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ABSTRACT

This thesis describes an investigation of fast electron
transport in solid targets using, primor:ily, mumerical simulation.
The role of the electric field, which drives the thermal return
current, is stressed. :

Both Monte-Carlo and Multi Group methods have been
employed. In the latter total energy has been used as a dependant
parameter.

Simulation results which show a large inhibition of fast
electron transport in targets containing a low density Gold layer
are presented and a comparison is made with experimental results.

The calculation of the electric field in quasi-neutral
particle similation is discussed apd a number of methods are

compared.



1.1
1.2
1.3

1.4

1.5
1.6
1.7
1.8
1.9
1.10

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1 .

3.2
3.3

CONTENTS
Abstract
Contents
Symbols
" 'CHAPTER 1
Introduction

Fusion Power
Inertial Confinement
Absorption and Scattering of Laser Light
Radiation Forces
Magnetic Fields
Thermal Transport
Suprathermal Electrons
Fast Ions
Fluid Instabilities
Radiation Transfer
" 'CHAPTER 2
Introduction
Energy Loss by Suprathermal Electrons
Deflection of Suprathemmal Electrons
Spencer's Range Calculations
Monte Carlo Calculations
Multi Group Diffusion -
The Py Method
The Sy Method
" 'CHAPTER 3
Introduction
The Suprathermal Approximation
Core and Corona

Fluid Models for Suprathei.al Electrons

10
12
14
15
18
20
22
23
24

25
26
29
33
35
40
45
47

50
51
52
55



3.4
3.5
3.6
3.7

3.8

4.1
4,2
4,3

4.4

4.5

- 5.1
5.2

5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5

Multi Group Models

"Monte Carlo Models

The Flux Limit
Analytic Work
An Extension of Shkarofsky's Work

CHAPTER 4
Introduction
The Experiment of Hares et al
The Role of Resistivity
Details of a Numerical Model
Application of the Model to the Design and
Analysis of Experiments
Resistive Targets and Target Design

' 'CHAPTER 5§

l‘ntroduction
The Advantage of Total Energy Groups
The Fokker-Planck Equation using ET, x,t and
as Independant Coordinates
Derivation of the Total Energy Group Equations
Calculation of J and iteration for J, c;»tal': 0
Fhx Limit
Results fram the Model
Discussion

CHAPTER 6
Introduction
Monte Carlo Transport Model
Mason's Method
Modification of Mason's Method
Iterative Method

Possible Applications

61
67
68
71
75

78
78
82
84

101
106

109
110

112
115
124
126
127
132

137
138
142
146
153
159



Acknowledgements

References

CHAPTER 7
Appendix 1
Appendix 2
Appendix 3

161
163
166
168
170
171



SYMBOLS

Vector Potential
Atomic Number
Bohr Radius

[V

Magnetic Field

o W

Impact Parameter

(g}

Speed of Light

t

Electric Field

t

Energy .

Debye Energy

&

3]
e o]

Fermi Energy

Ionization Energy of Hydrogen
Proton Charge

Electron

Distribution Function
Planck's Constant

Flux

Intensity

Average Ionization Energy
Current Density
Boltzmann's Constant
Scale Length

Coulomb Logarithm

=2 E: (o e T = T o T = A o S ¢ ) ;f“

Mass

m, Electron Mass
n Number Density
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nuc Nuclear
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Path Length
Space Charge
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Temperature
Time
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velocity
Ion Sound Speed
Position
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Position
Time Step
Mesh Step
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Angle
Wave Length
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Energy Loss Mean Free Path
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o} Conductivity

T Time
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0 Angle

o) Potential

Q Angle

w Frequency

w Electron Cyclotron Frequency
w Electron Plasma Frequency

w Angle

Units

S.I. units are used unless otherwise stated.



CHAPTER 1

Introduction

In this chapter we introduce the concept of laser driven
inertia1,confjngmént‘ﬂsf@h. The physical processes involved in the
absorption of the laser energy and in its coupling into the

hydrodynamic motion of the target are discussed.

1.1 Fusion Power

The study of laser target interactions is motivated
by the desire to produce power by controlled thermonuclear fusion.

The reactions which will be used in a fusion reactor are:-

D + T—sTHe(3,5 MeV) + n(14.1 MeV) (1.1.1)
or

D + D—=T(1 MeV) + P(3 MeV) (1.1.2)
and ‘

D + D—+He(0.8 MeV) + n(2.5 MeV) (1.1.3)

The ignition temperature, the temperature at which the
radiation loss equals the rate at which power is produced by fusion
reactions, is 4 KeV for D-T and 35 KeV for D-D.

| If a reactor with efficiency of 33% s to extract more
energy than is needed to heat the plasma and supply the radiation
losses then the density-confirment time product (nr) must exceed

§ 1020 m-3

1022 =3

sec for DT
sec for DD

This is the Lawson Criterion (1).
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1.2 Inertial Canfinenent

"In ipgrtial §onfinemeﬁt fusion the confinement time, f,
is determined by‘the—therma1 velocity of the OT at ignition
temperatura, For a sphere of OT radius R density p the Lawson
criterion becomes

2

3 kg (1.2.1)

p R>10

where r has been replacad by R/ Vth

(ignition)

The energy required for such a scheme would be in excess
of 100 MJ (2) for a salid dénsity targat. This.requirement on the
energy which must be supplied can be vastly reducad if ccmoression
to 104 times so]fd OT density is achieved (3).

Several "drivers" have been proposad for nign density_
[.C.F. : Tasars; elactron beams; and neavy and light icon beams. The
relative merits of thesa drivers is discussed oy Mead . (4), In wnat

follows only laser driven I.C.F. will be considerad,

Ablation
The absorption of the Taser energy causes the surtac2 of the
target to burn away (ablation). This causas the bulk of the target to

be accelerated by the "rocket effact".

d
—M(IV(t))
dt

4’,

[RRRRRN

Fig.1l.1l Ablative Acceleration
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This problem has been studied by Bruckner and Jorna (5),
using an isothermal model in plane geometry, who give the energy of the

accelerated target as :-

3 M(t) V() 3 M(t)  (In MM(t) )P (1.2.2)
Epbs MO_M(F)

where MO is the initial target mass.

The maximum energy transfer is for MO/M(t) ~.5, Thus for a
given laser energy it is more efficient to burn away a large mass of
material with a small exhaust velocity than to burn away a small mass
of material with a Targe exhaust velocity. The exhaust velocity and
mass ablation rate have been measured and their scaling with laser

wavelength determined (¢).

Compression

The maximum density ratio which may be achieved in a
spherical compression with a strong shock is, for a perfect gas with
Y=5/3, 33 (7). This dissapointingly low figure is a result of the
increase in the entropy of the material which is to be compressed
by shock heating, Kidder (8) has shown that a shock free isentropic
compression minimises the work, and hence the laser power, for a given
compression. Such an optimised compression requires an energy

deposition rate given by :-
E(t) ~ 1/(t-7)° (1.2.3)

where 7 is the pulse length and s =~ 2,
Fraley (g9) shows that high compression may be achieved without the

pulse shaping implied by (1.2.3) if the DT pelle: is siurrounded
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by a high density shell. He also discusses the advantage of using a
target with a central void. This is also discribed by Kidder @0. A
conceptal high gain fusion target is described by Emmett (1).

In the remainder of this chapter some of the physical

processes relevant to laser driven I.C.F. will be discussed.

1.3 Absorption and Scattering of Laser Light

There are many absorption mechanisms. Inverse Bremsstrahlung
and resonance absorption, which dominate at low and high intensities.

respectively, will be discussed.

Inverse Bremsstrahlung

Inverse Bremsstrahlung is the absorption of a photon By an
electron in the presence of an jon (ie the inverse of Bremsstrahlung

radiation ). It may be represented by.:-
hw + e”(energy E) + A* —= e”(energy E+hw) # A~

A simple expression for the absorption coefficient is (12

2

V.« w
K, = e? - pe (1.3.1)
¢ (1-%) (vl |
wpe

This assumes the heated plasma stays Maxwellian and that

Vipe The case where the speed dependence of Yai leads to

univer<<
preferential heating of the cooler electrons and the formation of a
sub-Maxwellian distribution is discussed by Langdon '03 ). It dis
ineffective as an absorption mechanism in high intensity irradiation -

of Tow Z targets (for M as 2 Tu). However for lower irradiance of high

Z targets (14) and with shorter wavelenghts (15) it can be an important
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absorption mechanism.
Colombant and Manheimer (16) show that ion accoustic
turbulence may lead to an anomalously high collision frequency which

will increase absorption.

Resonance Absorption

If EM radiation is incident on a plasma with a density
gradient at an angle 8(#0) it will be turned round before it reaches
critical density. If there is a component of the E field in the plane
of incidence an evanescent wave will excite a plasma wave at critical
density. The optimum angle for resonance absorption is given (17) by

2/3

(2i/n, )3 sin%s = 0.6 (1.3.3)

where L 1is the density scale length,

plasma
wave -

cos 6

Fig.1.2  Resonance Absorption
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The energy deposited in this wave is transfered to the electrons as the
wave damps. 2D electromagnetic particle simulations (18,19) show that
a small number of electrons are accelerated to high kinetic energies,
many times the thermal energy, by this process. A-feature of this process
is that the suprathermal electrons so produced may be characterised by
a temperature. This has been explained by considering the random nature
of the resonance field (20 ), A steady state B field (21) or rippled
critical surface (22) can lead to resonance absorption even at normal
incidence. |
Analysis of the angle and polarisation dependgnce of laser
light absorption (23) at high intensities (10]9-1020 Wmfz) shows
resonance absorption to be the dominant absorption mechanism in these

cases.

Other absorption mechanisms are: Stimulated Compton scattering
(24) ; the oscillating two stream instability (25) ; the parametric
decay instability (26) and the two plasmon instability (26).

The laser light may be backscattered by stimulated Raman (27)

or Brillouin (28) scattering and may also be specularly reflected.

1.4 Radiation Forces

Radiation (ponderomotive) forcesiare the forces in a medium
which are a consequence of the radiation field in that medium. They were
first discussed by Landau and Lifshitz (29), and haye been discussed
in the context of R.F. confinement by Motz and Watson (30).

A simple model based on single particle motion in a

sinusoidally varying E field (31) gives the time average non-linear

force as :-

E D2 f
By = —c1--;)‘vciﬁms) (1.4.1)
[o]
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In a more complete analysis (32) the total stress tensor,
including the effect of the Maxwell stress tensor, the quiver
pressure and the electron stress tensor in the. oscillating. electron

centre of mass frame,is calculated. This gives a force :-

-v. P

=Total (1.4.2)

where:-

2 1 2 L
Prota1™ (s B +— B" ) 1-ecEE e BB =P

(If the quiver velocity is calculated assuming the electrons are
collisionless). Equation (1.4.2) should be used in the equation for
the change in total, material and radiation, momentum. Using a fluid
descriptionforthe electrons the effect of collisions has been
included (33). .

The effect of the radiation pressure on the hydrodynamics
has been extensively studied theoretica]]y'(34,35,36). A density
jump at critical density has been predicted (37) and has been obseryed
experimentally(38). ‘

The production of magnetic fields (39,40) and the acceleration

of fast ions (41) have also been discussed.

1.5 Magnetic Fields

Spontaneously-generated magnetic fields were first observed
in-laser-target interaction by Stamper et al (42). A brief reyiew of

the generating mechanisms will be now given,

The thermal source term, due to non parallelin, and ‘T, -gradfai

has been extensively studied with fluid simulation codes.(43,44,45

~-
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46,47,48 ). The equation for the rate of change of B is given by:-

dB : 1
— = -VAE =VA[VAB + — nvAB]
ot n

o)

i
- Ellé_ VN AVT, -vA [ EE-VABAB]
e e

- LUn (89T, - abavT, ) (1.5.1)

- Where the coefficients « and 8 s Which depend on Weg Toj * have been
derived by Braginskii (49). As Langdon (50 ) has pointed out, the
application of equations using these coefficients fo situations

where the scale lengths for the magnetic field,or the source term,
become comparable to a1 OF Agj (where the coefficients are invalid).
may lead to serious inaccuracies in the calculated magnetic field.

Many authors have not used the full equation (1.5.1) but

have only used ;-

~<T =VA( VYA B + DoVAB ) - N AT, T (1.5.2)
H e
[s)

This will adequately describe the evolution of the magnetic field

_until Wea Tie Decomes comparable to unity. This. hes.. teen wsed~by
Craxton and Haines (45,48 ) to show the development of "hot spots",

due to w reduction of the electron heat flux in the absorption

ce Tie
region,and JAB fast ion acceleration. In this work the source term
comes from the vn away from the target surface and the vTe
perpendicular to the laser axis (due to the laser spatial profile).
Tan and Laing (47) present simulations which illustrate

.the effect,on the source term,of including an atomic physics package.

Mima et al (44) discuss the vn,~ VT, generation of magnetic fields
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in a Rayleigh-Taylor unstable plasma. The more complete equation
(1.5.1), has been used by Coulombant and Winsor (43) in their
simulation. This is also used in the LASNEX 1laser fusion code.
Comparison between code prediction and experiment have been used to
investigate the role of the magnetic field in inhibiting the thermal
heat flux (51). _

Magnetic fields may also be created by laser light absorption
(52,53 ). Here the laser EM fields drive eddy currents in the plasma
electrons which in turn give rise to a steady state B field. This
effect is most important near critical density.

Magnetic fields may also result from the suprathermal
current (54,55). Some sources, such as the anisotropic part of the
electron stress tensor, are beyond the scope of fluid codes.
| Saturation of the magnetic field is usually due to advection,
resistivity is generally ineffective. The effect of all the source
mechanisms acting at the same time on the magnetic field and the
resultant effect on thermal transport has been reviewed by Max(56).

Theoretical studies indicate maximum coronal B fields of

2 Tesla. Such fields have been measured in laser-plane

the order of 10
- target interactions by Raven et al (57). The same authors were umable
to detect a magnetic field ( B<I10 Tesia) when the target was a small
microballoon ( radius of balloon < radius of laser focal spot) with

two beam illumination.
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1.6 Thermal Transport

Expressions for the classical heat flux in a thermal plasma
have been derived by Spitzer (53) and Braginskii (g9 ). These are
applicable when :-

(1) Only classical collisions are important

(2) The scale length for change in temperature satisfies :-
e =A LT (1.6.1)

As pointed out by Grad (59) the expansion in ¢ used in (58,49) is
asymptotic and such theories cannot be extended to give values for
the heat flow at large values of «.

An estimate.of the maximum heat flow in a thermal plasma can
be obtained as follows. Consider a perturbed Maxwellian distribution

of the form:-

f(va) = f(V)MaxweITian(1 + a(vi) (1.6.2)

where u= v,z
The maximum value of the heat flux carried byxsuch a distribution,
subject to it being positive everywhere, is wen a(v) = 1. This gives

2KT
KTy (=) (1.6.3)

_4
Ufree streaming - T Me
If the condition J = 0 dis imposed the maximum heat flux is given
for a(v) =-1 0<v<vy s a(v) =1 v]<v<w .5 where vy can
be found numerically. This gives :-

(J=0) 0.54

9free streaming = 9free streaming °
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In the simulation of laser target interactions (gp,51) a
large reduction of the heat flux from its classical or free streaming
value is infeﬁ?gd Typically a maximum value of the heat flow of

~ 0,02 is inferred.

* Yfree streami ng
It has been suggested that this may be due to ion accoustic
turbulence (61) or due to non-linear classical effects (62).

Direct measurement: of the heat flux is only possible at
much lower densities than those relevant to laser target studies,where
jon .ucoustic turbuléhce has been idéntified as the flux limiting
mechanism (63). However the plasma number

3 |
N.A.D = mpe/\)ie (_].6.4)

is much greater in this case than it is in laser irradiated targets.
An expression for the anomalous collision frequency is

given by Wesson et al (64).

nTe

OB " “pe /Verf (1.6.5)

Where W 1is the energy density of electrostatic turbulence. The ratio

of the classical and anomalous collision frequencies is :-

Yeff
Vie

D nTe

From which it can be seen that turbu]éhcé-wi]] not be so important
' 3

D L ]

The 1/(1 + (

for Tow NA
2
“ce "ie)
also reduce the heat flow {5 ).

) reduction due to magnetic fields may -
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1.7 Suprathermal Electrons

As we have seen,some absorption mechanisms lead to the
production of electrons with an energy many times that of the thermal
electrons,which constitute the bulk of the plasma .These electrons,
variously called hot, fast or suprathermal e1ectrons,-§1ay a
dominant role in high intensity laser target interactions.

The mean free path of these electrons is far greater than
that of the thermal electrons. They may thus deposit energy ahead
of the thermal front and shock wave,so degrading the compression.
Also they may lose a large proportion of their energy in the time
dependant coronal electric field, this energy goes into fast ion
acceleration, The acceleratign of a small number of ions to very

large velocities is an inefficient way to transfer momentum to the

core,
Fig. 1.3  illustrates the celetereous effect of suprathermal
electrons.
NO SUPRATHERMALS SUPRATHERMALS DOMINATE
[LASERYLIGHT] ILASERWPIGHTI
[fHERMi} ELECTRONS| _SUPRATHERMAL ELECTRONS]
. e N
EFFICIENT | FAST 10NS] [CORE PREHEAT]
COMPRESSION = o
INEFFICIENT
COMPRESSION

Fig.1.3
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The experimental evidence for the existence of suprathermal

electrons comes from : X-radiation spectra (65), the fast ion spectrum
(66) and from direct measurement of target preheat (67 ).

The form of the source of suprathermal electrons has been
investigated by comparison betweén experiment and code prediction

(51,60). A "preheating source” has been inferred ty Hares et al (67).

Relation to Target Performance

If Rsth/AR>i>1 then the specific energy deposition will be
almost independent of position. The fuel is compressed as the glass
"pusher” explodes inwards and outwards. The behaviour of such targets
is discussed by Ahlborn and Key (63). '

This type of target can produce significant themenuclear
burn (11), but high compression is not possible because the fuel
is preheatad by the suprathermal electrons and will be shock heatad

by the compression.

Quasi Ablative Targets

If Rsth/AR,S 1 then the specific energy deposition will be
higher towards the outside of the shell.

Fig.1l.4 Quasi Ablative Target

specific
/ deposition

position
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This gives rise to a pressure gradient which may accelerate
the shell. This is discussed by Key (69). Experiments using glass

microballoons with thick plastic coatings have been described (70,71).

1.8 Fast Ions

A feature of experiments using high intensity irradiation
is that a large fraction of the absorbed eﬁergy manifests Ttself in
a §makl number of fast ions (72,73).

