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ABSTRACT 

The magnetic properties of b.c.c. Cr Fe alloys with 

concentrations between 5% and 25% Fe were studied by neutron 

scattering, low field magnetization and resistivity measurements. 

The magnetic order evolved from antiferromagnetism ( C < 16% Fe ) 

to ferromagnetism ( C > 19% Fe ) with increasing concentration. 

Spin glass type behaviour was found in the narrow concentration 

range between the two critical concentrations. 

The Ndel temperature and ordered antiferromagnetic moment 

decreased with increasing Fe concentration. 	This is contrary to 

the rigid band model for Cr alloys and was explained by the pair 

breaking effect of localized Fe moments. 

The magnetization distribution in antiferromagnetic Cr Fe 

alloys is spatially inhomogeneous. Large, slowly relaxing clusters 

of ferromagnetically coupled Fe moments were found to coexist with 

the antiferromagnetic spin density wave (SDW) for concentrations 

above 10%. The spin glass phenomena observed in the low field 

magnetization of these antiferromagnetic alloys was attributed to 

such clusters. A neutron polarization-analysis study of a Cr Fe 

5% alloy suggested a long range magnetic disturbance of the SDW in 

the vicinity of isolated Fe moments. 

The spin correlations in the neighbourhood of the critical 

concentration for ferromagnetism (CF) were studied using neutron 

small-angle scattering. The concentration and temperature depen-

dence of the inverse correlation range for C < CF  was in semi-

quantitative agreement with models for the percolation multicritical 

point, indicating a geometrical element in the development of 

ferromagnetic order. Ferromagnet'.c alloys close to CF  showed 

complex behaviour and significant spatial magnetic inhomogeneity. 

The spin glass behaviour observed between the two critical 

concentrations could be well described by a phenomenological fine 

particle model. 

The magnetization density in Pt3Cr was determined by polarized 

neutron diffraction. A large moment of 2.88 ± 0.06 	was found on 

Cr sites. The moment on Pt sites was best described by a combina-

tion of an antiferromagnetic Cr moment and a ferromagnetic Pt 

moment. 
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CHAPTER 1 

INTRODUCTION 

By analysing the change in energy, momentum and spin component 

of neutrons scattered by interactions with magnetic materials it 

is possible to deduce the spatial and temporal variation of magneti-

zation on a microscopic level. The use of neutron scattering 

techniques over the past twenty-five years has led to a deeper 

understanding of a wide range of 'magnetic phenomena. In this 

present work, the application of these techniques to certain 

problems in the study of magnetic transition metal alloys is 

reported. 

The major part of this work is concerned with the evolution 

of magnetic order from itinerant antiferromagnetism to ferro-

magnetism in Chromium-Iron alloys containing between 5 and 25% Fe. 

Here, neutron diffraction is the sole experimental means of 

determining the antiferromagnetic order parameter and the 

techniques of neutron diffuse scattering provide the sole 

experimental means of investigating the real space variation of 

spin correlations and magnetic defects. In the second part of 

this work, the microscopic distribution of magnetization in Pt3Cr 

is determined by polarized neutron diffraction. Where appropriate, 

the neutron scattering measurements are complemented by low field 

magnetization and resistivity data. 

The disappearance of long range itinerant antiferromagnetism 

and the onset of ferromagnetism in Cr Fe alloys was reported to 

occur in the concentration range 10-20% Fe, but the precise 

critical concentrations were not known. Previous work, based on 

bulk magnetization and resistivity measurements, gave conflicting 

results for the critical concentrations. 'Furthermore, the published 

magnetic phase diagrams showed a region of concentration which 
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supported both āntiferroiagnetism and ferromagnetism, In order to 
clarify the features of the magnetic phase diagram a series of 
neutron diffraction and small angle scattering experiments was 

initiated to determine both the antiferromagnetic and ferromagnetic 

phase boundaries. These experimental methods do not suffer from 

the difficulties encountered in previous phase boundary deter-

minations which relied on bulk measurements. 

Once the details of the magnetic phase diagram were established, 

attention was turned to questions of wider significance. The first 

of these was to describe the evolution of ferromagnetic order with 

concentration and temperature in the vicinity of the critical 

concentration for ferromagnetism. Much experimental and theoretical 

effort has been directed to the study of systems with a critical 

concentration for long range order. Despite this work, there is 

very little experimental information concerning the spatial 

variation of magnetic correlations as a function of both temperature 

and concentration in metallic systems close to a critical concen-

tration. Neutron small angle scattering was used to determine 

the range of magnetic correlations in Cr Fe alloys both above and 

below the critical concentration for ferromagnetism. This information 

could then be compared with theoretical models for the simplest 

type of critical concentration, the percolation multicritical 

point. 

The percolation description has been frequently invoked to 

account for the magnetic properties of metallic alloys close to a 

critical concentration. In view of the complexity of metallic 

magnetism it is not clear whether this simple description is valid. 

The small angle scattering data provides an important test of the 

applicability of these concepts. 

The distribution of magnetic moment in antiferromagnetic Cr Fe 

alloys was also investigated. This work is an extension of the now 

classical studies of the distribution of magnetization in disordered 
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Nickel and Iron alloys to Cr based antiferromagnetic alloys. Cr 

alloys are of general interest because of their predominantly 

itinerant nature and the rapid changes in magnetic properties 

brought about by alloying. Antiferromagnetic Cr Fe alloys are of 

particular interest as they do not follow the well established 

alloying trends of other Cr based alloys and are 'anomalous' in 

this respect. This anomalous behaviour . has been attributed to 

the existence of localized Fe moments in antiferromagnetic Cr Fe 

alloys. The precise nature of the Fe moment and its relation to the 

antiferromagnetic spin density wave (SDW) are unknown. Descriptions 

vary; from a 'good' local moment of 1.81E  to a spin compensated 

'Kondo' moment of 0.5pB.  The coupling between the Fe moment and 

the SDW has been variously described as weak (ti  4K) and strong 

ex,  TN). In an attempt to resolve these conflicting descriptions, 

a series of neutron polarization-analysis and time of flight 

experiments were performed to determine the Fe moment, its dynamical 

response and the disturbance it produces on neighbouring Cr moments. 

In addition-to antiferromagnetism and ferromagnetism, 

'mictomagnetism' and 'superparamagnetism' have also been reported 

for Cr Fe alloys in the concentration range under investigation. 

These phenomena, under the all-embracing title of 'spin glass behaviour', 

are currently amongst the most intensively studied and controversial 

aspects of magnetism and the physics of disorder in general. Low 

field magnetization measurements were performed on a range of Cr Fe 

alloys to define the occurrence of spin glass behaviour. These 

data, together with the complementary neutron small angle scattering 

measurements, may be compared with the results of the phenomeno-

logical fine particle models for spin glasses. 

The second part of this work was concerned with an atomically 

ordered compound, Pt3Cr. Pt3Cr is one member of a class of 5d-3d 

compounds which have been extensively studied in recent years, both 

through inelastic neutron scattering and polarized neutron diffrac-

tion. Interest in this class of materials lies partly in the 

observation of a Pt magnetic -moment. For Pt3Cr, in contrast to the 

other compounds, the Pt moment was reported to be aligned antiparallel 



to the Cr moment: Pt3Cr is.ferrimagnetic, A polarized neutron 

diffraction study was initiated to study in more detail the 

distribution of magnetic moment around Pt and Cr atoms in this 

interesting compound. 

The theory of neutron scattering from magnetic materials is 

presented in the following chapter. Experimental apparatus and 

procedures are discussed in Chapter 3. The experimental results, 

analysis and discussion are presented in Chapters 4, 5 and 6. 

Chapter 4 is devoted to antiferrDmagnetic Cr Fe alloys. Chapter 5 

deals with spin glass and ferromagnetic Cr Fe alloys. Chapter 6 

is concerned with Pt3Cr. In the interest of clarity, the relevent 

theory and previous work for these disparate topics are presented 

at the beginning of each chapter. Thus, as far as possible, each 

chapter is self—contained. 
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CHAPTER 2 

MAGNETIC NEUTRON SCATTERING 

The purpose of this chapter is to relate the neutron scattering 

cross section to the magnetic properties of condensed matter. The 

formalism and terminology introduced here will be used in subsequent 

chapters as a basis for calculation and discussion. This treatment 

concentrates on elastic and quasielastic scattering of thermal 

neutrons as experimentally this was our main concern. The approach 

presented here is largely based on the monograph by Marshall and 

Lovesey (1971) and a full account may be found in this work. 

2.1.1 The scattering cross section  

The neutron is scattered by two main interactions with matter: 

the strong nuclear force between neutron and nucleus and the electro-

magnetic interaction between the neutron dipole moment and electronic 

magnetic moments. There are further residual electromagnetic inter-

actions with electric field gradients and charge distributions. In 

this section the scattering cross section is related to a general 

potential V. The form of this potential for nuclear and magnetic inter-

actions is then examined. 

Consider the scattering of a neutron with mass m and wavevector 

k by a central potential V(r). The solution of the appropriate 
ti 

Schrōdinger equation has the asymptotic form 

ik'r 
k(r) 

,~ eik.r + f (S2) 
r r4o 

(2.1a) 

where the first term may be identified with the incident beam and the 

latter term represents the outgoing scattered beam with wavevector k' 

along the direction of the solid angle Q. Following this interpretation 

the number of neutrons scattered into an element of solid angle dS2 

centred on S2 per unit time is just 
mr 

If(1)12ds2. Dividing by the 
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incident flux— one obtains the differential scattering cross 

section 

da 	 r 

dSZ k}k r 	k If(0)I2 

The scattering amplitude f(Q) is given by 

(2.2a) 

A
.  f(S) = - m2  <kIV(r)110> 

2311 

For weak potentials the solution of the Schrōdinger equation tpk(r) 

is not expected to differ greatly from a plane wave eik.r and the 

exact expression for the scattering amplitude may be approximated by 

f(0) = - m ld3r e-ik'.r  V(r)  eik.r 
271112  

(2.3a) 

This is the first Born approximation: the cross section is proportional 

to V(K)2, the square of the Fourier component of the interaction 

potential corresponding to the neutron scattering vector K = k' - k. 

As the substitution of the unperturbed wavefunction is equivalent to 

first order perturbation theory this same result may be derived via 

the Fermi 'golden rule' as in Marshall and Lovesey (1971). 

As the neutron has an intrinsic spin g the results of the Born 

approximation must include the spin dependence of the cross section. 

So, rather than the spatial wavefunction tpK(r) in (2.1a), one should 

use the two component spinor wavefunction IK, a> which may be written 

as a linear combination, 

K, a> = 1K+)  (r) I+-> +ipt) (r) ( - > 	(2.1b) 

where I + > and I - > are eigenfunctions of the z component of spin. 

The manipulations associated with spin 1  particles can be performed 

using the matrix representation in which the spin operator g is ex- 

pressed in terms of the Pauli matrices a via s =11/2 a. Expressed as 

components with respect to some arbitrary cartesian axes 



Qz = (1 0) ay - 	( o -i) 6x = (o l) ) 0-1 	i o 	1 0 

and the eigenvectors 1 + > and I - > are simply (1) and (1). To 

describe the spin dependence of the scattering it is necessary to 

replace (2.3a) by the spin dependent scattering amplitudes 

f6~, (0) = - 	2 <alV(K) I al> 
2711 

(2.3b) 

which correspond to scattering from an initial spin state la> to a 

final state Ia'> due to the spin dependent potential V. In a con-

ventional experiment the final spin state is nōt measured so the 

cross section is obtained by summing the squared scattering amplitudes 

over all final states a'. Furthermore, as any real neutron beam is 

a mixture of spin states the cross section must be averaged over the 

initial spin spin states a' in the beam. The cross section (2.2a) then 

becomes 

"da 	k' E f+ f dSZ K->K' k T 6 a' po (2.2b) 

where pa is the probability distribution of initial spin states. 

It is important to make some formal remarks about the spin state 

of the neutron beam. The average spin state of the beam can be 

described by the polarization, 

p = < a > 
ti 	M 

defined as the expectation value of the Pauli spin operator. If the 

beam is a pure ensemble, that is all neutrons are in the same spin 

state, the polarization is complete and IPI = 1. The polarization will 

be incomplete for a mixed ensemble, that is if the beam is an in-

coherent mixture of spin states, and IP( ¢ 1. Consider how the 

polarization may be measured. Any measurement of the spin component 

of a single neutron (S(1) automatically defines the z component of spin 
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and the values + i1/2 or . i1/2 will be returned. If this measure-

ment is repeated and the number of neutrons with spin parallel 

(n a) or antiparallel (n a) to the particular coordinate direction 

in question are counted the polarization component is simply 

+ 	-  
n - n a __ a a 

P 	+ 	-  
n + n  
a 	a 

a = x, y, z 

This may be repeated for the remaining two cartesian components 

in subsequent measurements and the polarization vector completely 

determined. 

According to quantum statistical mechanics the expectation 

value of any operator G acting on a mixed state can be found by 
11110 

taking the sum of the diagonal elements i.e. taking the trace Tr 
A 

of the product of the density matrix operator p and the operator G 

in any convenient representation IX>, 

<G>=E <XIGPIX>=TrGP 
X 

(2.4a) 

In the case of non interacting spin states the density matrix can 

be represented by the 2 x 2 matrix as shown for example by Kessler 

(1976) 

p = I + IP.a 	 (2.4b) 

which is consistent with the definition of polarization P = Trpa. 

(Here I is the unit matrix). With this notation the cross section 

(2.2b) can be written in the alternative form 

da 
Ts--2 	 (_25)2 k, TrpV(K)V(K) 

27rt1 
(2.2c) 

where the trace is understood to be with respect to neutron spin co-

ordinates. 

These results may be generalized now to include scattering from 

a macroscopic target with internal structure. In this case there is 

the possibility of energy transfer between the neutron and target. 
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The partial differential cross section for the process in which the 

neutron induces a transition from a target state I A > with energy 

EX to a state I A' > with energy EX, is 

2 
d Q ~ m 2 k' Tr p 

k->k
' __ 	

<AIV(K)IA'><A'IV(K)Ix>d(3iw+E -E.,) dSZdE 	(2~rfi2) k 	 _ 	_ 	X 
A+a' 

with energy conservation ensured by the delta function and the sum 

over incident and final spin states has been performed using the 

density matrix. If there is no energy transfer flu) between neutron 

and target the scattering is elastic, otherwise the scattering is 

inelastic. This partial differential cross section must be summed 

over the unobserved final target states l A' > and averaged over 

initial states I A > to give the master formula 

2 

dc1d(iiw) = ( m2)2 k, E p Tr p<AIV (K) IX'><A' IV(K) I l>d(h +E
a
-Ex,) 

2~rh 	AX' 
(2.5) 

The initial target states are distributed according to the 

probabilities px. Here I X > is understood to include all eigen-

variables associated with the target, in particular the spatial 

distribution of scattering centres as well the energy Ex. Thus the 

average is both a thermal and configurational average over initial 

states of the system. 

2.1.2 The nuclear interaction 

The interaction between the neutron and the nucleus is strong 

and short ranged and hence cannot be treated in the Born approximation. 

The scattering cross section for such a potential may be calculated 

by decomposing 
4'k 

into a series of partial waves with angular momenta 

L. For thermal neutrons the range of the nuclear potential is much 

less than the neutron wavelength and only the Q = 0 component need 

be considered. In this limit the cross section is isotropic and the 

scattering amplitude f = fR=O = -b where b is termed the scattering 

length. We shall treat b as a phenomenological parameter which is in 

general complex, the real part may be positive or negative depending 
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on the energy and the isotope involved and the imaginary part, which 

is generally small, represents absorption. 

The neutron nuclear interaction is spin dependent. The simplest 

form of rotationally invariant potential which can describe the 
A 

interaction between neutron with spin s and nucleus with angular 

momentum I is of the form V1(r) + V2(r)a.I which has two eigenvalues 

depending upon whether the nuclear and neutron angular momenta are 

coupled parallel (+) or antiparallel (-). Corresponding to these two 

eigenvalues are the two scattering lengths b(+)  and b(-). 

It is possible to construct a pseudo potential which can give 

the correct form of the scattering when substituted in the expression 

for the cross section derived using the Born approximation. This is 

convenient as it puts magnetic and nuclear scattering on the same 

formal footing. Such a pseudo potential has the form 

VN(r) = 2 m b 6(r) 

with the delta function ensuring an isotropic cross section on Fourier 

inversion and the scattering length operator b includes the spin 

dependence of the interaction, 

A 	A A 

b = A + iBa.I 	 (2.6a) 
MO AI 

The constants A and B are determined by the requirement that b has 

eigenvalues b(+)  and b(-)  and are treated as parameters to be determined 

by experiment. For a collection of N nuclei situated at positions Ri  

the individual pseudo potentials may be superimposed to form the total 

potential VN  with the Fourier transform 

2  
VN  (K)= 2m E bi  exp(iK.R1) 

i 
(2.6b) 

The elastic scattering which arises from this potential can be 

calculated using (5), 

da 	 A 	A 	A 

dS2 = Epa.E exp(iK.R..)<AI Tr p(Ai+iB.;.Ii)(A.+1B.a.I.)1a> _lj 
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The average over initial target states A in this case simply in-

volves a configurational average over all distributions of nuclear 

species and a thermal average (< >) over nuclear spin orientations. 

At all but milli Kelvin temperatures the nuclear spin orientations 

are random so that any terms linear in nuclear spin cannot 

survive the thermal average.The cross term involving nuclear 

spin - which survives the thermal average is the self correlation 
A A 

term Ii. Ii  .. The trace over neutron spin components can be 

trivially evaluated using the fact that Tr p = 1 to give the cross 

section, 

da 
dSt = 	exp(iK.R..)(A.A. + 

4 
	) 

i,J 	iJ 	J 	 iJ 	J-i -J 

where the configurational average is denoted by the bar. The 

result is independent of incident polarization as may be expected 

for a system with no preferred orientation. 

It is useful to identify the various contributions to this 

cross section in the specific case of a random binary alloy com-

posed of a concentration CA  of type 'A' atoms dissolved in a matrix 

of 'B' type atoms. The coherent scattering, which depends on the 

square of the average scattering length, is to be distinguished 

from the incoherent scattering which is due to the mean squared 

deviation of the average scattering length. 

The coherent scattering cross section in this case is of the 

form 

d = b2(E exp(iK.R.))2  

which gives rise to Bragg scattering at scattering vectors defined 

by the geometrical factor in brackets. The average scattering 

length for the alloy is A which is usually written simply as b, 

= CAbA + (1  - CA)bB  
(2.7a) 

where bA  and bB  are the average scattering lengths for the atomic 
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'A' and 'B'. The average scattering length for a particular atomic 

species is 

EA = ECb (2.7b) 

where C is the abundance of the isotope E with average isot opic 

scattering length b. This in turn is the scattering amplitude of 

the isotope E in question averaged over all random nuclear spin 

orientations, in full < b > = b& 

17,& 	
`° 	(2I + 

1)-1(-) + (I + 1)b(+)) 	(2.7c) 

where the probability of interaction with neutron spin parallel (+) 

or antiparallel (-) to the nuclear angular momentum is weighted 

according to the number of available states with total angular 

momentum I ± a. 

It is possible to identify three sources of incoherent scatter- 

ing: 

(i) the 'Lane' or crystal disorder incoherent scattering arises 

from the fluctuations about average scattering length of the alloy 

due to the presence of different scattering lengths for the two 

atomic species, 

= N CA (1 - CA) (bA - bB) 2 
Laue 

(2.8a) 

(ii) the ' isotopic' incoherent scattering is due to fluctuations 

about the average scattering length of a particular atomic species 

due to the presence of different scattering lengths for the con-

stituent isotopes, 

da
= N [C EC (.4 -b) 2 + (1-C ) EC (A -b ) 2 I 

V iso 	`~ 	A 	A. It st B 

(iii) the 'nuclear spin' incoherent scattering is due to 

fluctuations about the average scattering amplitudes for nuclear 

spin states, 

(2.8b) 
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da 	1 

nsi 	
7. 
N 
[CAEC~B I (I+l) + (1-CA) EC,B 

I4) 
(I

ct)+l)] 

or in terms of b(
+) 

and b(-), 

da 	N C EC IIE+1) (b(+) - b (-) ) 2 + 
dnsi ~AE 	 (2I+1)2 E E 

E 

(2.8c) 

I(  I +1) 
(b.(+) - b(-))23  (1-C )EC 	 

A 
0 	(2I0+1)2 

The incoherent scattering is isotropic in the case of randomly 

distributed fluctuations. 

In order to parameterize the nuclear interaction it is usually 

sufficient to know the average scattering length b, the isotopic 

incoherence and the nuclear spin incoherence for each atomic species, 

a detailed knowledge of b(+) and b(-) is not necessary. 

2.1..3 The magnetic interaction  

The neutron may interact with magnetic and electric fields via 

the neutron magnetic dipole moment un. These electromagnetic 

interactions are weak and the cross section may be treated in the 

Born approximation. The interaction potential for a neutron in a 

magnetic field.H and an electric field E is 

VM(r) = - y PNB.H + terms of order 2 
m 

where uN is the nuclear magneton and y = - 1.91 is the gyromagnetic 

ratio. We shall be concerned only with the dipolar magnetic 

interaction, the residual interactions are weak and unrelated to 

the magnetic properties. 

Consider the interaction between the neutron and a magnetic 

field H(r) produced by an electron with momentum pe mass me and spin 

s situated at a distance r from the neutron. Here, 
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-2pBs.Xr
4. 
	Pe 

H(r) = curl( 	
r3 ) + m c 3 
r 	e r 

and the interaction potential is 

sxr 	8xr 8xr
- VM(r) = yr2iB$. curl (- 3 ) 2m c (pe 

	
3 	N 3 	pe)~ 

r 	e N r r 

where the momentum term has been symmetrized according to the 

correspondance principle. The fourier transform of VM(r) is 

V (K) = 27r~i2 (yet 
)6~Q M 	2- N1 m c 

e. 

where the operator Q is 

Q = (Kx (sxK) - —n- Kxp) exp (iK. R) i ~ N1 N N 	lip(' 	
e  

(2.9a) 

(2.10a) 

Here K is a unit vector in the direction of the scattering vector 

and R is the position vector of the electron. The electron spin and 

momentum may be considered as two contributions to a magnetization 

M(r) so that we may generalize this result to any system of electrons 

generating a magnetization. The form of the interaction potential 

is then exactly as in(eq.2.9a)but with 

Q1 2ū f d3r exp (iK. r) I x(M(r)x01 
B 

(2.10b) 

There is a coupling between the neutron spin and the component of 

magnetization which is perpendicular to the neutron scattering vector, 

hence the subscript `i". This is a central result. 

The average of the interaction VM(K) over target states which 

occurs in the expression for the cross section involves the evaluation 

of both thermodynamic and quantum mechanical expectation values. It 

is convenient to treat the spatial averages <4 Q1I4)A> (where (I)X 

is the electronic wavefunction) separately and introduce the concept 
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of a magnetic form factor. Take for example the case where the 

magnetization is generated by electron spins localized in the 

vicinity of a lattice site Ri, as is the case for a 3d transition 

ion with orbital angular momentum quenched by the crystal field. 

Under these conditions 

n 
Ql  = E exp (iK. R.) f i  (K) Kx (SixK) N 	N• 

(2.9b) 

where the magnetic form factor f.(K), being the normalized fourier 

transform of the spin density associated with the site Ri, has 

been introduced. The form factor is normalized so that fi(0) = 1. 

The individual electronic spins couple to form the total spin 
A 

S. of the ion situated at R.. ..1 
In general, both the orbital and spin components of the 

electronic magnetic moment are present and the calculation of the 

matrix elements of Q with respect to the electronic wave function 

is complex. For small scattering vectors, however, the term in-

volving the electron momentum in the expression for Q has the 

same form as that for the spin, namely (compare with (2.10d)) 

exp (iK. R)pe  + pe  exp (iK. R) - ifikexK 

where 2e  in the orbital angular momentum of the electron. If then 

the individual electronic spin and orbital angular momenta couple 

to give a total spin Si  and orbital angular momentum•L. at a given 

site Ri  then Q has the form. 
l 

Q = E exp(iK.Ri)Kx(jO.S. + i(j01+j2i)Li)xK, 
1 i 

where the coefficients In are the radial integrals 
i 

jni= J dr r2  jn(Kr)If i(r)1 2  

(2.10c) 

in which j (Kr) is the nth order spherical Bessel function and f i  (r) 

is the radial part of the electronic wavefunction for electrons in an 
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unfilled shell of orbital angular momentum 2.e  situated at a 

lattice site Ri. Now, for 3d ions in which a relatively small orbital 

contribution to the magnetization exists via L = (g-2)S this 

allows us to write 

Q = E igifi(K)exp (iK.R. )Kx(S.XK) 
1 i  (2.10d) 

where fi(K) = 3O. + (gi  2/gig2i  is the magnetic form factor for the 
ion at R. This approximation is known as the 'dipole' approximation 
and will be used almost entirely in the sections which follow. For 

generality fgS can be replaced by the Fourier transform of the 

magnetization if necessary. 

2.1.4 Summary 

The neutron scattering cross section in the Born approximation 

is proportional to the square of the Fourier transform of the inter-

action potential between neutron and target. This potential is 

the sum of nuclear (N) and magnetic (M) terms both of which have 

the general form 

A A A 

V(K) = +a.a 

where a and a are operators obtainable from (2.6), (2.9) and (2.10) 
Substituting these potentials into the master formula (2.5) for the 

cross section gives contributions which are purely magnetic, purely 

nuclear and a nuclear-magnetic interference term. In thefollowing 

section 2.2 the purely magnetic scattering will be examined under the 

condition of an unpolarized beam. . The pofdr•i zed case is treated in 

section 2.3. The circumstances in which the polarization of the 

scattered beam is analysed are considered in section 2.4. 
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2.2 Magnetic scattering with unpolarized neutrons  

2.2.1 Correlation functions 

The magnetic cross section for scattering with an unpolarized 

incident beam can be calculated by substituting the form of the 

magnetic interaction (2.9) and (2.10) into the master formula (2.5) 

2 
d2 	Ye 2 k' 	A 	A .. + 	A A' 

dSZdE = ( 	2) k E p" Tr p<1((a.Q.) IX'><a i (a.Q ) 1 X>S(iitw-Ex,+EA ) 
m c 	AA' 	- 1  
e 

The average over neutron spin components for an unpolarized beam 

can be performed by noting that in this case the density matrix is 

the unit matrix, 

+ Tr p(c.Q) (t7.Q) = Q
+ 

.Q 

Using the definition of the operator Q via Q  = Kx(QXK) the scalar product 

can be written longhand in Cartesian component form, 

Ql Q 	s 1 = E (ba - K«KS)Q+aQ~ 

a,ß 	 .. ,.. 

where a, S are x, y, z components. If the integral representation 

of the delta function 

S (iw-E~+E~ S 	2'1 1m dt exp (- i/fi (fiw-Ex+Ex,) ) 

is used as an ad hoc device to introduce time dependence (follow-

ing Van Hove (1954a)) and with Q in the dipole approximation the 

cross section may be written, 

dUE 	( e 2Y2) 
2 
k E (SaC KaK a) x 27rTi 2m c 	a,s 

e 

E f dt e 	<eih.Ri(0)g. f. (K)Sa(0)eih.Rj 
(t)g. 

. (K) .(t)> 	(2.11) 
i,j 

n .. 
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where R(t) and S(t) are position and spin operators in the Heisenberg 

picture and the sum over initial target states is performed by the 

configuration and thermal average. Only those terms which are elastic 

in the position coordinates are of interest so the average above may 

be written 

< > = exp iK.R.. exp(-2W(K)) <Sa(0)S. (t) g.g~fi(K)f~ (K)> 
1 

in which W(K), the Debye Waller factor, takes account of the motion 

of Ri(t) about the mean time averaged position Ri. For simplicity it 

will be assumed that the g factors, form factors and Debye Waller 

factors are site independent. This assumption is valid for identical 

magnetic ions and is good approximation for binary 3d alloys. 

Furthermore a Bravais lattice structure will be assumed. With these 

simplifications the cross section becomes, 

d26 	Ye2 k' 2 2 	-2W(K) 	a-S S 
dSdEEd - ( 2~ k g f (K)e 	E (āa$ K ) (K; .w) 	(2.12a) 

2 ēc 	a,s 

where d"(K, w) contains the essential material parameters, 

(91°43(K, w) = 
1 

dt e 
iwt

<Sa(-K, 0)SS(K, t)> (2.12b) 
2ith 

where 

S (K, t) = E exp(iK.R.)SS(t) (2.12c) 

This is an important result, a neutron measurement gives directly 

the function6 (K, w) which describes the correlations between the 

spins in both space and time. 

It is possible to relates t$'as(K, w) to the fundamental response 

functions of the spin system. Firstly, the part of the correlation 

function which is due to correlation between time independent quantities 

must be isolated. This will be the part of the correlation function 

which survives as t 

<Sa(-K, 0)S13(K, oo)> = <Sa(-K)><SS(K)> 
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and may be identified with the elastic scattering. In an ordered 

magnet, for example, <Sa(-K)> is proportional to a Fourier com-

ponent of the spontaneous magnetization (which is presumably a time 

independent quantity). Thus for correlations between time in-

dependent quantities, 

as 	(K w) = <Sa(-K)><SS(K)> 6(w) 
elastic -

,  (2.13) 

The elastic scattering will be considered in the 	sections 2.2.2 

and 2.2.3. The remaining part of the spin correlation function is 

the power spectrum of the spontaneous fluctuations in the magnetiz-

ation and gives rise to inelastic scattering. The fluctuation- 

dissipation theorem relates 	0 Sinelastic(K' w) to the imaginary cc 
(dissipative) part of the generalized susceptibility 

x  E ]' 

V as(K' w)  - v aselastic(K' w) = (1-exp(-Ewa))-lIm XKSLwl (2.14a) 

The physical significance of this expression is succinctly explained 

by Marshall and Lowde (1968). As with any phasor, the imaginary part 

of the response function governs the out of phase or dissipative 

response of the system to a perturbation. In this case the neutron 

beam provides a magnetic perturbation H(K, w) and the energy of this 

source "can only be dissipated in the Born approximation, by processes 

which remove the neutrons physically from the scene." Furthermore, 

as x Ew] measures the response of the spin system to a general com-

ponent of magnetic field, the inelastic scattering cross section 

provides a very complete set of microscopic information about the 

target. This is the great power of the technique. 

In practice, there are several response functions related to 

Xas[w] which are more commonly used. To explain the relationship K 
bētween these quantities consider the definition of a response 

function; the magnetization:Mq(t) arising from a magnetic field with 

spatial dependence Hq(t')exp(iq.R1) is the linear response 
N 

Mq (t) _ -gp<Sa (q)> + f dt' E das (q, t-t' 
)Hs.  (t' ) — 	 s 

q, t) _. <[Sa(q, t), ss(—q, 0)]> (9pa)2  
N 

where 
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x E K (Sas-Ka$) aSFa$(w) 
F a, f3 

(2.15a) 

and 

CO 

xas [w] = f dt exp(iwt).4)as(q, t) 
0 

The relaxation function Ras(q, t) is defined as the antiderivative 

of (I)a$(q, t) according to 
Pee 

āt Ras(q, 
t) _  

- N2 
~as(q, t) 

(gJ ) 

and describes the evolution of magnetization in time (t> 0) after 

a steady field 
Haq 

has been turned off at t = 0, 

MO(t) = - g1B<Sa(q)> + HgRas(q, t) 

hence the name. The inelastic cross section may thus be expressed 

in terms of the Fourier transform of the relaxation function 

Ras , w) 

61a$0‹, w) -f) elastic(- w) - (1-exp(-hw$)) Ra
a (K, w) (2.14b) 

Alternatively, if xQSLO] is identified with the isothermal wavevector 

dependent susceptibility xqs then 

Ra$ (q, . w) = Xggs (W) 
/r N 

where the dynamics of the system are embodied in the spectral weight 

function 

00 
Fa (w) = 2~ f dt exp(iwt)R

as(q, t)/Ras(q, 0) 
-co 

which is normalized so that 
.cm 

dwFaa(w) = 1. The inelastic scatter-

ing cross section can then be conveniently written as 

2 	2  

dSZadE 	
( Ye 

2) 2 g2f 2 (K) k exp(-2W(K)) 
N 2 	 

	

inelastic 2mec 	 (g11B) (1-exp (-Tiwa) ) 
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which is the central result of this section for our purposes. 

These expressions for the cross section can be considerably 

simplified if the total z component of the spin is a constant of 

motion. In such a case only the operators SS ~ and S.S~, SYS~ 

survive the thermal average and the cross section can be divided 

into transverse and longitudinal parts, 

2 	2 

2 	

r 

CdE long. 	(2m ) g2f2 (K) k exp C 2W(K)) (gu ) 2 
inelastic 	e 	 B 

1-exp (-ahw) (1
-Kz2~X zF Z (w) K K 

2 2 	r 
d E 	_ ( ye 

2)g2f2(K) e,,(_214:(0)
N 2 trans. 	(2mec 	 (2guB) 

1-exp(- aft) (l+K2)X F (w)z K K 'V N 

and 

inelastic 

(2.15b) 

.t2.15c) 

In the case of a Heisenberg ferromagnet it is the transverse cross 

section which is related to creation and annihilation of spin waves 

via the spin raising and lowering operators implicit in XKxFr (w) . 

The longitudinal part is related to the quasielastic scattering in-

volving XKZFKZ(w). 

It should be noted that all forms of the scattering cross 

section must satisfy the detailed balance condition, 

d
2 	2 

d52daE" K — exp (~iws) a dE _K -43 
(2.16) 
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2.2.2 Bragg scattering 

The elastic scattering cross section is, from (2.12) and 

(2.13), 

da 	= (Ye2)2 E (d -K K ) E' g.g.f . (K)<Sa> F. (K)<S>e-2W(K). Trz
elastic 2 ec2 a,S aR a S j 	i d 

(2.17) 

If in this expression the mean and fluctuating parts of the con-

figurational average are separated, assuming gi = g.
J 
=g and 

fi = f.j = f(0, 

a><S 	a 	a -72 .> = <S><S.> + (<8.><S.> ><S.> - <SCt><S.>) 
1 	1  	1 J 	1 ~ (2.18) 

the cross section can be separated into two terms. The first is the 

scattering arising from the periodic static spin structure. In this 

case the phases of the scattered neutrons add together coherently by 

virtue of the phase relationships set up by the periodic average 

magnetic potential and the cross section is a series of delta functions 

centred at the magnetic reciprocal lattice positions GM. This is 

the magnetic Bragg scattering. The second term, which represents 

deviations from the mean is related to static magnetic inhomogeneties 

and gives the weakly K dependent magnetic diffuse elastic cross 

section which is treated in the next section. 

The Bragg scattering from a periodic magnetic structure is, 

from (2.17) and (2.18), with NM unit cells within the system, 

da 	 2 	3 
= NM( Ye2)2 (2v) E S(K-G) [Kxf(G)xK]2 

Bragg 	ec 	M G 

in which the problem has been reduced to that of describing the inter-

ference phenomena within the magnetic unit cell. The unit cell is 

assumed to have a volume vM and a magnetic vector structure factor 

jr(G)  = E exp(iK.d) Clgdfd(K)<Sd>exp(-Wd(K))nd(G).] 	(2.19b) 
. 	d 

(2.19a) 

22 



where d defines the spin positions within the unit cell and 

n

- 

(G) defines the spin direction. In a non-collinear spin structure 

n 

- 

is a function of the reciprocal lattice vector G, and describes the 

screw direction and pitch of helical order for example. In a 

collinear spin structure all spins are either parallel or anti-

parallel to a given direction n so that nd(G) = nad where ad = ±1 

depending upon the relative orientation. For such a collinear 

structure the Bragg scattering cross section is 

da_ 	2 (27)3 	- 2 	+ -  
dS2 	= M(_ 2) 	v 	(1-(G•) )av E d(K-G)  

Bragg 	m c 	m  
e 

(2.20a) 

with the cross section averaged over domain orientations via subscript 

`ay." and the magnetic structure factor now a scalar PM (G) 

FM(G) = E exp(ii<.d)f1gdfd(K)<Sd>exp(-Wd(K))3(ad) 	(2.20b) 
d 

These expressions have been derived using the dipole approximation 

for the cross section but serve to illustrate the general point 

that the Bragg scattering occurs at magnetic reciprocal lattice 

positions and with an intensity which is proportional to IML(K)I 2, 

the square of the fourier component of the average static magneti-

zation which is perpendicular to the scattering vector. 

In the case of many Chromium alloys, the spins are arranged 

in a simple antiferromagnetic structure consisting of two simple 

cubic sublattices. The magnetic unit cell is simple cubic and has 

the reciprocal lattice G = 2wr/a (h, k, 2.) with lattice parameter a 

and the structure factor FM(G) = 0 for h + k + 2, even and 

factor according to (2.20b) the average sublattice moment u has 

been used to replace g<S> and f(K) is a 3d type form factor which 

is assumed to be appropriate to the problem. The. magnetic Bragg 

scattering cross section is then, 

dU  
Ts 	i

__ 2 N (yet )2 (27r)3 E 6(K -G )I}~ I 2f2(K)e
-2W(K) 	(2.21) 

Bragg 
3M  M m 

c2 	m G 	- -odd 
a 	-odd 

FM(G) = pf(G)e 
W(G) 

for h + k + Q odd. In calculating the structure 

23 



where 
odd 

 in a reciprocal lattice vector for which h + k + Q, is 

an odd integer and the cross section has been averaged over 

random domain directions. This is to be contrasted with the 

nuclear scattering cross section. The nuclear Bragg scattering is, 

by analogy with (2.20), 

_ 	_ da 	= N (21T)3 E d (K-G) FN  (G)F (G) 
Bragg 	N- vN G 

	N 	N - 
y 

where the nuclear structure factor is 

FN  (G) = E exp (iK. d) b d  exp (-Wd  (K) ) 

(2.22a) 

(2.22b) 

For b:cc Chromium alloys the Bragg scattering cross section becomes, 

da 	 3 	_ 
= 4 NN  (27) 	d (K-Geven

) I b 12 
 exp (-2W(K) ) 

Bragg 	N G even 

(2.23) 

where G 	is a reciprocal lattice vector for which h + k + Q is -even 
an even integer. By virtue of the different periodicities of the 

magnetic and nuclear potentials the corresponding Bragg reflections 

occur at mutually exclusive scattering vectors G 	and -odd 	Gev en.  
The magnetic order in pure Chromium is based on the simple 

antiferromagnetic structure which has just been discussed. However, 

in this case, the collinear magnetization has a periodicity which 

is incommensurate with the lattice; that is, the magnetic repeat 

distance is not an integral number of nuclear lattice spacings. In 

this structure the collinear magnetization lies along one of the 

<100> directions (e) with a magnitude which varies from site to 

site in an oscillatory manner, 

u(R1)  = umax e exp(i G100.R.)cos Q.R. 	(2.24) 

corresponding to a sinusoidal modulation of the moment along another 

<100> direction with a wavevector Q which is incommensurate with 

the lattice. The factor exp(iG
100•Ri) 

 simply selects one of the 
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two simple cubic sublattices of the underlying antiferromagnetic 

structure, the moment modulation changes sign from one sublattice 

to the other. The moment propagation can be transverse, in which 

case e and Q are perpendicular or longitudinal for the case when 

e and Q are parallel. The concept of a magnetic unit cell is not 

useful in this case and direct substituion of the moment (2.24) 

into the expression for the cross section (2.17) gives the Bragg 

scattering 

do__ N (2T)3  ye2  2 -2 	- - 2 
4 v 	

2 	-2W(K) 
dSZ 	 ( 	2) u 	(1-(K.e) )E 	6(k-GtQ)f (K)e 

Bragg N ec 	Geven 	
(2.25) 

at scattering vectors G 	± Q. As Q deviates only slightly from 
even -  

G100 type reciprocal lattice vectors i.e. Q = (1 ± (S)G{loo} the 

magnetic Bragg peaks appear as equally spaced satellites clustered 

around the simple antiferromagnetic reciprocal lattice positions 

Godd. In fact the structure of Cr is more complex than this, the 

nuclear positions are modulated with a wavevector 2Q and a further 

component of magnetization at 3Q also exists, Pynn et al.(1976). 

2.2.3 Elastic magnetic diffuse scattering  

Having dealt with the. coherent Bragg scattering which comes 

from the average periodic component of magnetization, we now turn 

to the second part of the magnetic elastic cross section, the magnetic 

diffuse scattering. Measurement of this diffuse scattering can 

provide valuable information concerning the magnitude and spatial 

extent of defects in magnetically disordered systems. The classic 

application of the technique has been in the study of disordered 

binary ferromagnets by Low (1969) but has been extended recently by 

Davis and Hicks (1977) to the study of antiferromagnets. 

Consider a binary disordered collinear ferromagnetic alloy 

with moments uR = g<SR>z aligned along the z direction. The diffuse 

scattering cross section is, from (2.17) and the fluctuating part 

of (2.18) 
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where 

d6 2 
dS2 	= N( Ye 2)2  (1-K2)f2(K)T(K) exp(-210

el 	2m
e 
 c 

T(K) = N E exp(iK.R..)(i.1. - u2) 
i,3 

(2.26a) 

(2.26b) 

This diffuse scattering is distinguished by the orientation factor 
-2 

(1-KZ) which is zero if the scattering vector is along the direction 

of ferromagnetic saturation. Of particular note is the scattering 

in the forward direction which is a direct measure of the mean 

squared spatial fluctuations in magnetic moment, viz, 

T(0) N (1 - u)2  (2.27) 

Making sense of the general information contained in T(K), however, 

requires a specific model for the moment distribution. 

The simplest model is that for which all A atoms and all B 

atoms have constant moments pA'  PB,irrespective of their environment. 

In this case, the only K dependence comes from the 3d type form 

factor and the Debye-Waller factor, and 

T(K) = CA (1 - CA) (5A.  - ūB)2 (2.28a) 

which is entirely analogous to the 'Laue' incoherent scattering' 

observed in the purely nuclear scattering (2.8a). The mean moments 

on each species can be extracted by combining the mean magnetization 

u = CA  uA + (1 - CA)11B with this result. Such a model is not 

satisfactory in detail because it is clear that the magnetic moment 

will depend in some complex way on the atomic and magnetic environment. 

The simplest way to include such effects is to consider dilute 

alloys. In this limit it is reasonable to assume that the impurity 

atoms have the same moment but that the impurity perturbs the host 

moments in their vicinity. If the host moment is modified by an 

amount (P(R) due to an impurity at R and assuming that the disturbances 

simply add together one finds 
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T(K) = CA  (1-CA) (11A  11B+0(K))
2 	

(2.28b) 

where 0(K) is the Fourier transform of the magnetic disturbance, 

giving a K dependence above and beyond that of the form factor and 

Debye-Waller factor. 

These results are valid in the case when there are, on average, 

no preferred atomic correlations;that is,the alloy is atomically 

random. For any real alloy there is a tendency toward atomic 

corre lation, the expressions above must be multiplied by the atomic 

modulation factor S(K) which is the Fourier transform of the 

static atomic spatial correlations, 

S(K) = N E exp(iK.R. )a(R..) (2.28c) 

where a(R..) is the short range order parameter introduced by Cowley 
-13 

(1950). The parameter a is defined to be positive if there is a more 

than statistical preference for like atoms to be separated by a vector 

Rid  and are zero for a random alloy. In the presence of nuclear short 

range order the Laue incoherent cross section is modulated by the 

factor S(K) so that the a parameters are accessible to experiment. 

The generalization of these results to concentrated alloys is 

difficult: the assumption of linear superposition of defects is in-

valid and there are a large number of possible environments to con-

tend with. There is also the possibility that the moment variation 

is driven by short range order. In most cases the analysis is 

performed using the assumption of superimposed linear defects H(K) 

and G(K) defined as the Fourier transforms of the disturbances due 

to a type B atom on type A and vice versa, and 

T(K) = (11A 11B+(l-CA)G(K)+CAH(K))2S(K) GA(1-Cq)  (2.28d) 

In the limit of large K,any K dependence due to the disturbances 

G(K) and H(K) have subsided and in general T(K) will tend to the 

limit (14 p )2S(K) and the mean moments may be extracted independently 

of any model. A cross check on the analysis is provided from the 
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limiting behaviour of the cross section as K -} 0, if the fluctuations 

in magnetization are driven by concentration fluctuations(eq. 27a) 

becomes 

T(0) = CA (1-CA) (dCA 
)2 

(2.27b) 

In the case of antiferromagnetic binary alloys these results 

may be generalized to give the magnetic elastic diffuse scattering 

from a two sublattice antiferromagnet. For random domain distribu-

tions Cywinski and Hicks (1980) find, 

dv __ 2 ;

m 

\2 	f2(K)T(K)S(K-G ) 
dR el 3 m c2 	-m 

(2.29a) 

e 

The factor S(K- m) is included to account for the presence of 

atomic short range order and G is the smallest magnetic reciprocal 
-m 

lattice vector. The function T(K) depends on the fourier transform 

of the spatial distribution of the magnetic defect and may be written 

following (2.28b) to give for a dilute alloy 

T(K) = (uĀ uB+4)(K
-Gm))2 Cq(I-CA) 	(2.29b) 

The disturbances are assumed to superimpose in a linear fashion so that 

-iGm
.R1 iK.Ri 0(K-G) =E0(R.)e 	e  -m 	1 

(2.29c) 

where ER.) represents the magnitude of the disturbance on the host 
atom B by the impurity at site Ri. In this case the cross section 
at G is related to the concentration derivative of the sublattice 

-m 
magnetization. 

2.2.4 The quasi static approximation  

There is an important sum rule on the magnetic scattering 

which may be derived from (2.12), namely 

f~ dwu (K, w) = N <Sa(-K, 0)SS(K, 0)> -co 
(2.30a) 
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The value of this expression lies in the fact that, if the in-

elasticity of the scattering is small in comparison to the in-

cident neutron energy, the integral may be approximately 

represented by the total scattering cross section at a given 

scattering vector (dam), which is precisely what is measured with 

a fixed detector angle and without energy analysis in a convention-

al 2 axis experiment. Under these conditions the integrated 

cross section may be directly related to the instantaneous spin 

pair correlation function. From (2.30a), 

da - (Ye
22)2 

e-2W(K)g2f2(K) E (Sas KaK s 1).E exp(iK.R..)<Sa(0) SS(0)>-13 
2mec 	 a, s 	1,i 

(2.30b) 

This is a significant result as it implies that the instantaneous 

spatial correlations can be determined in a straightforward way 

without any detailed knowledge of the dynamical properties of the 

system. 

The instantaneous spin pair correlation function is made up 

of two parts. The first is simply the product of the thermal 

average of the spin components on each site, this is essentially 

the square of the order parameter and results in elastic scattering 

as detailed in 2.2.2. The remaining part is the average of the 

fluctuations of the spin components about the static values and is 

related to the isothermal wavevector dependent susceptibility. 

Making this separation (2.30b) becomes, 

da 
- 
da 	ye2 2 2 	- - 	-2W(K) as 

da dS2 	- ( 	2) N f (K) E(Sās _- KaK6)kT e 	- X (ic) (2.31a) 
elastic 2mec Ile a,s 

with 

as 	iK.R1~ < 
S. 0 <Sa> S~ 0 <S > > (kT)X (K) = E e 	( 1( )- 1 ) ( ( )- 	) 

i,] 
(2.31b) 

This expression could have been derived from (2.15a). Thus the 

wavevector dependent susceptibility can also be extracted from the 
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total cross section without any detailed knowledge of the behaviour 

of F
asK  (w) provided the elastic scattering is known and can be sub-

tracted from the total. The expressions (2.30) and (2.31) are 

approximate, valid in the limit of high incident neutron energies. 

This approximation is known as the 'quasistatic' (or quasielastic 

or static) approximation. If the conditions of quasistatic 

approximation hold true, it is possible to measure the spatial 

dependence of the spin-spin correlation function independently of 

its temporal variation. This amounts to a consideration of the 

equilibrium thermodynamic properties of the system. 

The spin-spin correlation function has two familiar limits; 

that for a pure paramagnet where correlations are confined to the 

same site and that for a system close to a critical point where 

the correlations are very long ranged. Between these two limits 

analysis of the correlations is more complex and depends strongly 

on the particular crystal structure etc. under consideration. In 

this case the system may be characterized by the average correlations 

between coordination shells, allowing the local couplings between 

spins in a disordered system to be determined. We shall treat these 

cases in more detail. 

Consider the scattering from a binary alloy in the quasi-

static approximation. If the spins are free from all interactions 

only the correlation of the spin with itself can survive the thermal 

average giving a cross section which is linear in the concentration 

CA  of magnetic species, quadratic in the spin S and has no K 

dependence apart from the form factor. 

The cross section simply amounts to a statement of the Curie 

law, 

da 
= ( Ye22) 

2g2 f2 
(K)  2  

2m c 
e 

•CA  ,S  (S+1)e 2W(K) (2.32a) 

or alternatively 

x (K) = 8as(guB)2S(S+1)/3kT (2.32b) 

30 



(K + K12) 

C 
Xaa (K) _ 	,, 	

X0 
(2.34a) 

For a non interacting spin system the wave vector dependent 

susceptibility has no K dependence. 

In the vicinity of a critical point, the K dependence of the 

susceptibility is marked. Intuitively one may expect the system 

to be most susceptible to perturbations with a wavevector GO  

corresponding to the periodicity of the incipient long range order: 

hence X(K) would be peaked at K = 0 and at other nuclear 

reciprocal lattice vectors G for a system close to its ferro--n 
magnetic Curie temperature (Tc) or at appropriate reciprocal lattice 

vectors GM  for more complex structures close to the Nel temperature 

(TN). At the ordering temperature the susceptibility diverges at 

K = GO  so just above the critical temperature the susceptibility 

may be expanded as a power series in the small deviations q = K—GO  

about the peak value, to give for an isotropic system 

X 1(q) = X 1(G0)[1 + q2/K12 + ...] (2.33) 

where the expansion coefficient K1  has the dimensions of inverse 

length and must tend to zero as T -- T. 

This form for the susceptibility is found in the mean field 

approximation for a three dimensional Heisenberg ferromagnet. It 

was shown by Van Hove (1954b) that for small k, 

where the parameters vl  and K1  are found to be 

v 2 = 1  J 
(2)  /J.(0) 	K = 

(T—Tc) 
i 

1 6 _ 	1 Tc  v1  

with ,T(n)  the nth  moment of the exchange interaction and X0  the 

Curie susceptibility (2.32) at T = T. For nearest neighbour 

interactions v1  'L a and varies slowly with temperature. This form 

for the susceptibility implies that the instantaneous spin 

correlation function has the asymptotic form, 

(2.34b) 
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<SiS.>R..- 	
R1. exp(-Ri.Kl) 

J 1J 
 

13 J 
(2.34c) 

It is this expression which epitomises critical phenomena. As the 

temperature is lowered towards the critical point the range of 

correlations E = 1/K1  tends to diverge and the correlation function 

ultimately falls off as 1/R at Tc  and is no longer integrable. 

This leads to a divergence in the susceptibility at K = GO  and 

T = Tc  and gives rise to the singularities in thermodynamic variables. 

These results were first obtained by Ornstein and Zernicke for the 

density-density correlations in a fluid close to the critical point 

and the expressions above are associated with these names. The 

analogy with a fluid is particularly apt: in a fluid the density 

correlations couple with light via the refractive index to give 

critical opalescence, in a spin system the spin fluctuations couple 

to the neutron via the susceptibility to give critical magnetic 

scattering which is singular in q and T at Tc. 

At temperatures very close to Tc  the expansion (2.33) for 

the wavevector dependent susceptibility is no longer valid and the 

Ornstein-Zernicke theory breaks down. Fisher and Burford (1967) 

suggest that the susceptibility should be of the general form 

	

2 	2 
x
_ 1
(K) = x

-1
(0) Cl + V K 2]  [1  + 	K 2] n/2 T Tc

+ 

	

K
1 
	K1  

The parameter = 1 + ncp2/2 and 4) vary smoothly with temperature 

and both n and 4) are small, of the order 0.1 or smaller in the 

vicinity of T. For small K this expansion reduces to a quasi-

Lorentzian shape, 

-1(K)  1(K) = x_ 1(0)[l + K2/K12(1-1/2)_1 1-1/2  (2.35b) 

so that at Tc  the spin correlations fall off rather more slowly than 

1/R, the asymptotic form being 

<S.. S. > n, • 1 
2-d+n 

T = Tc, R÷ co (2.35c) 

(2.35a) 
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X 	T  > Tc O 	T 
c 

X(0),ti 
 (T-Tc)y 

(2.35e) 

in d dimensions. The inverse range parameter K1  approaches zero 

as T approaches Tc  (from above) as in Ornstein-Zernicke theory 

but with an exponent v > 0 which may be different from !, 

T-T 

K1 	
(T c‘V 	

T  > Tc c 
(2.35d) 

In this way the bulk susceptibility X(0) diverges at Tc  according 

to 

where the exponent y is 1 in mean field theory. For'equations (2.35) 

to be self consistent the exponents y, n and v must satisfy the 

equality (2 - n)v = y. It is possible in principle to determine 

these critical exponents and the important quantities X(0) and K1  

directly from critical scattering measurements. 

The elastic component of the scattering which appears below 

the critical temperature must be subtracted in order to determine 

the susceptibility according to (2.31). Furthermore, as the system 

shows long range order, it is•necessary to take due account of this 

symmetry breaking by distinguishing between the correlations between 

spin components parallel and perpendicular to the local axis of the 

order parameter (z). The cross section in this case may be written, 

(compare with (2.15b) and (2.15c)), 

da _ da 	
=N( ye2  )2f 2 (K)e  2W(K)kT[(1-K 2)Xzz (K)+(1+K2)Xxx(K)

] 
elastic 2mec2 p9 	

z 	z 
(2.36) 

where Xzz  and Xxx  are the longitudinal and transverse susceptibilities. 

The Ornstein-Zernicke result for T < T 
c 
is 

c 
zz 	XO  
X ° v

1

(K2
+(K Z)

2) (2.37a) 

where the longitudinal inverse correlation length 
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z 1 J(2) T-Tc 
K1 = 

2r1 
J(0) ( Tc ) (2.37b) 

is numerically twice as large as K1 for the same reduced temperature. 

The transverse susceptibility is not in any sense critical, 

xx 	Xff 

	

x(K) - 	2 	 (2.37c) 

r1K 

and Ki. is zero below Tc. More sophisticated theories propose that 

K1 diverges with an exponent v' which is identical to v and the 

bulk longitudinal susceptibilit 

y' which is identical to y. The longitudinal susceptibility X(K) 

assumes the quasi Lorentzian form given in (2.35b) with an exponent 

n' which is equal to n. Further aspects of neutron critical 

scattering are reviewed by Als-Nielsen (1976). 

The intermediate case, that of a correlated system which is 

not close to criticality, is more difficult to deal with. It is 

possible to parameterize the problem in a phenomenological way by. 

defining correlation coefficients between spins, atomic planes or 

coordination shells depending on the symmetry of the system in-

volved. For example, consider a random binary alloy comprising 

CA of magnetic species dissolved in a non magnetic host. In this 

case the cross section (2.30) may be expressed as ā fourier series 

dQ .N yet 2 2 2 	-- 	2Yd(K)' 	a s 	a s i!S ( 	2) g f (K) E 
(Sa$ a$) 	-- [CA<SOSO>+ E '<SOSm>e B] (2.38) 

2me c 	a, S 	 m#0 

By fitting the data to this series it is possible to determine the 

effective spin from the self correlation term <S~S~> and the nearest 

neighbour (m=1) or higher order correlations 	<S0Sm> from the 

fourier components. Such a procedure has been performed by Davis 

and Hicks (1979) for CuMn alloys. From the temperature dependence 

of the correen'on 'ccet cients , it is possible to estimate the magnitude 

of the exchan9t; ;HpQrwctiDns 	Stanley (1967) has illustrated the 

reverse procedure by applying the results of high temperature series 

expansions for the nearest neighbour Heisenberg model to the case 

of paramagnetic cubic spinels. 

y Xzz (0) diverges with an exponent 
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2.2.5 The orientational average  

The cross section must be averaged over all orientations 

of crystallites in a polycrystal or random defect orientations 

in single crystals. Even for materials with cubic crystal 

structure this average is non trivial as it is necessary to 

allow for the vector nature of the neutron-electronic moment 

interaction. This problem has been treated by Blech and 

Averbech (1964) and as the original paper contains a number of 

misprints, the major steps in the derivation are presented here. 

Consider the scattering in the quasi static approximation 

(2.30). In a polycrystal it is not possible to distinguish 

between relative orientations of the scattering vector K and the 

vector rn = R. - R. separating spins. The measurement returns 

the average scattering arising from all pairs of spins separated 

by a distance 
n 

irrespective of direction, thus 

( E (S -K K   )exp 
	

<SaS S >) 	= 	jdQ { E' (S -K K ) <SaS S > as a a 	-n 	 i+n av. 	4~r 	 a s 	 i+n ass 	
a,s 

 

cos (K• ncos (IS) }
n 

(2.39a) 

where 62 is an element of solid angle sin 0d0dw centred on a 

particular orientation (0, w) of rn with respect to K and the average 

over all pairs separated by a distance rn has been denoted {}n. 

In order to evaluate this average it is convenient to resolve the 

spins and the scattering vector into components along the radius 

vector (R) and in a direction perpendicular to it (T) as shown in 

Fig. 2.t, 

{aESSas KaKs<SaSs >}n = {(1-KR2)<SRSR+ > + (1-KT2)<S.Si+n>}n 

and with the definition of the angles 0, w in Fig. 2.2 KR = cos 

and KT = sin 0 cos w the integration over SZ in (2.39) may be 

readily performed to yield the orientational average 
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Fig.2.1 Spin vectors Si  and S. and their projections along the 

radius vector. (Blech and Averbech (1964)) 

Fig,2.2 Geometrical relation between spin directions, radius 

vector and scattering vector. (Blech and Averbech (1964)). 





_ _ 	 sin Kr 	sin Kr cos Kr
n  ( E Ōas KaKs<S.S >exp(iK.Nn))av = an Kr n+bn( 	3n 	2)i+na,$ 	 n 	(Krn) 	(Krn) 

(2.39b) 

with the average correlation coefficients a
n
, b

n 
defined as 

an = {<S.S. 
>}n 

  

(2.39c) 

(2.39d) bn = {2<S.SR+n> - <S'Si+n>}n 

In performing this decomposition the spin has been treated dS a 

classical vector quantity. 

