712

FOR LARGE WATER VALVES

Farid Mahmoud Hasan Bizzari B.Sc., M.Sc.

A thesis submitted for the degree of Doctor of Philosophy in the University of London

Department of Mechanical Engineering Imperial College of Science and Technology

London S.W.7

July 1980

.

.

. .

×

TO FADWA

.

<u>SUMMARY</u>

A brief introduction to the types of problem occurring in the stress analysis of Water Valves of the butterfly type is given to show the need for developing a design method for these structures.

The analytical work which has been undertaken for establishing a closed form solution to the problem is given, with comments.

A description of the anisotropic characteristics of the fibre composite material is presented in the form needed to allow the use of matrix algebra and practical examples of these materials are given.

A general finite element is derived in detail to show how it represents the structure in a plate or shell shape made of Isotropic, Orthotropic or Anisotropic material. Also a finite element method is suggested to investigate the structural strength and behaviour of different types of blades made of different materials and the advantages of the method are shown.

A method for the optimal design of fibre composite structures is suggested and recommendations for future work are given.

The computer program and the numerical results are presented.

CONTENTS

.

Page No.

SUMMARY			3.
ACKNOWLEDG	GEMENTS		8.
LIST OF FI	IGURES		9.
LIST OF TA	ABLES		17.
NOTATIONS			19.
CHAPTER ON	NE INTRO	DUCTION	22.
	1.1.	General	23.
	1.2.	Description of the structure of main interest.	27.
		1.2.1. The disk or blade	28.
		1.2.2. The shaft	34.
	•	1.2.3. The body	34.
	•	1.2.4. Seating seals	36.
		1.2.5. Operating equipment	37.
	1.3.	Review.	37.
	1.4.	Materials	39.
	1.5.	Limitation and scope of study.	40.
CHAPTER TV	WO ANALY	TICAL PROCEDURE FOR THE STRUCTURAL	
	ANALY	SIS OF THE BLADES OF ORDINARY	
	BUTTE	CRFLY VALVES.	41.
,	2.1.	The governing differential equation for circular plates.	42.
	2.2.	The general solution of the governing differential equation.	47.
	2.3.	The solution for stresses and deflections in a circular plate of uniform thickness subjected to a uniform normal pressure and supported at two points at opposite ends of a diameter.	49.
		2.3.1. Analytical work	49.
		2.3.2. Finite element analysis	68.

			0
CHAPTER TWO	2.4.	The solution for stresses and deflections in a circular plate of uniform thickness subjected to a uniform normal pressure and supported at two short lengths of arcs at opposite ends of a diameter.	77.
		2.4.1. Introduction	77.
		2.4.2. Analytical work	77.
		2.4.3. Finite element analysis	82.
	2.5.	Experimental Work.	88.
		2.5.1. Introduction	88.
		2.5.2. 4-Point bend testing of a perspex beam	96.
		2.5.3. The testing equipment	106.
		2.5.4. Testing a 12" diameter disk supported on two clamped short arcs subjected to a uniform pressure.	121.
		2.5.5. Testing a 12" diameter disk supported on two clamped short arcs subjected to a point load.	122.
		2.5.6. Testing a 12" diameter disk supported on two clamped short arcs and two short lengths of the diameter subjected to a uniform	
		pressure.	123.
CHAPTER THREE	RELEN	ANT PARTS OF THE THEORY OF ANISOTROPIC	106
	ELADI		190.
	3.1.	Introduction	197.
	3.2.	The generalised Hooke's law for anisotropy.	199.
	3.3.	Elastic symmetry and orthotropic case.	202.

.

3.4. Transformation rules for an orthotropic body. 207.

•

Page No.

CHAPTER	THREE		3.4.1.	Stress transformation	207.
			3.4.2.	Strain transformation	210.
			3.4.3.	Constants of elasticity	211.
CHAPTER	FOUR	FINI	PE ELEME	NT MODEL AND SOLUTION	213.
		4.1.	Introdu	ction	214.
		4.2.	Geometr	y representation	214.
		4.3.	Displac	ement field	216.
		4.4.	Strain-	displacement relations	220.
		4.5.	Stress-	strain relations	222.
		4.6.	Derivat	ion of the stiffness matrix.	223.
		4.7.	Flow ch compute	art of solid finite element r programme	225.
CHAPTER	FIVE	IDEA	LIZATION	OF FINITE ELEMENTS FOR	
		STRU	CTURAL D	ESIGN, NUMERICAL AND	
		EXPE	RIMENTAL	RESULTS.	227.
		5.1.	Introdu	ction	228.
		5.2.	Cast ir valve.	on blade of ordinary butterfly	231.
		5.3.	Test sa	mples of composite materials.	233.
			5.3.1.	Introduction	233.
			5.3.2.	Preparation of test specimens, testing equipment and procedure.	240.
			5.3.3.	Elastic constants of the specimens.	270.
			5.3.4.	Finite element idealization of G.R.P. test beam.	271.
			5.3.5.	Experimental work on G.R.P. test beam.	273.
		5.4.	G.R.P. valve.	blade of ordinary butterfly	291.

.

2

CHAPTER SIX	CONCLUSIONS AND RECOMMENDATIONS FOR -	
	6.1. The analysis of ordinary blades6.1.1. Conclusions6.1.2. Further work	305. 305. 306.
	 6.2. Fibre composite blades 6.2.1. Approach for optimal design. 6.2.2. Further work 	307. 307. 308.
REFERENCES		311.
APPENDICES	APPENDIX 1	319. 338.
	APPENDIX 3	357.
	APPENDIX 4 APPENDIX 5	373. 376.

•

-

.

•

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to Professor J.M. Alexander for his valuable advice and kind encouragement while supervising this work.

He also wishes to thank the following, who have assisted with the experimental work and computing facilities. The staff of the University of London Computer Centre, especially the Advisory Department. The technicians and laboratory staff of the Dept. of Mechanical Engineering, University College Swansea. The librarian of the Dept. of Mechanical Engineering, Imperial College. Mr. M. Stone and Mr. J.M. Griffiths of Boving & Co. Ltd. Mr. R. Lovell of Tods of Weymouth. Dr. S.A. Abi-Shaheen and Mr. D. Lo of Stemmos Ltd.

Finally, I would like to thank my wife Fadwa for her encouragement and patience throughout the whole period of the work and Mrs. Mary Aldridge for typing the whole text.

LIST OF FIGURES

1.1.	Optimum approach to design with composites	25.
1.2.	A disk of constant thickness	29.
1.3a.	A tapered disk	30.
1.3b.	A hollow tapered disk	31.
1.4.	Shaft through the disk	32.
1.5.	Two shafts fitted in humps	32.
1.6.	Shafts as integral casting of the disk	32.
1.7.	Components of butterfly valve	33.
1.8.	Single flange body	35.
1.9.	"U" flangeless body	35.
1.10.	Double flanged body	35.
1.11.	Flangeless body	35.
2.1.	Expressions for bending moments and transverse shear in cartesian coordinates.	44.
2.2.	Polar coordinates.	44.
2.3.	Plate element in polar coordinates	46.
2.4.	Circular plates supported at two points	50.
2.5.	Pure bending on circular plate supported at two points.	52.
2.6.	Quadratic plate finite element	52.
2.7.	Finite element mesh	69.
2.8a.	Plate simply supported on two arcs.	78.
2.8ъ.	Reactive forces on plate simply supported on two arcs and subjected to uniform pressure.	78.
2.8c.	Plate supported on two clamped arcs.	78.

2.9.	Plate supported on two short lengths of arc and short lengths of diameter.	89.
2.10.	Analysis of pure bending of a beam.	98.
2.11.	4-Point bend testing of a perspex beam.	98.
2.12.	4-Point bend testing equipment.	99.
2.13.	4-Point bend testing of a perspex beam.	99.
2.14.	A plot of total load vs central deflection.	101.
2.15.	A plot of strain vs deflection at the centre.	104.
2.16	Testing equipment.	107.
2.17.	Sample flange.	108.
2.18.	Testing equipment and control panel.	107.
2.19.	Perspex blade sample.	111.
2.20.	Sample blade with strain gauges connected fitted in testing flange.	111.
2.21.	Short flange for clamping.	112.
2,22.	Testing rig.	112.
2.23.	Dial gauges during testing.	113.
2.24.	Dial gauges frame.	113.
2.25.	Point load cell.	114.
2.26.	Point load cell attached to testing rig.	114.
2.27.	Point load testing	115.
2.28.	Line support.	115.
2.29.	Line support uniform pressure testing.	116.
2.30.	Dummy gauges.	116.
2.31.	Complete testing equipment.	117.
2.32.	Location of strain gauges.	118.
2.33.	U.V. Recorder output scale.	119.

Page No.

2.34.	Full scale U.V. strain output.	119.
2.35	Strain circle of a rosette.	120.
2.36a.	Dial gauge locations.	125.
2.36b	Dial gauge locations.	126.
2.37.	Comparison of deflections due to uniform distributed pressure along x & y axis - 5 psi	127.
2.38.	Comparison of deflections due to uniform distributed pressure along x & y axis - 10 psi.	128.
2.39.	Location of strain gauges on finite element mesh	129.
2.40.	Comparison of principal stresses - Gauge 1.	143.
2.41.	Comparison of principal stresses - Gauge 2.	144.
2.42.	Comparison of principal stresses - Gauge 3 & 7.	145.
2.43.	Comparison of principal stresses - Gauge 4.	146.
2.44.	Comparison of principal stresses - Gauge 5.	147.
2.45.	Comparison of principal stresses - Gauge 8.	148.
2.46.	Comparison of principal stresses - Gauge 9.	149.
2.47.	Dial gauge and point load locations.	150.
2.48.	Comparison of deflections due to point load at Node 6 along x-axis.	162.
2.49.	Comparison of deflections due to point load at Node 6 along x-axis.	163.
2.50a.	Comparison of deflections due to point load at Node 6 along y-axis.	164.
2.50Ъ.	Comparison of deflections due to point load at Node 6 along y-axis.	164.
2.51.	Comparison of principal stresses - Gauge 1.	165.
2.52.	Comparison of principal stresses - Gauge 2.	165.
2.53.	Comparison of principal stresses - Gauge 4.	166.
2.54.	Comparison of principal stresses - Gauge 5.	167.
2.55.	Comparison of principal stresses - Gauge 7.	168.

		Page No.
2.56.	Comparison of principal stresses - Gauge 8.	169.
2.57.	Comparison of principal stresses - Gauge 9.	170.
2.58.	Dial gauge locations	171.
2.59.	Comparison of deflections due to uniform distributed pressure along x-axis 5 psi.	172.
2.60.	Comparison of deflections due to uniform distributed pressure along y-axis 10 psi.	172.
2.61.	Comparison of principal stresses - Gauge 1.	188.
2.62.	Comparison of principal stresses - Gauge 2.	189.
2.63.	Comparison of principal stresses - Gauge 3.	190.
2.64.	Comparison of principal stresses - Gauge 4.	191.
2.65.	Comparison of principal stresses - Gauge 5.	192.
2.66.	Comparison of principal stresses - Gauge 7.	193.
2.67.	Comparison of principal stresses - Gauge 8.	194.
2.68.	Comparison of principal stresses - Gauge 9.	195.
3.1.	A 3-dimensional solid of fibres embedded in matrix	198.
3.2.	Illustration of an orthotropic material in its laminated and lamina forms.	198.
3.3.	3-Dimensional state of stress	204.
3.4.	3-Dimensional element	204.
4.1.	8-Node first order hexahedron	217.
4.2.	16-Node element	217.
4.3a.) 4.3b.) 4.3c.)	General elements (natural coordinates.	217.
4.4.	20-Node quadratic hexahedron	218.

,

-

5.1a.	Blades of throughflow valves	229.
5.1b.	Blades of throughflow valves	229.
5.2.	A 72" dia. Cast iron butterfly valve - blade	232.
5.3a.	Finite element mesh of the cast iron blade	234.
5.3b.	Finite element mesh of the cast iron blade	234.
5.3c.	Finite element mesh of the cast iron blade	235.
5.4a.	Deflection test of the cast iron blade	236.
5.40.	Deflection test of the cast iron blade	236.
5.4c.	Deflection test of the cast iron blade	236.
5.5a.	Actual dimensions of composite deep beam No. D1	241.
5.50.	Composite deep beam specimen	241.
5.6a.	Composite deep beam specimen	242.
5.6Ъ.	Composite deep beam specimen	242.
5.7.	Layout of multi G.R.P. layer samples.	243.
5.8.	Woven roving and unidirectional woven glass layers	244.
5.9.	Individual layer specimens	244.
5.10.	Individual layer specimens	245.
5.11.	Individual layer specimens	245.
5.12.	Individual layer specimens	246.
5.13.	4-Point testing of G.R.P. beam specimen	248.
5.14.	4-Point testing of G.R.P. beam specimen	248.
5.15.	Load vs. deflection in direction 1 - Layer A	249.
5.16.	Load vs. deflection in direction 2 - Layer A	250.
5.17.	Load vs. deflection in direction 1 - Layer B	251.
5.18.	Load vs. deflection in direction 2 - Layer B	252.
5.19.	Load vs. deflection in direction 1 - Layer C	253.
5.20.	Load vs. deflection in direction 2 - Layer C	254.

•

Page No.

-

5.21.	Longitudinal & transverse strain vs. deflection direction 1 - Layer A.	255. 255.
5.22.	Longitudinal & transverse strain vs. deflection direction 2 - Layer A.	256.
5.23.	Longitudinal & transverse strain vs. deflection direction 1 - Layer B.	257.
5.24.	Longitudinal & transverse strain vs. deflection direction 2 - Layer B.	258.
5.25.	Longitudinal & transverse strain vs. deflection direction 1 - Layer C.	259.
5.26.	Longitudinal & transverse strain vs. deflection direction 2 - Layer C.	260.
5.27.	4-Point bend testing of G.R.P. beam for $v_{13}^{}$ & $v_{23}^{}$	261.
5.28.	4-Point bend testing of G.R.P. beam for v_{13}^{4} & v_{23}^{23}	261.
5.29.	4-Point bend testing of G.R.P. beam for $v_{13} & v_{23}$	262.
5.30.	Actual size specimen.	262.
5.31.	Longitudinal vs. vertical strains in direction 1 - Layer A.	263.
5.32.	Longitudinal vs. vertical strains in direction 2 - Layer A.	264.
5.33.	Longitudinal vs. vertical strains in direction 1 - Layer B.	265.
5.34.	Longitudinal vs. vertical strains in direction 2 - Layer B.	266.
5.35.	Longitudinal vs. vertical strains in direction 1 - Layer C.	267.
5.36.	Longitudinal vs. vertical strains in direction 2 - Layer C.	268.
5.37.	Minimum set of specimens.	269.
5.38.	Apparatus used for 4-Point bend testing of beams.	269.
5.39.	Finite element idealization of G.R.P. test beam.	272.

.

·			Page No.
	5.40a.) 5.40b.)	Location and numbers of strain gauges.	274.
	5.41.	Experiment arrangement of G.R.P. test beam.	275.
	5.42.	Experiment arrangement of G.R.P. test beam.	276.
	5.43.	Experiment arrangement of G.R.P. test beam.	276.
	5. ⁴⁴ .	Gauge locations on the finite element mesh.	277.
	5.45.	Comparison of stresses in direction 1 at Node 203	279.
	5.46.	Comparison of stresses in direction 2 at Node 203	280.
	5.47.	Comparison of stresses in direction 2 at Node 210	281.
	5.48.	Comparison of stresses in direction 3 at Node 210	282.
	5.49.	Comparison of stresses in direction 2 at Node 215	283.
	5.50.	Comparison of stresses in direction 3 at Node 215	284.
	5.51.	Comparison of stresses in direction 1 at Node 218	285.
	5.52.	Comparison of stresses in direction 2 at Node 218	286.
	5.53.	Comparison of stresses in direction 2 at Node 211	287.
	5 . 54.	Comparison of stresses in direction 3 at Node 211	288.
	5.55.	Comparison of stresses in direction 2 at Node 206	289.
	5.56.	Comparison of stresses in direction 3 at Node 206	290.
	5.57.	Load vs. deflections in direction 3 at Node 1	292.
	5.58.	Load vs. deflections in direction 3 at Node 45	293.
	5.59.	Load vs. deflections in direction 1 at Node 30	294.
	5.60.	G.R.P. butterfly blade	295.
	5.61.	G.R.P. butterfly blade	296.
	5.62.	G.R.P. butterfly blade	296.
	5.63.	G.R.P. butterfly blade	297.
	5.64a.	Finite element idealization of G.R.P. blade	299.
	5.64b.	Finite element idealization of G.R.P. blade	300.

-

v		Page No.
5.65a.	Strain gauge locations on G.R.P. blade	301.
5.65Ъ.	Strain gauge locations on G.R.P. blade	302
5.66.	Testing arrangement for deflections in G.R.P. blade.	303
A4.1.	Global, local and principal directions for thin shell element	375. Drive
A5.1.	Three dimensional para//e/o piped	378.

.

.

,

LIST OF TABLES

		Page No.
2.1.	Defelctions and moments in a circular plate simply supported around the periphery and subjected to a uniform pressure.	70.
2.2.	Moments design coefficients for circular plate simply supported on two points at opposite ends of a diameter and subjected to a uniform pressure obtained from finite element method.	72.
2.3.	Comparison of deflection coefficients obtained by the 'closed-form' equation and finite element in circular plate simply supported on two points at opposite ends of a diameter and subjected to a uniform pressure.	73.
2.4.	Comparison of moments coefficients obtained by the 'closed-form' equation and finite element in circular plate simply supported on two points at opposite ends of a diameter and subjected to a uniform pressure.	76.
2.5.	Comparison of deflection coefficients obtained by 'closed-form' equation and finite element in circular plates simply supported on two short.lengths of arcs at opposite ends of a diameter and subjected to a uniform pressure.	83.
2.6.	Moments design coefficients for circular plate simply supported on two short lengths of arcs at opposite ends of a diameter and subjected to uniform pressure obtained from finite element method.	84.
· 2.7.	Comparison of moments coefficients obtained by the 'closed-form' equation and finite element in circular plate simply supported on two short lengths of arcs at opposite ends of a diameter and subjected to a uniform pressure.	85.

 $\cdot V$

•

		Page No.
2.8a.	Coefficients for deflections in circular plates simply supported on two short lengths of arcs at opposite ends of a diameter due to point load at the shown location.	86.
2.8ъ.	Coefficients for moments in circular plates simply supported on two short lengths of arcs at opposite ends of a diameter due to point load at the shown location.	87.
2.9.	Coefficients for deflections in circular plates clamped on two short lengths of arcs at opposite ends of a diameter due to point load at the shown location.	90.
2.10.	Coefficients for deflections in circular plate supported on two clamped short lengths of arc at opposite ends of a diameter and subjected to a uniform pressure.	91.
2.11.	Coefficients for moments in circular plate supported on two clamped short lengths of arc at opposite ends of a diameter and subjected to a uniform pressure.	92.
2.12a.	Coefficients for deflections in circular plates supported on two clamped arcs at the end of the diameter and two short lengths of the diameter as shown and subjected to uniform pressure.	93.
2.12Ъ.	Coefficients for moments in circular plates supported on two clamped arcs at the end of the diameter and two short lengths of the diameter as shown and subjected to uniform pressure.	94.
2.12c.	Coefficients for deflections in circular plates supported on two clamped arcs at the end of the diameter and two short length of the diameter as shown due to point load at the shown location.	95.
3.1.	Direction cosines between two sets of coordinates	209.
5.1.	Material properties as given by manufacturers. Ref. (67).	237.

•

NOTATIONS

:

ww,w _c	Deflections, load during tests
a	Radius of a circle
r	Radial distance of a point
θ	Polar angle
p	Point loads
C _i	Constants, coefficients
∇	Differential operator as defined in Equation (2.8).
х,у,z.	Cartesian coordinates
ρ,θ,z	Polar coordinates
1,2,3.	Material coordinates
M _x , M _y , M _{xy}	Moments and twisting moments in cartesian coordinates per unit length.
M _r , M _t , M _{rt}	Moments and twisting moments in polar coordinates per unit length
ν	Poisson's ratio for an isotropic material
v _{ij}	Poisson's ratio for an isotropic material giving the strain in the j direction caused by the strain in the i direction.
Е	Young's modulus of elasticity.
E _x , E _y , E _z	Young's moduli of elasticity along x,y,z direction.
E ₁ , E ₂ , E ₃	Young's moduli of elasticity along 1,2,3 the natural axis of material.
9	Variation
đ	Uniformly distributed load on pressure
D	Flexural rigidity
Q	Shear forces per unit length
t	Plate thickness

I	Second moments of area or integration value
F ⁿ i	Functions of n
n	Harmonic number
π =	3.141592654
R	Reaction force
d,d'	Variations as defined in Equation (2.29)
β.	Constant as defined in Equation (2.32), angle
α	Angle of arc support
A ⁿ _i , B ⁿ _i	Constant
V _r	Kirchhoff shear
К	As defined in Equation (2.43a).
σ,ε	Stresses and strain respectively
σ ε ij, ij	<pre>(i,j = 1,2,3) Stress and strain components in material natural axis. (i,j = x,y,z) Stress and strain components in global cartesian coordinates.</pre>
τ _{ij} , Y _{ij}	<pre>(i,j = 1,2,3) Shear stresses and strains in material axis. (i,j = x,y,z) Shear stresses and strain in global cartesian coordinates.</pre>
G _{ij}	(i,j = 1,2,3) Shear moduli associated with the material natural axis. (i,j = x,y,z) Shear moduli material associated with global axis.
C ij kl	(i, j = 1, 3 and k, l = 1, 9) Elastic constants of of material.
СЛ	Compliance or flexibility matrix
<u>[</u>], []	Elasticity matrices related to global and natural axis respectively.
Ω	Strain energy per unit volume.
l _i , ^m j, ⁿ k	(i,j,k = 1,2,3) Direction cosines.
	Stress transformation matrix
$[\Gamma_{\epsilon}^{R}]$	Strain transformation matrix

,

[ī]	Unit matrix
f.	(i = 1,2) Interpolation functions
N i	(i = 1,20) Shape function
ξης	Isoparametric coordinates
α _i	(i = 1,20) Constants
u,v,w	Displacement components in the global x,y,z directions respectively.
u,,v,,wi	(i = 1,20) Nod _a l displacements along the natural axis.
[J]	Jacobian matrix
[в]	Elasticity matrix
[в*]	Defined in Equation (4.16)
{σ'}, {ε'}	Stress and strain vectors in material coordinates respectively.
[k]	Element stiffness matrix
	· · · ·

•

21.

.

CHAPTER ONE

INTRODUCTION

.

CHAPTER ONE

INTRODUCTION

1.1. <u>General</u>

The butterfly value constitutes a very special case for structural analysis due to its geometrical shape which is determined by complex loading and boundary conditions during operation Ref. (1) which are very difficult to model mathematically.

In addition to this, its main function is as an engineering structure for sealing pipes, where deflections play an important role in defining the criteria for its efficient operation and possible failure.

Existing methods of analysis and design are based generally on approximate idealized "closed form" mathematical models for circular plates.

A long history of empirical formulae and experimental studies of butterfly values exists, but as sizes of values and industrial installations became larger with higher pressures, the desirable closing characteristic of the butterfly value and new sealing methods led to its taking a greater share of the value market and its replacing other types of value. Ref. (2) (3).

Due to the traditional methods of design which did not give confidence either to the buyers or to the manufacturers, very strict standards were demanded. Ref. (4) (5) (6) (7). These specified minimum thicknesses for blades, bodies and shafts and required test pressures that seldom occur in practice.

As a consequence of this, very expensive test procedures had to be carried out in the manufacturing workshops rather than in the actual installations.

The use of butterfly valves in cooling systems employing sea water introduced corrosion as another major parameter to be considered in their design. This led to the use of coatings and linings and although this was satisfactory in temperate climates such as are found on European and North American coasts where sea water termperatures are low, it proved unsatisfactory in warm sea water Ref. (8) . In such environments the use of materials that provide good corrosion resistance, such as 18/8 3% molybdenum stainless steel, aluminium bronze or ni-resist cast iron becomes mandatory if metals are to be considered.

Fibre composite materials should therefore be seriously considered as alternatives, from the point of view of offering both corrosion resistance and cost savings.

Since such materials do not possess isotropic properties, analytical analysis becomes very complicated. More and more alternative combinations of fibre and matrix materials possessing high strength, high modulus and desirable corrosion properties (such as glass fibre reinforced plastic (G.R.P.), boron-epoxy, graphite-epoxy and boron-aluminium) have become available. Ref. (9).

In contrast to the engineer who has traditionally designed a structure from a designated metal, in the field of composites the designer has freedom to design both the material and the structure as illustrated in Fig.(1.1)Ref. (10).

Fig. 1.1. Optimum Approach to Design with Composites

25.

The need for numerical methods of analysis using modern computers to aid the design function becomes inevitable and the finite element method as applied in this study gives great confidence in such techniques. These techniques provide the necessary expertise and confidence to designers and their governing manufacturers, who have to take responsibility for guaranteeing efficient operation of their products, to promote and guarantee the application of butterfly valves in such applications. The overall concepts of product design and structural proportions have thereby been redefined and reviewed for the valve components and the possibility of using working stresses much closer to the yield point of the material, as in modern methods of designing other structures. This has consequently reduced the cross-sectional dimensions and weights of valves eventually. The reduction in size of the structural proportions of valve components is seen in the valve industry as the greatest single factor which can tilt the balance in favour of a better market share for products designed in this way. Ref. (11) .

1.2. Description of the Structure of Main Interest.

The butterfly value essentially comprises a disk or blade which can rotate at right angles in a wing-like structure, about a diametrical axis within a pipe section body. A 90⁰ rotation of the disk opens or closes the value.

This basic simplicity provides a compact structure which has the least amount of body metal of any valve type, having few component parts (disk, shaft, body, seating seals and operating equipment).

Fully open the valve disk is the only obstruction which occupies the minimum amount of flow line space and causes very little head loss across the valve Ref. (18).

The values are usually either resilient or metal to metal seated; the resilient seating may be in the body or attached to the periphery of the disk.

Butterfly valves are available in diameters from 2.5 cm to to 10 m and even larger sizes are presently being considered for tidal and ocean thermal energy conversion schemes Ref. (2) for pressures that range from vacuum to 300 psi full differential, depending on the valve size.

The 90° turn offers quick opening or closing with ease of operation and the pressure shut-off capabilities require modest actuator power compared to other types of valves, since the butterfly valve is balanced in the closed position against upstream and downstream line pressures. Dynamic flow torque does not reach a maximum until somewhere between 30° to 75° open. Thus the peak dynamic flow torque does not occur at the same time as the higher torque which is required to unseat the valve. Ref. (19).

Butterfly values can be installed in systems with constant-head sources such as nearby reservoirs or in pumping systems where pressure falls off with value opening. During the closing movement the rate of cut-off of the flow diminishes as the disk moves towards the closed position, making the value well suited for flow regulation purposes, (e.g. throttling).

1.2.1. The Disk or Blade

The disk or blade of the valve is the most important component of the valve, as its configuration has the greatest effect on:-

- (i) the head loss across the valve,
- (ii) the torque applied on the shafts,
- (iii) cavitation of the system,
- (iv) the sealing efficiency,
- (v) the noise.

The blade could be a simple flat disk of constant thickness Fig. (1.2) A Disk, or a solid or hollow tapered disk, Fig. (1.3) A Tapered Disk, or a lattice supported disk. As the size of the shaft varies according to the torque applied, the connection between the shaft and the blade varies from; shaft through the disk, Fig. (1.4), two shafts fitted in humps on the disk Fig. (1.5), and shafts as integral casting of the disk Fig. (1.6) and (1.7).

ŞECTION A-A

SECTION B-B

.

•

•

SECTION B-B

Fig. 1.3a. A Tapered Disk

- - ----

.

-

۰.

-

5

••

SECTION A-A

SECTION B-B

Fig. 1.3b. A Hollow Tapered Disk

:

•

;

Fig. 1.5: Two shafts fitted in humps

Fig. 1.6: Shafts as integral casting of the disk

Fig. 1.7: Components of butterfly valve

.

•

1.2.2. The Shaft

The governing factor in the design of the shaft is the torque applied to it. The torque analysis of butterfly valves is a major subject which has received a fair amount of research and development in the past and has therefore not been tackled in this work. One of the most significant observations in this study is the effect of the type of connection between shaft and blade or shaft and body, on the structural behaviour of the blade. No attempt to establish a criterion is made but it is left to the designer to assume the most suitable idealisation for the connection because this depends on working practices, allowable clearances, bearing arrangements and materials and empirical assumptions established by different design methods.

1.2.3. The Body

The body is the second most important component of the valve and it divides the valves mainly into two categories Ref. (2).

Wafer: this is a value for clamping between pipe flanges, using through bolting. The body may be single flange, flangeless or "U" section, as illustrated in Figs. (1.8), (1.9) and (1.11) respectively. Double flanged: this is a value having flanged ends for connection to pipe flanges by individual bolting Fig.(1.10). A wafer type with "U" section body will also come within this category if it is suitable for the

individual bolting of each flange to the pipework. In smaller valves the body could be in two sections. Fig. (1.7).

An unconventional body is the body of a 4-way butterfly valve which is the intersection of two pipes with an elliptical blade. The design of the body is governed by the piping system and the flange design. It is mainly a ring with two holes where a concentrated load causing shear, with or without correct installation and alignment, is another design factor to ensure noninterference between the blade and the piping system Ref. (19). The design of the body is not part of this work.

1.2.4. Seating Seals

These are either resilient or metal to metal seated. The latter will normally provide longer life than resilient seated designs but are more difficult to make completely leak-tight. They are better suited for higher temperature duties as they do not have the temperature restrictions imposed by resilient seatings. Regarding the former, an extensive range of synthetic elastomer and plastic materials for use as resilient seatings have been developed. Positive shut-off with repeatability of performance is assured and the wide choice of seating materials provides the butterfly valve with a comprehensive range of service applications.
The mechanical interference between the metal and the elastomeric seat requires a torque to unseat the valve. This depends on the type of seat material, the seat shape and the shape of the disk edge profile. Without the interference, of course, the valve could not be made leak-tight against high line pressure. The design of seats for sealing is not part of this study.

1.2.5. Operating Equipments

These generally comprise a gear box connected to the shaft of the blade at one end (or both ends) coupled with a manual and/or electrical/hydraulic actuator. These equipments are very important, especially in large installations, for the safety and control of any process. They can be controlled from a console in the hall of the plant and at the moment are undergoing great developments, introducing microelectronics processors as detectors and remote control systems, which will make a great change in this field. Such developments are not covered by this study.

1.3 Review

Engineering literature in the English language on the topic under discussion is very sparse. There is only one book Ref. (12), on the design of valves, to the knowledge of the writer and this does not mention butterfly valves at all.

Hydraulic handbooks Ref. (13), (14), (15), & (16), contain a few brief references to the butterfly valve, describing its geometrical shape, the characteristics of special installations and methods of operating the valve. They make no reference at all to the structural design of such valves. Again the butterfly valve is described in most handbooks Refs. (2), (3) & (17), on choosing valves in a minor way with no mention at all of structural analysis.

Reviewing existing books on the design of turbines, pumps and piping systems, Ref. (15), it may be observed that the valve is considered mainly in respect of its hydraulic characteristics with very brief guidance to methods of calculating torque on shafts and no guidance is given about structural analysis or design.

The British Hydromechanics Research Association have published, $\mathcal{R}_{ef.}(20)$ for their members a bibliography on butterfly valves, covering the period from 1929 to 1966. This has been reviewed by the present writer, who subsequently extended the bibliography to cover the years from 1967 to the end of 1979, covering all known relevant engineering publications in this field. Nowhere in all that literature is there to be found any study about the structural analysis of the valve components generally or on the blade or disc of the valve, which is the component

whose dimensions and strength are of most importance in the

overall design of the valve.

Reviewing structural analysis handbooks for the analysis of rings, circular, and other plates, Ref. (33),(34), it became evident that there is a great need to develop a body of knowledge with which to guide designers and structural analysists devoted to this task. Such a body of knowledge has been developed by the writer and is described in Chapter 2. In considering new anisotropic materials and the more complex shapes of butterfly valve disc now required, the need to develop finite element programs for the purpose became evident. This has not been done before and has therefore been developed by the writer, as described in Chapters 3, 4, 5 and 6.

1.4. Materials

Valves are manufactured from a wide range of materials chosen to meet different operating requirements such as high or low temperature, corrosion, impact of particles carried in the flow, vibration characteristics, etc., subject to their availability. The materials to be discussed in this thesis are metallic alloys, glass reinforced plastic and perspex (for the experimental work). It is known that blades are made of polymers and fibres other than glass for the reinforcement of the matrix material with the result that Young's Modulus and Poisson's ratio can have virtually any value. In the analytical work (to be discussed in Chapter 2) Poisson's ratio has been varied from 0.05 to 0.5 to allow the designer to consider all possible alternative materials. In glass reinforced plastic Poisson's ratio is in the vicinity of 0.1, for polymers it is 0.35 - 0.4 and for metals it is 0.25 - 0.35.

1.5. Limitations and Scope of Study

The study is concerned with the structural analysis of the blades of butterfly valves, simulation of the loading applied and all possible boundary conditions occurring at the supports. It does not cover the very important subjects listed below since there is already an extensive literature in existence covering them.

1. Hydraulic analysis.

ļ

- 2. Torque analysis and design of shafts. Ref. (21) & (22).
- 3. Cavitation analysis. Ref. (23) & (24).
- 4. Analysis and design of the valve body. Ref. (25).
- 5. Noise analysis. Ref. (2) & (26).
- Design of sealing, interference provisions and methods of installation and alignment. Ref. (27).
- 7. Vibration analysis. Ref. (28).
- 8. Temperature effects. Ref. (29).

CHAPTER TWO

.

ANALYTICAL PROCEDURE FOR THE STRUCTURAL ANALYSIS

OF THE BLADES OF ORDINARY BUTTERFLY VALVES

•

.

.

CHAPTER TWO

ANALYTICAL PROCEDURE FOR THE STRUCTURAL ANALYSIS OF THE BLADES OF ORDINARY BUTTERFLY VALVES

The search of an approximate "closed-form" solution for estimating the deflections and stresses in such blades is based on the general solution Equation (2.9) given by Clebsch Ref. (1) to be derived later. Now:

$$w(\mathbf{r},\theta) = w_{\mathrm{D}} + w_{\mathrm{C}}$$
 2.9

in the governing differential equation of a circular plate, namely:

$$\nabla^4 w = \frac{q(r,\theta)}{D}$$
 2.8

which has to be solved with suitably defined boundary conditions and loading.

In Equation (2.9) w_p represents a known particular integral solution of the governing differential equation which is added to a complementary function w_c which is the solution of the simple (Poisson) homogeneous equation

 $\nabla^4 w_c = 0 2.10$

to satisfy the case under consideration.

The procedure is developed in detail as follows

2.1 The Governing Differential Equation for Circular Plates

To obtain the differential equation of a circular plate the starting point is to use the expressions for bending moment and transverse shear which are known for a cartesian system of co-ordinates, as illustrated in Fig. (2.1) (from Szilard Ref. (31)).

$$M_{x} = -D \left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial y^{2}}\right)$$
 2.1a

$$M_{y} = -D \left(\frac{\partial^{2} w}{\partial y^{2}} + v \frac{\partial^{2} w}{\partial x^{2}}\right)$$
 2.1b

$$M_{xy} = M_{yx} = -(1-v) D \frac{\partial^2 w}{\partial x \partial y}$$
 2.1c

$$Q_{x} = \frac{\partial M_{x}}{\partial x} + \frac{\partial M_{xY}}{\partial y}$$
 2.1d

$$Q_{y} = \frac{\partial M}{\partial y} + \frac{\partial M}{\partial x}$$
2.1e

In the polar co-ordinates system shown in Fig. (2.2) the . relationships between cartesian and polar co-ordinates are as follows:-

$$x = r \cos \theta \qquad 2.2a$$

$$y = r \sin \theta \qquad 2.2b$$

$$r = \sqrt{x^2 + y^2}$$
 2.2.c

$$\theta = \tan \frac{-1}{x} \frac{y}{x}$$
 2.2d

The derivatives of $w(r,\theta)$ with respect to x can be derived from the derivatives with respect to r & θ as follows:-

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial w}{\partial \theta} \frac{\partial \theta}{\partial x}$$
 2.3

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}} = \cos \theta$$
 and $\frac{\partial \theta}{\partial \mathbf{x}} = -\frac{1}{\mathbf{r}} \sin \theta$ 2.4

$$\frac{\partial \mathbf{r}}{\partial \mathbf{y}} = \sin \theta$$
 and $\frac{\partial \theta}{\partial \mathbf{y}} = +\frac{1}{\mathbf{r}} \cos \theta$ 2.5

The expressions for internal moments and shear forces in Equation (2.1) can be converted into polar co-ordinates using Equations (2.2, 2.3, 2.4 & 2.5) thus,

Fig. 2.1: Expressions for bending moments and transverse shear in cartesian coordinates.

Fig. 2.2: Polar coordinates

$$M_{r} = -D \left[\frac{\partial^{2} w}{\partial r^{2}} + v \left(\frac{1}{r^{2}} - \frac{\partial^{2} w}{\partial \theta^{2}} + \frac{1}{r} - \frac{\partial w}{\partial r} \right) \right]$$
 2.6a

$$M_{t} = -D \left[\frac{1}{r}\frac{\partial w}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2} w}{\partial \theta^{2}} + v\frac{\partial^{2} w}{\partial r^{2}}\right]$$
 2.6b

$$M_{rt} = M_{\theta r} = -(1-v) D \left[\frac{1}{r} \frac{\partial^2 w}{\partial r \partial \theta} - \frac{1}{r^2} \frac{\partial w}{\partial \theta} \right]$$
 2.6c

$$Q_r = -D \frac{\partial}{\partial r} \nabla_r^2 w$$
 2.6d

$$Q_{\theta} = -D \frac{1}{r} \frac{\partial}{\partial \theta} \nabla_{r}^{2} w$$
 2.6e

Considering an infinitesimally small plate element in the polar co-ordinates of Fig. (2.3) summing the moments (with correct signs) and neglecting moments due to the external load on the element as small quantities of higher order, we obtain the equilibrium equation in the 'r' direction of the element as:-

$$(M_{r} + \frac{\partial M_{r}}{\partial r} dr) (r + dr) d\theta - M_{r} r d\theta - M_{\theta} dr d\theta$$
$$+ Q_{r} r d\theta dr = 0 \qquad 2.7a$$

hence

$$M_{r} + \frac{\partial M_{r}}{\partial r} r - M_{\theta} + Q_{r} = 0$$
 2.7b

Substituting Equation (2.6) for $M_r - M_{\theta}$ and Q_r and taking the derivatives with respect to r, Equation (2.7b) becomes

$$\nabla_{\mathbf{r}}^{2} (\nabla_{\mathbf{r}}^{2} \mathbf{w}) = \frac{\mathbf{q} (\mathbf{r}, \theta)}{\mathbf{D}}$$
 2.8

where

$$q(r,\theta) = \frac{\partial Q_r}{\partial r}$$

.

Fig. 2.3: Plate element in polar coordinates

`.

$$\nabla_{\mathbf{r}}^2 = \frac{\partial^2}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial^2}{\partial \theta^2}$$

Equation (2.8) is the governing differential equation for a thin circular plate of isotropic material.

2.2. The General Solution of the Governing Differential Equation

The general solution of this biharmonic equation

$$\nabla_r^4 \quad w = \frac{q(r,\theta)}{D}$$
 2.8

can be taken as the sum of the two functions on the righthand side of this equation:-

$$w(\mathbf{r},\theta) = w_{\mathrm{D}} + w_{\mathrm{C}}$$
 2.9

in which w_p is a known particular integral solution of Equation (2.8) and w_c is a compl mentary function which is the solution of the homogeneous equation

$$\nabla_r^4 w_c = 0 \qquad . \qquad 2.10$$

The solution of Equation (2.10) for a circular plate was obtained by Clebsch Ref. (30) in the form of the following series:

$$w_{c} = F_{o} + \sum_{n=1}^{\infty} F_{n} \cos n\theta + \sum_{n=1}^{\infty} F_{n}' \sin n\theta \qquad 2.11$$

Where each term of the series is a harmonic of order n. Each summation is for a particular value of n and extends over as many terms as are necessary for a proper representation of the loading.

and

The F_1 , F_2 .. F_n are functions of r only, which is the radial distance to any point on the disc Fig. (2.2), and they represent the symmetric components of the loading system. The F'_1 , F'_2 .. F_n are functions of r only and apply to the antisymmetric components of the loading system. F_0 is a function of r only and is completely independant of the angle θ unlike the other functions which are symmetric or antisymmetric. Substituting these series into Equation (2.10) leads for each of these functions to an ordinary differential equation of the following kind.

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} - \frac{n^2}{r^2}\right) \left(\frac{\partial^2 Fn}{\partial r^2} + \frac{1}{r}\frac{\partial Fn}{\partial r} - \frac{n^2 Fn}{r^2}\right) = 0 \qquad 2.12$$

the solutions of which are:

The general solution of n > 1 is therefore

$$F_n = C_{1n} r^n + C_{2n} r^{2+n} + C_{3n} r^{-n} + C_{4n} r^{-n+2}$$

Similar expressions can be written for the functions F'_n . Substituting these expressions for the functions F_n and F'_n into the series Equation (2.11) we obtain the general solution of Equation (2.10). The constants C_{in} , C_{2n} , C_{3n} and C_{4n} in each particular case must be determined so as to satisfy the given boundary conditions. 2.3. <u>The Solution for Stresses and Deflections in a Circular</u> <u>Plate of Uniform Thickness Subjected to a Uniform Normal</u> <u>Pressure and Supported at two points at Opposite ends of</u> <u>a Diameter.</u>

2.3.1. Analytical Work

In this case a circular disc of uniform thickness "t" is assumed, subjected to a uniform normal pressure "q" and supported at two points at opposite ends of a diameter.

The reaction of this loading, which develops at each of the support points (trunnions in the case of a valve blade), depends on the degree of fixity of the shafts, as will be discussed later.

If the support reaction is simulated in this analysis by a triangularly distributed load (illustrated in Fig. (2.4a)) which is replaced by a reaction R acting at the centroid of the triangle so that the point of simple support is assumed to be at a distance a + a' from the centre of the disc Fig. (2.4b).

This system of loading can then be replaced by two systems, the effects of which are added together, as follows:

(i) Two diametrically opposed moments as illustrated in

Fig. (2.4c) with

$$M = R a'$$
 2.14

(These moments act in a plane perpendicular to the disc and pass through the points of support).

 (ii) A uniformly distributed load of intensity q acting all over the area of one face of the circular disc, supported by two diametrically opposed equal reactions R acting at the periphery of the disc Fig. (2.4d) where

Fig. 2.4: Circular plates supported at two points

$$R = q \frac{\pi a^2}{2}$$
 2.15

This loading occurs only when the valve is totally closed of course.

The effect of the first case of loading (pure bending) on a plate of non-uniform section Fig. (2.5) will now be considered.

The radial moment per unit length of any section can be obtained by dividing M (given by Equation (2.14)) by the appropriate chord length. The deflections along the diameter between the supports can be found as follows:-

$$\frac{\partial^2 w}{\partial x^2} = -\frac{M}{EI}$$
 (as given by Szilard Ref. (31)) 2.16

where

$$I = \frac{2yt^{3}}{12(1-v^{2})}$$
 2.17

Substituting Equation (2.17) in Equation (2.16) gives:

$$\frac{\partial^2 w}{\partial x^2} = \frac{-6(1-v^2)}{Et^3} \frac{M}{y}$$
 2.18

Since $x = a \cos \theta$ and $y = a \sin \theta$, (from Equations (2.2a) and (2.2b)).

 $dx = -a \sin \theta d\theta$.

Integrating Equation (2.18) with respect to x leads to

$$\int \frac{\partial^2 w}{\partial x^2} dx = C_1 + \frac{6(1-v^2)M}{Et^3} \int^{\theta} \frac{a \sin \theta d\theta}{a \sin \theta}$$
$$\frac{\pi}{2}$$
$$\frac{\partial w}{\partial x} = C_1 + \frac{6(1-v^2)M}{Et^3} \int_{\frac{\pi}{2}}^{\theta} d\theta$$
$$= C_1 - \frac{6(1-v^2)M}{Et^3} (\frac{\pi}{2} - \theta)$$
2.19

Fig. 2.5: Pure bending on circular plate supported at two points

Fig. 2.6: Quadratic plate finite element

At $\theta = \frac{\pi}{2}$, $\frac{\partial w}{\partial x} = 0$ so C₁ must be zero Integrating Equation (2.19) along x,

$$w = C_{2} + \frac{6(1-\nu^{2})M}{Et^{3}} a \int_{\frac{\pi}{2}}^{\theta} (\frac{\pi}{2} - \theta) \sin \theta \, d\theta$$
$$= C_{2} + \frac{6aM(1-\nu^{2})}{Et^{3}} \left[(-\frac{\pi}{2}\cos \theta + \theta\cos \theta - \sin \theta) \right]_{\frac{\pi}{2}}^{\theta}$$
$$= C_{2} - \frac{6aM(1-\nu^{2})}{Et^{3}} \left[-1 + (\frac{\pi}{2} - \theta)\cos \theta + \sin \theta \right] 2.20$$

At $\theta = 0$, w = 0 thus

$$C_{2} = \frac{6aM(1-v^{2})}{Et^{3}} \left(\frac{\pi}{2} - 1\right) = \frac{Ma}{2D} \left(\frac{\pi}{2} - 1\right)$$

and

$$w = \frac{Ma}{2D} \left[\frac{\pi}{2} - \left(\frac{\pi}{2} - \theta \right) \cos \theta - \sin \theta \right]$$
 2.21

Maximum w occurs at $\theta = \frac{\pi}{2}$ so that

$$w_{max} = \frac{Ma}{2D} \left(\frac{\pi}{2} - 1\right) = 0.28548 \frac{Ma}{D}$$
 2.22

The deflection of the disc at any point due to the second case of loading, Fig (2.4d) can be determined as the sum of the deflection of the disc simply supported along its entire periphery (as a particular solution) and the deflection due to a system of forces distributed along it periphery to satisfy the loading of Fig (2.4d) with the boundary conditions of the disc being also fulfilled.

In what follows the complementary function and the particular integral have been solved together and dealt with in the various derivations as the single function w of Equation (2.8).

In Equation (2.9) w_p (the particular integral solution for the deflection of a disc simply supported along its entire periphery) given by Timoshenko et al. Ref. (32) as

$$w_{p} = \frac{qa^{4}}{64D} (1-\rho^{2}) (\frac{5+\nu}{1+\nu} - \rho^{2})$$
 2.23

where

$$\rho = \frac{r}{a}$$
 2.24

This is a symmetrical case of loading and deflections are measured from the diameter on which the two supports are positioned, i.e. the condition of geometrical symmetry is satisfied so that sin terms of the series Equation (2.11) may be omitted and the complimentary function may be written as

$$w_{c} = F + \sum_{n=1}^{\infty} F_{n} \cos n\theta \qquad 2.25$$

Substituting Equation (2.25) into Equation (2.10) and solving we obtain Equation (2.13) which must be satisfied by the constants C_{1n} , C_{2n} , C_{3n} and C_{4n} for this case. Since, at the centre of the plate the deflection, the slope and the internal moment are finite, at r = 0

$$C_{30} = C_{40} = 0$$

$$C_{31} = C_{41} = 0$$

$$- - - - 2.26$$

$$- - - - 2.26$$

$$C_{3n} = C_{4n} = 0$$

and Equation (2.13) can be written as

$$F_n = (C_{1n} r^n + C_{2n} r^{2+n}).$$
 2.27

Using Equation (2.25) and multiplying the first part by

$$\frac{a^n}{a^n}$$
 and the second part by $\frac{a^{n+2}}{a^{n+2}}$ there results the equation

$$F_{n} = (C_{1n}^{1} + C_{2n}^{1} \rho^{2}) \rho^{n}$$

where

$$C_{1n}^{1} = a^{n}C_{1n}$$
 (a new constant)

and

$$C_{2n}^{1} = a^{n+2}C_{2n}$$
 (a new constant)

Substituting these into Equation (2.25) and multiplying by

$$\frac{D}{qa^4} \text{ gives:}$$

$$\frac{D}{qa^4} w_c = \sum_{n=0}^{\infty} (A_n + B_n \rho^2) \rho^n \cos n\theta \qquad 2.28$$

where \textbf{A}_n and \textbf{B}_n are constants and ρ = r/a

At the boundary of the disc the radial bending moment is zero. Assuming the following relationships:-

$$d = a \frac{\partial}{\partial r}$$
$$\frac{\partial}{\partial r} = \frac{d}{a}$$
2.29a
$$\frac{\partial^2}{\partial r^2} = \frac{d^2}{\partial r^2}$$

$$\partial r^2 = a^2$$

and from Equation (2.25) r = ap

$$\frac{1}{r} \frac{\partial}{\partial r} = \frac{1}{r} \frac{d}{a} = \frac{1}{a\rho} \frac{d}{a} = \frac{d}{a^2\rho}$$
2.29b

$$d' = \frac{\partial}{\partial \theta}$$
 2.29c

and using Equation (2.29) with Equation (2.6a) gives:

$$M_{r_{\rho=1}} = -D \left[\frac{\partial^2}{\partial r^2} + v \left(\frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{1}{r} \frac{\partial}{\partial r} \right) \right] (w)_{\rho=1} + 0$$
$$= -D \left[\frac{d^2}{a^2} + v \left(\frac{1}{a^2 \rho^2} - d'^2 + \frac{1}{a\rho} \frac{d}{a} \right) \right] (w)_{\rho=1} = 0$$

hence

$$M_{r_{\rho=1}} = \frac{-D}{a^2} \left[d^2 + v \left(\frac{d}{\rho} + \frac{d!^2}{\rho^2} \right) \right] (w)_{\rho=1} = 0$$
 2.30

Applying Equation (2.30) with Equation (2.23) gives zeros for w_p and applying Equation (2.30) with Equation (2.28) for w_c gives:

$$B_0 = B_1 = 0$$
 2.31

and

where

$$\beta = \frac{1 - \nu}{1 + \nu}$$

At the supports the deflections are zero, i.e. $w_p = 0$ At $\rho = 1$ for $\theta = 0 \& \pi$ Putting $\theta = 0$, $\rho = 1$ and using Equation (2.31) in Equation (2.28) there results:

$$0 = \sum_{n=2,3}^{n} A_n + B_n$$

or

$$A_0 + A_1 + \sum_{n=2,3}^{\infty} (A_n + B_n) = 0$$
 2.33

Putting $\theta = \pi$, $\rho = 1$ and using Equation (2.31) with Equation (2.28) results in

$$A_0 + A_1 + \sum_{n=2,3}^{\infty} (A_n + B_n) \cos n\pi = 0$$
 2.34

Solving Equation (2.22) and Equation (2.34) with

 $\cos n\pi = +1$ (for even n)

 $\cos n\pi = -1$ (for odd n)

œ

gives

$$A_0 = -\sum_{n=2,4}^{N} (A_n + B_n)$$
 2.35

and

$$A_1 = -\sum_{n=3,5}^{\infty} (A_n + B_n)$$
 2.36

The reactions R at the supports can be found from the Equations:

$$\frac{R}{\pi a} \left(\frac{1}{2} + \sum_{n=1}^{\infty} \cos n\theta\right)$$

and

$$\frac{R}{\pi a} \left(\frac{1}{2} + \sum_{n=1}^{\infty} \cos n(\theta - \pi)\right)$$

as given by Timoshenko et al. Ref (32). The value of the intensity of the vertical reaction at the boundary is the sum of these expressions

$$(V_{r})_{\rho=1} = \frac{-R}{\pi a} \left[\frac{1}{2} + \sum_{n=1}^{\infty} \cos n\theta + \frac{1}{2} + \sum_{n=1}^{\infty} \cos n(\theta - \pi) \right]$$
 2.38

since $\cos n(\theta - \pi) = \cos n\theta \cos n\pi$

 $= \cos n\theta$ (for even n)

 $= -\cos n\theta$ (for odd n)

$$(V_{r})_{\rho=1} = \frac{-R}{\pi a} (1 + 2 \sum_{2,4}^{\infty} \cos n\theta)$$
 2.39

The differential equation for V_r as given by Timoshenko et al. Ref. (32) (p.284) is

$$(\mathbf{V}_{\mathbf{r}})_{\rho=1} = (\mathbf{Q}_{\mathbf{r}} - \frac{\partial}{\mathbf{r}} \frac{\mathbf{M}_{\mathbf{r}\theta}}{\partial \theta})_{\rho=1} = 0$$
 2.40

Using Equation (2.29a)

$$(V_{r_{\rho=1}}) = (Q_{r} - \frac{1}{\rho a} d' M_{r_{\theta}})_{\rho=1} = 0$$

From Equation (2.6d) we get

$$Q_{\mathbf{r}} = -D \frac{\partial}{\partial \mathbf{r}} \left(\frac{\partial}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial^2}{\partial \theta^2} \right) (w)_{\rho=1}$$

$$Q_{\mathbf{r}} = -D \left(\frac{\partial^3}{\partial \mathbf{r}^3} + \frac{1}{\mathbf{r}} \frac{\partial^2}{\partial \mathbf{r}^2} - \frac{1}{\mathbf{r}^2} \frac{\partial}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial^2}{\partial \theta^2} \frac{\partial}{\partial \mathbf{r}} - 2 \frac{1}{\mathbf{r}^3} \frac{\partial^2}{\partial \theta^2} \right) (w)_{\rho=1}$$

Using Equation (2.29a)

$$Q_{r} = \frac{-D}{a^{3}} \left(d^{3} + \frac{d^{2}}{\rho} - \frac{d}{\rho^{2}} + \frac{dd'^{2}}{\rho^{2}} - 2 \frac{d'^{2}}{\rho^{3}} \right)$$
 2.41

From Equation (2.6c)

$$-\frac{1}{\rho a} d'_{r\theta} = -\frac{D}{a^3} \left[\frac{(1-\nu)}{\rho^2} dd'^2 - \frac{(1-\nu)}{\rho^3} d'^2 \right] \qquad 2.42$$

Substituting Equation (2.41) and Equation (2.42) into Equation (2.40) gives:

•

$$(V_{r})_{\rho=1} = \frac{-D}{a^{3}} \left[d^{3} + \frac{d^{2}}{\rho} - \frac{d}{\rho^{2}} + \frac{(2-\nu)}{\rho^{2}} dd^{\prime 2} + \frac{(\nu-3)}{\rho^{3}} d^{\prime 2} \right] (w)_{\rho=1}$$
as $w = w_{p} + w_{c}$

$$2.43$$

To carry the solution further we have to obtain the differentation of w_p and w_c from Equations (2.23) and (2.28) Assuming $\frac{qa^4}{D}$ is a constant = k, then

$$\frac{\mathrm{qa}^4}{\mathrm{D}} = \mathrm{k}$$
 2.43a

$$\begin{split} d(w_{p}) &= a \frac{\partial}{\partial r} (w_{p}) = a \frac{k}{64} \frac{\partial}{\partial r} \left[\left(1 - \frac{r^{2}}{a^{2}}\right) \left(\frac{5+\nu}{1+\nu} - \frac{r^{2}}{a^{2}}\right) \right] \\ &= \frac{ak}{64} \left[\left(1 - \frac{r^{2}}{a^{2}}\right) \left(-\frac{2r}{a^{2}}\right) + \left(\frac{5+\nu}{1+\nu} - \frac{r^{2}}{a^{2}}\right) \left(\frac{-2r}{a^{2}}\right) \right] \\ &= \left(\frac{ak}{64}\right) \left(\frac{-2r}{a^{2}}\right) \left[\left(1 - \rho^{2}\right) \left(\frac{5+\nu}{1+\nu} - \rho^{2}\right) \right] \\ &= \frac{-k\rho}{32} \left(1 + \frac{5+\nu}{1+\nu} - 2\rho^{2}\right) \\ &= \frac{-k\rho}{32} \left(\frac{1+\nu+5+\nu}{1+\nu} - 2\rho^{2}\right) \\ &= \frac{-k\rho}{32} \left(\frac{6+2\nu}{1+\nu} - 2\rho^{2}\right) \end{split}$$

and

$$\begin{aligned} d(w_{p}) &= \frac{-k\rho}{16} \left(\frac{3+\nu}{1+\nu} - \rho^{2} \right) & 2.44 \\ d^{2}(w_{p}) &= a \frac{\partial}{\partial r} \frac{k}{16} \frac{r}{a} \left(\frac{3+\nu}{1+\nu} - \frac{r^{2}}{a^{2}} \right) \\ &= \frac{k}{16} \frac{\partial}{\partial r} \left[\left(\frac{3+\nu}{1+\nu} \right) r - \frac{r^{3}}{a^{2}} \right] \\ &= \frac{k}{16} \left(\frac{3+\nu}{1+\nu} - 3\rho^{2} \right) & 2.45 \\ d^{3}(w_{p}) &= a \frac{\partial}{\partial r} \frac{k}{16} \left(\frac{3+\nu}{1+\nu} - 3\frac{r^{2}}{a^{2}} \right) \\ d^{3}(w_{p}) &= \frac{k}{16} \left(- 6 \frac{r}{a} \right) = \frac{3k}{8} \rho & 2.46 \end{aligned}$$

and

$$d'(w_{p}) = d'^{2}(w_{p}) = dd'(w_{p}) = dd'^{2}(w_{p}) = d^{2}d'(w_{p})$$
$$= d'^{3}(w_{p}) = 0$$
2.47

Similarly, for $(n=2,4,\ldots\infty)$ we get

$$d(w_{c}) = k \sum_{n=1}^{\infty} \left[n A_{n} + (n+2) B_{n} \rho^{2} \right] \rho^{n-1} \cos n\theta$$
 2.48

$$d^{2}(w_{c}) = k \sum \left[n(n-1) A_{n} + (n+2)(n+1)B_{n}\rho^{2} \right] \rho^{n-2} \cos n\theta$$
 2.49

$$d^{3}(w_{c}) = k \sum_{n} \left[n(n-1) A_{n} + (n+2)(n+1)n B_{n} \rho^{2} \right] \rho^{n-3} \cos n\theta$$
 2.50

and

$$d'(w_{c}) = -k \sum (n A_{n} + n B_{n} \rho^{2}) \rho^{n} \sin n\theta \qquad 2.51$$

$$d'^{2}(w_{c}) = -k \sum_{n} (n^{2} A_{n} + n^{2} B_{n} \rho^{2}) \rho^{n} \cos n\theta \qquad 2.52$$

$$d'^{3}(w_{c}) = k \sum (n^{3} A_{n} + n^{3} B_{n} \rho^{2}) \rho^{n} \sin \theta$$
 2.53

$$dd'(w_{c}) = -k \sum_{n} \left[n^{2} A_{n} + n(n+2) B_{n} \rho^{2} \right] \rho^{n-1} \sin n\theta \qquad 2.54$$

$$dd''(w_{c}) = -k \sum_{n=1}^{\infty} \left[n^{3} A_{n} + n^{2}(n+2) B_{n} \rho^{2} \right] \rho^{n-1} \cos n\theta \qquad 2.55$$

$$d^{2}d'(w_{c}) = -k \sum_{n} \left[n^{2} (n-1) A_{n} + n(n+2)(n+1) \right]$$
$$B_{n} \rho^{2} \rho^{n-2} \sin n\theta \qquad 2.56$$

Using Equations (2.44 to 2.56) in Equation (2.43) for $(w_p + w_c) = 1$ and using Equation (2.31) for B_0 , B_1 we get

$$(\mathbb{V}_{r_{\rho=1}}) = \frac{-D}{a^{3}} k \left\{ \frac{3}{8} \rho - \frac{1}{16} \left(\frac{3+\nu}{1+\nu} - 3\rho^{2} \right) \frac{1}{\rho} + \frac{1}{16} \left(\frac{3+\nu}{1+\nu} - \rho^{2} \right) \frac{1}{\rho} \right. \\ \left. + \frac{\sum_{n=2,3}^{\infty} \left\{ \left[n(n-1)(n-2) + n(n-1) - n - (2-\nu)n^{3} - (\nu-3)n^{2} \right] A_{n} + \left[(n+2)(n+1)n + (n+2)(n+1) - (n+2) - (\nu-3)n^{2} \right] A_{n} \right\} \right. \\ \left. - (2-\nu)n^{2} (n+2) - (\nu-3)n^{2} \right] \left. B_{n}\rho^{2} \right\} \rho^{n-3} \cos n\theta \right\}_{\rho=1} 2.57$$

•

$$\begin{aligned} \left(V_{r}\right)_{\rho=1} &= \frac{-D}{a^{3}} k \sqrt{\frac{\rho}{2}} + \sum_{n=2,3}^{\infty} \left\{ -n^{2}(n-1)(1-\nu) A_{n} + n(n+1) \right. \\ &\left. \left[\frac{1}{4} - n(1-\nu) \right] B_{n} \rho^{2} \right\} \rho^{n-3} \cos n\theta \right|_{\rho=1} \end{aligned} \qquad 2.58 \\ \left(V_{r}\right)_{\rho=1} &= \frac{-D}{a^{3}} k \sqrt{\frac{1}{2}} + \sum_{n=2,3}^{\infty} \left\{ -n^{2}(n-1)(1-\nu) A_{n} + n(n+1) \right. \\ &\left. \left[\frac{1}{4} - n(1-\nu) \right] B_{n} \right\} \cos n\theta \right|_{\rho=1} \end{aligned}$$

From Equation (2.15) we have $2R = \pi a^2 q$ and $k = \frac{qa^4}{D}$

so

$$\frac{-D}{a^3} k = -\frac{qa^4}{D} \frac{D}{a^3} = -\frac{2R}{\pi a}$$

Using this in Equation (2.58) leads to

$$(V_{r_{\rho=1}}) = \frac{-R}{\pi a} \left[1 + 2 \sum_{n=2,3}^{\infty} \left\{ -n^{2} (n-1) (1-\nu) A_{n} + n(n+1) \right\} \right]$$

$$\left[4 - n(1-\nu) B_{n} \right] \cos n\theta \right]_{\rho=1}$$
2.59

The coefficients of $\cos n\theta$ in Equations (2.59) and (2.39) should be equal, thus

$$-n^{2}(n-1)(1-v) A_{n} + n(n+1)[4-n (1-v)] B_{n} = 1$$

for $n = 2, 4, 6...$ 2.60

 and

$$-n^{2}(n-1)(1-\nu) A_{n} + n(n+1)[4-n (1-\nu)] B_{n} = 0$$

for n = 3, 5, 7... 2.61

Solving Equations (2.32) and (2.61) gives

$$A_n = B_n = 0$$
 for $n = 3, 5, 7...$ 2.62

Hence from Equation (2.36) we get

 $A_1 = 0$

Solving Equations (2.32) and (2.60) gives

$$A_{n} = \frac{-(n+2/\beta)}{2n^{2}(n-1)(3+\nu)}$$
 2.62a

or as

$$A_{n} = \frac{-1}{2(3+\nu)} \left[\frac{1}{n(n-1)} + \frac{1}{\beta n^{2}(n-1)} \right]$$
 2.62b

Also,

$$B_{n} = \frac{1}{2n(n+1)(3+\nu)}$$
 2.63

.

