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ééSTRACT

This thesis is concerned with stochastic, and non-

stochastiq,first order linear evolution equations.

The reason for the simultaneous treatment of these
topics lies in the fact that a recursive solution for the
filtering problem for Markov diffusions can be given either
by the stochastic partial differential equation governing
.the unnormalized conditional. density/or by its non- stochastic
counterpart, which is a parabolic equation parametrized by
‘the paths of the observation process.

This work embraces both these . o .. approaches
to the non-linear filfering problem. Convergence results for
‘the Galerkin approximation of the éolutiog,of either the
étochastic or the non-stochastic evolution equation%,are
presented and, for both cases, error estimates of discrete
‘time Galerkin procedures derived. In particular, families
of discrete time Galerkin schemes for approximating the
.solution of the non-linear filtering problem are compared

and rates of convergence obtained.



CONTENTS

INTRODUCTION

The Non Linear Filtering Problem

BASIC CONCEPTS

Functional Spaces
Problems and Weak Forms

Bilinear Forms

EVOLUTION EQUATIONS

A Weak Form
Existence and Uniqueness

The Galerkin Technique

An Application to the Filtering Problem

GALERKIN APPROXIMATIONS TO EVOLUTION
EQUATIONS '

Discrete Time Galerkin Methods
Properties of the Numerical Schemes
An Absﬁract Error Estimate

An Approximation to the Filtering

Solution.

STOCHASTIC EVOLUTION EQUATIONS

Stochastic Process in Hilbert Spaces
Stochastic Evolution Problem

The Non Linear Filtering Problem

19
19

25
28

35
36

56
68

78

78
82
89

101

111

112
120
141



6 - . GALERKIN APPROXIMATIONS TO STOCHASTIC
EVOLUTION EQUATIONS

1l - A Numerical Scheme

- Consistency Properties of the Method

3 - An Abstract Error Estimate
6.4 - A Quadratic¢ Scheme
6.5 - An Application to the Filtering Problem

REFERENCES

150

150
158
172
179
196

204



1 - INTRODUCTION

Although the title of this work makes reference only
to stochastic equations, we shall be studying both stochastic

and non stochastic linear evolution equations.

It i1s true that the analysis of stochastic equations
contains elements which : . work. in the non stochastic
case and, in fact, this . happens in the situation we
are concerned with. However, in this work, the inclusion of
non stochastic evolution equations represents more than

a prelude to the stochastic case. ' The
reason for our simultaneous treatmeﬁt of these topics lies
in the relevance they both have in non linear filtering ”
theory,

It is well understood that one - -~ =~ . way of
presenting a recursive solution for the non linear filtering
problem for diffusions is by means of the unnormalized density
formula,(the Zakai formula, see |54]), which is a stochastic

linear evolution equation,

On the other'hand, as has been pointed out,(among
others, by Clark (| 5|)L this formula has a non stochastic
‘counterpart parametrized in a convenient way by the sample
paths of the observation process. This non stochastic formula
is similar to the Fokker-Planck equation for the diffusion
under consideration, with the same diffusion coefficients,
but with drift and potential coefficients depending on the
observation sample paths.nﬁumiﬁ¥hwyit possesses the special
feature of being 'robust' in the sense that its solution is a
continuous mapping defined in the sample space of the
observation process. Therefore, in practical situations,
instead of a given observation sample path, we are allowed to
work with suitable approximations belonging to a class dense
in the sample space (é.g., functions of bounded variation)
without taking the risk of being driven away from the true

solution of the filtering problem.

~In view of these characteristics we take the point



that it is well worth considering the pathwise formula as an
alternative and equally important way of representing the
solution of the filtering problem,and not merely as a version
of the Zakai formula.

A considerable portion of this thesis is devoted to
existence and uniqueness results for both non stochastic and
stochastic evolution equations, and in this &avea we follow
the work of Lions (|30|,|31],]32]), and Pardoux (| 40],]| 41|) -
However, the inclusion of these results is mainly didactic.
The principal purpose of our work is the ahalysis of Galerkin

approximations of the non linear filtefing problem.

The duality between the stochésti¢~and the non
stochastic representations of the filtering sdlution is
reproduced in the numerical schemes used for its approximation.
We can select schemes appropriate to the pathwise formula or,
instead, schemes which are suitable for the Zakai formula.

As before, both aspects of this duality are equally importany/
and our intention is to analyse Galerkin schemes both for the

non stochastic and for the stochastic representations.

Using a family of implicit Runge-Kutta schemes we
show that the corresponding discrete time Galerkin procedure
'converges,(in the sup norm), to the pathwise solution, for all
paths of bounded variation. These séhemes, therefore, produce
a robust approximation to the filtering solution,in the sense
that they are continuous with respect to the observation
sample paths, and the approximation converges uniformly in a

dense subset of the sample space.

ﬁxtensions of the implicit Runge-Kutta schemes,

containing terms which are either linear or quédratiéi in.the
noise increment, can be used as well. They produce Galerkin
q¥mmdmations that converge uniforml%,(in an average sense),
to the solution of the Zakai formula. In particular, if

sufficiént regularity conditions are attained, the standard
deviation of the error for the quadratic¢ - scheme, converges
at a linear rate with respect to the time increment. Judging

from what'happens for approximations of finite dimensional



stochastic differential equations' this is the best possible

rate of conyergence,

As the non linear filtering problem is the 'raison
d'etre' of this work we start by presenting in paragraph 1.1,

a survey in this subject,

1.1 - The Non Linear Filtering Problem

We start by a general description of the filtering

problem.

Suppose the situation where the data concerning an
unobservable stochastic process (the signal process) is
provided by observation of another stochastic process (the
observatiOn‘process) which is related to the signal in some
functional fashion. The questionbof determining the conditional
probability density for the signal process given the obser

vation process constitutes the filtering problem,

Although the filtering problem can be formulated for
a wide variety of processes, here we shall be concerned with
the case where the signal is a Markov diffusion process in
é; euclidian space and the observation is a scalar process of
the "signal plus white noise" type. Let us be more specific.
In relation to some probability space (2,8 ,P) let (x,y)
denotes the pair signal/observation processes and assume the
relation between them being given by the following (Ito's)
stochastic differential form:

1. dy(t) = h(t,x(t))dt + dwt
t ¢ [o0,T)

where h € C([O,T]><Rn) and W, is a R-valued standard Wiener

process.

This formulation of the filtering problem for diffusion



process is classical and it is along the lines of that
presented by Stratonovich in 1960. In his basic paper (]46]),
Stratonovich proposes a stochastic partial differential
‘equation which, under some conditions, represents the dynamics
bf the conditional density of the signal process. An equivalent
result was obtained'by Kushner (in [23]) who rederived with
some corrections the Stratonovich ° equation . and presented

it in terms of Ito integrals.

So, the Kushner-Stratonovich reﬁresentation for the
solution of the non linear filtering problem stands as the
’first result in a long line of research still being done in
this field. Among the subsequent works, a distin-tivc. direction
is represented by the search for an extension of the Baye's
formula in order to express the density as a functional of
the observations. The idea, first proposed by Bucy (in | 3 |)
hasvits complete development: in | 19| where the authors,
Kallianpur and Striebel,presented a precise statement of the
formula which generalize a previous one obtained by Wonham

(in [52|) for finite state Markov chains.

Although Kallianpur and Striebel's formula is valid
for a wide range of situations,especially those regarding
estimation problems, it is not useful if a recursive solution
is sought for the non linear filtering problem. Solutions
having the character of being recursive were, during the
éixties, the.object of various important papers amoﬁg which
one can select those due to Liptser and Shiryaev (|33 |) and
Zakai (]| 54]). In the first, a stochastic differential
representation for the solution of the filtering problem is
presented for the case where the pair (x,y) is a diffusion
process. In the second, under the hypothesis of independence
between the signal and the Wiener process in equation 1.,
the so called unnormalized density formula was derived for
the first time,bearing the advantage of being a considerably
simpler representation for the solution of the filtering
problem for diffusion process. Finally, in |13|, rPujisaki.
Kallianpur and Kunita using the innovation process approach
introduced by Kailath ([18]), presented a stochastic



differential representation for the conditional expectation
6f the signal process valid for a large range of situations
regarding either the signal process or the interdependence

between the signal and the observation.

A ﬁ\fter this brief account of the papers, which are

considered classical in non linear filtering theory, let us
return to the particular problem we startddescribing at the

beginning of this Introduction.

Regarding the diffusion process Xy, assume that the
following stochastic differential form describes its

dynamics:

XS I

1
dx(t) = gl(t,x(t))dt + a(t,x(t))dwt

where, g € c([o,T] x R®; R?)

« e c([o,T] xr?; R? ™)
and wé is a R"-valued standérd.Wiener process.

In equations 1. and 2. Svppose
3. y(0) = o and x(0) =x_,

where xo is a random variable.

1
Suppose that the Wiener processes Wy and w, are

independent and also assume X, independent of (wt,wé).

Consider the stochastic process Zy defined by

t t

4. ' z(t) = -2 | n2(s,x(s))ds + h(s,x(s))dy,
2

[o] o]

10



For the particular class of functions under consider
ation we can define a new probability measure on the space
(2,8) by the following relation:

5. dP = exp (-z(T))dP

Write E,(ﬁ),‘for the conditional expectation with
£ t E‘EO,T] denotes the
oc-algebra generated by'{ys: O £ s 2 t} define

respect to the measure P, (P). If Y

6. i) I, (£f)

E(f(xt)/Yt)

ii)  Qp (£)

E(f(x,).exp(z,)/¥,)

for all £ € c(R™) , t € [o,T]

By a standard formula relating conditional expectations
with respect to equivalent probability measures (see e.g.
Kallianpur-Striebel, 19| or Meyer |37|), we have

£) = o.(f) .oft () w.p.1l

where the argument 1 denotes the unitary function of c (R™)

The transformation of probability measure introduced
in 5. has some important features. Under the new probability
ﬁ, the observation, Yo becomes a standard Wiener process
independent of the signal process (Girsanov, [l5|). This fact

can lead us to the Kallianpur-Striebel formula,

11
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,',8' Q. (f) = )f(ct) - exp(z, (c)) plde)
W
'where,
t : t
= -1 2
z, (g) = , [ h<(s,z_)ds + [ his,g ldy
[v] Q.
t € C([O,T];Rn) = W, W being the sample space

for the signal process.

¥ is the measure on W induced by the diffusion x.

As we pointed out before, the Kallianpur-Striebel
formula gives us a non-recursive representation. for the
conditional expectation. An alternative and more convenient
‘'solution is to express the conditidnal expectation by means

of the Fujisaki-Kallianpur-Kunita formula.

Let Lt denotes the Fokker-Planck operator associated

twiththediffusion Xy i.e.,
n
_ 2
9. Ltu = 1 2 8 (ai LAt,x)ux)) o+
: 2 i,j=1 §X.6X. rJ
1]
n
- 1 2 g emue)
i=1l  §x.
i
T
where [ai j(.t,x)] = a(t,x) .o (t,x)
, : _

The Fujisaki—Kallianpur—Kunita‘formula.under the

hypotheses made above, takes the following form:
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. ) . *
10. am, (£1) = R, (@ £lat + (N (hf) - [ (bIN (£)lav,

h(t,.) , _L; is the infinitesimal generator of

is the innovation process, -

where ht =

‘the diffusion x, and v

t t

t

‘ll. v(t). = y(t) - J Hs(hs)ds

0

From equation- 10. we can derive a recursive represen
.tation for the conditional density. So, if
Py = p(t,x,w) ,(t,x,w) € [O,T]><Rn><9 denotes the conditional
probability density of the signal given the observation Yy

we can write the Kushner-Stratonovich formula,

12, dp, = Lp,dt + (b, - (h ,p. ))p dv,

where (.,.) denotes the inner product in L2 (S).

_ Given a suitable initial condition, i.e. the
probability density of X equation 12. can ygwev under
certain conditions, the evolution of the conditional density
of the signal and,therefore,it solves the filtering problem.
(see e.g. Kushner, |24|) However a better formula can be
found, Wilich hes the advantage of being linear in the unknown
variable. If fqQr the variable Qt(f) defined in 6. we write

13. 0 (£) = (g, f)

Then we can deduce the Zakai formula for the

unnormalized density,
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.14‘ dqt = Ltqtdt f htqtdyt

This representation for the solution of the filtering
problem has considerable advantages in relation to the previous
formulas, It is a simpler formula and, besides, being linear

It enlarges the scope vis-a-vis numerical applications.

The conCept of unnormalized density and its represen
‘tation by equation 14. leads us to an alternative form of
presenting the solution of the filtering problem under
-consideration. The idea is to look for non stochastic
- differential equations parametrized by the paths of the
observation process in order to represent the solution of the
filtering problem as a continuous function of the sample
vaths of the observation process. This has been done, for
‘instance, by Clark (in |5 [)Jr and the result is a family of
linear partial differential equationslwhich has the same
status -as equation 14..

The relation between stochastic differential equations
and their non stochastic equivalent representations has been
"the object of a number of papers and, in particular, some

approach the problem by studying stochastic differential
forms as the liﬁit of sequences of ordinary differential

equations (see e.g. Wong-Zakai, [51[ )

A different approach has been adopted by Doss, who,
in [ill-shows that the solution of a stochastic differential
equation is equivalent to the integration of an ordinary
differential equation parametrized by the paths of a stochastic
process, Here, we shall use his procedure in order to derive
the pathwise formula for the solution of the filtering
problem for diffusion processes.

+ The concept of pathwise solutions has been familiar to the Russian
school of probabilists for same time. In particular, we understand
that it was used, 'en passant', by Rosovskii in his thesis for the
Moscow University in 1972. It also appears in Liptser-Shirvaev, |34]
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| Let v(t) = V(t,u) ; (t,u) € [0,T] x L2(R®), be the
solution of the following differential equation in‘Lz(Rn):

I

15.° — v (t)

h, v(t)
dt S

v(0) = u
Therefore we can write,

V(tru) = ¢(t)u

t
where ¢ (t) = exp( hst)‘

o]

Consider the following ordinary differential equation

parametrized by the paths of the process Yy

i6. G ore) = eTl(y(e))T(r)e(v(t))r(t)
dt
~ l

where L(t) = L_ - . hz , t € [o,T].

Using basically Ito's rule of transformations, we can
show that the solution of equation 14. can be expressed by
means. of the following relation:

17. q£ = Viy,,r(t))

Therefore, the pathwise formula 15. can represent the
501ution of the filtering problem for each observed path y (t)e
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%bo, as Clark pointed out, the solution depends
.contlnuously on these paths which . .nfoddni

.}nm:‘g numerical applications.

We have presented some of the ways of expressing the
solutlon for the particular non linear filtering problem
described here. It can be argued that, in practical cases,
the hypothesis we have made concerning the independence
between the signal and the observation n01se 15 too restrictive,
However, this difficulty can be partlally overcome by alkwnng
some dependence between the Wiener processes W and- wé In
this respect we shall present here the results obtained by
Pardoux (in | 4l|) though similar formulas can be found in
Levieux, | 28| and Krilov-Rosovskii |22]. We recall that the
problem regarding correlation between the signal and the
observation noise was also considered in Fujisaki-Kallianpur-
Kunita, |13].

So, instead of assuming independence between w, and

t
wi, let us suppose that the Wiener process w, can be
expressed by means of the following relation:
_ ‘_-J 1 2 2
,18. dwt = <R (t),dwt> + B (t)dwt
where <,,.> denotes the scalar product in R®, 8!, (82), is a

2
continuous Rn,(R)—valued‘function defined in R+ and We is a

R-valued standard Wiener process independent of Wy -
In order to guarantee that the above expression is a
relation between standard Wiener processes we must assume

for all t ¢ RT,

19, <gl(t),Br(e)> + (B2(£))? = 1

Now, consider the following first order differential
operator:
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20. Htu = = 2 S (b, (t,x)u(x)) + h(t,x)u(x)
: i=1l 8x. 1

i
where [bi(t,x)] = o(t,x).8! (k)

The formulas we have presented for the recursive
solution of the filtering problem can be ﬁodified according
to assumption 18. In particular, the unnormalized density'
formula takes now the form, '

21. dqt = Ltqtdt + thtdyt

(for a precise account of this formula see Pardoux, | 41])

The purpose of this introductory paragraph is to
'describe in general terms, without proofs, the formulas for
the solution of the filtering problem for diffusions. The
reason for doing so is to establish the relevance of an
'analysis'of evolution equations presented in the stochastic
form 21. (or 14.) and in the pathwise form 16.

These equations avaz - the object of our
study in the following sections. With respect to the non
'linear filtering problem a complete survey of the field can
be found in Jazwinski, |17|, wWong, |50 | and Liptser-Shiryaev,
|34|. In particular, the derivation of the Kushner-Stratonovich
formula for partially observed signals, can also be found in
Pardoux, |4l|. A precise account of the Fujisaki-Kallianpur-
Kunita formula is also given by Meyer | 37|. Pathwise solutions

are considered in greater generality by Davis, |9 |.

Here,iwe have been restricted to the general filtering
problem for diffusions in R". For (absorbed or reflected)
diffusions in subsets SCRP® similar formulas can be derived
and, in this case, the conditions in the boundary of the

- domain S define the nature of the diffusion. (see Pardoux |40|



for a precise account on the unnormalized density formulas

"that correspond to this situation).

18



2 - BASIC CONCEPTS

, The purpose of this section is to present some of
the concepts which are in general associated with evolution
‘equations in Hilbert spaces and, in partivla ., with partial

differential equations.

We start in paragraph 2.1 with the introduction of
‘the Sobolev spaces by means of the classical approach using
distributions. In paragraph 2.2 we éeyyfbe the kind of
problem we :al be treating fhvovgh this work and our method
of approach to its solution,which is based in the duality
between probleméand weak forms. It turns out that to this
duality there corresponds a duality between linear operators
‘and bilinear forms; this constitutes the subject of the last

paragraph of this section.

2.1 - Functional Spaces

Sobolev spaces play a decisive role in partial

differential equations and here we shall present a brief

account of some of the concepts leading to their definition.

We also introduce other functional spaces which will be
rélevant in the'following section. The treatment given here
are along the lines of that in Adams |1|, Barros-Neto |2],
and Yosida | 53|.

In what follows we reserve the symbol,S,for an open

.set of a n-dimensional real euclidian space.

If u € C(S),‘the space of R-valued continucus
functions defined on S, has partial derivatives of order

|«|] 2 0 we denote by D®uthe partial derivative,

|a]

3 u
Cll a2 ’ an
axl axz L B axn

19



where a = (al,az,...,an) is an n-tuple of non-negative
intege;s and |a| ='0o, + q, +,..T +oa, |
For m'2 O we denote by,Cm(S)(CO(S) = C(S)), the sets,
- c™s) = {u € c(S) :D% € C(S), |a] = m}

and by C (S) wé denote the set of "infinitely” continuously
differentiable R-valued functions defined on S. In other
words, c”(s) = (ﬂ\ Cm(S). S .
O fm

‘The sets CT(S) 0 £ m £ » are linear spaces with the
usual operations on real-valued functions. In fact, we are
able to impose a locally convex.topology on them in such way
that a sequence {uk} converges to zero if and only if
'{Dauk: |a] 2 m} converges uniformlv to zero on every
compact subset of S. This so called natural topology in
c™(S) is the coarsest one for which the linear maps
.Da : Cc"(s) » C(S) for |a| £ m, are continuous.

If u € C(S), by "support of u" we mean the closure
in S of the set {x € S : u(x) # 0}. For m 2 0 we denote by
CS(S) C c™(s) the subset of functions with compact support
in S. In particular, it can be shown that C:(S) is dense in
1P (s), the space of p-integrable functions on S. As before,
the sets CT(S) can be endowed with a locally convex topology
in such way that a sequence {uk} converges to zero if and
only if there exists a compact set K C S such that:

i) support of U C K for every k

ii) for || 2 m, D%, + O uniformly in K

k

20



_ ‘As it is conventiongl to write 9)(5) for the set
fCZ(Q) endowed with this topology.

It turns out that a linear functional T defined in
'gD(S).is continuous if and only if <T,uk> + <T,u> whenever
;uk + u in QD(S). This fact enables us to consider the dual of
g)(S), &9'(8),Which is also a locally convex topological
space in such way that a sequence {Tk} converges (strongly)
to zero if and only if <Tk,u> converges to zero uniformly
on every bounded subset of C:(SL

The .space LiOC(S), of locally inﬁegrable functions
on S, can be identified with a subspace of $'(S). In fact,

if u € Lioc(s) it can be assigned a distribution T (u)

defined by:

1. <T(u),v> = u((x) . v(x) dx
for all v € C:(S)
We can define derivatives of distributions in such
a way that it agrees with the conventional derivative,
regarding the identification mentioned above. So, 1if ,
T € $'(S) we define the partial derivative D®T € &D'(S), by
' o - [a] o
2, . <D Tyu> = (-1} <T,D u>

for all u & C:(S)

Using equation 1. and integration by parts, it can be
verified that

<T (D%) ,v> = (-l),|0L| <T(u) ,D%v>

for all v € C:(S)

21
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As one can see, every distribution has derivatives
of all orders and, furthermore, they are independent of the

order in which they are taken:

32 ' 32

ax.axk axkaxj

The identification 1. of Ll (S) with a subspace of

&) (S) leads us to the concept of "weak derivative". Given

u £ Llo (s), if there exists a unique (up to a set of measure

zero) function v € I, (S) such that for some multi-index
a,
3. T(v) = D*(u) in &'(s)

then v is called a weak, or distributional, partial derivative
of u. By equation 1. the above weak derivative of u is

defined up to a set of measure zero by the following relation:

4. J vix)w(x)dx = (_—l)|°‘| u(x)D%w (%) dx
s

S

for all w € c:(s)

of course, if there exists p%u € Ll () then, (up to a set

o
of measure zero) D u = Vv,

Now, consider the set of functions u € c™(S) such
that, for 1 = p € o
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S~ llullm,p = (lq%ﬁnlr[ (Dotu(x))pdx)_l/p < w

S

The completion of this set with respect to the norm
|l.|h b is called the Sobolev space of order (m,p) and it is
14
denoted by HV/P(s). It can be shown (see Adams [1]) that

this definition coincides with the following:

H'P(s) = {u € 1P(s) :d% € 1P(S), |a| £ m}

where D%u is interpreted as a weak derivative.

We also define H?'p(s) as the closure of C:(S) in

P (g).

In what follows we will be restricted to the case
p = 2 where, as it is conventional, the index p is deleted

=

from the notations.

So, the space H™ is a separable Hilbert space with
p .

the inner product:

6. (.,.) = L (%.,.)

It turns out that H'(R") = H (R") or, that co(RY) is
dense in HM(R™). 1In general, this result is not true for

generic subsets of R,

M(s) the dual of H™(S). As C (S) is

-m

We denote by H
[¢] o]
dense in H?(S) the elements of H " (S) determine a distribution

on S. So, we are able to identifva"m(S) with a subspace of



§)w51. It can be proved that this subspace_is the linear
‘'span of the set

{T(d%) : |a] Sm, u € L2(S)}

a . . . .
.where D u is interpreted as a weak derivative.

Some of the concepts introduced here can be extended

to H~valued functions where H is a Hilbert space. So, in the

following sections we will be often refering to
'Lp(S; H), 1 £ p £ », the Banach space of (equivalence class

of) H-valued functions defined in S such that

D
7. | wll = ([luelf anlP < e ; 15p<o
LP(s; H) s |

with the usual modification for p = .

We can define the space of distributions on (0O,T)

with values in H by,
o, H) = L(D©,T); H)

(see Lions | 31| and |32.])

A sequence {Wn} converges to W in @' (o,T; H) if
and only if <wn, > + <W, ¢> in H for all ¢ ¢ & (0,T).

1
If u € Lloc

W(u) € &' (0,T; H) by

(0,T; H) we can define the distributiOn

24



for all y € C:(O,T)

. Therefore, as we have done before, we can define the
‘derivative of a distribution W € ' (0,T;H) by

9. <Jl W,0o> = - <W}g£>

dt - dt

for all ¢ € C:(O,T)

We can also define as in 3. a weak,or, distributional,-

derivative of u £ LIOC(O,T;H) by the relation

1

| du, _ 4w
lO. W(a—g = 'th-(u)

‘and therefore, as in 4. and according to 8 and 10, the weak

1
derivative du € L (0,T;H) satisfy

dt loc
T T
du - - av
'}l. l aE(t) p(t)dt = J u(t) dt(t)dt
Q
for all y € C:(O,T)
2.2 = Problems and Weak Forms

Suppose it is given a (real) Hilbert space H and
taking values in H, a linear operator A(t), depending upon a
parameter t € (0,T) C R and with domain D(A(t)) C H.

Consider the problem of Se,ﬂq}yinsf the following conditions:

25



1. i) u(t) € D(A(t)), u'(t) €H forallt € oo
i) w'(®) + A(®) ult) = £(t) €H forallt £ (0,T)
ii1) u(@) = u_ € H

, This is, perhaps, the simplest evolution problem

one can consider relative to a differential equation of first
order in the variable t, defined in a Hilbert space H. As
‘might be expected, in order to seoWwe this problem

further assumption are necessary. However, at this stage the
simple formulation above is sufficient jvrikobjecive we have in

mind, i.e., to introduce the concept of "weak form".

Consider a subspace V of H. If there exists a
function u satisfying 1. we can conclude that this function
also verifies:

2. (u'(e), v) + (B(£) ule), v) = (£(£), v)
for all v &€ v, t €& (0,T)

where (.,.) denotes the inner product defined in H.