If, after averaging over all orientations, the spin correlations 

are independent of the radius vector direction (such as the case when 

local correlations or defects have cubic symmetry) the average 

correlation coefficients are 

a = 3 {<-1~-1+n>}n 

bn = 0 

and the cross section is 

2   sin Kr da 2 
dS2 

 
=7( 

2mec2)2g2f2(K)En{<Si.Si+n>}n  Kr
n n 

e 	' 

(2.40a) 

(2.40b) 

(2.40c) 

This is exactly the same form as the expression for the nuclear 

scattering averaged over all orientations. In the nuclear case the 

cross section averaged over random orientations is 

_..sin Kr.. da 

	

= exp (-2W(K)) Z bib . 	Kr.. 	
(2.41a). 

Id 	1,j 	j  

For Laue scattering (2.8a) and (2.28) this cross section has the 

dependence 

sin Kr 
si == N CA (1-CA) (bĀ bB) 2 expo(  -2W (K)) E n Kr 

n  
N 	 n 	n 

(2.41b) 
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where an  is the Cowley parameter a(R. .) averaged over all 

directions. The orientational average (2.40) is commonly used 

but is strictly only valid in the situation where the vector 

nature of the magnetic interaction between neutron and magnetic 

moment is unimportant as the close analogy with the nuclear 

cross section (2.41) demonstrates. 

In general the averaged correlations are different for 

components parallel and perpendicular to the radius vector n. 
This occurs in NnO where the local symmetry is not cubic, as 

treated by Blech and Averbach (1964). The presence of magnetic 

dipolar forces which depend on the relative orientation of the 

spins and radius vector via the term (rn.Si)(n.Si+n) in the 
Hamiltonian may lead to different correlations parallel and 

perpendicular to the radius vector. This has been demonstrated 

by Nagele et al. (1978) for manganese aluminosilicate glasses and 

in the case of shape anisotropy within small particles in 

Appendix A. 
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27.11 
= 

	
E exp(iK.R.)exp(-W. (K))A. 

m 	 ~l 	1 	1 
i 

2 

2.3 Magnetic scattering with polarized beams  

2.3.1 Introduction  

The cross section for scattering of polarized neutrons by com-

bined nuclear and magnetic interactions can be divided into purely 

magnetic scattering, purely nuclear scattering and nuclear magnetic 

interference scattering terms, each of which has the overall form 

d2a 	n1 
I 
2 - k' E p Tr Ā<X I V IX ><a' I V I a>ō (hcol-E. ' +E x) 

dS2dE -~2ci~i k XX' ' 	1 	2 	a 

The average over neutron spin components can be performed using the 

properties of the Pauli matrices, 

Tr pViV2 = ai.a2 + Sl s2 + B1(a2.P) + (ai.P)a2 + iP.(al x a) 

^ ^ 

 

A A 

where the general form of the interaction potential V = S + a.Y has 

been used. From section 2.1 the spin dependent and spin independent 

parts of the scattering potentials are 

(2.42a) 

(2.42b) 

(2.42c) 

(2.42d) 

A 2 
aN = 

2 
m E exp(iK.Ri)exp(-Wi(K))2 B.I. 

N 	 N  

1 

aM = 0 

A 
a = 

27112
( ''e2) 2 Q m 	m m c 2  -1 

e 

At all but the lowest temperatures the nuclear spins are randomly 
^ 

oriented so any terms which are linear in the nuclear spin I average 

to zero. With this assumption the nuclear, magnetic and nuclear mag-

netic terms are then 

Tr pV V = a . a + iP . (a x a ) 
m m -m -m 	-m -m 

(2.43a) 
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AA+A A+  n 	
A+A 

Tr pVNVN= aN.aN  + 'N SN 

Tr pVVN  = (am.P)s m 	N  

(2.43b) 

(2.43c) 

The purely.:nuclear cross section is independent of polarization as the 

nuclei have no preferred axis. The purely magnetic cross section 

consists of a polarization independent term am.am which was dealt with 
A 

in section 2.2 plus an additional polarization dependent termiP.(am  x  am) 

which is zero for a collinear spin system but may contribute to the 

scattering in more complex structures. For our present purposes it is 

the polarization dependent nuclear magnetic interference term (a .P)SN  

which is most important. This term is linear in the magnetic scatter-

ing amplitude so that the absolute sign may be determined unambiguously. 

Furthermore this term may represent a potential amplification of the 

weak magnetic amplitude by the stronger nuclear amplitude and hence 

may be employed to determine very small magnetic cross sections with 

great accuracy. 

Such a polarization dependent term may be separated from the 

polarization independent terms in the cross section simply by observ-

ing the change in scattering on reversing the incident polarization. 

(Further information may be gained by analysing the scattered polar-

ization and this extension will be treated in section 2.4). Consider 

the change in scattering cross section observed on reversing the 

polarization from P to -P for a collinear system in the dipole 

approximation 

2 

11 -(  
- 	= 4(  Ye2)exp(-2W(K)) E exp(i(.Ri.)(A. g.f.(K) S.>).

•  P 	-P 	mec 	i23 	
1  J J 

-.P1  

The cross section appears with a contrast factor n.P which depends 

on the orientation of the collinear spin axis n with respect to P , and 

P1  = K X  (P x K) is the component of polarization perpendicular to 

the scattering vector. This cross section is linear in <S> and 

depends on the correlation between magnetic moment and site occupation. 

40 



2.3.2 Bragg scattering  

The coherent interference of nuclear and magnetic Bragg 

scattering amplitudes can only occur at scattering vectors where the 

purely nuclear and purely magnetic Bragg reflections coincide. In a 

simple ferromagnet all nuclear and magnetic nuclear reciprocal 

lattice positions coincide so the Bragg scattering contains all 

three contributions, using (2.42) and (2.43), 

dQ = N (2.11.)3 
E 6(K - G) LF2 + (Y e2) 2 (1- (G. n) 2)F

m 
 2 

dSZ 	c v0 G 	N 	m c2  e 

2ye2 	-  
+ F n 2 NFM •Ps~ 
m c 

(2.44a) 

where again n is the unit magnetization direction and FN and FM are 

the nuclear and magnetic structure factors introduced in (2.20) and 

(2.22) of section 2.2.2. The extra contribution to the Bragg in- 

tensity occurs with the contrast factor n.P so that if the ferro- .. N1 

magnet:is saturated with n perpendicular to the scattering plane and 

the incident polarization is arranged to be either parallel (+) or 

antiparallel (-) to n the contrast factor becomes simply ± PI and the 

cross section becomes 

(±) 	3 	2 

dS2 = 	Nc ( vom) 	E 6(K - G) [FN ± ye2 FM] 2 

	

v0 	G 	m c 	
J (2.44b) 

e 

where-± correspond to perfect parallel or antiparallel polarization. 

For a given Bragg position the ratio of these two intensities, the 

'flipping ratio' R is given by 

2 	2 F 
R = (1 + Y)2 and y = (.21±22 2FM 

(1 - y) 	mec N 
(2.44c) 

If the nuclear structure factors are known it is possible to 

accurately determine the magnetic structure factors by measuring the 

flipping ratio. By Fourier inversion of the magnetic structure 

factor data it is possible to measure the real space collinear (z) 
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component of the magnetization density. This is a model independent 

result. 

The polarized technique is well suited to the determination of 

magnetization density because of its potentially high sensitivity 

and also due to the fact that the sign of the magnetic structure 

factor may be deduced, resolving the ambiguity in the unpolarized 

case. 

It is important to note that although the determination of 

magnetization density is model independent it is not possible to 

allocate the spin, orbital and delocalized components of the density 

without model assumptions and further information. In particular 

it may be necessary to know 	the bulk magnetization in order to 

specify the delocalized component of the magnetization density or the 

g factor to assign the orbital component of the total moment 

according to (2.10d). The techniques of data treatment and schemes 

to separate the constituent parts of the magnetization are analysed 

by Moon (1971) for example and will be considered in more detail in 

chapter six. 
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2.4 Polarization analysis  

2.4.1 The polarization of the scattered beam 

The polarization state of the scattered beam contains 

additional information about the target system. In particular, by 

analysing the final polarization in the direction of the incident 

polarization it is possible to affect a complete separation of the 

purely magnetic and purely nuclear scattering from paramagnets and 

antiferromagnets. 

The change in polarization on scattering may be found by con-

sidering the transformation of the density matrix of the incident 

beam p into the density matrix of the scattered beam p' by the spin 

dependent scattering potential V. From Kessler (1976), for example, 

..+.." 
p, 	V, pV 

Tr (V pV) 

and the polarization of the scattered beam is formed from (2.4) and 

above, 

A 	<Tr(V pVa)> 
P' - Trp'6 = 	- 

<Tr(V+pV)> 
(2.45) 

The denominator is simply proportional to the cross section. Using 

the explicit form for the scattering potential and the properties of 

the Pauli matrices the trace may be evaluated to give 

nn+nn 	
nn 	

n n 	n n 	n+  n 	n+  n 	n+  n 	n+  n 

Tr pVioV2  = (3la2  + als2  + s1s2P + al(a2.P) + (11.P)a2  - P(al.a2) - ial.a2  

+ is 1  (a2  x P) + i (P x ai) 
2 

For randomly oriented nuclear spins the purely magnetic, purely 

nuclear and magnetic nuclear interference contributions may be 

separated 

nn+nn 	n+  n 	n+  n 	n+  n 	n+  n 
Tr pVc1VM  = aM(aM.P) + (am.P)aM-- P(aM.aM) - iaM  x am 	(2.46a) 
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Tr pVNaVN  = sNSNP - 4 N N
.a)P 

Tr pVNQVM = SNaM + iBN(aM x P)  

(2.46b) 

(2.46c) 

These results taken with the results for the cross section in the 

previous section 2.3.1 are sufficient to completely describe the 

general scattering problem for polarized neutrons. 

Two of these terms can produce polarization from an initially 

unpolarized beam. The first term is the purely magnetic term lam  X am  
in (2.46a) which is zero for all but complex spin structures. The 

second term is the interference term sNaM which, for example, can give 

rise to a polarized beam on Bragg reflection from a ferromagnet. In 

this case, the created polarization is perpendicular to the scatter-

ing vector, 

	

P= 2 2 	F N 	2 2 (Gx (n x G)) 
FN  + (1 - (n•G) )FM 

If the magnetization is aligned perpendicular to the scattering vector 

perfect polarization can be achieved if a reflection exists for which 

the magnitude of the nuclear and magnetic structure factors are equal. 

In such a case the cross section for scattering with incident polariza-

tion antiparallel to the magnetization direction is zero (compare 

(2.44b)) and because an unpolarized beam may be regarded as a super-

position of two beams with equal and opposite perfect polarizations 

only the parallel part is selected by reflection and a fully polarized 

beam results. Such reflections exist in many crystals. 

The purely nuclear terms which involve the average scattering 

length b E. A cannot alter the polarization. This includes coherent 

elastic scattering, multiple nuclear coherent scattering, nuclear iso-

t.'opic incoherent scattering, nuclear Laue incoherent scattering and 

thermal diffuse (phonon) scattering, all of which depend on E. These 

	

A+ A 	 A+A 
terms only involve RN8N  in (2.43) and 	RNP in (2.46) so that on 

substitution into (2.45) 

P' = P 	 (2.48a) 
00 

(2.47) 
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The only nuclear scattering process which can change the polarization 

of the beam is the nuclear spin incoherent scattering which depends, 

not surprisingly, on the spin dependent part of the scattering 

amplitude. Substituting the terms 	from (2.43) and - 1 a 
°~N01I~T 	 3 	

P 
a1V'°~T 

from (2.46) into (2.45) gives 

P' = - 1/3 P. 

The purely magnetic scattering can give rise to complex 

polarization dependent phenomena,particularly in the case of inelastic 

scattering. The general case is discussed by Marshall and Lovesey 

(1971). We shall consider elastic and quasielastic scattering from 

systems which do not create polarization. This essentially restricts 

the discussion to paramagnets and collinear antiferromagnets.. In 

this case the scattered polarization is from (2.43) and (2.45) 

      

P' = 2<(P.Q1)Q1' / <Q1.Q1 - P (2.50) 

so that the components of Q 1 which are perpendicular to P reverse the 

incident polarization whereas the components of Q 1 which are parallel 

to P do not change the polarization. One notes that if P is parallel 

to the scattering vector the polarization of the incident beam is 

reversed. For a paramagnet the first term in (2.50) is K x (P x K) 

~ that the scattered polarization is āion5 the scattering vector, 

so 

P' = - K(K.P) 	 (2.51a) 

The polarization depends upon the direction of the scattering vector for 

magnetic scattering but not for nuclear scattering. This difference, 

together with the fact that only nuclear spin incoherent scattering and 

magnetic scattering can reverse the incident polarization may be ex-

ploited to separate the magnetic and nuclear scattering from paramagnets 

and antiferromagnets. 

2.4.2 Spin flip and non spin flip scattering  

This separation was first performed by Moon, Riste and Koehler (1969). 

In this experiment the final polarization was measured only along the 

( 2.49a) 
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direction of the incident polarization and hence is a polarization 

analysis experiment only in a restricted sense. The vector 

equation (2.45) may be alternatively written in terms of the partial 

cross sections connecting neutron spin up (+) and spin down (-) 

states 

d2a 	
+ 

d2v
++ 	

- d2v + 	- d2a-- 	+ d2o+-  

d~dE 
P = n

+ 
	+ n dadE 	n d2dE 

- n
+ 

where n- are the initial spin populations and are related to the in-

cident polarization via n± = #(1 ± P). The four partial scattering 

cross sections can be divided into processes which do not change 

the beam polarization (++)(--), the so called 'non spin flip' 

scattering and the processes which reverse the beam polarization (+-) 

(-+) the 'spin flip' scattering. Experimentally these partial cross 

sections can be determined by performing a series of of measurements 

with 'crossed' and 'uncrossed' polarizer and analyser as described in 

chapter 3. 

Following Moon et al.(1969) the polarization equations found in 

the previous section may be more conveniently expressed in terms of 

these partial cross sections. In summary, the coherent nuclear, Laue 

incoherent, isot opic incoherent and thermal diffuse scattering is 

entirely non spin flip, thus ensuring that the initial polarization 

is left unchanged (compare (2.48a)). Two thirds of the nuclear spin 

incoherent scattering occurs with spin flip and one third with non 

spin flip, 
+- 	++ 

da -+ __ 2 da 	da 	_ 1 da 
dO 	3 dc2 	dc2 	3 d2 

nsi 	nsi 
(2.49b) 

which ensures that the final polarization is - 
3 
P (compare (2.49)). 

If the polarization is parallel to the scattering vector all magnetic 

scattering must occur with spin flip. So, for example, the quasi 

elastic spin flip scattering from a paramagnet is 

+- 
da 
d0 -+ - 2 (d)para. (1 - (P.1)2) (2.51b) 
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and the non spin flip scattering is O 

(10~. - 2 (dgy)para(1 + (P.K)
2) (2.51c) 

giving the correct final polarization (2.51a) if P' is resolved along 

P. The fact that only the magnetic and 2/3 of the nuclear spin in-

coherent scattering occurs with spin flip may be used to separate these 

two contributions from the remaining nuclear scattering processes which 

occur with non spin flip. If the nuclear spin incoherence is known, 

the separation is complete. Otherwise it may be necessary to perform tbo 

experiments, with the polarization parallel and subsequently perpendicular 

to the scattering vector to separate out the nuclear spin incoherence. 

By measuring the spin flip and non spin flip scattering it is 

possible to separate the magnetic and nuclear defect scattering in 

antiferromagnets (Davis and Hicks 1977) as well as the nuclear and 

magnetic Bragg scattering from antiferromagnets (Moon et al. 1969). 

The technique has also been applied successfully to the problem of 

separation of magnetic disorder scattering from correlated paramagnets 

in the presence of nuclear disorder (Davis et al. 1980). Such measure-

ments could not be attempted without spin analysis. 
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2.5 Small Angle Scattering  

2.5.1 Introduction  

The diffuse scattering in the vicinity of the (000) reciprocal 

lattice position is sensitive to long range fluctuations in magnetic 

and nuclear correlations and thus provides a link between the 

macroscopic world at K = 0 and the microscopic world at higher K. 

In this section some rather general statements about the scattering 

cross section for unpolarized neutrons as K approaches (000) will be 

made. 

The (000) position has a special importance in scattering 

experiments since classical laboratory measurements of bulk properties 

all take place at K = 0. For consistency the scattering cross section 

must extrapolate to the correct bulk values at K = 0. Thus, the forward 

scattering in the quasi static approximation for a system with no 

elastic scattering must approach kTX and for a ferromagnetic alloy with 

concentration driven fluctuations in moment the forward scattering must 
du 

approach CA(1-CA)(
dC )2• Furthermore, for a ferromagnet, the (000) 

position is an allowed Bragg position having an intensity which must 

equal 3 u2  for a random domain distribution. In the general case all of 
these contributions are present and after averaging over all orientations 

according to section 2.2.5 the forward scattering must approach the 

limit (for purely magnetic terms) 

2 

dSā 	( Ye 2)g2 E (an  + 1 	
bn 

, 	
)f2(0)exp(-2W(0)) 

2m c 	in 
e 

where for convenience the validity of the quasi static approximation has 

been assumed. A predominance of ferromagnetic correlations will lead 

to enhanced forward scattering. Similar limits also exist for purely 

nuclear scattering. 

The small- K limit is obtained by expanding the cross section as a 

power series about K = 0, with f(0) = 1 and a 
2W(0) = 1,  

2 

	

d6• ( Ye  ) g2  E 	a (1 - 
3 
1 (Kr ) 2  + . + 1  b (1 - 1  (Kr ) 2 + . 

2m c2  i,n n 	n 	3 n 10 n 
e 	' 
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E r
n2 	

<S. S 	> i+n  

R2 
- 2 n  

n <Si:.]+n> 
(2.52c) 

where the cross section in the quasi static approximation has been 

assumed and averaged over all random orientations. This may be 

equivalently written 

da da 
dSZ 	dSZ 	(1  - 3 K

2 R2 + ... ) K =0 
(2.52a) 

where the coefficient of K2  has the dimensions of length squared, 

(a +lb)r2 
R2 _ l E  n S n n 	(2.52b) 2 n E (an  + 3 bny 

n 	 .. 
and characterises the size of magnetic inhomogeneities within the system. 

These inhomogeneities may be static magnetic defects such as domain 

walls or groups of static impurity moments, or they may be dynamic 

fluctuations in the magnetization. If the correlations are independ-

ent of the direction of the radius vector connecting the two spins, 

as for example, with a Heisenberg interaction the term bn  disappears 

(compare with (2.40)) and 

which is essentially the second spherical moment of the spin dis-

tribution. If, for example, the fluctuations are dynamic fluctuations 

described within the Ornstein Zernicke theory the range parameter 

E = K is simply 	(R2  ) . 
1  The quadratic expansion of the cross section (2.52) is valid in 

some K range such that KR « 1 known as the "Guinier region". This 

expansion was originally derived by Guinier in the case of small angle 

X Ray scattering and is usually written as an exponential which is 

equivalent, up to second order in K1 to the series (2.52). One notes 

in passing that if the system is exceedingly close to a critical point 

this form of the cross section (2.35) is inappropriate. Similar 

results can be derived in the case of nuclear small angle scattering 

as shown in the monograph by Guinier and Fournet (1955). 
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2.5.2 Scattering from superparamagnetic particles  

Consider the scattering produced by a single superparamagnetic 

particle. Within the particle the individual atomic moments are 

coupled ferromagnetically to every other moment to form the nett 

moment•S
tot  which is allowed to rotate freely. In this case the spin 

correlations are not coupled to the particle shape so that one may 

expect bn  = 0. Averaging over all particle orientations of S
tot  with 

respect to particle orientation the cross section may be written 

according to the Guinier law (2.52). In the case of a superparamagnetic 

particle the spin correlation function <S. 

the site occupation function pipit  where 

1 depending upon the site R. being outside 

With this definition, 
2 

R2 _ 1  n rn pipi+n 
R2  

2 
E pipi+n n 

(2.53a) 

which is simply the square of the radius of gyration of the particle, 

R. The radius of gyration may thus be determined without any assumption 

as to particle shape. For a collection of randomly oriented super-

paramagnetic particles of differing size and shape the cross section 

can again be written in the Guinier form but with 

R2 _ s nsStot(s)RG(s) 

E nsstot(s) 

(2.53b) 

if the particles are not correlated with one another. Here ns  is the 

number of particles with s spins, Stot(s) = (sS)2  is the total spin of 

the particle and RG(s) is the mean squared radius of gyration for all 

particles with s spins (irrespective of shape). This expression is 

analogous to the Z average used to describe the small angle scattering 

from polymer chains. 

The concept of a particle- structure factor P(K) is useful in 

the description of X ray small angle scattering (Guinier and Fournet 

1955). It is also useful in the case when the neutron small angle 

scattering does not involve the magnetic term b 
n
. For instance the 

.Si  > may be replaced by 

the operators p. are 0 or 

or inside the particle. 
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cross section for a superparamagnetic particle containing S spins, 

averaged over all orientations is 

2 	 sin Kr da = ( ye 2  2 g2S2 
[_!_ 	<p,p.> l (2.54) 

2mc2 3 s2  i n i i+n 	Krn J 
e 	'  

where the function in square brackets may be alternatively written 

as the average of the square of the structure factor of the particle 

f)(102. The structure factor P(K) is obviously related to the structure 
factor of Bragg scattering F(K): indeed, small angle scattering from 

fine particles may be viewed as the mosaic broadening of the (000) 

ferromagnetic Bragg peak. One may write, 

4(K) = 	E p. exp(iK.R.) 	(2.55a) 
s-  

The structure factor concept is most useful if the particle is 

spherically symmetric as P(K) is real and independent of particle 

orientation, allowing (2.54) to be written in the alternative form 
pi (K)2 

= f (K)2  

da, 	2 2 2 2 /D(K)2 N 	
(2m c

2) 3 g  Stot 
e 

(2.55b) 

The analogy with purely paramagnetic scattering is obvious (2.32). 

This analogy has been exploited by Cywinski et al. (1977) to explain 

the small angle scattering from an array of superparamagnetic 

particles under an applied field by expressing the results of the 

calculation for a paramagnet (Marshall and Lovesey (1971)) in terms 

of P(K) and Stot ' 
In the case of nuclear scattering it is possible to show that 

for uncorrelated particles the higher K behaviour of the small 

angle scattering follows the 'Porod' law (Giiinier and Fournet 1955) 

da 	A 
dE2 - 4 

(2.56) 

where A is the surface area of the particle. The same limit exists 

for the magnetic small angle scattering from a superparamagnet. 
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The results in this section have been limited to the specific 

case where the magnetic and nuclear radii of gyration are equal, 

in the more general situation of nonuniform magnetization the 

nuclear and magnetic R2  are not equal. It is important to note 

that if the motion of the nett particle moment is correlated with 

the particle shape due to dipolar anisotropy the b term must be 
n 

included in the analysis and R2  is found to be smaller than g2. 

This problem is treated in appendix A for the simple case of a 

rodlike particle. 
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CHAPTER 3 

EXPERIMENTAL 

3.1 Sample preparation  

The series of CrFe alloys used in this work were prepared 

by Argon arc melting. The starting materials were pure Cr and Fe 

provided by Johnson Matthey Chemicals Ltd. in the form of 

electrolytic Cr beads (JMC 703) and iron rod (JMC 848). Levels 

of metallic impurity in these 'Specpure' materials were below 

3 p.p.m. in both cases. Electrolytic Cr from this source is 

reported to contain approximately 1 a/0 dissolved oxygen (H.E.N. 

Stone, private communication). Some alloys were prepared using 

low oxygen content Cr from the iodide process and supplied by 

Koch Light Industries (8181 h). 

The weights of starting materials used to make up an alloy 

of C atomic percent Fe were calculated according to the ratio 

mFe = 1.0741(100/C(%)- 1.0)-1  

wherem1e, 
mCr  are the weights of Fe and Cr. These weights of Cr 

and Fe were placed on the water cooled copper hearth of the arc 

furnace and the furnace was flushed several times with industrial 

argon. A Ti 'getter' button was then melted thoroughly using an 

arc current of 100 A under a partial pressure of Argon of 150 mm Hg. 

The absence of residual reactive gases was indicated by the bright 

and untarnished surface of the Ti- getter after melting. The con-

stituent metals were then melted several times using an arc current 

of 100-150 A. The resulting button was then turned over and re-

melted. This melting cycle was repeated at least six times to 

ensure bulk homogeneity. Weight losses were small, of the order of 

0.57, and could be attributed to the evaporation of Cr which has a 

high vapour pressure. Great care was taken to ensure that all 

mCr  
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material was melted and any samples with large weight loss were 

discarded. 

Cr rich CrFe alloys are hard and brittle. This makes alloy 

fabrication difficult as the slab and cylindrical specimen 

geometry used in neutron scattering experiments cannot be 

achieved by cold work. To overcome this problem the homogeneous 

alloy buttons were remelted using a low arc current (70A) and 

encouraged to flow into slots cut into the copper hearth. After 

sufficient practice this rough casting procedure could be used to 

produce approximately cylindrical ingots with a diameter of some 

1 cm and length of about 4 cm which were used for Bragg scattering 

measurements. A similar procedure was followed to produce flat 

coin shaped buttons of 2 cm diameter which could be spark machined 

with parallel sides for use in small angle scattering measurements. 

The specimen thickness was calculated to give an attenuation as of 

1/e. Magnetization and resistance samples were spark machined 

from the neutron samples. 

Samples fabricated in this way were encapsulated in a length 

of quartz tube which was evacuated to below 10-5  mm Hg and sealed. 

The alloys were then given a homogenizing anneal at 1050°C in the 

a phase field for a period of between 4 and 7 days and then quenched 

directly into water. Often a small weight gain (< .05%) was found 

after heat treatment and attributed to reaction between the hot 

alloy surface and water during the quenching process. This tarn-

ished surface layer also suffered thermal etching due to preferential 

evaporation of Cr. This surface damage was removed by spark 

machining and light mechanical polishing followed by etching in H202  

and HC1/HNO3. 

Microscopic examination of the samples by optical microscope 

and electron microscope showed the alloys to be single phase and 

homogeneous. (P.R.Monk, private communication). Typical electron 

microprobe traces are reproduced in Fig. 3.1. The iron concentration 

is homogeneous to within ± 5% and shows no systematic drift. Non 

metallic inclusions several atm in size were found distributed at 

random in most samples. These inclusions were low in Fe content 
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Fig. 3.1  Electron microprobe traces for a Cr Fe 107 alloy. Upper 

and lower traces represent Cr and Fe concentrations 

respectively. A non metallic inclusion is shown by an 

arrow. 



Fig. 3.1 



as shown in the lower part of Fig. 3.1 and were tentatively 

identified with CrN and Cr203  arising from the dissolved gases 

in electrolytic Cr. The samples used in polarization-analysis 

experiments were made from iodide Cr and fewer inclusions were 

found in this alloy because of the low concentration of dissolved 

gases in iodide Cr. 

The concentrations of each alloy were established by 

electron microprobe analysis and corroborated by wet analysis of 

Cr content. The results of this analysis are presented in Table 

3.1. A slight drift in Fe content is noted here due to evaporation 

of Cr and presence of Cr203. The preferred concentrations were 

taken to be the nominal concentrations unless indicated. 
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Table 3.1  

Analysis and description of Cr Fe alloys used in this work 

Nominal 
contentration 
2./o Fe 

Analysed 
concentration 
a/o Fe 

Preferred 
concentration 

a/o Fe 

Description 

Microprobe Wet chemical 

5.0 - - NOMINAL PA 

4.5 - 4.1 " BD 

7.0 - 7.5 II  BD 

9.3 - 10.0 " BD 

10.2 - 11.4 " BD,M,R 

11.2 - 11.9 " BD 

12.3 - 13.0 it BD 

13.3 - 14.6 " BD,M 

13.6 - 15.5 IT  BD 

14.2 14.2 15.4 " BD,M 

15.4 - 17.6 BD,M 

10.0 13.5 - " TOF 

15.5 15.5 17.0 If 
 SAS,M 

16.0 16.7 17.0 16.7 SAS 

18.0 16.8 18.4 16.8 SAS 

17.5 18.0 19.1 NOMINAL SAS,M 

18.5 17.5 20.0 IT  SAS,M 

19.5 20.6 20.9 It SAS,M 

23.0 19.9 20.5 19.9 SAS,M 

20.8 19.9 22.7 NOMINAL SAS,M 

20.0 21.7 21.4 21.7 SAS 

21,7 24.0 23.4 24.0 SAS 

25.0 28.3 25.4 NOMINAL SAS,M 

Legend: PA - Polarization-Analysis 	R - Resistivity 
BD -- Bragg Diffraction 	TOF - Time of flight 
M - Magnetization 	SAS - Small angle scattering 
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3.2 Neutron scattering instruments and experimental procedure  

3.2.1 General remarks 

The neutron scattering measurements were performed using the 

facilities provided by the Institut Laue-Langevin, Grenoble and 

AERE, Harwell. The instruments used in the course of this in-

vestigation were designed and built by the technical and scientific 

staff of these establishments and were used without modification. 

With this in mind, the purpose of this experimental chapter 

is three fold: 

(i) to explain the basic measurement principles behind 

each of the instruments 

(ii) to describe briefly the instrument set up, including 

sufficient detail to assist with the understanding 

of the experiment and future planning of experiments 

(iii) to document the experimental procedures in sufficient 

detail that the important experimental steps can be 

followed and part of the unwritten "folklore" of the 

instrument is available for future users. 

Emphasis is placed on the experimental decisions and compromises 

which were made in order to optimize the measurements. It was not 

considered appropriate to record the full details of instrument 

construction, operation and performance; this information may be 

found in the technical reports quoted in the individual sections. 

Unless otherwise indicated the information on ILL instruments has 

been taken from Maier (1977). 

3.2.2 Absolute intensity measurements  

The number of neutrons counted by the detector can be converted 

to an absolute scattering cross section in barn per steradian by 

carrying out a series of calibrations, applying various corrections 

to the data and then normalizing the results of those of a standard 

scatterer, usually Vanadium. 
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A typical scattering experiment is shown in Fig. 3.2. The 

first task is to isolate those counts entering the detector due 

solely to scattering from the sample (IS). Some of the many 

sources of background have been illustrated. Here IA  are 'air' 

scattering events which come from scattering of the incident beam 

by air paths etc. before the sample (IA1) or after the sample (IA2). 

A proportion of the scattered neutrons 'Al will be attenuated by 

passage through the sample and it is convenient to break up IA1 

into the the fractions fA  which will pass through the sample and 

(1 - fA) which will not. The fraction which passes through the 

sample will be attenuated by a factor aA. IR  is the background due 

to 'residual' sources of neutrons (for example, from other instru-

ments or through the shielding). Again it is useful to subdivide 

this scattering into the fraction fR  which passes through the 

sample and is attenuated by a factor aR  and the fraction (1 - fR) 

which does not. Finally IB  represents electronic noise. It is 

assumed that the incident beam is attenuated by a factor aS  on 

passing through the sample. 

It is possible to isolate IS  by performing the following six 

experiments: 

1. Sample in place, beam open. This will give a count rate 

proportional to 

I1  = IS+(fAaA+(1-fA))IA1+(fRaR+(1-fR))IR+IA2+IB 

2. Sample in place, beam off 

= (fRaR+(1-fR) )IR+IB 

3. Sample removed, beam open 

I3  = 'Al R +I +I a
s 

A2 

4. 4. Sample removed, beam off 

IA  = IR+IB  

58 



Fig.3.2  Schematic diagram of a typical neutron scattering experiment. 
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5. Neutron opaque material of identical dimensions as the 

sample, beam open. 

I5 = (1-fA)IAlf  1-fR)IR+IB  

6. Neutron opaque sample, beam off 

I6  = (1-fR) IR+IB  

Combining these expressions one finds the sample counts to be 

f 
IS  = I1-I2-I5+I6-as[13-I4-I5+16]+ 1- 

 A 
(aS aA)(I5-16

) (3.1) 

The latterterm may be neglected as as  = aA _and I5  = I6  under most 

experimental conditions. In practice only the calibrations with 

the beam on are performed so that 

IS  = I1-I5-as(I3-I5) (3.2) 

The attenuation factor as  may be diiectly determined by measuring 

the intensity of the straight through beam for cases 1, 3 and 5. 

Having isolated the specimen counts it is necessary to correct 

for the finite dimensions of the sample. It is convenient to 

divide this procedure into two parts; firstly, to correct for the 

attenuation of the incident beam as it passes through the sample 

and also for the attenuation of the scattered beam as it passes out 

of the sample, and secondly to correct for all higher order multiple 

processes. The first corrections, the attenuation corrections, 

have a simple analytical form for most scattering geometries. For 

example, if the beam is incident on a plane slab which is characterized 

by an attenuation factor as  when normal to the beam, the absorption 

corrections are of the form 

IS = I
S 
 /C(26) (3.3a) 

59 



where I's are the corrected counts and 

C(28) = 
as(assec 20-1 - 1)/(QnaS(sec 20-1) 

for the plate in normal geometry and 

C(2e) = cos e(as)sec e 

(3.3b) 

(3.3c) 

for 0-2e geometry. More general cases are treated by Sears (1975). 

The corrections for multiple scattering are in general non-analytic 

and the treatment of multiple processes is not a routine matter. 

For small samples it is possible to use an analytic approximation 

to the multiple scattering as discussed by Sears (1975) and this 

approximate treatment is often sufficient for samples having small 

(< 10%) multiple scattering. For convenience, the counts corrected 

for absorption and multiple scattering will be denoted IS". 

It is possible to put the counts on an absolute scale by 

performing the experiments with a standard scatterer at the sample 

position. Vanadium, which has a small coherent 	cross section 

acoh  = 0.03 b and a large bound incoherent nuclear cross section 

a
MC = 4.93 b (Dilg 1974) is used for this purpose. The corrected 

sample counts may be normalized to the corrected V data to give the 

sample scattering cross section (per atom), 

v 	„ 
da _ v a

m 	
IS S 

dQ ms  tor Ī (3.4) 

where m and in  are the number of scattering centres in the beam for
v 

V and sample respectively and the data has been corrected for 

multiple scattering. 

The correction of data for time of flight experiments and 

polarized beam experiments is entirely analogous. In the case of 

inelastic measurements the energy dependence of absorption, detector 

efficiency and so forth must be taken into account (see for example 

Poncet (1977)) and in polarized measurements the spin dependence 

needs to be considered. The corrections for polarized beam experiments 

are discussed by Brown and Forsyth (1964) and including multiple 

scattering by Freeman, Meardon and Williams (1978). 
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3.3 Small angle scattering- 

3.3.1 Introduction  

The small angle scattering experiments were carried out at 

ILL using the small angle scattering camera D11A and the high K 

resolution spectrometer D17. These instruments are based around 

a two dimensional LETI detector and both instruments operate 

beyond the Bragg cut off of most materials using long wavelength 

neutrons. In the case of D11A the high resolution at low angles 

is due to the length of the instrument whereas in the case of 

D17 a very long incident wavelength in conjunction with moderate 

length is used. Both instruments employ two dimensional 'pin 

hole' geometry which requires minimal K resolution corrections. 

3.3.2. The small angle scattering camera: DI1A 

3.3.2.1 Description  

D11A lies at the end of the H15 cold neutron guide, a 

schematic diagram of the instrument is shown in Fig. 3.3. The 

machine consists of a helical slot velocity selector which allows 

incident neutron wavelengths from 4.5 to 20 R to be employed. 
Two such monochromators are available: the drum 'Brunhilde' 

gives 9% FWHM wavelength spread and the drum 'Adele' gives a 

relaxed wavelength spread of 50% FWHM. 'Brunhilde' was used in 

all the present experiments. After monochromation the beam 

passes through a series of neutron guides which may be translated 

sideways out of the beam to allow the incident collimation length 

to be matched to the sample—detector distance. There is a 

variable iris before the sample which defines the beam size and 

divergence. Three sample positions are available at the Dli 

sample station. In all measurements the 'cloche' position was 

used. After passing through an evacuable flight tube the scattered 

neutrons are detected by the 64 X 64 element BF3  LETI multidetector 
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Fig.3.3 Schematic diagram of the small angle scattering camera 

D11A. Legend. M:Monochromator, C20, C10, C5 and C2.5: 

20m, 10m, 5m and 2.5m collimation, T:time of flight 

chopper, B:background shutter, I:sample iris, Sl-S3: 

sample positions 1,2,3,A:attenuator, BS:beam stop and D: 

detector. 

Fig.3.4 Collimating system used for D11A. 
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which is centred in the beam and may be placed at sample to 

detector distances of 2.5, 5, 10, 20 and 40 m. In our experiments 

all but the 40 m position were used. The full length of the 

instrument is evacuated to minimize air scattering. A time of 

flight facility is available but was not used in D11A experiments. 

The detector is protected from saturation by an adjustable Cd 

beam stop. A beam attenuator may be put in position after the 

sample to allow transmission measurements to be carried out. The 

sample may be shielded from the incident beam by using the back-

ground shutter. Further details are described by Ibel (1976). 

The conditions under which the wavelength resolution and 

intensity can be optimized are discussed by Schmatz.et al (1974). 

The resolution is given by 

D2 -12 C(L
)2+( )2 +ds(

L
+ Q)+ (3A)202~ 

L (3.5) 

where dr dE and ds are the detector grid spacing, entrance pupil 

diameter and sample pupil diameter respectively. The sample to 

detector distance is L and a length of guide 2, has been removed so 

that the effective source lies at this distance from the sample, as 

shown in Fig. 3.4. The resolution can be increased for a given 

sample to detector distance by increasing Q, this also leads to a 

decrease in intensity via the inverse square law. The resolution 

and intensity together can be optimized if all contributions to 

(3.5) are more or less equal. This can be achieved if L = Q and 

dE = dr = 2ds. The first condition was satisfied in all DllA experi-

ments by removing a length of guide equal to the sample to detector 

distance ('symmetric' configuration) and the second condition was 

roughly satisfied by using a sample pupil of 1 cm diameter which is 

equal to the 1 cm grid separation of the LETI multidetector. 

The K range accessible using D11A is variable between 

3 X 10-4 R-1 and 1 X-1, and is determined by the incident wavelength 

(A0) and the sample to detector distance (L). The K ranges covered 

by various a0 and L configurations are shown in Fig. 3.5. The 

choice of A0 and L for a given experiment must be made carefully as 
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Fig.3.5  K range accessible using D1IA (solid curves) and D17 

(dashed curves) for various sample to detector distances 

and incident wavelengths. The K range used in the experi-

ments described in Chapter 5 are indicated. 

Fig.3.6 Intensity optimization chart for scattering from objects 

of size RG  for D11A in symmetric configuration with velocity 

selector Brunhilde. Operating points used in the experi-

ments described in Chapter 5 are indicated. (Haas (1978)) 





the K ranges for a given X0  and L are quite restricted and much 

beam time is lost in changing detector positions. The choice of 

A0  and L may be optimized by reference to Fig. 3.6 which gives the 

incident flux at the sample position (I0) multiplied by the solid 

angle corresponding to one detector cell (1 cm2) as seen from the 

sample position as a function of A0L. Individual X0  values are 

marked on the curve. (Haas (1978)). Here X0L is simply the 1/K 

value which corresponds to setting the edge of the Guinier region 

(K RG  = 1) at the mean radius of the detector. So if one knows the 

size of the scattering object (RG) or one wishes to make observations 

over this scale of distance the detected intensity (which varies as 

I
0 
 SO)will be optimized by choosing the maximum I0SS2 value for a 

given RG  = X0 
 L. The operating points used in the experiments described . 

in Chapter 5 are shown on the diagram. 

3.3.2.2 Sample environment  

Two top loading cryostats were used in the course of D11A ex-

periments: 47 OX HV 40 and 55 IL HV 49. The former is a convenentional 

He flow cryostat with quartz windows and could be operated in the 

range 1.5 to 300 K. This cryostat could be placed between the pole 

pieces of an electromagnet at the cloche position, unfortunately a 

section of the flight path vacuum must be broken to do this, giving 

increased air scattering. This problem did not arise with the latter 

cryostat which simply located within the cloche vacuum vessel. The 

cryostat was provided with single crystal sapphire windows. Tempera-

ture measurement in both cases was via a calibrated Si diode and 

the temperature could be stabilized to within ±•1 K. 

3.3.2.3 Experimental procedure  

The optimum sample to detector distance was chosen by reference 

to Fig. 3.6 and an equivalent section of guide removed. A wave-

length corresponding to maximum intensity was chosen: in all cases 

the wavelength was beyond the Bragg cut off so that multiple Bragg 
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scattering did not pose a problem. The sample was placed in 

position and the area of sample exposed to the incident beam was 

defined by a 1.0 cm Cd entrance pupil and 1.1 cm exit pupil. 

The optimunisample height was found using a He—Ne laser or by 

neutron photographs. The sample rotation was adjusted so that 

the slab was normal to beam by maximizing the transmission: this 

procedure was reproducible to ± 2°, which was sufficient for our 

purposes. The sample transmission as  and the beam centre could 

be determined by placing the attenuator in the beam and counting 

the straight through intensity without a beam stop for some 30 s. 

With the sample correctly aligned, the beam stop (a rectangular' 

Cd place 6 x 8 cm2) was centred on the straight through beam. 

Small angle scattering spectra were then taken at various 

temperatures. A measurement time of 10 minutes was enough to give 

excellent statistics and the temperature could be stabilized to 

within ± .1 K during this time. Empty cell, Vanadium and Cadmium 

spectra were also taken. To correct for detector efficiency it 

was necessary to use a perspex sample as the V showed some residual 

small angle scattering. 

3.3.3 The high K resolution spectrometer: D17  

3.3.3.1 Description  

D17 is situated at the end of the H17 cold neutron guide. The 

incident neutron spectrum peaks at 12 A as opposed to 4.8 A for the 

H15 guide which serves D11A. The mechanical velocity selector 

allows monochromation with wavelength resolution of 10% FWHM or 4% 
0 

FWHM with a range of useable wavelengths from 8 to 20 A. The 10% 

selector was used for total scattering measurements and the 4% 

selector for time of flight. Unlike D11A, the D17 multidetector 

may be rotated out of the forward beam and the instrument becomes a 

hybrid 2 axis diffractometer as shown in Fig. 3.7. The LETI multi—

detector is- made up of 128 x  128 cells of size .5 cm x .5 cm and can 

be placed at sample to detector distances of 1.4 to 2.8 m. A 
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distance of 2.85 m was used throughout. This allows a range of 
o 

scattering vectors from lA 1  to 5 x 10 
-3 
 A 1  to be covered. This 

region overlaps with D11A as shown in Fig. 3.5. 

The collimation on D17 is fixed. It is possible to relax the 

K resolution by grouping together sets of detector cells if in-

creased intensity is desired: usually four cells were added to give 

one cell of 1 cm x 1 cm. The sample diameter of 1 cm was chosen 

to match this regrouped cell size. The instrument characteristics 

I060 as a function of RG = X0L for D17 is shown in Fig. 3.8 (Haas 

(1978)), here 62 is chosen to correspond to a regrouped cell of 

1 cm x 1 cm. The operating point used in the experiments of chapter 

5 are indicated. The instrument can be modified for time of flight 

measurements and this aspect is considered in section 3.3.3.4. 

3.3.3.2 Sample environment  

For total scattering measurements the cryostat 34 AL HV 30M 

was used. This is a conventional He gas flow cryostat equipped with 

a superconducting magnet which provides a vertical field of up to 

2T and can be operated over a temperature range 1.5 to 300 K. In 

practice an upper limit of some 200 K was achieved. Temperature 

measurement is via a calibrated Si diode, the diode is, unfortunately 

field dependent in behaviour. This cryostat is equipped with quartz 

windows. In the case of time of flight measurements the D11A cryo-

stat 55 IL HV 49 was used. 

3.3.3.3 Experimental procedure  

The same experimental procedure as described for the D11A 

experiments was followed. Here the sample height could be optimized 

by rotating the detector out of the forward direction and using a 

theodolite to view the sample along the incident beam direction. 
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Fig.3.8 Optimization chart for scattering from objects of size RG  

for D17 in standard configuration with 5% and 10% 

velocity selectors. The operating points used in the 

experiments described in Chapter 5 are indicated. 
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3.3.3.4 Time of flight measurements  

The spectrometer configuration used for time of flight measure-

ments is slightly different from that illustrated in Fig. 3.7 in that 

the chopper was placed at the other end of the collimator. The time 

of flight chopper itself consists of 4 slots of 1 cm width and can be 

operated at speeds up to 6000 rpm. The chopper radius was 20 cm, the 

sample to detector distance 2.85 m and sample to chopper distance was 

25 cm. Two monitors were used. 

The 16 K memory capacity of D17 limits the amount of time of 

flight data which can be taken. If the instrument is operating with-

out the time of flight option each one of the 128 X  128 memory 

locatations is used to register counts coming from the individual 

cells of the multidetector. Each memory location is specified by a 

14 bit number: the first seven bits are used to specify the X co-

ordinate and the remaining seven the Y coordinate. If a time of 

flight measurement is to be made this 14 bit number must also 

specify a time of flight channel so that some of the bits used to 

describe the cell position must be used to provide room for time of 

flight (tof) coordinates: tof information can only be recorded at 

the expense of K resolution. In practice what happens is that groups 

of cells can be ganged together to form a larger cell. In the case 

of our experiment 64 0.5 X  0.5 cm2  cells were added together to form 

one cell 4 X  4 cm2. In this way the detector effectively consists 

of 16 X 16 cells, requiring one four bit number to specify the X co-

ordinate and one four bit number to specify the Y coordinate , the 

remaining six bits of the 14 bit memory address can be used to 

specify 64 time of flight channels. An attempt to increase the 

number of tof channels to 256 would require the detector to be re-

grouped into an 8 X 8 array of cells 8 X 8 cm2  which would lead to 

unacceptably large K resolution. 

The prime consideration in designing this particular tof 

measurement was good energy resolution, even at the expense of in-

tensity. With this in mind the 4% FWHM selector was used and the tof 

chopper was moved as close as possible to the sample. In this way 
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the largest contribution to the energy resolution is set by the 

wavelength spread. A low incident energy of 0.62 meV ensures that 

the absolute energy width arising from the wavelength spread is 

small, approximately 50 ueV. This amounts to an uncertainty in 

tof of some 380 usec in an elastic time of flight of 8192 usec. 

The channel width is determined strictly by the relatively 

small number of tof channels. The low incident energy implies 

that neutron energy loss events are highly restricted. With this 

in mind the elastic energy channel was placed at channel 9 allow-

ing 55 channels for neutron energy gain, adequately covering the 

resolution broadened elastic peak. If the channel width is 

chosen to be 80 psec this essentially covers energy transfer from 

between + 0.2 meV to -1.0 meV. The chopper speed was chosen as 

2786 rpm giving a burst time of 80 usec and a period between 

bursts of 5.4 ms. This minimizes problems with frame overlap. 

Combining these various contributions one finds an energy resolution 

of 75 peV which compares well with the experimentally determined 

80 ueV. 

With this choice of parameters a typical spectrum could be 

collected in 2 hours with adequate statistics. The data was 

averaged using the program INLD17 which simply adds cells together. 

These data were radially averaged by hand. Further discussion of 

the tof technique may be found in section 3.5.1. 

3.3.4 Data analysis  

Data reduction and data analysis for small angle scattering 

experiments (total scattering) were carried out using a suite of 

programs compatible with both DllA and D17. This group of 

programs is described by Ghosh (1978). 

Isotropic data were treated using the data reduction programme 

RNILS which converts the counts over the multidetector into a 

radial average I(R) using a previously determined beam centre. The 

radially averaged spectra can then be manipulated using the 

programme SPOLLY to allow correction for absorption, air scattering 
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instrumental background and variation of detection efficiency as 

outlined in section 3.2.2. For small 8 the normal beam absorption 

correction is simply C(28) = a and so the cross section is 

[(I 	-I )-a (I -I )] m a. 	a da _ 	sample cd S air cd 	v Inc v 
dO 	

L(Iv Icd)-av(Iair-I
cd)J 
	

m
s 

411 aS (3.6) 

As both the V and perspex calibrations showed forward peaking the 

division in (3.6) was not performed. The perspex calibration was 

used to show up regions of abnormal detector efficiency which were 

deleted using a GRUND file. In this way relative cross sections 

were determined via 

da _ 1 r 	-1 
 mSaS L(I

sample
-I
cd)

-aS(I
air Icd)~ (3.7) 

using the edited counts 
Isample' Iair and Icd. 

Data taken with an applied field were reduced using the aniso- 

tropic data reduction routine ANDATA. The beam stop area and cells 

which showed abnormal efficiency were deleted from the analysis 

using a GRUND file. The corrected relative cross section was then 

fitted to the functional form, 

d
a 
	

= A(K) + B(K)cos2a 
Orel 

(3.8) 

using ANCOS2. Here a is the angle between the magnetic field and the 

scattering vector in the plane of the detector. The relative cross 

sections were also listed in 15° sectors using ANSECT. 
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3.4 Powder diffraction  

3.4.1 Introduction  

Diffraction measurements on polycrystalline CrFe alloys were 

performed at AERE, Harwell using the 2 axis powder diffractometers 

CURRAN and PANDA. Measurements at 4.2 K were carried out using 

PANDA and the temperature variation carried out using CURRAN. 

A description of the technique of powder diffraction is given 

in the monograph by Bacon (1962). If the sample is uniformly 

bathed in the incident beam the number of neutrons reaching the 

detector per unit time for a particular (hk2) reflection is given by 

3 	2it A0.S 2  JhkQFhkk 	-2W(20hk/) 
I 	

_
hk2. - I0 8'rrL Vuc sin 6

2 
 'n 26h  e 	Ahkk 

where Io is the incident flux, AO  is the incident wavelength, 2 -the 
height of the counter slit, L-the sample-detector distance, V-the 

volume of sample in the beam, Uc  the number of unit cells per unit 

volume, j
/  is the number of equivalent planes contributing to the hk 

reflection {hick} and A 	is an attenuation correction. Here FhkQ, 

is the unit cell structure factor and W(26HQ) is the Debye-Waller 

factor for the reflection occuring at a scattering angle of 26hkt. 

In writing (3.9) it has been assumed that there is no preferred 

orientation. 

In principle it is possible to deduce the average sublattice 

moment for the sample by measurement of the integrated intensity 

using (3.9) and applying the appropriate corrections. In practice 

this method is unsatisfactory and it proves easier to normalize the 

integrated intensity of one peak to another. For CrFe alloys which 

have the simple antiferromagnetic structure described in section 

2.2.2 it is convenient to normalize the {100} purely magnetic 

reflection to one of the adjacent nuclear reflections such as {110} 

or {200} using the known scattering lengths of Cr and Fe. The 

average sublattic magnetization is then, 

(u at-1) _  3/2 b 	3hki sin ehkksin 2ehkQ/1100  - 0.269 f100 j  100 sin 2oosin 26100VIhkk 

(3.9) 

(3.10) 
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which can be derived using (3.9), (2.21) and (2.23). It has been 

assumed that the absorption correction Amu  and the Debye-Waller 

factor do not vary greatly over the angular range between the 

magnetic peak {100} and the nuclear peak {hack}. These are reason-

able assumptions if the reflections {110} and {200} are used for 

normalization. In this expression f100  is the form factor of Cr 

for the {100} reflection and assumed to be 0.68, a value taken 

from the work of Moon et al. (1966) on CrMn. The multiplicity 

factors -100 = j200 = 6 and j  110 = 12 ' 

3.4.2 CURRAN 

3.4.2.1 Description  

The 2 axis diffractometer CURRAN is situated at the 4H2 hole 

of the DIDO reactor at AERE, Harwell. A schematic diagram is 

presented in Fig. 3.9. A squashed Ge crystal with (1101 vertical 

acts as a monochromator and allows wavelengths in the range 0.9 
0 

to 2.6 A to be selected. For the series of experiments described 

in Chapter 4.the (311) reflection was selected. This reflection 
0 

gives a wavelength of 1.37 A with reportedly 'undetectable' second• 

order contamination. The measured X/2 contamination was in fact 

less than .1%. The instrument is equipped with five BF3  detectors 

arranged at 10°  intervals in the horizontal plane and allows an 

angular range of -10 < 20 < 169°  to be covered in steps as small as 

0.01°. This was particularly convenient as it allows the {100} and 

{200} reflections to be scanned simultaneously. Full details of 

the instrument may be found in the report by Hance (1973). 

3.4.2.2 Sample environment  

In an initial series of experiments an Oxford Instruments top 

loading cryostat with V tail was. used allowing the sample to be 

continuously rotated to offset any preferred orientation. For later 

experiments two CT14 cryostats were used in parallel; as preferred 
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orientation in the {100} is the same as {200}, the {200} was 

used for normalization in these experiments as the sample could not 

be rotated. 

3.4.2.3 Experimental procedure  

The samples used were the roughly cylindrical ingots described 

in section 3.1. A shallow hole was drilled in one end, and a M4 

stud was fastened in place using a small amount of 'Kwikfill'. A 

thin Cd collar was wrapped around the base of the stud to prevent 

background scattering and mark the sample height. Once in the cryo-

stat the sample height and alignment was adjusted using a neutron 

camera, great care was taken to ensure that the sample was centred 

and evenly illuminated. The large nuclear incoherent scattering of 

Cr and the small {100} peak intensity made long counting times 

necessary. A typical scan across the {100} peak required 5 hrs for 

a 15 gm sample. 

3.4.3 PANDA 

The PANDA diffractometer is similar to CURRAN except with the 

provision of 9 counters arranged in 3 banks of 3 vertical detectors. 

The instrument is situated at the 7H4R hole in the PLUTO reactor at 

AERE, Harwell. The Ge(511) was used with A0  = 1.547 and 90°  take 

off. A small X/2 component of 0.2% was observed. 

Measurements were performed at a fixed temperature of 4.2 K 

using the 'PANDA' liquid He cryostat. The sample was maintained at 

a fixed temperature of 4.2 K by direct contact with liquid He. The 

sample was rotated and the same experimental procedure was followed 

as for the CURRAN outlined in section 3.4.2.3. The counts from each 

of the three detectors in the bank were added to form the total 

counts. 
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CO 

= EO(1. - (tt2'tt00)2) (3.11a) 

3.5 Diffuse scattering - time of flight  

3.5.1 Introduction 

The time of flight measurements to investigate the dynamics 

of antiferromagnetic CrFe alloys were undertaken using the diffuse 

scattering spectrometer D7 at ILL, Grenoble. A preliminary ex-

periment attempted using the 4H5 instrument at AERE, Harwell did 

not prove successful because of large background signal . 

In a tof experiment the energy and momentum dependence of the 

partial scattering cross section d2a/dS2dE'is determined by 

measuring the flight time of a neutron as it travels from a gating 

chopper to the detector via the sample. The energy transferred to 

the sample by a neutron which arrives at the detector at a time t 

is given by 

where the neutron is assumed to leave the chopper at a time t, and an 

elastically scattered neutron is assumed to arrive at the detector at 

a time tek. Here E0  is the incident energy. Similarly the momentum 

change is of magnitude 

(teQ t.)  (teQ  t.)  IKI = k0(1 +  (t-t  )  C (t-t  ) 	2 cos 2e1)2  
o 	o 

(3.11b) 

where 26 is the scattering angle. These two relations (3.11a) and 

(3.11b) define trajectories in (K, w) space which are accessible to 

a single detector sited at an angle 26. These trajectories are 

illustrated schematically in Fig. 3.10. 

It is usual to deal with the 'time of flight' T, defined as the 

inverse neutron speed, rather than the time t. The number of 

neutrons which arrive at the detector in a given time interval is 

proportional to d
2oldOdT where T is the scattered neutron time of 

flight. This partial differential cross section is related to the 

more usual cross section d2o/dOdevia 
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d2a -  2  5.223x106  d2a 
dS2dE' 	T3 	dE/dT 

(3.12) 

where T is in units psec/m and E'is in meV. The 1/T3  factor ensures 

that the cross section at large negative energy transfers is 

amplified at the expense of cross sections at small negative and 

positive energy transfer. The time of flight scale is non linear in 

energy as indicated by (3.11a). 

The energy resolution in a time of flight experiment depends 

upon all the time uncertainties in the system. There will be con-

tributions arising from the uncertainty in defining the neutron 

start 	time to, due to the finite open time of the chopper (Ay 

and uncertainty in defining the neutron arrival time because of the 

subdivision of time of flight into discrete time channels of width 

AtG  by the counter electronics. In addition there will be uncertain-

ties in the system due to the finite sample size, detector volume 

and beam divergence so that not all neutrons travel the same sample-

detector or chopper-sample distance. In the present case the most 

important contribution comes from the spread in incident velocity of 

the beam due to incomplete monochromation. The optimization of 

energy resolution with respect to intensity for a give experiment 

depends on the energy scale of the scattering and for the D7 experi-

ments involved a choice of incident wavelength, chopper speed, sample 

size, chopper slot size and finally gate width L\tG. It is important 

to note that the 1/T3  focussing effect leads to relaxed energy 

resolution at large energy transfers, this can be an intrinsically 

favourable feature of the tof method provided the incident energy 

is of the same order as the processes of interest within the specimen. 

For the optimum use of counting time the time interval be-

tween neutron bursts from the chopper must be matched to the time 

interval over which neutron arrival times are measured. It is 

important that these counting intervals are separated sufficiently 

in time that straggling neutrons from one 'frame' .do not appear in 

the following frame. Here the 1/T3  factor is effective in suppress-

ing unwanted background structure from frame overlap. This places 
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Fig.3.10 The (K,w) trajectories covered by a single fixed detector at 

28 in a neutron time of flight experiment. 

Fig.3.11 Schematic diagram of the diffuse scattering spectrometer 

D7 operating in unpOlarized time-of-flight-mode. 

Fig.3.12 Composite Cr and Cr Fe 10% sample assembly. 
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severe limitations on the application of the time of flight method 

to neutron energy loss processes. A more quantitative discussion 

of the tof technique is given by A.H.Baston (1972). 

3.5.2 The diffuse scattering instrument: D7  

3.5.2.1 Description  

The diffuse scattering instrument D7 at ILL, Grenoble is 

served by the H15 cold neutron guide. The apparatus may be operated 

in either polarized or unpolarized mode. In our case the un—

polarized mode was used, a schematic diagram may be found in Fig.3.11.. 
0 	0 

An incident wavelength from 3A to 6A is selected using a graphite 

monochromator which gives a wavelength resolution of 3% FWHM at 
0 

4.73A which corresponds to peak flux. Higher order contamination of 

the beam is removed by a Be filter and the incident beam is chopped 

by a disc chopper after passing through a collimating slit system. 

