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ABSTRACT 

This thesis is concerned with stochastic, and non-

stochastic first order linear evolution equations. 

The reason for the simultaneous treatment of these 

topics lies in the fact that a recursive solution for the 

filtering problem for Markov diffusions can be given either 

by the stochastic partial differential equation governing 

.the unnormalized conditional=:_ density/or by its non- stochastic 

counterpart, which is a parabolic equation parametrized by 

the paths of the observation process. 

This work embraces both these . 	approaches 

to the non-linear filtering problem. Convergence results for 

the Galerkin approximation of the solution of either the 

stochastic or the non-stochastic evolution equations, are 

presented and, for both cases, error estimates of discrete 

time Galerkin procedures 	derived. In particular, families 

of discrete time. Galerkin schemes for approximating the 

.solution of the non-linear filtering problem are compared 

and rates of convergence 	obtained. 
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1 - INTRODUCTION 

Although the title of this work makes reference only 

to stochastic equations, we shall be studying both stochastic 

and non stochastic linear evolution equations. 

It is true that the analysis of stochastic equations 

contains elements which 	work, 	in the non stochastic 

case and, in fact, this . 	happens in the situation we 

are concerned with. However, in this work, the inclusion of 

non stochastic evolution equations represents more than 

a prelude to the stochastic case. The 

.reason for our simultaneous treatment of these topics lies 
in the relevance they both have in non linear filtering 

theory. 

It is well understood that one 	way of 

presenting a recursive solution for the non linear filtering 

problem for diffusions is by means of the unnormalized density 

formula (the Zakai formula, see 1541), which is a stochastic 

linear evolution equation. 

On the other hand, as has been pointed out,eamong 

others, by Clark ( 51)), this formula has a non stochastic 
'counterpart parametrized in a convenient way by the sample 

paths of the observation process. This non stochastic formula 

is similar to the Fokker-Planck equation for the diffusion 

under consideration, with the same diffusion coefficients, 

but with drift and potential coefficients depending on the 

observation sample paths. {i~~~~-s►~'~"ool.̀ it possesses the special 
feature of being' robust' in the sense that its solution is a 

continuous mapping defined in the sample space of the 

observation process. Therefore, in practical situations, 

instead of a given observation sample path, we are allowed to 

work with suitable approximations belonging to a class dense 

in the sample space (e.g., functions of bounded variation) 

without taking the risk of being driven away from the true 	• 

solution of the filtering problem. 

n view of these characteristics we take the point 
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that it is well worth considering the pathwise formula as an 

alternative and equally important way of representing the 

solution of the filtering problem,and not merely as a version 

of the Zakai formula. 

A considerable portion of this thesis is devoted to 

existence and uniqueness results for both non stochastic and 

stochastic evolution equations/ and in this :area we follow 

• the work of Lions (1 301 , 1 311 , 1  32 1 ),and Pardoux  (1 401  , 141 I ) 
However, the inclusion of these results is mainly didactic. 

The principal purpose of our work is the analysis of Galerkin 

approximations of the non linear filtering problem. 

The duality between the stochastic and the non 

stochastic representations of the filtering solution is 

reproduced in the numerical schemes used for its approximation. 

We can select schemes appropriate to the pathwise formula or 

instead, schemes which are suitable for the Zakai formula. 

As before, both aspects of this duality are equally important/  

and our intention is to analyse Galerkin schemes both for the 

non stochastic and for the stochastic representations. 

Using a family of implicit Runge-Kutta schemes we 

show that the corresponding discrete time Galerkin procedure 

converges, (in the sup norm), to the pathwise solution, for all 

paths of bounded variation. These schemes, therefore, produce 

a robust approximation to the filtering solution, in the sense 

that they are continuous with respect to the observation 

sample paths, and the approximation converges uniformly in a 

dense subset of the sample space. 

Extensions of the implicit Runge-Kutta schemes, 

containing terms which are either linear or quadratic: in the 

noise increment,can be used as well. They produce Galerkin 

approximations that converge uniformly, (in an average sense), 

to the solution of the Zakai formula. In particular, if 

sufficient regularity conditions are attained, the standard 

deviation of the error for the quadratic scheme, converges 

at a linear rate with respect to the time increment. Judging 

from what happens for approximations of finite dimensional 



stochastic differential equations this is the best possible 

rate of conyergence, 

As the non linear filtering problem is the 'raison 

d'etre' of this work we start by presenting in paragraph 1.1, 

a survey in this subject. 

1.1 	The Non Linear Filtering Problem 

We start by a general description of the filtering 

problem. 

Suppose the situation where the data concerning an 

unobservable stochastic process (the signal process) is 

provided by observation of another stochastic process (the 

observation process) which is related to the signal in some 

functional fashion. The question of determining the conditional 

probability density for the signal process given the obser 

vation process constitutes the filtering problem. 

Although the filtering problem can be formulated for 

a wide variety of processes, here we shall be concerned with 

the case where the signal is a Markov diffusion process in 

a:, euclidian space and the observation is a scalar process of 

the "signal plus white noise" type. Let us be more specific. 

In relation to some probability space (Q,A ,P) let (x,y) 

denotes the pair signal/observation processes and assume the 

relation between them being given by the following (Ito's) 

stochastic differential form: 

1. 	dy(t) = h (t,x (t). ).dt + dwt 	
t E [o,T' 

where h E C ([O,T] x Rn) and wt  is a R-valued standard Wiener 

process. 

8 
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process is c],assical, and it is along the lines of that 

presented by Stratonovich. in 1960. In his basic paper (146 I), 

Stratonovich proposes a stochastic partial differential 

equation which, under some conditions, represents the. dynamics 

Of the conditional density of the signal process. An equivalent 
• result was obtained by Kushner (in 1231) who rederived with 

some corrections the Stratonovich equation and presented 

it in terms of Ito integrals. 

So, the Kushner-Stratonovich representation for the 

solution of the non linear filtering problem stands as the 

first result in a long line of research still being done in 

,this field. Among the subsequent works, a distin vc. direction 

is represented by the search for an extension of the Baye's 

formula in order to express the density as a functional of 

the observations. The idea. first proposed by Bucy (in 13 I  ) 
has its complete development: in I19I  where the authors, 

Kallianpur and Striebel,presented a precise statement of the 

formula which generalize a previous one obtained by Wonham 

(in 1521) for finite state Markov chains. 

Although Kallianpur and Striebel's formula is valid 

for a wide range of situationsespecially those regarding 

estimation problems, it is not useful if a recursive solution 

is sought for the non linear filtering problem. Solutions 

having the character of being recursive were, during the 

sixties, the object of various important papers among which 

one can select those due to Liptser and Shiryaev (I33I) and 

Zakai (1 541). In the first, a stochastic differential 

representation for the solution of the filtering problem is 

presented for the case where the pair (x,y) is a diffusion 

process. In the second, under the hypothesis of independence 

between the signal and the Wiener process in equation 1., 

the so called unnormalized density formula was derived for 

the first time,bearing the advantage of being a considerably 

simpler representation for the solution of the •filtering 

problem for diffusion process. Finally, in 1131, Fujisaki. 

Kallianpur and Kunita using the innovation process approach 

introduced by Kailath (I18I), presented a stochastic 



differential representation for the conditional expectation 

ōf the signal process valid for a large range of situations 

regarding either the signal process or the interdependence 

between the signal and the observation. 

After this brief account of the papers, which are 

considered classical in non linear filtering theory, let us 

return to the particular problem we starteddescribing at the 

beginning of this Introduction. 

Regarding the diffusion process xt, assume that the 

following stochastic differential form describes its 

dynamics: 

2. dx(t) = g (t,x (t)) dt + a (t,x (t)) dwt  

where, g E C ([0,T] x Rn; Rn) 

a E . C( [0,T]  x Rn; Rn  x n)  

and wt  is a Rn-valued standard Wiener process. 

In 	equations 1. and 2. svrfose 

3. y(01 = 0 	and 	x(0) = xo /  

where x 0 is a random variable. 
1 

Suppose that the Wiener processes wt  and wt  are 

independent and also assume x0  independent of (wt,wt). 

Consider the stochastic process zt  defined by 

t 	 t 

4. z(t) = - 1 	h2(s,x(s))ds + 	h(s,x(s))dys  
2 0 	 '0 

t E [0,T] 

10 



For the particular class of functions under consider 

ātion we can define a new probability measure on the space 

(SE,A) by the following relation: 

5. 	dP = exp (-z (T)) dP 

Write E,(E), for the conditional expectation with 

respect to the measure P,(P). If Yt, t E [0,T] denotes the 

a-algebra generated by fys : 0 	s < t} define 

.6. 	i) 	nt(f) 	= E(f (xt)/Yt) 

ii) Qt(f) = E(f (xt) .exp(zt)/Yt) 

for all f E C(Rn) , t E [0,T] 

By a standard formula relating conditional expectations 

with respect to equivalent probability measures (see e.g. 

Kallianpur-Striebel,I19I or Meyer I371), we have 

7. 	non = Qt(f) .Qtl (1) 
	

w.p.1 

where the argument 1 denotes the unitary function of C(Rn). 

The transformation of probability measure introduced 

in 5. has some important features. Under the new probability 

P, the observation, yt, becomes a standard Wiener process 

independent of the signal process (Girsanov, 1151). This fact 

can lead us to the Kallianpur-Striebel formula, 
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8. 	Qt(f) 
	

f(ct) .exp(Zt(c))y(dC) 

where, 

t 	 t 

Zt (~)  = - 1 	h2(s,Cs)ds + 	h(s, $)dys 2 
0 	 0 

c E C ([O,T] ; Rn) = w, W being the sample space 
for the signal process. 

u is the measure on W induced by the diffusion x. 

As we pointed out before, the Kallianpur-Striebel 

formula gives us a non-recursive representation for the 

conditional expectation. An alternative and more convenient 

solution is to express the conditional expectation by means 

of the Fujisaki-Kallianpur-Kunita formula. 

Let Lt denotes the Fokker-Planck operator associated 

with the diffusion xt, i.e., 

n 
l 	62 
	 (aij (t,x)u(x)) 	+ 

2 i,j=1 Sxidx. 	'  

d 	
(gi (t,x) u (x) ) 

i=1 dxi 

where 	[ai ,j (t,x)] = a(t,x) 	aT (t,x) 

The Fujisaki-Kallianpur-Kunita formula under the 

hypotheses made above, takes the following form: 



13 

10. d(J(t( )_) 	= F.t(.Ltf).dt + ..(IIt(htf) - /1tC1t)TIt(f))dvt 

where 	ht  = h(t,.) , Lt is the infinitesimal generator of 
the diffusion xt  and vt  is the innovation process, 

t 

11. v(t) = y(t) - 	Hs(hs)ds 

0 

From equation 10. we can derive a recursive represen 

,tation for the conditional density. So, if 

pt  = p(t,x,w) , (t,x,w) E [o,T3 x Rn  x O denotes the conditional 

probability density of the signal given the observation yt  

we can write the Kushner-Stratonovich formula, 

12.  = Ltptdt + (ht  - (ht,pt)) ptdvt  

where (.,.) denotes the inner product in L2(S). 

Given a suitable initial condition, i.e. the 

probability density of xo, equation 12. can ,3;ve ,under 

certain conditions, the evolution of the conditional density 

of the signal and/therefore/it solves the filtering problem. 

(see e.g. Kushner, 1241) However a better formula can be 

found, Mtilick has ` kc. advantage of being linear in the unknown 

variable. If fqr the variable Qt(f) defined in 6. we write 

13. Qt(f) 	= 	(.qt, f 1 

Then we can deduce the Zakai formula for the 

unnormalized density, 
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14, 	dqt 	Ltcxtdt + htgtdvt  

This representation for the solution of the filtering 

problem has considerable advantages in relation to the previous 

formulas, It is a simpler formula and, besides, being linear 

it enlarges the scope vis-a-vis numerical applications. 

The concept of unnormalized density and its represen 

tation by equation 14. leads us to an alternative form of 

presenting the solution of the filtering problem under 

consideration. The idea is to look for non stochastic 

differential equations parametrized by the paths of the 

observation process in order to represent the solution of the 

filtering problem as a continuous function of the sample 

paths of the observation process. This has been done, for 

instance, by Clark (in 15 I)t  and the result is a family of 

linear partial differential equations,which has the same 

status as equation 14.. 

The relation between stochastic differential equations 

and +tir non stochastic equivalent representations has been 
the object of a number of papers and, in particular, some 

approach the problem by studying stochastic differential 

.forms as the limit of sequences of ordinary differential 

equations (see e.g. Wong-Zakai, 1511 ) 

A different approach has been adopted by Doss, who, 

in 11ll shows that the solution of a stochastic differential 

equation is equivalent to the integration of an ordinary 

differential equation parametrized by the paths of a stochastic 

process, Here, we shall use his procedure in order to derive 

the pathwise formula for the solution of the filtering 

problem for diffusion processes. 

t The concept of pathwise solutions has been familiar to the Russian 
school of probabilists for some time. In particular, we understand 
that it was used, 'en passant', by Rosovskii in his thesis for the 
Moscow University in 1972. It also appears in Liptser-Shiryaev,I34! 



qt 17. 

Let v(t) = V(t,u) ; (t,u) E [O,T] x L2  (Rn) , be the 

solution of the following differential equation in L2(Rn): 

15. 
	d v(t) 	v(t) 

dt 

v(0) _ 

Therefore we can write, 

V(t,u) = 	(t) u 

t 

where (DM) = exp( 	hsds) 
0 

Consider the following ordinary differential equation 

parametrized by the paths of the process yt: 

16. 	d r(t) 	_ -1  (y (t) ) L (t) (y(t)) r (t) 
dt 

where L(t) = Lt  - 1  het  , 
2 

t E [O , T] . 

Using basically Ito's rule of transformations, we can 

show that the solution of equation 14. can be expressed by 

means of the following relation: 

= V(yt,r(t)) 

15 

Therefore, the pathwise formula 15. can represent the 
solution of the filtering problem for each observed path y(t). 
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as Clark pointed out, the solution depends 

continuously on these paths which  

.j~",'- r numerical applications. 

We have presented some of the ways of expressing the 

solution for the particular non linear filtering problem 

described here, It can be argued that, in practical cases, 

the hypothesis we have made concerning the independence 

between the signal and the observation noise is too restrictive. 

However, this difficulty can be partially overcome by allowing 

some dependence between the Wiener processes wt and wt. In 

this respect we shall present here the results obtained by 

Pardoux (in 1 411) though similar formulas can be found in 

Levieux,1281 and Krilov-Rosovskii 1221. We recall that the 

problem regarding correlation between the signal and the 

observation noise was also considered in Fujisaki-Kallianpur-

Kunita, 1131. 

So, instead of assuming independence between wt and 

wt, let us suppose that the Wiener process wt can be 
expressed by means of the following relation: 

18. dwt = <B'(t),dwt> + 62(t)dwt 

where <,,.> denotes the scalar product in Rn, B1, (B2), is a 

continuous Rn,(R)-valued function defined in R+ and wt is a 

R-valued standard Wiener process independent of wt. 

In order to guarantee that the above expression is a 

relation between standard Wiener processes we must assume 

for all t E R+, 

19. <B 1 (t) , B 1 (t)> + 	(B2 (t)) 2 	= 	1 

Now, consider the following first order differential 

operator: 
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20. 	Htu = - G 	S 	(bi  (t,x)u (x)) + h (t,x)u (x) 
i=1 Sx. 1 

where[bi  (t,x)] 	= a (t,x) .0 (t) 

The formulas we have presented for the recursive 

solution of the filtering problem can be modified according 

to assumption 18. In particular, the unnormalized density 

formula takes now the form, 

'21. 	dqt  = Ltgtdt + Htgtdyt 

(for a precise account of this formula see Pardoux, 1411) 

The purpose of this introductory paragraph is to 

describe in general terms, without proofs, the formulas for 

the solution of the filtering problem for diffusions. The 

reason for doing so is to establish the relevance of an 

analysis of evolution equations presented in the stochastic 

form 21. (or 14.) and in the pathwise form 16. 

These equations ;,✓ 	the object of our 

study in the following sections. With respect to the non 

linear filtering problem a complete survey of the field can 

be found in Jazwinski, 1171, Wong, 1501  and Liptser-Shiryaev, 

134. In particular, the derivation of the Kushner-Stratonovich 

formula for partially observed signals, can also be found in 

Pardoux, 1411. A precise account of the Fujisaki-Kallianpur-

Kunita formula is also given by Meyer X371. Pathwise solutions 

are considered in greater generality by Davis, 19 1. 

Here, we have been restricted to the general filtering 

problem for diffusions in 	For For (absorbed or reflected) 

diffusions in subsets S ( Rn  similar formulas can be derived 

and, in this case, the conditions in the boundary of the 

domain S define the nature of the diffusion. (see Pardoux1401 



for a precise account on the unnormalized density formulas 

'that correspond to this situation). 
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BASIC CONCEPTS 

The purpose of this section is to present some of 

the concepts which are in general associated with evolution 

"equations in Hilbert spaces and, in p&,1-. _ol..., with partial 

differential equations. 

We start in paragraph 2.1 with the introduction of 

the Sobolev spaces by means of the classical approach using 

distributions. In paragraph 2.2 we desc.46C, the kind of 

problem we 	be treating (tiYouatrL, this work and our method 

of approach to its solution,which is based in the duality 

between problems and weak forms. It turns out that to this 

duality there corresponds a duality between linear operators 

and bilinear forms; this constitutes the subject of the last 

paragraph of this section. 

2.1 - Functional Spaces  

Sobolev spaces play a decisive role in partial 

differential equations and here we shall present a brief 

account of some of the concepts leading to their definition. 

We also introduce other functional spaces which will be 

relevant in the following section. The treatment given here 

are along the lines of that in Adams 111, Barros-Neto 121, 

and Yosida ( S31. 

In what follows we reserve the symbol,S,for an open 

set of a n-dimensional real euclidian space. 

If u E C(S), the space of R-valued continucus 

functions defined on S, has partial derivatives of order 

lal ? 0 we denote by Dau the partial derivative, 

Dau 
lal 
u 

 

al a2 	an 
axi axe  

19 



where a = (a1 ,a2,...,an) is an n-tuple of non-negative 

integers and lal = a1  + a2  + ... + an  

For m -.).1 0 we denote by.Cm(S)(C°(S) = C(S)), the sets, 

• Cm(S) 	_ (u E C(S) : Dau E C(S), Ig 	m} 

and by Co(S) we denote the set of "infinitely" continuously 

differentiable R-valued functions defined on S. In other 

words, Co(S) = 	Cm(S) . 
0 m 

The sets Cm(S) 0 S m -` 	are linear spaces with the 

usual operations on real-valued functions. In fact, we are 

able to impose a locally convex topology on them in such way 

that a sequence {Ilk} converges to zero if and only if 

{Dauk : lal f m} converges uniformly to zero on every 

compact subset of S. This so called natural topology in 

Cm(S) is the coarsest one for which the linear maps 

Da  : Cm(S) 	C(S) for lal < m, are continuous. 

If u E C(S), by "support of u" we mean the closure 
in S of the set {x E S : u(x) , 0}. For m ? 0 we denote by 

Co(S) C Cm(S) the subset of functions with compact support 

in S. In particular, it can be shown that Co(S) is dense in 

LP(S), the space of p-integrable functions on S. As before, 

the sets Cm(S) can be endowed with a locally convex topology 

in such way that a sequence NO converges to zero if and 

only if there exists a compact set K CIS  such that: 

i) support of uk  C K 
	

for every k 

ii) for lal -` m, Dauk  -} 0 uniformly in K 

20 



As it is conventional to write. 5)(S1 for the set 

CO(Q) endowed with this topology. 

It turns out that a linear functional T defined in 

0(S) is continuous if and only if <T,uk> -} <T,u> whenever 

uk  -} u in O (S) . This fact enables us to consider the dual of 
q)(S), 0'(Sl,which is also a locally convex topological 

space in such way that a sequence {Tk} converges (strongly) 

to zero if and only if <Tk,u> converges to zero uniformly 

on every bounded subset of Co(S). 

The space Lloc(S), of locally integrable functions 

on S, can be identified with a subspace of D'(S). In fact, 
if u E Lloc(S)  it can be assigned a distribution T(u) 

defined by: 

1. <T (u) ,v> = 	Iu (x) . v (x) dx 

s 

for all v E. Co  (S) 0 

We can define derivatives of distributions in such 

a way that it agrees with the conventional derivative, 

,regarding the identification mentioned above. So, if 

T E c J' CS) we define the partial derivative DaT E O ' (S) , by 

21 

2. 	. 
<Da 

 T u> = (-1 lal <T,Dau> 

for all u E Co (S) 

Using equation 1. and integration by parts, it can be 

verified that 

<T (Dau ) ,v> 	= 	(-1) l a l <T (u) ,Dav> 

for all v E C(  S) 
0 



of course, if there exists Dau E Lloc(S) then, (up to a set 

of measure zero) D
a 
u = v. 

Now, consider the set of functions u E. Cm(S) such 

that, for 1`- 
P <

co 

Pis one can see, every distribution has derivatives 

ōf all orders and, furthermore, they are independent of the 

order in which they are taken: 

a 2T 2T 

axkax~ 
j,k = 1,...,n 

axjax
lc- 

The identification 1. of 
Lloc(S) with a subspace of 

&(S) leads us to the concept of "weak derivative". Given 

u E Lloc (S) , if there exists a unique (up to a set of measure 

zero) function v E L
loc(S) such that for some multi-index 

a, 

3. 	T (v) 	DaT (u) 	in 	(S) 

then v is called a weak, or distributional, partial derivative 

of u. By equation 1. the above weak derivative of u is 

defined up to a set of measure zero by the following relation: 

v(x)w(x) dx 	(-1) I a1 4 . 	 u (x) Daw (x) dx 

for all w E Co (S) 

22 
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5 	M u I I mrp 	( (a< m 	
(Dau (x)) pdx) 11p < CO 

s 

The completion of this set with respect to the norm 

II.1„p is called the Sobolev space of order (m,p) and it is 

denoted by Hm'p(S). It can be shown (see Adams Ill) that 

this definition coincides with the following: 

Hm'p(S) = {u E LP(S) : Dau E. LY(S) , lal . m} 

where Dau is interpreted as a weak derivative. 

We also define Ho'p(S) as the closure of Co(S) in 

(S) . 

In what follows we will be restricted to the case 

p = 2 where, as it is conventional, the index p is deleted 

from the notations. 

So, the space Hm is a separable Hilbert space with 

the inner product: 

6.  
Hm (S) 

I ~z m (Da.,.) 
L2 (S) 

It turns out that Hm(Rn) = Hm(Rn) or, that Co(Rn) is 

dense in Hm(Rn). In general, this result is not true for 

generic subsets of Rn. 

We denote by H-m(S) the dual of Hm(S). As C
. 
(S) is 

o 
dense in Hm0 (S) the elements of H-m (S) determine a distribution 
on S. So, we are able to identif_y.H-m(S) with a subspace of 



01(s).. It can be proved that this subspace is the linear 

'span of the set 

IT (D01u) : m, u E L2 (S) } 

where Dau is interpreted as a weak derivative. 

Some of the concepts introduced here can be extended 

to H-valued functions where H is a Hilbert space. So, in the. 

following sections we will be often refering to 

Lp(S; H), 1 	p 	co, the Banach space of (equivalence class 

of) H-valued functions defined in S such that 

7. 	u 	= 	hI u (x)IIH dx) l/p < 	; 1 <_ p < co 

LP (5; H) 	s 

with the usual modification for p = ~. 

We can define the space of distributions on (O,T) 

with values in H by, 

£' (O,T; H) = L (0 (O,T) ; H) 

(see Lions I 311 and 32.1) 

A .sequence {W} converges to W in gtJ' (O , T ; H) if 

and only if <Wn, 0> + <W, 0> in H for all ' E 	(0,T). 

If u E Lloc(O,T; H) we can define the distribution 

W(u) E W' (O,T; H) by 

T 
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8. 	<W(u) , 0> 	= 	I u (t) ip (t) dt 
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for all 	E CQ (O,T) 

Therefore, as we have done before, we can define the 

'derivative of a distribution W E & (O,T;H) by 

9. <--  w, O > _ - <W,--> 
dt 	dt 

for all 0 E Co (0, T) 

We can also define as in 3. a weak,or, distributional, 

derivative of u E Lloc(0,T;H) by the relation 

10. W(āt) = dW 
(u) 

and therefore, as in 4. and according 	to 8 and 10, the weak 
du derivative dt E Lloc(O,T;H) satisfy 

T 

11. dt(t) O(t)dt = - 	u(t) ā(t)dt 
0 

for all p  E Co  (O,T) 

2.2 	Problems and Weak Forms  

Suppose it is given a (real) Hilbert space H and 

taking values in H, a linear operator A(t), depending upon a 

parameter t E (O,T) C R and with domain D(A(t)) C H. 

Consider the problem of 531140y;n0- the following car,di+ions; 



1. 	i) 	u(t) E D(A(t)), u' (t) E H for all t E (O,T) 
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ii) u' (t) + A (t) u(t) = f (t) E H 	for all t E. (O,T) 

iii) u (0) = u E H 
0  

This is, perhaps, the simplest evolution problem 

one can consider relative to a differential equation of first 

order in the variable t, defined in a Hilbert space H. As 

might be expected, in order to 501„e this problem 

further assumption are necessary. However, at this stage the 

simple formulation above is sufficientjwtkQobpectiyt we have in 

mind, i.e., to introduce the concept of "weak form". 

Consider a subspace V of H. If there exists a 

function u satisfying 1. we can conclude that this function 

also verifies: 

2. 	(u' (t) , v) 	+ 	(A (t) u(t),  v) 	_ 	(f (t) , v) 

for all v E. V, t E (O,T) 

where (.,.) denotes the inner product defined in H. 

This fact suggests that one can associate with the 

original problem 1. an alternative formulation represented by 

statements 1.i), l.iii) and 2. 

Every solution of the original problem is a solution 

of the alternative formulation although the ca,I2verse is not, 

in general, true. So, the alternative formulation is less 

t Here, we consider u', the derivative of u, just in a formal way. 
Of course, in a more rigorous situation, its meaning must be made 
precise. 



restrictive than the original one and, therefore, it is 

called, appropriately, a weak form for the original problem. 

Let us extend 	this concept a litUk wmoct. 

Let D(A(t))  () V / 	for all t E (0,T). Suppose 

we are given a functional a(t) = a (t; u, v) defined in 

(O,T) x V x V and bilinear in V for each t E (O,T), such 

that: 

3. 	(A (t) u, v) 	= a(t; u, v) 

for all u E D (A (t)) rl V, v E V, t E (O,T) 

If a solution of problem 1. belongs to D(A(t))  f1 V 

for all t E (O,T) it also satisfies the equation: 

4. ( '(t), v) 	+ a (t; u(t),  v) 	= 	(f (t) , v ) 

for all v E V, t E (O,T) 

This fact leads us to consider the problem represented 

by statementsl.iii), 4. and the following 

5. u(t) E V, u' (t) E H 	for all t E (O,T) 

If D(A(t))  C V for all t E (0,T), the problem 
l.iii), 4., 5. is a weak form for the original problem 1. in 

the sense deji lla 	! above. 

As we shall see in the following sections, a equation 

like the one in 4. t6 very ~`.'~ ~; :,.ci... for a mathematical 

treatment. Moreover, if some conditions are imposed on the 
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functional a(t), and on the subspace V,  the original problem 

1. and the problem 1.iii), 4., 5. are equivalent. 

