete vortex calculation 

procedure to a flow which has many similarities with the 

flow of blood through a constricted section of an artery: 

the internal, unsteady flow through a circular, rigid pipe of 

radius R* with a sharp-edged orifice of radius Ro* and 

length Ls. In general arterial blood flow is highly 

unsteady and its wave form is different for different 

arteries. In the large vessels it can be modelled by the 

pulsatile flow 

	

U= L)/L)o = 1+ 6 511J 2TT~ 
	

(1) 

where 'r =t*/`T* and 6.. V* / Li 	is the pulsatility 

index. In these arteries both inertial and viscous effects 

are important. 

-vocz osc1LG.T.TlOC 'VLOUS 

There are at least two governing parameters the 

K0e legan-Carpenter number, 	K = &T/ R* 	, and 

either the Reynolds number, -Re= 22R
*U*/ y 	, or the 

frequency parameter 	OC="R*t2TT/ -r* 	. Alternatively, 

the Strouhal number 	=4-çT .R-*/ U*T* could be used 

instead of K . Both Re and 0( vary over a wide range in 

the circulatory system with typical values .001 Re 10000 

and .01 t OX 4 20 . However, in the large arteries 

100 S Re 	2000 and 1 G a G 20. 

The geometry of stenoses found in living systems is 

complicated, variable and difficult to characterise 

The variables which play the most important role are the 

size and the length of the stenosis. Following clinical 

medical practice, the stenosis size is expressed by the 
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constrictical aratio; i.e. the fraction of pipe area blocked 
2 

by the orifice. For our axisymmetric orifices, C= 1-(RO/R) 

The general problem is not amenable to an analytical 

solution and numerical solutions by conventional means can 

be obtained only for mild constrictions or low- Reynolds 

numbers. 

Different flow regimes may develop in blunt, streamlined 

stenoses. If the Reynolds number is sufficiently small 

( 	-, R e .4 20 	) the flow- will be laminar throughout 

and separation will not occur. As the Reynolds number is 

increased, the mainstream will separate from the boundary 

and, subsequently, reattach at some point downstream. The 

separated region will contain a slowly moving mass of fluid, 

but the overall flow- remains laminar. Daly (19771 made 

numerical calculations of pulsatile flow through a stenosed 

canine femoral artery. Stenoses that in cross section 

had the shape of a circular arc were simulated for values 

of constriction ratio varying from .0 to .61. Et found 

that separation starts during the accelerative phase of systole 

when the instantaneous Reynolds number reaches a value of 

about 180 (RQc l. The separated region grows in extent 

with time and the separation point attains a quasi-steady 

position slightly downstream from the centre of the 

obstruction. During the diastolic phase the mean flow is 

reversed and a separated region develops on the other 

side of the obstruction. A comparison between the critical 

Reynolds number Rec so calculated and the experimental l'ec  
obtained by Golia and Evans (1973), for steady-flow regime, 
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and shown in fig. 05.11, suggests 

that separation may be delayed 	200 

Ire 

in an accelerated flow. Therefore 1 

comparisons between steady and 

unsteady flow can be highly 

misleading. 

With a still further increase 

of Re the shear layer separating, 

the mainstream and the separated 

bubble becomes stronger and 	
Fig. 5.1  

eventually becomes unstable and jet-like large scale coherent 

structures appears in the flow field. These are usually 

referred to in the literature as perturbations arising 

from the instability of the previous flow regime, but in 

general they present high regularity and this type of flow 

has been referred to as a disturbed flow intermediate 

between the laminar and turbulent regimes. 

An increase in Reynolds number beyond this condition 

will lead to turbulence. The turbulence which develops in a 

stenosis will be transient and no clear demarcation exists 

between the disturbed and turbulent flow regimes. Khalifa 

& Giddens (1978) pointed out that, because of the pulsatility 

of the flow, the mean velocity of interest is usually not 

the average over a long time, but is rather the basic 

pulsatile waveform itself. This is such that many harmonics 

of the fundamental heart rate are present so that flow dist-

urbances may be difficult to distinguish. Furthermore, 

the basic velocity waveform is not strictly periodic and 

each heartbeat may be different. This biological disorder 



is due to the heart which is not a perfect .pump and to the 

difficulty of maintaining a constant physiological status for a 

long time. For such flows, they have shown that periodic 

disturbances exist which are often hidden by the turbulence. 

