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ABSTRACT 

Title of thesis: 	STATIC AND DYNAMIC STATE ESTIMATION 
METHODS FOR ELECTRIC POWER SYSTEMS 

Name of author : 	CHRISTIAN HOW GHARBAN 

Since the measurement and telemetering equipment in an electric power 

system is always subject to random and systematic instrument and 

phenomenon errors, the raw measurement information is obviously 

unsatisfactory for assessing the system's behaviour, state and 

performance. This has led to the approximate determination of the power 

system's response variables by processing the real-time measurement 

variables with computer algorithms called state estimators. The type 

of estimation scheme applicable depends on the assumed system model, 

linear or non-linear, and the system operating conditions, static or 

dynamic. Because of the multi-faceted nature of the power system state 

estimation problem, linear and non-linear static and dynamic estimation 

techniques are studied in this thesis. 

Two basic static estimation approaches have been adopted in this thesis 

namely, linear and non-linear weighted least squares methods. A fast 

decoupled estimator (FDE) that improves the characteristics of the non-

linear method has been proposed, tested and shown to be computationally 

as efficient as the linear AEP method. 

In the dynamic operating mode, a linear decentralised estimation scheme 

based on Kalman filtering techniques is described and tested using a 

two-area load frequency control power system model. In the non-linear 

case, the invariant imbedding procedure is used to derive the state 

variables of a non-linear synchronous machine power system model by 

processing a set of noisy generator measurements. 
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CHAPTER I  

INTRODUCTION  

The past few decades have witnessed a tremendous and rapid growth in 

the size and complexity of power systems. The increased complexity has 

intensified the search for better and sophisticated monitoring and 

control schemes to effect a more reliable, secure and efficient operation. 

At present because of the heavy dependence of the society on electrical 

energy, interruptions of power supply to consumers is almost completely 

intolerable; as it is also necessary to achieve a certain quality of 

supply, that is, to maintain system voltage levels and frequency within 

stipulated statutory limits the operational security requirements of 

power systems are indeed higher than ever before. 

The stringent operational requirements of power systems have led to the 

design and on-line implementation of data processing and system 

monitoring schemes to provide reliable data bases that are essential for 

security and economy related functions. Appropriate control decisions 

required for reliable and secure operation necessitates prior knowledge 

of the existing system operating conditions, best described in terms of 

the system state vector. In general, the state vector of any system is 

defined as the minimum number of variables (state variables) a knowledge 

of which ensures a complete description of the system behaviour. 

Initially, therefore, the prescription of adequate control actions must 

proceed via the provision of the system state vector. The state vector 

is best obtained by processing system measurement information with a 

suite of computer algorithms called state estimators. A power system 

may be considered to possess two distinct modes of operation, a static 

operating regime where the system is assumed to remain in a quasi-steady 
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state over short time periods with sudden transitions in between the 

intervals, and a dynamical operating state that recognises the fact 

that because a power system is in reality a conglomeration of several 

dynamical units (such as synchronous machines) and because of the 

continously changing load demand patterns, it never really attains a 

true steady state operating condition. For these reasons, two classes of 

estimators are readily identifiable, namely static estimators and 

dynamic estimators. 

1.1 Static state estimation  

A large number of control centre installations for real-time power 

system monitoring and control are being undertaken world-wide. There 

are about 80 such centres in service or planned (50 of these in the 

Western World) which have as a minimum Automatic Generation Control 

and System Security Monitoringl. Static State Estimation techniques 

are used in eleven of the control centres with this number continually 

increasing. Because any control centre which has system security as 

one of its prime concerns ought to possess an on-line state estimation 

capability, most new control centre design contracts and specifications 

include the provision of a state estimation facility. It is anticipated 

that by the late 1980 about three dozen on-line static state estimators 

will be operational, mostly in the U.S. 

In many present power systems applications, static state estimation is 

performed by on-line computer algorithms which derive the static state 

variables as the complex network busbar voltages. The complex busbar 

voltages at all the network nodes constitute an appropriate set of 

state variables because once these have been determined both metered and 

un-metered bulk transmission network variables of interest may be calculated. 
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A set of imperfect but redundant measurements is taken and optimally 

fitted to the actual real-time measurements to produce the state vector 

consistent with the network Kirchoff's law. The measurements can 

include the bulk electrical transmission network variables, node power 

injections, branch power flows and voltage magnitudes. Static state 

estimation may be classified into two main categories: 

i. Linear Weighted Least Squares (LWLS) Estimators 

Dopazo et alt
-7 
 at American Electric Power Service (AEP) derived 

a linear model for estimation purposes by considering only line 

power flow measurements. Through a transformation they obtained 

a simple linear weighted least squares (LWLS) estimator, called the 

AEP or Line-Only Method, which is extremely fast, efficient and 

requires modest computer storage space. The disadvantage of this 

method is that it is approximate and restricts the measurements 

to branch power flows only. 

ii. Generalized Weighted Least Squares (GWLS) Estimators 

Schweppe and co-workers 8-13  at MIT did not rely on a transformation 

to simplify the non-linear estimation problem. Rather they applied 

a Newton's type technique to solve the estimation problem by 

accepting all types of system measurements. This yielded a 

generalized weighted least squares estimator (GWLS) providing a 

sounder mathematical basis. The method possesses the disadvantage 

that it is characterised by high dimensionality and rather long 

solution times. 

For on-line implementation, a technique that leads to short execution 

times and requires small computer core memory is desirable. It is 

therefore necessary to evaluate the competitiveness of the LWLS and GWLS. 
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techniques, in particular their solution times and core requirements. 

In an attempt to improve the computational properties of the GWLS 

method so as to make it as efficient as the AEP method, algorithmic 

enhancement procedures have been adopted by several subsequent 

investigators leading to a host of decoupled estimators 14-18. 

Because it is essential to assess how reliable these modified estimators 

are, a Fast Decoupled Estimator, FDE, is proposed and its computational 

characteristics evaluated through simulation tests in this thesis. 

1.2 Dynamic state estimation  

Power system disturbances caused by load fluctuations result in changes 

in tie-line power and system frequency, necessitating some form of load 

frequency control (LFC). These and other disturbances also lead to a 

distortion of the operation of synchronous machines, requiring a 

corrective control strategy. Modern control theory provides design 

techniques which lead to significant improvements in the control of 

dynamical systems. The application of these techniques to improve the 

LFC and the transient stability of power systems has received a great 

deal of attention in the literature 2o,22 	Unfortunately the 

implementation of these control policies requires the knowledge of the 

entire system dynamic state which is in general not directly accessible 

or measurable. The need is therefore felt for the development of 

dynamic estimators which reconstruct the necessary system states from 

the system outputs available by direct measurements. 

As the power system LFC problem is representable by systems of linear 

differential equations, linear Kalman filtering techniques may be 

directly utilised to generate the system state estimates. However, for 

a multi-area power system the system equations are very highly 
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dimensional; hence the implementation of a single, large dimensional 

Kalman filter 23  is unsuitable for on-line purposes. Decentralised 

dynamical estimation schemes are therefore considered in this thesis 

for a multi-area LFC power system model. 

For transient stability augmentation of power systems, the synchronous 

machines are normally represented by sets of non-linear state-dependent 

differential equations. The non-linearity and state dependence led 

Arumugan 2 	to derive a continuous linear observer for the synchronous 

machine by linearising the machine equations and applying the linear 

observer theory directly to obtain the synchronous machine states. 

Takata et al.25  retained the non-linearity and designed an iterative 

sequential observer for estimating the machine state variables. Both 

techniques did not account for the inevitable presence of metering 

equipment errors. To account for both system non-linearities and 

measurement noise, the invariant-imbedding technique 26-28  has been 

used in this thesis to derive estimates of the synchronous machine 

states from a set of noisy system measurements. 

1.3 Contents of thesis  

This thesis concerns the development and evaluation of computer based state 

estimation schemes suitable for the on-line monitoring functions of power 

systems in both the static and dynamic regions. Chapters II, III and IV 

cover the area of static state estimation whilst Chapters V and VI 

consider the dynamical problem. 

Chapter II describes the application of linear weighted least squares 

estimation (LWLS) concepts to derive the AEP or Line-Only static state 

estimator. Sparsity techniques are employed in the algorithms and the - 

computational characteristics of the method assessed. Simulation results with 
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four different test systems are reported. 

In Chapter IīI the non-linear static power system state estimation 

problem is studied using generalized weighted least squnTes (GWLS) 

techniques. A fast decoupled estimator (FDE) is derived to enhance 

the computational properties of the GWLS method. The basic GWLS method 

and the FDE as well as a P-6, Q-E estimator are all studied with the 

same four test systems as in Chapter II. It is shown that the FDE is 

much faster than the GWLS estimator. 

Chapter IV addresses the problem of detection and identification of 

grossly erroneous input measurement information in static state 

estimation. Statistically based detection and identification methods 

are described and used in all the tests performed with the LWLS, GWLS 

and FDE state estimators. It is shown that the FDE is reliable in 

detection and identification schemes, despite the approximations made 

in its derivation. 

Chapter V deals with estimation of states of a LFC power system model. 

It is shown that for a multi-area system a completely decentralised 

estimator produces degenerate state estimates, unless each decentralised 

estimator is provided with supplementary signals from other areas. 

The decentralisation leads to low storage requirements and minimal 

information exchange between the areas. 

In Chapter VI the invariant imbedding technique is adopted to derive a 

non linear dynamical state estimator for a single machine infinite busbar 

power system. Simulation results confirm the viability of the method, 

which recognises system non-linearities as well as instrumentation noise. 
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Chapter VII presents the discussions and conclusions reached and 

offers directions for future research. The principal contributions 

offered by this thesis are believed to be:- 

i. A detailed analysis of the linear and non-linear weighted 

least squares techniques and their direct application to 

static power systems state estimation. 

ii. The development and testing of a Fast Decoupled Estimator derived 

from the concepts of a conventional fast decoupled load flow 

routine. 

iii. The evaluation of the computational characteristics of the AEP, 

GWLS, (P- b, Q-E) and FDE state estimators. 

iv. The design and testing of a decentralised dynamical estimation 

scheme for a multi-area power system load frequency control 

model. 

v. The application of the invariant imbedding technique to estimate 

the states of a non-linear single machine infinite busbar 

power system. 
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CHAPTER II  

APPLICATION OF LINEAR WEIGHTED LEAST SQUARES (LWLS)  
TO STATIC POWER SYSTEMS STATE ESTIMATION  

2.1 Introduction 

Conceptually static power system state estimation methods are closely 

related to conventional load flow computations but performed with real-

time data. The objective of estimation is to derive an approximation to 

the network voltage profile by processing a redundant but noisy set of 

power system measurements. The problem is inherently non-linear and 

various solution approaches may hence be adopted~9 When the LWLS 

technique is used, a method Down as the AEP or Line-Only (LO) algorithm 

(first proposed by Messrs Dopazo et 
al3,4,30-33)results. The method's 

popularity stems from its simplicity which is obtained by restricting 

the measurements to only complex branch power flows on a network tree 

of the power system with at least one reference voltage magnitude 

measurement. Measurement redundancy may be increased by metering co-tree 

branch power flows as well. The full-fledged method is then realised 

through an algebraic non-linear transformation that converts the 

non-linear problem into a linear one and leads ultimately to the 

solution of basic network equations. Naturally it has been criticised 

for rejecting other types of measurement variables such as node power 

injections 4°'41. Subsequent investigators 30-3 	have successfully 

modified it to handle other types of measurements although this 

modification has degraded the basic attractive properties of the 

original version. 

Since the AEP method is computationally the fastest available 

technique with the least computer storage requirements, it was chosen 
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for general investigation with the view of serving as a reference for 

comparing more optimal but slow, high storage techniques like the 

GWLS approach and its associated approximate forms of "Constant-Gain", 

"P-a, Q-E Decoupled Estimator" and "Fast-Decoupled-Estimator". In 

particular the reliability of the estimates, the speed of the 

estimation technique and the numerical solution technique used are 

all described and investigated. 

2.2 Description of the state and measurement vectors 

2.2.1 Static state vector x 

The n-dimensional static state vector x of an electric power system 

is defined as the vector whose components are the complex voltages 

of all the network nodes, because once these are known all other bulk 

transmission variables of interest such as complex power injections 

and complex branch power flows are easily computable. For an N-node 

network where the N-th node is prescribed as the reference, x is 

described as follows: 

Let Vi  0 ei+jf. 

A E.2, 	i = 1,2, ... ,N 

denote the complex busbar voltages at all the nodes. Then: 

x = (e1,e2, 	eN,f1,f2,...,fN-1) 

= (E1,E2, ... ,EN)b1, 152, ... 05N4) 

= (x1,x2,...,xn) 

where n = 2N-1 

2.2.2 Measurement vector z and measurement errors V 

An exact description of the current operating state of a power system 

is normally extracted from measurement information derived from the 
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system. Since it is practically impossible to directly access and 

measure the state vector x, its value is inferred from the noise-

corrupted system observation vector zm. Zm  is generally a non-linear 

vector function of x. 

zm  = h(x)+ V 	 (2.2.1) 

where: 

h(x) is a deterministic vector that relates each measured variable and 

the true-but-unknown state x, whilst V is a stochastic disturbance 

noise vector that accounts for metering and telemetering errors. The 

dimension m of zm  depends on the type and number of variables that are 

telemetered to the on-line computer. In the most general case, z 

is composed as follows: 

i. Complex node power injection measurements at all nodes 

Pi+jlQ 	i = 1,2 	N 

ii. Complex line power flow measurements at all ends of 

transmission lines and transformers 

Si  = Pik+' i.k i,k = 1,2,...,N; 	j= 1,2 	2L 

i # k 

where L = total number of lines in the network 

iii. Voltage magnitude measurements at all nodes 

Ei  = (ei2+fi2)2 	i = 1,2,...,N 

Zm  may therefore be described symbolically by: 

where the components are also symbolic vectors that describe the type 

of measured variables. The maximum dimension of -z 	thus 3N+4L. 

With the transmission lines modelled by linear, lumped RLC x-sections 

as in Fig. 2.1 and the parameters zik Rik+jXik,yik = jYSik 
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all assumed known, the equations for h(x) are: 

N 	 N 
P. = ei 	(ekGik fkBik)+fi 

k=1 	k=1 

p 	
N 	N 

"i = fi 	(ekGik f  kBik) -ei E 
k=1 	k=1 

(ĪkGik+ekBik)  

(f  kGik+ekBik)  

Pik -Gik [ei  (ei-ek)+fi  (fi-fk)] +Bik [ei (fi-fk) -fi  (ei-ek)] 

„ik Bik [ei(ei-ek)+fi(fi-fk)]+Gik[ei(fi-fk)-fi(ei-ek)] -(ei2+fi2)YSik  

1 
E. = (e.2+f.2)ī 

where Gik+jB. is the i-kth  element of the network bus-admittance 

matrix. 

The measurement errors V evolve from several independent but completely 

random processes; by virtue of the Central Limit Theorem of 

statistics 36'3?  it is therefore reasonable to postulate a zero mean 

Gaussian distribution for V. If the errors V are further assumed to be 

uncorrelated in pairs with an (mxm)-dimensional diagonal covariance 

matrix R, then: 

E (V ) = 0 	 (2.2.2) 

Cov(V )4E( WVT) = R 	 (2.2.3) 

Vr-'N(0, R) 

= RJJ (2.2.4) 

where4Vj  is the variance of the j-th measurement error and reflects 

its precision and accuracy. 
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2.3 The AEP or Line-Only (LO) algorithm  

2.3.1 Review of the method 

The method is based on determining the least-squares values of the 

complex busbar voltages x, that minimise the quadratic performance 

index J(x) 29 given by: 

J(x) = ( 	St)TR-1( 	
St)* 	 (2.3.1) 

where: 

Sm is the vector of complex branch power flow measurements 

St is the vector of the true-but-unknown value of Sm 

R is the measurement error covariance matrix 

subject to the observation equation constraint 

S = St+V 

The mathematical expressions for the complex branch power flows from 

node i to node k evaluated at i are: 

St j St , ik = xi (x1 -x
k) +1 xi( 2y. 

J* 
z. 
J 

(2.3.2) 

Sm,j = Sm,ik = x
. 

i-xk) 
+Jx.j 2y.+ 	(2.3.3) 

z. 
J 

where J is the error associated with the measurement Sm ~ •. Since 

these expressions are complex and non-linear in x, J(x) cannot be 

minimised directly. The AEP or LO technique avoids this difficulty 

by transforming each S
m,

. into an equivalent measured longitudinal line 

element voltage V
m,

. (see Fig. 2.1). From equation (2.3.3) the true-

but-unknown branch voltage Vt,j is: 

* 
S 	z 

V 	0 x. -x = z. m' l y x. - 	V t, j -- 1 k j x. * 	J 1 	X. * j 
1 	1 

(2.3.4) 

However, because S
m,

• is the actual measured variable, the first 



Ski-Fki+jQ 

yki=jYSki 

Line Voltage, Vik 
=-Vki 	xi 

 - xk 

NODE k 
	o ;- 

xi  0 ei+
/
jf  i 

=EiL 6i 

Sik ik+ Nik 

yik SYSik xk 
 L ek+jfk  
=Ek L  b k  

NODE i 

Zik  Rik+jXik  

FIGURE 2.1: LINE MODEL, 'R -SECTION NETWORK ELEMENT 
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expression on the right-hand-side of equation (2.3.4) is equivalent to 

a noise-corrupted branch voltage measurement Vm,j . Hence: 

S* 	z. 
Vm, j A ZJ x. * - yjxi Vt , j+ x. * J (2.3.5) 

The derived measured branch voltage is thus the sum of its true value 
.z. 

and an associated transformed measurement error E. =- 
. . 

Additionally, the definition of Vt,j leads to the linear vector 

relationship: 

v_t = Bx (2.3.6) 

where B is the measured line-node-incidence matrix which has exactly 

two non-zero elements per row 4'4° . The final measurement equation 

is thus: 

~n = Vt+ 

The transformed errors E have the statistics: 

z. 
E(E.) = — 1 E(V~ ) = 0 

x. 
2 

IZ •J Var (Ej) AE(C.Ej )_'~ E( .vj ) 
x~ 

_ f Zjl2 2 

x.l 2 Crvi 

(2.3.7) 

(2.3.8) 

(2.3.9) 

A similarly transformed LWLS objective function may now be defined for 

the linear observation equation (2.3.7) 

J(x) _ (V-Vt)TD(Vm-Vt)* 	 (2.3.20) 

where D is now the inverse of the (mxm)-dimensional diagonal covariance 

matrix of E. and: 

2 
-1 	J zjj 	2 D JJ = 	Cj Vj 	j = 1,2,...,m 	(2.3.11) 

xis 2 
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To determine D-1, the values of xi  ought to be known. The best 

approximation is xi  = 1.0 pu (nominal); using this value of xi  

increases the measurement uncertainty E as well as its covariance. 

On this account the 10 method does not possess statistically optimal 

properties. 

The LWLS technique (Appendix A) may now be applied in a direct fashion 

to yield the linear estimation equation: 

(BTDB)x = BTDV 
	 (2.3.12) 

Because the matrix BTDB is singular when only line power flow 

measurements are considered, at least one voltage magnitude 

measurement must be taken at the reference bus, giving Vt  in 

partitioned form as: 

Vt  = (CiA) ref = Cxref+Ax  x 
(2.3.13) 

where xref 
is the reference voltage magnitude and x is now a reduced 

state vector of dimension n-1. The resultant estimation equation is 

then: 

( TDA 	T  )x = A A 	D(V C ref) (2.3.14) 

As Vis actually state-dependent (equation 2.3.5), equation (2.3.14) 

only generates approximations for x iteratively. The converged 

solution Ñ. 	of the iterative scheme: 

(ATDA)Xi+1 = [ATD(V Cxref' 	 (2.3.15) 

is then the complex busbar voltage state estimate x, where i denotes 

the i-th iteration stage. 
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2.3.2 Properties of the Gain-matrix ATDA 

In consonance with LWLS estimation theory, matrix G = ATDA is called 

the Gain-matrix. G has precisely the same topology and pattern of non-

zero elements as the corresponding network bus admittance matrix. 

Because D is almost constant as it depends on ,xil` (at xi  = 1.0 pu) 

G is consequently also constant, iteratively invariant and real. 

Solutions for the real and imaginary components of x are therefore 

completely decoupled. Very simple rules may hence be employed to 

construct G directly 30  without performing the obviously time consuming 

matrix operations its definition suggests. Since G is almost fixed for a 

given metering configuration, the ABI.P technique is intrinsically a 

"Constant-Gain" algorithm 29. The following attractive properties of 

G are easily identifiable: 

i. Diagonally dominant and positive definite 

ii. Real and iteratively invariant 

iii. Symmetric and extremely sparse 

These properties make the solution of equation (2.3.15) particularly 

amenable to sparse matrix oriented direct methods 42-45 . Of the three 

basic direct methods for solving systems of linear equations 42-5 

namely, Triangular Factorisation, Product Form of Inverse and Bi-

Factorisation, the Bi-Factorisation technique 44  is best for coefficient 

matrices that possess the enumerated properties of G. This method was 

thus adopted to solve the LO estimation problem. The algorithmic 

iterative solution procedure is shown in the flow chart of Fig. 2.2 

and described as follows: 

1. Set iteration count, i=0 

2. Initialise all voltages, xi = 1.0+j0.0 pu; derive D and then 



31 

Supply the following: 
Measurement S and covariance R 

--m 
Network configuration and the 
parameters z

ik Rik+jXik'JYSik 

Y 
Initialise iteration count: 

i = 0 

Set xi=1.0+j0.0 pu From dik 
or D form, store optimally 

order and reduce ATDA using 
bi-factorisation 

Calculate branch voltage v —rn 
and derive independent vector 

i 
ATD(vm - Cx

ref~J 

Update 
iteration 
count: 
i 4-1+1 

Y 

Solve for xi +1 using bi- 

factorisation technique. 
Note: Real and imaginary compo-
nents are obtained separately 

 

Solution is 
A 
X. 
-1+1 

 

FIGURE 2.2: SOLUTION FLO\w CHART OF AEP AlETEi0D 
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automatically generate G = ATDA in sparse form. 

3. Optimally order G and reduce it by bi-factorisation 

4. Derive the equivalent branch voltages 
V  with the current value 

of xi  and then form the independent right-hand-side vector 

[ATD(v—m Cxref )] i 

5. Solve for x
i+1 

 in decoupled form from equation (2.3.15) 

6. Check for convergence, that is lx. . -xi1 < A for all the 

components of x. A rectangular voltage tolerance Q = 5.0 x 10-6  

is usually sufficient 34. 

7. If converged, output x = xi+1' otherwise advance iteration 

count by 1 i.e. i = 1+1 and return to step 4. 

2.3.3 Interpretation of estimates 

It is extremely essential to check the reliability of the state 

estimates X. To establish this reliability is to perform statistical 

tests of hypothesis 37-39, 46 to confirm whether or not the 

	

A 	 It 
residuals r = V -V and R = S -S are actually attributable to normal 

	

— —m — 	— —m - 
errors of observation drawn from the postulated Gaussian probability 

distribution for E and V respectively. In any LWLS estimation scheme, 
the best statistical test index for the preliminary hypothesis test 

is the post-estimation performance index J(x). Under the distributional 

assumptions for V, J(x) has the following properties (Appendix A, 

Table A.1) . 

E [J(x)] = df(=m-n) 

J(x) is chi-square distributed 

J() must therefore obey the probability statement: 

n 2 PR J(x)< X 01f,a = a 
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where X df,a is the value of the chi-square distribution at df degrees 

of freedom and a probability of confidence equal to CC. Should J(x) 

be unusually greater than its tabulated chi-sgnare threshold value- 

X2df,(X (obtained from statistical distribution tables 36) the estimates 

x are deemed unreliable. This procedure for ascertaining the 

reliability of x is mown as DETECTION-9 
 . 	The J(50-test also 

illustrates the crucial part played by redundancy in enhancing the 

effectiveness of the test. For example, at zero redundancy 

df = m-n = 0 and J(x) is identically zero, rendering it ineffective as 

a hypothesis test statistic. 

Once x has passed the detection test, the a-posteriori covariance of 

the residuals x-x, Vt  V, V V,  St-S,  S 
A 
 may all be calculated to 

give an intuitive feeling for the degree to which the various 

variables have been well determined. The statistics of these 

residuals may be shown to be 49(Appendix A). 

= 0 

Cov tx- = Et, = (ATDA) 1   

E(VtV)=0 
Cov(vt  V) = :V = A Ex AT 
E(V V) = 0 —m 

Cov(V V) = 	= D-1-A  EA AT 

E(St  S) = 0 	.2 

^ 
Cov(St-b = ES = (rv)

jj

xi  
I  z.1 2 
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E(S -S) = 0 

I
il 

2  

'  x  
jj 	2 

I zjI 

A 

j = 1,2,...,m 

j = 1,2,...,m 



34 

Given these statistical properties the limits CL (•) and CL2(•), 

called CONFIDENCE INTERVALS 
36'46 

within which the true-but-unknown 

values of the variables are likely to be found at a probability of 

confidence GZ may be constructed. The normalised unit random variates 

2., g~ and h~ are all student's t-distributed because they are 
1

normalised on their a-posteriori variances, where: 

x. - x. 	 -V- - 	= 	S 	- $ 
f1 = 1 1 ; g

i
= tj 3 	hi = t,J J_ 

yx.. 

	

4411.. 	yS . 
11 	JJ 	JJ 

But fi, gj, hj all satisfy the probability law: 

Pr(-tdf,i <fi or g  or hj < tdf,1+4() = a. 
2 	2 

where td f,i+a is the tabulated value of the t-distribution at df 
2 

degrees of freedom and 1+C( probability of confidence. The substitution 
2 

of fi into this probability law therefore yields: 

Pr(1_t ,1~ < x. < x.+t 	 a 
Q  

11 	 11 / 2 	 2 
The lower and upper inequality limits define ana % confidence interval 

for xi, as: 
A A CL1(x1) = x1 df

' 
1+ -t a 3xii 

CL 2 (xi) = 	 df ,144X Exii 
2 

In a similar way, the limits forVtj and Std may be constructed. 