Remark 2.2.1 - For a general account of weak forms see Lions 

1301 and also Necas 138.1 

Remark 2.2.2 - Following the terminology of Hadamard we say 

that a problem of the type presented in this paragraph is 

"well posed" if it admits a unique solution, the solution 

being continuous with respect to the entries of the problem. 

2.3 - Bilinear Forms  

Bilinear forms constitute the 'piece de resistance' 

in the approach we select to study evolution equations. So, 

in this paragraph we shall present some properties of 

bilinear forms defined in Hilbert spaces. A general account 

of what follows can be found in Lions 1301  and also in Necas 

1381. 

As before, let H be a Hilbert space with inner 

product denoted by (.,.) and norm 1.1 = (.,.)1/2. Let V r H 
be also a Hilbert space and write ((. , . )) and 11 . 11 for its 

inner product and norm. Furthermore, suppose, 

1. .V is dense in H 

with the continuous injection, 

2.  I v I 	II v II for all, v E V 

Consider now a bilinear form a = a(u,v) defined in 
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V. Here we make two assumptions. First, we suppose continuity 

in V, i.e., there existsa constant y such that 
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3. Ia(u,v) I 	Y IIuII IIv11 for all u,v E V 

Second, we assume the bilinear form to be coercive, 

i.e., there existsa constant a > 0 such that: 

4. a(.u,u)'- a11u II 2  for all u E V 

We notice that with the above properties the function 

a(u,u)1/2  defined in V is a norm which is equivalent to the 

original norm H 	. Furthermore, as a consequence of 3. we 
can associate with the bilinear form, a, a continuous linear 

operator A E L (V, V) such that: 

5. a(u,v) _ ((du,v)) for all u,v E V 

In view of 4. it can be shown (see Lions 1301) that the 

operator clī is an isomorphism on V. 

Now, for u E V, consider the linear functional: 

6. v E V -} a (u,v) 

Denote by D = D(A) the set of elements u E V for 

which the above linear functional is continuous on V with the 

topology induced by H. In other words, for all u E D there 

exists a constant C, in genera], depending on u, such that: 
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7. la(.u,y)I 	f Clvi 	for all v E V 

As V is dense in H, the linear functional 6. can be 

extended for all u E D to a continuous linear functional 

defined in H: 

8. v E H 	a (u,v) 

Therefore, we can define uniquely a linear operator 

from D C V to H, in general unbounded, such that: 

9. a (u,v) = (Au,v) 	u E D, v E H 

Now, let J E L(H,V) be the operator defined by 

10. (u,v) = ((Ju,v)) 	u E H, v E V 

Consider the problem AB), A'B') and A'B") vaiven 

by the following statements: 

A) u E D 

B) Au = f E H 

A') u E V 

B') a (u,v) = (f,v) 	all v E V 



B") (Au = Jf 

We have the following proposition: 

Proposition 2.3.1 — Under the hypotheses 1., 2., 3., 4. the 

problems AB), A'B'l and A'B") are 

equivalent and admit a unique solution. 

Proof of Proposition 2.3.1 

By relations 5. and 10. problems A'B) and A'B") are 

equivalent. On the other hand, problem A'B') is a weak form 

for the problem AB) and, therefore, a solution for AB) is 

also a solution for A'B'). But in this case the reverse is 

also true. In fact if u solves A'B') we conclude that u must 

belong to D. Therefore: 

(Au,v) = (f,v) 	for all v E V 

and by hypothesis 1., Au = f. The existence of a unique 

'solution follows from the fact that, under the hypotheses 

made A is an isomorphism on V. So, problem A'B") admits the 
Unique solution: 

u = -1  Jf E V 	• 

Remark 2.3.1 - The proposition-  2.3.1 is a version of the 

well knowILLax-Milgram Lemma. For a more extended account of 

bilinear forms and its relation to linear operators see also 

Kato 1201, 
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Remark 2.3.2 - Under the hypotheses 1., 2.,3., and 4. it can be 



shown that D(A) is dense in V (ox' H) and that the linear 

'operator A is a isomorphism between D(A) and H when D(A) is 

endowed with the norm, ' 

II•IID(A) 	- 	IA.12) 1/2 

Remark 2.3.3 - Let us take H = L2(S) and suppose V is such 

that 

H
o  (S) C V C H I  (S) 

For (i,j) E (1,...,n} consider the bilinear form 

11. a (u,v) = I f (x) Diu (x) Djv (x) dx 
s 

.defined for all u,v E V, with f E Lo(S). 

Fixing u E V and making v range in Co(S) the 

equation 11. defines a distribution. So, we write 

12. a (u,v) = <T (f .Diu) , Div> 

where, as in paragraph 2.1 the symbol <.,.> denotes the 

duality between 	(S) and gp' (S) and T(.) denotes, according 

to relation 2.1.1, the identification between Lioc(S) and 

(S). 

Recalling the definition of derivative of a 

distribution we can write, 
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13. <T(fDiu).,D.V> _ - <D.T(fDiu) ,v> • 

On the other hand, if D.(f.Diu) exists, according to 

2.1.3 we can write 

14. D.T(f.Diu) = T(D.
3

(f.Diu)) 

Therefore, comparing 12., 13., and 14 we have 

15. a(u,v) _ - jD(f(x)D u (x))  v (x) dx 

for all v E C:(5). 

As C0 (S) is dense in L2(S) the equation 15. defines 

a linear functional in L2.(S) and therefore D~(f.Diu) E L2(S). 

We conclude that the linear operator associated with the 

bilinear form a, has the form 

16.  - D.
3 
(fD u) i 

Also 	, the domain D(A) is determined by 

17. i) 	u E V, Au E H 

ii) 	(Au,v) = a(u,v) 	for all v.E V 

In particular, if V = H1(S) the condition ii) above 

is always verified since CD S) is also a dense subset of 



H'CS) and so, this condition follows from 15. 

,Remark 2.3.4 - We shall introduce here the concept of k-

regularity of a bilinear form. 

Suppose we select the Hilbert space V with 

H' (S) C  V  C  Hm(S) 

A bilinear form, a, in V, is said to be k-regular 

•with respect to V, if for all f E Hr(S), 0 	r 	k, there 

exists u E H2r+m(S)  such that 

18. 	a(u,v) 	= 	(f ,v) for all v E V 

The concept of k-regularity, as we shall see, plays 

a very important role in the situation where the bilinear 

forms are associated with linear differential operators. In 

this case this property depends on the coefficients of the 

differential operator, on the space V and on the regularity 

of the boundaries of the domain S. (see Lions 130j) 
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3 - 	EVOLUTION EOUATIONS 

We shall be concerned. in a Hilbert space. with the 

solution of equations with the following generic form: 

du (t) + A(t) u(t) = f(t) 
dt 

where A(t) is a linear operator, iar..general unbounded. 

Soc-h. 	equations  

Evolution Equations. As the operators A(t) that occur in 

practical cases are usually partial differential operators, 

the 	equations we 5}.911T. be treating are, in fact, 

parabolic partial differential equations. Although several 

methods have been used 	to study this sort of 

equation 	we will be following closely the work of 

Lions 1301. Our main objective is to derive existence and 

uniqueness results for the solution of the above equation 

under special hypotheses, namely, symmetry and 

'differentiability of the principal part of the linear 

operator A(t). As we shall demonstrate in paragraph 3.4, 

under these circumstances the above equation can represent 

the solution of a filtering problem . 

In order to show the existence of a solution for the 

evolution equation, two different techniques v,  '` be used. 

The first one is basically a projection theorem in Hilbert 

spaces. The second, is the so called Galerkin technique, and 

its main feature is to present the solution of the evolution 

equation as the limit of a convergent sequence of weak 

solutions of the original equation. This is the procedure 

with which we shall be concerned throughout this work. 

The reason for presenting 	these two techniques 

is purely didactic. We believe that by presenting an alterna 

tive existence proof we introduce an element of comparison 

for the Galerkin technique. 
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In paragraph 3.1 we present an existence,and ex 

istence and uniqueness result for a weak form which, with 

some manipulations, becomes an existence and uniqueness 

result for the Evolution Problem introduced in paragraph 

3.2. In paragraph 3.3 we present the Galerkin technique. 

Finally, in paragraph 3.4 we apply the results to the non-

stochastic representation of the solution of the filtering 

problem introduced in paragraph 1.1. 

3.1 - A Weak Form 

As before, let H, V be two Hilbert spaces with inner 

product and norm denoted as in paragraph 2.3. 

We suppose V CH with a continuous injection 

1. 	`- IIvII 	for all v E V 

For all t E IO,T] let aj  (t) = a. (t; u, v) 	= 0,1, 
be continuous bilinear forms in V such that: 

2. Iao(t; u, v)I 	Yo IIuII IIv II 

3. (al(t; u,  v)I 	Y1 	II Ivi 

for all u, v E V 

for some positive constants yo  and Yi . 

We suppose the bilinear form ao(t) to be symmetric, 

4. 	a 
0 
(t; u, v) 	= a 

0
(t; v, u) 
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Son, all 	t E [O,T] ; u, v E. V, 

and coercive, in the sense that for some A E R and cs > 0 
the following inequality holds: 

5. ao(t; u, u) + A l u12 > a 111111  

for all u E V 

t E. [o,T] 

It turns out that the bilinear form a(t), obtained 

by adding a0  (t) to al(t), also verifies a inequality of 

the above type. In fact, writing 

6. a(t) 	= a (t) + al (t) 

t E [O,T] 

we have: 

all  H 2 	_̀ AluI 2  + a(t; u, u) = 

+ a(t; u, u) - al(t; u, u) 

So, by hypothesis 

6IIu112 	A u1 2 	+ a(t; u, u) 	+ 	Yi IIu 11 lul 

Using Cauchy's inequality p.q 	pee/2 + q2/2e 
Y 

with e >2- , we have, 
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(a 	2 ) II u I I 2 ` 	(a + 2 ) IuI 2 + a(t, u, u) 

for all t E [0,T], u E V, which represents a coercivity 
°condition similar to the one in 5. 

Therefore, as a consequence of hypotheses 3. and 5. 

we also write for the bilinear form a(t): 

7. 	a(t; u, u) + X1u12 	all u11 2 

for all t E [0,T , u E V 

for some A E R, a > O 

We also assume the following hypotheses: 

8.  ao (.; 	u, 	v) E 	C1 (1O.,TI); 	R) for all u,v 	E V 

9.  al C.; 	u, 	v) E 	C ( 0, T ~) ; 	R) for all u,v 	E 	V 

10.  a' Ct; 	u, 	v) I `_ 	Y 	II u II 	11 v for all t E 	[O,T] ; 
u,v E V 

where a'(.; u, v) represents the derivative of ao(.; u, v). 

Now consider the following problem: 

11. i) 	u E L2 (O,T;V) , u' E. L2 (0,vH) 

ii) 	(u' (t ,) ,v) + a (t;u (t) ,v) 	= 	(f (t) ,v) 	v E V 

t E [0,T] 
with f E L2 (0,T) 



iii) u (0) = 

where u' = dt is taken in distributional sense. 

We shall prove the following result: 

Theorem 3.1.1 - Assuming hypotheses 1, 2, 3, 4, 5, 8, 9 and 

10. the problem 11. admits a unique solution. 

Remark 3.1.1 - Before we prove the theorem, let us establish 

the point that the problem 11. can always be reduced to a case 

where the coercivity condition 7 holds with A = 0. 

In fact, under the transformation: 

12. w(t) = exp (-At)u(t) 	t E (0,T) 

the equation ll.ii) can be replaced by the following 

equivalent equation: 

13. (w' (t) ,v) 	+ a (t;w(t) ,v) 	+ A (w(t) ,v) 	_ 

exp (- At) f (t ) 

where the bilinear form; a(t;u,v) + A(u,v) satisfies 

inequality 7. with the term in A deleted. As the transfor-

mation 12. doesn't alter the other two statements of the 

problem 11. we shall, hereafter take inequality 7. with A = 0. • 
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Proof of uniqueness 

If there are u1  and u2  solving the problem, their difference, 

,au = u1  - u2, satisfies the following equation: 

14. (au',v) + a(t;au,v) = 0 	v E  V 

t 	(0,T) 

Taking v = au we have 

(au',au) + a(t;au,au) = 0 	t E (0,T) 

By inequality 7. (with X= 0) , 

-1-d-   laul 2  + QII auII2  f-
2 dt 

0 

So, 

15. d  IauI2 < 0 
dt 

as Au (0) = 0, it follows that au (t) = 0 t E (0,T) and the 

uniqueness is proved. • 

Remark 3.1.2 - As one can see by the proof, the solution, if j& 

exists, will be unique/even in the case ofanon-homogeneous 

initial condition.* 
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Proof of existence 

For t E R let b(t), bo(t), b.Ct) be bilinear forms in V 

such that: 

b (t) 	= 	bo  (t) + b l  (t) 	t E R 

b. (t) = a . (0) 
	

t < 0 , 	j = 0,1 

.16. 	b j  (t) 	= a j  (t) 	t E [0,T , j = 0,1 

b l  (t ) 	= a l (T) 
	

t > T 

bo(t)  = a o (T) + c (1 - exp (T 	t)) a o(T) 
	

t > T 

where the parameter E > 0 is conveniently selected in order 

to guarantee the existence of positive constants a, a, a 

such that: 

17. bo  (t;u,u) 
	

I1 u 11 2  

18. abo  (t;u,u) - bo  (t;u,u) 	_> a Mu112 

for all t E R, u E V. 

As a consequence of the above characterization the 

bilinear form b(t) is continuous in V x v for each t E R 

and we write, 

41 



20. bo  (.;u,v) E C1  (R}) 

21 b l  (.;u,v) E c(R) 

Now let f E L2(R;H) 

for each u,v E V 

for each u,v .E v 

be such that, 
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19. 	jb(t;u,v) 1 	- 	YlIu 11 	v II for all u,v E V 

We also remark that, by definition, 

22. f (t) 	= f(t) 	for t E. (O,T) 

f (t) = 0 	otherwise 

With the real valued function h defined by, 

23. hCt) = exp (- 1  at) 	t E R 
2 

Consider the following auxiliary problem: 

24. i) 	hw E L2(R,V) , hw' E L2  (R,H) 

ii) 	(h(t)w' (t), h(t)V' (t)) 	+ 

R 

+ b(t;h(t).w(t), h(t).V (t))dt = 



(equation 24.ii) - continuation) 

(h (t) f (t) , h (t)1P (t) ) at, 
R 

for all V-valued functions i  such that: 

h4 E L2(R,V), 

h'P' E L2  (R, V)/  
4(t) = 0 for t 	0. 

iii) w(t) = 0 	for 	t 	0 

The relation between the problem 11. and the problem 

above is contained in the following Lemma: 

Lemma 3.1.1 - If w is a solution of problem 24. its restrketion 

to (0,T) solves problem 11. 

Proof of Lemma 

For some v E V, 	E. q)(11-1-) the function: 

r
t 

25. 	( 	f(s) ds) . v 

Jo 

satisfies: 

h(t) . ( 	(s)ds) .v E L2  (R1-;17), 

0 
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h(t) .¢ (t) .v E L2  (R+; V), 

t 

Therefore, if we choose ip such that !li(t) _ ( I ¢' (s) ds) v for 
> 0 as a test element in 24.ii) we can write, 	o 

CO 

(h(t)w' (t) , h(t)¢ (t)v) + b(h(t)w(t) , h(t)¢ (t)v)dt = 

0 

o 

_ (h (t) f (t) , h (t) ¢ (t) v) dt 

0 

As the equation above is true for all ¢ E 6)(R+) we conclude 

that, almost everywhere, 

26. 	(w' (t) ,v) 	+ b(t;w(t) ,v) 	= 	(f (t) ,v), 

for all v E V 

t E R 

Therefore, the restriction of the function w to the 

interval [0,T1 _n.,o,t ; ies all the requirements of problem 11. 

and the lemma is proved.•. 

We now return to the proof of existence. By lemma 

3.1.1, this can be done by proving the existence of a 

solution for problem 24. So, let E be the space of functions 

fwf that verify 	statement 24.i) and 24.iii).This space can 

be made into a 1-1,I tfsfaūyendowed with the following inner product: 
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27. (wl ,w2 ) 	_ E  Ch(t)wi(t), h (t) w2  (t)) + 

   

+ (h (t)wi (t) , h(t)w(t)) dt/  

for all w1 , w2  E E. 

Consider the subspace F C E of elements 1P E E such that: 

hiy' E L2  (R, V). 

Define the following bilinear form on E x F: 

03 

28. B(w,,p) 	= 	(h(t)w' (t), h(t)Ip' (t)) 	+ 

0 

+ b(t;h(t)w(t), h(t),I,' (t)) dt, 

Also, define the following linear functional on F: 

29. Lop) 	=. I (h (t) f (t) , h(t) . 1y' (t)) dt. 

0 

Recalling equation 24.ii) one can observe that the problem 

24. is equivalent to the problem of solving the following 

equation in the Hilbert space E: 

30. 	B(w,1P) = L(P) for all p  r F, 



In order to establish the existence of a solution for the 

'above equation we shall make use of the following result, 

which we Tale . here without proof, (the proof can be found 

in Lions 1.301, p. 37 ). 

Lemma 3.1..2 - Let E be a Hilbert space and F C E a subspace. 

If B is a bilinear on Ex F such that: 

i) B (. , 1p) is continuous for all ip E F 

ii) There existsa constant C > 0 such that: 

B(v),v)) ' cII 1P H E  for all ip E F 

Then, if L(Ip) is a continuous linear form on F, 

there existsa solution to the equation: 

B(w,IP) 	= L(ip) 	for all 1P E 

Let us show that the bilinear form B defined in 28. and the 

linear form 29 . s.* fy the requirements of the a::0,,„ 

Equation 28. and inequality 19. give us: 

CO 

B (w,t,) I 	< 
1 	

h(t)w' (t) I Ih(t)IP' (t) I 	+ 

Q 

+ 	;11h(t)w(t)  11 II h (t) vp' (t) 11 dt. 
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So, fixing tp E F, recalling 27. and using Holder's 



inequality we have 

X31. 	113(w,01 	C(V)) 11w11E, 

where CM is a constant depending on 11 11E  . 

On the other hand, using definitions 16. we can write: 

32. B (i),I,) 	Ih(t) q' (t) 1 2 	+ 	h2  (t)b0  (t; 0  (t) ,Ly' (t)) + 

0 

+ b l  (t; h (t) i  (t) ,h (t) i' (t)) dt 

for all p  E F 

As b°(t;u,v) is by definition a symmetric form, 

b (t; p (t) , ip' (t)) 	= 1 d 
b (t; ip (t) , i (t)) + 

° 	2 dt °  

- 	b' (t; (t) ,0 (t) ) 
2 

Substituting in 32 we have, 

o 

33. B (V),i) 	= 	lh(t)ip(t) 1 2  + 
0 

+ 2 h2  (t) (d b°  (t;  tp (t) 	(t)) - b' (t; LP (t) ,ip (t)) + 

b1  (t;h (t) p  (t) ,h (t) IP ' (t)) dt,, 
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for all 1p E F. 

Using integration by parts we deduce the following identity: 

-00 

1 	h2 (t) 
	bo (t; IU (t) ,VP (t)) dt 

2 	dt 
0 

03 

= a 	h2 (t) bo (t; tp (t) , (t)) dtt 

for all ip E F. 

Substituting in 33. we have, 

o 

34. 	B(iy,) 	= 	jh(t)0(t) 12 + ab(t;h(t)0(t),h(t)Iy(t)) + 

0 

- b' (t;h (t) (t) ,h (t) 0 (t)) 	+ 

+ bl (t,h (t) ip (t) ,h (tW (t)) dt,, 

for all ip E F. 

Making use of inequalities 18. and 19., we have 

CO 
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f 

~e 

B(V';Vi) 
~o 

Mt) 	(t) 1 2 + ā II h (t) (t) 2 

Y II h (t) 1P(t) II lh (t) 11)1 (t) I dtl 

for all p E F. 



Using Cauchy.'s inequality: pq -- 2e 
P2 + 2 

Eq2 
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h(t)IP  (t) 1 1 2 	+ 	C1-' 1111(t) 	(t)11 2  

2e II h (t) 	(t) 11 2  - 2 e Ih(t) ' (t) 1 2  dt, 

for all ti, E F. 

Therefore, by a convenient selection of the parameter e we 

conclude that there existsa constant C > 0 such that: 

35. 	B(4),4)) 	CII vI II E  for all ip E F, 

As the linear form L, defined in 29. is continuous, 
'in view of results 31. and 35., we are now able to apply 

Lemma 3.i.2 to equation 30. So, by this lemma, equation 30. 

admits a solution and so does problem 24. By Lemma 3.1.1, 

there exists 	a solution to problem 11.• 

In the next paragraph we shall see how the result 

presented in Theorem 3.1.1 can be used in order to obtain an 

existence and uniqueness result for evolution equations. 

Remark 3.1.3 - We have borrowed the technique used in the 

proof of Theorem 3.1.1 from Lions 1301 where a equivalent 

result is derived for bilinear forms a(t) which are hermitian 

and continuously differentiable in relation to t. (Theorem 

6.1 , p. 65 ). Here we have shown that Lions result is still 

valid under weaker conditions, i.e., symmetry and 

differentiability imposed only in the principal part of the 

bilinear form a(t). As we shall see in paragraph 3.4, this is 

exactly what happens for evolution equations that arise in 

non-linear filtering theory. 



3.2 - Existence and Uniqueness  

In addition to the assumptions made in the last 

paragraph, let us take 

1. V dense in H. 

Under the hypotheses made we are now able to 

associate with the bilinear forms aj(t), t E [O,T], j = 0,1 

a set of linear operators A,(t) in the sense suggested in 

paragraph 2.3. So, 

2. A(t) : D (Aj  (t)) C V -} H 	 t E [O,T] 
j = 0,1 

where D(A.(t))denotes the set of all u E V such that: 

laj(t;u,v)I `- C for all v E V 
j = 0,1 

where C is a constant in general depending on u. 

In particular, by hypothesis 3.1.3, D(A1(t)) = V and 

Al  (t) E. L(V,H) for all t E [0,T]. 

We also recall that, by the argument developed in 

paragraph 2.3, we have: 

3. aj  (t;u,v) 	= 	(Aj  (t)u,v), 

for all u E D (A. (t)) ; v E V;t E [O,T] 

j = 0,1, 
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Let us denote by A(t). the linear operator obtained 

by adding Ao  Ct). to Al  Ct)_ : 

'4. 	A(t)_ = A (t)_ +.A1  (t), 	t E [O , T1 

This operator is the one associated with the bilinear form 

a(t) and therefore, 

5. a (t;u,v) 	= 	(A Ct) u,v) 

for all u E D (A (t)), v F_ V, t E tO,T] . 

Consider now the Evolution Problem, 

6. i) 	u E L2  (O, T; V) , u' E L2  (O, T; H), 

u(t) E D (Ao. (t) ). for all t E. (O,T), 

ii) u' (t) + A(t)u(t) = f (t), 	t E (O,T) 

with f E L2  (O,T;H), 

iii) u(0) = uo  E D (Ao  (0) 

where u' is taken in the distributional sense. 

We shall prove the following theorem: 

Theorem 3.2.1 - Assuming the hypotheses of Theorem 3.1.1, if 

V is dense in H, problem 6. above has a unique 

solution. 
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Remark 3.2.1 - In other words, Theorem 3.2.1 states that, 

'under certain conditions, equation 6.ii) has ā  unique solution 

u E L2(O,T;V). Moreover, the derivative, u', is an element 

'of the space L2(0,T;H). 

This result concerning the derivative, is the 

characteristic of the theorem. 

In fact, the existence of a unique solution 

u E L2(O,T;V) for equation 6.ii) can be derived under 

considerable weaker conditions. 

It can be shown (see Lions, Theorem 1.2, p. 102) that 

if A(t) is a coercive linear operator, A E Lm(O,T;L(V,V')) 

'equation 6.ii) admits a unique solution u such that 

i) u E L2(O,T;V). 

ii) u' E L2(0,T;V') 

iii) u = uo  E H 

The objective in this section is to show that, by 

'strengthening the hypotheses relative to the principal part 

of the operator A(t), we can obtain a stronger result for the 

derivative. This result can be achieved in the form of a 

corollary of  the general result mentioned above. However, 

for didactic reasons, we present this result as a theorem.• 

proof of Theorem 3.2.1 

We start by supposing the existence of a function Z such that: 

7. 	Z E. L2(0,T;V), Z' E L2(0,T;H). 
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Z(t) E D (Ao  (t))/ 
	

for all t E [0,T], 



A(t)Z(t)  E L2  (O,T; H1/ 	Z(0) = uo  . 

Consider the problem; 

8. 	i) 	w E L2 (O,T;V) , w' E L2  (O,T;H), 

w(ti E D(A(t)) 0 	, for all t E  [O,T] 

ii) w' (t) + A(t)w(t) = g(t), 	t E (O,T), 

with g(t) = f(t) - A(t)Z(t)  - Z' (t). 

iii) w (0) = 0 

We notice that, given the existence of a function Z 

which verifies the requirements in 7., problems 6. and 8. are 

equivalent under the tranformation, 

9. u = Z +w, 

Now, consider the equation, 

10. (w' (t) ,v) + a (t;w(t) ,v) 	= 	(.g (t) ,v) 

for all v E V, 

t E (O,T). 

By theorem 3.1.1 the weak form 8.i), 8.iii), 10. has 

a unique solution. Therefore, to prove the theorem.it is 

necessary to show that a solution of the weak form 8.i), 

8.iii), 10. is also a solution for problem 8. 
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In fact, let w be the solution of the weak form. 

'Then, we can write for all t E (O,T), 

'11. 	a (t;w (t) ,v) 	= 	(g(t) - w' (t) ,v)/ 	v E V. 

Using the result of proposition 2.3.1 it follows 

that: 

12. w(t) E. D(A(t), t E (O,T)i  

13. A(t)w(.t) = g(t) - w' (t), 	E (O,T)l  

and therefore w solves the problem 8. 

So, to complete the proof of the Theorem we must 

prove the following, 

Lemma 3.2.1 - There existsa function Z which verifies 

requirements 7. 

Proof of Lemma 3.2.1 

For each t E [0,T] let Z(t) be the solution of the following 

equation: 

14. ao  (t; Z (t) ,v) 	= 	(Ao  (0)uo,v)/ 	v E V. 

By proposition 2.3.1 there exists a unique solution 

to the above equation satisfying Z(t) E D(Ao(t)) for 

t E IO , T] . Furthermore , 
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15. A (t) Z (.t). = Aa CO) u p +A1(t)Z(t) E L2 CO,T; H)~ 

16. Z (0) = uo , 

Using the coercivity hypothesis 3.1.5 in equation 

14. with v = Z(t) as a test element we also have: 

17. 	sup 11 Z (t) 	f- 	a-1 IA0 (0)u0 
[0,11 

So, to complete the proof, we only need to show that 

E L2(0,T;H). In fact, by 15. we have: 

18. 	Ao (t+h) (Z 	+h) - Z(t)) + (AQ(t+h) - Ao(t))Z(t) =0) 

t E (0,T)) 

and therefore, 

a(t+h); h-1 (Z(t+h) - Z(t)),v) = 

t+h 

= - h-1 	aō (s; Z (t) ,v) dsl 

it 
t E (0,T). 

