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ABSTRACT  

This thesis describes an investigation of fast electron 

transport in solid targets using, primorily, numerical simulation. 

The role of the electric field, which drives the thermal return 

current, is stressed. 

Both. Monte-Carlo and Multi Group methods have been 

employed. In the latter total energy has been used as a dependant 

parameter. 

Simulation results which show a large inhibition of fast 

electron transport in targets containing a low density Gold layer 

are presented and a comparison is made with experimental results. 

The calculation of the electric field in quasi-neutral 

particle simulation is discussed and a number of methods are 

compared. 
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SYMBOLS  

A Vector Potential 

A Atomic Number 

ao  Bohr Radius 

B Magnetic Field 

b 	Impact Parameter 

c 	Speed of Light 

E Electric Field 

E Energy 

ED  Debye Energy 

EF  Fermi Energy 

EH  Ionization Energy of Hydrogen 

e Proton Charge 

e Electron 

f Distribution Function 

h Planck's Constant 

I Flux 

I 	Intensity 

I 	Average Ionization Energy 

J Current Density 

k 	Boltzmann's Constant 

L Scale Length 

1nA Coulomb Logarithm 

M Mass 

me  Electron Mass 

n Number Density 

ncrit Critical Density 

nuc Nuclear 

P Pressure 

q Heat Flow 



R Radius 

rF  Fermi Radius of Atom 

	

s 	Path Length 

sc Space Charge 

sth Suprathermal 

T Temperature 

t Time 

th Thermal 

✓ velocity 

vis  Ion Sound Speed 

x Position 

	

Z 	Charge 

	

z 	Position 

At Time Step 

Ax Mesh Step 

e Permittivity 

	

o

• 

	Permittivity of Free Space 

p Resistivity 

6 Angle 

A Wave Length 

AD  Debye Length 

ADeB De Broglie Wave Length 

XE  Energy Loss Mean Free Path 

X7/2  Momentum Loss Mean Free Path 

p Permeability 

	

p 	Direction Cosine 

uo  Permeability of Free Space 

v c  Collision Frequency 

v ie  Electron Ion Collision Frequency 

p Density 



a 	Conductivity 

T 	Time 

T
B 
 Energy Relaxation Time 

Tie Electron Ion Collision Time 

Flux 

cp Angle 

cp 	Potential 

S3 Angle 

w Frequency 

wce  Electron Cyclotron Frequency 

Pe 
Electron Plasma Frequency 

w Angle 

Units 

S.I. units are used unless otherwise stated. 
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CHAPTER 1  

Introduction  

In this chapter we introduce the concept of laser driven 

inertial contfinemēnt fusion. The physical processes involved in the 

absorption of the laser energy and in its coupling into the 

hydrodynamic motion of the target are discussed. 

1.1 Fusion Power  

The study of laser target interactions is motivated 

by the desire to produce power by controlled thermonuclear fusion. 

The reactions which will be used in a fusion reactor are:- 

or 

and 

D + T—~ He(3.5 MeV) + n(14.1 MeY) 

D + D----0-T(1 MeV) + P(3 MeV) 

0 + D-3He(0.8 MeV) + n(2.5: MeY) 

The ignition temperature, the temperature at which the 

radiation loss equals the rate at which power is produced by fusion 

reactions, is 4 Kell for D-T and 35 KeV for D-D. 

If a reactor with efficiency of 33% is to extract more 

energy than is needed to heat the plasma and supply the radiation 

losses then the density-confinment time product (n-r) must exceed 

1020 m-3 sec for DT 

1022 m-3 sec for DD 

This is the Lawson Criterion (1). 
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1.2 Inertial Confinement  

In inertial confinement fusion the confinement time, T, 

is determined by the thermal velocity of the OT at ignition 

temperature. For a sphere of DT radius R density p the Lawson 

criterion becomes 

p R >103 kg m-2 (1.2.1) 

where r has been replaced by R / ~Ith(ignition) 

The energy required for such a scheme would be in excess 

of 100 MJ (2) for a solid density target. This requirement on the 

energy which must be supplied can be vastly reduced if compression 

to 104 times solid DT density is achieved (3). 

Several "drivers" have been proposed for high density 

I.C.F. : lasers; electron beams; and heavy and light ion beams. The 

relative merits of these drivers is discussed by .Mead . (4) . :n what 

follows only laser driven I.C.F. will be considered, 

Ablation  

The absorption of the laser energy causes the surface of the 

target to burn away (ablation). This causes the bulk of the target to 

be accelerated by the "rocket effect". 

d 
—(M(t)V(t) ) 
dt 

 

Fig.1.1 Ablative Acceleration 
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This problem has been studied by Bruckner and Jorna (5), 

using an isothermal model in plane geometry, who give the energy of the 

accelerated target as :- 

M(t) V(t)2  _ 	M(t) 	(ln Mo/M(t) )2  

EAbs 	Mo-M(t) 
(1.2.2) 

where Mo  is the initial target mass. 

The maximum energy transfer is for Mo/M(t) ^'.5. Thus for a 

given laser energy it is more efficient to burn away a large mass of 

material with a small exhaust velocity than to burn away a small mass 

of material with a large exhaust velocity. The exhaust velocity and 

mass ablation rate have been measured and their scaling with laser 

wavelength determined (6). 

Compression  

The maximum density ratio which may be achieved in a 

spherical compression with a strong shock is, for a perfect gas with 

'r=5/3, 33 (7). This dissapointingly low figure is a result of the 

increase in the entropy of the material which is to be compressed 

by shock heating. Kidder (8) has shown that a shock free isentropic 

compression minimises the work, and hence the laser power, for a given 

compression. Such an optimised compression requires an energy 

deposition rate given by :- 

E(t) — 1/(t-T)s 	(1.2.3) 

where T is the pulse length and s ^• 2. 

Fraley (g) shows that high compression may be achieved without the 

pulse shaping implied by (1.2.3) if the DT pbllei is sn rroundedi 
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by a high density shell. He also discusses the advantage of using a 

target with a central void. This is also discribed by Kidder (1g. A 

conceptal high gain fusion target is described by Emmett (11). 

In the remainder of this chapter some of the physical 

processes relevant to laser driven I.C.F. will be discussed. 

1.3 Absorption and Scattering of Laser Light  

There are many absorption mechanisms. Inverse Bremsstrahlung 

and resonance absorption, which dominate at low and high -intensities 

respectively, will be discussed. 

Inverse Bremsstrahlung 	V 

Inverse Bremsstrahlung is the absorption of a pftoton 5y an 

electron in the presence of an ion (ie the inverse of Bremsstrahlung 

radiation ). It may be represented by.:- 

hw + e (energy E) + A} 	e (energy E+hw) + A}  

A simple expression for the absorption coefficient is (1. 
2 

K = 	v  ei 	wpe  
Kw 	. c (1 	w ) ( 2+u2  ) 

pe 

Cl .3.11 

This assumes the heated plasma stays Maxwellian and that 

vquiver 	vth• The case where the speed dependence of vel  leads to 

preferential heating of the cooler electrons and the formation of a 

sub-Maxwellian distribution is discussed by Langdon (13). It is 

ineffective as an absorption mechanism in high intensity irradiation 

of low Z targets (for 
'Las 

 Z.111). However for lower irradiance of high 

Z targets (14) and with shorter wavelenghts (15) it can be an important 
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absorption mechanism. 

Colombant and Manhēi:mer (16) show that ion accoustic 

turbulence may lead to an anomalously high collision frequency which 

will increase absorption. 

Resonance Absorption  

If EM radiation is incident on a plasma with a density 

gradient at an angle 6(#0) it will be turned round before it reaches 

critical density. If there is a component of the E field in the plane 

of incidence an evanescent wave will excite a plasma wave at critical 

density. The optimum angle for resonance absorption is given (17) by 

(27rL/X
Las)2/3 

 sin26 = 0.6 (1.3.3) 

where L is the density scale length. 

Fig.1.2 Resonance Absorption 
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The energy deposited in this wave is transfered to the electrons as the 

wave damps. 2D electromagnetic particle simulations (18,19) show that 

a small number of electrons are accelerated to high kinetic energies, 

many times the thermal energy, by this process. A-feature of this process 

is that the suprathermal electrons so produced may be characterised by 

a temperature. This has been explained by considering the random nature 

of the resonance field (20). A steady state B field (21) or rippled 

critical surface (22) can lead to resonance absorption even at normal 

incidence. 

Analysis of the angle and polarisation dependdnce of laser 

light absorption (23) at high intensities (1019-1020  Wm-2) shows 

resonance absorption to be the dominant absorption mechanism in these 

cases. 

Other absorption mechanisms are: Stimulated Compton scattering 

(24) ; the oscillating two stream instability (25) ; the parametric 

decay instability (26) and the two plasmon instability (26). 

The laser light may be backscattered by stimulated Raman (27) 

or Brillouin (28) scattering and may also be specularly reflected. 

1.4 Radiation Forces  

Radiation (ponderomotive) forces,arethe forces in a medium 

which are a consequence of the radiation field in that medium. They were 

first discussed by Landau and Lifshitz (29), and have been discussed 

in the context of R.F. confinement by Motz and Watson (30}. 

A simple model based on single particle motion in a 

sinusoidally varying E field (31) gives the time average non-linear 

force as :- 

(1.4.1) 
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In a more complete analysis (32) the total stress tensor, 

including the effect of the Maxwell stress tensor, the quiver 

pressure and the electron stress tensor in the. oscillating electron 

centre of mass frame,is calculated. This gives a force :- 

- V• PTotal (1.4.2) 

where:- 

2 	1 	2 	1 
=Total (eo E + ū B ) I- s E E +— B B ~' Pth ermal 

(1.4.3) 

(If the quiver velocity is calculated assuming the electrons are 

collisionless). Equation (1.4.2) should be used in the equation for 

the change in total, material and radiation, momentum. Using a fluid 

description €oxthe electrons the effect of collisions has been 

included (33). 

The effect of the radiation pressure on the hydrodynamics 

has been extensively studied theoretically (34,35,36). A density 

jump at critical density has been predicted (37) and has been observed 

experimentally(33). 

The production of magnetic fields (39,40) and the acceleration 

of fast ions (41) have also been discussed. 

1.5 Magnetic Fields  

Spontaneously-generated magnetic fields were first observed 

in _Laser-target interaction by Stamper et al (42). A brief review of 

the generating mechanisms will be now given. 

The thermal source term, due to non parallel-,N and 4Te—gradrēnts 
has been extensively studied with fluid simulation codes.(43,44,45 
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46,47,48 ). The equation for the rate of change of B is given by:- 

38 
_ -v~E =vA[V AB + 	nvAB] 

u Q 

- _ VNeAVTe -VA [ e- -vAB^B ] 
e  

e vA(BVTe - abAvTe ) (1.5.1) 

where the coefficients a and s , which depend on 
Wce lei , have been 

derived by Braginskii (49). As Langdon (50) has pointed out, the 

application of equations using these coefficients to situations 

where the scale lengths for the magnetic field.or the source term, 

become comparable to rel or a 
ei 

(where the coefficients are invalid), 

may lead to serious inaccuracies in the calculated magnetic field. 

Many authors have not used the full equation (1.5.1) but 

have only used :- 

3  
- =vn( ve B +  vAB ) -- vNe n vTe 

u0 	e 
(1.5.2) 

This will adequately describe the evolution of the magnetic field 

until WCe Ti a becomes comparable to unity. This, has-.teen ūsed`-b y 
Craxton and Haines (45,48 ) to show the development of "hot spots", 

due to Wce Tie 
reduction of the electron heat flux in the absorption 

region,and JAB fast ion acceleration. In this work the source term 

comes from the v n away from the target surface and the vie 

perpendicular to the laser axis (due to the laser spatial profile). 

Tan and Laing (47) present simulations which illustrate 

the effect,on the source term,of including an atomic physics package. 

Mima et al (44) discuss the vne A vie generation of magnetic fields 

at 
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in a Rayleigh-Taylor unstable plasma. The more complete equation, 

(1.5.1), has been used by Coulombant and Winsor (43) in their 

simulation. This is also used in the LASNEX laser fusion code. 

Comparison between code prediction and experiment have been used to 

investigate the role of the magnetic field in inhibiting the thermal 

heat flux (51). 

Magnetic fields may also be created by laser light absorption 

(52,53 ). Here the laser EM fields drive eddy currents in the plasma 

electrons which in turn give rise to a steady state B field. This 

effect is most important near critical density. 

Magnetic fields may also result from the suprathermal 

current (54,55).  Some sources, such as the anisotropic part of the 

electron stress tensor, are beyond the scope of fluid codes. 

Saturation of the magnetic field is usually due to advection, 

resistivity is generally ineffective. The effect of all the source 

mechanisms acting at the same time on the magnetic field and the 

resultant effect on thermal transport has been reviewed by Max(S6). 

Theoretical studies indicate maximum coronal B fields of 

the order of 102  Tesla. Such fields have been measured in laser-plane 

target interactions by Raven et al (57). Thē same authors were unable 

to detect a magnetic field ( B <10 Tesla) when the target was a small 

microballoon ( radius of balloon < radius of laser focal spot) with 

two beam illumination. 
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1.6 Thermal Transport  

Expressions for the classical heat flux in a thermal plasma 

have been derived by Spitzer (.58) and Braginskii (019). These are 

applicable when :- 

(1) Only classical collisions are important 

(2) The scale length for change in temperature satisfies :- 

e =a e/L
«1 	(1.6.1) 

As pointed out by Grad (59) the expansion in a used in (58,49) is 

asymptotic and such theories cannot be extended to give values for 

the heat flow at large values of E. 

An estimate of the maximum heat flow in a thermal plasma can 

be obtained as follows. Consider a perturbed Maxwellian distribution 

of the form:- 

f(v,u) = f(v)Maxwellian(1 t a(v)u ) (1.6.2) 

where u= v.z 

The maximum value of the heat flux carried by-such a distribution, 

subject to it being positive everywhere, is When a(v) = 1. This gives 

2kT 

gfree streaming =' nekTe ( Arme  
(1.6.3) 

If the condition J = 0 is imposed the maximum heat flux is given 

for a(v) =-1 	0<v<v1  , a(v) = 1 	vl<v<o 	, where vl  can 

be found numerically. This gives ;- 

gfree streaming (J4)  = gfree streaming • 0.54 
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In the simulation of laser target interactions (60,51) a 

large reduction of the heat flux from its classical or free streaming 

value is inferred Typically a maximum value of the heat flow of 

— 0.02 . gfre'e strearui ng is i nfereed. 

It has been suggested that this may be due to ion accoustic 

turbulence (01) or due to non-linear classical effects (62). 

Direct measurement: of the heat flux is only possible at 

much lower densities than those relevant to laser target studies,where 

ion ,acoustic turbulence has been identified as the flux limiting 
If 

mechanism (63). However the plasma'number 

NA
D  = wpe/vie  

(1.6.4) 

is much greater in this case than it is in laser irradiated targets. 

An expression for the anomalous collision frequency is 

given by Wesson et al (64). 

nTe  

0.26 W 	wpe /Veff 
(1.6.5) 

Where W is the energy density of electrostatic turbulence. The ratio 

of the classical and anomalous collision frequencies is :- 

veff - N  3 0.26 W 

vie 	
D 
 nTe  

(1.6.6) 

From which it can be seen that turbulence will not be so important 

for low NA p 

The 1/(1 f (wce Ti
e)2) reduction due to magnetic fields may 

also reduce the heat flow (45 ). 
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1.7 Suprathermal Electrons  

As we have seenlsome absorption mechanisms lead to the 

production of electrons with an energy many times that of the thermal 

electrons which constitute the bulk of the plasma .These electrons, 

variously called hot, fast or suprathermal electrons,.play a 

dominant role in high intensity laser target interactions. 

The mean free path of these electrons is far greater than 

that of the thermal electrons.. They may thus deposit energy ahead 

of the thermal front and shock wave,so degrading the compression. 

Also they may lose a large proportion of their energy in the time 

dependant coronal electric field, this energy goes into fast ion 

acceleration. The acceleration of a small number of ions to very 

large velocities is an inefficient way to transfer momentum to the 

core. 

Fig. 1.3 	illustrates the deletereous effect of suprathermal 

electrons. 

SUPRATHERMALS DOMINATE 

LASER LIGHT] 

I SUPRATHERMAL ELECTRONS' 

FAST IONS 
	

ICORE PREHEAT 

INEFFICIENT 
COMPRESSION  

NO SUPRATHERMALS 

LASER ~LIGHTJ 

THERMAL ELECTRONSI 

IEFFICIENT 
COMPRESSION  

Fig.1.3 
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The experimental evidence for the existence of suprathermal 

electrons comes from : X-radiation spectra (65), the fast ion spectrum 

(66) and from direct measurement of target preheat (67 ) . 

The form of the source of suprathermal electrons has been 

investigated by comparison between experiment and code prediction 

(51,60) . A "preheating source" has been inferred by Hares, et al (67) . 

Relation to Target Performance  

If 
Rsth/AR 

 iil then the specific energy deposition will be 

almost independent of position. The fuel is compressed as the glass 

"pusher" explodes inwards and outwards. The behaviour of such targets 

is discussed by Ahlborn and Key (68). 

This type of target can produce significant them nuclear 

burn (11), but high compression is not possible because the fuel 

is preheated by the suprathermal electrons and will be shock heated 

by the compression. 

Quasi Ablative. Targets  

If Rsth/AR < 1 then the specific energy deposition will be 

higher towards the outside of the shell. 

Fig.1.4 Quasi Ablative Target 

in (density) —1  _ 

specific 
deposition 

position 
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This gives rise to a pressure gradient which may accelerate 

the shell. This is discussed by Key (69). Experiments using glass 

microballoons with thick plastic coatings have been described (70,71). 

1.8 Fast Ions  

A feature of experiments using high intensity irradiation 

is that a large fraction of the absorbed energy manifests itself in 

a Wmahl number of fast ions (72,.73). 

Various mechanisms have been proposed for the production of 

these fast ions, including: the ponderomotive force (41. ), J\B acceleration 

(48), the presence of suprathermal electrons (66,74) and , the inhibition 

of the thermal energy flux (75,76). The last two will now be discussed. 

The ion velocity spectrum can not be explained oti the. basis. of a 

single_ temperature..i.sōtherral .rarefaction (77) .Several authors (78,79,66) 

have proposed that a two temperature isothermal rarefaction model may 

explain fast ion production and Wickens et al (66) compare experimental 

results of the ion spectrum and results from a slab geometry self 

similar solution. Fast ion spectra have also been modelled by Bruckner 

and co-workers (74,30) and Shvarts et al (81) . The suprathermal electrons 

may lose energy either collisionally in the core or in the time 

dependent E field of the corona (essential'ly PdY work). If an idealised 

situation is considered in which the suprathermal electrons reflect off 

a moving perfectly reflecting "sheath" and pass through the core 

between reflections then the energy losses to the ion expansion and to 

collisions in-the core scale as: 

AEfast ions 	Vsheath 

E 	 Y~~ 
art 



E 	a E 	(core) 	Ye 
sth 	sth 

	 ~ _/ 
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acollisions 	
Size of core 	1 

Clearly loss to ion expansion is more important for the higher energy 

suprathermals. 