This fact suggests that one can associate with the
original problem 1. an alternative formulation'represented by

statements 1.i), 1l.iii) and 2.

Every solution of the original problem is a solution

of the alternative formulation although the uyverse is not,

in general, true. So, the alternative formulation is less

t Here, we consider u', the derivative of u, just in a formal way.
Of course, in a more rigorous situation, its meaning must be made
precise.
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restrictive than the original one and, therefore, it is
called, appropriately, a weak form for the original problem.

Let us extend - this concept a litte wore.

Let D(A(t)) NV # ¢ for all t € (0,T). Suppose
we are given a functional a(t)=a(t; u, v) defined in
(0,T) x v x V and bilinear in V for each t &€ (0,T), such
that:

3. (A(t) u, v) = a(t; u, v)

for all u € D(A(L))NV, v € V, t € (0,T)

If a solution of problem 1. belongs to D(A(t)) N V
for all t € (0,T) it also satisfies the equation:

4. : (U'(t)l V) + a(t; u(t), v) = (£(t), V)_
for ali v € VvV, t € (0,7

This fact leads us to consider the problem represented
by statementsl.iii), 4. and the following

5. -~ u(t) € v, u'(t) € H for all t € (0,T)

If D(a(t)) C Vv for all t € (0,T), the problem
1.1ii), 4., 5. is a weak form for the original problem 1. in
the sense defived ' above.

As we shall see in the following sectiqns, a equation
like the one in 4. 6 very w.ii < rited. . for a mathematical

treatment. Moreover, if some conditions are imposed on the
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functional a(t), and on the subspace V, the original problem
1. and the problem 1.iii), 4., 5. are equivalent.

Remark 2.2.1 - For a géneral account of weak forms see Lions

|30| and also Necas' |3g].

Remark 2.2.2 - Following the terminology of Hadamard we say

that a problem of the type presented in this paragraph is
"well posed" if it admits a unique solution, the solution

being continuous with respect to the entries of the problem.

2.3 - Bilinear Forms

Bilinear forms constitute the 'piece de resistance’
in the approach we select to study evolution equations. So,
in this paragraph we shall present some properties of
bilinear forms defined in Hilbert spaces. A general account
of what follows can be found in Lions |3p| and also in Necas
|38 |.

As before, let H be a Hilbert space with inner A
1
= (., )72 Let v C ®

éroduct denoted by (.,.) and norm

be also a Hilbert space and write ((.,.)) and || .| for its
inner product and norm., Furthermore, suppose,

1. 'V is dénse in H

with the continuous injection,

2, [v| = ||v||. A for all v € Vv

" Consider now a bilinear form a = a(u,v) defined in
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Y. Here we make two assumptions. First, we suppose continuity

.in v, i.e., there exists a constant y such that
3, la,v)| < yllull vl for all u,v. € V

Second, we assume the bilinear form to be coercive,

i.,e., there existsa constant ¢ > O such that:
4. a(u,u) z oljull? for all u € V

We notice that with the above properties the function
a(u,u)l/2 defined in V is a norm which is equivalent to the
original norm || .|| . Furthermore, as a consequence of 3. we
éan associate with the bilinear form, a, a continuous linear
operatorcA € L(V,V) such that: '

5. Ca(u,v) = (UAu,VD | for all u,v € V

In view of 4. it can be shown (see Lions [3p]|) that the
operator A is an isomorphism on V.

Now, for u € V, consider the linear functional:
6. v € V =+ a(u,v)

Dendte by D = D(A) the set of elements u € V for
which the above linear functional is continuous on V with the
topology induced by H. In other words, for all u & D there
exists a constant C, in general depending on u, such that:



7, lau,v)] £ c|v] for all v € V

As V is dense in H, the linear functional 6. can be
extended for all u € D to a continuous linear functional
defined in H: '

8. v € H » a(u,v)

' Therefore, we can define uniquely a linear operatoxr
from D C V to H, in general unbounded, such that:

9. a(u,v) = (Au,v) . u € Db, v € H

Now, let J € L(H,V) be the operator defined by

10. (u,v) = ((Ju,v) u € H, v €V

Consider the problem AB), A'B') and A'B") %Wei" .

by the following statements:

A') u € v

B') af(u,v) = (£f,v) allv €V

30
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") Au = Jf
We have the following proposition:

Proposition 2.3.,1 - Under the hypotheses 1., 2., 3;, 4. the
problems AB), A'B') and A'B") are

equivalent and admit a unique solution.

Proof of Proposition 2.3.1

lBy relations 5. and 10. problems A'B) and A'B") are
equivalent. On the other hand, problem A'B') is a weak form-
for the problem AB) and, therefore, a solution for AB) is
also a solution for A'B'). But in this case the reverse is
also true. In fact if u solves A'B') we conclude that u must

"belong to D. Therefore:
(Au,v) = (£,v) for all v & V

and by hypothesis 1., Au = f£f. The existence of a unique
Solution follows from the fact that, under the hypotheses
made OA is an isomorphism on V. So, problem A'B") admits the

uinique solution:
u = A -1 Jf € v e

Remark 2.3.1 - The proposition- 2.3.1 is a version of the

well knowtLax-Milgram Lemma. For a more extended account of
bilinear forms and its relation to linear operators see also
Kato |20

Remark 2.3.2 ~ Under the hypotheses 1., 2.,3.,and 4. it can be
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shown that D(A) is dense in V (oxr H) and that the linear

‘operator A is a isomorphism between D(A) and H when D(A) is

1

endowed with the norm,

I 1o cay (1.12 + |a.|2)1/2

Remark 2.3.3 - Let us take H = L2(S) and'suppose V is such
that '

H;(S) c v c H(s)

For (i,j) € {1,...,n} consider the bilinear form

"11. afu,v) = f(x)Diu(x)Djv(x)dx

“.defined for all u,v € V, with f € 1L7(8).

Fixing u € V and making v range in C:(S) the

equation 1l. defines a distribution. So, we write
12. a(u,v) = <T(f.Diu) , Djv>

where, as in paragraph 2.1 the symbol <,,.> denotes the
duality between O (s) ana O (s) and T(.) denotes, according
to relation 2.1.1, the identification between Lj__(S) and
H sy, - |

Recalling the definition of derivative of a

distribution we can write,
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v‘l3. <T(,fDiu)_,DjV> = - <DjT(fDiu1,v,>

On the other hand, if Dj(f.Diu) exists, according to

‘2.1.3 we can write‘

14. DjT(f.Diu) = T(Dj(f.Diu))

Therefore, comparing 12., 13., and 14 we have

15, a(a,v) = - Dj(f(x)Diu(x)) v(x)dx
s

for all v € C:(S).

As C:(S) is dense in L2 (S) the equation 15. defines
a linear functional in L2(S) and therefore Dj(f.Diu) € 1L2(s).
We conclude that the linear operator associated with the

bilinear form a, has the form
l6. Au = - D.(fD.u)
J i
ch , the domain D(A) is determined by

17. i) u € VvV, Au € H

ii) (Au,v) = af(u,v) for all v.€¢ V

In particular, if v = Hi(s) the condition ii) above

is always verified since C:(S) is also a dense subset of



.H;(S) and so, this condition follows from 15.

Remark 2.3.4 - We shall introduce here the concept of k-

;regularity of a bilinear form.

Suppose we 'select the Hilbert space V with
HO(S) C vV C H'(S)

A bilinear form, a, in V, is said to be k-regular
‘with respect to V, if for all £ & H (S), 0 ¢ r <k, there

exists u € H2r+m(s) such that

18. afu,v) = (£,v) for all v € V

The éoncept of k-regularity, as we shall see, plays
‘a very important role in the situation where the bilinear
forms are éssociated with linear differential operators. In
.this case this property depends on the coefficients of the
differential operator, on the space V and on the regularity

of the boundaries of the domain S. (see Lions |30])
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3 - EVOLUTION EOUATIONS

We shall be concerned. in a Hilbert space. with the

solution of equations with the following generic form:

A4 vy 4 A(E) ult) = £(t)
dt |

where A(t) is a linear operator, in general unbounded, R

Seeh ‘equations ave called

‘Evolution Equations. As the operators A(t) that occur in
practical Cases are usually partial differential operators,
the . equations we.ﬂwlh be treating are, in fact,
parabolic partial differential équations. Although several
'methods have been used . . " to study this sort of
equation - we will be following closely the work of
Lions |30|. Our main objective is to derive existence and
Tuniqueness results for the solution of the above equation
under special hypotheses, namely, symmetry and
‘differentiability of the principal part of the linear
operator A(t). As we shall demonstrate in paragraph 3.4,
under these circumstances the above eguation can represent

the solution of a filtering problem

. In orderto show the existence of a solution for the
évolution equation, two different techniques . 'i" be used.
The first one is basically a projection theorem in Hilbert
spaces. The second, is the so called Galerkin technique,and
its main feature is to present the solution of the evolution
equation as the limit of a convergent sequence of weak
solutions of the original equation; This is the procedure

with which we shall be concerned throughout this work.

The reason for presenting these two techniques
is purely didadic. We believe that by presenting an alterna
tive existence proof we introduce an element of comparison

for the Galerkin technique.



In paragraph 3.1 we present an existence,and ex
istence and uniqueness result, for a weak form which, with
some manipulations, becomes an existence and uniquenéss
iresult for the Evolution Problém introduced in paragraph
3.2. In paragraph 3.3 We present the Galerkin technique.
Finally, in paragréph 3.4 we apply the results to the non-
stochastic representation of the solution of the filteriﬁg

problem introduced in paragraph 1l.1.

3.1 - A Weak Form

As before, let H, V be two Hilbert spaces with inner

product and norm denoted as in paragraph 2.3.

We suppose V C H with a continuous injection

1. v = |lv|] - for all v € V

I

For all t € [0,T] let a (t)

be continuous bilinear forms in V such that:

aj(t; u, v) j =o,1,

2. lay (b5 w, W < v flall llv]

1A

3. lay (t; u, v)| villull |v]

for all u, v & Vv

for some positive constants Y, and Yy -

We suppose the bilinear form ao(t) to be symmetric,

4, a (t; u, v) = a (t; v, u)
(o] [o] '
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Jnsll £ e [o,T]; u, v E W,

and coercive, in the sense that for some

A € Rand ¢ > O
‘the following inequality holds:

5. a (t; u, u) + Alul?2 2 oflul]?

for all u € V
t ¢ [o,T]

It turns out that the bilinear form a(t), obtained

by adding ao(t) to aj;(t), also verifies a inequality of
the above type. In fact, writing

6. al(t) = ao(t) + ap(t)

t € [o,T]

we have:

olfullz £ aful? + a (t; u, u)

Ajul2 + a(t; u, uw) - a;(t; u, u)

So, by hypothesis 3,

offullz = aful? +alt; u, w +  yyllull Jul

Using Cauchy's inequality

' Y
with E > —2-1'

p-q = p25/2 + q2/2s
L, we have, '



o .
(0 -z llull? = G+ Fful? + ate, u, v

'for all t €& [O,TJ, u € v, which representé a coercivity

-condition similar to the one in 5.

Therefore, as a conéequence of hypotheses 3. and 5.

we also write for the bilinear form a(t):
7. a(t; u, u) + rjuf? 2 offull?

for all t & [0,T], u € V

for some A € R, g > 0

We also assume the following hypotheses:

8. a (i u, v) € cl(jo,T|); R) for all u,v € V

9. a,(.; u, v) € c(|o,T|); R) for all u,v € V

10. laltts u, w2 2 ylllull vl for all t € [0,T];
) u,v &€ V

where aé(.; u, v) represents the derivative of'ao(.; u, v).

Now consider the following problem:

11. i)  u € L2(0,T;V) , u' € L2(0,TH)

ii)  (u'(£),v) + a(t;u(t),v) = (£(t),v) vev

, t ¢ [0,T]
with £ € 1L2(0,T)



iii) w@) = 0©
where u' = %% is taken in distributional sense.

We shall prove the following result:
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Theorem 3.1.1 - Assuming hypotheses 1, 2, 3, 4, 5, 8, 9 and

10. the problem 11, admits a unique solution.

Remark 3.1.1 - Before we prove the theorem, let us establish

the point that the problem 1l. can always be reducedto a case

where the coercivity condition 7 holds with A = O.

In fact, under the transformation:
12. w(t) = exp (-At)ul(t) t €& (0,T)

the equation 11.ii) can be replaced by the following
equivalent equation:

13. (w' (t),v) + a(t;w(t),v) + A(w(t),v) =

= exp(-M)£f(t)
where the bilinear form; a(t;u,v) + A(u,v) satisfies
inequality 7. with the term in A deleted. As the transfor-

mation 12. doesn't alter the other two statements of the

problem 11. we shall, hereafter take inequality 7. with A =

. @
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Proof of uniqueness

If there are u

1 and u, solving the problem, their difference,
fu =u, -'u,,satisfies the following equation:
14. (au',v) + a(t;au,v) = 0 v £V
t &€ (0,T)
Taking v = Au we have
(Au',Au) + a(t;Au,sun) = 0 t € (0,T)
By inequality 7.'(with‘A=§O),
1.4 |pul2 + ofaull2 £ 0O
2
So,
15. 4 |au|2 £ o
dt
as Au(0) = 0, it follows that Au(t) =0 t £ (0,T) and the
uniqueness is proved. ®

Remark 3.1.2 - As one can see by the proof, the solution, if [f

exists, will be unique,even in the case ofanon-homogeneous
initial condition. ®



Proof of existence

For t &€ R let b(t), bo(t), bltt) be bilinear forms in V
‘such that: :

b(t) = b_(t) + b, (t) 't € R
by(t) = a5(0) t <0, 9§ = q,l
16. .bj(t) = ay(t) ' | t € [O,T]. , 3 =0,1
by (e) = aj(m) £ o> T
b (t) = a (1) + e(l -‘exé(T %)) a_ (1) N

€

where the parameter ¢ > O is conveniently selected in order

to guarantee the existence of positive constants g, a, O
such that: '

17. b (tiu,u) 2 o |[ul]l?
1 =
18. ab (t;u,u) - b_(t;u,u) 2 o lull?

for all £t € R, u €& V.

As a consequence of the above characterization the
bilinear form b(t) is continuous in V x V for each t € R

and we write,



‘19, [b(t;u,v)| = ?[lu[ll[vi[ : for all u,v € V

fWe also remark that, by definition,

20. bo(.;u,v) EAC1(RT)' for each u,v € V

Zlv ' b (.;u,v) € C(R) . ‘A - for each u,v €V
Now let £ € L2(R;H) be such that,

22. f (t)

]
tHh
—
ct
A

for t €& (O,T)

£ (t)

Il
O

otherwise
With the real valued function h defined by,

23, h(t) = exp (- i at) t € R

Consider the following auxiliary problemi
24. i) hw € L2(R,V) , hw' & L2(R,H)

ii) - (h(t)w' (t), h(t)y'(t)) +
R

+ b(t;h(t).w(t), h(t).¥v'(t))dt =
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' (equation 24.ii) - continuation)

(h(£)£(t), h(£)y' (£)) dt,

ll

R
- for all V-valued functions ¢ such that:

hy € LZ(R,V)
hy' € L?‘(R,V)/
v(t) =0 for t 2 O

IA
®)

iii) wi((t) =0 for t

The relation between the problem 11. and the problem
above is contained in the following Lemma:

Lemma 3.1.1 - If w is a solution of problem 24. its restrition

to (0,T) solves problem 1l1.

Proof of Lemma

For some v € V, ¢ € @(R"’) the function:

t

25. ( j ¢$(s) ds) .v

0

satisfies:

t

h(t).( l $ (s)ds).v € LZ(R+;VL

0



hit).¢ (£).v € LZ(Rt; V),

t

3]

( ¢ (s) ds) v for
t > 0 asa test element in 24.ii) we can write, o

‘Therefore, if we choose ¥ such that ¥(t)

(o]

i (h(t)w' (t), h(t)¢ (t)v) + b(h(t)w(t), h(t)¢ (t)v)dt =
o .

= ‘ (h(£)E(t), h(t)s (t)v)at
o

As the equation above is true for all ¢ € 9 (rR*) we conclude

that, almost everywhere,

26. (w'(t),v) + b(tw(t),v) = (£(t),v),

for all v € V
t € Rt

Therefore, the restriction of the function w to the

interval {O,Tﬂ.gahkﬁu all the requirements of problem 1l1.
and the lemma is proved. e

We now return to the proof of existence. By lemma
3.1.1, this can be done by proving the existence of a
solution for problem 24, So, let E be the space of functions
{wjthat verify statement 24.i) and 24.iii).This. space can
be made info s Hilbafspejfendowed with the following inner product:

44



27. )y = | ((E)w(£), h(t)w,(£)) +

+ (h(t)w] (L), h(t)wé(t)) dt,

for all Wi Wy € E.

‘Consider the subspace F C E of elements ¢y € E such that:
hy' € L%(R,Vh

Define the following bilinear form on E x F:

o0

28. B(w,y) = (h(t)w' (t), h(t)vp'(t)) +
+ b(t;h(t)w(t), h(t).p"(t)) dt.

Also, define the following linear functional on F:

o0

29. L(y) = | (h(E)E£(t), h(t).v'(t)) dt.

Recalling equation 24.ii) one can observe that the problem
24, is eguivalent to the problem of solving the following

equation in the Hilbert space E:

30. B(w,¢) = L) for all ¢y £ F,
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-In order to establish the existence of a solution for the
“above equation we shall make use of the following result,
iwhich we <2Twte here without proof, (the proof can be found
in Lions [30|, p.37),

Lemma 3.1.2 - Let E be a Hilbert space and F C E a subspace.

If B is a bilinear on ExF such. that:

1) B(.,y) 1is continuous for all ¢y € F
ii) There existsa constant C > O such that:

B(y,y) 2 C||w||E for all y € F

Then, if L(y) is a continuous linear form on F,

there existsa solution to the equation:
B(w,¥) = L(y) for all v € ¢

Let us show that the bilinear form B defined in 28. and the

linear form 29.s3liyy the requirements of the aisve Lwwame.

Equation 28. and inequality 19. give us:

o

[B(w,p)| < [ |[h(t)w' (&) [[h(e) ' (&) ]+

Q

+ yiln(e)wt) || [[h(e) v’ (v) || at.

So, fixing y € F, recalling 27. and using Holder's

46
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inequality we have
31 [Baw ] = cw vy,

where C(y) is a constant depending on || ¢ || -

On the other hand, using definitions 16. we can write:

N - ]

32. B(v,¥) [h(e)y' (£) |2+ h2(O)b (L5 (t),p'(t)) +

o
+ b, (E;h(t)y (t)  h(t)y' (t)) dat
for all y € F

As bo(t;u,v) is by definition a symmetric form,

2L p (eiwe),p(e)) +

2 dt

b_ (£ (t) 4" (£))

(59 (£) , 4 (),

S S
20
t € r'.

Substituting in 32 we have,

(-]

|h(e)w(t) |2 +

1l

33. B(y,¥)

1 A ;4 . - ' . ’
+ 5 B2 (£) (37 b, (E5 () ,w () = by (kv () ,p (k) +

+ b, (t;h(t)p(t) ,h(t)y' (t)) dﬁ/
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~for all ¢y & F,.

‘Using integration by parts we deduce the following identity:

00

h2(t) L b (t;9(t),v(t)) dt =
X at °

N -

= QO j h2 (t)bo (t;lp(t):lp(t)) dt/

(o]

for all Yy € Fo.

Substituting in 33. we have,

@

34. . B(y,p) = Ih(t)w(t)lz+abo(t;h(t)w(t),,h(t)w(t)) +
- b;(t;hv(t)w(t),h(t)w(t)) +

+ bl(t.h(t)w(t).h(t)w'(t))dt,
for all v & F,

Making use of inequalities 18. and 19., we have,

[+]

B(b;¥) 2 |h(t) v (e) ]2 + ollh(e) v(e)||2 -+

- yllnwy v Il Inervr eyl ae,

for all ¢y € Fo



2

Using Cauchy.'s inequality: pg = %t p? + €q

ol

o

B(y,y) 2 th(t)w(t)'l2 + ollh(t)u(e) ]2 =
.O’ )

- L jh) v ]2 -
€

elh(t)yp’ (£)]? dt,

N R

for all ¢y & F.

" ‘Therefore, by a convenient selection of the parameter e we

conclude that there exists a constant C > O such that:
35. B(y,p) 2 C”"’”E . for all ¥ € F,

As the linear form L, defined in 29. is continuous,
in view of results 31. and 35., we are now able to apply
Lemma 3.}.2 to equation 30. So, by this lemma, equation 30.
admits a solution and so does problem 24. By Lemma 3.1.1,

there exists > a solution to problem 1l1. @

In the next paragraph we shall see how the result
presented in Theorem 3.1.1 can be used in order to obtain an

existence and uniqueness result for evolution equations.

Remark 3.1.3 - We have borrowed the technique used in the

- proof of Theorem 3.1.1 from Lions -ISOL, where a equivalent
result is derived for bilinear forms a(t) which are hermitian
and continuously differentiable in relation to t. (Theorem
6.1 , p. 65 ). Here we have shown that Lion's result is still
“valid under weaker conditions, i.e., symmetry and
differentiability imposed only in the principal part of the
bilinear form a(t). As we shall see in paragraph 3.4, thig is
exactly what happens- for evolution equations that arise in

non-linear filtering theory{
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3.2 =~ Existence and Unicgueness

In addition to the assumptions made in the last

baragraph, let us take
1. V dense in H.

Under the hypotheses made we are now able to
associate with the bilinear forms aj(t), t &€ [O,Tﬂ, j =0,1
a set of linear operators Aj(t) in the sense suggested in

paragraph 2.3. So,

2. Aj(t) : D@A;(£)) CV > H t € [o,T]
i = 0,1

where D(Aj(t))denotes the set of all u € V such that:

[aj(t;u,v)[ < -CIVL/ for all v &€ V

Where C is a constant in general depending on u.

In particular, by hypothesis 3.1.3, D(A,(t)) =V and
A (t) € L(V,H) for all t € [o,T].

We also recall that, by the argument developed in
~paragraph 2.3, we have:

3. aj(t;u,v) = (Aj(t)u,vb

for all u € D(Aj(t)); v e vit € [0,T]
. J = 0,1,



, Let us denote by A(t) the linear operator obtained
‘by adding Ao(t) to A, (t):

4. A(E). = A (£) +.A, (t) t ¢ [o,7]

This operator is the one associated with the bilinear form
a(t] and therefore,

5. alt;u,vl = (A(t)lu,v)
for all u ¢ D(Ao(tD; vV EV, te [O,Tﬂ.

Consider now the Evolution Problem,

6. i) .u € Ln2(0,T;v), u' € L2(0,T;H),
u(t) € D(A_(£)) for all t € (0,T),
ii) u'(t) + A(tlu(lt) = f£(t), t € (0,T),

with £ € L2(0,T;H),

iii) w(o) = u, € D(AO(O))

/

where u' is taken in the distributional sense.

We shall prove the following theorem:

Theorem 3.2;1 - Assuming the hypothesés of Theorem 3.1.1, if
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V is dense in H, problem 6. above has a unique

solution.
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Remark 3.2.1 - In other words, Theorem 3.2.1 states that,

‘under certain conditions, equation 6.ii) has a unique solution
u € L%2(0,T;V). Moreover, the derivative, u', is an element
jof the space L2(0,T;H).

This result concerning the derivative, is the

characteristic of the theorem.

In fact, the existence of a unique solution
u € L2(0,T;V) for equation 6.ii) can be derived under

considerable weaker conditions.

‘It can be shown (see Lions, Theorem 1.2, p. 102) that
if A(t) is a coercive linear operator, A € L”(0,T;L(V,V'))

‘'equation 6.ii) admits a unique solution u such that

i)  u € L2(0,T;V)
ii) u' € LZ2(0,T;V")

iii) uo= u € H

The objective in this section is to show that, by
strengthening thé hypotheses relative to the principal part
of the operator A(t), we can obtain a stronger result for the
derivative. This result can be achieved in the form of a
corollary of the general result mentioned above. However,

for didactic reasons, we present this result as a theorem. ®

Proof of Theorem 3.2.1

We start by supposing the existence of a function Z such that:

7. Zz € L2(0,T;V), 2' € L2(0,T;H)

/

Z(t) € D(Ao(t))/ . for alli t € [o,T].



1.2 . -
A(t)z(t) € L (.O,T.H)/ Z_(O) =u.

Consider the problemg

8. i) w € L2?2(0,T;V), w' € L2(0,T:H)
w(t) € D(A_(t)), for all t € [o,T].
ii) w'(t) + A(R)w(t) = g(t), 't € (O,T)/
with g(t) = £(t) - A(t)Z(t) - Z'(t).
iii) w() = o0,

We notice that, given the existence of a function Vi
which verifies the requirements in 7., problems 6. and 8. are

equivalent under the tranformation,
9. u = 2 + w,
Now, consider the equation,

10. (w'(t),v) + a(t;w(t),v) = (g(t),v)

for all v &€ V,
t e (OIT).

By theorém 3.1.1 the weak form 8.1i), 8.iii), 10. has
a unique solution. Therefore, to prove the theorem.it is
necessary to show that a solution of the weak form 8.1i),

8.iii), 10. is also a solution for problem 8.
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In fact, let w be the solution of the weak form.

‘Then, we can write for all t € (0,T),

11, altiwlt),v) = (g(t) - w'(t),v), v e V.