2 
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2.4 Off-Line_ .computer simulations of AEP state  
estimator and discussion of results  

For a preliminary evaluation of the AEP technique, its feasibility and 

statistical properties were investigated by implementing the general 

simulation procedure depicted in the flow chart of Fig. 2.3. Four 

basic standard test networks were employed for the algorithmic tests, 

namely: 

1. 5-NODES, 7-LINES system 50 

51 
2. 10-NODES, 13-LINES system  

3. 14-NODES, 20-LINES system 51 

4. 23-NODES, 30-LINES system 52 

The parameters as well as the true load flow conditions of these test 

systems are detailed in Tables A.3.1 to A. 3.8 of Appendix A. These 

algorithmic tests were conducted in order to investigate the performance 

of the AEP State Estimator under various conditions. For each of the 

test systems, four different meter location configurations (Figs. 2.5 to 2.19) 

yielding various degrees of measurement redundancy were used. The 

P,Q meters are represented by black spots C.) located at the end of the 

line where the complex branch flow power measurement is taken. 

Initially the network voltage profile, x = e+jf, and the load flow 

conditions, Zik  = P_.k+0►ik, obtained from a conventional Newton-Raphson 

Load-Flow program 
51,52 

 for each network were generated and assumed to 

be the true values. To simulate the real-time complex branch flow 

power measurements, the complex measurement errors, V =V +j.V —ik Pik ik 
were derived from a pseudo-gaussian random number generator assuming 

that the error components, V 	and V 	due to real power flow P._ 
Pik 	k 	ix 

and reactive power flow Qik  both have Down measurement error standard 

deviations equal to 2% of their assumed true load flow values. That is, 



z —m — -m,ik+U°n ,ik 

Transform Z into 

vm; Input to 
AEP State Estimator 

A =(A7 DA)-1 x 

v , cov(v) v = A EAAT 
A 	 1 r=v -v, cov(r )_ 	
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-v —m 	 —v 	r 

A 	A 
Y, cov(x) = 

V 

36 

Conventional AC 
Load Flow 
Programme 

xAe + jf 

t 
Network Topology 
and Measurement 
Configuration 

'E A 

(:/jL\\144.  V Vp +jV~ 

Complex Random 
Number Generator 

for 
Measurement Errors 

FIGURE 2.3: BLOCK DIAGRAM OF ESTIMATION SIMULATION PROCESS 
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FIGURE 2.4: 7 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
5-NODES, 7-LINES NETWORK 
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FIGURE 2.5: 	9 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
5-NODES, 7-LINES NETWORK 
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FIGURE 2.6: 11 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
5-NODES, 7-LINES NETWORK 
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FIGURE 2.7: 14- COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
5-NODES, 7-LINES NETWORK 
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FIGURE 2.8: 13 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
10-NODES, 13-LINES NETWORK 

FIGURE 2.9: 18- COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
10-NODES, 13-LINES NETWORK 



FIGURE 2.10: 21 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
10-NODES, 13-LINES NETWORK 

FIGURE 2.11: 26 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
10-NODES, 13-LINES NETWORK 
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FIGURE 2.12: 	20 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
14-NODES, 20-LINES NETWORK 

FIGURE 2.13: 	27 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
14-NODES, 20-LINES NETWORK 



42 

 

   

   

FIGURE 2.14: 	33 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
14 NODES, 20-LINES NETWORK 

FIGURE 2.15: 	40 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
14-NODES, 20-LINES NETWORK 
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20  - 	 6 
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FIGURE 2.16: 30- COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
23-NODES, 30-LINES NETWORK 
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FIGURE 2.17: 140 - COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
23-NODES, 30-LINES NETWORK 
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44 

FIGURE 2.18: 50- COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
23-NODES, 30-LINES NETWORK 

FIGURE 2,19: 60- COMPLEX BRANCH POWER FLOW MEASUREMENTS ON 
23-NODES, 30-LINES NETWORK 
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pik 27 Pik and 
k 

2% Qi.k 

Therefore, the variance of the effective complex measurement error, Vik 

is determined as: 

var(Vik) = E(V. k vi:) - E( V p2 
i.k
+ v 22

„ik ) 

=E(vpik) 
E( v2 

 k ) 

= d2 + 2 dip 
	'ik 

These random numbers were used in corrupting the true load flow complex 

branch power flows, as additive noise, to give the complex branch flow 

power measurements. 

Before any estimation scheme is deemed adequate for an on-line monitoring 

scheme it ought to possess, amongst other qualities, the following 

desirable characteristics ~9: 

- possess small computer core storage requirements 

- possess very good and strong convergence properties 

- yield reliable estimates in short execution times 

- afford a quantitative index for evaluating the reliability of 

the estimated states 

- yield state estimates that are not degenerate in terms 

of accuracy. 

Finally it is essential that the technique be simple enough to be 

implementable on small process control computers for real-time operations. 

In Tables 2.1 to 2.4 the estimated network voltage profiles for all the 

networks at their respective specified degrees of measurement 

redundancies are shown. These results show that despite the 
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linearising transformation that converted the non-linear problem into 

a linear one suitable for LWLS estimation techniques, the AEP method 

does not lead to degenerate state estimates. The convergence of the 

method was also monitored during the simulations, assuming a 

rectangular complex voltage convergence tolerance of 0.00005 pu. 

From a flat voltage start of 1.0 pu (nominal) for all the nodes of each 

test network, the AEP algorithm converged to the stipulated tolerance 

in 3 to 6 iteration steps, as shown in Table 2.5. The AEP method 

hence possesses strong convergence characteristics. The maximum 

value of 6 iterations is in agreement with recommended and quoted 

values in the literature for the method 30'3  The computational speed 

of the technique was also partially assessed (excluding input output 

functions) in that the sparse matrix oriented computer codes 

developed for ordering the gain matrix, reducing it to the bi-factorisa-

tion form and solving the resulting system of linear equations for the 

state vector x were all timed in CPU seconds of the ICCC CDC 6600 

Computer. In Table 2. 5 the three components of the total solution 

time, namely, torder' treduce' t
back' are all presented. From these 

it is concluded that the principal contributor to ttotal is  tback'  

This observation arises because until convergence is attained, the 

back-substitution procedure must be repeated several times. The total 

execution times, ttotal for the networks are all extremely low. 

On this basis it is justifiable to assert that the technique possesses 

the property of short computation times that are a necessary feature 

for all real-time monitoring schemes desirable for power system 

operation. As it is inadequate, and indeed cumbersome, to compare each 

estimated busbar voltage against its true load-flow value to determine 
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the reliability of the estimate, the performance index, J(2), was 

computed at the end of each estimation process and compared to its 

corresponding statistical chi-square limit of X d.f a. In all the tests, 

a significance level ofa = 99.0 was used in obtaining the threshold 

values of X  df ,a given in Table 2.5. The value of J(x) is always less 

than 
X2df,99.0'  a clear indication that J(x) is a sufficient 

statistical index for testing the acceptability of the estimated 

network busbar complex voltages. In most LWLS estimation techniques, 

df(=m-n) 

The theoretical equivalent of d is 
a'true  which is similarly defined 

by Crtrue = ElJ(x) . Given that the expectation of J(x) is df 
exactly equal to the measurement degrees of freedom, df, 	

rue has 

a constant value of 1.0 for all measurement redundancies. Cr values are 

presented in Table 2.6 and the trajectory against df shown in Fig. 2.20. 
A 

The apparent deviations of Cf from the ideal value C#true  are due mainly 

to physical differences between the test networks, such as degree of 
A 

node connectivity, and more importantly because the ' values were 

obtained from one-off estimation instead of from averaged values 

obtained from Monte-Carlo simulation studies3$'46  . Charts in the form 

of Fig. 2.20 are extremely useful since they provide a pictorial 

control chart that may be kept in Control Centres to give a ready 

record of the history of the behaviour of the estimator. 

A further indirect approach adopted for testing the validity of the 

estimation technique involved the determination of the complex network 

voltages from a set of noise-free or deterministic branch flow 

A 
a by-product,' generally referred to as the covariance scaling 

A 
factor is computable 34,49. It is defined as: C = 	

A J(x) 



power measurements taken at both terminals of each transmission line 

of the test systems. From the results (example shown in Table 2.7) 

it is concluded that the AEP technique is devoid of any serious 

round-off errors since the estimated voltages are equal to the assumed 

true load flow values to 6 decimal places. 

Confidence limits were established for the calculated state estimates 

and are shown in Tables 2.8(a) and 2.8(b). In these tables, the 

meter configuration corresponding to the maximum measurement 

redundancy for each of the test networks was used. As anticipated 

from the theory, the confidence limits span each of the true network 

load-flow voltage profiles. 

From Tables 2.8(a) and 2.8(b), the root-mean-square estimation errors 

are generally less than the standard deviations of the estimated 

voltages; thus verifying noise filtering. Improper filtering arises 

following an improper choice of the input measurement noise 

covariance matrix. A more detailed discussion of the choice of 

suitable weighting matrices can be found in S.A. Molina 53 . 

2.5 General comments  

It is worth mentioning now that the basic AEP algorithm does not 

possess statistically optimal properties due to the fact that the 

linearising transformation applied to derive the linear form of the 

AEP technique is, strictly speaking, dependent on the unknown state x. 

These assumptions notwithstanding, the AEP technique lends itself to 

efficient formulation and solution with sparse matrix techniques; it 

also yields reasonably reliable estimates of the complex voltages at 

all network nodes. It possesses strong convergence characteristics and 
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yields unbiased solutions of x. Its formulation is closely related to 

conventional load-flow solutions making it computationally highly 

efficient and simple. 

The derived performance index J(!) has been proved to be an invaluable 

variable for either rejecting or accepting derived state estimates. 

Since one of the basis of comparing different approaches to state 

estimation entails computing time and storage requirements, the 

application of the non-linear or generalized weighted least-squares 

techniques (GWLS) (Appendix A) to the power system state estimation 

problem is the subject of study in the next chapter. 
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TABLE 2.1  

ESTIMATED NETWORK VOLTAGE PROFILES 5-NODES, 7-LINES NETWORK 

BUS VREAL,ei  VIMAG,f. VREAL,ei  VIMAG,fi  

1 1.06000 0 1.06000 0 
2 1.04596 -.05162 1.04587 -.05187 
3 1.02006 -.08960 1.01996 -.08982 
4 1.01896 -.09547 1.01886 -.09569 
5 1.01207 -.10847 1.01197 -.10870 

J(x) = .188E+01 J(x) = .205E+01 
No. of measurements = 7 No. of measurements = 9 

BUS VREAL,e. VIMAG,fi  VREAL,ei  VIMAG,fi  

1 1.06000 0 1.06000 0 
2 1.04589 -.05176 1.04591 -.05174 
3 1.01988 -.09018 1.01982 -.09024 
4 1.01878 -.09605 1.01874 -.09610 
5 1.01186 -.10908 1.01186 -.10933 

J(x) = .424E+01 J(x) = .586E+01 
No. of measurements = 11 No. of measurements = 14 
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TABLE 2.2  

ESTIMATED NETWORK VOLTAGE PROFILES 10-NODES, 13-LINES NETWORK 

BUS VREAL,e. VIMAG,fi  VREAL,e. VIMAG, fi  

1 1.04000 0 1.04000 0 

2 1.04830 .03451 1.04822 .03443 

3 1.04244 -.11650 1.04300 -.11535 

4 1.03391 -.11074 1.03454 -.10946 

5 .99214 -.18398 .99364 -.18264 

6 1.02853 -.15403 1.02909 -.15308 

7 1.02038 -.13741 1.02101 -.13621 

8 .94529 -.12724 .94614 -.12547 

9 .97905 -.184-40 .98052 -.18305 

10 1.02948 -.06967 1.03006 -.06841 

J(x) = .313E+01 
	

J(X) = .118E+02 

No. of measurements = 13 
	

No. of measurements = 18 

BUS VREAL,ei  VIMAG, fi  VREAL,ei  VIMAG,fi  

1 1.04000 0 1.04000 0 

2 1.04823 .03386 1.04822 .03385 

3 1.04356 -.11487 1.04325 -.11515 

4 1.03478 -.10934 1.03460 -.10940 

5 .99411 -.18227 .99370 -.18287 

6 1.02944 -.15282 1.02907 -.15366 

7 1.02122 -.13611 1.02093 -.13637 

8 .94672 -.12500 .94633 -.12525 

9 .98099 -.18268 .98058 -.18327 

10 1.03029 -.06830 1.03034 -.06901 

J(x) = .178E+02 

No. of measurements = 21 

J(x) = .227E+02 

No. of measurements = 26 
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TABLE 2.3  

ESTIMATED NETWORK VOLTAGE PROFILES 14-NODES, 20-LINES NETWORK 

BUS VREAL,e. VIMAG,fi  VREAL,e. 	VIMAG, fi  

1 1.06000 0 1.06000 	0 

2 1.04050 -.09152 1.04070 	-.09095 
3 1.03542 -.26563 1.03643 	-.26378 

4 .98416 -.22381 .98457 	-.22275 

5 1.05921 -.25287 1.06001 	-.25135 
6 1.00167 -.18297 1.00238 	-.18163 

7 1.03244 -.24656 1.03324 	-.24509 

8 1.00807 -.15582 1.00868 	-.15457 
9 1.01954 -.27425 1.02056 	-.27243 

10 1.01376 -.27591 1.01479 	-.27409 

11 1.02080 -.27182 1.02181 	-.26999 

12 1.01710 -.27706 1.01813 	-.27527 

13 1.01226 -.27726 1.01323 	-.27550 
14 .99412 -.28829 .99512 	-.28654 

J(x) = .738E+01 J(2) = .138E+02 

No. of measurements = 20 No. of measurements = 27 

BUS VREAL,e. VIMAG,f. VREAL,ei  VIMAG,f. 

1 1.06000 0 1.06000 0 

2 1.04093 -.09049 1.04101 -.09032 

3 1.03703 -.26269 1.03718 -.26250 

4 .98497 -.22210 .98498 -.22212 

5 1.06062 -.25073 1.06066 -.25069 

6 1.00275 -.18096 1.00271 -.18109 

7 1.03353 -.2iiiNp1 1.03356 -.24437 

8 1.00905 -.15385 1.00877 -.15436 

9 1.02088 -.27176 1.02094 -.27168 

10 1.01512 -.27335 1.01519 -.27326 

11 1.02213 -.26933 1.02222 -.26922 

12 1.01871 -.27425 1.01886 -.27399 
13 1.01380 -.27448 1.01396 -.27421 

14 .99563 -.28567 .99558 -.28574 

J(x) = .236E+02 

No. of measurements = 33 

J(2) = .337E+02 

No. of measurements = 40 



53 

TABLE 2.4 

ESTIMATED NETWORK VOLTAGE PROFILES 23-NODES, 30-LINES NETWORK 

BUS VREAL,e. VIMAG,f. VREAL,e. VIMAG,f i 

1 1.01860 0 1.01860 0 
2 1.02135 -.02888 1.02133 -.02914 
3 1.03118 .08924 1.03126 ,08930 
4 1.03621 .16853 1.03627 .16854 
5 1.00616 .30016 1.00576 .30053 
6 .99042 .34908 .99045 .34941 
7 .99541 .00658 .99529 .00625 
8 .98664 .16702 .98670 .16707 
9 1.00326 .03948 1.00335 .03953 

10 .98216 .04738 .98225 .04744 
11 1.00963 .02220 1.00983 .02220 
12 1.02571 .14597 1.02575 .14596 
13 1.01864 .18457 1.01870 .18461 
14 1.00108 .00556 1.00110 .00557 
15 1.00687 .14138 1.00705 .14136 
16 .98888 .25084 .98896 .25118 
17 .98902 .21357 .98907 .21361 
18 .99694 .19386 .99695 .19368 
19 .99405 .18607 .99406 .18588 
20 .98693 -.06737 .98690 -.06762 
21 1.00097 .24042 1.00085 .24044 
22 1.00228 .23833 1.00216 .23832 
23 .98041 .08316 .98044 .08319 

BUS 

J(x) = .197E+02 
No7 of measurements = 30 

VREAL,ei 	VIMAG,fi  

J(2) = .277E+02 
No. of measurements = 40 

VREAL,ei 	VIMAG,fi  

1 1.01860 0 1.01860 	0 
2 1.02136 -.02912 1.02133 	-.02911 
3 1.03142 .08936 1.03049 	.08992 
4 1.03636 .17007 1.03586 	.17044 
5 1.00553 .30240 1.00510 	.30256 
6 .99023 .35121 .98977 	.35136 
7 .99542 .00624 .99534 	.00626 
8 .98670 .16866 .98631 	.16863 
9 1.00351 .03955 1.00339 	.03958 
10 .98242 .04750 .98215 	.04761 
11 1.01013 .02276 1.01011 	.02276 
12 1.02593 .14743 1.02562 	.14747 
13 1.01873 .18614 1.01812 	.18636 
14 1.00110 .00559 1.00091 	.00562 
15 1.00723 .14282 1.00692 	.14285 
16 .98896 .25269 .9886o 	.25276 
17 .98914 .21509 .98879 	.21514 
18 .99705 .19516 .99671 	.19520 
19 .99416 .18735 .99376 	.18746 
20 .98697 -.06782 .98695 	-.06782 
21 1.00092 .24172 1.00050 	.24189 
22 1.00223 .23960 1.00181 	.23977 
23 .98090 .08451 .98073 	.08449 

J(x) = .385E+02 J(x) = .464E+02 
Not of measurements = 50 No, of measurements = 60 



TABLE 2.5  

SUMMARY OF  SALIENT RESULTS OF AEP ESTIMATOR 

Number 
of 

network 
nodes 

Number 
of 

complex 
power 
flow 
measure- 
ments 

Measure- 
ment 

redun- 
dancy or 
degrees 

of 
freedom 

Redun- 
dancy 
ratio 

Perfor- 
mance 
index 

Chi- 
Square 
limit 

Number 
of 

itera- 
tions 
for 

convey- 
gence 

Time for 
optimal 
ordering 
(ms) 

Time for 
reduc- 
tion 
(ms) 

Time for 
back 

substi- 
tution 
(ms) * 

Total 
time 
for 
solution 
(ms) * 

n m df=m-n+1 11=nf1  J(x) X1,,99% iter torder treduce tback ttotal  

5 7 3 0.75 1.88 11.30 

ln
  l

n
  l

n
  

0
' l

it  
Li

t  
lit

  .
P'

 l
it

  -
P'
 	

- 
- 	

-"
 W
 

2.0 1.0 0.0 3.0 

5 9 5 1.25 2.05 15.10 1.o 1.0 2.0 4.o 

5 11 7 1.75 4.24 18.50 1.0 1.o 4.o 6.o 

5 14 10 2.50 5.86 23.20 2.0 1.0 4.0 7.0 

10 13 4 0.44 3.13 13.30 2.0 3.0 10.0 15.0 

10 18 9 1.00 11.80 21.70 2.0 1.0 8.0 11.0 

10 21 12 1.33 17.80 26.20 3.0 2.0 7.0 12.0 

10 26 17 1.89 22.70 33.40 3.0  1.0 12.0 16.o 

14 20 7 0.54 7.38 18.5o 15.0 5.o 24.o 44.0 

14 27 14 1.08 13.80 29.10 8.0 8.0 28.0 44.0 

14 33 20 1.54 23.60 37.60 6.o 6.o 28.0 40.0 

14 40 27 2.08 33.70 47.0o 7.o 6.o 27.0 40.0 

23 30 8 0.36 19.70 20.10 15.0 7.0 54.0 76.0 

23 40 18 0.82 27.70m 34.80 14.0 9.0 41.0 64.0 

23 50 28 1.27 38.50 48.30 13.0 8.0 43.0 64.o 

23 6o 38 1.73 46.4o 63.70 13.o 9.o 45.o 67.0 

* Computation times based on CDC 6600 Computer (ICCC) CPU times 
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(Evaluation performed with the 4 test systems) 
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FIGURE 2.20: TRAJECTORY OF SCALING FACTOR, Cr VERSUS 
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TABLE 2.6  

COMPUTED VALUES OF SCALING FACTOR,d  

dtrue = 1.0 
Redundancy and 
ExpJ(X)tion of 

Estimated 
Scaling Factor 

1 
W4 

(1".4 
 
J(1) 

df and E df 

1  3 0.79 

4 0.88 

5 0.64 

7 0.78 

7 1.02 

8 1.57 

9 1.14 

10 0.77 

12 1.22 

14 0.99 

17 1.15 

18 1.24 

20 1.09 

27 1.12 

28 1.17 

38 1.10 
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TABLE 2.7  

ESTIMATED VOLTAGES FOR NOISE-FREE INPUT MEASUREMENTS  
23-NODES, 30-LINES SYSTEM  

BUS 

Estimated Voltages 

VREAL,ei 	VIMAG,fi  

Load Flow Voltages 

	

ETRUE,e. 	rrttUE , f 

	

1 	i 

1 1.01860 0 1.01860 0 

2 1.02141 -.02900 1.02140 -.02900 

3 1.03128 .09020 1.03130 .09020 

4 1.03595 .17070 1.03600 .17070 

5 1.00526 .30321 1.00530 .30320 

6 .98946 .35131 .98950 .35130 

7 .99544 .00600 .99540 .00600 

8 .98626 .16791 .98630 .16790 

9 1.00371 .03990 1.00370 .03990 

10 .98238 .04800 .98240 .04800 

11 1.01000 .02280 1.01000 .02280 

12 1.02556 .14740 1.02560 .14740 

13 1.01825 .18600 1.01830 .18600 

14 1.00100 .00550 1.00100 .00550 

15 1.00705 .14280 1.00710 .14280 

16 .98875 .25311  .98880 .25310 

17 .98895 .21571 .98900 .21570 

18 .99695 .19590 .99700 .19590 

19 .99405 .18820 .99410 .18820 

20 .98701 -.06760 .98700 -.06760 

21 1.00085 .24201 1.00090 .24200 

22 1.00215 .23991  1.00220 .23990 
23 .98087 .08460 .98090 .08460 
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TABLE 2.8(a) 

ESTIMATED VOLTAGES, F2RORS AND STATISTICS FOR 5-NODES, 7-LINES; 
10-NODES, 13-LINES; 14--NODES, 20-LINES SYSTEMS  

BUS 

Estimated Voltages 

VREAL,e. 	VIMAG, . 

RMS Error 

RMSER 

Standard 
Deviation 

STDEV 

Confidence 
Limits 
CONFL 

2 1.04591 -.05174 .00053 .00067 +.00211 
3 1.01982 -.09024 .00114 .00074 +.00233 
4 1.01874 -.09610 .00110 .00074 +.00233 
5 1.01186 -.10933 .00041 .00076 +.00241 

2 1.04822 .03385 .00067 .00049 +.00143 
3 1.04325 -.11515 .00137 .00101 +.00292 
4 1.03460 -.10940 .00120 .00094 +.00273 
5 .99370 -.18287 .00310 .00122 +.00352 
6 1.02907 -.15366 .00268 .00109 +.00317 
7 1.02093 -.13637 .00125 .00098 +.00284 
8 .94633 -.12525 .00253 .00118 +.00341 
9 .98058 -.18327 .00313 .00121 +.00350 

10 1.03034 -.06901 .00156 .00110 +.00319 

2 1.04101 -.09032 .00038 .00116 +.00320 
3 1.03718 -.26250 .00041 .00145 +.00403 
4 .98498 -.22212 .00022 .00140 +.00387 
5 1.06066 -.25069 .00130 .00149 +.00413 
6 1.00271 -.18109 .00158 .0013o +.00359 
7 1.03356 -.24437 .00131 .00144 +.00398 
8 1.00877 -.15436 .00146 .00128 +.00354 
9 1.02094 -.27168 .00090 .00144 +.00399 

10 1.01519 -.27326 .00081 .00144 +.00400 
11 1.02222 -.26922 .00072 .00145 +.00k01 
12 1.01886 -.27398 .00049 .00146 +,00406 
13 1.01396 -.27421 .00053 .00146 +.00406 
14 .99558 -.28574 .00052 .00147 +.00407 
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TABLE 2.8(b) 

ESTIMATED VOLTAGES. ERRORS AND STATISTICS FOR  
23-NODES, 30-LINES SYSTEM  

BUS 

Estimated Voltages 

VREAL,ei 	VIMAG,fi  

BIS Error 

RMSER 

Standard 
Deviation 

STDEV 

Confidence 
Limits 

CONFL 

2 1.02133 -.02911 .00013 .00038 +.00102 

3 1.03049 .08992 .00086 .00107 +.00288 

4 1.03586 .17044 .00029 .00095 +.00255 

5 1.00510 .30256 .00067 .00136 +.00367 

6 .98977 .35136 .00027 .00165 +.00146 

7 .99534 .00626 .00026 .00052 +.0014o 

8 .98631 .16863 .00073 .00091 +.00246 

9 1.00339 .03958 .00044 .00046 +.00123 

10 .98215 .04761 .00046 .00055 +.00148 

11 1.01011 .02276 .00012 .00034 +.00092 

12 1.02562 .14747 .00007 .00093 +.00251 

13 1.01812 .18636 .00040 .00093 +.00251 

14 1.00091 .00562 .00014 .00025 +.00068 

15 1.00692 .14285 .00019 .00096 +.00260 

16 .98860 .25276 .00040 .00129 +.00350 

17 .98879 .21514 .00060 .00120 +.00325 

18 .99671 .19520 .00076 .00117 +.00317 

19 .99376 .18746 .00081 .00118 +.00318 

20 .98695 -.06782 .00022 .00082 +.00222 

21 1.00050 .24189 .00042 .00128 +.00346 

22 1.00181 .23977 .00041 .00128 +.00346 

23 .98073 .08449 .00020 .00087 +.00234 
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CHATTER III  

APPLICATION OF GENERALIZED WEIGHTED LEAST SQUARES (GWLS)  
TO STATIC POWER SYSTEMS STATE ESTIMATION  

3.1 Introduction  

Static power system state estimators are data processing algorithms 

designed to establish the power network voltage profile from a set of 

noisy but redundant telemetered system measurements. Historically, 

least squares methods were first adapted for the power system problem 

in the 1970s 8-10' 29 	Of the various approaches that have been 

presented the most general and optimal procedure is the Generalised 

Weighted Least &T ares (GWLS) technique which utilizes all of the 

available system measurement information. However, because estimators 

are required for on-line operation needing fast solution times and 

low storage requirements, the basic GWLS approach is unsuitable for 

direct on-line implementation since it generally results in the 

formulation and manipulation of very large dimensional Jacobian and 

coefficient matrices and, in addition, requires excessively long 

computational times. Although considerable efforts have been expended 

by several investigators14,16,17,19,57 with a view to obtain approximate 

methods competitive with fast-low-storage methods like the AEP 

technique (Chapter II), the majority of reported results are either 

rather specialised or dependent on the magnitudes of the network line 

reactance-to-resistance ratios, X/R. 

