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ABSTRACT  

The object of the present work is to establish a unified 

formulation suitable for the deterministic analysis of planar 

elastoplastic skeletal structures undergoing finite deformations 

and/or arbitrarily large displacements, induced by quasi-static 

actions, from which formulations for the kinematically non-linear 

analysis of elastic and rigid-plastic frames are obtainable by 

simple specialization. 

Systematic procedures to formulate and solve the problem 

are incorporated by discretizing the structure into a finite number 

of repetitive building elements. The alternative processes through 

which such elements can be assembled are exhausted by interpreting 

the discretized structure as a directed graph; their assemblage is 

implemented through fully automated procedures deriving from a 

physical interpretation of connectivity theory concepts. 

A governing system featuring symmetry is obtained by 

preserving duality in the exact descriptions of equilibrium and 

compatibility of the nodal and mesh fundamental substructures, and 

reciprocity in the causality relations, derived from the analysis 

of a three-degree of freedom elastoplastic finite-element. 

Four alternative methods for kinematically non-linear 

elastoplastic analysis, namely deformation, incremental,perturbation 

and asymptotic analysis, are provided. Each of the four alternative 

methods is described in four alternative formulations: nodal-

stiffness, nodal-flexibility, mesh-stiffness and mesh-flexibility. 

Every one of the four alternative formulations generates, 

when processed through Kuhn-Tucker equivalence theory, a pair of 

primal-dual mathematical programs, leading to the discrete 

representation of variational principles. 

A unified treatment of problems in uniqueness and stability 

and of plastic unstressing and critical behaviour is presented. 

A brief survey of existing formulations and procedures and 

a comparison with present analytical results are made. 

Computational procedures are given and numerical results 

are obtained and compared with results proposed in published works 

in kinematically non-linear elastic, elastoplastic and rigid-

plastic analysis. 
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CHAPT ER 	ONE  

INTRODUCTION 

1.1 	OBJECT AND OBJECTIVES OF THE RESEARCH: THE THESIS  

Traditional in civil engineering is to build what can be 

designed safely with the minimum effort: is there, therefore, a 

need for works concerned with 

OBJECT: The deterministic analysis of planar elasto-

plastic skeletal structures undergoing large 

displacements, induced by quasi-static actions. 

implying the costly solution of highly non-linear systems? 

Assuming there is, as the extensive list of contributions seems 

to suggest, is yet another formulation justifiable? 

To accompany and sustain the continued evolution of social 

aspirations entertained throughout the ages, designers have been 

increasingly requested by their communities to venture in the 

production of ever more efficient structures. In order to 

substantiate present-day ambitions, and constrained by the urgency 

of using resources more effectively, to explore the non-linear 

phase in the behaviour of structures has already become a 

necessity in many applications. 
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With few exceptions, the intellectual incentive to 

formulate problems in non-linear structural mechanics under 

increasingly relaxed hypotheses, only recently was rewarded by 

the possibility of actually implementing the solutions so devised. 

A survey of the published works on non-linear structural 

analysis thus instigated, reveals a multiplicity of approaches, 

methods and procedures to materialize commonly shared concepts 

and objectives. 

Two or three decades ago, linear structural mechanics 

was in a comparable state of uneven, disconcerted development. 

Foreseeing the advent of more efficient means of numerical 

implementation, efforts were then developed to establish 

formulations leading to a synthetic, general theory. 

Of the proposed theories, it is perhaps in Smith's (1974) 

presentation where more clearly suggested and consistently 

explored are the four fundamental ingredients responsible for 

the unification achieved, namely, structural discretization, 

substitution of structures by graphs, static-kinematic duality 

and mathematical programming. The primary motive behind the 

decision to undertake the research work soon to be presented, was 

to convey those concepts into the kinematically non-linear field, 

in order to establish a formulation suitable for a subsequent 

development into a unified theory on non-linear structural 

analysis; thus the research 

OBJECTIVES: 

1. Incorporate systematic procedures to formulate and 

solve the problem through the discretization of the 

structure into a finite number of repetitive 

building elements. 

2. Exhaust the alternative processes through which such 

elements can be assembled by interpreting the 

discretized structure as a directed graph. 

3. Implement a governing system featuring symmetry by 

preserving reciprocity in the causality relations, 

and duality in the descriptions of equilibrium and 
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compatibility. 

4. Complement through mathematical programming theory 

the resulting discrete representation with a 

variational interpretation. 

The concomitancy of the aforementioned objectives 

differentiates, thus justifying, the formulation being offered 

for consideration, and prompted the 

THESIS: Mathematical Programming is a particularly 

appropriate theory for encoding and solving problems in 

kinematically non-linear structural analysis, synthetiz-

ing the benefits of both discrete and variational 

approaches in a unified mathematical formalism. 

1.2 	BASIC CONCEPTS AND METHODOLOGY  

An engineering structure, being an orderly interconnection 

of (SUBSTRUCTURES formed by) parts or ELEMENTS into a meaningful 

whole, is essentially a SYSTEM. 

The analysis of the system requires the use of information 

about its elements as well as the knowledge about the interaction 

between its components. When these two factors are taken into 

consideration, the response of the system to given inputs or 

ACTIONS can be determined. 

If the system is such that its response can be determined 

through an automated assemblage of the relations governing the 

behaviour of the constituent subsystems, the response of each of 

which can be defined through the analysis of a single or restricted 

number of typical elements, then the formulation supporting the 

system analysis gains in unity, generality and computational 

viability. 

A systems approach to structural mechanics suggests there-

fore a mathematical model simulating the response of the structural 

system formed by the combination of two INDEPENDENT sets of 

algebra: one, VECTORIAL, developing from the geometric-mechanic 

properties and characterizing the behaviour of the constituent 



elements and of those elements when forming a substructure; the 

other, BOOLEAN, implementing the connectivity properties and thus 

regulating the procedure for the assemblage of the substructures 

to gain the structure anew. 

Pursuing such an approach, in the presentation to follow 

the structure is first resolved into its simplest elements to which 

a specific type of connectivity can be associated, the FUNDAMENTAL 

SUBSTRUCTURES. The conditions for the static equilibrium (STATICS) 

between the forces applied to the selected substructure and the 

developing stress-resultants are then derived, as well as, and 

INDEPENDENTLY, the conditions for the kinematic compatibility 

(KINEMATICS) between the strain-resultants and the displacements 

suffered by selected points, the movement of which is sufficient to 

characterize the rigid-body motion of the substructure. The 

description of Statics and Kinematics thus obtained can be EXACT, 

as no assumptions concerning the magnitude of the variables involved 

need to be made. 

Next, the substructure is decomposed into its constituent 

fundamental FINITE-ELEMENTS embodying the mechanical characteristics 

of the structural material. The CONSTITUTIVE RELATIONS may then be 

derived by establishing the causality relations between the stress-

resultants applied to the typical element and the corresponding 

strain-resultants. An idealized LINEAR ELASTIC-NONLINEAR PLASTIC 

response is adopted to simulate, as opposed to represent, the actual 

structural material behaviour. 

In most of the inumerous engineering formulations in 

finite-element non-linear structural analysis, the theoretical 

development ceases at the next stage of recovering the structural 

behaviour by establishing an appropriate procedure to assemble the 

elemental governing relations; way is then given to the equally 

important aspect of search for a convenient numerical implementation 

technique. 

In the approach to be suggested, the system governing the 

behaviour of the structure, instead of being left to be numerically 

processed with or without the assistance of a pre-defined variationa: 

principle, is, as soon as derived, processed through MATHEMATICAL 

PROGRAMMING EQUIVALENCE THEORY. A formulation entirely generated 

from first-principles of mechanics, namely equilibrium, compatibilit, 

and causality, is thus allowed to develop naturally into the 

associated variational principles; the dimorphism in traditional 
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structural analysis whereby variational and finite methods are kept 

apart in an atmosphere of near-rivalry is thus made inconsequent, 

the privileges of the two COMPLEMENTARY approaches being preserved 

in a UNIFIED formulation. Secured is the possibility, characteristic 

of the first-principle based finite formulations, of permanent and 

localized control of the hypotheses introduced, the implications of 

which may then be consistently appraised; also secured is the 

prerogative of the variational descriptions which enrich the 

theoretical scope of the formulation by facilitating and synthetiz-

ing the physical interpretation of the relevant phenomena. 

Finally, use is made of MATHEMATICAL PROGRAMMING 

ALGORITHMS to implement in an efficient manner the numerical 

solution of the problem. 

1.3 	STRUCTURAL IDEALIZATION  

An engineering structure is a highly complex system, the 

analysis of which has to be based on a simplified model, for 

instance and as herein, a deterministic mathematical model, designed 

to simulate within minimum accuracy requirements the response of 

the actual structural system to given external actions. Three 

phases of structural idealization can usually be distinguished in 

the process of establishing the sought mathematical model. 

	J
Hornets  (1963) two-storey one-bay planar frame I 

X a 	A 
A  

GEOMETRIC PROPERTIES: The length, cross-
sectional area, and second moment of area 
are constant and the same for all beams 
and columns. 
MECHANICAL PROPERTIES: Beams and columns 
have an idealized linearly elastic-perfectly 
plastic flexural behaviour. 
EXTERNAL ACTIONS: The frame is subject to 
quasi-static, conservative, proportionally 
increasing loads. The foundation is rigid, 
with unlimited capacity for absorbing 
stresses in every direction of the plane. 

FIGURE 1.1 

In the first phase the relevant mechanical and geometrical 

properties are summarized, as well as the nature and distribution 

of the external actions, and the connectivity properties graphically 

represented, as illustrated in the figure above for a simple two-

storey one-bay planar frame. 
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FIGURE 1.2 

When, as in the present case, emphasis 

is placed upon finite methods, the next 

phase is concerned with DISCRETIZING the 

structure, the objective being to identify 

the constituent parts wherein stress and 

strain flow continuously. 

This information is added to the 

graphic model, as in Fig.1.2, by positioning 

RIGID NODES at connections between three or 

more members and at points where the 

geometrical and/or mechanical properties 

change, where mechanical release devices 

exist, and where concentrated forces and/or 

couples are applied. 

Whenever the structural representation 

is not undully affected, curved members should be approximated by a 

set of straight members, and members with continuously varying 

cross-sectional properties by a set of members of different but 

constant cross-sections; distributed loads will be lumped into 

concentrated loads. 

As the development of plasticity is assumed confined to 

certain discrete sections of the structural members, where 

extensible plastic hinges are allowed to develop, a CRITICAL SECTION 

will be positioned at the end of each member incident with a node. 

The number of critical sections can be reduced if stress-

interaction effects are not accounted for in the characterization 

of the plastic capacities of the members, and/or if mechanical 

release devices exist, preventing the yield stress to be attained. 

As the developing stresses and strains define vector 

fields, it is necessary to refer the graphic model to a global 

system of reference and to associate each member with a positive 

direction, as in Fig.1.3 where an additional rigid member was added 

to simulate the support offered by the foundation; such is the 

third phase of structural idealization. 

The graphic model may now be considered as a set of 

orientated lines or branches connecting any two points, verteces or 

nodes, that is, a DIRECTED GRAPH. 

The graph can be disconnected using two different types of 

6 



'NODAL CONNECTIVITY ,MESH CONNECTIVITY, 

FIGURE 1.3 

REPETITIVE ELEMENTS, branches (or MEMBERS) 

limited by nodes, and rings (or MESHES), that is, 

connected subgraphs in every vertex of which there 

are incident exactly two branches. The graph can 

be rebuilt either by incidence of the branches at 

the nodes (NODAL CONNECTIVITY) or by incidence of 

the rings at their contours (MESH CONNECTIVITY), 

as illustrated in Fig.1.4. 

Consider now any of the deformed forms of 

the idealized structure, illustrated in Fig.5.25. 

Each of these new graphic models, upon which a 

kinematically non-linear analysis has to be based, 

can still be developed •into a directed graph. In order to quantify 

the phenomena a structural analysis is concerned with, in essence 

the changes of form and the accompanying variations in the load-

carrying capacity of the structure, a certain algebra has to be 

associated with this new directed graph; a possible approach for 

the derivation of such a mathematical model is summarized below. 

FIGURE 1.4 

1.4 
	

SUMMARY OF THE THESIS  

Chapter Two is concerned with establishing the exact 

relations governing static equilibrium and kinematic compatibility. 

By analyzing two distinct fundamental substructures dissected from 

the structure, the nodal and mesh substructures, two alternative 

and complementary descriptions of Statics and Kinematics are 
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presented. The selected fundamental substructures are the single 

branch and the generalized polygonal ring illustrated in Fig.1.5; 

they are simultaneously simple to analyze and sufficiently generic 

to be re-connected into a planar skeletal structure of arbitrary 

geometry. 

STATICS 	AND KINEMATICS ELASTOPLASTIC 

CONSTITUTIVE RELATIONS 

SUBSTRUTURE 

® ° 
NODAL SUBSTRUTURE 

1 	A 

FINITE-ELEMENT 

MESH 

FIGURE 1.5 

The derivation of the compatibility conditions, expressed 

through kinematic variables only, is exclusively based on 

geometrical considerations. The equilibrium conditions, performed 

on the deformed substructure and equally derived from first 

principles, involves both static and kinematic variables. 

The static and kinematic descriptions so derived are 

neither linear nor do they represent dual transformations. To 

recover these two aspects, the latter of which has proved essential 

for the unity of the theory of linear structural mechanics, the 

equilibrium conditions are replaced by an equivalent system, still 

exact but explicitly linear, by introducing additional forces 

wherein the non-linearities generated by the Statics dependence on 

Kinematics are concentrated. The kinematic relations are then 

replaced by an equivalent set, again exact and explicitly linear, 

designed to recover Static-Kinematic Duality. The process generates, 

in a natural manner, additional kinematic variables, in the 

definitions of which the kinematic non-linearities are synthetized. 

The finite description of Statics and Kinematics so 

obtained are implicitly non-linear. The corresponding incremental 

descriptions, in terms of finite incremental variables, as opposed 

to infinitesimal rates of variation, are then derived and treated 

by a standard perturbation technique, which replaces each of the 

implicitly non-linear equations by an infinite system of recursive, 

thoroughly linear equations. 
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Each of the aforementioned formulations, finite, in terms 

of arbitrarily large variables, (finite-) incremental and perturbed 

descriptions, are subsequently used to develop three of the four 

alternative methods of analysis considered in the present work; 

namely, deformation, incremental and perturbation analysis. The 

fourth method is designed to implement the asymptotic analysis of 

systems with a kinematically trivial, statically non-trivial 

initial response. 

After extending the mesh and nodal descriptions to include 

the (non-linear) effects of internal mechanical release devices, 

the discussion on Statics and Kinematics is concluded by recovering 

the Principle of Virtual Work, interpreted herein as the 

variational representation of Static-Kinematic Duality. 

In Chapter Three the causality relations associating the 

member stress-resultants with the corresponding strain resultants 

are derived through a first principle based analysis of the three-

degree of freedom elastoplastic finite-element represented in 

Fig.1.5. 

The complexity of the behaviour of such a simple beam 

element is primarily caused by the mechanics of the development 

of plasticity, the problem becoming tractable only if restrictive 

hypotheses are introduced. In this work the hypothesis of lumped 

plasticity holds. Furthermore the critical sections, where plastic 

strains are restricted to develop, are required to coincide with 

the element end-sections; plastic strains are thus hindered of 

flowing within the element. As a consequence of the above 

mentioned hypotheses, the maximum axial stress at interior sections 

is required to remain within the elastic range, allowing for the 

separation of the strain field into a continuous field of elastic 

strains, flowing along the beam, and a discrete field of plastic 

strains developing at its end-sections; thus the separation of the 

study of the elastoplastic constitutive relations into elasticity 

and plasticity, dealt with in sections 3.1 and 3.2, respectively. 

The descriptions of Statics and Kinematics of the three- 

degree of freedom elastic beam are fed into the constitutive 

relations, corrected to include a measure of the shear deformation 

effects, and the resulting differential governing equation is 

solved by a standard perturbation technique. The elastic solutions 
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are then interpreted and cast in two alternative formats,stiffness 

and flexibility, suitable to implement discrete structural 

analysis. 

The several mathematical plasticity theories which have 

been proposed can be divided into two groups, according to whether 

the basic relationships connect stress and strains or stress and 

strain rates. The results provided by these theories, respectively 

known as deformation theories and flow theories, may only coincide 

in the absence of plastic unstressing. In either case, the first 

step is to decide on the yield criterion, the rule defining which 

combination of equilibrated stresses will cause yield; the next 

step is to impose the kinematic compatibility condition for the 

fully plastified cross-section, or, in the parlance of the 

theories of plasticity, to characterize the flow rule. Following 

the methodology the early works in plasticity adopted, the yield 

condition (Statics) and the flow rule (Kinematics) are herein 

treated separately. The possibility of deriving the flow rule 

from the yield condition is offered by the concept of plastic 

potential; in the terminology we adopt, this is understood as a 

relation of duality between the descriptions of the static and 

kinematic phases of plasticity. The plasticity relations are 

completed when the static and kinematic variables are connected 

through an association condition, wherein the essential difference 

between deformation and flow theory resides. 

The elastoplastic constitutive relations are presented in 

four alternative formats suiting the methods of analysis to be 

considered, deformation, incremental, perturbation and asymptotic 

analysis. 

The information supplied by the previous two Chapters is 

collected and re-arranged in Chapter Four in order to establish a 

resulting system of relations intended to represent an appropriate 

mathematical model of the structure under analysis. 

Having previously numbered and oriented the fundamental 

substructures forming the structure, the elemental elastoplastic 

constitutive relations are simply grouped, arranging the 

causality operators in block-diagonal matrices and the stress-

and strain-resultant vectors in super-vectors, according to the 

selected numbering sequence. Connectivity theory is called upon 

10 



to assemble the static and kinematic descriptions, the objective 

being to establish the proper path guiding the flow of stress and 

strain developing in the structure. 

In the present work, wherein Statics and Kinematics are 

assembled separately, the process of assemblage is designed to 

suit the type of substructure one considers the structure is 

formed of. 

If the structure is interpreted as an assemblage of nodal 

substructures, continuity of displacements at the nodes is secured 

first and, by resorting to the Principle of Work Invariance, and 

thus automatically satisfying nodal equilibrium, the nodal 

description of Statics is assembled next. 

The proposed method For assembling the mesh description 

of Statics and Kinematics uses a regional cycle basis. The 

complementary solution of Statics is easily assembled by super-

imposing the stresses flowing along branches common to incident 

meshes. To assemble the particular solution, the applied forces 

are first assigned to the constituint mesh substructures, 

transmitting next the. flow of stress they generate along a selected 

path of incident meshes. Using the Principle of Work Invariance, 

Kinematics is assembled by satisfying continuity of the flow of 

strains. 

In either of the formulations, nodal and mesh, Static-

Kinematic Duality, at structure level, emerges as a direct 

consequence of the duality forced into the substructure relations 

through the use of additional forces and deformations. The 

Principle of Virtual Work is again interpreted as the variational 

representation of the relations of duality existing between the 

descriptions of Statics and Kinematics of the structure. 

The fundamental conditions characterizing the behaviour 

of elastoplastic structures under large displacements are 

consistently combined in Chapter Five in order to generate four 

alternative descriptions for the systems governing the structural 

response; the nodal-stiffness, nodal-flexibility, mesh-stiffness 

and mesh-flexibility formulations. 

Following the usual procedure in mathematical programming 

theory of structural analysis, each of the resulting governing 

systems is identified as a Kuhn-Tucker problem, the associated 
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mathematical programs being derived next through the application 

of equivalence theory. 

The resulting mathematical programs are physically 

interpreted and analyzed through mathematical programming theory. 

As the structure governing system defines configurations 

which are simultaneously statically and kinematically admissible, 

the role of Kuhn-Tucker Equivalence will prove to be to separate 

that system into two distinct problems wherein static and 

kinematic admissibility are enforced independently. The extremizat-

ion of the objective functions of the associated mathematical 

programs become the criteria of selecting among all statically 

(kinematically) admissible states, the correct static (kinematic) 

field or fields; the variational principles of kinematically non-

linear elastoplastic analysis are thus recovered. 

Condition for uniqueness of solution are established and 

multiple solutions qualitatively investigated; an interpretation 

of Drucker's stability criteria is also included. 

After a brief description of the algorithms used in the 

solution of illustrative examples, two special occurrences in the 

behaviour of elastoplastic structures, namely plastic unstressing 

and limit and bifurcation points, are analyzed and numerical 

procedures for identifying and solving such situations presented. 

The alternative descriptions for the elastoplastic 

governing system are specialized in the latter part of Chapter 

Five for the analysis of elastic and rigid-plastic structures. 

The associated mathematical programs are then derived and 

interpreted folllowing the procedure adopted in the elastoplastic 

analysis. 

Chapter Five ends with a brief comparative study of the 

behaviour a structure presents when elastic, elastoplastic and 

rigid-plastic constitutive relations are assumed. 

Ideas for possible extension of the formulation to be 

suggested and on improvements it is susceptible of, within the 

envisaged scope of the proposed study, are briefly summarized in 

Chapter Six. 

Named throughout the presentation, where and whenever 

relevant, are the simplificative hypotheses introduced, as well as 

the points of contact with related results presented in the 
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literature. 

The imense number of published works on the many areas 

of knowledge a kinematically non-linear elastoplastic analysis 

by mathematical programming has to rely on, prohibits an 

exhaustive survey of proposed formulations; thus the limited 

number of referenced contributions summarized in the latter part 

of this work. 

The conviction that such a summary would certainly fail 

to mention other important contributions to the proposed area of 

study, has always deeply concerned the author. If the injustices 

thus perpetrated can be partially undertoned by sincere appology, 

the damage their ignorance has caused is irreparably reflected in 

the presentation soon to follow. 

1.5 	ORIGINAL FEATURES  

To the author's knowledge, the following features of 

this thesis are original: 

I. Derivation from first principles of mechanics of the 

exact mesh and nodal descriptions of Statics and 

Kinematics at substructure level, preserving Static-

Kinematic Duality, from which the Principle of Virtual 

Work results. 

II. Accurate and unified finite-element description, in 

both stiffness and flexibility formats, of the elastic 

constitutive relations, inter-relating the stability 

and bowing functions and extending their definitions 

to include the effect of axial deformability and a 

measure of the shear deformation effects. 

III. Fully automated procedure, based on a physical 

interpretation of connectivity theory concepts, of 

the mesh (and nodal) descriptions of Statics and 

Kinematics which, although dealt with independently, 

emerge as dual transformations from which results the 

Principle of Virtual Work for structures undergoing 

arbitrarily large deformations and/or displacements. 

13 



IV. Unified formulation for the kinematically non-linear 

analysis of elastoplastic systems, 

featuring 

1) Four alternative methods of analysis, namely 

deformation, incremental, perturbation and 

asymptotic analysis, each described in 

2) Four alternative formulations, nodal-stiffness, 

nodal-flexibility, mesh-stiffness and mesh-

flexibility, generating 

3) Four pairs of primal-dual mathematical programs 

obtained through the 

4) Application of Kuhn-Tucker Equivalence Theory, 

i) leading to the discrete representation of 

variational principles, and 

ii) allowing for a unified treatment of problems 

in uniqueness and stability and of plastic 

unstressing and critical behaviour 

from which 

5) Unified formulations for the kinematically non-

linear analysis of elastic and rigid-plastic 

systems result by simple specialization 

and using 

6) Physically interpreted system analysis procedures 

and mathematical programming algorithms to implement 

the numerical solution of the relevant problems in 

non-linear structural analysis. 
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CHAPTER 	T W O 

STATICS AND KINEMATICS 

OF THE FUNDAMENTAL SUBSTRUCTURES 

A skeletal structure, when interpreted as a directed 

graph, can he thought of as the assemblage of two different 

types of fundamental substructures, depending nn the inherent 

connectivity properties; the NODAL substructure, the line 

segment or branch of the orientated graph together with its 

end points or vertices, and the MESH substructure, a connected 

subgraph such that on every vertex there are incident exactly 

two branches. 

The branch or MEMBER, a common component of both nodal 

and mesh substructures, represents from the structural point of 

view the centroidal locus idealization of a prismatic heam and 

embodies its mechanical properties. 

Let us consider one such member m in both its initial 

and deformed configurations, as in Fig.2.1, in order to present 

some of the terminology and conventions adopted in setting up 

the static and kinematic descriptions at substructure level. 

The member is referred to a global system of co-ordinates 

x*; in its initial undeformed position, the distance between the 

two critical sections limiting the member defines the MEMBER 

LENGTH L m  and the initial. M[ HER INCI.TNATTON Ct.m  is measured 
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X2 i  

1 

	  3 

L c ^Lm 
 2m m 

1 ` 

plastic 	u1P  

hinge  

1E 

1Pm 

X, 

relatively to the axis x3 in the positive sense of xT. The memher 

is ORIENTATED positively from critical section 1 to critical 

section 2. 

When the structure is loaded, the members deform 

elastoplastically, the development of plasticity being restricted 	- 

to the critical sections where EXTENSIBLE PLASTIC HINGES may form. 

FI GHRF 2.1 

By MEMBER CHORD we understand the line joining the 

critical sections; the distance between those two points defines 

the MEMBER CHORD LENGTH L 
c 

and the relative rotation between 

the initial and final 	m  chord positions, measured positively 

in the negative sense of q, is the MEMBER CHORD ROTATION Pm . 

The stress-resultants at critical sections 1 and 2 are 

measured positively as indicated in Fig.2.1 following the usual 

engineering beam theory convention, except that the axial and 

shear forces are now parallel and perpendicular, respectively, 

to the chord of the deformed and displaced member. 

As the direct effects of the deformation by shear are 

not considered, three variables are sufficient to characterize 

the deformation of the member; the axial shortenning u2 , and 
2 

the rotations u'
1
1 	m and ut at the critical sections. 	

m 

m 	m  
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The axial shortening, defined as the difference between t^ 

the initial length and the chord length, contains both the effects 

of axial deformation, caused by the varying axial stress-resultant 

along the deformed member, and shortening due to flexure. 

The rotations are measured from the chord to the 

direction of the neighbouring node in the sense of the associate 

bending moment. The rotation at critical section i,u1i, is the 

sum of the elastic rotation ul, measured from the 
	chord to lE 

the tangent of the member at 	m critical section i, and the 

plastic rotation ulP , measured from that tangent to the direction 

of the node. 	m  

The results in Chapter Three will show that these three 

parameters of deformation are sufficient to define the 

displacement, relative to the chord, suffered by any point of 

the beam. 

A typical substructure dissected from the deformed 

structure will he analyzed in order to establish two fundamental 

sets of relationships, one defining the compatibility condition 

regulating deformation and displacement components, the other 

defining the existing state of equilibrium between applied 

forces and the stress-resultants developed. 

The derivation of the compatibility condition, expressed 

through kinematic variables only, will he exclusively based on 

geometrical considerations. The equilibrium conditions, performed 

on the deformed substructure and equally derived from first 

principles, will involve both static and kinematic variables. 

The Statics and Kinematics descriptions so derived will 

neither be linear nor represent dual transformations. 

To recover these two aspects, the equilibrium conditions 

will be replaced by an equivalent set, still exact but explicitly 

linear, by introducing additional forces in such a way that 

equilibrium can be performed on the substructure in its initial, 

undeformed configuration. 

Next the kinematic relations are replaced by an 

equivalent set, again exact and explicitly linear, which is 

designed to recover Static-Kinematic Duality. The process 

generates in a natural manner additional kinematic variables 

17 



which are then subject to a physical interpretation. 

Naturally, the process could be reversed by 

"linearizing" Kinematics first and re-defining Statics next by 

enforcing Static-Kinematic Duality. 

The dependence of Statics on Kinematics is concentrated 

in the definition of the additional forces. 

As no reference at all is made to the member constitutive 

relations, the (equilibrated) static variables and the (compatible) 

kinematic variables need not, at this stage, be associated through 

any cause-effect relationship. 

The above procedure will first be applied to continuous 

(in the sense that no internal releases exist) nodal and mesh 

substructures. 

The finite descriptions of Statics and Kinematics so 

obtained are implicitly non-linear. The corresponding incremental 

descriptions are then derived and treated by a standard 

perturbation technique in order to eliminate the auxiliary 

variables containing the non-linearities of the problem. Thus the 

description emerges as an infinite system of recursive linear 

equations. 

After a brief reference to alternative formulations 

presented in the literature, the nodal and mesh descriptions are 

extended to include the effect of internal releases. 

The discussion on Statics and Kinematics of the 

fundamental substructures is concluded when the Principle of 

Virtual Work is recovered and interpreted as the variational 

representation of Static-Kinematic Duality. 

2.1 	NODAL DESCRIPTION OF STATICS AND KINEMATICS  

Consider the two-storey portal frame represented in 

Fig.5.25 in both its initial and deformed configurations, and 

assume that one of its members, say member m, together with the 

limiting nodes, is disconnected from the structure at both stages. 

18 



The objective is two-fold; to establish the condition 

of compatibility between the variables describing the movement 

of the nodes and the deformations of the member, and to find the 

condition of equilibrium between the forces at the nodes and the 

stress-resultants developing in the deformed member. 

FIGURE 2.2 

2.1.1 	The Exact Non-linear Relations 

The initial position of the member, referred to the 

system axes x*, may he defined by the pair of its end co-

ordinates xi  m  (i_=1,2), collected i_n xm, and if rm represents 

the NODAL DISPLACEMENTS, referred to the same axes, as in Fig. 

2.2, the final position of the member ends can be described by 

the sum 

x* + r* _ -m -m 

m 

+ 1* r 
- 2* 
r m 
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Let 

u~ 1, ul2 and u2 
m 	m 	 m 

be the end-rotations measured to the chord and the chord 

shortening, respectively, and let these variables representing 

the MEMBER DEFORMATIONS be collected in um. 

The objective in Kinematics is to establish the 

condition of compatibility between the variables representing the 

relative displacement of the body and those describing its 

deformation. 

Let rm represent the member end displacement referred to 

the member axes at its initial position, which can be obtained 

through an orthogonal transformation operating on the member end 

displacements referred to the system axes: 

r = m rm -m  
(2_.1.1) 

where 0 is the block-diagonal matrix 
--m 

  

0—m = 

m 

  

. 	i 	. 

coscci -sino 

sino; co s c 
m 

it is convenient to collect from 
I'm 

a set of four 

auxiliary variables rm 

rm = 1' rm (2.1.2_) 

where the incidence matrix I 1 is defined by 

and 

  

 

L 1 
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r' 
u ,'~ 1 = -r' - arc tan 	2 

L-r3 
rt 

u'2 = r' + arc tan 	2 

(2.1.5a) 

(2.1.5h) 

(2.1.5c) 

L-r ?~ 

u2 = L - [(q)2 + (L-1.1 ) 

I r 1 	. 	I . 

1 	• 	i 	• -1 	• 
• 1 	1 	• • -1 
• • 	1 • 

The auxiliary 	displacements rm 	can 

the INTERMEDIATE DISPLACEMENTS mentioned in 

be identified with 

Jennings (1968). 

Herein, and for reasons that will become apparent, the components 

r2 and 1 will be termed ADDITIONAL FORCE DISPLACEMENTS, b
a m 

-  rt 
3 

r' 
2 

(2.1 .3) 

m m 

If pm is the member chord rotation, then from Fiq.2.2 

and dropping subscripts 

m 
6n 

6t 

  

tan p = 
St 

L-6 n  

r' 
2 

L-r'3 
(2.1.4) 

where L is the original length of the member. The components of 

deformation may now he expressed in terms of the intermediate 

displacements as 

or in matrix form 

-m = m rm 	 (2.1.6) 

where Dm = -1 
d12 d13 

. 

• d22 d 	1 23 

• d32 d33 	m 

it being totally unnecessary to express analytically the 

functionals did (1=1,2,3; j=2,3). However, if the usual 
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assumptions of linear Kinematics were to be enforced, the non-

linear operator D would reduce to 

-1 -1/L • • 
• 1/L • 1 

• 1 • 
m 

The compatibility condition between the variables 

describing the member deformation and its displacement can now he 

obtained by eliminating the intermediate displacements in equation 

(2.1.6) through equation (2.1.2) and the member end displacements 

rm through equation (2.1.1) yielding 

KINEMATICS 

 

um —m = K r* (2.1.7) 

where the functional matrix Km  is defined by the triple product 

K 	—m  I I rn  (2.1.R) 

Consider now the free-body diagram of the deformed 

member m as represented in Fig.2.3. 

FIGURE 2.3 

—m 
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Let 

represent, 

R 	= -m 

respectively, 

R1  

- R
2* 

 and 

m 

the NODAL 

X 	= 
-m 

FORCES 

X1  

X 2  
_ 	_ 

referred 

m 

to the system 

axes x*, and the STRESS-RESULTANTS at the critical sections of 

the member. The sign convention adopted and the ordering of their 

elements is shown in Fig.2.2; Xi, X2 and X3 represent the positive 

bending moment, axial and shear stress-resultants at critical 

section i. 

The six stress-resultants are related through three 

equilibrium conditions. Selecting 

= 	
X 1 

1 
XI -m   

X 1  

X 2  

  

m m 

 

2 

as the INDEPENDENT STRESS-RESULTANTS, in accordance with the 

variables previously chosen to represent the member deformation, 

um, 	the 	internal 	equilibrium 

Xm  = 

where 	 H 	= 
—m 

H —m  

1  

2  

condition may he 	expressed as 

XI 	 (2.1.9) 
-m 

m 

and H1 	= 
m  

1 

• 

• 

1 

-2 	= 

m 

1  

• 

• _ 

1 

Lc  being 	the 

-1/Lr  

chord 

1/Lc 	• 
_ 

length 

Lc  
m 

m 

= Lm  - u2  
m 

-1/Lc  1/Lc  • 
m 

The nodal forces and stress-resultants at the critical 
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sections can be related by imposing equilibrium at the nodes: 

-m = I 	X m ( 2.1 .1 0) 

where 101 = 0' •  
_r__- _ o t 
• 

m 

and 
	0' 

-171 
cos(a-p) sin(a-p) 

• -sin(a-p) cos(a-p) 

The stress-resultants Xm may now be eliminated in 

equation (2.1.10) through equation (2.1.9) 

 

STATICS 

 

where 

Rm = ~ Xm 

Sm = 10 H n m 

(2_.1.11 ) 

(2.1.12) 

After performing the products in equations (2.1.0) and 

(2.1.12) the definitions for the kinematic and static operators 

turn out to be, respectively 

     

     

• 
c•d12+s•d13 
c•d

22
+s•d23 

c•d 52 t-s•d33 

-s•d12-1-c.d13 

-s•d?2+c•d23;1 

-s•d32+c•d331. 

-c• d12
-s•d13 

-c•d
22
-s•d23 

. - c 52-s•-33 

s•d
12-c•d13 

s•d
22
-c•d23 

s•d3 -c•d33 m 

 

 

 

  

     

,T= 
--m -1 -c' /Lc 

c'/Lc 
s' 

sl/Lc 
	. 

i 
-s' /L c 	 1 
cl 	i. 

cl/Lc 
-c1 /L c 
-sT 

(2.1.13) 

-s'/Lc 

s'/Lc 

-c' 
m 

(2.1 .14) 

m 
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1 

A -1 -cosa/L sino/L i • cosy/l_ -sino/L 

• cosa/L -sino/L i 1 -cosy/L sino/L 

• since cosa • -sino -cosa m 

where 	sm  = sin a m 	,  Cm = cos a m  
and 	sl = sin(a m  -pm  ) , cm = cos(am-pm ) 

If the assumptions of linear analysis were to be adopted 

the above operators would reduce to 

(2.1.15) 

and Statics and Kinematics associated with member m could he 

expressed through the following dual transformations: 

LINEAR 	ANALYSTS 

STATICS KINEMATICS 

R. 

-m 
= A T  
-m 

XI 
--m 

ul 	= 	A 	r* 
-m 	-m -m 

NODAL DESCRIPTION 

The linearized form Am  of the kinematic operator K can 

be found in most of the works dealing with skeletal structures, 

as Livesley (1964), Zienkiewicz and Cheung (1964), Spillers (1972), 

Smith (1974), Gallagher (1975) and others. 

2.1.2 	The Exact Explicitly Linear Dual Relations 

If Statics is to be replaced by an equivalent linear 

form fundamented on equilibrium performed on the undeformed 

member, the first step is to introduce forcibly in equation 

(2.1.11) the linear operator A
T
. Hence 

—111 

R* = (S + A T 	A T) XI 
--m 	-m -m -m -m 
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. . 

cosa+cos(a-p) - 	
L 	L 

cosa cosa-p) sines-sina -p) p) L 	L c 
sinysin(a-p) sino+sin(a-p) 

cosa-cas(a-p) 

. 

L 	L 

. 

L 	L 

. 

cosa_cos(a-p) cosa+cos(a-p) sina+sin(a-p) 
L 	Lc  L 	Lc  

 sina+sin(a- p) sina si n(a-p) -cosa+cos(a-p) - 
L 	L

c 
 

c 
L 
c 

fm = 
1 

X 1  

1 X 2  

X 2  
m 

m 

or, rearranging 

R* = A T  X' - f* 
-m —m -m -m 

( 2.1.16) 

where the auxiliary member end forces, represented in Fig.2.4, 

are defined by 

fm = ( Am  - Sm ) Xm 
( 2.1 .17 ) 

or more explicitly 

The above definition, basically involving two independent 

variables, suggests the replacement of the end forces fm by the 

statically equivalent set of ADDITIONAL FORCES nm, represented in 

Fig.2.5, and defined by 

f* = A T  IT 
-m 	--nm  - m 

where 

A = 
nm 

• sina cosa I • -sina -cosa 

 

• cosa -sina • -cosa sina m 

(2.1.10) 

(2.1.19) 

Substituting equation (2.1.17) into equation (2.1.10) 

and solving, the additional Forces can be expressed as non-linear 

functions of displacements and deformations directly proportional 

to the independent stress-resultants X': 
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sing 
Lc 

1-cosp 
sinp 
Lc 

TC 
n 

~t 
m 

ADDITIONAL FORCES 

-1 +cosp 
L

c 

1 cosy 
L

c 
sinp X- 

- m 
X 2 

m 

FI GURF 2.4 

FIGURE 2.5 

Lm 

C(. 

f 2'" 2 	1 

B f2 , f3 
2 

(2.1.20) 

The additional forces may now be included in the member 

equilibrium condition (2.1.16) 

[
A T 1 A T 

_n 

m 

and if duality is to he preserved, the kinematic transformation 

must take the following form 

k 1 	

- 

A I 	rX 	(2.1.21a) - _

m k2 	
T

- c 

	 (2.1.21b) 
_ m 	_ 	m 

—m 
-TC 
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- 1 	2 
r2-r2 

1 2 
r3-r3 

it being necessary now to identify the variables km. 

Similarly to what was done when dealing with Statics, 

let equation (2.1.7) be re-written as 

um = (-K-m - Ain + -m ) rm 

or 
	um + ( A~ - Km ) rm = A r* 

 first set of kinematic relations (2.1.21) is 

recovered by introducing the ADDITIONAL DEFORMATIONS uT defined 

by 	 m 

 

u~ = (Am - Km ) r* 
m 

(2.1.22) 

yielding k 1 = u' + ur 
m -m -Em 

 

From equations (2.1.1) and (2.1.22) 

- 1 
unm = 	-L-d

12 	-d13 

-d
22 	-d23 

-d32 1-d
33 

or, in terms of the intermediate displacements rm 

         

Ut = 

-nm 

-1/L • 

1/L • 

 

rl 
2 

rl 
3 

 

- d12 d13 

d22 d23 

d32 d33 

 

r/ 
2 

r' 3 

 

 

1 

 

m 

  

m 

     

  

m 

  

m 

  

       

Substituting equation (2.1.6) above 

rl 
- L2 - (ul 1 + r' ) 

r2 - (ut 2- r1 ) L 	1 	4 

r3 - u2 
m 
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P 

P 

m m 

ADDITIONAL DEFORMATIONS 

u 

 

2 
u  1 Tt 

6  

6  
L 

t 
n 	u2 

T 

u21t 

and using equations (2.1.5), (2.1.4) and (2.1.3), the definition 

of the additional deformations simplifies to 

(2.1.23a) 

(2.1.23b) 

(2.1.23c) 

Substituting equation (2.1.1) into equation (2.1.21b) 

and performing the multiplication, the last set of kinematic 

relations yields 

k2  = 
--m 

• 1 	• 	• -1 - 	rm  

• 1 	• -1 

or, from equations (2.1.2) and (2.1.3) 

k
2  
= ō —m 	

nm 

Statics and Kinematics may now be summarized in the 

following explicitly linear form: 

(2.1.24) 

STATICS KINEMATICS 

Rm  = [AT 	; 
p
1 Tr 

- X'- 

m 
U'  +U t 

T 

ittlm 

NODAL 	DESCRIPTION 

(2.1.25a) 

(2.1.25b) 

The above equations, besides being explicitly linear, 

exhibit a contragredient transformation or in an alternative 

terminology, they represent a dual transformation. As the 
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variables are static and kinematic, the above duality is termed 

STATIC-KINEMATIC DUALITY, following Munro (1974). The dual 

correspondence between static and kinematic variables is 

summarized below: 

DUAL CORRESPONDENCE 

STATIC 	VARIABLE KINEMATIC 	VARIABLE 

Xm  

R* 
-m 

-m 

u'm+ut 
-nm  

r*  
-m 

snm  

(2.1.26a) 

(2.1.26b) 

(2.1.26c) 

2.1.3 	Incremental Analysis 

The treatment to which Statics and Kinematics were 

subject in the above was aimed at "clearing" the transformations 

of the non-linear terms by concentrating them in new, artificial 

variables defined in such a way that the equivalent linear and 

dual systems remained exact. 

The genuine improvement was in fact the possibility of 

enforcing Static-Kinematic Duality since the system remains 

implicitly non-linear and had to be enlarged to accomodate 

unwelcome extra variables. 

These deficiencies that the formulation still endures 

can be overcome by subjecting the finite description to the 

treatment of the usual techniques in perturbation analysis. To 

do so and simultaneously preserve a high accuracy it is necessary 

to replace the finite description of Statics and Kinematics by 

an incremental one. The incremental formulation will provide the 

natural transition from the finite to the perturbed descriptions 

of Statics and Kinematics and it will be used later as a basis 

when comparing the present formulation to similar ones presented 

in the literature. 
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L
c 

Aug 
h = 1 (2.1.29) 

Assume then, that the value of the static and kinematic 

variables (say variable ym) describing the k-th state of stress 

and strain of member m are known and that a finite incremental 

procedure is to be relied on to find the deviations in the stress 

and strain fields (Aym) caused by varying a control parameter, 
allowing for the characterization of state k+1 by superposition 

of the incremental fields to those of the initial state k, i.e. 

(Ym
+1= Y

m 	A ym ) . 

As the finite descriptions of Statics and Kinematics, 

(2.1.2.4) and (2.1.25) respectively, are explicitly linear, their 

incremental versions can immediately be obtained just by replacing 

the variables by their increments, yielding 

AR* = [A T  ; 
i 
AT 

I m 

  

AX' (2.1.27a) 

   

-Ari 
m 

for Statics, and 

for Kinematics. 

Au'+ Au' = A - Arm 
L16T1 
	

- In 
m _ ~m 

(2.1.28a) 

(2.1.28b) 

For simplicity of the presentation we will from now on 

relieve the variables involved in the derivation of some indices. 

For instance, we will write p instead of pm to represent the 

chord rotations of member m at the k-th state; Ap will represent 

the ensuing increment of the rotation. 

Let h be the ratio between the chord length at stages 

k+1 and k 

where Au2 is the variation of the member chord shortening, and 

let us introduce another auxiliary variable z defined by 

z = h
-1 

- 1 (2.1.30) 
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Du t 
< 1 

 

L c 

    

CO 
-1 	 Au2 

h = 1 	L 	+ 1 
c 

Assuming that 

we may write 

and therefore c [ txu ]i2 
z = J=1 	

I-c 

Ry definition 

6t 
s = sin p = 

c 

(2.1.31) 

(2.1.32) 

(2.1.33a) 

and 
L-6 n 

c = cos p = , (2.1.33h) 

Hence 

sin(p+Ap) = s•cospp+c•sinpp = 
6t+Qu, 

- h(s+ ~st ) 
r_ 	2 	c 

L-6n-A6n 	_1 	A6n 

	

cos(p+Ap) = c•co sAp -s•sinAp = 
L _Au! 	h 	(c I_ 	) 
c 	2_  

The identities above give 

Ap= arcsin [ h-1 ( I1 A6t + LS A6n)] r. 	c 

which can be approximated to 

pp=- h-1( c A6t+ 	 „n)+ 	h-3(171o6t+ 
Is 

A6n)3+ ... 
c 	c 	c 

h-1 (~ A6t + 
LS pōn ) L

c 	c 

or, from definition (2.1.31) and segregating the non-linear terms 

if < 1 
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A p = 	A6t + 	A6n + ARp L c 
(2.1.34a) 

Au' 	Au' 
AR = (2= A6 + s A6 ) [ 1 ( S A6 + s 

A6 )2+ 	2 ( 1 +----)]2 	+ D 
P Lc t Lc n 6 Lc t Lc n 	Lc 	Lc 	4 

from the linear ones 

(2.1.34b) 

where 04 designates terms of order four and higher. 

The member chord shortening and the additional force 

displacements are not independent as shown by equations (2.1.33), 

which give 

L` _ (L- 6n)2 + 6 t (2.1.35) 

The corresponding incremental relationship 

t 
t 

Aul = Lc 1- [ 1+~2 	) (s A5 t- c A5 +2 ( A62+ A5 2 )]
z

f 	(2.1.36) 
L 	t 	n 
c 

can be expressed, after a series expansion, as 

(2.1.37a) 

(2.1.37b) 

From equations (2.1.23a, b) we find the increments on 

the additional rotations to he 

Au'~n = - Au
'
ln 

	Obt 
+ Ap 

or from (2.1.34) 

Ju t 1 = 	,2 	1 c in - - ~u1n = 
r_ 6 t+ 	A6n+ A R p 

c 
(2.1.3Ra,b) 
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X 
AX 3 = L3 Aug - 1 (AX1 - A X2) 

+ 	AR 3 
c 	 c 

AR3 A - 1 + t ) {X~ Au' - 	AX 1 +AX1 ) + 04 
c 

Similarly, starting now with equation (2.1.23c) 

Au' = Aōn - Au' 

or, from (2.1.37) 

Au2~ = s A6 t+(1 -c) Abn+ ARu 
2 

(2.1.38c) 

Equations (2.1.30) can he cast in a matrix form as 

 

A u' = R AS + AR u _7 	_7 	
TL 

(2.1.39a) 

where 

  

0 s 
Lc 

-Lc  

1-c 

LL 
c 

1 c 
E-17  

, AR 	= 
i7 

AR (2.1 . 39 h, c ) 

   

  

-ARP 

 

 

s 

 

AR 
u2 

 

     

      

The shear force at member m is defined by 

X = -1 (X1 - X i ) (2.1.40) 

and using equations (2.1.29) and (2.1.30), its increment by 

AX 3 = X 3 •z - 1Lz (AX E - AXE ) 
c 

which can he re-written as 

(2.1.41a) 

(2.1.41b) 

The additional forces defined in (2.1.20) can he 

expressed as 

7
n

=-sX3 + (1-c) X2 (2.1.42a) 
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2 s L2 - 2scE3 
c 	c 

scl 2 + (s2  -c2 ) l 
c 	 c 

X 

sc T + (s2-c 2 )L3 i 	c 2 L2 + 2_ scE3 
L c 	 c i 	c 	c 

P = , ARn = ARn 

AR t 

L 
TC t = (~ - c) X3 + s X2 (2.1.42b) 

and their increments as 

Alt n = -(sX 3+cX2)z - L3 Abt +
L
-2 Ab n - sAX 3 + (1-c) AX 2 

	

c 	c 

+( -73 A6t + 2 Ab, - sA X 3 - cAX 2 )z -  —(AX- As t - AX 2 A6 n )h -1 
c 	 c 

X
3 	

X 

Ant = - (cX3-sX2)z - 	Aul + 
L3 

AO n + 
L2 

Obt + sAX 2 + ( Lc-c)AX 3 
C 

	

C 

44 	A5 + X2 Ab + sAX - cAX 3 )z + 1 (AX Ab + AX2 A5 )h -1- 1 Aut AX 

	

Lc n Lc t 	2 	3 Lc 3 n 	t 	L 2 3 

Replacing above all the incremental variables by their 

series expansion approximation given in (2.1.31), (2.1.32), 

(2.1.37) and (2.1.41), we find 

 

Ait= Q T AX' +PA611 + AR n (2.1.43a) 

where 

  

(2.1.43b,c) 

and 

Au' 	AX 	AX 	Au' 	X 	 X 
PR = (1+ 2 ) 1 	3 A5 + 	2 	2 Ab + 	[ (- 

3 A6 + 2 A6 - sAX - cAX ) n L
c 

Lc t L
c 

n L c L
c 

t L n 	3 	7_ c 

-
A

L 2 (sX3+cX2)] } - sR3+( 2s~3 + cL2 ) R + 04 
c 	 c 	c_ 	2 

(2.1.44a ) 

Au' AX 	AX 	Au' X 	X 
AR t 

= (1+ 2)1 2 A6 + 	3 Ab + 	2 [ (? Db + 3 
A5 - cAX 3 +s~X ) 

 L I_ c t L c n Lc Lc t Lc n 	3 	2 

2 
(cX -sX )]} + ( L -c)R +( 2c--s X~)R - 1 Au' AX +f] (2.1.44h) - l_ c 3 2_ 	L 	3 L.c L c u2 	2 3 
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The incremental additional forces may now he eliminated 

from the nodal equilibrium equation (2.1.27), yielding 

or 	from 

Let 

and 

where 

K' 	= -n 
m 

Lc 	are 

m 	the 

0 = 
AT 

AX' 	- ARm - A T (Q T -m 	 -am 

equation 	(2.1.20c) 

0 = 	(A T - 	A T 1 T ) Ax' 	- 

	

-m 	-7 -m 	--m 

AR* _ 
-nm 

IK 	= 
Ttm 

Carrying out 	the 	triple 

Iii
a 

= 

Kn 	is 	the symmetric matrix m 

	

X 	X 
• i 	~2cos2(a-p) 	-[3si.n(2a 

• -7.17 -2p)-2p) 	3cos(2a 

Furthermore, 	we also 

-m = A
T 
-A 

The matrix 	S n 	is defined 

the memher chord rotation 

incremental 	action 	takes 

2 	
Lc 	Lc 

	

AX' 	+ P 

- A T P 
-m 	-n -m 

A T AR 
-Th m -nm 

A T P 	A 
Ton—T 	TLm 

product 

- Kn 
1-hn- 

-KtTt i 	K7 

I 

-2p)~ 

-2p)i 
1 

	

find 	that 

T 
n 0m = S,n 

m 

and 

place. 