, Using the result of proposition 2,3.1 it follows
that: '

12. w(t) € DI(a(t), t € (0,T),
13. A)w(t) = g(t) - w' (t), _ t € (O.Tb

‘and therefore w solves the problem 8.

So, to complete the proof of the Theorem we must

Pprove the following,

Lemma 3.2.1 - There existsa function Z which verifies

requirements 7.

Proof of Lemma -3.2.1

For each t € [0,T] let % (t) be the solution of the following

equation:

14, ao(t;z(t),v) = (Ao(o)uo,v)/ v € V.

By proposition 2.3.1 there exists a unique solution
to the above equation satisfying 2 (t) € D(Ao(t)) for
t e -To, T] Furthermore,
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15. A(t)Z(t) = A_(Olu  + A (t)z(t) € L2(0,T;H),
;v16. Z(0) = u_,

Using the coercivity hypothesis 3.1.5 in equation'

14. with v = Z(t) as a test element we also have:

7. swpllz @] £ 0T Ha O]
: o,T '

So, to complete the proof, we only need to show that
z' € L2(0,T;H). In fact, by 15. we have:

'18. Ao(t+h)' (Z(t+h) = Z(t)) + (Ao(t+h) - Ao(t))Z(t) =O)

t €& (O,Tb

and therefore,

19, a (t+h); h=1(z(t+h) - Z(t)),v) =
t +h
-1 "
= - h a_(s;z2(t),v) ds/
t

t € (0,T),

Taking v = h™1(Z(t+h) - Z(t)) as a test element,
using hypothesés 3.1.5 (with 2 = 0), 3.1.10 and relation 17.,

we have:



21 o||lh7l(Z(t+h) - Z(t)) ]| = Yéq'lle(O)uOL)

t’ E (-OIT)c

~

Therefore, there existsan element 2'(t) €& V for each
t & (0,T) such that as h =+ O,

- weakly
h™ (z(t+h) - 2(t)) > 2'(t).

' By 21, z'(t) &€ L%(0,T;V) and so, the Lemma is
proved. e ‘

3.3 - The Galerkin Technique

We now present an alternative proof for Theorem 3.2.1,
and also derive estimates. for the solution of the Evolution
Problem 3.2.6. We shall achieve these objectives by using a
téchnique in which the evolution equation is approximated by
a sequence of ordinary differential equations.

Let us assume all the hypotheses of paragraph 3.2..
Suppose we are given a family of subspaces Vn' n=1,2,...,
such that:

1. v, ¢ v, CV for alln Xm; n,m=1,2,...
2. UVn is dense in V

In addition, suppose we are able to select from each

subspace Vn an element 52 such. that:
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3. E » uo in V as n +» =

For each natural number, n, we can, therefore,

fassociatevﬁﬂ1theEvolution Problem 3.2.6 the following weak

form:
: 2 . 1 2 .
4, i) un. € L (O,T,Vn) poug € L (O,T,Vn)
ii) (uﬁ(t),v) + ‘a(t;un(t),v) = (£(t),v)
for all v € Vn
t € (0,T)
iii) u_(0) = 2 e v
n o n
In relation to the weak form above we have
Lemma 3.3.1 - For each n = 1,2,... the problem 4. above has

a unique solution.

Proof of Lemma 3.3.1

Let the integer N denotes the dimension of the subspace Vn
and Vj’ i=1,...,N, a set of linearly independent elements

of Vn which constitute a basis in this subspace.

Let M and K(t), t & |0,T|, be N x N matrices, with

elements given by:
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for i, j =1,...N
| Let £(t) = (£, (t), £,(t),... B (t)) be a R'-valued

function with,

7. £ () = (£(t),v,) t. € (0,T)
- i = 1,...,N.

Now, consider the system of N ordinary linear

differential equations represented in matrix form by:
8. M.a'(t) + K(t).a(t) = F£(£) t €& (0,T)
where a = (al,az,...,aN) is a RN—valued function.

Sinee P vy j=1,...,N are linearly independent,

detM# O. Therefore, the equation above admits a unique

solution satisfying the initial condition «(0) = @ € RN
where, ‘
: n n n
9- MaO <= (('E;O'Vl)’ (-EO’VZ)’.."(IEO’VN)).
‘Take the function u, defined by:
N
10. ’ un(t) = Z ovj (t)vj J t 6 (OrT)c

j=1
Simﬁle manipulation .shows that u given as aboveﬂ_
satisfies equation 4.ii), It also satisfies 4.i) and 4.iii)
and, hence, u, is a solution of the weak form 4. Besides, it
is the unique solution, since every solution must have the

form 10. and the initial value problem 8., 9. has a unique
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solution. As the argument is valid for all n, the Lemma is

.proved.o

Now, consider the equation 4.ii). By Lemma 3.3.1 we
‘can choose v = un(t) as a test element. Substituting in the
equation we have,
' . —
11. (un(t),un(t)) + a(t,un(t),un(t)) = (f(t),un(t)%,

t .E. (0,T),

.Using hypothesis 3.1.5 (with A = 0),

d 2
12. ” log ()2 + 20fju (0|2 = zlfn(t>llun.(t> L,
t & (0,T).

Integrating over (0,s), s € (0,T),

S

IA

13. lu (s) % + 20 [ lu, (£)11% at [eD12

o]

S

+ 2{ [£, (8) [Ju (t)]| dta
0

Making use of Cauchy's inequality:pg < §E p2 + % eg?,

S

| 1
14. lu (s)]2 + (20—;)[ lu  (0)[[2at = [e7]2 +

(o]
S

+ e [ £ ()2 at,

(o]



- Choosing the parameter ¢ conveniently and taking into account
the hypothesis 3.,we can'derive,,from the inequality'l4. the

following estimates:’

T | T
15. ||un(t)||2dt 2 c(lu |? + [ [£(t) |2 at),
o] o]
T
16. |un(s)| = c(lu|? + [£(t) |2 at),
o]
where s € [0,T]; n=1,2,... and C is a constant.

Let us return to equation 4.ii). Taking now v = uﬂ(t)
as a test element we obtain,
[ ' . [ = [
17. (un(t)fun(t)) + a(t,un(t),un(t)) (£(t),ul (£)),
t € (0,T),
Recalling the composition of the bilinear form a(t),
we have, '

18. - Jul(e)|? + a (tju (t),ul(t)) =

= -y (tru (8) ,u) (8)) + (£(8),ul(£)),
t € (0,1,

As ao(t) is symmetric, (hypothesis 3.1.4), we have,
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19, 2]ulw)]? + é% 2, (e (6) u (6)) = al(Eju (6 (6) +

- 2a (tju_(£),u} (£)) + 2(£(t),ul (£)),.
t € (0,T).
Integrating over (0,s), s e'(O,T),

S
20. 2 [ |u£(tH2 dt + ao(s;un(s),un(s)) =

o]

s
_ ORI I o} Ve .
= ao(O,Eo,go) + [ ao(t,un(t),un(t))dt +
(o]

S

-2 J al(t7un(t),u£(t)) + (f(t),uﬁ(ﬁ))dt.

o]

Hence, using hypotheses 3.1.2, 3.1.3, 3.1.5 and 3.1.10.

S
21. 2 J Iul'l(t)IZdt + o||gn(s)||2' < Yo“g?”z +
b |
S . S
+ { Yé||ﬁn(t)H2 dt + 2 { yllluh(t)HHuﬁ(tHldt +
o] [o]
S

+ 2 l |f(t)||u£(t)| dt

[¢]

N

Using twice the Cauchy's inequality pg = %z p2 + eq? and
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rearranging terms,

S
2. (2 -L1 1%, Ixhz'(t)l'zdt + oflu_(s)]|2 =y |02+
. El 52 n n YO (o]
o]
'S : S
v+ egvy) J lu, (£) {2 at + e, [£(t) |2 at,
(o] [o]

Choosing the parameters e € c0nveniently, using hypothesis

17 %2
3. and the previous estimate 15. we are able now to obtain

the'following estimates:

T T

23, |ur'1(t)|2dt < C(||uo||2 +'[ |£(t) ]2 at),
' 0 ' . ‘o

‘ | T

24, eyl s cdlugll?z o+ [ [£(t) |2 at,

0

where s € [0,T]; n =1,2,... and C is a constant.

Let us examine our position so far. We have obtained
four estimates concerning the solution of the problem 4.,
namely, inequalities 15., 16, 23. and 24..Inequality 15.
.suggests that, as n varies, the solution u, of the problem
4. ranges in a bounded subset of the space L?(0,T;V). Also,
, lnequality 23. suggests that the derivative uﬁ ranges in a
bounded subset of L2 (0,T;H). Therefore we may extract from
{un} and {uﬁ} weak convergent sequences {ué} and {uﬁ} such
that:

25. u > w € L2(0,T;V) weakly



26. w72 € L2 (0,T;H) weakly,

Using conventional arguments involving weak
convergence and derivatives in distributional sense one can
show that, '

27. Z = w

where the derivative w' is taken in distributional sense.

Naturally we are expecting the function w defined by
25., 26. and 27. to be a solution for the Evolution Problem
3.2.6. In fact, this is the case.

Let us start by fixing some arbitrary natural number
n,. Consider the equation 4.ii) for n > n; with validity
restricted to an C:Vn. Multiplying both sides of the
equation by ¢ (t) where ¢y € cl([0,T]) with ¥ (T) = O,we obtain
the following equation:

38. (W) (£), v () + altsu_(),vy(t)) (£(£), Vi (£)),

for all v & V
t € (0,7T),

n > n. .

Integrating over (0,T) and using integration by parts in

order to eliminate the derivative of u ., we have,

T
29. = (un(t),vw'(t)) + a(t;un(t)ﬁv¢(t)) dt =
A :

T

= (Ez,vw(o)) + (£(t),vy(t)) dt,
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for all v € an,

]e
‘But by 25. there exists a subsequence'{um st m > nl} converging

weakly to w. So, recalling hypothesis 3. and passing to the
limit the equation 29., we obtain,

T
30. =l (wlt), vt () + alt;w(t),vp(t)) dt =
T
= (u ,vv(0)) +‘J (£(t) , vy (t)) dt,

0

for all v € an,

‘Choosing V¢ € g)(O,T) we have,
T N
31. ((w' (£),v) + alt;w(t),v))p(t) dt =

T

{ (£ (£),v)v (t) dt,

0

fof all v ¢ Vv_ ,
ny

As the above is valid for all ¢ & &D(O,T) we can write:

32. (w' (t),v) + ‘a(t;w(t),v) = (f(t),V[,

/
1

t € (0,T).

for all v € V
. n

In this relation the index n, is fixed arbitrarily, and so,
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by hypothesis 1., we have,

"33, (w'(t),v) + alt;w(t),v) (£(t) ,v),

for all v ¢ Vv,
t &€ (0,T).

By hypothesis 3.,2.1, V is dense in H. So, using Proposition
2.3.1,we deduce,

-34. w'(t) + A{t)w(t) = £(t), t € (0,T).

which is the equation 3.2.6.ii).

With respect to the initial condition, we oObserve

‘that, multiplying both sides of equation 33. by ¥ (t) where

v € cl(|o,T|) with ¥(T) = O and integrating over (0,T), we
obtain after using integration by parts,

T

'35, - | wie),ver (£)) + a(tiw(t),ve(t)) dt =

T

(w(0), vy (0)) +- (£(£), v ¥ (£)) dt ,

for all v e_ Vo

Comparing with 30. we have,

36. (w(0),v)p(0) = (uo,v)w(O)/

Ve \7n .
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‘Again, as n, is arbitrary and V is dense in H we conclude

w(b)' = ug

Therefore w is indeed a solution for the Evolution
Problem 3.2.6. As this solution must be unique (by. for
instance, an argument similar to the one presented in the

proof of Theorem 3.1.1), we have proved again Theorem 3.2.l.e

‘Remark 3.3.1 - The technique used in this paragraph in order

to show the existence of a solution for the Evolution Problem

3.2.6 is due to Galerkin who introduced the method for elliptic
equations. For parabolic and hyperbolic equations the technique -
was introduced respectively, by Green and Faedo (see Lions [30]

for bibliographical references).

An important aspect of the Galerkin technique lies
in the fact that it provides us with eétimates for the
solution of the Evolution Problem 3.2.6. In fact, recalling
estimates 15., 16., 23. and 24.,we are able to write for the
'solution, u,the following inequalities:

37. . i) || u il < ce
L2(0,T ;V)
ii)  full < cgy
. L (O,T;H)
iii) ||| < Ccg,
' L2 (0,T ;H)
iv)  luall 2 cg,
L (OIT;V)

where C is a constant depending only on o,yo,yé and Y, and

/



Caas
—
I

tu |+ £l
° L2 (0,T;H)

e, =  flull + ll£]
2 ° L2 (0,T;H)

In particular, estimates 37.i) and 37.1iii) are
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sufficient to guarantee that u is a (almost surely) continuous

function from [O,T] to H. (see Lions lSil p. 102). @

Remark 3.3.2 - We have shown that the sequence {un} of

solutions of the problem 4. admits a weakly convergent
‘subsequence to the solution of the Evolution Problem 3.2.6..

In fact this convergence is strong.

Considering equations 3.2.6.1ii) and 4.ii), we can

deduce the following identity:

38. (u' (t) - uﬁ(t),v)<+ alt;u(t) - um(t),v)

= (£(t),v) - {lup(v),v) + a(tiu (t),v)},
for allv=v+v €V, with v € v, and t € (0,T),

Taking v = u(t) - um(t) as a test element we can identify
v = —um(t) and v = u(t). Therefore, using inequality 3.1.7
(with A = 0), equation 38. yields:

39. L fu(e) - u (©)[2 + oflule) - w (0)]I2 2
at ' .

S (E®),ult)) = ((u! (k) ,u(t)) + altiu (t),u(t))},

t € (0,T),



Integratina over (0,s) for s ¢ [O,TJ we have,

S
40, lu(s) - u (s)|% + o0 [ u(t) - um(t)H2-dt <
o}
S
< - n 2 . 1 ‘
= v, EOI + ( (£(t) ,u(x)) {(uf (€),u(t) +
o}
+ a(t;um(t),u(t))} dt e
By hypothesis 3., as {um}’+ u, weakly, the right side of

the above inequality tends to zero as m + ~. Therefore the
subsequence {um} converges strongly to u in L°(0,T;H) or
L2(0,T;V). ®

Remark 3.3.3 - We have presented two procedures for showing

the existence of solution for evolution eguation. As we
mentioned before,we have borrowed these procedures from Lions
(|30 and [3i]). Alternative techniques of achieving similar
results can be found in Ladyzenskéya (|2%]|) (for parabolic
equations) and in Showalter (|43]). o

3.4 - An#fpplication to the Filtering Problem

Here, we shall apply the results derived in the last
paragraphs to the non-linear filterinag problem introduced in
paragraph l.1l. The object of our investigation, is,therefore,

the pathwise representation for the filtering solution.

Let S be an open domain in R™ and take H = L2 (S),
_ 1
vV = HO(S).

_Using-the notation presented in paragraph 1.1, let us
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start by making the following hypotheses:

: 1 L7 '
1. a; 5 € ¢1(o,T;L7(s)),

D.a. . D. .a. .
394,30 T1,3%4,7

g.

it Digi f—C(OrT7L (S))/

€ C(0,T;L7(S)),

. 69

for all i,j = 1,...,n. We recall that [ﬁij(tpd]==a(tpd.&ruqx)

and [gi(t,x)] represent, respectively, the diffusion matrix

and the drift vector for the diffusion process 1.1.2.,

We also assume that for some o > O,

>

2. <r,[ai j(t'X)]r>, 2 g<r,r>,
. 14

for all r € Rn,

(t,x) e [0,T] xs,

where <.,.> denotes the scalar product in R".

Here, we shall be concerned with the case where the

function h,‘introduced in 1.1.1, is

write,
30 h(,t,x) = h(X)‘
Assume that,

4, h, D;h, Dy ;h € L(S),

for all i,j = l,.;.,n.

invariant in time. We



, Consider the bilinear form ao(t), t € [o,T],
defined in H_(S) by,

’ 1
5. a (tju,v) = =, & [ aj’i(t,x)Dju(x)Div(x)dX,
S

1
Su,v € HO(SL

t € [o,7].

Using an argument similar to that developed in the
Remark 2.3.3,we find that the operator,

_1 Djfay 4(t,.)Dsu),

t e.[b,Ij,

represents the linear operator associated with the bilinear

Torm ao(t).

Consider the first order differential operator B(t),

defined by,

_ 1 |
. B - Ly D, ( 2 jhy e (e,0) + g e, 0w,

- We can write,

8. Ao(t) + B(t) = —Lt/

where L t & [O,TJ is the Fokker-Planck operator introduced

t’
in 1.1.9.
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We shall now make some manipulations involving the
‘operators presented above and, for economy of notation we

-will delete the arguments of the functions.

iLet Yy € C([O,T]). By conventional manipulation of derivatives,

‘we can write,

9. exp_[—hy]Ao exp[hy] = A+ yB_ + yzco/

where BO represents a first order differential operator and
Cy is a multiplicative factor. We have,

n n
10. B = L E ( z h +
' ot T 7T k1 PyllgEy 3y ;DshIw)
n n
) h) D
T =1 (541 34,5040 P50
" |
5 1 |

Using the same manipulation on the operator B defined

in 7., we write,

12. exp [~hy]B explhy] = B +_yc1/
where,
| ) ]
= -1
}3. c, = ;& ( 5 j=l(Djaj,i) + gi)Dih



72

Define the bilinear form a,(t), t € [0,T], by the

‘following relation:
14, a (tjuv) = ((B(E) + = hZ)u,v) o+
: 2

+ y(t)((Bo(t) + ¢, (t))u,v) + yz(t)(co(t)u,v),

. 1
for all u,v ¢ HO(SL

t & [o,7],
‘and by A, (t), denote the operator associated with a, (t). we '
have, ‘
' = 1.2 2
15. A, = B+ ; hs + y(Bo + cl) + yoe .
Therefore, with the bilinear form,
16. alt) = a_ (£) +a (¢) t € [o,r]

is associated &n operator A(t), t € [0,T] - o} the form,

17. A = -L+2h?+y(B +c) +y2c =
) 2 o (o]

it

exp E—hy] (-L + L h2) exp[hy].
2

But this is exactly the differential operator that

appears in the pathwise formula 1.1.16. (for h invariant in
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time). Therefore this equation can be rewritten here. in the

form,
18. u'(t) + A(t)u(t) = 0

On the other hand, under hypotheses 1.,...,4., one
can easily show that the bilinear forms ao(t) and a, (t)
satisfy conditions 3.1.2, 3.1.3, 3.1.4, 3.1.57, 3.1.8, 3.1.9
and 3.1.10. Hence, according to Theorem 3.2.1, the evolution
equation 18, has a unique solution u € L2(0,T; H (Ss)) such
‘that,

u' € L2(0,T;L2(S))

u(0) = u € D(AO(O))

Moreover, recalling the estimates presented in section

3.3.,(see Remark 3.3.1),we can state the following theorem:

" Theorem 3.4.1 - Under hypotheses 1.,...,4., equation 18. has

a unique solution,

u € L”(O,T;Hé(s))r\ Cc(0,T;L2(S))

'satisfying u(0) = u D(AO(O)).

T n partlcular, it can be show that by means of a suitable transformation
of the original equation (see Remark 3.1.1) the coercivity condition
3.1.7 for the bilinear form a(t) holds 1ndependenthof y. The reason for
this fact is the quadralic form (in y) of A(t).
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QL'/' we have,

u' € LZ(O,T;L2(S)).

'As a consequence of the theorem above,we can derive
an existence and uniqueness result for the pathwise solution
1.1.16. :.0f the filtering problem for diffusions in R", It
suffices to take S = R and assume the initial condition
ir(O) =g, as an element of D(AO(O)). AsAthe sample paths of
‘the observation process are continuous functions, we deduce
from Theorem 3.4.1 that, under hypotheses, 1l.,...,4., the
pathwise formula 1.1.16 has a unique solution,

19. r € L7(0,T;H (R")) N c(o,T;L2(RM)),
r' € L2(0,T;L2(R")),
for all initial conditions q, such that Ad(O)qo € Lz(Rn).

Remark 3.4.1 - We have assumed V = Hi(S). In other words, we

have been concerned with the initial value problem under

" Dirichlet boundary conditions associated with equation 18.
For Neumann boundary conditions, we can use the same procedure
as before with V = H!(S). (see Lions |30|, chapter VI, for a
precise account on this situation).

In the context of the filtering problem, Dirichlet
boundary conditions imposed on equation 1.1.16, correspond
to the filterina problem for a diffusion absorbed by the
boundary. In this case, Theorem 3,4,1 can be used straightawvay-
(see Pardoux |40]|, for the stochastic equations governing the

unnormalized conditionsl " density of ahsorbed diffusions).
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‘Remark 3.4.2 - We mentioned in paragraph 1.1 that the

‘principal characteristic of the pathwise solution is.its
‘robustness. This means that the solution of the pathwise
formula 1.1.16. is a continuous function defined on the

fsample space of Here, we shall present this fact

VYV, -
St
in a more precise form.

Consider equation 18, with initial condition
u € D(AO(O)).. Writing u(t,y) = u(t) and A(t,y) = A(t) in
order to indicate the dependence on the parameter y € C(BLTﬂL

we can derive from 18. the following evolution equation:

.

20 w'(t) + A(tL,yw(t) = £(t),

where for y , y, € c(fo,1]),

8]

[

b
Il

ul.,y;) - ul.,y,),

22, £ = -y, - yz)(B0 + cl)u(f,yzl +

- (y, - yz)(y1 + yz)cou(.,yz).

From Theorem 3.4.1 we can deduce that f & L2 (0,T;H).
Therefore, the evolution equation 20. has exactly the form
of the equations we have investigated in paragraphs 3.2 and
3.3. So, we éan use the results of paragraph 3.3 in order to
estimate its solution., Recalling Remark 3.3.1,we can write
from 3,3.37.i) the following inequality:

23. Ilw |l | < cll£]
: L2 (0,T;V) L2(0,T;H)
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On the other hand, from 22. we have,

T ' T

.24, ] [£(t)|2at = J (_]yJ - v, | ](_BO + cl)tl(t,?2|)2dt +

T

+ j (ly, = volly, + y,lle ult,y,) )24t
A |

Again, from Theorem 3.4.1, there exists a constant
C such that, for all t € [o,T], '

](B0 + cpult,y,) |2 < C,

]'cpu(t‘,yz).l2 < C,

Taking into account this fact and substituting in

24., we have from 23. the‘following_inequality:

T

I8 Sc| (v, - y2@ + Gy, +y)Bant/?
L2 (0,T;V) o , 2

Hence, as y,, y, are continuous functions, we can

write,

25. fut.,y,) - u(-,yz)HLZ(O ) < clly, - yz‘llL

2(0,T)
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So, under the hypotheses of Theorem 3.4.1, the solution
u(t,y) of equation 18., is a continuous function from
c(fo,T]) C L2(0,T) to L2(0,T;V). e ’

Remark 3.4.3 - In thls paragraph we have investigated the
pathwise formula 1.1.16. under the hypothesis that h is

invariant in time. As a consequence of this condltlonﬁwe have

a polynomial form for the operator A(t), in terms of powers
of y (equation 17.). If h depends.continuously on t we can

obtain a similar form for the operator A(t). In this case,

instead of functions of the form ¥yDy h,we have fy D, hdt, and
51m11ar results can Ee derived if we also assume Dih Di,'h
belongs to C(O,T:L (S)).
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4 - 'GALERKIN_APPROXIMATIONS TO EVOLUTION EQUATIONS

. In this section we present a family of unconditimrﬂly
';stable discrete time Galerkln schemes to approx1mate the
'solution of the evolution eqguation introduced in the last
section. The kind of numerical procedure with which we shall

be concerned has been largely used in relation with parabolic
equations, and estimates for the error of approximation under
differentiability conditions are very well known. Our

objective here is to derive such estimates under weakerd%huﬂhﬁﬁy

vhypotheses.

In'paragraph 4.1 we present the class of
'Implicit Runge-Kutta schemes which will receive our attehﬁpn':
‘in this work. In paragraph 4.2 we derive some properties |
leading mainly to the stability of the schemes. In paragraph
4.3 an estimate for the error of approximation is deduced
and, finally, in paragraph 4.4 we apply the results to the
'numerical approximation for the non-stochastic representation
of the solution of the filtering for diffusion process A

presented in paragraph 1.1.

4,1 - Discrete Time Galerkin Methods

] The Galerkin technique presented in paragraph 3.3
gives a procedure jn approximatiy the solution of equation
3.2.6.1ii) by solving a sequence of ordihary differential
equations. It is this fact that inspires us to develop thé

discrete-time methods which we shall now present.
We assume the hypotheses made in section 3.

Tkr,..anV and H are Hilbert spaces sslisyying~ hypotheses
3.1.1 and 3.2.1. The symbols (.,.), (|.|), and (.,.)) ,
(Il . |l), denote the inner product, (norm), in H and V

‘respectively.



The objects a(t), j =0,1, and af(t), for te [o,T]
fare bilinear forms defined in V, satisfying hypothesés 3.1.2,
3.1.3, 3.1.4, 3.1.5 (and, consequently - 3.1.7, both taken '

‘here with A O according - to Remark 3.l.l'l/3.l.8,A3.l.9
‘and 3.1.10.