This seems to be caused by the presence of a jet-like vortex 

shedding. 

Cassanova & Giddens (1978) in investigating the 

stenotic flow patterns found strong similarity between free 

and stenotic jets. The presence of the pipe wall causes the 

systems of discrete vortex rings to break down at a shorter 

distance from the constriction than in the free jet case. 

The influence of the wall on the initial formation of vortex 

rings and their break-up into turbulence is less pronounced for 

severe constrictions where the stenotic jet is farther away 

from the wall. The growth of the shear layer and its 

instability approaches more and more the behaviour of the 

free jet. They showed that in the case of steady flows the 

stenosed jet exhibits a Strouhal number of the vortex shedding 

frequency which ranged between 1 and .6, which agrees with the 

free jets values (Beavers & Wilson, 19701.. In the case of 

pulsatile flows, the energy spectrum of the velocity, which 

measures the kinematic enerav distribution over the disturbed 

flow fr_eauencies, indicates that discrete vortex shedding 

is occurring over a significant part of the flow pulse. 

Fig. (5.2) (redrawn from Cassanova & Giddens, 1978) shows a 

comparison between the energy• spectra measured at x*/Q,=I• for 

a sharp edged stenosis with c = .5 and for different radial 
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positions, in the case of 

steady and pulsatile flow. 

The frequency of the vortex 

shedding agrees quite well 

in the two cases. They also 

observed that more abrupt, 

sharp-edged stenoses 

created a much greater flow 

disturbance at a given 

Reynolds number than the 	Fig. 5.2  

smoothly contoured configuration, however both present the same 

qualitative flow features. 

The velocity fluctuations due to the presence of large 

eddies produce pressure variations at the arterial wall which 

propagate through the wall and the surrounding tissues and 

generate sounds, whose auscultation is the oldest and most 

common means of detection of arterial stenoses. 	Tamm (1977110-12.3 

showed that such sounds have peak frequencies which correlate 
I UBH 

with the characteristic vibration modes of the awter-i-1 wall. 

Only in the case of sharp-edge stenoses did he find frequencies 

which correlated with the periodic vortex shedding. Even 

then, the vortex shedding frequency might easily have been 

"forced" by the wall elastic vibrations. This forcing Has been 

observed in the case of an unbounded subsonic jet by Crow & 

Champagne (1971) and by Moore (19771. Acton (19 801 showed 

by numerical calculation that this forcing is possible over 

a wide range of the Strouhal number ( • 3 tls St s 2• ) . However, 

no experimental evidence exists to support this observation 

for high Reynolds number flows. 
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Several experiments have shown that the transition 

to turbulence is strongly dependent on the constriction 

ratio C ; 	that it varies with the frequency parameter, 

the flow first becoming less stable and then more stable as rr 

is increased; and that it depends on the shape of the 

obstruction. However, no general conclusions can be made 

because of the lack of 

agreement among investigators 

Only in the case of a pulsatile 

flow through an orifice plate 

stenosis can more information 

ALPHA PARAMETER,a 

be obtained. 

W 4O0 

a3 

Sacks et a2 (19 71) found: 200 

that the dependence on the 

constriction ratio could be 

expressed as 

"Rec =2384(1— C) Fig. 5.3  C21 

and Yongchareon (1977) investigated the dependence on 

the of parameter for severe stenoses Cc = .89). His results 

are shown in fig. (5.3). 

The inviscid model of an orifice plate in a pipe 
Tl 

previously described is a considerable simplycation of 

the stenosis problem. However, because the geometries 

chosen are such that the flow separates for all Reynolds numbers 

and the separation point is fixed, we hope to obtain 

information about the evolution of the large scale structures 

and predictions of the gross features of the flow. Perhaps 

the grossest assumption is the flat incident flow profile. 