Inhibited thermal transport increases the time a heated 

electron spends in the corona, before it shares its energy with the mass 

of the target,and so increases the energy it loses to Pd1 work in 

the corona (75). Hydrodynamic simulation codes greatly underestimate 

the energy transfered to fast ions if flux inhibition and suprathermal 

electrons are omitted. 

}.9 Fluid Instabilities  

If the high densities needed in I.C.F. schemes are to be achieved then 

it is important that fluid instabilities do not degrade the compression. 

The Rayleigh-Taylor instability and Convective (Bernard) instability 

have received much attention (82,83,84) and have been revfeked=:ty Motz(12 ). 

Analytic work is restricted by the idealised zero order solutions 

which are used. Perturbation solutions which treat all modes independently 

have been "piggy backed" on 1-0 hydro codes (84) and full solutions of 

the 2-0 fluid equations have been reported ( 83 ). The importance of 

thermal conduction and magnetic fields is.,' still not well understood. 

Experimental evidence ( 85 ) suggests that fluid instabilities may degrade 

microballoon implosions with an aspect ratio (balloon radius/shell 

thickness)of greater than 10. (Targets with large aspect ratios, if stable 

have a higher efficiency). 
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1.10 Radiation Transport  

The transfer of energy by radiation can play an important role 

in the hydrodynamic motion and energy balance of laser irradiated 

targets. A large fraction of the absorbed energy may be lost in 

X-radiation from the target (60) and hard X-radiation may preheat the 

core. (86) . 

The 3 Temperature (ion electron and radiation) approximation 

has been used in fluid codes ( 87 ); however this model is not valid 

for most cases of interest. Multi Group diffusion radiation transport 

has been widely used in fluid simulations (88,89) and Monte Carlo 

methods (87) have also been used. 

Sn  methods are widely used in more detailed analysis 

of the radiation emitted from targets, without coupling with the 

hydrodynamics(ie in postprocessors) (90). 
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Chapter 2  

Introduction  

In this chapter the theory of the deflection and energy loss 

of suprathermal electrons in a solid and a plasma is described. Simple 

formulae for the deflection and energy loss in a partially ionized 

solid are given and the relative importance of various physical processes 

is discussed. 

Some models for suprathermal electron transport in solid 

targets are then introduced. These include the Monte Carlo method and 

the Multi Group Diffusion method which are used in chapters 4,5 and 6. 
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2.1 Energy Loss of Suprathermal Electrons  

Collisional Energy Loss in a Solid  

The stopping power of a material due to classical collisions,is 

defined as:- 

dE 
(SP) 

class d(ps) )class 
(2.1.1) 

Where E = electron energy, p = material density and s = path lengkh 
For non relativistic electrons the appropriate formula is (gi):- 

d E Zn•e4  
1 	 1n(2mevē/I) 

4Tr:eōee 

(2.1.2) 
d s 

Stopping powers have been tabulated by Brown (92) and electron 

ranges by Berger and Seltzer 	). 

The average ionization energy may be, very crudely, approximated 

by :- 

(I/Z) = 11 eV (2.T.3) 

Fig.2.1 I/Z vs Z 

0 50 100 



dE 
- 1  ln E 

d(ps))class 	E 	ED  
(2.1.4) 
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There are several inaccuracies J omissions in the theory 

which gives equation (2.1.2) 

(1) The shell correction: This reduces the stopping power if the electrons 

energy is less than some of the ionization potentials of the atom. 

(2) Straggling: Energy loss is not a determined function of ps, there is 

some randomness. 

(3) For electron energies of over 1 M.eV Bremsstrahlung becomes an 

important loss machanism. 

(4) The density effect: This is a reduction of the energy loss due to the 

polarisation of the medium. It is important for energies over 100 KO. 

(5) A correction to the continuous slowing down approximation which 

allows for the discrete nature of collisional energy loss (94 ). 

Collisional Energy Loss in a Plasma  

The collisional energy loss in a plasma has been given 

by Pines and Bohm (95 ). It is :- 

Where ED,  the Debye energyis  e2/(4c00), 

This may be compared with the energy loss to collective oscillations of 

the plasma (an effect analogous to Cherenkov radiation ) which is given 

by:- 

dE 	1 

)coll 	- — ln(1 
f 2E ) 

d(ps) 	E 	E
th  

Where 	E
th = imeVth  

(2.1.5) 

The ratio of (2.1.5) to (2.1.4) gives :- 



d(ps))class 	ln 
dE 

dE 

ps )coll 	
ln 

(2.1.6) 
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Energy Loss in a Partially Ionized Medium  

The energy loss in a partially ionized medium is the sum of 

the energy losses to the bound and free electrons. This is given by:- 

d E nie
4  

dx 4ir 2 mev2((Znuc-Zion
)1n(2me /I) f 

2ra v2  
+ Zion(la(XD/XDeB)+i]n(1+  e e  ))) 

3 
2 th 

(2.1.7) 
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2.2 Deflection of Suprathermal Electrons  

Deflection in a solid  

As a suprathermal electron passes through a solid it experiences 

many collisions most of which result in small deflections. Typically 105 

collisions will occur in the course of slowing down. Several Multiple 

Scatter models have been developed to describe the combined effect of many 

collisions (96 ,97 ,98 ). A simple model which neglects the effect 

of single large angle collisions and energy loss is given by Jackson(g9 ). 

For electrons which are not so energetic that their De Broglie wavelength 

is smaller than the atomic nucleus the multiple scatter distribution may 

be approximated by :- 

P(eT) et dot — or exp(-e/2 <0 ) ) (2.2.1) 

where :- 

<0> _ 21. Z
nuc(Znuc } 1) e4ni  

ln~ 1.1 rF ) 
L T  

(4REO )2 E2 	A DeB 

(2.2.2) 

The cut-off distance 1.1 rF is taken from Goldsmit and Saunderson 

(96 )• 0T is the angle between the direction of motion of the particle 

before and after travelling a distance, L. If instead we want the 

probability distribution for the projection of 0 T onto a plane, ep, 

this is given by :- 

P( Op) N exp(- Op / 2 <O P) ) 
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Equations (2.2.1) to (2.2.4) are valid for small <e l.) and for 0 

up to a few times 	<02> 	. 
T 

Deflection in a Plasma  

The deflection of a suprathermal electron in a plasma is 

discussed by Spitzer (100). In this case the electron may be interacting 

with many other particles at a given time. Thus the collisions are not 

true binary collisions. However since the deflections:- are_smal.l the 

collisions may be treated as if they were binary encounters. (Thts is 

discussed at length by Shkarofsky et al (101)). 

The multiple scatter distributions are given by (2.2.1) and 

(2.2.3) with 

02 
=  2T 

Z
ion(Zion 

4.1)e2
ni ln 

b~pax 	
L 	2.2.5 T 	 ( 	( 	1 

In equations (2.2.2) and (2.2.5) the Z(Z f 1) accounts for scattering 

ions./ nuclei (Z2) and electrons (Z) per ion j nucleus. bm 	and bmin 

in (2.2.5) are given by :- 

b
max 
 = AD 

bmin = ADeB 
	where XDeB > Landau parameter 

for suprathermal energies of interest. 

Deflection in a Partially Ionized Medium  

A simple model for the screening of the charge of the nucleus 

is as follows. Up to a radius R
ion 

the charge of the nucleus is 

screened by the bound electrons. From R
ion 

to A D the charge of the ion 

(4 we-b)2 E2 	bmin 



Fig.2.2 Screened Potential of Nucleus 

(Znuc Zion)  exp -r/Rion) 
+ 

ZioneXP(-r/XDP 
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is Debye shielded by the plasma electrons. Thus the potential due to 

the nucleus as a function of distance would be approximately as shown 

below. 

r 

A crude approximation to the form factor is : 

Fig.2.3 Approximate Form Factor 

1.0 

Z  ION 'ZNU 

RION  

This suggests the following approach.Treat the collisions 

with impact parameter b in the range bmin < b < R
ion 

 as if the 

scattered electron "saw" the charge of the nucleus, and those with 

Rion < b< x  p as if it "saw" the ionic charge. Such an approach gives:- 

	

2 	e2.,n
i L 	 Rion 	2 	An 

	

9T 	- 	( Zn- 	(Znuc f 1) 
1n( 	)t Zion 1n( 	)) 

2 (4 Teo)2  E2 	X  DeB 	Rion 

(2.2.6) 

-A- 
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This has the correct limits of (2.2.2) and (2.2.5) as Zion~  0  
and Zion  Znuc '  
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2.3 Spencer's Range Calculations  

Lewis (102) derived an equation for electron penetration in 

an infinite homogeneous medium which can, in the steady state, Be 

written as follows:- 

cose 
a

I =fdn'Q(r,e)N I(r, ,z) - I(r,e,z) 	+(2w)-1 6(z)s(r-ro)6(cose-1) 

(2.3.1) 

Here I is the electron flux, N the density of atoms, 

v(r,e) is the collision cross section- and z the distance from the 

source. r is the residual range of the electrons and 0 is the angle 

the electron's velocity vector makes with the z-axis_„ and o the 

scattering angle. The source is at z = 0 with e = 0 and with residual 

range ro. The use of the continuous slowing down approximation allows 

the energy loss, or alternatively the change in residual range,to be 

reexpressed. In this case the change of I due to energy loss, 31`) 
CSD 

3s 
(where s is the path length ) is :- 

a 	I(r) = 3 	dr = aI (-1) 
as 	ar ds ar 

(2.3.21 

Using t = (r/r0) , x = (z/ro) , s(t,e) = roNa(r,e) 	and 

I(r,e,z) dr = I(t, qx) dt 	Spencer (103) derived :- 

aI + cose āI = fdst' S(t,ē)(I(t,e',x) - I(t,e,x))+. 
at 	ax 

+(270-1s(x)s(t-1)6(cos o-1) 	(2.3.3) 

-1<x<+1 	0 ~t~ l 
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This was solved (103) by first expanding R and S in spherical.  

harmonics and substituting into equation (2.2.3). Spatial moments of 

the resulting set of coupled partial differential equations are then 

taken. This yields a set of ordinary differential equations which may 

be solved. 

Results of Spencer's calculations have been compared with 

experiments, see for example Zerby and Keller (104), and found to fie 

in good agreement. 
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2.4 Monte Carlo Calculations  

An excellent account of the application of Monte Carlo 

methods (methods involving random sampling) to the problem of charged 

particle transport has been given by Berger (105).  The purpose of 

this section is to introduce the methods used in Monte Carlo electron 

transport. Emphasis will be given to the approach used in chapters 4 and 6 

of this thesis. 

Detailed Case Histories  

It would be possible to describe the trajectory of an 

electron in a solid by the quantities (E
0,a0,r0; E1 , 1 ,r1; ... 

where En,pn,rn  are the energy, direction and position after the nth  

binary collision. Such trajectories could be generated by random sampling. 

However, because of the very large number of collisions made by an electron 

in the course of slowing down, this approach is very expensive. 

Condensed Case Histories  

In this approach the detailed description of the particle's 

trajectory is abandoned. The trajectory is split up into a number of 

steps, each of which contains many collisions. It may be described by:- 

0 S1  S2  .... 	Sn  

Eo  El  E2  .... 	En  

no  l Q2 
.... n  

ro  rl  r2  .... 	rn  

where S is the distance travelled by the electrons and En,pn,rn  the 

energy,direction and position after a distance Sn  has been travelled. 

The relation between En  and E
n+1 

and between an  and an+1  are 



36 

determined by the appropriate multiple scattering theories. 

There=are two competing factors influencing the choice of 

the distance between artificial scattering events ( Sm./  - Sn  ). In 

order to minimise the length of the calculation the minimum number of 

steps must be used. On the other hand the accuracy of the models for 

energy loss and deflection will be better for small path lengths. This 

is due to the following:=_ _ 

(1) Although the correlation between deflection and energy loss is not 

accounted for in a single step it will be, to some extent, over many 

steps. 

(2) Some multiple scatter theories assume zero energy loss. The energy 

loss will be smaller if smaller steps are used. 

(3) In a multi-material target more of the steps will lie wholly within 

a single material. Errors associated with boundaries will be reduced. 

Choice of Pathlength  

The choice of logarithmic spacing, ie choosing the pathlength 

so that the energy is reduced by a constant factor, k , is popular 

because the magnitude of the width of the multiple scattering distribution 

will not change in the course of the calculation. If this is required 

AS ( = Sn+1 - Sn') is prescribed by :- 

1 
l  fSn+1 dE 

ds = k 
En 	ds 

Sn  

(2.4.1) 

or aprroximately ( if ? dE  AS is small) 
E ds 

1 1 dE 

E dS n 	n  
AS = k 	 (2.4.21 



Sn+1  

AE = f 	dE  ds 
ds Sn  

(2.4.3) 
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If material interfaces need careful treatment the pathlength 

maybe reduced when the trajectory comes near a boundary. 

Energy Loss  

The simplest treatment of energy loss is to use the continuous 

slowing down (C.S.D) approximation. This gives :- 

where J. dE 
	

is the stopping power of the material. 
p ds 

In fact the energy loss by the electrons will not be determined 

completely by the pathlength but will be distributed about the value 

given by (2.4.3). This is due to the random nature of the collisions. 

An expression for the distribution of energy losses, for small aE/E, Fias 

been given by Landau (106 )1  for the case where the energy loss is due to 

ionizationr and by Blunck and Westphal (107) for the case wāen 

Bremsstrahlung must also be included. 

Angular Deflection  

Kinematic Relations  

Fig.2.4 
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The effect of scattering from the pre-collision direction n 

to the post-collision direction n' may be described by two angles. 0; the 

angle between n and n' 	and 0; the angle n'- n makes with the 

n n(n nz) direction. The new polar angle w' is given by:- 

= arc cos(coswcose + cosoinwsine) 
	

(2.4.4) 

An alternative description valid for small deflections (small 

rotations approximately compute) is to consider the deflection (n —►n') 

to be due to succesive rotations about the znn and nn(nnz) - axes. 

After the rotation, 01 , about the znn axis the new value of 

e ,e' is given by:- 

e' = e + ~l (2.4.5) 

After the rotation, 
02 

, about n' (znn) the new value of 

e ,e" , is given by :- 

e" = arc cos(cos02cose') 	arc cos(cos02cos(e + 0l)) 	(2.4.6) 



39 

Equations (2.4.5) and (2.4.6) are less time consuming to evaluate 

,than equation (2.4.4) and for this reason were used in the programme 

described in chapter 4. 

Choice of Scattering Angles  

The angles (01,02) or (0,0) are picked at random from an 

appropriate distribution of scattered angles, such as those described 

in section 2.2. If equation (2.4.6) is used both angles must be small 

(less than 10°  say). 
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2.5 Multi Group Diffusion  

Although the Diffusion, or P1 , approximation is one of a set 

of approximations, the PN  set, it will be treated separately because 

of its comparative simplicity and its wide application to electron 

transport in Laser fusion target studies. 

ITf1the P1  approximation the expansion of the angular dependence 

of the distribution, f , in Legendre polynomials is truncated after- the 

first two terms. Thus, in 1-D, the angular dependence will be approximated. 

by:- 

f(x,v,t) = A(x,v,t) + u B(x,v,t) 	(2.5.1) 

The coefficients, A and B, are related to the zeroth and first ' 

moments of f by :- 

and 

Thus:- 

+1 
N(x,v,t) = 2ar f (A +B) v du= 471A 

-1 

+1 
t(x,v,t) = 27r % (A + u B) u v du - 	vB 

J 	 3 
-1 

f=  1  N + 3  . 
4w 	4w v 

(2.5.2a) 

(2.5.2b) 

(2.5.3) 

-The transport equation for suprathermal electrons scattering 

and thermalising on a background thermal plasma with a Fokker Plank 

collision term has been given by Delēttrez and Goldman (108).Tfte 

form of the transport equation in various 1-D geometries is given in 

Appendix 3. For 1-0 slab it is :- 
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af 	 af 	f 	1 	2) f + v 	 +a( ~ + 	
= 

dt ax )v v ~u 

(ne + ZZni ) ln th a ( (l _ u 2) af ) + rfi_ a (1nnA 
sth f) 

	

2 	
;11 
	au 	VV 

in a stationary fluid (no PdV term) 	(2.5.4) 

Two equations for the two unknowns A and B (alternatively 

N and ')are obtained by taking the first two moments of (2.5.4) 

with f given by (2.5.3). These give :- 

+ 
	- 	a (EJ) - a (v2n) 

at 	ax 	mev av 	
\-2— 
 av 

and 

Kf 
- 	ō (n 

ln!sth) _ )n)source v Dv at (2.5.51 

1 aJ 	v a n _ 	(Env2) _ 	(v2~J
) 

v at 	3 ax 'e v av 	v av 	v- 

KF 
—~ a (lnA sth J ) + 

2 _ 
lnA sth J 	 source 	

~2.5.6) 
v av 	v 	v 	v 	a t 

Where only p is integrated over 

The truncation of the infinite hierarchy of moment equations 

at (2.5.6), it does not involve the stress tensor, is due to the 

truncation of the Legendre polynomial expansion of the distribution 

function (2.5.4). 

The approximation (2.5.4) is valid if the distribution function 

is nearly isotropic. This will be the case if AT
/2 

is less than the 
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scale length for the suprathermal density. 

The numerical solution of equations (2.5.5) and (2.5.6) 

would present very great difficulties. Before considering what further 

simplifications can be made it is useful to discuss the numerical 

approach to the solution of the diffusion equations which is most 

convenient. 

Numerical Solution of Simple Multi Group Diffusion Equations  

Consider the etations:- 

ōn ~, a~ _ c(an)_ an) 
T ax av at s (2.5.7) 

= -K(v,x)Vn 	 (2.5.8) 

where c 11) is a slowing down term. If the number (flux) of 

electrons in the speed range vg to vg+l is denoted ng 	g )~ 

and one sided differencing is used for the slowing down term,the 

difference equations are :- 

an an 	 an 
~+ ~(-K~) - a n + a n  --~ 
r~t 	ax 	ax 	9 9 	g+1 g+l at )s (2.5.9) 

Equation (2.5.9) may be solved for one group at a time, 

starting with the highest speed group. The equation for a group is of 

the form :- 

-3 	an 
--~ + —(-K —a) - a

g 
n
g 

= source 
at ~x āx  

(2.5.10) 



H 

1 1 1 	 
H 

H 

H 
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where the source now includes the effect of downscatter from the 

immediately higher velocity group. Implicit differencing of equation 

(2.5.10), using the usual conservative 3 point differencing of the 

diffusion term,gives a stable and positive (for positive sources and 

initial conditions) algorithm. 

Thus the solution of equations (2.5.10) involves solving 

one tridiagonal system of equations for each group. This may be 

accomplished very efficiently. Since the coefficients K and a, 
do not depend on ng  the equation is linear and no iteration is 

required. If a flux limit (section 3.6) is used K depends on .ng  

and this is no longer the case. 

Approach to the Solution of the Multi Group Diffusion Equations  

. The simplicity and efficiency of the scheme described above 

is very attractive. A common approach to the problems involved in 

solving equations (2.5.5) and (2.5.6) is to make approximations 

which allow this method of solution to be used. If this is to be done, 

the coupling between the groups and spatial zones must be as illustrated 

below:- 

Fig.2.6 Coupling in a Simple Diffusion Model 

T 

X 
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Such coupling clearly does not allow J.E heating of the 

suprathermals or the treatment of a term with mixed derivatives. 

