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ABSTRACT

Squeeze film bearings operate on high frequency
vibration of one of the bearing surfaces. The time-averaged
pressurisation effect is mainly due to the compressibility
of the gas film and this degree of pressurisation depends on
the amplitude and frequency of oscillation of the moving
surface. If this supporting surface is sufficiently flexible,
the amplitude of vibration is not uniform. An investigation
on the effect of this non-uniformity on the performance of
the squeeze film is presented. The characteristics of the
supporting member are demonstrated to be critical as they
dictate the frequency of operatibn at low input power.

Cases considered respect discs and conical shapes. For

discs a particular parameter,'the ratio between the inner
and the outer edges, is analysed. The amplitudes of vibration
are experimentally measured using an opfical technique. The
resonant frequencies and the frequencies where the lift
occurred are compared. It is shown that a close relation-
ship exists between both frequencies. Theoretical procedures
to obtain the value of the resonant frequency for the case of
discs and cone bearing surfaces are considered. The results
obtained are compared with those obtained experimentally.

The methods used for the solution oflthe Reynolds equation

for the case og' non-uniform vibrations are also discussed.
) .
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CHAPTER 1

SQUEEZE FILM EFFECT

1.1 INTRODUCTION

-

Conventional gas 1ubricated'bearings fall into two

main classes:

- Aerostatic bearings, which require a feed of

pressurised gas for their operation, and

- Aerodynamic bearings, self acting, which originate
their own intermnal pressure build up by means of the fluid

motion.

Recently, a third class was introduced, the

squeeze film bearings, which are the subject of this thesis.

The working principle of the three types of bearings

mentioned are represented in Fig. 1.1 and Fig. 1.2,

Fig. 1.1 shows the case of two flat plates with a
lubricating film between the two, and the velocity gradients
across the fluid flowing between the two plates. The case c)
represents the self-induced pressure generation due to the
converging surfaces as in self acting bearings. The
externally pressurised bearings and the squeeze film bearings

have a greater similarity, which is emphasised in Fig. 1.2.



In an externally pressurised bearing the air 1is
supplied to the bearing surfaces through either a single

control jet or a ring of jets between the bearing surfaces.

The application of the external load perpendicular
to the surface reduces the clearance, increasing the aero-
dynamic resistance of the gap relative to that of the jet.
When equilibrium is established the clearance adjusts itself

and the total pressure force is equal to the applied load.

Externally pressurised bearings offer the
possibility of starting under load and work at lower or
zero speed. Self acting bearings do not require any pressure
source, exhaust sink or filtering system, but they are only
able to support a small load-per unit of area as a function
of the speed and are very prone to instability. Need for
close tolerances is the other major disadvantage of this

type of gas bearing.

These two types of gas bearing and the squeeze
film bearing differ fundamentally on the origin of the
fluid flow. 1In all cases the pressurisation effect is
obtained by viscous retardation of flow. In a self acting
bearing, adherence to the sliding surface and a varying gap
geometry cause the pressure variation. In the externally

pressurised bearing it is the highly pressurised air



supply that produces a gas pumping action. In the case of
the squceze film bearing it is the periodical variation of

the gap volume containing the fluid that forces a successive

sucking in and out of the gas.

1.2 REVIEW OF PREVIOUS WORK AND APPLICATIONS

Squeeze film bearings cannot be considered as
well established, even though some work on the subject dates
from the last fifteen years. It is the aim of this section
to provide a resume of the work of previous researchers.
This survey will be as complete as possible for the author.
It was thought, however, to cut out some details and refer
to them, where relevant, in the subsequent chapters, as

variables and parameters are defined.

The first reference to gas squeeze films is due
to Tipei in 1954 (1)*. Later, Professor Reiner in 1956 made
a non-intentional contribution on the subject through an
experiment presented at an Applied Mechanics Conference in
Brussels in 1956 (2). His aim was to show the non-Newtonian
* properties of air, using two discs, one static and the other
spinning at high speed. The suppose& non-Newtonian effect

was later demonstrated by Taylor and Saffman (3) to be due

References are given on page 28



to the existing misalignment and the relative normal motion
between the discs. They also concluded that this could

lead to a time-averaged pressure higher than the ambient.

The paper that first 5pecif3ca11y dealt with the
squeeze film effect was published by Langlois (4). He
derived the equation governing the pressure distribution in
a parallel flat squeeze film thrust bearing under isothermal
conditions using a first order perturbation technique. A
finite difference method was developed by Michael (5)
for application to the time-dependant Reynolds equation.
This important procedure will be reviewed in detail in
Chapter 3. Theoretical results obtained with this method
were compared with experimental values by Salbu (6). This
work is extremely important as it seems to be the first
relating the conduction of a series of conclusive experiments
with thrust and journal squeeze film Léarings. The thrust
bearings were essentially composed of two parallel coaxial,
flat discs, one of which was held stationary while the other
moved sinusoidally in a direction mormal to the surfaces.
For journal bearings, combined with thrust bearings,
no conclusions were repérted. These-experiments were
conducted using voice coils as motion generators. Simult-

aneously, a team conducted by Pan and inbluding Chang,



' Malanoski and Orcutt (7, 8, 9, 10) was working for Mechanical
Technology Incorporated in a project on squeeze film bearings
for gyroscopes. The three first papers referred to a very |
particular model of squeeze film bearings and were quite
significant for the analysis of the characteristics of
different supporting member-driving unit arrangements. In
the other reference, an asymptotic approach was proposed for
the calculation of pressure distribution and load capacity
for flat disc bearings. This procedu?e was fully developed
by Pan (11, 12). This theory was then applied in (13) by
Pan, Broussard and others, for a cylindrical (journal)

squeeze-film bearing.

This application was restricted to small eccentricity
and uniform or parabolic variation of excursionratio., Excursion

being defined as the ratio between the vibration amplitude of

motion and the mean gap between bearing surfaces.

Most of the work published since then made use of
the asymptotic theory, which is valid for large squeeze
numbers, usually found in practice. This is the case of
(14) by Pan and others for a rotating spherical squeeze film
bearing. It was shown that squeeze film and self-acting
effects are superimposable. Beck énd Strodman (15), also

used the asymptotic theory for the study of the stability



of infinite length squeeze film journal bearings. An
extension of the asymptotic theory to the dynamic performance
of these bearings when the external disturbance can be
considered small compared with the squeeze motion was proposed
by Elrod (16). Using theory from Diprima (17) for‘the
establishment of the boundary conditions, Pan and Chiang (18)
applied this dymamic study to the spherical squeeze film
hybrid bearing. More work on spherical shapes is due to

Beck and Strodtman (19), who consideréd a radial excursion
operation instead of an axial excursion. They reported an

increase in load capacity of about 50%.

In the squeeze film analysis, it is generally
accepted that the film behéVes isothermally and Pan (20)
provided a confirmation for its validity, at least for high
sqﬁeeze frequencies., Furthermore, Pan and Chiang (21)
analysed the origination of bearing tbfques, and their
influence on gyroscope gimbal bearings, where error torque
is critical. This is also discussed by Strodtman (22).
The effect of the ratio of the length to diameter of journal
bearings was studied by Beck and Strodman (23). Another
analysis of Pan (24) using the same perturbation analysis
extended the asymptotic theory to include edge effects.

The influence of the supported mass motion was considered
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by Pan and Chiang (25) and again in another paper by Chiang
and others (26). Earlier, Beck et al tackled this problem

but without much success (27). Another important contribution
was that of Constantinescuv(ZS), about the influence of
inertia forces on squeeze films. In another paper Strodtman
(29) proposed an analytical solution for large values of
eccentricity using a small parameter procedure. More recently,
the tendency of research on squeeze film bearings has been
conducted for the study of the influence of the incorpor-
ation of grooves. A very complete theoretical analysis

has been provided by Cooke (30). This is an interesting

work because, apart from a good physical interpretation of

the fluid behaviour, there is a complete dynamical analysis.
Huxley (31), working on the application of squeeze film
bearings to navigational aids, suggested that the supporting
member vibration modes could be a significant parameter on

the performance of these bearings, Figs. 3 and 4. These

are, to our knowledge, the latest research stages on this

subject.

1.3 CONCLUSIONS

The two major applications of squeeze film bearings
until now have been the support of gyroscope gimbals and

slider bearings for the computer industry.
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Thus, most of the work on this subject is due
mainly to two teams of researchers, each one with an
interest in either thrust or journal bearings. It is poésible_
to see from the work mentioned in the'previous section that
the general approach to the problem is established, and the
latest papers now detail the influence of the various para-
meters involved. Though most of this work is theoretical,

there is no general consistent experimental verification of

the results provided.

At this point it seems that the two main fields
of improvement are the study of effective grooving and the
use of the flexibility of the moving surface. This last

aspect is the object of the subsequent chapters.
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CHAPTER 2

RESEARCH APPROACH AND
FUNDAMENTAL ASSUMPTIONS

2.1 INTRODUCTION

In the previous chapter the contribution of the
various authors was reviewed in historical order. We will
now consider the principle of the squeeze film bearing.

This approach would simplify the definition of the

parameters.

2.2 PRINCIPLE OF THE SQUEEZE FILM BEARING

The model we consider as representative of a
squeeze film bearing is shown in Fig. 2.1 and Fig. 2.2. The
dotted lines mean an ideal boundary. The supported member
and the electric power supply are both excluded. Never-
theless they are still important. The supported member
imposes the load on the bearing and its geometric shape
and position dictate the type of bearing shape that must
be used: thrﬁst or journal, conical or spherical shape,
eccentricity, etc. The electrical supply restricts the
power available and the working frequéncy range. The two
are related through the bearing performance. This is the
main objective of the present study and thus we will only

consider the elements within the referred boundary.
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FIG. 2.2 Squeeze film bearing components.

3.

The basic elements are three:-
The electromechanical transducer,

The supporting member that includes the

bearing shape and any existing attachments to the

electromechanical transducer,

The fluid.

The following sections will detail the parameters derived

from these elements.
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2.2.1 The Electromechanical Transducer

The squeeze film bearing pressure effect relies
on the high frequency oscillation of the supporting member.
In order to obtain this motion some kgnd of electromechanical
device 1s necessary. A magnetic device was used in early
experiments by Salbu6 for electromechanical comparison.
Magnetostatic materials have also been suggested, but it

was soon realised that piezoelectric materials were most

suitable for this purpose. Their main advantages are:

small weight and size

- small power consumption

- good temperature stability

- availability in several sizes and shapes

- low internal power losses

Another extremely important -advantage of these
materials is their ability to be oscillated at high frequencies.
The only major inconvenience of piezoelectric ceramics is
their mechanical instability. During the operation of
inducing the piezoelectric properties on the material,
called 'poling', internal stresses are set up. During the
life time of the piezoelectric ceramic there is a gradual
relief of these internal stresses. This causes small

changes of the ceramic shape and partial loss of some of the

properties.
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FIG. 2.4

Cylinder of piezoelectric material at rest in a),
subjected to an external force in b) and c¢), and
to voltage in d), e) and f).

However, ceramic materials are now wéll established as
electromechanical transducers in squeeze film bearings. The
operation of poling consists of the application of a voltage
to the ceramic. This causes the mass of crystallites
(electric dipoles) that constitute the piezoelectric material
to become orientated iﬁ the direction of the applied voltage,

Fig. 2.3(a) and (b). This electric field is applied at a

-

temperature just below the Curie point . After cooling the

als
"

Curie point is the temperature at which ferromagnetic
materials change to paramagnetic.
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ceramic the dipoles cannot return to their original positions,
the material is permanently piezoelectric and can convert
mechanical energy into electric energy, and inversely.

Fig. 2.4 illustrates the effect of the application of an
external force to a cylinder of piezoelectric material. 1In

‘a rest condition: (a) there is no voltage between the
}electrodes; if the applied force is compressive, (b) the
generated voltage is of the same polarity as the poling ome;
when the force is tensile, (c) the poiarity is reversed too.
Shortening and lengthening of the crystal will occur if a

voltage is applied between the electrodes (d), (e) and (f).

The two major parameters associated with the
ceramics are the type of ceramic (composition) and its shape.
There are natural piezoelectric materials like quartz,
Rochelle salt and tourmaline. However, they have not been
used in squeeze film applications as fﬁey are more expensive
and difficult to cut to the appropriate shape. Materials
that are currently in use are compositions of lead
zirconite-barium titanate, commercially produced by the
Clevite Company, under the series PZT. More recently, other
varieties were made available from Mullard in their brand
PXE, and also from Philips. Although the properties vary

noticeably with the type of the material, there is no



b)

FIG. 2.5 Spherical a) and conical b) squeeze film
geometries. .

reference to any comparisons of the performance of these

different materials.

The usual shapes for the piezoelectric ceramics
are the simple disc for thrust bearings and the cylinder
for the journal bearing;, Fig. 2.6. Cylindrical shapes as
used in journal bearings require ver§ accurate tolerances
and surface finish, and are therefore sensitive. In these
examples the ceramics act directly as the supporting member.

This means that the film thickness is directly dictated by

17
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the vibrational modes of the ceramic. Reference to piezo-

electric material characteristics will be included in

Chapter 5.
2,2,2 The Supporting Member
2,2.1 Disc Bearings:

The mechanical expansion produced by the ceramic
must usually be applied to a metallic shell acting as a
moving member, Fig. 2.2. An exception already referred to
is that of the journal bearings because of the difficulty
of matching the dynmamic behaviour of the ceramic and the

metallic shell.

Discs have been initially used as supporting
members by Salbu6 with two different sizes, 1 in. and 1.75
in. diameters. Apart from reference 6f a higher load
capacity for the larger diameter (7.5 and 15 1b. respectively),

no other investigation was made on shape or dimension effects.

2.2.2,2  Spherical Bearings:

Discs are the simplest shaﬁé but can only carry
axial load. For a combined axial and radial load carrying

capacity, conical or spherical shapes are required. Spherical
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Piezoelectric ceramic tube

thrust disc

LOAD

s.f. supporting disc

FIG. 2.6 Combined journal and thrust squeeze film
bearing with axial @) and radial, 'hoop',
(h), motion.

bearings have the possibility of prqviding support in any
direction but are the most expensive to make. Pan¥§
investigated theoretically thé performance of squeeze film
bearings assuming an arbitrary mode of oscillation entirely
in the axial direction and harmonic in time. The bearing

geometry is represented in Fig. 2.6. The normalised film

gap in these circumstances is:
H(@g,8,T) = 14-(Ec03T-¥nz)cos¢ +ﬂrsin¢cosﬁ (2.1)

with @ - azimuthal angle,

0 - median angle,

nr- dimensionless radial displacement ratio,



M- dimensionless axial displacement ratio,

T =t - dimensionless time.

The asymptotic solution is used together with the
perturbation method, and expressions for the pressure
distribution are obtained. In his conclusions, Pan says
that load capacity and axial stiffness are independent of
radial displacement. However, no experimental confirmation
was provided. Huxley31 performed some work on spherical
bearings for gyro support (see Fig. 1.1). In this case
the amplitudes of vibration were determined experimentally
using an optical device. He found that for the particular

spherical shell used, driven by a piezoelectric ceramic,

20

there was a first resonance at 16.5 KHz, with the modal shape

as represented in Fig. 1.2. It seemed that radial and
tangential motion added up to mainlf an axial displacement,
but the amplitude of vibration was not uniform and greatly
increased at the boundary. The load capacity at 4 Watts
input power was 1.25 1lb. for a hemispherical bearing of 2
inches diameter. Other theoretical works, Refs. (18) and
(19), further extended the use of the asymptotic theory on
spherical squeeze film bearings, but no attempt was made

to relate an actual mode with the theories established.
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2,2,2.3 Conical Bearings:

Conical shapes, Fig. 2.5, have also been studied.
They'provide axial and radial capacity and are easier to

produce than the spherical ones.

Pan7 and Chiang8 did some experiments on amplitudes
of vibration. - They also tried to establish some simple
analysis to predict the amplitude of motion. Unfortunately
difficulty was encountered pgbﬁatching these calculations
with the previous experiments. More detailed analysis of
these results will be considered in Chapter 6, dealing with
conical squeeze film bearings. Huxley31 also performed
measurement of amplitudes of vibration of this type of
geometry. From his results he concluded that the effect of
the flexibility of the shell could not be ignored and that
non-uniform excursion was likely to occur in most practical

cases.

2.2.2.4 Journal Bearings:

The journal bearings have been more extensively
analysed. Its geometry; assuming uniform amplitudes of
vibration, is represented in Fig. 2.7. The first experiments

were performed by Salbu6. He considered also a simple

approach, using Boyle's Law, to obtain the mean positive
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film force. No details were obtainable on the materials

or dimensions of the test specimen. More specific details
were provided by Pan and otherslS. They analysed the
journal bearing schematically represepted in Fig. 2.8(a)
using a 'floating transducer', providing two squeeze films.
The clearance between the outer surface of the hollow shaft
and the inner diameter of the transducer was 275 in. The
radial clearance between the outer steel tube and the
piezoelectric ceramic was 300 in, Other significant
dimensions are given in Fig. Z.Q(b). This figure also
shows the experimentally obtained mode shape for the trans-
ducer., Apart from a hoop mode resonance it was noticed that
due to the Poisson effect, there was also induced
longitudinal motion. As the longitudinal stresses at the
free ends of the transducer, Fig. 2.@,.must be zero, this
was‘the reason given for the non-uniform radial motion of
the ceramic. This shape was theoretically approximated by
a parabolic curve (Fig. 2.8(b)) and the load capacity
predicted by the asymptotic theory compared with
experimental results. The discrepancies between the values
obtained in the two cases were of the order of 20%. The
explanation for this discrepancy was-based on unfavourable

tolerances and the difference betwezn the experimental and

assumed squeeze motion. One of the relevant facts shown by
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these experiments is that, as opposed to the other cases,
the journal bearing arrangement produces much smaller
amplitudes at the boundaries than at the centre section-of
the bearing. Another analysis of joﬁrnal squeeze film
bearings is reported by Strodmanzg, who has taken into
account the non-uniform excursions. This is a pure theor-
etical work and the non-uniform excursions were considered
in terms of a shape factor A_ = a/b. The six arbitrary
shapes studied are represented in Fig. 2.10. a and b are
geometric parameters, z is the longitudinal coordinate and
21 G the half length of the piezoelectric driver. He assumed
that the radial motions of the piezoelectric cylinder can

be expressed by the following cosine function:

h, =a + b cos & =%~ (2.2a)
1 2 2 -

or, introducing the shape factor,

- .2y -a,s(
h1 a(1+Acos2 ZLC) a S(z,z

The amplitude of motion is then separated into a reference

LC) (2.2b)

amplitude, a, and a shape function, S. The load capacity
is obtained through the use of a small parameter approxim-
ation. Unfortunately the results obtained were not
compared with experimental ones, but only with others
obtained numerically. The major criticism of that amalysis

is that it requires practical confirmation and that mode
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shapes are not properly related to actual ceramic behav-

iour.

Up to this stage no other shapes have been

investigated. No particular research has been conducted on

bearing materials either.

2,2.3 The Fluid

The lubricant fluid'existsxbetween the two
bearing surfaces. It is influenced by the clearance and
load of the supported member, and the motion of the supp-

ortine member that undergoes the vibrational motion.

- We shall assume nhow that the usual conditions

encountered in lubrication theory are satisfied, i.e.

the flow is laminar,

- tﬁe inertia effects are negligible,

- the fluid has Newtonian behaviour,

- the fluid can be considered as a perfect gas,

- no pressure change across the film.

With these assumptions we can use the Reynolds equation to
characterise the fluid behaviour. For a compressible fluid

this equation is:

8 ,,3_ Op. _ 0 o)
B o) = su{zaphwg;;(ph)} (2.3)



The first r.h.s. term is known as the squeeze
term. In most operational cases this term is small and its
effect can be neglected. However, for high speed or high
eccentricities the pressure variation caused by this term

is significant. Using polar coordinates this equation can

be rewritten as follows:

27

196 ,.3_.0P 9 ,.3_0P .
Fox W RR D) +5 = (P SE) =
R
2

2LWR 6HUR -

a h2 oT a h2‘ 00 *

P (o) P (o)
_ ~ 0o(PH) o(PH)
=0 ST + A 3 (2.4b)

where Ro is a characteristic bearing dimension and ho is the

bearing clearance.

The first dimensionless parameter is the squeeze
pumber, 0, and the second the beariﬂg number, /\. 1In the
general case both of the bearing surfaces in two directions,
normal to the surface and parallel to it, contribute to the

film characteristics, and P = £(R, 9, T,0,/\, H).

For parallel surfaces, P = f(R, T, O, H) (2.5)
and the equation assumes a simpler form:
3 .
H° o oP\ _ ~0(PH)
® 38 PR 3R) =057 (2.6)

We have now two independent variables only: P and

H. Assuming that one of the surfaces is held stationmary
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while the other is oscillated sinusoidally about a mean

clearance, the f£ilm thickness is:
h = ho - AcosWt (2.7)

Normalising with respectlto ho, the film thickness

is now:
H=1 -€coswlt =1-€cos T (2.8)

The variable €, the excursion ratio, is a measure of the
maximum relative volume change. The squeeze film character-
istics depend uniquely upon the operating conditions,

defined by the dimensionless parameters O and E.

At low squeeze numbers, when the frequency is low
or there is a large mean clearance, the air is forced out
when the clearance decreases and sugked in when it increases,
As the forces due to viscosity are small and since those are

the forces opposing the flow, there will be a corresponding

radial flow,

- y8u 4., _ -
T = lez let(l €cosWT) =

HWE cos(WT -T0/2) (2.9)

Under these conditions the pressure and the force
generated are proportional to the squeeze velocity rather
than the displacement. The phase angle between the minimum

gap value, H(T), and the maximum instantaneous force, W(T),
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Y —> /2 as G—3 0. This means that at small squeeze
numbers the film behaves in a damping mode. If the excursion
is increased, or the frequency is high, the viscous foréeé
will increase and compressibility wi{l occur, particularly
when the clearance is minimum. The flow resistance will be
so high as to introduce compressibility effects. The gas
will be alternately compressed and expanded. The radial

flow is restricted, and as the squéeze number increases, the

flow will only occur at the nmarrow edge region near the

boundaries.

The air now acts as a non-linear spring and the

phase angle tends to zero.

In the next subsection the influence of the two

main parameters, 0 and €, will be analysed.

2.2.3.1 Excursion Ratio:

The excursion ratio, € = ﬁL, is partially imposed
o
by the initial clearance between the two bearing surfaces.

The only way it can be varied is through the amplitude of

the squeeze motion.

The large excursions are also limited by the

condensation effect. For an isothermal compression the
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condensation is ruled by the Gibbs~Dalton's 1aw32.

Defining the compression ratio,.rE

.
[—- = max
Puin (2.10)

5 Pvy . s

and = E;—zgzzj = relative humidity (2.11)
1

where: P and p_._are respectively the maximum and

max min .

minimum values of the pressure curve in a cycle,
Pvy is the pfessure corresponding to volume Vs
pyl(sat) is the pressure at conditions of
saturation for vélume vy

Condensation will occur if:

oM =21 (2.12)

Y

When this happens there is a reduction of the effective mean
clearance. This causes difficulty in restarting the bearing,

as was experienced by Salbu6.

The excursion ratio has a definite influence on
the predicted mean squeeze film force (Wh). This is shown
in Fig. 2.11. There is an increase of the force with the
increase in £ (the curves were obtained through a numerical
procedure). This justifies the search for large vibration
amplitudes. Because these large amplitudes require large
power inputs, it seems logical to try to obtain large

values of excursion using the bearing material flexibility.
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Beck23, anaiysing the effect of the bearing length
on the load supported by a journal squeeze film, Fig. 2.12,
considered the effect of the boundary excursion. He uséd
a small parameter analysis to calculate the load support
of infinitely long and infinitely sh&rt journal bearings,
Fig. 2.12. The expressions of the dimensionless lift per

unit length, W', obtained, are:

i) Infinitely long bearing:
Weo ~ - e2¢ (2.13)
2 1 2 :
ii) Infinitely short bearing:
rt > o é 2 |
W 7T €] &, | (2.14)

The variable El is the uniform excursion and €2
the dimensionless eccentricity. From expressions (2.13)
and (2.14) one can see that the load supporting capacity -
of the infinitely short bearing is 2:5:times that of anm

infinitely long bearing.

To explain this fact Beck imagined a hypothetical
bearing with the following characteristics: at the
boundary and for an infinitesimal area, 0. into the

interior of the bearing the excursion is € in the

1’

interior itself the excursion is constant, Ec. For large

squeeze numbers he calculated the following expression
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for the load capacity:

v - 1L 3¢
W Ez (Ec +

2
2 2 1

D, ) (2.15)
where Dj is a variable assuming the value zero when the
bearing length —> o. Comparing expressions (2.13) and
(2.15), Beck concluded that the boundary excursion had an
increasing effect on the lift., He also suggested that an

improvement on load capacity could be achieved by generation

of maximum excursion at the boundaries of the bearing.

