
IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY 

Department of Mathematics 

THE STATISTICAL ANALYSIS OF SPATIAL POINT PATTERNS 

by 

Karen Byth 

1 

Thesis submitted for the degree of 

Doctor of Philosophy in the University of London 

and the 

Diploma of Membership of Imperial College 

MARCH, 1980 



2 

ABSTRACT  

A spatial point pattern is a realisation of a stochastic process 

of point events in two or more dimensions. The methods of analysing 

such patterns fall into one of two categories: those appropriate when 

only sparse sampling from the pattern is performed and those possible 

when a complete map of the pattern exists. 

Distance methods suitable in sparse sampling situations are 

examined. Four new tests of randomness are introduced and a semi-

systematic sampling scheme is proposed. Some associated distribution 

theory is given. Simulation was used to compare the power of the new 

and other existing tests against various clustered and regular 

alternatives. Hopkins' statistic and its new counterpart are practicable 

when a semi-systematic sampling scheme is used. They performed best in 

the simulation study. Distance-based estimators of the intensity of 

the underlying process are also considered. Simulation is used to 

study the effect of semi-systematic sampling on the robustness of 

such estimators to departures from spatial randomness. 

Existing methods for the analysis of complete maps assume 

stationarity of the underlying process under both rotations and 

translations. The concept of 0-stationarity is introduced. A process 

stationary under rotations about some preferred origin is one type of 

6-stationary process. Techniques for analysing realisations of 

6-stationary processes are developed and extended to include multitype 

processes. These methods use estimates of types of cumulative inter-

point distance distribution functions. In practice the radial density 

of a pattern must be estimated and possible 0-stationary sectors 

identified. Kernel density estimates are proposed and tests of angular 

uniformity developed. The patterns of sporophores growing about a tree 

are analysed using the new methods. Some models are suggested and 

evidence of possible interaction between species is examined. 
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CHAPTER 1: INTRODUCTION 

Patterns formed by objects arranged in space are of interest in 

many disciplines. For example geographers may be concerned with maps 

of the positions of towns, ecologists with the locations of plants or 

animals, astronomers with the positions of stars or, on a larger 

scale, galaxies,and archaeologists with the positions of 'finds'. If 

the objects are 'small' compared with the inter-object distances they 

can be regarded as points. The resulting pattern of points can be 

considered as an outcome of a spatial point process, that is as a 

realisation of a stochastic process of point events in two or more 

dimensions. This thesis considers methods of analysing two-dimensional 

point patterns but obvious generalisations exist for higher dimensions. 

If there is no systematic variation in a spatial point process 

it is said to be homogeneous (opposite heterogeneous). A spatial 

point pattern which has no preferred direction is said to be isotropic  

(opposite anisotropic). Much of the existing literature on the analysis 

of spatial patterns considers the case when the underlying process is 

both homogeneous and isotropic or, equivalently, stationary under the 

group of rigid motions. The Poisson process with constant intensity 

is perhaps the simplest process of this type and one with which other 

processes are usually compared. This process is a special case of the 

general Poisson process with non-negative bounded intensity function 

X(x). A general Poisson process in n dimensions is a point process 

for which the number of points in any set A C IR has a Poisson 

distribution with mean value 
f 
 A(x)dx. This is the usual Poisson  A  

process when X(x) = A. If X(x) depends on x only through Ixl, then the 

process will be said to be an isotropic Poisson process. 

10 
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Methods of analysing spatial patterns may seek to describe some 

essential feature of the pattern by means of a convenient summary 

statistic such as the estimated intensity or they may attempt to 

fit models to the observed pattern. Usually only one realisation of 

the underlying process is available for study. It is necessary to 

assume some sort of stationarity of this underlying process before any 

hypothesis concerning the process can be tested on the basis of a single 

pattern. The stationarity assumption provides the replication necessary 

for subsequent inference. Some methods of analysing a spatial pattern 

when only a sample of measurements are available are discussed in 

Chapters 2 and 3. In the remaining Chapters it is assumed that a 

complete map of the pattern is available. 

Chapter 2 is concerned with the use of 'distance' methods in the 

detection of nonrandomness. These methods use a sample of distances 

from selected positions to the neighbouring points in a pattern in 

order to test the null hypothesis of spatial randomness. Four new 

statistics are introduced and their approximate null distributions 

under sparse sampling are derived. Theoretical arguments are used to 

show that more intensive sampling is possible if a semi-systematic 

rather than the usual random sampling scheme is employed. This fact is 

verified in a simulation study. The semi-systematic sampling scheme 

which is proposed has the additional advantage of making Hopkins' test 

(Hopkins, 1954) and its new analogue practicable. In the past it has 

been felt that, though probably more powerful than other tests, 

Hopkins' test was impracticable because it required complete enumeration 

of the pattern. Hopkins' test and the new related test emerge as the 

leading contenders in a simulation study of the power of the new and 

other existing tests against clus tered and regular alternatives. 
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Distance-based estimators of the average intensity of a process 

in some region of interest are studied in Chapter 3. Simulation is 

used to investigate the robustness of these estimators to changes in 

the underlying distribution and to study the effect of semi-systematic 

in place of random sampling. Both homogeneous and heterogeneous 

patterns are examined. Estimators based on the distances from 

selected positions to the rth  nearest point of the pattern (r = 1,2,3) 

are considered. Except in visually highly clustered patterns it 

appears that there is no advantage in taking r > 1. In highly clustered 

situations an estimator_ based on the distances corresponding to r = 3 

is recommended in conjunction with a bias correction factor. In all 

other cases a 'compound' estimator based on 'T-square' distances and 

analogous to that recommended by Diggle (1975, 1977) appears to be the 

most robust of the estimators included in the simulation study. Semi-

systematic sampling is recommended. For the heterogeneous patterns 

examined, the use of semi-systematic in place of random sampling tends 

to decrease the variance of the estimators without substantially 

increasing their absolute bias. This behaviour is to be expected on 

theoretical grounds. 

The concept of 0-stationarity is introduced in Chapter 4 in order 

to analyse maps in which there is an obvious preferred origin. This 

concept is closely related to that of isotropy but only refers to the 

properties of the underlying process inside some 'sector' of interest. 

It is shown how the second order properties of 8-stationary simple 

second order processes can be described by means of a function analogous 

to K (Ripley, 1977), the latter being suitable only for homogeneous 

isotropic processes. Several clustered and regular 0-stationary 

processes are introduced and methods are given for simulating these 



13 

processes. It is shown how simulation can be used to test the goodness 

of fit of a model to a particular pattern. The ideas are extended to 

multitype 0-stationary point processes. A method is given for testing 

the independence of any two of the processes inside some 'sector' of 

interest. 

In order to_apply the techniques of Chapter 4 it is necessary 

either to know or to have a reliable estimate of the intensity function 

A(x) of the underlying process inside the 0-stationary sector. The 

assumption of 6-stationarity means that in this region X(x) depends on x 

only through Ix'.  Thus estimating X(x) in this region is equivalent to 

estimating the marginal radial probability density function from•the 

appropriate 'sector' of the pattern. In Chapter 5 it is shown how 

kernel methods of density estimation can be used to estimate both this 

function and the associated marginal angular density. A test for 

angular uniformity which is based on the angular density estimate is 

introduced and its performance is assessed by means of simulation. 

It is possible to use the angular density estimate to partition a 

pattern into 'sectors'of high and low intensity if angular trend is 

present. 

The methods developed in Chapter 5 are used to estimate the 

marginal radial and angular densities of the processes underlying the 

annual patterns of three types of sporophores found growing around a 

young birch tree (Ford, Pelham and Mason, 1980). Where appropriate 

they are also used to partition these patterns into high and low 

intensity'sectors'within which the underlying process might be 

8-stationary. In Chapter 6 such 6-stationarity is assumed and it is 

found that certain clustered models can be fitted to the sporophore 

patterns. The most interesting feature of the analysis for each 



14 

sporophore type is that the same fitted values for the parameters 

describing the mean number of sporophores per cluster and the cluster 

diameters appear in each year. Only the change in the total number of 

sporophores of that type and in the associated marginal radial density 

function are required to explain the differences between the annual -

patterns. With one possible exception the multitype analysis found no 

evidence of 'interactions' either within a certain sporophore type 

from one year to the next or between different types in any given year. 

The exception is one of the sporophore types which shows a tendency to 

grow in a similar area from year to year. 



CHAPTER 2: THE USE OF DISTANCE METHODS IN THE DETECTION OF 

NONRANDOMNESS 

2.1 Introduction  

At the preliminary stage of analysis of a spatial point pattern 

it may be inappropriate to invest the time and money required for 

the detailed mapping of the region of interest. Instead only a 

sample of measurements are taken from this region. 'Distance' or 

'nearest neighbour' methods are often used in such circumstances 

as an alternative to 'quadrat' methods, either to estimate the 

number of objects in the region or to test the 'randomness' of their 

pattern. 

There are some statistics such as those of Clark and Evans 

(1954) and Brown and Rothery (1978) which use the distance from each 

object to its nearest neighbour in a test of 'randomness'. The 

following two Chapters will be concerned solely with methods 

requiring the sparse sampling of the region of interest. Tests of 

'randomness' will be examined in this Chapter and intensity estimation 

in the next. Unless otherwise stated, the results of this and later 

Chapters will be for two dimensions only but obvious generalisations 

to higher dimensional spaces exist. 

Even if the underlying process is Poisson, only the approximate 

theory of the test statistics has been derived. Very few analytical 

results are available for other underlying,processes and those that 

have been found are approximations. Some of these results are given 

in Holgate (1965a,b), Besag and Cleaves (1974) and Diggle, Besag 

and Gleaves (1976) who calculate the theoretical power of several 

statistics against very simple clustered and regular alternatives. 

15 
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The last paper and that of Hines and Hines (1979) use simulation to 

compare the power against more realistic alternatives. 

If a complete map is available, other methods such as those 

recommended in Ripley (1977, 1979a) should be used. 

2.2. Existing methods  

For definiteness suppose that the objects of interest are plants 

of which N occur in the region of interest R. There are three distinct 

measurements used in the 'distance' methods to be discussed: 

(a) ur, the squared distance from a randomly selected point P to the r
th  

nearest plant Qr  (r = 1,..., k < N) 

(b) v, the squared distance from a randomly selected plant to its 

nearest neighbour 

(c) t, the squared distance from Q1  as defined in (a) to its nearest 

neighbour in a direction away from the initial point P. This is 
usually referred to as T-square sampling and was introduced 

in this context by Besag and Gleaves (1974). 

Edge effects are made negligible by placing the study region from which 

random points and plants are to be selected well within R. Such a 

scheme will be referred to as random sampling. Figure 2.1 illustrates 

a random sample from a 10 metre square plot of pines (from Strand, 

1972). 

The squared distances are interesting quantities. With the above 

mentioned precaution against edge effects, nur, ry and rt/2 are simply 

the areas swept out in searching for the appropriate plant if the 

search is thought of in concentric circles (or in the case of t, 



17 

Figure 2.1  

A random sample of size 1 selected from a 10 metre square stand containing 
71 pines o (Strand, 1972). The boundary of this region of interest R and 
that of the study region S are marked 	 and - - - respectively. P is 
a randomly selected point from S, Ql and Q2 the nearest and second nearest 
pines to this point. P' is a randomly selected pine from S. The distances 
Ail, ✓u2, Vv, ✓t are as indicated. 
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semicircles) about the chosen point or plant. A similar interpre-

tation in terms of volumes holds in higher dimensions. The 

distribution theory of the 'distance' methods to be discussed assumes 

that for a Poisson process the bur's, Try's and in/2's are independent. 

For this to be true the areas searched must not overlap. This 

restriction clearly necessitates sparse sampling and is examined in 

more detail in Section 2.5. 

The existing statistics considered in this Chapter are those 

proposed by Hopkins (1954), Holgate (1965a), Besag and Gleaves (1974) 

and Hines and Hines (1979). These statistics will be written as 

follows: 

HopF  = E uli/Evi  

(Hopkins, 1954) 

Ho1F  = Eu1i/E(u2i - uli)  

Ho1N  = (1/m) E uli/u2i 

(Holgate, 1965a) 

TF  = Euli/E(ti/2) 

TN  = (1/m) E uli/(uli + ti/2)  

(Besag and Gleaves, 1974) 

TE  = 2mE(2uli  + ti)/(E{✓(2u1i) + ✓ti}]2  

(Hines and Hines, 1979) 
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where the summation is in each case over i = 1,...,m and, with the 

obvious notation, uli,  u2i, v
i, ti  (i = 1,...,m) is a random sample  

of squared distances of size m hereafter written ul, u2, v, t. It 

will be convenient to consider each statistic as belonging to one of 

the three classes Hop, Hol or T named in a self-explanatory manner. 

For a Poisson process with intensity A it is easy to show that 

Aarur  (r = 1,...,k) and ATrt/2 have gamma (r) distributions with 

respective indices r and 1; a gamma distribution with index 1 simply 

being an exponential distribution with unit parameter. Equivalently 

twice these random variables have chi-squared (x2) distributions 

with 2r and 2 degrees of freedom respectively. 

The variable Airy is, however, only approximately exponentially 

distributed. To see this suppose that there are Ns  < N plants in 

the study region S of area s. If v is to be well-defined then there 

must be at least one plant in S. Therefore all calculations 

concerning v should be conditional on Ns 
a..1.  Consider some region 

of area a containing the randomly selected plant and suppose, for 

the moment, that this region lies wholly in S. The probability of 

there being no further plants in this subregion of S is therefore 

N -1 
E{ (1 - a/s) 

s 	I Ns  > 1) 

co 	
Ns-1 = 	E 	(1 - a/s) 	e As( As 

N 
s
=1 

N 
s/{Ns: (1 - e As)} 

(ē Aa - e-As)  /{ (1 - a/s) (1 - e
-As)  } . 

This expression is approximately exp(-Aa) if a « s and 

E(Ns) = As is sufficiently large, say > 10. These conditions are 
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certainly satisfied in practical applications and it will in future 

be assumed that Any is exponentially distributed. It should be noted 

that the region of area a in the above is strictly contained in S. 

In general the region corresponding to anv may lie partly in R \ S, 

the 'border' included to make edge effects negligible. It is clear 

that this fact does not alter the basic conclusions. 

Assuming that the variables in the random sample are jointly 

independent, it follows that the statistics with suffix F have F 

distributions with (2m,2m) degrees of freedom. Furthermore, each 

term summed to form the statistics with suffix N has a beta distri-

bution with (1,1) degrees of freedom and so is uniformly distributed 

on [0,1]. Therefore HolN  and TN  are the means of m independent 

uniform variables and, by the Central Limit Theorem, tend rapidly 

to the normal distribution N(1/2, (12m)-1) as m increases. Details 

of these distributional results can be found for example in Holgate 

(1972). The statistic TE  is the Eberhardt statistic based on T-square 

sampling and tests for exponentiality. Hines and Hines (1979) give a 

table of percentage points. 

Existing 'distance' methods are too numerous for each one to be 

considered here. The above statistics are a representative selection 

of the leading contenders identified in power comparisons such as 

those of Diggle et al (1976) and Hines and Hines (1979). In the 

latter study it was shown that the conditioned distance ratio method 

of Cox and Lewis (1976) is very similar to TN. Perhaps the most 

intuitively appealing statistic and one that has generally been 

preferred in comparison studies is HopF  (see Holgate, 1965b and 

Diggle et al, 1976). However it is usually regarded as impracticable 

since, to find a random plant, all plants in the study region should 
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be counted and a randomly numbered plant chosen. The semi-systematic 

sampling scheme recommended in Section 2.4 overcomes this objection. 

2.3 New statistics  

The first three new statistics are 

HopN  = (1/m) E uli/(uli + vi) 
i 

Hop* = (1/m2) E E u
l./(u i + v.) 

i j 

T* 	= (1/m2) E E ul./(uli + t./2)  
i j 

where the summations are over i,j = 1,...,m. Assuming that ul, v, t -

are jointly independent, the asymptotic distribution of each statistic 

as m -► co can be found as follows for a Poisson process with 

intensity A. 

The terms summed to form each of these statistics are simply the 

ratios of Arruli, an exponential variable, to the sum of this variable 

and another independent and identically distributed variable. Hence 

each term is uniformly distributed on [0,1]. It follows as for HolN  

and TN  that HopN  has a N(1/2, (12m)-1) limiting distribution as 

m -} a. Hop* and T* are examples of Hoeffding's U-statistics and it 

is easy to see that 

E(Hop*) = E(T*) = 1/2 

and that 

var(Hop*) = var(T*) = T2, 



say, where 

2 = {1/12 + (m-1)(c1 + c2)}/m2 

and 

c1 = cov{p
li/(uli + v.), uli/(uli + vk

)}, 	j # k, 

c2 = cov{u1i/(u1i + v~), u
lk/(ulk 

+ V.)}, 	i 0 k. 

These covariance terms are 

c1 	J J J u+v 
u+w exp{-(u+v+w)}du dv dw - 1/4 

0 0. 0 

o m 
c2 	J f J u+w v+w exp{-(u+v+w)}du dv dw - 1/4 0 0 0 

and may be simplified by changing the variables to 

x = u/ (u + v) , 	y = u/ (u + w) , 	z = v 

in c1 and to 

x = u/(u + w), 	y= v/(v + w), 	z= w 

in c2 and integrating out z to give 

1 1 
c1 = f 

0 
2u2 v2/(u + v - uv)3du  dv - 1/4 

0 

0.0399 
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1 1 
c2  = f f 2uv(1 - u)(1 - v)/(1 - uv)3  - l/4 

0 0 

z 0.0401 

by numerical integration. Thus the common variance of Hop* and T* is 

1-2  =A1/12 + 0.080(m - 1)1/m2. 

An application of Corollary 5, p.365 of Lehmann (1975) shows that, 

as m o, Hop* and T* are asymptotically normally distributed with 

expected value 1/2 and variance T2  provided that 

var[E{u1/(ul  + v)Iv}] > 0 

or that 

var[E{u1/(ul  + t/2)It}] > 0. 

The expressions on the left hand sides of these inequalities are equal. 

Putting x = anul  and y = anv, 

E{ul/(ul+v) Iv} = f {x/(x + y))exp(-x)dx. 

For y > 0, 

> 1/(1 + 2y), x > 1/2 

x/(x +y) 	< 1/(l + y), 	0<x< 1 

< 1 , 	x > 1 . 

23 



It follows that 

a < E 
	

+ v)Iv} < b 

24 

where 

a = • {exp(-1/2)}/(1 + 2y) 

and 

b = {1 + y exp(-1)}/(1 + y). 

These bounds are plotted against y in Figure 2.2 and it is clear that 

var[E{u1/(u
1  + v)Iv}] > 0 as required for the asymptotic normality of 

Hop* and T*. 