Therefore,

$$A_{n} + B_{n} = \frac{-1}{3+\nu} \left[\frac{1}{n(n^{2}-1)} + \frac{1}{\beta n^{2}(n-1)} \right]$$
 2.64

Equations (2.62a, 2.62b, 2.63 and 2.64) are for

n = 2, 4, 6... etc.

Using Equation (2.64) in Equation (2.35) gives

$$A_{0} = \frac{1}{3+\nu} \sum_{n=2,4}^{5} \left[\frac{1}{n(n^{2}-1)} + \frac{1}{\beta n^{2}(n-1)} \right]$$

Considering ln series,

$$A_0 = \frac{1}{3+\nu} (\ln 2 - \frac{1}{2}) + \frac{1}{\beta} (\ln 2 - \frac{\pi^2}{24})$$

 \mathbf{or}

$$A_{0} = \frac{1}{3+\nu} \left[\frac{2 \ln 2}{1-\nu} - \frac{\pi^{2}}{24\beta} - \frac{1}{2} \right]$$
 2.65

Hence, Equation (2.28) since $A_1 = B_0 = B_1 = 0$ can be written as

$$\frac{D}{qa^4} w_c = A_0 + \sum_{n=2,4}^{\infty} (A_n + B_n \rho^2) \rho^n \cos n\theta \qquad (2.28)$$

Using Equations (2.62b) and (2.65) gives

$$\frac{D}{qa^{4}} w_{c} = \frac{1}{3+\nu} \left[\left\{ \frac{2 \ln 2}{1-\nu} - \frac{\pi^{2}}{24} - \frac{1}{2} \right\} - \frac{1}{2} \sum_{n=2,4}^{\infty} \left\{ \frac{1}{n(n-1)} + \frac{2}{\beta n^{2}(n-1)} - \frac{\rho^{2}}{n(n+1)} \right\} \rho^{n} \cos n\theta \right]$$
2.66

and for the complete expression of deflection

$$w = w_{p} + w_{c}$$
(2.9)

$$w = \frac{qa^{4}}{D} \frac{1}{64} (1-\rho^{2})(\frac{5+\nu}{1+\nu} - \rho^{2}) + \frac{qa^{4}}{D} \frac{1}{2(3+\nu)}$$
$$\left[\left\{ \frac{4 \ln 2}{1-\nu} - \frac{\pi^{2}}{12\beta} - 1 \right\} - \sum_{n=2,4}^{\infty} \left\{ \frac{1}{n(n-1)} + \frac{2}{\beta n^{2}(n-1)} - \frac{\rho^{2}}{n(n+1)} \right\} \rho^{n} \cos n\theta \right]$$
2.67

or

$$\frac{wD}{qa^{t}} = \left(\frac{1-\rho^{2}}{64}\right)\left(\frac{5+\nu}{1+\nu} - \rho^{2}\right) + \frac{1}{2(3+\nu)} \begin{cases} 2 \ln 2 - 1 \\ \frac{1+\nu}{1-\nu}\left(2 \ln 2 - \frac{\pi^{2}}{12}\right) - \sum_{n=2,4}^{\infty} \left[\frac{1}{n(n-1)} + \frac{2(1+\nu)}{(1-\nu)(n-1)n^{2}} - \frac{\rho^{2}}{n(n+1)}\right] \rho^{n} \cos n\theta \end{cases}$$
2.68

which is the complete solution.

The expression for the radial moment M_r , using Equations (2.44 to 2.56) with Equation (2.30) is

$$M_{r} = -k \frac{D}{a^{2}} \left[\frac{-1}{16} \left(\frac{3+\nu}{1+\nu} - 3\rho^{2} \right) - \frac{\nu}{16} \left(\frac{3+\nu}{1+\nu} - \rho^{2} \right) \right] \\ + \sum_{n=2,4}^{\infty} \left\{ \left[n(n-1) + \nu(n-n^{2}) \right] A_{n} + \left[(n+2)(n+1) + \nu(n+2) - \nu n^{2} \right] B_{n} \rho^{2} \right\} \rho^{n-2} \cos n\theta$$

$$= \frac{-Dk}{a^{2}} \left[\frac{-(3+\nu)}{16} (1-\rho^{2}) + \sum_{n=2,4}^{\infty} \left\{ n(n-1)(1-\nu) A_{n} + n(n+1) \left[(1-\nu) + \frac{2}{n} (1+\nu) \right] B_{n} \rho^{2} \right\} \rho^{n-2} \cos n\theta \right]$$
2.69

Substituting for k, $A_n & B_n$ from Equations (2.42a), (2.62b) and (2.63) leads to

$$\frac{M_{r}}{a^{2}q} = \frac{1}{16} (3+\nu)(1-\rho^{2}) + \frac{1}{2} (\frac{1+\nu}{3+\nu}) \sum_{n=2,4}^{\infty} (\beta + \frac{2}{n})$$

$$(1-\rho^{2})\rho^{n-2} \cos n\theta \qquad 2.70$$

The expression for the tangential moment M_t , using Equation (2.43) to (2.52), Equation (2.29) and Equation (2.6b) is

$$M_{t} = -k \frac{D}{a^{2}} \left[\frac{-1}{16} \left(\frac{3+\nu}{1+\nu} - \rho^{2} \right) - \frac{\nu}{16} \left(\frac{3+\nu}{1+\nu} - 3\rho^{2} \right) \right] \\ + \sum_{n=2,4}^{\infty} \left\{ \left[n-n^{2} + \nu n(n-1) \right] A_{n} + \left[(n+2) - n^{2} + \nu(n+2)(n+1) \right] B_{n} \rho^{2} \right\} \rho^{n-2} \cos n\theta$$

or

$$M_{t} = -k \frac{D}{a^{3}} \left[\frac{-1}{16} (3+\nu) - (1+3\nu)\rho^{2} \right] + \sum_{n=2,4}^{\infty} \left[n(n-1)(1-\nu) A_{n} + n(n+1) \right] \left[(1-\nu) \frac{-2}{n} - (1+\nu) \right] B_{n} \rho^{2} \rho^{n-2} \cos n\theta$$
2.71

Substituting k, $A_n & B_n$ from Equations (2.42a, 2.61b and 2.62) leads to

$$\frac{M_{t}}{a^{2}q} = \frac{1}{16} \left[(3+\nu) - (1+3\nu)\rho^{2} \right] - \frac{1}{2} \left(\frac{1+\nu}{3+\nu} \right) \sum_{n=2,4}^{\infty} \left\{ \beta (1-\rho^{2}) + \frac{2}{n} (1+\rho^{2}) \right\} \rho^{n-2} \cos n\theta \qquad 2.72$$

The expression for the twisting moment $M_{r\theta}$, using Equations (2.43) to (2.52), Equation (2.29) and Equation (2.6c)

$$M_{rt} = k \frac{D}{a^2} (1-\nu) \sum_{n=2,4}^{\infty} \left\{ (-n^2+n) A_n + \left[-n(n+2)+n \right] B_n \rho^2 \right\} \rho^{n-2} \sin n\theta$$

= $k \frac{D}{a^2} (1-\nu) \sum_{n=2,4}^{\infty} \left\{ -n(n-1) A_n - n(n+1) B_n \rho^2 \right\} \rho^{n-2} \sin n\theta$ 2.73

Substituting for k, $A_n & B_n$ from Equations (2.42a, 2.61b and 2.62) leads to

$$\frac{\frac{M}{rt}}{a^2q} = \frac{1}{2} \left(\frac{1+\nu}{3+\nu}\right) \sum_{n=2,4}^{\infty} \left\{ \beta(1-\rho^2) + \frac{2}{n} \right\} \rho^{n-2} \sin n\theta \qquad 2.74$$

The expression for the radial shear Q_r , using Equations (2.43) to (2.52), Equation (2.29) and Equation (2.6d)

$$\begin{aligned} Q_{r} &= -k \frac{D}{a^{3}} \sqrt{\frac{3}{8}} \rho - \frac{1}{16} \left(\frac{3+\nu}{1+\nu} - 3\rho^{2} \right) \frac{1}{\rho} + \frac{1}{16} \\ & \left(\frac{3+\nu}{1+\nu} - \rho^{2} \right) \frac{1}{\rho} + \sum_{n=2,4}^{\infty} \left\{ \left[n(n-1)(n-2) + n(n-1) - n - n^{3} + 2n^{2} \right] A_{n} + \left[(n+2)(n+1)n + (n+2)(n+1) - (n+2) - n^{2}(n+2) + 2n^{2} \right] B_{n} \rho^{2} \right\} \rho^{n-3} \cos n\theta \\ & + (n+2)(n+1) - (n+2) - n^{2}(n+2) + 2n^{2} \left] B_{n} \rho^{2} \right\} \rho^{n-3} \cos n\theta \\ Q_{r} &= -k \frac{D}{a^{3}} \left[\frac{\rho}{2} + 4 \sum_{n=2,4}^{\infty} n(n+1) B_{n} \rho^{n-1} \cos n\theta \right] 2.75 \\ & \frac{Q_{r}}{qa} = \frac{-1}{2} - \frac{2}{(3+\nu)} \sum_{n=2,4}^{\infty} \rho^{n-1} \cos n\theta . 2.76 \end{aligned}$$

The expression for the tangential shear Q_t , using Equations (2.43) to (2.52), Equation (2.29) and Equation (2.6e)

$$Q_{t} = -k \frac{D}{a^{3}} \sum_{n=2,4}^{\infty} \left[-n^{2}(n-1) - n^{2} + n^{3} \right] A_{n}$$

+ $\left[-n(n+2)(n+1) - n(n+2) + n^{3} \right] B_{n}\rho^{2} \rho^{n-3} \sin n\theta$
$$Q_{t} = -k \frac{D}{a^{3}} 4 \sum_{n=2,4}^{\infty} -n(n+1) B_{n} \rho^{n-1} \sin n\theta \qquad 2.77$$

$$\frac{Q_{t}}{qa} = \frac{2}{(3+\nu)} \sum_{n=2,4}^{\infty} \rho^{n-1} \sin n\theta$$
 2.78

In Equation (2.68) the right-hand side would give a constant coefficient for a defined Poisson's ratio v at a defined location (ρ , θ) on the plate. This coefficient can be converted into a deflection due to the uniformly distributed load by multiplying it by

This further lends itself to the development of a hand table of coefficients which is shown in Appendix (1). In Equations (2.70, 2.72 and 2.74) the right-hand side would give a constant coefficient for a defined Poisson's ratio v at a defined location (ρ , θ) on the plate. This coefficient can be converted into stresses due to the moments by multiplying it by

$$\pm 6q(\frac{a}{t})^2$$

as the value of the moments acting in the radial and tangential directions, taken with respect to the centre of the plate, are claculated per unit length. Thus in the radial and tangential directions along sections described by $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$ this procedure produces stresses in the principal directions whilst the radial and tangential moments acting along any other section, as described by $0^{\circ} < 0 < 90^{\circ}$, produce only stresses in the given directions, the twisting moment $M_{r\theta}$ not being zero. Along $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$ the stresses caused by the couples in Fig. (2.4c) should be added directly to the stresses acting in the radial and tangential direction as appropriate.

In Equations (2.76) and (2.78) the right-hand side would give a constant coefficient for a defined Poisson's ratio at a defined location (ρ , θ) on the plate. These coefficients can be converted into shear stresses by multiplying by

qa

Equations (2.68, 2.70, 2.72, 2.74, 2.76 and 2.78) were written in two small computer programs.

- (i) To produce a complete hand table of coefficients for deflections, moment and shears as shown in . Appendix (1). A FORTRAN listing of the program is in Appendix (2.A).
- (ii) To suit a top desk microcomputer Ref. (36) where the designer interacts directly through the computer screen, feeding in t, a, E, ν, ρ, θ and q

in a free format and immediately obtaining the deflection at the point and all the stresses due to moments and shears.

A FORTRAN IV listing of the program is given in Appendix (2.B) This completes the analytical work of this case.

2.3.2. Finite Element Analysis

The first step was the analysis of a circular plate simply supported around the periphery and subjected to a uniformly distributed load which is a well documented case in many texts such as Ref. (31), (32) & (35).

An existing finite element program for the analysis of plates was used, Ref. (38). It employs a quadratic plate element as shown in Fig. (2.6).

A sufficiently fine mesh, as determined by convergence criteria consisting of 160 elements, 184 nodal points per half circular plate was adopted as adequate for this study as shown later and illustrated in Fig. (2.7). The degree of symmetry in this case calls for quarter of a circle but lesser degrees of symmetry, called for later in this work, required the use of half a circle.

A comparison of results for a typical example of this simply supported case is shown in Table (2.1). This leads to the conclusion that the finite element model is adequate and useful for predicting the deflections and stresses in circular plates.

Fig. 2.7. Finite element mesh.

LOCATION		CENTRE POINT	ρ = 0.5
DEFLECTION	FINITE ELEMENT	0.06544 <u>qa⁴</u> D	0.046147 <u>ga⁴</u> D
	CLOSED FORM SOLUTION EQUATION	0.065622 <u>qa⁴</u> D	0.04628 <u>ga⁴</u> D
M _x , M _r	FINITE ELEMENT	0.2014 qa ²	0.1586 qa ²
	CLOSED FORM SOLUTION EQUATION	0.203125 q a ²	0.1523 qa ²
у, ^м ө	FINITE ELEMENT	0.2014 qa ²	0.17545 qa ²
	CLOSED FORM SOLUTION EQUATION	0.203125 q a ²	0.17578 q a ²

Dimensions of example used for the finite element solution:

 $a = 100, t = 5, E = 2 \times 10^{6}, v = 0.25, q = 2.$

Table 2.1. Deflections and moments in a circular plate simply supported around the periphery and subjected to a uniform pressure.

The second step was to adopt a boundary condition representing the case in hand, i.e. simply supported at two points at opposite ends of a diameter. Using the finite element results provides an independent method from the "closed form" theoretical solutions of 2.3.1. and also allows the production of design coefficient tables.

The use of these coefficients is valid when the plate is to be considered as a stiff plate which is also a thin plate, i.e. t/2a < 1/8 with flexural rigidity, carrying loads twodimensionally mostly by internal (bending and torsional) moments and by transverse shears, as in Fig. (2.1).

Deflections can be assumed to be a function of the uniformly distributed load q, the flexural rigidity of the plate per unit length being expressed in the usual notation by

$$D = \frac{Et^3}{12(1-v^2)}$$
2.79

and a⁴ (a being the radius) in the following form:-

$$W = C_1 \frac{qa^4}{D}$$
 2.80

Similarly the bending moments per unit length can be written as:-

$$M_{x} = C_{2} q a^{2}$$
 2.81

$$M_{v} = C_{3} q a^{2}$$
 2.82

$$M_{xy} = C_{\mu} q a^2$$
 2.83

A table of coefficients C_1 to C_4 at the 12 locations as indicated in Tables (2.2) and (2.3) can then be produced.

Element No.	Location		C.	C	C.	×	
	x.a	у.а	2	3	°4	a	
· 1	0.95	0.062	+0.0004	-0.3667	+0.0142	y	
2	0.85	0.055	+0.0014	-0.3882	+0.0165		
18	0.788	0.527	-0.2835	+0.0018	-0.1280		
22	0.495	0.3675	+0.0351	-0.3835	+0.1088	Symmetrical around x & y	
27	0.45	0.05	+0.0422	-0.4649	-0.0076	$M = C q a^2$	
35	0.5998	0.7128	-0.1228	-0.0745	-0.25		
53	0.252	0.55	+0.1743	-0.3905	-0.0767		
57	0.30475	0.8977	+0.1154	-0.0424	-0.2522		
70	0.05	0.05	+0.0844.	-0.5031	-0.0011		
75	0.05	0.55	+0.2335	-0.4087	-0.0174		
79	0.025	0.875	+0.6334	-0.2192	-0.0724		

Table: 2.2. Moments design coefficients for circular plate simply supported on two points at opposite ends of a diameter and subjected to a uniform pressure obtained from finite element method.
F.E.	Locat	ion	C ₁	C ₁	x
Node No.	x/a	y/a	From F.E.	From Equat.	
1	1.0	0.0	0.43767	0.43948	a
2	0.9	0.0	0.41438	0.41596	
6	0.8	0.0	0.39277	0.39420	
19	0.866	0.5	0.35216	0.35346	Symmetrical around x & y
28	0.707	0.707	0.2582	0.25786	$v = 0.378$ $W = C_1 \frac{qa^4}{D}$
29	0.5	0.0	0.3395	0.35638	
32	0.5	0.3	0.3150	0.322487	
56	0.3	0.5	0.2427	0.22729	
80	1.0	0.5	0.2265	0.226427	
85	0.0588	0.898	0.0585	0.06	
87	0.0	0.0	0.30195	0.30245	
92	0.0	0.5	0.2245	0.224809	

• •

.

Table: 2.3. Comparison of deflection coefficients obtained by the 'closed-form' equation and finite element in circular plate simply supported on two points at opposite ends of a diameter and subjected to a uniform pressure.

The accuracy of the coefficients is directly dependent on the degree of refinement of the finite element mesh, i.e. the number of degrees of freedom in the considered plate. For this purpose, a number of meshes were used with increasing numbers of degrees of freedom until no significant change occurred to the resulting coefficients. This asymptotic convergence is an established procedure in finite element solutions.

Thus in the solution E is extracted from the answers through the flexural rigidity D as described above. The deflections and bending moments (M_x, M_y, M_{xy}) can be worked out using the coefficients for a specific value of say v_1 . Then the effects of another Poisson's ratio v_2 can be estimated from:- Szilard Ref. (31).

$$W_2(x,y) \simeq \frac{1-v_2^2}{1-v_1^2} W_1(x,y)$$
 2.84

$$(M_{x})_{2} \simeq \frac{1}{1-\nu_{1}^{2}} \left[(1-\nu_{1}\nu_{2})(M_{x})_{1} + (\nu_{2}-\nu_{1})(M_{y})_{1} \right]$$
 2.85

$$(M_{y_{2}}) \simeq \frac{1}{1-v_{1}^{2}} \left[(v_{2}-v_{1})(M_{x})_{1} + (1-v_{1}v_{2})(M_{y})_{1} \right]$$
 2.86

$$\binom{M}{Xy}_{2} = \frac{1-v_{1}^{2}}{1-v_{1}^{2}} \binom{M}{Xy}_{1}$$
 2.87

This case was run using a typical plate having values of E = 0.46 10⁶ lb/in² and v = 0.378, a = 12in. The coefficients for deflections at twelve nodes are compared with the coefficients from Appendix (1) in Table (2.3). The coefficients for moments are compared in Table (2.4), the conversion from local x-y coordinates of the finite element mesh to global polar coordinates being described in Appendix (4).

The practical application of these coefficients is in day-to-day work, since they provide a reliable and simple technique for calculating deflections. In fact, they can predict to within 10% the measured deflections obtained in testing valves. However, it is not a good method for calculating the stresses especially in the vicinity of the support, because in reality the point support is a hypothetical point and can not be simulated in tests. Mathematically the coefficients obtained from the finite element solution would be a more accurate simulation of a point support for the stresses.

Elemen	Loca	tion	с ₂	с ₂	с ₃	C ₃	с _ц	C ₄
No.	x/a	y/a	F.E.	Equ.	F.E.	Equ.	F.E.	Equ.
1	0.946	0.054	+0.0004	+0.000	-0.3667	0.39	+0.0142	0.00
2	0.846	0.056	+0.0014	+0.004	-0.3882	-0.40	+0.0165	0.00
18	0.788	0.527	-0.2835	-0.32	+0.0018	0.0018	-0.1280	-0.10
27	0.450	0.050	+0.0422	0.043	-0.4649	-0.467	-0.0076	-0.033
70	0.05	0.05	0.294	0.21	0.294	0.21	0.252	0.2935
75	0.05	0.55	+0.2334	0.24	-0.4087	-0.4087	-0.0174	0.0

Table: 2.4. Comparison of moments coefficients obtained by the 'closed-form' equation and finite element in circular plate simply supported on two points at opposite ends of a diameter and subjected to a uniform pressure.

2.4. The Solution for Stresses and Deflections in a Circular

Plate of Uniform Thickness subjected to a Uniform Normal Pressure and supported along two short lengths of Arc at two opposite ends of a Diameter.

2.4.1. Introduction

This idealisation, shown in Fig. (2.8a), is a more practical one as the shafts occupy a short length of the periphery of any blade This becomes significant when the valve is used for regulating the flow and the torque loads are significant. This removes the singularity at the support of 2.3. and enables the calculation of the stresses and deflections at any point, including the points of attachment.

2.4.2. Analytical Work

The same analytical work done in 2.3.1. applies, from Figs. (2.8a) and (2.8b). The boundary conditions would be:

- (i) At the boundary of the disc the radial bending moment is zero. Thus the work up to Equation (2.32) is applicable.
- (ii) At the supports the deflections are zero at two points given by:-

 $\theta = \alpha$ and $\theta = \pi - \alpha$

Putting $\theta = \alpha$, $\rho = 1$ and using Equation (2.31) in Equation (2.28) there results:-

$$A_0 + A_1 \cos \alpha + \sum_{n=2,3}^{\infty} (A_n + B_n) \cos n\theta = 0$$
 2.88

Fig. 2.8a. Plate simply supported on two arcs.

Fig. 2.8b. Reactive forces on plate simply supported on two arcs and subjected to uniform pressure.

Fig. 2.8c. Plate supported on two clamped arcs.

Putting $\theta = \pi - \alpha$, $\rho = 1$ and using Equation (2.31) with Equation (2.28) gives:- $A_o = A_1 \cos \alpha + \sum_{n=2,3}^{\infty} (A_n + B_n) \cos n\alpha \cos n\pi = 0$ 2.89 Solving Equation (2.22) and Equation (2.93) with $\cos n\pi = + 1$ (for even n) $\cos n\pi = -1$ (for odd n) gives $A_o = -\sum_{n=2,4}^{\infty} (A_n + B_n) \cos n\alpha$ 2.90 And ∞

$$A_1 \cos n\alpha = -\sum_{n=3,5}^{\infty} (A_n + B_n) \cos n\alpha$$
 2.91

m

This is equal to Equation (2.39) and proceeding similarly using Equations (2.40) to (2.56) leads to:

Equating the coefficients of $\cos n\theta$ in Equation (2.91) and Equation (2.97) gives:

$$-n^{2}(n-1)(1-\nu) A_{n} + n(n+1) \left[4-n(1-\nu)\right] B_{n}$$

$$= \frac{\sin n\alpha}{n\alpha} \text{ for } n = 2,4...$$

$$-n^{2}(n-1)(1-\nu) A_{n} + n(n+1) \left[4-n(1-\nu)\right] B_{n} = 0$$

$$\text{ for } n = 3,5$$

$$2.95$$

The constants $A_n \& B_n$ are determined, as follows:-Solving Equation (2.32) and Equation (2.95) gives $A_n = B_n = 0$ for n = 3,5,7

Applying this in Equation (2.91) leads to

 $A_1 = 0$

Solving Equation (2.32) and Equation (2.94) gives:

$$A_{n} = \frac{-(n+2/\beta) (\sin n\alpha/n\alpha)}{2n^{2}(n-1) (3+\nu)}$$
2.96

$$B_{n} = \frac{\sin n\alpha/n\alpha}{2n(n+1)(3+\nu)}$$
2.97

$$A_{n} + B_{n} = \frac{-\sin n\alpha}{2(3+\nu)n\alpha} \left[\frac{1}{n(n^{2}-1)} + \frac{2}{\beta n^{2}(n-1)} - \frac{1}{n(n+1)} \right]$$
 2.98

Equations (2.96, 2.97, 2.98) are for n = 2,4,6... etc Using Equation (2.98) in Equation (2.90) gives

$$A_{o} = \frac{1}{2(3+\nu)} \sum_{n=2,4}^{\infty} (\frac{\sin n\alpha}{n\alpha}) \left\{ \frac{1}{n(n-1)} + \frac{2}{\beta n^{2}(n+1)} - \frac{1}{n(n+1)} \right\} \cos n\alpha \qquad 2.99$$

Proceeding with the solution as in 2.3.1 we obtain similar equations as follows:

$$W = \frac{qa^{4}}{64D} \left((1-\rho^{2})(\frac{5+\nu}{1+\nu} - \rho^{2}) + \frac{1}{2\alpha(3+\nu)} \left[\sum_{n=2,4}^{\infty} (\frac{\sin n\alpha}{n}) \right] \right)$$

$$\left\{ \frac{1}{n(n-1)} + \frac{2}{\beta n^{2}(n-1)} - \frac{1}{n(n+1)} \right\} \cos n\alpha - \sum_{n=2,4}^{\infty} (\frac{\sin n\alpha}{n})$$

$$\left\{ \frac{1}{n(n-1)} + \frac{2}{\beta n^{2}(n-1)} - \frac{\rho^{2}}{n(n+1)} \right\} \rho^{n} \cos n\theta \right] \right\} 2.100$$

$$M_{r} = qa^{2} \left\{ \frac{1}{16} (3+\nu)(1-\rho^{2}) + \frac{1}{2\alpha} (\frac{1+\nu}{3+\nu}) \sum_{n=2,4}^{\infty} (\frac{\sin n\alpha}{n}) \right\}$$

$$\left(\beta + \frac{2}{n}(1-\rho^{2}) \rho^{n-2} \cos n\theta \right\} 2.101$$

$$\begin{split} M_{t} &= qa^{2} \left\{ \frac{1}{16} \left[(3+\nu) - (1+3\nu)\rho^{2} \right] - \frac{1}{2\alpha} \left(\frac{1+\nu}{3+\nu} \right) \sum_{n=2,4}^{\infty} \left(\frac{\sin n\alpha}{n} \right) \right. \\ &\left\{ \beta (1-\rho^{2}) + \frac{2}{n} (1+\rho^{2}) \right\} \rho^{n-2} \cos n\theta \\ M_{rt} &= \frac{qa^{2}}{2\alpha} \left(\frac{1+\nu}{3+\nu} \right) \sum_{n=2,4}^{\infty} \left(\frac{\sin n\alpha}{n} \right) \left\{ \beta (1-\rho^{2}) + \frac{2}{n} \right\} \rho^{n-2} \sin n \quad 2.103 \end{split}$$

These equations were written in two small computer programs similar to those of 2.3.1. to produce hand tables of coefficients for deflections and moments. The program for the generation of the tables is listed in Appendix (2.C) and the relevant parts of the tables are given as a sample in Appendix (3).

2.4.3. Finite Element Analysis

The same mesh as used in 2.3.2. of Fig. (2.7) was used to simulate a boundary condition of simply supported arc of angle $\alpha = 7.5^{\circ}$ by restraining nodes nos. 74, 86, 98, 110 and 122 in the z direction only and following the same procedure adopted in 2.3.2.. Similar coefficients were obtained. The coefficients for deflections at 12 locations are given in Table (2.5) compared with the equivalent ones obtained from Appendix (3). The coefficients for moments were obtained at 11 locations and are shown in Table (2.6). The coefficients for moments are compared with the equivalent ones obtained from Appendix (3) in Table (2.7). For comparing more coefficients the conversion from local x,y coordinates of the finite element mesh to the global polar coordinates must be observed as described in Appendix (4).

From this a method of simulating real boundary conditions and providing a more accurate value for the deflections and stresses is clearly possible using the finite element model. In this way coefficients can be obtained for cases which are very difficult or impossible to simulate mathematically such as:-

- (i) Plates simply supported on two short lengths of arc and subjected to point load acting at a specified point. Table (2.8à).and (2.8b).
- (ii) Plates which are clamped on a short length of arc at two opposite ends of a diameter Fig. (2.8c). and subjected to:

F.E.	Locat	tion	C ₁	C ₁	x
Note No.	x/a	y/a	From F.E.	From Equat.	
1	1.0	0.0	0.3715	0.403225	α
2	0.9	0.0	0.3509	0.381545	
6	0.8	0.0	0.3318	0.361462	
19	0.866	0.5	0.2915	0.320969	Symmetrical around x & y
28	0.707	0.707	0.2043	0.229868	$\alpha = 7.5^{\circ}$
29	0.5	0.0	0.2856	0.311838	v = 0.370
32	0.5	0.3	0.2625	0.290845	$w = C_1 \overline{D}$
56	0.3	0.5	0.1976	0.212901	
80	1.0	0.5	0.185	0.201193	
85	0.0588	0.898	0.0415	0.045	
87	0.0	0.0	0.2535	0.28376	
92	0.0	0.5	0.1834	0.21253	

:

Table: 2.5. Comparison of deflection coefficients obtained by 'closed-form' equation and finite element in circular plates simply supported on two short lengths of arcs at opposite ends of a diameter and subjected to a uniform pressure.

F.E.	E. Location		C	C ₂	С),	
Node No.	x/a	y/a	2	5	4	
1	0.95	0.062	-0.0002	-0.3543	+0.0141	
2	0.85	0.055	-0.0008	-0.3745	+0.0163	
18	0.7865	0.527	-0.2667	+0.0007	-0.1215	
22	0.495	0.3675	+0.0229	-0.3607	+0.1097	
27	0.45	0.05	+0.0261	-0.4416	0.0057	
35	0.5988	0.7128	-0.0877	-0.0710	-0.2468	
53	0.252	0.55	+0.1468	-0.3534	-0.0392	2
57	0.30475	0.8977	+0.2498	-0.0694	-0.2234	
70	0.05	0.05	+0.0515	-0.4697	-0.0007	
75	0.05	0.55	+0.1480	-0.3536	-0.0048	
79	0.025	0.875	+0.0760	-0.0544	+0.0482	

Symmetrical around x & y $\alpha = 0.75^{\circ}$

v = 0.378

 $M = C q a^2$

Table: 2.6. Moments design coefficients for circular plate simply supported on two short lengths of arcs at opposite ends of a diameter and subjected to uniform pressure obtained from finite element method.

Element	Loca	tion	C ₂	с ₂	C ₃	с _з	сц	с _ц
No.	x/a	y/a	F.E.	Equ.	F.E.	Equ.	F.E.	Equ.
1	0.946	0.054	0.003	0.008	-0.35	-0.658	0.03	0.0
18	0.788	0.527	0.031	0.03	0.294	0.0861	0.179	0.190
27	0.45	0.05	0.434	0.401	-0.02	-0.149	0.057	0.003
41	0.35	0.35	0.133	0.123	0.2044	0.233	0.240	0.264
70	0.05	0.05	0.211	0.2064	0.211	0.209	0.261	0.295
75	0.05	0.55	-0.153	-0.0279	0.323	0.449	0.050	0.0

Table: 2.7. Comparison of moments coefficients obtained by the 'closed-form' equation and finite element in circular plate simply supported on two short lengths of arcs at opposite ends of a diameter and subjected to a uniform pressure.

~

F.E.	Locat	ion	C,
Node No.	x/a	y/a	1
1	- 1.0	0.0	- 0.47975
2	- 0.9	0.0	- 0.43435
6	- 0.8	0.0	- 0.39045
19	- 0.866	0.5	- 0.3605
29	- 0.5	0.0	- 0.2668
32	- 0.5	0.3	- 0.2471
56	- 0.3	0.5	- 0.15095
85	- 0.0588	0.898	- 2.117
87	- 0.0	0.0	- 0.11275
109	0.0588	0.898	- 0.01485
128	0.3	0.5	- 0.0291
146	0.5	0.0	- 0.01175
149	0.5	0.3	- 0.06735
174	0.8	0.0	0.0372
182	0.9912	0.13	0.0671
184	1.0	0.0	0.0679

Symmetrical around x-axis

p at 0.8a

 $\alpha = 7.5^{\circ}$

$$W = C_1 \frac{qa^4}{D}$$

Table: 2.8a. Coefficients for deflections in circular plates simply supported on two short lengths of arcs at opposite ends of a diameter due to point load at the shown location.

Element	Loca	ation	с	C_	C,	
No.	x/a	y/a	²	-3	<u> </u>	•p
1	0.95	0.062	-0.0256	-0.473	+0.0196	
2	0.85	0.055	-0.1086	-0.5193	+0.0057	
18	0.788	0.527	-0.1058	+0.0021	-0.1446	
22	0.495	0.3675	+0.0555	-0.1814	+0.1636	Symmetrical around x-axis
27	0.45	0.05	+0.2304	-0.3278	+0.0112	p at 0.8a
35	0.5998	0.7128	+0.1522	-0.0363	-0.1994	$\alpha = 7.5^{\circ}$ $M = C.p$
53	0.252	0.55	+0.2503	-0.1719	+0.1005	
57	0.3047	0.8977	+0.4888	-0.0688	-0.1348	
70	0.05	0.05	+0.1263	-0.1979	+0.0121	
75	0.05	ó.55	+0.1641	-0.1335	+0.1449	
79	0.025	0.875	+0.1338	-0.0011	+0.3485	
90	-0.025	0.875	-0.0185	-0.0068	+0.301	
124	-0.45	0.05	+0.0391	-0.0924	+0.0068	
137	-0.495	0.3675	+0.0272	-0.0784	+0.0014	
142	-0.5998	0.7128	-0.0261	-0.0594	-0.0371	
160	-0.95	0.062	+0.0161	-0.051	-0.0008	

Table: 2.8b. Coefficients for moments in circular plates simply supported on two short lengths of arcs at opposite ends of a diameter due to point load at the shown location.

- (a) Hydrostatic load (which is a very important case occurring during the use of the valve for throttling in large valves).
- (b) Point load acting at a point perpendicular to the shaft line (which is used to unseat the valve with a screw) an example being given in Table (2.9).
- (c) The all important uniform pressure. Table (2.10) and (2.11).
- (iii) Plates which are supported on clamped or simply supported arcs plus short length of the diameter in simple or clamped manner as shown in Fig. (2.9) subjected to loading conditions (a), (b) & (c) above. A sample is given in Table (2.12a), (2.12b) and (2.12c).
 - (iv) Plates which have a non-circular configuration generally, in this application the elliptical blades of butterfly valves.

2.5. Experimental Work

Although the two theoretical approaches which have been discussed are sound, since the problem has been solved independently by closed-form mathematical solutions and by finite element methods, it was felt that experimental work was necessary as a confirmation especially in the cases where it was not possible to check the finite element solutions by "closed-form" mathematical solutions. A number of experiments was carried out and this section which follows is to describe the procedure and give a sample result for a plate supported on two short arcs at opposite ends of a diameter.

٠

Fig. 2.9. Plate supported on two short lengths of arc and short lengths of diameter

F.E.	Locat	tion	G
Node No.	x/a	y/a	1
1	- 1.0	0.0	0.33
2	- 0.9	0.0	0.294
6	- 0.8	0.0	0.2592
19	- 0.866	0.5	0.2362
29	- 0.5	0.0	0.16045
32	- 0.5	0.3	0.14615
56	- 0.3	0.5	0.0753
85	- 0.0588	0.898	0.00025
87	- 0.0	0.0	0.04155
109	0.0588	0.898	0.0001
128	0.3	0.5	- 0.00965
146	0.5	0.0	- 0.03055
149	0.5	0.3	- 0.0309
174	0.8	0.0	- 0.0661
182	0.9914	0.13	- 0.08825
184	1.0	0.0	- 0.08945

W	=	$C_1 \frac{Pa^2}{D}$
α	=	7.5 ⁰

v = 0.378

p at 0.8a

Table: 2.9. Coefficients for deflection in circular plates clamped on two short lengths of arcs at opposite ends of a diameter due to point load at the shown location.

F.E.	Loca	tion	C	
Node No.	x/a	y/a		
1	1.0	0.0	0.1744	
2	0.9	0.0	0.1606	
6	0.8	0.0	0.1475	
19	0.866	0.5	0.1300	
28	0.707	0.707	0.0834	
29	0.5	0.0	0.1143	
32	0.5	0.3	0.1029	
56	0.3	0.5	0.0659	
80	1.0	0.5	0.0560	
85	0.0588	0.898	0.0041	
87	0.0	0.0	0.0896	
92	0.0	0.5	0.5474	

W	=	C _{1 D}
α	=	7•5 ⁰
ν	=	0.378

Table: 2.10 Coefficients for the deflection in circular plate supported on two clamped short lengths of arc at opposite ends of a diameter and subjected to a uniform pressure.

٠,

Element	Locat		с ₂	°3	с _ц
No.	x/a	y/a			
1	0.95	0.062	-0.0003	-0.1789	+0.0077
2	0.85	0.055	+0.0007	-0.1873	+0.0086
18	0.788	0.527	-0.1002	+0.0011	-0.0597
22	0.495	0.3675	+0.0413	-0.1413	+0.0528
27	0.45	0.05	+0.0494	-0.2092	-0.0036
35	0.5988	0.7128	+0.0516	+0.0031	-0.0855
53	0.252	0.55	+0.1676	-0.0425	-0.0223
57	0.30475	0.8977	+0.3230	+0.0882	+0.0669
70	0.05	0.05	+0.1014	-0.2176	-0.0006
75	0.05	0.55	+0.2264	-0.0128	-0.0056
79	0.025	0.875	+0.3475	+0.5795	+0.0275

Symmetrical around x & y axis $\alpha = 7.5^{\circ}$ $\nu = 0.378$

 $Mx = C_2 qa^2$, $My = C_3 qa^2$, $Mxy = C_{l_1} qa^2$

Table: 2.11. Coefficients for moments in circular plate supported on two clamped short lengths of arc at opposite ends of a diameter and subjected to a uniform pressure.

F.E.	Location		C.
Node No.	x/a	y/a	1
1	1.0	0.0	- 0.1084
2	0.9	0.0	- 0.0963
6	0.8	0.0	- 0.0845
19	0.866	0.5	- 0.0299
28	0 .7 07	0.707	- 0.0505
29	0.5	0.0	- 0.0528
32	0.5	0.3	- 0.0473
56	0.3	0.5	- 0.0213
80	1.0	0.5	- 0.0096
85	85 0.0588		- 0.0000
87	0.0	0.0	- 0.0266
92 0.0		0.5	- 0.0079

i

Symmetrical around x & y

Ъ	=	<u>2a</u> 3
ν	=	0.378

5 ⁰

$$W = C_1 \frac{qa^4}{D}$$

Table: 2.12a. Coefficients for deflections in circular plates supported on two clamped arcs at the end of the diameter and two short lengths of the diameter as shown and subjected to uniform pressure.

F.E.	Loca	tion	C	C	C	
Node No.	x	у	2 3	°4	a	
1	0.95	0.062	-0.0002	-0.0879	+0.0044	
2	0.85	0.055	+0.0022	-0.09	+0.0047	b
18	0.788	0.527	-0.0248	+0.0012	-0.0311	Symmetrical around x & y
22	0.495	0.3675	+0.0497	-0.0323	+0.0261	$b = \frac{2a}{3}$
27	0.45	0.05	+0.075	-0.0847	-0.0032	ν = 0.378
35	0.5988	0.7128	+0.0863	+0.0143	-0.0302	$\alpha = 7.5^{\circ}$
53	0.252	0.55	+0.1772	+0.1190	-0.0053	
57	0.30475	0.8977	+0.21	+0.0146	+0.0247	
70	0.05	0.05	+0.1736	-0.0838	-0.0011	
75	0.05	0.55	+0.4250	+0.2617	-0.0323	
79	0.025	0.875	+0.0753	+0.0318	+0.0319	

 $Mx = C_2 qa^2$, $My = C_3 qa^2$, $Mxy = C_{l_1} qa^2$

Table: 2.12b. Coefficients for moments in circular plates supported on two clamped arcs at the end of the diameter and two short lengths of the diameter as shown and subjected to uniform pressure.

.

F.E.	Locat	C	
Node No.	x/a y/a		ິ1
1.	- 1.0	0.0	- 0.30065
2	- 0.9	0.0	- 0.2654
6	- 0.8	0.0	- 0.23115
19	- 0.866	0.5	- 0.2139
29	- 0.5	0.0	- 0.13305
32	- 0.5	0.3	- 0.12145
56	- 0.3	0.5	- 0.05545
85	- 0.0588	0.898	- 0.00095
87	- 0.0	0.0	- 0.01355
109	0.0588	0.898	0.00085
128	0.3	0.5	0.02945
146	0.5	0.0	0.05795
149	0.5	0.3	0.0556
174	0.8	0.0	0.0941
182	0.9914	0.13	0.11715
184	1.0	0.0	0.11875

.

Symmetrical around x-axis

Ъ	=	<u>2a</u> 3
α	=	7.5°
ν	=	0.378
р	at	0.8a
W	=	C ₁ pa ²

Table: 2.12c. Coefficients for deflections in circular plates supported on two clamped arcs at the end of the diameter and two short lengths of the diameter as shown due to point load at the shown location.

2.5.1. Introduction

As the number of experimental tests required in this programme of checking was large, a great deal of consideration went into the design of the test arrangements, so as to simulate as many cases of loading as possible with minimum delays and maximum flexibility, to give as many cases of supporting conditions within the time available without damaging or replacing many samples.

A one inch thick 'perspex'* sheet simulating the blade was used because of ease of handling, availability and economy.

2.5.2. Four Point Bend Testing of a Perspex Beam

<u>i Aims</u>

- i.1 To determine the Young's modulus of perspex and Poisson's ratio.
- i.2 To examine the effect of creep on the properties of perspex.
- i.3 To assess the reliability of using strain gauges to measure strains in perspex.
- i.4 To determine the effect of low strain rates on the behaviour of perspex and to see whether it is possible to simulate the behaviour of a metal using perspex.

* 'Perspex' is a trade name for polymethylmethacrylate (p.m.m.a.)

ii The Test Beam

The dimensions of the perspex bar were as shown in Fig. (2.11) This was machined from a large sheet of 1 in. thick perspex and the rest of the sheet is being used to machine a circular diaphragm which will be used to simulate the blade of a large butterfly valve. (Fig. (2.19).

All dimensions of the beam were accurate to within ± 1.0% iii The Testing Equipment

The beam was supported on two mild steel rollers which were 10 ins. apart as shown in Fig. (2.13). These rollers were screwed on to a mild steel plate to prevent them from slipping. The load was applied to the beam through a load cell and another pair of rollers to give 4-point loading with a constant bending moment.

Two strain gauges (PL-10 made by Tokyo Sokki Kenkyoso Co. Ltd. (T.S.K. Ltd.) gauge resistance $120 \pm 0.3\Omega$, gauge length 10mm) were stuck longitudinally and another two perpendicular gauges to measure the transverse strain were stuck to each face of the centre of the beam as also shown in Fig. (2.12). The adhesive used was CN Adhesive made by T.M.L. Ltd. of T.S.K. Ltd.

The load cell was used solely for applying the load to the metal plate. The load readings were obtained from the scale of the 60,000 lb. maximum capacity Avery testing machine used for the experiments. The scale used for these experiments was 0-3,000 lbs. with each small division being equal to 5-lbs.

The two longitudinal strain gauges were arranged in a half bridge and fed with 3.V through a Bruel and Kjaer strain gauge amplifier, type 1526. The output was fed back to the amplifier which indicated the total strain in 'micro strains'*

Fig. 2.10: Analysis of pure bending of a beam

Fig. 2.11: 4-Point bend testing of a perspex beam

Fig. 2.12. 4-Point bend testing equipment

Fig. 2.13. 4-Point bend testing of a perspex beam

in a L.E.D. (Light Emitting Diode) display. (Although the gauge factor quoted by the manufacturer was 2.07, it was found that to obtain the theoretically correct readings on the display unit the gauge factor on the amplifier had to be set at 1.84 with the same arrangement for the two transverse strain gauges).

The deflection of the beam was measured by means of a 0.0001 in. smallest division dial gauge placed directly underneath the centre of the beam, as shown in Fig. (2.14).

iv Theory

From Fig. (2.10) it can be seen that the loading of the beam is equivalent to a cantilever subjected to two point loads. This similarity can be used to calculate the central deflection of the beam (δ) when it is subjected to a total load of W. Therefore,

$$\delta = \begin{bmatrix} \frac{W}{2} & \chi^{3} \\ \frac{W}{2} & \chi^{2} \\ \frac{W}$$

-

However, $l_1 = 5$ in. and $l_2 = 3$ in.

Therefore,

$$\delta = \frac{W}{EI} \left[\frac{125}{6} - \frac{27}{6} - \frac{18}{4} \right]$$

and

$$W = \frac{6 \text{ EI}}{71} \delta \qquad 2.105$$

Referring to Fig. (2.10) the bending moment in the region BD is constant and is equal to $\frac{W}{2}$. $(l_1 - l_2)$ which is equal to W, if l_1 and l_2 are measured in inches.

Fig. 2.14. A plot of total load vs central deflection

$$M = \frac{W}{2} \begin{pmatrix} l & -l \\ 1 & 2 \end{pmatrix} = W (lbf.in. if W is in lbf. for example) 2.106$$

Using

$$\frac{M}{I} = \frac{E}{R} = \frac{\sigma}{y}$$
2.107

Where y is the distance from the neutral axis.

thus

$$\frac{W}{I} = \frac{E}{R} = \frac{\sigma_{\text{max}}}{a_{/2}} , \qquad 2.108$$

at the surface of the beam where d is the depth of the beam.

Therefore
$$\sigma_{max} = \frac{Wd}{2\ell}$$

However, $\varepsilon_{max} = \frac{\sigma_{max}}{E}$
Therefore $\varepsilon_{max} = \frac{Wd}{2EI}$

Substituting for $\frac{W}{EI}$ using Equation (2.105)

$$\varepsilon_{\max} = \frac{3}{71} \delta d$$

However, d = 1 in.

Therefore
$$\varepsilon_{\text{max}} = \frac{3\delta}{71}$$
 (if δ is in inches). 2.109

For the beam

$$I = \frac{1}{12} \times b \times d^{3} \text{ in}^{4}$$
 2.110

.

where b is the width and equals 1.5 ins. Hence

$$I = \frac{1}{12} \times 1.5 \times 1^3 \text{ in}^4 = 0.125 \text{ in}^4$$

v Experimental Procedure

The beam was loaded to a maximum deflection of 0.150 in. (assuming ^{σ}allowable = ^{σ}yield for perspex is 3000 lbf./in² and E for perspex is 0.4 x 10⁶ lbf./in²), ^{ε}allowable = 0.0075. Therefore ^{δ}max, using Equation (2.109) is approximately 0.180 in. All tests were carried out at the very low speed of 12.5 x 10⁻³ in. central deflection/min. to avoid strain-rate effects (approximately equal to 500 μ -strain/min.). The load and the total strain were recorded at 0.005 in. intervals of the central deflection. Then, the beam was unloaded at the same speed and σ similar readings were taken. Figs. (2.14) and (2.15) show the results obtained.

The experiments were repeated at different speeds up to strain rates of .002/min., but no significant difference was observed. However, these results are not valid for suddenly applied loads. The error in such a case can be about ± 5%

vi Calculations

Using the gradient of Fig. (2.14)

$$\frac{W}{\delta} = \frac{6EI}{71} = \frac{6}{71} E \ge 0.125 = 4850$$

Therefore

 $E = 0.459 \times 10^6 \, lbf./in^2$

The gradient of Fig. (2.15) = $\epsilon_{max/\delta} = 0.0424 \frac{1}{in}$. The theoretically correct gradient (from 2.109)

$$= \frac{3}{71} \frac{1}{\text{in.}} = 0.0423 \frac{1}{\text{in.}}$$

Fig. 2.15. A plot of strain vs. deflection at the centre.

Therefore the gauge factor should be set at 1.84. The ratio between the transverse and longitudinal strains is Poisson's ratio and this was measured by taking the ratio of the gradients shown in Fig. (2.15).

vii Discussion and Conclusions

- (1) The Young's modulus of perspex is approximately
 0.46 x 10⁶ lbf./in²
- (2) The Poisson's ratio of perspex is approximately0.378.
- (3) The experiments have shown that perspex creeps at room temperature.

Therefore, for comparing experimental results the readings have to be taken either instantaneously or after fixed time delays. Provided this is remembered, perspex can be used to simulate metals or other elastic materials.

- (4) It is possible to stick strain gauges on perspex and obtain reliable results.
- (5) Perspex is not seriously affected by low strain rates - i.e. up to about .002/min. -. However, unlike metals, the sudden application of a load can lead to unreliable results, even if sufficient time is given to reach steady state conditions.

2.5.3. The Testing Equipment

To simulate a uniformly distributed pressure a $6\frac{3}{4}$ " length of 12" diameter pipe with 3/8" wall thickness was used as the basic pressure container. A $\frac{3}{4}$ " thick plate at the bottom and a $\frac{3}{4}$ ", 18" nominal diameter flange were welded to the pipe with a rubber 0 ring fitted at the upper side. Small pipes were welded to the bottom for air bleed, water drain, water or air inlet and a connection to the pressure gauge Fig. (2.16) and (2.28).

A 1" thick, 18" nominal diameter and 12" diameter flange was machined to fit on top of the pipe flange Fig. (2.17) and (2.20). Two short lengths of flange were provided to clamp the supports of the specimen in location as shown in Fig. (2.17) and (2.21). The whole assembly was bolted to a table 30" x 30" wide and 30" high from the ground, which can be levelled by screws fitted to its legs.

The frame was made up of $1\frac{1}{2}$ " steel angles and the top was made of 30" x 30" x $\frac{1}{2}$ " steel plate bolted to the angles. A 4" diameter hole was provided at the centre of the plate for the small pipes which come from the panel attached to the table. The panel carries a pressure gauge, air and water valves and regulator for the air supply Fig. (2.18) and (2.22).

The dial gauges (with 0.0001 in. division) could be placed over the sample to measure the deflection by fixing them to a three-legged frame which can stand above the diaphragm Fig. (2.22), (2.23) and (2.24). As the relative strength of the steel to the

·. `.

· ·

Ĭ.

Fig. 2.18. Testing equipment and control panel

.

٩,

Fig. 2.17: Sample flange
perspex is high, there was no need to measure the uplift of the flange due to the pressure as it would be insignificant. This is not the case if the body and blade of a real valve are made from the same material.

The point load is applied through a calibrated load cell by turning a screw when it is attached to a frame which can be fixed to the flange of the rig as in Fig. (2.25), (2.26) and (2.27). The location of the load can be changed by turning the frame or using different holes in it.

The line support for a circular plate is provided by two short sharp-edged pieces of metal of known lengths attached to a plate which can be fitted to the two clamps at the support. The contact between the supports and the surface of the specimen can be controlled by the screws shown in Figs. (2.28) and (2.29).

Nine rosette strain gauges type FRA-6-11 made by T.S.K. Ltd. Gauge resistance $120 \pm 0.5 \Omega$, gauge length 6mm were stuck to the upper surface of the perspex plate as shown in Figs. (2.20) and (2.32). Another nine dummy gauges of the same type were stuck to a beam of perspex from the same sheet. Fig. (2.30). Each gauge and the corresponding dummy gauge was connected to a channel of two Brueland and Kjaer switching units. An automatic selector, type 1542, which can switch from one gauge to the other at varying speeds down to 0.5 second and a twenty point panel type 1543 was connected to the other Fig. (2.31). This arrangement made it possible to read the 27 gauges in 13.5 seconds (to avoid creep effects).

The active gauge and the dummy one were arranged in a half bridge and fed with 3.0V. through a Brueland and Kjaer strain gauge amplifier, type 1526. The output was fed back to the amplifier which indicated the total strain in micro strains on a L.E.D. display. Because of the speed of switching this had to be fed in to S & P twelve-twelve U.V. recorder. Fig. (2.33) shows a plot at two known strains which was obtained at the beginning to provide the scale. Fig. (2.34) shows a typical full-scale result. All gauges were balanced within ± 50 micro strains at the beginning of every experiment and a 'no-load' plot was obtained for corrections as shown on page

The results were converted into maximum and minimum principal stresses using the Mohr strain circle principle as in Fig. (2.35) where:-

$$x = \frac{\varepsilon_{x} + \varepsilon_{y}}{2}$$

$$y = \frac{\varepsilon_{x} - \varepsilon_{y}}{2}$$

$$z = x - \varepsilon_{45}$$

$$R = \sqrt{y^{2} + z^{2}}$$

$$\varepsilon_{1} = x + R$$

$$\varepsilon_{2} = x - R$$

and the principal stresses

$$\sigma_{1} = \frac{E}{1-\nu^{2}} (\varepsilon_{1} + \nu \varepsilon_{2})$$

$$\sigma_{2} = \frac{E}{1-\nu^{2}} (\varepsilon_{2} + \nu \varepsilon_{1})$$

Fig. 2.19. Perspex blade sample

Fig. 2.20. Sample blade with strain gauges connected fitted in testing flange

Fig. 2.21. Short flange for clamping

Fig. 2.22. Testing rig.

Fig. 2.23: Dial gauges during testing

Fig. 2.24: Dial gauges frame

Fig. 2.25. Point load cell

Fig. 2.26. Point load cell attached to testing rig.

Fig. 2.27. Point load testing.