2,2.3.2 Squeeze Number:

The other main parameter governing the fluid
behaviour is the squeeze number,d’. This dimensionless
parameter represents the influence of the fluid viscosity,
squeeze motion frequency, ambient pressure and a geometric
factor. This geometric factor is the ratio between a
typical dimension of the bearing, RO; énd the mean gap
between bearing surfaces, ho' The squeeze number can be
interpreted as the ratio between the pressure drop required
to cause the gas to flow out against the viscous forces and
the pressure rise due to compression. The influence of U on
the generated force is shown in Fig. 2.11, already referred
to. There is an exponential increase of the force with O

up to 0 = 103. At this value the force is independent of O.



This relationship is generally accepted by all the authors,
The fact that for large values of O the force is constant
stands as the basis of one of the theories interpreting

the squeeze film effect, the 'asymptotic theory'.

2.2.3.3 The Effect of the Boundaries (Grooving):

34

The incorporation in the bearing surface of grooves

(narrow and deep chamnels), where the fluid is at the
ambient pressure, is one of the latest developments in
squeeze film research. These grooves are commonly used in
other types of bearings, namely self-acting gas bearings
employed for gyroscopes. This subject was theoretically
considered by Cooke30. He based his work on the fact,
already discussed, than an improvement in the load capacity
is obtainable by the edge effect. The analysis, for grooved
and ungrooved journal bearings, of the bariation of load
capacity with the ratio length/diameter is shown in Fig.
2.13. The axial flow in the case of journal bearings is
closely related to this variation of load capacity. The

~ conclusions of Cooke on this subject can be stated thus:

The axial flow is small and proportional to
1./D for short bearings and in this case has a linear

distribution.
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FIG. 2.14 Axial penetration of the mass flow rate for
' various values of L/D (Ref. 30).
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FIG. 2.13 Influence of ratio length/diameter on bearing
force for grooved and ungrooved journal bearing,
case of small excursion and eccentricity ratios
(Ref. 30).

When the value of L/D increases there is no
longer linearity between the flow rate per unit of
width and the axial coordinate as in Fig. 2.14. This
means that the pressure gradient is greatest near the

ambient boundary and decreases with the axial coordinate,

Fig. 2.15.
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It is a phenomenon similar to that of a thrust
plate, where most of the radial flow occurs near the
boundary. The circumferential flow is also affected (in'
journal bearings). For small raties of L/D the circumfer-
ential flow is small and has the same value throughout the
bearing at any radial position. When tﬁe ratio L/D increases
(L/D >1) there is greater cifcumferential flow near the
boundaries. For very short journal bearings the bressure
is constant and can be expressed in a dimensionless form as

a function of the excursion ratio El and the eccentricity,

EZ:

- 5
= 2€
P l+4

Ll (V]

52
+ 5 El €_2 cos® | (2.16)
For a very long bearing:

= 2¢2 2
P =1+ Z El + El €, cos®. (2.17)

where 6 is the circumferential bearing coerdinate as

represented in Fig. 2.7,

The axial pressure gradient at the ambient
boundary is:

3 2
& -7 8

L
527 20 E2 cos® tanh 5 (2.18)
and as the mass flow rate is proportional to the pressure
gradient it is also proportional to tanll% for any radial

position. This suggested to Cooke that axial or



circumferential grooves should be placed where the
excursion ratio is high., Therefore he proposed in (30) the
use of grooves in the middle plane of journal bearings,
where maximum excursion occurs. He also refers to the
application of a vent hole to an hemispherical bearing. In
his opinion the larger excursion would exist at the polar
region and so a polar vent should be located there.
Experimentally it was found, as shown in Fig. 1.2, that
this does not occur, and the 1argest‘excursions are at the

edge. So grooving should be considered near this edge

instead.

2.3 CONCLUSIONS

The squeeze film bearing is basically a very

simple system. This is onme of its main advantages.

-,

We referred briefly to the major parameters
governing its performance. The fluid behaviour can be
interpreted in terms of well known lubrication theory.
However, the driving element and the bearing surface

characteristics have not been extensively studied

Piezoelectric ceramics can provide only small

amplitudes of vibration. In journal bearings they have
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been used as the béaring surface, beqause it is difficult

to achieve a good contact between the ceramic cylinder and
the cylindrical metallic surface. In this case, besideé

the small vibration amplitudes, we have the disadvantages
already referred to in Section 2.2.1. Thrust bearings (discs,
cones or spheres) give more possibilities of improvement
because it is possible to have the ceramic driving the
metallic bearing surface, as in Fig. 2.2. Therefore one can
choose the bearing surface material and its arrangement with
the piezoelectric ceramic. This makes it possible to obtain
greater amplitudes than those provided by the ceramic itself.
The more important contribution for load capacity seems to
be due to the "pumping' action at the boundaries. This

leads to two ways of possible performance improvement:

1) The generation of extra boundaries, using

grooves in the bearing surface.

2) An increase of amplitude of vibration at

these boundaries.

Most previous studies assumed the excursion to

. : . 13,29
be uniform over all the bearing surfaces. Other authors
assumed an arbitrary variation for it. Actually, these

arbitrary variations do not agree with the experimental

evidence. So, the theoretical treatment of the lubricant
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film based on this premise will not agree with experiment.
The investigation of the flexibility of the bearing surface
is very important in predicting the true film thickness;

At the same time it introduces a new way of improving

bearing performance.
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CHAPTER 3

THE SOLUTION OF FLUID GOVERNING EQUATIONS
FOR SQUEEZE-FILM BEARINGS

3.1 BOYLE'S LAW

We have earlier referred to some results obtained

numerically, or using the asymptotic theory.

In a simple analysis, Boyle's Law is a reasonable
approach. Before considering a more complete analysis

provided by the Reynolds equation, we will use this theory.

Let us assume two surfaces, one of which vibrates
sinusoidally with an amplitude A about a mean clearance ho

and a frequency W.

The instant film thickness, h, is:

h = h_ + A cosW§, _ (3.1)
or,
h _ A e
- = Ll +g-coswe | (3.2)
o o
the dimensionless f£ilm thickness H = -hh-,
-0

H=1 + €, cosWwt (3.3)

where Eo is the excursion ratio.

If the frequency is high or there are very small
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clearances, the viscous shearing is considerable. As we

saw before, they are proportional to W and inversely
proportional to the clearance. The radial flow is retarded
and this originates successive compression and expansion of
the gas film. The operating conditions are closer to those

of a piston inside a closed cylinder. Assuming ;hat the temp-

erature is constant, it is permissible to use the Boyle's Law

phA = p h A = cte (3.4)

where P, is atmospheric pressure and Ab the bearing area.

Using the following dimensionless variables,

P = -I;L = dimensionless pressure,
a
T = Wt = dimensionless time, and (3.5)
R¥* = Er_’ where.R0 is the bearing dimension,
0 .
we obtain P = 1 : (3.6)

1+EocosT

This function is represented in Fig. 3.1.

The dimensionless bearing force for the case of a

disc (this is the simpler geometry) is:

F: = F = -—-——'—F )
Pa p, T Ro
[ JRe(B-1)drs 1
= 2R*(P-1)dR* = -1 (3.7)
0 1-62



where: F = total force generated by film, and
yALL
= L [ ot = —2— (3.8)
21T g 5
1- €
o

For small values of the excursion €0

P* = 1 + ke’ + o{e“} (3.9)
o o
and thus, the bearing force can be approximated by the

expression

e - %gi . (3.10)
At the outer edge, the pressure is obviously the atmospheric,

but the pressure obtained through Boyle's Law is Py > P, with

the condition

phA.b = thoA.b (3.11)
Py
and P T EOCOST) : (3.12)
P
where P = B
B pa

The averaged pressure distribution is
(3.13)

. Using this expression, and according to Salbu (6), the
pressure value obtained for Eo = ,5 is 1.15 greater than
the value calculated using, for initial condition, the

true ambient pressure, as shown in Fig. 3.2,
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FIG. 3.1 Squeeze film pressure calculated from
Boyle's law with ¢ = .5 (Ref. 6).

Without edge effect
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FIG. 3.2 The effect of the pressurisation at the
edge, using Boyle's law (Ref. 30).
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3.2 ASYMPTOTIC SOLUTION

3.2.1 Basic Assumptions

A more powerful analysis of the film behaviour-is
provided by the Reynolds equation. This is a non-linear
(at least for compressible fluids), second order, partial
differential equation of parabolic type. The derivation of
this equation is based on the Navier-Stokes equations, the
continuity equation, the energy equation and the equation

of state.

It was demonstrated in (20) that as the film thick-
ness in this type of bearings is very small compared with
the other dimensions, the heat transfer between the gas and

the surfaces maintains the film in an isothermal state.

Inertia terms can be ignorgd compared with the
viscous shear forces (24,39). The criterion is that the
transient Reynolds number of the squeeze motion must be
2

pwh?
T <« ] (3.14)

it being the fluid viscosity and qfthe density, and W and

ho having the meaning already given.

The velocities in the direction normal to the
surface are assumed to be large compared with those in the

bearing surface plane. This is true, according to Cooke (30)

if:
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h
(o]

where O is a parameter defined in 3.17a. For isothermal
conditions the viscosity can be assumed to be constant as the -
pressure in these bearings is small. Therefore the density
can be replaced by pressure in Reynolds equation. Full deriv-

ation of the Reynolds equationcan beseen in Refs. (4) and (84).

3.2,2 Solution of Reynolds equation

A closed form solution, called the "asymptotic

solution" for the Reynolds equation will be considered now.

The Reynolds equation in a vector form is:

3 >
div {-Filgradp + pth} + g—t(oh) = 0 (3.16)

ate

* A ° . .
The vector v is the sum of the absolute sliding

velocities of the bearing surfaces.

We will make use of transformations (3.5) to
obtain a dimensionless form for (3.16). Considering the
surface differential operators, gfad and div, in dimension-

less form, we have:

V. { -pu¥Vp +AD P} +da%(PH) =0 (3.17)
where: V., = R*div, Vo R¥*grad,
v .
ﬁ =m, T = Wt,

ate
"

In the case of squeeze film bearings, this velocity is
very small and in most applications is megligible.



/N = compressibility number = -—

and

Q
i

_ R
squeeze number = E%E&«??)z.
a

Assuming, as before, the fluid film thickness to be periodic

(3.17a)

in time and a defined function of §Kx,y), vector of the

coordinate components,
H(x, T+ 2T) = H(x,T)
with the boundary conditiom,
P(xB, T) =1
When the steady state is established, then
P(x, T + 2= P(x,T)
For 0 — o (asymptotic theory),
"aa.—r(PH) = o{a
If we call the product PH =\

Lim G=0_(x) + o{é}

=

At the boundaries:
because

P(xB,T) =1

(3.18)

(3.19)

(3.19a)

(3.20)

(3.21)

(3.22)

(3.23)

With this notation we can write equation (3.17)

with the form:
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div{-lg-grad (LPZ) - Ll)zgradH -/\ﬁ¢}= g%; (3.24)

Integration of this equation over one period

gives:
T+2TL
J div [%grad(kpz) - ‘bzgradH -j\ﬁllf’1=0 {\.l)(T+2T[)- Q)(T)}
T
) (3.25)
oFs T+2TT
div{%grad(q)z) - Q)zgradl-l - _/\f]LP}dT =0
T (3.26)
Defining,
T+2TC
= 1
A= == fX H dr (3.27)

and replacing v by its asymptotic value:
div{%—grad(tboo)z -2 gradfi - _/\ﬁkl)}dT =0 (3.28)

There are two regions in the £ilm that must be considered separately,

the inner layer and the boundary layer. Let us call

q)b = kl)(x:oxb) : (3-29)

and Y] the coordinate nmormal to and measured from the

boundary, then,

a

b = s
Eui O{\/C_I} at x > x (3.30)
11

-This was mathematically justified by Pan

Equation (3.25) can now be rewritten:

62 T+2TT Hbq)bz .

2= 52— dT =o%ﬁ (3.31)
o T Vo
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where: N = VO (3.32)

Neglecting terms of O{é}, the "boundary layer"

approximation near the edge is obtained:

T+2TC
H dT = C; +G, (3.33)
T
As W), = H
bi*_0 b
T+21T
C =1,Zj HD dT (3.34)
1 X b

To guarantee convergence as T —> © , C2 must be

set to zero.

The matching of the interior and the boundary

solutions then give:

lim _ lim
X=—%, Lpb _Tr-—ewn b . (3.35)
or,
TH2L T+2T .

¥ (xb)J de L f Hng (3.36)
T+ 2%
| 3 at

2 T b

LPco(xb) = Tio7C (3.37)
rj H AT

This equation represebts the required boundary
condition for equation (3.26). A general derivation of this

solution is given in (1) . We will now consider two

applications of this theory.
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FIG. 3,3

Mean squeeze foree, using.
asymptotic theory, flat discs,
(Ref. 10).

3.72.3 . Case of circular thrust disc
with uniform excursions

If the film thickness can be expressed in the

dimensionless form
H=1+€cosT (3.38)

the corresponding asymptotic solution is

lim PH =LIJ°O_= \/1+3/2‘a2 (3.39)

g~ o
In this case the unit axial force is (41)
T 3.2

2
143 €
F 1 | 2
W= = = | (P-1)dt = -1 (3.40)
n paAb 210 0 1 - EZ
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and it is represented in Fig. 3.3 for several excursion

values.

The unit axial stiffness is

K_h h_ OF 2

£
A T A R 5 (3.41)
i ® V€834 3e?)
or 2

where Kz T
3.2.4 Conical bearing with uniform excursion

Assuming the conical geometry of Fig., 2.5b, Pan
also developed expressions for the axial pressure and
associated bearing force. The film thickness in dimension-

less form is:

H=1+7_cos[cos(6-0_) +nr,rlzcos(9 - er,)

+-gzsinPcosT (3.42)

This expression includes the influence of the
radial and rotational eccentricity through the respective
eccentricity ratlos'T]r and'qﬁ. The angles Qr and 9r1are
reference angles for the radial and rotational displacements,
see Fig. 2.5b. The value of the unit axial force is now

.given by:

3 .
F l+'§-€Z Sll‘l%—‘ i

paAb 1 - Ei sinzlﬁ

1 (3.43)

Ab being mow the projected bearing area.
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This result is identical to that of the squeeze

film plate replacing the excursion amplitude for Ezhsinrx

3.3 ¢ NUMERICAL SOLUTIONS

The previous section dealt with two methods of

analysis of the squeeze film effect where closed expressions

for the pressure distribution were obtained. Numerical

52

solutions based on finite differences were studied by Michael

(5). We will refer now to them because one of the methods,

Crank-Nicholson, will be used later to calculate the

pressure distribution for non-uniform excursions.

All the previous assumptions about the fluid

properties will be maintained in this analysis.

Using the usual transformations Y = PH and (3.5),

the dimensionless form for the Reynolds equation is:

%[ng%-w-g%)] 2lvad- 3]

Ll)ai)

BT (3.44)

-Or in another form:

L) = a\b - F(X,Y T\IJ,S;I; gﬁj, VA) = 0 (3.45)

where X and Y are dimensionless coordinates in the x and

y axis and Vz is the Laplacian operator.



In cases of axisymmetry, like disc and conical
bearings, or for .the infinitely long bearing, there is -
need for only one variable, For unifbrm notation we will
replace the variable quy u in the following expressions.

The equation can now be rewritten:

L(u) = =-F(X,T u,g§,a =) =0 (3.46)
)4
1 2 9%H . g2
where F(X,T,w,g v Y) = aEiLdY -W =+ HES W —-_/\g:\
: ox
| (3.47)
3.3.1 The family of difference approximations

Let us assume the space interval EO,l:l divided

into N+l subintervals and the time axis is in intervals AT.

The proposed approximation to the equation (3.44) consists

of the following family of difference equations:

L) = @I-u])/aT-F{30%, (40)AT,

o rJl+l n+l

+ (1-8)u’] +(1-e)u3‘,

Lo}y -uiih) + (1-e) (-] _)]/(28%),

[p'(ugii-2u§+? n+1)+(1 6')
(ufyy = 205+ _ D1/ox?] = (3.48)

where j=1, 2, ..., Nandn =0, 1, 2,
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In this expression © and 0' are parameters for the family

of difference approximations.

Regarding these parameters, we shall comsider

four cases:
a) @ =0and ' =0

In this case the ug+1 values are obtained
explicitly from the ug values. We start with the

initial value ug and the next ug are calculated from

these, and so om.
b) @ =1and 68'=1

+
This is an implicit formula with ug 1 deter-
mined from the ug through a system of non-linear

algebraic equations.
c) @ =0and 8' =1

This is a difference approximation that was

initially devised by Lees and is detailed in Ref. 35.

-d) 6 =%and 0' = %

For this case the equation (3.48) assumes a
symmetric form. The algebraic equations are now non-

linear and must be solved by iteratiom.



55

This formulation is a serious contender against

the asymptotic solution, although the last method has been

considerably used.

Respecting these numerical procedures we only
consider the one-dimensional bearing problem. For two space

variables some more complexity is involved (5).

The main factors that govern the choice of any

of these numerical methods are:

1) stability,

ii) truncation error,

iii) programming requirements.

i) The stability is a function of AX, AT, and the

parameters® and 6'. Stability condi;ions have been discussed
by Michael 5. The procedure is that of Von Neumann and
Richtmeyer 36. The stability is shown to be unaffected by

0. This means that the stability is not influenced by the
lower order space derivatives, It is also demonstrated

that the implicit formula (8=0'=1) is unconditionally

. stable. The Lees modified implicit formula (6=0, 08'=l1),

and the Crank-Nicholson formula (6=6'=%) are also uncond-
itionally stable. The explicit formula (6=80'=0) requires

for stability



H2PAT < 1
2

a(AX)
This inequality must hold at every node of the grid, which

requires AT to be properly adjusted.

ii) The local truncation error for case (a) is
O((AX)2+ AT) and the same applies to (b) and (c). For case
(d), the truncation error was demonstrated by Crank and

Nicholson 37 to be reduced to O(Qﬁx)2+QﬁT)2).

iii) The programming requirements will be considered
in the following sections about the algorithms for the

explicit formula and for the Crank Nicholson procedure.

The Lee's implicit formula was discarded because
for an increased programming complexity it requires very
small time steps AT, with the same order of magnitude of the

stability condition of the explicit method.

3.3.2 Explicit method

In the explicit method one assumes the conditions
existing at the start as the initial values u?, where j =

1,..., N.

The successive values of uj are

n+

u 1=u‘J?+AT F(3AX, n AT, T, ,V) ~(3.50)
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with E = (ujy -uy)/(20%) (3.51)
n n 2
Y = (uj+1-2uj+ug’_1)/(Ax) (3.52)

and F(jOX, nAT,W,E,Y ) is given by equation (3.47).

The value of AT must be adjusted from the stability

condition (3.49).

- 3.3.3 Crank-Nicholson formulation

As in the previous case the initial values uq

must be set as the pressure distribution dictates at T = 0.

For the several values of n =0, 1, 2,... the

oH 2H . .
W~ and — are calculated at the time points

oX
(n+%)AT.

variables H

T

These calculations must be done at all coordinates
X=jOiX,for j=1, 2, ..., N. To solve the difference

equations we can use the Newton-Raphson procedure, described

here.

+
Let us assume that the values ug ! can beapproximated

o, . .
by Uj (3 =1, 2, «v., N) with U, and Uy, denoting the

n+l n+l . .
boundary wvalues u, and Uiy ® Setting the variables

— m-1)
W = (Uj + uj)/2 (3.53)
B (m-1) ) n n
and £ = (U= Uy Fugy,y =uy oy )/(6DX) (3.54)



and defining,

2
F, = 1- ot o H 2+H§2-w§ -NE) (3.55)

and F2

(3.56)

oF 2
1 l1,,.—~0H OH
L. LlpdH, pol (3.57)
ow o 6X2 oX
oF
1_1 C):
% " (2 HE Ay, (3.58)
oF
.'_6-52 = g— . (3.59)
BFZ
with, obviously, -é-i-: 0. (3.60)

The arguments Xand T being defined as before:
X = jOX, T = (n+ %AT.

These expressions enable us to give a new form to the

approximated family of difference equations (3.48):
Uy - uy - OTF) [50%, (a¥)AT, (U+a7)/2,

(Uj+1-uj_1+u3.'+1-u3.’_1)/L»AX)] -
AT
Z(AX )

(Ugpg = Uy g ¥ gy - “?,1)/(‘*55():' .

r, [i0X, (n+5) AT, (U +a3)/2,

(Uj+l-2uj+uj_1+u3.‘ 2uJ+u 1) =0 (3.61)

for =1, 2, ..., N, Or, in a short form:

Uy ey, UD)=0(=1, 2, ..., N) (3.62)
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Considering ugo), ugo), ey uéo) as an approxim-

ation to the exact solution, Ul’ U2, coey UN’ the following

expansion will apply:

G(U,Upyens,U) = G, (01,02,...,UC5 +

N
965 0.0

+ ) =l )(UK-UéO)) +.e =0

— 9y
R=1 (3.63)

with j =1, 2, ..., N.

Truncating the series to these terms and equating

them to zero we define an approximate solution:

(1) (1) (1)
Ll , U2 , [%

Repeating this process, a sequence {Ugm)§ is generated, which,

according to Kantorovich 38 converges to the exact solution.

For each iteration of this process, and in order

to obtain the referred approximate solution, we have to

an .an 0G.
compute the values of 30, 37 and szrl—u
j j+l j-1

From (3.59):

G, oF
1o AL L_ AT 4y oy U, 4+ -
\U. . s .
an 2 69) A(AX)Z j+l j j=1 “j+1
oF
n 2, AT . ,. _

- Zujfuj_l)aw -1~(AX)?_L2 (3=1, 2, ..., N)
3G, oF
T " éﬁg aé" S, G= 1,2, ., N
j+l 2(0AX)
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6, At %1 ar .

80, .~ X OoF 7 F, (3=2,3, ..., N)
j-1 2(AX)

oG, :

5= =0 (l3k]= 2) (3.64)
K

If U§m-l) is an approximate solution the next

approximate solution can be obtained through the correction

factor )\(m) :

g o yle=1) g (m) (3.65)
J J J

The correction factors )Sm) are calculated from

(m) _ A
7\j B Aj+1 j+1 B3~:-1 (3.66)
withfkégi = 0, and Aj and Bj satisfying:
a,
A = —r
i+l b.-c.A,
J 1]
c.B.~-d,
Bj+1 = J—J—_lbj"chj (3 =1, N (3.67)

with Al = 0 and Bl =0 .
The variables aj, ijand cj and dj include the

derivatives (3.64):

oG, oG, 0G.
S N N — |

83 T 90.,.' °3 "@u.r %37 @u.
j+1 -y j-1
4, = (“‘ 1) +ul +OTF +|:U(m -1) 2U§m -1)
sl 1)+u“ ]AT "2 (3.68)
J -1 j+17 J - 2 '

2(AX)



These variables are actually the coefficients of

the tridiagonal system of the iteration corrections:

) _ . 4 (@m) m) _ |
as iy - By AgT + e AT =, (3.69)

For each iteration the relative error -
maxlkgm)/Ugm)l (3.70)
j J J :

can be checked against a predetermined tolerance, so estab-

lishing the requirement for another iteration.

When the desired accuracy is achieved the value

U@m) obtained in (3.65) can be considered as the solution
u?+l. These values are then used to obtain the solution

for the next time step. For the first iteration obviously

Uj = u? in expressions (3.53) and (3.54).

3.3.4 Practical application

In order to have a first idea ;f the results
obtained for a non-uniform amplitude of motion a programme
using the Crank-NiCholson procedure was prepared. It is
presented in Appendix 2. For the sake of simplicity a
.simple thrust disc bearing was chosen as vibrating surface.

The input date used was:

RO - disc external radius 42.5 mm,

th - thickness of the disc 8.5 mm.
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DISPLACEMENTS FOR gK =312 ( f« 1§, 000 He )

VIBRATIONAL MODE SHAPE
PLATE

REF. POINTS
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FIG. 3.4

FIG. 3.5
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Disc mode shape (from radius 1 to Ro).
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Pressure distribution for disc plate
- non-uniform excursion ratios.
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ho - assumed mean gap between bearing surfaces
= 25.4 x 10™% mm

¥ =~ squeeze motion frequency = 16 KHz.

The disc was assumed to have an uniform amplitude
of vibration from the centre to the radius ry = 17.2 mm.
The reason for this assumption is better explained in

Chapter 7 dealing with disc thrust bearings.

From the radius r, to the edge the plate mode

shape is represented in Fig. 3.4.

The pressure distribution obtained for one period
is shown in the 3-axial representation of Fig. 3.5. The X
and Y axis represent respectively the radial coordinate and
the time interval. The Z axis represents the pressure
values. It is evident the non-symmetrical behaviour of the
pressure curve in respect to the time. The maximum and
minimum are verified near the edge with a steep "smoothing" to

the atmospheric pressure.

For this same case a comparison of adimensional
- load capacity was established against that of uniform

excursion. Both curves are represented in Fig. 3.6.
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FIG. 3.6 Load capacity for one period of time for disc
bearing:
Curve a - uniform excursion ratio,
Curve b - non-uniform excursion ratio.
" 3.4 CONCLUSIONS

Use of Boyle's Law provides only a rough cale-

ulation of the pressure distribution for uniform excursion.