+ 

in 	(2.1.14) 

A6 	AR 	) 
m 	m 

A 	Ar* - 	A T AR 	(2.1.45) -n
m 

-m ~m 	nm 

(2.1.46) 

(2.1.47) 

in 	(2.1.47) 	we 	find 	that 

(2.1.49a) 

m 

X 	X 
- sin(2a-2p)-- cos(2a-2p) 

L
c 

2sin2(a-p) 	+ 3sin(20t-2p) 
c 	Lc 

(2.1.40h) 

(2.1.49) 

where now 	pm and 

length 	immediately 	before 

-m 

Eliminating the incremental additional deformations 

through equation (2.1.39), and making use of (2.1.49), the 

comnatibility nnuntinn (2.1.''fn) rnrliir.ns to 
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I 
U - 
0 

k
in

em
a

ti
c
s  

Qum 	S  + QR = Am Q 	rm 
m 

to 	(2.1.49), 	define 	the 	incremental 

Statics, 	respectively: 

description 

(2.1.50) 

(2.1.51) 

IKID l1 T  

/A 	i 	• 

• 

m 

ArX 

AX' 
m 

QR x. 

Au' 
m 

QR* 

AR 
Ur7 m 

INCREMENTAL 	NODAL 	DESCRIPTION 

2.1.4 	Perturbation Analysis 

The systems of equations (2.1.50) and (2.1.51) do not 

have a known closed form solution, in the sense that it is not 

possible to evaluate directly the incremental member deformations 

compatible with a given variation of the nodal displacements, 

which together with a given variation of the stress-resultants 

are not sufficient to directly evaluate the corresponding 

variation of the member nodal forces. 

If an iterative numerical procedure is to be avoided, 

the original implicitly non-linear systems have to be replaced by 

(a set of) systems of known solution. 

This can be achieved by expressing every incremental 

variable in the system as a power series of an arbitrary 

parameter E 
OD 

i 
E 

AY = 1=1 yi īi 
(2.1.52_) 

and equating the terms of the same power of E ; the original 

system is replaced by an infinite (i=1,2...,00 set of recursive 

systems (variahles of order higher than the i-th are not involved 

The above equation and equation (2.1.45) together with 

equations (2.1.46) 

of Kinematics and 
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in the i-th system) of solvable (for instance linear) equations. 

If only n< C0 systems are solved and the increments are 

evaluated by 

n 

I 

	Ei 
Ay 	

i1 yi i 1 

the solution of the system is said to he of order n. 

In general the convergence is fast and, depending on the 

amplitude of the control parameter E , only a few terms of the 

series are required to satisfy the stipulated degree of accuracy. 

Let us then expand the incremental variables present in 

equations (2.1.49) and (2.1.50) in power series of the form 

(2.1.52): 

00 i 

~-m 	- i=1 Xi i. 
m 

CO 	Ei 
= s * 

~Rm 	 i=1 Ri_ 
m 	

il  

CO 	Ei 

Aug _ - u! —m 	i=1 —i m il 

CO 	Ei 

a—m 	i=1 r 
m 

I 

co 	i 

-i 	- i= 1 -n. i i 
m 	i 

m 

CO 	Ei 
ARu~m 	i=1 -U7.i 1 

m 

(2.1.53a) 

(2.1.53b) 

(2.1.53c) 

(2.1.53d) 

(2.1.53e) 

(2.1.55f) 

Substituting into the incremental description of Statics 

and Kinematics and collecting the same order terms, the incremental 

descriptions of Statics and Kinematics are replaced by the 

following equivalent infinite system of equations: 
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+ R* 

m 	- m 

`1F SIRTPITPM 

IK _n 

lT\ 

T 

_ m 

r1 

Xi 
m 

PIT '?TURPEF) 	NpfAL. 

- U 

k
in

em
at

ic
s  

(2.1.54) 

(2.1.55) 

We will prove next that the above equations are recursive 

by demonstrating that the i-th order residue R* 	and R 	depend 

on coefficients of order lower than the i-th. 1 m 	 m 

As a consequence the first-order residue of those and similarly 

perturbed forms will always be zero. 

Again, for simplicity of the presentation, we will be 

dropping from now onwards the member subscript m. 

Replacing in (2.1.32) z and u2 by their power series 

approximations 

co  

	

= 	z. 

	

i.=1 	1 ī :: 

	

co 	i 

	

Aug = 	u' ~ 
2 	i=1 2. i. 

1 

(2.1.53g) 

(2.1.53h) 

and after some si_mnle operations on the series, we find the 

following relationship between the i-th order coefficients 

u2 
2. 

zi 	L + Rz. Lc 
	1 

R7 = 2z2 
2 

(2.1.56a) 

(2.1.56b) 

(2.1.56c) 

• • • 

R7 = 671 (z 2 - z 1 ) 
J 

• • 
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P i L St
i 

+ L sn. + Rp. L
c 	c  

R 
P2 

= 2z1 
p 1 

R
p 3 

= 3z1 p2 + 3z2 p
1 
- 67

2 p1 P1 

• 	 • • 	 • • 	 • 

 

Letting 

co 	.•  
=  

i=1 Pi i. 
(2.1.53i) 

(2.1.53j) 

(2_.1.531) and 

 

i 

LSn 	i =1 5n. L d 

co 	i 

Ast - i=1 st i i 

in equation (2.1.34), solving the series and equating the same 

order coefficients we find 

(2.1.57a) 

(2.1.57h) 

(2.1.57c) 

Similarly, using now (2.1.53h,j,1), equation (2.1.37) 

can be replaced by the infinite system 

u21 = - s stt + c n
~ - Rug. 

1 

2 
= Lc p i 

2 
Ru2 3 = 3 p1 u? 	+ 3L c p1 (P2 - R P 2) 

• • 

Letting in the linear equation (2.1.38a) 

c 	i 
Aun 

t 	= 	IA r 	£ 
1 

(2.1.5Ra) 

(2.1.58b) 

(2.1.58c) 

(2.1.53m) 
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Lift. 
= 

 

RP 

-Rp 

Ru2 

   

where, from (2.1.38c) 

3 i 	1 	1 	2 
X 3 = 

ī u 1 

- 
L (X 1- X 1 ) + R3. c 	c  

R32 = X3 Rz2 - 2 z1 (X1 1 - X11 ) 

= X
3 

R 	- 	[ z1 (X 1 -  Xi ) + z2 (X1 - X, )]  3 	c 	2 	2 	1 	1 

• 
• 

X 

together with (2.1.531) and (2.1.53j,1), we find for the perturbed 

version of the incremental additional deformations 

s 	r„ 
U
7 	

r. 
1 
= 	ry7l 	

n1 
(2.1.59a) 

i 

As R 	and Ru2 , defined in (2.1.57) and (2.1.58), 

respectively, 
P1 

are 	1 recursive, Run is also recursive. 

Using the above results together with the incremental 

shear force in the form 

ci 

AX3 	i=1 X3. īi 1 
(2.1.53n) 

in equation (2.1.41) and the results so ohtained in equation 

(2.1.43) after replacing the incremental additional forces by 

(2.1.59b) 

co 	~ i 
Art  i=1 -i ī 11 

equations (2.1.41) and (2.1.43) become, respectively 

(2.1.53o) 

(2.1.60a) 

(2.1.60b) 

(2.1.60c) 
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and 

  

n 

	

T f 	n + 
i 

_ 	+ P  Xi 	— 6 i 	RTCi (2.1.61a) 

where 

R TL 1 
_ 

R U2 
Rn - sR 3 + (cX2+2sX3) L c 

(2.1.61b) 

R 
R t + (-c - c) R 3 - (sX 2 - 2cX 3 ) U2 

i 

Rn 
2 

= 2(Tun 
1 
- X

21
) z1+L

c 
( X

216n1- 
 X3 

1 6t1 
) 

R t = 2(Ttt-2LX3+ LcX3z1 )z1 + l2 (X2 6 t+X36 n ) 
2 	1 	1 	 c 	1 	1 	1 	1 

	

Rn = 3(.7n - X 2 ) z1 +30-E n - X 2 ) (z2-2z2)+ -1(X 	( 2 6n + 
3 	2 2 	1 1 	 c 1 2 

X 2 6c -X.36t - X 3 6 t ) 
2 1 1 2 2 1 

L 	L 	L 
R t = 3(n t -2~X.~+ ~X 3z 2 )z 1 +3(rc t -2;X 3 + 

3 	2 	2 	 1 

L X 3z1)(z2-2z2 
)+Lc(X31 

2z 1 X `i )z2+- C( 

X 2 6 t +X 3 6 n +X 3 6 n ) 
2 1 2 1 1 2 

6
t2

+ 

(2.1.61c) 

(2.1.61d) 

(2.1.61e) 

( 2.1 .61 f ) 

• 

From (2.1.46) 

Rn = Iln R 
^ni. 

(2.1.62) 
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and as Rfi  is recursive, as shown by (2.1.61b to f) and (2.1.58) 

and (2.1.60), R.  is also recursive since the above transformation 

is linear. 

2.1.5 	Asymptotic Analysis 

The finite description of Statics and Kinematics will 

now be specialized for the analysis of the particular class of 

systems whose equilihrium paths branch from the original 

kinematically trivial path, as happens for rigid-plastic 

structures and axially undeformahle elastoplastic structures, the 

latter under specific loading conditions. 

The formulation will be presented in a form suitable for 

the application of the static perturbation method developed 

independently by Sewell (1965) and Thompson (1965). 

Sewell (1965) considered only discrete systems and out-

lined the specific application of the perturbation method to 

buckling problems. 

Thompson and Hunt (1973) published a detailed exposition 

of the results Thompson obtained by extensive application of this 

technique. 

As we are specifically interested in deriving a formulation 

suitable for a fast estimate of the buckling load and of the 

initial tangent to the branching path, we will limit the 

presentation to a second-order formulation. 

Within this limited scope, we may expand the generic 

variable y, and not its increment, in a power series 

y (2.1.63) 

As it is assumed that the initial path is kinematically 

trivial, then 

y 0  = 0 

whenever y represents a kinematic variable. 
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Expanding (2.1.35) in a power series 

 u2 = 6n - 2L 6 t2 + ..• 

and letting above 

co  
ut = 	ut 
2 	i=0 2. īi (2.1.64a) 

and -It 	i=0 bTL1 ī i (2.1.64b) 

solving and equating the same order terms, we find 

(2.1.65a) 

(2.1.65b) 

(2.1.65c) 

• 

• 

From equations (2.1.33) 

st 
p = arc tan (77,571 ) 

l_-6n 

and expanding 
p = 6t (1-6~ )-

1 - ... 

Letting above 

co 	i 
E 

p- i=0 pi īi (2.1.64c) 

together with (2.1.64h) and solving as previously, we find for 

the member chord rotation 

6t. 
P. = L + Rpi 

Rp1 = 0 

__ 2 

Rp2 	L2 6 n1 
6 
t1• 

(2.1.66a) 

(2.1.66b) 

44 



1 1 2 
X
3.
=- 

L 
(X 1 - X 1 ) - 	R3. 1 L ]_ 	L 

R =- 1 
(x -x )u2 

L_ 0 0 	1 
2 u 

R32 - L2 
[ (X 1 0 X i u2~ - 	1)+2(X 1 1- X 1 1) u21 

Substituting 

the perturbed 	form 

where 

The member 

approximated 	to 

= - ī 

Letting 	above 

and 

together with 	the perturbed 

shortening, 	the 	perturbed 

(2.1.65) 

UT 	= 	U1 
TL 	1=0 -n. 

of 	the additional 

and 	(2.1.66) 	in 	(2.1.23) 	where 	now 

1! 	
(2.1.64d) 

deformations is 	found to 	he 

(2.1.67a) 

(2.1.67b) 

i 

as 	defined 	in 	(2.1.40), 	can 	be 

ut 	ut 

	

+(~ ) 2+ 	... 

i 

i! 	J=1 1 2 	(2.1.64e) 

~i 
(2.1.64f) i! 

(2.1.64) 	for 	the 	member 	chord 

of 	the member shear 	force 	turns 

U~1= Ru- 

-un.1= 

shear 

(X ~ -x ~ ) 

m 

X 1 0 

co 
= 

X 3 	1=0 

Rp 

-R
P 
R u 2_ 

force, 

[1+ 

• 

X1 . 
t 

X 3i 

form 

form 

out to be 

(2.1.6na) 

(2.1.69h) 

(2.1.60c) 
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n 
0o 	i = 	E 
i=0 - i 
op  

X 2 	i=0 ' 2. I L 
1 

(2_.1.66g) 

(2.1.64h) 

R 	= 0 
—71 

2 
R.rE2 = -X.iD Rp2 + 

p1 X20 
2 

p1X31 

30 	2 
X20Rp2 + L Ru27 2p1 X21 L 1J X 

21
31 

X 

Expanding the additional forces definition (2.1.41) in 

a power series 

7n = - pX3 + 	p2 X2 +... 

nt = px 2 + ~ p2 X3 - l2 x3+... 

and letting above 

together with the results previously obtained for the remaining 

variables the following matrix description emerges 

7 i = P 6 + R~ 
i i  

wherc 

(2.1.69a) 

(2.1.69b) 

(2.1.69c) 

Matrix P can be found by specializing (2.1.43h) into the 

case of the initial kinematically trivial path 

L c 

s 

c 
X 2 

X 3 

= 

= 

= 
= 

= 

L 

0 

1 

X 2 
0 

X
30 

(2.1.70a) 

(2.1.7Db) 

(2.1.70c) 

(2.1.70d) 

(2.1.70e) 
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or 

0 = A T  X. -Rt-   AT P 	6 i  -A
T 
 0 - -1  

(2.1.71) 

yielding 

(2.1.69d) 

X 3  
0 

r 

P = 

Letting in equation (2.1.24) 

00 
_ 	R;f-  

i=0  i_ i. 
( 2.1.641) 

together with (2.1.64e), (2.1.64g) and (2.1.64ih), and equating the 

same order terms, the nodal equilibrium equation gives rise to the 

infinite system 

0 = A T  X - R - A T  rC 

after the elimination of the additional forces through (2.1.69a). 

Similarly, equation (2.1.25c) can he replaced by 

A r 	 (7.1.72) bni 	_ TI 1 

using (2.1.54h) and letting 

op  
_ 	» 

i=0 -i 11 

Substituting (2.1.72) into (2.1.71) and noting 

R;.- = T 
R 

-1T -1 	TC ~ni 

the nodal equilibrium equation becomes 

R* + IK 	r ': + R` = A T X i 	- TC --- 	-1 	1 - -  

(2.1.64j) 

(2.1 .73) 

(2.1.7;) 
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l.1 T  rX = 
-1 	.-1 	Ti 

. X. 	u! 	R 
-1 	--uTE . 

 
- m -  - m

- 	

- n 

ASYMPTOTIC NODAL DESCRIPTION 

- 1K 

Matrix 	is is still defined by (2.1.40a), and matrix Kt 

can be found by imposing (2.1.70) in (2.1.48b), yielding 

(2_.1 .75) ••  K 1  = -I  _ 

X20cos2a X30sin2a-2 X?Osin2a X30cos2a 
L 	 i 	L 	L 

• ; -Z X20sin2a X3O 	X  cos2_a i 	20s. 2  a + 0sin2a L 	L 	 L 	 L 

Letting in equation (2.1.25a) 

u'j  = 	
u'j 

 Ei. 

1 
1 

j=1,2 	(2.1.641) 

and substituting (2.1.64a), (2.1.67a) and (2.1.64j), the nodal 

compatibility equation becomes 

u ! + R 	= A r x- 
. -1 	--uTC • 	— --i 

1 

The above equation together with equation (2.1.74) 

define the Kinematics and Statics descriptions in the desired 

format suitable to perform an asymptotic analysis 

(2.1.76) 

(2.1.77) 

where now 

/A = A 
—m —m 
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rm 	 

Fm 
	STATICS 	I Xm 

KINEMATICS 	.1 um 

2.2 	MESH DESCRIPTION OF STATICS AND KINEMATICS  

The reasoning behind the Nodal Description of Statics 

and Kinematics, as presented in the previous section, can be 

summarized as follows: 

1. Given a displacement field, find the associate 

(compatible) deformation field (KINEMATICS). 

2. Given a stress field, find the associate (equilibrated) 

loading field (STATICS), 

or diagrammatically 

The present section is concerned with exploring the 

complementary process of describing compatibility and equilibrium, 

which in broad lines can be summarized as: 

1. Given the deformation field (and the rigid-body 

displacements of a point) find the associate 

displacement field. 

2. Given the loading field (and the stress-resultants 

at one point) find the associate stress field. 

To do so it is necessary to found the static and 

kinematic analyses on a suhstructure characterized by a different, 

let us say complementary, connectivity, the mesh substructure. 

2.2.1 	The Exact non-I.ine<ar. Relations 

Assume that a typical mesh, say mesh M,is disconnected 

from a structure, both in its initial and deformed configurations. 

We will he considering a (clockwise) directed mesh formed by four 
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orientated member 

  

   

mg 
isimal beam element 	 thrust release 

i~ 
bending release 	 shear release 

branches, the MESH MEMBERS, connecting four vertices, the MESH 

NODES; Fig.2.6 represents the disconnected mesh together with an 

arbitrary set of forces, the MESH FORCES R~~, not necessarily 

self-equilibrated. 

FIGURE 2.6 

Let abe the mesh STATIC INDETERMINACY NUMBER. Freeing 

a = 3 connections by introducing artificial RELEASES, the mesh is 

rendered statically determinate if the freed forces (or a 

statically equivalent set of forces) or F?IACTTONS p are selected 

as unknowns. In planar problems we can distinguish the three types 

of release represented in Fid.2.7; the associated biactions are 

FTPIJRE 2.7 
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X i  
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X5  

X 2  

X4  
2r  
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4 

X 2  

1 
3 

4 
c 

considered positive if they induce a positive stress distribution 

on the near-side face of the neiohbouri. nn infinitesimal element 

of the orientated member of the mesh. 

If the mesh is rendered statically determinate (for 

instance by cutting member 4 at the immediate neighbourhood of 

critical section 9) the stress resultants at every critical section 

can he expressed as the superimposition of two stress fields, one 

induced by the hiactinns, the other by the loading. That is, the 

solution of Statics is decomposed into a complementary solution 

(a self-equilibrating stress field 	induced by the biactions) 

and a particular solution (a load equilibrating stress field Xm). 

FIGURE 2.8 

The figure above represents the adopted set of biactions 

and the associated complementary solution is defined by 

1 
-Lcs1  

-c1  
1 

-Lc s1  

3 
-L
4
c-L s c 4 c 3  

s2  

-Lcc4-Lcs3  

-1
4
cc4  

	c3  

-Lcc4 

1 
Lcc1  

_Si  

Lcc1  

4 	3 
-Lcs4+Lcc3 

-c2  

3 
-L

4
s 	c  +Lc c 	3  

4 
-Lcs4  

S3  

-Lcs4  1 

1 

1 

1 

. 

1 

1 

1 

1 

P1  

P2  

P3  

(2.2.1) 

 

  

-s4  
r1 
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where 

and 

(2.2.2a) 

(2.2.2b) 

(2.2.3) 

si  = si npi 
ci = co >p. 

or, in a more compact form 

c 
XP1 = 

SM  p M 

Assume that nne side of the cut is clamped, as in Fig.2.9, 

and let RI
P
* he the reaction developed at the support of the 

cantilever. The mesh forces and the MESH REACTION FORCES R'* are 

FIGURE 2.9 

related through the following equilibrium condition 

where 

_RI* = Sr  R 
ri • 

(2.2.4) 

1 • • I 	1 L c s1  c -L 1c  c 	i 1 1 1  
L4c +L3s c 6 	c 	3 -L1  r 1 	c  

+Lcs 	i 1 
c 	21 

4 +L c c 
c 4 

+LV's 	- 
c 4 

. 1 .1. 1 • I. 1 

i 
• ,. 1 • 

• • 
I 

11• 
I 

I  
I 

1 • 
1 1 	I. 
1 

1 
- 

The particular solution defining the stresses caused by 

the loading and developing at the critical sections can be 

IrM 

M 

(2.2.5) 
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1 cI1 -LC 	1 

• I 	1 
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• 1 
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. 	I 	. 
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. 

description 

= S 	RM f '1 

Lcc4
+Lcs3 

Lcc2 

-Cl 

Lcc2 

s2 

of 	STATICS 

I 
-Lcc1+Lcs2i 1 

	

Lcs2 	i 1 

-s1 

	

Lcs2 	1 

• 1 1 

	

-c2 	I • 

1 

1 

at element 

4 
Lcc4 

-Lcs3+Lcc2 

-Cl 

-L3s3+L-c 

-Lcs3 

S2 

3 
-Lcs3 

. 

C3 

• 

. 

level 	can 

(2.2.6) 

4 Lcs4 

Lcc3+Lcs 

-S i 

c+L2s 
L~

3 

l_ cc3 

-c2 

Lcc3 

s3 

now 

1 Lcs1 

-c1 

The mesh 

he defined as 

where 

Sof'I 

• 

• • 11 

• . •. 

L 

. • J • 

. . . 

STATICS 

X t 

_RI* 

= 

	

S 	I So 

• i 	S —r 

n 

R 

M` -M 

expressed as 

(2.2.7a) 

(2.2.7b) 

The derivation of the particular solution was based on the 

assumption that the faces of the cut did not suffer any relative 

displacements. Hence these DISCONTINUITIES v at the releases must 

he expressed in terms of the mesh deformations and set to zero. 

A discontinuity is assumed positive, Fiq.2.10, in the sense of the 
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and 
sinu'

i 
1 

s1 - -~ 
Lit 

1 

2 
t 3 

u 1 

4 
U'1 

• 2 

u 

u ~ 1 
u' 1 

1 

. 
v1 

v 2 

v 
_ 3 

1 

hc2 

hot 

1 • 1 1 •' 	1 

hc4-Ls~i • hc5-Ls5 -Ls5 1-Ls? 

hs~+Lc4 -1'hs5+Lcs Lc5 •' 	Lc' 7 

• 1 

• 

1 

• 1 

-1 hc'3 

• hs3 

where - cl
i 	

ul
i 
1 

(2.2.9a) 
i. 

1-cosu'1 

or in a more compact form 

v
M 	

M u11 

(2.2.9h) 

(2.2.10) 

ut 3 
2 
7 

u' 
1 

u 2 

u' 1 
8 

1 
2 

relative displacement of the faces of the release when acted upon 

by the corresponding biaction 

v. 

fv~ 

FIGHRF 2.10 

With help from Fig.2.11, the Following relationship 

between the discontinuities and the MESH DEFORMATIONS u
M 

is found: 

(2.2.8) 

To enforce continuity we set 

-M= 0 (2.2.11) 

When mesh M travels from the initial to the final position, 

as in Fig.2.12, the displacement of any point of the mesh, and for 

that matter the MESH FORCE DISPLACEMENTS rx. can be understood as 

the sum of two parts; the contribution of the mesh deformation 

and the rigid body displacement of the mesh, described for instance 

by the MESH REACTION FORCE DISPLACEMENT rAx-. With help from the 
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kinematic influence diagrams in Figs.2.11 and 2.13, it is Found 
that 

L rN = Ko —M + K r  rt* 
f'I 	f1 

(2.2.12) 

FIGURE 2.11 
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where 

K = 
nfl  

                           

                           

                           

    

• 

. 

• 

1 
• 

        

. I 	. 
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(2.2.13) 
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1 
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-Lc7
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1 • I . 
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•i-Lc3+ hs3 

hc4 
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('1 

 

              

               

                          

1 • • (2.2.14) 

1 • 

• 1 

1 

-hc1  1 • 

-hs1  • 1 

Ls1 -hc1  1 • 

-Lc1 -hs1  • 1 

1 

Ls1  1 • 

-Lc1  • 1 f1 

where 
1-cosr!* 

- 1 
c. - --- '1 1. 	r.:: 

1 
(2.2.15a) 

and K r rM 

and s - • -' 1 

sinr!* 
1 

(2.2.15b) rf - 1 

 

Equations (2.2.10), (2.2.11) and (2.2.12) represent the 

mesh description of kinematics, summarized below: 
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Ki NFMATTC S 

.  

K ' K 	r  
— o I —r_ fil 	- f'1 

   

0 

  

r . - 
f1 

K 	• 

r* 3  2 

I / 

_J  • '0E3  
2 	r3*  

r*3 
3 

r- 

mesh reaction 
force displacement 

i-th mesh force displacement 

(2.2.16x) 

(2.2.16h) 

I- TEMPI 2.12 

FIF,INE 2.13 
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. 	• • I . 

(2.2.17) 

(2.2.18) 
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(2.2.19) 
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. 	. 

• 1 1 

• -L 
-1 I h 

-h 1 

• 1 
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1 
-L 
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-1 
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• 1 
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• , 1 
. 1 1 
• I 	. 

+- 

1 
• 
• 

L 

L 

-1 
L 

. 

. 

1 
• 

• 

L 

1 
• 

2.2.2 	The Exact Explicitly Linear Dual Relations 

Enforcing the linear analysis assumptions, definitions 

(2.2.2), (2.2.9) and (2.2.15) reduce, resnectively, to: 

si = 0 	 si = 1 	 s i 	1 - = 
ci = 1 	 ci = 0 	 c i- = 0 

and as in linear Statics and Kinematics where the chord length of 

a member is confused with its initial length, the linearized 

static and kinematic matrices reduce to 

T 	_ 	 __ T__ 
(5f~1) li.n -(Ki1 tin I1 

=(KT)  _ 
_ 

( ='o m lino~ lin-nom 

=(KT) 
	_ 

(Srmlin 	- rl 
_

n -arm 

Hence, the linear description of Statics and Kinematics 

associated in the mesh 11 follow the dual transformations (2.2.20) 

and (2.2.21). 

As in the previous section, let us forcibly introduce the 

linear operators in the non-linear Statics description (2.2.7) and 

condense the non-linear terms in the definition of two auxiliary 
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variables: 

(2.2.20a) 

(2.2.20b) 

11 

f3 io 
	

P 

• B R` 
-r -

-M- 

LINEAR 	ANALYSTS 

STATICS KINEMATICS 

- V- 

-Rt _ -~- 

= 

M 

B 	i 	A 

i 	O _ 	, -r 
M 

p - 

R* _ 	_ 
M 

r - 	- 

= 

M 

	

- B T 	i • 	- 

	

BT 	i B T 

	

--o 	i -r _ 

u' 	- 

rt* = 	-M 

MESH 	DESCRIPTION 

X' -X' 

R'-V-F?'* 
M 

(2.2.21a) 

(2.2.21h) 

The corrective stress resultant 	and and the corrective 

mesh force reaction f+1 are therefore defined by 

ZA = ( m-Rr,1 )Pm+(5o~,1- M ) BA 

To* _ 	( S r -B )M 
 M 

(2.2.22a) 

(2.2.22b) 

Still possible,although nnw more cumbersome, the direct 

method adopted in the previous section could be used again in order 

to simplify the definition of the above auxiliary variables. 

Instead let us build upon 

the knowledge gained in the • 

direct method and introduce 

the ADDITIONAL MESH FORCES 

TIM represented in Fig.2.14 

and defined by equation 

(2.1.20); we may write then 

_ 	t -N —N -m 

or, from equation (2.2.7a) 

-M nN-N F fI+nf ~1 ' =0 RM (2.2.23) 

FIGURE 2.14 
where 
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Lc 

1+c3 
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. 

. 	•• 

induce 

. 

s3 

3 
Lc 

1 	03 
h T 

c 

in the (statically 

determined) mesh stress-resultants at'the critical sections and 

reactions at the fixed face of the cut defined respectively by 

-M
Bon -M 

Ill 

and R~ x = B 	n --f'I 	—r -M 
h1 

or, from equation (2.2.23) 

RI 	B 	
fl11 

S('1 pM + B
o nM So Rl 

nM 	n 	~1 
(2.2.24a) 

and = Rr
n 

!' SM PM 
	B

rn 1 Sorl m (2.2.24b) 

where 
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(2.2.25) 
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O 	= r nm 
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-L i • • 

  

(2.2.26) 

. I . . . 

  

 

. t • 

  

N1 

 

     

      

it is easy to assert the following relationships 

r1-
Ml 	°r1 

= 5 °i1 	g 
°r'l 

- rn ~—r'I _ nM = 
~ 
r ~l 	Or al 

P o —M S M 	S fl 	E1 
nNN 

O r nM SM = 0 

nM 

where 0 is the null matrix, which enable us to identify through 

equations (2.2.24) and (2.2.22) the stress resultants RI and the 

mesh reactionsR
M
' induced by the additional mesh forces with, 

respectively, the corrective stress resultants X~!1 and the corrective 

mesh force reaction f').", and therefore to re-write Statics as 

follows: 

X- ' - = - O 19 1B —° , —oTC 
_R `- 	• I © 1E3 

t —r t —rn 

   

 

p 

R* 

iL 

(2.2.27a) 

(2.2.27b) 

  

r1 	 Ni 

 

    

11 
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If duality is to he preserved, the kinematic transformation 

(2.2.16) must be replaced by thr following: 

k1 _ 

k2 

k 3 

= 

M 

:• 

RT i ST 
—n 1 —r  

El 	F1 _ —oro —rrt M 

k 4' 

k5 

(2.2.28a) 

(2.2.28b) 
M 

(2.2.29c) 

The identification of the kinematic variables k
i
1 may start 

by finding their dual static variables 

The above 	relationships 

correspondence summarized in 

kM 	= 

3 

k f ~1 	= 
k4 	= 

and we 	can antecipate that 

k f5'I 	= 

The arrays 
6 	= -n 

f'1 

collect 	the 	ADDITIONAL MESH 	FORCE 

(2.1.26) 

rfi 

S~h1 
ut 

rf1* 

6 
yn1 

6 
—n2 

n3 

-5114  

together with 

yield 

+ 	tit 
Tt f'1 

+ k f~ 

, 	and u' = 
M 

M 

DISPLACEMENTS 

ul 
—n1 

ut —n
2 

U t -n3 

u t 
—n 4 

the 

-n 

dual 

M 

6 	and 
1M 

(2.2.29a) 

(2.2.29h) 

(2.2.29c) 

(2.2.29d) 

the 
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ADDITIONAL MESH STRAINS u' 	respectively, the latter being defined _n 

try equations (2. .22) 	1M 	which give 

u' =K u' +K' 6 +K'' p 
rnf'1 --TEf1 -?L -TUM ~n -TE

M - f'I 
(2.2.30) 
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Substituting equations (2.2.29) hack into equatinns 

(2.2.20a) and (2.2.2Ab) we find that the following relationships 
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• • • I -1 
• 

• 

• -1 

_ -1 

• 

. 

- -1 

- 1 

. .- K = 
Pm 

• 
.- 

•_ M • , -1 

K' = 
-Pm 

(2.2.31a) 

-rM 
I< M^ 	+(K 	u11+( K -r -r  

-R
T 

)rt*  (2.2.31b) 

must he identified if the updated equations (2.2.28) are to comply 

with the exact description of Kinematics summarized by equations 

(2.2.16). 

The additional mesh force displacements and the mesh chord 

rotations can be expressed as functions of the mesh deformations 

and the mesh reaction force displacements: 

where 

	

6 = K u' 	+ Kt 	rt* -n 	6M-M 	6M 

	

p = {< u' 	+ K' rt* 
 II -PMT 	-Pm 

(2.2.32a) 

(2.2.32h) 
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Let /t 

-Ls1 

   

. 

. 

Lc' 

-Ls' 
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. 

 

        

Lc1 

Ls1 

   

             

             

             

The coefficients of the above matrices are found with help 

from the kinematic influence diagrams in Figs.2.11 and 2.13, 

respectively. 

The additional mesh deformations may now he expressed ton 

as functions of the mesh deformations and the mesh reaction force 

displacements by eliminating in equation (2.2.30) the additional 

64 



K = K + K' K + K" K 
-uM 

-11M 
-7M-6M -7

f1 -PM 

K' = 	Kt K' + Ktt Kt 

u f1 
	

-TIM-OM -TIM -PM 

where 

and 

mesh forces and the mesh chord member rotations through equations 

(2.2.32), yielding 

UEr= K uM ur1 + Kt rt* (2.2.32c) 

/after the elimination of the additional mesh deformations 

equations (2.2.31) transform, respectively, into 

kri '[ f1Ku~ -(1< f1- I ) ]uf1+[FiFl-u11] r~ 

Br k5 =[-A T 
K 	-  t-(K

o -Rō ) ] u d'1+ [-Rō K'+(K r -A T 
)]rl*  

- f1 	 M f1 	M1 M 	MMMM 

or k1 = 0 

 

 

Br k5 = 0 
- h1 

(2.2.33) 

since P T I. 	
= K uM 	f1 M • 

T 
-•f1 

K u f1 = 0 

R T K 	= K - R T 
-o f1-u f1 	-o f1 -o f'1 

R T K' = K - P T 
-o 	-r  --T 

M -rf1 

The trivial solution 

5 
k f1 = 0 (2.2.34) 

is the only solution of equation (2.2.33). 

Equations (2.2.2E1c) and (2.2.29b) together with equation 

(2.2.3A) require the additional mesh force displacements to be 

defined by 

ōn = A
T (-r1+u,) +R TA 

h1 	Tt1 	f1 	(1 
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or, suhstitutinn equation (2.Y.32h) above 

bn = ~ rj0n 	K in+ BT ] -M +[ 
on 

K
u 

+ A
Tn

T  ] rM " 
M f•1 M 	 M M 	M 

-which is the explicitly linear version of the exact definition 

- (2.2.32a) since 

R
T 	T __ 
on

f11
Kt 

M 
	BT 

	
K

Ōii 

A
T T 	t 	

B 

	' 

o7M uM 	r7M K 6M 

The results obtained through the above process of 

identification may now he gathered and fed hack into equations 

(2.2.2B). The resulting set of equations is mathematically 

equivalent to the exact description of Kinematics (2.2.16), as 

well as equations (2.2.27) are mathematically equivalent to the 

exact description of Statics (2.22). 

and 

STATICS KINEMATICS 

X' = R I A. , 
0on 

p 0 = B 	i• u l +un 

-f" . i B 	I 	A R* r* A T 	IAT r'x- _ - 	-19- i —r t —rn-h1 _~-_ -- -o 	—r - 	_('1 
sn T 	T 

- 
-n -1 n1 -Bon i 	r►t M 

FINITE 	MESH 	DESCRIPTION 

(2.2.3Sa) 

(2.2.35h) 

(2.2.36a) 

(2.2.36b) 

(2.2.36c) 

Summarized below is the dual correspondence between Static 

and Kinematic variables: 

DUAL 	CORRESPONDENCE 

STATIC 	VARIABLE KINEMATIC 	VARIABLE 

-M 
RI 

PM 

-FĪ 

n M 

-M  

-M 
+unM 
rlf 

vM=O 

r* 

- n 

M 

(2.2.37a) 

(2.2.37b) 

(2.2.37c) 

(2.2.37d) 

(2.2.37e) 
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rT(MRE 2.15 

Tn nrrinr to calculate nutematicallv the  structural 

coeff'i ci ont.^ and assemble them mer the whole connect:1d system, a 

fully automatic method of analysis renui. rer- data nn Statics, 

Kinematics and Cnnst.i tuti ve Relations of a onneri c unconnected 

substructure, together with its connectivity properties. 

Chanter /r  deals with the system assemblage procedure and 

the causnli ty relntions at element level between static and 

kinematic variables are studied in Chapter 

Tn ehr-, previous section, the nodal description of Statics 

and Kinematics was derived and est.ahi, shed in its full generality 

by equations (2.1 .7/6) and (2. 1 .75), the nodal matrices being 

defined in (2.1.15) and (2.1.1x1). 

Tr the mesh description of Statics and Kinematics is to 

he vested with similar scope and Hower, the derinitino of the mesh 

matrices involved in the (general) equations (2.2.35) and (2.2.36) 

must he extended to a mesh st.lh.otrrrcture of arbitrary neometry. 

Consider then the clockwise directed 

polygonal mesh represented in ri.g.2.15. 
Following the orientation of the mesh let 

its nodes and members he numbered From 

1 to n: members i. and i-1 connect at node i 

which intercalates critical sections 2i-2 

and 2i-1. Tn transform the mesh into a tree, 

cut member n immediately after critical 

section 2n and let that point he the origin 

n`' the reference system x, parallel to the 

global system x". 

Īhr= st;1Lic. ,m]v,is 'l f the resulting 

polygonal cantilever is the simplest process 

of evaluating the coefficients of the mesh 

matrices. The elements of the cantilever relevant For that analysis 

were collected in Fig.2.16: 

(a) The fixed Face of the cut in the n-th member, the 

associate system of reference x and the mesh reaction 

fnrces R'* 
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(h) A typical member i with initial length Li between 

critical sections 2i-1 and 2i and inclined ec i with 

respect to axis x 3; the angle is measured from the 

horizontal to the member in the sense of x 

(c) A node j where the j-th mesh force Rj is applied 

and 	(d) A member k with the corresponding additional mesh 

forces nk. 

Equation (2.2.35a) shows that all statically possible 

stress resultants at member i 

X 2i-1 
1 

X 2i 

1 

X i 
2 

can be constructed by a linear combination of static influence 

sets R., E3 	and R 	, wit h multipliers p, RO n and 	' ,respectively. 
rr3rr~r,, 	ij 	equation (2.2.35b) a similar conclusion 

can he drawn now in respect to the mesh reaction forces RI*. Hence, 

the static influence submatrices may be interpreted as follows: 

1 : stress-resultants at member i induced by a unit 

hiaction 

R 	(9 ) 	: stress-resultants at member i (mesh reaction forces) —o 	—r 
13 	d 	induced by a unit mesh force applied at node j 

0olt 
(R ) 	: stress-resultants at member i (mesh reaction forces) 

1i 	induced by unit additional forces applied on 

member j. 

The general definition for the mesh submatrices may now 

he easily obtained with help from Fig.2.16 and 2.17. 

In definitions (2.2.3F3) to (2.2.42), 
Sij 

is the Kronecker 

delta 
b 	_ _ f1 if i=j  

10 if i/j 

X 
i = 
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(2.2.3n) (2.2_.39) (2.2.40) 

GENERALIZED MESH ;!1BMf1TrTCE 

B = riJ  

if i>j, no.  = 0 

if i >j, Bo_ = 0 
i-j 

-L. 

-(1-6i)L j  
6.. 
iJ 

• -Si na. 
i 

Oi 
-x3 

 
1 

1 

• -sina. -co sa. 
1 	1 

1 x
3J_x3i 

x j -x  1+1 
3 3 

-x J+x i +1 
2 	2 

1 

-cosa. 
t 

A 	= 1 
—r. 

J 

-x 
2
j 

1 

1 

(2.2.41) 

-L 

(2.2.42 ) 

and 
(x2

k 
,  x3

k 
) the coordinator of the mesh vertex k. 

Definitions (2.2.40) and (2.2.39) show that matrices Bow  

and 20  are upper-triangular block-matrices, the diagonal sub-

matrices of the latter one being always zero. 

FIGURE 2.16 
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P ~ 1 

2n 

P2 f 
124-r7411.--- 

FIGIJRF 2.17 

2.2.3 	Incremental Analysis 

The incrementall mesh description of Statics and Kinematics 

is obtained by replacing in the linear equations (2.2.35) and 

(2.2.36) the static and kinematic variables by their increments, 

yielding 

    

B I
R 

I Pon 

• R r i nc I 	- 

AP 

AR* 

AR 

 

(2.2.43a) 

(2.2.43b) 

P1 

 

     

for Statics, and 

  

 

• = 8 T ~ • 	Au/+&1 1 

Dr^ 	8o i 
ryr 	Art* 

(2.2.44a) 

(2.2.44h) 

(2.2.44c) 

 

bn 	BT  
C i 6—ITC 

(1 	 M 

for Kinematics. 

The incremental mesh additional forces can be expressed as, 

and dropping the subscript M from now onwards 

ATE = 
O T 

AXV+P AO +ARn 

using equation (2.1.42a) where 0, P and ARn are now block-diagonal 

matrices with elements defined in (2.1.38b), (2.1.42b) and (2.1.43), 

respectively. 
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= 	R T j.F? i 
	P

T
O -A TARun 

Arx--g T A-UM E'3 o i 	F? T 	F3 0 

-A ARun 	F3oTL : HT ' H

▪ 

T 0-I —on— 

(2.2.46a) 

(2.2.46h) 

(2.2.46c) 

Au' 

Ar'*  

A6n 

Eliminating the incremental stress-resultants through 

(2.2.43a) 

-P p6n -ARn =
T
A Ap-14-4

T
H-0 	 on-I) An 

and adding the above equation to the system (2.2.43), the 

incremental Statics description becomes 

	

A X' =
_ R I 
	0 	i 	8 

— I —o 	—on --t 	-+------- 
. 	1 	9 

—r 	 I 	—Tn 

-P A6 -AB 	0 T E3 ; A T A 
i

0
T
B  -I 

Ap (2.2.45a) 

AR (2.2.45h) 

0n (2.2.45c) 

- A r* 

Eliminating the incremental additional deformations through 

(2.1.38a) written now for the mesh element, the incremental 

description of Kinematics emerges in the Form 

Together with the memher constitutive relations and the 

laws of connectivity, the descriptions of Statics and Kinematics 

in the ahove are quite appropriate to perform the non-linear 

analysis of a structure. 

However some theoretical insight is secured and some 

computational effort will be saved if the dual dependent variables 

A6 and Art are eliminated from the formulation. 

Definitions (2.1.49h) and (2.2.40) enable us to evaluate 

a typical element of the matrix operating on the incremental 

additional forces in equation (2.2.45c) 

[i_o rE3 ] = 
°n k l 6k 1 

6k1 

sk 

c 
k 

L+Lk 

- k ck 

s
k 

c l<  

1 ck 

LkLck 

1-ck 

sk 

-L1 

-(1 6k~L1 

6k1 
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yinlciinq 

T 
[ l-Q B ] = Bkl ck - - -OTt kl 

,[I-U
T

R ] =0 
- - -oTt kl 

k>1 

Hence, matrix I-OTR is a non-singular block-diagonal 
- - -0 

matrix, whose generic element is definRd by 

T 
[ 1-0 R ] = 

- - -oTt . 
c 

J 

-s 

L 
- s 
L 

c 

L - c 
L c 

j 

(2.2.47a) 

PremultiplyinQ the generic submatrices llkl and liok1 ' 

defined in (2.2.38) Rnd (2.2.39), respectively, by the transpose 

of th F! submatrix Qk' 

and 

we obtain 

(OT R) .=(OT8 ) °k= l.· - - J - -0 J 

k >j 

8nci noticing, 

·+1 j x J -x = L. 2 2 J 

x3 
j+1 

-x 3 
j 

= L. 
.1 

F s·c'-(1-c)s' 
c 

L (-1+C-c)c'-s.s' 
c 

from Fig.2.16, tha t 

sin a . = Lo s '. 
J J J 

cos a = L. c '. j J J 

-Ec
S OS'-(1-C)C'] , 

( 1 - Eoe ) s ' - s·c ' 
c . 

J 

(2.2.488) 

(2.2.48b) 

T 
(0 8 ).1 =0 

- -0 J< 

k ~· -J 

(2.2. tl7b) 

Hence, matrix aTR is ~n upper-triangular matrix with 
- -0 

zero block-di8gonal elemGnts; furthermore all the non-zero sub-

mat r i. C 8 sin the sam e r 0 t,I are r~ qua 1 • 

Equ~tions (2.2.45c) and (2.2.46e) can be represented 

rl i a g r C1 mat i c a 11 y ~ s folIo I.' S 

~ 
•• ~Tt = I~ +mb.R.+~. °!J.B + •••• b.R - E. - -n; I - n; . .. . . ..... . 

.. . . . . ... .. I . 

. . . . . .. ... · . . I 

p 
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T 
~rn: 

T 
.§On: 

Let n be the inverse of 'matrix I-OTR ; matrix ~ is 
-n: - - -ore -n; 

still block diRqQnal and its j-th element is defineri by 

(2.2.47c) 

E q U;:1 t ion (2. 2 • 4 6 c) may no \.1 b P. r e - w r itt en C1 S 

/j. 5 = R T [ 9 T tJ. u ' + R T /j. r ' or. + f3 T /j. R ] 
-n: -n: -(")n: - -rre - -on: -un; (2.2.49a) 

IJ hie h to 9 e t h P, r \J i the fl u a t ion (2. 2 • IJ 5 c) g.i v e s 

= R [0 T 9 /j. 0 + 0 T R tJ. R':~] + § P R T [ R T /j. u ' + R T /j. r ' -7(- ] 
-re - - :- - -0 - -n:--lt -on: - -rn: -

+ [R /j. R + R P 8 R T A f~ 1 ( 2 • 2 • 4 9 b ) - n: -n: - TC - -It-orr--' -urn 

\Jhere 

(R OTB) .=(§ OTR ) 'k= [. -n;- - J -n;- -0 J 

k >j • 

s ' - s " 

L 
c'- (c ll 

c'-c" ] , 

_s,+L cs " 
L j 

(§ 0 T8 )., =0 (2.2.47d) -n:- -0 JK -

= 
X3 

-L (2.2.47e) 

j 

(8 f3) 'k= -ore-n: J r- -L s -L c
l 

- (R R).= r-_L s. -L c.-
c k k c k < -rn:- n: J C j J c. J 

I----= __ f-_---=-J_ 
(5'1 -1)L sl (5· k -1 )Lcc

k J < c k <.1 k 
k ::!:'j • 

5 jkCk • • 
- -

( 8 R). = _0 if k<j 
-()~n: Jk (summation convention inactive) 

( 2 • 2 • L~ 7 f , 9 ) 
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and s~1 = sin (0.--p.) 

J pJ 

(2.2.50a) 

(2.2.50b) 

Eliminating the additional forces Art and their displace- 

ments AŌ 
equations 

descriptions 

- 

and Kinematics 

(2.2.49h) 

- OXft 

-
A-it::- 

in 	equations 

emerge 

- 

and 	(2.2.49a), 

for Statics 

IK uu I ! L r 

-IK 
-url 

  IK r r 

(2.2.45a,b) 

- 

'u l 

-Ar. I * 

Av n 

Ar ;: 
TL 	- 

+ 

and 

AX' 

_L?* 

. 

Ar
* 

respectively, 

= 

(2.2.46a,b) 

the 

r 
P3 	i 	Ipn 

_ IR r 1 IB o r 

-F3T i 	I9T 
- 	-r 

I-IRM 	H

T 

through 

following 

Ap 

AR 

-Au' 

 -
Arl* 

(2.2.51a) 

 (2 . ?_ . 51 b ) 

(2.2.52a) 

(2.2.52h) 

We note 

IA = p + 8 	B QTR - -ort -TC - 

Lo 

  

In 	= 0 + 0 	5 0T0  -o -07 -7-  -n 

19 = 	5 B Q T E? 

-r 	 -rrc - T1- - 

Ici o r =~ 	+-.1.78 -r  	

-  n rC ~T H  -o 

li< uu 	RorC A TC P 
5
T 

AT 
	IK -OTC 	 uu 

1K 	_ R 	P p 5T AT 
-u r 	-0TL - rC - -It -nit 

IK 	= n 	p p qT 
A T = I<T 

-rr -rTC 	- rt -rTt -rr 

A 8 AR A -7 =1K 	 + 

uu -U7 —ng -7 -TC 
O-i-c = IK T  n r ~-U TL + 	ic 

8 
TC 
AR 

ii 

pv
0T A-

7 	 -UTI 

A'.= —o L~-
UTL 

(2.2.47h) 

(2.2.47i) 

(2.2.47j) 

(2.2.471) 

(2.2.47m) 

(2.2.47n) 

(2.2.53a) 

(2.2.53b) 

(2.2.53c) 

(2.2.53d) 

The typical elements of the above matrices are summarized 

in (2.2.47f,q) and (2.2.5B); the latter were obtained through 

definitions (2.2.47) and (2.2.38) to (2.2.42). 

In particular we found 
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-1P r  -L 	 c , L c 	
Y Y 

f _
Y
s,Y -L sY 

Y 
• 

the repeatedindices indicating a summation in the range 

1 tY - n 

where n is the total number of branches of the generalized mesh. 

Consider the directed mesh illustrated 

in Fi. q.2.18 where X. and Rj  represent 

respectively the j-th branch lenoth 

and inclination with respect to the 

horizontal,end measured positively anti-

clockwise; let Ej be the eouivalent 

angle in the first quadrant. 