The approach to the solution of - the Multi Speed Group 

equations adopted by three authors (108, ,109, 110 ) is described 

in section 3.4. 	 - 

The inclusion of large energy transfer collisions in a 

Multi Group code is discussed by Greenspan and Shvarts (111)• 
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2.6 The PN Method 

The PN method has been described by Richtmyer and Morton 

(112) and Case and Zweifel (113). It was much used in early work 

on neutron transport but has largely been superceded by the SN 

method (except for the P1 ,(diffusion). method). 

Description of the Method  

The angular dependence of the distribution function may 

be expressed exactly, in one spatial dimension, as:- 

f(x,j„t) = I] (2L+1)1 T (x,t)P (u ) 	 (2.6.1) 

(..4) 

where PN are Legendre polynomials. 

In the PN method this exact description is replaced by 

the approximation:- 

1,4 
f(x,u,t) = E (21.+1

)1 lijx,t)P GI) 

L~ 

(2.6.2) 

N equations for the evolution of the coefficients, 'L(x,t),are then 

required. This is achieved in the following manner. The scattering 

kernel is expanded in Legendre polynomials so that the transport 

equation is of the form :- 

1 	I. 57, a[+1) TL(x,t)Pi. (u) +,.,  a tC2 +1 )1 T _(x,t)PL 611= 
V at Lao 	 ax Io N 

*I 

_- Q E (2L+1) 

c-o 

itu(x,t)PL(u) + 

t 2,f 	du 
[KlÏLm(li1  Yi.m( fc2 +1) 	''L.Cx,41PL % 1 	. 

-I Lo 

12(2 +1)1 T (x,t)P
L 

(1.1 ') (2.6.3) 

Lao 
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The term in the square brackets is an approximation to the scattering 

kernel. The YLm  are associated Legendre polynomials . Multiplication 

of equation (2.6.3) by Pk(u ), k=0, ....L.., and integration over solid 
+I 

angle , 2xfdi gives N 41 coupled differential equations for the 

N+1 unknowns in equation (2.6.2).These may be solved to give the time 

evolution of f(x c,t). This method has been used by Kershaw (114) 

and Yabe et al (115) in suprathermal transport studies But without_ 

including E field effects. 
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2.7 The SN Method 

The SN ,or discrete ordinate, method is the most widely 

used method in numerical neutron transport simulation. It was developed 

at Los Alamos by Carlson and co-workers (116). It has recently 

been applied to electron transport in a solid (117). 

Description of the Method  

Consider the 1-D transport equation :- 

1 
+u aI(v.,i.0 ,t) = -aUGI Cv 'u ,t) v at 	az 

+ fQIG (u -It')(I(v , iu ,t)1(v , (2.7.1) 

Here aUG and aIG are the out of group and in group cross sections 

respectively. I is the flux and g= cose = i.v . 

In the discrete SN approximation the u dependence of the 

flux is approximated by :- 

N 

I (v, u) = 	I (v, u i )wi 	11i) 
i=1 

(2.7.2) 

where the w. are the weights. 

Substitution in equation (2.7.1) gives N equations of 

the form:- 

1--  	I (xv   (x,v , u i,t) 	
u i 	,, u i ,t) } 	KIG(w~ I (x,v, u .9t) 

v t 	
ā

x 
	-  

-KII (x,v, i,t) - KUG I (x,v) u i ' I(x,vui t)s 	(2.7.3) 
.=at  

Where the subscripts IG and UG again refer to in and out of group 

scattering. 	(isotropic scattering has been assumed) 



Q--~,~• iwi 
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There is no unique procedure for determining the level 

weights, wi, and level cosines, p i. However in order that the 

quadrature formulae give results analogous to analytic integration the 

following relations are usually satisfied. 

+1 
i f  

ld u = 1 	(normalisation) 
2'. 
-1 

1 +1 

udu= 0 
2 

-1 

+1 1 	2 	1 	1 	2 
u d u =— 	 — 	u i wi 

2 -1 	3 	3 ; 

An example is the S2 set 

wl = w2 = 0.5 

111 = - u 2 = 3-1 

(2.7.4a) 

(2.7.4b) 

(2.7.4c) 

(2.7.5a) 

(2.7.5b) 

In a geometry other than Cartesian the fluxes in different 

directions will be coupled by streaming as well as by collisions. This 

is referred to as angular redistribution. 

An alternative approach, described by Case and Zwef.fel 

(118),. is to split the interval -1 <_ u <_ +1 into N parts given by 

u 1S ui . I(x,v, p,t) is approximated by the linear interpolation 

formula :- 

I(x,v,j, ,t) _ 
1 	_ 

(( u- u i-1 ) I(x,v, u i-1,t) + _  
u i u'i-1 

+ (ui- u) I(x,v, uit)) 	(2.7.6) 
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Integration of the transport equation over each interval 

gives N equations for the N+1 unknowns ( I(x,v, ui,t). i=1,...N ). 

A further equation, usually the transport equation for u 	 is is needed. 

In this case quadrature is achieved with the trapezoidal rule. Provided 

p i  equals zero is not used there are N boundary conditions. 

Comparatively little work has been done with SN  methods in 

charged particle transport. Antal and Lee (119) have used SN  

methods in a-particle slowing down problems. Recently (117) electron 

penetration has been treated using the SN method. Electron transport 

simulation is made more difficult than neutron transport simulation 

because of the very anisotropic scattering cross sections. To the 

knowledge of the author the effect of deflection due to steady state 

E fields has: not been included in any SN  model. 
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CHAPTER 3  

Introduction  

In this chapter the models used to describe suprathermal 

electron transport in laser irradiated targets are reviewed. This 

includes both the numerical models used in target simulation codes and 

simpler models which are used to explain coronal phenomena. Aminor 

extension, by the author, of some work by Shkarofsky is presented 

as section 3.8. 
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3.1 The Suprathermal Approximation  

The problems associated with calculating the evolution of an 

arbitrary electron distribution are formidable. Two familiar -- 

simplifications are a thermal plasma; where by truncation of the moment 

expansion of the distribution function,fluid equations and appropriate 

transport coefficients may be used to advance the system in time,and 

a plasma in which electron-electron collisions are ignored; a Lorentz 

gas. 

The nature of the "suprathermal approximation" is as follows. 

The electrons are divided into two classes, the bulk of the electrons 

which can be described by the equations for a thermal plasma and a 

small number of suprathermal electrons which, because of their large 

kinetic energy, will not thermalise on the time or length scales . 

relevant to the thermal plasma. These electrons are assumed not to 

interact with each other but only with the thermal electrons and ions. 

Thus the i negwatl}ic y nstg<  nth must hold. The suprathermal electron 

will lose energy- to the thermal plasma and, eventually, thermalise. 

In this approximation the electrons are either part of a 

thermal class,which has energy and density sources and sinks from 

and to the suprathermals,or a suprathermal class for which the collision 

term is linear: in the absence of E and B field effects the 

suprathermals are. described by linear equations. This represents a 

great simplification of the more general problem of non- thermal 

electron transport. 

The most sweeping approximation involves ignoring the densi=ty 

and current associated with the suprath e;rmal el ēctrors, ān d any E afw 

field effects on them,and retaining only the energy deposition into 

the thermal plasma. 

N 



52 

3.2 Core and Corona  

The idealised state of affairs described in the previous 

section will not apply everywhere in the target. In the corona the 

suprathermal density may be comparable to or exceed the density of 

thermal electrons. Collisions with the thermal particles can become 

relatively unimportant and the E field can dominate the motion of the 

suprathermal electrons. 

These differences will clearly have a great influence on 

the way in which suprathermal transport in the corona and in the 

higher density core are treated. 

The approximations tkck o;re_common . JS caare :- 

In  the Core  

1 	nsth« nth  

2 	
7rI2
u L 	(Diffusive) 

3 	E and B fields can be ignored 

In the Corona  

X E» Length of corona 

T/2>> Length of corona 

c,ollisionless 

suprathermal electron transit time << characteristic time for 

hydrodynamic motion 

L» X  D (Tsth)  

In the core the electron density of the > solid density 

material will greatly exceed the suprathermal density, which will 

be comparable to or less than critical density. Ionization of the 

target will soon give 
nth'>nsth  . Thus in the core condition (1) 

will hold in all cases of interest. 

A suprathermal electron will have X E  >L. In a high Z plasma 

X  E/ X  7/2=Z so condition (2) may hold. If it does a great simplification 

4 

5 

6 

7 

8 



E  _ 0 Psth  

(-ensth) 1 + 

1 
	3/2 ) 
nthTth  

T3/2 nsthTsth 

 

and 
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results since the diffusion approximation is valid. 

Next consider condition (3). To see if E fields are 

negligible we use 	simple Ohm's Laws for the thermals and suprathermal 

suprathermals. 

consider a pair of equations:- 

nsth  Tsth 3/2 
Jsth-  (VPsth/(-ensth) + E  ) ath 	( 	) 

ni 	
Tth 

Jth = E
6 nth  

If Jsth + Jth  = 0 then:- 

n. 
i 

J 	_ 0  Psth 6nst(  Tsth)3/2 (1  -  
sth -  

-ensth ni Tth  

  

1 

 

n T3/2 	
(3.2.1) 

th th  1 + 

  

    

n T3/2 
sth sth 

If (nthTth2)  / (nsthT3/2)»1 then (3.2.1) becomes approximately :- 

Jsth
-0 Psth 6 (Tsth)3/2 

-e 	ni Tth  

In which case the effect of the E field is negligible. 

A criterion for ignoring the effect of magnetic fields on the 

suprathermal transport is that :- 
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( 71/2)sth « 
1 

reL 

(3.2.2) 

The inclusion of the B field greatly complicates the 

calculation of quasineutral E field effects. The condition J = 0 

is replaced by the condition V.J = 0 for B ¢ 0, 

If (1), (2) ,and (3) all hold then the simulation of 

suprathermal transport is comparatively easy. 

The quantity of matter in the corona is usually "small" 

so the energy loss by the suprathermal electrons in crossing the corona 

once will be small. Thus for electrons which pass through both the core 

and the corona the collisional energy loss in the core will vastly 

exceed that in the corona. Condition (4) will generally hold in the 

corona. The modelling of collisional energy loss is greatly complicated 

if n
sth 	

nth since suprathermal-suprathermal collisions will be 

important. 

Momentum transfer due to collisions may be important in a 

high Z corona. In a low Z corona condition (5) will hold. 

The assumption that the suprathermal electrons are 

collisionless in the coronar,condition (6), is sometimes used. It is 

more restrictive than conditions (4) and (5) which require collisions to 

be a "small" term. 

Since v
sth %'vis 

 the changes caused by hydrodynamic motion in 

the course of a suprathermal electron transit. time will be small. 

Condition (7) allows the time dependence of the state of the corona 

to be included perturbatively. 

Finally condition (8) allows quasineutrality to be used. It is 

not always valid. 
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3.3 Fluid Models for Suprathermal Electrons  

A fluid model for the suprathermal electrons -. is_ a crude 

approximation. Since suprathermal-suprathermal collisions are 

unimportant compared to suprathermal-thermal collisions,the suprathermals 

will not become Maxwellian. Moreover even if the suprathermals are 

created with a Maxwe•llian distribution they will not stay that way. 

Collisions do not form a basis for truncating the moment expansion 

of the distribution function. The disparity between the timescales 

for the suprathermal electron and hydrodynamic motion may be used to 

justify truncating the moment expansion. Although there is no physical 

basis for it it is often found convenient to assign a temperature to 

the suprathermals. 

Basis for Truncation of the Moment Expansion  

It is instructive to consider the one dimensional 

Vlasov-Poisson system:- 

af + v af +a af
=0 

at 	ax 	Dv 

e Do(x,t) 
a = .— 	 

me  a x 

D2,0  

cop  

(3.3.1) 

Following Bernstein et al (12O)introduce the energy, 

1 
— mv. - ecp as an independent coordinate. Equation (3.3.1) becomes 
2 

Df a af -Df 
 -e +v 	=0 

at 	at aE 	ax 
(3.3.2) 
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If there is no time dependence (- = 0) the solution to 
t 

(3.3.2) is f = f(e). 

We may write:- 

f = f+(e) + f_(e) 

Where the subscript denotes the direction of motion. 

The electron distribution may be divided into two parts. One 

with energy less than 
ecrit 

which is trapped and the other with 

energy greater than this which is not trapped by the electrostatic 

potential. 

Fig.3.1 

free particles 

trapped 
particles 

r 

If the electrons are trapped in a time independent potential 

then f = f_ and all odd moments of the distribution function will 

be zero. Valeo and Bernstein (7.5) expand the distribution function 

f = fo + af1 +a 2f2 +.... 

where x is a formal expansion parameter of order ~T
S thJThydro' 

a ~ 
v 	is zeroth order in x , 	and a 

	
are first order 

ax 	 Dt 	m at De 
in a. 



Thus to zeroth order :- 

v 	f° = 0 
ax 

(3.3.3) 
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and to first order :- 

	

efo 
e D efo 	Df

1 +— 	+•V- 	= 0 	 (3.3.4) 

	

at m at De 	ax 

From (3.3.3) fo = fo(E;t). (3.3.4) then gives when integrated 

round a closed orbit with a and t held constant,: 

fo dx + c fo dx e a = 0 
;)t- v a~ v m at 

(3.3.5) 

since fl must be single valued. 

It can be shown by substitution that a function fo(J), J= .v dx 

is a solution to (3.3.5). Using this (3.3.4) may be integrated 

to give 

f l = a f° (y )— f dx: V- (f )— f dx v]  
aJ 	v 	v t 

(3.3.61 

Using 
dJ aJ a E -D J ax DJ ̂at 

+ 	+ 	= 
dv 	.DE aV 	ax •Dv 	"t "Dv 

aJ 
= my 

they derived first order ( in x) expressions for the moments of the 

distribution functions. 



58 

u = fdJ (āJ)-1 (f+ - f_) 

q = -3nTu + f dv v3 f1 

Where nT = m f dv v2 fo 

Thus both u and q are first order quantities. They use calculations 

with an assumed potential to justify 

q = Bpu 	 (3.3.7) 

a of order unity. 

(3.3.7) truncates the moment expansion. The fluid equatiors _ ^e 

closed by :- 

-c)p 	a~ 
+ —(q+3pu) - 2e--nu=0 

at aX 	 aX 
(3.3.8) 

q = spu 

They use :- 

-41. + nu = 0 
~t ax • 

4 ~p 
-en 	- • = 0 

ax aX 

Equation (3.3.10) is valid if vsth>> usth, the full momentum 

equation being :- 

a4) 	dp 
nu + u-anu = -en-- 

at ax 	•x ~x 

(3.3.91 

(3.3.10) 
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In the limit of E field effects being unimportant this 

becomes :- 

ap 
nu+u flu+—=0 

at aX ax 

which describes streaming particles. 

Any model based on equations (3.3.81, (3.3.9) and (3.3.101 must be 

tested to see if the results it gives are consistent with vsth» usth: 

If the suprathermal electrons were truly collisionless then 

any electron streaming into the high density core would pass through it, 

reflect at the other side and stream back. This would be consistent 

with no zero order current. A more realistic situation is illustrated 

below. 

electrons stream into 
core and thermalise 

trapped 
electrons 

r 

Fig.3.2 



v`= 0 
ET 

f( ~_0) = e -tmv2/ kT 
and 

f = f(ET1 
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An assumption which has been used is that the suprathermals 

are in equilibrium with the E field and have a Maxwellian distribution. 

The equations governing the suprathermal electrons are then :- 

nsth - nstho e
-e0/[cT sth 
	

(3.3.11) 

Tsth 
- constant 

nsth 	is the suprathermal density when 0= 0. (3.3.111 can be 
0 

simply derived from :- 

The effect of the neglect of the small terms due to the 

time dependence of 0 in deriving (3.3.11) in self-similar expansion 

models has been considered by Mora and Pellet (121). 

Mason (54) has used a model in which both thermals and 

suprathermals are described by collision dominated fluid equations in 

an investigation of B field production by suprathermals. 
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3.4 Multi Group Models  

In this section the implementation of multi group models 

(section 2.5) in laser target simulation codes is illustrated by 

three examples. These are due to Delettrez and Goldman (108), 

Zimmerman (110) and Kershaw (109,122). The first was used in the 

University of Rochester 1-D code "LILAC" and the other two in the 

Livermore 2-D code "LASNEX". 

Implementation in LILAC  

The suprathermal electrons are treated by a three component .. 

model. Those for which a diffusive model is valid ( a 
x/2 

< L) are treated 

by multi group diffusion. Those for which such a model is not valid 

are treated by the forward- reverse model (123). Deflection is 

ignored for these electrons, the coupling between the two groups is 

introduced by the angular redistribution (cf SN ) and the boundary 

conditions. 

The multi (velocity) group diffusion equations (section 2.5) 

are used with the underlined terms omitted:- 

e D 	 K - 2 
— (E.J) - --(v n)-•-  

M  	v2 	av 

- 
Kf 

—(n 1nA s ) _ —)s  s 
v2 ~v 	 -Dt 

(3.4.1) 

1 aJ + v -c)n _ e 1 a (Env2) - KB a (v2 g)- 
v at 3 	3me v2 av 	 v2 	v 

          

  

Kf3 	J 	Kd . , 	J 	),J 

2 - 
(1nA sth '=) + 2- 3 1nAsth—=—)s 

v v 	 v v 	 v ~t 

(3.4.2) 
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These approximations reduce equations (3.4.1).and (3.4.2) t6 a 

simple Fickian diffusion term. In equation (3.4.1) the ohmic 

heating ( E.J ) term is only allowed to demote the suprathermals to the 

thermals. It cannot premote thermals to suprathermals. 

The mode} for the streaming suprathermals assumes two 

semi-isotropic distributions . 

Fig.3.3 Forward-Reverse Model 

The particle currents are simply given by -ysthhsth 
J2 and 

{vsthgsth /2 • The zeroth order moment gives:- 

hsth 	e 	 K8 	2 — . Jh - 	—(vE.Jh) - — —(hsthv) -  
~t 	ar 	2ruv2 D 	 y2 Dv 

Kf 
	stn ) _ 

*D hsth) 
- 

v2  
ay(hsth ln A 	at 	s (3.4.3) 

where Jh = -vsthhs /2, and a similar equation for g
sth. 

hsth 	a9 
The source / sink terms 	

)s 	sth)s 	
include the angular 

Dt 	āt 
redistribution terms. All outgoing electrons are specularly reflected 
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at the boundary of the last cell. The E field is calculated using 

Gauss' equation. The effect of P dV cooling on the suprathermal 

electrons has now been included (124). 

Lasnex Implementation (1)  

The multi velocity group implementation described in C. 110 1 

uses the "Ohm's Law":- 

- a .
J
(n~ eE f v P.)- 	 (3.4.41 

1 
where P = I (ng v2 --.)411/2 dv 	and a~:the flux limited group 

3 
diffusion coefficient. 