———t

From PH = cte can be implied that the pressure (P (0 1/H) is

I
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dependent on the time along the all surface bearing. This
does not agree with the boundary condition P = 1 (corresp-

onding to p = p_, ).

atm

The analytical solution has thé attraction of deriving
énalytical expressions for the solution of the Reynolds
equation. In most of the practical cases the requirement for
the squeezevnumber,cf, to be greater than lO3 is satisfied.
This enables one to calculate Y (X,T) as ¢agx), neglecting

terms of the order of-l;.
Vo

But, like Boyle's Law, the asymptotic solution
does not satisfy the boundary condition (3.22). The
boundary layer needs a special mathematical treatment (see
equations (3.31)-(3.34)) and then the calculation of the
lim ¥ when the coordinate X tends to éhe boundary value.
Actually this means that one uses a pseudo-boundary condition
at an infinitesimal distance inside the true boundary (3.37).
The width of this band bordering the ambient edge is of
the order of 1//0. The asymptotic theory has been-

extensively used by several authors for cases of uniform

excursion,

For this case a relatively good agreement with

numerical procedures is achieved, as Pan discussed in (10),
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FIG. 3.7

Force variation for one period

as predicted by the asymptotic

theory (0 —— ) and by

numerical approximation (0 =

1000) for flat discs (Ref. 10 ).
see Fig. 3.7. When it was experimentélly realised that the
excursion had to be considered as non-uniform along the
bearing surface a significant amount of complexity was
introduced in the asymptotic theory, (13) and (29), to cope
with the influence of this parameter. These analytical
extensions of this theory still proved to be very limited

‘on the allowable variation for this parameter. This seems

to be one of the greatest drawbacks of the asymptotic theory.

The numerical methods are apparently more labor-

ious than the asymptotic theory, though they present the
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advantage of obtaining increased accuracy, as a function of
the - size of time steps. In a practical case there must
be a compromise between the accuracy requirement and computing
time. However, the greatesﬁ advantage of the numerical
methods is the possibility of consideration of any case of

modal shape of the bearing surface.

Calculating the bearing modal shape at working
frequency and for a given mean clearance it is possible to
know the film thickness at each instant for arbitrary points
of the bearing surface. Then, these values are introduced
as data in the numerical procedure. This will give the

pressure distribution during one period of the squeeze motiom.

To obtain the load capacity a double integration

for one period of time and for the space coordinate interval

is required.

An evaluation of the characteristics of the
numerical methods was performed by Michael 5. For a case
where the analytical solution is known he performed several
computing experiments. This enabled him to compare the
error made in each case. His results are summarised in

Fig. 3.8, Fig. 3.9 and Fig. 3.10. The error curves are

traced for different spatial coordinate values, X = ,25,
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X = .5, and X = .75. The coordinate interval had the value
X = 1/32 and AT was varied from 2-1 to 2-10. As AT was .
increased it is apparent from the Figs. cited that the

accumulated error (truncation error plus roundiﬁg) of the

Lees formula increased steadily while 'the Crank-Nicholson

formula increased very little.

The explicit method was unstable to values of AT
of 2-10. For the same time step the error of the Lees formula
was smaller than that of the Crank-Nicholson when the time
step is 2—|? This suggests the use of the Lees formula
when an extremely good accuracy is desired regardless of the
computing time, or when the working frequency is very high.

The Crank-Nicholson method, however, gave very good results

even for relatively large time steps.
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CHAPTER &4 ‘

EXPERIMENTAL PRELIMINARIES

4,1 THE OPTICAL MEASUREMENT SYSTEM

4,1.1 Introduction

The prediction of the pressure generated through
the squeeze film effect requirestheknowledge of the film

thickness between the two bearing surfaces.

For an initialvmean ciearance and if it is
assumed a stationary condition for the supported
member, this film thickness is only a function of the lower
moving member. When this member is considered as rigid, the
gap will also be uniform at all points and only one amplitude
measurement is sufficient to define it. However, in case
of a flexible bearing support, the film thickness is also
a function of the radial coordinate (considering only axi-
symmetric vibrations). In this case we have to obtain
local values for the film thickness and therefore for the
motion amplitude. As the bearing size is usually relatively
small (in our case, 0.D. = 60 mm.), the physical size of
the senéing element used for the evaluation of the motion
amplitude is an important factor. Another significant

condition is that the frequency response of the measuring
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equipment must be good at high frequencies as in case of
the conical shapes, the interesting frequencies can go

as high as 20 KHz, For these two reésons, accelerometeré
are not suitable for this application. Fortunately an
optical system called the Fotonic Sensor, and developed by
Mechanical Technology Incorporated, satisfies these

requirements and was used for the amplitude measurements.

4,1.2 Principle of operation

4.1.2,1 The fibre optic system:

Consider a light source and a light receiver,
both near a moving reflecting surface, as in Fig. 4.1.
When the sending and receiving elements are in contact
with the surface, no light is reflected to the receiving
elemenf. As the distance increases, the cone of light from
the transmitting element illuminates an increasingly larger
area on the work surface. When this light is reflected by
the surface the receiving element gets an increasing amount
of this light and the relationship between surface displace-
ment and receiver illumination is eésentially linear. 1If
the complete surface of the receiving element is illuminated
by the reflected light this function ceases to be linear and

reaches a peak, as shown in Fig. 4.2, and thereafter the
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illumination decreases in an approximate inverse proportion

to the square of the distance. Using a large number of
fibre optics as sending and receiving elements, a steep

response curve is obtained.

These glass fibres, numberiﬁg about 600, are
the main components of the Fotonic Sensor probe. The
receiver uses a photo diode to generate a current dependent
on the intensity carried by the receiving branch. In the
case of the KD-45 model, the one used in the experiments
reported, the light source and the photocell are located
in a remote cartridge connected to the control unit by a

multicore cable.

Major advantages of this technique are the
reduced size of the sensing element, flexibility of

positioning and no contact with the moving surface.

4.1,2,2 Design characteristics:

The sensitivity of this instrument is dependent on

73

the fibre bundle and the numerical aperture of the individual

fibres. Another influencing factor is the effectiveness
of the fibre cladding in preventing crosstalk. The cladding

is obtained using glass with a refractive index smaller than
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the core, which is in flint glass. This index difference
defines the maximum angle of internal reflection and there-

fore the fibre aparture angle (usually 60°).

The distribution of the fibres, controls the
displacement range and the slope sensitivity of the probe.
The optimum arrangement for the steepest response curve
requires the surrounding of each receiving fibre with four
transmitting fibres, Fig. 4.4. This is the configuration
that enables more receiving fibres to be affected by the
light emanated from one emitting fibre as the distance
between probe and work surface increases. Unfortunately,
this is very expensive and in practice it is a random
distribution of the fibres that is used. The specification
set for this éase requires that no yisible grouping of
adjacent transmitting or receiving fibres should be seen
(40). Other types of distribution are represented in the
same figure. During the light transmission there is some
light loss (between 50% and 80%) and this is a function
of the bundle length. A compromise with the required
working handling capability gives a maximum length of 3 feet.

4.1.3 Application to amplitude measurements

One of the requirements for the correct use of

this equipment is for the probe to be normal to the moving
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surface. For adjustment purposes and proper support of the

probe, a stand (see Fig. 4.5) was built. The main parts are:

A, probe positioning, fine adjustment,
B. Fotonic Sensor probe,

C. vertical adjustment,

D. moving support,

E. static base,

F. stand fixing screw,

G. probe positioning springs.

After ensuring proper vertical alignment, it is
necessary to compensate for different values of surface
reflectivity. This is dome using the Intensity Control in
the Fotonic Sensor. Changing the meter sensitivity, a full

scale meter deflection is achieved at the peak setting.

This corresponds to 2 volts DC output voltage.
The linear range, as can be seen in Fig. 4.6, is obtained
for meter readings between 207% and 60%. Because for low
amplitudes and high frequencies theuse of a high pass filter is
recommended, a sound and vibration aﬁélyser was employed (from

General Radio) for measurement of Fotonic Sensor output.

This apparatus enabled a more accurate voltage measurement,
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using at the same time its filtering capability. According
to checks previously made, the filter unit is loss
compensated. These checks consisted of comparing a
reference signal.displayed in an oscilloscope with the
signal reached by the vibration and sound analyser, using

the same reference signal intput at several frequencies.

4.2 CALIBRATION OF THE FOTONIC SENSOR

4.2.1 Manufacturer's calibration

The conversion of the Fotonic Sensor signal output to
displacement units requires a sensitivitycurve. Every cartridge
is calibrated by M.I.T. and the values of output plotted in
a graph for that individual cartridge. The frequency
response curve is also tested. Both curves are represented

in Fig. 4.6 and Fig. 4.7, respectively.

The calibration procedure used by Mechanical

Technology Incorporated is as follows:41

4.2.1.1 Static calibration:

The probe or sensor is fixed. A highly polished
reference surface is then moved to several positions. This
motion is accurately controlled through an arrangement

(similar to the rotating knob of a micrometer)
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sensor dynamic response checking.

Motion Amplitude .
Frequency Half band Voltage Peak Fotonic
value . sensor
c.p.s. in reading values settin
* mV (r.m.s) in, &
250 .0012
70 .001 250 .0012 24
220 .0011
410 .0021
80 .002 450 .0023 34
420 .0022

. TABLE 4,1
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that provides a direct reading of 10-4 inch. This equip-
ment (KD-CM III calibration fixture) is also used for

calibration of Wayne Kerr displacement transducers.

4.2.1.2 Dynamic calibration:

In this case there is not what can be considered
as a typical dynamical calibration, but the measurement of
the F.S. output variation with the frequency. The Fotonic
Sensor probe is aligned with a LED (iight emitting diode)
light source that is amplitude modulated over the frequency
range of 10 Hz to 2 MHz by-connecting it to a signal
generator. An oscilloscope is used to monitor the LED

current drive and the resultant analog output of the

Fotonic Sensor.

4,2.2 Laboratory Calibration

This section concerns the calibration made here.
The equipment used is mainly intended for accelerometers

so that this is then a true dymamic calibration.

Fig. 4.9 shows the experimental set-up used for

this purpose. The Fotonic Sensor probe, C, is positioned

over the top of the metallic block, B. The block is

vibrated using a Derritron VPS5 type vibrator,A. The
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motion amplitude is varied by acting on the amplifier driving

the vibrator.

On the metallic block are engraved the marks
shown in the figure detail. These marks are spaced at

intervals of 2, 4, 10 and 20 thou.

When it is apparent that due to the amplitude of
vibration two lines seem to coincide with, respectively,
the next upper and lower ones, it meams that the block mass
is moving with amplitude equal to half the distance between

the marks. The results obtained are expressed in Table 4.1.

4,2.3 Comment on Calibration Procedures

The original calibration system (from M.I.T.) can
be criticised due to the fact that there is no direct
dynamic calibration but just a frequency respomse check.

On the other hand, the laboratory procedure is a true
dynamic calibration but had two major limitations., One of
these is the impossibility of running the experiments at
the range of frequencies to be used in the actual tests
(5-20 KHz). This is caused by the performance of the
vibrator which deteriorates at higher frequencies, with a
first resonance at 7 KHz. The other factor affecting

these results is the difficulty in noting the visual
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superimposition of the engraved lines. A third factor that
should be mentioned is the accuracy of the readings of the
voltmeter, upon which depend the amplitude calculations.
The values obtained with the Fotonic Sensor are slightly
higher than nominal (defined by themarks). The error varies
from +5 to +20%. A possible explanation for this lies in
the inmaccuracies referred to above. The use of the other
marks, at .010 and .020 in. (.254 and .508 mm.), was not
considered. Their superimposition would correspond to .005
in. (.127 mm.) and 0.010 in. (.254 mm.), respectively., From
the calibration curve, Fig. 4.6, it is seen that the linear
length of the curve (defining the slope MN) is 2.5 thou (.064mm
from 3.5 thou to 6 thou. And for the half band of 5 thou
the sensitivity cannot be taken then as constant. The
other possibility considered was the use df the falling
side of the curve. But for this brancb the sensitivity
(defined by the slope ST) is about twenty times more than
that of the upward branch and no improvement in accuracy

would be obtained.



CHAPTER 5

PIEZOELECTRIC CERAMIC ANALYSIS

5.1 PROPERTIES OF PIEZOELECTRIC MATERIALS

5.1.1 Introduction

We described briefly the phenomenon of piezoelec-
tricity in Chapter 2. The piezoelectric effect is generally
dependent upon the orientation of the applied force or the
electric field with respect to the aées of the piezoelectric
material. For natural piezoelectric materials such as
quartz, these axes were established by crystallographers
(Fig. 5.1). For piezoelectric ceramics, the axes have been
designated with reference to the direction of the electric
poling field, Fig. 5.2. This direction is taken as the

Z axis of a right-hand orthogonal axial set X, Y, Z.

Siﬁce the properties are not variable in the plane
perpendicular to this axis the senses chosen for X and Y are
not important. It is usual practice (42) to relate the
ceramic properties with subscripts, where the axes X, Y and
Z are represented respectively by 1, 2 and 3 and the shear

about these axes as 4, 5 and 6, Fig. 5.2.
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5.1.2 Characteristic Constants

The relevant constants for piezoelectric materials

are of three types:

i) Elastic Constants
ii) Electric Constants
iii) Piezoelectric Constants

5.1.2.1 Elastic Constants:

The most important elastic constant is the compliance
defined as strain/stress. In‘order to identify the direction
of the strain we use the first subscript, whilst the second
subscript gives the direction of stress. As the constants
differ slightly with the conditions at the ceramic elect=--
rodes, we use a superscript. Thus, if the electrodes of
say a bar of piezoelectric material are connected together
the bar displays higher compliance than when the electrodes
are not connected. If the electric field is held constant
by short circuiting the electrodes we use the subscript E.
For an open circuit at the electrodes the superscript used
is D. As an example, S§3 is the strain to stress ratio in
the 3 direction at a constant electric field (E = 0), with
the condition that all other external stresses are constant.

D

The symbol S44 is the shear strain to shear stress ratio at



constant electric displacement (D = 0) for shear strain

around the axis 1 to shear stress around the 1 axis.

5.1.2.2 Electric Constants:

Notation similar to that used in the previous
section can be applied to the dielectric constant
(dielectric displacement/electric field). In this case the
first subscript refers to the direction of the electric

field and the second subscript denotes the direction of the

electric displacement. In most of the piezoelectric
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materials used, the field along one axis results in dielectric

displacement only along the same axis. For this reason, the

two subscripts are the same, and one can be omitted; e,
E3 means €,5. In piezoelectric matgrials not only do the
mechanical properties depend on the electrical conditiomns
but the electrical properties also depend on the mechanical
constraints. In fact, when a piezoelectric material is
completely free the dielectric constant is higher than

when the body is mechanically constrained. To define these

mechanical boundary conditions, the subscripts S or T are

used. The superscript>l denotes the condition of constant

stress, with no mechanical restraint. For constant strain,

the superscript S is used.
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5.1.2.3 Piezoelectric Constants:

The piezoelectric constants are actually electro-
mechanical constants. The most commonly used are the
coupling constant Kij’ the strain constant dij’ and the
stress constant gij' The coupling constant is related
to the ability of the material to transmit mechanical
energy to electrical energy and vice versa. The square
of coupling is equal to the transformed energy divided by
the total energy input. As before, éubscripts are used,
the first indicating the direction of electric field and
the second the direction of stress or strain. The d.lj
constant represents the ratio of the strain developed along
or around a specifiedvaxis, to the field applied parallel
to another specified axis, when all'other external stresses
are constant. The gij constants express the relation
between the field developed along a specified axis to the
stress applied along or around a specified axis when all
other external stresses are constant. A very important
constant that should also be mentioned, even if not
belonging to one of these groups, is the frequency constant.
The.frequency constant Nij’ is the product of the mechanical
resonant frequency (under specified electrical boundary
conditions) and the dimension relévant to the type of

vibration., Other important constants are the dissipation
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factor and the mecﬁanical Q. When an elastic body is
deformed, not all the energy applied is storéd as elastic
energy. Part of this energy is dissipated as heat due té
"molecular friction". The mechanical losses are expressed
in terms of mechanical Q, which is the ratio of mechanical

stiffness reactance to the impedance at resomance. The

electrical losses are expressed as a dissipation factor,

tan 5.

The units usually used for these constants, and
their numerical values for the PZT ceramic series, are

given in Tables 5.1 and 5.2.

5.1.3 Resonance Frequency of PZ2T-4 Ceramics

For future calculations one must know at least
approximately, the value of the first resonant frequency
of the ceramic disc (PZT-4 ceramic) used in these experiments.
For this purpose we employ two methods. The first uses the
definition of the frequenmcy comstant N, (Section 5.1.2).
In this case, considering the thickness dilatational mode,
" the relevant dimension is the ceramic thickness,

tc = 6.3 x 10-4 m. The value of N from Table 5.2, is

3t’
N3t = 2,000 cycle meter s’l. As

Np = £.x ¢t o (5.,1)
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= 317 KHz.

N3t
the resonant frequency is fc =<
c

The other calculation procedure is based on a

method by 0n0e43 and Lawsonaa.

The basic equation for the resonance frequencies

of a thickness mode piezoelectric resonator is:

tan = —?f (5.2)

wt Kt

where: @ = EVE’U) being the freqpency, tc the ceramic
thickness, and Vc Ehe'phase velocity of the eiastic wave
motion and Kt is the coupling factor related to this mode

of vibration. This equation was also derived by Stephensonas,
for longitudinal vibrations of bar shaped resonators.
Tiersten46 has shown that the same basic frequency equation
could be applicable to the case of cgramic plates vibrating

in thickness-dilatational and thickness-shear modes. Using
the values of the roots of the frequehdy equation tabulated

in (43), the resonance frequency of a crystal can be

obtained in a straightforward way from equation (5.2):

2V §
w = ——tc (5.3)
.

In our case Kt = 0.51. For Kt = 0.5 and a mode
number n = 1 (first frequency) the Table 5.3 gives the
value of 1.3932. The value of Vc obtained from (43) is

Vc = 2.4340 Km/s.
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TABLE 5.1
PIEZOELECTRIC PROPERTIES: SYMBOLS AND UNITS

¢0 = dielectric constant of free space = 8.85 x 10-12 farads/meter.

T /o0 = relative dielectric constant, free.

¢S/¢o = relative dielectric constant, clamped.

tans -—QJ‘— = dissipation factor at 1 keps, low electric field.
E -

ke = planar coupling factor.

ki = transverse or Iqteral coupling factor.

ki = longitudinal coupling factor.

kis = shear c'oupling:factor. _
ke = thickness coupling factor (laterally clamped).

d = piezoelectric constant strain/field at constant stress or charge density
/stress at constant electric field, 10-12 meters/volt.

g = niezoelactric constant, electric field/stress at constant charge or,
sUain/charge density at constant stress, 10-3 volt meters/nevton,

SE = etastic compliance at constant electric tield, 1012 meter2/newton.
sD . elastic complianée at constant charge density, 1012 meter?/nevton.

Qm = mechanical Q. This is dependent upon configuration, and is given here
for a thin disc.

Ni = frequency constant of a thin bar, fg.{, cycle meters/second.

N3a = frequency constantofalong slender bar electroded on ends, fa.{, cycle
meters/second. .

N = frequency constant of a thin plate, fr.t, cycle meters/seconds.
v? o velocny ofa compress:onal vrave parallel to polat axis
fcf} = (v9)2 ), meters/second.

VE’ = velocity of a shear wave perpend:cular to polar axis with wave polar-
ization parallel to polar axis

[cd = (vD)?,). meters/second.

- veloéity of a shear wave parallel to polar axis,
[c& = (v§)?:}, meters/ second.
p = density, 103 kg/m3,
¢ = temperature, °C.
P = polarization, 10 coulomb/cm? (10-2 coulomb/m?).
= thermal expansion, 10-6/°C.
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TABLE 5.2

CONSTANTS DATA FOR CERAMICS OF PZT SERIES
(room temperature)

" Preliminary
Ceramic B PZT-4 PZTSA  PZT-5H sza'}fs
BN 1200 1300 1700 3400 1000
A ono keps® /o 910 635 830 1470 600
/o 1300 1475 1730 3130 -
/% 1000 730 916 1700 -
tans 0.006  1.004 0.02 0.02 0.004
Kp -.33 -.58 —.60 —-.65 -50
ki -194 334 -8 -.388 =295
ka .48 70 .05 .752 .62
kis - 48 -n. 85 675 -
ke 388 513 ".486 505 -
kia .491 715 215 754 63
dn —58 -123 =171 ~274 -93
d33 149 . 289 374 593 218
a1s 202 - 496 584 741 -
dn 33 .43 32 45 32
g3 —55 -111 -114 911 -10.5
gn 14.1 - 26.1 248 19.7 245
g15 21.0 39.4 38.2 %68 -
s§ 8.6 123 - 164 16.5 111
s§; 9.1 155 18.8 207 139
sk 2.2 39.0 415 435 -
s5 -2 ~4.05 -—5.74 ~4.78 -37
s§ 2.7 -5.31 -7.22 —8.45 -4.8
sO 8.3 10.9 14.4 14.05 10.1
SR 70 7.9 9.46 8.99 8.5
sd 171 193 .2 23.7 -
s -2.9 —5.42 -1.71 -1.2 —-4.5
s ~1.9 -2.10 —2.98 -3.05 -25
Qm 400 500 75 65 1000
N 2290 1650 1400 1420 1700
Nat - 27140 2000 1890 2000 -
Nia 2530 2060 1815 1930 2000
P 5.55 75 7.75 7.5 7:6
Curie

Point 115°C” 328°C 365°C 193°C 300°C



. t j-/jll l k !-/j.ll

N=1 N=3
0.0 1.5708 1.0000 0.00 7.R540 5.0000
0nns 1.5692 0.99%9 0.05 7.8336 4.9997
0.10 1.5644 0.9959 0.10 7.8527 4.9991
nis 1.5563 0.9907 01Ss 7.R511 4.9981
020 1.5449 0.9835 0.20 7.8488 4.9767
0ns 1.5299 0.9740 0.25 7.8400 49919
[UR ] 1.5113 0.9621 0.30 7.8425 4.9926
N1 1.4886 0.9477 0.35 7.8383 4 9900
nlin 1.4617 0.9305 0.40 7.8315 4 9869
048 1.4301 0.9104 0.45 7.8281 4.983S
0.50 1.3932 0.8869 0.50 7.8220 4.9796
0.8§ 1.3504 0.8397 0.55 7.8132 49783
0D 1.3008 0.8281 0.60 7.8079 4.9706 .
065 1.2431 0.7914 0.65 7.9998 4.9655 '
(U] 1.1760 0.7386 0.70 79911 4.9000 |
078 1.0969 0.0983 0.75 7.7818 4.9540 !
* 080 1.0027 0.63R3 0.80 7.7718 49476
N RS 0.887S 0.3650 . 0.85 7.7011 4.9409 !
) 07408  0.4716 0.90 7.7498 493174
n9s 05335 03409 095 7.7318 4.9260 i
N=2 i N=4 ,
o0 47124 3.0000 0.00 10.9956 ~ 7.0000
00y 47118 2.9996 0.05 109953 6.9098
0w 47102 2.9986 0.10 10.9%46 6.9994
nis 4.7076 2.9969 0.15 109238 6.9986
0 47038 2.9945 020 10919 6.9276
[ID4 4.699%0 2.9918 0.25 109898 6.9963
nin 4.6932 2.9877 0.30 109873 6.9947
nis 4.6862 2.9833 0.35 109844 6.9920
nin 4.0782 29782 0.40 10.9810 6.9907 : .
nds 1.6690 29724 0.45 10.977% 06.9882
ns) 4 6587 2.9658 0.50 109727 6.9854
n&s 46173 2.9386 0.55 10.9680 6.9824
nen 4.6348 2.9506 0.00 10.9627 6.9791
nas 4.6212 2.9119 0.65 10.9570 6.9754
"y 460601 29325 0.70 109308 6.9715
nis 4.5004 2.9223 0.7§ 10.9442 6.9673
ns 4.5713 29114 080 10.937} 6.9627
LAY 1.5550 2.8998 0.85 10.9295 6.9579
ol 45356 2.8874 090 10.9215 6.9528
18 4.5151 2.8744 0.95 10.9130 6.9474

TABLE 5.3 ROOTS OF FREQUENCY EQUATION AND FREQUENCY
RATIOS TABULATED AS FUNCTIONS OF COUPLING FACTOR
FOR n=1, 2, 3, 4 (REF. 43)
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Then:

W = 2ve @ 2 x 4,340 x 1.392 x 10°
te 6.3 x 107>
3.6 x 106 c.p.s. = 306 Kps

Comparing with the value obtained using the
frequency constant (317 KHz) the agreement is quite good.
Even assuming a reduction of the coupling factor which affects
®, and a smaller value of the phase velocity, the value of
resonant frequency is still substantially higher than the

working frequency of the bearing unit (as considered in

Section 5.3).

5.2 CERAMIC~-BEARING ARRANGEMENT TYPES

The way the bearing surface is fixed to the driving
element (the ceramic) is important. Use of ceramics as
direct bearing members presents two major disadvantages: the
mechanical instability and the tendené&ﬁof ceramics to be

easily damaged during operation.

For some types of ceramics it was found by Pan47

that vibration amplitudes in excess of 107% in. (peak to
'peak) per inch of bearing diameter can cause dangerously high
stresses in the piezoelectric material and increase rapidly
the power dissipation. This means that one must use very

small mean bearing gaps. Increasing appreciably the
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vibration amplitude would, however, allow a corresponding

increase in the mean bearing gap without loss in performance.