Then 

That is, A Y  cospY  represents the net 

horizontal projection of the connected 

mesh and consequently 

13 
X cosp = 0 

Y=1 Y 	Y 

Similarly, AY  sin (3 represents the net vertical projection 

of the connected mesh and 

13 
1 	Y  X sin (3= 0 

Hence, whether the mesh is undeformed 

Ajj , B. =a.. 

or deformed A 
j = Lc  , B. =

J 
 p. p. 

we will always find that 

FIr[IPE 2.1B 
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N Ar* QR* • 

IK uu i IK ur IS 	190 	Qu

- 	

r 
K  —  

IK u r ' IK r r ! • 	I[3 o r 	Art*  

I 	 I 

in 	• 	• 	• 	Ap LL 

SJ
II

N 
Vt

  N
  I  

>1 

INCREMENTAL_ MESH DESCRIPTTHN 

AX' 

_QR?* 

Ar IR T 	OT i • 
—o , —orl M 

n 	n 	n 	n 
z L cr = 	I 	s r = E 	•c," = 	L •s" = 0 

Y=1 Y Y 
Y=1 Y Y Y =1 -y Y Y=1 cY Y 

and therefore IHr = 0 (2.2.54) 

Furthermore it is possible to prove that the following 

identities hold for any mesh element M 

�M = S r'i 

RorM SrM 

—▪ nM SoM 

(2.2.55a) 

(2.2.55b) 

(2.2.55c) 

the matrices S~1, 
Sri,1 

and SoM being respectively defined in (2.2.1), 

(2.2.5) and (2.2.6) for the four-branch rectangular mesh illustrated 

in Fiq.2.6, where now L
c 

and pm represent respectively the mesh 

members chord length 	m and 	rotation. 

Enforcing (2.2.54) in equations (2.2.51) and (2.2.52) we 

find the following incremental description For Statics and 

Kinematics: 

(2.2.56a) 

(2.2.56h) 

(2.2.57a) 

(2.2.57h) 

2.2.4 	Perturbation Analysis 

Replacing in the linear relations (2.2.56) and (2.2.57) 

the incremental variables by their expanded forms (2.1.51), the 

variation on the hiactions, mesh reaction forces and their 

displacements being replaced respectively by 

op 	
E

i 
Ap = i : 1 	p . 11 

(2.2.59a) 
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.y Y 
	. L

c
X 2 

_ 	
6j.y x 3 	• 	• 

(2.2.58f) 

i 
6 

(2.2.59b) 
co 

Aril* = 	R!* 
1=1 -i 

1=1 

 

and Art* = 
i 

(2.2.59c) 

Summation convention adopted over 

the repeated index y (only) within 

the prescribed range[ ]; 

j: block row 	k: block column 

n: total number of branches of 

the generalized mesh 

-s tt 
J 

(2.2.59a) 

k 
x
3 

( 1 6k.y)L cy X2 

GENERrLT7_ED 11051-I SUBMI1TRTCE5 

Ila 
. = 
	1 

-J 

[j;n] 	1 

1 
o r 

k 

[1;k] 

(1-6.) c X 2sy  

6j xY 
 Y ~ 3 	6jy(1-6ky )X3 

[k;n] if j`k; [j;n] if kt5j 

(2.2.50d) 

(1-6. jy  )0-6ky) 	XN 
Y  Y  

sky (1-6j,y)X3 

(2.2.59e) 

k 
x 3-b1 1 

1 

• 1 

(2.2.59b) 

x3-x3-b1 

xk-x-j+-hl 
3 3 1 

-s tt 
J 

-x2+x2+b2 

-x2+x? 1-b2i 

b1= LYc.Y -Lc cY 
Y 

bt= b1 -L.c~+Lc .c'..' 

	

b2 	,y = Ls,Y c -L sY 
Y 

b/= b - L. s t +L .s 1./ 

	

2 	2 j J cj J 

1 

1 

9 	= 0 if 
-o jk 

-c it 
J _ 

I9 = 

j <k 

[j ; k] 

(2.2.59c) 

IKuu jk 
Y IK rr L cyX2 • 

[1;n] 



and Kinematics is 	found 

(2.2.60a) 

(2.2.60b) 

(2.2.61a) 

(2.2.61b) 

-Ic . 
1 

R 1 ;`• ~Tti 
---- 

vTL. 1 

r 
-7.  M 

--4 
--1 
c-) 

the perturbed mesh description of Statics 

to be 

IK uu i IK -ur r i IB 1 - o 	u 1 = 	1 	- 
I 	I 	i 

I 
ET i IK 	i • In 	r!* 	-R!* 
-ur  -rr , 	I or 	_1 	_i 
AI  -h --- 	-- - 	---- 

HT 	• i• 	Pi 	• 
I 	1 	i 

T 	T 
13 	k1 	•i• 	R 	r 
-o 	-or -1  f l -1 f'1 	1 N 

PERTURBED MESH DESCRIPTION 

in which from (2.2.53) and (2.1.51e,f) 

X' = IK uu -un. -7 
Bon B 

n - i 

RI -'•- = K T 	R 	+ E3 	B 	R 
-ni 	-ur --uni -rn - 7Z --mi. 

v 	= If3 T 	R -n i 
	

- 	_ u TCi 

rn = IBo -uTL . 1 	1 

the elements of Run and Rft being defined in (2.1.58b) and (2.1.60b), 

respectively. 	
1 	1 

2.2.5 	Asymptotic Analysis 

The asymptotic mesh description of Statics and Kinematics 

can he defined by substituting in the finite descriptions (2.2.35) 

and (2.2.36) the variables by their expanded forms (2.1.63) 

together with the biac_tions, mesh reaction forces and their 

displacements in the form 

SO
Il

VN
2N

I>
 

and 

P 
0o 	i 

= 
i=0 Pi ī: 

c 
Rt = 	Rt*s 

i=0 i 1. 
co  

rl* =~1 r!- 
-

- 

(2.2.62a) 

(2.2.62b) 

(2.2.62c) 

and eliminating the mesh additional forces and their displacements 
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1 	- 
IK u u i {K u  r 	— P.  i i(3o  

1 	-- 1  - 
T i , i 

IK  
—ur 1 I  —rr 	. —o r 

1 

' 

• l• 

SO
Il

V
W

3N
I>

I 

ASYMPTRTIC MESH DESCRIPTT9N 

-R!*  

-1 

u1 

Ei 

4  fil 	- 

through (2.1.68) and (2.1.66), yielding 

(2.2.63a) 

(2.2.63h) 

(2.2.64a) 

(2.2.64b) 

where now 9T 	T 
IK uu  = Bont P Bon  = IKuu 

IK 	= 0 	P BT  
—ur —on — —rn 

I{< 	= 0 	PRT  = IK 
—rr —r n — —r n —rr 

X' 	=IK 	R 	+ 9 	R 
_TLi 	—uu --uni —o n ~n.. 

R- = VT  R 	+ B 	R 
-IT. 	—ur—ur -uTt. —r Tc -IC. 

v 	= -0T  R  -u TL. ^n 7. 	 1 

r 	= BT  R 
--TL. —o -Lin. 

1 	1 

where P, Rum  and Rn  are now block matrices whose elements are — 
respectively defined in (2.1.68d), (2.1.66b) and (2.1.68b,c). 

It should be stressed again that the present formulation 

is designed to perform the asymptotic analysis of the special 

class of structures whose equilibrium paths branch from the 

original kinematically trivial path; hence in equations (2.2.63) 

and (2.2.64), the first term of the expanded form of any kinematic 

variable will always be zero, i.e., 

yo  = 0 

where yo  represents a generic kinematic variable. 

79 



2.3 	ALTERNATIVE FURMULrTIfNS  

Most finite-element formulations, invariably in a nodal 

format, in geometrically non-linear analysis of structures 

develop from the application of certain variational principles 

in order to derive as directly as possible the associate load-

displacement relationship. 

As this implies the utilization of the structural material 

constitutive relations, we will postpone the comparison of the 

formulation presented herein with those in the literature, 

awaiting the derivation of the element constitutive relations that 

we will he adopting. 

This section is primarily concerned with that class of 

formulations which make use of the so-called fictitious forces 

and deformations in order to extend the linear description of 

Statics and Kinematics to include some of the large displacements 

and deformations effects. 

In general it is somewhat difficult to understand what 

in the literature is meant by a n-th order solution. A general 

trend is to describe as first order linear the solutions given by 

elementary mechanics; if the stability functions are included (in 

the constitutive relations), such solutions are often called first-

order non-linear or second-order. If other non-linearities are 

taken into consideration, consistently or not, degrees are "added" 

to the order of the basic theory. Furthermore, as most formulations 

are not derived from first-principles, the specific influence on 

Statics and Kinematics of the assumptions made becomes ambiguous. 

In order to compare the results obtained in the previous 

sections with other formulations, and bearing in mind, as shown 

by the definitions (2.1.20) and (2.1.23) of the additional forces 

and deformations which sinthetize the existing non-linearities, 

that the non-linearity of Statics and Kinematics is fundamentally 

related to the member chord rotation, the following definition, 

as artificial as any other, will be adopted herein: a finite 

formulation of Statics and Kinematics is said to he of order n if 

it is valid within a range of displacements such that the 

fundamental trignometric functions sine and cosine of the member 
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nn=- px 3  nr,'=-pX 3  

nt=(1:1-:  -1 )X3+pX
2  

ule-u1n=p(1- 
gi) 

nt=px2  

r 1 - r 2 
uli u1n-0  

u2nO q
n
=0 

APPROXIMATE FINITE FORMULATIONS 

u=0 	I 	u. #O 

	 ZEROTH-ORDER 	 

nn  = nt  = 0  

r 	r u11n-- uln = u2n  = 0 

	 FIRST-ORDER 	 

SECliND-ORDER 

71-1=-pX 3
+l p2X 2 	nn=-pX3+p2X2  

nt=*p2X3+pX 2 

i 1 - r 2 
uln= un0 

u2n ; p2L 

L 

nt=(zp2-1+
177 

) X.I+pX'  

u1n=- u17=p(1-  7 ) 
u2n 2p

2
Lc  

chord rotation can he approximated by a power series of order not 

higher than the n-th. 

Letting, in equation (2.1.20) 

sinp = 0•p 0  + 1•p + 0•p2  - 	b•p 3  + ••• 

and cosp = 1•p0  + 0•p - ?•p2  + 0.p
3  + ••• 

and replacing in equations (2.1.23) the additional forces displace-

ments by 

St = L c  [ 0•p 0 	0.p
2 + 1•p + 0•p - 6 •p 3  + ... ] 

L-15n  = Lc  [ 1.p0+  0•p - 2 2  + 0•p3  + ... ] 

the following approximate solutions are found. 

(2.3.1a,h) 

(2.3.1c,e) 

(2.3.2a) 

(2.3.2h) 

(2.5.2c) 

(2.3.2d) 

(2.3.4a) 

(2.3. 4b) 

(2.3.4c) 

(2.3.4d) 

(2.3.3a) 

(2.3.3b) 

(2.3.3c) 

(2.3.3d) 

(2.3.5a) 

(2.3.5b) 

(2.3.5c) 

(2.3.5d) 

The Static and Kinematic descriptions presented previously, 

can he immediately specialized into the case of pin-jointed frames. 

As the bending moments X, and consequently the shear stress- 
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Ttn=O 

nt=px2 

u 2
0 
n 

Ttn=O 

rtt=px2 

u27 
0 

resultant X3, are zero, the corresponding columns (rows) of the 

nodal (mesh) static matrices can be removed; as the actual plus 

additional rotations uf
~.
+uln , the dual variables of the moments, 

become superfluous, the corresponding rows (columns) of the nodal 

(mesh) description of Kinematics may also be removed, thus 

preserving Static-Kinematic Duality. 

Hence, and From (2.1.2.0) and (2.1.23), the additional 

forces and deformations reduce respectively to 

PIN-JOINTED 	FRAMES 

TCn=(1-cos p)X2 

nt
=si.n p-X. 

u' 
= 6 	-u2 n 

AIDDITIONAI. 	FORCES ADDITIONAL DEFORMATIONS 

(2.3.6a) 

(2.3.6h) 

(2.3.7) 

and the corresponding approximate solutions to 

APPROXIMATE SOLUTIONS: 

PIN-JOINTED FRAMES 
	

The concept of simulating 

a given effect by an 

artificial cause has had 

several applications in 

Mechanics. 

In the field of non- 

linear structural analysis, 

Denke (1960) introduced the 

idea of replacing the 

actual non-linear 

equations by those derived 

From linear analysis 

together with corrective 

fictitious forces and 

deformations to simulate 

the effect of large 

displacements. Illustrating the principle for a pin-ended column, 

Denke (1964) found the following definitions for the fictitiuous 

forces and deformations 

7
n 

= 0 

Ttt = sinp•X2 

u2n = L(1-cosp) 

(2.3.8a,b) 

(2.3.8c) 

(2.3.9a-10a) 

(2.3.9h-10b) 

(2.3.9c-10c) 

(2.3.11a-12a) 

(2.3.11h-12h) 

(2.3.11c-12c) 

Ttn=p2X 2 

Ttt=pX2 

2_ ?; 
2n -2P 

L 

u2=0 

SECOND-ORDER 

ZEROTH-ORDER 

Ttn = Tt
t 
=0 

u TL 

	 FIRST-ORDER 

= rtn p 2 X 2 

Ttt=p X 2 

Tc--,2p2 L
c 

u2 0 

(2_.3.13a) 

(2.3.13h) 

(2.3.13c) 
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Lansing, Jones and Ratner (1961) and Warren (1962) 

developed (independently) a similar theory for the analysis of 

structures idealized into pin-jointed bars and constant shear 

panels. 

The same concept was applied by Durret (1963) in the 

analysis of pin-jointed frameworks which were also studied by 

Griffin (1966); the latter checked the results obtained from first-

principles by performing a parallel analysis based on the Principle 

of Virtual Work. 

As referred to in Argyris (1964), Przemieniecki (1968) and 

Meek (1971), the concept of fictitious (also known in the 

literature as pseudo, initial, additional or Ersatz, and 

supplementary) forces and deformations has been generally under-

stood as the natural way of extending the linear matrix force 

method of structural analysis to non-linear structures. Besides 

that fact, the formulations referred to in the ahove have also the 

following common-features: 

i) Analysis of elastic pin-jointed frames 

ii) Correction of Statics and Kinematics by means of first-

order fictitious forces (2.3.9a,b) and second-order 

deformations (2.3.11c), respectively, and assuming 

6  t  = L p  

iii) Elimination of th*e fictitious forces through their 

linear relationship to the stress-resultant X2. 

iv) Inversion, in the resulting equation, of the matrix 

affecting the stress-resultants by expanding it in a 

power series and neglecting terms of order higher than 

the second. 

v) Iterative solution of the resulting non-linear 

governing equation. 

Scarlet (1971) presented a relaxation method for the first-

order analysis of elastic rigidly jointed frames in which joints 

are not allowed to displace (continuous beams). The analysis is 

performed on the undeformed structure subject to supplementary 

couples distributed along the axis, defined as the product of the 

axial force and the rotation at the section, evaluated from a 
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preliminary linear analysis. Hence, Scarlat's fictitious forces 

are designed to simulate not the effect of large (rigid-body) 

displacements hut the effect of (net too) large deformations; the 

outcome is an approximation of the stability functions, to which 

we will refer in section 3.1. 

We mention next two formulations involving fictitious 

forces designed to analyze elastic systems under large displace-

ments by the so-called displacement method; they are representative 

of a number of other works on the same suhject, wherein the 

fictitious forces were used primarily as a tool in the numerical 

procedure of solution, rather than as a basis for further improve-

ment of the theoretical formulation. 

Haisler,Strickli.n and Stebbins (1972) separate the strain 

energy in a linear (UL) and a non-linear part (UNS) and, after 

specializing for small strains the Principle of Virtual Work 

written in terms of the undeformed configuration, derived by Haisler 

(1970), obtain the following governing equation 

K q = 0 - 0 * (q ) 

where K is the usual linear stiffness matrix of the structure, 

obtained from the linear part of the strain energy UL, 0 and q 

are the generalized forces and displacements, respectively, and 

ao (U NL) 

are pseudo generalized forces due to the non-linearities. The 

governing equation is then solved by the self-correcting initial-

value formulation proposed by Str?.cklin, Haisler and Von Riesemann 

(1 971) and P-lasset and Stricklin (1971) . 

Instead of separating the strain energy in its linear 

and non-linear parts, Oliveira (1974) starts by decomposing the 

displacement field a of a finite element into two parts 

U = u + u 

where a represents a small displacement field. The element 

compatibility equation 

e = D u 
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where e is the strain vector, is re-written as 

e = D 
	(1-1-2) 

 + Dū 

where D
L 

is the linearized kinematic operator. Substituting the 

compatibility condition in the stress strain equation 

s = H [ D~(u-(1) + DU ] 

and eliminating the stresses in the quilibrium condition, the 

gauation governinn the behaviour of the finite-element is found 

to he 
f = EH [ D~ (u-ū) + Di] ] 

where f is the vector of external forces. Assuming that the strains 

are very small and that the dimensions are such that the variations 

of rotations are also very small u! thin each element, then 

and letting 

D n = 0 

E = D~ 

(2.3.14 a) 

(2.3.14b) 

the governing equation reduces to 

K u = f + 1* 

where K = DT H D
L 

is the element stiffness matrix and 

f*= K 

is the fictitious force vector. The problem of evaluating ū, a 

displacement field such that u-ū is a small di_solacement field, is 

solved by assuming that the load varies by successive small 

increments producing variations on the displacements so small that 

the displacement field at state i-1 can be taken for field u of 

state i. 

Smith (1974) presented an unified theory on the analysis 

and synthesis of linear structures; plastic limit analysis and 

synthesis, shakedown analysis and elastoplastic deformation 

analysis and their associate variational principles emerge 

naturally and in full generality when the relevant vectorial 

relations are encoded and interpreted by mathematical programming 

theory. 

In order to extend the formulation to include the first- 
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order effects of finite displacements, Smith (1975,1977) corrected 

the mesh and nodal descriptions of linear. Statics by loading each 

member of the assembled structure with the additional forces 

X 
ren  = 0 and 	- Et  = 	6t  

and, by preserving Static-Kinematic Duality, found that the linear 

descripti_on of Kinematics had to include the additional force 

displacements 6t; additional deformations were not considered. The 

formulation being suggested herein was decisively influenced by 

the above mentioned works of Smith; they provided the solid basis 

and the conceptual framework from which it developed. The four 

quadratic programs of first-order non-linear elastoplastic 

deformation analysis proposed by Smith (1975,1977), which include 

as special cases the so-called force and displacement methods of 

analysis, will be referred to in more detail later in the text. 

Specifically on the matter of defining the additional 

forces, the approach presented in Oliveira (1974) suggested the 

process adopted in the previous sections of obtaining the general 

and exact definitions (2.1.20). However, instead of introducing 

the linear operator by imposing restrictions on the deformation 

and displacement fields in order. to justify the assumptions 

(2.3.14) which in turn implied the utilization of an incremental 

procedure of solution with the inherent problems of convergence, 

we opted for the very basic approach of forcibly introducing the 

linear operator in the static and kinematic descriptions and 

collecting all the resulting non-linear terms in the broad 

definition of additional forces and deformations. 

2.4 	INTERNAL RELEASES 

The discussion on Statics and Kinematics, as undertaken 

in the previous sections 2.1 and 2.2, was hased on the assumption 

of continuity of the substructure. 

The mesh and nodal descriptions must now be extended to 

include the effects of internal releases which can either represent 

mechanical devices actually existing in the structural system or 

he used to simulate special effects as, for instance, material 

and geommetric imperfections. 
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When referring to the dlscretizat .ion of the structure, 

one class of points where we insisted that a node had to be placed 

were those where the continuity of the structure was interrupted 

by the presence of internal releases; hence, to contemplate every 

possible arrangements of releases in a structure we must assume 

that a release may exist at  the immediate neighbourhood of every 

critical section of the substructure. 

FTf; RF 2.19 

Illustrated in the figure above are the three types of 

release that may he encountered in planar frames. The forces 

developing at the i-th release, which we collect in the RELEASE 

FORCE vector X 	- _ 
i 	i 

	

XR 	X1  

X 2  

X3  
F? 

are 	considered 	positive 

resultants evolving 	at 

DI SLOCATIFJNS, 	which 	we 

if equilibrated 

the neighbouring 

group 	in 

i 
NJ R  

the 

v
1 

 

v2  

v3  

by negative stress- 

sections. 	By 	RELEASE 

vector 

i. 

R 

we understand the relative displacements of the faces of the 

release produced by the corresponding positive release force. 

These three types of release devices can he combined 

in six different ways, which may be dissociated into three groups 

represented in Fiq.2.20 depending on the relative position of the 
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bending release. If the bending release is adjacent to the node, 

as in Fi_n.2.20(a), the rotation, when the structure deforms, of 

the shear and thrust release devices is controlled by the movement 

of the chord of the member. If the herding release is adjacent to 

F111JaE 2.20 

a critical section, as in Fi n.2.2.0(b), the rotation of the shear 

and thrust releases is that of the neighbouring node. In the third 

type of combination, represented in Fid.2.20(c), the rotation of 

one of those force releases is controlled either by the rotation 

at the node or of the member chord. The results to he presented 

were derived considering combinations of the type of group 1; 

similar formulations would be obtained when considering the 

remaining combinations. 

The release constitutive relations, which associate the 

release forces and dislocations through a causality condition, 

are given in section 4.1. An idealized elastoplastic behaviour 

covers a wide range of situations an analyst may wish to simulate, 

from static releases as the free-releases used in section 2.2, 

the faces of the release being connected by an elastic spring of 

infinite flexibility, to kinematic releases such as some safety 

devices controlling levels of stress which can he simulated by 

joining the faces of the release by a rigid-plastic spring. 

2.4.1 	The Extended Nodal Description 

The existing releases at the ends of a typical member m 

can he incorporated in the kinematic description treating these 

releases as extra degrees of freedom besides the six degrees re-

presented by the nodal displacements rm. In other words, the 

member compatibility conditions may be defined by superimposing 
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(2.4.2a) 

(2.4.2h) 

m 

k3  j = 	
i 	

1-[ 1+( v 3R )2  ] 2 1 

V3R 	
L 

t_ 
i. 

(2.4.2c) 

the effects of the member nodal displacements, assuming that the 

releases are fixed, as quantified in (2.1.7), to the effects of 

the release dislocations vR  evaluated by imposing that the member 

nodes remain undisplaced. m  

FIGURE 2.21 

The member deformations due to the release dislocations 

are defined by 

(2.4.1) 

	

r 	K' 

	

—m 	
m u = K R  

m  

where, from the figure above, 

1 	• 	k13 	 k16  
1 

• k23 1 1 
	k

26  

• 1  k33 1  • 
 1 k 36 

v  
i 

1 
k 1  j  -I< 	= 	arc tan 3R 

v3R 
 

K+ = —m 

and 

where j = 3•i and i = 1 or 2. 

The extended nodal description of Kinematics can now he 

defined by combining the compatibility conditions (2.1.7) and 

(2.4.1) 
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um = Kr rr + Km v1 
m 

(2.4+.3) 

	

~IgLIRF 	2.72 

The derivation of the equilibrium 	equations based on 	the 

free-body diagram 	represented 	in 	Eig.2.22, 	can 	be performed 	in 	a 

manner similar 	to 	the one used 	in 	section 	2.1, 	yielding 

(2.4.4) Rm = (Sm + S
R 	) Xm 

m 

where matrix Sm 	is 	defined 	in 	(2.1.14) 	and 

1 1 
SRm 

= -v2R/Lc v2R
/Lr -v iR 

-v -
2 

/L 
2 

v - 	/L 
2 

-v3R 

m 

By definition, 	the 	(group 	1) 	release 	forces 	are given 	by 

X 1R = -(-1)1 RST 	( 1=1,2) 
m 

1 	2 
X 2R 

= X2R 
= -X2 

m 	m 	m 
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AI 	= - 1 	• 	• 	. 
—Rm 

	

. 	• 	1 	i 	• 	• 	• 

• • 	• 	1 

• . . 	e 	I 	. • 1 

or in 	terms of 

where 

1 	__ 	2 
X3R 	X 3R 

m 	m 

the 	independent 

-XR 
m 

 1 	1 
- 	

2_ 
X 1 )m 

(2.4.5) 

(Xi 

stress-resultants 

= ~ 
Xm 

1 1 	- 
S' --m 

_ 1-1-v2R/Lc -v 2R/Lc v3R 
1 

-1/Lr 1/Lc 

2 
-V7_R _c 

14-v - 	/L 
2 

-v3R 
1 

-1 /L c 1 /L c 
m 

After enforcing 	the usual 	assumptions 	in 	linear Statics 

and Kinematics, matrix Km and the 	transpose of matrix 	5m reduce to 

A l = —m 
1 	• 	-1/L i 	• 	-1 /l_ 

• 1/L j 1 	

• 	

1/L 

1 	 • 	1 
m 

  

   

and we re-write equation (2.4.5) as 

-XR = Al 
	Xrn - A R T n m 

m 	 m 

where the linear operator A/ is defined by m 

(2.4.6) 

(2.4.7) 

(2.4.5) 

and the ADDITIONAL RELEASE FORCES, represented in Fig.2.2.3, by 

lit = 
-m 

m 

(2.4.9a) 
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ADDI TTr]N L f?FLFASF Ff}RCE 

(-1)1
c 
R -(-1 )i__R -(-1 )L113R 
c 	c 

L+L 

m 

X 1 
1 

Tt 

Tc' 
10 

n2 
m 

2 	. 

TC2 

FTf'JRE 2.23 

whern 

(2.4.9b) 

(2.4.9c) 

Treating equation (2.4.4) similarly, we find 

= A
T

X' 	T 	T 
-m 	-TCm  -m 	ARm -m 

(2.4.10) 

where 

(2.4.11) A R = -1 
m 

 

• 

• 

• 

      

      

      

       

        

Matrices A and Aim 
-m 	-  

are given in (2.1.15) and 

(2.1.19), respectively 

and the additional Forces 

rc are defined in (2.1.20); 
.-m 
we emphasize that now the 

member chord does not 

coincide with the line 

joining the member nodes. 

Equation (2.3.7) together 

with equation (2.3.10) 

represent the extended nodal description of Statics 

  

AT 

    

   

x~ 

 

(2.4.10) 

     

-X R 

 

PO
T 

   

(2.4.7) 
m m 

     

     

      

      

and if Static-Kinematic Duality is to he preserved, the extended 
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he 	expressed as follows 

4 
1< (2.4.12a) 

k (2.4.12b) 
_ m 

(2.4.12c) 

identified 	just by confronting 

nodal description of Kinematics must 

k  

k 	A n' • 

k3 	A R Ī 
At 

- -m - 

Variables k2 and k4 can he 
-m 	-m 

m 

equations (7.4.12b) and (2.1.24c), yielding 

2 
k = 

b -m n
m 

k 4 = r:'. 
-m -m 

Equation (2.4.3) can he written as 

(2.4.13a) 

( 2 .4.1 3b) 

um = 
Am rm+A

mv Rm-(A  rn
--m ) 

)r*- 
( Am-

~m ),/ Rm 

or, from equation (2.1.2.2) and noting 

uR = (A r'-Km) vR 	 (2.4i.14) 

	

m 	 m 

um +un +uR = Am r* + Am v R 

	

m m 	m 

which, confronted with equation (2.4.12a) allows the identification 
1 

of the kinematic variables km and km : 

km1  = u 	+ ul LIT + u~
-Rm 	m 

k5 = vR 
m 

(2.4.13c) 

(2.4.13d) 

Equation (2.4.17c) together with definitions (2.4.8), 

(2.4.11), (2.4.13h) and (2.4.13d) identify the remaining kinematic 

variable k 3 as the ADDITIONAL RELEASE FORCE DISLOCATIONS 
-m 

= Ō -m 	~ = 
-sn1 - 

or 
2 

m 

-r1 -'+v 1 R 
1 

v3R  

2* 	7 
r1 	+v1 R 

2 
"3R - rn 

(2.4.13e) 
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STATICS KINEf1ATICS 

R' 

-X ~~ 

= 

m 

A T i A n 	
A R 

I 	I  

Al 	i 	A ~ 
i-rn 

X' 

-IC 

- 

_ 	_Im 

ū' +u' +u' 

6
n ------- 

— 	Ōn 	— 

= 

m 

A 	
L 

A' 

AE
7L 

1 
A 
_R

I 
1 _ A

R m 

r* 

I 1m 

EXTENDED 	NODAL 	DESCRIPTT0N 

(2.4.15a) 

(2.4.15h) 

(2.4.1be) 

(2.4.16h) 

(2.4.16c) 

Equations (2.4.7), (x'.4.10) and (2.4.12), the latter with 

definitions (2.4.13) represent,resper_tively, the extended nodal 

description of Statics and Kinematics: 

Performing the matrix operations, the definition of the 

AD1)T TTnNAL MEMBER DEFDR1ATIONS DUE TO THE RELEASE DISLOCATIONS 

as in (2.4.14) becomes: 

1 OOTTTnNAL DEFDRPIATTONS:RELEASE EFFECT 

 

1 	1 	2 	2 

1 = -u'
2 	v3R 	V3R 	v

4+arc 
	v3R 

u' 
1R 	1R = [- L 

+arc tan ---j+ ]+ [ 	tan L ] 

1 	2_ 

u2R = L{1-[1+( yt R ) 2 ] 2 } +L11- [1+( vliR ) 2 ]zt 

(2.4.17a,b) 

(2.4.17') 

The dual correspondence between static and kinematic 

variables can now be extended to include those describing the 

internal release effects 

nUAL 	CORRE5pnNDENCE 

STATIC 	VARIABLES KINEf•1ATIC tilAR? Ar?LES 

X' 
-m 

Lun 

n' 
-m 

—71 

X R 
m 

u' +u' 
-m 

-n +1.1' 
-R
- R rn 

rm 

vR 
m 

Snm 

6' 
nm 

(2.4.18a) 

(2.4.18h) 

(2.4.1Rc) 

(2.4.18d) 

(2.4.18e) 

In the case of linear Statics and Kinematics equations 

94 



(2.4.15) and (2.4.16) reduce to 

LTNF~~~R 	ANA.LYS15 
;T'~,TTCS KTNEM,ATTCS 

R 

-X R 
_ 	_m 

_ -qT_ 
A ~T 

_ 	_m 

-m 
r_ 	 1 

um 
- Lq 	

At 
m _rx_ 

v R 
_ 	_m 

EXTENDED 	Nnn,AL 	DESERIPTTnN 

(2.4.19a) 

(2.4.19h) 

(2.4.20) 

2_.4.2 	The Extended Mesh Description 

Instead of Forcing the mesh member nodes to remain 

undisplaced, this time we must require the mesh member deformations 

u~!I and the mesh reaction force displacements r~?I * to he zero while 
applying the release dislocations to the statically determinate 

mesh. By means of a procedure in every other aspect similar to 

the one used in the previous sub-section, the following are the 

relationships which were Found to characterize the extended mesh 

description of Statics and Kinematics: 

STA,TTES K1NEr~1,ATICS 

- X I - 

X 
-- R 

-Rtti 

- 	- 

=- 

M 

f~ 	i 	R 	i 	5 	1 - 1 -0 1—on l 

	

ptl 	qt i Al 	I pt 
- I -o 1 -on I - R 

. 	1 	F1 	i 	n 	I 
1 -r 1 -rnl _ 	I 	1 	I 	_ 

• 

M 

p 

R'•E' -- 

rt 
--- ~~ 

--_ M 

r-- 
- 

Ō 
-n 
--- bT 

_n_M_ 

= fi T 	1 	~?,T 	1 - 	I 	I 

R T 	I 	9IT 1 A T 
-0 1 -n 	~ - r 

R 	1 	R~ 	I p 
-ont —on 1 -rIT 
- --+ -- -+- --- 1 

1 	n1T 	1 	• I -R 	1 	-M 

• u I+ u t+ U 1 - ~n 	R 

v 
~- R 
r ~=( 

- 	
_ 	

_ n 

EXTENDED MESI-1 	DESCRTPTTNN 

(2.4.21a- 
22a)  

(2.4.21b- 
22b)  

(2.4.21c- 
22c)  

(2.4.22d) 

In the above equations, which besides being explicitly 

linear exhibit a dual transformation, the release forces and the 

release dislocations were collected in the vectors XR and vR , 

respectively; the extended additional mesh forces, _ P1 the- 
M 

additional release forces and the additional mesh strains due to 

. the release dislocations were collected in the vectors n M, nr1 and 
u' 	, their elements being defined by equations (2.1.20), (2.4.9) 

'RM and (2_.4.17), respectively. 
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_0' = —0.  
1~ 

(i<j) 

(2.4.2.5) (2.4.23) 

-L. 	-~R.t 	= Si j • 

if i>j [3' =0 _onij_ Si j 
i 

- _ 1 

if i >j [1' 	=0 
i.i 

bij 

ōi 

sij 5. 	- 

(2.4.24) (2.4. 26) 

Replacing the explicitly non-linear and non-dual, static 

and kinematic descriptions by an equivalent linear contragredient 

transformation, we accomplished the original purpose of performing 

the exact analysis by working on the undeformed substructure 

subject to the actual plus additional stresses and strains which 

condense the non-linearity of the problem and whose physical 

meaning is known. 

Hence, and since in linear analysis the i-th release 

forces equal, by definition, the stress-resultants at critical 

section i, and hearing in mind that 

Pi 	(p' ) is the stress- resultant at release i induced 

1 ~ 	by a unit hiaction (a unit additional release 

force j), 

RT 	(p 	) is the stress-resultant at release i induced 

l~ 	1 J by a unit mesh force (extended additional 

force) applied at node (member) j, 

we may define the suhmatrices for a generalized mesh just by 

considering definitions (2.2.38) to (2.2.40) and (2.4.8), yielding 

flENERALTZEO MESH SUHh1ATRIr_ES:EFFECT OF TN!TERN L RELEASES 

-R!= —1 
1 -x, x2 

• -si na. -cosa,. 1 

• 

1 

(xi-x3
+1)/L. 

-xi+1 
3 

+x
+1 

)/L. 

x
i+1
2 

• -sina -cosa,. 1 
• 

3 	3 	i. (x 1-x
1+1 )

/L i 
(-x1 +x

1+1 )/L 
2 	2 

1 x 3-x 
73 

x2 
 

-x2+  

• -si_na. 
3 

-cosa. 
1 

• 
-1 

( 	i 	i+1 )/~ x3 _ x3 
--

x3 2-x3+1 

(-xi.+
xi

+1 2 	2 	)/L. 

+1 
_x+x~ 

• -sina. -cosai 

• 
i 	1+1    

( x3-x3 	)/Li (-x2+xi+ 	)/L. 
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where bij is the Kronecker delta, (x2, x3) the co-ordinates of 

vertex k, and L. the length of member j of the generalized 

polygonal mesh illustrated in Figs.2.15 and 2.16 and described 

at the end of sub-section 2.2.2. 

Equations (2.4.21) and (2.4.22) can be readily specialized 

into the case of linear Statics and Kinematics, yielding 

(2.4.27a) 

(2.4.27h) 

(2.4.27c) 

LINEAR 	ANALYSIS 

STATICS KINEMATICS 

- 
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if 	~ R 
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~o R 
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-
v
---  
R 

rri- 

EXTENDED MESH 	DESCRIPTION 

(2.4.28a) 

(2.4.28b) 

2.4.3 	Incremental Descriptions 

The procedure adopted in sub-section 2.1.3 could now be 

applied again to obtain the following definitions for the 

incremental additional release forces 

Ant = Q'TAXT + PT A6' + AR" 	(2.4.29a) -m -m -m -m m 	-nm 

and for the incremental additional deformations due to the release 

dislocations 

Au'R = 	Q' A6' + AR" 	(2.4.29b) 
m 	 m 	m 

We refrain from defining the elements of matrices QT and 

p', the latter assumed to be symmetric, and of the non-linear 

residuals AR" and AR" , due to their direct dependence on the 

particular 	m 	m combination of releases they may refer 

to; their definitions would be particularly simple to derive for 

substructures free of shear and thrust internal releases, as the 

bending releases are not directly responsible for any new non-

linear terms. 

Substituting the incremental additional forces and 
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-IKrr 1 -IKrR ' 	A T 

	

-IK r R 1-IK R R I 	IA' fi 
-t 	ī 

1A 	I 	!A' 
I 	- 

m 

Ar* 

Av R 

LiX ' 
m 

AR* 

-AXR 

Au' 
m 

ARn 

AR Xn 

AR' m 

EXTENDED INCREMENTAL NODAL DESCRIPTION 

- 

deformations, defined respectively by (2.1.43a) and (2.4.29a), 

and (2.1.39a) and (2.4.29b), in the incremental forms of (2.4.15) 

and (2.4.16), the following extended nodal description of 

incremental Statics and Kinematics would emerge 

(2.4.30a) 

(2.4.30b) 

(2.4.31) 

where IAm 
= A - Qm AR 	-  Qn~ A 

m 	-Ttm 

M t = Am - in Al 
m 

IK rr = A T P m AR + A T P A 	= IKrr 
m m m -nrn —nm 	m 

__ A T IK -rR AR Pm -R m 	m 	m 
T 	 T IK R Rm= A 

Rm-m 
A Rm 	= 	I K R 	R m 

and AR* = A T AR" + A T AR  

-nm -Rm -mm ntn nm 

AR 	= ART A
- n m 	m 

ARmn = AR ,n + ARuiC 
m 	m 	 m 

Let the incremental mesh additional forces 

An m = QMT AX' + P~, A6 	+ AR 
-nm 	

n 
M 

ATCA = CP T XM + -M -7 + AR" 
m  

and deformations 

Aun =Q_M A6n +ARu Itm 

Au' = 00'' A61 	+ AR" RN 
	

M 	-ni' I 	m 

(2.4.32a) 

(2.4.32b) 

(2.4.33a) 

(2.4.33h) 

be defined by setting m to 1, 2,..., n, where n represents the 

number of branches of the generic mesh substructure M, in (2.1.43a), 

(2.4.29a), (2.1.39a) and (2.4.29b), and collecting the resulting 
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EXTENDED INCREMENTAL MESH DESCRIPTION 

K
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E
M

A
T
IC

S 
relations, following the mesh members numbering sequence. Taking 

increments in (2.4.21) and (2.4.22), eliminating the additional 

forces and deformations through (2.4.32) and (2.4.33), and 

treating the resulting system in a manner in every aspect similar 

to the one used in sub-section 2.2.3, equations (2.4.34) and 

(2.4.35) below would be found to be the extended versions, to 

include the effects of the internal releases, of the incremental 

mesh description of Statics and Kinematics, (2.2.56) and (2.2.57), 

respectively. 

(2.4.34a) 

(2.4.34b) 

(2.4.34c) 

(2.4.35a) 

(2.4.35b) 

Matrices 81
~, Bo ' Bor 	

' KK ur and Krr are defined in 

(2.2.47h-n), 	
M the M 	M 	M 	M remaining structural 

matrices and non-linear residuals being respectively defined by, 

and dropping the subscript M, 

IB' = B' + Bon B n Q T 8 + Oh Q' T IB 

 = 8 +- 	 T+Q 
1 
T - —o 	ō —o7 n Q -o -R 	 —o 

T T IKuR = 	B 	B n P Bn —n 
T T 

1K 	= 	IBn Bn P TT Brn 
1K 	= 	1B 	B 	P 	B T IB TT + B' P' 	' T = IK T —RR 	—n — n— —n —n 	B —R — —R 	—RR 

and 	A X 	=1K (AR 	+AR" ) + B 	AR n 	1K 	
8

uu -un -Un 	—On —n -n 
AX Rn = I UR(ARun +AR 'n) + IB n B n AR n + BR AR" n 

AR ,* = I ur(ORun +ARlin ) + Brn B nDRn 

Avn = IBT (ARun +AR"n) 

Ar7 = IBō (AR un +ARun) 

where 	IB 	 = 	+ BR R' 	T B n 	on 	on 
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Matrix Bn  is defined in (2.2.47c). 

The perturbed form of the nodal [mesh] description 

of Statics and Kinematics (2.1.54) and (2.1.55) [ (2.2.60) 

and (2.2.61) ] could now be easily extended to include the 

effects of the internal releases by replacing the incremental 

variables in (2.4.30) and (2.4.31) [(2.4.34) and (2.4.35)], 

respectively, by their power series expansions in the Form 

(2.1.52) and solving the non-linear residuals as in sub-section 

2.1.4 [2.2.4]. 

To derive the asymptotic nodal description of extended 

Statics and Kinematics, the total variables in the finite 

descriptions of equilibrium and compatibility (2.4.15) and 

(2.4.16), respectively, should be expanded in a power series 

of the form (2.1.63) and the same order terms equated next, 

under the assumption of a kinematically trivial initial 

equilibrium path. The resulting recursive linear systems would 

emerge in a format formally identical to their correspondents in 

the perturbation analysis formulation. The structural matrices 

would, however, differ quantitatively; in particular, matrix q , 

as shown in sub-section 2.1.5, comes to be a null matrix, and 

so would, one may expect, matrix W. 

The asymptotic mesh description of extended Statics 

and Kinematics could be derived, from the finite descriptions 

(2.4.21) and (2.4.22), in a similar way. 

2.5 	STATIC-KINEMATIC DUALITY  

The energy methods have been extensively and successfully 

used in linear analysis and the Principle of Virtual Work proved 

to be the unifying element of the several proposed formulations, 

as shown by Argyris and Kelsey (1960). 

Therefore, it was not surprising that when the research 

effort moved into the field of non-linear analysis, the energy 

theorems kept on being adopted as the basis from which the great 

majority of works on the subject were developed. 

However, this time the energy theorems did not prove to 
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R* 0r =-7T  0Ō + x! T(Au ' +Au 
) —m —m --n  -m -m --nm  

COMPATIBLE 

be the unifying feature. 

In spite of the efforts in that direction it is still 

difficult to relate the many formulations presented in the 

literature; different formulations tend to provide different 

descriptions, and the discussion continues on which forms of 

energy to use and on what order terms are neglegihle. 

Furthermore, and for procedural reasons, problems in 

elasticity and plasticity have grown more and more apart, to the 

detriment of the latter. 

The philosophy behind the studies developed in the 

Systems and Mechanics Section at Imperial College has been quite 

the opposite. 

The study of each problem is based upon the fundamental 

principles of mechanics: statics, kinematics and constitutive 

relations. This allows a continuous reference to be made to the 

physical nature of the problems, and simplifies the control of 

consistency in any hypotheses which may subsequently be made. 

When those hasic ingredients of the problem are brought 

together, the correctness of the formulation can be cnnfirmed by 

the recovery of the associate variational principles. 

So, while the energy-based formulations understand the 

contragredience in the static and kinematic transformations as 

a consequence of the Principle of Virtual Mork, the first-

orinci_ol.es-based formulations understand that principle as the 

variational interpretation of Static-Kinematic Duality. 

For the formulation presented herein, the (two-dimensional) 

vectorial description of the Principle of Virtual Work at element 

level can be recovered as follows: 

1. The N(1011L DESCRIPTION of the PRINCIPLE OF VIRTUAL 

DISPLACEMENTS is defined by the internal product of 

equations (2.1.24) and (2.1.2B) 

E
EQUILIBRATEDI  

(2.5.1) 
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2. The NODAL DESCRIPTION of the PRINCIPLE OF VIRTUAL 

FORCES is defined by the internal product of equations 

(2.1.25) and (2.1.27) 

1 	 ~ EQUI LIBRATED 

rmT , R* = - bT Anm+ (41- u T )T O X m 
m ~nm 

LCOMPATIBLE 

(2.5.2) 

Hence, the exact incremental work and complementary work, 

at element level, are respectively defined by 

Al = FT-,T Ar' m -in -m (2.5.3) 

and AU*  = r. -'E- T AR* 
--m -m 

(2_. 5.4 ) 

arid, for infinitely near critical sections, the exact strain 

energy and complementary strain energy are defined as 

Au~ n = xm T(pum+Au T ) -TCA Ab 
-mm 	-mm 

(2.5.5) 

and AU* = (L1 1 -1-u' )TAX ,  - 5 	4n m -m -nm -m -Th  
(2.5.6) 

Similarly, we would find, through equations (2.2.20-21) 

and (2.2.35-36) 

PRTRFIPl_F 	OF 	VIRTUAL. 	DISPLACEMENTS PRlMITPLF OF 	UTRTHAL FfPCFS 

IR4(T -"I Ar*=-7T Ab +X'T(Au'+Au' 	) 
- M 	--M 	-ITM-fil 	--M 	-7r 

(2.5.7) 

r-xT01R*=-b F An 	+(u'+u T 	)AX' ~-m 	-m 	--7m -m 	-M --n~ 	--M 

(2.5.0) 

MESH 	DESCRIPTION 

where 

IR 	_ ~~  R* 

R'_ti 
and 	= r* 

r"  

(2.5.9a,b) 

The 	Princiole of 	Virtual 	Displacements, 	but not 	that of 

the 	Virtual 	Forces, 	can 	he 	expressed 	exclusively 	in 	terms of 	the 

fundamental 	static 	and kinematic 	variables: 
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Multiplying by the mamher incremental displacements the 

transnnse of the nodal description of Statics (2.1.11) 

R. T Ar.*. = X' T 5
T 
Ar* 

-m -m -m -m -m 

and making use of identity (2.1.49) and of the incremental 

description of Kinematics (2.1.51), we find for the Principle of 

Virtual Displacements 

PRINCIPLE fiE VT RTLJAL DISPLACEMENTS 

 

-m 	-m 
 
Ar* = Xm

T 
(Qum

+QRulti 
(2.5.10) 

NODAL DESCRIPTION 

 

Similarly, using now equations (2.2.7), (2.2.55) and 

(2.2.57), one would find 

X' T it - R? -TQrt* - -p TQv -RnTQr*+R~TQr* -M 	--M 	-M 	-M 	-M --rum 	 -7L M -M -M 

However, from (2.2.55d) 

R*T Ar* = R~1T IPA QRu 
- 1 	M 	rc'1 

or, from (2.2.55a,c) and (2.2.7b) 

T An R4T Ary- _ (X f1 	°1pM ) 	L12 uru LI 	 f1 

and using (2.2.53c) 

r~ f Qr = X I TAR uTL 
- pm Qvn 

M ri  

(2.5.11) 

Substituting the ahove relationship into (2.5.11) and 

regrouping, with help from (2.5.9), we find 

PRINCIPLE OF VI RTIJAL DISPLACEMENTS 

 

IR*T pir* = XM (Qui+QRun ) 
M 

(2.5.12) 

MESH DESCRIPTION 

 

Equating the terms in the right-hand side of equations 

(2.5.1) and (2.5.10), or equations (2.5.7) and (2.5.12), 
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X rI T(Au l+AuI )-Tts A5 = X I T (Aum +ARu~ ) 
m 	

—TT 
	 m 

or 	X t T (Au' -AR 	) = 7 AO 
TE M 	m 	 m 

Suhstitutinn above the definition (2.1.39) for the 

incremental additional deformations 

Xm T ~rn A5 	= Tt m 
m 	 m 

the definition for the additional member forces (2.1.2.0) is 

recovered 

-m -m Ym (2.5.13) 

since AŌ 	represents an arbitrary set of displacements. 
m 

The nodal description of the Principle of Virtual Work 

in finite mechanics can be defined as the internal product of 

equations (2.1.24) and (2.1.25) yielding 

T 	= 	 Try, 
-m 

 

	

—m 	—m --nm —m 	—m —Tn
,n 

( 2.5.1 4 ) 

The same principle can be expressed in terms of (finite) 

incremental variables by taking the scalar products of (2.1.49) 

and (2.1.50): 

Af3 
n 

Ar*+ Ar*
T 

 V 	Arm
+QP T Arm=AXiT (Au l +ARunm ) (2.5.15) 

Similar results would he obtained working on the mesh 

description or on the extended nodal and mesh descriptions 

presented in Sections 2.2 and 2.4, respectively. 
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CHAPTER 	THREE 

CONSTITUTIVE RELATIONS AT ELEMENT LEVEL 

The causality relations associating the member stress-

resultants with the corresponding strain-resultants will he derived 

through a first-principle-based analysis of a three-degree of 

freedom elastoplastic finite element. 

The analysis rests on a set of hypotheses, which will be 

referred to along the presentation, which reduce the fundamental 

constitutive relations to the association of axial stresses and 

strains, as illustrated in Fig.3.1. It is assumed that the elastic 

phase, characterized by REl!ERSIPLF strains, is linear; no assumption 

is made ahnut the law of variation of the PERMANENT or plastic 

strains, except that it must represent a stable material in the 

sense of flrur,kPr (1o59). 

Thr complexity of the behaviour of a simple three-degree 

of freedom elastoolasti_c beam element is primarily caused by the 

mechanics of the development of plasticity. 

For relatively small deformations and under certain 

comhinations of the end-loads, the maximum axial stress will occur 

at either of or both end-sections since the span of the beam is 

free of loads. If the stresses were able to increase for constant 

deformations, the stress at some fibres would reach the yield 

limit and yielding would start to spread, not only within the most 

highly stressed section hut also throuch the neighbouring sections. 

However, the increase in the stresses is accompanied by a 
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variation on the deformations and consequently the most highly 

stressed section will not, in general., have a fixed position; the 

incidence of plasticity "travels" along the moan, depending on the 

variation of the beam deformations as well as on the relative 

intensity of the combined end-forces. The problem becomes tractable 

only if restrictive assumptions, some of which quite severe, are 

introduced in the process of analysis. 

FIGURE 3.1 

In this work the hypothesis of lumped plasticity holds, 

that is, the plastic strains are restricted to develop in discrete 

sections without spreading of plasticity between two critical 

sections, along the member. 

Furthermore, we require the critical sections to coincide 

with the element end-sections; if a section in the span becomes 

plastic, the process of numerical analysis can be suspended and 

the element subdivided to transform the interior section into a 

limiting one. In any case, the critical sections are assumed to 

have a fixed position, that is, the plastically strained sections 

are not allowed to travel within the element. 

As a consequence of the above mentioned hypotheses, the 

maximum axial stress at interior sections is required to remain 

within the elastic range 

-0*  < 0 < +0*  

enahlino us to separate the strain field into a continuous field 

of elastic strains, developing along the heam, and a discrete 

field of elastic strains developing at its end-sections; in 
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Particular we may define the ,train-resultants as the sum of their 

elastic and plastic components; 

u = uF  + up  (3.0.1) 

The elastic constitutive relations are studied in section 

3.1 and the plasticity relations in section 3.2. 

The description of Statics and Kinematics of the three-

degree oF freedom elastic beam-column, represented in Fig.3.3, 

is fed into the constitutive relations, which are corrected to 

include a measure of shear deformation effects, and the 

differential governing equation so obtained is solved by a 

standard perturbation technique. 