In the case of internal flow, the viscosuststrongly effects 

the flow far from the stenosis. For a sinusoidally 
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oscillating viscous flow in a straight pipe of length 1 

n 
and subjected to the pressure gradient L1 ))/~Q -- Ucos2TT'~ 

the analytical solution of the Navier-Stokes' equation 

was given by Lambrossy (19521. 	This flow-, later 

studied by Womersley (1955) , is a function of distance from 

the axis E5 , of the non-dimensional time L' and of 0C 

only. The velocity profile shows a phase lead of the outer 

layers over the inner _ core of the f l.id and a flow-reversal 

occurs at the wall. As OC is increased, the point of 

reversal gets closer to the wall and the central part of 

the profile is flattened. At higher 0( a Stokes layer 

of thickness 	f)-FTe appears at the wall. For O>5• the 

flat flow profiles is a good approximation over most of 

the cycle. 

5.1 Flat plate orifice 

The first case investigated was that of oscillatory 

flow ( Vō=O) 	through a flat orifice plate of zero 

thickness. The pipe and the orifice were simulated by 

80 annular elements distributed over a lengths of 12 pipe 

radii on either side of the orifice. The elements were 

concentrated, as discussed in section (2.5), at the edge of 

the thin walled orifice plate whose junction with the pipe 

wall was smoothed out to avoid spurious solutions (Craggs & 

Mangler, 1971). The velocity near the sharp edge was found 

to behave like the flow through a circular orifice in an infinite 

plane and the tangential velocity round the edge agreed well 

with \/t 1=2 V* [2R*/(Rā 62 16 , the attached flow in such 

a case (Lamb, 1932) , for c = .6, .7, .8, .9. 

As in the disc case the vortex release and the 
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integration time steps were assumed to be the  same to 

minimise the self-induced velocity error. Also, the 

vortices which reached the ends of the simulated pipe were 

removed from the calculations. 	Fig. 05.41 , C5.51 , 

(5.6) , (5.7) show the results of numerical calculations 

for c = .6, .7, .8, .9 and k'= 4.75. The non-dimensional 

time step was cSc. = .0125. 

The primary difference between orifice and disc flow 

is that the self-induced velocity of the vortex rings, formed 

by the rolling up of the vortex sheet shed by the orifice, 

tends to convect them away from the orifice. This effect 

is opposed by the 'images' in the bounding pipe walls and 

therefore the ratio of the radius of the vortex to that of 

the pipe is important. Sheffield C1977) found that in a 

2-D channel of unit width the self-induced velocity of a 

pair was the dominant effect if their separation was less 

than 1. He also found that a vortex pair which is in close 

proximity to the wall of an orifice of width R0  will travel 

back through the orifice opening only if its initial distance 

from the wall is less than. Re/1T . As a result, we see 
that very little of the vorticity generated during each half 

cycle is conducted back through the orifice., particularly 

for large constriction ratios. Most of it remains on the 

side of the orifice where it was generated. in the real 

flow the vorticity is dissipated by diffusion. In the 

calculation it does not dissipate but does disperse due to 

interaction with other vortices and with the wall. This 

leads eventually to strong interactions with the bound 

vortices representing the walls and as the free vortices 

approached the end of the simulated pipe instabilities 
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may develop. This effect could have been avoided by 

removing the vortices too close to the  walls [Clements, 1973; 

Sarpkaya, 1975) but we preferred to stop the calculations 

and assume that this was a limitation of the inviscid model. 

Another difference between orifice and disc flow is 

how the flow in the neighbourhood of the edge is affected 

by the evolving vortex sheet. In both cases the velocity 

at the edge induced by the vortex sheet is opposite to 

the free stream velocity. As a result, the flow at the. 

edge and hence the shedding tends to reverse before the 

onset flow reverses. 	In the orifice, however, this effect 

is counteracted by the self-induced velocity which acts 

with the incident velocity and the shedding reverses almost 

exactly in phase with the onset flow. 

