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ABSTRACT 

Binary response data occur when an observation takes one of two 

possible forms, e.g. success or failure. The main objective is to 

study how the probability of success depends on explanatory variables. 

One of the most common methods of analyzing such data is to fit 

transforms of the probabilities by linear functions of parameters. 

Families of power transformations for the probabilities are 

considered. Three families are proposed. One treats successes and 

failures symmetrically, while the other two treat them asymmetrically. 

It is suggested that a suitable scale for a particular linear model 

is estimated by maximum likelihood methods. The concept of no 

interaction for "uni-response, multi-factor" experimental situations 

is related to the choice of a particular scale within the symmetric 

family. Two new tests for symmetric or asymmetric departures from 

the logistic model are proposed. The new methods are applied to 

several examples and comparisons with the results of previous analyses 

performed. 

Extensions for polytomous and multivariate binary responses are 

outlined. 

A family of transformations for probabilities is considered for 

the analysis of grouped survival data. Additive and multiplicative 

models for the hazard function are compared. A method is suggested for 

estimating the scale for which an additive representation of the hazard 

in terms of explanatory variables is appropriate. A new test for 

departures from the grouped proportional hazards model is proposed. 

Several examples are analyzed using the new methods. 
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Chapter 1: INTRODUCTION 

The use of transformations for the analysis of response data 

is a well established method in Statistics. The usual aim is to 

simplify the analysis by making applicable some standard technique 

which, without transformation, would not be appropriate. Transforma-

tions may be applied directly to data or indirectly via parameters 

used in probabilistic models. For quantitative data the most widely 

used transformations are powers (and the logarithm). For (0,1) data 

any such transformation has to be applied to the underlying parameters, 

i.e. probabilities, rather than to the data directly. This thesis 

considers families of such transformations for the analysis of 

binary data. 

To determine the general type of transformation in a family, 

certain characteristics must be required from its members, e.g. for 

quantitative data the achievement of additivity, normality and 

homoscedasticity are ones commonly used. For binary data we aim to 

achieve additivity of representation in terms of the explanatory 

variables. The other two objectives are not achievable and perhaps 

even not desirable, because of the character of the data, 

Three families of transformations for probabilities are introduced 

in Chapter 2. They have in common the inclusion of the logistic 

transformation as a simple special case. One of these families 

consists of transformations which treat symmetrically successes and 

failures. It includes also a linear transformation and approximations 

to probit and arcsine. The other two consist of transformations 

which treat successes and failures asymmetrically. They include the 

complementary log log and complementary log among their members. 
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Chapter 3 is concerned with the use of two of the families in 

particular to detect departures from the logistic model. The 

symmetric family is used to detect departures in the direction of 

the linear transformation and to study the relation between the choice 

of a certain scale for the representation of the data and definitions 

of no interaction between the explanatory variables. A new statistic 

is introduced to test for departures from the multiplicative effects 

assumption, implicit in the use of the logistic model, in the direction 

of the additive effects assumption associated with a linear model in 

the probabilities themselves. 	An asymmetric family is used to detect 

departures in the direction of skewed alternatives, in special the 

complementary log log transformation. A new statistic is also introduced 

to carry out a formal test. 

In Chapter 4, methods based on the symmetric family introduced in 

Chapter 2 are applied to several sets of data. The most appropriate 

scale within the family, which permits a simple representation 

consistent with the data, is estimated by maximum likelihood methods. 

In a first stage a screening method, based on the maximization of 

the log likelihood function given a model configuration, is used. 

Further analysis may be performed using the GLIM computing package. 

The test for departures from the logistic model introduced in §3.3 

is applied to one example, the result agrees with preliminary findings. 

Chapter 5 considers polytomous and multivariate binary responses. 

An extension of the symmetric family is introduced for polytomous 

unordered data. For multivariate binary responses a simple extension 

is suggested. 

Chapter 6 deals with survival data. The aim is to provide a 

general model for the hazard function that includes the multiplicative 
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and additive versions as special cases. The approach is to analyze 

sequences of contingency tables obtained by grouping continuous data. 

Then, the ideas of the first part of the thesis are applicable. 

A subfamily of an asymmetric family defined in Chapter 2 is used to 

construct a useful comprehensive parametric model. A test statistic 

to detect departures from the model with proportional hazards in the 

direction of one with additive hazards is introduced. A scale where 

an additive model is appropriate for the data is estimated similarly 

to Chapter 4. The methods are applied to some examples. 
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Chapter 2: A FAMILY OF SYMMETRIC TRANSFORMATIONS FOR PROBABILITIES 

2.1 Introduction 

To analyze the dependence of binary response data on explanatory 

variables it is common to fit transforms of the probabilities by 

linear functions of parameters. The most important examples are 

linear, probit, arcsine and logistic models. The last has in 

particular the theoretical advantage of corresponding to the 

exponential family natural linear model for the binomial distribution. 

Also all real values for the transform are meaningful, so that there 

are no inevitable constraints on the model. For these and other 

reasons it is probably the most commonly used model for analyzing 

this type of data. However, as for all models, it is tentative and 

therefore some consideration of adequacy is needed. It is important 

to be aware if some nonlogistic model gives a simpler or better fit. 

If we can find a procedure which detects inadequacy, and that also 

indicates the kind of desirable modification to the model, this is 

of potential usefulness. A final choice of model must, however, 

depend partly on the ease with which the conclusions can be presented 

and understood. 

One possibility is to compare the fit of the logistic model with 

that of the linear model; we shall discuss in Chapter 3 the implica-

tions of this choice. An appealing and informative way to achieve 

this objective is to construct an extended model which reduces to 

the linear and logistic models as special cases. We consider first 

transformations that are symmetric, in the sense of leading to 

essentially the same answers if successes and failures are inter-

changed; these include the logistic and linear transformations. 



2 OA  - (1-e)X  TA(0) - a a 	A 
e + (1-0)  

(2.2.1) 

14 

Throughout we deal with situations involving several non homogeneous 

sets of data. Then the basic objective is to achieve a simple 

summary of the variation between sets by means of additive models 

for the probabilities, on a scale determined by a transformation. 

2.2 The general member of the family and its properties  

The guidelines used to determine the form of the general 

member of the family of transformations were essentially 

(1) to find a simple expression, depending on one or two parameters 

(besides those in the linear component), which reduces as 

special cases to the logistic and linear transformations, and 

(2) to aim that the probabilities can be expressed simply in terms 

of the transformed values, and vice versa. 

The last condition was imposed so that maximum likelihood 

estimation would be reasonably simple. It is not essential; see for 

example the solution given by Fisher (1935) to estimation in the 

probit model. Nevertheless this allows a computationally more flexible 

approach to the problem. 

A transformation which fulfils the above requirements is 

where 6 denotes the probability of success, and A denotes the 

transformation parameter, initially assumed to be unconstrained. 



15 

We denote the family of transformations with general form in 

(2.2.1) by 

T 	{T~
}ASS 
	SC IR . 

Two important simple features of the transformation are that 

P1) TA(0) = T_A(0), 

and that 

P2) TX(0) _ -TX(1-0), 

i.e. TA treats successes and failures in a symmetrical way. We call 

s a symmetric family. 

Further 

P3) TA(01) < TA(02) 	A < co, 

if 01 < 02, i.e. TA is monotonically increasing in 0. 

Expression (2.2.1) reduces to the logistic transformation, in the 

limit when A = 0, and to a linear transformation when A = 1. Inverting 

(2.2.1) we obtain 

8 = 

0 

(1 + AT/2)1/A 

if AT/2 < -1, 

if IAT/2I < 1, 

if AT/2 > 1, 

(2.2.2) 
(1+AT /2)1/A + (1-AT /2)1/A 

1 

where T denotes a value in the image of TX(*). 
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For our purposes, T will be assumed to have a linear expression 

in terms of some parameters associated with the explanatory variables 

considered in a specific situation. We obtain in this way a 

comprehensive model for transformed probabilities. This model 

includes as special cases the logistic and linear ones. 

If we fit by maximum likelihood a linear model for T for a range 

of values of 1, we can consider the maximized log likelihood as a 

function of X and hence derive not only the maximum likelihood 

estimate ā, but also determine which values of X provide an acceptable 

fit. 

We assume that the observations are independent and that the 

probability of success is homogeneous within sets. Hence, the situation 

may be considered as one with m sets of independent binomially, 

B(n.,6), distributed observations. 

2.3 Relationship with generalized linear models  

We may recast the discussion in the last section within the 

context of generalized linear models (Nelder and Wedderburn, 1972), 

hereafter denoted by GLM, straightforwardly. To specify a GLM we need 

to identify its three components, namely the error structure of the 

data, the linear systematic part, or linear predictor, of the model and 

the linking function. These models are defined for members of the 

exponential family of distributions so the usual terminology for this 

family is used. 

For the situation in which we are interested the data are 

represented by r = (r1,...,rm). The ri  (i = 1,...,m) are assumed 

independent random variables with means p. (i = 1,...,m). The 



components of the GLM are as follows: 

(i) The error structure. The data follow binomial distributions 

B(n.;(3.) (i = 1,...,m) with moment parameter u. = n.8. where 
1 1 	 1 	1 1 

6 = exp(){1 + exp()}
-1 , 

and denotes the natural parameter of the distribution. 

(ii) The linear systematic part of the model has the form 

= XS 

where a is a vector of unknown parameters, and X is a known matrix 

determined by the values of the explanatory variables. 

(iii) The linking function is defined in terms of the transformation 

in (2.2.1) as follows 

P. = n. T
-1 
(T.) (i = 1,...,m), 

or explicitly 

O 	 if XT./2 < -1, 
1 — 

p = 
i 	

(1+XTi/2) 	+ (1-ATi/2) 

n.(1+xT,/2)1/a 
1 	1  

1/~ 	1/~ 	if IXT./21 < 1, 

1 	 if XT./2 > 1, 
1 — 

17 

where Ti = xis, X. is the ith row of X. 
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In this way the relationship between the mean of the ith random 

variable and its linear predictor is established. The linking function 

may be defined equivalently in terms of the natural parameter as follows: 

2  tanh-1  (AT./2) 	IAT./2I < 1. 
A 	1 	1 

For GLM estimation by maximum likelihood can be regarded as a 

form of the iterative weighted least squares procedure with weights 

wi  = (du/dT)2/V 	(i =  

in this particular case 

dp/dT = [pA  + (n-p)A]2/[4np
A-1(n-11)A-11, 

and 

V = p(n-u)/n, 	the variance of r. 

This is just an application of Fisher's general method of 

efficient scores. It is a modified Newton-Raphson process for the 

solution of the likelihood equations, where expected rather than 

observed second order derivatives of the log likelihood function are 

used. Nelder and Wedderburn (1972) provide a complete description of 

the estimation method. 

Then, the proposed model may be fitted using the GLIM package 

(GLIM3 release; Baker and Nelder, 1978) for fixed values of the 

transformation parameter A. 
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2.4 Approximation to other transformations  

By definition the family 1-  includes as members the logistic 

and linear transformations. However, there are other transformations 

quite often used in practice and which treat symmetrically successes 

and failures. Perhaps the most important among these are the probit 

and arcsine. A natural question to examine is if there are members 

of 1 which approximate closely those transformations. 

To carry out the search we need to define the transformations 

suitably. Consider the normit and the standardized arcsine (sinit) 

defined as follows: 

i) normit (e) = 4)-1(e), 	where (1)
-/
(.) denotes the inverse of the 

standard normal probability integral, 

ii) sinit (e) = sin' — 7/4. 

Probits are just normits plus a constant, defined to avoid negative 

transformed values. 

To compare with Tx  we need to choose a scaling constant for each 

transformation. We examine two possibilities. The first is to force 

identity of tangents of the inverse transformation at the 50% point. 

This seems best when interest is on the central part of the range of 

proportions. A second possibility is to achieve agreement at some 

specific point in the extremes of the range of 0, say at 0 = 0.8; 

this is better when the interest is more in the extreme probabilities. 

Of course there are many other possibilities, e.g. the minimization of 

some suitable defined measure of distance between functions. 

Without loss of generality, we assume that the 50% point is at 

the origin on the transformed scale. The functions to be approximated 

may be expressed as follows: 
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x 	2 
~(x) = (27r) 3 

z J e-v /2 dv 	(2.4.1) 

0 	 if 	x < -7r/4, 

and C(x) = sin2(x + 7/4) 

1 

if 	Ix1 < 7r/4, 	(2.4.2) 

if 	x > 7r/4 . 

Analogously the approximating function is 

0 

(l+at/2)1/a T-1(t) _ 
 

1  

if At/2 < -1, 

if lat/2I < 1, 	(2.4.3) 

if At/2 > 1, 

(1+At/2)1/A + (1-At/2)1/a 

where t = ax and a is a constant to be chosen. 

For the criterion of equality of tangents, a is equal to 1.5958 

and 4 for normit and sinit respectively. These values are independent 

of A. Table 2.1 shows the results obtained in this case. The values 

of A were selected to minimize, (i) the sum of squared deviations (L2) 

and (ii) the largest absolute deviation (LO). The contact of the 

approximation at the origin is actually of second order because not only 

the tangents coincide but also, by symmetry, the second order derivatives. 

This means that the associated curves cross each other at the origin but 

remain close for a wide range about it. 
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For the criterion of agreement at a specified point, the 

comparability constants depend on the value at which agreement is 

required, say 60, and A. They all have the following form 

2 	
1 - (1/60 

 - 1)a 

a = 
ax0 	1  + (1/60  - 1)A 

 

where x0  is the transformed value for 60. 

For instance, for the normit at 60  = 0.8, the constant a is 

equal to 1.6101. The selection of A is also made according to the 

deviation criteria L2  and 1,0. Table 2.2 shows the X's that provide 

the best approximation for several points of agreement, for each 

transformation and approximation criterion. 