In addition to the hypothesis 3.1l.3, concerning the
upper bounds for the bilinear form a;(t), we also assume,

A Ial (t;urv)l = Yllul ”V”

u,v £

\Y%
t & [o,T]
, Furthermore, we sﬁppose that there exists a real
valued function z(t,s) defined in [0,T] x [0,T] such that
2. i) z(t,s) 2 O
ii) z(t,s) = O when (t = s) = O

ii1)  |ay (tju,v) - ay(s;u,v)| £ z(t,s)|[u]] |[v],

for all u,v & v,

t,s € [0,T].

N
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Throughout this section {0 = t <tciaicty= T} Ais

a partition of the interval [0,T].

‘We will use extensively the following notation for

increments:



;. Caf(t,s) = £(t) - £(s) t,s € [o,Tj
AE, (8) = E(t) - £(t)) Ctoe [0,7], % =5,1,...,N
MEL = () = E(E) k = 0,1,...,N-1
b = tk+1—tk k fo,l,...,N—l

for every function f defined in [Q,Tj.
Let ]3,C V be a finite dimensional subspace.

In this section we shall be concerned with numerical

procedures with the following iterative form:

k = O’l,’nnoliq_l/

where, for k = 0,1,...,N, Uk € Ij' and (ak £ L(II,\?).

In order to be more specific we must determine the

linear operator in the general form above.

So, for k = 0,1,...,N, let %k be such that:

where, for all j = 1,...,r, pj & R and Sj = 6? is an’

element of 1} verifying the following equation:

80
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r
6. (B5rv) + ale; Uy + & Z p; 4 B.,V) = O

F{ere T= Ty € [tk’tk+l] and op. € R for i,j=1,...,xr

i3

With this characterization, the scheme 4. defines an
r-stage implicit Runge—-Kutta discretization method for the
equation 3.2.6.1ii) (with £ = O).This class of numerical
procedures was introduced and studied by Butcher | 4| =
has been widely used in 'connection with ofdinary differential
equations where, for a suitable choice of the parameters
p = {bi, pi’j}"1tj‘producesunconditionally stable methods
and convergent approximations (see, e.g. Stetter |44}). |t
Wws been also used in order to obtain approximations for the
solution of parabolic equations. For instance, a one-stage
scheme was used in Douglas |12| and Wheeler | 49| for a non
'linear parabolic equation. In [55{ zlamal employs for a
iinear equation, invariant in time, a generic r-stage scheme
with parameters obtained by means of Gaussian quadrature

formulas.

It can be shown that the order of accuracy of the
‘implicit Runge-Kutta schemes is directly related to the
number of stages and,also, to the order of differentiability
in time of the functions involved. Here, as the bilinear
form aj (t) is, in general, non differentiable, there is littile
point in using a high order scheme and hence we shall '
concentrate on the one-stage case. So, we take eguations 5.
and 6., with r = 1. Making p; = 1, P1,1 = P >0 and bringing
the definition of the operator %]< into equation 4., we can
rewrite our numerical scheme in the following, more

recognizable, form:

V) + a(T; pUk+l + (l_p)Ukrv) = 0



k=0,1,...,N-1

_ Now, in the family of schemes represented above we
can identify the Crank-Nicholson method when p .= 0.5 and,
Qith p = 1, the Implicit Backward method. These two methods
are classical in the literature about discrete-time Galerkin
procedures (see e.g. Strang |45]|).

It is worthwile remarking here that the schemes
presented above provide us with numerical procedures to
approximate the solution of the ordinary differential

equation 3.3.8(with f 0).

4.2 - Properties of the Numerical Schemes

Let L(t), t € [0,T] be a family of linear operators
from U to U defined by the following relation:

1. a(t;u,v) = (L(t)u,v)

for all u,v € W

t ¢ [0,T]

These are well defined continuous linear operators
in a finite dimensional subspace. Furthermore, by the
coercivity condition 3.1.7 (with » = 0) it follows the
existence of the operators in the form (I + k L(t))~}! where
I is the identity operator, k 2 O and t € (o, T].

Ve are able to rewrite the numerical scheme
proposed in the  introduction of this section in a more
compact form. In fact, using the definition 1. in equation
4.1.6, we have for the operator (ék introduced in 4.1.5 the

following form:
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2. G = @+ 8o L™ L)

k = 0,1,...,N,

where, we recall, p > O, Tt € [tk' tk+l]' So, from 4.1.4 the

approximating elements Uk are given by,

3. Uper = I = 8y %k)Uk/

_(Observe that the behaviour of the scheme is
dictated by the operator (1 - Ak%k) .

TLuﬁuzwriting Il . ll] for the natural norm in L(l,)
with U endowed with the topology of the space H, we

introduce the following,

Proposition 4.2.1- Assuming the coercivity condition 3.1,7 (with
A = 0) the following estimates hold:
(independentyof Uy

e |
L

1 - 4,0-do |

l-p
'
1+ %{pc ’

P

1A

1, 0 T - Gyl

|

A
—

i) llz- o Gl

for p 2 0.5

iii) - For »p.-> 0.5, there exist constants 9, h0 > 0
such that,

iz - Akg;k”l = exp(—aAk)



for all By S h
V4
kzo,l,...,N.

Proof. of Proposition 4.2,1'

et u = (I - Ak(%k)z. Using the definition.of the operator
%k’ given by equation 2., we have, '

(u-2z,v) + Akp a(t; pu + (L-p)z,v) = 0,

for all v ¢ 13.

‘Taking v = pu + (l-p)z as a test element and using the
coercivity condition, we have,
5. (u-z,ou + (I-p)z) + 8ypo [ ou + (1-p)z|[?2 2 0.

‘Recalling 3.1.1 and rearranging terms,

((1 + Akpc)u - (1 - Ak(l-p)o)Z, pu + (L-pl)z) = 0.

1 —.Ak(l-p)c
Denoting: q = r =
: 1 + A po P

the inequality 5. yields,

lu[2 - gr|z|2 - (g-r)(u,z) £ 0,



‘Using now Schwartz inequality we have,
lul?2 = Jg-x| |ullz] - q.r|z]2 < 0,

Considering the above as a quadralic inequality in [u| we

conclude after conventional manipulations that:
ul = 2 da=xl + laszhlzl = maxtlal,lz[) |2l

and so item i) of the proposition is proved. .

Item ii) follows from item i) if we take into account the

premise,
[1-x] =1 if and only if 0 = x 2 2

and the fact that we can write,

Ako

—_— and |r] = |1 -=] .
1+ Akpc

Item-iii) follows from previous items and the fact that if
p > 0.5 it is always possible to find c¢; > O such that

<

|| lgl < 1 for 0 <8 Scp

But |g| =2 exp(-34,) for some 3 > O and 4 2 ¢,. Making

'ho = min(c;,c,) the thesis follows. ®

As a direct consequence of the result above,we can
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derive stability properties for the scheme 3, So, using a
.conventional terminology (see e,g. Stetter | 44|) we can say
that the scheme 3. is unconditionally stable for p 2 0.5 and
;asymptotically stable for p > 0.5.

We recall that the meaning of these terms lies in
the fact that if Xk € LT +k =0,1,...,N,verify,

6. S (_I'Akgk)xk b By,

k =0,1,...,N=1

where Ty Elj, we deduce for p 2 0.5,

sup [X, | X sup |z, |
Xk k K k'/

which, roughly, means that "small perturbations” in the
scheme produce "small displacements" from the initial
condition. In the case p > 0.5 one can verify that the output

of the scheme will exhibit a deéresc#%. exponential pattern.

Remark 4.2.1 - The first bound in the item i) of Prop. 4.2.1

namely |g|, is the usual and unique bound found in
connection with an ordinary differential equation. Here, in

general, the second bound, |r|, is dominant for p £ 0.5.

The rational function g has the form of a Padé
approximation for the exponential function exp(foAk)_with
maximum order of accuracy of 3 in the case p = 0.5. It seems
that this fact is responsible for most of the properties of

the scheme regarding stability and convergence. e
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Now let R(t), t € [0,T] be a family of linear
6perators from V to  defined by the equation:
7. ao(t;u,v) = ao(t; R(t)u,v)/_

for all u € Vv, v 6\5,

t e [o,T].

‘ By the coercivity condition 3.1.5 (with A = 0) it
follows that the operator R(t) is well defined for all

t € [o0,T]. Furthermore R(t) € L(V,U), R(t)*R(t) = I for
all t € [O,Tﬂ and so R(t) is a projection operator. We also
have,

8. luw-rRt)[[2 2 071 a (t; w-R(t)u, u-R(t)u) =
= .c“l‘ao(t; u-R(t)u, u-v) =

$ o7y flu-reoyu | [lu-vl
for allu € V, v € tL

and as a consequence the following lemma can be stated:

Lemma 4.2.1 - Under hypotheses 3.1.2 and 3.1.5 (with A = 0)
we have,

9. lu - R(t)u]| = o°! v, inf |u-v] .

veld



The operator R(t) is usually called the Ritz
projection w.r.t a_(t) and J (see e.g. Strang-Fix |45 ]). 1In
what follows we denote,

10. R(t) = I - R(t) t ¢ [o,T],

Our objective in this section is to derive estimates
for the error of the approximation when we elect the family
Uk € thgiven_by 3., as representative 6f the solution u of
the Evolution Problem 3.2.6(with £ = 0O). In other words, we
‘are interested in the element,

11. (uce) - u) ev k =0,1,...,N,

or,using the definitiOn 10. above,

12. ' u(tk) - U = et R(tk) u(tk)
k=20,1,...,N

7
where e, is the error in the subspace U e Thol iat

13. | e, = R(tk) u(tk) - Uk/

k = Orll-_--lNO

' Now; let ¢k’ k=0,1,...,N be defined by,

14. b = Rlty, ) ule ) - R(E) ult) + %<%kB(HJ‘J&k)
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Subtracting equation 3. from the above and

‘rearrandging terms,we can write,

15 e = (I - Ak% Kex * otk
k=o,l,...,N—l.

We observe that;, roughly, the "size of the error"
is directly related to the "size" of the variable $,, and so
we can expect this variable to play a decisive role in the
‘convergence of the method. In numerical analysis terminology,
the variable ¢k is said to describe the consistency of the
methoé,and we expect this variable to tend to zero as N tends
to infinity. (see Stetter [44| for a general account on
'stability + consistency leading to convergemof numerical
methods) . |

f4-3 - An AbstractError Estimate

Accordlng " to Proposition 4.2.1, in order to

guarantee unconditionally stable schemes we assume for now on

Using the definition of the operator ‘ék’ given in

4.2.2.we can rewrite equation 4.2.15 in the following form:

2. e - e

Kl + AkL(T)(pe

+ (l-p)ek), =

k k+1

= (I + Aka(T)) ¢k/



After recalling the definition 4.2,14 we have,

41 T & t Akp(f)(pek+l + (l'-p)ek) =

ARy + 8, PL(T) ARG + AkL(T)Izu(tk),

k = O,l,...,N/

where Ru (t)

R(E)u(t) for all t ¢ [0,T].

Using now definition 4.2.1 and some manipulation we
‘can write,

= (Auk,v)<- (ARuk,v) + Aka(T;pu(tk+l) +

+ (L=p)ulty),v) - Apalt; ﬁu(tk+l) +

+ (L-9) Ru(ty),v),

for all v & 1},

k =0,1,...,N-1,
where, according

to 4.2.10, Ru(t) = u(t) - Ru(t) for all
t ¢ [o,T].

After the equation 3.2.6.ii) (with £

= 0),we are able
to write the following identity:
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5, (Auk,v)r+ Aka(r;ou(tk+l

)+ L-p) ulty) V) =

tre

[ a(r{pAuk - Auk(s)yv)ds +
t

k

Errl

+ { a(rtsu(s),v) - a(s;u(s))v)dg,
t

k

for all v € V,

k = O,l,...,N "'1~

Taking this identity into account we can write equation 4.

as follows:

6. (ek+l - ek,v) + Aka(r;pek+l + (1 —p)ek,v) =
tyal
= a(r;pAuk - Auk(s),v)ds +
tx
tya1

+ [ a(t;u(s),v) - a(s;u(s),v)ds +
t

k

- (Aﬁuk,v) +

- Aka(r7pRu(tk+1) + (1 -D)Ru(tk),VL

for all v e 17}

k = O,l,--.,N"lq



We observe that the equation above has a suitable
form for manipulations in order to estimate e - The reason
for that is the fact that it concentrates "small objects" in
jits terms in the right side. Bﬁt before we continue, let us
fmake a supplementary hypethesis in order to simplify the next

steps.

.Assume the principal part of the bilinear form

“ga(t), i.e., aO(t), to be invariant in time, ’

Remark 4.3.1 - Although the results we shall obtain in this

section depend on the above condition, it does not constitute -
-a fundamental hypothesis and equivalent results can be derived
1f the bilinear form ao(t) is sufficienq/smooth in relation
to the variable time. @

Therefore, the Ritz projection is also invariant in time and
recalling its definition in 4.2.7, equation 6. becomes:

Frt1

= J aﬁ(pAuk - Auk(s),v)ds s
t

k
Crr1
+ {'altr;u(s),v) - al(s;u(s),v)ds +
Ex
- (Aﬁuk,v) +



for all v € lj/

k=20,,...,N-1.

Now consider the following identity regarding inner
fproducts:

1 2_ 1 2 _ - - _
2|ek+1'l 2lekl (ek+l ek'pek+l + (1 p)wek) =

' 1 1
('ek'*'l = ekl (_2' - Dlek+l + (—2' - (l-p))ek) =

= (& - - 2
(2 P)Iek+l e |2

Kecalling hypothesis 1, we can write, -

1
lean | = Zlexl® = leyyy = egrpeyyy + (-vdegde

Returning to equation 8. we select v = pek+l+(l—p)ek
as a test element. Taking into account the inequality 9, the
coercivity condition 3.1.7 and hypotheses 3.1.2, 4.1.1 and
4.1.2 the following 1nequallty holds:

1
10. -;Iek+l|2 —[e [2 + & o||pek+1 + (L-pe 2 =
Cre1
ks [ v lles u, - dug s)|| Ile ek+1 (1 -p)ek” ds +
t . .

k
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t(equation 10. - continuation)
. _

k+1 |
+ z(t,s) |lu(s)]|| lpek+l + (1-p) ekl ds +
tk ‘
+ |Aﬁuk|' llpek_*_l + (1=-9p) ek‘ +

+ by leRatt ) + (1-0) Ralt) | lleey  + A-oleyll,
k = Orll---rN_lo

Using Cauchy's inequality,pg £ 0,5 p?/e + 0.5eq?, for every

‘term in the right side we have,

: 1 1
11. ;lek+l|2 - ;Jeklz - b0 Il o ey F (1) ekH2 <
Cx+1
Y
< 2:1 lesu, - au(s)f|2 ds +
Yy
YO ”
f Ak -2 €4 ”p ek+l + (l—p)ekH +
Bl
1
+ Te, z2(t,s) ||lu(s)||2ds +
tk

g | _
+ 8y —;— £, |pek+l + (1 p)ekl2 +

94



- (equation 11. - continuation)

1 = 1
+ — [ARuklz +—€3lpek+l+'(l_p)eklz +
253 2

o,
-1 F Y- 2
+ 8, — |pRulty ;) + (L-p)Rult)|2 +

ZEQ

Y1

EL; ” P ek+l +._ (l— p)ek”i

k = O,l,._..,N-lo
Consider that, for p 2 0;5, the following inequality holds?

leeyp + (L-ple|? s 2p2([ek+l[2 + lep [2).

"Mow in the inequality 11. ckee Gr=€4=20/(y  + v,),
e, = 1/4p2, €4 = Ak/4p% \ve have, after rearranging terms,

1 1, <1 1 1
12, =le 112 - =|le, | £ = 1a,]e |2 + = a8, |le |2 + =1

2 .k+l 5 k 5 k' "k+1 2 k!'"k 5 k.,

k = O,l,...,N-—l/
where,
Cxs1
Yo (Yo *+7,)
13. vy = oo 1 [ I[-pAuk - Auk(s)H2 ds +
20

tk | tk+1

+ 4p? l 72 (1, s) u(s)||?2ds +

*
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' (equation 13. - continuation)

+ 4p2(A;1 IAfzukl2 +

vy lvg+yy) . _— .
+ = . by lpRult, ) + (l-p)Ru(tk)lf

-Tb_obtain an estimate for the qﬁantityvleklz
independent of the remaining terms of the set,we need a
version of Gronwall's Lemma appropriateAfo sequences. Here,
we shall make use of the following

Lemma 4.3.1 - Let X,, k = 0,1,...,N be a sequence of real

number such that,
14. Xpep1 - (1 + hk)xk + ¢k/

- where hk 2 0 and wk € R o

Then, for all k = O,1,...,N,

Nil Nil
15. X, X exp [ h.} x  + Y.) e
4 k . 5 J o 5=0 ]

Proof of Lemma 4.3.1

The thesis follows taking into consideration that

< : , . ;
l+h = exp(hk) and.substltutlng Xpr X qe--.0 X into
equation 14. e

Consider inequality 12. again. Multiplying both
sides by "2 and rearranging terms under the assumption

A, <1, k=0,1,...,N-1, we have,
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16.

k=0,1,...,N-1&

Applying Lemma 4.3.1 to this inequality, we can write,

| Nl N-1
17. ley |2 = exp |2 Z —d— | (Jle |% + ; ﬁ.)/
: 1 1-4. ° j=0
J
k=0,1,. JN—-1o0
Let us manipulate this inequality in

‘order to obkin a final estimate suitable for the application -
we have in mind. So, returning to the expression 13., we can
write for each of its terms in the right side, the following
set of inequalities: | '

S | Y1
18. J ||pAuk + Auk(s)IFst < 2p2Ak [|Auk||2 + 2 JIIAuk(s)H2 ds
oy Uy

Y | Yee1

19. l z2(1,s) || u(s) |2 @ 2 sup ( ucr)]?)- ’ z2(t,s) ds
te [o,7] t,
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-1 B 2 - A=l B 2 =
20, b |ARuk| 62t |R(suy) |
s trt1
= 8! I'J Ru' (s) ds |2 = |Ru'(s) |2 ds.
t) Uty
~ ) | _ -~ 2 . =
21. Ak|pRu(tk+l) + (1-p)Rulty)]

B 2 <
+ Ru(tk)l <

= by IpRAuk
o]
< 20282 |Ru' (s) |2 ds + 8 IRu(E) (2
ty

'k=o’l’-..’N—l.

_ o By'Lemma 4.2.1 and in view of the
- previous estimates for the solution of our Evolution Problem,
| given in Remark 3.3.1, the set.of inequalities above makes
sense.

Define h, the mesh of the partition of the interval
lorTlr'bY/

22. - h = sup {Ak + k=0,1,.,.,N-1} .

Subétituting inequalities 18.,...,21. into estimate

17. and rearranging terms, we can write
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. t.
N-1 J+L
23, e l? = cfle]? + 1 {huAu.uz + e @2 as
| j=0 J ' _
t. _
‘ J
41

+ sup |lu(t)}}? ‘ z2(1,s) ds +
t

[0,T]

J
341 |
+ |Ru'(s) |2 das + hlﬁu(tj)iz} }/
t. :
J
for all k = 0,1,...,N, h £ h, < 1, where C is a positive

constant depending only on the parameters Yor Yyr Or P and. T.

We leave here the inequality 23. as a priori estimate
for the error ]ekL,without further manipulations in its
right side.. If is our purpose to proceed in this way in

paragraph 4.4 when a practical situation is analysed.

Remark 4.3.2 - Instead of identity 5. the following relation
could have been written:

(hu, v} + Apa(tieult, ) + (1-p) u(tk),v) =
= (Au - A

u'(t),v) +

+  Apa(rieulty 11 + (1-pulty) - uln),v),

for all v ¢ v,
k - Ofl’o.o'N-l’
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It turns out that, under differentiability conditions, this
‘identity is more convenient to be manipulated in order to
‘generate "small" terms in the final estimate. In'facﬁ, for
;the Crank-Nicholson scheﬁe, i,e.,, T = tk + 0.5 Ak’ p = 0.5,
‘we have,

T

Auk - Ak.u'('r) =

N [

[ (s - £22 u(s) as +
i |

k

1

+ 1 J (s - £k+l)2 u(3)(s) ds,
2 Jq

and

T

pu(tk+l) + (1 —p)u(tk) - u((r) = % J (s —tk)u(z)(s)ds+
ty
Crsi
1 (2)
T

If the solution, u, of the Evolution Problem is sufficientbv
smooth we are able to produce terms of order Ai in the final
estimation for the error in the Crank-Nicholson case. ‘

As we are interested in a more general Evolution Proble@,
where the second derivative of the solution may not exist,
we canwne.  take advantage of this fact. (Compare Remark
4.2.1 and see e.g. Wheeler | 49| and Wilson | 48] for the
Crank-Nicholson method). ®

"Remark 4.3.2 - The restrition Ak < 1, which enables us to

produce the estimate'l7., does not‘constitute a intrinsic
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property of the scheme. It is only a conseauence of the
‘particular selection of values for the parameters sz'and €,
_in equation 1ll. So, estimates like the inequality 23., must

;hold whatever the restrition, h < hO £ R, imposed.

4.4 - BAn Approximation to the Filtering Solution

Here we shall bring the non linear filtering problem
into the framework of this section. In other words, we will
be concerned w1th approximating the pathwise solutlon l1.1.16
by means of the scheme introduced in 4. 2 3.

' Let H = L2(S) and V = Hé(S), S being a bounded subset
of R,

Consider the bilinear forms a (t), § = 0,1 and
a(t), t € [0,T] introduced in 3.4.5, 3 4,14 and 3.4.16.

As we showed in paragraph 3.4, under hypotheses

- 3.4.1,...,3.4.4, these bilinear forms satisfy the hypotheses
of Theorem 3.2.1. They also satisfy the supplementary
conditions 4.1.1 and 4.1.2 introduced in the beginning of
this section,

‘ In fact, using integration by parts, equation 3.4.1l4
yields,

1. a) (tju,v) = (u, (B*(t) + 3 h2)v) +

+

y(t) (u, (BX (t) + ¢ (£))v) +
+  y2(t) (u,c  (k)v),

for all u,v £ Hé(S)/

t € [o,T],
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where B*(t) and B*(t), t € [0,T], are first order

differential operators with the form,

n
v \' l
* = — —
2, B*u iél(Z j=l(D al'j) gl)Dlu/
n n o
3 B*u = = .l a, .D.n)D.u +
' o 2 i=1'j=1 1,373 i
n n
+ 2 1 b (.l a .o.muw
2 i=1 7i° 3=l Y1,373 *

From equation 1., one can easily show that condition
'4.1.1 is satisfied.

Concerning the supplementary condition 4.1.2 we can
write, from equation 3.4,14, the following relation: .

4, - a; (tju,v) - a;(sju,v) = (A[B'f % hz} (t,s)u,v)v +.
+ o (y(t) = y(s)) ((B (t) + cp(t))u,v) +
+ y(s)(Al?o + cl|(t,s)ﬁ,v) +
+ (y?(t) - y?2(s)) (c_(tlu,v) +
+ y2(s)(AcO(t,s)u,v)/

for all u,v ¢ Hl(S),
o]
t ¢ [0,T].
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Now, if in addition to the hypotheses 3.4.1,...,3. 4 4 we

‘assume D.a, D, . .; 94+ D;g, belong to cl(o,r;1” (S))

| 3%1,37 P1,3%,37 91

for i, =1,...,n, then,from4., we can deduce the following
- inequality:

5. la, (t5u,v) - a, (s;u,v)] S vyt - s +

+ vy -y Dl Ivl,

for all u,v €& Hg (s),

t ¢ [o,1],

~ for some positive constant y| depending on the upper bounds
of y € c([0,T]) and, as well, the upper bounds of the first
:derlvatlve in time of a, ., D.a, ., D. .a. ., 9.
i,3" 737,37 i, 1,J3° °1
‘Therefore, condition 4.1.2 is also satisfied with,

and Digi.

6.  zlt,s) = yl(t-s| + |y} - y(s)]),

‘t,s’ & [OIT]o

We shall now specify our approximation subspace
U o v,

In the'beginning of this section we have described
U as a finite dimensional subspace. Here, we improve this
characterization by selecting.the approximation subspace Uf
as belonging to a family of subspaces of_"finite element"

type. This family will now be defined.

Let S be a bounded open set of Rn, d € (0,1) and

r,m positive integers with r < m.

‘ We denote by lj(d r,m) a finite dimensional subspace
of HF () M H (S) with the following,
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-Approximation Property: For -all non negative i,J such that,

‘there exists a constant K, independent of d and j, such that,

7. lu-vl, < xadiuy,
~ H' (8) gl (s) 7

for all v € 1}(d,r,m))

u e uis) ﬁH;(S).

In order to complement the above definition we state,
without proof, the following

Lemma 4.4.1 = Let, a, be a coercive and bounded bilinear form

defined on Hé(S). Assume a* is O-regular on
! (s)f
o]

Then, if u € HP(s) N Hé(S), p 2 1,we have

8. fu - Ru| s Kq¥||u |
"L2(8s)

where R is the Ritz projection w.r.t the bilinear form a and
the subspace ‘YT(d,r,m): q = min(p,m); K is a constant
independent of d and g,

+ a*(u,v) = a(v,u); see the definition of k-regularity in Remark 2.3.4.



