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ABSTRACT 

Squeeze film bearings operate on high frequency 

vibration of one of the bearing surfaces. The time-averaged 

pressurisation effect is mainly due to the compressibility 

of the gas film and this degree of pressurisation depends on 

the amplitude and frequency of oscillation of the moving 

surface. If this supporting surface is sufficiently flexible, 

the amplitude of vibration is not uniform. An investigation 

on the effect of this non-uniformity on the performance of 

the squeeze film is presented. The characteristics of the 

supporting member are demonstrated to be critical as they 

dictate the frequency of operation at low input power. 

Cases considered respect discs and conical shapes. For 

discs a particular parameter, the ratio between the inner 

and the outer edges, is analysed. The amplitudes of vibration 

are experimentally measured using an optical technique. The 

resonant frequencies and the frequencies where the lift 

occurred are compared. It is shown that a close relation-

ship exists between both frequencies. Theoretical procedures 

to obtain the value of the resonant frequency for the case of 

discs and cone bearing surfaces are considered. The results 

obtained are compared with those obtained experimentally. 

The methods used for the solution of the Reynolds equation 

for the case og non-uniform vibrations are also discussed. 
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1 
CHAPTER 1  

SQUEEZE FILM EFFECT 

1.1 	INTRODUCTION 

Conventional gas lubricated bearings fall into two 

main classes: 

- Aerostatic bearings, which require a feed of 

pressurised gas for their operation, and 

- Aerodynamic bearings, self acting, which originate 

their own internal pressure build up by means of the fluid 

motion. 

Recently, a third class was introduced, the 

squeeze film bearings, which are the subject of this thesis. 

The working principle of the three types of bearings 

mentioned are represented in Fig. 1.1 and Fig. 1.2. 

Fig. 1.1 shows the case of two flat plates with a 

lubricating film between the two, and the velocity gradients 

across the fluid flowing between the two plates. The case c) 

represents the self-induced pressure generation due to the 

converging surfaces as in self acting bearings. The 

externally pressurised bearings and the squeeze film bearings 

have a greater similarity, which is emphasised in Fig. 1.2. 



In an externally pressurised bearing the air is 

supplied to the bearing surfaces through either a single 

control jet or a ring of jets between the bearing surfaces. 

The application of the external load perpendicular 

to the surface reduces the clearance, increasing the aero-

dynamic resistance of the gap relative to that of the jet. 

When equilibrium is established the clearance adjusts itself 

and the total pressure force is equal_to the applied load. 

Externally pressurised bearings offer the 

possibility of starting under load and work at lower or 

zero speed. Self acting bearings do not require any pressure 

source, exhaust sink or filtering system, but they are only 

able to support a small load per unit of area as a function 

of the speed and are very prone to instability. Need for 

close tolerances is the other major disadvantage of this 

type of gas bearing. 

These two types of gas bearing and the squeeze 

film bearing differ fundamentally on the origin of the 

fluid flow. In all cases the pressurisation effect is 

obtained by viscous retardation of flow. In a self acting 

bearing, adherence to the sliding surface and a varying gap 

geometry cause the pressure variation. In the externally 

pressurised bearing it is the highly pressurised air 



supply that produces a gas pumping action. In the case of 

the squeeze film bearing it is the periodical variation of 

the gap volume containing the fluid that forces a successive 

sucking in and out of the gas. 

1.2 	REVIEW OF PREVIOUS WORK AND APPLICATIONS  

Squeeze film bearings cannot be considered as 

well established, even though some work on the subject dates 

from the last fifteen years. It is the aim of this section 

to provide a resume of the work of previous researchers. 

This survey will be as complete as possible for the author. 

It was thought, however, to cut out some details and refer 

to them, where relevant, in the subsequent chapters, as 

variables and parameters are defined. 

The first reference to gas squeeze films is due 

to Tipei in 1954 (1)*. Later, Professor Reiner in 1956 made 

a non-intentional contribution on the subject through an 

experiment presented at an Applied Mechanics Conference in 

Brussels in 1956 (2). His aim was to show the non-Newtonian 

• properties of air, using two discs, one static and the other 

spinning at high speed. The supposed non-Newtonian effect 

was later demonstrated by Taylor and Saffman (3) to be due 

References are given on page 2R;_ 
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to the existing misalignment and the relative normal motion 

between the discs. They also concluded that this could 

lead to a time-averaged pressure higher than the ambient. 

The paper that first specifically dealt with the 

squeeze film effect was published by Langlois (4). He 

derived the equation governing the pressure distribution in 

a parallel flat squeeze film thrust bearing under isothermal 

conditions using a first order perturbation technique. A 

finite difference method was developed by Michael (5) 

for application to the time-dependant Reynolds equation. 

This important procedure will be reviewed in detail in 

Chapter 3. Theoretical results obtained with this method 

were compared with experimental values by Salbu (6). This 

work is extremely important as it seems to be the first 

relating the conduction of a series of conclusive experiments 

with thrust and journal squeeze film bearings. The thrust 

bearings were essentially composed of two parallel coaxial, 

flat discs, one of which was held stationary while the other 

moved sinusoidally in a direction normal to the surfaces. 

For journal bearings, combined with thrust bearings, 

no conclusions were reported. These-experiments were 

conducted using voice coils as motion generators. Simult- 

aneously, a team conducted by Pan and including Chang, 
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Malanoski and Orcutt (7, 8, 9, 10) was working for Mechanical 

Technology Incorporated in a project on squeeze film bearings 

for gyroscopes. The three first papers referred to a very 

particular model of squeeze film bearings and were quite 

significant for the analysis of the characteristics of 

different supporting member-driving unit arrangements. In 

the other reference, an asymptotic approach was proposed for 

the calculation of pressure distribution and load capacity 

for flat disc bearings. This procedure was fully developed 

by Pan (11, 12). This theory was then applied in (13) by 

Pan, Broussard and others, for a cylindrical (journal) 

squeeze-film bearing. 

This application was restricted to small eccentricity 

and uniform or parabolic variation of excursion ratio. Excursion 

being defined as the ratio between the vibration amplitude of 

motion and the mean gap between bearing surfaces. 

Most of the work published since then made use of 

the asymptotic theory, which is valid for large squeeze 

numbers, usually found in practice. This is the case of 

(14) by Pan and others fora rotating spherical squeeze film 

bearing. It was shown that squeeze film and self-acting 

effects are superimposable. Beck and Strodman (15), also 

used the asymptotic theory for the study of the stability 
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of infinite length squeeze film journal bearings. An 

extension of the asymptotic theory to the dynamic performance 

of these bearings when the external disturbance can be 

considered small compared with the squeeze motion was proposed 

by Elrod (16). Using theory from Diprima (17) for the 

establishment of the boundary conditions, Pan and Chiang (18) 

applied this dynamic study to the spherical squeeze film 

hybrid bearing. More work on spherical shapes is due to 

Beck and Strodtman (19), who considered a radial excursion 

operation instead of an axial excursion. They reported an 

increase in load capacity of about 50%. 

In the squeeze film analysis, it is generally 

accepted that the film behaves isothermally and Pan (20) 

provided a confirmation for its validity, at least for high 

squeeze frequencies. Furthermore, Pan and Chiang (21) 

analysed the origination of bearing torques, and their 

influence on gyroscope gimbal bearings, where error torque 

is critical. This is also discussed by Strodtman (22). 

The effect of the ratio of the length to diameter of journal 

bearings was studied by Beck and Strodman (23). Another 

analysis of Pan (24) using the same perturbation analysis 

extended the asymptotic theory to include edge effects. 

The influence of the supported mass motion was considered 
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by Pan and Chiang (25) and again in another paper by Chiang 

and others (26). Earlier, Beck et al tackled this problem 

but without much success (27). Another important contribution 

was that of Constantinescu (28), about the influence of 

inertia forces on squeeze films. In another paper Strodtman 

(29) proposed an analytical solution for large values of 

eccentricity using a small parameter procedure. More recently, 

the tendency of research on squeeze film bearings has been 

conducted for the study of the influence of the incorpor-

ation of grooves. A very complete theoretical analysis 

has been provided by Cooke (30). This is an interesting 

work because, apart from a good physical interpretation of 

the fluid behaviour, there is a complete dynamical analysis. 

Huxley (31), working on the application of squeeze film 

bearings to navigational aids, suggested that the supporting 

member vibration modes could be a significant parameter on 

the performance of these bearings, Figs. 3 and 4. These 

are, to our knowledge, the latest research stages on this 

subject. 

1.3 	CONCLUSIONS  

The two major applications of squeeze film bearings 

until now have been the support of gyroscope gimbals and 

slider bearings for the computer industry. 
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Thus, most of the work on this subject is due 

mainly to two teams of researchers, each one with an 

interest in either thrust or journal bearings. It is possible 

to see from the work mentioned in the previous section that 

the general approach to the problem is established, and the 

latest papers now detail the influence of the various para-

meters involved. Though most of this work is theoretical, 

there is no general consistent experimental verification of 

the results provided. 

At this point it seems that the two main fields 

of improvement are the study of effective grooving and the 

use of the flexibility of the moving surface. This last 

aspect is the object of the subsequent chapters. 



CHAPTER 2  

RESEARCH APPROACH AND  

FUNDAMENTAL ASSUMPTIONS  

	

2.1 	INTRODUCTION  

In the previous chapter the contribution of the 

various authors was reviewed in historical order. We will 

now consider the principle of the squeeze film bearing. 

This approach would simplify the definition of the 

parameters. 

	

2.2 	PRINCIPLE OF THE SQUEEZE FILM BEARING  

The model we consider as representative of a 

squeeze film bearing is shown in Fig. 2.1 and Fig. 2.2. The 

dotted lines mean an ideal boundary. The supported member 

and the electric power supply are both excluded. Never-

theless they are still important. The supported member 

imposes the load on the bearing and its geometric shape 

and position dictate the type of bearing shape that must 

be used: thrust or journal, conical or spherical shape, 

eccentricity, etc. The electrical supply restricts the 

power available and the working frequency range. The two 

are related through the bearing performance. This is the 

main objective of the present study and thus we will only 

consider the elements within the referred boundary. 
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The basic elements are three:- 

1. The electromechanical transducer, 

2. The supporting member that includes the 
bearing shape and any existing attachments to the 

electromechanical transducer, 

3. The fluid. 

The following sections will detail the parameters derived 

from these elements. 
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2.2.1 	The Electromechanical Transducer 

The squeeze film bearing pressure effect relies 

on the high frequency oscillation of the supporting member. 

In order to obtain this motion some kind of electromechanical 

device is necessary. A magnetic device was used in early 

experiments by Salbu6  for electromechanical comparison. 

Magnetostatic materials have also been suggested, but it 

was soon realised that piezoelectric materials were most 

suitable for this purpose. Their main advantages are: 

- small weight and size 

- small power consumption 

- good temperature stability 

- availability in several sizes 

- low internal power losses 

and shapes 

Another extremely important advantage of these 

materials is their ability to be oscillated at high frequencies. 

The only major inconvenience of piezoelectric ceramics is 

their mechanical instability. During the operation of 

inducing the piezoelectric properties on the material, 

called 'poling', internal stresses are set up. During the 

life time of the piezoelectric ceramic there is a gradual 

relief of these internal stresses. This causes small 

changes of the ceramic shape and partial loss of some of the 

properties. 
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FIG. 2.3 	Schematic representation of the poling phenomenon 
showing: a) random dipole orientation, and 
b) preferential orientation due to poling voltage. 

4 

e 

FIG. 2.4 	Cylinder of piezoelectric material at rest in a), 
subjected to an external force in b) and c), and 
to voltage in d), e) and f). 

However, ceramic materials are now well established as 

electromechanical transducers in squeeze film bearings. The 

operation of poling consists of the application of a voltage 

to the ceramic. This causes the mass of crystallites 

(electric dipoles) that constitute the piezoelectric material 

to become orientated in the direction of the applied voltage, 

Fig. 2.3(a) and (b). This electric field is applied at a 

temperature just below the Curie point*. After cooling the 

Curie point is the temperature at which ferromagnetic 
materials change to paramagnetic. 
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ceramic the dipoles cannot return to their original positions, 

the material is permanently piezoelectric and can convert 

mechanical energy into electric energy, and inversely. 

Fig. 2.4 illustrates the effect of the application of an 

external force to a cylinder of piezoelectric material. In 

a rest condition: (a) there is no voltage between the 

electrodes; if the applied force is compressive, (b) the 

generated voltage is of the same polarity as the poling one; 

when the force is tensile, (c) the polarity is reversed too. 

Shortening and lengthening of the crystal will occur if a 

voltage is applied between the electrodes (d), (e) and (f). 

The two major parameters associated with the 

ceramics are the type of ceramic (composition) and its shape. 

There are natural piezoelectric materials like quartz, 

Rochelle salt and tourmaline. However, they have not been 

used in squeeze film applications as they are more expensive 

and difficult to cut to the appropriate shape. Materials 

that are currently in use are compositions of lead 

zirconite-barium titanate, commercially produced by the 

Clevite Company, under the series PZT. More recently, other 

varieties were made available from Mullard in their brand 

PXE, and also from Philips. Although the properties vary 

noticeably with the type of the material, there is no 



FIG. 2.5 	Spherical a) and conical b) squeeze film 
geometries. 

reference to any comparisons of the performance of these 

different materials. 

The usual shapes for the piezoelectric ceramics 

are the simple disc for thrust bearings and the cylinder 

• for the journal bearings, Fig. 2.6. Cylindrical shapes as 

used in journal bearings require very accurate tolerances 

and surface finish, and are therefore sensitive. In these 

examples the ceramics act directly as the supporting member. 

This means that the film thickness is directly dictated by 

17 
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the vibrational modes of the ceramic. Reference to piezo-

electric material characteristics will be included in 

Chapter 5. 

2.2.2 
	

The Supporting Member  

2.2.1 
	

Disc Bearings: 

The mechanical expansion produced by the ceramic 

must usually be applied to a metallic shell acting as a 

moving member, Fig. 2.2. An exception already referred to 

is that of the journal bearings because of the difficulty 

of matching the dynamic behaviour of the ceramic and the 

metallic shell. 

Discs have been initially used as supporting 

members by Salbu6  with two different sizes, 1 in. and 1.75 

in. diameters. Apart from reference of a higher load 

capacity for the larger diameter (7.5 and 15 lb. respectively), 

no other investigation was made on shape or dimension effects. 

2.2.2.2 	Spherical Bearings: 

Discs are the simplest shape but can only carry 

axial load. For a combined axial and radial load carrying 

capacity, conical or spherical shapes are required. Spherical 



thrust disc 

LOAD 

Piezoelectric ceramic tube 

s.f. supporting disc 

FIG. 2.6 	Combined journal and thrust squeeze film 
bearing with axial (a) and radial, 'hoop', 
(h), motion. 

bearings have the possibility of providing support in any 

direction but are the most expensive to make. Pan14  

investigated theoretically the performance of squeeze film 

bearings assuming an arbitrary mode of oscillation entirely 

in the axial direction and harmonic in time. The bearing 

geometry is represented in Fig. 2.6. The normalised film 

gap in these circumstances is: 

with 

H(0,9,t) = 1+ (Ecost +11z)cos0 +llrsinf6cosb 	(2.1) 

0 - azimuthal angle, 

9 - median angle, 

r  - dimensionless radial displacement ratio, 
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 z- dimensionless axial displacement ratio, 

Z = ?t - dimensionless time. 

The asymptotic solution is used together with the 

perturbation method, and expressions for the pressure 

distribution are obtained. In his conclusions, Pan says 

that load capacity and axial stiffness are independent of 

radial displacement. However, no experimental confirmation 

was provided. Huxley31  performed some work on spherical 

bearings for gyro support (see Fig. 1.1). In this case 

the amplitudes of vibration were determined experimentally 

using an optical device. He found that for the particular 

spherical shell used, driven by a piezoelectric ceramic, 

there was a first resonance at 16.5 KHz, with the modal shape 

as represented in Fig. 1.2. It seemed that radial and 

tangential motion added up to mainly an axial displacement, 

but the amplitude of vibration was not uniform and greatly 

increased at the boundary. The load capacity at 4 Watts 

input power was 1.25 lb. for a hemispherical bearing of 2 

inches diameter. Other theoretical works, Refs. (18) and 

(19), further extended the use of the asymptotic theory on 

spherical squeeze film bearings, but no attempt was made 

to relate an actual mode with the theories established. 

20 
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2.2.2.3 	Conical Bearings: 

Conical shapes, Fig. 2.5, have also been studied. 

They provide axial and radial capacity and are easier to 

produce than the spherical ones. 

Pan7  and Chiang8  did some experiments on amplitudes 

of vibration. They also tried to establish some simple 

analysis to predict the amplitude of motion. Unfortunately 

difficulty was encountered pn matching these calculations 

with the previous experiments. More detailed analysis of 

these results will be considered in Chapter 6, dealing with 

conical squeeze film bearings. Huxley31  also performed 

measurement of amplitudes of vibration of this type of 

geometry. From his results he concluded that the effect of 

the flexibility of the shell could not be ignored and that 

non-uniform excursion was likely to occur in most practical 

cases. 

2.2.2.4 	Journal Bearings: 

The journal bearings have been more extensively 

analysed. Its geometry, assuming uniform amplitudes of 

vibration, is represented in Fig. 2.7. The first experiments 

were performed by Salbu6. He considered also a simple 

approach, using Boyle's Law, to obtain the mean positive 
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FIG. 2.7 Squeeze film journal bearing geometry with assumed 
uniform vibrational amplitude (Ref. 30). 

FIG. 2.8 Schematic representation of squeeze film journal 
bearing and actual modal shape showing non-uniform 
amplitude (Ref. 13). 



film force. No details were obtainable on the materials 

or dimensions of the test specimen. More specific details 

were provided by Pan and others13. They analysed the 

journal bearing schematically represented in Fig. 2.8(a) 

using a 'floating transducer', providing two squeeze films. 

The clearance between the outer surface of the hollow shaft 

and the inner diameter of the transducer was 275 in. The 

radial clearance between the outer steel tube and the 

piezoelectric ceramic was 300 in. Other significant 

dimensions are given in Fig. 2.8(b). This figure also 

shows the experimentally obtained mode shape for the trans-

ducer. Apart from a hoop mode resonance it was noticed that 

due to the Poisson effect, there was also induced 

longitudinal motion. As the longitudinal stresses at the 

free ends of the transducer, Fig. 2.9, must be zero, this 

was the reason given for the non-uniform radial motion of 

the ceramic. This shape was theoretically approximated by 

a parabolic curve (Fig. 2.8(b)) and the load capacity 

predicted by the asymptotic theory compared with 

experimental results. The discrepancies between the values 

obtained in the two cases were of the order of 20%. The 

explanation for this discrepancy was based on unfavourable 

tolerances and the difference between the experimental and 

assumed squeeze motion. One of the relevant facts shown by 

2 
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these experiments is that, as opposed to the other cases, 

the journal bearing arrangement produces much smaller 

amplitudes at the boundaries than at the centre section of 

the bearing. Another analysis of journal squeeze film 

bearings is reported by Strodman29, who has taken into 

account the non-uniform excursions. This is a pure theor-

etical work and the non-uniform excursions were considered 

in terms of a shape factor As  = a/b. The six arbitrary 

shapes studied are represented in Fig. 2.10. a and b are 

geometric parameters, z is the longitudinal coordinate and 

zLC 
the half length of the piezoelectric driver. He assumed 

that the radial motions of the piezoelectric cylinder can 

be expressed by the following cosine function: 

h
1 
= a + b cos 2 z 

LC 

or, introducing the shape factor, 

• 
= a(l+Acos 2 

z
z ) = a S(z,zLC) h

1 
 

LC 

(2.2a) 

(2.2b) 

The amplitude of motion is then separated into a reference 

amplitude, a, and a shape function, S. The load capacity 

is obtained through the use of a small parameter approxim-

ation. Unfortunately the results obtained were not 

compared with experimental ones, but only with others 

obtained numerically. The major criticism of that analysis 

is that it requires practical confirmation and that mode 

25 



shapes are not properly related to actual ceramic behav-

iour. 

Up to this stage no other shapes have been 

investigated. No particular research has been conducted on 

bearing materials either. 

2.2.3 	The Fluid  

The lubricant fluid'exists'between the two 

bearing surfaces. It is influenced by the clearance and 

load of the supported member, and the motion of the supp-

ortive member that undergoes the vibrational motion. 

We shall assume tow that the usual conditions 

encountered in lubrication theory are 'satisfied, i.e. 

- 	

the flow is laminar, 

- 	

the inertia effects are negligible, 

the fluid has Newtonian behaviour, 

- 	

the fluid can be considered as a perfect gas, 

no pressure change across the film. 

With these assumptions we can use the Reynolds equation to 

characterise the fluid behaviour. For a compressible fluid 

this equation is: 

= 612 (2.3) 
ox. (h3  p -6-2  ) 
1 	1 

1
a—
a
t 

[ 
1 
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The first r.h.s. term is known as the squeeze 

term. In most operational cases this term is small and its 

effect can be neglected. However, for high speed or high 

eccentricities the pressure variation caused by this term 

is significant. Using polar coordinates this equation can 

be rewritten as follows: 

Ra (H3 RPaR ) 	 aĀ (H3 Pāē) 
2 

= 
12µ(~Ra a(PH),+ WURo(a(PH)) _ 

pa h2 ea pa 
h 

8A 
0 

_ o(PH) +A.6(PH)  
ÓT 	aA 

(2.4a) 

(2.4b) 

where Ro is a characteristic bearing dimension and h0 is the 

bearing clearance. 

The first dimensionless parameter is the squeeze 

number, 5, and the second the bearing number, A. In the 

general case both of the bearing surfaces in two directions, 

normal to the surface and parallel to it, contribute to the 

film characteristics, and P = f(R, 9, T, C1,A, H). 

For parallel surfaces, P = f(R, T, 0, H) 	(2.5) 

and the equation assumes a simpler form: 

H3 ā (PR up ) = Q  PH 
R bit 	 aT (2.6) 

We have now two independent variables only: P and 

H. Assuming that one of the surfaces is held stationary 
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while the other is oscillated sinusoidally about a mean 

clearance, the film thickness is: 

h = ho - AcosWt 
(2.7) 

Normalising with respect to ho, the film thickness 

is now: 

H = 1 - EcosWt = 1 -Ecos T (2.8) 

The variable E, the excursion ratio, is a measure of the 

maximum relative volume change. The squeeze film character-

istics depend uniquely upon the operating conditions, 

defined by the dimensionless parameters 0- and  E. 

At low squeeze numbers, when the frequency is low 

or there is a large mean clearance, the air is forced out 

when the clearance decreases and sucked in when it increases. 

As the forces due to viscosity are small and since those are 

the forces opposing the flow, there will be a corresponding 

radial flow, 

t = Ii dz~µdt(l - Ecos WT) = 

= p_WE cos (WT -Tt/2) 	 (2.9) 

Under these conditions the pressure and the force 

generated are proportional to the squeeze velocity rather 

than the displacement. The phase angle between the minimum 

gap value, H(T), and the maximum instantaneous force, W(T), 
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Y —4 T1/2 as G --9 0. This means that at small squeeze 

numbers the film behaves in a damping mode. If the excursion 

is increased, or the frequency is high, the viscous forces 

will increase and compressibility will occur, particularly 

when the clearance is minimum. The flow resistance will be 

so high as to introduce compressibility effects. The gas 

will be alternately compressed and expanded. The -radial 

flow is restricted, and as the squeeze number increases, the 

flow will only occur at the narrow edge region near the 

boundaries. 

The air now acts as a non-linear spring and the 

phase angle tends to zero. 

In the next subsection the influence of the two 

main parameters, Cf and E, will be analysed. 

2.2.3.1 	Excursion Ratio: 

The excursion ratio, E = h , is partially imposed 
by the initial clearance between the two bearing surfaces. 

The only way it can be varied is through the amplitude of 

the squeeze motion. 

The large excursions are also limited by the 

condensation effect. For an isothermal compression the 
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condensation is ruled by the Gibbs-Dalton's law
32 

Defining the compression ratio,. r: 

~-, 	Amax 
p 	 (2.10) min 

Pvl 
and 	= P sat) = relative humidity 	(2.11) 

vi 

where:pmax and pmin are respectively the maximum and 

minimum values of the pressure curve in a cycle, 

pvl is the pressure corresponding to volume vl, 

pvl(sat) is the pressure at conditions of 

saturation for volume v1. 

Condensation will occur if: 

 

(2.12) 

When this happens there is a reduction of the effective mean 

clearance. This causes difficulty in restarting the bearing, 

as was experienced by Salbu6. 

The excursion ratio has a definite influence on 

the predicted mean squeeze film force (W,). This is shown 

in Fig. 2.11. There is an increase of the force with the 

increase in E (the curves were obtained through a numerical 

procedure). This justifies the search for large vibration 

amplitudes. Because these large amplitudes require large 

power inputs, it seems logical to try to obtain large 

values of excursion using the bearing material flexibility. 
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FIG. 2.11 Mean squeeze film force variation with the squeeze 
number, o', and the excursion ratio,E , (Ref. 6 ). 
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Beck23, analysing the effect of the bearing length 

on the load supported by a journal squeeze film, Fig. 2.12, 

considered the effect of the boundary excursion. He used 

a small parameter analysis to calculate the load support 

of infinitely long and infinitely short journal bearings, 

Fig. 2.12. The expressions of the dimensionless lift per 

unit length, W', obtained, are: 

i) 	Infinitely long bearing: 

 

W' co = - 2 E i E2  (2.13) 

ii Infinitely short bearing: 

 

 

W' = - 4TL E i E 2  (2.14) 

The variable E1  is the uniform excursion and E2  

the dimensionless eccentricity. From expressions (2.13) 

and (2.14) one can see that the load supporting capacity 

of the infinitely short bearing is 2.5 times that of an 

infinitely long bearing. 

To explain this fact Beck imagined a hypothetical 

bearing with the following characteristics: at the 

boundary and for an infinitesimal area, 5. into the 

interior of the bearing the excursion is E; in the 

interior itself the excursion is constant, Ec. For large 

squeeze numbers he calculated the following expression 



for the load capacity: 

W' = - 2 E2 (Ec + 2 E2 D~ ) (2.15) 

where Di is a variable assuming the value zero when the 

bearing length ---boo. Comparing expressions (2.13) and 

(2.15), Beck concluded that the boundary excursion had an 

increasing effect on the lift. He also suggested that an 

improvement on load capacity could be achieved by generation 

of maximum excursion at the boundaries of the bearing. 

2.2.3.2 	Squeeze Number: 

The other main parameter governing the fluid 

behaviour is the squeeze number,. This dimensionless 

parameter represents the influence of the gluid viscosity, 

squeeze motion frequency, ambient pressure and a geometric 

factor. This geometric factor is the ratio between a 

typical dimension of the bearing, Ro, and the mean gap 

between bearing surfaces, ho. The squeeze number can be 

interpreted as the ratio between the pressure drop required 

to cause the gas to flow out against the viscous forces and 

the pressure rise due to compression. The influence of 6 on 

the generated force is shown in Fig. 2.11, already referred 

to. There is an exponential increase of the force with 0 

up to 0' = 103. At this value the force is independent of a. 
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This relationship is generally accepted by all the authors. 

The fact that for large values of 0' the force is constant 

stands as the basis of one of the theories interpreting 

the squeeze film effect, the 'asymptotic theory'. 

2.2.3.3 The Effect of the Boundaries (Grooving): 

The incorporation in the bearing surface of grooves 

(narrow and deep channels), where the fluid is at the 

ambient pressure, is one of the latest developments in 

squeeze film research. These grooves are commonly used in 

other types of bearings, namely self-acting gas bearings 

employed for gyroscopes. This subject was theoretically 

considered by Cooke30. He based his work on the fact, 

already discussed, than an improvement in the load capacity 

is obtainable by the edge effect. The analysis, for grooved 

and ungrooved journal bearings, of the variation of load 

capacity with the ratio length/diameter is shown in Fig. 

2.13. The axial flow in the case of journal bearings is 

closely related to this variation of load capacity. The 

conclusions of Cooke on this subject can be stated thus: 

The axial flow is small and proportional to 

L/D for short bearings and in this case has a linear 

distribution. 
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FIG. 2.14 	Axial penetration of the mass flow rate for 
various values of L/D (Ref. 30). 

F- 

FIG. 2.15 	Axial flow and geometry variables used 
in Fig. 2.14. 
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FIG.2.13 Influence of ratio length/diameter on bearing 
force for grooved and ungrooved journal bearing, 
case of small excursion and eccentricity ratios 
(Ref. 30). 

When the value of L/D increases there is no 

longer linearity between the flow rate per unit of 

width and the axial coordinate as in Fig. 2.14. This 

means that the pressure gradient is greatest near the 

ambient boundary and decreases with the axial coordinate, 

Fig. 2.15. 
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It is a phenomenon similar to that of a thrust 

plate, where most of the radial flow occurs near the 

boundary. The circumferential flow is also affected (in 

journal bearings). For small ratios of L/D the circumfer-

ential flow is small and has the same value throughout the 

bearing at any radial position. When the ratio L/D increases 

(L/D >1) there is greater circumferential flow near the 

boundaries. For very short journal bearings the pressure 

is constant and can be expressed in a dimensionless form as 

a function of the excursion ratio E1  and the eccentricity, 

E2:  

P E=1+—  

For a very long bearing: 

P = 1 +4Ei + Ei E2  cos9. 

where 9 is the circumferential bearing coordinate as 

represented in Fig. 2.7. 

(2.16) 

(2.17) 

The axial pressure gradient at the ambient 

boundary is: 

af 
(az)z=0 	2 
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E2 cos9 tanh D (2.18) 

and as the mass flow rate is proportional to the pressure 

gradient it is also proportional to tan h 
D 
 for any radial 

position. This suggested to Cooke that axial or 



circumferential grooves should be placed where the 

excursion ratio is high. Therefore he proposed in (30) the 

use of grooves in the middle plane of journal bearings, 

where maximum excursion occurs. He also refers to the 

application of a vent hole to an hemispherical bearing. In 

his opinion the larger excursion would exist at the polar 

region and so a polar vent should be located there. 

Experimentally it was found, as shown in Fig. 1.2, that 

this does not occur, and the largest excursions are at the 

edge. So grooving should be considered near this edge 

instead. 

2.3 	CONCLUSIONS  

The squeeze film bearing is basically a very 

simple system. This is one of its main advantages. 

We referred briefly to the major parameters 

governing its performance. The fluid behaviour can be 

interpreted in terms of well known lubrication theory. 

However, the driving element and the bearing surface 

characteristics have not been extensively studied 
• 

Piezoelectric ceramics can provide only small 

amplitudes of vibration. In journal bearings they have 
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been used as the bearing surface, because it is difficult 

to achieve a good contact between the ceramic cylinder and 

the cylindrical metallic surface. In this case, besides 

the small vibration amplitudes, we have the disadvantages 

already referred to in Section 2.2.1. Thrust bearings (discs, 

cones or spheres) give more possibilities of improvement 

because it is possible to have the ceramic driving the 

metallic bearing surface, as in Fig. 2.2. Therefore one can 

choose the bearing surface material and its arrangement with 

the piezoelectric ceramic. This makes it possible to obtain 

greater amplitudes than those provided by the ceramic itself. 

The more important contribution for load capacity seems to 

be due to the "pumping" action at the boundaries. This 

leads to two ways of possible performance improvement: 

1) 	The generation of extra boundaries, using 

grooves in the bearing surface.' 

2 
	

An increase of amplitude of vibration at 

these boundaries. 