HopN  was introduced in the hope that it might be more sensitive 

to changes in the relative values of u1  and v. Hop* and T* use all 

possible combinations of u1i  and vj  and of uli  and tj  (i,j = 1,...,m) 

respectively. In this sense they attempt to make maximum use of the 

available information on the relative values of point-plant and 

plant-plant distances. When tapes have been laid out to measure u1  

and u2,  the angle 6 between the directions from the randomly selected 

point to the nearest and second nearest plants can be obtained with 

very little extra effort. The final new statistic which is of the 

Hol type incorporates this additional information on the spatial 

configuration. 

For a Poisson process, 6 is uniformly distributed on [0,7] 

independently of u1  and u2. If u
li/u2i (i 

 = 1,...,m) are assumed to 

be mutually independent, the random variable 

si = n uli / (ei u2i) 



li 
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life 

1/e 

le 

Figure 2.2  

The upper and lower bounds for E{ul/(ul  + v)Iv} plotted against 
y = a,ry . 

* 
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is simply the ratio of two independent uniform variables on [0,1] 

and therefore has the probability density 

1/2 	, 	0<s<1 

f(s) = 

(2s
2)-1  

, s > 1. 

Both u1/u2  and 7/6 tend to take on increasingly larger values than 

expected for a 'random' pattern as clustering becomes more marked and 

increasingly smaller ones as regularity is more marked. A test of 

'randomness' can therefore be constructed from their product s by 

considering 

Ho1B  = HolB(x) = E 6.(x) 
i 

Where, for some x > 0, 

0 , 	Truli/(6iu2i)  < x  

1 , 	Tru2./(6iu2i) > x. 

Assuming the joint independence of 
uli/u2i 

 (i = 1,...,m), it 

follows that for a Poisson process Ho1B  has the binomial distribution 

b(m,p) where p = Pr(s > x). Thus to test the null hypothesis of 

'randomness' H0  against clustered alternatives at significance level a, 

choose a non-negative integer r < m and compute x so that 

Pr(HolB  > r) = a. H0  is then rejected at level a if the observed 

value Ho1B  > r. A similar test in which HO  is rejected if Ho1B <.r 

is available if regular alternatives are of interest. The choice of r, 

0 < r < m, (which fixes x for a given a) is arbitrary and certain 

values may lead to more powerful tests than others. 
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If a training set of observations is available, the following 

criterion for r may be used when m is sufficiently large for the 

normal approximation to the binomial to apply. Plot the standardised 

statistic 

yr = {HolB(xr) - mpr}//{mpr (1 - pr)} 

versus the integer r, 0 < r < m, for the training set where pr  is a 

solution of 

p2  (m2  + mz2) + mp 
r 
 (1 - 2r - z2) + (r - 1/2)2  pr  (m 	a 

if clustered alternatives are of interest and of 

pr(m2 + mza) - mpr(1 + 2r + za) + (r + 1/2)2  

= 

= 

0 

0 

(2.1) 

(2.2) 

if regular alternatives are of interest where za  is the upper 

a-percentile of the standard normal distribution and 

(2pr)-1 	, 	0 < pr  < 1/2,  

x r  ( 2.3 ) 

(2 - 2pr)-1 	, 	1/2 < pr  < 1. 

The value of r which maximises yr  is the value to be used in testing 

H0  and can easily be computed. 

Equation (2.1) is simply the quadratic in pr  obtained when the 

approximate expression 

(r - 1/2 - mpr)/✓(mpr(1  - pr)} 	za 
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is considered to be exact. This approximate expression follows from 

a = Pr(HolB(xr) > r) = Pr(Z > (r - 1/2 - mpr) //{mpr(1 - pr.))) 

where Z is a standard normal variate. Similar considerations lead 

to (2.2). Equation (2.3) is found by inverting 

CO 

Pr = f f(s)ds = 

1 - 1/(2xr) , 0<xr <1, 

x r  1/(2xr) xr  > 1 . 

If no training set is available, simulation results suggest that it is 

reasonable to set r = [9m/10] = r*, say, for clustered alternatives 

and r = m - r* for regular alternatives where [•] denotes 'the integer 

part of'. 

The test statistics given in this and the preceding Section have 

been arranged to take on large values for clustered patterns and 

small ones for regular patterns. The associated tests of 'randomness' 

may be one or two-sided for all but Ho1B  which can either test against 

clustering or regularity but not both simultaneously. A definite 

advantage shared by the above tests is that, unlike such methods 

as that of Pielou (1959) (corrected by Mountford, 1961), no knowledge 

of the usually unknown underlying intensity is required. 



2.4 Semi-systematic sampling  

Finney (1947, 1948, 1950, 1953) and Quenouille (1949) were 

among the first to investigate the possible advantages of sampling 

systematically rather than at random from a spatial pattern which 

does not display fairly marked periodicity. If the points or plants 

from which the squared distance measurements are made are selected in 

a semi-systematic manner, it will be shown that a higher sampling 

intensity is possible than for random sampling and that Hop methods 

can be used without the complete enumeration of the study region. 

Suppose the plants in the region of interest were generated by 

a Poisson process of intensity A. The area swept out in searching for 
the nearest plant from any position which is uniformly distributed 

over the study region has an exponential distribution, mean 1/A. 

Randomly selected points are such positions as are points chosen 

according to the semi-systematic scheme described below. It has 

been shown that, approximately, randomly selected plants also have 

this property. It will be seen that, under certain circumstances, 

this is equally true of plants selected according to the following 

semi-systematic sampling scheme illustrated in Figure 2.3 for the 

plot of pines from Strand (1972): 

(a) set up a fairly regular grid of 2 m points within the study region 

(b) from half these points measure the squared distance to the 

nearest and second nearest plants and obtain the angular 

measurements 6 and the T-square plant-plant squared distances 

in the obvious way 

(c) around each remaining point lay out a small plot of constant 

area (usually a circle or square) and count the plants in each 

plot 

29 
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Figure 2.3  

The points A and pines p from which distances to neighbouring pineso 
are measured in a semi-systematic sample of size m = 3 from a 
10 metre square stand containing 71 pines (Strand, 1972). The 
boundary of this region of interest R and that of the study region S 
are marked 	 and - - - respectively. The enumerated region is 
shown 1g 



(d) select m plants at random from those enumerated and measure 

the squared distance from each to its nearest neighbour. 

Values for u1, u2, v, t, 8 obtained in this way will be referred to 

as a semi-systematic sample. 

The necessary conditions for XTry to have approximately an 

exponential distribution can be found in the following way. Suppose 

that the total area of the enumerated plots is e, that each of these 

plots lies wholly within the study region S of area s and that there 

are Ne  plants enumerated. Clearly Ne  > 1 if v is to be well-defined 

under semi-systematic sampling. Consider some subregion of S about 

a plant selected at random from those enumerated. Let b and c be 

the areas of those parts of this subregion which fall respectively 

inside and outside the enumerated region. Then the probability that 

the subregion contains no further points is 

N
e
-1 

-Ac  e 	Ef(1 - b/e) e 	1 Ne  > 1} 

= e
-X c (e-Ab - e-Xe)/{(1 - b/e)(1 - e

-ae)}.  

This expression is approximately exp(-Xa) where a = (b + c) is the 

area of the subregion if b « e and Ab « ae. 

Each enumerated plot is obviously of area e/m. If Xe/m = 5 

there are on average 5 plants per plot and in this case it is clear 

that b « e and that ab « Xe since (Xe - Ab) 	Xe = 5m. In practice, 

parts of some of the plots or of the circular subregion corresponding 

to ary may lie in the 'border' region R\ S but this does not affect 

the conclusions. Simulation results reported in Section 2.6 confirmed 

the validity of the null distribution theory of Hop statistics given 

31 
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earlier when now semi-systematic sampling is used and plots of area 

sufficient to contain on average 5 plants are enumerated. 

An even more attractive sampling scheme would be simply to 

choose one plant at random from each of the small plots laid out in 

step (c) and to measure v from these plants. This would necessitate 

only one visit to each plot. However plants chosen in this way are 

not equally likely to be selected, a plant lying in a plot containing 

few plants being more likely to be chosen than one in a plot with 

many plants. Hence v then contains inflated values for the plant-

plant measurements and the null distribution theory given for Hop 

statistics is no longer valid. 

A possibility is to estimate the intensity using each plot 

separately, giving estimates āi  a ni  (i = 1,...,m), as well as using 

all the plots simultaneously to find ā s n = E ni/m where ni  is the 

$iorvi (1  = 1
,...,m) rather than ATru

li 
 and airy.. (For example, HopF  

becomes n E uii/E(nivi).) The distributions of these modified 

statistics are clearly not the same as those derived for the Hop 

statistics assuming the independence of ul  and v. Simulation studies 

revealed that the sampling distributions of the modified Hop statistics 

agree with the quoted null distributions only for dense patterns and 

very sparse sampling (need at least 360 plants in the study region 

if selecting a sample of size 9 from plots covering a quarter of the 

region). It will be seen in the next Section that the first semi-

systematic scheme proposed allows more intensive sampling and 

correspondingly less dense patterns. Attention will therefore be 

restricted to this semi-systematic and to the random sampling schemes. 

i 
number of plants in the 

. plot. A modified version of each Hop 

statistic can then be constructed by considering 7lnuli 
 and 



2.5 Some null hypothesis distribution theory  

If the spatial pattern is an outcome of a Poisson process of 

intensity A, it has already been stressed that the null distributions 

quoted are valid only when the areas searched do not overlap. 

Consider the areas Anuli' Ami (i = 1,...,m) which are approximately 

exponentially distributed with unit mean. The following heuristic 

argument shows that there is about a 5% probability that two areas 

overlap if the minimum distance between the sampled positions (points 

or plants) is at least 3/✓(irA). Let d1  and d2  be the distances from 

two positions to their respective nearest plants. The closest 

admissible configuration for the two positions is if the same plant 

Q1  is nearest to both and if the two positions and this plant are 

colinear as illustrated in Figure 2.4. The inter-position distance 

is then (d1  + d2) ,  a quantity which can never exceed ✓{2(d12 + d22)}. 

Now Arr(d12 + d22) has a r distribution with index 2 if the areas do 

not overlap. Thus the areas searched overlap no more than 5% of the 

time if the inter-position distance is at least ✓{2 x 4.744/(irA)} 

3/✓(nA) where 4.744 is the upper 5% point of a r distribution with 

index 2. This bound on the inter-position distance can be checked 

in the field because the usual estimate of 1/i( A) is the root mean 

square distance from a point to the nearest plant (see, for example, 

Holgate, 1972). 

For m positions selected by random sampling, the average distance 

between positions is clearly about ✓{s/(nm)} for a study region of 

area s. Thus, for random sampling, the number of sample positions 

should not exceed 1/32  = 10% of the number of plants in the study 

region. This conclusion is confirmed in the simulation study reported 

33 

in the next Section. If semi-systematic sampling is used, the average 
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Figure 2.4  

The closest admissible configuration for two positions P1  and P2  if 
the same plant Q1  is nearest to both and if the circular areas searched 
in finding Ql from P1  and from P2 do not overlap. 

11 
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distance between sites becomes ✓(s/m) for the usual square grid of m 

sample positions in a square study region. The sampling intensity 

can therefore be increased by a factor of about 3, a fact also 

verified by simulation. 

2.6 Simulation results  

All the new and existing statistics discussed above were tested 

for 'random' processes and clustered and regular alternatives with 

both the random and the semi-systematic sampling schemes. The region 

of interest R was the unit square and the study region S the subregion 

[0.2, 0.8]2  lying well inside R. In every case the total number of 

plants N in R was fixed, so the sampling intensity p = m/(0.36N) for 

a sample of size m. For convenience m was taken to be a perfect 

square and semi-systematic sampling involved laying out two square 

grids of m vertices, one for point-'plant' and the other for 'plant'-

'plant' measurements. The minimum distance between the vertices in 

each grid was 0.6/1/m. One grid was placed randomly inside the study 

region and the other was then aligned as shown in Figure 2.5 in such 

a way that it too lay in S. All the 'plants' in the small square 

plots about the vertices of the grid used for 'plant'-'plant' readings 

were counted. 

Since N was fixed, a 'random' pattern was the outcome of a 

binomial process with N trials on the unit square. The x and y 

coordinates of 'plants' in such a pattern were simulated by 

generating 2N independent uniformly distributed variables on [0,1]. 

Diggle et al (1976) reported consistency with the null distributions 

of all the statistics except TE  for p < 10% on the basis of 57 
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Figure 2.5  

A possible configuration for the 9 vertices of each of the square grids 
used in a semi-systematic sample of size•m = 9. The vertices used for 
point-plant measurements are shown • and those used in finding plant-
plant measurements o . The boundary of the region of interest R and 
that of the study region S are marked 	 and - - - respectively. 
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realisations with m = 25. My results for the statistics were based 

on 1000 realisations for each of a variety of combinations of p and 

N (- X). They suggest that 10% is an acceptable bound for Hol and T 

statistics but is too high for Hop statistics: with m = 9, 71, 68 

and 69 values out of 1000 for HopF, HopN  and Hop* respectively lay 

beyond the 5% point of the appropriate theoretical distribution. The 

bound p < 5% seems adequate. The theory of Section 2.5 indicates 

that such a smaller bound is to be expected for Hop statistics which 

need two separate sets of m sample positions. When semi-systematic 

sampling was used, p could be at least as high as 25% for Hol and T 

statistics. For Hop statistics p < 10% sufficed if half the area was 

enumerated, p < 5% if one quarter. These bounds corresponded to 

enumerating an average five 'plants' per small plot. 

Matērn cluster processes (Matdrn, 1971) modified to contain a 

fixed number of plants N were used as clustered alternatives. 

Realisations were simulated by generating a Poisson number of cluster 

centres Nc,  mean p, and distributing these independently and uniformly 

within the unit square. The remaining (N - tic) 'plants' were then 

each distributed uniformly within a disc of diameter D centred on a 

cluster centre chosen at random, independently for each 'plant'. 

If the 'plant' so added fell outside the unit square, the procedure 

was repeated for this 'plant'. Figure 2.6 illustrates a realisation 

of such a process with D = 0.1, N = 600, p = 100 giving a mean 

cluster size C = 6. 

Strauss processes (Strauss, 1975, Kelly and Ripley, 1976, 

Ripley 1977, 1979b) were used as regular alternatives, D measuring 

the range of inhibition and c the strength. A process with c = 0 

consists of non-overlapping discs of diameter D about each 'plant'. 

f 



Figure 2.7 illustrates a realisation of a Strauss process with 

N = 240, D = 0.04, c = 0.1. 

The power comparisons are based on 100 realisations with m = 9, 

p < 5% and 5% equal-tailed tests for all except HolB  which used the 

appropriate 2k% one-sided test. The results are reported in 

Tables 2.1 and 2.2. The choice of sampling scheme did not appreciably 

affect the estimated power of Hol and T statistics. Therefore only 

the average of the 200 results for semi-systematic (one quarter of 

the total area enumerated) and random sampling is presented for these 

statistics. The results shown for HolB  are for r = 8 and 1 respectively 

in Tables 2.1 and 2.2. These values of r gave reasonable power 

against the appropriate alternatives. For any of the other statistics 

at most 3%. of the estimated power against clustered or regular 

alternatives arose from values falling in the 2k% lower or upper 

tails respectively. Tables 2.1 and 2.2 may therefore be used to 

compare the power of all statistics against one-sided alternatives 

at the 2%% significance level, or of all except HolB  against two-sided 

alternatives at the 5% level. 

It was disappointing to find that the new U-statistics Hop* and 

T* are not obviously more powerful than their counterparts HopN  and 

TN.  There is no apparent advantage in using the information provided 

by all combinations of point-plant and plant-plant measurements in 

this way : the double summation merely smooths the contribution 

from each uli, vi, ti  (i = 1,...,m). 

The statistic HolB  is certainly more powerful than HolF  or Ho1N  

against regular alternatives. However in situations where the 

clusters are not well separated, the angular measurement 6 may often 

be taken from a point lying within or very close to a cluster and 

38 
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Figure 2.6  

A realisation on the unit square of a modified Matērn cluster process 
having N = 600 points, mean cluster size C = 6 and cluster diameter 

D = 0.1. 
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Figure 2.7  

A realisation on the unit square of a Strauss process having 
N = 240 points, range of inhibition D = 0.04 and coefficient of 
inhibition c = 0.1. 



C D 
R 

HopF  

S R 

HopN  

S R 

Hop* 

S 
TN  T* TE  Ho1F  Ho1N  Ho1B  

2 .05 58 35 42 27 44 26 43 36 38 36 22 19 25 

.02 80 55 92 67 92 71 50 79 79 85 38 43 51 

3 .1 34 28 13 16 13 16 22 9 9 21 9 5 5 

.05 85 71 67 65 69 - 	61 70 65 66 68 36 23 43 

.03 97 87 95 92 97 93 86 92 92 96 65 56 70 

6 .15 40 37 19 16 21 18 23 11 8 29 11 8 7 

.1 69 75 45 48 46 45 65 36 32 59 27 10 20 

.07 96 98 69 74 70 78 91 76 77 88 61 26 46 

TABLE 2.1  

Estimated power in percent against clustered alternatives with mean cluster size C and cluster diameter D. 

R and S respectively denote the columns containing the results for the appropriate Hop statistic under 

random and semi-systematic sampling. The entries for T and.Hol statistics are the average of the results 

under both sampling schemes. 

t 



D c 
R 

HopF  

S R 

HopN  

S R 

Hop* 

S 
TF  TN  T* TE HolF  Ho1N  Ho1B  

.03 0 19 20 50 47 50 48 11 20 20 22 7 9 16 

.0325 0 27 36 64 60 67 73 12 25 25 29 7 10 24 

.035 .25 20 19 31 25 30 25 7 10 10 15 7 6 10 

0 30 43 68 68 67 66 13 30 32 33 5 6 21 

.04 .25 16 23 21 31 21 31 10 17 21 15 4 5 10 

.1 33 38 48 46 48 44 10 24 24 30 9 11 22 

0 49 48 84 80 86 82 18 33 36 45 17 15 30 

TABLE 2.2  

Estimated power in percent against regular alternatives with coefficient of inhibition c and range of 

inhibition D. R and S respectively denote the columns containing the results for the appropriate Hop statistic 

under random and semi-systematic sampling. The entries for T and Hol statistics are the average of the results 

under both sampling schemes. 
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need not be small. In such cases 'au1/(ou2) is not large. For this 

reason Ho1B  is not always more powerful than HolF  against clustered 

alternatives. Taken as a whole, Hol statistics are definitely 

inferior to Hop and T statistics. This confirms the results 

reported by Diggle et al (1976) and Hines and Hines (1979). 

Hopkins' original test (that is HopF  using random sampling) is 

best against clustered alternatives with both HopF  and TE  doing well 

under semi-systematic sampling. For regular alternatives HopN  is 

clearly best and does not appear to lose power when semi-systematic 

sampling is used. It is interesting to note the substantial decrease 

in power against regular alternatives for all statistics when the 

strength of inhibition is slightly weakened from the case of non-

overlapping discs, c = 0. For example, compare c = 0 with c = 0.1 

for D = 0.04. Both Diggle et al (1976) and Hines and Hines (1979) 

considered as regular alternatives only simple sequential inhibition 

processes which are very similar to the case c = 0. 