105

Remark 4.4.1 - The result in the lemma above is due to

Nitsche (it can be found in Wheeler |49|). We observe that
;this result complements the approximation property 7; In fact,
by Lemma 4.2.1, we have under the condition of Lemma 4.4.1
'fhe following inequality}

la -rull 5 iy flu-v]

L2 (S) Hl(s)”

for all v & U(dfrfm)-/

By the approximation property 7., we deduce that,

9. [u - Rull R R qu_ll[ull .
| L2 (S) 0 HY(S)

Comparing the above inequality with 8. we see that the latter
presents an extra factor d in the right side. This is a
significant improvement because'theAexponent of d in the
above expression can indicate the order of the approximation
-suggested in its right side. In general, for"finite'elementP
spaces the parameter d represents the maximum diameter of the

elements composing the domain S,

We also remark that similar results can be found if
we take V = H1(S). (see Wheeler [49]). e

" Remark 4.4.2 - It is not our intention to present a general

account of approximation subspaces of finite element type.
For the purposes we have in mind, it is sufficient to wicoi
here the possibility of constructing a family of subspaces
with the approximation property above. Further information
can be found in the literature concerned with finite-element
method (e,g, Douglas [12|, Strang-Fix | 45 |, Wheeler | 49,
and in the Wilson-Nickell original paper |48 ). e
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We are now in position to estimate the exror of
}approximating the solution of eguation 3.4.18 by means of the

‘numerical scheme.4.2.3.

: But before we proceed in this direction, in order to.
volidste - the use of the estimate 4.3.23, we must first ‘
assume the bilinear form a (t) to be invariant in time. As
we pointed out before (see Remark 4.3.1) this assumption is
not restrictive. The character of our final result will not be
spoiled by assuming smooth time variabiiity of ao(t) and
‘here, hypothesis 3.4.5 w.r.t a; j’ is sqfficient to achieve

4
‘this smoothness.

We also would like to use the result of Lemma 4,4.1
in order to obtain a faster order of convergence in terms of
the parameter d which measure the "discretization" in the

" space. So, we assume a =‘a; to be O-regular in Hg(S).

4 To avoid confusion, let us recall the hypotheses that
we have gathered so far. For the functions ay

37 gi and h,
for i,3 =1,...,n, we have,
10, " a, ., D.a, ., D. .a. . L
_ i3 P5%1,57 Pi,5%1,5 € (51,

? 'D.g.

E 171

€ cl(o,m;L7(8)),

.h € L”(s),

h, Dih' Di,j

We also have (from 3.4.2) the coercivity condition,

11. <r,[a; j]r> 2 g<r,r>,
’ 4

for all r € R®, x € S,



‘12, a, is O-regular in H}(S) »
With respect to the scheme 4.2.3 we take
13 U = U.g,r,m) and 5 2 0.5,
Now, denoting,
h - <
lagl = sup {ly(t) - y(s)| : |t - s| <h},
[0, 7] | |

we can state  the following result:

Theorem 4.4.1 - Under the hypotheses 10.,...,13. if the

solution of equation 3.4.18 satisfies,
ua' € L7,T;HP(s) M HI(S)), p 21

then the following estimate holds:
’ - 2 < - 2
14, s;p lu(t,) U l? < C{lRuo UQI +

+ a2 sup (Jlu ()2 ) + n2 suo (Ju) )
¥ [o,1] HP (s) [0,T]  HP(s)

2q :
+ d(sup (lu@l2 )+ sup (Ju@wl2 . )}
| 0,T] H(s)  [o,T g 7

+
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where g = min(p,m) and C is a constant independent of P, 4,
and d.

Proof of Theorem 4.4,1

‘First we write according to 4.2,12,

15, Iu(tk) - Uk[2 < 2lekl2 + 21ﬁu@tk) |,

k =0,1,...,N.
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To prove the theorem it suffices to use estimate 4.3.23 under

the assumptiohs of this péragraph. Observe that, with respect

to the terms in the right side of 4.3.23, we can write the

Vfollowing set of inequalities:

t

, j+1 ‘ .
16. IIAujH2 <l ,. u'(s)ds||2 = h? sup [[u't)]|?,
J

4

{ lauy s)[2ds = B3 sup_ [lu' ()%,
3

tye1 t41

j z2(t,s)ds = Y; (|t - 8|2 + |y(r) = y(s)|2)as =
. t. ,

tJ J

=z Yih3 + Y;h sup_{|ay(t,s)|:|t-s| < h},
| 0,
tj+l

|Ru' (s) | 2as 2 hk23%9 sup_||u' (t}]|?
. [o,T] Hi(s) 7
5 .
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hlRu(t.) |2 £ hwk2d%? sup [|u(t)|2 )
] ' 0,T] 19 (s)

In the last tWo.inequalities-we have used mainly the .
result of Lemma 4.4.1 under the hypothesis of O-regularity

of our symmetric bilinear form a, .

‘ Substituting these inequalities in 4.3.23 and using
the result in 15. we obtain the estimate 14. e

‘Remark 4.4.3 - Theorem 4.4,1 shows that the Galerkin scheme
4,2.3 provides us with a numerical procedure for approximating
‘the solution of the Dirichlet problem associated with the
equation 3.4.18. In other_words, we are approximating the
-solution of the pathwise formula 1.1,16 defined in the
cylinder [0,T] x S CR x R", with homogeneous condition on the
'boundary of the bounded domain S. As we mention before (see
.Remark 3.4.1) this situation corresponds.to a filtering
;problem for diffusions absorbed by the boundary of S. If
‘Nevman boundary conditions are imposed on the pathwise
formula, we start by taking V = H!(S) and then, a similar
‘technique of analysis leads to a result equivalent to
.Theorem 4.4.1..

The discrete time Galerkin numerical procedure 4.2.3

"~ has been widely used in connection with parabolic equations.
Results concerning its rates of convergénce are very well
knownfor "smooth in time" differential operators. The purpose
of our study is to analyse the procedure under weaker conditions
with respect to the time variability of the "secondary" part
of the differential operator, In other words, what distinguishes
our study from the classical works about Galerkin approximations
(e.g. Douglés—Dupont [12 |) is our assumption with respect to
the function y which, in the pathwise formula 1.1,16, |
represents the observation sample paths. Here, we take y as a
continuous function. The result is that the procedure still

converges and, under this condition, the rate of convergence
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is dictated by the modulus of continuity of the function‘y;

From estimate 14., selecting Uo = Ruo,'we can write,
- UL < h q
sﬁp lult,) - ule )] = C(lAy[ + h + a9,

We observe that the procedure converges.for all
sample paths of bounded wvariation. . The convergence
is uniform over families of sample paths that satisfy a

~uniform Holder condition,
kh ' 0 < a < 1.

Iﬁ'this case, the order of convergence (w.r.t. h) has.

?the same value as the Holder coefficient «.

In | 5|, Clark has shown that the pathwise solution
for filtering problem for Markov chains admits a discrete
fapproximation (Euler schéme) that converges uniformly with a
rate dependiné on the modulus of‘continuity of the observation
‘'sample paths. Here, we have extended this result to diffusion

processes.
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5 - STOCHASTIC EVOLUTION EQUATIONS

The objective in this section is to examine fhe
;stochastic counterpart of the evolution equations studied
in section 3, namely equatlons in the following stochastic
differential form:

du(t) + A,j(t)u(t)dt + Al(t)u(t)dwt = f(t)dt

where A,(t) and A; (t) represent linear operators in a
'Hilbert space, which are in general unbounded.

The relevance of the class of equations above lies
in the fact that the solution of the filtering problem for
diffusion process admits such representation.

Stochastic evolution equations have received a great
amount of attention recently and among the contributions to
this field,the work of Pardoux and also Krylov-Rosovskii,

are fundamental. Here we shall follow Pardoux |41].

In paragraph 5.1 we present for random variables in
‘Hilbert spéces, some of the conventional concepts valid for
‘the. real case. In paragraph 5.2 we introduce Pardoux's
existence and uniqueness proof, which utilize the Galerkin
techniqué presented in paragraph 3.3. It turns out that as
in the non-stochastic case, the Galerkin approximation
converges strongly to the solution of the stochastic evo
lution equation. Finally, in paragraph 5.3 the non linear
filtering problem is brought into consideration and an

existence and uniqueness result is derived.
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5.1 - Stochastic Process in Hilbert spaces

: -We describe some of the usual definitions and results
irelated to the topic above without any intention of giving a
‘complete treatment of the subject. The main idea here is to
‘show that the concepts valid for the real case can be easi

ly extended to more complex spaces.

. Our description is along the lines of the treatments
given in Curtain-Falb |8], Doob |[10|, Neveu |39| and
Scalora |42].

We start by fixing a probability space (Q,DA, P) and
.a Banach space X with norm denoted by the symbol || .|| .

A X-valued step random variable, x, is a mapping

from @ into X, such that
x(0) = u, if weAie(A; i=1,2,...,N

‘where {Ai} is a set of disjunct measurable sets with
Ua, = a.
i

A X-valued random variable, X,is a strongly

measurable mapping from @ into X. %e have,

i) There exists a seguence Xn’ n=1,2,... of step

random variables such that, w.p.l,
I x (w) - x(w)f|] » 0 as n > o

ii) The set {w: x(w) € B} € Jq for all Borel set
of X. '
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If x is a step random variablé we write,
{ X(w)dP = 2 u, P(A,) € X .

. i i

i=1
Q

, A X—valued.random variable, x, is said to be
‘integrable if there exists a sequence X of step random

variable; converging w.p.l to x, such that,

[_H xn(m) - xm(m)|| dP + O as n, m -+ =,

-

Tﬂuvthe limit of l xn(m)dP "exists and we write,

Q

{ X(w)dP = 1lim J Xn(m)dP,
n-®
Q T

If x is an integrable random variable we define. the-
‘expectation of X, E(x), as the element of X such that,

E(x) X(w)dP.

It

We define the space P(e,x), 1% p £ as the
space of (equivalent class of) X-valued random variables
whose norm is p-integrable. It can be shown that these

‘spaces are Banach under the norm,

Il = |l

1
LB, = (EdxPYP 1sp < e,
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with the usual modification for p=«. As -, v ol
we write LF(2) = LFP(q,R).
Let 37 be a o-subalgebra of A and let x be an

ﬁntegrable random variable. The conditional expectation of
x relative to ¥ ' E(x/:I),is a X-valued random variable

- such that,

[ x(w)dP = [ E(x/J) ap,

F : F

'for all F ¢ l:’}: .

It can be shown that such a random variable, E(x/3)

is unique w.p.l and integrable.

If x;, (%), 1is a X;, (X,),-valued random varia

ble, we say that x; and x, are independent if the sets
{w:x;(w) € Bl ' {w: % (w) € Bz}/

are independent for all Borel -sets B;, (By) in X, (X3).

It can be shown that if £,,(f,) 1is a Baire function
mapping X;,(X;) into the real numbers, then f£f;(x;) and

f,(x,) are independent real random variables.

We also say that a random variable, x, is independent
of the o-algebra T oA if the sets F and {w: x(w) €& B}
are independent for all F ¢ F and all Borel sets B of X.

If E‘C A is a o-algebra‘and f, x and ¢ are
respectively R, Xi, L(Xl,xz)-valuéd random variables, then
the following statements can be proved (Curtain, [7], [8]).

i) if x e Ll(e,X1) then E(E(x/3)) = E(x)
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ii) If in addition to i), x is ar—measurable then
E(x/d) = 'x/ w.p.loe

x||]) < « then

iii) If in addition to ii), E(|f].]

B(ex/3) = g/ Tyx, w.p.lo

iv) If in addition to i), E{||¢ |

x|} < « and
$ is 37—measurable then '

E(¢x/3[) = ‘¢E(x/.:7r)/ w.p.l.

Consider the interval [0,T]. Let & denotes the
o-algebra of Borel sets in [0,T] -and ) the Lebesgue measure.Consider
the set [O,Tﬂ x Q2 and let D x A denotes the product co-algebra

and A x P the corresponding measure (see Neveu, |391]) .

We define a X-valued stochastic process as a X-valued

random variable in the space (]|0,T| x @, @ xA , A xP).

, We remark that, although this definition is less
extensive than the usual one (see e.g. Doob |12 | and Neveu
39]), it is adequate for the objectives we have in mind.

We shall now present the concept of stochastic
integral for X-valued stochastic process. Here, Jon. "o
our purposes, we shall .. restrict evesdvs Fotle special case
where X is a Hilbert space, A more general account can be
found in Curtain-Falb |8 |. '
We start by recalling the definition -of a real valued
Wiener process.

Let\%:be‘a R-valued stochastic process, with w(0) =0,

defined for t 2 O and continuous w.p.l.
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-If there existsan 1ncrea51ng family {?t} of
‘o—subalgebra of 53\ such that,

i) w, is i;t —-measurable
ii) E(w(t +h) - w(t)/'}t) = 0 w.p. 1.
iii) E((w(t+h) - w(t))Z/Et))= h o w.p.l.

for all t2 0, hs O»

Then Wy is a real valued, 3(- —measurable, non -
anteC1pat1ve standard Wiener process on the probablllty
space (2, A ,P).

Now, let H be a Hilbert space with inner product and norm
denoted respectively by (.,.) and [.Im Assume that the concept
‘of stochastic integral for real-valued processes is already

familiar (see e.g. Gikhman-Skorokhod |14]).

Let Wy be a real valued, gt—measurable, non—antt01pat1.ve
standard Wiener process and x(t), t € [0, T] be a H-valued

stochastic process such that,
T

i) E l |x(s)]2ds < = ,

0

—_
ii) =x(t) 1is j't-measurable .

For all ¢ € H' (dual of H) the mapping ¢X(t), t € [0,T]
is a real-valued, ?;-measurable, stochastic process such

that/

¢X € 12(a; n2[o,T]).



117

Therefore, we can define the stochastic integral of

‘the process ¢x in Ito's sense, i.e.

T

[ ¢ox (s)dw_ . € L2(9), for all ¢ € H',
(o}

‘and so, along with this, we have defined a linear mapping
from H' into L% ().

This fact suggests the definition of the stochastic
.integral of the process x as the element of L2(Q, H) such
that, .

T T

tl. ¢ l x(s)dwS = l ¢x(s)de, for all ¢ € H',

0

This definiﬁion agrees with the conventional
definition of stochastic integrals by means of finite sums.
.In fact, if fo = to <t <<ty =T} is a partition.of
the interval [O,T] and '

- 2
x(t) =x; € L%(a, H) , t € [ti, ti+l],

i=0,1,...N-1.

then, it follows from 1.

T

N
lx(s)dws = iz=l xi(w(t‘iﬂ) - w(ti))_
(o]
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‘ The following items describe some properties of the
'stochastic integral defined in 1.
t ,
The mapping J x(é)dws,vt € lo,T|,is an H-valued,

i o]
,?;-measurable, stochastic process, continuous in t w.p.l,
such that,

.(See also Pardoux |[44]).

We can also introduce the concept of stochastic
differential forms.

Let u(t), t € |0,T|, be an H-valued stochastic
process such that, :
t t

2. u(t).— u(o) + [ f(s)ds + J a(s)dws = 0,
o )
t o€ [o,1],

where £, a are H—valued,'r}t-measurable stochastic processes
such that,

T

J |£(s)|ds < = w.p.1l
\ _

« € L2(Q; L?(0,T; H))
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. Then we can rewrite 2. in the following stochastic
‘differential form: :

-3, du(t) + £(t)dt + a(t)dw, = O

Finally, we can state a Ito's rule of transformation
for our stochastic differential forms. Here we vewil 7 the
following Lemma which is a particular case o} the one

‘presented in Curtain-Falb |7].

‘Lemma 5.1.1 - (Ito's Lemma) Let the stochastic process u be
.given by 2 (or 3). Let ¢ € C([O,Tﬂ x H) with

i) = (g,x) € c(fo,T] xH),
i) 2 (t,x) € c([o,1] xH, H'),
iii) _3— (t,x) c([o,T] xH, L(H,H)).

Then, Z(t) = ¢(t, u(t)) is a real valued stochastic
process with the following stochastic differential form:

dz(t) = { ii (t, u(t)) - <£f(t), ki (t, u(t)) > +
‘ - 3t ox

X

2
+ 1 gy [(a(t)anwt))."——‘ii (t,u<t))]>dt +
2 -
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- <a(t), 2 o(e, ue))s aw, s

9X

, Here, <.,.> denotes the duality between H and H' and
tr
the brackets.

.| denotes the trace of the operator indicated within

5.2 :EeStochastic Evolution Problem

We shall introduce in this paragraph a basic result
on existence and uniqueness for the solution of a Stochastic
Evolution Problem. The proof we present is originally due
‘to Pardoux (see [441]) and it makes use of the Galerkin
technique we presented in paragraph 3.3. We also show that
‘the Galerkin approximations converge strongly to the so

:lution of the Stochastic Evolution Problem.

Let H; V be sepaesfl el oo o= With inner products,
(norms), denoted by the symbols (.,.), (|.]), and ((.,.)),
(|- |l), respectively.

Suppose V is dense in H with a continuo: injection

|v] = }]v}l | for all v €V

For t € [0,T], aj(t), j = 0,1 are bilinear

functionals in the space V such thag

2. . aj(.; u, V) € Lm([OrT_]) [ j_': Oll
u, v € V
3. lao(t; u, v)| = Yo||ul| IR
u, v € v

t € [o,T]
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4. laj (t; u, v)| = Ylllulllv[/

u, v £ v,

t e [o,1].

By means of the argument presented in paragraph
2.3, we can associate with the bilinear forms aj(t),j = 0,1,

linear operators, Aj(t), such that
5. 1) ag(ts v, v) = (A5() u, v),

i) Aj(6) : D(ag(e)) ~ H}_

u € D(A‘:J (£), v ¢ v,
t € [o,T],

j = 0,1.

" Here D(Aj(t)) denotes the set of all u € V such that
aj(t; u,.) can be continuously extended te give SRR 2
an element of H'. . fs a consequence of hypothesis 4.,
we have D(A; (t)) =V for all t ¢ [0,T].

We assume the following coercivity condition:

6. 2a_(t; u, u) + Alul?2 2 offull2 + [a;(v)u]?

for all u ¢ v,
t ¢ [o,T],
where A € R and o > O.

Now, let Wy be a real valued grt-measurable, non -
antrcipative, standard Wiener process on a probability
space (2,47, P).

Denote by M2(0,T; V) the space of V-valued
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stochastic processes, X, such that,

T

1. i) E J Ix(t)[2dt < =,

0
ii) 'x(t) is gjt-measurable.

In this section we shall be concerned with the
-following Stochastic Evolution Problem:

8. i) u € M2(0,T; V) /M L?(e; c(Oo,T; H)),

u(t) € bp(a_(t)), t ¢ [o,1] , w.p.1)
ii) du(t) + Ao(t)u(t)dt + Al(t)u(t)dwt =0,
iii) u(0) = u € H,

In relation to this problem the following Theorem

can be stated:

Theorem 5.2.1 - Under hypothesis 2., 3., 4. and 6. the
' problem 8. has a unique solution.

This result has been obtained by Pardoux ([41]).
Here, we . present _* 1\ his proof.

To prove. Theorem 5.2.1 we shll. make use of the
Galerkin technique introduced in paragraph 3.3. So, in order

. to proceed in this direction we must first bring into



. consideration the following weak form:

; iy 2 . ' 2(0. .
9. i) u, € M (Q,i, v,) N L2(q; Cc(0,T; vn))/

ii) d(un(t), v) + ao(t; un(t), v)dt +
+ ap(t; un(t), y)dwt = 0,

for all v € Vn )y

ca s . .n
iii) un(O) = u_ €V

n/

where Vn’ n=1,2,... is a family of finite dimensional
subspaces of V.

Let us denote by Pn’ n=12,... the projection

operator in H with respect to the subspace Vn'

‘The following Lemma can be stated:

Lemma 5.2.1 - For each n = 1,2,... the problem 9. has a unique

solution.

In sdaitien, the following stochastic differential
form holds:

10. dlun(t)|2 + 2a_(t; u (t), u (£))dt  +

- (A () un(t), P A (t) un(t))dt +

123
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' (equation 10.; continuation)

+ 2a;(t; u (t), u (t£))dw, = 0.

Proof of Lemma 5.2.1

' Let N denotes the dimension of the subspace Vn and
'vj Vi, j=1,...,N a set of linearly independent elements
contituting a basis iann.

We can write the follwing identity:

11. (u, v) = <[u], M[v]:i/ u, v € v .
where the symbol <.,.> denotes here the scalar product in
RY, [.] denotes the representation with respect to the

‘basis {vl,...,vN} and M is an n xn matrix with,

In a similar fashion, we have,

12. - a (t; u, v) <[u], x(t)[v] >,

13. a (t; u, v)

<[u], R(B)[v] >,

u, v € Vo,

t ¢ [o,T],

where K(t) and R(t), t € [0,T], are nx n matrices with,
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K. .(t) = ao(t;.vi, vj)

R. .(t) = al.(ti;.v , vj)/

i’j=l’---’N.

So, equation 9.ii) can be rewritten in the

following equivalent matricial form:

. t
15. | <[un(t)], M{vl> + [ <fu (s)], K(s)[v]> ds +
: 0

t

+ [ <{__un(s):[, R(s)[v]> dwg =0,

[¢)

for all v & Vn’
t ¢ [0,T] (w.p.1),
As the matrix M is invertible and symmetrlc, the

following stochastic differential equation is also equivalent

to equation 9.ii):
16. dlu (£)] + M 'k (8)[u (£)]at +

MR (6) [u (£)]aw, = O,
t ¢ [o,1],

But by the theory of finite dimensional Ito's

stochastic differential equations, equation 1l6. has a



126

;Pnique solution (see e.g. Gikhman - Skorokhod,|14|).

[un (t)] € MZ(Q,TI‘.; RN)' M Lzm,- c(o,T; ") ),
satisfying the initial condition,

[bn(@] = [a"].

Therefore the first part of Lemma 5.2.1 is proved.

To show the second part of the Lemma we can use the
standard Tto's rule of transformation for finite dimensional -
stochastic differentials. (Gee e.g. McKean |36])

From equation 16., we deduqe:
- T . T |
‘“D%(“] Mlu (£)]) = {—ZD%(H]IHtHHJtU +
T , . T _
+ tr&{(t) D%Kt[]ﬁaltﬂ R(t) M q} dt +
' . T ,
-2 [u (£)] R(t)[u (£)] dw_ .

The vesvit follows if we use,in the above equation,
relations 11., 12., 13. and the following identity:

(Alkt)u » PL(A1(E)V)) = tr[RT(t)[u][v] R(t)M™!]

u, v €V
! n

t € [o,T]
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, Now,-ln order to show the above identity we flrst
‘write for all u,v €& Vae B € (o, Tﬂ

::_*17. | tr[RT(t)v|u||v|'TR(t)M'1] = <R (&) [u] MR (t) [v]> -
.Bgt welalso have,
<[u],-R(t) [v]> = a,(t; ﬁ, v) - (A, (t)lu, v) =
= (P (Ay(tlu), v) = <[P _(Ap(t)w)],mM[v]>,

and therefore [P (A, (t)u)] = M_lﬁr[u] for all u € V_

Substltutlng this relation in 17. we have,
r[R7(0) 0] [v] Reen71] = R0 [u], [p, 2, (00)] > =
= (A, (t)u, P (A (t) v)),

and so Lemma 5.2.1 is proved.

We can now prove Theorem 5.2,1.. -ﬁ-efore we

proceed, let us make the following.Cannn3'3

Remark 5.2.1 - As before (see Remark 3.1.1), without loss of

generality,we can always take A = O in the coercivity
condition 6..In fact, under the transformation

u(t) = exp(=At) ul(t) | t e [o,T],



‘equation 8.ii) becomes
ai(e) + (A (6) §(t) + A (£))dt + A () d(t)dw, = O

and the corresponding form ao(t; u, v) + af{u, v) now

:satisfies 6. with the term in' A deleted. e

Proof of Theorem 5.2.1; Uniqueness

, To prove uniqueness we need a representation for the
‘stochastic process fu(t) |2, t € [0,T], when u satisfies the
‘stochastic evolution equation 8.ii). In order to obtain such
‘representation, we need an Ito's rule of transformation for
infinite dimension stochastic prbcesses.We can use either
‘the Ito's Lemma presented in paragraph 5.1 or the Ito's
Lemma proved by Pardoux in |44| and the result.mvsi,  © in
tconformity with equation 10,,bcvalid for the finite dimensional

.case. In fact, this .. .-

So, if u solves problem 8. it can be shown that the

'following stochastic differential form holds:

18. dlu(t) |2 + {2~ao(t; u(t), ult)) - [A;(t) u(t)|2rat +
+ 2 al(t, u(t), u(t))dwt = 0,
t ¢ [o,T].

Now, suppose u; and u; solve problem 8. Then,

u =u; - up is also a solution with initial condition u = 0.

Using the equation 18. above, we can write,
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t
[u(t) |2 -+‘l 2 a;(s; u(s), u(s)) - |A;(s) u(s)|2ds +
A
t
+ ZJ ay (s; u(s), u(s)) dw, = 0,
)

t € [o,T] w.p.l.
Taking the‘expectation and recalling 6. we have,

t

E |u(t)|? + UEJ | u(e) ]2 dt = 0.

0

Therefore,if problem 8. has a solution, this solution

‘must be unique. e

Proof of Theorem 5.2.1; Existence

Let us assume that in addition to the hypothesés

'§ade for the weak form 9. we have,

‘19. i) \Y C_Vm for all n < @, .n,m =1,2,...
ii) Uv is dense in V
iii) ug +oug in }i‘as n -+ o

‘(in other words we are assuming V to be separable).

Using the result of Lemma 5.2.1 we can write,
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t

lu (€)% + | 2a_(s; u (s), u (s) +

- (a1(s) u (s), P _(B1(s) u (s))) ds =

P
= niz2 _ .
|u0| 2 8.1- (sl un(s)r un(S)) dws/

Q
t € [o,T] w.p.1l.