This has resulted in the use of concentrators and wave
extenders. Concentrators (Fig. 5.3a) are mechanical trans-
formers which can amplify the motion of tﬁe bearing surface
without affecting significantly the resonaht frequency.
Gradually varying cross sections with conical, Fourier,
Catenoidal and exponential laws, and stepped concentrators

are mentioned by Panlz. Using theory .by Merkulov48’49,

Pan
obtained gains of amplitude of vibration of the order of 15
to 20. Unfortunately concentrators had to be abandoned due
to space and weight limitations. The wave extenders (Fig.
5.3b) act in a different way from that of the concentrators
as the system frequency is different from that of the driver

(the separate free resonator). The results obtained were

not very favourable and these did not have much application

either.

For a cylindrical ceramic operating at its longit-
udinal resonance (Fig. 5.4), Chiang8 designed several
arrangements of ceramic-conical bearings for gyroscopes. In
his study he considered three designs for the elastic
coupling between the bearings and the driven section. These
configurations are represented in Fig. 5.5 (configuration

"A"), Fig. 5.6 (configuration "B") and in Fig. 5.7
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(configuration "C"). Molybdenum and Invar were used to
provide a good matching for the thermal coefficient of
expansion of the ceramic. Configurations "A" and "B" differ
in the design of the flexible part of the driver and
configuration "C", similar to "A", has a different metal-

ceramic arrangement, with a double wall around the ceramic.

The aim of Chiang's work was to compare theoret-
ically the performance of the configurations quoted. For
. this purpose he considered the end flexure region as a
simple spring with its mass lumped into two points. Half
the mass is attached to the bearing and the other half to

the flexure location at x =L0. The dynamic model is also

represented in Fig. 5.5. The ceramic-metal assembly is
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consi-ered as a composite cylinder with the ceramic treated
as a simple elastic material. The equations of motion are
established for the assembly for the displacements u* and
v¥, as indicated in Fig, 5.5. These equations are:

for 0 < xx << (A1

By 5% olus

_ (5.4)
PLoxx?  at?
and for oL <x%¥ <[l
E. 2 2

T2 9%vx _ 3w

Py axx?  Bes? 33
where: u¥*,v* - local displacements,

Ac - cross sectional area of ceramic cylinder,

Am - cross sectional area of metallic cylinder,

Em - metal Young modulus,

Ec - ceramic Young modulus,

Pe - metallic cylinder dénéity,

A2 - AmAc ¥ mAm/Al’

p2 = [ = density of metaliic cylinder,

e
I

1 EcAc + EmAm/Al’

©
]

1= Refe + Rpfn/Ays
P, =P .
m
To these equations the following boundary conditions are

applied:

i) - the central plane is fixed in space

(W) ey = 0 (5.6)
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ii) - compatability of motion
Wmon = g (5.7)
iii) - force balance
6u‘-;= ov®
(81E) S dsor=an = AoFy ) xr=cit (5.8)

For the bearing surface the equation of motion is:

-K [(w"‘-V‘ ) ~,__2] )a—w% (5.9)

3t

with an additional boundary conditiont?

iv) - force balance

(OV‘ K| (ve) R
2 2 oxx x—ﬂ x¥%e=J

a %

at‘.‘:z x‘.\‘:

__S
2

(5.10)

The solution of equations (5.4) and (5.5) gives

the following expressions:

P
u(x) = Gsin WL ,E—l X) (5.11)
1
p2
v(x) = C2 sinWw E—2 (X-Xo) (5.12)
r /M1
where: U)l =5 —p-I
E
It [2
and W, = 7= pz (5.13)

Cl and C2 are the amplitudes of excursion and W

1
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and W, are characteristic frequencies of the respective

sections; XO is a phase angle.

The conclusions of Chiang's analysis can be

summarised as follows:

i) For the same size of driver and the same displace-
ment at x =Q, the configuration "A" provides larger
excursion amplitude for the squeeze film bearing than

configuration "B".

ii) The configurations "A'" and '"C" with a properly
designed end flexure do provide larger amplitude amplification
than configuration "C'". Also, for each corresponding design
configuration larger amplitude amplification can be achieved
increasing the size of the driving section. Thus, increased
excursion amplitude can be obtained at expense of configur-

ation complexity.

iii) The referred configurations can be placed in

ascending order of achievable amplitude as:

1. Configuration "B'" without extended section
(a = 2).
2. Configuration "B" with an extended section

(0 < ).



3. Configuration "A".
4. Configuration "B".

The major criticism of this work is the lack of
experimental verification of these conclusions. The chosen
configurations were also restricted to Chiang's particular

application (gyroscopes).

It should also be pointed out that the high
electromechanical coupling requires the solution of the full
piezoelectric equations, instead of the simplified elastic
equations which are only applicable to materials with low
coupling46. However, this is the only previous known work
on the flexible bearing arrangement. It shows that great
differences in amplitudes can be expected due to the
ceramic-bearing arrangement alone, though it seems doubtful
that the expressions obtained can étana for other than

qualitative values.

5.3 THEORETICAL AND EXPERIMENTAL ANALYSIS OF
BEARING ARRANGEMENT UNDER INVESTIGATION

In this section the arrangement used for the
present investigation is analysed. Data from (42) shows
the mechanical compliance (open circuit electrodes) for

PZT-4 to be:
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823 = 7.9 x 10-2 metrez/Newton.

ot
3y

Therefore, the calculated equivalent stiffness is:
11
KC = 2,28 x 107~ Newton/metre.

For confirmation of this theoretical value, two experiments

were carried out:

i) Measuring the output ceramic signal when a
sinusoidal force is applied to the base. As the ceramic
is stressed there is a mechanical to electrical energy
transformation within the ceramic, It is the inverse

phenomenon that is used for driving the squeeze-film

bearing.

ii) Measuring in a mobility test, the response of

the unit for the frequency range of interest.

In both cases the external force was applied along

the axis of symmetry of the unit.

The two procedures will now be detailed.

¥ E = A .1265 x 1012 Newton/metre2
S
33 .
F_
2
Edc
_g__4
and E = Sl i
ETd
K =% =-—%22.28 x 101 Newton/met
. A~ Zth . x ewton/metre.
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5.3.1 Output voltage measurement

The diagram for the experiment is represented in
Fig. 5.8. A shaker (Derriton VPZ vibrator), A, used in a
horizontal position, was linked to the bearing unit by a
rod, B. An adaptor was used, as the vibrator gg% the
bearing unit had different threads. The output signal was
collected by two wires, one connected to the electrode plate,
G, and the other to one of the tightening bolts. The signal
was measured with a sound and vibration analyser with
filtering capability. The unit under test consisted of two
bases E, two piezoelectric ceramics D, (only one is visible
in Fig. 5.8), a thin contact plate, G, and an insulating
ring, F. The unit was suspended by a string passing through
the holes in the ring-electrode plate. In the experiments
an amplifier was connected to the shaker. The usable
frequency range was extended to 25 KHz'b§ means of the
amplifier external drive. The output readings (r.m.s. values),
Figs. 5.10 and 5.11, show a very clear peak between 2.0 and
2.5 KHz, with other minor peaks at 11 KHz. The exact
frequency where the voltage peak occurs varied slightly
with the bolt torque. The peak value decreased as the
torque was increased. However, a good contact between

ceramics was achieved with a low torque value. Further

increase in torque only prevented the ceramic expansion, and
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thus the associated developed charge. For this reason it
seems advisable not to use torques higher than 60 Kg.cm

in these arrangements.

5.3.2 Mobility response for base-ceramic

The mobility or admittance is defined as the ratio
of velocity to applied force. 1If we consider the velocity
measured at a point different from the point where the
force is applied we have a transfer méasurement. The point
chosen for the velocity evaluation was the centre of one of
the base plates, as in Fig. 5.12, by means of an accelero-
meter I. A force gauge F, was interposed between the
vibrator table, A, and the excitation point. The whole
assembly was suspended as in Section 5.3.1 with the aim of

creating, as far as possible, free-free conditions.

The experiment was carried out using the mechanical
impedance of the Vib. Lab. of Imperial College, which
includes a PDP 8/E Mini Digital Computer coupled to
impedance measuring equipment. Using the existing plotting
- facilities the'mobility curve of Fig. 5.13 was obtained.

Similarly, the phase angle curve (force leading velocity)

was drawn, Fig. 5.14.
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FIG. 5.12 Experimental set-up for mobility measurement.
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5.3.3 Discussion of Results

The comparison of the results obtained with the
experimental procedure of the previous sections requires the

following comment:

The arrangement of Fig. 5.8 can be considered as
that of two masses coupled by means of a spring. The first
resonance occurs when the two masses are in a symmetric
position but with maximum displacement from the rest
position. The centre point in the electrode plate G, is
stationary, it is an "apparent fixed point'. This mode
corresponds to maximum compression and expansion of the
ceramics acting as a spring. The frequency where the peak
occurs and that of the resonant frequency of the system do
not exactly match. The maximum voltage signal is at 2.5
KHz and that from the mobility re5pon$eais lower, at 1.25
KHz. A possible reason for this difference is the influence
of the push-rod arrangemént, C, D, F in Fig, 5.12, This
influence is probably also the cause of other small peaks

in the mobility curve.

Considering the higher frequency value from the

two experiments to be the resonant frequency W, from the

expression

110
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one obtains the value of the crystal stiffness in this
arrangement. This expression applies to each of the
crystal-base units in the symmetric arrangement of Fig.
5.12. Kc is the ceramic stiffness and m is the mass of

.,

each base plus the equivalent mass of the ceramic.

Considering the less favourable condition where
f = 3 KHz, the value obtained for Kc is 7.73 x 1010 dynes/cm
(773x1010ﬁ1).The theoretical value, from the compliance
constant, was, in c.g.s. units, 2.28 x 104 dynes/cm(ZleldHW%ﬁl
Using the same expression, (5.15), but now determining the
resonant frequency of the assembly with the theoretical
value of KC, fc = 53.5 KHz, much higher than the experimental

values (1.3 and 2.5 KHz).
The main conclusions from these results are:

i) There is a minimum torque valie that assures

good contact between ceramic and base,

ii) Use of torque higher than this value affects
the amplitude of vibration of the crystal, but only

very slightly the frequency of resonance of the assembly.

The equivalent mass is one-third of the actual mass
of the ceramic.
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The actual stiffness of the ceramic when
assembled with the other bearing elements is consider-
ably smaller than the value predicted from the ceramic
data. This fact has also been reported by Chiang8 and
is caused by the increased compliance in the base-

ceramic and ceramic-central plate contact areas.



113

CHAPTER SIX

CONICAL SQUEEZE FILM BEARINGS

6.1 THE ADMIRALTY COMPASS OBSERVATORY MODEL

The Admiralty Compass Observatory main interest
in squeeze film bearings has been in their use as gyro
gimbal bearings. These should replace the angular contact
ball bearings, normally used. The possible geometries of
these bearings are conical and spheriéal. It is the first

shape that is considered here.

The operational arrangement of a conical squeeze
film bearing is shown in Fig. 6.1. The key to this figure

is as follows:

1. Lower (supporting) member.

2. Upper (supported) member.

3. Supporting member base.

4. Element symmetric to (1).

5. Element symmetric to (3).

6. Piezoelectric ceramic crystal.
- 7. Fixing bolts.

8. Standing base (cylinder).

9. Commecting leads.

10. Bearing fixing bolts.
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11. Electrical input.
12, Central electrode.
13. Insulating rings.

This is a double arrangement with just one of the
bearing surfaces actually being used. The reason for this
is to guarantee, as far as possible, that the central
electrode plate remains stationmary. In a gyroscope applic-
ation this arrangement would not be the most practical.
However, for investigation purposes this arrangement is
adequate. Parts (2) and (3) are of one piece in Dural
(aluminium alloy). The standing base (8) is of steel. Part
(2) is the "floating', supported bearing surface and in a
gyroscope application should be part of the gyro gimbal.

The cone and bearing axes are coincident, taking both thrust
and radial loads. The ceramics (6) are of PZT-4 material,
whose characteristics are described in Table 5.1. They are
the same as used in experiments of Chapter Five, with the
shape and dimensions shown in Fig. 6.2. The electric signal
is applied to the ceramics through a socket (11), with one
contact for the electrode plate (12), and the other for the
base (8), A further connection from the bolts (7) is used
to make contact with parts (1) and (9) that act as electrodes

for the piezoelectric ceramics.
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When an electric signal is applied to the ceramic
it undergoes successive expansions and compressions with the
same frequency as the input signal. This causes the
supporting bearing surface to vibrate., The air between the
two surfaces is subjected to a change of volume. For
reasons already explained, this is the caiisc of the bearing
load carrying capacity. The vibration of the bearing
surface, conical in this case, is not only a rigid body

motion but a more complicated modal shape.

In order to establish a possible relationship
between this vibrational behaviour and the performance of
the bearing, experiments using ﬁhe set up of Fig, 6.3 were
carried out. However, the theoretical analysis of the

vibration of conical shells will be considered first.

6.2 VIBRATION OF CONICAL SHELLS

The vibration of plates, discs, cylinders and
spheres has been extensively studied. Conical shells have
not attracted as much attention. Only recently they have

- been analysed. The reason for this recent interest is
mainly related to the study of loudspeakers and rocket

"noses".



FIG. 6.4 Inextensional vibrations (a), and extensional
vibrations (L) of conical shells.

6.2.1 Extensional and Inextensional Vibrations

Strutt (51) was one of the first to study conical

shells. He considered only the case of inextensional

vibrations. These are also called flexural vibrations and
occur when the shell flexes. In this case the modal shapes
have nodal lines coincident with the generators, Fig. 6.4(a)
If the middle surface of the shell undergoes extension the

vibrations are called extensional, Fig. 6.4(b). In general

both classes of vibration will occur. The inadequacy of the
. inextensional theory to satisfy the boundary conditions of a
completely restrained cone edge was demonstrated by Van Urk
(52), in his experiments to verify the aécuracy of the

Strutt's formula (51). This problem was later investigated
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by Federhofer (53) who derived a frequency expression for
a truncated cone with one edge rigidly restrained and the
other partially restrained. The calculation was based on
an energy method of Rayleigh, with assumed mode shapes in

the form of power series.

Conical, or cylindrical shells can only deform
inextensionally if the generators remain straight. For
very thin shells vibration will be predominantly
inextensional if the associated deformations are compatible
with the edge conditions. These conditions require that
the edges are completely unrestrained, or restrained in a
manner similar to that of a hinged joint. All the other
edge conditions cause bending of the axial generators which

then require some stretching of the shell middle plane.

As an illustration of what has been said we will
refer the case of a spherical shell as discussed by Love (54).
For a complete shell, all the modes of vibration are

extensional. For an open spherical shell or bowl, there

are two cases to consider. If the aperture is small, or
the spherical surface is nearly complete, the vibrations
approximate to those of a complete spherical shell. When
the opening in the spherical shell is large, the vibrations

approximate to those of a plate with displacements normal
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to the plane of the plate (inextensional), together with

displacements parallel to the plane of the plate

(extensional).

For our purpose, the inextensional vibrations
are undesirable, as the amplitude of vibration would also
be a function of the angular coordinate. They would
produce tangential gas flow due to pressure gradients in
that direction. These vibrations are also considered a bad
effect in loudspeaker cones, when a flange is often used to

stiffen the large edge.

6.2.2 Solution of the Motion Equations by the
Marcus-Goldberg Method

The solution of the equations of motion for the
combined extensional and inextensional vibrations have been
first studied by Sanders et al (55)(56). This method was
also used by Platus (57). The latter has also compared the
results with experiments. Both assumed polynomial mode
shapes. 1In his work Platus also postulated that the kinetic
energy was the same for the extensional and inextensional
cases. Even so, and for the single case of a fixed-free

cone, the analysis is complex.



As this study is only concerned with axisymmetric
modes it benefits from simplifications. In the following
analysis we start considering the forces and moments applied
to the element. The forces and moments are herewith
referred to as per unit length. Because of symmetry,
there are no shearing forces at the lateral boundaries of
the element of the shell (Fig. 6.5). At the upper and lower
edges there are no circumferential shear forces either.
These edges are only subjected to the'hormal forces Nz and
the shear forces Q per unit length normal to the generators.
The normal forces N9 and the moments M9 act at these lateral
boundaries, and the moments Mz are applied at the upper and
lower edges (Fig. 5.6). In this figure the system of
coordinates chosen is also shown with the z axis coinciding
with the generators that define the eiement. The z axis is

positive from the cone apex (Fig. 6.5). "

A cone generator and a section of the respective
element and the forces acting in the vertiéal plane of this
generator are also shown in Fig. 6.7a. All these forces

~and moments are considered per unit of length of the area
where they are applied. 'In the following expressions Ps
is the density of the matérial of the shell and hS the

thickness. The coordinates z and © are defined in Fig. 6.5,
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FIG. 6.5 Typical conical shell element.
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FIG. 6.6 Forces and moments acting on shell
element.
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and r is the distance from the element to the cone axis.
The cone semi-vertical angle is . The forces acting on
the element must be in equilibrium. The components in the

y-direction are:

. 0
(i) Qr de and [Qrde + z=(Qr d8)dz].
(ii) The coméonents of the normal forces N.dz. These

o

two forces can be combined as in Fig, 6.7b. The resultant
. . deé ._,de,

is ZNg dz sin 5 - For small de, sm(-z-) can be replaced by
%?, and it follows that the sum of these forces in the

y-direction is:

de
2_Ne dz >
62w
(iii) The inertia forces P _h_ =-—=r d6 dz.
s s 2
ot
For equilibrium:
) -Bzw
~=(Qrde)dz + N.,dzdecos Q. = P h —= rdedz (6.1)
0z e s 's at2
As, r = zsin (6.2)
o 62w
=—(Qz)sin + N,cosl = ph_ -—=zsinQ (6.3)
Oz e s's at2
| 2.(Qz) + N cotgo = h ——azw (6.4)
or, 52 z eco g zp% s atz .

For the components acting in the z-direction we

have:
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FIG. 6.7a Shell element cross-section and inertia
and shear forces acting on this element.

FIG. 6.7b Vectorial sum of normal rforces NG'

FIG. ¢.7c Resultant of moments NQ'

FIG. 6.7
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. 0
(i) The normal forces Nzr de and [Nzrd9+az(Nz+d9].
(ii) The components in the z-axis of the normal forces
Nedz.
2%y
(iii) The inertia forces P h_ —=r dédz. The equil-
s's at2

ibrium in this case requires:

2

——@—(N rde)dz+N, dzdésind = Ph 9—V-J:' de dz (6.5)
0z z 8 s's atZ
Using expression (6.2) and simplifying:
0 62V
5-2(ZN2) —N9= 2 pshs g? (6.6)

Considering now the moments with respect to the

Xx-axis, we have:
. 0
(1) The moments Mz r d6 and EMZrdO + aZ(Mzrde)dz] .

(ii) The moment due to the forces Q. Neglecting terms

of second order, this is equal to Qrdedz.

(iii) The resultant of the moments Medz. These vectors
make an angle of T - sin®d® (Fig. 6.7c¢). The total moment

is Medz sin(d dé.

The equilibrium of these moments yields the

following equation:

Qr de dz - a—az-(Mzrde)dz—MedzsinOtdO -0 (6.7)
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or, simplifying:

— _a_. o =
Q, = - 35(Mz2) - My =0 (6.8)

These internal forces are also related to the

displacements of the middle surface.

The stresses Oé and Oe can be expressed in terms

of the strain, gz, Eg, by:

E

= V b4
a, T2 (e, + VEY) | (6.9)
g =—E——(e +VE ) (6.10)
e yZ @ z :
1 -
where 0% is the stress in the z-direction, Oé is in the 0
direction and €, and EG are the respective strains.

As Nz is the force due to the stresses Oé:
h/2

N = \f szz = >
-h/2 1-W

(ez + vee) (6.11)

where V is the Poisson coefficient.

Due to stresses Oé:
h/2

N, = :L/z Oédz =

Eh
s

1_v2 (ge +vez) (6.12)

because,

\Y w
e =Y _¥
o " zcotOt (6.13a)
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and £
? 2z Oz

Expressions (6.11) and (6.12) then become:

s
N = [ +V (— —-—cota)] (6.14)
(1-V%) “
)
N9 = —-—%—-[Z— - Zcota +V2—Z (6.15)
(1-v%) -
If D is the flexural rigidity:
D = —— (6.16a)
2
12(1-v7)
ow

Also let S

It follows that the moment per unit length Mz caused by the

stresses ﬁz is:

__ 5, S
M = D(az + z) | (6.17)
Similarly,
3S
= - D(= +V=
Me D( + 3% (6.18)

Q can be obtained from equations (6.7), (6.17)
and (6.18), i.e.:

2

- -5 19 L1
Q = D( + = 5 \Y 28) (6.19)
az z

If the applied force varies harmonically with

frequency W, as in the case of squeeze film bearings driven

(6.13b)

32 (6.16b)
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by piezoelectric ceramics, the solution of (6.3), (6.6) and

(6.8) can be written in the form:

v(iz,t) = V."(z)coswt

W(z,t) wx(z)cosunz

Mz(z,t) Mz (z) cosWt
Me(z,t) = Me (z) cosWwt

Ng(z,t) = Ng‘"'(z) cos Wt

and oz, t) Q*(2) cosWt (6.20

wls wls ola ata o
- “~

% : % %
where V , W, Mz , Me y N9 and d:are the amplitudes of the

variables, only dependent on the coordinate z.

By substituting equation (6.20) into equations
(6.14) through (6.19), and using equation (6.16 b),it is
possible to write the six equations below governing the

displacement of a point on the cone middle plane,

-1

* ~
_ o
S = T (6..
From equation (6.17):
* M
dS _ _z _V.Z*
= = 5 zS (6.21)

From equations (6.4) and (6.15):

4o __Q _Eh o (v w" cota) - vERER § F
dz VA z Z VA

-ph W W (6.22)
S S
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From equations (6.8) and (6.17):

% ‘ %* '
dM _ 2, AW ,
. __ -, v RS g (6.23)
dz z z 2 ‘
Z
From equations (6.6) and (6.15):
an® e g o) =N F-wiph V' (6.24)
qp = (VoWeot Q= ~wiph, -

where O, as referred to above, is the cone semi-vertical

angle.

From equation (6.11):

% 2
dv _ 1=V * vV % _ %
o = Ehs Nz Z(V W cot Q) (6.25)

These equations may now be integrated with assumed boundary

nls
"

conditions. The expression S = %%; was added to this set

of five equations. A numerical procedure by Goldberg and
others (58) was used for this integrétion. Basically this
consisted of the transformation of a two point boundary

value problem to an initial value problem. These equatioms,

(6.21) to (6.25) , must be simultaneously integrated, and
Goldberg suggestions that one designates each variable, V*,
w*,S*,MZ,NZ and Q* by generic functions Yi(Z)' In this
case the referred equations (6.21) to (6.25) and (6.16) can

be written as:

6
gz = Z a.. Y. (6.26)
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with aij being the variable factors multiplying the variables

PR DN *
vV o,W ,S,M ,N, and Q in eq.(6.21) to (6,25), The functions

Z

Yj are defined as;

Y.(2) = a,(2)N _ + B.(2) Mz,a +Y;(2) Q (6.27)

?
EX

NZ&?, Mz,a and Qa represent the values assumed by Nz’
Mz and Q.at the cone inner edge, where z = a. The variable

oty
w

ot
W

coefficlents ai(z), Bi(Z) and yi(z), which are functions of

the coordinate z, are now the unknowns.

Substituting (6,27) in (6.26):

ay . dai(z) % dg.(2) '- dyi(z) o
dz =~ Tdz Nz,a ¥ dz Mz,a * dz Qa (6.28)
and noting that:
Yj(Z) = aj(Z)Nz,a + Bj(Z)MZ,a + Yi(Z)Qa (6.29)
it is possible to write:
dai(z) N* dBi(z) * in(Z) ' 6
—_— + ——— M + ——=—— Q_i = a..
dz z,a dz zZ,a dz a 3=1 1j
b ES ' "
aj(Z)Nz,a + Bj(Z) Mz,a + ngz) Qg (6.30)
Now, equating coefficients of, respectively N; a’
b}
Mz,a and Qa in (6.30) we get:
dai(z) 6 5
—_— = a,.o.(z), for coefficients of N )
)
ag.(z2) 6 ) (6.31)
1 - z :‘: )
dz “. a..B.(z) for coefficients of M )
1=1 71373 ’ z,a )
)
in(z) 6 = )
—5— = jEl aijyj(z),for coefficients of Q, )
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So, instead of integrating the equations (6.16) to
(6.24), we have to integrate the set of equations (6.31)
subjected to certain boundary conditions. The interval of
integration remains, as before, from z = a (the cone small
edge coordinate) to z = b (cone outervedge coordinate). The
integration can be performed, for instance, using the Runga-

Kutta method.

6.2.2,1 Integration of Equations of Motion

The equations of motion have been transformed in
section 6.2.2 into the set of quations (6,31). In these
equations, the variables Yi(z) designate any of the variables
w*(z),S*(z),V*(z),Mz(z),NZ(z) and Q*(z) defined in (6.20).