Most previous studies assumed the excursion to 

be uniform over all the bearing surfaces. Other authors
13,29  

assumed an arbitrary variation for it. Actually, these 

arbitrary variations do not agree with the experimental 

evidence. So, the theoretical treatment of the lubricant 



film based on this premise will not agree with experiment. 

The investigation of the flexibility of the bearing surface 

is very important in predicting the true film thickness. 

At the same time it introduces a new way of improving 

bearing performance. 
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CHAPTER 3  

THE SOLUTION OF FLUID GOVERNING EQUATIONS  
FOR SQUEEZE-FILM BEARINGS  

3.1 	BOYLE'S LAW 

We have earlier referred to some results obtained 

numerically, or using the asymptotic theory. 

In a simple analysis, Boyles Law is a reasonable 

approach. Before considering a more complete analysis 

provided by the Reynolds equation, we will use this theory. 

Let us assume two surfaces, one of which vibrates 

sinusoidally with an amplitude A about a mean clearance ho  

and a frequency W. 

The instant film thickness, h, is: 

h = ho  + A cos (U; 

h = 1 + 

(3.1) 
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or, 

A 
costa 

0 	 0  
(3.2) 

h 
the dimensionless film thickness H = ho' 0 

H = 1 + Eo  cos Wt 

where Eo 
is the excursion ratio. 

(3.3) 

If the frequency is high or there are very small 
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clearances, the viscous shearing is considerable. As we 

saw before, they are proportional to W and inversely 

proportional to the clearance. The radial flow is retarded 

and this originates successive compression and expansion of 

the gas film. The operating conditions are closer to those 

of a piston inside a closed cylinder. Assuming that the temp- 

erature is constant, it is permissible to use the Boyle's Law 

phAb  = paho Ab  = cte (3.4 

where pa  is atmospheric pressure and Ab  the bearing area. 

Using the following dimensionless variables, 

= P  = dimensionless pressure, Pa 

T = Wt = dimensionless time, and 

R-',  = R , whereRo  is the bearing dimension, 
0 

we obtain P = 	1  1+ E
0 cos T 

This function is represented in Fig. 3.1. 

(3.5) 

(3.6) 

The dimensionless bearing force for the case of a  

disc (this is the simpler geometry) is: 

F 	F  
PaAb 	pa TE R2   o 

_ 	2R;`(P-1)dR% = 1 	1 	 (3.7) 
0 	1-E2 

0 
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where: 	F = total force generated by film, and 

2TL ( 
P* = 2TL 1 Pd1 = 	1  

0 1- Eo 

For small values of the excursion Eo, 

Y*  =1 + ZEo + (4E41 

and thus, the bearing force can be approximated by the 

expression 

F.^  = 2  E2 
0 

(3.8) 

(3.9) 

(3.10) 

At the outer edge, the pressure is obviously the atmospheric, 

but the pressure obtained through Boyle's Law is pB  > pa  with 

the condition 

phAb 	pB ho --b 
PB 

and 	P = 	 (1 + Eo  cos' T) 

PB 
where 	PB  

The averaged pressure distribution is 

P = 
PB  

(3.11) 

(3.12) 

Pa 

(3.13) 

Using this expression, and according to Salbu (6), the 

pressure value obtained for o = .5 i5 1.15 greater than 

the value calculated using, for initial condition, the 

true ambient pressure, as shown in Fig. 3.2. 



Without edge effect 

`- -/ 
With edge pressurising effect 

FIG. 3.1 	Squeeze film pressure calculated from 
Boyle's law with f = .5 (Ref. 6). 
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FIG. 3.2 	The effect of the pressurisation at the 
edge, using Boyle's law (Ref. 30). 



µ 
p Wh2  o  CC 1 (3.14) 
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3.2 	ASYMPTOTIC SOLUTION  

3.2.1 	Basic Assumptions  

A more powerful analysis of the film behaviour is 

provided by the Reynolds equation. This is a non-linear 

(at least for compressible fluids), second order, partial 

differential equation of parabolic type. The derivation of 

this equation is based on the Navier-Stokes equations, the 

continuity equation, the energy equation and the equation 

of state. 

It was demonstrated in(20) that as the film thick-

ness in this type of bearings is very small compared with 

the other dimensions, the heat transfer between the gas and 

the surfaces maintains the film in an isothermal state. 

Inertia terms can be ignored compared with the 

viscous shear forces (24,39). The criterion is that the 

transient Reynolds number of the squeeze motion must be 

11. being the fluid viscosity and ( the density, and W and 

ho  having the meaning already given. 

The velocities in the direction normal to the 

surface are assumed to be large compared with those in the 

bearing surface plane. This is true, according to Cooke (30) 

if: 



h 
«1 

0 
(3.15) 
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where Cris a parameter defined in 3.17a. For isothermal 

conditions the viscosity can be assumed to be constant as the 

pressure in these bearings is small. Therefore the density 

can be replaced by pressure in Reynolds equation. Full deriv-

ation of the Reynolds equation can be seen in Refs. (4) and '(84). 

3.2.2 	Solution of Reynolds equation  

A closed form solution, called the "asymptotic 

solution" for the Reynolds equation will be considered now. 

The Reynolds equation in a vector form is: 

3  di r  v j- p2 grad p + --7O + āt(Ph) = 0 (3.16) 

The vector v is the sum of the absolute sliding 

velocities of the bearing surfaces. 

We will make use of transformations (3.5) to 

obtain a dimensionless form for (3.16). Considering the 

surface differential operators, grad and div, in dimension-

less form, we have: 

V.1 -POW +AO PHI + o' (PH) = 0 	(3.17) 

where: 	0. = R*div, 0= R*grad, 

_ V 	T = Wt, 

In the case of squeeze film bearings, this velocity is 
very small and in most applications is negligible. 



and 

= compressibility number = 

= squeeze number = 12µ0~k
Ro)2 

• Pa C 

R 
(h°), 
° 	(3.17a) 
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Assuming, as before, the fluid film thickness to be periodic 

in time and a defined function of X(x,y), vector of the 

coordinate components, 

H(x, T+ 2TL) = H(x,T) 

with the boundary condition, 

P(xx, T) = 1 

When the steady state is established, then 

P(x, T + 2ft 	P(x,T) 

For 5 	00 (asymptotic theory), 

aT(PH) = 0R5-1 

If we call the product PH =4) 

lim 111=4).0(x) + 0CQ} Q --~ co 

At the boundaries: 

4)B = H(xB,T) 	 (3.22) 

because 

P(xB,T) = 1 	 (3.23) 

With this notation we can write equation (3.17) 

with the form: 

(3.18) 

(3.19) 

(3.19a) 

(3.20) 

(3.21) 



div j 2 grad 42) - (1) 2gradH - AN1= C3 aT (3.24) 
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Integration of this equation over one period 

gives: 

divLi% rad (42) - ~2gradH -AŪ )1=O{4)(T+2TE)- l4(T) 
(3.25) 

or, T+2TL 

Defining, 

d iv j H2—grad (4)2) - lh2 gradH 0 

(3.26) 

T+2Tt 
H 	= 1 H dT (3.27) 211 

and replacing by its asymptotic value: 

div j radko)2 -1P2c0 gradH - A 4J}dT = 0 (3.28) 

There are two regions in the film that must be considered separately, 

the inner layer and the boundary layer. Let us call 

(3.29) 

and'fl the coordinate normal to and measured from the 

boundary, then, 

a~b 
a~ 

This was mathematically justified by Panil. 

Equation (3.25) can now be rewritten: 
T+211 	2 2 r H ā

.,2 J 	b2b dT = 01.1-1 
all T 

(3.31) 

qjb = 	(x =- xb) 

0[j-di at x xb (3.30) 
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where: 	11' = 1511 	 (3.32) 

Neglecting terms of 47 1, the "boundary layer" 

approximation near the edge is obtained: 

T+211 
J Hb  dT 	= 	C + C2  (3.33) 

As 4b)* _O 	Hb  

T+2TL 
C= 2 	J H3 dT (3.34) 

To guarantee convergence as Ir* ---j co , C2  must be 

set to zero. 

The matching of the interior and the boundary 

solutions then give: 

lim , _ lira 
x--4x1) b 11*_ ao b (3.35) 

or, 
T+2ft 	T+2T1 H 

q)2(xb) 	—2b-dT = 2 J 
T 	 T 

Hb  dT (3.36) 

1+ 211; 

Hb  dT 
t  
1 +21L 

T 	Hb dT 

This equation represents the required boundary 

condition for equation (3.26). A general derivation of this 

solution is given in (41) 	We will now consider two 

applications of this theory. 

4).20( ,) (3.37) 
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FIG. 3.3 

Mean squeeze force, using 
asymptotic theory, flat discs, 
(Ref. 10). 

3.2.3 	Case of circular thrust disc  
with uniform excursions  

If the film thickness can tie expressed in the 

dimensionless form 

H = 1 + Ecos T 	 (3.38) 

the corresponding asymptotic solution is 

lirn PH = (Po  = ✓1+3/2 E2 	 (3.39) 
0--4 co 
In this case the unit axial force is (it) 

F 	1 ?" 	1+ 2 E 2  
Wn 	p A 	2TL 	(P-1)dt = 	Z  -1- (3.40) 

ab 	0 	1-E 



F 	1+ 2Ez sin2' 

	

 	- 1 
PaAb 	1 - E2z sin 2 r  

(3.43) 

and it is represented in Fig. 3.3 for several excursion 

values. 

The unit axial stiffness is 

Kzho 	h BF 5 	E
2 

paAz = 
	p
aA bh 2 	 
( 3.41) 

oF 	t~ 	
/(l_E2)3(1+fE2) 

where 	Kz = 8h 

3.2.4 	Conical bearing with uniform excursion  

Assuming the conical geometry of Fig. 2.5b, Pan 

also developed expressions for the axial pressure and 

associated bearing force. The film thickness in dimension-

less form is: 

H = 1 + 11r cosĪ'cos(9 - 9r) +11 	os(9 - 9r,) 
2 

+ Ez s inlcos T 	 (3.42) 

This expression includes the influence of the 

radial and rotational eccentricity through the respective 

eccentricity ratios 11r and llr. The angles 9r and 9r, are 

reference angles for the radial and rotational displacements, 

see Fig. 2.5b. The value of the unit axial force is now 

,given by: 
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Ab being now the projected bearing area. 



This result is identical to that of the squeeze 

film plate replacing the excursion amplitude for Ezhsin fl. 

3.3 	NUMERICAL SOLUTIONS  

The previous section dealt with two methods of 

analysis of the squeeze film effect where closed expressions 

for the pressure distribution were obtained. Numerical 

solutions based on finite differences were studied by Michael 

(5). We will refer now to them because one of the methods, 

Crank-Nicholson, will be used later to calculate the 

pressure distribution for non-uniform excursions. 

All the previous assumptions about the fluid 

properties will be maintained in this analysis. 

Using the usual transformations 4 = PH and (3.5), 

the dimensionless form for the Reynolds equation is: 
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a ax P (H OH aX) + ōY (H aY ;z1)1  

(3.44) 

Or in another form: 

a`PL(4)) 	OT - F(X'Y' T'~ ' aX ' ā ~
2, = 0 	( 3.45) 

where X and Y are dimensionless coordinates in the x and 

2 y axis and V is the Laplacian operator. 



In cases of axisymmetry, like disc and conical 

bearings, or for the infinitely long bearing, there is 

need for only one variable. For uniform notation we will 

replace the variable ()by u in the following expressions. 

The equation can now be rewritten: 

au 	8u 
2 

L(u) 	8T - F(X'T'u, , --2-) =0 	(3.46) 
ax 
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2 [H w2 
a2

+ 2 - aX ax 
where 	F(X,T,w, ,1() = 

(3.47) 

3.3.1 	The family of difference approximations  

Let us assume the space interval E0,1J 	divided 

into N+1 subintervals and the time axis is in intervals T. 

The proposed approximation to the equation (3.44) consists 

of the following family of difference equations: 

otl (u) = (u~
+1-uj) /ET - F{jAX, (n+L0) T, 

9u~+1 +(1-9)u.  
+1 

+(1-9)u., 

Ce(u +i - u. ) + (1-e)(un -un 1)3/(28x), 3+1 j 	J+1 J- 

Ce' (u n+1 - 2u . + un+1)+(l-9' ) 3+1 	-1 

(u~+l - 2u~ +u~-
1)]/(LX)21 = 0 	(3.48) 

where 	= 1, 2, ..., N and n = 0, 1, 2, ... 



In this expression 9 and 9' are parameters for the family 

of difference approximations. 

Regarding these parameters, we shall consider 

four cases: 

a) 0=0 and 0' =0 

In this case the ū 
+l 

values are obtained 
3 

explicitly from the ul! values. We start with the 

initial value u° and the next ul are calculated from 
J 	 J 

these, and so on. 

b) 9=l and 9'-=1 

This is an implicit formula with u
3

+l 
deter- 

mined from the u~ through a system of non-linear 

algebraic equations. 

c) 9=O and 9' =i 

This is a difference approximation that was 

initially devised by Lees and is detailed in Ref. 35. 

d 
	 0 =k and 0' = z 

For this case the equation (3.48) assumes a 

symmetric form. The algebraic equations are now non-

linear and must be solved by iteration. 
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This formulation is a serious contender against 

the asymptotic solution, although the last method has been 

considerably used. 

Respecting these numerical procedures we only 

consider the one-dimensional bearing problem. For two space 

variables some more complexity is involved (5). 

The main factors that govern the choice of any 

of these numerical methods are: 

i) stability, 

ii) truncation error, 

iii) programming requirements. 

i) 	The stability is a function of AX, L\T, and the 

parameters@ and 0'. Stability conditions have been discussed 

by Michael 5. The procedure is that of Von Neumann and 

Richtmeyer 36. The stability is shown to be unaffected by 

O. This means that the stability is not influenced by the 

lower order space derivatives. It is also demonstrated 

that the implicit formula (9=9' = 1) is unconditionally 

stable. The Lees modified implicit formula (9=0, 9'=1), 

and the Crank-Nicholson formula (9=9' =1/2-) are also uncond-

itionally stable. The explicit formula (9=9' = 0) requires 

for stability 
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H2 PAT < 
OM)

2 (3.49) 
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This inequality must hold at every node of the grid, which 

requires AT to be properly adjusted. 

ii) The local truncation error for case (a) is 

0“8X)2+ 8T) and the same applies to (b) and (c). For case 

(d), the truncation error was demonstrated by Crank and 

Nicholson 37 to be reduced to 0(0X)2+0T)2). 

iii) The programming requirements will be considered 

in the following sections about the algorithms for the 

explicit formula and for the Crank Nicholson procedure. 

The Lee's implicit formula was discarded because 

for an increased programming complexity it requires very 

small time steps AT, with the same order of magnitude of the 

stability condition of the explicit method. 

3.3.2 	Explicit method  

In the explicit method one assumes the conditions 

existing at the start as the initial values u., where j = 

1,..., N. 

The successive values of u. are 
J 

u~+1 = u~ +QT F(3AX, n QT, UJ, ,Y ) (3.50) 
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with 	_ (ū u )/(2fsX) 	(3.51) 3+1 3-1 

= (ū 	2u +un )/(A X)2 	 (3.52) 3+1 	j -1 

and F(j LX, nET,W , ,'Y) is given by equation (3.47). 

The value of L\T must be adjusted from the stability 

condition (3.49). 

3.3.3 	Crank-Nicholson formulation  

As in the previous case the initial values u.0 

must be set as the pressure distribution dictates at T = 0. 

For the several values of n = 0, 1, 2,... the 
2 

variables H, ōX and a 2 are calculated at the time points 
ax 

T = (n + 2 )Q T. 

These calculations must be done at all coordinates 

X = jfX, for j = 	To solve the difference 

equations we can use the Newton-Raphson procedure, described 

here. 

Let us assume that the values u
3
l+ can be approximated 

= 1, 2, ..., N) with Uo and UN+1 denoting the 

boundary values u0+l and uN+1. Setting the variables 

_ 	(w+-i') 
C7 _ (U. + u~)/2 	(3.53) 

(w,-t) 6,,,..1) 
and 	S =(U. - U. 	+u. 	uj_1)/(4L\X) 	(3.54) 

. by U. (j 



J for 

and defining, 

F1 = l(-(V
22 

2+Hs 2- ws oH J ) 
ax 

and 
Hw 

F= 20 

and differentiating: 

dF 
- ō w 	a 	ax2 BX 

OF1 _ 
1(2 

H - BH 
-A) Q 	ax 

2 H 
aw - 6 

OF2 
with, obviously, 77= 0. 

58 

OF 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

The arguments Xand T being defined as before: 

X = jLX, T = (n + 2)AT. 

These expressions enable us to give a new form to the 

approximated family of difference equations (3.48): 

Uj - u. -QTF1 [JL\X, (n+2)AT, (U.+un) /2, 

(Uj+1-Uj-l+uj+lj-1)/4Ax)] -  

OT2 F2 Ej X, (n+z) L\T, (U .+u1 )/2, 
2(QX) L 

(u 	-u.3  - Uj-1 +unj+1 uj_1)/(4Ax)] . 

(Uj+1 - 2Uj +U j-1+uj+l - 2u~ +uj-l) = 0 (3.61) 

= 1, 2, ..., N. Or, in a short form: 

G.(U1, U2, ..., Un) = 0 (j = 1, 2, ..., N) 	(3.62) 
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Considering 
ui0), u20), .,., 

uN0) as an approxim- 

(UK-UKO)) + ... = 0 

(3.63) 

1 
OG. 

aU. 

ation to the exact solution, U1, U2, ..., UN, the following 

expansion will apply: 

( 	0 0 Gj U1,U2,...,Un) = G.(U1~U2'3 
N 8G. 

a--1(U~,U~,...U0) 
K=1 k 

with j = 1, 2, ..., N. 

Truncating the series to these terms and equating 

them to zero we define an approximate solution: 

L'(1), U(1), ..., 	 (1) 2 	n 

Repeating this process, a sequence LUjm)1 is generated, which, 

according to Kantorovich 38 converges to the exact solution. 

For each iteration of this process, and in order 

to obtain the referred approximate solution, we have to 
ac. .6G. 	OG. 

compute the values of   	anda~—g~
j-1+1 

 

From (3.59): 

- 2 ōt~ 	2(U j+1 - 2U + U -1 +uj+l 4(QX) 	
j j 

8T 
aF 1 	AT 

OF 
2u. + u~ -1) aw + 1T clx)2

F 2 
(j = 1, 2, ..., N) 

aG. 
--1— _ -dU~

+l 

8T  
F 

2(QX)2 2 
( j = 1, 2, ,,,, N-1) 
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ōGi = 67 aF1 _ 	 dia 
	F2 
	(j = 2, 3, ... , N) 

X 

ouj-i 

z 

8t 20x)2  

oG. 

ō—Ū = 0 	(1j-Ki =?' 2) 	(3.64) 
K 

If Ulm-1) is an approximate solution the next 

approximate solution can be obtained through the correction 

factor km): 

Ulm) = U. 	+X + x " 	(3.65) 

The correction factors X(]) are calculated from 

X(m) Aj+1 Xj+1 + Bj+1 	(3.66) 

with XNmi = 0, and A. and B. satisfying: 

a. 

b.-c.A. 
J J J 

c.B.-d. 
—1_2--1 
b -c A 
J • J J 

(j ī 1, ..N) 	(3.67) 

with Al = 0 and B1 = 0 	. 

The variables a., b. and c. and d. include the 
J 	J 	J 	J 

derivatives (3.64): 

BG 	bG 	 G.  
a j = aŪ -1--,  

	

b. 	a~, c j = a—Ū-1-, 
J 	J 	J-1 

(1.  _ -U(m-1)+u j + QTF1 + CU(+ll) - 2U(m-1) 
J 	J 	J 	J 	J 

F 
+U(m-1)+un -2un+un J AT 

F2  
J-1 j+1 J J-1 	20X)2 (3.68) 



These variables are actually the coefficients of 

the tridiagonal system of the iteration corrections: 

a. ~(m) - b. X (m) + C. X. = 	d. 	(3.69) 
3 >+1 J J 	3 3-1 3 

For each iteration the relative error - 

max Ali")/U~n')I 
J 

(3.70) 

can be checked against a predetermined tolerance, so estab-

lishing the requirement for another iteration. 

When the desired accuracy is achieved the value 

Ulm) obtained in (3.65) can be considered as the solution 

n+1  
u. 	These values are then used to obtain the solution 
3 

for the next time step. For the first iteration obviously 

U~ m u~ in expressions (3.53) and (3.54). 

3.3.4 	Practical application  

In order to have a first idea of the results 

obtained for a non-uniform amplitude of motion a programme 

using the Crank-Nicholson procedure was prepared. It is 

presented in Appendix 2. For the sake of simplicity a 

simple thrust disc bearing was chosen as vibrating surface. 

The input date used was: 

R 
0 
- disc external radius = 42.5 mm. 

th - thickness of the disc = 8.5 mm. 
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ho  - assumed mean gap between bearing surfaces 

= 25.4 x 10-4  mm 

f - squeeze motion frequency = 16 KHz. 

The disc was assumed to have an uniform amplitude 

of vibration from the centre to the radius rb  = 17.2 mm. 

The reason for this assumption is better explained in 

Chapter 7 dealing with disc thrust bearings. 

From the radius rb  to the edge the plate mode 

shape is represented in Fig. 3.4. 

The pressure distribution obtained for one period 

is shown in the 3-axial representation of Fig. 3.5. The X 

and Y axis represent respectively the radial coordinate and 

the time interval. The Z axis represents the pressure 

values. It is evident the non-symmetrical behaviour of the 

pressure curve in respect to the time. The maximum and 

minimum are verified near the edge with a steep "smoothing" to 

the atmospheric pressure. 

For this same case a comparison of adimensional 

•load capacity was established against that of uniform 

excursion. Both curves are represented in Fig. 3.6. 
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FIG. 3.6 	Load capacity for one period of time for disc 
bearing: 
Curve a - uniform excursion ratio, 
Curve b - non-uniform excursion ratio. 

3.4 	CONCLUSIONS  

Use of Boyle's Law provides only a rough calc-

ulation of the pressure distribution for uniform excursion. 

From PH = cte can be implied that the pressure (P a 1/H) is 



dependent on the time along the all surface bearing. This 

does not agree with the boundary condition P = 1-(corresp-

onding to p = p
at 
 ) 
m 

The analytical solution has the attraction of deriving 

analytical expressions for the solution of the Reynolds 

equation. In most of the practical cases the requirement for 

the squeeze number, Q, to be greater than 103  is satisfied. 

This enables one to calculate g1(X,T) as to(X), neglecting 

terms of the order of 1  . 

But, like Boyle's Law, the asymptotic solution 

does not satisfy the boundary condition (3.22). The 

boundary layer needs a special mathematical treatment (see 

equations (3.31)-(3.34)) and then the calculation of the 

lim lU when the coordinate X tends to the boundary value. 

Actually this means that one uses a pseudo-boundary condition 

at an infinitesimal distance inside the true boundary (3.37). 

The width of this band bordering the ambient edge is of 

the order of 1/AE. The asymptotic theory has been 

extensively used by several authors for cases of uniform 

excursion. 

For this case a relatively good agreement with 

numerical procedures is achieved, as Pan discussed in (10), 
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FIG. 3.7 

Force variation for one period 
as predicted by the asymptotic 
theory (0 -----) co) and by 
numerical approximation (0 = 
1000) for flat discs (Ref. 10 ). 

see Fig. 3.7. When it was experimentally realised that the 

excursion had to be considered as non-uniform along the 

bearing surface a significant amount of complexity was 

introduced in the asymptotic theory,(13) and (29), to cope 

with the influence of this parameter. These analytical 

extensions of this theory still proved to be very limited 

'on the allowable variation for this parameter. This seems 

to be one of the greatest drawbacks of the asymptotic theory. 

The numerical methods are apparently more labor-

Tous than the asymptotic theory, though they present the 
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advantage of obtaining increased accuracy, as a function of 

the - size 	of time steps. In a practical case there must 

be a compromise between the accuracy requirement and computing 

time. However, the greatest advantage of the numerical 

methods is the possibility of consideration of any case of 

modal shape of the bearing surface. 

Calculating the bearing modal shape at working 

frequency and for a given mean clearance it is possible to 

know the film thickness at each instant for arbitrary points 

of the bearing surface. Then, these values are introduced 

as data in the numerical procedure. This will give the 

pressure distribution during one period of the squeeze motion. 

To obtain the load capacity a double integration 

for one period of time and for the space coordinate interval 

is required. 

An evaluation of the characteristics of the 

numerical methods was performed by Michael 5. For a case 

where the analytical solution is known he performed several 
1 

computing experiments. This enabled him to compare the 

error made in each case. His results are summarised in 

Fig. 3.8, Fig. 3.9 and Fig. 3.10. The error curves are 

traced for different spatial coordinate values, X = .25, 
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X = .5, and X = .75. The coordinate interval had the value 

X = 1/32 and nT was varied from 2-1  to 2-10. As nT was , 

increased it is apparent from the Figs. cited that the 

accumulated error (truncation error plus rounding) of the 

Lees formula increased steadily while the Crank-Nicholson 

formula increased very little. 

The explicit method was unstable to values of AT 

of 2-i0. For the same time step the error of the Lees formula 

was smaller than that of the Crank-Nicholson when the time 
-I4 

step is 2 . This suggests the use of the Lees formula 

when an extremely good accuracy is desired regardless of the 

computing time, or when the working frequency is very high. 

The Crank-Nicholson method, however, gave very good results 

even for relatively large time steps: 
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CHAPTER 4  

EXPERIMENTAL PRELIMINARIES  

4.1 	THE OPTICAL MEASUREMENT SYSTEM 

4.1.1 	Introduction  

The prediction of the pressure generated through 

the squeeze film effect requires theknowledge of the film 

thickness between the two bearing surfaces. 

For an initial mean clearance and if it is 

assumed a stationary condition for the supported 

member, this film thickness is only a function of the lower 

moving member. When this member is considered as rigid, the 

gap will also be uniform at all points and only one amplitude 

measurement is sufficient to define It. However, in case 

of a flexible bearing support, the film thickness is also 

a function of the radial coordinate (considering only axi-

symmetric vibrations). In this case we have to obtain 

local values for the film thickness and therefore for the 

motion amplitude. As the bearing size is usually relatively 

small (in our case, O.D. = 60 mm.), the physical size of 

the sensing element used for the evaluation of the motion 

amplitude is an important factor. Another significant 

condition is that the frequency response of the measuring 



equipment must be good at high frequencies as in case of 

the conical shapes, the interesting frequencies can go 

as high as 20 KHz. For these two reasons, accelerometers 

are not suitable for this application. Fortunately an 

optical system called the Fotonic Sensor, and developed by 

Mechanical Technology Incorporated, satisfies these 

requirements and was used for the amplitude measurements. 

4.1.2 	Principle of operation  

4.1.2.1 	The fibre optic system: 

Consider a light source and a light receiver, 

both near a moving reflecting surface, as in Fig. 4.1. 

When the sending and receiving elements are in contact 

with the surface, no light is reflected to the receiving 

element. As the distance increases, the cone of light from 

the transmitting element illuminates an increasingly larger 

area on the work surface. When this light is reflected by 

the surface the receiving element gets an increasing amount 

of this light and the relationship between surface displace-

ment and receiver illumination is essentially linear. If 

the complete surface of the receiving element is illuminated 

by the reflected light this function ceases to be linear and 

reaches a peak, as shown in Fig. 4.2, and thereafter the 
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FIG. 4.1 Principle of operation for optical 
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illumination decreases in an approximate inverse proportion 

to the square of the distance. Using a large number of 

fibre optics as sending and receiving elements, a steep 

response curve is obtained. 

These glass fibres, numbering about 600, are 

the main components of the Fotonic Sensor probe. The 

receiver uses a photo diode to generate a current dependent 

on the intensity carried by the receiving branch. In the 

case of the KD-45 model, the one used in the experiments 

reported, the light source and the photocell are located 

in a remote cartridge connected to the control unit by a 

multicore cable. 

Major advantages of this technique are the 

reduced size of the sensing element, flexibility of 

positioning and no contact with the moving surface. 

4.1.2.2 	Design characteristics: 

The sensitivity of this instrument is dependent on 

the fibre bundle and the numerical aperture of the individual 

fibres. Another influencing factor is the effectiveness 

of the fibre cladding in preventing crosstalk. The cladding 

is obtained using glass with a refractive index smaller than 
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FIG. 4.5 	Fotonic sensor probe support. 



the core, which is in flint glass. This index difference 

defines the maximum angle of internal reflection and there-

fore the fibre aparture angle (usually 60°). 

The distribution of the fibres, controls the 

displacement range and the slope sensitivity of the probe. 

The optimum arrangement for the steepest response curve 

requires the surrounding of each receiving fibre with four 

transmitting fibres, 	Fig. 4.4. This is the configuration 

that enables more receiving fibres to be affected by the 

light emanated from one emitting fibre as the distance 

between probe and work surface increases. Unfortunately, 

this is very expensive and in practice it is a random 

distribution of the fibres that is used. The specification 

set for this case requires that no visible grouping of 

adjacent transmitting or receiving fibres should be seen 

(40). Other types of distribution are represented in the 

same figure. During the light transmission there is some 

light loss (between 50% and 80%) and this is a function 

of the bundle length. A compromise with the required 

working handling capability gives a maximum length of 3 feet. 

4.1.3 	Application to amplitude measurements  

One of the requirements for the correct use of 

this equipment is for the probe to be normal to the moving 
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surface. For adjustment purposes and proper support of the 

probe, a stand (see Fig. 4.5) was built. The main parts are: 

probe positioning, fine adjustment, 

Fotonic Sensor probe, 

vertical adjustment, 

moving support, 

static base, 

stand fixing screw, 

probe positioning springs. 

After ensuring proper vertical alignment, it is 

necessary to compensate for different values of surface 

reflectivity. This is done using the Intensity Control in 

the Fotonic Sensor. Changing the meter sensitivity, a full 

scale meter deflection is achieved at the peak setting. 

This corresponds to 2 volts DC output voltage. 

The linear range, as can be seen in Fig. 4.6, is obtained 

for meter readings between 20% and 60%. Because for low 

amplitudes and high frequencies the use of a high pass filter is 

recommended, a sound and vibration analyser was employed (from 

General Radio) for measurement of Fotonic Sensor output. 

This apparatus enabled a more accurate voltage measurement, 
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using at the same time its filtering capability. According 

to checks previously made, the filter unit is loss 

compensated. These checks consisted of comparing a 

reference signal' displayed in an oscilloscope with the 

signal reached by the vibration and sound analyser, using 

the same reference signal intput at several frequencies. 

4.2 	CALIBRATION OF THE FOTONIC SENSOR  

4.2.1 	Manufacturer's calibration  

The conversion of the Fotonic Sensor signal output to 

displacement units requires a sensitivity curve. Every cartridge 

is calibrated by M.I.T. and the values of output plotted in 

a graph for that individual cartridge. The frequency 

response curve is also tested. Both curves are represented 

in Fig. 4.6 and Fig. 4.7, respectively. 

The calibration procedure used by Mechanical 

Technology Incorporated is as follows:41  

4.2.1.1 	Static calibration: 

The probe or sensor is fixed. A highly polished 

reference surface is then moved to several positions. This 

motion is accurately controlled through an arrangement 

(similar to the rotating knob of a micrometer) 
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sensor dynamic response checking. 

Frequency 
c.p.s. 

Half band 
value 
in. 