The chopper has a diameter of 50 cm and consists of 4 slots of 

width 0.3cm and may be operated routinely at speeds of up to 

10, 000 rpm. The detection system consists of 32 He 3 detectors 

arranged in four horizontal banks of eight detectors. Each bank is 

made up of two sets of four detectors separated by 5°. The banks 

may be independently positioned over a range of ±175°  so that an 

elastic K range of between 0.1 A A and 4 A 1  may be covered. The 

time of flight information is encoded in 127 channels. Further 

details of the instrument and its performance are summarized by Just 

(1978). 

3.5.2.2 Sample environment  

The top loading flow He cryostat 20 ST HV 48 was used for the 

Cr/CrFe experiments. This cryostat could be connected to a sample 

changer so that the pure Cr and CrFe samples could be cycled in an 

out of the beam. To decrease the amount of air scattering the 

external diameter of the cryostat was made quite large. Temperature 

measurement was via a Calibrated Si diode and the temperature could 
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be stablilized to within ± .1 K for a period of 24 hours. 

3.5.2.3. Sample geometry  

In order to make an ideal difference measurement the sample 

(Cr 10% Fe) and the blank (pure Cr) must be of identical geometry, 

scattering power and absorption. This was not possible. However, 

if the sample geometry is well known,any variation between the two 

samples may be corrected in a straight forward way. 

Large cylindrical Cr and CrFe 10% samples were fabricated by 

spark trepanning an as—cast ingot using in  Cu tube as a tool. The 

starting ingot was prepared using a large slot on the hearth. Off—

cuts arising from the trepanning operation were argon arc melted 

onto the butt ends of the specimen. The irregularities and taper 

in the roughly cylindrical samples were removed by turning in a 

spark lathe. The ends of the cylinders were turned down to a smaller 

diameter to fit into the Cd covered aluminium spacers which held 

the composite sample together. The final sample assembly is 

illustrated in Fig. 3.12. 

3.5.2.4 Experimental procedure 

The detectors were disposed symmetrically about the incident 

beam; counters 16 and 17 being at the lowest angles + 11.25°  and 

11.25°  and counters 1 and 32 being at the highest angles + 89.9
0  

and — 89.9°. A monitor was placed after the sample in the straight 
0 

through beam and counter 1 masked off. A wavelength of 4.73 A 

corresponding to peak flux was chosen and the two sample positions 

(height and rotation) were optimized by taking neutron photographs. 

The chopper slit was set at the sample diameter of 12 mm and the 

cryostat tail masked down with Cd to give an entrance window slightly 

larger than the sample. The chopper was placed as close as possible 

to the sample ('t,  30 cm) and the sample to detector distance was 

fixed at 130 cm for all detectors. 

A chopper speed of 9017 rpm and gate width of 12 i sec was 
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chosen and the elastic peak placed at channel 95. In this way 

energy transfers from + 1.5 meV to — 35 meV could be covered in one 

frame. This configuration gave an energy resolution measured with a 

V sample of 0.2 meV FWHM, which was adequate for measurements of 

relaxation processes with a half width of some 1-2 meV. 

Spectra were collected at various temperatures above and 

below the Neal temperature. Counting times of 24 hours (12 hours 

sample and 12 hours blank)were adequate and the counts from 

corresponding banks of detectors were added to improve statistics. 

Vanadium and empty cell calibrations were also performed. 
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3.6 Polarized neutron diffraction  

3.6.1 Introduction  

As described in section 2.3.2 the measurement of the flipping 

ratio R for Bragg reflections allows a very sensitive determination 

of the magnetic structure factors and magnetization density in 

ferromagnets. The measurement of the flipping ratio can be made by 

switching the incident polarization parallel and antiparallel to 

the sample magnetization using a spin flipping device and counting 

the scattered neutrons for the two polarized directions. In 

designing a polarized beam experiment it is necessary to provide a 

small magnetic field along the neutron flight path to prevent beam 

depolarization and to define the quantization axis, this is known 

as the 'guide' field. 

3.6.2 Polarized neutron diffractometer: D3  

3.6.2.1 Description  

The diffractometer D3 at ILL, Grenoble is a polarized beam 2 

axis instrument with a single tilting He3 detector. A schematic 

diagram of the instrument is shown in Fig. 3.13. 

The machine is situated at the thermal beam hole H5 and may 

be operated at wavelengths between 0.7 and 1.0 A. A Co 8% Fe 

crystal is used as a polarizing monochromator and the optimum 
0 

polarization of 98% is obtained at a wavelength of 0.9 A using the 

(200) reflection. The monochromator is saturated magnetically by 

a permanent magnet and is used in transmission. The vertical guide 

field at the polarizer is turned into the horizontal plane at the 

cryoflipper. The sample is maintained in a large vertical magnetic 

field of up to 4.6 T (superconducting magnet) or 1.7 T (conventional 

electromagnet). The cryoflipper enables the beam polarization to 

be reversed so that the polarization at the sample may be either 

parallel or antiparallel to the magnetic field. The cryoflipper 
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works by setting up a reversal in the guide fields across a sheet 

of superconducting Nb or Pb. The neutron polarization cannot 

follow such a rapid change and the incident polarization direction 

is maintained on leaving the sheet, thus the beam polarization may 

be flipped by reversing the guide field in front of the Nb foil. 

The cryoflipper has almost 100% efficiency and is insensitive to 

stray fields. The guide fields at the flipper are generated by 

Helmholtz coils and can be flipped at a maximum frequency of 100-Hz. 

This is a white beam flipper. 

The tilting detector can cover an angular range of - 135°  to 

5°  in 26, - 190°  to 190°  in sample rotation and - 5°  to 32°  in tilt. 

3.6.2.2. Sample environment  

The sample, sample holder, cryostat and electromagnet used in 

the D3 experiment form part of a composite magnetic circuit designed 

to allow a strong homogeneous magnetic field at the sample. This is 

essential if beam depolarization is to be avoided. A fixed tempera-

ture liquid He cryostat 35 TH HF 18 was used in conjunction with the 

1.7 T electromagnet. The narrow tail of the cryostat fits down in-

side a hole through one of the pole pieces and the sample is held 

between two Fe slugs so that the effective pole gap is 1.2 cm, 

3.6.2.3 Experimental procedure 

The crystal was in the form of a parallelipiped 1 x 1 x  10 mm3  

with the <110> axis 10°  off the sample axis. This sample was care-1 

fully mounted on a Cd alloy spigot and fixed in place using 'Kwikfill'. 

The sample dimensions are limited by the sample holder and must fit 

into a cylindrical volume 1.2 cm by 0.6 diameter. The crystal 

orientation was checked by taking a neutron Wēissenberg photograph 

with the instrument D12. It i`s sufficient to have the crystal 

aligned to within ± 2°. 

The polarization and flipping efficiency were determined by 

measuring the flipping ratio for standard Heusler and CoFe reflections. 
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The polarization was 0.9718 and the flipping efficiency 1.027. 

The UB matrix which relates the crystallographic axes of the 

sample to the diffractometer axes (Busing and Levy, 1963) can be . 

generated by accurately measuring the position of two non equivalent 

crystal reflections. This was done using  the standard iterative 

procedure with half shutters to define 8 and tilt angles and correct-

ing  the sample height.. With the UB matrix determined the flipping 

ratio s could be collected automatically. 

The measurement routine involved a peak search, followed by a 

background-peak-background flipping  ratio scan with statistics 

automatically optimized. A standard (210) reflection was taken 

after every 10 reflections. Flipping ratios were collected for all. 
0-1 accessible reflections out to sin 8/X of 0.85 A . The flipping  

ratios were corrected for dead time, imperfect polarization and 

flipping  efficiency and for the contrast factor which arises from 

the angle between incident polarization and the scattering vector as 

shown in section 2.3.2. The resulting flipping ratios were averaged 

over all equivalent reflections and converted in y values with the 

assumption IyI<1. 

A further series of experiments using D5 in the polarized 2 

axis mode at three separate wavelengths were carried out to check 

for multiple reflection and to determine the importance of extinction 

in the crystal. Measurable extinction was present and the extinction 

correction routine is described in chapter 6. 

3.6.3 Unpolarized single crystal diffractometer: MKVI  

The y values found by the polarized neutron measurements can 

only be converted into magnetic structure factor data with a 

knowledge of the nuclear structure factors. The nuclear structure 

factors were collected using the MKVI two circle diffractometer at 

AERE, Harwell. All reflections in the zeroth layer out to a sin 8/a 

of 0.65 A A were collected at 77 K. The integrated intensity was 

determined using  the 'Andromache' system and converted to structure 

factor data in arbitrary units via 

FAQ  = (I Q  sin 28) 1 
	

(3.13) 

79 



The lattice parameter was also determined.. Insufficient data were 

collected for the Debye-Waller factor to be calculated. The wave- 
0 

length was 1.0928 A. 
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Fig.3.13 Schematic diagram of the polarized neutron diffractometer 

D3. 

Fig.3.14 Schematic diagram of the polarization-analysis instrument 

D5. 
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3.7 Polarization-analysis  

3.7.1 Introduction  

The polarization-analysis technique allows an unambiguous 

isothermal separation of the nuclear and magnetic scattering from 

paramagnets and antiferromagnets as described in section 2.5. 

The instrument D5 may be used to determine the spin flip 

and non spin flip cross sections in exactly the same manner as 

described by Moon, Riste and Koehler (1969). The sample is placed 

between a polarizer and analyser which transmit only (+) neutrons, 

a radio frequency spin flipper is placed in front of the sample. 

If the flipper is off only the non spin flip cross section (++) 

is measured. If the flipper is on,the spin flip (+-) cross section 

is measured. For a sample which has a paramagnetic:cross section.M, 

a nuclear spin incoherent cross section NS and other non spin 

dependent nuclear cross sections N the spin flip and non spin flip 

cross sections are 

II 
dca -3NS+M 
SF 

dQ 	- 3NS+N 
d2NSF 

if the polarization is parallel to the scattering vector and 

(3.14a) 

L 
doSF 3 NS +M 

(3.14b) 
1 da 	_ 1NS+N+1 M 

d2NSF 3 	2 

if the polarization is perpendicular to the scattering vector. A 

measurement of these partial cross sections is sufficient to isolate 

the magnetic scattering even in the presence of an unknown nuclear-

spin incoherence. 
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3.7.2 Polarization-analysis instrument: D5  

3.7.2.1 Description  

The instrument D5 is a triple axis spectrometer which has been 

modified by the inclusion of a polarizing monochromator and polariz-

ing analyser along the lines of the polarization-analysis instrument 

described by Moon, Riste and Koehler (1969). It is possible to 

operate D5 as a conventional 2 axis polarized:. _ neutron diffractometer 

or as a triple axis spectrometer with polarization-analysis. 

A schematic diagram of the instrument operating in polarization-

analysis mode is presented in Fig. 3.14. The instrument is situated 

at the H4 hot_.neutron beam hole at ILL, Grenoble. A range of incident 

wavelength from 0.4 A to 1.1 A can be selected using either Co 8% Fe 

or Cu2MnA1 polarizing monochromators. The Heusler alloy( Cu2MnA1) 

monochromator was used throughout. The polarized beam produced by the 

monochromator can be reversed by the RP. spin flipper which is located 

between monochromator and sample. The RF frequency must be tuned to 

the Larmor precession frequency of the neutron in the guide field 

and the amplitude adjusted to suit the neutron transit time through 

the coil. The flipper must be optimized for each wavelength. After 

passing through the flipper the beam polarization is adiabatically 

rotated out of the vertical plane into the horizontal plane by 

rotation of the guide field. The polarization is maintained parallel 

to the scattering vector at the sample position by the use of a 

horizontal 1T electromagnet. For the study of antiferromagnetic 

CrFe alloys this magnet provided a guide field of 250 Oe, which was 

sufficient to define the polarization direction and prevent any 

depolarization but was not high enough to perturb the sample 

magnetization greatly. The scattered polarization is then adiabatically 

rotated back into the vertical plane to undergo analysis by 

reflection from a Cu2MnA1 analysing crystal mounted on the analysing 

arm of the triple axis spectrometer. The analysed beam is then 

detected by a single He3 detector which is usually set for elastic 

scattering from the Heusler (111). The second spin flipper was not 
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used. All spectrometer movements are controlled by_computer sub- 

routines and no manual option is available. 	
0 

The energy resolution of the instrument operating at 0.84 A 

with the Heusler (111) monochromator is typically of the order 

15 meV FWHM. The wavelength spread is of the order 7% and the incident 

divergence some 0.5°. This rather poor figure for energy resolution 

is the result of the short incident wavelengths available at H4. To 

avoid serious X/2 and X/3 contamination short wavelengths must be 

used, which dictates the low take off angles from monochromator and 

analyser in order to use polarizing reflections. The Q resolution is 

also relatively coarse for the same reasons. 

The guide fields both immediately before and after the sample, 

together with the guide field at the sample position can be rotated 

by 90°  to allow the polarization to be disposed perpendicular to the 

scattering plane. This is made possible by the use of a vertical 

Helmholtz pair which is added to the horizontal electromagnet 

assembly. The guide fields are produced by permanent magnets arranged 

in removable box like sections and it is possible to rotate the 

guide field by simply rotating the box. These boxes are lined with 

boron plastic and are fitted with B4C apertures so that they serve an 

additional role as collimators. 

The machine may be operated in a two axis mode by removing the 

analyser, analyser shield and appropriate sections of guide; the 

detector can then be translated forward into the analyser position. 

For conventional 2 axis measurements it is necessary to replace the 

existing magnet assembly by a single crystal cradle with a vertical 

2T electromagnet. This procedure was adopted to study the ex-

tinction in the Pt3Cr crystal. 

3.7.2.2 Sample environment  

Diffuse scattering measurements in the PA mode were made using 

a conventional He flow cryostat 12 ST HV 48 which fitted conveniently 

between the vertical Helmholtz coils and the pole pieces of the 

horizontal electromagnet. The electromagnet pole gap is 15 cm. 
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With the instrument in 2 axis mode, the narrow tail cryostat 

15 CR HF 11 was used. This cryostat fits into the small hole in the 

vertical pole pieces of the 2T magnet and can be used only over the 

restricted temperature range 1.3 to 30 K. In the case of both 

cryostats, temperature measurement was made using a calibrated diode. 

3.7.2.3 Experimental procedure  

The peak flux from the hot neutron beam hole H4 occurs at 
0 

0.840 A. This wavelength was selected using the Heusler (111). The 

RF frequency and amplitude was automatically trimmed to give optimum 

flipping efficiency for this wavelength. The sample 26 and analyser 

26A  zero angles were then determined and the Heusler (111) analyser 

was set for elastic scattering. Several thin sheets of Erbium were 

placed in front of the collimating guide after the sample to filter 

out the X/2 contribution. 

The Cr 5% Fe sample used in this series of experiments was a 

slab of 0.6 cm thickness which was mounted behind a 1.65 cm X 2.2 cm 

Cd slot using 'Kwikfill'. The sample position was checked using a 

neutron camera. The sample transmission was measured with the 

sample normal to the beam with a sheet of perspex attenuating the 

beam to prevent saturation of the detector. The flipping ratio was 

found to be approximately 20. 

Data were then collected at various sample temperatures with 

the machine operating in 0-20 mode. A range of 26 from 3°  to 400  

was covered in steps of °. Counting time was divided in the ratio 

1:1 initially but subsequently changed to 1:4 nonspin flip to spin 

flip in order to obtain equal statistics for each partial cross 

section. Data were also taken with the analyser offset by 3°  

from the elastic position and also with the guide field at the 

sample vertical. Counting time was typically 15 m per point. 

Empty cell and Vanadium calibrations were made in the same way. 

The data were analysed by hand following a standard procedure 

(J.Davis, Private communication, Freeman at al. (1978)). The raw 

counts CSF' CNSF 
were normalized to the same counting time and the 
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offset background subtracted to give Co, 
CNSF. 

The air scattering 

was similarly corrected and after adjustment for the sample trans-

mission aS (assumed to be spin independent) was subtracted from the 

offset corrected counts to give the counts coming from the specimen 

ISF' INSF. These counts were then corrected for imperfect flipping 

efficiency and polarization using the values of 0.983 for flipping 

efficiency (f) and 0.96 for polarization, and were then corrected 

for slab absorption in 8-20 geometry using (3.3) to give ISF, and 

INSF' This procedure was also followed for the V calibration. 

The V calibration was corrected for the Debye-Waller factor and 

multiple scattering following the procedure of Freeman et al. (1978). 

The ratio of second to first scattering was found to be approximately 

10%. This procedure gave an isotropic V spectrum with the ratio of 

spin flip to non spin flip of 2:1 as expected and provides a string-

ent cross check on the experimental technique. The sample counts 

could then be normalized to this value. In short, the data analysis 

may be summarized by the expressions 

NT 

da 	__ mV 2 ainc 	A 	1 	-2 	2 
dS2 SF 	mS 3 4~r [2f sec e(as)sec  ISFV] ]

-I
[I' 

SFV 	)+INSF
(2f-1-p )1 

v 
da 	__ mV 1 ainc 	sec 0L~ 	1 	-2 	,  
7E7. 

	mS 3 47r L2f sec A (aS) 	NSFV~ CINSF(2f+p 
	

1)+ISF
ti...,,-2)] 

  

(3.15) 

where ISFV and INSN are the Vanadium spin flip and non spin counts 

corrected for multiple scattering and ISF, 
1NSF are sample spin flip 

and non spin flip counts corrected for absorption but not multiple 

scattering. 

85 



3.8 Bulk magnetic measurements  

3.8.1 Introduction  

Bulk magnetic measurements were made on offcuts from the 

neutron scattering samples to complement the neutron scattering 

measurements. The two sets of apparatus described here rely on the 

measurement of an induced EMF for their operation. In the case of 

the vibrating sample magnetometer the EMF induced in the pick up 

coils is due to the oscillation of the sample in a homogeneous, 

static magnetic field. This EMF is proportional to the magnetization 

of the sample and the technique is well suited to the study of 

remanent or slowly relaxing magnetization. The measurement of AC 

susceptibility, on the other hand, is based on the measurement of 

the EMF induced in a pick up coil by the action of an alternating 

magnetic field on a stationary sample. The EMF is proportional to 

the frequency dependent permeability of the sample. 

The two sets of apparatus were constructed by C.N.Guy and 

W.Howarth, and C.N.Guy and B.V.B.Sarkissian and described in great 

detail by Howarth (1978) and Sharif (1979). These instruments 

were used without modification and only a brief description of the 

measurement principle and the basic experimental set up is appropriate 

here. In making bulk magnetic measurements on highly susceptible 

samples it is important to keep thh demagnetizing field as small as 

possible, this was achieved by machining the samples with the spark 

machine into long needles (c/a > 5) or thin disks (c/a < 10). 

3.8.2 Low field vibrating sample magnetometer  

In this particular vibrating sample magnetometer (VSM) the 

sample is vibrated up and down between two pick up coils. The coils 

are arranged as a Helmholtz pair connected in opposition and the 

vibration direction is along and on the axis joining the two coils. 

A static magnetic field is applied along the axis using a larger 

set of Helmholtz coils. This geometry is illustrated inset in 
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Fig.3.15 Schematic diagram of the measuring circuit for the low 

field vibrating sample magnetometer. Coil geometry is 

shown inset. 



—field coils 
coils 

zo $  

vib. I axis 
•	 

osc. 

psd 	 A3 sample 

do 
ref 
coil 

vibration 	Fig 3.15 
generator 

I 
reference p.u. coil 

T 
vs 
y 

Vr 
y 

T 

mixer 

~dvm 

	 current 
A2 amplifier SIP sample p.u. coil 



Fig. 3.15. Guy (1976) has presented a complete analysis of the 

signal produced in the pick up coils for this geometry. Using the 

reciprocity theorem and a Taylor expansion it can be shown that 

the EMF is given by 

iw0t 	2 	i2W t 
e = 0MZ{iw0a0h'(Z)I Z=ZOe 	+iW0a0h"(Z)IZ=ZOe 0 + ...1  (3.16) 

where WO  is the vibration frequency, a0  the vibration amplitude, MZ  

is the magnetic dipole moment along the vibration (Z) axis and u0 

is the SI permeability of free space. Here h'(Z), h '' (Z) are 

derivatives of the Z component of the ficticious magnetic field h 

which would be produced at a point Z along the axis if unit current 

were flowing in the coils. If the sample is vibrated about a mean 

position Z0  which is midway between the coils all higher order 

harmonics disappear and the EMF has the vibration frequency only and 

is proportional to the magnetic moment. If is important to stress 

that the measurement is made in a static field and it is only by 

virtue of the vibration that a signal is generated. 

A schematic diagram of the measuring circuit is shown in Fig. 

3.15. The induced EMF is detected by balancing the signal against a 

standard current dipole. To do this a reference signal is produced 

in a second set of pick up coils by allowing a dc current to flow 
through a small coil wound on the same vibrating rod as the sample, 

a fraction of this signal is taken to balance out the sample signal. 

The current flowing through the current dipole to achieve balance is 

then proportional to the sample magnetization. Such a null technique 

is not sensitive to small variation in vibration amplitude or 

frequency. A phase sensitive detector is used to detect the balance 

condition; this may be sought manually as described by Howarth (1978) 

or using a feed back loop as shown in Fig. 3.15. Temperature 

measurement is achieved using a calibrated Si diode and He vapour 

pressure and the sample temperature may be varied from 1.6 K to room 

temperature. Magnetic fields as low as 20e may be used and a 

magnetization of 10
-6 

 emu can be detected using this arrangement. 

Full details are given by Howarth (1978). 
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3.8.3. AC susceptibility  

The measurement of AC susceptibility was performed using the 

apparatus designed and built by Guy and Sarkissian and described by 

Sharif (1979). The apparatus is simply a mutual inductance bridge 

with the mutual inductance of one arm varied by a ratio transformer 

to balance the mutual inductance of the arm containing the sample. 

The balance condition is indicated by a zero in phase component at 

the PSD, the quadrature signal being negligible. A schematic 

diagram of the apparatus is shown in Fig. 3.16. 

In this set up, the mutual inductance of the sample arm of 

the bridge is in principle entirely due to the susceptibility of 

the sample; as it is located inside one of a pair of compensated 

coils. In practice the compensation is not perfect and the residual 

inductance of the coil system can be measured by withdrawing-the 

sample and finding the new balance condition. The difference 

between these two mutual inductances - with the sample inside one 

coil and withdrawn - is proportional to the magnetic susceptibility 

of the sample. 

The AC magnetic induction applied to the sample via the 

primary circuit can be varied over a frequency range 10Hz- 20 kHz. 

For the CrFe measurements a frequency of 80 Hz was used and an rms 

field of 0.3 Oe was applied. Measurements could be made over a 

temperature range 1.6 to 300 K and a calibrated Si diode was used for 

thermometry. A DC bias field can be simultaneously applied to the 

sample. Further experimental details are described by Sharif (1979). 
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3.9 Resistivity measurements  

The resistivity of an antiferromagnetic CrFe 10% alloy was 

measured so that the resistivity anomaly at the Neil temperature 

could be correctly identified. 

This experiment was carried out using the apparatus 

described by Barber (1974) based on the standard four terminal DC 

technique for resistance measurement. The sample current is 

supplied by a high stability (1 : 106) Tinsley current supply and 

the potential developed across the sample is found potentiometrically 

with a Tinsley stabaumatic potentiometer together with a standard 

cell. The balance condition could be determined to great accuracy 

using a galvanometer amplifier and photocell arrangement, the 

accuracy was of the order ± 1 nV. The temperature could be varied 

over a range 1.6 to 300 K and thermometry performed via a Ge 

resistance or Cu—constantan thermocouple. The apparatus was 

modified by the inclusion of a Si diode for temperature measurement. 

The linear characteristics of the diode are particularly useful 

for the direct determination of the temperature derivative of 

resistivity. 

The sample itself was in the shape of a long needle. Two 

sets of Pt leads were spot welded in place, one at either end to 

act as current leads and two more closely spaced to act as voltage 

leads. Leads were soldered in place using low thermal EMF solder. 

Data were taken with the current flowing both forward and reverse 

in order to cancel any stray EMF. Full details of the experimental 

procedure may be found in Barber's thesis (1974). 
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CHAPTER 4 

ANTIFERROMAGNETISM'IN CR-FE ALLOYS 

For convenience, the work on the Cr Fe alloy system has 

been divided into two parts, In this chapter the properties of 

antiferromagnetic Cr Fe alloys are presented. Ferromagnetic and 

spin-glass Cr Fe alloys are treated in Chapter 5. 

The itinerant antiferromagnetism of Cr and its alloys is 

discussed in section 4,1. Previous work on Cr Fe antiferromagnetic 

alloys is reviewed in section 4.2. Experimental results and 

discussion are presented in sections 4.3 and 4.4. Section 4.3 

is devoted to the determination of the antiferromagnetic phase 

boundary and ordered moment. Section 4.4 is concerned with the 

nature of the Fe moment in antiferromagnetic Cr Fe alloys. 

90 



4.1 The itinerant antiferromagnetism of Chromium and its alloys  

4.1.1 Introduction  

The unusual magnetic properties of Chromium and its alloys 

have been the subject of an intensive experimental and theoretical 

effort dating back to the original suggestion of antiferro-

magnetism in Chromium metal by Nel (1932). Since that time, a 

very convincing case for the itinerancy of antiferromagnetism in 

Cr has been put together and there is mounting evidence to show 

that the antiferromagnetic state is specifically related to the 

Fermi surface geometry of paramagnetic Cr. The most successful 

current theoretical descriptions of Cr and its alloys are based 

on these concepts. 

Despite these achievements, there is still no wholly satisfactory 

theory for the antiferromagnetism of Cr. To a certain extent this 

reflects the fact that there is no wholly satisfactory theory for 

metallic 3d magnetism as such (Hubbard, 1979, Gunnarsson, 1976) 

although Cr does pose its own problems: notably, the order of the 

magnetic transition and the role of higher order harmonics, the 

pressure dependence of the Ngel temperature and the nature of the 

magnetic excitations have yet to be adequately understood. 

4.1.2 The itinerancy of antiferromagnetism in Cr  

The itinerant nature of antiferromagnetism in pure Cr is 

clearly demonstrated by three observations: 

(a) Sinusoidal spin modulation  

As a result of careful neutron diffraction studies by Corliss, 

Hastings and Weiss (1959), Shirane and Takei (1962) and Brown, 

Wilkinson, Forsyth and Nathans (1965) among others, it is possible 

to conclude that the state of magnetic order in pure Cr below its 

Nēēl temperature of 311K is based on the sinusoidal spin polariza-

tion of the d like electrons on _the two simple cubic sublattices 

which make up the bcc lattice of Cr. This modulation of the 
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antiferromagnetic moment is long ranged, incommensurate with the 

lattice periodicity and has a small amplitude. (Typically the 

modulation period is between 20-22 unit cells along a <100> 

direction and the maximum moment per Cr site in 0.59 1113  at 4.2 K.) 

Such a structure, in which the total moment varies from site to 

site in this way, is incompatible with conventional models for 

antiferromagnetism in insulators, for example, where localized, 

constant, atomic moments are coupled by effective antiferromagnetic 

forces. 

In fact, this sinusoidal modulation is termed a linear spin 

density wave (SDW) in recognition of the essential itinerancy of 

antiferromagnetism in Cr. The term SDW, 	first coined by 

Overhauser (1959) has come,  to be used as a generic name for states 

of non uniform spin polarization in itinerant systems. For example, 

a spiral SDW in a conduction electron gas would be described by a 

fractional spin polarization p(r) which varied continuously in 

magnitude' and.directiōn:according to, 

p(r) = p(x cos Qz + y sin Qz) 
	

(4.1a) 

which corresponds to a spiral of moment p propagating with a wave-

vector Q along the z direction. Overhauser (1962) makes the distinc-

tion between 'flexible' and 'rigid' spin systems. In a 'flexible' 

spin system, such as the conduction electron gas (4.1a) the spin 

polarization density follows the phase of the SDW smoothly throughout 

the unit cell. However, in a 'rigid' spin system the amplitude and 

direction of the spin polarization within the unit cell is deter-

mined by the phase of the SDW at the lattice position at the centre 

of the cell. The rigid spin model is found to be more appropriate 

to the case of Cr, as it is evident that the d electron;  charge 

distribution about the lattice site is polarized as a whole. This 

point is discussed further by Overhauser (1962). 

The (primary) SDW in Cr can thus be described according to the 

rigid spin model as the moment variation, 
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u(R~d) = umax e exp(iw.d)cos(Q.RQd) (4.lb) 

where p(RQd) is the moment at a site 
RRd having lattice vector Q 

and basis vector d. The factor exp(iw.d), where w is any convenient 

(100) reciprocal lattice vector, has values ±1 depending on the 

sublattice selected by the choice of d and thus generates the under-

lying two sublattice AFO structure. Here umax 
is the maximum 

amplitude of the SDW and e, the moment direction, is a <100> type 

direction. At low temperature Q, the wavevector of the SDW, is parallel 
A 	 04.11 

to e and the spin configuration is a longitudinal linear SDW. Above 

the 'spin flip' temperature of 121 K the moment direction changes so 

that whilst e is still a <100> type direction it is now perpendicular 

to Q. Q always remains along the same <100> type direction. Thus 

above the spin flip temperature the spin configuration is a transverse 

linear SDW. As mentioned previously Q is incommensurate with the 

lattice and is slightly less than a (100) reciprocal lattice vector; 

typically Q = 0.95 
2R 

(100). These relationships are illustrated in 
a 

Figure 4.1. 

(b) Paramagnetic neutron scattering  

The diffuse neutron scattering measurements of Wilkinson et al. 

(1962) did not detect any paramagnetic scattering from Cr to within 

the experimental error of ± 1 mb sr tat-1. This lack of a low 

frequency magnetic response above TN indicates that localized atomic 

moments do not exist above the Nel temperature and suggests that the 

antiferromagnetic moment is induced on ordering. 

It is worthwhile remarking that according to an itinerant electron 

model one may expect the high frequency response to persist above 

TN. Such a response, highly localized in q about the (100) position, 

has been observed in Cr above TN in the hot source triple axis 

measurements of Booth and Ziebeck (private communication). 

(c) Entropy of transition  

Specific heat measurements reveal a very small, first order, 

anomaly at TN for pure Cr. (Williams, Gopal and Street, 1979). The 

entropy change on ordering (ti 35 mJmol-1K 1) deduced from these 

specific heat data represents only 1% of the value expected for a 
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system with localized spins (S = i) which are involved in the 

transition. 

In addition, the marked difference between the induced ferro-

magnetic form factor of Cr above TN  (Stassis et al., 1975) and the 

form factor of the antiferromagnetic state argues against a local 

moment picture and suggests that the Nel temperature of Cr 

corresponds to the temperature at which a moment is created as 

well as ordered. Further evidence for the itinerancy of Cr can 

be drawn from the weak temperature dependence of the bulk 

susceptibility. Rather more indirect support for the itinerancy 

hypothesis can be found in a host of other physical properties, 

these are reviewed by Arrott (1966). 

4.1.3 The SDW and Fermi surface 'nesting' 

Overhauser (1962) succeeding in proving that a free electron 

gas, interacting via Coulomb interactions, was unstable with respect 

to the formation of a SDW state in the Hartree Fock approximation. 

It was suggested that the SDW state in Cr reflected just such an 

instability. Later, it became apparent that if the effect of electron 

correlation was taken into account via a screened Coulomb inter-

action this instability disappeared for the free electron case, but 

could still be realized if the band structure of a 'real' solid was 

particularly favourable (Fedders and Martin, 1966). In the case of 

Cr the SDW is believed to be the result of just such a fortuitous 

band structure, or more precisely, the presence of two matching sheets 

of the paramagnetic Fermi surface as first suggested by Lomer (1962). 

Lomer's argument was as follows. In an itinerant electron 

system the Coulomb repulsion is smaller for electrons with parallel 

spin as opposed to antiparallel spin by virtue of the exchange 

symmetry of the Fermion wavefunctions; this favours the formation of 

a magnetic state. On the other hand, if one spin state is to be 

preferentially occupied to create a ferromagnetic polarization the 

Fermi energy must be increased in order to accommodate these extra 
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states, this increase in kinetic energy tends to favour a non-
magnetic state. This compromise is well illustrated by the Stoner 
criterion for ferromagnetism IN(EF) > 1. Now, consider the effect 
of a sinusoidal (rather than uniform) spin density; in this case 
the sinusoidal exchange perturbation does not shift the unperturbed 
one electron energies to first order. Rather, the exchange 
potential mixes one electron states with crystal momentum lk> and 
Ik'> which differ by the wavevector Q of the modulation. This mixing 
is greatest when the unperturbed electron energies Ek  and Ek+Q  are 
equal and the sinusoidal exchange potential creates a gap at this 
energy. The origin of the gap is simply that the unpeturbed wave-
functions are mixed by the sinusoidal spin density in such a way 
that up spin parts of the unperturbed wavefunctions reinforce in 
regions where the up spin density of the perturbing modulation is 
large for the states at the bottom of the gap, and the up: spin parts 
of the unpeturbed wavefunctions are mixed in such a way that they 
cancel in the same regions for states at the top of the gap. This 
process may lead to a self consistent lowering of the total energy 
if the mixing occurs between states close to the Fermi energy. The 
energy lowering is simply achieved by removing occupied states near 
the Fermi energy by the introduction of a SDW energy gap. As the 
amplitude of the SDW increases, the gap increases and the total 
energy is lowered until states above the gap became occupied and 
reduce the SDW amplitude. The optimum situation is therefore, one 
is which EF  lies within the gap. Using the Fermi surface deduced 
from earlier band structure calculations for Fe, Lomer (1962) 
suggested that in Cr two branches of the Fermi surface - the hole 
octahedron at the H point (2(100)) and the electron ' jack' at r(000) -  
were self consistently coupled by such an exchange field. The fact 
that these surfaces showed matching flat and parallel sides implied 
that the Q of a single perturbation would couple them very efficiently, 
leading to a SDW state with wavevector equal to the vector connect-
ing these two branches. 

This rather qualitative argument can be made more formal by con-
sidering the static susceptibility x(q) of paramagnetic Cr. The 
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paramagnetic state becomes unstable with respect to a magnetically 

ordered state when the response of the system to an infinitesimal 

magnetic perturbation of wavevector q becomes infinite. In the 

present case X(q) must show a divergence at the Neel temperature 

and for a wavevector q = Q, the wavevector of the SDW. 

The calculation of X(q) for an interacting many electron 

system is not trivial. Recent calculations by Windsor (1972) and 

Gupta and Sinha (1971) were based on the RPA expression for the 

exchange enhanced susceptibility 

x°(q) 
x(q) _ 	- 

1 - I)°(q) 
(4.2a) 

where X (q) in the susceptibility of the unenhanced system and I is 

an (effective) Hubbard type enhancement factor. 	The susceptibility 

of the unenhanced system may be calculated via the standard Lindhard 

expression, 

v - P f
k 	+q f k  

N uv 1 2 0 	1 	M X (q) 
2 k }1

E
v Ek+q Ek 	x, k+q 

(4.2b) 

where the summation is taken over all k within the Brillouin zone and 

u and v are band indices. Here Ev, EP are the one electron energies 

calculated for the bands p, v according to some self consistent 

Hartree Fock type scheme and fk = (l+exp s(EF - Ek))-1 is the Fermi 

function. The matrix elements-Mkvk+ are frequently taken as 
q 

constants, although Winsor (19727 'expresses them in terms of tight 

binding orbitals K+q>, 111,11c>, 

u 
Mk
u~ 
,k+q 

= <g 	lk+q k> (4.2c) 

According to these expressions, the susceptibility x(q) will diverge 

when X (q) becomes equal to hand the wavevector of the ordered 

structure will be the 	
0 

q for which X (q) shows its maximum value: at 

TN. If the matrix elements leare neglected, this peak in X (q) 

will be pronounced if there are flat and parallel portions of the 

Fermi surface which can be translated onto one another by a single 
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wavevector q. This 'nesting' feature of the Fermi surface will give 

rise to a small energy denominator for the nesting wavevector q and 

hence to a peak in X  (q). This reproduces Lomers argument. 

The energy bands, density of states and the (100) section of 

the Fermi surface for paramagnetic Cr are shown in Fig. 4.2. These 

data are taken from the self consistent tight binding calculation of 

Rath and Callaway (1973). This calculation amounts to an approximate 

solution of the Hartree-Fock equations with the non local exchange 

potential replaced by the local statistical expression of Slater 

(1974). The 'nesting' property of the electron and hole octahedra is 

immediately obvious and the nesting wavevector Q ranges from 0.955 

to 0.976 2r/a (100) in excellent agreement with the observed wave-

vector of the SDW in Cr. Similar results were also obtained in other 

band structure calculations, using the KKR method (Asano and 

Yamashita, 1967) and the APW method (G upta and Sinha (1971), Loucks 

(1965)). 

4.1.4 Two band models for the SDW  

Following Lomer's suggestion, a number of simplified models 

were proposed which treat only the exchange coupling between the two 

nesting portions of the Fermi surface and neglect all other interband 

contributions. These models vary in sophistication and complexity 

but all treat essentially the same Hamiltonian, within the Hartree-

Fock approximation, for a given simplified band structure. 

The two band Hamiltonian is of the form, 

H=HO +H1  
(4.3a) 

where HO  is the sum of one electron energies for all bands and H1  

represents the screened Coulomb interaction V(r - r') between the 

electrons in band 'a' centred at r and the electrons in band 'b', the 

hole band centred at H. That is, 

v v 

HO 

__ 

	
a nka 

ka  
(4.3b) 
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Fig.4.1 The primary SDW in pure Cr. 

Fig.4.2 Energy bands, density of states and (100) section of the 

Fermi surface of paramagnetic Cr. (Rath and Callaway 

(1973)). The main Fermi surface features are: 

(a) a large closed hole octahedron at H = 2ā (100) 

(b) a smaller closed electron octohedron at r _ (000) 
(c) six electron balls situated along the Ili axis, which 

together with the surface (b) make up the electron 

'jack' 

(d) six ellipsoidal hole surfaces at the N points,ir/a (1,1,O) 





and 

A 	 ^ + A A 	A 

H = E E Vkk 1 	
' 

kk q ca  
(4.3c) 

where Eka 
are the one electron energies for wavevector k, spin a and 

band index + 	
^ A 

, nka is 	number operator and the ^  

operators a , a and b , b are creation and annihilation operators for 

electrons in bands a and b. The matrix element of the screened 

Coulomb interaction between the electrons (Vkk,) is usually replaced 

by a constant, effective value I (as in equation 4.2a) which may be 

written I = y2J where y is an average overlap integral and J reflects 

the strength of the interaction. 

The properties of this Hamiltonian have been almost exclusively 

been studied in the Hartree Fock approximation. According to this 

scheme H1 is written in the form, 

^ A A 	 A 	 ^ 

H1 = V.a with V(r) = - J s(r) 

which represents the interaction of a.particular electron with spin 
^ 	 ^ 

a with the average exchange field V(r) produced by the electrons in 

bands a and b. This exchange field is simply proportional to the nett 

spin density s(r) and must be determined self consistently. Within 
- -  

the Hartree Fock (HF) approximation H1 may be written, Nakanishi and 

Kasuya (1977), 

^ 	 ^+ 	^ 	^ 	 1 	2 
H1 = - E Ef Aqbk+ga(a)aa'aka

,+ H.C. + Ī E Ioq ~ kgaa ~~~ 	 q 

where A is to be determined self consistently via 
q 

n Aq = I E E ~ 
<aka(a)aa,bk+q 

ao> 

k aa  

(4.4a) 

(4.4b) 

where n is a unit vector along the direction defined by this average. 

In writing this expression the ori.ginal Hamiltonian has been re-

arranged to make use of the Pauli matrices a, to emphasise the form 

V.a of the interaction between a given spin and the average self 
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sistent exchange field. Now, in a normal paramagnetic system the 

expectation value Aq  is clearly zero as the motion of electrons 

in band a and b are ōn average uncorrelated. However, it is 

precisely the coherent motion of such electrons which gives rise 

to the long  range magnetic order in the SDW state. In fact, 

nAq  can ultimately be related to the SDW vector amplitude and plays 

the role of an order parameter. (Writing  the Hamiltonian in this 

form amounts to expressing  the product of pairs of operators a b 

in terms of their mean and fluctuating  parts and subsequently 

expanding  up to terms which are bilinear in the fluctuations.) 

The first of these two band models was proposed by Fedders 

and Martin (1966). In this model the electron surface at r and 

the hole surface at H were approximated by two spheres of equal 

radius which nest perfectly into each other under a translation of 

2 G = Qo. No other sections of the Fermi surface were considered. 

The electron and hole dispersion relations were assumed to be 

linear and isotropic about I' and H, 

k = EF + hva(Ikl - kF)  
(4.5a) 

Ek+Q  = EF  - hvb(1k1 - kF) 
`0 

where a and b are band indices (cf. 4.4) and va, vb are Fermi 

velocities. The radius of the sphere is kF. In this treatment, 

Fedders and Martin (FM) consider only pairing  between electron states 

in band a and hole states in band b whose momenta differ by fiQO  and 

which have opposite spin. This amounts to considering  only those 

terms which contribute to a commensurate linear SDW polarized in 

the x direction, that is, 

with 

nAq  = A ō q9 x 

A = I E <bk+ak+> + H.C. 
k 	-- 

(4.5b) 

(4.5c) 

Assuming  A to be non zero, the Hamiltonian (eq. 4.4) may be 
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diagonalized to give the eigenvalues 

+ 4[E: 	
2 	2Ek 	Ek] ± C4 (Ek  - Ek) + A 1 (4.6a) 

which opens an energy gap of magnitude g = 2A at the Fermi surface. 

The mixing of states in bands a and b in turn must modify the value 

A and for self consistency 

A = - I E 	A  
(occ k) 2Ek 

(4.6b) 

At T = 0, in the limit of weak exchange coupling N(EF)I « 1, this 

may be solved to give the zero temperature order parameter 

A(0) = 2D exp(-  1/2N(EF)I) 	(4.7a) 

where D is the band width and N(EF) the average density of states of 

the hands a and b at the Fermi surface. Having shown that a self 

consistent solution with A A 0 exists, Fedders and Martin proceed to 

demonstrate that it has a lower energy than the paramagnetic state 

(A = 0) below the Nel temperature 

Y• 
kBTN  = 2 	D exp(- 1/2N(EF)I) (4.7b) 

-eL(Ye)is the Euler constant 0•$7 . The T = 0 order parameter and 

TN  are proportional, for example if va  = vb, 

A(0) = Y kBTN 
e 

(4.7c) 

The temperature dependence of the order parameter follows the BCS 

relationship found in the theory of superconductivity, 

1 = N(EF  )IfdE(E2+A2)-1(1-2f(E2+A2)) 

where f(x) is the Fermi function. This implicit equation may be 
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approximated by the explicit expression 

A(T)/A(0) = B (T/TN) (4.7d) 

where B1(x) is the Brillouin function for J = . The FM theory is, 
z 

incidently, mathematically identical to the BCS theory of super-

conductivity. 

This simple model was extended by Shibatani, Motizuki and 

Nagamiya (1969) using a more realistic model for the Fermi surface. 

The electron and hole nesting surfaces were approximated by perfect 

octahedra of different size: the hole octahedron was assumed to be 

slightly larger than the electron surface in accordance with the 

band structure calculations (section 4.1.2)•This imperfect nesting 

model allows the formation of an incommensurate SDW with Q 	G 

as well as a commensurate SDW, Q = QO  = ! G discussed by FM. A third 
portion of Fermi surface, an electron reservoir, termed band 'r' was 

also added. This band, which can be identified with the electron 

balls at N, allows a flow of electrons to enlarge or diminish the 

nesting octahedra during the formation of the SDW. Shibatdniet. 

al. (SMN) find that if the reservoir is neglected, the incommensurate 

SDW'(ISDW) state with wavevector Q equal to the nesting wavevector 

always has lower energy than the equivalent helical or commensurate 

SDW. If the reservoir is taken into account the wavevector may be 

shifted from the nesting value. The magnitude of this shift was 

found to depend on the size of the reservoir and the degree of nest-

ing. A sudden shift in Q from one incommensurate value to another 

is observed as the degree of nesting is changed. The reservoir is 

also found to be necessary in order to obtain a reasonable value for 

the antiferromagnetic moment. 

Rice (1970) also considers imperfect nesting using a model 

bandstructure with spherical electron and hole pockets of unequal 

radii as well as a nonmagnetic reservoir. The dispersion relations 

for the electron and hole pockets, measured relative to the Fermi 

energy were taken as, 'Li = 1, 
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Ek = vF  (k kFa) = vF  (k-kF) +h 

(4.8a) 

Ek+Q = - vF(k-kFb) = - vF(-kF)+h 
0 

where kF  is defined as the average Fermi radius of the two spheres 

and h = vF(kFa - kFb) is the amount by which the Fermi level would 

need to be altered in order to achieve perfect nesting (Fig. 4.3). 

Rice considers a linear SDW with wavevector Q which is incommensurate 

with the lattice, Q - QO  = S, so the order parameter is (cf.eq.4.4) 

with 

T1 Aq  = 1  (dq_a  + Sgs)Lx 

A = I E <bk+6+ake + H.C. k 

(4.8b) 

and the self consistent SDW state is defined by three coupled 

equations for A, ō = IQ-Q01 and h' the Fermi level of the SDW state 

as a function of h and n -the density of states of the reservoir 

compared to N(EF). 

If the spheres are found to differ too greatly in size, the 

SDW cannot exist, even at T = 0. Rice finds the critical value 

of the nesting parameter to be h = 0.753 A00,  where  A00 
 is the 

hypothetical order parameter for the SDW state having ō = h = 0 at 

T = 0 and reduces to the FM result (4.7a) in the absence of a 

reservoir. The SDW state which first occurs below this critical 

value has a wavevector determined by the maximum of the unenhanced 

paramagnetic susceptibility S = 1.2 h/vF. As the degree of nest-

ing is increased, at T = 0, the wavevector of the SDW snaps into 

the commensurate wavevector QO  once h is below a critical value 

determined by the properties of the reservoir. If the reservoir 

is large, this first order change occurs for h below 0.71 A00. 

In the other limit, n -} 0, the commensurate phase is only found at 

perfect nesting, h = 0. 

The temperature variation of the order parameter and wave-

vector may also be calculated as a function of nesting. The 
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Fig.4.3 Schematic energy bands for the Rice (1970) unequal sphere 

model. 

Fig.4.4 Magnetic phase diagram for the unequal sphere model as a 

function of the imperfect nesting parameter h/so. The solid 
curve is the Hartree-Fock result (Rice (1970)). The more 

exact calculation of Hasegawa (1968) is shown by the 

dashed curve. 
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resulting phase diagram is shown in Fig. 4.4. A value of n = 1 

has been assumed, as the density of states in pure Cr is 

approximately halved at TN. 

These ideas have been extended by a number of later workers: 

for example Kotani (1974, 78). The extension to the alloy problem 

will be discussed in the next section. 

4.1.5 Alloying behaviour  

The effect of even a small degree of alloying on the magnetic 

properties of Cr is dramatic. For example, the addition of 1% V 

is sufficient to lower the Nel temperature by 100 K whereas the 

addition of 1% Mn raises the Nēel temperature by 150 K. To 

illustrate these rapid changes with alloying, the variation of TN  

as a function of excess electron concentration for a number of 

dilute Cr alloys selected from the enormous number of experimental 

investigations undertaken in recent years is presented in Fig. 4.5. 

These data have been extracted from the work of Koehler et al. 

(1966), Arajs at al.; 1973) and Booth at al. (1978). The variation 

of ordered moment and the wavevector for CrMn, CrRe and Cr(MnV) 

alloys (Komura, 1967, Lebech and Mikke, 1972) is also presented. 

For the 'normal' solutes presented in Fig. 4.5 the variation 

of TN,  u and Q depends to a first approximation only on the electron 

to atom ratio of the alloy. The addition of V, Nb, Ta and Ti which 

reduce the electron to atom ratio reduce TN,  u and Q. On the other 

hand, the addition of Mn, Tc, Re, Ru, Os, Ir and Pt which increase 

the electron to atom 'ratio increase the Nel temperature and ordered 

moment, which reach a maximum of some 700 K and 0.75 pi at high 

concentrations. The wavevector of the SDW also increases with 

increasing electron to atom ratio until Q abruptly changes from in-

commensurate to commensurate in a narrow range of temperature 

centred about an excess electron concentration of 'u 1%. A simple 

two sūbla*tice antiferromagnet is then found at higher concentrations. 

Furthermore, alloying with isoelectronic Mn and W leads to only a 

relatively small decrease in TN. The presence of 1% Mo and 1% W 
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Fig.4.5 Variation of TN  with alloying for ?normal` solutes in Cr. 

The dotted line is the theoretical variation according to 

the Sato-Maki model (l9.73). 
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depress TN by 17 K and 33 K respectively (Arajs et al. 1978), such 

a small change may be expected as e/a remains constant in this 

case. 

The magnetic behaviour of these Cr alloys may be understood 

in terms of changes in Fermi surface nesting. If we assume the 

Rice (1970) unequal sphere model, making the rigid band assumption, 

the addition of solutes to the left of Cr in the periodic table 

increase the value of h i.e. the electron sphere becomes smaller 

and the hole sphere larger than for pure Cr. The nesting between 

these two pieces of Fermi surface is thus reduced, leading to a 

decrease in TN, u and Q. Alloying with components to the right of 

Cr on the other hand decrease the value of h, by allowing the 

electron sphere to increase in size with respect to the hole sphere, 

giving an increase in TN, Q and p. A sudden transition to the 

commensurate structure is also predicted as h becomes less than a 

critical value. 

To go beyond this rigid two band approximation it is necessary 

to consider how the band structure is altered by the impurity atoms. 

In the context of the Rice model this possibility can be included 

by the ad hoc variation of 
A00 

with concentration. For example, one 

may expect a small decrease in TN with isoelectronic alloying with 

4d Mo and 5d W due to the reduction in the effective interaction 

strength I. It is more satisfactory to consider the scattering from 

the impurity atom explicitly, by the addition of a scattering term H2 

to the two band Hamiltonian eq. (4.3). Following Zittartz (1967), 

A 
H = I' U(k - k')~a ,. 	+-b~ 	rt 

K 2 	
L
a aak'a 	ka k'a 	k kla (4.9a) 

takes account of the intraband scattering of electrons in bands,a, 

b and r by impurity atoms situated at lattice sites R.. Here 

U(q) = E U(R - 
R.)eiq.R 
-1 (4.9b) 

is the Fourier transform of the interaction,:,which is taken to be 

spin independent, that is "normal". 
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Zittartz (1967) investigated this problem by applying the 

theory of Abrikosov and Gorkov (1960), originally proposed to deal 

with impurity scattering in superconductivity, to the case of iso-

electronic Cr alloys. It was found that the spin independent 

impurity scattering H2, which acts with opposite sign on electron 

and hole states, is very effective in decorrelating the electron 

hole pairs which are responsible for the SDW state. One notes, 

by contrast, that such normal impurity scattering has no effect on 

the electron hole pairs in BCS superconductivity. In effect, the 

normal impurity produces an electric field which breaks the 

symmetry of the two band order parameter <b
fi 	> in the same way 
kJ a.. 

as a magnetic field breaks the symmetry of ā Cooper pair 
A A 

>. The effect of such pair breaking is to reduce the Nēel C aC__Q  

temperature. In the perfect nesting model considered by Zittartz, 

where the normal impurity is isoelectronic with Cr, TN is found to 

decrease according to the Abrikosov-Gorkov expression, 

T
-kn T N - ~(2 + 27rT ) 4)(2) T

NO 	N 
(4.10a) 

where TNO is the Nel temperature of the pure material, tJ(z) is the 

digamma function and a is a pair breaking parameter which depends on 

the details of the scattering potential but is linear in concentration, 

a'L cfcmlu(e)12 

According to (4.10a) the SDW can only exist if the pair breaking 

parameter is less than a critical value, 

ac 2ye TNO (4.10b) 

and hence a critical concentration for SDW order exists. In contrast 

to the previous two band models it is found that the SDW does not 

necessarily introduce an energy gap at the Fermi surface. Beyond a 

critical value of the pair breaking parameter 

a' =lac exp(- 4) (4.10c) 
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- Zn T N - Re{~i(2 + 2TTT TNO 

T

N 
(4.11) a 

+ . 27rT ) 	(2) } 
N 

which is 91% of the value which destroys the SDW completely, a 

gapless region is found to extend from T=0 to TN. In general, 

the gapless regime is restricted to a narrow band around TN 

(Fig. 4.6), where the broadening in electron energy levels due 

to scattering is of the same magnitude as the order parameter 

and the energy gap disappears, even though the system is still 

in an ordered state. 

The combined effects of pair breaking and changes in excess 

electron concentration were considered by Sato and Maki (1973) 

using the SMN imperfect nesting band structure. In this case 

the dominant mechanism for pair breaking was assumed to be 

electron-phonon scattering, which corresponds to a pair breaking 

parameter which is proportional to temperature but independent 

of concentration. For CDSW alloys, TN was determined by 

where TNO is the hypothetical Nēel temperature for a = h = 0. The 

nesting parameter h is defined in the same way as in the Rice 

model. A more complicated result is found for theISDW. With a 

physically reasonable choice of TNO and a the concentration 

dependence of TN for dilute CrMn, CrRe and CrMnV alloys could be 

reproduced quite well (as shown in Fig. 4.5). 

Variations on this theme have been proposed by many authors. 

The most comprehensive treatment is that of Nakanishi and Kasuya 

(1977) using the SMN imperfect nesting model including an electron 

reservoir as well as inter and intra band scattering via the term 

i(k-k'). 

	

H. 	E E 	E e 

	

2 	R. kk' ca' 
-1 -- 

R. 
1
C( 	

n 1 	n 
aa)aa'ak,a akcl 

A 

+ (Vbb)aa'bk'a'bkc + (Vrr)aairk'c!'rka +. ( āb)QQ'ak'a'bka 
- 

+ (Var)act' ak'drkQ + (Vbr)6Q'bk'Q'rkJ+ H.C. (4.12) 
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Fig.4,6 Depression of TN  by scattering processes for the equal 

sphere model. (Zittartz (1967)). Here a is the pair 

breaking parameter. The region of gapless SDW order is 

shaded. 

Fig.4.7 The interband contributions to the generalized non-

interacting susceptibility of paramagnetic Cr at 312K. 

(Windsor (1972)). The weak contribution from the nesting 

bands r-H should be noted. 



H 9 

'Total 
r~ 

f 

00.4 ā 
ī 
Y 

0.2 

0 r 	 r 

. 
0. 

0- 

T 
TNO 

paramagnet 

gapless csdw 

Fig. 46 

Fig.47 



where (Vaa)Qa' = aa,Vas describes normal scattering from randomly 

distributed impurities and may also simulate electron-phonon 

scattering. The stability of the-ISDW and CSDW states were in-

vestigated as the degree of nesting and scattering strength were 

varied. The CSDW state was found to be stable below a Nēel 

temperature given by 

1 	
a
r 

T
- Rn T

NO 
= Re{~(2 + 

2TrTN 271T + 1 2 T ) - Y(2) } NO 	N 	N 	N 
(4.13) 

where Ba r = 2TrN (EF)C(Vaa2 + Vab2) is the normal pair break 
bands a and b, andkar = 'ITNr(EF)C Var2 is the normal pair o 
due to the reservoir having a density of states NS(EF). 

authors also extended the argument to deal with the spin 

scattering which occurs in those Cr alloys with magnetic 

e.g. CrCo, CrNi:f CrPd and CrFe. These alloys are 'anomal 

sense that they do not follow the general trends outlined 

section and CrFe alloys, in particular, are the topic of 

ing due to 

breaking 

These 

dependent 

impurities 

ous t in the 

in this 

section 4.2. 

4.1.6 Discussion 

The itinerant electron nesting model for Cr and its alloys 

gives a good account of a wide range of behaviour. However this 

picture is not without its difficulties. Most serious is that the 

SDW-paramagnetic transition in Cr is first order whereas all the 

models in section 4.1.4 predict a second order transition. On a 

formal level, the argument put forward in section 4.1.3, which is 

based on the susceptibility is valid only for a second order trans-

ition. 

Young and Sokoloff( 1974) propose that a first order transition 

cannot be explained using a two band Hartree Fock model and 

demonstrate that a first order transition may be obtained in a three 

band model provided higher order harmonics of the SDW are taken in-

to account. A second harmonic charge density wave (CDW) and third 

harmonic SDW were predicted, and subsequently observed experimentally 
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by Tsunoda at al. (1974) and Pynn et al. (1976). More detailed 

calculations were performed by Kotani (1974, 1978). A first 

order transition was found in this case if the electron-phonon 

coupling was sufficiently large. Since these mechanisms rely 

on the presence of harmonics of the SDW they cannot operate in a 

commensurate system. The fact that a first order transition is 

observed for several CSDW CrFe alloys (Suzuki, 1976) suggests 

that this explanation is invalid. The order of the transition 

and the role of higher order harmonics remains an open question. 

As the observed first order transition is almost indistinguishable 

from a second order transition this question may only have formal 

significance. 

Let us assume, for arguments sake, that the susceptibility 

is a useful function in the description of a 'weak' first order 

transition. According to Windsor's (1972) calculation of the 

paramagnetic susceptibility of Cr, the major part of the noninter-

acting susceptibility x°(q)  (eq. 4.2) arises from bands more than 

2 eV from the Fermi surface. The t-H nesting contribution is 
small and peaks in the vicinity of the nesting wavevector. The 

overall maximum in the generalized noninteracting susceptibility 

is determined by the position of this small sharply peaked nesting 

contribution which sits on top of the much broader maximum arising 

from the other bands (Fig. 4.7). This result contradicts the 

basic 'two band' assumption,but may have been anticipated by the 

need to include an electron reservoir in order to generate a reason-

able value of the ordered moment. A more realistic model for Cr must 

include the broad response of non nesting bands near  G. 

Windsor (1972) and Gupta and Sinha (1971) also point out 

that the basic nesting argument itself is invalid because the matrix 

elements Mkuk+q  which occur in the Lindhard expression for the 

susceptibility-(eq. 4.2) are strongly q dependent and cannot be 

treated as slowly varying or constant. Thus the peak in X  (q) 

cannot be determined solely by satisfying the energy denominator 

with nesting portions of Fermi surface, the matrix elements must be 

taken into account. The difference is fortuitously small according 
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to Windsor's calculation and the peak in the P-H contributions is 
found to lie very close to the nesting wavevector. 