Various mechanisms have been proposed for the production of
these fast ions, including: the ponderomotive force (41.), J~B acceleration
(48), the presence of suprathermal electrons (66,74 ) and = the {nhibition
of the thermal energy flux (75,76). The last two will now be discussed.

The ion velocity spectrum can not be explained od the basis of a
single temperature.-isothermal .rarefaction (77).Several authors (78,79,66)
have proposed that a two temperature isothermal rarefaction model may
explain fast ion production and Wickens et al (66) compare experimental
results of the jon spectrum and results from a slab geometry self
similar solution. Fast jon spectra have also been modelled by Bruckner
and co-workers (74,80 ) and Shvarts et al (81) . The suprathermal electrons
may lose energy either collisionally in the core or in the time
dependent E field of the corona (essentially PdV work). If an {dealised
situation is considered in which the suprathermal electrons reflect off
a moving, perfectly reflecting "sheath" and pass through the core
between reflections then the energy losses to the ijon expansion and to

collisions it the core scale as:

AEfast ions - Vsheath

E 5o
th
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AEcollisions Size of core B
~ ~ 4
E . A (core) v
Esth ®sth

Clearly loss to ion expansion is more important for the higher energy
suprathermals.

Inhibited thermal transport increases the time a heated
electron spends in the corona,before it shares its energy with the mass
of the target,and so increases the energy it loses to PdV work in
the corona (75). Hydrodynamic simulation codes greatly underestimate
the energy transfered to fast ihns if flux inhibition and suprathermal

electrons are omitted.

1.9 Fluid Instabilities

If the high densities needed in I.C.F. schemes are to be achieved then

it is important that fluid instabilities do not degrade the compression.
The Rayleigh-Taylor instability and Convective (Bernard) instability
have received much attention (82,83,34) and have been reviewed -ty Motz(2 ).
Analytic work is restricted by the idealised zero order solutions

which are used. Perturbation solutions which treat all modes independently
have been "piggy backed" on 1-D hydro codes (S4) and full solutions of
the 2-D fluid equations have been reported ( 83 ). The importance of
thermal conduction and magnetic fields is+ still not well understood.
Experimental evidence ( 85 ) suggests that fluid instabilities may degrade
"microballoon implosions with an aspect ratio (balloon radius/shell = ~.~7

thickness)of greater than 10. (Targets with large aspect ratios, if stable

have a higher efficiency).
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1.10 Radiation Transport

The transfer of energy by radiation can play an important role
in the hydrodynamic motion and energy balance of laser irradiated
targets. A large fraction of the absorbed energy may be lost in
X-radiation from the target (60) and hard X-radiation may pfeheat the
core.(86).

The 3 Temperature (ion electron and radiation) approximation
has been used in fluid codes ( 87 ); however this model is not valid
for most cases of interest. Multi Group diffusion radiation transport
has been widely used in fluid simulations (88,89) and Monte Carlo
methods (87) have also been used. N o

—

Sn methods are widely used in more detailed analysis

of the radiation emitted from targets,without coupling with the

hydrodynamics(ie 1in postprocessors) (€0).
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Chapter 2

Introduction

| In this chapter the theory of the deflection and energy loss
of suprathermal electrons in a solid and a plasma is described. Simple
formulae for the deflection and energy loss in a partially ionized
solid are given and the relative importance of various physical processes
is discussed.

Some models for suprathermal electron fransport in solid

targets are then introduced., These include the Monte Carlo method and

the Multi Group Diffusion method which are used in chapters 4,5 and 6.
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2.1 Energy Loss of Suprathermal Electrons

Collisional Energy Loss in a Solid
The stopping power of a material due to classical collisions,is

defined as:-

dE
. (2.1.1)

(SP)cass = d(ps) Jelass

Where E = electron energy, p = material density and s = path lengkh

For non relativistic electrons the appropriate formula is (01):-

dE Znie4 2

. ee
ds 47r-‘ezm V2
oee

Stopping powers have been tabulated by Brown (92) and electron

ranges by Berger and Seltzer (o3 ).
The average ionization energy may be, very crudely, approximated

by :-
(I/Z) = 11 eV (2.7.3)
Fig.2.1 I/Zvs Z
Sdix
% 11 ey
o | /
~ L SERVER 'S
- T S
S-L > X X X X XX }%
100
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There are several inaccuracies / omissions in the theory
which gives equation (2.1.2)
(1) The shell correction: This reduces the stopping power if the electrons
energy is less than some of the ionization potentials of the atom.
(2) Straggling: Energy loss is not a determined function of ps, there is
some randomness.
(3) For electron energies of over 1MeV Bremsstrahlung becomes an
important loss machanism.
(4) The density effect: This is a reduction of the energy loss due to the
polarisation of the medium. It is important for energies over 100 KeY.
(5) A correction to the continuous slowing down approximation which

allows for the discrete nature of collisional energy loss (94 ).

Collisional Energy Loss in a Plasma-:

The collisional energy loss in a plasma has been giyen

by Pines and Bohm (95). It is :-

& | nE (2.1.4)
_____) ~ — N — ol
d(ps) class E ED

e
Where ED’ the Debye energyis ez/(4we°ADL

This may be compared with the energy loss to collective oscillations of

the plasma (an effect analogous to Cherenkov radiation ) which is given

by:-
dE 1
——)opp ~ - — (1 + & (2,1.5)
d(ps) E Eeh
Where E... = m V2
th e th

The ratio of (2.1.5) to (2.1.4) gives :-
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dE
a(psj)co11 1n th

E - 2 (2.1.5
d(ps) class 1In ( (-EB_) )

~—,

Energy Loss in a Partially Ionized Medium

The energy loss in a partially ionized medium is the sum of
the energy losses to the bound and free electrons. This is given by:-

4
deg D14°

- 2 2((Znuc-zion)1n(2mévg/13 *
d x 4w1%'@eve
2 V2
+ 23 o (AnQp/An p) +in(1+ 3—3-":-)_)) (2.1.7)

7 ¥y
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2.2 Deflection of Suprathermal Electrons

Deflection in a solid

As a suprathermal electron passes through a solid it experiences
many collisions most of which result in small deflections. Typically 105
collisions will occur in the course of slowing down. Several Multiple
Scatter models have been developed to describe the combined effect of many
collisions (96,97 ,98 ). A simple model which neglects the effect

of single large angle collisions and energy loss is given by Jackson{99 ).
For electrons which are not so energetic that their De Broglie wayvelength

is smaller than the atomic nucleus the multiple scatter distribution may

be approximated by :-

P(er) e dop ~ or exp(-6/2 (&) ) (2.2.1)
where ¢-
R e DI U PE
{65 = nuc__nuc L Y8 ) L (2.2.2)
(4ne-)2 EC A DeB

The cut-off distance 1.1 re is taken from Goldsmit and Saunderson

" (96 ). or is the angle between the direction of motion of the particle
before and after travelling a distance, L. If instead we want the
probability distribution for the projection of e onto a plane, s

this is given by :-
2 2

() = 3¢e?) (2.2.4)
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Equations (2.2.1) to (2.2.4) are valid for small <e$> and for 0 -
up to a few times <@$> 5,

Deflection in a Plasma

The deflection oft a suprathermal electron in a p1asﬁa is
discussed by Spitzer (100). In this case the electron may be interacting
with many other particles at a given time. Thus the collisions are not
true binary collisions. However since the deflections. are small -the
collisions may be treated as if they were binary encounters, (This is
discussed at length by Shkarofsky et al (101)).

The multiple scatter distributions are given by (2.2.1) and

(2.2.3) with

2

2mZ, (Z; ~+ 1)e’n, b
e% - ion*~ion i Tn{ max ) L (2,2.5)
(4 50)2 g2 Pain

In equations (2.2.2) and (2.2.5) the Z(Z + 1) accounts for scattering

jons:/ nuclei (22) and electrons (Z) per ion / nucleus. b and bmin

max

in (2.2.5) are given by :

bmax = AD

nin = ADed where Ap.p > Landau parameter

for suprathermal energies of interest.

Deflection in a Partially Ionized Medium

A simple model for the screening of the charge of the nucleus

is as follows. Up to a radius Rion- the charge of the nucleus 1is

screened by the bound electrons. From Rion to Ap the charge of the ion
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is Debye shielded by the plasma electrons. Thus the potential due to
the nucleus as a function of distance would be approximately as shown

below.

Fig.2.2 Screened Potential of Nucleus

v ion)exP(—r/Rion) *

230nSP (-T/Ap)

muc2

T

A crude approximation to the form factor is :

Fig.2.3 Approximate Form Factor

Zron/ZNuc - -—-

e e - - -

R Ap

ION

This suggests the following approach.Treat the collisions

with impact parameter b 1in the range b <b<R1.o as if the

min n

scattered electron "saw" the charge of the nucleus, and those with

Ri°n<1b<:AD as if it "saw" the jonic charge. Such an approach gives:-

ey = (2Z

2 (4 7 )2 E°

R. X
+ 1) In(22s 22 (L))
A DeB ion

(Z

nuc ‘“nuc

(2.2.6)



32

This has the correct limits of (2.2.2) and (2.2.5) as Zion_.' 0

> q L
and Zmn ZHUC
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2.3 Spencer's Range Calculations

Lewis (102) derived an equation for electron penetration in
an infinite homogeneous medium which can, in the steady state, be

written as follows:-

CoSe — = dﬂ'a(r,é)N{I(r, ¢,z) - I(r,e,z)} +(21r)']5(z)a(r—ro)6(cose-'l)

(2.3.1)

Here I 1is the electron flux, N the density of atoms,
o(r,8) is the collision cross section. and z the distance from the
source. r 1is the residual range of the electrons and o 1{s the angle
the electron's velocity vector makes with the z-axis . and e the
scattering angle. The source is at z =0 with & = 0 and with residual
range r.. The use of the continuous slowing down approximation allows
the energy loss, or alternatively the change in residual range,to ke
reexpressed. In this case the change of [ due to energy loss, 'gi_)CSD

(where s dis the path length ) is :-

O () =L dr_1 (2.3.2)
ds or ds or .

Using t = (r/ro) s X = (z/ro) » s(t,0) = roNo(r,ea and

I(r,e,z) dr = I(t, §x) dt Spencer (103 ) derived :-

904 cose 2L =fdn' S(,8) (1(t, ¢ %) = I(t,0,x))+
ot ox

+(2x) " Vs(x)8(t-1)6(cos 6-1) (2.3.3)

1< x<+1 0=t<]
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This was solved (103) by first expanding R and S 1in spherical
harmonics and substituting into equation (2.2.3). Spatial moments of
the resulting set of coupled partial differential equations are then
taken. This yields a set of ordinary differential equations which may

be solved.

Results of Spencer's calculations have been compared with
experiments, see for example Zerby and Keller (104), and found to he

in good agreement.
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2.4 Monte Carlo Calculations

An excellent account of the application of Monte Carlo
methods (methods involving random sampling) to the problem of charged
partfc]e transport has been given by Berger (165). The purpose of
this section is to introduce the methods used in Monte Carlo electron
- transport. Emphasis will be given to the approach used in chapters 4 and 6“:}5

of this thesis.

Detailed Case Histories

It would be possible to describe the trajectory of an

electron in a solid by the quantities (Eo,no,ro; E],Q1,r1; eed)
th

where En,nn,rn are the energy, direction and position after tfie n -
binary collision. Such trajectories could be generated by random sampling.
However. because of the very large number of collisions made By an electron

in the course of slowing down, this approach is very expensive.

Condensed Case Histories

In this approach the detailed description of the particles
trajectory is abandoned. The trajectory is split up into a number of

steps, each of which contains many collisions. It may be described by:-

n
E, E1 E E,
90 Q-I QZ Qn
ro 7 T - rn

where S 1is the distance trayelled by the electrons and En,nn,rn the
energy, direction and position after a distance Sn has been travelled.

The relation between En and En+1 and between Qn and Qn+1 are



36

determined by the appropriate multiple scattering theories.

There.are two competing factors influencing the choice of
nyl " Sp 1 In
order to minimise the length of the calculation the minimum number of

the distance between artificial scattering events ( S

steps must be used. On the other hand the accuracy of the models for
energy loss and deflection will be better for small path lengths. This
is due to the following:=™= - . -

(1) Although the correlation between deflection and ehergy loss 1s not
accounted for in a single step it will be, to some extent, over many
steps. |

(2) Some multiple scatter theories assume zero energy loss. The energy -
loss will be smaller if smaller steps are used.

(3) In a multi-material target more of the steps will 1ie wholly within

a single material. Errors associated with boundaries will be reduced.

Choice of Pathlength

The choice of logarithmic spacing, ie choosing the pathlength
so that the energy is reduced by a constant factor, k , is popular
because the magnitude of the width of the multiple scattering distribution
will not change in the course of the calculation. If this is required

S (=S4 -S,) is prescribed by :-

S
n+1
1 -—l-f 9 4s =k (2.4.1)
En ds ,
S
i e 1 dE .
or aprroximately (if — —— AS 1is small)
E ds
S E sk (2.4.2)
E_dS
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If material interfaces need careful treatment the pathlength

may be reduced when the trajectory comes near a boundary.

Energy Loss ' e

The simplest treatment of energy loss is to use the continuous

sTowing down (C.S.D) approximation. This gives :-

St _
AE = f 9E_ s (2.4.3)
S ds
n
where 1_,25_ is the stopping power of the material.
p ds

In fact the energy loss by the electrons will not be determined
completely by the pathlength but will be distributed about the value
given by (2.4.3). This is due to the random nature of the collisions.

An expression for the distribution of energy losses, for small aE/E, Ras
been given by Landau (106 ), for the case where the energy loss is due to
ionization,and by Blunck and Westphal (107) for the case wien

Bremsstrahlung must also be included.

Angular Deflection

Kinematic Relations

Fig.2.4
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The effect of scattering from the pre-collision direction @
to the post-collision direction Q' may be described by two angles. &; the
angle between 2 and Q' and ¢; the angle Q'- @ makes with the

Q@ A(QAZ) direction. The new polar angle w' 1is given by:-
w' = arc cos(coswcos8 + cos¢sinusing) (2.4.4)
An alternative description valid for small deflections (small

rotations approximately commute) is to consider the deflection (2-—-q')

to be due to succesive rotations about the zAQ and QA(2AZ) - axes.

Fig.2.5 A
Z
Q
%
2A(zAQ)
é
zAQ 1

After the rotation, 9y > about the zAQ axis the new value of

e ,8' 1is given by:-
8' = @+ 9 (2.4.5)

After the rotation, 9, » about QA (zAQ) the new value of

9,8" , is given by :-

" = arc cos(cos¢2cose') = arc cos(cos¢2cos(e + ¢])) (2.4.6)
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Equations (2.4.5) and (2.4.6) are less time consuming to evaluate
sthan equation (2.4.4) and for this reason were used in the programme

described in chapter 4.

Choice of Scattering Angles

The angles (¢1,¢2) or (©,9) are picked at random from an
appropriate distribution of §cattered angles, such as those described
in section 2.2. If equation (2.4.6) 1is used both angles must be small

(less than 10° say).
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2.5 Multi Group Diffusion

Although the Diffusion, or P1, approximation is one of a set
of approximations, the PN set, it will be treated separately because
of its comparative simplicity and its wide application to electron
transport in Laser fusion target studies.

Ipathe P] approximation the expansion of the angular dependence
of the distribution, f » in Legendre polynomials is truncated after- the
first two terms. Thus, in 1-D, the angular dependence will be approximated

by:-
f(x,v,t) = A(x,v,t) +uB(x,v,t) (2.5.1)

The coefficients, A and B, are related to the zeroth and first -

moments of f by :-

+1
N(X.V,t) = 2:_/' (A +uB) vdu= 4rA (2.5.2a)
-1
and
+1
3(x,V,t) = 27;_/' (A +uB)uvds = ¥ yB (2.5.28)
3
-1
Thus:-
fe Lns 3 4, (2.5.3)
dx dx vy "™

-The transport equation for suprathermal electrons scatteriﬁg
and thermalising on a background thermal plasma with a Fokker Plank
collision term has been given by Delettrez and Goldman (103 ). The
form of the transport equation in various 1-D geometries is given in

Appendix 3. For 1-D slab it is :-
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of

TR - Y- LI VS N A ' :
3t x dv v u
Tna r
r 2 sth 3 of e 0
—(n_ + Z°n.) ((1-u )—-—) + —(ImA—5, T)
5 ' € i/ v3 du du VZ dy sth
in a stationary fluid (no PdV term) (2.5.4)

Two equations for the two unknowns A and B (alternatively
N and qb-)are obtained by taking the first two moments of (2.5.4)

with f given by (2.5.3). These give :-

on o - __8 2] (E.J KB 9 2 -
at+ » & mevz 5o ) - 3, (vn)
K
f .0
- (n Tnagp) = _a%)sour'ce (2.5.5)
and
1d d e 13 En?) - 02,2
2, vdn._& 19k - 322 -
T v VA -

Ke 9
;Za— (Ina g T) * 3 InA sih y at)sour'ce (2.5.6)

Where only 3 is integrated over

The truncation of the infinite hierarchy of moment equations
at (2.5.6), it does not involve the stress tensor, is due to the
truncation of the Legendre polynomial expansion of the distribution
function (2.5.4).

The approximation (2.5.4) is valid if the distribution function

is nearly isotropic. This will be the case if Aw/Z is less than the
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scale length for the suprathermal density.

The numerical solution of equations (2.5.5) and (2.5.6)
would presenf very great difficulties. Before considering what further
simplifications can be made it is useful to discuss the numerical
approach to the solution of the diffusion equations which is mast

convenient.

Numerical Solution of Simple Multi Group Diffusion Equations

Consider the eciuations:-

an _ d8_ 9 an)_ on
b 'a% at)s (2.5.7)

= =K(v,Xx)Vn (2.5.8)

where %3—") is a slowing down term. If the number (flux) of

electrons in the speed range vg to vg+

and one sided differencing is used for the slowing down term, the

1 1s denoted ng (¢g ),

difference equations are :-

on on 3n
9.9k ) _ong
ot +5x( Ka—xg) “g"g ¥ %gr1"g41 T 33 )s (2.5.9)

Equation (2.5.9) may be solved for one group at a time,

starting with the highest speed group. The equation for a group is of

the form :-

3n on
3;9- + %(-K a—xq) - agng = source (2.5.10)
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where the source now includes the effect of downscatter from the
immediately higher velocity group. Implicit differencing of equation
(2.5.10), using the usual conservative 3 point differencing of the
diffusion term;gives a stable and positive (for positive sources and
initial conditions) algorithm.