The elastic solutions are then interpreted and casted in 

formats suitable to perform the analysis of the structure by the 

finite-element method. 

Section 3.1 ends with a brief reference to related 

formulations presented in the literature. 

The formulation presented in section 3.2, concerned with 

the plastic constitutive relations, rests heavily on previous 

works by G. Maier and 0. De Donato, in particular Maier (1969a, 

1969b and 1970) and De Donato (197i). 

Ils it will hennmo apparent the analysis of the plastic 

behaviour will he very superficial. The primary ohjective is to 

utilize, within a limited scope, Maier's general and quite 

powerful matrix formulations of Koi.tnr's theory of plasticity; 

the heart of the problem, the overriding difficulty which will he 

avoided herein, resides in the definition, for each particular 

case, of the elements of the matrix operators. 

The formulation of Maier was originally designed to 

interpret through mathematical programming theory the elasto-

plastic behaviour of structures for small deformations and 

displacements. Except for the unavoidably non-linear association 

condition, the description of the Static and Kinematic phases of 

plasticity are the only non-linear relations present in the 

formulation; for that reason, and at the cost of a rapidly increas-

ing number of variables and constraints, those relations were 

consistently replaced by piecewise-linear approximations. 
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However, for large d' sniacements and deformations every 

single equation in the formulation of the problem is, in principle, 

non-linear; consequently, herein the non-linear relations or  

plasticity are accepted as such and treated in a manner in every 

aspect similar to the one used when dealing with Statics and 

Kinematics of the fundamental substructures. 

Duality is forced upon the description of the static and 

kinematic phases of plasticity, originally expressed in terms of 

total variables, in such a way that von Mises' theory of the 

plastic potential., as generalized by Koiter, is recovered when 

those descriptions are expressed in terms of infinitesimal 

incremental variables. 

3.1 	ELASTICITY 

The present study deals with a slender prismatic beam 

of elastic, homogeneous and isotropic material, subject to in-

plane terminal (conservative) loads, such that the following 

two basic assumptions are acceptable: 

- Transverse sections, plane and normal to the centroidal 

axis before the deformation, remain plane and normal 

to the axis after deformation (Bernoulli-Euler 

hypothesis) 

- The stress field is plane 

The locus of the centroid of the cross-section of the 

beam is a straight line and the envelopes of the principal axes 

through the centroid are two orthogonal planes; the prismatic beam 

is initially straight with a symmetrical cross-section whose 

dimensions are small compared with the axial length. 

The system of reference to be associated with the beam 

is so chosen as to form a right-handed rectangular Cartesian 

co-ordinate system; the xI -axis is taken in the direction of the 

centroidal axis and the xII-and x -axes are assumed to be parallel 

to the nrincina1 directions of the transverse sections. 

Hence, and from Eig.3.2, the components of the displacement 
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of any nmint in the plane of loading x 11=0 of the beam can he 

exnresssed as 

vi 	= vĪ ( x I ) +m ( x i,xpil  )' (x) 
v

TT 
= 0 

vm  = 
vIII(x1 )+m(xI,xIII )•  c (xI)  

where v°  reor.esents the deformed middle line, 	and S are the 

components of the unit vector n normal to the defnrmed middle 

line, and m represents the deformation of the plane cross-section 

in the direction of the normal n. 

FIGURE 3.2 

The search for a mathematical expression for the function 

11 as well as For the stress distribution along the cross-section 

falls out of the scone of the present study; the objective is to 

derive the law relating the stress-and strain-resultants at the 

terminals of the constitutive element of a planar skeletal 

structure, and to do so it is sufficient to define the displace-

ments of the points of the beam centroidal locus as well as the 

stress resultants at that point which embodies the mechanical 

properties of the associate cross-section, namely the (constant) 

cross-sectional area A and the flexural stiffness EI. 

For simplicity of the presentation, NON-DIMENSIONAL 

PARAMETERS WILL RE USED THROUGHOUT; the corresponding variables 

may easily be regained by suitably affecting those parameters by 

the length scale factor L, the stress scale factor E, the force 
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scale factor ET/L2 and the moment scale factor EI/L.. 

For instance, dropping subscript m and with help from 

Fig.3.3, the stress-resultants at critical section i are defined 

by 

	

X 1 = m. 
CI 	

Xi = n EI 	X1 - -t 
FT 

1 	t L 	2 	~2 	3
_ 	

~2 

and the member elastic deformations by 

lE = 
H1 	u~ Ē = 82 	u~E = L. •u 

(3.0.1-3) 

(3.0.4-6) 

the non-dimensional variables being referred to the system axes 

x 1 = xI /L , x2 = x
TI
/L and x3 = x /L 

3.1.1 	The Governing Equations 

Nnce again the problem will he formulated by starting 

from the first-principles of mechanics. 

Hence, KINEMATICS, the change in the distance between two 

arbitrary infinitely near points, STATICS, the equilibrium 

conditions for an arbitrary element of volume of the deformed 

body, and the IONSTTTUTTVE RELATIONS implementing a causality 

condition between static and kinematic variables, will be treated 

separately and combined in the end to obtair the problem ooverning 

equations. 

FIGURE 3.3 
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Let the parameter B define the ratio 
d 

C) = (3.1.3a) 
ds 

KIN[IIATTCS: 

Consider a generic point A of the beam centrnidal locus 

and a point P in the neighbourhood of A, as represented in Fig.3.3. 

Let r (R) be the positional vector of point A before 

(after) the increase in the end-forces. The relative (non-

dimensional) distance between points A and A prior to and after 

deformation are respectively 

or, from Fio.3.3 

ds = (drTdr)2  

i 
ds* = (dR TdR)' 

t 

ds* = [ (dr+dv°)T(dr+dv0)] 

= [2drTdv°+dv°Tdv°+ds 
2 

(3.1.1a) 

(3.1.lb) 

(3.1.2) 

where v°  describes now the (non-dimensional) displacement field. 

or, from (3.1.2) 

D = [(1+vni 1
)2
+v321 ]' 	(3.1.3b) 

where v1 1 and v3 
1 
 are the first derivatives, with respect to x1, 

of the axial and transverse components of the displacement field 

n 
• v  

The linear constr.action suffered during deformation by 

the fiber joining the two points A and R can he represented by 

Cauchy's classical definition 

0 
e  = 1-B (3.1.6) 

The rotation suffered in the neighbourhood of point A is 

defined by the limit 

0 

R = urn 	Ā = arc tan y3' 1 	 (3.1.5) 
d s z4 0 	 1.4-v 1,1  

where 8 represents the relative rotation between points A and B; 
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equation (3.1.5) together wit`s equations (3.1.3) yield 

1+v
1,1 

= D'cosP 

v
3,1 

= D-sine 

(3.1.6a) 

(3.1.6b) 

The (non-dimensional) curvature is by definition 

dP 
(3.1.7a) 

or, changing from curvilinear co-ordinates to the adopted system 

of reference 

X= D-1A 1 (3.1.7h) 

In some cases, as is usually denn In plate analysis and 

in the approximate beam theories, it is convenient to express the 

curvature in terms of the displacement components. After a set of 

suitable transformations based on equations (3.1.6) and (3.1.7b), 

the well-known expression 

-3~ n 	( = D 	v3,11 
1+vn1,1 ) -v3

o
'v

o
,11,11 

where D is given by (3.1.3h), is obtained. 

(3.1.7c) 

The exact expression for the curvature is rarely used. A 

literature survey shows that the most commonly used expressions 

are, following James et alfa (1976), 

1. The linear beam curvature of elementary mechanics 

n 

X = v 3, 1 1 

2. The classical non-linear beam curvature of elementary 

mechanics 

2 ' 3 	2 

= v3,11(1+v5,1 ) 	v3~11(1-2vni,1) 

3. The small strain-large displacement beam curvature of 

Novozhi_lov (1953) 

o 	 o 	o 
X = v3,11 (1+v1,1 

n 	.
}-v

3,1 v1,1 
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FIGURE 3.4 

FIGURE 3.5 

The exact curvature expression will be adopted herein 

when deriving the governinu enoation which will be stir;cassivnly 

duorcxirpalyd in such a way that a global consistency is maintained. 

5T .RTI CS : 

Let us consider now, with 

the help of Figs.3.3 and 

3.5, the conditions for 

the equilibrium of the 

deformed body. 

The moment equilibrium, 

expressed as 

t = 
m1-m2 

1-u (3.1.8) 

is the only non-trivial one of the three possible static boundary 

conditions; u represents the (non-dimensional) chord shortening. 

The stress-resultants acting, after deformation, at a 

section at distance x1  from the origin before the deformation are 

defined by 

M(x1) = m 1 +n.w3-t(x1 +v1 ) (3.1.9a) 

n•cos8+tsin8 	(3.1.9b) 

n•sin9-tcos9 	(3.1.9c) 

where the usual sign convention of elementary mechanics is adopted. 

The equilibrium conditions at a generic cross-section can 
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he expressed, in a non-dimensional form, as 

9( x1  ) = - J (o -o°) x3 d52 

N( x1 ) _ 

 

fa  dSZ 

T( x1  ) = fdQ 

(3.1.10a) 

(3.1.1Db) 

(3.1.10c) 

where og  is the axial stress at the centroidal plane, a is the 

axial stress at a distance x7  from the neutral plane and Z is the 

tannential stress, all scaled by the modulus of elasticity, E. 

The non-dimensional cross-sectional area parameter 

2 

SZ = A 
Li 	(3.1.11) 

is the square of the member slenderness ratio 

LIT SR  = L  (3.1.12) 

As the Poisson effects have been neglected, A represents 

the cross-sectional area of the undeformed beam. 

CI-INSTITUTIVE RELATIONS: 

Assume, following Rritvec (1973), that the axial force 

is applied before the end-coup]es are active and that at a certain 

level of axial compression the end-couples are increased from zero 

so that the member is deformed in a state of plane stress. 

The (non-dimensional) elongation de of a fibre at distance 

-x3  from the neutral plane can he expressed in the form 

n 
de = (o-a.  )ds (3.1.13a) 

where bath o n  and mare assumed to he compressive stresses; the 

corresponding strain is defined by 

=  do 
ds*  

or, from equations (3,1.13a), (3.1.3a) and (3.1 .4) 

a-a  
s= 1

-e0 
(3.1.13b) 
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The Bernoulli-Euler assumption requires that 

E 

x3  

or from (3.1.13b) 

0- o °  = (1-e°)•x3.1t 

which together with equation (3.1.10a) define the flexural aspect 

of the Constitutive Relations 

= - 	 (3.1.14a) 
1-e°  

The above equation ceases to be valid if the shear 

deformations are to be considered. 

To include a crude correction following Timoshenko and 

Gere (1961), and since a definitive quantification of the shear 

deformation effects is yet to be established, equation (3.1.14a) 

can be replaced by the following: 

— o  + at(n•cos9+tsin9) de 
1-e  

(3.1.14b) 

where 	 at = a K  
s G 

• 
and 	 a = S

R
-2  

(3.1.15a) 

(3.1.15b) 

Ks  being the usual shear coefficient and G the shear modulus. 

It remains to define the aspect of the Constitutive 

Relations associating the axial deformations with the axial stress-

resultant 

e°  = a N  (3.1.16) 

THE ELASTICA: 

After the elimination of the curvature It and the 

contraction e°  through equations (3.1.7) and (3.1.4), respectively, 

equation (3.1.14b) takes the form: 

9,1 -a'(n•cos9+tsin9)9,1 =-Ii 
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or 
	

9,1-a'(n•sin9-tcos9),1 =-M 	(3.1.17) 

Taking advantage of the fact that the first derivative 

of the bending moment, as defined in (3.1.9a), can be defined as 

a function of the rotation 9 only, i.e. 

N,1=nv3,1 -t(1+v°
1,1 

) 

and from (3.1.6) 

X1, 1 =D(n-sing-tcos9) 

after differentiation equation (3.1.17) can be re-written as 

a'(n•sine-tcos9),
11

+D(n•sin9-tcos9)=0 9,11 -  

or from (3.1.4) and (3.1.16) together with (3.1.9b) 

9,11 -a'(n•sing-tcos9),11 +[ 1-a(ncos9+tsin9)](n•sin9-tcos9)=0 (3.1.18) 

In the above equation, the end-force t is defined by (3.1.8); 

The shortening parameter u can be found by integrating equation 

(3.1.6a) and eliminating the contraction e°  through equations 

(3.1.16) and (3.1.9b), yielding 

1 

u= 1-f[1-a(n•cos9+tsin9)] cos9 dx1  

0 

(3.1.19) 

The Euler equation can be recovered by imposing in equation 

(3.1.18) the inextensibility condition e0=0, or from (3.1.16) 

a = 0 

which, from (3.1.15a), implies that 

at= 0 

and by restricting the end-loads to the axial forces: 

9,11
+n•sin9 = 0 

On the other hand, if at is set to zero,equation (3.1.18) 

reduces to the well known differential equation governing axially 
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deformable beam-columns, as given for instance in Britvec (1973). 

3.1.2 	Solution of the Governing Equations 

As summarized by Thompson and Hunt (1973), the several 

methods of solution proposed so far tend to fall into two classes: 

continuum approaches where one or a series of linear differential 

equations are generated; and discrete approaches which generate 

an ordered series of linear algebraic equations. 

The closed form solutions are undoubtdly the most elegant 

of the continuum approaches which are, in general, mathematically 

more attractive than the discrete approaches. 

Since, within a limited applicability, the complexity 

of the results provided by closed form solutions increases 

tremendously with the generality of the problem, its utilization 

in Structural Mechanics has been restricted to the study of very 

simple systems, such as, for instance, those analyzed by Mitchell 

(1959), Frisch-Fay (1962), Schille and Sierakowsky (1967) and 

Kerr (1964). 

On the other hand, perturbation techniques, as presented 

for example by Gellman (1966), Nayfeh (1973) and Yakubovich and 

Starzhinskii (1975), have proved to be highly adaptable and have 

been extensively applied. Ames (1965), Thompson (1969), Hangai 

and Kawamata (1972,1973) and Gallagher (1975), to mention a few, 

refer to several problems in engineering mechanics solved by this 

technique. A standard perturbation technique, first applied by 

Linsted in 1883 according to Stocker (1950), will be used herein 

to solve the differential equation (3.1.18). 

Assume then that variables 9, n, t, m1  and m2  (say y) 

can be expressed in a power series 

ao 	i 

y(x1,c) 1=0 yi ī! (3.1.20) 

as functions of an arbitrary variable parameter E, independent 

of x1.  The remaining variables, say u and eo, and functions of 

variables, as sing and cos8, must be expressed in a power series 

117 



(0) 

(1) 

= 

= 

-m1 
1 

-m2. 

x =0 
+ al(s7-ci),11 

x1 =1 
+ 	a'(s.-c.),1 1 	1 1 

m 	Ei 

z = . 	zi 6 	 (3.1.21) 

where, in general, 	zi= zi(@., nj, m1 , m2 ) , 	j = Opl,e..pi 
J 	J 

Let ci (si) be that coefficient in the representation of 

cost (sing). The products n•sin@ and n•cosG may also be represented 

in the form (3.1.21) with coefficients 

i n. S. n 	.,. 	1-  s1 = i1 j=0 j1 (i-j t (3.1.22a) 

and 
i n. c. 

ci = it j-=0 jI 
(1-j1 (3.1.22b) 

Equivalent forms can be written for the coefficients si 

and ci for the representation of t•sing and tacos@, respectively, 

just by replacing in equations (3.1.22) n by t3. 

Following several substitutions and after equating terms 

of the same power of E, equation (3.1.18) gives rise to the 

infinite system of differential equations 

i cn+st sn -ct 
9. 	-a

l
(si-ci)s11 +(si-ci)-a•i1 j 0 ~j1 ~• 1(i_j) 3 = 0 (3.1.23a) 

which, from (3.1.17), is subject to the boundary conditions 

(3.1.23b) 

(3.1.23c) 

The coefficients ui of the shortening parameter expansion 

are, from equation (3.1.19) 

where 

ui = boi - f1(c.  - e!) dx1 

i c.+st c. 
ei = a-il 	0 

J j1.)•(i-j'it 

(3.1.24a) 

(3.1.24b) 

(r=0,s=i) is the Kronecker delta. and 6rs 
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Replacing in equation (3.1.8) the variables m1,  m2  and t 

in the expanded form (3.1.20) and the shortening parameter u in 

the form (3.1.21) with coefficients defined by (3.1.24), the 

static boundary conditions (3.1.8) generates the following infinite 

system of equations 

i 	t 
i1 	 0 	J

f1(c -e)  dx1  = ml 
-m2. 

(3.1.25) 

If the trignometric functions are replaced by power 

series expansions on the rotation 8, the zero-th order problem, 

defined by setting i=0 in the previous equations, is, neglecting 

temporarily the shear deformation effects, defined by 

80   
'11 + 

§(-to,n0)•[1-a•i(n0,t0)] 	= 0 

t 

where 

to  • ft)(  1, 0 ).[1-a. (n0,to)] dx1  = m1  - m2  
0 	 0 	0 

1 2 1 3 1 4 
@( ' 11  ) = 	+ "0 	90 g7190 +2?.t 90 

To evade the situation of ending up with a problem 

apparently as difficult to solve as the initial one, it is 

necessary to particularize the initial state. 

A systematic and orderly solution procedure is achieved 

if the perturbation parameter E is such that it is possible to 

impose a flexurally unstrained initial state, reducing the zero-

th order solution to the trivial axially loaded column: 

80= v3 = 0, v1 =-a•n0•x1' m1 = m2 = to  = 0 	(3.1.26a-f) 
0 	0 	0 	0 

Furthermore, and notably, the infinite system (3.1.23a) 

becomes recursive and every constituent differential equation 

will take the general form 

8. 	+ go 9. 	b o (m1 . 	m2_ )  + Ri(x1) 1'11 	i 	1 

where b0  and go  are constants defined by 

bo  = (1-af•no)-1 	go  = [(1-a•n0) b•no]. 

(3.1.27) 

(3.1.28a,b) 
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and Ri(x1 ) is a non-linear function of variables of order lower 

than the i-th; for instance for the first- and second-order 

equations Ri(x1 ) takes respectively the values 

R1(x1) =  0 

R2(x1 ) = 2bōn1 [at(m1 -m2)-(1-2ano+aa'n2)91 ] 
1 	1 

As the function Ri(x1 ) is known and integrable for each 

i-th order equation, the general solution of the differential 

equation (3.1.27) is defined by 

i

b 	 51 
?9i(x1 )=S1 Ci+S2C +g (m1 -m2.)(1-S2)+g-S2Yi 

0 

where 

and 

S1 (x1 ) = sing
ox1  

S2(x1 ) = cosgox1  

lo Yi(x1 ) = 
fo 1

R1 Sj dx1 , j=1,2 

The constants of integration Ci and Ci can be found from 

the i-th order boundary 

the general form 

conditions 	(3.1.23b,c), 	which will 	take 

ei,(0)= -b0  m1 	+Bi.(0) 	 (3.1.30a) 
1 

9. (0)=-bom2 	4-13.(1) 	(3.1.30b) 
1 	1 

The auxiliary function Bi(x1 ) 	is structurally similar to 

the function 	Ri(x1 ) 	in the sense that it depends on variables of 

order lower than the i-th; 	for instance, 	for the first- and 

second-order boundary conditions Bi  is defined by 

B1 (0) = 0 

B1 (1) = 0 

and B2(0) = -2a 1 b2  ni m1 
1  

B2(1) = -2a'b2  ni  m2  
1 

respectively. 

Differentiating once equation (3.1.29) with respect to 

and 

(3.1.29) 
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x 1, and noticing that 

R 
(S 1 Yi-S2Yi ),1 = go  L S2Yi+S1  Yi+ (s S-S •S 

go 	1  )] 

we find b 
9. (x1  ) = S2[go Ci+Yi]-S1[ 

g0C.-6. (m1 -m
2. )-Y1] 

1 	 o 1 1 

which 	together with the boundary conditions 	(3.1.30) 	give the 

following general expressions for the constants of integration 

go  Ci = -bo  m1 	+ C. 1 i 

and go  
b 

Ci 
S2(1) 

1- 
bo 
 r 

C1-]m2.+C. 
g032( 1 ) m1 	goS1 1 1 go  

0 1 . 	go i 	 i 

where Ci 	= Bi( 0 ) 

B.(0) 	B.(1) 	S2(1) 
and Ci = S2(1)S1 

+S1 	
+51(1)Yi( 1) +Yi( 1 ) 1 	

1  

After finding the general expression for the i-th order 

rotation the the same order shortening parameter U. 	can be 

obtained through equations (3.1.24), the end-rotations being 

defined by 

1  = 9i(o) 

92  = 	-9i( 1 ) 

The i-th order stress-resultants can be recovered from 

Mi(x1 ) = -9.+at (sl-c1),1 (3.1.31a) 
1 

Ni(x1 ) = c.+si 1 
(3.1.31b) 

Ti(x1 ) = s.-ci (3.1.31c) 

and the same order components of the displacement field are 

defined by 

o 	cn+st1  ci  

i 

	1 
v1  (x1 )= ci 	

j=0 J 
-ail e 	

i 'Ti-.l)/ -soi dx1+Ui 	
(3.1.32a) 
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0 0 L o f12 = f21 _ -- ĒI.9 •(1 - go cosec go) 

0 

b 
(3.1.37b) 

and 
i cr+st s. 

v3 	A 1s.-a•il (x1 ) 	- 	
•tI_J~l dx

1 + Vi 	(3.1.32b)  
1 	j=0 

where the constants of integration can be found from the boundary 

conditions 

vo (0) = 0 	and 	v3.(0) = 0 
1.1 

The solutions we obtained for the Elastica, up to the 

second-order and after a lengthy though elementary algebra, 

trough the application of this standard perturbation technique 

are summarized in the following sub-sections 3.1.3 to 3.1.5 in 

formats suitable for future application in the analysis of elastic 

and elastoplastic frames. 

3.1.3 	Asymptotic Analysis 

The direct results provided by the perturbation analysis 

are summarized below, now in terms of the non-scaled variables 

FLEXIBILITY FORMULATION 

 

0 
-E. 	F

o 	+ uEn1 (3.1.33) 

the zeroth-, first- and second-order (symmetric) flexibility 

matrices and additional elastic deformations being respectively 

defined by 

ZEROTH-ORDER FIRST-ORDER SECOND-ORDER 

F°= 

uEno= 

^0 	~ 	0 
ōTi 

EA , 	 _ 

0 

F°= 

uEn1= 

f° 	1 	0 
ōT1L 

-- 	1 ĒA_ 

0 

pTi L
_~ 

F°= 

uEn2= 2X21f,2X11-  

X11 

f° 	1 	0 

_ 	. 	ĒA_ 

o 

o- 
'2-1 1 - 

_ 

(3.1 .34a, b ) 
	

(3.1.35a,b) 
	

(3.1.36a,b) 

where f° is the (symmetric) flexural flexibility matrix, with 

elements 	
b o _ o _ L o 

f11 - f22 	EI 24(1 - go cotan go) 
go 

(3.1.37a) 
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and f
og 

is the first derivative of f° with respect to X2 and 
0 

characterizes the chord shortening due to bending. 

The expressions for the flexibility coefficients as 

presented by Britvec and Chilver (1963) and Roorda and Chilver 

(1970) can be recovered by setting in the definitions (3.1.37) 

first a' to zero, neglecting the shear deformation effects, and 

then a to zero to simulate axially inextensible members; in this 

case the parameters b0 and go as defined in (3.1.28), reduce to 

2 
bo = 1 and go = \Tno , where no 	EI X2 

0 

Letting K0=(F0 )-1, the stiffness version of the formulat-

ion (3.1.33) is found to be 

 

STIFFNESS FORMULATION 

 

 

° + -1 = K -Ei -1C (3.1.38) 

where now 

  

ZEROTH-ORDER FIRST-ORDER SECOND-ORDER 

K°=-0 

XI 
0 

10 
- _ 

OT; 
~A -- 	, 	- 

= 0 X' 
1 

K I 	-- 
OTĪ L - - 

= 0 

K°= 

Xn = 

-k°:0    - _ , 
O T 
- 

2X2 k~ 	u l 
1 	2 

EA 	t T 
_L -1E1k1 2-1E1- 

2 
E 

1 

o 
f-_-  

 

(3.1 . 39 a, b ) (3.1.40a,b) (3.1.41a,b) 

since 

 

k°,2= -ko f02 ko (3.1.42) 

where the elements of the first-order symmetric flexural stiffness 

matrix 

are given by 

0 
k 11 

o __ 
k22 

EI
b 
-1 

L 	o 

g 
r 	

o 2 

(3.1.43a) I 	g 	 ° 	 ( 	) 
( °)cotan( ° )+ 

-1 
k° = f° 
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9 2 0 

k12 = k21 = EI bo t (2) cotan(g2) - 	( L ) 	g 	(3.1.43b) 
1-( g2 )cotan(2) 

Their derivatives, defining the stiffness bowing 

functions k°
ii,2 

, can be found either directly from (3.1.43) or 

through equation (3.1.42) if the flexibility bowing functions 

were already available. 

Equations (3.1.37) and (3.1.43) were obtained assuming 

the beam subject to a compressive axial force; letting n' be the 

absolute value of the (non-dimensional) tensile axial force, and 

replacing n1 by -n1 and using, where convenient, the relation-

ships between trignometric and hyperbolic functions, definitions 

(3.1.37) and (3.1.43) reduce, respectively, to 

b' 
f11=f22= ĒI. 

	(-g113cotanhq 
g ' 0 

b' 
f12=f21 EI. 	2 (1_gtcosechg,0 

9 ' 0 

(3.1.44a) 

(3.1.44b) 

g' 2 
9' 	9 ' 	 ( 0 ) 

and k°11=k22= 	bō-1 (2)cotanh( 2 ) - 	g' 2 	g l 	(3.1.45a) 
1-(i)cotanh( 2 ) 

g' 2
141 

	

k°12=k21=E2 bō-1 (- )Cotanh( 2) + 		t 	t 	(3.1.45b) 
1-(g2)cotanh(g2 ) 

where now 

and 

b' = 1 +a' • n' 

1/2 
9 1 

= L(1~ ,)b,a• n ō n'1 

 , 2 
na 	I X 2ol ĒI 

(3.1.46a) 

(3.1.46b) 

(3.1.46c) 

124 



3.1.4 	Deformation Analysis 

The beam element behaviour can be expressed in terms of 

total, finite variables, by reversing the perturbation procedure, 

i.e., we may reconstruct the generic variable y by substituting 

the solutions found for yo, y1, ..., yoo  back in equation 

(3.1.20). 

Take for instance the beam end-rotations 01E; by definit- 

ion 2 
E 

u1 E  = u1 E0+ 1 E1E + u1 E22I + ... 

or, from equations (3.1.33) to (3.1.36) 

2 
u1E = f°  X1 E 	+ (f°X1  +  2X2 fo2 	X1 ) 	+ •••

2  1 	2 	1 	1 

Regrouping 

2 
u1 E = f°(X' E +X1 	 +...)+(X2E +...)f°2 

 
(X1 

E  +...)+... 
1 - 221 	1 	1 

and considering the general solution (3.1.29) we may antecipate 

that 

1E = f°  X' 	+(X2-X2 )f°,2  XI + 03  
0 

where 03  designates terms of order three and higher. 

(3.1.47a) 

Similarly, for the axial shortening 

2 

u2E0+ u2E1 E  + u2E2  2! 	+ 	• • • 

2 

EA 
(X2 +X2 c

+X2 	
+...)+ 

 0 	1 	222.  (X1 	
c +...)Tf°2(X1 	E+...)+... 

1 

EA + I X' 
	
f' 2 X1 	+ 03 3 (3.1.47b) 

u2E 
__ 

or 	u2E 

Confronting the pattern developing in the above express-

ions (3.1.47) with that of the Taylor series expansion of matrices 

f and f,2  in the neighbourhood of point X2=X2 , 

f (X2) = f°  + (X2-X2 ) f
°2  + ... 

f,2(X2)= 	f°2 	... 

125 



STIFFNESS FORMULATION 

X =K uĒ +X' 

we may write the following flexibility description of the elastic 

constitutive relations expressed in terms of the total variables 

FLEXIBILITY FORMULATION 

 

uĒ = F X' + ut7 (3.1.48) 

the zeroth-, first- and second-order symmetric flexibility 

matrices and additional elastic deformations being respectively 

defined by 

ZEROTH-ORDER FIRST-ORDER SECOND-ORDER 

F = 

-En 

O 	i 	0 
--T Ī--L-- 

' 	EA 

= 	0 

F= 

-E 0 n 

- f 	1 	0 - 
- 	T' 	L  

~ 	EA 

= 

F = 

u' 
 En  

f :0 -  
TĪ L- 

; EA_ 

0 
---_ 

T 
2X1 	f, 

-  

2X1- 

(3.1.49a,b) 
	

(3.1.50a,b) 
	

(3.1.51a,b) 

where f is the symmetric flexural flexibility matrix, with 

elements 

in which 

and 

f11 = f22 = Ī 	
(1-g cotang) 

9 

f12 	f21 	ĒI 	( 1-g cosecg) 

9 

b = (1-a'n)-1 

g = [(1-an)bn] 

L2 n = ĒI X2 

(3.1.52a) 

(3.1.52b) 

(3.1.53a) 

(3.1.53b) 

(3.1.53c) 

A similar procedure would yield the following stiffness 

description of the elastic constitutive relations 

where now 	K = F-1 

(3.1.54) 

and, for each approximate solution 
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( g)cotan(s) + 	~ 
1-(2)cotan( 2) - 

2 
(9) 

1-(g  )co tan( g) - 

2 
(9) 

(3.1.58a) 

(3.1.58b) (S)cotan(g) 

are defined by 

EI -1 
k11= k 22 = 

L 
b 

EI 	-1 
k12= k = L b 

ZEROTH-ORDER FIRST-ORDER SECOND-ORDER 

K= 

X' 	= -n 

0 

T 1 

-- 	I 

0 _ 

0 

EA 

~_ 

K- 

X' 	= _n 

	

k; 	0 

	

T' 	EA 

—0 	1 	~ _ 

0 - 

K= 

XI 	= 

	

k 	1 	0
I  

	

T i 	EA 

	

-~ 	' 	~ 

0 _ 

EA 
L —1E K'2 -1E 

(3.1.55a,b) 
	

(3.1.56a,b) 
	

(3.1.57a,b) 

The coefficients of the symmetric flexural stiffness 

matrix 
k= 

f-1 

The above formulations will be valid within a range of 

loading-deformation such that terms affected by powers of the 

parameter t higher than the i-th can be neglected in the 

perturbed form of the (unknown) exact formulations. 

It could be easily proved that the first-order formulat-

ion is valid within a range of deformations such that the 

fundamental trignometric functions sine and cosine on the 

maximum rotation 9 can be approximated by a power series of order 

not higher than the first. 

The graphs in Figs.3.6 and 3.7 show that the effect of 

the member slenderness ratio on the flexibility coefficients is 

relevant only for short members (SR=20, i.e. a=1/400); Figs. 3.8 

and 3.9 illustrate the shear deformation effects. 

Similar conclusions could be drawn for the stiffness 

coefficients (3.1.58); their sensitivity to the axial and shear 

deformability parameters is illustrated in Fig.3.10. 
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The flexibility bowing functions are defined by 

2 	
rr 

f11, =f22,2=(ĒI)  2L2 L 2b1 +(b1 -b2)9•cotang+(b1 +b2)g2cosec2g] (3.1.59a) 2 	 g 

2 
f12'2=f 

21'2
=-(ĒI) 

 2g2[ 	
2b1+(b1-b2)g-cosecg+(b1+b2)g2cosecg•cotang] 

(3.1.59b) 

b 2  
where 	b1  = (1-2an)(g) 

and 	b2  = alb2  

(3.1.60a) 

(3.1.60b) 

The above functions are represented in Figs.3.11 and 

3.12, respectively. 

The stiffness bowing functions can either be found from 

the equality 

k, 2  = -k T  f, 2  k 

or directly from (3.1.58). 

(3.1.61) 

The definitions for the flexibility and stiffness 

coefficients, and their derivatives, can be modified into the 

case of members subject to a tensile axial force through a 

procedure in every aspect similar to the one indicated in 

sub-section 3.1.3. 

A j-th order approximation for the rotation 9 at any 

point of the beam centroidal locus can be found by combining, in 

the manner of (3.1.20), all and up to the j-th expressions found 

for the components 9i  (x1 ) through the application of the 

perturbation technique. 

Similarly, general expressions can also be obtained 

for the stress resultants and for the components of the displace-

ment if at every stage the i-th solution for the bending moment, 

axial and shear forces and the same order components of the 

axial and transverse displacements are derived, respectively, 

from equations (2.1.31) and (2.1.32). 
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FIGURE 3.10 

For instance, the beam-column theory widely presented 

in the literature can be found by combining the zeroth-order 

solution (3.1.26) with the first-order solution, defined, in 

terms of the non-dimensional variables, by 

b 	j 
81 (x1 ) = 2 Ī 

 m1  gosingox1 +(-m1lcotango+m2lcosecgo )gocosgox 1 + 

go 	
1 (m11 -m21 )] 
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v3  (xl) _ - [ml (cosgox1 -1)+(-m1  cotango+m2 cosecgo )singox 1 + 
1 	a 	1 	1 	1 

(m1-m2)x1] 

V1  (x1) = -an1 x1  
1 

M1 (xi ) = mllcosgoxl+(-mllcotango+m2lcosecgo )singox1  

N1   (x1) = n1  

T1  (x1) = no91 -t 

yielding 

9 (x1) = b -mlgsingxl+(-mlcotang+m2cosecg)gcosgxl+(ml-m2)1(3.1.62a) 
L 	 JJ 

v3 (x1) _ [m1 (cosgx1 _1)+(_m,catang+m2cosecQ)singx1 +(m1 _m2)xi]

(3.1 .6 2 b ) 

v1  (x1) = -anx1 	 (3.1.62c) 

M (x1 ) = mlcosgx 1 +(-mlcotang+m2cosecg)singx1  

N (x1 ) = n 

T (xi ) = n9-t 

(3.1.62d) 

(3.1.62e) 

(3.1.62f) 

The buckling loads, which replace the Euler loads 

nE  _ (kn)2 	
k=1,20 3,... 

can be found by various methods to be defined by 

gc  = kit 

or 	nc  = {1+a'nE-[(1+a'nE )2-4anE ]-}/2a 

k=1,2,3,... 

(3.1.63) 

in total agreement with the results presented by Huddleston (1970). 

Equation (3.1.63) shows that the buckling load converges 

to the Euler load when the member slenderness ratio tends to 

infinity; the buckling and Euler loads coincide in the particular 

case when 
a = a 
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2 2 
(3.1.64) 

in the span where 

tan 8 = 
t 
n 

The maximum axial force 

will occur either at 

the same section or 

where the rotation is 

stationary: 

8,1  = 

The first-order theory 

gives a constant axial 

force along the span 

of the beam; the 

maximum bending moment 

will occur at 

m 
xl=garc tan(m2cosecg -  

1  
cotang) 	(3.1.65) 

If the shear effect is neglected, 

equation (3.1.63) reduces to 

n = 0.5SRi1- [1 (Sk ) 
((( 	R  

The graph of the above equation, illustrat-

ed in Fig.3.13, shows that the buckling 

loads diverge from the Euler loads for 

very short members; furthermore, it 

predicts that members with a slenderness 

ratio less than 2rt can not buckle. 

This anomaly is rectified by taking into 

consideration the shear effect which, as 

shown in Figs.3.14 and 3.15, is only 

relevant for short members. 

The maximum bending moment, according to 

equations (3.1.9a) and (3.1.6), will 

	 occur at the section 
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The graphs in Figs.3.16 and 3.17 combine the representat-

ion of the relative maximum bending moment Mmax/  mi with the 

coordinate of the section where it occurs. 

Assume that the bending moment at critical section 2 is 

greater than the moment at critical section 1 and let us 

investigate, within the limitations of the first-order theory, if 

the bending moment at any other section in the span of the beam 

may exceed that end-moment. 

Equations (3.1.62d) and (3.1.65) show that only ratios 

within the range 

0 .4 
m1 
 4  1 

m2  

are to be considered, since 

m 
-1 

	
< 0 	x < 0 

m 2 

When the moment at critical section 1 increases from 

zero, xT starts taking positive values within the allowable 

range 
0 	1 • 	(3.1.66) 

when 	 g 3  n/2 

In the limiting case 

m1  = m2  

the maximum bending moment will always occur, for positive values 

of the axial force, at the mid-span section. 

The graphs in Fig.3.16 represent the curve 

f1 max  
m2  

which, from (3.1.62d) and (3.1.65), is defined by 

	

m(x1) = m1 	 m1 
m 	m 

cos g xT(cosec g-m cotan g)sing x* 
2 	2 	m2 
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for the limiting values of the ratio m1/m2, together with the 

corresponding values for x{, in order to select the cases 

satisfying the physical constraints (3.1.66). 

Similar results are illustrated in Fig.3.17 which 

considers the complementary situation whereby 

m2 - 
m1 

The information provided by those graphs can be 

summarized as follows: 

1. When 

or 

m1  

0 	
m1 	

1 
m2  

there will always exist at least one section in the 

span of beam where the bending moment exceeds the 

larger of the beam end-moments, provided that 

g > 0 

which, for practical values of the axial and shear 

deformability parameters, a and a', respectively, is 

equivalent to 

n 0 

that is, provided the beam is under compression. 

2. When -1 	m 1 < 0 
m2  

the moment at critical section 2 will always be the 

maximum. 

3. When -1 	
m,

< 0 
m1  

the moment at a section in the span of the beam will 

exceed the larger end-moment (m1 ) for very large 

values of the parameter g 

g >11/2 

The asymmetry in the above conclusions is a reflection 
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of the asymmetric support conditions of the beam element; 

complementary results would be obtained when considering a beam 

element free to displace horizontaly at critical section 1 

instead of critical section 2. 

If the end-moments are applied through an excentric 

axial load 

m1 = m2 = n d 

where d is the (non-dimensional) excentricity, the maximum bending 

moment and transverse displacement, given respectively by 

M
max 

= n•d•sec g/2 

and v3 	= d(sec g/2-1) 
max 

will occur at the mid-span section; the maximum axial stress is 

now defined by 

c max ̀  an [1+d sec 	
n•n1 J 

where r represents the (non-dimensional) radius of the core, 

generalizing the well-known secant-formula 

Q max 
= an [1+d sec -WI 

to the case of axially and shearing deformable members. 

3.1.5 	Incremental Analysis 

Let the flexural flexibility matrix be expanded in a 

Taylor series 

f(x2+Ax2) = f(x2) + E1 f(n)(x 
(AP)" 
) 	n1 

 

so that its increment can be defined as 

.f = 	f(n) (L\x2)n n=1 — n~ 

 

(3.1.67) 

The flexural part of the system (3.1.48) can be expressed 
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in an incremental form as 

or, from (3.1.67) 

Au 1 E = f AX/ + 	Af X1 	 AXI 

Au 1 E  = f AX1 + 	f,2  X1 AX2 	+ Ru  
1E 

(3.1.68a) 

 

(AX)
2 

 

2 

  

   

where R
u 
 = 
1E 

AX 2 
-'22+  3 -'222 

AX', 
 X 1 + AX2  f, 2+  2 f'22 AX1+04 

-(3.1.68b) 

   

Let the variation in the length of the member chord be 

expressed as 

_  
Au2E 	 EA AX2 + Au' (3.1.68c) 

where Au2s  represents the increment on the chord shortening due 

to bending 

u'2s __ 	
X1

T  -'2 X1 

Hence 

Au 	= XT f 	AX + 	
XT  Af 	X + XT  Af 	AX + AX/Tf 	AX +2s 	1 	2 1 	1 	2 1 	1 	2 1 	1 , 2   

AX1 T  A-,2  AX1 

or, and making use of (3.1.67) 

Au2s  = X1T f'2  AX1 + z X1 T  f,22  X1 AX 2 + Ru2
s 	

(3.1.68d) 

where 	T 	(AX2)2  T  

Ru2s 2 
A X1 f' 2 A  X1 + 	4 	X1 f ' 222+  3 f' 2222 -1  + 

,T - 	X 2 	-  
A 

AX
2 X 1 -'22+  2 —'22  

  

+ A22  AX1 Tf,22  AX1 + 04  (3.1.68e) 

    

Equations (3.1.68) can be expressed in matrix form as 

FLEXIBILITY FORMULATION 

 

Au/ = F AX' + RuE (3.1.69) 

where the zeroth-, first- and second-order flexibility matrices 
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and remainders are respectively defined by 

in which 

F = 

	

IF 	= 

	

IF 	= 

• 

F 

• 

f 
J 

X'Tf ,2 ~ 
- 

f 

f' 2 X1 
f 

-P2 X1 

F 

- 

IRuE= = 

IRuE= 

IR
u E 	 

R 
	E 

. 

fu 
1E  

R 

_ u2s_ 

f = 
EA 

(3.1.70a,b) 

(3.1.71a,b) 

(3.1.72a,b) 

(3.1.73a) 

and = f + 	X 1 T 
f '22 X1 (3.1.73b) 

A similar procedure applied now to equations (3.1.54) to 

(3.1.57) would provide the following stiffness description of the 

incremental elastic constitutive relations 

STIFFNESS FORMULATION 

 

AX' = IK Au' +
IRXE 

(3.1.74) 

the zeroth-, first- and second-order stiffness matrices and 

remainders being respectively defined by 

where 

IK 

IK 

IK 

= 

= 

= 

• 

k 

• 

k 

T k 	u
1E k'2 

	 r 	 

~ 

k 

k k-02-1E 
	-- 

R 
k ' 2-1 E 

k 

-XE 

IR
XE 

-XE 

R1 

-1 R 1 

kR2 

k = EA 
L 

1 _ 	t T 	, 	1 
k = k 	/ W1 E k' 22 ~1 E]- 

(3.1.75a,b) 

(3.1.76a,b) 

(3.1.77a,b) 

(3.1.78a) 

(3.1.78b) 
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E = k + k' k,2 
u1 E u,T k,

2 
	

(3.1.78c) 

and 
(AX2)2 	Ax' 

R 
2 

1 	1'22+ 3 ='222 uIE + X2 k'2+ 
X' 

2 ='22 u1E + 04 

R1 = R1 + R2 k' 2 -1 E 

(3.1.79a) 

( 3.1.79b ) 

2 

R2 	

( A42) 
u1E ='222 + ~32 ='2222 	u1E + 	Au! T k,2 Au1E + 

Tr 	AX2 	
1 

AX 2 	T 
(AX2) -1E k'22 + 	='222 ~u1E+ 2 Au

1E 1('22 AuI E+ 04 

(3.1.79c) 

3.1.6 	Perturbation Analysis 

Letting in equations (3.1.69) and (3.1.74) 

co 	Ei 
A-E = =l Ei it 

Ei 
AX' = 	1 

XI IT 

0 	Ei _ IRuE 	1=1 Ru Ei FT 

m 	Ei 
IRXE 	1=1 RXEi 	ī 

and equating the same order coefficients we find for the perturbed 

form of the elastic constitutive relations 

(3.1.80) 

FLEXIBILITY 	FORMULATION STIFFNESS 	FORMULATION 

u 	= F X 	+ R Ē 	i 	uE 
i 	i 

X 	= IK u+ i 	
Ē 	RXE i 	

i 

PERTURBED ELASTIC CONSTITUTIVE RELATIONS 

(3.1.81) 

where now 
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1 

	

R1 2 	X 1 [XI k' 22u1 E + 2 k' 2z1 E1 

R1 = 3X2 [ X2 —0 22—! E+ k' 2.1 E ] + 3X2 K, 2u1 E + 

	

3 	1 	2 	 2 	2 	1 
(X21 )2 [X 21k'222u1E+ 3k '22111E1 ] 

• 
• 
• 

• 
• 
• 

1 = 0 

Ru1 E1 = 0 

	

Ru1E2 	(X21)[X21-'22X1 + 2f,2X11] 

Ru1E = 3(X2 1 )[X2 f'22X1 + f, 2X1 ] + 3X2 F, 2X1 + 

	

3 	 2 	 2 	2 	1 

(X21 )2[X211.'222)—(1 + 3f,22X11 ] 

• 	 • 
• 	 • 
• 	 • 

R 	= 0 u2s1 

Ru2s = 2(X2 )[X2 X1
T 

-'222+ 
X1

T 11'221V1 + XIT f'2X1 
2 	1 	1 	 1 	 1 	1 

Ru2s3 	2(X21 )[X22X1 T -'222+ 2X1 2 	X1 f'22] 	+ 3X11f,2X1 2+ 

2(X21)2[X21X1T -'2222+ 6X11 -'222]X1 + 

3[X2 X1T+ X2 X1T]-'22X1 2 	1 	1 	1 
• 
• 
• 

R1 i 	Rf i+ R2ik' 2 —1E-1.1+ 

R 2 = 0 
1 

R2 	2(X2 )[X2 21 E k'222+ -1E -'22]~1E+-1E k'2-1 E 2 	1 	1 	 1 	 1 	1 

R2 = 2(X 2 )[X22-1E  k'222+2u1Ē k,22]u1E+3u1 E k,2u1E 3 	1 	 2 	 1 	2 

+2(X 21 )2[X 21u1 Ek' 2222+6u1 E1k' 222] ~1 E 
T + 	3 [ X2221E1 + X 21u1E1 ] k'22 P1E1 

(3.1.82a) 

(3.1.82b) 

(3.1.82c) 

• 
• 
• 

(3.1.83a) 

(3.1.83b) 

(3.1.83c) 

• 
• 
• 

(3.1.84a) 

(3.1.84b) 

(3.1.84c) 

• 
• 
• 

(3.1.85) 

(3.1.85a) 

(3.1.85b) 

(3.1.85c) 

• 
• 
• 
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3.1.7 	Related Formulations 

According to Chu (1959), the stability functions 

-1 
k 11=k22= EI ni 	[i-()cotan()j

2 
2 	-1 

k12  k21 	( 2)cotan( 2)-(:2 ) 1-(2)cotan( 2 )1 	(3.1.86b) 
C 	J 

were first derived by Manderla (1880). The above stability 

functions can be obtained by neglecting the axial and shear 

deformation effects in the stiffness coefficients k.. defined in 

(3.1.58). If the same effects are neglected in the flexibility 

coefficients f., defined in (3.1.53), yielding 

f11- f22 ĒI 	n '1(1-n cotan n•5) 

f12 f21 	EI
n'1(1-n2  cosec n/) 

(3.1.86c) 

(3.1.86d) 

the stability functions derived by Berry (1916) are recovered. 

The stiffness stability functions (3.1.86a,b) were used by 

Manderla in the analysis of the effects of secondary bending 

moments in truss structures. Berry applied the flexibility 

stability functions (3.1.86c,d) in the analysis of the stresses 

developing in the wing spars of biplanes. 

Baker (1934) modified Berry's functions in order to 

include the axial force effects in the slope-deflection method 

of structural analysis. To include the same effects in an 

extended version of the moment distribution method, James (1935) 

derived, independently, the expressions for the stiffness and 

carry over factors s and c 

LL 
s  - EI -11 an d sc = - ET le 

The introduction of the m, n and o functions, which can 

also be directly related with the stiffness stability functions 

(3.1.86a,b), and their use in deriving the sway critical loads 

of rigid-jointed frames is due to Merchant (1955). 

The existing tables for the stability functions, as those 

provided by Lundquist and Kroll (1938, 1944) and Livesley and 

(3.1.86a) 
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Chandler (1956), can be readily used to include the axial and 

shear deformation effects just by entering the parameter g, as 

defined in (3.1.53b), instead of the non-dimensional force 

(3.1.53c), and dividing the result by the shear parameter b 

defined in (3.1.53a). 

The stability functions, popularized in the 1960's by 

Livesley (1964) and Horne and merchant (1965), have been 

extensively used, together with linear descriptions of Statics 

and Kinematics, in the buckling analysis of trusses and frames. 

Of the earlier studies we mention, besides those already referred 

to, the works of Chwalla (1938), Hoff (1941), Niles and Newell 

(1948), Winter at alia (1948), Wessman and Kavanagh (1950), Hoff 

at alia (1950) and Masur (1954). 

Chu (1959) included in his formulation the effect of the 

chord shortening due to bending, in both flexibility 

[Fl x+x 2+ F2(Xl -X1)2] 

and stiffness formats 

2 

2 S1(u1E+u1E) + 52(u1E-u1E) 

(3.1.87a) 

(3.1.87b) 

The bowing coefficients can be obtained by neglecting 

the axial and shear deformation effects in (3.1.59) and (3.1.61) 

and letting 

F1 +F2= f11 2(a'=a=0) 
	

51+52= k11  2(a'=a=0) 

and 

F1-F2=f12,2(a'=a=0) 	S1-S2= k12,2(a'=a=0) 

The bowing functions have been expressed in terms of the 

stability functions but, apparently, they were never identified 

as their derivatives, probably because the scalar descriptions 

(3.1.87) of the chord shortening due to bending were preferred 

to their matrix description as a quadratic form. 

In 1952, 8leich presented a systematic survey of the 

various stability theories. This survey, together with the advent 
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of the digital computer, aroused further interest among the 

researchers working in this field and since the mid 1950's a 

multitude of more or less related formulations for the analysis 

of kinematically non-linear framed structures have been presented. 

From the earlier formulations, we will refer those which adopted 

a description for the elastic constitutive relations directly 

related to the formulation presented herein. 

Among the authors using the stability functions (3.1.83) 

in their formulations, and besides those already mentioned, we 

refer Lu (1963), Saafan (1963), Renton (1964), Williams (1964), 

Connor et alia (1968) and Halldersson and Wang (1968). 

Saafan (1963), Williams (1964) and Merchant and Brotton 

(1964) demonstrated that the chord shortening due to flexure 

could be, even for moderate displacements and deformations, of 

FIGURE 3.18 
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the same order of magnitude as the linear extensional term. 

William's toggle is analysed in section 5.5 and the variation 

we found for the linear extensional term and for the chord 

shortening due, primarily, to bending are plotted in Fig.3.18 

versus the variation of the axial force. 