Tables 2.3 and 2.4 show the probability value for several points 

on the transformed scale for the normit and its approximations according 

to the criteria L2  and 0, respectively. Tables 2.5 and 2.6 show 

similar computations for sinit. 

We observe on tables 2.1 and 2.2 a good degree of stability of 

the parameter A around 0.38 for the normit and 0.67 for the sinit. 

Hence, these values may be used to characterize normit and sinit within 

the family 1:-. 

The arrangement of the values of X for the logistic, normit, sinit 

e. 
and linear transformations, in that order, within s  is interesting. 

This agrees with the speed at which each transformation approaches its 

limits. 

The similarity among the transformed values for probabilities in 

the range 0.25-0.75 over the different scales is striking. Even for 

scales as different as the logistic and linear those values are very 

similar. The explanation is the approximate linearity of the relation- 



ship between the probability, 0, and its logit. If we denote by 

the logit of 0 we have that 

40 - 2, 	 (2.4.4) 

for 8 6 [0.25, 0.75]. The expression above may be obtained expanding 

logit(0) in Taylor series about 0 = 1/2 and neglecting terms of order 

higher than two. 

To show the degree of approximation between T
0 

and T1 for 

0 6 [0.25, 0.75], we computed the logit and the approximate value for 

some 0's in the range (0, 0.5). These results are shown in Table 2.7. 

TABLE 2.1  

Values of the transformation parameter (A) for approximations 

under L2 and L° with contact of second order at the origin. The 

largest relative absolute deviation from the actual probability (d) 

and the probability point at which it is observed (p) are also shown. 

Transformation A d p 

Norm it 0.3955 0.0031 0.8751 

0.3869 0.0036 0.8851 

Sinit 0.6755 0.0024 0.9938 

0.6698 0.0028 0.9020 

First row corresponds to L2, second to L0. 

22 

9 obtervatl 'v.. 	Rtta. ~alu~eg, 



23 

TABLE 2.2  

Values of the transformation parameter (A) for approximations under 

L2  and L°  with agreement at a specific point (eo) along the range for e. 

The largest relative absolute deviation from the actual probability (d) 

and the probability point at which it is observed (p) are also shown. 

eo  
Normit Sinit 

A d p A d p 

0.7 0.3893 0.0026 0.8851 0.6713 0.0022 0.9965 

0.3820 0.0029 0.8851 0.6663 0.0023 0.9045 

0.8 0.3800 0.0018 0.9192 0.6650 0.0019 0.9965 

0.3746 0.0021 0.9332 0.6610 0.0017 0.9263 

0.9 0.3663 0.0039 0.6915 0.6597 0.0027 0.6731 

0.3590 0.0043 0.6915 0.6519 0.0033 0.6913 

0.95 0.3752 0.0040 0.6915 0.6670 0.0023 0.9938 

0.3513 0.0066 0.6915 0.6491 0.0045 0.7093 

First row corresponds to L2, second to L0. 

i OSi,YJCa, .,,, Tabkbflt4. .Talutg. 



TABLE 2.3  

Comparison of normit and two approximations under L2, namely 

(ET) forcing equality of tangents at the origin, and (A) with 

agreement at e0  = 0.8, denoted below by 0* and 8** respectively. 

Normit 
scale 

Probability 
0 

ET A 

e* e-0* e** e -e** 

0 .5000 .5000 0 .5000 0 

.200 .5793 .5792 .0000 .5799 -.0007 

.400 .6554 .6551 .0003 .6564 -.0010 

.600 .7258 .7250 .0008 .7265 -.0008 

.800 .7882 .7866 .0016 .7883 -.0001 

1.000 .8415 .8392 .0023 .8407 .0008 

1.200 .8851 .8824 .0027 .8836 .0016 

1.400 .9192 .9168 .0025 .9175 .0017 

1.600 .9452 .9433 .0019 .9436 .0016 

1.800 .9641 .9630 .0011 .9630 .0011 

2.000 .9772 .9772 .0000 .9769 .0003 

2.200 .9861 .9870 -.0009 .9866 -.0005 

2.400 .9918 .9933 -.0015 .9929 -.0011 

2.600 .9953 .9971 -.0018 .9967 -.0014 

2.800 .9974 .9991 -.0017 .9988 -.0014 

3.000 .9987 .9999 -.0012 .9997 -.0011 

3.200 .9993 1.0000 -.0007 1.0000 -.0007 

3.400 .9997 1.0000 -.0003 1.0000 -.0003 

3.600 .9998 1.0000 -.0002 1.0000 -.0002 

3.800 .9999 1.0000 -.0001 1.0000 -.0001 

4.000 1.0000 1.0000 -.0000 1.0000 -.0000 
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TABLE 2.4 

Comparison of normit and two approximations under L0, namely 

(ET) forcing equality of tangents at the origin, and (A) with 

agreement at 00  = 0.8, denoted below by 0* and 0** respectively. 

25 

Normit Probability 	ET 	A 

scale 	0 
0* 	0-0* 0** 0-0** 

0 .5000 .5000 0 .5000 0 

.200 .5793 .5792 .0000 .5800 -.0007 

.400 .6554 .6551 .0003 .6565 -.0010 

.600 .7258 .7248 .0009 .7266 -.0008 

.800 .7882 .7864 .0018 .7883 -.0001 

1.000 .8415 .8388 .0026 .8406 .0008 

1.200 .8851 .8819 .0032 .8834 .0017 

1.400 .9192 .9162 .0031 .9173 .0019 

1.600 .9452 .9426 .0026 .9433 .0019 

1.800 .9641 .9623 .0018 .9627 .0014 

2.000 .9772 .9765 .0008 .9766 .0007 

2.200 .9861 .9863 -.0002 .9862 -.0001 

2.400 .9918 .9928 -.0010 .9926 -.0008 

2.600 .9953 .9967 -.0014 .9965 -.0011 

2.800 .9974 .9989 -.0014 .9987 -.0012 

3.000 .9987 .9998 -.0011 .9997 -.0010 

3.200 .9993 1.0000 -.0007 1.0000 -.0007 

3.400 .9997 1.0000 -.0003 1.0000 -.0003 

3.600 .9998 1.0000 -.0002 1.0000 -.0002 

3.800 .9999 1.0000 -.0001 1.0000 -.0001 

4.000 1.0000 1.0000 -.0000 1.0000 -.0000 



TABLE 2.5  

Comparison of sinit and two approximations under L2, namely 

(ET) forcing equality of tangents at the origin and (A) with 

agreement at 00  = 0.8, denoted below by 0* and 6** respectively. 

Sinit 
scale 

Probability 
0 

ET A 

e* e-e* e** 0-e** 

0 .5000 .5000 0 .5000 0 

.039 .5392 .5392 .0000 .5395 -.0003 

.079 .5782 .5782 .0000 .5787 -.0005 

.118 .6167 .6166 .0001 .6174 -.0007 

.157 .6545 .6543 .0002 .6552 -.0007 

.196 .6913 .6910 .0004 .6921 -.0007 

.236 .7270 .7264 .0006 .7276 -.0006 

.275 .7612 .7604 .0009 .7616 -.0004 

.314 .7939 .7927 .0012 .7940 -.0001 

.353 .8247 .8233 .0014 .8244 .0003 

.393 .8536 .8519 .0017 .8529 .0006 

.432 .8802 .8784 .0018 .8792 .0010 

.471 .9045 .9027 .0018 .9033 .0012 

.511 .9263 .9248 .0016 .9251 .0012 

.550 .9455 .9444 .0011 .9445 .0010 

.589 .9619 .9615 .0004 .9613 .0006 

.628 .9755 .9760 -.0005 .9756 -.0000 

.668 .9862 .9877 -.0016 .9871 -.0009 

.707 .9938 .9963 -.0024 .9955 -.0017 

.746 .9985 1.0000 -.0015 1.0000 -.0015 

.785 1.0000 1.0000 0 1.0000 0 
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TABLE 2.6  

Comparison of sinit and two approximations under L0, namely 

(ET) forcing equality of tangents at the origin, and (A) with 

agreement at e0  = 0.8, denoted below by 0* and a** respectively. 

Sinit 
scale 

Probability 
e 

ET A 

e* e-6* e** e-e** 

0 .5000 .5000 0 .5000 0 

.039 .5392 .5392 .0000 .5395 -.0003 

.079 .5782 .5782 .0000 .5788 -.0005 

.118 .6167 .6166 .0001 .6175 -.0007 

.157 .6545 .6543 .0002 .6553 -.0008 

.196 .6913 .6909 .0004 .6922 -.0008 

.236 .7270 .7263 .0007 .7277 -.0007 

.275 .7612 .7602 .0011 .7617 -.0004 

.314 .7939 .7925 ' .0014 .7940 -.0001 

.353 .8247 .8229 .0018 .8244 .0003 

.393 .8536 .8514 .0021 .8528 .0008 

.432 .8802 .8778 .0024 .8791 .0011 

.471 .9045 .9020 .0025 .9031 .0014 

.511 .9263 .9240 .0024 .9248 .0016 

.550 .9455 .9435 .0020 .9440 .0015 

.589 .9619 .9605 .0014 .9608 .0011 

.628 .9755 .9750 .0005 .9750 .0005 

.668 .9862 .9867 -.0006 .9865 -.0003 

.707 .9938 .9954 -.0016 .9950 -.0012 

.746 .9985 1.0000 -.0015 .9998 -.0014 

.785 1.0000 1.0000 0 1.0000 0 
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Approximation to the 

TABLE 2.7 

transformation logit by a linear 

0 llogitl 140-2I difference 

.1 	(.9) 2.1972 1.600 0.5972 

.15 	(.85) 1.7346 1.400 0.3346 

.2 	(.8) 1.3863 1.200 0.1863 

.25 	(.75) 1.0986 1.000 0.0986 

.3 	(.7) 0.8473 0.800 0.0473 

.35 	(.65) 0.6190 0.600 0.0190 

.4 	(.6) 0.4055 0.400 0.0055 

.45 	(.55) 0.2007 0.200 0.0007 
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2.5 Extensions  

The family `~ proposed above treats successes and failures 

symmetrically. However, there are occasions where it is desirable 

to treat them asymmetrically. For instance, Yates (1955) gives some 

examples where, for theoretical reasons, expression on an asymmetric 

scale is called for; see especially the discussion of the Drosophila 

data. In general this will be the case where there is some connection 

with extreme value problems. Hence, it is useful to find a family of 

transformations for the probabilities that includes some of the 

transformations usually employed in asymmetric situations. 

An explicit expression of the probability parameter 6 in terms 

of the transformed values is required. In defining the family, we 

want the complementary log log and the logistic transformations to 

be special members of it. The reason for this is that the complementary 

log log model provides a suitable alternative to the logistic one 

among the asymmetric transformations. 

The general form of a possible candidate is as follows 

Vx,S(e) _ 
[logile + 0)] A - 1 

(2.5.1) 
A 

where —m< A <03 and 0<$. 

If we equate (2.5.1) to a linear function of unknown parameters, 

denoted by T, we obtain 

vA s(e) = T (2.5.2) 
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Expression (2.5.2) reduces for certain values of the parameters 

A and 8, to some well known transformations, as follows. 

(i) 8 = 0, A = 1. Here 

log 0/(1-0) - 1 = T 

which is essentially the logistic transformation, so long as T includes 

a constant term, which is usually the case, and is assumed through 

this section. 

(ii) 8 = 1, A = 0. Here 

log log [1/(1-0)] = T, 

or equivalently 	log[-log(1-0)] = T 

the complementary log log transformation. 

(iii) 8 = 1, A = 1. Here 

log(1-0) = T , 

the complementary log transformation. 

Another possible member is the log transformation. However, in 

that case the value of 8 depends on the unknown probability. We are 

interested in situations with several sets of data where the 

probabilities vary from set to set. The value of 8 characterizing the 

log transformation would vary accordingly. Then, this characterization 

is not useful for the interpretation of results. 

For 8 = 0 and A = 0 (2.5.2) reduces to 

log log(0/(1-0)) = T 
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The loglogistic transformation is obtained in this case. This 

transformation is not defined when 0/(1-0) < 1. Then, some care must 

be used if the value zero is tried for both parameters. However, 

these transformations will be used mainly for extreme cases. Then, 

if all the probabilities are greater than 1/2 there is no problem. 

Besides, simple recoding serves to avoid the problem if all the 

probabilities are less than 1/2. This suggests a simple generalization 

of (2.5.1), namely 

flog[(---1-0
e
) + 13]}x-  1 

v
d(e) _ 

 

(2.5.3) X 

where 	< A < co, 0 < a and d = -1,1. 

The parameters in (2.5.3) may be interpreted as follows: 

A determines the scale, a the degree of asymmetry and S the suitable 

coding of successes and failures. An even richer family may be defined 

if we let d to take all the values in [-1,1] with the exception of the 

trivial S = 0. This enriched family would correspond to an analysis of 

fractional powers of odds ratios. 

Transformations that can be obtained varying the values of A, a 

and S in (2.5.3) are summarized in Table 2.8. 

The inverse of the general expression for the family 'U'* _ {V* 	} 
a,f3,S 

takes the form 

0 _ 	{exp(l+AT)1/a -
1/d  

1 + {exp(1+AT)1/a 
- S}1/6  (2.5.4) 

where T is in the image of V*  



This reduces for S = 1, to 
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e= exp(1+AT)1/A  - 

exp(1+AT)1/A  + (1-6) 
(2.5.5) 

A simpler family may be defined as follows: 

[lee  + S] A  - 1 
w(e) = 	 (2.5.6) 

where S > 0, 1 e IR are unknown parameters. 