Motion Amplitude 
Peak 
values 
in 

Fotonic 
sensor 
setting 

 

Voltage 
reading 

mV (r.m.$) 

70 .001 
250 
250 
220 

.0012 

.0012 

.0011 
24 

80 .002 
410 
450 
420 

.0021 

.0023 

.0022 
34 
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that provides a direct reading of 10
-4 
 inch. This equip-

meat (KD-CM III calibration fixture) is also used for 

calibration of Wayne Kerr displacement transducers. 

4.2.1.2 	Dynamic calibration: 

In this case there is not what can be considered 

as a typical dynamical calibration, but the measurement of 

the F.S. output variation with the frequency. The Fotonic 

Sensor probe is aligned with a LED (light emitting diode) 

light source that is amplitude modulated over the frequency 

range of 10 Hz to 2 MHz by connecting it to a signal 

generator. An oscilloscope is used to monitor the LED 

current drive and the resultant analog output of the 

Fotonic Sensor. 

4.2.2 	Laboratory Calibration  

This section concerns the calibration made here. 

The equipment used is mainly intended for accelerometers 

so that this is then a true dynamic calibration. 

Fig. 4.9 shows the experimental set-up used for 

this purpose. The Fotonic Sensor probe, C, is positioned 

over the top of the metallic block, B. The block is 

vibrated using a Derritron VP5 type vibrator,A. The 

80 



81 

motion amplitude is varied by acting on the amplifier driving 

the vibrator. 

On the metallic block are engraved the marks 

shown in the figure detail. These marks are spaced at 

intervals of 2, 4, 10 and 20 thou. 

When it is apparent that due to the amplitude of 

vibration two lines seem to coincide with, respectively, 

the next upper and lower ones, it means that the block mass 

is moving with amplitude equal to half the distance between 

the marks. The results obtained are expressed in Table 4.1. 

4.2.3 	Comment on Calibration Procedures  

The original calibration system (from M.I.T.) can 

be criticised due to the fact that there is no direct 

dynamic calibration but just a frequency response check. 

On the other hand, the laboratory procedure is a true 

dynamic calibration but had two major limitations. One of 

these is the impossibility of running the experiments at 

the range of frequencies to be used in the actual tests 

(5-20 KHz). This is caused by the performance of the 

vibrator which deteriorates at higher frequencies, with a 

first resonance at 7 KHz. The other factor affecting 

these results is the difficulty in noting the visual 
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superimposition of the engraved lines. A third factor that 

should be mentioned is the accuracy of the readings of the 

voltmeter, upon which depend the amplitude calculations. 

The values obtained with the Fotonic Sensor are slightly 

higher than nominal (defined by the marks). The error varies 

from +5 to +20%. A possible explanation for this lies in 

the inaccuracies referred to above. The use of the other 

marks, at .010 and .020 in. (.254 and .508 mm.), was not 

considered. Their superimposition would correspond to .005 

in. (.127 mm.) and 0.010 in. (.254 mm.), respectively. From 

the calibration curve, Fig. 4.6, it is seen that the linear 

length of the curve (defining the slope MN) is 2.5 thou (.064 mm: 

from 3.5 thou to 6 thou. And for the half band of 5 thou 

the sensitivity cannot be taken then as constant. The 

other possibility considered was the use of the falling 

side of the curve. But for this branch the sensitivity 

(defined by the slope ST) is about twenty times more than 

that of the upward branch and no improvement in accuracy 

would be obtained. 
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CHAPTER 5  

PIEZOELECTRIC CERAMIC ANALYSIS  

5.1 	PROPERTIES OF PIEZOELECTRIC MATERIALS  

5.1.1 	Introduction  

We described briefly the phenomenon of piezoelec-

tricity in Chapter 2. The piezoelectric effect is generally 

dependent upon the orientation of the applied force or the 

electric field with respect to the axes of the piezoelectric 

material. For natural piezoelectric materials such as 

quartz, these axes were established by crystallographers 

(Fig. 5.1). For piezoelectric ceramics, the axes have been 

designated with reference to the direction of the electric 

poling field, Fig. 5.2. This direction is taken as the 

Z axis of a right-hand orthogonal axial set X, Y, Z. 

Since the properties are not variable in the plane 

perpendicular to this axis the senses chosen for X and Y are 

not important. Itis usual practice (42) to relate the 

ceramic properties with subscripts, where the axes X, Y and 

Z are represented respectively by 1, 2 and 3 and the shear 

about these axes as 4, 5 and 6, Fig. 5.2. 
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5.1.2 	Characteristic Constants  

The relevant constants for piezoelectric materials 

are of three types: 

i) Elastic Constants 

ii) Electric Constants 

iii) Piezoelectric Constants 

5.1.2.1 	Elastic Constants: 

The most important elastic constant is the compliance 

defined as strain/stress. In order to identify the direction 

of the strain we use the first subscript, whilst the second 

subscript gives the direction of stress. As the constants 

differ slightly with the conditions at. the ceramic elect-

rodes, we use a superscript. Thus, if the electrodes of 

say a bar of piezoelectric material are connected together 

the bar displays higher compliance than when the electrodes 

are not connected. If the electric field is held constant 

by short circuiting the electrodes we use the subscript E. 

For an open circuit at the electrodes the superscript used 

is D. As an example, S33  is the strain to stress ratio in 

the 3 direction at a constant electric field (E = 0), with 

the condition that all other external stresses are constant. 

The symbol S44  is the shear strain to shear stress ratio at 
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constant electric displacement (D = 0) for shear strain 

around the axis 1 to shear stress around the 1 axis. 

5.1.2.2 	Electric Constants: 

Notation similar to that used in the previous 

section can be applied to the dielectric constant 

(dielectric displacement/electric field). In this case the 

first subscript refers to the direction of the electric 

field and the second subscript denotes the direction of the 

electric displacement. In most of the piezoelectric 

materials used, the field along one axis results in dielectric 

displacement only along the same axis. For this reason, the 

two subscripts are the same, and one can be omitted; e, 

E3  means E33.  In piezoelectric materials not only do the 

mechanical properties depend on the electrical conditions 

but the electrical properties also depend on the mechanical 

constraints. In fact, when a piezoelectric material is 

completely free the dielectric constant is higher than 

when the body is mechanically constrained. To define these 

mechanical boundary conditions, the subscripts S or T are 

used. The superscript T denotes the condition of constant 

stress, with no mechanical restraint. For constant strain, 

the superscript S is used. 
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5.1.2.3 	Piezoelectric Constants: 

The piezoelectric constants are actually electro-

mechanical constants. The most commonly used are the 

coupling constant Kid, the strain constant did, and the 

stress constant g... The coupling constant is related 
J 

to the ability of the material to transmit mechanical 

energy to electrical energy and vice versa. The square 

of coupling is equal to the transformed energy divided by 

the total energy input. As before, subscripts are used, 

the first indicating the direction of electric field and 

the second the direction of stress or strain. The d.. 
13 

constant represents the ratio of the strain developed along 

or around a specified axis, to the field applied parallel 

to another specified axis, when all other external stresses 

are constant. The gid  constants express the relation 

between the field developed along a specified axis to the 

stress applied along or around a specified axis when all 

other external stresses are constant. A very important 

constant that should also be mentioned, even if not 

belonging to one of these groups, is the frequency constant. 

The frequency constant Nih, is the product of the mechanical 

resonant frequency (under specified electrical boundary 

conditions) and the dimension relevant to the type of 

vibration. Other important constants are the dissipation 
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factor and the mechanical Q. When an elastic body is 

deformed, not all the energy applied is stored as elastic 

energy. Part of this energy is dissipated as heat due to 

"molecular friction". The mechanical losses are expressed 

in terms of mechanical Q, which is the ratio of mechanical 

stiffness reactance to the impedance at resonance. The 

electrical losses are expressed as a dissipation factor, 

tan b. 

The units usually used for these constants, and 

their numerical values for the PZT ceramic series, are 

given in Tables 5.1 and 5.2. 

5.1.3 	Resonance Frequency of PZT-4 Ceramics  

For future calculations one must know at least 

approximately, the value of the first, resonant frequency 

of the ceramic disc (PZT-4 ceramic) used in these experiments. 

For this purpose we employ two methods. The first uses the 

definition of the frequency constant Nat  (Section 5.1.2). 

In this case, considering the thickness dilatational mode, 

the relevant dimension is the ceramic thickness, 

tc  = 6.3 x 10-4  m. The value of Nat,  from Table 5.2, is 

N3t  = 2,000 cycle meter s-1. As 

Nat  = fcx tc 	 (5.1) 



in a straightforward way from equation (5.2): 

2Vc ~ 

t 
c 

obtained 

w (5.3) 

the resonant frequency is fc = 
N3t 
t c 

=317KHz. 
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The other calculation procedure is based on a 

method by Onoe43 and Lawson 

The basic equation for the resonance frequencies 

of a thickness mode piezoelectric resonator is: 

tan = 2 	 (5.2) 

wt Kt 
where: 	= 2Vc,W being the frequency, tc the ceramic 

c 
thickness, and Vc the phase velocity of the elastic wave 

motion and Kt is the coupling factor related to this mode 

of vibration. This equation was also derived by Stephenson
45, 

for longitudinal vibrations of bar shaped resonators. 

Tiersten46 has shown that the same.basic frequency equation 

could be applicable to the case of ceramic plates vibrating 

in thickness-dilatational and thickness-shear modes. Using 

the values of the roots of the frequency equation tabulated 

in (43), the resonance frequency of a crystal can be 

In our case Kt = 0.51. For Kt = 0.5 and a mode 

number n = 1 (first frequency) the Table 5.3 gives the 

value of 1.3932. The value of Vc obtained from (43) is 

Vc = 2.4340 Km/s. 



TABLES FOR PIEZOELECTRIC PROPERTIES 
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TABLE 5. 1 

PIEZOELECTRIC PROPERTIES: SYMBOLS AND UNITS  

eo — dielectric constant of free space - 8.85 x 1032 farads/meter. 

eT/to — relative dielectric constant, free. 

es/to — relative dielectric constant, clamped. 

tan a — 1 — dissipation factor at 1 kcps, low electric field. 
QE 

kp - planar coupling factor. 

kala transverse or lateral coupling factor. 

k33 a  longitudinal coupling factor. 

k15 = shear coupling 'factor. . 
kt — thickness coupling factor (laterally clamped). 
d Q  piezoelectric constant, strain/field at constant stress or charge density 

/stress at constant electric field, 10.12  meters/volt. 
g e nieznp'pctric..constant, electric field/stress at constant charge or 

strain/charge density at constant stress, 10-3  volt meters/newton. 
sE — elastic compliance at constant electric field, 10.12  meter2/newton. 
so — elastic compliance at constant charge density, 10.12  meter2/newton. 

QM 	mechanical Q. This is dependent upon configuration, and is given here 
for a thin disc. 

Ni — frequency constant of a thin bar, fa. g, cycle meters/second. 
N3a — frequency constant of a long slender bar electroded on ends, fa. Q, cycle 

meters/second. 

Nat - frequency constant of a thin plate, fR.t, cycle meters/second;. 

v° — velocity of a compressional wave parallel to polar axis 
(c° = (v3)2  p}, meters/second. 

v°4  — velocity of a shear wave perpendicular to polar axis with wave polar-
ization parallel to polar axis 
(c° _ (4)2o }, meters/second. 

V4 - velocity of a shear wave parallel to polar axis, 
(coā — (4)2P1, meters/ second. 

p — density, 103  k.g/m3. 

4 - temperature, °C. 
P . polarization, 10.6  coulomb/cm2  (10.2  coulomb/m2). 
a - thermal expansion, 10.6/°C. 
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Ceramic B PZT-4 PZT-5A PZT-5H 
Preliminary 

data 
PZT-8 

1200 1300 1700 3400 1000 
910 635 830 1470 600 
1300 1475 1730 3130 
1000 730 916 1700 
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0.006 1004 0.02 0.02 0.004 
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-.194 -.334 -.344 -.388 -.295 

.48 
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.384 
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.715 
-123 

289 
496 

. 	43 

,.705 
.685 

'.486 
.715 

--171 
374 
584 

32 

.752 

.675 

.505 

.754 
-274 

593 
741 
45 

.62 	. 
-
--

..63 
-93 
218 
- 
.32 

-5.5 -11.1 -11.4 -9.11 -10.5 
14.1 26.1 24.8 19.7 24.5 
21.0 39.4 38.2 26.8 
8.6 12.3 16.4 16.5 11.1 
9.1 15.5 18.8 20.7 13.9 
22.2 39.0 47.5 43.5 -  
-2.6 -4.05 --5.74 -4.78 -3.7 
-2.7 -5.31 - 7.22 -8.45 -4.8 
8.3 10.9 14.4 14.05 10.1 
7.0 7.93 9.46 8.99 8.5 

"t7.1 19.3 25.2 23.7 -  
-2.9 -5.42 -7.71 -7.27 -4.5 
r1.9 -2.10 -2:98 -3.05 -2.5 
400 • 500 75 65 1000 
2290 1650 1400 1420 1700 
2740 2000 1890 2000 
2530 2060 1845 1930 2030 
5.55 7.5 7.75 7.5 7:6 

115°C ' 328°C 365°C 19CC 300°C 

At one kcps • 

kp 
k31 
k33 

kis 
kt 
k;3 
d31 

d33 
dis 
dr, 
gam 

g33 
gis 
-II  
s33 
s4  
s12  
s13  
s ° 
s-o 
s o 
S12 

QM 

Ni 
Nat 
N3a 

P 

Curie 
Point 

D 
S33 

TABLE 5.2  

CONSTANTS DATA FOR CERAMICS OF PZT SERIES  
(room temperature)  
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t I./fM f./f, 
N=1 N... 3  

0.00 1.5708 1.0000 0.00 7.8510 5.0000 
005 1.5692 0.9989 0.05 7.8536 4.9997 
0.10 1.5644 0.9959 0.10 7.8527 4.9991 
0.15 1.5.563 0.9907 0.15 7.8511 49981 
020 1.5149 0.9835 0.20 7.8488 4.9967 
n 25 1.5299 0.9740 0.25 7.8460 4.9949 
0.10 1.5113 0.9621 0.30 7.8425 4.9926 
n 15 1.4886 0.9477 0.35 7.8383 4 9900 
0.1n 1.4617 0.9305 0.40 7.8335 4 9,869 
015 1.4301 0.9104 0.45 7.8281 4.9835 
0.50 1.3932 0.8869 0.50 7.8220 4.9796 
0.55 1.3504 0.8597 0.55 7.8(52 4.9753 
060 1.3008 0.8281 0.60 7.8079 4.9706 
065 1.2431 0.7914 0.65 7.7998 4.9655 
n70 1.1760 0.7486 0.70 7.7911 4.9600 
0.75 1.0969 0.6983 0.75 7.7818 4.9540 
0 Sn 1.0027 0.6383 0.80 7.7718 4 9476 
0 85 0.8875 0.5650 0.85 7.7611 4.94(Y) 
It 90 0.7403 0.4716 0.90 7.7498 4.9337 
11.95 0.5355 0.3409 	0.95 7.7378 4.9260 

N=2 N-4 
000 4.7124 3.0000 0.00 10.9956 7.0000 
0 05 4.7118 2.9996 0.03 I0.9953 6.9998 
0 (0 4.7102 2.9936 0.10 10.9946 6.9994 
11It 4.7076 2.9969 0.15 (0.9935 6.9986 
020 4.7038 2.9945 0.20 10.9919 6.9976 
II 25 4.6990 2.9915 0.25 10.9898 6.9963 
0 30 4.6932 2.9877 0.30 10.9873 6.9947 
0 35 4.6562 2.9833 0.35 10.9844 6.9929 
0 In 4.6782 2.9782 0.40 10.9810 6.9907 
II 45 .1.6690 2.9724 0.45 10.9771 6.9882 
0 c0 4 6557 2.9658 0.50 (0.9727 6.9854 
II 55 4.6173 2.9586 0.55 10.96S0 6.9824 
II 60 4.6348 2.9506 0.60 10.9627 6.9791 
II 65 4.6212 2.9119 0.65 10.9570 6.9754 
I. 4.6061 2.9325 0.70 10.9508 6.9715 
0 15 4.5904 2.9223 0.75 10.9442 6.9673 
11 80 4.5733 2.9114 0.80 10.9371 6.9627 
II 4.5550 2.8998 0.85 10.9295 6.9579 
090 4.5356 2.8874 0.90 10.9215 6.9528 
I. 95 4.5151 2.8744 	0.95 10.9130 6.9474 

TABLE 5.3 
	

ROOTS OF FREQUENCY EQUATION AND FREQUENCY 
RATIOS TABULATED AS FUNCTIONS OF COUPLING FACTOR 

FOR n=1,  2, 3, 4 (REF. 43) 
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Then: 

	

2 vc 	2 x 4.340 x 1.392 x 103  

	

tc 	6.3 x 10-3  

= 3.6 x 106  c.p.s. = 306 Kps 

Comparing with the value obtained using the 

frequency constant (317 KHz) the agreement is quite good. 

Even assuming a reduction of the coupling factor which affects 

and a smaller value of the phase velocity, the value of 

resonant frequency is still substantially higher than the 

working frequency of the bearing unit (as considered in 

Section 5.3). 

5.2 	CERAMIC-BEARING ARRANGEMENT TYPES  

The way the bearing surface is fixed to the driving 

element (the ceramic) is important. Use of ceramics as 

direct bearing members presents two major disadvantages: the 

mechanical instability and the tendency of ceramics to be 

easily damaged during operation. 

For some types of ceramics it was found by Pan
47  

that vibration amplitudes in excess of 10-4  in. (peak to 

peak) per inch of bearing diameter can cause dangerously high 

stresses in the piezoelectric material and increase rapidly 

the power dissipation. This means that one must use very 

small mean bearing gaps. Increasing appreciably the 



vibration amplitude would, however, allow a corresponding 

increase in the mean bearing gap without loss in performance. 

This has resulted in the use of concentrators and wave 

extenders. Concentrators (Fig. 5.3a) are mechanical trans-

formers which can amplify the motion of the bearing surface 

without affecting significantly the resonant frequency. 

Gradually varying cross sections with conical, Fourier, 

Catenoidal and exponential laws, and stepped concentrators 

are mentioned by Pan12. Using theory-by Merkulov
48,49,  Pan 

obtained gains of amplitude of vibration of the order of 15 

to 20. Unfortunately concentrators had to be abandoned due 

to space and weight limitations. The wave extenders (Fig. 

5.3b) act in a different way from that of the concentrators 

as the system frequency is different from that of the driver 

(the separate free resonator). The results obtained were 

not very favourable and these did not have much application 

either. 

For a cylindrical ceramic operating at its longit-

udinal resonance (Fig. 5.4), Chiang8  designed several 

arrangements of ceramic-conical bearings for gyroscopes. In 

his study he considered three designs for the elastic 

coupling between the bearings and the driven section. These 

configurations are represented in Fig. 5.5 (configuration 

"A"), Fig. 5.6 (configuration "B") and in Fig. 5.7 
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(A) QUARTZ 

Z 
(B) POCHELLE SALT 

(D) LITHIUM 
SULPHATE 

V 
(C) AMMONIUM 

PIHYDRO.S[N 
PHOSPHATE 

Z 

FIG. 5.1 	Axes for natural piezoelectric materials. 
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FIG. 5.2 	Axes notation for ceramics. 
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MOUNTING RING 

FIG. 5.3 	Wave extenders-gradually varying and 
stepped concentrators(Ref. 12). 

lIE BOLTS 
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FIG. 5.4 	Experimental conical bearing 
driven by ceramic tube (Ref. 9 ) 
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FIG. 5.5 	Transducer configuration "A" with 
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FIG. 5.6 	Transducer configuration "B" (Ref. 8). 
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Transducer configuration "C" (Ref. 8). 

(configuration "C"). Molybdenum and Invar were used to 

provide a good matching for the thermal coefficient of 

expansion of the ceramic. Configurations "A" and "B" differ 

in the design of the flexible part of the driver and 

configuration "C", similar to "A", has a different metal-

ceramic arrangement, with a double wall around the ceramic. 

The aim of Chiang's work was to compare theoret-

ically the performance of the configurations quoted. For 

this purpose he considered the end flexure region as a 

simple spring with its mass lumped into two points. Half 

the mass is attached to the bearing and the other half to 

the flexure location at x = P... The dynamic model is also 

represented in Fig. 5.5. The ceramic-metal assembly is 
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consi<ered as a composite cylinder w.th the ceramic treated 

as a :Ample elastic material. The equations of motion are 

established for the assembly for the displacements u* and 

v*, as indicated in Fig. 5.5. These equations are: 

for 0<x-', <aft. 

El a2u _ a2u-',  

Pl ax*2  at2  

and for GU <x* < i 

E2 
 32v* 

 32v* 

p2 ax*2  at*2  

(5.4) 

(5.5) 

where: 	u*,v',  - local displacements, 

Ac 	- cross sectional area of ceramic cylinder, 

Am 	- cross sectional area of metallic cylinder, 

Em 	metal Young modulus, 

Ec 	ceramic Young modulus, 

Ac 	metallic cylinder density, 

A2  = AnAc  + m  m/Al' 

P2  = Pm  - density of metallic cylinder, 
El  = EcAc  + EmAm/Al,  

Pl = p Ac  + Pm  m/Al' 

P2 =Pm. 

To these equations the following boundary conditions are 

applied: 

i) 	- the central plane is fixed in space 

(5.6) 
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ii) 	- compatability of motion 

(5.7) 

iii) - force balance 

(A1E1 Ox )x%,=c 	(A E2 ax )x%~=Ct@ 

For the bearing surface the equation of motion is: 

2

14* x••-j = (mb 	2 at*2 

with an additional boundary condition:. 

iv) - force balance 

-A2E2(ā77)x=2, - K I (v%;)x*=1 - w* 

m 2 s ō r* 
2 

at-`2 x*= 

(5.8) 

(5.9) 

(5.10) 

The solution of equations (5.4) and (5.5) gives 

the following expressions: 

fEu(x) = G sin (WE l X) 
1 

(5.11) 

v(x) = C2sinW E2 (X-X0) 	(5.12) 
2 

where: 	W1 = 2L 
E1 

' 

and 	= 2E 

E 2 

P2 	 (5.13) 

C1 and C2 are the amplitudes of excursion and tl,fl 



and (.)2  are characteristic frequencies of the respective 

sections; X0  is a phase angle. 

The conclusions of Chiang's analysis can be 

summarised as follows: 

i) For the same size of driver and the same displace-

ment at x =a, the configuration "A" provides larger 

excursion amplitude for the squeeze film bearing than 

configuration "B". 

ii) The configurations "A" and "C" with a properly 

designed end flexure do provide larger amplitude amplification 

than configuration "C". Also, for each corresponding design 

configuration larger amplitude amplification can be achieved 

increasing the size of the driving section. Thus, increased 

excursion amplitude can be obtained at expense of configur-

ation complexity. 

iii) The referred configurations can be placed in 

ascending order of achievable amplitude as: 

1. Configuration "B" without extended section 

(cx=1?). 

2. Configuration "B" with an extended section 

(a < £ ). 
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3. Configuration "A". 

4. Configuration "B". 

The major criticism of this work is the lack of 

experimental verification of these conclusions. The chosen 

configurations were also restricted to Chiang's particular 

application (gyroscopes). 

It should also be pointed out that the high 

electromechanical coupling requires the solution of the full 

piezoelectric equations, instead of the simplified elastic 

equations which are only applicable to materials with low 

coupling46. However, this is the only previous known work 

on the flexible bearing arrangement. It shows that great 

differences in amplitudes can be expected due to the 

ceramic-bearing arrangement alone, though it seems doubtful 

that the expressions obtained can stand for other than 

qualitative values. 

5.3 	THEORETICAL AND EXPERIMENTAL ANALYSIS OF 
BEARING ARRANGEMENT UNDER INVESTIGATION 

In this section the arrangement used for the 

present investigation is analysed. Data from (42) shows 

the mechanical compliance (open circuit electrodes) for 

PZT-4 to be: 



E= 
S33  

F 
2 
c  

1 = .1265 x 1012  Newton/metre2  

Mid 
K 	

F 	4thc 	
2.28 x 1011  Newton/metre. 

c 

and E = d = t , 
2 
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Sll33 
= 7.9 x 10-2  metre2/Newton. 

Therefore, the calculated equivalent stiffness is: 

Kc  = 2.28 x 1011  Newton/metre. 

For confirmation of this theoretical value, two experiments 

were carried out: 

i) Measuring the output ceramic signal when a 

sinusoidal force is applied to the base. As the ceramic 

is stressed there is a mechanical to electrical energy 

transformation within the ceramic. It is the inverse 

phenomenon that is used for driving the squeeze-film 

bearing. 

ii) Measuring in a mobility test, the response of 

the unit for the frequency range of interest. 

In both cases the external force was applied along 

the axis of symmetry of the unit. 

The two procedures will now be detailed. 
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5.3.1 	Output voltage measurement 

The diagram for the experiment is represented in 

Fig. 5.8. A shaker (Derriton VPZ vibrator), A, used in a 

horizontal position, was linked to the bearing unit by a 
OA 

rod, B. An adaptor was used, as the vibrator 5t1 the 

bearing unit had different threads. The output signal was 

collected by two wires, one connected to the electrode plate, 

G, and the other to one of the tightening bolts. The signal 

was measured with a sound and vibration analyser with 

filtering capability. The unit under test consisted of two 

bases E, two piezoelectric ceramics D, (only one is visible 

in Fig. 5.8), a thin contact plate, G, and an insulating 

ring, F. The unit was suspended by a string passing through 

the holes in the ring-electrode plate. In the experiments 

an amplifier was connected to the shaker. The usable 

frequency range was extended to 25 KHz. by means of the 

amplifier external drive. The output readings (r.m.s. values), 

Figs. 5.10 and 5.11, show a very clear peak between 2.0 and 

2.5 KHz, with other minor peaks at 11 KHz. The exact 

frequency where the voltage peak occurs varied slightly 

with the bolt torque. The peak value decreased as the 

torque was increased. However, a good contact between 

ceramics was achieved with a low torque value. Further 

increase in torque only prevented the ceramic expansion, and 
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FIG. 5.8 	Ceramic output measurement test. 
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FIG. 5.9 	Diagram of electrical arrangement for above test. 
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thus the associated developed charge. For this reason it 

seems advisable not to use torques higher than 60 Kg.cm 

in these arrangements. 

5.3.2 	Mobility response for base-ceramic  

The mobility or admittance is defined as the ratio 

of velocity to applied force. If we consider the velocity 

measured at a point different from the point where the 

force is applied we have a transfer measurement. The point 

chosen for the velocity evaluation was the centre of one of 

the base plates, as in Fig. 5.12, by means of an accelero-

meter I. A force gauge F, was interposed between the 

vibrator table, A, and the excitation point. The whole 

assembly was suspended as in Section 5.3.1 with the aim of 

creating, as far as possible, free-free conditions. 

The experiment was carried out using the mechanical 

impedance of the Vib. Lab. of Imperial College, which 

includes a PDP 8/E Mini Digital Computer coupled to 

impedance measuring equipment. Using the existing plotting 

facilities the mobility curve of Fig. 5.13 was obtained. 

Similarly, the phase angle curve (force leading velocity) 

was drawn, Fig. 5.14. 

107 



108 

FIG. 5.12 	Experimental set-up for mobility measurement. 
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FIG. 5.13 Mobility curve for base-ceramic unit. 
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FIG. 5.14 Phase angle (force leading vel,.) for the same unit . 
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5.3.3 	Discussion of Results  

The comparison of the resultE. obtained with the 

experimental procedure of the previous sections requires the 

following comment: 

The arrangement of Fig. 5.8 can be considered as 

that of two masses coupled by means of a spring. The first 

resonance occurs when the two masses are in a symmetric 

position but with maximum displacement from the rest 

position. The centre point in the electrode plate G, is 

stationary, it is an "apparent fixed point". This mode 

corresponds to maximum compression and expansion of the 

ceramics acting as a spring. The frequency where the peak 

occurs and that of the resonant frequency of the system do 

not exactly match. The maximum voltage signal is at 2.5 

KHz and that from the mobility response is lower, at 1.25 

KHz. A possible reason for this difference is the influence 

of the push-rod arrangement, C, D, F in Fig. 5.12. This 

influence is probably also the cause of other small peaks 

in the mobility curve. 

Considering the higher frequency value from the 

two experiments to be the resonant frequency tu, from the 

expression 

w (5.15) 
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one obtains the value of the crystal stiffness in this 

arrangement. This expression applies to each of the 

crystal-base units in the symmetric arrangement of Fig. 

5.12. K 
c is the ceramic stiffness and m is the mass of 

each base plus the equivalent" mass of the ceramic. 

Considering the less favourable condition where 

f = 3 KHz, the value obtained for Kc  is 7.73 x 1010  dynes/cm 

( 7.73x10N/rn). The theoretical value, from the compliance 

constant, was, in c.g.s. units, 2.28 x 1014  dynes/cm(2.28xIONfr). 

Using the same expression, (5.15), but now determining the 

resonant frequency of the assembly with the theoretical 

value of Kc, fc  = 53.5 KHz, much higher than the experimental 

values (1.3 and 2.5 KHz). 

The main conclusions from these results are: 

i) There is a minimum torque val.-e that assures 

good contact between ceramic and base. 

ii)  Use of torque higher than this value affects 

the amplitude of vibration of the crystal, but only 

very slightly the frequency of resonance of the assembly. 

The equivalent mass is one-third of the actual mass 
of the ceramic. 
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iii) 	The actual stiffness of the ceramic when 

assembled with the other bearing elements is consider-

ably smaller than the value predicted from the ceramic 

data. This fact has also been reported by Chiang8  and 

is caused by the increased compliance in the base-

ceramic and ceramic-central plate contact areas. 



CHAPTER SIX 

CONICAL SQUEEZE FILM BEARINGS  

6.1 	THE ADMIRALTY COMPASS OBSERVATORY MODEL  

The Admiralty Compass Observatory main interest 

in squeeze film bearings has been in their use as gyro 

gimbal bearings. These should replace the angular contact 

ball bearings, normally used. The possible geometries of 

these bearings are conical and spherical. It is the first 

shape that is considered here. 

The operational arrangement of a conical squeeze 

film bearing is shown in Fig. 6.1. The key to this figure 

is as follows: 

1. Lower (supporting) member. 

2. Upper (supported) member. 

3. Supporting member base. 

4. Element symmetric to (1). 

S. 	Element symmetric to (3). 

6. Piezoelectric ceramic crystal. 

7. Fixing bolts. 

8. Standing base (cylinder). 

9. Connecting leads. 

10. Bearing fixing bolts. 
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FIG. 6.1 
	Admiralty (A.C.0.) conical S.F. bearing model 

as used in test. 

do - .038nj 

tc = .006m 

FIG. 6.2 	Piezoelectric ceramic disc dimensions. 
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11. Electrical input. 

12. Central electrode. 

13. Insulating rings. 

This is a double arrangement with just one of the 

bearing surfaces actually being used. The reason for this 

is to guarantee, as far as possible, that the central 

electrode plate remains stationary. In a gyroscope applic-

ation this arrangement would not be the most practical. 

However, for investigation purposes this arrangement is 

adequate. Parts (2) and (3) are of one piece in Dural 

(aluminium alloy). The standing base (8) is of steel. Part 

(2) is the "floating", supported bearing surface and in a 

gyroscope application should be part of the gyro gimbal. 