The use of the stability and bowing functions declined 

when emphasis started to be layed on the finite-element 

formulations with the inherent tendency of approximating the 

displacement field by polynomial functions. After the pioneering 

work of Turner et alis (1960), many finite-element formulations, 

generally in a stiffnes format, have been proposed. Of these, 

and among the earlier ones, the formulations of Argyris (1964), 

Martin (1965), Jennings (1968), Mallet and Marral (1968) and 

Powell (1969) appear to be the most significant since they 

involve the basic forms of the stiffness and bowing matrices 

generally used in finite-element formulations. 

In order to relate them with the results presented here-

in, let, in the flexibility and stiffness coefficients definitions 

(3.1.52) and (3.1.58), respectively, the trignometric functions 

be replaced by power series expansions on their argument, yielding 

and 

where 

and 

f1  

3 

k 1  

k3 

= 

= 

1  
6 

f = 

__ 

[ 
2  
1 

[ 31 

1-4 
L 	2 

[1 3 

1 51 20 

12600 

Lb 	2(1-1) f 
Ē I i=1 g 	—i 

EI g 	2(i-1) k 
i Lb i=1 g 	— 

(3.1.88) 

(3.1.89) 

1 

	

, 	= 	
7 

2 	360 	8 	' 1 
2] 	 [ 7 	8 

	

121 ' 	P4 	604800 [-1287 	1 281 	' • • • 

	

-21  , 	k2 = -30 	[ 4 	1 1 , 
4 	1 	4 J

14 	11 

	

1  3 1 , 
	k4 	3781000 [11 	14 J 	• • • 

Note that the above matrices would be those directly 

obtained through the application of the perturbation technique if 
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and 

(3.1.90a) 

(3.1.90b) 

(3.1.91a) 

(3.1.91c) 

B = (f1 +nf2) m 

u = an+2 m T f2 m 

m = (k 1 -nk2) 9 

-1 n = a u--
2  

a-18 Tk29 

the axial force was assumed strictly dependent on the perturbation 

parameter, that is, if no was set to zero in the perturbed 

governing equations. 

Consider now the following assumptions commonly used in 

the literature: 

1. The shear deformation effects are neglegible 

_ 1 -2an  
b = 1 

, b 
_ 

1 	(1-an)n 
b2 = D , g = /(1-an)n 

2. The effect of the axial extensibility has relevance 

only when evaluating the linear term of the axial 

deformation 

b1 = n-1 	
g = nz 

3. Terms of order higher than the second are neglegible. 

Enforcing the above assumptions and substituting (3.1.88) 

and (3.1.89) in the flexural part of systems (3.1.48) and (3.1.54), 

the second-order formulations of the elastic constitutive 

relations reduce to 

which are expressed in terms of the non-dimensional variables for 

simplicity of the presentation. 

The broken line in Fig.3.1B represents, for the structure 

illustrated there, the variation of the axial shortening due to 

bending when quantified by 

 

1 XiT(- f2)XY1 . Besides showing a 

tendency to diverge, it compares poorly, even for relatively 

small deformations, with the more accurate description 

2 
XI Tf,2 X~, represented by the solid curve in the same figure. 
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Matrix (Ēb f2) represents the first term in the series expansion 

of matrix f,2; matrix f2 is defined above, and matrix f,2 in 

(3.1.59). 

The axial force can be eliminated in (3.1.91a) through 

(3.1.91c), yielding 

where 

m = 011 - a-1 u 
k 2 + a-1 k*) 

e 

2 9 T k,= 	
k28 1.12 

(3.1.91b) 

or 

(3.1.91) 

k*= 30 (291 + 81 92 + 29
2) k2 

The incremental version of equations 	(3.1.90) 

is found to be 

and 

de = (f1 +nf2) dm + dn f2m (3.1.92a) 

du = a dn + mTf2 dm (3.1.92b) 

and dm = (k1 -nk2) 	de - a-1 du k29 (3.1.93a) 

or dm = (k--a
-1

u k2+a-1k2) de - a-1 du k29 (3.1.93b) 

dn = a-1 du - a-1 9Tk2 de (3.1.93c) 

where k ~~ = 
3ŌŌ 	 

	

892+491 92+392 	;2(9~+391 92+92) 

_2(9+381 92+92) 	384+491 92+892 
_ 

Argyris (1964) starts by assuming that the finite-

elements are initially in equilibrium under the action of the 

nodal forces. Then, for a small variation in geometry, the 

equilibrium is mantained by a suitable modification of those 

.forces, the incremental stiffness matrix is generated by 

considering the changes due to the member deformation as well 

as to its rigid-body movement. The formulation of Argyris when 

specialized to the three-degree of freedom element gives 

dm = k 1 de 	and 	dn = a-1 du 

Martin (1965) presented a unified view of the geometrically 

non-linear and stability analysis using the finite-element 

technique. The stiffness matrix is obtained from the strain 

energy via Castigliano's first theorem; when specialized for a 

three-degree of freedom element it reduces to 

k 1 + n k2 
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Martin does not take into consideration the member chord 

shortening due to bending. 

The formulations of Argyris and Martin have obvious 

limitations even taking into consideration the fact that they 

were derived having in mind an incremental procedure as the 

method of solution. 

The formulation of Jennings (1968), based on a three-

degree of freedom element, uses theorems on the minimum of the 

potential energy, presented in Jennings (1963), in order to 

obtain the relationships between the member stress- and strain-

resultants. 

The direct and incremental formulations that Jennings 

found for the element flexural constitutive relations, using a 

cubic polynomial to describe the transverse displacement field, 

are identical to (3.1.91a) and (3.1.93a), respectively. The 

formulation was improved to include the effects of the chord 

shortening, so that the axial force becomes defined by (3.1.91c) 

and (3.1.93c). 

The consistency of the formulation presented by Jennings 

has been questioned since no reference is made to the function 

describing the axial displacement field; the formulation is in 

fact consistent, the deficiency being an improper explanation of 

the assumption involved. 

Mallet and Marral (1968), using a quadratic strain and 

the principle of virtual displacements, established a load-

displacement relationship in which the stiffness matrix accounts 

for up to second-order terms in the nodal displacements. 

When specialized for a three-degree of freedom element, 

the resulting stiffness matrix for direct analysis results in 

k = k 1  -a-1n 	 a-14
+ a-1  

 

M 1 2(1291  k 39192+ 92): k39 	49192+ 34)-  *_ 
840 where 

 

 

(391 + 49192+ 392
2  ) 1 2(91

2  + 39192+ 1292) 

which is flexurally equivalent to 
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2(1291 + 381 82+ 92) 1 (392 +  481 92+ 392) i = 1 
280 

since K1 8 = K* 

The axial force is defined by (3.1.91c). 

The incremental formulation is given by (3.1.93b,c) 

where the non-linear incremental stiffness matrix is now defined 

by 

(3.1.94b) 

(38~ + 491 92+ 392)~2(81 + 391 92+ 128)- 

Similarly to Jennings (1968), in order to dissociate the 

member deformations from its rigid-body displacements, Powell 

(1969) chooses the basic element to have three-degrees of freedom. 

The formulation of Powell was developed through a 

procedure very similar to the one used by Mallet and (larval (1968); 

the principle of virtual work was used to derive the non-linear 

stiffness matrix of the finite-element, whose transverse and 

axial displacements were approximated by cubic and linear poly-

nomials, respectively. 

Within the limitations of a clearly defined set of 

assumptions, the formulation of Powell is consistently derived 

and gives 

m = (k1 -a-1 uk2+ a-10) 8 

-1 n = a u-2 a-18Tk29 

for the direct analysis, and 

dm = (k1 -a-1 uk2+ a
-1p

) d8 - u-1 dn k28 

dn = a-1 du - a-1 9Tk2 d9 

The non-linear stiffness matrix kP , defined by Powell 

as 
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I 	- 
k P= 280 ^2(49~ + 91 92+ 92)1 	(8, + 8) -* i 

1 
(91 + 92) 	1 2( 9, - 91 92+ 492)_ 

is flexurally equivalent to kam, as defined in (3.1.94a); the 

non-linear incremental stiffness matrix k.a can also be expressed 

in the form (3.1.94b). 

To facilitate a direct comparison, the above mentioned 

finite-element formulations are summarized in Tables 3.1. and 3.2. 

DIRECT FORMULATIONS 

MALLET AND MARF,AL(1968) m = (k1 -a-1 uk2+a-1k..)9 

n=a
-1 u_1 a-1 gT 

L2
99 

POWELL 	(1969) 

JENNINGS 	(1968) m = (k1 -a-1 uk2+a-1k*)9 

(3.1.87) 

TABLE 3.1 

INCREMENTAL 	FORMULATIONS 

ARGYRIS 	(1964) dm=kld9 do=a_
1
du 

MARTIN 	(1964) dm=(k 1 -a-1 uk2)d9 

MALLET AND MARCAL(1968) dm=(k1 -a-1 uk2+a-1 kq )d9-  

a-1 dnk29 dn=a-1du- 

a-1 9Tk 2d9 

POWELL 	(1969) 

JENNINGS 	(1968) dm=(k1 -a-1 uk 2+a-1kl )d9- 

a-1 dnk29 (3.1.89) 

TABLE 3.2 

We stress that, to perform the above comparisons, the 

formulations presented by Argyris, Martin and Mallet and Marrcal 

had to be specialized for a three-degree of freedom element. 
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3.2 	PLASTICITY  

The study of natural processes should, ideally, develop 

in two consecutive phases, the first phase, aimed at understand-

ing why and how the material phenomena occur, being seconded by 

the creation of a mathematical model describing the process as 

accurately as possible. 

The mathematical theories of plasticity, designed to 

describe the stress- and strain-fields in a plastic body, have 

had, however, to develop from theoretical models based on results 

of simplified tests due to the overwhelmingly complex behaviour 

presented by ductile materials. 

The material laws appear to be different for each material 

and the material behaviour, which depends on its previous history 

of deformation, is difficult to define, specially if it is subject 

to a complex multiaxial state of stress; because of this complexity, 

the physical theories of plasticity are yet unable to provide 

universally applicable laws explaining why and how materials flow 

plastically. 

The several mathematical theories which have been proposed 

can be divided into two groups, according to whether the basic 

relationships connect stresses and strains or stresses and strain 

rates. 

The results provided by these theories, respectively 

known as deformation theories and flow theories, will only 

coincide when the development of yielding is regularly progressive. 

In either case, the first step is to decide on the yield 

criterion, that is the rule defining which combination of stresses 

will cause yield; the simplest situation is when yielding is 

controlled by just one stress component, for instance, and as in 

the present case, the axial stress. 

In the general case the yield criterion will depend on 

the complete state of stress and strain and can be expressed as 

. (X,up  ) = 0 

The function / is called the YIELD FUNCTION and the 

155 



hypersurface, parametric in the plastic deformations up, that it 

represents in the stress-space X is called YIELD-SURFACE. If, as 

we assume, the material is stable in the sense of Drucker (1959), 

the yield surface, although not necessarily continuous, is 

always convex. 

In order to simplify further the problem, the continuous 

spreading of plasticity along the member cross-section will be 

neglected; it is assumed that the cross-section makes an abrupt 

transition from a completely rigid state to a state where all 

fibres are stressed to the yield level, and where unrestricted 

plastic deformation can occur. 

Having defined the static equilibrium condition for a 

fully plastified cross-section, the next step is to impose its 

kinematic compatibility or, in the parlance of the theories of 

plasticity, to characterize the flow rule. 

In the early works the yield condition (STATICS) and the 

flow rule (KINEMATICS) were treated independently. The possibility 

of deriving the latter from the yield condition is offered by the 

concept of plastic potential, introduced by von Mises (1928) for 

continuous yield functions and generalized by Koiter (1953) to 

include singular points. In the terminology adopted herein, this 

is understood as a relation of duality between the descriptions 

of the static and kinematic phases of plasticity. 

The plasticity relations are completed when the static 

and kinematic variables are connected through an association 

condition; in this condition, is where the essential difference 

between the deformation and the flow theories of plasticity 

resides. 

3.2.1 	Deformation Analysis 

In planar framed structures, the most general force 

acting on a cross-section comprises an axial force, a direct 

shear force and a flexural moment. 

Only those stress-resultant components which contribute 

to strain energy have, following Hodge (1959), to be included as 

yield condition parameters. As shown for instance by Neal (1961 ), 
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in planar frames the shear deformation effects are usually 

secondary and neglegible; therefore, the shear stress-resultant 

will not be included in the yield conditions presented herein. 

As an introduction to the presentation of the plasticity 

relations, let us start by considering the simplest situation, 

that of one-dimensional perfect plasticity whereby one of the 

remaining stress-resultants, either the axial force or the 

bending moment, has unquestionable predominance. 

Xq 

	asr 
U. 

iP 

X-i 

FIGURE 3.19 

or, in matrix form  

Let Xij and -Xis, as illustrated 

in Fig.3.19, be respectively the 

positive and negative plastic 

capacities with respect to the 

stress-resultant Xi at critical 

section j of member m; the 

static admissibility condition 

is defined by 

	

-X- ~- XJ 	 	+X 1 	1 	i 

where we note 

N TXj 	Xj.i (3.2.1) 

NT= 

  

and 	X3. = _*1 
(3.2.2a,b) 

   

Let us introduce two yield functions 	+j and 	 J 
grouped in 	

and defined by 

= NTXi - X*i (3.2.3) 

so that the static admissibility condition (3.2.1) can be replaced 

by 

i 
0 • (3.2.4) 

The above condition defines a sub-space of the uni-

dimensional stress space Xi, as diagramatically represented in 

Fig.3.20. 
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0 	 X. 
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n~ 	
u iP 

n+=+1 X i 

 

0 

FIGURE 3.20 

FIGURE 3.21 

The stress-resultant 

acting on the cross-

section is represented 

by a point in the stress-

space; if that point is 

contained in the open 

sub-space 

.1j < 0 i 

the cross-section is 

assumed to remain 

completely rigid and no 

plastic strain can 

develop. If the point 

lies on the boundary, 

where the yield function 

vanishes , i 
= 0, every point of the cross-section is assumed to 

be stressed to the yield limit and the section is ready to deform 

plastically for constant stresses. 

The plastic strain-resultant uiP, unrestricted in sign, 

can be represented as the difference of two complementary and 

non-negative plastic multipliers uij and uij 

 

-j 

	

U. 	• U. 	= 0 

	

1 	1 

and 

such that 

or 

uiP- ui 	if X1 = 

uiP= -ui i if Xi = -Xtj 

 

Hence 

U . = U. -  1P^ 

or using (3.2.2a) 

uiP= N u*i 

where 	ugi= u+ i 

u . 

(3.2.7) 

(3.2.8 ) 
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Superimposing the strain- and stress-resultant spaces, 

as illustrated in Fig.3.21, the components of the vector N can 

be interpreted as the external directional vectors of the sub-

space (3.2.4). 

Considering general paths connecting typical stress-

strain combinations, as for instance the one represented in Fig. 

3.19, and consulting at every stage the previous relations 

(3.2.1) to (3.2.8), it could be easily concluded that the 

complementarity condition 

f  i uj.i  = 0 	(3.2.9) 

associating the plastic potentials with the plastic multipliers 

will hold for every situation except those preceded by plastic 

unstressing, i.e., the transition from a plastic state into a 

rigid state. 

The relations (3.2.1) to (3.2.9) can therefore be used 

to define situations of regularly progressive yielding (R.P.Y.). 
They are collected below 

• Ī  NT- -  = 

N  i • 	X 
- 

* j 	X 

up 	• 
_ i 

 

(3.2.10a) 

(3.2.10b) 

 

i 5 0 uni ' 0 (3.2.10c,d,e) 

in the format Smith (1978) presents (Maier's formulation, in order 

to emphasize the uncoupled and strictly dual relationship 

between the descriptions of the static and kinematic phases. 

The complementarity condition (3.2.5) need not be 

included in the above summary because it is automatically taken 

into account by the Simplex-based algorithms. 

Setting successively j to one and two in (3.2.10) and 

collecting, the following relations can be defined for member m 
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RIGID-PERFECTLY PLASTIC MATERIALS:ND INTERACTION 

• I 

I 

N 	I _ 

— 

NT 

• 

— in 

u 

X' _ 

— 	- m 

= 

ui _p 

- 	- 

+ 

m 

X 

— 	- m 

* < 	O 
M 

•u 
m 	m 

= 0 u 	> 0 
m 

YIELD RULE ASSOCIATION (R.P.Y.) FLOW RULE 

(3.2.11) 

(3.2.12) 

(3.2.13- 
14-15) 

where now 

* - 
L
~11 

m 

T 	[.+1 u 
= 

u1 
I 

m 

X T 

_ C 1
X+1 

-- 	L 
m 

m 

m 

~12 
~2 ; 

~1 1 ~12 

+2 + i -1 -2 
u1 u2 u1 u1 

+2 X+ -1 -2 X 
1 2 I 

X 
1 

X 
1 

and Xm are the member independent stress-resultants, uP being 

the plastic components of the corresponding strain- 	m 

resultants. 

The incidence matrix Nm, in the case of neglegible axial 

force effects, is defined by 

  

(3.2.16a) 
—m 

1 

    

    

 

Nm =
• 

• • 	1 

  

(3.2.16b) and by 

  

 

• -1- 

 

     

when the axial force effects are predominant. 

The yield condition (3.2.12) can be interpreted as a 

polytope in the Xm - space, as represented in Fig.3.22, with non- 
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interactive faces in the direction of X2  ; the columns of matrix 

N will then represent the outward 	m  normals of the poly- 

tope faces. 

FIGURE 3.22 

Let us consider now, still for rigid-perfectly plastic 

materials, the reduction in the bending (thrust) plastic 

capacity due to the presence of the axial force (bending moment). 

In statically determined beam systems, the limiting 

state of strength is governed by the carrying capacity of the 

most highly stressed section and it is therefore natural that 

this problem, widely discussed in the educational literature, 

has received for long the attention of the researchers. 

When the axial force is included in the analysis of 

beams and frames, the yield hinge retains its proeminent position 

as a basic mode of deformation. However, in this case we must 

deal with hinges that allow not only relative rotation but also 

relative axial displacement of adjacent cross-sections. Onat and 

Prager (1953,1954) called them extensible yield hinges. 

As an illustration, and following for instance Prager 

(1959) or Hodge (1959), consider the solid rectangular cross-

section, with depth d and breadth b, bent in the plane of 

symmetry, as represented in Fig.2.23. 
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FIGURE 3.23 

The internal equilibrium conditions reduce to 

- 2 
+X1 = 4(.1 1 

Xj = Xj  .2 (ā) 

where 	X 1 = - a bd2 

and 	X 2 = 	o*bd 

(3.2.17a) 

(3.2.176) 

(3.2.18a) 

(3.2.18b) 

are the cross-section plastic capacities when subject, respectively, 

to simple bending and axial thrust; it is assumed that the yield 

stress o* is the same both in tension (o;=-o*) and compression 

(o*  =-1-o*). 

The elimination in (3.2.17) of the variable x, defining 

the distance of the neutral axis from the centroid, gives 

X ~ 2 

{' X J + Xj1 	j 	- X 1 = 0 
1 

X*2 

since, from (3.2.18a) and (3.2.18b) 

d = 4 X1 
Xi  
*2 

(3.2.18c) 
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n1 	_ ~J 	= (-1)1-41  _._.a _.J 	_ 	2 ---X 1-- X2 
i1 	i,1 

(Xi 

(3.2.19a,b) 

k3 

k 

k1 

k2 
4 

_ J 	_ 

n ni 
11 12 

nj nj 
21 

n
22 

(3.2.20a) 

(3.2.20b) 

If the plastic work dissipated up to when the last 

fibre starts to yield is neglected, the above conditions can be 

adopted as the yield criterion and, in the present case, two 

yield functions, represented in Fig.3.24, can be defined as 

Xj 2 

= (...1)1.41 
  X 1 + X -1 	~- 	 — X 1 	

i=1,2 	(3.2.18 d ) 
X
*2 

The intersection, in the stress-space, of the half- 

spaces 	0 defines the (convex) domain of statically 

admissible stress distributions. The outward vector normal to the 

yield locus V = 0 has components 

and the yield functions can be expressed as 

  

_ Ii + X11 +1
( xi\2 

2 

XT *2 

[n.

1 
 n2i  

X1 

Xi 
2 

   

or, setting above i = 1,2 and collecting, in matrix form as 

N T X' _ 	+ X) + n~ 

If the static and kinematic phases of plasticity are to 

be described by dual transformations, Kinematics has to be 

expressed as 

The assumption that plane sections remain plane gives 

u2p = x tan u1p 	 (3.2.21) 

where, from (3.2.17b), (3.2.18c) and (3.2.19b) 
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X3 
1 	j 	j x = 2 	2 X2 = n2i 

(X*2) 

Introducing the non-linear corrective term 

uiop = -uilp + tan u~p 

and identifying k3 and k4 as plastic multipliers 

k3 = u*1 	and k4 = u*2 

satisfying the non-negativity condition 

u*1 , u*2 > 0 

and the complementarity condition 

u*1 • u* *2 
0 2  

(3.2.22) 

(3.2.23) 

(3.2.24a) 

(3.2.24h) 

with help from (3.2.21) to (3.2.23) we may identify the remaining 

kinematic variables as 

k 1 = usp+ u' 	and k2 = u2p (3.2.25a,b) 

FIGURE 3.24 
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RIGID-PERFECTLY PLASTIC MATERIALS 
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(3.2.27) 

(3.2.28) 

(3.2.29- 
30-31 ) 

Superimposing the strain-space (u~p, u2p ) upon the 
stress-space (Xi, XZ), it is easy to conclude from (3.2.25) and 

(3.2.20) that the deformations, affected by the non-linear 

corrective term, are proportional to the components of the outward 

normal to the yield locus; at the discontinuity points the 

corrected deformation vector will lie inside the cone formed by 

the normals to the incident loci. 

Considering several stress-strain combinations, as for 

instance those connected by the paths indicated in Fig.3.24, the 

association condition 

~ T _j = 
0 (3.2.26) 

where ug collects the plastic parameters, subject to (3.2.24), 

will again prove valid only in the absence of plastic unstressing. 

In general, and considering now both critical sections 

of member m, we would find 

The yield surface is defined by the intersection of n 

continuous and convex surfaces 

= 0 
	

k = 1,2,...,n 

each of which is expressable in the form 

ak 1 ak 2 31k k= 
aX 1 X1 + 

aX 2 
X 1 + 

3X2 
X 2- X*k

- k 1 	1 
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RIGID-WORKHARDENING (MATERIALS 
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(3.2.32) 

(3.2.33) 

(3.2.34- 
35-36) 

where X. 	is a constant, depending on the geometry of the section 

and on k the yield stress 0*, and n,Pk 
is either zero or a non-

linear function of the stress-resultants, so that the k-th 

column of the incidence matrix Nm 

nk = 
m 

  

     

     

3x2 
m 

contains the components of the outward normal vector to the yield 

surface 

k = 0 

The additional plastic deformations u 	are assumed to 

be non-linear functions of the plastic components of the strain-

resultants, converging to zero as the plastic deformations 

become smaller. 

The plasticity relations (3.2.28) to (3.2.31) are still 

valid for rigid-work hardening materials; the internal equilibrium 

condition will now be directly dependent on the kinematic 

variables, quantifying through the hardening matrix Hm, which we 

assume symmetric, the interdependence of stress and strain: 

If the above description was specialized for piecewise 

linear workhardening materials, IMaier's formulation would then 
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FIGURE 3.25 

= X 
3X 2 

be recovered. 

As an illustration let us assume now that the element, 

with the rectangular cross-section represented in Fig.3.23, is 

constituted by a rigid-

linearly workhardening 

material, so that the 

stress-block associated 

with the axial deformat-

ions is that represented 

in Fig.3.25. The 

equilibrium conditions 

give, for positive 

strain-resultants, and 

dropping the superscript j 

r 	
- 2 

X1= X*1 [1 -( -) +•d3 tan u1P 
2x 

X2= X*2 d +h u2p1 (3.2.37) 

the corresponding yield function being defined by 

1 = X1+ X*1 t X 2- hu2p)2-X. 1 d3 tan u1 p-X-1 
2 

(3.2.38a) 

X 2 
or 	~= ---A 

 
1+ X2 2-X*1d3 tan u1p-X*1-X*1 L` X*2)- (hu2p)2] 

1 	2 
(3.2.38b) 

where 
a 

= 
1 

3 = 2 

1 

2 *1 7-- 
*2 

2 hu2 
P \X \ 	*2 

(3.2.39a) 

which, using (3.2.37) and (3.2.18) reduces again to 

(3.2.39h) 

Hence, we may still write Kinematics in the form (3.2.33), 

as: 
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u* 
a  

(3.2.40) 

u1p + u1(P 

u2p 

the additional deformation u1~ being still defined by (3.2.23); 

confronting (3.2.40) with (3.2.21), backed by (3.2.39), the 

plastic multiplier is identified as 

u* = tan u1p 

and, substituting the above in the yield function (3.2.38b), 

Statics can be expressed as 

4X*1 2 	(3,1
h u+

[„, 

aX 1 aX 
X1 

*2 	2 
= 	+ X*1 

X 2 

with the same format of (3.2.32), where 

2 

tttp= X*1[\XX2
/ - (h u2p )2J 

*2 J 

The elements of the hardening matrix Hm, as well as the 

corrective potential rc tr, , will in general be non-linear functions 
of the strain- and 	m stress-resultants, ultimately dependent 

on the stress-strain relationship. 

The intersection of the yield functions ~k defing a 

convex surface, parametric in 	
m 

Hm --m 

which, as yield progresses, will vary in size, shape and orientat-

ion in the Xm-space; its movement is defined by the hardening 

coefficients h... 
1] 

The difficulty of characterizing accurately the hardening 

coefficients has been evaded by defining artificial hardening 

rules, their choice depending on the ease with which they can be 

applied in the chosen method of analysis as well as on their 

168 



capability of representing the actual hardening behaviour of the 

material. 

As the complementarity condition 	m  u. m  = 0 does not 

allow for plastic unstressing, while the non-negativity condition 

u m  ,0 concedes for decreasing, i.e., reversible, plastic 

strains, the plasticity relations referred to in the above, 

termed holonomic by Maier (1969a), do in fact characterize a two-

phase elastic material with an initial infinite stiffness followed, 

if hij= 0, by a phase of infinite flexibility; the only process 

of decreasing the stress-resultant at a strained cross-section 

is through a total, if hij= 0, or partial, if hi 	0, recovery 

of the developed strains. Smith and Munro (1978} proved wrong 

the generalized conviction that the behaviour of elastic-

(holonomic) plastic systems was path-independent. 

This inability to perform plastic unstressing is a 

common deficiency of every deformation theory. 

For a long time it has been known that this difficulty 

could be overcome through the utilization of a convenient 

method of numerical analysis, that is an algorithm capable of 

detecting plastic unstressing and of separating the problem in 

its straining and unstressing parts. The mathematical programming 

algorithms have proven highly successful as shown by De Donato 

and Maier (1973, 1974) and Smith (1975, 1978). This problem 

will be dealt with in more detail in sub-section 5,4.4, 

3.2.2 	Incremental Analysis 

The activation laws and the flow laws are the basic 

ingredients of the incremental theories of plasticity. 

The activation laws, defining which yield modes are 

active at a given state of stress and strain, indicate at which 

points of the system plastic straining may develop; the flow 

laws distinguish among these points, those which will in fact be 

further strained from those where plastic unstressing will take 

place during the incremental action to which that system will be 

subject. 
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In the presentation to follow we will concentrate on 

the so-called flow laws. 

The information they provide, insufficient per se, is 

assumed to be backed by a complete knowledge of the state of 

stress and strain just prior to the increment; in other words, 

the activation laws are assumed to be identically satisfied. 

To start with, let us replace in the static and kinematic 

descriptions (3.2.11) and (3.2.12), respectively, which are valid 

for the k-th stage of loading, the static and kinematic variables 

by the sum of their components at stage k-1 and the subsequent 

increments: 

(~ + L .* ) = Nm (Xm+ A X , )-X* 
m 	m 	 m 

(Lit +i u' )= N (u* +Au* ) 
-pm -pm -m m m 

or, using the information provided by stage k-1 

= N A Xm (3.2.41a) 

Au' = N 	Au* _pm —m m (3.2.41b) 

where we assume that the increments on the plastic multipliers 

still satisfy the non-negativity and complementarity conditions 

Au: , Au. 	0 	(3.2.42a) 
m 	m 

Au*T• Au.x. = 0 
m 	m 

(3.2.43) 

Let the incidence matrix I* collect the subset of 

activated yield modes, i.e. 

 

(3.2.44a) 

(3.2.44h) 

(3.2.42b) 

such that = 0 
m 

and consequently 
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where 	AI ile  = Ip *, 
in 	 m 

or, from (3.2.41a) 	AU U.  = NIT  QXm 	(3.2.42c) 
m 

where 	NiT  _ I. NT 	( 3.2.45) 

To each activated yield mode, defined by (3.2.44) we 

associate the incremental plastic multiplier Au._ defined by 
m 

Aug. = I*  Au* 
m •  

or, from (3.2.41b) and (3.2.46) 

-Pm 	m  
(3.2.42d) 

The above relationship expresses the incremental plastic 

strains as a function of a subset of plastic parameters which 

includes only those which are potentially non-zero; the associat-

ion condition 

A 	Au. = 0 	(3.2.42e) 
m 	in  

will distinguish between the yield modes activated at stage k, 

those which will remain active 

lAn I= o=>lou.}o 
m 	 m 

from those which will cease to be active 

l p,1  4}< 0 => {Ault. 	= 0 
m 

where 1AP*  1. and lAu 	denote, respectively, subsets of 
m 	

. 
m  

and Aug . 
m 

The incremental plasticity relations (3.2.42) were 

collected below, revealing the uncoupled, strictly dual relation-

ship between the descriptions of Statics and Kinematics. 

m 
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(3.2.46) 

(3.2.47) 

(3.2.48- 
49-50) 

Let us consider now the yield function (3.2.18c), obtain-

ed when analysing the solid rectangular section subject to a 

bending moment and to an axial force, as illustrated in Fig.3.21; 

its incremental form 

X* Xj 
A/1 = k-1 

)i+11 QX1 + 2. 	
2 t X2 	R
fi J 	(42)

2 
 

immediately generates the components of outward normal to the 

yield mode ~ at point (X~, XZ) , as defined by (3.2.19). In 

the term R' we collect all terms non-linear on the incremental 

static 	1 variables, which in the present case reduce to 

X

Rf= -X ,1 X

— 

Considering now both yield functions and expressing the 

incremental static relationship as 

+ ip +64 . = n11 n21 	
A X1

- 

j  
n12 n22 ~X2 

(3.2.51a) 

we should expect to find the following description for incremental 

Kinematics: 
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Du1p + Ru1` n11 n12 ~u 	 (3.2.51b) 

  

j + R j 	jl 	j ~u2p u2 	n21 n22 

The corrective terms Rut and Ru2 have, not necessarily2 
simultaneously, to be either zero or non-linear functions of 

the incremental kinematic variables. 

This assertion is justified by the necessity of recover-

ing the formulation of Koiter when, instead of finite increments, 

Kinematics is expressed in terms of infinitesimal increments; 

only when the corrective terms satisfy either of the above 

mentioned conditions, will the incremental description of 

Kinematics converge to 

dui p 

duj 2p 

	

j 	4 = n11 n12 du 

	

nj 	n ~ 
_ 21 	22 _ 

satisfying the condition of normality of the infinitesimal 

strain vector to the yield surface at the stress point. 

However, and considering for instance the yield function 

11, the compatibility condition (3.2.21) when expressed in an 

incremental form yields 

tu2p = n21 ( iu1p+ 	R,',1)+s 	
{ 
s tuzp 	x + c L (3.2.52a) 

where Ru1 = 2(s tu2p +c t )tan Au1 p+( tan Au1 p- Au)  (3.2.52h) 
- 
x 

and s = sin u3 and c = cos u1 p 	
P 

the linear term { 
	

} in equation (3.2.52a) preventing us from 

expressing the compatibility condition in the desired parametric 

form 

Au 1p+ Rut 

Duj 
2p _ 

n11 Au1- (3.2.53a) 

j 
n21 

 

(3.2.53h) 
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Detailed theoretical and experimental studies of yield 

hinge in solid plastic beams, as for instance those by Hundy 

(1954), show that the deformations on the neighbourhood of the 

hinge violates the basic assumptions of beam theory; on the other 

hand, and quoting from Palmer, Maier and Drucker (1967), 

"Normality may be proposed as a primitive postulate following 

von Mises (1928), or adopted as an expression of the results of 

experiment, or because of its strong and useful implications for 

variational and extremum theorems. Alternatively, it can be shown 

to be a property of certain wide classes of materials defined by 

postulated thermodynamic conditions': 

Hence, at this stage and having in mind the significance 

of the normality condition, we either disregard the assumption 

that plane sections remain plane and derive the actual 

compatibility condition, which, if feasible, would be the correct 

approach, or we try to appease the inconsistencies created by the 

combination of the very basic assumptions in the technical theory 

of beams with those of the theory of lumped plasticity, by 

defining a law of the form 

= -tan u~• Au2+ 
n21 R p 	p 	x (3.2.52c) 

regulating the variation of the position of the neutral axis; 

R 
x 

will either be zero or a non-linear function of the 

incremental kinematic variables. 

If the above hypothesis (3.2.52c), which corresponds to 

the assumption in Prager (1959), page 52, that, for small strains, 

the infinitesimal strain increments are related through 

] 	J 	.l 2p du 	
= n21 du1 p 

is found acceptable, the incremental compatibility condition 

(3.2.52a) will take the form 

Au2p = n21 ( Aui p+ 	Rut ) 
	

(3.2.52d) 

where, from (3.2.52b) and (3.2.52c) 

Rut = Rx(1+2 tan f u~p )+(tan Au~p- pulp ) 
	

(3.2.52e) 
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(3.2.54) 

(3.2.55) 

(3.2.56- 
57-58) 

RIGID-WORKHARDENING MATERIALS 

-IH' 	i 
I 

NI 
T- Qua 

= An  + 
 R

ti)
- 

N' 
_ 

• 
-m 

A X' 
_ 

	
_m 

A u'_ -P 
m 

Ru 

- 	-m 

al = 
m 

0 
Q 	T 

Dul = 0 
m 	m 

Aul 	= 0 
m 
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(3.2.59) 

(3.2.60) 

(3.2.61- 
62-63) 

which reduces to 

if 

Rj1 	J )3  ... 
R = u1 3(Du + 

1p   

R
x 
= 0 

The compatibility condition (3.2.52d) is now equivalent 

to the parametric form (3.2.53); considering both yield functions 

one would return to (3„2,51b). 

In general and considering only the activated modes at 

both critical sections of member m, we would find the following 

description for the incremental behaviour of rigid-perfectly 

plastic materials: 

Except for the description of Statics, similar results 

would be found for the description of rigid-workhardening 

materials: 
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As an illustration of the modifications to introduce in 

the description of Statics, let us consider again a linearly-

workhardening material and express the equilibrium condition 

(3.2.38a) in an incremental form: 

'AX 	\ 2 
+A _ (X1 + AX1 )+X 1 )~( _h A

u2PJ

[( 2_hU  

2 	*2 

dh tan u1p+ tan Au 
1 P 

X--1 3 1-tan u1p•tan Au1p X*1 

or, after some simplifications 

X 
LI= ~, AX1 + ~,2 AX2-X2. hn21 Au2p+X*1(2X 1 dx)2 -  

X* 2 

3 
 (T(----)1 -2 tan Auf [14-.2 tan Auf +(2 tan Auf )2+••• 

2 c 	P 	P 	P 
(3.2.64) 

If assumption (3.2.52c) is valid with Rx=O, then from 

(3.2.52d) and (3.2.52e) 

A u2p ='1, 2 tan Au1p 

or, from (3.2.53b) 	Au* = tan Au1p 

Hence, the incremental static condition (3.2.64) takes 

the form 

where 

and 

Ih 	= h 

R~ 3 

	

-Ih• Au*+[,1 	,112] 

uo 	
2 	

(X 	
)2 

X ,E2( u 3 	[1 -)+ 

AX1 

AX2 

+(ux)2l 

= a + R~ 

J 

+u*•Au*+...) 	-  

1 1 	
772 

2 
"*1)   

h 	+(u*)2](Au*)2•(1 
X7 	

u*[1 
2 

X*2 

X1*(2X1 	• u* Au 2p) 
2 
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FIGURE 3.26 

Illustrated in Fig.3.26 are the most commonly used 

hardening rules, namely: 

(a) Non-interactive yield modes, Koiter (1960) 

(b) Kinematic hardening, Prager (1955) 

(c) Isotropic hardening, Hill (1950) 

The hardening behaviour postulated in the theory of 

kinematic hardening assumes that during plastic deformation the 

yield surface translates as a rigid body in the stress-space. 

The primary aim of this theory is to provide a means of accounting 

for the ideal Bauschinger effect. Ziegler (1959) modified Prager's 

rule to overcome some inconsistencies arising when the kinematic 

hardening is applied to special stress fields, as, for instance, 

if some of the stress components are zero. 

The theory of isotropic hardening assumes that during 

plastic straining the yield surface expands uniformely about the 

origin. Although in direct opposition to the concept of 

Bauschinger effect it has been frequently adopted and even found 

to be in general agreement with certain experiments. 

11rōz (1967,1969) introduced the notion of a field of 

workhardening moduli and analysed the variation of this field 

during the course of plastic deformation. 

The above mentioned hardening rules can be simulated 
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through a convenient definition of the hardening matrix IHm; 

we refer the works by G. Maier in this area, in particular 

Maier (1970). 

3.2.3 	Perturbation Analysis 

Let us replace the incremental variables 

co , i 

Xm 	i=1Xim 11 
_ 	 E AU

Pm 	1E Pi mi ! 

co 
= 	1*i i I m i=1— m 

co , 	E Aug _ E u. i ri 
m i=1 m 

as well as the residuals 

oo 	E R __ ~1 Rim~S 

i E R = R E 
~um i=1 uirn 

by their series expansion in the form (2.1.52); substituting 

into the incremental description of Statics and Kinematics and 

collecting the same order terms, equations (3.2.59) and (3.2.60) 

are replaced by the equivalent infinite system of linear equations 

--m u .i + in TX 	- i = 	i + (pi 
m 	 m 	m 	m 

-m ul. 	= —P1 m + 	 Ruim 

(3.2.65a) 

(3.2.65b) 

Assuming that the perturbation parameter e is positive, the yield 

and flow rules, (3.2.61) and (3.2.63) respectively, can be 

replaced by the sufficient conditions 

m 	0 	and 	u m '— 0 
1 	1 

reducing the association condition (3.2.62) to 

T 
_*ml u.' .mi = 0 

(3.2.65c,d) 

(3.2.65e) 

i 

i 
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(3.2.66) 

(3.2.67) 

(3.2.68- 
69-70) 

The perturbed plasticity relations (3.2.65), summarized 

below 

are sufficiently general to recover, by specialization, the 

particular cases of 

a) perfect plasticity with interaction Ht = 0 

b) perfect plasticity with no interaction HI = 0 

Nm  defined either by (3.2.16a) or (3.2.16b) 

c) workhardening with no interaction 

IHm defined accordingly to the actual or assumed 

hardening rule 

Nm defined either by (3.2.16a) or (3.2.16b). 

3.2.4 	Asymptotic Analysis 

We close this brief review of the plasticity relations 

be specializing the finite description (3.2.32) to (3.2.36) for 

the analysis of the particular class of structure whose 

equilibrium paths branch from the original kinematically trivial 

path. 

Let us start with Statics and expand in a power series 

of the form (2.1.63) the variables involved in the definition 

(3.2.38a) of the plastic potential; hence 
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co 	i 
E 	 (3.2.71a) 

1=0 i 

0o 	Ei 
X. = 1=0 

X. 
ii 	

j = 1,2 	(3.2.71b,c) 
i 

0o 	E 1 

ujp1 
	

i 

	

ujp i! 	j = 1,2 	(3.2.71d,e) 

Letting 

tan u1p = 
u1 P + 3 u1 P 
	(3.2.72) 

in 	(3.2.38a), 

(3.2.71) 	and 

41.= X 	+ 2 
1. 

where 	RSO= 

R~1= 

RI 	_ 
(.1)2 

solving, 

X 	1 X2o 

substituting 

X 
2i 

X2 
[1.+(--Q 

we 

- h 

2 

+ 

the 

find 

X*1 ( 4 

variables by their approximations 

after equating the same order 

X y~ u 	+ 2 X 	u 	)-R'  

	

1 	'pi 	20 	4. 	qQi 

2 
(2 X 	1 -hu 	)u 

terms 

(3.2.73) 

(3.2.74a) 

(3.2.74h) 

(3.2.74c) 

X` 

X *1 

0 

-2X 

*2 

1 

A 	2 	3 

2hX. 1 

2 

X21 
X *2 X*2 	2p 1 	2p 1 

Using (3.2.39) and (3.2.72), we may write for the 

kinematic compatibility condition (3.2.21) 

X.1 	X2 	)( 
u + 	u + 

1 3 
u = 2 	

) 
2p 

X*2 X*2-
hu2p 1p - 1p ... 

generating, after substituting (3.2.71c) to (3.2.71e) above, 

solving and equating the same order terms, the infinite system 

where 

X*1 
u2p.= 2 X2 X 2 u113. 	

Rui 
2 

R
ua  

= 0 

R 	= 0 
u1 	

X 1 21 R 	= -4• 	( 	-hu 	)u 
u2 	X.2 X2* 2p1 1 p 1 

• 
• 
• 

(3.2.75) 

(3.2.76a) 

(3.2.76h) 

(3.2.76c) 
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From (3.2.73) we find that 

ani 
= 1 

axi 

ani 
— 2 X x-1 X2o 

a 2X 	X*2 

We may therefore define the plastic parameter 

c 
u,~ - i=1 u* i T i 

(3.2.77a) 

(3.2.77b) 

(3.2.71f) 

such that 

reducing (3.2.75) to 

or, in matrix form 

ani 
u1 pi aX1.0*i 

. 	1 

8 1 R + u = 	u ui 2p aX2i i 

u2pi+ R
u. 

u*. 	(3.2.78a) 
i 

(3.2.78b) 

Substituting (3.2.77) and (3.2.78) in (3.2.73), the 

definition of the plastic potential becomes 

= 
ali 	ani 

X + 	-Ih u - R 
1 	aX1. 1i aX2. 	i 	T 

2 

where Ih = 4 h -1 X - 

2 

and R
ti i 

= 13 0 ~ - 2h 

X 	2 
3+ X 20 

;2 

X2 

X*.1 X. o Ru i  2  

(3.2.79a) 

(3.2.79h) 

(3.2.79c) 

In general, after considering for a typical member m of 

generic cross-section every yield surface enclosing the convex 

space of statically admissible combination of stress, together 

with the corresponding states of strain, we would find, for 

regularly progressive yielding the following description for the 
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( 3.2.80) 

(3.2.81) 

(3.2.82- 
83-84) 

plasticity relations: 

where we assume that the yield and flow rules (3.2.82) and 

(3.2.84), as well as the association condition (3.2.83) were 

obtained through a process in every aspect similar to the one 

used in the previous sub-section when dealing with the correspond-

ing relations in incremental form. 

We note that in the above relations the infinite system 

(3.2.80) will only be recursive if the initial solution, obtain-

ed by setting i=0 in the above, is known; this is clearly shown 

by (3.2.79) together with (3.2.74a). 

However, this fact will not in general represent a 

major problem since, in most cases, the very special structures 

for the analysis of which the above relations were designed, 

will be statically determinate for kinematically trivial 

configurations. 
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CHAPTER 	FOUR 

STATICS, KINEMATICS AND CONSTITUTIVE 

RELATIONS OF THE STRUCTURE 

The finite-element method by interpreting any structural 

system as an assembly of a finite number of building elements 

becomes a systematic procedure for formulating and solving 

problems in structural analysis. We distinguish three fundamental 

types of building elements; elastoplastic beams, rigid joints and 

elastoplastic mechanical releases. The beams or members inter-

connect at the joints or nodes and meet the medium supporting 

the structure at the FOUNDATION NODES. The continuity of the 

structure can be interrupted by any combination of the three 

fundamental types of internal releases shown in Fig.2.19 which 

may exist at either of the member ends. We simulate the 

deformability of the foundation by linking the foundation nodes 

to the ideally rigid foundation through elastoplastic EXTERNAL 

RELEASES. It is assumed herein that the external releases control 

displacements in directions parallel to those defined by the 

global system of axes x*, as illustrated in Fig.4.1; the 

deformability of a foundation not complying directly with this 

requirement may always be simulated as a composition of up to 

three orthogonal releases with interdependent behaviour. 

Chapter Two dealt with the conditions of equilibrium and 

compatibility of two different combinations of nodes and members 

to form two typical (fundamental) substructures tailored to fit 
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X3  

4.1.13 

FIGURE 4.1 

specific connectivity properties. In 

Chapter Three the beam constitutive 

relations were characterized by 

analyzing a three-degree of freedom 

elastoplastic finite-element, the 

idealization of a prismatic beam. 

The present Chapter is concerned with 

assembling that information in such a 

way that the resulting system of 

equations represents an appropriate 

mathematical model of the actual 

structure. 

We start by defining the elastoplastic constitutive 

relations of the releases which are then grouped in accordance 

with the numbering given to the internal and external releases 

existing in the structure. The elastoplastic constitutive 

relations found in the previous chapter for the typical finite-

element are also collected together following the labelling 

sequence of the structure members. 

The process of assembling the substructures depends on 

the way in which the given structure has been substituted by the 

model and on the way in which their analysis has been performed. 

Gallagher (1975) uses a congruent transformation method, 

based on the Principle of Virtual Work. Desai and Abel (1972) 

also use the Principle of Virtual Displacements applied to the 

entire structure. Both methods, requiring the use of the element 

(elastic) constitutive relations, are designed to form, in the 

end, the global stiffness matrix of the structure. 

Maier et al (1972) assemble Kinematics by enforcing 

continuity of the displacements at each node and derive the 

description of Statics through the application of the Principle 

of Virtual Work. 

Alexa (1976) deals with Kinematics and Statics 

independently by considering separately continuity and equilibrium 

at the nodes, thus recovering, through Static-Kinematic Duality, 

the Principle of Virtual Work, instead of using it. 
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The above mentioned methods, as well as the great 

majority of the finite-element formulations in kinematically 

non-linear structural analysis, were designed to perform the 

assemblage of nodal substructures. In the present work, wherein 

Statics and Kinematics are assembled independently, the process 

of assemblage is designed to suit the type of substructure one 

considers the structure to be formed of. 

If the structure is interpreted as an assemblage of 

nodal substructures, we start by securing continuity of displace-

ments at the nodes and, by resorting to the Principle of Work 

Invariance and thus automatically satisfying nodal equilibrium, 

we assemble next the nodal description of Statics. 

The results to be presented in section 4.2 will show 

once again that, in general, it is simpler to assemble Statics 

and Kinematics, and therefore to FORMULATE the problem, using the 

nodal rather than the mesh description. 

The mesh formulation may,however, be advantageous in 

what concerns the SOLUTION of the problem since, in general, it 

results in a better conditioned system with a smaller number of 

equations and unknowns, since the static indeterminancy of most 

engineering structures is significantly lower than their 

kinematic indeterminancy. 

This is particularly relevant in non-linear analysis of 

framed structures wherein the finite-element mesh has, in many 

instances, to be refined in order to diminish the effects of the 

approximations built into the quantification of the finite-

element behaviour; the finite-element mesh is refined by increas-

ing the number of nodes, each of which adds three degrees to the 

kinematic indeterminancy of the planar frame, while its static 

indeterminancy remains unaltered. 

The nodal formulation has received the unquestionable 

favour from most analysts, mainly because of the apparent 

incapability of the mesh description to be encoded in a format 

suitable for fully automated computer processing. The close 

relationship of the mesh description of Statics and Kinematics 

with the physical interpretation of the problem, so dear to the 

engineer's mind, made it pedagogically so attractive that its 

real potentialities remained concealed for a long period and were 

only perceived when the method was reinterpreted through graph 
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FIGURE 4.2 

theory; Henderson and Bickley (1955) pioneered the rehabilitation 

of the method which is still to gain the acceptance it deserves. 

Let us refer to the structure represented in Fig.4.2(a) 

to illustrate briefly the two basic concepts involved. 

Introducing 9 releases concentrat-

ed in 3 sections, the frame, 

rendered statically determinate, 

is transformed into a tree-

structure; from one side of the 

cut there is a unique circuit or 

cycle connecting it with the other 

side of the cut, as shown in Fig. 

4.2(d), and from anypoint of the 

tree there is a unique continuous 

path to the foundation, Fig.4.2(f). 

From the structural mechanics 

point of view this means that an 

(indeterminate) stress-resultant 

produces a stress field flowing 

through the associated cut cycle, 

as illustrated in Fig.4.2(c), and 

that a point load applied at any 

section produces a stress field 

flowing through the only circuit connecting that point to the 

foundation, Fig.4.2(e). 

Henderson (1960), Henderson and Maunder (1969) and 

Maunder (1971), concentrated their attention on the problem of 

automatic selection of cut-cycle bases, the change of bases and 

its influence in the conditioning of the structure flexibility 

matrix. The utility of regional cycle bases, Fig.4.2(b), was 

demonstrated by Edwards (1963,1964) and Munro (1963,1965a). 

The above mentioned works relied on and fully explored 

the particularities existing in linear structural analysis. In 

order to extend the method to kinematically non-linear problems, 

instead of depending on algorithms to select an independent 

cycle basis to form the complementary solution of Statics (the 

self-equilibrating stress-field) and on shortest route algorithms 

to define the particular solution (load-equilibrating stress-

field), or on the regional cycles and simple incidence to form 
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the complementary solution, assuming that the particular solution 

is readily available, in order to derive a general formulation 

we opted to characterize simultaneously on the mesh substructure 

both particular and complementary solutions. The method uses a 

regional cycle basis and the complementary solution of Statics 

is easily assembled by superimposing the stresses flowing along 

branches common to incident meshes. To assemble the particular 

solution we start by assigning the applied loads (in which we 

include the forces developing at the supports and at the external 

releases) to the constituent mesh substructures and by transmiting 

the flow of stress they generate along a selected path of incident 

meshes. Using the Principle of Work Invariance we assemble 

Kinematics by satisfying continuity of the flow of strains. 