2.7 Recommendations 

The study shows Hop statistics are worthy of consideration. The 

semi-systematic sampling scheme allows Hop tests to be used without 

the necessity of complete enumeration and permits more intensive 

sampling if complete enumeration or T statistics are used. A 

recommended strategy to test for significant pattern in a region is to 

(a) lay out a fairly regular grid of 2m points lying inside the 

study region and to proceed as explained for semi-systematic 

sampling in Section 2.4, making sure that each plot is of area 

sufficient to contain on average five plants 
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(b) calculate HopF  and HopN  and use these as tests of 'randomness'; 

HopF  when clustering is suspected and HopN  for regular 

alternatives. 

If T statistics must be used, TE  and a semi-systematic scheme 

are recommended, the latter as a precaution against over-sampling. 
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CHAPTER 3: THE USE OF DISTANCE METHODS IN ROBUST INTENSITY ESTIMATION 

3.1 Introduction 

It is often of considerable interest to estimate the average 

intensity of the point process underlying an observed pattern in some 

region. For example it may be of economic or ecological importance to 

have a reliable estimate of the number of trees in a forest. Counts 

in randomly located quadrats can be used to give unbiased estimates 

of the average intensity irrespective of the form of the underlying 

process. This is not true of 'distance' methods. Nevertheless 

'distance' methods are often preferred since they can be easier to use 

in the field. It is therefore important to establish which distance-

based estimators of the average intensity in a region are robust to 

changes in the distribution of the underlying process. This is the 

aim of this Chapter. 

The distance-based estimators then available were reviewed by 

Persson (1971). Their bias was calculated for regular lattice 

processes and for randomly distributed point cluster processes. 

Diggle (1975, 1977) considered estimators of the inverse of the 

intensity for some homogeneous processes. He introduced several 

'compound' estimators which are combinations of the usual estimators 

based on the means of the squared distances u1, v or t of Chapter 2. 

In the first paper he showed analytically that for specific regular 

and clustered processes the 'compound' estimators have smaller bias 

than the usual estimators. In the second paper he used simulation 

to verify that the 'compound' estimators also give more reliable 

estimates for certain more realistic clustered processes. 
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In this Chapter some analogues of Diggle's 'compound' estimators 

are considered. These new functions estimate the average intensity 

and not its inverse. Estimators based on the distances not only to 

the nearest object but also to the second and third nearest objects 

are examined. In addition to estimators based on the mean squared 

distances others based on the squares of the mean distances and of the 

median distances are compared in a simulation study. The empirically 

based estimator of Batcheler and Hodder (1975) is included in this 

study. So too is the estimator introduced by Morisita (1957) and 

formed from the mean of the inverses of the squared distances to the 

third nearest object. Morisita claimed that this estimator should be 

robust if the pattern consists of areas of different intensity within 

each of which the process is Poisson. 

Simulation is used to study the bias and variance of both the 

new and the existing estimators under the random and semi-systematic 

sampling schemes of Chapter 2. The results for homogeneous and for 

heterogeneous patterns are summarised in the final Section. 

3.2 The estimators  

For dēfiniteness again suppose that the objects of interest are 

plants of which there are N in the region of interest R C 1R2 . Further-

more suppose that the intensity of the underlying process at the point 

x 6 ]R2 is given by X(x). So as to minimise edge effects it is necessary 

to measure distances from points or plants selected from a study region S 

lying well within R. The average intensity in S is given by 

T = f a(x) dv(x) / i dv(x) 
S ~ 	S 

• 
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where v(•) is Lebesgue measure on It2  . It is this quantity 71 for 

which robust estimators are required. 

Under either random or semi-systematic sampling as defined in 

Chapter 2 let 

(a) xr  be the distance from the selected point P to the rth  nearest 

plant Qr  

(b) yr  be the distance from the selected plant to the rth  nearest 

plant 

(c) Zr  be the distance from Q1  to the r
th 
 nearest plant in a direction 

away from P, that is the T-square distance to the rth  nearest plant 

from Q1  

(d) w be the distance. from Q, to the nearest plant. 

With the notation of Chapter 2 this means that 

2 	2 
ur  = Xr  , 	v = yl  , t = 

2 zl  . 

Samples of size m are denoted in the obvious way by 

Xi, 	•-•, Xr, 	yl, ...., yr, 	zl, ...., zr, w. 

In this Chapter the distances corresponding to r < 3 are of interest 

and sampling is again assumed to be sufficiently sparse to ensure the 

independence of the samples. 

Estimators of a based on the measurements yr  are only practicable 

under semi-systematic sampling. Random sampling necessitates complete 

enumeration of the NS  plants in the study region S and NS /f dV(x) 
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would then be an excellent estimator of A. A modest amount of 

enumeration is required when finding yr  under semi-systematic sampling. 

Before estimators which use yr  are recommended, they must therefore be 

more robust than others which do not. Although impracticable, 

estimators which use yr  are considered under random sampling in the 

simulation study. The inclusion of these estimators allows the effect 

of semi-systematic sampling to be assessed for a wider variety of 

estimators. 

The most analytically tractable case to consider is the homogeneous 

Poisson process with constant intensity A(x) - A ET. As explained in 

Chapter 2, ATrx2  , ATry2  and Arrz2 /2 (r = 1,2,3; i = 1,...,m) are 
ri 	ri 	ri 

approximately jointly independent and distributed as r variates with 

index r for such a process under the assumption of sparse sampling. 

Following Persson (1964) it is therefore easy to show that if 

dri 	xri or  yri or z
r./ a 	(r = 1,2,3; i = 1,...,m) 

and if 

d 2 	E d2./m 
r 	i=1 ri 

7:1
-2 
 = ( E 	d ./m)2  

r 	i=1 
ri 

dr* 	= median of d
rl''

drin  

1/dr2 	= ( E 	1/d
2
.)/m 

i=1 



then, at least asymptotically as m } =, the method of moments 

estimators of A given in Table 3.1 are unbiased and have the given 

asymptotic variances. Estimators based on the function 1/d2
r 

for 

r = 1,2 are not included in Table 3.1 because the expectation of 

l/d2  and the variance of l/dri  (r = 1,2) are infinite for a 

homogeneous Poisson process. For such a process the asymptotic variance 

of the estimator based on d2  r  
is as small as that based on any other 

function of d since it is the maximum likelihood estimator. Of course -r 
for other processes this need not be so. 

The 'compound' estimators of ā to be studied in this Chapter are 

analogues of the 'compound' estimators y, yT, y* and yT of the inverse 

of the intensity introduced by Diggle (1975). These new estimators 

are arithmetic and geometric means of usual estimators based on point-

plant and on. plant-plant distances. The usual intensity estimators 

tend to be biased in opposite directions for clustered processes; 

those based on point-plant distances tend to underestimate the average 

intensity whilst those which use plant-plant distances tend to over-

estimate this quantity. The converse is true for regular processes 

(see Diggle, 1975). It is hoped that the 'compound' estimators are 

more robust than the usual estimators used in their formation: the 

opposing effects on the bias of the usual estimators should at least 

partially cancel each other out in the 'compound' estimators. 

The plant-plant distances may tend to zero in a highly clustered 

pattern although the point-plant distances must remain finite for any 

reasonably shaped study region S. Thus the intensity estimated in 

any of the usual ways from the plant-plant distances may tend to 

infinity whilst that estimated from the point-plant distances must 

be bounded away from zero. This illustrates the asymmetric behaviour 

of the biases of the usual estimators. Because of this asymmetry the 

49 
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a var (a) 

a2/m 1/(id12) 

1/(4āl2) 1.09296 X
2
/m 

0.069315/(ndi2) 2.08138 X2/m 

2/(7rd22) 0.5 A2/m 

9/(16d22) 0.52707 A2/m 

1.67835/(rd22) 0.90408 
X2
/m 

3/(rd32) 0.3 A2/m 

225/(256132) 0.34599 X2/m 

2.67406/0%152) 0.57495 
X2

/m 

2(1/d
3
2
)/ir X

2
/m 

f(dr) 

d12 

ā
1
2 

di2 

d22  

d22  

d22 

d32  

-d-
3 
 2 

d32 

l/d32 

Table 3.1  

The function f(•) of the distance measurements dr  (r = 1,2,3) used in 

A 

forming the method of moments estimator A of the intensity A of a 

homogeneous Poisson process. The estimators based on dr2  are also the 

maximum likelihood estimators. At least asymptotically as the sample 

size m } 0., each estimator is unbiased and the asymptotic variance, 

var (A), is shown. The distances di 
	i 	i may be either x or y or 

r 	r 	r 

zri/A (i = 1,...,m). 
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'compound' estimators which are geometrical means of the usual 

estimators might be more robust than their arithmetic mean analogues. 

Certainly such is the case for the 'compound' estimators of the 

inverse of the intensity investigated by Diggle (1975, 1977). 

For each function d
r
2 ' dr2 d*2  and 1/dr2  of the distance 

measurements to the rth  nearest plant there are four corresponding new 

'compound' estimators. For example the estimators based on d12  are 

(m/2){1 /(TrEx2  ) + 1 /(TrEy2  )} 	 (3.1) 

(m/2){1 /(nExi.) + 2/(TrE4i)} 	 (3.2) 

m✓[{1 /(TrExi2i)}{1 /(TrEyli)11 	 (3.3) 

m✓[{1 /(TrExi2i)}{2/(TrEzi2i)}] 	 (3.4) 

where the summation is in each case over i = 1,...,m. The other new 

estimators are defined in the obvious way using the remaining nine 

estimators given in Table 3.1. Thus there are in all forty 'compound' 

estimators to be compared in addition to the usual estimators formed 

by using either the point-plant or the plant-plant distance measurements 

in the estimators of Table 3.1. 

The estimator suggested on empirical grounds by Batcheler and 

Hodder (1975) is also considered. This estimator is 

m/(TrEx2  x 3.473 x 3.717-1.9131X ) 

where 

X = ✓  [{mExl
i 
 - (Exli)2}/(Exl.Ew.)]. 
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It is possible to construct 'compound' estimators based on distance 

measurements from selected points to the rth  nearest plant and from 

selected plants to the sth  nearest plant where r ¢ s. There is no reason to 

expect these 'compound' estimators to be more robust than those described 

already. They are not included in the present study. 

The standardised bias B and the standardised variance V of an 

estimator a of the average intensity a in the study area S are 

defined by 

B = E(a /a - 1) 

and 

V = vara/ a) . 

With the exception of the Batcheler and Hodder estimator it is clear 

that for a homogeneous Poisson process, at least asymptotically as 

m -} m, B ; 0 for each estimator under investigation. In the next two 

Sections simulation is used to study the robustness of the estimators 

to changes in the, form of the underlying process. An estimator is 

said to be robust if B is close to zero and if V is not excessively 

large for a wide variety of processes. This restriction on the size 

of V ensures the efficiency of the estimator. 

3.3 The homogeneous case  

The simulation study splits into two parts. The first part which 

is presented in this Section looks at the robustness of the estimators 

of the intensity for homogeneous processes. The second part presented 

in the next Section examines the robustness of the estimators of the 

average intensity in the study area S for heterogeneous processes. 

Since so many estimators are being compared the full set of tables of 
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results are not given. Instead the main features of these tables are 

described and the actual results are given in each case for the most 

robust estimator. 

In all cases 25 realisations of each process were used to estimate 

B and V for the various estimators under consideration. For the 

'compound' estimators m = 9 whilst for the usual estimators m = 18. 

Thus the results concerning either type of estimator are based on the 

same total number of distance measurements. This ensures that the 

effort required to collect the data used in a particular estimate is 

comparable with that needed to form any other estimate. The simulated 

patterns were all restricted to have a total number of N = 500 points 

in the unit square R. The points or plants from which distance 

measurements were made were selected according to the random and semi-

systematic sampling schemes of Chapter 2. They were chosen from within 

the square study area S = [0.1, 0.9]2  so as to minimise edge effects. 

The results of Chapter 2 suggest that the resulting sampling intensity 

is sufficiently small to ensure the approximate validity of the 

assumptions made under sparse sampling. 

The standardised bias of the usual estimator based on the function 

f(•) of xr  given in Table 3.1 is denoted B(xr, f(dr)). For example, 

the standardised bias of m/(nExi) is B(xl, d12). The standardised 

biases of the 'compound' estimators in equations (3.1)-(3.4) are denoted 

respectively B(xl, y1, +, d12), B(xl, zl, +, d12), B(xl, y1, I, d12) 

and B(x1, zl, I, d12). The standardised biases of the other 'compound' 

estimators are written in the obvious way. 

The clustered and regular homogeneous processes considered in 

this Section are respectively the modified Matērn cluster process and 

the Strauss process introduced in Chapter 2. As Bartlett (1963) points 
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out, it is possible to consider such a cluster process as a 

heterogeneous process but such an interpretation is not used here. 

For regular patterns Diggle (1977) recommends using YT* to 

estimate the inverse of the intensity. The intensity estimator given 

in equation (3.4) is l/YT*. The simulation results for a variety of 

Strauss processes show that estimators based on the distances to the 

2nd  and 3rd  nearest plants are very slightly more robust than the 

corresponding estimator which uses the distance to the nearest plant. 

However, the improvement is so slight as to be scarcely worth the 

additional effort involved in finding these larger distances. For 

example B(xl,• z1, ✓, d12) z 0.02 whilst B(x3, z3, ✓, .32) z 0.01 

under semi-systematic sampling for a Strauss process with coefficient 

of inhibition c = 0.4 and range of inhibition D = 0.015. The use of 

semi-systematic rather than random sampling appears to have no obvious 

effect on the estimated bias and variance. The results of Chapter 2 

would therefore suggest the use of the former so as to avoid over-

sampling. The estimated values of IBI  and V for the estimator 

E* = m2/{(2Exli)(if Ezli)} (3.5) 

analogous to (3.4) but based on 	aree among the smallest for all the 

estimators in each situation considered. In particular there appears 

to be no advantage in using estimators based on the plant-plant 

distances yr. The use of semi-systematic sampling and the estimator E* 

are therefore recommended for regular homogeneous patterns. 

Realisations of modified Matērn cluster processes having a mean 

number p = 2, 4 or 5 points per cluster and a cluster diameter 

D = 0.05, 0.1 and 0.2 were simulated. Increasing u or decreasing D 
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produces more obvious visual clustering in the simulated patterns. 

When D = 0.05 the simulated patterns are highly clustered whilst the 

patterns for p = 2 and D = 0.2 are visually similar to homogeneous 

Poisson patterns; see Figures 3.1(a)-(d). 

The 'compound' estimators are more robust than the usual estimators 

in all except the highly clustered situations (D = 0.05). For 

moderately clustered patterns there seems to be no advantage in using 

the distances from the selected point or plant to the 2nd  or 3
rd  

nearest plant. Nor is there any apparent advantage in choosing 

estimators which make use of yr  and so require partial enumeration. 

In the situations considered the performance of such estimators is 

comparable with or worse. than that of the analogous estimators which 

use Zr.  Except for the highly clustered patterns, the estimator E* 

is again at least as robust as any other estimator considered. The use 

of semi-systematic instead of random sampling appears to generally 

improve the performance of E*. Certainly it is a safeguard against 

oversampling. The standardised bias and variance of E* for the 

moderately clustered patterns are shown in Table 3.2. The corresponding 

values of the estimator 

E+  = (m2/2)[1/{4(Exli)2} + 2/{4(Ez1.i)2}] 

and those of m2/{4(Exli)2} are included in this Table for comparison. 

In highly clustered situations all the estimators have considerable 

bias. The estimator 3m/(TrEx3i) based on the distances x3  under semi-

systematic sampling generally appears to have bias comparable with and 

variance less than the best of the other estimators in such cases. 

Under semi-systematic sampling B(x3, d3) r. -0.15, -0.26, -0.41 and the 
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Figure 3.1(a), (b). Realisations on the unit square of (a) a homogeneous 
Poisson process (b) a modified Matern cluster process 
with on average p = 2 points per cluster of diameter 
D = 0.2. Each realisation consists of 500 points. 

(:a) • 
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Figure 3.1 (c),(d). Realisations on the unit square of modified Matērn 
cluster processes with (c) p = 4, D = 0.1 
(d) p = 4, D = 0.05. Each realisation consists of 
500 points. 
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u D 

m2/{4( x2i)2} E+  E* 

R S S R S 

2 0.2 -4 4 11 13 6 7 

(3) (7) (10) (8) (8) (7) 

0.1 -13 -22 2 9 -2 -1 

(5) (2) (8) (13) (7) (9) 

4 0.2 -4 -2 6 8 4 2 

(3) (3) (6) (5) (6) (4) 

0.1 -25 -39 10 21 -1 3 

(9) (3) (16) (16) (11) (9) 

5 0.2 -2 -14 12 17 7 1 

(15) (3) (19)  (10) (17) (7) 

0.1 -42 -48 23 20 3 -2 

(4) (3) (29) (22) (18)  (11) 

Table 3.2  

Some results of the simulation study for homogeneous modified Matērn 

cluster processes consisting of clusters of diameter D each containing 

an average of u  points. The percentage  results are shown for random R 

and semi-systematic S sampling. Each result is based on 25 patterns 

each of 500 points. The estimated standardised bias is listed and the 

estimated standardised variance is given beneath in parentheses. 
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corresponding estimated standardised variances are 0.01, 0.01, 0.02 

according as p = 2, 4, 5 when D = 0.05. There is a further advantage 

in using this estimator. If the field worker has some idea of the 

average number p of points in each cluster, not an unreasonable 

assumption in a highly clustered situation, then B(xr, dr2) is about 

(r/p - 1) for r < p. In such situations it is therefore possible to 

approximately correct for bias. 

To see how the correction term arises suppose that the clusters 

are randomly distributed point clusters each containing exactly p 

points. Then for r < p, xr  are the distances from selected points to 

the nearest cluster and the cluster intensity is X/p. Thus the expected 

squared distance from a selected point to the nearest cluster is 

p/(rX). -Hence the estimate rm/(rEx2.) should be about r/(np/nA) = rX/p. 

In other words, for r < p, B(xr, dr2) z (r/p - 1). For the recommended 

estimator r = 3 and (r /p — 1) = -0.25 and -0.4 for p = 4 and 5'. 

These values are in close agreement with the estimated standardised 

bias of -0.26 and -0.41 in the highly clustered case D = 0.05. 

3.4 The heterogeneous case 

The analytical result of Matērn (1960, p.81) concerning the 

variance of an estimator based on systematic sampling suggests that 

semi-systematic sampling should yield more efficient intensity 

estimators than random sampling when there is strong local positive 

correlation in the pattern. Many authors have been concerned about the 

possible bias introduced under systematic sampling in the presence of 

periodic variation (for example see Finney, 1947, 1948, 1950). Milne 

(1959) points out that five conditions must be satisfied before 'centric' 
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systematic sampling gives rise to a severely biased estimate. The 

probability of the simultaneous occurrence of these five conditions 

is so small that he contends that "the risk of periodic variation 

defeating the 'centric' systematic sample 	 can justifiably be 

ignored." 