The validity of the Hartree Fock approximation for the two 

band models of Rice and SMN was investigated by Hasegawa (1978). 

As expected, the effect of spin fluctuations is to depress the 

tendency toward magnetic order as illustrated in Fig. 4.4. 

In view of these difficulties it is worthwhile noting that 

a theory for the SDW in Cr can be constructed without the nesting 

requirement. Teraoka and Kanamori (1977), using an extension of 

the single orbital Anderson model, are able to describe the SDW 

first and third harmonic, the CDW, the magnetic moment at the 

incommensurate-commensurate transition and the strain wave with 

a great deal of success. A first order transition is also found. 
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4.2 Previous work on CrFe antiferromagnetic alloys  

4.2.1 Metallurgy of the CrFe alloy system 

The equilibrium phase diagram for Cr-Fe binary alloys is shown 

schematically in Fig. 4.8. According to Hansen's (1958) diagram a 

complete range of b.c.c. solid solutions (a) exist from pure Cr to 

pure Fe, apart from an f.c.c. y loop for Fe concentrations up to 13% 

and a a phase which forms for middiagram alloys below 815°C. Later 

work summarized by Elliots' diagram (1965) shows the eutectoidal de- 

composition of the a phase at 520°C. There is no evidence for 

atomically ordered compounds Fe3Cr, FeCr or FeCr3. 

A low temperature miscibility gap is also present i.e. the b.c.c. 

solid solution retained after quenching from high temperature is only 

metastable at room temperature. Prolonged ageing of quenched alloys 

will ultimately result in the separation of the alloy into Fe and Cr 

rich precipitates. At room temperature this transformation is ex- 

tremely slow. The reaction is faster at 475°C; Fisher, D plis and 

Carroll (1953) found fine Cr rich precipitates of some 200 X in diameter 
after annealing an 82% Fe alloy at 475°C for 1-3 years. More recent 

work by Chandra and Schwartz (1971) and de Nys and Gielen (1971) suggests 

that the decomposition may proceed by nucleation and growth of the 

second phase for alloys close to pure Fe or pure Cr (as in the previous 

case) or via the spinodal decomposition of alloys in middiagram which 

lie within the chemical spinodal sketched in Fig. 4.8. These workers 

determined the rate of decomposition at 475°C for alloys of 40-80% Fe. 

Solute redistribution occured even at short annealing times (30h) for 

alloys lying within the miscibility gap but outside the spinodal. 

However no change could be seen even after 1050 h for alloys lying within 

the spinodal. 

The b.c.c. solid solution found in equilibrium outside the 

miscibility gap is not atomically random and there is a strong tendency 

for Fe atoms to cluster. This has been confirmed by a number of techniques, 

notably by neutron diffuse scattering (Aldred, Rainford, Kouvel and Hicks, 

1976) where such clustering was observed in alloys quenched from high 
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temperature in the a phase field. 

The tendency for Fe segregation to a greater or lesser degree 

within the CrFe alloy system makes the magnetic properties very 

sensitive to heat treatment. Thus to ensure a small and reproducible 

amount of atomic short range order all alloys used in the present 

work were quenched rapidly from the same temperature ('L 11000C). 

Furthermore all alloys lying within the room temperature miscibility 

gap were exposed to the smallest possible amount of room temperature 

ageing, not exceeding " 200 h. This precaution, as shown by the small 

angle scattering measurements in Ch. 5 was unnecessary because of the 

sluggish reaction rate at room temperature. 

4.2.2 Dilute CrFe alloys (c < 5%) 

The magnetic properties of antiferromagnetic CrFe alloys have 

attracted much theoretical and experimental interest over recent years. 

Most of this interest has revolved around the behaviour of the more 

dilute alloys (less than 5% Fe) whose properties are now known in 

detail. 

4.2.2.1 Magnetic transitions in dilute CrFe alloys  

The magnetic phase diagram for dilute CrFe alloys is presented 

in Fig. 4.9. The ordering temperatures have been selected from the 

neutron diffraction data of Arrott, Werner and Kendrick (1967) and 

Ishikawa, Hoshino and Endoh (1967), X-ray strain wave and lattice para-

meter measurements of Mori et al. (1974) and the specific heat data 

of Suzuki (1976) and Rstrom, Benediktsson and Rao (1978). 

The addition of Fe to antiferromagnetic Cr causes a decrease in 

TN,  contrary to the general trend of raising TN  for solutes to the 

right of Cr in the periodic table (section 4.1.5). The transverse in-

commensurate SDW phase of pure Cr gives way to commensurate SDW order 

as the Fe concentration exceeds some. 3%. For concentrations in the 

vicinity of the triple point a transition between the high temperature 

TSDW and low temperature CSDW phases occurs. In contrast to the CrMn 

system the commensurate - incommensurate phase boundary has a positive 

gradient with respect to impurity concentration. The longitudinal 
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Fig.4.8 Constitution diagram for Cr Fe alloys. (Hansen (1956)). 

The miscibility gap and spinodal are also shown. 

Fig. 4.9 Magnetic phase diagram for dilute Cr Fe alloys. 

(Suzuki (1976)). 

Fig.4.10 Ordered antiferromagnetic moment at 4.2K for dilute 

Cr Fe alloys. (O, Ishikawa et al (1967);0 , Arrott et 

al (1967)). 
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incommensurate SDW phase rapidly disappears with the addition of Fe, 

TN  reaching zero at 'L 1%. 

The commensurate - incommensurate (C-I), paramagnetic- 

incommensurate (P-I) and paramagnetic-commensurate (P-C) transitions 

are all of first order. Large volume changes accompany the P-C and 

C-I transitions for alloys between 2-4% Fe. The P-C transition be-

comes second order in the vicinity of 4.9% Fe (Suzuki, 1976) and this 

point provides a convenient upper limit to the 'dilute' concentration 

range. 

According to the neutron diffraction measurements of Arrott, 

Werner and Kendrick (1967) both the wavevector and amplitude of the 

ISDW are increased by alloying with Fe. Ishikawa, Hoshino and Endoh 

(1967) find the amplitude of the ISDW to remain more or less constant 

in this phase. The fact that neither group observes a decrease in 

the ordered moment whilst TN  is decreased is significant. 

The ordered moment (u) increases as the SDW changes from in-

commensurate to commensurate. Ishikawa et al. (1967) note a change 

from 0.6 uB  on the incommensurate side of the phase diagram at 1% Fe 

to 0.76 uB  on the commensurate side at 3.75% Fe. The commensurate 

moment then decreases with increasing Fe concentration. At the highest 

concentration studied (4.9%) the moment was reduced to 0.73 pB. The 

data of Arrott et al. (1967) confirm these trends although the 

quantitative agreement is not good. These results are shown in 

Fig. 4.10. 

The lack of agreement between the work of Arrott et al. (1967) 

and Ishikawa et al. (1967) is due in large part to sample homogeneity 

and difficulties in correction for extinction. As explained in the 

previous section, the sensitivity of the magnetic properties to heat 

treatment is also a major source of discrepancy. 

4.2.2.2 The nature of the Fe moment in dilute CrFe alloys  

Susceptibility measurements show that the SDW coexists with 

magnetic moments localized on the Fe sites. Much theoretical and 

experimental effort has been spent in trying to understand the exact 

nature of the Fe moment and its interaction with the SDW. Some of 

this work, particularly the diffuse neutron scattering measurements of 
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Cywinski and Hicks (1980) and Kazjar, Babic and Parette (1980) as 

well as the theoretical model of Friedel and Hedman (1978), has 

occured during the course of the present study and is thus not 

strictly "previous" work. It is convenient to discuss these con-

current developments along with earlier work in the present section. 

Newmann and Stevens (1959) found, in contrast to the essentially 

temperature independent susceptibility of pure Cr, that the 

susceptibility of dilute CrFe alloys showed considerable temperature 

dependence. After subtracting the small contribution due to the Cr 

matrix the remaining susceptibility (which was identified with the 

Fe impurity) followed a Curie-Weiss law with a small positive inter-

action temperature 6 above TN  with an effective moment of 2.9 uB'  
which remained constant over the concentration range 1% - 6% Fe studied. 

This implies that the two extra d electrons contributed by each Fe 

atom remain localized at the Fe sites. A more extensive study by 

Ishikawa, Tournier and Filippi (1966) shows that below TN  the impurity 

susceptibility followed essentially a Curie law. To explain this 

surprising result it was suggested that below TN  the Fe moments were 

only weakly coupled to the SDW and were free to rotate paramagnetically. 

This interpretation was adopted by a number of subsequent in-

vestigations. In a more quantitative attempt to understand the problem 

Hedgecock, Strom-Olsen and Wilford (1977) fitted the low temperature 

susceptibility of 3-6% Fe alloys using a simple model due to Lomer 

(1960). The interaction between the SDW and the local moment was 

characterised by a coupling constant J. A good fit to the data for a 

5% alloy was found with J n+ 0.35 meV, indicating very weak coupling 

between the Fe moment and the SDW. A good fit to the magnetoresistance 

of these alloys was also obtained. However this model failed to 

account for the high field magnetization. 

Recent measurements of both dilute CrFe 1-3% alloys and ternary 

CrV Fe and CrSi Fe by Hedman, Rao and Rstrom (1978) and Āstrom, 

Gudmansson, Hedman and Rao (1977) claim to isolate a temperature in-

dependent component to the susceptibility coming from Fe impurities 

which appears below TN, as well as the previously observed Curie/Curie-

Weiss contributions. In order to make such a separation the 
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susceptibility of the host (Xh) must be accurately subtracted. To 

achieve this, the data is fitted to 

X = (1 - c)Xh  + A + :CL/(T - e) 	T < TN 	(4.14a) 

X = (1 - c) Xh  + CH/ (T - eH) 	T  > TN 
	(4.14b) 

where Xh  = AO  + BOT2  and the subscripts L and H refer to T > TN  and 

T < TN  respectively. It is difficult to assess the validity of this 

procedure. The fact that AO  and Bo  are nearly constant for all alloys 

of a given host both above and below TN  suggests that it is correct. 

Such a fit is motivated by the observation of a sharp change in X at 

TN. 
To explain the concentration dependence of these results the 

authors differentiate between isolated Fe atoms and nearest neighbour 

pairs. It is inferred that isolated Fe moments give rise to a tempera-

ture independent susceptibility below TN,  the size of which increases 

by two on cooling from the TSDW to the LSDW and decreases by two on 

cooling from the TSDW to the CSDW state. These isolated moments also 

contribute a Curie-Weiss term in the TSDW and paramagnetic phases. 

On the other hand, nearest neighbour Fe pairs give Curie-Weiss para-

magnetism in all phases. This complex set of observations has recently 

been explained by Friedel and Hedman (1978) who propose that isolated 

Fe moments are strongly coupled to the SDW, whereas nearest neighbour 

pairs of moments are uncoupled from the SDW and rotate as paramagnetic 

entities. The postulate of strong coupling to the. SDW is in complete 

contrast to the earlier proposals. 

Babic, Kazjar and Parette (1980) have measured the high field 

magnetization.of Cr 1-5% alloys in pulsed fields up to 33T. The 

magnetization is linear with field at 4.2 K for 1% - 1.5% Fe. This 

is not consistent with the concept of weakly coupled paramagnetic 

moments• and tends to support the Friedel and Hedman (1978) model 

having strong coupling. As the Fe concentration is increased to 2.4% 

a saturating component of the magnetization is developed in addition 

to the linear response found at lower concentration. This component 
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is identified with the Curie-Weiss paramagnetism of ferromagnetically 

coupled nearest neighbour pairs of Fe moments, each moment being 

ti 1.5 pB, again in agreement with Friedel and Hedman's model. 

There have been many Mossbauer effect measurements on dilute 

CrFe alloys. The earliest, by Wertheim (1961), revealed only a single 

unsplit Mossbauer line. This was originally interpreted as evidence 

for the paramagnetism of Fe impurities below TN. Later work showed 

that this line was in fact broadened and Herbert, Clark and Wilson 

(1972) obtained well resolved seven line spectra for very dilute (0.2%) 

alloys. Careful analysis of this data demonstrated that the distribution 

of hyperfine field at the Fe nuclei was bimodal, having one component 

at zero hyperfine field and a second, temperature dependent, component 

which tended to a value of ti 35T at 4.2 K. Strong coupling between the 

local moment and the SDW was suggested. 

The small value of hyperfine field seen in the Mossbauer data 

of Herbert et al. (1972) and the Curie-Weiss susceptibility were ex-

plained in terms of a spin compensated Fe moment of 0.5 uB  with a 

Kondo temperature of 60 K. The existence of a resistance minimum at low 

temperature in CrFe alloys (Katano and Mori (1979)) has also been inter-

preted along these lines. It should be noted that similar resistance 

minima are also found in CrSi and CrGe where there is no question of 

Kondo moment. For comparison, one should note TK  " 300 mK for Fe in 

bcc Mo (Amamou et al. (1975)). Katano and Mori (1979) also report a 

cusplike susceptibility maximum at 2.7 K for a 1.5% alloy, well below 

the postulated TK  of 60 K. This spin-glass like behaviour is inconsistent 

with the supposed Kondo instability of the Fe moments in this con-

centration range. In the absence of any detailed measurements on very 

dilute alloys (100 ppm) Kondo behaviour of isolated Fe moments in the 

single impurity limit cannot be ruled out, however in the concentration 

range above 0.2% such behaviour seems unlikely. 

These problems have provoked a number of diffuse neutron scatter-

ing experiments, all of which have been performed concurrently with the 

present investigation. The major difficulty in these experiments is to 

separate the small magnetic diffuse scattering signal from the larger 

nuclear incoherent contribution, as discussed in 4.4. Holden and 

115 



Fawcett (1978) could not detect any magnetic incoherent scattering 

to within ± 15 mb sr-1at-1  from a 2.8% Fe single crystal. Kazjar, 

Babic and Parette (1980) used the polarized diffuse technique 

(usually restricted to the study of ferromagnets) to measure the 

magnetic-nuclear interference scattering in a number of CrFe CSDW 

alloys by applying a field of 1.3 T. No magnetic-nuclear difuse 

scattering could be isolated in 1.5% and 2.4% Fe samples at 4.6 K 

to within ± 3 mb sr lat-1. A small degree of clustering, correspond- 

ing to al  = 0.14 was detected in the 2.4% sample. 

. Cywinski and Hicks (1980) claim to have separated the magnetic 

and nuclear defect scattering from a 6.5% alloy using the polarization- 

analysis technique. The atomic defect scattering showed a small 

amount of clustering, al  = 0.14 in agreement with Kazjar et al. (1980). 

By fitting the magnetic defect scattering using the formalism of 

2.2.3, it was suggested that the ordered moment on Cr sites was 

reduced almost to zero in the first and second coordination shells 

surrounding the Fe impurity. Zero moment was found on the Fe sites 

themselves. This was explained by assuming that the Fe moments 

fluctuate paramagnetically and do not give a nett time averaged 

moment. The lack of any paramagnetic scattering from these fluctuating 

Fe moments within the experimental K range (0.35 < K < 2R-1) was 

explained by the coupling of Fe moments into superparamagnetic assemblies, 

taking the response beyond the K range of the measurement. These obser- 

vations are discussed in more detail and compared to the results of 

this present work in 4.4. 

4.2.2.3 Theory: dilute alloys  

Theoretical study of dilute CrFe alloys has tended to follow two 

distinct themes: the effect of local moment impurities on the SDW and 

the nature of the Fe moment and its coupling to an unpeturbed SDW. As 

yet no complete microscopic theory combining these two aspects has 

emerged. 

(a) The effect of local moment impurities on the SDW  

The SDW systems in which the impurity possesses a local moment 

do not follow the general trends for Cr alloys outlined in section 4.1.5. 

To explain the complicated changes seen in CrFe antiferromagnetic alloys 
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it is necessary to consider: 

(i) the change in electron concentration on alloying with Fe. The 

fact that an Fe moment of 'L 1.5 uB is found in SDW Cr suggests 

that up to 0.5 electrons/Fe are contributed to the rigid band 

structure. This will tend to expand the electron surface at 

the expense of the hole surface and improved Fermi surface nest-

ing may result. 

(ii) the scattering from Fe impurities (which will include both 

'normal' and magnetic terms). This scattering will tend to de-

correlate the electron-hole pairs responsible for the SDW and 

thus lower TN. 

(iii) the polarization of the local moment by the SDW. This may lead 

to exchange enhancement of the electron-hole pairing which tends 

to raise TN. 

(iv) the modification of band structure. The band structure itself 

may be altered, in this case following the large volume changes 

found at the transition temperature. 

Shibatani (1971) applied Abrikosov-Gorkov theory to the problem 

of scattering from local moment impurities in a one band model. The 

possibilities (ii) and (iii) above were investigated. The competition 

between these two effects leads in certain circumstances to a decrease 

in TN with u remaining almost constant, as in CrFe. 

This work was extended by Antonoff (1977, 78) to include the 

possibilities (i), (ii) and (iii) for a two band model with imperfect 

nesting. The interaction between the conduction electrons which give 

rise to the SDW and the impurity spin was assumed to be of the form 

A 

H3 = 
2 

E J Sn. a. 
in 

(4.15a) 

where the impurity spin Sn at a site n is treated classically and ai 

is a conduction electron spin. J is an effective exchange constant. 

The CSDW was considered and the Neel temperature was given by 

-InTN 	(1+ T~~~)Re[ (2 + 27T 	TIT-) - 4)(2)] 
NO 	N 	N 

(4.15b) 
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where the pair breaking parameter a is the sum of the magnetic and 

non-magnetic pair breaking parameters. The non magnetic terms have 

been dealt with previously (eq. 4.13). The magnetic pair breaking 

parameter am, although not explicitly written, is given in Abrikosov-

Gorkov theory by 

kBa 	= 27rcN (EF) 
3 
 S(S + 1) J2 
	

(4.15c) 

in the limit of small polarization. The factor A arises from spin 

polarization and is zero in the limit of small polarization,Whereas 

the pair breaking parameter a and the imperfect nesting parameter h 

depress TN, the factor A tends to increase TN. The competition between 

these three effects may lead to a minimum in TN  as a function of 

concentration, as in CrCo.or a monot onic decrease as in CrFe. The be-

haviour of the ordered moment was not considered. 

Nakanishi and Kasuya (1977) studied the effects (i), (ii) and 

magnetostriction (essentially the change in band structure (iv)) on 

a two band SDW. The Hamiltonian for this model is given in section 

4.1.5 with the scattering term H2  from eq. (4.12), and may be extended 

to the case of magnetic scattering by writing the inter and intra band 

scattering matrix elements for bands a,s = a, b, r as, 

(vaa)aa, = Saa' as  + JaS(s.Q)aa, (4.16a) 

No polarization of the local moment was considered and weak coupling 

Jab = Jba = 0 was assumed. For simplicity Jaa  Jbb  and Jac =Jbc = 

Jcb = Jca. For the CSDW the magnetic scattering contributes a further 

pair breaking parameter a"r  to the expression (4. 15b) in addition to 

a so that in full, 

a=ar + al + a'Mr + cLMl (4.16b) 

where ar, al  and am  are given by (4.15c) and (4.13), whilst 

kBaMr = /Nr(EF)c(S(S  + 1))Jac  
2 (4.16c) 
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The volume change at TN  is incorporated by allowing a flow of 

electrons from the local moment to the SDW band structure which 

forces a change in the nesting parameter. Semiquantitative agree-

ment with the phase diagram could be achieved with a reasonable 

choice of parameters. 

(b) The nature of the Fe moment and coupling to the SDW 

The question as to why Fe should have a local moment in Cr has 

not been explained in any detail. According to the Anderson picture 

the fact that Fe does sustain a moment in bcc Cr but not in bcc V 

can, presumably be explained by the narrow band width of Cr compared 

with V. A similar argument is advanced to account for the relative 

stability of the Fe moment in bcc Mo compared with bcc Nb. The 

questions of whether there is a component of the SDW at the Fe site 

and the coupling between the Fe moment and the neighbouring SDW also 

have not been examined from first principles. 

In the absence of a complete first principles theory, Friedel 

and Heldman (1978) adopted a phenomenological approach to the problem. 

A local moment on the Fe sites was assumed to exist. It was argued 

that, to a first approximation, the Fe moment did not perturb the SDW 

and simply removed one Cr moment from the otherwise perfect sinusoidal 

modulation and replaced it with an Fe moment. The coupling between 

this substituted Fe moment and its surrounding SDW was presumed to be 

strong, simply on the basis that the substituted moment was large 

compared with the Cr moment it replaced. 

Friedel and Hedman (FH) distinguish between isolated Fe moments 

in the LSDW, TSDW and CSDW phases: 

(1) Isolated moment in the CSDW phase  

The impurity moments are aligned along the direction of sublattice 

- magnetization, either up or down depending on the sublattice upon 

which they are found. The Fe moments, being strongly coupled to 

the local CSDW, are only weakly susceptible. This results in a 

rigid Ising spin glass. 

(2) Isolated moments in the ISDW phases  

The strong coupling between the isolated Fe moment and the ISDW 

constrains the Fe moment to lie along the polarization direction 
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of its surrounding ISDW.To optimize the coupling energy the 

phase of the ISDW slips in such a way that the Fe moment finds 

itself occupying the position of the maximum SDW amplitude. 

The ISDW and the Fe moment are thus locked together. FH arve 

that this composite system may be excited by (one dimensional) 

spin reversal along the polarization direction of the LSDW and 

by (two dimensional) rotation about the propagation direction of 

the TSDW. As such excitations only change the phase of the ISDW 

they may occur at little energy cost so that they result in a 

Curie like susceptibility. However, any attempt to pull the Fe 

moment away from the local SDW polarization as in the CSDW phase 

results in a weak temperature independent susceptibility. Hence 

the susceptibility in the ISDW phases is highly anisotropic. 

(3) Finite concentration effects, ISDW phases  

At a small but finite concentration of isolated impurities the 

Fe moments will tend to compete for the most favourable phase of 

the SDW, this leads to a long range distortion of the SDW which 

inhibits the 2d rotation or spin flip of the Fe-SDW. Thus the 

Curie like susceptibility 	Curie-Weiss form with a small 

negative 0. Below 6 the collective motion becomes progressively 

blocked and the susceptibility tends to a temperature independent 

value. 

(4) Nearest neighbour moments  

Nearest neighbour Fe moments are expected to behave in a super-

paramagnetic fashion in all phases. In the CSDW the ferromagnetic 

coupling between two nearest neighbour (nn) Fe moments frustrates 

any coupling to the two different sublattices on which they are 

found. This allows the coupled moments to rotate with little or 

no interaction with the matrix, giving a Curie-Weiss susceptibility. 

In the ISDW phases such cancellation is incomplete. 

At the heart of the FH model is the strong coupling between the 

SDW and the Fe moment. Such strong coupling had been previously 

suggested by Herbert et al. (1972) based on Mossbauer data. The magnitude 

of the coupling may be estimated from the high field magnetization data 
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of Babic et al. (1980). Using a model by Lomer (1960) the inter-

action between a local spin S and the SDW a is characterized by a 

coupling constant J, 

H = - gPBH.S - 
2 
 JialB.S (4.17a) 

where a:: is the local SDW polarization. Lomer calculated the impurity 

susceptibility for S = 2. The calculation was extended to the case 

S = 1 (appropriate to Fe impurities) by Hedgecock, Strom-Olsen and 

Wilford (1977) who calculated an impurity susceptibility, 

C(guB)2  sinh(6J6/2) 	(2 + cosh(SJY/2) 

X 	Ja 	(1 + 2cosh(sJa/2) 	2)  
(1 + 2cosh(13Ja/2)) 

which tends to constant value 

X = cg211B2/Jo.  _ (4.17c) 

in the limit of large coupling. The high field magnetization data 

for 1% and 1.5% alloys is linear with field up to 33T and consistent 

with the limit (4.17c), giving a value J 200 K which is of the same 

order. as TN. As discussed previously the high field magnetization 

measurements also show evidence for the Curie-Weiss susceptibility of 

nn pairs of Fe moments. 

Thus the phenomenological FH model accounts well for both the 

low field magnetization data of Hedman at al. (1978) and āstrom et al. 

(1977) as well as the high field data of Babic at al. (1980). 

4.2.3 Concentrated antiferromagnetic alloys (5% < c < 20%) 

In contrast to the dilute alloys, relatively little work has been 

devoted to the properties of more concentrated antiferromagnetic 

alloys (5% < c < 20%). In this concentration range the SDW order 

associated with pure Cr gives way to the ferromagnetic order of pure 

Fe. 

(4.17b) 
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4.2.3.1 The critical concentration for antiferromagnetism  

As no neutron Bragg scattering data is available for the con-

centrated alloys, the concentration dependence of TN  cannot be 

determined directly but must be inferred from anomalies in the bulk 

magnetic and transport properties. No information exists for the 

ordered antiferromagnetic moment. 

Magnetic phase diagrams covering this more concentrated region 

have been compiled by Mitchell and Goff (1972) and Loegel (1975). 

These diagrams are based on the anomalies in resistivity (Arajs and 

Dunmyre (1966), Rajan, Waterstrat and Beck (1960), Suzuki (1966) and 

Newmann and Stevens (1959)), magnetic susceptibility (Ishikawa et al. 

(1965), Newman and Stevens (1959), Suzuki (1966) and Booth (1966) 

and thermal expansion (Ishikawa et al. (1967), Suzuki (1966) and 

Newmann and Stevens (1959)). More recently data from specific heat 

for c < 8% (Suzuki (1976)) and Mossbauer effect (Kuwano and Ono 

(1977)) have become available. The electrical resistivity of CrFe 

SDW alloys shows a shallow minimum which is identified with TN  where-

as the magnetic susceptibility shows a change in Curie constant at 

TN. The bulk of this data has been collected for c: < 10% and only 

resistivity data exists for the higher concentration range. See 

Fig. 4.11. 

These phase diagrams show TN  decreasing monotonically with con-

centration, reading zero at 'L 20% Fe. Both phase diagrams show a 

region of overlap between antiferromagnetism and ferromagnetism. 

4.2.3.2 Bulk magnetization  

The bulk magnetic properties of the more concentrated anti-

ferromagnetic alloys show characteristics of 'superparamagnetism'. 

e.g. the data of Ishikawa et al. (1965) shows the development of a 

nonlinear component of the low temperature magnetization as the 

concentration increases above 'ti% 5%. The curvature of the low tempera- 

ture M-H plots 	essentially follow 	a Langevin function with 

a slow approach to saturation. Hysteresis and time dependent remanence 

develop as c exceeds 10%. 

In its original sense 'superparamagnetism' is a term used to 

describe the paramagnetic behaviour of a collection of small ferromagnetic 
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particles: such as precipitates of Co in Cu, see for example Bean 

and Livingston (1959). This concept has been applied with minor 

modifications to the description of concentrated CrFē alloys. 

According to Ishikawa et al. (1965) nn Fe moments couple ferromagnetically 

at low temperature to form a correlated network of many spins with a 

nett moment of several hundred uB. The nett moment is free to rotate 

like a giant paramagnetic spin (hence 'super' paramagnetism), giving 

a Langevin type magnetization. Time dependent remanence and 

hysteresis may be explained by assuming anisotropy barriers to the free 

rotation of such particles. (Street and Wooley (1949)). The size 

of these correlated networks is dictated by the concentration and 

temperature, they are not distinct metallurgical particles with a 

large T.  Typically the superparamagnetic assemblies are destroyed 

by heating above `), 100 K. 

The data of Ishikawa et al. (1965) has recently been supplemented 

by Babic et al. (1980). The magnetization could be virtually saturated 

in a pulsed field of 33T, and a moment of 1.8 uB/Fe was derived for 

12% and 14% alloys. These workers also carried out polarized diffuse 

neutron scattering measurements on the same alloys (Kazjar at al., 

1979-80) and deduce an average Fe moment of 2.0 uB  in good agreement 

with the magnetization measurements. These measurements, which were 

performed concurrently with the present work are discussed in more 

detail in section 4.4. 

123 



Fig.4.11 Magnetic phase diagram for Cr Fe alloys compiled by 

Loegel (1975). 

Fig.4.12 Neutron powder diffraction scans through the (100) 

position for Cr Fe 12% alloy above and below TN. 
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4.3 Determination of the commensurate antiferromagnetic phase  

boundary  

4.3.1 Introduction  

Despite the immense amount of work on dilute CrFe alloys there 

is a lack of detailed information concerning more concentrated alloys. 

No neutron Bragg diffraction data exist for concentrations above 5%, 

yet it is precisely between 5 and 20% that SDW order is destroyed. A 

knowledge of both TN  and the ordered SDW moment (u) as the concentration 
is increased towards the critical concentration for SDW order is 

fundamental to the understanding of the 'anomolous' behaviour of the 

CrFe SDW. 

The phase diagrams of Loegel (1975) and Mitchell and Goff (1972) 

show a region of overlapping ferromagnetism and antiferromagnetism 

between 15 and 20% Fe. Physically, such an overlap is difficult to 

understand. As the antiferromagnetic segments of these diagrams above 

5% were deduced from resistivity measurements an independent deter-

mination of the antiferromagnetic phase boundary was initiated using 

neutron diffraction. Apart from clarifying the phase diagram problem, 

such measurements enable the concentration dependence of TN  and u to 

be determined. 

4.3.2 Results of Bragg scattering measurements  

The ordered antiferromagnetic moment at 4.2 K(50) was determined 

for a series of CrFe alloys spanning the concentration range 4.5 to 

17% Fe. The details of sample preparation are outlined in 3.1. The 

ordered moment was calculated by normalizing the magnetic (100) in-

tensity to either the (110) or (200) nuclear reflections as discussed 

in 3.4.1. A typical neutron Bragg scattering pattern is illustrated 

in Fig. 4.12. The (100) reflection was always observed unsplit, con-

sistent with the samples having the simple two sublattice antiferro-

magnetic CSDW structure. 

The values of u0  determined in this way are shown as a function 
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of concentration in Fig. 4.13. The data is in good agreement with 

the values of Ishikawa et al. (1967) taken on more dilute alloys, 

c < 4.7%. 1710 
 for these CSDW alloys decreases as the Fe concentration 

is increased, reaching zero at a critical concentration of 

16.0 ± 0.5%. 	Values are given in table 4.1. 

The temperature variation of Ti was followed for the 10.2, 12.2, 

13.6, 14.2 and 15.4% alloys as shown in Fig. 4.14. The temperature 

dependence of the 10.2% and 15.4% samples was followed in detail. For 

the remaining alloys, only sufficient data was taken to bracket the 

Nēel temperature. TN  deduced from this data is also presented in 

table 4.1. The concentration dependence of TN  is shown in Fig. 4.15. 

The Nēe1 temperature decreases rapidly with increasing concentration, 

extrapolating to zero at the critical concentration 16.0 ± 0.5% found 

from the u0 
 measurements. 

Table 4.1  

Ordered moment at 4.2 K(170) and Nel temperature (TN) determined by  

neutron diffraction  

Concentration 

% Fe 
u0 

uB
/at 

TN  
K 

4.5 0.69 ± .01 - 

7.0 Of65 ± .01 - 

9.2 0.49 ± .01 - 

10.2 0.42 ± .01 153 ± 5 

11.2 0.41 ± .01 - 

12.2 0.37 ± .01 115 ± 10 

13.2 0.30 ± .01 - 

13.6 0.28 ± .01 90 ± 10 

14.2 0.21 ± .01 65 ± 5 

15.3 0.16 ± .01 49 ± 3 

15.4 0.13 ± .05 - 

16.7 0.00 ± .05 - 
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Fig.4.13 Ordered antiferromagnetic moment for Cr Fe alloys at 5K. 

For comparison, the moment corresponding to the maximum 

amplitude of the ISDW is shown. The full curve is a 

guide to the eye. e, this work; A , Arrott et al (1967) 

A , Ishikawa et al (1967). 

Fig.4.14 Temperature dependence of the ordered moment. The full 

curve is the B1  function. V  , 15.4%1  0 ,14.2% 
z 

A, 13.6% 	;A, 12,2% 	., 0, 10% 
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Fig.4.15  Antiferromagnetic phase boundary in binary Cr Fe 

alloys compiled from various sources. The broken 

line is the Abrikosov-Gorkov relation (eq.4.14) with 

T = 300K. To illustrate the scaling between the 

ordered moment at 5K and TN  the same curve used in 

Fig.4.13, scaled by a constant value has been reproduced 

(full curve). š , this work; 0 , neutron diffraction; A 

dp 
(dT) anomaly; V, susceptibility. 
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4.3.3 Determination of TN  from resistivity measurements  

There is a large discrepancy between the neutron diffraction 

data above and TN  determined from resistivity measurements (Loegel 

(1975) Mitchell and Goff (1972)), amounting to almost 30 K in the 

case of the 10% alloy. 

There has been some disagreement in the literature as to which 

feature of the resistivity marks TN.  For example, Mitchell and Goff 

(1972) and Loegel (1975) assumed the minimum of resistivity occurs 

at TN  whereas Trego and Mackintosh (1968), Ausloos (1977) and Astrom 

et al. (1977) exphasise that the minimum in the thermal coefficient 

of resistivity marks TN. 

To our knowledge this point has not been resolved by reference 

to neutron diffraction, so that a sample suitable for resistance 

measurements was.  spark cut from the neutron 10.2% alloy and the 

resistivity measured using a standard 4 point DC technique. The 

experimental details are given in 3.9. The results, expressed in 

terms of- dT ,  are shown in Fig. 4.16. It can be seen that TN  found 

from neutron diffraction lies close to the maximum in - dT for this 

alloy, whilst the resistivity minimum pin  occurs some 30 K higher. 

Thus TN  must be identified with - āT maximum. 

Using this criterion, TN  was deduced from the resistivity data 

of Arajs and Dunmyre (1966) and Rajan et al. (1960) for a number of 

CrFe alloys. The results, as shown in Fig. 4.15, are in excellent 

agreement with TN  determined by neutron diffraction. There is, thus, 

good agreement with the resistivity data once the correct criterion 

for identification of TN  is used. 

4.3.4 Analysis and discussion  

The correct identification of TN  with the maximum of - dT  brings 

the critical concentration for antiferromagnetism estimated from 

resistivity into line with the present value of 16.0 ± 0.5 % from 

neutron diffraction. By moving the critical concentration to lower 

Fe concentration these measurements resolve the problem of overlapping 
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ferromagnetism and antiferromagnetism previously reported by Mitchell 

and Goff (1972) and Loegel (1975). 

The behaviour of TN  and 
u0 

 for these more concentrated alloys 

is quite different to that reported for the dilute ISDW (4.2.1). Both 

TN  and u0  decrease monotonically with increasing Fe content for the 

CSDW whilst 50  remains almost constant and TN  decreases for the ISDW. 

Furthermore a significant increase in 5
0 
 occurs as the SDW becomes 

commensurate. This is well illustrated by the extrapolated value of 

0.94 
uB 

for a hypotherical CSDW in pure Cr, compared to the actual 

value of 0.59 	for ISDW Cr. 

The most striking aspect of this data is the scaling between 

u0 and TN. This is illustrated in Fig. 4.17. Additional data for 

TN  has been taken from the resistivity measurements of Rajan et al. 

(1960) and Arajs and Dunmyre (1966) using the — dp 

plot shows a constant value of u0/TN  amounting to 3.1 X 10
-3 
 uB

/at/K. 

To emphasise this scaling the same curve has been drawn through the 

data of Fig. 4.13 and Fig. 4.15 and has simply been multiplied by the 

appropriate value. The constancy of 5
0
/TN  has been noted for ISDW 

alloys of Cr with Mo, W and V by Koehler et al. (1966) although with 

a smaller ratio. u
0
/TN  = 1.89 x 10

-3 
 characteristic of the ISDW. 

Scaling between TN  and the energy gap 2g has also been reported by 

Barker and Ditzenberger (1970) from optical absorption measurements on 

both dilute ISDW and CSDW Cr alloys with V, Mo, Ru, Mn and Fe. Accord-

ing to this data the ratio 2g/TN  is approximately doubled for the CSDW 

compared with the ISDW. Making the reasonable assumption that the 

energy gap is proportional to the order parameter 5
0 
 for these dilute 

alloys then such a change in 2g/TN  is very close to that observed in 

the present experiments. Strom—Olsen and Wilford (1980) also report 

a constant ratio n/TN  from analysis of resistivity data for CrMo 

alloys-containing less than 10% Mo. 

The constancy of 5
0
/TN  implies that there is no fundamental 

difference between the CSDW found in dilute alloys and the CSDW close 

to the critical concentration. In particular this suggests that a 

dT criterion for those 

alloys where TN  has not been measured by neutron diffraction. TN  

and 
p0 

 for a (CrMo 2%) Fe 14% alloy have also been included. This 
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Fig.4.16  Temperature derivative of the resistivity close to 

TN  for Cr Fe 10.2%. The maximum in dT  closely coincides 
with TN  determined by neutron diffraction on the same 

sample (arrowed). The minimum in resistivity is marked. 

Fig.4.1'  Scaling between the Neel temperature and ordered moment 

at 5K for CSDW Cr Fe alloys. Data for a (Cr Mo  2%) 

Fe 14% alloy have also been included (open circle). 
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component of the SDW is induced at Fe sites, as 50 is measured per 

atom rather than per Cr atom. 

Such scaling between TN and u0, over at least a limited con-

centration range, is predicted by the two band models for the SDW 

discussed in 4.1.4 and 4.1.5. Proportionality between TN and the 

order parameter A at OK is predicted in the simplest case of perfect 

nesting in the absence of scattering by the FM model, as shown by 

eq. 4.7c. This proportionality is retained in the CSDW with imperfect 

nesting (again in the absence of scattering) for small values of 

the imperfect nesting parameter h and a small electron reservoir 

according to the Rice model. This result breaks down in the presence 

of an electron reservoir. If scattering is present it is important 

to differentiate between,~the order parameter A, which is proportional 

to 3i, and the energy gap 2g. In the CSDW with perfect nesting treated 

by Zittartz the ratio A(0)/TN increases with increasing concentration. 

For small concentrations i.e. TN linear with C, 

TX 
	TNO 	4 Y AO700)} ...)  

(4.18) 

where the subscript 0 indicates the pure system. Thus while 

A(0)/TN = (7r/y)kB for a=0, this value increases by a factor of 2 by 

the time a is sufficiently large for a gapless CSDW to be retained at 

T=O, a1 = 0.913 ac.(c.f. eq. 4.lOc). No calculations of A(0) for the 

more general case of both scattering and imperfect nesting treated 

by Nakanishi and Kasuya, and Antonoff have been attempted. 

The temperature dependence p(T) is also predicted by the two 

band models of 4.1.4 and 4.1.5. The FM two band model gives a BCS 

dependence of u on T. As shown in Fig. 4.14 this temperature 

dependence is approximately followed by CrFe CSDW alloys, although the 

decrease in u is slower than predicted by the BCS relation (eq. 4.7d) 

or the Bi function to which it closely approximates. A deviation of 

this type is found in the Abrikosov-Gorkov theory of Zittartz for 

the CSDW. As expected, the deviation from BCS becomes larger for 

higher impurity concentration. 

As previously stated, the decrease in TN and u0 with increasing 
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Fe concentration is contrary to the expectations of the rigid band 

models which successfully account for the alloying behaviour of 

'normal' solutes in Cr. The anomalous behaviour of CrFe alloys is 

explained by the pair breaking effect of the Fe local moment 

impurities together with some degree of polarization and electron 

transfer in the Antonoff model and including magnetostriction in 

the Nakanishi and Kasuya model. 

The concentration dependence of TN is well described by the 

Antonoff model. According to eq.(4.15b) and (4.16c) the decrease 

in TN simply follows the Abrikosov-Gorkov relation, 

~,n T 0 = 2tU(2TT*) - Y(T *) + C 	 (4.19a) 
N 	N 	N 

where C is the Euler constant and a, the pair breaking parameter, is 

taken to be linear with concentration 

* 
a = cT (4.19b) 

with 

* 
kBT = 3 N(EF)S(S + 1)J2 	Magnetic only. 	(4.19c) 

if only magnetic scattering via eq.(4.15c) is taken into account. In 

writing these expressions it is assumed that there is perfect nesting 

(h=0) and no change in h with concentration, as well as negligible 

polarization of the impurity spins. The Nel temperature of (hypo-

thetical) pure CSDW Cr (TN0) is taken to be 311 K, the TN of pure 

ISDW Cr. An excellent one parameter fit to the data is obtained with 
* 
T = 300 K as shown in Fig. 4.15. The goodness of fit can be judged 

by the consistency of the initial slope and the critical concentration. 

From (4.10b) and (4.19a) 

dT
N 	7

2 
* 	= Y = 

do 	2 cT 
	and 	

ccrit 4 
T 

dTTN~~ 

The measured d
o 

= 1540 t 10 K gives T = 310 t 10 K, whilst 
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ccnt = 0.16 ± 0.005 gives T = 270 ± 10 K. The inclusion of 

polarization and nesting effects will lead to a better fit, also 

allowing TNO  to be modified from the ISDW value. 

It is difficult to estimate T for purely magnetic scattering 

from eq. (4.19c) as the interaction strength J is not well known. 

Using the density of states N(EF) = 0.89 at/eV taken from the band 

structure calculations of Asano and Yamashita (1967) and S = 1 

gives J = 220 meV corresponding to the measured T of 300 K. This is 

an order of magnitude larger than J estimated in 4.2.2.3 from the 

high field magnetization data of Babic at al. (1980). However this 
* 

J represents an upper limit,as the measured T will also contain 

normal scattering terms which have not been considered. 

The concentration dependence of the ordered moment is not treated 

by Antonoff. If the Antonoff model is taken in the limit of h = 0 

and A = 0 it reduces to the Abrikosov-Gorkov model. (This limit was 

taken, for simplicity, in fitting TN(c).) The theory in this limit 

cannot account for ji0(c) as the model predicts the break down of 

scaling between u0  and TN  at high concentration (eq. 4.18). However, 

in the presence of polarization of the Fe moments this scaling feature 

may be retained by the Antonoff model. This can be simply demonstrated 

using eq. 4.18. If polarization effects are present the order para-

meter A0(0) for the pure system must be replaced by the order parameter 

AOc(0) for the system with polarized Fe moments in the absence of 

scattering. In its simplest form &0c(0) will vary linearly with c, 

AOc(0) = A0(0) ( 	u 	) 
Cr  

for a fully polarized system. Inclusion of Loc(0) in (4.18) leads to 

scaling of uO/TN  over a wider concentration range. For a more detailed 

analysis the Antonoff model must be extended to treat h0. 

(1-c)M
Cr + c'Fe  
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4.4 The nature of the Fe :-moment in antiferromagnetic Cr  

4.4.1 Introduction  

The behaviour of the Fe moment in antiferromagnetic Cr is 

not well understood. Ona one hand, the high field magnetization 

data of Ishikawa et al (1965) and Babic et al (1980) show a 

localized moment of 1.5pB  at low temperature and 2uB 
 at high 

temperature, yet the hyperfine field measurements of Herbert et 

al (1972) are interpreted in terms of a spin compensated moment of 

0.5pB  at low temperatures. The magnetorēsistance measurements of 

Hedgecock et al (1977) suggest extremely weak coupling between the 

SDW and the local moment whereas Friedel and Hedman (1978) 

explain the susceptibility of dilute Cr Fe alloys by assuming 

strong doupling. At higher concentration, the scaling between TN  

and po  suggests a uniform approach of the CSDW to the critical 

concentration, however Ishikawa et al (1965) propose the growth 

of superparamagnetic clusters of ferromagnetically coupled Fe 

moments in this region. 

In an attempt to resolve these conflicting observations a 

series of neutron scattering measurements.was'.initiated. The 

dynamical magnetic response of the Fe moments, both above and 

below the Neel temperature, was determined for a Cr Fe 10% alloy 

using the neutron TOF technique and is discussed in section 4.4.3. 

Using the neutron polarization-analysis technique, the average 

Fe moment and moment disturbance in the vicinity of the Fe atom 

can be determined, at least in principle. This technique was 

applied to study the magnetic disturbance in a Cr Fe 5% alloy and 

is discussed in section 4.4.4. The low field magnetization of 

several concentrated antiferromagnetic alloys was also measured 

and is discussed in the following section. 
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4.4.2 Coexistence of SDW:and spin glass states in Chromium alloys  

containing'iron  

4.4.2.1 Spin glass behaviour . in (Cr Mo . 2%) Fe 14% . and Cr .Fe 14%. 

Neutron Bragg Scattering, resistivity and low field static 

susceptibility measurements were performed on two alloys containing 

14% Fe dissolved in the SDW hosts Cr and Cr Mo-27. The neutron 

diffraction experiments were carried out at AERE Harwell as 

described in 3.4. The samples were prepared using the procedure 

outlined in 3.1. The resistivity and susceptibility measurements 

were made by J. Strom-Olsen and D.F. Wilford using samples spark 

machined from the neutron diffraction specimens. The resistivity 

was determined by a four point AC method (Muir and Strom-Olsen 

(1976)) and the susceptibility data collected in both field 

cooled (500 Oe) and non-field cooled states using a vibrating 

sample magnetometer. Further experimental details are given by 

Strom-Olsen, Wilford, Burke and Rainford (1979). The results of 

this series of measurements are shown in Fig. 4.18. 

The susceptibility data shows clear evidence for 'spin glass' 

behaviour (5.1). The susceptibility obtained after cooling in 

zero field shows a peak characteristic of a spin glass at the 

freezing temperature Tg, while the susceptibility found after 

cooling in a field of 500 Oe saturates below Tg. The evolution 

between the field cooled and non field cooled states is governed 

by the slow time dependence similar to that found by Guy (1977) 

for Au Fe. This spin glass behaviour is observed below the Neel 

temperature determined by neutron diffraction. An independent 

check on the value of TN  is provided by the resistivity data. 

Excellent agreement with the neutron value results if the -dp  
dT 

criterion (4.3.3) is used. The neutron diffraction data show 

furthermore that the SDW is retained down to lowest temperatures 

and is not disturbed by the occurrence of spin glass phenomena. 
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Fig.4.18  Results of neutron Bragg scattering, resistivity and 
low field susceptibility measurements on 

(a) Cr Fe 14% 	(b) (Cr Mo2%) Fe 14% alloys. 

TN  determined by neutron diffraction and resistivity 

are arrowed. The spin glass temperature, which occurs 

below TN, is also shown by an arrow. The B1 dependence 

of the ordered moment is shown by the full curve. 

Susceptibility data are normalized to the peak values, 

the open circles represent data taken in a field cooled 

state and the full circles for zero field cooling. 
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4.2.2.2 Results of low field static susceptibility measurements  

The static susceptibility of a series of Cr Fe antiferromag-

netic alloys was measured below 77K in fields of 20-30 Oe using 

the vibrating sample magnetometer described in 3.8.2. Neēdlelike 

specimens suitable for susceptibility measurements were spark 

machined from the Cr Fe 10.2%, 13.3% and 15.3% neutron diffraction 

samples and the 15.5% small angle scattering sample. 

The magnetization data were taken in two ways. The non field 

cooled measurements were made by cooling the sample to the lowest 

temperature (1.3-4.2K) in zero field. Data were collected with 

increasing temperature. The magnetization at each temperature was 

determined 30 sec. after the application of a 20-30 Oe field. The 

field was then returned to zero and the temperature increased 

after allowing sufficient time for any remanence to decay. The 

field cooled data were taken by cooling the sample to the lowest 

temperature in an applied field of 20-30 0e. The magnetization 

was then determined in the same field with increasing temperature, 

the applied field was not removed. 

The field cooled and non field cooled data for the 10.2% 

and 13.3% samples is shown in Fig. 4.19. The zero field cooled 

data in both cases show a broad maximum as a function of temperature. 

This peak is typical of spin glasses, the peak temperature is denoted 

T . The field cooled data follows the zero field cooled data 
g 

above Tg  but shows a tendency to saturate below Tg. The levelling 

effect seen in the 10.2% sample is an artefact produced by the 

demagnetizing field of the specimen. 

The zero field cooled data for the 15.3% and 15.5% samples 

are shown in Fig. 4.19. The magnetization is highly temperature 

dependent, increasing rapidly below 30K and reaching a broad 

maximum at T 
g 
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Fig.4.19 Low field magnetization of (a) Cr Fe 10% (b) Cr Fe 13.3% 

(c) Cr Fe 15,37 (d) Cr Fe 15.5% alloys as a function of 

temperature. Open circles represent field cooled data 

and closed circles zero field cooled. 
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4.2,2.3 Discussion  

The spin glass behaviour is strongly dependent on the amplitude 

of the SDW. This is will illustrated by the Cr Mo 2%) Fe 14% and 

Cr Fe 14% data. A summary of the relevent parameters is given in 

table 4.2, for completeness the data of Amamou et al (1974) for 

the Mo Fe 14% spin glass is included. As the Fe concentration in 

these three alloys is constant the increase in Tg  on going from Cr 

to Cr Mo 2% and Mo hosts may be attributed to the decrease in the 

amplitude of the SDW, at least to a first approximation. 

Table 4.2 Ordered antiferromagnetic moment at 4.2K, Neel temperature  

and spin glass temperature for 14% Fe dissolved in bcc  

hosts 

host uo  TN  Tg  

uBJat K K 

Cr 0.2 65 + 5 9 + 0.5 

Cr Mo 2% 0.1 30 + 2 17 + 0.5 

Mo 0 0 30 + 1 

This observation is consistent with the rapid increase in 

Tg  from 14K to 22K for the 15.3% and 15.5% alloys. The neutron 

diffraction data (section 4.3.2) gives TN  = 43K for the 15.3% 

sample so in this case Tg  lies below TN. The Neel temperature for 

Cr Fe 15.5% has not been measured. It is likely that TN  for this 

sample lies below Tg, i.e. below 22K. (Allowing for a possible 

error of + 0.5% in concentration about the nominal value 15.5% 

leads to TN  between 50K and OK according to section 3.3.2.) 

The sudden increase in Tg  over this limited concentration range 
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may thus be attributed to the absence of the SDW at T = Tg  for 

Cr Fe 15.5%. 

More weight can be given to this argument if the susceptibility 

data of 5,4,1 for samples with C > 16% (which do not show anti—

ferromagnetism) are taken into account. As shown in Fig. 5.14, 

the concentration dependence of Tg  shows a sudden rise as the 

antiferromagnetic phase boundary is crossed and the SDW destroyed. 

4.4.3 Spin dynamics in Cr Fe 10% 

4.4.3.1 Results 

The dynamic magnetic response of an antiferromagnetic Cr Fe 

10% alloy was measured at various temperatures above and below 

TN  using the instrument D7 at ILL, Grenoble. The instrument is 

described in section 3.5. 

The large polycrystalline cylinders, one of pure Cr and the 

other Cr Fe 10E were prepared according to the method of section 

3.1. The overall homogeneity of the Cr Fe 10% alloy was checked by 

electron microprobe analysis of sections taken from each end of the 

sample. The concentrations of both sections agreed to within + 0.2%. 

The Neel temperature of the alloy was found by monitoring the (100) 

magnetic reflection. A value of 175 + 5K was obtained, in 

reasonable agreement with the previous results (section 4.3). 

Time of flight spectra were collected for both pure Cr and 

Cr Fe 10% following the procedure of section 3.5. The pure Cr 

sample acted as a blank. The magnetic scattering from the Cr Fe 

10% alloy was weak, thus the TOF spectra for the 16 low angle 

banks of detectors were summed to improve the statistics. The 

resulting TOF spectra are illustrated in Fig. 4.20, for comparison 

the TOF spectra obtained from the pure Cr standard have 	been 

superimposed on the data. 

135 



Fig.4;20. Time of flight spectra summed over low angle detectors 

(K ¢ 0.5 	for for Cr Fe 10% alloy at various temperatures 

and below TN. The pure Cr spectrum is shown for comparison. 
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quasielastic scattering from the Cr Fe 10% alloy 2,s observed 

at all temperatures studied, both above and below'TN. At 19K the 

quasielastic scattering is almost the same width as the 

scattering from pure Cr, which is presumed to be elastic. The 

quasielastic scattering may still be distinguished even at this 

temperature. This is demonstrated in Fig. 4.21 where the TOF 

spectra for a single counter have been shown in more detail, the Cr 

and Cr Fe 10% peak heights have been normalized to each other. 

The neutron quasielastic cross section for magnetic scattering 

has been examined in section 2.2.1• and may be written 

d
2 
a 	

2 dadE 	(2m c
2)2 kl f2  (K) g U (K03) 

,e 

where the spin dynamics are embodied in the function C) (K,w). 

This may be related to the spin relaxation function F(K,w) and 

the isothermal wavevector dependent susceptibility x(K) via 

(eq. 2.12), (eq. 2.14) and (eq. 2.15), 

• (4.20a) 

S(K,w) a 
w 

X(K) F(K,w) 	(4.20b) 

 

1 - exp (-hw S ) 

For simplicity the K dependence of F(w,K) will be neglected and 

F(w) is assumed to have a horentzian line shape, 

	

F(w) = 1 	r 	 (4.20c) 

	

,r 	r2 +(hw)2  

where r is the energy width of the relaxation function and is 

related to the characteristic time for exponential spin relaxition 

via r = h/T. 

The relaxation function F(w) was calculated from the experi-

mental (summed) TOF spectra by firstly subtracting the time 

independent background and empty cell scattering. The resulting 

intensity was converted to a cross section on an energy rather than 

136 



TOF scale using (eq. 3.12), and corrected for the detailed balance 

factor to yield F(w) in arbitrary units. No correction was made for 

the 3d form factor, which varies only weakly over the K range of 

interest. The resulting F(w) was fitted to a Lorentzian over the 

energy range 1.2 - 4.5meV, illustrated by arrows on the TOF 

spectra in Fig. 4.20. This fitting range lies well outside the wings 

of the elastic energy resolution function. 	The fits are shown in 

Fig. 4.22. With the exception of the 10K data the results are well 

described by a Lorentzian. As most of the scattering at 10K lies 

within the elastic resolution a fit at these higher energies is 

difficult to perform. 

The energy widths (r) of the relaxation function determined 
in this way are shown as a function of temperature in Fig. 4.23. 

The energy width increases with increasing temperature below TN  

but shows a decrease as the temperature is raised through TN. At 

higher temperatures r continues to increase. 

To investigate the K dependence of the scattering the 

cross sections were put on an absolute scale and corrected for 

isotropic multiple scattering. The predominantly 'elastic' 

scattering, obtained by integration between w = 0.5 meV to 

w = -0.5 meV is shown as a function of temperature in Fig. 4.24. 

The corresponding cross sections for pure Cr are also shown. The 

scattering from pure Cr is K independent and in reasonable agreement 

with the calculated nuclear incoherent cross section, shown arrowed. 

The cross section varies slightly with temperature indicating some 

systematic error. The cross section for Cr Fe 10% is peaked in 

the forward direction but tends to a constant, K independent value 

at higher K. The high K cross section is larger than the combined 

calculated nuclear incoherent and Lane cross sections, shown 

arrowed. Although the forward scattering increases with decreasing 

temperature, the K width remains essentially constant. At 250K 

the half width is 0.45 + 0.05 Ā̂ 1  and decreases slightly to 0.35 + 

0.02 Ā-1  at 10K. The fact that the forward scattering is strongly 

temperature dependent suggests that it is predominantly magnetic, 

rather than nuclear in origin. 
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Fig.4.22 Lorentzian fits to the relaxation function F(w) for 

Cr Fe 10% at various temperatures. Here F(w)
-1 
 in 

arbitrary units is plotted as a function of w2. 
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Fig.4.23 Half widths (r) as a function of temperature for Cr Fe 
10%. The Neil temperature is shown by an arrow. The 

solid line is a guide to the eye. 

Fig.4.24 Integrated scattering cross section within a +0.5 meV 

window about the elastic energy transfer for Cr Fe 10% 

and Cr samples. Calculated nuclear cross sections are 

shown by an arrow. 





4.4.3.2 Discussion  

The quasielastic scattering arises from magnetically 

correlated clusters of Fe moments rather than the CSDW. This 

is demonstrated by the temperature dependence of the K width of 

the elastic' scattering. Above TN  the CSDW does not exist and so 

the scattering must be associated with local Fe moments. These 

moments are correlated over a distance of some 5-10 Ā at 250K. 

As the character of the scattering remains essentially unchanged 

below TN  ( in terms of K width) it is these same Fe moments which 

contribute to the scattering, even below TN. 

The coexistence of slowly relaxing clusters of Fe moments 

with the CSDW has been inferred previously from the low field bulk 

magnetization data (section 4.4.2). The TOF measurements give 

direct confirmation of this picture. 

The dynamical behaviour of the Fe moments is influenced by 

the CSDW. This is shown by the increase in energy width at TN, 

which implies that Fe moments tend to relax more rapidly in the 

presence of the CSDW. This observation would appear to be 

consistent with the suppression of the spin glass temperature by 

the CSDW, at least according to a fine particle model. As 

outlined in section 5.1.3., the fine particle blocking temperature 

is determined by the requirement that the experimental observation 

time (at) is equal to the characteristic relaxation time of the 

particle moment ( To). As the Fe moments relax more rapidly in 

the presence of the CSDW a decrease in Tg  would  be expected if At 

was held constant. 

5.4.4 A polarization-analysis study of Cr Fe 5%  

5.4.4.1 Introduction  

The magnetic properties of the more concentrated Cr Fe CSDW 
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alloys are dominated by the large correlated assemblies of Fe 

moments observed in the preceding TOF measurement. A study of the 

magnetic disturbance produced on the CSDW by such a large number 

of interacting moments is intractable. Thus we have chosen to 

study a more dilute CSDW alloy with a predominance of isolated Fe 

atoms in an attempt to determine the CSDW moment at the Fe site 

and the nature of the magnetic disturbance surrounding such an 

atom. 

The addition of Fe to Cr results in an approximately linear 

reduction in the CSDW average sublattice moment of some 4.6pB/at. 

It is important to understand how this reduction in CSDW moment 

proceeds. In the absence of evidence to the contrary, one must 

assume that a component of the CSDW exists on both Cr and Fe 

sites. (The average CSDW Cr moment and Fe moment are denoted per 

and pFe  respectively.) 

The decrease in average moment is inconsistent with two 

concentration independent moments 
Cru and  uFe. If the process were 

pure dilution (uFe = 0) such a picture would require uCx = 4.6pB'  
independent of concentration. At the other extreme, if each Fe 

moment entered fully antiparallel into the CSDW with TFē _2.2pB  

a concentration independent 
Cru = 2.4pB  is obtained. These values 

of 
'Cr are unphysically large so that it is apparent that at 

least Cr
p or  uFe is concentration dependent. 