The E field is determined from 2 flux) = 0 

Z a• v P~ 
ie 	E= -  	 

e Za.n. 
(3.4.51 

• 
The zeroth moment egations are :- 

2n 4 e2 	n 	~n 
_—~ t v. 	--~- ne 1n'Asth 	= g)s 	C3.4.6) 
at 	(4wc.) me 	v 	at 

The J.E term is omitted. 

Lasnex Implementation (2)  

The implementation of a more refined model, in one spatial 

dimension, has recently been described by Kershaw (1221. It uses a 

model first used in relativistic electron beam-target interaction 

studies (109). 
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The multi total energy group equations,:using a relativistic 

collision term (125), are :- 

;)n 	2 ;) Ce 1nA 
—g + — .. (v n ) = -- . ÷--7-4 	) 
Dt 	2)x 	

f g 	ar 	me 
aET 	

u 	g 

2 

p.vf c~ 
+ --z)Brem +( 	) (Pung) ~ 

3 ET 

	

g 	ng
. 

	

DE
T 	

at 
)s 

L. 

(3.4.7) 

Vf = fluid velocity 

C . = 2 nkZk ro (mec2) 2 2  

p = momentum 

and 

k denotes species (e=electrons) 

u = velocity 

p3 	n 
C. 1nAk 	--( a ) 

3 ar m' 

(3.4.8) 

(Ck, In A 	refer to the different ion species) 

The groups of terms in (3.4.7) labeled (1) -(4) are 
treated in the following fashion:-  

(1) This term is 1 D (Yn ) . 
V Dt g 

V = specific volume. 

it is treated by the Lggrangian hydrodynamics. 

(2) These terms are treated by implicit three point differencing 

with the friction term acting as a sink to the lower groups and a 

source from the higher groups; ie the standard multi group treatment. 

(3) These terms are regarded as "small". They are treated implicitly 

but split off from the main calculation..". If 	the operator equation 

for the main calculation is (I + A) and for the total calculation 

including the small terms is (I 4- A + B). This approximation is 

equivalent to (I + A + B) = (I t A) (I + B). 

1 
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~~ an 	 DO 
(4) The 	term can be written 

a 
E 

C(a 
)ng 

t ET 	 T 	J 

Its treatment is illustrated below:- 

Fig.3.4 Bin-Bin Mapping 

There are energy conservation problems associated with the 

mappings. 
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J and E Calculation 

The current is calculated from :- 

3P a 
+—.J= 0 

at ar 

The thermal electron motion is treated implicitly (120). 

The E field is found iteratively using: 

āJ 0+1 = 
Ei - aJ~

/(;E)i 

Jn - J9-1 

where 	(1.1)9 =  1 	1 
bE 1 

whererthe superscript denotes the number of iterations. 

At the end of each step the thermal density is given by:- 

nth 
= Zn- - ` nsth 

En - En-1 
i 

(3.4.9) 

(3.4.101 

(.3.4.111 

Multi group codes have also been described by Shvartz and 

Jablon (127), Shvartz et al (81 ) , Yabe et al (128) and Evans (129). 
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3.5 Monte Carlo Models  

A Monte Carlo suprathermal electron transport model has 

been used in conjunction with the KMSF 1-D Lagrangian code "TRHYD" 

(130) and has recently been used to model experiments (131). The 

condition 
Jtota1 

= 0 and the Ohm's law for the thermals are used 

to calculate the E field. The simulation particles are reflected at the 

outer boundary of the last cell. The pressure due to the suprathermal 

electrons is calculated in each cell and this is used in the hydrodynamic 

calculation and the calculation of P dY energy loss. 

A Monte Carlo model for suprathermal transport has been used 

by Mason(132,133)  in work on the effect of suprathermal transport 

on the thermal transport. In this work ion motion is sumessed and 

the E field is calculated using a dilated plasma period technique. This 

will be further discussed in chapter 6. 



T/2 

v 1 
diff = - 3 x 	Vn (3.6.1) 
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3.6 The Flux Limit  

A diffusive model will give a flux :- 

If A T/2 exceeds the scale length for the suprathermal density then 

0 diff may exceed 	t fs 	where :- 

~'£S = vn (3.6.2) 

t fs is clearly the greatest flux that can be carried by particles 

with velocity v and density n. It is necessary to limit the flux 

given by (3.6.1) to some value, such as t fs , when the diffusion 

approximation is invalid. There are several possible limits. 

(1) A unidirectional beam of particles. This has a flux t fs (by the 

definition of t fs ) 

(2) In diffusion theory the angular dependence is approximated by:- 

F(v, u) = A(v) + uB(v) 	(3.6.3) 

If F(v, u) ? 0 for all v, u is imposed then the maxi um flux 

xorresponds to B = + A. In this case :- 

+1 

n= 2 af A d u 
-1 

+1 	1 	1 
= 2 :l Av u2 du= — nv= —  

-1 	3 3 fs 

(3) The flux out of a region in which the flux is isotropic 

+1 

n=2J A d 

-1 



vn * 
and 	D vn= li5n j v n f 

(3.6.7) 
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1 	1 	1 
0= 2 aJ Auau = — nv=— 0 fs 

0 	4 	4 

The limit lc < (1) 	maymay be included in a diffusion model, 

it= - D vn ,by modifying the diffusion coefficient, D. One choice is:- 

1 = 1 + Iyn) 

D D _41 	
-  I~m 

(3.6.4) 

or 	
1 	0 linv +D Vn 

D
* 

lim 

In the limit D (vnI « lim 

C-3 .6.5) 

and in the limit D I vn l » 1, li m 

1 	vn 
* 
D 	1?lim 

(3.6.6) 

(3.6.5) and (3.6.6) are the desired limits of the modified diffusion 

coefficient.. 

Equation (3.6.7) gives a:flux which is in the direction of 
is 

the density gradient. For free streaming particles it the initial motion 

of the particles and not the density gradient which "drives" the flux. 

An example in which the flux is not parallel to the density gradient 

is shown below. 
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-4 --4 	---> --> - 

----> —4 ~-7' 
----> 	 --). 	-  

_.Al. 	 --4 --> --0 -). 
-4 - -4 

--~ 
--4 

A 

D 

	• 
Fig.3.5 A Flux Which is not in the-7n Direction 

Carman et al (134) describe several approaches to flux 

limiting. They give a method, due to D.Post and J.Wilson, of 

including limits (1) or (3) , described earlier in this section, where 

appropriate, viz:- 

A 1 an 

lim = mr(1 + 3 exPC --~ ~1 )~1 
2 n 3x 

The flux limit used in chapter 5 is limit(2). This is the limit 

which is "in the spirit of' the diffusion approximation. 

Kershaw (114) has compared higher order Pn methods with 

flux limited diffusion (P1). 

He found n;,10 was needed for Pn to give 

better results than flux limited P1. 
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3.7 Analytic Work  

No analytic models for suprathermal transport are described 

in this section. Albritton et al(135) considered the transport of 

large mean-free-path electrons and Shkarofsky (136) describes a 

Lorentz gas model. 

Large Mean-Free-Path Transport  

Figure 3.6 shows, schematically, the trajectory of a 

suprathermal electron in the corona of a spherical microballoon. 

Fig.3.6 Trajectory of Electron in the Corona 

Clearly the inward radial flux due to such orbiting electrons 

will be much less than the naive flux limiting value v(2mev2). Indeed 

the flux may be outward, due to ion expansion. The motion of the electron 

is dominated by the E fields in the corona. The effective potential the 

electron experiences, for motion in the radial direction, is illustrated 



below:- 
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Fig.3.7 Effective Potential of Orbiting Electron 

1 is the angular momentum of the electron. 

This potential has the same effect as the purely electrostatic 

potential well considered by Valeo and Bernstein (75 ) and discussed 

in section 3.3. The flux,with,- no collisions and no time dependence 

of 0 , will be, for appropriate boundary conditions, zero. Albritton 

et al use the assumption of an infinite potential jump at some "sheath" 

which is moving slowly, compared with the supratherinal electrons,and 

assuming X v/2» Radius of the Microballoon everywhere. They calculate 

the first order "bounce average" diffusion coefficients in impact 

parameter. The flux calculated scales as :- 

R 
q -- Cev2)v 



J = - 	e ji
.0
flv3  dv 

3 

4 
(3.7.4) 
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Double Maxwellian Heat Conduction  

Shkarofsky (136) used a model in which the zero order electron 

distribution function was taken to be the superposition of two Nfaxwellians 

n 

f = ( m  )2/3 nth  exp(-mv2/27.h) + /2th  exp(mv2/2Tsth) 
° 	271•-: 	Z.3/2 	 Tsth 

(3.7.1) 

The distribution function is expanded to first order and the first term 

of the spherical harmonic expansion is used. Thus_- 

v 
f=f+f  o 1=  v 

(3.7.2) 

It is assumed that the effect of laser energy deposition and energy 

transport maintain a stationary nth  , Tth  , nsth  and Tsth  profile. 

Using the Lorentz gas approximation the equation for fl  is :- 

fl  = - 1 [vVf + e/m(afo/ 3v) E] 	(3.7.3) 

This may be used to calculate the current , 

and the energy flux, 

2  
g = —Rf fly 5  dv 

3 
(3.7.5) 

The factors of 1/3 in equation (3.7.4) and (3.7.5) are due to the 

integration over angle. Using equation (3.7.1) for fo  in equation (3.7.3) 

to obtain an expression for fl  Shkarofsky finds the energy flux, 

for J = 0 to be :- 
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32 
q= -- 

m2 

1 	1 
C 	) ' 

Y 	T3~ 2 + n T3/2 n + nth th 	sth sth 

2nsthT5/2 Tsth (Tth Tsth) vnth + an T3/2 th TSth (T. Tsth) Vnsth 

+ 

+ 

T3/2 	5/
2 nth 	 th t +n Tst (T 	)  sth hK 	VTth + 

/2 	I2 	TT 
+ nsthTsth .(2 nsthTsth } nth Tth

( 
stti5T th)) v T sth c3.7.6) 

The condition for the reversal of the sign of the VTth heat 

flux can be seen from this. 

The Lorentz gas appraximation is also used to investigate the 

heat flow,when both thermal and suprathermal electrons are magnetised, 

and the generation of B fields. 

> Where Y is given on page 75. 



and 

v f 	= - 	- —(cs 	/a l sth -lsth 	
vvf 

osth  m 	
f  °sth v) E (3.8.3b) 
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3.8 An Extension of Shkarofsky's Work 

Shkarofsky used the collision frequency:- 

vi  = n+Y/v3 	 (3.8.1) 

where 	Y = 41-(Z.  ane2/4,rEOm) 2  In A 

The applicability of this term to both thermal and suprathermal 

electron transport in a high Z corona is dubious for two reasons. 

Firstly since In A th  may be smāll taking In A th = In A sth = In A 

will not be accurate. Secondly the plasma may not be fully ionized. 

In this case, as has been seen in section 2.2, the suprathermal 

electrons will "see" a larger effective Z2  and the use of Zion  in 

equation (3.8.1) will, ] ead to inaccuracies.  

Since the Lorentz approximation is being Used we may write:- 

v 	IT 
f=f +f . -  +f 	+f .= oth -lth 119 °sth -lsth iv) 

and the equations for f 	and f 	are:-  
lth 

	fl 

vth fl 	= - v v fo  - -==( D  fo  / 3v) E 1 
th 	th• m 	th 	J 

(3.8.2) 

(3.8.3a) 

where 

fo 	= nth( m  )
3/2 ex

p ( mv2/2Ttb) th 	2 Tth 
(3.8.4a) 
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f °sth = nsth(2w T ) 3J2 exp(-
mv
2/2 sth) 

sth 
- --(3 ~8--4bu------ 

The drift velocities of both zero order distribution functions 

are zero. If this were not so electron-ion collisions would act on fo. 

vth = n}YtJv3 , Y
th = 4~ 

(Zione2J4 co) 2 in Ath 

vsth = n+Ysth/v3 : Ysth = 4w (Zeffe2/4 
a s 

(3.8.5a) 

2 
1nQ 

sth 	
(3.8.5b) 

The expressions for -the electron current and the electron energy flux 

are then given by :- 

J = 

	

e 1 	Y 1 

0(nth <vs> th5 
+ 	-- (1[1:5. 'di <v5> sth) 

+ 

	

3 	Ysth 3 

2e 11 
+' <v3> th + nsth <v3> sth } E 
m 

(3..8.6) 

and 

Y 

g 3n Y 
(- 0 (nth <vZi th) - Y V (ns.th <v7i sthd - 

+ 	 J ~ 	sth 

4e 
( ) (nth 05> th  nsth <v5> sth) E ) m 

C3.8.7) 

4w 
where 	< vk > sth/th = 	 J k+2 fo 	dv 

nsth/th 	sth/th 
(3.8.8) 

m 

f 2n.I-1 using - 	dx =
o 	

e 	n+ 2p 
(p )0) 
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we can write; 

2 2 
~vk~ sth/th = 

6...._)k/2  
Tk/2 (?k+f) (3.8.9) 

(7) ī 
m-- 

for odd k. 

Using equation (3.8.6) to 'eliminate the E field from 

equation (3.8.7) and putting the total current equal to zero the 

expression for q becomes:- 

32 1 	 1 
( 	 

m Z 	{ 
n+Yth nthitthZ 

). 
(Yth'sth) nsthTsth 

f 
	pf 	 5/2. 3/2 	

) Dn + 2n 	• Znsth (Yth" s th) Tth Tsth (Tth Tsth 	th 	th ( thJYsth) T3312 T5/2 

(Ts th-Tth) 7 ns th + 

3/2 	
5/2 nsth(Yt/Ysth)Ts/h (7Tth 5Tsth) 

) PTth + 

nsthTsth (Znsth (Yth/Ysth) 2Tsth nth(YthJYsth) T3th2 (7Tsth-5Tth)) o T
sth} 

(3.8.10) 

If Ysth= Yth = Y this reduces to equation (3.7.6) with J = 0. 

The condition for reversal of the flux due to 

ns (5Tst-TTth
) Tsth(Yth/Ysth) > 2n T5/

2 
(3.8.11) 

Tth becomes:- 

Since Yt1/Ys,h <1 this will be harder to satisfy than the condition 

by Shkarofsky where YtJYsth in equation (3.8.11) is replaced by unity. 
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CHAPTER 4  

Introduction  

In this chapter we briefly describe an experiment by 

Hares, Kilkenny, Key and Lunney (67 ) which investigated 

suprathermal electron preheat in layered targets. The effect 

of the E field which drives the thermal return current is 

crudely estimated and ;a-design for ;: a target which will increase 

this effect is given. A numerical model is developed to give a more 

quantitative description of resistive E field effects. Its application 

to the analysis of the experiments in (67 ) and to the design of, and 

analysis of, experiments with resistive targets (137) is described. 

Finally the importance of resistive targets to I.C.F. target design 

is discussed. 

4.1 The experiment of Hares et al  

Ka  radiation  

The primary diagnostic used on this experiment was a 

measurment of the Ka  X-radiation from fluorescent elements (fluors) 

within the target. This diagnostic has been discussed by Choi(138) 

and references therein. 

There are two relevant causes of K shell ionisation, firstly 

.the absorption of photons with energy greater than the K. shell ionisation 

energy. Such ionisation is most efficient for energies close to the 

ionisation energy. Secondly there is ionisation by collisions with 

suprathermal electrons with energies greater than the K shell 

ionisation energy. Typically 1% of the energy deposited by suprathermal 

electrons will go into K shell ionisation. 

As the target is ionised the ionisation potentials of the 
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remaining bound electrons are changed. Thus the "positions" of the 

characteristic X-radiation lines will be shifted. This_wi11_result in 

Ka  radiation not being detected as such and a saturation of the observed 

yield. 

The experiment of Hares et al (67) was the first from which, 

by suitable choice of fluors, the problems of radiation pumping and 

saturation were eliminated. 

The experiment  

Front 
Spectrometer 

Fig.4.1 Layout of Experiment 

In an experiment conducted at the Rutherford Labaratory 

Central Laser Facility layered targets, as shown in Fig 4.1, were 

irradiated with 1.06pm laser light. A thermal plasma is formed which 

is isolated from the front fluor by the Aluminium and Silicon layers. 

Suprathermal electrons created by the laser-plasma interaction preheat 



Corona 
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the target. Some of the energy which is deposited in the fluor 

layers will give rise to Ka  radiation which is detected by the 

spectrometers. For fixed power and focusing conditions, and hence 

fixed intensity, a series of experiments- mere conducted using targets 

with different Mylar thicknesses. 

The idealisation involved in the analysis of the experiment,. 

described by Hares (139), is illustrated by fig 4.2. - 

EXPERIMENT 
	

TDEALI'SPTION 

i 

Layered 	Infinite 
Target 	Homogeneous Preheating Source 

-Medium 

Fig.4.2 	Idealisation of the Experiment 

In the analysis the following assumptions were used':- 

(1) Spencer's results for electron energy deposition in a solid (see 

also section 2.3) 

(2) The result from (140) of the fraction of deposited energy going 

into K shell ionization . 

(3) An assumed form of the preheating source :- 
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n+~ 
fpreheating(

E) = N E 	exp(-E 1 Tsth) (4.1.1) 

By fitting the Ka yields of the front and rear fluors with 

that predicted by the above,a preheating distribution of the form :- 

3/2 
fpreheating

(E) = 	N E 	exp(—E/    T
sth) (4.1.2) 

was inferred. Experiments using different intensities of laser 

irradiation and the assumption that the form of the preheating 

distribution remained the same were used to determine the variation of 

the suprathermal "temperature" with intensity. 

This experiment gave the following results: 

(1) The form of the preheating distribution. 

(2) The scaling of T
sth 

with intensity. 

(3) The scaling of the fraction of incident energy causing target 

preheat. 

It was the first experiment to give direct lneasurment of suprathermal 

electron preheat. This experiment is described more fully in 

(139, 141, 67 ). 
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4.2 The role of resistivity  

If the suprathermal electrons carry a current J
sth 

then, 

in a one dimensional experiment, a thermal return current 

Jth --Jsth must flow. If the thermal plasma has a resistivity n:th  

there must be a E field J
th'nth . 

 A crude estimate of the effect 

of the E field on the suprathermal transport may be found as follows. 

Let the canonical values of the suprathermal range, suprathermal 

current density and the resistivity of the thermal plasma be R
c' sth  

and nc  . Then a potential -Rc 
Jsth  Tit. is established if the 

c  
suprathermal transport is unaffected by the E field. The energy 

lost by an electron in crossing this potential is e Rc 
Jsth nc. 

c  

Typical current carrying electrons have an energy f k Tsth , where 

f is a constant of order one,the value of which depends on the form 

of the suprathermal electron distribution function. It is inconsistant 

to assume that E fields do not affect the suprathermal transport 

if:- 

e R
c Jsthc nc  

Tsth  
(4.2.1) 

k 

When the condition in equation (4.2.1) pertains linear 

transport analysis, as described in the previous section,is no 

longer valid. 

The range of the electrons may be rewritten as 

rc  I p where rc  is the stopping power and p the density of the 

target. Using this equation (4.2.1) becomes:- 

c 

e rc Jsth
c 
nc(p) 

Tsth (4.2.2) 
k p 

Note that the canonical resistivity is a function of the density. 
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Ignoring this for the moment it can beta seen that E field effects 

may be increased by reducing the density of the target. 