Thus the solution of equations (2.5.10) dinvolves solving
one tridiagonal system of equations for each group. This may be
accomplished very efficiently. Since the coefficients K and a,
do‘not depend on ng the equation is linear and no iteration -is
required. If a flux 1imit (section 3.6) is used K depends on “ng

and this is no longer the case. 3k

Approach to the Solution of the Multi Group Diffusion Equations

. The simplicity and efficiency of the scheme described above
is very attractive. A common approach to the problems involved in
solving equations (2.5.5) and (2.5.6) {1s to make approximations
which allow this method of solution ta be used. If this is to be done,

the coupling between the groups and spatial zones must be as illustrated

below:- |
Fig.2.6 Coupling in a Simple Diffusion Model

> > “—>
| l l |
-V J W $

T <~ > 1>
S l | l |
\” ¥ N <

“—> “«—> “—>
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Such coupling clearly does not allow J.E heating of the
suprathermals or the treatment of a term with mixed derivatfvesl

The approach to the solution of the Multi Speed Group
- equations adopted by three authors (108, 109, 110 ) 1is described
in section 3.4.

The inclusion of Targe enérgy transfer collisions in a

Multi Group code is discussed by Greenspan and Shvarts (111).
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2.6 The PN Method

The PN method has been described by Richtmyer and Morton
(112) and Case and Zweifel (113). It was much used in early work
on neutron transport but has largely been superceded by the SN
method (except for the P]h(diffusion) method).

Description of the Method

The angular dependence of the distribution function may
be expressed exactly, in one spatial dimension, as:-

o

F(xopot) = 3 (2L+1)2 ¥ (xt)P (u) (2.6.1)
=0 '
where PN are Legendre polynomials.
In the PN method this exact description is replaced by

the approximation:-

N
flxmot) = 3 (2A+1)2 v (x,t)P ) (2.6.2)
L=0
N equations for the evolution of the coefficients, ¥, (x,t),are then
required. This is achieved in the fol]owing'manner. The scattering
kernel is expanded in Legendre po]ynomia1§ so that the transport

equation is of the form :-

12 Sgank v (6P () +u 22ty (t)P ()=
V 0t (e

ax o

N
== o Y (2t+1)? YO(X,T)R () +

~o

* od &L N
* Zf du [LZ 2K ¥ o) YLm(u'ﬂgocz N (P &)
N .
2.(2 RILE" (xst)P (") (2.6.3)

(=0
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The term in the square brackets is an approximation to the §_ca1;§er1‘_p_g_ _
kernel. The YLm are associated Legendre polynomials . Multiplication

of equation £'2.6.3) by Pk(u), k=0, ....L'., and integration over solid .
angle , 2x _|du gives ‘I"{a-'l coupled differential equations for the

N+1 unknowns in equation (2.6.2).These may be solved to give the time
evolution of f(xu,t). This methbd has been used by Kershaw (114)

and vYabe et al (115) in suprathermal transport studies But without . _ _
including E field effects.
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2.7 The §S,, Method

N

The SN ,or discrete ordinate, method is the most widely
used method in numerical neutron transporf simulation. It was developed
- at Los Alamos by Carlson and co-workers (116). It has recently

been applied to electron transport in a solid (117).

Description of the Method

Consider the 1-D transport equation :-

-]—AI('V, u,t) +u-éI(V,,_I.u »t) = -UUGI(_V,IJ ot) + -
v ot oz

’,'/;Iaﬁl-u')(l(v,!u,t){(vsu'»t))du' (2.7.1)

Here o). and arg are the out of group and in group cross sections
respectively. I is the flux and u= coss = 2.¥
In the discrete SN approximation the udependence of the

flux is approximated by :-

N
I(vyn) =ZI (Vs 1) 6 a5) (2.7.2)
i=1

where the w; are the weights.

Substitution in equation (2.7.1) gives N -equations of

the form;:-

1

2 B
v—szl(x,v,ui,t) +uia—xl(x,v, “i’t) +ZjKIG(ij(x,v, uJ.,t) -

\_a B - i
'.—_—’ I(X,V,U-,t)s (2.7.3)

-KI'GI(X’Vs u:jat) - KUGI(X’V’ Lli:,t).-’:_ at i

‘

where the subscripts IG and UG again refer to in and out of group

scattering. (isotropic scattering has been assumed)
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There is no unique procedure for determining the level
weights, W and level cosines, M However in order that the
quadrature formulae give results analogous to analytic integration the

following relations are usually satisfied.

+1
1
o -f:/}dlj =1 (normalisation) 1= 'yi (2.7.4a)
2 1 i
1 |
. 2—/.uldu= 0 0 =) jw; (2.7.4b)
-1 !
1 f+12d 1 1 ) |
— u U= — —_— U W, (2.7.4C
2 3 3 1 _ )
-1 -
An example is the S2 set
Wy = Wy = 0.5 (2.7.5a)
uy = -up =372 (2.7.5b)

In a geometry other than €artesian the fluxes in different
directions will be coupled by streaming as well as by collisions. This
is referred to as angular redistribution. .

‘ An alternative approach, described by Case and Zwei.fel
(118), is to split the interval -1 <y<+1 into N parts given by
Hy_1<u Suy . I(x,v, u,t) is approximated by the Tinear interpolation

formula :-

I(X,V,JJ ,t) = ———'—’(( Ll'll.i_'l) I(X,V:u.i_]st) +
b DL B

* (uymu) I(xsv,ug,t)) (2.7.6)

i
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Integration of the transport equation over each interval
gives N equations for the N+1 unknowns ( I(x,v,1xi,t); i=1,...N ).
A further equation, usually the transport equation for ﬁo’ is needed.
In this case quadrature is achieved with the trapezoidal ruile. Provided
M4 eqﬁa]s zero is not used there are N boundary conditions.

Comparatively little work has been done with SN methods in
charged particle transport. Antal and Lee (11§) have used SN
methods in «-particle slowing down problems. Recently (117) electron
penetration has been treated using the SN method., Electron transport
simulation is made more difficult than neutron transport simulation
because of the very anisotropic scattering cross sections. To the
knowledge of the authorfthe effect of deflection due to steady state

E fields has: not been included in any Sy model.
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CHAPTER 3

Introduction

In this chapter the models used to describe suprathermal
electron transport in laser irradiated targets are reviewed. This
includes both the numerical models used in target simulation codes and -
simpler models which are used to explain coronal phenomena. A minor
extension, by the author, of some work by Shkarofsky {s presented

as section 3.8.
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3.1 The Suprathermal Approximation

The problems associated with calculating the evolution of an
arbitrary electron distribution are formidable. Two fan%i%é;”; 24; 
simplifications are a thermal plasma; where by truncation of the moment
expansion of the distribution funqtion,f]uid equations and appropriate
transport coefficients may be used to advance the system in time,and
a plasma in which electron-electron collisions are ignored; a Lorentz
gas.

The nature of the "suprathermal approximationf is as follows.
The electrons are divided into two classes, the bulk of the electrons
which can be described by the equations for a thermal plasma and a
small number of suprathermal electrons which, because of their large
kinetic energy, will not thermalise on the time or length scales
relevant to the thermal plasma. These electrons are assumed not to
interact with each other but only with the thermal electrons and ions.
Thus the inequarbiy Ng4p& Ny must hold. The suprathermal electron
will lose eneréf—to the thermal plasma and, eventually, thermalise.

In this appraximation the electrons are either part of a
thermal class,which has energy and density sources and sinks from
and to the suprafﬁerma]s,or a suprathermal class for which the collision
term is linear. in the absence of E and B field effects the
suprathermals are.described by linear equations. This represents a
great simplification of the more general problem of non- thermal
electron transport.

The most sweeping approximation involves ignéring the desity
and current associated with the suprathermal electrors,and any E oF B
field effects on them,and retaining only the energy deposition into

the thermal plasma.
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3.2 Core and Corona

The idealised state 6f affairs described in the previous -
section will not apply everywhere in the target. In the corona the
suprathermal density may be comparable to or exceed the densfty of
thermal electrons. Collisions with the thermal particles can become
relatively unimportant and the E field can dominate the motion of the
suprathermal electrons.

These differences will clearly have a great influence on
the way in which suprathermal transport in the corona and in the
higher density core are treated.

The approximations Wt‘a‘c u're.,ch\mo‘n\.ﬁ;.USQ'dare i-

In the Core

1 NetiS< Ny
2 lw/é« L (Diffusive)
3 E and B fields can be ignored

In the Corona

4 AE>>Length of corona

5 Mef2> Length of corona

6 collisionless

7 | suprathermal electron transit time« characteristic time for
hydrodynamic motion

8 L>xp (Tgep)

In the core the electron density of the 2 solid density
material will greatly exceed the suprathermal density, which will
be comparable to or less than critical density. Ionization of the
target will soon give Nep> Nopn - Thus in the core condition (1)
will hold in all cases of interest.

A suprathermal electron will have AE:>L. In a high Z plasma

Ag/ Aw/2=Z so condition (2) may hold. If it does a great simplification
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results since the diffusion approximation is valid.

Next consider condition (3). To see if E fie]ds—ére o
negligible we use simple Ohm's Laws for the thermals and suprathermal
suprathermals.

consider a pair of equations:-

n T
sth ,'sth ,3/2
Joth™ (VPopn/ (-engyy) + E ) oy e SEL)3/

Ny Tin
n
th
Jth = Eo "
;
If Jgip + Jgp = 0 then:-
‘7Psth 1
£=- ( 377)
(-ensen) "thTth
+ —
T3/2
sth'sth
and
Iy _VPstn Gnst( Tsth)s/z a - 1 ) (3.2.1}
s
-en n. T 3/2 _
sth "i 't L MTih
sthT3
If (n thT3/2) / (nstthéﬁ)zpl then (3.2.1) becomes approximately :-
;Y Pstn o sthy3y2
sth™

In which case the effect of the E f{e]d is negligible.
A criterion for ignoring the effect of magnetic fields on the

suprathermal transport is that :-
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Ae/2

reL

( « 1 (3.2.2)

)sth

The inclusion of the B field greatly complicates the
calculation of quasineutral E field effects. The condition J =20
is replaced by the condition v-d = 0 for B # 0.

If (1), (2) ~and (3) all hold then the simulation of
suprathermal transport is comparatively easy.

The quantity of matter in the corona is usually "small"
so the energy loss by the suprathermal electrons in crossing the corona
once will be small. Thus for electrons which pass through both the core
and the corona the collisional energy loss in the core will vastly
exceed that in the corona. Condition (4) will generally hold in the
corona. The modelling of co]li;iona] energy loss is greatly complicated
if Noih ~ Mip since suprathermal-suprathermal collisions will be
important. |

Momentum transfer due to collisions may be important in a

high Z corona. In a low Z corona condition (5) will hold.
| The assumption that the suprathermal electrons are
collisionless in the coronay condition (6),. is sometimes used. It is
more restrictive than conditions (4) and (5) which require collisions to
be a "small" term.

Since Vsth3>vis the changes caused by hydrodynamic motion in
the course of a suprathermal electron transit time will be small.
-Condition (7) allows the time dependence of the state of the corona
to be included perturbatively.

Finally condition (8) allows quasineutrality to be used. It is

not always valid.
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3.3 Fluid Models for Suprathermal Electrons

A fluid model for the suprathermal e]ectroﬁs; is. a crude
approximation. Since supratherma]-éuprathermal collisions are
unimportant compared to suprathermal-thermal collisions,the suprathermals
will not become Maxwellian. Moreover even if the suprathermals are
created with a Maxwer11ian distribution they will not stay that way.
Collisions do not form a basis for truncating the moment expansion
of the distribution function. The disparity between the timescales
for the suprathermal electron and hydrodynamic motion may be used to
Jjustify trencating the moment expansion. Although there is no physical
basis for it it is often found convenient to assign a temperature to

the suprathermals.

Basis for Truncation of the Moment Expansion

It is instructive to consider the one dimensional

Vlasov-Poisson system:-

ﬁ+.\[ﬁ+aﬁ= (3.3.1)

ot X v

Following Bernstein et al (120)introduce the energy,

1
—_ mvg - €p as an independent coordinate. Equation (3.3.1) becomes
2

-e + Yy —=0 (3.3.2)



56

If there is no time dependence (—%— = 0) the solution to
t
(3.3.2) is f = f(e).

We may write:-
f="Ff(e)+ f_(a)

Where the subscript denotes the direction of motion.
The electron distribution may be divided into two parts. One

with energy less than which is trapped and the other with

Scrit
energy greater than this which is not trapped by the electrostatic

potential.

Fig.3.1

free particles

¢(r)

particles

If the electrons are trapped in a time independent potential
then f_=f_ and all odd moments of the distribution function will

be zero. Valeo and Bernstein (75) expand the distribution function

- 2
f= fo +xf] + A fz + aeee

where X is a formal expansion parameter of order Tsth/Thydro‘

Y . : d e 09 :
vV — 1is zeroth order in » , — and — -— — are first order
o x ot m ot Jde

in .
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Thus to zeroth order :-
vV—1f =20 (3.3.3)

and to first order :-

of of, of
°+f_ﬁ_°.+.v._].=o o (3.3.4)

ot m ot Je oX

»From (3.3.3) f, = fo(e;t). (3.3.4) then gives,when integrated

round a closed orbit with e and t held constant,:-

—_— et e ) s ———l, =

otY v 9¢Y v m 9t

afo dx afOde e 3‘# =0 (3.3.5)

'since f; must be single valued.
It can be shown by substitution that a function fo(J), J=jﬂ; dx

is a solution to (3.3.5). Using this (3.3.4) may be integrated

to give -
fl = * (j_)_fdxv - (f—)—fdx V] (3.3.6)
v v t
ET dl 2J e d Ox  2J ot
Using = + + =
dv. Qe 9v  9x dv ot v
94
=W -5z

they derived first order ( in i) expressions for the moments of the

distribution functions.
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- fu &7, - 1)

=
1

-3nTu + j.dv v3 f]

el
1]

Where nT=m szg

Thus both u and q are first order quantities. They use calculations

with an assumed potential to justify
q = 8pu (3.3.7)
g8 of order unity.

(3.3.7) truncates the moment expansion. The fluid equatiors are

closed by :-

2p g( 3p0) ,2343 o
+ — + u) - ce —— nu =
ot qu P 2x
(3.3.8)
q = 8pu
They use :-
9 ) -
—n +—=nu =0 3.3.9
ot  x . ( :
¢ _ o 0 3.3.10
-ena-—x-x— (.. )

Equation (3.3.10) s valid if Veth> Ustne the full momentum
equation being :-

> £ d  °P

- U + U —=NU = -eN—— = —

ot % dx  Ox
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In the 1imit of E field effects being unimportant this

becomes :-
op
jl nu + u Einu +——=0
ot 2x ox

which describes streaming particles.

Any model based on equations (3.3.8), (3.3.2) and (3.3.10] must be

tested to see if the results it gives are consistent with Yoth” Usth:
If the suprathermal electrons were truly collisionless then

any electron streaming into the high density core would pass through it,

reflect at the other side and stream back. This would be consistent

with no zero order current. A more realistic situation is illustrated

below.
electrons stream into
core and thermalise
~N
>
Youn)
"
L —
B =

electrons

Fig.3.2



An assumption which has been used is that the suprathermals
are in equilibrium with the E field and have a Maxwellian distribution.

The equations governing the suprathermal electrons are then :-

- -e¢/KT
Ngth = nStho e sth (3.3.11)

T constant

sth

Nsth is the suprathermal density when ¢ = 0. (3.3.11] can Ge
0
simply derived from :-

2f 2o f = f(Eq) (3.3.12]
QET
and
2
_ -3ve/KT : (3.3.13})
Fle=0) = ©

The effect of the neglect of the small terms due to the
time dependence of ¢ in deriving (3.3.11) #n self-similar expansion
models has been considered by Mora and Pellet (121).

Mason (54) has used a model in whicﬁ both thermals and
suprathermals are described by collision dominated fluid equations in

an investigation of B field production by suprathermals.
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3.4 Multi Group Models

In this section the implementation of multi group models
(section 2.5) din laser target simulation codes is illustrated by
three examples. These are due to Delettrez and Goldman (103),
Zimmerman (110) and Kershaw (109,122). The first was used in the
University of Rochester 1-D code "LILAC" and the other two in the
.Livermore' 2-D code "LASNEX",

Implementation in LILAC

The suprathermal electrons are treated by a three component .
model. Those for which a diffusive model is valid ( Aw/2<LL) are treated
by multi group diffusion. Those for which such a model is not valid
are treated by the forward- reverse model (123). Deflection is
ignored for these electrons, the coupling between the two groups fs
introduced by the angular redistribution (cf SN ) and the boundary
conditions.

The multi (velocity) group diffusion equations (section 2.5)

are used with the underlined terms omitted:-

on d e o KB d 2
—t—d - — (E.d) = ——(¥"n)--
ot Jr mevzgv v2 dy
2 0 ) = (3.4.1)
- ——(nlna =
sth 5 v
vé dy t
K J
124,y on_ & 1 92 . B3 25)
v ot 3 dr 3m, ve dv vov v
Ke 2 g Kgoo o4 3d
- ——('lnAsth- —) + 22— 1Inp . — = —)s (3.4.2)
v2 dv v v v ot
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These approximations reduce equations (3.4.1).and (3.4.2) to a
simple Fickian diffusion term. In equation (3.4.1) the ohmic

heating ( E.J ) term is only allowed to demote the suprathermals to the

thermals. It cannot premote thermals to suprathermals.

The model for the streaming suprathermals assumes two

semi-isotropic distributions .

Fig.3.3 Forward-Reverse Model

The particle currents are simply given by -Y<tplstp /2 and

e tn9sth /2 . The zeroth order moment gives:-

2h e 9 Kg 9 -
sth - _a_ . 'Jh - _;__(_VE.Jh) - -—B-—(_hsthyz) -
2 2
2t dr 2mv© Qv y* Jy
Ke D oh
- L by A, ) = —2H) (3.4.3)
42y | ot

where J. = -v ., h /2, and a similar _equation for Igthe

. th Isth

The source / sink terms ————) —_—)
ot S 3t S
redistribution terms. A1l outgoing electrons are specularly reflected

include the angular
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at the boundary of the last cell. The E field is calculated using
Gauss' equation. The effect of P dV cooling on the suprathermal

electrons has now been included (124).

Lasnex Implementation (1)

The multi velocity group implementation described in ( 110 }

uses the "Ohm's Law":-

o = - aj (nseE + VPy) - (3.4.4]
2., 2
where P = f(ngv —)4xy" dv and aj;the flux 1imited group - -
3

diffusion coefficient.