Allowing for the moments 
Crp  and pFe  to be concentration 

dependent, the decrease in CSDW moment may proceed in a spatially 

inhomogeneous or homogeneous way. The inhomogeneity for a dilute 

alloy would be present only on Cr sites as all Fe atoms have the 

same local environment. The presence of an Fe moment may perturb 

the Cr moments in its vicinity, leading to a local reduction in 

moment. It is also possible to envisage a spatially uniform 

reduction in moment in which elL Cr atoms retain the same moment. 
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The fact that the ratio of TN to p is independent of 

concentration suggests that the essential nature of the CSDW is 

is unchanged by the presence of an increasing number of Fe atoms. 

This is difficult to account for without invoking both a CSDW 

moment on the Fe sites and a homogeneous distribution of 

sublattice moment. 

The nature of the magnetic defect around an Fe atom and the 

CSDW moment on both sites may be determined from the magnetic 

elastic diffuse scattering. By using the polarization-analysis 

technique, the magnetic diffuse scattering from an antiferromagnet 

can be separated from the nuclear diffuse and incoherent scattering. 

The magnetic diffuse scattering is composed of two parts, the 

elastic defect scattering discussed above and the quasielastic 

scattering due to dynamical fluctuations in magnetization. The 

magnetic elastic diffuse scattering cross section has been treated 

in section 2.2.3 and is given by (eq. 2.29)'for a dilute anti-

ferromagnet. The quasielastic scattering has been considered in 

section 2.2.1. In the present experiment, these two components 

could not be separated as sufficiently high energy resolution was 

not available. 

It is possible to calculate the magnitude of the magnetic 

elastic diffuse scattering from the Cr Fe 5% alloy chosen for this 

study at one special K value by using the results of section 2.2 

in conjunction with the experimentally determined sublattice moments 

of section 4.3. The elastic magnetic diffuse scattering at the 

(100) position is then given by, 

d (100) /mb/sr/at/ = 48.2 C(1-C) f2(100) (ā~ /uB/at/)2 
Nag.E1. 

in the absence of nuclear short range order. Using measured values 

of do = --4.6 + 0.2, f(100) = 0.68 and C = 0.05 gives 

d (100) = 22 ± 2 mb/srlat 
Mag.el. 
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The integrated quasielastic scattering, which will be 

loosely termed the 'paramagnetic' scattering, may be calculated 

at K = 0, assuming the validity of the quasistatic approximation 

to give 

CO)
do   /mb/sr/at/ = 48.2 g2  S(S+1) x(0) 
Para 	 o  

where X,(0) is the measured bulk susceptibility of the sample 

and xo  is the susceptibility of the same sample in the same 

units assuming that every atom has a spin S, gyromagnetic ratio g 

and follows a Curie law (1/3 g2  S(S+1)/T). These latter factors 

need not have any physical significance and have been artificially 

introduced to cast the relationship into a form which is 

independent of the units used to measure the susceptibility. For 

dilute Cr-Fe alloys, this expression may be more conveniently 

written as 

da 
d- 	

(0) /mb/sr/at/ = 48.2 CC -L.\  T8)  p2 

Para 

where p(pB) and 8(K) are the effective moment and Curie-Weiss 

temperature respectively. With the results of Ishikawa et al (1965) 

for a nominal 5% alloy this gives 

da 	(0) = 15 + 3 mb/sr/at (11K), 13 + 1 mb/sr/at (210K) -1,7 	(0) 

and 18 + 3 mb/sr/at (275K) 

which is of the same order as that expected for free paramagnetic 

Fe moments with S = 1 and g = 2, namely 19 mb/sr/at. 

These calculations show that the magnetic elastic diffuse 

and 'paramagnetic' contributions to the cross section are of 

141 



approximately equal magnitude. This magnetic diffuse scattering 

is small compared to the nuclear contributions which total 

160 mb/sr/at. Such a small signal superimposed on the nuclear 

scattering would be extremely difficult to isolate in an unpolarized 

beam experiment but can in principle be separated by neutron 

polarization-analysis. 

4.4.4.2 Results and Analysis  

The neutron polarization-analysis technique was used to 

affect an isothermal separation of the magnetic and nuclear defect 

scattering from an antiferromagnetic Cr Fe 5% alloy. The large 

polycrystalline sample was prepared according to section 3.1, and 

the experiment was carried out using the diffractometer D5 at the 

ILL, Grenoble. Experimental details may be found in section 3.7. 

The Neel temperature of this sample was deduced from the 

temperature variation of the (100) magnetic reflection, giving 

TN  = 250 + 5 in good agreement with the results of 4.3. The (100) 

(111) and (210) magnetic reflections were observed unsplit indicating 

the CSDW structure. 

The spin-flip and non spin-flip scattering cross sections 

were measured at temperatures of 11K (below TN), 210K (T < TN) 

and 275K (above TN). The results are shown in Fig. 4.25 and 

Fig. 4.26. The Debye-Waller factor has been removed for convenience 

using 2W(K) = 3.84 x 10-3  K2  (Holden and Fawcett (1978)). This 

correction is small and amounts to 8% at the largest scattering 

angle. 

The non spin flip cross section will be examined first. As 

discussed in 2.4.2, the non spin-flip cross section for kJ/,F,  

contains only nuclear scattering terms, 

1 
da

1  = do 	da 	+ 1  d6 	+ Nuclear + multiple 
dlNSF dS2ISO dOLaue 	

dc/nsi Bragg  
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Fig.4.25 Non spin-flip cross sections for Cr Fe 5% at 11K 

(T < TN), 210K (T TN) and 275K (T > TN). Isotopic 

incoherent, Laue and nuclear spin incoherent levels are 

shown. 
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The (110), (200) and (211) nuclear Bragg peaks expected for 

the bcc structure are present in the data. Between these Bragg 

peaks the non spin-flip (NSF) cross section is flat, to within 

experimental error and thus no atomic short range order can be 

detected. The cross section may be broken down into its consti-T 

tuent parts using the known values of nuclear isotopic and spin 

incoherent scattering. These cross sections have been measured 

by Cywinski and Hicks (1978) and Koester, Knopf and Waschkowski 

(1978) and supercede the older, inaccurate value of BNL 325 

(1973). Using the polarization-analysis method, Cywinski-and 

Hicks (1978) find 

7c-/-
da

= 110 + 10 mb sr 1 at-1 and 	= 45 + 1 mb sr-1 at-1 
ISO 	 nsi 

whereas Koester et al (1978) report 

da 
	= 101 + 1 mb sr-1 at-1 	and du 	= 45 + 1 mb sr-1 at 
ISO 	 nsi 

If the more accurate data of Koester et al (1978) are used this 

gives for Cr Fe 5% 

da =98+ . 
d~ISO 

mb sr
-1 

at-1 and da 	= 43 + 1 mb sr-1 at 
dO 
nsi 

where the nuclear incoherent scattering of Fe is assumed to contribute 

1.5 mb sr-1 at-1 to the isotopic incoherent scattering only (Koester 

(1977)). This is reasonable as the only isotope with non zero 

nuclear spin is 2% abundant. These levels are shown in Fig.4.25. 

The Laue incoherent term given by eq.(2.8a) and (2.28c), 

do. 
 ca-c) s(K) (bCr-bFe 

If the values bFe = 9.54 fm and bCr = 3.695 fm are used (Koester(1977)), 
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this atomic disorder scattering amounts to 17 mb sr
-1 

at-1. 

This level is also illustrated in Fig. 4.25. The remaining 

scattering is due to multiple Bragg and multiple diffuse scattering. 

The multiple diffuse scattering is large because of the small 

ratio of absorption cross section to scattering cross section at 

these short wavelengths. The multiple scattering contribution 

was not estimated. The difference between calculated and measured 

cross sections indicates a multiple scattering contribution of 

some 60 mb/sr/at, or 307 of the total. 

The spin flip (SF) cross section for ti//P contains both 

nuclear and magnetic parts, from eq.(2.49b) and eq.(2.51b) 

11 
dQ __ d6 	

+ 2/3 da + Magnetic Bragg + multiple. 
doSF dOMag.Diff. 	d~nsi 

The (100), (111) and (210) magnetic Bragg reflections allowed for 

the CSDW structure are seen in the SF data for 11K. At 210K the 

(100) reflection can be discerned but the weaker (111) and (210) 

reflections can no longer be distinguished. No magnetic Bragg 

reflections are seen above TN at 275K. The magnetic diffuse 

scattering may be isolated by subtracting the nuclear spin incoherent 

scattering and the multiple scattering contributions, if they are 

known to a sufficiently high accuracy. In view of the uncertainty 

in both these quantities, the magnetic diffuse scattering was 

estimated by assuming that the cross section above K= 3.9 Ā- 1 was 

due entirely to multiple scattering and nuclear spin incoherence. 

An Fe 3d form factor is 0.4 at this scattering vector so that 

the magnetic diffuse scattering which depends on f2 will be negli-

gible in this region. 

Following this procedure, the nuclear spin incoherent and 

multiple scattering contributions to the cross section were found 

to vary between 29 and 31 mblsr/at. The calculated nuclear spin 

incoherent scattering is indicated in Fig.4.26 and is 29 mb/sr/at 
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Fig.4.26  Spin flip cross sections for Cr Fe 5% at 11K (T < TN), 

210K (T > TN) and 275K (T > TN). Calculated forward 

cross sections and magnetic elastic diffuse cross sections 

at (100) are shown by an arrow. Dotted curves represent 

an Fe form factor. The solid line through the 275K data 

is also an Fe form factor, the remaining solid lines are 

guides to the eye. The nuclear spin incoherent level is 

shown by an arrow. P parallel to K 	(S) 

perpendicular to K (•O) 

P 
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according to Koester et al (1978) and 20 mbfsriat according to 

Cywinski and Hicks (1978), A check on the validity of the 

separation procedure was made by carrying out a limited number of 

scans with I. ti. In this configuration the SF scattering is 

(from eq.(2.51b)) 

do - 1 do 	} 2 da 	
* 
Magnetic 

+ multiple, 
d~ SF 

2 
d~ma 	

3 do 
si 

Bragg 	P 
g 	n 

having only half the total diffuse magnetic scattering. As shown 

in Fig. 4.26 the cross sections for P 1 are consistently below 

those for Z//j. In so far as it can be separated, the diffuse 

magnetic scattering is approximately halved. 

The magnetic diffuse scattering cross sections calculated 

in this way are small and the overall data quality is poor. 

Nevertheless, the fact that this cross section of some 10 mb/sr/at 

could be isolated from a total scattering of over 230 mb/sr/at 

highlights the power of the polarization-analysis technique. 

The limiting values of the magnetic elastic diffuse and 'para-

magnetic' scattering cross sections calculated in the previous 

section are shown arrowed in Fig. 4.26. A squared 3d form factor 

normalized to calculated forward cross section is also shown as a 

dashed line. No attempt has been made to fit the measured cross 

sections. 

A squared 3d form factor has been drawn through the 275K 

data, the curves through the 210K and 11K data are suggested guides 

to the eye. 

4.4.4.3 Discussion 

A quantitative analysis of the measured magnetic diffuse cross 

section is not possible. This is due both to the poor data quality 

and the difficulty in separating the magnetic elastic diffuse 

145 



and 'paramagnetic' cross sections. However, some general conclusions 

may be drawn concerning the nature of the magnetic defect in this 

alloy. 

The most important observation is that the magnetic diffuse 

scattering on both sides of the (100) reflection is of the order 

2 + 5 mb/sr/at at 11K and 210K. Yet the calculated value of the 

magnetic elastic diffuse cross section alone is 22 + 2 mb/sr/at 

at the (100) position. (It is not possible to measure the diffuse 

cross section exactly at (100) as it is superimposed on the (100) 

Bragg reflection.) If the model calculation is correct, the 

diffuse scattering must increase.by an order of magnitude over a 

K range of 0.3 Ā -l.This implies a magnetic defect about the Fe 

atom of at least 14 Ā in extent. Some structure to the diffuse 

scattering may be discerned, symmetrically disposed, about the 

(100) position. T:his may imply an additional shorter ranged 

component to the defect. It is not possible to deduce whether a 

component of the CSDW is induced at Fe sites from this data. 

The 'paramagnetic' component of the magnetic diffuse 

scattering cannot be separated from the elastic component below TN. 

Above TN  this problem does not arise and the magnetic diffuse 

scattering at 275K is consistent with the paramagnetic scattering 

from weakly coupled Fe moments. The cross section varies approxi-

mately as the square of a 3d form factor and the extrapolated forward 

cross section (10 + 2mb/sr/at) is in reasonable agreement with the 

estimate of 18 + 3mb/sr/at taken from the bulk susceptibility. 

Below TN  the extrapolated forward scattering at 210K is 8 + 2mb/sr/at 

which is in reasonable agreement with the calculated value of 

13 + 3mb/sr/at. The agreement is not as good at 11K where the 

extrapolated forward scattering, ignoring the first four negative 

data points, is 6 + 2 mb/sr/at compared with 15 + 3 mb/sr/at. 

Cywinski and Hicks (1980) reach a different conclusion in 

their polarization analysis study of a Cr Fe 6.5% alloy at 4.2K. 

These authors report that the component of the CSDW at the Fe 

site is zero, that the magnetic disturbance is short ranged and 
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that a sharp 'superparamagnetic' component of the scattering may 

be found below K = 0.3 
QT1. 

The existence of a sharply peaked 'superparamagnetic' component 

of the scattering at low K cannot be ruled out. A steeply rising 

cross-section between 0.4 R-1  and K = 0 would certainly lead to 

better agreement with the calculated forward cross sections. The 

K width of such a peak must be of the order 0.4 Ā-1  at 11K rising 

to 1 Ā-1  at 210 and 275K. An alternative explanation for a lack 

of consistency between an extrapolated and calculated forward 

cross section.may be traced to. a failure of the quasistatic 

approximation, in particular via the requirement that the energy 

width is small compared to kT. 

The conclusion of Cywinski and Hicks that the magnetic 

disturbance is short ranged and that 1Fe = 0 was reached by 

fitting the magnetic diffuse scattering using a formalism similar 

to section 2.2.3. The scattering was assumed to be purely elastic. 

The consistency of this procedure was checked by extrapolation to 

(100). It is difficult to reconcile this result with the present 

data which suggests a long ranged component to the magnetic 

defect. One possible explanation is the restricted K range of the 

latter experiments, which did not extend to the (100) position. 

A sharply peaked magnetic diffuse component in the vicinity of 

(100) would thus not be detected. 

Another source of discrepancy may lie in the microscopic state 

of the sample. The forward peak in the NSF cross section reported 

by Cywinski and Hicks (1980) indicates atomic clustering. Such 

clustering could not be observed in the Cr Fe 5% alloy reported 

here. This difference may be traced to the use of electrolytic 

Cr by Cywinski and Hicks and low gas content iodide Cr in the 

present measurement. The donditions of heat treatment also 

differ. 
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It was not possible to decide whether a component of the 

CSDW exists on the Fe sites in the present experiment. According 

to Cywinski and Hicks no such component is present, to within 

experimental error. However, the analysis of Cywinski and Hicks 

appears to be in error. The error arises in the expression for the 

average sublattice moment which should be written, 

C G(0) + CuFe + (1-C)pCr  = 

to be consistent with the definition of ucr  as the unperturbed 

moment on Cr sites, as opposed to the average moment on Cr 

sites (see for example, Marshall and Lovesey (1971) equation 14.77 

and 14.78). With a,-revised analysis, a component of the CSDW at 

the Fe site is obtained. The analysis givesuFe  0.41 + .08PB, 

uCr  = 1.01 + .08p3  or elternativelyp 	= 0.63 + .09pB. It is Cr 
interesting to note that the unperturbed Cr moment is approxi-

mately equal to the extrapolated moment of pure CSDW Cr of section 

4.1. 
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CHAPTER 5 

THE ONSET OF FERROMAGNETISM IN CrFe ALLOYS 

5.1 The evolution of magnetic order in binary alloys  

5.1.1 Introduction 

A proper description of disorder in physical systems remains 

one of the most important questions in solid state physics. 

Magnetically disordered systems have proved to be a very fruitful 

area for such investigations. This is due in part to the fact that 

the simple Ising and Heisenberg models for magnetic phenomena are 

not only mathematically tractable but also provide an accurate 

description of a large class of real materials. The results of such 

work also provide a basis for understanding the more complex 

magnetic behaviour of disordered metallic magnets where the Ising 

and Heisenberg descriptions are not necessarily valid. 

In this section the evolution of magnetic order with concen-

tration from a nonmagnetic system A to a magnetically ordered system 

B will be discussed for the particular case of cryst alline binary 

alloys A1_C  BC. Two types of disorder arise in this context. The 

first is the positional disorder which comes from the disordered 

occupation of lattice sites by A and B atoms. This is treated in 

the limiting case where the magnetic forces are short ranged and 

concentration independent using percolation theory (section 5.1.2). 

The second type of disorder comes from disorder in the exchange 

interactions and leads to a discussion of spin glasses (section 5.1.3). 

Finally, the application of these concepts to a few systems which 

show a critical concentration for long range order will be 

described in (section 5.1.4). 
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5.1.2 The percolation description 

5.1.2.1 Introduction  

A critical concentration for long range magnetic order (CL) is 

frequently observed for binary crystalline alloys A1-C  BC  wherethe 

pure material B is magnetically ordered and the pure material A is 

nonmagnetic. In the most extreme cases there is no sense of evolu-

tion of magnetic order with concentration, the alloys for C < CL  

show the same nonmagnetic behaviour as pure A and for C > CL  

switch immediately to the long range order associated with pure B. 

This situation is realized in V1_C CrC  alloys for example, where 

for C < CL  not only is there no long range order but also no 

magnetic moment on Cr sites until at C > CL  both a magnetic moment 

and ordered antiferromagnetic moment are induced by the transition 

to an exactly scaled version of the ISDW phase of pure Cr. In 

general , there is a slow evolution of magnetic order with concen-

tration. New magnetic phenomena may occur for C < CL  and the 

ordered phase which appears at C > CL  may be different to pure B 

type order. For example, if a local moment can be sustained on 

some impurity sites for C < CL  a strongly correlated paramagnet 

(Cul_C  NiC), spin glass (Cul_C  MnC) or giant moment state (Pdl_C  Fec) 

which bears no resemblance to pure Cu or Pd may result. For C > CL  

the transition may to be to a state with completely different 

symmetry, e.g. Pdl_C  MnC  is ferromagnetic for C ti CL  whereas yMn is 

antiferromagnetic. The difference may be more subtle, resulting in 

an ordered phase with different critical exponents to pure B. 

The occurence of a critical concentration has been discussed 

from two divergent points of view. Within the itinerant picture the 

exchange integral and density of states vary with concentration until 

at CL  a Stoner criterion IN(EF) 1 is satisfied at T=0 and long range 

order results. This type of model has proved very successful in 

accounting for Cr alloys (section 4.1). At the other extreme the 
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percolation picture (in which the interactions are assumed to be 

short ranged and concentration independent) invokes a purely 

geometrical criterion to locate CL. This type of model describes 

well the behaviour of insulating antiferromagnetic alloys (section 

5.1.4.1). A more universal description of the onset of long range 

order must include aspects of both these approaches. 

Many features of the percolation description appear to be 

relevent to the case of Crl_C  FeC  alloys. 

5.1.2.2 The pure percolation problem 

A brief review of the pure percolation problem will be given 

here. Further details may be found in the extensive reviews by 

Shante and Kirkpatrick (1971), Essam (1972) and Stauffer (1979). 

The onset of long range order in certain binary alloys may be 

viewed as a pure site percolation process. The alloy is taken to 

be a random solid solution with one species (A) nonmagnetic and the 

other (B) having a well defined local moment which interacts with 

other moments via nearest neighbour exchange interactions. 

Consider the effect of increasing the concentration of magnetic 

species at T=0 in the absence of anisotropy effects. When the 

concentration is less than CL,  magnetic correlations can only be 

sustained over finite distances determined by the nearest neighbour 

(nn) distribution of magnetic species on the lattice. The three 

dimensional correlated networks of nn moments (clusters) increase in 

size as the concentration is increased until such a concentration 

is reached that one such network penetrates the entire sample. The 

concentration at which this infinite cluster forms (the percolation 

limit C) is the point at which the range of moment correlations 

first diverges, signalling the onset of long range order, CL=Cp. 

For a b.c.c. lattice C is 24.3 + 1% (Essam (1972)). As the 
P 

concentration is increased beyond C successively more moments are 
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incorporated into the infinite cluster at the expense of finite 

clusters. However a sizeable fraction of moments still belong to 

finite clusters even above Cp. This process is illustrated 

schematically for a two dimensional square lattice in Fig. 5.1 

(K. Mihill, private communication). 

The magnetic variant of what is a more general geometrical 

problem has been given above. It is useful to define the following 

geometrical quantities (Stauffer (1979)), Essam (1972)). An 

s-cluster is a group of s occupied lattice sites connected by nn 

distances. ns(c) is the average number of s clusters (per site) for 

a given concentration where the average is respect to different 

configurations. The zeroth, first and second moments of ns(c) are 

related to the average number of finite clusters (per site), 

_ 	f _ 
nf  (c) = E ns  (c) 

s=1 
(5.1a) 

where the summation excludes any infinite cluster; the fraction of  

occupied sites which belong to finite clusters, 

f 

.13
f
(c)  = E s ns  (c) 

and the average s of finite clusters, 

f 	 f 
S (c) = E s2  ns  (c) / I s ns  (c) 

s 	 s 

- 	 (5.1c) 

(5.lb) 

A percolation probability, equal to the fraction of occupied sites 

belonging to the infinite cluster P.(c) is also defined. The 

variation of Po(c) and Tf(c) with concentration is shown in Fig.5.2 

(Shante and Kirkpatrick (1971)). As expected Pf(c) increases with 

concentration up to C and then decreases as the infinite cluster 
P 

increases in size. The coexistence of finite and infinite clusters 

above C should be noted. 

The average spatial correlation between occupied sites is 
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Fig,5,l Percolation on a two dimensional square lattice, Nearest 

neighbour occupied lattice sites (closed circles) are 

connected by bonds to form clusters whose size increase 

with increasing concentration (C = 0.1,0.2,0.3,0.4) 

until one cluster spans the lattice at the percolation 

concentration (C = 0.5), Above the percolation concen-

tration, small finite clusters coexist with the spanning 

or infinite cluster (C = 0.6). 
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Fig.5.2  Percolation properties of a tree with a coordination 

number 4 and percolation concentration 1/3: fraction of 

volume occupied by (a) finite clusters (b) infinite 

cluster and (c) mean cluster size S(p) are shown as a 

function of concentration p. (Shante and Kirkpatrick 

(1971)) . 

Fig.5.3  Theoretical critical curves for diluted spin z  Heisenberg 

(a) and Ising (b) antiferromagnets. Experimental data 

for K Mnc  Mgl-c  F3  and 	Cs3  Coc  Zn1-c  Cl5  are shown. 

(Stinchcombe (1979b)). 
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described by the pair connectednessCi.(c) of sites i and j, where 

E.. (c) = i j  - (P (c»2  (5.2a) 

with yij  = 1 if sites i and j are connected by a series of nn bonds 

and zero otherwise. (With this definition sites belonging to the 

infinite cluster do not contribute to Cij). The Fourier transform of  

the pair connectedness C2(K) may be expanded to second order in K2  

after spherical averaging  to yield the Guinier law, 

C2(K) = C2(0) (5.2b) (1 - 1/3 RG2  K2  + ... 	) 

where 

C2(0) = s(c) (5.2c) 

by a geometrical fluctuation - dissipation theorem (Birgeneau et al 

(1980)), and RG
2 
 is the average squared geometrical radius of  

gyration, which is a measure of the range of geometrical correlations, 

f 	 f 
RG2  = E s2 ns(c) RGs2 

 / E s2 ns(c) 	(5.2d) 
s 	 s 

This defines an effective geometrical inverse range parameter  

K1G  = /3/  RG
2  

(5.2e) 

which is equivalent in mean field theory to the true inverse range 

parameter KG dictating  the exponential decay of geometrical 

correlations. 

The percolation process has many features common to a second 

order thermodynamic phase transition. The geometrical system orders 

at C with the spontaneous appearance of the infinite cluster. In 

the vicinity of C the average s of finite clusters and RG2  increase 

dramatically, tending  to diverge at C . This conjecture was proved. 
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rigorously by Kastelyn and Fortuin (1969). Thus, by analogy with 

thermodynamic critical behaviour, for C ti  C the geometric inverse 

correlation range tends to zero at C, 

p 
K1G  n, I C-Cp  (5.3a) 

the average s for finite clusters (susceptibility XT) diverges at C 
p 

;(c) ti  IC-C p (5.3b) 

the percolation probability (spontaneous magnetization) first appears 

P.(c) ti (C-Cp) p (5.3c) 

and the Fourier transform of the pair connectedness (x (K) T) has 

the asymptotic form 

n -2 
C2(K) 

'VK  P (5.3d) 

at C=C . The percolation critical exponents so defined are related by 

the scaling laws discussed in section 2.2.4. For a three dimensional 

lattice (Sykes et al (1975)) 

v = 0.825 f  0.02 	y = 1.66 f 0.07 	(5.3e) 

implying np  ti  -0.01 f 0.10 

In common with thermodynamic critical behaviour, scaling laws 

for geometrical critical phenomena have been proposed. Dunn, Essam 

and Lovelock (1975) suggest 

2 
C2(K) =K  'r 	A(KIK1G)  (5.4a) 
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or equivalently 

n=-2 
C2(K) = K1G  P 	B(K/K1G)  (5.4b) 

should hold for K(c) « 1, CtiC . The Ornstein-Zernicke form of 

C2(K) would satisfy such a scaling law as well as the Fisher-Burford 

modification (eq.2.35a). 

Geometric variables which have no obvious thermal analogues 

have also been investigation (Stauffer (1979)). The 'shape' of 

percolation clusters is one such example. A number of studies 

(e.g. Stanley et al (1976)) have revealed that large percolation 

clusters near C are ramified or stringy in shape, rather than 

compact or droplet like. An effective cluster dimensionality  dp  is 

defined in an attempt to provide a quantitative measure of cluster 

shape. According to Stanley (1977) such an effective dimensionality 

relates the average number of occupied-.sites in finite clusters 

s(c) to the average linear dimensions of finite clusters via, 

-d 

s(c) ti  (KG(c)) P  

Combining eqs. (5.2c) (5.4b) and (5.5a) 

d = 2 - 
P 	P 

(5.5a) 

(5.5b) 

For a bcc lattice d = 2.01, significantly smaller than the full three 

dimensional character of the lattice. Alternative definitions of d 
P 

have been selected by a number of authors and the relative merits of 

each are discussed by Stauffer (1979). No matter what definition is 

used, d < d in greater than one dimension. For the purposes of this 

discussion, the definition (eq. 5.5) will be adopted. The infinite 

cluster for C ti  C is also ramified. As one of the large finite 

clusters for C < C develops into the infinite cluster for C = C 
P 	 P 

this result is not surprising. The situation changes somewhat for 

C » C ; Stauffer (1979) demonstrates that finite clusters tend to 
P 
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become more droplet like for C >C . 
p 

5.1.2.3 Magnetic percolation at finite temperature  

The pure percolation process described above gives a very 

detailed account of the concentration dependence of magnetic proper-

ties in a model binary alloy at T = 0. It remains to generalize 

these results to finite temperature. 

It is convenient to start with the pure system, C = 1. The 

critical behaviour of pure systems has been subject to exhaustive 

investigation over recent years and is largely understood. In 

summary, the inverse correlation range K1  tends to zero at the critical 

temperature Tc(1) with an exponent vT  

K1  ti (T-Tc(1))vT 	 (5.6a) 

the normalized susceptibility x(T)/x0  diverges at Tc(1), 

-y  

X(T)/Xo ti  (T-Tc(1)) T 	 (5.6b) 

and at Tc(1) the normalized wave vector dependent susceptibility has 

the limiting form 

nT-2  

X(K)/Xo  tiK 	 (5.6c) 

(results which have been discussed in section 2.24). Considerable 

effort has been spent in calculating the critical exponents vT;. YT  

etc. for various model systems. A summary of current values is 

given by Le Guillon and Zinn-Justin (1980) for n vector models 

(n = 0,1,2 and 3) in 2 and 3 dimensions. Estimates for the 

3D Heisenberg model vary but lie within the limits 

vT  = 0.70 + 0.02 yT  = 1.40 + 0.04 
	

(5.6d) 

Similarly for the 3D Ising model 

vT  = 0.638 + 0.002 	yT  = 1.25 	0.005 
	

(5.6e) 
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which should be contrasted with the mean field values 

vT_ 	IT=1 (5.6f) 

The Fourier transform of the spin-spin correlation function 

S(K) which is proportional to the normalized wavevector dependent 

susceptibility has the scaling form (Halperin and Hohenberg(1969)) 

for T n,  Tc  (1) and K »a, 

nT-2  

S(K) = K 	G(K1/K)  

or alternatively 

TIT-2  

S(K) = K1 	F(KJK1) 

(5.7a) 

(5.7b) 

In the Guinier region K/K1  « 1 (also known as the 'hydrodynamic' 

region) the function F may be expanded to second order in KJK1  to 

give the Guinier form 

-2+n 

S(K) n'Kl 	T  (1 + b(K/K1)2  + ...) (5.7c) 

where to be consistent with the definition of K1,  b = -1. In the 

opposite limit K/K1  » 1 (the 'critical' region) 

S(K) n, K
-2+  nT (1  + b1(KHK) 2  + ... ) (5.7d) 

The forms of critical scattering discussed in section 2.24 are consis-

tent with the scaling law (eq. 5.7). The Ornstein-Zernicke result 

(eq.2.34a) corresponds to mean field exponents. The more exact result 

due to Fisher and Burford (1967) (eq.2.35a) satisfies (eq. 5.7) as 

well as the approximation 

-l+n/2 

S(K) 'L ['lc].2  + K2(1-n/2) 1) (5.7e) 

valid for aK«1. Fisher and Burford (1967) draw the distinction 
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between the true inverse correlation range which governs the 

exponential decay of correlations at large R and the effective value 

K1  deduced from measurements in the Guinier region. The distinction 

between these two quantities need only be made for T significantly 

different to Tc(1) and for T ti Tc(1) both inverse correlation ranges 

diverge with the same exponent. 

Consider then the effect of a small decrease in concentration 

from C = 1. The disordered system which results will have a 

spontaneous magnetization proportional to P.(c) at T = 0 but it is 

not obvious whether a sharp transition to a paramagnetic state will 

occur as the temperature is increased. According to an 

argument by Harris (1974) and elaborated by a number of later 

workers (summarized by Lubensky (1979)) a sharp phase transition 

will occur if the exponent of the specific heat for the pure system 

aT  < 0. The phase transition at Tc(c) will be unaffected by a small 

amount of site disorder, the critical exponents remain the same as 

for the pure system. If aT  > 0 the transition remains sharp, at 

least for a small degree of site disorder but the character of the 

system is changed and new critical exponents are found. The case 

aT  = 0 (as for the 2D Ising model) is marginal. The generalization 

of these results to C ti  Cp  where disorder is so strong as to destroy 

the spontaneous magnetization does not appear to be clear cut 

(Kirkpatrick, 1979). Application of the Harris criterion would 

predict a sharp transition with 'pure' critical exponents if aT  > 0 

and either a smeared transition or a sharp transition with different 

critical exponents for aT  < 0. Model calculations for the 2D 

Ising-(aT  = 0) (Jayaprakash, Riedel and Wortis (1978)), 2D Heisenberg 

(aT  < 0), 3D Heisenberg (aT  < 0) and 3D Ising (aT  > 0) (Stinchcombe 

(1979a)(1979b)) systems reveal sharp transitions near Cp. 

Given that a sharp transition exists for C < C < 1 the 

removal of sites from the pure system leads to a monotonic decrease 

in the ordering temperature Tc(c) until long range order is 

destroyed at Cp, Tc(Cp) = 0. The form of critical curve Tc(c) is not 
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universal and depends upon the details of the model in question. 

The application of renormalization group techniques has resulted in 

the accurate calculation of Tc(c) for diluted nn Ising and Heisenberg 

systems.. Stinchcombe (1979b) has calculated the critical curves for 

the diluted spin # models on a simple cubic 3D lattice and the 

results are shown in Fig. 5.3. In the vicinity of C , 

Tc(c) ti  ln(C-C)-1  Ising 

Tc(c) ti (C-C )0 	Heisenberg 	(5.8) 

where Stinchcombe finds 0 ~ 1.0. 

The percolation concentration C is a singular point for both 

thermal and geometrical critical phenomena. The coupled geometrical 

and thermal behaviour in the vicinity of this generalized critical 

point were first described by Stauffer (1975) for the Ising model and 

subsequently generalized by Lubensky (1976) and Stanley, Birgeneau, 

Reynolds and Nicoll (1976). These theories are based on the assump-

tion that the variables in the vicinity of (Cp, T = 0) can be 

expressed as 'scaling functions' of the concentration difference 

AC = Cp-C and a generalized temperature g. (Lubensky (1979)). 

For example, Stanley et al (1976) argue that the Fourier transform 

of the fluctuating part of the instantaneous spin-spin correlation 

function, S(g,AC,K) is a generalized homogeneous function (CHF) of 

g, AC and K 

-(14-db ) 	b 	b.-b 

S(g, AC,K  ) = a 	r  s(a wg, A 1  Cfu 
rK ) 

 (5.9a) 

where A is an arbitrary constant, bw, lc and bi  are undetermined 

exponents and d is the dimensionality of the lattice. The inverse 

correlation range is a GHF of AC and g, 

b 	b 	b. 

K1(g,AC) = a r  K1(A wg, A 'AC) (5.9b) 
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A wealth of information may be deducted from these scaling forms. 

To start with, let us consider these scaling forms in the 

g -40 in order to regain the pure percolation problem. Let 

A 	= AC in (eq. 5.9a) in the special case K= 0, this gives 

(1+db )Jb. 	b /b. 
S(g,OC,K = 0) = (AC) 	r 	

H(g/(oC) w 1
)  

and similarly 

-b /b. 	b /b. 
K1(g,AC) = (0C) r 

i F (gJ (4C) 
w 1)  

(5.10b) 

In the limit g -- 0 these forms must go over to the pure percolation 

relations given by (eq.5.5). For consistency -br/bi  = vp  , 

(l+dbr)/bi  = -yp  and H(0), L(0) are constants related to the geometry. 

Consider now theibehaviour at C = C 	as the temperature is - 	 p  
increased. 	Let A= g 	w in (eq. 5.9a) to give for K= 0, 

(l+db )Jb 	bi  /b, 
S(g,AC, K= 0) = g 	

r 	w 	
N(AC/g 	

. 	
'.) 	(5.10c) 

and similarly 

-bib 	b./b 
K1(g,QC)  = g 	r 	w 	

M(AC/g a, 	w) 	 (5.10d) 

At C = Cp, 6C = 0 and N(0), M(0) are constants. The normalized 

susceptibility ū(g,AC = 0,K = 0) and inverse range parameter 

K1(g,6C = 0) show singular behaviour as the temperature approaches 

zero, g -} 0. The unknown exponents -(l+dbr)/bw  and -br/bw  govern 

the purely thermal critical behaviour and for convenience are 

denoted as y and v. 	It must be stressed that these thermal critical 

exponents are in general not equal to those of the pure system but 

are directly related to the pure percolation exponents via 

v0 = vp  and y0 = 
P 	

(5.10e) 

(5.10a) 
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where the exponent 0 = bw/bi  is termed the crossover exponent. 

Two different sets of critical exponents are defined at C depending 

on whether C is approached along the concentration axis (vp, yp  etc.) 

or along the temperature axis (v,y etc.). As the percolation 

exponents are known quantities, a knowledge of the crossover exponent 

0 is sufficient to describe the combined geometrical and thermal 

critical phenomena at the percolation multicritical point. 

The K dependence of S(K) may be derived by letting A= K 1 
lJbr  

so that 

(l+db )/b 
S(g,OC,K) = K1 	r r p(g/AC°, K/K1) (5.10f) 

which reproduces the scaling relations (eq. 5.4b) and (eq.5.7b) in the 

appropriate limits (g -} 0 and AC -} 0). For consistency then 

(l+dbr) Jbr  = 2-np  = 2--n so n= np  

So far only the critical phenomena encountered by moving along 

the concentration axis or temperature axis at AC = 0  has been 

considered. The results may be extended somewhat by noting that the 

scaling forms depend on the effective temperature and concentration 

only in the combination.g/LC0. It is plausible that geometric 

critical behaviour will be observed if g/LC0  « 1 and thermal critical 

behaviour will prevail if gJaC » 1. The line g = AC°  serves to 

delineate the two regions. 

It is argued by Stauffer (1975), Birgeneau et al (1976) and 

Lubensky (1976) that the temperature like variable g is the inverse 

correlation length of the one dimensional version of the pure system , 

K1D(T). So, for Ising and Heisenberg systems, g is the inverse 

correlation length of the pure Ising and Heisenberg chains, 

g = K
1D
(T) ti 2 exp (-2JJkT) kT « J(Ising) (5.11) 

g = K1D(T) ti kT/J 
	

kT « J (Heisenberg) . 
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If the system has uniaxial anisotropy the longitudinal inverse 

correlation length of the anisotropic chain, K1D(T), becomes the 

appropriate temperature variable (Stinchcombe (1980)). 

The physical explanation behind such a choice is outlined by 

Birgeneau et al (1976) for C < C and Lubensky (1976) for C > C 
P 	 P 

and relies on the observation (section 5.1.2.2) that large percolation 

clusters are ramified or stringy in shape. If the system is viewed on 

a sufficiently small length scale (t), it will appear as a collection 

of one dimensional chains of occupied nn lattice sites. The extent to 

which the moments along the chain are correlated with each other 

depends on the ratio of the thermodynamic inverse correlation length 

of moments in a one dimensional chain (g1D(T)) to the geometrical 

length of the chain itself (I). Here 1 is a measure of the number 

of steps traced in a zig-zag path along the backbone of a finite 

cluster or between the nodes of the infinite cluster. Thus Lubensky 

writes 

add 

S( 1D(T), ~C,K) = K-2}n f} (K , 1

T)
) 

KG' 

V 

K1(g1D(T),AC) = AC P h - (l/g1D(T)) 

(5.12a) 

(5.12b) 

so that the susceptibility and inverse correlation length depend 

upon the extent to which the one dimensional links are perturbed 

by thermal agitation via t/g1D(T) and on whether one is looking 

within a cluster or at many clusters via the ratio K/KG. By comparing 

(eq. 5.12b) and (eq.5.10b) one may associate g with K1D(T) and t with 

AC-95, providing a physical interpretation of the scaling forms (eq.5.10) 

which depend on the ratio g/ CO. Furthermore the conditionEID(T) = 

implies ordering of the infinite cluster for C >C at a temperature 

T.(c) which varies as 

K1D(6) = AC° (5.13) 
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This result is verified by the results of Stinchcombe (1979b) 

presented in Fig.5.3 and (eq.5.8). For C < C this condition defines 
* 	 P 

a temperature T (c) at which finite clusters become fully correlated. 
* 

The lines T(c) and T (c) separate regions in which geometric and 

thermal critical behaviour are observed. 

Much theoretical work has been spent in estimating the crossover 

exponent 0 for various model systems. As a result of this work it 

is concluded that 0 = 1 for Ising systems in all dimensions (Stinchcombe 

(1979b), Stephen and Grest (1977), Wallace and Young (1978)). The 

situation is not so clear for the Heisenberg case. In d = 1 the 

exact solution of Thorpe (1975) for the classical Heisenberg chain 

gives 0 = 1. Stinchcombe's analysis of the classical Heisenberg 

system suggests 0 = 1 in all d. (Stinchcombe (1979a). _ 	:)) 

although slightly larger values are found in the analysis of the spin 

Heisenberg model in d = 2, d = 3 (Stinchcombe (1979b)). A substan-

tially larger value (4 = 1.7 d = 2, 0 = 1.58 d = 3) is predicted by 

Stanley et al (1976) by assuming that magnetic correlations spread 

along paths which are self-avoiding walks. 

So far only the general form of physical quantities near C 

have been described. Exact analytical results have been obtained in 

one specific case, that of a classical diluted Heisenberg chain 

(Thorpe (1975)). The percolation concentration for a chain is C = 1 

and the pure system orders in the limit T } 0. Thorpe deduces 

S(U,C,K) = C(1-(CU)2)/[1 } (CU)2  - 2(CU) CosKa] (5.14a) 

where a is the lattice parameter, and U = coth SJ  - (SJ)-1  is a 

measure of the temperature. For Ka «1 this may be expanded in the 

iauinier form 

S(U,C,K) = S(U, C,K = 0) (1-K2/K12  } ...) (5.14b) 

where the inverse correlation range is given by 

K12  = (1 - CU)
2/a2(CU)2  

(5.14c) 
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The geometrical properties of the diluted chain may be deduced 

in the limit T 0 or U -} 1. 

S(1, AC,K = 0) = (1 -AC)(2 - AC)/OC2 	(5.15a) 

and 

K1G2(1,AC) = AC2/(1-AC)a2  (5.15b) 

where the argument C has been replaced by AC to emphasise the 

critical behaviour as AC -} 0. The percolation critical exponents 

are thus Yp  = 2, vp  = 1. 

The thermal critical behaviour at C = Cp  is found by setting 

AC = 0 and expressing the temperature in terms of the inverse 

correlation length of the pure chain, g = K1D(T). Thus K1  and S(K) 

show temperature driven critical behaviour at AC = 0 according to, 

S(g, 0, K= 0) ti  g2  and K1(g,0) = gl  (5.15c) 

giving thermal critical exponents y=  2, v= 1. The crossover exponent 

is 0 = 1. 

The combined geometrical and thermal critical behaviour may be 

deduced by expanding (eq.5.14a) in the vicinity of AC = 0. This 

results in an Ornstein-Zernicke form Ka «1. 

S(g, AC, K) = A/(<
1
2 
 + C.  Ka) 2) (5.16a) 

where (Birgeneau et al (1980)) 

A = K1  (0,AC) 	K1(g,0) + 0(AC2,g2) 	(5.16b) 

and 

K1(g,AC) = K1(O,eC) + K1(g,O) + 0(0C2,g2) (5.16c) 
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which gives the intriguing result that the inverse correlation 

range is the sum of the purely thermal and purely geometrical 

inverse correlation ranges. Whether this result is valid in 

general remains an open question. It is at least consistent with 

the recent scaling forms for Iq(g,At)in anisotropic dilute systems 

(Stinchcombe (1980)). 

5.1.3 Spin Glasses and Superparamagnets  

5.1.3.1 Introduction  

At present there is no consensus, experimentally or theore-

tically, on the fundamental nature of spin glasses. It is therefore 

not surprising that no widely held definition of the spin glass 

state exists. For the purposes of this summary we shall take a 

spin glass to be a system which does not support long range order 

but which shows a peak in the low field susceptibility at some 

characteristic temperature Tg. This behaviour is thought to arise 

from the freezing of individual moments in random directions to 

produce a state with no long range order (<Si> < S~> = 0 Rid 00) 

but with a non zero time averaged moment at each impurity site 

(q = <S1(0) Si(t)' # 0 t } 00), hence the term 'spin glass'. 

This behaviour has been observed in a wide range of materials, 

from amorphous insulating glasses Al2 Mn3 Sia 012 (Nagele, Blanckenhagen, 

Knorr and Suck (1979)) and dilute rare earth semiconductors (Sr Eu)S 

(Malletta and Felsch (1980)) to dilute transition metal solid 

solutions such as Au Fe (Guy (1977)). Of these materials the dilute 

solid solutions Cu Mn, Au Fe have been most extensively studied. 

Some of the properties of Au Fe alloys will be discussed in section 

5.1.4.2. For illustrative purposes, it is sufficient to summarize the 

experimental situation for Cu Mn alloys. Further details may be 

found in a review by Beck (1979). 
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Cu Mn alloys are spin glasses at all but the lowest 

concentrations of Mn (less than lOppm) up to the critical concen-

tration for antiferromagnetism (about 75% Mn). In the dilute alloys 

(C < 2%) the Mn moments occupy well separated random sites and 

interact via long range oscillatory RKKY forces. The magnetic 

properties follow universal laws which depend only on the reduced 

variables H/C, T/C. This fact is interpreted as evidence of the 

1/r3  dependence of the RKKY interaction (Tholence and Tournier (1974)). 

At higher concentrations an increasingly larger fraction of Mn 

moments are found as near neighbours and the presence of tenacious 

nn magnetic interactions and strong atomic short range order tends 

to complicate matters (David, Burke and Rainford (1980)). These 

more concentrated spin glass alloys are termed 'mictomagnetic' or 

'cluster spin glasses' to distinguish them from the dilute alloys 

which obey the H/C, T/C scaling laws. For convenience, the dilute 

alloys will be considered. 

A sharp cusplike peak in the AC susceptibility as a function 

of temperature is found for these dilute alloys (Cannella (1973)). 

The peak temperature (Tg) is frequency independent to within 

experimental error in the range 10Hz to 10kHz.(Mulder, Duyneveldt 

and Mydosh (1980)). This suggests a cooperative phase transition of 

some sort. This view is supported by the Mossbauer and muon 

depolarization data. However, no anomaly is seen in the magnetic 

specific heat which remains smoothly varying in the vicinity of Tg  

(Wenger and Keesom (1976)). Anomalies are observed in the ESR 

line width some 60% above T and in the thermal coefficient of 
g 

resistivity some 50% below Tg. (Beck (1979)). 

Souletie and Tournier (1969) demonstrated that whilst the 

static susceptibility exhibits a sharp peak at T similar to the 

AC susceptibility if the spin glass is cooled in zero applied field to 

below Tg, no such peak is present if the spin glass is cooled in a 

small magnetic field. This thermomagnetic treatment results in an 

almost temperature independent magnetization below Tg. Under these 

conditions a remanent magnetization (termed the thermoremanent 
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magnetization, TRM) is developed below Tg. This remanence is not 

stable and decays logarithmically with time. A remanent magnetiza-

tion could also be created by application of a field at constant 

temperature below Tg .(the isothermal remanent magnetization, IRM). 

The IRM increases logarithmically with the time during which the field 

is applied. Tholence and Tournier (1974) argue that the statid 

susceptibility is composed of a reversible part (zero field cooled) 

which is measured by the AC technique and an irreversible part (TRM) 

which cannot be switched during the time scale of an AC experiment. 

This dependence of observed properties on time scale is particularly 

important in the understanding of spin glasses. 

The importance of observation time is well illustrated by 

neutron quasielastic scattering experiments. In this case the 

temperature at which magnetic 'elastic' scattering first appears 

(that is magnetic scattering which lies within the spectrometer 

energy resolution, AE) depends strongly on DE and is always found at 

higher temperature than Tg  determined by AC methods. (Murani (1980)). 

This implies a very broad spectrum of magnetic response times, 

extending from 10-12  sec to 10-2  sec at least. These conclusions are 

vividly illustrated by the neutron spin echo determination of the 

magnetic intermediate scattering law S(K, t) for a Cu Mn 5% alloy 

(Hezei and Murani (1980)) shown in Fig. 5.4. One may interpret the 

temperature at which S(K, t) -} 0 for a given time t as the spin glass 

freezing temperature for a measurement with time constant t. So 

T = 100K would be determined by a measurement which is sensitive 

only to processes faster than 10-11  sec whereas T = 36K would be 

found if the time constant were 10
-9 

sec. An AC susceptibility 

measurement (t ti 10-2  sec) returns a value Tg = 28K. A phase transi-

tion would be indicated if for some temperature S(K, t) 0 0 t -> 00 

and would appear to be an open question. 

5.1.3.2 Theory  

In the dilute Cu Mn spin glass the magnetic moments interact 
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Fig.5.4 Measured time dependent spin correlation function for a 

Cu-5% Mn spin glass at various temperatures. (Mezei and 

Murani (1979)). 

Fig.5.5 Magnetic phase diagram for quenched Au Fe alloys (Coles 

et al (1978)). Here sg, f, p and cg refer to spin glass, 

ferromagnetic, paramagnetic and cluster glass regimes. 



Figs 5•4 
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by exchange forces which alternate in sign. As a result, any given 

moment is subject to contradictory orientation requirements which 

cannot be simultaneously satisfied. This rather special type of 

spatial disorder in the exchange interactions has been termed 

/frustration' and has become the essential ingredient in theoretical 

studies of model spin glass systems. An extensive review of these 

theoretical developments is given by Anderson (1979). A brief 

outline of some of this work will be given in this section. 

For the most part, theoretical attention has been directed 

toward the properties of a pure Ising or Heisenberg system with 

randomly distributed positive and negative nn exchange interactions. 

At first glance, such models would appear to have little in common 

with a dilute Cu Mn alloy which has both site disorder and long 

ranged interactions, however the essential competition between exchange 

forces is present in both cases. 

The mean field treatment of the classical Heisenberg system 

with randomly distributed (Gaussian) ferromagnetic and anti-

ferromagnetic nn interactions by Edwards and Anderson (1975) is the 

seminal work in this field. A phase transition to a state in which 

individual moments are frozen in random directions below a critical 

temperature Tg  was found in this model. The new phase has no long range 

order and is described by a single site order parameter 

q = <1(0).(t)> t -} 00 	 (5.17a) 

which is zero above Tg  and approaches unity at T = 0. The susceptibility 

x = CIT (1-q) 	 (5.17b) 

has a sharp peak at Tg  in agreement with experiment but the model 

fails to reproduce the monotonic increase in specific heat in the 

region of T . 

It has subsequently been found out that the mathematical details 
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of the Edwards and Anderson (1975) CEA) mean field calculation are in 

error for T S< Tg. This mathematical problem has been discussed by 

many authors in the context of the spherical model for an Ising 

spin glass. Improved mathematical methods reproduce the suscep-

tibility peak but reveal critical phenomena at all temperatures below 

Tg. The significance of this result and a discussion of the mathe-

matics may be found in the review by Anderson (1979). 

The validity of mean field theory for the EA spin glass has 

also been closely scrutinized. Mean field theory is correct in d > 6 

but fails for lower dimensions. The work of Bray and Moore (1979, 

1980) suggests that the phase transition observed in the mean field 

treatment of the EA model is an artifact of mean field theory for 

d < 4, i.e. the lower critical dimensionality (LCD) of the EA spin 

glass is four. Other treatments conclude that the LCD is two or 

three. This conflict has not been resolved (Stauffer and Binder (1980)). 

Anderson (1979) is led to conjecture that critical behaviour in a 

spin glass is of a fundamentally different nature to that in 

conventional systems and that the application of orthodox phase 

transition theory to the problem may well be irrelevent. 

There are a number of unanswered questions in regard to spin 

glass theory. One, the existence of a phase transition would appear 

to be open. Another would be to reconcile the successful pheno-

menological fine particle model (discussed in the following section) 

with more complete microscopic theory. 

5.1.3,3 Ferromagnetic fine particles  

For the most part, first principles microscopic theory has not 

been used in the analysis of experimental spin glass data. Rather, 

the bulk of experimental work has been analysed using a phenomenology 

based on the well-established theory of ferromagnetic fine particles 

or rock magnetism (Wohlfarth (19.77), Tholence and Tournier (1974)). 
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A brief outline of this description will be given here. Further 

details may be found in the extensive reviews by Neel (1955), Jacobs 

and Bean (1963). 	and Kneller (1969) . 

The model relies on the postulate of non interacting assemblies 

of coupled moments fluctuating against anisotropy barriers. The 

magnetic assemblies have been identified with magnetization 'clouds', 

composed of randomly oriented and randomly distributed moments, each 

cloud having a nett moment proportional to the square toot of the 

number of moments present for spin glasses in the scaling regime. 

(Tholence and Tournier (1974)). In more concentrated alloys, the 

'clouds' may be derived from a nucleus of near neighbour moment 

clusters. The nature of anisotropy barriers remains unclear. 

Dipolar forces have been suggested (De Rozario and Smith (1977), 

Tholence and Tournier (1977)) and more recently spin orbit coupling 

(Fert and Levy (1980)). This description is incomplete in many 

respects. In particular, the discovery of rapid magnetization 

reversal (Monod and Prejean (1978)) and cooperative remanent effects 

(Alloul (1979)) suggest that the postulate of independent clusters 

must be modified. 

For argument's sake, we shall assume that the magnetic assemblies 

are distinct non interacting ferromagnetic particles embedded in a 

non magnetic matrix. The distribution of magnetization within such 

particles depends on their shape and size. Large particles will be 

made up of a number of ferromagnetic domains, the number of domains 

decreasing with particle size until a single domain particle results 

below a critical radius ('1,150 Ā for Fe). The magnetization within a 

single domain particle is in general non uniform. We shall restrict 

our discussion to the case of single domain ellipsoidal particles 

which have a uniform magnetization and which retain this uniform 

magnetization in the presence of an external field. The particle 

may be characterized by Curie temperature T
c 
 and saturation 

magnetization M
s
. 
s  
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In the absence of anisotropy forces,the individual moment within 

a single domain may freely rotate in unison to follow the direction of 

an applied field. The resulting magnetization may be calculated 

using Boltzmann statistics to give 

M = nm [coth ( ) -1. (5.18) 

for a collection of n identical particles per unit volume,having 

each a total magnetic moment m = VMs  where V is the particle volume. 

This result is the same as a classical Langevin paramagnet except 

with a paramagnetic moment m,which may be several hundred Bohr 

magneton. Hence the term 'superparamagnetism' applied to this case 

by Bean and Livingston (1959). 

This free rotation is impeded by the presence of anisotropy 

forces which act to constrain the direction of the nett particle 

moment to lie along certain preferred orientations. The anisotropy 

forces are a result of particle shape, crystal structure and applied 

stress. The particle 'shape anisotropy' arises from the basic 

magnetostatic requirement that the nett moment lies along a direction 

of minimum demagnetizing field. So for an ellipsoid of revolution 

the magnetostatic energy is minimized if the total moment is oriented 

along the major axis. The change in magnetostatic energy involved 

in rotating the nett moment by an angle 0 from this easy direction is 

(Neel (1955) ) 

E = KV Sint  0 
	

(5.19a) 

where the anisotropy constant 

K = i (D1—D/.1) Ms2 	 (5.19b) 

depends on the difference between the demagnetizing factors perpendicular 

(1) and parallel (//) to the particle long axis. The two stable 
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magnetization directions are separated by energy barrier KV. 

Magnetoczystalline anisotropy, magnetostriction, surface effects, 

etc. also may contribute to such barriers. For convenience all such 

contributions will be assumed to produce a uniaxial anisotropy of the 

type given by (eq.5.19a) with a modified K value. 

Anisotropy barriers have a profound effect on the response of 

the particle moment to an applied field. This may be demonstrated 

by considering a collection of identical, non interacting, uniaxial 

single domain particles with the anisotropy axes oriented along the 

field direction. Suppose at T = 0 the particle moments are equally 

distributed among the two stable magnetization directions. A 

magnetization can only be created by moment reversal across the aniso-

tropy barrier KV and at T = 0 this is not possible until the field 

reaches a threshold value HK  = 2K/Ms  and the magnetization jumps 

from zero to nm. The resulting hysteresis loop is square with a 

coercive force Hc  = HK. In the more general case where both aniso-

tropy axes and nett moments are randomly distributed in space the 

hysteresis loqp is rounded with Hc  = 0.479 HK, saturation magnetiza-

tion 0.500 mn (H -} .0) and initial susceptibility x = 0.333 nm2/K. 

(Stoner and Wohlfarth (1948)). 

At T > 0 the magnetization process may be assisted by thermal 

activation over the anisotropy barriers. For H < HK  the magnetization 

increases slowly with time and reaches the thermal equilibrium value 

after a time At which is large compared with the transition time T 

for thermally activated flipping of the moment across the anisotropy 

barrier. The system will also require a finite time to relax back 

to an unmagnetized state after a saturating field has been removed. 

The remanent magnetization decays exponentially, 

fir  (t) = nm exp(-t/ ToY 	 (5.20a) 

with a time constant To  given by (Kneller (1969)) 

To-1  = 2fo  exp(-KV/kT) (5.20b) 

where f varies weakly with temperature and field, and is given to 

within an order of magnitude by the expression 
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fo  (Hz) ti  3 x 106  HK  (Oe (5.20c) 

For fine Fe particles HK  ti  IT= 1000 Oe and fo  ti  109  Hz. 

The result of any experiment depends on the ratio of experimental 

measuring time At to the relaxation time T
o
.  If At » T

o 
the 

equilibrium thermodynamic magnetization is measured and the system 

appears superparamagnetic, there is no remanence or hysteresis. 

In the opposite limit At « To  the system appears static and will 

display the frozen hysteretic behaviour discussed at T = 0. In 

the intermediate case At ti To  time dependent magnetization and 

remanence will be observed as the system creeps toward thermal 
equilibrium. 

As To  depends exponentially on T there will be a sharp 

demarkation between superparamagnetic and frozen ferromagnetic 

behaviour at a 'blocking temperature ' TB  which depends on the time 

scale of the experiment, 

kTB  = KV/log (2ot fo) 	 (5.21a) 

or using the Ansatz HK  ti HC(T = 0) 

kTB ti VMs  HC(0)/ln(6 x 106  HC(0) [Oe] At [s] ) (5.21b) 

As the temperature is decreased toward TB  the superparamagnetic 

susceptibility increases monotonically according to a Curie law, in 

small fields (MH « kT) 

X = nm2/j kT 	T > TB  (5.22a) 

with j = 1 if KV » kT and j = 3 if KV « kT, but drops steeply 

below TB  to a small value given in the simplest case by Wohlfarth 

(1977), 

X = nm2J3K(T) T < TB  (5.22b) 
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This decrease is of the order log (2Qt fol ti 25 for Fe particles 

with At ti 10-2  sec, giving a very sharp, asymmetric peak in the 

susceptibility at TB. Remanent magnetization first appears on the 

time scale of the measurement below TB.  If the system is cooled in 

a field through TB,  a TRM will be found. In the simple case 

under consideration here the TRM results from the freezing of the 

magnetization present at TB, and so TRM(T) = x(TB)H for T < TB. The 

TRM will decay exponentially with time according to (eq.5.20a). 

The IRM may be treated in a similar manner. 

The concepts may be readily generalized to include a distri-

bution of particle sizes, interparticle interactions and the 

temperature dependence of Ms  and K. (Kneller (1969)). The effect 

of particle size distribution on the sharpness of the susceptibility 

peak has been considered by Wohlfarth (1979). It was shown that a 

sharp peak could be retained if the distribution of particle sizes 

(blocking temperatures )satisfied certain general conditions. A 

distribution of blocking temperatures modifies the exponential 

decay of remanence to a logarithmic decay 

Mr(t) = const - S lnt (5.23) 

a result first derived by Street and Woolley (1949). Relationships 

between the IRM and TRM which first appear below TB  are described by 

Guy C1977). 