In (141)  scaling of Tsth 
 and the fraction of incident 

energy going into suprathermal electron preheat are given. This 

may be used to find out how E field effects will scale with intensity. 

Experimentally (in the range 5-50 1018  W m-2) 

Tsth - (Tsth)o ( — ) 

=_i 0Ner into preheat I 

The energy flux into the target -s  (imeve).neve  -.  Tsth Jsth 

Thus :- 

dsth = (dsth)o'(Ī)  
0  

The range — T
sth 

so r=ro( I ) 

Io  

The energy deposition per unit mass is independent of intensity 

so the resistivity will be independent of intensity. Thus:- 

7 J  n 	ro do no  
C 	T 	1- (Ī ) ( 	) 

sth 	o 	Tsth  

(4.2.3) 

The effect of resistivity will be more important for 

higher intensity illumination. 

The preceding discussion only deliniates a range of 

parameters for which it is invalid to ignore the effect of the 

resistive E field. In the next section a numerical model which was 

developed to study the E field effects on the suprathermal transport 

is described. 

Io  
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4.3 Details of a numerical model  

The simulation model uses the following assumptions:- 

(1) That one dimensional slab geometry is appropriate. 

(2) That the target is in local thermodynamic equilibriuri(C.T.E.) 

(3) Spitzer resistivity is used for the thermal electrons. 

(4) Thermal transport, radiation transport-.and hydrodynamic motion 

are all ignored. 

(5) The density of suprathermal electrons is much less than that of. 

thermal electrons. 

(6) The timescale for change of the state of the target is much 

greater than the suprathermal electron "lifetime". 

Each of these will be discussed in turn. 

Assumption (1)  

If we first ignore the effects of E and B fields a 

necessary condition for ignoring two dimensional effects is that 

the laser spot size is much greater than the range of the suprathermal 

electrons. A rough estimate of the effect of finite spot size may 

be found by using single group diffusion theory. The single group 

diffusion equation is:- 

g } 0• 	
~, 	g 	g ) 

ōt- 	 TE 	• -ct 5 
(4.3.1) 

where T
E 	

vg 

~g = - —a 	 2VNg 
3 

(4.3.2) 

Thus in the steady state (a =0) the single group equation is, from 
Dt 

(4.3.1) and (4.3.2) :- 



is •- 

1 

4w r-r' 
(4.3.4) exp(- r-r' (=---) ) 

w/2 
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V2  Ng  - (3  ---) Ng  = source 
X,4  c T/2 

(4.3.3) 

To estimate the spreading effect due to finite source 

size equation (4.3.3) has been solved in an infinite medium for a 

disk source. The flux across any plane can then be calculated from 

equation (4.3.2). 

Fig.4.3 Geometry for One Group Diffusion Model 

The Green's function for the one group diffusion operator, 

the solution of: 

3 
v2 - 	)G(r,r' ) = s(r - r' ) 

E .1J2 

( 
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where G( r, r' )-0 as it - r 1 -- o  has been used. 

Using (4.3.4) the value of Ng  can be found at any point 

in space by integrating over the source. The flux may also be 

calculated. This has been accomplished by numerically integrating 

over the source. Fig. 4.4 gives typical results. 

These results may be used to justify a one 

dimensional simulation. 

x/R = 0.5 
	

x/R = 0.5 

R(3/AE),T/2) z = 2 
	

R(3/XEA7/2) 2 = 10 

         

 

r 
1 

r/R 

       

        

 

2 

  

1 
r/R 2  

Fig.4.4 Flux from a Disc Source 

Now consider the effect of E and B fields. rf B = 0 

then quasineutrality' dictates Jtotal = 0. A departure from Jtotal 

= 0 is possible if the B field can diffuse into the target. The 

equations governing this are:- 

JSth Jth  = (DnB) I uo  

E = n —th 

3  
-- = -VE 
a t 

(4.3.5) 
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tf the assumption that Jsth 
 is irrotational is made thenlfrom 

(4.3.5)1:- 

ō6 	2  n 

at - V 110B 
(4.3.6) 

using v.B = 0 

Equation (4.3.6) can be used to estimate the depth into the target 

to which the magnetic field diffuses, Lc  , by using:- 

1 1 nc 

Tc 	Lc2 u 0  
(4.3.7) 

Tc, the characteristic time, will be the length of the laser pulse. 

If Lc  is much less than the range of the suprathermal electrons 

then ignoring the B field effects will be justified. 

The value of Lc  for the experiments described in (67 

was typically 	5 microns. 

Assumption (2)  

The criteria for the validity of L.T.E. are given by 

Griem (142). For a uniform (in space and time) optically thin plasma 
this is :- 

kT 
ne  > 7.4 1024(<z)+1)7(-----)2  

<z> 2FEi 
(4.3.8) 

The condition for the spatial scale length is :- 
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7 1024 	2  kT 	<z> EH  

d>  
111/4 EH 

exp(
2kT

) 

and for the characteristic time:- 

	

1.15 10
13

(4z)+1)
3
n

1 
 kT 	<z> 2El./  

> 	 ( 	)exp( 	̀) 
ne (n(z) + n< z> +1) 	

<z}H 	kT 

(4.3.9) 

(4.3.10) 

Because of the Z dependence of (4.3.8) this inequality will 

not be satisfied by cool high Z plasmas. However the L:T.E. equation 

of state may be used if the plasma is optically thick to its own thermal 

radiation. 

Assumption (3)  

Only in the two extreme cases, fully ionized and very 

slightly ionized, are there adequ.ate_theories for ble_resistivity of an 

ionized gas. The latter case is of no interest here as the resistivity 

is much greater than that calculated using the assumption that 

electron-neutral collisions dominate. The Spitzer theory (58,, 143 ) 

is applicable to a fully ionized gas with ionic charge Z . It gives :- 

10-4  Z lnA T 
(T'in eV) 	(4.3.11) 

T3'2  

where A = bmax/bmin  

borax , the maximum impact parameter, is usually taken to be the Debye 

length, X I)  . However. if there are very few particles in a Debye sphere, 

as there will be if X D  becomes comparable to the inter ionic distance, 

this will need modifications. (Clearly if there are 	Z electrons in 

the Debye sphere 	D  cannot be used as the distance over which the ion 

ionic charge is screened.) b 	is the larger of the classical distance 



kT < 
h2 • 
(3  /2ne) 

2/3  

2 me  
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of closest approach and the DeBroglie wavelength of a thermal electron. 

The coefficient y can be evaluated numerically (143), I t is 1 if 

Z»•1. 

The Spitzer formula should give an accurate value for the 

resistivity in a plasma which is fully ionized, non-degenerate, has 

In A » 1 and is not turbulent. 

We wish to apply the Spitzer formula to cases where the 

above conditions do not all hold. It is important to Iaiow whether the 

errors introduced by this will be large. 

Ignoring degeneracy will introduce serious errors if the 

thermal energy of the plasma is comparable to or less than the Fermi 

energy, ie if :- 

Fig.4.5 Fermi-Dirac Distribution for Two Temperatures 

EF  Energy 
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Clearly in case (b) the effect of the Pauli exclusion principle in 

"disallowing" some collisions is negligible. If EF  and ITE  are 

camparable use of the Spitzer formula overestimates the resistivity. 

For kTE  » EF  the average occupancy of states with energy below 

ITE  will be of order (E1/14TE)3  . (EF/kTE)3  is typically 10-3. 

The target material will not be fully ionized. In the 

partially ionized "gas" there will be ions in more than one charge state 

present. An approximate treatment of this is as follows. A simple, 

mean free path (mfp) , theory gives the conductivity of a plasma as:- 

e2  ne  

me -r 

where 	T = a
V2 

 Jv 	is the collision time 

A 	2  7J2  — (Z nZ)-1. 
Thus the collision times for collisions with each ionization state 

Z  - (
Z2 nZ)

-1. 

1 	1 

Z 	= ni  Z2  

	

T 	T 
total 	Z 

also 	ne  = ni  2 . 

	

ne" Ttotal 	ZJZZ 

This leads us to the conclusion that Z in equation (4.3.11) should 

be replaced by Z2JZ (which is ? Z). If the material is multiply 

ionized and in L.T.E. 22/2 = Z (this approximation was checked 

using a full L.T.E. code supplied by R.W.Lee). Two further effects 

are relevant. The Spitzer theory only deals with elastic scattering. 

In a partially ionized gas inelastic collisions will also occur. Also the 

nuclear charge is screened out over a distance ao/Z1/3  (144) (a0  is 

the Bohr radius) . If this is comparable to the miniimnn Impact parameter 

the plasma electrons will "see" some of the nuclear charge. Both these 
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effects will increase the resistivity from the Spitzer value. 

A condition for the validity of the classical transport 

coefficients is that In A is large (cf 1). If this is not the case 

then the effect of single large angle scatters due to collisions with 

impact parameters . b 	and the effect of the interaction of an _= =: 

electron with plasma oscillations in its wake (95 ) may be as important 

as the cumulative effect of small angle deflections. The Spitzer theory 

is only valid to order 1 / 

Assumption (4) 

lbe turn depth of the thermal plasma is ^- 0.1 2m. This will 

have little effect on the suprathermal transport since it will only 

affect the state of a target for a small part of the suprathermal 

electron:' s range. 

To consider the effect of thermal transport and hydrodynamic 

motion in the preheated target we consider the following canonical 

values:- 

Atomic Number 12 

Charge State 5 

Temperature 100 eV 

Scale Length 20 ~m 

Density of Ions 1028 m-3 

Then the thermal diffusion time is 10-8 secs and the sound transit 

time is 	3'10- 10 secs compared to a pulse length of 9'10-11 secs. 

Pram this it is clear that thermal transport can be ignored and plausible 

that hydrodynamic motion may be ignored. 

Radiation from the thermal plasma will have a negligible 

preheating effect because of its short range (for the targets illustrated 

in fig.4.1) . Although hard x-rays will be able to preheat the target, 

their preheating effect will be small; only a small fraction of the 
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suprathermal electron energy loss goes into bard m-rays°. Thus radiation 

transport may be ignored. 

Assumption (5)  

If the thermal electron density is much greater than the 

suprathermal density then the model described in section 2.1 is 

applicable. Typical electron densities in solids are 1028  m-3  

5.1029 m73.  A typical supratheimal density would be of the order af or 

less than 1026 m
-3  (10% of critical density for 1µm radiation) . 

nom« nth  in all cases of interest. 

Assumption (6)  

Since the time dependence of the problem is treated by 

performing a series of time independent transport calculations we 

require that the source and the scattering properties and resistivity 

of the target do not change greatly during the time it takes a 

suprathermal electron to thermalise. The timestep which is used must 

satisfy the inequality :- 

(lifetime of suprathermal electron) < (timestep) < (timescale for change 

of target J source properties) 
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Calculation of the Suprathermal Transport 

The sequence of calculations used to simulate the effect of 

suprathermal transport are summarised below:- 

Fig.4.6 

The stages shown above will now be described. 
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Source of Suprathermals 

Weights 

A source distribution of the form (4.1.2) is represented by 

a number of Monte Carlo particles. These particles are weighted to 

represent a large number of real electrons. If the source is given by 

f(E) electrons sm 2 incident on the target, then for an. energy range 

Ea 
 - Eb the weights of the particles ia that range should satisfy' :- 

Eb  

wi  =f f(E) dE 
particlēs 
in range 	Ea  
Ea  Eb  

The choice which has been used is to split the energy range 

(1KeV - 61Tst) up into many small intervals. One simulation 

particle is used to represent the source in each interval and its weight 

is given by:- 

fCnid)  ;Lax  , E3;rl  

where Emig  is the middle of the energy range. Energy. WE d  and 

charge -eW are associated with. each particle.The rate of energy 

deposition of a simulation particle is given by : - 

'simulation particle = W' 4Belectron 

The current due to a simulation particle is !eW between the points 

where the particle is created and where it therznalises. 

The initial direction of the simulation particles may be 

specified. 
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The Monte Carlo Electron Transport 

Monte Carlo electron transport has been discussed previously 

(section 3.4). A very simple model is used here. The continuous energy 

loss approximation and a Gaussian multiple scatter distribution are;. 

employed to simlate the effects of collisions; condensed case 

histories are used. The effect of the E field is included by  following 

the Monte Carlo particles along parabolic trajectories between scattering 

"events", and changing the particles" energy accordingly. The formulae 

used for the energy loss due to collisions and the width of the Gaussian 

multiple scatter distribution are equations (2.1.61 and (2.2.61 

respectively. The method for calculating the change in the polar angle 

due to collisions is given by equations (2.4.51 and (2.4.61. Particle 

histories are terminated when their energy becomes comparable to the 

ionization potential , or Debye energy, of the target material. All the 

remaining energy is then deposited. 

The E field acting on the particle is taken to ;fie the field 

at the centre of the cell containing the particle. The energy lost'is 

deposited in the cell containing the particle or, if the particle 

crosses the cell boundaryr,half is deposited in each. cell. 

As described above the particles are. weighted so as to 

represent the source function of suprathermal particles. Normally 

400 1000 simulation particles are -used. 

At the two boundaries of the simulation reflection or free flow_ 

conditions could be applied. In all work described in this chapter free 

flow conditions were used at both Boundaries. 

The inclusion of E field effects complicates the treatment _of 

the collisional energy- loss and deflection. Because the E field changes 

the electrons' kinetic energy it is no longer possible to choose path 

lengths to give preselected energies after each step with a continuous 

slowing down (C.S.D.1.appraxiaation. Since a high order evaluation of the 
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C.S.D. energy loss f CdEJds)ds 	would be expensive, and also no 

longer as accurate because the E field will also affect the energy, a .. 

simple first order expression for the collisional energy loss was used:- 

dE 
EC.S.D. 1E=EI. 0 s cls 

where EI  is the kinetic energy at the start of a step and o s the 

path length. o s must be chosen so that ; -- 

dE 
C Y .os1J E 
ds 

is small. The conventional approach to the treatment of scattering 0.051 

is to store the multiple scatter distribution functions for a number of 

preselected energies. Since, as was -mentioned ahave, the energies after 

each step can no longer be selected and also because the state of the 

target, and hence its scattering properties, are a function of time, 

such an approach is not practicable. Such problems do not occur if a 

Gaussian multiple scatter distribution is-used, as in this case, but 

would greatly complicate the implementation of a - m re sophisticated 

model. 

Deflection and energy loss due to collisions- and the E field 

are treated independently. This is justified since the scale length_ for 

deflection due to the E field will always be far greater than the 

Debye length. 

The Choice of "Random" Quantities 

When random numbers were needed these were "picked" by using 

the C.D.C. pseudo random number tables "BANE". During an iteration 

for the E field the random numbers used for a given case history at 

each iteration started at the same place in the RANF tables by using 
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the "RANSET" routine. This simplifies consideration of the iteration 

for the E field. The noise due to the small number of particles used 

may be estimated by comparing simulations with different sets of random 

numbers , see below:- 

Fig.4.7 Effect of Noise on Energy Deposition 

Au target 

450 case histories 

Tsth = 12 KeV  

position 



1St  iteration 

4th  iteration 

th  i 5 iteration 
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E Field Calculation 

The E field is calculated by using:- 

Jtotal  Jsth } Jth -J  sth  +77
-1B -=0 (4.3.12) 

Jsth is calculated by summing the contribution of all the Monte Carlo 

particles. This is a simple matter because the contribution of a particle 

is constant between the places where it is created and the case history 

is terminated and zero elsewhere. The E field needed to give 

Jth = Jsth  is then calculated and -used in the iterative scheme., 

}1  _ (1- a  aEn 3- a  Ns tri n ) 	 C4.3.131 - 

E is calculated at the cell centres and J is found by taking the 

average of the currents through.the cell's boundaries. The convergence 

of the scheme is illustrated by plotting Js  Cxl at each iteration. 

Fig.4.8 Iteration For E Field 

position - 
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Updating the State of the Target 

At the end of each time step the energy deposition in the __ _ 

target is incremented and the "state" of the target is calculated. The 

L.T.E. equation of state is used for the average ionization. This is 

described below. The resistivity is given by the "Spitzer formula", 

equation (4.3.11) . The Debye energy of the free electrons and the 

average ionization energy of the Bound electrons mist Be calculated. 

The latter is taken to be:- 

Tav = 11 (Znuc-  ZionI ( 	
Znuc 	) 2 6/7.

Znuc - Zion 
	C4.3.141 

where a Z2  scaling of isoelectronic ions and the approximate formula 

(2.1.3) are assumed. 

The Equation of State 

-.4',i. _. the specific energy,  deposition the state of ionization 
of the target material mist he calculated. It is necessary to satisfy:- 

Edeposited = 1. 5. ni  (1+ ZIkT } EIonization (4.3.151, 

where Z is the average ionization state. 

A subroutine TINDZ (supplied by R.W.Leel was used to calculate 

the approximate L.T.E. average ionization state for a given temperature 

and the energy required to ionize the material to this state. This 

subroutine uses the approximate L.T.E. calculation described by 

Zel'devich and Raiser (1451 and ignores ionization potential depression. 

Equation (4.3.15) was satisfied by solving the equation:- 

Edeposited - 1.5 ni  (1+ ZZ kT Eionization = 1(7/  = Q 



Tn}1  = Tn  - D  (Tn)  
f (Tn) 

f(Tn)  - f (Tn-1)  
f (Tn) _ 

Tn - Tn-1 
(4.3.16) 

by the iterative scheme :- 
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The first value of f'(T) was found by calculating f(T1) and f(1.01T1). 

The results given by the subroutine FINDZ have been compared 

with a full L.T.E. calculation which included a crude treatment of 

ionization potential depression. Results were found to be in good 

agreement for low.  Z materials. The full L.T.E caclulation could not 

be carried out for high Z (Z >20) materials. 

The calculation of the state of the target was compared wit_ 

the "SESAME" (146)  equation of state tables. For gold they' were found 

to be in good agreement for densities < 10% of solid density. 
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4.4 Application of the model to the design of*and analysis  

of experiments  

Two applications of the model will be described in this 

section: .firsbiy analysis of the targets described in reference(67 ), 

and section 1 of this chapter; ,secondly the design of targets in bi\r∎i6,1 

resistivi. 	inhibits the flow of suprathermal electrons into the 

target and the analysis of experiments with such targets. 

Analysis of ordinary targets  

An initial test of the model was its application, with 

E field and ionization effects emitted, to the targets described 

in section 1. Using a source of the form given by equation (4.1.2), 

and varying Tsth, the ratio of the energy deposition in the front 

and rear fluor layers was used to determine Tsth. This was compared 

to the value of Tsth deduced from the analysis using Spencer's 

method (139) and was in good (} 5 %) agreement. This should be the 

case since the targets contained only low I medium Z materials and 

the crude application of Spencer's theory with an average Z should 

be reasonabaly accurate. 

The inclusion of ionization and .E field effects with 

Spitzer resistivity showed a potential of a few hundred Volts 

across the target. This has a negligable effect on the transport of 

electrons with Tsth ~ 14 KeV. 

Resistive inhibition  

As has been seen the effect of the E field in inhibiting 

suprathermal transport in solid density,low Zltargets.is very small. 