In this Section simulation is used to examine the performance of 

the intensity estimators under random and semi-systematic sampling in 

the presence of trend. The simplest situation to consider is a general 

Poisson process in which X(x) is not constant over the region R. In 

the simulation study R is the unit square, S = [0.1, 0.9]2  and for 

x = (xl, x2) 8 R 

X(x) a  a(x1  - 1/2)2  + 1/2 

where a 6 1R1  is a parameter which may be varied. The cases a = 2, 4, 6 

were considered, a = 0 corresponding to a homogeneous Poisson process. 

Realisations of some nonhomogeneous Poisson processes are illustrated 

in Figure 3.2. The x coordinates of the points in each pattern were 

generated by acceptance sampling from the distribution with density 

proportional to a(x - 1/2)2  + 1/2, x 8 [0,1] , whilst the y coordinates 

were random numbers generated from a uniform distribution on [0,1]. 

The estimators based on the distances from selected points or 

plants to the nearest plant performed best. This is probably due to 

the fact that the larger distances to other plants are more affected by 

the underlying trend. On the whole the 'compound' estimators seem to 

be more reliable than the usual estimators. In nearly all cases 

considered the use of semi-systematic in place of random sampling led 

to a decrease in both the estimated absolute bias and the variance of 

each estimator. The estimator E* is again the most robust. The results 

of the study for E* are presented in Table 3.3. 
• 
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Figure 3.2. Realisations on the unit square R of a general Poisson 
process with intensity X(x) a a(xl — 1/2)2 + 1/2, 

x = (xl, x9) 6 R where (a) a = 2 (b) a = 4. Each realisation 
consists of 500 points. 

(a)  

(b)  
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Percentage 	a = 2 	a= 4 	a = 6 
standardised 

(i) 	bias 5 3 3 2 10 4 

(ii) variance 5 3 6 5. 7 5 

R 	S 	R 	S 	R 	S 

Table 3.3  

Results for E* of the simulation study for general Poisson processes 

with intensity A(x), Q  a(xl  - 1/2)2  + 1/2 for x = (xl, x2) 6 [0,1]2. 

Each result is based on 25 patterns each of 500 points. Both random R 

and semi-systematic S sampling are considered. 
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The other heterogeneous processes which were considered are 

extensions of modified Matērn cluster processes. They are simulated 

in the same way as these processes except that the cluster centres are 

now a realisation of a general Poisson process with intensity 

A (x) = a(x1  - 1/2)2  + 1/2 for x = (x1,  x2) e [0,1]2. 

Thus there are three parameters needed to describe such processes: the 

trend parameter a, the mean number of points per cluster p and the 

cluster diameter D. The cases a = 2 and 4 were considered. These 

represent slight and moderate trend respectively. The same combinations 

of p and D were examined as in the homogeneous case. Realisations of 

some heterogeneous cluster processes are illustrated in Figure 3.3. 

The results of the simulation study for these heterogeneous cluster 

processes closely parallel those summarised earlier for the homogeneous 

cluster processes. The only obvious difference is that, as expected in 

the heterogeneous case, the use of semi-systematic sampling tends to 

decrease the variance of all the estimators without causing large 

increases in their absolute biases. Indeed the absolute bias is often 

reduced as can be seen from Table 3.4 for the estimator E* which is 

again recommended for all except highly clustered patterns. For these 

patterns the estimator 3m/(rEx3i) is again recommended in conjunction 

with the correction factor given earlier. When D = 0.05 and p = 4, 5, 

the estimated standardised biases of this estimator are -0.25, -0.38 

for a = 2 and -0.30, -0.44 for a = 4 compared with the values 

(3/p - 1) _ -0.25, -0.40. 
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Figure 3.3. Realisations on the unit square R of heterogeneous cluster 
processes. Each cluster contains 4 points on average and 
is of diameter D. The cluster centres are a realisation 
of a Poisson process with intensity X(x) Q 4(x1 - 1/2)2 + 1/2, 
x = (x1, x2) 6 R. (a) D = 0.05 (b) D-= 0.1. 

(a)  

(b)  



65 

u D R 

a = 2 

S R 

a = 4 

S 

2 0.2 7 8 3 3 

(11) (3) (13) (6) 

0.1 -1 1 6 -3 

(9) (8) (4) (3) 

4 0.2 -4 -1 -3 0 

(6) (4) (14) (10) 

0.1 7 9 -2 -4 

(17) (11) (8) (6) 

5 0.2 -3 1 12 -7 

(12) (7) (13) (5) 

0.1 -13 3 -9 -3 

(11) (12) (10) (11) 

Table 3.4 

The percentage results for E* of the simulation study for heterogeneous 

cluster processes in which the cluster centres are a realisation of a 

general Poisson process with intensity X(x) = a(x1  - 1/2)2  + 1/2 for 

x = (x1,  x2) 8 [0,1)2. The estimated standardised bias is listed and 

the estimated standardised variance is given beneath in parentheses. 

Both random R and semi-systematic S sampling are considered. Each 

result is based on 25 patterns each of 500 points. 
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3.5 Conclusions  

In all except highly clustered situations the 'compound' 

estimators are certainly more robust than their usual analogues based 

on either point-plant or plant-plant distance measurements alone. 

Semi-systematic sampling is recommended in preference to random 

sampling. In the homogeneous case it is a precaution against over-

sampling. As expected in the heterogeneous cases considered, it has 

the added advantage of usually decreasing the estimated variance of 

the intensity estimators without seriously increasing their estimated 

absolute bias. The 'compound' estimators based on the 'T-square' 

distances xr, zr  do not require partial enumeration of the pattern. 

For the situations considered their performance is either comparable 

with or better than that of the analogous estimators formed from 

xr  and yr. In general there is no advantage in using any 'compound' 

estimators other than those based on the distances from selected 

points and plants to the nearest plant (r = 1). 

It is recommended that the 'compound' estimator E* be used to 

estimate the average intensities of the processes underlying all 

except highly clustered patterns. The performance of this estimator 

is in all cases comparable with or better than that of 1/yT* where 

yT* is the estimator of the inverse of the intensity recommended by 

Diggle (1975, 1977). The improvement is possibly due to the fact that 

yT* is a function of Exli2/m and Ezli2/m whilst E* is based on 

(Exlfi/02  and (xzli/m)2, the latter being less affected by an unusually 

large observation. Use of the estimator 3m/(11.Ex3i) in conjunction with 

a bias correction factor is recommended for visually highly clustered 

patterns. 
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The results of this simulation study support and extend the 

work of Diggle (1975, 1977). It should be noted that neither the 

estimator suggested by Batcheler and Hodder (1975) nor that introduced 

by Morisita (1957) are particularly robust to the types of changes in 

the underlying distributions considered here. 



CHAPTER 4: A GENERALISATION OF_K TO 8-STATIONARY SIMPLE SECOND 

ORDER POINT PROCESSES. 

4.1 Introduction 

The positions of three types of sporophores which grew about a 

single birch tree in the years 1975, 1976 and 1977 (Ford, Pelham and 

Mason, 1980) are illustrated in Figures 4.1(a), (b) and (c). If the 

sporophores are considered as points then these Figures can be 

interpreted as maps of part of the realisations of spatial point 

processes in some region of interest. A quick glance reveals that 

the intensity of each underlying process changed with the radial 

distance from the tree. Therefore these processes cannot be 

considered to be homogeneous. 

The tree is an obvious reference point for the sporophore 

patterns and will hereafter be taken to be the mathematical origin. 

Other examples of patterns with an obvious origin might include the 

locations of diseased trees in a forest in successive years after the 

introduction of the disease at some known (or unknown) site and the 

positions of fortifications in the countryside near the site of an 

historically important city. In the former the origin would be the 

initial point of infection and, in the latter, the position of the 

old city. 

Virtually all existing methods of analysing maps of spatial 

patterns test for departures from null hypotheses involving processes 

which are both homogeneous and isotropic or, equivalently, stationary 

under the group of rigid motions. Diggle (1979) and Ripley (1979a) 

compare some of these methods. In most cases the null hypothesis is 

that the observed pattern is part of an outcome of a Poisson or 
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1 	 

Figure 4.1(a)  

The pattern of sporophores growing about the birch tree in 1975. 

Hebeloma spp., 	x Laccaria laccata, y Lactarius pubescens. 
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Figure 4.1(b)  

The pattern of sporophores growing about the birch tree in 1976. 

Hebeloma spp., x Laccaria laccata, * Lactarius pubescens  
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Figure 4.1(c)  

The pattern of sporophores growing about the birch tree in 1977. 

Hebeloma spp., x Laccaria laccata, * Lactarius pubescens. 
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binomial process. There is very little published work on what may 

be done when the observed pattern is obviously not part of a 

realisation of a process that is stationary under the group of 

rigid motions. 

One possibility is to partition the region of interest into sub-

regions within which it is reasonable to assume isotropy and homo-

geneity of the underlying process. Each subregion is then analysed 

in turn and the results compared in some way. It is visually obvious, 

however, that no partition of the sporophore patterns into subregions 

each containing a reasonable number of sporophores of each type, say 

more than twenty, is likely to produce subregions in which this 

property may be assumed. Even if such a partition were possible, an 

analysis within each subregion would not make use of all the 

information concerning the spatial relationships between the subregions. 

Some alternative approach is required. 

As a first approximation it seems reasonable to assume that the 

underlying process associated with each sporophore type in each year 

is stationary under rotations about the origin. A less restrictive 

approximation made later involves the concept of 0-stationarity which 

describes a similar assumption about the underlying process only in 

some sector of interest. 	This Chapter contains a theoretical 

development of generalisations of Ripley's K method which are applicable 

in such situations where there is an obvious point of reference or 

origin. One of these new methods is used to analyse the sporophore 

patterns in Chapter 6 after their marginal radial and angular 

distributions have been estimated in Chapter 5. 



4.2 0-stationary simple second order point processes  

Ripley (1976a) has defined point processes, in particular simple 

second order point processes, on a topological space X. Briefly, 

each realisation of a simple second order point process consists of 

a countable set of distinct points from X. If the random variable 

Z(A) denotes the number of points in each Borel subset A of X, then 

for a second order point process E{Z(A)} and E[{Z(A)}2l are finite 

whenever A is bounded. 

The first and second moment structures of a point process Z on X 

are described by the first and second moment measures, respectively 

p1(A1) = E{Z(A1)} 

and 

p2(A1  x A2) = E{Z(A1)Z(A2)} 

where Al'  A2 e C, the class of bounded measurable sets in X. If G 

is the group of rotations about the origin then Z will be said to be 

isotropic if its distribution is invariant under G. For a simple 

point procēss it is only necessary to check invariance for the finite 

dimensional hitting probabilities for sets from, say, the class of 

open discs (Ripley, 1976b). Unless otherwise stated it will be assumed 

that Z is an isotropic simple second order point process on X. 

Ripley (1976c) has shown that, under certain conditions, if T is 

the quotient space of the equivalence relation defined by G on 

Y = X2  and if p : Y ; T is the quotient map, then for all Borel sets 

A C Y 

p2(A) = f vt(A)dK(t) (4.1) 
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where vt  is a unique invariant Radon measure on Y, concentrated on 

Yt  = p-1 ({t1), and K is a unique a-finite measure on T. It follows 

that the first two moment measures may be summarised by X(x), the 

intensity of the process Z at the point x, and K, the reduced second 

moment measure. 

In particular, for an isotropic process on X = IR2  any (x,y) 6 Y 

belongs to some equivalence class which may be characterised by 

t = (Ixl, lyl,) where E = cos-1{x.y/(lxlly1)}. For example, 

Figure 4.2(a) illustrates two pairs (xl,yl) and (x2,y2) in the same 

equivalence class. In this case X(x) depends on x only through Ix'. 

For notational convenience a(x) will be written a(Ixl) with the 

obvious interpretation. 

With the above characterisation of T for an isotropic process on 

X= IR2 , 

K : 1R
-1-
. IR 	x [ 0, x ] -} IR+  . 

The moment decomposition equation (4.1) may then be written 

p2(A1  x A2) = E{Z(A1)Z(A2) } 

= 	f 	x(Ixl)dv(x) 
A1n A2 	.. 

(4.2) 

where v is Lebesgue measure on IR2  and 
v(r s 6) 

can be shown to be 

proportional to the invariant Radon measure on Y 
(r,s,6)'  



(a) 
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(b) 

Figure 4.2  

(a) Points (xl,yl),  (x2,y2) e Y = IR2  x lEt2  in the same equivalence 

class characterised by t = (r,s,E). 

(b) A point (x,y) G Y = Y.2  where X is the surface of the cone with 

half-angle a. This point is in the equivalence class 

characterised by t = (Ixl, Iyl,E). 



ex Rx [0,n] 

I 	• 
v(r,s,9)(Al x A2)dK(r,s,0) 
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The expressions in equation (4.2) have the following intuitive 

interpretations: 

2 u  (Al  x A2) = expected number of ordered pairs (x,y) of points, 

one point from Al  and the other from A2  

= (a) + (b) 

where 

(a) = expected number of ordered 'pairs' (x,x) of points, 

the same point from Al  and A2  

= I X(Ixl)dv(x) 
Al  n 

 A2 	- 

and 

(b) = expected number of ordered pairs (x,y) of distinct points, 

one point from Al  and the other from A2  

where 

v
(r,s,9) 

(A1 
x A

2
) = probability that a pair of points in the equivalence 

class characterised by (r,s,A) lies in (A1 x A2)  

and 

K(r,s,A) = expected number of ordered pairs (x,y) of distinct points 

such that lxl < r, lyl<  s and cos 1{x.y/(IxIIyI)} < 0. 

Precisely the same moment decomposition equation (4.2) will arise 

if the process Z is defined for some fixed a G (0,71/2] on the two-

dimensional manifold 

: x = (xl,x2,x3) e IR3  , xl2  + x22  = (x3  tan a)2}. X = 
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Clearly X is the surface of a cone with half-angle a. If (x,y) 6 Y 

lies in the equivalence class corresponding to t 6 T, then the required 

characterisation is t = (1x1, IyI,) where this time 

= cos 1{x*.y*/(fix*IIY*1)} and x* = (x1,x2,O), y* = (y1,y2,O) 

are the orthogonal projections of x, y onto the plane perpendicular 

to the axis of the cone and passing through the origin. Figure 4.2(b) 

illustrates these relationships. It follows that the earlier case 

X = JR2  arises here as the particular case a = r/2. 

If Z is a simple second order point process on 1R2  and x 6 1R2  is 

written (r,0) in polar coordinates, let Z
0 
 denote the restriction of 

the Z process to the 'sector' 

S = 

where either 

: r e ]R , 0 6 H} 

H = [01, 02] 	, 	0 < 81  < 82 < 2ar, 

or 

H = [01, tar) u [0,02] , 	0 < 02  < 01  < 2ar. 

If the process Z0  is stationary under rotations on the cone formed by 

identifying the edges of the 'sector' S, then the process Z will be said 

to be 0-stationary on S. The sector S will be called a 0-stationary  

sector of Z. Toroidal edge corrections are used as boundary conditions 

for homogeneous, isotropic processes defined on a bounded set (for 

example see Ripley, 1977, 1979a). The concept of 0-stationarity 

performs the same function for isotropic processes defined on a 'sector'. 



Any isotropic process on 1R2  is clearly 0-stationary on any 

'sector' S but 0-stationarity on some 'sector' S does not imply 

isotropy on ]R2  unless S = IR2  . For example, if Z is a Poisson 

process on ]R2  with varying intensity 

	

> 0 	x 6 S 

	

a2 > 0 	 x6Sc  

where Al  # a2,  then Z is not isotropic but is 0-stationary on both 

S and Sc. Figure 4.3 illustrates a realisation of such a process. 

Hereafter 'small' objects such as sporophores will be represented 

by points. A model will be a family of processes which are restrictions 

of simple second order 0-stationary point processes to some 6-stationary 

'sector'. It will be assumed that for a realisation of a spatial 

pattern it is possible to observe all points in some known set E, the 

sampling window. Although it is not necessary for much of the theory 

of this Chapter, it will also be assumed that E= {x : r < r 6 6 H — 0' 0 
for some r0  < m, H0  C H; that is E is a sector lying inside some 

0-stationary 'sector' and so contains the origin. 

The cumulative distribution function K of the a-finite measure 

on T is used in preference to the corresponding density for the reasons 

cited by Ripley (1977). In particular any estimate of this density 

would have to be smoothed. This would require a subjective choice of 

the amount of smoothing for a function of several variables. 

It is possible to consider the analogue of Ripley's function 

p(t). For an isotropic process this is given by 

P(r,t) = Pr(Z(b(x,t)) > 0 11X1 = r} 
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where 

b (x, t) = 	: Ix - yl < t} 
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for any x e  ]R2  and t > 0. This function is the 'first order' part of 

the description of an isotropic process in terms of the hitting 

distribution for all finite collections of open discs. Unlike p(t) 

which was introduced to detect heterogeneity, p(r,t) can have no such 

obvious use due to the admissible variation in the intensity. The 

functions p(t) and p(r,t) provide information on only the distribution 

of the distance froma0 randomly chosen position to the nearest point. 

In many applications the estimate of p(t) merely provides further 

evidence supporting the conclusions reached on the basis of the 

estimate of K(t). It is reasonable to expect that this would also be 

the case with p(r,t) and K(r,s,0). For these reasons it was decided 

to concentrate attention on K(r,s,0). 

4.3 Some models  

For convenience the models described in this Section will be 

families of isotropic processes on 1R
2
. Isotropy ensures that the 

intensity at the point x = (r,A) is given by A(x) = A(r). In all cases 

analogous models consisting of 0-stationary processes can be formed 

simply by considering the restrictions of isotropic processes to 

0-stationary sectors and using appropriate boundary conditions to 

eliminate edge effects. 

The Poisson model is the simplest to be considered. It is comprised 

of the family of isotropic Poisson processes with variable radial 

intensity A(r). Figure 4.4(a) illustrates a realisation of such a 

process. It is clear that for such processes 
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Figure 4.4  

(a) A realisation consisting of 100 points from an isotropic Poisson 
process with radial intensity A(r) = exp(-r2). 

(b) A realisation consisting of 100 points from a simple cluster process. 
The mean number of points per cluster p = 4 and the cluster diameter 
D = 0.8. The origin is marked X. 
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r 	0 s 
K(r,s,(3) = f A(x)27rx f  JA(y)y dy d0 dx 

0 	-0 0 

r 	s 
= 4Tr0 J  X(x)x dx f A(y)y dy. 

0 	 0 

This function depends on the intensity which is usually unknown. It 

might therefore be more convenient to consider 

K*(r,s,0) = K(r,s,0)/{av A(r). av X(s)} 

where 

av A(r) = J A(x)2Trx dx/(Trr2) 
0 

is the mean intensity inside the circle of radius r. For a Poisson 

process 

K*(r,s,0) = Tr0r2s2  

which is independent of A(r). 