Taking v = h-1 (Z (t +h) - Z(t)) as a test element, 
using hypotheses 3.1.5 (with A = 0), 3.1.10 and relation 17.; 

we have: 
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21. 	a 11/1-1  (Z (t + h) - Z (t)) II ` 	Yoa-1  I 1 (0) uo  I>  

t E  (O,T) 

Therefore, there exists an element Z' (t) E V for each 
t E (O,T) such that as h -- 0, 

h-1 
(Z (t + h) - Z (t) ) 

weakly 
4- Z ' (t) . 

By 21, Z'Ct) E  L-(0,T;V) and so, the Lemma is 

proved . • 

3.3 - The Galerkin Technique  

We now present an alternative proof for Theorem 3.2.1 

and also derive estimates for the solution of the Evolution 

Problem 3.2.6. We shall achieve these objectives by using a 

technique in which the evolution equation is approximated by 

a sequence of ordinary differential equations. 

Let us assume all the hypotheses of paragraph 3.2.. 

Suppose we are given a family of subspaces Vn, n = 1,2,..., 

such that: 

1. Vn C  Vm  C  V for all n _` m; n,m = 1,2,... 

2. U Vn is dense in V 

In addition, suppose we are able to select from each 

subspace Vn  an element Eō  such. that: 
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3 . ō 	 in V as n -~ 

For each natural number, n, we can, therefore, 

associate with the Evolution Problem 3.2.6 the following weak 

form: 

4. 	i) 	un E L2(O,T;Vn) , un E L2(O,T;Vn) 

ii) (un (t) ,v) 	+ a (t; un (t) ,v) 	= 	(f (t) ,v) 

for all v E Vn 
t E (O,T) 

iii) un (0) _ C ō E Vn 

In relation to the weak form above we have 

Lemma 3.3.1 - For each n = 1,2,... the problem 4. above has 

a unique solution. 

Proof of Lemma 3.3.1 

Let the integer N denotes the dimension of the subspace Vn 

and v, j = 1,...,N, a set of linearly independent elements 

of Vn which constitute a basis in this subspace. 

Let M and K(t), t E IO,TI, be N x N matrices, with 

elements given by: 

5. Mi,j  

6. Ki,j(t) 
= a(t;vi,vj) 
	t F [0 , T] 



for i,j = 1,...,N 

Let k(t) = (f1  Ct) , f2  (t) , ... , fN'(t) 1. be a RN-valued 

..function with, 

7. fi  (t) 	= 	(f (t) ,vi) 	t E (O,T) 

i = 1,...,N, 

Now, consider the system of N ordinary linear 

differential equations represented in matrix 	form by: 

8. M. a' (t) + K(t) . a Ct) = i(t) 	t 	E (O,T) 

where a = (al ,a2,...,aN) is a R -valued function. 

v j  , j = 1,... ,N are linearly independent, 

det M # 0. Therefore, the equation above admits a unique 

solution satisfying the initial condition a(0) = ao  E RN  

where, 

9. Man 	= 	( ( o,v1 ) , ( 0 ,v2 ) , ... , 	 o,vN) )  

Take the function un  defined by: 

10. un  (t) 	= 	aj  (t)v j  i  
j=1 

t E (0,T). 

Simple manipulation. shows that un, given as above, 

satisfies equation 4.ii). It also satisfies 4.1.) and 4.111) 

and, hence, un  is a solution of the weak form 4. Besides, it 

is the unique solution, since every solution must have the 

form 10. and the initial value problem 8., 9. has a unique 
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solution. As the argument is valid for all n, the Lemma is 

proved.• 

Now, consider the equation 4.ii). By Lemma 3.3.1 we 

can choose v = un(t) as a test element. Substituting in the 

equation we have, 

11. (un (t) ,un  (t)) + a (t;un  (t) ,un  (.t)) 	= 	(f (t) ,un  (_t) )J  

t E (O,T). 

,Using hypothesis 3.1.5 (with A = 0), 

12. dt 
 I un  (t) 1 2  + 2a11  un (t) 11 2 	21 f n  (t) I I un  (t) I, 

t E (O,T), 

Integrating over (0,$), s E (0,T), 

s 

Iun(s)12 + 2Q 	Hun (t)II2dt  -` 	I0ōI 2  

s 

+ 	2 	I fn  (t) I I un  (t) I dt. 

0 

Making use of Cauchy's inequality:pq -̀ 
2e 

p2 + 2 
 Eq2 

s 

14. 	I un  (s)_ 1 2  + (2a - ) 	IIun  (t) II 2  dt 

0 
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Choosing the parameter c conveniently and taking into account 

the hypothesis 3.,we can derive, from the inequality 14. the 

following estimates: 

T 

15. II un(t) II2 dt 	C(Iu0 I2 + 	I f(t) 1 2  dt). 
o 	 o 

T 
2 

16.  Iun(s) I 	C(Iuo 1 2  + 	If(t) I2 dt), 
0 

where s E [O,T]; n = 1,2,... and C is a constant. 

Let us return to equation 4.ii). Taking now v = un(t) 

as a test element we obtain, 

17. (un (t) ,un  (t)) + a (t;un  (t) ,un (t)) 	= 	Cf (t) ,un (t) )2 

t E (0,T). 

Recalling the composition of the bilinear form a(t), 

we have, 

18. !u111(t)1 2     + a o  (t;u  n  (t) ,u 'n  (t)) 	= 

- ai  (t;un  (t) ,un (t)) + (f (t) ,un (t) ), 

t E (0,T). 

As a0(t) is symmetric, (hypothesis 3.1.4), we have, 
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19. 	2lu' (t)1 2 + 
	aQCt;un(t),uz(t)) = aP(t;un Ct) r un Ct) ) + 

dt 

Integrating 

20, 	2 

Hence, using 

Jo 

- 

over 	(0,$), 

s 

I ui 	(t)~ 2 

= a 	0; ō, ō) 

- 2 

hypotheses 

s 

J 

2a1 (t;un (t) ,un (t)) 	+ 	2 (f (t) ,un (t) )~ 

	

t 	E 	(0,T) 

s 	E 	(0,T), 

dt + 	ao (s;un(s),un(s)) 

s 

+ 	a' (t;un(t) ,un(t) )dt 	+ 
o 

0 

s 

 a l
. 
(t-u

n 
(t) ,un (t)) 	+ 	(f (t) ,un (t)) dt . 

0 

3.1.2, 	3.1.3, 	3.1.5 	and 	3.1.10. 

21. 	2 	I un (t) I2 dt + a ll un (s) H 2 -̀ Yo ~~ ō II 2 	+ 

o 

s 

Y' II un (t) ►I 2 dt + 2 	Y1 II un (t) II II u (t) I Idt + 

Jo 

s 

If (t) I Iun(t) I dt. 

Using twice the Cauchy' s inequality pq = ZE p2 + -2- eq2 	 nd 



rearranging terms, 

22. (2 - 1  - 
c i 

s 

e 	
l un (t ) l 2 dt + all u n  (s ) 11 2 ` yo 11 ō l2  + 

2 
0 

S 	 S 

Il un  (t) 2  dt + 'YO + £,Y,) 	 If(t)j2  dt. 
2 

Choosing the parameters el , E2  conveniently, using hypothesis 

3. and the previous estimate 15. we are able now to obtain 

the following estimates: 

T 	 T 

23. lun (t) 1 2dt 	̀  	C (Il uo112 + 	I f (t) 1 2  dt), 
0 	 0 

T 

24. llun(S)I1 2 5 	C(IIu0II 2 	+ 	If(t) I 2 dt, 

0 

where s E [O,T]; n = 1,2,... and C. is a constant. 

Let us examine our position so far. We have obtained 

four estimates concerning the solution of the problem 4., 

namely,inequalities 15., 16, 23. and 24..Inequality 15. 

suggests that, as n varies, the solution un  of the problem 

4. ranges in a bounded subset of the space L2(O,T;V). Also, 

inequality 23. suggests that the derivative un ranges in a 

bounded subset of L2(O,T;H). Therefore we may extract from 

{un} and {un}  weak convergent sequences {u'} and {um  }such 

that: 

25. 	um 	w E L2(O,T;V) weakly 
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26. u' } Z E L2  (0,T; H). weakly, 

Using conventional arguments involving weak 

convergence and derivatives in distributional sense one can 

show that, 

27. Z = 

where the derivative w' is taken in distributional sense. 

Naturally we are expecting the function w defined by 

25., 26. and 27. to be a solution for the Evolution Problem 

3.2.6. In fact, this is the case. 

Let us start by fixing some arbitrary natural number 

n1. Consider the equation 4.ii) for n > nl  with validity 

restricted to Vn1 C  Vn. Multiplying both sides of the 

equation by 11) (t) where 4 E C 1  ([0 , T]) with 11J(T)  = O, we obtain 

the following equation: 

28.  (un (t) , v (t)) + a Ct;un  (t) ,vip (t)) 	= 	(f (t) ,v1, (t) )/ 

for all v E Vn ,  
1 

t E (O,T), 

n > n1  

Integrating over (O,T) and using integration by parts in 

order to eliminate the derivative of un, we have, 

T 

J
29. 	- 	(u (t) ,v,)' (t)) + a (t;un  (t) ,v4y (t)) dt = 

0 
T 

= 	(eō,v11) (0)) 	+ 	(f (t) ,v11, (t) ) dt, 

0 



T 

0 

30. 

for all v E Vn  
1 

n > 

But by 25. there existsa subsequence {um : m > n1} converging 

weakly to w. So, recalling hypothesis 3. and passing to the 

limit the equation 29., we obtain, 

(w(t) , v tj,' (t)) + a (t;w(t) ,vIP (t)) dt = 

T 

= (ua,vp(0)) + 	(f(t),vp(t)) dt)  

for all v E. Vn  1 • 

Choosing 	E @ (0,T) we have, 

((w' (t) ,v) 	+ a (t;w(t) ,v)) ip  (t) dt = 

T 

(f (t) ,v) (t) dt, 

0 

for all v E Vn  
1  

As the above is valid for all 1P E D(0,T) we can write: 

32. 	(w' (t) ,v) + 'a (t;w (.t) ,v) 	= 	(f (t) ,v)1  

for all v E Vn  

t E  (0,T). 
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31. 

In this relation the index n1  is fixed arbitrarily, and so, 



by hypothesis 1., we have, 

'33. (w' (t) ,v) + a(t;w(t) ,v) 	_ 	(f (t) ,v)~ 

for all v E Vj 

t E (O,T). 

By hypothesis 3.2.1, V is dense in H. So, using Proposition 

2.3.1.,we deduce, 

'34. w' (t) + A(t)w(t) 	= f (t)J 	t E (O,T). 

which is the equation 3.2.6.ii). 

With respect to the initial condition, we observe 

that, multiplying both sides of equation 33. by t,(t) where 

E C1(IO,TI) with t(T) = 0 and integrating over (0,T)1 we 

obtain after using integration by parts, 

T 

(w (t) ,W (t)) . + a (t;w (t) ,vip (t)) dt = 

T 

OAT (0),vi,(0)) 	+ 	(f(t),v (t)) dtl 

0 

for all v E V. 

Comparing with 30. we have, 

36. 	(w (0) ,v) i, (0) 	= 	(uo ,v) 0 (0)/ 

E Vn 
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,Again, as n, is arbitrary and V is dense in H we conclude 

w(0)• = u 0 

Therefore w is indeed a solution for the Evolution 

Problem 3.2.6. As this solution must be unique (by. for 

instance, an argument similar to the one presented in the 

proof of Theorem 3.1.1), we have proved again Theorem 3.2.1.• 

'Remark 3.3.1 - The technique used in this paragraph in order 

to show the existence of a solution for the Evolution Problem 

3.2.6 is due to Galerkin who introduced the method for elliptic 

equations. For parabolic and hyperbolic equations the technique 

was introduced respectively, by Green and Faedo (see Lions 1301 

for bibliographical references). 

An important aspect of the Galerkin technique lies 

in the fact that it provides us with estimates for the 

solution of the Evolution Problem 3.2.6. In fact,recalling 

estimates 15., 16., 23. and 24.,we are able to write for the 

'solution,u,the following inequalities: 

II u 
L2 (O,T. ;V) 

II u II co 
L (O,T;H) 

u' II 	IIL2 CO, 
T. ; H) 

u II IIL~
(O,T;V) 

C~ 
1 

< C 2 

< CE2 
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where C is a constant depending only on a,y 0 	and y 1/ and 
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1 luI 	+.1IfII 
L2(O,T;H) 

C2 	iluoll +llfl 
L2  (O,T; H) 

In particular, estimates 37.i) and 37.iii) are 

sufficient to guarantee that u is a (almost surely) continuous 

function from [O,T] to H. (see Lions 1311  p. 102) . • 

Remark 3.3.2 - We have shown that the sequence {un} of 

solutions of the problem 4. admits a weakly convergent 

subsequence to the solution of the Evolution Problem 3.2.6.. 

In fact this convergence is strong. 

Considering equations 3.2.6.11) and 4.ii), we can 

deduce the following identity: 

38. (.11 1 (t) - um(t),v) + a(t;u(t) - um(t),v) 

= 	(f (t) ,v) - { (um (t) ,v) + a (t; um  (t) ,v) }f  

for all v = v + vE. V, with v E Vm  and t E (O,T). 

Taking v = u(t) - um(t) as a test element we can identify 

v = -um(t)  and v = u(t). Therefore, using inequality 3.1.7 

(with A = 0), equation 38. yields: 

39. d lu(t) - um(t) 1 2  + allu(t) - um(t) II 	
< 

dt 

(f (t) , u (t)) - { (um (t) ,u (t)) + a (t; um  (t) ,u (t)) }l  

t E (O,T), 



Integrating over (0,$) for s E [O,T] we have, 

40. 	l u(s)  - um (s) 12  + a I llu(t) - um(t) 11 2  dt 	< 

s 

luo 	E 0 1 2  + 	(f(t),u(t)) — {(um(t),u(t) + 
o 

+ a(t;um(t) ,u(t)) } dt. 

By hypothesis 37 	as {um} + u, weakly, the right side of 

the above inequality tends to zero as m + o. Therefore the 

subsequence (um)  converges strongly to u in Lo(0,T;H) or 

L2  (0, T; V) . • 

Remark 3.3.3 - We have presented two procedures for showing 

the existence of solution for evolution equation. As we 

mentioned before,we have borrowed these procedures from Lions 

(13 01 and l5il). Alternative techniques of achieving similar 

results can be found in Ladyzenskaya (1271  ) (for parabolic 

equations) and in Showalter (1131). 

3.4 - An Replication to the Filtering Problem 

Here, we shall apply the results derived in the last 

paragraphs to the non-linear filtering problem introduced in 

paragraph 1.1. The object of our investigation., is,therefore, 

the pathwise representation for the filtering solution. 

Let S be an open domain in Rn  and take H = L2(S), 

V = Ho(S). 

Using the notation presented in paragraph 1.1, let us 
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start by making the .following hypotheses; 

1. a. 1,3 . 
E C1 (O,T;LCS)), 

D.a.., D. .a. . 	
E C(O,T;L~ (.S)), 

gi, Dig. E C(O,T;Lc°(S) ), 

for all i,j = 1, ... ,n. We recall that [ai,j (t,x)] = a (t,x) .ā (t,x) 
and rgi(t,x)] represent, respectively, the diffusion matrix 

and the drift vector for the diffusion process 1.1.2.. 

We also assume that for some a > 0, 

2. <r, 
[a1,j 

(t,x)]r> ' a <r,r>, 

for all r E Rn, 

(t,x) E [0 ,'1'] x Si 

where <.,.> denotes the scalar product in Rn. 

Here, we shall be concerned with the case where the 

function h, introduced in 1.1.1, is invariant in time. We 

write, 

3. h(t,x) = h(x). 

Assume that, 

m 
4. h, Dih, Di,;h E 1.:(S)/  

for all i,j = 1,...,n. 

69 



Consider the bilinear form. a(t), t E [0,T] , 

defined in H'(S) by, 

5. ao (t; u,v) 	
2 J=1 	aiti(t,x)Diu(x)Div(x)dx, 

u,v E Ho (S)/ 
t E [0,T] 

Using an argument similar to that developed in the 

.Remark 2.3.3, we find that the operator, 

n 

6. A o (t)u = - 1 i,j=1 Di (ai /J 	(t , . )D~ u)l 
2 

represents the linear operator associated with the bilinear 

form ao(t). 

Consider the first order differential operator B(t), 

defined by, 

7. B(t)u = i1 Di (( -
2 

i l1(Diaj,i (t,.)) + gi (t,.))u)• 

We can write, 

8. Ao (t) + B (t) = -Lt/ 

where Lt, t E j0,T is the Fokker-Planck operator introduced 

in 1.1.9. 
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We shall now make some manipulations involving the 

'operators presented above and, for economy of notation we 

will delete the arguments of the functions. 

Let y E C([0,T]). By conventional manipulation of derivatives, 

we can write, 

9. exp [-hy]A exp[hy] = Ao + yBo + y2co f 

where Bo represents a first order differential operator and 

co is a multiplicative factor. We have 

n 	n 
V 

10. Bou = -1 .L1 Di((.L1 a. .D.h)u) 	+ 
2 	J= 	3,1 J 

n n 

-2 
i=l 

(~=1 a1,~D~h)Diu 

 
co 	

X
2 i•J=1 a

i,j (Dih D.
3
h 
 • 

Using the same manipulation on the operator B defined 

in 7., we write, 

12. 	exp [- hy] B exp [hy] = B + . yc l/ 

where, 

n 	 n 

13. cl = i1 (- 1 
X
1(D.

J
a.

J 	
i) 	gi)Dih 

	

2 7= 	~ 



Define the bilinear form al  (t), t E [O,T], by the 

'following relation: 

'14. 	a1  (t; u,v) 	= 	((B (t) + 1 h 2 ) u,v) 
2 

+ y(t) ((Bo  (t) + c1  (t) )u,v) + y2  (t) (Co  (t)u,v), 

for all u,v 	Ho (s), 

t E [0  , T]J 

and by Al(t), denote the operator associated with al(t). We 

have, 

15.A1  = B + 1 h2  + 	y(Bo  + cl) + y2co. 
2 

Therefore, with the bilinear form, 

16. a (t) 	= ao  (.t) + a l  (t) 	t E 10,T] 

is associated an operator A (t) , t E. [o,T] 	o- the form, 

17. A = -L + 1  h2  + y(Bo  + cl ).+ y2c o  2 

exp 	hy] (-L + 1  h2) exp[hy] 
2 

But this is exactly the differential operator that 

appears in the pathwise formula 1.1.16. (for h invariant in 
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time). Therefore this equation can be rewritten here in the 

form, 

18. 	u' (t) + A(t)u(t)  = 0 

On the other hand, under hypotheses 1.,...,4., one 

can easily show that the bilinear forms a0  (t) and a1  (t) 

satisfy conditions 3.1.2, 3.1.3, 3.1.4, 3.1.5', 3.1.8, 3.1.9 

and 3.1.10. Hence, according 	to Theorem 3.2.1, the evolution 

equation 18. has a unique solution u E L2(0,T;Hō(S)) such 

that, 

u' E. L2  (O, T; L2  (S) ) 

u (0) = uo  E D (Ao  (0) ) 

Moreover, recalling the estimates presented in section 

3.3.,(see Remark 3.3.1),we can state the following theorem: 

Theorem 3.4.1 - Under hypotheses 1.,...,4., equation 18. has 

a unique solution, 

u E Lo(O,T;Hl (S)) n  C(0,T;L2  (S) ) 

satisfying u(0) = uo 	D (Ao  (0)) . 

t In particular, it can be show that by means of a suitable transformation 
" of the original equation (see Remark 3.1.1) the coercivity condition 
3.1.7 for the bilinear form a(t) holds independentl7of y. The reason for 
this fact is the quadratic form (in y) of A(t) . 
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we have, 

E. L2'  (O,T;L2  (.S) ). 

As a consequence of the theorem above,we can derive 

anexistence and uniqueness result for the pathwise solution 

1.1.16.:.of the filtering problem for diffusions in Rn. It 

suffices to take S = Rn  and assume the initial condition 

r(0) = qo  as an element of D(A0(0)). As the sample paths of 
the observation process are continuous functions, we deduce 

from Theorem 3.4.1 that, under hypotheses, 1.,...,4., the 

pathwise formula 1.1.16 has a unique solution, 

19. 	r E Lo(O,T;H1(Rn)) (1 C(O,T;L2(Rn)), 

r' E L2  (O,T;L2  (Rn) )/ 

for all initial conditions q such that A(0)go  E L2(Rn). 

Remark 3.4.1 - We have assumed V = H1(S). In other words, we 

have been concerned with the initial value problem under 

Dirichlet boundary conditions associated with equation 18. 

For Neumann boundary conditions, we can use the same procedure 

as before with V = H1(S). (see Lions 1601, chapter VI, for a 

precise account on this situation). 

In the context of the filtering problem, Dirichlet 

boundary conditions imposed on equation 1.1.16, correspond 

to the filtering problem for a diffusion absorbed by the 

boundary. In this case, Theorem 3.4.1 can be used straightaway-
(see Pardoux 110i, for the stochastic equations governing the 

unnormalized conditional' density of ahsorbe(? diffusions). 
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Remark 3.4.2 - We mentioned in paragraph 1.1 that the 

principal characteristic of the pathwise solution is its 

,robustness. This means that the solution of the pathwise 

formula 1.1.16. is a continuous function defined on the 

sample space of yt. 	Here, we shall present this fact 

in a more precise form. 

Consider equation 18. with initial condition 

uo  E D (Ao  (0)) .. Writing u(t,y) = u(t) and A (t,y) = A(t) in 

order to indicate the dependence on the parameter y E C([0,T]), 

we can derive from 18. the following evolution equation: 

20. 	w' (t) + A(t,y1 )w(t) 	= f (t))  

where for yl, y2  E C ([O,T]) , 

21 	w = u(.,y1 ) - u 

22. f = -(Y1 - 112)  (Bo  + cl)u(.,Y2)_ 	+ 

(y l 	y2 ) (Y1  + y2 ) Co u (. ,Y2 ) . 

From Theorem 3.4.1 we can deduce that f E L2(0,T;H). 

Therefore, the evolution equation 20. has exactly the form 

of the equations we have investigated in paragraphs 3.2 and 

3.3. So, we can use the results of paragraph 3.3 in order to 

estimate its solution. Recalling Remark 3.3.1.,we can write 

from 3.3.37.i) the following inequality: 

23.  Il w 11 
L2 (0,T;V) 

c Il f 11 

L2:(0,T;H) 



On the other hand, from 22. we have, 

T 	 T 

24 . (f et) 1 2dt 	(. I y - y2  I I (B0  + c3. ) u (t,y2  I) 2dt + 

o

J 

 	o 

T 

10 
 CIY1  - y2 I IY1  + Y2 1 t cou(t,Y2)I)2dt ,. 

Again, from Theorem 3.4.1, there exists a constant 

C such that, for all t E [0,T], 

1030  + c1)u(t,Y2 ) I 2  

I "c ou (t, y2  ). 1 2 	< 	C . 

Taking into account this fact and substituting in 

24., we have from 23. the following inequality: 

T 

II w II 	C ( 	(y1  - y2) 2  (1 + (y1  + y 2 ) 2)dt) {/2 
L2(O,T;V) 	

• 
0 

Hence, as y1, y2  are continuous functions, we can 

write, 

25. 	IIu(•,y1) - u (•►Y 2 ) II 2 	 C II Y 1  - Y2 1I 2  
L (O,T;V) 	L (O,T) 
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So, under the hypotheses of Theorem 3.4.1, the solution 

u(t,y) of equation 18., is a continuous function from 

C ([O,T]) C L2 (0,T) to L2 .(O,T;V) . • 

Remark 3.4.3 - In this paragraph we have investigated the 

pathwise formula 1.1.16. under the hypothesis that h is 

invariant in time. As a consequence of this condition,;we have 

a polynomial form for the operator A(t), in terms of powers 

of y (equation 17.). If h depends continuously on t we can 

obtain a similar form for the operator A(t). In this case, 

instead of functions of the form yDih,we have fo Dihdt, and 

similar results can be derived if we also assume Dh, D
if

~h 

belong5 	to C (O,T;Lo (S)) . 



GALERKIN APPROXIMATIONS TO EVOLUTION EQUATIONS 

In this section we present a family of unconditionally 

'stable discrete time Galerkin schemes to approximate, the 

solution of the evolution equation introduced in the last 

section. The kind of numerical procedure with which we shall 

be concerned has been largely used in relation with parabolic 

equations and estimates for the error of approximation under 

differentiability conditions are very well known. Our 

objective here is to derive such estimates under weakerdiaeki.tt'tadil,ty 
hypotheses. 

In paragraph 4.1 we present the class of 

Implicit Runge-Kutta schemes which will receive our attention 

in this work. In paragraph 4.2 we derive some properties 

leading mainly to the stability of the schemes. In paragraph 

4.3 an estimate for the error of approximation is deduced 

and, finally, in paragraph 4.4 we apply the results to the 

numerical approximation for the non-stochastic representation 

of the solution of the filtering for diffusion process 

presented in paragraph 1.1. 

•4.1 - Discrete Time Galerkin Methods  

The Galerkin technique presented in paragraph 3.3 

gives 	a procedure ton. approximatthe solution of equation 

3.2.6.11) by solving a sequence of ordinary differential 

equations. It is this fact that inspires us to develop the 

discrete-time methods which we shall now present. 

We assume the hypotheses made in section 3. 

TkrseIDa, V and H are Hilbert spaces s.4-iyiri5-,..  hypotheses 

3.1.1 and 3.2.1. The symbols (.,.), (1.1), and ((.,.)) , 

(11.11), denote the inner product, (norm), in H and V 

'respectively. 

78 



79 

The objectsa . (t), j = 0,1, and a(t) , for t E 	[O,T] 
'are  bilinear forms defined in V, satisfying hypotheses 3.1.2, 

3.1.3, 3.1.4, 3,1.5 (and,. consequently ' 3.1.7, both taken 
here with A = 0 according . to Remark 3.1.1' ,, 3.1.8, 3.1.9 
and 3.1.10. 

In addition to the hypothesis 3.1.3, concerning the 

upper bounds for the bilinear form al(t), we also assume, 

1. 	Ial (t;u,v) I 	-` 	i1  Iul II v II 

u,v E, V 

t e [O , T1 

Furthermore, we suppose that there exists a real 

valued function z(t,$) defined in [O,T] x [O,T] such that 

2.. 	i) 	z(t,$) _' 0 

ii) z(t,$) -' 0 	when (t — s) -* 0 

iii) Ial  (t;u,v) - ai (s;u,v) I ` z(t,$). II u II 	Ivi ) 

for all u,v E V, 

t , s E  L0 , T] , 

Tiroughout this section (0 = to  < tl  , < ... < tN  = T} ' Cis.'  

a partition of the interval [O,TJ. 

We will use extensively the following notation for 

increments: 
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3. 	Af (t,$) = f(t) - f(s) 	t,s E [O,T 

Afk (t) 	= f(t) - f(tk) 

Afk = f(tk + l) - f (t k ) 

k 	tk +1 

t E [O ,TJ , k = 0,1,...,N 

k = 0,1,...,N-1 

k = 0,1,...,N-1 

for every function f defined in [O,T]. 
l 

Let 	, C V be a finite dimensional subspace. 