To perform now the integration of (6.31) we have to establish
a correspondence between.Yi(z) and these other variables.

The choice for the variables Yi(z), that we adopted, to perform .
the integration is:

W*(z)

Yl(Z) =
Y,(2) =S  (2)
* -
Y3(z) = Mz(z) (6.32)
Yq(z) = Q (z)
Y (2) = N, (2)
YB(Z) =V (2)

We will drop now the use of stars and use the notation
b % . % b s
Was W (z), Vas V (z), S as S (z), Mz as Mz(z), NZ as N;(z)

and Q as Q*(z).
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6.2.2.2 Boundary Conditions

To integrate the set of equations (6.31) we have to
define three boundary conditions according to the kind of
restraints existent at the cone small edge. If we assume a

clamped condition at this edge, where z = a, this results in:

(W)zza = Q
(V)Z=a = 0
(S)z=a = 0 (6.33)
Because we set in (6.32) W =Y, § =Y, and V = Y,
the equations (6.33) can also be written as
(Yl)z=a = al(a)Nz,a + Bl(a)Mz,a + Yl(a)Qa = 0
(Y2)Z=a = otz(a)NZ,a + 82(a)Mz,a + Yz(a)Qa = 0 (6.34)
(Y6)2=a = OLG(a)NZ,a + 82‘(51)1*“12,a + Ys(a)Qa = 0
Nz,a’ Mz,a and Qa being arbitrary constants, the
conditions (6.34) are verified if, at’'z = a:
al =0, 81 = 0 and Yl =0
@, =0, B, =0 and v, =0 (6.35)
a. = 0, 86 = 0 and Yg = 0

The moments and forces at the small edge boundary are
not known. However, it is still possible to establish some

‘more conditions for a., B, and v, noting that, according to

(6.32):
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(MZ)Z:a = Y3(a) = Ot3(a)Nz,a + 83(a)Mz’a + Y3(a)Qa
(Q,_, =Y, = o (@N,  + 8 @M1, _ +v,(a)Q, (6.36)
(Nz) = Y5(a) = 0t5(a)NZ’a + BS(a)Mz,a + Y5(a)Qa

In these expressions, the moment Mz at the inner
boundary z = a is, in fact, represented in two ways: as a

particular value of the variable M, at the boundary z = a and

as an arbitrary constant Mz’a, thus (1‘*12)2:a and Mz,a are only
and the same variable. The different notation results from
the previous designations of section (6.2.2.1). The same
considerations could be extended to (N_) and Nz a and to
. z2=a bl

(Q)z'=a and Qa' Then (6.36) requires that:

a,(a) = 0, 83(a) = 1 and Y3(a) =0

a”(a) = 0, Bu(a) = 0 and Yu(a) =1 (6.37)
and as(a) =1, Bs(a) = 0 and Y5(a) =0

If other boundary conditions were considered, a different
set of values for a., Bi and Y at z = a would result. But, |
in any.case we would get nine constant values. With these
constant values the set of equations (6.31) can now be inte-
grated using a numerical procedure, by for instance, the
Runga-Kutta method of fourth order(60). A programme, FRECON,
using this method is detailed in Appendix 4. Basically, it
enables the calculation of the values of as s Bi and Y at
the outer boundary, where z = b (see fig. 6.8). At this
boundary we have a free edge and this provides another set
of three conditions. At this edge all force and moment

components must be zero:
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(MZ) = 0,
z=b
(N = 0, and
z" oy
(Q_., = 0 (6.38)

Using the notation defined in (6.32):

(Mz)z=b = YS(b) = a3(b)Nz,a + 83(b)Mz,a + Ys(b)Qa
- . a g Y ,
(Nz)z:b = Yu(b) = u(b)Nz,a + U{({;)I“Iz,a + u(b)Qa
= v _ O s 8 Y
Q. p = Ygb) = SN, o+ P, o+ Yo(B)Q, (6.39)
Because (Mz) R (Na) lgnd (Q)zze are zero. and

z:B zZ=
the programme FRECON provides the values of ai(b), Bi(b) and

Yi(B) we can establish a set of three equations with three
unknowns. These unknowns are the arbitrary constants Nz a’
2

Mz a and Qa' Solving this system, it is now possible, to
2
calculate the values of these constants and, replacing them

in (6.27), to find any value cf Yj(z)u

For the conre used later in the experiments, shown in

%
Fig. 6.1, a calculation of the displacement comporent W at

the inner boundary, z = a, was performed. In this case we
assumed a =liding condition at this boundary. This assumption
ie suggested by the fact that the cone moves, at this edge,

upwards and dowrwards, due to the force applied by the piezo-

electric effect in this area.

The integration of the motion equations was made

‘between z = a = 8.5 x 10°%n and z = b = 36 X 10”3, Additional

data used is indicated in Fig. 6.8, If one considers a unit
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b=3.60cm

Fig. 6.8 Geometry data for the aluminium cone as used in
Experiments

of supplied force the correspondent values of the displace-
ment are also the receptance valves. These receptances

were calculated and are plotted in Fig. 6.9. The maximum
value of receptance occurs at a frequéncy of 17,700 Hz, with
a minimum at a frequency of 20,500 Hz. The maximum response
of the system (cone) corresponds to its resonance. At low
frequencies the shell behaves mainly as a mass. Then, the
system becomes more elastic as the frequency increases.

The determination of the frequency of resonance of the shell
is of first importance for the reasons explained in 6.1. In
-order to compare this theoretical result with the actual
dynamic behaviour of the cone, the experiments described in

6.3 were performed.
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6.3 Experimental Amplitude Measurements

To identify the first resonant frequency and to
measure the amplitudes of vibration, the Fonotic Sensor
equipment, analysed in Chapter 5, was used. The optical
probe was positioned at several points along cne of the cone
generators. The relative position of these points is shown
in Fig. 6.10, and the actual distances of these stations
to the cone small edge are indicated in Table 6.1. The
experiments were performed with different voltages across
the ceramic from 50 volts to 70 volts (in some cases only
50 and 60 volts). For each voltage the force generated by
the piezoelectric ceramic is constant with the frequency.
Therefore the maximum amplitude of vibration at any point
corresponds to a maximum receptance at the considered point.
The signal measured by the Fonotic Sensor was converted to
amplitude of displacement using the sensitivity curve of

Fig. 4.6 and the results plotted for the various points and

different frequencies. These response curves are shown

from Figs. 6.11 to 6.15. In these curQes two values of
maximum are apparent. One at 18.550 KHz and other at about
19.5 KHz. The second peak is explained by the actual
nonsymmetry of the bearing arrangement. As shown in Fig. 6.1,

the bearing is supposed to be symmetrical in relation to the
- electrode plate @2. In practice this did not occur and there

was a slight difference in the resonant frequencies of the

two units.
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Fig. 6.10 Amplitude measuring points along the cone
generator

The maximum amplitudes decrease considerably from
the outer edge to the inner edge (Fig. 6.16). For the point
E the data obtained became very scattered and it is impossible

to draw a curve for each of the applied voltages.

An interesting point to note is that the amplitudes
measures at point B are higher than at point A. This is
most probably caused by the stiffening effect of the ring at

the cone outer edge.

Comparing the value of the resonant frequency
obtained experimentally, w » and the theoretical one, w
exp theor,
as calculated in 6.2.2 the experimental exceeds the theoretical

"about 1 KHz. If we assume the experimental value as correct,

the relative error of the predicted value is

W - w
error (%) = —=XP theor = j14gs - 18550-17700

wexp 18550

= 4.58%
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Fig. 6.16 Cone mode shape at experimental resonant
frequency fV = 18550 Hz
It is possible that part of this error is due to the

fact that the boundary condition at the small edge actually
will not be pure sliding. This condition should also
include the rotation of the generators at fhis point.
Therefore, wé have a composite sliding and pinned condition,
although this.rotation is very small because 1t requires

local deformation of the base at this edge.

6.4 Load Capacity

All known applications of squeeze film bearings
have so far been for cases where load capacity is relatively
small (about 1 pound per 1" projected area). However, it
seems to be of interest to complete this study with the deter-

mination of the actual load capacity of the bearing used.
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The two major problems associated with this evalua-
tion are the disturbance caused by the application of load,
and the simultaneous measurement of load and lift. The
loading of the bearing has to be slow and symmetrical enough
to prevent unbalance and shock of the supported member and,
if possible there should be the possibility of a continuous
variation of this load. For this purpose an auxiliary
externally pressurised gas bearing was built. The complete
apparatus is shown in Fig. 6.17 and it illustrates a metallic
structure supporting this gas bearing(i). The gas bearing
produced a downwards force on a lever arrangement(5). This
lever, also shown in Fig. 6.18, transmitted the force to the
supported member(3) of the squeeze film bearing(2). As this
equipment was also intended to be used with disc squeeze
bearings, a journal bearing, also externally pressurised, was
associated with the loading bearing. The load applied to
the squeeze film bearing was regulatéd by the inlet air
pressure to the auxiliary bearing. The measurement of this
load was obtained reading the pressure at the bearing recess(B).
A calibration curve relating this pressure to the load applied
to the bearing, at point (E) was previously obtained using a
load cell. This curve, design calculations and drawings for
the auxiliary bearings, are presented in Appendix 1. To
. measure the gas gap existing at each value of applied load
a Wayne-Kerr capacitance probe(6) was placed over the supported
member. The supported member had one hole in it with a sphere
attached to the lever bearing against the hole edge (Fig. 6.18).

This ensured uniform load distribution on the supported member.
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) . . f
FIG, 6.17 Device built for measuring the load capacity ©
S.F. conical bearing.

I'IG. 6.18 Detail showing the lever arrangement and the
auxiliary €.p. gas bearinec
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All the measurements were taken at a frequency of 18,596 Hz.

The power input used was very low (maximum power was .146

watts for a voltage applied to the ceramic of 90 volts), and
that was the only frequency at which the 1lift of the floating
(Upper member) was verified. For very little changes in
frequency (of about + 5 Hz) the bearing showed complete loss

of load capacity. When this happened; the two bearing surfaces
came into contact with considerable resistance to the
rotational motion. The measured values of film mean gap,

load capacity and voltage applied to the piezoelectric

ceramic are presented in Table 6.2. The dimensionless
load F = F is plotted against the dimensionless film
ﬂpar 2
b
gap H = = in Fig. 6.19. In these expressions T is the
o

load applied to the upper member, P, is atmospheric pressure,
ry is the cone bigger edge and ho is the initial vertical
gap between bearing surfaces. The variable h represents,

as before, the instantaneous mean film thickness.

6.5 Results and Discussion

The numerical procedure (Marcus Goldberg) is satisfactory
in predicting the resonant frequency to within 5% of the
experimental value. The only other application of this
theory that is known is from Goldberg himself(58). For a
much larger cone (254 x 10_3m for the cone larger diameter)
Goldberg indicates fifteen intervals for the z coordinate
as giving excellent results for calculating the three first

frequencies. In our case, fifteen intervals were also
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uced. However, it is possible that better results can be
obtained by increasing the number of intervals. Another
possible cause for the higher experimental value of the
resonant frequency is the effect of a.ring near the cone

big edge. This change in geometry cannot be included in
this theory. This fact and the imperfect knowledge of

the exact boundary conditions at the inner edge can be taken
as a possible explanation for the difference verified on the
prediction of the resonant frequency. Besides the effect
on the frequency, the ring also causeé a decrease of the
émplitude of vibration at the edge. This fact has also

been verified by Huxley(31), in a similar arrangement to

ours (Fig6.20).

Regarding the amplitudes of vibration, the follow-
ing conclusion can be drawn:
(1) increasing the power input to the bearing causes an
increase in amplitude of vibration , as expected; but this
relation is not linear and is limited b§ the impedance of
the cone;
(i1) the existence of the stiffening ring produces a reduc-

tion of the amplitudes near the edge;

(iii) comparing the frequency where 1ift occurs (f.,=18,596 Hz)

1
and the resonance frequency obtained experimentally in Section
6.3, (fr = 18,550 Hz), it is permissible to conclude that

the two frequéncies seem to be intimately connected. This

would mean that, in fact, the amplification of the vibrational
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amplitudes verified at resonance of the shell, benefits the

bearing load capacity.

From statement (iii) two practical implications can
be drawn: .
(a) Tor systems where the available power is very limited,
the prediction of the resonant frequency of the bearing unit
is of primary importance because it works best at this

frequency,

(b) 1In systems where the input power does not create a
problem, the operation of the bearing at or very near the

resonant frequency would product a noticeable increase of

load capacity.

r S0 mm DIA

FIMPUT POWER 4 WATTS
RESOUANCES 16 7 Kliz
AND 32:2 vHz.

!

Fig. 6.20 Huxley exicrinental results using a conical
bearing (Ref. 31)
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CHAPTER SEVEN

DISC SQUEEZE-FILM BEARING

7.1 INTRODUCTION

In all the experiments described in the previous
Chapters the geometry of the conical bearing was the same
in every case. However, Huxley (31) sﬁggested that changes
occur in the resonant frequency of similar bearing
arrangements when the geometry of the small base of the cone
was modified. This base is in direct contact with the
supporting member base (item 3 in Fig. 6.1). Therefore,
this suggests a dynamic study of a squeeze film bearing

having different geometries.

Because a disc bearing is easier to manufacture
with satisfactory geometrical accuracy than a conical one
it was decided to use in this study several disc specimen.
The bearing arrangement being basically the same as that of
the conical bearing, but the conical shell is now replaced

by a simple disc, as shown in Fig. 7.1.
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FIG. 7.1 - Disc squeeze film bearing arrangement.
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FIG. 7.2 - Bearing surface showing g%e annular area
and the "neck". On the corner is also shown a detail

of a plate element and forces and moments acting on it.
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7.1.2 DISC CHARACTERISTICS

7.1.2.1 Geometry

The disc diameter chosen is the same as the larger
base of the cone. This ensures that the projected bearing

area of the cone equals that of the disc.

A change in geometry was thus obtained by
variation of the radius of the small cylinder joining the

supporting member to the base (designated as NECK in Fig.7.1).

This cylinder provides the required clearance for
the bolt nuts and also the space for the insertion of a
thightening wrench (shown in Appendix 2). The existence of
this neck is then indespensable for this type of arrangement.
Its ~ height was considered constant for the different cases,

and equal to hn = 10 ° m.

Our initial assumption in this study is that the
change of the neck radius (rb) can produce considerable

variation of the resonant frequency of the supporting member.

This change should cause various resonant frequencies,
according to the value of r,+ there being no modification

of the bearing surface size or shape.
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The different neck sizes are characterised in this
study by the ratio of its radius, Iy to the bearing radius,
ra,_and this ratio will be hereafter designated as neck

coefficient.

A detail of the Fig. 7.1 is shown in Fig. 7.2.
This detail indicates the two areas, these being an external
area, with the geometry of an annulus, separated from a

central area at a boundary of radius, r This radius is

b*
the same as that of the neck.

The possible changes in the resonant frequency of
the bearing member, due to a variation in the value of Iy
and the establishment of a possible correlation between the

values of these frequencies and that of optimum performance

of the bearing are. the subject of the following sections.
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7.1.2.2 Bearing Materials

The materials used for the supporting member in
the present study are mild steel and an aluminium alloy,
dural. The choise of this materials is dictated by

availability and ease of machining.

The relevant data for these materials is as follows:

Young's modulus - E

- steel: 207 x 10° (N/m?)
- aluminium: 68.9 x 10°  (N/m?)
Density - o

- steel: 7,850 (Kg/m3)
- aluminium: 2,720 (Kg/m>)

Poisson's Coef. - v

- steel: .3

- aluminum: .3

7.1.2.3 Surface Texture

For all the (disc) specimen used in experiments
a ground finish was specified for the bearing surfaces. An

exception was made for two of the aluminum discs for which

lapped surfaces were defined,
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The surface texture of the different specimens was
measured with a Talysurf instrument. The data obtained is
shown in Table 7.1. Tests to determine the flatness of this
surface by interference methods were dlso carried out.
Unfortunately, the characteristics of reflectivity of the
surfaces were not good enough to obtain a clear fringe
patterns; this procedure consisted of comparison of the
interference bands on the workpiece (the bearing disc) with a

platen in the interferometer.

The results of the texture measurements are shown

in Table 7.1.

MATERIAL COEFFICIENT C.L.A. (pin.)
STEEL .2 2 15.0
STEEL .4 4.0
STEEL .5 12.0
DURAL .2 7.0
DURAL .4 1.0
DURAL .5 1.6

TABLE 7.1
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7.2 VIBRATION OF CIRCULAR PLATES

7.2.1 Plate Equations and Boundary Conditions

As stated before, the disc thrust bearing assumed
to be a circular annulus and an inner region to which the

"neck" is attached.

The vibrations of annular discs have been treated

by Bishop and Mc Leod (62) and their analysis is used in this
Chapter. However it should be mentioned that it is also
possible to apply the Goldberg method (used in Chapter 6) to
this problem as a particular case of a cone with half apex

angle, o, equal to 90 degrees.

Bishop and MclLeod's procedure results in a simpler

analytical treatment.

The general equation of motion of a plate in polar

coordinates is:

2 2
( 2 5 + 1 o + 12 o ) x (8 w2 + 1 ow +
ar r or r 3672 or r ar
h
82 P 2
+ _—l_ w ) + -d : 9 ‘g = —g (7.1)
r2 382 D ot D

In this expression r is the radial coordinate and
& 1is the angular coordinate. The displacement component

normal to the plate surface is represented by w. The



transverse force, per unit of perimeter is gq. The plate

thickness is hd and p 1is the plate material density.
_ E hd3
The constant D (= ) 1is the flexural rigidity
12 (1 - v?)

and v represents the Poisson's coefficient.

Considering an element of the shell and its

eqguilibrium, Fig. 7.2, it is possible (62) to establish the

following expressions:

- for the shear force components:

158

3 9. 3
o, =- b [ 3w3 R S w2 - l2 _ W l2 wW—
or or Y or r 9rae?
_ 2 __ 3w (7.2)
3 362
- 2w 2w 2w
0, = - D [ 1 82 4 g 3 + g 3 ] (7.3)
r 3r° ae r 3r e r 382

- for the bending moments:

(7.4)

- 3 2 3
M_= - D [ aw3 R g B 12 BW_ 12 aw>
ar r ar r° 3p r° oarase?
_ 2 3%w
3 302
_ \ 2 2
My = - D [ 1 3w, 12 %W v 8 g:] (7.5)
r ar rc  ae? dr
- for the twisting moment:
- 2
M_, = (1 - D) D [ 1 3w 1 oW 1 (7.6)
r 3rae r 98

To solve the equation of motion (7.1) it is
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necessary to name two more boundary conditions at each edge. -
The boundary conditions that can be assumed are four:

- clamped
- sliding
- pinned, and

- free

In the example gquoted the disc outer edge is free
to move. For the inner boundary of the annular area at
radius rb, the free conditions can not be used only the
three other conditions need to be considered. At the inner
edge Ty the actual boundary condition is very difficult to
establish. The reason is that the annulus and the neck are
both elements of the same body, considered as two for the
analytic simplicity (as explained in 7.1.1), so, several

hypothesis must be analized:

For a pinned edge:
W=20 (7.7)
MG =0 (7.8)
At a clamped edge the the slope and the

displacement are zero:

W=20 (7.9)

or (7.10)



coef. .2 coef. .4 coef. .S

FIG. 7.3 Disc-shaped squeeze film bearing
supporting members as used in experiments.

FIG.7.4 Ribbed disc and conical squeeze film
supporting members.



Before discussing these boundary conditions, the
solution of the eguation of motion will be solved for the

case of symmetrical vibrations:

7.2.2 SYMMETRICAL VIBRATIONS

7.2.2.1 Solution of Equation of Motion

The flexural vibrations of circular plates can
occur in two ways:
- 1f the deflection at any point is a function

of the radius and time alone these are called symmetrical

vibrations and have nodal circles. There is no dependence

on the angular coordinate.
- if the deflection is not symmetrical with respect

to the disc center, the vibrations are nonsymmetrical and

the nodal points are situated along diameters. These
vibrations are usually due to nonuniformly applied forces or

to nonsymmetrical boundary conditions.

In our case the only type of vibrations likely to

occur are of the first type, the symmetrical ones, also
called "umbrella" modes, when all appliea forces and
conditions are symmetrical. These vibrations correspond to
the extensional vibrations of cones, referred in 6.2.1. For

these vibrations the equation of motion simplifies to:

161
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( + ) ( + Ly oy — 4 3% _ 5 (7.11)

3r2 r ar ar r AT D 3t

If we assume a harmonic vibration with the

frequency w, the displacement w can be written as:
w = W¥(r) sin (wt) (7.12)

W*(r) 1is a function of the radial coordinate
alone. Thus, equation (7.11) can be written as:

2 2 ‘
v = S+ L 9 w -k =0 (7.13)
dr r dr dr r dr

In this equation t is the time coordinate and k

is a parameter, called the frequency parameter. The

parameter k is:

ph.we
k = ( —S—) /u (7.14)
D

The equation (7.13) can also be written in the

form of a Bessel equation:

(v2+ k%) (v2- k%) W(r) = O (7.15)
a2 1 d
with v2= 5 + , the Laplatian operator.
dr r dr

The solution of this equation is:

W*(r) = AJO(kr) + BYO(kr) + CIO(kr) + DKO(kr) (7.16)
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A, B, C and D are constants dependent on the

' I

boundary condition and Jo' Yo

o KO are Bessel

. *
functions .

Using this expression in equations (7.2) to (7.5)

results in:

- for the slope

aw* _ - .17
& = - k[A7 (kr) + BY) (kr) - CIy(kr) + DK, (kr) ] (7.17)
~ for the shear force:
- 3 _
0= B x* [A3 (kr) + BY (kr) + CI, (kr) - DK, (kr)] (7.18)

- for the radial moment:

M_ =D K2 [a lJo(kr) + 2%%—- 3, kr)]+ B {Yo(kr) +% ¥y “‘”}*
+C {IO(kr) vk 1, ko)) -
v=1
- D [Ko(kr) - Kl(kr)}] (7.19)

Where %,'%, ﬁ, K]are also Bessel functions*

Jo(kr) is a Bessel function of first kind, zero order
Yo(kr) is a Bessel function of second kind, zero order

Io(kr) is a Modified Bessel function of first kind, zero
order

Ko(kr) is a Modified Bessel function of second kind, zero
ordexr
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7.2.2,2 Frequency Equation

Putting all possible boundary conditions in
equations (7.17) to (7.19) (always free at the outer edge),
leads to four alternative equations. The freguency
equation can then be found equating to zero the

' determinant of the matrix formed by the coefficients of the

constants A, B, C and D.

Let us assume that we have an annular plate with
outer radius, ra, and inner radius,'rb. The determinants

obtained for each pair of boundary conditions are the

following62:
i) Clamped condition at ry
Free condition at ra

Boop=| T, (kEy) Y_(kr,) I, (k) K, (kr,)

Jl(krb) Yl(krb) —Il(krb) Kl(krb)

Jl(kra) : Yl(kra) Il(kra) —Kl(kra)

Jopkrg) Yo (kr) I y(kr) K, (kr,) (7.20)
*

Jl(kr) is a Bessel function of first kind, first order
Yl(kr) is a Bessel function of second kind, first order

Il(kr) is a Modified Bessel function of first kind, first
order

Kl(kr) is a Modified Bessel function of second kind, first
order
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AC—F represents the determinant that must be
equated to zero to find the natural freguencies for a
clamped-free condition. The functions Jol(kra), Yol(kra),

I (kr_ ) and K ,(kr ) result from combinations of the
ol a ol a

Bessel functions already defined and presented on page 166 .

ii) S8liding condition at ry

Free condition at r

a
Bo_p=| Jq(kry) Yl(krb) -1, (kry) K, (krp)
Jl(krb) Yl(krb) Il(krb) -Kl(krb)
Jl(kra) Yl(kra) Il(kra) —Kl(kra)
Jol(kra) Yol(kra) Iol(kra) KOl(kra) (7.21)

iii) Pinned condition at rb
Free condition at r

a
Ap—Fz Jo(krb) Yo(krb) Io(krb) Ko(krb)
Toptkry) Yy (kry) Toptkry) Koy krp)
Jl(Kra) Yl(kra) Il(kra) . —Kl(kra)
Jol(kra) Yol(kra) Iol(kra) Kol(kra) (7.22)

ir) Free condition at r

b
Free condition at ra
A = -
F=F Jl(krb) Yl(krb) Il(krb) Kl(krb)
Jol(krb) Yol(krb) Iol(krb) Kol(krb)
Jl(kra) Yl(kra) Il(kra) —Kl(kra)
Jol(kra) Yol(kra) Iol(kra) Kol(kra) (7.23)
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with
_ v=-1
Jol(kri) = Jo(kri) + N Jl(kri)
r,
i
_ v=-1
Yol(kri) = Yo(kri) + N Yl(kri)
r.
i
- _ _ v-1
Iol(kri) = Io(kri) . Il(kri)
r,
i
Kol(kri) = - Ko(kri) + Kl(kri) (7.24)
kr,
i
At resonance, the determinants (7.20 - (7.23) are

zero. Considering several values of the frequency, and for

given values of r, and r it is possible to establish

b

the behaviour of these determinants.