The - E field is determined from 7:f1uxj =0

Za,VP,
ie E=-_E.-=L_~l (3.4.5)

a.n.

€%

The zeroth moment egations are :-
on 2 n. on

—9+ .- _n g, =9 (3.4.6)
>t (re )om, & Sy 3t S R

The J.E term is omitted,

Lasnex Implementation (2)

The implementation of a more refined model, in one spatial
dimension, has recently been described by Kershaw (122), It uses a
model first used in relativistic electron beam-target interaction

studies (109).
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The multi total energy group equations,.using a relativistic

collision term (125), are :-

on ) ) 2 o C. 1na
- (ven ) = = — 2+ — (= n_)
ot X g 0 m_ OF u 3F
— ) - e T ,
1 7 N
on_. V.V on. 9n,
+ =) oy H—DE(pun ) - 22 -8 C (3.4.7)
ot 3 O ot JE. It
| N— % 1 J
L
Ve = fluid velocity
c§“= Znnkzi rg(mecz)2 k denotes species (e=electrons)
p = momentum u = velocity
and
-Hm) EGotna, se— S22 (3.4.8)
p3 3 or Py

(Ck, In Ak rgfer to the different ion species)

The groups of terms in (3.4.7) labeled (1) -(4) are
treated in the following fashion®— |
(1) This termis ]_D_(Vn ).

v ot 9

V = specific volume.
Ft is treated by the Lggrangian hydrodynamics.
(2) These terms are treated by implicit three point differencing
with the friction term acting as a sink to the lower groups and a
source from the higher groups; ie the standard multj grggpitregtnent,_
(3) These terms are regarded as “"small", They are treated implicitly
but split off from the main calculation. "~ If ~ the operator equation
for the main calculation is (I + A) and for the total calculation

including the small terms is (I # A + B). This approximation is

equivalent to (I +A +B) ~ (I +A) (I + B).
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¢ on_ 9
(4) The — —32  term can be written 2 [(—)n ]
at BET BET Dt g

Its treatment is illustrated below:-

Fig.3.4 Bin-Bin Mapping

\

e

(—At
ot

There are energy conservation problems associated with the

mappings.
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J and E Calculation

The current is calculated from :-

dr 3
—+—="4J=0 (3.4.9)
dt Jdr

The thermal electron motion is treated implicitly (120).

The E field is found iteratively using:

) od
™! = €] - o] (3.4.10)
oE
' -1
g7 - a7
where (_a.J.)n P B B
2
E. - E;
j i

- where the supefééfipt. denotes the number of iterations.

At the end of each step the thermal density is given by:-

Multi group codes haye also been described by Shyartz and

Jablon (127), Shvartz et al (s1 ) » Yabe et al (125) and Evans (129).
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3.5 Monte Carlo Models e e
A Monte Carlo suprathermal electron transport model has
been used in conjunction with the KMSF 1-D Lagrangian code "TRHYD"
(130) and has recently been used to model experiments (131). The
condition Jiota] = 0 and the Ohm's law for the thermals are used
to calculate the E field. The simulation particles are reflected at the
outer boundary of the last cell. The pressure due to the suprathermal
electrons is calculated in each cell and this is used in the hydrodynamic
calculation and the calculation of P dV energy loss.
A Monte Carlo model for suprathermal transport has been used
by Mason(132,133) in work on the effect of suprathermal transport
on the thermal transport. In this work ion motion is suUpmressed and
the E field is calculated using a dilated plasma period technique. This

>wi11 be further discussed in chapter 6.
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3.6 The Flux Limit

A diffusive model will give a flux :-~

v 1 ,
gdiff S - ‘;‘ Vn (3.6-1)
, A
/2

If AL /2 exceeds the scale length for the suprathermal density then
2 4iff  WAY exceed 2 £ whgre -

|¢£sl. = vn (3.6.2)

? £g is clearly the greatest flux that can be carried by particles
with velocity v and density n. It is necessary to limit the flux
given by (3.6.1) to some value, such as ¢ £ 0 when the diffusion
approximation is invalid. There are several possible limits.

(i) A unidirectional beam of particles. This has a flux ¢ £s (by the

definition of ® £ ) .

(2) In diffusion theory the angular dependence is approximated by:-
F(v, u) = A(v) +uB() (3.6.3)

If F(v, u) 20 for all v,u 1is imposed then the maximm flux
vorresponds to B = + A, In this case :-

+1

n=2=x Aduy
. 1 1
+1

2 =2 xf Av 2 du= —my=— 2,
-1 3 3 S

(3) The flux out of a region in which the flux is isotropic

+1
n=2m=x Aduy
-1
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1 1 1 ,
=27 Audy =—nv=— 29 e
0 4 4 IS

¢ 15p TAY be included in a diffusion model,

¢ = - Dvn ,by modifying the diffusion coefficient, D. One choice is:-

1 .1, {vn) (3.6.4)
* - S
DD -y4p
—=
D 2 > B
1lim

In the 1imit Di{vn) << 9.
1im

1 1

— 2 _— Cs.é.s)
*

D D

and in the limit D Ivn| > g"lim

r . (3.6.6)
*
v

and Dvn= e, (3.6.7)
[vn|

(3.6.5) and (3.6.6) are the desired limits of the modified diffusion
coefficient..

Equation (3.6.7) gives a‘flux which is in .the direction of
the density gradient. For free streaming particles it?_the initial motion
of the particles and not the density gradient which ''drives" the flux.
An example in which the flux is not parallel to the density gradient

is shown below.
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flux »

Fig.3.5 A Flux Which is not in the-vn Direction

Corman et al (134) describe several approaches to flux
limiting. They give a method, due to D.Post and J.Wilson, of
including limits (1) or (3), described earlier in this section, where

appropriate, viz:-

Al jon -1
Qlimfmr(l + 3 exp(_-—;—[.—a;))

The flux 1limit used in chapter 5 is limit(2). This is the limit
which is "in the spirit of' the diffusion approximation.

Kershaw (114) has compared higher order Pn methods with
ﬂux limited diffusion (Pl).

He found n >10 was needed for Pn to give

better results than flux limited P].
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3.7 Analytic Work

Two analytic models for suprathermal transport are described
in this section. Albritton et al(135) considered the transport of
large mean-free-path electrons and Shkarofsky (136) describes a

Lorentz gas model.

Large Mean-Free-Path Transport

Figure 3.6 shows, schemétically, the trajectory of a -

suprathermal electron in the corona of a spherical microballoon.

Fig.3.6 Trajectory of Electron in the Corona

-

]

Clearly the imward radial flux due to such orbiting electrons
will be much less than the naive flux limiting value v(%mevz). Indeed
the flux may be outward, due to ion expansion. The motion of the electron
is dominated by the E fields in the corona. The effective potential the

electron experiences, for motion in the radial direction, is illustrated
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below:-

1)

-ed Cr ’t). + :
2

2me T

potential

T

Fig.3.7 Effective Potential of Orbiting Electron

1 1is the angular momentum of the electron.

This potential has the same effect as the purely electrostatic
potehtial well considered by Valeo and Bernstein (75 ) and discussed
in section 3.3. The flux,witl*- no collisions and no time dependence
of ¢ , will be, for appropriate boundary conditions, zero. Albritton
et al use the assumption of an infinite potential jump at scme ''sheath
which is moving slowly, compared with the suprathermal electrons,and
assuming A /2>> Radius of the Microballoon everywhere. They calculate
the first order 'bounce average' diffusion coefficients in impact
parameter. The flux calculated scales as :-

R

q -~ (imevz)v —
:
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Double Maxwellian Heat Conduction

Shkarofsky (136) used a model in which the zero order electron

distribution function was taken to be the superposition of two Maxwellians

n
£ =23 b exp(-m?/2Tyy) + —2B exp(-wv?/2T ) (3.7.1)
° 2% TS/Z T3/2
) th 'sth

The distribution function is expanded to first order and the first term

of the spherical harmonic expansion is used. Thus:-
(3.7.2)

It is assumed that the effect of laser energy deposition and energy
transport maintain a stationary ng , Ty, 5> Dgep and Toth profile.
Using the Lorentz gas approximation the equation for f£; is :-
£ = - L [vof + e/m(2£,/3v) Ef (3.7.3)
v .
c

This may be used to calculate the current ,

4 )
3
I=-7 ef £v° av (3.7.4)
and the energy flux,
2 .
g=—f £ dv (3.7.5)
3 o

The factors of 1/3 in equation (3.7.4) and (3.7.5) are due to the
integration over angle. Using equation (3.7.1) for fo in equation (3.7.3)
to obtain an expression for f£f; Shkarofsky finds the energy flux,

for J =0 to be :- .
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32 1 . 1

q=- ( ) °
2 2 2
m" nY nthTstl/l * nstthi/:h

. 5/2 -3/2 /2 052 .
- 205 Toh Tgth (T Ton) Vg * Znthlsth Toth (Ten

* nthTstﬁz (nthT‘il/lz * nstth{izl(nth-STéth)) VT, *

/2 . /2
* nstthth -cznsthTith * 0 L T tn 5T Vg

Y3

Tsth) Visth *

. 3.7.6)

The .con'cﬁtion for the reversal of the sign of the VTth heat

flux can be seen fram this.

The Lorentz gas approximation is also used to investigate the

heat flow,when both thermal and suprathermal electrons are magnetised,

and the generation of B fields.

Where Y is given on page 75,
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3.8 An Extension of Shkarofsky's Work , - —

Shkarofsky used the collision frequency:-
=1 Y/v3 (3.8.1)
vy =,
where Y = 4x(Z. e2f41rs m)z InA
ion o

The applicability of this term to both thermal and suprathermal
electron transport in a high Z corona is dubiocus for two reasons.
Firstly since InA , may be small taking InAy, =Ind . = 1nA
will not be accurate. Secondly the plasma may not be fully ionized.

In this case, as has been seen in section 2.2, the suprathermal

electrons will "'see' a larger effective 7% and the use of Zgon in

equation (3.8.1) will’lead to inaccuracies.
Since the Lorentz approximation is being used we may write:-
v

v
£=f +f J——+f  + £ L= (3.8.2)
°th  “lth vy, Osth 1 (Y]

and the equations for f1 and fl are:-

th sth
e' a
ven 1, =T ["Vfoth.‘ = foth/a") E] (3.8.3a)
and
e
£ = -|vvf - —(0f. /9 B] 3.8.3b
Usth =1y [V Ogtn @ 0 ol OV E ¢ )
where
o ™ e B )3/2 exp(-mv?/2T,y) (3.8.4a)

2% Tth
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£ =n (_m___') 3/2 exp(-va/ 2T ) . (3.8.4b)
0 sth sth
sth 2x TSth

The drift veloctties of both zero order distribution  functions

are zero. If this were not so electron-ion collisions would act on fo.
Vo =nY, /v Y, =4r (Z. e2/4m-c )2 In) (3.8 s:;x)
th + th ? th ion 0 th *Oe

Ve =Y/, s Yo, = by (Zecel/4% €9 1nd (3.8.5
sth + sth » © ‘gth LI sth -8.5b)

The expressions  for the electron current and the electron energy flux

are then given by :-

e 1 ‘ Y 1
< [;‘V% > ) ¥ T S g 0% ) >

n*yth sth
2e
+ :'{nth (P> gy * g <V Sth}g] (3.8.6)
and ¥
- 3[ <P ) - 1t 7
= - \v4 -
q 3n+Yth( (nth V7 th Ysthv(nsth D s th)] -
de
- (D@ & gy # 1, Y ) B (3.8.7)
n ,
where <V = b K2 ¢ dv (3.8.8)
sth/th N e 0 Osth/th
= 4 n!
using _/ X1 gmpx = —=T (p>0)
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we can writes-

2

(—-)k/z Tk/z(’k+’ (3.8.9)

k
Y sth/en = -
(mi ™

for odd k.
Using equation (3.8.6) to ‘eliminate the E field fram
equation (3.8.7) and putting the total current equal to zero fhe

expression for q becames:-

2 1 1

Yy ng Tl + O /Y ep)ng n Tooe
{Zn /¥ o2 T2 (T )Ung + 2 (Y /2 .5/2 °
sthYth/Ysth th™Tsth th th/Ysth)T‘th /2

(Tsth'Tth) Vg *

3/2 5/2
thTtlj; (ZnthTt}/1 +n tho’r.h/‘fsthﬂ'3 TenSTsen)) VT *

372 5/2 , /2
* n 102 (2n st en/Ys o) Tory * 0y Oy Yo ) Toh (”sth‘STth?)VTsth}

(3.8.10)

If Ysth= Yth = Y this reduces to equation (3.7.6) with J = O.

The condition for reversal of the flux due to Tth becames: -

R (5T, nth)r” e Ysen) > 2y T5/2 (3.8.11)

Since Yth/Ysth <1 this will be harder to satisfy than the condition
by Shkarofsky where Yth/Y sth 10 equation (3.8.11) is replaced by umity.
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CHAPTER 4

Introduction

In this chapter we briefly describe an experiment by
Hares, Kilkenny, Key and lunney (67 ) which investigated
suprathermal electron preheat in Tayered targets. The effect
of the E field which drives the thermal return current is
crudely estimated and & design for s a target which will increase
this effect is given. A numerical model is developed to give a more
quantitative description of resistive E field effects. Its application
to the analysis of the experiments in (67 ) and to the design of, and
analysis of, experiments with resistive fargets (137) is described.
Finally the importance of resistive targets to I.C.F. target design

is discussed.

4,1 The experiment of Hares et al

Kq radiation

tThe primary diagnostic used on this experiment was a
measurment.of the K, X-radiation from fluorescent elements (fluors)
within the target. This diagnostic has been discussed by Choi(138)
and references therein.

There are two relevant causes of K shell ijonisation, firstly

uthe‘absorption of photons with energy greater than the K. shell fonisation

energy. Such ionisation is most efficient for energies close to the
ionis;tion energy. Secondly there is jonisation by collisions with
suprathermal electrons with energies greater than the K shell
jonisation energy. Typically 1% of the energy deposited by suprathermal
electrons will go into K shell ionisation.

As the target is ionised the ionisation potentials of the
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remaining bound electrons are changed. Thus the “positions“ of the
characteristic X-radiation lines will be shifted. This_will_result in

K, radiation not being detected as such and a saturation of the observed
yield,

The experiment of Hares et al (67 ) was the first from which,
by suitable choice of fluors, the problems of radiation pumping and

saturation were eliminated.

The experiment

. Rear
Spectrometer
Laser
el

5.1018-5.101 %im ™2

0.Lum Al
200 ps. I.O}Im Si0
3,0m KC1
Variable Mylar(C 0
/ 7S G 10%804 1
Front
Spectrameter

Fig.4.1 Layout of Experiment

In an experiment conducted at the Rutherford Labaratory
Central Laser Facility layered targets, as‘shown in Fig 4.1, were
irradiated with 1.06um laser light. A thermal plasma is formed which
is isolated from the front fluor by the Aluminium and Silicon layers.

Suprathermal electrons created by the laser-plasma interaction preheat
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the target. Some of the energy which is deposited in the fluor
layers: will give rise tb Ka radiation which is detected by the
spectrometers. For fixed power and focusing conditions, and hence
fixed intensity, a series of experiments were conducted using targets

with different Mylar thicknesses.

The idealisation involved in the analysis of the experiment,.

~ described by Hares (139), is illustrated by fig 4.2.

EXPERIMENT IDEALISATION

.
’

/

<

-

< \ '
\/\ \

~

!

)

Coroma qvered Infinite
Target Homogeneous  Preheating Source
Medium
Fig.4.2 Idealisation of the Experiment

In the analysis the following assumptions were used-:-

(1) Spercer's results for electron energy deposition in a solid (see
also section 2.3)

(2) The result from (140) of the fraction of deposited energy going
into K shell jonization .

(3) An assumed form of the preheating source :-
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= N g+ -
fpreheating(E) =NE exp(-E / Tsth) (4.1.1)
By fitting the Ka yields of the front and rear fluors with
that predicted by the above,a preheating distribution of the form :-

f (E) = N E¥/2 exp(-E/ Tsth) (4.1.2)

preheating
was inferred. Experiments using different dintensities of laser
irradiation and the assumbtion that the form of the preheating
distribution remained the same were used to determfne the variation of
the suprathermal "temperature" with intensity.

This experiment gave the following results:
(1) The form of the preheating distribution.
(2) The scaling of Tstp With intensity.
(3) The scaling of the fraction of incident energy causing_target

preheat.

It was the first experiment to give direct measurment of suprathermal

electron preheat. This experiment is described more fully in

(139, 141, 67 ).
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4,2 The role of resistivity

If the suprathermal electrons carry a current Jsth then,
in a one dimensional experiment, a thermal return current
Jth =-JSth must flow. If the thermal plasma has a resistivity “ith
there must be a E field Jth‘“th . A crude estimate of the effect
of the E field on the suprathermal transport may be found as follows.
Let the canonical values of the suprathermal range, suprathermal
current density and the resistivity of the thermal plasma be Re’rdsth-

c

and n. . Then a potential -R. Jsthc n. is established if the

suprathermal transport is unaffected by the E field., The energy

lost by an electron in crossing this potential is e R. J n
(o sthC c.

Typical current carrying electrons have an energy f k Tsth » where

f is a constant of order one,the value of which depends on the form

of the suprathermal electron distribution function. It is inconsistant
to assume that E fields do not affect the suprathermal transport

ife-

e R.J n
¢ “sth, “c (4.2.1)

>
k 2 Tgen

When the condition in equation (4.2.1) pertains linear
transport analysis, as described in the previous section,is no
longer valid.

The range of the electrons may be rewritten as

re / o where r_ is the stopping power and o the density of the

c
target. Using this equation (4.2.1) becomes:-

& re Jsthc nele)

2 T (4.2.2)

K o sth

Note that the canonical resistivity is a function of the density.
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Ignoring this for the moment it can be:. seen that E fie1d‘§ffgc?s
may be increased by reducing thé density of the target.

.In (141) scaling of Tsth and the fraction of incident
energy going into supfathermaT electron preheat are given... This
‘may be used to find out how E field effects will scale with intensity.

Experimentally (in the range 5-50 108 & m'z)

_ I
Tsth - (Tsth)o ('?
' 0

)2
i?bﬁpr into preheat ~1I

The energy flux into the target ~(§mev§).neve~Tsth Jsth'

Thus :~
. _ 1.3
Isth = (Jsth)o'(}q
_ 0
The r'anewT2 sO r=r (-I—)
9 sth A
. 0

The energy deposition per unit mass is 1independent of intensity - -

so the resistivity will be indeperdent of intensity. Thus:-

rJn re Yo o
1= (L) (=2 (4.2.3)
Tsth_ Io Tstho

The effect of resistivity will be more important for
higher intensity illumination.