In this chapter, the GWLS estimation problem is described in terms of 

active and reactive power related measurements. As a consequence, 

certain physically justifiable power system assumptions are made 

subsequent to which two enhanced estimation techniques, p-b, Q-E and 
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Fast Decoupled Estimator (FDE) methods, are derived. Differences between 

the method of this thesis and others reported in the literature 

are discussed. It is also proved, through extensive simulation 

tests performed on four selected test networks at various 

measurement redundancies, that the P-S, Q-E and FDE methods are 

orders of magnitude faster in computation than the full GWLS 

technique. 

3.2 Review of GWLS static power system state estimation  

Following the customary definition of the static power system state 

estimation problem 29 the n-dimensional state vector x and the 

m-dimensional noise-corrupted observation vector zm are defined by: 

X = (6, E) 	 (3.2.1) 

Zjn = zt+ V = h(x)+ V 	 (3.2.2) 

where 

Ō and E are the network busbar voltage angles and magnitudes 

respectively, and V is the vector of observation errors. 

Making the usual theoretical assumptions, V is supposed to belong to 

a Gaussian distribution of zero-mean and finite covariance matrix R. 

That is: 

E(V ) - 0 	E(WVT) = R 

V n-' N(0, R) 

where R is diagonal and of dimension m.% m 

In practical measurement schemes there are always more measurements 

Zm than there are state variables to be estimated x~i.e. m) n, to 

ensure some degree of measurement redundancy. To solve the over-

determined system of non-linear equations (3.2.2) for x involves the 
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application of least-squares techniques. The optimal minimum mean 

squared unbiased estimate x of x is generated by minimising the sum 

of weighted squared errors, J(x) where: 

J(x) = [z_h]TR_1[z_hX] ) 	(3.2.3) 

A direct application of the Gauss-Newton Method53to the minimisation 

of J(x) yields the system of equations: 

HT(X)R-1{ h(X)} = 0 	 (3.2.4x) 

HT(x)R-1H(x) (X x) = HT(x)R-1 {m-()}  

where  
a h(x) 	the (mxn)-dimensional 

H(x) = measurement Jacobian 
a x x = x 	matrix. 

In addition to consisting of n-nonlinear state dependent equations, 

equation (3.2.4b) is also inexact as a direct consequence of the 

linearisation and truncation of h(x) about x during its derivation. 

The state estimate x is therefore given by the converged value of 

--k+1derived from the iterative scheme: 

(Hk R-1Hk)(xk+1  Xk)  = (Hk R  1){zrī "("k)} 

where: 

Hk  A  H(?. 

(3.2.5) 

A n 
Convergence is attained once Ixk+1-xkI ‘5',A, a.prespecified 

convergence tolerance index. 

In an electric power system, however, the measurement vector has two 

distinct physical components namely Zp, a vector of active power 

related observations (Pi, Pik), and.Z a vector of reactive power related 

measurements (Qi, Qik, Ei) . When defined in terms of active and 

reactive power related measurements, the system measurement equation 

and the Jacobian matrix assume the following forms: 

(3.2.4b) 



a hp a hp 

ab aE 
ahQ a 
35 a  

HP6 

HPE 

HQb 
HQE 

a  h(x) 
H- ax d 

and 

0 R  P 
0 RQ  

HP5 RP-1HP6 +  HO RQ 1HQb HP6 RP 1HPE
+H

Q b 
RQ., 1HQQ 

HPE 	-1 RPHPS + 
HW R Q 1  1  HQS  H2E  Rp  H +HQE 	1  RQ  HQE  

x 

n 	n 

bk+1 -k 

A A 

Ek+1 Ek 

T 	-1 
HP 
ō  RP 

T 	-1 H b 	R Q 

T 	-1 HpE Rp  T 	-1 HQE RQ  
x 

n n 

Zp  hp(5k' Ek) 

 

(3.2.7) 
Z -h (b , Ē ) -4Z —Q —k -k 

 

A6k 

aEk  

Q  bP  cop 
	

cbQ 

CEQ  

Q ZP  

Li Z 
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z -p 

 

h 

(3.2.6) 

  

Emplāying these newly defined notational expressions, the following 

estimation equation is obtained: 

R = 

or more generally as: 

Co6 c.  u E 

GE6  Gm  

(3.2.8) 
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where all the identified block matrices are evaluated at 
A 	A A 

x = (bk  Ek) and b k  = 	 ,Lk' Ek = 	Ek . 

Now for even a medium-sized power system with a low degree of 

measurement redundancy, the matrices H and hence G are characterised 

by high dimensionality. The amount of matrix manipulation operations 

entailed in the direct application of the GWLS technique 

(equation 3.2.7) is therefore formidable and leads to exceptionally 

long computational times. These properties of the GWLS method are 

extremely undesirable especially for applications where fast 

solution times and low computer storage requirements are necessary 

for successful implementation in a real-time environment on small 

process control computers. The long solution times may be partially 

reduced by re-using some of the computed elements of h(x) when 

calculating elements of Hg having the same defining expressions. 

Additionally, the incorporation of sparse matrix programming concepts 

in the development of the GWLS computer algorithm will offset some 

of the high storage requirements. Because the speed gains and the core 

reductions obtainable from the above mentioned considerations are 

still insufficient on large systems, more effective means of achieving 

these objectives are proposed, investigated and tested in this 

chapter. 

Basically, the enhancement of the GWLS technique to reduce significantly 

both the solution time and the core requirement can be based either 

on simple intuitive approximations made on the estimation equation 

(3.2.7) or on the exploitation of the actual physical laws that 

govern the behaviour and characteristics of the power system. The 
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former approach is termed Algorithm based enhancement methods whilst 

the latter is referred to as Model based enhancement techniques19. 

To obtain a lucid picture of the physical justifications for the 

approximations made to attain gains in solution speed and reductions 

in core storage, the relevant expressions for h(x) and H(x) in 

active (P) / reactive (Q) measurement component forms hp  (x) and 

hQ(x) are given, namely: 

where: 

N 
Pi 	EiEk  (G ik  cos  bik  + B. sin 5 ik) 

Pik -G ik  E.2  + EiEk (Gik cos Ō ik + B. sin 6 ik) 1 

N  
= E EiEk (Gik sin Ō ik - Bik  cos b ik) 

k=1 

Qik- (Bik Ysik)  Ei2  + EiEk (Gik sino  ik  - Bik  cos bik) 

and 

1 k 

i k 

where: 



E. a E 	= -Bi1Ei2  + A 
a Qi 	l  E. Ek(Gik sin 6 ik Bik cos b ik) 
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a Pi  __ (EIEk(GIk sin  5 ik Bik cos ō ik) 	 j = k 

abj 	-B.1  E. 2  - Qi 	 j = i 
1 1 

a  pik 	(E.E.(G.k sin  Ō ik-Bik  cos b ik) 	 j = k 

a bj 	-EiEk(Gik sin 6 ik Bik cos 6 ik) 	j = 

a  Pi 
(EiEk(Gik 

cos ō ik+Bik sin 6 ik) 	j - k E. 

a Ej 	
G..Ei2 + Pi 	 j = II 

a  Pik 	EiEk(Gik  cos Ō ik+Bik  sin 6 ik) 	j = k 
E j a E j 	-2GikEi2  + EiB  (Gik cos Ō ik+Biksin 6 ik  j = i 

a  "i 	-EiEk(Gik cos Ō ik+Bik  sin 6 ik) 
abj 	-G, i  E. 2  + P. 

1 1 	1 

a "ik 	-EiEk(Gik cos b ik+Bik sin 6 ik) 
es;   EiEk(Gik  cosō ik  + Bik  sin ō ik) 

a Ei 	0  
abj = o 

j = k 

j = i 

j = k 

j = i 

j = 

j = 

j = k 

j = 

E 

a Qik 	EiEk(Gik sin Ō ik Bik cos b ik) 	j = k 
B . 	 - 

a Ej 	\2(Bik Ysik)Ei2+EiB  (Giksin ō  ik Bikcosbik) j = i 

a Ei 	° B. 
aEj = E. 

j = k 

j = i 
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for i, j, k = 1, 2 	 ,N 

where N 	is the total number of network busbars 

G.1-jBik 	is the i-kth element of the bus admittance matrix 

YSik 	is the charging admittance of line ik at node i 

Ō ik 3i-5k 	is the voltage angle difference 

Observe that in deriving the elements for H(x), all derivatives with 

respect to E have been post-multiplied by the appropriate E. term to 

yield a new state estimate mismatch vector 0  x = ( L b d E /) T. This 
modification has led to some submatrices of H(x) becoming identical - 

hence they need to be computed once only for every given iteration. 

Incidentally it has also given a conventional Newton-Raphson Load 

flow 54'55flavour to the GWLS estimation problem. Garcia and Abreu19  

achieved slightly different results by artificially dividing all the 

measured variables (prior to differentiation), except the E variables, 

by E. Yet another arbitrary technique with the same goal was employed 

by Couchl  where in contrast only the reactive power related 

measurements were divided by the appropriate E. term. Because the 

GWLS estimation process is now structurally similar to the Newton-Raphson 

Load Flow problem, it is possible to assume all or some of the 

physically justifiable assumptions 514'55orade in deriving the 

conventional fast decoupled load flow technique to enhance the 

computational characteristics of the GWLS power system static 

state estimation problem. 
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3.3 Algorithm - and Model .- based approximations  
to GWI,S state estimation  

3.3.1 Algorithm-based methods 

With these techniques of computational enhancement, the actual system 

of linear estimation equations (3.2.7) is modified with the view of 

yielding a superior solution procedure. Generally these methods 

depend on the results of a linearised stability analysis 29of equation 

(3.2.7) which indicate that, provided G is any full-rank, positive-

definite matrix, the estimation scheme is stable and converges to 

a value of x that satisfies equation (3.2.4). One such gain matrix, 

called a CONSTANT GAIN MATRIX ESTIMATOR was suggested by Schweppe 

and Handschin29and used in various modified forms by H6risberger 

et al 1 4 and Couch et al 
18 

In their approach a constant gain matrix 

G(xh) = HoTR 1Ho is utilised where the off-diagonal block matrices 

of G, that is, Gb E , GES are both ignored and the remaining 

sub-matrices G55 , GEE held constant at their nominal or flat start 

voltage values of 
Gbc 

(1.0,0.0) and GEE(1.0,0.0). No approximations 

are assumed in evaluating and updating the right-hand-side 

independent vector terms Q b
y 

and il b~. The resulting system of 

equations are: 

Gob (1.0,0.0) " 	0 

0 GEE(1.0,0.0) 

It can be appreciated from equation (3.3.1) that the computational 

effort of repeatedly updating G together with its triangular factors 

is substantially reduced because G is constant. Further, because of 

the decoupled nature of G, savings in storage requirements are also 
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possible if solutions for L 6 k  and Q Ek/Ek  are derived separately from 

Gbs  (1.0,0.0) LOS k = bP 

GEE (1.0,0.0) Q  Ek/Ek  = t Q  

3.3.2 Model-based methods 

Model-based techniques rely on approximations to the GWLS estimation 

scheme that are derived from the physical laws of operational 

behaviour of real electric power systems. Two distinct estimation 

techniques may be obtained through such physical assumptions, viz: 

P-6, Q-E DECOUPLED ESTIMATOR and FAST DECOUPLED ESTIMATOR, FDE. 

(a) P- 6, Q-E decoupled estimator 

For the majority of most real existing power systems, active power 

variables tend to be more predominantly affected by variations in 

bus voltage angles whereas reactive power variables are more sensitive 

to changes in node voltage magnitudes. Gross-coupling effects are 

either very insignificant or virtually non-existent 55,56. This 

loose coupling, between real power and voltage magnitude on the one 

hand, and reactive power and voltage angle on the other, is exploited 

in the P-6, Q-E Estimator by nulling the coupling submatrices 

H2E, HQS  of H(x) on both sides of equation (3.2.7) to yield the 

following completely decoupled and separated system of equations. 

H TR-1
H 
 
PS PS P H  0  

0  T -IH  
Q QE 

A 5 k  

 

H TR I A Z 
Pō P P 

(3.3.2) 
A 

EVEk 

 

T -1 
HQE

RQ a 

To solve for QŌk  andQEk/Ek, all the elements of Hps  and HQE  must be 
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repeatedly updated at each stage of the iterative solution procedure. 

This estimator leads to two distinct estimation loops - one for 

computing voltage angles from real power measurements and the other 

for evaluating voltage magnitudes (and transformer tap ratios if 

any) from reactive power measurements. From these two loops the 

state estimates may be derived in an accelerated fashion by iterating 

back-and-forth between the two loops, where only the most recent 
n 	 n 

estimate of b is used in the next evaluation of E as in the fast 

decoupled load flow, namely: 
A 

Hp$( bk'Ek) Rp 1Hp8 ( b
k' ) LI k = Hps( cSk,Ek)Rp 1Q Zp( Ōk ,Ek) 

HQE( bk+1'Ek)RQ 1H QE( ~k+1 'Ek) ~Ek/ = HQE(Sk+1'Ek)RQ1~ ~( L+1'~' ) Ek 

In this form the P- 5, Q-E Estimator obviously possesses a faster 

solution time and a lower core storage requirement than the fully-

fledged GWLS estimation technique. Variants of this estimation 

57 
technique have been applied by Uemura et al17 and Aschmoneit et al '58 

to networks with very high line X/R ratios, typically > 10.0. It is 

shown from simulation results that the method of this thesis does not 

depend on this rather restrictive assumption. 

(b) Fast Decoupled Estimator, FDE 

The P-6, Q-E Estimator serves as the ideal starting point for the 

derivation of the FDE. It is fairly straightforward to show that with 

H2E, HQ 
Ō 
both nulled as in the P-6 , Q-E Estimator, the remaining 

submatrices Hps , HQE of H(20assume special values that correspond 

to the susceptances Bik of the network bus admittance matrix provided 

the following practical network assumptions hold 51+,55 

0« B.. E. 2 ; 	Gik 
sin b ik« Bik ; 	cos Ō ik"1 1.0 

Ei , Ek ..1.0 pu 
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By invoking these assumptions, the following approximations may be 

obtained for the measurement Jacobian matrices: 

ai aqi _ -Bik 
a sJ _ EJ a Ej 	-Bii 

j = k 

j = 

aFik _ E agik = 
asj 	JaEj -Bik j = k 

 

a bj = Bik J = i 

 

j ā Ē k = Bik - 2YSik j = i 

The retained elements of the measurement Jacobian matrices are 

therefore constant and extremely sparse. Though the quadratic 

convergence of the full GWLS technique is lost, the FDE requires only 

one factorisation for solution and involves relatively fewer operations 

per iteration. Since no approximation is made to eitheri.Ap 

it is not expected that the final solution will be seriously 

degenerate. The final form of the FDE algorithm is obtained by: 

i. Omitting from aPi a 
Ō 

and a P, k,O
j 

6 all those network 
j  

representations that predominantly affect reactive power 

quantities - line shunt admittances, off-nominal in-phase 

transformer taps, 

ii. Omitting from B. aQi. and B. a Q.k the angle shifting effects 
Jag. 	JaE. 

of phase shifters, and lastly, 

iii. Omitting line resistances in calculatinga P. 	and aP. 
i/~Ōj 	ik436j 
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3.4 Interpretation of estimates  

As in the LWLS technique of Chapter II, once a converged solution has 

been obtained for x, reliability checks are performed on the input 

measurements and the estimates by performing statistical hypothesis 

tests on the post-estimation performance index J(x) produced by 
each of the GWLS estimation methods. 

In Table A.1 of Appendix A it is shown that J(x) possesses the statistics: 

E 01) 1 = df(= m-n) 

J(X)' X 2di 

Since in the absence of any bad data J(x) also obeys the probability law 

Xdf gad= a 
the states and input data are deemed reliable once the above law is 

satisfied. Subsequently confidence limits may be created for x, namely: 

A 	A 
CI,1'2(xi) == xi f tdf,1+CX 

2 

where 

24H 
4  HT(i)R-111(1,, the covariance matrix of the estimates. 

x  
Such limits may similarly be derived for all the other calculated 

system measurements, z = h(x). 

3.5 Off-line computer simulations for GWLS  
P-g , Q-E; and FDE state estimators  

The four standard test systems of Appendix A Tables A.3.1 to A.3.8 

were used to numerically assess the feasibility of the GWLS 

techniques derived in this chapter. Varying degrees of redundancies 

were obtained by considering various combinations of meter locations 

and types. The metering patterns adopted are shown in Figs. 3.1 to 3.4, 
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where the nodes have all been re-numbered so that the N-th node 

in each network is now the assumed reference . The simulated 

measurements were generated from the true load flow values corrupted 

with zero-mean Gaussian random numbers of standard deviations equal 

to 2% of the true load flow values. 

Cholesky's Decomposition technique 3  is often the recommended method 
;sect 

for solving the linear„ equation of (3.2.7). However the bifactorisation 

method
44

is of comparable efficiency and was used in the simulations 

to provide a meaningful comparison of the solution times for the 

LWLS and GWLS methods. 

A convergence tolerance index of L= 10
-4 

for both voltage magnitudes 

and angles was assumed, whilst the J(x) detection tests were performed 

at a significance level 'of (L= 99. 

Fig. 3.5 shows a joint flow chart for the off-line simulations of all 

the GWLS algorithms. The results of all the schemes are shown 

separately in Tables 3.1 to 3.12 and a summary of the more 

important results (algorithm-wise) is given in Table 3.13. 

3.6 Discussion of results and comments  

The Constant-Gain-Matrix method generally either failed to converge 

or on the occasions when it did, it required an exceptionally 

large number of iterations and yet failed to produce acceptable 

estimates. For these reasons all subsequent efforts were focussed 

on the model algorithms, P- 6, Q-E and FDE methods. 

The results of the estimated network voltage profiles presented in 

Tables 3.1 to 3.12 indicate that the estimates produced by the P-6 , 
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FIGURE 3.1: 	METERING PATTERN FOR SYSTEM OF 5-NODES, 7-LINES NETWORK 

C7,OActive, reactive power injection meter 
is Active, reactive power flow meter 

Voltage magnitude meter 

Q 

 

FIGURE 3.2: 	METERING PATTERN FOR SYSTEM OF 10-NODES, 13-LINES NETWORK 
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FIGURE 3.3: METERING PATTERN FOR SYSTEM OF 14-NODES, 20-LINES NETWORK 

LO,L~7Active, reactive power injection meter 
• Active, reactive power flow meter 

0 Voltage magnitude meter 

FIGURE 3.4: METERING PATTERN FOR SYSTEM OF 23-NODES, 30-LINES NETWORK 
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Q-E estimator and FDE methods are all acceptable and of comparable 

accuracy to those of the full GWLS method. On the average the 

converged estimates required 4 iterations for GWLS, 9 iterations for 

P- Ō, Q-E and 10 iterations for FDE method as shown in Table 3.t3. 

The effective computation times, ttotal verify the superiority in 

speed of the P-6, Q-E and FDE estimators over the full GWLS method. 

The fastest execution time obtained was provided by the FDE method 

which gave a high speed gain of 10 to 1 for the 23-NODES, 30-LINES 

network at 45.0 degrees of freedom. It must be conceded, though, 

that to achieve this tremendous speed gain, the Newton-like 

quadratic convergence nature of the full GWLS method has been 

sacrificed for a geometric convergence characteristic59requiring 

an increased number of iterations. 

Only very small variations in J(x) have occurred as a result of 

using the enhanced techniques as shown in Table 3.13. The values of 

the post-estimation performance indices J(x) are all less than 

their corresponding limiting chi-square values)(
2 d 

 f, 99.0% 

confirming the reliability of the estimated voltages and input 

measurements. Confidence limits, which span the true-but-unknown 

network voltage profiles, were also constructed as in Tables 3.1 

to 3.12. In all cases, the algorithms provided the necessary 

filtering effects required of estimators as may be appreciated from 

the generally smaller magnitudes of rms estimation errors compared 

with their standard deviations. 

No explicit statements regarding the storage requirements of the 

estimation techniques have been made so faro This is because the 



78 

algorithms were principally designed for simulation purposes and 

therefore involved the use of arbitrarily large dimensional arrays 

which could be used for all the test networks and larger systems 

if desired. A more effective assessment of storage requirements 

would be pertinent in an on-line environment where a direct 

input-solve-output arrangement would exist. 

The contributions offered in this chapter are: 

i. The formulation of the GWLS estimation problem in a load 

flow manner and the subsequent derivation of the P-b , Q-E 

estimator and FDE method from the normal physical network 

characteristics. 

ii. A comparison of the computational properties of the GWLS 

algorithm and its enhanced methods of P- 5, Q-E estimator 
and FDE method. The results show that active/reactive 

decoupling introduces into the generalized weighted least 

squares method the same computational advantages as in the load 

flow solution. 
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TABLE 3.1  

ESTIMATED VOLTAGE PROFILE AND STATISTICS FOR 5-NODES, 
7-LINES NETWORK OBTAINED WITH THE GWLS ESTIMATOR  

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

True 
Magnitude 

True 
Angle 

1 1.04832 -.04914 1.04744 -.04.898 

2 1.02501 -.08746 1.02418 -.08722 

3 1.02442 -.09327 1.02357 -.09302 

4 1.01859 -.10760 1.01794 -.10734 

5 1.06098 0 1.06000 0 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Limits 

1 1.04832 -.04914 .00090 .00087 ±.00213 

2 1.02501 -.08746 .00086 .00095 ±.00232 

3 1.02442 -.09327 .00089 .00095 ±.00233 

4 1.01859 -.10760 .00070 .00098 ±.00240 
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TABLE 3.2  

ESTIMATED VOLTAGE PROFILE AND STATISTICS FOR 10-NODES  
13-LINES NETWORK OBTAINED WITH THE GWLS ESTIMATOR  

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

True 
Magnitude 

True 
Angle 

1 1.04948 .03294 1.04897 .03290 

2 1.04927 -.11099 1.04897 -.11110 

3 1.04029 -.10678 1.03999 -.10645 

4 1.01024 -.18539 1.00994 -.18503 

5 1.04025 -.15102 1.04000 -.15076 

6 1.02999 -.13391 1.02962 -.13394 

7 .95406 -.13367 .95428 -.13422 

8 .99733 -.18834 .99704 -.18786 

9 1.03227 -.06946 1.03231 -.06835 

10 1.04053 0 1.04000 0 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Timits 

1 1.04948 .03294 .00052 .00073 +.00172 

2 1.04927 -.11099 .00032 .00084 ±.00199 

3 1.04029 -.10678 .00045 .00087 ±.00206 

4 1.01024 -.18539 .00047 .00108 ±.00256 

5 1.04025 -.15102 .00036 .00091 ±.00215 

6 1.02999 -.13391 .00037 .00090 +.00214 

7 .95406 -.13367 .00059 .00109 ±.00258 

8 .99733 -.18834 .00056 .00108 ±.00257 

9 1.03227 -.06946 .00111 .00098 ±.00233 
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TABLE 3.3  

ESTIMA'1" ll VOLTAGE PROFILE AND STATISTICS FOR 14-NODES,  
20-LINES NETWORK OBTAINED WITH THE GWLS ESTIMATOR  

Bus 
Number 

1 

Voltage 
Magnitude 

1.04534 

Voltage 
Angle 

-.08697 

True 
Magnitude 

1.04494 

True 
Angle 

-.08691 

2 1.06932 -.25029 1.06968 -.24822 

3 1.01023 -.22209 1.00987 -.22194 

4 1.08983 -.23498 1.08971 -.23327 

5 1.01882 -.18052 1.01848 -.18016 

6 1.06157 -.23506 1.06167 -.23335 

7 1.02051 -.15322 1.02015 -.15322 

8 1.05608 -.26260 1.05613 -.26087 

9 1.05088 -.26545 1.05102 -.26365 

10 1.05669 -.25988 1.05682 -.25815 

11 1.05451 -.26524 1.05491 -.26314 

12 1.04977 -.26660 1.05014 -.26456 

13 1.03529 -.28184 1.03551 -.27993 

14 1.06052 0 1.06000 0 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Limits 

1 1.04534 -.08697 .00041 .00139 +.00337 

2 1.06932 -.25029 .00210 .00168 +.00408 

3 1.01023 -.22209 .00039 .00158 +.00385 

4 1.08983 -.23498 .00171 .00167 +.00406 

5 1.01882 -.18052 .00050 .00152 +.00371 

6 1.06157 -.23506 .00172 .00170 +.00413 

7 1.02051 -.15322 .00036 .00150 +.00365 

8 1.05608 -.26260 .00173 .00169m +.00411 

9 1.05088 -.26545 .00180 .00171 +.00416 

10 1.05669 -.25988 .00174 .00170 +.00413 

11 1.05451 -.26524 .00213 .00173 +.00421 

12 1.04977 -.26660 .00207 .00174 +.00424 

13 1.03529 -.28184 .00192 .00181 +.00440 
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TABLE 3.4  

ESTIMATED VOLTAGE PROFILE AND STATISTICS FOR 23-NODES, 
30-LINES NETWORK OBTAINED WITH THE GWLS ESTIMATOR  

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

True 
Magnitude 

True 
Angle 

1 1.02204 -.02892 1.02181 -.02838 
2 1.03630 .08689 1.03524 .08724 
3 1.05008 .16210 1.04997 .16330 
4 1.05042 .29208 1.05003 .29293 
5 1.05039 .34032 1.05001 .34115 
6 .99566 .00581 .99542 .00603 
7 1.00061 .16697 1.00049 .16862 
8 1.00470 .03945 1.00449 .03973 
9 .98453 .04819 .98357 .04882 
10 1.01059 .02276 1.01026 .02257 
11 1.03634 .14182 1.03614 .14274 
12 1.03557 .17912 1.03515 .18067 
13 1.00128 .00541 1.00102 .00549 
14 1.01765 .13991 1.01717 .14085 
15 1.02107 .24986 1.02068 .25059 
16 1.01266 .21377 1.01225 .21474 
17 1.01646 .19340 1.01606 .19402 
18 1.01217 .18658 1.01176 .18710 
19 .98930 -.06939 .98931 -.06838 
20 1.03033 .23651 1.02974 .23723 
21 1.03109 .23425 1.03051 .23495 
22 .98504 .08546 .98454 .08603 
23 1.01885 0 1.01860 0 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Limits 