Considering a free outer boundary and four
different conditions at the inner boundary the determinant
curves are plotted in Figs. 7.5 and 7.6. The range of
frequencies vary from 0 +to 13 KHz and the absolute value

of the determinant, A, is considered between 0 and 2.

The numerical values used for plotting these curves
were obtained from expressions (7.20) to (7.23) and computed
with the programme FREDIS, shown in Appendix 4. Both
aluminium and steel disc plates show very close values of
the first natural frequency, for each boundary condition.

The clamped-free conditions gives the lowest frequency, for
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either aluminium or steeel discs. The value of this first
frequency increases with the value of the Neck coefficient,

as would be expected. For aluminium plates, only the
sliding-free and clamped conditions were Eonsidered (Fig.7.7).
These two conditions are the most realistic for a squeeze-

-film bearing unit.

7.2.3 Receptance expressions

Also for interest is the prediction of the
amplitudes of vibration of the disc annulus when a force is
applied to the inner boundary. For a force uniformly
distributed along the boundary the amplitude of vibration
of any point will be dependent on the boundary conditions.
The amplitude of displacement caused by a unit of applied

force is called the receptance. The total displacement will

obviously be the product of the receptance times the force.
If the point is situated at a distance r from the center
of the annulus and the force applied at a point located, for
instance, at the inner boundary Ty the receptance will be
'designated by ¢ Bishop and Mc Leod®? de{}yaféd
expressions for receptance for different boundary conditions
and for uniformly distributed forces or single forces. For

uniformly distributed applied force the receptance expressions

are as follows:
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i) Clamped-Free boundary conditions:

applied force not possible.

ii) Ssliding-Free boundary conditions:

_ : 1 ' -
o~ T3 - o, Jo(kr) + 8, Y (kr) = a.I_(kr) +
T fg-F Tp
+ MK (kr) 7] (7.25)
iiji) Pinned-Free boundary conditions:
applied force not possible
iv) Free-Free boundary conditions:
= 1 - -
e - (4,7 (kr) bgY¥  (kr) + a,I (kr)
F-F b
- ADKo(er] (7.26)
The values of Ag_ . and be_p are given by (7.21)
and (7.23) respectively. The symbols AA’AB’AC and AD also

represent determinants whose value is given in Appendix 5 for

each example of boundary conditions.
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STEEL DISC

-1 -

s C is the neck
-2, coefficient

FIG.75 Determinant curves for clamped-free (C-F)
and sliding-free (S-F) boundary conditions
- steel disc annulus.



2| For STEEL DISC
=.2
L C-is the neck
I coefficient
P-F
€4
"—-
ol . Lo
ST ]
7 2
|
-1}
5
=
-Z.k
FIG. 76 Determinant curves for pinned-free (P-F)

and free-free (F-F) boundary conditions
- steel disc annulus.
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FIG. 7.7

~1.

ALUM. DISC

C - is the
neck cocefficient

Determinant curves for clamped-free
(C-F) and sliding-free (S-F) boundary
conditions - aluminium disc annulus.
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7.2.4 Disc Mobility Analvsis

Not all the applied force produced by the exciter

is used to vibrate the disc annulus. Part of it is applied

to the ceramic itself. The other part is applied to the

base and "neck".

Fig. 7.8 shows a schematic diagram of the

bearing unit. 1In this figure F represents the total force

t

generated by the ceramic. The symbols Fc’ Fb and Fd are

used for the components of this force for the parallel

arrangement shown

F. is the force applied to the crystal

which we assume to behave as a spring. The base and neck

behave mainly as a mass, and the force acting on them is Fb.

The force component considered as applied to the disc is Fd'

so that:
F, =
DISC
[T_"__']":T— bR |
_J_EJ_A--__
rﬂ , BASE
i
.( LCRYSTAL
T T T v plane
F
t
e
[@]
F
b
Fd

b Fi = FC + F. + F (7.27)

Z 1S

Fig. 7.8 - Schematic diagram of the bearing u
Total force

voltage applied to the ceramic

force applied to the base

force applied to the disc

force afrlied Te the ceramic
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The receptance (displacement caused by one unit of
applied force) has, for each of these elements, the following

expressions:

i) for a spring with stiffness kc

(piezoelectric ceramic)

o = —% (7.28)

ii) for a mass m, (base and neck)

= - -1 (7.29)

w being the angular frequency of the motion

iii) for an annular disc the receptance

expression is shown in 7.2.3. 1In our case we are interested
in calculating the displacements at the inner boundary. The
receptance, according to 7.2.3, should be designated by % pe

For simplicity we will use « instead, the subscript d

d

referring to disc.

For the model represented in Fig. 7.8, because it
is a parallel arrangement, the total force Ft and the

forces applied to each element are related by the expression

(7.27).

The total displacement, w, is the same for all

elements so,
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F=_Y (7.30)
c o
_ w
Fb_ ab
Because,
F=iF, = (—— + -2 +_2 )4 (7.31)
or,
F =Y (7.32)
“tot
where
_ 1
@ or= ) ) ) (7.33)
+ +
(lb a,c C!d

The receptance expression relating the total force
applied to the body and displacement of the point P (as

indicated in Figs. 7.9, 7.10 and 7.11) can be written as:

. = 1 . (7.34)

tot _ 2
Ko 7wt my, +

*a
This expression and the fact that the displacement

and velocity are related to each other, enable us to work

with a more usual variable of dynamic analysis: the mobility.

The mobility of a point of a body is defined as the ratio
between the velocity of this point and the force applied to

the body.

The modulus of mobility for a point at the radius



175

is, then:

w (7.35)

- .2 1
kg = oF mr

'Mtot

Using the expression (7.35) it is possible to
observe where the maximum velocity response of the system

occurs.

The value of mass my will be affected by the

material used for the base due to variation of density.

The disc material also affects the value of a4

due to variation of D (flexural rigidity).

The value of kc depends mainly on the ceramic
type and dimensions. For a more complete study of the
influence of the material properties, besides the two cases
of disc and base in steel and disc and base in aluminium, two
other possibilities for the mobility calculations are also
considered. One is the base (and neck) in aluminium (dural)
and the annular disc in steel; the other is the base (and
neck) in steel and the disc in aluminium. The four
possibilities of combination, can be summarized as follows:

BASE: STEEL

CASE A {DISC: STEEL

CASE B {BASE: ALUMINIUM

DISC: ALUMINIUM
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BASE: STEEL

CASE C
DISC: ALUMINIUM
BASE: ALUMINIUM
CASE D
DISC: STEEL

Using the expression (7.25) for the disc receptance
it is assumed that a sliding condition at the inner edge is
the hypothesis more likely to interpret the actual condition
at this boundary. The mobility curves for these four s
are plotted in Figs. 7.9, 7.10 and 7.11. 1In these calculations
the ceramic stiffness is taken as being kc = 7.73 x 107N/m ’
from experiments (see section 5.3.3). The mass of the base,
in expression (7.36) also includes the mass of the neck and
it varies of course, with the material and the value of
coefficient. The mobility is expressed in these graphs in
db with reference to 1 dyne x cm x S-la At the resonant

frequency, the mobility reaches a maximum and it is possible

from these curves to determine the resonance of the unit.

The all aluminium unit (case B) has a higher
resonant frequency than the steel one (case A), decreasing
slightly (from 5.2 KHz to 4.85 kHz) with the increase of

the coefficient (coef.) wvalue.
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The lowest frequency is verified for case C, the
aluminium disc with steel base. The highest frequency is

verified for case D, steel disc with aluminium base.
From these graphs it is also evident that:

- The use of a steel base (cases A and C) brings
the frequency down, compared with the aluminium one (cases

B and D).

- The influence of the material of the disc is not
so significant, and for the same base, the differences (cases
A and C and cases B and D respectively) are of the order of
300 Hz to 600 Hz. The greatest difference is verified for

the large value of the coefficient (.5).

- When the coefficient value increases the resonance
freqguency becomes lower for cases of aluhinium base. For the
cases of a steel base the behaviour is somewhat unexpected with
the lowest value for coef =.4. Both. coef =.2 and coef =.5,
present slightly higher values than coef .4 for the resonance

_frequency.

- The cases C and D, when different materials

are used for the base (and neck) and the annular disc, are

purely ideal in the sense that it is assumed that the contact

between the two materials is a perfect bonding. This type of
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contact is very difficult to obtain in pratical models and
the interface effect must be taken into account.

- It is also interesting to notice that, as
predicted in section 7.2.2.2, the aluminium disc (that has
by itself a lower resonance than the steel disc) also lowers

the frequency of the whole unit(disc plus base and neck).

In section 7.2.2 it is shown how the neck coefficient
(ratio between inner and outer radius of the annular disc)
affects definetely the frequency of resonance. For the unit
comprising now the ceramic, base and neck this parameter still
affects this variable, but the material of the base and the
characteristics of the ceramic also influence the resonance
of the unit. Therefore, according to each coefficient, one
should use the material that provideé the best compatibility

of the two resonances, that of the disc. and the total unit

frequency.

In order to compare these results with the actual
performance of the bearing some experiments described in the
next sections were carried out. 1In these experiments only

one Eiéce units are used, and so, only cases A and b will be

considered.
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7.3 EXPERIMENTS WITH FLAT CIRCULAR DISCS

7.3.1 AMPLITUDE MEASUREMENTS

In a similar way to that described in Chapter 6 for
conical shells, measurement for disc motion amplitudes was
performed. The Fotonic Sensor was used for these measurements
with the probe placed normal to the disc surface as shown in

Fig. 7.12.

(a) Steel discs

The first experiments were conducted using discs in
mild steel, represented in Fig. 7.3 The values of coefficient
choosen are .2, .4 and .5*%*,

For coefficient .2 two values of voltage were
applied to the piezoelectric ceramic, 90 volts and 120 volts.

The probe positions are identified in the next
figures by the letters 4 to H with 0 for the disc center.

For coefficients .4 and .5, two radial directions
were considered, Figs. 7.13 and 7.1l4. Reading in these two
directions were taken to confirm the axisymetry of the vibra-
tion amplitudes.

In every case bearing unit was driven (oscillated)
in the range of frequencies 0 to 20 KHz. The resonant fre-
quency was determined when the maximum amplitude occured for

all the points along the discs.

* These particular values were choosen arbitrary.
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Fotonic sensor
probe positions

DISC

Fig. 7.12 - Probe positions for steel disc with coefficient .

cAsEe 2

Fig. 7.13 - Probe positions for steel disc with coefficient
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Fig. 7.14 - Probe positions for steel disc with
coefficient .5

For coefficient .2 the resonance was verified at
4002 Hz. TFor coefficient .4 this value was 6176 Hz and for
coefficient .5, 8567 Hz. The amplitude measurements are

displayed in tables 7.2, 7.3 and 7.4.
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PROBE POSITION

Voltage ;?:fg Al B [ ¢ D | E | F L G | H | O
MOTION AMPLITUDE (x 10~ " mm)

3982 | 8.3 5.1 4.1 | 2.2 | 1.1 ] 0.6 | 0.5 1.0 1.1

3987 | 10.8] 6.5 | 5.1 | 2.5 | 1.4 | 0.8 | 0.7 | 1.4 | 1.7

3992 | 16.7| 7.6 | 7.6 | 4.3 | 1.9 | 1.1 | 1.0 | 2.0 | 2.7

V;ﬁls 3997 | 28.0] 15.3] 15.3| 9.6 | 3.2 | 2.2 | 2.2 | 4.3 ] 6.6
4002 | 68.7| 44.6| 38.2 115.31 9.6 | 5.1 | 5.1 | 8.3 | 8.3

4007 | 25.5] 16.6| 15.3] S.1 | 3.8 | 2.0 | 2.3 | 3.3 | 4.0

4012 | 14.0| 7.6 | 7.6 | 3.2 | 2.3 | 1.2 | 1.0 | 2.0 | 2.1

4017 8.9 5.1} 5.1 | 2,2 {1.2 0.5 0.8 11,41} 1.7

3950 | 3.8 | 3.4 | 2.2 | 1.5 0.9 | - | 0.3 ]0.3| 0.4

3960 | 4.4 | 4.5 | 2.7 [ 2.0 1.1 - | 0.4 |0.4] 0.5

39700 6.4 | 6.1 | 3.7 | 2.5 11.3| - | 0.5 0.5 0.6

39750 7.0 | 7.1 | 4.5 | 2.8 | 1.5 0.6 | 0.6 | 0.8

3980 | 8.3 | 8.5 5.2 | 3.4 | 1.6 0.7 { 0.7 | 0.9

3982 | 10.2| 7.6 | 7.6 | 3.6 | 1.5 0.7 | 0.7 | 1.5

Vifgs 3987 | 12.7]10.2| 9.5 | 4.7 | 1.8 0.9 10.9 | 2.2
3992 | 20.4 | 14.0 |14.0 | 7.6 | 3.0 | 1.5 | 1.7 | 1.7 | 3.6

3997 | 43.3129.3/28.0 | 5.3 | 5.2 | 2.8 | 3.9 ! 3.9 | 6.5

4002 | 89.1]72.5|66.2 [30.5 | 1.1 | 5.6 | 7.0 | 7.0 |12.7

4007 | 29.3| 25.5122.9 |10.2 | 4.4 | 2.8 | 2.3 | 2.3 | 5.6

4012 | 17.8 | 14.0 [12.7 | 4.4 | 2.3 1.3 | 1.3 | 3.2

4017 | 11.510.2 | 8.9 { 2.5 | 1.4 | 1.0 { 1.0 | 1.0 | 2.0
Dizgigge(£;§m 28.4]25.0 | 21.0 |15.4 |12.8 [10.3 | 7.7 | 3.9 | 0.0

TABLE 7.2 Amplitude Measurements for Steel Disc

Bearing (coeff. =

.2).
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PROBE PCSITION |
Voltage [Fed- A [ B | C [ D [ E [ F |6 |0
FePes MOTION AMPLITUDE (x 10”% mm)
6166 | 57.3|57.3| 31.8 | 28.0|12.7]| 0.9 | 0.6 | 0.6
6171 | 108.1(133.6| 95.5 | 76.4 | 38.2 | 2.3 1.2
1 90 6176 | 190.1]178.2|120.9(101.8| 40.7 | 1.5 0.4
g| volts 16181 101.8[101.8] 63.6|50.9 | 20.4 | 1.5 0.3
6186 | 68.7 ] 63.6 | 40.7 | 31.8 |[12.7| 0.5 | 0.4 | 0.8
6191 | 43.3 | 45.8 ] 25.5[17.8| 7.6 | 1.1 .0 | 0.8
Pistance from | ., 51 55 61 22.020.0/15.0| 9.0 | 7.0 | 0.0
centre (mm)
! PROBE POSYTHON
Voltage Fz;g' Ay | Bp [ G | Dy | By By | G| 2
MOTION AMPLITUDE (x 10 % mm
6166 | 95.5| 63.6 | 63.6 | 30.5] 15.3| 2.8 6 | 0.6
6171 | 280.0{114.5/299.1| 78.9 | 30.6 | 8.9
N 6176 | 254.6[203.6|152,7| 82.7" 33.1] 5.1
5 vork. 6181 | 152.7\127.3|101.8| 40.7 | 16.5| 2.5 | o.
S 6186 | 103.1{ 89.1| 70.0 | 38.2| 15.3| 1.5 | 0.
6191 | 63.6| 52.2| 35.6]17.8| 8.3 | 1.8
6196 | 31.8 | 24.2{19.1|14.0] 4.1 | 1.1 | 0.6
DiZEi::e(i;gm 28.0 | 26.0 | 23.0 | 18.0| 14.0 10.0| 6.0 | 0.0
TABLE 7.3 Amplitude Measurements for Steel Disc

Bearing (coeff.=.4),
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PROBE POSITION - (RADIUS 1)

Voltage Cfg?g: i 00 e W O W e W Fp | 6, | H | 8
MOTION AMPLITUDE (mm x 10~ )

8552 | 10.8] 9.2 | 5.3 - | 0.4 | 0.6 | 0.7 | 0.9 | 1.0

8557 | 14.0| 12.7| 7.1 | 0.5| 0.5 | 0.9 | 1.0 | 1.1 | 1.5

| 90 8562 | 25.5| 20.4| 12.7| 0.8 | 0.9 | 1.5 | 1.9 | 2.0 | 2.7

< volts | es67170.0| 57.3| 33.1| 1.7 | 2.4 | 3.6 | 4.5 | 4.8 | 5.9

8572 | 31.8| - | 19.1] 0.9 | 1.4 | 2.2 | 2.2 | 2.4 | 3.2

8577 | 20.3| 17.8| 8.9 | 0.5 | 0.8 | 1.3 | 1.1 | 1.7 | 1.9

Distance from | g 41 25 01 21.0| 15.4 12.8 [ 10.3| 7.7 | 3.9 | 0.0

centre (mm)

PROBE POSITION - (RADIUS 2)

Voltage cf;?g: Ap | By | G | Dy | By [ Fp | G | H |2
MOTION AMPLITUDE (mm x 10™%)

8552 | 7.6 | 5.7 | 5.3 | - | 1.5 | 0.8 | = | 0.9 |0.9

< oo 8557 | 10.2| 7.6 | 7.1 | 0.7 | 0.9 | 1.1 | - | 1.4 | 1.3

m| volts | 8562 |19.1]14.0(12.7 | 1.1 | 1.4 | 2.3 | - | 2.2 | 2.3

3 8567 | 57.3| 38.2|33.1| 2.9 | 3.8 | 5.7 | - | 5.7 |5.1

| 8572 | 34.4 | 20.4119.1 | 1.5 | 2.2 | 3.0 | - | 3.1 |3.1

8577 | 17.8 | 11.5| 8.9 | 0.8 | 1.3 | 1.8 | - | 1.8 | 1.8

Distance from | .5 |53 0 20.0|17.0]13.0| 9.0 | 8.0 | 2.5 |0.0

centre (mm)

TABLE

=

.4

Amplitude Measurements for Steel Disc

Bearing (coeff. =

.5).
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To compare the different modal shapes the

amplitudes for each resonnance are plotted in graphs, Fig.

7.15, Fig. 7.16 and Fig. 7.17. 1In every case the amplitudes
at the free edge are higher than at the center of the plate
(about 10 times) with a node near the connection neck-annular
plate. The increaSe'in voltage caused an increase in
amplitudes too, but the reduced number of voltages didn't
provide the establishement of any precise relationship between
the voltage applied and these displacements. It is possible,
nevertheless, to say that their law of variation is almost

linear in the range studied.
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b) Aluminium Discs

For the aluminium discs the geometry was
maintained, with the same neck coefficients: .2, .4 and .5.
So, only the material was different. The squeeze film bearing

arrangement was also identical to that used with steel discs.

Because for this material the resonnance curves
were much smother, it was pnossible to take a greater number
of frequency readings within the capabilities of the equipment.
The use of a digital oscillator also enabled to set the
frequency more accurately. The amplitudes obtained for the
. several frequencies and coefficients are shown in Tables 7.5,
7.6 and 7.7. The respective probe stations are also presented,

in Fig. 7.18, Fig. 7.19 and Fig. 7.20.
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Fig. 7.18 - Probe positions for aluminium disc with
coefficient .2

Fig. 7.19 - Probe positions for aluminium disc with
coefficient .4
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Fig. 7.20 - Probe positions for aluminium disc
with coefficient .5
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PROBE POSITION
Voltage C?E?EI A | B ] ¢ | D | E | fa | G 0
MOTION AMPLITUDE (x 10 " mm)
4111 {12.8 |10.5|11.5| 6.4 | 1.3 | 0.8 | 1.3 | 1.3
4119 |25.5 | 23.0 | 20.4 | 14.0| 2.8 | 1.8 | 2.9 | 2.6
4120 {29.3 | 25.5| 25.5 | 15.3| 3.2 | 2.2 | 3.8 | 3.3
4121 |35.7 | 28.0 | 30.6 | 19.1| 3.8 | 2.3 | 3.8 | 3.8
4122 |52.6 [ 33.2 | 38.3[21.7| 4.5 | 2.6 | 4.6 | 4.1
4123 |44,6 | 42,1 | 44,6 | 25,5| 4.5 | 3.2 | 5.1 | 4.5
4124 |48.5 | 44.6 | 49.7 | 26.8 | 5.1 | 3.4 | 5.4 | 5.1
4125 |53.7 | 43.4 | 44.6 | 25.5| 5.0 | 3.3 | 5.1 | &.6
4131 (25,5 | 21.7 | 23.0 | 12.8| 2.6 | 2.0 | 2.8 | 2.3
4141 (11.5 | 9.6 | 10.2 | 6.0 | 1.0 | 1.0 | 1.3 | 1.2
V;TLS 4146 | 8.9 | 7.3 | 8.3 | 4.5 | 0.8 | 0.8 | 1.3 | 0.9
4151 | 7.7 | 6.3 | 7.7 { 3.8 | 0.6 | 0.7 | 1.0 | 0.8
4156 | - | 5.1 | 5.6 | 3.1 | 0.6 | 0.6 | 0.8 | 0.7
4161 | 5.1 | 4.5 | 5.1 | 2.7 | 0.5 | 0.5 | 0.8 | 0.6
4166 | - | 3.8 | 4.5 | 2.3 | 0.3 | 0.5 | 0.6 | 0.6
4171 { 4.5 | 3.6 | 4.3 | 2.0 | 0.3 | 0.4 | 0.6 | 0.5
4176 | - | 3.3 | 3.8 | 1.9 | 0.3 | 0.4 | 0.5 | 0.5
4181 | 3.8 | 2.8 | 3.6 | 1.8 | 0.3 | 0.4 | 0.5 | 0.5
4186 | - | 2.6 | 3.2 [ 1.5 | 0.3 | 0.4 | 0.5 0.5
4191 { 3.2 | 2.4 | 3.1 | 1.4 | - | 0.4 | 0.5] 0.4
4196 | 2.8 | 2.3 | 2.6 {1.3 | - |0.3]0.4] -
Distance from o 5 |96 o | 24,0 |18.0 | 11.0 | 7.0 | 3.0 | 0.0
centre (mm)

TABLE 7.5

Amplitude Measurements for Aluminium
Disc Bearing (coeff. = .2).
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PROBE POSITION
Voltage |T¥¢¢'[ A | B [ ¢ | D [ E [ F [ G [ H [ O

c.p.S. -4
MOTION AMPLITUDE (x 10

mm)

6231 {51.0 | 47.2 | 47.2 | 35.7|17.9| 7.0 | 1.4 | 0.6 | 0.9
6236 [186.0[127.5/114.8| 66.3| - |19.1| 2.4 | 1.4 | 9.5
6239 {306.0/293.3/229.6/178.5| 53.6 {15.3 | 1.8 | 1.9 | 5.1
6240 {306.0(242.3|255.1|114.8| 57.4 | 9.5 | 1.5 | 1.6 | 5.8
6241 [293,3(178.3|153.0| 82.9 | 38.3 | 8.9 | 1.3 - 1.7
6242 |165.8 |146.7/102.0| 76.5 | 33.2 | 8.9 | 1.0 | 1.4 -

6243(127.5{114.8| 82.9 | 57.4 { 25.5| 7.7 | 0.9 | 1.3 | 1.4
6244 [114.8{99.5 | 76.5| 51.0 | 24.2 | 6.4 | 0.6 | 1.2 | 1.3
6245(89.3 (82,9 (70,2 38.3|23.0| 5.7 | 0.5 | 1.1 | 1.2

70 6246 |95.6 | 76.5 | 58.7 | 31.9 | 19.1 | 5.1 | 0.4 | 1.0 | 1.1
volts | 51 053.6 | 42.1 | 40.7| 28.1|11.5| 3.8 | 0.4 | 0.8 | 0.9
6256 | 30.0 | 30.6 | 29.3| 20.4| 8.9 | 2.6 | - | 0.8 | 0.8
6261|28.0 | 24.2 | 21.7|17.9| 7.5 | 2.3 | - | 0.5 | 0.7
6266 22.9 | 19.1 |17.8| 12.8| 6.0 | 1.8 | - |o0.5 | 0.6
6271|17.8 | 16.6 | 14.0| 11.5| - - - | 0.4 o0.5
6276 15.3 [ 14.0 | 12.8| 10.2| 4.1 | 1.3 | - - | o.s
6281|14.0 [12.8 | 10.8| 8.3 | 3.8 | 1.0 | - - | 0.4
6286|11.5 |10.2 | 8.3 | 7.7 | 3.3 | 0.9 | - - | o.s

6291|10.2 | 9.6 7.0 | 6.4 | 2.9 | 0.8 - - -
6301| 8.3 | 7.7 5.8 | 4.1 2.4 | 0.6 - - -

Distance from
centre (mm)

28,0 | 24.5|23.0| 20,0 | 16.0 {12.0 |10.0 | 5.0 | 0.0

TABLE 7.6 Amplitude Measurements for Aluminium
Disc Bearing (coeff. = .4).
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~ PROBE POSITION
Voltage f?ﬁ??. A | B | C D E ]-4F | ¢ | o
MOTION AMPLITUDE (x 10 ~ mm)

8700 | 5.4 | 5.2 | 2.3 | - - | 0.4 | 0.4 | 0.5

8705| 6.5 | 6.4 | 2.8 | 1.0 | 0.4 | 0.5 | 0.5 | 0.6

8710 | 8.3 7.7 | 3.3 | 1.3 | 0.5 | 0.6 | 0.6 | 0.6

8715| 12.1}10.3| 5.2 | 1.1 | 0.6 | 0.8 | 0.8 | 1.0

8720 | 17.9| 14.0| 7.7 | 1.3 | 1.0 | 1.1 | 1.3 | 1.4

8724 | 25.5|23.0|10.8| =~ | 1.4 | 2.0 | 1.8 | 2.3

8725 | 34.4 | 25.5|12.1 | 1.3 | 1.5 | 2.3 | 2.2 | 2.4

8726 | 35.1 | 29.3 | 14.0 | 1.4 | 1.8 | 2.4 | 2.4 |.2.8

70 8727 | 35.7| 30.6 | 15.3 | 1.4 | 2.2 | 2.8 | 2.7 | 2.9
volts 8728 | 38,3 33,2|17.9| 1.5 | 2.3 | 2.9 | 3.1 | 3.2
8730 | 34.4 | 30.619.1| - | 2.3 | 2.8 | 2.8 | 2.9

8735| 23.0] 25.5|14.0 | 1.0 | 1.5 | 1.9 | 1.8 | 1.8

8740 | 15.3|15.3| 8.9 | 1.0 | 1.0 { 1,3 | 1.3 | 1.3

8745 | 11.5|11.5| 6.4 | 0.9 | 0.8 | 0.9 | 1.0 | 1.0

8750 | 8.3 | 9.6 | 5.1 | - | 0.6 | 0.8 | 0.8 | 0.8

8755 7.7 | 7.7 | 4.1 | - | 0.5 | 0.6 | 0.6 | 0.6

8760 | 6.4 | 6.4 | 3.3 | - | 0.5 | 0.5 | 0.5 | 0.5

8765| 5.1 | 5.5 | 2.8 | - - | 0.5 0.4 | 0.5
Dizgizze(iigm 27.525.0 | 20.5 |15.0 | 10.0 | 7.0 | 4.0 | 0.0

TABLE 7.7 Amplitude Measurements for Aluminium

Disc Bearing (coeff, = .5).
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7.3.2 Loss Factor

The specimen used in experiments come from
different batches of material. It was considered that this
fact could be correlated with the dynamic behaviour observed.
For this reason the loss factor, n, was calculated for each

case. The loss factor is defined as

n = 1 - Wstatic (7.37)
Qmech wresonance
where:

O ech ~ (already refered in chapter 5)
representing the mechanical Q factor
of the disc material

Wstatic ~ represents the static deflection of

the system (bearing unit plus ceramic)
Wresonance--represents the amplitude of vibration

at resonance.