In Section 4.5 it is shown that the function 

K1(r,t) = expected number of ordered pairs (x,y) of distinct 

points such that Ixf < r, lx - y I < t 

is even more useful than K* for reasons of parsimony and ease of 

graphical representation. For an isotropic Poisson process 

r 
K1(r,t) = J A(x1)2Trx1 	J 	A(IYi)dv(Y)dxl 

0 	 b.((x1,O),t) 



where v is Lebesgue measure on ]R2  and b(x,t) 	{y : ly-xl < t}. 

Provided that A(y) = A(x) for Ix  - yl < t, a condition which should 

be satisfied for small values of t by the smoothly varying intensity 

functions usually met in practice, it follows that for an isotropic 

Poisson process 

K1(r,t) 	f A(x)27rxirt2X(x)dx 

r 
= 2rr2t2  f xA2(x)dx. 

0 

Unlike K or K*, K1  does not completely specify the second moment 

measure. However, if X(y) = X(x) for Ix-yl < t, it seems reasonable 

to expect that K1  will contain much of the information about the second 

moment structure of a process in which there are no substantial long 

range interactions between points. This is confirmed by the results 

reported in the following Sections. 

For any isotropic process 

r 
K(r,s,6) = f A(x1)2mc1 	f 	A(ylxl)dv(y)dxl 

0 	c(xl,s,e) 

where 

c(x1,s,A) = 	
2 	I__I 	.. —1(--  /I..I) 	o 1 
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0 

and 

A(y1x1) = the conditional intensity at y given there is a point at (x1,0). 



In the same way 
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K1(r,t) = 
r 
fx 
0 

)2Trx1 	f 	X(ylxl)dv(y)dx1  . 
b((x1,0),t) 

For an isotropic Poisson process 

A (y1x1) = A(y) = a( l yl). 

A process will be said to be clustered at the radial distance xl  if 

A(ylxl) > a(lyl) 
	

d((x1,0),y) < 6, 

and to be regular at the radial distance xl  if 

A(y1x1) < A(IyI) 	d((x1,0),y) < 6, 

where d( , ) is the distance function between two points and 6 is some 

positive constant. If a process is clustered for some interval of 

radial distances, it follows that for some values of (r,s,6) and (r,t) 

K*(r,s,O) > Trer2s2  

and that 

r 
K1(r,t) > 21r2t2  f xa2(x)dx. 

0 

The expressions on the right hand sides of these inequalities are just 

the exact and approximate values of K* and K1  respectively under a 

Poisson hypothesis. Processes which are regular over some interval of 

radial distances obviously satisfy the above with the inequality reversed. 
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These inequalities suggest that estimates of IC'. or K1  might be 

used to test the fit of a model in a similar manner to that proposed 

by Ripley (1977) for homogeneous isotropic processes. This idea is 

pursued further in Section 4.5. Many of the clustered and regular 

processes described in Ripley (1977) have obvious isotropic analogues 

with variable radial intensity. Some of these are described below. 

All of the processes mentioned are either clustered or regular over 

the whole range of radial distances. It would of course be possible 

to construct a process which was, say, clustered for certain intervals 

of radial distances and regular for distances outside these intervals. 

Two clustered processes are considered. The first is an isotropic 

generalisation of one of Matērn's cluster processes (Matern, 1971) 

and will be called a simple cluster process. This process consists of 

an isotropic Poisson parent process on I12  with intensity 

XD(x) = aD(IxI) and a daughter process cp. The process 4  is the 

restriction of another independent Poisson process with constant 

intensity Ai  to a disc of diameter D. The parent process is sampled 

and each point is taken as the centre of a disc associated with an 

independent copy of cp. The simple cluster process is made up of both 

the parent process and the superimposed daughter processes. It is 

obviously an isotropic process and the mean number of points per 

cluster is p = (A1nD2/4 + 1). Figure 4.4(b) illustrates an outcome of 

such a process. 

It is possible to find an expression for A(r), the variable radial 

intensity of a simple cluster process. This function is composed of 

two terms: the first is a contribution from the parents, a0(r), and 

the second is a contribution from the offspring. In nearly all cases 

one is interested in radial distances r > D/2 = R. Here the offspring 



contribution is 

r+R 
2A1 f 0(x)xX0(x)dx 

r-R 

(h..3) 

where 

8(x) = sin 1[{R2 - (r2 + R2 - x2)/(4r2)}~/x]. 

To see how this term arises, consider Figure 4.5. A daughter at P can 

be the offspring of a parent located anywhere inside the circle of 

radius R centred on P. The contribution from offspring of parents at 

radial distance x is, with the notation on the Figure, 

Al 28(x)xA0(x) 

and this must be integrated over the possible values of x, 

r-R < x < r+R, to give (4.3). Thus, for r > D/2, 

r+R 
A(r) = AD(r) + 2A1 f e(x)xA0(x)dx. 

r-R 

The expression for 6(x) follows from the two equations 

= r2 + R2 - 2r R cos (x) 

and 

sin cp (x) = x sin{0(x)}/R. 

The functions K* and K1 are essentially determined by the 

conditional intensity A(ylxl), a complicated expression even for a 

simple cluster process. However, it is clear that this function must 
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Figure 4.5  

The relationships between x, r, R and 0(x) required to find 

the offspring contribution to the radial intensity of a simple 

cluster process. 
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be the sum of two terms, one arising when the two points are from 

different clusters and the other when they are in the same cluster. 

The first term is simply X(IyI). The second must be positive if 

lx-yl < D and zero when lx-yl > D where x = (x1, 0). Thus a simple 

cluster process is indeed clustered according to the definition given 

earlier. 

The other clustered process to be considered will be called a 

double cluster process. It consists of an isotropic Poisson parent 

process on JR2  with intensity A0(x) = X0(IxI), a process ¢L  and a 

process OS. The Poisson process, 01,  and ¢S  are jointly independent. 

The processes OS  and OL  are the restrictions of Poisson processes with 

constant intensities A and 
AL 

to discs of diameter DL  and DS  

respectively. The parent process is sampled and each point is taken 

as the centre of a disc of diameter DL  associated with an independent 

copy of 	The The 4L processes are then sampled and each resulting 

point is taken as the centre of a disc of diameter DS  associated with 

an independent copy of OS. The double cluster process consists of 

only those points arising from the 
0S 
 processes. Figure 4.6(a) 

illustrates a realisation of such a process. It is clearly made up of 

a number of large clusters each of which is comprised of smaller 

clusters of points. The average number of small clusters within each 

large cluster is uS = ALnDL
2
/4 and the small clusters each contain a 

mean number ASnDS2/4 of points. The conditional and unconditional 

intensity functions for a double cluster process are complicated 

expressions which have not been evaluated analytically. Similar 

considerations to those used in the case of a simple cluster process 

reveal that the double cluster process must also be clustered in the 

sense defined earlier. 



3 

-2 

1 

-0 
A 4 

• 
• • 

3 

2 

-0 

=1 

=2 

--3 

• 
• • 

• • 

• 
• 

• • • • • 

• • • 
oo 

• 

••• • • • • • • 
• • 	 • • • 

• • 	• 	• • • 

• •■ 	• 	• 
• • ' 	• • • 	• • 

• ' •• 	• 	• • 

• • 
• • 	. • 	 • 

• 	• 	 • • 	• 

•• • • • 
• 

• 

• • 

• •• • 
• 

(b) 
• 

(a) 

89 

	

I 	c 	I 

	

-3 	-2 	- 1 
I 	 r 	 I 

1 	2 	3 0 

-3 	-2 	-1 	0 	1 	2 	3 

Figure 4.6. (a) A realisation consisting of 240 points from a double 
cluster process. There are on average p = 6 points per small 
cluster of diameter DS  = 0.3 and each large cluster contains 
an average of uS = 5 small clusters. The diameter of the 
large clusters DL = 1.0. 
(b) A realisation consisting of 100 points from a fixed range 
interaction process with coefficient of inhibition c = 0.1 
and range of interaction D = 0.3. The origin is marked X. 



and 

X(IyI) 	, 	lx-yl > D, 

0 	, 	Ix-yl < D, 

x(ylxl) = 
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All of the hard core models mentioned in Ripley (1977) have obvious 

isotropic analogues. Instead of sampling a Poisson process of constant 

intensity a, sample an isotropic Poisson process with radial intensity 

A0(r) and then apply the same criteria to the resulting point pattern. 

For example, the first of Matērn's hard core models is obtained by 

deleting any point within a distance D of any other whether or not 

this has already been deleted. The process so defined is clearly 

isotropic and its unconditional and conditional intensities are given by 

X(r) = A0(r)exp { — f 	A0(IxI)dv(x)} 
b((r,0),D) 

respectively, where x = (x1,0). This process is therefore regular 

according to the earlier definition. The restriction of such a 

process to some bounded set C can be simulated by simulating the 

underlying Poisson process on {y : 3 x 6 C, d(x,y) < D} and deleting 

points as explained. 

Isotropic analogues of fixed range and pairwise interaction 

processes are defined on a bounded set C C IR2  by f, the Radon-

Nikodym derivatives of their distributions with respect to that of an 

isotropic Poisson process with radial intensity A0(r). Suppose that 

x is a realisation, that is a collection of points in C, and let the 

interaction between any two points E, n 6 C depend only on the distance 

d(E,n) between them. Following Ripley (1977) set 



f(x) = ab
n(x) II 	h{d(E,n)} 

E,nex 
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~#n 

when a,b > 0, n(x) is the number of-points in x and the interaction 

function h : (0,o) -} [0,o) is bounded and vanishes on (0,D). 

Fixed range interaction processes correspond to taking 

c 	, 	 d < D 

h(d) = 

1 	, 	d .> 

Let v0 be the measure induced by the isotropic Poisson process with 

radial intensity A0(r). Then for a pairwise interaction-process the 

conditional density with respect to v0 of a point E given the 

realisation in CVC} depends only on the number of points in the 

realisation less than a distance D from , that is on the number of 

neighbours of E. This characterisation is proved by Kelly and Ripley 

(1976). The case c = 0 corresponds to one type of hard core model 

whilst c = 1 is simply the Poisson process. Figure 4.6(b) illustrates 

a realisation. 

More complicated isotropic pairwise interaction processes could 

be obtained by making the interaction between E and n depend not only 

on d(E,n) but also on 1E1 and lnl . 



4.4 Simulation  

Simulations of the proposed process will be required when 

testing the goodness of fit of a model. In general a simulated 

pattern is the restriction of a realisation of the process to some 

bounded set C C1R2  and consists of a number N of points. In what 

follows N is fixed and the bounded set is the window sector 

E _ {x : r < rO, 0 6 H0} where x = (r,0) in polar coordinates as 

defined in Section 4.2. 

For a general Poisson process the numbers of points in any two 

disjoint sets are independent. This fact makes it particularly simple 

to simulate an isotropic Poisson process with radial intensity X(x). 

The probability density function fr(x) of the marginal distribution 

of the radial distance to a point in the process is proportional to 

xX(x) for any isotropic process. Provided xa(x) is bounded on 

[0, rO], acceptance sampling can be used to generate a sample of N 

values of the radial distance on [0, rO]. These values are taken as 

the radial coordinates of the N points in the simulated Poisson 

process, the angular coordinates being N independent values generated 

from a uniform distribution on H0. 

Boundary conditions must be imposed when clustered on regular 

patterns are simulated. One method is to impose a type of periodic 

boundary condition by identifying the two straight edges of the sector 

E and simulating the pattern on that part of the surface of the 

resultant cone within a distance (rO  + R) of the origin where R is some 

specified constant. Denote this part of the surface by S and let 

S0  = {x : x 6 ]R2, r < rO  + R, 0 6 H0} be obtained by opening out S 

along, say, the line xi  = (x2  tan a) where a is the half-angle of 

the cone; see Figure 4.7. The required simulated pattern is that in 

E c S0. 

92 



Xi 

(b) 

 

93 

	> X1 

 

(a) 

Xs 

So 

E 	~ 

I 

Figure 4.7  

(a) The surface S of the cone with half-angle a on which the processes 
are simulated. 2 

(b) The set Sn c IR obtained by 'opening out' S. The window sector 
E c S0 and a = all — sin a). 
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To be specific, first consider simple cluster processes and 

use the notation for these processes given in Section 4.3. Let 

R = D/2 and generate a single Poisson number Nc, mean 

p = fA0(IxI)dv(x). Simulate an isotropic Poisson pattern with 
E 

radial intensity X0(•) on S in the obvious way, adding each point 

in turn until Nc  points no more distant than r0 
 from the origin 

have been added. The (Nc  + n) points, n > 0, of this pattern on S 

are taken to be the cluster centres. A centre is picked at random 

and a point is placed independently and at random inside a 'disc' of 

diameter D centred on the chosen cluster centre, the 'disc' of course 

lying on the surface of the cone. If the point so added is further 

than (r0  + R) from the origin, it is discarded and the procedure is 

repeated. Points are added independently in this fashion until 

(N-Nc) such additional points lie within a distance r0  of the origin. 

The pattern of the N points in E C S0  formed by- opening out the cone 

is the required simulation. A similar method can be used to simulate 

double cluster processes on E, this time taking R = (DL  + DS)/2 with 

the notation of Section 4.3. 

Fixed range interaction processes may be simulated by appropriate 

generalisations of the method given in Ripley (1977, 1979b). Let 

R = 0 and simulate an isotropic Poisson process with radial intensity 

A0(•) on S conditional on there being N points in S. Denote the 

pattern so obtained by x. Delete a point chosen at random from this 

pattern. Generate another point t, ICI < r0, from the isotropic 

Poisson process. Accept this point with probability proportional to 

f(x U E)/f(x) where x denotes the reduced pattern of (N-1) points. 

Here f refers to the Radon-Nikodym derivative of the distribution of 

the fixed range interaction process with respect to that of the 
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isotropic Poisson process when both processes are defined in the 

obvious way on the surface of the cone. Thus the probability of 

āccepting the point E  is proportional to c#(§)  where #(0 is the 

number of neighbours of in x and 0°  is defined to be 1. Points 

are generated in this way until one is accepted. The whole procedure 

of deletion and acceptance is repeated a total of 2N times. The 

required simulation is the resulting pattern of N points on E formed 

by opening out S. 

The edge effects introduced by setting R = 0 should be negligible 

provided that the range of interaction D is small and that N is not 

close to the maximum possible number of points in E for the hard core 

model, -c = 0, with this range. If these conditions are not satisfied, 

one can simulate patterns on S corresponding to R = 2D, say, and 

accept only those patterns for which there are N points not more 

than a distance r0  from the origin. If, as in the examples to be 

discussed, A(r) = 0 for r > r0, there are clearly no difficulties 

with edge effects. 	Pairwise interaction processes may be simulated 

in a similar way. 

4.5 Fitting models  

Ripley (1977) described how a single sample can be used in testing 

the goodness of fit of a model under conditions of homogeneity and 

isotropy. There are obvious generalisations of this method which can 

be used to fit models under only isotropic hypotheses, the assumption 

of isotropy providing the necessary replication. These methods use 

estimates of K*  or K1  in the following manner. 
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Suppose that K*(r,s,e) and K1(r,t) are estimators of K*(r,s,6) 

and K1(r,t) respectively. Possible forms for the estimators will be 

given later. Except when specific values of (r,s,6) and (r,t) are 

involved, K*(r,s,6) and K1(r,t) will be written K*  and K1  respectively. 

The estimates K*  and K1  are useful summary statistics even when 

modelling the stochastic process which generated the observed pattern 

is of no interest. 

The goodness of fit criteria involve a comparison of K or K1  

for the data pattern of N points with estimates of K*  or K1  from a 

number (n-1) of simulated patterns which are realisations of the 

hypothesised process P0. Each simulated process consists of N points. 

Let K x(r,s,6) and 
K*.  (r,

s,6) denote the. maximum and minimum values 

respectively of the (n-1)- estimates of K*(r,s,6) obtained from the 

simulated patterns. Define 
Rlmax(

r,t) and 
Klmin

(r,t) in a similar 

manner. 

If the particular point (r,s,6) is of interest, a Monte Carlo 

test of size 2/n of the null hypothesis that the data pattern is a 

realisation of the process PO  is to accept the null hypothesis if 

K*(r,s,6) 6 [Kmin
(r,s,6), 

 I* (
r,s,6)) and to reject it otherwise. 

Usually one is interested in a set of points, say 

{(r,s,6) : 0<r<r1, 0<s<s1, 0<6 <61}, 

and the null hypothesis is accepted if K*  6 [K*  , K*  I for all 
min max 

these points and rejected otherwise. The size of this test is certainly 

no more than 2/n and can be estimated by the rejected proportion of a 

further group of patterns each of N points simulated from the process 

P0. The analogous tests involving K1  are obvious. One-sided tests 

are possible if clustered or regular alternatives are of interest. 
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Often the data must be used to fit certain parameters of themodel. 

Provided the number of estimated parameters is small compared with N, 

this should not noticeably affect the significance levels given above. 

If the observed pattern consists of the set of points {xi}, 

i = 1,...,N, falling inside the window sector E defined earlier, 

then the •estimators K* and K1 are given by 

K*(r,s,8) _ (27)2E*k(xi,x.)/{h0 ave A(r). ave X(s)} 

and 

K1(r,t) = (2r)2 E1 k(xi,x~) /h~. 

The summations are over all ordered pairs of distinct points (xi,x.
J
) 

such that, in the case of E*, lxil < r, Ix.' < s, cos-1{xi.x~/(lxillx~ l)} 

< 8 and, in the case of E1, 'xi' < r, lxi 
- xi l it. The function 

k(xi, x.) is the reciprocal of the proportion of the perimeter of the 

circle centred on xi and passing through x.
J 
which is within E. The 

'length' in radians of the angular interval HO associated with E is h0. 

The estimator K*(r,s,8) is well-defined if r,s < ro and 0 <h0. 

Consider the case r,s < r0/3 when h0 = 2r, that is when the window 

is a disc of radius r0 centred at the origin. Then K* is unbiased and 

k(xi, x~) 	1 for each term in the summation E*. Usually the radial 

intensity function X(•) is unknown and ave a(r) must be estimated by 

2n(r)/(h0r2) where n(r) is the number of points no more than a 

distance r from the origin. It was found by simulation that only a 

very small possible bias of K* was introduced in the above case when 

such an approximation was made for a variety of intensity functions. 



If a(•) is a constant function in which case the underlying 

process is both homogeneous and isotropic, k(xi, xj) is inversely 

proportional to the probability that a point the distance of x. from 

xi  had of being recorded. Then K*(r,s,8) is unbiased even when 

max(r,$) > r0/3 or h0  < 2n. However this is no longer true when 

variable radial intensity functions are considered. Indeed the bias 

can be substantial even when it is not necessary to estimate ave A(r). 