Expression (2.5.6) reduces to logit(6) for S = 0 and A = 0, to 

the negative of the complementary log transformation for S = 1 and 

A = 0, and to the odds ratio for S = A = 1. 

Although (2.5.6) is not as rich as (2.5.1), it may be useful to 

model in a simple way certain departures from the logistic in the 

direction of asymmetric transformations. Consider as before that the 

alternative is the complementary log log transformation. Denote by 

W*(6) the case of (2.5.6) for S = 1. We assume that 

ln W*(6) = T , 	 (2.5.7) 

where T denotes a value in the image of the composed transformation in 

(2.5.7). This expression serves to define a GLM if T is the linear 

systematic part of the model. For A = 1 the logistic model is obtained 

and for A = 0 the complementary log log. 

Hence, these two models may be compared in terms of just one 

parameter if we restrict our attention to the subfamily 'S of 

transformations with general form in (2.5.6) with 6 = 1 and A > 0. 

The inverse of (2.5.7) is easily obtained, namely 
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1 - (1+XeT)-11A 	Ae7  >-1, 

e(T) = 

1 otherwise. 

(2.5.8) 

This expression is used in the next chapter to test for asymmetric 

departures from the logistic model in the direction of models in the 

complementary log log scale. 
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TABLE 2.8 

family 1J Some members of the 

A 

Parameters 

S 

Associated transformation 

1 0 1 logistic 

0 0 1 log logistic 

1 1 1 complementary log 

0 1 1 complementary log log 

0 1 -1 logistic(1)  

0 0 -1 log logistic(1)  

1 1 -1 log 

0 1 -1 log log 

(1) Transformation for a recoding of the data. 
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Chapter 3: TESTS FOR DEPARTURES FROM THE LOGISTIC MODEL 

3.1 Introduction 

The family T  of symmetric transformations for binary data was 

introduced in chapter 2. We now consider its application to contingency 

tables and in particular to representations with no interaction. We 

distinguish sharply between response and explanatory variables, as 

stressed explicitly by Bhapkar and Koch (1968), who give a comprehensive 

discussion on the formulation of the hypotheses to be tested, and their 

interpretation according to the different kinds of experimental situation 

which might generate the data. We consider in this chapter "uni-response, 

multi-factor" experiments, where the interest lies in the way in which 

the explanatory variables affect the response, and the problems of 

analysis are analogous to those in analysis of variance for continuous 

observations. 

Two forms of no interaction commonly considered are the so-called 

additive and multiplicative definitions. These names refer to the way 

factors are assumed to affect the response. They may be considered as 

special cases of a more general family. The concept of no interaction 

is related to statistical independence in the case of experimental 

situations with multiple responses, where one of the objectives is to 

study the relationships among the different responses. That case is not 

considered in this chapter. 

It is also interesting to test for departures from the logistic 

model in the direction of asymmetric alternatives. The subfamily J$
{ 

 

defined in 52.5 is used for such objective. 



3.2 Transformations in 'T and definitions of no interaction 
To discuss the relation between the transformation parameter and 

possible definitions of no interaction, we consider first the 

interpretation that may be given to the additive and multiplicative 

definitions cited above. In the first case the probabilities are 

represented by a linear expression in terms of parameters associated 

with the explanatory variables. Then for a factorial arrangement absence 

of interaction between two factors, say A and B, means that the difference 

between probabilities at two arbitrary levels of A is the same for all 

levels of B, i.e. the effects of A and B on the probabilities them-

selves are additive. In the second case, the multiplicative definition, 

the underlying probabilities are assumed instead to be decomposable as 

a product of parameters associated with the explanatory variables. Thus, 

the difference of logits ,t ,o arb:trany levels of A remains constant for 

all levels of B. 

In terms of the general family of transformations, we may consider 

models of the form 

T~(e..) - T~(e
i'j) 	A.., 	

for all j, 	(3.2.1)
11 j 

where i,i' are arbitrary, A = 0,1 and A.., is a constant; e.. denotes 
11 

the probability of positive response being in the ith category of A 

and the jth category of B. 

Expression (3.2.1) reduces to a difference between logits for 

A = 0, whereas for A = 1 it is a difference between probabilities. 

Hence as an immediate generalization of (3.2.1) we suppose that for 

some value of A a mode of no interaction holds. In particular the 

inclusion of both logistic and linear transformations enables us to 

model, by means of members of S, departures from the assumption of 

36 
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multiplicative influence of the explanatory variables on the response 

in the direction of additive influence. The results in §2.4 make 

possible to interpret models fitted in probit or arcsine scales, as 

those adequate for values of A intermediate between zero and one. 

Note that there is no reason to restrict X to the interval [0,1]. 

An informal discussion of the effect of choosing values of A greater 

than one may be based on Table 3.1, which shows the absolute values of 

transformed probabilities in the range [0, 0.49], and by symmetry 

[0.51, 1], for several values of X. It is convenient to define the 

intervals R1,  R1' and R2  as follows: R1  = [0, 0.25), R1' = (0.75, 1] 

and R2  = (0.25, 0.75). Note the increasing importance given to changes 

in probabilities within R2  for increasing values of A. The weight put 

on similar changes in probabilities within R1  or R1' decreases accordingly; 

see Lewis (1962), who points out the ordering of certain transformations 

with respect to the weight given to probabilities at the extremes of 

the range [0,1]. He also comments on the similarity of results from 

tests of no second-order interaction, associated with linear, logistic 

and probit transformations, when the probabilities lie within the 

range [0.2, 0.8]. This is caused by the near equivalence of those 

transformations in that range; see for example Cox (1970, pp. 27-29). 

* L. ck.,

1

,
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11 
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Table 3.1 Absolute value of transformed probabilities under for for several values of the transformation parameter A. 

Probability TO  T•1  T 5 T 7 T 9  T1  
T12 T2  T3  T4  

0 (1) 20.0 4.0 2.857 2.222 2.000 1.414 1.000 0.667 0.500 

0.05 	(0.95) 2.944 2.923 2.507 2.212 1.929 1.800 1.371 0.994 0.666 0.500 

0.1 	(0.9) 2.197 2.188 2.000 1.847 1.682 1.600 1.293 0.976 0.665 0.500 

0.15 	(0.85) 1.735 1.730 1.633 1.549 1.451 1.400 1.190 0.940 0.659 0.499 

0.2 	(0.8) 1.386 1.384 1.333 1.287 1.231 1.200 1.065 0.882 0.646 0.496 

0.25 	(0.75) 1.099 1.098 1.072 1.047 1.017 1.000 0.920 0.800 0.619 0.488 

0.3 	(0.7) 0.847 0.847 0.835 0.823 0.808 0.800 0.759 0.690 0.589 0.467 

0.35 	(0.65) 0.619 0.619 0.614 0.610 0.604 0.600 0.582 0.550 0.487 0.422 

0.4 	(0.6) 0.405 0.405 0.404 0.403 0.401 0.400 0.395 0.385 0.362 0.335 

0.45 	(0.55) 0.201 0.201 0.201 0.200 0.200 0.200 0.199 0.198 0.195 0.191 

0.47 	(0.53) 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.119 0.118 

0.49 	(0.51) 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 
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3.3 Test of the assumption of multiplicative effects  

We develop below a test of the appropriateness of the logistic 

scale for linear models with a given configuration. The test is based 

on the characterization of the logistic transformation as an element 

of iY; it detects departures in the direction of other symmetric 

transformations which give less weight to extreme probabilities. 

The problem is then to test the hypothesis HM: A = 0. We consider 

the parameter vector S, in the linear systematic expression of the 

model, a nuisance parameter. An exact similar test is not available. 

One possible alternative is to use a maximum likelihood ratio test, see 

Box and Cox (1964) for an application in a similar context. However, 

in this case it is preferable for computational simplicity, to employ 

a score test which is asymptotically equivalent and locally most powerful 

(see Cox and Hinkley, 1974 §9.3; Atkinson, 1973). 

To carry out the procedure we need to compute the efficient score 

u(A) = 39-/DA and the Fisher's information matrix when A = 0. In 

principle we must make allowance for the presence of the nuisance 

parameter (Moran, 1970). Thus we need to consider the statistic 

P 
A = (aQ/aA)w  - ]El  y.(aQ/as.)w  , 

where w = (A,$), y. (j = 1,...,p) are the regression coefficients of the 

first term on the others, and p is the dimension of S. 

To obtain a usable form of the statistic A, some estimate of 13 

should be substituted instead of the unknown parameter. Substitution 

of ao, the m.l.e. of when A = 0, adds only an Op(1) term and because 

30  is assumed to satisfy U,(0,.9= 0, the statistic A is greatly 

simplified. Besides, the parametric model under HM  needs to be fitted 

only. A minor problem arises because U(A) vanishes identically when 



40 

A = 0. One possible solution is to reparameterize the problem. In 

this case the reparameterization we choose is in terms of 4) = A2, and 

the efficient score for 4) takes the form 

m 
U (q) = 	z u.(0

1=1 
7 (3.3.1) 

where for i = 1,...,m 

-1 
4) T 

Ui(4) = (T.-ni6i) [ 	-3/2tanh-101/2Ti/2)], 1 2(1-cpT

2

1/4) 

    1/2 	
-1/2 + 	

l/2 
8=(1.4.4,1(1.4.4,1/2T./2)4) [(+~1/2Ti/2)~ 	(1-4,1/2Ti/2)4 	

]-1 i 	i  

T. is the linear systematic part of the model, 

r. is the number of positive responses in group i, 

ni is the number of individuals in group i. 

Expression (3.3.1) takes the following limit form as 4) tends to 

zero, 

m 
U.(0) = 	E (r. - ni6i°)Ti3/12 , 1i=1 

(3.3.2) 

where 	6i° = [1 + exp(-Ti)]
-1 

The test may be carried out assuming asymptotic normality of a 

standardized form of (3.3.2). Large values of this statistic will lead 

to rejection of 	To To standardize (3.3.2) we need the value of its 

variance which may be expressed as 

—1 

/4) 	
_I~013 Ias IS¢ , 0 (3.3.3) 
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I 

  

  

   

is Fisher's information matrix for (40, O. 

The components of I are simple to compute and have the following 

expressions 

I A 	E n.d.T.6/144 , 
'0'0 	i=1 	

1 1 1 

m 
I~ 

S 	
= 	E 	nidixsT.3/12 

0s 	1=1 

m 
IS S 	= 	E ni s d.xxr 

r s 	i=1 

(s = 1,...,p), 

(r,s = 1,...,p), 

where 	di = 6.°(1 
- 6io). 

1

All the values required to perform the test may be computed from 

the output of a logistic fit. For a GLIM fit, the Ti (1 = 1,...,m) 

are given directly by the 'linear predictor vector'. 

It is interesting that the factor T.3/12 which appears in the 
1 

expression of the efficient score U.(0), weighting the discrepancies 

between observed and expected positive responses, may be obtained by 

other means as a measure of disagreement with the logistic model. 

Consider that the appropriate transformation in a certain situation is 

T(') with 	0. Then the following expression holds 

m 
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-1/2 	
1 + ~1/2Ti/2 

logit(ei) = 	ln 	
1/2 

1 - 	Ti/2 
(i = 1,...,m). 	(3.3.4) 

Expanding the right hand side of (3.3.4) in series we obtain 

logit(ei) = 2~
-1/2 	1

2k-1 
(4)

1/2
T./2)

2k-12k-1 

 k=1 	
1 

neglecting terms of order higher than 3 we have that 

logit(ei) E Ti + $Ti3/12 . 

Hence, T.3/12 may be interpreted as a measure of inadequacy of 

the logit model in this case. 

An analogous test may be devised to assess the plausibility of the 

linear scale . The quantities required to carry out an asymptotically 

optimal test of HA: X = 1, are given by the following expressions, 

m 
U.(1) = 	E (r. - niel)ui, 

i=1 

m 	2 
IXX = E nieiui , 

i=1 

m 	 2 

ISS 	E 	niei xs ui/( 1 - Ti /4 ), 
s 	i=1 

m 	
2 2 IS a 

	
= 	E nieixrxs/(1 - Ti /4) , 

r s 	i=1 

1 where 	e. = 0.(1 - 0. 	e. 	=, i (2 + T)/4 1 	1 	1   

ui = [ 	
T1 

2 	2 tank-1(T.+2)] . 
1-T. /4 

1 
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Large negative values of the standardized test statistic will lead 

to rejection of HA: X = 1. Asymptotic normality of this standardized 

form is assumed. 

3.4 Test of asymmetry 

The test in the last section is aimed to detect departures from 

the logistic model within a family of symmetric transformations. Here 

we develop a test based on members of the family'lsJ defined in §2.5. 

The objective is to detect departures from the logistic model in the 

direction of asymmetric transformations. The complementary log log 

transformation was chosen as a plausible alternative. 

We assume the data are as above. Then the loglikelihood function, 

substituting the expression for 0i  in (2.5.8), may be expressed as 

m 
Q = 	E Er. ln(c.lA  - 1) - n. ln(c.)/A ] 

i=1 
i 	1 	1 	1 

where 	ci  = 	1 + A exp(Ti) . 

The efficient score for A takes the form 

m 	ri n.0 	exp(T.) 	ln(c.) 
U (a) = aQ/aA = 	E 	 - 

i=1 	ēi 	Ac. 	A2 	 ] 

Within the family il, the logistic transformation is characterized 

by A = 1. We develop below an asymptotically optimal test for the 

hypothesis HL: A = 1. This test is based on U.(1) and the alternatives 

of interest are A < 1. The test statistic, having substituted the 

m.l.e. of the nuisance parameters under A = 1, is basically the efficient 

score of A = 1 with expression 



m 	r. - n.8. 