Assuming a symetrical response curve (amplitudes
plotted against frequency) it is possible to calculate the
loss factor of the material using the half power point

bandwith . The procedure is described next :

The energy dissipated by the system during a

cycle of motion is AE. For an amplitude W so that:

ll’



200

W o= " resonance , (7.38)

L Z

The energy dissipated is related with AE  Dby:

W =—;~ AE (7.39)

Defining the wvariable ; = Z , designating To

r

w a particular value of frequency and'E:u% the angular

frequency at resonance it is possible to establish the

50
following relationship:

F 1

W ; =
X Vii- 352 + o2

(7.40)

Where W is the amplitude of vibration of the
system, F 1is the applied force and k' the stiffness of
the system. After some manipulation the following

expression is obtained (50):

n s — (7.41)

In expression (7.41) Wy and w are

2
frequencies corresponding to amplitudes related to the

resonant amplitude by expressions like (7.38).

This last expression gives a method of calculation

of the loss factor if the response curve of the system is known.

The main difficulty associated with this procedure



is the determination of the exact value of w__ - Using
data from Tables 7.1, 7.2 and 7.3 the response curves for
different neck coefficients W could be plotted, and the
values of wy and w, were graphically obtained. This

Fuhﬁt&d'the calculation of n. The values of n are

represented in Table 7.7.

TABLE 7.7
NECK POINT n x 1073

A 1.25
B .99

.2 C 1.24
D 1.08
A .89
B 1.07

.4 C .92
D 1.42
A .55

.5 B 62
C .62
D -

201
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These values respect, asmentioned, mild steel
discs. From Table 7.7 it is possible to conclude on the
higher loss coefficient of .2 neck coefficient case, n
decreasing with increasing neck coefficient values.

Because the higher amplitudes were obtained, as seen in
section 7.3, for coefficient .2, this seems to dismiss the
hypothesis of the amplitude variation being caused by the
material properties of a particuiar batch. The variation

of the loss coefficient must actually be due to a different
contact between the disc specimen and the ceramic disc. The
fluctuactions, of n for different points, are érobably
caused by the error on the determination of the correct

value of ® L os (frequency of resonance).

7.4 COMPARISON OF THEORETICAL AND EXPERIMENTAL MODAL
SHAPES FOR DISCS,

The modal shape ‘'of the bearing discs is obviously
a function of the force applied to these discs. Using the
expression (7.25) and assuming, as before, a sliding-free
condition for the annulus inner boundary, it is possible
to predict these mode shapes. For this calculation it is

necessary to know this force.
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Because all the bearing elements (annular disc,
base and ceramic) are associated in parallel (see Fig. 7.8)
the total displacement Wb will be the same for points at
radius I'y,e The force applied to the disc alone, Fd’ can

be calculated knowing the disc receptances at these points,

from (7.42):

F, = ——— (7.45)

In this expression ogq is the same variable as
RN (receptance of a point at a radius b, due to a force
at the same radius). The notation ¢q is used instead of

Gy s explained in 7.2.4. The force F varies with

d
frequency, the neck coefficient (because of the influence
of ad),and obviously with the voltage applied to the
ceramic. Using the expression (7.45) the table 7.9 was built
for several cases of coefficient and voltage. The coefficients
choosen, .2, .4 and .5 are the same as considered in
experiments referred in 7.3.1 and 7.3.2. The same criterium
was used for the voltages. The frequencies considered were
those of the resonance (for each coefficient) and also when
the lift of the upper member ocurred. If the theoretical

resonance frequencies were taken instead, the values of the

receptance would be infinite because in the expressions of



displacement, W, for a point at a distance b fremm the

center of the disc is then:
F (7.42)

The force Fd is the force applied at the disc inner
boundary. To calculate this force one needs to know the
total force Ft' which is related to the voltage across
the piezoelectric ceramic by the constant 933 (see
section 5.1.2.3). The subscripts used in this constant
indicate that both the generated force and the applied
electrical field have the same direction (the =z axis,

defined in chapter 5). For a PZIT - 4 ceramic,the value

of this constant is (Table 5.2):

933 < 26.1 x 10—3 volt meter/Newton

Designating by e, the voltage applied to the
ceramic, tc the ceramic thickness and Ac the ceramic

area normal to the direction of the electrical field, Ft

is:

(7.43)




For the ceramics used in this work the

thickness, tc, and diameter, dc' are (fig. 6.2)

t =6 x 103 m and

38 x 1073 m

[o])
|

Substitution of this wvalues in 7.43 results in:

F, =7.2 e (7.44)

In (7.44) F is expressed in Newtons and e

t o)

is expressed in volts . Table 7.8 shows the values of

the force Ft for the voltages used in experiments:

Voltage, e, Force, Ft
(volts) (N)
60 432
70 505
90 649
120 866
TABLE 7.8

Generated force due to voltage
applied to the ceramic

205



206

Because all the bearing elements (annular disc,
base and ceramic) are associated in parallel (see Fig. 7.8)
the total displacement W/ will be the same for points at

radius r,. The force applied to the disc alone, F

‘can
t

dl
be calculated knowing the disc receptances at these points,

from (7.42):

F,. = —— (7.45)

In this expression is the same variable as

s
Sb (receptance of a point at a radius b, due to a force

at the same radius). The notation @4 is used instead of

Gy as explained in 7.2.4. The force Fd varies with
frequency, the neck coefficient (because of the influence

of ad) and obviously with the voltage applied to the

ceramic. Using the expression (7.45) the:table 7.9 was built
for several cases of coefficient and voltage. The coefficients
choosen, .2, .4 and .5 are the same as considered in
experiments referred in 7.3.1 and 7.3.2. The same criterium
was used for the voltages. The frequencies considered were
éhose of the resonance (for each coefficient) and also when

the lift of the upper member ocurred. 1If the theoretical

resonance frequencies were taken instead, the values of the

receptance would be infinite because in the expressions of
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the receptance the determinant of the natural frequencies
appears as a factor in the denominator (see section 7.2.3).
As it is zero at resonance the receptance becomes infinite.
One advantage of using the experimental values of the
frequency is to provide a straight comparison of the
predicted mode shapes with those obtained experimentally,
i.e., the displacements in both cases respect the same
frequencies. With the values of Fd and calculating the
receptances for several points along the disc radius

Sp;ogramme FREDIS) the curves of Figs. 7.15, 7.16 and

7.17 are obtained for steel discs. For aluminium discs a
completely similar procedure can be used. For this case
the theoretical mode shapes are plotted in Figs. 7.21, 7.22

and 7.23.



Coefficient, frequency, £ voltage, e total disc motion amplitude,wb Force
COEF. (c.p.s) (volts) receptance,o _|receptance,ao -5 applied to
-8 t -8 d (10 “m) the disc F
(10 "m/N) (10 "m/N) (N) d
3879" 120 1.82 88 1.57 1784
.2 C
4002* {90 35 1.03 .67 774
120 .89 1.029
90 1.8 .25 138.9
-4 6176 120 +39 .31 184 7
/ P g
5 90 .22 66.7
6260+ .34
120 3.3
.29 87.8
.5 8567* 90 .13 3.4 .08 23.5
NOTES: + lifting frequency TABLE 7.9 - Summary of results

* resonant frequency

for theoretical modal shapes.

€0¢



7.5 ALTERNATIVE DISC BEARING DESIGNS

7.5.1 Ribbed Steel Disc

One disc type also investigated is represented
in Fig. 7.24. Basically it is a disc with a central neck
with coefficient .2 (equivalent to a 12 x 1073 m diameter),
but with ribs of thickness equal to 3 x 1073 m spaced at 909

degrees. This disc is fixed with a central screw to a base.

Amplitude measurements were performed spaced
of 5 degrees. The maximum amplitude value was
registered at a frequency of 8242 Hz. The voltage input
was 70 volts. The amplitude varied in this case with the
angular coordinate 6 from a pointzﬂ'middle distance between
ribs (point M) to a point situated corresponding to a rib
(point R). All the intermediate points and the two referred
extreme points were located at 27.5 x 10 °m from the
center. The amplitudes measured at all the points were very
small but they increased from the point R to the point M.
For this reason this model is not suitable for use in squeeze-
~film bearings, at least for this rib thickness. This

corresponds to atwuvhmetric mode of vibration caused by the
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existence of this ribs. The frequency of resonance is

much higher than for the disc without ribs (f}_= 4002 Hz).
The effect obtained by use of the ribs, change in the
frequency of resonance, can not be properly used because

the amplitudes are very small compared with those obtained

for the same coefficient and with a nonribbed disc. The main
reason for this occurence is the existence in this model

of a new interface between the ribbed disc and the base.
Unless all the unit (disc and'base) is obtained by casting
this interface will always be present. From the results
obtained it is possible to infere two major conclusions.
First, the shape associated with the bearing surface presents,
even for small differences, significant changes of the
resonant frequency. Secondly, any asymetry of the

geometry must be discarded as the amplitudes of vibration
will reflect this asymetry. If the amplitudes of vibration
are not radially symmetric, radial flow occurs and this is not
benefitial in terms of load capacity.

ateral view q
L Planﬁ view
3

Fig. 7.24 - Ribbed steel disc
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7.5.2 Scolid Base Prototype

The experimental bearing configuration is
illustred by Fig. 7.25. This general arrangement was dictated

by the following objectifs:

i) use of electrical power available for

maximum rigid body vibration amplitude.

ii) best amplification of the amplitude at

the outer edge.
iii) correct positionning of the ceramic

The aims expressed by i) and ii) are easily
understandable from the point of view of the bearing
performance, as they respect the excursion ratio. The
condition iii) is determined from the necessity to
guarantee good ceramic-base contact and prevent the
ceramic deterioration, referred in Chapter 5. A minor
requierement to be satisfied was the immobilisation of the
non acessible nuts () of the tie rods used to thighten

' the ceramic.

To satisfy the conditions referred in i) and ii)
two ceramics (:) were used acting on only one supporting

member (@) . The supporting member being a disc unit with
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coefficient .4. This value of coefficient was choosen
because it gave the best results in experiments detailed

in the previous sections. Whenever a solid base is

referred it means the steel cylinder where piezoelectric
ceramics and disc bearing (:) are fixed to.The electrical
signal is applied to the ceramics through the wires (:)
connected to the disc‘bearing and to the central electrode

C) , insulated by the rubber strip (:) .

Underneath the cylinder three slots were machined
providing immobilisation of the nuts (:) which are not

accessible.

A recess was designed on the upper base of the
cylinder to locate the lower ceramic disc. A similar recess
in the supporting member would provide ghe same function
for the upper ceramic. It was verified in previous
experiments that 'ceramics tended to slide as the bolts were
thighten up. Special care was requered to prevent the ceramics
to get damaged when in contact with the bolts threads. However
‘no alteration was done to the supporting member to maintain

the same overall.
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7.5.2.1 ANALYSIS OF THE CYLINDRICAL BLOCK

The steel block supporting the bearing can be
analised using simple theory. One pretends to know a first
approximation of the resonance frequency of the block. It
must be stressed that this is only a rough approximation
justifiable for its simplicity. Actually,this theory only
applies to a long thin rod vibrating axially, and where the
ratio length to diameter is not greater than .6 - in our case
this ratio is 1. A more accurate analysis requires the use
of a finite element approach. However, the complexity involved
by this method justifies this simple analysis bearing in mind
that the results represent only, as referred, a first

approximation.

Considering a bar subjected to a steady axial force any
cross section of this bar is subjected to a compressible or
tensile stress.  When this force varies with time and for
any element defined by two planes normal to the axis of the

bar we can establish the following governing equation:

(7.48)

with the nomenclature:



o

£
A

X
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Young modulus
longitudinal displacement
external force

bar cross sectional area

axial coordinate

The basic approximation involved in the

derivation of this equation respects the non existence of

displacements normal to the bar axis. Because the cylinder

is fixed to the ground we also assume a clamped condition

at this end. For the other end a free condition will be

considered. The expression of the natural frequencies is:

2(r = 1) wa

5T, (7.49)

The subscript r indicates the order of the mode.

The variable L represents the length of the bar (cylinder);

a is equal to y—%-

density.

.
’

E is the Young modulus and p 1is the

For the dimensions of Fig. 7.27 one obtains:

f = 44.767 KHz

Even taking this frequency as an approximated

value it is sufficiently high to guarantee that the steel

base (cylinder) is not affected at squeeze film bearing

working frequencies.
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7.5.2.2 AMPLITUDE MEASUREMENTS

Amplitude measurements were made using, as
before, the Fotonic Sensor (described in Chapter 4).
The probe was positioned as for the case of the aluminium
disc with coefficient .4 (section 7.3.1). The Table 7.11
shows the results obtained. For case a), the disc had a
small cone frustrum at the outer edge, Fig. 7.28. 1In a
pratical application this shape would provide some radial

support. The frequency of maximum amplitude, 7598 Hz, is

higher than for the previous experiments (for disc of coef.
.4 the frequency was 6239 Hz). For the same disc, referred
in 7.3.2, with coefficient .4, the resonant frequency with
this arrangement was verified at 6170 Hz and this case is
indicated in Table 7.11 as case b). In this case the
amplitudes are smaller than in the case:a). For these two
experiments the electrode used had a thickness of 10—3 m
and was in copper. Another experiment using an electroée

3

in steel with a thickness of 5.1 x 10 " m is considered

in Table 7.11 as case c¢).

In all these tests the amplitudes verified are
smaller than with double arrangement. The possible reason

for these lower amplitudes is that part of the force is spent
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AV

2 | & ? PROBE_POSITION

E%SA Bl_ClDlE F-QLGLHIO
H< MOTION AMPLITUDE (x 10 = mm)
7583 | - - | 57.431.9 |24.2 | 5.4 | -% | 0.4
7593 | - - |140.3|63.8 |35.7 | 7.7 | =% | 0.4 .
7598 | - - - |89.3| - | - ~% | - -

a) 17603 - - |102.2|63.8 |38,3 | 8. -% | 1.1

- |7613] - - {53.6(51.0 [17.9 | 4.5 | -% | 0.8 |0.9
7623 | - - | 31.930.6 |11.5 | 2. - 0.6 -
6130 | - - 110.2(10.2 | 4.1 -x 0.6 | = -
6140 | - - | 14.0|12.7 | 5.4 | 1.1 |0.7 | - -
6150 | - - | 17.9|16.6 | 6.4 | 1.2 | 0.8 [0.5 %
6160 | - - | 21.7|21.7 1 7.7 | 1.4 | 0.9 | 0.4 | =%

P) le170]| - - | 23.0]23.0|7.9 [ 1.5 |0.8 |0.4 | -
6180 | - - | 21.7]|21.7 | 7.0 | 1.3 | 0.7 - -
6190 | - - 1 20.4|18.5| 6.4 | 1.1 |0.5 | - =%
6200 | - - | 15.3{15.3 | 6.0 | 0.8 ~% | = %
6155 | - - | 26.0| =~ 8.9 - - - %
6165(33.2 | =~ | 29.3|16.6 [10.8 | 2.2 | - - ¥
6175{38.3 | - | 31.9| 20.4 [12.7 | 2.9 - - %
6180 |38.3 | - | 35.7] 30.6 |15.3 | 3.1 | - - %

) l6185(37.0 |- - | 31.9| 21.7 |13.1 | 2.6 | - - -
6190 [34.4 |~ | 38.3|18.5 [11.5 | 2.3 | - - %
6195(31.9 | - | 28.0] 19.1 [10.8 | 2.2 | -~ - e
6205(28.0 | - | 25.5{15.3[.9.6 | 1.8 - - ~%

Distance

from 28,0 | 24.5| 23.0| 20.0 [16.0 {12.0 [10.0 | 5.0 | 0.0
centre(mm)
* NOTE: Measurement values of order of equipment noise
level.
TABLE 7.1 Amplitude Measurements for Prototype

S.F. Bearing.
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on elastic deformation of the cylinder block. This seems
to be confirmed by the results obtained with the different
electrodes, cases b) and c). In fact the copper electrode
provided smaller amplitudes than the steel one. The
performance of the disc of case a) is somehow unexpected as

the resonant frequency is higher than in cases b) or cj.

The conclusions from this experiments can be

resumed by the following points:

i - Although the arrangement in study should
enable all the power to be use by one
bearing element alone the actual displacements

are smaller than with the double arrangement.

The possible cause for these lower amplitudes
is that part of the force is spent on eiastic deformation -
of the cylinder block. This seems to be confirmed by the
results obtained with the different electrodes, cases b)
and c)*, with the copper thicker electrode providing smaller
amplitudes than steel one. The performance of disc of
case a) is somehow unexpected as the resonance being higher

than b) or c¢) the amplitudes are also greater.

* cases b) and c) use the supporting-member shown.
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7.6 DISCUSSION OF THEORY AND EXPERIMENTS FOR DISCS

7.6.1 INTRODUCTION

In this section we will discuss the theoretical and
experimental results for discs. This discussion will be divided
into two major sections:

a) The dynamic behaviour of the bearing supporting

members (steel and aluminium discs).

b) The performance of the squeeze film bearino when

enclosed in the supporting members mentioned in a).

Here, the performance of the squeeze film bearing, will

be analysed by considering the relationship between load capacity

and film thickness for the various neck coefficients.

7.6.2 DYNAMIC BEHAVIOUR OF THE SQUEEZE FILM BEARING SUPPORTS

a) Resonant Fregquency

The results of dynamic experiments performed with discs
and the corresponding theoretical results are shown overleaf in
Tables 7.123) and 7.llb}For each of the two disc materials, three
neck ratios, ra/rb, have been considered: 0.2, 0.4 and 0.5. For
the 0.2 ratio a special design (a ribbed version detailed in se-
ction 7.5.1.) is also presented. These neck ratio values were ar-
bitrary chosen.

To obtain the experimental values of the freaquency at

resonance (shown in column 3 of Table 7.12 a) the Fotonic Sensor



Frequency at resonance
I;Igc{;}lfocoeff. (c.p.s.) Freq. at Lift
T (c.p.s.)
o experimental | calculated
b
.2 4002 4300 4125
3 617 © 7500 6260
LK
.5 8567 10600 no lift
.2
(ribbed) 8975 - no lift
Table 7.12 a)

Canparison between the resonant frequency

and the frequency at lift for steel discs.
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LIFT L.OAD ELECTRICAL INPUT
Neck coeff.
ratio .
?a- Recorded gap at 1ift. W power voltage
b By (mn) (kgf) (Watts) (Volts)
.2 10.0 x 1077 6.65 x 10 .190 120
-2 -2
8.2 x 10 6.65 x 10 .150 90
-4 22.0 x 10 6.65 x 107~ .190 120
4 18.5 x 10~ 13.30 x 102 .190 120
.4 17.5 x 107 15.30 x 10™° .190 120
. *
.5 No lift - .190 120
.2 No lift - .190 120
(ribbed)
+ very wislsble Table 7.12 b)

Experimental relationship between load and lift for the

squeeze film bearing using steel discs.
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readings were used. The details of this evoluation are given in
section 7.3. For comparison purposes the corresvondina calculated
freguencies are also shown in column 4. The calculation is presen
ted in section 7.2.2.2. The resonant freauencv varies with the
neck coefficient ratio with ths highest value when the ratio is
5. The lowest value is when it is 2. The theoretical values fol-
low the same pattern although they differ in magnitude from the
experimental ones.

The fact that a considerable change in the resonant
frequency of these discs is produced by variation in the neck
coefficient seems to be very important, as it enables a simple
way to control this freguency. The reason whv the expected (cal-
culated) values do not closely agree with the experiments is

difficult to ascertain. It could be explained by an inexact boun

N/

/é; dary condition assumed in the theory for the disc inner radios
(r. ) »¢p{,* )
I’b . \’\ L
s s 3
A clamped condition was assumed there with 7%}::0,where

w is the displacement.
Unfortunately it is not possible to introduce a more
realistic condition in the existing theory. On the other hand no

comparison has been made before bv other workers between the

theory used to obtain these freguencies and experimentals results.

Therefore; it is rather difficult to state if this difference is
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due to the theory itself or to the assumed boundary conditions.

It should be noted that the discrepancy increases with the neck

ratio, from 7.4% to 23.7% ¢ 5“},* i e

It is not the purpose of this Chapter to repeat con-
clusions already presented but EEfEfBlZ,it was not well stressed
that in all the experiments the disc thickness has been conside-
red as constant (e =0,003m), and this suggests the followina co-
mments : it is obvious that changes in the resonant frequency
are to be expected if the thickness varies from specimen to
specimen. The amplitudes of vibration will also be different, the
thinner the disc the bigger the amplitude, if the input power to
the piezoelectric ceramic is the same. The effect of thickness
on the dynamic behaviour of squeeze film bearings should alsobe
analysed. However, in this work, the influence of the neck coef-
ficient was considered as more importan?. Actually, the neck size
defines the working frequency of the bearing and also the allow-
able space for the bolts fixing the disc to the piezoelectric
ceramic.

Comparison between‘émplitudes of cone and discs having
the characteristics already referred to in Chapters 6 and 7,
respectively, indicate :

i- Consideriné the same input power the greater ampli

tudes occur with discs, but for -a cone with the same overall size
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it has a much higher resonant frequency than a disc. In fact
the highest resonant frequency of a disc (in this case with a
necl. coefficient of .5) was 8567 cps and the cone used in expe
—_—

riments resonated at 18 Kcps.

ii - The disc with a neck coefficient of .4 gave for
both steel or aluminium cases the highest amplitude, for the
same power input. This means that for a given piezoelectric ce
ramic there is one value of coefficient ratio for which the am
plitudes obtained are maximum. Whilst no variation of the neck
coefficient have been carried out for conical bearings, this
suggests that a similar effect should be expected.

iii - Because the piezoelectric ceramics are part of
the vibrating system their dynamic characteristics (mainly the
stiffness) will defenitely affect the amplitude of vibration of

the bearing member.

7.6.3 LOAD CAPACITY

The load capacity is some times of great significance
for the user of this type of bearing. For the squeeze film bea-
ring it has not been possible to exceed a mere 1/2 1b (aproxima
tely 20 Newtons) for the size and power input considered in this
work. The load capacity of the bearing is the total force that
can be applied to the bearing supported member whilst maintaining

the least film between this member and the supporting member. It

\
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will be denoted by ¥ in this work. Actuilly, we are dealing
with a mean value of gap and this for several reasons. One
is that the supporting member is vibrating, and the second
is that the amplitudes of vibration are not the same for all
radial points on the supporting member. The third reason is
that the experimental measurementsonly read the mean gap as
indicated by the 1lift of the load members.