How should a target be designed so.as to increase the effect of 

the E field.? Equation (4.2.2) shows that reducing the density 

of the target material will enhance the effect of the E field. 
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The resistivity, for a given specific energy deposition, is a function 

of density. If the L.T.E. equation of state is applicable in both 

cases then the average ionization state will be higher in the low 

density target. Fig 4.9  shows the resistivity plotted against specific 

energy deposition for solid and 1% solid density Gold and Carbon 

targets. 

Fig.4.9 Resistivity vs Energy Deposition 

It can be seen that the resistivity decreases relatively 

slowly with increasing energy deposition until the material becomes 

fully ionized. If the target becomes fully ionized the resistive 

effect will "burn out" due to the T-3/2dependence of the resistivity. 

These considerations lead to the the idea of employing a 

low density high 2 layer to increase the effect of the resistivity. 

Fig. 4. ' shows the enema deposition into a _ 0%s'% solid density 
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Gold layer with and without E field effects after a 90ps. pulse of 

intensity 3. 1019  Wm-2  with 10% -of the energy going into suprathermal 

electrons 

1-1 

ti 
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0 

0 

0 
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with Tsth  14 KeV. 

Fig.4.10 	E Field Effects on Energy Deposition 

E(on) 

E (off) 
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An experiment was conducted at the Rutherford Laboratory using 

the following target design. 
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Fig.4.11 Target Construction 
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Pairs of targets with the same area mass density of Gold 

were used. In one the Gold was solid density and in the other it 

was approximately 1% of solid density. The Ka  emission from the rear 

and front fluor layers was compared with the emission predicted by 

the simulation. (The simulation gives the energy loss by suprathermal 

electrons from which the Ka  emission may be calculated). This shows 

that the reduction in energy deposition in the rear fluor layer is 

greater than can be explained by Spitzer resistivity. The simulations 

were repeated, using an arbitary multiple of Spitzer resistivity: It 

was found that four times Spitzer resistivity brought the simulation 

results just inside the experimental error bars. 

1 
Area Mass Density (10 'Kg m-2) 

3 
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One deficiency of the target design used above is that 

the suprathermal current is considerably attenuated before it reaches 

the Gold layer. Experiments were conducted with targets in which 

no front fluor layer was used.and in which the area mass density 

infront of the gold layer was minimised. (Some mass was needed for 

for structural and fabrication_purposes.) These experiments confirmed 

the results described above: 
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4.5 Resistive Targets and Target Design  

Can resistive inhibition be used in an I.C.F. target? 

To answer this question the possible ways of reducing suprathermal 

preheat must be considered. 

Ablative Targets  

The simplest way of stopping preheat is to use targets with 

a large area mass density between the surface and the fuel.(section 1.7). 

Since the acceptable level of preheat of the fuel is low (SleV), 

electrons of several times T
sth 

must be stopped. This may result in a 

large and undesirable (section 1.2) increase in the mass of the target. 

At the energies of interest (10-100 Key) the area mass density 

requirement is almost independent of Z; the effects of scattering 

and average ionization energy counterbalance each other. 

In (12-7) the inclusion of a high Z layer is suggested. 

high Z 	low Z 

Although this layer is insufficiently thick to greatly reduce the 

energies of the suprathermal electrons it will make a beam of electrons 

incident on it more isotropic and hence reduce the quantity of low 

Z material needed to obtain a given reduction of the suprathermal 

energy flux. 

Fig.4.13 
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Vacuum Insulation 	 - - - - - - - 

Lee et al (148) have suggested using vauuwt gap insulation, 

see below. 

Bulk of 
Target 

gap 
Fig.4.14 

With a gap >> AD(sth) the flux of suprathermal electrons into the 

bulk of the target will be small. However hydrodynamic motion of the 

laser heated layer will close up the gap and "short out" the insulation. 

If the size of the gap is dictated by the condition that it does 

not close during the laser pulse, it may be large. This would preclude 

the use of this method for long (> 5ns)pulses. Even for shorter pulses 

the - mass of the outer layer, due to its larger area in spherical 

geometry, can become undesirably large. Additionally there are structural 

problems in producing such targets. 

Seeded Targets  

Tidman (149) suggested using "seeded targets", targets 

with small regions of high Z materials within them. The idea behind 

this is that the pne vTe  generated B fields will impede the 

suprathermals. 
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Resistive Inhibition  

As has been seen in section 4.2, resistive targets would be 

expected to perform better at higher laser intensities. Such targets 

require less area mass density than non resistive targets to prevent 

fuel preheat. (experiments suggest 1/3 as much:) Because the resistive 

layer is thicker,there will be a mass penalty in spherical geometry. 

This-  will not be as great as the penalty for vacuum gap insulation. The 

fabrication of low density gold coated microballoon presents no problems 

(150) . 



109 

CHAPTER 5  

Introduction  

In this chapter we discuss the advantages of using total 

energy groups vis-a-vis speed or kinetic energy groups in a multi group 

diffusion model. A model which treats all the terms in the multi group 

equations implicitly is developed. The resulting set of linear equations 

are shown to give positive results for any choice of tiroestep. The 

application of a flux limiter is discussed. The numerical solution of 

the multi group equations using an ILUCG algorithm (Appendix 2) is then 

described and some results are given. Finally we compare our method of 

solution with that of Kershaw (109,122). 
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5.1 The Advantage of Total Energy Groups  

In one spatial dimension or in the steady state the electric 

field; 

E •a t 

J 	ap 
— 	-0.. J (A = —° --7-d(volume)  

u 	
in 1-D 	= 0 - 	= constant = 0 

4a r 	at 

there is no current flowing into the target. Thus A = 0 ). 

The 'total energy of an electron; 

since 

ET  = imevē -.e 0(x,t) 

will change due to two causes, collisions and the time dependence of the 

electric potential. (In the absence of these mechanisms the Lagrangian 

has no explicit time dependence and ET  is a constant of the motion). 

If 	= co(x) then a suprathermal electron will only lose total energy 

but its kinetic energy may increase. 

Fig.5.1 Total vs Kinetic Energy . 

 

Er 

N 

X 
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This suggests that, at least for time independent calculations, 

using total energy as a coordinate may be advantageous. In this case the 

fact that a suprathermal electron may only lose total energy allows us 

to solve the multi group equations one group at a time with a resulting 

great reduction in computational effort. In the time dependent case the 

use of total energy considerably simplifies the coupling between the 

groups and the spatial zones,and consequently simplifies the set of 

linear equations which must be solved. 
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5.2 The Fokker-Planck Equation . Using ET, x, t . and u. as . Independent 

Coordinates  

From Appendix 3 the Fokker Planck equation in an Eulerian 

frame may be written as :- 

'Df 1 	2  Df af 
_ + v u— + a (u — + —(1-u )— = coli at 	ax 	av v 

(5.2.1) 

where x,t, u and v are independent coordinates. 

To transform this equation so that x', t', u' and ET  are independent 

coordinates the following may be used:- 

āx Dx' ax Du  ' ax 4.  at' ax aET 

and similar transformation for the other variables. This gives the 

transformation (dropping primes) :- 

	

a 	-a q 
ax 	ax 	 "ET 

-3u 	au 

Dv 	DET  

at 	at 	at , 

, 
where 	v =(2/m)1  (ET  + e 0)2  

(5.2.1) now becomes :- 



r 
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a f 	.B af 	a f 	~f 	 ~ ;f a 	2 -al - e 	+aumv-- 	+ vu 	-vue— 	t –(1- u ) 	= 
at 	at a 	2ET 	 aEr v 	au 

= collision tern 

using a = -(e/m)(- —) this simplifies to :-
ax 

.af 	a~ af 	af 
e 	v u a t 	at DET 	Dx 

a•(l- u2) 7cf 
= collision term (5.2.2) 

V  

One may recast (5.2.2) into a more convenient form by substituting 

F = fv . This yields :- 

a4) aF 
e— + vu 
at aET 

a F 	4 (1- u 2) - F 
ax + 

Ce/m) 
ax 

F a~ 

 

(5.2.3)  = collision term 

We must now transform the collision term. Using a 

non-relativistic Fokker-Planck equation (Appendix 3) :- 

2sth ` 	2 ~f 	r ne 3 
+ Z ni)--3-- 	((1- n) ) + —5-- 	sth. 

v āu 	au v av 

which transforms to :- 

2 
ln A sth a 	2 of 	r n 

2 e 	v 
+ Z ni) 	3 au 

( (1- u ) 
a 

) + --
e

- –(ln A 	f) 
ET 	sth  

and on substituting f = F/v this becomes:- 
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(Diffusion term) r {ne  + Z2n1) 	-  C  (1- u 2) c  F _ ) 

2 	v 	fu 	cfu v 

r  (Friction term) + 
ne 

m 	(ln n sth  ) v dET  
(5.2.4) 

(5.2.3) and (5.2.4) combine to give :- 

	

a F - a$ DF 	aF 	(1-112)  DF 	.F 	
--  

- e— 	+ v u 	+ (e/m) 	- —(e/m)u 	= 

	

at aET 	aX 	 V 	au dX V 	aX 

r 	2 lnnsth 	2  DF 
2 e+ Z ni) — au  —((1- u )  u) + 

F 
A s ) (5.2.5) 

ET  

Equation (5.2.5) will be used to derive the multi energy 

group equations in the next section. 
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5.3 Derivation of the Multi Total Energy Group Equations  

Making the standard diffusion approximation we use :- 

F =Fo + pFl (5.3.1) 

where Fo and F1 are not functions of u. By definition :- 

+1 	+1 

N fd p F0  , f du uvuF1 
-1 	 -1 

The zeroth moment of equation (5.2.5) gives :- 

aN 	a(1) c()N 	 ln n sth N - 
at e at a 

+ 
~x 

	
= r 

n 	
( 	v 	

) + source 	(5.3.2) e 

The first moment (multiplying by ,v and integrating over , ) 

gives:- 

v3 	Nr 	2 ln n Sth 
a x

( }- _ - 2 {ne + Z nl) v3 	2~ 
3 	v 

(5.3.3) 

where terms of order 1JZ2 , the first moment of the source term, and 

the 	/ 2) t term have been ignored. These approximations have been 

discussed previously (section 2.4) . Equations (5.3.2) and (5.3.3) 

constitute a closed set of equations. Closure was achieved by the 

truncation of the moment expansion of F in Hermite polynomials used 

in equation (5.3.1), it does not depend on the approximations used 

to get equation (5.3.3). These approximations do, however, simplify the 

solution of the multi group equations. 

Equations (5.3.2) and (5.3.3) must now be recast into multi 

group equations. The number of electrons in a cell in the speed range 
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Vg to vg+l is:- 

Ng = f±fd  u J 2 w v2dv f 
v csll 	-I 

If vg, vg+l correspond to total energies Eg, Eg+l then this may 

be reexpressed as :- 

gy`2a 
Ng =J dxf duf — F dET 

cell -1 	E9 m 

dv 
Using dv = 	 dET = dET/mv and F = fv. ~T  

Similarly: - 

ti 	a et 

2w 
0g = dx/d u 	-- F u dET 

Thus: 

and 

27r " 
NdET 

m 
_2w f* 
m 

Using these, and approximating terms of the form J f (ET) 
f  

r Ngf(ET) AET where ET = 1(Eg + Eg+l) and AE = Eg - 

multi total energy group equations become :- 

N dET by 

Eg+l , the 

a N* 	Do N* 	a * 	a 1n A 	N 
g - e--- —g +, - = - I'n n —( sth g) + source (5.3.4) 

at 	at ET ax g 	e aET 

	

.. y3 . a Ng 	I' 	2 	s in A th x 	 =- -(ne +Z ni)  _3  2 t* 

	

3. c~x v 	2 	v 
(5.3.5) 

* 
where Ng rax AE = Ng , tg ex AE = 0g and ox is the volume of 

the cell and Ng and 4g are the total density and flux in a cell 

between the energies Eg and Eg+l. 

cell -I 	r=9 m 
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Equations (5.3.4) and (5.3.5) may be combined to give 

an equation of the form:- 

N 

at + aETS N) + ax '.5; ./) = source 
(5.3.6) 

where 6 can be of either sign. 

This equation _must be solved using fully implicit differencing. 

rt is important that this differencing should ensure the physical 

inequality Ng ? 0 . It is instructive to consider two simplifications 

of equation (5.3.6)..Firstly:- 

3 	N 
—a —(—) = source 

at 3x c2x v 

This is a parabolic equation. It can be differenced fully implicitly, 

in such a way as to ensure positivity and satisfy conservation using 

centred di.fferencing (ie the standard three point scheme). Secondly 

consider the equation :- 

N 

a } ~~3  = 
0 

t  

This is a hyperbolic equation and describes advection of N with 

"velocity" 5. If such an equation is to be differenced.implicitly, 

one sided differencing is required. The differencing should reflect 

the domain of dependence of the equation. Thus the way in which the 

equation is differenced will depend on the sign of a. With such a 
scheme the flux out of a region depends on the density in that region. 

This ensures that the density will stay positive. Our approach to the 

differencing of equation (5.3.6) is to treat the diffusion terms as 

one would treat a parabolic equation and the (a J )ET) term like 

a hyperbolic equation. Figure (5.2) illustrates the mesh which is used. 
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Fr  

x 
1 

Fig.5.2 The Mesh 

Two subscripts are used to label the number of electrons in 

a group and a spatial zone. (This notation is not reflected in our 

computer programme where single index arrays are used for efficiency). 

The electric potential, 4i  , is defined at the centre of each spatial 

zone. For some bins -e4) > F.Z. . There can be no electrons in such a -bin:: 

The diffusion coefficient at the spatial boundary of these bins is 

set to zero. Physically this represents reflection by the E field. 

Electrons will not downscatter into these bins. They will enter the 

thermal population instead. The difference equations allow electrons-  

which were,at one time level, in a bin for which -e4) > ET  at the next 

time level to "advect" to higher total energy. There is a large damping 

associated with the one sided differencing which is used. Such 

differencing, called Leleviers method in hydrodynamics (151) replaces 
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af 	•f + dx a2f 
b 

ax y 
Dx 2 .ax~ 

where the sign depends on the direction of the flow. Thus the advection 

equation is replaced by:- 

Df 	Df v ax D2f 
+v 

at DX 2 x2 

Thus, even'though the downscatter terms for these negative kinetic 

energy cells are zero, there will some density associated with them. 

This is set to zero and the density added to the thermal density. 

The energy that is associated with the electrons in the j' th 

group is 10E. + Ej+l)Ng 
i,j 

. After each timestep the energy lost by 

the electrons in the bins is added to the thermal electrons' energy. 

The details of the differencing scheme for (5.3.6) will now 

be given. Consider a cell in x, ET space. 

xC 
C 

N 

ET Cw • 	~1T 

	

C• 	E • 

•	 

•cE 

   

S 

/IXE 

Fig.5.3 
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Since the potential is defined at the centre of the spatial zones the ---

kinetic energy is defined at the points N, S and C . The coefficient 

, a , is calculated at the W and E points using spatial averaging of 

tEe coefficient between adjacent cells. If the kinetic energy at the S 

point of either cell is less than zero, no flux is allowed between the - 

cells. The flux,. • W , at the W boundary of the ij 
th cell is :- - 

_ N?. - Ni_1,] { 	) 
xi v13 	 i-1, j 

In Cartesian geometry the areas of the W and E faces are 

taken to be 1 of (the scale factors equal 1) and the diffusion 

term becomes :- 

E - W 	1 Ni-1, j 	Nx}i j 	- Nij 	Nij 

tlx~ 	Ax. v~ 	• Ax. 	V. 	A 	v.. AX. 	V.. &X- 
I. 

 

	

 1 1-1,J 	1 	i+I, j 	i 	13 	1 	iJ 	1 

(5.3.7) 

The coefficient, a ,.is calculated at the N and S points. 

The sign of a determines the direction of "flow" at each of these 

boundaries.' The possible combinations of signs of a at N and S are 

illustrated below:. 

Cal 

  

Cal 

N 

S 

 

Cel 

N 

 

 

N 

S 

T 
i 

1 
1 

T 
T 

Fig.5.4 
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AEi  

1 
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First consider case (a). 

The (r) J) ET ) term is differenced as : - 

1 	* 
C Bip1

gi,j+i Bsgi,j)  
(5.3.8a) 

Consider the equivalent expression for the j+1th energy group. That is: 

gi,j+2 BNNgi,j+l)  

The loss in Ngi,j+1  is thus :- 

* 
5NNgi,  j 
	

+1) Ac. 
  +1 axi 

j+1  

Which also equals the gain in gij  from equation (5.3.8a). Thus the 

scheme conserves the number of electrons. 

Case (b) is di fer‘ceā as 

1 	* 	* 

.E1C  B  gi-1,j - PNvigii) 
 (5.3.8b) 

and case (c) as : - 

(5.3.8a,b and c) provide a conservative differencing scheme for the 

()J a ET) term. Equations (5.3.7) and (5.3.8) are differenced at the 

advanced time level, ie fully implicit differencing of these terms is 
N* 

used. — 	is simply differenced as :- 
at 
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N*n+1_ N*n 
gi] 	gij (5.3.9) 

At 

 

Left 

Boundary conditions must be specified 

Fig.5.5 Boundaries of Simulation Region 

Top 

Right 

ET  

N.N  
Bottom 

ICE < 0 in shaded area. 

No flux or free flow may be allowed at the left and right 

boundaries (no flow may be allowed into the region ). No downward 

flux is allowed into the shaded region. No flux is allowed out at the 

top. To achieve this s is set to zero at the top boundary. To maintain 

energy conservation any energy lost because of this is dumped into the 

thermals. Electrons from the lowest bin with positive kinetic energy 

downscatter into the thermals. 

These equations must be solved to update the suprathermal 

density. It is assumed at this stage that the potentials at the advanced 

time level are known. The equations may couple one cell in the x7  ET 
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plane to any of its four neighbours. One cannot solve the multi group 

equations in the standard way (section 2.5). Instead one must solve 

for all the groups at once. This is done by first scaling the equations, 

so the diagonal elements of the resultant set of linear equations are 

all one? and then solving the equations using a quindiagonal ILUCG 

algorithm (Appendix 2) . 
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5.4 Calculation of J and Iteration for .Jtotal.= 0 

In the previous section a description of how the multi group 

equations are solved,with a given electric potential, was given. The 

E field and hence the potential are calculated by the condition that 

= 0. The procedure used to calculate J total'  and to iteratively Jtotal  

determine E , will now be described. 
The total suprathermal current is calculated using the 

expressions for the suprathermal particle' fluxes. These are calculated 

from the suprathermal densities and the potential at the advanced. time. 

(Recall that the assumption that the flux relaxes to its new value in 

a time shorter than the time step has been made). These fluxes are 

calculated at the cell boundaries. 

In the cases which are to be considered, suprathermal transport 

in a partially ( or fully) ionized solid the E field is resistive 

in character (section 3.2). 

In this case we may use a scheme similar to that used in 

chapter 4. Using the simple thermal Ohm's law :- 

Jth = nth E 	 (5.4.1) 

and Jth = -Jsth (5.4.2) 

we can find the E field which would give total = 0 if the suprathermal 

current was unaffected by the E field. The iterative scheme:- 

En}1 =  aEn t (1- a) (En}1) ' 

(5.4.3) 

(Enid) 
' = - Jsth nth 

is used to find the new E field. (Here n denotes the number of 
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iterations). E°  is taken as the value of E at the last time level. 