Taking the expectation on both sides, using Schwartz

‘inequality and the coercivity condition 6., we have

t

20. Elu (t) |2 + oE| | un(s)ll2 ds = |u6|2/

o
t € [o,T].
Therefore, we can write the_following estimate:

T

|2 .

21. E [ Il un(s)szs < uy

(o)

It follows that we can extract from the sequence

{un} a weakly convergent subsequence {uv} and so, we write,

22. u, >z € M%2(0,T; V), weakly o

Let ¢ €~C([O,T]) be such that,
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23. i) pt = =~ € L2?2(0,T) ,

From equation 9.ii), using Ito's rule of transfor
mation and taking into account hypotheses 23., we have the
following identity: |

T |

’24. l ao(s; ﬁv(s), vy (s) ds + al(s;lkﬁs), v¢(s))dws +
) .

o]

T

- { (uv(S), w'(s) ds =. (u;’, v (0)),

Q

forall v € V. ,
N3

\)an,

where n; is some natural number.

Now, let x € L2(Q) be a random variable.
Multiplying both sides of the above equation by x and taking
the expectation;we can write,

25, E(x.$,) + E(X.¢5) + E(x . ¢3) = E(x(uz, v (0)),

where for simplicity, by ¢; = ¢, (u,, v, p) € L2(Q)-
i =1,2,3,we denote, respectively, the terms in the left side

of equation 24..

We observe that; for i = 1,2,3, the expression

E(x.¢i(uv, v, ¥)), considered as a function of the variable

,ﬁv € M2(0,T; V), defines a continuos linear functional on



M2 (0,T; V). Therefore, by 22. we can take the limit of this

expression as v - ©, yielding,
E(x-0;(u,, v, ¥)) > E(x.4,(2, v, ¥)).

, So, taking into account hypotesis 19.iii), it
follows from equation 25,

I~ w

E(X--¢>i(Z, v, ¥)) = E(X(uo, vw)),'
1

for all v € v,

1

As the above identity is valid for all x €& L2(Q)

we can conclude that, almost surely,

26.

N e~1Ww

¢’i(,zl v, ¥) = (uO:-VlP(O))/

i=1

NNy »

The index n; haé been fixed arbitrarily and so,
using hypotheses 19., we can extend the validity of the
above expression for all v € V.

Assume the function ¢y defined by ¢ (t) = y(e,t)
where

i) | pler,s) =1 for s = t - ¢

ii) ¢ (e,s)

Laste-s)n,
2 € )

fors € (t~-¢, t +¢€),
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iii) ¢y(e,s) = 0 , for s > t + ¢

where ¢ > 0 and [t - ¢, t +¢] C [o,T],

‘Sustituting in equation 28, with validity extended

to all v € V and recalling the original expressions for

$,(2, v, ¥), 1 =1,2,3, we have,
T
27. J a_(si 2(s), v) y(e,s) ds +
T

+ l a (S; Z(S)r V) l’v’(els) dws .+
[0}

t+e
+ L Z(s), v) ds = (u, V)
2¢e °

t-¢
for all v & V

We can now take the limit of the above expression

as e » 0 for almost all t € (0,T), yielding the
. following identity: ‘

t
(z(t), v) - (uo, v) + l a (s;j Z(s), v) ds +
[o]
.
+ l aij(s; Z(s), v) dws = 0
[o]

for all v £V
t € [o,7] w.p.1



As V is dense in H, by a standard argument (see

paragraph 2. 3) we conclude,
t | t

z(t) - u, o+ J Aots) Z(s) ds + Ay (s) Z(s) dwé = 0,

o) [¢)

t ¢ [o,T], Ww.p.ls

Sso, Z(t), t € [O T] is w.p.l equal to a continuous
H-valued stochastic process which satisfies the requirements

of problem 8. e

Remark 5.2.2 - Inequality 20. also give us an estimate for

the solution of problem 8. considered as an element of
L?2(Q; C(0,T; H)), and this yaw - the question of the
étability of the solution of equation 8.ii. For an account
on the asymptotic stability of the second moment of the

solution of equation 8.ii., see Haussmann,

" Remark 5.2.3 - Here, as in the non-stochastic case presented

'in paragraph 3.3., the solution of the weak form 9.
converges strongly to the solution of the stochastic evo

lution equation 8.ii).

To show this fact we start by writing the identity,

28. lute) - u (©[% = [ut)|? + [u (€)% - 2@lt), u (t),
t ¢ [o0,7],
n = 1,2,...

Recalling the energy formulas 10. and 18. and

substituting in the above relation we have,
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. 12 = 2 Nra
.'29. fu(t) u (&) lu [+ [u] 2(a(t), u (£)) +
t .
- [ b(s; u(s), u(s)) + b (s;u (s), u(s)) ds +

-0

t

-2 I a, (s; u(s), u(s)) + a,(s; un(s), un(s))dws)

o]

t € [0,T] w.p.1l

n=1,2,...

b(t) and bn(t), n=1,2,...  .: denote the following

bilinear forms on V:

30. i)  b(t,u, v) 2a°(t; u, v) = (A;(t)u, A;(t)v)

b(t; 4, v) + (&) (®)u, 13n A (t) V)

ii) bn(t7 u, v)

~

where Pn = (I - Pn)c

We also have, using the above definitions,
31. | b(t; u, u) + bn(t; v, v) = bn(t; u-v, u~-v) +
= (A (t)u, P Aj(t)u)  +.obyltru, V) o+

+ bn (t; V{l u) L
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Makinq use of the above equation in 29. we can

write,after some manipulation,

“t
32. Ju(t) - un(.t)[2 + . [ b (s; u(s) - un(s), u(s) - un(s))ds =
, X _
t
= ¢(t; u, un) - {,al(s; u(s), u(s)) +

(o}

+ ap(s; u (s), u (s)) awg,

t € [0,T]  w.p.l

n=1,2,...

Here,
s o 2 Nz _ \
33. TCHRI W lu |2 + lul 2(alt), u (£)) +

t

+ {-ml (s) uls), P A1(s) uls)) ds +

]
t

- an(s; u(s), un(S)) +

0

+ kh(s;u(s),uh(sn ds



Taking the expectation on both sides of equation 32.

.and using the coercivity condition 6. transferred

to the bilinear form b (t). we have,

T

31, Elum -u @2 + oE | [[uls) ~u ()2 as =

< E@(T u ow))
n=1%1,2,¢e¢
But by inequalities 21. and 22. we can select from

the sequence {un} a weakly convergent sequence {u } such
that, as v = =«

35. i) E (u(m, u (1)) = Elu(m)|?

T T

i) E [b(s; u,(s), u(s)) ds - E | b(s; u(s), u(s))) ds «

(0] (0]

Besides, by hypeth zs%s 19., we also have as v » =

T

36. i) E J (Aq (s) u(s), ﬁv Aj(s) u(s) ds =~ O/

[¢]
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T

iii) E | (A1 (s) u(s), ﬁv Ap(s) u,(s)) ds > O

Therefore, by equation 33. and relations 35. and 36.,

as v - =, we have

CE$(Ti w, uy) - 2fu |2 - 2 Elu(m)]|? +

T

- 2E)| b(s; u(s), u(s)) dse.

(0]
Comparing with the energy formula 18. we . bserve

‘that the right side of the above relation is zero. Therefore

returning to inequality 34 we conclude that, as v » =

u, > u , strongly in M2 (0,T; V) »

Remark 5.2.4 - Let us - > investigate what happens if

w.o <~ .. " in the argument leading to the existence proof
of Theorem Si1,Wecwnsider sfochastic integrals in the Stratonovich's

sense(instead of Ito's)

Consider the RN-valued, stochastic differential
form 16. Taking into account the relation between Ito's and
Stratonovich integrals (see Stratonovich, |47|), this
equation has the following stochastic representation in the
Stratonovich's sense: '
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37, aly®] ¢ e KT s —21-<M-1 R(EH2) [u (0]) at  +

+ MLR (B) [u (t)] dw_ = 0,

t € [0,T]: (S).

(Or equivalently,

38. d(un(t), v) + {ao(t; un(t), V) +

v L ar) P, Ap(t) u_(t), v)} at +
2

+ ay(t; u (t), v) dw, = O,

for all v € V
: n

t € [0,T] ; (S) e

The equation above is the Stratonovich: counterpart
of equation 9.ii) and n. its derivation we have used 11.,
12., 13. and the following relation:

3. <orlRTeN2 [u], m[V]> = <l R, R V] > =

= @) (P, Ap(t) w), v)

u, v € v,

t ¢ [o,T]



A If we suppose Aj(t) & L(H, H), t & [Q,T], a
copy i » of the existence proof of Theorem 5.2.1 must lead
:us-to the conclusion that there exists a weakly convergent
;subsequence {uv} which convergés to the solution of the

‘following evolution eqﬁation:

40. du(t) + (A_(t) + =a%(£)) u(t) at +
. 2 |
+ Aj(t) ult) dw, = O,

t ¢ [o,T:] (s),

‘ In his paper, Stratonovich gives the rule of
transformation between his integral and Ito's integral for
finite dimensional integrand process. One must be able to
extend this rule to more complex spaces in order to
conclude that, in fact, equation 40. is the Stratonovich’

version of equation 8.ii).

Now, let us write a weak form for equation 40.
equivalent to the equation 9.ii) which is a weak form for
8.ii). It has the Stratonovich  differential form,

1. d(u (t), v) + {ao(t: a (£), v) +

- 2 e § 0, vy at +

2

+ oAyt U (t), V) awg

for all v ¢ Vn/

t € [o,T] ; (8).
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where we have written ﬁn instead of the conventional u. ., to.
underline the fact that equation 41. above and equation 38.
;are in general, two different objects. (However, if ﬁhe '
;subspace Vo is invariant.for the operator A;(t), equations
*38. and 41. are equivalent).

Using the same technique used before , one must
be able to prove that thé sequence of solutions for '
equation 41. has a weakly convergent sequence which converges
to the solution of equation 40. A '

Therefore we may say that the Stratonovich and Ito's
versions of the original evolution equation 8.ii) produce
-two different weak forms, both convergent.

5.3 = The Non Linear Filtering Problem

In this paragraph we return to the filtering problem
introduced in section 1. We shall use the results: derived
in the previous paragraph in order to produce a existence
and uniqueness result for the stochastic parabolic equation
1.1.21. which represents the solution of the filtering

problem for partially observed diffusion process.
Let S be an open domain in R" and take H = L2(S),
vV = H_(S).

Using the notation présented in paragraph 1.1.,
denote, a (t), t € [0,T], the bilinear form on Hé(s)
defined by the following relation: :

n
, _ 1
1. ao(t, u, v) = ) z [ aj,i(t’X)‘Dj u(x) Pi vix) d&x  +
s .

n
1 v
+ izl LDi(( ; jil (Dj aj’i.(t,x) + gi(t,x) u) vdx/
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u, v € Hé(S)
t ¢ [o,T],

We recall that,

v[ai’j(t,x)] = a(t,x) o' (£,x),

is the diffusion matrix and [gi] is the drift vector for the
diffusion 1.1.2.. -

Let us suppose that for i,j = l;...,n, the functions,

i’

are elements of the space C(0,T; Lm(S))

Using a_étandard argument (see Remark 2.3.3) we can
deduce the linear operator Ao(t), t e,[O,T], associated
with the bilinear form ad(t). We have,

4

where’Lt denotes the Fokker-Planck operator introduced in
1.1.9..

Define the bilinear form a;(t), t € [0,T] by,

4, a1(t7'u'r V) = (A1 (t), V)/

u, v €& Hl(8)
o]

t T
e [o ]/



'where Al(t) = —Ht and Ht is the first order differential

roperator introduced in 1.1.20.

We recall that, -

: - [
5. Htu = iZl ;;f-(bi(t,x) u‘x)) + h(t,x) u(x),
i
Here [bi(t,x[] = a(t,x) .8l (t) and the functions h, B!

‘are parameters of the observation process.

Let us assume that for i = 1,...,n the functions

‘are elements of the space C(0,T; L7(S) ).

It is.very easy to show that under hypothéses 2.
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and

~6. the blllnear forms a (t), a, (t) verify assumptions 5.2.2,

5.2.3 and 5.2.4. In order to have also here the coercivity

.condition 5.2.6 we assume that for some constant o > O

» ’ ’ T
7. <r’([ai,j] - [pJ k) dr> 2 o<rr>,

for all r ¢ rRD

(t,x) € |o,T]

where <.,.> denotes the scalar product in Rn

Léi,jj = [ai'j(t,x)] and [b.] = [bi(t,x)]f

X %/

Consider the observation process introduced in 1.1.1 -

plus 1.1.18 and 1.1.19,. Let.EF = o(y(s) :0 2 s 2 t).
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Consider the following stochastic evolution equation:
58. du(t) + Ao(t)dt ’+_A1(t)dwt = 0,

where We is a real-valued, EFt~measurable, non-antecipative,

standard Wiener process on the probability space (Q,cﬁ, P).

According to Theorem 5.2.1, equation 8. has a
unique solution u,

u € M2(0,T;H;(S)) M L2(2;C(0,T:L2(S)),

‘satisfying u(0) = u € Hi(S). (Here, the symbol ~ is used to
‘indicate the dependence with respect to the probability ﬁ).

It can be shown (see e.g. Pardoux | 41|) that under
the transformation of probability measure indicated in 1.1.5,
‘the observation process, y(t), becomes a real-valued,
VHT —measurable non-anticipative - standard Wiener process on
'(9 A Therefore; equation 8. is equivalent to equatlon,
1.1.21 and so, we have proved the following result:

" Theorem 5.3.1 - Under hypotheses, 2., 6. and 7. equation

1.1.21 has a unique solution
q € M2(0,T;H! (S)) M L2(2;C(0,T;L2(S))

satisfying q(0) = q_ € Hé(S).
- Here qa, is the density of the law of X, (see 1.1.3)

Selecting § = R", the result above enables us to
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derive a existence and uniqueness result for the filtering -
problem for partially observed diffusions in Rg. As we
mentioned invsections 3. ;nd 4., the assumption VvV = Hg(s),

- S an open set of Rn, corresponds to the filtering problem
for diffusions absorbed by the boundary of S, Selecting

V = H!(S), we shall be able to analyse the case where the
‘diffusion is reflected in an inelastic boundary. (see
Pardoux | 40|, for both situations). In particular the case
S = Rn, diffusions in Rn, has been analysed also by Krilov-
Rosovskii (|22 ) and Levieux (]28]).

Remark 5.3.1 - We remark that the coercivity condition 7 is

achieved automatically if we assume that for all
(t,x) € [0,T] xS, r €& R® there exist constant ¢ > O and
e € (0,1) such that, '

9. i)  <xr, |la, :|lr> > o.e”! <r,r>
- i,3'%7

1A
’.—I
1
m
e

ii) <st, gl>

In fact, under these conditions we can write,

T T T
<a'r, B1(8!) a r> = (<a'r, Bl>)2 =

2 <a"r, o' r> (1L - )

Rearranging terms,
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e < r,[ai

: T
L T B LT R NI

‘and so, the coercivity condition 7. holds.

We also observe that, recalling hypothesis 1.1.19,

condition 9.ii) above is equivalent to the following:

'10. (82(£))2 2 ¢, t € [o,T],

'Therefore, as the coercivity condition is a crucial
.assumption in the proof of Theorem 5.3.1, we conclude that
.condition 10. is an equally crucial condition to the solution
of the filtering problem. It means that in the observation
.process, the proportion of the ﬁoise independent of the
signal must be positivé._GSeé Pardoux |41] for an extended

analysis on this subject). @

Remark 5.3,2 - With respect to the regularity of the solution

of equation 1.1.21 one can show that, similarly to what
happens for non-stochastic partial differential equations, .
this'regularity depends on how regular are the coefficients
and the initial condition associated with the equation.

In Pardoux (| 41]) (and also in Krilov-Rosovskii (| 21]))
regularity results are presented for the solution of the
Cauchy problem for the evolution eguation 1.1.21 (i.e. for

' n
S =R
described in 2. and 6. have. bounded partial derivatives
(w.r.t. x € R™) up to order p 2 1 and if q, € u® (R™), then

in Theorem 5.3.1). It turns out that, if the functions
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.equation 1.1.21 admits a unique solutidn,

g € m2(o,;EP* L (®Y)) N 12(0,T;c(0,T:HP (RY))) W

(Theorem 2.1 in Pardoux |41|)

For the case S C;Rp, similar results can be derived
if the'boundary of the domain S is sufficiently "smooth".
Here, we register a result presented by Pardoux (| 40]) where
a stochastic equation of the form 1.1.14 (the Zakai equation)

is analysed. _
Let the boundary of 'S-be of Class C2.

Take 8! = 0 in 1.1.21.(In other words, consider
equation 1l.1.14) If, in addition to hypotheses 2. and 6. we

‘have, for i,j =1,...,n,

1 .1.%
a; 5 €¢ ([o,T7]:L7 (S))

Di'h € c((0,T);L™(S) )/

then for g € H}(S) the solution g of equation 1.1.21
0 (o]

satisfies
g € M%2(0,T;H2(S)) M L2 (Q;C(O,T;Hé (S))) e

(Theorem 2.3 in Pardoux | 40})

Remark 5.3.3 - Consider the case 8! = 0 in equation 1l.1.21.

In other words, we are assuming independence between the
noise in the observation process and the signal and, in this

[}
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case, equation 1.1.21 is identical to the Zakai formula
1.,1.,14. But this equation admits a non-stochastic counterpart,
i.e., equation 1.1.16. Therefore, an existence and uﬁiqueness
;result for equation 1.1,14 can be obtained by means of the
results.presented in section 3. for (non-stochastic) evolution
vequations. In particular, if we also assume the function h

to be invariant in time, Theorem 3.4.1 and Theorem 5.3.1 are
equivalent, (in thesmpaﬁnt both represent an existenée'and

uniqueness result for the Zakai formula).

The conceptgfﬂgnon—étochastic counterpart offers
:other interesting aspects for investigation. Consider the
finite dimensional stochastic equation that constitutes.a 
Galefkin approximation.to equation 8. It has the form of |
:equation 5.2.16 but with W, = &t = y(t). . ]n addition to
the hypotheses made in this paragraph assume, 8! = O and h,
invariant in time. In 5.216. these assumptions mean that
R(t) =R = R'. A non-stochastic counterpart of 5.2.16 can be
obtained using the procedure presented by Doss (|11]). We

first write the following equation in Vi

FEVI & vie, v, = (Pn(hv(t,vﬂ))}v)
for all v € Vn
t € [O,T]}
where P is the projgction on V_ and V(O,vg) = v? € V-

Therefore, EV(t,vo)] = F(t).[v&] = exp(rM_lR)[vo] and a
pathwise solution for 5.2.16 has the form,

12. S @] + 7 (y(t))J{,(t)F(y(tH[rn(t)J = 9

where M(t) = M 1K' (t) +‘%(M_1R)2. The relation between 5.2.16
and 12. is given by
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C13. un(t) =, V(y(t),rn(t))-

. We observé that equation 11, is a Galerkin
‘approximation to equatidn 1,1.15 (in the sense that they tend
to describe the same object as n + «). On the other hand, one
must be able to prove that the solution of 12. converges to
‘the solution of the pathwise formula 1.1.16. Therefore,'
‘equation 12. represents a Galerkin approximation to the
‘pathwise formula 1.1.16. (However, this Galerkin approximation
is different from the one obtained when we start with 1.1.16..
S0, we have here the same situation as in Remark 5.2.4:
‘equation 1.1.14 and its non-stochastic version 1.1.16 produce

two different weak forms both convergent).
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.6 - GALERKIN APPROXIMATIONS TO STOCHASTIC: EVOLUTION EQUATIONS

The objective in this section is to present fwo
‘families of discrete time Galerkin schemes in order to
approximate the solution of stochastic evolution equations.
These families are characterized by having terms which are
respectively linear and quadratic in : .. -=1. -~ the noise
increment. With respect to the time increment the schemes in
both families are implicit Runge-Kutta of the variety studied
in sectibn 4. and, therefore, the methodo;ogy used here.

follows the same pattern as before.

In paragraph 6.1 we introduce a family of linear
‘schemes. Consistency of the numerical method is studied in
paragraph 6.2 and in paragraph 6.3 an estimate for the error
of approximation is presented. It turns out that if sufficient
regularity is attained by the solution of the stochastic
evolution équation, the method has a non linear rate of
'convergence in relation to the discretization in time. In
paragraph 6.4 we study a family of quadratic schemes. In this
case if stronger regularity conditions hold, the method
admits a linear rate of cbnvergence in the time increment.
Finally in paragraph 6.4, we'bring into consideration the

filtering problem for diffusion process.

6.1 = A Numerical Scheme

Basically, we assume the hypotheses of section 5.

So, V and H are Hilbert spaces, V is dense in H and
its injection is continuous'according'" to 5.2.1. The symbols
(.,.» and || .||, (.,.) and |.|, denote the inner product

and norm in V and H respectively.

The objects a,(t), j = 0,1 are bilinear functionals

defined in the space V, satisfying hypotheses 5.2.2, 5.2.3,
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-5.2.4 and 5.2.6, the latter taken with A = O for reasons

fgiVen in Remark 5.2.1.

Here, we strengthen hypothesis 5.2.4, by assuming

1, lal(At;u,v)I S YliuHV|,

u,v. € V

t ¢ [o,T],

In other words, the operator A, (t) iﬁtroduced in

f5.2.5 is now an element of L(H,H).

We also make the following additional -hypothesis:

. 1
2. aj(-,u,V) € c'(o,T), .

for all u,v € V

j = O'l

Let \y bea finite dimensional subspace of V.

For all t £ [0,T], let Lj(t), j = 0,1, be linear
operators from 1 to \I defined by the following relations:

3. aj (t;u,V) = (Lj (t)u'V)/

for all u,v €& b}
t & [o,T],
j = O,l .

Since 13 is a finite dimensional subspace, these are
well defined continuous linear operators. In particular, by

hypothesis 1,, we have



|Ll(t)u{

u € IT

t 6 [O’T]o
or, ‘:‘.cio}valemﬂj,
4. lnywlll = vy | -t e [o,1]

independentyof the subspace J. Here, the symbol Il . |l| stands
for the natural norm of L(U,17) when Ur is endowed with the

'l.| norm.

The coercivity condition 5.2.6(with A = 0, see
Remark 5.2.1) implies that the operator L (t) is invertible
.and so are the operators of the form (I + kLo(t)) where I is
the identity operator and k 2 O. leo, by the continuity
of the injection V < H, the following estimate holds:

5. Il (x +,kLo(t)'1|H < o+ kc)jl
t & BLT].

Now, let {0 = bty << 50==T} be a partition of
the interval [0,T] with mesh, '

t k=0,1,...,N=-1},

"

6. h = sup {ltk+l -

With respect to this partition, we shall use the
same set of notation for increments introduced in 4.1.3.

We shall now present a discrete time stochastic
scheme for approximating the stochastic evolution equation
5.2.8.ii). '

152
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So, let Wy be the real wvalued, Fl-measurable non-
antecipative standard Wiener process on the probability

space U2<A P) introduced in paragraph 5.2 and consider the
follOWing stochastic scheme-

¥

I
O

| o 1
7. L s Ak%kUk + AwkgkUk ),

k = O,l,....'N-l/

where U, € U and g; € L(U,VU), 5§ = 0,1l are linear

operators defined by the following relations:

8. 0 G = @ e T ),

(I + 8,pL (1)) 'L, (ty ),

k = O,l~’o-o’N—l

with p > 0 and © = 1, . € [tk’tk+l]f

K

. J
Concerning the operators (: | ?'O,l; k=0,1,...,N-1
the following PropOSition can be stated: '

Proposition 6.1.1 - Under the hypotheses above the fbllowing
estimates hold independenryof the
subspace LT

9 D M 1-aGolll = 1 g >’ 0.5
. 1 kk - - LOY p = . .

and, in particular, if p > 0.5, there exist
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“constants G,ho > O such that:

a0 <
Iz - ool <

exp (—Gékb

for all partitions of the interval [0,T] with

h £ h
o

i1) lug; oz v

k = O'l'..-'N_l.

Proof of Proposition 1

The first part is identical to the thesis of the Proposition
4,1.1 and so, is already proven. The second part follows
from inequalities 4. and 5. @ '

'Sb, from the above proposition we can affirm that, given an
initial condition Uo € t?, the set of iterative ecuations 7.
K’ k =0,...,N of 7]’valued

mmq)dy defines™ a sequence U
:F(t )—measurable, random variables.

k =
We can also, as we did in paragraph 4.2, explore

some of the stability properties of the scheme 7. In particu

lar, we observe that the expectation of the variables Uk

satisfy a scheme identical to the one analysed in section 4.

In fact, we can write from eqguation 7.,

(o]
10. EUp,; = (T - Ak(d’k)zzuk

which is identical to equation 4.2.3 and therefore has the
same properties regarding stability.

Now, let R(t), t € [Q,T] be the Ritz projection
with respect to the bilinear form ao(t) and the subspace tr.
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Recalling the definition given in 4.2.7, we can write-

11, a_ (t;ju -R(tju,v) = O)

for allu € v, ve %,
t e [o,T].

The coercivity condition imposed on the bilinear
form ao(t) guarantees the existence and uniqueness of such

an operator.