A flow visualisation experiment, using the hydrogen 

bubble technique, was performed to check the calculation. 

The experimental water rig consisted of a system of 25 litt. 

I.D. perspex tubing; The oscillatory flow was produced 

by a piston, 44D downstream of the orifice plate, driven 

by an electric motor. The test section consisted of two 

62.5 x 62.5 x 125 mm blocks of perspex with 25 mm I.D, 

bore. The stainless steel orifice plates of 1 mm thick-

ness were located co-axially at the centre of the block. 

Five platinum wires (d = 30 x 10-3mm) were mounted .75 and 

:125D upstream of the orifice plate and .5, and 1 and 1.5D 

downstream. In order to produce hydrogen bubbles the two 

outer most wires to the plate were the anodes and the 

innermost ones the cathodes. Electrical pulses then 

produced either hydrogen or oxygen bubbles which were 
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convected with the flow. Two lamps illuminated the test 

section from above. Bubbles photographs of exposure 

(f 2. 8, 1/ 250) were taken. 

The experimental and calculated results for IC= 6. 

and c = .7 are compared in fig. (5.81 and fig. C5.91. The 

period of oscillation in the experiment is 4s which means 

that the Re = 486 and the ratio between Stokes layer and 

pipe radius is .16. Again the calculated results cannot 

be compared directly with the experimental results which 

record the convection of streak tracks. Eowever, 

qualitative comparison can be made and, in particular, 

the centres of primary vorticity can be easily estimated 

from both and they-agree quite well.. The experiments 

as well as the calculations show the regular large scale 

structure of the flow. One vortex ring was observed to 

be shed for each half cycle which broke down into a 

disturbed flow pattern at the end of the accelerating phase. 

In the calculations this seems to be suggested by the 

Helmholz instability growing on the wound part of the 

vortex sheet. For the acceleration phase and a part of 

the deceleration phase the stretching of the vortex sheet 

increases at a rate faster than -et. This stabilizes 

the sheet against a local Helmholz instability as discussed 

by Soffuran (1974) and proved by Moore & Griffith-,Tones (19741. 

At the end of half a cycle, the vortex sheet starts being 

compressed and then destabilized by the reversed free stream 

velocity. 	The same observations were made by Djilali (1978)_ 

who did not observe any quasi-steady vortex shedding for 

2.4 G K 7.2 with. c = .5, .6, .7, .8, .9 and by Pellegrin 
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(1976) who detected the vortex shedding only in the case 

of higher constriction ratios; in the latter case the 

effective Keulegan-Carpenter number is not given. In 

the case of a physiological pulsatile flow through an 

axisymatetric stenosis, Azuma & Fukushima (1976) observed 

that a few intense large vortices were formed near the 

constriction and shed downstream in a quasi-steady fashion 

during the acceleration phase. During the succeeding 

deceleration phase they were broken down into turbulence 

The turbulent flow thus formed did not diminish but spread 

upstream until the start of the next accelerating phase. 

The parameters were within the physiological range, Re = 1200, 

04 .= 22 and is=  1. 

The pressure distribution along the wall is defined 

as in section (4.1) and the pressure drop coefficient is 

given by equation (4.1.16). We define the pressure drop 

coefficient between two points, sl  and s2  at the wall as 

Cop  (s1,z,-t) Cp(5,1 ) - C,(3a,' ) (3) 

Fig. (5.10) shows the calculated and the experimentally 

measured (Djilali, 1978) values of Cop when sl  and s2  are 

three pipe diameters either side of the orifice for 

k:.  7.4, Re = 1118 and D(= 22.5, with c = .6, .7, .8. 

In agreement with Young & Tsai (1973) and Clark's 

(1976) observations the experimental peak pressure drop 

coefficient 	was found to be relatively independent of 

c for c G .7 and then to increase very rapidly with. c. 