The choice of a = 0.5 has been found to be satisfactory. When the 

potential developed across the target is small (cf kTSth), a = 1.0 gives 

more rapid convergence. 

The initial choice :- 

= MAX(0.5, exp(e AO /kTsth)-) 

has been used , where AO is the change in the potential across the 

target in the first iteration. 

The E field is defined at the cell boundaries, where the 

current is defined. This is integrated to give the potential at the 

cell centres, which is where it is required for the transport calculation 

The sequence of calculations for one time step is :-

Fig.5.6 

The convergence test requires mIEn}1-- E"I 4 some specified value. 
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5.5 Flux Limiter  

The concept of flux limiting has been discussed previously 

(section 3.6). The expression for the flux (5.3.5) includes E field 

effects. A flux limiter is chosen so that the flux is limited to 

Nv where Nv is evaluated at the boundary between cells by 

interpolation. The Unlimited flux :- 

N 

a 
(--) 
x v 

(5.5.1) 

is modified to :- 

cer - 

v 
(5.5.2) 

1 -3Tc(- ) I 
I = { 1 + 	 ) 
*. a 	1 

Nv  

N and v are the values at the last iteration. If N is zero a = a* 

is used. 
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5.6 Results from the Model  

Number of Groups  

In Figure 5. 7 the energy deposition profile in a Gold 

target is shown for multi group calculations using 5,10 and 15 

groups. Equal group widths were used in all cases. This suggests 

that 10 group resolution is adequate. 

Fig.5.7 Effect of Number of Groups 

Au Target 

-10, 15 

0 

r4 

0 

b 

position 

Comparison with .Monte-Carlo Calculations  

Figures 5.8 and 5.9 shwa comparison of the steady state 

energy deposition in low Z (Hydrogen) and high Z (Gold) targets. 

The former was fully ionized Crth  = 100610 and the latter unionized. 

The boundary conditions were that no flux was allowed through the 

boundaries of the simulation region. In the Monte-Carlo calculation 



MC 

 

H Target 
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reflection boundary conditions were imposed. The source was of the 

form:- 

f(E) = exp (-EJk sth) 

(5.6.1) 

Tsth  =12KeV 

In the Monte-Carlo calculation the particles were initially moving 

in the +x direction. 10 groups equally spaced in the range 10-100 KeV 

were used in the Multi Group calculation. 

The agreement between the two calculatios is better for the 

gold target; as would be expected. 

When the Multi Group calculations-were repeatedIfkthaut a 

flux limiter the calculation for the Gold target was only,  slightly,  

altered but that for the Hydrogen target was greatly changed. 

Fig.5.8 Energy Deposition in Hydrogen 

0 

U,  
0 a, 
cu 

position 
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0 -.4 

0 
a) 

    

position 

Fig.5.9 Energy Deposition in Gold 

The potential calculated using the condition 3total = 0 is 

shown in Figure 5.10 . The target was solid Gold and the resistivity 

was chosen so that a potential of approximately 2KTsth  was developed 

across the target. The two calculations can be seen to be in reasonable 

agreement. 

Fig.5.10 E Field Calculations 

MC 

MGD 
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• 

position 
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Time Dependent Calculations  

The application of the model to time dependent calculations 

has been only briefly investigated. In Figure 5.12 the energy 

deposition profile after a 0.2 ps. burst of suprathermal electrons 

is shown. (The source and state of the Gold target were the same as 

in the steady state calculations described above). The ratio of this 

to the deposition calculated excluding the 30t term is shown in 

Figure 5.11 . This shows that the a va t term will increase the range 

of the suprathezmals when acp/at is positive. 

Fig.5.11 Energy Deposition in Gold 
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Fig.5.12 Ratio of Energy Depositions 
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5.7 Discussion  

A numerical model which solves the multi group diffusion 

equations, with:E field_effects included, in a way which is implicit, 

positive and conservative has been introduced. The penalty which has been 

paid for this is that the multi group equations cannot be solved group by 

group but must all be solved together. 

Kershaw (122) recently reported the successful.-  implimentation, 

in l-D, of a new multi group diffusion model in the LASNEX laser 

fusion code. This has been briefly discussed in section 3.4. 

The solution of a (number of groups, NG) ' (number of zones,Nz) 

quindiagonal system, which is done iteratively, is clearly far more 

time consuming than solving NG  tridiagonal systems of size Nz  . However 

it avoids the inaccuracies associated with the split of calculations 

which Kershaw uses. The use of fixed bins avoids the energy non 

conservation problems associated with the bin-bin mapping. The large 

computing time penalty would, however, probably preclude the use of such 

a scheme in a hydro-code. The efficiency of the scheme could however be 

improved by noting that some region in the x, ET  plane is not connected 

to higher values of Er  . This is illustrated below. 

from above. 
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Another inefficiency in the method described in this chapter 

is that instead of excluding negative kinetic energy bins from the 

calculation the equation 1 NG(negative kinetic energy) = 0 is 

solved. 

For problems where the time step is very large, such that the 

0 ° j) t) term never exceedg the collisional downscatter7  the method 

is ideally suited and is clearly far superior to multi velocity group 

methods for this problem. 

The application of a flux limit using multi total energy 

group methods is more straightforward than for multi speed groups. For 

the former it is simple to flux limit the total suprathermal flux. In the 

flux limited regime the E field and v n terms may be of comparable 

sizes in the flux calculated using speed groups: limiting only the vn 

term is clearly wrong. 

The difference between the fully implicit calculation described 

in this chapter and time split calculations can be illustrated by 

analogy with approximate matrix factorisation. 

The method used in this chapter may be represented by :- 

Fig.5.14 

upscatter 

un+1  un 

diffusion 
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The time splitting approach described by Kershaw (122) and reviewed 

in section 3.4 is equivalent to an approximate factorisation of M of 

the form:- 

Fig.5.15 

(It should be noted that (a) time splitting for the P dV term is 

unavoidable,unless the hydrodynamics is iterated aboutl and (b) the 

() 4 / E) t) term is accounted for separately) . 

An approach used in multi velocity group models (152) is. to 

neglect the E field driving term and to deal with J'E downbinning 

aid upbinnirig in two sweeps through the groups: top to bottom and then 

bottom to top. This may be represented by the following:- 



Fig.5.16 
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N 

It is clear that such approximate factorisation introduces 

errors. If the second applox±nate factorisation is considered the 

sparsity pattern of the product of the matrices is given, schematically, 

Fig.5.17 
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From this it can be seen that exact decomposition corresponds 

to an overspecified problem. In a 2-D hydrodynamic simulation Bean and 

Taming (153) have used a decomposition which is accurate to second order-

in 4t. However due to the large time steps which mist be used in 

supratherrnal transport such an approach does not seem applicable. 
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CHAPTER 6  

Introduction  

In this chapter a one (spatial) dimensional electron 

transport model, which includes electron-ion collisions by using the 

Monte Carlo method1is described. Various methods for calculating the 

quasi neutral E field are discussed and their implimentation in the 

computer model are described. We describe first a variant of a model 

due to Mason (133) which uses "plasma period dilation", the problems 

associated with it and an approach to mitigating these problems. 

Secondly an iterative approach is described. This uses a Newton-Raphson 

method to get Jto  (E) =0. Careful consideration of the effects of 

P:i.C. weighting and interpolation of the E field lead to an efficient 

scheme. 



j 
boundary 

centre 	Ax 
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6.1 Monte Carlo Transport Model  

In this section we will describe all aspects of the model 

except the calculation of the E field. This will be discussed in 

sections 6.2, 6.3 and 6.4. 

The Mesh 

The mesh is. 1-D Cartesian with constant cell size ax. It 

is possible to use a non-uniform cell size but in this case interpolation 

for the density is no longer equivalent to P.I.C. weighting. 

P.I.C. Weighting  

The particle in cell (P.I.C.) method is used to calculate 

the contribution of each simulation particle to the densities in each 

cell. The P.I.C. weighting is equivalent to having a particle, the 

size of which equals the mesh spacing, ax,-and the density of which 

is uniformly distributed throughout this region. 

particle position 

A 	11 	12  

Fig.6.1 P.T.C. Weighting Scheme 
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I'1 The density associated with cell i is (weight of particle)' 	and 
2 	ex 

with cell i+1 is (weight of particle)' 	. This is equivalent to 
Ax 

linearly interpolating the density between A and B . Linear 

interpolation is more readily extended to the case of a non-uniform 

mesh. The P.I.C. method has the advantage, in common with all methods 

which use finite size particles, of reducing noise compared to that of 

a point particle simulation. It has been found (154)  to be preferable 

to Nearest Grid Point weighting for energy conservation. in Vlasov 

plasma simulations. The wider application of P.I.C. methods is described 

by 	rse (i55) . 

Particle Moving  

A leap-fro'g scheme is used to move the particles. It is :- 

x11+1  = x11  + vX  at 

vn+3/2 	
+l/2  - (e/m)En+l/2  i at 

vn+3/2' _ n+3/2 
+ effect of scattering 

(6.1.2) 

nf3J2' = wn+3/2 + effect of scattering 

This scheme is second order accurate andl in the absence of scatteringg is 

reversible. Reversibility is important since non-reversible schemes may 

create entropy numerically. The model for deflection is superior to that 

used in chapter 4 and its implimentation will be described in more detail. 

Particles are not allowed to leave the simulation region. When a particle 

reaches a boundary it is specularly reflected. 
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Calculation of Change in Polar Angle due to Scattering-  

The kinematics of scattering have been discussed bisection 2.4. 

To get the new polar angle, w',we use equation (2.2.6) to give a 

probability distribution for the deflection, e . Due to the 

simple, Gaussian, fonn of the chosen multiple scatter distribution the 

probability distribution can be written as :- 

PCe) =xi'Ce) 

where Po  (e ) is independent of the state of the scattering material 

and the speed of the scattered particle. 

P(0 ) is uniform in the range 0 5 (0<  2w . 

e and 0  are chosen using random numbers. These random numbers:., 

are used to refer to one element of an array, the elements of which have 

been chosen to reflect a given probability distribution function. These 

arrays are generated in a preparatory programme as follows. To generate 

an array whose elements are in the range xl< X < x2  with a probability 

distribution P(x) , the following procedure is carried out:- 

NO 
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The new polar angle w' is calculated using:- 

w' = arc cos(cosw cose + coscp sines sine ) 	(2.2.4) 

E Field Effects  

The deflection due to the E field is calculated using 

w" = arc tan(sin w', cos w' - (eE/me) At) 
	

(6.1.3) 

The E field also changes the speed of the particle. This is calculated 

using:- 

speed' = (speed2  sing  w' + (speed cos w' - (eE/me) At) 2)1 	(6.1.4) 

Look up Tables for Trigonometric Functions  

In the above equations (2.2.4) and (6.1.4) the sine and cosine 

functions are frequently used. Great accuracy is not required in 

calculating these functions sof as a time saving device,look up tables 

have been used. The range 0 - 2w wam split up into 1000 intervals and 

arrays were filled with the sines and cosines of these angles 

0 , 2  a  , sole 999 2w  . To calculate the approximate sine and cosine of 
1000 	1000 

an. angle an integer 

INT = M)D(IFIX(500w ' angle + 0.5) ,1000) +1 

was calculated and the sine and cosine of the angle were equated to the 

INTO  elements of the arrays containing the sines and cosines. 

This results in approximately a 40% saving in the time 

involved in calculating these functions. (On a CDC 6500 using FTN). 
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6.2 Mason's Method  

A method used by Mason (133) will now be described. If Poisson's 

equationiis used to update -the electric field, the time step used in the 

calculation must be less than 0./ 'pe). This is usually less than any 
timescale of interest in a macroscopic simulation. Mason artificially 

expands the plasma period so that it is comparable to the time step 

which must be used when moving the Monte Carlo particles. 

Poisson's equation:- 

V• 	p 

gives:- - 
c7p 

V• c( eE) _ 	= — 
at 	at 

This integrates to give:- 

D
---{ eE) = -J } F(t) 

Ina vacuum J = 0,E = 0 so F (t) = 0 . 

Mason uses:- DE _ 

EN at 
-J  (6.2.1) 

where =M  is chosen so that the dilated plasma period (ne2/ Er,me)-1  is 

a few times the computational time step for particle moving. 

We have used :- 

v ' emE = p (6.2.2) 

This is equivalent to (6.2.1) when eM  is not a function of time. 

Two_factors lead to prefering this to equation (6.2.1). Firstly we wish 

to calculate E at the n+1 time level (see equation (6.1.1)) p but 
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not J is defined at this level. Secondly we wish to chose cm  using the 

local density of the electrons. This will fluctuate, see below, and hence 

tM  is a function of time. 

The E field is calculated as follows. The space rTiarge, P  , 

is calculated in each cell. The integral form of equation (6.2.l) 

Ei -  1  1: . 
cm- j=1 

(6.2.3) 

is used to calculate the E field at the cell boundaries. E = 0 is - 

specified at the first (i = 0) boundary. Since particles do not leave 

the simulation region, E = 0 on the last boundary. 

Let us consider the effect of dilating the plasma period. , 

Clearly this results in a dilation of the Deby e length ; AD  = vt/co 	. pe 

Consider the case of an isothermal plasma with scale length for density 

variation, L . The E field which will preserve quasi neutrality is :- 

	

E 
_ We 	kT 	

(6.2.4) 

	

ene 	eL 

But we Use 

V( CME) = p = -ean 

where cm is the difference between ne  andni. Then :- 

-e 6nL 
E -  	(6.2.5) 

CM  

From (6.2.4) and (6.2.5) :- 



anoise 
	

L2 

dnsc 	(n( X D 	}S)) xD 
mod 	mod 

(6.2.7) 
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dnsc 	EIF 1 (C A D)mod) 
2 

n 	nee2 L2 	L2 

(6.2.6) 

where anso is the space charge density which would give the quasi 

neutral E field. 

One also has to consider the effect of shot noise (i56). This 

will give, at best:- 

noise _ 1 

n 	nD 

nD is a generalisation of the Debye number for finite sizes particles. 

nD = n(XD }S) 
mod 

where S is the size of the particle. This is equal to the mesh spacing 

for P.I.C. area weighting. This gives :- 

n 

snoise = 	 1 

(n(a~ 	4' S ))2 
mod 

AD 
as ōnsc = n.---  

L 

For a useful quasi neutral simulation one requires that both:- - 

ōn 

n « 1 (6.2.8) 



n 
(n( A

D 	+ S))2 	an 
(6.2.11) 

mod 

dnnoise  

dnsc 

1 
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and •- d%oise  « 1 
an 

(6.2.9) 

Using  (6.2.9) put an = dnsc  in (6.2.6), which gives:- 

x 2_ 

dn 	Dmod 

n 	L 
(6.2.10) 

This is the usual condition for quasi neutrality to apply,.but with AD  
replaced by AD 	. Then from (6.2.7) : -  

mod 

Suppose we wanted ( dnnoise f ansc) 

require n( An 	t S) = 104  . This 
mod 

next section we describe an attempt 

= ( dn I n) = 0.1. This would 

is an undesirably high number. In the 

to minimise  this problem. 
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6.3 Modification of Mason's Method  

An attempt to reduce the prohibitive requirement on the number 

of simulation particles needed,isf Mason's method is to be used,is described 

in this section. This attempt was unsuccessful and was abandoned in favour 

of the the method described in the next section. 

The approach to the problem was to reduce the noise level by 

damping oscillations at the dilated plasm - period. In doing this the 

distortion of phase space should be minimised.. This may be achieved 

by letting "artificial collisions" act only on one component of the 

particles' velocities. The difference between this and using simple 

collisions is illustrated below. 

initially 

J=0 

 

after "tensor" artificial 
collisions v 

after simple artificial 
collisions 

Fig.6.3 Comparison of Tensor and Simple Artificial Collisions 
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These collisions will remove the energy associated with the 

centre of mass velocity of the electrons from the system. If energy is 

to be conserved this energy would have to be added back into the electrons. 

The artificial collisions may be effected in two ways: 

(1) By acting on each particle so that its camponent of velocity in the 

one spatial dimension being considered is changed so that the local 

electron cantre of mass velocity is reduced. That is 

) (yl  ,11  &tv„ (x))_ 	(6.3,1) 

(2) By modifying the equation for the E field so that a damping term is 

introduced. This is prefered to the first method since it requires less 

computational effort. 

Equation. (6.2.1) was replaced by :- 

ap 
V ;E = P t a 

at 

This is equivalent to :- 

E M  E =J. + a āt 	a t 

(6.3.2) 

(6.3.3) 

The motion of the simulation particles may be approximately described by 

the Ohm's law :- 

e2n 	eVP 
(E - 	e) 

me  
(6.3.4) 

Using equations (6.3.3) and (6.3.4) and neglecting the We  term 

we get :- 

2J -e2n 	J 
( 

a t 	( e 
o)  J '4' a r 

e 	t) 
(6.3.5) 
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where dO includes the effect of both artificial and real collisions. 

Frau equation (6.3.5) it can be seen that the plasma oscillations may 

be damped. A proper investigation of the stability of such a scheme 

should involve the analysis of the set of equations (6.3.3), (6.3.4) and 

c~ n 
+ V • (Jl-e) = 0 	(6.3.6) 

t 

Instead of this the stability of the solution of equation (6.3.5) was 

considered; a far simpler task. At this point it is necessary to consider 

the analysis of the stability of non-Hermitian finite difference operators. 

Stability of Non-Hermitian Schemes  

Consider the finite difference scheme :- 

L un = un+l I- (6.3.7) 

where un is a vector of length (number of variables) . • (number of 

meshpoints). If the spatial dependence of the solution is accounted for 

by expanding the state vector, u , in Fourier modesl.the equation for each 

mode is :- 

L2 
t nn (k) = un+1(k) (6.3.8) 

where u(k) is a vector of length equal to the number of variables. If 

L1, L2 are Hermitian then the u can be expressed as the sun of 

eigenvectors of the L. ie:- 

un = E aici 

If theci are used as a basis then the operator L becomes :- 



xi 
A 2  

A3  

Fig.6.4 

where the xi  are the.eigenvalues associated with the ci  . 

The magnitudes of the error vectors before and after a time 

step En, En+1  , where En  = E c.ai  are given by :- 

lEn l  =(E ai) 

En}11 = ( E  ( xiai)2)1 

and the stability requirement is :- 

A i  G1  for all i (6.3.9) 

This is the von Neimann stability condition (157). 