Whilst this load capacity, ¥, is what the bearing
user will need to know, it is necessary to introduce another
variable, the instantaneous load capacityv, Winst'
To obtain the lcad cavacity, , from the instantaneous

load capacity, W an integration in time must be made.2As

inst’
the instantaneous pressure, p, varies with the disc radius the

value of Wi is obtained according to (7.45) :

nsit

r

Wepop = Jo 27 p rdr ‘ (7.45)

Where p is the actual pressure value at a distance from
the disc center, r, and r, is the radius at the bearing (disc)
outer edge, as shown in Fig. 7.2 .

Defining a nondimensional instantaneous load capacity,

*
inst

* Winst _ Winst

A = ; = (7.4
inst Atmospheric load pressure 1 p r 7-46)
o8

then,
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2 a
W% =—== [ prdr (7.47)
inst para 0
or,
W* =-—£;— ;Z L rdr (7.48)
inset r o p

a

Defining a nondimensional pressure as P= —g— and

a
the nondimensional coordinate Fk = r R
: a
1
W* =2 fJ PR dRr (7.49)
inet 0

The time average of W%n

for one cicle of plate
st P

motion represents the nondimensional load capacity of the
bearing, W*. Using also the nondimensional variable T = wt,w
being the frequency of vibration of the supporting member, and

integrating for one cvcle :

27

1
= _L *
W = fo W st dT (7.50)

In terms of the actual load, ¥ :
= * 2
W =W P, T, (7.51)

The usable load capacity, Wu, being :

- _ 2 _ * _ 2 K
Wu-w TP, T, (W 1) w Pa?, (7.52)

For one of the discs used in the experiments a

numerical calculation of W;n was performed. The disc

st

characteristics are as follows :
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material L[] » . . . - - - L[ ] . L * L L 4 steel

coefficient (neck ratio) . . . . . . .4

frequency of resonance . . . . . . . 6171lcps

frequency used for the calculation . 6171 cps

The Reynolds equation (3.44) and the numerical pro-
cedure presented in 3.3.3 for its intggvékion (Crank-Nicholson

7~

formulation) are used. The film thickness values are taken from
the plain curve if Fig. 7.17 (theory), the increments AX=1/38¢
and AT = 1/31. These values are choosen in accordance with the
suggestions presented by Michael in (5). The corresponding
computer programme is shown in Appendix 3.

To compare the pressure distribution with the dyna-
mic behaviour of the disc, its modal shapes and the correspon-

ding values are shown in the following pages, (Figs. 7.2¢ a) to

7.2 b)),
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rest position edge #

Fig. 726 a) disc modal shape for

f=16171

coeff. = .4 and
Hz for T = 1.5 AT.

Fig 726 b) pressure distribution along

to modal

shape shown

in

radius corresponding
Fig. 726 a).
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Fig. 7.27 a)

disc modal shape for coeff = .4 and
f=6171 Hz for T = 4,5 AT.

Fig. 727 b)

pressure distribution along radius corresponding
to modal shape shown in Fig. 7.27 a).
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_____,_-—'/ disc edge 7
B
Fig. 728 a) disc modal shape for coeff = .4 and
f=6171 Hz, value T = 7.5 AT.
Fig. 728 b) pressure distribution along radius corresponding

to modal

shape shown

in

Fig. 7.28 a).
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1.0

0.8
0.6 }
04 |

02

- disc edge 7
-02 ¥

-4 }

~-0.6 |

Fig. 729 a) disc modal shape for coeff =.4 and
f =6171 Hz, value of T =16 AT.

.5 }

0.5

Fig. 728 b) pressure distribution along radius corresponding
to modal shape shown in Fig. 729 al.
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Fig. 7.30

a)

disc modal shape for

coeff = .4 and
f = 6171 Hz, value of T=19 AT.
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Fig. 7 30

b)

pressure distribution along radius corresponding

to modal shape shown

in

Fig. 7.30 a).
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disc edge 7

Fig. 7.31 a)

disc modal

f=6171

shape

Hz, value
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of

coeff = .4 and
T=22 AT.
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Fig. 7.31 b) pressure distribution along radius corresponding
to modal

shape shown

in

Fig. 731 a).
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The figures shown at the top of these pages refer to~
the modal shapes. These graphs have a vertical axix graduated
from -1.0 to 1.0 and the variable represented in this axix is
a nondimensional amplitude A* = ﬂ) where A is the actual
amplitude of vibtration and %, is the mean gap between the
bearing members.

For the example analysed the value retained for #,
is : v ohy = 1% 1073m. The figures at the
bottom of each page represent the nohdimensional pressure
P::ii— versus the nondimensional radius I?:-%;- for the same
dynamic conditions (frequency, material, coefficient ratio).
The fiim thickness, #, is obtained from h=ho-A, with the
A values taken from the corresponding modal shapes in Figs.
7.24 a) to 7.29 a). Theses modal shapes are represented by the
disc surface and show a node near the inner radius, ry . At the
center line (C.L.) the motion has an 6pgosite phase angle to
those of points of the annular area, from ry to r, . This
means that when the neck center is moving down, for instance,

the annular disc moves up and vice-versa.

The pressure values can be integrated for one cycle

according to equation 7.47 thus calculating W;nst. Values
of W;nst are plotted for the particular case shown in Fig.

7.32. This curve is similar in shape to that obtained
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by other methods (discussed in Chapter 3) but it is more

accurate as it accounts for the nonuniform excursion.

7.6.3.1 THEORETICAL RESULTS

The nondimensional load capacity, W*, is, then,.
obtained through expression (7.50)'as it is in fact the time

average of W;n during one cycle of the periodic motion. A

st

simple Simpson's role method can be used to obtain the value

of w*. oOf course,this value of W* is related to a particular
mean gap (clearance) between the supported ans supporting
bearing members and the consideration of several values of
this clearance will give corresponding values of W*. As py*
does not take account of the load produced by the ambient

W,
atmosphere, the nondomensional variable W* = u2 is preferred

m para

for the following calculations with W, . already defined in ex~

pression (7.52), and related to W* by

W,= (W= 1) np_ r’ (7.52)

The nondimensional variable W; can be Fhen expressed
in terms of W* by

Wu-fW*—l . (7.53)

The variable h, . which represents the mean gap be-

tween the bearing members can be nondimensionalised dividing

by Ty the disc outer radius. The two variables, ﬁg and
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H*:-%ﬂ—, are plotted on one graph for the three disc examples
a

studied with coefficient values equal to .2, .4 and .5.

The disc amplitudes used to compute g*, and therefore
W; are those of the‘experimental curves of Fig 7.15 (for coeff.
.2) ; Fig 7.16.(for coeff. .4) and Fig 7.17 (for coeff. .5).

In all three cases %: increased with reduction ofH;.
This was predictable because a decrease of Hg ; O ho as r, is
a constant, gives higher values of the excursion ratio parame-
ter, ¢ (defined in 2.2.3.1), and the load capacity increases
with ¢ , as referred in (6).

The minimum allowable value for H} is given in each
case by the maximum amplitude of vibration of the disc, i.e.,
the value of ho that equals A (2, being the maximum amplitude
of vibration), when the bearing members will be in contact, as
in Fig 7.33. This explains why for curvg a) (for disc with coeff.
.4) it is not possible, in this case, to assume values of E;
under 3x10 ", If H is too large, the value of s, will be much
greater than the amplitudes of vibration . The compression
effect is negligible and so it is the load capacity of the bearing,
and values of W; smaller than 2x10° are not represented. The
usable region for each of the mentioned cases is then represented

by the corresponding curve. It is interesting to notice that

due to its vibrational characteristics the three disc have very
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Fig. 7.33 Comparison between theoretical and experimental
s.f. bearings.

THEORY |- curve a)-neck coefficient .4 at frequency 6176 Hz
- curve b)-neck cocefficient .5 at frequency 8567 Hz
numerical work l- curve c)-neck coefficient .2 at frequency 4062 Hz

PAN'S r— curve a')-neck coefficient .4
- curve b')-neck coefficient .5
THEORY (- curve c')-neck coefficient .2

r o - neck coefficient .4
EXPERTMENTS A - neck coefficient .5 (very unstable)

L O - neck coefficient .2
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different performances from the point of view of the load
capacity. Obviously, it is possible to drive the piezoelectric
cerémics with a smaller power input which will decrease the
value of the allowable mean clearance, h, , ie, without
interference between the two bearing members due to their
contact.

From the Fig. 7.32 the following conclusions can

also be drawn :

i - If the load has an imposed value, which means
that the value of W% is fixed, instead of h,, it is possible
to conclude that the disc with 0.4 neck coefficient ratio will
give the higher 1ift, i.e.,,;hé higher clearance between the
bearing members. This is caused by the higher amplitudes of
vibration for this particular neck coefficient which produce

higher values of the excursion ratio, e.

ii - Comparing now the bahaviour of the two other
cases, discs with coefficient .5 and coefficient .2, whilst
the first case presents slightly higher amplitudes and therefore
higher excursion ratio values, the behaviour of the .5 case is
better from this point of view. The only explanation for this

fact is the higher working frequency.
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iii - The experimental values of the load capacity,
denoted by small triangles in Fig. 7.33, are lower than the
theoretical ones for the same bearing clearance. One reason
for this fact could be the damping effect of the air film on
the disc amplitudes. Because the filﬁ thickness for the load
capacity calculation is derived from the disc modal shapes,
without the air film, and therefore the excursion ratio values
result overestimated. This fact originates a higher load

capacity than the actual one.

iv - Comparison these results with those forecasted
for non flapping, rigid discs and computed with the Pan's
asymptotic theory (141 ) can now be made using the curves g, b*

and ¢ of Fig. 7.33.

™

\ [3 ) A T _N\\\
Itywas considered[i»uniform amplitudetvaibration)

along the disc radius and equal to the disé.eénéér &giue,
obtained, for each case, from Figs. 7.15, 7.16 and 7.17.

The relative position of the three curves is the
same as with curves a, b,e¢, but for the samerrdimensional film
thickness the corresponding load capacity is much lower than
the theoretical values, or the experiéental ones.

It is possible then to conclude that the flapping

effect produces a better performance from the point of view of

ke
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.

the load capacity of the bearing. In practical cases . ': also
more realistic to use a nonuniform amplitude analysis because,
depending on the dynamic characteristics of the member there

will be always some degree of flapping.
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7.6.3.2 EXPERIMENTAL RESULTS DISCUSSION

a) Steel Discs

The experiments to obtain the actual value of the
load capacity of the disc bearing are similar to those of the
conical bearing study detailed in section 6.4..The main diffe-
rence is that a thin disc is now used as the upper, supported,
member. For disc shaped bearings the load capacity is signifi-
cantly lower than for the conical bearings. So, for the expe-
rimental arrangement used, it was only possible to impose a
maximum of three different loads. In the case of the .5 coef-
ficient disc it was not possible to obtain the 1ift of the
supported member within the available power input to the pie-
zoelectric ceramic. The disc with coefficient .2 produced the
lift of the upper member at a frequency, (designated hereafter
as the lifting frequency), of 4125 c.p.s., as shown in Table
7.12. When the load increases the gap bétween the supporting
and the supported member decreases. Finally, the disc with a
neck coefficient equal to .4 produced lift at 6260 c.p.s., i.
e., a value slightly higher than the resonant frequency of the
" supporting disc (3" = 6176 e.p.s.). For this specimen two
values of power input were applied fo;-a fixed load value, this
load being the upper member's own weight (6.65 x Jo-qu~ 1.47 %

-1
X 10 %b). With .190 watts of power input (corresponding to
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120 volts across the piezoelectric ceramic, the 1lift, gap be-
tween the bearing members almost doubled that found with .150
watts (equivalent to 90 volts across the ceramic). The respec-
tive values of h, were 15.24x 10 °m and 8.15x 10" m. These
measurements where obtained with the Wayne Kerr capacitance
probe deecribed in section 6.4. All numerical values of the
applied loads, corresponding lifts and the experimental condi-
tions are pfesented in Table 7.12% page 22(, The comparison
between the results provided by theory presented in 7.6.3 and
these experimental values is shown in Fig. 7.33. The theoreti-
cal results overestimate the 1lift but it should be mentioned
that they don't refer to the same fregquencies. The theoretical
ncalSurels  Glinsiel
curves are obE;IHea—gE\theF;egS;g;E’E;equency of the correspon-
i
ding disc. So, for the coefficient .5 the frequency is 8567
c.p.s.; for coefficient .2, the frequeney is 4062 c.p.s.; and
for the disc with coefficiene .4 the frequency is 6176 c.p.s..
The experimental values represented in the the same Figure are
obtained at the lifting frequency of each disc. At these fre-
quencies the amplitudes of vibration are much smaller than at
the resonant frequency. To explain the non coincidence of the
two frequencies, the lifting frequency and the resonant fre-

quency, it should be remembered that the resonant frequency is

for a free moving disc. In other words the resonant frequency



243

values are obtained without the upper member and the confined

squeeze film. These two elements could cause a shifting of the
resonant frequency of the order that is observed, i.e., 1.9%
for .2 coefficient and 1.3% for .4’coefficient. For the .5

disc it was not possible, as already referred, to detect any

1
i

) it
situation of 1lift. A S

b) Aluminium Discs

These same experiments were prepared for the alu-
minium discs. However no lift occured for these bearings and
two reasons can be advanced for this : the aluminium discs are
more prone to surface distortion during grinding than the steel
ones, whilst the same effect occurred with steel disc with .5
neck coeeficient; the other possible cause of poor performance
of these discs is the deterioration of the piezoelectric ce-
ramics, some surface damage being appargnt after the operations

of dismounting and reassembly of the bearing unit.
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CHAPTER EIGHT

SUGGESTIONS FOR FUTURE RESEARCH

One of the greatest gaps in the investigation of
squeeze film bearings is the simultaneous treatment of both
theory and experiment, so that correlation of results can be
obtained. Most of the theoretical analysis of gas'behaviour
is well treated and the contribution of COOKE (30) is very
valuable in this respect. However, it is not possible to
calculate the final performance of this type of bearing by
assuming the gas to be confined in hypothetically positioned
surfaces at each instant. The fact that the actual position
of the supporting member surface varies at each instant causes
the analysis of these bearings to be quite different from that
used for externally pressurised gas beaéings. The dynamic
behaviour of the supporting surface must be known therefore.
This makes it important also to study the vibrating piezoele-
ctric ceramic characteristics.

Therefore the following suggestions are made as a

continuation of this work :
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Theoretical Work

i) A finite element approach for the dynamic
analysis of the conical bearing. This study
could be performed by considering the total
cone as subdivided into several conical
elements and then calculating the mass and
stiffness matrices for the total cone as
made up of these elements. Then, it is
possible to include in these matrices the
mass or stiffness of the base, mneck and
piezoelectric ceramic. This analysis also
enables the ring,which is formed at the
cone outer edge and referred to in Chapter

Six to be considered.

Using this analysis it is possible to
calculate the natural frequencies as well

as the modal shapes.

ii) Using data from i), ie, the modal shapes of
the conical shell, the load capacity for the
same bearings could be calculated using a
numerical method based on the Reynolds

equation.
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Experimental Work

i)

ii)

iii)

One of possible improvements to the squeeze
film bearings is to use glue to ensure contact
between the ceramics and the electrodes.
Therefore the émplitudes of vibration for discs
considered in Chapter 7 can be investigated when

employing a glue like Epoxy or an Araldite Type,

discribed in Ref. 63,

According to the values obtained in i) if they

are more favourable (higher amplitudes) than
those obtained using fixing bolts, an investigation
of the 1ift, frequency and load capacity can be

performed.

Another possible ceramic arrangement is that
shown in Fig. 8.2 with the piezoelectric
crystal working in a shear mode. This arrangement
is based on the recent application of this
configuration to a new series of accelerometers

by a well know manufacturer.

The response curves for the o0ld type and the new

series of accelerometers are shown in Fig. 8.3
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Fig. 8.1 - Influence of electrode diameter on the .
harmonic resonances of a thickness mode
ceramic resonator.

a) electrode covering the entire area
b) electrode with 30% of ceramic diameter
c) electrode with 21,5% of ceramic diamete

Fig. 8.2 ~ Transducer operating in a shear
resonant mode (Ref.63)
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and 8.4 a). The Fig. 8.4 b) shows a section
detailing the accelerometer parts. Three

slices of piezoelectric material are clamped
between a central mass and seismic masses with

a high radial force applied by a preloading ring.
In a squeeze film bearing the central mass would
be replaced by a neck associated with the base
and the seismic masses could actually be fixed
to the supporting surface. This system requires
a very fine degree of flatness and dimensional
accuracy for the areas in contact, but avoids
the use of any adhesive in order to guarantee a
good contact. The response curves obtained for
this accelerometer show a displacement of the
peak of about 10 KHZ for the new type, being
about 5 db greater than the first one. It
seems that it would be possible with this type
of fitting to reduce considerably the loss at

the piezoelectric ceramic interfaces.

Using the same values of neck coefficient, ie.
.2, .4 and .5, tests should be carried out to

confirm the new arrangement referred to in ii)
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and compare the results with those presented in

this work.

For the values of the coefficient used, thinner
discs (less than .003 m thick) should be used

in experiments,similar to those performed in
this study to verify the effect of disc thickness
in both the amplitude of vibration and resonant
frequency. Although disc supporting members can
only provide axial load capacity this shape is
recommended for these experiments. Discs are easy
to manufacture and as shown, are sensitive to
slight changes in geometry or arrangement of the

support conditions.
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DESIGN OF SLAVE JOURNAL AND THRUST AIR
BEARING

As mentioned in Chapter 6, this bearing is used to
load the squeeze film bearing. One of the advantages of the
use of this bearing is to vary the applied load continuously,
if required. As it was also intended to measure load
capacity for disc squeeze film bearings (Chapter 7), a
journal bearing was also coupled to the thrust bearing arrange-
ment, Fig. A.1.3. The journal bearing is used to prevent

displacement of the disc in the horizontal plane.

a) Journal Bearing Design

As there is no applied load in the radial direction
the design characteristics of this bearing were mainly
dictated by size and manufacturing consiéerations. It was
intended to have a reduced bearing size to give space to
measuring equipment of the rig and a simple design for low

cost.,

The available air pressure could reach 90 p.s.i.
but the bearing was designed for a supply pressure, Pgs of
64.7 p.s.i., so that the gauge pressure was 50 p.s.i. For

this value of Ps-P, there is design data already available.
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The journal bearing length was chosen to be L = 1 in. and
the air jets placed in the middle plane, Fig. A.l.4, central
admission. This gives a value of the distance from the jet

*
to the edge of the bearing of £ = .5.

The air jets used ipn these bearings can be of two
types, recessed jets or plain jets as in Fig. A.l.1. Plain

jets were chosen because they are easier to manufacture.

We assumed a diametral clearance between the bearing

and the shaft” , 2C =72 x 10~ %m (8 x 10-4 in.) and a

bearing diameter, L = 25.4 x 107 °m (1 in.).

Another parameter used in design calculations is
the bearing pressure factor, Kgo’ defined as:

Pi."P
K _ ds Fa
go PS -~ Py

where Pys is the pressure adjacent to jeé and P, and p, are
considered as before. For maximum load capacity and if

P, >.0213, Whitley59 suggests that the value of Kgo must
be .4. Using design data from (33), for L/D =1, &/L = .5

and number of jets, nmn = 8, the jet diameter is d = 3 x 10-3 in,

als
r1y

L is the distance from the jet position to the bearing
edge.

ek The shaft ip this case is a small cylinder represented
in Fig. A.l.1l.
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As we used four jets only, the value of d must be corrected.

The diameter and number of jets are related by:

d ad

= I Fod

so, the corrected diameter is:

_ _ -3 .

The calculated volume flow for this geometry is,

from (30) and after correction:

v, = 6.06 x 1072 w3/s.

b) Thrust Bearing Design

The thrust air bearing provides the force to be
applied to the squeeze film bearing during the experiments

referred to in Section 6.4.

As in case a) we assume a suppiy pressure p_ =
64.7 p.s.i. and a laboratory atmosphere, P, = 14,7 p.s.i.
In this case the clearance and the pressure force adjust to
each other. The gas (air in this case) can be supplied
through either a single jet or a ring of jets, Fig. A.l.3.
Assuming one central jet and a clearance value of 10-3 in.,
the maximum bearing stiffness is obtained when bearing

33

pressure factor, Kg = ,6977, The bearing load capacity is

proportional to Kg:
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2 2
_ (b~ -a”)
W= Kg(ps-pa) 210ge(z/a)

The optimum jet diameter (for central jet) using

a ratio b/a = (.5/.2)in. = 2, is d = .02",

The calculated maximum load capacity using the

expression is W = 16.49 1b,

The journal-thrust bearing is shown in Fig. A.l1.3.
The bearing components are represented in Fig. A.l.4 (journal
bearing), Fig. A.l.5 (thrust bearing), Fig. A.l.6 (bearing
collar), Fig. A.1l.7 (upper plate) and Fig. A.1l.8 (lower plate).
This design was slightly altered after test in the following

manner:

1) Four small holes were made in the thrust air
bearing plate (Fig. A.l.5), spaced at 90 degrees,
providing more escape of air from the recess when this

bearing is operating.

2) The cylinder represented in Fig. A.l.3 used
only one pin to transmit the force to the squeeze film
bearing as this seemed to be sufficient for proper

location of Part 6.

3) An air intake to a manometer was provided in
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the thrust air bearing to give direct load reasings

after calibration.

c) Calibration of air thrust bearing

The air pressure'existing in the thrust bearing
recess was used for measureﬁent of the load provided by
this bearing. This pressure was read in an Hg manometer.
In order to transform these pressure readings in the

respective load values a calibration was necessary.

This consisted of using a load cell in place of
the supported member of the squeeze film bearing. The load
values were then plotted against the corresponding pressure

readings, as presented in Fig. A.l.9.
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APPENDIX 2

DESIGN OF TORQUE SETTING APPARATUS

The experiments referred to in Chapter 5 require
the use of a torque wrench set to several torques. This
torque was applied to tighten each of the six bolts of the
ceramic-metallic base arrangement. For this purpose a
wrench torque was available, but it needed an accurate torque
calibrating apparatus. This apparatus, represented in Fig.
A.2.1, was made at Imperial College. Basically it consists
of a beam of rectangular section (H), from which weights can
be hung (I). This produces a torque that should rotate the
beam around an axis about which the wrench (F) is also
applied. The wrench is held stationary, and tends to oppose

this rotation.

The useful range of the torquezwrench was defined
by the manufacturers as being 7 to 140 Kgcm (.68 t0 13.7 Nm)
but for our experiment the maximum value used was 3.91 Nm .
So as the total length of the beam .05 m was chosen and
1.2 x 10_4 mm2 as cross-section. To minimise the friction,
ball bearings (F) were used to support the beam axle. These
bearings were housed in a support (A), which also provided

the fixing of the apparatus in a vice by (D). The beam

weight itself was used to produce the resistant torque. A
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small counterpoise (C) provided the rounding of the value

of the fixed torque Tr to 12 Kgcm (1.17Nm). To immobilise the
torque wrench there is a pin (C) adjustable by an eccentric
(K). To guarantee that in this position the beam is in a
horizontal position, there is a small level (J) bonded to
the beam. The material used for the beam was steel and that
of the support, wood. The wrench had a torque adjusting
screw in the handle. After putting the weight(s) at the
convenient distance(s) to produce the desired torque, the
wrench torque is reduced using the screw until there is
rotation at point 1. The wrench torque is then very slightly
increased and this is considered as the required torque

setting.
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APPENDIX 6




APPENDIX 6

DETERMINANT VALUES FOR DISC RECEPTANCE

CALCULATION
(a) Force excitationat a free edge:

Glz(krb) -Gs(krb) -G13(krb)

AA = Yl(kra) Il(kra) -Kl(kra)
GlZ(kra) -GS(kra) -G13(kra)
Gh(krb) -Gs(krb) -G13(krb)
Jl(kra) Il(kra) -Kl(kra)
G4(kra) -Gs(kra) -G13(kra)
G4(krb) Glz(krb) -G13(krg
Jl(kra) Yl(kra) -Kl(kra)
G4(kra) G12(kra) -G13(kra)
G4(krb) Glz(krb) _- -G5(krb)
Jl(kra) -Il(kra) Il(kra)
G4(kra) GlZ(kra> -Gs(krg

(b)

Yl (krb)

Yl(kra )

GlZ(kra>

—Il(krb)
Il(kra)

-G 5(1(1:'&1)

Force excitation at a sliding edge:

Kl (krb)
-Kl(kra)

=Gy 3(kr)
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Jl(krb) -Il(krb) Kl(krb)
Jl(kra) Il(kra) -Kl(krb)
Gu(kr )  =Gg(kr ) =Gy 5(kr,)
Jl(krb) Y, (krb) Kl(krb)
3, (kr,) Y (kr,) =Ky (kr,)
G, (kr,) Gyp(kr,)  =Gpg(kr,)
Jl(krb) Yl(krb) -1 l(krb)
Jl(kra) Yl (kra) Il (kra )
G4(kra) GlZ(kra) -Gs(kra)

where:

_ y=1
G4(kri) = Jo(kri) + kri Jl (kri)
Go(kr.)=1 (kr,)+Y=t1 (kr.)
5 i o) i kri 1 i
G, (kr.)=Y (kr,)+2L¥. (kr,)
128KF 5 = Yollry )+ ¥y Uy

_ _v-1
G, 3lkr;) =K (kry) T, Ky (kry)
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