The purpose of this section is the estimation of the
error of approximating the solution of the stochastic
evblution equation 5.8.1ii) by means of the set of random
variables defined by equation 7. So, in what follows, the
object of our attention will be the random variable

Uk - u(tkL

k =0,1,...,N,

where by, u, we denote the solution of the Stochastic Evolution
Problem 5,2.8,. |

Using the definition 1l1l. above we can write,

12, Uk —vu(tk) = e + R(tk)u(tkh_

k = O'l,c--'N.

Here the réndom variable e and the linear operator ﬁ(t)

are defined by the following relations?

13. e = Up - R(tk)u(tk)
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14.  R(t) = T - R(t).

Now, define the sequence ¢k’ k=1,...,N of tﬁv&hed,

T EFkP~measurable, random variables by the following relation:

15, bpe1 = Rt ) ult4) - R{tult) +

- Ak%;R(tk)u(tk) +

1
+ A,wk((;k Rt ult,),
"k =0,1,...,N-1,

‘Subtracting - ‘equation 7. from the above, using

equation 13. and rearranging terms, we have,

o _ 1 _
le. ek‘*‘l_ - et Ak%k?k + Awkgkek + b1 = O,

k = O’l,--.,N_l.

Here, as in paragraph 4.2, the error of the
approximation is determined by the variable ¢k;;So, extending
the concept of consistency of a numerical method to this case,
we can say that N measures the consistency of the method of
approximating the solution of the evolution equation 5.8.ii)
by means of the scheme 7.
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Remark 6.1.1 - The discrete time stochastic scheme 7 can be

‘written in other forms.which are, perhaps, more familiar to

:the reader. So, it can be presented in a "stage" form,

Uker = U + BBy + AwBy = 0,

=
I

o,1,...,N-1

7/
where By € 1, 3 = 0,1, are such that:
(B rv) + Akao(r;so,v) + ao(T;Uk,V) = 0,
(.Bllv) +.Aka0(T;BJ’V) + al(H(;Uk'V) = O/

for all v 6 17.

,Adternatively,

Uper = Urv) + 880 (150U g + (1 =00 T, v)

for all v e U,
k = O'l'.-n,N_l.

We oObserve that scheme 7. differ from the implicit
Runge—~Kutta scheme analysed in section 4 only by the term

containing the increment in the noise

Ba51cally, a numerical scheme appropriate to give

approx1matlons to the finite dimensional stochastic equation
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that Qoverns the continuous time Galerkin approximation
;@quation51Jb) can be used in order to produce discrete time
:Galerkin schemes. For instance, if we take p = O in equation
;75,we have the so called Cauchy—Maruyama scheme (McShane,
ﬂ36|). However, as we pointed out before (section 4) this
particular explicit scheme is not appropriate for Galerkin
approximations and that is the reason why we assume the
parameter p to be positive. So, the scheme presented in this
paragraph is the natural and simplest extension of the first

order Runge-Kutta scheme introduced in section 4.

‘6.2 - Consistency Properties of the Method

In this paragraph we shall evaluate the consistency
of the approximation method proposed in the last paragraph.

Two proposition will be presented with estimates for
the random variables b4y and E(¢k+l/}k)'

We start by considering the equation 6.1.15..Using
the definitions of the elements involved it can be rewritten

in the following form:

?. (¢k+l,v) + Akpao(r;¢k+l,v) = (Auk,v) +
+ dea (Tipulty, ) + (L-plult),v) +
+ Awkal(tk;u(tk),v) - (Aﬁuk,v) +

- aa (ripRu(t, ) + (L-p)Ru(e),v) +

- bwea, (tk;Ru(tk) ,v)/
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for all v ¢ U
k = O,l'ooo’N_-l.

j}%ere, according to 6.1.14, we write Ru(t) = R(t)u(t),
t € [o,T].

As u is the solution of the problem 5.2.8, we have

tk+l
2. (Auy ,v)  +- { a (sju(s),vlds + .
, , .'tk :
Crel
+ [ al(s;u(s),v)dws = 0,
ty

for all v e |7
k=o'pl'-.o’N'-l W.p.l‘

Substituting this identity in expression 1. and

‘rearranging terms,we have,

3, gy V) + Byea, (Tidyyg v =

i

ty

Cral

- ao(s;u(s),v)ds + al(tk;u(tk),v) +

ty

- al(s;u(s),v)dwS - (liAuk,v) - Ai(ao(r;pﬁu(ta(+l) +

+

(L-p)Ralt) V) - twa, (b RulE) V),
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for all v € 19
k=O'l’¢oc,N_l'

Now, for simplicity, let us strengthen to some extent

our hypotheses by supposing the bilinear form a (t)sinvariant

in time,

Remark 6.2.1 - Although our conclusions will be obtained

under the above condition, it does not constitute a
fundamental hypothesis like those presented in the beginning
of this section. If ao(t) is sufficientlysmooth'in relation
to the variable time, Smilar . results can be obtained. e

From condition 4., the Ritz projection is also
invariant in time and we are able to write,
5. ao(ﬁu,v) = Q
“for allu € V, v € \¥

On the other hand, hypothesés 6.1l.1 and 6.1.2 enable
us to define the operator A'(t) such that

d

6. i) Al(t) = —BRj(t) € L(H,H) t e [o,T]
- dt
ii)  |a;(eul 2 vyl

for all u € H
t ¢ [o,T]

. ]
for some constant Y-
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So, the following identity can be written:

tyr1

7. al(tk:u(tk),v)'- al(S;u(S),Vldws =

(Al(tk)u(tk) - Al(s)u(s),v)dwS =

I
—

k+1

(Al(s)Auk(s),v)de +

o
|
Sy

( [_Al(g)u(tk)da,v)dws,

for all v e \\y
k=0,1,...,N=-1 «

Taking 4., 5., and 7. into account and rearranging

terms, equation 3. now becomes

8. (¢k+l'v) + Akpao(¢k+l,v) = Akpao(Auk,v) +
trel Ex+1
- [ ao(Auk(s),v)ds - [ Al(s)Auk(s)dws,v) +
& t

( [ Aj(glulty)de)dw,,v)  +

—‘(RAuk,v) - Awkal(tk;Ru(tk),v)/
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for all v € U
k=0,1,.,.,,N-1 wple.

] Now, choose v :'¢k+l as a test vector in the ‘above
.equation. Using hypotheses 5.2.3, 5.2.6 (with » = 0), 6.1.1
‘and the Schwartz'inequality, equation 8. yield the
following inequality:

:9' |¢k+ll'2 + AkpU” ¢4k+1”>2 A AkaoHAukH ||¢k:1-1” +
Cr+1
: [Youwkmm oy, qll as +
tk '
tk+l

tx
tk+l s

+ | ( JA;(E)u(tk)dE)dwsl lop1l +
t

k%

k=O,l,...,N"l/ wpl.

Using Cauchy's inequality, pg X p2?/2e + eq?/2 with
€ = 2pc/yo(p-+l) for the first and the second terms of the
right side and with ¢ = 1/4 for the remaining terms, we
obtain after standard manipulation, the following inequality:



1 . ) < 'Yg(D'f'l) )
00 Laglr o 2 e s
- doo
Cra1
Yg(p+-l) ‘ :
+  — HAuk(s)H2 ds +
dpo £
k
]

+ 2| J Al(s)Auk(s)deIZ. +
N .

k

( J‘Al(g)u(tk)dg)dwS +

~ . ‘2 -
2 2 2
+ 2|RAukl + 2y (awy) |Ru(tk)|/

k =0,1,...,N-1.

Taking the expectation on both sides of this

inequality, we can write,

, < vZ(p +1) '
11. E{¢p 112 = o —— E|[au, []2

_ 2po

, x4l

Yo (p + 1)
+ ——  — E '||Auk(s)ll2 ds +
2p0 £
s

+ 4 J E|A;(s)bu, (s)]|? ds +
t

'k

163
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Xequation 11. - continuation)

Fk+l s

t -~
+ 4 E| A, (B)ulty)dgl2ds + 4E|RAuy |2 +

H Ty
+ 4y2E(E(62w,/ J.)|Ru(t,)]2)
) X N k! 17

k = Olll---lN_ll

Using the estimates 6.1.1 and 6.1ii) we can finally
write the following inequality:

, < v2(p + 1) -
12. E|¢k+l| 2o — E||Auk|| +

2p0

, tr1

Yg(p'*'l)
+ —_—— Ellau (s)]|2das +

2p0

Y
tre1

, . A
+ 4 Y% J EIAuk(s)lz.ds + (Ak)3 4(v))2 Elu(t)|? +
. _

k
- 2 -
+ 4E|Rbuy |2+ 4 4y EIRu(tk)Iz/
k =0,1,...,N-1, ~ wpl,
We - stote this result in the following,

Proposition 6.2.1 - Under hypotheses 5.2.3, 5.2.6, 6.1.1,

6.1.2 and 6.2.4 the following estimates
holds: ;
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t

k+1
';.13. E|¢k+l|2 2 C‘{AkEH AukH2 + | Elfsu ()2 as +
. £ .

+ (8,)3 Elu(g,) |2 + E[Rsu |2 + 8, E[Rult,)]|? }/

k = O’l’--.’N—l.

VﬁF{ere C is a positive constant depending only on the

|}
‘parameters p, Y , Y., Y, and o.

¢/ 1

Remark 6.2.2 — The inequality 12. shows that by € L2(Q,H)
for all k-=1,...,N since; by the estimates presented in
paragraph 5.2, its right side is finite. Moreover, we shall
have ¢, '~ O in L?(Q,H) as N » =, @ '

Remark 6.2.3 - In the ‘steps leading to the estimate 12. we

have used, implicitly, sem: ortestendud properties of stochastic
integrals (in Ito's sense) and Wiener processes which are

registered in paragraph 5.1. e

' The result presented in Proposition 6.2.1 enables us
to estimate the random variable E(¢k+l/ 3&), k=0,1,...,N-1
by means of the inequality,

14. ) E(lE(¢k+1/i¥£)l2) 2 El‘bk+llz e

However, for the purposes we have in mind, the above
estimate is not accurate enough. So, we shall now prove the
following proposition: '
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Proposition 6.2.2 - Under the hypotheses of Proposition 6.2.1,

the following estimate holds:

o Yren
15. E([E(¢k+l/3£)|2) 2 C(a)? J Ellé% 8 (sity,ult))[? ds+

%

tr+1 o
+ A E|R q g(sit,,ult )) |2 ds
- "k ds "' KTk -

ty

k = O’l’---’N_l.

uHere C is a positive constant depending only on the
:parameters‘p, Yor O ; e(.;é,z) is a V-valued function
defined in |t,T| and related to the parameters £ ¢ [o0,T],
:z € V by the following initial valued evolution equation:

16. 1) L e(t;t,z) + A e(tif,z) = o,
dt °
1i) e(t;t,z) = z €D@A),

Remark 6.2.4 - The result in Proposition 6.2.2 is eslablishnds
by the fact that -~~~ . equation 16. has a unique solution.
Although we are not allowed to use ontaone the results

of section 3. in order to show existence of a solutioq,
(because here we are not supposing the bilinear form a, with
a symmetric principal part), the existence of such a solution
‘can be shown by means of the techniques introduced in that

section. Here, we shall not present this proof. Instead,we

will make use of a similar result presented in ‘Lions, |31

Consider the evolution equation,
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‘17, 4 Z(t;Zo) + Ao Z(t;Zo) = 0
N dt
2(0,2)) = 2z €He

It can be shown (Lion$‘|51|, Theorem 1.2, p. 102)

that the equation above has a unique solution

z(.,2,) € L?(0,T;V) [\ C(O,T;H),

AbO, . we can write,

d —_—
18. — Z(t;2 )y = 2(t;-a 2 )/
‘ dt o 0 o

t ¢ [o,Tj/
for all Zo € D(Ao).

Therefore, using this argument in relation to

equation 16. we can conclude that,

8(.;E,z) and 4 e(.;%,z)/
dt

are elements of LZ(E,T;V) N C(%,T;H)Vfor all z € V such
that z € D(Ao).

( or similar results when Ao depends on time, see Lions |30],

chapter V) e

Proof of Proposition 6.2.2

x & p@a)) CVv, k=0,1,...,N-1 be a family of

elements belonging to the subspace’lf, defined by,

Let $(zk). z



o (o]
}9! ¢(zk) = Re(tk+l;tk,zk) - Rz, + Ak<5kzk/

k = O'l,o--,NV_l'

For simplicity, in the steps hereafter we will
delete the argument z by writing

~

b= blz) L s(8) = eltit,z).

Recalling the definition of the elements involved,
equation 17. can be rewritten in the form

(6,v) + bypa (6,v) = (80,,v) + boa_(p8(t,, ) +

¥ (L-p)z,v) - (RAG,,v),

for all v & tT
k = O,l,...,N—l-
Using equation 16. to evaluate the increment Aek and
substituting in the above equation we have after rearranging
terms, the following identity:

20. (6,v) + 8ypa (6,v) = b pa (88, ,v) +

trt1

- ao(Aek(s),v1 ds - (RAek,v)/

tk.

for all v ¢ \T
k = O,l,-..,N-la

168
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, Take v = @ as a test vector. Using hypotheses 5.2.3
‘and 5.2.6 (with A = 0) jointly with Schwartz'inequality,
~equation 20, yields, '

21 (12 4 aeoll b 12 2 o llse, D 1IE 1+

tra1

+ | vllae o)l 1éllas + |Roo, |13,

&

k = O,l,...,N-l.

Apply Cauchy's inequality pgq £ 0.5 p2/e + 0.5eq?
with e = o/yo,' € = cp/Yo.and e = 1, respectively, for the
terms in the right side of the above equation. After some
manipulation we have, .

2
. oY
22, 812 2 a =2 Jlae 12 +
20 :
, trl
Y : 1 -
i a6y (s)][2as + = [Rae, |2
20'0 ) 2 -"

Bt

k=0,1,...,N-1 ,

Let us write, again for simplicity,

|

23. 8'(t) = 4 B (t;t

12, ) e
at k!’“k

. Using Schwartz' inequality we can deduce the
following inequalities:
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Erenl
24. il lae, (s)]2 _5 By [ [e'(s) ]2 as,
Yerl
i1) |Rrae, |2 = Akl [Re " (s) | as,

B

" Substituting 24. in 22. and eliminating the factor
1/2 in the left side we have | ‘

) k+1
. ' pY
25, 2 < 2 __ 9 ' 2
5 | 4| b — [ e'(s)||2ds +
ty
tk+l %Hl

) 2 ‘Y(z) [ 2 RO 2d
* oof oo le'(s)||2ds + By |R8 " (s) | 2ds,

t ty

Xk =0,1,...,N-1.

' Now,. consider the lf—valued, iFL—measurable,_random
Vériable $(u(£k)), k = O,l,...,N~Tl,obtained by means of
equation 17. when the variable zkis:ﬁxaiatu(tk), the
function, u, being the solution of the evolution problem 5.2.8..

We shall show that $(u(tk)) is a version of the
conditional expectation of ¢k+l with respect to the o-algebra
?¥£. In other words,

26. E(h,r/ J) = elule)), | | w.p.1

k = O,l,...,N—;‘



171

In order to prove the above relation consider the
?equation 6.1.15.. Taking the conditional expectation from

‘both sides we have,

| | .
27 Bl A0 = REMg,/T) - Rty + 8§ Ru k),

k=0,1,...,N-1,

'Subtracting the above relation from equation 17. we

:hav%
28. $(Zk) - E(¢k+l/}%) = R(e(tk+l;tkzk) - E(u(tk+l)/}p)4'
- R(z, - ult)) + A]%;R(zk - ult,)),
k = O,l,A.o-,N _l.
' Téking z, = u(tk) in the above equation,
29. ¢ (u(ty)) - E(cbk_l_l/};k) = R(B(t) it ,ulty)) +

- ‘E(u(‘tk_}.l)/}-,/k))/

k = O’l,u-.’N-ll

Now, compare equation 16.i) with equation 5.2.8.ii).
We observe that the following identity can be written:

30. o (t;t,ult)) - E(u(t)2I;) .? e(t;E,O)/



for all O £ € £ t £ Te

But, by the results obtained in section 3 we have,
31. o (t;t,0) = 0.

Therefore relation 26. is proved.‘Using the estimate
25. as an estimate for the conditional expectation, the

thesis of Proposition 6.2.2 is demonstrated.

v6.3 - An Abstract Error Estimate

We shall now present an estimate for the error of

approximation.

From equation 6.1.16, the following inequality can

be written:
| ' 2 < % 2 2
1 legarl? = NI = 8 GllI2 legl? +
1
b 2 G NE Te |2+ Ty 12
: ‘A0 1 .
- 2Awk((I - Ak%k)ek’%kek) +

0 ' 1
k::oll'..n,N—l‘

Take the expectation on both sides of this equation.

Recalling that ey is a grk—measﬁrable random variable and

using Schwartz'inequality we have, -
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o o
2. Ele,, 12 < T - Akgkmz Ele |2 +
1 ' o
A 2 2 2
+ AkIHgkIH .E,Iekl .+ E|¢k+l| +
It Il Ecle ] T
+ 241 - Akgkll E(le  LIE(%, 1/ k)l) +
1
¥ 2II_I8kII| Bl aul el loy,, D),
k = O,l, ,N_lo
Now let us suppose that in thé scheme 6.1.7 we are
taking,
3 p 2. 0.5,
C Kecalling the estimates in Proposition 6.1.1 we
have,
' 2
4. : E|ek+l]? z E|ek|2 + AleElekl2 + E|¢k+l|2 +

+ 2B(e ] 1B,/ T + 2v,Eaw ey | loy, [

k = O’l,o--'N_lt

Making use of Cauchy's inequality, pg 2 p2/2¢ + e9?/2,
with ¢ = (Ak)'i and e = (7(1)_1 in the last two terms

respectively, we have,
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5. Ele, 112 = Elegl? + byl Ele, |2 + E|¢, 12 *

+

2 4+ a=lnls 2 2m (A2 2y -
+ AkE|ek| + by E[E(¢k+l/ 313[ YZE (8 Wkl?kl) +

R LI

k=0,1,...,N -J.;

After some manipulation inequality 5. yields

6. E|ek+l|2 < Elekl2 + Ak(2yi + l)»E|e_k|2 +

2 =1 2
+ 2Bl 12+ ot Bl T2

k =O,l,..-,N_l‘

Recalling Lemma 4.3.1, we are able to deduce the

‘following inequality:

N-1

7. Ele |2 = exp [ ) (2v2 + 1) &, ] {jE[e |2+
: j=O 1 J \ o

N

+
Il 11

1
2 -1 2 },
o { 2E|¢j+l| + 03 EIE(¢j+l/'}5)I'} y

J )

Now, Propositions 6.2.1 and 6.2.2 enable us to present

. S~ _
the final result. Jubstituting estimates 6.2.13 and 6.2.15
in the ihequality 7. above, we have,
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+ J.E||Auj(s)||zd$ + h3E|u(tj)|2 +

t.
J

+ E[RMu |2 + h E|Ru(t,)]? +

k

ti

. a . Yl 2
+ h J E||dse(s,tj,u(tj))H ds +
ty :

Y

+ E|f{a%e(s;tj,u(tj))|2ds}})
t. ’
]

k = O’l,o..,N/

where C is a positive constant depending only on p, Yor Y1v

y;, c and T.

Although the estimate 8. provides us with the means
for proving convergence of the numerical method given by the
scheme 6.1.7, it does not represent'alone, a convergence
result. If these results are sought, we need supplementary

assumptions.

TLya'zwe shall now present a set of hypotheses and a

convergence result for scheme 6.1.7.

First, let us assume that our bilinear form aa can
be written as a sum of two bilinear forms b and b,, defined

on the space V, such that,
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ii) b0 is symmetric,

iii) B, E_'L(V,H)/

‘where Bj' J = O,l,denotés the linear operator associated with
‘the bilinear form bj' '

With the addition of hypothesis 9. we are now able to
use the results of section 3. with respect to the evolution
'equation 6.2.16. Consider equation 6.2.17. From estimate

?3.3.24, we conclude that there exists a constant C such that,

lzeezpli2 < cliz iz, ¢ ¢ [o1],

for all ZO € V.

' Therefore, using relation 6.2.18, we have for the

solution of equation 6.2.16 the following estimate,

L |
. & etz £ clia zll?,

for all z such that Aoz € V.

So, let ‘us suppose that for the solution of the
problem 5.2.8 we have,

11, i) Aou(t) G.V/
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i) Effaju(e)[[2 = M < e,
for all £ € [o,T].
By inequality 10., hypotheses 9. and 11. lead us to

fhe conclusion that there exists a constant C such that,

: d R . ~
12. El gz otest,u(®)[[2 < CE[la ue) |2 < =
for all 0 £t £ £ S T,

- On the other hand, using equation 5.2.8.ii) and a
standard procedure, hypothesis 1l.ii) allow us to conclude

that there exists a constant C such that

{ | 13. Ell au (s)[[2 £ cCh,

for all s € [tk’tk+l]’ k = O,l,.f.,N-l.

Now, let us consider the approximation subspace,lT,

where the scheme 6.1.7 is defined.

We suppose that there existsa family of finite
dimensional subspaces U(d) C V with 4 > O such that, with
respect to the bilinear form a, and the spaces H and 'V, the
following approximation property holds:

14. |Ru|] = d||u||/

for all u € V,

So, selecting 17 as a member of the family of

subspaces described above,
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15, U= Uw,

we are able to show the following Theorem:

Theorem 6.3.1 - Under the hypotheses of Proposition 6.2.2
plus hypotheses 9., 11. and 15. the following

estimate holds:
16. sup Elulty) - U %) = ¢ {lRuo -u_|? ¥

+ h(l + sup (E||A u(t)]2)) + h? sup (Elu(e)|?) +
[o,r]  — ° 0,T] o

2 ” ' '
+ d (1 + sup (E[Jlu@®)]]?2) + sup_(E[lAa u(t)|?)) ‘},
[01] Lo,T]
where C is a positive constant.

Proof of Theorem 6.3.1

The proof follows after using inequalities 12,, 13., and 14.
in the estimate 8. and then substituting in 6.1.12. @

Remark 6.3.1 - The estimate 16. means that under the

conditions of Theorem 6.3.1, a numerical procedure given by
the scheme 6.1.17, with U0 = Ruo, will converge to the
solution of problem 5.2,8, in the norm,

S}‘ip ” u(tk) - Uk“ 12 (YQ’H) -
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MHere t,, k=0,1,..,,N are the dividing points of the
partition of the interval |O,T|. . : The rate of
convergence in the time will be hl/z..This is a slow rate of
convergence. ‘In paragréph 6.4 we shall'present a family of
schemes that, under stronger conditions, will converge with
a faster rate. '

Here, we observe that the crucial hypothesis is
stated in 12.. It is possible to interpret these conditions
by saying that they represent a certain'regularity attained
by the solution of problem 5.2.8 and this interpretation has
a precise meaning when Ao is a partial differential‘operator.
We shall return to this situation in paragraph 6.4.

We also remark that the hypothesis concerning the
approximation subspace is standard and can be verified for

finite-element subspaces (see paragraph 4.3.4).

6.4 - A Quadratic . Scheme

In paragraph 6.1 we introduced a simple numerical
scheme which is linear in terms of the increment in the
noise. We remarked in the end of paragraph 6.3, that the rate
of convergence of such a scheme can be disappointingly slow.
Here we shall present another scheme which,under suitable

conditions, can have a faster rate of convergence.

As has been pointed out by McShane (|36|) and, also
Clark (| 6 |), for finite dimensional stochastic differential
equations, a higher order of convergence in time can be
achieved if,in the numerical scheme,we take into account ngms

containing powers of the noise increment,

A This fact can be understood with an analoay between
stochastic and non-stochastic differential equations. Consider

the scalar linear differential equation,

L O u(tl), _ a € R

dt
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Therefore u(t) = exp(at)u(O) and we may say that
numerical schemes for the above equation are constructed in
order to approximate the exponen™.ial exp(aAk), where by is
"the increment in time (see Remark 4.2.1.).

Now, consider the simplest scalar version of the

‘stochastic equation 5.8.ii). It has the form
du(t) = au(t)dt + bu(t)dw, ;  a,b € R.

So, u(t) = exp(at —-%b2t + bwt)u(O), (w.p.1l) and
itherefore, in this case, schemes should be constructed in
order to produce approximations to the exponencial

- L2 47
exp (ad, 5b by + baw, ).

. It is easy to see that, in relation to the above
'stochastic equation, the scheme introduced in paragraph 6.1
fails to approximate the second term in the exponential and,

besides,gives a mediocre approximation to the third term.

Following this line of argument we can produce a more
complex scheme, containing a second order term (in the power
.Qf the noise increment) which may have a faster rate of
convergence. This scheme corresponds to McShane's numerical -
method (McShane, | 36/, p. 205).

In what follows, we shall use the notation introduced
in paragraphs 6.1.1, 6.1.2 and 6.1.3. However, we must consider
supslementary hypotheses.

First, for simplicity, we also assume the operator

Al(t)-to be invariant in time,
1, Al (t) = Al °

Remark 6.2.1 also applies to the above hypothesis. In
other words, hypothesis 1. is not a fundamental hypothesis
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and basically, the results of this paragraph could be obtainéd

with hypothesis 6.1.2 alone.

'We also assume that the linear operator Ai € L(H,H)

is such that, -

AMv ev for all v € V,

where Aﬁ denotes the adjoint of Aj.