The cone and bearing axes are coincident, taking both thrust 

and radial loads. The ceramics (6) are of PZT-4 material, 

whose characteristics are described in Table 5.1. They are 

the same as used in experiments of Chapter Five, with the 

shape and dimensions shown in Fig. 6.2. The electric signal 

is applied to the ceramics through a socket (11), with one 

contact for the electrode plate (12), and the other for the 

base (8). A further connection from the bolts (7) is used 

to make contact with parts (1) and (9) that act as electrodes 

for the piezoelectric ceramics. 



When an electric signal is applied to the ceramic 

it undergoes successive expansions and compressions with the 

same frequency as the input signal. This causes the 

supporting bearing surface to vibrate. The air between the 

two surfaces is subjected to a change of volume. For 

reasons already explained, this is the c.aI::::: of the bearing 

load carrying capacity. The vibration of the bearing 

surface, conical in this case, is not only a rigid body 

motion but a more complicated modal shape. 

In order to establish a possible relationship 

between this vibrational behaviour and the performance of 

the bearing, experiments using the set up of Fig. 6.3 were 

carried out. However, the theoretical analysis of the 

vibration of conical shells will be considered first. 

6.2 	VIBRATION OF CONICAL SHELLS  

The vibration of plates, discs, cylinders and 

spheres has been extensively studied. Conical shells have 

not attracted as much attention. Only recently they have 

been analysed. The reason for this recent interest is 

mainly related to the study of loudspeakers and rocket 
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"noses".  
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FIG. 6.4 	Inextensional vibrations (a), and extensional 
vibrations (b) of conical shells. 

6.2.1 	Extensional and Inextensional Vibrations  

Strutt (51) was one of the first to study conical 

shells. He considered only the case of inextensional  

vibrations. These are also called flexural vibrations and 

occur when the shell flexes. In this case the modal shapes 

have nodal lines coincident with the generators, Fig. 6.4(a). 

If the middle surface of the shell undergoes extension the 

vibrations are called extensional, Fig. 6.4(b). In general 

both classes of vibration will occur. The inadequacy of the 

inextensional theory to satisfy the boundary conditions of a 

completely restrained cone edge was demonstrated by Van Urk 

(52), in his experiments to verify the accuracy of the 

Strutt's formula (51). This problem was later investigated 



by Federhofer (53) who derived a frequency expression for 

a truncated cone with one edge rigidly restrained and the 

other partially restrained. The calculation was based on 

an energy method of Rayleigh, with assumed mode shapes in 

the form of power series. 

Conical, or cylindrical shells can only deform 

inextensionally if the generators remain straight. For 

very thin shells vibration will be predominantly 

inextensional if the associated deformations are compatible 

with the edge conditions. These conditions require that 

the edges are completely unrestrained, or restrained in a 

manner similar to that of a hinged joint. All the other 

edge conditions cause bending of the axial generators which 

then require some stretching of the shell middle plane. 

As an illustration of what has been said we will 

refer the case of a spherical shell as discussed by Love (54). 

For a complete shell, all the modes of vibration are 

extensional. For an open spherical shell or bowl, there 

are two cases to consider. If the aperture is small, or 

the spherical surface is nearly complete, the vibrations 

approximate to those of a complete spherical shell. When 

the opening in the spherical shell is large, the vibrations 

approximate to those of a plate with displacements normal 

119 



to the plane of the plate (inextensional), together with 

displacements parallel to the plane of the plate 

(extensional). 

For our purpose, the inextensional vibrations 

are undesirable, as the amplitude of vibration would also 

be a function of the angular coordinate. They would 

produce tangential gas flow due to pressure gradients in 

that direction. These vibrations are also considered a bad 

effect in loudspeaker cones, when a flange is often used to 

stiffen the large edge. 

6.2.2 	Solution of the Motion Equations by the  
Marcus-Goldberg Method  

The solution of the equations of motion for the 

combined extensional and inextensional vibrations have been 

first studied by Sanders et al (55)(56). This method was 

also used by Platus (57). The latter has also compared the 

results with experiments. Both assumed polynomial mode 

shapes. In his work Platus also postulated that the kinetic 

energy was the same for the extensional and inextensional 

cases. Even so, and for the single case of a fixed-free 

cone, the analysis is complex. 
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As this study is only concerned with axisymmetric 

nodes it benefits from simplifications. In the following 

analysis we start considering the forces and moments applied 

to the element. The forces and moments are herewith 

referred to as per unit length. Because of symmetry, 

there are no shearing forces at the lateral boundaries of 

the element of the shell (Fig. 6.5). At the upper and lower 

edges there are no circumferential shear forces either. 

These edges are only subjected to the normal forces Nz  and 

the shear forces Q per unit length normal to the generators. 

The normal forces Ne and the moments Me act at these lateral 

boundaries, and the moments Mz  are applied at the upper and 

lower edges (Fig. 5.6). In this figure the system of 

coordinates chosen is also shown with the z axis coinciding 

with the generators that define the element. The z axis is 

positive from the cone apex (Fig. 6.5). 

A cone generator and a section of the respective 

element and the forces acting in the vertical plane of this 

generator are also shown in Fig. 6.7a. All these forces 

and moments are considered per unit of length of the area 

where they are applied. In the following expressions Ps 

is the density of the material of the shell and hs  the 

thickness. The coordinates z and 9 are defined in Fig. 6.5, 



Qrde  N zrd 6 

z 

Qrd9+-2-(Q rd 9)dz 

N 	+rd6 ō (Nzrd6)dz 
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FIG. 6.5 	Typical conical shell element. 

Mzrde+ dz (Mzrd9)dz 

FIG. 6.6 
	

Forces and moments acting on shell 
element. 



and r is the distance from the element to the cone axis. 

The cone semi-vertical angle is Œ. The forces acting on 

the element must be in equilibrium. The components in the 

y-direction are: 

(1) 	Q r de and [Q r de + āz(Q r de)dz] . 

(ii) 	The components of the normal forces Nedz. These 

two forces can be combined as in Fig. 6.7b. The resultant 
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is 2 Ne  dz sin z . For small de, 
de, and it follows that the sum 

y-direction is: 

ZN
9  dz 2 

2. 

sin(77) can be replaced by 

of these forces in the 

2 
(iii) 	The inertia forces ps s  h ō 2 r de dz. 

at 

For equilibrium: 

2 

j-(Qrde)dz+N9dzdecoscL = pshs  2  rdedz 
at 

r=zsin 

2 

az(Qz)sinc(, + Necosct = pshs  a  2  'z sin 
at 
2 

ā(Qz) + Necotg et = z pshs a 2 

at 

As, 

or, 

For the components acting in the z-direction we 

have: 



FIG. C..7c 
	Resultant of moments Ne. 

FIG. 6.7 
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FIG. 6.7a 	Shell element cross-section and inertia 
and shear forces acting on this element. 

A dl  

FIG. 6.7b 
	

Vectorial sum of normal forces N8. 
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(1) The normal forces N r d9 and EN r d9 + °--(N + 
z 	z 	az z 

(ii) The components in the z-axis of the normal forces 

Ndz. 

2 
(iii) The inertia forces ps s h 	

2 r d9 dz. The equil- 
at 

ibrium in this case requires:. 

2 

-ā2(Nz rd9)dz+Ne dzd9 sin C = ph s h 
a Zrd9dz(6.5) 
at 

Using expression (6.2) and simplifying: 

ō2 
az

( z  N z) - Ne = z pshs 
	
2 

at 
(6.6) 

Considering now the moments with respect to the 

x-axis, we have: 

The moments Mz r d9 and [Mzrd9 + āz(Mzrd9)dz3 . 

The moment due to the forces Q. Neglecting terms 

of second order, this is equal to Qrd9dz. 

(iii) 	The resultant of the moments M9dz. These vectors 

make an angle of IT- sinad9 (Fig. 6.7c). The total moment 

is Medz sinC(. d6. 

The equilibrium of these moments yields the 

following equation: 

QrdAdz - a (Mz rdA)dz-Medzsin~ dd@ = 0 (6.7) 
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or, simplifying: 

Qz = - ā  (Mzz) -M
g =0  (6.8) 

These internal forces are also related to the 

displacements of the middle surface. 

The stresses 0 and Qe  can be expressed in terms 

of the strain, E z, E e, by: 

5z  = 
	E  2  (Ez + VEe) 	(6.9) 
1-v 

Ge 
= 	E 

 2 
(Ee  + VE z) 	 (6.10) 

1-V 

where 0 is the stress in the z-direction, 
69 
 is in the 9 

direction and Ez  and E
9 
 are the respective strains. 

As N 
z 

is the force due to the stresses 0: z 
h/2 

Nz  = J c dz=  
Eh 

 2(Ez+V Ee)  
-h/2 	1-µ 

where V is the Poisson coefficient. 

Due to stresses Ue: 

	

h/2 	
Eh 

Ne  = J 	oedz = 	s v2 (Ee 
+ VEz) 

	

-h/2 	1 -  

because, 

(6.11) 

(6.12) 

Ee = V - w 
cota (6.13a) 
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and, 
_ay _ 
oz 

(6.13b) 
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Expressions (6.11) and (6.12) then become: 

~f Ehs 	ōV+V(z zV - —cotct) az 	 (6.14) 
(1-v2) 

s  [iV 
N9 	

E 

	- zcot:. +V 	 (6.15) az (1-v2)   z  

If D is the flexural rigidity: 

Eh 3 
D 	s 	 (6.16a) 

12(1-V2) 

Also let S = auf' 	 (6.16b) 

It follows that the moment per unit length Mz caused by the 

stresses 'Z is: 
Mz _ ... 

D(r + Z) (6.17) 

Similarly, 

Me  - z +v22) (6.18) 

Q can be obtained from equations (6.7), (6.17) 

and (6.18), i.e.: 

-5(as2 	1 aS Q= aZ
2+zaz-v

Z 
(6.19) 

If the applied force varies harmonically with 

frequency 10, as in the case of squeeze film bearings driven 
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by piezoelectric ceramics, the solution of (6.3), 	(6.6) and 

(6.8) can be written in the form: 

J. 
V(z,t) = V'~(z ) cos Wt 

W(z,t) = W(z) cosWt 

M
z
( z, 	= 

M9(z,t) = 

Mz*(z) cosWt 

me-(z) cosWt 

N9(z,t) = Ne "(z) cos Wt 

and Q(z,t) = Q '(z) cosWt 	 (6.20 

where V* , W* , Mz , Me , N9* and (f are the amplitudes of the 

variables, only dependent on the coordinate z. 

By substituting equation (6.20) into equations 

(6.14) through (6.19), and using equation (6.16 b),it is 

possible to write the six equations below governing the 

displacement of a point on the cone middle plane. 

S = aw, 
dz 

(6.. 

From equation (6.17): 

* 
dS 	Mz V S -  
dz D z 

(6.21) 

From equations (6.4) and (6.15): 

Q
*  -~" 	

( * ~~ CO
:: 

dz 	z - 
EZ cot a V -W cot CC - Vc Zta Nz 

-phs 
W2 w:; 

s 
(6.22) 



From equations (6.8) and (6.17): 

dMz =-- 
(1-V)M  * - (1-V2)  D dz + 

Q*  
dz 	z z 2 

z 

From equations (6.6) and (6.15): 

(6.23) 

dN%: Eh *,  

dz - Z(V-Wcota)= 12 Nz*-w pshs V*  (6.24) 

where a, as referred to above, is the cone semi-vertical 

angle. 

From equation (6.11): 

dV 	
2  

dz Eh Nz*  z(V* 	
* - W cot C 

s  
(6.25) 

These equations may now be integrated with assumed boundary 

conditions. The expression S = dz was added to this set 

of five equations. A numerical procedure by Goldberg and 

others (58) was used for this integration. Basically this 

consisted of the transformation of a two point boundary 

value problem to an initial value problem. These equations, 

(6.21) to (6.25) ,must be simultaneously integrated, and 

Goldberg suggestions that one designates each variable, V*, 

W,S ,MZ ,NZ and Q
* 
 by generic functions Yi(z). 	In this 

case the referred equations (6.21) to (6.25) and (6.16) can 

be written as; 

dY. 6 

E 
a..Y. 

j=1 

( 6.26) 

 

dz 
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with 
aij 

being the variable factors multiplying the variables 

V~~,W~~,S,Mz,NZ and Q in eq.(6.21) to (6.25). 	The functions 

Y. are defined as: 
J 

Y.(z) = ai(z)NZ a 
+ ai(z) MZ a 4--y (z) Qa 

f 

(6.27) 

Nz a' Mz a and Qa represent the values assumed by Nz, 

Mz and Q at the cone inner edge, where z = a. 	The variable 

coefficients a.(z), 8i(z) and y.(z), which are functions of 

the coordinate z, are now the unknowns. 

Substituting (6.27) in (6.26): 

dY. 	da (z) 	ds (z) 	dy.(z) ;<
1  

dz 	dz 	Nz,a + 	dz 	Mz,a + 	dz 	Qa 

and noting that: 

Y.(z) = a.(z)N
z ā 

+ S.(z)M~~' 	+ y.(z)Q.• 
3 	3 	 z a 	la 

it is possible to write: 

da.(z) 	ds.(z) 	dy.(z) 	6 

dz 	Nz,a + 	dz 	Mz ,a + 	dz 	Qa; 	aij j=1 
aj(z)NZ,a + Sj(z) Mz

,
a + i (z) Qa 

(6.28) 

(6.29) 

(6.30) 

N a a 
and 

da.(z) 
1 	_ 

Now, equating coefficients of, respectively Nz a, 
J. 
Qa in (6.30) we get: 

6 	
•• 

j~ 	

a..a.(z),for coefficients of Nz,a 	) -1 	13 	3 
) 

6 	 ) 	(6.31) 
E 	a s.(z) 	for coefficients of Me: 	) 
j=1 	ij 	 z,a 	) 

6 :: 	)
) 

r 	a..yj(z)~ for coefficients of Qa 	) 
j=1 

dz 

dsi(z) 

= dz 

dyi (z) 

dz 
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So, instead of integrating the equations (6.16) to 

(6.24), we have to integrate the set of equations (6.31) 

subjected to certain boundary conditions. 	The interval of 

integration remains, as before, from z = a (the cone small 

edge coordinate) to z = b (cone outer edge coordinate). 	The 

integration can be performed, for instance, using the Runga-

Kutta method. 

6.2.2.1 	Integration of Equations of Motion  

The equations of motion have been transformed in 

section 6.2.2 into the set of equations (6.31). 	In these 

equations, the variables Yi(z) designate any of the variables 

.. 
	(z),V~~(z),MZ(z),NZ(z) and Q'~ W (z),S 	 Cz) defined in (6.20). 

To perform now the integration of (6.31) we have to establish 

a correspondence between Yi(z) and these other variables. 

The choice for the variables Y1Cz), that we adopted, to perform . 

the integration is: 

Y1(z) = W ~•~(z) 

Y2(z) ='S (z) 

Y3(z) = Mz(z) 

Y4 (z) = Q* (z) 

Y5 (z) = Nz(z) 

Y6(z) = V(z) 

(6.32) 

We will drop now the use of stars and use the notation 

W as W

* 

(z), V as V' (z), S as S
* 
(z)

' 
Mz as Mz (z), Nz as N~z (z) 

and Q as Q (z). 
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6.2.2.2 Boundary Conditions 

To integrate the set of equations (6.31) we have to 

define three boundary conditions according to the kind of 

restraints existent at the cone small edge. 	If we assume a 

clamped condition at this edge, where z = a, this results in: 

(W)z=a = 0 

(V)z=a = 0 

(S)z=a = 0 	 (6.33) 

Because we set in (6.32) W = Y, S = Y2  and V = Y6, 

the equations (6.33) can also be written as 

(Y
1)z=a = a1(a)Nz,a  + 01(a)Mza  + y1(a)Qa = 0 

(Y2)z=a = a2(a)Nz5a  + 	62(a)Mz,a  + y2(a)Qa = 0 (6.34) 

(Y6)z=a = a6(a)Nz,a  + 62(a)Mz,a  + y6(a)Qa = 0 

Nz a
,  Mz a and Qa  being arbitrary constants, the > 	> 

conditions (6.34) are verified if, at'z = a: 

al  = 0, S1 = 0 
and yl  = 0 

a2  = 0, 02 	= 0 and y2  = 0 (6.35) 

a6  = 0, 06 	= 0 and y6  = 0 

The moments and forces at the small edge boundary are 

not known. 	However, it is still possible to establish some 

more conditions for ai, Ri  and yi  noting that, according to 

(6.32): 
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(Mz) 	= Y3(a) = a3(a)Nz a + a3(a)Mz a + Y3(a)Qa 
z=a 	' 	' 

(Q)za = Y4(a) = a4(a)Nz ~a + S4(a)Mz,a + Y4(a)Q
a 

(Nz) 	= Y5(a) = a5(a)Nz a + a5(a)Mz a + Y5(a)Qa 
z=a 

(6.36) 

In these expressions.: the moment Mz at the inner 

boundary z = a is, in fact, represented in two ways: as a 

particular value of the variable Mz at the boundary z = a and 

as an arbitrary constant Mz a, thus (Mz) 	and Mz ,a are only ' 	z=a 	' 
and the same variable. 	The different notation results from 

the previous designations of section (6.2.2.1). 	The same 

considerations could be extended to (Nz) 	and Nz a and to 

	

z=a 	' 

(Q)z=a and Qa. 	Then (6.36) requires that: 

a3(a) = 0, a3(a) = 1 and y3(a) = 0 

a4(a) = 0, R4(a) = 0 and Y4(a) = 1 

and 	a5(a) = 1, R5(a) = 0 and 15(a) = 0 

If other boundary conditions were considered, a different 

set of values for ai, Si and yi at z = a would result. 
	But, 

in any case we would get nine constant values. 	With these 

constant values the set of equations (6.31) can now be inte-

grated using a numerical procedure, by for instance, the 

Runga-Kutta method of fourth order(60). 	A programme, FRECON, 

using this method is detailed in Appendix 4. 	Basically, it 

enables the calculation of the values of a., Si and 1. at 
1

the outer boundary, where z = b (see fig. 6.8). 	At this 

boundary we have a free edge and this provides another set 

of three conditions. 	At this edge all force and moment 

components must be zero: 

(6.37) 
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Fig. 6.9 	Receptance curve obtained using the Goldberg-Marcus procedure 
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(Mz) 	= 0; 
z=1, 

(N z)= 0, 	and 
z =b' 

0 	 (6.38) 

Using the notation defined in (6.32): 

(Mz) 	= Y3(b) = a3(b)Nz a  + S3(b)Mz a  + y3(6)Qe  z=b 	' 	'  

(Nz) 	= Y4(b) = a4(b)Nz a + S4(b)Mz a  + y4(b)Qa  z=b 	 ' 
(Q)z= b = Y.5(b) = a5(b)Nz,a + 135(b)Mz, a  + 

y5(b)Qa  (6.39) 

Because (M ) 	, (N ) 	and (Q) 	are zero. and 
z  z=b 	a  z=b 	z=6  

the programme FRECON provides the values of ai(b),  Si(b) and 

y.(b) we can establish a set of three equations with three 

unknowns. 	These unknowns are the arbitrary constants Nz a' 

Mz ,a  and Qa. 	Solving this system, it is now possible, to 

calculate the values of these constants and, replacing them 

in (6.27), to find any value cf Yi(z)'. 

For the cone used later in the experiments. shown in 

Fig. 6 . ].. a calculation of the displacement component W at 

the inner boundary, z = a, was performed. 	In this case we 

assumed a s1.i.di.ng condition at this boundary. 	This assumption 

is suggested by the fact that the cone moves, at this edge, 

upwards and downwards, due to the force applied by the piezo-

electric effect in this area. 

The integration of the motion equations was made 

between z = a = 8.5 x 10-3m and z = b = 36 X 10-3m. 	Additional 

data used is indicated in Fig. 6.8. 	If one considers a unit 
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a=.85cm 
b.3.60cm 

Scale 2:1 
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Fig. 6.8 	Geometry data for the aluminium cone as used in  
Experiments  

of supplied force the correspondent values of the displace- 

ment are also the receptance valves. 	These receptances 

were calculated and are plotted in Fig. 6.9. 	The maximum 

value of receptance occurs at a frequency of 17,700 Hz, with 

a minimum at a frequency of 20,500 Hz. The maximum response 

of the system (cone) corresponds to its resonance. 	At low 

frequencies the shell behaves mainly as a mass. 	Then, the 

system becomes more elastic as the frequency increases. 

The determination of the frequency of resonance of the shell 

is of first importance for the reasons explained in 6.1. 	In 

order to compare this theoretical result with the actual 

dynamic behaviour of the cone, the experiments described in 

6.3 were performed. 
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6.3 	Experimental Amplitude Measurements  

To identify the first resonant frequency and to 

measure the amplitudes of vibration, the Fonotic Sensor 

equipment, analysed in Chapter 5, was used. 	The optical 

probe was positioned at several points along one of the cone 

generators. 	The relative position of these points is shown 

in Fig. 6.10, and the actual distances of these stations 

to the cone small edge are indicated in Table 6.1. 	The 

experiments were performed with different voltages across 

the ceramic from 50 volts to 70 volts (in some cases only 

50 and 60 volts). 	For each voltage the force generated by 

the piezoelectric ceramic is constant with the frequency. 

Therefore the maximum amplitude of vibration at any point 

corresponds to a maximum receptance at the considered point. 

The signal measured by the Fonotic Sensor was converted to 

amplitude of displacement using the sensitivity curve of 

Fig. 4.6 and the results plotted for the various points and 

different frequencies. 	These response curves are shown 

from Figs. 6.11 to 6.15. 	In these curves two values of 

maximum are apparent. 	One at 18.550 KHz and other at about 

19.5 KHz. 	The second peak is explained by the actual 

nonsymmetry of the bearing arrangement. 	As shown in Fig. 6.1, 

the bearing is supposed to be symmetrical in relation to the 

•electrode plate 	 . 	In practice this did not occur and there 

was a slight difference in the resonant frequencies of the 

two units. 
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Fig. 6.10 	Amplitude measuring points along the cone 
generator 

The maximum amplitudes decrease considerably from 

the outer edge to the inner edge (Fig. 6.16). 	For the point 

E the data obtained became very scattered and it is impossible 

to draw a curve for each of the applied voltages. 

An interesting point to note is that the amplitudes 

measures at point B are higher than at point A. 	This is 

most probably caused by the stiffening effect of the ring at 

the cone outer edge. 

Comparing the value of the resonant frequency 

obtained experimentally, weX P , and the theoretical one, w
theor,  ,  

as calculated in 6.2.2 the experimental exceeds the theoretical 

'about 1 KHz. 	If we assume the experimental value as correct, 

the relative error of the predicted value is 

error (%) - wexp 	wtheor x 100% _ 18550-17700 

wexp 	18550 

4.58ro 
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Fig. 6.11 	Displacement amplitude measurements for probe 
position A 
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Fig. 6.12 	Displacement amplitude measurements for 
probe position B 
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Fig. 6.13 	Displacement amplitude measurements for Probe 
position C 
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Fig. 6.14 	Displacement amplitude measurements for probe 
position D 
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Fig. 6.15 	Displacement amplitude measurements for probe 
position E 
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Fig. 6.16 	Cone mode shape at experimental resonant 
frequency fv  = 18550 Hz 

It is possible that part of this error is due to the 

fact that the boundary condition at the small edge actually 

will not be pure sliding. 	This condition should also 

include the rotation of the generators at this point. 

Therefore, we have a composite sliding and pinned condition, 

although this rotation is very small because it requires 

local deformation of the base at this edge. 

6.4 	Load Capacity  

All known applications of squeeze film bearings 

have so far been for cases where load capacity is relatively 

small (about 1 pound per 1" projected area). 	However, it 

seems to be of interest to complete this study with the deter-

mination of the actual load capacity of the bearing used. 
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The two major problems associated with this evalua-

tion are the disturbance caused by the application of load, 

and the simultaneous measurement of load and lift. 	The 

loading of the bearing has to be slow and symmetrical enough 

to prevent unbalance and shock of the supported member and s  

if possible there should be the possibility of a continuous 

variation of this load. 	For this purpose an auxiliary 

externally pressurised gas bearing was built. 	The complete 

apparatus is shown in Fig. 6.17 and it illustrates a metallic 

structure supporting this gas bearing(4). 	The gas bearing 

produced a downwards force on a lever arrangement(5). 	This 

lever, also shown in Fig. 6.18, transmitted the force to the 

supported member(3) of the squeeze film bearing(2). 	As this 

equipment was also intended to be used with disc squeeze 

bearings, a journal bearing, also externally pressurised, was 

associated with the loading bearing. 	The load applied to 

the squeeze film bearing was regulated by the inlet air 

pressure to the auxiliary bearing. 	The measurement of this 

load was obtained reading the pressure at the bearing recess(B). 

A calibration curve relating this pressure to the load applied 

to the bearing, at point (E) was previously obtained using a 

load cell. 	This curve, design calculations and drawings for 

the auxiliary bearings, are presented in Appendix 1. 	To 

measure the gas gap existing at each value of applied load 

a Wayne-Kerr capacitance probe(6) was placed over the supported 

member. 	The supported member had one hole in it with a sphere 

attached to the lever bearing against the hole edge (Fig. 6.18). 

This ensured uniform load distribution on the supported member. 



FIG.6.17 Device built for measuring the load capacity of 
S.F. conical bearing. 
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FIG. 6.18 Detail showing the lever arrangement and the 
auxiliary e.p. gas bearincT 
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All the measurements were taken at a frequency of 18,596 Hz. 

The power input used was very low (maximum power was .146 

watts for a voltage applied to the ceramic of 90 volts), and 

that was the only frequency at which the lift of the floating 

(Upper member) was verified. 	For very little changes in 

frequency (of about + 5 Hz) the bearing showed complete loss 

of load capacity. 	When this happened, the two bearing surfaces 

came into contact with considerable resistance to the 

rotational motion. 	The measured values of film mean gap, 

load capacity and voltage applied to the piezoelectric 

ceramic are presented in Table 6.2. 	The dimensionless 

load F = 	F 	is plotted against the dimensionless film 
spat 2 

b 

gap H* = 7- in Fig. 6.19. 	In these expressions F is the 
0 

load applied to the upper member, pa  is atmospheric pressure, 

rb is the cone bigger edge and ho  is the initial vertical 

gap between bearing surfaces. 	The variable h represents, 

as before, the instantaneous mean film thickness. 

6.5 	Results and Discussion  

The numerical procedure (Marcus Goldberg) is satisfactory 

in predicting the resonant frequency to within 5% of the 

experimental value. 	The only other application of this 

theory that is known is from Goldberg himself(58). 	For a 

much larger cone (254 x 10-3m for the cone larger diameter) 

Goldberg indicates fifteen intervals for the z coordinate 

as giving excellent results for calculating the three first 

frequencies. 	In our case, fifteen intervals were also 
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used. 	However, it is possible that better results can be 

obtained by increasing the number of intervals. 	Another 

possible cause for the higher experimental value of the 

resonant frequency is the effect of a.ring near the cone 

big edge. 	This change in geometry cannot be included in 

this theory. 	This fact and the imperfect knowledge of 

the exact boundary conditions at the inner edge can be taken 

as a possible explanation for the difference verified on the 

prediction of the resonant frequency. 	Besides the effect 

on the frequency, the ring also causes a decrease of the 

amplitude of vibration at the edge. 	This fact has also 

been verified by Huxley(31), in a similar arrangement to 

ours ( Fig 6.20) . 

Regarding the amplitudes of vibration, the follow-

ing conclusion can be drawn: 

(i) increasing the power input to the bearing causes an 

increase in amplitude of vibration , as expected; but this 

relation is not linear and is limited by the impedance of 

the cone; 

(ii) the existence of the stiffening ring produces a reduc-

tion of the amplitudes near the edge; 

(iii) comparing the frequency where lift occurs (f1=18,596 Hz) 

and the resonance frequency obtained experimentally in Section 

6.3, (f = 18,550 Hz), it is permissible to conclude that 

the two frequencies seem to be intimately connected. 	This 

would mean that, in fact, the amplification of the vibrational 
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amplitudes verified at resonance of the shell, benefits the 

bearing load capacity. 

From statement (iii) two practical implications can 

be drawn: 

(a) For systems where the available power is very limited, 

the prediction of the resonant frequency of the bearing unit 

is of primary importance because it works best at this 

frequency. 

(b) In systems where the input power does not create a 

problem, the operation of the bearing at or very near the 

resonant frequency would product a noticeable increase of 

load capacity. 

}lit' 	f .2.'") 	Huxley E.. cri e_atal i' su3tS usint', a c )rL Yui 
bearing (Ref. 31) 



CHAPTER SEVEN 

DISC SQUEEZE-FILM BEARING 

7.1 	INTRODUCTION  

In all the experiments described in the previous 

Chapters the geometry of the conical bearing was the same 

in every case. However, Huxley (31) suggested that changes 

occur in the resonant frequency of similar bearing 

arrangements when the geometry of the small base of the cone 

was modified. This base is in direct contact with the 

supporting member base (item 3 in Fig. 6.1). Therefore, 

this suggests a dynamic study of a squeeze film bearing 

having different geometries. 

Because a disc bearing is easier to manufacture 

with satisfactory geometrical accuracy than a conical one 

it was decided to use in this study several disc specimen. 

The bearing arrangement being basically the same as that of 

the conical bearing, but the conical shell is now replaced 

by a simple disc, as shown in Fig. 7.1. 
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DISC 152 
NECK 

------- BASE 

FIG. 7.1 - Disc squeeze film bearing arrangement. 

nular area 

• .. -----'"'eck 

outer boundary 
(edge) 

Q 

FIG. 7.2 - Bearing surface showing tte annular area 
and the "neck". On the corner is also shown a detail 
of a plate element and forces and moments acting on it. 
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7.1.2 	DISC CHARACTERISTICS 

7.1.2.1 Geometry 

The disc diameter chosen is the same as the larger 

base of the cone. This ensures that the projected bearing 

area of the cone equals that of the disc. 

A change in geometry was thus obtained by 

variation of the radius of the small cylinder joining the 

supporting member to the base (designated as NECK in Fig.7.1). 

This cylinder provides the required clearance for 

the bolt nuts and also the space for the insertion of a 

thightening wrench (shown in Appendix 2). The existence of 

this neck is then indespensable for this type of arrangement. 

Its height was considered constant for the different cases, 

and equal to hn  = 10-2  m. 

Our initial assumption in this study is that the 

change of the neck radius (rb) can produce considerable 

variation of the resonant frequency of the supporting member. 

This change should cause various resonant frequencies, 

according to the value of rb,  there being no modification 

of the bearing surface size or shape. 
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The different neck sizes are characterised in this 

study by the ratio of its radius, rb, to the bearing radius, 

ra, and this ratio will be hereafter designated as neck  

coefficient. 

A detail of the Fig. 7.1 is shown in Fig. 7.2. 

This detail indicates the two areas, these being an external 

area, with the geometry of an annulus, separated from a 

central area at a boundary of radius, rb. This radius is 

the same as that of the neck. 

The possible changes in the resonant frequency of 

the bearing member, due to a variation in the value of rb, 

and the establishment of a possible correlation between the 

values of these frequencies and that of optimum performance 

of the bearing are. the subject of the following sections. 
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7.1.2.2 	Bearing Materials  

The materials used for the supporting member in 

the present study are mild steel and an aluminium alloy, 

dural. The choise of this materials is dictated by 

availability and ease of machining. 