There are other practical objections to the estimator K*  when 

testing the goodness of fit of a model. Suppose one is interested in 

a set of values {(r,s,8) : 0 < r < rl, 0 <.s < sl, 0 < 8 < Ol}. It is 

reasonable to compare K*  with K. and K
max 

 at in  equally-spaced values 

of each of r, s and 0. This requires 0(m3) operations and is thus 

computationally time-consuming even for moderate values of m. 

Furthermore, there is no obvious graphical method of clearly displaying 

the relative values of these functions of three variables without using 

m plots, each plot showing the relationships for, say, different values 

of r and s with 0 held constant. These objections do not apply to the 

function of two variables K1. 

The estimator Kj(r,t) is well-defined if r < r0  and t < to  

= sup{Ix-y1 : x,y 6 E}. It has been shown that K1(r,t) should provide 

useful information about the second moment structure of the underlying 

process when a(x) ft X(y) for Ix-yl < t. In all that follows it will 

be assumed that t is taken sufficiently small for this assumption to 

hold. This is not a severe restriction in practice as one is usually 

interested in small interpoint distances t « r0  and X(•) usually varies 

smoothly. When Ix1-xjI < t the function k(xi, xj) is approximately 

inversely proportional to the probability that a point the distance of 
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x. from xi  had of being recorded. Thus K1(r,t) is approximately 

unbiased. It was found by simulation for a variety of radial intensity 



functions that this bias appears to be small. 

The sampling fluctuations of K1  have not been investigated 

analytically. The goodness of fit test described earlier uses 

simulation to find confidence regions for K1.  If one is interested 

in the set of values {(r,t) : 0 < r <.r1, 0 <.t <.t11, then comparing 

K1  with 
Klmin 

 and 
 Klmax at m equally-spaced values of each of r and t 

involves only 0(m2) operations. Moreover it is easy to represent the 

results on a single plot: simply print +, 0, - at the point (r,t) 

according as K1(r,t) lies above, inside or below the simulation 

envelope at the point (r,t). 

Such a plot is illustrated in Figure 4.8(a). The outcome of the 

isotropic Poisson process with radial intensity 

X(r) = exp(- 

illustrated in Figure 4.4(a) was used as the data set. The envelope 

values K
lmin 

and 
 Klmax 

 were computed from 50 simulations of the same 

process and, as expected, K1  lay within this envelope at each evaluation 

point (r,t). Each pattern consisted of a total of N = 100 points. 

Unfortunately the radial intensity function is not usually known 

in practice and must be estimated. Some methods of estimation are 

discussed in Chapter 5. If the estimator A(r) deviates markedly from 

A(r), spurious effects of clustering or regularity may be detected. 

For example, suppose the radial intensity A(r) of the pattern in 

Figure 4.4(a) is estimated by 

X(r) = exp(-r2/2). 

When K1  was compared with the envelope values computed from 50 

simulations of an isotropic Poisson process with radial intensity 3(r), 
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each consisting of N = 100 points, the plot illustrated in Figure 4.8(b) 
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Results of Kl  analyses of the pattern illustrated in Figure 4.4(a). 
The simulation envelope is based in each case on 50 simulations 
of a pattern of 100 points from an isotropic Poisson process with 
(a) a(r) a  exp(-r2) and (b) a(r) cc exp(-r/2). The entry +, o or 
- at the point (r,t) indicates that K1  lay above, inside or below 
the envelope for the radial distance r and the interpoint 
distance t. 
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was obtained. This plot would indicate that the observed pattern was 

clustered at small radial distances and regular at large ones. 

However it is known that the pattern is a realisation of an isotropic 

Poisson process. The spurious effects arise since A(r) has not been 

well-estimated; the patterns simulated to form the envelope having 

on average fewer points close to the origin and more further from 

the origin than the data pattern of Figure 4.4(a). 

A series of isotropic Poisson, clustered and regular patterns 

with several different radial intensities were generated to compare 

the performance of K1  and K* in correctly fitting such models. There 

was no substantial difference and, in view of this and the difficulties 

associated with K*, it was decided to use only K1  in future analyses. 

There-  is of course a limit to the. amount of information contained 

in the first and second moments of a spatial process. This fact was 

stressed by several contributors to the discussion of Ripley (1977). 

Ripley commented that it was possible to extend the moment decomposition 

results to higher moments of homogeneous and isotropic processes. This 

is also true of isotropic processes but the associated analysis would 

be exceedingly complicated. Is some simpler, perhaps approximate 

analysis possible? How can one determine when the first and second 

moments are not sufficiently informative and, in that case, where 

should one stop - the third, fourth or even higher moments? These 

are important questions but as yet no answers seem to be available. 



4.6 Extensions to multitype point processes  
• 

Ripley (1976a) indicated how second-order methods can be used 

to investigate the interactions between two point processes which 

are defined on the same space X and which are jointly stationary under 

some group G of transformations. Suppose that there are several point 

processes Z1,Z2,...,Zk  which are defined on 1R2  and which are jointly 

stationary under rotations about the origin. If A E C, the class of 

bounded measurable sets in IR2, let Zi(A) be the number of points of 

type i in A. Cross moments are defined by 

pij(Al x A2) = E{Zi(AI)Z.(A2)} 

for Al'  A2  6 C and-i,j = 1,...,k. Clearly 
pii 

is the second moment 

measure uit  of the isotropic process Zi  defined on 7R2  . 

Just as p2  can be summarised by the function K(r,s,6), pij  can 

be summarised by 

Kij(r,s,e) = expected number of ordered pairs of distinct points 

(x,y) such that x is from the Zi  process and 

rxl < r, y is from the Zj  pro cess and IYI < s and 

cos-1{x.y/(lx11y1)} < e.  

Denote the radial intensity function of the Zi  process by xi(-), 

i = 1,...,k. Provided that ai(x) 	ai(y) and that x.(x) 	aj(y) 

for lx-y1 < t, the function 

Kij(r,t) = expected number of ordered pairs (x,y) of distinct 

points such that x is from the Zi  process and Ixl 

and y is from the Z. process and Ix-yl < t. 
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should contain most of the information about the cross moment structure 

of two processes between which there are no substantial long range 

interactions. It is preferred to K13  for. the same reasons as K1  is 

preferred to K*  in the case of a single process. It can be estimated 

by Ki3(r,t), the obvious analogue for the two process situation of 

K1(r,t). If the processes Zi. and Zj, i # j, are defined on some 

sector S and are jointly 0-stationary on S, then the above results 

can clearly be generalised. 

To test for the absence of interaction between the processes Zi  

and Z., i # j, proceed as follows. First identify the edges of the 

sector S and consider the observed patterns on the surface of the 

cone so formed. Calculate K113  at some set of evaluation points 

{(r,t)}, using distances measured on the surface of the cone rather 

than Euclidean distances. Generate an envelope of values for this 

function under the assumption of no interaction between the Zi  and 

Z. processes by retaining the largest and smallest values of this 

function at each evaluation point for a series of simulated patterns. 

Each simulated pattern is obtained by randomly spinning the observed 

pattern of points from, say, the Z. process about the axis of the 

cone. If K113  lies within the simulation envelope at all evaluation 

points, the null hypothesis of no interaction is accepted. If Klij(r,t) 

lies above the envelope this is taken as evidence of 'positive' 

association, that is of a tendency for points from the Zi  process to 

occur 'close to' points from the Z. process. If K113(r,t) falls below 

the envelope, 'negative' association is postulated. Both the 

functions K113  and 
K1j1 

 should be examined in this way when looking 

for possible interactions between the two processes. The significance 

level can again be estimated by the rejected proportion of a further 



sample of simulated patterns. 

This test for the absence of interaction requires no knowledge 

of the marginal distributions of the processes save that 

Ai(x) 	X1(y) for Ix-yl < t, the interpoint range of interest. 

Intuitively one would expect the sampling fluctuations of K113  to 

increase as the Zi  and Z. processes become more clustered. Because 

of this, evidence of association between two processes, one or both 

of which is thought to be highly clustered, should be treated with 

considerable scepticism. 
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CHAPTER 5: THE ESTIMATION OF THE MARGINAL RADIAL AND ANGULAR 

PROBABILITY DENSITIES AND THE DETECTION OF ANGULAR 

NON-UNIFORMITY 

5.1 Introduction  

Two requirements have to be met before K1  can be used to analyse 

a spatial pattern. The first is that it is reasonable to assume that 

the underlying point process is 8-stationary on some sector. The 

second is that it is possible to estimate fairly accurately the radial 

intensity or, equivalently, the marginal radial probability density 

function (pdf) of the process restricted to this sector. This estimate 

is needed when simulating the patterns used to find the envelope values 

for 	In In general there is no a priori reason for assuming a 

particular parametric form for the marginal radial pdf. It seems 

sensible to use some nonparametric density estimate. 

Wertz (1978) surveys existing methods of statistical density 

estimation. Whether one uses histograms, kernel density estimates 

or sums of orthogonal functions to estimate the pdf, some subjectivity 

is always present in the final choice of the estimate. In the case of 

histograms the subjectivity is in the choice of bin width and in the 

positioning of the end points of the bins. For kernel density estimates 

it is in the choice of the kernel and of the smoothing parameter. For 

sums of orthogonal functions the difficulty lies in deciding when a 

sufficient number of terms have been included. 

In most applications it is reasonable to suppose that the marginal 

radial pdf is a continuous function. This is so for the sporophore 

patterns illustrated in Figures 4.1(a)-(c). It was seen in the last 

Chapter that spurious effects of clustering or regularity can be 
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detected by a K1  analysis when the marginal radial pdf is not estimated 

sufficiently accurately. Therefore it was decided to use a suitable 

continuous estimate of this function in preference to a histogram. 

This Chapter is concerned with kernel density estimators, in 

effect, smoothed histograms. Continuous estimators of both the 

marginal radial and angular pdf's are suggested. The estimate of the 

angular pdf is used to detect departures from the null hypothesis of 

angular uniformity. Angular clustering, regularity and trend can be 

detected in this way. Should angular trend be found, the estimate of 

the angular pdf can be used to partition the region of interest into 

sectors within each of which the assumption of angular uniformity 

can be checked in more detail. 

The ideas described apply to any data set with some preferred 

reference point provided the position of this point is known and taken 

to be the origin. Ths sporophore patterns are analysed using these 

techniques. 

5.2 Kernel density estimators: some existing results  

The kernel density estimator was introduced by Rosenblatt (1956). 

Suppose for the moment that x1,...,xN  is a sample of independent and 

identically distributed observations from a population with pdf f(.). 

The kernel density estimator is defined by 

fN(x) = 
N 
E k{(x - xi)/h}. 

1=1 

The function k(•) is called the kernel and the constant h is known as 

the smoothing parameter. Both k and h need to be specified. It is 

assumed that h -} 0 as N -} co. 
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Epachenikov (1969) showed that a kernel which consists of part 

of a parabola is optimal in the sense that it minimises the 'relative 

global error' [f E{(fN  - ON/ f f2. For practical purposes any 

reasonable kernel gives near optimal results in this sense and the 

choice of kernel function is not critical. However, the choice of 

smoothing parameter is crucial. Oversmoothing, which corresponds to 

taking a large value for h, introduces bias. Undersmoothing gives 

rise to an estimate with unnecessarily large random variation. 

Silverman (1978) investigated the limiting behaviour of h as 

N -} co required for the best rate of uniform convergence in probability 

of fN  to f. His results are proved under fairly mild conditions and 

concern the second derivative fN of the kernel density estimate. The 

function fN can be thought of as the sum of a systematic component 

E(fN) whose variation is closely connected to that of f" and of a 

random component fN - E(f"). 

Silverman suggested that a series of test graphs can be used to 

find a suitable value of h: choose a value of h which gives noticeable 

random fluctuations in fN but which are not so large as to obscure the 

systematic variation of this function. (This method is subjective.) 

It formalises the intuitive notion that the character of fN should 

change more rapidly with changing h than does fN  itself and so it 

should be easier to use fN rather than fN  to select an appropriate 

amount of smoothing. In all the applications to be discussed, the 

shape of the test graph changed rapidly as h was varied and it was not 

difficult to find a suitable value of this parameter. The test graph 

method will obviously fail if f" = 0 and consequently there is no 

systematic variation in Ç. 
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The results quoted so far in this Section generalise to the 

situation where x1,...,xN  are a sample of independent and identically 

distributed vectors of observations from a multivariate distribution 

with pdf f(•). If x = (x1,...,xt) and fN  is the kernel density 

estimate, then the test graph is 

o2fN(x) = 82fN/8x1
2 
+ .. + 82fN/8x2. 

When R = 2, contour or perspective plots can be used to compare test 

graphs. It is not clear what should be done if k > 2. 

There are very few results on the asymptotic behaviour of kernel 

density estimates formed from a sample of dependent observations. 

Rosenblatt (1970) proved consistency and asymptotic normality of the 

estimates when the observations form a Markov sequence. There are no 

theoretical results to justify the use of the test graph method in 

any situation involving dependent observations. 

The yearly patterns of each sporophore type are illustrated in 

Figures 5.1(a)-(i). It may be that in each of these patterns the 

observations are dependent; indeed this must be so for the visually 

clustered patterns of Laccaria laccata. Thus there is no theoretical 

justification for using the test graph method or, indeed, for using 

kernel estimates of the densities associated with these patterns. 

Nevertheless this is precisely what is done in the next Section. It 

is hoped that the 'local character' of fN  and of fN ensures that they 

are robust to the types of departures from independence which occur in 

the sporophore patterns. In a small simulation study of patterns 

from simple cluster processes and from hard core processes it was 

reassuring to note the close agreement between the kernel estimates 
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Figure 5.1. Sporophore patterns in a square of side 3 metres around 
a birch tree x. 
(a), (b), (c) Hebeloma spp. 	in 1975, 1976, 	1977. 
(d), (e), (f) Laccaria laccata in 1975, 	1976, 1977. 
(g), (h), (i) Lactarius pubescens in 1975, 1976, 1977. 
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of the radial pdf's and their known true values. 

In the preceding discussion h has been held constant for all 

values of x. Breiman, Meisel and Purcell (1977) suggest that it is 

intuitively more reasonable to allow h to depend on the nearest 

neighbour distances from x to the data points. Wagner (1975) 

established the consistency of a type of variable kernel estimator 

in the one-dimensional case. Variable kernel estimators would appear 

to be well-suited to clustered data sets but they will not be used 

in the following Sections. 

5.3 The one-dimensional kernel estimates of the marginal radial pdf's  

If 
{ui},  u

i  = (ri, oi) in polar coordinates, denote the positions 

of the sporophores in a particular pattern of N points, then the 

marginal radial kernel density estimate is defined to be 

N 
gr(s) = (Nh)

-1  E kq{(s-ri)/h } 
i=1 

and the associated test graph is 

gr'(s) = N_ l
h_ 
3  E kq"{(s-ri)/h} . 

i=1 

The kernel kq  used here is the quartic kernel 

IxI4/4  - Ix13/2  + 1/2  

kq(x) = 	IxI(2 - IxI)3/4  

0 

which satisfies conditions (a)-(h) of Silverman (1978), p.8. 

s 
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(Epachenikov's optimal quadratic kernel does not satisfy these 

conditions and for this reason the near optimal quartic kernel 

seemed preferable.) 

The device suggested by Boneva, Kendall and Stefanov (1971) was 

used to ensure that gr(0) = 0. This involved augmenting the set {ri} 

by a reflected copy of itself {-r
i
} and subtracting the contribution 

to gr  from each of the points in the latter set. This constraint was 

imposed because gr(s) estimates the marginal radial pdf which is 
2i 

proportional to s f A(s,4)d4. Here A(s4) is the intensity of 
0 

the underlying stochastic process at the point (s,¢) and it is assumed 
211-  

that f X(s,04 is bounded, a reasonable assumption for the sporophore 
0 

patterns. 

Figures 5.2(a)-(c) illustrate the test graphs of the kernel 

estimates of the 1975 Hebeloma spp. radial pdf for h = 75, 100 and 

125 millimetres. These suggest taking h = 100 millimetres. 

Appropriate values of h for each of the other sporophore patterns were, 

with one exception, chosen in the same way. The exception is the 1975 

pattern of Lactarius pubescens. This contained only eleven sporophores, 

too few for the meaningful formation of a kernel density estimate and 

so is not considered in the remainder of this Chapter. 

Figures 5.3(a)-(c) illustrate the kernel estimates of the radial 

pdf in each year for (a) Hebeloma spp. (b) Laccaria laccata and 

(c) Lactarius pubescens. The number of sporophores in each associated 

pattern is shown in parentheses. To facilitate comparison between the 

preferred radial distance for each sporophore type, the same estimates 

are illustrated year by year in Figure 5.4. A detailed discussion of 

the radial behaviour of the sporophores is given in Chapter 6; many 

features are immediately obvious from Figures 5.3 and 5.4. 
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(c) 

r(in millimetres) 

Figure 5.2. Test graphs for the 1975 Hebeloma spp. pattern of 
133 sporophores with the smoothing parameter equal 
to (a) 75 (b) 100 (c) 125 millimetres. 
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Figure 5.3. The kernel density estimates g of the radial pdf r 
versus the radial distance r for (a) Hebeloma spp. 
(b) Laccaria laccata (c) Lactarius pubescens in 
1975 ---, 1976 	, 1977•••• . The number of 
sporophores in each pattern is shown in parentheses. 
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Figure 5.4. The kernel density estimate g of the radial pdf 
versus the radial distance r for (a) 1975 
(b) 1976 (c) 1977. 	Hebeloma spp., 
•••• Laccaria laccata, ---- Lactarius pubescens. 
The number of sporophores in each pattern is 
shown in parentheses. 
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Figure 5.5. The kernel density estimate ge of the 
angular pdf versus the angular coordinate 
for (a) Hebeloma spp. (b) Laccaria laccata 
(c) Lactarius pubescens in 1975 ----, 
1976 	, 1977 •••• 
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5.4 The one-dimensional kernel estimates of the angular pdf's  

The test graph method cannot be used to find a suitable value of 

the smoothing parameter to use in the analogous kernel estimate ge  

of the marginal angular pdf if the process generating the observed 

sporophore pattern is isotropic. (In this case E(ge) = (2Tr)- 1  and 

there is no systematic component in ge"). Some alternative technique 

is required. 

The method adopted was to suitably scale the smoothing parameter 

hr  selected for the radial density estimate and then to use this 

scaled value he  = ahr, say, in computing 

N 

ge(4) = (Nhe)-1  E 	k {(4-ei)/he} . 
i=1 q 

The continuity condition ge(0) = ge(2n) was satisfied by augmenting 

the set {ei} by two translated copies of itself, {ei  - 2Tr} and 

{ei + 2n}, and then calculating g
0 
 for this enlarged data set (see 

Boneva et al., 1971). 