Cod  was also found to be relatively independent of Re 
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Fig. 5.10 
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over the range 318 Res 1272 but did vary with IK,  These 

results are shown in fig. (5.11) along with the calculated. 

The agreement is good, as expected from the previous 

figures (5.10). , for c < .9. 	This disagreement at 

c = .9 is not surprising; 	first because the flow was 

observed experimentally to be turbulent over most of the 

cycle and, secondly, because the assumptions leading to 

the use of the 2-d shedding theory and of a negligible 

self-induced velocity are suspect, For such a large construc-

tion, L„/6' OC') and equation (3.4.481 shows that 

U* 6t*/ Lv • ~~ 

The instantaneous pressure drop can be written by 

simple momentum considerations 

1* _ 131!0*+ p*, 
	 C41 

where (see section 4.2) the first term arises from the 

inertial effect of the unsteady flow in a straight tube 

over a length. L* and the second term from the attached flow 

round the orifice and the distribution of shed vortices. 

In a non-dimensional form and using equation C11 

20 *  .mL
Ca

_
4V*2R cos 2 r1 + c  = 	 CAN/ 

	(5) 

The The calculated Cap ,Cho , Cov and the term 

~ 2 
C-p - 2

- 
I ai,t*/ U* 	t* 	are plotted in fig. (5.12) with 

K = 4.72 and c = .7. Also, CDv and Care shown in 

figures (5.13) and (5.141 with K = 4.72 for c = .6, .7, .8 

and in fig. (5.15) and (5.16) with c = .7 for K =.2.45, 

4.72, 7.4. 	Fig. (5.17) shows 	and .Cr with c = .9 

for K = 4.72. 
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Fig. 5.15  
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Fig. 5.16  
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Several studies (Young &. Tsai, 2973; Mates et al, 1978; 

Clark, 1976; D j ilali, 19781 have suggested that the 

instantaneous pressure drop may be expressed in the form 

of Morison's equation. 	Equation C5) can be then 

rewritten as 

Ca1 C2)= 41.7LMcos6+(_c C bsteset °  (.6) 

by taking the appropriate Fourier's integral over one 

cycle. Following the procedure shown in section C4.2)_ , we 

have 

CM — I  	C   C2')coszr1d~ 	(7) 
+znL  o~ 

0 

and 

= 4 (1=Z-12C-4,vet.')  site 2TVt dz 	(8) 
0 

''I QE C%-c)/c = i. / CR2/ -t) 
Fig. (5.181 shows the calculated values of CM and CD for 

different constriction ratios c and different K compared 

with the experimental results for K = 7.4 and OC= 22.1. The 

numerical results show 

2 TT
K 
L CC h-- i }  \<04.144 

and 

3rr(i- c.)2 C 

where OCM= 2±•'.5, O(b=1• ± •o5 and A and B are constant, 

The experimental and the calculated CM show the same 

qualitative features, even if the calculated values of CM 

(9). 
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are always higher, However, the. calculated CD. exhibits 

a dependence on c which is absent in the experimental CD. 

This may be better represented by substituting CdRo for Ro 

in equation (8), where Cd is an empirical discharge 

coefficient. Experimentally Cd turns out to be very close 

to the steady flow value (.6 4- .65) . 

An estimate of the instantaneous pressure drop across 

"physiological stenoses" is commonly obtained by a quasi-

steady approximation of equation (6) (see, for example, 

the review by Young (1979). 

Cō ,C.) _ 	stub -t- Cap() = Tv } .Tb +7-rt 

where the coefficient CD is not expected to depend upon the 

geometry and is equal to the steady flow case. Similarly, 

in the first term of equation (11) which approximates the 

viscous effects, the coefficient Cv is given by assuming the 

flow is quasi-steady 

t~v = .52 8Ls }3.3Ro 
2R C+ - c3 

In the present case, where Ls = 0, Cv = 1660, ..., 207 for 

c = .9, ..., .6. In the experiment, with Re = 1150, the 

first term of equation (11) ranges from 1.44 to .18 and 

the ratio between Tv and TD ranges between .007 and 0.13. 