5.1.4 Some systems with a critical concentration  

5.1.4.1 Dilute insulating antiferromagnets  

Much of the theoretical work outlined in section 5.1.2.3 has 

been stimulated by experimental study of insulating antiferromagnets 

and these experiments have provided strong confirmation of the picture 
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of C as a, multicritical point with g = Ko(TZ. The systems chosen 

for investigation have the attractive properties of both site 

randomness as well as magnetic interactions which closely approximate 

the nn Ising and Heisenberg models in d = 2 and d = 3. Notable 

among such systems are: Rb2  Mnc  Mgl_c  F4  (2D Heisenberg), Rb2  Coc  

Mgt_c  F4 (2D Ising), Mnc  Znl_c  F2, K Mnc  Znl_c  F3, K Mnc  Znl_c F3 
(3D Heisenberg) and Cs3  Coc  Znl_c  C15  (3D Ising). 

• 

The first test of the percolation model for such systems is 

the location of the critical concentration. In so far as the critical 

concentration can be bracketted, it is in good agreement with the 

calculated percolation concentration for the appropriate 2D and 3D 

lattices (Birgeneau et al (1980); Cowley et al (1980), Cowley et al 

(1977), Stinchcombe (1979b)). A more stingent test is the critical 

curve Tc(C) which was calculated by Stinchcombe (1979b) in a parameter 

free model and found to be in excellent agreement with the data for 

the 3D Ising system Cs3  Coc  Znl_c  C15  and the 3D Heisenberg system 

K Mnc  Mg1_c  F3  (shown in Fig. 5.3). 

The direct observation of spin correlations in the vicinity of 

Cp  by neutron scattering have played a seminal role in the description 

of the percolation multicritical point. The first measurements 

(Birgeneau et al (1976)) examined the dilute 2D Heisenberg like 

system Rb2  Mnc  Mgl_c  F4  at concentrations C < C, leading to the 

suggestion g =K1D(T). A detailed analysis of these experiments 

(Birgeneau et al (1980)) was carried out assuming a scattering law, 

S(g, oC,K) = A K171 
/(K2 

 + K12) (5.24a) 

consistent with the experimental Ornstein-Zernicke form of the 

scattering and an inverse correlation length, 

K1  (g,AC) = Kl  (g, 0) + K1(0, AC) (5.24b) 

following the result (eq. 5.16c) for the one dimensional chain. 
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These two expressions are consistent with the scaling forms (eq.5.9), 

The temperature like variable g was taken as the inverse corre-

lation length of the pure Heisenberg chain including the effect of a 

small uniaxial anisotropy. The simple addition of thermal and geome-

trical inverse correlation ranges (eq.5.24b) was verified by 

experiment. The thermal inverse correlation length tended to zero 

with an exponent v = 0.9 + 0.05 whilst the geometrical inverse 

correlation range was not inconsistent with the percolation value 

v = 1.35. This implies a cross over exponent 0 = Vp/v = 1.5 + 0.08 
which favours the value 1.7 proposed by Stanley et al (1976). The 

susceptibility exponent y proved more difficult to extract. It 

was estimated using the postulated form of the scattering law as 

K -' 0, S(g,AC,K = 0) " K
1
2 -n in conjunction with measured value 

of v using the relation (2-n)v = y. A value y = 1.50 + 0.15 

was deduced in this way. Taken together with the calculated percolation 

exponent y = 2.43•, this gives 0'.= y./y = 1.9 + 0.2 in good agreement 

with the value determined from the correlation range exponents. 

The spin correlations in the vicinity of C for the 2P Ising 

Rb2  Coc  Mgt-c  F4  have also been extensively studied (Cowley et al 

(1980)). In this case, too, the inverse correlation range for all 

alloys studied with C < C was well described by the sum of 

geometrical and thermal parts. The thermal part tended to zero with 

an exponent v = 1.32 + 0.04 which is identical to the pure percolation 

exponent (within error). The cross over exponent is thus consistent 

with the theoretical estimate 0 = 1. Furthermore, the geometrical 

inverse correlation range is well described by the calculated 

percolation exponent. The exponent y was calculated in a number 

of ways. Using the method given above, y was found to depend weakly 

on concentration and was extrapolated to C giving y = 2.4 + 0.1 P 	 - 
consistent with 0 = I. The difficulty in obtaining a good estimate 

of y lies in the uncertainty of the exact functional form of 

S(g, AC, K). 
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The correlations for C a C have also been well studied but are 
p 

not understood in such great detail as for C < C . The two dimensional 
p 

systems undergo a smeared transition to the ordered state with 

exponents yT, v,T  which are close to those expected, Tn contrast, the 

transition to an ordered state for the 3D Heisenberg like system 

Mnc  Zn1-c  F2  (Cowley et al (1977)) occurs without divergence of the 

correlation range at TN. This puzzling feature has yet to be 

fully understood. 

5.1.4.2 Au Fe 

The magnetic phase diagram for quenched f.c.c. Au Fe alloys 

deduced from a variety of techniques is presented in Fig. 5.5. 

(Coles, Sarkissian and Taylor (1978)). The state of magnetic order 

changes from a scaling spin glass regime dominated by indirect 

RKKY interactions at low concentration (C ,<, 1%) (Tholence and 

Tournier (1974)) to a cluster spin glass regime at higher concen-

trations as progressively more Fe moments are coupled into nn 

clusters via ferromagnetic direct exchange interactions (Murani 

(1974)). The spin glass gives way to ferromagnetism at 15.5 ± 0.5% 

Fe, somewhat lower than the pure percolation limit of 19.8% Fe 

expected for an fcc lattice. 

The spin glass behaviour in the scaling region is similar to 

Cu Mn (section 5.1.3.1). The cluster spin glass which occurs at 

higher concentration deserves further comment. These alloys show the 

susceptibility peak, time dependence and thermomagnetic effects 

characteristic of spin glasses and have been analysed by Guy (1977) 

using the phenomenological fine particle model discussed in section 

5.1.3.3. Early work (Crangle and Scott (1974)) claimed such alloys 

to be ferromagnetic. This contradiction was resolved by low field 

magnetization measurements (Murani (1974)) which showed superpara-

magnetic behaviour resulting from the formation of large ferro-

magnetically coupled clusters of Fe moments at low temperatures. 
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Subsequent neutron small angle scattering experiments (Murani et al 

(1976)) confirmed this inference and furthermore ruled out any 

possibility of ferromagnetism by the lack of a critical scattering 

peak. The method of Arrott plots (section 5.2.1) used by earlier 

workers to determine Tc  from high field magnetization data is invalid 

in the presence of such an inhomogeneous magnetization distribution 

(Edwards, Mathon and Wohlfarth (1975)) and it was argued by Murani 

(1974) that Tc  determined in this way could be linked with an 

effective Tc  for formation of superparamagnetic clusters (shown as 

dashed line in Fig. 5.5). The observation of such clusters gives 

some credence to the fine particle description used by Guy (1977). 

A gradual increase in the small angle scattering intensity was 

observed as cluster spin glass alloys were cooled to low temperature 

(Murani et al (1976)) suggesting a gradual increase in cluster 

moment with decreasing temperature. On extending these data to 

lower K the small angle scattering intensity went through a well 

defined maximum as a function of temperature in the vicinity of Tg  

(Murani (1976)). The peak temperature itself varied smoothly with 

K tending to Tg  (AC susceptibility) as K 0.  Murani (1976) 

suggested that this peak was a result of competition between 

elastic and quasielastic components of the scattering, implying a 

non unique freezing temperature for the system. The data was 

reinterpreted by Soukoulis, Grest and Levin (1978) as a unique 

freezing process. An adequate explanation for this phenomenon is 

still lacking _ 

The ferromagnetic phase boundary itself was deduced from the 

temperature dependence of neutron critical scattering peaks together 

with resonance and spectroscopic techniques summarized by Coles et 

al (1978). It has been suggested that ferromagnetic alloys close to 

CL  revert to a cluster spin glass state at low temperature (Verbeek 

and Mydosh (1978)). The temperature at which this ferromagnet-spin 

glass transition is currently unclear. The recent work of Sarkissian 
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(1980) emphasises the care which must be taken to avoid artefacts 

produced by demagnetizing fields. In addition, the neutron Bragg 

scattering measurements of Murani (1980) reveal that although the 

magnetic peak intensity tends to decrease at the 'transition', the 

integrated intensity in fact increases. The broadening of the magnetic 

Bragg peak coincides with a rapid increase in small angle scattering, 

suggesting a change in the magnetic 'mosaid' structure rather than a 

transition to a spin glass. 
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5.2 Previous work 

5.2.1 Pure Fe  

To put the more complex magnetic behaviour of Cr Fe alloys 

close to CF  into persepctive some of the properties of pure ferro-

magnetic iron will be briefly recalled. 

The ferromagnetism of Fe is still not wholly understood. The 

conventional itinerant electron theory which proved so successful 

for Chromium and its alloys (section 4.1) can only partially account 

for the ferromagnetic properties of Fe. An improved itinerant model 

must account for the low Curie temperature and the occurrence of 

local moments and spin waves above T.  This problem is at present 

a very active area of theoretical interest. (Edwards (1980)). An 

improved model which synthesises aspects of both the itinerant and 

local pictures has been suggested by Hubbard (1979 a,b). The most 

significant result of Hubbard's treatment is the observation of a 

Heisenberg like dependence of the energy required to rotate a single 

spin about the ferromagnetic direction at T = 0 (Hubbard (1979a)), 

On extending the theory to finite temperature (Hubbard (1979b)) it 

was found that the decrease in spontaneous magnetization with 

increasing temperature was due to disorder in spin direction rather 

than a change in their magnitude. A Curie-Weiss susceptibility with 

an effective moment 2.7PB  was found above Tc. 

Experimentally, Fe shows a number of Heisenberg-like properties. 

The critical exponents: 6 = 0.379 + 0.004 (Suter and Hohenemser 

(1979)), Y = 1.333 + 0.015 (Noakes, Arrott and Thornberg (1966) 

and V = 0.69 ± 0.02 (Als Nielsen (1976)) agree well with theoretical 

estimates (section 5.1.2.3). The dynamical critical behaviour is 

also consistent with theoretical predictions for a Heisenberg 

ferromagnet. (Boronkay and Collins (1973), Collins, Minkiewicz, 

Nathans, Passell and Shirane (1969)). The low lying excitations are 

simple spin waves with a stiffness consistent with Tc  if a Heisenberg 

analysis is used. The moment itself is weakly temperature dependent. 

Thus, as a first approximation, it may be reasonable to treat the 

ground state properties of iron, the ordered moment for example, 
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as given by itinerant electron theory but to treat the low lying 

excitations as having Heisenberg-like degrees of freedom. 

The host of 'technical/ magnetic properties of Fe which arise 

in one way or another from ferromagnetic domains demonstrate that 

Fe is not purely a Heisenberg ferromagnet. As an example, the 

magnetization and low field permeability (p = 1 4 MH) for poly-

crystalline Fe between 77 and 1100K is shown in Fig. 5,6 (Bozorth 

(1951)), The most striking reature of these data is the appearance 

of a peak in the low field magnetization in the vicinity of Tc, c 
which shifts to lower temperatures as the field is increased from 0.2 

to 3 Oe. This peak, which does not occur at Tc, is the result of 

the competition between increasing spontaneous magnetization on one 

hand and increasing magnetocrystalline anisotropy on the other. 

This 'Hopkinson' peak (Hopkinson (1885)) is one of a number of 

complicated phenomena observed in the low field static and 

alternating susceptibility of Fe near the critical point as a 

result of dipole-dipole interactions, magnetocrystalline anisotropy 

and domain formation. It has been suggested by Arrott, Heinrich and 

Noakes (1972) that dipolar forces may even play a significant role 

in the critical phenomena,moving the exponents more toward mean 

field values. 

The data in Fig. 5.6 illustrate the difficulty in determining 

Tc  from magnetization measurements. It is clearly incorrect to 

associate Tc  with the maximum in the low field static or alternating 

susceptibility. Rather, it has been proposed that Tc  lies closer to 

the maximum in 
dT 

 or the temperature at which the magnetization first 

reaches the demagnetizing limit. High field magnetization data also 

suffer from similar difficulties. Various extrapolation schemes have 

been used to define Tc  by identification of the temperature at which a 

spontaneous magnetization first appears. In its simplest form this 

entails extrapolation of the high field M vs H curve to H = 0. This 

method was used for the data in Fig. 5.6 and the Curie temperature (A) 

is indicated. An improved extrapolation procedure based on a 
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Fig.5.6 Magnetism of Fe close to Tc. 

(a) Low and high field magnetization of pure Fe close 

to Tc  (arrowed). (Bozorth (1951)). 

(b) Neutron critical scattering from pure Fe. Intensity 

at a given scattering angle e as a function of tempera-

ture. (Villain (1964)). 

(c) Neutron critical scattering from pure Fe. Reciprocal 

scattering intensity versus scattering vector squared. 

(Popovici (1971)). 





phenomenological equation of state has been outlined by Arrott (1957). 

In this case the magnetization is plotted in the form M2vs HIM for 

a given temperature and extrapoled to H = 0. Tc  is given by the tempera-

ture for which such an extrapolation first passes through the origin. 

The alternative methods which use the Curie-Weiss constant or the 

disappearance of remanence are unreliable. 

T 
c may be determined unambiguously in zero field by neutron 

critical scattering. The results of Villain (1964) are shown in 

Fig. 5.6. The sharp peak in the critical scattering is located at 

Tc  in the limit K -Y 0. For completeness, the K dependence of the 

crit ical scattering taken from the work of Popovici (1971) is also 

illustrated (Fig.'5.6). The deviations from Lorentzian line shape below 

Tc  should be noted. 

5.2.2 Cr Fe ferromagnetic alloys  

Ferromagnetism occurs in Fe rich Cr Fe b.c.c. solid solutions 

over a wide range of concentration. The addition of Cr to ferro-

magnetic Fe results in an initial increase in Curie temperature, 

followed by a slow decrease in both the average moment (it) and Curie 

temperature (Fallot (1936)). Ferromagnetism is retained above a 

critical concentration (CF) of some 10% to 20% Fe. Tc  as a function 

of concentration taken from the high field magnetization measurements 

of Fallot (1936), Nevitt and Aldred (1963) and Read and Temple (1974) 

is shown in Fig. 4.11. T decreases linearly between 60% and 20% Fe, 

extrapolating to zero at CF  ti 15% Fe. 

The early work of Fallot (1936), supplemented by Nevitt and 

Aldred (1963), suggest a linear decrease in mean moment as the Fe 

concentration is decreased, consistent with the Slater-Pauling curve. 

This decrease is not entirely a simple dilution effect as may be 

judged by the valued
o 
 = 2.36 	which is larger than the moment of 

pure Fe (2.22pB). This suggests a negative induced moment on Cr sites. 

More accurate bulk magnetization data taken by Aldred (1976) reveal 
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small but significant deviations from linearity. 

The individual Cr and Fe average moments can be determined by 

neutron diffuse scattering. The data of Aldred et al (1976). 

(together with that of Shull and Wilkinson (1955) and Lander and 

Heaton (1971)) reveal that the average Fe moment initially increases 

with decreasing Fe concentration, peaking at " 80%., and then slowly 

decreases. The mean Cr moment is oppositely directed to the Fe 

moment and decreases rapidly with Fe concentration. These two 

trends combine to give the approximately linear decrease in mean 

moment for the alloys with decreasing Fe content. For our purposes 

the most significant finding of this work is the very weak concen-

tration dependence of Fe moment below 50% Fe. In fact, the mean Fe 

moment remains essentially constant between 30% Fe and the 12% Fe 

alloy studied by Babic at al (1980). The induced Cr moment on the 

other hand is zero, to within experimental error, below 50% Fe. 

The g factors and magnetocrystalline anisotropy constant K1  

have been determined by David and Hdath (1971). The g factor is 

concentration and temperature independent. The anisotropy constant 

at T -} 0 decreases with decreasing Fe concentration tending to a constant 

value of 2 x 105  erg/cm3  between 7 0% and 3 0% Fe. 

The spin wave stiffness shows a monotonic decrease with 

decreasing Fe concentration and is linear in c below 70% Fe. 

(Aldred (1976)). The linear portion extrapolates to zero at 18.0 + 

0.2% Fe, close to CF  estimated from high field susceptibility. 

The low temperature specific heat of bcc Cr Fe alloys shows a 

celebrated anomaly in the vicinity of CF. In particular the coeffi-

cient of specific heat which is linear in T has a large peak as function 

of concentration at 19% Fe (Cheng, Wei and Beck (1960)). Originally 

thought to be the result of the peak in d electron density of states 

this anomaly is now thought to reflect the presence of large magnetic 

clusters. (Ishikawa et al (1965)). A similar effect is seen Au Fe 

alloys close to CF  (Dawes and Coles (1979)). A large linear.component 
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in the magnetic specific heat is typical of spin glasses (Alderson, 

Halperin and Varma (1972)). 

There is thus considerable disagreement in the precise location 

of CF.  Extrapolation of the mean moment determined by high field 

magnetization results in CF.  n, 10% Fe whereas extrapolation of the 

high field Tc(C) data gives CF  n, 16% Fe. Somewhat higher values are 

suggested from the extrapolation of the spin wave stiffness (CF  n, 18% Fe) 

and the peak in the coefficient of specifid heat (CF  n,19% Fe). Higher 

still is the estimate of Shull and Beck (1975).  from low field suscep-

tibility data (CF  n, 23% Fe). 

In spite of the disagreement in CF  there is universal agreement 

that the ferromagnetism of Cr Fe alloys changes character below 30% Fe. 

Whereas for higher concentrations the magnetization could be well 

saturated in a field of 0.4T and the low temperature magnetization 

well described by spin wave theory, the magnetization of alloys 

containing less than n35% Fe is strongly field dependent and the spin 

wave fit breaks down (Aldred (1976)). Arrott plots develop pronounced 

curvature (Loegel (1975)) and the low field magnetization shows field 

cooling effects in this region (Shull and Beck (1975)). The tempera-

ture dependence of the resistivity crosses over from a T2  regime to 

a T3/2  regime below 30% Fe (Loegel (1975)) and the Mossbauer hyperfine 

field measurements result in a Tc  well below those determined by 

bulk magnetization. (Loegel, Friedt and Poinsot (1975)). The effective 

Curie constant also shows a rapid increase as the concentration is 

lowered below 30% Fe (Aldred and Kouvel (1977)). 

This change coincides with the development of forward peaking 

in the magnetic moment disturbance M(K) = T(K)/S(K) (section 2.2.3) 

in the neutron diffuse scattering measurements of Aldred et al (1976), 

indicating a tendency toward long range spatial inhomogeneity in the 

magnetization distribution. Such spatial inhomogeneity may be expected 

to develop as CF  is approached and it would appear that the change in 

character of ferromagnetism in Cr Fe alloys below 30% Fe is the result 

of such a process. 
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Explanations along these lines have been put forward by a 

number of groups. Loegel (1975) suggested that a breakdown into 

inhomogeneous ferromagnetic order occurred below ti29%. Aldred and 

Kouvel (1977) invoke the presence of giant moment clusters below 

30% Fe to account for the unusually large critical exponent y in 

this concentration range. Shull and Beck (1975) attribute the micto-

magnetic or cluster spin glass phenomena in alloys with less than 

23% Fe to superparamagnetic clusters. The presence of supermagnetic 

clusters is also well established in SDW alloys (C ti  15%) (section 

4.2) and may be expected to persist to higher concentrations. Shull 

and Beck (1975) conclude that the change to ferromagnetism was gradual 

but alloys above 25% Fe were essentially 'good' homogeneous ferro-

magnets. 
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5.3 Determination of the ferromagnetic phase boundary  

5.3.1 Introduction  

The present program of experiments was initiated to clarify the 

nature of magnetic inhomogeneity in Cr Fe alloys close to CF  and to 

provide a more accurate estimate of the ferromagnetic phase boundary 

Tc  (C) and the critical concentration for ferromagnetism. 

The determination of the ferromagnetic phase boundary by 

neutron small angle scattering in conjunction with low field static 

and AC susceptibility techniques is presented in the present section. 

The results of susceptibility measurements on alloys which lie 

between the critical concentration for antiferromagnetism and the 

critical concentration for ferromagnetism are presented in section 5.4. 

A quantitative account of the spin correlations in the vicinity of 

CF  is given in section 5.5. Finally the effect an applied field has 

on the spin correlations is discussed in section 5.6. 

5.3.2 Results of neutron small angle scattering measurements  

5.3.2.1 Zero applied field: D17  

Neutron small angle scattering (SAS) measurements were carried 

out initially on a series of alloys with concentrations between 

16.7% Fe and 25% Fe (essentially spanning the range of critical 

concentrations discussed in section 5.2.2) using the D17 spectrometer 

at ILL Grenoble. The samples were prepared following the procedure 

of section 3.1. The spectrometer was set up according to the procedure 

given in section 3.3.3. A sample to detector distance of 2.82 m and 

incident wavelength of 11.7X gave a range of useful momentum transfer 

between 0.010 and 0.060 R ^1.. The data were collected following the 
method outlined in section 3.3.3 and the results were analysed to 

give radial averages of the scattering collected by the D17 area 
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detector (section 3.3.41. The scattering intensity I(x) for three selec-

ted values ,of K are shown in Fig. 5.7. 

The SAS exhibits two distinct features. All samples studied 

display a dramatic increase in scattering as the temperature is 

lowered. For alloys with concentrations of 19.9% Fe or greater the 

SAS also rises to a maximum at a finite temperature. This maximum 

is well defined for the Cr Fe 25% sample but falls away to a weak 

shoulder for Cr Fe 19.9%. These maxima are attributed to ferromagnetic 

critical scattering which peaks at Tc. The absence of a critical 

scattering peak in the 16.7% alloy indicates that long range ferro-

magnetic order does not exist at this concentration. These observations 

bracket CF  between 16.7% Fe and 19.9% Fe. 

5.3.2.2 Zero applied field: Dli (5m) 

A further series of SAS experiments were performed on a second 

set of alloys which filled the gap between 16.7% and 19.9% Fe left 

by the D17 measurements. Alloys of concentrations 19.5%, 18.5%, 17.5% 

and 15.5% Fe were prepared, allowing the critical concentration to be 

bracketted within + 0.5% Fe. These measurements were carried out 

using the Dli spectrometer at ILL, Grenoble. Data were collected 

with an incident wavelength of 7.0. at the sample to detector distance 

of 5m, covering a momentum transfer between 0.008 to 0.050 R -1  which 
overlaps with the previous D17 scattering range. The experimental 

details, data analysis and sample preparation are covered in sections 

3.1, 3.3.2 and 3.3.4. The radially averaged intensity I(K) obtained from 

these alloys is shown as a function of temperature in Fig. 5.8. For 

ease of comparison with the previous D17 data (Fig. 5.7) the same three 

K values have been used and the intensities have been normalized to each 

other. 

These data show an increase in SAS with decreasing temperature 

for all alloys studied, as seen previously. A weak shoulder super-

imposed on this increase may be discerned for the Cr Fe 19.5% Fe 

sample and represents the ferromagnetic critical scattering occuring 

at T c 
= 45 + 5K. No trace of this shoulder remains at a concentration 
 - 
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Fig.5.7 Temperature variation df small angle scattering for Cr Fe 

alloys from D17 experiments. Radially averaged intensity 

as a function of temperature is shown for constant K value 
of 0.0198-1  (upper curves), 0.032 Ā-1  (middle curves) and 
0.040 R-1  (lower curves). 
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Fig.5.8  Temperature variation of small angle scattering for Cr Fe 

alloys from Dll (5m) experiments. Radially averaged 

intensity as a function of temperature is shown for 

constant K values of 0.019 Ā-1 (upper curves) 0.032 a-1  
(middle curves) and 0.040 Ā-1  (lower curves). 
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of 18,5%. This information, together with the concentration depen-

dence of Tc  places the critical concentration for ferromagnetism at 

CF  = 19.0 	0.5% Fe. 

5.3.3 Low field susceptibility measurements  

The magnetization of several ferromagnetic alloys was measured 

in very low fields (2.5-10 Oe) using the vibrating sample magnetometer 

described in section 3.8.2. .Thin disc shaped samples suitable for 

magnetization measurements were spark machined from the Cr Fe 19.9%, 

20.8% and 25% samples used in the SAS experiments. To minimize 

demagnetization effects, the field was applied parallel to the disc 

axis. The results are shown in Fig. 5.9. 

The magnetization increases rapidly with decreasing temperature 

until the demagnetizing limit is reached at the 'kink point' 

temperature. The magnetization remains at the demagnetizing limit as 

the temperature is further decreased and at low temperatures drops 

rapidly. The 'kink point' temperature is commonly used to estimate 

Tc  (section 5.2.1) and Tc  determined in this way lies some 5K below 

the Tc  determined from neutron SAS on the same alloys. In view of 

the uncertainty in estimating Tc 
 from bulk magnetization data this 

discrepancy may be regarded as negligible. 

AC susceptibility measurements were also made on two alloys, one 

on either side of the critical concentration. These samples, Cr Fe 

17.5% and Cr Fe 19.5%, were spark machined from the neutron SAS 

specimens and had the form of long thin needles (c/a ti 20) in an 

attempt to reduce the demagnetizing field below that of the disc-like 

samples used in the static susceptibility measurements. The AC 

susceptibility was determined between 4.2K and 77K using the AC 

bridge described in section 3.8.3. An alternating field of 80 Hz and 

300 mOe was employed. The results are shown in Fig. 5.10. 

The susceptibilities of these two samples are remarkably similar, 

both showing a sharp asymmetric peak at 30K. On the basis of these 
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Fig.5.9  Low field magnetization of several ferromagnetic 

Cr Fe alloys as a function of temperature. Tc  determined 

from neutron SAS is shown by an arrow. 

Fig.5.10  AC susceptibility for Cr Fe 17.5% (C < CF) and Cr Fe 19.5% 

CC > CF) as a function of temperature. Tc  determined by 

neutron SAS for the 19.5% alloy is shown by an arrow. 
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data it is difficult to discern any difference between the ferro-

magnetic Cr Fe 19..5% alloy and the paramagnetic Cr Fe 17.5% alloy. 

Closer examination of the 19.5% Fe data reveals a slight shoulder 

between 40K and 60K which is absent in the 17.5% Fe. data. This 

shoulder gives a weak maximum in dT,  commonly identified with Tc  
(section 5.2.1) at 44K. This estimate is in excellent agreement with 

the neutron SAS value of 45K. The absence of a shoulder and the 

cusplike maximum in the susceptibility of the 17.5% alloy suggest that 

it is not ferromagnetic, in line with the neutron SAS result. 

The values of Tc  determined by these methods is given in Table 

5.1 

Table 5.1  

Curie temperatures (Tc) for Cr Fe alloys determined by neutron critical 

scattering and low field magnetization 

Concentration 

(atomic percent Fe) 

Tc 
(Critical scattering) 

(K) 

Tc  
(Magnetization) 

(K) 

25. 148 145 + 3 

24 122 - 
21.7 84 - 
20.8 72 70 + 3 

19.4_ 55 + 5 55 + 5 

-19.5 45 +5 44 + 3 

5.3.4 Discussion 

The critical concentration of 19.0 + 0.5% Fe is considerably larger than 
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the reported values of 15.5% Fe estimated from high field Tc(nl 

data and 10% Fe estimated from the high field u (c) data but lies close 

to the value of 18% Fe estimated from spin wave stiffness and 19% Fe 

estimated from the specific heat (section 5.2.2). 

The discrepancy is due to systematic overestimation of Tc  for 

near critical alloys by the high field magnetization technique, even 

to the extent of assigfiing a Curie temperature to an alloy which does 

not show long range order (Nevitt and Aldred (1963)). This difficulty 

arises from spatial inhomogeneity within the alloy which tends to 

produce highly curved Arrott plots (Loegel (1975)) which cannot be 

easily extrapolated to H = 0 in order to determine Tc. A similar 

conclusion has been drawn for Au Fe alloys close to CF  (Murani (1974) 

and section 5.1.4.2.). A related difficulty arises in the high 

field determination of the spontaneous magnetization. In this case, 

the saturation of highly susceptible superparamagnetic clusters on 

both sides of the critical concentration results in a misleadingly 

high value of the spontaneous magnetization. 

Shull and Beck (1975) suggest a critical concentration above 

23% Fe on the basis of low field magnetization measurements. If the 

data of these authors is re-examined in the light of the present 

measurements it is apparent that the 23% Fe alloy which was considered 

mictomagnetic is in fact ferromagnetic. This brings the value of the 

critical concentration to ti 19% in excellent agreement with the 

present value. 

The critical concentration is lower than the calculated nn 

percolation limit for a bcc lattice (24.3%) but higher than the 

calculated next nn percolation limit (17.8%) (Essam (1972)). It 

should be noted that the tendency toward atomic clustering in these 

alloys would lead to a critical concentration below that calculated 

for purely random nn percolation. 

One of the most striking features of the SAS is the rapid 

increase in scattering below Tc  for ferromagnetic alloys. This 
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increase has been observed in a number of SAS studies of binary 

alloys close to CF(Murani et al (1975), Cywinski, Booth. and Rainford 

(1977), Malletta and Felsch (1980)) and has been termed 'subcritical 

scattering' by Goman'kov, Mokhov and Nogin (1980). It has been 

suggested by a number of groups (Malletta et al (1980), Goman'kov et 

al (1980), Nieuwenhuys et al C1979)) that this subcritical scattering 

is associated with a ferromagnet - spin glass phase transition in 

the vicinity of the temperature for which the magnetization first 

decreases below the demagnetizing limit. This transition being 

responsible for the low temperature drop in magnetization seen for 

example in Fig. 5.9. However, the data of Fig. 5.10, in which the 

demagnetizing field has been made very small, show that this decrease 

is part of a Hopkinson peak (similar to that observed for pure Fe 

(section 5.2.1))and may be understood without invoking a ferromagnet - 

spin glass transition. Such a peak is explained by the competition 

between increasing magnetic anisotropy and increasing spontaneous 

•magnetization. It is unlikely that:the mechanism of magnetic aniso-

tropy in this case is the same as in pure Fe. By noting the similarity 

between the low field susceptibility of the 17.5% and 19.5% Fe 

alloys (Fig. 5.10) one may conclude that the anisotropy mechanism 

operating in spin glass alloys is still present in ferromagnets 

close to CF. Magnetostatic shape anisotropy is a possible candidate. 

It is suggested in section 5.5 that the subcritical scattering 

reflects the presence of finite magnetic clusters. This is the limiting 

case of a more general argument which attributes the subcritical 

scattering to the mosaic broadening of the magnetic (000) Bragg peak 

by microdomains. It is perhaps a matter of semantics whether the 

subdivision of an inhomogeneous ferromagnet into microdomains may be 

regarded as ferromagnet - spin glass transition. 
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5.4 Magnetization between the'critical concentrations  

5.4.1 Results  

The low field static magnetization of Cr Fe 17.5% and 18.5% 

samples was determined by use of the low field vibrating sample 

magnetometer described in section 3.8.2. Needle shaped specimens 

with a low demagnetization factor were spark machined from the ingots 

used for neutron SAS experiments. These alloys do not support long 

range antiferromagnetic order or long range ferromagnetic order as 

they lie between the critical. concentrations CA  = 16% and CF  = 19% 

respectively. 

The Cr Fe 17.5% specimen was studied in detail. The magneti-

zation in an applied field of 350e was determined in both zero field 

cooled (ZFO) and field cooled (FC) conditions. The results are 

depicted in Fig. 5.11. The ZFC magnetization shows a peak at 24K, 

somewhat rounded compared to the AC susceptibility peak found for the 

same alloy (section 5.3.3) and occurs at a lower temperature. A 

similar discrepancy between static and AC susceptibility for Cr Fe alloys 

was noted by Shull and Beck (l975). The magnetic response below the 

peak temperature is time dependent. The magnetization increases slowly 

in time with constant applied field, this is shown inset in Fig. 5.11 

for a field of 35 Oe at 4.2K. The time dependence is closer to 

logarithmic than exponential. The IRM which remains after the field 

has been removed also decays slowly with time. 

The FC magnetization shown in Fig.5.11 follows the ZFC data 

above the peak temperature but tends to a constant value below the 

peak, This magnetization did not appear to be time dependent over 

the period of 30 m during which a field was applied at 4.2K. The 

magnetization which remained after the field was removed (TRM) 

decayed slowly with time. The temperature dependence of the TRM 

measured lOs after the removal of the cooling field is shown in Fig.5.11. 

The approximate addition of the TRM and ZFC magnetization to produce the 

FC magnetization should be noted as well as the disappearance of 

remanence above the peak temperature. 
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Fig.5.11 Low field magnetization for Cr Fe 17.5% (35.) Oe) 

Zero field cooled magnetization (ZFC), field cooled 

(35 Oe) magnetization (FC) and thermoremanen: magneti-

ation (TRM) are shown. Increase in ZFC magnetization at 

4.2K with time is shown inset. 
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Hysteresis loops were taken at 4.2K in ZFC and EC states. 

The loop obtained after field cooling is of similar shape to that 

measured in after cooling in zero field but is displaced along 

the magnetization axis by an amount approximately equal to the 

TRM at 4.2K (Fig. 5.12). This is consistent with the appearance 

of remanent magnetization which cannot be switched over the time period 

of the experiment.. It is interesting to note that the AC suscep-

tibility, which is in reality an effective susceptibility found by 

traversing a very small hysteresis loop, is virtually unchanged for FC 

and ZFC states. 

A hysteresis loop was also taken at 4.2K in the ZFC state in 

large fields. In contrast to the symmetrical loop found in the 

previous low field determination, the high field loop is markedly 

asymmetric. The magnetization does not approach saturation in 

applied fields up to 5000 Oe. This data is shown in Fig. 5.12  

and compared to the hysteresis loop for a ferromagnetic 25% Fe 

alloy which does show saturation. (P. Mitchell, Private communica-

tion). 

The Cr Fe 18.5% sample shows similar behaviour. The ZFC 

magnetization and IRM obtained after application of a field of 

3 Oe for 30S are shown in Fig. 5.13. 

5.4,2 Discussion  

The magnetic behaviour of these alloys between the two 

critical concentrations is very similar to that of Au Fe alloys 

close to CF  for which the term 'cluster spin glass' has been used. 

(Section 5.1.4.2). The term 'spin glass' alludes to peak in the 

susceptibility which is seen in these more concentrated alloys as 

a result of the freezing of large correlated clusters of spins into 

random anisotropy directions. It must be stressed that although 

these alloys satisfy the operational definition of the spin glass 

state given in section 5.1.3.1, there is no obvious element of 
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Fig.5.12 Hysteresis loops for (a) Cr Fe 17.5% in ZFC and FC states 

at 4.2K. (b) Cr Fe 17.5% zero field cooled and 

measured in high fields at 4.2K (c) Cr Fe :.5% ferro-

magnet measured in high fields at 4.2K. 
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Fig.5.13 Low field magnetization for Cr Fe 18.5% Zero field cooled 

magnetization and IRM remaining after the apolication of 

a 3.0 Oe field for 30 sec. 
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'frustration' present in these alloys (section 5.1.3.2), It is 

possible to account for the behaviour of the Cr Fe cluster spin 

glasses using the phenomenological ferromagnetic fine particle model 

described in section 5.1.3.3 without invoking frustrated exchange 

interactions. 

According to the fine particle phenomenology the peak in 

the susceptibility, time dependence and remanence can be analysed 

by postulating the existence of magnetically correlated clusters 

whose total moment fluctuates thermally against the cluster aniso-

tropy barriers. It is clear that large ferromagnetically coupled 

clusters of Fe moments are present in Cr Fe alloys from the nature 

of the neutron SAS. However, in contrast to the simple fine 

particle theory these clusters are not well defined metallurgical 

precipitates but appear to be more akin to nn percolation clusters. 

Furthermore, these clusters do not become fully correlated until a 

low temperature is reached. The analysis of section 5.5 shows the 

correlation range of these clusters to be increasing down to a 

temperature of the order of the susceptibility peak temperature Tg. 

This effect leads to a sharper susceptibility maximum than expected 

for clusters which are well correlated above Tg. The second ingre-

dient of the fine particle model, the anisotropy barriers, are more 

difficult to identify. Magnetostatic shape anisotropy, as will be 

demonstrated, appears to be a major influence. The simplest version 

of the fine particle description forms a useful basis for discussion 

as long as these comments are borne in mind. 

On a qualitative level the observed magnetic properties of 

Cr Fe cluster spin glasses follow well the behaviour described in 

section 5.1.3.3. To proceed beyond a qualitative acount is 

difficult in view of the many approximations inherent in the model. 

It is possible to perform, some approximate order of magnitude 

calculations to test the validity of the fine particle description. 

The blocking temperature may be calculated using (eq.5.21b) 
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with He  (Q) = 30Q Oe taken from the hysteresis loop in Fig. 5.12 

for the Cr Fe 17.5% specimen, Ms  = 1400 gauss (the saturation magneti-

zation of 3 cluster of Fe atoms with moment 1.8PB) and time constant 

At = 30 sec corresponding to a 'static' magnetization measurement. 

An estimate of the particle volume is also required. The SAS 

measurements on the Cr Fe 17.5% specimen indicate RG  ti 1008; assuming 

a spherical particle shape this gives a calculated blocking tempera-

ture of 50K. This is of the same order of magnitude as that 

observed (24K). 

The fact that the AC susceptibility peak is observed at a 

higher temperature than the peak in the static susceptibility for 

the 17.5% Fe alloy is also consistent with the fine particle model. 

The AC measurement, having a smaller time constant than the 'static' 

measurement, would find a superparamagnetic particle to be blocked 

at a correspondingly higher temperature. Repeating the order of 

magnitude calculation with At = 0.013 sec results in a blocking 

temperature of 70K. The increase in blocking temperature of 20K is 

of the same order of magnitude as that observed (6K). 

More detailed calculations which take into account the distri-

bution of anisotropy barriers and temperature dependence of Ms are 

required to describe adequately the peak shape. As a first 

approximation the overall peak height X(Tg)/ X(4.2K) may be estimated 

according to the simple model of Wohlfarth (1979) in which the 

decrease in susceptibility is of the order log (2At f
0
). Using the 

approximations fo  ti 3 x 106HK  (eq.5.20c) and HK  ti He  this leads to 

X(Tg)' x(4.2) = 17 for the AC susceptibility and 25 for the 'static' 

susceptibility; values which are in remarkably good agreement with 

those deduced from Fig. 5.10 and Fig. 5.11, being 13 and 30 respec-

tively. 

It is important to verify that the magnitude of the anisotropy 

constant K used in these calculations is physically reasonable. The 

value of K ti Ms  Hc(0) = 3 x 10̂ 3  Kelvin/A
3  may be compared with that 
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expected for magnetocrystalline anisotropy and that of shape 

anisotropy. The anisotropy constant for shape anisotropy calculated 

from (eq.. 5,19b) with Ms = 1400 gauss is K = 9 x 10"2 (Dj - Dv) 
KelviniA and for magnetocrystalline anisotropy is K = 1.2 .x 10-4Kelvin/ 

R3  (taken from the data of David and Heath (1971)). The magneto-

static shape anisotropy will thus dominate if Dl - DJ/  > 0.001, 

or if.  the .cluster c/a > 1.001'.: Hence the value of K calculated for 

magnetostatic shape anisotropy will be of the same order of magnitude 

as that used in the previous calculations if D1 - DJC  > 0.03. Such 

a difference in demagnetization factors would correspond to cia 

ratio of 1,03 which is physically. reasonable. 

5,4.3::  The magnetic phase diagram 

The magnetic phase diagram for Cr Fe alloys compiled from the 

data of section 4.3 for the antiferromagnets, section 5.3 for the 

ferromagnets and section 5,4,1 iš presented in Fig. 5.14, The spin 

glass alloys have been characterized by the peak temperature (T ) 

deduced from static susceptibility measurements. The Tg  data for 

antiferromagnetic alloys (section 4.4.2) have been included. 

In contrast to earlier phase diagrams (Loegel (1975), Mitchell 

and.Goff (1972)) there is no region of overlapping ferromagnetism 

and antiferrQmagnetism. SDW order is maintained up to a concen-

tration of 16 0.5% Fe and ferromagnetism is found above 19%. 

Spin glass behaviour occurs in the narrow concentration range between 

16Z and 19% Fe where long range order cannot be supported. The 

concentration dependence of the Neal temperature has been analysed 

quantitatively using the pair breaking model in section 4.3. It is 

not possible to account for the concentration dependence of T and T g 	c  • 
in such quantitative terms, however the overall features may be 
understood on a qualitative basis, According to simple fine particle 

theory. Tg  (c) will depend on concentration via (eq. 5.21a) 

.kTg(c) = i (D1 - D/1) Ms2  V(C) / log (6 x 106  At (Di - DD/)Ms) (5.25) 
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Fig.5.14 Magnetic phase diagram for Cr Fe alloys deduced from this 

work. The spin glass alloys have been characterized by 

the peak temperature of the low field magnetization. 

For comparison, transition temperatures taken from 

previous work are included. 	, this work. Ferromagnetic 

boundary: 0, Loegel (1975);L, Shull and Beck (1975) V , 

Aldred and Kouvel (1977),  Antiferromagnetic boundary: 0, 

Ishikawa et al (1967) ; d , Arrott et al (1967);7, Mori et 

al (1974); T , Arajs and Dunmyre (.1966); L , Raj an at al 

(1960) ; X, Suzuki (1976) . 
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•assuming magnetostatic shape anisotropy dominates. This will give a 

monotonic increase of Tg  with concentration as cluster volume V(c) 

increases. The suppression of Tg  by the SDW is discussed in section 

4.4.1. The Curie temperature increases precipitously in the vicinity 

of 19% Fe but tends to a linear increase at higher concentration. 

This form of Tc  (c) would be predicted by assuming an anisotropy 

induced crossover from Heisenberg like behaviour to Ising like 

behvaiour (Stinchcombe, 1980) as Tc  is reduced. 
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5.5 Spin correlations in the vicinity of the critical concentration  

5.5.1 Introduction: General trends  

The neutron SAS data not only allow the determination of Tc(c) 

but reveal the evolution of long range magnetic correlations with 

concentration and temperature in the vicinity of the critical 

concentration for ferromagnetism. The very observation of SAS close 

to CF  implies that the onset of magnetic order in this system is not 

uniform but spatially inhomogeneous. The same conclusion has been 

drawn from the bulk magnetic properties (section 5.2.2 and 5.4.1). 

The purpose of the present section is to analyse the spatial 

correlation between Fe moments as a function of temperature and 

concentration in an attempt to understand the nature of magnetic 

inhomogeneity in Cr Fe alloys close to CF. 

The interpretation of this data is simplified in two major 

ways. Firstly, the observed SAS is almost entirely magnetic in 

origin and is not associated with gross atomic heterogeneity. This 

is demonstrated by the suppression of SAS in an applied field (section 

5.6) and the weak, quasi-isotropic temperature independent scattering 

at elevated temperatures. Secondly, as the Cr moment is zero and the 

Fe moment concentration independent in the range of concentrations 

studied (section 5.2.2) it is only the correlation between Fe moments 

which is observed. 

The neutron SAS exhibit two main features. For ferromagnetic 

alloys the critical scattering peak weakens as CF  is approached 

whereas the SAS at temperatures well below TC  increases rapidly as 

C approaches CF. This behaviour is mirrored for C < Cr  where the low 

temperature SAS increases with increasing concentration, reaching a 

maximum at CF.  This is shown in Fig. 5.15 by plotting the intensity 

at 4.2K as a function of concentration and the estimated critical 

scattering intensity at T = Tc  for a scattering vector K = 0.02 R-1. 
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Fig.5.15 Concentration dependence of various features of the small 

angle scattering (a) Intensity at 4.2K, I(4.2) 

(b) Estimated peak value of the ferromagnetic critical 

scattering, (I (Tc)). Radially averaged magnetic 

scattering at K = 0.019 Ā-1  are displayed. 

- Fig.5.16 Neutron SAS spectra at high temperature (250:2) and low 

temperature ( 22K) for Cr Fe 17.5%. 
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If the magnitude of the Fe-Fe exchange interaction remains 

essentially constant over this concentration range, the decrease in 

the size of the ferromagnetic critical scattering peak suggests 

that the number of Fe moments involved in the ferromagnetic ordering 

process decreases as C -} CF. In terms of percolation theory, this 

reflects the concentration dependence of the volume of the ferro-

magnetic. infinite cluster. 

The peaking of the low temperature SAS at CF  implies that the 

system is spatially most inhomogeneous at this concentration, i.e, 

the fluctuations <S. S.> 	<S> are maximum at C = CF, As CF  

is the concentration at which. long range order first appears such a 

conclusion.is reasonable, According to percolation theory the 

infinite cluster simply contributes a. delta function at K 0 for 

low, temperatures and the finite clusters dominate the low temperature 

SAS. The peaking of the low temperature SAS at C = CF  would thus 

reflect the fact that the average size of finite clusters peaks at 

C = C
F
, 

'It is difficult to justify the application of percolation 

concepts to Cr Fe alloys as the magnitude, range and concentration 

dependence of exchange interactions are not known. Some justification 

maybe- drawn from the constant magnitude of the Fe moment in this 

concentration range and the persistance of strong Fe-Fe coupling into 

the SDW regime. The critical concentration itself is not far removed 

from the calculated percolation limit, which suggests that nn exchange 

interactions are dominant, The bulk magnetic properties discussed 

previously strongly suggest that some geometrical element is 

necessary -in the description of Cr Fe alloys. For example, the 

division of ferromagnetic alloys into finite and infinite clusters 

provides a natural explanation for the occurrence of subcritical 

scattering and cluster spin glass type behaviour in alloys close to 

CF.  Clusters of some description are also required for the fine 

particle description of alloys with C < CF. 
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A description based on percolation theory provides a good first 

approximation on which to discuss the evolution of long range 

ferromagnetic order in Cr Fe alloys. The validity of this assumption 

may be tested by a quantitative analysis of the neutron SAS data. 

5.5.2 The small angle scattering law  

5.5.2.1 The K dependence of the small angle scattering  

The connection between the neutron magnetic SAS cross section 

and long range spin correlations has been outlined in sections 2.3 

and 2.5. To discuss the K dependence of the SAS it is convenient 

to deal with a 'small angle scattering law' S(K) rather than the 

full cross section. At small K, in the quasistatic approximation S(K) 

may be defined by (eq. 2.3)b) 

dv _ ~
ye2 

)2 	g 2 f2( 	0) e
- -2W (K -> 0) S( k) da 	

2m 
e
c2 

(5.26a) 

where the K dependence of the cross section is contained in S(K), 

a 	a 
s(C) = E (Sas - Ka i$1 E exp (1.g..) < Si (0) Sj (0)> 

d6  
(5.26b) 

When dealing with polycrystalline samples, it is necessary to 

average S(K) over all orientations. The resulting form of S(K) is 

given by (eq. 2.39) in the general case, and reduces to the expression 

S(x) = 213 E <S..S.> 	
sin Krn 

ql 
i,n 	Krn (5.26c) 

if the correlations are isotropic. At very small K, S(K) takes the 

model independent Guinier quadratic form discussed in sections 2.5 and 

5.1.2 but at higher K shows system dependent deviations from the 

Guinier law, reflecting the detailed nature of correlations. 
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The form of S(K) for a model percolating system close to CF  

has been discussed by referring to scaling laws (section 5.1.2). 

Unfortunately, these scaling laws do not say anything about the explicit 

functional form of S(K). Thus the analysis of the K dependence of 

the SAS must be performed without any firm theoretical predictions. 

To a certain extent one may be guided by the exact one dimensional 

result of Thorpe (1975) as adopted by Birgeneau et al (1980) 

(section 5.1.4.1) and by the explicit results for pure thermal and 

pure percolative critical phenomena in the form of the Ornstein^ 

Zernicke and Fisher-Burford. results (sections 2.3 and 5.1.2). 

It is worthwhile drawing attention to certain explicit results 

which arise in the study of SAS from polymers. As the relevance of 

this approach to Cr Fe alloys close to CF  is uncertain and lies 

outside the main arguments of this thesis this theme is briefly 

explored in Appendix B. 

5.5.2.2 •Results and Analysis  

The purely magnetic SAS cross section was obtained from the 

D17 and Dli data of section 5.3.2 by subtracting the purely nuclear 

SAS cross section using the high temperature data. The high temperature 

data-. in each case was taken at the highest temperature of measurement, 

in the regime where the SAS remained temperature independent. The 

SAS. at high temperatures is only weakly dependent and contains 

temperature independent contributions from nuclear incoherent, nuclear 

defect, grain boundary and surface scattering. A typical spectrum 

is shown in Fig. 5.16. The weak K dependence and absence of inter-

particle interference peaks rules out any gross atomic heterogeneity 

in these alloys. The effect of the subtraction was negligible for low 

temperature spectra, but tended to become more important at high 

temperature. 

The resulting intensities are illustrated in the form of 

'Debye plats/, 1/I vs. K2  in Figs. 5.17-5.20 for three alloys with 
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Fig.5.17 Reciprocal intensity versus K2  (Debye) plot for Cr Fe 

16.7% (C < CF) at a number of temperatures. 
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Fig.5.18 Reciprocal intensity versus 
K2 

(Debye) plot for Cr Fe 

20.8% (C > CF) at a number of temperatures. 



0 

1. 

Z 

(n'e) 
47 

1,4 

z-')z~01.Z 

(z-,z>I,oE, o gi,.s.6
•
y 



Fig.5.19 Reciprocal intensity versus K2  (Debye) plot for Cr Fe 

24% (C > CF) at various temperatures above T'c. 

Fig.5.20 Reciprocal intensity versus K2  (Debye) plot for Cr Fe 

24% (C > CF) at various temperatures below T. 
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concentrations C > CF, C ti CF  and C < C
F 

respectively, at various 

temperatures. The data follow good straight lines over almost all 

of the K range when plotted in this way for C rt CF  and C > CF, 

T > TC, implying a Lorentzian or Ornstein-Zernicke form of S(K). 

The inverse correlation range K1  may be readily estimated by extra-

polating the Debye plots to 1/1 = 0. 

Lorentzian behaviour is also observed for C > CF,  T < T
C  at 

small K but pronounced deviations occur at higher K. 	It is 

difficult to estimate the inverse correlation range in this case as 

K1  approaches zero. These deviations are seen in all ferromagnetic 

alloys studied, and also in pure Fe (Fig. 5.6). 

These deviations from Lorentzian behaviour are present in all 

alloys at sufficiently high K. It is only by virtue.•of the small K1  

for ferromagnetic alloys below Tc  that the deviations become marked 

over a significant fraction of the experimental K range. The value 

of K/K1  below which Lorentzian behaviour is observed may be 

estimated by plotting the K value (K ) at which S(K) first deviates 

from Lorentzian against K1. The results for ferromagnetic 25%, 24%, 

21.7% and 20.9% Fe alloys are shown in Fig. 5.21. There is considerable 

scatter in the data due to the difficulty in estimating Kl, but it 

appears that the Lorentzian breaks down for K greater than 3-6 K1. 

The.behaviour of the scattering law at very small K was also 

investigated in an attempt to collect data within the Guinier region 

(Jc « K1). A series of measurements were carried out using the 

instrument p11 at the 20m position, allowing data to be collected 

over the K range 0.0015-0.010 -1. The resultant magnetic 

scattering at 5 K for three alloys with concentrations C > CF, C ti CF  

and C < CF  is shown in Fig. 5.22. (For comparison, the scattering 

found at higher K in the D17 measurements is also shown.) The 

scattering from these three alloys is Lorentzian over the K range of 

the D17 experiments, apart from the large K upturn discussed above. 

However, considerable deviation from this Lorentzian behaviour is 
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Fig.5.21 High K deviations from Lorentzian scattering law. 

The estimated K value at which the scattering law 

deviates from Lorentzian (K ) is plotted as a function 
of the inverse range parameter (K1). 
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Fig.5.22 Debye plots of the magnetic SAS at very small K for three 

alloys, 16.7% (C < CF), 20.8% (C , CF) and 24% Fe 

(C > CF),  at 4.2K.. The larger K variation is also shown. 
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Fig.5231 Guinier plot of the magnetic scattering from Cr Fe 

19.9% at 4.2K for incident wavelengths of 9 Ā and 14 R. 
No well defined Guinier region exists. 

Fig.5.24 Debye plots at very low K, Cr Fe 21.7% 
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Fig.5.25  Temperature dependence of the SAS at very low K . 

Radially averaged intensity is shown for constant 

K values of 13.7 x 10-3  R-1, 8 x 10-3  R-1, 4 x 10-3r
1  

and 3.5 x 10 3Ā-1. The Curie temperature is shown by 

an arrow. 
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apparent at the very small K values obtained using Dli (20m). 

The scattering from the 24% Fe ferromagnetic alloy (C CF) appears to 

vary as K-4  in this region, shown by the fitted curve through the 

data. Small deviations are also seen in the 16.7% Fe alloy (C < CF) 

and the 20.9% alloy (au CF). No well defined Guinier region can 

be established in these alloys at very low K. This is illustrated by 

the Guinier plot (1nI vs K2) for a 19.9% Fe alloy at 4.2K which is 

curved over the entire K range. (Fig. 5.23). 

The temperature dependence of the SAS at very small K was 

followed in detail for the ferromagnetic 21.7% Fe alloy. Debye plots 

of the SAS at several temperatures are shown in Fig. 5.24. Deviations 

from Lorentzian behaviour are apparent even above TC  and become larger 

as the temperature is reduced. The temperature dependence of the SAS 

intensity at a given K is very sensitive to the value of K in this 

K range, At "large"  K (0.0148-1) the temperature dependence of I(K) 

is similar to that seen in the D17 measurements; a fairly broad 

critical scattering peak at Tc  and the development of 'subcritical' 

scattering as the temperature is reduced below T. However, as K 

is successively reduced, the subcritical SAS increases dramatically, 

swamping the ferromagnetic critical scattering. Moreover, a well 

defined peak in the subcritical develops in the vicinity of 20K. 

These observations are shown in Fig. 5.25. 

The possibility that the deviations at very low K were due to 

the broadening of the incident beam by multiple refraction was 

examined by performing measurements at two different wavelengths. 

(The refractive index depends on A
2
nand thus any multiple refraction 

would be more pronounced at longer wavelengths). The results of 

measurements at very low K for a 19.9% Fe alloy at 4.2K using an 

incident wavelength of 9.08 and 148 are shown in Fig.5.23. As the 

results are identical to within experimental error, multiple refrac-

tion can be ruled out. This result also dismisses the possibility of 

large multiple SAS. (The multiple scattering depends on the ratio of 

the scattering to absorption cross sections and the absorption cross 
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section varies approximately. as LA in this region. As no change in 

the SAS is observed on changing the absorption cross section, any 

multiple SAS must be negligible.) 

5.5.2.3 Discussion  

No obvious analytical form for the scattering law capable of 

describing the SAS over the entire experimental K range is suggested 

by the present data. The scattering from Cr Fe alloys is Lorentzian 

over almost a decade of K but shows significant deviations both at 

very low K ( K < 0.01A-1) and high •K (K 3K - 6K1) . 

The deviation from a Lorentzian scattering law for K > 
rt,
3Kl - 6K1  

has been noted in many small angle scattering studies of binary alloys 

and is also seen in pure Fe (section 5.2.1). This deviation has 

been attributed to higher order terms normally neglected in the 

series expansion used to derive the Lorentzian scattering law. At 

high K terms in K4, K6  etc. become increasingly important leading to 

a deviation from Lorentzian line shape. Inclusion of a term in K4  

leads to an improved fit at high K (shown in Fig. 5.26 for Cr Fe 24% 

at 4.2K). An alternative explanation for the high K deviation may be 

that the Fisher-Burford form of the cross section (eq. 5.7e) is 

followed. To test this hypothesis the scattering law for Cr Fe 

24% at various temperatures has been plotted against K2  +K12  (with 

K1  derived from the initial Lorentzian part of the cross section) on 

a log-log scale in Fig. 5.27. A good fit to the data at all temperatures 

is found with n = -.22 ± 0.02 below Tc  and n= 0.00 + .02 above Tc. The 

negative value for n is somewhat surprising but is also encountered 

in the analysis of section 5.5.3. This analysis of section 5.5.3 

returns = 0.00 ± 0.05 for the 24% alloy below Tc  in disagreement 

with the above value. This lack of consistency suggests that the 

former explanation is more likely. 

A number of alternative forms for the scattering law in this 

K range have been proposed. Cywinski et al (1977) suggest that a 

squared Lorentzian should be used for the SAS in ferromagnetic 
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alloys below T whereas Gray (19.78) proposes an exponential dependence 

exp (-Aīc). Power laws of the form K
a 
 where a is an undetermined 

constant have also been considered (Boucher et al (19.79.)). None of 

these expressions lead to a significantly better fit to the experi-

mental data (shown in Fig. 5.26). The latter two expressions are 

unphysical as K + 0 in that they do not reduce to a Guinier quadratic 

form. The squared Lorentzian fits the data well at high K but 

fails at smaller K. As the squared Lorentzian includes a term in 

K4  the improvement at larger K is to be expected. 

The deviation from Lorentzian behaviour at very low K is an 

interesting and unexpected result. A similar observation has been 

reported by Murani (1476) for Au Fe alloys. It is possible that this 

effect is due to dipole-dipole interattions. Some support for this 

speculation may be drawn from the theoretical work of Maleev 

(1974) and Aharony and Fisher (1973). Maleev (1974) has examined 

the effect of dipole-dipole interactions on the critical dynamics of 

pure ferromagnets above T.  For wavevectors greater than qo  = 1/a 

(TD/Tc)i  where kTD  = 4wg uB  Msat is the characteristic energy of 

dipole-dipole interactions the correlation functions reduce to the 

conventional forms obtained if dipole forces are neglected. However 

at low K, K « q
0  the presence of long range dipolar forces changes 

the form of the correlation functions and new phenomena are found. 