Fig. 2.28. Line support

Fig. 2.29. Line support uniform pressure testing

Fig. 2.30. Dummy gauges

Fig. 2.32. Location of strain gauges.

Fig. 2.33. U.V. recorder output

Fig. 2.34. Full-scale u.v. strain output

Fig. 2.35: Strain circle of a rosette

Where ε_x , ε_y , ε_{45} are the strains read from the plottings to the nearest 0.25mm multiplied by the scale of the u.v. recorder and fed into a small computer program listed in Appendix (2.D) which converted them from micro strains to strains and prints out the rosette number, the strains, the maximum and minimum strains ε_1 and ε_2 and the principal stresses σ_1 and σ_2 .

2.5.4. Testing a 12" Diameter Disc supported on two clamped short arcs subjected to a uniform pressure.

(i) <u>Deflections</u>

Measuring the deflections at five locations as shown in Fig. (2.36) and (2.23) initial loading and unloading readings were taken and the results plotted on Fig. (2.37) and (2.38) against a plot of the deflections obtained from the finite element solution for a clamped and simply supported arc. The similarity between the two results is clear and satisfactory.

(ii) <u>Stresses</u>

The strain gauges were read in 13.5 seconds after the load was reached to avoid the creep effect on the reading. The creep would stop in 5 to 6 hours if the load was kept constant but this proved to be an impractical procedure.

The results plotted on the u.v. recorder are given on pages 130 to 136 reduced photographically. A full scale copy of the beginning of these records is shown in Fig. (2.34). The computer outputs for the principal stresses at the rosette locations is given on pages 137 to 142. The maximum stresses are plotted for each gauge against

the maximum principal stresses obtained from the finite element solution for clamped arc support and simply supported arc. The program provides the principal stresses at the centre of the elements. The location of the strain gauges on the finite element mesh is shown in Fig. (2.39). Gauges 3 and 4 are shown on the equivalent location due to the symmetry. This case is symmetrical around x axes and Y axes.

The results in Figs. (2.40), (2.41), (2.42), (2.43), (2.44), (2.45) and (2.46) show good agreement with the finite element solution and therefore with the solution based on the coefficients derived from it.

As in real values it can be seen that the support was not 100% clamped. The degree of fixity is a major quality control problem in the clearances between the shaft and the body and the type of bearing used.

2.5.5. <u>Testing a 12" Diameter Disc supported on two Clamped</u> short arcs subjected to a point load.

Increasing loads of 200, 400 and 500 lbs. were applied through the pressure cell and then reduced similarly. The location of the applied load is shown in Fig. (2.47) and (2.26).

(i) <u>Deflections</u>

The deflections were measured at six locations as shown in Fig. (2.47) and (2.27). The results are plotted on Fig. (2.48) . (2.49), (2.50a) and (2.50b) against a plot of the deflections obtained from the finite element solution for a clamped and a simply supported arc. The similarity between the two is clear and satisfactory.

(ii) <u>Stresses</u>

The strains were read in the same manner as before, the results plotted on the u.v. recorder are given on pages 151 to 156.

The computer outputs for the principal stresses at the rosette locations is given on pages 157 to 161.

The maximum stresses are plotted for each gauge against the maximum principal stresses obtained from the finite element solution for clamped arc support and simply supported arc, as shown in Figs. (2.51), (2.52), (2.53), (2.54), (2.55), (2.56) and (2.57).

The results show good agreement in the vicinity of the applied load and give higher stresses than expected by the finite element solution. This is considered satisfactory because in practice this load is small in comparison with the uniformly dibtributed pressure on the values.

2.5.6. <u>Testing 12" Diameter Disc supported on two clamped short</u> arcs and two short lengths of the diameter subjected to a uniform pressure.

(i) Deflections

The deflections were measured at the locations shown in Fig. (2.58). The results are plotted on Figs. (2.59) and (2.60) against the finite element solution. The results are selfexplanatory. From the finite element solution it can be seen that the deflections are governed by the diameter support and the effect of the arc being clamped or simply supported is insignificant

(ii) <u>Stresses</u>

The strains were read in the same manner as before, the results plotted on the u.v. recorder are given on pages 173 to 180.

The computer outputs for the principal stresses at the rosette locations is given on pages 181 to 187.

The maximum stresses are plotted for each gauge against the maximum principal stresses obtained from the finite element solution for clamped and simply supported arcs. This is shown in Figs. (2.61), (2.62), (2.63), (2.64) (2.65), (2.66), (2.67) and (2.68).

The results show good agreement with the finite element solution and therefore with the solution based on the coefficients derived from it.

Fig. 2.36a Dial Gauge Locations

Fig. 2.36b: Dial gauge locations

Fig. 2.37. Comparison of deflections due to uniform distributed pressure along x & y-axis.

Fig. 2.38. Comparison of deflections due to uniform distributed pressure along x & y-axis

129.

٠

•

THE TOTAL NUMBER OF READINGS =	9	
INPUT THE STRAINS OF READING -83.43, 208.57, 458.87	NO. 1	
100008343 .00020857 .00045887	.0004849100035977 187.26 -94.7	1
INPUT THE STRAINS OF READING -111.24, 236.39, 570.11	NO. 2	
200011124 .00023639 .00057011	.0005990500047390 225.36 -132.8	1
INPUT THE STRAINS OF READING -139.05, -472.77, -889.92	NO. 3	
3000139050004727700088992	.0003014700091329 -23.48 -428.9	9
INPUT THE STRAINS OF READING -278.10, 152.96, 458.87	NO. 4	
400027810 .00015296 .00045887	.0005016600062680 142.08 -234.6	2
INPUT THE STRAINS OF READING -166.86, 236.39, 639.63	NO. 5	
500016686 .00023639 .00063963	.0006723500060282 238.55 -187.1	З
INPUT THE STRAINS OF READING 0.0, 0.0, 0.0	NO. 6	
۵.00000000.0000000.0000000000000000000	0.00000000.00000000 0.00 0.0	Q
INPUT THE STRAINS OF READING 347.63, -876.01, -1056.78	NO. 7	
7 .000347630008760100105678	.0007370700126545 138.86 -529.6	2
INPUT THE STRAINS OF READING -111.24, 208.57, 542.30	NÛ. 8	
800011124 .00020857 .00054230	.0005675500047022 209.20 -137.2	2
INPUT THE STRAINS OF READING -111.24, 152.96, 403.25	NQ. 9	
900011124 .00015296 .00040325 STOP	.0004254200039370 150.48 -119.6	2

 \mathbf{v}

•

٠

⊃STRESS 9

THE TOTAL NUMBER OF READINGS =	9			
INPUT THE STRAINS OF READING -333.72, 375.44, 1020.63	NO. 1			
100033372 .00037544 .00102063	.00108165-	.00103993	369.54	-338.68
INPUT THE STRAINS OF READING -444.96, 444.96, 1279.27	NO. 2			
200044496 .00044496 .00127927	.00135445-	.00135445	452.14	-452.14
INPUT THE STRAINS OF READING -403.25, -834.30, -1863.27	NO. 3			
3000403250008343000186327	.00064424-	.00188179	-36.00	-879.23
INPUT THE STRAINS OF READING -792.59, 278.10, 973.35	NŨ. 4			
400079259 .00027810 .00097335	.00108475-	.00159924	257.74	-638.23
INPUT THE STRAINS OF READING -597.92, 411.59, 1404.41	NO. 5			
500059792 .00041159 .00140441	.00148719-	00167352	458.65	-596.45
· INPUT THE STRAINS OF READING 0.0, 0.0, 0.0,	NO. 6			
6.00000000.00000000.00000000	.00000000	.00000000	0.00	0.00
INPUT THE STRAINS OF READING 973.35, -2016.22, -2057.94	NŰ. 7			
7 .000973350020162200205794	.00162221-	.00266508	329.96	-1101.21
INPUT THE STRAINS OF READING -305.91, 444.96, 1181.93	NO. 8			
800030591 .00044496 .00118193	.00124358-	.00110453	443.34	-340.50
INPUT THE STRAINS OF READING -250.29, 305.92, 903.83	NO. 9			
900025029.00030592.00090383 STOP	.00094691-	.00089128	327.38	-286.24

۰.

 \sim

4

.

-

THE TOTAL NUMBER OF READINGS = 9 INPUT THE STRAINS OF READING NO. 1 -584.01, 556.20, 1612.99 1 -.00058401 .00055620 .00161299 .00170999-.00173780 565.18 -585.75 INPUT THE STRAINS OF READING NO. 2 -806.49, 653.54, 2030.14 -.00080649 .00065354 .00203014 .00215304~.00230599 637.69 2 -800.81INPUT THE STRAINS OF READING NO. з -806.49, -1585.17, -2808.81 3 -.00080649-.00158517-.00280881 .00046347-.00285513 -330.47 -1438.28 INPUT THE STRAINS OF READING NO. 4 -1446.12, 278.10, 1612.98 -.00144612 .00027810 .00161298 .00177607-.00294409 355.93 -1219.74 4 INPUT THE STRAINS OF READING NO. 5 -1140.21, -556.20, -2252.61 5 -.00114021-.00055620-.00225261 .00058624-.00228265 -148.45 -1106.13 INPUT THE STRAINS OF READING NO. Ġ. 0.0, 0.0, 0.0 0.00 0.00 ٨. INPUT THE STRAINS OF READING NO. 7 1585.17, -2892.24, -3142.53 .00158517-.00289224-.00314253 .00269414-.00400121 7 634.19 -1600.83 INPUT THE STRAINS OF READING NO. 8 -736.97, 584.01, 1654.70 -.00073697 .00058401 .00165470 .00177642-.00192938 561.97 -675.09 :8 INPUT THE STRAINS OF READING NO. - 9 -528.39, 458.87, 1529.55 521.87 -573.28 -.00052839 .00045887 .00152955 .00160559-.00167511 \odot STOP

THE TOTAL NUMBER OF READINGS = 9 INPUT THE STRAINS OF READING NO. 1 -625.73, 611.82, 1765.94 -.00062573 .00061182 .00176594 .00187082-.00188473 1 621.69 -631.98 INPUT THE STRAINS OF READING NO. -917.73, 681.35, 2155.28 - 2 2 -.00091773 .00068135 .00215528 .00229177-.00252815 717.08 -891.89 INPUT THE STRAINS OF READING NO. - 3 -945.54, -1863.27, -3003.48 3 -.00094554-.00186327-.00300348 .00025920-.00306801 -483.29 -1593.97 INPUT THE STRAINS OF READING NO. 4 -1599.08, 236.39, 1752.03 4 -.00159908 .00023639 .00175203 .00191934-.00328203 364.26 -1372.04 INPUT THE STRAINS OF READING NO. 5 -1268.14, 645.19, 2419.47 -.00126814 .00064519 .00241947 .00258218-.00320513 5 735.60 -1196.30 INPUT THE STRAINS OF READING NO. 6 0.0, 0.0, 0.0 6 0.00 0.00 INPUT THE STRAINS OF READING NO. 7 1710.32, -2933.95, -3267.68 7 .00171032-.00293395-.00326768 .00291606-.00413969 725.20 -1630.13 INPUT THE STRAINS OF READING NO. 8 -806.49, 611.82, 2071.85 -.00080649 .00061182 .00207185 .00218483-.00237950 8 689.84 -833.81 INPUT THE STRAINS OF READING NO. 9 -556.20, 500.59, 1646.35 -.00055620 .00050059 .00164635 .00172776-.00178337 9 565.47 -606.60 STOP

 \odot

THE TOTAL NUMBER OF READINGS = \circ INPUT THE STRAINS OF READING NO. 1 -486.68, 444.96, 1279.27 -.00048668 .00044496 .00127927 .00136020-.00140192 445.59 -476.45 1 INPUT THE STRAINS OF READING NO. 2 -723.06, 472.77, 1571.27 2 -.00072306 .00047277 .00157127 .00167356-.00192385 507.89 -692.99 INPUT THE STRAINS OF READING NO. З -695.25, -1251.45, -2002.32 -364.03 -1075.65 -.00069525-.00125145-.00200232 .00009254-.00203924 3 INPUT THE STRAINS OF READING NO. 4 -1223.64, 139.05, 1307.07 -.00122364 .00013905 .00130707 .00142859-.00251318 4 256.86 -1058.97 INPUT THE STRAINS OF READING NO. 5 -1001.16, 389.34, 1779.84 -.00100116 .00038934 .00177984 .00189266-.00250448 507.69 -960.165 INPUT THE STRAINS OF READING NO. 6 0.0, 0.0, 0.0, 0.00 0.00 A. INPUT THE STRAINS OF READING NO. 7 1265.36, -2016.22, -2113.56 520.26 -1075.56 7 .00126536-.00201622-.00211356 .00201482-.00276568 INPUT THE STRAINS OF READING NO. 8 -667.44, 431.06, 1557.37 -.00066744 .00043106 .00155737 .00164510-.00188148 501.21 8 -676.02 INPUT THE STRAINS OF READING NO. $\overline{2}$ -417.15, 375.44, 1237.55 -.00041715 .00037544 .00123755 .00129848-.00134019 424.99 -455.84 9 STOP

	THE	TOTAL NUMBER OF READINGS =	9			
-125	.15,	INPUT THE STRAINS OF READING 166.86, 403.25	NG.	1		
1	-	.00012515 .00016686 .00040325	.000430	01800038847	152.06	-121.21
-139	.05,	INPUT THE STRAINS OF READING 208.58, 528.40	NC.	2		
2	-	.00013905 .00020858 .00052840	.000558	31100048858	200.41	-148.99
-180	.77,	INPUT THE STRAINS OF READING -500.58, -903.83	NG.	3		
З	-	.000180770005005800090383	.000244	47400092609	-56.52	-447.37
-305	.91,	INPUT THE STRAINS OF READING 125.15, 431.06	N0.	4		
4	-	.00030591 .00012515 .00043106	.000473	38500065461	121.51	-255.19
-194	.67,	INPUT THE STRAINS OF READING 208.58, 639.63	NŨ.	5		
5	-	.00019467 .00020858 .00063963	.000670	09800065707	226.81	-216.52
0.0,	0.0	INPUT THE STRAINS OF READING , 0.0	NŨ.	6		
6	0.	.00000000.00000000.0000000	0.00000	0000.0000000	0.00	0.00
417.	15, -	INFUT THE STRAINS OF READING -848.20, -1001.16	NO.	7		
7		.000417150008482000100116	.000793	31900122424	177.33	-496.12
-69.	52, :	INPUT THE STRAINS OF READING 250,29, 570,11	NO.	8		
8	-	.00006952 .00025029 .00057011	.00059/	60600041529	235.65	-101,96
-83.	43,	INPUT THE STRAINS OF READING 166.87, 431.06	NC.	9		
9 STO	- P	.00008343 .00016687 .00043106	.000450	06800036724	167.37	-105.66

. -

.

-

•

Ġ

Fig. 2.43. Comparison of principal stresses.

Fig. 2.44. Comparison of principal stresses

•

•

Fig. 2.47. Dial gauge and point load locations.

.

和限制 编译的 自由的	15
1 State of the local state	and and the same
And St. Streamstern P.	14
	13
表示: 1933年1月中午	
The second second	
	12
7.4	Etter Bulling
	11
36 Sale 128	
Service - Andrew Martin	
	10
	All Contractions and all all and
-	Unused Channel
RAN AND STATISTICS	
	9
	8
1002年7月2月1日1月1日	
	1. 新聞聖聖 報告記 自己性 52
法国际部分的成功设	7
· · · · · · · · · · · · · · · · · · ·	
·元·约·林·当归国中的 · · · · · · · ·	
Synthetic and and and	C
	5
ST IN ASSAULTING	Sala Barrishin Salasa
	and the second sec
	Contract (Section of the section of the
	and an and a second sec
	3
12-1 No load	5
	Carles Marrie 1
	and the second se

Capacity	Salar -
	Unused Channel
AND LAND BUT	27
	26
	25
	24
	23
	22
	21
	20
	Unused Channel
当代政府 定义	19
	18
	17
	16

٠

STRESS

THE TOTAL NUMBER OF READINGS = \mathcal{O} INPUT THE STRAINS OF READING NO. 1 97.34, 83.43, 27.81 .00009734 .00008343 .00002781 .00015335 .00002742 87.86 45.83 1 INPUT THE STRAINS OF READING NO. 236.29, 139.05, 0.0 2 2 .00023639 .000139050.00000000 .00038165-.00000621 203.56 74.09 INPUT THE STRAINS OF READING NO. 3 361,53, 889.92, 528.39 З .00036153 .00088992 .00052839 .00090728 .00034417 556.74 368.77 INPUT THE STRAINS OF READING NO. 4 417.15, 361.53, -55.62 4 .00041715 .00036153-.00005562 .00083517-.00005649 436.76 139.11 INPUT THE STRAINS OF READING NO. 5 417.15, 152.96, -194.67 .00041715 .00015296-.00019467 .00078263-.00021252 5 376.91 44.71 INPUT THE STRAINS OF READING NO. - A. 0.0, 0.0, 0.0, 0.00 0.00 6 INPUT THE STRAINS OF READING NO. 7 -55.62, -83.43, 514.49 7 -.00005562-.00008343 .00051449 .00051466-.00065371 143.59 -246.43 INPUT THE STRAINS OF READING NO. 8 417.15, 55.62, -389.34 .00041715 .00005562-.00038934 .00088770-.00041493 392.24 -42.60 8 INPUT THE STRAINS OF READING NO. Θ 305.91, -55.62, -556.20 ϕ .00030591-.00005562-.00055620 .00083006-.00057977 327.86 -142.76 STOP

>STRESS 9

)

ł

THE	TOTAL NUMBER OF READINGS =	9			
139.05,	INPUT THE STRAINS OF READING 27.81, -83.43	NO.	1		
1	.00013905 .0000278100008343	.000259	93200009246	120.41	2.99
444.96,	INPUT THE STRAINS OF READING 97.34, -264.20	NO.	2		
2	.00044496 .0000973400026420	.000834	40100029171	388.42	12.64
1237.55,	INPUT THE STRAINS OF READING 3031.29, 1001.16	NO.	3		
З	.00123755 .00303129 .00100116	.003579	964 .00068920	2040.95	1096.07
1070.69	INPUT THE STRAINS OF READING 945.54, -556.20	NŪ.	4		
4	.00107069 .0009455400055620	.002570	36800055745	1268.16	222.94
1015.07,	INPUT THE STRAINS OF READING 139.05, -848.21	NŌ.	5		
5	.00101507 .0001390500084821	.002068	31200091400	924.50	-70,98
0.0, 0.0	INPUT THE STRAINS OF READING	NŪ.	6		
6 (.00000000.00000000.0000000	0.00000	0000.00000000	0.00	0.00
-472.77	INPUT THE STRAINS OF READING -1293.17, 1112.4,	NO.	7		
7 -	0004727700129317 .00111240	.001154	41300292007	27.02	-1333.02
1084.59,	INPUT THE STRAINS OF READING -83.43, -1446.12	NO.	8		
8	.001084590000834300144612	.002532	29900153183	1048.66	-308.25
472.77,	INPUT THE STRAINS OF READING -500.58, -1752.03	NŪ.	9		
9 Stop	.000472770005005800175203	.001791	10700181888	592.25	-612.81

•

>STRESS 9

•

•

١

١

`

.•

)

٢

١

÷

THE TOTAL NUMBER OF READINGS =	9			
INFUT THE STRAINS OF READING 146.86, 55.62, -83.43	NO.	1		
1 .00016686 .0000556200008343	.00031	37000009122	149.85	14.68
INPUT THE STRAINS OF READING 500.58, 111.24, -305.91	NO.	2		
2 .00050058 .0001112400030591	00094	79500033613	440.56	11.91
INPUT THE STRAINS OF READING	NO.	3		
3 0.00000000.00000000000000000000000000	0.0000	0000.00000000	0.00	0.00
INPUT THE STRAINS OF READING 1307.07, 1195.83, -695.25	NŪ.	4		
4 .00130707 .0011958300069525	.00319	89400069604	1575.62	275.40
INPUT THE STRAINS OF READING 1237.55, 139.05, -1042.88	NO.	5		
5 .00123755 .0001390500104288	.00250	45200112792	1115.32	-97.25
INPUT THE STRAINS OF READING	NO.	6		
6 0.00000000.00000000.0000000	0.00000	0000.0000000	0.00	0.00
INPUT THE STRAINS OF READING -556.20, -1807.65, 1362.69	NO.	7		
70005562000180765 .00136269	.00143	84900380234	. 65	-1748.83
INPUT THE STRAINS OF READING 1307.07, -152.96, -1835.46	NO.	8		
8 .001307070001529600183546	.00309	76000194349	1268.16	-414.64
INPUT THE STRAINS OF READING 166.86, -862.11, -2044.04	NO.	9		
9 .000166860008621100204404 STOP	.00142	50900212034	334.68	-848.85

-

÷

•

-

 \circ THE TOTAL NUMBER OF READINGS = \circ INPUT THE STRAINS OF READING NO. L 139.05, 27.81, -83.43 .00013905 .00002781-.00008343 .00025932-.00009246 120.41 2.99 1 INPUT THE STRAINS OF READING NO. -2 472.77, 83.43, -305.91 2 .00047277 .00008343-.00030591 .00089370-.00033750 411.17 .17 INPUT THE STRAINS OF READING NO. 3 1557.36, -83.43, 1112.40 .00155736-.00008343 .00111240 .00163918-.00016525 846.20 243.85 2 INPUT THE STRAINS OF READING NO. 4 1307.07, 1168.02, -695.25 .00130707 .00116802-.00069525 .00317159-.00069650 1560.84 269.61 4 INPUT THE STRAINS OF READING NO. 5 1195.83, 139.05, -1015.07 .00119583 .00013905-.00101507 .00243097-.00109609 1082.30 -95.095 INPUT THE STRAINS OF READING NO. 6 0.0, 0.0, 0.0, 0.00 0.00 6. INPUT THE STRAINS OF READING NO. 7 -584.01, -1835.46, 1279.26 -.00058401-.00183546 .00127926 .00135671-.00377618 -37.94 -1751.38 7 INPUT THE STRAINS OF READING NO. 8 1293.17, -139.05, -1779.84 -325.52 8 .00129317-.00013905-.00177984 .00304035-.00188623 1249.05 INPUT THE STRAINS OF READING NO. 9 305.91, -806.49, -2057.94 .00030591-.00080649-.00205794 .00164099-.00214157 446.24 -816.45 9 STOP

.

DSTRESS

)

)

j.

)

)

)

)

)

)

>STRESS

THE TOTAL NUMBER OF READINGS = - 9 INPUT THE STRAINS OF READING NO. 1 83.43, 55.62, 13.91 1 .00008343 .00005562 .00001391 .00012685 .00001220 70.55 32.28 INPUT THE STRAINS OF READING NO. 2 305.91, 111.24, -125.15 2 .00030591 .00011124-.00012515 .00055620-.00013905 270.30 38.21 INPUT THE STRAINS OF READING NO. 3 1223.64, 2850.53, 597.92 3 .00122364 .00285053 .00059792 .00369023 .00038394 2058.37 954.68 INPUT THE STRAINS OF READING NO. 4 931.64, 862.11, -458.87 4 .00093164 .00086211-.00045887 .00225307-.00045932 1116.00 210.56 INFUT THE STRAINS OF READING NO. 5 862.11, 166.86, -597.92 5 .00086211 .00016686-.00059792 .00167994-.00065097 769.54 -8.56. INPUT THE STRAINS OF READING NO. - 6 0.0, 0.0, 0.0 6 0.00 0.00 INPUT THE STRAINS OF READING NO. 7 -444.96, -1501.74, 723.66 7 -.00044496-.00150174 .00072306 .00080345-.00275015 -126.72 -1312.97 INPUT THE STRAINS OF READING NO. 8 653.54, 0.0, -1028.97 8 .000653540.00000000-.00102897 .00172133-.00106779 707.19 -223.87 INPUT THE STRAINS OF READING NO. $\overline{\mathbf{Q}}$ 556.20, -305.91, -1168.02 9 .00055620-.00030591-.00116802 .00148826-.00123797 547.58 -362.48STOP

...

Fig. 2.48. Comparison of deflections due to point load at Node 6 along x-axis.

Fig. 2.50a. Comparison of deflections due to point load at Node 6 along y-axis.

Fig. 2.50b. Comparison of deflections due to point load at Node 6 along y-axis.

Fig. 2.52. Comparison of principal stresses

Fig. 2.53. Comparison of principal stresses

Fig. 2.54. Comparison of principal stresses

Fig. 2.55. Comparison of principal stresses.

Fig. 2.56. Comparison of principal stresses.

Fig. 2.57. Comparison of principal stresses

Fig. 2.58. Dial gauge locations.

Fig. 2.60. Comparison of deflections due to uniform distributed pressure along x-axis.

Fig. 2.59. Comparison of deflections due to uniform distributed pressure along x-axis.

÷

×

13-3

H. 10-p.s.i.

.

•571

178,

THE TOTAL NUMBER OF READINGS = 9 INPUT THE STRAINS OF READING NO. 1 0.0, 139.05, 333.72 1 0.00000000 .00013905 .00033372 .00034271~.00020366 142.61 -39.78 INPUT THE STRAINS OF READING NO. $\mathbf{2}$ 44.06, 155.74, 389.34 2 .00004406 .00015574 .00038934 .00039468-.00019488 172.28 -24.52 INPUT THE STRAINS OF READING NO. 164.02, -372.65, -486.67 \odot .00016402-.00037265-.00048667 .00036280-.00057143 -233.08 78.79 INPUT THE STRAINS OF READING NO. -319.82, -211.35, 111.24 Δ. -.00031982-.00021135 .00011124 .00011512-.00064629 4 -69.33 -323.50 INPUT THE STRAINS OF READING NO. 5 -250.29, 111.24, 472.77 5 -.00025029 .00011124 .00047277 .00050210-.00064115 139.40 -242.24INPUT THE STRAINS OF READING NO. 6 0.0, 0.0, 0.0 6 0.00 0.00 INPUT THE STRAINS OF READING NO. 7 319.82, -500.58, -653.54 7 .00031982-.00050058-.00065354 .00060634-.00078710 165.74 -299.42 INPUT THE STRAINS OF READING NO. 8 -27.81, 194.67, 406.03 -.00002781 .00019467 .00040603 .00042467-.00025781 8 175.61 -52.21INPUT THE STRAINS OF READING NO. 9 -13.90, 155.74, 333.72 9 -.00001390 .00015574 .00033372 .00034707-.00020523 144.63 -39.73 STOP

	THE	TOTAL NUMBER OF READINGS =	9			
-111	.24,	INPUT THE STRAINS OF READIN , 222.48, 611.82	3 NO.	1		
1.	-	00011124 .00022248 .0006118	2.00043	63100052507	234,98	-152.71
-289	. 22,	INFUT THE STRAINS OF READIN 211.36, 695.25	3 NO.	2		
2	-	00028922 .00021136 .0006952	5.00073	67400081460	230.14	-287.72
-400	.46,	INPUT THE STRAINS OF READING -511.70, -736.96	3 NO.	3		
З	-	00040046000511700007369/	500016	97500074241	-241.71	-432.88
-792	.59,	INPUT THE STRAINS OF READING -586.79, 97.34	3 NO.	4		
4	-	0007925900058679 .0000973	4 .00010	40400148342	-245.10	-775.02
-681	.35,	INPUT THE STRAINS OF READING 83.43, 834.30	3 NO.	5		
5	-	00068135 .00008343 .00083430	.00089	70800149500	178.16	-620.35
0.0,	0.0	INPUT THE STRAINS OF READING	3 NO.	6		
6	C	.00000000.00000000.0000000	0.00000	0000.00000000	0.00	0.00
528.:	39,	INPUT THE STRAINS OF READING -1112.40, -1056.78	3 NO.	7		
7		.000528390011124000105678	3.00082	95700141358	158.45	-590.35
-194	.67,	INPUT THE STRAINS OF READING 250.29, 656.32	3 NO.	8		
8	-	.00019467 .00025029 .00065633	2.00069	45300063891	243.13	-202.00
-69.9	52,	INPUT THE STRAINS OF READING 211.36, 500.58	3 NO.	9		
9 STO	- P ,	.00006952 .00021136 .00050058	.00052	29500038111	203.34	-98.45

.

. .

THE TOTAL NUMBER OF READINGS = -9 INPUT THE STRAINS OF READING NO. 1 -250.29, 333.72, 917.73 -.00025029 .00033372 .00091773 .00096512-.00088169 339.10 -277.40 1 INPUT THE STRAINS OF READING NO. - 2 -539.51, 225.27, 1056.78 -.00053951 .00022527 .00105678 .00111558-.00142982 2 308.65 -541.05INPUT THE STRAINS OF READING NO. 3 -692.47, -706.37, -1001.16 -.00069247-.00070637-.00100116-.00039760-.00100124 -416.50 3 -618.01 INPUT THE STRAINS OF READING NO. 4 -1112.4, -1003.94, 55.62 -.00111240-.00100394 .00005562 .00005694-.00217328 Δ -410.33 -1154.81 INPUT THE STRAINS OF READING NO. 5 -1195.83, 0.0, 1195.83 5 -.001195830.00000000 .00119583 .00129286-.00248869 188.98 -1073.36 ' INPUT THE STRAINS OF READING NO. 6 0.0, 0.0, 0.0 6. 0.00 0.00 INPUT THE STRAINS OF READING NO. 7 681.35, -1696.41, -1418.31 7 .00068135-.00169641-.00141831 .00099012-.00200518 124.60 -875.29 INPUT THE STRAINS OF READING NO. 8 -417.15, 292.01, 923.52 -.00041715 .00029201 .00092352 .00098533~.00111047 303.53 -396.08 8 INPUT THE STRAINS OF READING NO. 9 -180.76, 266.90, 778.68 \circ -.00018076 .00026690 .00077868 .00081198-.00072584 288.53 -224.82 STOP

THE TOTAL NUMBER OF READINGS = 9 INPUT THE STRAINS OF READING NO. 1 -389.34, 403.25, 1209.74 1 -.00038934 .00040325 .00120974 .00127334-.00125943 427.89 -417.60 INPUT THE STRAINS OF READING NO. -817.61, 239.17, 1362.69 2 2 -.00081761 .00023917 .00136269 .00144514-.00202358 365.07 -792.85 INPUT THE STRAINS OF READING NO. 3 -1123.52, -1151.33, -1293.16 З -.00112352-.00115133-.00129316-.00098107-.00129378 -788.99 -893.38 INPUT THE STRAINS OF READING NO. 4 -2071.85, -1518.42, 69.53 -.00207185-.00151842 .00006953 .00008995-.00368022 4 -698.32 -1956.87 INPUT THE STRAINS OF READING NO. 5 -1835.46, -83.43, 1626.89 -.00183546-.00008343 .00162689 .00177122-.00369011 5 201.99 -1621.10 INPUT THE STRAINS OF READING NO. 6 0.0, 0.0, 0.0 6 0.00 0.00 INPUT THE STRAINS OF READING NO. 7 889.92, -2183.09, -1793.75 7 .00088992-.00218309-.00179375 .00127092-.00256409 161.91 -1118.28 INPUT THE STRAINS OF READING NO. 8 -723.06, 347.63, 1268.14 8 -.00072306 .00034763 .00126814 .00136345~.00173888 -656.63 373.98 INPUT THE STRAINS OF READING NO. 9 -319.81, 378.22, 1126.31 \circ -.00031981 .00037822 .00112631 .00118049-.00112208 405.92 -362.72 STOP

THE TOTAL NUMBER OF READINGS = \circ INPUT THE STRAINS OF READING NO. 1 -347.63, 361.53, 1028.97 1 -.00034763 .00036153 .00102897 .00108873-.00107483 366.26 -355.98 INFUT THE STRAINS OF READING NO. $\mathbf{2}$ -761.99, 197.46, 1195.83 2 -.00076199 .00019746 .00119583 .00127173-.00183626 310.00 -727.50 INPUT THE STRAINS OF READING NO. З -914.95, -970.57, 1098.49 З -.00091495-.00097057 .00109849 .00109868-.00298420 -15.75 -1378.69 INPUT THE STRAINS OF READING NO. 4 -1807.65, -1045.65, 97.34 4 -.00180765-.00104565 .00009734 .00014424-.00299754 -530.69 -1579.47 INPUT THE STRAINS OF READING NO. 5 -1585.17, -55.62, 1168.02 5 -.00158517-.00005562 .00116802 .00131002-.00295081 104.45 -1317.89 · INPUT THE STRAINS OF READING NO. 6 0.0, 0.0, 0.0 6 0.00 0.00 INPUT THE STRAINS OF READING NO. 7 764.78, -1752.03, -1390.50 7 .00076478-.00175203-.00139050 .00105168-.00203893 150.79 -880.91INPUT THE STRAINS OF READING NO. 8 -681.35, 264.20, 1156.90 -.00068135 .00026420 .00115690 .00123643-.00165358 æ 328.12 -636.62 INPUT THE STRAINS OF READING NO. 9 -292.00, 294.79, 973.35 9 -.00029200 .00029479 .00097335 .00101667-.00101388 339.95 -337.88 STOP

- -

 \sim

THE TOTAL NUMBER OF READINGS = - 9 INPUT THE STRAINS OF READING NO. 1 -236.39, 264.20, 778.68 -.00023639 .00026420 .00077868 .00081860-.00079079 278.90 -258.34 1 INPUT THE STRAINS OF READING NO. - 2 -567.32, 169.65, 889.92 -.00056732 .00016965 .00088992 .00095059-.00134826 2 236.65 -530.74 INPUT THE STRAINS OF READING NO. \sim -650.75, -789.8, -834.30 -.00065075-.00078980-.00083430-.00058673~.00085382 3 -488.10 -577.26 INPUT THE STRAINS OF READING NO. 4 -1279.26, -600.69, 69.53 -.00127926-.00060069 .00006953 .00012502-.00200497 4 -339.64 -1050.67 INPUT THE STRAINS OF READING NO. 5 -1140.21, 0.0, 1140.21 5 -.001140210.00000000 .00114021 .00123273-.00237294 180.19 -1023.44 INPUT THE STRAINS OF READING NO. 6 0.0, 0.0, 0.0 6 0.00 0.00 INPUT THE STRAINS OF READING NO. 7 625.73, -1195.83, -1001.16 7 .00062573-.00119583-.00100116 .00087354-.00144364 175.95 -597.57 INPUT THE STRAINS OF READING NO. 9 -528.39, 208.58, 934.42 -.00052839 .00020858 .00093442 .00099479-.00131450 8 267.20 -503.72 INPUT THE STRAINS OF READING NO. $\overline{\mathcal{D}}$ -222.48, 239.17, 778.68 \odot -.00022248 .00023917 .00077868 .00081252-.00079583 274.62 -262.28 STOP

THE TOTAL NUMBER OF READINGS = 9 INPUT THE STRAINS OF READING NO. 1 -83.43, 208.58, 528.39 1 -.00008343 .00020858 .00052839 .00055074-.00042559 209.23 -116.68 INPUT THE STRAINS OF READING NO. 2 -303.13, 141.84, 597.92 -.00030313 .00014184 .00059792 .00063346-.00079475 2 178.74 -298.02 INPUT THE STRAINS OF READING NO. 3 -372.65, -595.13, -542.29 Э -.00037265-.00059513-.00054229-.00035825-.00060953 -315.92-399.80INPUT THE STRAINS OF READING NO. 4 -750.87, -308.69, 83.43 4 -.00075087-.00030869 .00008343 .00012207-.00118163 -174.20 -609.40 INPUT THE STRAINS OF READING NO. 5 -639.63, 69.53, 778.68 -.00063963 .00006953 .00077868 .00083622-.00140632 5 163.49 -585.11 INFUT THE STRAINS OF READING NO. 6 0.0, 0.0, 0.0, 6 0.00 0.00 INPUT THE STRAINS OF READING NO. 7 514.49, -556.20, -584.01 7 .00051449-.00055620-.00058401 .00075615-.00079786 243.95 -274.80 INPUT THE STRAINS OF READING NO. 8 -333.72, 139.05, 656.32 \mathbf{R} -.00033372 .00013905 .00065632 .00069252-.00088719 191.68 -335.65 INPUT THE STRAINS OF READING NO. 9 -126.14, 183.55, 542.30 -.00012614 .00018355 .00054230 .00056513-.00050772 9 200.30 -157.84STOP

Fig. 2.61. Comparison of principal stresses

Fig. 2.62. Comparison of principal stresses

Fig. 2.64. Comparison of principal stresses

Fig. 2.65. Comparison of principal stresses

- -

Fig. 2.67. Comparison of principal stresses

CHAPTER THREE

,

RELEVANT PARTS OF THE THEORY OF

ANISOTROPIC ELASTICITY

•

•

CHAPTER THREE

RELEVANT PARTS OF THE THEORY OF ANISCIROPIC ELASTICITY

3.1. Introduction:-

It is proposed to consider a general class of complex materials i.e. composites in which non-woven fibres are deliberately orientated in a matrix in such a way as to increase its structural efficiency. An imaginary general square solid with fibres embedded in a matrix in three directions, coinciding with its axes is shown diagrammatically in Fig. (3.1).

In practice a filamentary composite is normally made up of several plies or laminae. One lamina of a filamentary composite consists of one row of parallel filaments surrounded by the matrix. Considering this case, as illustrated in Fig. (3.2), the laminae are stacked with various orientations of the filament directions between laminae to obtain a laminate which has the desired stiffness or strength properties.

It is evident that each individual ply or lamina of a filamentary composite has three mutually perpendicular planes of symmetry for the material constants. The intersection of the three planes forms the axes of the co-ordinates system as shown. Since the lamina has three perpendicular axes it can be considered to be an orthotropic material on the macroscopic level. Also, the lamina may be considered homogeneous on the macro scale. The set of axes which are parallel and perpendicular to the filament directions are termed the material natural principal axes. These orthotropic properties if

Fig. 3.2. Illustration of an orthotropic material in its laminated and lamina forms.

Fig. 3.1. A 3-dimensional solid of fibres embedded in matrix

translated into other convenient axes will produce an anisotropic solid in the new axes. To describe the mechanical constitution of the material a generalised Hooke's Law for the stress strain relationships is required. Ref. (39), (40), (41) & (42).

3.2. The Generalised Hooke's Law for Anisotropy

To obtain the stress strain relationships in an elastic body of this type the generalised Hooke's Law for anisotropic material will be derived first, then simplified so as to apply to orthotropic material. First consider the three-dimensional stress state illustrated in Fig. (3.3), in which it is assumed that the components of strain are linear functions of the components of stress. The equation which expresses the generalised Hooke's Law in rectangular orthogonal cartesian co-ordinates $x_1 x_2 x_3$ (or has xyz) the generalised form

$$\varepsilon_{ij} = C_{ijkl} \sigma_{ij}$$
 3.1a

in tensor notation, with the repeated suffixes i and j taking values 1 to 3, k and 1 1 to 9 and Einstein's summation convention applying. This equation may be expressed in matrix form, using engineering shear strains such as τ_{xy} etc.

thus:-

$\begin{bmatrix} c_{1113} & c_{1121} \end{bmatrix} \begin{bmatrix} c_{x} \end{bmatrix}$
C ₂₂₁₃ C ₂₂₂₁ _y
. σ _z
. т _{ху}
. T _{yz} 3.1b
. T _{zx}
. T _{yx}
[^t zy
$C_{2113} C_{2131} $
· T _{yz} 3. · T _{yz} 3. · T _{zx} · T _{yx} · · · T _{yx} · · · · · · · · · · · · · · · · · · ·

or

 $\{\varepsilon\} = \begin{bmatrix} \dot{c} \end{bmatrix} \{\sigma\} \qquad 3.1c$

The [C] matrix is the 'compliance' or 'flexibility' matrix which gives the strain stress relations for the material. The inverse of the flexibility matrix is the stiffness matrix, and it gives the stress-strain relations.

Since there are only six independent stresses and strains, because the stress and strain tensors are symmetric, i.e.

$$Y_{xy} = Y_{yx} , \quad \tau_{xy} = \tau_{yx}$$
$$Y_{yz} = Y_{zy} , \quad \tau_{yz} = \tau_{zy}$$
$$Y_{zx} = Y_{xz} , \quad \tau_{zx} = \tau_{xz}$$

The 81 constants in the flexibility matrix are reduced to 36 elastic constants and Equation (31c) can be written as:

$$\{\varepsilon\} = \begin{bmatrix} C \end{bmatrix} \{\sigma\}$$

6x1 6x6 6x1

Where the shear components of $\{\varepsilon\}$ are the three engineering shear strains rather than the tensor shear strains and the components of σ are σ_x , σ_y and σ_z (normal stresses) and $\tau_{xy} \tau_{yx}$ and τ_{zx} (shear stresses).

The solution of the above equations will give an equivalent form for the equations of the generalised Hooke's Law, namely:

$$\{\sigma\} = \begin{bmatrix} D \end{bmatrix} \{\varepsilon\}$$
 3.3

where $[D] = [C]^{-1}$, the stiffness matrix.

Assuming that an elastic potential exists equal to the potential strain energy density (strain energy per unit volume) (Ω) of deformation i.e. Ω is a function of strain then:

$$\Omega = \frac{1}{2} \left(\sigma_{ij} \varepsilon_{ij} \right) \qquad 3.4$$

in tensor notation

i,j = 1 → 3

with the property that

$$\sigma_{ij} = \frac{\partial \Omega}{\partial \varepsilon_{ij}} \qquad 3.5$$

using Equation (3.2a) we have

$$\sigma_{ij} = \frac{\partial \Omega}{\partial \varepsilon_{ij}} = C_{ijkl} \varepsilon_{kl} \qquad 3.6$$

$$k, l = 1 \rightarrow 3$$

Differentiating this equation with respect to ε_{kl} gives

$$\frac{\partial^2 \Omega}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}} = C_{ijkl} \qquad 3.7$$

in the same way we can prove that

$$\frac{\partial^2 \Omega}{\partial \boldsymbol{\varepsilon}_{kl} \partial \boldsymbol{\varepsilon}_{ij}} = C_{klij} \qquad 3.8$$

but

$$\frac{\partial^{2}\Omega}{\partial \epsilon_{ij} \partial \epsilon_{kl}} = \frac{\partial^{2}\Omega}{\partial \epsilon_{kl} \partial \epsilon_{ij}} \qquad 3.9$$

hence

This symmetrical property of the elements of the elasticity matrix reduces the unknowns to a total of 21 elastic constants. The most general form of this matrix for anisotropic materials may be written as:

$$\begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c_{15} & c_{16} \\ c_{12} & c_{22} & c_{23} & c_{24} & c_{25} & c_{26} \\ & & \ddots & & \\ & & & & & \\ c_{16} & c_{26} & c_{36} & c_{46} & c_{56} & c_{66} \end{bmatrix}$$
3.10

where all the elements are populated.

3.3. Elastic Symmetry and Orthotropic Case

Considering one layer Fig.(3.1b), if the density of fibre is uniform, then the assumption that the three orthogonal planes of elastic symmetry can pass through any point of the body is a valid assumption. Considering an element of the body in the form of a rectangular parallelopiped with sides parallel to the planes of elastic symmetry, after a deformation due to the action of the stress σ_z , it will remain a rectangular parallelopiped as shown in Fig. (3.4).

As the three principal directions apply to each point of the body, we can assume that the normal and shear stresses are all uncoupled, i.e. C_{14} , C_{15} , C_{16} , C_{24} , C_{25} , C_{26} , C_{34} and C_{36} are all equal to zero.

By essentially the same reasons the coupling between the shear stresses will also vanish, i.e. C_{45} , C_{46} and C_{56} are all equal to zero. The coupling between normal stresses, however, are expected to remain Tsai Ref. (39).

By directing the axes of the co-ordinates perpendicular to these planes, we obtain the following equations for the generalised Hooke's Law.

$$\varepsilon_{x} = C_{11} \sigma_{x} + C_{12} \sigma_{y} + C_{13} \sigma_{z} \qquad 3.11a$$

$$\varepsilon_{y} = c_{12} \sigma_{x} + c_{22} \sigma_{y} + c_{23} \sigma_{z}$$
 3.11b

$$\epsilon_{z} = c_{13} \sigma_{x} + c_{23} \sigma_{y} + c_{33} \sigma_{z}$$
 3.11c

$$\gamma_{xy} = C_{44} \tau_{xy} \qquad 3.11d$$

$$\mathbf{Y}_{\mathbf{y}\mathbf{z}} = \mathbf{C}_{55} \mathbf{\tau}_{\mathbf{y}\mathbf{z}}$$
 3.11e

$$\mathbf{Y}_{zx} = \mathbf{C}_{66} \quad \mathbf{\tau}_{zx} \qquad 3.11f$$

and the compliance (flexibility) matrix becomes

Fig. 3.3. 3-Dimensional state of stress

Fig. 3.4. 3-Dimensional element

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ & C_{22} & C_{23} & 0 & 0 & 0 \\ & & C_{33} & 0 & 0 & 0 \\ & & & C_{33} & 0 & 0 & 0 \\ & & & & C_{44} & 0 & 0 \\ & & & & C_{55} & 0 \\ & & & & & C_{66} \end{bmatrix}$$
 3.12

and nine independent elastic constants remain. They are called the principal constants and can be expressed in terms of "technical constants". Adopting the notation E_x , E_y , E_z (Young's moduli), G_{xy} , G_{yz} , G_{zx} (Shear moduli) and ν_{12} , ν_{21} , ν_{13} , ν_{31} , ν_{23} , ν_{32} (Poisson's ratios)

Equation (3.11) may be written in the form:

$$\epsilon_{x} = \frac{1}{E_{x}} \sigma_{x} - \frac{\nu_{21}}{E_{y}} \sigma_{y} - \frac{\nu_{31}}{E_{z}} \sigma_{z}$$
 3.13a

$$\varepsilon_{y} = \frac{\nu_{12}}{E_{x}} \sigma_{x} + \frac{1}{E_{y}} \sigma_{y} - \frac{\nu_{32}}{E_{z}} \sigma_{z} \qquad 3.13b$$

$$\varepsilon_{z} = -\frac{\nu_{13}}{E_{z}} \sigma_{x} - \frac{\nu_{23}}{E_{y}} \sigma_{y} + \frac{1}{E_{z}} \sigma_{z} \qquad 3.13c$$

$$\gamma_{xy} = \frac{1}{G_{xy}} \tau_{xy}$$
 3.13d

$$Y_{yz} = \frac{1}{G_{yz}} \tau_{yz}$$
 3.13e

$$\gamma_{zx} = \frac{1}{G_{zx}} \quad \tau_{zx} \qquad 3.13f$$

where

.

,

.

$$E_x v_{21} = E_y v_{12}$$
 3.14a

.

x

•

.

$$E_{y} v_{32} = E_{z} v_{23}$$
 3.14b

$$E_z v_{13} = E_x v_{31}$$
 3.14c

and

$$C_{11} = \frac{1}{E_x}$$
 3.14d

$$c_{12} = -\frac{v_{21}}{E_y}$$
 3.14e

$$C_{13} = -\frac{v_{31}}{E_z}$$
 3.14f

$$C_{22} = \frac{1}{E_y}$$
 3.14g

$$C_{23} = \frac{v_{32}}{E_y}$$
 3.14h

$$C_{33} = \frac{1}{E_2}$$
 . 3.14i

$$C_{\underline{\mu}\underline{\mu}} = \frac{1}{G_{\underline{x}\underline{y}}} \qquad 3.14j$$

$$C_{55} = \frac{1}{G_{yz}} \qquad 3.14k$$

$$C_{66} = \frac{1}{G_{2x}}$$
 3.141

The body which has three orthogonal planes of elastic symmetry at each point is called orthogonally-anisotropic, or for brevity, orthotropic. This form of elastic symmetry is very important because it occurs in fibre composites. If such a material is considered in any other co-ordinates it becomes anisotropic and since the properties will be identified together with the finite element locations in eleven local axes the orthotropic properties are all that is required.

3.4. Transformation Rules for an Orthotropic Body

3.4.1. Stress Transformation

Knowing the stresses in three mutually perpendicular planes or directions, which are referred to as the material natural axes (1, 2, 3), the stress which acts on any plane passing through the same point can be determined. Hence

$$(\sigma_{x})_{n} = \sigma_{11} \cos (n,1) + \tau_{12} \cos (n,2) + \tau_{13} \cos (n,3)$$

$$(\sigma_{y})_{n} = \tau_{12} \cos (n,1) + \sigma_{22} \cos (n,2) + \tau_{23} \cos (n,3)$$

$$(\sigma_{z})_{n} = \tau_{13} \cos (n,1) + \tau_{23} \cos (n,2) + \sigma_{33} \cos (n,3)$$

where $(\sigma_x)_n$, $(\sigma_y)_n$ and $(\sigma_z)_n$ are components of stress which act on any plane with the arbitrary normal direction n and cos (n,1) is the direction cosine between the n-direction and the 1-direction, for example. By projection, using equations d_{POVe} , it is possible to find the normal and tangential components of stress acting on any arbitrary plane.

Considering, for convenience, the reference cartesian system x, y, z, the position of this system with respect to the 1, 2, 3 system is determined by the Table $(3.1) \rightarrow f$ direction cosines, where l, = cos(n,1), m, = cos(n,2) etc. Equation (3.14).

By projecting $(\sigma_x)_n$, $(\sigma_y)_n$, $(\sigma_z)_n$ in the direction of reference axes (i.e. on to the planes normal to the x, y, z axes), we obtain

$$\sigma_{x} = \sigma_{1} l_{1}^{2} + \sigma_{2} m^{2} + \sigma_{3} n^{2} 2 \tau_{12} l_{1} m_{1} + 2 \tau_{13} l_{1} n_{1}$$

$$+ 2 \tau_{13} n_{1} m_{1}$$

$$3.15$$

and

The

$$\tau_{xy} = \sigma_1 l_1 m_1 + \sigma_2 m_1 m_1 + \sigma_3 n_1 n_1 + \tau_{12} (l_1 m_2 + l_2 m_1) + \tau_{23} (m_1 n_2 + m_2 n_1) + \tau_{31} (n_1 l_2 + n_2 l_1)$$
expression for σ_y and σ_z are obtained by means of cyclic mutation of the suffixes of l m and n in Equation (3.15).

permutation of the suffixes of 1 m and n in Equation (3.15). Similarly, τ_{yz} and τ_{xz} may be obtained from Equation (3.16). The general formula for the transformation from 1, 2, 3 to x, y, z systems, in matrix form, will be:-

		1							
σ _x		121	m_{1}^{2}	n <mark>2</mark>	21,m1	2m1n1	2n ₁ 1 ₁		σ ₁
σy		12	m_{2}^{2}	n_2^2	21 ₂ m ₂	2m2n2	2n ₂ l ₂		σ ₂
σ _z	_	1 ² 3	m ² 3	n ² 3	21 ₃ m3	2m ₃ n ₃	2n ₃ 1 ₃		σ3
τ _{xy}		l_1m_1	m ₁ n ₁	$n_1 l_1$	$(l_1m_2+l_2m_1)$	$(m_1n_2+m_2n_1)$	$(n_1l_2+n_2l_1)$	•	τ ₁₂
τ _{yz}		l ₂ m ₂	m ₂ n ₂	n ₂ l ₂	(l ₂ m ₃ +l ₃ m ₂)	$(m_2n_2+m_3n_2)$	$(n_2l_3+n_3l_2)$		τ ₂₃
τ_{zx}		l ₃ m ₃	m ₃ n ₃	n ₃ l ₃	$(l_{3}m_{1}+l_{1}m_{3})$	$(m_{3}n_{1}+m_{1}n_{3})$	(n ₃ l ₁ +n ₁ l ₃)		^τ 31
└──┥		L					_	l	

Table: 3.1. Direction cosines between two sets of coordinates

.

$$\{\sigma\} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \{\sigma\} \qquad 3.17a$$
$$\{\sigma\} = \begin{bmatrix} R_{11} & \{\bar{\sigma}\} \end{bmatrix} \qquad 3.17b$$

3.4.2. Strain Transformation

Let \overline{C}_{ij} be the coefficients of strain for the system 1, 2, 3 of the elements. It is required to determine the coefficients for the new global system x, y, z which will be denoted by C_{ij} . For this new system the equations of the generalised Hooke's law are:

$$\{\varepsilon\} = \begin{bmatrix} C \end{bmatrix} \{\sigma\}$$
 3.18

The elastic potential, which is considered as a function of the components of stress, is determined by Equation (3.4), and its expression is:

$$\Omega = \frac{1}{2} \begin{bmatrix} C \end{bmatrix} \{\sigma\}^{\mathrm{T}} \{\sigma\}, \qquad 3.19$$

whilst the elastic potential for the natural axes of the original element is given by the expression:

$$\Omega = \frac{1}{2} \begin{bmatrix} \overline{c} \end{bmatrix} \{ \overline{\sigma} \} \{ \overline{\sigma} \}$$
 3.20

Equating the two expressions for the elastic potential we obtain the following:

$$\frac{1}{2} \begin{bmatrix} \overline{c} \end{bmatrix} \{\sigma\}^{\mathrm{T}} \{\overline{\sigma}\} = \frac{1}{2} \begin{bmatrix} c \end{bmatrix} \{\sigma\}^{\mathrm{T}} \{\sigma\}.$$
3.21

since

 $\{\overline{\sigma}\} = [\overline{c}] \{\overline{\epsilon}\}$

or

and

 $\{\sigma\} = [C] \{\varepsilon\}$

Equation (3.21) gives:

$$\{\overline{\varepsilon}\}^{\mathrm{T}} \{\overline{\sigma}\} = \{\varepsilon\}^{\mathrm{T}} \{\sigma\}$$

Using Equation (3.17b) we get:

$$\{\overline{\varepsilon}\}^{T} \{\overline{\sigma}\} = \{\varepsilon\}^{T} [\overline{R}] \{\overline{\sigma}\}$$
$$\{\varepsilon\} = [\overline{R}^{T}]^{-1} \{\overline{\varepsilon}\}$$
$$\{\varepsilon\} = [\overline{R}_{\varepsilon}] \{\overline{\varepsilon}\} \qquad 3.22$$

This gives the strain transformation rule. The matrices $\begin{bmatrix} R \end{bmatrix}$ & $\begin{bmatrix} R \\ \epsilon \end{bmatrix}$ each have the property that the inverse of one equals the transpose of the other, i.e.

 $\begin{bmatrix} R \end{bmatrix}^{T} \begin{bmatrix} R_{\varepsilon} \end{bmatrix} = \begin{bmatrix} I \end{bmatrix}$

and

$$\begin{bmatrix} \mathbf{R}_{\varepsilon} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{11} & \frac{1}{2}\mathbf{R}_{12} \\ - & - & - \\ 2\mathbf{R}_{21} & \mathbf{R}_{22} \end{bmatrix}$$
 3.23

3.4.3. Constants of Elasticity

The stress-strain relations may be written in either coordinate system as:-

 $\{\sigma\} = \begin{bmatrix} D \end{bmatrix} \{\epsilon\} \qquad 3.24$

in one and

 $\{\overline{\sigma}\} = [\overline{D}] \{\overline{\varepsilon}\}$ 3.25

in the other

Suppose $\begin{bmatrix} \overline{D} \end{bmatrix}$ is the elasticity matrix related to the material natural axes, and $\begin{bmatrix} \overline{D} \end{bmatrix}$ is required.

We are dealing with orthotropic materials where the elastic properties are known in the principal directions 1, 2, 3 but these properties are needed in global coordinates x, y, z to generate the element stiffness matrix as will be discussed.

Transformation of $[\overline{D}]$ is also needed for the isoparametric shell element of Chapter Four.

The transformation is derived from the arguments that during any loading process the resulting strain energy density must be the same regardless of the coordinate system in which it is computed, thus from Equations (3.19) to (3.22):

$$\Omega = \frac{1}{2} \{\varepsilon\}^{\mathrm{T}} \{\sigma\} = \frac{1}{2} \{\overline{\varepsilon}\}^{\mathrm{T}} \{\overline{\sigma}\} \qquad 3.26$$

Substituting from Equations (3.24) and (3.25) leads to:

$$\{\varepsilon\}^{\mathrm{T}} \{\sigma\} = \{\varepsilon\}^{\mathrm{T}} [\mathsf{R}_{\varepsilon}]^{\mathrm{T}} [\bar{\mathsf{D}}] \{\bar{\varepsilon}\}$$
$$\{\varepsilon\}^{\mathrm{T}} [\{\sigma\} - [\mathsf{R}_{\varepsilon}]^{\mathrm{T}} [\bar{\mathsf{D}}] [\mathsf{R}_{\varepsilon}] \{\varepsilon\}] = 0 \qquad 3.27$$

As the latter relation must be true for any $\{\varepsilon\}$, the coefficients of $\{\varepsilon\}$ must vanish. Thus we obtain:

 $\{\sigma\} = [D] \{\varepsilon\}$

where the coefficients of D are as follows:

$$\begin{bmatrix} \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\varepsilon} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \overline{\mathbf{D}} \end{bmatrix} \begin{bmatrix} \mathbf{R}_{\varepsilon} \end{bmatrix} \qquad 3.28$$

CHAPTER FOUR

•

FINITE ELEMENT MODEL AND SOLUTION

•

4

CHAPTER FOUR

VARIABLE_NUMBER NODE THICK ANISOTROPIC

SHELL ELEMENT

4.1. INTRODUCTION

In this chapter a general formulation for a quadratic, isoparametric, anisotropic element of a thick shell is developed which permits the analysis of any arbitrarily layered curved shell or solid structure.

The use of general shell theory to derive doubly curved elements involves geometric complexities that make shell theory difficult. These difficulties are avoided with gained economy by appropriately specialising a three-dimensional solid element which has suitable doubly curved surfaces.

To achieve this, an isoparametric element is chosen, Ref. (45) with the same interpolation functions to define the element shape as those used to define displacements within the element.

4.2. <u>Geometrical Representation of Various Elements in Natural</u> and Global Coordinates.