Therefore, it is reasonable to assume, as we have done, 

that the viscous effects are small. 

Figure (5.19) shows the calculated CA, in the case of 

a slightly pulsatile flow for c = .8 with ZS'= 3.5 and 

K = 3.5. 	The non-dimensional time step was &It = .025. 

(12) 
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Fig. 5.19  
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GoV shows. clearly an asymmetry in the peak values and the 

presence of an offset value Cru= 6. Using' the continuity 

equation across the orifice and using the experimental discharge 

coefficient which takes into account the presence of the jet, 

the expected steady pressure drop coefficient is 

" (_ 
r 	

2c 
` 11 CI r  6 2 
	

(13) 
AI° 	(► - c)d 

In this case Co = 3.5 with C,J = • G 

5.2 Stepped orifice  

Finally, we briefly investigate the influence of the 

length of the constriction LS  on the flow patterns and 

on the pressure drop The constriction presents two sharp 

convex corners of internal angle S=11-42. and a cylindrical 

throat of length Ls= Ls  /'R 	The constriction ratio 

c was chosen to be .8 and (t=0. The pipe and the 

constriction were simulated by 80 annular elements distributed 

as in the case of the flat orifice plate. The attached 

potential flow near the edge was found to be, as expected, 

of ()(crz"N where cr? is the distance from the edge along the 
O 

edge walls. Two vortices were shed at the two convex 

corners at every time step forming two shear layers, which 

eventually appear as a single thick vortex sheet. Figs. (5.20), 

(5.21) , (5.:22): , āfid (5.23) show the results of numerical 

calculations for Ls = .25, .5, 1, 2 with K = 4.75 and 

= .0125. 

The primary feature of the calculations is the formation 

and the evolution of a thick vortex sheet which rolls up into 
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single vortex ring each_ half. cycle. The vortex sheet, 

generated at the downstream sharp edge, always contributes 

to the formation of the core of the vortex ring, whereas 

the other vortex sheet is wound around such a core forming 

the outer edge of the vortex. Mixing between the two 

free vortex sheets.always seems to happen only when the 

flow reverses. The thick vortex sheet shows more stable 

behaviour consistent with Moore's (1978) analysis even if one 

might doubt, as in the case of Micha111e' s (1964) calcula-

tions, that the development of the pair of free vortex 

sheets correctly represents the development of a vortex 

sheet of small thickness. As in the flat plate orifice 

case, little or no vorticity generated during a half-cycle 

was observed to be convected back through the throat of 

the constriction during the subsecuent half cycle. 

Of particular interest is the reattachment length. 

This has been extensively studied in the case of steady 

flow. 	Back and Roschke (1972) have shown that for a sharp 

edged abrupt expansion the reattachment length increases 

with the jet Reynolds number Rej  for Rej  200 and it 

appears to reach a limiting value for high Rej  (Rej  >2000).  

Streamlined geometries have shown similar behaviour and 

it has been observed that the reattachment length depends 

primarily on the constriction ratio (Deshpand, Giddens & 

Mabon, 1976). Little or/information is available in the 

case of unsteady flow. 

Fig. (5.24) shows the location of the reattachment 

point in time for Ls  = 0, 1, 2. 	The separated region grows 
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during the systolic phase until the flow reverses and, 

during the diastolic phase, it develops on the other side 

of the constriction. The reattachment length is fairly 

independent of the constriction length and at the ends 

of the systolic and diastolic phases, it reaches its 

maximum value ^J6. Note that for jet Reynolds 

number equal to the peak value, Rej= 1704, in present case, 

Back & Roschke (1972) observed a reattachment length 

between 4 and 5 for the steady case. 