U.(1) = 	1 	
1 	1 1 

 [0. + 1n(1 - ēi)] 	, 

i=1 	8. 

whose standard deviation may be computed as in the last section. In 

this case the components of I, Fisher's information matrix, have the 

form 

m 	 2  
IXX  = 	I ni[oi  + ln(1 - oi)] /ei, 

i=1 

m 

I13 	
= 	1 [0. + 111(1 - 8i)]nixs(1 - 8i), 

s 	i=1 

m 
IS  
	

= E 	nixsxrei(1 - oi) , 
r  s 	i=1  

where 	e. = exp(T.), 	o. = e./(1 + e.). 1 	1 	1 	1 	1 

Just as for the test in §3.3, the one suggested here may be carried 

out almost directly using the results of a logistic fit. For a GLIM 

fit the values of Ti  (i = 1,...,m) are given by the 'linear predictor' 

vector. We shall reject the hypothesis X = 1 when large negative values 

of the standardized test statistic are observed. An asymptotic standard 

normal distribution of the statistic is assumed. 
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Chapter 4. APPLICATIONS OF THE SYMMETRIC FAMILY 

4.1 Introduction 

This chapter comprises the analysis of some sets of data which 

have been examined before by other authors. One object is comparison 

with previous results and solution of some open questions about previous 

findings. The method used consists, essentially, in fitting generalized 

linear models based on members of the family T proposed in Chapter 2. 
Our aim is to show some advantages of this approach, especially the 

possibility of making a quantitative assessment of the suitability of a 

particular scale to obtain a simple decomposition or representation of 

the underlying probabilities. 

We borrow freely from the terminology of analysis of variance. Thus, 

throughout the chapter, we refer to explanatory variables as factors; 

models including only terms associated with the factors and a general 

mean are called main effects models. Interaction between two factors 

is denoted by a sequence of two digits, e.g. 13, which in this case 

means that the interaction is between factors 1 and 3, for a consistent 

classification of the factors. Interactions of higher order may be 

defined similarly. 

The analyses were carried out by means of a step-up procedure 

comparing at each step across scales and from step to step between 

different model configurations. A main effects model was fitted 

initially to assess the significance of the inclusion of further terms. 

Comparisons are based on twice the difference between the maximized 

loglikelihood achieved for different models. This quantity is assumed 

to have an approximate chi-squared distribution with the corresponding 
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number of degrees of freedom. We were unable to compute the correction 

factor needed to improve the approximation (Lawley, 1956), but it is 

very likely that it is larger than one. This procedure was complemented 

by the comparison of the maxloglikelihood value attained by a particular 

model with the overall maxloglikelihood achievable, i.e. the one for 

the saturated model; in this way a goodness-of-fit test was readily 

obtained. c ne. 	d.~, 	~~ te~4~sd 	beea~~:c ,~ ,._-a~, Wii. 	t  

Approximate confidence intervals for the transformation parameter 

may be obtained from the loglikelihood curve as in Box and Cox (1964). 

4.2 An example from data in The American Soldier  

The following results correspond to the analysis of data originally 

presented by Stouffer et al. (1949) and analyzed subsequently by several 

other authors. 

Table 4.1 shows a cross-classification of 8036 soldiers with respect 

to four dichotomized variables, namely (1) race, (2) region of origin, 

(3) location of present camp, and (4) preference as to camp location. 

The last is considered below as a response to the first three. 

The last column of table 4.1 suggests that the logistic scale may 

be the most suitable for a simple decomposition of the probabilities in 

terms of the explanatory variables. However, in view of the discussion 

of these data in Coleman (1964, pp. 198-199), it seems interesting to 

assess the plausibility of an additive representation on alternative 

scales for which the interpretation may be easier or more practical. 

A summary of the results is shown in Table 4.2, all of them 

correspond to the logistic scale because that was the member of ) which 

consistently provided the best fit for these particular data. 
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We see that the inclusion of either interaction (13), between race 

and location of present camp, or interaction (12), between race and 

region of origin, does not improve upon the fit of model Si, that includes 

main effects only (see models S3 and S2 respectively). Those interaction 

effects may seem required to obtain a simple representation of the 

transformed proportions, but in fact are not necessary. In the results 

obtained for different values of the transformation parameter, inter-

actions 12 and 13 do not improve the fit for a broad range of that 

parameter. We may conclude that, practically, those factors do not 

interact. 

Model S4, including main effects and interaction between region of 

origin and location of present camp (23), provides a great improvement 

upon model S1 as may be observed in Table 4.3. Thus, a simple 

representation on the logistic scale may be based on the original 

explanatory variables and the interaction between region of origin and 

location of present camp. This assertion is reinforced by the results 

for the more complex models S5 and S6 which do not improve significantly 

upon model S4. 

Our results agree with those obtained by Goodman (1972) but 

disagree with the ones in Coleman (1964). This is because a substantial 

improvement in the maxlikelihood was also achieved in the linear scale, 

as may be observed comparing figures 4.1 and 4.2, for model S4. Coleman 

attributes the lack of fit of his main effects model in a linear scale 

to a supposed interaction between region of origin and present location 

of camp which applies to blacks but not to whites. We detected an 

interaction which applies homogeneously to both, blacks and whites. It 

is not possible to make a direct comparison with Coleman's method. 

We may say that in this particular case a qualitative discussion 

of the effects of the explanatory variables on the response may be based 



TABLE 4.1  

Number of soldiers who prefer a northern camp location classified 

with respect to three dichotomized variables, namely (1) race, 

(2) region of origin, and (3) location of present camp. 

Race 
Region of 	Location 
origin 	present 

camp 

Positive 
response 

Total Proportion 

B N N 387 423 0.915 

B N S 876 1126 0.778 

B S N 383 653 0.587 

B S S 381 2093 0.182 

W N N 955 1117 0.855 

W N S 874 1384 0.632 

W S N 104 280 0.371 

W S S 91 960 0.095 

Source: Goodman (1972). 

and S for South. 

B stands for black, W for white, N for North 
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TABLE 4.2  

Results for several logistic models fitted to data in Table 4.1 

Model 
configuration 

Max- 
loglikelihood 

Improvement 
over m.e. 
model 

Goodness 
of fit 

S1 Main effects, m.e. -4026.605 24.962 (3)  

S2 m.e. 	+ 12 -4026.582 0.046 (1) 24.916 (2) 

S3 m.e. 	+ 13 -4022.810 7.590 (1) 17.372 (2) 

S4 m.e. 	+ 23 -4014.847 23.516 (1) 1.446 (2) 

S5 m.e. 	+ 13 + 23 -4014.783 23.644 (2) 1.317 (1) 

S6 m.e. 	+ 12 + 23 -4014.466 24.278 (2)  0.683 (1) 

Saturated model -4014.124 

N. B. Degrees of freedom of corresponding asymptotic x2  appear in 

parentheses. 
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TABLE 4.3  

Results from the fit of model S4 in Table 4.2. 

The scale used is the logistic. 

50 

Race Region of 
origin 

Location of 
present camp 

Observed 
value 

Expected 
value 

B N N 387 390.636 

B N S 876 879.786 

B S N 383 376.786 

B S S 381 380.265 

W N N 955 951.364 

W N S 874 870.687 

W S N 104 110.214 

W S S 91 91.735 

Pearson chi-squared : 1.4552 	2 d.f. 

L.R. chi-squared : 	1.4458 
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Figure 4.1 

Loglikelihood curve for the transformation paraaaeter. 
Model configuration: main effects; data in Table 4.1. 
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Figure 4.2  

Loglikelihood curve for the transformation parameter. 
Model configuration: main effects plus interaction 23; 
data in Table 4.1. 

-401S 

-4017 

-40.19 

-4021 

-4023 

-4025 

-4027 	 

4 0 
A 0 0.45 	0.63 	0.77 	0.89 	 1 

0.20 
	

0.40 
	

0.60 
	

0.80 
	

1 



53 

either on the logistic or linear scales. However, if a quantitative 

discussion is needed, the logistic scale is the most appropriate (see 

especially figures 4.1 and 4.2). 

4.3 Two examples of data on deviant behaviour 

Goodman (1975) compares methodically two ways of analyzing systems 

of dichotomous variables, namely fitting models where the effects of 

the factors are assumed to be either multiplicative or additive. He 

comments on the similarity of results for both approaches when the 

proportions lie in the interval I = [0.25, 0.75]. See the discussion 

in §2.4 in this respect. 

Goodman presents a detailed exposition of the correspondences of 

the parameters for the additive and multiplicative representations, he 

gives also the simple relationships between the parameters for different 

codings for the explanatory variables. This is useful for researchers 

who want to compare their results with those of others but find that 

the coding was different. 

The parameters of models fitted in the logistic and in the linear 

scales differ little when the probabilities lie in the interval I. In 

this case, models in a scale associated with 	> 1 will tend to give a 

better fit. This is because of the relative weight put on probabilities 

in I by these scales. However, if most of the proportions lie outside 

the interval I, that behaviour will reverse and values of the parameter 

near to zero will often be more adequate. This is because of the relative 

weight given to probabilities on the extremes by scales with small cb. 

See the discussion in §2.4. 

Knoke (1975) provides an example of each of the above situations. 

His paper is closely related to the one by Goodman. 
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Knoke's data consist of two sets taken from the 1973 General 

Social Survey conducted by the National Opinion Research Center (U.S.). 

Two items on preference for legalizing deviant behaviours were chosen 

for analysis. The response variable in the first set is agreement 

with legalization of abortion. The factors are: (1) church attendance, 

(2) education, and (3) religion, dichotomized as shown in Table 4.4. 

In this case most of the proportions lie in the central range. The 

second set is an example of extreme proportions, the response variable 

is agreement with legalization of use of marijuana and the dichotomized 

factors are: (1) church attendance, (2) education, and (3) age. These 

data appear in Table 4.5. 

Our results are summarized in Tables 4.6 for data on legalization 

of abortion, and 4.7 for data on legalization of use of marijuana. 

For the data on abortion model A4, including main effects and 

interaction between education and religion (23), is the one which 

represents the data most simply. The improvement over the main effects 

model (Al) is significant at 5% level, and, as may be observed in 

Table 4.6, the inclusion of further terms brings very little improvement 

in the maximized loglikelihood achieved. This is reinforced by the 

results shown in Table 4.8 for a fit of model A4 to the data. An 

approximate confidence region for the transformation parameter at the 

90% level excludes the value ¢ = 0, i.e. the logistic transformation is 

not appropriate for that model configuration. The linear scale, ¢ = 1, 

is plausible (see figure 4.3) judging by its inclusion in approximate 

confidence intervals for ¢ at the usual levels. For simplicity we may 

use the linear scale for representing the data rather than the one for ¢. 

Our results differ from those suggested by Knoke (1975), who proposes 

model A6 consisting in main effects plus interactions between church 

attendance and education (12), and between education and religion (23). 
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We may observe in Table 4.6 that the improvement of model A6 upon A4, 

in the scale suggested by our method, is not significant at any usual 

level. Nevertheless, the inclusion of (12) is significant in the 

logistic scale which is equivalent to the one used by Knoke. However, 

we prefer the simpler decomposition provided by model A4. 

The fluctuation in the value of ¢ for different models in Table 4.6 

is a striking feature of these data. This is because the proportions 

are not extreme so that a broad range of values of ¢ provide essentially 

equivalent scales. For instance, although the model proposed by Knoke, 

A6, differs in configuration from ours, A4, just in the inclusion of the 

interaction term 12, 	changes from 1.6 to 0, suggesting the logistic 

scale as appropriate. However, an approximate confidence interval 

for ¢ includes the indicator of the linear and other more extreme 

transformations as well. Besides, the inclusion of the term 12 improves 

the max-loglikelihood achieved for the configuration A4 in the logistic 

scale but not in others (see discussion in §3.2). The results of the 

fit of model A4 appear in Table 4.8. 

With respect to the data on legalization of marijuana the results 

were more predictable. In general the logistic scale was chosen by 

our method as the most suitable, i.e. $ was near or equal to zero, to 

obtain a simple representation of the data. It is clear from Table 4.7 

that a model in the logistic scale including only main effects explains 

the data very reasonably, and the inclusion of further terms is super-

fluous. Besides, the best models including one two-factor interaction 

term plus main effects only are those with interactions 13 or 23. These 

are related with age, probably the most important determinant of attitude 

towards legalization of marijuana. 
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Knoke's results in relation to what he calls the regression approach 

(linear scale) are confirmed by our analyses (43 = 1). In this case the 

model with main effects and interaction 13, between church attendance 

and age, does not differ significantly from the main effects model. 

The interaction 13 is not relevant on the linear scale, but it is so 

in the logistic. Results of the fit of model M1 appear in Table 4.9. 

Knoke discusses the difference between the effects identified as 

relevant on the logistic and linear scales and the "correctness" of the 

findings. Our results suggest that, in this case, the logistic scale 

is suitable for an additive decomposition of the probabilities in terms 

of the factors (see Fig. 4.4). The suggested method allows us to make 

a direct and homogeneous quantitative comparison. 

Knoke compares models fitted in different scales. These models 

are equivalent only in their configuration, the meaning of the inter-

action terms is different on different scales. This has to be taken 

into account whenever a comparison is attempted. 



TABLE 4.4  

Observed frequencies on willingness to legalize abortion. 

The individuals are classified according to: (1) church 

attendance, (2) education and (3) religion. 