In this section we shall be concerned with numerical 

procedures with the following iterative form: 

4. 
- Uk + l Uk 

Ak 	
+ 	

k 
Uk = 0, 

k = 

where, for k = 0,1,... ,N, Uk E 1," and ~ k E L (17 , l9) . 

In order to be more specific we must determine the 

linear operator in the general form above. 

So, for k = 0,1,...,N, let 	k be such that: 

5. 	k Uk + 
ill 

p i S
i 

= 0/ 

an 

element of 1' verifying the following equation: 



C
r 

6. (8.,v) + a (T ; Uk + Ak L pi , 7 	= 0 ~i ,v)  
i.=1 

y.ere T = Tk E [tk,tk+l] and p
i,j 

ER for i,j = 1,...,r 

With this characterization,the scheme 4. defines an 

r-stage implicit Runge-Kutta discretization method for the 

equation 3.2.6.ii)(with f = 0).This class of numerical 

procedures was introduced and studied by Butcher I 41. It . 

has been widely used in 'connection with ordinary differential 

equations where, for a suitable choice of the parameters 

= {pi, pi,j} jt producesunconditionally stable methods 

and convergent approximations (see, e.g. Stetter 44 I) . ti 
-Las been also used in order to obtain approximations for the 

solution of parabolic equations. For instance, a one-stage 

scheme was used in Douglas 1121 and Wheeler 1 41 for a non 

linear parabolic equation. In 1551 Zlamal employs for a 

linear equation, invariant in time, a generic r-stage scheme 

with parameters obtained by means of Gaussian quadrature 

formulas. 

It can be shown that the order of accuracy of the 

implicit Runge-Kutta schemes is directly related to the 

number of stages and,also, to the order of differentiability 

in time of the functions involved. Here, as the bilinear 

form al(t) is, in general, non differentiable,there is little 

point in using a high order scheme and hence we shall 

concentrate on the one-stage case. So, we take equations 5. 

and 6. with r = 1. Making pi = 1, p 1 1 = p >0 and bringing 

the definition of the operator ci k into equation 4.,we can 

rewrite our numerical scheme in the following, more 

recognizable, form: 

- 
7. (.Uk+1Qk Uk 

, v) + a( T ; pUk+l + (1 p)Uk,v) k 
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k= 0,1,... ,N - 1 

Now, in the family of schemes represented above we 

can identify the Crank-Nicholson method when p.= 0.5 and, 

with p = 1, the Implicit Backward method. These two methods 

are classical in the literature about discrete-time Galerkin 

procedures (see, e.g. Strang 1451). 

It is worthwile remarking here that the schemes 

presented above provide us with numerical procedures to 

approximate the solution of the ordinary differential 

equation 3.3.8(with f = 0). 

4.2 - Properties of the Numerical Schemes  

Let L(t),  t E [0,T] be a family of linear operators 

from l7 to VI- defined by the following relation: 

1. 	a (t; u,v) 	= 	(L(t)u,v) 

for all u,v E 19' 

t E [0,T] 

These are well defined continuous linear operators 

in a finite dimensional subspace. Furthermore, by the 

coercivity condition 3.1.7 (with A = 0) it follows the 

existence of the operators in the form (I + k L(t))-1  where 

I is the identity operator, k ? 0 and t E [O,T]. 

Vie are able to rewrite the numerical scheme 

proposed in the introduction of this section in a more 

compact form. In fact, using the definition 1. in equation 

4.1.6, we have for the operator q k   introduced in 4.1.5 the 
following form: 
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2.  = (I + Ak p L(t))-1 L(T) 

k = 0,1, ... ,N, 

'where, we recall, p > 0, T E [tk, tk+11. So, from 4.1.4 the 
approximating elements Uk are given by, 

3. • 	Uk+l 	CI 	Ak 	k)Uki 

k = 0,1,...,N, 

Observe that the behaviour of the scheme is 

dictated by the operator (I - 
Ak k)' 

T~r: -j writing 111 .111 for the natural norm in L(11,1)  ) 
with a endowed with the topology of the space H, we 

introduce the following, 

Proposition 4.2.1- Assuming the coercivity condition 3.1.7 (with 

A = 0) the following estimates hold 

(independentl( of 17) : 
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max 
{ 
l 

   

4. 11 	IIII -Ak 	 kIII 
1 - k(1- p) 6 

1+ Ak Pa 

 

1 - p  
p 

     

ii) HIT- Ak ~ k III -` 1 	for 	p >- 0.5 

iii) For p > 0.5, there exist constants 8, ho > 0 

such that, 

IIII  - Ak u k ili 	exp(-āAk) 



for all Ok  

k = 0,1,...,N. . 

Proof. of Proposition 4.2,1 

Let u = (I - dk k)z. Using the definition of the operator 

&, given by equation 2., we have, 

* 	(u - z ,v) + Ak p a(T; pu + (1 - p)z,v) = 0, 

for all v E b. 

Taking v = pu + (1- p)z as a test element and using the 

coercivity condition, we have, 

'5. 	(u-z,pu + (1 - P)z) + Akpa 	pu + (1-p)z 112<-  0. 

'Recalling 3.1.1 and rearranging terms, 

((1 + Akpa)u - (1 - Ak(1 - p)a)z, Pu + (1  — P)z) <- 0, 
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h °/ 

Denoting: 
1 - o, (1 - p) a 

r 1 - p  

  

1 + Okpa 

the inequality 5. yields, 

P 

1u1 2  - grIz1 2  - (q - r) (u,z) 	0, 



Using now Schwartz inequality we have, 

q -r 	- q.rizl 2  <- 0. 

Considering the above as a quadrati_ inequality in IuI  we 

conclude after conventional manipulations that: 

IuI _ ? (1q-rJ + Iq+rl)IzI = (max{Ig1,IzI}) Izi 
2 

and so item i) of the proposition is proved. 

Item ii) follows from item i) if we take into account the 

premise, 

I <- 1 	if and only if 	0 x < 2 

and the fact that we can write, 

Iq1 = 1 Ako  

1+Ako 
and 

   

p 

    

Item iii) follows from previous items and the fact that if 

p > 0.5 it is always possible to find cl > 0 such that 

Fri 	f. 	Iqi 	< 1 	for 	0 < ok  < Ci 

But IqI _< exp(-aok) for some a > 0 and Ak  <- c2. Making 

ha  = min(cl,c2) the thesis follows. • 

As a direct consequence of the result above/ we can 
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derive stability properties for the scheme 3, So, using a 

conventional terminology (see e.g. Stetter 1440 we can say 

that the scheme 3. is unconditionally stable for p ? 0.5 and 

asymptotically stable for p > 0.5. 

We recall that the meaning of these terms lies in 

the fact that if Xk E Iy 	,k = 0,1, ... ,N, verify, 

6. 	Xk+1 	(I 	A 
	

+ Ak ~k 

k=  

where 

Xo = 0, 

~k € 0- , we deduce for p >- 0.5, 

sup IXkj 	sup kkj/ 

which, roughly, means that "small perturbations" in the 

scheme produce "small displacements" from the initial 

condition. In the case p > 0.5 one can verify that the output 

of the scheme will exhibit a decresci,. exponential pattern. 

Remark 4.2.1 - The first bound in the item i) of Prop. 4.2.1 

namely IqI, is the usual and unique bound found in 

connection wiK an ordinary differential equation. Here, in 

general, the second bound, Ir l, is dominant for p 	0.5. 

The rational function q has the form of a Pads 

approximation for the exponential function exp(-aAk) with 

maximum order of accuracy of 3 in the case p = 0.5. It seems 

that this fact is responsible for most of the properties of 

the scheme regarding stability and. convergence. • 
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Now let R(t),  t E [0,T] be a family of linear 

operators from V to 1Y defined by the equation: 

7.  ao  (t;u,v) = ao  (t; R(t) u,v), 

for all u E V, v E 17, 

t E [0 , T] e 

By the coercivity condition 3.1.5 (with a = O) it 

follows that the operator R(t) is well defined for all 

t E [O,T]. Furthermore R(t) E L(V,U), R(t)•R(t) = I for 
all t E [O,T] and so R(t) is a projection operator. We also 

have, 

8. II u - R(t) 11 2  ` 6-1  a (t; u - R(t)u,  u - R(t)u) 	_ 

= v-1 ao  (t; u -R(t)u, u -v) 

f 	Q-1  y„ I 
	- R(t)u 11 11u-vII 

for all u E  V, v E 1j  

and as a consequence the following lemma can be stated: 

Lemma 4.2.1 - Under hypotheses 3.1.2 and 3.1.5 (with A = 0) 

we have, 
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9. 	II u - R(t)ull = 6-1  yo  inf II u - vii 

v El 



The operator R(t) is usually called the Ritz 

projection w.r,t ao(t) and 	(see e.g. Strang-Fix 145 I). In 

what follows we denote, 

10. 	ñ(t) = I - R(t),  

Our objective in this section is to derive estimates 

for the error of the approximation when we elect the family 

Uk  E 
1
v,given by 3., as representative of the solution u of 

the Evolution Problem 3.2.6(with f = 0). In other words, we 

are interested in the element, 

11. (u(tk) - Uk) E V 

or, using the definition 10. above, 

12. u(tk) - Uk  = ek  + R (tk) u(tk) 

k =  

where ek  is the error in the subspace 19 ,T14..;  

13. ek  = R(tk) u(tk
) - Uk, 

k = 0,1,...,N. 

Now, let ¢k, k = 0,1,...,N be defined by, 
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k = 0,1,...,N, 

14. k = R-(tk+l) u (tk+l  - R(tk) u(tk) + Ak  Ck R(tk) u(tk) 



Subtracting equation 3. from the above and 

rearranging terms,we can write, 
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15. ek+l  

k = 0,1,...,N-1 . 

We observe that, roughly, the "size of the error" 
is directly related to the "size" of the variable cl)ki and so 

we can expect this variable to play a decisive role in the 

'convergence of the method. In numerical analysis terminology, 

the variable (pk  is said to describe the consistency of the 

method,, and we expect this variable to tend to zero as N tends 

to infinity. (see Stetter 1441 for a general account on 

stability + consistency leading to convergempf numerical 

methods). 

4.3 - An AbstractError Estimate 

According 	to Proposition 4.2.1, in order to 

guarantee unconditionally stable schemes we assume for now on 

1. p -' 0.5 

Using the definition of the operator cik, given in 

4.2.2.we can rewrite equation 4.2.15 in the following form: 

2. ek+l 	ek + AkL (T) (P ek+l + (1 - p) ek) = 

= (I + AkpL (T)) ck/ 

k = 0,1,...,N. 



After recalling the definition 4.2.14 we have, 

3. 	ek+l - ek  + AkL (T) (Pek+l + (1 - P) ek) 

= ARuk  + bkpL (T) ORuk  + AkL (T) Ru (tk),  

k = 0,1,...,N, 

where Ru(t) = R(t)u(t)  for all t E 

Using now definition 4.2.1 and some manipulation we 
can write, 

4.(ek+l - ek,v) + A
k  a(T; Pek+l + (1 - P)ek,v) = 

(Auk ,v) 	(ORuk,v) + Aka(T;Pu(tk+l) + 

+ (1 - P)u(tk) ,v) - Aka(T; Ru(tk+l) + 

+ 	(1 - P) Ru (tk) ,v), 

for all v E 

k = 0,1,...,N-1, 

where, according 	to 4.2.10,Ru(t) = u(t) - Ru(t) for all 
t  E [O , T] . 

After the equation 3.2.6.ii)(with f = 0), we are able 

to write the following identity: 
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(Auk,v) + aka (T; pu (tk+l) + (1 - p) u (t) ,v) = 

tk+1, 

= 	a(“pouk - Duk(s) ,v)ds + 

tk 

tk+1 

+ 	 a(T;u(s),v) - a(s;u(s),v)ds, 

tk 

for all v E V~ 

k = 0,1,...,N -1. 

Taking this identity into account we can write equation 4. 

as follows: 

- 6. 	(ek+l 	ek,v) + Aka (T, Pek+l + (1 - p) ek ,v) = 

tk+l 

= a(T;pAuk - Auk(s),v)ds + 
tk 

tk+l 

+ 	a(T;u(s),v) - a(s;u(s),v)ds + 
tk 

(ARuk ,v) + 
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- oka(T;pRu(tk+l) + (1 -p)Ru(tk ) ,v), 

for all v F 

k = 0,1,...,N-1 , 
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We observe that the equation above has a suitable 

Tom for manipulations in order to estimate ek. The reason 

for that is the fact that it concentrates "small objects" in 

its terms in the right side. But before we continue, let us 

"make a supplementary hypothesis in order to simplify the next 

steps. 

Assume the principal part of the bilinear form 

(t), i.e., ao(t), to be invariant in timer  

7. 	a (t) = a 
0 	0  

Remark 4.3.1 - Although the results we shall obtain in this 

section depend on the above condition, it does not constitute 

a fundamental hypothesis and equivalent results can be derived 
if the bilinear form ao(t) is sufficientjysmooth in relation 

to the variable time. • 

Therefore, the Ritz projection is also invariant in time and 

recalling its definition in 4.2.7, equation 6. becomes: 

8, 	(ek+l 	ek,v) + aka(T  'Pe  k+l 
	(1 - p) ek,v) = 

tk+l  

= 	a (pAuk  - Auk(s),v)ds  + 

tk  

tk+1  
+ 	a l  (T;u(s),v) - a l  (s;u(s),v)ds + 

tk  

- (iRuk,v) + 

Akal  (T;pRu(tk+l ) + (1 - p)Ru tk) ,v)) 



for all v E 19, 

k = 0,1,....,N - 1. 

Now consider the following identity regarding inner 

products: 

2 I 
ek+1 1 2 2 

I ek 12 - (e1(.4-1 ek' P ek+1 + C1 - P )_ ek ) = 

Cek+l 
	

~ - p)ek+1 + (
Z 

- Cl - p) )ek) = 

= ( - p)Iek+1 - 
2 

e 
k 

I 2 
• 

Recalling hypothesis 1, we can write, 

9. 21ek+l12 	2IekI 2 	(ek+l 	ek'Pe k+1 + (l 	P)ek). 

Returning to equation 8, we select v = Pe k+1 + (l- p)ek 
as a test element. Taking into account the inequality 9, the 

coercivity condition 3.1.7 and hypotheses 3.1.2, 4.1.1 and 

4.1.2 the following inequality holds: 

10. 2l ek+1 1 2 - 
a 

I  ek 1 2 + ak6.II p ek+l + (1 - P) ek II 2 

tk+l 

Yo llpA uk - Auk(s) 11 IIp ek+l + (1 - p)ek II ds 

93 



'(equation 10. - continuation) 

tk+1 

+ 	s) Hu (s) II Ipek+l + (1 - p) ek l ds + 

+ I ~Ruk I Ipek+l + (1- p) ek 

+ Oky l lpRu(tk+l) + (1-p) Ru(tk) I Ilpek+l+ (1 p)ek l 

k = 0,1,...,N-1. 

Using Cauchy's inequality,pq 5 0,5 p2/E + 0.5cg2, for every 

term in the right side we have, 

11 
2 Iek+1I 2 2 , IekI 2 	A ka II p ek+l + (1 - p) ekII 2 

tk+1 
Yo 

2c1 

tk 

IlpAuk - Auk (s) 11 2 ds 	+ 

Y o + 	A k 	E1 H p ek+l + (1 - p)ekII2 + 

tk+1 

+ 	I 2E 	z2 (T,$) IIu (s) 11 2 ds 	+ 
2 

tk 

+ Ak —1 c 2 Ipek+l + (1 - p)ek12 + 
2 
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z (T , 
tk 

2 



+ ok 1 IpRu(tk+l) + (1-p)Ru(t 
2e 

14 

)I2 + 

•(equation 11. - continuation) 

+ 	l I DRuk I 2 + 1 s3 1 Pek+l + (1 - p)ek I2 + 
2E3 	2 
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akY1 

2 
	 s 4 II p ek+l + (1. p) ek 

k = 0,1,...,N-1. 

Consider that, for p ? 0.5, the following inequality holds: 

IPek+l + (1 -p)ekl2 <_ 2p2(Iek+l12 + IekI2). 

Mow in the inequality 11. ck-^se E, = E4 =2a/ (Yo + 11) 
£2 = 1/4p2 , s3 = Ak/4p2.. w`e have, after rearranging terms, 

12. 	ll ek+1 l 2 	l l ekl 	1 Akl ek+ll 2 + 1 
AklekI 2 

+ 1 ~'k, 2. 	2 	2 	2 	2 

k = 0,1, ... ,N - 1l 

where, 

tk+1 

13. 1̀1 k 
10 (10 + Y 1 ) 

20- 
II p Duk — Auk( ) 11 2 ds 	+ 

tk+1 
+ 4p.2 	z2 (t:, s) II u (s)II 2 ds + 

   

-k 



(equation 13. - continuation) 

+ 402(Ak
1 
 lLRuk1 2  + 

Y1 (Y0+  Y1) + 	 Ak  l pRu (tk+l)  + (1-  p) Ru (tk) 1 

o obtain an estimate for the quantity lekl2 

independent of the remaining terms of the set,we need a 

version of Gronwall's Lemma appropriate to sequences. Here, 

we shall make use of the following 

Lemma 4.3.1 - Let Xk,  k = 0,1,...,N be a sequence of real 

number such that, 

14. 	Xk+1 <  (1 + hk) Xk + k/  

• where hk  ? 0 and *k  E R • 

Then, for all k =  

[N_1 1 	N-1 

15. Xk  < exp 	h. 	(Xo  + 	L 11/.) 

j=0  

Proof of Lemma 4.3.1 

The thesis follows taking into consideration that 

1 + hk  _< exp(hk) and substituting Xk, Xk_1,..., Xo  into 

equation 14. • 

Consider inequality 12. again. Multiplying both 

sides by 2 and rearranging terms under the assumption 

ak  < 1, k = 0,1,...,N - 1, we have, 
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16. lek+112 
< 

1 + 
Ak 

1 -
k 

lek l2 1 ~ 	
0, 	_ 

1 - Ak 
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' 2 
_ 	 k (1 + 	) lekl2 

1 - A
k 

k = 0,1,...,N-1. 

Applying Lemma 4.3.1 to this inequality,we can write, 

  

N-1 
A. 

2 
1 1-aj 

N-1 

(leo 1 2 + 	 j ~ 
j=0 

17. exp 

   

k = 0,1,...,N - 1 . 

Let us manipulate 	this inequality in 

order to °Main. a final estimate suitable for the application 

we have in mind. So, returning to the expression 13., we can 

,write for each of its terms in the right side, the following 

set of inequalities: 

tk+l 
	

tk+l 

18. pAuk + Auk (s)11 2 ds 
	

2p2Ak 11 AukII 2 + 2 	11 Auk (s) 11 2 ds 

tk 
	

tk 

tk +1 	 tk+1 

19. z2 (T,$) Il u(s) 11 2 ds 	sup ( Ilu(t) 11 2) • 	Z2 (T,$) ds 

tk 	 [0,11] 	tk 



tk+1  

Ru' (s) ds 12 	- 
tk  

tk+1  

Ifiu l (s) 

k 

ds. 
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20. 	A-I IoRukl2 = A-1 	 k)1 2 
 

k 

21. AklpRu(tk+1) + (1-p)Ru(tk)
I2 = 

= Ak IPRAuk  + Ru(tk)1 2  

tk+1  

2p 2o2 	I lRu' (s) l2  ds + Ak[Ru(tk)12 

)tk  

k = O,l,...,N-1. 

_1 ay Lemma 4.2.1 and in view of the 
previous estimates for the solution of our Evolution Problem, 

given in Remark 3.3.l,the set•of inequalities above makes 

sense. 

Define h, the mesh of the partition of the interval 

l0,Tl, by, 

22. h = sup {Ak : k = 0,1,...,N -1} . 

Substituting inequalities 18.,...,21. into estimate 

17. and rearranging terms, we can write 
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23, 

Ni- 	t~+1, 

C 	
1eo12 + 	{ hi' Aujll 2 	!I Auk (s) 11 2 ds 	+ 

tj 

+ sup I`u(t)II 2 	z2(T,$) ds 	+ 

	

[0,T] 	t j 

tj+l 

	

+ 	( Ru'(s) 1 2 ds + h1ku(tj
)I 2) 

t. 

for all k = 0,1,...,N, h 	ho < 1, where C is a positive 

constant depending only on the parameters yo , y l, a, p and T. 

We leave here the inequality 23. as a priori estimate 

for the error lek I, without further manipulations in its 

right side. It is our purpose to proceed in this way in 

paragraph 4.4 	when a practical situation is analysed. 

Remark 4.3.2 - Instead of identity 5. the following relation 

could have been written: 

(ouk,v) + Oka(.T;PU(tk+l) + 	(1 -P) u(tk),v) _ 

(Auk - Aku' (T) ,v) 	+ 

+ aka (T; Pu (tk+l) + (1- p)u(tk) - u(T),v), 

for all v E V~ 

k =  



It turns out that, under differentiability conditions, this 

identity is more convenient to be manipulated in order to 

generate "small" terms in the final estimate. In fact, for 

the Crank-Nicholson scheme, i.e., T = tk  + 0.5 Ak, p = 0.5, 

we have, 

T 

	

Auk  - Ak.u' (T) = 1 	(s - tk)
2 
u (3)  (s) ds + 

2 t
k  

tk+l  

	

+ 1 	(s - tk+l)2 u(3)  (s) ds, 
2 T  

and, 

pu(tk+l) + (1 -p)u(tk)  - u(T) = 1 
	(s -tk)u(2)  (s)ds+ 

2  t k  

tk+i 

+ 1  
J 
 (s - tk+l)u (2)  (s) ds, 2 

If the solution, u, of the Evolution Problem is sufficiently 
smooth we are able to produce terms of order Ak  in the final 

estimation for the error in the Crank-Nicholson case. 

As we are interested in a more general Evolution Problem 

where the second derivative of the solution may not exist, 

we caner. take advantage of this fact. (Compare 	Remark 

4.2.1 and see e.g. Wheeler 1 491 and Wilson 1481 for the 

Crank-Nicholson method). • 

Remark 4.3.2 - The restrition Ak  < 1, which 	enables us to 

produce the estimate 17., does not constitute a intrinsic 
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property of the scheme. It is only a consequence of the 

'particular selection of values for the parameters e2  and c3  

in equation 11. So, estimates like the inequality 23., must 

'hold whatever the restrition, h < ho E.  R, imposed. 

4.4 - An Approximation to the Filtering Solution 

Here we shall bring the non linear filtering problem 

into the framework of this section. In other words, we will 

be concerned with approximating the pathwise solution 1.1.16 

by means of the scheme introduced in 4.2.3. 

Let H = L2  (S) and V = Ho (S) , S being a bounded subset 

'of Rn. 

Consider the bilinear forms aj(t), j = 0,1 and 

a(t), t E [0,T] introduced in 3.4.5, 3.4.14 and 3.4.16. 

As we showed in paragraph 3.4, under hypotheses 

3.4.1,...,3.4.4, these bilinear forms satisfy the hypotheses 

of Theorem 3.2.1. They also satisfy the supplementary 

conditions 4.1.1 and 4.1.2 introduced in the beginning of 

this section. 

In fact, using integration by parts, equation 3.4.14 

yields, 

1. 	al  (t;u,v) = 	(u, (B* (t) + 2 h2 )v) + 

+ y (.t) (u, (Bo (t) + c1  (t) ).v)_ 

+ y2  (t) (u,co  (t)v)/  

for all u,v E Hō (S), 

t E  [0, T1/ 
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where B* (t) and B** (t) , t E [0,T1, are first order 

differential operators with the form, 

n 
C 

2. B*u = iLl ( 2 .~ P (D j ai, J ) 	gi) Diu , 

n n 

3. Bo*u = 	2 i
CC 
Ll 

(.`` 
a. .D.h)D.0 +. 

n 
1 v 	C 

i=1 Di((jL1 ai,jDjh)u) 

From equation 1., one can easily show that condition 

4.1.1 is satisfied. 

Concerning the supplementary condition 4.1.2 we can 

write, from equation 3.4.14, the following relation: 

4. al (t;u,v) - al (s;u,v) = 	(A [B 
	

2 h2] (t,$)u,v) 	+ 

+ 	(y (t) - y(s)) ((B0 (t) + cl (t)) u,v) 	+ 

+ y(s) (a1Bo + cl (t,$)u,v) 	+ 

+ 	(y2 (t) - y2 (s)) (co (t)u,v) 	+ 

+ y2(s) (Aco (t,$)u,v)/ 

for all u,v E 1110(S), 

t E .[O,T] . 

102 



Now, if in addition to the hypotheses 3.4.1,...,3.4.4 we 

assume D.ai,j' Di,jai,j' gi,  Digi belong to C1(0,T;Lc°(S)) 

for i,j = 1,...,n, then,from4., we can deduce, the following 

'inequality: 

• 
	I a1  (t; u,v) - a1 (s;u,v)  I 	yl  (I t  - sl 	+ 

+ 	I y(t ) - y (s) I )II u 11 Iv 1 /  

for all u,v E Hō (S), 

t E  

for some positive constant yi depending on the upper bounds 

of y E C([0,71]) and, as well, the upper bounds of the first 

derivative in time of ai ,j, D.a 	, D. a 	, g. and Dig.. 

Therefore, condition 4.1.2 is also satisfied with, 

6. 	z(t,$) 	= yi (It - sl 	+ 	ly(t) - y(s) I ), 

, tis' E  [o,T] 

We shall now specify our approximation subspace 

In the beginning of this section we have described 

\Y as a finite dimensional subspace. Here, we improve this 

characterization by selecting.the approximation subspace 19" 

as belonging to a family of subspaces of "finite element" 

type. This family will now be defined. 

Let S be a bounded open set of Rn, d E (0,1) and 

r,m positive integers with r < m. 

We denote by 1.7(d,r,m) a finite dimensional subspace 

of Hr (S) (1 H1  (S) with the following, 
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Approximation Property: For all non negative i,j such that, 

i ` r, 

there exists a constant K, independent of d and j, such that, 

7. IIu-v K IHi
(S) 	

d]1IIuIIH •
(s) l 

for all v E. V (d,r,m), 

u E 	Hi  (S) n H' (S). 

In order to complement the above definition we state, 

without proof, the following 

Lemma 4.4.1 = Let, a, be a coercive and bounded bilinear form 

defined on Hō(S). Assume a* is 0-regular on 

H1  (S)! 

Then, if u E Hr(S) Īl H1  (S) , p ? l,we have 

8. Hu - Ru ll 
L2(S) 
	Kellu II 

Hq (S) 1 

where R is the Ritz projection w.r.t the bilinear form a and 

the subspace 1 (.d,r,m); q = min(p,m); K is a constant 

independent of d and q, 

t a*(u,v) = a(v,u); see the definition of k-regularity in Remark 2.3.4. 
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Remark 4.4.1 - The result in the lemma above is due to 

Nitsche (it can be found in Wheeler l 491). We observe that 

this result complements the approximation property 7. In fact, 

'by Lemma 4.2.1, we have under the condition of Lemma 4.4.1 

the following inequality, 

Hu - Rull 
L2  (S) 

a 1 Y llu— vll 
° 	H1  (S1 

for all v  

By the approximation property 7., we deduce that, 

9. 	l l u - Ru l l 	 a l Y 
Kdq- l l l u l l 

L2  (S) 	 Hq  (S) 

Comparing the above inequality with 8. we see that the latter 

presents an extra factor d in the right side. This is a 

'significant improvement because the exponent of d in the 

above expression can indicate the order of the approximation 

suggested in its right side. In general, for
fl 
 finiteelement 

spaces the parameter d represents the maximum diameter of the 

elements composing the domain S, 

We also remark that similar results can be found if 

we take V = Hl  (S) . (see Wheeler l490 ).• 

Remark 4,4.2 - It is not our intention to present a general 

account of approximation subspaces of finite element type. 