In this work, all elements will be geometrically represented according to its global nodal coordinates. On the other hand each one of them should be represented according to the orthotropic properties of its material. Therefore, it is necessary to define the natural axes of each material with respect to the global axes to obtain a general representation. Consider the linear interpolation function

$$f_{1} = \alpha_{1} + \alpha_{2}\xi + \alpha_{3}\eta + \alpha_{4}\zeta + \alpha_{5}\xi\eta + \alpha_{6}\eta\zeta + \alpha_{7}\xi\zeta + \alpha_{8}\xi\eta\zeta \qquad 4.1$$

To represent a linear 8-node hexahedron Fig. (4.1), where ξ , η , ζ are the isoparametric (natural) coordinates of the elements, then the boundary conditions are as follows:-

 ξ , η , $\zeta = 0$ (at the centroid of the element) and ξ , η , $\xi = \pm 1$ (at the surface). See Appendix (5). A more warped element with doubly curved surfaces Fig. (4.2) could be adequately represented by the quadratic interpolation function

$$f_{2} = f_{1} + \alpha_{9}\xi^{2} + \alpha_{10}n^{2} + \alpha_{11}\zeta^{2} + \alpha_{12}\xi^{2}n$$

$$+ \alpha_{13}\xi^{2}\zeta + \alpha_{14}n^{2}\xi + \alpha_{15}n^{2}\zeta + \alpha_{16}\zeta^{2}\xi \qquad 4.3$$

$$+ \alpha_{17}\zeta^{2}n + \alpha_{18}\xi^{2}n\zeta + \alpha_{19}n^{2}\xi\zeta + \alpha_{20}\zeta^{2}\xin$$

The global coordinates of any nodal point (x, y, z) would then be

$$x = \sum_{i=1}^{2^{0}} N_{i} x_{i}$$

$$y = \sum_{i=1}^{2^{0}} N_{i} y_{i}$$

$$z = \sum_{i=1}^{2^{0}} N_{i} z_{i}$$

$$4.4$$

Where (N_i) the mapping or shape functions are

$$N_{i} = \frac{1}{8}(1+\xi\xi_{i})(1+\eta\eta_{i})(1+\zeta\zeta_{i})(\xi\xi_{i}+\eta\eta_{i}+\zeta\zeta_{i}-2)$$

for i = 1 to 8
4.5a

$$N_{i} = \frac{1}{4} (1 - \xi^{2}) (1 + \eta \eta_{i}) (1 + \zeta \zeta_{i})$$

for i = 9, 11, 13, 15
4.5b

$$N_{i} = \frac{1}{4}(1-\eta^{2})(1+\xi\xi_{i})(1+\zeta\zeta_{i})$$

for i = 10, 12, 14, 16 4.5c
$$N_{i} = \frac{1}{4}(1-\zeta^{2})(1+\xi\xi_{i})(1+\eta\eta_{i})$$

for i = 17, 18, 19, 20 4.5d

This mapping is an interpolation scheme that yields the global xyz coordinates of any point in the element when the corresponding natural $\xi\eta\zeta$ coordinates are given. The natural coordinate axes $\xi\eta\zeta$ are in general not orthogonal. They are orthogonal, of course, when the surfaces are planes and the element is the basic rectangular parallelepiped. Fig. (4.3a).

4.3. Displacement Fields

The displacements within the element are defined by the same interpolation (shape) functions as are used to define the element shape. Thus

$$u = \sum_{i=1}^{2^{0}} N_{i} u_{i}$$

$$v = \sum_{i=1}^{2^{0}} N_{i} v_{i}$$

$$w = \sum_{i=1}^{2^{0}} N_{i} w_{i}$$

$$4.6$$

In which u, v and w are measured along the global coordinate axes x, y and z and the u_i , v_i , w_i are measured along the natural coordinate directions $\xi\eta\zeta$

Fig. 4.1. 8-Node first order hexahedron

Figs. 4.3a., 4.3b & 4.3c General elements (natural coordinates).

Fig. 4.4. Twenty node quadratic hexahedron

The relationships between derivatives in the two cordinate systems are established by the chain rule of differentiation as follows, for example (where, e.g., $x_{,\xi}$ means $\frac{\partial x}{\partial \xi}$)

$$\begin{cases} ()_{i} \\ ($$

Where [J] is the summed Jacobian matrix, defined by the following:-

$$\begin{bmatrix} J \end{bmatrix} = \sum_{i=1}^{2^{0}} \begin{pmatrix} \frac{\partial N_{i}}{\partial \xi} \\ \frac{\partial N_{i}}{\partial \eta} \\ \frac{\partial N_{i}}{\partial \zeta} \end{pmatrix} \begin{bmatrix} x_{i} \ y_{i} \ z_{i} \end{bmatrix} \qquad 4.8$$

The differential volume of the whole element transforms to

d (volume) = $\left| \det \begin{bmatrix} J \end{bmatrix} \right| d_{\xi} d_{\eta} d_{\zeta}$ 4.9 in which $\left| \det \begin{bmatrix} J \end{bmatrix} \right|$ = the absolute value of the determinant of the summed Jacobian matrix.

Since [J] is a variable, numerical integration is unavoidable. Three dimensional gaussian quadrature is used.

The nodal variables are translations (without derivatives) and the coordinate transformations have the same form as those of the displacements.

To ensure convergence

$$\sum_{i=1}^{2^{0}} N_{i} = 1$$
 4.10

4.4. Strain Displacement Relationships

.

For the three dimensional solid the field of total strain is expressed as:

4.11

4.12

Substituting Equation (4.6) into (4.11) gives:

$$\frac{\partial u}{\partial x} = \sum_{i=1}^{2^{0}} \frac{\partial N_{i}}{\partial x} u_{i}$$

$$\frac{\partial v}{\partial y} = \sum_{i=1}^{2^{0}} \frac{\partial N_{i}}{\partial y} v_{i}$$

$$\frac{\partial w}{\partial z} = \sum_{i=1}^{2^{0}} \frac{\partial N_{i}}{\partial z} w_{i}$$

$$\frac{\partial u}{\partial z} + \frac{\partial v}{\partial x} = \sum_{i=1}^{2^{0}} \frac{\partial N_{i}}{\partial y} u_{i} + \sum_{i=1}^{2^{0}} \frac{\partial N_{i}}{\partial x} v_{i}$$

$$\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \sum_{i=1}^{2^{0}} \frac{\partial N_{i}}{\partial z} v_{i} + \sum_{i=1}^{2^{0}} \frac{\partial N_{i}}{\partial y} u_{i}$$

$$\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} = \sum_{i=1}^{2^{0}} \frac{\partial N_{i}}{\partial x} w_{i} + \sum_{i=1}^{2^{0}} \frac{\partial N_{i}}{\partial y} u_{i}$$

١

$$\{\varepsilon\} = \sum_{i=1}^{2^{0}} \begin{cases} \frac{\partial N_{i}}{\partial x} & 0 & 0 \\ 0 & \frac{\partial N_{i}}{\partial y} & 0 \\ 0 & 0 & \frac{\partial N_{i}}{\partial z} \\ \frac{\partial N_{i}}{\partial y} & \frac{\partial N_{i}}{\partial x} & 0 \\ 0 & \frac{\partial N_{i}}{\partial z} & \frac{\partial N_{i}}{\partial y} \\ 0 & \frac{\partial N_{i}}{\partial z} & \frac{\partial N_{i}}{\partial y} \\ \frac{\partial N_{i}}{\partial z} & \frac{\partial N_{i}}{\partial y} \\ \frac{\partial N_{i}}{\partial z} & 0 & \frac{\partial N_{i}}{\partial x} \end{cases} \begin{bmatrix} u_{i} \\ v_{i} \\ w_{i} \end{bmatrix}$$
4.13

or

$$\{\varepsilon\} = \sum_{i=1}^{2^{0}} \left[B\right]_{i} \{\delta\}_{i} \qquad 4.14$$

The interpolation functions N_i are defined in terms of the natural curvilinear coordinates ξ , η , ζ , so that a change in the derivatives of $[B]_i$ is required to relate global to natural derivatives thus:-

$$\begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} = \begin{bmatrix} J \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \zeta} \end{bmatrix} \qquad 4.15$$

Where $\begin{bmatrix} J \end{bmatrix}$ is as defined in Equation (4.8). Hence

$$\{\varepsilon\} = \sum_{i=1}^{2^{0}} [J]^{-1} [B^{*}]_{i} \{\delta\}$$
Where $[B^{*}]$ is given by the Equation.

Thus

$$\begin{bmatrix} \frac{\partial N_{i}}{\partial \xi} & 0 & 0 \\ 0 & \frac{\partial N_{i}}{\partial \eta} & 0 \\ 0 & 0 & \frac{\partial N_{i}}{\partial \zeta} \\ 0 & 0 & \frac{\partial N_{i}}{\partial \zeta} \\ \frac{\partial N_{i}}{\partial \eta} & \frac{\partial N_{i}}{\partial \xi} & 0 \\ 0 & \frac{\partial N_{i}}{\partial \zeta} & \frac{\partial N_{i}}{\partial \eta} \\ \frac{\partial N_{i}}{\partial \zeta} & 0 & \frac{\partial N_{i}}{\partial \xi} \end{bmatrix}$$

Equation (4.16) can be written as:

$$\{\varepsilon\} = \begin{bmatrix} B \end{bmatrix} \{\delta\} \qquad 4.17$$

Which is the required strain-displacement relationship

4.5. Stress-Strain Relations

For an orthotropic material whose natural axes are 1-2-3, the stress strain relations are: Ref. (46).

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \tau_{12} \\ \tau_{23} \\ \tau_{31} \end{pmatrix} = \begin{bmatrix} D_{11} & D_{12} & D_{13} & 0 & 0 & 0 \\ & D_{22} & D_{23} & 0 & 0 & 0 \\ & D_{33} & 0 & 0 & 0 \\ & & G_{12} & 0 & 0 \\ & & & G_{23} & 0 \\ & & & & & G_{23} & 0 \\ & & & & & & & G_{31} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{33} \\ \varepsilon_{31} \end{pmatrix}$$

 or

$$\{\sigma'\} = \left[D \right] \{\epsilon'\}$$
 4.18

4.6. Derivation of the Stiffness Matrix

The stiffness matrix of the element is

$$\begin{bmatrix} k \end{bmatrix} = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \begin{bmatrix} B \end{bmatrix}^{T} \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B \end{bmatrix} \left| \det \begin{bmatrix} J \end{bmatrix} \right| d\xi dn d\zeta$$

The Jacobian matrix and its determinant are computed directly from Equation (4.8), whilst the integration of the above Equation is carried out numerically.

Gr uss quadrature with respect to $\xi \eta$ and ζ completes the integration according to the required degree using two, three or four integration points, which are controlled in the present program.

For thick shells the through thickness interpolations, in ζ can be evaluated less accurately than those in-plane (i.e. in the ξ and η plane), for which the number of points may be 4.

Integration can be achieved by integrating first with respect to one coordinate and then with respect to the other two. Thus, integration is as follows:

$$I = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta, \zeta) d\xi d\eta d\zeta$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} W_{i} W_{j} W_{k} f(\xi_{i}, \eta_{j}, \zeta_{k})$$

where n = the number of integration points and W = their associated 'weights'.

It is possible to use the same number of points in each direction, but it is not essential to do so, for the reasons explained above.

Where

$$D_{11} = E_1/C_3$$

$$D_{12} = (C_1/C_2) D_{11}$$

$$D_{13} = C_4 D_{11}$$

$$D_{22} = E_2/C_1 + (C_2/C_1) D_{12}$$

$$D_{23} = v_{32} E_2/C_1 + (C_2/C_1) D_{13}$$

$$D_{33} = E_3 + v_{31} D_{13} + v_{32} D_{23}$$

where

$$c_{1} = 1 - v_{32}^{2} (E_{2}/E_{3})$$

$$c_{2} = v_{21} + v_{31} v_{32} (E_{2}/E_{3})$$

$$c_{3} = 1 - (E_{1}/E_{3}) \left[v_{31}^{2} + ((E_{3}/E_{2}) (c_{2}^{2}/c_{1})\right]$$

$$c_{4} = v_{31} + v_{32} (c_{2}/c_{1})$$

in which E_1 , E_2 , E_3 are Young's moduli of the material in the directions of its natural axes 123, v_{12} , v_{23} , v_{13} are the Poisson's ratios and G_{12} , G_{23} and G_{31} are the moduli of Rigidity Constants.

If the directions of symmetry of the material do not coincide with the global reference directions the matrix [D] has to be transformed, as discussed in Chapter 3.

4.7. Flow chart of solid finite element computer programme

The equations in Chapter 3 and the work done in this chapter were written in a computer programme (BFSOLID). The following is a flow chart and the listing in FORTRAN IV is given in APPENDIX 2E.

CHAPTER FIVE

-

.

IDEALIZATION OF FINITE ELEMENTS FOR STRUCTURAL

DESIGN, NUMERICAL AND EXPERIMENTAL RESULTS

•

•

CHAPTER FIVE

IDEALIZATION OF FINITE ELEMENTS FOR STRUCTURAL DESIGN, . NUMERICAL AND EXPERIMENTAL RESULTS

5.1. Introduction

The finite element program (BFSOLID) was used to solve the challenging problems of large water valves more accurately, especially when the blade dimensions were such as to exclude the work done in Chapter Two, i.e. outside the assumption of thin plate theory, such as when the thickness-diameter ratio is more than 1/8. An example of an ordinary cast iron blade is discussed in 5.2.

The program, or any equivalent isotropic solid finite element program, proved to be the only accurate method for structural analysis and design when the large diameter and high pressure necessitated the blade to take the form of a thick plate supported on a lattice which could take different complicated configurations as shown in Figs. (5.1a) and (5.1b). Ref. (50).

For anisotropic material of the fibre composite type, the various elastic constants have to be inserted into the computer program according to Equations (3.14a) to (3.141). For isotropic material the same equations are used but with only three elastic constants E, ν and G to which all others are equal as explained later in 5.2.

Fig. 5.1a. Blades of throughflow valves Fig. 5.1b. Blades of throughflow valves

The analysis of fibre composite material is a vast subject of a complex nature and theories have been developed whereby, knowing the properties of the fibres the matrix and their volume fractions in a composite, one can estimate the elastic constants and strength properties of unidirectional laminates, unidirectional laminates with orientated fibres, balanced laminates and multilayer, multidirectional composites.

The ability to predict the elastic properties of various types of laminates and composites has been verified experimentally. A great deal of theoretical and experimental work on predicting strength properties and failure modes in composite materials subjected to various types of loading has also been done. Refs. (42), (43), (51), (52), (53), (54), (55), (56) and (57), give a good impression of the underlying difficulties of the subject.

Various factors of manufacturing technology, as well as temperature, chemical and environmental effects that influence the strength and modes of failure have also been covered extensively in Refs. (58), (59), (60), (61) and (62).

To develop a practical approach to analyse stresses and strains in the elastic region where the environmental problems of temperature, chemical and time dependent factors are covered by complying with standards, Ref. (63), only partial experimental verification of the elastic properties of such composites has been obtained up to the present time. A great deal of work is still in progress to overcome this problem where, by specifying the fibre

content and alignment of known types it is possible to predict the elastic constants of the end product as though it were an anisotropic continuum.

An attempt to give a practical approach for stress analysts and designers is discussed in 5.3.

The program was also used to analyse a 60" butterfly valve made up of three materials, namely; woven roving g.r.p., chopped strand mat g.r.p. and stainless steel shaft inserts. This is described in 5.4.

5.2. Cast Iron Blade of an Ordinary Butterfly Valve.

A 72" diameter, 6" thick blade of a butterfly valve, shown in Fig. (5.2), made of cast iron GR17 which is fitted in a body made of the same material, is to be checked for a design requirement of a maximum deflection of 0.125" for sealing under a test pressure of 75 psi. Using Appendix 3:

$$v = 0.26$$

$$C_{1} = 0.386$$

$$q = 75 \text{ psi}$$

$$a = 71.2''/2$$

$$t = 6''$$

$$W = \frac{0.386 \times 75 \times 71.2^{4} \times 12(1-0.26^{2})}{16 \times 18 \times 10^{6} \times 6^{3}}$$

$$= 0.134''$$

Deflection due to the reaction couple

$$W = \frac{MR}{2D} (\frac{\pi}{2} - 1)$$
 $M = R \ge \frac{t}{3}$
 $2R = 298614$ lb.

Fig. 5.2. 72" dia. Cast iron butterfly valve - blade

$$W = \frac{298614 \times 71.2 \times 12(1-v^2)(\frac{\pi}{2}-1)}{2 \times 2 \times 18 \times 10^6 \times 6^3}$$

Total W = 0.134 + 0.008 = 0.142"

Idealizing the blade into 34 21-node elements with a total of 94 nodes as shown in Figs. (5.3a), (5.3b) and (5.3c) and giving $E_{11} = E_{22} = E_{33} = 18 \times 10^6$ psi and $v_{12} = v_{13} = v_{31} = 0.26$ and $G_{12} = G_{13} = G_{23} = \frac{E}{2(1+v)} = 7.14 \times 10^6$ psi the maximum deflection occurring at node 92 or 89 was - .10387".

The valve was pressurised up to 75 psi and the deflections measured at locations shown on Fig. (5.4a) relative to the body. The total deflection was 0.095" as shown in Figs. (5.4b) and (5.4c) which also shows the deflected shape in the two perpendicular planes of interest.

5.3. Test Samples of Composite Materials.

5.3.1. Introduction

G.R.P. can be taken as a good example of fibre composite material which is widely used in an increasing number of manufacturing industries. One major use is for manufacturing pipes and pipe fittings which can combat the corrosive effect of sea water. Ref. (64).

A great deal of literature on G.R.P. is available. Ref. (61), (62), (65) and (66) are given as samples of this literature.

Many G.R.P. manufacturers are now prepared to give reliable basic mechanical properties as shown in Table (5.1). Ref. (67).

In these tables the flexural (elastic) modulus of a composite consisting of continuous, aligned fibres in a softer matrix is given by simple elasticity theory using

$$E_{c} = E_{c}V_{f} + E_{m}(1-V_{f})$$

Figs. 5.3a & 5.3b. Finite element mesh of the cast iron blade

Lower Face

Fig. 5.3c. Finite element mesh of the cast iron blade.

Fig. 5.4a. Deflection test of cast iron blade.

Fig. 5.4b. Deflection at centre relative to bearings.

Fig. 5.4c. Deflection at wings relative to centre.

Material	Fibre Content by Weight %	Density Mg/m ²	Tensile Strength GN/m ²	Tensile Modulus GN/m ²	Compressive Strength MN/m ²	Flexural Strength MN/m ²	Flexural Modulus GN/m ²
<u>Uni-directional glass</u> Wound epoxide Uni-directional polyester	60-90 50-75	1.7-2.2 1.6-2.0	530-1730 410-1180	28-62 21-41	310-480 210-480	690-1860 690-1240	34-48 27-41
<u>Bi-directional glass</u> Satin weave polyester Woven roving polyester	50-70 45-60	1.6-1.9 1.5-1.8	250-400 230-340	14-25 13-17	210-280 98-140	207-450 200-270	17-23 10-17
<u>Random glass mat</u> Preform polyester Hand & spray up polyester	25-50 25-40	1.4-1.6 1.4-1.5	70-170 63-40	6-12 6-12	130-160 130-170	70-240 140-250	5-8
<u>Moulding compounds</u> DMC polyester SMC polyester Glass filled nylon	10-40 20-35 20-40	1.8-2.0 1.8-1.85 1.3-1.5	34-70 50-90 120-200	12-14 9 6-14	140-180 240-310 110-170	40-140 140-210	9-14

 $1 \text{ GN/m}^2 = .14508 \text{ x } 10^6 \text{ psi}$

Table: 5.1. Material properties as given by manufacturers. Ref. (67).

where the subscripts c, f and m refer to composite, fibre and matrix and V_f is the fibre volume fraction. This expression is strictly true only for the case where both fibre and matrix are isotropic and it assumes that the two components are constrained to deform together. This elementary "Rule of mixtures" is in fact a lower bound.

Such moduli will generally be exceeded by an amount depending upon the difference in Poisson's ratio of the two constituents, as a result of the lateral elastic constraint which the two phases exert on one another. The equivalent theoretical expression for the shear modulus can be written as follows:-

$$\frac{G_{c}}{G_{m}} = \left[\frac{\left(\frac{G_{f}}{G} + 1\right) + \left(\frac{G_{f}}{G} - 1\right) V_{f}}{\left(\frac{G_{f}}{G} + 1\right) - \left(\frac{G_{f}}{G} - 1\right) V_{f}} \right]$$

Which shows that the ratio $\frac{G_c}{G_m}$ is a function of V_f depending on the value of stiffness ratio, $\frac{G_f}{G_m}$, after Tsai, Adams and Doner Ref. (68).

As discussed in Chapter 3, an aligned composite is highly anisotropic. A lot of work is based on the assumption that the material is transversely isotropic. However, if the material is being used in plate form, as is frequently the case with laminates, the assumption of a plane stress state reduces the number of elastic constants to four, E_{11} , E_{22} , v_{12}/E_{11} or v_{21}/E_{22} and G_{12} , which can be easily established by a simple testing procedure for the first three carried out on a test coupon supplied by the

manufacturer. This would be an improvement on the manufacturer's information and is covered in the present work.

To test the solid finite element experimentally an attempt to establish as many elastic constants as possible to satisfy Equations (3.14a) to (3.141) was made. In many texts, Ref. (69), $E_{33} \simeq E_{22}$ where E_{22} is $< E_{11}$. From the tests v_{13} and v_{23} can be easily obtained and, using Equation (3.14b) and Equation (3.14c), most of the remaining elastic constants can be estimated.

The shear modulus proved a more critical factor to assume without the difficult and expensive experimental measurement which would otherwise be necessary. One of the most serious limitations of fibre composite materials is that the shear strength parallel with the fibres can be as low as that of the matrix or the fibre resin interface, either of which may be an order of magnitude (or more) lower than the maximum tensile strength of the composite. Consequently the composite may fail at low loads if the stress system is such as to cause a high shear stress on these planes of weakness. A bar loaded in flexure will fail in shear at the neutral plane before it breaks by tensile failure of the outer fibres if the ultimate shear stress, τ_{max} is reached before the outer fibre failure stress σ_{max} . Thus a short composite beam was used as a test sample to ensure that no shear failure occurred in the elastic region and the shear modulus assumption is a lower bound one. This assumes the material to be homogeneous and isotropic in all directions which, although not true, if observed with the guide lines laid down in BS. 4994 would produce a structurally sound product.

From this simple beginning a sample of each distinctive layer or solid can be specified and the general behaviour of the complete structure can be predicted as discussed below.

5.3.2. Preparation of test specimens, testing equipment and procedure

(i) <u>The Samples</u>

A number of deep short beams, samples (D1, D2, D3, D4) made of three distinctive layers are cut from a block which is layered up from three distinctive layers, as shown in Figs. (5.5a), (5.5b), (5.6a) and (5.6b).

The block is made during the laying of the layers by installing plastic insulation sheets after the completion of each layer, as shown in Fig. (5.7), the layers being made from woven roving and uni-directional glass polyester material as shown in Fig. (5.8). Each layer is then cut into specimens and carefully marked to show the principal natural axis of the material as shown in Figs. (5.9), (5.10), (5.11) and (5.12).

(ii) <u>Test procedure</u>

Two longitudinal and two transverse strain gauges of two rosette strain gauges type FRA-6-11 made by T.S.K. Ltd. gauge resistance 120 \pm 0.5 Ω , gauge length 6mm were stuck at the top and bottom surfaces. The adhesive used was CN adhesive made by T.M.L. Ltd. of T.S.K. Ltd.

The two longitudinal strain gauges were arranged as a 'half-bridge' and fed with 3.V through a Brueland and Kjaer strain gauge amplifier, type 1525. The output was fed back to the amplifier which indicated the total strain (microstrain).

Fig. 5.5a. Actual dimensions of composite deep beam No. D1.

Fig. 5.5b. Composite deep beam specimen

Fig. 5.6a. Composite deep beam specimen

Fig. 5.6b. Composite deep beam specimen

Fig. 5.8. Woven roving and unidirectional glass layers.

Fig. 5.9. Individual layer specimens

Fig. 5.10. Individual layer specimens.

Fig. 5.11. Individual layer specimens.

.

1

ı.

Fig. 5.12. Individual layer specimens.

.

The transverse strain gauges were arranged in the same manner using another amplifier of the same type. Four point bend testing of the G.R.P. beams was carried out to establish the elastic moduli by applying the load through a load cell as shown in Figs. (5.13) and (5.14). Figs. (5.15) and (5.16) are a sample of the results for layer A. Figs. (5.17) and (5.18) are a sample of the results for layer B. Figs. (5.19) and (5.20) relate to layer C. The two strains were plotted against the central deflections and Figs. (5.21) and (5.22) are a sample of the results for layer A. Figs. (5.23) and (5.24) relate to layer B and Figs. (5.25) and (5.26) to layer C.

Two more strain gauges, one longitudinal and one vertical, of the same type of rosette were stuck to the sides of the test specimens at approximately one third of the beam depth using the same adhesive. Two dummy gauges of the same type were stuck on another specimen and arranged with the active ones into two half-bridges using two amplifiers of the same type as before. This is shown in Figs. (5.27), (5.28), (5.29) and (5.30). The two readings were plotted against one another. Figs. (5.31) and (5.32) are examples of the results for layer A. Figs. (5.33) and (5.34) relate to layer B and Figs. (5.35) and (5.36) to layer C. Figs. (5.37) shows a minimum group of samples, i.e. two per layer and the apparatus used is shown in Fig. (5.38).

Fig. 5.13. 4-Point testing of G.R.P. beam specimens.

Fig. 5.14. 4-Point testing of G.R.P. beam specimens.

Fig. 5.15. Load vs. deflection in direction 1 - Layer A

Fig. 5.16. Load vs. deflection in direction 2 - Layer A

Fig. 5.18. Load vs. deflection in direction 2 - Layer B

Fig. 5.19. Load vs. deflection in direction 1 - Layer C

Fig. 5.20. Load vs. deflection in direction 2 - Layer C

Fig. 5.21. Longitudinal & transverse strain vs. deflection direction 1 - Layer A.

Fig. 5.22. Longitudinal & transverse strain vs. deflection direction 2 - Layer A.

Fig. 5.23. Longitudinal & transverse strain vs. deflection direction 1 - Layer B.

Fig. 5.24. Longitudinal & transverse strain vs. deflection direction 2 - Layer B

Fig. 5.25. Longitudinal & transverse strain vs. deflection direction 1 - Layer C.

)

Fig. 5.26. Longitudinal & transverse strain vs. deflection direction 2 - Layer C.

Fig. 5.27. 4-Point bend testing of G.R.P. beam for v₁₃ & v₂₃

Fig. 5.28. 4-Point bend testing of G.R.P. beam for $v_{13} & v_{23}$

Fig. 5.29. 4-Point bend testing of G.R.P. beam for $v_{13} & v_{23}$

Fig. 5.30. Actual size of specimen.

263.

267.

Fig. 5.37. Minimum set of specimens

Fig. 5.38. Apparatus used for 4-point bend testing of beams.

5.3.3. Elastic constants of the specimens

Using Equation (2.104) with $l_1 = 4$ " and $l_2 = 2$ " as shown in Figs. (5.13) and (5.27) and Equation (2.105) gives:-

$$E = \frac{W}{\delta} \times \frac{22}{3} \times \frac{12}{b d^3}$$
 lb. in.

and measuring all specimens accurately to ± 0.001 ", E_{33} was assumed to be lower than E_{11} and E_{22} and taken to be 1 x 10⁶ psi as suggested by a reliable manufacturer. G_{12} was assumed to be 2 x 10⁵ psi and G_{13} and G_{23} were assumed to be the same proportions as the relevant elastic moduli.

(i) For Layer A

From Fig. (5.15) $E_{11} = 1.274 \times 10^{6} \text{ psi } \pm 7\frac{1}{2}\%$ From Fig. (5.16) $E_{22} = 1.565 \times 10^{6} \text{ psi } \pm 7\frac{1}{2}\%$ From Fig. (5.22) $v_{12} = .163 \pm 5\%$ From Fig. (5.23) $v_{21} = 0.99 \pm 4\%$ From Fig. (5.31) $v_{13} = .48^{\circ} \pm 2\%$ From Fig. (5.32) $v_{23} = .438 \pm 2\%$ E_{33} was assumed to be 1 x 10⁶ psi, G_{12} was assumed to be 2 x 10⁵ psi, G_{13} was assumed to be 1.3 x 10⁵ psi, G_{23} was assumed to be 1.6 x 10⁵ psi.

(ii) For Layer B

From Fig. (5.17) $E_{11} = 1.62 \times 10^{-6} \text{ psi } \pm 7\frac{1}{2}\%$ From Fig. (5.18) $E_{22} = 1.8 \times 10^{-6} \text{ psi } \pm 7\frac{1}{2}\%$ From Fig. (5.23) $v_{12} = .159 \pm 3\%$ From Fig. (5.24) $v_{21} = .128 \pm 2\%$ From Fig. (5.33) $v_{13} = .325 \pm 2\%$ From Fig. (5.34) $v_{23} = .29 \pm 2\%$ E_{33} was assumed to be 1 x 10⁵ psi, G₁₂ was assumed to be 2 x 10⁵ psi, G₁₃ was assumed to be 1.11 x 10⁵ psi, G₂₃ was assumed to be 1.68 x 10⁵ psi.

```
(iii) For Layer C
```

From Fig. (5.19) $E_{11} = 1.62 \times 10^{6}$ psi ± 6% From Fig. (5.20) $E_{22} = 1.66 \times 10^{6}$ psi ± 6% From Fig. (5.25) $v_{12} = .128 \pm 1\%$ From Fig. (5.26) $v_{21} = .128 \pm 1\%$ From Fig. (5.35) $v_{13} = .49 \pm 1\%$ From Fig. (5.36) $v_{23} = .40 \pm 2\%$ E_{33} was assumed to be 1 x 10⁶ psi, G_{12} was assumed to be 2 x 10⁵ psi, G_{13} was assumed to be 1.2 x 10⁵ psi, G_{23} was assumed to be 1.95 x 10⁵ psi.

5.3.4. Finite Element Idealization of G.R.P. Test Beam

A finite element mesh as shown in Fig. (5.39) was arranged to suit the different average thicknesses of all three layers, to suit the supporting arrangement of the test, the location of the strain gauges on the test beam and to allow the application of a load off the centre so as to cause a complicated case of torsional bending as well as pure bending. The mesh consisted of 144 elements and 260 nodes. The properties of each element were read individually as E_{11} , E_{22} , E_{33} , ν_{12} , ν_{13} , ν_{23} , G_{12} , G_{13} , and G_{23} . ν_{21} was used to check the accuracy of the experimental results.

The program would give values for v_{21} , v_{31} , v_{32} using Equations (3.14a) (3.14b) and (3.14c). In calculating stresses the average of the values from all elements adjacent to the node is used. If the node is at the interface of two layers, the average of the elements in one layer is calculated separately from those elements meeting at the node from another layer.

5.3.5. Experimental Work on G.R.P. Test Beam

(i) Test specimen

The test on the multilayered beam from the end Block D, No. D4 is described in this section. Its measured dimensions were 2.86" x 1.86" x 9.78", considering the average thickness of Layer A to be 0.84", Layer B - 1.06" and Layer C - 0.98".

Six rosette strain gauges type FRA-6-11 made by T.S.K. Ltd. Gauge resistance $120 \pm 0.5\Omega$, gauge length 6mm were stuck 0.5" away from the support as shown in Figs. (5.40a), (5.40b) and (5.41) and their location on the finite element mesh is shown in Fig. (5.44). The gauges were located near the support and a cantilever arrangement was adopted to give higher and more readable strains from the equipment available.

The upper surface of the specimen had to be filed smooth to stick rosette No. 1 which reduced the thickness of Layer A by 0.14" for a length of 0.78".

The specimen was clamped to a heavy table as shown in Figs. (5.41), (5.42) and (5.43). The loads were applied through a free hook into a shallow dent in the upper surface of the

273.

..-

Fig. 5.40b. Location and numbers of strain gauges.

Fig. 5.41. Experiment arrangement of G.R.P. test beam.

Fig. 5.42. Experiment arrangement of G.R.P. test beam.

Fig. 5.43. Experiment arrangement of G.R.P. test beam.

Fig. 5.44. Gauge locations on the finite element mesh.

specimen 0.5" from both edges equivalent to Node 24 on the finite element mesh, so as to introduce combined torsion and bending.

(ii) <u>Testing procedure</u>

(a) <u>Stresses</u>

The 18 gauges from the six rosettes were arranged with 18 dummy gauges from six similar gauges stuck on other specimens of the same material so that each active gauge and the corresponding dummy gauge were connected to a channel of a Brueland and Kjaer switching unit type 1542 from which they were arranged in a half bridge and fed with 3.0V through a Brueland and Kjaer strain gauge amplifier type 1526. The output was fed back to the amplifier which indicated the total strains in microstrains on a L.E.D. display. The highest strain recorded was 630 microstrains with the accuracy of the equipment of ± 30 microstrains.

The stresses were calculated using the first terms of Equations (3.13a), (3.13b) and (3.13c).

The equivalent stresses to those occurring at the corner of the relevant elements in the relevant layer were plotted on Figs. (5.45), (5.46), (5.47), (5.48), (5.49), (5.50), (5.51), (5.52), (5.53), (5.54), (5.55) and (5.56) against the results from the finite element solution. As can be seen the results were very satisfactory.

278.

Fig. 5.45. Comparison of stresses in direction 1 at Node 203

J

Fig. 5.46. Comparison of stresses in direction 2 at Node 203

Fig. 5.47. Comparison of stresses in direction 2 at Node 210

Fig. 5.48. Comparison of stresses in direction 3 at Node 210

Fig. 5.49. Comparison of stresses in direction 2 at Node 215

Fig. 5.50. Comparison of stresses in direction 3 at Node 215

Fig. 5.51. Comparison of stresses in direction 1 at Node 218

Fig. 5.52. Comparison of stresses in direction 2 at Node 218

Fig. 5.53. Comparison of stresses in direction 2 at Node 211

Fig. 5.54. Comparison of stresses in direction 3 at Node 211

Fig. 5.55. Comparison of stresses in direction 2 at Node 206

Fig. 5.56. Comparison of stresses in direction 3 at Node 206

(b) <u>Deflections</u>

Three dial gauges were set up to measure the deflections. Two vertical directions at the equivalent locations of Node 1 and 45 on the finite element mesh and one horizontal at the equivalent location of Node 30, as shown in Figs. (5.41), (5.42) and (5.43).

As the clamping length was short a fourth gauge was located 0.5" away from the support to indicate any rigid body rotation.

The deflections measured were plotted against the finite element predicted deflections in Figs. (5.57), (5.58) and (5.59). The relative deflections in the three directions corresponded closely to the theoretical predictions although the absolute magnitudes were somewhat different. It should be remembered that the deflections were small and difficult to measure accurately.

5.4. G.R.P. Blade of an Ordinary Butterfly Valve

A 60" nominal diameter G.R.P. butterfly value as shown in Figs. (5.60), (5.61), (5.62) and (5.63), made of isophthalic polyester resin reinforced by woven-roving glass fibres as the main material and chopped strand mat as another material around the shaft hubs. The blade is retained and driven within the body of the value, which is made from woven-rovings and chopped strand reinforced polyester resin of the same type, by stainless steel stub shafts located in the disc by stainless steel inserts.

The dimensions shown in Fig. (5.60) were calculated so as to satisfy the maximum allowable deflection for sealing the valve using the work done in Chapter 2.

Fig. 5.57. Load vs. deflections in direction 3 at Node 1

Fig. 5.58. Load vs. deflections in direction 3 at Node 45.

Fig. 5.59. Load vs. deflections in direction 1 at Node 30

Fig. 5.60. G.R.P. butterfly blade

.

295.

Fig. 5.61. G.R.P. butterfly blade.

Fig. 5.62. G.R.P. butterfly blade

Fig. 5.63. G.R.P. butterfly blade.

A finite element analysis using (BFSOLID) was carried out. The blade was idealized into 44 elements, 9 of which were given the stainless steel mechanical properties, 11 were given the chopped strand woven glass reinforced plastic mechanical properties as a homogenous material as shown in Figs. (5.64a) and (5.64b). The deflections predicted were very satisfactory.

For the allowable design stresses the factor of safety was calculated in accordance with BS.4994, Ref. (63) as follows:-Factor relating to method of manufacturing $k_1 = 1.6$ Factor relating to long term behaviour $k_2 = 1.2$ Factor relating to temperature $k_3 = 1.1$ Factor relating to cyclic loading $k_4 = 1.1$ Factor relating to curing procedure $k_5 = 1.3$ Overall design factor:-

 $k = 3 \times k_1 \times k_2 \times k_3 \times k_4 \times k_5 = 9.06$ Adopted factor = 10.

All the stresses predicted by the finite element analysis were lower than the allowable stresses.

An experimental programme for determining the stresses is planned in the near future. The location and direction of the strain gauges has been chosen to suit the finite element analysis, as shown in Figs. (5.65a) and (5.65b). The deflections will also be checked. The testing arrangement is shown in Fig. (5.66). A fair comment on the test results will be given in Ref. (70), by the eventual users of the valve, two of which will be put into actual service by the C.E.G.B. before the end of 1980.

Lower Face.

Fig. 5.64a. Finite element idealization of G.R.P. blade

Upper Face.

Fig. 5.64b. Finite element idealization of G.R.P. blade

Fig. 5.65a. Strain gauge locations on G.R.P. blade.

.

Fig. 5.65b. Strain gauge locations on G.R.P. blade.

,

Fig. 5.66. Testing arrangement for deflections in G.R.P. blade.

CHAPTER SIX

.

·

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

•

•

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

6.1. The Analysis of Ordinary Blades

6.1.1. Conclusions

Prior to this research there has been no really serious attempt to study the structural problems of ordinary butterfly valve blades. The work described in Chapter 2 is considered by the author to be a major contribution to the advancement of knowledge in relation to the design and operation of valves of this type.

The use of the finite element method as a technique for obtaining design coefficients represents a major break through, since the majority of practical cases have no mathematical solutions. This is because there are a great number of combinations of complex loading and support conditions which are required in practice.

The very important problem of predicting the behaviour of blades can be solved by adopting this method. The tapering configuration must then be expressed as a function of the radius or alternatively as a fraction of the thickness of the theoretically embracing flat blade. This would lead to savings of material and also better meet the hydraulic requirements.

The finite element solution requires a large computer to carry the mathematics involved in inverting the stiffness matrices. On the other hand storing a large number of tables on the floppy discs of very small desk top computers is a much cheaper and more

practical proposition, which justifies the approach and the use of coefficients which has been emphasised throughout this thesis. This work should contribute to possible relaxation of the standard minimum required thicknesses at present demanded by the various authorities and, with improved quality control, to the testing procedures.

Since the deflections could be predicted with greater accuracy by the methods described in this thesis, a significant saving in the cost of seals and the use of different materials for resilient seals should be possible.

The effect of the length of the arc of the periphery occupied by the shaft is clear from reading through the tables of Appendix 3. This knowledge can be used to optimize the cost of blades and their operating equipments and actuators.

Finally, this work could lead to a complete set of structural models to cover all possibilities of behaviour for the ordinary butterfly valve blade, on which some confidence can be placed in terms of the extensive experimental comparisons which have been made.

6.1.2. Further work

The major area of further work should be in the field of simulating real values to the different structural models presented. In real values the clearance between the shaft and the body is a parameter whose importance has not been sufficiently appreciated and identified in the past. A study of the effect of this clearance (generally specified in "thous per in." of shaft diameter) on the structural behaviour of the blade should be made.

In this study the following factors should be considered :-

- (i) The length of the supported part of the shaft.
- (ii) The type of bearings used.
- (iii) The type of shaft used and the effect of the clearance between shaft and blade, bearing in mind the method of attachment.

In the present day, with the introduction of microprocessors and minicomputers for the control of machine tools (as can be seen from Ref. (71)) it is no longer difficult or expensive to attain near-perfect clearances.

Another factor which has not been covered in this study is the effect of the eccentricity of the shaft centre line from the middle surface of the blade. This is not important for thin blades. As the blade and shaft humps increase in size, eventually they clearly indicate when the blade should be considered as being a thick plate problem.

A criterion for the effect of the eccentricity has to be developed and the only clear method is the use of solid finite elements.

Finally it must be remembered by any structural analyst working on the subject that a close relationship exists between any structural changes and the flow characteristics of the valve, particularly in relation to the ever-increasingly important problem of noise and the requirements of the operating equipment.

6.2. Fibre Composite Blades

6.2.1. Approach for optimal design

An approach towards the design of fibre composite blades can be seen from the work done in Section 5.3. There, it was shown that it is possible to assess the stresses fairly accurately by using the measured values of the various moduli. The butterfly valve blade is an ideal structure to be made from fibre composite materials since it is governed by a failure criterion based on very low deflections (conditioned by the requirement for sealing). This means that high strains need not be considered as a criterion for failure and yielding of the structure is therefore not a factor to be considered.

The major cost in fibre composites is directly related to the fibre content, especially when the fibres or woven-roving layers have to be hand laid. Therefore, their distribution through the thickness of the blade should be optimised according to the particular requirements of the loading and geometrical arrangement of the blade. In this way, a blade which has the minimum deflection and adequate strength can be optimally designed so as to have minimum cost.

The main concern in fibre composite structures is the fear of failure due to shear or lap stress at interfaces and it is inadequate to assume that the material is homogeneous in order to estimate strains at these surfaces. This is true even for thin blades and it is always necessary to make a three-dimensional analysis, even if a homogeneous equivalent material is assumed for the purpose of obtaining a lower bound for the strains as, in a three dimensional analysis, the inter-laminar stresses or lap shear

will be revealed.

Young's moduli and Poisson's ratios can easily and cheaply be obtained experimentally in a layer as has been demonstrated in this work and, although the through-thickness properties are more difficult to obtain experimentally, they can be estimated conservatively by using the properties of the resin matrix which are provided by the manufacturers.

The method of selecting samples for a multi-layered fibre composite demonstrated in this thesis, from which the various moduli and Poisson's ratios were estimated, coupled with their use in predicting the stresses and deflections of a structure (a cantilever) subjected to a complex loading situation, indicate the feasibility of the optimal designing of a blade using these methods. Also, with the use of the finite element program, the optimal combination of metallic and fibre composite materials can be achieved, provided that the interfacial conditions are adequately defined. In particular, the bond should be examined independently.

6.2.2. Further work

Two full-size fibre composite butterfly values have been made and are being tested for use in service at the Fawley Power Station, by the Central Electricity Generating Board (C.E.G.B.). These values have been designed, as regards their structural integrity, by the author and their behaviour in long-term use will be a final justification for the procedures described in this thesis. Further research is required in the more accurate determination of throughthickness properties and shear moduli of the various fibre composite

layers used in such structures. In addition to this, much development is needed in the manufacturing techniques required for the laying-up of structures of this type. Laying-up manually is both costly and inaccurate and any methods which could be devised for automatic laying-up are highly desirable and should be actively pursued. Such investigations are at present being carried out under the supervision of the author and this will facilitate accurate determination of through-thickness and shear moduli at a minimum cost.

Some work of this type has been done in aero-space industries, mainly from the point of view of optimising strength-weight ratios. However, the present objectives are different, being mainly concerned with minimising corrosion, cost and maximising reliability. Therefore it would be very desirable to survey the literature already available from the aero-space industries, with these different objectives in mind.

REFERENCES

CHAPTER ONE

/

1.	GRIFFITHS, J.M. "Proceedings of the International Valve Conference". Brighton, 1978.
2.	British Valve Manufacturers Association Handbook, 1972.
3.	"A guide to the Selection of Automatic Control Valves"; Engineering Equipment Users Association Handbook, No. 32. 1969.
ц.	British Standards Institution BS.5155, 1979.
5.	Central Electricity Generating Board, C.E.G.B. Std. 568502.
6.	American Water Works Association, AWWA. C.504-74.
7.	British Standards Institution, BS.4504, BS.1560, BS.3290.
8.	Boving Valves, Boving & Co. Ltd., 1978.
9.	ROSATO, D.V., Editor, Polymer Engineering and Technology Series, John Wiley & Sons, N.Y.
10.	GRESZCZUK, L.B., "Consideration of Failure Modes in the Design of Composite Structures", McDonnell Douglas Astronautics Co., 1975.
11.	MAJMUDAR, A.A., "Proceedings of the International Valve Conference", Brighton, 1978.
12.	PEARSON, G.A., "Valve Design", Mechanical Engineering Publications Ltd., London, 1972.
13.	ADDISON, H. "A Treaties on Applied Hydraulics". Chapman & Hall Ltd., London.

311.

م ب

- 14. CREAGER, W.P., JUSTIN, J.D., "Hydroelectric Handbook", John Wiley & Sons Ltd.,
- 15. DAVIES, C.V., "Handbook of Applied Hydraulics" McGraw-Hill, New York, 1942.
- 16. "a-Choosing Valves, Water Works and Pumping Practices", Glenfield and Kennedy Ltd., Kilmarnock, 1955.
- 17. "b, c-Choosing Valves, Water Works and Pumping Practices", Glenfield and Kennedy Ltd., Kilmarnock, 1955.
- 18. KURKJIAN, G.A., "Follow these simple rules to get long life from your large Butterfly Valves". Henry Pratt Co., Power V.118, No. 7, July, 1974.
- 19. FREEMAN, M.L., SPROUT, D.H., "Butterfly Valves-Correct Installation and Alignment", Masoneilan Ltd., London, Paper Technology, V. 15, No. 2, April, 1974.
- 20. "A Bibliography on Butterfly Valves", The British Hydromechanics Research Association, BIB24, April, 1966.
- BOGER, H.W., "Low-torque Butterfly Valve Design", Masoneilan International, Inc., Instrument Technology, V. 17, No. 9, Sept., 1970.
- HAMPHILL, J.E., "Development of a Low-torque Butterfly Control Valve", Advances in Instrumentation,
 V. 24, Part 1, Proceedings of 24th Annual ISA Conference, Houston, Oc-. 1969.
- 23. SHALNEV, K.K., ZHESTKOV, A.A., "Mechanism of Cavitation Vibrations in Butterfly Valves", Proceedings of 5th Conference on Fluid Mechanics, Budapest, 1975.
- JAMES, B.W., TULLIS, P.J., "Cavitation in Butterfly Valves", ASCE Journal of the Hydraulics Division, V. 99, No. H.79, Sept., 1973.

- 25. BELAND, R., "New Standard Metric Valves", Proceedings of the International Valve Conference, Brithton, 1978.
- 26. CARLETON, R.L., "Noise Created by Control Valves in Compressible Service", Masoneilan Int., Inc., ISA Translations, V. 17, No. 1, 1978.
- 27. MILLEVILLE, B.J., "What every Engineer needs to know about Valve Sealing", Rockwell Int., Pittsburgh, Pensylvania, Specification Engineering, V. 34, No. 5, Nov. 1975.
- 28. EXEKOYE, L.I., "Simplified Method for Calculating the Natural Frequency of Valve Superstructures", Westinghouse Nuclear Energy Systems, Pittsburgh, Pensylvania, ASME, Paper No. 78-PVP-4, June, 1978.
- 29. WAYNE, B., "Pressure Sensitive and Temperature Responsive Butterfly Valve for Cryogenic Service", SAME, Paper No. 78, Nov., 1978.

CHAPTER TWO

- 30 CLEBSCH, A. "Theorie der Elastizitat fester Körper". B.G. Teubner, Leipzig, 1962.
- 31. SZILARD, R. "Theory and Analysis of Plates" Prentice-Hall Inc., Englewood Cliffs, New Jersey.
- 32. TIMOSHENKO, S.P. and WOINOWSKY-KRIEGER, S., "Theory of Plates and Shells", McGraw-Hill Book Company Inc., 1959.
- 33. FLÜGGE, W., Editor, "Handbook of Engineering Mechanics", McGraw-Hill Book Company Inc., 1962.
- 34. BARES, R., "Tables for the Analysis of Plates, Slabs and Diaphragms Based on the Elastic Theory", Bauverlay GmbH., Wiesbaden, Germany 1969.
- 35. TURNER, C.E., "Introduction to Plate and Shell Theory", Longmans, Green & Co. Ltd., 1965.

- 36. The Billings Microsystem Model BC-12FD, Stemmos Ltd., London.
- 37. ZIENKIEWICZ, O.C., "The Finite Element Method in Engineering Science", 2nd Edition, McGraw-Hill, London, 1971.
- 38. "Shell", Finite Element Programme for the Analysis of Plates and Shells, Stemmos Ltd., London.

CHAPTER THREE

- 39. TSAI, S.W. "Mechanics of Composite Materials", Part II, Technical Report AFML-TR-66-149, November, 1966.
- 40. LEKHNITSKI, S.G., "Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, Inc., 1963.
- 41. ALEXANDER, J.M., "Strength of Material" To be published.
- 42. ASHTON, J.E., HALPIN, J.C. and PETIT, P.H. "Primer and Composite Materials Analysis", Technomic Publishing Co., Inc., 1969.
- 43. SCHWARTZ, R.T. and SCHWARTZ, H.S., Editors, "Fundamental Aspects of Fiber Reinforced Plastics Composites.
- 44. WILLIAMS, J.G., "Stress Analysis of Polymers" Longman Group Ltd., 1973.

CHAPTER FOUR

- 45. IRONS, B.M., "Quadrature Rules for Brick Based Finite Elements", Int. J. Num. Meth. Eng., 3, 1971.
- 46. BREBBIA, C.A., and CONNOR, J.J., "Fundamentals of Finite Element Techniques", Butterworths, 1973.

- 47. COOK, R.D., "Concepts and Applications of Finite Element Analysis", John Wiley & Sons, 1974.
- 48. ROBINSON, J., "Integrated Theory of Finite Element Methods", John Wiley & Sons, 1973.
- 49. FENNER, R.T., "Finite Element Methods for Engineers"., The MacMillan Press Ltd., 1975.

CHAPTER FIVE

- 50. BRAMHAM, H.T., "Throughflow Type Butterfly Valve Development", Proceedings of the International Valve Conference, Brighton, 1978.
- 51. TSAI, S.W., WU, E.M., "A General Theory of Strength for Anisotropic Materials". J. Composite Materials, V. 5, Jan., 1971.
- 52. AZZI, V.D., TSAI, S.W., "Elastic Moduli of Laminated Anisotropic Composites", Experimental Mechanics, V. 5, June, 1965.
- 53. TSAI, S.W., PAGANO, N.J., "Invariant Properties of Composite Materials", Composite Materials Workshop, Edited by Tsai, S.W., Halpin, J.C., Pagano, N.J., Technomic Publishing Company, Stamford, Connecticut, 1968.
- 54. ARGYRIS, J.H., "Three-Dimensional Anisotropic and Inhomogeneous Elastic Media Matrix Analysis for Small and Large Displacements", Sonderabdruck Aus, Ingenieur-Archiv, 34 Band, 1 Heft, S.33-55, Springer-Verlag, Berlin, 1965.
- 55. HUANG, Chi-Lung, KIRMSER, P.G., "A Criterion of Strength for Orthotropic Materials", Fibre Sci. Technol., V. 8, No. 2, April, 1975.

56. OWEN, D.R., PRAKASH, A., ZIENKIEWICZ, O.C., "Finite Element Analysis of Non-linear Composite Materials by use of Overlay Systems", Computers and Structures, V. 4, 1974. TSAI, S.W., "Strength Characteristics of 57. Composite Materials", NASA Report CR-224, 1965. 58. ISHAI, O., MOEHLERPAH, A.E., PREIS, A., "Yield and Failure of Glass-Epoxy Composites", J. Engineering Mechanics Div., Proc. ASCE., Oct., 1970. 59. AGARWAL, B.D., NARANG, J.N., "Strength and Failure Mechanism of Anisotropic Composites", Fibre Sci. Technol. V. 10, No. 1, Jan., 1977. 60. ECKOLD, G.C., LEADBETTER, D., SODEN, P.D., GRIGGS, P.R., "Lamination Theory in the Prediction of Failure Envelopes for Filament Wound Materials subjected to Biaxial Loading", Composites, Oct. 1978. 61. Symposium on "Reinforced Plastics in Anti-Corrosion Applications", National Engineering Laboratory, East Kilbride, Glasgow, Sept., 1979. 62. Symposium on "Reinforced Plastic Constructed Equipment in Chemical Process Industry", The North Western Branches of the Institution of Chemical and Mechanical Engineering, Manchester, March, 1980. 63. British Standards Institution, BS.4994, 1973. 64. BRYAN-BROWN, M.H., "Operational Experience of G.R.P. Structures in Power Stations". (Ref. (62) above). 65. CHEREMISINOFF, N.P., CHEREMISINOFF, P.N., "Fibre Glass Reinforced Plastics Deskbook", Ann Arbor Science Publishers Inc., Michigan, 1978.

- 66. PENN, W.S., "G.R.P. Technology Handbook to the Polyester/Glass Fibre Plastics Industry", MacLaren & Sons Ltd., London, 1966.
- 67. TODS of Weymouth, "Fibre Reinforced Composites", Dorset, 1980.
- 68. TSAI, S.W., ADAMS, D.F., DONER, D.R., NASA Report CR-620, Nov., 1966.
- 69. LANGLEY, M., Editor "Carbon Fibres in Engineering" McGraw-Hill Book Company (U.K.) Ltd., England, 1973.
- 70. BRYAN-BROWN, D.M., WALTER, O.M., WIGATT, R.C., "Advances in the use of G.R.P. for the Power Industry" to be submitted for Reinforced Plastic Congress 80, Brighton, November, 1980.
- 71. 21st International Machine Tool Design and Research Conference to be held 8-12th Sept., 1980, University of Swansea, (Private communication Prof. J.M. Alexander).

APPENDICIES

.

APPENDIX 1

Coefficients tables for the calculation of deflections and forces in circular plates simply supported on two points at opposite ends of a diameter.

$$W = C_1 \frac{qa^2}{D}$$
$$M_r = C_2 q a^2$$
$$M_t = C_3 q a^2$$
$$M_{rt} = C_4 q a^2$$
$$Q_r = C_5 q a^2$$
$$Q_t = C_6 q a^2$$

in the tables coefficients C_1 to C_6 are listed under W, MR, MT, MRT, QR and QT respectively.