Church attendance 

Low High 
Religion Education No Yes No Yes 

College 47 23 62 92 
Catholic 

No college 110 43 211 136 

College 11 24 24 168 
Non-catholic 

No college 55 61 150 229 

Source: Knoke (1975) 
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TABLE 4.5  

Observed frequencies on willingness to legalize the use 

of marijuana. The individuals are classified according to: 

(1) church attendance, (2) education and (3) age. 
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Church attendance 

Low 	High 
Age Education No Yes No Yes 

College 79 34 101 15 
Old 

No college 157 25 319 12 

College 67 74 55 24 
Young 

No college 168 57 234 34 

Source: Knoke (1975) 



TABLE 4.6  

Results for several models fitted to data on legalization 

of abortion in Table 4.4. 

Model 
configuration 

Maximized 
log-likelihood 

Improvement 
over m.e. model 

Goodness 
of fit 

Al 2.8 Main effects, m.e. -903.171 6.071 (3)  

A2 1.5 m.e. + 12 -902.817 0.709 (1) 5.362 (2) 

A3 3.0 m.e. + 13 -902.984 0.374 (1) 5.696 (2) 

A4 1.6 m.e. + 23 -901.090 4.144 (1) 1.916 (2) 

A5 1.5 m.e. + 12 + 13 -902.564 1.213 (2) 4.857 (1) 

A6 0 m.e. + 12 + 23 -900.323 5.696 (2) 0.375 (1) 

A7 2.0 m.e. + 13 + 23 -900.702• 4.937 (2)  1.134 (1) 

Saturated -900.136 

N.B. Degrees of freedom of corresponding asymptotic x2  appear in 

parentheses. 
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TABLE 4.7  

Results for several models fitted to data on legalization 

of use of marijuana in Table 4.5. 

i Model 
configuration 

Maximized 
log likelihood 

Improvement 
over m.e. model 

Goodness 
of fit 

M1 0 Main effects, m.e. -614.559 2.018 (3)  

M2 0.5 m.e. + 12 -614.304 0.510 (1) 1.507 (2) 

M3 0 m.e. + 13 -614.861 1.396 (1) 0.624 (2) 

M4 0.5 m.e. + 23 -613.960 1.198 (1) 0.819 (2) 

M5 0 m.e. + 12 + 13 -613.819 1.480 (2) 0.539 (1) 

M6 0.5 m.e. + 12 + 23 -613.592 1.934 (2) 0.085 (1) 

M7 0 m.e. + 13 + 23 -613.858 1.402 (2)  0.617 (1) 

Saturated -613.549 

N.B. Degrees of freedom of corresponding asymptotic x2  appear in 

parentheses. 
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TABLE 4.8  

Results from the fit of model A4, data on legalization 

of abortion 

Church 
attendance 

Education Religion Observed Expected 

High No C No Ca. 229 232.924 

High No C Ca. 61 60.598 

High C No Ca. 168 167.783 

High C Ca. 24 21.097 

Low No C. No Ca. 136 132.106 

Low No C. Ca. 43 43.290 

Low C No Ca. 92 92.696 

Low C Ca 23 25.816 

Pearson 	chi-squared: 	1.876 2 	d.f: 

L.R. 	chi-squared: 	1.910 

N.B. 	C - college; 	Ca - catholic. 
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TABLE 4.9  

Results from the fit of model Ml. Data on legalization 

of use of marijuana. 

Church 
Education attendance Age Observed Expected 

High No C 0 12 15.420 

High No C Y 34 31.124 

High C 0 15 15.409 

High C Y 24 23.047 

Low No C 0 25 21.612 

Low No C Y 57 59.843 

Low C 0 34 33.558 

Low C Y 74 74.986 

Pearson 

L.R. 

chi-squared: 	1.987 

chi-squared: 	2.019 

2.d.f. 

N.B. 	C - college; 	0 - old; Y - young. 
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Figure 4.3  

Loglikelihood curve for the transformation parameter. Model 
configuration: main effects plus interaction 23; data in 
Table 4.4. An approximate 90 per cent confidence interval 
for 4)0) is shown on the top of the figure. 
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Figure 4.4 

Loglikelihood curve for the transformation parameter. 
Model configuration: main effects; data in Table 4.5. 



4.4 Data on knowledge about cancer  

Lombard and Doering (1947) reported and analyzed the data in 

Table 4.10 which consists of records of 1729 individuals who were 

allotted a good or poor score on cancer knowledge, classified according 

to the presence or absence of four variables, namely (1) exposure to 

radio addresses, (2) solid reading, (3) newspapers, and (4) exposure 

to lectures. These variables are considered below as explanatory 

for the expected proportions of individuals with good scores. Several 

authors have analyzed these data, we shall refer especially to the 

papers by Dyke and Patterson (1952) and Cox and Snell (1968). Some 

comparisons are made with their results. 

Table 4.10 suggests that a linear transformation is likely to be 

adequate because most of the observed proportions lie in the range 

[0.25, 0.75]. This is confirmed below by our results. An interesting 

characteristic of this example is the use of an approximate screening 

technique. This is useful when the number of factors is moderate to 

large and the data form a structured sample. 

The results are summarized in Table 4.11. From the fitting of a 

main effects model (C1), the plausibility of a simple representation 

on a logistic scale is nearly rejected at the 10% significance level. 

The main effects configuration fits the data well in the scale associated 

with ¢ = 1.8, the value at which the approximate maximum of the 

loglikelihood curve for 	is attained, see figure 4.5. 

Table 4.12 shows some results from the fit of model Cl. The values 

of the commonly used Pearson's and likelihood ratio chi-squared statistics 

were not significant at the usual levels. However, further analysis was 

carried out to take account of possibly relevant higher-order effects. 

To have an indication of plausible terms to include in the model we 
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took advantage of the structure of the problem, namely that of a 

2 x 24  factorial system. Crude generalized residuals, as defined by 

Cox and Snell (1968) were computed as well as chi-squared residuals 

defined in this case as (o.-e.)/{e.(1-
8,)}1/2, 

 where o. and e. denote 

observed and expected responses respectively, 8i  is the estimated 

probability of positive response. For model Cl these residuals appear 

in Table 4.12. We consider them as if they were observations from a 

24  design and compute the sum of squares of the residuals (SSR) for 

the different effects as usual, using this to detect effects which 

seem worth including in future models. This method is used by Cox 

and Snell. It must be borne in mind that in this case the technique is 

just approximate, and to judge the actual relevance of a certain effect 

we need to fit a model including it. Table 4.13 shows the resulting 

SSR's after applying this procedure to the residuals in Table 4.12. 

Results in Table 4.13 suggest the inclusion of the interaction 

effect 24, i.e. interaction between solid reading and exposure to 

lctures. This is an interesting feature of the data because the SSR 

for the factors 2 and 4 are not large, and usually the contrary happens. 

A possible explanation is that the interaction term needs to be included 

to account for duplication of knowledge obtained from the two sources of 

information. This seems to be confirmed by the actual fit of the 

suggested model and by the sign of the estimated parameter. 

The fit of model C2, including main effects and interaction 24, 

results in a modest increment in the maximized loglikelihood value, 

although the fit to the data seems to have improved (compare Tables 4.12 

and 4.14). Models C4 and C5 are fitted to compare with the results of 

other authors. Cox and Snell identify interactions 14, 24, 34 and 23, 

as worth including in the model, using the screening procedure mentioned 
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above. They base their computations on two types of generalized 

residuals calculated from the original ones resulting from the fit of 

Dyke and Patterson's main effects models. Dyke and Patterson themselves 

suggest the inclusion of interactions 14, 24 and 34. Models C5 and C4 

correspond respectively to the two configurations suggested above. 

From Table 4.11 it seems that model C4 is worth being considered but 

model C5 improves little upon C4. However, this is true for the 

scales shown in Table 4.11, which are approximately the most suitable for 

the associated model configuration. The inclusion of interaction 23 does 

improve the value of the maximized loglikelihood in the logistic scale, 

the scale where it is identified by Cox and Snell, but not in other 

scales. The identification of relevant interaction effects depends on 

the scale used to analyze the data. 

Our results suggest that model Cl should be used if simplicity of 

representation and interpretation is wished. This is because models with 

main effects only have several advantages if they provide a reasonable 

fit to the data. There is, in principle, no reason to continue including 

more parameters, unless a complete explanation of the data is intended. 

With respect to the choice of scale, in this case the linear scale is 

plausible and, on some practical grounds, preferable. This leads to 

the adoption of an additive definition of no interaction. This is not 

the additive definition discussed by Darroch (1974), in the context of 

multiple response experimental situations. 



TABLE 4.10  

Lombard-Doering's data on cancer knowledge. Individuals 

are classified according to presence (+) or absence (-) 

of four variables: (1) exposure to radio addresses, 

(2) solid reading, (3) newspapers, and (4) exposure to 

lectures. 

1 2 3 4 Good score Total Proportion 

+ + + + 23 31 0.742 

+ + + - 102 169 0.604 

+ + - + 1 4 0.250 

+ + - - 16 32 0.500 

+ - + + 8 12 0.677 

+ - + - 35 94 0.372 

+ - - + 4 7 0.571 

+ - - - 13 63 0.206 

- + + + 27 45 0.600 

- + + - 201 378 0.532 

- + - + 3 11 0.273 

- + - - 67 150 0.447 

- - + + 7 13 0.538 

- - + - 75 231 0.325 

- - - + 2 12 0.167 

- - - - 84 477 0.176 
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TABLE 4.11  

Results for several models fitted to data in Table 4.10 

Model 
configuration 

Maximized 
loglikelihood 

Improvement 
over m.e. model 

Goodness 
of fit 

Cl 1.8 Main effects -1050.774 11.019 (10) 
(m.e.) 

C2 1.2 m.e. 	+ 24 -1049.820 1.908 (1) 9.111 (9) 

C3 1.5 m.e. + 14 + 24 -1048.693 4.163 (2) 6.856 (8) 

C4 2.5 m.e. + 14 + 24 -1046.655 8.239 (3) 2.780 (7) 
+ 34 

C5 1.0 m.e. + 14 + 24 -1046.544 8.460 (4) 2.559 (6) 
+34+23 

C6 0.5 m.e. + 23 -1050.496 0.557 (2) 10.462 (8) 
+ 123 

C7 0 m.e. + 23 + 24 -1049.137 3.275 (2) 7.744 (8) 

C8 3.6 m.e. 	+ all 
two-factor 
interactions 

-1046.354 8.842 (6) 2.177 (4) 

Saturated -1045.265 

N.B. Degrees of freedom of corresponding asymptotic x2  appear in 

parentheses. 
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TABLE 4.12  

Results from the fit of model Cl to data in Table 4.10 

Observed 	Expected 
Chi-squared 
residuals 

Generalized 
residuals 

23 	21.557 0.563 0.546 

102 	101.205 0.125 0.165 

1 	2.261 -1.272 -1.314 

16 	15.207 0.281 0.207 

8 	5.758 1.296 1.318 

35 	36.528 -0.323 -0.357 

4 	2.478 1.203 1.199 

13 	15.849 -0.827 -0.840 

27 	28.420 -0.439 -0.402 

201 	203.917 -0.301 -0.245 

3 	5.572 -1.551 -1.588 

67 	62.429 0.757 0.729 

7 	5.471 0.859 0.853 

75 	75.330 -0.046 -0.020 

2 	3.468 -0.935 -0.934 

84 	82.766 0.149 0.186 

Pearson's chi-squared: 	10.845 10 d.f. 

L.R. 	chi-squared: 	11.019 
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TABLE 4.13  

Sum of squares of residuals from the fit of model Cl 

Effect Sum of squares 

Chi-squared residuals 	Generalized residuals 

Radio (1) 0.4069 0.2811 

Solid reading (2) 0.6451 0.5968 

Newspapers (3) 0.9645 1.2334 

Lectures (4) 0.0005 0.0081 

(12)  0.0005 0.0071 

(13)  0.0243 0.0100 

(14)  1.6639 1.8993 

(23)  0.0133 0.0002 

(24)  3.0893 3.3345 

(34) 2.0590 1.8760 

(123)  0.4311 0.3521 

(124)  0.3895 0.3599 

(134) 0.4157 0.3596 

(234) 0.4171 0.3048 

(1234) 0.3082 0.3386 
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TABLE 4.14  

Results from the fit of model C2 to data in Table 4.10 

Observed Expected 
Chi-squared 
residuals 

Generalized 
residuals 

23 20.406 0.982 0.982 

102 102.852 -0.134 -0.135 

1 2.092 -1.093 -1.129 

16 15.171 0.294 0.293 

8 6.804 0.697 0.701 

35 35.728 -0.155 -0.178 

4 3.029 0.741 0.748 

13 15.222 -0.654 -0.733 

27 26.777 0.068 0.053 

201 206.349 -0.553 -0.554 

3 5.067 -1.250 -1.279 

67 61.730 0.874 0.861 

7 6.559 0.245 0.237 

75 73.109 0.268 0.241 

2 4.437 -1.457 -1.532 

84 83.091 0.110 0.124 

Pearson's chi-squared: 8.660 	9 d.f. 

L.R. chi-squared: 	9.111 
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TABLE 4.15  

Sum of squares of residuals from the fit of model C2 

Effect 
Sum of squares 

Chi-squared residuals 	Generalized residuals 

Radio (1) 0.3520 0.3594 

Solid reading (2) 0.0230 0.0166 

Newspapers (3) 0.9278 0.9970 

Lectures (4) 0.0780 0.0809 

(12)  0.0193 0.0181 

(13)  0.0078 0.0094 

(14)  1.6067 1.7213 

(23)  0.0377 0.0394 

(24)  0.3695 0.4026 

(34) 2.4401 2.5090 

(123)  0.6245 0.6178 

(124)  0.4232 0.4872 

(134) 0.3391 0.3788 

(234) 1.1273 1.1214 

(1234) 0.2129 0.2616 
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Figure 4.5  

Loglikelihood curve for the transformation parameter. 
Model configuration: main effects; data in Table 4.10. 
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4.5 One example of bioassay data  

Data in Table 4.16 are due originally to Martin (1940) and have 

been analyzed by Finney (1952, p.94) and Ashton (1972, p.54). The data 

correspond to a test of toxicity of derris root in relation to the grain 

beetle Oryzaephilus surinamensis. We have not made adjustments to allow 

for natural mortality because we want to illustrate the use of the 

method of estimation of the transformation parameter, and to apply the 

test statistic introduced in §3.3, rather than to analyze thoroughly 

the data. 