The scaling factor a was defined to be 

a = 2n/L 

where 

= inf{s-t : gr(x) = 0 V x e [s,t] c}, 

the length of the smallest interval outside which the radial density 

estimate was identically zero. This value for a was chosen since, in 

the sense to be described, it gave the same relative amount of smoothing 

for ge  as for the radial density estimate 	The The N radial observations 

lay inside an interval of length L. There is some biological evidence 

to suggest that this length was determined by the width of the annulus 
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about the tree within which the tree root system favoured the growth 

of that type of mycorrhiza and the subsequent production of sporophores 

(see Ford et al, 1980). It therefore seemed reasonable to set the 

smoothing parameter h
0 
 used in finding the angular density estimate 

from the N angular observations lying inside the interval of length 

27r equal to (hr/L) 271. 

Figures 5.5(a)-(c) illustrate the resulting estimates for the 

marginal angular pdf's for each sporophore type in successive years. 

These estimates are examined in detail in Chapter 6. 

5.5 Alternative estimates of the marginal radial and angular pdf's  

An obvious alternative approach is to find a two-dimensional 

estimate of the pdf of the underlying process. The marginal radial 

and angular pdf's found from this estimated pdf will be denoted fr  

and i
e 
 respectively. The two-dimensional kernel estimate based on the 

set of N observations {ui} is given by 

N 
fN(u) = N_ l

h_ 
2  E k{(u-u.)/h } 

i=1 
(5.1) 

with the obvious notation. It would certainly be an advantage if k 

is chosen to facilitate the integration needed to find fr  and fe  from 

fN. By using the two-dimensional Gaussian kernel 

kg(x) = (211)-1  exp(-1x12/2) , 	x 6 JR2  (5.2) 

one can obtain explicit expressions for t'r  and fe  as follows. Change 

to polar coordinates in (5.2) and substitute in (5.1) to obtain for 

u = (s,c) 
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N 	{s2 + r.2 - 2sr. cos(4)-e.)} 
fN(s,(p) = 	s 2 	E exp[ 	

1 	
21 	1 	]. 

27rNh i=1 	2h 

Integrate over 4 and s respectively to find 

2 	N 	r.2 
ir(s) = 

s 2 exp(- s 2) E exp(- 12){ 

2Nh 	2h i=1 	2h 
s. 1 + IO(-si) } 

where si = sr./h2 and 10(z) is the Bessel function, 

n 
10(z) = r 	f exp(z cos 4)d4, 

0 

and 

N 	r.2 	t. 	t.2 - r.2 
fe(~) = 2~rNh E {h exp( 	12) + ✓(2~rr)ti ~(h1)exp( 	1 	2 1 ) } 

1=1 	2h 	 2h 

where ti = ri cos(4-ei) and (14') is the standard normal cumulative 

distribution function. A suitable value for h is selected by 

considering either contour or perspective plots of 

N 
02fN(s,4) = (27rNh6)-1 E (ti2-2h2)exp{-ti/(2h2) } 

i=1 

where now ti = s2 + ri2 - 2sri cos(4-ei). 

Since it is important that a 'good' estimate of the radial pdf is 

used in a K1 analysis, it will certainly be reassuring if fr is very 

similar to gr. Figures 5.6(a)-(c) are perspective plots of V2fN for 

the 1975 Hebeloma spp. pattern (Figure 5.1(a)) with h = 60, 80 and 100 

millimetres. A value of 80 millimetres was selected for h and the 

resulting estimates fr and fe are illustrated in Figure 5.7. The 

close agreement between fr and gr for this pattern can be seen in 
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Figure 5.6. Perspective plots of the test graphs for the 1975 
Hebeloma spp. pattern using a smoothing parameter 
of h millimetres. 

• 
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Figure 5.7. The estimates (a) fr  and (b) ie  of the marginal 
radial and angular pdf's for the 1975 Hebeloma  
spp. pattern of 133 sporophores. 

S 



• 400 	800 	1200 

r ( in millimetres) 

Figure 5.8. The estimates 	 f and ---- g of the 
radial pdf for the 19515 Hebeloma spp. pattern 
of 133 sporophores. 
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Figure 5.8. Similar agreement was found between the two estimates 

of the radial pdf for each of the remaining sporophore patterns. 

A comparison of the appropriate curve in Figure 5.5(a) with that 

in Figure 5.7(b) shows that, for the 1975 Hebeloma spp. pattern, 

ge  and f0  are not nearly as visually similar as are gr  and fr. In 

particular ge  is much smoother than fe  although both indicate the 

same underlying trend. This is true of these angular density estimates 

for each of the sporophore patterns. 

One explanation for this difference is that a constant smoothing 

parameter independent of the radial distance r is used in calculating 

ge. For fe  the angular distance over which the contribution to this 

estimate from each observation is spread is inversely proportional to r. 

Thus an observation far from the origin has a much greater influence 

on the shape of fe  than on that of ge. An idea not pursued here is 

that in some sense a combination of these two estimates might be 

preferable to either one. 

An alternative explanation for the difference between ge  and fe  

is that h
0 
 (found by rescaling hr) is not a suitable choice for the 

smooth parameter in ge. It has not been necessary to consider this 

problem in more detail or to choose between ge and fe  because both 

have very similar abilities to detect angular non-uniformity as shown 

in the next Section. Hence there is nothing to choose between these 

estimates for the purpose to which they are put in analysing the 

sporophore patterns. 

The density estimates fr  and fe  take longer to compute than do 

gr  and ge. For example, computing and plotting four perspective plots 

of V2fN  and then calculating and plotting fr  and f0 
 for a pattern of 

100 points takes about 120 seconds on the Cyber 174 at Imperial College. 
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The corresponding time taken to find gr  and go  is about 10 seconds. 

For all the patterns examined it was usually easier to select a 

suitable smoothing parameter from the test graphs of 	than than from 

perspective plots of V2fN. 

In general it should be sufficient to calculate only gr  and go  

as a preliminary step in a K1  analysis. If one wishes to 'check' these 

estimates, fr  and fe  can also be found: fr  should be in close agreement 

with gr and fe  should lead to the same conclusions as go  concerning 

the angular distribution. The radial and angular density estimates 

are, of course, useful summary statistics even when no subsequent 

K1  analysis is envisaged. 

One final remark concerning the two-dimensional kernel density 

estimate fN  can be made if the radial and angular coordinates of any 

point in the pattern are independent. In such situations it seems 

reasonable to expect that fN(s,4) = r(s).fe(¢). Thus, although it is 

unnecessary to calculate fN  for the purposes of finding fr  and fe,  

some insight into the dependence structure of the underlying process 

might be obtained by comparing fN(s,(1)) with fr(s).fe(¢). 

Remarkably close visual agreement between the perspective plots 

of fN(s,(p) and fr(s).0) for the 1975 Hebeloma spp. pattern of 133 

points can be seen in Figures 5.9(a) and (b). Similar agreement was 

found for all the remaining patterns of Hebeloma spp. and those of 

Lactarius pubescens. This suggests that any dependence between the 

positions of points in patterns of these sporophore types is not 

'strong'. The positions of points in the visually highly clustered 

patterns of Laccaria laccata must clearly be highly dependent. As 

expected, the corresponding perspective plots were very different for 

each of these patterns. 



124 

Figure 5.9. Perspective plots of (a) fN(s,$) and (b) fr(s).fe(¢) 
for the 1975 Hebeloma spp. pattern of 133 sporophores. 



5.6 Tests for angular uniformity  

If the stochastic process underlying an observed pattern of N 

points is isotropic, then E(ge) = E(fe) - (20-1. As N increases plots 

of g0) and fe(¢) versus 4)  would be expected to resemble more and more 

closely straight lines parallel to the 4) axis and passing through 

(0,(270
-1

). If the stochastic process is anisotropic, the same plots 

would be expected to give an increasingly more accurate description of 

the angular trend. 

It is intuitively reasonable to expect that the angular density 

estimates from an isotropic clustered pattern should fluctuate more 

about (27)-1  than those from a Poisson pattern with the same radial 

pdf and the same number of points. This behaviour suggests possible 

tests of the null hypothesis of an isotropic Poisson process against 

clustered alternatives, all processes having the same radial pdf. For 

example, one could consider 

2v 
(i) 	f Ige(4)) — (20

-1
14 or (ii) 	sup 	lie(4)0 - (2ir)-lI 

0 	 0(0,2n] 

or 

2Tr 
(iii) 

	

	I If0(+) — (27)-11d4 or (iv) 
0 

sup 	Ife(4)) - (27)
-l

1 . 
0[0,27] 

Large values of these statistics indicate possible angular clustering 

and small values, possible angular regularity. 

Monte Carlo tests of the null hypothesis of angular uniformity 

are employed because there are no relevant small sample results concerning 

the distributions of these statistics. To test for angular uniformity 

in some pattern of N points using (i) or (ii) proceed as follows. 

Find a suitable estimate gr  and hence calculate ge  and the observed 

125 
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value M(.)  of the statistic (•). Generate 100 samples each of N 

uniformly and independently distributed variates on [0,20. 

Each sample can be thought of as the angular coordinates of points in 

a pattern from an isotropic Poisson process. Suppose that he  was the 

smoothing parameter used to calculate ge  for the pattern of interest. 

Use the same smoothing parameter to calculate 100 values of the 

statistic (•) corresponding to each of the 100 samples. Let m be 

the percentage of these 100 values which exceed M(.). A small value of 

m, say m < 5, indicates possible angular clustering and hence possible 

clustering in the pattern of interest. A large value of m, say m > 95, 

indicates possible angular regularity. The obvious significance 

.levels can be attached to the appropriate one or two-sided tests. 

An analogous procedure is followed when statistics (iii) and (iv) 

are used to test for angular uniformity. It is slightly more 

complicated since it is necessary to simulate 100 patterns each of N 

points from an isotropic Poisson process with the same radial pdf as 

that estimated for the pattern of interest. This complication is a 

consequence of the radial dependence of the amount of smoothing used 

in forming fe. 

Table 5.1 contains the results of a simulation study of the 

performance of these statistics against certain clustered and regular 

alternatives. The patterns examined were simulations of either simple 

cluster processes or fixed range inhibition processes. In all cases, 

with the notation of Section 4.3, 

A0(x) x exp(-x2/2). 

Figures 5.10(a) and (c) illustrate a clustered pattern and a regular 

pattern respectively. The associated angular density estimates are 

illustrated in Figures 5.10(b) and (d). 
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Clustered Patterns: m 

N 	11 	D (i) (ii) (iii) (iv) 

100 	2 	0.8 18 24 6 8 

0.4 22 24 16 10 

4 	0.8 9 1 0 0 

0.4 8 1 0 0 

10 	0.8 1 1 0 0 

0.4 1 0 0 0 

Regular Patterns: m 

N 	c 	D (i) (ii) (iii) 	. (iv) 

100 	0 	0.2 50 81 54 30 

0.3 94 95 92 82 

100 	0.1 	0.3 86 79 80 74 

125 86 87 96 98 

150 80 95 90 98 

Table 5.1  

The value M(.)  of statistic (•) was calculated for a simulated pattern 

of N points from the simple cluster or fixed range interaction process 

of interest. A further 100 values of statistic (•) were calculated 

from 100 simulations of an isotropic Poisson process. The percentage m 

of these values which exceeded Mo.)  is shown. Here p = average number 

of points per cluster, c = coefficient of inhibition and D = cluster 

diameter or range of interaction. 
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Figure 5.10. Simulations of (a) simple cluster process, N = 100, 
u = 4, D = 0.8, (c) fixed range interaction process, 
N = 100, c = 0.1, D = 0.3. The estimates 	 fe  
and ---- ge of the angular pdf's are shown enlarged by 
a factor 103  in (b) and (d). 
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All the statistics appear to detect clustering in a pattern. 

Although the m values are fairly large for the more regular patterns, 

none of the statistics is a reliable indicator of this feature of a 

pattern. This is not surprising. With obvious exceptions, there is 

no reason to expect that the spacing apart of points in a regular 

pattern should be reflected in a similar sort of one-dimensional 

'regularity' of the angular coordinates of these points. None of the 

statistics is clearly superior to any other and (i) and (ii) are 

recommended because of their computational ease. 
• 

It should be stressed that large values of the statistics and 

corresponding small values of m can also be obtained if anisotropy is 

present. Care must therefore be taken in interpreting the results of 

the above method applied to actual data. For example, consider the 

1975 Hebeloma spp. pattern for which m = 0 (p < 0.01) in all four cases. 

This extreme value is caused by the obvious angular trend in the data 

(see Figures 5.5(a) and 5.7(b)) rather than by any visible clustering 

in the pattern. 

This example suggests a means of dividing the region of interest 

into sectors within each of which the hypothesis of angular uniformity 

can be checked in more detail. For example, the 1975 Hebeloma spp. 

pattern splits into two sectors H, a sector of high sporophore intensity, 

and its complement Hc  of low sporophore intensity where 

H = {(s,(P) : s > 0, ¢ e [0,2n), ge(4) > (20
-1
). 

If one is then interested in testing for angular uniformity within the 

sector H, simply identify the edges of this sector and use the obvious 

analogues of statistics (i) and (ii) for the resulting pattern on the 
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surface of the cone. The corresponding m values of 64 and 61 

respectively lead one to accept the hypothesis that within the sector 

H the pattern has a uniform angular distribution. In particular it is 

therefore meaningful to proceed with a K1  analysis of the pattern in 

this sector. Similar results for the other sporophore patterns are 

summarised in the next Chapter. 



CHAPTER 6: AN ANALYSIS OF THE SPATIAL PATTERNS FORMED BY 

SPOROPHORES GROWING ABOUT A YOUNG BIRCH TREE 

6.1 Introduction  

The techniques developed in Chapters 4 and 5 are used in this 

Chapter to analyse the sporophore patterns illustrated in Figures 

4.1(a)-(c). Ford et al (1980) summarise the known facts concerning 

the biological background of these data sets. Only a brief 

description is given here. 

Figures 4.1(a),(b),(c) are maps of the positions of the sporophores 

which grew around a single birch tree (Betula pendula) during the 

years 1975, 1976 and 1977, respectively 4, 5 and 6 years after 

planting. All the sporophores appeared during the months July-October. 

The tree was one of a plot of sixty planted in 1971 in a square lattice 

pattern with a three metre spacing at Bush Estate, Midlothian, 

Scotland. Several types of sporophores were identified. Hebeloma spp., 

Laccaria laccata and Lactarius pubescens were found in all three years 

and a further species, Inocybe lanuginella appeared for the first time 

in 1977. Because only four sporophores belonging to the last species 

were observed, this species has been omitted from the study. 

Each of the observed fungal species is able to form sheathing 

mycorrhizas which grow in a symbiotic relationship with birch tree 

roots (Trappe, 1962). When soil cores from beneath selected groups 

of sporophores were examined mycorrhizas of the same type were always 

present. This seems to indicate a close connection between 

mycorrhizas and sporophores, the fruiting bodies of the fungus. 

Biologists believe that a better description of the sporophore 

distributions may help in understanding the processes which affect 
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the colonisation of the tree root system by mycorrhizal fungi. 

The direct observation of this colonisation is very difficult. 

Moreover, observation usually results in damage to or destruction of 

either mycorrhizas or roots or both, thereby making it impossible to 

observe the same undisturbed system from one year to the next. This 

is why any indirect information provided by the sporophore distributions 

is of such interest. Eventually biologists hope to be able to 

encourage the development of young trees by implanting their root 

systems with the preferred distribution of mycorrhizas. Such an 

ambitious project will not be discussed further here. 

Ford et al used 'classical' statistical techniques to provide 

some insight into the important characteristics of sporophore distri-

bution around a single tree. As they observe, "a different form of 

analysis is necessary if some of the interesting questions regarding 

patterns of development in sporophore production are to be investigated". 

The first of their two suggestions is "to develop an alternative 

technique of analysis which provides information on different scales 

of association and is not affected by non-stationarity". The K 1 
analysis does precisely this under certain assumptions which can be 

at least partially checked in practice using the methods of Chapter 5. 

This analysis goes some way towards answering such questions as 

"Do sporophores of different species occur together or are they 

separated?" and "Do sporophores in one year occur in the same place as 

sporophores of the same or different species in the preceding year?" 

(Ford et al, 1980). 

Some simple stochastic processes which could have generated the 

observed pattern of each sporophore type in each year are proposed. 

These models are fitted using the K1  technique. They are a first 
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attempt to pursue the second of the suggestions made by Ford et al, 

namely "to use a modelling approach" to describe the patterns of 

sporophore development. The results of this Chapter provide 

preliminary information for any future work aimed at understanding 

the process of mycorrhizal colonisation of a tree root system. 

6.2 The marginal radial and angular distributions  

In this Section the marginal radial and angular distributions of 

the sporophore patterns are examined in detail. The methods of the 

previous Chapter can be used to find kernel density estimates g 
r 

and 

ge  of the respective pdf's. These estimates are illustrated in 

Figures 5.3, 5.4 and 5.5. Except where specifically mentioned, the 

1975 Lactarius pubescens pattern of only eleven sporophores is not 

considered in this Chapter. 

It is clear from Figure 5.3 that the shape of the radial density 

curve for each sporophore type changed from year to year and that, in 

general, there was a definite outward movement from the tree. Ford 

et al (1980) used rank sum tests (Hollander and Wolfe, 1973, 

pp.124-125) to investigate this movement. With one exception they 

found that between 1975 and 1976 and again between 1976 and 1977 the 

mean distance from the tree for each type of sporophore increased 

significantly (p < 0.05). The exception was Laccaria laccata whose 

mean distance decreased a non-significant amount in the latter period. 

A quick glance at Figure 5.4 reveals that within each year the 

mean distances from the tree for Lactarius pubescens, Hebeloma spp. 

and Laccaria laccata are arranged in ascending order. A comparison 

was made using ranked sum tests. It was found that in each year the 

difference between the mean distance of Lactarius pubescens and that 
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of Hebeloma spp. was significant (p < 0.05). Except in 1977, the 

difference between the mean distance-of Hebeloma spp. and that of 

Laccaria laccata was also significant at this level. 

The observed differences in mean distances, both between 

sporophore types in a single year and between years for a single type, 

must be interpreted with care. It could be that the types do not 

'interact' in any way and that each simply has its own preferred 

radial distance. Alternatively the presence of one type could 

'promote' or 'inhibit' the growth of another. There is no way of 

discriminating between these two cases on the basis of the radial 

density estimates. The results of the multitype 1  analysis of 

Section 6.4 enable such interpretations to be made. 

The angular density estimates are illustrated in Figure 5.5. 

For each sporophore type in each year the null hypothesis of angular 

uniformity was rejected using the tests of Section 5.6. In the case 

of Laccaria laccata in 1975 and 1977 it was felt that this departure 

from angular uniformity was due to the obvious clustering in the 

patterns rather than to any underlying trend. In 1976, a year of 

severe drought, both clustering and angular trend were visually obvious 

for this sporophore type. 