For the purposes we have in mind, it is sufficient to r.=c,L.'_ 

here the possibility of constructing a family of subspaces 

with the approximation property above. Further information 

can be found in the literature concerned with finite-element 

method (e, g, Douglas 1121, Strang-Fix 1 45 1, Wheeler 1 491; 

and in the Wilson-Nickell original paper 148 l): • 
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We are now in position to estimate the error of 

approximating the solution of equation 3.4.18 by means of the 

numerical scheme 4.2.3. 

But before we proceed in this direction, in order to. 
v,}; cAa}e,  , the use of the estimate 4.3.23,  we must first 

assume the bilinear form ao(t) to be invariant in time. As 

we pointed out before (see Remark 4.3.1) this assumption is 

not restrictive. The character of our final result will not be 

spoiled by assuming smooth time variability of a0(t) and 

here, hypothesis 3.4.5 w.r.t aitj, is sufficient to achieve 

this smoothness. 

We also would like to use the result of Lemma 4.4,1 

in order to obtain a faster order of convergence in terms of 

the parameter d which measure the "discretization" in the 

space. So, we assume ao  = a** to be 0-regular in HI(S). 

To avoid confusion, let us recall the hypotheses that 

we have gathered so far. For the functions airy  gi  and h, 

for i,j = 1,...,n, we have, 

10. a1. ,3.,D.a.  ., D.  .a. 	E L(S), 

gi, Digi  E C1  (O,T;L:  (s)), 

11.  

h, Dih, D. .h E 1,3  

We also have (from 3.4.2) the coercivity condition, 

<r, [a.]r> >_ v<r,r>, 
lrj 

for all r E Rn, x E S 



A 

12. 	ao is 0-regular in HI(S) 

With respect to the scheme 4,2.3 we take 

13 	ly _ IY.(d;r,m) and p ?. 0.5 

Now, denoting, 

= 	sup { ly (t) - y(s) I : It - sl `- h}l [O, T] 

we can state• the following  result: 

Theorem 4.4.1 - Under the hypotheses 10.,...,13. if the 

solution of equation 3.4.18 satisfies, 

u,u' E L7(0,T;HP(S) (-1 00(S)), p 	1 

then the following  estimate holds: 

14. 	sup 
k 

+ 

u(tk) - Uk1 2  ` C(IRu0  - U Q 1 2 	+ 

1P12  1 2  SUP (Ilu (t)11 2 	) + h2  suo (II u (t)11 	) + LO,T1 	HP(S) 	 [O,T1 	Hp(S) 

+ d2q ( sup. (Ilu(t)112 	) + sup (Ilu' (t)11 2 	))} 
[O,T] 	Hq (S) 	[0,T] 	Hq (S) 
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where q = min(p,m) and C is a constant independent of p, q, 

and d. 

Proof of Theorem 4.4.1 

First we write according to 4.2.12, 

15. Iu(tk) - Uk12 <- 2Iek 	2 1 Au (tk ) ~ ) 

k = 

To prove the theorem it suffices to use estimate 4.3.23 under 

the assumptions of this paragraph. Observe that, with respect 

to the terms in the right side of 4.3.23, we can write the 

following set of inequalities; 

t j+1 

16. II Q uj II 2 	` 	H 	u' (s) ds II 2 ` 	h2 sup II u'(t) 11 2l 

[o, T] 
3 

t j+l 

II Auk (s)11 2 ds 	< h3 sir H u' (t)11 2. 
t. 

tj+1 	tj+l 

z2(T,$)ds = y; 	(IT - sI 2 + ly(T) - y(s) I2)ds •< 

t. 	 t. 
J 	 J 

ylh3 + yih sup (IDy(t,$)I:It -sI 
0,T] 

t j+1 

liu'(s)12ds 
t. 
J 

hk2d2q sup IIu' (t)II 2 
[0,T] 	Hq (S) 
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hIRu(ti )1 2  hk2d2q r
O
sup]  IIu (t) I1 H

g CSZ 
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In the last two inequalities we have used mainly the 

result of Lemma 4.4.1 under the hypothesis of 0-regularity 

of our symmetric bilinear form ao. 

Substituting these inequalities in 4.3.23 and using 

the result in 15. we obtain the estimate 14. • 

Remark 4.4.3 - Theorem 4.4,1 shows that the Galerkin scheme 

4.2.3 provides us with a numerical procedure for approximating 

the solution of the Dirichlet problem associated with the 

equation 3.4.18. In other words, we are approximating the 

solution of the pathwise formula 1.1.16 defined in the 

cylinder [O,T] x  SCR x Rn, with homogeneous condition on the 

boundary of the bounded domain S. As we mention before (see 

Remark 3.4.1 ) this situation corresponds.to a filtering 

problem for diffusions absorbed by the boundary of S. If 

Newman boundary conditions are imposed on the pathwise 

formula, we start by taking V = H1(S) and then, a similar 

'technique of analysis 	leads to a result equivalent to 

Theorem 4.4.1.. 

The discrete time Galerkin numerical procedure 4.2.3 

has been widely used in connection with parabolic equations. 

Results concerning its rates of convergence are very well 

knownfor "smooth in time" differential operators. The purpose 

of our study is to analyse the procedure under weaker conditions 

with respect to the time variability of the "secondary" part 

of the differential operator, In other words, what distinguishes 

our study from the classical works about Galerkin approximations 

(e.g. Douglas-Dupont I9ZI) is our assumption with respect to 

the function y which, in the pathwise formula 1.1.16, 

represents the observation sample paths. Here, we take y as a 

continuous function. The result is that the procedure still 

converges and, under this condition, the rate of convergence 



is dictated by the modulus of continuity of the function y. 

From estimate 14., selecting Uo  = Ruo, we can write, 

sup I u (tk) - U(ti)1  <- C(! oy +h+dq). 

We observe that the procedure converges for all 

sample paths of bounded variation. 	lie convergence 

is uniform over families of sample paths that satisfy a 

uniform Holder condition, 

kha  , 	0 < a < 1 

In this case, the order of convergence'(w.r.t. h) has. 

:the same value as the Helder coefficient a. 

In IS I, Clark has shown that the pathwise solution 

for filtering problem for Markov chains admits a discrete 

approximation (Euler scheme) that converges uniformly with a 

rate depending on the modulus of continuity of the observation 

sample paths. Here, we have extended this result to diffusion 

processes. 
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STOCHASTIC EVOLUTION EQUATIONS 

The objective in this section is to examine the 

stochastic counterpart of the evolution equations studied 

In section 3, namely equations in the following stochastic 
differential form: 

du (t) + Ao  (t) u (t) dt + Al (t) u (t) dwt  = f (t) dt 

where A0(t) and A1(t) represent linear operators in a 

Hilbert space, which are in general unbounded. 

The relevance of the class of equations above lies 

in the fact that the solution of the filtering problem for 

diffusion process admits such representation. 

Stochastic evolution equations have received a great 

amount of attention recently and among the contributions to 

this field,the work of Pardoux and also Krylov-Rosovskii, 

are fundamental. Here we shall follow Pardoux 1411. 

In paragraph 5.1 we present for random variables in 

Hilbert spaces, some of the conventional concepts valid for 

the. real case. In paragraph 5.2 we introduce Pardoux's 

existence and uniqueness proof;  which utilize the Galerkin 

technique presented in paragraph 3.3. It turns out that as 

in the non-stochastic case, the Galerkin approximation 

converges strongly to the solution of the stochastic evo 

lution equation. Finally, in paragraph 5.3 the non linear 

filtering problem is brought into consideration and an 

existence and uniqueness result is derived. 
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5.1 - Stochastic Process in Hilbert spaces  

We describe some of the usual definitions and results 

'related to the topic above without any intention of giving a 

'complete treatment of the subject. The main idea here is to 

show that the concepts valid for the real case can be easi 

ly extended to more complex spaces. 

Our description is along the lines of the treatments 

given in Curtain-Falb 181, Doob 1101, Neveu 1391  and 

Scalora 1 42 1 . 

We start by fixing a probability space (0, A , P) and 

.a Banach space X with norm denoted by the symbol H.H . 

A X-valued step random variable, x, is a mapping 

from Q into X, such that 

x(w) = ui 	if 	w E Ai  E 	i = 1, 2, ... ,N, 

'where 	{Ai} is a set of disjunct measurable sets with 

.A X-valued random variable, x,is a strongly 

measurable mapping from S2 into X. We have, 

i) There exists a sequence xn, n=1,2,...  of step 

random variables such that, w.p.l, 

H xn  (w) - x (w) H 	0as 	n 	• 
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UA. = Q. 1 

ii) The set {w  : x(w) E B} E 
A 
 for all Borel set 

of X. 



If x is a step random variable we write, 

x(w)dP = 	L ui  P(Ai) E X . 
i=1 

52 

A X-valued random variable, x, is said to be 

integrable if there exists a sequence xn  of step random 

variable, converging w.p.l to x, such that, 

xn(w) - ,m(w) 	dP 
	

as 	n, m 

IT ",the limit of 	xn(w)dP exists and we write, 

x(w)dP = lim xn(w)dP, 
n+ a 

If x is an integrable random variable we define the 

expectation of x, E(x), as the element of X such that, 

E(x) = x(w)dP. 

S2 

We define the space 	Lp  (S2 , X) , 1 -` p 	as the 

space of (equivalent class of) X-valued random variables 

whose norm is p-integrable. It can be shown that these 

"spaces are Banach under the norm, 

p ( 0,x) 	(E (lI x IIp)) 1 
 

P 	1 	p < 	co 
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with the usual modification for p= ~.. 
we write L(0) = LP (0,R) . 

Let 	be a a-subalgebra of .A and let x be an 
integrable random variable. The conditional expectation of 

x relative to 	, E(x/), is a X-valued random variable 
such that, 

x (w) dP = 	E (x/3-) dip/ 

F 	 F 

for all FET. 

It can be shown that such a random variable, E(x/ a) 

is unique w.p.1 and integrable. 

If xl , (x2), is a X1, (X2),-valued random varia 

ble, we say that xl and x2 are independent if the sets 

: xl (w) E B1} 	, 	{w : x2 (w) E B2 / 

are independent for all Borel sets Bl,(B2) in X1,(X2). 

It can be shown that if f1 1(f2) is a Baire function 

mapping X1,(X2) into the real numbers, then fi(xl) and 

f2(x2) are independent real random variables. 

We also say that a random variable, x, is independent 

of the a-algebra 	C. A if the sets F and { w : x (w) E B} 
are independent for all F E a and all Borel sets B of X. 

If TC A is a a-algebra and f, x and ¢ are 
respectively R, X1, L(X1 i X2) - valued random variables, then 

the following statements can be proved (Curtain, 171, 
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8J) . 

i) if x EL1(2,X1) 	then 	E(E(x/T)). = E(x) 
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ii) If in addition to i) , x is 37 -measurable then 

w.p.1 

iii) If in addition to ii) , E (I f co then 

E (fx/ ) = E (f/ ) .x 1 	0 	w.p.l. 

iv) If in addition to i) , E{ II 4 II • II x II } 

(I) is i -measurable then 

and 

E(4x/J) = (1)E(x/J) 	w.p.l. 

Consider the interval [O,TT. Let 2 denotes the 

a-algebra of Borel sets in [0,T] -and a the Lebesgue measure .Consider 

the set [0,T] x0 and let ax di denotes the product a-algebra 
and A xp  the corresponding measure (see Neveu, 1391). 

We define a X-valued stochastic process as a X-valued.  

random variable in the space (10,T1 x SZ , 	x 	, A x P) . 

We remark that, although this definition is less 

extensive than the usual one (see e.g. Doob 1121  and Neveu 

1391), it is adequate for the objectives we have in mind. 

We shall now present the concept of stochastic 

integral for X-valued stochastic process. Here, ,Fort. 

our purposes, we shall 	: restrict eoesAvo trot special case 

where X is a Hilbert space, A more general account can be 

found in Curtain-Falb 18 1. 

We start by recalling the definition of a real valued 

Wiener process. 

Let wt  be a R-valued stochastic process, with w(0) =0, 

defined for t ? 0 and continuous w.p.l. 



If there exists an increasing family { 7t } of 
'a-subalgebra of A  such that, 

i) 	wt  is J t  -measurable 

ii) E(w(t +h) - w(t)/ft) = 0 	w.p.l. 

iii) E((w(t+h) - w(t))2/Jt))= •h 	w.p.l. 

for all t ' 0, h 5 0 + 

Then wt  is a real valued, Tt-measurable, non -

antecipative standard Wiener process on the probability 

space (0, A  ,P) . 

Now, let H be a Hilbert space with inner product and norm 

denoted respectively by (. , .) and 1 . 1 .. Assume that the concept 

of stochastic integral for real-valued processes is already 

familiar (see e.g. Gikhman-Skorokhod 1141). 

Let wt  be a real valued, Tt  measurable, non-anticipative 
standard Wiener process and x(t), t E [O,T] be a H-valued 

stochastic process such that, 

T 

i) E 	lx(s) 1 2 ds 	< CO 

0 

ii) x(t) is - measurable . 

For all 	E H' (dual of H) the mapping 4X(t), t E [O,T] 
is a real-valued , %' t  - measurable, stochastic process such 
that 

(1)X E 1,2 (Q; L2  [0,T]) . 
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Therefore, we can define the stochastic integral of 

the process •x in Ito's sense, i.e. 

T 

 x(s)dws .  E L2(a), 	for all 4) E H'. 

0 

and so,along with this,we have defined a linear mapping 

from H' into L2(c). 

This fact suggests the definition of the stochastic 

,integral of the process x as the element of L2(0, H) such 
that, 

T 	 T 

1. 	+ 	x(s)dws 	cpx(s)dws, 	for all 4 E H' 

0 	 0 

This definition agrees with the conventional 

definition of stochastic integrals by means of finite sums. 

In fact, 	if 

the interval 

{O = to  

[0,T1 

< 	t1 	< 

and 

••.< tN  = T) is a partition of 

x(t) = xi 	E L2(0, H) , 	t 	E [ti' ti+1],  

i = 0,1, ... N - 1 

then, it follows from 1. 

T 	 CN 

xts)dws  = 	L xi(w(tif1)  - w(ti)) i=1 

117 



The following items describe some properties of the 

;'stochastic integral defined in 1. 

J
x(s)dw,The mapping 	t E 1O,TI,is an H-valued, 

o 	• 

t  -measurable, stochastic process, continuous in t w.p.l, 
such that, 
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t 

i) E x(s)dws  = 
0 

ii) J x(s)dw s  I 2 
t 

E 	lx(s) 	S. 

0 

(See also Pardoux 1411). 

We can also introduce the concept of stochastic 

differential forms. 

Let u(t), 	t 	E 

process such that, 

10,11, be an 

t 

H-valued stochastic 

t 

2. u(t) 	.- u(0) 	+ f(s)ds + j a (s)dws 	0 i 
0 0 

t 	E 

where f, a are H-valued, t  - measurable stochastic processes 
such that, 

to  
If(slIds < m 	w.p.1 

a 	E L2(Q; L2(O,T; H)) 



Then we can rewrite 2. in the following stochastic 

'differential form: 

3. 	du (t) + f (t) dt + a (t) dwt = 0 

Finally, we can state a Ito's rule of transformation 

for our stochastic differential forms. Here we Yer..ail 	the 

following Lemma which is a particular case of the one 

presented in Curtain-Falb 171. 

'Lemma 5.1.1 - (Ito's Lemma) Let the stochastic process u be 

;given by 2 (or 3) . Let i 	C([0,T] x H) with 

i) 	(t,x) E C ([0,T] x H)/ at 
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ii ) 	(t,x) E C( 
ax 

0,T x H , H ' ), 

iii) a2,1, (t,x) 	C( [0,1r]  x H, L (H,H) ). 
ax2 

Then, 	Z(t) = 4(t, u(t)) is a real valued stochastic 

process with the following stochastic differential form: 

dZ (t) = 	2-± (t, u(t)) - < f (t), a -̀P (t, u(t)) > + 
at 	 ax 

+ 1 tr [(a(t)a*(t)). a2~ (t, u (t) )] dt + 
2 	 ax2 
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- <a(t), 	(t, u(t))> dwt  
ax 

Here, <.,.> denotes the duality between H and H' and 

tr1.1 denotes the trace of the operator indicated within 

the brackets. 

5.2 -ThcStochastic Evolution Problem 

We shall introduce in this paragraph a basic result 

on existence and uniqueness for the solution of a Stochastic 

Evolution Problem. The proof we present is originally due 

to Pardoux (see 1411) and it makes use of the Galerkin 

technique we presented in paragraph 3.3. We also show that 

the Galerkin approximations converge strongly to the so 

lution of the Stochastic Evolution Problem. 

Let H, V be sepe,',.. 	11111s4 	:.. - with inner products, 

(norms), denoted by the symbols (.,J, (.J), and ((.1.)), 

(II . II ) , respectively. 

Suppose V is dense in H with a continuo: injection 

1. 	 for all v E V 

For t E [O, T] , a . (t) , j = 0,1 are bilinear 

functionals in the space V such that, 

2.a3(.; u, v) 	E Lo ([0,T1) , 	j = 0,1 

u, v E V 

3. 	1 ao  (t; u, v) 1 	Yo  lI u II 	11 v  II 

u, v E V 

t E [O ,T] 
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A. 	l al (t; u, v) l 
	

YiIIu11Iv 

u, v E V/  

t E. [7 , Tj . 

By means of the argument 	presented in paragraph 

2.3, we can associate with the bilinear forms aj  (t) , j = 0,1, 
linear operators, A,(t), such that 

5. 	i) 	a. (t; u, v) _ (Aj  (t) u, v)1  

	

ii) 	Aj  (t) : 'D (Aj  (t)) 

u E D (A. (t)), v E Vl  

t E [O,T], 

j = 0,1. 

Here D(A,(t)) denotes the set of all u E V such that 

a, (t; U,.) can be continuously extended t6  0/Vt. -. 

•an element of H'.' 	As a consequence of hypothesis 4., 

we have D (A1 (t)) = V for all t E [0,T]. 

We assume the following coercivity condition: 

6. 	2ao  (t; u, u) + A lu12 > 	u 11 2  + lA1 (t)ul , 

for all u E V, 

t E [0,T], 

where 	X E 	and a > 0. 

Now, let wt  be a real valued 'I t — measurable, non-
anticipative, standard Wiener process on a probability 

space (s2,A, P). 
Denote by M2(0,T; V) the space of V-valued 



stochastic processes, x, such... that, 

T 

i) E 	lx(t) 1 2'dt < 

0 

ii) x(t) is t - measurable . 

In this section we shall be concerned with the 

.following Stochastic Evolution Problem: 

8. 	i) 	u E m2  (0,T; V) n L2  (c ; C (O,T; H)) , 

u(t) E D (Ao  (t) ), t E [O,T] / 	(w.p.1) 

ii) du (t) + Ao  (t) u (t) dt + Al (t) u (t) dwt  = O, 

iii) u (0) = uo  E H 

In relation to this problem the following Theorem 

can be stated: 

Theorem 5.2.1 - Under hypothesis 2., 3., 4. and 6. the 

problem 8. has a unique solution. 

This result has been obtained by Pardoux 0411). 

Here, we 	. present 
	

his proof. 

To prole Theorem 5.2.1 	we shall make use of the 

Galerkin technique introduced in paragraph 3.3. So, in order 

to proceed in this direction we must first bring into 
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consideration the following weak form: 

i) un  E M2  (0,T; Vn ) n L2(0;  C (O,T; vs)), 

ii) d (un  (t) , v) + ao  (t; un  (t) , v)dt + 

r 	 + al(t; un(t), v)dwt  = O, 

for all v E V n 

iii) un  (0) = uō E Vn  

where Vn, n = 1,2,... is a family of finite dimensional 

subspaces of V. 

Let us denote by Pn, n = 1,2,... the projection 

operator in H with respect to the subspace V. 

The following Lemma can be stated: 

Lemma 5.2.1 - For each n = 1,2,... the problem 9. has a unique 

solution. 

In addet;an, the following stochastic differential 

form holds: 

10. 	d un  (t) 2  + 2a
0  (t; •un  (t) , un  (t)) dt + 
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(A1  (t) un  (t) , Pn  Al (t) un  (t)) dt + 



,(equation 10.; continuation) 

+ 2a1  (t; un  (t) , un  (t)) dwt  = 0, 

Proof of Lemma 5.2.1 

Let N denotes the dimension of the subspace Vn  and 

vj 	Vn, j = 1,...,N a set of linearly independent elements 

contituting a basis in Vn. 

We can write the follwing.identity: 

11. (u, v) = < [u], M[v] > 	 u, v E. V. 

where the symbol <.,.> denotes here the scalar product in 

RN, [.] denotes the representation with respect to the 
basis {v1 ,...,vN} and M is an n xn matrix with, 

Mi,j = (vi, vj)  J 

In a similar fashion, we have, 

12. ao  (t; u, v) = <[u] , K (t) [v] > > 

13. al  (t; u, v) 	= <[u] , R(t) [v] > 

u, v E Vn , 

t E  [O , T] z  

where 	K(t) and R (t) , t E LO,T] , are n x n matrices with, 
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Ki , j (t) 	ao (t; • vi, vj ) 

R.1
,7 (t) 	= a1 (t ' vi, vi),/ 

i,j = 1,...,N. 

So, equation 9.ii) can be rewritten in the 

following equivalent matricial form: 

t 

.15. 	<[un(t)], M[v]> + ie un(s)1, K(s) [v]> ds + 

+ J<Luns]i  R (s) [v] > dws = 0, 

for all v E Vn , 

t E [O ,T] (w.p.l), 

As the matrix M is invertible and symmetric, the 

following stochastic differential equation is also equivalent 

to equation 9.ii): 

16. 	d [un (t)] + M-1K (t) [un (t)] dt + 

-1 M R (t) [un(t)]d 
s 

= O~ 

t F E0 f ill , 

But by the theory of finite dimensional Ito's 

stochastic differential equations, 	equation 16. has a 



unique solution (see e.g. Gikhman - Skorokhod, 114 1 ), 

[un  (ti E M2 (O,T; RN) n L2(0;  C (O,T;  RN) )l  

satisfying  the initial condition, 

(0)] _ [uo 1,  

'Therefore the first part of Lemma 5.2.1 is proved. 

To show the second part of the Lemma we can use the 

standard Ito's rule of transformation for finite dimensional 

stochastic differentials. (see e.g. McKean 1351) 

From equation 16., we deduce: 

d(furi (t)]T 
M[un 

(t)]) = { -2 [un (t)]T K(t) [un  (t)] + 

+ tr[R (t) [uri  (t)] [un  (t)]T  R(t) M-1]} dt + 

- 2 [un  (t )jT  R(t)Lu  n  (t) ] dwt  • 

The Yeas It follows if we use/  in the above equation, 

relations 11., 12., 13. and the following  identity: 

(Al  (t) u , Pn  (A1  (t) v)) = tr [RT (t) [u] [ ] R (t)M-1] 

u, v G Vn  

t E [0,11] 
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Now, in order to show the above identity we first 
'write for all u,v E Vn r t E. [0,T] 

`l7. 	tr[RT tIuIIvRt»i_1] _ <RT (t) [u],M--1RT(t) [v]> • 

But we also have, 

< [u] , R (t) [v] > = a1  (t; u, v) _ (A1  (t) u, v) = 

(Pn (A1 (t)u), v) = <Pn (A1.(t)u)J,Mlv]i) 

and therefore [Pn  (A l  (t) u)] = M 1R [u] for all u E V . 

Substituting this relation in 17. we have, 

tr [RT  (t)[u][v]T R(t)M 1] = <RT (t)[u],[Pn  (A l  (t)v)]> 

= 	(A1  (t) u, Pn  (A1  (t) v) ), 

and so Lemma 5.2.1 is proved. • 

We can now prove Theorem 5.2.1.E 	before we 
proceed, let us make the following cotinment 

Remark 5.2.1 - As before (see Remark 3.1.1), without loss of 
generality,we can always take ), = 0 in the coercivity 
condition 6.. In fact, under the transformation 
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u (t) = exp (-Xt.) u (t) 	 t E [O ,T], 



equation 8.iil becomes 

dū (t) + (A0  (t) a(t) + aū (t)) dt + Al (t) ū (t) dwt  = o, 

and the corresponding form ao(t; u, v) + A(u, v) now 

satisfies 6. with the term in. A deleted. • 

• Proof of Theorem 5.2.1; Uniqueness 

To prove uniqueness we need a representation for the 

stochastic process lu(t)12, t E [O,T], when u satisfies the 

stochastic evolution equation 8.ii). In order to obtain such 

representation, we need an Ito's rule of transformation for 

infinite dimension stochastic processes.We can use either 

the Ito's Lemma presented in paragraph 5.1 or the Ito's 

Lemma proved by Pardoux in 1411 and the result. 	in 

conformity with equation lO. be valid for the finite dimensional 

case. In fact, this  

So, if u solves problem 8. it can be shown that the 

following stochastic differential form holds: 

18. 	d u (t) 1 .2  + ( 2 ao  (t;  u(t), u(t)) - 1A1 (t) u(t)121  dt + 

+ 2 al (t, u(t),  u (t)) dwt  = 0, 

t E [O,T' 

Now, suppose u1 and u2 solve problem 8. Then, 

u = u1 - u2 is also a solution with initial condition uo = O. 

Using the equation 18. above, we can write, 

128 



129 

(.t) 1 2 + 	2 a Cs; u(s),  u (s)) - IA1 (s) u (s) J 2 ds + 

t 

.+ 2 al (s; u(s),  u (s)) dws = 

0 

t E [O,T] 	w.p.l. 

Taking the expectation and recalling . 6. we have, 

t 

E I u (t) 1 2 + cs E 	~~ u (t) ~12 dt 	..0. 

0 

Therefore,if problem 8. has a solution, this solution 

must be unique. • 

Proof of Theorem 5.2.1; Existence 

Let us assume that in addition to the hypotheses 

made for the weak form 9. we have, 

19. 	Vn C m 
	

for all n 5 m, n,m = 1,2,... 

ii) UVn is dense in V 

iii) uō + u0 	in H as n + o J 

-(in other words we are assuming V to be separable). 

Using the result of Lemma 5.2.1 we can write, 



2 • Iuo I 
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un  (t ) 1 2  + 2ao  (s; u(s) , un  (s) + 

 

  

- 	(A1 (s) un  (s) , Pn  (A1 (s) un (s))) 	ds 

I uō 12 - 2 ai  (s; u(s), un  (s) ) dws, 
0 

	

t E [O ,T] 	w.p.l. 

Taking the expectation on both sides, using Schwartz 

inequality and the coercivity condition 6., we have 

t 

'20. 	E l un(t)I 2  + a 	II un(s)II 2 ds 	̀  	Iuo I 2,  

0 

t E [O,T] . 