The relevant data for these materials is as follows: 

Young's modulus - E  

- steel: 207 x 109 	(N/m2) 

- aluminium: 68.9 x 109 	(N/m2) 

Density - p  

- steel: 7,850 
	

(Kg/m3) 

- aluminium: 2,720 
	

(Kg/m3) 

Poisson's Coef. - v 

- steel: .3 

- aluminum: .3 

7.1.2.3 	Surface Texture  

For all the (disc) specimen used in experiments 

a ground finish was specified for the bearing surfaces. An 

exceptiōn was made for two of the aluminum discs for which 

lapped surfaces were defined. 
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The surface texture of the different specimens was 

measured with a Talysurf instrument. The data obtained is 

shown in Table 7.1. Tests to determine the flatness of this 

surface by interference methods were ālso carried out. 

Unfortunately, the characteristics of reflectivity of the 

surfaces were not good enough to obtain a clear fringe 

patterns; this procedure consisted of comparison of the 

interference bands on the workpiece (the bearing disc) with a 

platen in the interferometer. 

The results of the texture measurements are shown 

in Table 7.1. 

MATERIAL COEFFICIENT C.L.A. 	(pin.) 

STEEL .2 15.0 

STEEL .4 4.0 

STEEL .5 12.0 

DURAL .2 7.0 

DURAL .4 1.0 

DURAL .5 1.6 

TABLE 7.1 
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7.2 	VIBRATION OF CIRCULAR PLATES 

7.2.1 	Plate Equations and Boundary Conditions  

As stated before, the disc thrust bearing assumed 

to be a circular annulus and an inner region to which the 

"neck" is attached. 

The vibrations of annular discs have been treated 

by Bishop and Mc Leod (62) and their analysis is used in this 

Chapter. However it should be mentioned that it is also 

possible to apply the Goldberg method (used in Chapter 6) to 

this problem as a particular case of a cone with half apex 

angle, a, equal to 90 degrees. 

Bishop and McLeod's procedure results in a simpler 

analytical treatment. 

The general equation of motion of a plate in polar 

coordinates is: 
2 

(  a 2 + 1 	a 	+ 12  	32   ) X  (a2w2  + 1 	aw 
ar r ar r ae 2 	ar r ar 

+ 1- a2w ) + 
r2  ae2  

phd a2w  _  q  
at2 	D 

(7.1) 

In this expression r is the radial coordinate and 

0 is the angular coordinate. The displacement component 

normal to the plate surface is represented by w. The 



transverse force, per unit of perimeter is q. The plate 

thickness is hd and p is the plate material density. 

E h
d 	
3 

The constant 5 (- 	) is the flexural rigidity 
12 (1 - v2) 

and v represents the Poisson's coefficient. 

Considering an element of the shell and its 

equilibrium, Fig. 7.2, it is possible (62) to establish the 

following expressions: 

- for the shear force components: 

__ 	[ aw3 Q 	D 	1 a2w 	1 	aw 	1  9w3  - 	

ar3 r 3r2 	r 	Dr + r2 arae2 

2 	3w  

3 	302 
(7.2) 

= — 	[ 1 	a 2w 	1 	32w 	1 	32w  (7.3) 4e 	D 	
r 3r2 ae + r2 

	

Dr ae + r2 	"2 

Mr __ 

M 	= e 

Mre 

_ 

- 

= 

- for the bending moments: 

 1 	a2w 	1 	aw p_z3 1 	aw3 D 	
+ r3 

2 	3 2W~ 

+ r 	art 	r2 	ap 

+ v 

r2 	arae2 

(7.4) 

(7.5) 

(7.6) 

3 	302 

D r 1 	aw 

L r 	ar 

- for 

(1 - D) 	5 

1 	a2w 	
a2w1 r2 	3e2 	ar2 J 

the twisting moment: 

	

[ 1 
	32w 	1 	aw 

	

r 	arae 	r 	ae 
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To solve the equation of motion (7.1) it is 
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necessary to name two more boundary conditions at each edge. 

The boundary conditions that can be assumed are four: 

- clamped 

- sliding 

- pinned, and 

- free 

In the example quoted the disc outer edge is free 

to move. For the inner boundary of the annular area at 

radius rb,  the free conditions can not be used only the 

three Other conditions need to be considered. At the inner 

edge rb, the actual boundary condition is very difficult to 

establish. The reason is that the annulus and the neck are 

both elements of the same body, considered as two for the 

analytic simplicity (as explained in 7.1.1), so, several 

hypothesis must be analized: 

For a pinned edge: 

W = 0 
	

(7.7) 

Me  = 0 	 (7.8) 

At a clamped edge the the slope and the 

displacement are zero: 

0 

(7.9) 

(7.10) 



i Aar 

coef. .2 
	

coef. .4 
	coef. .5 

FIG. 7.3 	Disc-shaped squeeze film bearing 
supporting members as used in experiments. 

FIG.7.4 	Ribbed disc and conical squeeze film 
supporting members. 



Before discussing these boundary conditions, the 

solution of the equation of motion will be solved for the 

case of symmetrical vibrations: 

7.2.2 	SYMMETRICAL VIBRATIONS  

7.2.2.1 	Solution of Equation of Motion  

The flexural vibrations of circular plates can 

occur in two ways: 

- if the deflection at any point is a function 

of the radius and time alone these are called symmetrical  

vibrations and have nodal circles. There is no dependence 

on the angular coordinate. 

- if the deflection is not symmetrical with respect 

to the disc center, the vibrations are nonsymmetrical and 

the nodal points are situated along diameters. These 

vibrations are usually due to nonuniformly applied forces or 

to nonsymmetrical boundary conditions. 

In our case the only type of vibrations likely to 

occur are of the first type, the symmetrical ones, also 

called "umbrella" modes, when all applied forces and 

conditions are symmetrical. These vibrations correspond to 

the extensional vibrations of cones, referred in 6.2.1. For 

these vibrations the equation of motion simplifies to 

161 
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D2 	1  a 	a2w 	1  aw phd  a2W,, 
( 	2 	) ( 	2 	+ 	) + 	_ 	2 	 - 0 (7 .11) 
ar r ar ar r ar 	D at 

If we assume a harmonic vibration with the 

frequency w, the displacement w can"be written as: 

w = W*(r) sin (wt) 	 (7.12) 

W*(r) is a function of the radial coordinate 

alone. Thus, equation (7.11) can be written as: 

2 	2 
(  d 2 	1 	d )( d  2+ 1 	d ) W* - k4W* = 0 
dr r dr dr r dr 

(7.13) 

In this equation t is the time coordinate and k 

is a parameter, called the frequency parameter. The 

parameter k is: 

k = ( 	 phdw2)l/4  
D 

(7.14) 

The equation (7.13) can also be written in the 

form of a Bessel equation: 

(V2+ k2) (v2- k2) W*(r) = 0 	(7.15) 

2 
with 	v2- d 2 + dr 

1 

  

, the Laplatian operator. 
r dr 

The solution of this equation is: 

W*(r) = AJo  (kr) + BYo  (kr) + CIo  (kr) + DKo  (kr) (7.16) 



A, B, C and D are constants dependent on the 

boundary condition and Jo, Yo, Io, Ko are Bessel 

* 
functions . 

Using this expression in equations (7.2) to (7.5) 

results in: 

- for the slope 

dW* - 	k[AJ1 (kr) + BY1(kr) - CI1 (kr) + DK1 (kr)] 
dr 

(7.17) 

- for the shear force: 

Qr= 5 k3 [AJ1 (kr) + BY1(kr) + Cy kr) - DK1 (kr)] 	(7.18) 

- for the radial moment: 

Mr = D k2 EA jJo(kr)  + vkr J1 (kr)] + B i Yo (kr) + vkr Y1 (kri+ 

+ C 1 Io (kr) + vkr I1 (kr)} - 
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- D [K0(kr) - v-1 K1 (kr)}] 
kr 

(7.19) 

Where J, Y.~, II, K1 are also Bessel functions * 

Jo(kr) is a Bessel function of first kind, zero order 

Yo(kr) is a Bessel function of second kind, zero order 

Io(kr) is a Modified Bessel function of first kind, zero 
order 

Ko(kr) is a Modified Bessel function of second kind, zero 
order 
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7.2.2.2 	Frequency Equation  

Putting all possible boundary conditions in 

equations (7.17) to (7.19) (always free at the outer edge), 

leads to four 	alternative equations. The frequency 

equation can then be found equating to zero the 

determinant of the matrix formed by the coefficients of the 

constants A, B, C and D. 

Let us assume that we have an annular plate with 

outer radius, ra, and inner radius, rb. The determinants 

obtained for each pair of boundary conditions are the 

following 

i) Clamped condition at rb  

A
C-F 

Jo  (krb) 

J1  (krb) 

J1  (kra) 

Jol  (kra) 

Free condition at 	r 

Yo  (krb) 	Io  (krb) 

Y1  (krb) 	-I1  (krb) 

Yl  (kra) 	I1  (kra) 

Yol  (kr
a) 	Iol  (kr

a) 

a  

Ko  (krb  ) 

K1  (krb ) 

-K1  (kra) 

Kol  (kra) (7.20) 

J1(kr) is a Bessel function of first kind, first order 

Y1(kr) is a Bessel function of second kind, first order 

I1(kr) is a Modified Bessel function of first kind, first 
order 

K1(kr) is a Modified Bessel function of second kind, first 
order 



AC-F represents the determinant that must be 

equated to zero to find the natural frequencies for a 

clamped-free condition. The functions Joi(kra)'  Yol(kra)'  

Iol(kra) and K01(kra) result from combinations of the 

Bessel functions already defined and presented on page1G6 . 

As-F= J1  (krb) 

J1  (krb  ) 

J1  (kra) 

Jol  (kra) 

ii) Sliding condition at 

Free condition at 	r 

Y1  (krb) 	-I1  (krb) 

Y1  (krb) 	I1  (krb) 

Y1  (kra) 	I1  (kra) 

Yol  (kra) Iol  (kra) 

rb  

a  

K1  (krb) 

-K1  (krb) 

-K1  (kra) 

K01  (kra) (7.21) 

iii) Pinned condition at 
Free condition at 	r 

rb  

a  

A 	= p-F Jo  (krb) Yo  (krb) Io  (krb) Ko  (krb) 

Iol  (krb) Yol  (krb) Iol  (krb) Kol  (krb) 

J1  (Kra) Y1  (kra) I1  (kra) -K1  (kra) 

Jol  (kra  ) Yol  (kr
a)  Iol  (kr

a) Kol  (kra ) (7.22) 

AF-F- J1  (krb) 

Jol  (krb) 

J1  (kra) 

Joi  (kra) 

ir) Free condition at rb  

Free condition at r a  

Yl  (krb) 	Il  (krb ) 	-K1  (krb) 

Yol  (krb) 	Iol  (krb) 	Kol  (krb ) 

Y1  (kra) 	Il  (kra) 	-K1  (kra) 

Yol  (kra) 	Iol  (kra) 	Kol  (kra) (7.23) 
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with 

Jol(kri) = Jo(kri) + 
 v-1   Jl  (kr.) 
kr. i 

Yol(kr.) = Yo 
 (kr) +  v-1   Yl(kr.) 

1 kr. 1 

Iol  (kr.) = - Io  
(kr.) 	

v-1  Il  (kr.) 
kr. 
1 

Kol  (kr.) = - Ko  
(kr.) +  v -1   Kl  (kri  ) 

kr. 1 
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(7.24) 

At resonance, the determinants(7.20 - (7.23) are 

zero. Considering several values of the frequency, and for 

given values of ra  and rb  it is possible to establish 

the behaviour of these determinants. 

Considering a free outer boundary and four 

different conditions at the inner boundary the determinant 

curves are plotted in Figs. 7.5 and 7.6. The range of 

frequencies vary from 0 to 13 KHz and the absolute value 

of the determinant, A, is considered between 0 and 2. 

The numerical values used for plotting these curves 

were obtained from expressions (7.20) to (7.23) and computed 

with the programme FREDIS, shown in Appendix 4. Both 

aluminium and steel disc plates show very close values of 

the first natural frequency, for each boundary condition. 

The clamped-free conditions gives the lowest frequency, for 
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either aluminium or steeel discs. The value of this first 

frequency increases with the value of the Neck coefficient, 

as would be expected. For aluminium plates, only the 

sliding-free and clamped conditions were considered (Fig.7.7). 

These two conditions are the most realistic for a squeeze-

-film bearing unit. 

7.2.3 	Receptance expressions  

Also for interest is the prediction of the 

amplitudes of vibration of the disc annulus when a force is 

applied to the inner boundary. For a force uniformly  

distributed along the boundary the amplitude of vibration 

of any point will be dependent on the boundary conditions. 

The amplitude of displacement caused by a unit of applied 

force is called the receptance. The total displacement will 

obviously be the product of the receptance times the force. 

If the point is situated at a distance r from the center 

of the annulus and the force applied at a point located, for 

instance, at the inner boundary rb, the receptance will be 

designated by arb.  Bishop and Mc Leod62  derivated 

expressions for receptance for different boundary conditions 

and for uniformly distributed forces or single forces. For 

uniformly distributed applied force the receptance expressions 

are as follows: 



arb  5 k3 271- AS-F rb 

+ ADKo  (kr) 1 

1 

applied force not possible. 

ii) Sliding-Free boundary conditions: 

Jo  (kr) + Ab  Yo  (kr) - ACID  (kr) + 

(7.25) 

arb 5 k3 27T AF-F rb 

- ADKo (kr)J 

1 

iii) Pinned-Free boundary conditions: 

applied force not possible 

iv) Free-Free boundary conditions: 

[AAJo  (kr) - ABYo  (kr) + ACID  (kr) - 

i) Clamped-Free boundary conditions: 
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(7.26) 

The values of AS_F  and AF-F 
	are given by (7.21) 

and (7.23) respectively. The symbols AA,AB,AC  and AD  also 

represent determinants whose value is given in Appendix 5 for 

each example of boundary conditions. 
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C is the neck 
coefficient 

FIG. Z5 Determinant curves for clamped-free (C-F) 
and sliding-free (S-F) boundary conditions 
- steel disc annulus. 
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Determinant curves for pinned-free (P-F) 
and free-free (F-F) boundary conditions 
- steel disc annulus. 

FIG. 7.6 
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FIG. 7.7 	Determinant curves for clamped-free 
(C-F) and sliding-free (S-F) boundary 
conditions - aluminium disc annulus. 
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7.2.4 
	

Disc Mobility Analysis 

Not all the applied force produced by the exciter 

is used to vibrate the disc annulus. Part of it is applied 

to the ceramic itself. The other part is applied to the 

base and "neck". Fig. 7.8 shows a schematic diagram of the 

bearing unit. In this figure Ft represents the total force 

generated by the ceramic. The symbols Fc, Fb and Fd are 

used for the components of this force for the parallel 

arrangement shown. Fc is the force applied to the crystal 

which we assume to behave as a spring. The base and neck 

behave mainly as a mass, and the force acting on them is Fb. 

The force component considered as applied to the disc is Fd, 

so that: 

Ft= E F. = Fc + Fb + Fd (7.27) 

• 

	

4 	 I } I 

	

DI SC 	
I 	c 	FbL... tFd 

I 	
BASE S! 	 N I 	

FtIY e 	t_ F~ t 	 ! 	 ~/ 

CitYSTi~L 

Fig. 7.8 - Schematic diagram of the bearing u: 
Ft - Total force 

eo - voltage applied to the ceramic 

Fb - force applied to the base 

Fd - force applied to the disc 
F. - force acp1 Lea to the ceramic 
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The receptance (displacement 	L3,ued by one unit of 

applied force) has, for each of these elements, the following 

expressions: 

i) for a spring with stiffness kc  

(piezoelectric ceramic) 

1 
a c 	kc  

ii) for a mass mb  (base and neck) 

ab  - 
w2mb  

w being the angular frequency of the motion 

1 

(7.28) 

(7.29) 

iii) for an annular disc the receptance 

expression is shown in 7.2.3. In our case we are interested 

in calculating the displacements at the inner boundary. The 

receptance, according to 7.2.3, should be designated by abb. 

For simplicity we will use ad  instead, the subscript d 

referring to disc. 

For the model represented in Fig. 7.8, because it 

is a parallel arrangement, the total force Ft  and the 

forces applied to each element are related by the expression 

(7.27) . 

The total displacement, w, is the same for all 

elements so, 

w 
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w (7.30) F -  	 c 	a c  

F  - 	 
b 	ab  

Because, 

F = E Fi  = ( a 	a 	) w 
b 	c 

(7.31) 

F -  	 (7.32) 
a
tot  

or, 

where 

a tot- 
1 	 (7.33) 

ab 	ac 	ad  

The receptance expression relating the total force 

applied to the body and displacement of the point P (as 

indicated in Figs. 7.9, 7.10 and 7.11) can be written as: 

atot 
k m - m2 	+ 	1  
c 	b 	ad  

This expression and the fact that the displacement 

and velocity are related to each other, enable us to work 

with a more usual variable of dynamic analysis: the mobility. 

The mobility of a point of a body is defined as the ratio 

between the velocity of this point and the force applied to 

the body. 

The modulus of mobility for a point at the radius 

1 	(7.34) 



I 
M 0t  

w 

kc  - w2 mb+ 
 a d  

(7.35) 
1 

rb  is, then: 
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Using the expression (7.35) it is possible to 

observe where the maximum velocity response of the system 

occurs. 

The value of mass mb  will be affected by the 

material used for the base due to variation of density. 

The disc material also affects the value of ad  

due to variation of 5 (flexural rigidity). 

The value of kc  depends mainly on the ceramic 

type and dimensions. For a more complete study of the 

influence of the material properties, besides the two cases 

of disc and base in steel and disc and base in aluminium, two 

other possibilities for the mobility calculations are also 

considered. One is the base (and neck) in aluminium (dural) 

and the annular disc in steel; the other is the base (and 

neck) in steel and the disc in aluminium. The four 

possibilities of combination, can be summarized as follows: 

BASE: STEEL 
CASE A DISC STEEL 

CASE B (BASE: ALUMINIUM 

DISC: ALUMINIUM 
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BASE: STEEL 
CASE C 

DISC: ALUMINIUM 

BASE: ALUMINIUM 
CASE D 

DISC: STEEL 

Using the expression (7.25) for the disc receptance 

it is assumed that a sliding condition at the inner edge is 

the hypothesis more likely to interpret the actual condition 

at this boundary. The mobility curves for these four 	s 

are plotted in Figs. 7.9, 7.10 and 7.11. In these calculations 

the ceramic stiffness is taken as being kc  = 7.73 x 107N/m , 

from experiments (see section 5.3.3). The mass of the base, 

in expression (7.36) also includes the mass of the neck and 

it varies of course, with the material and the value of 

coefficient. The mobility is expressed 	these graphs in 

db  with reference to 1 dyne x cm x s-1  At the resonant 

frequency, the mobility reaches a maximum and it is possible 

from these curves to determine the resonance of the unit. 

The all aluminium unit (case B) has a higher 

resonant frequency than the steel one (case A), decreasing 

slightly (from 5.2 KHz to 4.85 kHz) with the increase of 

the coefficient (coef.) value. 
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FIG.7.11 	Mobility at point P for coeff. = .5. 



The lowest frequency is verified for case C, the 

aluminium disc with steel base. The highest frequency is 

verified for case D, steel disc with aluminium base. 

From these graphs it is also evident that: 

- The use of a steel base (cases A and C) brings 

the frequency down, compared with the aluminium one (cases 

B and D). 

- The influence of the material of the disc is not 

so significant, and for the same base, the differences (cases 

A and C and cases B and D respectively) are of the order of 

300 Hz to 600 Hz. The greatest difference is verified for 

the large value of the coefficient (.5). 

- When the coefficient value increases the resonance 

frequency becomes lower for cases of aluminium base. For the 

cases of a steel .base the behaviour is somew6t unexpected with 

the lowest value for coef =.4. Both. coef =.2 and coef =.5, 

present slightly higher values than coef .4 for the resonance 

frequency. 

- The cases C and D, when different materials  

are used for the base (and neck) and the annular disc, are 

purely ideal in the sense that it is assumed that the contact 

between the two materials is a perfect bonding. This type of 
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contact is very difficult to obtain in pratical models and 

the interface effect must be taken into account. 

- It is also interesting to notice that, as 

predicted in section 7.2.2.2, the aluminium disc (that has 

by itself a lower resonance than the steel disc) also lowers 

the frequency of the whole unit(disc plus base and neck). 

In section 7.2.2 it is shown how the neck coefficient 

(ratio between inner and outer radius of the annular disc) 

affects definetely the frequency of resonance. For the unit 

comprising now the ceramic, base and neck this parameter still 

affects this variable, but the material of the base and the 

characteristics of the ceramic also influence the resonance 

of the unit. Therefore, according to each coefficient, one 

should use the material that provides the best compatibility 

of the two resonances, that of the disc and the total unit  

frequency. 	. 

In order to compare these results with the actual 

performance of the bearing some experiments described in the 

next sections were carried out. In these experiments only 

one piece units are used, and so, only cases A and b will be 

considered. 
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7.3 	EXPERIMENTS WITH FLAT CIRCULAR DISCS  

7.3.1 	AMPLITUDE MEASUREMENTS  

In a similar way to that described in Chapter 6 for 

conical shells, measurement for disc motion amplitudes was 

performed. The Fotonic Sensor was used for these measurements 

with the probe placed normal to the disc surface as shown in 

Fig. 7.12. 

(a) Steel discs  

The first experiments were conducted using discs in 

mild steel, represented in Fig. 7.3 The values of coefficient 

choosen are .2, .4 and .5*. 

For coefficient .2 two values of voltage were 

applied to the piezoelectric ceramic, 90 volts and 120 volts. 

The probe positions are identified in the next 

figures by the letters A to H with 0 for the disc center. 

For coefficients .4 and .5, two radial directions 

were considered, Figs. 7.13 and 7.14. Reading in these two 

directions were taken to confirm the axisymetry of the vibra-

tion amplitudes. 

In every case bearing unit was driven (oscillated) 

in the range of frequencies 0 to 20 KHz. The resonant fre-

quency was determined when the maximum amplitude occured for 

all the points along the discs. 

* These particular values were choosen arbitrary. 
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Fotonic sensor 
probe positions 

   

DISC 

F D 

Fig. 7.12 - Probe positions for steel disc with coefficient , 

CASE 

Fig. 7.13 - Probe positions for steel disc with coefficient 
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Fig. 7.14 - Probe positions for steel disc with 
coefficient .5 

Tor coefficient .2 the resonance was verified at 

4002 Hz. For coefficient .4 this value was 6176 Hz and for 

coefficient .5, 8567 Hz. The amplitude measurements are 

displayed in tables 7.2, 7.3 and 7.4. 
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Voltage 
J  
F req' p. 

PROBE POSITION 
A B C D 	4 	E, 	F 	I 	G Fl 0 

MOTION AMPLITUDE (x 10-4  nan ) 
3982 8.3 5.1 4.1 2.2 1.1 0.6 0.5 1.0 1.1 

3987 10.8 6.5 5.1 2.5 1.4 0.8 0.7 1.4 1.7 

3992 16.7 7.6 7.6 4.3 1.9 1.1 1.0 2.0 2.7 

90  
volts 

3997 28.0 15.3 15.3 9.6 3.2 2.2 2.2 4.3 6.6 

4002 68.7 44.6 38.2 15.3 9.6 5.1 5.1 8.3 8.3 

4007 25.5 16.6 15.3 5.1 3.8 2.0 2.3 3.3 4.0 

4012 14.0 7.6 7.6 3.2 2.3 1.2 1.0 2.0 2.1 

4017 8.9 5.1 5.1 2.2 1.2 0.5 0.8 1.4 1.7 

3950 3.8 3.4 2.2 1.5 0.9 - 0.3 0.3 0.4 

3960 4.4 4.5 2.7 2.0 1.1 - 0.4 0.4 0.5 

3970 6.4 6.1 3.7 2.5 1.3 - 0.5 0.5 0.6 

3975 7.0 7.1 4.5 2.8 1.5 0.3 0.6 0.6 0.8 

3980 8.3 8.5 5.2 3.4 1.6 0.3 0.7 0.7 0.9 

3982 10.2 7.6 7.6 3.6 1.5 0.7 0.7 0.7 1.5 
120 

volts 3987 12.7 10.2 9.5 4.7 1.8 1.0 0.9 0.9 2.2 

3992 20.4 14.0 14.0 7.6 3.0 1.5 1.7 1.7 3.6 

3997 43.3 29.3 28.0 5.3 5.2 2.8 3.9 3.9 6.5 

4002 89.1 72.5 66.2 30.5 1.1 5.6 7.0 7.0 12.7 

4007 29.3 25.5 22.9 10.2 4.4 2.8 2.3 2.3 5.6 

4012 17.8 14.0 12.7 4.4 2.3 1.5 1.3 1.3 3.2 

4017 11.5 10.2 8.9 2.5 1.4 1.0 1.0 1.0 2,0 

Distance from 
centre (mm) 28.4 25.0 21.0 15.4 12.8 10.3 	7.7 3.9 0.0 

TABLE 	7.2 	Amplitude Measurements for Steel Disc 
Bearing (coeff. _ .2). 
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Voltage Freq. 
c.p.s. 

PROBE 	fcSITIC N 
Al  B1  C1 	

1 	
Dl  El  F1  C1 	

I 	
0 

_4 
MOTION AMPLITUDE (x 10-4  

6166 57.3 57.3 31.8 28.0 12.7 0.9 0.6 0.6 

6171 108.1 133.6 95.5 76.4 38.2 2.3 1.3 1.2 

w m 
90 

volts 
6176 

6181 

190.1 

101.8 

178.2 

101.8 

120.9 

63.6 

101.8 

50.9 

40.7 

20.4 

1.5 

1.5 

0.6 

0.3 

0.4 

0.3 

6186 68.7 63.6 40.7 31.8 12.7 0.5 0.4 0.8 

6191 43.3 45.8 25.5 17.8 7.6 1.1 1.0 0.8 

Distance from 
centre (mm) 27.5 25.0 22.0 20.0 15.0 9.0 7.0 0.0 

C A
S

E  
2 	

!.
I 

Voltage Freq. 
cps 

TRO3E- 	PUSa1 tc 
A2  B2  C2 	

1 	
D2  E2  F1  G2 	I 	O 

MOTION AMPLITUDE (x 10-4  mm) 

6166 95.5 63.6 63.6 30.5 15.3 2.8 0.6 0.6 

6171 280.0 114.5 299.1 78.9 30.6 8.9 1.4 1.4 

6176 254.6 203.6 152.7 82.7 33.1 5.1 0.6 0.8 
90 

volts 
6181 152.7 127.3 101.8 40.7 16.5 2.5 0.4 0.4. 

6186 103.1 89.1 70.0 38.2 15.3 1.5 0.8 0.6 

6191 63.6 52.2 35.6 17.8 8.3 1.8 1.1 0.8 

6196 31.8 24.2 19.1 14.0 4.1 1.1 0.6 0.5 

Distance from 
centre (mm) 28.0 26.0 23.0 18.0 14.0 10.0 6.0 0.0 

TABLE 7.3 	Amplitude Measurements for Steel Disc 
Bearing (coeff.=.4). 
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  1

 	
I 

Voltage Freq. 
c.p.s. 

PROBE POSITION - (RADIUS 1) 
Al Bl C1  D1  E1  F1 	I G1  H1  0 

MOTION AMPLITUDE (mm x 10-4) 

8552 10.8 9.2 5.3 - 0.4 0.6 0.7 0.9 1.0 

8557 14.0 12.7 7.1 0.5 0.5 0.9 1.0 1.1 1.5 

90 
volts 

8562 

8567 

25.5 

70.0 

20.4 

57.3 

12.7 

33.1 

0.8 

1.7 

0.9 

2.4 

1.5 

3.6 

1.9 

4.5 

2.0 

4.8 

2.7 

5.9 

8572 31.8 - 19.1 0.9 1.4 2.2 2.2 2.4 3.2 

8577 20.3 17.8 8.9 0.5 0.8 1.3 1.1 1.7 1.9 

Distance from 28.4 25.0 21.0 15.4 12.8 10.3 7.7 3.9 0.0 
centre (mm) 

CA
SE

  
2 	

1 

Voltage Freq. 
.p.s. 

PROBE POSITION - (RADIUS 2) 
A2  B2 C2 D2 E2 F2 G2 H2  p 

MOTION AMPLITUDE (mm x 10-4) 

8552 7.6 5.7 5.3 - 1.5 0.8 - 0.9 0.9 

8557 10.2 7.6 7.1 0.7 0.9 1.1 - 1.4 1.3 
90 

volts 8562 19.1 14.0 12.7 1.1 1.4 2.3 - 2.2 2.3 

8567 57.3 38.2 33.1 2.9 3.8 5.7 - 5.7 5.1 

8572 34.4 20.4 19.1 1.5 2.2 3.0 - 3.1 3.1 

8577 17.8 11.5 8.9 0.8 1.3 1.8 - 1.8 1.8 

Distance from 27.0 23.0 20.0 17.0 13.0 9.0 8.0 2.5 0.0 
centre (mm) 

TABLE 7.4 
	Amplitude Measurements for Steel Disc 

Bearing (coeff. = .5). 



To compare the different modal shapes the 

amplitudes for each resonnance are plotted in graphs, Fig. 

7.15, Fig. 7.16 and Fig. 7.17. In every case the amplitudes 

at the free edge are higher than at the center of the plate 

(about 10 times) with a node near the connection neck-annular 

plate. The increase in voltage caused an increase in 

amplitudes too, but the reduced number of voltages didn't 

provide the establishement of any precise relationship between 

the voltage applied and these displacements. It is possible, 

nevertheless, to say that their law of variation is almost 

linear in the range studied. 
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Fig. 7.17 - Experimental and theoretical Mo::c Shapes_ for Steel Disc 
beLrin; (coeff. .5) 
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b) Aluminium Discs  

For the aluminium discs the geometry was 

maintained, with the same neck coefficients: .2, .4 and .5. 

So, only the material was different. The squeeze film bearing 

arrangement was also identical to that used with steel discs. 

Because for this material the resonnance curves 

were much smother, it was possible to take a greater number 

of frequency readings within the capabilities of the equipment. 

The use of a digital oscillator also enabled to set the 

frequency more accurately. The amplitudes obtained for the 

.several frequencies and coefficients are shown in Tables 7.5, 

7.6 and 7.7. The respective probe stations are also presented, 

in Fig. 7.18, Fig. 7.19 and Fig. 7.20. 