The method is capable of assembling automatically the 

information on Statics and Kinematics of the mesh substructures 

to characterize the conditions of equilibrium and compatibility 

of the structure without resorting, in its basic format, as 

presented in subsection 4.2.2, to sophisticated algorithms; it 

is however our belief that its efficiency would be greatly 

improved by including the algorithms developed by the above 

mentioned authors. 

In either of the formulations, nodal and mesh, Static-

Kinematic Duality, at structural level, emerges as a direct 

consequence of the duality forced into the substructure relations_ 

through the use of the additional forces and deformations. 

The Principle of Virtual Work is again interpreted as 

the variational representation of the relation of duality 

existing between the descriptions of Statics and Kinematics of 

the structure. 

4.1 	ELASTOPLASTIC CONSTITUTIVE RELATIONS 

Let the structure members and the existing internal and 

external releases be numbered respectively from 1 to 11, 1 to R 

and 1 to r. The numbering sequence, theoretically arbitrary, 

should follow a pattern designed to improve the efficiency of the 

numerical solution procedure; we refer to the works of Sabir 

(1976) on this subject. 
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In accordance with the chosen numbering sequence, it is 

convenient to define the STRUCTURE STRESS- and STRAIN-RESULTANT 

vectors X' and u' 

X'T 
=CX~T 

X2T ... xi] 	and 	u'T = ulT u2T 	ulT] 

Similarly to (3.0.1), we dissociate the latter in its elastic and 

plastic components 

u' = uĒ + up 	 (4.1.1) 

and define the flexibility and stiffness descriptions of the 

structure elastic constitutive relations as 

uĒ 	
-u- 

= F X' + ul 
n 

and 	X' = Kuu' + XĒn 
	

(4.1.2-3) 

where the block-diagonal matrices Fu and Ku 

Fu = F1 	and K1 = Ku 

2 	2 

• 

F-M 

 

-M 

   

are the flexibility and stiffness matrices for the UNASSEMBLED 

members of the structure. Each of the (symmetric) sub-matrices 

are defined in subsection 3.1.4 as well as the corrective terms 

ul Ē and XĒ n 	n 

which, 

u'T = -Erc 

for consistency 

u'T 	u'T Ent 	-E n2 

of 

u'T 1 	X'T 	= X'T 	X'T -Erb]' -En 	[ Erc1 	-E n2 

the formulation, 	have to 

... 	1T 
X En M 

satisfy the 

following relationships 

XĒn = -KuE -u -En uĒn = -FuXErc (4.1.4a,b) 

The results presented in section 3.2 can be grouped in 

a similar manner to represent the plastic behaviour of the un- 

assembled members 

the following 

the structure: 

of the 

description 

	

-H' 	i N' 

	

Nr 	, 	• 

T 

X' 

structure. 

to perform 

u' 

For 

a 

X ' 

instance, 

deformation 

n' cQ 

we could adopt 

analysis of 

(4.1.5a) 

(4.1.5b) 

(4.1.5c-e) 
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which when included in (4.1.5) gives: 
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-' 

u' 
-P 

0 / TJ ū = 0 

-H'J 1 N'T u 

N 	~ 	• 	X' 

+ XI + 

• 

Conditions (4.1.5a-e) represent, respectively, the static 

and kinematic phases of plasticity,the yield and flow rules and 

the association condition for regularly progressive yielding. In 

the above relations the hardening and normality matrices are 

block diagonal matrices 

= [-Y-1  Y2 ... Y j I (4.1.6a) 

and the plastic multipliers u., the plastic potential 	and the 

plastic capacities X.'., as well as the corrective static and 

kinematic vectors rad and ū
T 

are defined as the generic super-

vectors 

yT = Lyi 	y2 	..• 	y~ 

where j is the number of structural members, M. 

(4.1.6b) 

Implied in the plasticity relations (4.1.5) is that 

extensible plastic hinges may form at any of the 211 member 

critical sections. 

However, by examining the forces acting on each node of 

the structure, the number and the relative plastic capacities of 

the members connecting on each node, the distribution and nature 

of the structural releases, both internal and external, the 

analyst can a priori select the STRUCTURE CRITICAL SECTIONS, that 

is the subset c 	211 of sections where yielding may in fact occur. 

For instance, if all members of the structure represented in 

Fig.4.4 had the same plastic capacities, among the eight member 

critical sections we could select the following four as the 

structure critical sections; section 2 of member 1 (or section 1 

of member 2) sections 2 of members 2 and 3 and section 2 of member 

4 (or section 1 of member 3). 

After numbering the structure critical sections and 

collecting in ū* the corresponding plastic multipliers, we define 

the incidence 

(4.1.7a) 

(4.1.7b) 

(4.1.7c-e) 



in which N = N' J u 	. (4.1.8a) 

The relations in the system (4.1.7) corresponding to the 

trivial elements of u' are irrelevant and they can be discarded 

of by pre-multiplying that system by J*, implicitly satisfying 

the invariance in the descriptions of the plastic work: 

       

T -H
ui N u 

N ' • -u 

      

  

'T* 

u' -p 

 

X* (4.1.9a) 

(4.1.9b) 

    

X ' 

   

       

       

u (4.1.9c-e) 

in which 

H. = J* H'J* , I*= J* 	, X*= J4 X'. ' 	n~= J T 7' 	(4.1.8b-e) 

The elastoplastic causality relations associating the 

force X'R1 ( X i ) developing at the i-th internal (external) 
release with the corresponding dislocation vR1 ( 51 ) are presented 

next in a qualitative form which, we hope, is sufficiently general 

for many of the situations the analyst may wish to simulate. 

,Although not considered, locking effects could also be included, 

for instance in the manner of Corradi and Maier (1969). 

Let us then dissociate the dislocation vectors in their 

elastic and plastic components: 

~i 	~i 	~i R 	 i 	i 	i v 	= 	+ -RE 	-RP , -r = -rE + bi (4.1.10-11) 

The elastic constitutive relations may now be expressed 

in a flexibility format as: 

v' 1 = F1 X' 1 + VT 
	

Ō 1 = F1 X1 + §1 
	(4.1.12a- -RE 	—R -R 	-R7 ' -rE 	-r -r 	-- rn 	13a) 

and in a stiffness format as 

X' = K1 V'1 + X'1 	
X1 

= K1 
6i 

+ X1 
	

(4.1.12b- -R 	-R -RE 	-Rn ' -r 	-r -rE 	--rn 	13b) 

where, for consistency 

and 

X'1 = -K' v'1 v'1 - -Fi X'i 
-Rn 	-R --Rrt ' -Rrt 	-R -Rrt 

A'1 = -K1 51 	s1 
= -F1 Xi 

-rt 	-r -rrt ' -rn 	-r -rrt 

(4.1.14a,b) 

(4.1.15a,b) 
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-X R* 

0 

-r* 

0 

 	+ 

bru 

v 
-R* 

vR~P 

- rtp 
ōr~p 

0 

(4.1.20a) 

(4.1.20b) 

0 	(4.1.20c-e) 

(4.1.21a) 

(4.1.21b) 

(4.1.21c-e) 

-HR Ī NR -R* 

1 

NR i 	XR 

-R* 
G 0 

for the internal 

T i -H r iN r- i 
Nr • 

/r -4 0 

TR* 

sr* 
-r 

vl  
-Rp 

T 
-R* vR* = 

_ 	r . 

brp 
T 

-r* -r* = 

releases, and 

We assume that the flexibility and stiffness matrices, 

in general with functional coefficients, are symmetric but not 

necessarily diagonal., in order to simulate, if needed, the inter-

action between the release constituents. If the actual causality 

relations are non-symmetric, they may be forced to become 

symmetric by including the disturbing terms in the residuals 

vRn , b rn and XRn , X 1 the elements of which we assume, never-
theless, to be either zero or non-linear functions of the release 

forces and dislocations. 

Setting i = 1,2, ... R (r) in (4.1.12(13)) and collecting 

in the manner of (4.1.6), the following flexibility and stiffness 

descriptions for the elastic constitutive relations are found 

vRE = FR XR + 	- Rn , XR 	= K R 	- RE + XI 

for the internal 

-rE =F  Fr 	X r + 	- rn , -r = K r -rE + Srrt 

and external release systems. 

(4.1.16- 
17) 

(4.1 .18- 
19) 

We assume that the plastic behaviour of each of the R(r) 

internal (external) releases can be described by a set of relations 

qualitatively similar to (3.2.32-36); after collecting, we would 

find the following descriptions for the plastic constitutive 

relations 

for the external releases. We again require the symmetry of the 

hardening matrices HR and Hr and the non-linearity of the residual 
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GENERALIZED VARIABLES 

U = U I  

v° 
—R 

—r 

uE_ 

X = 

-uE  

—RE 

Sv e 

X 

X° 
—R 

-r 

u = _p 

x*= 

ul vp 

-RP 

-rp 

x*  

XR*  TABLE 4.1a -xr  TR*  

Tr*  

u = q q = u*  

vT -R R*  

5r* 

P = P 

terms and remind that the association conditions (4.1.20d-21d) 

will only hold in the absence of plastic unstressing. 

For simplicity of the presentation we introduce the 

GENERALIZED VARIABLES summarized and defined in Table 4.1; re-

grouping the relations (4.1.2,3,16-19) and (4.1.9,20,21) 

according to the relevant generalized variables, the structure 

elastoplastic constitutive relations reduce to the synthetic 

forms (4.1.22) and (4.1.23) presented in Table 4.7; in Table 4.8 

we collected the definitions for the corresponding generalized 

structural matrices. 

In Tables 4.9 and 4.11 we summarize the incremental and 

perturbed descriptions of the generalized elastoplastic 

constitutive relations which were obtained by collecting, through 

a process in every aspect similar to the one just described, the 

member elastic and plastic constitutive relations, defined by 

(3.1.69,74), (3.1.80,81) and (3.2.59-63), (3.2.66-70), 

respectively, the formats of which we used to represent, 

qualitatively, the incremental elastoplastic constitutive relations 

of the structure release system. 

The description of the structure constitutive relations 

in a format suitable to perform an asymptotic analysis would be 

found to be formally identical to (4.1.36) and (4.1.37). The 

asymptotic matrices Fi  , Ki  , Hi  and Ni, as well as the corrective 

terms R 	, RXE. , R 
	and R 	, will be quantitatively different UE  

	

_ gyp. 	_p 
from 	1 	1 	1 	1 the corresponding ones in a 

perturbation analysis formulation, as shown in subsections 3.1.6 

and 3.1.13 for the member elastic constitutive relations and 

illustrated for the rectangular cross-section in 3.2.3 and 3.2.4. 

192 



= n 

nl 

GENERALIZED AUXILIARY VARIABLES 

u= un + uR n  sn 

 

n 

     

     

     

X —En X  —En 
n= 	‘p 

XRn 	
—Ry) 

~r n 	n r Lp 

TABLE 4.1b 

4.2 	STATICS AND KINEMATICS  

Before presenting the nodal and mesh assemblage 

procedures, let us define the degree of indeterminacy in the 

static and kinematic descriptions of a planar frame with M 

members, r external releases and R internal releases; by 

FUNDAMENTAL STRUCTURE we understand the same planar frame with 

neither constraints nor releases. 

FIGURE 4.3 

Let N represent the number of nodes of the structure 

when all foundation nodes are counted as but a single node; the 

structure KINEMATIC INDETERMINACY NUMBER is given by 

(3 = 13* + R + r (4.2.1a) 

where R. = 	3(N-1) (4.2.1b) 

is the kinematic indeterminacy number of the corresponding 

fundamental structure. The STATIC INDETERMINACY NUMBER a is 
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a=a* - R - r 	 (4.2.2a) defined as 

Henderson and Bickley (1955) define the static indeterminacy of 

the fundamental structure, a., as 

a. = 3µ = 3(f1-N+1) 	(4.2.2h) 

where µ represents the number of independent meshes or cycles in 

the graph model. 

Table 4.2 summarizes the indeterminacy numbers found for 

the simple structures illustrated in Fig.4.3: 

Structure N N r R a. 4 a R 

(a) 4 4 0 0 3 9 3 9 

(b) 4 3 3 0 6 6 3 9 

(c) 2 1 3 1 6 0 2 4 

(d) 4 2 2 2 9 3 5 7 

(e) 2 2 0 3 3 3 0 6 

TABLE 4.2 

4.2.1 	Nodal Description 

For each of the 11 nodal substructures we may write the 

following explicitly linear and dual relations 

defining, 	respectively, 

R* 

-X R 
m 

T 	T 	' 	T 
' A 	A 	; A 

	

1 	TC 1 —R 

	

AI T1 	• 	~AlT 
- 	' 	1 

—R 
-m 

the equilibrium 

X' 

-TC 

m- 

u" 

6 
-n 

Sn 

and 

-m 

= 

compatibility 

A 	' 	A' 

A 	' 	• —n  

~R ' R - 	' 	-m 

r* 

-R m 

conditions, as derived in subsection 2.4.1; we note 

ums = um + 	un + u R 
m 	m 

Setting, in the above relations, m to 1,2, ..., 11 and 

collecting in the manner of (4.1.5) according to the sequence 

adopted for the member labeling, the following static and 
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kinematic descriptions for the UNASSEMBLED M nodal substructures 

are found 

     

- 	1 

= 	a 1 al 

   

(4.2.3a) 	R*= aT ; aT ' aT -n I —R 

1 	' 
(4.2.3b) 	-XR 	atT ; • 1 a'RT 

X 1 

 

u Tt 

 

r* (4.2.4a) 

(4.2.4h) 

(4.2.4c) 

-n 

  

b n 

 

an l • 
I 

 

v R 

         

     

i 	l 

-aR 1 —R_ 

 

    

6' -rt 

 

       

       

where marked with a tilde are those variables which, at this 

stage, may contain superfluous information. 

Assume that the structure is subject to n POINT LOADS 

X which we group in vector X ; let 6 contain the corresponding 
i 

POINT LOAD DISPLACEMENTS. The EXTERNAL RELEASE DISLOCATIONS 	
1. 

and the point load displacements are subsets 

= Jo- 

 -r 	~r 

r* (4.2.5a) 

(4.2.Sb) 

of the supervector r*gathering all possible member nodal displace-

ments. The supervector ōn contains all possible additional 

release force dislocations and we define the array 611 collecting 

the structure ADDITIONAL INTERNAL RELEASE FORCE DISPLACEMENTS 

through 

-ft 	ft -ft (4.2.6) 

Assume that the frame has a kinematic indeterminacy 031 

when all its R internal releases are blocked and let us arrange 

in q and vR the STRUCTURE NODAL DISPLACEMENTS and INTERNAL 

RELEASE DISLOCATIONS, respectively. The assemblage of Kinematics 

can now be performed by defining the incidence matrices J and JR 

selecting, respectively, the non-zero nodal displacements and 

release dislocations: 

rl. = J q 

-R ~R vR1 

(4.2.7a) 

(4.2.7h) 

Pre-multiplying equations (4.2.4c) by Jn , including 

(4.2.5) in the system, and making use of (4.1.7), the ASSEMBLED 
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(4.2.Ba) 

(4.2.Bb) 

(4.2.8c) 

(4.2.8d) 

(4.2.8e) 

(4.2.9a-c) 

(4.2.9d-g) 

q 

v' -R 

āR = J~a RJ R 

TI = JnaRJR 

(4.2.12a) 

(4.2.12b) 

X 1 X ' 

-n 

description of Kinematics emerges as 

where we note 

Ā 

Ā 	= a~J 	Ā'= 

u" 

6 
-r 

st 
- n- 

= a 

a'J 

= 

J 

A 

—o 

Ar 

i 

- AR 

Ā o 

Ār 

A' 

1-• 
• 

 r 

AR- 

= JJ 

= JrJ 

0 

Nodal equilibrium is ensured by pre-multiplying equations 

(4.2.3a) by the transpose of the incidence matrix J; the structure 

INTERNAL RELEASE FORCES XR are selected by pre-multiplying 

equations (4.2.3h) by the transpose of the incidence matrix JR: 

T - 
X R = JR X R (4.2.10) 

Similarly, and considering (4.2.6) now, we define the 

structure ADDITIONAL RELEASE FORCES TL' as 

To = J ~TL ' 

Thus, and using equations (4.2.9) to (4.2.11) 

J T RX = A T I Ān ~ ĀR 

A 
? 	i • 	~ Ā IT 

—R 

(4.2.11) 

_- X R 

Among the member nodal forces grouped in the supervector 

R* we select those contributing to the internal work dissipated 

as the structure deforms; hence, and collecting in Ar the 

structure EXTERNAL RELEASE FORCES 

R* 
= r,T [,T i  

 -- 	-o 1-r 
- Xr 

(4.2.13) 
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The ASSEMBLED description of Statics, obtained by 

substituting the above equation in (4.2.12a), using (4.2.9h) and 

(4.2.9f) and re-arranging, is defined below, together with the 

kinematics description (4.2.8). 

STATICS KINEMATICS 

- . 	- 
= 

-_1 T i Ā T i Ā
T 	ĀT 	

ĀT- - 
 

~~ - ūt+ut+ut- 
 
 - -Ā 	Ā1 - -q -  

- 	t -o t -r 1 -n 	-R -n -R -  

-X1 
--1~ - 

	

ĀiTi 	. 	1 	. 	i-. 	i 	Ā'T 
- 	' 	i 	i 	i -R - 

-X- 

-- - --- 	 -  

- 	
6 

-- - 	1 

- 	'----- 

vt 

--R- 

-r Sr -r 	' 	. 

I 	I. 
---- t----  

-1-0 ōn Ā 	t 	Āt 
- 
- 

- - R 1 -R- 

NODAL 	DESCRIPTION 

(4.2.14a,b) 
	

(4.2.15a-e) 

The above dual and explicitly linear transformations 

can be specialized to recover the static and kinematic descriptions 

in linear analysis, just by setting to zero the additional 

deformations un and utR and the additional forces n and n' , 
eliminating next from the system the associate kinematic operators: 

LINEAR ANALYSIS 

STATICS KINEMATICS 

- 

• 
---- 

-X~ 
- 	- 

= 
- 	t 	t 	- 

	

Ā T i Āō I 	Ār - 

	

Ā tT i 	i 	• 

- 	I 	- 

- 	- 

Xt 

-X 
---- 

A 
- -r- 

ut 
--- 

Ō 
--- 

6 
--r- 

Ā 	I 	 Āt = 
- 	-  

---+--- 
Ao 

--- 
t 

Ā 	1 	• 

	

--r t 	- 

q 
---  
vR 

- 	-  

NODAL DESCRIPTION 

(4.2.16a,b) 
	

(4.2.17a-c) 

As an illustration of the process of assemblage consider 

the simple portal frame, referred to the global system of axes x*, 

represented in Fig.4.4(a). The frame has four members of length Li 
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• 1 

q1 • 
1 

v 1 R 

q2 
1 

v2R 

q3 
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q4 v1R 
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v1R q5 

v1 q6 

q7 

q8 
q9 

1 

q 10 vR2 

v R 
3 

—R4 
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1` 
r1 

1" 
r2 

r3 ~ 

r1 
2* 

r2 
2* r 
3 _ 1 

 

r2 

3 

• . 

• . 

• . 

• . 

• 1 

v,1 

_ R _ 

(4.2.18a,b 1 • 

• . 

v,2 

which are inclined of a i with respect to the axes x3 , in the 

sense of x~ , according to the chosen orientation for each member, 

shown in Fig.4.4(b). Members 1 and 4 have bending releases and 

the deformability of the foundation is simulated by the external 

release at the right-hand side foundation node. If the internal 

releases were blocked, the structure would have ten degrees of 

kinematic freedom; referring to the corresponding displacements 

to the global system x* and numbering, we write 

qT =[q1 q2 ... q1 0] 
Let the release dislocations be collected in 

T = rvt 1 v t 21 
---R 	L R 	R 

Equations (4.2.5) take the form: 



1 10 9 6 8 3 5 9 2 1 4 6 3 4 7 8 7 5 2 J 

• • 1 2 �R 

FIGURE 4.4 

As all entries in the i-th row of the above incidence 

matrices are zero except, and in the maximum, one, say the j-th, 

which may take the values ±1, all the information they provide 

can be stored in just one array of the form 

(4.2.19a) 

(4.2.19b) 

2 -6 1 -3 

• • • • • e • 

• I • 

(4.2.19c) 

(4.2.19d) 

(4.2.19e) 

. 

. 

~0 

JO —r 

1 J o 

The remaining incidence matrices can be stored in a 

similar way, yielding 

which we read in the following way: Let JI be the generic incidence 

matrix, with elements Jlkl, and let i be the entry in the j-th 

column of the equivalent array; moreover, let n be the number of 

columns of this array and in the highest of its entries, taken 

in absolute value. Then 

Jlk 
j = 

0 
	

k = 1,2, ..., m ; 	j = 1,2, •.., n 

except when either i> 0 or i< 0,. in which case 

JJ. = +1 	or 	JIL. = -1 	(1=-0 ) 
lj 

respectively. 
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Performing the products in (4.2.9) based on (4.2.19) as 

well as the block-diagonal kinematic supermatrices with elements 

defined in (2.1.15), (2.1.19) and (2.4.6), (2.4.8) and (2.4.11), 

the Kinematics operator, the transpose of the Statics operator, 

given in Table 4.3, where we wrote 

s. = sin ai 1 	L. 
1 

cosai  

sino. 1 

c. = cos ai 	c! 	L. 
1 

is finally obtained. 

• 

1 

. 
• • 

cl 
1 

-cl l  
_s 

1 

• • 

-SI 
1 

sil 

-c, 

.  
1 • 
.  

-1 

• 

• 

• 

1 

• 

• 

• 

• 

-ct 
2 

cl 2 
s 2 

CI 2 
-cl 2 
-s 2 

• 
• 

• 

S t 
2 

_s t 
2 

c 2 

-s t 
2 

st 
2 

-c 2 

• • • 
• 

• 

• 
. 

• 
• 
• 

• 

1 

-1 
• 

• 
• 

ct 
3 

-cl 
3 

-s3 

-ct 
3 

ct 
3 

s3 

• 
• 

• 

_ S t 
3 

sl 
3 

_c3  

• 

S t 
3 

_st 
3 

c3 

• 
• 

• 
• 

• 
• 

• 

• 

. 

• 

• 

• 

1 

• • • 

cl 
4 

_ct 
4 

-SI 
4 

• 

-st 
4 

sl 
4 

_ct 
4 

-cl 
4 

ct 
4 

sl  
4 

• 

• 

. 

1 

• 

• 

• • 1 . 

• 1 • 

• • . -1 • 
• -1 . 

• -1 . 

• -1 • 
• -1 
• • . 

-s1 -c 1 
. 

• • • -c 1 
s2  

s 1 
. 

-s2 • c2  

-s2  

-c2 
s2 

• . 

c _c2 • 

c3  •-  . -s3 s3 •  _ c3  

_c3 • c3 s3  -s3  . 

_s4 • • _c4  s4  

• -c4  s4  c4  
• 

. • • 

1 

• 

. 

1 TABLE 4.3 
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The generalized finite description of Statics and 
Kinematics, obtained by introducing the generalized variables 
summarized in Table 4.1 in equations (4.2.14) and (4.2.15) and 
re-grouping is presented in Table 4.7. 

We note that the generalized deformations vector u is 
defined as the sum 

u = u + u + u -E p -D 
where uE  and up  are, respectively, the generalized elastic 
and plastic deformation vectors and uD  a vector of PRESCRIBED 
DISLOCATIONS. 

The corresponding incremental descriptions (4.2.65) and 
(4.2.66), shown in Table 4.9, can be obtained by taking increments 
in (4.2.61) and (4.2.62) 

0= 

 

' [A T ; A
T 
 I A

T 
o , -TL 

 

AX 

  

, Au+Aun  = A Aq  
A6 	A —o 

---A6--- 	-Ān 

 

-AX 

  

  

-An 

  

      

      

and eliminating above the increments on the generalized additional 
forces and deformations through the following relations 

and 

An = IQ T AX + IP A6 _ + AIR 

Au = 	IQ A 6 + AIR -11 	 --n 	-UTI 

(4.2.20a) 

(4.2.20b) 

which were obtained by grouping (2.1.43a) and (2.4.29a), and 
(2.1.39a) and (2.4.296), respectively, setting then m to 1,2,...,11 
and collecting in the manner of (4.1.6). 

An alternative way of obtaining relations (4.2.65) and 
(4.2.66) 	is 
incremental 
m 	= 	1,2, 	..., 

to assemble the 
Statics and Kinematics 

	

I`1, 	collecting 

	

-k r  r 	-krR i a
T ^ 

- T 	i----- 	- T i 	r 

	

-krR 	-k RR 	ai 
	 +------ L---- 

air 	I 	• 
- 	I 	 J 

as 

intended 

in 

Ar* 

avR  

AXr 

(4.1.6) 

nodal 
(2.4.30) 

-AXR  

Au r 

and 

+ 

descriptions 

AR* 

ARXrc 

AR 

(2.4.31). 
of 

Setting 

and subjecting the above system to the assemblage procedure 
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previously described; re-arranging that system in order to express 

the assembled relations in terms of the generalized variables, 

the structural matrices summarized in Table 4.10 emerge in the 

following (equivalent) forms: 

   

IK n = i 
krr 1 -rR 

T 
_ krR ; kRR_ 

 

    

 

• ~R 

 

    

, n = JT JT , AW = J T AR*
_ 
 AIR 	R utt AR 

JT  R RXn 	 • 

• 

/A = ai J 1 E t J R 

• I 

J J i 	• _-r- 

4.2.2 	(Mesh Description 

Consider the structure graphically represented in Fig. 

4.5(a) which can be interpreted as the graphic model of a crane 

composed by a load-receiving truss resting on a frame transmitting 

the load to the foundation. While the left-hand side leg of the 

frame rests on a foundation unable to resist to rotational 

movements, the right-hand side leg is founded on a medium with 

limited capability to absorb horizontal forces. 

Let the structure members and releases be numbered and 

the members orientated, thus deciding the position of critical 

sections 1 and 2 for each member. The applied loads are also 

numbered and collected in X as well as, and according to the 
static boundary conditions, the structure REACTION FORCES 

developing at the (fixed) supports and the forces at the 

(deformable) external releases, which we group in As and Ar, 

respectively. 

We define the EQUIVALENT STRUCTURE, as in Fig.4.5(c) as 

the fundamental structure with additional members joining to 

neighbouring nodes every node of the structure where only one 

member connects. The equivalent structure is formed by MI mesh 

substructures, their equilibrium conditions being defined by 
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FIGURE 4.5 

equations (2.4.21); setting in those equations 11=1,2, ..., 11' and 

collecting in the manner of (4.1.5), the following unassembled 

description of Statics 

X' 

X R  

-Rt*  

is 

b 

b' 

• 

found: 

^ bo 	i bon i 	• 

bō 	1  bō TC 	' 	bR 
b r 	b rn 	i• n  

^ 2 
R* 

n' 

(4.2.21a) 

(4. 2. 21 b ) 
(4.2.21c) 

where marked again with a tilde are the supervectors which, at 

this stage, may contain superfluous information. 

If the general expressions for the mesh matrices defined 

in (2.2.38) to (2.2.42) and in (2.4.23) to (2.4.26) are to be used, 

every constituent substructure has to be clock-wise orientated. 

In section 2.2 the (hyperstatic) mesh substructure was 

replaced by an equivalent cantilever so that the solution of 

Statics could be defined as a statically determinate structure 

by adding the effects of the mesh forces RA (particular solution) 

to those of the indeterminate biactions pm  (complementary solution). 

A similar procedure is adopted herein to establish the 

equilibrium conditions of the deformed and displaced structure. 

Each of the constituent cantilevers are assembled to form the 

EQUIVALENT CANTILEVER, a tree-structure obtained by introducing 

M' cuts in the equivalent structure; one node, in preference 
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belonging unequivocally to one of the mesh substructures, is 

chosen to be the foundation node of the equivalent cantilever. 

FIGURE 4.6 

The mesh forces Rj of a generic substructure can be 

defined as the sum of the partial contributions of the applied 

loads X and, if the mesh has foundation nodes, the forces at the 

fixed supports, Xs, and at the external releases, Xr, as well as 

the forces 	transmitted by neighbouring meshes; hence, for the 

unassembled Mt meshes 

R- = 3 X + Js  Xs  + Or(-Ar) -1-3X t t  (4.2.22) 

As the mesh forces R* need not be self-equilibrating, a generic 

force applied to a node can be assigned to any of the neighbouring 

meshes. 

The mesh forces are equilibrated by the mesh reaction 

forces, collected in RI*, as implied in (4.2.21c). We define the 

MESH TRANSMISSION FORCES as 

Xt  = -3' RI* (4.2.23a) 

As illustrated in Fig.4.6(b), these forces can also be assigned 

to the corresponding node of any of the neighbouring meshes. For 

the mesh containing the foundation node of the equivalent canti-

lever, as, for instance, the bottom left-hand side node of mesh 1, 

Fig.4.6(a), we may write 

0 = - L;' RI* 
—t 

(4.2.23h) 
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since the external forces A , Xs  and Xr  applied to the structure 
have to be in equilibrium. 

Substituting (4.2.23a) in (4.2.22), pre-multiplying the 
resulting equation by bR  and using (4.2.21c) we find 

-S R'* = bR  n + bRrt 
	 (4.2.24) 

where 	 S 	= I - bR  Jt  Jt 
	 (4.2.25a) 

and 	 A = Jo X+ Js  X 	Jr  -r 
	(4.2.25h) 

Matrix S can always be expressed as a triangular matrix 
with unit diagonal elements and hence unit determinant. Equation 
(4.2.24) can be resolved to give 

	

-R'* = T br  A + T bran 
	 (4.2.26) 

where T = S-1 	 (4.2.25c) 

is still a triangular matrix of the same kind with coefficients 
defined by j-1 

tii  = 1 and t..  = k=i tik skj (4.2.27a,b) 

Substituting (4.2.26) back into (4.2.23) we find 

At  = Jt T  br  n + Jt T br7r t (4.2.28a) 

and 0 = Jt' T b r  n + Jt' T bru  rt (4.2.28b) 

The transmission forces may now be eliminated in (4.2.22), 
yielding 

where 

and 

R* = I' A + I " TC 

I' = I + Jt  Jt T br  

I" = 	Jt Jt  T brrt 

(4.2.29) 

(4.2.30a) 

(4.2.30b) 

The equilibrium equations 

X' = b p + bo  I' /1 + (b-0  I " + bof ) rt 

X R- = b'p - + bō I ' A+ (bō I" + 	bōn) rc + bR rt' 

(4.2.31a) 

(4.2.31b) 
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were obtained substituting (4.2.29) in (4.2.21a) and (4.2.21b). 

The set of equations (4.2.21c), defining the external equilibrium 

of each of the constituent substructures, can be replaced by the 

equivalent equations (4.2.28b) which regulate the global 

equilibrium between the applied forces. 

So far we have been solely concerned with assigning the 

loads to the different substructures and with transmitting them 

to the foundation of the equivalent cantilever; the mesh sub-

structures are yet to be assembled. 

Let us then collect in X' and XR, respectively, the 

structure INDEPENDENT STRESS-RESULTANTS and RELEASE FORCES, 

obtainable through the simple incidence 

X' = J X' 	and X R  = —R -R  (4.2.32a,b) 

For instance, for member 2 of the structure represented 

in Fig.4.6(b), and considering Fig.4.6(c), we would write 

= 1 	•^ (X2 )mesh 1 +

- 

• 	-1 	• 

• 1 	• 	-1 	• 

• 1 	 1 

(W mesh mesh 2 

Let us collect in X'' the independent stress-resultants 
-a 

at the auxiliary members of the equivalent structure, as member 4 

of mesh 1, Fig.4.6(c); then, for the actual structure 

X' = 0 = J' X' 	(4.2.33) 

If the vectors rt and tt' contain the structure additional 

forces and additional release forces, by stating 

= and 	n J n 	' = Jnn (4.2.32c,d) 

we eliminate in the supervectors it and TO the information they 

provide for members and releases which do not exist in the actual 

structure. 

Substituting (4.2.32) in (4.2.31) and (4.2.28b), adding 

(4.2.33) to the system, and using (4.2.25b) and re-grouping, the 
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following description 

found 
X' 

X' 
R 

- 

= 

_ 

for the 	ASSEMBLED Statics 

5 	i 	5 	j 	5 	i 	5 	i 	5 	 • 
Ī
-o 	-s J- -r 	-ont '  

Et i 	5' 	5' 	i 	6' 	i 	5? 	6 R - ----+---o- -_S ------+---- i--- 
5 tt 	51, 	i 	5,, 	' 	5 tt 	5 n-o 	i 	-s 	~ 	-r 	i 	-nit 	1 

----i 	 --►----i` = 	i 	T 	 
• ~r i brs i 	brr i 	-ra t  

p 

-s 

-X -r 

Tt, 

relations is 

(4.2.34a) 

(4.2.34b) 

(4.2.34c) 

(4.2.34d) 

5 =J b 

DI =J' b 

5 =J 	b 	I'3 -o - -o- -o 

-o -R-o- 

5" =J' b 	I' J -o - -o- -o 

5'=3Rb'  

5 	=J 	b 	I 1 J -s 	- -o- -s 

5s =JRboI'Js 

5n 	=J' b 	113 - 	- -o- -s 

5 	=J 	b 	I'J -r 	- -o- -r 

5r =JR—oJ'Jr 

5" 	=J'b 	I' J -r 	- -o- -r 

5 	=J(b I" +b 	)3 
-on 	-o 	-oTL 	Tt 

(4.2.35a-e) 

bon=JR( —oI"+bon)-n 

(4.2.35f-j) 

5" 	=31 (b 	I" +b 	) J -on 	-o- 	-on -Tt 

(4.2.351-p) 

8'=J b' J' ' =J" T b J 	6 =J" T 12. J 	6 	 " T 	J 	5 =J" T 	J —R —R—R—Tt —r —t — —R-o -r s -t - R-s -r r=2 t - -R-r -n t -t - -RTt-Tt 
(4.2.35q-u) 

Equations 

the generic mesh 

structure, 	the system 

in which 

contains the necessary 

r  

sn 

-61 -n 
- 

(2.4.24) 

[I; 	hence 

t 

data 

define the 

	

for 	the II' 	unconnected 

b T 	i 	btT 	1 	. 

b T 	i 	b'T 	i 	b T 
-n 	-o 	1-r 

bT 	' 	LOT 	b T 

	

-oTL ; 	-oTt ~ -rTt 

. 	~ 	b'T 	1 	. 
_ 	-R 

" 	= w' 	+ GI 	+ uR t 

to perform the 

vR 

r t-x 

compatibility 

assembly. 

conditions for 

meshes 	forming 	the 

(4.2.36a) 

(4.2.36b) 

(4.2.36c) 

(4.2.36d) 

(4.2.37) 

Once again 

we marked with a tilde those variables which may contain super-

fluous information. 

where we note 

If a generic force was assigned, through (4.2.22), to 
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one of the meshes sharing 

then 	its displacement 

displacement; 	hence 

In 	b and ōr we 

displacements and the 

contains all mesh 	force 

must 

s 

s —s 
ōr 

s t 

collect, 

the 

= 

displacements 

displacements 

coincide 

 JT 
—o 
JT 
—s 
JT 
—r 

—t 

node upon which 	that 	force acts, 

with 	the associate mesh 	force 

r* 	 (4.2.38a) 

(4.2.38b) 

(4.2.38c) 

(4.2.38d) 

respectively, 	the point load 

at 	the external 	releases; 	r* 

and its elements are ordered 

according to the label ascribed to the mesh (from 1 to M'), the 

orientation of the mesh and the numbering of its members. 

In ōs we collect the fixed support displacements; hence 

s = 0 —s (4.2.39) 

The role of the TRANSMISSION FORCE DISPLACEMENTS ōt is 

to transfer the rigid body displacements suffered by a given mesh 

to the incident meshes. 

The reaction force displacements are defined by 

r 	i 	1r rx 
= L

~t i ~
t ?TJ 

    

    

 

b t 

 

(4.2.40) 

 

ōf 

  

     

where ōf represents the displacements of the node chosen to be 

the foundation of the equivalent cantilever. Substituting 

(4.2.38d) and (4.2.36b) in (4.2.40) and using (4.2.25a) and 

(4.2.25c) gives 

r r* = T TJt JT (bo 
{In .~ 

bo R) 
+ T T Jt,T ō 

f 
(4.2.41a) 

enabling us to eliminate the reaction for displacements in the 

definition (4.2.34b) of the mesh force displacements, yielding, 

with help from (4.2.28) 

r* = 	bT ūrr + bT 
—Ri 

+ b T T TJ "T6 f (4.2.42) 
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0 

6 

0 

ōr 

Let us separate the generalized deformations 0 " into two 

vectors, one containing the generalized deformations of the given 

structure, the other containing similar information about the 

auxiliary members of the equivalent structure: 

6"= JTutt + JtT u tt 
- - 	- -a (4.2.41b) 

t 

~
n 

	

UR ~R v R 	 (4 .2.41c) 

b' = J'1- 

	

b' 	 (4.2.41d) 

	

bn = J-Th TT 	 (4.2.41e) 

correspond to the actual release dislocations, additional release 

force displacements and additional force displacements existing 

at each of the M members of the given structure, respectively 

collected in vR, 6n and bm. 

Substituting (4.2.41) in (4.2.36) as well as in (4.2.42) 

and eliminating in turn the mesh force displacements in (4.2.38) 

and using (4.2.30), (4.2.35) and (4.2.39), the following 

description for Kinematics of the assembled structure is found 

Similarly, let us define which elements ofvR, bn and 

• through 

= ET 	b IT 	b ttT 

bT 	bIT 	6 11T i b T 
T_ T— T +-o-T1T

--

- i 	t 	III -s rt 13 IT   1 brs 
bT 1 5IT 	b ttTTb T 
-r -L-r-- -r-rr_ 
b T 1 b'T 	b"T i b T -on . =on -on i -rn I • 1 

- 
tT I 

I -R , 	I 	_ 
- 

u" 	(4.2.43a) 

v_ 	(4.2.43h) 

u~' 	(4.2.43c) 

6f 	 (4.2.43d) 

(4.2.43e) 

(4.2.43f) 

which, as expected, is the dual transformation of (4.2.34). 

Both systems are explicitly linear and although able to 

support any theoretical or numerical structural analysis they 

contain unwanted auxiliary variables which should be eliminated. 

Let at be the static indeterminacy of the structure 

without internal releases and let us create a vector p of co 
INDETERMINATE FORCES. The objective now is to eliminate the 
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variables p and X from the description of Statics by using 

equations (4.2.36c) and (4.2.36d) 

  

- 1 
511 1 6 t1 
— 1—s 

    

      

0 

 

p 
• hn 16 i 	h n rt 

—o I —r 1 —ort 
I 	I- 

-bR 1 
15 15 

 bRTt 

(4.2.44a) 

(4.2.44h) 0 

 

I bRS 2bs 

     

     

       

It is always possible to define any a' independent 

variables p, for instance 

P 	Lip   Ī1  P 
	

(4.2.45) 

such that the enlarged system (4.2.44) 

p 

'- --s 

1 

= I j • 1 • 	1 • 
1 	1 

1  bōt 
 I b r

, 
I boft -- 1  -I-----r---- 

_. Ī  bR 
1  bRr I 

b
Rn_ 

p 

-r 

rC 

(4.2.46a) 

(4.2.46b) 

(4.2.46c) 

 

     

can be solved to give 

p 
-C 	1 C 	

I Cr 
i C
7
- 

-C,  1 0 1 rr  1 Cn  - 

  

(4.2.47a) 

(4.2.47b) 

 

A 
— s 

 

    

     

The various forms the above system may take, extends to 

kinematically non-linear analysis the use by Argyris and Kelsey 

(1960) of standard sets of self-equilibrating stress-resultants 

to replace those derived from a physical release system, as well 

as Jenkins' idea of equilibrating each independent load on a 

different system of releases, Jenkins (1953,1954). 

The substitution of (4.2.47) in (4.2.34a,b) gives rise 

to the more concise description of Statics (4.2.50), where now 

B=6 C+6 C' fl =6 C+5 c' +6 	B=6 C+5 c' +6 	B=6 Cn+5 c' +b—s—os 	 o 	o 	r 	r 	r 	n  on  

B'=6' C+6'C' 	B'=5'C +6'C'+6' 	B'=5'C +6'C'+6 	5'=5'C  — — — —s— —o — —o —s—o —o —r — —r —s—r —r —Tt — —it —s—TL —o7 

(4.2.48a,b) 	(4.2.48c,d) 
	

(4.2.48e,f) 	(4.2.48g,h) 
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Substituting (4.2.47) into (4.2.44) and re-grouping, we find 

PC-ft" Cf 1 b "C +5" Cf +b11 1 1? b C +5" Cr +6'1 Ī b"E +6" Cf -t-b lr 
- - -s - 1- -o -s -o -01-    -r -s -r -r 1- -TL -s -TL -on 
	 A. 	 	1 --- 	- 	4- 

	

6 Cf I 	6 Cf+6 1 	5 C1+6 	1 	5 C1+6 
-Rs- 	-Rs-o -R 	-Rs-r -Rr~ 	-Rs-7 -R7~ 	1 

implying that 

6"C+b" Cf=O, 6"C +6" C1+6" =0, 6"C +6" Cf+6"=0, 6"C +6" C r +6" =0 
— — —s — — — —o —s —o —o — — —r —s —r —r — — -n -s -n -on - 

f , 	-Rs-o+bR -2' 	-Rs f+$r ~' 	 +5Rsc o 	 6Rs-n-Rī0 

	

(4.2.49a,b) 	(4.2.49c,d) 	(4.2.49e,f) 	(4.2.49g,h) 

since p, A, Ar and FE are independent variables. Hence, the 
following (trivial) transformation can be written 

u rr 
-a 

(6rr C + 6s C 1 ) T (br T 
R Sc ) 

(611 Co+ 65r Cf+ 60 )T j (6RSCa+ 6R ) T 

(6rr Cr+ 6S Cr+ 6r ) T I (5RsCr + 
5 	) T 

-I 
(611 C+ s+b)T(~

+-)T n
b -n r 	 -Rs-7 

R7  

and used in (4.2.43) together with (4.2.40) enabling us to express 

Kinematics as the contragredient transformation of (4.2.50), thus 

recovering Static-Kinematic Duality: • 

STATICS KINEMATICS 

Xf 
_ 
Xf 
-R 

= B 	I B 	I 	B 	BI  -o 	r 	-n ~  

'61 151  Bf 	I 	fit 	si 	I 	f 

	

1 -o I -r 	-n I -R x 

--r 

H 

IC 
_ 

 0 

6 - 

5-r 

ōn 

Ō1 -n  

- 
T 

BT B 1 	
' 

---t 	
 

BT' B ,T -o I -o 

T 1 - T 1 51 -r_ I -r 

Bn1 Bn 
1 

• 
1- T 
•IPA 

of +uf+uf _ 	-R 

vf -R 

MESH DESCRIPTION 

(4.2.50a,b) (4.2.51a,e) 

5f 

= 0 

211 



The mesh description of linear Statics and Kinematics 

is obtained by setting in the above relations the additional 

deformations and forces to zero and removing from the system 

(4.2.50) the kinematic duals of the latter: 

LINEAR ANALYSIS 

STATICS KINEMATICS 

X~ 

X' 
R- 

= B 	I 	B 	~ 	Ā 
-o , -r 

5t 	I 	Bt 	~ 	R' - 	-o i -r
- 

p- 

A 
 - 

_
— 

-X -r 

--- 

0 

- 

b 

b 
-r 

_ BT 	I 
R ST 

B T 	1 B tT 
-o I -o 

T BT 	; Bt 
1 

ur 
- 

v' 
--R 

MESH 	DESCRIPTION 

(4.2.52a,53a) 

(4.2.52b,53b) 

(4.2.53c) 

We will illustrate next the process of assemblage of 

Statics for the kinematically linear analysis of the simple 

structure shown in Fig.4.7(a); the description of Statics for 

large displacements, although lengthier, is conceptually 

identical. 

FIGURE 4.7 

The frame has six members of length L which we orientate 

and number; members 1 and 3 have internal bending releases, 

numbered from 1 to 4. The loading and the kinematic boundary 

conditions are shown in Fig.4.7(a) and the forces developing at 

the fixed supports and at the external releases are numbered as 

indicated in Fig.4.7(c). 

An auxiliary member, member 7, is added to the frame so 
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that the equivalent structure, Fig.4.7(c), is formed by two 

square meshes each of which we number and orientate as in Fig. 

4.7(b), in order to use the static influence coefficients derived 

in section 2.2 when studying the rectangular mesh shown in Fig. 

2.6. For meshes with a different numbering sequence and/or 

geometry, the coefficients should be obtained from (2.2.38-42) 

and (2.4.23-26). 

The elements of the block-diagonal matrices b, bo  and 

bR  are respectively defined in (2.2.17) to (2.2.19), where we 

replace h bq L to conform with the mesh geometry. The elements 

of matrices b' and b' have to be derived from (2.4.23) and 

(2.4.25), respectively. 

Stored in one array, in the manner indicated in the 

previous sub-section, the incidence matrices summarized in Table 

4.4 were used to find, successively, matrices S, T, I' and I", 

respectively defined in (4.2.25a), 	(4.2.27) 	and (4.2.30a,b). 

J 	(1 2 3 10 	11 12 -5 -4 6 	-17 -16 18 	4 5 	6 	13 14 15 	-8 -7 9 • • • 

Jro . . 	. . . . 	. . 	. • • • • 1 2 3 

J<>11 • • 2 30 OR_ S -4  • • 	-3 . • 
R  

(10 to 11 121  Jto • • • 1 	2 3 J o t' 	1. 1 2 3 • • • 

J o -r J 	6 -o 
16 23 o 03 

-
J
s  

2 	14 24 22 TABLE 4.4 

Matrices b, bo, 	b s  and b r, br, 5T, bo, GI and B'B, 6't, 
6ō', 6s' and 6r', and 6 r, 6Rs  and 6Rr, respectively defined in 
(4.2.351-o) and (4.2.35r-t) were then formed and grouped in Table 

4.5 following the layout of the Statics description (4.2.34), in ' 

its linear version (i.e. iL=O,TL1 =O). The corresponding influence 
diagrams, presented in Fig.4.8, prove the equivalent cantilever, 

shown in the same figure, to be the adopted (statically determinate) 

basis for the analysis. 

For simplicity of its physical interpretation, we selected 

the following a'=5 variables p 

pT = r p 1 p1 p1 X5 a41 T 
1 2 3 s s  

which can be expressed in the form (4.2.45) by letting 
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I = -1 —p  
• 1 • • • • 

I s  = 

• • 1 • . . 

. . . • 1 

1 • 

The solution (4.2.47) of the enlarged system (4.2.46) 

C = —o 

gives: 
-1 • • • • 

• 1 • • • 

• • 1 • 

C = • 	C

- 

'= —r 
-. . . 

. • . 
1 

. 

1 
. . • - 

L 

C'= -. —r 

1 

-2 

C= -1 C 1 = --1 • 
—o 

• • • 1 

• 1 . . . . 

. 

which enable us to find matrices 8, B , B , B', 8' and B', defined 

in 	
—r 

in (4.2.48). The new description of Statics is given in Table 4.6, 

following the layout of (4.2.52), and the corresponding influence 

diagrams are shown in Fig.4.9. Equalities (4.2.49) can be easily 

confirmed. 

The concise description of finite Statics and Kinematics 

(4.2.59) and (4.2.60), presented in Table 4.7 was obtained by 

introducing the generalized variables defined in Table 4.1 into 

(4.2.50) and (4.2.51), respectively, and re-arranging the 

resulting system; the corresponding generalized mesh structural 

matrices are given in Table 4.8. 

The incremental mesh descriptions of Statics and 

Kinematics, (4.2.63) and (4.2.64), shown in Table 4.9, can be 

derived either directly from the assembled finite descriptions 

(4.2.59) and (4.2.60) or by assembling their incremental 

descriptions (2.4.34) and (2.4.35) for the generic mesh sub-

structure M. 

Setting in (2.4.34) and (2.4.35) N = 1, 2, ..., fil' and 

grouping as in (4.1.6) 
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1 
1 
• 

• 
• 

-1 

• 

L 
• 

• 

• 
1/L 

• 

L 
• 

L 
-1 

• 

1/L 

. 

• 
1 

-1 L • 

-1 L -L • • • • • 
• 1 • -1 /L • 1 -1 /L -2 

• -1 . 
• • • -1 -L • 
• • 1 

1 • L • L L • • 
1 -L L 1 L • 1 L 
• • -1 • -1 • 

. • • 1 L • • L 
• • • 1 L • 
• • • • -1 

-1 • • 

-1 L • • 

• • 1 . 

-1 • • . 

-1 • -L • -L -L • • 
• • • 1 . 

• 1 L 

TABLE 4.6 

kuui ku vi kur z Ib 	i Ibo- 

T 	'i 
kuvi kvv ; kvr 	Ib 	i Ib

— 

T 	T 	• 	1 	Ib 
kur1 	kvri 	k rr 	i —or 

t- 	- 	-t 	F- 

Ib T i Ib'T 	1 	. 

H- 	-i 	-r
I 	

I 
Ib T 	'IbtT 	iIb T 	T. 	' • i —0 	; —0 	~ —o r 	1 

A ū 1 

AvR 

Art* 

Ap 

AR* 

 

AXE 

  

AR' 

A XRrc 

(4.2.54a) 

(4.2.54b) 

(4.2.54c) 

(4.2.55a) 

(4.2.55b) 

 

AX R 

-Aril*  

  

      

   

AR* 

Avn 

  

 

. 

    

 

Ar* 

  

A rn 

  

        

        

        

1 
• 

• 
-1 

• 1 
L 

• 
• 

• • 
• 
• 

•• 
• • 

_L 

. 