Therefore, we can write the following estimate: 

T 

21. 	E 	11 un(s)112  ds 	_< 

It follows that we can extract from the sequence 

(un} a weakly convergent subsequence {uv} and so, we write, 

22. 	uv  + Z E M2  (0,T; V) , weakly 

Let 4 E C([0,T]) be such that, 
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23. i) 
	dty 	E L2  (0,T)  

dt 

ii) 	(T) = 0 . 

From equation 9.ii), using Ito's rule of transfor 

mation and 

following 

taking into account hypotheses 

identity: 

T 

23., we have the 

T 

24.  ao (s; 	uv (s), 	vip(s) 	ds 	+ a 1 (s; u(s), vi,(s))dws 	+ 
0 0 

T 

(uv  (s) , vp' (s) 	ds 	(u', vV)(0)), 
0 

for all 	v 	E. 	V 
nl 
 

ni 

where nl is some natural number. 

Now, let x E L2  (0) be a random variable. 

Multiplying both sides of the above equation by x and taking 

the expectation,we can write, 

25. E(x.41) + E(x.42). + E(x . (P3) 	= E(x(uō, IOW)), 

where for simplicity, by q = 4 (uv, v, Vi) E L2(0 -  

i = 1,2,3,we denote, respectively, the terms in the left side 

of equation 24.. 

We observe that, for i = 1,2,3, the expression 

E(x.4 (uv, v, 4))), considered as a function of the variable 

uv  E M2 (O,T; V), defines a continuos linear functional on 



M2(O,T; V). Therefore, by 22. we can take the limit of this 

expression as v i  co, yielding, 

E (x.4i  (uv, v, 	E (x.4i  (Z, v, 10) . 

So, taking into account hypotesis 19.iii), it 

follows from equation 25, 

3 
C 
L E(x.(1)i(Z, v, Vp)) = E(x(uo, v0), 

1=1 

for all v E Vn  
1 

As the above identity is valid for all x E L2(c) 

we can conclude that, almost surely, 

3 
V 

26. 	L pi  (z, v, i) 	= 	(uo , v4)(0))/  
i=1 

v E Vn  ni • 

The index nl has been fixed arbitrarily and so, 

using hypotheses 19., we can extend the validity of the 

above expression for all v E V. 

Assume the function iy defined by ip  (t) = ip (.e , t ) 

where 

i) ip ( eis) = 1 	for 	s < t - e 

ii) ip (e,$) = 
	(1 + 1(t - s)) , 
2 	e 

for s E (t-e, t + e) 

132 



133 

iii) 	1#/ ce , s) 	= 0 l for s > t + E I  

where e > 0 and [t - e, t + e] C  [O,T] 

Sustituting in equation 28, with validity extended 

• to all v E V and recalling the original expressions for 

q(Z, v, 

27. 

1,) , 	i = 1,2,3, 	we have, 

T 

a0(s; 	Z(s), 	v) 	,(e,$) 	ds 

0 

T 

+ al  (s; 	Z(s),  (s) , 	v) 	(e,$) 	dws 	+ 

0 

t + e 
1 (Z(s), v) ds 	= 	(uo, v) 
2e 

t- e 

for all 	v E 	V 

We can now take the limit of the above expression 

as e 	0 	for almost all 	t E (0,T) , 	yielding the 

following identity: 

t 

(Z (t) , v) - (uo,  v) + 	I ao  (s; Z (s) , v) ds + 
0 

al (s; Z (s) , v) dws  = 0 

for all 	v E. V 
t E [O ,TJ w.p.l 



As V is dense in H, by a standard argument (see 

paragraph 2.3) we conclude, 

t 	 t 

Z (t) - uo  + 	Ao  (s) Z(s) ds + 	A1(s) Z (s) dws  = 
0 	 0 

t E [0,T], 	w.p.1. 

So, Z(t), t E [O,T] is w.p.1 equal to a continuous 
H-valued stochastic process which satisfies the requirements 
of problem 8. • 

Remark 5.2.2 - Inequality 20. also give us an estimate for 

the solution of problem 8. considered as an element of 

L2 (Q; C(0,T; H)) and this yam,,.. 	the question of the 

stability of the solution of equation 8.ii. For an account 

on the asymptotic stability of the second moment of the 

solution of equation 8.ii., see Haussmann, 11"61.• 

Remark 5.2.3 -. Here,  as in the non-stochastic case presented 

in paragraph 3.3., the solution of the weak form 9. 

converges strongly to the solution of the stochastic evo 

lution equation 8.ii). 

To show this fact we start by writing the identity, 

28. 	Iu(t) - un  (t) 1 2  = Iu(t) 12  + Iun(t) 12 - 2(u(t), un  (t) 

t E [O,T], 
n = 1,2,... 

Recalling the energy formulas 10. and 18. and 

substituting in the above relation we have, 
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29. ju(t) - un (t) I 2  = 	 - 2 (u (t) , n (t) ) 

t 

b(s; u(s),  u (s)) + b 1 (s; un  (s) , un  (s)) ds 	+ 

Jo 

t 

-2 J ai (s; u(s),  u (s)) + ai  (s; u(s) , un  (s)) dws l 
0 

t E [O,T] 	w.p.l 

n = 1,2,... 

b(t) and bn (t), n = 1,2,... • .: denote the following 
bilinear forms on V: 

30. i) 	•b(t,  u, v) 	= 	2a0  (t; u, v) - (Al (t) u, Al (t) v) 

ii) 	bn(t; u, v). 	= b(t; u, v) + (A1(t)u, Pn  A1 (t) v) 

where 	in  = (I - Pn ) . 

We also have, using the above definitions, 

31. b(t; u, u) + bn (t; v, v) = bn (t; u - v, u - v) + 

N 
(A1  (t)u, Pn  Al  (t)u) 	+ . bn (t;. u, v) 	+ 

+ bn  (t; v, u) s 



Making use of the above equation in 29. we can 

write,after some manipulation, 

't 

32. ju(t) - n(t) 12  + _ bn(s; u(s) - un(s) , u(s) - n(s)) ds = 

t 

(1)(t;  u, un) - 	a1  (s; u(s),  u (s)) + 

0 

+ 	a1 (s; u(s) , un  (s)) dws  

	

t E [O,T] 	w.p.l 

n = 1,2,... 

H .ere, 

33. 4(t; u, un) _ lu0 1 2  + luf I 2  - 2(u(t), un(t)) + 0 

t 

+ 	(A1 (s) u(s) , Pn  Al (s) u(s) )  ds + 

0 

t 

io bn  (s; u(s),  n (s)) + 

136 

1 

+ bn(s; u(s) , un(s)) ds • 



l 0 

Taking the expectation on both sides of equation 32. 

'and using the coercivity condition 6. transferred 

to the bilinear form bn(t), we have, 

T 

31. 	E Iu(T) -un(T) 1 2  + aE 
Jo 

u(s) - un  (s) 11 2  ds 

• < 	E(4) (T; u, un) ) 

n = 1,2,... 

But by inequalities 21. and 22. we can select from 

the sequence {un} a weakly convergent sequence {uv}  such 

that, as 

35. 	i) 	E (u(T), u (T)) 	-} Elu(T) 12 

T 	 T 

ii) 	E 	b(s; uv  (s) , u (s)) ds -- E 	b(s; u(s),  u (s))) ds • 

0 	 0 

Besides, by hypo+k ssr s 19 ., we also have as v  

T 

36. 	i) 	E I (Al (s) u(s),  Pv  Al (s) u(s) ds 
0 

ii) lu o l2 -> Iuo12) 
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T 

iii) 	E 	(A1 (s) u (s) , i 	Al (s) uv  (s)) ds 
0 

Therefore, by equation 33. and relations 35. and 36., 

as v -> .0, we have 

E¢ (T; u, u) 	+ 21u0 1 2  - 2 E u(T)12  + 

T 

2 E 	b(s; u (s) , u(s)) ds . 

0 

Comparing with the energy formula 18. we bserve 

that the right side of the above relation is zero. Therefore, 

returning to inequality 34 we conclude that, as  

uv  + u , strongly in M2  (O,T; V) 

Remark 5.2.4 - Let us 	investigate what happens if 

C: 	- in the argument leading to the existence proof 

of Theorem āt.yaeconsidG c F'ocilestir integrals in the Stratonovich's 
sense instead of Ito' s) 

Consider the RN-valued, stochastic differential 

form 16. Taking into account the relation between Ito's and 

Stratonovich integrals (see Stratonovich, 1471), this 

equation has the following stochastic representation in the 

Stratonovich' s sense: 
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37. 	d[un(t)] + (M-1  KT(t) + 	(m-1  R(t)) 2) [un(t)] ). dt + 
2 

+ M-1. R (t) [un  (t)] d t = 0 

t E [O,T] ; (S) . 

Or equivalently, 

38 . 	d (un  (t) , v) + { ao  (t; un  (t) , v) 	+ 

+ 1  (A 
2 

(t) Pn  Al (t) un  (t) , v) } dt + 

al (t; un  (t) , v) dws  = 0, 

for all v E V n  
t E [O,T] ; (S) 

The equation above is the Stratonovich• counterpart 
of equation 9 . ii). and irk_ its derivation we have used 11., 
12., 13. and the following relation: 

39. 	.< (M-1RT(t) ) 2  [u] , M [v] > = <M 1  RT  (t) [u] , Ft(t)  [v] > = 

= (A1  (t) Pn  Al (t) u) , v) 

U, V e Vn  

t E [0,T] 

6 



If we suppose Al (t) E L (H, H) , t E [O,T] , a 
copy: 	of the existence proof of Theorem 5.2.1 must lead 

us to the conclusion that there exists a weakly convergent 

subsequence {uv} which converges to the solution of the 

following evolution equation: 

40. du (t) + (Ao  (t) + 1  Ai (t)) u(t) dt + 
2 

+ Al (t) u(t) dwt  = 0/  

t E [O,T;J (S). 

In his paper, Stratonovich gives the rule of 

transformation between his integral and Ito's integral for 

finite dimensional integrand process. One must be able to 

extend this rule to more complex spaces in order to 

conclude that/  in fact, equation 40. is the Stratonovich' 

version of equation 8.ii). 

Now, let us write a weak form for equation 40. 

equivalent to the equation 9.ii) which is a weak form for 

8.ii). It has the Stratonovich 	differential form, 

41. d (ūn  (t) , v) 	
+ {ao (t; ūn  (t) , v) 

1 
(A1 

(t) 
2 

n  (t) , v) } dt + 

+ 	a1  (t; an(t), v) dws  

for all v E V
n/  

t E [O,T] ; (S) . 
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where we have written un instead of the conventional un, to 

'underline the fact that equation 41. above and equation 38. 

are in general, two different objects. (However, if the 

subspace Vn is invariant for the operator Al(t), equations 

'38. and 41. are equivalent). 

Using the same technique used before , one must 

be able to prove that the sequence of solutions for - 

equation 41. has a weakly convergent sequence which converges 

to the solution of equation 40. 

Therefore we may say that the Stratonovich and Ito's 

versions of the original evolution equation 8.ii) produce 

two different weak forms, both convergent. 

5.3 - The Non Linear Filtering Problem 

In this paragraph we return to the filtering problem 

introduced in section 1. We shall use the results derived 

in the previous paragraph in order to produce a existence 

and uniqueness result for the stochastic parabolic equation 

1.1.21. which represents the solution of the filtering 

problem for partially observed diffusion process. 

Let S be an open domain in Rn and take H = L2(S), 

V = H' (S). 

Using the notation presented in paragraph 1.1., 

denote, a(t), t E [0,T], the bilinear form on Hl (s) 

defined by the following relation:  

1. 	a (t; ū, v) = 	/ 	a. (t,x) Di u(x) D
i 

v(x) dx + 2 i,j =1 	~,i  
s 

 

Di ((- 1 L (D . a. (t,x) + gi (t,x) u) V dx, 

S 	2 j=]. 
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u, v E H1  (S) 
0 

t E [O,T]*  

We recall that, 

[a1 (t,x)] = a(t,x) aT(t,x), 

is the diffusion matrix and [gi] is the drift vector for the 

diffusion 1.1.2.. 

Let us suppose that for i,j = 1,... , n, the functions, 

2.  
ai,J , DJ ai,J , 

D. 
	ai,J , gi ' Di gJ/ 

are elements of the space C(O,T; LW(S)) 

Using a standard argument (see Remark 2.3.3) we can 

deduce the linear operator A0(t), t E [O,T], associated 

with the bilinear form ao(t). We have, 

3. A0 (t) = - Lt 

where Lt  denotes the Fokker-Planck operator introduced in 

1.1.9.. 

Define the bilinear form al(t), t E [O,T] by, 

4. a1  (t; u, v) 	= 	(A1  (t) , v), 

u, v E H(yS) 

t e [0,T] 
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where Al  (t) _ -Ht  and Ht  is the first order differential 

'operator introduced in 1.1.20. 

We recall that, 

5. Htu = - j l 	(bi  (t,x) u (x)) + h(t,x) u (x) , 
dx. 
i 

Here [bi  (t,x0 = a (t,x) . OW and the functions h, Sl 
are parameters of the observation process. 

Let us assume that for i = 1,...,n the functions 

6. bi, Dibi, h, 

are elements of the space C(0,T; Lw(S)). 

It is very easy to show that under hypotheses 2. and 

•6. the bilinear forms ao(t), al(t) verify assumptions 5.2.2, 

5.2.3 and 5.2.4. In order to have also here the coercivity 

;condition 5.2.6 we assume that for some constant a > 0 

7 . 	<r, (Lai,  j] - Doi]  [bi]T  ) r>  >>  a < r,r >, 

for all r E Rn  

(t,x) E I0,TI x S,, 

where <.,.> denotes the scalar product in Rn, 

Cal J
] 
	[ai, . (t,x)] and fbi] = [bi (t,x)] . 

Consider the observation process introduced in 1.1.1 
plus 1.1.18 and 1.1.19. Let Tt = a (y (s) :0 	s 	t) . 
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Consider the following stochastic evolution equation: 

8. 	du(t) + Ao(t)dt + .A1(t)dwt  = Of  

where wt  is a real-valued, 3 -measurable, non-antecipative, 
standard Wiener process on the probability space (Q,A , P). 

According 	to Theorem 5.2.1, equation 8. has a 

unique solution u, 

u 	2(o,T;H'  (S)) (l L2 (S2;C (O,T;L2 (S) )l  

satisfying u(0) = u0  E Hō(S). (Here, the symbol - is used to 

indicate the dependence with respect to the probability P). 

It can be shown (see e.g. Pardoux 141) that under 

the transformation of probability measure indicated in 1.1.5, 
the observation process, y(t), becomes a real-valued, 

Tt-measurable non-anticipative standard Wiener process on 
.(2,d1, P). Therefore, equation 8. is equivalent to equation 

1.1.21 and so, we have proved the following result: 

Theorem 5.3.1 - Under hypotheses, 2., 6. and 7. equation 

1.1.21 has a unique solution 

q E M2 (O,T;Ha (S) ) () L2 (S2;C (O,T;L2 (S) ) 

satisfying  q(0) = qQ  E H1(S). 

Here qo  is the density of the law of Xo  (see 1.1.3) 

Selecting S = Rn, the result above enables us to 



derive a existence and uniqueness result for the filtering* 

problem for partially observed diffusions in Rn. As we 

mentioned in sections 3. and 4., the assumption V = H1(S), 

'S an open set of Rn, corresponds to the filtering problem 

for diffusions absorbed by the boundary of S. Selecting 

V = H1(S), we shall be able to analyse the case where the 

diffusion is reflected in an inelastic boundary. (see 

Pardoux 1401, for both situations). In particular the case 

S = Rn, diffusions in Rn, has been analysed also by Krilov-

Rosovskii (1221)  and Levieux ( 28 1) . 

Remark 5.3.1 - We remark that the coercivity condition 7 is 

achieved automatically if we assume that for all 

(t,x) E [O,T] x S, r E Rn  there exist constant a > 0 and 
e E (0,1) such that, 

9. 	i). 	<r, Ia. Ir> 	a. c-1  <r,r> 
1,3 

Li). <s', 51> 

In fact, under these conditions we can write, 

<a r, 81(01
T 
 aTr> 
	

(<aTr, (3 1 >)2  

< 	<aTr, cx r> 	(1 - 
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E < r, [ai,7Ir> ` <r, ([ai,j] 	[bi] [bi] )r >~ 

and so, the coercivity condition 7. holds. 

We also observe that, recalling hypothesis 1.1.19, 

condition 9.ii) above is equivalent to the following: 

10. ( 32 (t)) 2 	•> 

Therefore, as the coercivity condition is a crucial 

assumption in the proof of Theorem 5.3.1, we conclude that 

condition 10. is an equally crucial condition to the solution 

of the filtering problem. It means that in the observation 

process, the proportion of the noise independent of the 

signal must be positive. See Pardoux 1411 for an extended 

analysis on this subject).* 

Remark 5.3.2 - With respect to the regularity of the solution 

of equation 1.1.21 one can show that, similarly to what 

happens for non-stochastic partial differential equations, 

this regularity depends on how regular are the coefficients 

and the initial condition associated with the equation. 

In Pardoux (1 411) (and also in Krilov-Rosovskii (1 211) ) 

regularity results are presented for the solution of the 

Cauchy problem for the evolution equation 1.1.21 (i.e. for 

S = Rn in Theorem 5.3.1). It turns out that, if the functions 

described in 2. and 6. have. bounded partial derivatives 

(w.r.t. x E. Rn) up to order p 	1 and if qo E H'(Rn), then 



equation 1.1.21 admits a unique solutions  

q E M2  (O,T; Hp1 (Rn)) (1 L2  (0,T;C (O,T;Hp  (Rn) )) , 

(Theorem 2.1 in Pardoux 1411) 

For the case S C Rn, similar results can be derived 

if the boundary of the domain S is sufficiently "smooth". 

Here, we register a result presented by Pardoux (1401)  where 

a stochastic equation of the form 1.1.14 (the Zakai equation) 

is analysed. 

Let the boundary of S be of Class C2. 

Take sl = 0 in 1.1.21.(In other words, consider 

equation 1.1.14) If, in addition to hypotheses 2. and 6. we 

have, for i,j = 1,...,n, 

a. 	E C1 (.[0,T];LW  (.S) ) 
1,3 

D.h 	E C((0,T);I$(S)) 

then for qo  E HJ(S) the solution q of equation 1.1.21 
satisfies 

q E M2  (.O,T; H 2  (S) ) (l L2  (Q;C (O,T;Hō (S))) • 

(Theorem 2.3 in Pardoux 401) 

Remark 5.3.3 - Consider the case sl = 0 in equation 1.1.21. 

In ether words, we are assuming independence between the 

noise in the observation process and the signal and, in this 
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case, equation 1.1.21 is identical to the Zakai formula 

1.1.14. But this equation admits a non-stochastic counterpart, 

i.e., equation 1.1.16. Therefore, an existence and uniqueness 

result for equation 1.1.14 can be obtained by means of the 

"results presented in section 3. for (non-stochastic) evolution 

equations. In particular, if we also assume the function h 

to be invariant in time, Theorem 3.4.1 and Theorem 5.3.1 are 

equivalent, (in thezense.i-hat both represent an existence and 

uniqueness result for the Zakai formula). 

The concepteknon-stochastic counterpart offers 

other interesting aspects for investigation. Consider the 

finite dimensional stochastic equation that constitutes .a 

Galerkin approximation to equation 8. It has the form of 

equation 5.2.16 but with wt  = wt  = y(t). 	In addition to 

the hypotheses made in this paragraph" assume, 0 = 0 and h, 

invariant in time. In 5.2.16. these assumptions mean that 

R(t) = R = R
T
.  A non-stochastic counterpart of 5.2.16 can be 

obtained using the procedure presented by Doss 0111). We 

first write the following equation in Vn: 

11. (āt  V (t,vo) ,v) = (P (hV (t,vō)) ,v) 

for all v E Vn  

t E [O , T],/  

where Pn  is the projection on Vn  and V(0,vō) = vo  E V. 

Therefore, [V (t,vo  )' = F (t) . [vo] = exp (-M 1  R) [vo] and a 

pathwise solution for 5.2.16 has the form, 

12. dt [rn  (t)] + F 1 (y (t))d'b(t)F (y(t)) [rn  (t)] = 0 

where M(t) = M IKT(t) +.2(M 1 R)2. The relation between 5.2.16 

and 12. is given by 
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.13. 	un(t) = V(y(t),rn(t))• 

We observe that equation 11. is a Galerkin 

approximation to equation 1.1.15 (in the sense that they tend 

to describe the same object as n } co). On the other hand, one 

must be able to prove that the solution of 12. converges to 

the solution of the pathwise formula 1.1.16. Therefore, 

equation 12. represents a Galerkin approximation to the 

pathwise formula 1.1.16. (However,, this Galerkin approximation 
is different from the one obtained when we start with 1.1.16.. 

So, we have here the same situation as in Remark 5.2.4: 

equation 1.1.14 and its non-stochastic version 1.1.16 produce 

two different weak forms both convergent).. 



GALERKIN APPROXIMATIONS TO STOCHASTIC EVOLUrION EQQATIONS 

The objective in this section is to present two 

families of discrete time Galerkin schemes in order to 

approximate the solution'of stochastic evolution equations. 

These families are characterized by having terms which are 

respectively linear and quadratic in _ 	_ 	the noise 

increment. With respect to the time increment the schemes in 

both families are implicit Runge-Kutta of the variety studied 

in section 4. and,therefore, the methodology used here; 

follows the same pattern as before. 

In paragraph 6.1 we introduce a family of linear 

schemes. Consistency of the numerical method is studied in 

paragraph 6.2 and in paragraph 6.3 an estimate for the error 

of approximation is presented. It turns out that if sufficient 

regularity is attained by the solution of the stochastic 

evolution equation, the method has a non linear rate of 

convergence in relation to the discretization in time. In 

paragraph 6.4 we study a family of quadratic schemes. In this 

case if stronger regularity conditions hold, the method 

admits a linear rate of convergence in the time increment. 

Finally in paragraph 6.4, we bring into consideration the 

filtering problem for diffusion process. 

6.1 - A Numerical Scheme 

Basically, we assume the hypotheses of section 5. 

So, V and H are Hilbert spaces, V is dense in H and 

its injection is continuous according' -  to 5.2.1. The symbols 

((. , . )) and II  . II , (. t•)  and 1 . 1 , denote the inner product 

and norm in V and H respectively. 

The objects a.(t), j = 0,1 are bilinear functionals 

defined in the space V, satisfying hypotheses 5.2.2, 5.2.3, 
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5.2.4 and 5.2.6, the latter taken with a = 0 for reasons 

:given in Remark 5.2.1. 

Here, we strengthen hypothesis 5.2.4, by assuming 

1. 	{a 1 (t;u,v)j`- Yl 1ullv1, 

u,v -E V 

t E [0,T] 

In other words, the operator A1(t) introduced in 

5.2.5 is now an element of L(H,H). 

We also make the following additional hypothesis: 

2. a . (.,u,v) 	E. C1  (0,T), 

for all u,v C V 

j = 0,1 

. Let ly be a finite dimensional subspace of V. 

For all t F  [O,T"] , let Li ft), j = 0,1, be linear 

operators from 19-to 15- defined by the following relations: 

3. a . (t; u,v) 	= 	(L . (t) u,v)J  

for all u,v E 
t E [0,T1/  
j = 0,1 . 

Since 1) is a finite dimensional subspace, these are 
well defined continuous linear operators. In particular, by • 

hypothesis 1., we have 

151 



11,1(t)uI 	f 	YlIuI l 

u E Li- 

t E. [O,T~ 

or, .r~o► ~al~~f1 

4. 111L1(t)111- Y1 	t E [O,T] 

independent~r of the subspace 17. Here, the symbol III . II I stands 
for the natural norm of L(17,17)  when iris endowed with the 

I•I norm. 

The coercivity condition 5.2.6 (with A = 0, see 

Remark 5.2.1) implies that the operator L (t) is invertible 

and so are the operators of the form (I + kLo(t)) where I is 

the identity operator and k O. g1.50, 	by the continuity 

of the injection V CH, the following estimate holds: 

5. III (I + kL (t) -1 III 	̀  	(1 + ko.) f1 

t E. 

Now, let { O = to < t1 < .—< tN = T } be a partition of 

the interval [O,T' with mesh, 

6. 	h = sup {Itk+i - tk 1 : k = O,l,...,N - 1). 

With respect to this partition, we shall use the 

same set of notation for increments introduced in 4.1.3. 

We shall now present a discrete time stochastic 

scheme for approximating the stochastic evolution equation 
5.2.8.ii). 
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So, ],et wt be the real valued, Tt-measurable non-

antecipative standard Wiener process on the probability 

space (c,cA ,P) introduced in paragraph 5,2 and consider the 

'following stochastic scheme: 

7. 	Uk+1 - Uk + °k kUk + Awk kUk = 0, 

• k = 0,1,...,N-1, 

where U E 0- and 	E L( ~J,1)) , j = 0,1 are linear k 	`dk 
operators defined by the following relations: 

8. 	i) 	k = 	(I + A pLo (T) ) Lo (T)/ 

(I + A kpL o (T) ) 1L1 (tk )/ 

k = 0,1,...,N -1 

with p > 0 and T = Tk E- [tk , tk+1] 

Concerning the operators U, j = 0,1; k =  

the following Proposition can be stated: 

Proposition 6.1.1 - Under the hypotheses above the following 

estimates hold independentlfof the 

subspace T": 

9, 	i) 	- Ak kIII 	-` 1 	- for 	p ? 0.5 

and, in particular, if p > 0.5, there exist 
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constants d,h0  > 0 such that: 

0 

II12 - okdk lll 	exp (-6AkĪ 

for all partitions of the interval 
	

with 

h < h 
0  

III 
-1. 

Proof of Proposition 1 

The first part is identical to the thesis of the Proposition 

4,1.1 and so, is already proven. The second part follows 

from inequalities 4. and 5. • 

So, from the above proposition we can affirm that, given an 

initial condition U0  c 	the set of iterative ecruations 7. 

tr; yely cjeJin e-5 - a sequence Uk, k = O, . , . ,N of 1Y-valued 

k  	(tk)-measurable, random variables. 

We can also, as we did in paragraph 4.2, explore 

some of the stability properties of the scheme 7. In particu 

lar, we observe that the expectation of the variables Uk  

satisfy a scheme identical to the one analysed in section 4. 

In fact, we can write from equation 7., 

10. 	EUk+I = (I - A )EUk  

which is identical to equation 4.2.3 and therefore has the 

same properties regarding stability. 

Now, let R(t), t E [O,T1 be the Ritz projection 

with respect to the bilinear form a0(t) and the subspace 1Y. 
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Recalling the definition given in 4.2.7, we can write 

11. 	ao  (t;u -R(t)u,v) = 0/  

for all u E V, v E b% 
t E [O , T] 

The coercivity condition imposed on the bilinear 

form ao(t) guarantees the existence and uniqueness of such 

an operator. 

The purpose of this section is the estimation of the 

error of approximating the solution of the stochastic 

evolution equation 5.8.ii) by means of the set of random 

variables defined by equation 7. So, in what follows, the 
object of our al±ention will be the random variable 

Uk  - u (tk) 

k = O,l,...,N, 

where by, u, we denote the solution of the Stochastic Evolution 

Problem 5.2.8,. 

Using the definition 11. above we can write, 

12, 	Uk  -. u(tk) = ek  + R (tk) u (tk), 

k = O,l,...,N. 