1 1.02204 -.02892 .00059 .00083 +.00199 
2 1.03630 .08689 .00112 .00137 +.00330 
3 1.05008 .16210 .00121 .00132 +.00320 
4 1.05042 .29208 .00094 .00133 +.00320 
5 1.05039 .34032 .00091 .00148 +.00358 
6 .99566 .00581 .00033 .00090 +.00217 
7 1.00061 .16697 .00166 .00132 +.00319 
8 1.00470 .03945 .00035 .00087 +.00211 
9 .98453 .04819 .00115 .00094 +.00226 
10 1.01059 .02276 .00039 .00075 7.00181 
11 1.03634 .14182 .00094 .00133 +.00320 
12 1.03557 .17912 .00161 .00131 +.00317 
13 1.00128 .00541 .00027 .00072 +.00173 
14 1.01765 .13991 .00106 .00134 +.00323 
15 1.02107 .24986 .00083 .00153 +.00368 
16 1.01266 .21377 .00106 .00139 +.00336 
17 1.01646 .19340 .00074 .00134 +.00324 
18 1.01217 .18658 .00066 .00136 +.00327 
19 .98930 -.06939 .00101 .00132 +.00320 
20 1.03033 .23651 .00093 .00134 +.00323 
21 1.03109 .23425 .00091 .00134 +.00322 
22 .98504 .08546 .00075 .00117 +.00283 
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TABLE 3.5 

ESTIMATED VOLTAGE PROFILE AND STATISTICS FOR 5-NODES,  
7-LINES NETWORK OBTAINED WITH THE P-b , Q-E ESTIMATOR 

Bus 	Voltage 	Voltage 	True 	True 
Number Magnitude Angle Magnitude Angle 

1 1.04840 -.04895 1.04744 -.04898 

2 1.02515 -.08706 1.02418 -.08722 

3 1.02456 -.09287 1.02357 -.09302 

4 1.01872 -.10726 1.01794 -.10734 

1.06100 0 1.06000 0 

Bus 	• 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Limits 

1 1.04840 -.04895 .00096 .00093 +.00228 

2 1.02515 -.08706 .00098 .00105 +.00257 

3 1.02456 -.09287 .00100 .00105 +.00258 

4 1.01872 -.10726 .00078 .00107 +.00263 
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TABLE 3.6  

ESTIMATED VOLTAGE PROFILE AND STATISTICS  FOR 10-NODES,  
13-LINES NETWORK OBTAINED WITH THE P-6 , Q-E ESTIMATOR 

Bus 	Voltage 	Voltage 	True 	True 
Number 	Magnitude 	Angle 	Magnitude 	Angle 

1 	1.04944 	.03297 	1.04897 	.03290 

2 	1.04922 	-.11130 	1.04897 	-.11110 

3 	1.04019 	-.10727 	1.03999 	-.10645 

4 	1.01014 	-.18584 	1.00994 	-.18503 

5 	1.04016 	-.15148 	1.04000 	-.15076 

6 	1.02992 	-.13427 	1.02962 	-.13394 

7 	.95394 	-.13411 	.95428 	-.13422 

8 	.99724 	-.18880 	.99704 	-.18786 

9 	1.03219 	-.06992 	1.03231 	-.06835 

10 	1.04047 	0 	1.04000 	0 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Limits 

1 1.04944 .03297 .00047 .00079 +.00186 

2 1.04922 -.11130 .00032 .00089 +.00211 

3 1.04019 -.10727 .00085 .00095 +.00225 

4 1.01014 -.18584 .00084 .00113 +.00268 

5 1.04016 -.15148 .00074 .00097 +.00230 

6 1.02992 -.13427 .00045 .00096 +.00228 

7 .95394 -.13411 .00036 .00115 +.00273 

8 .99724 -.18880 .00096 .00113 +.00268 

9 1.03219 -.06992 .00158 .00108 +.00255 
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TABLE 3.7  

ESTIMATED VOLTAGE PROFILE AND STATISTICS FOR 14-NODES,  
20-LINES NETWORK OBTAINED WITH THE P-S , Q-E ESTIMATOR 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

True 
Magnitude 

True 
Angle 

1 1.04637 -.08683 1.04494 -.08691 

2 1.07032 -.24974 1.06968 -.24822 

3 1.01127 -.22170 1.00987 -.22194 

4 1.09077 -.23449 1.08971 -.23327 

5 1.01985 -.18024 1.01848 -.18016 

6 1.06257 -.23457 1.06167 -.23335 

7 1.02155 -.15298 1.02015 -.15322 

8 1.05709 -.26205 1.05613 -.26087 

9 1.05189 -.26490 1.05102 -.26365 

10 1.05771 -.25934 1.05682 -.25815 

11 1.05555 -.26468 1.05491 -.26314 

12 1.05081 -.26604 1.05014 -.26456 

13 1.03635 -.28125 1.03551 -.27993 

14 1.06154 0 1.06000 0 

Bus 
Number 

1 

Voltage 
Magnitude 

1.04637 

Voltage 
Angle 

-.08683 

RMS 
Error 

.00143 

Standard 
Deviation 

.00139 

Confidence 
Limits 

+.00337 

2 1.07032 -.24974 .00165 .00156 +.00379 

3 1.01127 -.22170 .00142 .00140 +.00341 

4 1.09077 -.23449 .00162 .00156 +.00378 

5 1.01985 -.18024 .00137 .00142 +.00345 

6 1.06257 -.23457 .00152 .00158 ±.00384 

7 1.02155 -.15298 .00142 .00143 +.00348 

8 1.05709 -.26205 .00152 .00154 +.00373 

9 1.05189 -.26490 .00152 .00155 +.00378 

10 1.05771 -.25934 .00148 .00155 ±.00378 

11 1.05555 -.26468 .00167 .00159 +.00385 

12 1.05081 -.26604 .00162 .00159 +.00387 

13 1.03635 -.28125 .00156 .00164 +.00398 



FOR 23-NODES,  
Q-E ESTIMATOR 

True 
Angle 

-.02838 
.08724 
.16330 
.29293 
.34115 
.00603 
.16862 
.03973 
.04882 
.02257 
.14274 
.18067 
.00549 
.14085 
.25059 
.21474 
.19402 
.18710 
-.06838 
.23723 
.23495 
.08603 

0 

Standard Confidence 
Deviation 	Limits 

.00080 

.00148 

.00141 

.00141 

.00155 

.00089 

.00139 

.00089 

.00093 

.00073 

.00141 

.00140 

.00067 

.00142 

.00161 

.00148 

.00143 

.00145 

.00138 

.00143 

.00143 

.00121 

+.00192 
T.00356 
T.00341 
-T.00341 
+.00374 

..▪ 00216 
-+.00336 

1▪ 00214 
+.00225 
±.00176 
+.00340 
..00339 
+. 00161 
+.00343 
+.O0389 
+.00357 
+.00346 
+.00349 
..00333 
+.00345 
±100345 
+.00291 
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TABLE 3.8  

ESTIMATED VOLTAGE PROFILE AND STATISTICS 
30-LINES NETWORK OBTAINED WITH THE P-S 

	

Bus 	Voltage 	Voltage 	True 
Number Magnitude Angle Magnitude 

	

1 	1.02179 	-.02883 	1.02181 

	

2 	1.03604 	.08704 	1.03524 

	

3 	1.04994 	.16293 	1.04997 

	

4 	1.05030 	.29297 	1.05003 

	

5 	1.05026 	.34122 	1.05001 

	

6 	.99544 	.00586 	.99542 

	

7 	1.00046 	.16777 	1.00049 

	

8 	1.00446 	.03953 	1.00449 

	

9 	.98427 	.04828 	.98357 

	

10 	1.01031 	.02274 	1.01026 

	

11 	1.03620 	.14268 	1.03614 

	

12 	1.03545 	.17994 	1.03515 

	

13 	1.00101 	.00540 	1.00102 

	

14 	1.01752 	.14076 	1.01717 

	

15 	1.02094 	.25070 	1.02068 

	

16 	1.01254 	.21464 	1.01225 

	

17 	1.01633 	.19427 	1.01606 

	

18 	1.01204 	.18746 	1.01176 

	

19 	.98896 	-.06957 	.98931 

	

20 	1.03020 	.23740 	1.02974 

	

21 	1.03097 	.23513 	1.03051 

	

22 	.98476 	.08581 	.98454 

	

23 	1.01860 	0 	1.01860 

Bus 	Voltage 	Voltage 	RMS 

	

Number Magnitude Angle 	Error 

	

1 	1.02179 	-.02883 	.00045 

	

2 	1.03604 	.08704 	.00082 

	

3 	1.04994 	.16293 	.00037 

	

4 	1.05030 	.29297 	.00027 

	

5 	1.05026 	.34122 	.00026 

	

6 	.99544 	.00586 	.00017 

	

7 	1.00046 	.16777 	.00085 

	

8 	1.00446 	.03953 	.00020 

	

9 	.98427 	.04828 	.00088 

	

10 	1.01031 	.02274 	.00018 

	

11 	1.03620 	.14268 	.00009 

	

12 	1.03545 	.17994 	.00079 

	

13 	1.00101 	.00540 	.00009 

	

14 	1.01752 	.14076 	.00036 

	

15 	1.02094 	.25070 	.00028 

	

16 	1.01254 	.21464 	.00030 

	

17 	1.01633 	.19427 	.00037 

	

18 	1.01204 	.18746 	.00046 

	

19 	.98896 	-.06957 	.00124 

	

20 	1.03020 	.23740 	.00049 

	

21 	1.03097 	.23513 	.00049 

	

22 	.98476 	.08581 	.00032 
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TABLE 3.9  

ESTIMATED VOLTAGE PROFILE AND STATISTICS FOR 5-NODES, 
7-LINES NETWORK OBTAINED WITH THE FDE ESTIMATOR  

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

True 
Magnitude 

True 
Angle 

1 1.04829 -.04898 1.04744 -.04898 

2 1.02503 -.08712 1.02418 -.08722 

3 1.02/i44 -.09293  1. 02357 -.09302  

4 1.01859 -.10733 1.01794 -.10734 

5 1.06092 0 1.06000 0 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Limits 

1 1.04829 -.04898 .00085 .00094 +.00231 

2 1.02503 -.08712 .00085 .00106 +.00259 

3 1.024/ -.09293 .00087 .00107 +.00261 

4 1.01859 -.10733 .00065 .00109 +.00266 
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TABLE 3.10  

ESTIMATED VOLTAGE PROFILE AND STATISTICS FOR 10-NODES,  
13-LINES NETWORK OBTAINED WITH THE FDE ESTIMATOR  

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angie 

True 
Magnitude 

True 
Angle 

1 1.04954 .03296 1.04897 .03290 

2 1.04929 -.11130 1.04897 -.11110 

3 1.04028 -.10726 1.03999 -.10645 

4 1.01020 -.18580 1.00994 -.18503 

5 1.04025 -.15146 1.04000 -.15076 

6 1.03000 -.13425 1.02962 -.13394  

7 .95402 -.13409 .95428 -.13422 

8 .99730 -.18875 .99704 -.18786 

9 1.03228 -.06992 1.03231 -.06835 

10 1.04057 0 1.04000 0 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Limits 

1 1.04954 .03296 .00058 .00081 +.00193 

2 1.04929 -.11130 .00038 .00094 +.00222 

3 1.04028 -.10726 .00086 .00099 +.00235 

4 1.01020 .18580 .00081 .00116 +.00275 

5 1.04025 -.15146 .00075 .00102 +.00241 

6 1.03000 -.13425 .00050 .00101 +.00238 

7 .95402 -.13409 .00029 .00112 +.00265 

8 .99730 -.18875 .00093 .00115 +.00272 

9 1.03228 -.06992 .00157 .00112 +.00265 
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TABLE 3.11  

ESTIMATED VOLTAGE PROFILE AND STATISTICS FOR 14-NODES,  
20-LINES NETWORK OBTAINED WITH THE FDE ESTIMATOR  

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

True 
Magnitude 

True 
Angle 

1 1.04570 -.08694 1.04494 -.08691 

2 1.06964 -.25005 1.06968 -.24822 

3 1.01059 -.22198 1.00987 -.22194 

4 1.09014 -.23478 1.08971 -.23327 

5 1.01917 -.18046 1.01848 -.18016 

6 1.06191 -.23487 1.06167 -.23335 

7 1.02087 -.15316 1.02015 -.15322 

8 1.05642 -.26238 1.05613 -.26087 

9 1.05122 -.26523 1.05102 -.26365 

10 1.05703 -.25966 1.05682 -.25815 

11 1.05488 -.26500 1.05491 -.26314 

12 1.05014 -.26636 1.05014 -.26456 

13 1.03568 -.28157 1.03551 -.27993 

14 1.06087 0 1.06000 0 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Limits 

1 1.04570 -.08694 .00076 .00137 +.00333 

2 1.06964 -.25005 .00183 .00167 +.00405 

3 1.01059 -.22198 .00072 .00139 +.00337 

4 1.09014 -.23478 .00157 .00171 +.00415 

5 1.01917 -.18046 .00076 .00141 +.00342 

6 1.06191 -.23487 .00153 .00169 +.00410 

7 1.02087 -.15316 .00072 .00141 +.00342 

8 1.05642 -.26238 .00153 .00162 +.00394 

9 1.05122 -.26523 .00159 .00163 ±.00397 

10 1.05703 -.25966 .00153 .00164 ±.00399 

11 1.05488 -.26500 .00186 .00168 +.00409 

12 1.05014 -.26636 .00180 .00168 +.00408 

13 1.03568 -.28157 .00165 .00171 +.00417 
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TABLE 3.12 

ESTIMATED VOLTAGE PROFILE AND STATISTICS FOR 23-NODES, 
30-LINES NETWORK OBTAINED WITH THE FDE ESTIMATOR 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

True 
Magnitude 

True 
Angle 

1 1.02195 -.02881 1.02181 -.02838 
2 1.03623 .08696 1.03524 .08724 
3 1.05010 .16289 1.04997 .16330 
4 1.05046 .29288 1.05003 .29293 
5 1.05042 .34111 1.05001 .34115 
6 .99558 .00588 .99542 .00603 
7 1.00064 .16773 1.00049 .16862 
8 1.00462 .03953 1.00449 .03973 
9 .98440 .04828 .98357 .04882 
10 1.01050 .02274 1.01026 .02257 
11 1.03636 .14263 1.03614 .14274 
12 1.03561 .17990 1.03515 .18067 
13 1.00118 .00542 1.00102 .00549 
14 1.01768 .14072 1.01717 .14085 
15 1.02110 .25061 1.02068 .25059 
16 1.01270 .21457 1.01225 .21474 
17 1.01650 .19421 1.01606 .19402 
18 1.01220 .18740 1.01176 .18710 
19 .98912 .06951 .98931 -.06838 
20 1.03037 .23732 1.02974 .23723 
21 1.03113 .23506 1.03051 .23495 
22 .98492 .08579 .98454 .08603 
23 1.01876 0 1.01860 0 

Bus 
Number 

Voltage 
Magnitude 

Voltage 
Angle 

RMS 
Error 

Standard 
Deviation 

Confidence 
Limits 

1 1.02195 -.02881 .00045 .00085 +.00206 
2 1.03623 .08696 .00103 .00155 +.00373 
3 1.05010 .16289 .00043 .00145 T.00350 
4 1.05046 .29288 .00043 .00144 T.00347 
5 1.05042 .34111 .00042 .00159 +.00384 
6 .99558 .00588 .00022 .00091 +.00220 
7 1.00064 .16773 .00090 .00141 +.00341 
8 1.00462 .03953 .00024 .00090 T.00217 
9 .98440 .04828 .00099 .00094 T.00227 
10 1.01050 .02274 .00030 .00076 T.00184 
11 1.03636 .14263 .00024 .00144 T.00348 
12 1.03561 .17990 .00090 .00143 T.00345 
13 1.00118 .00542 .00017 .00069 +.00167 
14 1.01768 .14072 .00053 .00144 T.00348 
15 1.02110 .25061 .00042 .00164 T.00395 
16 1.01270 .21457 .00048 .00149 +.00360 
17 1.01650 .19421 .00048 .00145 T.00349 
18 1.01220 .18740 .00054 .00146 T.00351 
19 .98912 -.06951 .00115 .00143 +.00'145 
20 1.03037 .23732 .00063 .00145 +.00349 
21 1.03113 .23506 .00063 .00145 +.00349 
22 .98492 .08579 .00045 .00120 +.00289 



TABLE 3.13  

SUMMARY OF RESULTS FOR THE GWLS ESTIMATORS 

Number N 
of 

network 
nodes 

Estima- 
bion 

tech- 
nique 

Number 
of 

measure- 
ments 

Measure- 
ment 

redun- 
dancy or 
degrees of 
freedom 

Redun- 
dancy 
ratio 

Perfor- 
mance 
index 

Chi- 
Square 
limit 

Number 
of 

itera- 
tions 
for 

convey- 
gence 

Time for 
optimal 
ordering 
(ms) * 

Time for 
reduc- 
tion 
(ms) * 

Time for 
back 

substi- 
tution 
(ms) * 

Total 
time 
for 
solution 
(ms) * 

N m df=m-n 11 =c-11 	J(x) Xdf 99 iter t 
order 

t 
reduce 

t 
back t total - 

5 GWLS 43 34 3.78 49.38 56.00 3 35.0 28.0 7.0 70.0 
5 P-6,Q-E 43 34 3.78 50.50 56.00 8 31.0 23.0 9.0 63.0 
5 FDE 43 34 3.78 50.50 56.00 10 4.0 3.0 15.0 22.0 
10 GWLS 82 63 3.32 63.30 92.00 3 163.0 123.0 19.0 305.0 
10 P-6,Q-E 82 63 3.32 64.10 92.00 6 102.0 70.0 22.0 194.0 
10 FDE 82 63 3.32 64.02 92.00 7 18.0 13.0 26.0 57.0 
14 GWLS 58 31 1.15 40.57 52.20 - 4 422.0 316.0 	• 44.0 782.0 	• 
14 P--b,Q-E 58 31 1.15 50.50 52.20 9 220.0 150.0 47.0 417.0 
14 FDE 58 31 1.15 51.30 52.20 11 24.0 17.0 55.0 96.0 
23 GWLS 90 45 1.00 51.31 71.60 4 549.0 379.0 61.0 989.0 
23 P-5,Q-E 90 45 1.00 59.60 71.60 9 375.0 195.0 69.0 639.0 
23 FDE 90 45 1.00 60.03 71.60 10 43.0 21.0 79.0 143.0 

n = 2N-1 

*Computation times based on CDC 6600 Computer (ICCC) CPU times 
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CHAPTER IV 

THE DETECTION AND 2DFviTIFICATION OF WRONG INPUT  
INFORMATION IN STATIC' POWER SYSTEM STATE ESTIMATION  

4.1 Introduction 

Occasionally during a typical normal operating day, grossly erroneous 

input information may be fed to an on-line static power system state 

estimator. Erroneous input information may arise from a variety of 

causes, chief amongst which are: 

i. Bad measurement data 

ii. Network parameter errors 

iii. Network structural errors 

Bad measurement data is an inconsistent measurement with an error 

process not adequately described in terms of its initially assumed 

Gaussian error statistics. It happens when meter-communication failures 

occur or when meters are improperly calibrated giving rise to a 

distorted Gaussian error process of broad distribution around the 

tails of the normal distribution function. Under these conditions, 

the telemetered analogue measurements received by the on-line computer 

are either full-scale or zero readings. 

Parameter errors are due mainly to miscalculated line parameters. 

This type of error is extremely rare for once a power system has been 

commissioned and operational for some considerable period of time, its 

line constants are known to a fairly high degree of accuracy. 

Structural errors are caused by the lack of knowledge of the current 

updated network configuration because of possibly unreported breaker/  
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isolator status changes and line-switching operations. In estimation 

problems, configuration errors may be modelled as parameter errors 

if desired. 

Since the LWLS and GWLS estimation methods of Chapters II and III 

respectively have been demonstrated to be viable only in the presence 

of normal small Gaussian random measurement noise, it is important 

also to evaluate their reliabilities, capabilities and flexibilitias 

when handling wrong input information. Obviously when grossly erroneous 

input information is present, the performance of the estimators will 

be seriously degraded producing distorted, inaccurate and hence 

unacceptable complex busbar voltage state estimates. For these reasons 

it is necessary for any on-line power system estimation scheme to be 

capable of detecting the presence of wrong information (DEFECTION), 

identifying the cause(s) and source(s) of this wrong information 

(IDENTIFICATION) and most important of all correcting or completely 

eliminating this anomalous situation. Because the two sources (ii) 

and (iii) of wrong information are not very common 7'29'49  the detection 

and identification schemes to be described will consider mainly the 

problem of bad input measurement data. 

4.2 Statistical methods of detection and identification  

When bad measurement data exist, the observation equation becomes biased 

by a constant vector b such that: 

bad 	+ V + b 	LWLS
(4.1) 

1m 

	[:1:,—t 

(Xt ) + v + b GWLS 

where if the i-th measurement is bad, b =ctei  and eiT  = (o,o,...,o,1,o,...o) 

and a= size of the bad data. Perhaps the simplest means of removing 
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bad data is through simple limit checks on the incoming telemetered 

raw measurements as prescribed in the CERL method 
oG 
 . Inevitably, 

however, some bad data will probably escape screening through these 

pre-filtering checks necessitating the prescription of more reliable 

and sophisticated means of removing them. 

Detecting the presence of bad data, b, and identifying its source is 

viewed as an hypothesis testing procedure of two probable outcomes 

Ho  and H1  where: 

Ho  : no bad data present 

H1  : Ho  not true, i.e. bad data is present 

For small random Gaussian measurement noise assumptions, the estimated 

performance index is shown to be (Appendix A) 

	

AR
-1 
 rA  = V TR-1WAV 	LWLS—  

J(x) = 	 (4.2) 
r 

A 
R -1 	= VTR-1WHV 

	GWLS 

where the sensitivity matrix W is: 

WA = I - A(ATR-1A)-1ATR-1 	LWLS 

WH  = I - H(HTR-1H)-1HTR  1 
	

GWLS 

A 
and r, the estimated measurement residual, is given as: 

A

A 	zm  - Ax = W AV 	 LWLS 

rH 	z  - h(x) = WH  V 	GWLS 

(4.3) 

(4.4) 

Further, because J(1) is chi-sq»are distributed with df(=m-n) degrees 

of freedom and has expected value of df i.e 

E 1,1(X)1  = df and J(X)—)( f  the variance of J(x) is: 

Var{J(x)}=2df 
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Therefore for a large measurement redundancy (df > 30) the 

standardised random variables 1, 2  are both unit normal, giving 

42) - df 

g1 -  	N(0, 1) 

2df 

g2 = 2J () - 	2df 	^- No,  1) 

(4.5) 

In the presence of bad data, 10 is now effectively V+aei  and the 

performance index becomes 47: 

J(x) = YTR-lwy + 211 e. TR-1WV +GC2ei
TR-1Wei 	 (4.6) 

where the first term is as usual X2  distributed 

the second term is normally distributed 

the third term is a constant. 

From equation (4.6) it is clear that in the presence of bad data, 

the contribution to J(x) froma is quar3Tatic and predominates over 

that produced by the X 2  distributed term. Hence J(x) provides a 

suitable test statistic for the detection theory. 

The established approach to the detection problem consists of 

specifying a threshold parameter Y against which J(x) and/or E1, E2  

are compared and the hypothesis tested as follows: 

<1( Accept Ho, i.e no bad data exists 

>1(  reject Ho, i.e bad data is present 
or  
1 

The value of Y is statistically specified as the abscissa at which the 

chi-square probability distribution function is at a given probability 

of confidence (usually 99%). In the case of 	g2, the normal 

distribution abscissa is used. For derived state estimates to be 

acceptable at a given Y , the probability of concluding that bad data 

exists when there is actually no bad data must be very low and 

If JO) 
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conversely the probability of detecting bad data when bad data exists 

must be very high. It is on these premises that the threshold value 

of 'Y is chosen as 1( = X 	99 • Q o. If the Ho hypothesis is accepted 
df, 

the state estimates x are deemed reliable. However should Ho be 

rejected because J(x) is unusually larger than 
X,99•0ō, 

an 

identification must be performed to locate and correct the source of 

error. 

The identification tests are based on the estimated measurement residuals 

A of equation (4.4). Two modified residuals may be defined, namely 

weighted residuals, r , and normalized residuals, r'N and are expressed as: 

rA /

~F-177 

	LWLS 
r = 
A 

w V H S 	
GWLS 

A 
rA Zr LWLS 

-N rH ZT GWLS (4•.7) 

where % , is the covariance matrix of the estimated measurement 

residuals given in Appendix A as: 

	

=L..'A = R - A(ATR-1A)-1AT 	LWLS 	
(L.8) 

	

:.1H = R - H(HTR 1H)
-1HT 	GWLS 

Under Gaussian measurement noise assumptions both rw and rrnY are 

therefore unit normal random variables. Thus given ay corresponding 

to the normal distribution threshold value at 99% probability of 

confidence, all those measurements whose rw and/or 	 components 

exceed)/ are assumed to be most probably in error. In practical 
A 

situations only the measurement with the largest r and/or 
r 

component is assumed to be in error because others might exceedY 
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as a result of bad data spreading effect(s). In most cases the 

identified bad data is deleted from the input measurement set and re-

estimation performed until the Ho hypothesis is accepted. It is 

important to note that the rw test is the simplest compared to the r 
test which requires extra computations when calculatingEr. It is 

also pertinent to point out that the r test is the more sensitive 

test as a result of the inequality ( 
)ii‘ Rii. 

Recently it has been shown that because of the gain matrix 

retriangulations involved during re-estimation cycles19a better way to 

treat identified bad data is to replace them by pseudo-measurements 

generated from the estimation process itself. The pseudo-measurement 

generation proceeds as follows: 

From equations (4.1) and (4.4) 

Ar 	bad z d- zbad 	= W( V +b) = 

L

L r̀R-1(V 

Hence 	

+ b ) 

.1 

(V + b) 	274 r-1R( d- Zbad) 

However the exact value of ( V + b ) is given by: 

bad_ (V+b) = -m 	-true 

(4.9) 

(4.10) 

Equating the right-hand-sides of equations (4.9) and (4.10) yields 

bad 	-1 bad Nbad 
-true 	zm 	 11 ( 	- z 

) (4.11) 

where z~ d = calculated measurement obtained with the distorted 

estimate of x. 

Equation (4.11) shows that from the known bad measurement zbad, its 

corresponding poor estimate z 	and the error covariance matrices r 
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and R, an approximate value of the true measurement may be derived. 

In such cases any identified bad measurement is replaced by its 

pseudo-measurement thus curtailing the expense required in updating 

the system matrices when identified bad measurements are deleted from 

the input information. 

4.3 Discussion of simulations and results  

The detection and identification tests were Performed on all the chosen 

standard test systems using the LWLS ADP estimation technique as well 

as the various forms of the GWLS method. Bad data was generated by 

biasing some of the system measurements. These biased data were 

established randomly with a pseudo random number generator in the 

following way: 

if rn  is the random number used to simulate the n-th measurement, 

then this n-th measurement is biased if rn1 > Q , where Q  is na , 

and n O = the bad data size, and 

(1 = the measurement standard deviation. 

The magnitude of33 determines the number of bad data points simulated, 

the smaller the value off) the greater the number of bad measurements. 