Table 6.1 summarises the results obtained when the method at the 

end of Chapter 5 was used to partition the region about the tree into 

high and low intensity sectors in each year for Hebeloma spp. and for 

Lactarius pubescens. This method was also used to determine the high 

intensity sector for Laccaria laccata in 1976. Table 6.1 contains 

the results of tests for angular uniformity on the surface of the 

cone formed by identifying the edges of the high intensity sector for 

the pattern of interest. These tests led to acceptance of the null 
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hypothesis of angular uniformity on the appropriate high intensity 

sector in each year for both Hebeloma spp. and Lactarius pubescens. 

The rejection of this test for Laccaria laccata in 1976 was 

interpreted as evidence of angular clustering rather than of angular 

trend in the high intensity sector. 

Figures 6.1(a)-(c) illustrate the preferred sectors for the three 

sporophore types. About 80% of the Hebeloma spp. and 70% of the 

Lactarius pubescens sporophores in each year lay in the relevant high 

intensity sector. Biologists have found evidence of the effects of 

sunlight and shade and of damp and dry soil on the development of 

different types of sporophores. It is possible that the obvious 

preferences of certain sporophore types for particular sectors about 

the tree are-due to environmental variability. Further biological 

investigations are required before such behaviour can be confirmed 

in the present situation. Because so few sporophores lay in the low 

intensity sectors it was decided to omit these parts of the patterns 

from any further analysis. With large data sets the patterns in these 

sectors could, of course, be analysed in the same way as the patterns 

in the high intensity sectors. 

6.3 Modelling the sporophore patterns  

The absence of angular trend in a sector is a necessary condition 

for 8-stationarity of the underlying process in this sector. 

Unfortunately it is not a sufficient condition. There are no known 

tests for 0-stationarity in a sector. In order to proceed with a 

meaningful K1  analysis of a particular sporophore pattern, it was 

necessary to assume that the underlying process was 8-stationary on 

the high intensity sector in which no angular trend had been detected. 
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Type Year H N NH  h m 

(i) (ii) 

Hebeloma 1975 [4.02, 2n) U [0, 1.13] 133 114 3.39 64 61 
spp. 

1976 [4.34, 20 u [0, 1.26] 94 75 3.20 14 22 

1977 [4.15, 20 u [0, 0.82] 45 37 2.95 53 43 

Laccaria 1975 [O,20 302 302 2n 0 0 
laccata 

1976 [4.71, 	2n) U [0, 0.50] 137 118 2.07 0 0 

1977 [O,20 286 286 2n 0 0 

Lactarius 1975 
pubescens 

1976 [0.44, 	3.08] 27 17 2.64 76 78 

1977 [5.72, 20 u [0, 2.83] 137 96 3.39 11 21 

Table 6.1  

Values for each annual pattern of each sporophore type: N, total number 

of sporophores; NH, number of sporophores in the high intensity sector 

whose angular coordinates are given by H; h, angular 'length' of this 

sector. Simulations of the relevant 0-stationary Poisson process on H 

were used to obtain 100 values of statistic (.), (i) = f Ig(c) - 1/h14 
H 

and (ii) = suplg0(4) - 1/h1 where g0  is the estimated angular density 
SOH 

on H obtained by identifying the edges of this sector. The percentage 

m of these values which exceeded the corresponding value for the pattern 

of interest is shown. 
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Figure 6.1. The high intensity sectors in 1975 ----, 1976 	 and 
1977 •••• for (a) Hebeloma spp. (b) Laccaria laccata 
(in 1975 and 1977 the whole area about the tree) and 
(c) Lactarius pubescens. 
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A series of K1  analyses were used first to test whether any of 

the yearly patterns for Hebeloma spp. or for Lactarius pubescens in 

the appropriate high intensity sector could be accounted for by a 

6-stationary Poisson process with variable radial intensity. The 

visually obvious clustering of Laccaria laccata made a similar test 

for this sporophore type unnecessary. The methods of Section 4.4 were 

used to simulate outcomes of a 0-stationary Poisson process on the 

appropriate high intensity sector. The radial intensity in this 

sector was taken to be that estimated from the sporophore pattern of 

interest in this region. In each case this intensity hardly differed 

from that calculated previously for the whole pattern and so has not 

been illustrated here. The simulated patterns were used to calculate 

envelope values for K1(r,t) at a selection of points (r,t). Figures 

6.2(a)-(e) show the results of these K1  analyses for the yearly 

patterns of Hebeloma spp. and Lactarius pubescens. The results are 

based in each case on 100 simulated patterns. It is clear that in 

each year both types of sporophores showed evidence of clustering 

within the appropriate preferred sector. 

A series of K1  analyses were next used to assess the fit of the 

simple cluster model introduced in Section 4.3 to these same yearly 

patterns in the relevant high intensity sectors. The radial intensity 

of the cluster centres was taken to be proportional to the estimated 

radial intensity of the sporophore pattern of interest in this region. 

The methods of Section 4.4 were used to simulate patterns of NH  

points. Each pattern contained a Poisson number, mean v, of cluster 

centres. Thus there were about p = NH/v points per cluster, each 

cluster being of fixed diameter D. 
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The results for the 1975 Hebeloma spp. pattern of 133 points 

illustrated in Figure 4.1(a) are now discussed in detail. This pattern 

is shown enlarged in Figure 6.3 and from Table 6.1 it is seen that in 

this case NH  = 114. A visual examination of the pattern in the high 

intensity sector was made in the light of the earlier decision to 

reject a 6-stationary Poisson null hypothesis. This examination led 

to the conclusion that there might be clusters of two to three points 

on average within discs of about 100 millimetres diameter. Figure 

6.4(a) illustrates the results of a 1  analysis testing the fit of a 

simple cluster process with p = 114/45 and D = 100 millimetres. This 

process was too clustered at the larger radial distances r for small 

interpoint distances t. 

When a process is tested and found to be too clustered, three 

options are available: either p can be decreased (that is, v increased) 

or D can be increased or both these changes can be made simultaneously. 

It is clear that increasing only D must increase the interpoint 

distances at the larger values of r where the clusters can be assumed 

to be placed further apart on average since the estimated radial 

intensity is a decreasing function of r for large r. Figure 6.4(b) 

shows that holding p = 114/45 and setting D = 150 millimetres improved 

the fit of the simple cluster model in the sense that Kl  lay within 

the simulation envelope for more of the selected values of (r,t). 

However, the simulated process was still too clustered for small 

values of t and large values of r. Decreasing p and keeping D fixed 

must increase the average distance between points in each cluster. 

When p = 114/50 2.3 and D = 150 millimetres it was found that Ki  

lay within the simulation envelope for all selected values of (r,t). 

Decreasing p still further to p = 114/60 and holding D constant 

produced a process which was insufficiently clustered for small values 
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Figure 6.2. Results of K1 analyses for Hebeloma spp. in (a) 1975 

(b) 1976 (c) 1977 and for Lactarius pubescens in 
(d) 1976 (e) 1977. The selected points (r,t) for which 

K lay within or above the envelope values obtained from 
160 simulations of a Poisson process with the relevant 

radial intensity are marked 0 and + respectively. 
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Figure 6.4. Results of K1 for the 1975 Hebeloma spp. pattern. The 
envelope values at a selection of points (r,t) were 
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Figure 6.6. The 1977 Lactarius pubescens pattern. Sporophores 
marked x, the tree A. The square is of side 
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of t, see Figure 6.4(c). 

These investigations show that the fit of the model to the 1975 

Hebeloma  spp. pattern in the preferred sector was fairly sensitive to 
changes in the values of the parameters p and D. Figure 6.5 illustrates 

a realisation of 114 points in the appropriate sector from a simple 

cluster process with p = 2.3, D = 150 millimetres and a cluster 

centre radial intensity equal to that estimated from the 1975 

Hebeloma spp. pattern in this sector. This Figure should be compared 

with the relevant part of Figure 6.3. 

The patterns for Hebeloma spp. in the preferred sectors for 1976 

and 1977 were examined in the same way. It was very pleasing to find 

that precisely the same simple cluster model with p = 2.3, D = 150 

millimetres and with the appropriate radial intensities for the cluster 

centres could account for the observed patterns. In both cases the 

fit was again reasonably sensitive to changes in the values of p and D. 

The 1977 Lactarius pubescens pattern illustrated in Figure 5.1(i) 

is shown enlarged in Figure 6.6. It was found that a simple cluster 

model with p = 2.8, D = 150 millimetres and having the appropriate 

radial intensity could account for that part of the pattern in the 

high intensity sector. The same parameter values and model could also 

account for that part of the 1976 pattern of this sporophore type 

which lay in the relevant preferred sector. Fairly small changes in 

the parameter values again produced processes whose fit was not as 

satisfactory. 

The 1975 Laccaria laccata pattern of 302 sporophores illustrated 

in Figure 5.1(d) is shown enlarged in Figure 6.7. A close visual 

examination of the clumps of sporophores evident in this pattern 

revealed a finer clustered structure within each clump. It was found 
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that because of this feature a simple cluster model failed to fit 

sufficiently well for small values of t. For example, Figure 6.8(a) 

illustrates the best fit obtained when a series of simple cluster 

processes with different parameter values were considered. A more 

elaborate model reflecting the structure within each clump is clearly 

required. 

The double cluster model introduced in Section 4.3 seemed an 

obvious contender. Figure 6.8(b) illustrates the results of comparing 

K1  with simulation envelope values found from 20 simulations of a 

double cluster process with a Poisson number (mean uL = 12) of large 

clumps of diameter DL  = 300 millimetres, each large clump containing 

a Poisson number (mean us  = 8) of small clusters of diameter 

DS  = 60 millimetres. Since there were NH  = 302 points in each 

simulated pattern, there were about p = NH/(u5UL) ` 3.1 points per 

small cluster. This process was not sufficiently clustered for small 

values of t. By decreasing us  to 6 and so having about p z 4.2 points 

per cluster and keeping the other parameter values fixed, it was found 

that 1  lay within the simulation envelope at all the evaluation points 

(r,t). The radial intensity of the centres of the large clumps was 

taken to be proportional to the estimated radial intensity of the 

points in the pattern of interest. Figure 6.9 illustrates a realisation 

of the fitted process. This Figure should be compared with Figure 6.7. 

The complete 1977 pattern and the high intensity sector of the 

1976 pattern of Laccaria laccata were analysed in the same way. It 

was found that the same double cluster process with on average 6 small 

clusters of 60 millimetres diameter per large clump of 300 millimetres 

diameter and with about 4.2 points per small cluster, produced a 

satisfactory fit in each case when the appropriate radial intensity 
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Figure 6.8. Results of K1  analyses for the 1975 Laccaria laccata  
pattern. The envelope values at a selection of points 
(r,t) were obtained from 20 simulations of (a) a simple 
cluster process with about p = 302/12 points per cluster 
of 300 millimetres diameter and (b) a double cluster process 
with about p = 3.1 points per small cluster of 60 millimetres 
diameter and on average us = 8 small clusters per large 
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which KT  lay within or above the envelope are shown 0 and + 
respectively. 



z 
Yik 

e 
1 	 x A*  

Aid 006, 
	

nciatlik 

Figure 6.9. A realisation of a double cluster process 
containing 302 points. There are on average 
uS  = 6 small clusters of 60 millimetres diameter 
per large clump of 300 millimetres diameter. There 
are about p = 4.2 points per small cluster and the 
radial intensity of the large clumps is proportional 
to that estimated from the 1975 Laccaria laccata  
pattern. The squares are of side 3 metres. 

149 



150 

was used for the centres of the large clumps. The fit for each of the 

yearly patterns of Laccaria laccata was fairly sensitive to changes in 

the values of these parameters. A total of 20 rather than 100 

simulations was used to find the envelope values for each K1  analysis 

because of the large number of sporophores involved. If there are NH  

sporophores in the high intensity sector of a pattern, then the time 

taken for a K1  analysis increases proportionally to NH. 

The most important aspect of the results of the K1  analyses is 

that for each sporophore type the essential features of the fitted 

cluster model in the appropriate high intensity sector were unaltered 

from one year to the next. Only the changing radial distribution of 

the cluster centres and the fluctuations in overall numbers of each 

sporophore type were-required to account for the differences in the 

observed patterns. The change in radial distribution is possibly 

connected with the outward growth of the tree root system. Any 

physical explanation for the fitted models will only be possible after 

further biological research However, it is hoped that the postulated 

models might provide a useful starting point for such studies. 

In the above no attempt has been made to consider 'interactions' 

either between types in the same year or within types over several 

years. This problem is taken up in the next Section. 

6.4 Interactions  

If the annual patterns of the sporophores are superimposed on one 

another, then the pattern of a certain kind of sporophore in a particular 

year can be thought of as the outcome of one of nine types in the 

resultant multitype process. In Section 4.6 it was shown how a multitype 

K1  analysis could be used to search for 'interaction' between any two 
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types in a sector within which the joint distribution of both types 

is 0-stationary. It will be assumed that the intersection of the two 

appropriate high intensity sectors is such a 0-stationary sector when 

any two of the nine types are considered together. No statistical 

tests of such an assumption are yet available. However, it is not 

possible to make statements concerning 'interaction' unless some such 

stationarity is assumed and so provides the necessary replication for 

subsequent inference. 

As before the 1975 Lactarius pubescens pattern was omitted from 

this analysis. Two effects must be borne in mind in this application 

of the multitype K1  method. The first is the size of the assumed 

0-stationary sector for the joint distribution of any two types and 

how many points in the realisation of each type lay in this sector. 

This is determined by the extent of coincidence of the relevant high 

intensity sectors for the two types of interest. The second effect is 

the amount of overlap of the radial distributions of the two types of 

interest. 

It can be seen from Figure 6.1 that the area of intersection of the 

appropriate high intensity sectors for any two of the yearly patterns 

of the same kind of sporophore is substantial. Thus there are certainly 

a sufficient number of points from each of the annual patterns of the 

same kind of sporophore lying in such a common sector for the application 

of a multitype K1  analysis. Any evidence of 'interaction' can only be 

obtained from a region in which the marginal radial densities of the 

two patterns also overlap. It can be seen from Figure 5.3 that for any 

two yearly patterns of the same kind of sporophore such a region 

contains a substantial number of points from each pattern. Therefore 

the multitype K1  analysis should give an indication of the presence or 

absence of any 'interaction within sporophore types'. 
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Similar considerations, this time using Figures 5.4 and 6.1, 

reveal that multitype K1  analyses should yield useful information 

about the 'interaction between sporophore types' in a given year in 

the following cases: 

(a) between Hebeloma spp. and Laccaria laccata in each year 

(b) between Hebeloma spp. and Lactarius pubescens in 1977 

(c) between Laccaria laccata and Lactarius pubescens in 1977. 

In 1976 too few points lay within the region of radial overlap in the 

common high intensity sectors of the two types in (b) and of those in 

(c) for meaningful multitype K1  analyses. 

The results of the K113  analyses are shown in Table 6.2. In each 

case the envelope values are based on 25 simulated patterns obtained 

as indicated in Section 4.6 by randomly spinning one pattern relative 

to the other on the surface of the cone formed by identifying the sides 

of the common high intensity sector. The number of points from each 

yearly pattern which fell in this sector is also shown. It is clear 

that there are no detectable 'interactions' either 'between' or 'within' 

sporophore types except in the case of Laccaria laccata. This kind of 

sporophore showed evidence of 'attraction' between any two of the 

three annual patterns, especially between those in 1976 and 1977 and 

between those in 1975 and 1977. The results of the relevant 
Klij 

analyses are illustrated in Figure 6.10(a)-(c). As explained in 

Section 4.6, K113  can be expected to have a larger variance the more 

clustered the two patterns under consideration. In view of this and 

the very marked clustering evident in all three patterns of Laccaria  

laccata, the results indicating 'attraction' between these patterns 

should be interpreted with some caution. 
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Type Hebeloma spp. Laccaria laccata Lactarius pubescens 

Hebeloma 

75-76 

76-77 

75-77 

N 

N 

N 

(101,75) 

(72,37) 

(105,37) 

75 

76 

77 

N 

N 

N 

(114,234) 

(55,118) 

(37,124) 

75 

76 

77 

spp. 

N (18,35) 

Laccaria 

75-76 

76-77 

75-77 

A 

A 

A 

(131,118) 

(118,115) 

(302,286) 

75 

76 

77 

laccata 

N (123,96) 

Lactarius 

75-76 

76-77 

75-77 

N (17,65) 
pubescens 

Table 6.2- 

Results of K11j  analyses investigating possible 'interaction' within or 

between sporophore types given in the diagonal or the off-diagonal cells 

respectively. The years or year of interest are given, then N or A 

indicating evidence of no 'interaction' or of 'attraction' respectively 

followed by the number of sporophores of each pattern in the common 

high intensity sector. The total number of sporophores in 1975, 1976, 

1977 are (a) Hebeloma spp. 133, 94, 45 (b) Laccaria laccata 302, 137, 

286 (c) Lactarius pubescens 11, 27, 137. 
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Figure 6.10.  The results of multitype K1  analyses of the following 

pairs of Laccaria laccata  patterns (a) 1975 and 1976 
(b) 1976 and 1977 (c) 1975 and 1977. The envelope 
values at a selection of points (r,t) were obtained 

from 25 simulations in each case. Values of (r,t) 

at which K1
13 lay within or above the envelope are 

shown 0 and + respectively. 



6.5 Conclusions  

The results of this Chapter suggest that Hebeloma spp. and 

Lactarius pubescens prefer to grow in certain sectors about the tree. 

In 1976, a year of drought, Laccaria laccata showed similar behaviour 

but such behaviour was not evident for this sporophore type in 1975 

or 1977. The average distance frdm the tree for each type of sporo-

phore increased over the three year period of observation. In any 

year the sporophores of Lactarius pubescens were on average closer to 

the tree than those of Hebeloma spp. The sporophores of Laccaria laccata  

were on average furthest from the tree. The annual number of sporophores 

of Hebeloma spp. decreased over the three year period whilst that of 

Lactarius pubescens increased. Although the numbers of sporophores of 

Laccaria laccata in 1975 and 1977 were comparable, there were 

substantially fewer sporophores of this type in 1976. 

The yearly patterns of each sporophore type in the relevant high 

intensity sectors showed evidence of clustering. A simple cluster 

model was fitted to the patterns of Hebeloma spp. and to those of 

Lactarius pubescens. The fitted processes were essentially the same 

for each sporophore type in all three years, the only difference being 

a change in the radial intensity of the cluster centres from one year 

to the next. For the Hebeloma spp. patterns the fitted processes 

consisted of clusters each containing about 2.3 points. The processes 

fitted to the Lactarius pubescens patterns contained about 2.8 points 

per cluster. The clusters were of 150 millimetres diameter for both 

sporophore types. Double cluster processes each consisting of large 

clumps of 300 millimetres diameter which contained on average 6 small 

clusters each of 60 millimetres diameter were fitted to the Laccaria  

laccata patterns. The small clusters contained about 4.2 points each 
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and only the changing radial intensity of the clump centres was 

required to account for the differences between the annual patterns. 

There was evidence of possible 'attraction' between the yearly patterns 

of Laccaria laccata but no other 'interactions' either/between' 

sporophore types in the one year or'within'a particular type over the 

three years were detected. 
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