4.ere the random variable ek  and the linear operator R(t) 

are defined by the following relations: 
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13. 	ek  = Uk  - R(t u (.tk  ) 
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14. 	R(t) 	= I 	R(t) . 

Now, define the sequence (1)k'  k = 1,.,.,N of 1T-valued, 
k '--measurable, random variables by the following relation: 

15. (1) k+1 R(tk+l ) u  (tk+l) - R(tk )u(tk ) + 

Ak kR (tk ) u (tk) + 

Awk 
 q

1 
k R(tk)u(tk), 

k = 0,1,...,N - • 

Subtractiticr equation 7. from the above, using 
equation 13. and rearranging terms, we have, 

16. 	ek+l  - ek  + ak ekek  + awk Lkek + (I) k+1 = 0/ 

k = 0,1,...,N- 1 , 

Here, as in paragraph 4.2, the error of the 
approximation is determined by the variable q5 k . So, extending 
the concept of consistency of a numerical method to t'ab case, 
we can say that (pk  measures the consistency of the method of 
approximating the solution of the evolution equation 5.8.ii) 
by means of the scheme 7. 



Remark 6.1.1 - The discrete time stochastic scheme 7 can be 

'written in other forms. which are, perhaps, more familiar to 

the reader. So, it can be presented in a "stage" form, 

Uk+l  - Uk  + Akso + Awksl  

k=0,1,...,N-1, 

where S 7 E b- , = 0,1, are such that: 

(13 o,v) + Akao  (T; so,v) + ao  (T;Uk,v) 	= 

(131,v) + Aka  (T; $1  ,v) + al(tk;Uk,v) = 0/  

for all vel7. 

Alternatively, 

(Uk +l 	Uk,v) + Akao  (T; PUk+l + (1 - P) Uk,v) 

+ Awkaj (tk;Uk,v) = 0 ) 

for all v E l7, 

k = 0,1,...,N -1. 

We observe that scheme 7. differ from the implicit 

Runge-Kutta scheme analysed in section 4 only by the term 

containing the increment in the noise. 

Basically, a numerical scheme appropriate to give 

approximations to the finite dimensional stochastic equation 
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that governs the continuous time Galerkin approximation 

equation 5.2.16) can be used in order to produce discrete time 
Galerkin schemes. For instance, if we take p = 0 in equation 

7.~ we have the so called Cauchy-Maruyama scheme (McShane, 

'I36I). However, as we pointed out before (section 4) this 

particular explicit scheme is not appropriate for Galerkin 

approximations and that is the reason why we assume the 

parameter p to be positive. So, the scheme presented in this 

paragraph is the natural and simplest extension of the first 

order Runge-Kutta scheme introduced in section 4. 

6.2 - Consistency Properties of the Method  

In this paragraph we shall evaluate the consistency 

of the approximation method proposed in the last paragraph. 

Two proposition will be presented with estimates for 

the random variables cpk+l and E(4k+1/ sk). , 

We start by considering the equation 6.1.15..Using 

the definitions of the elements involved it can be rewritten 

in the following form: 

• 
	

(fik+1'v) + Akpao(T;4k+1'v) = 	(Auk,v) + 

+ Akao (T; Qu (tk+l) + (1 - p )u (tk) ,v) + 

+ Awka l (tk;u (tk) ,v) - (ARuk ,v) + 

- Aka0 (T ; pRu (tk+l) + (1 - p) Ru (tk) ,v) + 

- Awka l (tk; Ru (tk ) ,v)/ 



for all v E l9 
k = 0,1,... ,N -.1. 

Here, according to 6.1.14, we write Ru(t) = R(t)u(t), 

:t E [o,T], 

As u is the solution of the problem 5.2.8, we have, 

tk+l 

(Auk,v) 	+ 	ao (s; u (s) ,v) ds + 
~t k 

tk+1 

+ 	a l (s;u(s),v)dws = Of 

tk. 
for all v E 1)" 

k = 0,1,...,N-1 w.p.l, 

Substituting this identity in expression 1. and 

rearranging terms, we have, 

3. 	C$k+l.v) ± Akpao CT;cpk+1,v) _ 

tk+1 

= 	ao (T; Pu (tk+l) + (1 - P)u (tk) ,v) + 

t  

tk+1 

- ao (s; u (s) ,v) ds + a l (tk; u (tk) ,v) 	+ 

k 

 

- al(s;u(s),v)dws - (RAuk,v) - 	ap(T;PRu(tk+l) + 
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+ (1- P ) Ru (tk) ,v) - Awkal (tk; Ru (tk) ,v), 



for all v E 19- 
k = 0,1,...,N-1, 

Now, for simplicity, let us strengthen to some extent 

our hypotheses by supposing the bilinear form ao(t)isinvariant 

in time, 

4, 	a (t) = a • 
0 	0  

Remark 6.2.1  - Although our conclusions will be obtained 

'under the above condition, it does not constitute a 

fundamental hypothesis like those presented in the beginning 

of this section. If a0(t) is sufficient9smooth'in relation 

to the variable time, Sir.  )lar 	results can be obtained. • 

From condition 4., the Ritz projection is also 

invariant in time and we are able to write, 

5. a0(Ru,v) = 0 

for all u E V, v E I" 

On the other hand, hypotheses 6.1.1 and 6.1.2 enable 

us to define the operator A'(t) such that 

6. i) 	A' (t) 	= 	d Al  (t) E L(H,H) 
dt 

t E [O , T] 

ii) 	IA1 (t)ul 	<. 

for all u E H 

t E [O , TJ 
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for some constant Y1. 



So, the following identity can be written: 

tk+1  

7. 1 al  (tk  ;u(tk) ,v) - al  (s;u(s),v)dws  = 
tk  

tk+1 

(A1  (tk)u (tk) - A l  (s)u(s) ,v)dws  = 
tk  

tk+1 

J(A 1  (s) Auk  (s) , v )dws  + 

tk+l s 

( 	A l  ( )u(tk)dE,v)dws, 
tic 	tic 

for all v E t" 

k = 0,1,...,N -1 • 

Taking 4., 5., and 7. into account and rearranging 

terms, equation 3. now becomes 

8. (4k+l'v) + A pao(4k+l'v) = A pao(Auk,v) 

tk+l 	tk+l  

- 	ao ( Auk  (s) ,v) ds  - ( 	Al  (s) auk  (s) dws,v) + 

tic 	 tk 

s 

Ai ( )u(tk )d0dws ,v) + 
tk  

- (RAuk,v) - Awka l  (tk; Ru (tk) ,v)/ 
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for all v E 

k = 0,1,...,N -1 	wpl. 

Now, choose v = .$k+1 as a test vector in the above 

equation. Using hypotheses 5.2.3, 5.2.6 (with A = 0), 6.1.1 

and the Schwartz' inequality, equation 8. yield the 

following inequality: 

9, 1411C+1 2 
	A P a ll fik+lll 2

< y o IIAu kll II 4)1,4_111 

tk+l  

+ 	yollou(s)II IIk+lll ds 	+ 

tk  

tk+l  

+ 1 	Al  (s) Auk  (s) dws  I kk+l I + 
tk  

tk+l 

+ I 
I 
 ( 	Al  ( ) u (tk) d&) dws 114'k+11 	+ 

tk 	tk  

+ 	IROukll(Pk+ll + Y l lowk IIRu(tk )Ik k+ll, 

k = 0,1,...,N -1 	wpl. 

Using Cauchy's inequality, pq 	p2/2E + Eq2/2 with 

= 2pcs/y o  (p + 1) for the first and the second terms of the 

right side and with E = 1/4 for the remaining terms, we 

obtain after standard manipulation, the following inequality: 



+2 1 
1~

. 

( ' A l (E)f u(t ws(tk )d Odw 	+ 
tk 
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Y 0 (p 	1) 
2 1 k+ 1 ~ 2 ` 	 k o 4pa 
	 i~ A uk II 2 	+ 

tk+l 

II Auk (s)hI 2 ds 	+ 
tk 4pa 

 

tk+1 

I A l (s) Auk (s) dws 2 + 

tk+l s 

tk 

+ 2IRAuk 
2 

+ 2y 1 (awk)2 lRu(tk) 1 

k = 0,1,...,N-1. 

Taking the expectation on both sides of this 

inequality, we can write, 

y2 (P + 1) 
11. 	E I $k+1 12 -̀  	ak 

o 	

E ll Auk 11 2 

tk+l 
y o(p+1) 
	  E 	Houk (s)11 2 ds + 

2pa 	t 
k 

tk+1 

+ 4 J EJAl(s)uk(s)I 2 ds + 

2pa 



:(equation 11. - continuation) 
t
k+1 s  

J

+ 4 	E I  Al  ()u(tk)dg I2 ds + 4EIRAuk t 2  + 

-k 	-k 

+ 4y
2 
 E (E(A2wk/  Tk) IRu(tk ) I 2 )l  

k = 0,1,... ,N -1. 

Using the estimates 6.1.1 and 6.ii) we can finally 

write the following inequality: 

Y2  (p 	1) 
12. E l (1) k+l 12 	Ak 	 EII AukII2 	+ 

2pa 

tk+l  
12 (p + 1) 

Ell 6uk(s) 11 2  ds 	+ 

tk 

tk+l  

+ 4 yi 	EIAuk(s) 1 2  ds + (Ak)3  4(y ')2  EIu(tk)I2  + 
tk  

+ 4EIRAuk l 2  + Ak4y1 EIRu(tk)I 2l  

k = 0,1,...,N -1, 	wpl. 

We ' 5tai- 	this result in the following, 

Proposition 6.2.1 - Under hypotheses 5.2.3, 5.2.6, 6.1.1, 

6.1.2 and 6.2.4 the following estimates 

holds: 
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tk+1,  

13 	EIcpk+1 2  - C AkEll Auk II 2  + 	 ll Auk(s)II2 ds + 
Jt
: 

+ 	(A k ) 3  EI u(tk) 1 2  + EIROuk I 2  + AkElRu(tk) I2 	i 

k = 0,1,... ,N -1. 

Here C is a positive constant depending only on the 

parameters p, yo, yl, y and a. 

Remark 6.2.2 - The inequality 12. shows that fk  E. L2(S,H) 

for all k-= 1,...,N since, by the estimates presented in 

paragraph 5.2, its right side is finite. Moreover, we shall 

have (1)k.,4- 0 in L2  (c ,H) as N -Y co. • 

Remark 6.2.3 - In the - steps leading to the estimate 12. we 

have used, implicitly, soon = ►.esta4mdproperties of stochastic 

integrals (in Ito's sense) and Wiener processes which are 

registered in paragraph 5.1. • 

The result presented in Proposition 6.2.1 enables us 

to estimate the random variable E(4k+l/ k), k = 0,1,...,N-1 
by means of the inequality, 

14. 	E(IE(4(+l/ ' k) 12) 	-̀  Elk+1I2  ° 

However, for the purposes we have in mind, the above 

estimate is not accurate enough. So, we shall now prove the 

following proposition: 
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tk+1 

+ ok 	EIR d  e(s;tk,u tk  
t, _ ) ) ds 

-1• 
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Proposition 6.2.2 - Under the hypotheses of Proposition 6.2.1, 

the following estimate holds: 

tk+l • 

15. 	E (IE (4)k+1/3k) 1 2  ) 	C (ak ) 2 	Ell 	0 (s; tk ,u (tk ) )11 2  ds + 

tk  

%•fl=_re C is a positive constant depending only on the 

parameters p, yo, 6; 	6(.;t,z) is a V-valued function 

defined in Lt,TI and related to the parameters £ E [O,T], 

z E V by the following initial valued evolution equation: 

'16. 	i) 	e (t;t,z) 
dt 

ii) 6(t;t,z) = 

Ao6(t;t,z) = 0 

z E D (A0 )), 

Remark 6.2.4 - The result in Proposition 6.2.2 is Esr,16.1i.s tom' 

by the fact that 	- 	equation 16. has a unique solution. 

Although we are not allowed to use 	the results 

of section 3. in order to show existence of a solution, 

(because here we are not supposing the bilinear form ao  with 

a symmetric principal part) the existence of such a solution 

can be shown by means of the techniques introduced in that 

section. Here, we shall not present this proof. Instead,we 

Will make use of a similar result presented in Lions,1311. 

Consider the evolution equation, 



167 

.17. 	Z(t;Zo) + Ao  Z(t;Zo ) 	= 
dt 

Z (o,Z0) = Zo 	H H. 

It can be shown (Lions 1511,   Theorem 1.2 , p. 102 ) 

that the equation above has a unique solution 

Z (.',Z^) E L 2  (O,T;V) n C(O,T;H) , 

we can write, 

18. 	Z (t;Z o) 	= Z (t;-Ao Z o ) 
dt 

t E 

,for all Zo  E D(A). 

Therefore, using this argument in relation to 

equation 16. we can conclude that, 

6 (.;t,z) 	and 	6 (.;t,z)J  
dt 

are elements of L2(,T;V) (1 C(,T;H) for all z E V such 
that z E D(A ). 0 

( or similar results when Ao  depends on time, see Lions 1301, 

chapter V)• 

Proof of Proposition 6.2.2 

Let (p (zk) , zk  . F D(Ao) C V, k = 0,1, .. . ,N - 1 be a family of 
elements belonging to the subspace'lY, defined by, 



19. (zk) 	= RQ(tk+l;tk ,zk ) - Rzk + Ak gkzk 
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k = 0,1,...,N-1. 

For simplicity, in the steps hereafter we will 

delete the argument z by writing 

= 	(zk) , 	e (t) 	= e (t: tk, zk) . 

Recalling the definition of the elements involved, 

equation 17. can be rewritten in the form 

(4,v ) + AkPao(,,v) = (AO k,V) + Okao(PO(tk+1) + 

+ 	(1 - P) zk,v) - (RAO ,v)./ 

for all v E 

k = 0,1, ... ,N - 1 . 

Using equation 16. to evaluate the increment oek and 

substituting in the above equation we have after rearranging 

terms, the following identity: 

20. 	(4),v) + AkPao (4,v) _ Akpao (AOk,v) 	+ 

tk+l 

- 	ao (eek (s) ,v) ds - (RAO k,v) f 
tk 

for all vE l~ 
k = 0,1,...,N-1, 



2

1 (1) 12 	< 
2 

ak pyo. IIae k 11 2 + 22. 
2a 
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Take v = 	as a test vector. Using hypotheses 5.2.3 

and 5.2.6 (with X = 0) jointly with Schwartz' inequality, 

equation 20. yields, 

2 • 
	

1;1 2 + AkpQll;112 _ AkpYo lldek ll 114II + 

tk+l 

+ 	Yoll a 0k (s)11 11 Cr) 	ds 
	+ 	IRaek l1;1, 

k = 0,1,...,N-1 

Apply Cauchy's inequality pq 0.5 p2/c + 0.5eq2 

with c = a/yo, c = ap/yo and c = 1, respectively, for the 

terms in the right side of the above equation. After some 

manipulation we have, 

Y2 0 

tk+l 

11 p 
ek (s) 11 2 ds 

{~ 
-k 

+ 
i IR 
2 

2 
ek 

26p 

k = 0,1, ... ,N - 1 

Let us write, again for simplicity, 

23. 	6'(t) 	= 	
d 

e (t; tk, zk) . 
dt 

Using Schwartz' inequality we can deduce the 

following inequalities: 



tk+1 
24. 	i). 	II A e k (s) 11 2 	< 	Ak

Jtk 
II e'(s) II 2 ds, 

• 	tk+l 

ii) 
	ek 2 
	Ak 	I ke' (s) 12 ds 

tk 

Substituting 24. in 22. and eliminating the factor 
1/2 in the left side we have 

tk+l 
25. I I 2 -̀ 	P-1 a )~ 

° 	1 e t (s) 11 2 ds 	+ 

+ ok 
2 

up 	II e' (s) 11 2 ds 	+ k 	lRe' (s) l2ds, 
tk 	tk 

k = 0,1, ... ,N - 1 . 

Now,. consider the Y-valued, 	 k- -measurable, 
Variable ¢ (u (tk )) , k = 0,1, ... ,N - 1, obtained by means of 
equation 17. when the variable zk is fixed at u (tk ) , the 
function, u, being the solution of the evolution problem 5.2.8.. 

We shall show that 3(u(tk )) is a version of the 
conditional expectation of 3k+1 with respect to the a-algebra
r-fk. In other words 

tk+l 	 tx+l 

26. E (¢k+1/ k) = $ (u (tk ) )/ 	 w.p.l 

k = 0,1,...,N-1 
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In order to prove the above relation consider the 

equation 6.1.15—Taking the conditional expectation from 

both sides we have, 

27.E((1k+l/ k) = R E(u(tk+l)/ 
	- Ru (t k) + AkkRu (tk )l  

k = 0,1,...,N-1. 

Subtracting the above relation from equation 17. we 
have, 

28. $ (zk) - E (¢k+1/Ik) = R (e (tk+l; tk'zk) 	E (u  (tk+l) /J:) + 

- R(zk  - u(tk))  + a kR(zk  - u(.tk)),  

k = 0,1, ... ,N -1, 

Taking zk  = u(tk) in the above equation, 

29. (u(tk)) - E L(Pk+l/Jt ) = R (e (.tk+l ;  tk•u (tk )) + 

- E (u (tk+1) / J k) ), 

k = 0,1,...,N- 1. 

Now, compare equation 16.i) with equation 5.2.8.ii). 

We observe that the following identity can be written: 
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30. 	e (t; t,u (t)) - E (u (t)/t) 	= 	e (t; t,0) 
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for all 0 < t 	t f T. 

But/ by the results obtained in section 3 we have, 

31. 	6 (t;,0). 	= 0 . 

Therefore relation 26. is proved. Using the estimate 

25. as an estimate for the conditional expectation, the 

;thesis of Proposition 6.2.2 is demonstrated. 

6.3 - An Abstract Error Estimate 

We shall now present an estimate for the error of 

approximation. 

From equation 6.1.16, the following inequality can 

be written: 

1. lek+l ! 2 	MI  - Ak~k
IH2 IekI2 

+ 	(dwk) 2 IIIgk1iI2 Iek 1 2 + I 4>k+1'2 + 

- 2 Awk((I - 

2 ((I 	ak~k) ek' (I)k+1) + 2Awk (~kek' 4k+1)/ 

k =  

Take the expectation on both sides of this equation. 

Recalling that ek is a rk-measurable random variable and 

using Schwartz' inequality we have,. 



2. 	Elek+i 
2 -` I I  I - akCk 011 2 E l ek 
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oklll ~k  III 2 E.Iek l 2+ E l q)k+1I 2 	+ 

+ 21111 - Akrl'k III E(Iek l IE 

+ 2 lgk1 1II E(IowkIle 

k = O, 1, ... ,N - 1. 

Now let us suppose that in the scheme 6.1.7 we are 

taking, 

p 	0.5. 

Recalling the estimates in Proposition 6.1.1 we 

have, 

4. 	EIek+1 I 2 	EIekI 2 + ok11ij e l 2 + E1 k+ll 2 + 

+ 2 Eclekl I E(4 (+l/ Jk) I) + 2ylE(IAwkI I ekI I4k+lI )~ 

k = 0,1,...,N -1 

Making use of Cauchy's inequality, pq p2/2c 

with c = k)-1 and c = (1) 1 in the last two terms 

respectively, we have, 

+ c q 2/2, 



5. 	Elek+112  - Elek 1 2  + Akyi Ele 2
+ Ekk+l l 2 + 
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+ AkEle 2  + Ak1E I E"k+l/  Tk)  12 + y
21E(A2wk lek1 2) + 

2 + EI 4 k+l i  

k = 0,1,...,N -1. 

After some manipulation inequality 5. yields 

6. 	Elek+112 <  12 + o
(
(2yi 	1) Elek 1 2 	+ 

+ 2 El(1)k+112 + A
k1  EIE("k+l/ 

 iT 
 k)I2 

k = 0,1, ... ,N - 1 

Recalling Lemma 4.3.1, we are able to deduce the 

.following inequality: 

N-1 
 

7_. 	Ele 1 2 exp
L 
 L (2yi + 1) A 	(E1e0 1 2  

j=0 

N-.l 

+ 	2E14)j+112 + Ajl E I E(cpj+1/ ` j)  
j=0 

k = 0,1,...,N. 

Now,Propositions 6.2.1 and 6.2.2 enable us to present 

the final result. 	Jubstituting estimates 6.2.13 and 6.2.15 

in the inequality 7. above,we have, 



8. 	EIekI2 ` C 

N-1 

0 - u 01 + 	hEllAu .II2 	+ 
j=0 
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tj+1 

+E

J
1 j (s) 11 2 ds + h3E I u(tj) I 2 	+ 

t. 
J 

+ EI.RAuk I 2 + h EIRu(tk)I 2 	+ 

tj+1 

+ h 	Ell e (s; t j ~u (tj)) I! 2 	ds 	+ 

J 
t. 

tj+l 

+ ds e (s;tj ,u(t) 1 2 ds ~ 

k = 0,1,...,N, 

where C is a positive constant depending only on p, y, yl, o 
yl, a and T. 

Although the estimate 8. provides us with the means 

for proving convergence of the numerical method given by the 

scheme 6.1.7, it does not represent alone, a convergence 

result. If these results are sought, we need supplementary 

assumptions. 

Tit,Y ewe shall now present a set of hypotheses and a 

convergence result for scheme 6.1.7. 

First, let us assume that our bilinear form a 0 can 

be written as a sum of two bilinear forms bo and bl , defined 

on the space V, such that, 
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9. 	i) ao = b + b11 

ii) bo is symmetric/ 

iii) B1 E L(V,H)1 

where Bj, j = O,l,denotes the linear operator associated with 

the bilinear form b.. 

With the addition of hypothesis 9. we are now able to 

use the results of section 3. with respect to the evolution 

equation 6.2.16. Consider equation 6.2.17. From estimate 

3.3.24, we conclude that there exists a constant C such that,  

IIz . ( t;z 0 )11 2 	c11z a l 2 

for all Zo E 

Therefore, using relation 6.2.18, we have for the 

solution of equation 6.2.16 the following estimate, 

10. 	Ildt e(t;t,z)11 2 - cIIAo z112 

0 < t t Tl 

for all z such that Aoz E V. 

So, let us suppose that for the solution of the 

problem 5.2.8 we have, 

11. 	i) 	Aou (t) E. V~ 
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ii) 	Ell A p u(t) II 	M < 

for all t E. [0,T]. 

By inequality 10., hypotheses 9. and 11. lead us to 

the conclusion that there exists a constant C such that, 

12. Ell āt e ct; t ,u (t) II 2 	c E II Ao  u (t ) II 2  < co, 

for all 0 <- t 	t <- T. 

On the other hand, using equation 5.2.8.ii) and a 

standard procedure, hypothesis 11.ii) allow us to conclude 

that there exists a constant C such that 

13. Ell Auks) 11 2 	C hl  

for all s E [tk,tk+1]  ' k = 0,1, ... ,N - 1 . 

Now, let us consider the approximation subspace, 1Y, 

where the scheme 6.1.7 is defined. 

We suppose that there existsa family of finite 

dimensional subspaces 17(d) C V with d > 0 such that, with 

respect to the bilinear form ao  and the spaces H and V, the 

following approximation property holds: 

14. 

for all u C V • 

So, selecting 1% as a member of the family of 

subspaces described above, 
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15. V =  

We are able to show the following Theorem: 

Theorem 6.3.1 —Under the hypotheses of Proposition 6.2.2 
plus hypotheses 9., 11. and 15. the following 

estimate holds: 

16. sup (E I u (tk) - Uk 1 2) 	C
< 
I Ru o - U o  I 

k 

+ h(1 + sup (EllA u(t) II2)) + h2  sup (Elu(t) 1 2) + 
[O,T] 	[o,T] 

+ d (1 + sup (E I I u (t) 11 2) + 	sup (E  II Ao u (t) 11 2 ) ) 	, 
[O,TJ 	 [O,T] 

where C is a positive constant. 

Proof of Theorem 6.3.1 

The proof follows after using inequalities 12., 13., and 14. 
in the estimate 8. and then substituting in 6.1.12. • 

Remark 6.3.1 - The estimate 16. means that under the 

conditions of Theorem 6.3.1, a numerical procedure given by 
the scheme 6.1.17, with Uo  = Ruo, will converge to the 

solution of problem 5.2.8, in the norm, 

sup II u(tk) - Uk 1I L2 (c,H)  • 



'Here tk, k = 0,1,..,,N are the dividing points of the 

partition of the interval 10,T1. 	Lhe rate of 

convergence in the time will be h1/2. This is a slow rate of 

convergence. In paragraph 6.4 we shall present a family of 

schemes that, under stronger conditions, will converge with 

a faster rate. 

Here, we observe that the crucial hypothesis is 

stated in 12.. It is possible to interpret these conditions 

by saying that they represent a certain regularity attained 

by the solution of problem 5.2.8 and this interpretation has 

a precise meaning when Ao  is a partial differential operator. 

We shall return to this situation in paragraph 6.4. 

We also remark that the hypothesis concerning the 

approximation subspace is standard and can be verified for 

finite-element subspaces (see paragraph 4.3.4). 

6.4 - A Quadratic Scheme 

In paragraph 6.1 we introduced a simple numerical 

scheme which is linear in terms of the increment in the 

noise. We remarked in the end of paragraph 6.3, that the rate 

of convergence of such a scheme can be disappointingly slow. 

Here we shall present another scheme which,under suitable 

conditions, can have a faster rate of convergence. 

As has been pointed out by. McShane (1361) and, also 

Clark ( 0 6 0, for finite dimensional stochastic differential 

equations, a higher order of convergence in time can be 

achieved if,in the numerical scheme,we take into account terms 

containing powers of the noise increment, 

This fact can be understood with an analogy between 

stochastic and non-stochastic differential equations. Consider 

the scalar linear differential equation, 

du (t) = a u (t)/ 	a E R. 
dt 
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Therefore u(t) = exp(at)u(0) and we may say that 

numerical schemes for the above equation are constructed in 

order to approximate the exponen ial exp(aAk), where ek  is 

the increment in time (see Remark 4.2.1. ) , 

Now, consider the simplest scalar version of the 

stochastic equation 5.8.ii). It has the form 

du(t) = au(t)dt + bu(t)dwt  ; 	a,b E R. 

So, u(t) = exp (at -  bet + bwt) u (0) , (w.p.1) and 

therefore, in this case, schemes should be constructed in 

order to produce approximations to the exponencial 

exp(aAk  - 2 b 2Ak  + bAwt). 

It is easy to see that, in relation to the above 

;stochastic equation, the scheme introduced in paragraph 6.1 

fails to approximate the second term in the exponential and, 

besides,gives a mediocre approximation to the third term. 

Following this line of argument we can produce a more 

complex scheme, containing a second order term (in the power 

of the noise increment) which may have a faster rate of 

convergence. This scheme corresponds to McShane's numerical 

method (McShane, , 36{, p. 205), 

In what follows, we shall use the notation introduced 

in paragraphs 6.1.1, 6.1.2 and 6.1.3. However, we must consider 

sur%lementary hypotheses. 

First, for simplicity, we also assume the operator 

A1(t) to be invariant in time, 

1. 	A l  (t) = Al  

Remark 6.2,1 also applies to the above hypothesis. In 

other words, hypothesis 1. is not a fundamental hypothesis 

180 
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and basically, the results of this paragraph could be obtained 

with hypothesis 6.1.2 alone. 