The preceding discussion only deliniates a range of
parameters for which-it is invalid to ignore the effect of the
resistive E fie]&. In the next section a numerical model which was
developed to study the E field effects on the suprathermal transport

is described.
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4,3 Details of a numerical mode1

The simulation model uses the following assumptions:-
That one dimensional slab geometry is appropriate.
That the target is in local thermpdynamic equilibriun (L.T.E.)
Spitzer resistivity is used for the thermal electrons,
Thermal transport, radiation transport. and hydrodynamic motion
are all ignored.
(5) The density of suprathermal electrons is much less than that of
thermal electrons.
(6) The timescale for change of the state of the target is much
greater than the suprathermal electron "lifetime".

Each of these will be discussed 1in turn,

Assumption (1)

If we first ignore the effects of E and B fields a
necessary condition for ignoring two dimensional effects is that
the laser spot size is much greater than the range of the suprathermal
electrons. A rough estimate of the effect of finite spot size may
be found by using single group diffusion theory. The single group

diffusion equation is:-

N N N
S . g g
D — v. Q K J | — = ———! ) (4.3.])
. ‘g s
ot T 2t .
h T. =
where T AE 7/ vg
.V
0 = -Sﬁv‘kw/ZVNg (4.3.2)

Thus in the steady state (a =0) the single group equation is, from

ot
(4.3.1) and (4.3.2) :-
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v - (2

I AEA'M'/Z

) Ng = sgurce (4.3.3)

“To estimate the spreading effect due to finite source
size equation (4.3.3) has been solyed in an infinite medium for a
disk source., The flux across any plane can then be calculated from

equation (4.3.2).

Source /
T

Fig.4.3 Geometry for One Group Diffusion Model

The Green's function for the one group diffusion operator,

the solution of -

2 3 _
(v° - )6(rs ') = s(r-r')
XEA'H’/Z '
iss- -
1 3 ;
exp(- r-r' (——)*) (4.3.4)

4x r-1' XE)‘r/Z
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Where G( r, r' )—0as |r - r} —« has been used.

Using (4.3.4) the value of N_ can be found at any point

9
in space by integrating over the source., The flux may also be
calculated. This has been accomplished by numerically integrating

over the source, Fig. 44 gives typical results.

These results may be used to Jjustify a one
dimensional simulation.

x/R = 0.5 x/R = 0.5 ~
R(3/Agh, /2)% =2 R(3/Agh_ /2)21’- - 10
5 5
1 2 . N
r/R 1 /R 2

Fig.4.4 . Flux from a Disc Source

Now consider the effect of E and B fields. If B=0
then quasineutfah‘ty" dictates .‘ltota1 =0. A departuret from itota]
= 0 is possible if the B field can diffuse into the target. The
equations governing this are:-

Jsth +d4py = (VA B ) /uo

E =0y (4.3.5)

Q/
o

-VAE

Q/
o+
|
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If the assumption that Qsth is irrotational is made then,from
(4°3°5), "

oB
—:_v ___B-
ot

|
r
o

(4.3.6)
using v.B =0

Equation (4.3.6) can be used to estimate the depth into the target
to which the magnetic field diffuses, Lc » Dy using:-

1.1 %

5 (4.3.7)
TC Lc uo

Teo the characteristic time, will be the length of the laser puise.
If Lc is much less than the range of the suprathermal

electrons
then ignoring the B field effects will be justified.

The value of Lc for the experiments described 1in (67 )
was typically 5 microns.

Assumption (2)

The criteria for the validity of L.T.E. are given_by

Griem (142 ), For a uniform (in space and time) optically thin plasma
this is :

KT
n, > 7.4 10%4 (¢ +1) T (——) 2

5 (4.3.8)
@ By

The condition for the spatial scale length is
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7104 o szH
ay R C E 1 2Y eXP(Z " ) (4.3.9)
and for the characteristic time:-
1.15 10832 +l)3n<z>+l.kT 22
) —(——)exp(— (4.3.10)

{2 (Zy+1 <
ne(n +n ) (Zf%H kT

Because of the Z dependence of (4.3.8) this inequality will
not be satisfied by cool high Z plasmas. However the L.T.E. equation
of state may be used if the plasma js optically thick to its own thermal

radiation.

Assumption (3)

Only in the two extreme cases, fully jonized and very
slightly ionized, are there adequate_thearies for the resistivity of an
jonized gas. The latter case is of no interest here as the resistivity-
is much greater than that calculated using the assumption that
electron-neutral collisions dominate. The Spitzer theory (53, 143 )
is applicable to a fully jonized gas with jonic charge Z . It gives :-
1042 1 v,

n = . (T in eV) (4.3.11)
13/2

where A = bmax/bmin

bmax » the maximum impact parameter, is usually taken tc be the Debye
Iength, jAD . However. if there are ﬁery few particles in a Debye sphere,
as there will be if AD becames comparable to the inter ionic distance;
this will need modifications. (Clearly if there are < Z electrons in

the Debye sphere A, cannot be used as the distance over which the ion

ionic charge is screened.) ﬁmin is the larger of the classical distance
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6f closest approach and the DeBroglie wavelength of a thermal electron.
The coefficient y can be evaluated mmerically (143), It is 1 if
Z» 1.

The Spitzer formula should give an accurate value for the
resistivity in a plasma which is fully ionized, non-degenerate, has
InA » 1 and ig not turtu}ent: -

We wish to apply the Spitzer formula to cases where the
above conditions do not all hold. It is important to know whether the
errors introduced by this will be large.

Ignoring degeneracy will introduce serious errors if the
thermal energy of the plasma is comparable to or less than the Fermi

energy, ie if :-

hZ

. L2
kKT £ —— Swne)

Zme

2/3

Fig.4.5 Femmi-Dirac Distribution for Two Temperatures

(a) kI'e<<E1= '
T.0
B
)
B
o .
(5) 1<1"e>>13F
\\ /
0 o~

F Energy
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Clearly in case (b) the effect of the Pauli exclusion principle in
"disallowing" some collisions is negligible. If Ej and k’I‘E are =
camparable use of the Spitzer formla overestimates the resistivity.
For k’I‘E > EP the average occupancy of states with energy below
KT will be of order 031:/1<1";3)3 . (EF/kTE)3 is typically 1075.

The target material will not be full_y ionized. In the
partially ionized ''gas' there will be ions in more than one charge state
present. An approximate treatment of this is as follows. A simple,
mean free path (mfp) , theory gives the conductivity of a plasma as:-

2
e” n,
m, T
where T = >‘7"/2 /vth is the collision time,and

2 -
Mg ~ @A ap7h

Thus the collision times for collisions with each ionization state

r o~ [l -1
b (an).

Z—~Z~’-nz

total

also ne=ni2 .

e/ Tiotar ~ 2/ 2

This leads us to the conclusion that Z in equation (4.3.11) should
be replaced by 7%/7 (which is = Z). If the material is multiply
ionized and in L.T.E. Z%/2 =~ 7 (this approximation was checked
using a full L.T.E. code supplied by R.W.Lee). Two further effects

are relevant. The Spitzer theory only deals with elastic scattering.

In a partially ionized gas inelastic collisions will also occur. Also the

muclear charge is screened out over a distance aG/ZI/ 5

(144) (a, 1is
the Bohr radius). If this is comparable to the minimmm impact parameter

the plasma electrons will "see'' some of the muclear charge. Both these
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effects will increase the resistivity from the Spitzer value.

A condition for the validity of the classical transport
coefficients is that 1nA is large (cf 1). If this is not the case
then the effect of single large angle scatters due to collisions with
impact parameters <% mei.n and the effect of the interaction of an .=
electron with plasma oscillations in its wake (95 ) may be as important
as the cmmﬂ:;tive effect of small angle deflectipns. The Spitzer theory

is only valid to order 1 / 1nA.

Assumption (4)
The turh depth of the thermal plasma is ~ 0.l um. This will

have little effect on the suprathermal transport since it will only
affect the state of a target for a small part of the suprathermal
electron's range.

To consider the effect of thermal transport and hydrodynamic

motion in the preheated target we consider the following cancnical

values:-
Atomic Number 12
Charge State 5
Temperature 100 eV
Scale Length 20 um
Density of Ions 1028 o3

Then the thermal diffusion time is 10™0 secs and the sound tramsit
time is 310710 secs compared to a pulse length of 91071 secs,
Fram this it is clear that thermal transport can be ignored and plausible
that hydrodynamic motion may be ignored.

Radiation from the thermal plasma will have a negligible
preheating effect because of its short range (for the targets illustrated
in fig.4.1) . Although hard x-rays will be able to preheat the target,

their preheating effect will be small; only a small fraction of the
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suprathermal electron energy loss goes into hard x-rays. Thus radiation
transport may be ignored.

Assumption (5)
If the thermal electron density is much greater than the

suprathermal density then the model described in section 2.1 is

applicable. Typical electron densities in solids are 1028 3

5‘1029 m's. A typical suprathemal density would be of the order af - or
less than 1026 m"3 (10% of critical density for 1 um radiation). .-

NgpK TNy 1n all cases of interest.

Assumption (6)
Since the time dependence of the problem is treated by

performing a series of time independent transpdrt calculations we
require that the source and the scattering properties and resistivity
of the target do not change greatly during the time it takes a

. suprathermal electron to thermalise. The timestep which is used must
satisfy the inequality :-

(l1ifetime of suprathermal electron) < (timestep) < (timescale for change

of target / source properties)



93

Calculation of the Suprathermal Transport

The sequence of calculations used to simulate the effect of

suprathermal transport are summarised below:-

Fig.4.6

CALCULATE SOURCE OF
SUPRATHERMALS FOR
TIMESTEP

N

TRANSPORT SUPRATHERMALS

[
CALCULATE E USING J_,

h

| NEXT
TIME-
STEP

NO

HAS ITERATION FOR
E CONVERGED?

UPDATE STATE OF TARGET

The stages shown above will now be described.



04

Source of Suprathermals

Weights

A source distribution of the form (4.1.2) is represented by
a mumber of Monte Carlo particles. These particles are weighted to

represent a large mumber of real electrons. If the source is given by

f(E) electrons s Ip~2

E, - By the weights of the particles in that Tange should satisfy :-

Ep

. =] £(E) dE
partic;es i [

in range a

E; - B

incident on the target,then for an:energy range

The choice which has been used is to split the energy range
(1KeV - Gk’I'sth) up into many small intervals. One simulation
particle is used to represent the source in each interval and its weight

is given by:-

W= £Ena) Epay = Epinl

where E ., is the middle of the energy range. Energy- WE ;5 and
charge -eW are associated with each particle.The rate of emergy .. -

deposition of a similation particle is given by :-

~&similation particle - ¥ Eelectron

The current due to a shmlation particle is -eW between the points
where the particle is created and where it thermalises.
The initial direction of the simulation particles may-Be

specified.
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The Monte Carlo Electron Transport

Monte Carlo electron transport has been discussed previously
(section 3.4). A very simple model is used here. The continuous energy
loss appraximation and a Gaussian multiple scatter distribution are.
employed to simulate the effects of collisions; condensed case
histories are used. The effect of the E field is included By following
the Monte Carlo particles along parabBolic traj ectories between scattering
""events', and changing the particles* energy accordingly. The formilae
used for the energy loss due to collisions and the width of tﬁe Gaussian
multiple scatter distribution are eguations (2.1.6) and (2.2.6) |
Tespectively. The method for calculating the change in the polar angle
due to collisions is given by eqmations = (2.4.5) and (2.4.6). Particle
histories are tenniﬁated when their energy- becomes camparable to the
ionization potential , or Debye energy, of the -ta'rget material. All the
remaining energy is then deposited.

The E field acting on the particle is taken to_be the field
at the centre of the cell containing the particle. The energy lost 'is
deposited in the cell containing the particle or; if the particle
crosses the cell houndary, half Is deposited in each cell.

As descriBed above the pa’rt-icles are weighted so as to
Tepresent the source function of suprathermal particles. Nompally
400 -~ 1000 simulation particles are used.

At the two boundaries of the simulation reflection o¥ free flow
conditions could be applied. In all work described in. this chapter free
flow conditions were used at Both Boundaries, .

_ The inclusion of E field effects complicates the treatment of
the collisional energy loés- and deflection, Because the E field changes
the electrons’ kinetic energy it is no longer possible to choose path
lengths to give preselected energies after each step with a contimuous

slowing down (C.S.D.).approximation., Since a Righ order evaluation of the
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C.S.D. energy loss f (dE/ds)ds would be expensive,and also no
longer as accurate. because the E field will also affect the energy, a. ..

simple first order expression for the collisional energy loss was used:-

dE
= — )
C.S.D. ds E—EI. As

E

where E; is the kinetic energy at the start of a step and A s the
path length. As must be chosen so that :-

_ dE
G— 4as) / E
ds

is small. 'The conventional approach. to the treatment of scattering (105)
is to store the multiple scatter distribution functions for a mumber of
preselected energies. Since, as was mentioned anve; the energies after
each step can no longer be selected and also Because thHe state of the
target, and hence its scattering properties, are a function of time,
. such an approach is not practicéble. Such problems do not occur if a
Gaussian muli:iple scatter distribution is used, as in this case, b_ut
would greatly camplicate the implementation of a more sophisticated
model,

Deflection and energy loss due to collisions and the E field
are treated independently. This is justified since the scale length for
deflection due to the E field will always be far greater than the

Debye length.

The Choice of '"Random'' Quantities

When random numbers were needed these were '‘picked' by using
the C.D.C. pseudo random mmber tables "RANF'. During an iteration
for the E field the random mumbers used for a given case history at

each iteration started at the same place in the RANF tables by using =
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the 'RANSET" routine. This simplifies consideration of the iteration
for the E field. The noise due t6 the small mumber of particles used
may be estimated By camparing simulations with different sets of random

mumbers , see below:-

Fig.4.7 Effect of Noise on Energy Deposition

Au target
450 case histories

A Tsth = 12 KeV

deposition

position
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E Field Calculation

The E field is calculated by using:-

J g =0 (4.3.12)

total = Isth ¥ Jth = Jsth * 7
Jsth is calculated by summing the contribution of all the Monte Carlo
particles., This is a simple matter because the contribution of a particle
is constant between the ﬁlaces where it is created and the case history .
is terminated and zero elsewhere. The E field needed to give

Jth = - Jsth is then calculated and used in the iterative scheme:=
™ = (-a)E" 5 a (< /) (4.3.13) "

E is calculated at the cell centres and J is found by taking thHe
average of the currents through the cell's Boundaries. The comvergence

of the scheme is illustrated by plotting J Sth(x) at each iteration.

Fig.4.8 Iteration For E Field

ISt'iteration

— 4th iteration

Sth iteration

current

position -
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Updating the State of the Target

At the end of each time step the energy deposition in the . _-
target is incremented and the ''state' of the target is calculated. The
L.T.E.- equation of state is used for the average ionization. This is
déécribed below., The resistivity is given by the "Spitzer formula,
equation (4.3.11). The Debye energy of the free electrons anfl the
average ionization energy of the bound electrons must be calculated.

The latter is taken to be:-

. Z
- nuc 2
Iav =11 Cznuc“ Zion)- CZ )" eV 4.3.14)
ac ion

2

where a 2~ scaling of isoelectronic ions and the appraximate formula

(2.1.3) are assumed.

The Equation of State

~Brom -- the specific energy deposition the state of jonization
of the target material must Be calculated. It is necessary to satisfy:-

1.5 0, (1+ Z)KT + E; (4.3.15)

Edeposited - onization
where Z is the average icnization state.

A subroutine FINDZ (supplied by R.W.Lee) was used to calculate
the approximate L.T.E. ayerage ionization state for a given temperature
and the energy required to ionize the material to this state. This .= o
subroutine uses the approximate L.T.E. calculation déscribed By - _1:«
Zel'dovich and Raiser (145) and ignores ionization potential depression.
Equation (4.3.15) was satisfied By solying the equation:-

- 1.5n,(1# I) kT - E = f(T) =0

Edeposited fonization
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by the iterative scheme :-

£ (1) iy < £ - £(1" ™)

Tm'1 =70 - ; f
T ™ - !

(4.3.16)

The first value of £'(T) was found by calculating £(T°) and £(1.01T)),
| The results given by the subroutine FINDZ have been compared
with a full L.T.E. calculation which included a crude treatment of
jomization potential depression. Results were found to Be in Ajg.ood |
agreement for low Z materials., The full L.T.E caclulation could not
be carried out for high Z (Z >20) materials.

The calculation of the state of the target was compared with
the "SESAME" (146) equation of state tables. For gold they were found

to be in good agreement for densities < 10% of solid density.
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‘of experiments

Two applications of the model will be described in this
section? <€ﬁrsh1y analysis of ‘the targets described in reference(67 ),
and section 1 of-this chapter; ﬁ;écondTy the design of targets tn Which
'resist'iv'ths inhibits the flow of suprathermal electrons into the

target and the analysis of experiments with such targets.

Analysis of ordinary targets

An initial test of the model was its application, thh_
E field and ionization effects omitted, to the targets described
in section 1. Using a source of the form given by equation (4.1.2),
and varying Tsth’ the rétio of the energy deposition in the front
and rear fluor layers was used to determine Tsth' This was compared
to the value of TSth deduced from the analysis using Spencer's
method (139) and was in good (f 5 %) agreement. This should be the
case since the targets contained only Tow / medium Z materials and
the crude applicétﬁon'of Spencer's theory with an average Z should
be reasonabaly accurate. .

The inclusion of ionization and E field effects with
Spftzer resistivity showed a potentia] of a few hundred ¥olts
across the target. This has a negligable effect on the transport of

electrons with Tsth ~ 14 Kev.

Resistive inhibjtion

As has been seen the effect of the E field in inhibiting
suprathermal transport in solid density,low Z,targetsfis very small,
How should a target be designed so-as to increase the effect of.
the E %ield.? Equation (4.2.2) shows that reducing the density
of the target material will enhance the effect of the E field.
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The resistivity, for a given specific energy deposition, is a function
of density. If the L.T.E. equation of state is appliicable in both
cases then the average ionization state will be higher in the low
density target. Fig 4.9 shows the resistivity plotted agéinst specific
energy deposition for so1id.and 1% solid density Gold and Carbon

targets.
Fig.4.9 Resistivity vs Energy Deposition

fully ionized

““““ ~-._ 1% solid Au

-
----—
-
-

1% solid C

loglo(resistivityl

10-6 L 1 1

LT 4 i L

1 2 3
: S'ped\ﬁic Energy Deposition((lolo .Im'3)m solid Au)

It can be seen that the resistivity decreases re]atjve1y
sTowly with increasing energy deposition,until’ the material becomes
fully ionized. If the target becomes fully ionized the resistive
effect yi]] "burn out" due to the T'3/2dependence:of the resistivity.