Our preliminary results suggested departures from the logistic model. 

Figure 4.6 shows the approximate loglikelihood curve for A = X1/2. 

Direct overall maximization provided A = 0.5849 which agrees with what 

we observe in Fig.4.6. The relation between the probability of response 

6, and the log concentration of derris, x, that determines the dose is 

given by 

Tx(6) = a + S x . 

The estimates of the parameters from a GLIM fit with A = 0.5849 are 

a = -3.873 (0.3595) 	and 	f3 = 3.445 (0.1897), 

standard deviations appear in parentheses. The fit obtained is very good, 

the values for the deviance and Pearson's chi-squared statistics with one 

d.f. are 0.0154 and 0.0176, respectively (fitted values and residuals 

appear in Table 4.17). 

An approximate confidence interval for A at 90% level (shown in 

Fig. 4.6) does not include the logistic transformation. This agrees with 

the result from the GLIM fit for a logistic model that has a deviance of 

4.72, which even considering 2 d.f. is significant at 10% level. 
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Given these results the test introduced in §3.3 was applied 

obtaining a value of 1.8566. From tables of the standard normal 

distribution this value is significant at 4% level; thus there is 

agreement with the previous discussion. 



TABLE 4.16  

Data for a toxicity test on derris 

log concentration 	number of 	total 
of derris (x) 	insects killed 	exposed 

	

1.08 	 58 	126 

	

1.68 	115 	128 

	

2.00 	126 	127 

	

2.17 	142 	142 

Source: Ashton (1972) 

TABLE 4.17  

Results for model with X = 0.5849 

fitted to data in Table 4.16 

Observed 	 Fitted 	Residual 

58 58.200 -0.036 

115 114.801 0.058 

126 125.898 0.098 

142 141.999 0.024 
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Figure 4.6  

Loglikelihood curve for the transformation parameter. 
Simple model configuration; data in Table 4.16. 
An approximate 90 per cent confidence interval for 	A 
is shown on the top of the figure. 



Chapter 5. POLYTOMOUS AND MULTIVARIATE RESPONSES 

5.1 Introduction 

We have treated until now the case of binary or dichotomous 

response. The two natural extensions, namely polytomous and multi-

variate responses are discussed here, though we shall not go into 

great detail. 

For polytomous responses it is usually necessary to distinguish 

between ordered and unordered responses. For a recent discussion of 

models for ordered responses see McCullagh (1980). We shall concentrate 

on unordered responses. 

The multivariate case introduces new aspects into the analysis, 

namely the relationships among the responses and the way they are 

affected by the explanatory variables. If there are several of these, 

it is also of interest to study the marginal and joint effects on the 

responses. 

Several of the models suggested for the two situations above are, 

either originally or under an equivalent formulation, based on extensions 

of the concept of an underlying distribution of tolerances used in the 

dichotomous case. Although for (0, 1) data this concept is often 

unnecessary, for some generalizations it serves to suggest models. For 

the multivariate case, in particular, the assumption of a multinormal 

distribution has been used, mainly because of the analytical simplicity 

it provides to model situations with several variables. However, the 

computation of multinormal probabilities in dimensions higher than 2 is 

not easy, it may be preferable to work directly with the original 

probabilities or transformations of them. 

79 
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In general, the objective is to achieve a simple representation 

in terms of explanatory variables of the probabilities of getting 

particular responses. 

5.2 Unordered polytomous responses  

Cox (1966, 1970 ch. 7) extends the logistic model to polytomous 

unordered responses. If the possible responses are labelled arbitrarily 

1, ..., k, the probability of the jth response (j = 1,...,k) may be 

represented as 

Pr{Y = j} = C-1  exp(8'. x) (5.2.1) 

where 8. is the vector of parameters for the jth response, Y is the 

response variable, x is the vector of explanatory variables and C-1  is 

a normalizing constant. Cox suggests imposing the constraint 81  = 0 to 

make the parameters unique; the first response may, for example, be 

taken as the relatively most frequent. This model is considered 

independently by Mantel (1966a). 

Bock (1970) treats essentially the same model in more general terms 

providing a Newton-Raphson procedure to carry out the estimation by 

maximum likelihood methods. 

Another type of model is based on a sequential argument, e.g. in 

the case of a response, Y, with three categories we may determine first 

whether Y = 3 or Y # 3, and then, given Y 0  3 determine whether Y = 2 

or Y = 1. This is advantageous for estimation because the likelihood 

function can be maximized by maximizing the likelihood of the binary 

case repeatedly. 

Other ways of assigning the probabilities to obtain a certain 

response have been suggested; see for example Aitchison and Bennett (1970), 
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where the response is determined from the outcome of some hypothetical 

auxiliary experiments. In general, there is implicit an exhaustive 

and exclusive partition of a probability space associated with the 

values taken by the polytomous response. 

A natural generalization of the results on the symmetric family of 

transformations in Chapter 2 is to consider the expression 

(1 + AT.)1/X  
ej  = 	 

1/A 
-1 < AT., 	(5.2.2) 

3 
E (1 + At ) 

g=1 g 

where e. denotes the probability of getting response j (j = 1,...,m), 

and T. = S'.x. 

Expression (5.2.2) reduces for A = 0 to 

exp(T.) 
e. = 	 .3 

E exp(T.) 
g=1 

then we obtain the generalized logistic model in (5.2.1). For A = 1 

(5.2.2) takes the form 

1 + T. 
e j  = k 	 

E (1 + Tg) 
g=1 

k 
which, subject to the constraint E 	T 	= 0, is 

g=1 g 

1 + T. 
ej  = k  

or equivalently 

ke. - 1 =T. , 
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i.e. a linear model for the cell probabilities. The constraint on 

the parameters suggested above is automatically fulfilled in the binary 

case. 

We have a natural extension of the family T for polytomous response. 

To obtain the form of the transformation associated with (5.2.2) we 

consider the relative odds e./ek. Thus we obtain 
J 

e./e 	= 	[(1 + az.)/(1 + az )]1/A 	(j = 1,...,k-1), 
J k 	J 	k  

from which we get 

X 	k 	= .. , 	(5.2.3) 

E a 
g=1 g  

for j = 1,...,k. 

For X = 1 (5.2.3) reduces to 

kej  - 1 = T. , 

whereas for A = 0 

e. 

ln
(n e)1/k 

	T. . 

g g  

The last expression is invariant under rescaling of the 8`s, thus 
k 

it is equivalent to working with 8j*  = ce. where 	]I 8 *  = 1. Hence, 
g=1 g  

we may use the expression 

ln 8.*  = Tj*, 

k 
ke.X  - E e a 

1 	J 	g=1 g 
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the actual parameterization for 8's differs from the one above only 
k 

by an additive constant which may be obtained using E 0. = 1 and then 
k 	 j=1 
E CO. = c. In our case the constant is 

j=1 3  

c = ( II 8 )
-1/k  

g=1 g 

The implication of the above result is that the linear systematic 

part of a loglinear fit will differ from the one needed in our model 

only by an additive constant. Then the fitting of the model may be 

carried out by a modified loglinear fit. 

In principle it is possible to develop a score test, analogous to 

the one in Chapter 3, for departures from the generalized logistic model 

in the direction of the linear model. The details are not given because 

of their algebraic complexity. 

An alternative is to construct auxiliary variables by considering 

the response in each category of the polytomous variable as binary in 

relation with its complement. Different models may be fitted to the 

variables so constructed. Comparison of the most suitable models, 

configuration and scale, for each individual variable may shed some 

light on the way the explanatory variables influence the polytomous 

response. 
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5.3 Multivariate responses  

Cox (1966, 1970 §7.6) suggests also one possible way to analyze 

multivariate responses. He discusses, in particular, a pair of binary 

responses. In this case a variable with four levels of response is 

created and then the problem reduces to one of polytomous response. 

This approach may be generalized to more complex situations. 

The objective may be stated as to get a description of the regression 

of the responses on the explanatory variables as concisely as possible. 

This may be compared with the aim in canonical regression or canonical 

correlation analysis for quantitative responses. 

Nerlove and Press (1973) present a comprehensive discussion of 

models for jointly dependent qualitative response variables. They 

interpret the resulting conditional probabilities as analogues of 

structural equations in systems of simultaneous equations used in 

econometrics. A general model for the analysis where quantitative and 

qualitative explanatory variables are used is suggested. The listing of 

a computer program to fit the model by maximum likelihood methods is 

provided. 

Ashford and Sowden (1970) use the idea of an underlying distribution 

of tolerances. They construct a jointly normal model from marginal 

distributions conveniently specified. Their treatment is for binary 

responses only. Mantel and Brown (1973) consider an alternative 

logistic analysis of the previous example. It seems that the model 

based on the normal distribution provides better results. 

For multivariate binary data one possible alternative might be to 

apply marginally transformations of the type suggested in Chapter 2. 

The values of the transformation parameters appropriate for an additive 

decomposition of each response may be compared. These values may serve 
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to study similarities and differences in how the explanatory variables 

affect the responses. 

Another possibility would be to construct a polytomous response 

as suggested by Cox (1966). The generalization of the family J suggested 
in the last section could be applied then. This procedure may be 

considered as a joint transformation of the original variates. 

The last two suggested possibilities would provide complementary 

information about the data. Thus, it seems that they might both be 

tried. 
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Chapter 6. TRANSFORMATIONS FOR PROBABILITIES AND SURVIVAL DATA ANALYSIS 

6.1 Introduction 

The analysis of survival data arises in diverse disciplines, e.g. 

medical and actuarial studies, industrial life testing, social sciences, 

etc. The interest is centred on failure time, T. Two intimately related 

ways of describing the behaviour of T are the survivor function, 3 (t), 
and the hazard function, h(t), defined respectively as follows: 

CO 

3(t) = Pr[T > t] = f fT(t)dt, 
t 

where fT(t) denotes the probability density function of T, and 

h(t) = lim S-1Pr{t < T < t + d IT > t} 
d4-0 

= -d ln 3 (t) /dt 

These definitions are for continuous time. There are corresponding 

discrete versions (Cox, 1972). 

One of the main problems in the analysis of survival data is to 

study the effect of explanatory variables on T. The most convenient way 

to do so is perhaps to establish simple models for the hazard function in 

terms of the explanatory variables. We focus our attention on two classes 

of model, namely additive and multiplicative. The approach taken here 

is to analyze sequences of contingency tables constructed from the data. 

This is the essence of the common life table analysis. In his pioneering 

paper Mantel (1966b)uses a similar approach; though the way we determine 

the sequences parallels Holford (1976). Certain similarities with the 

problems studied above are exploited. In particular, a family of 

transformations for probabilities is defined to include both additive 
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and multiplicative models as special cases. Generalized linear models 

associated with the transformations are tried on the data and their 

fits compared. Two simple estimates of the survivor function are 

computed, and a test for departures from the multiplicative model in 

the direction of the additive model is suggested. 

6.2 Additive and multiplicative models for the hazard function 

6.2.1 The models 

We consider two classes of model for the hazard function. These 

models differ in the way the explanatory variables are assumed to 

influence the underlying hazard, and may be expressed as follows: 

I) The Additive model where 

h(t; z) = p(t) + k(z), 	and 

II) The Multiplicative model where 

h(t; z) = p(t)g(z) , 

where h(t; z) denotes the hazard function given the vector of explanatory 

variables z, p(t) is the underlying hazard when k(z) - 0 or g(z) = 1 

depending on the model, and k(z) and g(z) are parametric functions of 

the explanatory variables. We use throughout two more specialized 

versions of (I) and (II), namely 

and 

h(t; z) = p(t) + a'z, 

h(t; z) = p(t) 	exp(S'z), 
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where a and 8 are vectors of unknown parameters. 

The use of additive models may be motivated as follows, suppose 

that the surviving process is controlled by several factors. Assume 

there is a finite (possibly large) number, n, of these factors. Suppose 

further that each factor, j, has its own lifetime, T., and a 
J 

corresponding hazard function h.(t) > 0. Suppose also that a parallel 
J 

system of failure holds. Then the actual failure time is 

T = min(T1,...,Tn) and the overall hazard function is the sum of the 

hazard functions of the controlling factors. The factors themselves 

might not be directly observed. Consider instead p explanatory variables 

z1,...,zp  which are associated with, or represent, the controlling 

factors. It seems appealing, but not compulsory, to represent the 

hazard function additively in terms of the z's, particularly if say 

each z affects only one or two of the individual hazard functions. 

Multiplicative models have received a great deal of attention 

recently, one of the reasons being the analytical simplicity they 

provide. Nevertheless this convenience must not be the sole guide for 

choosing a model for the hazard function. 

The appropriateness of the assumption of proportional hazards, 

implicit in the use of multiplicative models, deserves examination, 

particularly when strong regression effects are present. When 

proportionality does not seem to hold, one possible alternative is to 

include a time dependent explanatory variable in the model. Thus, the 

effect of this variable on the hazard may change smoothly over time. 

This procedure increases the difficulty of computation. We consider 

below a different way to deal with this situation. 
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6.2.2 Grouping continuous data 

It is usually reasonable to consider survival time as essentially 

a continuous random variable, thus ruling out the possibility of tied 

failure times. However, ties frequently result from the way data are 

recorded. To cope with situations with an appreciable number of ties, 

Cox (1972) proposes a linear logistic model for the analysis in discrete 

time. This model provides a first order approximation to model (6.2.2). 