THETA =	RATIO= .050 07DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR	Q
	51.07.77					
. 0	.240030	.518494	137244			
•10	.238 005	•515724	140559	U		
• 20	-217112	. 20/3/3	150665	0	- 71 51 7 5	
• 50	400067	.493347	100190		- 812223	
.50	.176173	.473405	23(48)	0	936732	
.60	.148692	.447205	27441 2	° A	-1,111037	
.70	.116937	.368472	346271	0	-1.3746#B	
	.081329	.304038	- 433535	<u> </u>	-1.806730	
.90	.042488	.197918	543121	0	-2.523687	
1.00	.001465	000000	667316	0	-3.778689	
POISSON, S	RATIO= .050					
ROH	DEFLECTION	MR	MI	MRT ·	0.R	0
						~
0	.240636	.474568	093318	.163934	500000	
.10	.238237	.471019	095384	•165258	557116	.03336
.20	.231074	.460221	101534	•169322	616196	.07033
.30	.219252	.441683	111584	.176415	679135	. 11541
•40	.202954	•414454	125075	•187017	747452	• 17522
.50	•182446	•376948	141011	.201734	821256	. 26548
• 60	.158100	.326841	157492	. 2210 55	896650	. 38957
•/U	.130410	.261438	1/1401	.244611	960062	. 59450
•00	•100029	.1/93/4	1/3564	.269430	9//198	.93112
	•001110	•000270	112631	• 2002 23	0/3205	1.49491
1.00 POISSON,S THETA =	.034564 RATIO= .050 30.00/DEGREES	00000	162795	•272458	500002	2.44724
1.00 POISSON,S THETA = ROH	.034564 RATIO= .050 30.00/DEGREES DEFLECTION	000000 MR	162795 MT	•272458 MRT	500002 	2.44724 Q
1.00 POISSON,S THETA = ROH	•034564 RATIO= 050 30.00/DEGREES DEFLECTION •240636	000000 MR .354560	162795 MT .026690	•272458 MRT •283943	-,500002 QR. -,500000	2.44724 Q
1.00 POISSON,S THETA = ROH 0 .10	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870	000000 MR .354560 .349796	162795 HT .026690 .027117	•272458 MRT •283943 •284674	500002 -QR. 500000 532452	2.44724 Q .05735
1.00 POISSON,S THETA = ROH 0 .10 .20	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618	000000 MR .354560 .349796 .335401	162795 MT .026690 .027117 .028609	.272458 MRT .283943 .284674 .286697	500002 QR. 500000 532452 562737	2.44724 Q .05735 .11811
1.00 POISSON,S THETA = ROH 0 .10 .20 .30	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027	000000 MR .354560 .349796 .335401 .311116	162795 MT .026690 .027117 .028609 .031800	+272458 MRT +283943 +284674 +286697 +289432	500002 500000 532452 562737 587850	2.44724 Q .05735 .11811 .18556
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341	0000000 MR .354560 .349796 .335401 .311116 .276708	162795 MT .026690 .027117 .028609 .031800 .037698	.272458 MRT .283943 .284674 .286697 .289432 .291705	500002 QR. 500000 532452 552737 587850 602998	2.44724 Q .05735 .11811 .18556 .26242
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908	0000000 MR .354560 .349796 .335401 .311116 .276708 .232375	162795 MT .026690 .027117 .028609 .031800 .037698 .0347524	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472	500002 QR. 500000 532452 552737 587850 602998 600538	2.44724 Q .05735 .11811 .18556 .26242 .34936
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .182178	0000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440	162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579	500002 -QR. 500000 532452 552737 587850 602998 600538 569038	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .182178 .163684	0000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348	162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .285579 .269921	500002 QR. 500000 532452 562737 587850 602998 600538 569038 493069	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262
1.00 POISSON,S IHEIA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .162178 .163684 .144014	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724	162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219	+272458 MRT -283943 -284674 -286697 -289432 -291705 -291472 -235579 -269921 -240756	500002 QR. 500000 532452 562737 587850 602998 600538 569033 493069 354801	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .182178 .163684 .144014 .123740	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934	162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537	500002 QR. 500000 532452 552737 587850 602998 600538 569038 569038 354801 354801 139063	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .182178 .163684 .144014 .123740 .103312	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000	162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238 .155045	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524	500002 QR. 500000 532452 562737 587850 602998 600538 569038 433069 354801 139063 .155740	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000
1.00 POISSON,S THETA = ROH 0 .10 .26 .30 .40 .50 .60 .70 .80 .90 1.00	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .162178 .163684 .144014 .123740 .103312	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000	HT 0 26690 0 27117 0 28609 0 31800 0 37698 0 47524 0 62365 0 382606 0 107219 1 33238 0 156045	<pre>.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524</pre>	500002 QR. 500000 532452 562737 587850 602998 600538 569038 569038 354801 354801 139063 155740	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000
1.00 POISSON, S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON, S THETA =	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .162178 .163684 .144014 .123740 .103312 RATIO= .050	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000	HT 0 2669 U 0 27117 0 2860 9 0 31800 0 37698 0 47524 0 62365 0 82606 0 10721 9 1 33238 0 155045	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524	500002 QR. 500000 532452 552737 587850 602998 600538 569038 569038 354801 354801 139063 .155740	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON,S THETA = ROH	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .162178 .163684 .144014 .123740 .103312 RATIO= .050 DEFLECTION	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000	162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238 .155045	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524 MRT	500002 QR. 500000 532452 562737 587850 602998 600538 569038 493069 354801 139063 .155740	Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000
1.00 POISSON,S THETA = ROH 0 .10 .26 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON,S THETA = ROH 0	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .162178 .163684 .144014 .123740 .103312 RATIO= .050 45.00/DEGREES DEFLECTION .240636	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000 MR .190625	 162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238 .155045 MT .190625 	 ,272458 MRT ,283943 ,284674 ,286697 ,289432 ,291705 ,291472 ,235579 ,269921 ,240756 ,198537 ,156524 MRT ,327869 	500002 QR. 500000 532452 562737 587850 602998 600538 569038 569038 354801 139063 .155740 QR 500000	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000
1.00 POISSON,S IHEIA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .60 .70 .60 .70 .60 .70 .80 .90 1.00 POISSON,S THEIA = ROH	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .162178 .163684 .144014 .123740 .103312 RATIO= .050 45.00/DEGREES DEFLECTION .240636 .239732	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000 MR .190625 .186325	 162795 MT . 0 2669 0 . 0 27117 . 0 2860 9 . 0 31800 . 0 37698 . 0 47524 . 0 62365 . 0 82606 . 107219 . 1 33238 . 1 55045 MT . 190625 . 1 92317 	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524 MRI .327869 .326290	500002 QR. 500000 532452 552737 587850 602998 600538 569038 493069 354801 139063 .155740 QR 500000 49344	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000 Q
1.00 POISSON, S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON, S THETA = ROH 0 .10 .20	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .182178 .163684 .144014 .123740 .103312 RATIO= .050 45.00/DEGREES DEFLECTION .240636 .239732 .237064	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 006000 MR .190625 .186325 .173727	 162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238 .156045 MT .190625 .192317 .197298 	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524 MRT .327869 .326290 .321309	500002 QR. 500000 532452 562737 587850 602998 602998 600538 569038 433069 354801 139063 .155740 QR 500000 499344 494763	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000 Q .00000 Q
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .30 .40 .30 .40 .30 .40 .30 .40 .30 .40 .30 .40 .30 .40 .30 .40 .30 .40 .30 .40 .50 .60 .70 .80 .90 1.00 .30 .40 .30 .40 .50 .60 .70 .80 .90 1.00 .30 .40 .30 .40 .50 .60 .70 .80 .90 1.00 .50 .30 .40 .50 .60 .90 1.00 .50 .50 .50 .50 .50 .50 .50	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .162178 .163684 .144014 .123740 .103312 RATIO= .050 DEFLECTION .240636 .239732 .237064 .232759	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 006000 MR .190625 .186325 .173727 .153797	 162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238 .155045 MT .190625 .192317 .197298 .205216 	 .272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .285579 .269921 .240756 .198537 .156524 MRI .327869 .326290 .321309 .312251 	500002 QR. 500000 532452 562737 587850 602998 602998 602538 569038 354801 139063 .155740 QR 500000 499344 494763 482439	2.44724 Q .05735 .11811 .18556 .26242 .34936 .44177 .52262 .54975 .43345 .00000 Q .00000 Q .06556 .13093 .19514
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .182178 .163684 .144014 .123740 .103312 RATIO= .050 DEFLECTION .240636 .239732 .237064 .232759 .227020	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000 MR .190625 .186325 .173727 .153797 .128311	 162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .132238 .155045 MT .190625 .192317 .197298 .205216 .215289 	 .272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .285579 .269921 .240756 .198537 .156524 MRT .327869 .326290 .321309 .312251 .298241 	500002 QR. 500000 532452 562737 587850 602998 602538 569038 569038 354801 139063 .155740 QR 500000 499344 494763 494763 482439 459107	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000 Q .06556 .13093 .19514 .25575
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 .90 1.00 .90 1.00 .20 .30 .40 .50 .50 .50 .50 .50 .50 .50 .5	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .163684 .144014 .123740 .103312 RATIO= .050 45.00/DEGREES DEFLECTION .240636 .239732 .237064 .232759 .227020 .220104	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000 MR .190625 .186325 .173727 .128311 .099960	 162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238 .155045 MT .190625 .192317 .197298 .205216 .215289 .226087 	 .272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524 MRT .327869 .326290 .321309 .312251 .298241 .278639 	500002 QR. 500000 532452 562737 587850 602998 602538 569438 493469 354801 139469 354801 139463 .155740 QR 500000 499344 494763 494763 459107 423156	2.44724 Q .05735 .11811 .18556 .26242 .34936 .44177 .52262 .54975 .43345 .00000 Q .06556 .13093 .19514 .25575 .30865
1.00 POISSON, S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON, S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .50 .50 .60 .50 .50 .60 .50 .50 .50 .50 .50 .50 .50 .5	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .182178 .163684 .144014 .123740 .103312 RATIO= .050 45.00/DEGREES DEFLECTION .240636 .239732 .237064 .232759 .227020 .220104 .212300	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000 MR .190625 .186325 .173727 .128311 .099960 .072224	 162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238 .156045 MT .190625 .192317 .197298 .205216 .215289 .226087 .235389 	.272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524 MRT .327869 .326290 .321309 .312251 .298241 .278639 .253702	500002 QR. 500000 532452 562737 587850 602998 600538 569038 569038 433069 354801 139063 .155740 QR 500000 499344 494763 499344 494763 482439 459107 423156 376717	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000 Q .06000 Q .06556 .13093 .19514 .25575 .30865 .34906
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00 .00 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .80 .90 1.00 .50 .60 .70 .50 .50 .60 .90 1.00 .50 .60 .50 .50 .50 .50 .50 .50 .50 .5	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .162178 .163684 .144014 .123740 .103312 RATIO= .050 A5.00/DEGREES DEFLECTION .240636 .239732 .237064 .232759 .227020 .220104 .212300 .203886	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000 MR .190625 .186325 .173727 .153797 .128311 .099960 .072224 .048719	 162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238 .155045 MT .190625 .192317 .197298 .205216 .215289 .226087 .235389 .240273 	 .272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .285579 .269921 .240756 .198537 .156524 MRI .327869 .326290 .321309 .312251 .298241 .278639 .253702 .25274 	500002 QR. 500000 532452 562737 587850 602998 602998 600538 569038 493069 354801 139063 .155740 QR 500000 499344 494763 494763 494763 459107 423156 376717 329085	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000 Q .00000 Q .00000 Q .00556 .13093 .19514 .25575 .30865 .34906 .37526
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 .60 .70 .80 .90 1.00 .80 .90 .90 .90 .90 .90 .90 .90 .9	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .182178 .163684 .144014 .123740 .103312 RATIO= .050 45.00/DEGREES DEFLECTION .240636 .239732 .237064 .232759 .227020 .220104 .212300 .203886 .195098	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000 MR .190625 .186325 .173727 .158311 .099960 .072224 .048719 .031672	 162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .132238 .155045 MT .190625 .192317 .197298 .205216 .215289 .226087 .235389 .240273 .237643 	 .272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524 MRT .327869 .326290 .321309 .312251 .298241 .278639 .253702 .225274 .196913 	500002 QR. 500000 532452 562737 587850 602998 602998 602538 569038 569038 354801 139063 .155740 QR 500000 499344 494763 494763 494763 492439 459107 423156 376717 329085 301781	2.44724 Q .05735 .11811 .18556 .26242 .34938 .44177 .52262 .54975 .43345 .00000 Q .06556 .13093 .19514 .25575 .30865 .34906 .37526 .39773
1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 .20 .80 .90 1.00 .90 .90 1.00 .90 .90 .90 .90 .90 .90 .90	.034564 RATIO= .050 30.00/DEGREES DEFLECTION .240636 .238870 .233618 .225027 .213341 .198908 .163684 .144014 .123740 .103312 RATIO= .050 45.00/DEGREES DEFLECTION .240636 .239732 .237064 .232759 .227020 .220104 .212300 .203886 .195098 .186107	000000 MR .354560 .349796 .335401 .311116 .276708 .232375 .179440 .121348 .064724 .019934 000000 MR .190625 .186325 .173727 .126311 .099960 .072224 .048719 .031672 .019076	 162795 MT .026690 .027117 .028609 .031800 .037698 .047524 .062365 .082606 .107219 .133238 .155045 .192317 .192317 .197298 .205216 .215289 .226087 .235389 .240273 .237643 .225436 	 .272458 MRT .283943 .284674 .286697 .289432 .291705 .291472 .235579 .269921 .240756 .198537 .156524 MRT .327869 .326290 .321309 .312251 .298241 .278639 .253702 .225274 .196913 .172219 	500002 QR. 500000 532452 562737 587850 602998 602998 602538 569438 569438 493469 354801 139469 354801 139463 155740 QR 500000 499344 494763 494763 459107 423156 376717 329085 301781 335605	Q 05735 11811 18556 26242 34938 44177 52262 54975 43345 00000 Q 00000 Q 00000 Q 00000 0 00000 0 00000 0 00000 0

POISSON,S THETA =	RATIO= .050 60.00/DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR	Q I
0	243636	0.95504	350550	237047	500000	
1.0	240592	.020091	. 394999	.203943		056224
.20	240476	024702		270308		.096221
- 20	240470		. 3 20 40 4	•270398	432009	.109041
	240320		. 39/04/	.234157	394302	.199146
	-240155	.010300	. 390198	207354	- 31 2772	•191991
.50	.240140	.000047	.356550	.207354	312372	.210200
.00	240203	.002913	. 392939	.101297	270967	. 220242
•75	-240412		. 346650	.194421	220011	.220557
•00	240109	001944	• 341444	.120197	1/1943	.200425
1.00	242136		. 330042	.103129	155770	.140/1/
1.00			. 33 9092		.199739	
POISSON, S	RATIO= .050					
ROH	DEFLECTION	MR MR	MT	MRT	QR	QT
0	91.0676		1715(0	163035	533003	
	• 240 03 0	093318	• 474968	.163935	500000	0
•10	•241221	091188	• 472785	.161097	44 3 5 3 9	. 032226
• 20	.242953	084948	.467486	.152980	389042	.061234
.30	.245769	075073	. 458836	.140674	338426	.084504
•40	•249564	052389	.44/160	.125079	293441	.1006/3
.50	•254207	048001	. 432892	.109564	-,255589	•109645
.60	•259548	033065	• 4 10 35 3	.093708	22 6633	.112455
•70	.265429	018500	. 397346	.079203	210854	•111396
.00	.271090		. 3/4/95	.06681		•111321
.90	20,050	•004311	• 34/ 9/ 3	• 0 57 144	-+691116	• 123703
POISSON, S THETA =	RATIO= .050 90.00/DEGREES		a that down a star	the setting a strain	ه مواد ها ا	
ROH	DEFLECTION	MR	MT	MRT	QR	Q 1
0	.240636	137244	• 518494	.000001	500000	Ū
.10	.241451	133498	.515549	.000001	435075 .	.000000
.20	.243856	122784	.507037	.000001	373897	.000000
.30	.247742	106539	. 493831	.000000	319521	.000000
•40	.252940	086790	. 477136	.000000	273860	.000000
.50	.259246	065812	.458269	.000000	237449	.000000
.60	.256442	045910	.438611	.000000	208955	.000000
.70	.274322	029328	.419797	.000000	183233	.000000
.80	.282710	017849	.403957	.000000	145782	.000001
.90	.291484	010912	.393398	.000000	060253	.000001
1.00	S. M. Stranger (1997) Not					
	.300562	.000000	. 388422	.000000	.155738	.00003
	•300562	.000000	• 388422	.000000	•155738	• 0 0 0 0 0 3
Datacau	.300562	.000000	• 388422	.000000	.155738	•000003
POISSON,S THETA =	.300562 RATIO= .100 07DEGREES	.000000	• 388422	.000000	.155738	• 000003
POISSON,S THETA = ROH	RATIO= .100 0/DEGREES DEFLECTION	.000000 MR	• 388422 • • • • • • • • • • • • • • • • • • •	.000000 MRI	.155738 QR	• 000003
POISSON,S THETA = ROH 0	•300562 RATIO= •100 07DEGREES DEFLECTION •245838	.000000 MR .516331	• 388422 • • • • • • • • • • • • • • • • • • •	.000000 MRI 0	.155738 QR 500000	• 000003
POISSON,S THETA = ROH 0 .10	.300562 RATIO= .100 07DEGREES DEFLECTION .245838 .243227	.000000 MR .516331 .513503	• 388422 MT ••128631 ••132319	.000000 MRT 0 0	.155738 QR 500000 565168	• 000003 ! Q I 0 0
POISSON,S THETA = ROH 0 .10 .20	.300562 RATIO= .100 07DEGREES DEFLECTION .245838 .243227 .235240	MR .516331 .513503 .504984	. 388422 MT 128831 132319 142969	.000000 MRI 0 0 0	.155738 QR 500000 565168 634409	• 000003
POISSON,S THETA = ROH 0 .10 .20 .30	.300562 RATIO= .100 07DEGREES DEFLECTION .245838 .243227 .235240 .222012	MR .516331 .513503 .504984 .430657	. 388422 MT 128831 132319 142969 161372	.000000 MRT 0 0 0 0	QR 500000 565168 634409 712689	• 000003
POISSON,S THETA = ROH 0 .10 .20 .30 .40	.300562 RATIO= .100 07DEGREES DEFLECTION .245838 .243227 .235240 .222012 .203669	MR .516331 .513503 .504984 .430657 .470295	. 388422 MT 128831 132319 142969 161372 188661	.000000 MRT 0 0 0 0 0	QR 500000 565168 634409 712689 807187	• 000003
POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50	.300562 RATIO= .100 0/DEGREES DEFLECTION .245838 .243227 .235240 .222012 .203669 .180389	MR .516331 .513503 .504984 .430657 .470295 .443426	. 388422 MT 128831 132319 142969 161372 188661 226738	.000000 MRT 0 0 0 0 0 0	QR 500000 565168 634409 712689 807187 929688	• 000003
POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60	.300562 RATIO= .100 0/DEGREES DEFLECTION .245838 .243227 .235240 .222012 .203669 .180389 .152407	MR .516331 .513503 .504984 .430657 .470295 .443426 .408882	• 388422 MT • 128831 - 132319 • 142969 • 161372 - 188661 - 226738 - 278555	.000000 MRI 0 0 0 0 0 0 0	QR 500000 565168 634409 712689 807187 929688 -1.101181	.000003
POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70	.300562 RATIO= .100 07DEGREES DEFLECTION .245838 .243227 .235240 .222012 .203669 .180389 .152407 .120021	MR .516331 .513503 .504984 .430657 .470295 .443426 .408882 .363472	. 388422 MT 128831 132319 142969 161372 188661 226738 278555 348225	.000000 MRI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	QR 500000 565168 634409 712689 807187 929688 -1.101181 -1,360502	• 000003
POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80	.300562 RATIO= .100 07DEGREES DEFLECTION .245838 .243227 .235240 .222012 .203669 .180389 .152407 .120021 .083625	MR .516331 .513503 .504984 .430657 .470295 .443426 .408882 .363472 .293684	MT 128831 132319 142969 161372 188661 226738 278555 348225 449461	.000000 MRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	QR 500000 565168 634409 712689 807187 929688 -1.101181 -1.360502 -1.779750	• 000003
POISSON,S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .90	.300562 RATIO= .100 0/DEGREES DEFLECTION .245838 .243227 .235240 .222012 .203669 .180389 .152407 .120021 .083625 .043799	MR .516331 .513503 .504984 .430657 .470295 .443426 .408882 .363472 .293684 .193474	MT 128831 132319 142969 161372 188661 226738 278555 348225 449461 558339	.000000 MRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	QR 500000 565168 634409 712689 807187 929688 -1.101181 =1.360502 -1.779750 -2.490456	• 000003

321.

POISSON, S THETA =	S RATIO= 100 15.00/DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR	Q T
	21.542.2			111000	C0.0	
	•245898	.4/3113	685613	•161290	5000000	6.728.27
20	235212	. +09940	09/606	166615		
- 30	.224234	.420075	105660	.173634	676246	.113556
-40	.207711	.442330	- 120622	.184142	*.743461	-1723-7
.50	.185906	.375191	138577	.198779	816074	.256287
.60	.162181	.325223	157731	.218111	890252	.383292
•70	.134025	.260225	175058	.241979	952641	.584912
.80	.103078	.178871	186338	,267893	969502	.916008
.90	.070147	.085525	187367	.287654	867265	1.470807
1.00	.036160	000000	177695	.280829	500002	2.407776
POISSON, S	S RATIO= .100					
ROH	DEFLECTION	MR	MT	MRT	0 R	ρτ
- (# A						
0	.245898	.355040	.032460	.279363	500000	0
•10	.244125	.350312	.032673	•280118	531929	.056431
.20	•233855	.336029	.033524	.282224	561725	.116208
.30	.230 233	.311946	.035643	.285138	586433	.182570
•40	.218504	•277848	.040045	.287757	601337	.256187
.50	.204018	•233933	.047994	• 288150	598917	. 343/4/
.00	168666	123802	000095	26929/	- /93181	64/4049
	-148935	.123002	-101665	-242357	357143	. 514191
.90	128618	021813	.127019	202493	144885	.)40000
1.00	.108189	000000	. 150941	.161332	•145163	. 420401
Charles - Dept.	and the same the set					
POISSON, S	5 RATIO= .100					
IHEIA =	45.007DEGREES	ND	MT.	NOT	0.0	<u> </u>
KUN	DEFLECTION	MR	I'l I	mk I	UK,	Q I
D	.245898	.1 93750	.193750	.322581	500000	0
.10	.245021	.189498	.195270	.321169	499355	.064510
•20	.242434	.177031	.199752	.316457	494847	.128826
.30	.238267	.157284	.206897	.307978	482722	.191993
•40	.232726	.131970	.216014	.294823	459767	. 251627
.50	.226072	.103683	.225809	• 276354	424395	.303680
.60	.218599	• 0 /5/ /5	• 234228	.252774	378706	. 343431
•70	.210593	.051739	.238495	.225790	331842	. 369215
.00	403908	.030751	.235537	.198770	304978	. 391315
1.00	185524	- 000000	201200	163763	- 500002	.449632
Mar 1	1109964		. 201203	*190100		.045100
POISSON,S	S RATIO= .100					
THETA =	60.00/DEGREES					
ROH	DEFLECTION	MR	мт	MRT	QR	Q 1
0	.245898	.032460	.355040	.279363	500000	0
.10	.245914	.030998	. 355535	.276093	467426	.055314
.20	.245979	.026979	. 356752	.266444	43 3105	.107282
• 30	.246133	.021399	. 357954	.250941	-,396007	. 152644
• 40	.246433	.015568	. 358139	.230562	356316	.188501
.50	.246936	.010621	.356388	.206742	315398	.212796
.60	.247691	.006978	. 352331	.181164	274661	.224561
.70	.243730	.004008	.346620	.155298	232398	.222932
. 80	.250079	.000471	. 341158	.129959	17 7235	. 203096
.90	.251769	003317	.338586	.105558	076213	.146318
1.00	.253830	.000000	.340188	.084508	.145163	.000002
and the second se			the first where we are all the second souther from	and the second sec	the state of the set of the set of the set of the	

ROH	DEFLECTION	MR	MT	MRT	QR	QT
Û	.245893	085613	. 473113	.161291	500000	C
.10	.245567	083599	. 471413	.158572	444450	.031706
.20	.248554	077703	.466354	.150795	390832	.060246
.30	.251793	068384	.458075	.138991	341032	.083141
.40	.250103	056439	.446858	.124587	296773	.099050
.50	.261594	042936	.433080	.109077	259531	.107876
.60	.267874	028998	.417002	.093777	231042	. 110642
.70	.274870	015526	.398375	.079735	215518	.109600
.80	.282425	003372	.376051	.067762	225521	.109526
• 90	.290396	.004957	.348166	.058288	294481	.121709
1.00	.298679	000000	.313984	.050354	500001	.172868

POISSON, S RATIO= .100 THETA = S0.00/DEGREES

	THE TH	JUNUELO					
	ROH	DEFLECTION	MR	MT	MRT	QR	Q T
	0	.245898	128831	.516331	.000001	500000	U
	.10	.246806	125247	.513528	.000001	436123	.000000
	. 20	.249492	114999	.505416	.000000	375931	.000000
a. +4	.30	.253845	099473	.492802	.000000	322432	.000000
	• 40	.259698	080626	.476792	.000000	277507	.000000
	.50	.266845	060657	. 458599	.000000	241683	. 000000
	•60	.275069	041796	.439502	.000000	213649	.000000
Part Property	.70	.284163	026216	. 421045	.000000	188342	.000000
	.80	.293951	015646	.405315	. 000000	151495	.000001
	.90	.304310	009592	.394773	.000000	067346	.000001
	1.00	.315164	.000000	. 390457	.000000	.145161	.00003

POISSON, S RATIO= .150 THETA = 0/DEGREES

AHH-

1.000	POISSON, S THETA =	RATIO= .150 0/DEGREES					
	ROH	DEFLECTION	MR	мт	MRT	QR ,	Q I
	0	,252373	.514335	120585		0 •.500000	0
A REAL PROVIDENCE	•10	.249652	.511451	124245	f f is he	0564133	0
	.20	.241511	.502760	135413		0632275	C
	. 30	.228024	.488143	154699		0709313	U
	•40	.209309	.467367	183269		0802311	0
·清朝堂中	.50	.185536	.439957	223090		0922867	0
243-343-54	.60	.156925	.404761	277249	化学 在一个人。	0 -1.091639	0
	.70	.123754	.358681	350164		0 =1.346843	0
	•80	.086390	.293535	447258		0 -1.759437	0
	.90	.045364	.189191	573215	and the second second	0 -2.458862	0
	1.00	.001590	000000	727348		-3.674603	0

POISSON,S RATIO= .150 THETA = 15.00/DEGREES

	ROH	DEFLECTION	MR	MT	MRT	QR	Q T
Martin and a second							
No. 6	0	.252373	.471804	078054	.158730	500000	0
	• 10	.249902	.468205	080501	.160022	555303	.032302
1.000	.20	.242524	.457269	087811	.163995	612507	.068101
	• 30	.230339	.438535	099851	.170941	673448	.111754
	.40	.213522	.411123	116260	.181359	739596	.169661
	.50	.192328	.373565	136197	.195917	811057	. 252219
	.60	.167114	.323720	157970	.215262	884058	. 377208
	.70	.138359	.259101	178645	.239431	945456	.575628
	.80	.106693	.178420	193956	.266405	962049	.901468
	. 90	.072917	.085790	199201	.289011	861435	1.447451
	1.00	.0 37 954	000000	192320	.288933	500002	2.369557

a	QR	MRT	MT	MR	DEFLECTION	ROH
	500000	.274929	.038145	.355605	.252373	٥
.055	531422	.275707	.038149	.350910	.250587	.10
.114	560745	.277893	.038370	.336732	.245278	.20
.179	585061	.280981	.039437	.312841	.236592	• 3u
.254	599728	.283935	.042369	.279035	.224774	•40
.338	597346	.284934	.048473	.235515	.210176	.50
.427	566846	.281121	.059069	.183518	.193250	.60
.506	493289	.268687	.075033	.126228	.174543	.70
. 532	359410	.243907	.096195	.069751	.154660	. 30
.419	150521	.206323	.120837	.023650	.134203	. 90
.000	.134922	.165988	.145800	000000	.113670	1.00

POISSON, S RATIO= .150 THEIA = 45.00/DEGREES

	THETA =	45.00/DEGREES	u				
13.46	ROH	DEFLECTION	MR	MT	MRT	QR	Q T
No. 1997 States	0	.252373	.196875	.196875	.317460	500000	٥
	.10	.251521	.192667	•198226	.316092	499365	• 063486
	.20	.243003	.180326	.202216	.311759	-,494929	.126781
	.30	.244969	.160751	.208596	.303841	482396	•188946
A States	.40	.239610	.135596	.216767	.291512	460406	.247633
1 4 - E.R.	. 50	.233199	.107362	.225566	.274141	42 5595	•298859
	.60	.226036	.079277	.233097	.251876	380631	.337980
	.70	.218416	.054715	.236726	.226290	334511	.363355
- Artest	.80	.210593	.035800	.233405	.200568	308073	.385103
	.90	.202758	.020827	. 220 52 3	.178185	340824	.442495
and the second	1-00	.195050	000000	.197520	.158201	500002	.634920

POISSON, THETA =	S RATIO= .150 60.00/DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR ,	Q I
0	.252373	.038145	.355605	.274929	5000000	0
.10	.252452	.036663	.356046	.271813	467943	.054436
.20	.252705	.032571	.357119	.262616	434167	.105579
.30	.253174	.026828	.358130	.247827	397658	.150221
• 40	.253918	.020694	. 358134	.228362	358597	.185509
.50	.254999	.015271	. 356256	.205570	318329	.209419
•60	.256469	.010976	. 352126	.181034	278238	. 220 997
.70	,258367	.007227	.346352	.156147	236645	.219394
.80	.260723	.002845	. 340789	.131666	182358	.199872
.90	.263574	001880	.338195	.107913	082940	.143996
1.00	.266958	.000000	.340509	.086946	.134922	.000002
the second se	the second se					

ROH	DEFLECTION	MR	MT	MRT	QR	Q
0	.252373	.038145	.355605	.274929	500000	
.10	.252452	.0.36663	.355046	. 27 18 1 3	467943	.05443
.20	.252705	.0 32571	.357119	.262616	434167	.10557
.30	.253174	.026828	.358130	.247827	397658	.15022
.40	.253918	.020694	. 358134	.228362	358597	.18550
.50	.254999	.015271	. 356256	.205570	318329	.20941
.60	.256469	.010976	. 352126	.181034	278238	. 220 99
.70	,258367	.007227	.346352	.156147	236645	.21939
.80	.260723	.002845	. 340789	.131666	182358	.19987
.90	.263574	001880	.338195	.107913	082940	.14399
1.00	.266958	.000000	.340509	.086946	.134922	.00000
POISSON,: THETA =	5 RATIO= .150 75.007DEGREES	kana in ingg				
POISSON,S THETA = ROH	S RATIO= .150 75.007DEGREES DEFLECTION	MR	мт	MRT	QR	Q
POISSON,S HETA = ROH	S RALIO= .150 75.007DEGREES DEFLECTION	MR = 078053	MT 4.71803	MRT	QR	Q
POISSON,S THETA = ROH 0	S RAIIO= .150 75.007DEGREES DEFLECTION .252373 253442	MR 078053	MT .471803	MRT •158731	QR 500000	Q 03425
POISSON, S THETA = ROH 0 .10	S RAIIO= .150 75.007DEGREES DEFLECTION .252373 .253132 255349	MR 078053 076153 - 870594	MI .471803 .470181	MRI •158731 •156128	QR 500000 445332 392564	03120
POISSON, S THETA = ROH 0 .10 .20 30	5 RATIO= .150 75.007DEGREES DEFLECTION .252373 .253132 .255389 250078	MR 078053 076153 070594 070594	MT .471803 .470181 .465344	MRI •158731 •156128 •148679 •137362	QR 500000 445332 332564 342556	Q .03120 .05929
POISSON, S THETA = ROH 0 .10 .20 .30	S RAIIO= .150 75.007DEGREES DEFLECTION .252373 .253132 .255389 .259078 265400	MR 078053 076153 070594 061817 050594	MT .471803 .470181 .465344 .457411	MRT .158731 .156128 .148679 .137362 .123530	QR 500000 445332 392564 343556 293999	Q .0312J .05929 .08182
POISSON, S THETA = ROH .10 .20 .30 .40	S RAIIO= .150 75.007DEGREES DEFLECTION .252373 .253132 .255389 .259078 .264100 .274203	MR 078053 076153 070594 061817 050594	MT .471803 .470181 .465344 .457411 .446617	MRT .158731 .156128 .148679 .137362 .123530 .103536	QR 500000 445332 392564 343556 299999	Q • 0312J • 05929 • 08182 • 09747
POISSON, S THETA = ROH 0 .10 .20 .30 .40 .50	S RAILO= .150 75.007DEGREES DEFLECTION .252373 .253132 .255389 .259078 .264100 .270323	MR 078053 076153 070594 061817 050594 037958	MJ .471803 .470181 .465344 .457411 .446617 .433287 .47032	MRT .158731 .156128 .148679 .137362 .123530 .108606	QR 500000 445332 392564 343556 299999 263348	Q .03120 .05929 .08182 .09747 .10616
POISSON, S THETA = ROH 0 .10 .20 .30 .40 .50 .60	S RAILO= .150 75.007DEGREES DEFLECTION .252373 .253132 .255389 .259078 .264100 .270323 .277598	MR 078053 076153 070594 061817 050594 037958 024997	MJ •471803 •470181 •465344 •457411 •446617 •433287 •417623	MRT .158731 .156128 .148679 .137362 .123530 .108606 .093844	QR 500000 445332 392564 343556 299999 263348 235312	Q .03120 .05929 .08182 .09747 .10616 .10888
POISSON, S THETA = ROH 0 10 20 .30 .40 .50 .60 .70	S RAIIO= .150 75.007DEGREES DEFLECTION .252373 .253132 .255389 .259078 .264100 .270323 .277598 .285770	MR 078053 076153 070594 061817 050594 037958 024997 012597	MT .471803 .475181 .465344 .457411 .446617 .433287 .417623 .399325	MRT .158731 .156128 .148679 .137362 .123530 .108606 .093844 .080250	QR 500000 445332 392564 343556 299999 263348 235312 220033	Q .03120 .05929 .08182 .09747 .10616 .10888 .10786
POISSON, S THETA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80	S RAIIO= .150 75.007DEGREES DEFLECTION .252373 .253132 .255389 .259078 .264100 .270323 .270323 .285770 .294685	MR 078053 076153 070594 061817 050594 037958 024997 012597 01595	MΓ .471803 .476181 .465344 .457411 .446617 .433287 .417623 .399325 .377175	MRT .158731 .156128 .148679 .137362 .123530 .108606 .093844 .080250 .068615	QR 500000 445332 392564 343556 299999 263348 235312 220033 229878	Q .03120 .05929 .08182 .09747 .10616 .10888 .10786 .10778
POISSON, S THETA = ROH 0 10 20 30 40 50 60 .70 80 90	S RAIIO= .150 75.007DEGREES DEFLECTION .252373 .253132 .255389 .259078 .264100 .270323 .277598 .285770 .294085 .304196	MR 078053 076153 070594 061817 050594 037958 024997 012597 01595 .005602	MT .471803 .470181 .465344 .457411 .446617 .433287 .417623 .393325 .377175 .343083	MRT .158731 .156128 .148679 .137362 .123530 .108606 .093844 .080250 .068615 .059395	QR 500000 445332 392564 343556 299999 263348 235312 220033 229878 297743	Q .03129 .05929 .08182 .09747 .10616 .10888 .10786 .10778 .11977
POISSON, S INEIA =	S RATIO= .150 90.00/DEGREES					
-----------------------	--------------------------------	---------------	------------------------------	--	------------	--------------------
ROH	DEFLECTION	MR	MT	TRM	QR	λT
ŭ	.252373	120585	.514335	.000001	500000	ú
.10	.253381 -	117159	.511667	.000001	437137	.000000
.20	.256367	107366	.503935	.000000	377900	.000000
. 30	.261219	092541	• 491878	.000000	325250	.006000
• 40	.267773	074575	.476511	.000000	201039	.000000.
.50	.275814	055591	.458944	.000000	245784	.000000
•60	.285132	037749	. 440357	.000000	218194	.000000
.70	.295515	023152	. 422206	.000000	193289	. ù ù 0 0 0 0
.30	.306786	013478	.406539	.000000	157027	.000001
. 90	.313825	008294	.395962	.000000	074214	.000001
1.00	• 331 555	.000000	. 392229	.000000	.134921	.000003
POISSON, S THETA =	S RATIO= .200 0/DEGREES					
ROH	DEFLECTION	MR	MT	MRT .	QR	Q I
0	.260214	.512500	112500	0	500000	0
.10	.257429	.509559	116328	0	563131	0
• 20	.249098	.500699	128007	0	630208	0
. 30	.235289	.485796	148163	0	706043	0
• 40	.216114	•464613	177994	0	797588	0
.50	.191732	.436670	219531	0	916260	0
.60	.162349	.400831	275991	0	-1.082395	0
.70	.128221	.354090	352088	0	-1.333611	0
. 80	.089683	.288583	453933	0	-1.739758	0
. 90	.047219	.185060	587766	0	-2.428255	0
1.00	.001666	000000	756250	0	-3.625000	0
POISSON, S	S RATIO=					
ROH	DEFLECTION	MP	мт	MPT	0.P	
Non				- HIST		
0	•260214	.470633	070633	.156250	500000	U
.10	.257692	.467009	073266	.157527	55 4 4 3 9	.031798
.20	.250158	.456002	081142	.161456	610749	.067037
.30	.237711	.437168	094153	.168332	670738	.110007
•40	.220520	.409659	111983	.178663	735853	.167010
.50	.198837	.372063	133866	.193145	806197	.248278
.60	.173010	.322326	158210	.212501	878057	. 371315
.70	.143508	.258062	182166	.236963	938496	.566634
.80	.110953	.178018	-,201426	.264963	954830	.887383
.90	.076137	.036066	210805	.290325	855788	1.424844
1.00	.039983	000000	206683	.296785	500002	2.332533
POISSON,S	RATIO= .200		A Lo Labor (1990) and (1990)			KINI UNOP - NO BOO
IHEIA =	3U.UU/DEGREES	110			0.7	
KOH	UEFLECTION	MR	MI	MK1	QR	Q 1
0	.260214	.356250	•043750	.270633	500000	D
.10	.258408	.351586	.043548	.271434	530931	.054668
.20	.253039	.337507	.043151	.273698	559796	.112576
.30	.244252	.313796	.043183	.276953	583732	.176865
• 40	.232295	.286267	.044672	.280232	598170	. 250119
.50	.217521	.237122	.048962	.281818	595825	.333005
.60	.200387	.185555	.057487	.278996	565802	. 4210 66
.70	.181445	.128628	.071356	.268098	493394	.498123
.80	.161313	.072199	.090806	.245409	361607	. 523982
.90	.140611	.025449	.114718	.210034	155982	. 413140
1.00	.119864	000000	.140625	.170499	•125002	.000001
		最小的社会的	325.	and the second		

	POISSON, S INCIA =	RATIO= .200 45.00/DEGREES					· · · · · · · · · · · · · · · · · · ·
	ROH	DEFLECTION	MR	MT	MRT	QR	QT
+				200000	7.050.5	51000	
	U	• 20U 21 4	.20000	• 200000	344 234		667694
	• 10	256942	.199039	. 201690	307208	- 495019	124866
	• 20	253019	.103011	• 204003	299832	- 483262	185994
		.247830	139192	-217547	-288305	- 461024	.243764
	• 50	.241646	.110999	. 225354	.271997	42 6758	.294198
	• pil	234776	.082732	.231993	.251006	382496	.332699
_	.70	.227524	.057647	.234967	.226774	337097	. 357677
	. 80	.220155	.037820	.231251	.202309	311072	. 379086
	.90	.212869	.021609	.217973	.181028	343311	.435581
	1.00	.205813	000000	.193750	.162500	500002	. 624999
	10						
-	POISSON, S	RATIO= .200					
2	INLIA =	bU.UU/DEGREES	MD	мт	мат	0.0	0 T
	KUH	DEFLECTION	nrs		rik i	Q.K.	- u +
	0	.260214	.043750	.356250	.270633	500000	0
ele ma	.10	.260359	.042248	,356636	.267667	468444	.053585
	.20	.260809	.038083	.357559	.258907	435196	.103930
	.30	.261608	.032175	.358371	.244810	399257	.147873
	•40	.262820	.025742	.358181	.226231	360806	.182610
	• 5 0	.264508	.019849	.356152	.204434	321107	.206146
	.60	.266731	.014913	. 351919	.180909	281703	.217544
alo S .	•/0	.269531	.010394	.346045	•156970	240760	.215966
	•80	.272944	.005181	. 340 342	.133319	-,187321	+196749
	.90	.277013	000470	.33/6//	.110195	089457	•141746
	<i>n</i>						
113	POISSUN, S	RATIO= .200	5 8 1 1 1 HORS N				
1.61	THEIA =	75.00/DEGREES	en and a second second				·
	ROH	DEFLECTION	MR	MT	MRT	QR	Q 1
	0	.260214	070633	. 470633	.156250	500000	0
<u> 1920</u>	.10	.261070	068844	.469082	.153760	446186	.030715
n There	.20	.263617	063612	. 464453	.146629	394243	.058363
5 (b) Y	• 30	.267792	055367	.456838	.135783	346000	.080543
	• 40	.273492	044850	.446435	.122507	303124	.095954
	.50	.280588	033062	.433512	.108149	267045	.104505
1870	•60	.288931	021058	.418216	.093909	=.239447	.107184
	•70	.298364	009709	.400199	.080749	224408	.106175
	.80	.308734	.000162	.378174	.069442	234099	.106103
	.90	.319891	.006245	.349831	.060468	300903	.117906
ing care	1.00	.331720	000000	.312932	.053215	500001	.167466
And be a		State State State	after a citte maria	Sec. Phil State	a ta a la Rosta		
and and	POISSON,S THETA =	RATIO= .200 90.00/DEGREES	lan di kana di	x			
	ROH	DEFLECTION	MR	MT	MRT	QR	QT
<u>2.8.41.5.</u>			trage of tetheral an late safety				
Sale-	U	.260214	112500	.512500	.000001	500000	0
Cling Street	•10	.261331	109228	.509959	.000001	438119	.000000
	02.	.264641	099878	. 502586	.000000	379808	.000000
	• 3 0	.270034	085/3/	. 491054	.000000	32/981	.000000
	.40	.277340	000030	• 470289	.000000	204460	.000000
	.50	+200352		499332	.000000	- 222507	.000000
The second	-00	104530	- 0 204 74	1.2720E	.000000	- 400000	.000000
	#/U	.300020	020134	. 420200	.000000	- 46.2396	.000000
	-00	. 321407	- 007040	206075	000000	10 2 300	000001
	.90	350065	007019	10309/0	.000000	0000007	.000001
	7.00			0000100			• • • • • • • • • • • •

POISSON,S THETA =	J/DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR	Q
0	•269626	.510817	104567	. 0	500000	
.10	.266764	.507821	108562	3	562160	
.20	.258200	.498794	120745	0	628205	
.30	.243996	.483609	141758	0	702873	
.40	.224259	.462024	172832	0	793010	
.50	.199137	.433556	216058	0	909856	
.60	.168817	.397084	274780	0	-1.073435	
.70	.133534	.349690	•.353398	0	-1.320786	
• 80	.093587	.283817	-,460490	Ũ	-1.720685	
.90	.049409	.181074	602006	0	-2.398589	
1.00	.001752	000000	784455	0	-3.576923	

POISSON, S RATIO= .250 THETA = 15.00/DEGREES

	POISSON, S THETA =	RATIO= .250 15.00/DEGREES								
	ROH	DEFLECTION	MR	MT	MRT	QR	Q T			
	0	.269626	.469594	063344	.153846	500000	0			
	.10	.267040	.465945	066161	.155109	553602	.031308			
and the second	.20	.259312	.454867	074594	.158995	609045	.066006			
1	.30	.246540	.435931	088559	.165803	658112	.108315			
	-40	.228888	.408320	107787	.176050	732224	.164440			
o grane (a .	.50	.206600	. 370679	131583	.190458	801486	.244459			
	. 60	.180018	.321037	158449	.209825	872241	.365602			
	.70	.149602	.257104	185625	.234570	931750	.557916			
	.80	•115963	.177663	208754	.263566	947832	.873731			
	.90	.079886	.086351	222190	.291599	850314	1.402923			
A. S. Mar.	1.00	.042295	000000	220797	.304395	500002	2.296647			
112.2		and the second se	Service and advantages of the service of the servic			- 1				

POISSON, S RATIO= .250 THETA = 30.00/DEGREES

the second s		the second s	and the second	and the second	the second s	the second s
ROH	DEFLECTION	MR	MT	MRT	QR ,	Q T
0	.269626	.356971	.049279	.266469	500000	0
.10	.267792	.352337	.048875	.267292	530455	.053827
.20	•262338	.338350	.047869	.269631	558876	.110844
.30	.253411	.314809	.046884	.273050	582443	.174144
•40	.241261	.281542	.046953	.276643	596600	.246271
.50	.226241	.238751	.049460	.278797	594351	.327882
.60	.208815	.187591	.055946	.276937	564789	. 414588
.70	.189543	.131003	.067746	.267528	493495	. 490 459
.80	•169056	.074607	.085495	.246865	363736	.515921
.90	.147994	.027211	.108650	.213630	161275	. 406784
1.00	.126915	000000	.135417	.174871	•115386	.000001

POISSON, S RATIO= .250

	POISSON, S THETA =	ATIO= .250 45.00/DEGREES							
	ROH	DEFLECTION	MR	MT	MRT	QR	QT		
	_ 0	.269626	.203125	.203125	.307692	500300	0		
1010	.10	.268818	.199000	.204144	.306521	499385	.061532		
	.20	.266438	.186887	.207170	.302798	495085	.122880		
	.30	.262625	.167627	.212049	.295947	483519	.183132		
Make .	.40	.257 594	+142757	.218353	.285197	461624	.240014		
Sec. Her	.50	.251626	.114596	.225173	.269919	427885	.289664		
	•60	.245036	.086143	.230915	.250162	384304	.327580		
2	.70	.238140	.060538	.233217	.227244	339603	. 352175		
1.2.1	.80	.231213	.039813	.229074	.203997	313979	. 373254		
Carrow I.	.90	.224468	.022543	.215363	.183783	345722	.428880		
	1.00	.218058	000000	.189904	•166567	500002	•615384		
and the second	Contraction of the		and the same of the same		I THE REPORT OF THE PARTY OF THE		San Property of Party		

POISSON, S	RATIC= .250					
INEIA =	DU-UU/UEGREES	up.	ЧТ	NDT	0.6	0
KOH	DEFLECTION	лк	11	PIK-1	ų r.	ų
0	.269626	.049279	.356971	.266470	500000	
.10	.263841	.047757	.357301	.263648	468929	.0527
.20	.270501	.043517	.358071	.255313	436193	.1023
.30	.271654	.0 37446	.358676	.241886	400807	.1455
•40	.273364	.030715	.358276	.224165	362948	. 1798
.50	.275702	.824358	.356076	.203333	323918	.2029
• 60	.278727	.018789	. 351711	.180788	285061	.2141
.70	.282490	.013513	.345704	.157767	244748	.2126
.80	.287031	.007479	.339820	.134921	192131	.1937
. 90	.292400	.000916	.337038	.112407	095773	•1395
1.00	.298654	-000000	. 340545	.091599	•115386	.0000
POISSON, S	RATIO= .250					
INEIA =	75.UUTUEGREES	ND	ИТ	NDT	0.0	0
Kon	DET LEGTION	05		IIK I	<u> </u>	1.000 1.000 C
0	.269626	063344	•469594	.153847	500000	
.10	.270588	061664	•468110	.151465	447014	• 0 3 0 2
.20	.273453	0.56754	• 463673	.144642	395870	.0574
.30	.278156	049027	• 456354	.134254	348369	.0793
• 40	.284597	039202	• 446308	.121514	30 61 5 3	•0944
.50	•292644	028244	• 433754	.107787	270629	•1026
• 60	• 302149	017179	• 418784	.093971	243456	.1055
.70	• 312 95 4	006861	.401001	.081233	228648	.1045
.80	•324902	.001899	. 379054	.070243	238190	•1044
.90	.337842	.006887	. 350419	.061508	303966	.1160
1.00	.351651	000000	• 312142	• 0 5 4 5 8 0	500001	•1040
POISSON, S	RATIO= .250					
ROH	DEFLECTION	MR	мт	MRT	QR	Q
0	259626	- 10/ 567	510917	0.00.001	- 50,0000	
10	270862	- 101///5	508397	000001	- 439071	0.000
. 20	274529	092528	501362	100000	- 381657	.0000
- 30	280515	- 179055	490325	.000000	- 330.627	.0000
- 40	288648	062788	.430323	000000	287776	.0000
.40	298720	002700	470123	.000000	- 253606	.0000
:50	310506	049711	499013		- 226865	.0000
.00	* 310 20 0	- 017160	• 441902	000000	- 202727	
80	779707	- 0.00274	.424200	0.00000	- 1675+0	0000
90	356 105	- 005754	* 4 00000	.000000	- 087315	0.001
1.00	.371116	.000000	.395032	.000000	•11 5385 ==	.0001
ang		all the second second second second				7, 11, 10, mit der 19
POISSON.S	RATIO= .300	antan September	al e l'an de Paris de	a filo activitie maren i d	a di la sidente de la	
THETA =	0/DEGREES	an management of the state of the			and the subgroup of the second	eles da par es
ROH	DEFLECTION	MR	MI	MRT	QR	Q
0	.280884	.509280	096780	0	500000	No. Alternation
.10	.277928	.506230	100939	• • • • • • • • • • • • • • • • • • • •	561218	T Har That
.20	.269080	.497037	113619	0	626263	
.30	.254398	.481575	135477	,0	699799	
•40	.233980	•459593	167777	0	788570	
.50	.207962	.430608	212667	0	933646	
•60	•176514	.393510	273613	0	-1.064746	
.70	.139844	.345471	355895	0	-1.308350	
.80	.098212	.279230	466936	0	-1.702190	
.90	.051994	.177227	615951	0	-2.369823	NO NO DE
1.00	.001851	000000	811995	0	-3.530303	
1.00	the second	the second s	and an an an and the standard and t	the second se	the second s	Contra Co

POISSON, S THEFA =	S RATIC= .300 15.00/DEGREES					
ROH	DEFLECTION	MR	МΤ	MRT	QR	Q
a	.280 884	468682	056182	.151515	500.000	
.10	.278219	.465008	159179	.1527 64	55 27 89	.03683
.20	.270254	.453857	068161	.156609	607393	.06500
.30	.257082	.434818	083066	.163351	665564	.10667
. 40	.238865	.407102	103669	.173516	7287.5	.16194
.50	.215840	.369409	129345	.187852	796918	.24075
•60	.188339	.319847	158690	.207231	- 865601	.36006
.70	.156812	.256223	189022	.232250	925208	.54946
• 8 û	.121862	.177353	215948	.262211	941047	.86049
.90	.084265	.086646	233365	.292835	845006	1.38160
1.00	.044948	000000	234672	.311774	500002	2.26185
POISSON, S THETA =	S RATIO= .300 30.00/DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR	Q
0	.283884	.357765	.054735	.262432	500000	
.10	.279013	.353158	.054132	.263275	529994	.05301
• 20	.273447	.339259	.052528	.265688	557984	.10916
.30	.264335	.315877	.050542	.269264	581194	.17150
.40	.251928	.282858	.049214	.273163	595195	.24253
.50	.236583	.240402	.049967	.275869	592922	. 32291
•60	.218770	.189626	• 0 5 4 4 4 3	.274940	563808	. 40830
.70	.199050	.133354	.064201	.266975	493594	.483DZ
•80	.178098	.076976	.080258	.248277	365801	.50810
.90	.156548	.028937	.102630	.217117	166407	.40062
1.00	.135003	000000	.130177	.179110	•106062	.00000:
POISSON,S THETA = ROH	CRATIO= .300 45.00/DEGREES DEFLECTION	MR	MT	MRI	QR	0 1
	290.004	20/250	201250	707070	50.0000	
10	.200004	.206250	.200250	. 3.0 3.0 3.0		
.10	•280095	.202163	.207107	. 301953	499394	. 06060
•20	•211115	.190155	.209660	.298520	495159	.12101
•30	.274063	.171038	.213800	.292180	483769	.18035
•40	.269182	•146294	.219184	.282183	462205	.23637
•50	.263419	.118155	.225020	.267905	428977	.28527
•60	.257100	.089510	• 229863	•249344	386057	. 32261
.70	.250552	.053390	. 231475	.227699	342033	• 34683
• 80	.244004	.041779	• 226877	.205634	316797	.36759
.90	.237860	.023390	.212698	.186455	348059	. 42238
1.00	•232100	000000	•102302	•1/0/0/	5000002	.00000
POISSON, S THETA =	RATIO= .300 60.00/DEGREES		the factor of the second second			
ROH	DEFLECTION	MR	МТ	MRT	QR	Q
0	.280884	.054735	.357765	.262432	500000	
.10	.281175	.053192	.358037	.259751	469400	.05196
.20	.282064	.048877	.358651	.251827	437150	.10078
.30	-283600	.042643	.359040	239051	- 40 2310	.14330
- 40	285851	135617	.358417	,222162	- 366024	17707
.50	-288893	039017	- 356025	200265	- 305024	• 1// 0/
	•200092	.020001	. 396029	.202265		.19990
•00	.292789	•022609	.351502	.180671	288318	.21095
./0	.297596	• 16586	. 345327	.158540	248616	.20942
.80	.303359	.009741	. 339227	.136475	196796	.19078
.90	.310136	.002277	.336282	.114551	101897	.13745
1.00	.317993	.000000	. 340278	.093820	.106062	.00000

POISSON, THETA =	S RATIO= .3JU 75.00/DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR	QT
0	.280 884	=.056182	. 468682	•151516	500000	0
.10	.281964	154037	.467259	.149240	447817	29784
.20	.285180	050012	.463001	.142715	397448	.056595
•30	.290469		.455953	.132770	350607	+078192
•40	.297729	033645	.446235	.120552	309090	.093347
.50	.306828	023501	.434612	• 1,07278	274105	.101338
.60	.317616	=.013357	.419326	.094032	= • 247343	.103936
- 80	.329933		379821	.071020	242156	.102888
.90	.358519	.007527	. 350854	.062516	316936	. 114333
1.00	.374499	000000	. 311187	.055903	500001	.162391
A Los						
POISSON,	S RATIO= .300 90.00/DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR	QT
0	.280 884	096780	.509280	.000001 .	500000	Ū
.10	.282252	093804	.506974	.00000	439994	•000000
.20	•286316	085309	.500260	.000000	383450	.000000
• • • •	.292961	- 857043	• 4 8 96 8 8	.000000	- 33 3193	.000000
.40	.313262	040888	.460057	.000000	257339	.000000
.60	.326477	025981	. 442721	.000000	231004	.000000
.70	.341439	014227	.425212	.000000	207231	.000000
•80	.357965	007163	•409465	.000000	172617	.000001
. 90	•375924	004530	.398501	.000000	093568	.000001
1.00	.395249	.000000	.396086	.000000	.106061	.000003
POISSON, THETA = ROH	S RATIO= .350 0/DEGREES DEFLECTION	MR	MI	MRT	QR	Q T
0	204757	E07040	- 000173	0	- 500000	0
-10	•294357	-507882	089132	0	560305	0
.20	.282095	.495423	106623	0	624378	0
.30	.266834	.479686	129317	0	696817	0
•40	.245594	.457314	162824	0	784263	0
.50	.218495	.427817	209353	0	897621	0
.60	.185689	.390104	272488	0	-1.056317	0
.70	.147352	• 341425	357779	0	-1.296285	0
.80	.103704	.274814	473275	0	-1.684247	
.90 1.00	.001967	000000	838899	0	-3.485075	0
POISSON,S IHEIA =	S RATIO= .350 15.00/DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR	QT
0	.294357	.467890	049140	.149254	500000	D
.10	.291596	.464190	052315	.150489	552001	.030374
•20	.283341	. 452967	061838	.154294	605790	.064036
• 30	.269682	. 433822	077669	.160972	663093	•105082
• 40	.250776	.405998	099626	.171057	725292	.159532
.50	.226854	.368246	127151	.185325	792487	.237161
•60	.198238	.318753	158930	.204713	851129	.354689
.79	.165367	.255416	192363	.230000	918862	.541262
•80	.128834	•1//086	223013	.200031	934464	1 . 361345
1.00	.048021	000000	248320	.318933	500002	2.228091
	A the state of the state	A State State	a line in the second second	a series and the		
· 与之 · 、 》 · · · · · · · · · · · · · · · · ·			- 330.	The second second		
						St. Aller

DOH	DEFLECTION	ND	M T	TOP	0.0	
KUH	DEFLECTION	МК	m1	MRI	ur.	
Û	.294357	.358629	.060121	.258515	500000	
.10	.292438	.354047	.059323	.259379	529546	. 05
.20	.286729	.340230	.057130	.261862	557119	.10
• 30	.277379	.316999	.054159	.265592	579982	.16
* 4 Û	.264641	.284212	.051457	.269787	593774	.23
.50	.248880	.242073	.050482	.273027	591535	. 31
•00	.230 570	.191660	.052979	.273003	562855	• 40
.70	.210295	.135683	.060718	.266439	493690	• 47
• 8 Û	.188718	.079307	.075091	.249646	367804	.50
•90	•166532	.030630	.096656	.220501	171386	. 39
1.00	.144368	000000	.124907	.183223	.097017	• 0 (
POISSON, THETA =	S RATIO= .350 45.00/DEGREES					
ROH	DEFLECTION	MR	МТ	MRT ,	QR	
0	.294357	.209375	.209375	.298507	500000	
•10	.293586	.205324	.210071	.297521	499403	• 0 •
.20	.291321	.193415	.212157	.294371	49 5 2 3 2	• 11
.30	.287704	.174433	.215568	.288525	484011	.1
•40	.282966	.149803	.220039	.279259	462769	.2
.50	.277402	.121678	.224896	.265950	430038	• 2
.60	.271348	.092837	.228834	.248551	387758	• 3
.70	.265146	.066204	.229741	.228140	344391	• 3
.80	.259100	.043720	.224659	.207223	319532	• 3
.90	.253445	.024228	.209978	.189047	350327	• 4
1.00	.248351	000000	.181996	.174627	500001	•5
POISSON,	S RATIO= .350					
ROH	DEFLECTION	MR	MT	MRI	QR	
0	•294357	.060122	.358628	.258515	500000	
.10	,294732	.0 58558	.358842	.255971	469857	.0
.20	.295873	.054167	.359295	.248446	438098	.0
.30	.297831	.047769	.359462	.236300	403768	.1
.40	.300680	.040452	.358603	.220219	367039	.1
.50	.304497	.033182	.356000	.201229	329175	.1
•60	.309355	.026375	. 351292	.180557	291477	.2
.70	.315312	.019615	.344919	.159290	252368	.2
.80	.322423	.011969	.338566	.137982	201321	.1
. 90	.330750	.003615	.335416	.116632	107839	.1
1.00	.340 372	.000000	.339832	.095974	.097016	.0
POISSON,	S RATIO=					
THETA =	75.00/DEGREES					
RUH	DEFLECTION	MR	MT	MRT	QR	
and the second	.294357	049140	.467890	•149254	500000	647 A 15
0	.295569	047670	.466524	.147081	448596	. 0
•10	the same with a second s	043381	.462430	.140846	398979	.0
0 •10 •20	.299180		1.55672	.131331	352896	. 0
0 •10 •20 •30	.299180 .305128	036661	• 435032			
0 •10 •20 •30 •40	.299180 .305128 .313308	036661 028176	.446212	.119619	311939	• 0
0 •10 •20 •30 •40 •50	.299180 .305128 .313308 .323587	036661 028176 018830	•435632 •446212 •434286	•119619 •156862	311939 277476	• 0 • 0
0 •10 •20 •30 •40 •50 •50	.299180 .305128 .313308 .323587 .335812	036661 028176 018830 009590	.435032 .446212 .434236 .419845	•119619 •106862 •094091	311939 277476 251114	• 0 • 0 • 1
0 •10 •20 •30 •40 •50 •50 •50 •70	.299180 .305128 .313308 .323587 .335812 .349821	036661 028176 018030 009590 001277	.435832 .446212 .434286 .419845 .402402	.119619 .106862 .094091 .082157	311939 277476 251114 236748	.0 .0 .1
0 •10 •20 •30 •40 •50 •50 •50 •50 •50 •50 •50 •5	.299180 .305128 .313308 .323587 .335812 .349821 .365449	036661 028176 018030 009590 001277 .005319	.435832 .446212 .434286 .419845 .402402 .380478	.119619 .106862 .094091 .082157 .071774	311939 277476 251114 236748 246005	• 0 • 0 • 1 • 1 • 1
0 •10 •20 •30 •40 •50 •60 •70 •80 •90	.299180 .305128 .313308 .323587 .335812 .349821 .365449 .382536	036661 028176 018830 009590 001277 .005319 .008166	.435832 .446212 .434286 .419845 .402402 .380478 .351142	.119619 .106862 .094091 .082157 .071774 .063495	311939 277476 251114 236748 246005 309818	.0 .0 .1 .1 .1 .1