Fig. 7.18 - Probe positions for aluminium disc with 
coefficient .2 

Fig. 7.19 - Probe positions for aluminium disc with 
coefficient .4 
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Fig. 7.20 - Probe positions for aluminium disc 
with coefficient .5 
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Voltage Freq. 
c'p's' 

PROBE POSITION _ 
A B( C D E F G `  0 

MOTION AMPLITUDE (x 10-4  mm) 

4111 12.8 10.5 11.5 6.4 1.3 0.8 1.3 1.3 

4119 25.5 23.0 20.4 14.0 2.8 1.8 2.9 2.6 

4120 29.3 25.5 25.5 15.3 3.2 2.2 3.8 3.3 

4121 35.7 28.0 30.6 19.1 3.8 2.3 3.8 3.8 

4122 52.6 33.2 38.3 21.7 4.5 2.6 4.6 4.1 

4123 44.6 42.1 44.6 25.5 4.5 3.2 5.1 4.5 

4124 48.5 44.6 49.7 26.8 5.1 3.4 5.4 5.1 

4125 53.7 43.4 44.6 25.5 5.0 3.3 5.1 4.6 

4131 25.5 21.7 23.x0 12.8 2.6 2.0 2.8 2.3 

4141 11.5 9.6 10.2 6.0 1.0 1.0 1.3 1.2 
70 

volts 4146 8.9 7.3 8.3 4.5 0.8 0.8 1.3 0.9 

4151 7.7 6.3 7.7 3.8 0.6 0.7 1.0 0.8 

4156 - 5.1 5.6 3.1 0.6 0.6 0.8 0.7 

4161 5.1 4.5 5.1 2.7 0.5 0.5 0.8 0.6 

4166 - 3.8 4.5 2.3 0.3 0.5 0.6 0.6 

4171 4.5 3.6 4.3 2.0 0.3 0.4 0.6 0.5 

4176 - 3.3 3.8 1.9 0.3 0.4 0.5 0.5 

4181 3.8 2.8 3.6 1.8 0.3 0.4 0.5 0.5 

4186 - 2.6 3.2 1.5 0.3 0.4 0.5 0.5 

4191 3.2 2.4 3.1 1.4 - 0.4 0.5 0.4 

4196 2.8 2.3 2.6 1.3 - 0.3 0.4 - 
Distance from 
centre (mm) 28.5 26.0 24.0 18.0 11.0 7.0 3.0 0.0 

TABLE 7.5 	Amplitude Measurements for Aluminium 
Disc Bearing (coeff. = .2). 
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Voltage 
Freq. 
C.p. S. 

PROBE POSITION 
A B C D E F G H 0 

-4 
MOTION AMPLITUDE (x 10 	mm) 

6231 51.0 47.2 47.2 35.7 17.9 7.0 1.4 0.6 0.9 

6236 186.0 127.5 114.8 66.3 - 19.1 2.4 1.4 9.5 

6239 306.0 293.3 229.6 178.5 53.6 15.3 1.8 1.9 5.1 

6240 306.0 242.3 255.1 114.8 57.4 9.5 1.5 1.6 5.8 

6241 293.3 178.3 153.0 82.9 38.3 8.9 1.3 - 1.7 

6242 165.8 146.7 102.0 76.5 33.2 8.9 1.0 1.4 - 

6243 127.5 114.8 82.9 57.4 25.5 7.7 0.9 1.3 1.4 

6244 114.8 99.5 76.5 51.0 24.2 6.4 0.6 1.2 1.3 

6245 89.3 82.9 70.2 38.3 23.0 5.7 0.5 1.1 1.2 

70 6246 95.6 76.5 58.7 31.9 19.1 5.1 0.4 1.0 1.1 
volts 

6251 53.6 42.1 40.7 28.1 11.5 3.8 0.4 0.8 0.9 

6256 30.0 30.6 29.3 20.4 8.9 2.6 - 0.8 0.8 

6261 28.0 24.2 21.7 17.9 7.5 2.3 - 0.5 0.7 

6266 22.9 19.1 17.8 12.8 6.0 1.8 - 0.5 0.6 

6271 17.8 16.6 14.0 11.5 - - - 0.4 0.5 

6276 15.3 14.0 12.8 10.2 4.1 1.3 - - 0.5 

6281 14.0 12.8 10.8 8.3 3.8 1.0 - -. ∎  0.4 

6286 11.5 10.2 8.3 7.7 3.3 0.9 - - 0.4 

6291 10.2 9.6 7.0 6.4 2.9 0.8 - - - 

6301 8.3 7.7 5.8 4.1 2.4 0.6 - - - 

Distance from 
centre (mm) 

28.0 24.5 23.0 20.0 16.0 12.0 10.0 5.0 0.0 

TABLE 	7.6 	Amplitude Measurements for Aluminium 
Disc Bearing (coeff. = .4). 
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Voltage Freq. 
c.p.s. 

PROBE POSITION 
A 	1 	B C D 	J E F G f 	0 

MOTION AMPLITUDE (x 10-4  mm) 
8700 5.4 5.2 2.3 - - 0.4 0.4 0.5 
8705 6.5 6.4 2.8 1.0 0.4 0.5 0.5 0.6 
8710 8.3 7.7 3.3 1.3 0.5 0.6 0.6 0.6 
8715 12.1 10.3 5.2 1.1 0.6 0.8 0.8 1.0 
8720 17.9 14.0 7.7 1.3 1.0 1.1 1.3 1.4 
8724 25.5 23.0 10.8 - 1.4 2.0 1.8 2.3 
8725 34.4 25.5 12.1 1.3 1.5 2.3 2.2 2.4 
8726 35.1 29.3 14.0 1.4 1.8 2.4 2.4 .2.8 

70 8727 35.7 30.6 15.3 1.4 2.2 2.8 2.7 2.9 
volts 8728 38.3 33.2 17.9 1.5 2.3 2.9 3.1 3.2 

8730 34.4 30.6 19.1 - 2.3 2.8 2.8 2.9 
8735 23.0 25.5 14.0 1.0 1.5 1.9 1.8 1.8 
8740 15.3 15.3 8.9 1.0 1.0 1.3 1.3 1.3 
8745 11.5 11.5 6.4 0.9 0.8 0.9 1.0 1.0 
8750 8.3 9.6 5.1 - 0.6 0.8 0.8 0.8 
8755 7.7 7.7 4.1 - 0.5 0.6 0.6 0.6 
8760 6.4 6.4 3.3 - 0.5 0.5 0.5 0.5 
8765 5.1 5.5 2.8 - - 0.5 0.4 0.5 

Distance from 
centre (mm) 27.5 25.0 20.5 15.0 10.0 7.0 4.0 0.0 

TABLE 	7.7 	Amplitude Measurements for Aluminium 
Disc Bearing (coeff. = .5). 
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Fig. 7.21 - Experimental Mode Shape for Aluminium Disc 

Bearing (coeff. .2) 
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Fif. 7.22 - Experimental Mode Shapes for Aluminium 

Disc Bearing (coeff. .4) 
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7.3.2 	Loss Factor 

The specimen used in experiments come from 

different batches of material. It was considered that this 

fact could be correlated with the dynamic behaviour observed. 

For this reason the loss factor,n, was calculated for each 

case. The loss factor is defined as 

1 	Wstatic  
n = 	_ 

Qmech 	Wresonance 

(7.37) 

where: 

Qmech - (already refered in chapter 5) 

representing the mechanical Q factor 

of the disc material 

Wstatic 	- represents the static deflection of 

the system (bearing unit plus ceramic) 

Wresonance^ represents the amplitude of vibration 

at resonance. 

Assuming a symetrical response curve (amplitudes 

plotted against frequency) it is possible to calculate the 

loss factor of the material using the half power point 

bandwith . The procedure is described next : 

The energy dissipated by the system during a 

cycle of motion is £E. For an amplitude W1, so that: 



W1  
w 

resonance 

If 
(7.38) 

20Q 

the energy dissipated is related with 	AE by: 

AEW1 =  2 AE 	 (7.39) 

Defining the variable y - 	w 	, designating t 
r  

w a particular value of frequency and tp W the angular 

frequency at resonance it is possible to establish the 

50 
following relationship: 

W = 	F 	1  	(7.40) 
✓(1- -i2)2  + n2  

Where W is the amplitude of vibration of the 

system, F is the applied force and k' the stiffness of 

the system. After some manipulation the following 

expression is obtained (50): 

= 
w2- wl  

w r 
(7.41) 

In expression (7.41) 	and w2 	are 

frequencies correspondi.ns to amplitudes related to the 

resonant amplitude by expressions like (7.38). 

This last expression gives a method of calculation 

of the loss factor if the response curve of the system is known. 

The main difficulty associated with this procedure 

k' 



is the determination of the exact value of tyres'  Using 

data from Tables 7.1, 7.2 and 7.3 the response curves for 

different neck coefficients W could be plotted, and the 

values of wl  and w2  were graphically obtained. This 

Perm;tttd the calculation of n. The values of n are 

represented in Table 7.7. 

TABLE 7.7 

NECK POINT tl x 	10-3  

A 1.25 

B .99 

.2 C 1.24 

D 1.08 

A .89 

B 1.07 

.4 C .92 

D 1.42 

A .55 

.5 B .62 

C .62 

D - 
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These values respect, as mentioned, mild steel 

discs. From Table 7.7 it is possible to conclude on the 

higher loss coefficient of .2 neck coefficient case, 

decreasing with increasing neck coefficient values. 

Because the higher amplitudes were obtained, as seen in 

section 7.3, for coefficient .2, this seems to dismiss the 

hypothesis of the amplitude variation being caused by the 

material properties of a particular batch. The variation 

of the loss coefficient must actually be due to a different 

contact between the disc specimen and the ceramic disc. The 

fluctuactions, of n for different points, are probably 

caused by the error on the determination of the correct 

value of Wres (frequency of resonance). . 

7..4 	COMPARISON OF  THEORETICAL AND EXPERIMENTAL MODAL 

SHAPES FOR DISCS. 

The modal shape 'of the bearing discs is obviously 

a function of the force applied to these discs. Using the 

expression (7.25) and assuming, as before, a sliding-free 

condition for the annulus inner boundary, it is possible 

to predict these mode shapes. For this calculation it is 

necessary to know this force. 
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Because all the bearing elements (annular disc, 

base and ceramic) are associated in parallel (see Fig. 7.8) 

the total displacement Wb  will be the same for points at 

radius rb. The force applied to the disc alone, Fd, can 

be calculated knowing the disc receptances at these points, 

from (7.42) : 

w 
Fd  = 	

ab 	 (7.45) 
d 

In this expression ad  is the same variable as 

abb  (receptance of a point at a radius b, due to a force 

at the same radius). The notation ad  is used instead of 

abb, as explained in 7.2.4. The force Fd  varies with 

frequency, the neck coefficient (because of the influence 

of ad)/ and obviously with the voltage applied to the 

ceramic. Using the expression (7.45) the table 7.9 was built 

for several cases of coefficient and voltage. The coefficients 

choosen,.2, .4 and .5 are the same as considered in 

experiments referred in 7.3.1 and 7.3.2. The same criterium 

was used for the voltages. The frequencies considered were 

those of the resonance (for each coefficient) and also when 

the lift of the upper member ocurred. If the theoretical 

resonance frequencies were taken instead, the values of the 

receptance would be infinite because in the expressions of 



displacement, W, for a point at a distance b irc.vA the 

center of the disc is then: 

Wb  = a rb  F d 
	 (7.42) 

The force Fd  is the force applied at the disc inner 

boundary. To calculate this force one needs to know the 

total force Ft,  which is related to the voltage across 

the piezoelectric ceramic by the constant g33  (see 

section 5.1.2.3). The subscripts used in this constant 

indicate that both the generated force and the applied 

electrical field have the same direction (the z axis, 

defined in chapter 5). For a PZT - 4 ceramic the value 

of this constant is (Table 5.2): 

g33 - 26.1 x 10-3  volt meter/Newton 

Designating by e0  the voltage applied to the 

ceramic, tc  the ceramic thickness and Ac  the ceramic 

area normal to the direction of the electrical field, Ft  

is: 

F 

  

e 0  
t c  

g33  
A c  

 

(7.43) 
t 
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For the ceramics used in this work the 

thickness, tc, and diameter, dc, are (fig. 6.2) 

t c = 6 x 10-3  m and 

d c = 38 x 10-3  m 

Substitution of this values in 7.43 results in: 

= 7.2 e 
0 

(7.44) 

In (7.44) Ft  is expressed in Newtons and eo  

is expressed in volts . Table 7.8 shows the values of 

the force Ft  for the voltages used in experiments: 

Voltage, eo  
(volts) 

Force,  
(N) 

Ft 

60 432 

70 505 • 

90 649 

120 866 

TABLE 7.8 

Generated force due to voltage 
applied to the ceramic 

2Q5 
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Because all the bearing elements (annular disc, 

base and ceramic) are associated in parallel (see Fig. 7.8) 

the total displacement Wb  will be the same for points at 

radius rt. The force applied to the disc alone, 	can can 

be calculated knowing the disc receptances at these points, 

from (7.:42): 

W
b 
 

Fd  = 	
ab 	

(7.45) 
d  

In this expression ad  is the same variable as 

abb  (receptance of a point at a radius b, due to a force 

at the same radius). The notation ad  is used instead of 

abb, as explained in 7.2.4. The force Fd  varies with 

frequency, the neck coefficient (because of the influence 

of ad) and obviously with the voltage applied to the 

ceramic. Using the expression (7.45) the table 7.9 was built 

for several cases of coefficient and voltage. The coefficients 

choosen, .2, .4 and .5 are the same as considered in 

experiments referred in 7.3.1 and 7.3.2. The same criterium 

was used for the voltages. The frequencies considered were 

those of the resonance (for each coefficient) and also when 

the lift of the upper member ocurred. If the theoretical 

resonance frequencies were taken instead, the values of the 

receptance would be infinite because in the expressions of 



the receptance the determinant of the natural frequencies 

appears as a factor in the denominator (see section 7.2.3). 

As it is zero at resonance the receptance becomes infinite. 

One advantage of using the experimental values of the 

frequency is to provide a straight comparison of the 

predicted mode shapes with those obtained experimentally, 

i.e., the displacements in both cases respect the same 

frequencies. With the values of Fd  and calculating the 

receptances for several points along the disc radius 

(programme FREDIS) the curves of Figs. 7.15, 7.16 and 

7.17 are obtained for steel discs. For aluminium discs a 

completely similar procedure can be used. For this case 

the theoretical mode shapes are plotted in Figs. 7.21, 7.22 

and 7.23. 
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Coefficient, 
COEF. 

frequency, f 
(c.p.$) 

voltage, e 
(volts) 	o  

total 
recepptance,at  

(10 	m/N) 

disc 
receptance,ad 

(10 	

t 

 m/N) 

motion amplitude,W 

(10-5m) 	
b Force applied to 

the disc Fa  
(N) 

3879+  120 1.82 .88 1.57 1784 
.2 

4002* 90 35 1.03 .67 774 
120 

.89 1.029 

90 1.8 .25 138.9 
.4 6176 

39 120 ' .31 184 7 
4 90 .22 66.7 

6260+  
120 •34  3.3 

.29 87.8 

.5 8567* 90 .13 3.4 .08 23.5 

NOTES: + lifting frequency 	TABLE 7.9 - Summary of results 
* resonant frequency 	for theoretical modal shapes. 
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7.5 	ALTERNATIVE DISC BEARING DESIGNS  

7.5.1 	Ribbed Steel Disc 

One disc type also investigated is represented 

in Fig. 7.24. Basically it is a disc with a central neck 

with coefficient .2 (equivalent to a 12 x 10-3  m diameter), 

but with ribs of thickness equal to 3 x 10-3  m spaced at 909 

degrees. This disc is fixed with a central screw to a base. 

Amplitude measurements were performed 	spaced 

of 5 degrees. The maximum amplitude value was 

registered at a frequency of 8242 Hz. The voltage input 

was 70 volts. The amplitude varied in this case with the 

angular coordinate 0 from a point at middle distance between 

ribs (point M) to a point situated corresponding to a rib 

(point R). All the intermediate points and the two referred 

extreme points were located at 27.5 x 10-3m from the 

center. The amplitudes measured at all the points were very 

small but they increased from the point R to the point M. 

For this reason this model is not suitable for use in squeeze-

-film bearings, at least for this rib thickness. This 

corresponds to a lc, .metric mode of vibration caused by the 
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existence of this ribs. The frequency of resonance is 

much higher than for the disc without ribs (4r. = 4002 Hz). 

The effect obtained by use of the ribs, change in the 

frequency of resonance, can not be properly used because 

the amplitudes are very small compared with those obtained 

for the same coefficient and with a nonribbed disc. The main 

reason for this occurence is the existence in this model 

of a new interface between the ribbed disc and the base. 

Unless all the unit (disc and base) is obtained by casting 

this interface will always be present. From the results 

obtained it is possible to infere two major conclusions. 

First, the shape associated with the bearing surface presents, 

even for small differences, significant changes of the 

resonant frequency. Secondly, any asymetry of the 

geometry must be discarded as the amplitudes of vibration 

will reflect this asymetry. If the amplitudes of vibration 

are not radially symmetric, radial flow occurs and this is not 

benefitial in terms of load capacity. 

Lateral view 

 

    

    

}f  

I 

 

 

Fig. 7.24 - Ribbed steel disc 
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7.5.2 	Solid Base Prototype 

The experimental bearing configuration is 

illustred by Fig. 7.25. This general arrangement was dictated 

by the following objectifs: 

i) use of electrical power available for 

maximum rigid body vibration amplitude. 

ii) best amplification of the amplitude at 

the outer edge. 

iii) correct positionning of the ceramic 

The aims expressed by i) and ii) are easily 

understandable from the point of view of the bearing 

performance, as they respect theexcursion ratio. The 

condition iii) is determined from the necessity to 

guarantee good ceramic-base contact and prevent the 

ceramic deterioration, referred in Chapter 5. A minor 

requierement to be satisfied was the immobilisation of the 

non acessible nuts ® of the tie rods used to thighten 

the ceramic. 

To satisfy the conditions referred in i) and ii) 

two ceramics © were used acting on only one supporting 

member ® . The supporting member being a disc unit with 



Prototype thrust S.F. bearing - 
solid base. 

FIG. 7, 25 - 

all dimensions ) 
in mm 	1 
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coefficient .4. This value of coefficient was choosen 

because it gave the best results in experiments detailed 

in the previous sections. Whenever a solid base is 

referred it means the steel cylinder 0 where piezoelectric 

ceramics and disc bearing OA are fixed to.The electrical 

signal is applied to the ceramics through the wires EO 

connected to the disc bearing and to the central electrode 

0 , insulated by the rubber strip O 

Underneath the cylinder three slots were machined 

providing immobilisation of the nuts 	which are not 

accessible. 

A recess was designed on the upper base of the 

cylinder to locate the lower ceramic disc. A similar recess 

in the supporting member would provide the same function 

for the upper ceramic. It was verified in previous 

experiments that'ceramics tended to slide as the bolts were 

thighten up. Special care was requered to prevent the ceramics 

to get damaged when in contact with the bolts threads. However 

no alteration was done to the supporting member to maintain 

the same overall. 
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7.5.2.1 ANALYSIS OF THE CYLINDRICAL BLOCK 

The steel block supporting the bearing can be 

analised using simple theory. One pretends to know a first 

approximation of the resonance frequency of the block. It 

must be stressed that this is only a rough approximation 

justifiable for its simplicity. Actually,this theory only 

applies to a long thin rod vibrating axially, and where the 

ratio length to diameter is not greater than .6 - in our case 

this ratio is 1. A more accurate analysis requires the use 

of a finite element approach. However,the complexity involved 

by this method justifies this simple analysis bearing in mind 

that the results represent only, as referred, a first 

approximation. 

Considering a bar subjected to a steady axial force any 

cross section of this bar is subjected to a compressible or 

tensile stress. When this force varies with time and for 

any element defined by two planes normal to the axis of the 

bar we can establish the following governing equation: 

E 

	

2u 	f 	 2u + 	- p 

	

ax2 	A 	at2  
(7.48) 

with the nomenclature: 



w
r 	2L 

2(r - 1) 7a 

E - Young modulus 

u - longitudinal displacement 

f - external force 

A - bar cross sectional area 

x - axial coordinate 

The basic approximation involved in the 

derivation of this equation respects the non existence of 

displacements normal to the bar axis. Because the cylinder 

is fixed to the ground we also assume a clamped condition 

at this end. For the other end a free condition will be 

considered. The expression of the natural frequencies is: 

(7.49) 

The subscript r indicates the order of the mode. 

The variable L represents the length of the bar (cylinder); 

a is equal to 

density. 

Cr- ; E is the Young modulus and p is the 

For the dimensions of Fig. 7.27 one obtains: 

f = 44.767 KHz 

Even taking this frequency as an approximated 

value it is sufficiently high to guarantee that the steel 

base (cylinder) is not affected at squeeze film bearing 

working frequencies. 
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7.5.2.2 	AMPLITUDE MEASUREMENTS  

Amplitude measurements were made using, as 

before, the Fotonic Sensor (described in Chapter 4). 

The probe was positioned as for the case of the aluminium 

disc with coefficient .4 (section 7.3.1). The Table 7.11 

shows the results obtained. For case a), the disc had a 

small cone frt:strum at the outer edge, Fig. 7.28. In a 

pratical application this shape would provide some radial 

support. The frequency of maximum amplitude, 7598 Hz, is 

higher than for the previous experiments (for disc of coef. 

.4 the frequency was 6239 Hz). For the same disc, referred 

in 7.3.2, with coefficient .4, the resonant frequency with 

this arrangement was verified at 6170 Hz and this case is 

indicated in Table 7.11 as case b). In this case the 

amplitudes are smaller than in the case a). For these two 

experiments the electrode used had a thickness of 10-3  m 

and was in copper. Another experiment using an electrode 

in steel with a thickness of 5.1 x 10-3  m is considered 

in Table 7.11 as case c). 

 

In all these tests the amplitudes verified are 

smaller than with double arrangement. The possible reason 

for these lower amplitudes is that part of the force is spent 
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Mo
de

l 

re
q u

en
cy

  
(c

.p
.s

.)
 

PROBE POSITION 
A B C D E F G H 1 	0 

MOTION AMPLITUDE (x 10-4  mm) 

7583 - - 57.4 31.9 24.2 5.4 -%; 0.4 0.6 

7593 - - 140.3 63.8 35.7 7.7 -* 0.4 0.7 

7598 - - - 89.3 - - -"c - - 
a)  

7603 - - 102.2 63.8 38.3 8.9 -* 1.1 1.2 

7613 - - 53.6 51.0 17.9 4.5 -* 0.8 0.9 

7623 - - 31.9 30.6 11.5 2.8 -', 0.6 - 

6130 - - 10.2 10.2 4.1 -' 0.6 - -* 

6140 - - 14.0 12.7 5.4 1.1 0.7 - -* 

6150 - - 17.9 16.6 6.4 1.2 0.8 0.5 -* 

6160 - - 21.7 21.7 7.7 1.4 0.9 0.4 --° 
b)  6170 - - 23.0 23.0 7.9 1.5 0.8 0.4 -%; 

6180 - - 21.7 21.7 7.0 1.3 0.7 - -* 

6190 - - 20.4 18.5 6.4 1.1 0.5 - -* 

6200 - - 15.3 15.3 6.0 0.8 -%; - -* 

6155 - - 26.0 - 8.9 - - - -* 

6165 33.2 - 29.3 16.6 10.8 2.2 - - -s° 

6175 38.3 - 31.9 20.4 12.7 2.9 - - -* 

6180 38.3 - 35.7 30.6 15.3 3.1 - - -* 
c)  

6185 37.0 - 31.9 21.7 13.1 2.6 - - 	' -* 

6190 34.4 - 38.3 18.5 11.5 2.3 - - -* 

6195 31.9 - 28.0 19.1 10.8 2.2 - - -* 

6205 28.0 - 25.5 15.3 9.6 1.8 - - -* 

Distance 
from 28.0 24.5 23.0 20.0 16.0 12.0 10.0 5.0 0.0 

centre(mm)  

NOTE: Measurement values of order of equipment noise 
level. 

TABLE 7.11 	Amplitude Measurements for Prototype 
S.F. Bearing. 



on elastic deformation of the cylinder block. This seems 

to be confirmed by the results obtained with the different 

electrodes, cases b) and c). In fact the copper electrode 

provided smaller amplitudes than the steel one. The 

performance of the disc of case a) is somehow unexpected as 

the resonant frequency is higher than in cases b) or c). 

The conclusions from this experiments can be 

resumed by the following points: 

i - Although the arrangement in study should 

enable all the power to be use by one 

bearing element alone the actual displacements 

are smaller than with the double arrangement. 

The possible cause for these lower amplitudes 

is that part of the force is spent on elastic deformation 

of the cylinder block. This seems to be confirmed by the 

results obtained with the different electrodes, cases b) 

and c)*, with the copper thicker electrode providing smaller 

amplitudes than steel one. The performance of disc of 

case a) is somehow unexpected as the resonance being higher 

than b) or c) the amplitudes are also greater. 

* cases b) and c) use the supporting-member shown. 
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7.6 	DISCUSSION OF THEORY AND EXPERIMENTS FOR DISCS 

	

7.6.1 	INTRODUCTION  

In this section we will discuss the theoretical and 

experimental results for discs. This discussion will be divided 

into two major sections: 

a) The dynamic behaviour of the bearing supporting 

members (steel and aluminium discs). 

b) The performance of the squeeze film bearing when 

enclosed in the supporting members mentioned in a). 

Here, the performance of the squeeze film bearing, will 

be analysed by considering the relationship between load capacity 

and film thickness for the various neck coefficients. 

	

7.6.2 	DYNAMIC BEHAVIOUR OF THE SQUEEZE FILM BEARING SUPPORTS  

a) Resonant Frequency 

The results of dynamic experiments performed with discs 

and the corresponding theoretical results are shown overleaf in 

Tables 7.12-,) and 7.111-).For each of the two disc materials, three 

neck ratios, ra/rb, have been considered: 0.2, 0.4 and 0.5. For 

the 0.2 ratio a special design (a ribbed version detailed in se-

ction 7.5.1.) is also presented. These neck ratio values were ar-

bitrary chosen. 

To obtain the experimental values of the frequency at 

resonance (shown in column 3 of Table 7.12 a) the Fotonic Sensor 



Neck coeff. 
ratio 

ra  

rb  

Frequency at resonance 
(c.p.s.) Freq. at Lift 

(c.p.s.) 
experimental calculated 

.2 

'4 	} 
.4 

.5 

.2 
(ribbed) 

4002 

617T--0 

8567 

8975 

4300 

7500 

10600 

— 

4125 

6260 

no lift 

no lift 

Table 7.12 a) 

Comparison between the resonant frequency 

and the frequency at lift for steel discs. 

Neck coeff. 
ratio ra  

LIFT LOAD ELECTRICAL INPUT 

Recorded gap at lift. 

ho  (mm) 

W 

(kgf) 

power 

(Watts) 

voltage 

(Volts) 
rb  

.2 10.0 x 10-2  6.65 x 10-2  .190 120 

8.2 x 10
-2  

6.65 x 10
-2 

 .150 90 
'4 

22.0 x 10 
-2 

6.65 x 10-2  .190 120 

.4 18.5 x 10
-2  

13.30 x 10
-2  .190 120 

.4 Ō  17.5 x l 	
2  

15.30 x 10
-2  

.190 120 

.5 No lift *  — .190 120 

.2 No lift — .190 120 
(ribbed) 

* very vosrable 	 Table 7.12 b) 

Experimental relationship between load and lift for the 

squeeze film bearing using steel discs. 
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readings were used. The details of this evoluation are given in 

section 7.3. For comparison purposes the corresponding calculated. 

frequencies are also shown in column A. The calculation is presen 

ted in section 7.2.2.2. The resonant frequency varies with the 

neck coefficient ratio with the highest value when the ratio is 

.5. The lowest value is when it is .2. The theoretical values fol-

low the same pattern although they differ in magnitude from the 

experimental ones. 

The fact that a considerable change in the resonant 

frequency of these discs is produced by variation in the neck 

coefficient seems to be very important, as it enables a simple 

way to control this frequency. The reason why the expected (cal-

culated) values do not closely agree with the experiments is 

difficult to ascertain. It could be explained by an inexact boun 

dary condition assumed in the theory for the disc inner radios 

(rb ). 71-> 
	 u{: 

'\A clamped condition was assumed there with ar 	= 0, where 

w is the displacement. 

Unfortunately it is not possible to introduce a more 

realistic condition in the existing theory. On the other hand no 

comparison has been made before by other workers between the 

-theory used to obtain these frequencies and experimentals results. 

Therefore; it is rather difficult to state if this difference is 
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due to the theory itself or to the assumed boundary conditions. 

It should be noted that the discrepancy increases with the neck 
rv 

ratio, from 7.4% 	to 23.7% t t. 

It is not the purpose of this Chapter to repeat con-

clusions already presented but propably it was not well stressed 

that in all the experiments the disc thickness has been conside-

red as constant (e= 0,003 m), and this suggests the following co-

mments : it is obvious that changes in the resonant frequency 

are to be expected if the thickness varies from specimen to 

specimen. The amplitudes of vibration will also be different, the 

thinner the disc the bigger the amplitude, if the input power to 

the piezoelectric ceramic is the same. The effect of thickness 

on the dynamic behaviour of squeeze film bearings should also be 

analysed. However, in this work, the influence of the neck coef-

ficient was considered as more important. Actually, the neck size 

defines the working frequency of the bearing and also the allow-

able space for the bolts fixing the disc to the piezoelectric 

ceramic. 

Comparison between amplitudes of cone and discs having 

the characteristics already referred to in Chapters 6 and 7, 

respectively, indicate : 

i - Considering the'sme input power the greater ampli 

tudes occur with discs, but for cone with the same overall size 
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it has a much higher resonant frequency than a disc. In fact 

the highest resonant frequency of a disc (in this case with a 

necl'. coefficient of .5) was 8567 cps and the cone used in expe 

riments resonated at 18 Kcps. 

ii - The disc with a neck coefficient of .4 gave for 

both steel or aluminium cases the highest amplitude, for the 

same power input. This means that for a given piezoelectric ce 

ramic there is one value of coefficient ratio for which the am 

plitudes obtained are maximum. Whilst no variation of the neck 

coefficient have been carried out for conical bearings, this 

suggests that a similar effect should be expected. 

iii - Because the piezoelectric ceramics are part of 

the vibrating system their dynamic characteristics (mainly the 

stiffness) will defenitely affect the amplitude of vibration of 

the bearing member. 

7.6.3 	LOAD CAPACITY 

The load capacity is some times of great significance 

for the user of this type of bearing. For the squeeze film bea-

ring it has not been possible to exceed a mere 1/2 lb (aproxima 

tely 20 Newtons) for the size and power input considered in this 

work. The load capacity of the bearing is the total force that 

can be applied to the bearing supported member whilst maintaining 

the least film between this member and the supporting member. It 
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will be denoted by W in this work. Actully, we are dealing 

with a mean value of gap and this for several reasons. One 

is that the supporting member is vibrating, and the second 

is that the amplitudes of vibration are not the same for all 

radial points on the supporting member. The third reason is 

that the experimental measurements only read the mean gap as 

indicated by the lift of the load members. 

Whilst this load capacity, W, is what the bearing 

user will need to know, it is necessary to introduce another 

variable, the instantaneous load capacity, Winst' 

To obtain the load capacity, , from the instantaneous 

load capacity, Winst'  an integration in time must be made.As 

the instantaneous pressure, p, varies with the disc radius the 

value of Winst is obtained according to (7.45) : 

r 

Winst - fua 2 1T p r dr (7.45) 

Where p is the actual pressure value at a distance from 

the disc center, r, and ra  is the radius at the bearing (disc) 

outer edge, as shown in Fig. 7.2 . 