These considerations lead to the the idea of employing a
. low density high Z layer to increase the effect of the resistivity.

Fig. 4. ' shows the epergy deposition #nto a . 0.5°% solid density



103

Gold layer with and without E field effects after a 90ps. pulse of

19 2

intensity 3. 1070 Wm - with 10% “of the energy going into suprathermal

electrons with T = 14 KeV.
sth

Fig.4.10 E Field Effects on Energy Deposition

Energy Deposition (1010 J Kg-l)
[#3]
}

T 1 1
0 0.5 1.0 1.5 2.0
Area Mass Density (10‘2Kg m‘z)

An experiment was conducted at the Rutherford Laboratory using

the following target design.

Laserlgz\
2.810'7 um"~ 0.1 ym Al
90 ps. 2.5 um Mylar
3.0 um K C1
] Gold
+—2.0 um Ca F,

Fig.4.11 Target Construgtion
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Pairs of targets with the same area mass density of Gold

were used. In one the Gold was solid density and in the other it

was approximately 1% of solid density. The Ka emission from the rear

and front fluor layers was compared with the emission predicted by

the simulation. (The simulation gives the energy 1loss by suprathermal

electrons from which the Ka emission may be calculated). This shows
that the reduction in energy deposition in the rear fluor layer is

greater than can be explained by Spitzer resistivity. The simulations

‘ weféFrepeqféd, using an arbitary multiple of Spitzer resistivityf* It
was found that four times Spitzer resistivity brought the simulation

results just inside the experimental error bars.

T Fig.4.12 Experimental Results and
104 Simulation
~ _— ) )
'_i‘;_‘ § Experimental Yields
0
\?o | Model Predictions
= —1
= 54
O
.,>-.1
= T
> X
solid
. Gold 0.6% solid
b ‘ T
0 T X T L
10 — 1 2 3
Hf'\
I
i
2]
>
O
'o
-
o
3 57 X
o=
= _l_
e
solid
X
Gold o
— ! — 0.75% solid
- 0 T T X —T
1 3

Area Mass Density (10'%Kg n?)
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Onedeficiency of the target design used above is that
the suprathermal current is considerably attenuated before it reaches
the Gold layer. Experiments were conducted with targets in which
no front fluor layer was used.and in which the area mass 'density
infront of the gold layer was minimised. (Some mass was needed for
£o€&§t;u¢%ural and fabrication_purPOSQSf) 'These experiments confirmed

the results described above:
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4.5 Resistive Targets and Target Design

Can resistive inhibition be used in an I.C.F. target?
To answer this queétion the possible ways of reducing suprathermal

preheat must be considered.

Ablative Targets

The simplest way of stopping preheat is to use targets with
a large area mass density between the surface and the fuel.(section 1.7).
Since the acceptable level of preheat of the fuel is low ( £le¥),
electrons of several times TSth must be stopped. This may result in a
large and undesirable (section 1.2) increase in the mass of the target.
At the energies of interest (10-100 KeV) the area mass density

requirement is almost independent of Z; the effects of scattering

and average ionization energy counterbalance each other.

In (147) the inclusion of a high Z layer is suggested.

Fig.4.13

— A
—

9 ﬁ N
—)

— A

A

Sy —

—_ >

~x

high Z low Z

Although this layer is insufficiently thick to greatly reduce the

. energies of the suprathemmal electrons it will make a beam of electrons
incident on it more isotropic and hence reduce the quantity of low

Z material needed to obtain a given reduction of the suprathermal

energy flux.
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Vacuum Insulation S

Lee et al (148) have suggested using vauuw gap insulation,

see Below.
Bulk of
Laser - . Target
gap .
Fig.4.14

With a gap >> AD(sth) the flux of suprathermal electrons into the

bulk of the target will be sma.ll.' However hﬂrond motion of the
laser heated layer will close up the gap and "short out” the insulation.
If the size of the gap is dictated by the condition that it does

not close during the laser pulse, it may be large. This would preclude
the use of this method for long (> Sns)pulses. Even for shorter pulses
the mass of the outer layer, due to its larger area in spherical
geometry, can became undesirably large. Additionally there are structural
problems in producing such targets.

" 'Séeded Tdrgets

Tidman (149) suggested using ''seeded targets', targets
with small regions of high Z materials within them. The idea behind
this is that the v ST, generated B fields will impede the
suprathemals.



108

" ‘Registive Inhibition

As has been seen in section 4.2, resistive targets would be

- expected to perform better at higher laser intensities. Such targets
require less area mass density than non resistive targets to prevent
fuel preheat.  (experiments suggest 1/3 as much,) Because the resistive
layer is thicker,there will be a mass penalty in spherical geametry.
This will not be as great as the penalty for vacuum gap insulation. The

fabrication of low density Gold coated microballoons presents no problems

(150) .
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CHAPTER 35

Introduction

In this chapter we discuss the advantages of using total
energy groups vis-a-vis speed or kinetic energy groups in a multi group
diffusion model. A model which treats all the terms in the multi group
equations implicitly is developed. The resulting set of linear equations
are shown to give positive results for any choice of timestep. The
application of a flux limiter is discussed. The nuxﬁerical solution of
the multi group equations using an ILUCG algoritlm (Appendix 2) is then
descfibed and some results are given. Finally we compare our method of

solution with that of Kershaw (109,122).
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5.1 The Advantage of Total Energy Groups '

In one spatial dimension or in the steady state the electric

field; I
. 34
E=-v¢+—=-v9
ot
u, [ | dp
(A=—J—d(volume) - in 1-D — =0 == J = constant = 0 , since
4xJ T ot ,

there is no current flowing into the target. Thus A =0 ).

The total energy of an electron;

F‘I‘ = ;‘zmevg -.e ¢(x,1t)
will change due to two causes, collisions and the time dependence of the
electric potential. (In the absence of these mechanisms the Lagrangian
has no explicit time dependence and Er is a constant of the motion).

If ¢ = ¢(x) then a suprathermal electron will only lose total energy

but its kinetic energy may increase.

Fig.5.1 Total vs Kinetic Energy .

Er

-e¢(x)
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This suggests that, at least for time independent calculations,
using total energy as a coordinate may be advantageous.In this case the
fact that a suprathermal electron may only lose total energy allows us
to solve the multi group equations one group at a time with a resulting
great reduction in éomputational effort: . In the time dependent case the
use of total energy considerably simplifies the coupling between the
groups and the spatial zones,and consequently s:hnplifiesAthe set of

linear equations which must be solved.
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5.2 The Fokker-Planck Equation .Using Ep, x, t .and u.as . Independent

Coordinates

From Appendix 3 the Fokker-Planck equation in an Eulerian

frame may be written as :-

of of of 1 2 of Of
a + Vug;(- + a(}L E + V—(lﬂx )éu— = gt-)COII (5-2.1)

where Xx,t, u and v are independent coordinates.
Té transform this equation so that x', t', u' and El‘ are independent

coordinates the following may be used:=-

9 3 &' W' A D OE
Ox Ox' x du'ox o' x OB Xx

and similar transformation for the other variables. This gives the

transformation (dropping primes) :-

S Tn R oE
9 P
du du
e d
- TV
av —QE,I.
D 3 _ . RIS

where v =(2/m)% Ep te ¢)%

(5.2.1) now becomes :-
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of 0% Of -1 of L f a 2. of
| —m— et d iV + V prm— = Vo —— + —(1l-§ Y =
ot BtBET a1.=.1._ ox BxaET v u )

= collision term

' - 09
using a = -(e/m) (- 3-) this simplifies to :-

x
9f D¢ °Of of d4(-uh) Of
—_— - — — + Vy— + (e/m) - = collision tetm (5.2.2)
ot ot aET ox ox v P

One may recast (5.2.2) into a more convenient form by substituting

F = fv . This yields :-

1 (ap 6 OF SF ) Do(1- uH IF o 26
——— - Or— — — ) - — —] =
v Jt Jt OE; o ox (e/n ox v oy (¢ m)v : Qx)
= collision term (5.2.3)

We must now transform the collision term. Using a

non-relativistic Fokker-Planck equation (Appendix 3) :-

o, » tlnpigth 2 2325 L 2 0
~{n_ + Z°n. —((1- : + LA
, e iy 3 )éﬁ v v sth

which transforms to :-

T InA o 2 TI'n o

2 sth
—(n_ + Z°n.) -((1- 4 )—) + Si—~(1n A £)
2 ¢ P du JBu v DET sth

and on substituting f = F/v this becomes: -
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T InA 2 F
(Diffusion term) ~(n, + Zzni) 35?'11 54 ((A-u )i —
2 v on uv
rn, ) F
(Friction term) + m —(1nA sth —) (5.2.4)
v aET v

(5.2.3) and (5.2.4) coambine to give :-

OF - o4 JF F e (- u?) 9F .F(/;‘}M
— e e o vu— 4 F 94
ot ot BE‘I‘ o ox (e/m v Ou Ox v o ox

L2 y2hsth 9 (1 2)BF) * I’nnra (. — (5.2.5)
- n_ L —u — — ° °

Equation (5.2.5) will be used to derive the multi energy

group equations in the next section.
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5.3 Derivation of the Multi Total Energy Group Edquations

Making the standard diffusion approximation we use :-
F=F,+ uF (5.3.1)

where F, and Fl are not functions of u. By definition :-

+]1 +1

. N='/duFo , O =fdu uVuFl . L
' -1 -1

The zeroth moment of equation (5.2.5) gives :-

ON ¢ ON 9

InA N
—_——- + Sth.
At ot 3]5.1. ox

=T nelﬁir( ) + source (5.3.2)
\'s

The first moment (mltiplying by pv and integrating over u )

gives:-
3
v 9 N r 2 lnAsth.

—_——(—) = - —(n_ + Z°n.)~—————12 3 (5.3.3)
3 9Ox v 2 © 173

where temms of order 1/Z2 , the first moment of the source temrm, and
the /9% /Ot term have been ignored. These approximations have been
discussed previously (section 2.4) . Equations (5.3.2) and (5.3.3)
constitute a closed set of equations. Closure was achieved by the
truncation of the moment émansim of F in Hermite polynomials used
in equation (5.3.1), it does not depend on the approximations used
to get equation (5.3.3). These approximations do, however, simplify the
solution of the multi group equations.

Equations (5.3.2) and (5.3.3) must now be recast into multi

group equations. The number of electrons in a cell in the speed range
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vg to vg+l is:-
Qﬂ
f dx [d " f 5% Vodv £
If vg, vg +1 correspond to total energi.es Eg, Eg +1 then this may

.be reexpressed as :-

/dx/duf—mr

cell -1

dv
Using dv=—d]?.l.=dET/mv and F = fv.

Similarly:-

o/ e /_MT
T " /dx 2 v

cel

and :- ngd.x f@éﬁl‘

.- Call

NN

Using these,and approximating terms of the form f f(F.r) N dE.r by
2

) Ngf(Er) AF.r where ET = %(Eg g+l) and AE = Eg Eg+l,the
multi total energy group equations become :-

O N* ¢ InA N
£ . e..__._.& +_.gg- - rnm-a-(——s-t-l-l——g-) + source (5.3.4)
ot = ot ET dx BET v
-3 N*
LYy g r InA *
3. 9x ¥ 2 ¢ P g

where NEAxAE=Ng R ¢;AxAE=sbg and Ax is the volume of

the cell and Ng and ¢g are the total density and flux in a cell

between the energies Eg and Eg 1"
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Equations (5.3.4) and (5.3.5) may be cambined to give

an equation of the form:-

3N 9 2 OoN
— + —(8 N) + —a:—(—) = source (5.3.6)

ot aE.l. ox ox v/

where B8 can be of either sign.

This equation must be solved using fully implicit differencing.

It is fmportant that this differencing should ensuré the physical

inequality Ng

of equation (5.3.6)..Firstly:-

2 0 . It is instructive to consider two simplifications

PN 3 QN
— + —q —(—) = source
3t Xx Ox v

This is a parabolic equation. It can be differenced fully implicitly:
in such a way as to ensure positivity and satisfy conservation using
centred : differencing (ie the standard three point scheme). Secondly

~

consider the equation :-

N 3( X
—_—F ——(f =0
ot BEr

This is a hyperbolic equation and describes advection of N with
"yelocity'' 8. If such an equation is to be differenced implicitly,
one sided differencing is required. The differencing should reflect
the damain of dependence of the equation. Thus the way in which the
equation is differenced will depend on the sign of 8. With such a
scheme the flux out of a region depends on the density in that region.
This ensures that the density will stay positive. Our approach to the
differencing of equation (5.3.6) is to treat the diffusion terms as
one would treat a parabolic equation and the (J/ aET) term like

a hyperbolic equation. Figure (5.2) illustrates the mesh which is used.
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AETs I 1,3 .5 Vi3

Fig.5.2 The Mesh

Two subscripts are used to label the number of electrons in
a graup and a spatial zone. (This notation is not reflected in our
computer programme where single index arrays are used for efficiency).
The electric potential, 93 » is defined at the centre of each spatial
zone. For same bins -~e¢ > ET . There can be no electrons in such a bin.
The diffusion coefficient at the spatial boundary of these bins is
set to zero. Physically this represents reflection by the E field.
Electrons will not downscatter into these bins. They will enter the
thermal population instead. The difference equations allow electrons-
which were,at one time level, in a bin for which -e¢ > Ep at the next
time level to "advect' to higher total energy. There is a large damping
associated with the one sided differencing which is used. Such .
differencing, called Leleviers method in hydrodynamics (151) replaces
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of A, ax D%
—_— b z .
dx Y dx 2 ox

where the sign depends on the direction of the flow. Thus the advection
equation is replaced by

of of v ax azf

—F VY =

ot ox 2 dx?

Thus, even . ‘though the downscatter terms for these negative kinetic
energy cells are zero, there will some density associated with them.
This is set to zero and the density added to the thermal density.

The energy that is associated with the electrons in the j'th ,
group is 5CEj + Ej+1)Ng i,j ° After each timestep the energy lost by
the electrons in the bins is added to the thermal electrons' energy.

The details of the differencing scheme for (5.3.6) will now

be given. Consider a cell in x, ET space.

AX

S
v

N
Vv

Fig.5.3
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Since the potential is defined at the centre of the spatial zones the -
kinetic energy is defined at the points N, S and C . The coefficient
, @ , is calculated at the W and E points using spatial averaging of
the coefficient between adjacent cells. If the kinetic energy af the S
point of either'cell is less than zero, no flux is allowed between the - °

cells. The flux, é;v , at the W boundary of the ijth cell is:- -

w N* N*
“13 Ci.J _ i-l,j)
AXV vg. c

In Cartesian geometry the areas of the W and E faces are
taken to be 1 ° AE (the scale factors equal 1) and the diffusion

term becomes :-

* * N* N*
- G & 0% S C ¥ M & _ Ny )
c c.cC W c W (ot
Axy B3 Vie1,j 210 Viel,j A"E ij 83 Vij X

(5.3.7)

The coefficient, 8 ,.is calculated at the N and S points.
The sign of 8 detemmines the direction of "flow'" at each of these
boundaries.' The possible cambinations of signs of 8 at N and S are

illustrated below:-

(a) (dl €l

—> b

Fig.5.4
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First consider case (a).

The (O/ aE.r ) term is differenced as:-

1

- * *
¢ g, e T B,
J

Consider the equivalent expression for the j+lth

1

> *
- AE l( BNNNgi’j*'Z - BNNgi’j+l)
-AEs,

The loss in N

gi,j+1 is thus :-

*

8N . .
ZQ_NN&lﬂ) 8, 0%

(5.3.8a)

energy group. That is:=-.

Which also equals the gain in N i from equation (5.3.8a). Thus the

g1]
scheme conserves the number of electrons.

Case (b) is ddfefenced as :-

1

* *
. Sgi-1,y T Agis)
1

#ndcase (c) as :-

1

* *
=0 8Ngij ~ Blgay)
1

(5.3.8b)

(5.3.8c)

(5.3.8a,b and c) provide a conseyvative differencing scheme for the

(o/ OEp) term. Equations (5.3.7) and (5.3.8) are differenced at the

advanced time level, ie fully implicit differencing of these terms is
¢

N
used., _gé is simply differenced as :-
t
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N N =
gi) £1) . (5.3.9)
At

Boundary conditions must be specified -

Fig.5.5 Boundaries of Simulation Region

Top

Left Right

/7

NN

KE<O in shaded area.

Bottom

No flux or free flow may be allowed at the left and right

flux is allowed into the shaded region. No flux is allowed out at the
top. To achieve this B8 1is set to zero at the top boundary. To maintain
energy conservation any energy lost because of this is dumped into the
thermals. Electrons fram the lowest bin with positive kinetic energy
downscatter into the thermals.

These equations must be solved to update the suprathermal
density, It is assumed at this stage that the potentials at the advanced

time level are known. The equations may couple one cell in the X, ET
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plane to any of its four neighbours. Cne cannot solve the multi group
equations in the standard way (section 2.5). Instead one must solve
for all the groups at once. This is done by first scal@ing the equations,
so the diagonal elements of the resultant set of linear equations are
all oneyand then solving the equations using a quindiagonal ILUCG
algorithm (Appendix 2).
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5.4 Calculation of J and Iteration for J =0

-total’

In the previous section a description of how the multi group
equations are solvedywith a given electric potential, was given. The
E field and hence the potential are calculated by the condition that
Jtotal
determine E, will now be described.

0. The procedure used to calculate Jtotal’and to iteratively

The total suprathermal current is calculated using the -
expressions for the suprathermal particle fluxes. These are calculated
from the suprathermal densities and the potential at the advanced time.
(Recall that the assumption that the flux relaxes to its new value in
a time shorter than the time step has been made). These fluxes are
calculated at the cell boundaries.

In the cases which are to be considered, suprathermal transport
in a partially ( or fully) ionized solid,the E field is resistive
in character (section 3.2).

In this case we may use a scheme similar to that used in

chapter 4. Using the simple thermal Ohm's law :-
Jth = nth. E (5.4.1)

we can find the E field which would give J = 0 if the suprathermal

total
current was unaffected by the E field. The iterative scheme:-

gl = GEM . - a)CEn*l)'
(5.4.3)

+1.y _
E) = - Jsth "th

is used to find the new E field. (Here‘ n denotes the number of
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iterations). E° is taken as the value of E at the last time level.