ROH	DEFLECTION	MR	MI	MRI	QR	0 1
Ų	.294357	089132	.507882	.000000	500000	0
.10	.295875	386299	.505684	.000000	440890	
.20	.300386	078217	.493272	.000000	385189	.000000
.30	.307775	066034	.489138	.000000	-,335683	.000000
•4ù	.317864	051391	.475953	.000000	294111	.000000
.50	.330436	036140	.460452	.000000	260961	.000000
.60	.345257	022173	. 443447	.000000	235018	.000000
.70	.362102	011335	. 426066	.000000	211600	.000000
.80	.380781	005117	.410211	.000000	177503	.000001
.90	.401160	003314	.399030	.000000	099634	.000001
1.00	.423170	.000000	. 396922	.000000	.097015	.000003

1.000					0/DEGREES	THETA =
Q T	. QR	MRT .	MT	MR	DEFLECTION	ROH
Û	500000	Û	081618	.506618	. 310 546	0
Ú	-,559418	0	086098	.503460	.307338	.10
6	622549	0	099753	.493944	.297728	.20
0	693923	0	123270	.477936	.281766	.30
9	780083	٥	157969	.455178	.259529	• 40
0	891774	0	206114	.425178	.231124	.50
0	-1.048136	0	271464	.386856	•196676	• 60
0	-1.284575	0	359651	.337545	.156332	.70
0	-1.666831	0	479513	.270560	.110262	.80
0	-2.314828	0	643004	.169925	.058703	.90
C	-3.441176	0	865196	000000	.002103	1.00

POISSON, S RATIO= .400 THETA = 15.00/DEGREES

r (elit)

		the second se				
ROH	DEFLECTION	MR	MT	MRT	QR	QT
0	.310546	.467213	042213	.147059	500000	Q
.10	.307667	.463488	045564	.148281	551237	.029927
.20	.299058	.452191	055619	.152047	60 423 4	.063094
.30	.284806	.432940	072364	.158663	660695	.103536
.40	.265062	.405004	095654	.168671	721979	.157186
.50	.240048	.367186	124999	.182871	788185	.233674
.60	.210076	.317750	159171	.202270	855818	.349473
.70	.175577	.254680	195648	.227815	912702	.533303
.80	.137130	.176859	229954	.259621	928075	.835184
.90	.095498	.087262	255123	.295196	834859	1.341030
1.00	.051619	000000	261750	.325881	500002	2.195325

non	DEFLECTION	MR	MT	MRT	QR	QT
0	.310 546	.457213	042213	.147059	500000	0
.10	.307667	.463488	045564	.148281	551237	.029927
.20	.299058	.452191	055619	.152047	60 423 4	.063094
.30	.284806	.432940	072364	.158663	660695	.103536
.40	.265062	.405004	095654	.168671	721979	.157186
.50	.240048	.367186	124999	.182871	788185	.233674
.60	.210076	.317750	159171	.202270	855818	. 349473
.70	.175577	.254680	195648	.227815	912702	.533303
.80	.137130	.176859	229954	.259621	928075	.835184
.90	.095498	.087262	255123	.295196	834859	1.341030
1.00	.051619	000000	261750	.325881	500002	2.195325
POISSON, THETA =	S RATIO= .400 30.00/DEGREES	a e e e e e e e e e e e e e e e e e e e				
ROH	DEFLECTION	MR	NT.	NOT.	0.0	with the grant of the second
	orr score orr	1115	MI	MKI	uk	Q 1
Û	.310546	.359559	.065441	•254713	uR 500000	Q T
0 •10	.310546	.359559 .355001	•064450	.254713 .255597	чк 500000 529112	Q T 0
0 .10 .20	.310546 .308566 .302675	.359559 .355001 .341261	•064450 •061677	MRI •254713 •255597 •258149	500000 529112 556279	Q T 0 .051452 .105954
0 •10 •20 •30	.310546 .308566 .302675 .293023	.359559 .355001 .341261 .318171	•064450 •064450 •061677 •057736	MR1 •254713 •255597 •258149 •262028	5000000 529112 556279 578806	Q T 0 .051452 .105954 .166461
0 •10 •20 •30 •40	.310546 .308566 .302675 .293023 .29369	.359559 .355001 .341261 .318171 .285605	•064450 •064450 •061677 •057736 •053681	MR1 •254713 •255597 •258149 •262028 •266510	500000 529112 556279 578806 592395	Q T 0 .051452 .105954 .166461 .235406
0 •10 •20 •30 •40 •50	.310546 .308566 .302675 .293023 .279869 .263579	.359559 .355001 .341261 .318171 .285605 .243764	• 0 65441 • 0 64450 • 0 61677 • 0 57736 • 0 53681 • 0 51004	MR1 •254713 •255597 •258149 •262028 •266510 •270270	500000 529112 556279 578806 592395 590189	Q T 0 .051452 .105954 .166461 .235406 .313417
0 •10 •20 •30 •40 •50 •60	.310546 .308566 .302675 .293023 .279869 .263579 .244640	.359559 .355001 .341261 .318171 .285605 .243764 .193693	11 .065441 .064450 .061677 .057736 .057681 .051004 .051550	MR1 •254713 •255597 •258149 •262028 •266510 •270270 •271122	500000 529112 556279 578806 592395 590189 551931	Q T 0 .051452 .105954 .166461 .235406 .313417 .396298
0 •10 •20 •30 •40 •50 •60 •70	.310546 .308566 .302675 .293023 .279869 .263579 .244640 .223649	.359559 .355001 .341261 .318171 .285605 .243764 .193693 .137991		MR1 .254713 .255597 .258149 .262028 .266510 .270270 .271122 .265918	ux 500000 529112 556279 578806 592395 590189 551931 493782	Q T 0 .051452 .105954 .166461 .235406 .313417 .396298 .468822
0 •10 •20 •30 •40 •50 •60 •70 •80	.310546 .308566 .302675 .293023 .279869 .263579 .244640 .223649 .201291	.359559 .355001 .341261 .318171 .285605 .243764 .193693 .137991 .081603	<pre> • C 65441 • 064450 • 061677 • 057736 • 053681 • 051004 • 051550 • 057295 • 069991</pre>	MR1 .254713 .255597 .258149 .262028 .266510 .270270 .271122 .265918 .250976	uk 500000 529112 556279 578806 592395 590189 551931 493782 369748	Q T 0 .051452 .105954 .166461 .235406 .313417 .396298 .468822 .493160
0 •10 •20 •30 •40 •50 •60 •70 •80 •90	.310546 .308566 .302675 .293023 .279869 .263579 .244640 .223649 .201291 .178291	.359559 .355001 .341261 .318171 .285605 .243764 .193693 .137991 .081603 .032290	<pre> • C 65441 • 064450 • 061677 • 057736 • 053681 • 051004 • 051550 • 057295 • 069991 • 090727</pre>	MR1 .254713 .255597 .258149 .262028 .266510 .270270 .271122 .265918 .250976 .223785	ux 500000 529112 556279 578806 592395 590189 551931 493782 369748 176218	Q T 0 .051452 .105954 .166461 .235406 .313417 .396298 .468822 .493160 .388837

PO	ISSON,S	RATIC= .400					
	ROH	DEFLECTION	MR	МΙ	MRI	QR	0 1
			The				
	0	.310546	.212500	.212500	.294118	500000	U
	.10	.309792	.208483	.213036	.293220	499412	. 358818
	•20	.367578	•196668	.214661	• 290 343	495302	•117459
	.30	.304052	.177811	.217350	.284978	484246	.175053
	.40	.299451	.153287	.220916	.276421	463317	.229425
	.50	.294080	.125167	.224799	.264053	431066	.276834
	.60	.288290	.096125	.227829	.247780	389408	.313128
	.70	.262438	.068983	.228015	.228568	346679	.336638
	.80	.276845	.045637	.222421	.208764	322186	.356787
	•90	•271760	.025060	.207207	.191563	352528	.409959
1		.267362	000000	.177941	.178431	500001	.588234
D	S MOZZI	PATTO- 4.8.6					
FU	ETA =	60.00/DEGREES					
	ROH	DEFLECTION	MR	MT	MRT .	QR	Q T
in segmentation	0	.310546	.065441	.359559	.254714	500000	٥
	.10	.311015	.063856	.359713	.252302	476300	.050433
	.20	.312438	.059390	.360002	.245164	439008	.097816
	.30	.314872	.052829	. 359938	.233631	405183	.139175
Contra Contractor	.40	.31839J	.045221	.358831	.218333	368994	.171869
	.50	.323079	.037503	.355998	.200224	331687	.194020
	.60	.329015	.030088	.351080	.180446	294544	.284747
and the second second	.70	.336264	.022602	.344479	.160018	256010	.203262
A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRA	.80	.344885	.014165	.337840	.139445	205714	.185176
	.90	.354949	.004932	.334444	.118651	113606	.133408
1	.00	.366546	.000000	.339216	.098065	.088236	.000002
a san kana	de la marte						
PO	ISSON, S	RATI0= .400					
IH	HEIA =	75.00/DEGREES					
	ROH	DEFLECTION	MR	MT	MRT	QR	Q T
	0	. 310 546	042213	.467213	.147059	500000	0
	.10	.311908	040845	.465900	•144985	449351	.028908
	. 20	.315971	0 36858	. 461957	.139032	400464	.054930
	.30	.322669	+.030625	.455388	.129934	355059	.075805
and the second second	.40	.331898	022791	.446237	.118713	314705	.090310
	.50	.343521	014227	. 434575	.106458	280749	.098358
	.60	.357383	005874	. 420 342	.094148	254774	.100879
A ANT STORY	.70	.373315	.001463	.403007	.0.82599	248619	.099929
	. 80	. 391149	.0.07004	.381032	.072505	249740	.099862
	. 90	410715	.008804	351290	064444	- 312615	110970
1	.00	.431854	000000	.308808	.058432	500001	.157615
PO TH	ISSON,S ETA =	RATIO= .400 90.00/DEGREES	Nes Barre				
	ROH	DEFLECTION	MR	MT	MRT	QR	QT
10 MAR	0	.310546	081618	.506618	.000000	500000	0
	.10	.312235	078924	.504521	.00000	- 441759	.000000
	.20	. 317250	071244		.000000	- 786873	.000000
	. 30	3251.00	- 050686	4 986 74		- 3780000	
	. 4.0	776777	- 0/ 5030		000000		
	50	.330773		+473344	.000000	-•531123	
		• 350 858	431463	. 460859	.000000	204476	
Constant St.	.60	.367512	018419	• 4 4 4 1 4 4	.000000	238915	.000000
A torada	•10	.385504	008480	• 426852	.000000		.000000
1	.00	.407634	003098	.410850	.000000	182246	.000001

333.

. 399412

. 397549

.000000

.000000

.000001

.000003

-.105521

.088235

.90

1.00

.430764

.455825

-.002117

POISSON, S THETA =	RATIO= .450 0/DEGREES					
ROH	DEFLECTION	HR	MT	MRT	QR	Q
Ū	.333142	•505480	074230	Ū	500000	
.10	.326764	.502270	078869	ú	-,558557	etter (s. edi
.20	.316646	.492595	093002	û	62 0 77 3	
.30	.299828	.476319	117332	Q	691112	
.40	.276378	.453180	153208	· · · · · 0	776024	
.50	.246381	.422683	202946	0	386,96	· · · · · · · · · · · · · · · · · · ·
.00	.209940	.383760	270359	0	-1.040192	
.70	.167162	. 333824	361511	G	-1.273265	
.80	.118160	.266463	485653	0	-1.649921	
.90	.053088	.166458	656137	C	-2,288526	
1.00	.002264	000000	890912	Û	-3.398551	
POISSON.S	RATIO= .450					
THE TA =	15.00/DEGREES					
RUH	DEFLECTION	MR	MT	MRI .	QR	ų
0	.330142	.466647	035397	•144927	500000	
.10	.327 118	.462895	038920	.146137	550494	.02949
.20	.318076	.451525	049502	•149866	-,602724	.06217
.30	.303097	.432165	067146	.156421	658366	.10203
• 40	.282326	.404115	091750	•166355	718762	.15490
.50	.255978	.366225	122886	.180489	784009	. 23028
.60	.224353	.316833	159412	.199898	850662	.34440
.70	.187869	.254011	198881	.225694	906721	.52557
.80	.147093	.176672	236778	.258382	921871	. 82308
.90	.102783	.087582	265723	.296326	830006	1.32159
1.00	.055884	000000	274972	.332628	500002	2.16350
POISSON, S	RATIO= .450	and the second second				
ROH	30.007DEGREES	MR	мт	MRI	QR	G
	77044.2	200552	376607	251022	500000	
U	+330142	•360553	70697	.251022	5000000	
•10	.328085	.356018	.069517	.251925	528690	.05070
•20	.321964	.342349	.066173	•254544	555463	•10441
• 30	• 311 934	.319392	.061276	.258567	577664	• 16404
•40	.298253	.287032	.055888	.263328	591056	.23199
.50	.281299	.245475	.051534	.267592	588882	.30887
•60	•261568	.195725	.050155	.269296	561033	. 39055
.70	.239674	.140277	.053928	.265413	493872	. 46202
.80	.216330	.083865	.064956	.252266	371636	.48601
.90	.192299	.033919	.084840	.226973	180911	.38320
1.00	.168309	000000	.114281	.191091	.079712	.00000
POISSON, S	RATIO= +450		en e			
ROH	45.007DEGREES	MR	мт	MRT	0.R	Q
	DEF LEOF ION			3.2		N. A. CAR
0	.330142	.215625	. 215625	.289855	500000	0.5706
.10	*329402	.211040	.210006	.209043		.03730
• 20	.321231	.199913	.21/1/3	.286432	495370	.11575
.30	.323798	.181173	.219147	.281534	- 484475	.17251
•40	.319329	.156745	. 221815	•273666	46 38 4 9	.22610
.50	.314152	.128622	. 224727	.262211	432065	.27287
.60	•308630	.099375	.226845	.247033	391011	.30859
.70	.303139	.071727	.226297	.228984	348901	. 33175
.80	.298019	.047531	.220165	.210261	324763	. 35161
.90	.293538	.025884	.204386	.194006	354665	.40401

334.

.173822

.182126

1.00

.293538

.289883

.025884

-.000000

.579709

-.500001

	PUISSON, S	S RATIO= .450					
	ROH	DEFLECTION	itik	MT	MRT	QR	Q T
	0	330462	170608	360550	251022	50 B B u G	6
	•10	.330717	.069091	· 360646	.248738	470730	. 049702
	.20	.332465	.064548	. 360767	.241977	439892	.096399
	.30	.335441	. 157824	.360466	.231038	406557	.137158
	• 40	.339726	.049928	.359100	.216502	370893	.169378
	.50	.345411	.041767	.356019	.199248	334126	.191238
	•60	.352581	.033752	.350867	.180338	297521	.201780
	.70	.361306	.025548	.344009	.160725	259546	.200316
	.80	. 371652	.016330	.337051	.140866	209979	•182492
	•90	.383699	.006227	.333370	+126612	119206	.131474
	1.00	,397549	000000	• 338436	.100095	.079711	•00002
	POISSON, S	S RATIO= . 450					
	ROH	DEFLECTION	мΡ	мт	MDT	gn	0 1
	Kon	DEFECTION	HIX .			QIL	ųı
1.1.1.1.1.1.1	0	.330142	035397	• 466647	•144928	500000	Q
463-1	•10	.331678	034128	•465382	.142951	450085	.028489
N.S. C. N.S	.20	.336265	030437	. 461578	.137271	401907	.054134
	• 30	. 343834	024682	• 455 217	•128577	357160	.074706
	•40	• 354279	017485	. 440309	.11/833	317390	. 089001
20.00	•50	- 38 321 5	009090	. 434070	.105005	- 258328	.090932
	•20	.401372	.004168	. 403552	.0.83028	244378	.099417
1.0	.80	• 421 754	.008672	. 381487	.073215	253367	.098415
1	.90	.444179	.009440	.351305	.065366	315330	.109362
	1.00	.468472	000000	.307399	.059642	500001	.155331
	Dotropau						
-	THETA =	90.007DEGREES					
1.200	ROH	DEFLECTION	MR	МТ	MRT	QR	Q T
And I	0	.330142	074230	.505480	.000000	500000	e
S. Sec.	.10	.332029	071673	. 503480	.000000	442603	.000000
	•20	• 337650	064387	.497621	.000000	388517	.000000
	.30	.346881	053439	.488284	.000000	340446	.000000
	•40	.359533	040351	.475981	.000000	300079	.000000
	.50	.375375	026853	.461277	.000000	267889	.000000
n Weiter in	•60	.394158	014715	• 4 4 4 8 1 4	.000000	242699	.000006
Sec. 1	.70	•415638	005663	. 427573	.000000	219960	.000000
	.80	.439606	001104	• 411387	.000000	186851	.000001
	.90	.494499	000938	. 399654	.000000	111238	.000001
						• • • • • • • • •	
	POISSON, S	S RATIC= .500					
	ROH	DEFLECTION	MR	мт	MRT	QR	0 1
	-10	• 354117	• 504464	054564	0	- 557720	C
	.20	330797	.901202	- 0.46365	0	- 6190/8	0
	.30	.321917	.474830	111499	0	- 688382	D D
	.40	.296973	.451315	148536	°	772080	0
	.50	.265022	.420326	199847	0	880580	0
	.60	.226134	.380810	269350	0	-1.032475	0
	.70	.180 371	. 330255	-,363360	0	-1.262159	0
2	.80	.127782	.262514	491700	0	-1.633493	D
	.90	.068423	.163108	669022	0	-2.262976	6
	1.00	.002458	000000	916071	0	-3.357143	Q

,

					RATIC= .500 15.00/DEGREES	POISSON,S THETA =
Q I	QR	MRT	MT	MR	DEFLECTION	ROH
Û	500000	.142857	028686	.466186	.354117	٥
.029072	549773	.144055	032380	.462408	.350916	.10
.061291	601256	.147746	043480	. 450963	.341338	.20
.100578	656104	.154243	062012	. 431494	.325461	.30
.152695	715637	.164104	087911	.403327	.303424	.40
.226997	779952	.178175	120811	.365358	.275430	.50
.339488	845652	.197593	159653	.316000	.241768	.60
.518065	900911	.223634	202063	.253407	.202841	.70
.811321	915844	.257178	243488	.176522	.159205	.80
1.302714	825291	.297423	276148	.087911	.111611	.90
2.132601	500002	.339183	287995	000000	.061015	1.00
					RATIO= .500 30.00/DEGREES	POISSON,S THETA =
Q I	QR	MRT	MT	MR	DEFLECTION	ROH
					the structure of the second	
0	500000	.247436	.075893	.361687	.354117	0
0 • 0 4 9982	500000 528280	•247436 •248357	.075893 .074525	•361687 •357093	.354117 .351964	0
0 • 0 4 9 9 8 2 • 1 0 2 9 2 7	528280 554671	.247436 .248357 .251041	.075893 .074525 .070618	.361607 .357093 .343491	.354117 .351964 .345555	0 .10 .20
0 •049982 •102927 •161705	528280 528280 554671 576555	.247436 .248357 .251041 .255205	.075893 .074525 .070618 .064780	.361607 .357093 .343491 .320659	.354117 .351964 .345555 .335045	0 •10 •20 •30
0 .049982 .102927 .161705 .228680	500000 528280 554671 576555 589755	.247436 .248357 .251041 .255205 .260237	.075893 .074525 .070618 .064780 .058078	.361607 .357093 .343491 .320659 .288495	.354117 .351964 .345555 .335045 .320703	0 -10 -20 -30 -40
0 049982 102927 161705 228680 .304462	528280 528280 554671 576555 589755 587612	.247436 .248357 .251041 .255205 .260237 .264991	.075893 .074525 .070618 .064780 .058079 .052072	.361607 .357093 .343491 .320659 .288495 .247203	.354117 .351964 .345555 .335045 .320703 .302911	0 • 10 • 20 • 30 • 40 • 50
0 049982 102927 161705 228680 304462 384975	500000 528280 554671 576555 589755 587612 560161	.247436 .248357 .251041 .255205 .260237 .264991 .267523	.075893 .074525 .070618 .064780 .058078 .052072 .048792	.361607 .357093 .343491 .320659 .288495 .247203 .197756	.354117 .351964 .345555 .335045 .320703 .302911 .282181	0 • 10 • 20 • 30 • 40 • 50 • 60
0 .049982 .102927 .161705 .228680 .304462 .384975 .455427	500000 528280 554671 576555 589755 587612 560161 493960	.247436 .248357 .251041 .255205 .260237 .264991 .267523 .264922	.075893 .074525 .070618 .064780 .058078 .052072 .048792 .050615	.361607 .357093 .343491 .320659 .288495 .247203 .197756 .142544	.354117 .351964 .345555 .335045 .320703 .302911 .282181 .259149	0 .10 .20 .30 .40 .50 .60 .70

	4020100	16 00 4 72		100000		
.50	.302911	.247203	.052072	.264991	587612	. 304462
•60	.282181	.197756	.048792	.267523	560161	.384975
.70	.259149	.142544	.050615	.264922	493960	. 455427
06.	•234559	•086095	.059983	.253520	373469	.479059
.90	.209221	.035519	. 078994	.230071	185469	. 377728
1.00	.183925	000000	.108929	•194856	.071430	.000001

PUISSON, S RATIO= .500 THETA = 45.00/DEGREES

ROH	DEFLECTION	MR	MT	MRT	QR ,	Q T
0	.354117	.218750	.218750	.285714	500000	
• 10	.353393	.214795	.218976	.284986	499429	.057137
.20	.351273	.203151	.219692	.282633	495436	.114103
.30	.347917	.184521	. 220 95 8	.278188	484697	.170051
• 40	.343580	.160180	.222735	.270989	- 464365	.222870
.50	.338598	.132045	.224679	.260421	433036	.268973
.60	.333353	.102590	.225882	.246306	392568	.304182
.70	.328244	.074438	.224586	.229389	351060	.327019
.80	.323633	.049404	.217892	.211715	327266	.346593
. 90	.319807	.026702	.201519	.196379	356742	.398246
1.00	.316964	000000	.169643	.185714	500001	.571428

THETA =	45.00/DEGREES					
ROH	DEFLECTION	MR	MT	MRT	QR,	Q
D	.354117	.218750	.218750	.285714	500000	
.10	.353393	.214795	.218976	.284986	499429	.057
.20	.351273	.203151	.219692	.282633	495436	.11
.30	.347917	.184521	. 220 95 8	.278188	484697	.17
•40	.343580	.160180	.222735	.270989	464365	.22
.50	.338598	.132045	.224679	.260421	433036	.26
. 60	.333353	.102590	.225882	.246306	392568	.30
.70	.328244	.074438	.224586	.229389	351060	.32
.80	.323633	.049404	.217892	.211715	327266	.34
. 90	.319807	.026702	.201519	.196379	356742	.39
1.00	.316964	000000	.169643	.185714	500001	.57
POISSON,S THETA =	S RATIO= .500					
	OU. UU/DEGREES			and the man is a second		
ROH	DEFLECTION	MR	MT	MRT	QR	
ROH	.354117	MR .075893	MT .361607	NRT .247436	QR 500000	
RОН 0 10	.354117 .354818	MR •075893 •074264	MT .361607 .361639	NRT •247436 •245277	QR 500000 471149	.04
ROH 0 10 -20	.354117 .354818 .356944	MR •075893 •074264 •069644	MT .361607 .361639 .361590	NRT •247436 •245277 •238881	QR 500000 471149 440751	.04
ROH 0 10 -20 -30	00.0075E0KELS DEFLECTION .354117 .354818 .356944 .360553	MR •075893 •074264 •069644 •062758	MT .361607 .361639 .361590 .361045	NRT •247436 •245277 •238881 •228520	QR 500000 471149 440751 407892	.04 .09 .13
R0H 0 10 -20 -30 -40	00.007 DEGREES DEFLECTION .354117 .354818 .356944 .360553 .365734	MR .075893 .074264 .069644 .062758 .054576	MT .361607 .361539 .361590 .361045 .359407	NRT .247436 .245277 .238881 .228520 .214723	QR 500000 471149 440751 407892 372737	.04 .09 .13 .16
ROH 0 10 -20 -30 -40 -50	00.0075EGREES DEFLECTION .354117 .354818 .356944 .360553 .365734 .372582	MR .075893 .074264 .069644 .062758 .054576 .045975	MT . 361607 . 361639 . 361590 . 361045 . 359407 . 356061	NRT .247436 .245277 .238881 .228520 .214723 .198299	QR 500000 471149 440751 407892 372737 336496	•04 •09 •13 •16 •18
ROH 0 10 -20 -30 -40 -50 -60	00.007 DEGREES DEFLECTION .354117 .354818 .356944 .360553 .365734 .372582 .381190	MR .075893 .074264 .069644 .062758 .054576 .045975 .037369	MT . 361607 . 361639 . 361590 . 361045 . 359407 . 356061 . 350654	NRT .247436 .245277 .238881 .228520 .214723 .198299 .180234	QR 500000 471149 440751 407892 372737 336496 300414	.04 .09 .13 .16 .18 .19
ROH 0 10 -20 -30 -40 -50 -60 -70	00.007 DEGREES DEFLECTION .354117 .354818 .356944 .360553 .365734 .372582 .381190 .391637	MR .075893 .074264 .069644 .062758 .054576 .045975 .037369 .028456	MT . 361607 . 361639 . 361590 . 361045 . 359407 . 356061 . 350654 . 343511	NRT .247436 .245277 .238881 .228520 .214723 .198299 .180234 .161412	QR 500000 471149 440751 407892 372737 336496 300414 262981	.04 .09 .13 .16 .18 .19 .19
ROH 0 10 -20 -30 -40 -50 -60 -70 -80	00.007 DEGREES DEFLECTION .354117 .354818 .356944 .360553 .365734 .372582 .381190 .391637 .403996	MR .075893 .074264 .069644 .062758 .054576 .045975 .037369 .028456 .018466	MT . 361607 . 361539 . 361590 . 361045 . 359407 . 356061 . 350654 . 343511 . 336203	NRT .247436 .245277 .238881 .228520 .214723 .198299 .180234 .161412 .142246	QR 500000 471149 440751 407892 372737 336496 300414 262981 214122	.04 .09 .13 .16 .18 .19 .19 .17
ROH 0 10 -20 -30 -40 -50 -60 -70 -80 -90	00.0075E0KEES DEFLECTION .354117 .354818 .356944 .360553 .365734 .372582 .381190 .391637 .403996 .418352	MR .075893 .074264 .069644 .062758 .054576 .045975 .037369 .028456 .018466 .007502	MT . 361607 . 361639 . 361590 . 361045 . 359407 . 356061 . 350654 . 343511 . 336203 . 332199	NRT .247436 .245277 .238881 .228520 .214723 .198299 .180234 .161412 .142246 .122517	QR 500000 471149 440751 407892 372737 336496 300414 262981 214122 124646	.04 .09 .13 .16 .18 .19 .19 .19 .17

336.

and the

Paterak	Zin traba			ani Kalan Waran Maria Maria		
THETA =	5 RATIO= .500 75.00/DEGREES			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
ROH	DEFLECTION	MR	MT	MRT	QR	
0	.354117	028686	•466186	.142857	- 500000	
.10	.355860	027515	• 464966	140974	- /50700	
.20	.361066	024113	. 461288	135550	450739	
.30	.359666	018827	.455116	127260	40 5 5 0 8	
•40	.381547	012257	. 446426	116979	359200	
.50	.396566	005216	. 435194	10569/	319999	
.60	•414555	.001410	. 421270	00/250	287013	
.70	.435334	.006843	404039	0.831.1.1	=.201/80	1. 2. 1.
.80	.458714	.010324	. 381846	.073905	240030	
.90	.484501	.010075	. 351101	• 07 3 90 5	256890	An seal of a se
1.00	.512497	000000	.305851	.060817	317969	1 - 214-
POISSON.S	RATIO= .500	and a state of the	and the second			
THETA =	90.00/DEGREES					1.25.1.2
ROH	DEFLECTION	MR	MT	MRT	QR	1.6.2%
0	.354117	066964	• 594464	.000000	500000	
•10	.356241	064541	. 502555	.000000	- 443423	
.20	.362569	057641	• 4 9 6 9 4 9	.000000	- 300110	
• 30	.372973	047289	.487973	.000000	- 34 2725	
•40	.387257	034955	.476064	000000	- 30 20 7 5	in the second
.50	.405179	022307	. 461705	.000000	- 271205	1.1.1.1
.60	.426477	011059	. 445458	.000000	- 2/6776	
.70	.450894	002880	.428231	.000000	- 227060	
.80	.478211	.000864	.411827	.000000	- 191731	1278
.90	.503269	.000225	.399760	.000000	116702	
1.00	-540995	000000			-+110135	•

APPENDIX 2

Listing of computer programmes. All programmes are in FORTRAN IV computer language.

APPENDIX 2A.

Computer programme for the creation of tables of coefficients for the deflections and forces in circular plates simply supported on two points at opposite ends of a diameter.

APPENDIX 2B.

Computer programme for the deflections and forces in circular plates simply supported on two points at opposite ends of a diameter.

APPENDIX 2C

Computer programme for the creation of tables of coefficients for the deflections and bending moment forces in circular plates simply supported on two lengths of arcs at opposite ends of a diameter.

APPENDIX 2D

Computer programme to obtain principal stresses from microstrains rosette strain gauge readings at a point on the surface of structures.

APPENDIX 2E

Finite element programme. BFSOLID listing.

	РКОБКА РТ = 4	MÍSLAU (INPUT,	OUTPUT,	TAPE5 =	INPUT,	ταρέδ	=-0916	י נדטי	
÷ .	$\begin{array}{c} 11 \\ 11 \\ AA \\ = 4 \end{array}$	• 0 ⁺ AL	0612.0)		· · · · · · · · · · · · · · · · · · ·	·····. ·· ·		 	
0 E	- PR = 0 - PR = 9 - PR3=0	-0. R⊡+	5					· · · · · · ·		· · · ·
	<u>PR2</u> =((1.+PR)/ (1*+:-P	PR3 R) //(1 PR)		·····	- <u></u> . 	·	
1 i	RRIFI. RRITE(FORMAT	/PRR [NO,11)]- (1HQ)-					-			
<u>پځ د د</u>	THETA RO = -	= <u>ป</u> .បំ • <u>•</u>	, ¥				 			
- чù	RRITE (FORMAL	6,40) P (///1tX	R,THET, POIS	A SON, S-R	ATIO=*F:	9-3/10X*	*тнета	=*F9•	2*/0E	GREES*)
	HRITE(FORMAT LT-Z)	6,6J) (/12X,*	<u>20H *8 X</u>	*DEFLEC	TIO <u>N</u> *9x1	MR+14X	т <u>м</u> г¥14	X*MRT*	•14 <u>X</u> *Q	R+14X+Q
لا با ا	RU = R R2 = R	0 + u.1 0 + R0 - 500			 		···· -	 		-
• • •	R22=1 W1 = (+R2 1. 5-R2)	/64.2	÷((5.+)	 2년) 시(준	- PR),	(2)		· .	
	NI = A RH1=(P SUM =	A/(1.0- R3*(1	PR) - RZ))/1	pl*pl *	PRR / 1	.2				
· · ·	SUN1 = D0-1 I	_ŠŪM2 = =2,10,2	SUNG	=_SU144 =	= SUMj =	=j ù.ū nii i ^l iin				
-	SUN = SUN =	1.0/(AI SUN: * : k	* (A I-1 u** I *	.))+ .2. 	J∸PRRZ(A FATĤEŤA)	I¥AI¥()	AI-1.)) <u>-</u> r(2	/(AI+	(A1+1.))
	SUN1=(SUN2=(SUN3=(RR1+(2+ RR1*R21 RR1*R21	/Al))* +(2./A +2./AI	R21*R0* I)*R22))*R0**(*(Iー2)*し *衣の**(I- Lー2)*5If	;02(A1≁) •2)≁CCS !(AI*AT}	41 <u>не</u> та (АІ*АТ НЕТА)) <u>HETA)</u>		
	SUN4=R SUN5=R	0**(I-1 0+*(I-1) ≁005 () * 5 I <u>N</u> (AI*ATHE AI*ATHE	ΓΑ)					
	30HZ=3 SUHZ=3	UM2+SUN UM3+SUN	3						· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	SUM4=3 SUM5=S SUM1 =	UN 4 +SUN UN 5 +SUN - SUN 1 - +	5			· · · · · · · · · · · · · · · · · · ·		and to the second secon		
	W2 = C W2 = N1 PHジーC	•50 + (.+. ₩2. 580.22*0	-/11 5	Un) / ((5.0 + P3	() 	- -		· · · ·	
.	TH1=(P [M2=0.	5+FR2+3 R3=(1.+ 5+PR2*S	3.+ <u>₽R</u>) UM2===	*R2)/16						
· · ·	RH=RM1 TH=FM1 RTM=0	+RM2 -TH2 5*PR2*0					··· · ·			
	QR =5 $QT = (2)$	-(2.7PR /PR3)+S	3)*SUM	4		····	-			· ·
	THELA	0,001 R 110) =THETA	U;n;KH -60-70 +419,	1,11,KIM 1718	iukiu T					-
5 È	1F (THE 1F (PR FORMAT	TA .LE .9 LT .0.50	j)_60)=60T 5.2.64	TU 20 0 30	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·			
	ST OP END									<u>.</u>

APPENDIX 2A.

339

BLADE.FORTRAN: PROGRAML

1

C

```
PROGRAM PLATE
   WRITE(5,10)
10 FORMAT(3X,50HINPUT YOUNG'S MODULUS, POISSON'S RATIO, ROH ,THE
  *TA,//,3X,30H THICKNESS, RADIUAS ,PRESSURE ,//)
   READ(5,20) E,V,RO,TH,T,R,P
20 FORMAT(7F10.0)
   PI = 4.*ATAN(1.0)
   AA = ALOG(2,0)*4.
   PR3=3.+V
   PR2=(1.+V)/PR3
   PR=(1,+V)/(1,-V)
   RR=1./PR
   THITA=TH*FI/180.
   R2=R0 *R0
   R21=1.-R2
   R22=1.+R2
   W1=(1.-R2)/64.*((5.+V)/(1.+V)-R2)
   WI=AA/(1.0-V)-PI*PI*PR/12.-1.
   RM1=(PR3*R21)/16.
   SUM=0.
   SUM1=0.
   SUM2=0.
                                            -.
   SUM3=0.
   SUM4=0.
   SUM5=0.
   DO 1 I=2,100,2
   AI≔I
   SU=1./(AI*(AI-1.))+2.*PR/(AI*AI*(AI-1.))-R2/(AI*(AI+1.))
   SU=SU*RO**I*COS(AI*THITA)
   SU1=(RR+(2./AI))*R21*R0**(I-2)<COS(AI*THITA)
   SU2=(RR*R21+(2/AI)*R22)*R0**(I-2)*COS(AI*THITA)
   SU3=(RR*R21 +2./AI)*R0**(I-2)*SIN(AI*THITA)
   SU4=RO**(I-1)*COS(AI*THITA)
SU5=RO**(I-1)*SIN(AI*THITA)
   SUM=SUM+SU
   SUM1⇔SUM1+SU1
   SUM2=SUM2+SU2
   sum3≈sum3+su3
   SUM4=SUM4+SU4
   SUMS=SUM5+SU5
   CONTINUE
   W2=.5*(WI-SUM)/(3.+V)
   W≃W1+W2
   RM2=.5*PR2*SUM1
   TM1=(PR3-(1.+3.*V)*R2)<sup>1</sup>/16.
                                                          . .
   TM2=.5*PR2*SUM2
   RM=RM1+RM2
   TM=TM1-TM2
   RTM=.5*PR2*SUM3
   QR=-.5-(2./PR3)*SUM4
   QT=(2,/PR3)*SUM5
   D=E*T**3/(1.-V*V)
   D=D/12.
   R4=R**4
   DEF=W*R4*P/D
   WRITE(3,70) RO,TH,DEF
70 FORMAT(10X, 22HTHE DEFLECTION AT ROH=, F5.3, 3X, 9H& THETA =, F7.2,
  *3X,9HDEGREES =,//20X,F12.5/)
   FND
   APPENDIX 2B.
```

TA FORTRAN COMPILER (VERSION 5.3 - 13/09/78) ON THE 6000 UNDER NOS/BE 1.2 ON
F.
PROGRAM SEAB (INPUT, OUTPUI, TAPE5 = INPUT, TAPE6 = OUTPUT)
ALFA=2. ALFA=ĂALFA+.5
30 PR = PR + 0.05
PR2=(1. +PR) /PR3
PRR = (1 + PR) / (1 - PR) $PRP = 1 / PRR$
<u>11 FORMAT (1HQ)</u>
$\frac{1}{20} RO = -1$
$\frac{40}{40} = \frac{6}{10} + \frac{10}{10} + \frac{10}$
$60 - E0RMA E EVI2X_FRUIT 0 X T DEFLECTION T 9X T R T 14X T M T 14X T M T 14X T M T 1 4 X T M T 1 4$
$\frac{R}{R} = \frac{R}{R} = \frac{R}{R}$
$\frac{R22=1.+R2}{M1=1} (1.0-R2)/64.0^{+} ((5.+PR)/(1.+PR) - R2)$
<u>SUI1=SUI2=SUI3=SUI4=SUI5=0.</u>
AI = I
$AIJ=1 \cdot 7 (AI-1)$ $= AI4 - 1 \cdot 7 \cdot AI + 1 \cdot 1$
$\frac{-5002-510(ATALEA) - ATET(ATTALETA)}{77717000000000000000000000000000000000$
$\frac{SUE_3 = SUE_3 + 5 + PR2/AEFA}{SUE_3 = SUE_3 + 5 + PR2/AEFA}$
SUL5=SIN(AI*ALFA)*AI1*(PRP*R21+2.*AI1)*RC**(I-2)*SIN(AI*ATHETA)
SUI1=SUI1+SUE1 SUI2=SUI2+SUL2
SUI4=SUI4+SUL4
$\frac{1 \text{ S019}=\text{S019}+\text{S019}}{\text{S01}} = \frac{1 \text{ S019}+\text{S019}}{\text{S01}} = \frac{1 \text{ S019}+\text{S019}}{\text{S019}}$
RM=RM1+SUL3
$\frac{1}{TM} = \frac{1}{TM} $
WRIIE(6,50) RO, d, RM, IN, RIM
$\frac{1}{1} + \frac{1}{1} + \frac{1}$
IF (PR, LI, C, 50) GO TO 30
50 FORMAT (10X,F5.2,4(6X,F10.6))
APPENDIX_2C.

-

STRES	S.FORTRAN: PROGRAML
	PROGRAM STRES
	E=4.6EV0
	V~.0/0 E1-E//1 (1vD)
	READ(2 1) NN
•	FORMAT(15)
	WRITE(5.2) NN
	P FORMAT(/,5X,30HTHE TOTAL NUMBER OF READINGS =,15,/)
-	DO 11 N=1.NN
	WRITE(5,50) N
50	FORMAT(10X,32HINPUT THE STRAINS OF READING NO., 15, /)
	READ(3,4) EX,EY,EXY
	EX=EX*1.0E-06
	EY==EY*1.0E-06
	EXY=EXY*1.OE-06
	X=.5*(EX+EY)
	Y=,5*(EX-EY)
	Z=X-EXY
	R=SQRT(Y*Y + Z*Z)
	EE1=X+R
	EE2=X-R
	S1=E1*(EE1+V*EE2)
	52761*(6624V*661) UDITE(5 10) N EX EV EVY EE1 EED 61 60
47	WRITE(3,10) N,EX,EY,EXY,EE1,EE2,31,52
. 11	/ FURMAI(2X,13,3X,0F10.8,3X,2F10.2)//
11	CONTINUE E FORMAT(2F10_0)
-	
	END
	har the

APPENDIX 2D.

.

)

)

7

)

)

)

)

)

)

1

J

)

)

)

)

2

)

)

<pre></pre>				一个学习的"Parties"的问题,在1990年1990年1990年1990年1990年1990年1990年1990
	OVERLAY(ISHE, 0, C) PROGRAM SOLID (INPUT) Image: International solution of the	<pre>////////////////////////////////////</pre>	17 34 = (110) 16 (16,14) 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	<pre></pre>

•

-

•

.

.

.

1

•

			11 . CHARLES THE PARTY OF THE STREET
213 F14441 (141,3440 1 4x,33400344 P31 2 5x,33462544175 3 5x,3546254175 3 5x,35471142 571 5 5x,35471142 571 5 5x,35471242 571 6 5x,3547520452 7 5x,3547520452 9 5x,35475142 500 3 5x,53475142 500 5x,53475142 500 5x,5347514000 5x,53475140000000000000	$ \begin{array}{c} v \in B \land L \ L \ T \ I : I \in \ L \ O \ G \ , // \\ I \ I : I : I : I : F \ I : I \in \ F \ O \ G \ , // \\ I \ I : I : I : F \ I : I : F \ I : I : F \ I : I : F \ I : I : F \ I : $	A2[[; (N[4) (A(4)) H4[I2 (U[4] (T(1)) H4[I2 (U[4] (T(1)) H4[I2 (U[4]) (T(4)) H4[I2 (U[4]) (T(4)) H4[I2 (U[4]) (T(4)) H4[I2 (U[4]) (T(4)) H4[I2 (U[4]) (U[4]) H4[I2 (U[4]) (U[4]) (U[4]) H4[I2 (U[4]) (U[4]) (U[4]) H4[I2 (U[4]) (U[4]) (U[4]) (U[4]) H4[I2 (U[4]) (U[4]) (U[4]) (U[4]) (U[4]) H4[I2 (U[4]) (U[4]) (U[4]) (U[4]) (U[4]) (U[4]) (U[4]) H4[I2 (U[4])	<pre>#=1.RUMRP) #=1.RUMRP) #=1.RUMP) %=1.RUMP) 515.3F1(.,15.F13.C) & L PCINT LAPUT DATA) X 24MJOUMJARY CJUJIIUN CODES 11X X 24MJOUMJARY CJUJIIUN CODES 11X CODESTINCE S / A UNALS AN INF INF INF INF INF </pre>
D D D D D D D D D D D D D D	A(ID, X, Y, Z, T, NUMAP, HEQ) (1, Z(2), IJ (NUMAP, 0), T(1) DEE4, NTd 4, 1HJ, 1HC/ 45.0	2027 FIRE 1 (1/14) 2027 FIRE 1 (1/14) 2035 FORMAT (7/27) 2036 FORMAT (7/27) 2035 FORMAT (7/27) 2035 FORMAT (15,615,4F EVD 2035 FORMAT (15,615,4F EVD 2036 FORMAT (15,615,4F EVD 2037 FORMAT (15,615,4F EVD 203	2012/21/21/23/21/22/27/715/) 13.3/21/21/22/21/22/21/25/21/22/21/25/21/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/21/25/21/22/22/22/21/25/21/22/22/22/25/21/25/21/22/22/22/25/21/25/21/25/22/22/22/25/21/25/22/22/22/25/21/25/22/22/22/22/25/21/25/22/22/22/25/21/25/22/22/22/22/22/25/22/22/22/25/22/22/
19 K-10 (9,102) 1 17 (1.212) 1 17 (1.212) 1 17 (1.212) 1 0/1 = 2(.) * RAU 0/1 = 2(.) * RAU 2(.) = X(1) * COS X(1) = X(1) * SIN 15 G) (17 NJ 15 G) (17 NJ 16 (17 (17 1) EG. 6) 17 (17 (17 1) EG. 6) 16 (X (17 1) EG. 6) 17 (17	, μ, jρ2, (1) (1, 1), 1=1,6), λ(μ), γ (μ), λ(μ), λ(μ), κη, τ (μ)	50340011AL SOI 01460510A MAXM12C 01450510A MAXM12C 014004 /547 HAS,HO 01404 /247 HS,HO 01404 /247 HS,HO 01404 /247 AS,HO 07404 /247 AX 0152 I=1.10 AAAA(I=1.2) SI37(I)=1.0 32 CHINAF), SIGH (10)), AJLU (700, 6), SH3(700) AK(14), NUMNA, HIGANJ, HELTYP, N1, H2, N3, N4, H5, HTOT, NEQ ,L4(63), 3(44, 93), 00(63, 4) ,L4(63), 3(44, 93), 00(63, 4) ,L4(63), 3(44, 93), 00(63, 4) ,L4(63), 3(44, 94), 00(7), 0
N:J = (1-1000) / Kil N:M:I=101-1 IC (N:J N+LT.1) GC X:J N=-104 DY=I (N:J Y+LT.1) GC Y=I (Y:Y-Y (NULJ) DY=I (Y:Y-Y (NULJ) DT=I (Y:Y-Y (Y) (Y:Y) DT=I (Y:Y)<	ТО 50 І/ХЛУН //ХЛУН //ХЛУН	50 3/7 [=1,700 01 3/8 J=1,6 800 ASIG(1,J)=0.0 3/3 ([]=0.0 807 C) ([]=0.0 15 ((]=0.0 15 ((]=0.0 15 ((]=0.0)) 15 ((]=0.0) 43 ([]= (]=0.0) 43 ([]= (]=0.0) 43 ([]= (]=0.0) 15 ([]=0.0) 10 ([]=0.0) 11 [[(]=0.0]] 11 [[(]=0.0]] 12 [[(]=0.0]] 13 [[(50 TO 560 50 TO 13 FAR(K),K=1,10) 50 TO 20
<pre></pre>) 10(K,[)=19(KK,[)+KN 0 T0 10	ARTE (6,1001) HAITE (6,1003) CALL EXIT 21 [F(1)424(4).EQ.]) A IF(1)424(4).EQ.]) A IF(1)424(4).EQ.]) A IF(1)424(4).EQ.] ARTE (6,1004) CALL EXIT 30 [F(1)424(4).EQ.]) A IF(1)424(4).EQ.]	-AR(K),K=1,10) HAR(K) = 1 HAR(K) = 2 AND. NPAR(Y),LE.21) GO TO 30 NPA((Y),K=1,10) NPAR(Y),LE.21) GO TO 40
IF(L24.2), IP(C)3 Halls (6,20)3) Halls (6,20)3) Halls (6,20)3) Halls (6,20)3) IF(L2) D1(6), V=1,6 IF(V), I=(16)(ID(IF(L1),1)=(10)(ID(),1)=(10)(ID(),1)=(10)(ID(),1)=(10)(ID(),1)=(10)(ID(),1)=(10)(ID) +UR. [PR.EJ.[PR.E(4)] GU 10 92 N.([](N,[],I=1,6),X(N),YIN),Z((A),T(N),N=1,NUMNP) N.[]) ,50,59	43172 (6+10(2)) (NF 43172 (6+10(5)) CALL = A(1) 45 (F(NPAA(12)), E(N,0) 16 (NPAA(12)), E(N,0) 16 (NPAA(12)), E(N,0) 40 (T = 16,1005) CALL = (1T 50 N6 = 15 + NUMAR N3 = 17 + NDAR(3) N3 = 17 + NDAR(3)	PAR(K),K=1,10) NPAR(15) = 2 AND: NPAR(10).LE.4) GO TO 50 PAR(K),K=1,10)
13,11=160 0110 5110,11= 51110 5) .J.A. IPR.EJ. [P3C(4)) GO TO 62 H.IIY(A,I),I=1,6),J=1,KUMNP) O TO 72 IN,I),I=1,9),H=1,KUMP)	HA = HA + (PAR) H1 = HA + HPAR) H1 = HA + HPAR) H2 = HA + HPAR) H2 = HA + HPAR) H3 = HA + HPAR) H4 = HA + HA	5) * NPAR(4) * 13 1 * 9 1 * 7 1 * 139 1 * 13

•.

•

÷

₩271924 55) #2172 (n,2021) 19906 = NPARIO 01 655 #Pres,NUMA	/ #T=K+1 Di 15 J=H[,10 [F1]J=H(K)=61.S] [T=Ma(1(K)=61.S]	(GMIJ)) GO TO 13
 GALL ST⇒2C (4 (41),4 (43),4EQ,0,1NC0. 1F(4,3)∀y=C0.2) 42(TC (4)(10) NS 1F(43,52)(1) 00 TO 800 	(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	
A2116 (6,5)63 4)763 L=17,LH C(LL SIPSC (A(H1),A1H3),NEG,1,INCOR L)1 = 1260	STGA())=STT 13 CANTING 22 CONTINE 22 CONTINE	
₹1 = -5 C1 615 N=1,LOC IA5=14204(N) S1015 N=0 SERVED 1 2	3:05 10:12 10:05 3:05 10:12 10:05 10:12 10:05 10:12 10:15 10:12 10:05 10:15	PUT FIRST TEN MAXIAUS PRINCIPAL STRESSES (IN DECE 1034 NOSE NO
	CIC(I) • I=K1 • K2) CIC(I) • I=K1 • K2) CIC(I) • I=K1 • K2) CIC(I) • I= 1 (52) CIC(I) • I= 1 (52) CIC(I) • I= 1 (52) CIC(I) • I= 1 (52) CIC(I) • I= (1, 52) CIC(I) • I= ((N(I),SIGM(I)
01 01 14 = K1 X1 = (0,4 JU1) N, (J 01 01 2 14 = K1 X2 1 = 1 × (J + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	316(1), I=K1, K2)	NODE SOLIJELEMENT INPUT,
6)2 [J][[A]]	2) 1 - 22 - 23 - 23 - 23 - 23 - 23 - 23 - 2	<pre>P DETECTED HHILE PROCESSING MASTLE ELEMENT,)//15%.ih(,1015;hH),/X) 3/0 SULIO ELEMENTJ_PECIFIEU,/1X) ATEXTALS REQUESTLO, / 1X)</pre>
► 700 CHITINE 800 CHITINE 000 CHITINE 000 STILLNONP	1004 FO2MAT (424) 1005 FO2MAT (424) INT 2001 FO2MAT (424) 1 Suc Successor	HUM JUNGER OF NOJES HUST BE CE.S .ANJ. LE.21,7(X) CRATION DADER HUST JE GE.Z .ANJ. LE.44,7(X) N D D E S O L I D E L E N E N T S T R E S ,
- 17 0 3 N=1,6 - 17 (3)3(1)=6,5) GO TO 835 A (10(1,1)=6510(1,1)/SN3(1) 33 (0)11(1)=6	2 734 ELE 1517 LL 3 14,04516-XX,944 3031 F12147 L1371541 4131 F12147 (144,15	040 L/0647104,)Y, 54316-XX, 9X, 64516-YY, 9X, 64516-ZZ, 54513-YZ, 9X, 64516-ZA, //1X) 1, 6515-6) 7, 6515-6)
H3ITE(0,354) 304 F32441(23H 4/SRAGE STRESS AT NJUC 2144 NOUE CONNIIOX,04510-74,94 374045674794,64510-72,94,04516-22	5000 ENRHAT (/) odgig-yy,9x,6HSIG-ZZ, 500R00TINE INL() A.ZZIX1 C	CC,d,TR,TMASS,NUMMP,1230,LL)
0) 0.0 1:1,10/1P 1/1/2:0.0(1) 0 1/2:1/2:00 109:12(0,1)9)],ISNS,(ASIG(I,N),N=1,6 109:12(0,1)9],15NS,(ASIG(I,N),N=1,6 109:12(1,10,1)8,00(2,1)8,0	6) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(NP,6),3(NE,10,LL),T2(6,LL),TNA3S(NEOB) 2(6),X2(6) 1002X,NT8
HUG LIJITIJE - 11 FJ:Ant (J2F PRINCIPAL STRESSES AL EX - 274EINT, 8477HPRIM-2 ,8477HPRIM-3	RE-11HD NT KSHF=0 ,0217 (54) 1000,702, 8217 (502) ,023,94442 SHEAR) 1F(MJD272-2011)	GO TO 50
00 2: [=:,KURNP S1=A113[[:1] S1=A113[[:1] S1=A113[[:2] S1=A113[[:3]	C9 753 I=1,hEQ3 T 43(IJ=). C) 75,K=1,LL 751 14(I-(X=1,LL	
$\begin{array}{c} 3 + 2 + 3 \left[1 \right] \left[1 + 1 \right] \\ 3 + 2 + 3 \left[1 \right] \left[1 + 2 \right] \\ 7 + 2 + 3 \left[1 + 1 \right] \left[1 + 2 \right] \\ 4 + 2 - \left[1 + 2 + 2 \right] \end{array}$	50 00 00 00 00 00 00 00 00 00 00 00 00 0	1P
B 1= 31 + 32 + 32 + 32 + 53 + 53 + 53 + 54 + 52 + 55 + 56 + 51 + 55 + 56 + 51 + 55 + 56 + 51 + 56 + 52 + 52 + 52 + 52 + 52 + 52 + 52	6**2) 10] Te([1]) 10 -S2*S5**2-S3*S4**2) / IF(N*:60*1) 60 1 IF(N*:60*1) 60 150 IF(N*:46:N) 60 150 IF(N*:46:N) 60	ro 303 ro 409
F7<=3.,+**+2+2,3*43+*+39 ×=×-F×/F≠ If(435(F×1),60 TU 201 0 TJ 33)	IF [[]];43;:40; 18] [[]:11]=R([]) 20] [[]:12] 19] [[]:12]	190
201 C) 1 [1] [2]	266 ()41 (1)27 () 300 (2)40 ()51 () 501 ()42 ()51 () 501 ()51 ()51 ()51 () 501 ()51 ()51 ()51 ()51 ()51 ()51 ()51 ()5	
X 3= (−F−3.301 (F * +2−4.0*G)) / 2.0 X 1= 43 (X) − 43 3 (X2) X 1= 43 3 (X0−4) 3 (X2) X 1= 43 3 (X0−4) 5 (X3)	G) 170 ± 550 − 5 − 7 400 17 (400 € K ± EQ. 1) 4 00 400 1 − 1 0 ± 1 5 − 5 K 1 1 − 1 1 ± 1 ± − 5 K	60 TO 900 6
x 3 5 = - 3 - 1 (272) 1 = 1 x 2 = 5 = - 7 = 5 x 0 = - x 0 x 3 = - 3 = - (x 2 + - 5 = - 1 + 3 + 2 + 2 +	IF (TT) 45.853 500 (5) 610 × 1.1.1 600 (TT,⊀) = TR(J,⊀) 610 (TT,⊀) = TR(J,⊀)	500
IF(x,25,05,701)x01=x02 □ xx=x01/2.1 = 111(0,11)1,x,x2,x3,0xx 31 F(244)(1,x,15,14x+4,210,6)	610 IF(II.+12.+16) +4112 (MT) 5.14 KSAF=KSAFF1050 00 737 I=1.400	бо то 800 АSS
 Piłaż(X) [Flaż(X)]. (X). (W). PM=A33(X2) [Flaż(X)]. (X). (X). PM=A03(X3) MAULI J. (X). PM. PM=A03(X3) 	Ti a Statista (1000) 00733 k = 1, LL 703 (1713) - 20 101 (1713) - 20	
Stijiij=PH D) 12 K=1,9	969 CAN LAUE 969 CAN LAUE IF (MODEX.EQ.1)	RETURN

æ

:

112 (NT) 0, TMASS 201 F32:14T (215,7F10,4)	t	18(JJ) 5(J,5)0,393 391 [8(J-1) 390,344,39 394 84=1+40+1-11-11459	- 54 7 * 1
	A O S (STATIC) UR, , YN A (IC), ///	60 TJ 400 396 KK=1+00+J-(J-1)+J/ 400 KTT 11=2/TT	(2 + I
0 3X,44400E,3X,44L0AU 1 2(3X,64X-AXIS,9X,64Y-AXIS 2 3(11X,54F0PUE), 3(4X,64M0	9X, UHZ-AXIS), / 7H NUMBER, 3X, 4HCASE,	501 CANTINUE 636 CANTINUE	
243 1137301148 FORDRINI #115 (0,2352) N		0) 630 [=1,N0 [[=L4(]] -NSHIFT	
2000 FORMAT (77 20H STORAGE EXCE Stop End	(5) DY I6)	650 CONTINUE 670 TO 700	.II.LE.NEBD) 60 70 654
SULROUTINE ADDSTE (A,3,STR, 1477) DIJENSION ALMEZZAMBANDIAM	THASS, TUHEL, NOLOCK, NE 28, LL, MBAND, ANORH,	740 CONTINUE	(1), 1= 1, C(C)
C) HUN ZOYNZ NT NOT ALFA. C) HUN ZOYNZ NT NOT ALFA. C) HUN ZOYZ LACANJALY(1)	DT, SETA, NEN, NGM, NAT, NDYN	D9 713 L=1,N2Q8 A9JR9≠AN9RM + A(L, IF (A(L,1)+NE+0+)	1) NJEG=NDEG + 1
E 10 I VAL ENGE (SS, ND) Nº 10 = NE 2022		IF (A(L,17+E0+0+) IF (f ASS(L)+NE+)- 710 004Tf:RE	A(L,1)=1.5+20 .) TVV=HVV + 1
X= 43LOUK 19=333TLX		IF(NJYN.NE.4) GO T JA 714 I=1,NEQB 714 A(I.1) = AlI.1) +	TO 716 Aŭ* THAGN(T)
NE 33= 43 + NE 26 NE 33= 43 + NE 26 N 4≘ 1		42115 (4) ((4(1,0) 00 10 713 716 00 10 713), I=1,N=((3), J=1,N=4ND)
トランス=0 バイマ=3 A 1/3/1=3。		713 . LITE (9) (THASS) IF (4.EU. NHLOCK) GO	(1:, 1:, NC(0) 0 10 100
NGHIFT ² 2 — REA103 3 — REA100 4		ATORNEANORN + AIL, IF (A(L,))+hE+C+()	• 1) NJE G= ND EG •
₹₹Î.;j.ÿ ≥II(0,2CŭL) 1)] 5		IF (1455(L).NE.) IF (1455(L).NE.) 729 CONTINUE	A ((,)) = 1. (+20) .) HVV=NVV + 1
55 H2 T2 (5,252) L, (5T2(T,L), 55 H2 T2 (5,252) L, (5T2(T,L),	I=1,4) I=1,4)	IF (NJYN+NE+4) GO T C) 724 I≖K,NE28 724 A(I,1) = A(I,1) +	10 726 - Δύ+ ΤΜΑΣΒ(Ι)
TE (NUMNITELA) GO TO 55 3340 (5,1144) NEN, NUM, NAT,	^ \\I,\\\\I,\\\I,\\I,\\I,\\\F,\\BEIA	אפודב (4) ((ג(ו,ס) טח דס 723 לט, 725 קפודב (4) ((ג(ו,ס)),I=K,HE23),J=1,M3AH0)),I=K,HE23},J=1,H3AH0),((B(I,L),I=K,NE23),L=1,L
IF (AAT.EA.L) HAT = 1 IF (AAT.EA.L) NOT = 1 IF (AAT.EA.L) NOT = 1	K 1 1 1 G 1 1 D 1 1 A LF A 1 BE IA	724 #3ITE (9) (TMASS(IF (8(.EQ.M3) 8M=0 M1=4(+1	(I), I=K, NE 28)
		1000 NSHIFTENSHIFT+NE20 IF (JJ25+GT+J) GO H2IT7 (A+10123	³ то 730
27 4 1 4 4 1 4 4 4 7 4 7 4 7 4 7 4 7 4 7		730 A LIR H= (ANCPH/NCEG))*1.E-8
A) = (5.+3.*ALFA*OT1)/(DT 65 IF(H)JFX+EQ.1) FETURN D) 1)JJ H=1,NDLCCK ,2	2+3.*BETA+DT1)	1002 FRAMAT (4F10.0) 1004 FRAMAT (515,3F10.0 1004 FRAMAT (515,3F10.0)) Internation decreases of Euclopic Check data
27 1.0 I=1,823 1 100 J=1,8000 101 24(,J)=2.)	2001 FIRHAT LVV 10H ST 1 21H HULTPLIERS V	1011 UTRE, 13X, 7HELENENT, 4X, 4HL04D, 4X, 1011 LC4D CASE, 12X, 1HA, 9X, 1H3, 9X, 1H0, 9X, 1H0, 7
RT43 (3) ((3(I,L),I=2,NED3) IF (4.ED.HBLCGK) GU TO 203 RT40 (3) ((5(I.L),I=K.NF2A)	,L=1,LL),(THASS(I),I=1,NE98)	2004 FORMAT (45H15 T E 1 37HC 0 N 1	TROLLINEORMATION,
205 CONTINUE REALING 7 PERIOD 2		2 5%, 35HORBER UP 3 5%, 35HOROUND HO1 4 5%, 19HE9.0, NONE	TION INDIGATOR =, IS /
N1=775 N(12=NUN7 IF (14.NF-1) GO TO 75	1	5 4%, 29HUT.C, REAL 6 5%, 35HNULUER OF 7 3%, 26HEU.J, ALL	ARRIVAL TIMES =, IS / EUNGTIONS ARRIVE, /
N 1 15 - NUMEL N 1 7	,	8 9%, 188 AT 1 9 5%, 358NUNDER OF A 5%, 358DUTPUT (PA	TIME ZEPO, // Solution time steps =, 15 // Runj interval =, 15 //
75 21 713 N=1, NUME RF10 (NA) 120, (35(I), I=1, LP NA12-1114 (31) 120, (35(I), I=1, LP	י נכ	8 5%, 3585CLUTION 1 C 5%, 3188455- D 5%, 358008FFICIE1	TIME INCREMENT =, E14.4 // PR/PORTIJNAL DAMPING, / NT (LLPHA) =, E14.4 //
	i i i i i i i i i i i i i i i i i i i	E 5X, 30H3TIFFNE3S- F 3X, 35H00EFFICIE 3009 F07MAT 127H0+** F2	-PRIPORTIONAL DAMPING, / NT (DETA) AROK ZERO TIME STEP, / IX)
IF (II.L. C	GU TO 620	ENO SNOROUTINE PRINTO UTRESION INTRING	(1), 3, 8, NEGS, NU4 (P, LL, NBLOCK, NEQ, NT, MQ) P.50, 3 (NE 10, L), 3 (6, L)
455(II)=T4485([I])+ \$\$(I+K 00 3): L=1,LL 00 320 J=1,4	<1	READ (a) ID READ (a) ID	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
K<=1+1, 7<+J+ND 302 8([1,L)=H([1+L)+SS([+KK)+57 305 5,7 J=1,60	R(J,L)	N (= NEUS+NBLOCK IE (10.E9.2) 60 IC	C 54
JJ=LA(J)+LAN	i i	REWIND NT	U 27

•.