Defining a nondimensional instantaneous load capacity, 

W*  

W * _ 	W. 	_  W. 	
(
7.46) 

inst Atmospheric Zoad pressure TV r2 a a 

then, 



225 

r 

W iest - p r2 fa P rdr 
a a 

(7.47) 

or, 
r * _ 2 a 

Wiest - ā J
O pa rdr (7.48) 

Defining a nondimensional pressure as P= —E
— 
and 

Pa 
the nondimensional coordinate R= r 

a 

Wiest =2 f p P R dR 
	

(7.49) 

The time average of Wiest for one cicle of plate 

motion represents the nondimensional load capacity of the 

bearing, W. Using also the nondimensional variable T = wt,w 

being the frequency of vibration of the supporting member, and 

integrating for one cycle : 

27 
= ~ J 	i 

	

W* 	dT 2 o 	nst 

In terms of the actual load, W : 

W = W* Tr p r 2 a a 

The usable load capacity, Wu, being : 

Wu =W — Tr p r2 = (W* - 1) 	pa ra 

(7.50) 

(7.51) 

(7.52) 

For one of the discs used in the experiments a 

numerical calculation of Wiest was performed. The disc 

characteristics are as follows : 
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material 	  steel 

coefficient (neck ratio) 	 .4 

frequency of resonance 	 6171 cps 

frequency used for the calculation 	 6171 cps 

The Reynolds equation (3.44) and the numerical pro- 

cedure presented in 3.3.3 for its intE,,gration (Crank-Nicholson 
f 

formulation) are used. The film thickness values are taken from 

the plain curve if Fig. 7.17 (theory), the increments AX= 1/.36 

and AT = 1/31. These values are choosen in accordance with the 

suggestions presented by Michael in (5). The corresponding 

computer programme is shown in Appendix 3. 

To compare the pressure distribution with the dyna-

mic behaviour of the disc, its modal shapes and the correspon-

ding values are shown in the following pages, (Figs. 7.2i: a) to 

7.3 -i b) ) . 
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Fig. 7.26 a) disc modal shape for coeff. _ . 4 and 
f = 6171 Hz for T = 1.5 AT. 
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Fig 726 b) pressure distribution along radius corresponding 
to modal shape shown in Fig. 7.26 a) . 
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supported member 

disc 

supporting member rest position 	edge 11  

Fig. 7.27 a) disc modal shape for coeff = .4 and 
f = 6171 Hz for T= 4.5 AT. 
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1. 0 
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Fig. 7.27 b) pressure distribution along radius corresponding 

to modal shape shown in Fig. 7.27 a) . 



Fig. 7.28 a) disc modal shape for coeff = .4 and 
f = 6171 Hz , value T = 7.5 AT . 

4 

229 

1.0 

0.8 

0.6 

0.< 

0.2 

0.0 

—0.2 

- a< 

—0.6 

—ae 

—1.0 

disc edge 

P= P  
Pa  

2.0 

1.5 

1.0 

0.5 

0.0 

Fig. 7.28 b) pressure distribution along radius corresponding 
to modal shape shown in Fig. 7.28 a). 
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Fig. 7.29 a) disc modal shape for coeff =. 4 and 
f = 6171 Hz, value of T = 16 AT . 

Fig. 7.29 b) pressure distribution along radius corresponding 
to modal shape shown in Fig. 7.29 a). 
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Fig. 7.30 a) disc modal shape for coeff = .4 and 

f = 6171 Hz, value of T = 19 AT . 
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Fig. 7.30 b) pressure distribution along radius corresponding 

to modal shape shown in Fig. 7.30 a ). 
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Fig. 7. 31 a) disc modal shape for coeff = .4 and 

t = 6171 Hz, value of T = 22 AT. 
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Fig. 7.31 b) pressure distribution along radius corresponding 

to modal shape shown in Fig. 7.31 a). 
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The figures shown at the top of these pages refer to 

the modal shapes. These graphs have a vertical axix graduated 

from -1.0 to 1.0 and the variable represented in this axix is 

a nondimensional amplitude A* _ - -- where A is the actual 
0 

amplitude of vibtration and h0  is the mean gap between the 

bearing members. 

For the example analysed the value retained for h0  

is h0  = 1. x 10-3 m . The figures at the 

bottom of each page represent the nondimensional pressure 

P = —P--- versus the nondimensional radius R.= r for the same PQ 	 ra  

dynamic conditions (frequency, material, coefficient ratio). 

The film thickness, h , is obtained from h = h0  - A, with the 

A values taken from the corresponding modal shapes in Figs. 

7.24 a) to 7.29 a). Theses modal shapes are represented by the 

disc surface and show a node near the inner radius, rb. At the 

center line (C.L.) the motion has an opposite phase angle to 

those of points of the annular area, from rb  to ra . This 

means that when the neck center is moving down, for instance, 

the annular disc moves up and vice-versa. 

The pressure values can be integrated for one cycle 

according to equation 7.47 thus calculating Wt 
nst' Values 

of Wi
nst are plotted for the particular case shown in Fig. 

7.32. This curve is similar in shape to that obtained 
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by other methods (discussed in Chapter 3) but it is more 

accurate as it accounts for the nonuniform excursion. 

7.6.3.1 	THEORETICAL RESULTS 

 

The nondimensional load capacity, W*, is, then, 

obtained through expression (7.50) as it is in fact the time 

average of Winst  during one cycle of the periodic motion. A 

simple Simpson's role method can be used to obtain the value 

of W. Of course,this value of W* is related to a particular 

mean gap (clearance) between the supported ans supporting 

bearing members and the consideration of several values of 

this clearance will give corresponding values of W. As W* 

does not take account of the load produced by the ambient 

W 
atmosphere, the nondomensional variable W* _  r

2 
is preferred 

Pa a 
for the following calculations with Wu  , already defined in ex-

pression (7.52), and related to W* by 

Wu  = (W*- 1) 	Para 
	 (7.52) 

The nondimensional variable W* can be then expressed 

in terms of W* by 

W
u 

=W*-1 (7.53) 

The variable ho'  which represents the mean gap be-

tween the bearing members can be nondimensionalised dividing 

by ra  , the disc outer radius. The two variables, Wū and 
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Ho= —a-, are plotted on one graph for the three disc examples a 

studied with coefficient values equal to .2, .4 and .5 . 

The disc amplitudes used to compute w*, and therefore 

W* are those of the experimental curves of Fig 7.15 (for coeff. 

.2) ; Fig 7.16 (for coeff. .4) and Fig 7.17 (for coeff. .5) . 

In all three cases Wu increased with reduction of Ho*. 

This was predictable because a decrease of Hō , or ho  as ra  is 

a constant, gives higher values of the excursion ratio parame-

ter, e (defined in 2.2.3.1), and the load capacity increases 

with e , as referred in (6) . 

The minimum allowable value for Hō is given in each 

case by the maximum amplitude of vibration of the disc, i.e., 

the value of h0  that equals A (A, being the maximum amplitude 

of vibration), when the bearing members will be in contact, as 

in Fig 7.33. This explains why for curve a)(for disc with coeff. 

.4) it is not possible, in this case, to assume values of Hā 

under 3x/0-4.  If H* is too large, the value of ho  will be much 

greater than the amplitudes of vibration . The compression 

effect is negligible and so it is the load capacity of the bearing, 

and values of w* smaller than 2x/0-3  are not represented. The 

usable region for each of the mentioned cases is then represented 

by the corresponding curve. It is interesting to notice that 

due to its vibrational characteristics the three disc have very 
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different performances from the point of view of the load 

capacity. Obviously, it is possible to drive the piezoelectric 

ceramics with a smaller power input which will decrease the 

value of the allowable mean clearance, ho  ,ie, without 

interference between the two bearing members due to their 

contact. 

From the Fig. 7.32 the following conclusions can 

also be drawn : 

i - If the load has an imposed value, which means 

that the value of Wū is fixed, instead of ho  , it is possible 

to conclude that the disc with 0.4 neck coefficient ratio will 

give the higher lift, i.e., .e higher clearance between the 

bearing members. This is caused by the higher amplitudes of 

vibration for this particular neck coefficient which produce 

higher values of the excursion ratio, c. 

ii - Comparing now the bahaviour of the two other 

cases, discs with coefficient .5 and coefficient .2, whilst 

the first case presents slightly higher amplitudes and therefore 

higher excursion ratio values, the behaviour of the .5 case is 

better from this point of view. The only explanation for this 

fact is the higher working frequency. 



239 

iii - The experimental values of the load capacity, 

denoted by small triangles in Fig. 7.33, are lower than the 

theoretical ones for the same bearing clearance. One reason 

for this fact could be the damping effect of the air film on 

the disc amplitudes. Because the film thickness for the load 

capacity calculation is derived from the disc modal shapes, 

without the air film, and therefore the excursion ratio values 

result overestimated. This fact originates a higher load 

capacity than the actual one. 

iv - Comparison these results with those forecasted 

for non flapping, rigid discs and computed with the Pan's 

asymptotic theory (4t ) can now be made using the curves a' , b' 

and c'of Fig. 7.33. 

( ~a 
Lt was considered J a uniform amplitude of vibration ) 

along the disc radius and equal to the disc center value, 

obtained, for each case, from Figs. 7.15, 7.16 and 7.17. 

The relative position of the three curves is the 

same as with curves a, b,c, but for the sameulndimensional film 

thickness the corresponding load capacity is much lower than 

the theoretical values, or the experimental ones. 

It is possible then to conclude that the flapping 

effect produces a better performance from the point of view of 
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the load capacity of the bearing. In practical cases;_,_ also 

more realistic to use a nonuniform amplitude analysis because, 

depending on the dynamic characteristics of the member there 

will be always some degree of flapping. 
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7.6.3.2 EXPERIMENTAL RESULTS DISCUSSION  

a) Steel Discs 

The experiments to obtain the actual value of the 

load capacity of the disc bearing are similar to those of the 

conical bearing study detailed in section 6.4. The main diffe-

rence is that a thin disc is now used as the upper, supported, 

member. For disc shaped bearings the load capacity is signifi-

cantly lower than for the conical bearings. So, for the expe-

rimental arrangement used, it was only possible to impose a 

maximum of three different loads. In the case of the .5 coef-

ficient disc it was not possible to obtain the lift of the 

supported member within the available power input to the pie-

zoelectric ceramic. The disc with coefficient .2 produced the 

lift of the upper member at a frequency, (designated hereafter 

as the lifting frequency), of 4125 c.p.s., as shown in Table 

7.12. When the load increases the gap between the supporting 

and the supported member decreases. Finally, the disc with a 

neck coefficient equal to .4 produced lift at 6260 c.p.s., i. 

e., a value slightly higher than the resonant frequency of the 

'supporting disc (ft, = 6176 c.p.s.). For this specimen two 

values of power input were applied for a fixed load value, this 

load being the upper member's own weight (6.65 x 10 2kg - 1.47x 

-1  x 10Qb). With .190 watts of power input (corresponding to 
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120 volts across the piezoelectric ceramic, the lift, gap be- 

tween the bearing members almost doubled that found with .150 

watts (equivalent to 90 volts across the ceramic). The respec-

tive values of ho  were 15.24 x  10-6 m and 8.15 x 10171. These 

measurements where obtained with the Wayne Kerr capacitance 

probe described in section 6.4. All numerical values of the 

applied loads, corresponding lifts and the experimental condi- 

tions are presented in Table 7.12' page 22!„ The comparison 

between the results provided by theory presented in 7.6.3 and 

these experimental values is shown in Fig. 7.33. The theoreti-

cal results overestimate the lift but it should Lie mentioned 

that they don't refer to the same frequencies. The theoretical 

curves are obtained at the/resonant frequency of the correspon-

ding disc. So, for the coefficient .5 the frequency is 8567 

c.p.s.; for coefficient .2, the frequency is 4062 c.p.s.; and 

for the disc with coefficient .4 the frequency is 6176 c.p.s.. 

The experimental values represented in the the same Figure are 

obtained at the lifting frequency of each disc. At these fre-

quencies the amplitudes of vibration are much smaller than at 

the resonant frequency. To explain the non coincidence of the 

two frequencies, the lifting frequency and the resonant fre-

quency,it should be remembered that the resonant frequency is 

for a free moving disc. In other words the resonant frequency 
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values are obtained without the upper member and the confined 

squeeze film. These two elements could cause a shifting of the 

resonant frequency of the order that is observed, i.e., 1.9% 

for .2 coefficient and 1.3% for .4 coefficient. For the .5 

disc it was not possible, as already referred, to detect any 

situation of lift. 	i. _.. f L _ ._.. 

b) Aluminium Discs 

These same experiments were prepared for the alu-

minium discs. However no lift occured for these bearings and 

two reasons can be advanced for this : the aluminium discs are 

more prone to surface distortion during grinding than the steel 

ones, whilst the same effect occurred with steel disc with .5 

neck coeeficient; the other possible cause of poor performance 

of these discs is the deterioration of the piezoelectric ce-

ramics, some surface damage being apparent after the operations 

of dismounting and reassembly of the bearing unit. 



CHAPTER EIGHT  

SUGGESTIONS FOR FUTURE RESEARCH 

One of the greatest gaps in the investigation of 

squeeze film bearings is the simultaneous treatment of both 

theory and experiment, so that correlation of results can be 

obtained. Most of the theoretical analysis of gas behaviour 

is well treated and the contribution of COOKE (30) is very 

valuable in this respect. However, it is not possible to 

calculate the final performance of this type of bearing by 

assuming the gas to be confined in hypothetically positioned 

surfaces at each instant. The fact that the actual position 

of the supporting member surface varies at each instant causes 

the analysis of these bearings to be quite different from that 

used for externally pressurised gas bearings. The dynamic 

behaviour of the supporting surface must be known therefore. 

This makes it important also to study the vibrating piezoele-

ctric ceramic characteristics. 

Therefore the following suggestions are made as a 

continuation of this work : 
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Theoretical Work 

i) A finite element approach for the dynamic 

analysis of the conical bearing. This study 

could be performed by considering the total 

cone as subdivided into several conical 

elements and then calculating the mass and 

stiffness matrices for the total cone as 

made up of these elements. Then, it is 

possible to include in these matrices the 

mass or stiffness of the base, neck and 

piezoelectric ceramic. This analysis also 

enables the ring,which is formed at the 

cone outer edge and referred to in Chapter 

Six to be considered. 

Using this analysis it is possible to 

calculate the natural frequencies as well 

as the modal shapes. 

ii) Using data from i), ie, the modal shapes of 

the conical shell, the load capacity for the 

same bearings could be calculated using a 

numerical method based on the Reynolds 

equation. 

245 



Experimental Work 

i) One of possible improvements to the squeeze 

film bearings is to use glue to ensure contact 

between the ceramics and the electrodes. 

Therefore the amplitudes of vibration for discs 

considered in Chapter 7 can be investigated when 

employing a glue like Epoxy or an Araldite Type, 

discribed in Ref. 63. 

ii) According to the values obtained in i) if they 

are more favourable (higher amplitudes) than 

those obtained using fixing bolts, an investigation 

of the lift, frequency and load capacity can be 

performed. 

iii) Another possible ceramic arrangement is that 

shown in Fig. 8.2 with the piezoelectric 

crystal working in a shear mode. This arrangement 

is based on the recent application of this 

configuration to a new series of accelerometers 

by a well know manufacturer. 

The response curves for the old type and the new 

series of accelerometers are shown in Fig. 8.3 
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Fig. 8.2 - Transducer operating in a shear 
resonant mode IRef.63) 
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and 8.4 a). The Fig. 8.4 b) shows a section 

detailing the accelerometer parts. Three 

slices of piezoelectric material are clamped 

between a central mass and seismic masses with 

a high radial force applied by a preloading ring. 

In a squeeze film bearing the central mass would 

be replaced by a neck associated with the base 

and the seismic masses could actually be fixed 

to the supporting surface. This system requires 

a very fine degree of flatness and dimensional 

accuracy for the areas in contact, but avoids 

the use of any adhesive in order to guarantee a 

good contact. The response curves obtained for 

this accelerometer show a displacement of the 

peak of about 10 KHZ for the new type, being 

about 5 db greater than the first one. It 

seems that it would be possible with this type 

of fitting to reduce considerably the loss at 

the piezoelectric ceramic interfaces. 

iv) Using the same values of neck coefficient, ie. 

.2, .4 and .5, tests should be carried out to 

confirm the new arrangement referred to in ii) 
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and compare the results with those presented in 

this work. 

v) For the values of the coefficient used, thinner 

discs (less than .003 m thick) should be used 

in experiments, similar to those performed in 

this study to verify the effect of disc thickness 

in both the amplitude of vibration and resonant 

frequency. Although disc supporting members can 

only provide axial load capacity this shape is 

recommended for these experiments. Discs are easy 

to manufacture and as shown, are sensitive to 

slight changes in geometry or arrangement of the 

support conditions. 
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APPENDIX 1  

DESIGN OF SLAVE JOURNAL AND THRUST AIR 
BEARING  

As mentioned in Chapter 6, this bearing is used to 

load the squeeze film bearing. One of the advantages of the 

use of this bearing is to vary the applied load continuously, 

if required. As it was also intended to measure load 

capacity for disc squeeze film bearings (Chapter 7), a 

journal bearing was also coupled to the thrust bearing arrange-

ment, Fig. A.1.3. The journal bearing is used to prevent 

displacement of the disc in the horizontal plane. 

a) Journal Bearing Design  

As there is no applied load in the radial direction 

the design characteristics of this bearing were mainly 

dictated by size and manufacturing considerations. It was 

intended to have a reduced bearing size to give space to 

measuring equipment of the rig and a simple design for low 

cost. 

The available air pressure could reach 90 p.s.i. 

but the bearing was designed for a supply pressure, ps, of 

64.7 p.s.i., so that the gauge pressure was 50 p.s.i. For 

this value of ps-pa  there is design data already available. 



The journal bearing length was chosen to be L = 1 in. and 

the air jets placed in the middle plane, Fig. A.1.4, central 

admission. This gives a value of the distance from the jet 

to the edge of the bearing of 1. *= .5. 

The air jets used in these bearings can be of two 

types, recessed jets or plain jets as in Fig. A.1.1. Plain 

jets were chosen because they are easier to manufacture. 

We assumed a diametral clearance between the bearing 

and the shaft**, 2C = 2 x 10-$m 	(8 x 10-4  in.) and a 

bearing diameter, L = 25.4 x 10-3m (1 in.) . 

Another parameter used in design calculations is 

the bearing pressure factor, Kgo, defined as: 

K = pds pa 
go  

where pds  is the pressure adjacent to jet and ps  and pa  are 

considered as before. For maximum load capacity and if 

pa  =>.0213,  Whitley59  suggests that the value of Kgo  must 

be .4. Using design data from (33), for L/D = 1, 2/L = .5 

and number of jets, n = 8, the jet diameter is d = 3 x 10-3  in. 

** 

.Q. is the distance from 
edge. 

The shaft in this case 
in Fig. A.1.1. 

the jet position to 

is a small cylinder 

the bearing 

represented 
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As we used four jets only, the value of d must be corrected. 

The diameter and number of jets are related by: 

d c 1  

so, the corrected diameter is: 

de'= 2d = 6 x 10-3  in. 

The calculated volume flow for this geometry is, 

from (30) and after correction: 

vcō 6.06 x 10-5  m3/s. 

b) 	Thrust Bearing Design  

The thrust air bearing provides the force to be 

applied to the squeeze film bearing during the experiments 

referred to in Section 6.4. 

As in case a) we assume a supply pressure ps  = 

64.7 p.s.i. and a laboratory atmosphere, pa  = 14.7 p.s.i. 

In this case the clearance and the pressure force adjust to 

each other. The gas (air in this case) can be supplied 

through either a single jet or a ring of jets, Fig. A.1.3. 

Assuming one central jet and a clearance value of 10
-3 
 in., 

the maximum bearing stiffness is obtained when bearing 

pressure factor, Kg  = .6933. The bearing load capacity is 

proportional to Kg: 
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W = K (ps pa) - 	
n(b2 -a2) 

g 	2 loge  (b/a) 

The optimum jet diameter (for central jet) using 

a ratio b/a = (.5/.2)in. = 2, is d = .02". 

The calculated maximum load capacity using the 

expression is W = 16.49 lbf  

The journal-thrust bearing is shown in Fig. A.1.3. 

The bearing components are represented in Fig. A.1.4 (journal 

bearing), Fig. A.1.5 (thrust bearing), Fig. A.1.6 (bearing 

collar), Fig. A.1.7 (upper plate) and Fig. A.1.8 (lower plate). 

This design was slightly altered after test in the following 

manner: 

1) Four small holes were made in the thrust air 

bearing plate (Fig. A.1.5), spaced at 90 degrees, 

providing more escape of air from the recess when this 

bearing is operating. 

2) The cylinder represented in Fig. A.1.3 used 

only one pin to transmit the force to the squeeze film 

bearing as this seemed to be sufficient for proper 

location of Part 6. 
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3) 	An air intake to a manometer was provided in 



the thrust air bearing to give direct load readings 

after calibration. 

c) Calibration of air thrust bearing  

The air pressure existing in the thrust bearing 

recess was used for measurement of the load provided by 

this bearing. This pressure was read in an Hg manometer. 

In order to transform these pressure readings in the 

respective load values a calibration was necessary. 

This consisted of using a load cell in place of 

the supported member of the squeeze film bearing. The load 

values were then plotted against the corresponding pressure 

readings, as presented in Fig. A.1.9. 
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Ti g- A-13 The journal-thrust bearing 
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FIG. A.1.4 	Bearing case upper plate. 
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APPENDIX 2  

DESIGN OF TORQUE SETTING APPARATUS  

The experiments referred to in Chapter 5 require 

the use of a torque wrench set to several torques. This 

torque was applied to tighten each of the six bolts of the 

ceramic-metallic base arrangement. For this purpose a 

wrench torque was available, but it needed an accurate torque 

calibrating apparatus. This apparatus, represented in Fig. 

A.2.1, was made at Imperial College. Basically it consists 

of a beam of rectangular section (H), from which weights can 

be hung (I). This produces a torque that should rotate the 

beam around an axis about which the wrench (F) is also 

applied. The wrench is held stationary, and tends to oppose 

this rotation. 

The useful range of the torque wrench was defined 

by the manufacturers as being 7 to 140 Kg cm (.68 tO 13.7 Nm) 

but for our experiment the maximum value used was 3.91 Nm . 

So aŠ the total length of the beam .05 m was chosen and 

1.2 x 10-4  mm2  as cross-section. To minimise the friction, 

•ball bearings (F) were used to support the beam axle. These 

bearings were housed in a support (A), which also provided 

the fixing of the apparatus in a vice by (D). The beam 

weight itself was used to produce the resistant torque. A 
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small counterpoise (C) provided the rounding of the value 

of the fixed torque Tr  to 12 Kg cm (1.17 Nm). To immobilise the 

torque wrench there is a pin (C) adjustable by an eccentric 

(K). To guarantee that in this position the beam is in a 

horizontal position, there is a small level (J) bonded to 

the beam. The material used for the beam was steel and that 

of the support, wood. The wrench had a torque adjusting 

screw in the handle. After putting the weight(s) at the 

convenient distance(s) to produce the desired torque, the 

wrench torque is reduced using the screw until there is 

rotation at point 1. The wrench torque is then very slightly 

increased and this is considered as the required torque 

setting. 



75 
12 

FIG. A.2.1 	Torque-setting apparatus. 
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C 	 PROGRAMME PRESSURE DI STRI3UTION 
C 	 THIS PROGRAMME LES THC NEWTCN RO SC'1 METHOD 

DIMENSION H(36,13),CH (3h,1.J),U0H(36,1i),ll(36,13),P136,13) 
1 RtCC4X(36),DISPLN(3E,),T(131,CN(36) C'1h(3-,),CNE(36), 
2 3 ,S A(36),SU(36),SC(26),S0(36),COPR(36),F '.ORt3Ē)u

P`(3E.),OGMI(3E) 

EXTERNAL RAPW:W 
READ (5,2)) 	(DISPLH(I),I=1,36) 

20 FORMAT (F8.5) 
-N=35 
IN =N+1 
L=12 
IL =L+1 
DELEX =1./FLOAT(N) 
DELT=3.14159/16. 
RKAPAA =3.72 
P13=17.2 
RA=42. 5 
VISCOS =1.32E-11 
Y4=207.E3 
PK=RKAPAA/R4 
TH=2.'10.1-1*RA 
PA=1.013E-1 
H0=25.4E-4 
PARAM=vISCOS/(PA*H0** 2) 
D=YN'TH**3/(12.*0.91) 
W=SOP.T (D*PF;*'4/ (7850. *TH`10 E-9) ) 
5.;UENU=12:444RA*•2'FARAN 
WRITE(6,203?) W,SOUENU 

2002 FCRMAT(73X,3H W=,F8.2,20X,8H SOUENU=,F9.3) 
DO 601 I=1,IN 
RLCCEX(I)=DISrLM(I) /2.54 
PO 602 J=2,IL 
T (.J) =(FLCAT (J-2)+0.5) 4 DELT 
H(I,J)= 1.-RLOCEX(I)'SIN(T(J)) 

602 CONTINUE 
T(1)=0. 

H(T_,1)=1.-R'_OCEX(I) "SIN(T(1)) 
601 CCNTINUE 

DO 621 J=1,IL 
DO 604 I=2.N 
D H (I, J) = 61 t I+1, J) -H (I -1, J)) / ( 2. *DELEX) 
ODF(I,J)=(H(I+1,J)-2.*H(I,J)+H(I-1,J))/(CELEX**2) 

604 CONTINUE 
OH(IN,J)=DHSN,J) 
DH(1 1 J)=0, 
Din(IN,J)=DDH(N,J) 	• 

• DDH(1,J)=2.* (H(2,J)-H(i,J)) /DELEX**2 
E21 	CCNTINUE 

DO 631 I=1,TN 
U(I,1)=H(I,1) 
P(I,1)=U(I,1)/H(I,1) 

631 CONTINUE 
J=1 
CALL 	RAPNEW (H,DH,DDH,U,J,N,L,SOUENU) 
DO 606 J=2,L 

CALL 	RAPNEW (H,DH,D0H,U,J,N,L,SOUENU) 
606 	CONTINUE 

DO 654 J=1,IL 
WRITE (6,2005) J 

2005 FORMAT (21X 40H THE NEXT VALUES ARE FIR THE TIME STEP =,I2) 
WRITE (6,2096) 

200E FCRMAT (?5X,10H FCINT REF,8X,10H LOG E)'CUR,15X,8H LOC GAP,18X, 
117H PRESSURE DISTRIE) 
00 605 I=1 IN 
P(I,J)=U(I,J)/H(I J)' 
WRITE (6,2307) 	I,RLOCEX(I),H(I.J), P(I,J) 

2007 FORMAT (2.iX,I2,13X,F9.6,16X,F10.7,18X,F10.7) 
695 CONTINUE 
654 CONTINUE 

STOP 

Ey~COROUTINE RAPNEW (H, CH, DDH,U,J ,H,L,SCJENU) 
DINENSICN H(36,13),CH(36,13) 0DH(36 13),L(36 13) T(13) CA(36), 

1C'dW (3E) ,c:'1= (36 ) ,CNF1(36), C'1FC (36) , D0;:F1 (35) 00WF)L (36) 0G I (36) , 
2 DGF1(36) DGM1(3E),SA (36),SE(36),SC(3•i),SD(3E),CORR(36),ERROR(36) 
3 ,A(36),E(36),00WF1(36) 

C 	CNN IS W 
C 	CNE IS OUI 
C 	CNF1 IS F1 
C CNF' IS F2 
C 	CTW1 IS 0,RIVATIV OF F1 TO W 
C 	DON2 IS DERIVATIVE CF F2 TO W 
C 	CDFFI IS D.:RIVATIVF OF Fl TO OUI 
C 	DGI IS CE9IVATIVE OF GT TO •PSI IN I POINT 
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G 	DFGP1 IS CERIVATĪVE CF 
GI 
 TO PSI 

IN 
 I+1 

POINT 

C 	CN IS FI 
IL=L+1 
I'1=N+i 
DELT=3.14139/18. 
rIELE X =1./FLOAT(N) 
CH(IN)=U(I'l,J) 
C'1(1)=U(1 J) 
DO 582 I=)L, N 
CN(I)=U(I, J) 

582 CONTINUE 

C 	FOP I=1 IS NECESSARY TO SUBSTITUTE THE VALUE IN POINT I-1 (Y THE 
C 	I+1 VALU_ FOR THE VARIABLES U,CN 
250 DO 581 I=1 9 

fNW(I)=(CN(I)+U(I,J))/2. 
IF (I. E0. 1) 	CNE (I)=C'. 
IF (I.EC.1) 	GC TC 80 
C'7°_' (I)=(C:1(I+1)-CN(I-1)+U(I+1,J)-U(I-1 J))/(4.*DELEX) 

80 	Ct1 F1(I)=(-UNN(I)* `2'ODH(I,J)+N(I,J)*CNE(I)*'2-CNH(I)'CNE(I) 
10H(I,JI) /ā7'J=,NU 
C'lF?(I)=H(I3J)*CNH(I)/SDUENU 
D_1NF1(I)=C2."CNW(I) 4O0H(I,J)+CNE(I) *DA(I,J)) /(-SQUENU) 
D!)HF2 (I) =il (I, J) /SQUENU 
Dil`.F1(I)=(2,*H(I.,J1'CN2(I)-CNN(I)*DH(I,J))/SQUENU 
IF(I.E0.1.) 0CI(I1=1.-DELT*00WF1(I)/2.-0ELT*(-2.*CN(I)+2.*CN(I+1)+ 

12.*U(I+1, J) -2.'U(I,J))/(4.*DELEX**2)+7ELT*CNF2(I)/OELEX''2 
IF(T.E0.1) 	GO TO 81 
0GI(I)=1.-D=LT*CCWF1(I)/2.-DELT*(CN(I+1)-2.*CN(I)+CN(I-1)+ 

1 U(I+1,J)-2."U(I,J)+U(I-1,J))/(4.*OELZX•*2)+DELT*CNF2(I)/OELEX 
2*42 

IF (I.EC.:11 	DGP1(I)=0. 
IF (I.E0.N1 GO TO 89 

P1 . DG='.(I)=-0ELT*ODEF1(I)/(4.*)FLEX)DELT'CNF2(I)/(2.*DELEX**2) 
IF(I.EO.1) 	DGM1(I)=0. 	- 
IF (I.EG.1) 	GO TC 83 

89 	DG"".1(I)=DiLT'0DEF1(I)/(4.*DEL=X)-DELT*CNF2(I)/(2.*DELEX*'2) 
83 	SA(I)=0GP1(I) 

Sn.(I)=-OGI(I) 
SC(I)=0..;H1(I) 

IF (I.EC.1) SD(I)=(-CN(I)+U(I,J)+DELT*CNF1(I)+2.*CN(I+1)-2.* 
1CN(I)+2.*U(I+1 J)-2.*U(I,J))+DELT*CNF2(I)/(2.*OELEX**2) 
IF (I.E0.1) 	CO TO 82 
SD (I) = (-C.!l(I) +U  (I, J) +DELT*CNF1 (I) +CN (I+1) =2.*CN(I) +CN(1-i)+ 1 U(I+1,J)-2;*U(I,J)+U(I-1,J))*DELT*CNF2(I)/(2.*DELEX**2) 

82 	A(1)=0, 
E(1)=0. 
A(T+1)=SA(T)/(S'(I)-SO(I)*.(D) 
B(I+1)=CSC(I)*E(I)-SO(I))/(S3(I)-S:.(I)*A(I)) 

581 CONTINUE 
C 
C 

DO 701 K=1,9 
I=N+1-K 

COFR(N+1)-.) 
CORR(I)=CORR(I+1)*A(I+1)+D(I+1) 

CI(I) =CN (J:) +CORR (I) 
701 CONTINUE 

C 
DO 702 I=1_ "1 

= ERRO° (I) 43S(CCRR(I)*CN(I))• 
FRRMAX=ERRO°(1) 
IF (ERROP(I).GE.ERRNAX) 	ERRHAX=ERRCR(I) 
U(I J+1)=C!1(I) 

702 CONTINUE 
U(IN,J+1)=H(IN,J+1) 	• 

IF (CRRMAX.GT. 10. E-4) 	GO TO 250 
P= TURN 

ENŌ 
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C 	..._ .. :..:..,..:.~~~_.. 	 FRECO)  
:lETH'li. I•; USED FCa INTE(7RATIOM" *ses• 

C 	Al, A2; A3, n'I, A5, AE, APE KNOWN VALU;. S FOA TNE VARIA 3L .S 

t:"• K " `U'I ITS I!) ' 1 ':S SYSTF r1 
C 	~lL IS INC?:M'iNT IN 2 CCOROI'1ATE 
C 	L KPf'BFSE'lT,S TH: RUN-+`r OF INTEGRATION INTERJALS 
C .ALPHA I'.; HALF APEX ANGLE C 	 f 	a 	 a 	i 	 x 	4 	 4 
C""+"CALCULATI )•I , FO^* ALLMIl)I11'i CONE AS US :0 I'N EXPERIMENTS 

i)1»I,SiCR 
 

4L(15 6' 	.:t15,C,),.;A(15,6) 
rlrh7NSTOP 	!'27r ( 1 ?;~,:4?i:1'(i5) 

TM.~NSION 	JI15),h11"),S(17),RV(15),ROti5),ZN(15) 
i'IN=!ISICP 	JOI:°(i5) 17?P.7"(15),f1 Y A =P(15) 

AI.PLA=31,L1.8
11,?1,K.^.,L', 12,`I2,K3,L3, 1ā,U3,Y,;,,L4,M4,N4 

C 	W 1ET CLFI'I:S THE PROGRAMME R_iJUIPED CJIPUT 	• 
C 	IF NIET=1 'RL( FRECUEENCIES ARE FOUND 

P 17 T=1 
F?•=_NUL=1!1)11. 
I1=1 
PFR70=13060.+FLOPT(I1)*FEMUL 

C 	F IS ='RU'1=NCY IN RAO PER SECOND 
L=14 
7IF=2. * 3.l.:1'.59*KFBr G' 
W TTF. (61. 1 ) 	WF 	• 

150C FORMAT t5•;X,26H N-XT. RLSULTS REFER TO NF=,F8.1) 
PIK=O. 
'1I":,.QU=1 
A? =1. 