Kalbfleisch and Prentice (1973) point out some disadvantages of such a 

model, namely the heavy computation arising when many ties are present 

and the fact that the estimated parameters do not correspond exactly 

with the ones for the underlying continuous model. They propose to 

group the model (6.2.2) obtaining, essentially, a generalized linear 

model with a complementary log log link function. This model retains 

the parameters to be estimated in the continuous case. 

Although in this instance grouping has been introduced for technical 

reasons, there are situations where it cannot be avoided. For example, 

consider certain types of medical follow-up studies where failure is 

not death, but rather time until occurrence of certain infection, tooth 

decay, or in general a "soft" end-point which may not be immediately 

obvious or clearly defined. Besides, the level of measurement used 

for recording certain events, e.g., weeks instead of days for 

re-engagement in remunerated work, may be such that with sufficiently 

large samples the data can be regarded as grouped and analyzed 

accordingly. Even when the exact failure times are known, the times of 

occurrence of other events, e.g. follow-up loss, may only be known on 

an interval basis forcing the data to be reported as grouped. 

We introduce the partition {Ii}  (i = 1,...,m) of the time scale 

where Ii  = (ti-1, ti], t0  = 0 and tm  is defined such that no failure is 
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observed after tm. We obtain below an expression for the conditional 

probability, say 6i, that an individual fails during the ith study 

interval, Ii, given that he was alive at time ti-1. This may be 

expressed as follows 

0. = Pr{t. 	< T < til T  > ti-1}. 
 (6.2.3) 

where for simplicity the dependence on z has not been made explicit. 

In terms of the survivor function (6.2.3) is expressed as 

61  = 1 - 3(t.)/3(t. ) . (6.2.4) 

This expression takes different forms depending on the representation 

assumed for the hazard function. We use the following relationship 

between the hazard and the survivor functions 

t 
g(t) = exp {- f h(u)du} . 

0 

We assume that the explanatory variables do not vary with time 

within a partition interval, though they may vary from one interval to 

another. Hence for a model with hazard given by (6.2.2) expression 

(6.2.4) becomes 

t. 

6i(z) = 1 - exp{-expWz) f 	p(u)du } , 

ti-1 

(6.2.5) 

where we now make explicit the supposed dependence on z. The last 

expression may be rewritten as 

t. 
1 

ln{1 - 6i(z)} = - exp(S'z) f 	p(u)du , 
t. 

(6.2.6) 



from which we obtain 

In{1 - 6i(z)} = exp(8'z)ln{1 - e.(o)} , 

and taking logarithms again we get 

ln[-ln{1 - O.(z)}] = ln[-ln{1 - O.(0)}] + S'z 
	

(6.2.7) 

Analogously for (6.2.1) we have 

-lnfl - O.(z)} = -1n{1 - e.(o)} + a'z(ti-t. ). 
 1-1 (6.2.8) 

These are just special cases of more general expressions corres-

ponding to models (I) and (II). Simple linear expressions for the 

dependence on z are convenient to use, and may be considered as approxi-

mations to the actual ones when these are more complex. Hence, we 

restrict our attention to linear expressions. 

6.2.3 A family of asymmetric transformations 

Expressions (6.2.7) and (6.2.8) involve asymmetric transformations 

of the probability O.(z). Suppose there is a family of transformations 

that includes those expressions as special cases. We suggest basing 

on such family the assessment of a scale where an additive model for 

the hazard function is consistent with the data. One possible candidate 

is a subfamily of if , defined in §2.5, when we fix 	S = 1 and let X to 

vary arbitrarily, namely 

91 

V(0) = {-ln(1 - 6)}X  - 1  
A 

(6.2.9) 
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This expression reduces to the complementary log log transformation 

for A = 0, and to the negative of the complementary log for A = 1. 

Hence, it may be used to define the comprehensive model suggested above. 

6.2.4 A general model for grouped data 

We assume that (ti 	
t. ) 	

A. (i = 1,...,m) is constant, i.e.
1 

we consider partition intervals of equal width. Then (6.2.8) may be 

written as follows 

-ln{1 - e.(z)} = - ln{1 - e.(o)} + v'z , (6.2.10) 

where v incorporates the common factor, say A. 

Thus, we may write formally that 

vx{oi(z)} = vx{ei(o)} + Y'z , 

which incorporates (6.2.8) and (6.2.10) as special cases. To carry out 

the estimation procedure it is more convenient to use the expression 

v
x 
{e
i 
(z)} = ~i + y'z , (6.2.11) 

which may be easily inverted obtaining 

e.(z) = 1 - exp{-(1 + Ani)1/x}, (6.2.12) 

that holds as long as XI-1i 
	1 	1 	1 
> -1; otherwise 8.(z) = 0, n. = ~. + y'z, 

 

(i = 1,...,m). 

We use (6.2.12) to determine the link function of a GLM for this 

situation. A scale where an additive expression for the data is 

appropriate may be estimated from an approximate log likelihood curve 

obtained by fitting models for several values of A. 
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If we do not assume equal width intervals, the treatment given 

above is not possible. One way to overcome this problem is to consider 

the underlying hazard function as constant within each interval. If 

p(u) = ki for ti-1 
 

<u < t., expressions (6.2.7) and (6.2. 8) may be 

written respectively as follows 

and 

-ln{1 - 6i(z)} = exp(ki' + S'z)Ai (6.2.13) 

-ln{1 - 0.(z)} = (k. 	+ a'z)A , 	(6.2.14) 

	

1 -. 1 	_ 1 

where 
Ai 

= t.-t. 	Is...
' AA k: . 1 1-11 

These expressions are special cases of 

-ln{1 - 6i(z)} = {1 + a(~i + y'z)}
l/AA

i, 

or equivalently 

ei(z) = 1 - exp{-[l + x(i 
+ y'z)]1/2,Ai} , 

which holds for l( i + 11z) > -1, otherwise 6i(z) = 0. 

This expression may be used instead of (6.2.12) to define a GLM. 

However, it is normally best to use intervals of equal width, with the 

exception of situations where certain time periods are of special interest 

and a non-homogeneous partition is required. 

The assumption about the constancy of p(t) over prespecified 

intervals has been made by several authors, see for instance Kalbfleisch 

and Prentice (1973) and Kay (1977). Although a bit artificial it is a 

useful device. Another way to obtain similar results is to apply the 

mean value theorem to the integral 

t. 
i 

I 	p(u)du 
t. 1-1 
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obtaining 

t. 
1 

f 	p(u)du = p(u')A., 	(i = 1,...,m) 
t. 1-1 

for u' e [t., t.] . 1.-1 	1 

Expressions (6.2.13) and (6.2.14) are obtained without assuming 

constancy of p(t) within intervals. This assumption is needed if a 

valid step function estimate of p(t) is required, otherwise it is just 

a computational device. 

One possible way to make the assumption more reasonable is to use 

very fine partitions. However, the number of parameters in the model 

grows accordingly and computational problems may be faced because of the 

infeasibility of optimizing functions that depend on a large number of 

variables. More importantly, the inference about the parameters of 

main interest becomes less precise. We recommend to use a moderate 

number of intervals. It is not possible to suggest specific numbers but 

a compromise should be made between the amount of data available and 

the number of time intervals considered. 
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6.3 Applications of the family of transformations  

6.3.1 Estimation of the survivor function 

We proceed to estimate the survivor function for a vector z of 

explanatory variables. Its expression in terms of the conditional 

probabilities of survival is 

3(t) = II 	{1 - O.(z)} 	, 
I(t) 

where I(t) = {ilt. < t} and ti  is the upper bound of the ith time 

interval. The survivor function at t may be estimated via the values 

of 6i(z) which depend on c(A) and y(A), the m.l.e. of 	and y for a 

fixed value of the parameter X. There are two cases of special interest, 

namely X = 0 and A = 1. 

For A = 0 we have 

3 (t) = 	II exp{-exp( i(0) + y'(0)z)}, 
I(t ) 

which for z not depending on time may be written 

ln 3(t) = exp(y'(0)z)1n 30(t) , 	(6.3.1) 

where 3 0(t) is the estimator of the underlying survivor function under 

the proportional hazards assumption. 

Analogously for A = 1 we have 

ln 3 (t) = -Y '(1)z + in 30(t) , (6.3.2) 

in this case 3 0(t) is the estimator of the underlying survivor function 

under the assumption of hazards with constant difference. 
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In (6.3.1) and (6.3.2) we may observe the different way in which 

the explanatory variables affect the log survivor function. 

The expression for 3(t) provides a step function estimate of the 

survivor function. A continuous estimate may be preferable, for instance 

to communicate results or for assessing the form of the underlying 

hazard. We derive a continuous estimator for arbitrary t as follows. 

Consider the survivor function at t (t < t 
m
) written in the following way 

t.  
3 (t) = exp{- J]  h(u)du - I  h(u)du} , 

0 	 t. 

where t. is the largest partition bound less than t. Then, 

t 

3(t) = 3(t.)exp {- f h(u)du }, 
t. 

.3 

if we assume h(u) = k. 	for u E I. , we obtain 

exp{-k .]+1 (t-t j )} 

(t-t.)/(t. -t.) 
= (1 - O. 	) 

	]+1  ] 

t'+1 

because 	1 - ej+1  = exp{- j 	h(u) du } . 

Then, 

(t-t.)/t. 
3 (t) = 3(t.)(1 - j+1) 

0si.A - 
t4"  - t.  

substituting 3 (t) for 3 (t) and taking logs we have 

ln 3  (t) = ln 3  (t.) + [(t-t.)ln(1 - e, )]/0 3 	] 	]+1 	j+l  

This expression provides an estimator consisting in a connected 

sequence of straight lines. 

t 

exp{- f  h(u)du} = 
t. 

t. 
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6.3.2 Test for departures from the multiplicative model, the two-sample 

case 

For simplicity we treat first the two-sample problem. As before 

the comparison of models is based on the maximized loglikelihood 

achieved for different values of the transformation parameter A. 

Suppose there are initially n = n1  + n2  individuals at risk of 

failure, n. in group j (j = 1,2). The individuals at risk during the 

ith period may fail, be censored or survive to the start of the following 

period. Here we work with the frequencies of the various categories and 

follow Cox (1975) in the discussion. 

Let n.. denote the observed number at risk in the ith interval for 
13 

the jth group, the observed number of individuals failing in each group 

is denoted by f.. and the corresponding number of censored individuals 
1.3 

by cij. Thus n(i+1)j 	nij 	fij - cij (1 < 1+1 < m; j = 1,2) and 

n = n.. Censoring is assumed to take place instantaneously at the end 
lj 	J 

of the interval. Thus, the number of individuals at risk throughout the 

ith interval, jth group is n... This assumption is relaxed later. It 
1.3 

may be considered alternatively that censoring occurs instantaneously 

at the beginning of the interval. If there is a large discrepancy in 

the results obtained under the two assumptions another method may be 

used, e.g. the so-called actuarial method. 

We denote by A.. the probability that an individual, at risk in 
1.3 

the jth group, fails during the ith interval having survived until the 

beginning of that interval. It is supposed that failures occur 

independently. 

The probabilities A.. are assumed to be relevant to the whole 
13  

population of individuals under study, i.e. if an individual in sample j 

censored in an earlier period had survived to the start of the ith 
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interval, his probability of failure would have been 8... Thus, 

censoring and failure are assumed to be determined by independent 

mechanisms. 

Let the random variable C.. represent the number of individuals 
13  

censored in the jth sample just before the end of the (i-l)th interval 

(c . = 0), and F.. represent the number of failures in the ith interval
13  

for sample j. Then the partial likelihood, hereafter referred to as 

the likelihood, as defined by Cox (1975), based on F1, F2  in the sequences 

{C. 	Fil} 
and 

 {Ci2' F. 	
is 

il' 

m 	2 	n.. 	f.. 	n..-f. 
II 	II (f13) 6.13  (1 - 0..) 1] 

	13 

i=1 j=1 13 > 
(6.3.3) 

Our objective is to represent the probabilities {011,012' 	' 

8ml,  6m2
} in terms of a parameter which takes account of the difference 

between groups and some auxiliary parameters for the intervals. An 

indicator variable z (1 for sample 2, 0 otherwise) may be used in a 

model based on (6.2.11). Then, except for a constant, the loglikelihood 

may be written as 

m 2 
= 	E 	E {f.. ln 0.. + (nij-f..)ln(1 - 0..)) 	, 

i=1 j=1 13 	13 

where 

1 - exp{-(l+Xn..)1/X} 13 an.. > —1 
1] — 

a.. = 
13 

0 	otherwise 

0 	j = 1 
and nij  = 	 i  + yz, 

1 	j = 2 
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In this particular case a test of the multiplicative model 

assumption may be obtained examining a statistic based on the efficient 

score U(A) = Dt/aA at A = 0. Here 

m 	2 	f.. - n..[l  

i=1 j=1 1j 1 - exp(-s 
)1/A 

1/A 
x { a l~ - 2 

ln si.}si, 	, 

iJ 	J s 	J 

where nij 	~i + yz, s.. = (1 + An..), z as above. 
13 	13 

For A = 0 the expression above takes the limiting value 

m 2 f. 	
i 

-n .6 o 	n 2 

U(0) = - E 	E 	ij oii i 	-11- exp(n..) , 2 	 1] i=1 j=1 	bij 

where 	o. 	= 1 — exp{—exp(rij)}. 