The choice of a« = 0.5 has been found to be satisfactory. When the
potential developed across the target is small (cf kTsth),a = 1.0 gives
more rapid convergence.

The initial choice :-
e = MAX(0.5, exp(e A¢ /kTsth});_

has been used , where A% is the change in the potentiai across the
target in the first iteration.
The E field is defined at the cell boundaries, where the
current is defined. This is integrated to give the potential at the
cell centres, which is where it is required for the transport calculation .

The sequence of calculations for cne time step is :-

Fig.5.6

TRANSPORT CALCULATION
WITH ASSUMED ¢

\
CALCALATE NEW E AND ¢

\/ NO

CONVERGED ?

YES

UPDATE SUPRATHERMAL
DENSITIES

The convergence test requires ElEn&lh EY < same specified value.
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5.5 Flux Limiter

The coneept of flux limiting has been discussed previously
(section 3.6). The expression for the flux (5.3.5) includes E field -
effects. A flux limiter is chosen so that the flux is limited to
%&-Nv where Nv is evaluated at the boundary between cells by = - .. ..
interpolation. The imlimited flux :-

N
o _b_c_g) (5.5.1)
ox v
is modified to :-
N
a*_a_(_ﬁ.)
X v
(5.5.2)
3 N
el
_i' = ( —l + )
a* a %—NV

[}
Q

N and v are the values at the last iteration. If N 1is zero «

is used.
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5.6 Results from the Model

Number of Groups
In Figure 5. 7 the energy deposition profile in a Gold

target is shown for multi 'group calculations using 5,10 and 15
groups. Equal group widths were used in all cases. This suggests

that 10 group resolution is adequate.

Fig.5.7 Effect of Number of Groups

Au Target
=
o
vl
e
o
wr
Q
2.
[}
g
position
Camparison with Monte-Carlo Calculations

Figures 5.8 and 5.9 show a comparison of the steady state
energy deposition in low .Z (Hydrogen) and high Z (Gold) targets.
The former was fully ionized (’I‘th = 100€V) and the latter unionized.
The boundary conditions were that no flux was allowed through the

boundaries of the similation region. In the Monte-Carlo calculation
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reflection boundary conditions were imposed. The source was of the

form:-

£(E) = exp(-E/KTgyy)
(5.6.1)

TSth =]12KeV

In the Monte-Carlo calculation the particles were initially moving

in the +x direction. 10 groups equally spaced in the range 10-100 KeV

were used in the Multi Group calculation.
The agreement between the two calculatios is better for the

gold target; as would be expected.
When the Muled Group calculations were repeated without a

flux limiter the calculation for the Gold target was only slightly

altered but that for the Hydrogen target was greatly changed.

Fig.5.8 Energy Deposition in Hydrogen

MC

X | -----=-- MGD

H Target

deposition

.

e e e et e cane.

position
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Au Target

deposition

position

Fig.5.9 Energy Deposition in Gold

The potential éaltulated using the condition_Jtotal =0 1is
shown in Figure 5.10 . The target was solid Gold and the resistivity

was chosen so that a potential of approximately 2KT 4 Was developed -~
across the target. The two calculations can be seen to be in reasonable

agreement.

Fig.5.10 E Field Calculations
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~
=
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Time Dependent Calculations

The application of the model to time dependent calculations
has been only briefly investigated. In Figure 512 the energy
deposition profile after a 0.2 ps. burst of suprathermal eiectrons
is shown. (The source and state of the Gold target were the same as
in the steady state calculations described above). The ratio of this
to the deposition calculated excluding the 9¢/0t term is shown in
Figure 5.11 . This shows that the 9¢/9t temm will increase the range
of the suprathermals when 9¢/9t is positive.

Fig.5.11 Energy Deposition in Gold

deposition

position
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Fig.5.12 Ratio of Energy Depositions

1.00

position
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5.7 Discussion

A numerical model which solves the multi group.diffusion
equations, with E field effects included, in a way which is implicit,
positive and conserwative has been introduced. The penalty which has been
paid for this is that the multi group equations cannot be solved group by
group but must all be solved together.

Kershaw (122) recently reported the successful 1mp11menrat10n,
in 1-D, of a new multi group diffusion model in the LASNEX laser
fusion code. This has been briefly discussed in section 3.4.

The solution of a (mumber of groups, NC) * (number of zones,Nz)
quindiagonal system, which is done iteratively, is clearly far more
time consuming than solving NC tridiagonal systems of size N, ; However
it avoids the inaccuracies associated with the split of calculations
which Kershaw uses. The use of fixed bins avoids the ensrgy non
conservation problems associated with the bin-~bin mapping. The large
camputing time penalty would, however, probably preclude the use of such
a scheme in a hydro-code. The efficiency of the scheme could however be
improved by noting that some region in the x, ET plane is not connected

to higher values of Er . This is illustrated below.

Fig.5.13
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Another inefficiency in the method described in this chapter
is that instead of excluding negative kinetic energy bins from the
calculation the equation 1 ° NG (negative kinetic energy) = 0 is
solved.

For problems where the time step. is very large, such that the
(9% /9t) term never exceeds the collisional downscatter,the method
is ideally suited and is clearly far superior to multi velocity group
methods for this problem. |

The application of a flux limit using multi total energy
group methods is more straightforward than for multi speed groups. For -
the former it is simple to flux limit the total suprathermal flux. In the
flix limited regime the E field and vn terms may be of comparable
sizes in the flux calculated using speed groups: limiting only the wvn
term is clearly wrong. | '

The difference between the fully implicit calculation described
in this chapter and time split calculations can be illustrated by
analogy with appraximate matrix factorisation.

The method used in this chapter may be represented by :-

Fig.5.14

upscatter

o —

g™l = gt

downscatter
diffusion
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The time splitting approach described by Kershaw (122) and reviewed
in section 3.4 is equivalent to an approximate factorisation of M of

the form:-

Fig.5.15

1 ~_ ] \—
NNEANINN

/

(It should be noted that (a) time splitting for the P dV term is
unavoidable,unless the hydrodynamics is iterated aboutyand (b) the
(@$/9t) term is accounted for separately).

An approach used in multi velocity group models (152) is. to
neglect the E field driving term and to deal with J'E downbinning
aud upbinning in twa éweeps_ through the groups: top to bottom anﬁ then

bottom to top. This may be represented by the following:-
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7

N\

It is clear that such approximate factorisation introduces
errors. Lf the second appraximate factorisation is considered the
sparsity pattern of the product of the matrices is given, schematically,

By~

Fig.5.17
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Fram this it can be seen. that exact decamposition corresponds
to an overspecified problem. In a 2-D hydrodynamic simulation Beam and
Warming (153) have used a decamposition which is accurate to second order .
in 4t. However due to the large time steps which must be used in
suprathermal transport such an approach does not seem applicable.
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CHAPTER 6

" Introduction

In this chapter a one (spétial) dimensional electron
transport model, which includes electron~ion callisions by using the
‘Monte Carlo method,is described. Various methods for calculating the
quasi neutral E field are discussed and their implimentation in the
camputer model are described. We describe first a varim;t of a model
due to Mason (133) which uses "plasma period dilation', the problems
associated with it and an approach to mitigating these problems.
Secondly an iterative approach is described. This uses a Newton-Raphson
method to get Jtotal(E)zo' Careful consideration of the effects of
P.I.C. weighting and interpolation of the E field lead to an efficient

scheme.



138

6.1 Monte Carlo Transport Model

In this section we will describe all aspects of the model
except the calculation of the E field. This will be discussed in

sections 6.2, 6.3 ana 6.4.

The Mesh
The mesh is. 1-D Cartesian with constant cell size ax. It
is possible to use a non-uniform cell size but in this case interpolation

for the density is no longer equivalent to P.I.C. weighting.

'P.I1.C, Weighting

The particle in cell (P.I.C.) method is used to calculate
the contribution of each simulation particle to the densities in each
cell. The P.I.C. weighting is equivalent to having a particle, the
size of which equals the mesh spacing, &x,-and the density of which
is uniformly distributed throughout this region.

particle position

LNCNCONON N N]

——

N2

A
i o ]
’/,/1’ ////,’ | hl
bounda: €
Ty centre fiv.g

i i*l

Fig.6.1 P.I.C. Weighting Scheme
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1.
The density associated with cell i is (weight of particle)® —— and

1.2 AX

with cell i+l is (weight of particle); . This is equivalent to

Ax
linearly interpolating the density between A and B . Linear

interpolation is more readily extended to the case of a non-uniform
mesh, The P.I.C. method has the advantage, in common with all methods
which use finite size particles, of reducing noise compared to that of
a point particle simulation. It has been found (154) to be preferable

to Nearest Grid Point weighting for energy conservation. in Vlasov
plasma simlations. The wider application of P.I.C. methods is described

by Morse(155).

" 'Particle Moving

A 'leap-frog scheme is used to move the particles., It is :-

x“+1=x“+vat
(6.1.1)
!n+3/2 = ¥n+1/2 _ (e/m)En+l/2 iat
+3/2! +3/2
!n / = !n / + effect of scattering
(6.1.2)

1
mn*S/Z = mn&3/2 + effect of scattering

This scheme is second order accurate and,in the absence of scattering, is
reversible. Reversibility is important since non-reversible schemes may
Create entropy numerically. The model for deflection is superior to that
used in chapter 4 and its implimentation will be described in more detail.
Particles are not allowed to leave the simulation region. When a particle

reaches a boundary it is specularly reflected.
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Calculation of Change in Polar Angle due to Scattering-

The kinematics of scattering have been discussed in section 2.4.
To get the new polar angle, w',we use equation (2.2.6) to give a
probability distribution -for 1.;.he deflection, 8 . Due to - the
simple, Gaussian, form of the chosen multiple scatter distribution the

probability distribution can be written as :-
P(e ) =XKP (s ) .

where Po(a ) is independent of the state of the scattering material
and the speed of the scattered particle.

P(9 ) is uniform in the range 0 < ¢ < 27,

6 and ¢ are chosen using random mmbers. These random mmbers:
are used to refer to one element of an array, the elements of which have
been chosen to reflect a given probability distribution fumction. These
arrays are generated in a preparatory programme as follows. To generate
an array whose elements are in the range Xq< X <X, with. a probability

distribution P(x), the following procedure is carried outi-

Fig.6.2

I=I+1

xéxlfrandf (x,-%1) '
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The new polar angle w' is calculated using:-

w' = arc cos(cosw cos8 + cos¢ sinw sind ) (2.2.4)

E Field Effects

The deflection due to the E field is calculated using :=
w" = arc tan(sin w', cos w' - (eE/m.) At) (6.1.3)

The E field also changes the speed of the particle. This is calculéted

using:-
1 = 2 . 2 1 2.3
speed' = (speed” sin” w' + (speed cos u' - (eE/me) At)7) (6.1.4)

Look up Tables for Trigonometric Functions

In the above equations (2.2.4) and (6.1.4) the sine and cosine
functions are frequently used. Great accuracy is not required in
calculating these functions so,as a time saving device,look up tables
have been used. The range O - 2x was-'split up into 1000 intervals and

arrays were filled with the sines and cosines of these angles
2 999°2x

b ] L L

1000 1000
an. angle an integer

0,

. To calculate the appraximate sine and cosine of

INT = MOD(IFIX(500x ° angle + 0.5),1000) +1

was calculated and the sine and cosine of the angle were equated to the

th elements of the arrays containing the sines and cosines.

INT
This results in approximately a 40% saving in the time

involved in calculating these functions. (On a CDC 6500 using FIN).
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6.2 Mason's Method

A method used by Mason (133) will now be described. If Poisson's
e'quatiéniis mse.d to updafe the electric field, the time step used “in the
célculation must be less 'tha.n i/ wPe): This is usually less than any
timescale of interest in a macroscopic simulation. Mason artificially
expands the plasma period so that it is comparable to the time step
which must be used when moving the Monte Carlo particles. |

Poisson's equation:-

Ve eE =
ap
gives: - v i( ) = —=-V"J
t ot

This integrates to give:-

2
—( €E) = -J # F(t).
ot

Inavacaum J=0,E=0 so F(t) =0.

where M is chosen so that the dilated plasma period (nez/ epfne)-l is
a few times the computational time step for particle moving.
We have used :-

V'gE= o | (6.2.2)

This is equivalent to (6.2.1) when &M is not a function of time.

Two.factors lead to prefering this to equation (6.2.1). Firstly we wish

to calculate E at the— n+l time level (see equation (6.1.1)) p but
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not J .is defined at this level. Secondly we wish to chose 1 using the
local density of the electrons. This will fluctuate, see below, and hence
‘M is a function of time. °

The E field is calculated as follows. The space charge, , ,
is calculated in each cell. The integral form of equation (6.2.1)

. 1 A
E; = ——-Z (¥ (6.2.3)
amij=1

is used to calculate the E field at the cell boundaries. E=0 is -
specified at the first (i = 0) boundary. Since particles do not leave
the simulation region, E = O on the last boundary.

Let us COE_i_gie;_Vt};el effect 6f di’lafing the plasma period. .
Clearly this results in a dilation of the Deby= length ; Ap = vt&/wp o *
Consider the case of an isothermal plasma with scale length for density

variation, L . The E field which will preserve quasi neutrality is ;-

Eoo—®&ao (6.2.4)

But we use :-
V'( EME) =p = -6l

where &n is the difference between n, and n,. Then :=-

-2 énL
E = — o (6.2.5)

™M

From (6.2.4) and (6.2.5) :-
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e 9 1 (Opped”

2.2 2
n neeL L

(642.6)

where én_. is the space charge density which would give the quasi
neutral E field.
One also has to consider the effect of shot noise (56). This

will give, at best:-

oy, is a generalisation of the Debye mmber for finite sizes particles.

nD=n(AD + S)

mod

where S 1is the size of the particle. This is equal to the mesh spacing

for P.I.C. area weighting. This gives :-

SDyoise © ;
(m( A ) +8))*
mod

2
*Mnoise - L

3,2
Sn . (n( leod +S)) ;\Dmod

(6.2.7)

For a useful quasi neutral simulation one requires that both i- -

n <1 : (6.2.8)
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é .
and - ﬁ”—e« 1 (6.2.9)

§
nSC

Using (6.2.9) put © én = én in (6.2.6), which gives:-

—

2.
*p

‘n ., _fod  (6.2.10)

n L ’

This is the usual condition for quasi neutrality to apply,.but with Ap

replaced by }‘D . Then from (6.2.7) :-

mod

) . 1 n
“noise _ —_ . (6.2.11)
én (n( leod + 5))? én

Suppose we wanted ( én oise

require n(A, +S) = 10* . This is an undesirably high mmber. In the
mod -

next section we describe an attempt to minimise this problem.

/ ansc) = ( én / n) = 0.1. This would
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6.3 Modification of Mason's Method

An attempt to reduce the prohibitive requirement on the mumber
of simulation particles needed,if Mason's method is to be used,is described
in this section. This attempt was unsuccessful and was abandoned in favour
of the the method described in the next section. _

The approach to the problem was to reduce the noise level by
_damping oscillations at the dilated plasma - periocd. In doing this the
distortion of phase space should be minimised..This may be achieved
by letting "artificial collisions'* act only on one camponent of the
particles' velocities. The difference between this and using simple - °°

collisions is illustrated below.

//_\ initially

J=0
\s
/ ‘ - after "tensor'' artificial
\J collisions
J=0 :
v
/ \ after simple artificial

\J ¥ collisions

Fig.6.3 Comparison of Tensor and Simple Artificial Collisions
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These collisions will remove the energy associated with the
centre of mass velocity of the electrons from the system. If energy is
to be conserved this energy woﬁld have to be added back into the electrons.
The artificial collisions may be effected in two ways:
(1) By acting on each particle so that its camponent of velocity in the
one spatial dimension being considered is changed so that the local

electron cantre of mass velocity is reduced. That is
(vJ_ ’Y;\ ) (v_-L ’Y;[ - At‘-f“ (x) )4- . CG'S’]')

(2) By modifying the equation for the E field so that a damping temm is
introduced. This is prefered to the first method since it requires less

computational effort.

Equation. (6.2.1) was replaced by :-

dp
\ E=p+ 02— (6.3.2)
M 3¢
This is equivalent to :-
2 2J
—c, E=J+ e (6.3.3)
ot M ot

The motion of the simulation particles may be appraximately described by
the Ohm's law :-
2J ezn eVR,

= - (E - ) - vV J 6.3.4)
ot m n ¢ ‘

Using equations (6.3.3) and (6.3.4) and neglecting the VPe term
we get :-
227  -en dJ

> = —E@+ = —) (6.3.5)
ot SMﬂe ot
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where &' includes the effect of both artificial and real collisioms.
From equation (6.3.5) it can be seen that the plasma oscillations may
be damped. A proper investigation of the stability of such a scheme
should involve the analysis of the set of equations (6.3.3), (6.3.4) and
dn
— V', (J/"e) = 0 (60306)
ot
Instead of this the stability of the solution of equation (6.3.5) was
considered; a far simpler task., At this point it is necessary to consider

the analysis of the stability of non-Hermitian finite difference operators.

Stability of Non-Hermitian Schemes

Consider the finite difference scheme :-

L, u® = g™ (6.3.7)

where _ un is a vector of length (tmmber of variables) ° (mmber of
meshpoints). If the spatial dependence of the solution is accounted for
by expanding the state vector, u , in Fourier modes, the equation for each
mode is :- |

L, '@ =™ (6.3.8)

where u(k) is a vector of length equal to the mumber of variables. If

L, L, are Hermitian,then the u can be expressed as the sum of

[
eigenvectors of the L. ie:-

n _
ut = Lagc;

If the c; are used as a basis then the operator L becames :-
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Fig.6.4

where the A ; are the. eigenvalues associated with the c; -

The magnitudes of the error vectors before and after a time
step En, Er“'1 , where = 3 C;a; ,are given by :-

L ERy 2,3

]
(e}
L]
o
|
[
Nt

+1, _ 2
LETH = (= (13309
and the stability requirement is :-

Ag <1 foralli (6.3.9)
This is the von Neumann stability condition (157).