-

EX.2017.01.01.01.01.01.01.01.01.01.01.01.01.01.			
1331 C	<pre></pre>	<pre>if (141L).LT.MIM) if (1412-11M+1 if (101F-01.M3AM) if (1412-11M+1) if (101F-01.M3AM) if (1412-11) if (1120-11.M0) if (10120-11) if (1120-110) if (1120-</pre>	<pre>HI 4=LM(L) HI 4=L</pre>

•

. .

- --

....

.

	A. 100 -	NUNE, NUMMAT, MAXTP, KORTHO, KOLS, MAXNOU, HOPSET, INTRS		SEL,HDIS,HXYZ,HMAT,HAX23,IOP,TZ,KG,NRSINT,HTINT NOD(I)
	CALL INP21	(NU IMAT, MAXIP, NORTHO, NOLS, NOPSET, NISSV, NOTHPAX, Y, Z, DEH, RHU, NIP, LE, OCA, NFACE, LI, PKA, LGC, MAXPIS NELD = 8 NI NELD = 21 (I.I.E.)) I = II + 8 IF(I.E).NJIS) 60 HPITE (6,4225) I, CALL EXIT	10 6 J NO IS
	- IF (A.XAUJ).07.3 • N3[72 [0,3[10] NFL = (5,102c) RFL = (5,102c)	(1,1=3,21) (1,1=3,21) INEL,NDIS,NXYZ,NMAT,MAXES,IOP,TZ,KG,NGSINT,NTINT	61 NFL = NEL + 1 ML = IIEL - NEL IF(ML) 65,70,80 65 MMLTE_6914022) IN	íf.L
	1)[[2][][2][][2][][2][][2][][2][][2][][2	$ \begin{bmatrix} i = 1, 4 \\ i \in O(1), i = 1, N \in A \\ 0, i = 0 \end{bmatrix} $	7) KOIS = NOIS KYZ = NXYZ KYZ = NXYZ KYAT = NMAT KYXES = MAXES	
	51 REAL (0) (1) (1) 11 L (0) (1) (1) 51 REAL (1) 12 REAL (1) 12 REAL (1) 13 REAL (1) 14 RE	INCL. INCLDIS.N.K.YZ., NMAT, MAXES, IOP, TZ, KG, NASINT, NTINT ITL (S)20(1), I= 1, NAEAD)	KTOP = 10P TTZ = TZ KKO = KG KROSINT = VRSINT KTINT = VIIINT KTINT = 1111 KTINT = 1111	
	51 F(K)Y328303 F(K)713255,M23 M2172 (6.3213) 1,Y82036(10541) 2,7172 (6.4313) 2,7172 (6.4313)	NDIS = MAXHOJ (NOU) GO 10 551) INEL, IDIS, NAYZ, NHAT, MAXES, IOP, TZ, KG, NRSINT, NTINT , I=1, 4) , I=1, 4) , MDIS, IAXNOD	037371=1,451 72 KL3(1) = L3(1) 0174 [L3(1) = L3(1) 74 K3(1) = K00(1) 74 K3(1) = K00(1) 75 = 1M*	
	 5351 IF (5013.57.81	0 TO 22 NJIS	5) TO 40 8) D) 45 [=1,NREAD IF(KO)(I).[T.1) G KOJ(I) = KOD(I) + 45 COUTINUE	0 TO 85 KKG
	IF('(472.LEaha) ARTE((6,4(16)) APTEC(6,4(16)) APTEC(6) APTEC(6) APTEC(6) APTEC(6) APTEC(6)	ISJ GO FO 5452 - NXYZ,HDIS -	0.7 01.3 = 1H 9) N∂ = 3 • KDIS TAV = 0x0 C2 95 K≑1+KXYZ	
348	5652 1710(YZ-56-8) 42175 (6,4)24 47175 (6,4)24 472175 (6,4)54 12278 5	60 TO 53	I = KOD(K) 95 TAV = TAV + T([] TAV = TAV / KX72 NT = ([P(KMAT) TF(UL)(K) K) TO	1 10
•	551-(341-3242 	1 Π.Ε., ΜΟΙΣ, ΝΑΥΖ, ΝΜΑΤ, ΝΑΧΕΣ, ΙΟΡ,ΤΖ,ΚΟ, NRSINT, NTINT),I=1,4)	97 03 93 1=1,12 93 ELL) = EE(1,1+1,K 67 13 112 101 15(14) 50 EE(1,1)	MAT) KMATJI GO TO 134
	9)24 = 1 5% IF(MuKES+LE+) 42172 (0,323) 1/21027,(LS(I 42172 (0,403) 42172 (0,403) 42172 (0,403)	CRTHO) 50 TO 55) INEL, NOIS, NAYZ, HMAT, MAXES, IOP, TZ, KG, HRSINT, NTINT), I=1,4))	134 17 (14, 61, 61, 61, 61, 17, 17, 17, 17, 17, 17, 17, 17, 17, 1	,<===;,<===;, ,<===;;,<=====;,<===;,<====;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<===;,<==;,<===;,<===;,<===;,<===;,<===;,<==;,<===;,<===;,<===;,<==;,<==;,<==;,<==;,<==;,<===;,<===;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,<==;,
	55 12 17 - 32 - 55 12 17 - 32 - 55 14 17 - 32 - 55 14 17 - 32 - 55 14 17 - 12 - 57 14 17 - 57	AND, IOP,LE,NDPSET) GJ TO 56) IRL,NJIS,NXYZ,NMAT,MAXES,IOP,TZ,KG,NRSINT,NTINT }]]]	Ki = R-1 IF(TaV+GT_EE(KI+1 106 C)NTINUE 108 C)T = EE(K2,1+KMAT RATIUE TAV = EE 0 1:1 = 174V = EE	,KHAT) ,AND. TAV.LE.EE(K2,1,KMAT)) GO TO 168 } - EE(K1,1,KMAT) (K1,1,KMAT)) / UT
	56 C) C7 I=1 57 I=1 7 I (1) (1) (1) 7 I (1) (1) (1) (1) 7 I (1) (1) (1) (1) (1) 7 I (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	111 € (1) = F ∈ (X; , I + 1, 112 ∪ J + II)∪E T F (M)⊃EX = ⊂ (, c) + CALL 3:LAM (0, C, T + CALL 3:LAM (0, C, T + CALL 3:LAM (0, C, T - CALL 3:LAM (0, C,	KMAT) + RATIO + (2E(K2,I+1,KMAT)-EE(K1,I+1,KMAT)) EMP,DCA(1,1,KAXE3),KAXES,KMAT,NEL,DUM,ALPHA) TO 410
		2 = 1 2 = 1 2 = 1 1 = 10 TES 1 = 10 TE	IT = 2(1)(1)(1) IF(I,LT-3)(C) TO IF(I,LT-3)(C) TO II = 2(0)(1)(1-3) II = 2(0)(1)(1-3) II = 2(1)(1-3) II	125
	01 53 1=1,8 IF (1)0113.62: 	1 .AHD. NOD(I).LE.NUMNP) GO TO 58) INCL, IOIS.NXYZ,HMAT, MAXES,IOP.TZ,KG,NRSINT,NTINT).JEI,Y) I,HOD(I)	2219,11 = 2(11) 130 Continue 110 17: 1=1,63 00 17: 1=1,4 170 2(1.0) = 2.0	
	• 53 61111021 IF(M-x 10)+LT- If = 20,54 IE(H-x 10)+LT-	9) 60 7) 63	IF(KK_USE.E0.1) G 0) 100 [=1,KUIS 100 0(1)=0.7 00 [JJ [=1.0] 100 F([]=1.0]	O TQ 360
	- IF (ADD(1),EQ, IJ = II + 1 ADD 344II) = I IF (AD)4(I),LE.	אר היו סט נס	0'1 x = 0.0 0'1 x = 0.0 0'1 200 [=1,4	

- ----

Ċ	21) 345 = 345 + A35(TLF([]) IF(1)((-)(-)(-)(-)(-))(-) IF(-)(1)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)	45([f(H0)2X.F0.1) GO TO 51C
r.	IF (Λ14-Ε):0 + 00.	H = 1133F(1) 20= SPTS(1,1) 51= 3112(1,1)
r.	205 SIGHTIN = SIGDT(I) + D(I,K)+ ALPHA(K) 213 C)/II/UC 213 C)/II/UC	E (= 31/13(1),3) CALL (ER2)05 (NEL,XX,3,0ET,E1,E2,E3,NUD9H,H,P,KDIS,KXYZ) D1 473 I=10 V = 36(I=1)+T
	IF (I.LT.); GO TO 220 J = Y0J4(II-3)	ΰ) - τοῦ ἡ Ξ = ῖ, Νῦ IJ = J. U : τοῦ K = 1, 6
•	II = <30431 221 0FL1(1) = T(II) = TTZ 232 C0411445	467 (J = J + D(F,K)* 6(K,J) 465 ST((J,J) = 4 47) CD(T(J)JE = 4 47) CD(T(J)JE = 4 47) CD(T(J)JE = 4
•	255 D1 251 1=1,4 256 D1X = D1X + ADS(XLF(I)) + ABS(YLF(I)) + ABS(ZLF(I)) X51 = D1X + ADS(XLF(I)) + ABS(YLF(I)) + ABS(ZLF(I))	1 = (x, z,
•	ifTDUX.3T.1.JE-6) KGL = 1 IF (.J(N.GT.C) KGL=3 KMS = :	(1) 485 K≍1,6 485 VIS(K) = −0 + SIGDT(K) 00 49 JI=1,6
	$\begin{array}{c} 1^{2} (1) Y^{1} (0) Y^{1} (0)$	H = 5'(L'1)'I D) 4 3' K=1'4 495 5F(N,K) = VIS(I)* TLF(K) 505 Continue
	20) 231 4-1-0 20) 251 (F,K) = 0.0 GALL 51221 (D.2.55.11,0000) H. 0 (1201 051 1 51 0) No 050 00	514 C.Vitluy2 IF(4302x.EQ.C) 149ITE(1) ND;NS,(LM(I),I=1,ND(((CDT(I,J),I=1,NS),J=1,ND),
	JC1 (F (KIL.EG.) GO 10 325 [2] 321 [=1,00	2 ((JF(I J)) 1=1, NC) J=2 44, (SOU(I), I=1,97 NOTE (0,3015) NEL, SUIS, KAYZ, KNAT, KAAEG, KIOP, TTZ, KKG, KASINT, KTINT, 1, STER (0,3015) KEEUST, KIE, NAEAD)
-	03360 (=1,4 360 F(I,K) = FI(I) + TLF(K) 363 C)411405 756 F (2) = 2 A) CO TO TO	ITE (15,307) IF (NTS)V-EG(1) INGITE (NTS) NFL,KUIS,KXYZ,KNAT,KAXES,KIOP,TTZ, KRSINT,KTINT, ZPINET (NTS) KRENET (IS)KAYZ,KNAT,KAXES,KIOP,TTZ, KRSINT,KTINT,
•	(1) (2) (2) (2) (3)	3 (x00(1),1=1,NREAD) IF(HUMZ-NEL) 65,603,500 531 IF(HL) 59,50,60
•	K: = 22-1 C7 333 L=1,4 Z=(K1,4) = 25(K1,L) + XLF(L)+ DL(I)	600 871020 1013 FD24AT (615;F10:0;415;412) 1039 FD24AT (615; 1039 FD24AT (70:5) 1039 FD24AT (70:5)
	333 R ² (K3),L = PFIK3,L) + YLF(L)+ JL(I) 343 GAITIVE 343 GAITIVE 355 IF(LA) SLL-10 R-MATN GT 10 GA TO LAR	$\begin{array}{rcl} & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 2 & & & \\ 3 & & & \\$
	IF(PLF(L).54.0.0) GO TO 400 M = <l(1)< td=""><td>L 7X113HOUMBER OF MATERIAL, 5 7X13HAXIS OKIENIATION SETS = 15 // 7X134HOUMBER OF DISTRIBUTED LODE SETS = 15 //</td></l(1)<>	L 7X113HOUMBER OF MATERIAL, 5 7X13HAXIS OKIENIATION SETS = 15 // 7X134HOUMBER OF DISTRIBUTED LODE SETS = 15 //
	IE(M-LT.1) 60 TC 400 01 303 K=1:0 365 K,ITK) = Jac	7 7 X 34 HAVAIA IM RUMIES OF LEDICHI RUDES - 16 // 7 7 X 34 HAVAGE A OF STRESS OUTDET SETS - 16 // 3 7 X 34 HAVAS CHORDINATE INTEGALION OFORE - 16 //
	LALL FADERK (NEL, KOTS, KXYZ, XX, NOD31, H, P, PL, NFACE(H), LT(M), PNA(1, M), H) 20 375 I=1, KO 375 G(I, I) = AFIT, I) A PL(T) + PL(I)	3014 FORMAT (52013 / D & J // H FLCHENT 212X, SHIODESI, 212X, 1 134 H E N T D A F A // H FLCHENT 212X, SHIODESI, 212X, 2 5HMATL.), 2X, 6HSTRETS, 4X, UNSTRETS, XX, HNDDE, 212X, SHGAUSSI + 6X,
	430 C3411402	3 2HK-,5X,2HLSA,3X,3HLSB,3X,3HLSB,3X,3HLSB,2X,3HLSB, 4 6H NU43ER,7H -NU15-7H -1XYZ-,3X,5HTA3LE,3X,4HAXES,2X,6H0U1PUT 5 6X,9HPHEE-XX,9HING-,2X,9HPTESI,3X,2X,6HHTRIX,2X,412X,4H-UP-), 5 6X,9HPHEE-XX,9HING-,2X,9HPTESI,3X,2X,0HPTEND
	C] 422 [=1;KDIS If = KJ0(I) IS(I-LI-1/ GO TG 415 I- HD-HD-HTG 1/15	6 204, 34104, 94, 3102 (1904, 3102 (1904, 3102 (1904, 310)) 7 34-1-225, 6147, 123, 5122, 34 (123, 244)-1(2) 7015 F194341 (14, 417, 13, F10, 1, 16, 217, 13, 23, 416) 3(16 F194341 (04, 24, 244)-1(2) / 344, 51(23, 244)-1(2) /
	$ \begin{array}{l} 3 \\ 4 \\ 4 \\ 5 \\ K = 7 \\ 4 \\ 5 \\ L = 1 \\ 4 \\ L = 1 \\ 4 \\ L = 1 \\ $	3317 FIRMAT (342,616) / 844,816,7 444,916) 4314 FORMAT (33462404444 ENCOUNTERED ELEMENT (,15,134), BUT EXPECT. 1 214 TO READ ELEMENT 2453 (13) order 10000 (15,144)
	M = 34L 420 LI(M) = 10(II+L) 55(399-51-C) (25 = 6*MAXPTS (KIOP)	4015 FORMAT (42HGERROR*** NUMBER OF OLDELEGENT NUCCES (12940/15) 1 3)H LARGER TIAN MAKITUSH ALLUGD (159,20). (13) 4016 FORMAT (4)H2ERROR*** NUMBER OF CODERINATE RODES (15,64) MUST,
	1 (12/10-57-57) 1/3=0 1 (12/10-57-57) 1/3=4 C \LL CALSAN (12/10-79) 1/5-L 4, X4, SS, RF, NO, 63, NG) 1 - (12/10-11-7) C 0 10 AS, C 10 A	4017 FORMAT (36HOERROP*** TELEGAL MATE STAL NUMBER) 4019 FORMAT (94H)ERROP*** TELEGAL MATERIAL AXIS REFERENCE.) 4019 FORMAT (94H)ERROP*** TELEGAL OUTPUT SUT REFERENCE.)
	k, bn = 4 D1 + 422 I = 1, 4 422 U j j (II = I + 2ŭ	4029 FORMAT (AMDERROW *** PREDSURE LOAD GET REFERENCE (,19,4M) IS, 40 ILEGAL) 4021 FORMAT (1906FRADE*** THE ,12,10H-TH ELEMENT RODE (,15,4M) IS,
	426 15 45(1)→54,00 C(ITO 440 8.37 4.419-54,00 C(ITO 440 8.37 = 14.4(1)5(≤IGP)	4022 ¹ FORMAT 12007450 ³⁴⁴⁴¹ ÉLÉMENT NJUGER (,15,11H) IS OUT OF, 194 SEUENDEL, / 1X) 4023 FURNAL (224 12407444 - NUMIER OF DISPLACEMENT NODES (.15,
	437 Licji(1) 11 (1, KIOP) 5 TI 45.	1 1 25H) NUST BE AT LEAST EIGHT.) 4024 FORMAT (4)HEERAWATHE MUMMER OF CODRUINATE MODES 1,15, 25H) HUST BE AT LEAST EIGHT.)
	ÜASUP11) = 21	4025 FORMAT ISHNJERKOR*** NUMBER OF HOM-ZERO NODES (,I3,5H) READ, 1 Jun Joes Not Ecual the Number of Otsplacement Nodes (,

349.

$\frac{11}{2} \frac{11}{2} \frac$	IF([20]:00 TO 13 Malfz_[0:4408]
1 1 μ LEMENT (, 15, 29 μ) OUT OF RANGE FOR MATERIAL (, 13, 2 μ), (1x) 2 μ , (1x) 4 μ , (1x)	CALL EXI) (XIT2_[6,4000] CALL EXI]
SYSROUTINE IMP21 (NU MAI, NAKIP, MORINU, NOLS, NOPSET, MIASV, MUNNP, X,	10 CALL CRUICE (DCA(1,3,4),DCA(1,1,4),DCA(1,2,4),ILKK) IF(II:22,E0,4) 60 TO 20 2011 (6,4) 04
C 34430 / JURK / DX4 (54, XLF (4), ZLF (4), ZLF (4), PLF (4), FILL (2), V2 (3)	CALLEXI 29 CHILAUS 25 FLUOR CONTRACTOR 31
U-141 N / ZATRA/ HOUEX, 318 UT 19 GION X(1), 7(1), Z(1), UFN(1), RHO(1), NTP(1), EE(HAXTP, 13, 1), U-3 (3, 3, 1), 35 RECEIVIT(1), PHA(Z, 1), 100(R, 1),	
2 UIIENJION HEDIO) UJIENJION HEDIO)	"A THE 18,3027 W, NEAGE (M) (LT (M) IF (M, E2, M) GO TO 22
00110 I=1,NU3MAT K:10 I7,1011 H,NIP(I),DEN(I),RH0(I),(HEU(N),N=1,6)	MRITE (644010) CALL EXIT 22 IF(NFACE(M).GE.1 .AND. NFACE(M).LE.6) GO TU 23
IF (NIP(I), EQ. () NIP(I) = 1 	09172 (644311) CALL EXIT 23 IF(1714).00.01 11(0) = 1
- 1211-23.04 60 TO 2 	TE(LTTA) 62.1 .AND. LTTA).LE.2) GO TO 24
2 [F['\TP[A].LE.WAXTP] GO TO 4 	24 [F([[1].60.2]) GG TO 26 RFAQ [5,1005] (PNA([.M]), I=1,4)
4 97 = 376(3) 00 6 4=1.97 	0) 25 [=244 25 [F(PAA(1,M):EQ.J.U) PWA(1,H) = PHA(1,M)
EPP==2P/2:075 = =: (K, 2, M) = F = : (G + 2, 25 + 2P)	60 TU SC 26 PTAU (5,1005) (PrA([,M], I=1,7) 27 TI (6,304) (PrA([,M], I=1,7)
E (K, 5, M) = E P + CO/ (* = EPP + 0 + 25 + EC * 0 + 3375) E (K, 9, M) = E C (K, 3, M) E (K, 7, M) = F * V + C + Z * VP	3) CONTINUE IF (NTS)V.EU.() 60 TO 5031
ÊS (X,ô,X) =ES (X,5,X) +EE (X,2,M) /EE (X,3,M) EE (X,7,M) =EE (X,0,M) FS (X,7,M) =EE (X,0,M)	5/17 (NTA) NFACE (M), LT (M), (PHA (1,3), I=1,7)
EC(X,), M) = EE(X, 0, M) EC(X,), M) = EE(X, 0, M) EC(X, 1, M) = EE(X, 0, M)	5331 CONTROL 31 FERNJASET.EQ.91 GC TO 49 HAITE(-9.3)1.1(I.I=1.4)
	טר 4) א=ו,002557 פרגט(5,136)(LC(I,1),I=1,0) אדוד[ה. 3013)N.(LC(I,M),I=1,0)
IF(±;(),:,n),GT.€E(J-1,1,n)) GO TO B ∴	L = c C) 35 J=1,0 [F] J(C(L + 4), FO. 0) 50 TO 36
CALL EXIF 8 CONTINE 12 CONTINE	I = [+ 1 I = [+ 1 IF[L]2C[J,M).JE.1 .4NJ. LOC(J,M).LE.27) GO TO 35
F(1751).E1.() 60 TO 12 C0 11 4=1.500000 DTTT 4=1.5000000 DTTTT 4=1.5000000	MOUEX = 1 GO TO 36
MT = NTP(t) $MT = NTP(t)$ $MT = (EE(K, L, H), L=1, 13), K=1, NT)$)	35 CONTLINE 36 IF(L.GT.)) GO TO 37 L = 1
12 [(4)7(H0.52.6) GO TO 21 431[G (6,3)[9]	Lnd(1,4) = 21 37 MAZPIS(M) = L 40 CANTINE
2023 A=1,002000 R ² A7 (5,21,33) N,NI,NJ,HK WRITE (5,30,30) H,NI,AJ,HK	1 [(\15]]V.E0.1) - "ATT=((11)([LOC(I.J),I=1.8),J=1.NOP3ET) - "ATT=((11)([LOC(I.J),I=1.8),J=1.NOP3ET)
IF (015)20201) - 011F2 (013) 0,01,01,01,01 IF (0.52,01) 00 13	17 1345 (5,1327) xLF,YLF,ZLF,TLF,PLF Weite [6,3013] XLF,YLF,ZLF,TLF,FLF
0317E (6,4034) CALL EXIT 17 DEFUT ST → ANAL NT LE NUMURA GO TO 5015	* 1217 (113) XLF, YLF, ZLF, TLF, PLF
5014 H3ITE (5:40200) L	1001 FRYNAT (215,2F12.J,6A6) 10J2 FRYNAT(8F10.J/3F10.J) 1513 FRYNAT (4F15)
5015 [F(i)]. T.) .AND. NJ.LE.NUMHP) GO TO 5016 L==	1024 F14441 (SIS) 1035 F14441 (SIS) 4076 F72441 (SIS)
5016 [F176.514] 5016 [F176.514] = 114	1007 FORMAT (4F10.0) 3201 FORMAT (4F10.0) 3201 FORMAT (7486 MATERIA NUMER = LIGATHAR TABLES)
1 67 70 2014 14 67071207 - 6511 776 - 6511 776772 (D64(1.1.00),X(01),Y(01),Z(01),X(00),Y(00),Z(00),IERR)	$\begin{array}{cccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 &$
- [F(1743-6373) 20 10 16 	2 230 MASS DENSITY = 1, E1216, 100 // 5 230 IDENTIFICATION = 1, E1216, 100 //
16 ČÁČĚ VÍČÍ 22 (72.72 (HI), Y (HI), Z (HI), X (HK), Y (HK), Z (HK), IERP) IS ([[[[]]]] [] [] [] [] [] [6 IX, INT WE ATURE, 44 JUE, 44 JUE I, JX, ME 24 JA, ME 34 A, JUE 24 A, JUE 24 A, JUE 24 A, JUE 27 A, JUE 2
0 1 1 - 17 - 17 - 17 - 17 - 17 - 17 - 17	3063 FORMAT (F12-2,3F12-1,3F7-3,3F11-1,3E10-3) 3064 Format (7750н натериальная то актоо каральная то н.
· · ·	·.

. .

350.

• •

1 34,341 1.2 L 5.7 3 334 354 100 3 34 100 1 3 34 100 1 37 100 1 3	NJ DJE, / NJ NX, / 1X) T K I & U T E D S U K F A C E L O A D F = 5, / 1X T K I & U T E D S U K F A C E L O A D F = 5, / 1X SUFALC E LEIENT FACE = 16 / TYPE COD TED, 11X, 4HP(1], 11X, 4HP(2), 11X, 4HP(3], 11X, 11C, 1)X, 3HA(1), 11X, 4HP(2), 11X, 4HP(3], 11X, 11C, 1)X, 3HA(1), 11X, 4HP(2), 11X, 4HP(3), 11X, 1X, 11, 12X, 3HP(1), 11X, 4HP(2), 11X, 4HP(3), 11X, POINTJ, / BH NUMBER, 8(4X, 1H(, 11, 1H)), / 1X) M = N T L O A D C A S E, 3X, M = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 3X, H = N T L O A D C A S E, 13X, H = N T L O A D	$ \begin{array}{c} 15 & 15 + 16 + 16 + 16 + 16 + 16 + 16 + 16 +$	
4395 FIRE INT (36H)FROR 4035 FIRE INT (36H)FROR 4037 FIRE ISAN FROR 4037 FIRE ISAN FROR 4034 FIRE ISAN FROR 4034 FIRE ISAN FROR 4034 FIRE ISAN FROR 4031 FIRE ISAN FROM 4031 FIRE ISAN FRO	UNDEFINED NODE NUMBER = ,15 / 1X) VECTOR IJ HAS ZERO LENGTH/1X) VECTOR IJ K MAS ZERO LENGTH/1X) IJ ANJ IK VECTORS ARE PARALLEL/1X) F3 ANJ F1 VECTORS ARE PARALLEL./1X] F3 ANJ F1 VECTORS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
E13 S'1320UTINE CROSS2 (A S'1320UTINE CROSS2 (A Y = A(2) + 2(3) - A Y = A(2) + 2(3) - A Y = A(3) + B(3) - A Y = A(3) + B(3) - A Y = A(3) + B(3) - A (A + A + A + A IF (XLN+LE-1.) + ALN IF (XLN+LE-1.) + ALN C(3) = Z + ALN C(3) = Z + ALN C(3) = C (A + A + A + A C(3) = C (A + A + A + A + A + A + A + A + A + A +	N, 3, C, IE 9R) C (3) (3) • 3(2) (1) • 3(3) (1) • 3(3) (1) • 3(3) (2) • 3(1) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	$ \begin{array}{c} 0 & 1 & 2 \\ x & = 1 \\ y & = 1 \\ 0 & 1 \\ 1 & x & = 1 \\ 1 & x & x \\ 1 & 1 \\ 1 & x & x \\ 1 & 1 \\ $	
$\begin{array}{c} x + 1 \text{ out} \\ z + 3 \text{ out} \text{ interval} \\ z + 4 \text{ out} \\ z +$	/,XI,YI,ZI,XJ,YJ,ZJ,IERR) (*2) E TURN	160 CONTINUE D1 25, I=16 X = 13 10 J+C K=1,3 19 X = X + IEMP(K,I)*E(<*9) 16 (I.GT.3) X = X*2.0 20 ALPHA(I) = X 21 20 21 20 21 20 20 ALPHA(I) = X 21 20 20 ALPHA(I) = X 21 20 20 ALPHA(I) = X 20 ALP	9
$\begin{array}{c} 1 & -1 & -1 & -1 \\ 1 & -2 & -2 & -2 & -2 \\ -2 & -2 & -2 & -2$.С. ТЕМР, ССА, КАХСЭ; КМАТ, NFL, DUN, ALPHA) 12, TL HP (0,6), DUA (3,3), IPPM (3), DUH (6,6), 60, 10, 15	DIMENSICK _[6,1], AELU, AELK, KL, K, C, K, K, C, AL, NU/2, A (001, 150); I DIMENSICK _[6,1], AELT(1), FT(1, J) (11, J) (11, J) (11, J), J); 2 GUNDUN / GAUSS/ X0 (4++1, KUT(4+4) 4 GEN / J) (11, J) (4, J), J) (11, J) (11, J) (11, J) (11, J); 4 GEN / J) (11, J) (11, J) (11, J) (11, J) (11, J) (11, J); 4 GEN / J) (11, J); 4 GEN / J) (11, J); 4 GEN / J) (11, J)	J
3105 FORMAT (23HGFRPOR+ 3105 FORMAT (23HGFRPOR+ 1 14H) IN ELE	KYÁT,ÑEĽ • HODJLUS E(,211,16H) FOR MATERIAL (,12, MENT (,15,10H) IS ZERC,, / 1X)	1901-001-12-0-01 190 = 0 1901-01-01-01 60 TC 24 00 22 I=2,3 091 = JUM + AB3(E(I ,I) - E(I-1,I-1))	

···· · •

.

<pre>22 3) = JUN + AU3(E(1+S,1+3) - E(1+2,1+2)) UM = UUA + AU3(E(1+S,1+3) - E(2,3)) UJ) = UUA + AU3(E(2,3) - E(3,1)) IF(0U+0T+1,0E-0) ISU) = U 24 00(IT+0E-1,0E-0) ISU) = U 25 00(IT+0E-1,0E-0) ISU) = U 24 00(IT+0E-1,0E-0) ISU) = U 25 00(IT+0E-1,0E-0) ISU) = U 26 00(IT+0E-1,0E-0) ISU) = U 27 00(IT+0E-1,0E-0) ISU = U 27 00(IT+0E-0) ISU = U 28 00(IT+0E-0) ISU = U 29 00(IT+0E-0) ISU = U 20 00(IT+0E-0) I</pre>	<pre>Ch aj [[=1,3 H = [1+k] D) n, j=1,3 N = j=1,3 N = j=1,3 C D) [[A] = S(H,N) D) [] = S(H,N) D) [] = S(H,N) D) [] = S(H,N) D) [] = S(H,N) C D) [[A] = S(H,N) D) [] = S(H,N) C D) [] = S(H,N) D) [] = S(H</pre>
<pre></pre>	03 s; J=1,3 K2 = L3(1); 90 C) ITINUE 90 C) ITINUE 100 C) ITINUE 110 CONTINUE 110 CONTINUE 110 CONTINUE 110 CONTINUE 01 2: I=4,ND 07 2:0 I=1,ND 07 2:0 I=1,ND 260 C(I,I) = S(I,J) 260 C(I,I) = S(I,J) FACT = VOLM FACT = VOLM CONTINUE FACT = FACT STURN
160 07 = 037 * + 1415 * DELT(K) 07 = 07 + FAST 17) * 51607(K) *0T 175 Fr(K) = Ff(K) * 0(L,K)* SDT(L) 155 Fr(K) = Ff(K) * 0(L,K)* SDT(L) 157 Fr(K) = Ff(K) * 0(L,K)* SDT(L) 150 C) T(LUE 150 C)	E.J. RUTINE FACEPR (NEL, KUIG, KXYZ, XX, NOD9, H, P, FL, HFACE, LT, PHA, KLS) DIMENSION XX (3, 1, 1, 300, (1), h(3), P(3, 1), PL(1), PHA(1) UIMENSION XX (3, 1, 1, 100, (1), (1), (1), (1), (1), (1), (1), (1)
0 1 2 2 11,2) 0 2 2 = 11,2) 0 60 1 2 1,12L0 0 60 1 2 1,12L0 0 60 2 1 2,12L0 0 60 2 1 2,12L0 0 7 6 2 2 1,12L0 0 7 6 1,12L0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Ulta 1554 / 2, 3, 4, 1/ 0.174 1554 / 2, 3, 4, 1/ 0.17511+4) = KFAGE(HFAGE,I) 10.15211+4) = 3 2 COLTINUA I COLTINUA I COLTINUA COLTINUA I COLTINUA I COLTI
$ \begin{array}{c} 0 & 1 & 4 & J J = 1, 3 \\ W & = J J + L J \\ I & T & = IC + 1 \\ 0 & (IC) & = IC + 1 \\ 0 & (IC) & = IC + 1 \\ 0 & (IC) & = IC + 1 \\ 0 & (IC) & = IC + 1 \\ 0 & (IC) & = IC + 1 \\ 1 & (IC) & = IC + $	FAST = Frac(NFACE) G) TH (19,30), LT 10 U7 25 K=1,4 TF(H)U5(3(K), $\pm 24, 2)$ GO TO 25 FF(K, $\pm 1, 4)$ GO TO 15 P2(K) = PAA(K) * FACT G) TO 25 T5 J = K-4 L = FPX(J) + PWA(L) * 5.5 * FACT 25 CHTT:UE G) TO 75 30 GAATA = PHA(1) * FACT XLU = CA C) TS K=1,3 CTA(K) = PAA(K) - PHA(K+1) 35 XLU = XLU + CTA(K) + 2 XLU = XLU + 2 XLU =

- ----

.

			CERTIFICATION CONTRACTOR		
derina 1	ALLER FILMER (1.19)	N ^{S,L} DUE DURE LIND DET (LITTI)	Charles and the state	x JI (2,3)=00M* (- X JI (J,3)=00M* (- 0) J (J,3)=00M* (<pre>XJ(1:1)*XJ(2:2) * XJ(1:2)*XJ(2:1);</pre>
	1 [5,43H) H 370P 41 D) 45 K=1,3	AS UNDEFINED HYDROSTATIC SURF	ICE NORBAL., 7 1X	K ³ =K+3 D) 115 L=1,3 J(L,2-2) = 0.0	
,	45 ÊT4(K) (= ÊÊT4(K)/ X D7 74 H=1,0 TF(HUJFS(H)+EQ+0)	LN Go to 79		0([,<2-1) = 0.0 115 0(L,<2) = 0.0 C} 120 I=1,3	
٢,	$X[4] = 0 \cdot 1$ IF(0,01-4) = 0 IF(0,01-4) = 0	0073(N) 30 + 8		2(1,72-2) ± 3(1 3(2,72-1) = 3(2 12) B(3,72) = 3(3	,K2-2) + XJI(1,I)* P(I,K) ,F2-1) + XJI(2,I)* P(I,K) ,K2 - 1 + XJI(3,I)* P(I,K)
,	C) 5] I=1,3 50 XL I = XL V + (XX(I) P3(N) = XL V * (AAMA T2(X)) = XL V * (AAMA	N03) - PHA([+1))+ ETA(I)		U(4,<2-2) = U(2 - U(4,<2-1) = U(1 - U(5,<2+1) = U(3 - U(5,<2+1) = U(3)	, K2-1) , K2-2) , K2-1
,	79 CONTINUE 75 CONTINUE 75 CONTINUE			$\begin{array}{rcl} B(3), & 2 & 7 & = & 0 & 12 \\ B(0), & (2-2) & = & 3 & (3) \\ 133 & 3 & (6), & (2-2) & = & 3 & (1) \\ 2 & (1-2), & (2-2), & (2-2) & (2-2) \\ 3 & (2-2), & (2-2), & (2-2), & (2-2) \\ 3 & (2-2), & (2-2), & (2-2), & (2-2), \\ 13 & (2-2), & (2-2), & (2-2), & (2-2), \\ 13 & (2-2), & (2-2), & (2-2), & (2-2), & (2-2), \\ 13 & (2-2), & (2-2), & (2-2), & (2-2), & (2-2), \\ 13 & (2-2), & (2-2), & (2-2), & (2-2), & (2-2), & (2-2), \\ 13 & (2-2), & (2-2), & (2-2), & (2-2), & (2-2), & (2-2), & (2-2), \\ 13 & (2-2), & ($, K2 - 2)
	$H_{1} = IPR(HL)$ $H_{1} = IPR(HH)$ $H_{2} = IPR(HH)$ $ETA(HL) = EVAL(NEA)$	CF)		END SHJPDUTINE FHCT OTMENSION H(1),	(R,S,T,H,P,K009,XJ,JET,XX,ILLO,IELX,NEL) P(3,1),K009(1),IPERA(8),XJ(3,3),XX(3,1)
,	0) 3:0 Lx=1,3 ETA(44) = xk(Lx,3) C) 3:0 LY=1,3			011A IPERM / 2, 1-L = 1ELD 1109= 1ELD-0	3,4,1,6,7,8,5 /
,	ETA (MM) = XK(LY,3) AT = MGT(L4,3)* MG CALL FMGT (ETA(1),	T (LY, 3) E TA (2), ET A (3), H,P,NOD9,XJ,DET	,XX,KDIS,KXYZ,NEL)	RP=1.3 + R S7=1.3 + S IP=1.3 + T	
	$\begin{array}{rcl} & & & & \\ & & & & \\ & & & & \\ & & & &$	(M1,3) - XJ(M1,3)* XJ(MN,2) (M1,1) - XJ(M1,1)* XJ(MN,3) (M1,2) - XJ(M1,2)* XJ(MN,1)		R 1= 1.0 - R S 1= 1.3 - S T 1= 1.0 - T	
,	A(= Strital**2 + IF)44.GT.t.(2=8) 0 MPITE (5,3210) NFA 3010 FD243T (3A()2000	- 42**2 * 43**2) 0 TO 103 GE,Nél ** - Undretyed Horman in Face	(.11.5H) EOR.	R (= 1+0 - R*R S 3= 1+0 - S*S T f = 1+1 - T+T H (+1= 1+75#20+3	, Р+ТР
	1 1JH ELEMEN 370P 100 FACT = 1.JZAA	T (,15,2H)., 7 1X)		H(2)=3.125+PH+5 H(3)=2.125+PH+5 H(3)=2.125+PH+3 H(4)=0.125+P+3	'2÷\$P 3+TP 8+TP
	A1 = A1 = FACT A2 = A2 = FACT A3 = A2 = FACT			H(3)=1.125*82** H(3)=0.125*84*S H(7)=0.125*84*S	Р*ТИ Р*ТИ И*ТИ
٢	A1 = 0.0 03 = 0.0 CC = 0.0			H(d)=C+125*29*2 P(1,1)= C+125*2 P(1,2)=-P(1,1)	
ډ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	##2 ##2 # Y I/MN. T1		P(1,3) = -P(1,3) P(1,3) = -P(1,3) P(1,3) = -2.25*1 F(1,3) = -2.125*1 F(1,3) = -2.125*1 F(1,3) = -2.125*1 F(1,3) F(1,3) = -2.125*1 F(1,3) F(1,	₽* T.4
,e	C = SUPT(AA*CC = PRESS = 0.0 D) 110 K=1.0	03**2)	. •	P(1,7)=-u.125+5 P(1,3)=-P(1,7) P(2,1)= _,125+F	и+ти Р+тР
-	[F(NGÚES(R).20.2) NGD = N IF(K.GT.4) NOD = N	GD TO 13; DAES(K) DD + 8	,	P(2,2)= 0.125* P(2,3)=+P(2,2) P(2,4)==P(2,1)	H*TP
•	PRESS = PRESS + HC 130 CONTINUE FACT = HT* C* PRES	98(K) S	,	P(2,5)= 0.125* P(2,5)= 0.125* F(2,7)==P(5,9)	2/1+ TA 2/1+ TM
4	IF(NG)ES(L).EC.G) IF(NG)ES(L).EC.G) IF(L.ST.L) 60 TO 1	60 TO 160 40		P(2,0]==P(2,0] P(3,1)= 0.125* P(3,2)= 0.125*	RP+SP
ti	K = 3*0 GO TO 150 140 J = NJUES(L)			P(3, 4) = (1, 125) P(3, 5) = -P(3, 1) P(3, 5) = -P(3, 2) P(3, 5) = -P(3, 2)	29+ <u>2</u> M
n	K = J+8 K = 3* NOD9(J) 155 GJ = FACT* H(N)			P(3,/)=-P(3,3) P(3,a)=-P(3,4) IF (IEL.E2.8)	50 TO 5º
•	FL(K-2) = PL(K-2) PL(K-1) = PL(K-1) PL(K) = PL(K)	+ 40+ A1 + 30+ A2 + 90+ A3		I=0 2 I=I + 1 IF (I.GT.NND))	60 TO 40
٦	160 CONTENDE - 335 CONTENDE - 215 CONTENDE			N 4= N 13 (13 (13 + 8 G) TO (9,10,11 9 H(9) = (+25+80,+ 9 H(9) = (-25+80,+ 9 H(13) = (-25+80,+ 9 H(13) = (-25+80,+)	,12,13,14,15,16,17,18,19,20,21) ,NN
^	DIAR DUTINE DERABS DIAR JUTINE DERABS DIAR JUTINE DERABS	(NEL,XX,3,JST,M,S,T,4009,H,P, +8(6,1),N003(1),H(1),P(3,1) +XJ[(3,3]	IELO,IELX)	P(1,1) = 3+25* P(3,3) = 3+25* P(3,3) = 3+25*	2÷¥1p '' k⊭ + Sp
•	CALL FACT (7,5,1,F D 14=1+1/0FT X JI (1,1)=004*(XJ)	<pre>iP, NOD > , x J, DET, XX, TELD, TELX, 0 2,23*XJ((, 3) - XJ(2,3)*XJ(3,2)</pre>	EL) 11	1) H(1))=(.25*kH* P(1,.0)=-0.25* P(2.10)=-0.55*	33* TP 33* CP 24*5* TP
•	((×-) *PU() = (+ (2 , (1) 1 (×) (×) *PU() = ((1 , (1) 1 (×) (× -) *PU() = (2 , (1) 1 (×	2,1)*XJ(3,3) * XJ(2,3)*XJ(3,1 2,1)*XJ(3,2) - XJ(2,2)*XJ(3,1 1,2)*XJ(3,2) * XJ(1,3)*XJ(3,2)))))))	P(3,1))= 3.25* G) TO 2 11 H(11)=6.25*P≺*	R11* SS S13* TP
	UX → NUU=[_!_!] X UX= → NUU=[],[]][X UX → NUU=[],[]][X	1,1)*XJ(3,3) = XJ(1,3)*XJ(3,1 1,1)*XJ(3,2) + XJ(1,2)*XJ(3,1 1,2)*XJ(2,3) = XJ(1,3)*XJ(2,2	11 11 11	P(1+11)=-)+52* P(1+11)=-1+24*	עז ∗רר איז איז 2איז איז איז איז איז איז איז איז איז איז

•

.

---- -

12 13 14<				
 12 (1) (1) (1) (2) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	•	ť		
12 12 <td< th=""><th>P(3,11) = 0.25*28*SH S0 10 2</th><th></th><th>13=13=5+1++</th><th></th></td<>	P(3,11) = 0.25*28*SH S0 10 2		13=13=5+1++	
 13 at 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a	12 H(12)=0+25*RP*SS*[P P(1,12)=0+25*S5*[P		H([1)=H([1]) + 0. H([1)=H([1) + 0.	125*H(21) 125*H(21)
13 14 <td< th=""><th>● P(2,12)=-0.52+RP+S+TP P(3,12)=-0.25+RP+SS 51-10-2</th><th></th><th>D: 32 J= 1,3 P(J, [1] = P(J, [1]</th><th>+ 0,125*P(J)21)</th></td<>	● P(2,12)=-0.52+RP+S+TP P(3,12)=-0.25+RP+SS 51-10-2		D: 32 J= 1,3 P(J, [1] = P(J, [1]	+ 0,125*P(J)21)
<pre></pre>	13 H(13)=1.25+PH+SP+TH P(1,13)=-3.5:+P+SP+TH		J2 P(J, (2) = P(J, 12) G) [J 31 J3 II - I - 16	+ 0.125+P(J,21)
<pre>14 If if</pre>	P(2,13)= 0.25*8**M P(3,13)=-C+25*8**SP		$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	123+4(21)
<pre>A</pre>	14 H(14)=Э.25*8:1*55*ТИ P(1,14)=~).25*55*ТИ		H(12) + 3. D) 34 J=1,3	125*H(21)
<pre> 15 0 1 1 2 3 1</pre>	P(2,14)=-J.5(*RH*S*T1 P(3,14)=-J.25*RH*SS		34 611121=611121	· J.125+P(J,21)
0 0	15 H (15) = 1.25*RP.*SM*TH P(1.15) = 1.53*RP.*SM*TH		35 D1 36 I=1,8 H(I)=H(I) - 5.12	5+H(21)
<pre>16 7 14 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2</pre>	P(2,15)=-U,25+ 44+ TH P(3,15)=-D,25+ 64+ TH		36 P(J,I)=P(J,I) - NV=NJ0J + 7	125*P(J,21)
<pre></pre>	6 10 2 16 +(16)=0+25*RP+35*TH 26 + 0+25*35*TN		Ì≓ (∦,4,÷;;+a) Go u) 34 (±=9,144	TO 5)
<pre>17 5 5 1 5 2 3 3 4 5 0 5 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	P(2,10)=-0.50*RP*S*TM P(3,10)=-0.25*RP*SS		H(1)=H(1) = 0.25 D) 35 J=1,3 36 P(1,1)=P(1,1) =	* F(21) 0.25*P(1.21)
<pre></pre>	5) T) 2 17 H(17)=0.25+kP+5P+TT 04 - 21- 1 2=+39+TT	•	H(14)3+3)=H(21) D) 3+ J=1+3	
<pre></pre>	F(2, 17]= 0,25*RP+TT P(3,17)=-3,50*RP+SP+T		34 P[J, 44]9+3)=P[J, 5] IF (15LX.LT.15LU 54 DD (21) J RETURN
<pre>print is in the second se</pre>			00 100 J=1,3 00 1=1,1	
<pre></pre>	P(2,13) = 3,25*RH+TT P(3,14) = 3,53*RH+SP+T		- D1 J, K=:,IELX 95 U,H=JUH + P(I,K) 100 X II 1 - 009	• «X (J, K)
<pre></pre>	* 51 13 2 19 +[13]=.+25+PM+SH+IT		LX*15+1)LX = 150 LX*15+1)LX = 150	(2,2) + x J (3,3) (2,3) + x J (3,1)
<pre>2 1 1 2 2 - 25*4**W*HT 2 1 1 2 - 25*4**W*HT 2 1 1 2 - 25*4**W*HT 2 1 1 2 - 25*4**W*HT 2 2 - 25*4***HT 2 2 - 25*4**W*HT 2 2 - 25*4***H*HT 2 2 - 25*4***********************************</pre>	P(2, 3) == 0, 25* 8H* TT P(3, 3) == 0, 50* 8H* SH* T		L×+(E,()L× + S - S - S - S - S - S - S - S -	(2,1)*XJ(3,2) [2,2]*XJ(3,1)
<pre>A 11 C 10 - 20 C 1 A 2 C 2 C 1 A C 2 C 2 C 1 A C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C</pre>	20 H(2)1= -25*R+* 30* IT		5 - XJ(1,1)+XJ IF(0:1,6[1,1,5]+	(2,3) * XJ(3,2) GU TJ 11
<pre>G 1 1 2 C 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2</pre>	P(1,2)=-0,25+RP+IT P(2,2)=-0,25+RP+IT P(3,2)=-1,50+RP+SH+T		WAITE (6,2002) N Stop	
<pre></pre>	G1 fJ 2 21 H(211=HR+SU+IT		2301 E)2844T (49802880	R+++ NEGATIVE OR ZERO JACOBIAN DETERMINANT,
<pre>3 124; 3HT =; F13.5 / ix) 40 14= 41 14= (4 + 1 52; 3HT =; F13.5 / ix) 52 124; 124 11; 3HT =; F13.5 / ix) 53 124; 124 11; 3HT =; F13.5 / ix) 54 124; 124 11; 3HT =; 124 11; 3HT =;</pre>	P(1, 21)=-2, 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*			ÚTED FOR ELEMENT (,IS,18), / K =, F19-5 /
<pre>4: 14:14 + 4 + 40 11:14 + 7 11:14 + 7 4: 11:14 + 7</pre>	G) () 2 40 IM=2		3 12×, 3н 4 12×, 3н ЕЧн)	5 =, F10,5 / T =, F10,5 / 1X)
<pre></pre>	41 14=14 + 1 IF (14.61.2009) 60 TO TITIA - 7	50)	ČÝŽRLAY (TSHE, 14, P 305 KAN, SOLEK	υ)
<pre> [* (1, 6, 1, 1) 00 10 46 [1, 1] [1, 1</pre>	1 Î.	51		P(14),NUMNP,HAAND,HELTYP,N1,N2,N3,N4,N5,MTOT,NEC PLOCK.NEC3.11.NE
<pre>h([1]=h([1]] = 0.5*h([N]) h([1]=0.5*h([N]) h([N]) h([N]) h([N]) h([N]) h([N]) h([N]) h</pre>	IF (14.61.16) 60 10 4 It=IN - 3 I 2=IPF2H(It)	0	DT (FASIOA TT(4) CALL SECOND (TT)	111
H(1(4))=H(1) 0) 45 J=3 P(J,1)=P(J,12) = 0.5*P(J,10) 11 = 1/30,1 + (FUB = 1 P(J,1)=P(J,12) = 0.5*P(J,10) 45 P(J,1)=P(J,12) = 0.5*P(J,10) 45 P(J,10+3)=P(J,10) 46 IF (TV.EJ,21) 60 TO 36 12=1 + 4 46 IF (TV.EJ,21) 60 TO 36 12=1 + 4 47 P(J,10+21) (J) 48 IF (TV.EJ,21) 60 TO 36 12=1 + 4 49 IF (TV.EJ,21) 60 TO 36 12=1 + 4 40 IF (11)=H(11) + (12), A(N3), NEQ3, NUMNP, LL, NULOCK, NEQ, 2, 1) 40 IF (11)=H(11) + (12), A(N3), NEQ3, NUMNP, LL, NULOCK, NEQ, 2, 1) 41 CALL SECOND (TT(D) 42 N + NUMP*6 43 N + NUMP*6 44 IF (TV.EJ, 21) 60 TO 36 45 IF (TV.EJ, 21) 60 TO 36 46 IF (TV.EJ, 21) 60 TO 36 47 IF (TV.EJ, 21) 60 TO 36 47 IF (TV.EJ, 21) 60 TO 36 48 IF (TV.EJ, 21) 60 TO 36 49 IF (TV.EJ, 21) 60 TO 36 40 IF (TV.EJ, 21) 70 IF (TV.	H(I1)=H(I1) - 0.5*H(I H(I2)=H(I2) - 0.5*H(I	21) 71)	N53=(M3440+LL)*N N3J0=NE23+LL*(2+ TE(N334-LL*N65)	E 09 (43AND-2)/NE 13) NS03=NS3
<pre>bijji2j=bijji2i = 0.5*P(jji0) 45 P(jji1*)=P(jji0) 6) 10 41 46 IF [11*:0.21) GO TO 36 15 = 11 = 16 15 = 14 = 16 16 = 16 17 = 14 = 16 17 = 14 = 16 16 = 16 17 = 17 = 16 17 = 17 = 16 18 = 17 = 17 = 17 = 17 = 17 = 17 = 17 =</pre>	A (1/(+d) = A(1/)) 0) 45 J=1,3 P(1,1)=P(1,1) = 0.5	*P(J.IN)	N4= N3+U5 13 91 = 13400 + UE0	
• •	Þ(Ĵ,ÎŽÌ=Þ(Ĵ,ÎŽÌ = Ů•Š 45 ₽(J,IH+¢)=P(J,IH)	*P(J,II)	CALL SECOL (ATH 1 CALL SECOND (II)	2,7) 2)
12=1:+3 CALL PRIND CALLTRACAT, ACAS, RED, ADAM, ELL, RED, ADAM, ADAM, ELL, RED, ADAM, AD	• 46 IF (I').E).21) 60 TO 3 It=II-16	G	N 2= N1+NUANP*6 N 3= H1+0+LL	A A MAA ATARA NEGA MUND LI DIN OOM DEG. 2.11
изницент изи изницент изи рт чу је изи рт чу је изи на са на при на са на при на трана на са на при на са на при н При на при на при По на при	• I?=1: + 4 H(I\$)=0(I1) - 0.5*H(I H(I\$)=0(I1) - 0.5*H(I	11. 11.	CALL SECHND (TTO N 2=N1+4+LL	3))
	HIN+al=HIN DI 47 J=13		H3≠42+4F 73+LL L3= (1737+4372 (42	
• P(J, 12) = P(J, 12) - 0.5 • P(J, 10) P(J, 12) = P(J, 12) - 0.5 • P(J, 10) 0.5 • P(J, 12) - 0.5 • P(J, 10)	P(J, I1) = P(J, I1) = 6.5 P(J, I2) = P(J, I2) = 0.5 F(J, I2) = P(J, I2) = 0.5	**P(J,IN) **P(J,IN)	CALL SLOOND (III D) SJ X=1+3	4))
$\begin{array}{c} 47 (3) $	47 HYJ91H401=8309101 GJJJ41 31 IH=5		שין געניין אין געניין אין געניין אין געניין אין געניין אין געניין געניין געניין געניין געניין געניין געניין גענ געניין געניין	$T_{(L)}^{T(K)}$
$ \begin{array}{c} \bullet \\ 31 \overline{14} = \overline{14} + 1 \\ 1 1 = \sqrt{13} + 1 \\ 1 1 1 = \sqrt{13} + 1 \\ 1 1 1 = \sqrt{13} + 1 \\ 1 1 1 1 = \sqrt{13} + 1 \\ 1 1 1 1 = \sqrt{13} + 1 \\ 1 1 1 1 1 1 1 1 1 $	▼ <u>31 14=14 + 1</u> 14=140000000000000000000000000000000000	· ·	2001 FICHAL (//// 405 1 //5x,215 2 5X,211	ISTATION SOLUTION TIME LOG, IECUATION SOLUTION =, F8.2 / DISPLACENENT OUTPUT =, F8.2 /
TE (11.51.50) 60 10 35 TE (11.51.50) 60 10 35 SETURN SETURN SETURN	F (14.54.54) 60 10 3	3	3 5X,210	STREJS REDUVERY (=; F3.2 2)
	·			·.

.

.