1 
1 
.. 

• 
•• 

• 
•• 

L 
L 

_1 

• 

L 
1 
1 

2L 
2L 
-1 

-1 L • 1 . . • . 
-1 L -L 1 • L • • • • • 

• 1 • • -1 • • • • • 1 -1 
• • • -1 L • • . • • • • -1 • 
• -1 L -L • • • • . -L -1 • 

1 • • • • • 1 

1 • L • • •• 1 • • L L 1 2L 
1 -L L 1 L 1 L 

_1 • • • • • -1 

• 1 L •••• • L 1 L 
1 -L L • L 1 • 

• • -1 • • . • • -1 • • 

-1 • . . . 

-1 L • • • . 

1 • • • • • • • • • 

-1 L -1 -L • -1 -2L 
-1 • -L • -1 • • -L -L -1 -2L 
• • • 1 -L • • • • • • • 1 . 

• 1 -L L • • • • L 1 • 

• 1 -L • • • 
• • • 1 • •• •• • 

• • • 1 • •• •. • 

• • • -L 1 L • 1 2L 
. . • . . • • 1 1 • • 1 
• • 1 • 1 • • 1 

TABLE 4.5 

Subjecting system (4.2.54) to a treatment very similar 

to the one used to assemble the corresponding finite relations 

(4.2.21) and (4.2.36), the following incremental description of 

Statics and Kinematics is found: 
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1 

— 	I 	I 	I 	I 	I 	I 	-  
I 

IKuu, uri ua1 uf~ IB 	: IBo iIBs 1 IBr 

IK - T i IK 	1 IK_ 	If< 	IB' ; IB' IB' 11B ' —uv I —vv va —vf1 — I —o —s 1—r 
----I 	1 	1 	1--- 	4_ 

IRT 11R 	iiR 	IF 	IIB' I IB" IB "iIB" —ua1 —vaI —aa —af 1 — 	—o —s 1—r -----}---4----i 	 L 	+ 
IK 
 u

- 	

1- 	I 
f l —v f; 	IK ā f i lK f f l 	IA R I IB RE1 IB 	R v

I
18- T I I B'T iIB"T1 • 	1 • 	1 • 1 • 	; • 
----II-----1----r--J___ __L 	 __ 

IE3~ i IBō IBo'T 1 1B R 	I 
	1 • 

L 	1 	I 	 1 

I-T ĪB'T 1 r, TI 	
1 , -I------r---  

I- I- 1— I I 	• 1 -- + + I- 	+ 	I- 1 

—r 1—r 1 —rT 1 —Rr i • 

Au' 

AvR 

Au' 

A 

Ap 

AX 

AX' 

AXR 

• 

. 

. 

A5 

. 

A5r 

R 	1>r 

ARR1t 

A Ratt 

A
-fit 

AR 

A-ott 

AR 

APrrt 

(4.2.56a) 

(4.2.56b) 

(4.2.56c) 

(4.2.56d) 

(4.2.57a) 

(4.2.57b) 

(4.2.57c) 

(4.2.57d) 

Matrix IK, present in (4.2.56), and representing the 
Statics dependence on Kinematics is defined by 

IK = J Ī k ĪTJT 	(4.2.58a) 

where k is its correspondent in the unassembled description 

(4.2.54); matrix I  matrix 0 relating the equilibrated static variables in 

(4.2.56) is defined by 

(4.2.58b) IB = J Ib J - --o 

J = 

In (4.2.58) 

I = 

we 

I • 

note 

Ib 3'-  —o—* b = Ib lb 	I' —0— J T = —0 I 

. I I b' 3 Ib' I —o I' JT —o 
. . 3 It J.'' -0 r JT 

—s 

I JT --r 

where = JtJIT 	and 	J = Jt' T 

Matrices T and I' are defined in (4.2.27) and (4.2.30a), 

respectively. The static and kinematic non-linear residuals 

present in (4.2.56) and (4.2.57) are given by: 
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j (k ~b J' k ) J ,T !1r* + Ib J' ~ R' *+ !J.X' - -u r ' -o--)(--r r _i<- -11: -0-* -11: - 11: 

J II k J ,T ~r* + -* -rr -* -11: 
JII ~R'* -* -11: 

respectively. 

}14 
s 

p1 
__ --~~~~~ ___ 3--~----~ 

p2 
3 

FlcunE 4.8 

FICURE 4.9 
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Using the equilibrium equation (4.2.56c) and (4.2.56d) 

and introducing a' indeterminate forces p, obtained by taking 
increments in (4.2.45), system (4.2.56-57) can be simplified 

through a procedure similar, although more cumbersome now, to 

the one adopted in the treatment of their finite descriptions 

(4.2.34) and (4.2.43), yielding the following mesh description 

of Statics and Kinematics: 

IK uu1IK uv1IB IIBo1IBr 	Au' - = AX

- 	

' 

- - 

	AR XTL 
r 	 

IK T 11K 	i IB' 1 IB'; IB' 	Av' 	AX' 	AR —uvI —u -1 —'% —r __= R 	___ R 	___RTL 

IB 	; IB'T 1 • 1 • ~ • 	Ap 	• 	AR tiTL 

IBō IB I 	 A- 	Ab 	A
13-5-

rt 

I13 ' i IBr i 	; • i •• 	-AX 	Aō 	ARrTL 

Introducing above the generalized variables in incremental 

form and re-arranging the resulting system, the concise description 

(4.2.63) and (4.2.64), presented in Table 4.9, of incremental 

Statics and Kinematics is thus obtained. 

An alternative and apparently much simpler way of deriving 

the incremental equilibrium and compatibility conditions (4.2.63) 

and (4.2.64) is to take increments in the finite description 

(4.2.59-60) and eliminate next the generalized incremental 

additional forces and deformations through equations (4.2.20). 

The corresponding structural matrices are given in Table 4.10 

which reveals the necessity of inverting matrix [I-IQITBu] , 

similarly to what happened when deriving the incremental relations 

(2.2.56-57) regulating the behaviour of the generalized mesh sub-

structure M. As shown in sub-section 2.2.3, matrix 

= (I - QT B
OTC 

)-1 

and consequently the structural matrix 

I8 ~ _ (I - IQIT B g 
)-1 

is a block-diagonal matrix for generalized cantilevers; hence care 

should be taken when identifying the structure constituent mesh 

sub-structures, and their pattern of incidence, so that matrix Om 
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can be derived with as little effort as possible. 

If the two processes of deriving the incremental mesh 

description of Statics and Kinematics (4.2.63) and (4.2.64) 

mentioned in the above are rejected, the first due to the 

necessity of following the lengthy process of mesh assemblage at 

every new increment, the second due to the compulsive matrix 

inversion, a third and last possibility exists;it consists in, 

after taking increments in the finite descriptions (4.2.59) and 

(4.2.60), eliminating the generalized additional deformations 

through (4.2.20b) and to relate in Statics the additional forces 

with their displacements through (4.2.20a). The resulting system 

would be similar to (2.2.45-46) found in sub-section 2.2.3 for 

the generalized mesh substructure 19; the matrix inversion is 

thus avoided at the cost of a formulation involving additional, 

and unwelcome , variables, the dual and dependent variables Aū 

and AŌn  . 

The nodal [mesh] perturbation analysis description of 

Statics and Kinematics, (4.2.69) and (4.2.70)[(4.2.67) and (4.2.68)] 

respectively, is obtained by replacing the incremental generalized 

variables, as well as the residuals, in a power series, as defined 

in (2.1.52), and equating next the terms affected by the same 

power of the perturbation parameter E. The original system , non-

linear in the residuals AIR, is thus replaced by an infinite set 

of recursive, linear systems. 

The nodal [mesh] asymptotic description is obtained by 

expanding the total variables in the finite description of Statics 

and Kinematics (4.2.61) and (4.2.63) [(4.2.59) and (4.2.60)] in a 

power series of the form (2.1.63) and equating next the same order 

terms. The resulting recursive linear systems are formally 

identical to (4.2.69) and (4.2.70) [(4.2.67) and (4.2.68)] 

although the structural matrices differ quantitatively; matrix Ii, 
in particular, is now a null matrix which is particularly relevant 

in the mesh formulation since matrix I  matrix 8 becomes the identity 

matrix. 

Similar results would be obtained by assembling the nodal 

[mesh] substructure static and kinematic asymptotic descriptions. 
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DEFORMATION ANALYSIS 

STATICS 

MESH NODAL 

X =[B Ba Bn] 
L 	1 

(4.2.59)` - 

P X 

x 

0 =[AT A T AT] 

(4.2.61) 

X 
-X 

~ - 	-  

KINEMATICS 

MESH NODAL 

(4.2.60a) 

(4.2.60b) 

(4.2.60c) 

0 

5n 

= 

5 

BT 

BT 

BT 

(u+u) u+un S 

Ōn 

= A 

Ao 

An 

q 	(4.2.62a) 

(4.2.62b) 

(4.2.62c) 

ELASTICITY 

FLEXIBILITY STIFFNESS 

uE= F X + uEn 

(LEtt =-FXEn) 

(4.1.22) 

X = K uE 
+ XEn 

(XEn
=-KuEn) 

(4.1.23) 

PLASTICITY 

(4.1.24) -H 	NT u* = L + - X* + 
ntp 

* < 	0 

(4.1.26) 

~ T u= 0 

(4.1.27) 

u 	3 0 

(4.1.28) 

YIELD RULE ASSOCIATION 	(R.P.Y.) FLOW RULE 

SYMMETRIC MATRICES: 	F, 	K, 	H 	
1 

TABLE 4.7 

GENERALIZED STRUCTURAL MATRICES 

0 
w 
2 

B=rB B 
B,Br 

• -I 
- 	-- 

BII Bn • 

BT BR 

- 	- 

60= 	B a 

©o 

- 	- 

F= Fu 
• 

• 
F 
-R 

• J 

F 
-r 

K= Ku 	. 

K 
-R 

. 	• 

. -  

• 

K 
-r 

E
L A

S
T
IC

IT
Y
 

I
N

O
D

A
L
 	

l 

A = -Ā 	T 1 

• I 

AA r. 
 - 

An= An • 

ĀR ĀR 
Aō= Āō 

_ 	_ 

H= Hu 

H 
H 

- H -r 

N= N 

N —R 

::u N 
-r 

P
LA

S
T
I C

IT
Y
 I  

TABLE 4.8 
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INCREMENTAL 	ANALYSIS 

STATICS 

MESH NODAL 

- 1Rn -IK mAu+AX =[B IBo1 

(4.2.63) 

Ap 

d _ 
IRn+IK O Aq =PA T IA T] [<]AA 

(4.2.65)  

KINEMATICS  

MESH NODAL 

(4.2.64a) 	- 

(4.2.64b) 

IR? 

- IRAn_ 

+ • 

A6 

= IB T 
IBō_ 

Au Run 

• 

+ Au 

A6 

= IA 

/A
-o_ 

Ag 	(4.2.66a) 

(4.2.66b) 

ELASTICITY 

FLEXIBILITY STIFFNESS 

(4.1.29) 	AuE = 	F AX 	+ 	IRuE 

( 	IRuE= -IF 	IRXE) 

AX 	= K AuE + 	IR XE 	(4.1.30) 

( 	IR XE= -IK 	IRuE) 

PLASTICITY 

(4.1 .31) 

(4.1.32) 

-IHN 

IN 	• 
- 	- 

Aul 

AX 
- 	- 

AT' = 

Au 
- -P_ 

+ IRS  

IR 

- -P- 

AP 4 0 

(4.1.33) 

AP Aug = 	0 

(4.1.34) 

Aug > 0 

(4.1.35) 

YIELD 	RULE ASSOCIATION FLOW RULE 

SYMMETRIC 	MATRICES: IKO , IK m, 	IF, 	IK, IH 	
1 	

TABLE 	4.9 

GENERALIZED STRUCTURAL MATRICES 

M
E
S
H

 	
I 

IB 	=(I . 	TB 	)-1 , I' =I +B~H 	n IT 
TC 	- 	 TL 	 TC - - 	 TL TC 

_ 
IB 	=lnB,60=lnBo ,IK m 8 	B 	lEy - 	-  	-1~ T~- -1Z-n 

IRn =BaBa I-n IKm IRun 

T T 	' 	-IB 	IR IR 	18Vn= 	-urt 	IR6no 
	un 

IF 
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IF 	• 	• 	-IK 
-u 
• IF 	• R 
• • 	IF 
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FLEXIBILITY 
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5TIPPNFBS 

E
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-u 
• IH' 	• 

-R 
Hr 
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HARDENING 
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-u 
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-R 
NI 
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P
L
A
S
T
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Y
 I  lN

O
D

A
L /A 	= A- 0 An 

	IAo = A o 

IK o = A T IP 	A 	IRR = An 

TABLE 4.10 
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PERTURBATION 	ANALYSIS 

STATICS 

MESH NODAL 

-IR' 1- IK 	u . 	+ 	X . = [B 	B 	
J  Tc. 	—m-1 	-i 	—o 

(4.2.67) 

p 

A i 

IB' 1+ IK 
	q. 	=IV 

TC. 	-n-i 

(4.2.69) 

T  IA
T] 

—o - X - 
-X - i 

KINEMATICS 

MESH NODAL 

(4.2.68a) 	- 

(4.2.68b) 

IR' 

IR' 
_ 6n 
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6. 
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= IB T  

IB T 
_-0_ 

ui  IRun  

• 
L 	_i 

+ u 

6 
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.= M 

/A _-0_ 

qi 	(4.2.70a) 

(4.2.70b) 

ELASTICITY 

FLEXIBILITY STIFFNESS 

(4.1 . 36) 	u 	= IF 	X.+  IR 
-Ei 	— -i 	-uEi  

(IRuE.= - IF NE.) 
1 

X. 	= IK 	u 	+ IR 	(4.1.37) 
-.i 	— -E. 	-XE. 

	

1. 	i 

	

(IRXE.= -IK 	IRuE. )  1 

PLASTICITY 

(4. 1 .38) 

(4.1.39) 

	

-IH 	IN TJ  

	

IN 	• 
- 	- 

u . 

X 
- 	-i 

= 1 K 

u 
-
_
P- i 

+ ^ IRT  

IR 
- P-i 

1 	< 	0 
i 

(4.1.40) 

T 4. 	u* 	= 0 
i 	i 

(4.1.41) 

u 	? 0 
i 

(4.1.42) 

YIELD RULE ASSOCIATION FLOW RULE 

SYMMETRIC MATRICES: IK O, IKm, IF, IK, IH TABLE 4.11 
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4.2.3 	Static-Kinematic Duality 

The treatment to which the exact explicitly non-linear 

descriptions of Statics and Kinematics were subject in sections 

2.1 and 2.2 was aimed at finding new, artificial variables so 

that the study of the conditions of equilibrium and compatibility 

of the nodal and mesh substructures could be performed on the 

undeformed and undisplaced substructure. 

After assembling the constituent substructures, the 

nodal and mesh descriptions of the structure equilibrium and 

compatibility conditions remained linear, although still exact, 

and Static-Kinematic Duality was secured; the additional forces 

and deformations, enabled us to simulate the non-linear behaviour 

by analysing the structure on its original state. 

The results presented in section 2.5, wherein the 

Principle of Virtual Work, for the unassembled substructure, was 

interpreted as the variational description of Static-Kinematic 

Duality, can easily be extended to the system relations. To avoid 

profitless repetitions we will restrict the derivation of the 

Principle of Virtual Work from the nodal descriptions of Statics 

and Kinematics; for simplicity of the presentation generalized 

variables will be used throughout. 

The PRINCIPLE OF VIRTUAL WORK in finite mechanics is 

recovered by performing the internal product of (4.2.61) and 

(4.2.62), yielding: 

(4.2.71) 

The same principle can be expressed in terms of (finite) 

incremental variables by multiplying internally the incremental 

forms of (4.2.65) and (4.2.66): 

AXT  A6 = AXT  (Du+Aun) -ArtTA67  (4.2.72) 

The PRINCIPLE OF VIRTUAL FORCES is defined by the internal 

product of (4.2.62) and the incremental version of (4.2.61) 

6T AX = (u-+-un)T  AX - 6nArt (4.2.73) 
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and the PRINCIPLE OF VIRTUAL DISPLACEMENTS by the internal product 

of (4.2.61) and the incremental form of (4.2.62): 

XT Ab = X T  (Au+Aug 	b ) - IT T  A (4.2.74) 

We may therefore define the INCREMENTAL WORK and the 

COMPLEMENTARY WORK respectively as 

AW = XT oō 	 (4.2.75) 

and 	 cW*= bT  AX 	(4.2.76) 

and the STRAIN ENERGY and the COMPLEMENTARY STRAIN ENERGY as 

AU = X T (Du+Aug) - rCT Abn  (4.2.77) 

and AUS  = (u+un)T  Ax - bn Alt  (4.2.78) 

In section 2.5, considering the typical mesh and nodal 

substructures, we have shown how the Principle of Virtual 

Displacements, but not that of the Virtual Forces, could be 

exclusively expressed in terms of the fundamental static and 

kinematic variables. We will now extend the conclusion for the 

assembled structure. However, instead of following the strictly 

first-principle based method adopted in section 2.5, we will use 

now a simpler method based on equation (4.2.20b). 

Let us then eliminate, through (4.2.20b), the generalized 

additional deformations Aug  in the description (4.2.74) of the 

Principle of Virtual Displacements, yielding, after simple 

regrouping: 

Al  Ab = X T  (Au+AIRun) - AbT  (TZ-IQIT X ) 

Substituting above the definition of the generalized 

additional forces 

n = 011.  X (4.2.79) 

which corresponds to the generalization of (2.5.13), and then of 

(2.1.20), to include the additional forces due to the internal 

release effects, the PRINCIPLE OF VIRTUAL DISPLACEMENTS reduces to 

T 
Ab = X T  (Au+AR) 

the definition of the structure strain energy becoming 

(4.2.80) 
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AU = X T  (Au+ARun) 	(4.2.81) 

In the above results, (4.2.71) to (4.2.81), the static 

variables are related by an equilibrium condition and the 

kinematic variables define a compatible state of displacements 

and deformations; the stress- and strain-resultant fields were 

not, however, associated through any causality relationship. 

The relation of duality between the descriptions of linear 

Statics and Kinematics, inherent in the works of Clebsch (1862) 

and Maxwell (1864), was recognised and explored by Jenkins (1947, 

1953) and popularized through the post-graduation courses delivered 

at Imperial College by J. C. de C. Henderson in the 1950's and 

by J. Munro in the 1960's. 

Munro (1965a)has offered a proof of duality in the mesh 

description of linear Statics and Kinematics which is founded on 

the transformation of static bases. 

The results in (2.4.19-20) and (2.4.27-28) may also be 

accepted as a general proof of duality between the linear 

description of Statics and Kinematics of the nodal and mesh sub-

structures since the exact Statics and Kinematics were derived 

independently and specialized next to the linear case. A similar 

statement can be made about the nodal and mesh descriptions of 

Statics and Kinematics of the assembled structure, summarized 

in (4.2.16-17) and (4.2.50-51), respectively. 

In kinematically linear structural mechanics and within 

a mathematical programming formalism, Static-Kinematic Duality 

has been extensively used in plastic limit analysis and synthesis 

by Munro and Smith (1972) and Smith (1974), in shakedown analysis 

by Smith (1974) and in elastoplastic deformation analysis by 

Maier (1968) and Smith (1974). 

In kinematically non-linear elastoplastic analysis, the 

concept was used by Maier (1971), Corradi and Maier (1975), Alexa 

(1976), Contra et alia (1977) in nodal formats and by Smith (1975, 

1977) in both mesh and nodal descriptions of first-order non-

linear Statics and Kinematics. 
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CHAPTER 	FIVE  

ELASTIC-PLASTIC STRUCTURES 

Although the solution of problems in structural mechanics 

by optimization techniques can be traced back to Fourier, it was 

only in the early 1950's that Charnes and Greenberg (1951) and 

Foulkes (1953) formally identified plastic limit analysis and 

synthesis as linear programming problems. 

After a dormant period during which structural discretizat-

ion techniques were being developed, in the late 1960's Maier in 

a brilliant series of papers proved mathematical programming to be 

the ideal mathematical formalism for the discrete representation 

of the mechanics of elastoplastic and non-linear elastic continuum 

problems. A number of subsequent contributions have developed an 

extensive range of solutions for skeletal structures, plates and 

shells, for a variety of loadings and materials; besides plastic 

limit analysis and synthesis, they include applications in shake-

down analysis and linear and non-linear elastoplastic analysis, 

with or without limited deformations, efforts being now oriented 

into the implementation of commercially viable computer program 

packages. 

Attesting the important role that mathematical programming 

plays in modern engineering, a NATO Advanced Studies Institute on 

Engineering Plasticity by Mathematical Programming was held in 

August 2-12, 1977, at the University of Waterloo, Canada, the 

proceedings of which present an excelent review of the different 
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techniques and approaches, applied to a multiplicity of problems 

in structural mechanics. 

As was pointed out by Maier (1973), the role of 

mathematical programming in structural mechanics is two-fold:-

"To provide a unified theoretical framework for the study of 

discrete or discretized structures and to supply computer-suited 

algorithms for the numerical solution of engineering structures". 

Although acknowledging the practical importance of the latter, 

the presentation to follow places more emphasis in the first of 

these two aspects. 

The present Chapter starts with a summary of some, results 

in mathematical programming theory required in the applications 

to follow; they include the symmetric quadratic programs of 

Cottle (1963), the associated Kuhn-Tucker Conditions and 

Equivalence requirements, and the theorems on duality and on 

uniqueness and multiplicity of optimal solutions. 

The fundamental conditions characterizing the behaviour 

of elastoplastic structures undergoing large displacements, 

presented in the previous Chapters, are then combined in a 

consistent way following an approach first proposed by Smith 

(1974); in this manner, the governing system is expressed in four 

distinct and alternative formats, the nodal-stiffness, nodal-

flexibility, mesh-stiffness and mesh-flexibility formulations. 

The governing systems are then treated following the usual 

procedure in the mathematical programming theory of structural 

analysis, e.g. Maier (1968) and Smith (1974); the structure 

governing system is identified as the Kuhn-Tucker Conditions and, 

through Kuhn-Tucker Equivalence, the corresponding mathematical 

programs derived. Section 5.2 ends with a brief reference to 

related formulations presented in the literature. 

Although this alternative is not to be explored, reference 

should be made to the mixed nodal-mesh formulations which in some 

circumstances can be advantageously used in the derivation of a 

governing system involving a number of variables inferior to both 

the static and kinematic indeterminacy of the structure; we refer 

the article by Araujo (1972) on this matter. 
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After processing the alternative governing systems through 

Kuhn-Tucker Equivalence, the corresponding mathematical programs 

are physically interpreted and analyzed through mathematical 

programming theory. 

Following Maier (1971), conditions for uniqueness of 

solution are established and multiple solutions qualitatively 

investigated. 

As the structure governing system defines configurations 

which are simultaneously statically and kinematically admissible, 

the role of the Kuhn-Tucker Equivalence will prove to be to 

separate that system into two distinct problems wherein static and 

kinematic admissibility are enforced independently. The 

extremization of the objective functions of the associated 

mathematical programs become the criteria of selecting among all 

statically (kinematically) admissible states the correct static 

(kinematic) field or fields; the variational principles of 

kinematically non-linear elastoplastic analysis are thus recovered. 

An interpretation, in the manner of Corradi (1977a) of 

Drucker's stability criteria completes section 5.3. 

After a brief description of the algorithms used in the 

solution of illustrative examples, two special occurrences in the 

behaviour of elastoplastic structures, namely plastic unstressing 

and limit and bifurcation points, are analyzed and numerical 

procedures for identifying and solving such situations presented. 

Essential in the development of modern plastic buckling 

theory was Shanley's (1947) interpretation of Engesser's tangent 

modulus load. Post-buckling and imperfection-sensitivity aspects 

of plastic buckling are reviewed in Sewell (1972) and Hutchinson 

(1974). After extensive experimental and theoretical studies of 

the column problem, the research effort has, apparently due to 

and for engineering practical purposes, moved into the analysis of 

plates and shells, with considerably less attention being paid to 

skeletal structures. 

Instead of adopting directly Hill's (1956, 1958, 1961) 

bifurcation criteria for elastoplastic solids, we opted to adapt 

Thompson's perturbation procedures in elastic stability theory to 

the formulation being suggested. The adaptation of perturbation 

methods in finite-element representations of structures is due to 
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Thompson and Croll (1968); in the context of elastic systems, 

extensive additional work has since been done by these authors 

and their collaborators, much of which can be found in Croll 

and Walker (1972) and Thompson and Hunt (1973). Of particular 

interest is the article by Thompson and Hunt (1975) correlating 

the authors? bifurcation theory with the catastrophe theory of 

Thom (1972). 

As was shown by Drucker (1950), plastic unstressing, 

also referred to as "local unloading", a common occurrence in 

(elastic-) plastic systems subject to discontinuous loading 

programs, may also occur in structures under proportional loading. 

Various studies have been published since, by Finzi (1956) and 

Hodge (1959) for instance, but it was only two decades later, 

with the utilization of mathematical programming theory, that a 

unified treatment of the problem emerged. 

Using some results on the parametric linear complementarity 

problem due to Cottle (1972a, 1972b, 1974), De Donato and Maier 

(1974, 1976) proposed a set of criteria systematizing the 

conditions required for regular progression of yielding. The 

physical interpretation of the adopted mathematical programming 

algorithm steps had already proved to be an efficient process 

of tackling numerically the problem of plastic unstressing. As a 

consequence, the numerical procedures mentioned in De Donato and 

Maier (1972, 1973) and presented by Maier et alia (1976) are 

conceptually identical to the procedure proposed independently 

by Smith (1975, 1978), from which were developed the techniques 

to detect and solve situations of multiple plastic unstressing 

and apparent locking presented in the latter part of section 5.4. 

The alternative descriptions for the elastoplastic 

governing system are specialized in section 5.5 for the analysis 

of elastic structures and in section 5.6 for rigid-plastic 

analysis. The associated mathematical programs are then derived 

and interpreted following the procedure adopted in section 5.3. 

Chapter Five ends with a brief comparative study of the 

behaviour a structure presents when elastic, elastoplastic and 

rigid-plastic constitutive relations are assumed; emphasis is 

given to "non-typical" responses as they are commonly ignored by 
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textbooks and other publications on kinematically non-linear 

structural analysis. 

5.1 	CONSTRAINED OPTIMIZATION  

The problem of constrained optimization consists in 

finding the minimum (or maximum) of a function z, the OBJECTIVE 

FUNCTION, on n variables u, the DESIGN VARIABLES, which must 

satisfy certain relations, the m CONSTRAINTS: 

Min z(u) 
	

(5.1.1a) 

subject to:- 

g 1(u) 
g2 (u) = 0 

(5.1.lb) 

(5.1.1c) 

In the above MATHEMATICAL PROGRAM, for convenience, the 

m constraints were separated into m1 inequality constraints 

(5.1.1b), which may include SIGN CONSTRAINTS u~O on some of 

the variables, and m2 strict equality constraints (5.1.1c). A 

FEASIBLE SOLUTION is a vector u which satisfies all the problem 

constraints and the set of all such points defines the FEASIBLE 

REGION in the design space u; a feasible solution is said to be 

OPTIMAL if it satisfies the OPTIMALITY CRITERION (5.1.1a). 

The question arises as to which further conditions one 

should add to the set of constraints (5.1.1b,c) in order to 

replace the constrained optimization problem (5.1.1) by an 

equivalent system of equations. Let the Lagrangian of problem 

(5.1.1) be defined as 

L(u;v) = z(u) - vi g1(u) - v2 g2(u) 
m 

By constraining the lagrange multiplier v1 e R 1 to be non- 

negative, we guarantee that Liz since g1 and g2 are, respectively, 

positive and null for a feasible solution u; by further imposing 

a complementarity condition between v1 and g1, the Lagrangian is 

brought into coincidence with the objective function, L=z: 

THEOREM (KUHN-TUCKER CONDITIONS): If u* is a feasible 

solution of the mathematical program (5.1.1) and is also a 

minimizing point, then there exist v1 e Rm1 and v2 e Rm2 such 
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that 

Vu[z(u ') - v g1 (u*) - 112 g2(u*) ] 

91(e) 

g2(u') 

_v1 •g1 (u') 

v1 

Y2 

= 0 (5.1.2a) 

(5.1.2b) 

= (5.1.2c) 

= 0 (5.1.2d) 

0 (5.1.2e) 

0 (5.1.2f) 

A constrained maximization problem 

Max w(u) : g1 (u) '-` 0 , g2(u) = O 

can be treated similarly by studying the equivalent minimization 

problem 

Min z = -w(u) : g1 (u) 	0 , 	g2(u) = 0 

The necessary conditions (5.1.2) for the constrained 

optimality of z were established by Kuhn and Tucker in 1951 and 

were subsequently termed KUHN-TUCKER OPTIMALITY CONDITIONS; the 

Lagrangian stationarity conditions (5.1.2a) are known as KUHN-

TUCKER CONSTRAINTS. 

The Kuhn-Tucker Conditions essentially replace the 

original mathematical program by sets of equations and inequalities 

in terms of z, g, u and a new vector v, the Lagrange multipliers, 

and their gradients. 

If however the fundamental conditions of a problem are 

originally expressed in the form (5.1.2), the mathematical program 

(5.1.1) will represent its equivalent constrained optimization 

problem if it satisfies the following sufficient conditions: 

COROLLARY (KUHN-TUCKER EQUIVALENCE): If z(u) is convex, 

the inequality constraints concave and the equality constraints 

linear (i.e. if the problem is a CONVEX PROGRAMMING PROBLEM) and 

the Kuhn-Tucker Conditions hold, then u* is a solution to the 

problem. 

A proof for the above Corollary can be found in Mangasarian 

(1969). 
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Of particular importance is the following 

THEOREM (UNIQUENESS): Let the feasible region of a 

minimization (maximization) problem be non-empty and convex, and 

let ū be a feasible solution. If the objective function is strictly 

convex (concave) at ū, then the problem has a unique optimal 

solution u*=ū*. 	 (5.1.3) 

We refer next to a relationship which exists between any 

given convex program, here called the PRIMAL program, and a 

second program, called the DUAL. Wolfe (1961) framed this dual 

relationship with the following properties: 

i) one problem, the primal, is a constrained minimization 

problem and the other, the dual, is a constrained 

maximization problem, 

ii) the existence of an optimal solution to one of these 

problems ensures the existence of the same solution 

to the other, 

iii) if one problem is feasible while the other is not, 

there is a sequence of points satisfying the 

constraints of the first,on which its objective 

functions tend to infinity, 

and stated the following 

THEOREM (DUALITY): Let (5.1.4) be the primal problem, 

where z is a convex function, u ERn and g is a vector of m 

concave functions, and define the dual problem (5.1.5) where 

w = L (u; v) = z-vTg , v E Rm 

Then, if u* is a solution to the primal problem, there is a v* 

such that (u*,v*) solves the dual problem and 

z(u*) = u(u*,v*) 

(5.1.4) 

PRIMAL PROGRAM DUAL PROGRAM 

Min 	z(u):g(u)0 Max w(u,v):V 	w=O, v~O (5.1 .5) 
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PRIMAL PROGRAM 	(5.1.7) 

_. 	1 	T. 	1 TC x + xTc 

A x{ :}b subject to:- 	D y + 

The constrained optimization problem (5.1.1) is said to 

be a QUADRATIC PROGRAMMING problem if the objective function is 

QUADRATIC in the variables u E Rn 

z = 1 uTQ u + uTq 	(5.1.6a) 

and the m constraints (5.1.2b,c) are LINEAR 

G u{?} g 	(5.1 .6b) 

thus defining a CONVEX feasible region. 

The convexity of the objective function is ensured if 

matrix Q, which, and without loss of generality, can be assumed 

symmetric, is positive semi-definite, i.e. if 

uTQ u 	0 for all (real) u 	0 

If matrix Q is positive definite, i.e. if 

uTQ u > 0 for all (real) u # 0 

the objective function becomes STRICTLY CONVEX. 

It will prove convenient to re-arrange the data in (5.1.6) 

in order to obtain the following problem 

which corresponds to the quadratic program analyzed by Cottle 

(1963) with the non-negativity condition on variables x E Rn 

relaxed. Matrices C (nxn) and D (mxm) are assumed symmetric and 

positive semi-definite. 

The Lagrangian function of the minimization problem (5.1.7) 

is defined by 

L(x,y;v) = z-vT[D y+A x-b] 	(5.1.8) 

Within the elements of the lagrange multipliers v T=[vT~ v T ] 

we distinguish those associated with the strict equality 

constraints, collected in v1,from the ones associated with the 
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inequality constraints, grouped in v2; while the m2  elements of 

v2  have to be non-negative, the m1 elements of v1  may be 

unrestricted in sign. 

The Kuhn-Tucker Conditions for program (5.1.6) are 

defined below: 

V L= 	C x - ATv + c = 0 
x — - — - - 	-  

V L= Dy y 	- D v 	= 0 -y 	_ 	_ 

	

D y+ A x 	- b{ }0 

T[ 

	

v D y+ A x 	- b]= 0 

v{ }0 

(5.1.9a) 

(5.1.9b) 

(5.1.9c) 

(5.1.9d) 

(5.1.9e) 

Substituting (5.1.9a,b) into (5.1.8), the Lagrangian simplifies 

to 

L(x,y;v) _ -2 yTD y-z xTC x + vTb 	(5.1.10) 

According to Wolfets theory, the dual program of the 

minimization problem (5.1.7) 	is conceived with 	the maximization 

of the Lagrangian 	(5.1.10) 	subject to 	the Kuhn-Tucker constraints 

(5.1.9a,b): 

(fax w(x,y;v) 	_ -2 yTD y-2 xTC x + vTb (5.1.11a) 

subject to:- 	C x - ATv = -c (5.1.11b) 

Dy 	- Dv = 	0 (5.1.11c) 

v I0 p (5.1.11d) 

If matrix D is positive definite the Kuhn-Tucker 

constraint (5.1.9b) identifies univocally the lagrange multiplier 

v with variable y; otherwise, the particular solution v=y is 

always a possible solution. Enforcing this identification, the 

Kuhn-Tucker Conditions (5.1.9) reduce to system (5.1.12), and 

the dual quadratic program (5.1.11) can be expressed exclusively 

in terms of the primal variables as in (5.1.13). 

It is worth reversing the procedure to find the Kuhn-

Tucker Conditions directly associated with program (5.1.13); the 

Lagrangian function is now 
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+ C Y.1 

(5.1.13) DUAL PROGRAM 

MAIN 
CONSTRAINTS 

KUHN-TUCKER 
CONSTRAINTS 

SIGN 
CONSTRAINTS 

COMPLEMENTARITY 

0 

0 

KUHN-TUCKER CONDITIONS (5.1.12) 

111 212 	Y1 - +A11 x
- - b1_ 

T 
=12 	= 22_  _Y2 A21 	_2 

x+ c = 0 (c) 

Y2 

y 2 0  (d)  

Y
T[T 
2 D12 Y1

+022Y2 
 + 1

21  x- b2]= 0 (e) 

_CT T ]  
A11 A21 

Max w = -2 y TD y - 1 
 xTC x + yTb 

subject to: -ATy + 	C x = -c 

Y2
- 
 O 

PRIMAL 
CONSTRAINTS 

DUAL 
CONSTRAINTS 

L(x,y;u,r) 	= -w-uT L A Ty+C x+c 

and the Kuhn-Tucker Conditions become 

-rTy2] 

VL = C x- C u 	= 0 	(5.1.14a) 

V 	= 	D K yL + A u- b= 0 	(5.1.14b) 

r 	(5.1.14c) 

-A Ty + C x + c = 0 (5.1.14d) 

uT  [ A T y + C x + c]= 0 (5.1.14e) 

r =0 ' 
 y2 

 
=0 ' rTy2  = 

0 (5.1.14f-h) 

The complementarity condition (5.1.12e) can be recovered 

by substituting (5.1.14c) into (5.1.14h). Interpreting the non-

negative variable as a slack variable, the stationarity condition 

(5.1.14b,c) identifies with the main constraints in (5.1.12) if 

u_=x. Then, and as the complementarity condition (5.1.14e) is 

rendered trivial by feasible solutions (x,0, systems (5.1.14) 

and (5.1.12) become equivalent. Hence, under the assumption that 

a JOINT SOLUTION u=x, v=y exists, programs (5.1.7) and (5.1.13) 
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share the SAME Kuhn-Tucker Conditions, defined by (5.1.12); 

programs (5.1.7) and (5.1.13) are said to constitute a pair of 

SYMMETRIC dual programs in the sense that 

i) program (5.1.13) is the direct dual of program (5.1.7) 

and ii) the dual of program (5.1.13) when written as a 

minimization problem is program (5.1.7) written as a 

maximization problem. 

The identification of the lagrange multiplier v with 

variable y,'although ALWAYS valid, may not be the ONLY possible 

solution for v. If (x*,y*) is an optimal solution for the primal 

program (5.1.7), (x*,Y*,v=x*) is always a possible optimal 

solution for the dual program (5.1.11); however,it will be the 

unique solution with respect to v (and y) if matrix D is positive 

definite. Similar considerations would apply to variables x and 

u with regard to matrix C. 

Since , under the restrictions imposed by the joint 

solution, the Kuhn-Tucker Conditions (5.1.12) are shared by both 

programs (5.1.7) and (5.1.13), the feasible regions of which are 

convex and assumed non-empty, the Kuhn-Tucker Equivalence 

requirements reduce to:- 

KUHN-TUCKER EQUIVALENCE [System (5.1.12)] : If matrices 

C and D are (at least) positive semi-definite, every solution of 

(5.1.12) is a solution of programs (5.1.7) and (5.1.13); otherwise, 

there may exist solutions of (5.1.12) which do not minimize 

(maximize) the primal (dual) objective function z (w). 

Wolfe's duality theorem, when specialized to, programs 

(5.1.7) and (5.1.13), reduces to the following 

DUALITY THEOREM [Cottle (1963)] : 	(5.1.16) 

1. Weak Duality: if (x',>') and (x'',yt') are feasible solutions 

of the primal and dual quadratic programs (5.1.7) and 

(5.1.13), then 

z(x l,Y t 	= w(x 11,Y't ) 
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2. Duality: if (x',y') is an optimal solution of the primal 

program (5.1.7), then there exists a v' satisfying 

Dv_'=0  y'  such that (x',y') is an optimal solution of 

the dual program (5.1.13), and 

Max w = Min z 

3. Converse Duality: if (x",x") is an optimal solution of 

the dual program (5.1.13), then there exists a u" 

satisfying C u" = C x" such that (x",y") is an optimal 

solution of the primal program (5.1.7), and 

Min z = Max w 

4. Unbounded Primal Program: if the dual program (5.1.13) 

has no feasible solution, then if the primal program is 

feasible its objective function is unbounded in the 

direction of the extremization 

Min z 	co 

5. Unbounded Dual Program: if the primal program (5.1.7) 

has no feasible solution, then if the dual program (5.1.13) 

is feasible its objective function is unbounded in the 

direction of the extremization 

Max w--0.-+Q7 

6. Joint Solution: if either the primal or the dual programs 

has an optimal solution, then there exists an (x,y) which 

is optimal for both the primal and dual programs 

7. Existence: if both the primal and the dual programs are 

feasible then both have optimal solutions. 

The uniqueness theorem (5.1.3) when specialized to 

programs (5.1.7) and (5.1.13) becomes 

UNIQUENESS THEOREM [programs (5.1.7) and (5.1.13)]: If 

the primal [dual] feasible region is non-empty and (x + ,x1 ) 

[(x",y" )] is a feasible solution of program (5.1.7) [(5.1.13)] , 

then 

i) If matrix C is positive definite x'=x*=x" is the 
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COMPOSITE PROGRAM (5.1.19) 

Min Q = yTD y + xTC x + xTc - yTb 

subject to:- D 	i 	A x 
{-} 

-b- 

- T 1 A 	C x = c 

Y2 = 0 

unique optimal solution with respect to x, in general 

KI/y" at optimality. 

ii) If matrix D is positive definite y'=y*=y" is the unique 

optimal solution with respect to x; in general x'Xx" at 

	

optimality. 	 (5.1.17) 

If the objective function is not strictly convex, the 

following theorem, demonstrated for instance in Kunzi et alia 

(1966), can be used to define the totality of relevant solutions. 

THEOREM ON MULTIPLICITY: The entire set of optimal 

solutions of a convex quadratic programming problem is the inter-

section of the feasible domain with the linear manifold obtained 

by adding to any optimal vector all vectors which make zero the 

quadratic form of the objective function and, simultaneously, 

are orthogonal to the constant vector of the linear part of the 

	

objective function. 	 (5.1.18) 

Following Cottle (1963), consider the COMPOSITE program 

(5.1.19) consisting of minimizing the difference of the primal 

and dual objective functions in (5.1..7) and (5.1.13) over the 

set of jointly feasible solutions: 

Cottle (1963) showed the composite program is SELF-DUAL, in the 

sense the dual of program (5.1.19) is identical to program 

(5.1.19) itself; from Cottle's theorem (5.1.16), one may conclude 

that if the composite program (5.1.19) has an optimal solution, 

then at optimality Q=O. 

Let (x',y') be a solution for program (5.1.19); the 

theorem on multiplicity of solutions states that (x",y ") defined by 
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FLEXIBILITY I I STIFFNESS 

NODAL k STATICS AND KINEMATICS 	MESH 

PLASTICITY 

ELASTICITY 

x' = x'  + 	C!. Ax (5.1.20) 

~T1 Ay 

will also be optimal provided 

AyTD 	Ay. + AxT C Ax = 0 (5.1.21a) 

and -bT Ay + 	cTAx = 0 (5.1.21b) 

5.2 	THE QUADRATIC PROGRAMS OF ELASTOPLASTIC ANALYSIS  

In the preceding Chapters, the fundamental (vectorial) 

conditions (equilibrium, compatibility and constitutive relations) 

characterizing the problem of kinematically non-linear structural 

analysis were derived from first-principles of mechanics. 

By interpreting the structure as an assemblage of either 

MESH or NODAL substructures, Statics and Kinematics were expressed 

in two fundamental alternative descriptions. 

Each member forming a typical substructure was then 

assumed to behave elastoplastically. The elastic association 

conditions were studied in some detail and care was taken in 

expressing these conditions in the alternative FLEXIBILITY and 

STIFFNESS descriptions. As stressed before, the model adopted 

for the plasticity relations rests heavily on Maier's matrix 

formulation of Koiter's theory of plasticity. 

The system of equations governing the elastoplastic 

response of a frame under large displacements and/or deformations 

may therefore, as shown by Smith (1975, 1977), be expressed in 

either of the FOUR alternative ways diagramatically represented 

below: 

The present section is concerned with obtaining such 

systems in a consistent way and arranging their constituent 

equations so that each system may be identified with the Kuhn-

Tucker Conditions (5.1.12); under the assumption that the Kuhn-

Tucker Equivalence requirements are fulfilled, pairs of primal-

dual programs (5.1.7-13) are then derived. 

239 



5.2.1 	Perturbation Analysis 

Let us assume that the static and kinematic fields prevail-

ing in an elastoplastic frame subject to a given load X are known;. 

the objective now is to determine the change in those fields when 

the load is varied by a GIVEN quantity AX which can be expressed 

as a non-linear but continuous function of a load-path dependent 

parameter E 
i 

AA = 1 X.  TT 

The variations on the problem variables have been already 

defined in a similar form and Table 4.11 summarizes how those 

variables should be related in order to ensure static equilibrium 

and kinematic compatibility, subject to the elastoplastic 

association conditions, while parameter E is increased from zero. 

Except for the plasticity association condition (4.1.41), 

the fundamental conditions of mechanics were expressed through 

linear relations which, and notably, proved to be recursive; as 

the i-th order generic residuals IR depend on static and 

kinematic variables of order lower than the i-th, they behave 

as (known) constants. 

Table 4.11 shows that of the problem variables only two 

are sign-constrained, the non-negative plastic multipliers u.n.. 1  

and the non-negative plastic potentials 	The The latter are 

dependent variables defined by the static phase of plasticity 

(4.1.38) which enables us to re-write the flow rule (4.1.40) as 

IH ur - INTXi+ IR
T
l 	0 

transforming the association condition (4.1.41) into 

u T, [ IH u*  - I TXi+ IRL.  ] = 0 
i 

(5.2.1a) 

(5.2.1b) 

The fundamental relations in kinematically non-linear 

analysis of elastoplastic planar frames when expressed in a 

perturbed form prove, therefore, to be LINEAR [except for the 

plasticity association condition (4.1.41) or (5.2.1b)] and of 

STRICT EQUALITY type [except for the yield conditions (4.1.40) or 

(5.2.1a)], involving SIGN-UNRESTRICTED variables [except for the 
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non-negative plastic multipliers uni]; the structure of the 
problem is therefore qualitatively IDENTICAL to that of the Kuhn-
Tucker problem (5.1.12). 

The main inequality constraints (5.1.12b) can be identified 
with the yield rule in the form (5.2.1a) so that the complementarity 
condition (5.2.12e) becomes the association condition (5.2.1b); 
variables y2  identify with the plastic multipliers u., and the 
sign-constraint (5.2.12d) stands for the flow rule (4.1.42). The 
identification of variables x and K1 as well as of the (constant) 
entries of matrices A, C and D and vectors b and c will depend on 
the way the alternative descriptions for the fundamental conditions 
of mechanics involved are inter-combined. 

AUXILIARY 	RESIDUAL 	VARIABLES 

Awo  = A631  + AIRXE 	Aw1  = AIR un  - AR 

Aw2  = -n 	n A-n  + IKI„IAwl 	Aw3  = Aw2  - An 

Nodal-Stiffness Formulation 

Awl 	= A TAIRn  + IA TIKAwo 	, Aw2  = -AIRS  - IN TKAwo  

Nodal-Flexibility Formulation 

Aw 	= Aw 	, 	Awl  = A TAIRn 	, 	Aw2  = -AIR o o 	 . 

Alternative flesh-Stiffness Formulation 

Awo  = IBTAa1 	, 	Awl  = Aw3 	, 	Aw2  = -AIR)  + INTAw2  

Alternative Mesh-Flexibility Formulation 

Aw o  = INT (ITAv 3+AIR XE ) -AIR p 	, 	Aw l 	= IB T (IFAw3+Awl) 	, Aw2  = lKl„MEAw3  

Mesh-Stiffness Formulation 

Aw1 	= IKAIRuE 	, 	Aw2  = -Yip 	, 	Aw3  = IFpAIRn  + BT,At I  

Mesh-Flexibility Formulation 

Aw 	= -AIR 	Aw l = F' AR 	+ BTAw o S 	p 	o  

TABLE 5.1 
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I  THE FORMULATIONS OF PERTURBATION ANALYSIS I 

NODAL-STIFFNESS 	 (5.2.2) 

u 

IK . 

-IN TIK 	A 

TT 	[-IN TIK 

' 	-!A TIK IN 

IH+IN TIKIN 

A q ± (IH +IN 

- q 

u 

u 

TIKIN) 

= 

' 
1 

u+ 

lA T  X+lA TIK u -D+w I  

-IN TIKuD+w2 

0 

IN 	TIK u D  - w 2  j l  i  

(a)  

(b)  

(d) 

= 	0 	(e )  

NODAL-FLEXIBILITY 	 (5.2.3) 

- 

u*1 

-IK N1 	• 

• IH 
_ 	I 	_ 

[ 
A 	I -IN] 

C 	
IH 

q 

u 
- 

q 

u*  
_ _ 

u*  

+ 

i 
+ 

i 

- 

AT-

-NT  
- 	_ 

IF 

IN T  

 Xi  = 

- 

Xi  = 

u*i 
X - w 211  

lA ō X +w1  

w2  

-(šD20)1 

0 

= 0 

_i 

(a)  

(b)  

(c)  

(d)  

(e)  

(ALTERNATIVE) 	MESH-STIFFNESS 	 (5.2.4) 

u T 

-[ 

-*i  

IK 	-IKm Ī 	-IKMIN 

-IN T 	IK 	I IH -IN T 	IN 

-IBT 	-IB TIN] 

1 [ INTIK 	u 	+ 	(IH -M - E 	- 

-LIE-  

u 

LIE  

u*  
_ 	_i 

-IN TIK - -IYI 

+ 

IN ) u - - 

- 	-IB 

-IN TIB 

* 	-IN - 

p i  = 

'- 

_ 

u*  
i 

TIB e  - - 

IB o x+I 41 	D +wi 

IN T  (IB 	A-HK 	u 	) +w 

- (IB T  u D+wo ) i 

0 

IN T  (IB 	X+IK 	u 	) -w 
1 
 ī - 	o - -M - D 	- 2 

(a)  

(b)  

(c)  

(d)  

0 	(e) 

(ALTERNATIVE) 	MESH-FLEXIBILITY 	 (5.2.5) 

- 

IH L  

-IB T  I *IN 

-IK 	IF 	IK 	IN -M- -M- 

*1  

u*l  + 

u* 	+ 

[I-1*u*  l 
 

[ &i 	 -IN TIK MIF IK 	1 
IB TIF 	IB 	IB TIF 	IK fiI  

IK 	IF 	IB 	IK 	IF 	IK 	4K -M- - , --M 	-M -M 

-IN TI 	IB p -IN TIK „I I -11--E--  

-p--  

_ UE  

 e 

u -E 

U 

*(IBa-  

' IN 

i 

= - 

- 0 
i 

- 

T I T (lRa x+lKI T uD ) i 

IB T  (IF 	IB 

IK 	FOB -M - -o 

M-D )'wo  

+w
oi  
(b)  

o  A+I *u D ) +c11  

X-HK 	u 	) +w - -M D 	-2 
(c)  
(d)  

i 	0 	(e) 

TABLE 5.2 
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Summarized in Table 5.2 are the four alternative 

formulations for the system of relations governing the behaviour 

of elastoplastic structures under large displacements. 