In principle we must make allowance for the presence of the 

nuisance parameters 	and y. If these are replaced by their m.l.e. 

when A = 0, by the same argument used in §3.3, we just need to consider 

the efficient score U(0) and its standard deviation to compute the test 

statistic. Thus, we need the expressions of elements of the information 

matrix I for the limiting case A = 0, these are given below 

2 
E n 	- A5J s 	sj 

)exp(2n.)/e 
j=1 

s 
 

r = s, 

I 	= 
sr 0 r 	s , 
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m 
IYY = 	E ni2(1 - 8°.2)exp(2ni2)/0. , 

i=1 

IY~ 	= exp(2ns2)(1 - 6o2)ns2/6o , 

m 

IYa = iEl ni2(1 - O.
2)exp(2ni2)n.2/(20.2) , 

m 2 
I
XX 

= 	E 	E {n.. (l - 0..)exp(2ni2)n. o ./(40o.) } . 13i=1 j=1 

The variance of the test statistic A is given by 

Var(A) =I 	- I~~I~ 1I , 

where 	= (,y). The inversion of I
1)
~ is greatly simplified because 

the submatrix Iw corresponding to the interval effects, ~, is diagonal. 

Then applying the formula for inversion of partitioned symmetric matrices 

(Rao, 1973, p.33), we obtain the required inverse in a simple way. 

An asymptotic normal distribution is assumed for the standardized 

form of A. Because we are interested in alternatives A > 0, we reject 

A = 0 if we observe large values of A. 

6.3.3 The general case 

The treatment above may be generalized to allow variation in the 

explanatory variables over individuals. We denote by Si, F., C. the 

sets of individuals who respectively survive, fail or are censored in 

the ith interval; mpartition intervals are considered as above. An 

individual, say j, contributes to the likelihood in the ith interval, Ii, 
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one of the following factors, 

i) 1 - 3.(t.)/ 3.(t. ) = 6.. 	if he fails in I., 
J i j i-1 	ii 	 1 

ii) 3.(t.)/ 3.(t. ) = 1 - e.. 	if he survives I., or 1 

iii) 3.(c.)/ 3.(t. 	
)3 if he is censored at ti <c.<t.. _1   

J 

We consider the hazard function as constant over I. to obtain an 
1 

approximation of the factor in (iii). Hence we have 

3 .(c.)/ 3.(ti-1) = exp{-ki(c.-t. 
1)}  ' 

where ki  is the supposed constant value for the hazard over Ii. Using 

(6.2.4) we may write the above expression as follows 

(c -t 	)/(t -t 	) 
(c )/ 3.(t 	) = (1 - 6 ) j i-1 	i i-1 
j j J i-1 

 
3 

and assuming a uniform distribution for c., the contribution of the 

censored individual, j, in the ith interval is approximated by 

(1 - 0..)1/2  . 
iJ 

Then we may write the loglikelihood 

m 
Q 	

i 
= 	E { E 	in e . + E 	ln(1-e..) + 1  E 	ln(1-6..)} ; 	{6.3.4) 

i=1 	jeF. 	
J 	

jeS. 	1J 	2 jeC. 	13  

	

1 	1 	1 

this expression may be maximized for different values of A to obtain 

an approximate estimate ā. 

For the two-sample case (6.3.4) reduces to the well known actuarial 

rule, that is to approximate the number of individuals at risk in a 



102 

specific time interval as the initial total minus half the number of 

censored observations during that interval. 

It is convenient to work with the separate contribution to the 

likelihood from an individual who is censored or fails during Ik  

(k = 1,...,m), namely 

k-1 
{6k(z.)}S{1 - Ak(z.)}(1-S)/2 II (1 - O.(z.)} , 

i=1 	J 
(6.3.5) 

where d is zero for censored individuals and one for failures, 

j = 1,...,N, and N is the total number of individuals at the start of 

the study. 

The analysis is similar to the one used above in the two-sample 

case. The asymptotically optimal test introduced above has its counter-

part under this set up. The expression for the score statistic for 

= 0 is 

m 	r..t. 	2 	2 	2 

U(0) _ - E { E 	1J  1 (n-2—)  + E 	t..( n  3)  + 2 E t..(n3--j—)   }13 i=1 jBFi 	lj 	jesi 	jEC. 

where r.. = exp{-exp(ni.)} and t.. = exp(n..), v1.. 	4; 4 1S t i . 
The variance of the statistic is obtained from the information 

matrix when A = 0. In general, it is not possible to obtain the 

expected value of the second order derivatives of the loglikelihood, 

but the observed values may be used instead, i.e., the empirical Fisher's 

information matrix may be employed. We show below the form of the 

individual contributions to the components of this matrix, namely 



a2Z. 
= (- 	2 ) zhjs 

h 

k-1 

Aksr 	Bksr + il zijrzijs ' 

= 0 	q h, 

dh 

= 	Sghth - (1 - S)dh/2 

0 
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h <k 

h = k 

h > k , 

where 	dh = exp(rl hj), 	bh = 1 - exp{-exp(nhj)}, 	du/bh — 1 

gh = (1 - bh)dh/bh, 	z.. is the sth component of z.., 
ijs 	 -1J 

AA~ 
	= 

-1 
Zcsr 	

Sgk(dk - bk)bk zkjszkjr, 	and 

Bksr 	(1 - S)dkzkjszkjr 

These expressions are for the jth individual, with explanatory 

variables given by z.. in the ith time interval, who is censored or 
i 

fails in the kth interval. When the explanatory variables do not vary 

across intervals the expressions are simplified. 

The computation of the variance of the test statistic is simplified 

because of the form of the submatrix that corresponds to interval effects 

as discussed above for the two-sample case. 
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6.4 Examples  

6.4.1 Data on remission of leukemia patients 

We consider first data of Freimi.k et al. used by Gehan (1965) 

and several subsequent authors. Table 6.1 shows the ordered times 

for two samples of individuals; censored values are denoted with 

asterisks. Because of the small sample sizes, only five partition 

intervals were used. Different grouping schemes were tried, the 

difference being in the treatment of censored observations; the results 

were similar. Here we present the results obtained assuming that 

censoring occurs instantaneously at the end of each period. The time 

intervals were chosen of equal width, namely 5 weeks. Table 6.2 shows 

the resulting 2x2 tables so obtained. 

Preliminary computations suggested fitting a model with A = 1. 

Some results from GLIM fits are shown in Table 6.3. Twice the difference 

between the max loglikelihood achieved at A = 0 and A = 1 is approxi-

mately 3.47 with 1 d.f.; this is significant at 10% level. Hence, a 

model with additive hazard function seems rather suitable to describe 

the data than the multiplicative model. Two different estimates of 

the log-survivor function are shown in figure 6.1, they correspond to 

the estimates under the additive (solid line) and the multiplicative 

(dashed line) models. 

Values of A larger than one were tried and a slight improvement in 

the deviance observed, however it was not significant. Hence,.we do 

not present those results. 
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TABLE 6.1  

Times of remission (weeks) of leukemia patients 

Sample 1 6*, 6, 	6, 6, 7, 	9*, 10*, 10, 	11*, 13 

(drug 6-mp) 16, 17*, 19*, 20*, 22, 23, 25*, 32*, 32*, 

34*, 35*  

Sample 2 1, 1, 	2, 2, 3, 	4, 	4, 	5, 5, 8, 	8, 8, 

(control) 11, 11, 	12, 12, 	15, 17, 22, 23 

Source: Gehan (1965) *censored 

TABLE 6.2 

Grouped times of remission of leukemia patients. R denotes 

individuals with remission, N denotes total individuals at risk. 

Time intervals 

1 
	

2 	3 	4 	5 

R N R N R N R N R N 

Sample 1 0 21 5 21 1 13 1 11 2 7 

Sample 2 9 21 4 12 5 8 1 3 2 2 



TABLE 6.3  

Parameter estimates and deviances for several simple 

models fitted to data in Table 6.2. 
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approximate maximized 	parameters of the linear 
loglikelihood 	systematic part of the model A 

0 -56.105 
(8.666) 

'1  = -2.537 Z2  = -2.114 Z3 = -1.949 

C4  = -2.511 C5  = -0.873 y = 1.747 

0.3 -55.893 
(8.242) 

c1  = -1.978 2  = -1.456 C3  = -1.514 

C4• = -1.789 C5  = -0.745 y = 1.239 

0.5 -55.424 
(7.305) 

c1  = -1.693 C2 = -1.177 C3 = -1.306 

C4  = -1.442 C5  = -0.692 y = 1.012 

0.8 -54.578 
(5.612) 

cl  = -1.247 C2 = -0.900 Z3  = -1.039 

C4• = -1.076 C5 = -0.617 y = 0.694 

1 	-54.367 	C1  = -1.000 C2  = -0.781 C3  = -0.897 
(5.190) 

N.B. Deviances appear in parentheses. The number of d.f. of 

2  approximate X is 3. 

C4• = -0.912 Z5 = -0.571 y = 0.522 
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Figure 6.1  

Comparison of continuous survivor function estimates under 
additive ( 	) and multiplicative (---) models for data in 
Table 6.2. Upper lines correspond to sample 1, lower lines 
to sample 2. 



6.4.2 Simulated data 

Several sets of simulated data were generated and analyzed. 

Simple patterns of failure and censoring were chosen. In general, 

the additive model showed a better performance. 

We present here the results obtained for two of the mentioned sets. 

The first example corresponds to a simple situation where the probabilities 

of failure were (0.01, 0.13, 0.15, 0.25, 0.3) and (0.2, 0.25, 0.35, 0.4, 

0.45) for samples 1 and 2 respectively. A uniform probability of 

censoring, 0.1, was applied for sample 1 while the observations in 

sample 2 were not censored. The samples were generated of equal size, 

200. The data are shown in Table 6.4. Censoring was assumed to occur 

instantaneously at the end of the corresponding time interval. 

Table 6.5 shows the results of fitting multiplicative, X = 0, 

and additive, A = 1, models to data in Table 6.4. The values of the 

L.R. and Pearson's chi-squared statistics show a striking difference of 

fit between the two models. The additive model provides a very good fit 

whereas the multiplicative provides a poor one. Besides, the estimates 

of the parameters associated to interval effects have small correlation 

among themselves. The correlations with the estimate of the "treatment" 

or group effect are also small, the biggest being -0.25. This is not 

so for the multiplicative model. 

The results obtained fitting models with other values of the 

transformation parameter suggest that a maximum in the loglikelihood 

curve for A is achieved at X = 1, then X = 1. 

The second set has probabilities of failure similar to the example 

above, namely (0.001, 0.125, 0.175, 0.2, 0.3) and (0.3, 0.35, 0.4, 0.45, 

0.5) for samples 1 and 2, respectively. The censoring probabilities 

were a uniform value of 0.125 for sample 1, and (0.075, 0.1, 0.1, 
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0.125, 0.15) for sample 2. Hence, the difference between the failure 

patterns is stronger and censoring occurs in both samples. The initial 

size of each sample was 100. The data are shown in Table 6.6. 

Table 6.7 shows the results of fitting additive and multiplicative 

models to data in Table 6.6. The difference in goodness of fit is 

striking here as well. 

For this example the value of the test statistic introduced in 

§6.3 was computed obtaining a value of 2.9059. From tables of the 

standard normal distribution, this value is highly significant (p < 0.002). 

This agrees with our previous results. 

A common feature of these two examples is that the multiplicative 

model provides a poor fit for very small probabilities of failure. The 

fitted values overestimate the actual ones in those cases as may be 

observed in Tables 6.5 and 6.7. We have chosen two extreme examples 

to illustrate the use and effectiveness of the suggested procedures. 



TABLE 6.4 

Simulated data. First set. 

Failures 

Sample 1 

Censorings Survivals Failures 

Sample 2 

Censorings Survivals 

1 12 187 37 0 163 

20 21 146 38 0 125 

19 20 107 41 0 84 

25 8 74 36 0 48 

22 5 47 19 0 29 
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TABLE 6.5 

Results from fitting additive and multiplicative models 

to data in Table 6.4 

Sample Observed 

Additive model 

Fitted 	Residual 

Multiplicative model 

Fitted 	Residual 

1 0.996 0.399 E-2 10.875 -3.078 

20 18.267 0.427 14.494 0.369 

1 19 20.781 -0.422 19.863 -0.208 

25 27.150 -0.478 22.041 0.707 

22 21.294 0.181 16.548 1.521 

37 37.148 -0.269 E-1 27.574 1.933 

38 42.641 0.827 39.385 -0.254 

2 41 37.268 0.730 40.232 0.147 

36 32.702 0.738 38.478 -0.543 

19 20.018 -0.299 23.493 -1.297 

L.R. chi-squared statistic: 
	

2.479 	23.799 

Pearson's chi-squared statistic: 
	

2.473 	18.259 
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TABLE 6.6  

Simulated data. Second set. 

Failures 

Sample 1 

Censorings Survivals Failures 

Sample 2 

Censorings Survivals 

0 10 90 29 6 65 

8 10 72 26 8 31 

18 10 44 11 8 12 

5 6 33 5 2 5 

12 4 17 4 0 1 
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TABLE 6.7  

Results from fitting additive and multiplicative models 

to data in Table 6.6 

Sample Observed 

Additive model 

Fitted 	Residual 

Multiplicative model 

Fitted 	Residual 

0 0.711 E-12 -0.843 E-6 6.019 -2.531 

8 8.603 -0.216 9.451 -0.499 

1 18 16.411 0.446 11.280 2.179 

5 5.137 -0.644 E-1 5.074 -0.351 E-1 

12 12.783 -0.280 11.590 0.151 

29 29.753 -0.165 23.560 1.283 

26 23.704 0.592 24.782 0.311 

2 11 14.187 -1.149 16.171 -1.859 

5 4.555 0.265 4.939 0.360 E-1 

4 2.848 1.040 4.231 -0.286 

L.R. chi-squared statistic: 	3.298 	22.090 

Pearson's chi-squared statistic: 
	

3.178 	16.708 
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