This condition is necessary, but not sufficient, for proving 

the stability of a non-symmetric scheme. A practical method for assesing 

the stability of such a scheme is given by Buchanan (158,159 ). This 

requires that the matrix, L, be transformed into an upper triangular 

149 
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matrix by a unitary transformation and its eigenvalues nested ie: - 

IX r -a(~k lx i -Xm l 	if 	(k constant) 

where the triangular matrix is :- 

x1 
~2 

b.. 
1.3 

Fig.6.5 

A sufficient stability condition is then :- 

I bij I _< k Max( 11 -x i l , 11 -x i s , Ixi - ail ) 	 (6.3.10) 

Application to Equation- (6.3.5)  

The use of leap frog particle moving,and the calculation of 

the E field by equation (6.2.2),means that the solution of equation (6.3 

(6.3.5) is analogous to the solution of:- 

Xtt f axt +w 2x =0 (.6.3.11) 

by the scheme:- 



(0  2 

0 0 

06.3.171 
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x
n1 

= xn +Vn+1/2 At 

(6.3.12) 

vn+3/2 = vn+1/2(1- aAt) - w2 Atxn+1 

This may be reexpressed as : 

wxn
+1 	

Z 	w At (uxn 

vn+3/2 	-w At 	1-a At- w2 At2 	1711fl/2 (6.3.13) 

The eigenvalues of the matrix in equation (6.3.13) are given by :- 

•w2At2 + aAt 
A = 1- 	 

2 

 

1 

i(4w2At2-w4A~4-2w2At āAt-a At2) 2 /2 	(6.3.14) 

 

if 4w2At2 w4At4+ 2At2aAt•+ZC2At2 (6.3.15) 

2 2 w A +a At 
and:- = 1- 	

  (a2At2
+2w2At2aAttul4At4-4w2At2) /2 (6.3.16) 

2 

otherwise 

In the former case (xx *)1 is given by (1- aAt)1 . 

The inequality (6.3.15) implies that:- 

aAt <. -w2At2 + 2wAt 

so that 	aAt S 1 

For wAt « 1 and degenerate eigenvalues we must have a = 2w ; the 

condition for critical damping. The choice wAt = aAt = 1 gives a 

singular matrix the square of which is a null matrix. 

The choice wAt = a.At = 1 gives a matrix which is unitarily 

similar to :- 
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and the choice o, pt = 114 , a of = 1/2, a matrix which is unitarily similar 

to :- 

(23 -(17)1)/32 	-0.525 
(6.3.18) 

0 	(23 1-(17)21/32 

from which it can be seen that both schemes are stable. 

Numerical Experiments  

Guided in the choice of a by the analysis of the solution 

of (6.3.5)/numerical experiments using equation (6.34) to determine 

the E field were carried out. The following cpnclusions were reached. 

(1) The energy misconservation )with or without the damping temp) is bad 

for wet-1. wet = 0.25 gave good results. 

(2) For v/w = XD  « Ax (the mesh spacing). The current fluctuation was 
mod 

damped. This however makes it difficult to satisfy equation (6,2.7) and 

and also places a great limitation on the timestep. 

(3) Using X Dmod ax , L = (few)* ax and a= 2w/it was found that the 

inclusion of the damping term did not noticeckbly reduce the level of 

fluctuation. Some factors which may have caused this are:- 

(A) The propagation of the *plasma waves 

(B) The small damping over a single period included by equation (6.3.16) 

(C) The effect of E field interpolation and P.I.C.weighting. 

Because of this failure the attempt to use a modified form 

of Mason's method was abandoned and a new approach was developed. This 

is described in the next section. 
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6.4 Iterative Method  

An iterative 

J = 0 is now described. 

each cell boundary will 

However if the timestep  

method of finding an E field which gives 

In general the current which flows through 

depend on the E field at all the cell boundaries. 

is sufficiently short this is not the case. 

   

X 

 

    

    

 

A 	B 

 

C 	 D 

 

Fig.6.6 Position of Particle Centres 

Particles A and E will not affect the current at 1. Particle C will 

have a greater effect than particles B and D because of the P.T.C. 

weighting. Moreover-,because of the interpolation used to calculate the 

E field acting on a particle the E field at X will greatly affect 

particle C, have some effect on particles B and D and none on 

particles A and E. 

Consider the case:- 

B. 

& 

1 
Ei  

  

  

   

uniform density of particles 

Fig.6.7 
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with At <:< Ax/v 

The E field at P is:- 

ax - 1 	1 

E =Ax 
i + 1-1 

Thw. weight of the particle, with respect to the i cell boundary, is :- 

Wp  = 

 

AX 

We wish to calculate the effective E field at i, that is an E field 

ingluding - the effect., of weighting and interpolation, which are used to 

calculate the current (section 6.1) ; 

fWE p  dx 
Ee f f = 

 Wp  dx 

where the integration is over the cell either side of the i boundary. 

This gives :- 

1 	2 	1 

Eeff = 6 i-1 } 61 } 6  1 6  
(6.4.1) 

When the particle density is approximately uniform (ie when 

L/ x >> 1 (L = n/v n) and vat ax) we .would expect JAEe f f  to be 

approximately independent of 
aeff , that is :- 

oJ = constant ' 
AEeff + small non-linear part. 

We exploit this by using a discrete Newton Raphson iteration to obtain 

J,( AE. i 	
) = 0

; 
eff 

n+1 
AEeff = 

Jn  
(6.4.2) 

C DJ 
. )n  

aEeff  
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where n denotes number of iterations. 

For the first value at the first timestep oto  ()JJ Eeff) we use 
J net  

E 
t me  

net  
dT ^- 

 
åt 	eE 

me  

The first value of E at a timestep is taken as the last value of 

the previous timestep. Because of the finite At which must be used 

( vet = 0.25 ox for instance) there would be some noise associated 

with calculation of () JJ) Eeff)  . The condition that (c7 JJ D Ee ff
) may • 

not change by more than a given fraction in any step is imposed. Once 

AEeff is known the _E field is updated using:- 

1 	2 	1 
6 AEi-1 } 3 AEi } 6 °Ei}l =Eeff 

f _ f 
Ei

l 
 i AE. 

E1- = Ek41  = 0 for a mesh kith k cells. 

Equation (6.4.3) is solved for the Ei's using a. modified version of 

the subroutine TRIDIAG (written by D.E.Potter). 

The iteration for;  E is terminated when E J1  is less than 

some given value. 

Examples  

The results of numerical calculations using equations 

(6.4.2, 6.4.3, 6.4.4) will now be presented. In these examples vat 

was 	- ix and the ratio of the scale length, L , to ax varies 

between a and 2 . Collisions were not included. The convergence of the 

calculation of the E field and the variation of the electrons' kinetic 
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energy are illustrated below: 

Fig.6.8 Convergence of Iteration for the E Field 

2 

iterations 

Fig.6.9 Changes in Electron's Kinetic Energy 

loo.o$ Pc- 

XX x X ~ ~ '` x 'AXX*?‹ 

99.5%  

time 
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Frc x iiese _examples i % can be seen that typically four iterations 

are required for vot = (1/4) Ox. Thus a total of sixteen moves of each 

particle are required for a time given by x/v . There is the 

additional disadvantage, compared to a non-iterative method, that the 

coordinates of each particle must be stored before and after an iteration, 

thus greatly increasing the storage requirement. The value of At used by 

Mason (133) is zit  == 0.2 (x/) so this method would seem to be 

competitive. 

Possible Improvements on. the. Calculation of. •Eeff 

The calculation of Eeff  described above uses the assumption 

that the density of adjacent cells is approximately the same. Some 

improvement could be gained by using :- 

-l-I + 	}n - ) + 15-;E' 1r1' -  

Eeff - 

 

(6.4,5) 

 

7- (ni-1}ni) 

Alternatively one may use a formulation which will give exact results 

in the limits t —► 0 and no collisions. That is :- 

E
eff. 	z W 

where the sums are over all particles in the two cells next to the ith  

boundary. 
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The Method of Calculating the Current  

Since the current is not exactly zero after each timestep, 

departures from neutrality will occur. These may accumulate as the 

simulation progresses. This is prevented in the following way. 

The current could be calculated using the continuity equation. The 

integrated finite difference form of tfi,`s is : - 

J = (E cA ..p j) axj)J tit 
i 	j=1 

(6.4,6) 

where n denotes the time level, 

IfJi = 0 for all i then the space charge density is -maintained at 

its previous value. If at each timestep J== 0 is achieved then the p1.1 
should be small compared to thepn}1 at the start of the iteration. 

j 
The error in calculating the current using 

Ji
~ 
= (E p7}1 axj)J At 

j=1 
(6.4.7) 

will be small. The E fields which make Jl and Ji zero for all i 

will be approximately equal. However using J instead of J in the 

calculation of the E field means that achieving J = 0 restores 

neutrality. Thus equation (6.4.7) is prefered to equation (6.4.6) in 

the E field calculation. 
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6.5 Possible Application  

In the previous section the development of a quasi neutral 

Monte Carlo particle model has been described. In this section the 

possible applications of such a model will be discussed. 

Hybrid Model  

A hybrid model has been described by. Mason (132) in which the 

suprathermal electrons are represented by Monte Carlo particles and the 

thermal electrons by a fluid description. The model has been used to 

study the effect of the suprathermal current on thermal transport. The 

method described in the previous section could be used in place of 

Mason's method for calculating the E field. Since the timestep which_ 

may be used for particle moving is restricted, by the range of validity 

of the multiple scattering distribution, to At E 0.1 (X,r/2  /v)  

it is desirable to be able to treat the lower energy thermal electrons 

by a fluid description. However simulations in which both suprathermal and 

thermal electrons are described by Monte Carlo particles have been 

described by Mason 0.33). 

Due to the timestep limitation mentioned above and the 

comparative economy of using a multi group diffusion model., a duel 

treatment for the suprathermal electrons,in which the less energetic 

suprathermals are treated by a diffusion model and the more energetic 

ones, for which flux limited diffusion would be used, by a Monte Carlo ._; 

model,is attractive. Such an approach seems feasable for solving steady 

state problems discussed in chapter 4. For the case of a time dependent 

model there are the disadvantages that.- 

(1) The timestep which must be used for the iterative determination of 

the E field (section 6.4) is very small so that the multi group 

equations would have to be solved many times in a simulation; this may 

be prohibitively expensive. 
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(2) Since the E field can raise the -energy of the diffusive suprathvrenals 

the coupling between the diffusive and non-diffusive suprathermal classes 

will be more complicated than when no E field is present. 

Energy Loss in the Corona  

The method of calculating the E field, described in the 

previous section, may be used to obtain Je  J. if ion motion is 

included. It may be possible to model energy transfer between the 

electrons and ions in the corona through the J'E term. 
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CHAPTER 7  

Conclusion  

The work described in this thesis has led to three achievements:--._ 

Firstly:the development of a computer programme which can be 

used to investigate the effect of a resistive E field in inhibiting 

the flow of suprathermal electrons in a solid target; This programme has 

been used to design experiments in which the resistive E field plays an 

important role and has been used in the analysis of these and other 

experiments. 

Secondly: the treatment of E field effects in a multi group 

diffusion model has,;;. been investigated. A multi total energy group model 

has been implemented. Its superiority over kinetic energy group models 

for time independent calculations is obvious. Time dependent problems 

have been treated but in this case it is no longer possible to solve 

for each group separately,and the direct solution of the equations 

generated by fully implicit differencing is time consuming. This may 

preclude the use of this method in a hydro code. 

Thirdly:the calculation of the E field in a quasi neutral 

particle simulation is considered. A method due to Mason has been 

discussed and has been contrasted with an iterative solution. The latter 

can be competitive with Mason's method. 

Further Work  

The work described in chapter 4 is woefully incomplete as the 

effect of suprathermal energy loss in the corona is omitted. The 

implementation of a suprathermal transport model which treats E field 

effects in both the core and the corona is a worthwhile goal. E field 

calculations in the corona are however plagued with difficulty. 
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The models -for suprathe' mal transport described in chapters 

5 and 6 may also be applicable to the more complicated problems of 

non-thermal electron energy transport. The inclusion of coupling between 

one group and a group of both higher and lower energy in the multi group 

model would allow electron-electron collisions to be -modelled. A crude 

model for electron-electron collisions C160) may be included in a 

quasi neutral particle simulation. 
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APPENDIX 1  

The incomplete Cholesky conjugate gradient method, ICCG, was 

developed by Meijerink and van der Vorst (161) and has been investigated 

-and popularised by Kershaw (162). This appendix gives a brief description 

of the ICCG method and gives the algorithms which can be used with a 

LDLT approximate decomposition, which were not explicitly stated by 

Kershaw. 

The conjugate gradient method is described in (163,164). It is 

an exact method for solving the matrix equation:- 

Mx = 

where M is symmetric and positive definite. 

It takes n steps where n is the order of the matrix M. If M has 

degenerate or clustered eigenvalues, as it will if M is an approximate 

identity, it is found that (xi -xi J (x( 	can be small for 

i « n. xi is the approximation to the solution x after i steps. 

The matrix, M, may be modified so that it becomes an 

approximate identity. 

Since M is symmetric and positive definite?the most 

efficient form of elimination is Cholesky decomposition (165). If 

M = LLT (where L is a. lower triangular matrix) then: - 

i=1 
Lii = (mil _'~` Li k)1 

 
i-1 

Lii = M 	ELjkLik / Lii 
k=1 

j = i+1, 1+2, ... n 

Alternatively if M = LDLT (where D is a diagonal matrix) then:- 
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i-1 

Lj1 = Mji - ~Lj.& ijDkk 
k=1 

j = i, i+1, ... n 

-1 
Dii - Lii 

This decomposition avoids the square root. In an incomplete Cholesky 

decomposition a sparsity pattern is forced on L; ie a set of inatrix 

elements, P, are chosen to be zero and,ās (A1.1) or (A1.2) is applied 

when Lij turns up with (i,j) in Pl it is set to zero. The simplest 

choice of P is:- 

P ={(i,j) 	Mij 	0 

This choice is refered to as ICCG(0) in C162). If Lii = 0 the 

algorithm breaks down and if Lii < 0 LDLT is not positive definite. 

To avoid this if Lii < 0 turns up,it is set to a small positive value. 

This introduces an additional error into the approximate decomposition 

of M. 

Thus one obtains M = LLT (or LDLT) so L-1M(LT) 71 

(or (LD) IM(LT)-l) is an apprnxjmrite identity matrix. For LLT ' 

decomposition the matrix equation can be modified to:- 

(L 1M(LT) -1) LTx 
 (AL3) 

.The conjugate gradient method would be expected to perform well on 

this problem. The recursive relations for the conjugate gradient 

method become:- 
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r° y - Mx° 	po = (~T) -1ro 

ai = (Ti,. (LLT) -lri) / (p1,Mp1) 

x
i+1 

= xl'+ a1 pi 

ri+l = ri - aiMpi 

bi = (r1+1, (LLT) -1ri+1) I (r', (LLT) -1ri) 

P
1+1 

= (LLT) -1r
i+1 + b'P1 

If LDLT decomposition is used the appropriate relations are:- 

r° = y Mx°. ; p° = (LLT)-1r° 

al 
= (ri 

(LL ) -Iri) / (pl AM(LT 
1 

D 1LT) pl) 

xl = xi + a1(LT 
1D 

1LT)pi 

r
1+1 

= ri - a1M(LT 1D 1LT)2i 

bi (ri+l , (LLT) -lri+1) / (ri, (LLT) -1ri) 

2i+1 = (LLT) -lri.+1 + by 

(A1.2) and (A1.5) were used to solve problems in which the matrix, 

M, was quindiagonal. 
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APPENDIX 2  

ILUCG 

A generalisation of the 'CCG method for arbitrary non-singular 

sparse matrices has been given by Kershaw (162) .The solution of the 

matrix equation :- 

Ax = z 

where A = LU 

can be achieved using the recursion relations:-- 

ro y - Ax 

po = (UTU) 
-1AT 

(LLT) -1r-o 

ai = (ri, (LLT) -lri) / (pl, UTU pi) 

xi+1 = xi + ai-i 

bi = (?'i+1, (LLT) -1 ri+1) / (ri, (LLT) -1 ri) 

21+1 = 
(UTN -1 AT (LLT) -l

ri+1 
+ 
b 121 

The LU decomposition which is used, for quindiagonal 

matrices, is now described. Let the approximate factorisation of A be 

as follows: 

Fig.A2.1 
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then an approximate factorisation is given by:- 

bk  = Bk  

Ck  Dk  

dk + bkf  k-N + ckek-1 = Ek 	(A2.2) 

dkek  = Fk  

dkfk = Hk 

,where the subscript labels the roar. (A2.2) can be solved to give the 

quantities on the left hand side. There will be rounding error problems 

if the diagonal elements of the matrix, A , are very small or very 

large compared to unity. 

(A2.1) and-(A2.2) were used in a quindiagonal matrix 

inversion package. This is been used in the 2-D Eulerian code, 

LASERB , (166) in place of the strongly implicit procedure (167), for 

the fully implicit solution of the electron temperature equation. It 

has also been used to solve the multi group equations encountered in 

chapter 5 of this thesis. 
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APPENDIX 3  

This appendix gives the Fokker--Planck equation for 

suprathermal electrons interacting with a thermal background. The 

equation is given in 1-D plane, cylindrical and spherical coordinates. 

Consider first the Vlasov equation :- 

f 	af 	Df — + v 	+ a' 	0 
at - ax - av (A3.1) 

Following Wienke (168) (who gave transformations for the force 

free transport equation in accelerating media) we get the following:- 

Slab Geometry 

2f 	6f 	 1 2 .7cf 

at +vu
ax + ū 

GI + Cl-u )) = v o (A3.2a) 

where u = v'xIvx v= Cvx +vy4'vZ) 

Cylindrical Geometry  

f 	6f 	v2 	(v'r*) 2.. 	2f 	. caf a 2 C) 
+vu 	+ (---7 - 	4!3 	) 	+a 	 +_(1-u 2) 

-a t , 	ar 	VT 	r .3 • 	
~u 	u av v 	au 

(A3.2b) 

0 

* * 
where r = xex •+ yey 	; and u = v'r /vr 

Spherical Geometry 

	

f 	-Df 	v 	v- u2 af 	c7f a 	2 ~f 
+vu 	+ (-- 	) 	+ a 	+--(1-u ) 	=0 

	

āt 	Dr r 	r au u av v 	~u 
(A3.2c) 

r'v 
where u 	and r=xe- } ye i-zez 
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The Fokker-Planck Term 

The form of the Fokker-Planck term derived by Rosenbluth, 

MacDonald and Judd (169) is, for electrons:- 

)f 	H. 1. ~2 	~2G. _ { 	 t -----: 	1 Ī ~~ r - 	(f ) 	 Cf 	) ōt 	 v 2 av~v av~v 

4r e4 
Where r 	 lnA 

(47rc ) 2me 

Hi = E e Z Z f  J -2 	 j  dv2 

me 	iv v2j 

and 
G. = E Z~ f f(v2)  iv -  v21 ln A j dv2 

J 

This has been used by DeIcrt.trez and Goldman (108) to derive a 

Fokker-Planck equation for a small number of suprathermal "test particles" 

which do not interact with each other, but only with a background thermal 

plasma. Equation (A3.3) then simplifies to :- 

	

~c f 	 fv 	r 	 v2I-vv Df 
) c = r ne . (ln A sth-3) + —(nef Z2ni) C . (ln A st(-) 

	

t 	c~v 	v 2 	 v 	v uv 

(A3.4) 

.XD  where 	ln A 
sth 

= ln( 	) 
A DeBsth 

If v and u = (v'x/vx) 	are used as coordinates this becomes:- 

r 	2 	1nA st 	2 Df 	r ne 
—(ne} Z ni) ~— --((1- u )-5-71 ) } —2 — (ln A sth f) 2  	v ~v 

(A3.5) 
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