We also assume that the linear operator Al  E L(H,H) 
is such that, 

2, 	Av E. V 	for all v . VI  

where Al  denotes the adjoint of A1. 

In addition to the operators L 	, j = 0,1 defined 

in paragraph 6.1 define linear operators L2, 	E L(Ū,l) by 

the following relations: 

3. 	(A 2u,v) = (L2u,v)/  

for all u,v E L. 

4, 	/12. = 	(I + EkpL0) -1 L2 /  

k = O,l,...,N -1. 

Consider the second order stochastic numerical scheme, 

5.
2  

k+1 	Uk. + Ak  ( k  + 1  k) Uk  + 
2  

+ L1wkkUk  - 1  (Awk) 2  f6 kUk  = O/  
2 

k = O, 1, ... ,N - ll  

where, here,we use the symbol - to differentiate the above 
scheme from the scheme 6.1.7. 



Starting with the above equation we can follow the 

same pattern of analysis as we did before. 

First,we recall a basic identity concerning Wiener 

processes: 

t s 

6. 	(pwk ) awk (s) dws/ 
tk 

k = 0,1, ... ,N - 1 . 

As a consequence of this identity we can write, 

tk+1 
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2 
7. 	Ak~j k (Ow 2 k) 

2 
k 

2 _ -2 	Awk(s) k dws 
tk 	UU 

Therefore, if we want to explore stability properties 

of the scheme 5 ., we can start f ro', the fact that, as before 

(see equation 6.1.10), the expectation of the variables Uk 

satisfy a scheme identical to the one studied in section 4.. 

Substituting 7. in 5. we have, 

8. 	E Uk+l = (I - k ~lk)  E Uk J 

k = 0,1, ... ,N - 1 . 

We can also write expressions for the error of 

approximation. So, the counterpart of equation 6.1.16 has 

now the form, 



9. 	ek+l - ek + Ak (~k 
+ 1 
2 

2 

k) ek + . A 
1 
kek + 
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- 1(owk ) 2 
2 k + 4k+1 

k = 0,1, ... ,N - 1 . 

10. 
no 	, n2 

- 	._ ~.. 	2 

+ Ewk'kRu (tk) - 1 (Awk ) 2~kRu (tk) . 
2 

Now, multiplying both sides of equation 10. by 
(I + AkpLo) and using relation 7. we have, after rearranging 
'terms, 

11.  (I + AkpLo)(I) k+1 	= 	RAuk + A Lo(pRu(tk+l) 	+ 

+ (_1 - p) Ru Ctk)) 	+ AwkL 1 Ru (tk) 	+ 

tk+l 

- Awk (s) L2Ru (tk) ds/ 

tk 

k = 0,1,...,N -1. 

Using the definition of the operators involved and 

identity 6.2.27we can derive the following expression: 
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12. (4k+1'v) + Akpao(4)k+1,v) = Akpa0(Auk,v) 

tk+1 ' 	tk+1 

ao  (Duk  (s) ,v) ds - 1 	(A1  uk(s) ,v) dws  + 

tk+l 

Awk(s) (A1 u (tk) ,v) dws  

tk  

- (RAuk,v) - Awk(Al Ru(tk),v) + 

tk+1 

+ 	Awk(s) (Aigu(tk ) ,v) dws/  
tk  

for all E. 

k = 0,1,...,N -1 

We observe that this expression differs from 6.2.8 

only by the terms that contain an integral of the noise 

increment/  and also by the term in 6.2.8 that contains the 

derivative of A1  (t). This term is "small" in relation to the 

others and so, hypothesis 1. is justifiable, 

Now, consider the following relation: 

uk  (s) ,v) + owk  (s) (A2u (tk) ,v) = 

s 	s 

J 
= - ao (u(),Alv)d - 	(Alu().,v) dws  

tk 	tk  

tk  tk  

13.  



(Equation 13. - continuation). 

J
+ 	(A2u (tk ) ,v) dw 	= 

s 	s 

_ - 
J 
 ao (u(E) ,Alv)dE - 	(AiAuk (~) ,v)dw 

for all v E. V 

k = 0,1,...,N-1 e 

Ke have used basically identity 6.2.2 and hypothesis 2. in 

the above derivation) 

Substituting in 12. we have, 

14. 	
(~k+1'v) 

+ 
Alcaao ( k+1,v) = akpao (Auk,v) + 

tk+1 	tk+1 s 

- 	ao(Auk(s),v)ds + 

tk 
	ft 	tk 

tk+l s 
2 

+ 
t 	

(Al Auk(),v) dw edws + 

K 	tk 

- (RAuk,v) - Awk (A lRu (tk) ,v) + 
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tk 

tk 	tk 

a (u() ,A1v) d&dws + 

tk+l 

J tk 
Awk (s) (A1R(tk ) ,v)dwsl 



for all v E 

k = 0,1,...,N - 1 

We observe now how the second order term in the 

numerical scheme 5. can be used in order to produce faster 

rate of convergence. By means of relation 13. we have 

eliminated the third term in the right side of equation 12. 

which also appears in 6.2.8. This term contributes, in the 

error estimate 6.3.8,fi 	a slow rate of. convergence of the 

scheme 6.1.7. 	Here,as a consequence of the second order 

term in scheme 5 . , we have 	it by higher order 

terms. However,this is not enough to guarantee a faster order 

of convergence for the scheme 5. In fact, we observe that the 

first and the second terms in the right side of 6.2.8 are 

also responsible for the slow rate of convergence of the 

method. These terms also appear in equation 14. and so, in 

this case, we can not make use of the advantages of a second 

order scheme, unless some additional hypotheses are made. 

We already know that the solution of the problem 5.2.8 

satisfies, 

u (t) E D (A0  (t).) , 	t E  

(see section 5.) 

Therefore, we can write, 

ao  (ouk  (s) ,v) 	= 	(A0Auk  (s) ,v);. 

for all v E V, k = 0,1, ... ,N - 1 , s E [O,T] . 

So, the supplementary hypothesis that we need is the 

following: 

186 



187 

15. EIA 
9
u (t) 1 2 f 	M < ~ 	t 	E [0,T] 

Now we can return to equation 14.. Choosing v= 'k+l 

.as a test function, using hypotheses 5.2.4 and 5.2.6 jointly 

with the Schwartz' inequality we have, 

16.  

tk+1 

AkplAoAukI + 	IAo aiik(s) Ids 	+ 
tk 

tk+1 

+Yi I 

s 

! Aou(E)'d dws I 	+ 

t 
-k 

tk+l S 

+ Y 1 I 	A uk (E) ' dwE dws I + 

tk tk 

IIRu(tk)l 	+ 

tk+1 

+ 	Y1 I 	iAwk(s)' liu(tk)':dwsl , 

tk 

k = 0,1,...,N-1. 

We can now estimate El 4)k+112' 
From equation 16. and 

using usual properties of Wiener processes and stochastic 

integrals (see paragraph 5.1) we are able to deduce the 

following estimate: 



17. 	EI(1;k 1 
2 AkElA0Auk l 2 + . A 

tk+l 

EIAQ Auk(sl.I2ds 

tk 
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tk+1 

+ (A ) 2 	EHAou(s) 2 ds + EIRAuk 1 2 + 
tk 

kElau(tk)I 2 + AkElku(tk)l2 / 

k = 0,1,.. .,N -1, 

'where C is a constant depending on p and y1. 

Let us return to equation 9. Using identity 6., 

equation 9. can be rewritten in the following form: 

18. 	ēk+l = (I - k q
o
k )ēk _ - Ow 	e k Uk k 

tk+1 

+ ( 	Awk(s)dws) kek - ~k+1 • 
tk 

Now we use the same procedure used in paragraph 6.3.. 

So, apply the operator E1.1 2 in both sides of equation 18.. 

After expanding the right side we obtain the following terms 

and Uu;" estimates: 

19. E l (I - k ~k 
	El k 1 

20. E l Awk ~ k-k l 2 < ak y l E l ek l 2 



tk+1 
/~ 2„ 

21, El( (s)dws)ljkek l 2 

tk 
tK+1 

Y l E (E (l Awk (s) dws 1 2 /Tk ) l ek 

tk 

2) 	< 

4 Y 1 Ak Elek l 2/ 

22.  El --(1) k 	112 	5- 

where represents the right side of equation 17. 

1 
23. E(-2((I - A k ~{ k )ek , owk kek)) = 0. 
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24. 	E(2 ((I - A . ( 
tk+l 

2 ~ 
owk (s)dws)jkek ) ) = 	0 . 

tic 

25. 	E (-2 ((I - Ak ~k) ek , 4) k+1) ) < 

`- 2 E(leklIE3k+l/Tkl) 	< 



26. 	E (-2 (Awk kek , 
1t 

k 

2_ 
ewk(s)ds)Crkek)) 
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tk+1 

E(y21l.owk12 1 ekl2 + Yi I I 	owk(s)ds1 21ek' 2) 

tk 

= (yiok + Yipk) E Iek 

27. E(2(owk kēk' "1"k+1)) 	E(Y1 I owkI 2 I ek I 2 + I~k+1' 2 > 

2 = yl ~k E 2 + E l Sk+ll • 

tk+1 
2_ 

28. E (-2 (( 	ewk (s)dw 	kek ' k+1 	- 
tk 

tk+1 

E(y l I ( 	Awk(s)dws1 2IekI2 + I'rk+1I 2) 	- 
tk 

4 2 

= y1Ak El ēkl 2 + EI k+lI2 

k = 0,1,...,N - 1. 

In the derivation of inequalities 19.,...,28. we 

have used basically hypothesis 6.3.3, the results of 

proposition 6.1.1 and standard properties of Wiener processes. 

So, using the estimates 19.,...,28., we can writer 
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29.. 	EIek+1 
 
2  ` 	(1 + ak(3y1 + 1) + ak3yi )E I ekI 2  

+ 3 E .I 4)k+l 3k+1/  k 1 12 + okl E I E 2 

k = 0,1,...,N-1. 

We observe that, as before we need now an estimate 

for I Ecpk+l/Tk 12  

Let us return to equation 10. Taking the conditional 
.expectation in both sides of this equation we have, 

30. E(6 k) = RE (u(tk+l)/Tk)  + k+l 

Ru(tk ) + Ak  kRu (tk ) 

Comparing 30. with 6.2.27 we have 

31. E (4k+l/rk)  = E ()k+1/ k)  • 

In other words, the numerical methods that correspond 

to schemes 6.1.7 and 5. have almostsurely, the same 
"consistency" at the dividing points of the partition of the 

interval [O,T] conditioned to the information stored from 
the previous points. 

So, it can be argued that scheme 5. will not produce 

faster rates of convergence since the conditional expectation 

of (pk+1  is also responsible for the slow convergence of the 

scheme 6.1.7. However, in view of our supplementary assumption 

15., the result of Proposition 6.2.2 can be improved. 
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Consider equation 6.2.16., From Remark 6.2.4 and using 

a standard procedure (see paragraph 3.4) we have 

32, IAo O (t) I 	= 	Idt 0 (t) I 	= 	I 0 (t;t,-AoI 	CIAoz 

for some constant C. (µere, 0(t) = 0(t;,z)). 

Therefore, in equation 6.2.20, we can write 

33, ao  (A0k(s) ,v) 	= 	(AAo Ok  (s) ,v) 	I AAo0k(s) I  M) 

for all v E IX 

k = 0,1,...,N-1 
s E [O,T]. 

So, instead of inequality 6.2.22 we now have, 

tk+1  

34. 	ICI -̀ AkPIAAo0kI + 	IAAo k(s)Ids + 	IRAOkI. 

tk  

The result of Proposition 6.2.2 can now be rewritten, 

tk+]  

35.E(IE4k+l/  k )  I 2)  `- 	
A
k 	EIAods0 (s;tk,u(tk)) I2ds  + 

tk  

+ Ak  

tk+1 - 

El  le (s; tk,u (tk)) 1 2  ds, 

tk  

k = 0,1,,.. ,N-1, 



where C is a positive constant depending only on p. 

Therefore, recalling Lemma 4.3.1 and making use of 

estimates 17. and 35. jointly with identity 31., equation 

29. yields the following, estimate: 

36. 	EI- 	1 2  

N-1 

o — U 1 2 + 	h2 EIAAou . l 2 + 
0 

J=o. 
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tj+1 

+ h EILAouj  (s) I 2ds 
t. 

+ h 2  

J 

tj+l 

EIAou(s) I 2  ds 	+ 
t. 
J 

+ EIRau.I2  + h E IRu(tj) I2 

	

h2  E IR 	EI u(t.) 1 2  + h2 	Ao ds 6 (s ;t.,u(t.)) I 2ds + 
t. J 

tj+l  

	

+ 	Eli ds 6 (s;t j,u(tj)) I 2 ds 	f 
t. 
J 

where C is a constant depending only on p, Y1  and T. 

A result similar to Theorem 6.3.1 can be 

derived. In order to proceed in this direction, let us 

assume hypothesis 6.3.9 concerning the composition of the 

bilinear form ao. 	Consider the evolution equation 6.2.17 

in the Remark 6.2.4. From equation 6.2.18 we can write 

d2   - Z (t; Z o) = — Z (t; - A o Z  o ) = Z (.t;A2Zo )/  
dt2 	dt 

t E [o , T] 

t j+1 



2 
for all Zo  E D(A). 

So, we. conclude that 

2 
A 	

d 
 Z 	

°
(.,Z. ) = 	d 	

Z(•,Z ) E C(O,T;H) i 
° dt 	dt2  

2 
for all Z°  E D (A°  

Transfering this argument to equation 6.2.16 and 

using estimate 3.3.16weconclude that there exists a constant 

.0 such that, 

2 
37. IA 	d  e(t;,z)I2 	CIA z12 < 

° dt 	°. 

0 t S t TT  

for all z. E D (A2) . 

Here, we need hypotheses which are stronger than 

those in 6.3.11. So, assume that for the solution of problem 

5.2.8 the following conditions hold: 

38. i) 	A°A.u(t) E H 

ii ) EIA0 A ju(t )I 2<_ M < o 

for all t E [O,T], j = 0,1. 

Using equation 5.2.8.ii) and a standard procedure 

hypothesis 38. enable us to conclude that there exists a 

constant C such that, 

194 
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39. ElAAouk(5)1 2 `- C h~ 

for all s E [tk► tk+1], k = 0,1,...,N- 1. 

Assuming 6.2.15 for the approximation subspace 19" we 

can now introduce the following theorem: 

Theorem 6.4.1 - Under the hypotheses of Proposition 6.2.2 

plus hypotheses 6.3.9, 6.3.15, 1, 2, 38 

the following estimate holds: 

40. sup EIu(tk) - k 1 2 
k 

U0 1 2 + 

2 
h2(1 + sup 	(EIAu(t)12)) 	+ 

[0,T] 

.d2 (1 + (1+ h) sup (Ell u(t)11 2 ) 
[6;T] 

sup (Ell Ao U(t)1i 2 )) 	/ r LO r T] 

where C is a positive constant 

Proof of Theorem 6.4.1 

We can use inequalities 37., 39. and 6.2.14 in order to 

estimate the terms in the right side of equation 36. 

Recalling that, 

t (tk) - Uk = u(tk) - Ru(tk) + ek/ 

k = 0,1,...,N -1, 



we obtain the result above. • 

Remark 6.4.1 - According 	to Theorem 6.4.1, the quadratic: 

scheme 5. can produce approximations with errors of order h. 

This is a considerable improvement with respect to the linear 

scheme 6.1.7 which converges at a rate hl/l. However, to 

guarantee this fact, a condition stronger than 6.3.11 must 

be imposed on the solution of problem 5.2.8, namely, 

hypothesis 38. As we mention before (see Remark 6.3.1) 

hypotheses like these in 6.3.11 or 38. have a clear interpre 

tation in terms of the regularity of the solution of the 

stochastic evolution equation when Ao  is a partial differential 

operator. This is the subject of our next paragraph. 

6.5 - An Application to the Filtering Problem 

We shall now apply the results obtained in the 	s 

paragraphs to the numerical solution of.  the non linear 

filtering problem for diffusion introduced in paragraph 1.1 

We will be concerned with Galerkin approximations of the 

solution of the Zakai formula 1.1.14. 

of Rn. 

Let H = L2(S), V.= H1(S)),where S is a bounded subset 

Consider the stochastic evolution equation 5.3.8. In 

addition to hypotheses 5.3.2 and 5.3.6 assume 

1. 	aifj, ai  are invariant in time 

i,j = 1,...,n 

As a consequence of this hypothesis the bilinear form ao(t) 

introduced in 5.3.1 is invariant in time and we are now able 

to use the estimates presented in paragraphs 6.3 and 6.4. As 

we pointed out before (see Remark 6.2.1) this hypothesis is 
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not restrictive/  and it was only made in order to simplify 

the steps leading to estimate 6.3.8 and 6.4.30. If a 	and 

gi  are of class C1  with respect to t € [O,TJ, similar 

results hold regarding the error of approximation of the 

`numerical methods ,,r+k 	ak.c. concerned. 

We also assume the diffusion matrix to be positive 

definitive. In other words, for some a > 0, 

2. <r[a]r> ' a<  r,r>  l 

for all r E Rn  

x E S. 

Now, let 61  = 0. Equation 5.3.8 (with wt  = y(t)) now 

becomes identical to the Zakai formula 1.1.14..In particular, 

:hypothesis 6.1.1 is satisfied and the 'condition 2. above 

guarantees the coercivity condition 5.2.6. In order to have 

hypothesis 6.1.2 satisfied we assume, 

3. h E C1 (0,T;L7(S). 

We observe that now, all the hypotheses made at the 

beginning of paragraph 6.1 with respect to ao(t) and al(t) 

are satisfied. Therefore, we can use inequality 6.3.8 in 

order to estimate 

Before  

error of approximation of the Galerkin 

B scheme 6.1.7. 	efore we proceed in this direction we 

select the approximation subspace 19-  as an element of the 

family of subspaces of "finite element" type introduced in 

paragraph 4.4..So, in relation to scheme 6.1.7 we assume, 
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4, 	1 _ l'(d,r,m) , p 	0.5, U0  = Rqo 



where q E H10(S) is the initial condition for 1,1.14. 

In order to make the best use of this' family of 

approximation subspaces (see Lemma 4.4.1) we also assume, 

5. 	is O-regular . in Hō (S) . 

We can now present the following result: 

Theorem 6.5.1 - Let conditions 1.,...,5. be satisfied. Assure 

that for the solution of equation 1.1.14 we 

have, 

:6. F 
i 	t E [0,7]    IlLgtilHl,() <, ēo ~ 

Then, for the linear scheme 6.1.7, the 

following estimate holds: 

sup .( II q (tk) - U.k lf ) 	< C (h1/2 + h + d), 
L2 (P,H) 

where C is a positive constant independent of h and d. 

Proof of Theorem 6.5,1 

Condition 6.3.9 is satisfied. From 5. and Lemma 4.4.1, 

condition 6.3.14 is also satisfied. So, the result above 

follows from Theorem 6.3.1.* 
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Remark 6.5.1 - The crucial hypothesis of Theorem 6.5.1 is 
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condition 6. and, as we pointed out before, (Remark 6.3.1)(  

this condition can be interpreted in terms of the regularity 

of the solution of the stochastic evolution equation. In 

fact, assume that the coefficients of the Fokker-Planck 

operator, Lt, have first order bounded partial derivatives and 

that E  Ilgt11/ (S) < °° 	t Ē h',T] .,forthe solution of 1.1.14. It is 

easy to see that these conditions are sufficient to guarantee 

hypothesis 6. • 

Now, consider the quadratics: scheme introduced in 

paragraph 6.4. As 0 = 0, the operator Al  in 5.3.8 satisfies 

6.4.2. In order to satisfy 6.4.1 we must assume the function 

h to be invariant in time. So, we take 

7. 	h E 17(S) 

As we remarked before in section 6.4,this hypothesis 

is made with the intention of simplifying the steps leading 

6.4.30. It does not constitute a fundamental condition and, 

in this case, results similar to 6.4.30 can be obtained by 

•assuming h 	C1  (O,T;Lo(S),) . 

The following result is a consequence of Theorem 

6.4.1.. 

Theorem 6.5.2 - Let conditions 1., 2., 4 . , 5., 7. be satisfied. 

Assume that for the solution of equation 

1,1.14 we haver  

8. 	 .E IIL2gtII L2 (S) , E 
 f ILhgtIi

L2 (S) < 

t . [O, T]. 
Then, for the quadratthL scheme 6.4.5 the 

following estimate holds: 
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sup II q (tk) — 6011,2 (sI,H) 	0 h + dh + d}/ 
k 

where C is a positive constant independent of h and d, 

Remark 6.5.2 - As in Theorem 6.5.1, the result depends on the 

regularity of the solution expressed here by condition 10. 

We assume that this condition is attained if the coefficients 

of the Fokker-Planck operator, Lt, have sēcond order bounded 

partial derivatives, the. functions Do h, Di,;h belong to 

C (0,T;Lm (S)) and 	E1Ia I1H4 (S) <' ~., t E k:),`13 

Regularity conditions for the solution of stochastic 

parabolic equations are discussed in Krvlov-Rosovskii (1211), 

Pardoux ((41() and 'Levieux ( 1 281) (for the case S = Rn) . In 

(I40I) Pardoux nresents some conditions leading to a result 

of the type: C} E MZ(b,T; H2 (S)) (see Remark 5. 3: 2. ). O 

Theorems 6.5.1 and 6.5.2 represent convergence results 

for discrete time Galerkin approximations of the solution of 

the stochastic evolution equation 1.1.11. defined in a cylinder 

[O,T] x SCR x Rn under Dirichlet boundary conditions. These 

results show that, under certain regularity conditions, the 

linear scheme 6.1.7 produces a numerical approximation that 

converges at a rate h1/2. On the other hand, under stronger 

regularity conditions, it is possible to obtain a faster rate 

of convergence by means of the quadratic. scheme 6.4.5. In 

this circumstance, the rate is linear in the time increment. 

It goes without saving that, under the regularity conditions 

of Theorem 6.5.1, the quadractic scheme 6.4.5 also produces 

convergent approximations but, in this case, with a slower. 

rate of convergence (h
1/2). 

We observe that the rate of convergence in the "space 

discretization" can increase depending on how regular is the 

solution of the evolution equation (according to Lemma 4.4.1). 

However, the linear rate of convergence in the time increment 

achieved by the quadratic< scheme can not be improved. We 
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are led to this conclusion by the fact that, with respect to 

finite dimensional stochastic differential equations, the 

linear rate is the 	possible rate of convergence for 

numerical procedures that depend on the values of the noise. 

only at the dividing points of the partition of the time 

interval . In our case, the numerical schemes can be viewed 

as schemes for approximating the solution of a finite 

dimensional equation (the continuous time Galerkin 

approximation). Therefore, we conclude that the linear rate 

must be the best possible rate of convergence for discrete 

time Galerkin approximations. 

In 1361, McShane has presented a modified Euler scheme 

containing quadrat'id - and cubic terms in the noise increment. 

His scheme converges at a linear rate for a wide class of 

finite dimensional stochastic differential equations. Here, 

we have seen that, for stochastic linear evolution equations, 

we cdu yrot: need cubic terms in order to achieve the best rate 

of convergence. 

According to Remark 6.5.2, in order to satisfy the 

regularity of Theorem 6.5.2, (condition 8.) we must include 

some requirements concerning the regularity of the function 

h. It is interesting to notice that these requirements are 

necessary in order to approximate the solution of the non 

stochastic counterpart of the equation 1.1.14 (see Theorem 

4.4.1). As might be expected, schemes which are appropriate 

to the pathwise formula can be adapted for the approximation 

of the solution of the stochastic formula (and vice versa, 

since the relation between the non stochastic and the 

stochastic formulas is invertible; cf. equation 1.1.17). 

1lSo 	, it seems that the existence of a numerical procedure 
which converges to the solution of the pathwise formula at a 

rate Ah I~ (the modulus of continuity of the observation sample 

path; see paragraph 4.4), corresponds to the existence of a 

procedure which converges at a linear rate to the solution of 

t This fact has been shown by Clark, in 1 6 I. 
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the stochastic formula. In 15 1, Clark has presented ah. 

(Euler) method for approximating the pathwise solution of a 

filtering problem for Markov chains. It turns out that this 

scheme also represents an approximation procedure which 

converges at a linear rate to the solution of the stochastic 

version of the pathwisē formula. Here, this 	aspect 

of the numerical schemes is not so evident. This is 	because, 

as we pointed out in Remark 5.3.3, the stochastic and the non 

stochastic formulas have different Galerkin approximations w;i-L 
n.z,Tett.';o a given family of subspaces. However, it is not 

'difficult to see that schemes which are appropriate to the 

pathwise version of the continuous time Galerkin approximation 

of 1.1.14 (cf. equation 5.3.12) can also produce approximations 

for the equation 1.1.14. In this case, one must be able to 

show that these schemes converge at a rate Oh'  to the pathwise 

formula and at a linear rate to the stochastic formula. 

It can be argued that the results of Theorems 6.5.1 

and 6.5.2 are too restrictive vis-a-vis the class of filtering 

problem that satisfy the hypotheses of these theorems. This 

is so, because: 1) the operator Lt  and the function ht  are 

assumed invariant in time; 2) we are considering only 

Dirichlet boundary conditions associated with equation 1.1.14. 

As we pointed out before, the hypotheses concerning 

invariance in time can be relaxed. Assuming Lt  and ht  of class 

C1  one must be able to obtain results that are identical to 

those in the theorems. 

With respect to the Dirichlet boundary conditions, we 

recall that these conditions are implicit in the assumption 

V = Hō (S) . Selecting instead V = H1  (S) , one sheet-,:;. be able to 
consider Ne.'mann conditions and again, similar results co-Af:  be 

achieved. Ci.a particular, Lemma 4.4.1 ca+4EaL be extended to 
approximation subspaces of H1(S); see e.g. Weeler, 1491). 

The scope of applications of the results in both 

theorems can be enlarged, in order to include more complex 

situations. - 	The conclusions concerning the rate of convergence 
in the time incrementcan be assumed as general results valid for 
discrete time Galerkin approximations of the solution of the 



filtering problem. 

Finally we remark that numerical procedure for 

,approximating the solution of the stochastic evolution equation 

that governs the unnormalized conditional density, has also 

been considered by Kushner and Levieux. 

In 1291, Levieux has presented a numerical method 

which is similar to the one produced by our linear scheme 

(with p = 1, i.e., the backward implicit scheme). He shows 

that the method converges strongly in L2(SZ x (O,T) x Rn)  

(Theorem  IV.2 in 1291) 

Kushner's method has a different conception. The 

basic idea lies in the approximation of the diffusion process 

by means of Markov chains. It turns out that the filter for 

the approximating chain converges to the filter for the 

diffusion. He shows that his method is robust in the sense 

we have 	at the beginning of this work (see Kushner 

1 251 • and 	1261).  

In this work we have presented families of ( one 

,stage, Runge-Kutta ) discrete time Galerkin procedures which 

possess the advantages of both Levieux's and Kushner's 

methods for approximating the solution of the filtering 

problem for diffusions. Schemes 6,1.7. and 6.4.5. produce 

approximations which converge uniformly in a L2  sense and, 

in particular, scheme 6.4.5. has a maximum order of convergence w& 
+.:.i,cci to 	increment in time. On the other hand, schemes which are 

appropriate for the pathwise solution of the filtering 

problem ( e.g. scheme- 4.2.3. ) produce robust approximations 

to the filtering solution. 
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