The subsequent discussion centres mainly on the results obtained with 

the IEEE 14-NODES, 20-LINES network. Results obtained with 1 and 2 bad 

data points are given (Tables 4.1 to 4.2). Two types of detection and 

identification tests may be prescribed. 

TYPE 1 Detection Tests with J()< X ,9910ō and normal distribution 

identification tests with rw, rN  < 1( 

TYPE 2 Detection Tests with g1 t2) <Y and normal distribution 
identification tests with rw, rN  <11 



TABLE 4.1  

J(x) Vs 1.rN  DETECTION AND IDENTIFICATION TESTS 

Total number 
of 

measurements 
containing 
bad data 

Selection 
sta e g 

Measurements 
containing 
gross error 

Objective 
function 
J(x) 

Total number 
of 

measurements 
whose 

rW > N(0,1) 

Total number 
of 	• 

measurements 
whose 

r 	> N(0,1) 

Measurement 
with largest 
r 	value 

Measurement 
with  largest 
rN  value 

1 1st 7 31850  3 4 3 3 

2 

1st 3,9 32200 2 5 3 3 

2nd 9 4050 1 1 9 9 



TABLE 4.2  

Vs rW, rN  DETECTION AND IDENTIFICATION TESTS 

Total number 
of 

measurements 
containing 
bad data 

Selection 
stage 

Measurements 
containing 

gross error 

Normalised 
objective 
function 

Total number 
of 

measurements 
^ 	whose 
rW > N.(0,1) 

Total number 
of 

measurements 
^ 	whose 
rN  > N(0,1) 

Measurement 
with largest 
rW  value 

Measurement 
with largest 

A

N 
 value 

1 1st 3 3058 14 14 3 3 

2 

1st 3,9 3094 15 11 3 3 

2nd 9 384 7 7 9 9 
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These tests were performed at 99.0% probability of confidence, at 

which X df 99% = 90.9 and 'y = 2.81. 

In the presence of bad data (whether single or multiple), J(x) and g1 
(E2 ) always detected this anomaly as manifested by their unusually 

large values shown in Tables 4.1 to 4.2. Subsequent identification of 

the source of bad data led to a selection of a much larger number of 

possible bad data points, because a greater number of weighted and 

normalized residuals A  and 

 

A exceeded the stipulated normal 

distribution threshold value of )1= 2.81. However, for single bad 

data points, the largest residual always corresponded to the bad 

measurement. It was also observed that in certain cases some bad data 

were not initially selected as their residuals fell within the threshold 

values. They were identified in the next selection, after the 

previously selected bad data points had been deleted from the input 

measurement set or replaced by their pseudo-measurements. 

To assess whether bad data effects spread appreciably, the residual 

sensitivity matrix W was always evaluated at the end of each estimation 

run. From this, the off-diagonal terms were found to be generally 

orders of magnitude smaller than the diagonal terms implying minimal 

bad data spreading effects. 

The main concern of this chapter has been the assessment of the 

performance of all the static state estimators in the presence of bad 

data. The results obtained indicate that all the estimators are capable 

of detecting and identifying the sources of grossly erroneous input 

measurement information. 
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4.4 General comments  

The results of Chapter III have shown that the FDE estimator is 

much faster than the full GWLS method. The computational speed is 

also comparable to that of the AEP method (compare Tables 2.5 and 3.13) 

and its core requirements are low when compounded with sparse matrix 

techniques. The results of this chapter have also confirmed that the residuals df 

FDE is as well capable of detecting and identifying bad data. These 

reasons, together with the fact that it accepts all kinds and types 

of input measurements make it probably the best technique to adopt 

for on-line static power system state estimation. 
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CHAPTER V  

DECENTRALIZED DYNAMIC POWER SYSTEM STATE ESTIMATION 

5.1 Introduction 

All present-day power systems are identifiable as single contiguous 

entities where operating conditions at one location affect conditions at 

others; system operation therefore depends both on local conditions 

and controls as much as on the system-wide monitoring and control 

functions at a central location. Today, interruptions in power supply 

to consumers is almost totally intolerable necessitating that a power 

system operator be presented, with pertinent and relevant operating 

information that is required for crucial decision taking and vital 

remedial and corrective actions during emergency operation following 

system disturbances. The importance of having readily available 

complete and reliable knowledge of the power system operating state, 

essential for the secure and economic operation of the power system 

cannot be over-emphasized. 

Most power system disturbances that originate from load fluctuations 

lead to changes in tie-line real power transfers and area frequency. 

In consequence some form of Load frequency control, LFC is merited19. 

The commonest LFC is based on an error signal derived from a linear 

combination of the net area-interchange and frequency error20  . 

Application of modern control theory, using the Linear-Quadratic and 

.Gaussian (LQG) design methods61, has led to the realisation of 

suitable optimal and/or sub-optimal load frequency control techniques; 

however one of the pre-requisites for the success of these advanced 

design procedures entails a knowledge of all states of the power system 



104 

for feedback62. Feasible optimal and/or sub-optimal power system 

control is achievable provided all the states of the power system are 

identifiable. 

As a power system is often recognisable as several sub-divisions 

interconnected by tie-lines, direct application of optimal control 

theory is often difficult for the following reasons: 

i. the complete system description in its full non-linear 

representation leads to an unusually complicated set of 

differential equations of high dimensions 

ii. power system areas often have partially independent controls 

of their own; hence it is impossible to collect continuously 

all system parameters and states of the overall power system 

at a given locality 

iii. information exchange amongst the various power system areas is 

either non-existent or limited in amount . Consequently 

control signals are generated by processing information that 

are either wholly or, at best, partially locals 

It is concluded that, for highly interconnected power systems composed 

of a number of areas, system security monitoring which involves the 

determination of the actual power system operating state and the 

optimal LFC of such a system involves system-wide instrumentation on 

a large scale, involving high investment cost for measurement and telemetry 

devices. 

In an attempt to circumvent the problem of dimensionality and feedback 

of other area states and measurements, controllers may be designed on 
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a local basis 63. Whilst global control involves the feedback of all 

area states and/or measurements, decentralized or local controls 

derive their feedback signals entirely from local area states. All 

these controllers are determined deterministically. It is assumed 

that all the system state variables (either local or global) are 

accessible for direct measurement and also that the instrumentation and 

transmission of the metered signals is perfect. Obviously, the fidelity 

and reliability of the controls obtained under these assumptions will 

be seriously impaired should the instrumentation be non-perfect or 

worse, should it be impossible to directly access and measure 

the state variables that are required for feedback control purposes. 

To release these restrictive assumptions, recourse is taken to the 

reconstruction of the states from accessible but noise-corrupted 

system measurements which are not necessarily measurements of the 

state variables themselves but functions thereof by use of a Kalman filter 

technique based on the system dynamical equations 23,64,65 . 

Because of dimensionality problems encountered when designing single 

state estimators for power systems consisting of a large number of 

areas, this chapter considers the design of both global and 

decentralised power system state estimators. 

5.2 LFC power system modelling 

Block diagram representations of interconnected power systems of either 

steam or hydro generating plants are illustrated in Figs. 5.1 and 5.2 

respectively. A steam unit is modelled by a turbine, a speed-governor 

and a generator; a hydro unit, on the other hand, has an additional 

control block on account of the gate water inertia. All control blocks 
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are made up of first order delay transfer functions except the inter-

area real power transfer phenomenon which is modelled by a simple 

constant gain block. The difference in the dynamics of the hydro and 

steam plants arises because when the water gates of the hydro plant 

open, the turbine torque tends to decrease momentarily and then 

increases thereafter. The extra block in the hydro plant model 

represents this behaviour of hydro sets. 

5.2.1 State variables, x., and control vectors, u. 

The state variables, xi, for the i-th power plant are defined as 

follows: 

xiT 
- (APtie,i Au.  Pgi pXgi ) 

for a steam plant, and 

XiT  = (APtie,i Awi APgi  Gi X
gi ) 

for a hydro set. 

(5.2.1) 

(5.2.2) 

The control vector, u., for the i-th area is defined as (for both 

steam and hydro sets): 

u. = ( A Poi) 	 (5.2.3) 

where, in p.u. power, 

is the tie-line power deviation 

AP is the deviation in mechanical power = deviation in 

generated power (assuming that the time 

constant of the generator is negligible compared 

to the governor and turbine time constants) 

QGi 	. is the deviation in gate position 

(for hydro unit) 

Xgi 	is the deviation in governor position 
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AP ci  
A wi 

is the deviation in speed changer position 

is the angular frequency deviation in rad./sec. 

5.2.2 Power system dynamics in state variable form 

The dynamics of each power system area may be described by the 

following set of linear differential equations: 

For a steam plant model: 

• 
A-13 	

Ii 	E Tij (w -A . j=1 
i/j 

• G. Q 
A Wi 	M. 	Ptie,i 	M. 	wi + M. 	Pg• 	M. La Pd• 

	

  i 	1 	i 

~P = - 1 A 	+ 1 QX 
gi 	

Tti gi Tti gi 

1 Ax gi _ - 2--A w.1 T 1 Ax 
gi + T 	U. 

gi 	gi 	gi 

whilst for a hydro area, the describing equations are: 

(5.2.4) 

E Tij (A wi -A w ) j=1 

• _ 	 - Gi (Ji = 	M. ~Ptie,i 	M. 	wi + M. APgi 	M. Pdi 
• 

A Pgi = 

• 
A Gi 

• 
A x i = 

- 2 
AP

. g + T2 + D2 A Gi T. A Xg- 

	

i 	i 	ti 	ti 

- T1 A G
i 

+ T
1 Axgi 

 

	

ti 	ti 

-

 

E. A 
W - 1 A 	+ 1 T 	 ugi 	Tgi 	i 	i Tg1  

(5.2.5) 
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The parameters used in the describing equations are defined as follows: 

M. = inertia constant in pu-power-secs2/rad. 

G. = load damping coefficient in pu-power sec/rad. 

Tt.  = turbine time constant in seconds 
1 

T 	= governor time constant in seconds 
gi 
Di  = water starting time in seconds 

Ei  = the reciprocal of the area speed regulation 

Ti  j  = Tib sin (0 . -0 . ) 

T13 E.E .1  rijil  
Tib is assumed constant, and 

v. = E.e j bi (5.2.6) 

is the complex voltage at the i-th area interconnection. IYijj1 is the 
magnitude of the tie-line admittance between the i-th and j-th areas 

with line resistance neglected. The superscript (o) denotes nominal 

values. 

The dynamics of each plant as described by equations (5.2.5) and (5.2.6) 

may be generally expressed in the form: 

Xi(t) - Aixi(t) + Biui(t) + ri  P (t) + E1 Hij xj(t) (5.2.7) 
i#j 

where: 

x.(t) is a vector of state variables of dimension n: 

u.(t) is a vector of control variables of dimension m. 

A Pd (t) is the deterministic power demand deviation of the i-th area 
1  

in pu-power 

x.(t) denotes the state vector of the j-th area that is interconnected 

with the i-th area. 
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The matrices A., B., r and H.. which are time invariant and of I 3.1 13 
appropriate dimensions are defined as follows: 

T 
Tij  

1 G. 
1 

N. 
- 
M. M. 

1 	. _ 1 
Tt. i Tt.  i 

E. 1 
T 
gi 

- T 
gi 

T1  
gi 

1 
M. i 

for a steam plant 
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and for a hydro plant 

f 

T
1~
. . 

_ 1 _ G. 1 
M. 
i 

M. 
1 

M. 
1 

2 2 	2 
D1 	Tt. 

2 _ 
D. Tt. 

1 _ 1 

Tt 1 Tt. 
1 

E. 1 
1 

- 	T 

g. 1 Tgi 

1 
T 
g• 3. 

1 
M. 1 

For N interconnected power plants of either steam and/or hydro plants 

the dynamical equation governing the operation of the overall system can 

be expressed in terms of a general composite system-wide state vector X(t): 

Ai = 

BT = 
1 

rT 
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X(t) _ (A + H) x(t) + BU(t) 	 (5.2.8) 

where A, H and B are time-invariant system block diagonal matrices 

derived from the decomposed subsystem matrices Ai, Bi, Hij ri.  

The composite overall system state vector, X(t), and the composite 

overall control vector, U(t), are derived from the individual subsystem 

state vectors, xi(t), and individual control vector terms, u.(t), and 

area power demand deviation terms,A Pd  , such that: 
i 

XT(t) = (x1T x2T, ..., 41) 

UT(t) _ (11T, u2T ..... ENT, PPdi, A Pd2, 

 

(5.2.9) 

(5.2.10) 

 

It is clear that as the number of areas in the interconnected power 

system increases, the overall composite system state vector and the 

associated system matrices assume very high dimensions. 

5.2.3 Power system measurements 

Presently used load frequency control schemes (tie-line bias control) 

all require knowledge of the tie-line power and area frequency 

deviations 
66-68 . 	Given a perfect data acquisition system in a 

given area, i, the two measurements, namely tie-line power and area 

frequency deviations, may be described by the deterministic linear 

equation: 

z. = Cixi(t) 	 (5.2.11) 

where Ci  is referred to as the measurement matrix and is defined by: 

Steam plant 

1.0 
1.0 

C. = i 
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Hydro plant 

1.0 

1.0 

When described in terms of the enlarged state vector, X(t), the 

measurement vector is: 

Z = CX(t) 	 (5.2.12) 

where C is an enlarged block diagonal matrix of appropriate dimensions. 

5.2.4 Stochastic modelling of the dynamics and measurements of 
the power system 

Up to now, it has been tacitly assumed that the system dynamic models 

of equations (5.2.4) and (5.2.5) are accurate and that the data or 

measurement acquisition system of equations (5.2.11) and (5.2.12) is 

perfect. Realistically, there is always uncertainty in the dynamic 

system model and measurement systems invariably introduce observation 

noise or bias. It is common engineering practice to utilize a 

probabilistic approach to the modelling and implications of physical 

uncertainty61. In the design of dynamical systems the continuous 

existence in time of plant disturbances and sensor or measurement errors 

is modelled by representing the uncertain time functions by random 

processes. 

In stochastic modelling, the plant is described by the vector 

differential equations: 

xi(t) = Aixi(t) + Biui(t) +EH..x.(t) + 	w G. i(t) (5.2.13) 
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or in block form 

X(t) _ (A+H) X(t) + BU(t) + GUii (t) 	(5.2.14) 

The addition of (gi(t) a stochastic disturbance vector term to the 

otherwise deterministic model implies that 

i. the system is driven by unknown disturbance input,W i(t) 

ii. the deterministic equations may be in error due to over-

simplification of the system model 

iii. some of the parameters in the defining dynamical system equations 

may not be exact (nominal values are frequently employed). 

G. is referred to as the stochastic disturbance input distribution 

matrix. 

To model sensor errors, measurement uncertainties and meter inaccuracies, 

it is assumed that the sensor measures the output variable Cixi(t) 

and yields the measurement signal zi(t) which equals Cixi(t) plus 

a noise term 14(t). 

That is: 

zi(t) = Cixi(t) + Yi(t) 	 (5.2.15) 

or in block form: 

Z(t) = CX(t) + \/(t) 	 (5.2.16) 

Equations (5.2.13) and (5.2.15) refer to the individual power system 

areas whereas equations (5.2.14) and (5.2.16) refer to the composite 

overall system. 

5.3 General statement of state estimation problem  

For a precise description of the state estimation problem, consider the 

large-scale dynamical system as an interconnection of N subsystems 

Si, S2,..., SN  described by: 
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Ii(t) = Aix. (t) + Biu(t)+ ~H..x~(t) + G.W. (t) 

z.(t) = Cixi(t) + v i (t) 

where: 

(5.3.1) 

(5.3.2) 

xi(t) •~ is the ni dimensional state vector of subsystem S i 

u.(t) 	is the mi dimensional input control vector of subsystem S S. 

zi(t) 	is the pi dimensional observation vector or output of 

subsystem Si 

W (t) 	is the ni dimensional state excitation noise 

v (t) 	is the gi dimensional measurement noise 

The uncertainties considered are quantitatively characterised in 

statistical terms as follows: 

1. The initial state vector, xi(t°), is assumed to be Gaussian 

distributed with known mean and covariance matrix, i.e. 

El xi (t°)1 = x°i (assumed known) 

cov{ xi(to), xi(to) 1 = E 1 (xi(t°) - xi°)(xi(to) - xi°)T} 

= P.° (assumed known) 

Po is at least positive semi-definite i.e. Pi° ?_ 0 

2. The system noise, W. (t)is assumed to be white, Gaussian with 

zero mean and known covariance matrix for all t ? to, i.e. 

El (u. (t) 1= 0 

cov{ (a) .(t), U) (t+t ) 1= Qi (t) ō (t ) , Were S is rye dirac - delta function 

Qi(t)> 0 i.e. positive semi-definite 

3. The measurement noise V i(t) is also assumed to be white, Gaussian 

with zero mean and known covariance matrix for all t >_ to, i.e. 

E{V i(t) }= o 
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cov Vi(t), Vi(t+t) I. Ri(t) b (-L ) 

Ri(t) > 0 i.e. positive definite. 

It is also assumed that xi(to), W(t),y(t) are all mutually independent, 

i.e. 

cov { xi(to) , (zj (t) } = 0 

coy { xi(to) , V(t) }= 0 

cov{ Wi(t), Vi(t+Z)}= 0 

for all t >t. 0  

The covariance matrices Qi(t), Ri(t) and Pi°  are all assumed to be 

symmetric. 

The system-wide or global state estimation problem may now be stated 

as follows: 'Derive good and acceptable estimates, xi(t), of the 

system state variables, xi(t), from the system-wide measurements 

{zi(t), Z = to, to+Qt, to+2At 	t•  i =  

which are imprecise and subject to errors given that the overall system 

and its subsystems are themselves subject to random input disturbances'. 

5.3.1 Composite system state estimation 
A 

An optimal, linear least-squHres, filtered estimate, X(t), of the state 

of the composite system and the covariance matrix, P(t), of the 
A 

estimation error, bx  = X(t) - X(t), can be derived from equations 

(5.3.1) and (5.3.2) by applying the well known linear Kalman filtering 

theory23,64,65 to give: 
s 
I(t) = (A+H)2(t) + BU(t) + K(t){ Z(t) - CX(t)1 
• 
P(t) = P(t) [A+H]T+ [A+H] P(t) - P(t)CTR(t)CP(t)+GQ(t)GT 	(5.3.4) 

where K(t) is the time-varying nxm dimensional Kalman filter gain 
N 	 N 

matrix and n = 2, n. 	m = 	m. 
i=1 1 	i=1 1 

(5.3.3) 
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Equation (5.3.4) is a system of first order ordinary matrix differential 

equations of second degree. It is worth mentioning that it is assumed 

that the block diagonal system matrices {(A+H), C form an observable 

pair; otherwise observability must be initially established. 

If the matrices A, B, C, Q(t), R(t) and G are all time-invariant (as 

indeed is the case for the LFC model), the filtering process may 

reach a steady-state in the sense that, the error covariance matrix, 

P(t), becomes a constant matrix, i.e. P(t) = 0. In principle, this 

steady state matrix is obtainable by solving the 2 (n+1) simultaneous 

quadratic matrix equations (5.3.4) by setting P(t) to zero. 

Then: 

P(A+H)T+(A+H)P-PCTR-1CP+GQGT  = 0 (5.3.5) 

Equation (5.3.5) conveys the notion that at steady-state, the rate 

at which information goes out of the system (represented by the GQGT  

term) is just balanced by the rate at which information enters the 

system (represented by PCTR-1  CP) and by any damping the system may 

have (as expressed by the terms in (A+H) ). The Kalman filter 

described is therefore essentially an adaptive, gain-tuning technique 

in which the prediction of the system state at any time instant is 

weighted between the extrapolated past value and the present observed 

value. 

The solution of equation (5.3.5)  in closed form is impracticable for a 

system of order n>2.  An effective method of solution will be 

described in the section 5.3.2. The quadratic matrix equation (5.3.5) 

is generally referred to in the literature as the matrix Riccati equation. 



-(A+H)T  CTR-1C 

GQGT  (A+H) 

ZH  = (5.3.6) 
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5.3.2 Solution of the matrix Riccati equation 

The solution of linear least-squares quadratic Gaussian estimation and 

control problems revolves around the solution of a first-order non-

linear matrix quadratic equation, the Riccati equation 
6'69,70 

For the general constant coefficient matrices case, an analytical 

asymptotic or stationary, i.e. constant matrix, solution is possible. 

The method described here generates the asymptotic solution by 

converting the n dimensional Riccati equation to a 2n dimensional 

homogeneous, linear differential equation and using an eigen-value, 

eigen-vector analysis of the resulting Riccati system matrices. 

♦C Determination of the steady-state Kalman filter gain, K 

To obtain the steady-state solution of the time-invariant Riccati 

equation the following system Hamiltonian matrix, ZH, may be defined69. 

ZH  is a 2n x 2n matrix whose 2n eigen-values (e-values) and 2n eigen-

vectors (e-vectors) may be determined using any standard numerical 

technique, e.g. the QR algorithm 71,72. The e-values of ZH  may initially 

be assumed distinct from which the following properties are then true: 

a. If X is an e-value of ZH,  then so is -X 

b. If ZH  is diagonalizable in the form: 



A 

-A 

W11 
	

W12  

W21 
	W22  

ZH  = 

120 

W11 
	

W12  

W21 
	W.22  

where the diagonal matrix, A has as its diagonal elements the e-values 
of ZH  with negative real parts, the steady-state solution of the 

Riccati equation is: 

P = W22  W121 	 (5.3.8) 

where W.., i,j = 1,2 are obtained by partitioning W assuming its 
ij 

inverse, W-1, exists. The columns of the partitioned matrices 

W11  
consist of the elements of the eigen-vectors of ZH  corresponding 

W21  
to eigen-values with negative real parts, whilst those of 

 

W12  

 

consist of the elements of the eigen-vectors of ZH  corresponding 

 

W22  

    

to eigen-values with positive real parts. The algorithm for the 

determination of the estimation error covariance matrix, P, is 

summarised below: 

a. Form the 2n x 2n system Hamiltonian matrix, ZH,  and by using any 

standard numerical technique determine those e-vectors that correspond 

to e-values with positive real parts. 

b. From these n e-vectors form the 2n x n block matrix 

W12  
where W12  and W22 are n x n submatrices determined as follows: 

 

W22  

1 

(5.3.7) 



121 

i. If e is a real characteristic vector, then e is one of the 

columns of 
W22  

ii. If e and e*  form a complex-conjugate pair, then Real (e) is one 

column of 

 

W12  
and Imaginary (2) another column 

 

W22  

c. P at steady-state is then determined from: 

P  - 
_ 
W22 W12

-1 

The reliability and effectiveness of the method described depends to a 

large extent on the efficiency of the subprograms for computing the 

characteristic values and vectors of the system Hamiltonian matrix, ZH, 

as well as the efficiency of the matrix inversion routine adopted for 

determining the matrix inverse, W12-1  . Having determined P, the 

steady-state Kalman filter gain, K, is then derived from 

K = PCTR-1  (5.3.9) 

Fig. 5.3 is a flow-chart of the algorithmic approach to the determination 

of P and K at steady state. 

5.4 Decentralized solution to the state estimation problem 

Design of suitable estimators for obtaining estimates of system states 

is very important for system theoretic studies involving state feedback 

techniques. For large-scale systems, however, a straight forward and 

direct application of these estimator design principles is not 

attractive due to computational difficulties associated with highly 

dimensional system coefficient matrices and sometimes due to the 

infeasibility of implementing a single estimator of large dimension, 

W12  
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especially on small process control computers for real-time operation. 

Since most large-scale dynamical systems are usually easily identifiable 

as interconnections of several low-order subsystems, it is desirable 

to exploit the natural decomposed structure of the available overall 

composite system model. The decentralized state estimation schemes 

considered here are used to determine whether estimators based on 

local subsystem dynamics alone can serve as adequate estimators of 

the overall system state. 

5.4.1 Completely decentralized estimators, Hij  = 0 

For systems with completely decoupled subsystems, 

H. = 0 i,j = 1,2,...,N 
1j 	i/j 

(5.4.1) 

independent decentralized estimators may be designed for the individual 

i-th subsystems by73,74. 

(t) = A. X. (t) + B.u.(t) + K. { z (t) - C. X (t) —1 	1-1 	1-1 	1, -i 	1 1 
i = 1,2 	N 

(5.4.2) 

where the ni  x pi  Kalman filter gain matrix Ki  is given by: 

K. = P. C. TR. -1 1 1 1 

and Pi  satisfies the matrix Riccati equation: 

P.A.T  + A.P. - P.C.TR-1C.P.+ G.Q.G. T  = 0 1 1 	1 1 	1 1 1 1 1 1 1 

What is of interest now is to determine the conditions under which the 

above decentralized estimation scheme or equivalently, any modifications 

thereof, lead to state estimates that are optimal in the least-squares 

sense and have the same degree of convergence and accuracy as the 

overall system state estimates X(t), derived from the equivalent 

composite system model: 



124 

x(t) _ (A+H)x(t) + Bt(t) + GLOM  (5.4.5) 
z(t) = Cx(t) + 	vv(t) (5.4.6) 
Clearly the decentralised estimator of equations (5.4.2), (5.4.3), 

and (5.4.4) developed under the assumption that Hij = 0 will be far 

from satisfactory when used for the composite system. This is 

because of the lack or neglect of knowledge of the interconnection 

functions, Hij, and of the outputs of the other subsystems, 

iz.(t), 	j = 1,2 	NI- 

5.4.2 Modified estimation schemes utilizing other 
subsystem measurements, ~(t) 

When the measurements of other subsystems are available together with 

a knowledge of the interconnection pattern, Hij, at the i-th area, 

a simple modification of the estimation scheme of equations (5.4.2), 

(5.4.3) and (5.4.4) are obtainable as: 

X. (t) = A.X. (t) + B. u. (t) + K. {z. (t) - C.X. (t)} 

N 

+ E Kij z .(t) 	 (5.4.7) 
j=1 
i/j 

where the measurement gain matrix, K j, is defined by: 

Kij = HCT (CR-1CT)-1 ij (5.4.8) 

The subscripts ij denote the ij-th block matrix. It can be shown that 

this modified scheme yields system state estimates of comparable 

accuracy and a similar degree of convergence for each subsystem as for 

the overall system 73,74. 

A comparison of equations (5.4.2) and (5.4.7) reveals that 

the only change in the estimation equations is the use of the 

measurements of the other subsystems as additional measurement signals 
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together with the measurement gains 
rd 
 X. . that are determined from the ij  

bulk system matrices H, C and R. 