In this regime Aharony and Fisher (1973) find deviations from 

Lorentzian cross-sections. Arrott, Heinrich and Noakes (1972) 

have also speculated that dipolar interactions tend to enhance S(K) 

at low K. 
• 

A full analysis of the concentration and temperature dependence 

of these effects will not be attempted. It is interesting to note 

that the conjectured dipolar contribution increases with increasing 

Fe concentration as may be expected and, that substituting typical 

values of Tc  and Msat fdr ferromagnetic Cr Fe alloys yields qo 
 ti  10-2  

r1 giving order of magnitude agreement with the K values for which 

deviations are observed. 
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Fig.5.26 Magnetic scattering from Cr Fe 24% at 4.2K. The data 

are plotted in a number of ways to illustrate possible 

(a) Lorentzian with additional K4  terms (b) squared 

Lorentzian (c) Power law. and (d) exponential forms 

of the scattering law. 



• 

d 
• 

AM 

• 

2 

3 

MII 

(}01 	010 	0 	005 
1 	1C(4-1 ) 

19q• 526 

I-1 
(a.u.) 

30 

20 

10 1 

0 1 2 3 0 1 2 3 
10 3  X 2(4-2) 	103/K 2(4-2) 

,A--1 
5 

3 

I 

01 



Fig.5.27 Magnetic scattering from Cr Fe 24% at various temperatures 

above and below T.  Data are plotted according to the 

Fisher and Burford form of the crass section (eq.5.7e) 

with K1  determined from a Lorentzian fit. 

Fig.5.28 Typical time of flight spectrum for Cr Fe 17.5%. The 

elastic energy resolution is indicated. Inset: A 

possible broad quasielastic signal which would be difficult 

to detect in these measurements is shown schematically. 



100 
I-1 

(au.) 

10 

Fiq.527 10 5  10-4-  ,K  ?+,K2( 4_2)  
1 

frame ./ 

2- 	1 
47K 

0 
Fiq. 528 

20 40 60 
TOF Channel 



Deviations aside, the fact that the scattering is Lorentzian 

over almost a decade in K is in i.tself a significant result, considering 

the lack of theoretical predictions in this area. 

5.5.3 Test of the quasistatic approximation  

5.5.3.1 Results 

The validity of the quasistatic approximation which relates 

the integrated quasielastic scattering cross section to the isothermal 

wavevector dependent susceptibility (section 2.2.4) was tested by 

performing a series of small angle time-of-flight experiments using 

the instrument D17 at ILL, Grenoble. The experimental details and 

measurement procedure are described in section 3.3.3.4. 

TOF spectra were collected at several temperatures between 2K 

and 120K for two alloys, 17.5% (C < CF) and 19.5% Fe (C > CF). 

(The total scattering from these alloys had been measured previously 

using Dli (5m)). No quasielastic component to the scattering could be 

detected, i.e. the scattering from both alloys at all temperatures lay 

within the instrumental resolution of 80 ueV FWHM. A typical spectrum 

is shown in Fig. 5.28. 

To test whether this scattering was superimposed on a much 

broader quasielastic signal which would be difficult to detect in 

the present measurements (shown schematically in Fig. 5.28), the 

integrated intensity within an + 80 ueV window centred on the elastic 

time of flight channel was compared with the total scattering intensity 

observed without TOF in the previous measurements on these alloys. 

The results of this comparison are shown in Table 5.2 for three 

different K values. 
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Table 5.2  

Comparison of total scattering intensity from D11 (5m) experiments and  

integrated intensity within a ±_8OpeV window from D17 TOF experiments  

17.5% alloy 

T 

(K) 

K = 0.024 ā-1  is 	= 0.032 R-1  K = 0.040 ā-1  

D17 Dli Ratio D17 Dli Ratio D17 Dli Ratio 

2 240 554 0.43 169 336 0.50 110 225 0.49 

8 235 554 0.42 163 330 0.49 104 223 0.47 

16 221 521 0.42 151 307 0.49 98 207 0.48 

22 206 457 0.45 142 272 0.52 89 186 0.48 

47 86 195 0.44 66 130 0.51 46 98 0.47 

100 49 83 0.59 31 52 0.60 21 41 0.52 

19.5% alloy 

T 

(K) 

K = 0.024 Ā-1  K = 0.032 R-1  K = 0.040 R-1  

D17 D11 Ratio D17 Dli Ratio D17 D11 Ratio 

10 505 1011 0.50 341 599 0.57 179 352 0.51 

42 221 450 0.49 160 285 0.56 104 200 0.52 

50 204 415 0.49 143 266 0.54 97 189 0.51 

60 157 331 0.47 118 226 0.52 84 167 0.50 

75 84 181 0.56 53 98 0.54 45 82 0.55 

90 69 123 0.56 53 98 0.54 45 82 0.55 

120 31 57 0.54 23 49 0.47 19 44 0.44 

The scaling between the total scattering and the scattering which 

lay within the TOF elastic energy resolution indicates that any such 

broad component to the scattering is insignificant. 

The K dependence of the SAS which lay within a f 80 peV window 
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centred on the elastic time of flight was investigated for the 

17.5% alloy. The K dependence is Lorentzian, shown in Fig. 5.29-. 

,The forward scattering and inverse range parameters were determined 

at various temperatures and are compared with the fits to the Dli 

total scattering measurements in Table 5.3. 

Table 5.3  

Comparison of forward scattering and inverse range parameters for  

MI.-total scattering measurements and D17 TOF measurements  

17.57 alloy 

T(1:) I(0) 

Dil 

K1  (Ā-1) 	 

D17 D17 Dli Ratio 

2 810 2015 0.40+0.13 0.013 0.025 

8 910 2124 0.42+0.12 0.013 0.023 

16 1020 2278 0.44+0.10 0.012 0.020 

22 1220 1767 0.69+0.10 0.013 0.017 

47 145 270 0.54+0.06 0.029 0.037 

100 32 61 0.52+0.06 0.054 0.047 

The forward scattering in both cases scale with each other 

to within experimental error but there is some inconsistency in the 

K1  values. This may be due to the difference in K resolution and 

residual nuclear scattering which was not subtracted from the TOF;  

data. 

These measurements demonstrate that the small angle magnetic 

scattering has an energy width less than 80 peV at temperatures 

between 2K and 120K in the K range 0.01-0.06. To satisfy the 

quasistatic approximation, two requirements must be met. Firstly, 

the inelasticity of the scattering must be small with respect to the 

incident energy so that a total scattering measurement effectively 
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Fig.5.29 Debye plots of the scattering lying within the elastic 

window for Cr Fe 17.5% at various temperatures. 
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integrates over all energies of interest, This criterion is 

satisfied both by the D17 and Dli experiments, having incident 

energies of 620 ueV and 1730 ueV respectively. The second requirement 

is that the inelasticity of the scattering is small compared to the 

temperature, so that the detailed balance factor is effectively 

unity. This criterion is also satisfied over the temperature range 

of these measurements 2K - 250K (200 ueV - 20ueV). It should be 

stressed that the inelasticity of 80 MeV is an upper limit and may 

be expected to decrease with. temperature. Thus the quasistatic 

approximation would appear to be valid for the present series of 

experiments. 

Independent confirmation of this assertion may be drawn from 

the data of Fig. 5.23. The magnetic scattering cross section is 

unchanged on decreasing the incident energy by a factor of two, 

from 9R (1meV) to 14 A (420 ueV). 

5.5.3.2 Comparison with bulk susceptibility  

If the quasistatic approximation is valid, the total magnetic 

SAS cross section is proportional to the Fourier transform of the 

instantaneous spin-spin correlation function. As discussed in section 

2.2.4, this correlation function is made up of average and fluctuating 

parts. The average part gives elastic scattering and the fluc-

tuating part is related to the susceptibility x(K). Making this 

separation, the SAS intensity as K-- 0 may be written, 

I( K -> 0) = Iel  (0) + const T x(0) (5.27) 

where X(0)  is the bulk susceptibility, T the absolute temperature 

and Iel(0) an elastic scattering contribution. Thus in the absence 

of elastic scattering the neutron forward cross section is proportional 
to 
 T x(0). 
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x(0) was estimated from the neutron SAS data for two alloys 

(17.5% and 19.5%) by extrapolation of the Lorentzian SAS cross 

section to K = 0. The forward scattering obtained in this way was 

divided by the absolute temperature and normalized to the experimen-

tally determined bulk susceptibility at one temperature Cr = 35K). 

This normalization was necessary as absolute cross sections were 

not measured. The resulting X(0) is compared to the bulk susceptibility 

for the same samples (section 5.3 and 5.4) in Fig. 5.30. 

The agreement between the susceptibilities determined from the 

neutron SAS and the bulk AC and low field 'DC' measurements for the 

17.5% 'cluster spin glass' alloy above the susceptibility peak 

temperature is excellent. Poorer agreement is found for the ferro-

magnetic 19.5% alloy in this temperature range. At lower temperatures 

a large discrepancy between the two techniques is apparent: the 

neutron derived x(0) continues to increase rapidly whilst the bulk 

X(0) shows a sharp decrease. 

5.5.3.3. Discussion 

The agreement between the neutron SAS derived susceptibility 

and the bulk values above T ti 25K is a valuable check on the measure-

ment techniques and the validity of the quasistatic approximation. 

The two orders of magnitude discrepancy between the neutron scattering 

and bulk susceptibility data at low temperature indicates a funda-

mental failure in one of the methods of susceptibility determination 

in this regime. 

One'explanation for this discrepancy is to postulate the 

development of elastic scattering below 25K. According to (eq.5.27) 

such an elastic component would lead to an overestimate of the 

susceptibility. This view has been put forward by Murani (1976). 

An alternative explanation is to assume that no elastic scattering is 

present and that the discrepancy lies on the side of the bulk 

measurements; the bulk susceptibility being artificially reduced by 

measuring time considerations along the lines of fine particle theory 

(section 5.1.3.3). As it is not possible to separate any elastic 
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Fig.5.30 Comparison between the bulk AC susceptibility, low 

field susceptibility (DC) and susceptibility derived from 

the small angle scattering measurements using the 

quasistatic approximation (SAS) for Cr Fe 17.57 and 

Cr Fe 19.57 alloys. Tc  is shown by an arrow. 
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component of the SAS experimentally, it is very difficult to 

distinguish:between these two possifile explanations. 

It should be noted that at low temperatures the deviations 

from Lorentzian cross-section at very low K become increasingly 

more important, leading to higher I(0) than expected from a Lorentzian 

extrapolation. A larger difference between bulk and neutron derived 

x would occur if the very low K data were extrapolated. It should 

also be stressed that the lack of consistency between the two 

techniques at low temperature does not imply a breakdown of the 

quasistatic approximation. The SAS cross section remains proportional 

to the Fourier transform of the instantaneous spin-spin correlation 

function. The difficulty arises in the break down of the correla-

tion function into its constituent parts. 

5.5.4 Magnetic correlations below CF  

5.5.4.1 Introduction  

Having established the validity of the quasistatic approximation 

the magnetic SAS may be analysed to yield the strength and range of 

magnetic correlations as a function of concentration and temperature 

in the vicinity of CF. To do this, the Dll (5m) and D17 SAS data 

are fitted to a Lorentzian scattering law of the form 

I(K) = A/(K12  {' K2) 

allowing the inverse correlation range K1  and the 'scattering amplitude' 

A to be extracted. The deviations from a Lorentzian I(K) at very small 

K are insignificant over the K range of these particular measurements, 

although the fact that the crass section deviates from Lorentzian 

between the lowest K of these measurements and K = 0 should be borne 

in mind. Alloys with concentrations less than CFtwill be considered 

first. 
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5.5.4.2. Results  

The inverse range parameters obtained from least squares fits 

to the magnetic SAS for five alloys with concentrations less than 

CF  (15.5%, 16.7%, 16.8%, 17.5% and 18.5% Fe respectively) are shown 

as a function of temperature in Fig. 5.31. The parameters are 

expressed in dimensionless units K1  ann.where ann  is the nearest neighbour 
distance (2.48 ā). The inverse range parameters f:,r these alloys 

appear to follow essentially the same curve which is offset along 

the K1  axis by various amounts depending oa the concentration. The 

approximate superposition of these fiv! curves is demonstrated in 

Fig. 5.32. 

This superposition implies th.c K1(C, T) may be expressed as 

the sum of a purely concentration iependent part, KG(C), and a purely 

temperature dependent part KT(T), 

K
1

(C,T) = KG  (C) + K
T

(T) (5.28) 

The concentration dependent part, KG(C), for each alloy was chosen to 

be the minimum value of K1(C,T). The concentration dependence of KG  

is shown in Fig. 5.33. KG  decreases monotonically with increasing 

concentration and tends to zero at CF  = 19%. The temperature 

dependent partKT(T) is approximately linear in temperature above 

ti 20K but shows a shallow minimum at low temperature. 

The Lorentzian scattering amplitude A obtained from least 

squares fits to the magnetic SAS is shown in Fig. 5.34 for the same 

alloys as a function of temperature. This quantity is expressed in 

arbitrary units which differ only by a constant multiplicative 

factor from the absolute units mbfsr/atjr 2. The curves have been 

offset for clarity. A decreases smoothly as the temperature is 

increased and shows no anomalous behaviour in the vicinity of the 

minimum in K1. 

212  



Fig.5.31 Inverse range parameters (K1  ann) as a function of 

temperature for alloys below the critical concentration. 

The data have been offset from each other for clarity. 

Solid lines are a guide to the eye. 
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Fig.5.32 Superposition of the inverse correlation range - 

temperature characteristic for alloys below CF. 

Fig.5.33 Concentration dependence of the geometrical inverse 

correlation range. 
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Fig.5.34 Temperature dependence of the Lorentzian scattering 

amplitude (A) for C < CF. The curves have been offset 

for clarity. The dotted lines through the data for 

the 18.5% and 17.5% alloys are best fits according to 

(eq.5.31). 
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Fig.5.35  Extrapolated forward scattering as a function of 

temperature for C < CF. Data have been offset from 

each other in the interests of clarity. 
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The forward scattering I(0) has also been calculated and j,s 

shown as a function of temperature in Fig. 5,35. The curves have 

been offset for clarity. 1(0) calculated in this way displays a 

well defined maximum for all alloys in the vicinity of 15K. 

5.5.4.3 Analysis and Discussion 

These results show many features in common with the percolative 

insulating antiferromagnets discussed in section 5.1.4.1 and suggest 

that the evolution of magnetic order in Cr Fe alloys may be analysed 

along the lines adopted by Birgeneau et al (1980) for systems close 

to a percolation multicritical point. This analysis can, at most, 

be semiquantitative as the exact form of the temperature variable 

g(T) appropriate for Cr Fe alloys is unknown. 

The superposition of the inverse correlation range - temperature 

chāiacteristics for percolating systems has been discussed in section 

5.1.2.3 and 5.1.4.1. The fact that such a superposition is observed 

for Cr Fe alloys below CF  is an important result and strongly 

suggests that geometrical factors are involved in the evolution 

toward long range order. This is well illustrated by the concen-

tration dependence of the 'geometrical' inverse correlation length, 

KG(C),  which tends to zero at the critical concentration of 19%: 

consistent with the growth of geometrical clusters of Fe atoms with 

increasing concentration until an infinite cluster is formed at CF. 

It is worthwhile pointing out that the extrapolation of KG(C) to 

zero at 19% provides an independent check on CF, which was initially 

placed at 19% by measurements along the ferromagnetic phase boundary. 

According to percolation theory 
KG 
 should tend to zero at CF  

with an exponent v = 0.825 + 0.02 (eq. 5.3e). The present data is 

not of sufficiently high quality to allow this relationship to be 

tested. An adequate description of the results is obtained by the 

straight line 

KG  ann  = (2.5 + 0,5) (CF - C) (5.29) 

213 



which implies an exponent of order 1. The choice of 
KG  ann  as the 

minimum value of K1  ann  for a particular alloy is not exact. A 

more strict identification of KG  requires a knowledge of g(T) and thus 

cannot be attempted. As KG  so chosen tends to zero at CF  the error 

introduced by this procedure is small. It is important to emphasise 

that the geometrical clusters described by (eq. 5.29) are unlikely 

to be random percolation clusters in view of the tendency for atomic 

clustering in Cr Fe alloys. 

The 'thermal' inverse correlation range is more difficult to 

analyse. Following the discussion of pure Fe (section 5.2.1) one 

may expect Cr Fe alloys to display essentially Heisenberg like 

properties. Indeed, the linear temperature dependence of KT  

above 20K indicates Heisenberg like correlations. However, the 

tendency of KT  to saturate below 20K suggests a cross-over to 

Ising like behaviour at this temperature. This cross-over is 

probably induced by dipolar anisotropy. The minimum in KT  as a 

function of temperature is also linked with anisotropy. To analyse 

these phenomena in the framework of percolative multicritical 

behaviour, the exact form of the pure one dimensional inverse 

correlation range g(T) is required. Unfortunately, it is not 

possible to calculate g(T) exactly, even assuming a Heisenberg- 

- Ising description, as both the appropriate exchange and anisotropy 

constants are unknown.. 

As a first approximation g(T) will be assumed to follow the 

asymptotic forms proposed by Stinchcombe (1980) for an anisotropy 

induced cross-over from Heisenberg to Ising behaviour in a linear 

chain. Only the data above 20K will be considered. In this regime 

the distinction between transverse and longitudinal inverse correla-

tion ranges is unimportant and following Stinchcombe (1980) g(T) 

may be written 

g(T) = a(b # T) 	T > 20K 	 (5.30a) 
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where a and h are undetermined parameters related to the exchange 

and anisotropy constants, With b chosen as 20.0K so that the 

KT  - g(T) characteristic passes through the origin, a linear 

dependence of KT  on g(T) is obtained for all alloys studied, 

illustrated in Fig. 5.36. These data are well described by the 

relation 

KT ann  = (1.75 + 0.10) x10 3 (20.0 + T) 
	

(5.30b) 

• 

which would suggest a thermal inverse correlation length exponent 

v ti  1. In view of the uncertainty in this analysis, a more 

precise determination of v was not attempted. 

The work of Birgeneau et al (1980) suggests that the constant 

of proportionality between KT  ann  and g(T)v  is unity. If this is 

the case, the parameter a derived from the fits of Fig. 5.36 should 

be of the order 1/J predicted for the pure one dimensional Heisenberg 

chain (see (eq.5.11)), giving J ti  600K. The value'of J for nn Fe 

interactions in Cr Fe alloys is not known but may be expected to be 

of the same order of magnitude as that in pure Fe, J ti  Tc  = 1000K, 

which is consistent with J derived from the correlation range analysis. 

The minimum in KT  as a function of temperature may arise in 

two ways. Firstly, it is well known that the transverse component 

of KT  for a one dimensional anisotropic chain shows a weak 

minimum at low temperature whilst the longitudinal part tends to 

zero (see for example Stinchcombe (1980)). A similar effect is 

seen in three dimensional anisotropic systems (Cowley et al 

(19.79)). As the SAS measurements do not distinguish between the 

longitudinal and transverse components of 	the the minimum in KT  

simply reflects this fact. Secondly, as outlined in Appendix A , 

a minimum in K1  = KT  + KG  itself may arise in an artificial way 

if the motion of the total cluster moment is correlated with the 

shape of the cluster by shape anisotropy. For a needle-like 

cluster, which may resemble one arm of a ramified percolation 
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Fig.5.36 Thermal inverse correlation ranges for C < CF,  as a 

function of the one dimensional inverse correlation 

length g(T). g(T) is assumed to be linear in temperature 

and is expressed in Kelvin. 



9•S • 

(1)6 p (H) (OZ-1) 
0OI 	OS 	

0 

S00 
0/05.503  

L9l e 
°/09.91. v 
VoSIL 0 

5 

01'0 



cluster the ratio of the minimum K.  to the value at T = 0 is given 

by (eq. A.2), 

K1(T = 0)/K1(min) _ 1E75. '1,  1.29 

An experimental value of 1.20 + 0.05 for this ratio may be 

estimated from the data of Fig. 5.31,. in good agreement with 

that predicted. 

There has been little theoretical discussion of the Lorentzian 

scattering amplitude A. Birgeneau et al (1980) (section 5.1.4.1) 

have proposed that the scattering amplitude is related to the 

exponent n via 

A=BK
i
n  (5.31) 

As A decreases with increasing K1  for the Cr Fe alloys studied this 

yields n < 0 in contrast to the results of Birgeneau et al (1980) 

and Cowley et al (1980) which show A to increase with increasing 

K1  implying n > 0. Fits to the data using the relation above are 

shown as dashed  lines in Fig. 5.34 for the 18.5% and 17.5% alloys. 

An excellent fit to the data is found above 20K for both alloys 

with n = -0.40 + 0.10 (17.5%), and 	n = -0.41 + 0.05.(18.5%),:but 

fails below 20K. The failure at low temperature may be due to the 

dttificial increase in K1  due to shape anisotropy, discussed previously. 

A negative value of np  is slightly favoured for the pure 

percolation process in three dimensions, although the error limits 

are large. Stanley (1977) gives np  =-0.01 + 0.10 (eq. 5.3e). 

np  becomes increasing negative for d > 3. Scaling theory for the 

percolation multicritical point gives n = n . The n value derived 

above is much larger in magnitude than that estimated theoretically. 

This may be due to the presence of atomic clustering in Cr Fe 

alloys. This value of n implies that:the correlations vary 

asymptotically as 1/R0  6  rather than 1/R expected for random 

percolation, indicating that the'geometrical correlations are longer 
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ranged than for a purely random system. This may be expected for 

a'clustering type alloy: 

If the percolation model is strictly followed this value of 

= np  allows the effective cluster dimensionality to be calculated, 

giving from (eq. 5.5b) dp  = 2.40 + 0.01. The exponent y may also 

be estimated using the scaling relation y = v(2 - n) with v " 1 and 
n ti -0.40 resulting in y ti 2.4. The crossover exponent 0 can be 
calculated using the pure percolation exponents y = 1.66 and v = 

P 	 P 
0.825 to give 0 = v/v ti 1.2 or equally 0 = y /y N  1.4. These 

estimates should be treated with caution as the pure percolation 

exponents are not strictly applicable in the presence of atomic 

clustering and the value of v has been deduced without an exact 

knowledge of g(T). 

The forward scattering I(0) according to the previous analysis 

varies as K1-2.4 above 20K and reaches a well defined maximum at 

lower temperature. This maximum is associated with the minimum in 

Kl  via I(0) = A/K12  as A is slowly varying in this region. Thus 

the peak may be explained by the same arguments used to account for 

the minimum in K1.  If the shape anisotropy contribution is 

dominant this peak would appear to be an artifact of the neutron 

SAS technique. The temperature of this maximum (15K) is concen-

tration,independent and unrelated to the peak in the low field bulk 

susceptibility, which varies from 22K to 28K over this concentration 

range. 

In conclusion, an analysis of the SAS data for Cr Fe alloys 

for C 
<:CF is in semiquantitative agreement with models of the 

percolation multicritical point. The magnetic correlations evolve 

toward long range order by spreading along geometrical pathways 

whose size becomes progressively larger as CF  is approached. The 

correlations are Heisenberg like at high temperature but tend to 

become Ising like at low temperature as a result of anisotropy 

forces. Thermal critical exponents y ti 2.4,v ti 1 and n " -0.4 
have been estimated from these data above 20K. A link with the 
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observed cluster spin glass behaviour is provided by the presence 

of a minimum in K1  at low temperatures which was ascribed to the 
magnetostatic shape anisotropy of well correlated clusters. of 

spins. This anisotropy mechanism was used in section 5.4.2 to account 

for the bulk magnetic properties using fine particle theory. 

5.5.5. Magnetic correlations above CF  

5.5.5.1 Results  

The results of Lorentzian fits to the magnetic SAS from the 

ferromagnetic..19.5%, 19.9%, 20.8%, 21.7%, 24% and 25% Fe alloys 

studied using D17 and D11(5m) are shown in Fig. 5.37 and Fig. 5.38. 

The inverse range parameters displayed in Fig. 5.37 have been offset 

from each other by a constant amount for the sake of clarity, as 

also are the Lorentzian amplitudes in Fig. 5.38. 

The temperature variation of K1  a n  changes as the concentration 

is decreased to CF. For all alloys studied K1  decreases linearly as 

the temperature is decreased to Tc. For concentrations greater than 

20.8% Fe the inverse correlation range reaches a local minimum at 

Tc  but for lower concentrations K1  decreases monotonically through 

Tc, which is marked by a weak shoulder rather than a minimum. K 
1 

remains non zero at Tc  for all alloys. 

The Lorentzian scattering amplitude A, shown as a function of 

temperature in Fig. 5.38 also shows qualitative changes as the 

concentration is decreased to CF.  For the more concentrated 

ferromagnetic alloys (c > 21.7%) the amplitude increases 

grddually as the temperature is lowered and becomes constant in the 

vicinity of Tc. As the temperature is lowered further the amplitude 

decreases, reaching a shallow minimum at T ti 30K and then proceeds 

to increase rapidly as T tends to zero. For alloys closer to CF  

(c < 20.8%) no such low temperature minimum is observed. 

The forward scattering I(0) calculated from these Lorentzian 
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Fig.5.37 Inverse correlation range (Kl  ann) for ferromagnetic 

Cr Fe alloys as a function of temperature. The curves 

have been offset from each other for clarity. Solid 

curves are guides to the eye. 
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Fig.5.38 Lorentzian amplitude CA) for ferromagnetic Cr Fe alloys 

as a function of temperature. The data are offset for 

clarity. Solid curves are guides to the eye. 
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fits is shown in Fig. 5.3g. The temperature variation of I(0) 

is composed of two components: a critical scattering peak at Tc  

combined with the low temperature 'sub critical' scattering discussed 

in section 5.3.2. These two components are•.wel.l:separated for 

higher concentrations but tend to merge as C approaches CF, reducing 

the critical scattering contribution to a weak shoulder. 

5.5.5.2 Analysis and Discussion  

The concentration and temperature dependence of the magnetic 

correlations in these ferromagnetic alloys is more complex than 

that observed for alloys which do not support long range order. 

The fact that K1  reaches a local minimum at Tc  and tends to 

zero at lower temperatures is difficult to understand. Ideally 

K1  should reach zero at T. (A non zero K1  at the ordering 

temperature has been reported for many systems close to a critical 

concentration (see for example Cowley et al (1979)). This may be 

due to chemical inhomogeneity which tends to smear the ferromagnetic 

transition. Alternatively, the contribution from finite clusters co-

existing with the infinite cluster may dominate the scattering, 

tending to obscure the contribution from the infinite cluster. 

Small concentration fluctuations of the order + 17 have been 

revealed in these alloys by electron microprobe analysis (section 

3.1) so that chemical smearing of the transition is undoubtedly 

present. However, the overall behaviour of the SAS is consistent 

with the subdivision of the ferromagnetic alloys into an infinite 

cluster and finite clusters, as discussed in section 5.5.1. 

The dependence of K1, A and I(0) on these two components is 

evident from Figs. 5.37, 5.38 and 5.39. The finite and infinite 

cluster contributions appear well separated in temperature for high 

concentrations, the infinite cluster contribution giving a V 

shaped minimum in K1  at Tc  and the finite cluster contribution 

giving a monotonic decrease in K1  as the temperature is lowered 
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Fig.5.39 Extrapolated forward intensity for ferromagnetic Cr Fe 

alloys. Data are offset for clarity. Solid curves are 

guides to the eye. 
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toward T = 0, As the concentration is decreased toward CF  the 

finite cluster contribution increases and the infinite cluster 

contribution decreases. Similar comments may be made for the 

Lorentzian amplitude. 

The temperature dependence of K1  above Tc  has been analysed 

by fitting the data to two relations, 

and 

v(1) 

Klann 
= F (T-Tc) 	T > Tc  

T 
c  

T-T 
v  (2)  

K1  ann =G ( T  ) 	+ R  
c  

(5.32a) 

(5.32b) 

The first relation constrains K1  -} 0 at T = Tc  and so may be 

expected to hold away from Tc. This constraint is removed in the 

second fit, allowing K1  to reach a finite value at T.  The results 

of these fits are given in Table 5.4, and the log-log plots are 

shown in Fig. 5.4.0. 

Table 5.4  

Results of fits to data using e uations (5.32a) and (5.32b) 

C v(1) F v(2) G KR  

0.25 0.62 + 0.1 0.13 + .06 1.3 + 0.2 0.28 + .05 0.019 

0.24 0.52 + 0.05 0.11 + .02 1.3 + 0.1 0.21 + .03 0.028 

0.217 0.54 + 0.05 0.085 + .005 1.26 + 0.05 0.11 + .02 0.021 

0.209 0.51 + 0.05 0.072 + .005 1.18 + 0.05 0.069 + .01 0.024 

0.199 0.51 + 0.1 0.063 + .005 1.22 + 0.1 0.052 + .005 0.026 

0.195 - - 1.5 + 0.1 0.066 + .006 0.040 

The results again should be treated with caution considering the 

small number of data points used and the lack of data very close to Tc.  
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Fig.5.40 Power law fits to the temperature dependence of the 

inverse correlation range above T. (a) according to 

(eq.5.32a) (b) according to (eq.5.32b). 
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However, a few general conclusions may be drawn. Firstly, the 

exponents v(1) and v(2) are, to within experimental error, 

concentration independent and bracket the theoretical estimate 

v = Of70 + 0.02 (eq.5.6d) for a 3d Heisenberg ferromagnet. 

Secondly, the prefactors F, G are not concentration independent 

but show large deviations from each other. 

In fact, these prefactors vary systematically with concentra-

tion as shown in Fig. 5.41 and are well described by the relations 

F = (0.60 + .05) (C - CF) (5.33a) 

G = (4.7 + 0.3) (C 	Cr) (5.33b) 

It is not clear which of the fits is to be preferred. If the 

experimentally determined relations are extrapolated to C = 1 

(pure Fe), (eq. 5.33a) gives F = 0.54 + .04 whilst (eq. 5.33b) gives 

G = 3.8 + 0.2 assuming KR = 0. The experimental result for pure 

Fe is F = G = 3.1 (Als Nielsen (1976)) which favours the fit 

(eq. 5.32b). Furthermore, the large value of v(2) - 1.2 ± 0.1 

derived from this fit is consistent with the anomalous, large 

exponent y found in the bulk measurements of Aldred and Kouvel 

(1977) on Cr Fe alloys between 25% Fe and 20% Fe. Using the 

scaling relation y = v(2 -n) with n assumed zero allows v to be 

estimated from the data of Aldred and Kouvel, giving v = 1.06 + 0.01 

in reasonable agreement with v(2). 

Irrespective of which fit is the more valid the observation, 

T-T 
Kl ano ~• (C - CF)a ( C) 

T c 

for ferromagnetic alloys close to CF is an interesting and unexpected 

result. A result of this form is consistent with the scaling laws 

proposed by Stinchcombe (1980) for dilute anisotropic magnets. 
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Fig.5.41  Concentration dependence of the inverse correlation 

range prefactors F and G. 

(a) F as a function of (C - CF) 

(b) G as a function of (C - CF) 
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According to Stinchcomhe the exponents (4 and $ are not related in 

a straightforward way to the usual percolative or thermal exponents 

defined in section 5.1.3.3. The occurrence of a multiplicative 

factor (C — CF)a  itself demonstrates that, in a sense, the 

ferromagnetic alloys are 'aware' of the singularity at C = CF. 
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5,6 Small angle scattering in an applied field  

5,6.1 Results  

SAS data were collected for several alloys spanning the 

critical concentration for ferromagnetism in applied fields of up 

to 0.3T and at temperatures between 1.5K and 4.2K using the 

instrument D17. The experimental procedure has been outlined in 

section 3.3.3. Application of a magnetic field resulted in 

anisotropic SAS which was least squares fitted to the function 

I(K,a) = A(K) + B(K) costa 

where a is the angle between the applied field direction and the 

scattering vector in the plane of the detector. A(K) will be 

referred to as the isotropic part of the scattering and B(K) the 

anisotropic part. 

The application of a magnetic field at low temperature has 

the same effect on all alloys studied, ferromagnetic or otherwise. 

Typical results are shown in Fig. 5.42 for the Cr Fe 25% alloy at 

2.2K, where contours of constant scattering intensity in the plane 

of the detector are plotted as a function of field. The dotted 

contour represents the same intensity level in each ease. In 

zero field the contours are circular. As the field is applied the 

contrours become elongated along the field direction and collapse 

into the centre of the detector. The scattering is suppressed by 

the field. At the highest field of 0.4T the scattering is weak and 

tends to be elongated perpendicular to the field direction. 

The isotropic part of the scattering A(K) showed a Lorentzian 

dependence on K in all fields. B(K), the anisotropic part, could 

also be fitted to a Lorentzian but the poor data quality in the 

case of very small anisotropy only allowed a meaningful analysis over 

the field range 200 Oe -- 3600 Oe in the "best cases. Typical Debye 

plots of A(K) and B(K) for the 25% alloy are shown in Fig. 5.43 

and Fig. 5.44. The forward intensity, Lorentzian amplitude and 

inverse correlation range derived from least squares fits to A (K) 

and B(K) are shown in Fig. 5,45 for all alloys studied. (It should 
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Fig.5.42 Equal intensity contours in the plane of the detector 

for 25% Fe at 2.2K as a function of increasing magnetic 

field. The field direction is shown by an arrow. Dotted 

contours represent the same intensity level. 
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Fig.5.43  Debye plots of the isotropic part of the SAS (A(K)) for 

Cr Fe 25% at 4.2K for several values of applied field. 

Fig.5.44  Debye plots of the anisotropic part of the SAS (B (K)) 

for Cr Fe 25% at 4.2K for several values of applied field. 
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Fig.5.45 Field dependence of the inverse range parameters 

(KA (H),KB(H)), Lorentzian Amplitudes (LA(H), LB(H)) and 

extrapolated forward intensity (A(H),B(H)) for the isotropic 

and anisotropic parts of the SAS. Dashed curves are best 

fits using (.eq.5.34) for S values indicated. The 

extrapolated forward intensities have been normalized 

by A(0), the estimated forward scattering in zero field. 
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be noted that a simplified analysis was used to calculate the 

anisotropic parameters for C < 24%. This was based on the 

assumption that inverse correlation ranges of the anisotropic 

and isotropic parts were equal, a result found for the 24% and 

25% alloys. Consequently, the anisotropic K1  ann  is not shown 

for these alloys). 

The same overall behaviour was found for all alloys studied, 

both above and below CF. The isotropic part of the forward 

scattering is rapidly suppressed by an applied field whereas 

the anisotropic part peaks at a finite field. The isotropic 

Lorentzian amplitude is only weakly field dependent in low fields 

in contrast to the anisotropic Lorentzian amplitude which tends to 

increase with increasing field. The inverse correlation ranges 

for the isotropic and anisotropic parts are equal to within 

experimental error for the two cases investigated and both increase 

with increasing field. For the remaining alloys, the isotropic 

inverse correlation range was found to increase with field, in 

some cases reaches a broad maximum at higher fields. 

5.6.2 Analysis and Discussion 

The effect of an applied field on the low temperature SAS 

from alloys with C < CF  and C > CF  is remarkably similar. In 

particular the field induced anisotropy B(K) is always positive 

below 0.3T. A negative anisotropy is only found at very large 

fields in the more concentrated alloys and constitutes a negligible 

contribution to the SAS. 

This observation rules out ferromagnetic elastic diffuse 

scattering as a cause of the low temperature SAS in these alloys. 

The elastic diffuse scattering from a ferromagnet always occurs 

with an orientation factor (1 - cos2a) (section 2.2.3) which implies 

a negative value of B(K). A positive B(K) is consistent with the 

presence of superparamagnetic clusters at low temperatures, both 
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for C CF  and C > CF. For C CF  such clusters may be identified 

with the geometrical entities described in section 5.5.4 and 

invoked in the fine particle description of the cluster glass 

behaviour in section 5.4.2. For C > CF  such clusters may 

represent finite clusters coexisting with the infinite cluster. 

It is possible to give a semiquantitative account of the field 

dependence of the SAS by considering the scattering from an 

assembly of superparamagnetic particles in an applied field. This 

calculation has been performed by Cywinski et al (1977) by drawing 

an analogy with the scattering from a perfect paramagnet. According 

to this calculation the forward scattering is given by 

I(0) = A(H) + B(H) cos2  a 	 (5.34) 

where 

A(H) = z S(S+1) + 1<(SZ)2> - <S
Z
>2  

and 

B(H) = i S(S+1) - 
3/2

<(SZ)2> 
+ <SZ>2 

<S
Z 
 > = z ((2S+1) coth (I u(2g+1)) - coth u/2) 

<(S
Z
)
2
>  = S (S+1) - <S Z> coth u/2 

with u = iuBR/kT 

The results of this calculation for various values of the total 

superparamagnetic spin S as a function of g3BH/kT taken from the 

work of Cywinski et al (1977) are reproduced in Fig. 5.46. The 

variation of A(H) and B(H) with HJT is in qualitative agreement 

with the present data. 
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Fig.5.46. Theoretical variation of the isotropic and anisotropic 

parts of the forward scattering (A (H) and B(H) 

respectively) for a superparamagnetic system as a function 

of g uB H/kT for various values of the cluster spin S. 

Cywinski et al (1977). 
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An attempt to fit the data cif Eig,5,45 using (eqp5,34) with 

a unique value of S proved successful for C < CF  but failed to 

account for the high field behaviour for C > CFP Fits to the data 

are illustrated in Fig. 5,45. 

To go beyond this simple model the effects of anisotropy, 

cluster size distribution and possible inter cluster interactions 

need to be considered. A more sophisticated model is required to 

account for the increase in K
1 
 with field. 
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CHAPTER, 6 

MAGNETIZATION DENSITY IN Pt3  

6.1 Introduction 

In common with many of the 3d transition metals, Cr forms 

an ordered Cu3Au compound with Pt. Pt3Cr is reported to show 

ferrimagnetic order; the Pt moment is opposite in direction to 

that of the 3d moment. (Pickart and Nathans (1962)(1963)). This 

is in contrast to the other ordered Pt3  - 3d compounds (3d = 

Mn, Co, Fe) which are antiferromagnetic or ferromagnetic. The 

atomic moments reported by Pickart and Nathans combine to give a 

total magnetization which is substantially lower than the accepted 

value (Besnus and Meyer (1973d)(1973b),.Goto (1977), Williams and 

Lewis (1979)). The present polarized neutron study was initiated 

to determine the magnetization density in Pt3Cr. This provides 

complementary data to the measurements of magnetization density in 

ferromagnetic Pt3Mn and Pt3Co (Menzinger and Paoletti (1966), 

Antonini, Lucari, Menzinger and Paoletti (1969)). 
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6.2 Previous work  

6.2.1 Metallurgy of the Pt-Cr system  

The Pt-Cr constitution diagram has been recently studied by 

Waterstrat (1973) and is reproduced in Fig. 6.1. In addition to the 

y f.c.c. and a b.c.c. terminal solid solutions, an-intermediate 

S phase which possesses the complex A15 structure is found. 

The f.c.c. solid solution alloys are atomically disordered 

in the y phase region which extends to 71% Cr at 1530°C, but 

undergo a transition to an ordered yl phase at lower temperatures. 

The equilibrium ordering temperatures are shown in Fig. 6.1. 

The kinetics of the order-disorder transition are rapid and 

appear to go ,to completion so that, for example, at the stoichio-

metric concentration Pt3Cr the disordered f.c.c. solid solution 

transforms to a fully ordered Cu3Au (L12) structure below 1100°C. 

This ordered structure is shown in Fig. 6.2. The Cr atoms occupy 

the cube corners of the f.c.c. unit cell whilst the Pt atoms 

occupy the sites on dube faces. The ordered structure varies 

continuously with concentration until 'Cu Au ~ 1o) order is 

reached in the vicinity of 50% Cr. 

6.2.2 Magnetic Properties of Pt Cr 

Atomically ordered Pt3Cr orders magnetically below 49.0-480K 

(Besnus and Meyer (1973a)(1973b)., Williams and Lewis (1979)). 

The ordered structure is thought to be ferrimagnetic. (Pickart and 

Nathans (1962)(1963)). Atomically disordered Pt3Cr does not 

order magnetically. (Besnus and Meyer (1973b)). 

The Cr and Pt moments deduced by Pickart and Nathans (1963) 

at room temperature, Cr = 2331.1B and Pt = -0.27pB are not in 

agreement with the bulk magnetization of fully ordered Pt3Cr. 

The average moment of 0.38uB/at obtained from these values is 

considerably lower than the currently accepted room temperature 
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Fig.6.l. Constitution diagram for Pt-Cr alloys. The order-

disorder transition from y to yl  is shown as a dotted 

line (Waterstrat (1973)). 

Fig.6.2 Atomic order in Pt3Cr. 





value of 0.56PBJat (Besnus and Meyer (1973)). This may suggest 

some atomic disorder in the sample used by Pickart and Nathans, 

The existence of a moment on the Pt site has recently been put 

in doubt by the Pt Mossbauer effect measurements of Vincze, 

Wagner, Baggio-'Saitovitch and Koch (1976). 

Ordered Pt rich Pt-Cr alloys between 15% and 50% Cr also 

order magnetically. The saturation magnetization of these alloys 

increases from near zero at 15% Cr to a maximum of 0.63uB/at 

at the stoichiometric composition of 25% Cr and subsequently 

decreases to zero at 50% Cr. The Curie (or Neel) temperature, 

on the other hand, increases continuously over this concenttation 

range and reaches a maximum of 1200K at 50% Cr. (Besnus and 

Meyer (1973a)). The magnetic order appears to evolve gradually 

from ferrimagnetism at 25% Cr to antiferromagnetism at 50% Cr 

(Pickart and Nathans (1963)). These systematic trends have been 

interpreted by Besnus and Meyer (1973) in terms of antiferromagnetic 

coupling between Cr nearest neighbours. 

6.2.3 Magnetic properties of related Pt3-3d compounds 

Several 3d metals form magnetically and atomically 

ordered compounds of the form Pt3-3d with Pt. Of these; Pt3Fe, 

Pt3Co,  and Pt3Mn have the same crystal structure as Pt3Cr. 

Pt3V is known to order atomically into the Cu3Au structure but 

also exists in a tetragonal Ti Ala  form, Magnetic order has been 

established for hhe latter form of Pt3V (Bieber, Chakari and 

Kuentzler (1980)). There is some evidence that the Cu3Au 

crystal modification of Pt3V may also order magnetically (Kawakami 

and Goto (1979)). 

Ordered Pt3Co and Pt3Mn are ferromagnetic (Pickart 

and Nathans (1962) , whilst Pt3Fe is antiferromagnetic (Bacon 

and Crangle (1963)). The magnetization density in ordered Pt3Mn 

and Pt3Co has been studied by Antonini et al (1969), Menzinger et 
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al (1972) and Menzinger and Paoletti (1966). 

A small, asymmetric Pt momentwhich follows well a Ptd}  

form factor was found to be aligned parallel to the 3d moment in 

these two compounds. The 'magneticmoments deduced for the series 

of compounds Pt3V, Pt3Cr, Pt3Mn, Pt3Fe and Pt3Co are summarized 

below in Table 6.1. The moments in Pt3V have been extrapolated 

from the moments in (Pt-lr)3V (Kawakami and Goto (1979)). 

Table 6.1 

Magnetic moments for ordered Pt3-3d compounds with Cu3Au structure 

3d metal V Cr Mn Fe Co 

3d moment (uB) 1.0 2.33 3.64 3.3 1.64 

Pt moment (uB) -0.3 -0.27 0.26 ti0 0.26 

Reference 1 2 3 4 5 

Reference : (1) Kawakami and Goto (1979) 

(2) Pickart and Nathans (1963) 

(3) Antonini et al (1969) 

(4) Bacon and Crangle (1963) 

(5) Menzinger and Paoletti (1966) 
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6..3. Magnetization density. in:Pt3Cr 

6.3.1 Introduction 

The Pt3Cr crystal was grown by Dr. D. Hukin. The crystal 

was in the form of a regular parallelipiped with dimensions 

1 x 1 x 10 mm3. The crystallographic <IT0> direction lay some 

10°  from the sample long axis. 

The crystal was annealed for 6 hours at 9.50°C in the y 

phase field and slow cooled to allow the development of long range 

atomic order. The Curie temperature, measured after this heat 

treatment, was 494 + 1K (D.E.G. Williams, private communication). 

This is in excellent agreement with the reported values of 

480-490K. for fully ordered, stoichiometric Pt3Cr. 

In order to deduce the spin density from a polarized neutron 

measurement the nuclear structure factors must be known. Thus, 

an unpolarized neutron diffraction experiment was performed to 

determine the degree of long range order in the crystal. 

6.3.2 Nuclear structure factor determination. 

Two sets of Bragg reflection occur for Cu3Au crystal 

structures. The first is the fundamental set of reflections for 

an f.c.c. lattice, 

FN  (Fundamental) = bB  + 3bA  (6.1a) 

and are observed for h,k,l all even or all odd. 

Here bB  and bA  are the average scattering lengths for the 

sites on cube edges (B sites) and face centres (A sites). In 

fully ordered Pt3Cr the A site is occupied by Pt and the B site by 

Cr. The second set of reflections are due to atomic ordering on 
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the four simple dubic sublattices which make up a f.c.c, lattice. 

These superlattice reflections have ā structure factor 

FN  (Superlattice) = bB  (6.1b1 

and are observed for mixed even and odd values of h,k, and 1. 

The scattering lengths bB  and bA  depend on the degree of 

long range atomic order and the concentration. It is useful to 

define the long range order parameter, S, via (Cowley (1950)) 

3 (rA 
- CA) 	1 (rB - CB)  

S=4 	1  C  } 4 	l - CB  
(6.2) 

where rA  and rB  are the fraction of A and B sites which are 

correctly occupied by A (Pt) .and B(Cr) atoms, CA  and CBare 

the concentrations. With this definition S = 1 for a fully ordered 

structure. Using this definition, 

FN  (Fundamental) = 4(C bCr # CI-C) bPt) 
	

(6.3a) 

FN  (Superlattice) = (bCr  - bpt) (16f3 C (1-C) S 
	

C6.3b) 

where bCr  and bPt  are the nuclear scattering lengths for Cr and Pt. 

Thus; if the concentration is known, S may be determined by comparing 

the integrated intensity of the fundamental and superlattice 

reflections at sufficiently high sin6/fil for the magnetic scattering 

to be negligible. 

An unpolarized neutron diffraction experiment was carried 

out using the Mark VI diffractometer at AERE, Harwell. Instrumental 

details and experimental procedure are given in section 3.6.3. 

The crystal was mounted with the <ITO> axis vertical and the 

integrated intensity for all reflections in the zeroth layer out 

to sin eJA = 0.7 271  was found by co rocks through the peaks. 

The measurements were performed at 77K. The structure factors 
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deduced from these measurements were averaged over equivalents and 

the results are given in Table 6.2, and shown as a function of 

sin 9/X in Fig. 6.3. 

Table 6.2 

Measured structure factors of Pt3Cr at 77K 

Superlattice Reflections Fundamental Reflections 

(hkl) F(hkl) 	(arb.units) (Al) F(hkl) 	(arb.units) 

(100) 7.16+0.2-: (111) 23.9+0.5 

(011) 6.86 + 0.2 (200) 24.0 + 0.6 

(211) 6.26 + 0.1 (022) 25.9 + 1.2 

(300) 6.06 + 0.1 (311) 26.7 •+ 0.2 

(322) 5.96 ± 0.3 (222) 26.9 + 0.3 

(033) 5.79 + 0.2 (004) 27.1 + 0.5 

(411) 5.92 + 0.2/ (133) 26.8 + 0.7 

(233) 5.84 + 0.6 (422) 26.9 + 0.8 

(055) 5.73 + 0.1 (511) 26.7 + 1.1 

(333) 26.6 + 0.8 

As these measurements have been made below Tc  there are both 

nuclear and magnetic contributions to the scattering and hence to 

the observed structure factors. The magnetic structure factors for 

fundamental and superlattice reflections have the same form as the 

nuclear structure factors, 

FM  (Fundamental ) = 4(C uB  fB  + (1-ClpA fA) (6.4a) 

FM  (Superlattice) = (uB  fB  - uA fA) (1613 C(1-C) S) (6.4b) 
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Fig.6.3 Fundamental and superlattice structure factors for Pt3Cr 

determined by unpolarized neutron diffraction at 77K. 

2 
Fig.6.4 Flipping ratio R as a function of A and X3/sin A for 

low angle fundamental reflections at 4.2K 
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where PA, uB  and fA, f,B  are the magnetic moments and magnetic form 

factors for A andAB sites, The'measured structure factor is then, 

F(hkl) = (FN2  + 2/3 F142) 
	

C6.5) 

The magnetic contribution to F(hkl) may be estimated from the 

moments of Pickart and Nathans (1963) 'together with theoretical 

Cr and Pt form factors (Watson and Freeman (1961), Watson-Yang, 

Freeman and Koelling (1977)). The magnetic contribution to the 

fundamental reflections is negligible in all cases (less than 

0.3%) and cannot be distinguished to within experimental error 

(2%). The magnetic contribution to the superlattice reflections 

is significant at small sineix , amounting to 30% of F(100), but 

decreases rapidly for the higher angle reflections. The magnetic 

contribution is insignificant (less than 0.1%) beyond the (322) 

reflection. 

The, first three fundamental structure factors are considerably 

lower than the higher angle values and are probably affected by 

extinction. The variation of the Debye-Waller factor over the 

measured range of sinejx is too small to be distinguished within 

experimental error. Apart from the first three reflections, the 

fundamental structure factors are constant, 

F (fundamental) = 26.8 + 0.5 (arb. units) 
N 

The magnetic contribution to the superlattice reflections is 

clearly seen in Fig. 6.3. The nuclear structure may be estimated 

by averaging the four highest angle reflections, for which the 

magnetic component is negligible, to give 

FN  (superlattice) = 5.85 + 0.10 (arb. units) 

The long range order parameter may be calculated from (eq6.3) 

using these values if the concentration and scattering lengths 

of Cr and Pt are known. The good agreement between Tc  for this 
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sample, and the accepted value of Tc  for stoichiometric Pt3Cr 

suggests that the concentration of the crystal is close to the 

nominal value of 25.0% Cr. The measured lattice parameter 

a = 3.88 + 0.02 Ā is also close to the accepted value for Pt3Cr 

a = 3.877 (Lewisā 	and Williams (1976))but is not known to a 

sufficiently high accuracy to provide a sensitive check. 

Assuming C = 0.25 and bcr  = 3.532 + 0.01 fm and bpt  = 9.5 ± 0.3 fm 

(Koester (1977)), a long range order parameter of 

S = 1.08 f 0.05 

is obtained. As S must always be smaller than 1.0, which 

corresponds to a fully ordered state, this result indicates that 

either some systematic error is present (perhaps due to extinction, 

unknown temperature factors or residual magnetic scattering) or the 

concentration is slightly higher than 25%. A value of S = 1.0 

will be assumed. 

With this assumption, the magnetic moments on Cr and Pt 

atoms may be estimated by extrapolation of the superlattice 

structure factor data to sin 8JA = 0 (shown in Fig. 6.3). 

This gives 

1Cr - uPt =  2.50 # O.lp  B 

which, together with the bulk magnetization (Besnus and Meyer (1973)) 

CuCr ± (1-C)MPt = 0.630 uB  

gives 1Cr = 2.5 ± 0.1 uB  and pPt = 0.005 ± 0.02 uB 

A more accurate measurement of the Cr and Pt moments was made 

with the polarized neutron technique described in the following 

section. 
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6,3,3 Measurement of magnetization density  

6.3.3.1 Introduction 

The principles of polarized beam diffraction in the determina-

tion of accurate magnetic structure factor data have been discussed 

in section 2.3.: -In summary; the sample is placed in a saturating 

magnetic field, a measurement of the scattered intensity for a 

particular reflection with the incident polarization parallel 

(I ) and antiparallel (Î ) to the magnetization direction allows 

the ratio of magnetic to nuclear structure factors of the reflection 

to be determined with a high degree of accuracy. The ratio of I+  

to I, termed the flipping ratio, R, is related to the structure 

factors via 

R 	(1 + cy)2  

where E is a contrast factor which depends on the scattering 

• geometry and, with units explicit, 

y = 2.69 F
MB  )/F

N(fm) 

So if FN  is known, it is possible to deduce both the magnitude and 

sign of FM. The real space collinear (z) component of the 

magnetization density may be then found by Fourier inversion. 

6.3.3.2 Results 

Flipping ratios were collected using the D3 polarized neutron 

diffractometer at ILL, Grenoble. Measurements were performed at 

4.2K in a saturating magnetic field of 1.7T. The incident 

polarization was 97% and flipping efficienty 97%. All accessible 

reflections in the 1103 zone out to sin e/x = 0.92 Ā-1  were 

+ 

236 



collected, This covered 59 independent reflections, At least 

three equivalent reflections were measured for each independent 

(hkl). The instrument and measuring procedure are described in 

section 3.6.2. 

The y values determined from experimental flipping ratios 

were corrected for imperfect polarization and flipping efficiency, 

scattering geometry and instrumental dead time. The corrected 

i's were averaged over all equivalents. 

As it was apparent from the unpolarized measurements that 

some of the more intense fundamental reflections suffered from 

extinction, the (111), (200), (222) and (311) reflections were 

measured again at wavelengths of 0.84 Ā, 0.72 ā and 0.50 X using 

the instrument D5. The instrument and experimental procedure 

are described in section 3.7.2. The extinction corrections were 

estimated using the procedure of Radhakrishna, Brown and Kaxjar 

(1977). The observed flipping ratios were plotted as a function 

of X2  (primary extinction) and also as a function of A3/sin 2A 

(secondary extinction). The results are shown in Fig. 6.4. 

No attempt was made to model the extinction and these plots 

served simply as a basis for extrapolation to A = 0 to give the 

extinction free flipping ratio. The same extrapolated values 

were obtained, to within error, irrespective of the plotting 

procedure. The corrections determined in this way were important 

for the (111) and (200) reflections, amounting to an increase in 

y of about 20%. The corrections became smaller for the higher 

angle reflections and amounted to 5% for the highest angle 

reflection investigated, (311). Reflections lying beyond (311) 

were assumed to be extinction free. 

A series of azimuthal scans (i.e. rotation of the crystal 

about the scattering vector ) were performed to assess the impor-

tance of simultaneous reflections (Moon and Shull (1964)). The 

(100) (110) (111) (200) (220) (222) and (311) sets of reflections 
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were studied. Multiple reflections were absent for all hut the 

(100) and (110) reflections where a 20% variation in flipping 

ratio was noted. The (100). and (110) reflections have large 

flipping ratios, making them inherently more sensitive to 

multiple reflections. No attempt was made to correct for this 

effect. The unpolarized neutron data for (100) and (110) was 

used to calculate y and the polarized neutron data discarded. 

The corrected y values are given in Table 6.3. The factor 

2.69 fm/u$  which appears in (eq.6.4b) has been incorporated into 

FM  so that both FN  and FM  are in units fm. 

6.3.3.3 Analysis  

Magnetic structure factors were calculated from the corrected 

y values using the known scattering lengths of Pt and Cr and 

with the assumption C = 25% and S = 1.0 (section 6.3.2). The 

results are shown in Fig. 6.5 and Fig. 6.6. The differences in 

structure factor for the same (hkl) indicates an aspherical 

component to the magnetization density. 

The real space magnetization density was obtained by 

Fourier transforming the magnetic structure factor data using the 

Cambridge Crystallography Subroutine Library (CCSL) (Brown and 

Mathewson (1978)). The magnetization density in the (100) plane 

was calculated by averaging over a cube of volume 0.2 x 0.2 x 0.2 a3  

and is shown in Fig. 6.7. A negative density, shown by dotted 

contours, is found at the Pt site. The magnetization density 

about the Cr site is spherical, whereas the distribtuion of 

magnetization about the Pt site shows some asphericity. A 

fairly constant negative magnetization is found between the sites. 

The variation of magnetization density (M(r)) as a function 

of distance from the Cr and Pt sites along the <100> and <110> 

directions is shown in more detail in Fig. 6.8. M(r) decays 

smoothly with increasing distance from the Cr site and shows no 
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Table 6,3 

Corrected Y values for Pt3Cr at 4.2K 

Superlattice. 	Fundamental 

hkl y error in 
last digit 

hkl y error in 
last digit 

100 -0.860* 60 111 0.0880 10 
110 -0.750* 50 200 0.0770 10 
210 -0.409 6 220 0.0440 10 
211 -0.341 4 311 0.0290 10 
(300 -0.235 3 222 0.0195 5 
(221 -0.217 2 400 0.0179 2 
310 -0.212 3 331 0.0075 3 
320 -0.140 2 420 0.0082 3 
321 -0.125 1 422 0.0033 2 
(410 -0.111 2 (511 0.0065 6 
(322 -0.076 1 (333 -0.0005 3 
(411 -0.079 1 440 0.0001 6 
(330 -0.053 2 531 0.0000 10 
421 -0.045 1 (600 0.0051 5 
332 -0.024 2 (442 -0.0017 8 
(500 -0.046 2 620 0.0012 7 
(430 -0.030 4 533 -0.0031 7 
(510 -0.051 3 622 -0.0002 8 
( 43 -0.026 3 711 0.0028 6 
(520 -0.029 3 551 0.0031 7 
(432 -0.008 3 
521 -0.022 6 
(522 -0.009 5 * Taken from unpolarized dal 
(441 -0.011 3 
(530 -0.006 3 
(433 0.010 3 
610 -0.032 5 

(611 -0.021 5 
(532 0.014 4 
(443 0.014 6 
(540 0.003 6 
(621 -0.015 3 
541 0.006 7 
542 -0.004 8 
631 0.013 8 
550 0.029 6 
(700 -,0.013 10 
(632 0.009 8 
710 -0.010 7 
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Fig.6.5  Magnetic structure factors for fundamental reflections 

at 4.2K; solid line is Fit 4 as described in the text. 
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Fig.6.6 Magnetic structure factors (FM) in uB  for superlattice 

reflections at 4.2K. Full circles are results of 

unpolarized measurements. Solid line is Fit 4 as 

described in text. 
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Fig.6.7 	The magnetization density in the (100) plane for Pt3Cr. 

Contour levels are in units uB/Ā 
3 

and negative contours 

are shown dashed. 
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Fig.6.8  Distribution of magnetization density about Pt and Cr 

sites along the <100> and <110> directions 
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asphericity. The variation of M(r) around the Pt site is quite 

different; M(r) does not reach a minimum value at the Pt site 

itself but shows a local minimum at a radius of NO.5 R. As M(r) 

must decrease monotonically with distance from a Pt atom (Watson-

Yang et al (1977)), this implies that both Cr and Pt moments, 

coupled antiparallel, are present on the Pt sites. This indicates 

that the alloy is either not fully ordered or deviates from the 

stoichiometric Pt3Cr composition. 