The instantaneous pressure drop coefficient between 

two points sl  and s2  is given by equation (3) and again 

it may be written in the form of equation (5) of the 

calculated Cav for Ls  = 0, .25, .5, 1, 2 are shown in 

figure (5.25). The values of CM  and CD  calculated by means 

of the equations (7) and (8) are plotted in fig. (5.26) as 

functions of the construction length Ls. 	CD  exhibits an 

independence of LS  which suggests that the rate of shedding 

is not strongly affected by the presence of the constriction 

throat. However, CM  shows a steep linear growth with 

Ls  which is due to the increase of the total apparent mass. 

The instantaneous dependence of the inertial effects of the 

attached flow on LS  can - be estimated as 

4TT  C L SGOS ZW 	 (14) 
<o —c) 

Then the effect of separations alone can be represented as 

the difference between the calculated pressure drop Cdp  and 

[cAloc-o-)]Lro+ac,oct.) (15) 
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Fig. 5.25  
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Fig. 5.26  

0 
V 



150. 

Figure C5.27I shows the difference_ between the 

calculated pressure drop Ca, and C' p g.yen by eqn. C15I. 

As Ls  increases, the sloes of the two curves converge. 

This indicates that the contribution of the separation becomes 

quite constant and the attached flow dominates the inertial 

component as expected. This is consistent with Mates et al (1978) 

observations in the asymmetric trapezoidal stenosis that 

the peak pressure drop increases less steeply as the length 

of the constriction increases. 
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~• CONCLUSION 

The "direct summation" method of discrete vorticies 

extensively used to calculate 2-D flows, has been extended 

to axisymmetric flows. It is a relatively fast method for 

calculating unsteady, high Reynolds number, separated flows 

and predicts the dominant features of the flow accurately. 

Calculations of the flow around an impulsively started 

disc showed a close similarity to the flow around a 2-D plate 

during the very first stages of the starting vortex evolu-

tion. As time increases, the axisymmetric nature of the 

disc flow becomes important and the vortex sheet rolls up 

to form a vortex ring. The predicted distribution of 

pressure on the disc surface and the drag coefficient tend 

to the experimental values for the steady state, even if 

the separated bubble behind the disc is forced to be 

axisymmetric and the wake is unable to develop into 3-D 

vortex loops which are observed experimentally. 

In unbounded oscillatory flow around a disc, the 

calculations correctly predict the "pairing" and the 

unidirectional streaming of shed vortex rings which were 

observed experimentally. The regime conditions are reached 

in a shorter time (1 : 2 cycles) then in the 2-D calculations 

and it presents more stable behaviour. It also shows that 

for small values of the Kuelegan-Carpenter number the 

calculated inertia and drag coefficient in the Morison's 

equation for the disc present features very close to those 

of a single plane infinite edge. 
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For the bounded unsteady flow through_ a. constricted pipe, 

the calculations correctly predict the presence and the 

location of the well defined vortices which- are shed during 

each half cycle and the instantaneous pressure drop coefficient 

across the constriction. The peak pressure drop coefficient 

depends on the Kuelegan-Carpenter number and is found to be 

significantly affected by the constriction ratio only for 

severe constrictions C C >•7 1. The length of the 

constriction does not seem to affect the separation and 

the inertial effects due to the vortex shedding are important 

only for lengths shorter than one pipe radius after which 

the peak pressure drop increase is due only to the increase 

of apparent mass. 

We did not attempt to investigate more realistic 

physiological flows, however, the results presented in this 

thesis may have relevance to the description of the large 

scale flow generated by a stenosed vessel. The limitations 

of the direct summation-method do not allow- us to relax 

constraints on the flow such as uniform mainstream velocity 

the sharp-edged geometry, or the absence of. viscosity. Far 

from the constriction the large scale flow does not persist 

and the viscosity effects dominate. In this range the 

vorticity diffusion must be considered. This seems to 

suggest that a future use of the 'cloud-in_cell' method 

may lead to a more useful representation of such flows and 

to a description of their periodic and aperiodic structure 

on a much smaller length scale than the direct summation 

method allows. 
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APPENDIX 

In order to calculate the integrals in equation 

(2.3.29), we define Csee fig. 2.2r 
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