The method's attractiveness may be viewed in the context of the reduced 

core storage requirements as only the local subsystem matrices, which 

are necesRPrily of relatively smaller dimensions, are involved in 

computing  the filter gains Ki  and more importantly, the fact that the 

derivation of these gains is performed only at the subsystem level. 

The available system decomposed structure is therefore effectively 

exploited. 

5.4.3 Modified estimation schemes utilizing 
other subsystem state estimates, x.(t) 

When the state estimates of the other subsystems, x.(t), are available 

at a particular area, i, and the interconnection matrix Hij  is known, 

then an intuitively simple modified decentralized estimation scheme 

may be derived as follows: 

X. (t) = A.X. (t) + B. u. (t) + x. l z. (t) - C. X. (t)} 

+ E Hij  X.(t) 	(5.4.9)
3  j=1

i/j 

i = 1,2, ...,N 

where g is defined as previously mentioned. This scheme also yields 

the same degree of accuracy and convergence as the overall system 

state estimation scheme. 

In the same manner as the estimator in section (5.4.2), the estimator 

of this section derives additional signals from the other subsystems, 

except that here these extra signals are the already available state 

estimates of the other subsystems. 
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In summary, three distinct methods for decentralized estimation schemes 

for linear systems with linear interconnection phenomena have been 

highlighted, namely: 

i. Completely decentralized estimation schemes where all interconnection 

patterns are assumed negligible, Hid  = 0 

ii. Modified decentralized estimation schemes where, together with 

the knowledge of the interconnection effects, the observed 

outputs of other subsystems are assumed available. And finally, 

iii. A further modified estimator that relies on both the knowledge 

of the interconnection pattern and the availability of 

the pre-computed or pre-determined state estimates of areas 

outside the locality under consideration. 
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5.5 Computer simulation tests of dynamic state estimators 

The classical two-area perturbation power system model was employed 

to assess the performance, effectiveness and reliability of the 

decentralized state estimators compared to the global estimators. 

The first area, AREA-1, was assumed to be a steam plant, whereas the 

second area, AREA-2, was assumed to be a hydro unit. The control 

term, u, was derived on the basis of the conventional LFC tie-line 

bias control technique, which is expressible in transfer function 

75 form by  

a 
u  - s bs1+ 1 (caw +  APtie ) 

where a, b, c are constant coefficients. 

Table 5.1 lists the values of the constant system parameters used in 

the computer simulations. These values are based on those quoted in 

references 19,62,63,66,75. 

The variables d Ptie and aw are normally readily available and as such 

constituted the system observation variables. For all the estimator 

tests described, the initial state estimates were arbitrarily set to 

A,
to) = 0.005 pu whilst the initial actual system states were chosen 

as x (to) = 0.0 pu. All the results presented subsequently were 

obtained for area deterministic power demands of A Pd = -0.005 pu and 
i  

dPd2  = +0.005 pu. 

Two distinct operating modes of the state estimators were investigated, 

namely: 

a. the effect of the noise intensity matrices Q and R on estimation 

performance 
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TABLE 5.1  

VALUES OF SYSTEM CONSTANTS 

System 
Constant 

Steam Unit 
(AREA-1) 

Hydro Unit 
(AREA-2) 

M, 0.040 0.030 

G. 
1 

0.010 0.008 

Tti 0.500 0.500 

T 	. 
gm 

0.050 1.200 

E. 0.030 0.013 

Di - 0.500 

Tl~ 0.050 0.050 

a. 0.090 0.400 

bi 0.300 0.300 

c. 
a. 

0.020 0.020 
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b. the effect of tie-line strength (dependent on coefficientTib) 

on estimation performance. 

The various simulations performed in effecting these operating modes 

together with the results obtained from them are tabulated in Tables 

5.2 and 5.3. To enable a meaningful discussion and analysis of the 

results, the following steps were adopted in the simulations: 

i. Generation of the system-wide state variables xi(t) assuming 

absence of system state excitation noise W1(t). 

ii. Derivation of the assumed system measurement signals, i.e. L\ Pti 

and ALOi  according to the relation 

zi(t) = Cixi(t) +(t) 

where Vi(t) is the time varying observation noise. The 

measurement noise was assumed to be a white-noise Gaussian 

random variable with the distribution, N(0 ,10%Cixi) +N (0,0.0005). 

The extra normal random variable N( 0,10% Ci  xi ) introduces 

uncertainty about the observation noise covariance matrix, R, 

since xi  is a time varying state variable. 	(t) was obtained 

from a normally distributed pseudo-random number generator with 

a library subroutine. 

iii. Calculation of the global Kalman filter gain matrix by using 

the eigen-value, eigen-vector technique. This method was 

adopted because it avoids the need to specify yet another noise 

moment, the initial estimation error covariance matrix Po, which 

is required if other techniques for solving the differential matrix 

Ricatti equation are used. Note that the principal diagonal 

block matrices of the global Kalman filter gain matrix are 

identical to the area Kalman filter gains. 

e. 
i 
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TABLE 5.2  

TESTS PERFORMED ON ESTIMATORS WITH MEASURMENT MODEL z = Cx + V 

Test 
Number 

Type of 
Estimator 

Covariance 
Matrices 

Tie-Line 
Constant T12  

1 	a 

b 

c 

d 

2 	a 

b 

c 

d 

3 	a 

b 

c 

d 

Global 

Decoupled Hid=0 

Local with x . —J  

Local with z. 

Global 

DecoupledHid=0 

Local with X. _3  
Local with z . —J  

Global 

Decoupled H. 

Local with x. 
—J 

Local with z . _J 

cl=R=(I) 

" 

" 

It 

Q=10— (I) 
R=10-3(I) 

II 

" 

u 

1, 

0,05 

" 

" 

" 

I, 

11 

" 

0.20 

" 

I, 
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TABLE 5.3  

LIST OF FIGURES OBTAINED WITH ESTIMATORS  

Figure Test No. Plant 

5.l1 1 Measurements 

5.5 	a Ib Steam 

b Ib Hydro 

5.6 	a Ic Steam 

b Ic Hydro 

5.7 3 Measurements 

5.8 	a 3b Steam 

b 3b Hydro 

5.9 	a _ 3c Steam 

b 3c Hydro 
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iv. Generation of state estimates using the described methods 

and plots of both the assumed true system states and these 

state estimates on the same set of axes. 

5.5.1 Discussion of results 

The noisy measurement signals used in Test 1 and Test 2 are shown in 

Fig. 5.4. As the results of the two tests showed very little discernible 

difference between the global estimators, decentralised estimators with 

xj  signals and decentralised estimators with z. signals in terms of 
superiority of performance, only the responses of the completely 

decoupled estimators and those with x. signals are presented. However all 

three estimators exhibit the presence of spurious, noisy signals super-

imposed on the estimates. In con'.trast, the completely decentralised 

estimator yields results that are hardly acceptable. With the exception 

of the estimated speed deviations, all the estimated state variables show 

a marked deviation from their desired responses. This is explained by 

the fact that the simulations yield area speed deviation measurement 

noises of comparatively low magnitudes, and therefore have very little 

effect on the estimates even when the presence of the tie-line has been 

entirely ignored. It would therefore appear that for LFC purposes a 

very high confidence can be attached to area speed-deviation and/or 

area frequency deviation measurements. 

In assessing the impact of the values of the noise intensity matrices 

Q and R on the performance of the estimators, the matrices were chosen 

in the following way: Q = a(I) and R = 0(I) where a,p  are variable 

parameters and (I) the equivalent unit matrix of compatible dimension 

to Q or R as the case may be. 
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It was observed in a series of simulations that as in all filtering 

processes involving unknown noise moments an incompatible and/or 

inappropriate choice of 0(, pled to either filter divergence or filter 

instability in all the estimators. The following observations were 

made in respect of the choice of the matrices Q, R: 

i. the rate of convergence of the estimates to the desired responses 

is controlled by the value of a ; low values yielded a slow 

convergence rate and high values led to fast convergence. At 

high C values, though there is always the possibility of the 

estimator becoming unstable. 

ii. the degree to which measurement noise is filtered is dependent on 

the choice of R viz-a-viz, pl. When not properly chosen to reflect 

the expected standard deviation of the measurement noise, the 

observation noise persisted as is evident from Figs 5.5 to 

5.6. This noise was not exhibited in Test 2 where the proper 

noise covariance matrices were used. 

The optimum settings for the parameters( , R  after a series of 

trial-and-error procedures were( = 0.0001 and gi = 0.001. These 

correspond to individual excitation noise variance of 6 
2  = 10

-4 
and 

The tie-line constant, T12 , was drastically increased in magnitude 

by 300% of its assumed nominal value of 0.05 to 0.20 in Test 3. The 

effect of this dramatic change was manifested not only in the increased 

oscillation of the system state variables but it also led to seriously 

degraded state estimates in the case of the completely decentralised 

estimation scheme. In this case even the area speed deviation estimates, 

2 

individual observation noise variance of az_ = 10-3  . 
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which were hitherto estimated by the decentralised scheme with little 

observable deviations, showed a marked degradation, as in Fig. 5.8,. 

However, in spite of this extreme change in the tie-line constant, 

the decentralised but modified estimation schemes with x. and z~ both 

performed creditably to provide stable and acceptable state estimates 

that were comparable to those yielded by the global estimator. 

5.5.2 Conclusions 

The estimation results have confirmed that: 

a. Local estimation, where power plant interaction is completely 

ignored yields physically feasible state estimates of the power 

plant states although the estimates produced are accuracy-wise 

degenerate. 

b. Improved state estimates may be obtained using local estimators 

provided these local estimators are augmented with other power 

system area signals in the form of other area state estimates x~ 

or other area measurement signals z.. This appears to be the 
J 

only effective way to suitably account for power plant interaction. 

c. Although not explicitly discussed in the results, the solution of 

the global matrix Ricatti equation requires four times as much 

computation time and computer core storage as the decentralised 

estimators. It is this result which proves the superiority of the 

local estimators because all computations can then be performed 

at the subsystem level only. 

d. Any estimation scheme must make a compromise between speed of 

estimation and immunity to measurement noise. This balance has 

been shown to depend on the magnitudes of the system excitation 

noise intensity matrix Q and the observation noise covariance 

matrix R. 
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The disadvantage of the decentralized estimators described in this 

chapter is the increased burden of transmitting other area signals to 

the particular locality in question. Because the interconnection 

matrix H.. for a normal power system is usually very sparse the amount 

of supplementary data required is consequently small. As is reported 

in Cory et al 
76 

it would be extremely desirable if estimation schemes 

could be designed that use only subsystem dynamics alone. 

Finally, the availability of on-site dedicated digital computers in 

modern power stations provides an opportunity to implement 

sophisticated monitoring schemes that will ultimately lead to improved 

control schemes. To be feasible for implementation in real-time, the 

first stage involves the design of suitable decentralised estimators 

as described in this chapter. 
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CHAPTER VI  

CONTINUOUS-TIME DYNAMIC ESTIMATION OF THE 
STATES OF A SYNCHRONOUS MACHINE  

6.1 Introduction  

Most multi-variable feedback control techniques employed in the design 

of optimal control strategies for synchronous machine operation assume 

that the machine state variables are either known a-priori or available 

for direct and accurate measurement21,22'
7
7 This assumption is 

questionable since it is known that certain machine state variables are 

difficult to measure directly, for example, the machine angle with 

respect to a given reference. 

To circumvent this assumption, Takata et a1.25'',78  derived the machine 

states through non-linear sequential observer techniques. This method 

fails to consider the inevitable presence of measurement noise. 

Arumugam et al
24 
 considered a linearised version of the essentially 

highly non-linear estimation problem by deriving its extended Kalman-

filter equivalent. 

The two approaches proposed in the above methods both yield degenerate 

state estimates as a result of the assumptions made in deriving the 

machine state estimates. 

In this chapter, the non-linear synchronous machine dynamic state 

estimation problem is described and solved via the invariant imbedding 

26,27,80 
technique 	. The assumptions of perfect instrumentation of 

24 
Takata et al 

25,78 
 is relaxed whilst the linearisation of Arumugam et al 

is removed by using the exact non-linear synchronous machine equations. 
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6.2 General theory and problem statement  

Consider the class of n-th order non-linear continuous-time systems 

given by: 

x(t) = f {x(t),t} + G(t)W(t) 	 (6.2.1) 

with its associated r-th order state observation given by: 

z(t) = n { x(t),t} + v (t) 	 (6.2.2) 

Equation (6.2.1) represents the plant state variable differential 

equations and equation (6.2.2) represents the state observations where: 

x(t) is the n-dimensional system state vector 

Í'{x(t)t} is the n-dimensional vector-valued non-linear function 

describing the plant structure and includes any known inputs 

W(t) is the n-dimensional plant noise vector 

z(t) is the r-dimensional observation vector 

h {x(t), t } is the r-dimensional vector-valued non-linear function 

describing the relation.between the system states and observations 

V(t) is the r-dimensional measurement noise vector. 

The initial system state x(to ) is assumed to be Gaussian and uncorrelated 

with

{x(t 

the plant and measurement noise processes so that: 

cov 	 )W(t)} = 0 = covx(t), V(t)} (6.2.3) 

with thefollowing a-priori statistics 

E { x(to) } = pxo and Var { x(to) } = Pxo 

It is also further assumed that the plant and measurement noise processes 

are both white and Gaussian with zero means, uncorrelated and with 

the following covariances: 

cov { W (t) , W (t ) } = Q(t) b (t-Z ) 	 (6.2.4) 

cov ~ V (t), v (Z) } = R(t) 5 (t-t ) 	 (6.2.5) 

where Ō is the Dirac delta function. The (nxn) covariance matrix Q(t) is 

assumed 	positive semi-definite and symmetric whilst the (rxr) covariance 
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matrix R(t) is assumed to be positive definite and symmetric. In 

equation (6.2.1) it is assumed that any unknown vector of system 

parameters has been adjoined to the original system state vector as 

additional states. 

In the system state and parameter estimation problem, least-squares 

estimates of x(t) are to be determined such that the cost functional J 

is minimised, where: 

J = 	f f V t) R(t) V (t) +c,~~{t) Q 1(t) c",0 (t) dt to _  (6.2.6) 

A 
V(t) andW (t) being the estimates of the system observation noise and 

system excitation noise respectively. The state and parameter estimator 

problem therefore leads to a sequential minimisation of J of equation 

(6.2.6) subject to the dynamical differential constraint: 

x(t) = f 1 x(t) ,t f + G(t)0)(t) 	 (6.2.7) 

where 

(t) = z(t) — h { x(t) ,t } 	 (6.2.8) 
A 
(t) is the estimated system state and to to tf is the time interval 

over which the estimates are to be generated. Equations (6.2.6) and 

(6.2.7) represent a minimisation problem of the Euler-Lagrange type 

in the Calculus of Variations 81
. 

The solution to the optimisation problem defined by equations (6.2.6) 

and (6.2.7) may be obtained by applying the Pontryagin Maximum 

Principle 82 . The Hamiltonian82 for this optimisation problem is: 

ff 
	 2 	2 

H = 2 1I z(t)-h 1 x(t),t } IIR-1'(t)+ 2II w(t) lQ_1(t) 

+ AT(t) [Iwo,t1 + G(t)w(t)] 	(6.2.9) 

whereII • lare Euclidean vector norms of the enclosed arguments and A(t) 
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is an n-dimensional vector Lagrange multiplier. The necessary conditions 

for a minimum of J follow directly by application of the Euler-Lagrange 

technique, yielding: 

H - x(t) = f / x(t) ,t f + G(t) ((t) 	 (6.2.10) 

as H = A(t) _ a hT ^(t),t~ R-1(t) [z(t)-h iX(t),tl 
 J 

- a fT { (t),t }  A(t) ax 

ā(HH - 
0 = Q-1(t)6(t)   f GT(t) A(t) 	 (6.2.12) 

From equation (6.2.12), 

W (t) = -Q(t) GT(t)A(t) 	 (6.2.13) 

Substitution of W (t) into equation (6.2.10) yields the following 

equation: 

Ō 	

x(t) = f i x(t),tt - G(t) Q(t) GT(t)JAL(t) 	(6.2.1L) 

The initial and final state estimates, x(to) and x(t f)  are in general 

unknown; however, the transversality condition 28 associated with the 

minimisation of H leads to the following boundary conditions for A(t): 

juto) = A(t f ) = (6.2.15) 

Equations (6.2.11), (6.2.14) and (6.2.15) define a Two-Point Boundary-

Value Problem,TPBVP, the solution of which determines the least-squares 

estimate, x(tf), of x(tf). The solution to the TPBVP described above can 

be obtained by the method of continuous-time invariant imbedding 26,27,80 

6.3 Continuous-time invariant imbedding solution 

It is easier to obtain a solution to the TPBVP of the last section as a 

specific or degenerate case of a more general problem by imbedding the 

specific problem into a more general one. The procedure for this 

generalisation of the variational problem of section 6.2 is as follows: 

(6.2.11) 
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The boundary conditions of A(t) given by equation (6.2.15) can be 

imbedded into the more general class of conditions: 

A(tf) = C 

where C is an n-vector that can assume any value, including C = 0. 

tf  may now be assumed to be variable rather than fixed. For any 

trajectory that satisfiesA(tf) = C, the terminal value of x(tf) 

can be expressed as a function of C and tf  by: 

X(tf) = F(C,tf) 	 (6.3.1) 

If the right-hand-sides of equations (6.2.14) and (6.2.11) are 

replaced by the functions Œ(4,  C, tf) and 13(x, C, tf) where t is 

now tf  and Act) is now C, it follows that: 

x(t f) = 0. (F, C, t f) 

and 
• 
J.(tf) = 13(F, C, tf) 

where: 

cc(F,C,tf) = f(F,C,tf) - G(t)@(t)GT(t)C 

13(F'C,tf) - a hT(F,C,tf) 
 R-1(t) [z(t)  -h(Fctf)] 

 
X 

afT(F,C,tf)  C 
aX 

It follows from equation (6.3.1) that: 

X(tf+Qtf) = X(tf) + x(tf) Atf  

= F(C,tf) + (X (F, C, t f) A tf 

But since X(tf+ Atf) = F(C+ AC, tf+ Atf)this implies: 

F(C + AC, tf  + Atf) = F(C,tf) + a(F,C,tf) Atf 	(6.3.4) 

A first order Taylor series expansion of F(C+ Q C,tf+ Atf) results 

in the approximate expression: 
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F(c + A C,tf + Qtf) = p(c, tf) + 	F(C~tf)  a C a_ 

+ a F(C,tf)   
ātf 

a t f 
In a similar way, since: 

A(tf ) = C(tf ) 
it follows that AC =j/\ 

But because: 

0 J`= aA(tf ) Atf = 1 3(F, C,tf ) L1tf 
it also follows that: 

AC = ,3(F, C, tf) Atf 
Equation (6.3.5) therefore becomes: 

(6.3.5) 

(6.3.6) 

F(C + 	
a F(C,tf) 

	

C, tf + A tf) = F(C, tf) + 	C 	13(F,C,tf) Atf, 

a F(C, tf ) 
+ 	

 

at dtf 	 (6.3.7) 

Equating the right-hand-sides of equations (6.3.4) and (6.3.7) gives: 

a F(C,tf) 
F(C,tf ) + CC(F,C,tf ) ,dtf = F(C,tf ) + 	 Atf _  	a tf 

a F(C,tf) 
+ 	a C 	I3(F,C,tf) Atf 

or, after simplification, 

a F(C,tf) 	a F(C,tf) 
+ 	13 (F, C, t f ) = a (F,F, t f ) atf 	

a 
	_  (6.3.8) 

There is no general closed form solution to the partial differential 

equation (6.3.8), however a solution of the form: 

F(C,tf) = X(tf) _ p(tf ) (6.3.9) 
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may be assumed which leads to an approximate expression for the filtered 

estimate, x(t). Substitution of equation (6.3.9) into equation (6.3.8) 

yields: 

x(tf) - P(tf)C - P(tf) 13(x-P0, C,tf ) = a,(x-P C,C,tf ) 	(6.3.10) 

Expansion of a  and Lin Taylor series about the point C = 0 with terms 

of order two or higher neglected leads to the approximate expression: 

x(t)-P(t)C-P(t)I3(x,o,t)-P(t)ā CC  13(x-PC,C,t)} 	- C 
C 0 

= a.(x,o,t)+ 15/12.0c-PC, C, t) c 	(6.3.11) 
0=0 

tf  has been replaced by the general time variable t, and P is an 

unknown (nxn) symmetric, positive definite matrix. 

Collecting and equating like powers of C in equation (6.3.11) yields the 

following two sets of differential equations: 

X(t) = a (X,o,t) + P(t) i3(X,o,t) 	(6.3.12) 

P(t) = -P(t)  
C=0 	 C=0 

(6.3.13) 
From the expressions for Cl (• ) and I3( • ) , it follows that: 

aOLo,t) =a(X,t) = f(Lt) 
	 (6.3.14) 

	

13(1,0,t) =I30c,t) = ahTi(X,t)} R-1(t) z(t)-h(x,t)1 	(6.3.15) a _ 

In general the chain rule of differentiation gives for any function uj : 

aw 	- a *  all 	aF  

This, together with the fact that Ō g = 1 
F 

and ,a 	= -P(t) yields: a- 

* (-P(t))-G(t)Q(t)GT(t) G  o  a (x-PC,C,t) _ x  110X-PC,C,t) 
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and 

a f( ,t) 	P(t) - G(t) Q(t)GT(t) a ^ x 
(6.3.16) 

A 	_ - afT--~-iX't)  {13(A_pc,c,t)} 	 a_ 
a ÍaiT(_P .,..,t) 	

+ R-1-(t) {z(t)-h( -PCCt)}]  * [-P(t)]a 

R-1(t) {z(t)_h(t)  P(t) 

(6.3.17) 

Substitution of equations (6.3.14) and (6.3.15) into equation (6.3.12) 

yields: 
n 	^ 	a hT(x,t) 	n x(t) = f(x,t) + p(t) 	a 	R 1 (t) [ (t)_(t)] 	(6.3.18) 

whilst substitution of equations (6.3.16) and (6.3.17) into equation 

(6.3.13) gives: 

• afT(4,t) 	af(X,t) 	 a ahT(X,t) -1 
P(t) = P(t) 	a 	+ ---a x -- P(t) + P(t) a~ ax 	R (t) j z(t) 

-h(x,t)} P(t) + G(t) Q(t) GT(t) 	(6.3.19) 

The initial conditions for the two coupled differential equations, 

(6.3.18) and (6.3.19) are respectively: 

x(to) = p'xo 

2(to) = pxo 

Implementation of equations (6.3.18) and (6.3.19) generate the optimal " 

filtered estimate of the system state, x(t). Although the statistics 

of x(to) andW (t), V (t) were initially assumed, the derivations have not 

explicitly made use of these properties. In fact 	Pxo , Q(t) and xo  

R(t) could have been arbitrarily selected. 

a fT(X,t) 	a ahT('~'t) 
āx a ā 
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6.4 Non-linear machine and measurement equations 

6.4.1 Machine state equations 

The state of a single machine infinite busbar power system may be 

described by four non-linear differential equations 25,78 as follows: 

ed = -Aied + A2 b coss + A3  sin5 - A4 	(6.4.1) 

ēq  = 
-Aieq 

- A2 b sino + A3  cos 6 + A5 	(6. 4.2) 

• 
b = A7Ō + A8(eq  sin b - ed  cos ō ) +A6 	(6.4.3) 

If the machine state vector is defined as 

x = (ed  (agb Ō ) (6.4.4) 

then 
• 
xi  = -Aixi + A2  x4 cos x3  + A3  sin x3  - A4  

• 
x2  = -A1  x2  - A2  x4  sin x3  + A3 	cos x3  + A5  

x3• = x4  

x4▪ = A7x4  + A8(x2  sin x3  - x1  cos x3) + A6 

where xi, x2, x3  and x4  are the components of x... For the 

machine model and the derivation of the machine dynamical equations and 

expressions for the system constants Ao, A1,...,A8  refer to 

Appendix B. 

A more general representation of equations (6.4.5) to (6.4.8) in a 

vector differential equation form is: 

X(t) = f(x,t) 	 (6.4.9) 

To account for system modelling  errors and unknown disturbance inputs, 

equation (6.4.9) is corrupted by the finite-valued stochastic noise 

vector term (!J(t), to give a stochastic description of the machine 

behaviour as: 

(6.4.5) 

(6.4.6) 

(6.4.7) 

(6.4.8) 
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X(t) = f(x,t) + W(t) 	 (6.4.10) 

6.4.2 Machine measurement equations 

It is very difficult to measure the physical machine state variables 

directly, either because the state variables are inaccessible for direct 

measurement (for example ed, eq  the direct-and quadrature-axis 

stator voltages are not accessible for direct measurement) and/or 

their direct measurement is, economically, infeasible (for example S the 

machine rotor angle). Although it is theoretically possible to select 

a host of quantities as suitable measurement variables, only the 

following were chosen for measurement because of their ease of 

measurement and accessibility. 

1. Machine terminal voltage, Vt  

2. Machine real-power output, P 

3. Machine speed deviation, S 

Vt,  P and S may all be expressed in terms of the machine state variables 

as non-linear algebraic expressions: 

1 
Vt  = (ed2 + e 2)2  

q 
e 

P = xs (e sin 
b - ed  cos 6 ) 

1  

S = 

If the measurement state vector is defined by: 

zT  = (Vt  P S) 

then 

2 z1  = (x1
2  + x2') 

e 
z2 = xS (x2  sin x3  - x1  cos x3) 

1 

z3 = x4 

(6.4.11) 

(6.4.12) 

(6.4.13) 

(6.4.14) 

(6.4.15) 

(6.4.16) 

(6.4.17) 
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where z1, z2 and z3 are the components of z. As in the case of the 

state equation a more general vector representation of the measurement 

variables is possible, namely: 

z(t) = h(x,t) 	 (6.4.18) 

A practical measurement model will always account for meter inaccuracies, 

instrumentation and telemetery errors as well as meter biases. For 

this reason, another stochastic disturbance vector term,V (t) of finite 

value is added to equation (6.4.18) to represent the real-time 

measurement situation:- 

z(t) = h (x,t) + V(t) 	 (6.4.19) 

The dynamic power system state estimation problem has therefore been 

successfully transformed into its equivalent general state estimation 

problem (as described in the general theory of section 6.2) by 

suitably defining the non-linear vector functions f(• ) and h(• ). 

Comparison of equations (6.2.1) and (6.4.10) reveals that in the power 

system case, the input noise distribution matrix is the (nxn) identity 

matrix. 