	The second se				
~	SUBROUTINE SESOE (A	B. MAXA HEN, HA. HV. NULOCK HENRY	HI,NSTIF,		
	DISENSION ANNAV), J (N	LU,NL,NRJ AVJ,NAXA(HI) -	203	<pre>< 1= 1100(00,000,000) < 1= 1 + IG G= 0.0</pre>	
	142=14 - 2 IF(142-E1-0) MA2=1		300	- 1133) KK=KL,KU,[N D=0 + 1(KK)*A(KK+I	C)
	142=4633 - 1 474=4843*MA		240	A(KN)=A(KN) - G IG=IC + NEGO	
	11 3= (1A+2) ZHEN3 + 1 403=412+4803			99 43) L=1,NV	
	14 V = NE (0 3 + NV 14 V = NE (0 3 + NV			- ?=0. -]) 443 KK=KL,NH,IN	c
	41 = NL 42 = NR		440	(J=(J - 1 C=C + A((K)+A((J)	
	ACHINO NATIF AEMINO NAED		430	K = K + NEOB	
	204100 N2 204100 N2 204100 N1=1-N3LOCK		200)J 4J NK=1,N[8 [F ((NK+NJ).GT.NEL	OCK) GO TO 401
	IF (NJ.NF.11 GO TO 1 READ INSTIFU A	. 0		VI=41 TE ((NU_EQ.1).OR.(NK.EC.NTBDD NI=NSTIF
	IF(VE0.07.1) GO TO 15 Mix4(1)=1	9		- 3E AJ (NI) B - 4L = 1K + N2 ú8 + 1 - 12 = 11 × 12 (1 × 12 × 12 × 12	9 <i>4</i> T \
•	IF (A (1)) 1,17+,3			IFINA.EC.1) ML=MR	0,117
	- Ді́Т́Е(6,1)1)) кк,А(1) 3 до 5 L=1,3V			<pre>- KL = N2 38 + (NK+1) *N - V=1</pre>	EQB*NECB
-	5 A(1+L)=A(1+L)/A(1) =1+1V</td <td></td> <td></td> <td>00 535 M=NL/NR 201=04X4(3)</td> <td></td>			00 535 M=NL/NR 201=04X4(3)	
	42112(4L) (A(KK)+KK=2 RE[U2]] 41 TE (112 ED 11 ED 10	170	510	IF (14-KL) 505,510	,510
_		100	,	1=0. 10 32, KK=KL:NH:IN	IC
÷	-2213 (1113 A 133 KJ=1			G== (<k) δ(x)<br="">)=] + C+Δ(KK)</k)>	
	<pre>< 1=8[V] (MA, HE 10) 4AX4(1)=1 4AX4(1)=1 </pre>		520	A(KK)=0 K=K = 1 J(2)J=2(J) = D	
	IF (1-MA) 120,120,12	13	- 530	1F (10) 582,580,53 TC=4F13	0
÷.	K=KU H (=HINJ (N+KH)			00 543 J=1,4D 4J=444(M+J) → IC	164
	50 TO 14] 133 KU=KU + 1		556	- 1F (AJ=KL) 543,550 - KU=AIAJ(AJ,NH) - KU=A TC	+20L
-	(1-1)E-12) 140,140, 136 44,414 4	136		C=J. 13 575 KK=KL+KU+I	IC .
	143 10 16 K=1.8M TF (A(KK)) 110.160.1	110	575	3 [K I] = 3 (K K) = 4 (K K + I 3 [K I] = 3 (K I) = 0	(Č)
	163 KK=KK - INC 113 HAX4(H)=KK	· /) 540	TC=IC + N≞GS Kulau + NaA Kabatana - NaA	
~	174 KK= (iJJ-1)*NEQU + 1 TF (KK=(iJJ-1)*NEQU + 1 TF (KK=1)*NEQU 60 T(6 1 590		10 615 L=1,NV	
	44172 (6,1330) KK			0 523 KK=KL+6H+IX	10
•	172 2 2 4 4 1 + 1 + NEQB + 1	(1)	620	C = C + A(KK) + A(KJ) KJ = KJ - 1	
	176 TO 201 N=2,NEQ2 NH= 14XA(N) 155 (NH=0) 205 253, 25	10	610	K 1=K 1 + NEGB K = K + NEGB	
·	210 KL=N + ING K=N		505 500	40=.10 - 1 1=N + 1	
	1=0. 10,221 KK=KL,NH,INC			IRTE (NTB.NE.1) GO T	0 560 · · · · · · · · · · · · · · · · · · ·
	G=A(KK)/A(K)		57 0	10 573 1=1,844 1(I)=3(I) 50 I0 613	
•			. 560 400	HRITE (52) B Continue	
	224 (K= (N)+1)*1222,224,2	30		1=111 11=112	
	TF (KK.)T.HEQ) GO T 44IIE (5:1600) KK	1 240	540	- 4240 19175 (NRED) A,MA) CONTINUE	ζΔ
	222 Ka=(NJ-1)+NEQD + N 1/11- (N-1610) KKAA	(1)	70.0	10 /33 K=1+NHVV 1(K)=3.	
	230 13=42 18 00 241 J=1, 142		••	400140 AL 10 100 AL	<
_	4J=14x1(4+J) - IC IF (14-4) 246+243+2	5 9		TACKSPACE NPED TEAD [NRED] A+MAX/	λ

٠

		3					
0. •	イリリ リリ ス キン イマ イマ イマ イマ	317 L=1,4 323 I=1,4 K)=3(K+NžU K = 1 K + Nžet + =044	NE3				·
•	11 IF 13 850 3(855 41	IF=4200 (10+00,1) 355 L=1+N 355 K=1+N KA+K)=A(KK =KK + NE03 =KK + NE03	NDIF=NEQ DIF +K)/A(K)	3 - (N3LOC	K*NEQB - NE	(a)	
0 r	470 S=		MI 16C,87J,87	0			
r -	490 - Ka 190 - Ka 190 - Ka 190 - Ka 190 - Ka	= + - dau L=1,N = K - K] = B (KJ) = KJ + 1 = KJ + NEBT K + NEBT	IV - A (KA)+B	(KH)			1
	960 00 N= 10 KJ 920 XF 10	NTINUE NE]3 -913 I=2,1 =N + ING =.44X4(N) -(KJ-KL) 5 N -935 L=1,1	16 QB 910,920,92	Û			
	() 1) () () () () () () () () () () () () ()	= J = J = J = J = J = J = J = J	- A(KK)+B	(6)			
	965 KN 965 KN 955 KN 955 FT 955 FT	(353 L=1,4 363 <=1,7 (=<<) =0(×4+, <<)=0(×4+, =<11 = 0(×4+, 1=<11 = 0(×1) (34 = 0)(×4+, (34 = 0)(×4	() (A(K),K=1, (A(K),STOP	NHV)	DIAGONAL B	ENCOUNTERED D	URING,)
	1015 FOR 12 2	13X, 12 (HAT {/ 5; 13X, 12 TURN 13X, 14	94 EQUATIO 94 EQUATIO 95 BARNING 95 EQUATIO 94 EQUATIO 94 EQUATIO	N SOLUTION N NUMBER = *** HEGA N SOLUTION N NUMBER =	, 16) TIVE DIAGO , 16, 5X,	NAL ENCOUNTER 7HVALUE =. E2	EO DURING, 0.8)

-

:

•

.

-

٠

~

APPENDIX 3

Part of coefficients tables for the calculation of deflections and bending moments forces in circular plates simply supported on two short lengths of arcs at opposite ends of a diameter.

$$W = C_1 \frac{qa^2}{D}$$
$$M_r = C_2 q a^2$$
$$M_t = C_3 q a^2$$
$$M_{rt} = C_4 q a^2$$

in the tables coefficients C_1 to C_4 are listed under W, MR, MT and MRT respectively.

٠

THETA = ALFA =	070EGREES 2.5970EGREES			
ROH 10 20 30 455 50 72 80 10 10	DEFLECTICN 237805 235176 227316 214302 14302 145952 114238 078684 039914 001022	MR 518078 5515300 492847 4723826 444236 444236 5525 444236 50240 502847 47240 50240 50240 1000	MT 145929 145929 145929 1576494 1576494 2234597 22343591 34395934 45395934 6609399	48T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
POISSON, S THETA = ALFA = ROH .17 .20 .39 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50	<pre>6 RATIC= .050 15.30/DEGREES 2.50/DEGREES BEFLECTION .235498 .2235498 .2235498 .2235498 .216439 .216439 .216439 .179664 .179664 .155338 .127673 .095080 .331891</pre>	MR 4746552 44796522 44798522 44413078 -3765876 -32658745 -2658745 -0300 -0 -0 -0 -0 -0 -0 -0 -0 -0	4T 9959149 00959149 1911179 11479 12495699 12470421 12778729 1787289 176723	MRT 16570473 165901003 17661003 180103 224366151 22437656 22830025 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 2283005 228305 228505
POISSON, S THETA = ALFA = ROH 10 20 30 40 50 50 70 80 90 1.00	RATIO= .950 30.00/DEGREES 2.50/DEGREES DEFLECTION .237805 .236040 .231792 .222205 .210526 .196100 .173375 .153834 .141214 .120934 .100496	1R 354352 35435999 31952999 31956467 2732964 12527 0230 0030 - 0030 - 0030	MT 426777 42777 42777 42777 42777 42957 42957 42957 42957 42957 42957 42957 42957 427 4356 4277 4356 4277 4356 4357 4356 4356 4356 4357 4356 4356 4356 4356 4356 4356 4356 4356 4356 4356 4356 4356 4356 4356 4356 4356 4357 4356 4356 4357 4357 4356 4356 4357 4356 4356 4357 4357 4357 43566 43566 43566 43566 43566 43566 43566 43566 43566 43566 43566 43566 43566 435666 435666 435666 435666 435666 4356666 4356666 4356666 4356666 435666666 43566666666 435666666666666666666666666666666666666	228530039294 2285300039294 22899105903929 22899105903929 2289910590 2289910590 2289910590 2289910590 2289910 229910 2290000000000
PCISSCN, S THETA = ALFA = ?OH .10 .20 .30 .40 .50 .60 .70 .30 .30 .30 .10 .30 .10 .30 .30 .30 .30 .30 .30	RATIC= .050 45.09/DEGREES 2.50/DEGREES DEFLECTICN .237805 .235901 .234233 .223927 .224136 .217268 .201037 .192242 .183244 .174175	11R 190625 136337 173774 153895 128443 072387 048584 0431576 018859 -00000	555027 4999551217 523575115484 523575115481 5235758 5235758 5235758 5235758 5235758 5235758 52357 52357 52457 525 525 525 525 525 525 525 5	MPT 327453 32568774 32268971 32268971 2275978 22755552 22555678 229717 21971753 148533
POISSON,S THETA = ALFA = ROH 0 10 22 30 40 50 50 50 0 50 0 90 1,00	RATIO= .050 60.00/DEGREES 2.50/DEGREES DEFLECTICN .237805 .237641 .237641 .237485 .237281 .237527 .237887 .237887 .237887 .237887 .233437 .233495	MR • 226839 • 225421 • 326522 • 326529 • 010573 • 003375 • 003375 • 003375 • 003977 - 003977 - 0034570 - 0034570 - 00000	1352 1352 1352 1353 15555 184467 15555 184467 15555 18467 15555 1847 15555 1843 15555 1843 1843 1843 1843 1843 1843 1843 1843	MPT 2835166 2251666 22532680 225326844 225326844 15548337 155483395 112333962 082362

:__: __:

<u>.</u>--

·.. · ..

POISSON, S THETA = ALFA = ROH J .10 .20 .30 .40 .50 .60 .70 .30 .90 1.00	RATIO= .300 0/JEGREE3 2.50/DEGREE3 DEFLTCTION .277258 .274305 .263464 .251797 .233401 .173302 .135383 .0944220 .043694 001328	MR 505566223 • 488355 • 488355 • 4859566223 • 4599782 • 4599724 • 2927453 • 27763 • 27763 • 176360 - 03000	MT 99954352 11347661 121262633 167182933 225439781 46112239 46112239	MRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
POISSON, S THETA = ALFA = ROH 0 10 .20 .30 .30 .40 .50 .60 .70 .80 .90 1.00	RATIO= .300 15.00/DEGREES 2.50/DEGREES DEFLECTION .277258 .266637 .266637 .253277 .212275 .184801 .153305 .113388 .080822 .041530	463493 4683493 46834517 46845517 45346709 55196134 55196134 51965035 1786905 519000 519000 519000 519000	MT 	MRT 1513564 1525634 1563574 1635746 187339 231138 231138 2605887 2905887 398989
POISSON,S THETA = ALFA = ROH .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00	RATIO= .300 3J.06/TEGREES 2.50/DEGREES DEFLECTION .277258 .275388 .263926 .263721 .243321 .232965 .215130 .135475 .174513 .152958 .131400	MR 357573 3579996 315284986 24998657 133524 133524 1337296 -00000 -00000 -00000	MT 954329 95526731 955267316 9499219 9543299 9543299 9543299 9543299 9543299 9543299 9543299 9543299 9543299 9543299 9543299 9543299 9543299 9543299 9543299 955267 925316 9454329 955267 925316 9543299 955267 925316 955439 955267 925316 955439 955439 955439 955267 955439 955439 955439 955439 955439 9555267 955439 955439 955439 955439 955439 955439 955439 955439 9555267 955439 955439 9555267 955439 9555267 955439 9555267 955439 9555267 955439 9555267 955439 955439 9555267 955439 955439 955439 9555267 955439 955439 955439 95547 95577 95547 95577 95577 95577 95577 955777 955777 955777 955777 955777 955777 9557777 9557777777777	9555 4020 2205 2205 2205 2205 2207 2207 2207 2207 2207 2207 2207 2207 2207 2207 2207 209 209 209 209 209 209 209 209
POISSON, S THETA = ALFA = ?OH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RATIO= .300 45.COVDEGREES 2.50VDEGREES DEFLECTION .277258 .276469 .274148 .270436 .265553 .259786 .253461 .246904 .246904 .234192 .223426	AR 2255 2295 171122 171122 171122 11748 14199462 14199462 14199462 14232 14232 17233 10200000 100000000	YT 295703 20793710 22124902 22124902 22124902 22124902 22124902 22124902 22124902 22124902 22124902 221309 222530 22130 22130 22130 22130 22130 22130 22130 22130 22130 22130 22130 22130 22130 22130 22150 25050 22150 25050 22150 25050 22150 2500 250500 25050 25050 250500 250500000000	1269 301574 301574 20151423 20151423 20151423 2015439 2016439 2016439 2016439 2016439 2016439 2016439 20165 186995 186995
POISSON, S THETA = ALFA = ROH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RATIC= .300 60.00/DEGREES 2.50/DEGREES DEFLECTION .277258 .273432 .273432 .273432 .273432 .283230 .283111 .283396 .293642 .396394 .314222	NR 054927 053387 042847 035847 028976 022761 019927 052495 01090 000 000 000 000 000 000 0	MT 57399 33558339 33555555 335555557 38817751 535555574199 53359 53359 53359 53359 53359 53359 53359 53359 53359 53359 53359 53359 53359 53359 53359 5505 5505	MRT 26294234 2515804 22518072 2221546 2221546 1365527 1365554 114788 3994247

· · · --

--- · .

·**-**· - · · · ·

---- - - . . .

POISSON, S THETA = ALFA = ROH .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00	RATIO= 300 75.03/JEGREES 2.50/DEGREES DEFLECTION .27/258 .27335 .281544 .2860822 .294048 .313915 .325220 .331472 .354750 .37J712		NT + 465 + 465 + 465 + 455 + 455 + 455 + 455 + 455 + 455 + 47 + 77 + 77	MRT 15323 1542357 15492548 12393548 12393548 12373972 03310972 075570 0555
POISSON, S THETA = ALFA = ROH .10 .20 .30 .40 .50 .60 .70 .80 .1.00	RATIC= .300 9C.0C/DEGREES 2.50/DEGREES DEFLECTICN .277258 .282679 .283347 .309575 .322767 .337704 .354203 .372132 .391421	MR 096396 09349772 09349772 03492266 02457266 024566 0216955 000300 .000300	HT 5138999 51385999 5599937 5999377 54993775 44759314 4424952 4424952 53946 34947 34947 34947 34947 34947 34947 34947 34947 34947 34947 34947 34947 35947 34977 340777 340777777777777777777777777777	MRT • 0000000 • 0000000
POISSCN, S THETA = ALFA = ROH 20 30 40 60 70 80 90 1.00	RATIC= .350 0/DEGREES 2.50/DEGREES DEFLECTICN .290494 .287427 .273244 .262998 .241781 .214712 .161946 .143665 .10099 .051540 301419	HP. 50743914 501459143 479243 479243 479243 479243 479240 340447 340447 34044290 3403447 27724000 1720000	MT 	MRT GODOCOGO GODOCOGO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCO GOCOCOCO GOCOCO GOCOCO GOCOCOCO GOCOCOCOC
POISSON, S THETA = ALFA = ROH 30 .20 .30 .40 .50 .60 .70 .30 .90 1.00	RATIC= .350 15.00/DEGREES 2.50/DEGREES DEFLECTION .2014994 .287735 .273488 .265955 .223956 .223956 .223956 .194468 .161632 .1255742 .035742 .044382	MR 4673660 440526633 44052648634 4336634 43376634 33135795123 513572186 1767000 -0000	-•••••••••••••••••••••••••••••••••••••	19964 149964 159292 1562692 1562692 1784990 228992 228992 2291794 316984
POISSON, S THETA = ALFA = ?OH 00 .10 .20 .30 .40 .50 .60 .50 .50 .50 .90 1.00	RATIC= .350 30.00/)EGREES 2.50/DEGREES DEFLECTICN .200494 .283576 .2832871 .273528 .261739 .245047 .226746 .104300 .162707 .140529	MR 355384455 3553871 3408825 24465 24468 23421 23421 1359647 359647 0300000	1 899356 1 899356 1 95529256 2 9552722 2 9552722 2 9552772 2 953 1 923 1 923	MR1 87 225915990 225915995 22672269359364 226727697669 227697664 22222 2222 2222 2222 2222 2222 2222

7

. . .

. •

-

•••
	POISSON,S A THETA = ALFA =	RATIC= .350 45.00/DEGREES 2.50/DEGREES			
	ROH 100 	DEFLECTICN .2 J0494 .289723 .287457 .28340 .273531 .267471 .2652263 .243538 .244437	HR 209375 205334 193454 174513 1499323 212979 206370 2063670 2000 240082 -00000	HT 209375 210061 211218 2121899 22154899 2228599 2228594 2228594 2228594 2229541 2229541 22193028	MRT - 2981144 - 299749174 - 2997491721 - 2297494977 - 2297494977 - 229753782 - 22975782 - 248777 - 21883 - 21883 - 1738669
	POISSON,S R Theta = Alfa =	ATIO= .350 69.00/DEGREES			
	ROH 10 20 30 40 50 60 90 100	DEFLECTION .290467 .292404 .293955 .296793 .30154375 .313463 .326764 .335354	HE 3735774 1555	97653999375314902 33335355544349 355555551441002 3555555544343 333335335 33333 33333 3333 3333 3333 3333 3333 3333	973554559979 22554600979 22554600979 22220429898 22234598884 1151964 1151964 1098884 1151965 11964 1098884 119884 1198844 119884 1198844 119884 1198844 1198844 1198844 1198844 1198844 1198
	PCISSON,S R Theta = Alfa =	ATIC= .350 75.00/DEGREES 2.50/DEGREES			
•	ROH 9 -10 -20 -39 	DEFLECTICN 2991703 2995307 3094243 309406 3119669 345853 361457 373520 396900	MR 83536 	MT 5011382 65014882 4665430447 66654456956 444449205956 444449205956 44444310811 438511 33511 3351	11111098765 007903255 11909603355 1111109805222 0076053052224 00765 00765 00765 00765 00765 00765 00765 005
· .	POISSON,S R THETA = ALFA =	ATIO= .350 90.00/DEGREES 2.50/DEGREES			
	ROH 0 10 20 30 40 50 	DEFLECTION 299494 2992999 296512 303887 313958 326508 326508 341305 359123 376773 397119 419692	HR 037574605 03757799 035590455 03202455 00043100 .0000	HT 5514557 55988778 9988752257 9988752257 4475522887 442985228 4429852 4429852 39954 39954 39954 39954	MRT - 000000 - 0000000 - 000000 - 0000000 - 000000 - 000000 - 000000 - 000000 - 000000 - 0000000 - 0000000 - 0000000000
	POISSON,S R THETA = ALFA =	ATIO= .400 0/DEGREES 2.50/DEGREES			
	ROH 100 120 300 400 570 770 800 1.00	DEFLECTION .303290 .293600 .275654 .2527065 .192665 .192655 .192379 .19549384 .9549354 001525	MR -503244 -5032845 -4335502 -477502 -454684 -454588 -3366628 -269860 -158800 50800	4 	HRT CCC CCC CCC CCC CCC CCC CCC CCC CCC CC

{

K.

K

k

•(

C

(

(

ŕ

(

L,

PUISSON,S THETA = ALEA =	RATIO= .400 15.00/DEGREES 2.50/DEGREES			ve groundstage
ROH 121 .221 .300 .450 .600 .70 .890 1.00	DEFLECTION	MR + 4631633 + 4631633 - 4531667 - 432607 - 432607 - 43678 - 5175881 - 2576977 - 187556 - 30000	41390 	487 • 145872 • 14587 • 14587 • 145837 • 158378 • 16823551 • 225823551 • 22582371 • 22582371
POISSON,S Theta = Alfa =	RATIO= .400 30.00/DEGREES 2.50/DEGREES			
ROH - 10 - 200 - 400 - 500 - 700 - 700 - 300 - 300 1 - 00	DEFLECTION •3064427 •29885966 •22988571 •225495466 •225497471 •225499551 •225499556 •19741993 •1771292	NR 332412555 335412555 335412555 2432555 244352 3254435 3254 433252 14352 3214 3214 3214 3214 3214 3214 3214 321	MT 234 234 234 234 234 234 234 234	MRT 996 2555776989 22255669907 22255669907 22255669907 226510225 226510225 226510225 22514 22554 22554 22554 22554 2257 2257
POISSON,S THETA = ALFA =	RATIO= .400 45.00/DEGREES 2.50/DEGREES			
ROH 10 20 30 43 50 70 80 1.00	DEFLECTICN • 3064 J6 • 305 65 57 • 295 93 77 • 295 93 77 • 284 94 35 • 284 94 35 • 284 94 35 • 284 135 • 284 135 • 273 2669 • 266 316 7	MR 2108705 198705 199708 175708 175708 152562 15256 15256 15499 109959 109959 109959 1095920 1095920 1005920	HT 21336235 2134727798 21134727798 221237939 2212375881 2222775 2222775 222755 222775 222775 222755 222775 2227555 222755 222755 2227555 2227555 2227555 2227555 2227555 2227555 2227555 22275555 22275555 22275555 22275555 22275555 22275555 22275555 222755555 222755555 222755555 222755555 2227555555 2227555555 22275555555 222755555555	NRT • 29744 • 2987744 • 29877 • 289461 • 289461 • 26475 • 26475815 • 26475815 • 22855454 • 2931134 • 177657
POISSON,S Theta = Alfa =	RATIO= .400 60.00/JEGREES 2.50/DEGREES			
ROH 10 20 40 50 60 70 80 100	DEFLECTICN • 30/6472 • 30/68292 • 31/37224 • 31/48414 • 3248144 • 3476441 • 35/676 • 36229 • 31/484 • 32496 • 32496 • 33596 • 36229	MR . 655628 . 0553026 . 0553026 . 0553026 . 05530273 . 0376735 . 0376735 . 032744 . 0125128 . 00000	MT 359372 3599794 3599794 35599794 35599792 355995799 3550817 35508171 335508171 33544384 3333662 337622	MRT • 254398 • 251988 • 244877 • 233397 • 233198 • 190 • 180366 • 15938 • 13877 • 098512
POISSON,S Theta = Alfa =	RATIO= .409 75.90/DEGREES 2.50/DEGREES			· · · ·
ROH	DEFLECTICN	NR 041890 040530 036566 036370 022581 015775 .0015775 .001587 .005845 005845 00500	HT 466991 466991 4666991 4666999 446999 44559333 44559333 46559333 46559333 465999 375999 37500 37500 37500 37500 37500 37500 37500 37500 37500 37500 37500 37500 37500 37500 37500 375000 375000 375000 375000 375000 375000 3750000 3750000 375000000000000000000000000000000000000	127 1468 1468 1468 1468 1308 1208 1208 1092 0924 09724 055 105 105 105 105 105 105 105

22

:_ .,

37

41 - : : - :

۴.

--

> ._.. 362.

PCISSON,S THETA = ALFA =	RATIC= .400 90.00/0EGREES 2.50/DEGREES			
ROH • 10 • 200 • 300 • 500 • 500 • 670 • 800 • 900 1 • 00	DEFLECTION • 3208091 • 3106 • 312102 • 312102 • 324527 • 346527 • 346527 • 36237 • 36237 • 36237 • 362339 • 4925445 • 49254452	HR - 081244 - 075961 - 0759614 - 059614 - 053612 - 05382953 - 05182953 - 0029445 - 001925 - 001925 - 00000	MT 559483561 559483561 559483561 559483561 55968 4475 5561 5596 457 559 559 559 55 55 4 5 55 5 5 5 5 5 5 5	487 99 - 000000 - 0000000 - 0000000 - 0000000 - 00000000
POISSON,S THETA = ALFA =	RATIC= .450 0/DEGREES 2.50/DEGREES			
ROH 10 20 30 40 50 60 70 80 80 100	DEFLECTICN • 322298 • 322298 • 227190 • 271290 • 2712003 • 24052897 • 24052897 • 163976 • J6390651 • J001651	NR 551222993 447522993 4475225999 33255421 225325421 225325421 2253499 4453255421 2255421 2255425 2255425 2255425 2255425	11 	MRT 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PCISSON,S THETA = ALFA =	RATIC= .450 15.00/DEGREES 2.50/DEGREES			
R 0H 100 120 100 100 100 100 100 100	DEFLECTION 325672 322651 2313654 2277582 2213654 2213991 183546 142812 093542 0951675	HR 46622331 45222331 4313791 3365559999 255659999 176856 93766 387856 93776 387856 93776 387856 93776 387856	HT 93831593 03469 03469 04617739 09229359 125936729 125935791 226732 2267326	NRT 445954578 1445954578 1455601958 155601958 1256601958 22594 22594 32995 2299 32995 32995 3295 3295 3295 3
POISSON,S THETA = ALFA =	RATIO= .459 30.00/DEGREES 2.50/DEGREES			
ROH 100 120 120 120 120 150 100 100 100	DEFLECTICN	YR 360369 3552193 3429276 2069815 2155873 1425573 034147 000000	MT 999310 999310 005519945310 0055199463 0055199463 0055199463 005341638 00834153 00834153 00834153 00834153 00834153 00834153 008351 008351	251415995 22222222 22222222 2254415995 222222222 2222222 22545 225555 225555 225555 2255555 22555555
PGISSON,S THETA = ALFA =	RATIC= .450 45.00/DEGREES 2.50/DEGREES			
ROH 1200 3455 66780 999 1.009	DEFLECTICN 525672 324933 322767 314856 314856 3094144 293643 293641 283018 285354	MR 2156499 1956499 19923666 19923666 15239586958 152395861 152395861 1071756 12200 - J2200 - J2200	MT 21562976 215936 2157196736 221276626 2224560321 222660321 2224560321 222450321 222450321 222450321 2224373	MRT 239437 238677 286071 281188 273352 201348 2246331 2246331 2246331 225533 1193533 191335

.

· 1 • •

57

2) * * * * * *

4 47 5

::

•7

PCISSCN,S THETA = ALFA =	RATIO= .253 15.03/0EG3555 7.59/0568555			
ROH 10 20 30 50 50 50 50 50 50 50 50 50 50 50 50 50	DEFLECTICN 25373 251173 243507 230837 23331 191232 164880 134728 101368 055555 028182	HP 466561 462895 451773 452792 367779 318795 256941 1789325 -000000	MT 050311 063072 071341 035044 103956 127513 154526 182835 239077 238448	MET 155228 1553918 1553918 165395870 1785394870 22492040 22492040 224229144
PCISSON,S Theta = Alfa =	RATID= .250 30.00/DE62EES 7.50/DE62EES			
ROH 9 10 20 30 40 50 50 60 .70 .80 .30 1.30	DEFL=OTICN 253739 251917 246497 237624 225541 219595 19325 174006 153521 132409 111227	955220 3556320 3556335 3537345 231776 133746 133746 977830 929620 - 000000	MT 051030 050581 048039 047544 0489830 053335 078235 078315 078315 12225	M 93413482 26666926629 27775 2266692662486 22773557921 224825 22775 22485 22775 22485 22775 22485 22775 22485 22185 22185 218555 218555 218555 218555 218555 218555 218555 218555 218555 218555 218555 218555 218555 2185555 2185555 2185555 21855555 2185555555555
PCISSON,S THETA = ALFA =	RATIO= .259 45.00/DEGREES 7.50/DEGREES			
ROH 9 20 40 50 50 70 80 90 1.00	DEFLEGTION 252931 2550550 2441692 2346692 2346681 222063 2225057 2225057 220531 22057 201762	MC 203125 199004 187352 168389 143041 116052 087494 039341 021155 -000000	MT - 203125 - 204049 - 206792 - 216958 - 223240 - 23719 - 231409 - 231409 - 231409 - 218226 - 197871	404 3030 3030 2092754257 2292754257 2292754257 2292754257 22056 22754257 229754257 229754257 229754257 229754257 229754257 229754257 229754257 229754257 2297547 2297547 22975777 2297577777 2297577777777777777777777777777777
PCISSON,S THETA = ALFA =	PATIO= .250 60.00/DEGREES 7.50/DEGREES			
R OH 0 20 20 40 50 50 70 70 90 1.00	DEFLECTTON 253739 2533942 254567 255284 255284 255284 255284 255284 255284 266012 275540 281552	MP 951031 0495355 0453559 03259592 025954 0259500 0059000 00595000 00595000 00595000 005950000 005950000000000	мт 355219 3555499 3556140 3566774 3566774 3549383 342995 3328874 328874 328874 328874 328874 328874 328404	MPT 26626451 25626451 2526451 2526451 2214520 11555 11420 11449 11449 11449 11449
PCISCON,S THETA = ALFA =	RATIO= .250 75.00/DEGPEES 7.50/DEGREES			
201 - 10 - 20 - 30 - 50 - 50 - 70 - 80 - 90 1 - 30	DEFLFOTICN 253739 254581 257487 268496 276298 288496 276298 286249 286249 396249 397393 320749 334399		MT 466561 4665116 4667799 4467799 4431670 431616 417056 3790663 354284 321326	MPT • 152095 • 143213 • 143213 • 133147 • 1207218 • 03097545 • 0607595 • 0653011

C

(

(

(

Ć

Ç

ſ

(

(

1

(

ť

ſ

ſ

- ... -

===

,	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	HP 101065 034070 034070 0360505 0360817 034246 024776 01607769 003393 .000000	MT • 507315 • 504979 • 498178 • 497471 • 473630 • 457501 • 437955 • 422024 • 405163 • 391427 • 383016	MPT • 0 0 0 0 0 1 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	40 505831 502721 49775344 4775344 45063 3365478 258578 167188 -000000	MT 0973331 097395 109730 130957 130957 205155 20528669 441194 574964 747855	ц
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MP 465094 465094 45084 451813 431732 404058 36658 375824 1784277 039426 -00000	MT - 053194 - 056136 - 0649596 - 0699877 - 1254749 - 1586158 - 239989 - 252752	MPT 149790 150964 154567 160225 133274 200505 2248080 2248080 273351 287724
	PCISSON, S PATIO= .300 THETA = 30.00/DEGPEES ALFA = 7.50/DEGPEES ROH DEFLECTION 0 .264010 .10 .262151 .20 .255621 .30 .247566 .40 .235230 .50 .219364 .60 .202223 .70 .182559 .30 .161602 .30 .140001 1.00 .118345	MP 356040 351498 377807 374819 282408761 2392668 080050 -030000	47 056460 055814 054056 0540862 049827 049848 052410 052410 052410 073041 092197 116596	MPT 259244 269219 2662431 26592431 2659212 27146 2714227 2714893 274825 89563 239643
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	40 • 206250 • 202564 • 190508 • 171776 • 14749 • 197869 • 090832 • 0640367 • 022995 • 000009	MT 206251 207297 202992 217316 22276574 22265512 2256512 194146	MPT 299581 2995175 29951458 29951458 2975540 22475580 22475584 2903287 1864885 186485

PCISSON,S THETA = ALFA = ROH 0 10 20 30 40 50 50 50 50 50 50 90 1.00	PATTO= .300 60.00/DEGREES 7.50/DEGREES 7.50/DEGREES DEELECTION .264010 .264788 .266512 .266512 .266512 .266512 .271697 .271697 .271697 .285670 .285670 .29228 .299826	MP . 056460 . 054344 . 050685 . 044474 . 037374 . 037370 . 023961 . 011319 . 014096 . 000000	MT 3556240 3556740 3556747 355674980 35567777 3553717 349261 37394 37394 37294 37294 37294 37294 37294 37294 37294 37278784 372784 375784 3757864 375767864 37576767787787786778778778777777777	HR46894 255691229 275691229 27775774 27772879 15776289 1117728 997285
POISSON, S THETA = ALFA = ROH 0 10 20 .20 .30 .40 .50 .60 .70 .80 .90 1.00	RATIO:	MP 	MT 46553361 45543161 4543161 45338857 44507704 38572 4003574 38572 3554505 352110 3554 3521105	MPT 149791 147599 1441302 131568 119774 1993720 081441 0705886 054296
PCISSCN,S THETA = ALFA = ROH 0 10 20 30 40 50 60 .70 .80 .90 1.00	RATTO= .300 90.00/DEGREES 7.50/DEGREES DEFLCCTION .265353 .265353 .265345 .275876 .285843 .3028592 .339873 .357562 .376575	MP 993331 993479 989327 969994 055088 039430 024870 013167 015755 019754 . 00000	MT 5053601 5037115 4983522 44578574 4427695 4427695 3983778 3983778	HET 900000 000000 000000 000000 000000 000000
PCISSON, S THETA = ALFA = ROH 0 •10 •20 •30 •40 •50 •60 •70 •80 •30 •100	PATIO= .350 0/05GPEES 7.50/05GPEES 0E5LECTION .276339 .264182 .249058 .228018 .201193 .16752 .130902 .087994 .040123 011828	HP 504484 501794 4975704 4975704 475202 427204 3320 3320 3320 264547 163937 - 00000	MT - 085734 - 0899522 - 102793 - 122857 - 127277 - 201949 - 261981 - 341621 - 447647 - 588378 - 773287	тчм 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PCISSCN,S THETA = ALFA = 90H 0 10 20 30 40 50 60 60 70 90 10 30 10 10	RATIO= .359 15.99/DEGPEES 7.50/DEGPEES 7.50/DEGPEES DEFLECTION 276339 277309 265413 251870 273127 309417 181961 112273 973161 932929	MP 4642427 464237 4464237 4430790 402388 366558 3566558 25448 1789541 - 990790	MT 9461317 9463177 958676 974243 974243 123124 123124 123036 250863 250863 256814	4475717 14477777 15577 155778 156778 1688 1488 1488 1488 19246 19267 19267 19267 19267 19267 19267 19267 19267 19267 19278 19267 19277 19267 19277 19267 192777 192777 192777 192777 192777 192777 192777 197777 19777777 197777 1977777

i

ï

(

Ċ

I

(

(

(

(

ŕ

7

i

ī

i

Ľ,

-

- ·

2

Ξ,

PCISSON,S THETA = ALFA =	PATIO= .350 30.00/DEGREES 7.50/DEGREES			
ROH 10 20 30 30 50 20 20 20 20 20 20 20 10 10	OEFLEGTICH • 276339 • 274432 • 268761 • 259471 • 246811 • 231133 • 212931 • 192678 • 1498 • 14869 • 126585	MD 356930 352411 339706 315946 283770 242498 193144 139171 082252 032848 - 000000	MT • 761820 • 060982 • 058648 • 055371 • 052091 • 050113 • 051025 • 056496 • 0567916 • 0366131 • 111116	49T 2555369 25583656 26583658 266358 2669292 269292 269292 269292 25540241 2255782 275782 29398
PCISSON, S THETA = ALFA = ROH 0 10 20 30 40 50 40 50 40 50 80 90 1.00	RATIO= .350 45.00/0EGREES 7.50/0EGREES DEFLICTION .276339 .275367 .273300 .269677 .269677 .26974920 .259319 .259319 .2593206 .240780 .240780 .235032 .229868	MO 203775 2054156 193756 1759151 034129 066362 023020 - 00000	HT 209375 209382 2114788 214788 214788 221658 2274216 2127216 190344	45 109 294135 294135 285350 275354 226758 2267718 205392 185516 158467
PCISSON, S THETA = ALFA = ROH 10 20 .30 .40 .50 .50 .50 .50 .50 .50 .50 .10 .10 .10	RATTO= 350 60.00/0EGPEES 7.50/0EGPEES DEFLECTION 276339 277801 279602 286138 290845 296627 303536 311628 320969	HP 9618 21 960282 055945 045570 042180 034727 027706 929886 913485 905343 - 900000	MT 3556929 3557094 3557419 3557427 3553763 348961 3348961 3348961 3348537 328533 329533 327111	NOT 255572 255572 255572 255572 255572 255572 255572 255572 255572 210050 210050 210050 159104 159104 159104 159104 138551 118451 9519
PCISSON,S THETA = ALFA = ROH 0 10 20 30 40 50 60 70 80 90 1.00	RATIO= .350 75.09/05GPEES 7.50/05GPEES DEELECTION .276339 .277527 .281972 .286912 .234947 .315050 .317074 .330865 .346269 .363140 .391355	40 946197 946390 549727 936321 926276 917489 908687 001941 904673 9046778 001000	HT 464947 463616 463624 459621 4437399 438065 401724 380944 380944 320219	MPT 1475458 13454448 13628352 09378 09378 072543 055543 055543
FCISSCN,S THFTA = ALFA = POH 0 10 20 30 40 50 50 50 50 50 100	PATIO= .350 90.00/DEGREES 7.50/DEGREES 0EFLECTION 276339 277430 282265 284532 28440 311838 32440 343045 361462 331549 403225	40 	MT 504484 5023522 448552 44763466 4478466 4423771 442678 4423771 39843 39843 1	MPT 000000 000000 000000 000000 000000

í

ć

ĺ

(

(

(

PCISSON, S PATIO= .400 THETA = 0/DEGREES ALEA = 7.50/DEGREES			
0 7291189 0 291189 10 288097 20 278483 30 262667 40 249447	49 503269 500058 490373 474350	ИТ - 97 8269 - 93 2649 - 93 2649 - 1188276	мъ
	• 4 107 54 • 4 107 36 • 380 345 • 329 322 • 260 7 34	198915 198915 26035 343657 453994	
1.00012716 BCISSCN-S BAILO- 400	000000	79P154	
THETA = 15.10/0569555 ALFA = 7.50/056955			
ROH DEFLFGTION 0 • 291188 • 10 • 298333 • 20 • 279797 • 30 • 255668	МР • 454314 • 450574 • 449243 • 429958	MT 039314 042609 052501 068980	M91 •145 •1469 •1560
•40 • 246098 •50 • 221311 •60 • 191619 •70 • 157442	• 402047 • 364431 • 315578 • 253713	091937 120992 155199 192619	• 1959 • 1659 • 1785 • 1959
.80 .119342 90 .978046 1.99 .334444	• 177737 • 089671 - • 090000	-,229835 -,261550 -,280647	• 2450 • 2450 • 2759 • 3907
PCISSON,5 RATIO= .400 THETA = .30.00/DEGREES ALFA = .7.50/DEGREES			
ROH DEFLECTION 0 -291188 •10 -289221	40 • 357885 • 353388	MT •067115 •066086	MP1 • 2518 • 2526
• 20 • 30 • 40 • 50 • 50 • 50 • 50 • 50 • 50 • 50 • 5	• 339344 • 317123 • 285145 • 244142	•063180 •058948 •054335 •050695	- 2544 - 258 - 258 - 2663 - 2663
70 204725 80 182377 30 159322 1.00 136226	• 140355 • 084415 • 034417 • 000000	• 149673 • 053147 • 062857 • 080113 • 05547	- 2674 - 2634 - 2513 - 2288
PCISSON,S PATIO= .400		• 14 / 71	• 7 9 6 2
ALFA = 7.50/DEGREES ROH DEFLECTION	MO	ЧT	мот
9 - 291188 - 10 - 299433 - 20 - 288217 - 39 - 284584	.212500 .203568 .196997 .173500	212500 212952 214317 216587	2907 2898 2870 2870
40 280063 50 274554 60 268802 70 268802	•154362 •126499 •097388 •063686	· 219616 · 229956 · 225652 · 2256111	• 2017 • 2735 • 2616 • 2459
-80 -257156 -90 -251979 1.00 -247594	- 145342 - 123945 100100	• 221904 • 209900 • 186471	2069 1880 1721
PCISSON,S RATTO= .400 THETA = 60.0000558555 ALFA = 7.5000558555			
POH DFFLECTION 0 .291188 10 .231642	мр • 067116 • 065555	мт • 357894 • 357990	MRT • 25 1 9
-20 - 293023 -30 - 295384 -40 - 293301 -50 - 30355	061139 054599 046321 033025	· 358152 · 357928 · 3556587	-2494 -2425 -2314 -7166
.60 .709131 .70 .316191 .80 .324596 .30 .324406	• 031399 • 023841 • 015520 • 00557•	• 777453 • 348748 • 341769 • 733919	• 1990 • 1797 • 1598 • 1399
1.10 .345597		• 326218	•12040 •1016

(

(

ĺ

ł

(

1

(

t

ι

....

PCTSSON THETA = ALFA =	5 PATIO= .401 75.00/056P555 7.50/056P555	<u>-</u>		
ROH 0 • 10 • 20 • 30 • 50 • 50 • 30 • 30 • 30 • 30	DEFLECTION 2911138 292525 2935517 3035100 312174 323508 337253 352950 370541 349873 410811	ND - 039313 - 039239 - 034239 - 029333 - 029333 - 029909 - 112805 - 004956 - 0047509 - 001726 - 0017509 - 000000	HT 46403034 4659184 4659184 459782 44527821 4432583 4432583 4432583 4014430 35500 319176	MCT 145385 143380 137648 128847 1175940 072040 0720730 063555 056753
PCISSCN, THETA = ALFA = ROH 0 .10 .20 .30 .40 .50 .60 .70 .80 .30 1.00	S PATIO: .400 90.01/DEGREES 7.50/DEGREES 0EFLECTION 291138 292849 297791 305900 317102 330879 347297 366030 347297 366030 386878 409693 434389	MP 078269 078269 075693 057244 057244 057244 057244 017364 017364 011904 010525 .600000	MT 503254 503254 435373 47345 4734573 4458657 4458657 445720 49754 49754 4392930 384684	MPT • 000000 • 000000
PCISSON, THETA = ALFA = ROH 0 10 20 .30 .40 .50 .50 .60 .90 1.00	S RATIO= .450 0/DEGPEES 7.50/DEGPEES DEELECTION .309194 .305347 .295320 .279160 .255939 .226257 .199236 .148916 .093763 .945703 013769	MP 502180 4989183 447287585 447287585 447287585 32579585 2579589 1577590 -000000	MT 071930 0754283 0754283 143200 1457524 345524 345524 4512492 822492	M.R.T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PCISSON, THETA = ALFA = POH 0 10 20 30 30 50 50 50 50 50 1.30	S PATTO= .450 15.00/DEGREES 7.50/DEGREES DEFLECTION .306197 .297233 .282387 .261804 .335700 .214376 .168241 .127843 .083901 .337307	HP - 4637 89 - 4600 95 - 4486 22 - 4900 10 - 36 35 - 3146 84 - 2530 12 - 1774 34 - 900000	4T 032539 036008 046426 046426 038069 115424 195777 236526 27206 294261	MPT 143278 144219 147959 1479571 17632725 1937563 244904 277057 30699
POISSON, S THETA = ALFA = ROH 0 .20 .30 .20 .50 .50 .50 .50 .30 .30 1.30	C PATIO= .450 30.00/DEGREES 7.50/DEGREES OEFLECTICN .303194 .307152 .301076 .291115 .277524 .260568 .241020 .196971 .196971 .196971 .19643	10 358303 354427 340348 318348 296558 296558 197037 142522 386548 035348 035348 035348	MT 072347 071131 067650 067650 0556563 048363 048363 057369 074139 099899	MP 800371 92225567271 222656521 226555217 22555217 22726 227267 22726 22727 2771 27727 27777 27777 277777 2777777

PCISSCH,S THETA = ALFA =	RATIO= .450 45.00/056P555 7.50/DEGREES			
ROH 9 • 10 • 20 • 30 • 40 • 50 • 60 • 70 • 80 • 90 1• 70	DEELECTION 309194 308455 3062840 298352 293133 287540 276728 276728 276728 2768395	$\begin{array}{r} \text{MO}\\ & 215625\\ & 311722\\ & 200231\\ & 181840\\ & 157736\\ & 129715\\ & 199511\\ & 072435\\ & 047291\\ & 724856\\ & - 300000\end{array}$	HT 215525 215923 216405 216405 22296542 2224662 2224662 229687 229575 217026 182529	MPT 2865754 2855192 27784292 27784292 2778429 2279424 2279444 2279444 22795701
PCISSCH,5 THETA = ALFA =	RATTO= 60.00/0568/55 7.50/0568/55			
QOH 0 10 20 30 40 50 50 50 50 90 90 1,00	DEFLECTION • 309194 • 309755 • 311457 • 314555 • 318530 • 324077 • 3319589 • 349639 • 351470 • 374986	HO 072348 070764 066269 051601 043266 935043 026758 017726 017730 - 000000	NT 358902 358943 358943 *586973 3586973 3545778 341298 344298 *345298 *345298 *326440 *325169	4RT 248160 239433 2249433 228464 214787 198028 179588 179588 1641356 122389 103793
PCISSCN,S Theta = Alfa =	RATIO= .450 75.00/0868555 7.50/0568555			
ROH 0 20 30 40 50 50 50 70 80 90 1.00	DEFLEGTION • 399194 • 310705 • 315215 • 322660 • 332938 • 345314 • 361435 • 3799453 • 421622 • 445695	MO 032539 031340 027853 027853 015627 0156275 018239 .008152 .008237 008237 008237	MT 463789 462554 458836 458836 452617 432705 438987 438987 4381818 381318 354909 317981	MET 143278 141376 135900 127490 117045 105539 093866 032756 072801 064477 057928
PCISSON,S THETA = ALFA =	PATIO= .450 90.00/050PEES 7.50/056PEES			
R 0 10 120 120 120 120 150 10 10 10 10 10 10 10 10 10 1	DEFLFOTION 303194 311352 3165855 325675 338141 353758 372285 393484 447143 4471297	MP 179330 968487 061518 051022 038434 013624 013668 . 004668 . 001569 . 000500	MT = 92180 = 902787 = 4955038 = 4955038 = 4955038 = 495290 = 495290 = 4973208 = 384846	M CT 0 1 0 0 0 0 0 0 0 9 0
PCISSCN,S THTTA = ALFA =	RATIO= .500 0/050P55 7.50/056P55			
ROH 9 • 10 • 20 • 30 • 50 • 50 • 60 • 60 • 80 • 80 • 90 1 • 90	DEFLECTION • 331258 • 322736 • 317060 • 29360 • 274665 • 243955 • 204623 • 159466 • 199692 • 249437 • 015935	нр - 5 01 2 1 2 - 4 9 7 9 1 2 - 4 9 7 9 1 0 - 4 9 7 9 1 0 - 4 4 7 1 0 9 0 - 4 4 7 1 0 9 0 - 4 4 7 1 0 9 0 - 3 2 9 5 9 - 1 5 4 8 4 3 - 0 0 0 0 0 0	MT 963712 068408 082699 197229 1497499 197749 1497466 347680 466391 4627028 845393	MPT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(

r

(

(

(

			POISSON,S THETA = ALFA =	RATIC= .250 15.CO/DEGREES 9.50/DEGREES			
			ROH 0 • 1 0	DEFLECTION •240052	MR • 464737	MT 058487	MRT •151042
			• 20 • 30 • 40	235868 223260 205841	•439914 •430908 •430908	001216 09388 082935 101656	- 152182 - 155673 - 161726 - 170632
			• 50 • 60 • 70 • 80	.183856 .157643 .127649	.366027 .317408 .255612 .170450	125358 152119 180997	•183015 •199093 •218886
			• 90 1•00	.054400 .054812 .021581	•179450 •090827 -•030000	232052 232052 247331	•241928 •261938 •267752
			POISSON, S Theta =	RATIC= .250 30.00/DEGREES			
	۲		ALFA = Roh	9.50/DEGREES DEFLECTION	- HR	MT	MRT
	15		• 1 0 • 20 • 30	•246052 •244236 •233537 •224996	•354157 •349638 •335994 •313099	•052083 •051608 •050354 •048838	•261612 •262322 •264335
			•40 •50 •60	•217954 •203052 •185733	280870 239558 192207	047320 048749 0252636	·27/328 ·272217 ·27:909
(- •80 •90 1•00	• 169532 • 146950 • 124911 • 103672	•135332 •079716 •031062 •030000	•060800 •074012 •092214 •114345	•263711 •247893 •221945 •191339
	4, -7. 17		POISSON, S	RATIO= .250		· · · · · · · · · · · · · · · · · · ·	
	45	'	THETA =	45.00/DEGREES 9.50/DEGREES			
(47 •			011101 0111000 011100000000	MR • 233125 •1 39150 •1 87457	MT 203125 20393 20655	MRT 302084 -300936
Ċ	61			•233037 •233979 •227958	•108841 •144645 •116926	• 210726 • 216129 • 222981	•290740 •290740 •280537 •266120
(52 51		- •60 •70 •80 •90	•221283 •214269 •207207 •201331	•388327 •061696 •339166	• 227377 • 239236 • 223493	-247364 -225060 -2251170
((чи Эл		1.00	•193821		·201930	•178362 •157871
. (57 - 10		POISSON, S Theta = Alfa =	RATIC= .250 60.00/DEGREES 9.50/DEGREES	·	· •	
4	63		R0H 0 - 10	DEFLECTION •246052	MR • 9 529 83	MT • 354167	4RT • 261613
L	▶ 1		•20 •30 •40	•246851 •247908 •249481	•090809 •046458 •040427 •033577	• 554416 • 354930 • 355336 • 3564269	•258945 •251041 •238295
í			•50 •60 •70	•251641 •254453 •257969	•926910 •92980 •915609	• 352456 • 347994 • 341425	201447 179717 157534
(•81 •90 1•00	•262228 •267271 •273143	•010007 •003831 •000000	•333686 •326544 •322097	•135880 •115301 •096652
Ċ			POIJSON, S	RATIO= .250			
١			ALFA =	9.50/DEGREES	ND	МТ	NO T
			•10 •20	•245052 •245982 •243751	058487 056930 052381	• 464737 • 463317 • 459969	•151042 •148900 •142392
			• 31 • 4 0 • 5 0	•25 + 300 •260 535 •260 333)45217 :36095)25922	•452)52 •442401 •43]32]	132477 120270 100916
			- 7 0 - 8 0 - 9 0	•277999 •283054 •299638 •312330	19735 036526 .J30753 .034508	•415991 •399354 •379823 •356121	.093487 .080833 .069576
ť,			1.00	325879	~.);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	. 326551	•952239

	POISSEN, S RATIC= $.250$ THETA = $90.0070EGREES$ ALFA = $9.5070EGREES$ ROH DEFLECTICN 2 $.245052$ 10 $.247052$ 20 $.251808$ 30 $.25502$.20 $.251808$.30 $.264524$.50 $.274322$.60 $.285300$.75 $.293746$.30 $.312939$.90 $.323384$ 1.02 $.344847$	038959 038959 0389540 03759127 05932040 0428463 02593604 026930 020930 .002930	MT2392610 5592650 5592650 4985116 49852637284 4475637284 4475729 44876337284 4475729 4497633728 4497529 3376799 3778669	
·. •	POISSON,S RATIO= .300 THETA = OVDEGREES ALFA = 9.50VDEGREES			
	ROH DEFLECTION 0 -255837 -10 -255837 -23 -244192 -30 -224716 -40 -206920 -40 -20920 -30 -224716 -40 -20920 -50 -183995 -60 -153097 -70 -177156 -80 -076494 -90 -0315920	HR 503757 5000514 4911277 4752127 4752222 382478 23614400 100000	NT 	4RT 00 00 00 00 00 00 00 00 00 00 00
	POISSON, S RATIO= .300 THETA = 15.00/DEGREES ALFA = 9.50/DEGREES	1		
(ROH DEFLECTION 0 -255337 10 -2553206 -20 -245344 -30 -232346 -40 -214374 -50 -191669 -60 -164559 -70 -133482 -80 -099012 -93 -061877 1.01 -022949	MR +66031999 +46031995 +46031995 +46031995 +429889 +429889 +42921977 -3666259 -35662880 -1789826 -1789826 -1789820 -1708020	MT 	149753 149783 149783 15982583 15982583 1967053 216005 226742 226423 226423 226423 226423 226423 226423 226423 226423 226423 226423 226423 22742 226423 22742 27742 277742 277742 277777777
(POISSON,S RATIO= .300 THETA = 30.00/DEGREES ALFA = 9.50/DEGREES			·
-	$\begin{array}{rll} \textbf{ROH} & \textbf{DEFLECTICN} \\ 0 & & 255837 \\ \bullet & 10 & & 253985 \\ \bullet & 20 & & 248476 \\ \bullet & 30 & & \bullet 239455 \\ \bullet & 49 & & \bullet 227163 \\ \bullet & 590 & & \bullet 219455 \\ \bullet & 600 & & \bullet 194247 \\ \bullet & 700 & & \bullet 174614 \\ \bullet & 80 & & \bullet 153662 \\ \bullet & 90 & & \bullet 132933 \\ \bullet & 0 & & \bullet 110316 \\ \end{array}$	HR - 35559492 - 35554976 - 33341528 - 24920 - 24920 - 19209 - 18326 - 50000 - 500000 - 500000 - 50000 - 500000 - 500000 - 500000 - 500000 - 500000 - 5000000 - 500000000 - 5000000000000000000000000000000000000	MT 42286 42286 556495 556495 4955491 55788 556495 1455788 5689 5688 5688 51 568 51 568 51 568 51 568 51 568 51 568 51 568 51 568 51 568 51 568 51 568 51 568 51 568 51 568 51 555 55 55 55 55 55 55 55 55 55 55 55	427 427 427 427 427 427 427 426 426 426 426 426 426 426 427 426 426 426 426 426 426 426 426 426 426
ť	POISSON,S RATIC= .300 THETA = 45.00/DEGREES ALFA = 9.50/DEGREES			
	ROH DEFLECTICN 3 255837 10 2255947 20 2572724 31 243031 49 2244092 50 2234966 773 2231966 80 2218562 30 212216 100 206348	HR 20230303 1773222 1773222 1234254 12354254 12354554 0544554 12354524 05442524 05442524 0541237 0504500	MT 20002112 20002112 20002112 20002112 2000212 2000212 20000 20000 20000 2000000	2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2235 2235 2235 2235 2235 2235 23555 23555 23555 23555 23555 23555 23555 23555 23555 235

•

APPENDIX 4

Use of the coefficients for bending moments from finite element solution. The finite element solution using a quadratic plate element as shown in Fig. (2.7) produces the bending moments at the centroid of the elements and related to its own local axis.

The local axes of the elements are defined from the coordinates of the nodes of the element and they are dependent on the numbering directions. (The connection matrix as follows):

The x axis passes through the centroid of the element and the middle point of the fourth side of the element as it is numbered in the connection matrix of the elements, i.e. the side connecting node No. 4 with Node No. 1 as in Fig. (2.6).

The y axis is perpendicular to the x axis and passes through the first side of the element, i.e. the side connecting Node No. 1 with Node No. 2 as in Fig. (2.6), as all elements must be as near as possible to a rectangular shape.

 M_x , and M_y are positive when causing tension stresses on the top surface of the element as in Fig. (2.1). Thus the coefficients obtained from a finite element solution would produce M_x , M_y and M_{xy} when multiplied by qa^2 . To transform these moments into global polar coordinates the following equations can be used.

$$M_{r} = M_{x} \cos^{2} \Psi + M_{y} \sin^{2} \Psi + M_{xy} \sin^{2} \Psi$$
$$M_{\theta} = M_{x} \sin^{2} \Psi + M_{y} \cos^{2} \Psi - M_{xy} \sin^{2} \Psi$$
$$M_{r\theta} = -\frac{1}{2} (M_{x} - M_{y}) \sin^{2} \Psi + M_{xy} \cos^{2} \Psi$$

Where Ψ is the angle between the polar direction and the element local axes x-y. as shown in Fig. (A4.1).

For a given principal moment ${\rm M}_1 \overset{\mbox{\scriptsize R}}{\phantom{\mbox{\scriptsize M}}} {\rm M}_2$ the following equations can be used:-

$$M_{r} = M_{x} \cos^{2}\beta + M_{y} \sin^{2}\beta$$
$$M_{\Theta} = M_{x} \sin^{2}\beta + M_{y} \cos^{2}\beta$$
$$M_{r\Theta} = \frac{1}{2} (M_{x} - M_{y}) \sin^{2}\beta$$

• .

Where β is the angle between the polar direction and the principal directions 1-2 as shown in Fig. (A4.1).

Fig. A4.1. Global, local and principal directions for a thin shell element.

APPENDIX 5

According to the following linear interpolation function_

 $f_1 = \alpha_1 + \alpha_2 \xi + \alpha_3 \eta + \alpha_4 \zeta + \alpha_5 \xi \eta + \alpha_6 \eta \zeta + \alpha_7 \xi \zeta + \alpha_8 \xi \eta \zeta$ (A5.1) we can represent the shape of any three dimensional parallelopiped with lengths 2a, 2b and 2c. Fig. (A5.1).

Where the local dimensionless coordinates $\xi \eta \zeta$ referred to the centroid $(x_c, y_c, 3_c)$

> = $(x - x_c)/a$ = $(y - y_c)/b$ = $(3 - 3_c)/c$

 Then replacing i's by nodal coordinates using the substitutions $x = x_1$ at $\xi = \eta = 1$ etc. Equation (45.2) is produced.

$$x = \sum_{i=1}^{\infty} N_i x_i$$
$$y = \sum_{i=1}^{\infty} N_i y_i$$
$$z = \sum_{i=1}^{\infty} N_i z_i$$

.

Fig. A5.1.

1