The disposition of Pt and Cr moments at the Pt site is not 

immediately obvious. The Pt moment may be antiparallel and the 

Cr moment parallel to the moment on Cr sites, as for ferri-

magnetic Pt3Cr. Alternatively, the Pt moment may be parallel 

and the Cr moment antiparallel to the moment on Cr sites, 

indicating a ferromagnetic structure for fully ordered, stoichio-

metric Pt3Cr. Whatever the case, this observation implies a non 

zero moment on Pt atoms in Pt3Cr. 

The individual moment values were estimated by least squares 

fitting the magnetic structure factor data using spin only 

theoretical spherical form factors. No attempt was made to analyse 

the anisotropic part of the form factors, partly due to the fact 

that the anisotropic temperature factors were not known. The Cr 

form factor was taken from the H artree-Fock calculations of Watson 

and Freeman (1961) for atomic Cr and the Pt form factor from the 

relativistic calculation of Watson-Yang, Freeman and Knelling (1977), 

only the 10> part was used. The fits were carried out using the 

CCSL.least squares fitting routine. 

A number of fits were attempted: 

Fit 1: Cr moment on Cr site, zero moment on Pt site. 

Fit 2: Cr moment on Cr site, Pt moment on Pt site. 

Fit 3: Cr moment on Cr site, Cr moment on Pt site. 

Fit 4: Cr moment on Cr site and both Cr moment and Pt moment on 

Pt site. 
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Two. dierent weighting schemes were used. In the fi,xst scheme, 

all structure factors were given unit. weight 04 = 11 and in the 
2 

second, statistical weighting Ga`= 1 /error ) was used. The bulk 

magnetization taken from.Besnus and Meyer (1973) was entered as 

a structure factor for the (000). fundamental reflection but was 

not used as a constraint for the fits. 

The results of these fits are given in Table 6.4. Here 

CRS, PTS and CRPS are respectively the moment on Cr sites, the 

Pt moment on Pt sites and the Cr moment on Pt sites. RW is a 

measure of the goodness of fit, 

. 	2 

RW = 
EW 

I F  obs Fcalc'  

EW 
IFobs 

2 
 

Table 6.4  

Results of least squares fits to magnetic structure factor data  

using theoretical form factors  

FIT 
UNIT WEIGHTS STATISTICAL WEIGHTS 

CRS PTS CRPS RW CRS PTS CRPS RW 
(PB) (uB) (uB) (u B) (u B) (PB) 

1 2.776 ZERO ZERO 2.09 2.734 ZERO ZERO 1.39 

2 2.935 -0.124 ZERO 1.36 2.869 -0.114 ZERO 0.69 

3 2.935 ZERO -0.124 1.32 2.877 ZERO -0.118 0.66 

4 2.944 -0.008 -0.118 1.32 2.886 0.318 -0.439 0.62 

The moments on Pt and Cr sites are relatively insensitive 

to the nature of the fit, as long as a moment is allowed on the 
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Pt site, The Cr moment varies between 2,87 ,PB  and 2.94 uB 
 and 

the moment at the Pt site varies from -0.11PB  to -0.12 uB.  In 

both weighting schemes, Fit 3 is marginally preferred to Fit 2, 

the moment distribution at the Pt sites is better described by a 

single Cr form factor rather than a single Pt form factor. This 

tendency is born out more clearly in the best fit, Fit 4, where 

the major part of the negative moment is described by a Cr 

form factor. If statistical weighting is used, a positive Pt 

moment and a negative Cr moment on Pt sites is obtained. This 

latter fit is shown in Figs. 6.5 and 6.6. 

Better fits could be obtained using more parameters. In 

particular the <j2> term which occurs in the orbital part of the 

form factor and the <j4>term which appears in the aspherical 

part of the form factor could be included. A better knowledge of 

the site disorder is required before such a scheme can be 

completed. 

In summary, the present data give a moment on Cr sites of 

2.88 + 0.06 uB  and a moment on Pt sites of -0.12 + 0.01pB, 

where the error has been estimated from the variations according 

to fitting routine. The moment at the Pt sites is best described 

by a ferromagnetic Pt moment and an antiferromagnetic Cr moment. 

6,3.4 Discussion 

A moment of 2.94B  is large for Cr. By comparison, Pickart 

and Nathans (1963). 	obtained 2.33 	Some Some support for this larger 

value may be derived from susceptibility measurements above Tc  for 

which Peff 	3.6 uB  is obtained (Coto (1977)).- It is interesting to 

note that large 3d moments are observed in other Pt3  - 3d 

compounds (Table 6,1). 

A positive Pt moment implies a ferromagnetic, rather than 

ferrimagnetic structure for Pt3Cr, in contradiction with the 
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results of Pickart and Nathans (1962)(19631. The present result is 
not solely dependent on fits to the magnetic structure factor 

data. The fact that the Fourier maps reveal a two component 

structure at the Pt sites, together with the assumption of anti-

ferromagnetic nn Cr-Cr interactions used in phenomenological descrip-

tions of Pt-Cr alloys, also implies a positive Pt moment. 

A larger Cr moment and a positive Pt contribution is more 

consistent with the Pt Mossbauer data of Vincze et al (1976). 
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APPENDIX A 

EFFECT OF SHAPE ANISOTROPY ON SMALL ANGLE SCATTERING 

Consider an ensemble of rodlike particles with random 

orientations. Each atomic spin within the cluster (Si) is strongly 

coupled via ferromagnetic interactions to every other spin to form 

the total moment 
Stot. 

The total moment tends to be aligned along 

the rod axis to minimize the dipolar magnetostatic energy of the 

rod, this tendency toward alignment is described by the Hamiltonian, 

= — KVcos2IP 	 (A.1) 

where i is the angle between the rod axis and the total spin. This 

tendency toward alignment along the rod axis is known as "shape 

anisotropy". 

For convenience let us assume that there is no correlation 

between the total spins on distinct particles and that the rods are 

one dimensional with a (nuclear) radius of gyration RG which is the 

same for each particle. The small angle scattering from such a 

system is described by the Guinier formula (2.52a) with the K2 

term dependent on the function R2 given by (2.52b). It has been 

shown by Blech and Averbech (1964) and section 2.2.5, that the co-

efficients an and bn can be related to the angles 1P and V shown in 

Fig. 2.). In our case 1P is the angle made between the rod axis 

(identical to rn) and the total spin 
Stot. 

As the atomic spins at 

Ri and Rim are rigidly correlated, t~' = IP) equations (2.39) become 

an = <S2pipi sin20 

bn = <S2p.p. (2cos2tP — sin210> 

Substituting these results in (2.52b) one finds 
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	 2 

2 	1 n R 	
E 
pipi+n r <sin21P> + S <2cos21P - sin21P> 

(2 	
E p.p. 	) <sin21P> + 1 <2cos2tp — sin21P> 
n. i i+n 	3 

which is easily simplified to give 

R2 = RG2 (5 <1 + sin2tP>) (A.2)  

At high temperatures <sin2t~> = 3 as the total moment is free to 

rotate over all orientations with equal probability and R2 = RG2 as 

expected. However,at low temperatures the total spin is constrained 

to lie along the rod axis and <sin2ti)> = 0 which gives a lower value 

of R2, R2 = 5 RG2. This is a direct consequence of the vector form 

of the neutron-magnetic moment interaction and does not reflect a 

physical decrease in correlation length which remains constant at RG. 

The behaviour between these two limits can be calculated by 

using the Hamiltonian A.1, 

7 

2 	f 0 sin2tJ exp (SKV cos2t~)sin tpdtp 
<sin 1P> _ 

which can be alternatively written 

1 	2 
<sin2tU> = 1 - 

dx 
Qn f e 	du 

0 

where X = KV/kT. The integral is simply the hypergeometric function 

1F1(2; 2; X) which has the derivative 	
1F1(2; 2; X) and so 

3 5 

<sin2tP> = 1 - 1 1F1(2' 2' 
X) 

3 1
F1(2; 2; X) 

(A.3)  

The confluent hypergeometric functions are tabulated and substitution 

of the appropriate values gives the variation of R with KV/KT shown 

in Fig. A.1. 

f
7 exp (sKV cos21P) sin tpdtp 
0 
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Fig.A.1 Variation of the apparent radius of gyration (R) with 

KV/kT for a one dimensional particle with radius of 

gyration RG  and shape anisotropy KV. 
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APPENDIX B  

A polymer model for the small angle scattering law  

In this appendix an analogy is drawn between the scattering 

law for polymers in solution and magnetic correlations close to 

CF. This idea was developed in collaboration with M. Warner of 

Imperial College (Burke, Rainford and Warner (1980)). Whilst it 

is not expected that magnetic correlations in Cr Fe alloys should 

behave like a polymer, the random walk statistics of a polymer 

chain provide an interesting class of geometrical correlations 

which are worth exploring: espedially in view of the lack of 

closed forms for the small angle scattering law. The model is 

simple enough to allow magnetostatic shape anisotropy to be 

treated. 

The small angle magnetic scattering law may be written, 

S(K) ti N
-2  

E.<,Si.,SL~ exp (i K. (Ri-R.))> 
ij 

(B.1) 

In the spirit of percolation theory, we consider the scattering 

to be due to large but finite clusters of ferromagnetically 

coupled spins. Intercluster interactions will be neglected and the 

infinite cluster, if present, contributes a delta function response 

at K = 0 and need not be considered. 

In order to calculate S(K) we represent a finite cluster by 

a chain of N spins connected in a random walk. All clusters are 

assumed to contain the same number of spins. The clusters so 

described correspond to a Gaussian polymer chain. This description 

may bear some relation to the actual 3 dimensional clusters near 

CF in that percolation clusters tend to be ramified or stringy in 

shape. Furthermore, predominantly one dimensional clusters will 

dominate the average in (eq. B.1). 
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In calculating S(K) we consider two possibilities, 

(a) Exchange only  

In this case, the temperature is sufficiently low that all 

spins within the cluster are well correlated with each other and 

are oriented along a common, fixed magnetic axis (Fig. B.1). 

Then, 

N 
S(K) " 213 S2 N-2  E «exp (ij (Ri  - R.) )»rbj ij 

(B. 2) 

where « » is the configurational average over Gaussian walks. 

Following a standard argument in polymer physics (Flory (1969)), we 

have 

E « exp (iK. (R.-R.) )» = 1. exp(-K
2 
 a2C l i-j l /6) (B.3) 13 ij 

where the mean square distance between spins number i and j is 

proportional to li-jl , the number of steps separating them along 

the chain. Here a is the nearest neighbour distance and C, the 

'characteristic ratio' is a measure of chain stiffness. C = 1 

for a freely jointed chain. 

The double summation in (eq.B.3) may be evaluated to give 

E. exp(- i-j m) = (1-x)-2  (2N(1-x)-2x(1-xN)-N(1-x)2) (B.4) 

where m = K2  a2  C/6 and x = exp(-m). In the limit of small m but 

finite Nm this expression leads to the Debye scattering law, 

SD(V)ti2V 2  (Vf  exp (V)-1.) (B.5) 

where V - Nm = K2  R2  and R is the average radius of gyration of 
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Fig.B,l  The spin configuration (a) due to ferromagnetic exchange 

only has a large magnetostatic energy due to dipolar 

fields, This energy may be lowered by allowing the spins 

to follow the local chain axis as in configuration (b), 

resulting in spin correlations over a characteristic 

length X. 

Fig.B.2  Plot of reciprocal scattering law S(V)_1  versus V for 

values of r
2
/R
2 
 of 0, 0.01 and 0.04. The dashed line 

represents the Lorentzian approximation to the scattering 

at low V. 
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the chain. This expression closely resembles a Lorentzian for 

V c  3 and reduces to the familiar Guinier limit for V 55 1. 

For large V, further terms must be taken into account leading to 

(V) + r2  R-2  (2V-1(1 - exp (-V) - IV)) 	(B. 6) 

where r2  = Cat  /6. A plot of LJS(y) VS V for various values of 

22  i r JR is shown in Fig. B.2. It is interesting to note that a 

deviation from Lorentzian behaviour similar to that observed in 

section 5.5.2 is seen at large V, V > 3. 

(b) Exchange and magnetostatic shape anisotropy  

The magnetostatic energy of the cluster will tend to be 

minimized if the spins are aligned along. the local 'chain' axis. 

The final spin configuration will be determined by the competition 

between this shape anisotropy and the exchange interaction (Fig.B.l). 

Firstly, without exchange, the correlations can only persist over 

a distance typical of the correlation in direction of the tangent 

of the 'chain' trajectory. The correlations will be enhanced by 

the-:presence of exchange interactions. Denoting the correlation 

length along the chain by X the spin correlations along the chain 

are given by 

<S..S.> ti exp(- li-jl a/X) til  tij (B.7) 

Using this expression, S(K) may be calculated by replacing m in 

(eq.B.4) with (K2  Ca216 + a/A). For Ka « 1 and A » a with 

Na/A and K2R2  finite (eq.B.5) may be used to yield, 

S(K) ti  2 (c2R2  + L/A)-2  (K2R2  + L/A -1 + e
L
/Ae

-K2R2) 

which reduces to a Guinier law with a squared radius of gyration 
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RG2  = R2  (1 — L/2i) (S.8> 

if LJk,K2  RG2  « 1. Here L is the total length of the chain. 

The presence of shape anisotropy reduces the range of magnetic 

correlations. (It should be noted that the interplay between 

cluster shape and moment direction discussed in Appendix A has 

not been considered here.) 
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Superparamagnetism and the Character of Magnetic Order in Binary Cr—Fe Alloys 
near the Critical Concentration* 
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Although the magnetic properties of Cr—Fe alloys have been widely studied, there are different interpretations of existing 
data in the literature, especially for alloys in the concentration range 10 to 25% Fe. The onset of ferromagnetism occurs 
somewhere in this concentration range, but there is little direct evidence of the precise critical concentration. Detailed 
small-angle scattering measurements have been carried out on alloys containing 16.7, 19.9, 20.9, 21.7, 24 and 25% Fe 
over a wide range of temperatures and magnetic fields. Small-angle scattering peaked in the forward direction develops 
at low temperatures, corresponding to the growth of magnetic correlations over distances of the order of 400 A. The 
response of the scattering to the application of a magnetic field suggests that the scattering at low temperatures arises 
from superparamagnetic clusters. Curie temperatures were deduced from the critical scattering, and the variation of T 
with composition suggests that the critical concentration is close to 19% Fe. 

Introduction 
Work carried out at Laue—Langevin, Grenoble, France. 
Present address: Physics Department, Monash University, A series of b.c.c. solutions exists from pure iron across to 
on, Victoria 3168, Australia. 	 pure chromium. The addition of Cr to Fe lowers the Curie 
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temperature gradually so that alloys with iron concentrations 
greater than about 30% are good ferromagnets, whereas the 
addition of Fe to antiferromagnetic chromium lowers the 
Neel temperature fairly rapidly. There is, however, consider-
able uncertainty at present about the extent of the anti-
ferromagnetic and ferromagnetic phases. Alloys in the com-
position range between 8 and 25% Fe have complex beha-
viour of both magnetic and transport properties. Some of 
these complexities have been attributed to the persistence 
of antiferromagnetism to concentrations as high as 18% Fe 
(Rajan, Waterstrat & Beck, 1966). Other workers report 
that the alloys in this regime have superparamagnetic or 
mictomagnetic behaviour, characterized by strongly field-de-
pendent magnetization, remanence and broad maxima in the 
low-field magnetization as a function of temperature (Shull 
& Beck, 1975; Ishikawa, Tournier & Filippi, 1965). 

The precise critical concentration for the onset of ferro-
magnetism, c f., ist  somewhat uncertain: the Curie tempera-
tures reported by different workers vary considerably for 
alloys with the same nominal composition (Loegel, 1975). 
This is due, in part, to the different techniques used to deter-
mine Tc  and in part due to the different heat treatments ap-
plied to the alloys. It has been noted that aging affects the 
magnetic properties of Cr-rich alloys (Ishikawa et al., 1965). 
This is related to clustering of Fe atoms. The clustering oc-
curs, as is clearly seen by diffuse neutron scattering, (Aldred, 
Rainford, Kouvel & Hicks, 1976), even in alloys quenched 
from high temperatures. 

Diffuse neutron scattering measurements, combined with 
magnetization measurements, have allowed the atomic 
moments of Fe and Cr to be determined in the ferro- 

Fig. 1. Temperature variation of small-angle scattering for Cr-Fe 
alloys. Radially averaged intensity as a function of temperature 
for constant Q values of 0.017 A-' (upper curves), 0-026 A-' 
(middle curves) and 0-034 A-1  (lower curves). For the 19.9 and 
16.7% Fe the middle curves (0-026 A-') are omitted. 

magnetic regime, viz. for iron concentrations greater than 
30% (Aldred et aI., 1976). These show that whereas the Fe 
moment falls slowly from 245  at pure Fe to 1.8µB  in a 73% 
Cr alloy, the Cr moment decreases more rapidly from —1.2µB  
in the dilute limit (2% Cr) to almost zero at 73% Cr. Thus in 
the concentration range where the onset of ferromagnetism 
occurs, it appears that the Fe atoms carry a good local 
moment, whilst the Cr atoms are essentially non-magnetic. 
In order to investigate the onset of ferromagnetism and to 
clarify the nature of the magnetism in the vicinity of the 
critical concentration we have carried out small-angle neu-
tron measurements on a series of alloys with Fe concentra-
tions between 16 and 25%. Low-field magnetization meas-
urements have also been made on most of these alloys. 

Experimental procedure 

The alloys were prepared by arc melting appropriate weights 
of pure constituent metals (4N5) under an argon atmosphere. 
Weight losses were small, of the order of 0.3%. The resulting 
ingots, containing 16.7, 19.9, 20.9, 21.7, 24 and 25% Fe, were 
spark machined to give discs 15 mm diameter and 8 mm 
thick. The alloys were sealed in quartz ampoules and given 
a homogenizing anneal at 1100°C for six days followed by 
24 h at 850°C and water quenched. Microprobe analysis 
showed a homogeneous distribution of iron; some samples 
were found to contain non-metallic inclusions. 

Small-angle neutron scattering measurements were made 
using the D17 diffractometer at the ILL Grenoble. Neutrons 
of wavelength 1F7 A and a counter-detector distance of 
2.82 m gave a range of useful momentum transfer from 0.007 
to 6065 A-'. The sample temperature could be varied in the 
range from 1.2 to 300 K. Superconducting Helmholtz coils 
allowed a vertical magnetic field of up to 5 KOe to be ap-
plied to the specimens. 

Zero-field data were processed to give radial averages of 
the scattering collected by the D17 two-dimensional multi-
detector. When magnetic fields were applied, the resulting 
anisotropic scattering on the detector was least-squares 
fitted to the function (Cywinski, Booth & Rainford, 1977b) 

1(Q, a) = A(Q) +B(Q) cos' a , 
where Q is the magnitude of the scattering vector and a the 
angle between the direction of the applied magnetic field in 
the plane of the detector and the scattering vector. A(Q) is 
the isotropic part of the scattering and B(Q) is the anisotropic 
part of the scattering. 

Low-field magnetization measurements were performed 
with a vibrating-sample magnetometer in fields as low as 
2 Oe. 

Results 
The small-angle scattering observed in zero field exhibits two 
distinctive features. All samples studied display a dramatic 
increase in the small-angle scattering, peaked in the forward 
direction, as the temperature is lowered. For the alloys with 
iron concentration of 19.9% and above the forward scattering 
also rises to a maximum at a finite temperature (Fig. 1). 

These maxima are attributed to ferromagnetic critical 
scattering occurring in the vicinity of the Curie temperature 
for the alloy. The temperatures at which the maxima occur 
agree well with those determined by low-field magnetization 
measurements performed on the same samples. However, 
these maxima are broader than those usually encountered 
in this kind of system, suggesting a distribution of Curie 



Discussion 
The onset of ferromagnetism in certain binary alloys may be 
discussed in terms of a percolation process (see for example, 
Essam, 1972). The alloy is taken to be a random solid 
solution, one species being essentially non-magnetic, whilst 
the other has a well defined local moment which interacts 
with other moments according to a nearest-neighbour ferro-
magnetic coupling. Consider the effect of increasing the 
concentration of magnetic species at T=0. When the con-
centration of magnetic atoms is less than the critical compo- 
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temperature associated with microscopic concentration 
fluctuations within the alloy. Such an explanation is sup-
ported by Mōssbauer spectroscopy (Loegel, Friedt & Poin-
sot, 1975). The absence of a critical scattering peak in the 
16.7% Fe alloy indicates that long-range ferromagnetic order 
does not exist at this composition. This fact, together with 
the variation of Curie temperature with composition places 
the critical concentration for ferromagnetism (ce) in Cr—Fe 
alloys at close to 19% Fe. 

The increase in scattering at low temperatures is attributed 
to the growth of magnetically correlated clusters of spins. A 
similar effect has been observed in Au—Fe alloys (Murani etal., 
1976) and in Co—Ga alloys (Cywinski et al., 1977a, b) close to 
the critical composition. The extent of these magnetic 
clusters and the range of magnetic correlations can be deter-
mined from the form of the scattering S(Q) as discussed in the 
next section. 

The application of a magnetic field provides further infor-
mation as to the character of the magnetic correlations. 
Typical results are shown in Fig. 2, where contours of con-
stant scattering intensity in the plane of the detector are 
plotted. These measurements were made on the 25% Fe 
sample at 2.2 K in vertical magnetic fields up to 3.6 k Oe. 
The dotted contour represents the same intensity level in each 
case. As the field is applied, the contours become prolate 
(elongated) with respect to the field direction and the con-
tours collapse into the centre of the detector indicating that 
the scattering is reduced by the field. This behaviour will be 
shown to be consistent with the effect of a magnetic field on 
the scattering from superparamagnetic clusters.  

sition for ferromagnetism (cF), magnetic correlations can be 
sustained only over finite distances determined by the 
nearest-neighbour distribution of magnetic species on the lat-
tice. The three-dimensional correlated networks of nearest-
neighbour moments (`clusters) increase in size as the concen-
tration of magnetic atoms is increased until such a concentra-
tion is reached that one such network penetrates the entire 
sample. The concentration at which this infinite cluster 
forms (the percolation limit) is the point at which the 
range of spin correlations first diverges, signalling the onset 
of long-range ferromagnetic order. As the concentration is 
increased beyond this critical composition the Curie tem-
perature and spontaneous magnetization increase, as the 
number of magnetic atoms belonging to the infinite cluster 
increases. However, a sizable fraction of magnetic atoms may 
still belong to finite clusters. At low temperatures, although 
the magnetic moments within the finite clusters are highly 
correlated, the cluster moment is free to rotate as a whole, 
giving rise to superparamagnetic behaviour. 

This picture is probably oversimplified in the case of 
Cr—Fe alloys, since it ignores the possible role played by 
magnetic coupling between finite clusters or between the 
finite and infinite clusters. There is no information available 
at present on the range of the magnetic interactions in Fe—Cr 
alloys. The inevitable atomic short-range order, always pre-
sent in these alloys, also provides a perturbation on calcula-
tions based on random alloys. Nonetheless, this simplified 
picture forms a basis for discussion. In all cases the data for 
small Q(Q 5 0.02 A') have been corrected for the presence of 

f.f kOe 	1.7 kOe 2.4 kOe 3.6 kOe 
Fig. 2. Intensity contour plots for 25% Fe alloy at 2.2 K as a function 

of increasing magnetic field. The field is vertical (arrow) and 
dotted contours represent the same intensity level. 

x 10 -5  02 .4-2 

Fig. 3. Reciprocal intensity vs Q2  plot for 16.7% Fe alloy at a number 
of temperatures. Inset: Temperature variation of S(0) and the 
inverse range parameter K. 
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a small extra temperature-independent nuclear defect scatter-
ing. This was estimated by using a straight-line extrapolation 
of the /-1 versus Q2 plots for the highest-temperature data, 
where the magnetic contribution is the smallest. The validity 
of this procedure is supported by the good straight lines 
obtained at all other temperatures. 

First, consider the 16.7% alloy, where the iron concentra-
tion is less than C F. The variation of scattered intensity in 
zero field with wavevector Q is shown by plotting inverse 
intensity versus Q2, as in Fig. 3. These plots yield good 
straight lines out to large Q, and the scattering is therefore 
well represented by a Lorentzian function 

S(Q) = S(0)1(1+ Q2/K2) , 
implying that the magnetic correlations have the Ornstein-
Zernike form-with K as an inverse range parameter 

<M(0) . M(r)) '— (1/r) exp (— Kr) . 
The temperature dependences of S(0) and K are shown 

inset in Fig. 3. Firstly, as expected for an alloy below the 
percolation limit the range of magnetic correlations increases 
(K decreases) with decreasing temperature, reaching a finite 
value at low temperatures. Secondly, the value of S(0) shows 
a shallow maximum at low temperatures. This is consistent 
with the temperature dependence of low-field magnetization 
in these alloys, for iron concentrations less than cF. As long 
as the quasi-static approximation is valid, the neutron cross 
section is proportional to x(Q), the wavevector-dependent 
susceptibility. Thus one would expect the forward cross 

I-~ 

2 

2 	3 	4 
x10-5 Q2 d-2 

Fig. 4. Reciprocal intensity vs Q2 plot for 24% Fe alloy at tempera-
tures above the Curie temperature. Inset: Temperature variation 
of the inverse range parameter K. 

section S(0) to follow the behaviour of the static susceptibility 
x(0). The maximum in x(0) with temperature is usually attri-
buted to the freezing of clusters due either to the growth of 
shape anisotropy or to residual magnetic interactions. The 
observed minimum in the inverse range parameter at a 
temperature corresponding to the maximum in S(0) is not 
understood at present. 

If we now turn to a discussion of the ferromagnetic 24% 
Fe alloy, reciprocal intensity versus Q2 plots for this alloy at 
temperatures above the Curie temperature are shown in 
Fig. 4. This is typical of the data for alloys with iron con-
centrations greater than cF. Excellent linear plots are ob-
tained out to large values of Q2. The variation of the inverse 
correlation range, K, with temperature is shown inset. As 
expected for magnetic correlations in the vicinity of the 
Curie temperature, the correlation range tends to diverge at 
Tc, i.e. K tends to zero. 

Below Tc, there is a rather different behaviour as illu-
strated in Fig. 5. The 1-1 versus Q2 plots are linear only over 
a limited Q2 range and show marked upward curvature at 
large Q. The values of the inverse range parameter K, derived 
from the initial linear portion of the plots, are shown inset in 
Fig. 4. One may relate these values to the root-mean-square 
radius of gyration for clusters using the relation 

<R5>"2=v3/K . 
At low temperatures <R1)"2 is of the order of 400 A. This 
estimate is of course independent of the shape of the cluster. 
Once long-range magnetic correlations are established within 
a cluster, the scattering is given by the Fourier transform of 
the spatial distribution of the iron atoms in it. Models for 
percolation on lattices show that the clusters are ramified in 
form, with many one-dimensional links (Stanley, Birgeneau, 

> 	2 	3 
x10-5 	Qz A-a 

Fig. 5. Reciprocal intensity vs Q2 plot for 24% Fe alloy at tempera-
tures below the Curie temperature. 

1 

MC 11-23 



648 	MAGNETIC ORDER IN BINARY Cr-Fe ALL OYS NEAR THE CRITICAL CONCENTRATION 

Reynolds & Nicoll, 1976). The form of scattering in Fig. 5 is 
characteristic of the structure of clusters of this type. No 
detailed calculations have been carried out at present, 
though it may be noted that scattering from a branched 
polymer has a similar form (Kratochvil, 1972). If the clusters 
are approximated to Gaussian coils the radius of gyration 
corresponds to a mean end-to-end distance of 1000 A. 

The striking field dependence of the scattering observed 
for all alloys studied may be accounted for if the finite 
clusters behave as superparamagnetic entities at low tem-
peratures. In zero magnetic field the average fluctuations of 
the spin components about their mean values of zero are 
equal and the small-angle scattering is isotropic. If a mag-
netic field is applied in the z direction, the fluctuation in the 
z component of spin must be reduced because of the partial 
alignment in that direction. This leads to anisotropic scatter-
ing. The diffuse scattering cross section in this case may be 
written in the form (Cywinski, Booth & Rainford, 1977b) 

do  
dst ^ F 2(Q)([<Szi+<Se> — <Szi9 

+cos' a[<S> — <S=> +<Sx>2 ]} , 

where S,, Sr, are spin components of the total cluster spin in 
the x and z directions, a is the angle between the scattering 
vector and the field direction, and F(Q) is the cluster form 
factor. It can be shown that the coefficient of cost  a is positive 
for all values of the field, so that the anisotropic scattering 
may be written in the form 

I(Q,a)=A(Q)+B(Q) cos' a , 
B(Q) . 0 , 

generating a series of prolate ellipses. Furthermore, A(Q) is 
found to be a decreasing function of HIT where B(Q) in-
creases with HIT to a shallow maximum and then decreases. 
This predicted behaviour with increasing field strength is seen 
in the contours given in Fig. 2, confirming the super-
paramagnetic behaviour of the clusters. A quantitative anal-
ysis of the scattering as a function of field will be presented 
elsewhere. 

This behaviour should be contrasted with the diffuse 
scattering due to fluctuations in ferromagnetic long-range 
order, which is proportional to (1 —cos a) (Marshall & 

Lovesey, 1971). While these alloys are ferromagnetic, the 
volume fraction occupied by the infinite cluster is relatively 
small and much of the magnetic response is dominated by 
finite clusters which behave as superparamagnetic entities. 

We would like to thank M. Roth for his invaluable ex-
perimental assistance, and A. P. Murani for his support and 
collaboration in some preliminary experiments. This work 
was supported by the Neutron Beam Research Committee 
of the SRC. One of us (SKB) acknowledges receipt of the 
Rutherford Scholarship of the Royal Society. 
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Determination of the antiferromagnetic phase boundary 
in Cr—Fe alloys 
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Abstract. The antiferromagnetic phase boundary in the Cr—Fe system has been determined 
by neutron diffraction. Antiferromagnetism disappears at a concentration of 16.0 ± 0.5 
at% Fe. Resistivity measurements indicate that TN is marked by the maximum in the 
temperature coefficient of resistivity rather than the minimum in the resistivity. On the 
basis of these measurements it is apparent that no long-range order exists in Cr—Fe 
alloys between 16 and 19 at% Fe. 

A large amount of experimental and theoretical work has been devoted to the Cr—Fe 
system. The dilute alloys (less than 5 at% Fe) have been most extensively investigated, 
in this composition region the antiferromagnetic order changes from an incommensur-
ate to commensurate spin density wave (Ishikawa et al 1967, Suzuki 1976). However, 
comparatively little is known about the evolution of magnetic order from commensur-
ate spin density wave (cSDW) to ferromagnet at higher Fe concentrations (15-25 
at% Fe). There is conflicting evidence for antiferromagnetism and ferromagnetism 
in this composition range. The magnetic phase diagrams compiled by Loegel (1975) 
and Mitchell and Goff (1972) show overlapping antiferromagnetic and ferromagnetic 
phase boundaries. The antiferromagnetic phase boundary, determined from. resistivity 
measurements, was reported to extend to 20 at% Fe. On the other hand, the use 
of Arrott plots derived from high-field magnetisation measurements (Nevitt and 
Aldred 1963) show the existence of ferromagnetism at Fe concentrations greater than 
16 at%. Small-angle neutron scattering measurements (Burke et al 1978) which avoid 
the difficulties of Arrott plots in magnetically inhomogeneous systems placed the 
critical composition for ferromagnetism at 19 at% Fe. A series of neutron diffraction 
measurements were consequently undertaken to determine the extent of antiferromag-
netism in Cr-Fe alloys. 

Polycrystalline samples containing 4.5, 7.0, 9.2, 102, 11-2, 12.2, 13.3, 13.6, 14.2, 
15.4 and 16.7 at% Fe were prepared by arc melting appropriate weights of 4N5 
Fe and 4N5 Cr (Johnson Matthey `Specpure) under an argon atmosphere. After 
a number of melting cycles the alloys were cast to produce roughly cylindrical ingots. 
Weight losses were small and attributed to the evaporation of Cr. The alloys were 
sealed in evacuated quartz ampoules, homogenised for six days at 1050 °C and water-
quenched. 

Neutron Bragg scattering experiments were carried out on the two-axis diffract-
ometers PANDA and CURRAN at AERE Harwell. Incident wavelengths of 1.55 A 
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(PANDA) and 1.37 A (cui uAN) were selected for high intensity and low second-order 
contamination. Samples were mounted in a variable-temperature He cryostat and 
were continuously rotated to minimise the effects of preferred orientation. Scans 
were made through the (100) magnetic and either the (110) or (200) nuclear reflections 
at each temperature. The ordered moment could then be calculated in the usual 
way, normalising the magnetic to the nuclear reflections after taking into account 
the a./2 contamination which was measured separately. 

Figure 1. The variation of ordered 
moment with composition for Cr—Fe 
alloys at 42 K. For comparison the 
moment corresponding to the maximum 
amplitude of the incommensurate spin 
density wave (tsaw) is shown in addition 
to the moments determined for commen-
surate spin density wave (csnw) ordering. 
The full curve is a guide to the eye. •, 
this work; 0, Arrott et al (1967); A, Ish-
ikawa et a! (1967). 

The ordered antiferromagnetic moment determined in this way is shown as a 
function of composition in figure 1, for a temperature of 4.2 K. The data is in good 
agreement with the measurements of Ishikawa et al (1967) which extended to a com-
position of 4.7 at% Fe. The moment increases as the order changes from incommen-
surate at low concentrations to commensurate at higher concentrations. (An extrapo-
lation of the data leads to a moment of 0.94 pa for a hypothetical CSDW in pure 
Cr.) The order remains commensurate and the moment decreases with increasing 
Fe concentration, reaching zero at the critical concentration of 16 at% Fe. 

Neel temperatures were determined for the 10.2, 12.2, 13.6 and 14.2 at% alloys. 
The results are shown in the composite phase diagram (figure 2). The temperature 
dependence of the 10.2 at% Fe alloy was followed in detail. This was found to fit 
the B112 function well, which approximates the BCS relation expected for Cr alloys. 
In the case of the other alloys only sufficient data were taken to bracket the Neel 
temperature (figure 3). It is apparent that there is a large discrepancy between the 
present data and Neel temperatures reported from resistivity measurements. There 
has been some disagreement in the literature as to which feature of the resistivity 
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Figure 2. Antiferromagnetic phase boun-
daries in the Cr—Fe system, compiled 
from various sources: Mitchell and Goff 
(1972), Suzuki (1976) and Loegel (1975). 
The broken curve is the Abrikosov—Gor-
kov relation with T* = 300 K (equation 
(1)). To illustrate the scaling between 
ordered moment at 4-2 K and Niel tem-
perature the same curve used in figure 1 
scaled by a constant value has been 
reproduced (full curve). S, this work; 0, 
neutron diffraction; 0, (dp/dT)„„„ V, 
magnetic susceptibility. Composition (ot% Fe) 

05 	 1.0 
7/T 

Figure 3. Temperature dependence of the ordered moment. The full curve is the Brillouin 
function for spin #, which closely approximates the BCS relation. •, 14.2 at% Fe; A, 
13.6 at% Fe; O, 12.2 at% Fe; 0, 10.2 at% Fe. 
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marks the Neel temperature. For example Mitchell and Goff (1972) and Loegel (1975) 
assume that the minimum of the resistivity occurs at TN, whereas Trego and Mackin-
tosh (1968), Ausloos (1977) and Astrom et al (1977) emphasise that the maximum 
in the thermal coefficient of resistivity marks TN. To our knowledge this point has 
not been resolved by reference to neutron diffraction, so that a sample suitable for 
resistivity measurements was spark-cut from the neutron 10.2 at% Fe alloy. The 
resistivity was measured by a standard four-terminal DC technique. The results are 
shown in figure 4, expressed in terms of dp/dT for convenience. It can be seen that 

100 	 150 

Temperature IK) 

Figure 4. Temperature derivative of the resistivity dose to TN  for Cr—Fe 10.2 at%. The 
maximum in (dp/dT) closely coincides with TN determined by neutron diffraction measure-
ments on the same alloy. The minimum in resistivity p,„. is marked. 

the Neel temperature lies close to the maximum in dp/dT for the CSDW state. Further-
more, Neel temperatures determined from dp/dTusing the data of Arajs and Dunmyre 
(1966) and Rajan et al (1960) are in good agreement with the Neel temperatures 
found by this work, as shown in figure 2. This brings the critical composition for 
antiferromagnetism deduced from resistivity measurements close to the present value. 

It is clear that Fe is not a normal solute in chromium. The decrease in TN with 
increasing Fe concentration is contrary to the expectations of the rigid-band models 
which have successfully accounted for the properties of many Cr alloys (for example 
Trego and Mackintosh 1968). The destruction of the SDW in Cr—Fe alloys has been 
attributed to the depairing of the correlated electron—hole pairs responsible for the 
SDW state by scattering from localised Fe moments and the impurity Coulomb field. 
This mechanism may be modified by exchange enhancement of the electron—hole 
pairing due to polarisation of impurity moments via interaction with the SDW. In 
Cr—Fe alloys this effect is probably small as the interaction between local moment 
and SDW is known to be weak; certainly no extra contribution to the ordered moment 
due to ordering of the Fe moment is seen above 4.2 K. In addition, as the Fe moment 
is = 1.6µB  in Cr there is the possibility that 0.4 electrons per Fe atom are contributed 
to the conduction band, with a consequent change in Fermi surface nesting. The 
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effect of local moment impurities on the second-order paramagnetic-csDw transition 
has been treated by Antonoff (1977) in the framework of the two-band model with 
imperfect nesting. Under the assumptions of perfect nesting and negligible polarisation 
of the impurity moments the dependence of TN with impurity concentration c reduces 
to the Abrikosov-Gorkov relation 

ln(TN/T'o) = I(4) — ij{ + (cT*/TN)] 	 (1) 
where TN is the Neel temperature of Cr, T* is an effective interaction temperature 
and tfr is the digamma function. If magnetic scattering only is considered, T* is 
given by 

2 

T* 	12k S(S + 1) rr 
B 	 F 

(2) 

where, for reasonable values of the parameters, T* lies between 200 and 1000 K. 
A reasonable fit to the present data is found for T* = 300 K, shown in figure 2 
as a broken curve. 

The ordered moment at 4.2 K scales with the Neel temperature for the csnw 
state, giving a constant value of µ/TN  = (3.1 ± 0.1) x 10-3  µB  K-1. This relationship 
has been observed for ISDW alloys by Koehler et al (1966) and is to be expected 
if TN is linearly related to the zero-temperature energy gap. 

The determination of the critical composition for antiferromagnetism at 16 at% 
Fe implies a concentration range of some 3 at%, which does not support long-range 
magnetic order. Spin glass behaviour has been observed in this region. A detailed 
account of this work is to be published. 

This work is supported by the Neutron Beam Research Committee of the SRC. 
S K Burke acknowledges receipt of the Rutherford Scholarship of the Royal Society. 
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Abstract. Neutron scattering, transport and magnetic measurements are presented on 
two spin density wave hosts, Cr and Cr—Mo 2%, each containing 14% Fe. The results 
show that in both systems antiferromagnetism and spin glass ordering coexist at low 
temperatures. 

CrFe is an alloy system which has attracted a great deal of interest in the past 
two decades, interest stimulated partly by chromium having an unusual spin density 
wave (sDw) antiferromagnetism and partly by iron being one of the few solutes in 
chromium to sustain a local moment. The addition of Fe to antiferromagnetic Cr 
reduces the Neel temperature gradually, the SDW disappearing at a concentration 
of some 16%Fe (Burke and Rainford 1978). The onset of ferromagnetism occurs 
at approximately 19%Fe (Burke et al 1978), no long-range order can be sustained 
in the narrow region between 16% and 19% and spin glass type behaviour is observed 
(Shull and Beck 1975, S K Burke and B D Rainford 1979 unpublished). 

There is evidence that the iron moment acts largely independently of the SDW: 
the susceptibility of dilute samples is Curie-like below TN down to all but the lowest 
temperatures (Ishikawa et al 1965) and the magnetoresistance is characteristic of 
scattering from free magnetic impurities (Hedgcock et al 1977). Recent work by Frie-
del and Hedman (1979) interprets this behaviour in terms of a strong coupling 
between isolated Fe moments and the SDW, but with clusters of iron moments remain-
ing largely uncoupled to the SDW. This raises the intriguing possibility that, in more 
concentrated samples, the state of magnetic order of the iron moments may be deter-
mined solely by iron—iron interactions, independent of the SDW. The spin glass type 
of behaviour of the iron moments may, in fact, extend into the antiferromagnetic 
regime. 

Preliminary measurements indicated that this may be so. Neutron small-angle 
scattering measurements performed on a Cr—Fe15.5% alloy showed ferromagnetic 
Fe—Fe correlations extending over a range of some 40 A at 4.2 K (Burke et al 1978). 
High-field magnetisation measurements (Ishikawa et a1 1965) were interpreted in 
terms of superparamagnetic behaviour of the iron moments. In a recent publication, 
Hedgcock et al (1978) presented results of susceptibility and resistivity measurements 
on a sample containing 14% Fet dissolved in the SDW host Cr-Mo 2%. The 

t This corrects the reported concentration of 10% Fe. 
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susceptibility indicated spin glass behaviour, and although no direct evidence was 
presented for the alloy undergoing a transition to an SDW state, the resistivity 
measurements indicated that this may have taken place. 

In order to establish whether the spin glass type of order could coexist with 
an SDW, neutron Bragg scattering, resistivity and magnetisation measurements were 
performed on two alloys containing 14% Fe dissolved in the SDW hosts Cr and 
Cr—Mo2%. 

Samples were prepared from 4N5 or 5N starting materials (Johnson—Matthey 
`Spec-pure') by melting in an argon atmosphere and homogenised by annealing under 
vacuum at 1000 °C for five days. Resistance and susceptibility samples were spark-cut 
from the samples used for neutron diffraction. The neutron diffraction experiments 
were carried out at AERE Harwell as described by Burke and Rainford (1978). Resist-
ance was measured using a four-terminal AC technique (Muir and Strom-Olsen 1976). 
Magnetisation measurements were obtained using a vibrating sample magnetometer; 
both field-cooled and non-field-cooled measurements were made. The non-field-cooled 
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Figure 1. Results of neutron Bragg scattering, resistivity and susceptibility measurements 
on: (a), Cr—Fe14%; (b), Cr—Mo2%—Fe14%. The Neel temperatures determined by neutron 
diffraction and resistivity are arrowed. The spin glass transition temperature, which occurs 
below TN , is also arrowed. The B}  temperature dependence expected for the ordered 
antiferromagnetic moment it determined by neutron diffraction is represented by the solid 
curve. For the susceptibility data, normalised to the peak susceptibility 7,,,,,i , the open 
circles represent data taken in a field-cooled state and full circles represent zero-field 
cooling. 
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Table 1. Ordered antiferromagnetic moment. Neel temperature and spin glass temperature. 

TN (K) 	M(0) (µe/atom) 	TT  (K) 

Cr-Fe14% 65 ± 5 0.20 9 ± 0-5 
Cr-Mo2%-Fe14% 30 ± 2 0-10 17 ± 03 
Mo-Fe14% 0 0 30 ± 1 

results were obtained by cooling in zero field to 1.2 K and sweeping the field by 
+10 Oe at progressively higher temperatures to obtain the low-field susceptibility. 
The field-cooled results were obtained by cooling the sample in a field of 500 Oe; 
the measured magnetisation divided by the field then gave the susceptibility. 

The results of this series of measurements are presented in figure 1. The resistivity 
data are expressed in terms of —dp/dTt, as it is the maximum in this quantity 
rather than the minimum in the resistivity which marks TN (Burke and Rainford 
1978). Comparison of TN determined in this way with the results of neutron diffraction 
determination of the ordered antiferromagnetic moment as a function of temperature 
shows the two values to be in excellent agreement. Furthermore, the neutron data 
show the SDW state to be maintained down to the lowest temperatures. The susceptibi-
lity shows clear evidence for spin glass ordering below TN. The susceptibility obtained 
by cooling the samples in zero field shows a peak characteristic of a spin glass 
at the freezing temperature T;  (rounded somewhat in comparison to AC results), while 
the susceptibility obtained after field cooling saturates below T;. The evolution 
between the field-cooled and zero-field-cooled states is governed by a slow time 
dependence similar to that found by Guy (1977) on AuFe. 

A summary of the relevant parameters is given in table 1. Both systems exhibit 
transitions to both SDW states and spin glass states. However, although the two 
types of magnetic order coexist at low temperatures, the two ordering temperatures 
are not independent: a higher TN gives a lower T. For completeness, data on the 
Mo—Fe14% spin glass is included (Amamou et al 1976). 

Now 7; is controlled by: (i), direct Fe—Fe coupling; (ii), indirect Fe—Fe coupling 
via the conduction electrons; and possibly (iii), a small residual direct interaction 
with the snw. Since the percentage occupancy of the BCC matrix is the same in 
the two systems, the direct Fe—Fe couplings may be assumed to be the same. The 
conduction electron coupling, however, may be different. The sample with the lower 
TN will have more electron-hole pairs excited over the SDW energy gap, and these 
carriers may be expected to have a strong influence on the Fe—Fe interactions because 
of their predominantly d character. Thus one would expect the sample with lower 
TN to have a higher Tg, as observed. Mo—Fe14% also fits in with this trend, but 
as the lattice parameter in this alloy is significantly larger than in the CrFe and 
CrMoFe samples the direct Fe—Fe interactions may have been modified. The same 
trend will also be given by the direct SDW coupling, although presumably the func-
tional dependences would be different. At present, there is little information to say 
which, if either, of these mechanisms is important. 

Finally, it should be noted that although the SDW is destroyed in CrFe before 
long-range ferromagnetic order appears it might be possible to have the two states 
coexisting in an alloy such as CrReFe. According to percolation models the onset 

t This corrects the omission of a negative sign. 



L98 	Letter to the Editor 

of ferromagnetism will be determined by the Fe occupancy of the BCC lattice, and 
so may be expected to remain at — 19% Fe. On the other hand, the addition of 
1% Re raises TN of Cr by —150 K (Trego and Mackintosh 1968); thus, all other 
factors being the same, the SDW state should not be destroyed until well beyond 
the percolation limit for ferromagnetism. We are currently investigating this interest-
ing situation. 

This work was supported by the Neutron Beam Research Committee of the SRC 
and by NRC grant A 5948. S K Burke acknowledges receipt of the Rutherford 
Scholarship of the Royal Society. J Strom-Olsen would like to thank Professor 
B R Coles and the Metal Physics Group at Imperial College for their hospitality 
during his leave of absence. We wish to thank Dr C N Guy for his help with prelimi-
nary measurements and for helpful discussion. S K Burke and B D Rainford wish 
to thank the University Support Group at Harwell for their assistance with the 
neutron measurements. 
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WIN CORRELATIONS CLOSE TO THE CRITICAL CONCENTRATION IN Cr-Fe ALLOYS 

S. K. BURKE. B. D. RAINFORD and M. WARNER* 
Blackest Laboratory, Imperial College, London SW7 2B, UK 

A model is presented to account for the small angle neutron scattering from Cr—Fe alloys close to the critical concentration for 
ferromagnetism. The spin—spin correlations are treated as a random walk and are considered in a similar way to a polymer 
chain. The effect of magnetostatic shape anisotropy in determining the resultant correlations is discussed. 

The development of long range spin correlations 
function of temperature and composition in 

vicinity of the critical concentration for ferro-
_netism in Cr-Fe alloys has been studied by 
•:1 angle neutron scattering [1]. A marked 
_ige in the q dependence of the scattering is 

ved or ferromagnetic alloys as the tempera-
= is lowered below. Tc. Close to Te the scattering 
irentzian implying that the instantaneous spin 
:iattons have the classical Ornstein-Zernike 

-.. However, at temperatures below Te the 
:ncreasingly deviates from this Lorent-

z form as shown in fig Ia. In ref. [1] it was 
:used that this small angle scattering reflected 

_cometry of clusters of correlated iron mo-
^::s idea is developed by using a polymer 

The neutron scattering cross section is propor-
- al to the Fourier transform of the spin-spin 
:=elation function, 

S. e l (R,Ri 	1 s( q ) Z~~~S~' ~
L—)ii 	( ) 

N 

:,ere 1:(  j » is both a thermal and configurational 
average. In the spirit of percolation theory we 
consider the small angle scattering (SAS) to be due 
to large but finite clusters of ferromagnetically 
coupled nearest neighbour spins. The response of 
the infinite cluster at low temperatures will be a 
delta function at q = 0 and may be neglected. It is 
assumed that there is no intercluster correlation. 

In order to evaluate S(q), we assert that the 
average over finite clusters is dominated by those 
clusters with one-dimensional character. Some 
justification for this assertion can be drawn from 
computer simulations of percolation clusters which 
show a large degree of "ramification" or stringiness 
(2]. Thus we represent a finite cluster by a chain of 

• K33.281, IBM Research Labs, San Jose, CA 95114, USA. 

N spins connected in a random walk and replace 
the ensemble average by an average over random 
walks. 

(a) Exchange only. In the case when a cluster has a 
common fixed magnetic axis, S(q) is 

N-1 

S(q) 	eS2 2 E (ei .(R' -Ri)>, 
N i.J-o 

where < > is the configurational average for a 
Gaussian walk and e measures the degree of spin 
correlation within the cluster ("chain"). 

Consider the case when e = I. This corresponds 
to complete ferromagnetic alignment between all 
spins in the chain as shown in fig 2a. Following a 
standard argument [3], we have for a Gaussian 
chain, 

E (ei .(R`-R,)> = 	-v ct'Ir -il /6 
1.) 	 I.) 

where the mean square distance between spins i 
and j is assumed to be proportional to the number 
of steps separating them along the chain. Here 1 is 
the nearest neighbour distance and C, the "char-
acteristic ratio," is a measure of chain stiffness and 
is_ unity for a freely jointed chain. Replacing the 
double summation by a sum over - A one finds 
after a straightforward calculation, 

E 	= 	1 	[2N(1 — x) — 2x(1 - x N) 
r,l 	(1-x)2 

-N(1 - x)2,, 	 (4) 

where y = g2C12/6 and x = exp(- y). In the limit 
of small y but finite Ny this result reduces to the 
Debye expression, 

SD(V) --- (2/ V2){ V + e- 	I ], 	(5) 

with V = Ny = q2R 2 where R is the radius of 

(2)  

(3)  
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10 	20 	30 

Fig. 1. (a) Plot of reciprocal intensity versus q2 for a ferromag-
netic Cr—Fe 24% alloy. The q dependence of the small angle 
scattering close to Te is Lorentzian, lower curve. The scattering 
deviates from Lorentzian at temperatures below T', upper 
curves. (b) Plot of reciprocal scattering function versus V 
q2R 2 for values of r2/R 2 of 0, 0.01 and 0.04. The dashed line 
represents the Lorēntzian approximation to the scattering at 

low V. 

gyration of the chain. The Debye form closely 

Fig. 2. The spin configuration (a) corresponding to e a 1 has a 
large magnetostatic energy due to dipolar fields. This energy 
may be lowered by allowing the spins to follow the local chain 
axis as in configuration (b), resulting in spin correlations over a 

characteristic length A. 

approximates a Lorentzian for V 3. For large Ny 
further terms must be taken into account leading to 

5(V) — SD(V) + 
R Z L ~

(1 — e-'' — 4- 1,(6) 

where r'- = Cl2/6. A plot of 1/S(q) against q` is 
shown in fig Ib, a Lorentzian is linear on this scale. 
This is in qualitative agreement with the SAS data 
at low temperature (fig la), displaying an upturn in 
1/S(q) as the scattering deviates from Lorentzian 
at higher q. 

An estimate of the radius of gyration for these 
clusters may be obtained from the initial linear 
portion of the graph 1/1(q) vs. q2 using eq. (6). 
The resultant R is of the order of 250 A. Such a 
large ramified aggregate of spins possesses consid-
erable magnetostatic energy and leads us to the 
consideration of another possibility. , 

(b) Exchange and magnetostatic anisotropy. The 
magnetostatic energy of the cluster will tend to be 
minimized if the spins are aligned along the local 
"chain" axis. The final spin configuration will be 
determined by the competition between this shape 
anisotropy and the exchange inter- ction (fig 2b). 
Firstly, without exchange, the con! Cations can only 
persist over a distance typical .if the correlation in 
direction in the tangent of the "chain" trajectory. 
With the additional competition of exchange forces 
of (a) the correlation is further spatially enhanced. 
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f the correlation along the chain is characterised 
y the length X (measured along the chain) the 
actor e is now given by 

eij = <S1•Si>S2/ _,  

ling this relation S(q) may be calculated by re-
_cing y in eq. (4) by Cl(g2/6 + I/A). The ex-
ence of a second characteristic length A may lead 
1 variety of interesting phenomena, in particular 

may expect a crossover in behaviour to be 
ected in the SAS in the range 1/R < q s 1/1 

The SAS experiments were performed at ILL, 
Grenoble. S.K.B. acknowledges receipt of the 
Rutherford Scholarship of the Royal Society. 
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MAGNETIZATION DENSITY IN FERRIMAGNETIC Pt3Cr 

S. K. BURKE, B. D. RAINFORD, D. E. G. WILLIAMS*, P. J. BROWNt and D. A. HUKIN# 
Blacker! Laboratory, Imperial College, London SW7 2BZ, UK 

The magnetization density in ordered Pt3Cr has been measured by polarized neutron diffraction. The induced Pt moment is 
small (0.26µ9) and oppositely directed to the large Cr moment of 3.37µg. The magnetization has a delocalized component of 
—0.07µg. 

In common with many of the 3d transition 
metals. Cr forms an ordered Cu3Au phase with Pt. 
Pt3Cr shows ferrimagnetic order; the induced Pt 
moment is opposite in direction to that of the 3d 
moment. This is in contrast to the other ordered 
alloys (table 1): The existence of ferrimagnetic 
::cer Pt3Cr polycrystals was reported by Pickart 
and Nathans in 1962 [1, 21. However, the atomic 
moments in that study combine to give a total 
.-na netization which is substantially lower than 

e accepted value [3-5]. The present polarized 
study was initiated to determine the mag-

netization distribution in ferrimagnetic Pt3Cr. This 
provides complementary data to the measurements 
if spin density in ferromagnetic Pt3Mn and Pt3Co 

Electron microprobe analysis showed the crystal 
to be within ± 1% of stoichiometry. The crystal was 
annealed for 6 h at 950°C and slow cooled to allow 
the development of atomic order. The magnetic 
moment per unit cell was found to be 2.448, the 
Curie temperature 494 K and the lattice parameter 
3.877 A in good agreement with values reported for 
fully ordered Pt3Cr [3-5, 9]. 

The degree of long range order was determined  

extinction by measurements at three wavelengths 
using the diffractometer D5. The fundamental re-
flections showed extinction decreasing from 8% at 
(111) to below 1% for the (222) reflections. No 
correction was applied beyond the first five funda-
mental reflections. The (100) and (110) superlattice 
reflections had large flipping ratios which were 
sensitive to correction and were omitted from the 
analysis. The magnetic structure factors could then 
be extracted from the corrected flipping ratios 
using the nuclear structure factors. 

A Fourier inversion of the data resulted in the 
magnetization density shown in fig. 1. The negative 
magnetization at the Pt sites shows that the alloy is 
ferrimagnetic. It is also apparent that the distribu-
tion of Cr moment is spherical whereas the distri-
bution of Pt moment is rather aspherical. A small 
constant negative spin density is found between the 
sites. The maximum negative density does not oc-
cur at the Pt site, indicating the presence of some 
atomic disorder. 

The magnetic moments associated with each site 
were determined by least squares fits to the experi-
mental magnetic structure factors using the Free-
man and Watson atomic Cr spin only form factor 

by 	unpolarized 	neutron 	diffraction 	at 	AERE, 
Harwell. The long range order parameter S was 
found to be S= 1.1. As S must always be less than 
1.0 it is assumed that S= 1 in the calculation of 
the nuclear structure factors. 

The polarized neutron experiments were per-
formed at T= 4 K using the instrument D3 at 
ILL. Flipping ratios were collected for all reflec-
tions in the [110] zone out to a value of sin 0/A of 
0.92 A. The flipping ratios were corrected for 

'Physics Department, LUT, Loughborough, LEI l 3TU, Leics., 
UK. 

tinstitut Laue-Langevin, BP156X, Centre de Tri, Grenoble, 
France. 

:Clarendon Laboratory, Oxford, UK. 
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F:z 2. Experimental magnetic structure factors in pa  for (a) 
rme=ts the structure factor calculated by assigning 3.37µB  to 

ai —0.07p9. The open circles are the results of the polarized 
measurements. 

TABLE 1 

C.mparison of magnetic moments for the series of ordered 
Pt,-3d transition metal alloys with Cu3Au structure. Pt3Fe is 
amiferro magnetic. Pt3Mn and Pt3Co are ferromagnetic and 
Pt3Cr is ferrimagnetic 

Pt3Cr Pt3Mn Pt3Fe Pt3Co 
3d moment (pa) 3.37 3.64 3.3 1.64 
Pt moment (µB) —0.26 0.26 z0 0.26 
Reference this work [7] [81 [6] 

for the Cr sites and a relativistic Hartree—Fock 
Pte+ spin only form factor for the Pt sites [10, 11]. 
According to this procedure pc, = 3.37µB, µPt = 

— 0.26µ9  and a delocalized negative density of 
—0.07µB. As shown in fig. 2 the fit is good for the 
fundamental reflections but overestimates the su-
perlattice structure factors below 0.3 A-  t. The 
value of the bulk magnetization was used in the fit 
but was not a constraint. 

A moment of 3.37µB  is large for Cr. By compari-
son Pickart and Nathans, using a delta function 
form factor for Pt derived pCr = 2.33µB  and Apt = 

— 0.27µB. However, support for this large value 
may be derived from susceptibility measurements 
above Te  for which pert  = 3.6µB  [4]. The bulk 
magnetization cannot be reconciled with ferri-
magnetism without a large Cr moment. It is also 

SUPERLATTICE 
REFLECTIONS 

SINS/A (P) 

0 
	

0.5 

fundamental and (b) superlattice reflections. The full curve 
a Cr site and —0.26µB  to the Pt site with a delocalized moment 
neutron measurements, closed circles are from unpolarized 

interesting to note that large 3d moments are also 
observed in Pt3Mn, Pt3Co and Pt3Fe (table 1). A 
more detailed analysis including the effects of dis-
order, orbital contributions to the moment and 
asymmetry is proceeding. 

This work was supported by the Neutron Beam 
Research Committee of the SRC. SKB acknowl-
edges receipt of the Rutherford Scholarship of the 
Royal Society. 
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