A3=3. 
A4=0, 
.c=1. 

V.3=CCS( AL'P ) /SIN(ALPHA) 

`4=3. 
=n. F

,'=COS(AL' I4)/SIR(ALPHA) 
C1-1. 
C2=0. 

c.=[1. 
CL=_1. 

Cie=^')S (AL''.1'1) /SIN( ALPHA) 
A=1u.''E-3 

c=38.=-3 
95 	, L(1,1)=A1 

AL i1,2)=A2 
AL(i.3)=AS 
AL(1.,4)=A4 
'L(1,5)=A5 
AL (1,6) =Ai 
1.c(1,1)=i 1 

(1,2) _~' 
2::(1,3)=1)3 

!:-:(115)=H5 
..: (1,6) =RG 
LA(1,1)=C± 
GA(1,2)=C! 
GA (1 1 3)=C3 
1:4(114)=C4 
L,A(1,5)=G5 
(,A (1,6)=C6 

96 	AA1=A1 
AA2=A2 
i-A3=A3 
AAh=A4 
AA5-AG 
AA6=A6 

- 10 If- 
'?7=("-A) /FLOAT(L) 
Z=A 

CALL FIICAL ( Z,A1,A2,A3,4!+,A5,A6,F1,F2,F3,F44,F5,F6,WF) 
K1 =^Z'- F1 
L1 =l1••F2 
11=:7Z'F3 

I! 1 = 3L "F4 
P1=1;7.aF5 
01=1J?+•F6 



C 

C 

1=Z+.1;''9Z 
r1.-A1+.54-F:1 

~,i -!l3+• 5+1_ 
f 4 =A4+.5'tf! 
A5=A5+, S4PJ. 

CALL FOCAL (Z,A1,A2,A3,A4,A5,A6,F1,F2,F3,F'+,F5,F6,11F) 
'<2-r Z'F 1 
L2-1)7_'F2 
:1?=fZ' F 3 
PP=DL`F4 
P2-^Z+F5 
C'=f2'F6 
• 4.=%+1+.5 :,`0 

A,!-A2+. 5'"L:. 
A;=43+.5..412 
A4=A4+.5- 47 

j 	A5+.5:'n'' 
A5= A6+. 5'02 
CALL FOCAL (Z;A1,A2:A3,A41 A5,A6,F1,F2,F3,F4,F5,F5,WF) 
K 3=C?`F1 
L.t=r_7=F2 
tl.'.=77."F3 
fl3=2Z+F4 
23=f17_' F5 
0' =0Z"F6 

=Z+.S'.0z 
A,=A1+K3 
A2=A2.L3 

A3= ti 3+43 
A4=A4+N3 

A!;-A,+P3 
Ao=A6+r,3 
(ALL FUGAL (Z,A1,,.29A7,A4,.5,.\6,F1,F2,F3,F.,F5,F6,HF) 
'0=0Z" Fl 
L4=7Z'•F2 

,':+=D7_'F3 
144- C?'F4 
P4=QZ*F5 
14=02_•F6 
1!:11=AA1+(r:1+2.*W+K?)+KA)/6. 
,..1'=.+A2+(1-_4-' 	(L•2+L')+L4)/6. 
A,13=AA3+(- 1142.' (I'Z+t+')+`14) /6r 
A44=AA4+ ('J_ -?.- (N2+N3)+114)/6. 
AA5=AA5+;P++2."(P2+P3) +f'4) /b . 

;.45=..4F+ (.)_+2.- (C2+C3) +04) /66. 
Al=AAi 
A:?=AA2 
4 3=AA3 

(4 =Al.4 
/V =A45 
A'=AA6 
t•t = I a 1 
IF (NTNE1U.c0.2) 	GO TO 91 

IF ('NIU.CU_ .C.3) 	GO TO 92 
AL (M.1)=A,1. 
AL(".,2) =)A' 
AL(M,3) =,1..3 
fL(",4) =1,14 
AL (t', 51 =;1A5 
AL(M,6) =AA5 
C-1 TO 1)) 
Tdc.CE CALC J! ATICnS RESPECT ONLY ALPHA;.NEXT IS BETAS CALCULATION 

91 2E(M,1) =AA'. 
IL(M,2) =AA' 
17::(t1,3)= 
BE ('1,4) =AA4 
rk(`".5) =AA5 
3E (M,G) =A46 
GO TO 109 
N_KT I: GA14 CALCULATION 

92 GA(M,1) =AA± 
GA (t'.2) =AA' 
GA(P73) =AA3 
L,A.(t1,4) _;;..4 
GA(4.5) =AAC  
C-(4.6) =AA5 

100 C)NTYt1l)r: 

IF (rNI'l_0'J.sc.3) 	GO TO 24 
IF (AINECU.c.C.4) 	GO TO 25 
Al=31 
42=F.2 
43=03 
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A4=:•4 
A5 ,:;35 

Gr) TD 96 
24 	A1-C1 

A? C2 
A3=C3 

A4::C4 

A ,~::06 
.,O TO 9r, 

25 	TA::AL(15, 3,'GA(15,4)'IL(15,5) 
T3 ?-.: (15,.L'•,A(i%14)''A1.(15,5) 
TC-GA(15, ,).•AL(1C.a)z:'. (1:.,,5) 
TJ=AL(15,r;• 1;: 1?,•'.)jbA(15 ,3) 
T-: 6L(75,3)..-E7 (1,,5)',“ (15,4) 
TF=1L(15,4, "::(15,3)*G4(15,ri) 
J,:T!= TA +T:+Tr 
D:;T'=TD +T_+TF 

I):T=OET1-7)r-T2 
W?ITE (6,..)711)) . 	CIT1 t f1ET2 

670C FCR:%.AT (4:X,F75.5, 1GX•h25.5) 
RiIATR 	=4P/(2.*3.14159) 

WRIT_ (6,65 0c) 	R'ATR ,n:T 
6600 	FO':I4T 	(40X 14I1 F11". fIAT FRLO=,F9 4 3,5X,5H D:.T=,F20,5) .) IF 	(IM.2 .1) 	fT in:T=OET 

IF 	(PRT.GT.O,.A1'.D1T,LT.O,) 	FPL'1111=FREMUL/1 G. 
IF 	(PR=:1:T.GT.O.. A!•If.OL:T.(.T.O.) 	Ii1=I11-2 
IF ("PEf1ET.LT.C..AN().3=T.GT.0.) 	 I'1=Ir1-2 
IF (P,<=O!'T.LT.)..AND.DT.GT.O.) 	 FRQMUt=FREMUL/10. 
r-K_n7.T=i1+ T 
C;(:^~T=Af33 i'1ET) 
I1=Ih+1 
IF(40:7,(L.. !) 	GO TO 28 
IF(UDET._1.1) 	GO TC .30 
IF (CHEOET.L_.10.E-3) 	STCP C 	,. 	s 	y 	., 	4 	Jr. 	.% 	a 	+ 	4 

C 	= 	t• a 	y 	A 	4 	4 	4 	r 
C 	A 	r . 	 4 	4 	4 	4 	4 	4 	4 
C 
C 

FORCES ANO :1311ENITS AT THE II(UJER HUNGARY 
28 ?  

R'1 := 0 . 

(15,5)-3E(15 3)'AL(15,5) 
RI:)2P=AL (1 , 1)+3'. (15,5)' ,IL (112, 4) /AL (15,5) 
P1' :RO?F-_,_(15 3)`AL(1S 4) 
R ):=ALt15,;d `3'1:(15,5) -.AL(15,5)''BE (15,4) 
ROIIPRO2P 
P:)4=R02P-3.. ! 15, 4) "AL (15, 3) 
R.11.: AL (15, 4i* IF (15, 5) -GA (15; 3) 
f: l'_=AL (15, ;' •GA (i , a) .̀ C- (15 , 4) PI) :-.,.4 t 15, 7! "37. (15, 4) `,3.1.:15 , 5) 
R94=AL (15,;51"3.7 (15, 5) "GA (15,4) 

E5)'• E(15, 3) 
Re15=..A(15,41`1E:1:,3:'AL(1> 5) 
?I)r:a- -'?D1- Z►12+^D3+''C4+''.O5-?O5 
P0'1= (RC1'1'.^-t2024:R+Jt-•;2G3aRM3+R04'RNO) /RDCA 

11.:AL(15, .iP /AL (15, ) 

P'1 7 -(hL(1 ,7)G1 (15)- ( (15,3) 4.ĀL(15,5))/AL(15,5) 
P.H ='. R'13-R i1•R'il?+P,'.te.R0A) / (-RH3) 
f:'i4= (RNi•-., : (1.5, 5)`RfA-GA (15, 5) 4RG A)/AL (15, 5) 
r=1.--3   

4 =2.'1,14159"A.4SIN(,'!LI HA)`h/COS(:1LFhA) 
F.)°• =( RNA-•r;OS (ALPHA) +RrA+GI.I(ALFHA))"E. DGAR 
PR.IT :: 	(6 ?017) 

2107 F')P'10T (21~,': 3HRMA,2:X, 3HPf1A,12X,3Hg0A,12X,SHFOPCE) IF tPDi.E.).1.) . 	T'sµ=Rf1;.t 
IF tPIII.•i(.J,1.) 	WRITi.(6,2103) 	P.Mt,RUA,ROA,FCRCE 
IF (PI11. ).+..) 	ItRIT=(6 ?;O3) 	 ?SA.W14, :20A,FCRCE 

2 11 18 F')P~'AT (23.
. 
,E1+.7,5Y,E1't, )!,''X,E14.7,7;<,E14.7 ) 

l,t'T T : (r, , 7 '11) 
2200 '3 F )R9AT (1)i+, +111/ Z) ,6X,41(W(Z),?X,4HS( 1) ,1:IX,511101(Z) fiX,5HFO(Z) , 

1RX ',HRN(L) 5x 7HV1 ;ET'G•).5X,7HwREP(2),5X,9111).:VREP(ZL)) 
1)1 1d1 IC=1,t5 
V(I:;)=4t(t.;,5) 'RNr+E:(IC,O)'Z1A+GA(L,6)"g0A 
Wrn =41-(ī•„1)`RNA+E_(TC,1)Y1211A+GA(IC,1)'?1)A 

(`;I=AL(f:;•') •.RNA +_::(i..?)^it t AL G•AIIC 2) •R')A 
R 1(IC)=ALiTJ:,3)' r A +.1EiM;,3)'-R'1A+t.At K ,3)"WUA 
Rf)(T..)=F=1.(' 1 ,4) K4^, +ii -i ∎I ,,4) -• ,2rJO+;;,.(I•„4)'nO1t 
R•1( I'.) =AL (1",,5) •RNA+ 3,: (IL, 3)'•RMA+GA (I.;,5)+ROA 

(IC)= 1 ( IC) /FCRCE 
WREPtIC)=,1 :IC)/FORCE 

27 2 

+ + As 

4 A 4 
4 4 4 



V°1T '(TC) .V!I')` 0S (;(?ti,.)+N(I';){SI'JCilPi1A) 
v _J '~ (IC) =''(II..P(IC)/Fr,Rr... 
n or..-"(.IC),-7L.{.ALnr.(A.,s(V_;R D(ICl))/ALOF;(10.) 

(F:,.,,v3) v( IC), n( IC),`~tIC),^cri(I:),R')(1C),<<i(IC),JREi(IC), 
iN,.; • :" ! IC) , 77'/a::P (IC) 

?O1C FJF!'•'4T(2X, i-12.4) 
l01 C) TIN(JE 

IF (=:r'.r!EO.GT.GOOC.) 	GO TO 28 

1'.1=6.E-3 
P.?=?S.5E-3 
HCO?i =20.E-1 
'"1!;SS=272;:. 
C•)')C1.=3.14159^HCONr4(R1+R2+H)`N 
Cit'AS3_CO/01.-R1ASS 
C 3N: . r) 	R.:Cc:FIANCES USING APPA?ENT 'MSS 
C')KP_Pr.-2.41 f1LOG(WF+•• 2''C+)M,:SS)/ALOu(1).) 
WRIT: (6,2'12) 	CONRE•P 

^12 FU°"AT ( 411X,7HCONREP=- F7.2) 
•+x; NEXT CALCU'.ATICA S Ami mi DINNED INN_R E!GE CONDITION 

PIt-=FIN+1. 
WITTE 16.23. 5) 

015 F')?NAT (///',50X,19}-f'f•PI:JNED CCNO.1""v 1//) 
Al=1. 
A?=0. 

A4=0. 
A'i=1. 
A6 =COS (ALP;iI) /SIb (ALPHA) 
31=01. 
;32=1. 

94=0.  
.35=4. 

C1=1. 
C2=9. 
C3= . 

C4=1. . 
C5=0. 
Cb=''. 

STOP 
cND 	• 

SLFROUTI')= FUCAL (Z,111,42,AZ,A4,150C6,Fi,F2,F3,F4,F5 9F604F) 
THE SUeRt'J' T.NC FUCAL CALCULAT~S THL VALUF S OF THS FUNCTICNS 
ALPHA=3. i•t159/4. 

4=1).5E-3 
• =31.E-3 

P 1t.SS=772^. 

RCST=a:1 \SS'WF"24H 
C=_*H'.;/' 12. ` (1. -PCIS''`2)) 
•;T=COS (JLP'1;) /SINLALPhA) 
AA=(1.-FOI "2)'D/Z;'2 
. i+=-(1.-POIS)/Z 
CC= H,. CT'"?/Z-RCCNST 
07=F::IS'CT/? 

FF=E= 

,il-= ='l1/2-?SONST 
P.4=30 

R'(= t1.-FOI3•`2)/ (E*H) 
F1=A2 
F 2- i -POI.;/?) *A2+A3/D 

F3=-AA'A2+.39vA3+A4 
F4=CC'41-A4!Z-004A5 "A6 
FS=-FF''A? -;ts4A5+NH+A6 

F6=RM*A1+6;WF ,.5+ (-POIS/Z) 4A6 
RTURN 
END 
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..:,;.r *444.► :: ,  44*,,4 FF0;RAMi1. FK'LOJS 31 4sA. I 	 4+40 

TITS PRCGgA,AhE EVALLATES NATURAL FR=OU=FCI=S CF ANNULAR CISCS 
r ^rITTIONAL c;:_OGU7N Y .V.iLOAT [ON (?Y M:,XINU4 TOTAL REGEPTANCE 

S1 :,ALLY T S FR'-:CIS :+IJ,+. A•1:it1ICNAL  
CALCULATION CF CET_R1I;)ANT FOR THE NATLSAL FREOUENCIES IS HAOE !:Y 
A LI_iriARY .;'J`.'.ROUTINE ThAT IS NOT CCNFATICLE WITH —ANF—  CCHPILER 

SLICING AND CLAt'FFC INER 30UNCARY CCNDIIIONS 'ARE CCHSICEREO 
F'? .c OUT=i; ` OU(1DAPY CCNUITI')'( 

4" VARIABLE NA(,ELIST*" * . 
h Ic  FLAT: THICKNFSS 
Fcr I° FC. :CN CC_FICI_NT 
'::1C IS I(i:1' n RACIUS (.CM) 
Ā?^" IS CUT_R RACIUE(Cy) 
F.•1rSS IS S?SCIFIC VASS(7.33 t,/CH3 FCR STEEL AND 2.72G/CM3 FOR 
LU'lJUIUZ 

h Ic FR  CU__NCY VALL:(RAC/S) 
C7=F IS RATIO INNER/.0UTER RA3IUS 
YHO9 IS YOUNG MCDUL(1S(2C7.C1) OYNES/C12 FOR STEEL AND 62.9E10 
DYNES/CM".) 
F'7',F=F4, fiN0 FRE5 AP PESJV:īNT FREC)ENCIES FROM EXPEPIH=NTS FOR 
CI:r` ',ITE' 	:,, 4 ANC 	= \=,K CCcFFICI= TT 
Rn IS t R,: J'J: cY PA?ut'AT R 
CYSTI IS ;RYSTAL STIFFN:SS(DYN=__ /CH) 

T)MrS IS :1;iS3 OF NIS_+N_CK-- INLUDIHG I(SIC: OF ANNULUS—(G) 
'ACTE THAT MATERIAL FCR T`1^ JASE CAN =E STEEL CR ALUHINIL 

CCKTRO'_S ?EC:-LPTANO_S ')UT°UT 
It'ERs1 SLI2INi;+CLr.t'F::C CCN')ITICNS CON;ICEREC—O1TPUT ECTH °TERM. 
IrEP=2 SLI:TNG CON TOTAL ::EOEPTANCE—'ILTPUT TOTAL RECEPTENCE FOR 
-'OI':; AT I:1NER BCUNDARY 

FT=C :cTANC= CAL :ULATICN FCF 	FOINT ALONG THE RADIUS- 
CJTPLT TOT..'_ R_CEFTAN)E -. O SIt,FLF 1?I;C F_GEPTANC`_ 
NC' N C'".TI?" c CH=CKI;:C 3RANJH 
;;C7 N=1 PRODUCES CFGcING OF B. FUNCTIC`(S ANU DETERMINANT 
FICC N-7? 	NO  Ci-=CK FCR  
IN TS FRIOUENt.Y FANG:-  i3OU:4T=R 
IFI'• + IS '(J,'F.:F CF FRECUENCY INTERVALS 
FSTCF IS FINAL VALUE FOR FREO(JENCY 
T)t 4ENSICN 	R(4,4), A(49:0 
EXT =.7(NAL ID 
EX .I iAL INUE 
INTEGER DIK 

CO =.2 

`'=55 NUCN=2 
I,',==2 
I )IS=0 
IAL=C 

F?=2=40C2. 
Fi?.4=G171. 

C -'YSTI=7.73E:1P  
I. IS VATEFIAL S(.LECTCR FOR TH.. BASE ANC ((_CK—IAL=O CHOOSES STEEL 
IF(IAL._7.11 	GO TC 33 

C 'ST7.EL °.AS=(ANO NECK)* 
T  )„.,.y- 	

7.7 
I )'.,n5 293.7 
I = . T r, L. E O. O) 	Cl TC 

C 	''o_iJt'INIU1 '?ASE(ANC NE::-K)”` 
T,)'I .1 . 	 .3 
'7)'1.5`:J=s9 , 

c 
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7!1 	POG=.;; 

C 
C 	ID1c TS 	T!':RIAL 3_L:CTr 	J TFE DISC- IDIS=1 CHCCSES .TEEL 

1_1■11i5.F.1,n) 	10 53 
'ILUNINI.".)N  

YlCfl:C3A.9.:17 
IF(T1.1.1) 	GO TC 51 

C 	'jTv._L DATA'' 
74E; 	PlAS=7.e'..; 

Ylr.=237.=t9 
51 

FS1A 7:T=3.i-; 
FSTCF=5.E3 
IFIT=1A 
FS1 1.:F=lFSTOP-FSTAFT)/IFINT 

C 
C 
C 

IFfints.zlirn 
ircis.E.g.1) 

IF (TAL, raC. 

25 	1::),;"AT c50/.3 ".91-1 
FO",T Six, .gH 

27 	17!)q''AT 51X s  ?CH 
29 	F )q"AT (50X ?OH 

lAr..1=11-3:40 
IF (P,7 P.N-2.7,) 
IF 

(CCEF.E;;„10 
IF 	 EF.,:), 
IP C IREP.E0.7.) 

FST8=T:=FSTART-FSTEP 
F -; - ^.z.FS:TAP,T 
FFSTEP 
r4= 	02.'3 1416 
IF V.CER.,"...2) 	1AS:TOtdtS2 

TO 1A3=TCIYAS4 
IF tCFF.E.,'1.5) 	T 31,;S=T0hAS5 
A IL=1.2. .sR.LASS*■14-POC4'2) 
A r7:,C=Y■'.C(.3"H°42 

(A:PJ/110ENC) 
S;.:R T (.73,1) 

• 6K':'%'flD 

(5,1):9) 	FR70,CO1F,<APAA 
FJ"T(20,J H THE NEXT vALuas ARE FO; FREQUE=IE12.4,15F 0,19 FOR 

RKAPAA=,F12.3) 

X=';.<APAA 

OT=. 001 
CALL R7SJ(, I N1r2J1 0I IER) 
cALL 
CALL 'JESK :X,NtcK,IEU 

It- (X I L)) 
E

• 

JC.1=6.1 

X-='-:KAPAE 
CALL i.ESJ(X0N,:J,CII IER) 
CALL 3FSY■X,N1,3Y,IER) 
LLL tSX,N,1K,I.;) 
CALL IO(X3M0) 

E(r.E=r314 
OIC 73=PIO 
N=1 

X=DKAPAA 
(- ALL r.L.S.W:IN,!?J,CIIIEP) 
c'ALL 	j72Y(X ) N,-Y 4 IER) 
GALL LFSKi..:INI9K9IFAt) 
Linf:I0A 
CALL INU: 

EI1A=PI 

r"(1A=2K 

V:RITE(61?5) 
hPITEl6,26) 
WRIT:(6 1 27) 

hRIT 	.1EC,23) 
DIY MAT:.RIAL=STEEL) 
CIS6 4,STERIAL;ALO.) 
2o15i NATFTZIAL=SPEEL) 
.1ASE lATERIAL:=ALW1 8) 

.770 TO 539 
FR".::9=12 
FR=T-FRE4 
FRi.1=FR35 
GO TO 5'19 
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P(

• 1

1,2)=r:Y 1 3 
P( 11,.)=;3113 
D Y1,4)=—?1:19 

2C:E FO 	.T (5.3X09H OETERV(S-F) V111.1:=9F15.7) 
6C TO 80) 

CET:;7, =- Y 
!:,C, TO JÇ 

IFi:IrzS(OET).LE.1.E.-5) 	GO TC SO O 

N::7 ficiPIY; RiSPCI 	12CTANCI CALCULATICN 
G4 A.:, jr);1+:3,1z.,J111 
634=-:IC4+.i.")'EI1A 
Gi2izv3Y0A+?9'BY1A 
l.:!:1 =2.gC))-RC•EK1A 

N9= 1  
2(1,1)=EY13 
P(1,(:)=-CiI19 
• ( 1, 	'(.L,. 
P.(a- 11.)=UYIR 

(2,.7.)=-e.<14 
P(7.',1)=612A 
P(7.,?)=-G:;,1 

Y=

• r

i-WICIA,NO) 
r'LLt;.y 
15.(1,1)=OJ13 

P(1,::)=12K1J 
P(7,1)=.J1A 
T;C:,2)=F:TIA 
P(213)c-3K_A 
R(7,1)=GLIA 

Y=C=1(if(3I;17NO) 

F;(1,1)=LJL, 
P(Iti2)=BY13 
• fl=EK3 
Pt2,1)=BJIA 
R(?, 13)Y 

o:;.1)=-GI3A. 
Y=L- T(PICI,i/N(J) 
CELG=Y 
o(',1)=2J13 
P(i,2)=Y1- 
P.1,3)=-3.119 

R(2,2)=BY1A 
R(2.,';)=I1A 
P(3,1)=U4A 
o(,2)=G12A 
P■3,3)=-:;3A 
¥ -:C21(t9IM;NO) 
CIELC=Y 
OYCOHt 
n1=1 2.4 (1.- cOC**2) 

XD:LNCM=C".RK"3'2.43.141G'OETER*ERAO 
IF(E:SiXOZNOM).LE.i.E-5) 	WOTE(6,2321) 

2021 Fr;:'..:.T(50X,'Firl OFT=FMrsaitT ':XT TO 2.1C) 
IF(TRE.P.E)..0 	r:O 11 i01 
X'IL'4 =-CELA--- 9J9n+CTLP4. 1Y:12-91103+0:LE'3KOO 

GU TJ d9.3 
PLt:HAP=XNU1/X0'.NCM 
ALck4.7.7-.0Fn3TI-4"2'TCIAS41./AL141AE 
ALT.CT=1./ALPHP 

tt 
C3N/=ALCu.... 	) 
P iC =2C._rS(l:SIRt.)]))/'1N4 
W 3T 	 P,ALTOT:111!•Ce 

2C22 F)c MAT(lCX39H ALF'FAE=,E11,E.25X171- 	 IILICTP=,E12.4 
T<H9r1=IF12.6) 

IFITPEF.711).7) 	GC Ti'. 300 

277 

V-3 



C 
C 	'•~'•h N .FCz 0ISPLAC_h:NT :..4L.UL 1ICN 
Pnn w 	(612 "~) 
2C25 F'i<<'!tT(Z0;{,EH PCINT,5X) CH COORD,SX,7H RECEFT,5x,9P TCRECEPT) 

CI=1.E-3 
X-:(=K!.PAA 
01 550 I=:.,71 
X=x+(RKAPAA-RKAFAr)/?1. 
N=9  
O•;LL 2.SJ,c,!v,3J,OI,IER) 
CALL E .SY .):,N,OY,I= F) 
CLL "'SK(/   N K, IEF) 
CALL IOIX,f:iX  
01'=EJ 

•C=. K 

X'Jt1M=-0FLA"9J0+CELE" JY0-Oa0" 2I0+ OELD'EKO 
ALF'3AR=XN:J'l,XD•NCN' 
ALFHR=CRY7ITT-ti's24TCAAS+1./ALPHAR 
AL TCTR=1 ./.ALHR 
WU TE(F,23.3) 	I,X,aLPHA ,ALTCTR 

2028 F) NAT(27X,I3,5X,F9,4,3X,J14-•ī,3X,c14.5) 
55J CONTINUE 

i) TO 810 
e-9 	I I= It'+1 
890 IF(IN.LE.IFINT) 	GO TO 300 
ei0 	IF (GCEF. E ;, .5) 	CC TO 444 

IF (CC:F.1;)..4) 	'GC TO 333 
IF(CCEF.Et)..2) 	CO1F=.4 
G') TO 555 

273 (2.)=F=.5 
G•) TO 555 

444 STOP 

SU?RGUTIN: I0 (X,RIO) 
RI'' -A,-S (,() 
IF (Rn -3,75) 	1,1,2 

1 	Z .= X-Xs7.111 11E-2 
E'I? _((((: h.531?_-3*2+3.6J761 -2)•Z+_.E57732E-1)"Z+1.2CE749^0) 

!- %+3. U89942EL) -Z+3. 51562317)+ Z+1. 
n:TURN 

2 	Z=7.75/FI2 
RI0=EX,a(NI))/SORT (%,IC)'(((t((((3.92377E-3`Z-1.647633E-2)42 
1 +2.E3t =37:-2)"2-2.(5770' -2)'2+5.1E231E-3)•Z-1.575E5E-2)*Z 

.253i9E-:)'Z+1.3285921-2) -̀ Z+3.989,23E-1) 
'~ETUPN 

E )5°.CUTIN_ INUE (X,°N, 2I,RI) 
IF(RN) 	10,10,1 

1 	F:J=RN+RN 
CI =X/FN 
It-(AOS(X)-5.E-4) 	6,6,2 

2 	J =1. 
AI =0. 
r1=n. 
0 1=1. 
FI=FN 

3 	FI=FI+2. 
t J =FI/A2S(`() 
A=4N+AI+AU 
t -AN+E;I+EJ 
A']=AI 
9)=F.I 
AI=A 
:I=C 
01=0I 
CI=A/0 
IF . (AE3S 	0I-G0)/CI) -1.E-6) 	4,4,3 
IF (X) 5,6.5 

c 	CI=-OI 
F 	~•=TFIX(FN) 
7 	CI=X/IFN+X°CI) 

RI =0I 
F A =FN-2. 

IF (K) 8,3,7 
P 	F :=ZI 

FI =FFI+RI 
I=FI 

1 	r•.E1URN 

2x78 
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APPENDIX 6  

DETERMINANT VALUES FOR DISC RECEPTANCE 
CALCULATION  

(a) 	Force excitation at a free edge: 

G12(krb) -G5(krb) -G13(krb  

AA  = Y1(kra) Ii(kra ) -Ki(kra) 

G12(kra) -G5(kra) -G13(kra) 

G4(krb) -G5(krb) -G13(krb  

8B  J1(kra) I1(kra) -K1(kra ) 

G4(kra ) -G5(kra) -G13(kr) 

G4(krb) G12(krb) -G13(krd 

8C J1(kra) Y1(kra) -K1(kra) 

G4(kra) G12(kra) -G13(kr) 

G4(krb) G12(krb) -G5(krt? 

8 
D J1(kra) -I1(kra ) Ii(kra) 

G4(kra) G12(kra) -G5(kr) 

(b) 	Force excitation at a sliding edge: 

Yl  (krb ) -I1(krb) Kl  (krb  ) 

8A  Y1(kra  ) I 1  (kra  ) -K1(kra) 

G12(kr
a
)   -G5  (kra  ) -G13(kri 

280 



OB 

J1(krb) 

J1(kra ) 

G4(kra ) 

-I1(krb) 

I1(kra ) 

-G5(kra) 

K1(krb) 

-K1(krb) 

-G13(kra) 

J1(krb) Yl(krb) K1(krb) 

Ac J1(kr~) Y1(kra) -K1(kra ) 

G4(kra ) G12(kra ) -G13(kra) 

J1(krb) Yl(krb) -I1(krb) 

AD J1(kra ) Y1(kra ) I1(kra) 

G4(kra ) G12(kra ) -G5 (kra ) 

281 

where: 

G4(kri) = Jo(kri) + krl J1 (kri) 

G5(kri) Io(kri) + krl I1 (kri) 
1 

G12(kri) = Yo(kri) + kr l Y1 (kri) 

G13(kri) = Ko(kri) krl K1 (kri) 
1 
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