. ‘ ) j .
In addition to the operators Lj' gk’ 3 = 0,1 defined

in paragraph 6.1 define linear operators L2, %i € L(UjU) by

the following relations:

. 2 B v
;. (Aju,v) = (L,u,v), |
for all u,v € LT. _
. 2 _ =1
4, (ék = (I + 8pL) " L, ,
k = O,l,.q._,N""lo
Consider the second order stochastic numerical scheme,
- ~ . 0 1 2 -~
5. O, - Op + Ak((ék + ;%k)uk +
1 1 | 225 _
k = O'l'---'N—l/
where, here,we use the symbol ~ to differentiate the above

scheme from the scheme 6.1.7.
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~Starting with the above equation we can follow the

same pattern of analysis as we did before.
First,we recall a basic identity concerning Wiener

_processes:

k = O[llo—o,N—l.

As a consequence of this identity we can write,
Y1

2 2 2 2
:v7. Akgk - (Awk) gk = =2 Awk(s) gk dws .
N

f Therefore, if we want to explore stability properties
of the scheme 5., we can startjrw the fact that, as before
'(see equation 6.1.10), the expectation of the variables U

satisfy a scheme identical to the one studied in section 4..

k

Substituting 7. in 5. we have,

-~ . o .
8. EQ,, = (I-AkngEUk/
k = O,l,...,N"lo

We can also write expressions for the error of

approximation. So, the counterpart of equation 6.1.16 has

now the form,
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-~ Q 1 2 1
9. S ey + Ak(gk + ;—gk)ek +,Awﬁgkek +
1 5 2_~ -
- e %kek Tt o,

k = O,l'.-.'N_lo

V'H.ere,

' - _ ' o} 1 P2
;lO. ¢k+l = RAuk + Ak(gk + ;-gk)Ru(tk) +

+

1 1 9 2
AwﬁgkRu(tk) - ;(Awk) gkRu(tk)'

, Now,'multiplying both sides of equation 10. by
(I + Akao) and using relation 7. we have, after rearranging

‘terms,
4ll. (I + Akao)¢k+l RAuk + AkLo(pRu(tk+l) +
+ (l:—p)Ru(tk)) + AkalRu(tk) +
Y1
- bwy (s)L,Ru(t,) ds,
k - O,l,..-,N-l.

Using the definition of the operators involved and

identity 6.2.2.,we can derive the following expression:



2. (pq1rV) + Bypa (O yy,v) = BAyea (Buy,v)  +

Yerl ' ' el ‘ .
- J'ao(Aukfg),v)ds - J (B, bu, () ,v) dw_ +
Y | Y
Y

- J tw (s) ATulty),v) dw, =+
"

- (ﬁAuk,v) - Awk(Alﬁu(tk),V) +

el
+ ] dwy (s) (AZRu(t,) ,v) dw ,

k"

for all v & |,

k = O,l,-oo,N_J;.

We observe that this expression differs from 6.2.8
only by the terms that contain an integral of the noise
increment,and also by thelterm in 6.2.8 that contains the
derivative of Al(t). This term is "small" in relation to the

others and so, hypothesis 1l. is justifiable,

- Now, consider the following relation:

13. (B, 8y (s),v) + dwy (s) (ATulty),v) =

S S
* " 2 '
= -] a (u(g),prvidE - (Aju(g),v) aw +

1
t Yy

184
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(Equation 13. - continuation)
s
+ [ (A%u(tk'),v)dwg =

£ o ,
s s

- * _ 2

= [ ao(u(g),Alv)dg ’[ (AlAuk(g),v)dwgl
ty | ty |

for all v € V

k = O,l,.-.,N_lo

(we have used basically identity 6.2.2 and hypothesis 2. in
the above derivation)

Substituting in 12. we have,

14, (bpqq V) + bea (6p,q.v) = bpoa (Bu,v) +

) Y41 s

- { ao(Auk(s),v)ds + ao(u(g),A:V)dgdws +
t

k | R T

+ ] J(Afzsukm,v) dw dwg +
tk t

- (RAuk,v) —-Awk(AlRu(tk),v) +

Sl

2~.
- Lk Awk(S) (AlR(tk),v)de)
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for all v & t}

k = O’l"q!‘,N_l

. We observe now how the second order term in the
numerical scheme 5. can be used in order to produce faster
rate of convergence. By means of relation 13. we have
eliminated the third term in the right side of equation 12.
which also appears in 6.2.8. This term contributes, in the
error estimate 6.3.8,t3wg'a slow rate of convergence of‘the
scheme 6.1.7 ° Here,as a consequence of the second order
term in scheme 5.,we have “tplacec. it.by higher order
terms. However, this is not enough to guarantee a faster order
of convergence for the scheme 5. In fact, we observe that the
first and the second terms in the right side of 6.2.8 are
also responsible for the slow rate of convergence of the
method. These terms also appear in equation l4. and so, in
this case, we can not make use of the advantages of a second

order scheme, unless some additional hypotheses are made.

We already know that the solution of the problem 5.2.8
satisfies, ' '

u(t) € D(A_(t)) , t € [0,7],

(see section 5.)

Therefore, we can write,

aé(Auk(s),v) = (A buy(s),Vv),

for allv eV, k=0,1,...,8-1, s e [0,T],

So, the supplementary hypothesis that we need is the

following:
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15, - E[Aou(t)lz S M<w, t ¢ [o,T].

, Now we can return to equation 14.. Choosing v = ;k+l
-és a test function, using hypotheses 5.2.4 and 5.2.6 jointly

with the Schwartz' inequality we have,

Y1 |
16. |$k+l| < AkpleAukI +[ IAOA'uk(s)|ds +
| Y
Y1 S

+ Y?l J J 'A u(g) 'dgaw| +
%

#k+l S
J '8y (2) 'dwgdws| +
&

+ |§Auk|_+ | aw

k||ﬁu(tk)| +

Yes1

+ »Y§| J ?Awk(s)!fﬁu(tk)!dwslj

k=0,1,...,N-1,

We can now estimate E|$k+l|2. From equation 16. and
using usual properties of Wiener processes and stochastic
integrals (see paragraph 5.1) we are able to deduce the
following estimate: ' |
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Yt

17. Elo, 112 2 C4 82E[A au |2 + 4 EleAuk(s).Ist +
Y
Yer1
+ ()2 | Elau(s)|?ds + E|RAu

%

2
k2 +

+ 'AkElﬁu(tk)lz + Alz{Elﬁu(tkH?- },

k = O,l,...,N-l/

where C is a constant depending on p and Y-

Let us return to equation 9. Using identity 6.,

:equation 9. can be rewritten in the féllowing form:

: ~ : o, ~ 1. :
18, & = (I - Ak‘gk)ek‘— Awkgkek ¥

Sl

2. -
to [ Awk(s)dws)gkek T kel
H( .

Now we use the same procedure used in paragraph 6.3..

So, apply the operator E|.|2? in both sides of equation 18..

After expanding the right side we obtain the following terms

and thii- estimates:
- POy x 12 < =2
19. E| (I Akg‘k)ek[_ < Ele.l?

. 1. 2 -
. 2 < 2
20, EIAwkgkekl b, Elekl/
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Skl |
| 2.
21, E| ( [ Awk(s)dws)gkeklz <
%k |
Y
S yIE(E(| l by (s)aw_|2/T 1 ]e [2) <
= '1 k s k k -
< 4 2 [" 2
=0 AkE ekl P
22. Ela’kq;llz = 5

where ¢ represents the right side of equation 17.

: no . 1~'
23. E(-2((T - Ak(d‘,k)ek" Awk gkek)) = 0.

Gt

2.
24 E(2((T - By g_;)ék , ] Awk-(S)dws)gkek)) = 0.
. . ] tk
0o - ~

25, E(—2((I - Akgk)ek ' ¢’k+l))

A

< 2 E([ék||E$k+l/}Ll)

. L -1 .



26.

27.

'28.

Gl
' 1. 2.
E (-2 (AW, %kek , [ Awk(s)ds)gkek)) 2
.tk
Y1

2 . . .
b E(yllAwklzlekl2 + Y;l [ mnk(s)dslzlek|2)

tk

2 L 2 ~
(Y18 + vi8p) Efep|2,

. . 1 ’ . )
- ~ 2 ~ ~
E(Z(Awkgkek' tee1)) 2 BlOrylawel e |2+ oy 010 =

2 ~ ~
= Ti4Elegl? + Eloy 1%

Y

_ 2. ~

e
Yedl

. S -
2 E(y, | J Awk(s)dws|2|ek|2 + |¢k+l|2) =

&

L 2 - . -
= vioy Elegl® + Elog,, 17

k .= O’.llcynlN_l.

In the derivation of inequalities 19.,...,28. we

have used basically hypothesis 6.3.3, the results of
proposition 6.1.1 and standard properties of Wiener processes.

So, using the estimates 19.,...,28. we can write,

190
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29 Ele, ;]2 2 (1 (3y2 + 1) “3y. le, |2
23. ek+l = + Ak Y, ) + Ak Yi)E e, +
MR L EIE‘I’ku/Fk'z,
k=O,l,o..,N_lo

. We observe that, as before we need now an estimate
for |E¢k+12¥ | 2. '

Let us return to equatlon 10. Taklng the cond1t10nal
.expectation in both sides of this equation we have,

'
~
o
Il

:30. E(¢ RE-(u(tk+l)/3rk) +

t,) O u(t,) o
Ru { k)t Ak%kRu( k) ®
Comparing 30. with 6.2.27 we have

In other words, the numerical methods that correspond -
to schemes 6.1.7 and 5. have,almost surely, the same
"consistency" at the dividing points of the partition of the
interval [O,Tﬂ conditioned to the information stored from

the previous points.

So, .it can be argued that scheme 5, will not produce
faster rates of convergence since the conditional expectation
of ¢k+l is also respon51ble for the slow convergence of the
scheme 6.1.7. However, in view of our supplementary assumptlon

-15., the result of Proposition 6.2.2 can be improved.



192

Consider equation 6.2.16., From Remark 6.2.4 and using

a standard procedure (see paragraph 3.4) we have
@ TR
gz. o) = gz etrl = Jfe(tit,-Aazl = clA z|,

for some constant C, (Here, B(t) = e(t;E,z)).

Therefore, in equation 6.2.20, we can write
= <
33, a (a6, (s),v) (an 0, (s),v) = IAAoek(s)llvlj

for all v € \¥
k =-o’l"|c’N—l

s ¢ [o,1],
So, instead of inequality 6.2.22 we now have,

vl

34, lo] <

plan 0. ) + [' |AA06k(s)|ds + IﬁAekl.
‘ t

k

The result of Proposition 6.2.2 can now be rewritten,

t

k+1,
35 E(|E (¢ /12y s c Al E|A 33 4 =6 (s;ty ult ))|2ds  +
. k+1/ 9k - = k k! k
. t Kk
el

~ 4 2
+ -~ .
Ak ] ElR dse(srtkIU(tk))I dS/
t

k
k = O,l,...,N-l/
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where C is a positive constant depending only on p.

_ Therefore, recalling Lemma 4.3.1 and making use of
estimates 17. and 35. jointly with identity 31., equation
29. yields the following estimate: ‘

. N-1
36. E|ék+1[2 < C{IRuO - ﬁo'lz + 2 {hZEIAAOu.]Z +
: J=0,
541 (341
+ h J EIAAOuj(s)|2ds + h? [ EIAou(s)Izds +
t. t.
] J

+ E|§Auj|2 + hElliu(t-_j)l2 +

» tj+l
2 5 2 2 4a . 2
+ h EIRu(tj)| + h ’ EIAodSe(s,tj_,u(tj))|ds+
: t.
J
tj+1
r G . 2
+ ] E|R == e(s,tj,u(tj))l ds } }/
t.
J

where C is a constant depending only on p, Y, and T.

/\ result similar to Theorem 6.3.1 can be
derived. In order to proceed in this direction, let us
assume hypothesis 6.3.9 concerning the composition of the
bilinear form a, . Consider the evolutioh equation 6.2.17 .

in the Remark 6.2.4. From equatibn 6.2.18 we can write

d?. o d 2
I u(t,zo) haad - Z(t, _AOZO) - Z(t'AOZO)/

dt? , dt

t € [o,1],



: 2
:for all Zo € D(Ao).

So,. we. conclude that

A, = 2(.,2) = --—=12(.,2) € C(O,T:H),

for all 2 € D(A ).

Transfering this argument to equation 6.2.16 and
using estimate 3.3.16 weconclude that there exists a constant
.C such that, ‘

. a 2
37. | A 4 o(t:t,2)[2 2 claz|? < =,
: ° dat ° 4

for allz € D(A’).
Here, we need hypotheses which are stronger than

those in 6.3.11. So, assume that for the solution of problem
5.2.8 the following conditions hold: '

38. i) AoAju(t) € H

ii) ‘E|A°Aju(t)|2 S M o<,

for all t € [o,T], j = o,1.

Using equation 5.2.8.ii) and a standard procedure
hypothesis 38. enable us to conclude that there exists a

constant C such that,

194
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. - <
;9. E|AAouk(s)|2 - Ch,

for all s € [tk,tk+lj,‘k'¥ 0,1,...,N-1,

Assuming'6.2.15 for the approximation subspace 17 we
can now introduce - the following theorem:

‘Theorem 6.4.1 - Under the hypotheses of Proposition 6.2.2
plus hypotheses 6.3.9, 6.3.15, 1, 2, 38
the following estimate holds:

40. sup.EIu(tk) -~ ﬁklz < (2{ |Ruo ~u |2 4+
g k

2 2 2
h?(1 + sup (E|A u(t)|?)) +
| [o.T] °

dz2 (1 + (1+1n.sup Ejluw)]]?2) +
' [0, T]

+ _sup_(E||A u(t)|[?)) } J
0,T] :

where C is a positive constant

Proof of Theorem 6.4.1

We can use inequalities 37., 39. and 6.2.14 in order to
_estimate the terms in the right side of equation 36.
Recalling that, '

u(tk) - U = q(tk) - Ru(tk) + ey,

k =O,l,-.-,N"l
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we obtain the result above. e

Remark 6.4.1 - According to Theorem 6.4.1, the gquadratic.

scheme 5. can produce approximations with errors of order h.
This is a considerable improvement with respect to the linear -
scheme 6.1.7 which converges at a rate hl/z. However, to
guarantee this fact, a condition stronger than 6.3.11 must

be imposed on the solution of problem 5.2.8, namely,
hypothesis 38. As we mention before (see Remark 6.3.1)
hypotheses like these in 6.3.11 or 38. have a clear interpre
tation in terms of the regularity of the solution of the
stochastic evolution equation when onis a partial differential

operator. This is the subject of our next paragraph.

6.5 - An Application to the Filtering Problem

, We shall now apply the results obtained in the, :.*:s
paragraphs to the numerical solution of the non linear
filtering problem for diffusion introduced in paragraph 1l.1.
We will be concerned with Galerkin approximations of the
solution of the Zakai formula 1.1.14.

Let H = L2(8), V. = Hé(s),where S is a bounded subset

of R™.

Consider the stochastic evolution equation 5.3.8. In
addition to hypotheses 5.3.2 and 5.3.6 assume

g; are invariant in time,

i,j=1,...,n
As a consequence of this hypothesis the bilinear form ao(t)
introduced in 5.3.1 is invariant in time and we are now able

to use the estimates presented in paragraphs 6.3 and 6.4. As
we pointed out before (see Remark 6.2.1) this hypothesis is
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not restrictive/and it was only made .in order to simplify
fthe steps leading to estimate 6.3.8 and 6.4,.30. If ai,j and
g; are of class C! with respect to t € (0,T], similar
‘results hold regarding the error of approximation of the

‘numerical methods with whithac axt. concerned.

, We also assume the diffusion matrix to be positive
definitive. In other words, for some o > O,

2. <r,fa, :]r> 2 o<r,r>
, '[ J—r]:l ! /

fof all r € rR"

X &£ S.

Now, let 8! = O. Equation 5.3.8 (with &t = y(t)) now
‘becomes identical to the Zakai formula 1.1.14.,1In particular,
‘hypothesis 6.1.1 is satisfied and the condition 2. above
,guarantées the coercivity condition 5.2.6. In order to have

hypothesis 6.1.2 satisfied we assume,
3. ‘h € cl(o,T;L7(S).

We observe that now, all the hypotheses made at the
beginning of paragraph 6.1 with respect to ao(t) and a, (t)
are satisfied. Therefore, we can use inequality 6.3.8 'in
order to estimate the error of approximation of the Galerkin
scheme 6,.1.7. Before we proceed in this direction we
select the approximation subspace 1> as an element of the
family of subspaces of "finite element" type introduced in

paragraph 4.4.. S0, in relation to scheme 6.1.7'we_assume,

4, U = 17(d,r,m),-p Z 0.5, U, = Ra,



where q € Hé(S)'is the initial condition for 1.1.14,.

In order to make the best use of "this: family of
approximation subspaces (see Lemma 4,4.1) we also assume,
5. a  1is O-regular . in Hé(s).

We can now present the following result:

Theorem 6.5.1 - Let conditions l.,...,5. be satisfied. Assume

that for the solution of equation 1.1.14 we

have,

6. Elna lllis <%,  telo -

Then, for the linear scheme 6.1.7, the

following estimate holds:

s}lip latgd-u ll )y = c(n'/? +h + d),

L2 (9,H)

where C is a positive constant independent of h and d.

Proof of Theorem 6.5,1

Condition 6.3.9 is satisfied, From 5. and Lemma 4.4.1,
condition 6.3.14 is also satisfied. So, the result above

follows from Theorem 6.3.1l. @

Remark 6.5.1 - The crucial hypothesis of Theorem 6.5.1 is

198
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condition 6. and, as we pointed out before, (Remark 6.3.1),
this condition can be interpreted in terms of the regularity
of the solution of the stochastic evolution equation. In
fact, assume that the coefficients of the Fokker~Planck

operator, L have first order bounded partial derivatives and

t’
that F1“qgh§(s)< © tépb,T] forthe solution of 1.1.14. It is
easy to see that these conditions are sufficient to guarantee

hypothesis 6. @

Now, consider the quadratic¢r: scheme introduced in
paragraph 6.4. As 8! = 0, the operator A, in 5.3.8 satisfies
6.4.2. In order to satisfy 6.4.1 we must assume the function

h to be invariant in time. So, we take
7. h € L7(s)

As we remarked before in section 6.4, this hypothesis
is made with the intention of simplifying the steps leading
6.4.30, It does not constitute a fundaméntal conditioh and,
in this case, results similar to 6.4.30 can be obtained by‘
.assuming h cl(o,T;L7(s)).

The following result is a consequence of Theorem
6.4.1..

Theorem 6.5.2 - Let conditions 1., 2., 4., 5., 7. be satisfied.

Assume that for the solution ofAequation
1.1.14 we have,

8, E lIL%q

dlnzs) + B ”Phqt”Lz(s) R
telo,1],

Then, for the quadratbi - scheme 6.4.5‘the

following estimate holds:



s;p ”q(tk) - {Jk”LZ(Q,H) S cth + dh + d}/

where C is a positive constant independent of h and d,

_Remark 6.5.2 - As in Theorem 6.5.1, the result'depends on the
regularity of the solution expressed here by condition 10.

We assume that this condition is attained if the coefficients
of the Fokker-Planck overator, Lo have second order bounded

partial derivatives, the functions Dih, Di ﬁh belong to

o R 'l
CcC((O0,T;L el ‘4 "<t o, .
( (S)) and Ellagllgd g < ,tep,T

Regularity conditions for the solution of stochastic

parabolic equations are discussed in Krylov-Rosovskii (|21|),

Pardoux (|41|) and Tevieux (| 28/) (for the case S = R"). In
(|40 |) Pardoux nresents some conditions leading to a result
of the type: g € MIKXE;HZ(S)) (see Remark 5.3.2.). @

Theorems 6.5.1 and 6.5.2 represent convergence results
for discrete time Galerkin approximations of the solution of
the stochastic evolution eguation 1.1.14. defined in a cylinder
[0,7] x scR x R" under Dirichlet boundary conditions. These
results show that, under certain regularity conditions, the
linear scheme 6.1.7 produces a numerical approximation that
converages at a rate hl/z. On the other hand, under stronger
regularity conditions, it is possible to obtain a faster rate
of convergence by means of the quadratic~ scheme 6.4.5. In
this circumstance, the rate is linear in the time increment.
It goes without saying that, under the reqularity conditions
of Theorem 6.5.1, the guadractic scheme 6.4.5 also producés
convergent approximatio?s but, in this caéé, with a slower
(h'/?).

rate of convergence

We observé that the rate of convergence in the "space
discretization”" can increase devending on how regular is the
solution df the evolution equation (according to Lemma 4.4;1).
However, the linear rate of convergence in the time increment

achieved by the quadratiéc scheme can not be improved. We
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are led to this conclusion by the fact that, with respect to
finite dimensional stochastic differential equations, the
linear rate is the 5w@ . . possible rate of convergence for
numerical procedures that depend on the values of the noise
only at the dividing points of the partition of the time
interval*. In our case, the numerical schemes can be viewed
as schemes for approximating the solution of a finite
dimensional equation (the continuous time Galerkin
approximation). Therefore, we conciude that the linear rate
must be the best possible rate of convergence for discrete

time Galerkin approximations.

In |3b], McShane has presented a modified Euler scheme
containing quadratic¢ - and cubic terms in the noise increment.
His scheme converges at a linear rate for a wide class of
finite dimensional stochastic differential equations. Here,
we have seen that, for stochastic linear evolution equations,
we davet: need cubic terms in order to achieve the best rate

of convergence.

According to Remark 6.5.2, in order to satisfy the
regularity of Theorem 6.5.2, (condition 8.) we must include
some requirements concerning the regularity of the function
h. It is interesting to notice that these requirements are
necessary in order to approximate the solution of the non
stochastic counterpart of the equation 1.1.14 (see Theorem
4.4.1). As might be expected, schemes which are appropriate
to the pathwise formula can be adapted for the approximation
of the solution of the stochastic formula (and vice versa,
since the relation between the non stochastic and the
stochastic formulas is invertible; cf. equation 1.1.17).
Qféo,' , 1t seems that the existence of a numerical procedﬁre
which converges to the solution of the pathwise formula at a
rate [ASL,(the modulus of continuity of the observation sample
path; see paragraph 4.4» corresponds to the existence of a

procedure which converges at a linear rate to the solution of

+ This fact has been shown by Clark, in | 6 |.
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the stochastic formula. In |5 {, Clark has presented an

" (Euler) method for approximating the pathwise solution of a

- filtering problem for Merkov chains. It turns out that this
;scheme also represents an approximation procedure which
fconverges at a linear rate to the solution of the stochastic
-version of the patﬁwise formula. Here, this .+, . aspect
of the numerical schemes is not so evident. This is ‘-bemnme,'
.as we pointed out in Remark 5.3.3, the stochastic and the non
stochastic formulas have different Galerkin approximations with
 mopeet by a given family of subsPaces. However, it is not
"difficult to see that schemes which are appropriate to the
'pathwise version of the continuous time Galerkin approximation
?of 1.1.14 (cf. equation 5.3.12) can also produce approximations
-for the equation 1.1.14. In this case, one must be able to
show that these schemes converge at a rate IASI tothe;mthw1se
.formula and at a linear rate to the stochastic formula.

It can be argued-that the results of Theorems 6.5.1
and 6.5.2 are too restrictive vis-a-vis the class of filtering
‘problem that satisfy the hypotheses of these theorems. This
.is so, because: 1) the operator L, and the function h, are
‘assumed invariant in time; 2) we are considering only

Dirichlet boundary conditions associated with equation 1.1.14.

: As we pointed out before, the hypotheses concerning
‘Anvariance in time can be relaxed. Assuming Lt and ht of class
C! one must be able to obtain results that are identical to

those 'in the theorems.

With respect to the Dirichlet boundary conditions, we
recall that‘these conditions are implicit in the assumption ‘
vV = Hé(s). Selecting instead V = H! (S), one 5hwi&.be‘able to
consider Nesmann conditions and again, similar results twid be
achieved. Czn particular, Lemma 4.4.1 cwvld be extended to

approximation subspaces of H!(S); see e.g. Weeler, |49]).

TBe scope of applications of the results in both
theorems can be enlarged, in order to include more complex
situations. - The conclusions concexning the rate of convergence
in the time incrementcan be assumed as general results valid for

discrete time Galerkin approximations of the solution of the
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.filtering problem,

Finally we remark that numerical procedure- for
-approximating the solution of the stochastic evolution equation
‘that governs the unnormalized conditional density, has also

.been considered by Kushner and Levieux.

In | 29|, Levieux has presented a numerical method
which is similar to the one produced by our linear scheme
(with p = 1, i.e., the backward implicit scheme). He shows
‘that the method converges strongly in L2(Q x (0,T) x Rn)
‘(Theorem IV.2 in l29]) |

Kushner's method has a different conception. The
‘basic idea lies in the approximation of the diffusion process
5by means of Markov chains. It turns out that the filter for
‘the approximating chain converges to the filter for the
diffusion. He shows that his method is robust in the sense
we have desaized. . aL the beginning of this work (see Kushner
-] 25] -and | 26]).

In this work we have presented families of ( one
stage, Runge-Kutta ) discrete time Galerkin procedures which
possess the advantages of both Levieux's and Kushner's
methods for approximating the solution of the filtering
iproblem for diffusions. Schemes 6,1.7. and 6.4.5. produce
;approximations which converge uniformly in a L2 sense and,
.in particular, scheme 6,4,5. has a maximum order of Convergenceuﬂk
mepect to Ko increment in time. On the other hand, schemes which are
appropriate for the pathwise solution of the filtering
probiem ( e.qg. scheme-4.2.§.l) produce robust aporoximations

to the filtering solution.
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