6.5 Estimation of machine states  

By directly invoking the results of dynamic state estimation via the 

invariant imbedding technique (equations (6.3.18) and (6.3.19)), the 

state of the power system may be obtained from a sequential solution 

of the following set of non-linear differential equations: 

x(t) = f(x,t) + P(t) HT(x,t) R-1(t) [z-h(Lt)] 	(6.5.1) 

P(t) = P(t) FT(x,t) + F(x,t) p(t) + Q(t) + p(t) il__I
_ 

HT(x,t) R-1(t) [z(t) - h(x,t) 	p(t) 	(6.5.2) 

ah(X, t)) where H(x,t) = --~-- 
ax 



A subtle difference exists between this type of estimator and its 

corresponding extended Kalman-Bucy filter equivalent 28,83'8•  n 
Ō _(x,t) 

a. In the extended Kalman-filter, the Hessian of h(x,t) that is 	A7  
aX 

and r(X,t) = of—_(-  

with the initial conditions: 

A 
x(t0) 	0  

and 

P(to) = Po  
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is generally ignored leading to a simplified expression for 

the last term of equation (6.5.2) which is: 

-P(t) HT(x,t) R-1(t) H(x,t) P(t) 

Because no such assumptions are made in the method of this chapter 

better filtered estimates than any form of extended Kalman filter 

are obtained. 

b. All Kalman filtering techniques require precise prior statistical 

information about the noise processes W(t) and V(t) as well as 

the initial state estimate x(to) 

It is clear from the derivations that the covariance matrices Q(t), 

R(t) and PX0  need not be precisely known a-priori utilising the technique 

of this chapter, since Q(t), R(t), PX0  can all be arbitrarily chosen. 

6.6 Solution technique  

To solve the power system dynamical state estimation problem, the 

unknown initial conditions of x(t0) and P(to) must be prescribed 

together with the noise intensity matrices Q(t) and R(t). It is obvious 

from the estimator equations that the performance of the estimation 

scheme in terms of accuracy of estimates and its rate of convergence to 
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the true power system states both depend on the choice of the parameters 

x(to), P(to), Q(t) and R(t). Since in a power system the steady-state 

values of the machine states are always known, X(to) is chosen as the 

steady-state solution of x(t) = f(x, t). P(to) and R(t) are assumed 

to be both identity matrices. For a system with accurately known 

initial state estimates, P(to) set equal to the null-matrix provides 

the best initial estimate of P. If the statistics of V(t) is exactly 

known, then the best value of R(t) = E { V VT} 
Matrix Q(t) is the only unspecified one and it is simulated as a 

variable positive semi-definite matrix of the form Q(t) = (C (I) , 

where Gris a variable parameter. 

Since P(t) is an (nxn) symmetric positive-definite matrix, n(n+1)/2 

• differential equations arise from the P(t) equation. As the x(t) 

equation is n-dimensional, the overall total number of non-linear 

differential equations to be solved is n(n+3)/2. For a fourth-order 

synchronous machine model this leads to the solution of 14 non-linear, 

coupled differential equations. The solution of these 14 equations by 

means of a suitable integration routine generates the estimates of the 

machine state variables, x = (ed ego ō ) 

6.7 Numerical simulations and tests  

6.7.1 Simulation of measurements 

Errors from instrumentation and metering equipment were simulated as 

normally distributed random variables of zero mean and known variance, 

e. In deriving the true measurement vector, the true trajectory of 

the system state x(t) was initially generated and z(t), was then 

obtained by using the functional relationship between it and x(t), 

namely h(x,t). The practical measurement was then obtained by adding 
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normally distributed pseudo-random numbers to h(x,t). The variance di  

of each measurement was considered as a parameter)/ % of the true 

measurement function h(x,t) , that is Cq ={:y % hi(x,t) } 2 

6.7.2 Performance assessment 

For qualitatively assessing the performance of the estimation scheme, an 

index of performance, PI, was defined as follows: 

tf 
 PI t

f  
-to tE {(t)}T{å(t)  

io  
(6.7.1) 

where 

Ax(ti) = x(ti) - X(ti) 

the estimation error. 

The index of performance PI was calculated over the entire integration 

period in all regimes of operation of the synchronous machine at various 

measurement standard deviations and values of the parameter C. . 

6.7.3 Sets of measurement variables considered 

Three distinct measurement situations may be considered for the 

estimator, namely: 

i. When all three measurements of terminal voltage, Vt, real-power, 

P, and machine speed deviation, S, are available. 

ii. When only any two 

{Vt'

of  the thre

e{13,  

measurements are available, 

that is, {Vt,P} , 	S} or 	S} 

iii. When only one of the measurements is available, [1 , [Vt] or ES] 

These three distinct measurement situations were all tested. Table 6.1 

25  lists the values of the constants used '78 
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TABLE 6.1  

POWER SYSTEM CONSTANTS  

Constant Value in pu 

x 
s 

1.0 

xl  0.6 

Tdo 3.0s 

Td1  1.0s 

H 5.0s 

D 0.005 

es efd  e fq  1.0 

Pin  0.76923 

f 50.0 Hz 

W =271f 314.7 rads 

Two operating regimes of the synchronous machine were considered, 

hunting and step-out, with the following initial states: 

xT(to) = (-0.48593 0.86149 0.50763 2.15710) in hunting region 

x (to) _ (-0.49367 0.85013 0.76809 8.18410) in step-out region 

The initial estimates of the synchronous machine states were chosen to 

be the steady-state values; 

XT(to) = (-0.20944 0.97767 0.26809 0.00000) 

6.7.4 Discussion of results 

Tables 6.2 and 6.3 list the values of PI against the parameter at and 

Figs. 6.1 and 6.2 present the system dynamical response as well as the 

estimator results when all three measurements are available. Fig. 6.3 

refers to the case when only the measurement set [P,Vt] is available. 
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TABLE 6.2 

PERFORMANCE INDEX PI AS A FUNCTION OF VARIABLE  
PARAMETER C IN HUNTING REGION  

CC PI 

0.0 0.359 

50.0 0.113 

100.0 0.038 

200.0 0.036 

400.0 0.033 

750.0 0.030 

1000.0 0.028 

TABLE 6,3  

PERFORMANCE INDEX PI AS A FUNCTION OF VARIABLE 
PARAME'1'ER C( IN STEP-OUT REGION  

CC PI 

0.0 3,030 

0.2 2.996 

0.5 2.985 

0.8 2.984 

1.0 2.985 

100.0 13.633 

500.0 73.904 



162 

In all the figures, the machine state estimates are illustrated with 

asterisks, *. 

With P, R and x(to) pre-selected as mentioned earlier, the non-linear 

dynamical power system state estimation equations were implemented 

with y in the range 1% to 5% and the system excitation noise intensity 
matrix parameter Otassuming a sequence of values. Both the system 

and estimation differential equations were solved by means of a 

simple 4th-order Runge - Kutta integration routine 85'86  with a time-step 

of 0.005 sec. The choice of this time step was not just arbitrary but 

based on the realisation that stable integration results if the 

time-step is at most equal to 20% of the lowest power system time 

constant 35 

With all three measurements available (Figs. 6.1 and 6.2) all the 

estimates of the power system states were acceptable after a period 

of approximately 0.2 secs. In the simulations involving two 

measurements or less (not all indicated) the algorithm either failed to 

converge altogether or yielded estimates which were grossly erroneous. 

This observation is not surprising when one considers the need to 

establish system observability in all estimation problems before 

implementation. Unfortunately, observability cannot be established in 

non-linear dynamical estimation problems a-priori; it is only after 

the success of the estimation process that observability is deemed 

established under the measurement conditions assumed. It was observed 

that successful estimation was possible with fewer than three measurements 

provided at least one mechanical and one electrical state variable 

appears in the measurement defining equation h(x,t) as well as in the 
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measurement Jacobian matrix H(x,t). This assertion is substantiated 

by the highly acceptable results indicated in Fig. 6.3 where the 

measurement set {p,  V
t1 

 was considered available. 

Tables 6.2 and 6.3 show that high values of CC yield low Pls in the 

hunting region whilst low values of C yield low. as in the step-out 

region. It may be inferred from these apparently contradictory 

observations that the design of non-linear dynamical power system 

estimators requires careful consideration of the operating regime of 

the machine. 

6.8 Conclusions  

The present study illustrates the feasibility of designing a continuous-

time non-linear state estimator for a. synchronous machine. The 

restrictive assumptions made by Messrs Takata et al 25'78  and Arumugan 

et al. 24, namely the absence of system and measurement noise and the 

linearisation of the highly non-linear machine equations, have all been 

avoided. The resulting algorithm is shown to be of a similar nature 

to the extended Kalman-filter 83,84  except for the inclusion of terms 

arising from the measurement Hessian matrix and the lack of statistical 

assumptions about the noise processes. 

The principal revelations of the study are: 

i. Choice of C( and hence Q is intimately related to the operating 

regime of the machine. In the hunting region of operation high 

values must be prescribed whilst in the step-out regime low IX  

values are mandatory. 

ii. Successful estimation of the machine states is only possible if 

at least one mechanical and one electrical state variable appear 
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in both the measurement equation and its Jacobian matrix. 

iii. The use of only a single measurement fails to yield 

reliable estimates even with high values of Cc . 
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CHAPTER VII  

CONCLUSIONS 

7.1 Static power systems state estimation 

Two basic estimation techniques, LWLS and GWLS, applicable to a power 

system in a static operating state have been presented and studied both 

in the presence of normal observation errors and when grossly erroneous 

input measurement information exists. Approximations concerning the 

physical network characteristics used in the conventional fast decoupled 

load flow technique led to the derivation of two enhanced estimation 

methods P-6 , Q-E estimator and FDE, for the GWLS scheme. 

From the simulation tests it is concluded that, except for the constant 

gain-matrix algorithm, all the estimators described successfully filter 

normal errors of measurement at different levels of measurement redundancy 

and are capable of detecting and identifying sources of gross measurement 

error at reasonable levels of measurement redundancy. 

Although all the estimators converged reliably in a finite number of 

iterations, they required widely differing execution times. Indeed a 

comparison of Tables 2.5 and 3.13 shows the superiority of the AEP 

and FDE methods in terms of solution time requirements, where the AEP 

technique is the fastest of them all, and the full GWLS method the slowest 

Before any single estimation technique is deemed best suited for on-line 

implementation on small process control computers, its core requirements 

must be appreciably low. The exact comparison of the absolute core 

requirements of the methods described in this thesis is not directly 

possible; however the storage locations taken up by the largest matrices 

(A for LWLS and H for GWLS) offer a rough guide to the core used. For a 
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power network consisting of N-nodes and L-lines where only complex 

branch power flow measurements at all line and transformer ends are 

taken, the dimensions of A and H are 2L(N-1) and 4L(2N-2) 

respectively. The core size ratio is therefore approximately 1 to 4 

for the LWLS and GWLS methods. By re-using the storage space 

(overlaying) of the active measurements Jacobian for the reactive 

measurements Jacobian in the FDE method, its core requirements are 

then comparable to that of the AEP technique. In the light of the 

discussions on the solution times and storage space it is concluded 

that, except in applications involving very small-sized power systems, 

the direct on-line implementation of the GWLS estimation algorithm is 

not recommended. The FDE algorithm clearly possesses the same 

attractive computational speed and core requirements as the AEP method. 

Coupled with its versatility in handling not only branch power flow 

measurements but injection measurements as well, the FDE technique's 

computational superiority has been ascertained in the off-line studies 

of this thesis giving it immense prospects for on-line implementation 

studies. 

Finally it ought to be stressed that because of the linearising 

transformation and load flow approximations made in deriving the AEP 

and FDE techniques, they do not exhibit the statistical optimal 

properties of least square estimators possessed by the GWLS method. 

7.2 Dynamic power systems state estimation 

The estimation of the dynamic state variables of power systems was 

studied by considering a linear multi-area load frequency control model 

and a non-linear single machine infinite busbar model. 
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In the multi-area case it has been shown that global estimator, although 

superi±, presents problems in dealing with the solution of the highly 

dimensional matrix Ricatti equation. The results of the simulations 

show that provided supplementary signals from other areas are available 

in a given location, it is feasible to design dynamic linear estimators 

on a local basis. The decentralized estimation scheme offers the 

following advantages over the global scheme: 

i. estimation involving large power system areas can be handled, 

in smaller decentralised forms 

ii. computer core requirements are much lower when solving the 

algebraic matrix Ricatti equation 

iii. only a minimal amount of information need be exchanged between 

areas. 

For the non-linear synchronous machine model, the machine state variables 

were reliably estimated from noisy measurements of speed deviation, 

terminal voltage and generator output power. The simulations 

established that for reliable estimation the measurement Jacobian and 

measurement defining equations must contain at least one mechanical 

and one electrical state variable. The results indicated that successful 

estimation can only be achieved by a careful choice of the input 

disturbance noise covariance matrix Q, which depends on the operating 

regime of the synchronous machine, that is whether in the step-out 

region or hunting region. 1_000 Q values are recommended for the step-

out region and high Q values for the hunting region. 

7.3 Suggestions for further research work  

i. The static state estimation algorithms need to be assessed in a 

real-time situation to provide a meaningful comparison of their 
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on-line capabilities. Arriola-Valdes assessed the on-line 

behaviour of the AEP (LWLS) estimation technique on the Power 

System Simulator at Imperial College. A further investigation 

ought to be carried out on the simulator to compare the on-line 

operational characteristics of the LWLS, GWLS technique and its 

enhanced approximations, P-6, Q-E and FDE methods. The 

comparative results of these on-line tests would, hopefully, 

provide a more reliable and tried basis for prescribing general 

rules for choosing static state estimation algorithms for 

on-line power system operation. 

ii. To obtain further computational gains in speed of solution and 

computer core storage in the GWLS static state estimation method 

efforts should be directed towards the provision of the same 

constant coefficient matrix for both the active and the reactive 

power loop solutions for the state estimate mismatch vector 

( A b k,  Ek).  Such a constant coefficient matrix will need to 

be stored once only at the beginning of the estimation process 

and will require only one factorisation per iteration for both 

power loops to yield a still faster and lower core storage 

technique. 

iii. The linear LFC decentralised dynamic estimation scheme described 

in Chapter V of the thesis used a simple two-area power system 

model, where the normally unknown time varying load power demand 

d(t) term was assumed constant in magnitude and time invariant. 

By considering a power system LFC model consisting of a mixture of 

hydro-, thermal- and nuclear-power plants in a multi-area 

situation, a better and fax more reaching conclusions may be 



172 

reached concerning the viability of the decentralised dynamic 

estimation scheme. For a large area the dimensions of the matrix 

Ricatti equations needed to be solved to obtain the measurement 

feedback gain matrices Ki  (Kalman filter gain) are also 

correspondingly high. It may therefore be necessary to search 

for more efficient methods of solving for the filter gain 

matrices. 

As the load demand patterns Pd  of a power system is continually 

changing, the assumption of constantQ Pd  is not strictly true. 

One way of considering this unknown load demand situation in 

estimation is to assume that A  Pd  has a known mean value with a 

known stochastic variation about this mean value or to identify 

the load demand A Pd(t) before implementing the estimator. A 

useful research may therefore be conducted to estimate A  Pd(t) 

using mathematical identification techniques. Since the 

identification of A  Pd(t) is then a subproblem of the overall 

estimation process, the amount of computations to be performed 

becomes formidable and the challenge is to be able to solve 

the two problems concurrently. 

iv. The model which was used to investigate the performance of the non-

linear dynamic power system estimator involved only four basic 

machine state variables namely, the direct and quadrature axes 

voltages ed  and e, the machine speed 5 and the machine rotor 
angle 6 . By including the state variables of the associated 

control equipment i.e. Automatic Voltage Regulator (AVR) and 

Governor, the order of the non-linear machine differential 

equations may be suitably increased to give a fuller, more complete 
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machine representation, and consequently better machine state 

estimates may be derived. With such an enlarged state vector, 

the associated machine differential equations will become 

highly dimensional and increase the computational effort required 

to solve the non-linear machine estimation problem. The large 

size of the enlarged state vector requires more efficient numerical 

integration techniques for solving the estimation equations, 

especially if the non-linear system of equations happens to be 

stiff. Stochastic control algorithms should be :designed to 

investigate the reliability of the derived state estimates. Their 

effectiveness may be measured in terms of the success of the 

feedback control laws used to augment the transient stability 

behaviour of the machine. 

v. Other areas worth further investigation are: 

a. the non-linear dynamic estimation scheme applied to a multi-

machine power system model 

b. possible design of decentralized estimation schemes for the 

multi-machine, non-linear dynamic estimator 

c. derivation of stochastic optimal control strategies with 

the system states determined from the above schemes. 
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APPENDIX A  

THEORY OF WEIGHTED LEAST SQUARES ESTIMATION  

A.1 Introduction 

As a prelude to power systems static state estimation, the theory of 

least-squares is developed. It is an application of minimum variance 

estimators to multivariable problems in situations where a Down 

functional relationship exists between a system's observed variables 

and the system's state and/or parameter vector that needs to be 

estimated. The functional form is often derived on the basis of a 

known theoretical or deterministic model of the system behaviour 

arising from the natural physical laws governing the operation of 

the system. Normally, mathematical descriptions of most physical 

processes and phenomena are, in general, non-linear in nature; 

however from the point of view of problem tractability, equivalent 

linear approximations to the essentially non-linear system equations 

may be derived either by a mathematical transformation or through 

a mathematical linearisation. Weighted least squares estimation 

may therefore be performed with two distinct system models, the 

linear system model and the non-linear system model yielding 

respectively the Linear Weighted Least Squares estimator (LWLS) and 

the Generalized Weighted Least Squares estimator (GWLS) 

A.2 Problem statement and formulation 

Consider a vector zm  of the raw system observations that is 

functionally related to the system state and/or parameter vector xt  . 

The state estimation problem entails the determination of a vector 

A that is the best approximation to xt  according to a chosen criterion. 

Often, the number of system measurements exceeds the number of states 
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to be determined (redundancy) leading to the determination of x from 

a mathematically over-determined yet independent system of equations. 

Multiple solutions for x may be obtained but subject to the choice 

of a particular criterion of best-fit, a specific best solution for 

A can be derived. 

The relation between the raw system measurements and the system 

state and/or parameter vector can be qualitatively described by38 : 

Raw measurement = True-but-unknown measurement + measurement 

errors and uncertainties 	(A.2.1) 

Equation (A.2.1) is mathematically written as: 

-m Zt  +V — 
where: 

(A.2.2.) 

Z : is an m-dimensional vector of the raw system measurements —m 

which are of different mean-values and have unequal variances 

and are uncorrelated in pairs. 

Zt: is an m-dimensional vector of the true-but-unknown values of 

the exact system measurements, it may be either a linear 

or a non-linear function of the system state and/or parameter 

vector. 

V: is an m-dimensional vector of stochastic random variables that 

represents spurious system observation errors and uncertainties. 

The first- and second-order central moments of the random variable 

V are assumed to be: 

E(V ) =0 

E( V VT) =R 

(A.2.3) 

(A.2.4-) 

where: 
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R: is an (mxm)-dimensional diagonal matrix of the individual 

measurement error variances. The diagonal property specifies 

that the measurement errors are uncorrelated in pairs and the 

i-th measurement has variance 62 = R... 1 	ii 

E is the statistical expectation operator. 

The weighted least squares estimate of xt  is defined as the value 

of xt, denoted by x, that yields a minimum of the sum of the squares 

of weighted differences between the actual, raw measurement (Z) and 

its true-but-unknown value (At). The criterion for this best-fit 

situation is given by the minimisation of the quadratic cost functional 
36-39,46,88 

(A.2.5a) 

(A.2.5b) 

P is a. weighting-matrix that is always restricted to being symmetric 

and positive-definite. 

In a number of practical situations, certain components of the 

measurement vector Zm  may be m 	more to be ore accurate (low . 2) than 

others (high 5.2). To lend more credence and importance to the more 

accurate and hence more reliable measurements, the matrix P, which is 

present: inJ(xt) to reflect exactly this situation, is chosen 46 to 

j(t) _ (Zm-Zt)
T 

 be R-1. The quadratic index of fit is then: 

R 1(ZZ) 
	

(A.2.5c) 

A.3 Linear weighted' least sq»ares estimation (LWLS) 

For a linear description of the observation equation, the raw 

measurement is expressed as: 

= Axt  + V 	 (A.3.1) 

expression 

J(xt) = (Z -Zt)T  P(Z-Zt) 

= VT  P V  
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and the quadratic cost functional to be minimised as 

j(xt) = (Zn Axt) T R-1 ( -Axt) (A.3.2) 

A 	is an (mxn)-dimensional coefficient matrix which establishes 

the linear relationship between the true measurement and 

the state and/or parameter vector xt. 

xt is the true-but-unknown n-dimensional vector of system states 

and/or parameters which is to be estimated. 

At the minimum of J(xt), the following orthogonality condition holds: 

= -2ATR-l(Z-Ax) = 0 

x = xt 

or: 

ATR
-1 

(Zm-Ax) = 0 

(A.3.3) 

(A.3.4) 

from the above equation, the best estimate of xt, which is x, is 

given by: 

(ATR-1A) X = A
TR-1Z 	 (A.3.5) 

Defining: 

= (ATR-1A)-1 

then it follows from equation (A.3.5) that: 

x = ~x ATR-1Z 

(A.3.6) 

(A.3.7) 
The quantities derived from xt and x may be defined as follows: 

a. the true-but-unknown measurement Zt: 

Zt = Ax t (A.3.8) 
b. the estimated value of the measurement z: 

Z = Ax (A.3.9) 
c. the measurement residual r being the difference between 

the raw measurement and its estimated value 

A 
r = Z - Z 
— —m -  

= A(xt x) + V (A.3.10) 
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It is now necessary to determine the first-and second order central 

moments of the estimated variables for post estimation reliability 

and error analysis. 

A.3.1 Expectations and covariances of the estimated variables E(x), 
E(z), E(r), cov(A), cov("z), cov(r), EiJ(x)} 

i. Expectation E(x) and covariance cov(x) of x 

From equations (A.3.7) and A.3.1): 

2S-  VIA AT 	R-1 (Ax + V 	) 

= x t+ EX ATR 1 V 

The expectation of the system state estimate x is then: 

E(x) = E(xt) + ~X ATR-1E(v ) 

= Xt 

The expected value of x is therefore xt which is the true value of 

the system state vector that we initially set out to estimate. The 

LWLS estimate x of xt is therefore unbiased 36'37 

The goodness of the state estimate x is measured in terms of its 

variability about its expected value and is calculated as its covariance 

matrix which is defined as 36'37 : 

cov(x) = E x-E(X (_E(ijT 
= E(x - xt)(x - xt)T 

From equation (A.3.11) 

x - at = Ex ATR-1 V 

Hence 

cov(x) = E( Ex ATR1 V VTR1A EA) 

= 	ATR 1 E(V V
T) R-1A LA 

x 

(A.3.13) 

(A.3.11) 

(A.3.12) 
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The variances of the individual components of the system state 

estietates,0 2., are given by the diagonal elements of the covariance 

matrix L.iX . 

'xi 	( `x)  ii 
	i = 1,2,...,n 	(A.3.24) 

The matrix 1x = (ATR-1A)-1  is referred to in the literature as 

the system information matrix 29,47,48,89  

ii. Expectation E(2) and covariance cov() of z 

Since the estimated measurement Z is given in equation (A.3.9), its 

expectation is given by: 

E(Z) = E(Ax) 

= AE(x) 

and by virtue of equation (A.3.12) 

E(Z) = Axt  

= Zt  (A.3.15) 

The estimator for z is therefore also unbiased, yielding the true 

value of zt. 

The covariance of z is similarly defined as for x, namely: 

cov(z) = EO-E(z))(Z-E(Z)) T 

= E(1-Zt)(Z-Zt)T  

= E(AZ-Axt)(Ax-AxOT  

= AE(x-xt) (x-xt) 
T AT 

	

= A LA  AT 	 (A.3.16) 

The variances of the individual components of z,O O. are given by 

the diagonal elements of its covariance matrix 

	

0-zi = (A EA  AT ).i 	i = 1,2,...,m 
	

(A.3.17) 

iii. Expectation E(r) and covariance cov(r) of r 

The residual vector of measurement errors r is as given in equation 
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(A.3.10). Thus: 

r=ZmZ=A(xt - )+V 

_ -A( - xt) + V 

From equation (A.3.11), 

x-xt = - X A
TR-1 V 

Therefore: 

r = Zm-Z = -A Zx ATR-1 V+ V 

=(Im-AEA ATR-1) V 

where Im is the (mxm)-dimensional identity matrix. 

Defining WA = I-AEA ATR-1 then 

(A.3.18) 

(A.3.19) 

r= WA V 	 (A.3.20) 

It follows that: 

E(r) = W-E( V ) 

= 0 	 (A.3.21) 

WA is  known as the residual sensitivity matrix2947,48,89 o The 

measurement residual is therefore also unbiased. 

The covariance of the measurement residual is expressible as: 

cov(r) _ 

_ WA R(W )T 

Im A ~X A
TR-1) R (Im A EA ATR-1) 

l 	I 

= R-A Ex AT (A.3.22) 

= WR 	 (A.3.23) 

The variance of the i-th component of the measurement residual O 
ri 

E(,... ,„T) = E YI V VT(WA)T 

is therefore equal to i-th diagonal element of cov(r) _ Er and 

0'2  = (R-AEA 
	i = 1,2,...,mi 	(A.3.24) 
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iv. Expectation of the minimum value of the quadratic performance 

index, 44)} 

At the minimum, Z - Axt = Z 	= WA V . 
m 

In other words: 	
~i j(a) = ( _A ) TR-1 

r
. t Zm-Ax) _ (WA V )TR-1(0 _ V ) 

= VT(W )T R-1 W V 

= vT (Im_R-1A EAx AT) R-1(Im-A EX ATR-1) V 

= vT (R-1-R-1A 
A 

ATR-1)(Im A 
rX 

ATR-1 

T  	AT -1 1 AT -i 1 AT -1 AT = V (R-1_R-1A    ~X R -R A ~X R +R A ~X R A ~X R-1) V 

= VT (R-1 R-1A Ex ATR-1) V 

= VTR
-1(Im A EX ATR-1) V 

= vT R-1WA V 

= V TR-1(R-A E AxAT)R-1 V 

= (R JT Er (R VJ 	 (A.3.26) 

The expected value of J(x) is therefore from (A.3.25) 

E {J()}= E( VTR-1WA ) 	 (A.3.27) 

Now any weighted quadratic form ETB E is a scalar sum which is 

identical with its trace, tr( ETB E). Moreover, matrices may be 

commuted under the trace operator37 , yielding: 

E(ETBJ =E tr (ETB 

=E tr (BEET)} 

= tr{B E(E ET) } 

Therefore 

E{J(x)} = tr{R-1WAE( V VT)} 

(A.3.25) 
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= tr (R 1WAR) 

= tr (WARR-1) = tr (WA) 

= tr (I -AA EAATR 1) 

= tr(Im) - tr (Ex ATR-1A) 	 (A.3.28) 

The matrices ATR-1A and Ex = (ATR 1A)
-1  are both (nxn)-dimensional. 