This condition is necessary, but not sufficient, for proving
the stability of a non-symmetric scheme. A practical method for assesing
the stability of such a scheme is given by Buchanan (153,159 ). This

requires that the matrix, L, be transformed into an upper triangular
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matrix by a unitary transformation and its eigemvalues nested ie:-

IA -Aslﬁklxi-kl if 14£r<£s<m (k constant)

Tr m

where the triangular matrix is :-

b. .
1]

Fig.6.5

A sufficient stability condition is then :-

b5l & kMax( |1 =A51, |2 =hj] 5085 =250 ) (6.3.10)

J

Application to Equation. (6.3.5)

The use of leap frog particle moving,and the calculation of
the E field by equation (6.2.2),means that the solution of equation (6.3

(6.3.5) 1is analogous to the solution of:-

Xpp * oX, * wix =0 (6.3.11)

by the scheme:-
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Lo B g2

(6.3.12)
Vn+3/ Z - Vn+l/ z(l- aAt) - mz Atxn+l
This may be reexpressed as :- '
wx? 1 = I w At X
Vn+3/2 ~w At l-a At~ mz Atz Vnﬂ‘/ z (6.3.13)

The eigenvalues of the matrix in equation (6.3.13) are given by :-

2,.2

A= 1-'m ;T :~-i(4wzAtz-m4A't4-2mZAtzaAt-uzAtz)%/2 (6.3.14)
2
if dolt?  phatteaiatiatniat? | (6.3.15)
and:- = 1- o't % ot ! Aattnitkatnhatt-t2atH 2 (6.3.16)
2
otherwise . .

In the former case (A *)% is given by (1~ th)% .
The inequality (6.3.15) implies that:- -

aAt < -mzAtz + 2pAt

so that qat$£ 1
For wat<« 1 and degenerate eigenvalues we must have « = 2w ; the
condition for critical damping. The choice wAt = aat =1 gives a
singular matrix the square of which is a null matrix.

The choice wAt = o At =1 gives a matrix which is unitarily

similar to :-

0 2z (6.3.17)
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and the choice wAt =1/4 ,aAt = 1/2, a matrix which is unitarily similar

to :-

23 -(1nH /32 -0.525
(6.3.18)

1
0 (23 +(17*)/32
_f—"rom which it can be seen that both schemes are stablg.

Numerical Experiments

Guided in the choice of « by the analysis of the solution
of (6.3.5)qmmerical experiments using equation (6.3.2) to determine
the E field were carried out. The following cemclusions were reached.
(1) The energy misconservation (with or without the damping term) is bad
for wAt~1. wAt = 0.25 gave good results.

(2) For Vv/u =2A D °é< Ax (the mesh spacing). The current fluctuation was
damped. This however makes it difficult to satisfy equation (6,2.7) and

and also places a great limitation on the timestep.

(3) Using *p .= ax, L= (few)' ax and a= 2uit was found that the
inclusion of the damping term did not noticeqbly reduc-e the level of
fluctuation. Some factors which may have caused this are:~
(A) The propagation of the plasma waves
(B) The small damping over a single period included by equation (6.3.16)
(C) The effect of E field interpolation and P.I.C.weighting.

Becausé of this failure the attempt to use a modified form
of Mason's method was abandoned and a new approach was developed. This

is described in the next section.
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6.4 Iterative Method

An iterative method of finding an E field which gives
J = 0 is now described. In general the current which flows through
each deil boundary will depend on the E field at all the cell boundaries.
However if the timestep is sufficiently short this is not the case.

=
wii
oK
—— >
e I Y
e

Fig.6.6 Position of Particle Centres

Particles A and E will not afféct the current at X, Particle C will
have a greater effect than particles B and D because of the P.I.C.
weighting. Moreover,because of the interpolation used to calculate the
E field acting on a particlesthe E field at X will greatly affect
particle C, have some effect on particlés B and D and none on
particles A and E.

Consider the case:-

Pk—— .
Ei 1 Ti i+l
‘ .
. | |
< >

uniform density of particles

Fig.6.7
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with At « a&x/v

The E field at P is:-

ax -1 1 .
E = —_F. + —E
P o 1 Axll

The. weight of the particle, with respect to the i cell boundary, is :-

We wish to calculate the effective E field at i, that is an E field
mclud.mg the eff@ct., of weighting and interpolation, which are used to
calculat‘e' the current (section 6.1) §

fug
Fett J/'w dx

where the integration is over the cell either side of the i boundary.

This gives :-

1_1 (6'4'1)
When the particle density is approximately uniform (ie when

L/ &x>»1 (L=n/vn) and vAt Ax)we would expect AJ]ABeff to be
approximately independent of AE off ? that is <~

"AJ = constant AEe 5t small non-linear part.

We“exploit this by using a discrete Newton Raphson iteration to obtain

J:( AEieff = o;
J°
n+l _ .
( —)
JE
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where n denotes mumber of iterations.

For the first value at the first timestep of‘ @J/ OE eff) We use
2
°2J ne

— O e B

Q
7t m,

1

ne
A =~ At — AE

The first value of E at a timestep is taken as the last value of

the previous timestep. Because of the finite at which must be used

( vat = 0.25.:ax for instance) there would be some noise associated

with calculation of (3J/JE.ge). The condition that (OJ/JE gp) may

not change by more than a given fraction in any step is imposed. Once
8B er is known the 'E field is updated using:-

1 2 1
— 8Bj gt —— AE; *— MBjyy = MEepr (6.4.3)
6 3 6 i
+1 _ ) . :
Elil = 5111 + 8E; (6.4.4)

Elz =Epyq =0 for a mesh with k cells,
Equation (6.4.3) is solved for the Ei’-s using a. modified version of
the subroutine TRIDIAG (written by D.E.Potter).

The iteration for. E is terminated when ZJi is less than

some given value.

les:
The results of mummerical calculations using equations
(6.4.2, 6.4.3, 6.4.4) will now be presented. In these examples Vit
was -‘11— &x and the ratio of the scale length, L , to &x varies
between oc and 2 . Collisions were not included. The convergence of the

calculation of the E field and the variation of the electrons' kinetic
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energy are illustrated below:

Fig.6.8 Convergence of Iteration for the E Field

———L=2Ax

- ————l= 0

or-\
2
n
‘::\
e
n
S
o —+
=4
oo
Q
- \
\
\
\
\
\
- | - | —
A L 2 4 s
iterations
Fig.6.9 Changes in Electron's Kinetic Energy
100.0% ¢
Tx X v _
% X < XK
:; X X X X % XX ¥ XK
5 T X X %
[13]
99.5%

time
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-Ff@@_‘jﬁ}f;esg_ezgam?[g§ lg can be seen that typically four iterations
are required for vat = (1/4) Ax. Thus a total of sixteen moves of each
particle are required for a time given by x/v . There is the
additional disadvantage, compared to a non-iterative method, that the
coordinatés of each particle must be stored before and after an iteration,
thus greatly increasing the storage requirement. The value of At used by
Mason (133) is At= 0.2 (Ax/v ) so this method would seem to be

campetitive.

Possible Improvements on the .Calculation of E off

The calculation of E e£f described above uses the assumption
that the density of adjacent cells is approximately the same. Some
improvement could be gained by using :-

1 1
By Gy ) FEELn
Eefr = PR ~ (6.4.5)
7 B3*03) |

Alternatively one may use a formulation which will give exact results

in the limits t=—=0 and no collisions. Thaj: is :-

SEW
Eepp, = =it
€1y Ewp

where the sums are over all particles in the two cells next to the ith

boundary.
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The Method of Calculating the Current

Since the current is not exactly zero after each timestep,
departures from neutrality will occur. These may accumulate as the
simulation progresses. This is prevented in the following way.

_ The current could be calculated using the contimuity equation. The

integrated finite difference form of this is :-

i |
J. = (X2 cp‘-‘%-p?) ax;)/ at (6.4.6)
i =1 J J

where n denotes the time leyel,
If J; =0 forall i then the space charge density is maintained at

its previous value., If at each timestep J== 0 1is achieved then the ol

J

should be small compared to the p?a-l at the start of the iteratiom.

The error in calculating the current using

. i
= (X p‘j"‘l 5,1/ at (6.4.7)
j=1

will be small. The E fields whichmake J; and J; zero for all i
will be appraximately equal. However using J* instead of J in the
calcutation of the E field means that achieving J* =0 restores
neutrality. Thus equation (6.4.7) is prefered to equation (6.4.6) 1in

the E field calculation.

~
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6.5 Possible Application

In the previous section the development of a quasi neutral
Monte Carlo particle model has been described. In this section the

possible applications of such a model will be discussed.

Hybrid Model

A hybrid model has been described by Mason (132) in which the
suprathermal electrons are represented by Monte Carlo particles and the
thermal electrons by a fluid description. The model has been used to
study the effect of the suprathermal current on thermal transport. The
method described in the previous section could be used in place of
Mason's method for calculating the E field. Since the timestep whlcﬁ.
may be used for particle moving is restricted, by the range of validity
of the multiple scattering distribution, to At £ 0.1 0‘7"/2 /) (~V2),
it is desirable to be able to treat the lower energy thermal electrons
by a fluid description. However simulations in which both suprathermal and
thermal electrons are described by Monte Carlo particles have been
described by Mason (133).

Due to the timestep limitation mentioned above and the
camparative econamy of using a multi group diffusion model, a dual
treatment for the suprathermal electrons sin which the less energetic
suprathermals are treated by a diffusion model and the more energetic
ones, for which flux limited diffusion would be used, by a Monte Carlo . -
model,is attractive, Such an approach seems feasable for solving steady
state problems discussed in chapter 4. For the case of a time dependent
model there are the disadvantages that:- |
(1) The timestep which must be used for the iterative determination of
the E field (section 6.4) is very small so that the multi group
equations would have to be solved many times in a simulation; this may

be prohibitively expensive.
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(2) Since the E field can raise the -energy of the diffusive suprathermals
the coupling between the diffusive and non-diffusive suprathermal classes
will be more complicated than when no E field is present.

'Energy Loss in thg’Corona

The method of calculating the E field, described in the
previous section, may be used to obtain Jo = Ji if ion motion is
included. It may be possible to model energy transfer between the - ._.:

electrons and ions in the corona through the J'E temm.
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CHAPTER 7

Conclusion
The work described in this thesis has led to three achievementsi~.
Firstlyéthe development of a computer programme which can be
used to investigate the effect of a resistive E field in inhibiting
the flow of suprathermal electrons in a solid target;. This programme has
.been used to design experiments in which the resistive E field plays an
important role and has been used in the analysis of these and other
experiments.
Secondly;the treatment of E field effects in a multi group
diffusion model has;;. been investigated. A multi total energy group model
has been implementea. Its superiority over kinetic energy group models
for time independent calculations is obvious. Time dependent problems
have been treated but in this case it is no longer possible to solve
for each group separately.and the direct solution of the equations
generated by fully implicit differencing is time consuming. This may
preclude the use of this method in a hydro code.
’ Thirdly:the calculation of the E field in a quasi neutral
particle similation is considered. A method due to Mason has been

discussed and has been contrasted with an iterative solution. The latter

can be competitive with Mason's method.

Further Work

The work described in chapter 4 is woefully incomplete as the
effect of suprathermal energy loss in the corona is omitted. The
implementation of a suprathermal transport model which treats E field
effects in both the core and the corona is a worthwhile goal. E field

calculations in the corona are however plagued with difficulty.
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The models for suprathermal transport described in chapters’
5 and 6 may also be applicable to the more complicated problems of
non-thermal electron energy transport. The inclusion of coupling between
one group and a group of both higher and lower energy in the mlti group
model would allow electron-electron collisions to be modelled. A crude

model for electron-electron collisions (160) may be included in a

quasi neutral particle simulation.
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APPENDIX 1

The incomplete Cholesky conjugate gradient method, ICCG, was
developed by Meijerink and van der Vorst (161) and has been investigated
and popularised by Kershaw (162). This appendix gives a »b;jief description

of the ICCG method and gives the algorithms which can be used with a
ot approximate decamposition, which were not explicitly stated by
Kershaw.

The conjugate gradient method is described in (163,164). It is

an exact method for solving the matrix equation:-

Me =y

where M is symmetric: and positive definite.
It takes n steps where n is the order of the matrix M. If M has
degengrate or clustered eigenvalues, as it will if M is an approximate
identity, it is found that (x* - x| / |x|  can be small for
i«n. }_(i is the approximation to the solution x after 1 steps.

The matrix, M, may be modified so that it becomes an
approximate identity. |

Since M is symmetric and positive definite?the most
efficient form of elimination is Cholesky decamposition (165). If

T

M =LL" (where L is a lower triangular matrix) then:-

i-1

¢ L = CM - LZ )%
11 = Mj5 i
k=1
i-1
Lyi = My - EijLik / Lyy [ (AL.1)
k=1

j =1i+l, i+2, ... n

Alternatively if M = LDLT (where D is a diagonal matrix) then:-
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i-1
Lyj=My; - ZijLijDkk

k=1

j=4i,i#l, ...n (A2 2)
-1

Dj; = Lij

- This decomposition avoids the square root. In an incomplete Cholesky
decomposition a sparsity pattern is forced on L; ie a set of matrix
elements, P, are chosen to be zero and,as (Al.l) or (Al.2) is applied
when Li' turns up with (i,j) in P,it is set to zero. The simplest

J
choice of P is:-

P={ci,j) | Mij}=o

This choice is refered to as ICCG(0) in (162). If Lii =0 the
algorithm breaks down and if L;;<0 LDLT is not positive definite.
To avoid this if L;; £ 0 turns up_,it is set to a small positive value.
This introduces an additional error into the approximate decomposition
of M.

Thus one obtains M ~ILT (or LoLT) so L~m@TyL
(or (LD) 'lM(LT) '1) is an approximate identity matrix. For it -

decomposition the matrix equation can be modified to:-
wiveh il = Yy (AL.3)
- The conjugate gradient method would be expected to perform well on

this problem. The recursive relations for the conjugate gradient

method become:-
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(AL.4)
i 1 iyl

bl = (gi+1,(LLT) -1£i+1) / (gi,(LLT) -lzi)
giﬂ' - (LLT) -11_,i+1 . biI_D_i
If LDLT decomposition is used the appropriate relations are:-
0. o)

. . 1 . 1 .
oot awh™ey 7 etae? oihph

oy
i

. . . el .
i+l _ 1 l(LT D"lLT)gl

14
|
154
+
')

\J

(A1.5)

. . . -1 .
i+l 1,1 - lM(LT D-lLT)pl

b= @, wh Y /et awhh
Ej_+1 - (LLT) =;_Ii+1 . bipi

(Al.2) and (Al.5) were used to solye problems in which the matrix,
M, was quindiagonal.
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APPENDIX 2

ILUCG

A generalisation of the ICCG method for arbitrary non-singular

sparse matrices has been given by Kershaw (162).The solution of the

matrix equation :-

1
‘r:

where A = LU .

can be achieved using the recursion relations:-

Ty =Y - AX,

a; = (3, WD) / (@, U )

1 (A2.1)

by = (rya, WD 1) 7 @, @H™
T =1 T/ Ta=1
Rj,p = (U0~ AT(LLY) "Iz, +bip;

- = . + a.n.
x-!-l }-C:L 191

The LU decamposition which is used, for quindiagonal

matrices, is now described. Let the approximate factorisation of A be

as follows:-
H d e £
E\\F\ \ \ 1‘ ‘\ N\
D\ A A C '\ \\ . N
\ . \ Yo \ \
N \\ AN ‘\ LN ‘\
A S LSRN 3 \\ .
A N
B . N . b . O S
N N\ \ N
N\ W N ~ \ N A
\ —_— \ A \
LU WY A \
S \ v )
A M
Al N \ N AY v b N\
\\ AT A ‘\\\
\ N \\\ \ LAY [
\ \\ \\ Ay \\\ \\ N
N L v st
. . \

Fig.A2.1
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then an appraximate factorisation is given by:-

+
o

kN * k-1 = Ex (A2.2)
dey = Fye

- where the subscript labels the row. (A2.2) can be solved to give the
quantities on the left hand side. There will be rounding error problems
if the diagonal elements of the matrix, A , are very small or very
large compared to umity.

(A2.1) and- (A2.2) were used in a quindiagonal matrix
inversion package. This is been used in the 2;D Eulerian code, _
LASERB , (166) in place of the strongly implicit procedure (167), for
the fully implicit solution of the electron temperature equation. It
has also been used to solve the multi group equations encountered in -
chapter 5'of this thesis.
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APPENDIX 3
This appendix gives the Fokker-Planck equation for
suprathermal electrons interacting with a thermal background. The
equation is given in 1-D plane, cylindrical and spherical coordinates.
| Cénsider first the Vlasov equation :-

of of Of
__+~!_._+§'_.,_=0 CAS.I)
ot ox ov

Following Wienke (168) (who gave transformations for the force

free transport equation in accelerating media) we get the following:-

Slab Geametry
of of . of 1( : Zjaf) )
—_—t V g— + a —t =(1l-u)—) =0 A3.2a
dt ubx " dv v g Au (

where u=vx/vx v = (vz + vz + VZ)%
- _ ? X y z

Cylindrical Geometgy

Of Of A e 2f . Jf a S of
—_+Vy +C - - ) - * 3 ——t el )——=0
3t or Ve ro du  Hov v on
(A3.2b)
* * k2
where T = xe_+ ye ; and u =v'r /vr
- —x —y -
Spherical Geometry
Qf Of v vul of f a , Of
—_—t V g— + (—-— )-——.-!-a —'+—‘(1‘u —=0 (AS‘ZC)
ot or T T on " Oov v Ju
1_"17‘
where o= —r;— ; and T =Xxe * ye, *z¢,
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The Fokker-Planck Term

The form of the Fokker-Planck term derived by Rosenbluth,
MacDonald and Judd (169) is, for electrons:-

Of H, 1 ) BZGi
- 1{ 2 \

—) . =T9 - - (f —3) +— (£ ) (A3.3)
ot € v ¥ 2 d¥dv  dvdv '
4x e4, .
Where T = ‘ Ina .
(4150 )ng J
o= p e g2 £i(r) Inh; v,
ioomg 7T -yl

and

This has been used by Delettrez and Goldman (108) to derive a
Fokker-Planck equation for a small mumber of suprathermal ''test particles"
which do not interact with each other,but only with a background thermal

plasma. Equation (A3.3) then simplifies to :-

2
f Y fy T Y VI ¢
.B_t)c =T ne—a: (In ASth—v?) + 2—(_ne+ A ni)-—a—- (lnAsthC—?—) .g

(A3.4)
- Ap
where InA__, = 1ln(———m—)
sth A
If v and u = (v'x/vX) are used as coordinates this becomes:-
r 2 TnaA sth B 2 of ra, o

—(InA A3.5
Wk (5.9)

E—(nei' Z ni) _.\,3_9—1[((1-“ )au) +
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