Hence Ex ATRIA is the (nxn)-dimensional identity matrix, In. 

Therefore 

E{ J(21)}= tr(Im) - tr(In) 

= m - n 	 (A.3.29) 

It is interesting to observe from all the derivations so far that 

regardless of the probability distribution of the assumed measurement 

model, all the system parameters and variables have been estimatad without 

bias. In particular we have stayed clear of any probabilistic 

distributional assumptions about the measurement errors, V and the 

measurement residuals, r. The analysis has, despite these assumptions, 

led to least-squares point estimates of x, z and r = zm  z. In normal 

practice point estimation alone is not enough. It is also necessary 

to supply some statement about the error on the estimate and more 

importantly to ascribe a certain amount of confidence to the point 

estimate of each particular variable. To do this requires 

probabilistic distributional assumptions about the measurement model. 

Usually, it is justifiable to assume that the stochastic vector of 

measurement errors V is a normally distributed random vector on 

the basis of the Central Limit Theorem53. That is: 

V--N(0, R) 

with the probability distribution function 3637,88 
• 
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1 	iVi - 	F( Vi)}2 
p( V.) = 	exp -z * 

(2TtRii) 2 	nil 

i = 1,2,...,m 

where 

p (Vi) = probability density function of Vi 

E (V.) = 0 

E(VVT) =R 

and Rii = variance of the i-th component of V 

v. Probability distribution of J(x) 

From equation(A.3.26) 

J(~) = (R-1 V)T 
Er 

(R-1 

and since 

r = W V 	from equation (A.3.20) 

_ (R-A E X AT) R-1 V 

= E.r R-1 V 

it follows that provided 
r 

is invertible, 

R-1 V =( ~r)-l r 

giving 

J(
4
)=rT ( EA)-1 Er ( ~A)-1 r 
= rT ( Er)-1 r 	- 

m 	ri 2 

_ 
i=1 	diag( r)ii 

Because it has already been established that: 

E() = 0 

cov(r) = Ll r 

r =WV 

(A.3.30) 

(A.3.31) 
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and by virtue of the latter linear relationship between r and V, and 

the fact that V is a normally distributed random variable, it can be 

proved that r is also a normally distributed random variable whose 

distribution is given by
88: 

r N(0, R-A EA AT) ~--  (A.3.32) 

rl 
	 is therefore a standardised unit normal random variable36,37, 

that is: 

— N(0, 1) 	 (A.3.33) 

diag( E,r)ii 

Equation (A.3.31) which represents J(2) is therefore the sum of the 

squares of independently distributed unit normal random variables 

yielding a chi-square (X2) distributed random variate with degrees 

of freedom equal to the rank of the quadratic form for J(x), that is 

m-n37. Or: 

J () ,., X2 
	

(A.3.34) 
df=m-n 

where df stands for degrees of freedom. 

A.4 Generalized .or non-linear weighted least squares estimation (OWLS) 

In the case of a non-linear measurement model, the observation defining 

equation is a non-linear vector function of the true-but-unknown 

system state and/or parameter vector xt. 

gs = h(xt) + V 	 (A.4.1) 

where 

h(x) is an m-dimensional non-linear vector function of 	that 

determines the true-but-unknown exact measurement vector. 

4&iag( E 
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As in the linear case, GWLS estimation produces the minimum-mean-squared 

unbiased estimate x of xt  by minimising the corresponding weighted 

giiairatic performance index, J(xt), where: 

J(xt) = Z - h(xt TR-1[m_ h(xt) 
	

(A.4.2) 

Differentiating J(xt) with respect to xt  and setting the result to 

zero leads to a set of non-linear simultaneous equations, which is 

practically difficult to solve directly. However, J(xt) can be 

minimised directly by an iterative process that involves a 

linearisation of the non-linear system equations. 

The Gauss-Newton method 53  is applied by replacing the non-linear 

observation equation of (A.4.1) by the terms of its Taylor series 

expansion about x: 

Zm  = h(x) + H(x)(xt 	+ V + H.O.T. (A.4.3) 
The higher order terms, HOT, may be neglected to a first order 

approximation to give Z= H(x) (xt-x) +V 
	 (A.4.4) 

where: 

H(s1) =  a h(xt) 

xt xt=x 

is an (mxn)-dimensional Jacobian matrix 
that relates changes in the measurements 
to the changes in the state xt. 

Minimisation of J(xt) by setting its first derivative with respect 

to xt  to zero yields the optimality condition 

= -2HT(2) R-i  km-h..dd  = 0 (A.4.5) 
A 

xt = x 

From equation (A.4.4) we get: 

HT(x) R-1  h(x) + H(x)(xt )+ V - h(3 = 0  

a 	J(xt) 
t 
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or: 
HT(2) R-1H(2)  (at  41) 

-HT(x) R-1 V  

Defining: 

n 
= HT(x) R-1 1161)

) 
-1 

it follows that: 

xt  - 

 

A = - EX H
T A -1 ). R 	V  

(A.4.6) 

A 
The equivalent derived quantities based on xt  and x may be similarly 

defined as: 

i. Zt  = h(t) 
A 

ii. Z = h(x) 
A 

iii. r = Z - Z 

= h(xt) + V -h(x) 

It is necessary to show that the non-linear technique also yields 

estimates of system states and variables with the same properties as 

those obtained with the linear technique. 

A.4.1 Expectations E(x), Eq), E(r), E{ J(x)t and covariances 

cov() , cov() , cov(r) of the estimated variables 

i. E(x) and cov() 

From equation (A.4.8) the expectation of x is derived as: 

E(xt  - 2) = - EX HT(X) R-1E( y) 
implying that 

E(x)=xt 	 (A.4.9) 
The GWLS estimator therefore also yields an unbiased estimate 

A of xt. The covariance matrix of x is also given by: 

cov(x) = E x- E(x)} f x- E(x)} T  
A = E (x - xt) (x - xt)T 
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= E EX HT (x) R-1 V VT R-1H(x) EX 

ii. E( P.) and cov(?) 

	 (A.4.10) 

To derive E(), consider the measurement mismatch vector trm: 

- z=h(xt) - h( ) 
= h02s) + H(x) (x —x) —h(x) 

that is: 

Et - z = -H(x) 2 X HT(x) R-1 v 

Thus: 

E(zt ) _ 41(1)E11 HT(X) R-1E(V ) 

= 0 

(A.4.11) 

Therefore: 

E(z) = zt 	 (A.4.12) 

yielding similarly an unbiased estimate z for zt 

cov(z) = E z-E(j)1T 

= E (z-zt)(z-zt)T 	1 

= 
 E{

~ 	H T~ -1 	T-1 ~ 	H 	 ~ H(x) Ex H (x) R V V R H(x) EX HT (x) 

= H(X) Ex 
HT (A) 

iii. E(r) and cov(r 

The residual vector is given by: 

A r = z - z —m - 
h(x) + H(x)(xt—x,) + V —h(x) 

-=—H(2 	RT( 2s) R-1 V + V 

= S I H(x) L,X HT (Ito 2-1} V 

Similarly defining: 

WH ={īm-H(x) 
T x 

HT( X) R-1} 

(A.4.13) 

(A.4.14) 
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r = wH 	 (A.4.15) 

then it follows that: 

E(r) = W'E(V ) 

= 0 

The GWLS measurement residual r is also unbiased. 

cov(r) = E(r ET) = Ej W-d  V VT(WH)T  } 

= WH  R 

= R - HOD 	HT(x) 

Defining 	= R - H(1) ExH  0( 20 

iv. E J()} 

At the minimum, the quadratic performance index is: 

J(x) = rTR-lr 

V T R-1WH V  

= (R-1 V) Er  Er R- 1 V  

(A.4.16) 

(A.4.17) 

(A.4.18) 

By comparing the expressions for J(x) in equations (A.4.17) and 

(A.4.18) with those of equations (A.3.25) and (A.3.26) respectively, 

subject to the same probabilistic distributional assumptions for V, 

it may be similarly established that: 

E 1J(x)} = m-n 	 (A.4.19) 

with 

J(x) ~ X2m-n 	 (A.4.20) 

Table A.1 present a tabulated summary of the salient features of the 

LWLS and GWLS estimators. It is clearly borne-out that the two 

techniques are at variance only in respect of the two (mem)-dimensional 

matrices A and Htx). These two matrices establish a one-to-one 

equivalence between the LWLS and GWLS estimation processes. 
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TABLE A.1  

COMPARISON OF LWLS AND GWLS EXPRESSIONS 

System Variable LWLS GWLS 

Objective function (zm -Axt )TR1(-m 
-A-t  

[-(t1 
TR 
	[..!m-LI.(t11 

J(14)  

Raw measurement 
z 

Axt + V h(xt) + 	V 

Estimation Error 
xt - x 

-(AT R-1 A)
-1 

AT R-1 V 
-(HT R-1 H)-1 HT R -1 	V 

Measurement residual [Im_A(ATR_1A)_1ATR_iV  [ 
L. - z 	- z - 	-m 	- 

Measurement predic- 
tion error zt-z 

-A(ATR-1A)-1ATR-1V -H(HTR-1H)-1HTR-1 	V 

Expectation of x x xt 

Expectation of z zt(= Axt) zt i= h(xt)} 

Expection of r 0 0 
E(r) 

Covariance of x ~A 	
(ATR

-lA)-1 22H = (HTR-1H)-1 

cov(x) = 	x 
x x 

Covariance of z 
~A = A ~A AT ~H = H ~H HT 

cov(z) _ z z 	x z 	x 

Covariance of r 
er = R - A EA AT 

Er H
= R - H ~H HT 

cov(r)
-Er 

 x x 

Expectation of J(x) m - n m - n 
E[J(2)] 

Distribution of V N(0, R) N(0, R) 

Distribution of r N(0, 	2:A ) N(0, 
EH 

) 
r r 

Distribution of J() )(2 	=m-n 2 X df=m-n 
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Although it has been possible to derive estimates of the 

covariances EX, E z and 2]r of the system quantities, it is realised 
that these covariances being a posteriori estimates are determined only 

after the results of the estimation process have been accepted. For 

this reason, the individual normalised random. variables defined by 

X - E(~ , z - E(t) , r - ~( 

4-f7 	Zr 

are strictly not independently distributed unit normal random variates. 

They are actually t-distributed random variables. The impact this 

property has on the intervals (confidence limits) in which the values 

of the estimated variables lie will be described when the theory is 

applied to the power systems problem. 
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TABLE A.3.1  

5-NODES, 7-LINES NETWORK: LOAD FLOW VOLTAGE PROFILE AND  
LOAD CONDITIONS  

BUS 	ETRUE,ei  r'rxUE,fi PTRUE,Pi  QTRUE,Qi  

1 1.06000 0 1.29598 -.07465 

2 1.04620 -.05130 .19915 .20040 

3 1.02030 -.08920 -.44907 -.15179 

4 1.01920 -.09510 -.40105 -.04771 

5 1.01216 -.10900 -.59917 -.10055 

TABLE A.3.2  

23-NODES, 30-LINES NETWORK: LOAD FLOW VOLTAGE PROFILE AND 
LOAD CONDITIONS  

BUS ETRUE,ei  FTRUE, fi  PTRUE,P. QTRUE, Qi  

1 1.01860 0 -.12133 .51134 

2 1.02140 -.02900 .24177 .35838 

3 1.03130 .09020 1.02799 .56477 

4 1.03600 .17070 .20280 .58174 

5 1.00530 .30320 9.02678 1.66655 

6 .98950 .35130 8.50714 1.18523 

7 .99540 .00600 -.48116 -.12011 

8 .98630 .16790 -.03599 -.00190 

9 1.00370 .03990 -1.49627 -.38006 

10 .98240 .04800 -1.76855 -.45118 

11 1.01000 .02280 -.00018 -.01030 

12 1.02560 .14740 -.04382 .00259 
13 1.01830 .18600 .04794 .00318 

14 1.00100 .00550 -.47034 -.12962 

15 1.00710 .14280 -2.00887 -.50242 

16 .98880 .25310 -1.31018 -.33990 

17 .98900 .21570 -3.44976 -.85737 

18 .99700 .19590 -1.03706 -.24993 

19 .99410 .18820 -3.75679 -.94816 

20 .98700 -.06760 -. 51020 -.13054 

21 1.00090 .24200 -3.74937 -.94161 

22 1.00220 .23990 2.09813 .51878 

23 .98090 .08460 -.40996 -.09972 

All values are in per unit form on 100-MVA base 
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TABLE A.3.3 

10-NODES, 13-LINES NETWORK: LOAD FLOW VOLTAGE PROFILE AND 
LOAD CONDITIONS  

Bus r1'lUE, ei  FTRUE, fi  PTRUE, P1  QTRUE, Qi  

1 1.04000 0 4.21462 .47894 

2 1.04840 .03450 3.83853 -.24743 

3 1.04258 -.11630 -.38130' .50053 

4 1.03410 -.11050 -4.66122 1.76510 

5 .99270 -.18580 .06049 .08040 

6 1.02820 -.15620 -.19445 .57995 

7 1.02040 -.13750 -.89883 -.39907 

8 .94570 -.12770 -2.59948 -1.55075 

9 .97950 -.18620 -1.00121 -.49997 

10 1.02990 -.07050 1.92165 -.80006 

TABLE A.3.4  

14-NODES, 20-LINES NETWORK: LOAD FLOW VOLTAGE PROFILE AND 
LOAD CONDITIONS  

Bus ETRUE,ei  FTRUE,fi  QTRUE,Qi  fIWJE,Pi  

1 1.06000 0 2.32339 -.16708 

2 1.04100 -.09070 .18326 .29705 

3 1.03690 -.26280 -.11264 .04641 

4 .98510 -.22230 -.94214 .04370 

5 1.06020 -.25190 .00052 .17346 

6 1.00200 -.18250 -.47857 .03898 

7 1.03290 -.24550 -.06285 -.01388 

8 1.00820 -.15570 -.07481 -.01551 

9 1.02040 -.27240 -.23217 .05858 

10 1.01470 -.27390 -.09124 -.05895 

11 1.02180 -.26980 -.03399 -.01790 

12 1.01860 -.27440 -.06097 -.01597 

13 1.01360 -.27460 -.13491 -.05796 

14 .99520 -.28610 -.14903 -.05019 

All values are in per unit form on 100-MVA base 
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TABLE A.3.5  

5-NODES, 7-LINES NETWORK: LINE PARAMETERS 

Line 

EB 

Branch Impedance 
Shunt 
Admittance 

SB R(P.U) X(P.U) YS(P.U) 

1 2 .0200 .0600 .0300 

1 3 .0800 .2400 .0250 

2 3 .0600 .1800 .0200 

2 4 .0600 .1800 .0200 

2 5 6.0400 .1200 .0150 

3 4 .0100 .0300 .0100 

4 5 .0800 .2400 .0250 

TABLE A.3.6 

Line 

EB 

10-NODES, 13-LINES NETWORK: LINE PARAMETERS 

Branch Impedance 
Admit 
Admittance 

SB R(P.U) X(P.U) YS(P.U) 

1 2 .0099 .0484 .0506 

1 3 .0450 .1236 .0506 

1 4 .0118 .0780 .0759 

1 8 .0114 .0553 .0506 

2 4 .0099 .0484 .0253 
3 7 .0163 .0638 .0759 
4 6 .0074 .0489 .0253 
4 7 .0163 .0652 .0759 
4 8 .0488 .1916 .0506 

4 10 .0039 .0197 .0506 

5 9 .0118 .0780 .0759 
6 9 .0188 .0628 .0506 

8 9 .0488 .1916 .0506 

All values are in per unit form on 100-MVA base 
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TABLE A.3.7  

14-NODES, 20-LINES NETWORK: LINE PARAMETERS 

Line 

EB 

Branch Impedance 
Shunt 
Admittance 

SB R(P.U) X(P.U) YS(P.U) 

1 2 .0194 .0592 .0264 
8 1 .0540 .2230 .0244 
2 4 .0470 .1979 .0219 
2 6 .0581 .1763 .0187 
2 8 .0569 .1739 .0170 
3 8 0 .2349 .2895 (-.3106) 
3 11 .0950 .1989 0 
3 12 .1229 .2558 0 
3 13 .0661 .1303 0 
4 6 .0670 .1710 .0173 
5 7 0 .1761 0 
6 7 0 .2045 -.1100 (0.1076) 
6 8 .0133 .0421 .0064 
6 9 0 .5389 -.0594 (0.0575) 
7 9 0 .1410 0 
9 10 .0318 .0845 0 
9 14 .1271 .2704 0 

10 11 .0821 .1921 0 
12 13 .2209 .1999 0 
13 14 .1709 .3480 0 

All values are in per unit form on 100-MVA base 
Other line end shunt admittances in brackets 
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TABLE A.3.8  

23-NODES, 30-LINES NETWORK: LINE PARAMETERS 

Line 

EB 

Branch Impedance 
Shunt 
Admittance  

SB R(P.U) X(P.U) YS(P.U) 

1 2 .0025 .2000 0 

1 11 .0242 .0540 .0059 

1 14 .0309 .0693 .0076 

2 20 .0404 .0888 .0099 

2 7 .0615 .1620 .0171 

3 10 .0233 .0514 .0228 

4 12 .0043 .0351 .1187 

4 13 .0043 .0351 .1187 

5 19 .0045 .0362 .1226 

5 21 .0019 .0156 .0528 

5 8 .0325 .0709 .0079 

6 16 .0020 .0164 .0555 

6 13 .0089 .0720 .2436 

7 9 .0229 .0504 .0056 

8 23 .0446 .1003 .0109 

8 10 .0597 .1315 .0146 

8 12 .0024 .0867 -.3805 (0.3683) 

8 13 .0024 .0881 -.5671 (0.5401) 

9 14 .0266 .0700 .0074 

9 10 .0597 .1315 .0146 

9 12 .0019 .1365 -.3662 (0.3488) 

9 13 .0022 .0819 .2904 (-.2975) 

11 23 .0576 .1520 .0160 

12 15 .0038 .0307 .1039 

15 18 .0035 .0288 .0976 

16 17 .0010 .0080 .0272 

17 18 .0021 .0167 .0567 

18 19 .0016 .0127 .0431 

18 22 .0024 .0192 .0649 

21 22 .0014 .0114 .0385 

All values are in per unit form on 100-MVA base 
Other line end shunt admittances in brackets 
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APPENDIX B  

SINGLE-MACHINE INFINITE BUSBAR POWER SYSTEM MODEL 

Nomenclature 

Ls 	synchronous inductance 

xs 	synchronous reactance 

Laf 	mutual inductance 

xaf 	mutual reactance 

Lff 	field winding inductance 

xff 	field winding reactance 

rf 	field winding resistance 

ra 	armature winding resistance 

Tdo 	field open-circuit time constant 

Td1 	field short-circuit time constant 

H 	inertia time constant (sec) 

M 	moment of inertia 

D 	damping coefficient 

x1 	transmission line inductance 

rl 	transmission line resistance 

es 	infinite bus voltage 

e 	armature terminal voltage 

i 	armature current 

of 	field excitation voltage 

if 	field current 

Ā 	armature flux linkage 

]~f 	field flux linkage 

Pe 	real machine output power 

Te 	electromechanical torgue 

6 	machine rotor angle 
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machine speed deviation 

instantaneous machine rotor velocity 

synchronous speed of machine 

Subscripts 

d 	refers to direct-axis components 

q 	refers to quadrature-axis components 

Power system model 

The power system considered consists of a doubly-excited synchronous 

machine (i.e. provided with field windings on both the direct and 

quadrature axes) connected to an infinite busbar through a transmission 

line (Fig. B.1). Park's representation of the machine in d-q form 87 

is utilised subject to the assumptions: 

i. The machine rotor is cylindrical or non-salient pole with 

no damper windings. 

ii. Saturation is negligible 

iii. Transformer voltage, armature resistance and line resistance 

are negligible. 

The system equations are then as follows: 

Synchronous machine equations 

Voltage: 

ed = -WoXq 

eq = WoAd 

efd ~'fd Y rfifd 

efq = Afq + rfifq 

W r 

Wo 

(Bi) 

(B2)  

(B3)  

(B4)  
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FIGURE B,1: SINGLE-MACHINE INFINITE BUSBAR POWER 
SYSTEM MODEL 
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Flux linkage: 

~d = -Lsid + La fi fd 	 (B5) 

= -Lsiq +La fi fq 	 (B6) 

X fd = -La fid + Lffifd 	(B7) 

A fq = -Lafiq + Lffifq 	(B8) 

Output power: 

Pe = edid + egiq 	 (B9) 

Mechanical Motion: 

Mb + DŌ + Pe Pin 	(B10) 

Transmission line: 

ed = es sin6 - xliq 	(B11) 

eq = es cos( + xlid 	(B12) 

From equations (B1) and (B5) 

ēd = - Wo Xq =WLsiq -WLafifq 
or: 

1 

if q 

_ _ 

 xaf (e
d - xsiq) 

and 

• 1 • 	• ifq = - x
af (e

d - xsiq) 

Similarly, equations (B2) and (B6) give 

1 ifd = xa f ( eq + xsid) 

' 	1 	• 	• i fd = xa f (eq + xsid ) 

From equations (B3) and (B7) 

(B13)  

(B14)  

(B15)  

(B16)  

a 	• 
efd = -Laf id + Lffifd + rfi fd 	(B17) 



i
•  = - 1 
q 
	xl  

• 
(ēd  - esh  cosh ) 	 (B26) 
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Similarly, equations (B4) and (B8) give 
• • 

efq  = -Lafiq  + Lffifq  + rfifq  
(B18) 

• 
Substituting ifd  and i fd  from equations (B15) and (B16) respectively 

in (B17) yields: 
Lff  efd  = -La fid  + x (eq  + xsid) + xf  , (eq + xsid) 	(B19) 
of 	ax 

Similarly 
• • 

efa = -Lafiq  - 
xff  (ed 	s  - xiq) - x (e - xi) (B20) 
of 	of d 	

s q  

Therefore.: 

2 x 

Lff efd  = (xs 	
X 

f )  id  + e + Lff 	 +xsid) (B21) 
ff 	ff 	q ff q 

2 
af 
L ef  = - (xs  - 

xX f
)  i - ed  - Lf (ed  - xsi) (B22) 

ff q 	ff q 	ff 	q 

However the transmission line equations (B11), (B12) give the 

following equalities 

id = X.. (e - es  cosh) 	 (B23) x1  

i = x (e  - e  sino) 	 (B24) 
1 

id  = 1 (eq + esb sin Ō) 	(B25) 
1 

Substitution of (B23) and (B25) in (B21) and (B24) and (B26) (B22) 

results in: 

r 	a  

Laf efd - xd  (eq + e
sh sino ) + eq + T 	

eq  + Xs 
ff 	1 	 do 	1 

and 

(eq  - 

e 

 cosb ) 

(B27) 

xaf 
Lff  

efq = 
xd d 

xi  - es  b cosh) - ed  1 
Tdo Ed 

xs  

+x
l (ed- 

(B28) 

es  sir. b 
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where: 

Tdo = field winding open circuit time constant, rff 
f 

xd = direct-axis transient reactance, xs - x ff 

Grouping like terms together in equations (B27) and 028) respectively 

yields: 

xaf 	xd • 1 xs xl 	esxs 	x' • 

efd 	(1 + 	) e + 	 e 	 cos + 	es sin Ō  
ff 	xl 	Tdo 	q Tdoxl 	xl s 

xaf 	xā 	• 	1 + xs / xl 	esxs 	xd • 

e 
= - (1 + 	) e - 	 e + 	sin + — e ō cosi 

Lff fq 	xl 	d 	Tdo 	d Tdoxl 	xl s 

which on further simplification give: 

• 1 
= ed 1+xā xl { 1 

(1 

+ 
x Tdo 	s xl ) e d + xd es c6 cos6 + TsxX sin - 	Lff e.. 1 	 do 1 	ff 

(B.29) 

• x 	• 	e x 	x 
eq = 1+x' x~ 	T,,, (1 + xs /x1) eq 	dx es b sinb + 

Ts x cosi + Laf efd 1 	do 1 	ff 

(B.30) 
or 

i • x 	x 

ed 	T +x' Jx T 	(1 + xs /xl ) ed + xd Tdo es 6 cos 6 + xs es sin Ō 
do d 1 do 	1 	1 

xaf 
Lff Tdo e 

and 

/ 
• 1 	 xd 

m 	
• 	xs 

e =  	(1 + x /x ) e - 	es 	b 
q Tdō xd /x1Tdo 	s 1 	xl do s 	xl s 

xaf 

+ Lff Tdo efd 

2 
xaf 



āf 
rf 

ef 
9. 

ed = - A1ed + A2 a cos s + A3 sino - A4 

ēq = - Al eq - A2 b sino A28' 
	

cos s + A5 

(B31)  

(B32)  
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However because Tdo 	Tdo 	Tdi 

	

xd 	x 	xd s 

• _ 	1  
ed 	Td + x  / xlTd1 

• 
(1 + xs /xl) e + s 

Tdi es s cos b 

x 
+ s 

e sin Ō xl s 

• 1  

e + Tdō xs /xl Td 

x
s 1 + xs / x1 ) eq - 	Td1 es s sin s 
xl 

+ s 
es cosb + xai efd x l  

which may be more generally expressed by: 

where: 

x 
Al = (1 + xs ) /A 1  

x s 
' Ao _Tdo + xl Td1 

x 	x 

A2 x1 
es Td1 ~Ao 	A3 xl es iAo 

= B efq / ō 

B = 
xaf 
rf 

A5 =B efd /Ao 

6 may be obtained from equation (B10) as: 

s- P = M Pin 	e 

Now Pe = edict + egiq 

e 
(eq - e cosb ) - a (e - e sins ) 

x1 

ed 

xl 

(B33) 
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= est_ 	esed  stria 
xl 	xl  cos e) 

Thus: 

6 = - M e) 
 • 
	xsM ( e sins - ed  cos e) ) + P.in 

 

1 

which may be more generally expressed by: 

6 = A,5 + A$  (eq  sine) - ed  cos 6  ) + A6  

with: 

D  es 
A7 	

M 	
A __ 8 	xlM 

_ Pin 
A6 M 

(B3) 

(B35) 

Equations (B31), (B32) and (B35) define the non-linear machine equations 

used for the non-linear dynamic estimator of the synchronous machine 

power system model of chapter six. 
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