The NODAL-STIFFNESS [NODAL-FLEXIBILITY] formulation 

(5.2.2) [(5.2.3)] is based on the nodal description of Statics 

and Kinematics (4.2.69) and (4.2.70) and uses the stiffness 

[flexibility] description of Elasticity (4.1.37) [(4.1.36)] 

together with the Plasticity relations (4.1.38) to (4.1.42); the 

latter, together with the flexibility [stiffness] description of 

Elasticity were combined with the mesh description of Statics and 

Kinematics (4.2.67) and (4.2.68) to form the MESH-FLEXIBILITY 

[MESH-STIFFNESS] formulation (5.2.5) [(5.2.4)]. The residuals wi 

are the coefficients in the series expansion (2.1.52) of the 

auxiliary residual variables Awi defined in Table 5.1. 

In each formulation, equilibrium [compatibility] is 

ensured by conditions (a) [(c)] , the yield [flow] rule and the 

association condition being represented by relations (b)[(d)]and(e), 

respectively. The compatibility (equilibrium) condition is 

implicitly stated in the equilibrium (compatibility) yield and 

association conditions of the nodal-stiffness (mesh-flexibility) 

formulation. In the mesh-flexibility formulation we note 

I 	= I+IK~„IIF 	and 	IH.*. = IH-IN T(IK +IK I,,IIF IK I,1)IN 	(5.2.6a, b ) 

and in the nodal-stiffness formulation 

IK- = /ATIK /A -IK N (5.2.6c) 

Each of the four alternative governing systems may now 

be identified with the Kuhn-Tucker Conditions (5.1.12); their 

layout in Table 5.2 allows for an immediate identification of 

the variables and operators they involve with those present in 

the Kuhn-Tucker problem. Assuming that such systems satisfy the 

Kuhn-Tucker Equivalence requirements, those identifications can 

be enforced into the primal-dual pair of programs (5.1.7-13) thus 

obtaining the four pairs of quadratic programs (5.2.7) to (5.2.14) 

of kinematically non-linear elastoplastic analysis. 

A superficial analysis of system (5.2.4) shows that 
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THE 	NODAL-STIFFNESS 	FORMULATION 

1 

subject 	to:- 

q 

u -x- 

T 

1 

Min 	z = 
 

K,. 	1 

	

-N 
T
K /A 	1 IH 

^ 	IK O 	1 
	r 
_IN T1K 	!A 	

1 
IH 

-IA KIN 

+IN TAK IN 

-IA TIKIN- 

q_ 

u_* 

q _1 

u Ii- Ii 

= 	rI, x+IA TIKuD+c 1 
	.. 	L 	-IN T1Kup

+W2_ i 
+IN TIK IN _ 

PRIMAL 	PROGRAM 	(5.2.7) 	, DUAL 	PROGRAM 	(5.2.8) 

Max w=-- 

subject 	to 

q 

_ u _ 
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T~ 

i 

	

IK 	1 	-IA TIKIN 

	

_ IN T1K 	A 1 	IH +IN T1KW 

q 

- u„ 
+ 

i 

q 

_ u-x 
u 

TIK 

T 

i 

!AōA+IATIKuD+W1- 

_ 	-IN u D+w2_ 
0 

i 

THE 	NODAL-FLEXIBILITY FORMULATION 

Min z = 1 2 

subject 	to:- 

q 
rT 

_ 

-- i 

-IK 
Ni 

- 	• 	1 	
IH 

-, 
-1K N~ • 

• ~ 	
IH _ 

q 
 U 

- 	- 
q 

_ u X. 

+ 

1 - 
+ 

i 

-a 1 X TIF 2- 1- 

!A T 

_ IN T_ 

X.+ 	X T(u 1 

Xi = 

- 	+W 
1 	D 

-  
IAāX+W1 

- 	-2_i 

) i 

PRIMAL 	PROGRAM 	(5.2.9) I 	DUAL 	PROGRAM 	(5.2.10) 

Max w =-1 
2 

subject to:- 

q^ 

- u 

T 

i 

- 

-IK 	
•- 

-N 
1 _ 	1 	IH_ 

[IA 	i -IN] 

- 

_ u 
q 

U K. 

2
1T 
1 XTIF 	X.+ 
21- 	1 

i 

	

 + IF X i 	= 

u ni ' 

q 

_-.3t, 

O 

-(uD+ 

T 

1_ 

LA T A+W 
-o- -1 

c'-'~2_i 
o)i 

wherever the generalized elastoplastic deformations can be 

isolated, they appear constantly coupled with the mesh static-, 

kinematic interdependence matrix Ì. The product IKII( uE
+up )i has 

the dimensions of a static variable, suggesting that the adopted 

policy of keeping Kinematics exclusively in terms of kinematic 

variables and concentrating static-kinematic interdependence in 

the description of Statics may not be particularly well suited 

for the mesh formulations; as the mesh formulation is essentially 

a static procedure, in the sense that it chooses static variables 

for unknowns, it is perhaps more convenient, and consistent, to 

have Statics expressed exclusively in terms of static variables 
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THE 	(ALTERNATIVE) ME5H-STIFFNESS 	FORMULATION 

Min 	z = 
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PRIMAL 	PROGRAM 	(5.2.11) I 	DUAL 	PROGRAM 	(5.2.12) 
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THE 	(ALTERNATIVE) 	MESH-FLEXIBILITY 	FORMULATION 
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ÌB T (IFIBQA+I T.uQ )+w_1 
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+w]i 

 i 

and transfer the static-kinematic interdependence onto the 

description of Kinematics. 

An immediate consequence is that matrix 

I  = I - I-
T
Bn 	 (5.2.15) 

has not to be inverted at the beginning of EACH new increment. 

Let us then re-write the perturbed form of equation 

(4.2.20a) as 
ōn = in (Ig1T X - it + IRn) i 
	

(5.2.16) 
i 
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thus expressing the generalized additional force displacements 

exclusively in terms of static variables. In (5.2.16) we note 

Ifl = -IP-1 	 (5.2.17) 

Matrix P is block-diagonal and therefore easily invertible; for 

instance, and from (2.1.43b), the m-th diagonal block of matrix 

in corresponding to the additional force displacements associated 
with the structure m-th member is found to be 

X2  
c L2 

+ 2sc 	L3 

c 	c  
-sc 

L2 - (s2-c2)  L3 

c 	 c  

-Sc 
L2 -(s2-c2)  L3 

c  

X 2 
 

s  L2 - 2sc 	
L2 

L
c 	c  

Substituting (5.2.16) into the perturbed form of (4.2.20b) 

the following definition for the perturbed generalized additional 

deformations is obtained: 

Letting 

un 	= 1Q111-1 (igiT X-n)i+ (IRun+I D In IRn)
i  

1 
	- 	- - 	— — - 

= [B iBn] and p. = 

T1 
P 

(5.2.18) 

(5.2.19a,b) 

the perturbed description of Statics 

Xi  =[B.IB o] (5.2.20) 

1 
is found after re-grouping and equating the same order terms in 

the incremental form of (4.2.59), wherein each of the incremental 

variables was replaced in a power series; the super-vector p*  is 

termed EXTENDED GENERALIZED BI-ACTIONS. 

Treating similarly the finite description of Kinematics 

(4.2.60) the following perturbed description is found 

 

B
ET- (u+un) 

 

 

(5.2.21a) 

(5.2.21b) 6 	BT  
_-o_ 

where v*  is the i-th coefficient in the series expansion of the 

EXTENDED1GENERALIZED BI-ACTION DISCONTINUITIES 

(5.2.19c) 
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Using (5.2.15) and substituting in (5.2.16) the 

equilibrated generalized stress-resultants (5.2.20), the 

definition for the generalized additional force displacements 

becomes 

sn = C i Fp iIF J °  

where F
T 

= If1[IQITB; -I ~] 	and LL 

Substituting (5.2.18) and (5.2.22) in (5.2.21) and re-

arranging, the following description of Kinematics in terms of 

both kinematic and static variables is finally obtained: 

In 	the above 

0 
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IF 

we 
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=-8 
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_*
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B1 O 
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	IQI 

- 	Ircin 

IFM 

(u+.+  i+ 

IĪl 	IQITeo 	, 

In 	IQITB 

IQIT8 

fM IFo- 

_IFo ' IFX_ 

	

IFo 	= 

	

-8 T1 	fl 

I41 

IFP 

P.* 

A 

I 

I n 

IQIT Bo 

+ Ft 

r IF0
_ 

_ 

IRn 	(5.2.24a) 
i 

(5.2.24h) 

(5.2.25a,b) 

(5.2.25c) 

The mesh-stiffness and mesh-flexibility formulations 

(5.2.26) and (5.2.27), respectively, were obtained using the 

alternative mesh descriptions of Statics (5.2.20) and Kinematics 

(5.2.24) in the above; their identification with the Kuhn-Tucker 

Conditions (5.1.12) is immediate and the corresponding pairs of 

primal-dual quadratic programs are given in (5.2.28-29) and 

(5.2.30-31). 

If the generalized additional forces it are interpreted 

as generalized indeterminate forces in addition to p, as in 

(5.2.19b), matrix IFS., 	defined by the sum 

IF.* = 8* IF B* + IFM (5.2.32) 

will then represent the SYSTEM INCREMENTAL FLEXIBILITY MATRIX; it 

determines the generalized discontinuities and the generalized 

additional force displacements corresponding to a set of 

Q* 

x 

IF I 

+ In 	IF? n 

i 

=11-1 IDTB° 

1 
(5.2.22) 

(5.2.23a,b) 
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(5.2.26) THE MESH-STIFFNESS FORMULATION 

	

BoX+w1 	(a) 

	

-IN Teo X+wz 	(b) 
- 

=-EF A +BTuD+c,~3
~ L 	i 

i 

u i
EH u#-INTB. .p .-IN T B0A-w2I 

i 	0 

-B* • 

	

4 	 

. 	I 

IK 

IH i -INT 133, 

THE MESH-FLEXIBILITY FORMULATION (5.2.27) 

IH 	u* + [!NTBJE 
L IN T Bo X+wo] 

i 
(b)  

tB*Ni u* + 	IF* p* - B *IF Bo +IFpo ) A+B*u O +w1~ 
i 

(c)  

0 (d)  

u*iCH 
u. -INTB.p.-INTBoX-wIl = 

indeterminate forces p and tt for which the structure responds 

entirely elastically. The presence o'f the generalized additional 

forces in the mesh-flexibility system (5.2.27) and programs 

(5.2.30-31) is a direct consequence of establishing the condition 

of equilibrium on the deformed and displaced structure; matrix 

IF
M
, defined in (5.2.25c), which may well be interpreted as the 

SYSTEM "GEOMETRIC" FLEXIBILITY MATRIX, quantifies the effects 

of such finite displacements in the subsequent deformability of 

the structure. The effects of the axial forces on the flexibility 

of the structure are accounted for by the component B*IFB*, which 

represents the flexibility matrix of structures able to deform 

without displacing. 

Matrix K*, defined in (5.2.6c), is the SYSTEM INCREMENTAL 

STIFFNESS MATRIX and determines the generalized nodal forces 

corresponding to a set of generalized nodal displacements for 

which the structures respond entirely elastically; while the 

stiffness stability functions present in the unassembled stiffness 

matrix K reduce the member stiffness for increasing axial 
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compressions, the corrective term -IK N, which can be interpreted 

as the SYSTEM "GEOMETRIC" STIFFNESS MATRIX, tends to decrease 

the overall stability of the structure. 

The essential difference between programs (5.2.11) and 

(5.2.28) [(5.2.12) and (5.2.29)] is that the former can only be 

set up after the inversion of matrix In, while in the latter 

that matrix is inverted during the solution procedure. As the 

effectiveness of the existing mathematical programming 

algorithms depends on the existing number of variables and, and 

specially, as the number of constraints, program (5.2.11) [(5.2.12)] 

is from a numerical point of view, more adequate than program 

(5.2.28) [(5.2.29 )] . 

Programs (5.2.13) and (5.2.30) [(5.2.14) and (5.2.31)], 

although structurally very similar, differ essentially in the 

variables they select to characterize the static-kinematic inter-

dependence, the generalized elastic deformations in the former 

and the generalized additional forces in the latter. Letting 

M, R and r represent the number of structural members, internal 

and external releases, it is easy to conclude that the dimension 

of these variables, defined in Table 4.1, are given by 

du = 3M+R+r and d = 2M+Rr 

E  

where R<R. The number of variables in program (5.2.30) [(5.2.31)] 

can therefore be significantly lower than the number of variables 

present in the alternative program (5.2.13) [(5.2.14)]. Although 

programs (5.2.13) and (5.2.30) have the same number of constraints, 

program (5.2.14) will always involve more constraints than 

program (5.2.31). The primal-dual pair of programs associated with 

the mesh-flexibility formulation (5.2.27) enjoy the further 

advantage of not requiring the explicit inversion of matrix In  

prior to every load increment. 

Programs (5.2.11) and (5.2.12) can be recovered by 

eliminating in programs (5.2.28) and (5.2.29) the generalized 

additional forces through (the second sub-set of) condition 

(5.2.26c). Similar considerations could be made involving the 

mesh-flexibility systems (5.2.5) and (5.2.27) and, consequently, 

their associated programs. 

249 



THE MESH-STIFFNESS 	FORMULATION 
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THE MESH-FLEXIBILITY FORMULATION 
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i 	i 

+ P* C(BTFIF Bo +IFpo )_x+BTuD+w11 i 
i 

 [NTBoX+wo] i 

PRIMAL 	PROGRAM 	(5.2.30) I DUAL 	PROGRAM 	(5.2.31) 

Max w =-2 uT 	IH u 	
- 2 

p
-*
i
—*-*

i 
IFp 

1 	i  

subject 	to: 	B T .IN 	u. 	+ 	IF 	p 
i 	i 

u* 
i 

+ 	u,T 
 iL 

_ -~(B T 

- 0 

! INTBoX +wol i 

IF Bo +IFpo )X+BiuD+w11 i 

5.2.2 	Asymptotic Analysis 

If the asymptotic analysis relations were to be combined 

as the perturbation analysis relations have just been, four pairs 

of quadratic programs qualitatively identical to (5.2.7-8), 

(5.2.9-10), (5.2.11-12) or (5.2.28-29), and (5.2.13-14) or 

(5.2.30-31), would thenceforth be obtained. However, as the 
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asymptotic relations were derived by expanding in a power series 

the total variables and not their increments, those programs 

would only be valid in the absence of plastic unstressing. 

5.2.3 	Incremental Analysis 

The procedure Followed in subsection 5.2.1 can also be 

applied to the incremental system relations defined in Table 4.9; 

the alternative descriptions of Statics and Kinematics, the 

perturbed forms of which are given by (5.2.19) and (5.2.23), 

respectively, should also be considered. 

The governing systems for the elastoplastic incremental 

analysis are structurally identical to systems (5.2.2) to (5.2.5) 

and (5.2.26) and (5.2.27), it being only necessary to replace 

there each variable, say xi, by its corresponding increment Ax. 

As the residuals twi, defined in Table 5.1, are non-linear 

functions of the system variables, such systems may only be 

identified with the Kuhn-Tucker Conditions (5.1.12) under the 

assumption that the actual values taken by those residuals are 

known a priori. Under this assumption, and supposing that the 

governing systems satisfy the Kuhn-Tucker Equivalence requirements, 

the associated pairs of primal-dual (iterative) quadratic 

programs could then be derived. Such programs would emerge in 

formats structurally identical to their counterparts in the 

perturbation analysis programs; in fact, the (iterative) 

quadratic programs of incremental analysis can be obtained just 

by replacing in programs (5.2.7) to (5.2.14) and (5.2.28) to 

(5.2.31) each perturbation coefficient by the incremental 

variable itself. 

Once a program is solved, based an a first estimate of 

the non-linear residuals A wi, in lieu of repeating the solution 

procedure using an improved estimation, one should make use of 

the post-optimal (or sensitivity) analysis techiniques which 

enable quantification of the variation in the optimal solution 

caused by changes in the program data. These techniques are 

explained in most works dealing with mathematical programming 

algorithms; we refer to Boot (1964), Fiacco and McCormick (1968), 

Orchard-Hays (1968) and Gass (1969) for further information on 

this subject. 
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The same comment applies to the quadratic programs of 

perturbation analysis. After solving the first-order program, 

wherein the residuals are zero, as the programs are recursive, 

the j-th order optimal solution can then be obtained using a 

post-optimal analysis based exclusively on the information 

provided by the previous j-1 sets of lower-order optimal 

solutions. 

5.2.4 	Deformation Analysis 

Most of the works in non-linear structural analysis 

employing fictitious or additional forces choose to eliminate 

these forces from the formulation by exploring their linear 

dependence on the stress-resultants. It proves however more 

rewarding to assume that there exist (known) matrices P and Īl 

which relate the (finite) generalized additional forces with 

their displacements through 

rt = P Ōn 	and 6;~ = n (5.2.33a,b) 

The four alternative formulations in non-linear elasto-

plastic deformation analysis presented in Table 5.4 were obtained 

by combining, as previously, the alternative descriptions of 

Statics and Kinematics (4.2.59) to (4.2.62) given in Table 4.7, 

with either the Elasticity descriptions (4.1.22) or (4.1.23), 

together with the Plasticity relations (4.1.24) to (4.1.28), 

and relating the generalized additional forces with their 

displacements through (5.2.33a) or, as in the mesh-flexibility 

formulation, through (5.2.33b). In the governing systems (5.2.34) 

to (5.2.35) we note 

K = A7 	.~ P A and K~,1 	7 = BP Bn N  

the auxiliary variables wi being defined in Table 5.3. 

(5.2.33c,d) 

In order to identify each of the alternative formulations 

with the Kuhn-Tucker Conditions (5.1.12) it is necessary to 

assume that for a GIVEN loading configuration X the elements of 

the functional matrices F, K, H and N and of the functional 

vectors un, uE.t, XEii,7 and u
c) 
have KNOWN,fixed values. The four 

pairs of primal-dual programs (5.2.37) to (5.2.44) were obtained 
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AUXILIARY 	VARIABLES 

c o  = - 
-1 

+ 	
-En 	

-1 	= un- 	uLi) 

Nodal-Stiffness 	Formulation 

w
1 
 = ATK W

o 	w 2  = -it 	NTK W
o  

Nodal-Flexibility 	Formulation 

wo = Do 	 U1 	-i t  

Mesh-Stiffness Formulation 

wo 
= BTW1 

' 
w1  = BSP 27W1 -XEi 

' 
w2  = -VH 

T- B 1  

Mesh-Flexibility 	Formulation 

w 	= --T 	w1  = 8 -0 	w2  
-0 	

B 	
0 

TABLE 5.3 

after enforcing those identifications into the pair (5.1.7-13). 

In general, the values the above mentioned functionals 

(as well as those of the elements of matrices P and fl) take for 

a given loading X can not be known a priori. The post-optimal 

analysis techniques we referred to previously need not be 

confined to the study of the effects caused by changes in the 

stipulation vectors b and c, as required in the incremental 

analysis programs. It is also possible to study the effects of 

varying one or more, as will be the case in the deformation 

analysis programs, of the coefficients of the structural matrices 

A, C and D. Although the rationale is similar the technique can 

become so involved that an iterative procedure coupled with 

prediction techniques may well be more practicable. 

5.2.5 	Related Formulations 

Let the RATE OF VARIATION of a generic variable y be 

defined as 

	

m 	i-1 
y = lim L = lim E 	y. E 	= y 

E--,0 E 	E--,0 i  
O i=1 	il1 

 (5.2.45) 
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THE FORMULATIONS OF DEFORMATION ANALYSIS 

NODAL-STIFFNESS (5.2.34) 

u 

-K N +A TKA ~ 	• 	-AT KN 

_ 	-NTKA 	H+NTKN_ 

[ 	
NTKAq+(H+NTKN) 

q 

_u.- 

u 

 u 

_ 

e 

e 

+ 

- 
AōX+ATKu 0+w1 

_ -X,-NT
KuD+wz. 

0 

X.+N
T 
KUD-w2 = 0 

NODAL-FLEXIBILITY 	(5.2.35) 

-r 

	

-K 1 1 	•- 
a - 

	

- • i 	H - 

A 	i 	-N 

u~[ H 

q 
--- 
- u 

q 

u 
- 

u- 

+ 

+ 

- 

AT 
---  

_-
NT 

F 

N T 

X= 

e 

X= - 

une 

X + 

A[ 

--X +w1_ 

(uD+wo ) 

0 

X*-w1j = 0 

P1ESH-STIFFNESS 	(5.2.36) 

- 

uT 

- K-KM 	1 	-K MN- 

-N TK 	i 	H-N TK 	N 

[ 	-BT 	i 	-BTN 	] 

[N TKr 	u E 
+(H -N TK r N)u*- 

- uE 

u 

--uE 

_ 12-x-__ 

N 

+ 	-8 

-NTB 

TBp 	+ 	X. 

p 	= 

'- 

_ 

U'F ' 

-NT(- o 

BoX 

-X +NT(B 

-BTup -wo 
0 

X +- - D-u1 

+K MuD+w1  

+K u )+w 

 = 0 

MESH-FLEXIBILITY 	(5.2.37) 

- 

H 

- -BTN 

BTN — —n-- 

uTT[H 

u_ 	+ 

u* + 

u* - 

	

L-NT8 	i 	-NTB.Td 

	

BTF8 	i 8TFBn 

	

BTF8 	i8TFB -n 

	

_ —n-- 	-1-c--n - - - 

NTB 	- NTBnn+ X*- 

p 

- 
p 

n 

u 

-- 

NTBoX

e-

= - 

e 0 

-wo] 

Xx+NTB0X+wo 

BTFBoX+BTuD+w1 

BTFB X+BTu +w = a__0 — -n-D -2_ 

= 0 

TABLE 5.4 
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THE NODAL-STIFFNESS FORMULATION 

Min z = 	2 q 

-u* 

T - KN + ATKA; 	-AT KN 

- 	- NTKA 	H+N TKN 

g 

_ u_,_ 

subject 	to:- - KN + ATKA { 	-ATKN -q - = A0A+A TKuD
+w1  

- 	- NTKA 	H+NTKN u* '-'_ X ,-NTKuD+w2 

PRIMAL 	PROGRAM 	(5.2.38) DUAL 	PROGRAM 	(5.2.39) 

Max w = -1 -g T - K N + ATKA  	-ATKN q + q  A0X+A TKuD+w1 
_u. _ 	- NTKA 	H+NTKN _u* u _ X*-NTKuD+w2 

subject to:- 	 u 	> 0 

THE NODAL-FLEXIBILITY FORMULATION 

Min z = 

subject 

2 

to:- 

q_ 

u. 

Tr -KN 1 

• 1 

--KN: 

• ; 
- 	1 

• 

H 

• 

H 
_ 

g 

u* 

q 

u* 
_ 	-. 

+ 

+ 

2 X 

A T 

-NT 
- 	J 

T FX 

X= 

e 

+ X T(uD 

Ao X 

-X +w 
_ 	-1_, 

+wo ) 

PRIMAL 	PROGRAM 	(5.2.40) I DUAL 	PROGRAM 	(5.2.41) 

Max w = -2 

subject to:- 

^g 

_gam 

T- 

-L A  

-K N I 

_ 	1 	H _ 

 i -N 
 ~ 

~q 

_gam 

-q-- 

u* 

- 2 XTFX + 

+ 	FX = 

u 	e 

q 

__* 

-(uD 

0 

T 

+wo 

AT A 

_ X*+-1 

) 
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THE MESH-STIFFNESS FORMULATION 

Min z = 2 

subject to:- 

uE 

u- 

T 

	

K -KM 	i 	-K~,,~N 

	

-(V TK fvI 	H 	- 	NTK MN 

K-K 	; 	-K 	N 

	

f'1 	, 	-M-  

	

-NTKM 	i 
-  

H 	- NTK M N 

uE 

u* 

u -E 

u ,~ 

+ 

+ -B 	J p 
_  - 

-NT 

p T (BTup+wo 

= 

) 

B X+K u 	+ W -o - -M -D  __ 1 

-X*+NT ( Bo X+KMuD)+W2 

PRIMAL 	PROGRAM 	(5.2.42) DUAL 	PROGRAM 	(5.2.43) 

Max w=-1 2 

subject to:- 

u -E 

u 

T K-K 	i 	-K 	N 

	

- -M 	-M-  

	

1_'!Ti 11 	' 	H- 	N TK 	N 
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-BT 	- B TN 	j u 
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-E 
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u 

+ u -E 

u 

0 

_BuD_fJJ 

T -  B X+K u +W 
_ 	-o- -M-D -1  
-X +N T (B 	X+K u +W ) 

THE MESH-FLEXIBILITY 	FORMULATION 

1 	T 	1 - Min 	z = 2 u Hu +2 

subject 	to:- Hu. 
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- T- 
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PRIMAL 	PROGRAM 	(5.2.44) 1 
DUAL 	PROGRAM 	(5.2.45) 

Max w =-- u 

subject 	to:- 
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-B T N 

-B TN _ -TT- 
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T B TFB 

B TFB 
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B TFB _ Tt-- 
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~ 	B T FB
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+ uT 
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(-X y+N Bo X+w ) 

B TFBo X+B TuD+W1 

B TFB X+B Tu +W 
-rt--o- -TE-D 	-2_, 
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Enforcing the above identification in the nodal formulat-

ion of Statics and Kinematics (4.2.69) and (4.2.70a),respectively, 

the conditions of equilibrium and compatibility during 

infinitesimal changes of configuration emerge as 

IK Na = lAT -IAT A and uE+ūp+ūp= M q 

thus recovering the corresponding descriptions adopted by Maier 

(1971); the definition of matrix EN, known as the structure 
Trgeometric" stiffness matrix, is referred to by Argyris (1965a, 

1965b). 

The stiffness description of Elasticity (4.1.37) becomes 

X4K E• Maier assumes that the elastic stiffness matrix is 

positive definite thus ignoring the effect of the 

axial forces on the stability of the structure members. Lack of 

normality is allowed for in the plasticity relations which one 

defined as follows: 

-IH ; N T  

Furthermore, reciprocity of interaction between yielding modes 

is relaxed, i.e. IH ;IHT  in general. Otherwise, that is if 

lU= IN and 	=1HT, the plasticity relations in the above coincide, 

as must be expected, with relations (4.1.38) to (4.1.42) when 

specialized for infinitesimal changes; for this particular 

description of Plasticity, Maier (1971) presents two pairs of 

quadratic programs bearing a direct correspondence with the 

(first-order) nodal-stiffness programs (5.2.7-8) and nodal-

flexibility programs (5.2.9-10). A parallelism is then drawn 

between the information provided by those programs and the 

results presented by Hill (1958) and Capurso (1969). 

Corradi and Maier (1975) presented a formulation in 

terms of finite incremental variables. Kinematics is left in 

the implicit form 

Au= Au (Aq) 	(5.2.47) 

and Statics is defined through the Principle of Virtual Work 

0AuTnAq) (X+AX ) = f +Af (5.2.48) 

u*  

X u _p  
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in which Af are (body and surface) equivalent forces; the barred 

quantities refer to the structural configuration prior to the 

incremental action. Elasticity is expressed in either of the 

formats (4.1.29) or (4.1.30) but the axial shortening due to 

bending, as well as the instabilizing effects due to the axial 

forces, are neglected; consequently matrices F and K are 

rendered positive definite 

IR
uE 

and IRXE 	come 	to 

to a polytope so 	that 

linear 

be null. 

--H INT- 

the plasticity 

and 

The 

Au* 

the 

yield 

non 

relations 

-linear 

surface 

X~. 

corrective terms 

is approximated 

become piecewise 

NI. AX Au _p 

Ad)* 	0 	Ad)4 Au. 	= 0 	Au* '- 0 

where X* = X*-NTX + H ū* 

Corradi and Maier (1975) 	present the 	following programs: 

Min z = 2 AXT 	u F AX+2 A TH Au*+(f+Af)T Aq-(+A)T[Au(Aq)-Aup] 

subject to: 	NTAX-H Au* 	X* , (aAuT/aAq) (X+AX)=f+Af 

Max w = -2 AuE K AuE-2 Au* H Aug.-X T(AuE+NAu*)+X.T. Au*+(f+Af)TAq 

subject to: 	AuE+N Au.+Au0 = Au(Aq) , Au. 	0 

They relate the minimization program with the generalizations of 

the complementary energy principle developed by Langhaar (1953) 

and Fraeijs de Ueubeke (1972); the maximization program, applied 

by Contro et alia (1974) to the solution of plane cable systems, 

is regarded as an extension of the minimum potential energy 

principle to the case of combined physical and kinematic non-

linearities. 

Alternative proofs of the statements implicit in the 

above programs, based on direct arguments rather than on 

mathematical programming concepts, can be found in Contro et 

alia (1977). 

Establishing a correspondence between the nodal description 

of incremental Statics and Kinematics (4.2.65) and (4.2.66) 
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respectively with (5.2.48) and (5.2.47), and taking into 

consideration the assumptions present in the elastoplastic 

constitutive relations adopted by Corradi and Maier (1975), the 

programs they present can easily be identified with the 

incremental versions of the nodal-stiffness programs (5.2.8-9) 

and nodal-stiffness programs(5.2.9-10). 

Alexa (1976), following Jennings (1968), derives from 

first-principles of mechanics the incremental equilibrium and 

compatibility conditions of nodal substructures; Static-Kinematic 

Duality is preserved at both substructure and structure levels. 

The material is assumed linear elastic-perfect plastic; stress 

interaction is not accounted for. The element elastic constitutive 

relations are derived after the usual procedure of approximating 

by cubic and linear polynomials the transverse and axial 

displacement fields. The adopted plasticity relations, based on 

those established by Maier (1968), correspond to simple plastic 

bending for regular progressive yielding. Including in the 

governing equations adopted by Corradi and Maier (1975) the set 

of assumptions adopted by Alexa (1976), the programs derived by 

the former can be brought to coincide with those presented by 

the latter. 

Abdel-Baset et alia (1973) presented an iterative 

procedure for the analysis of elastoplastic frames to determine 

the failure load accounting for first-order effects due to axial 

forces and member deformations. The formulation is nodal and in 

terms of total variables, not their increments. The material is 

assumed linear elastic-perfectly plastic. The adopted elastic 

constitutive relations are identical to (3.1.90a); axial 

shortening due to bending is neglected. The influence the axial 

forces have on the plastic moment capacities is accounted for. 

The analysis procedure is based on the assumption that the 

failure load provided by a plastic limit analysis is an upper-

bound estimate of the actualfailure load. The procedure involves 

the iterative performance of a series of limit and deformation 

analysis as linear programming problems. 

Smith (1974) presented a unified theory on the elasto- 
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plastic analysis of structures under small displacements. In 

order to extend the formulation to include the first-order effects 

of finite displacements, Smith (1975,1977) corrected the mesh and 

nodal descriptions of linear Statics by loading each member of 

the assembled structure with the additional forces 

X 

It n = 0 and nt = L 6 t 

and, by preserving Static-Kinematic Duality, found that the 

linear description of Kinematics had to include the additional 

force displacements 6t. The formulation, in terms of total 

variables, is semi-automatic as the influence coefficients (both 

mesh and nodal) have to be derived by direct inspection of the 

particular structure under analysis. The material is assumed 

linear elastic-perfectly plastic. The instabilizing effect of 

the axial forces is accounted for in the elastic constitutive 

relations; axial shortening due to bending is neglected. The 

effect of stress interaction on the member plastic capacities are 

not explicitly considered and although the adopted plasticity 

relations, atributed to Maier (1969b), presuppose the regular 

progression of yielding, the adopted numerical procedure of 

solution, described in Smith (1978), is capable of identifying 

and perform plastic unstressing. 

The works of Smith provided the basis from which the 

deformation analysis formulation presented here was developed. 

It is therefore only natural that the first-order formulation 

suggested by Smith (1975,1977) can be recovered by specialization 

of the formulation presented in Table 4.7. To do so it is 

sufficient to replace the generalized variables by the first 

variable in their definitions in Table 4.1a and to set to zero 

every auxiliary variable defined in Table 4.16, except n and 5m  
which should be replaced by nt  and 6t, respectively; the 

hardening matrix H should be set to zero in (4.1.24) and the 

entries of the normality matrix N assumed path-independent. 

Enforcing the same simplifications in programs (5.2.38) 

to (5.2.45), the programs proposed by Smith are thus recovered; 

Smith chooses to eliminate the additional forces 11t  from the 

mesh-flexibility programs by inverting a matrix the role of which 

is similar to that of matrix [8TFBn-n]. 
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References to alternatives formulations can be found in 

Hofmeister et alia (1970), 11arcal (1971), Yamada (1971), 

Stricklin et alia (1973), and FlcMeeking and Rice (1975). 

5.3 	GENERAL CONSIDERATIONS IN ELASTOPLASTIC ANALYSIS  

In the theory of elastoplastic systems, as in any other 

theory, of fundamental importance are the theorems on extremum 

properties, uniqueness and existence. 

In the previous section the governing systems for the 

analysis of elastoplastic structures, after being expressed in 

four (alternative) formats, were identified as Kuhn-Tucker 

problems and processed through Kuhn-Tucker Equivalence; the 

objective of the present section is to interpret physically the 

programs so derived and analyze them through mathematical 

programming theory. 

The physical interpretation of the programs will show 

once again that an extremely important advantage of this use 

of Kuhn-Tucker Equivalence is that it leads to a formalism for 

the automatic generation of the variational principles for the 

class of structural problems under analysis. 

The application of the mathematical programming theorems 

summarized in section 5.1 will establish which are the 

sufficient conditions for an elastoplastic solution to exist 

and be unique; they will also provide a theoretical framework 

for the study of critical configurations such as multiplicity 

of solutions and stability problems. 

5.3.1 	Existence and Uniqueness of Optimal Solutions 

A structural configuration is said to be KINEMATICALLY 

ADMISSIBLE if (at least) the compatibility condition and the 

flow rule of plasticity are satisfied; it is said to be 

STATICALLY ADMISSIBLE if (at least) the equilibrium condition 

and the yield rule are satisfied. 

When setting up the quadratic programs of perturbation 

analysis it was indicated which of the fundamental conditions 

(Statics, Kinematics and Constitutive Relations) were used to 

form the sets of relationships which were to be identified with 
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the primal and dual constraints in the Kuhn-Tucker Conditions 
(5.1.12); according to the definitions in the above, the PRIMAL 
(DUAL) CONSTRAINTS REPRESENT STATIC (KINEMATIC) ADMISSIBILITY. 
As it is always possible to define a kinematically admissible 
configuration, the DUAL PROGRAMS WILL ALWAYS BE FEASIBLE. However, 
THE PRIMAL PROGRAMS MAY NOT BE FEASIBLE as the (prescribed) load 
variations may exceed, locally or globally, the structure load-
carrying capacity; if so, according to Cottle's Theorem (Unbounded 
Dual Program) the dual objective function is unbounded in the 
direction of the extremization. Otherwise, and following the 
same theorem, it can be stated that IF, FOR A GIVEN LOAD INCREMENT, 
STATICALLY AND KINEMATICALLY ADMISSIBLE CONFIGURATIONS EXIST, THEN 
BOTH PRIMAL AND DUAL PROGRAMS HAVE OPTIMAL SOLUTIONS. 

Having specified the conditions for existence of optimal 
solutions, the next step is to investigate whether the optimal 
solution is unique or multiple. 

We note that for a given perturbation E, the uniqueness 
of the generic perturbation coefficient yi  iš a sufficient 
condition for the uniqueness of the finite increment Ay. 

In the following no reference will be made either to the 
mesh-stiffness programs (5.2.11-12) or to the mesh-flexibility 
programs (5.2.13-14), as they require the inversion of matrix In, 
the regularity of which can not be a priori guaranteed. 

Consider the nodal-stiffness programs (5.2.7-8): 

(I) If matrix IK. 	{ -MTIK IN 	is positive definite, the 

     

-NTH IA ; IH+INTIK IN generalized nodal displacements 
Aq and the generalized plastic multipliers Au*  are 
uniquely defined. 

Ifl IKI,`O, the nodal displacements can be eliminated from system 
(5.2.2). After setting up the new programs, exclusively in terms 
of u. , it can be concluded that 1  

(II) If matrix IK*  is non-singular, a unique solution for the 
generalized plastic multipliers exists if matrix 
IH+IN T[IK.1IK !A IK .I IA TIK]IN is positive definite. 
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Consider now the nodal-flexibility programs (5.2.9-10): 

(III) If matrix IF is positive definite, the generalized stress-

resultants AX are unique. 

and(Iv) If matrix IH is positive definite and matrix KN
negative 

definite, the generalized plastic multipliers and nodal 

displacements are unique. 

For elastic-perfectly-plastic materials (IH=0), the generalized 

plastic multipliers disappear from the primal program (5.2.9); 

hence, 

(U) For elastic-perfectly-plastic materials if matrix KN is 

negative definite, the generalized nodal displacements 

are unique; the generalized plastic multipliers need not 

be unique. 

The mesh-stiffness programs (5.2.28-29) give: 

(UI) If matrix IFI„I is positive definite, the generalized 

indeterminate Forces Ap and the generalized additional 

forces An are unique. 

In particular, if (Inln In 
I# 

0, then 

(VII) If matrix 5T4n-InIn[ I n In ]-1 In in}i(~T B 	 (5.3.1) 

is positive definite, the generalized undeterminate 

forces are unique, 

and (1110 The generalized elastoplastic deformations will be unique 

if matrix 

is positive 

IK 	-j-8 	(I Tlfl 	I 	)-1 	B T ; 	B 	(ITn 	') _ 	_n —n— 	 n 	 rte 	 rt 	 fi— 	 n  
IN T 	Bn(ITrjj 	In) 

-1 
BT,I H+INT Bn(Infn 	') 

definite. 

-1 BTIN rt- 
_1 BnIN 

Finally, from the mesh-flexibility programs (5.2.30-31): 

(IX) If matrix H is positive definite, the generalized plastic 

multipliers are unique. 
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0 

I 

0 

(X) If matrix IF* is positive definite, the generalized 

indeterminate and additional forces are unique. 

Assume that I FITtIFBn+ IrLIĪIi ~ 	0; then 

(XI) If matrix [IH+IN T B (BFB +Ip )-18TIN] is positive definite, 

the generalized plastic multipliers are unique. 

and (XII) If the matrix defined below is positive definite, the 

BT[IF+NIĪUT-(IFBIT 01111n)(BFB7+41In)-1(BPIF-Ipo,To]B 	(5.3.2) 

generalized indeterminate forces will be unique. 

Among all possible multiple optimal solutions, the 

relevant ones are those which are simultaneously statically and 

kinematically admissible; as the feasible regions of the COMPOSITE 

forms of the previously presented quadratic programs are formed by 

the intersection of the primal and dual feasible regions, if the 

composite program has an optimal solution, that solution has to be 

both statically and kinematically admissible. 

Consider, for instance, the nodal-flexibility programs 

(5.2.9-10) and let (qi, un, X1) be the i-th order optimal 

solution, to which a set of plastic potentials 011.i is associated. 

From Theorem (5.1.18) 

(q",u:,x")i = (q',u_,,'E ,x' )i + a (6q,bu_ ,bx)i 	(5.3.3) 

will also be an optimal solution, with plastic potentials 

"i 	
i + a5c .i provided, and dropping the subscript i, 

-6gT1K N6q + 64IH6u* + 6XTIF6X = 0 	(5.3.4) 

and, for first-order solutions, 

6XTu0 = 62TT 	 (5.3.5) 

As the solution (q", u.'j', X") is also a feasible solution, the 

following conditions must be satisfied: 

- -  

	

--n< ; . 	6q 
--  • ' IH 	b u r 

- LH- 1 IN 

+ IA T 	6X = - 

-IN 

+ IL 	b x = 

6 * 	(5.3.6) 

(5.3.7) 

(5.3.8) bq 
bu . 

+a 6u. - 0 , 	+ a6c 	-4 0 (5.3.9a,b) 
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uY
T b 	T bu + a 6u 1 bc . = 0 (5.3.10) 

The sign constraint (5.3.9) limits the parameter a to exist 

within an interval 
[aurin, 

 amax], depending on the sign of bu*  and 

64)*. If this interval is non-empty and there exists a configuration 

(bq, bu.*, 6x) satisfying system (5.3.4-8), then solutions (5.3.3) 

characterize the BIFURCATION of the equilibrium path a = 0, an 

occurrence first recognized by Shanley (1947). 

Summarized in Table 5.5 are the forms system (5.3.6-10) 

takes when specialized for the cases of unique nodal displacements, 

plastic multipliers and stress-resultants. In the latter case, if 

the material is elastic-perfectly plastic, the system reduces 

further to 

bgT/AT X = 0 , IKN  bq_ = 0 , -A 6q-4-IN bu = 
0 

u'f +a bu 	0 , do
ll- 	 bu. = 0 

The above system extends to kinematically non-linear analysis 

(IK N/O) Smith and Munro's (1978) justification of lack of 

uniqueness of the kinematic solution of holonomic elastoplastic 

structures under small displacements; the pseudo mechanism 

concept, first employed by Munro (1963b) to explain a mode of 

plastic unstressing, is used in their physical interpretation 

of the phenomenon. 

Another situation of interest is when 

= 0 , u_if  = 0 and X' = 0 

implying 
	= 0 , A. x = 0 and u0  = 0 

Then, the only non-trivial conditions that the configuration 

(bq, bu., 6X) has to satisfy are (5.3.6) to (5.3.8) together 

with 

abu . 	0 ,abo* 	0 , 6u1 60 1)* 	0 	(5.3.11-13) 

If bu.i 	0 (6u. 	0) and 61, 	0 (6% > 0) there exists an 

unbounded set of solutions a>0 (a<0) defining a neutral state 

which Maier (1971) identifies with the "eigenstate" of Hill 

(1958). If however buy. [or 61*] is unrestricted in sign, 

condition (5.3.11) [or (5.3.13)] can only be satisfied for a = 0 

and the solution is rendered unique and trivial. 
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6g=0 6u,~ = 0 bx=o 

6u.~6 _. =0 	B X T uD=O 

lA T6X=0 

IH6u.-IN T6X=-6/. 

IN6u4+IF6X 	=0 

ul. +a6u*'0 , Ml+a6I.,`-0 

u* 6.T*+.T* õu=û 

6X TuD=6gTn TA 

-IK Nbq+IA T6X=0 

IN T6X=6/. 

-!A 6q+IF 6X=0 

Il+ a 6,1. `0 

u* b_+a6u T.6_*=0 

6gT1A ō~=0 , 6u b~*=0 

K
N 6q

=0 

IH6u*=-6 

-lA 6q+IN6u*=0 

ul.+a6u.0 , T4t+a6T* 0 

u'T 6~,~+~6u =0 

TABLE 5.5 

5.3.2 	Bounding Theorems 

After simple substitutions, particularly easy for the 

nodal-flexibility formulation programs, the primal and dual 

objective functions of the programs previously presented, and 

IRRESPECTIVELY to the formulation they may be concerned with, 

can be reduced to the following forms: 

- Deformation analysis programs 

zD 21- 1-2E 	
u H u. 2 n T 6 }- S-(uD+2uEn+un-u~)TX}+04 

(5.3.14) 

	

D  1~ 
X 
T +1  u TH 	 1 	 6 	XTu  

	A
T 
6-1  X

T u -n
T 

	

u -0 (5.3.15)-w= 2 uE 2 	u*-2n 1. *} 	2 EnE e } 4  

- Incremental analysis programs 

z I ={1 ~X T (Du +Du +~ )-1 AnTA6 +1 [AX T(IR +IR -IR )+A6TIR -Au T - IR M]} - 
l2 	 E 	 P 	2 - n 2 	uE -un -P 	-n-n 

-wI={

{AXAU}+04 	 (5.3.16) 

1 AX T(Au +Au +Au )-1 ~nT~6 -1 [6X T(IR +IR -IR )+A6nfR -Du T.iR 1}-  2 	E -P -n 2 - -n 2 L - -uE -un -p 	- n -*-y 
(5.3.17 
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- Perturbation analysis programs: 

    ni . b 	.+2 LX i (R-uE +-urC--P ) i+bTLi Rfiz -ums R 1 ]}-  zP={2 XT(uE+up+-n)~ -2  - -ni 

{-XiuDl}+Const. 	 (5.3.18) 

-wi={2Xi(u E +u p+u n) i-2-1 -7i 2r-1 'R uE+R urC-R p)i+bnRn --*i.R1 

{-I 
bi~ - Const. 	 (5.3.19) 

In the expressions for z0 and wD (zI and u1 ), 04 represents 

terms of fourth- and higher-order on the total (incremental) 

corrective variables, which were treated as constants when 

applying Kuhn-Tucker Equivalence. The (genuinely) constant terms 

in the expression of zP and wP do not affect the extremization of 

these functiona].s and can therefore be disregarded. 

From Static-Kinematic Duality it is found that, for each 

of the three formulations under consideration, 

X T (u+un)- xTs-nT6n= zD-wD = 0 

AXT(Au+Aun)-AXTA6- ArETAort= z I -w T = 0 

XT(u+u ).-XT b -r7Tb 	= zP-wP = 0 -1 -- -7 i -1 -i -i-ni 	i i 

thus confirming that at optimality the primal and dual objective 

Functions attain the same value, z(x*,x*)=w(x*,y*). 

Consider now the First-order primal and dual objective 

functions of the perturbation analysis programs and assume that 

an optimal solution (x 1,y) exists; then, from (5.3.18) and 

(5.3.19) 

z1+wp = X-1-Du +X1b1 	= 2z1 = 2w
1 

1 

and let us define the (dimensionally inconsistent) quantity 

T 	T 

- -1-D1+-1 - 1C 	 1 

Let (xl,i1 ) [(x ,yij be a(first-order) statically 

u
T 

-D1
-D

1 
 u +-1 Al 
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[kinematically]  admissible solution and zP(x,y) [4(4,MM)] 

be the value taken by the primal [dual] objective function at 

that point. Cottle's Theorem (Weak Duality) states that 

 P1 	P1 
	

-'Y )2w(K,y) 	= 	 .2 p(  

or, since up - -D~ 1- >0 1 

2  

  
  	

2  4(4,4) 	 < 
	z131 (x 'y

S 
) 

u
T
u+

T
A 	u

T
u+-

T
-DD-1l 	 DD 1 1 

(5.3.20a) 

Following Maier (1971), let us define the flexibility 

and stiffness parameters x~ and R. 

and 

J 

which estimate the variation of the j-th nodal displacement 

(stress-resultant) caused by a unit load (dislocation) applied 

at the same point. The bounding theorems in Maier (1971) can be 

recovered after specializing in (5.3.20a) the parameter Y. into 

the flexibility and stiffness parameters 

= 0, X1 _[. • •x1 • ..]) 
j 

D 	X 1 
Rj = u 

D1 . 

RD =x(A1 = 0,uō 
1 

=[ • .. u . 
1. 
J 

...]) 

yielding 	
~2 

wP (x1,yK ) = xX = A
2 

zP(1,y1) 

1. 
J 	 J 

2 	P K K 	D 	2 P S S 
2 	w1 (x1,y1 1 = xj = 2 z1 (x1,y1 ) 

uD1 	uD1 . 
J 	 J 

and 

(5.3.20b) 

(5.3.20c) 

The above inequalities are useful estimates of local 

flexibilities since they only require the identification of 

feasible solutions which are easier to find than optimal solutions; 

if (xS~,y1) or (xK~,y1) coincide with a (first-order) optimal 
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solution the correspondent inequalities in the above become 

strict equalities. 

5.3.3 Extremum Theorems 

As the primal (dual) constraints of the programs 

previously presented, the objective functions of which can be 

expressed as in (5.3.14-19), represent static (kinematic) 

admissibility, these programs can be read as follows: 

(I) Among all statically admissible stress fields, the 

actual stress field(s) make the functional z a 

minimum, 

and 	(II) Among all kinematically admissible stress fields, 

the actual strain field(s) make the functional -w 

a minimum. 

The above statements have obvious similarities with the 

principles of minimum complementary potential energy and minimum 

potential energy, respectively. These principles can be recovered 

if the incremental strain energy and complementary strain energy 

are defined respectively as 

AU = -AX T( AuE+Aup+Aun)--An  au -2 EAX T (IRuE+IRun-IRp ) +AŌ T Rn 

-Au IR] 

AU = 1 AX T (Au +Au +Au )-1 ArTAŌ +~ rAX T (IR +IR -IR )+AW T IR - 2 - uE up _n 2 -- _n 2 - uE -uTC WI-Wm -n 

-Au lIq 

and the incremental work performed by the prescribed forces and 

dislocations respectively as 

AI.1 =AX T A6 and 	AL *_ - Aup AX 

Then, and neglecting the fourth- and higher-order terms, we may 

write 

z I = AE* = Au*- ALI:< 
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and -w1  = AE = AU -AW 

where AE and AE* represent the variation on the potential 

energy and complementary potential energy, respectively. The 

functionals -wP and zi  would then represent the non-linear terms 

(the only terms relevant in the minimization procedure) in the 

series expansion of AE and AE*, respectively. 
The definitions given above for the incremental work and 

complementary work only include the contributions of the loading 

and prescribed dislocations; those definitions could however be 

easily extended to include the effects of any other prescribed 

forces and displacements, for instance in the manner of Smith 

(1974). 

The deformation analysis programs were obtained by 

imposing two sets of (severe) assumptions; they presuppose the 

absence of plastic unstressing (thus rendering the elastoplastic 

constitutive relations undistinguishable from those of non-linear 

elasticity) and treat every non-linear corrective variable as 

constants, that is as PRESCRIBED forces and displacements. The 

structure is therefore assumed to behave linearly for each set 

of prescribed forces and displacements and, as a consequence, the 

strain energy and complementary strain energy present an identical 

form 

U = U* = 2 X TuE+ 1 
 u* H u -2 rL T  6n  

The expressions for the total work and complementary work 

becoming 

W= X 6 - 2 XĒr !E-nT 11* 
 

and 

W* = -up X - (- uEn+un-u ) T X 

respectively. Letting 0 = X*  u*  represent the plastic dissipation, 

the following correspondence between the dual (primal) objective 

function and the (complementary) potential energy is found: 

E = -W D  = (U + D) -W , E* = ZD  = U* - W.. 
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The above identifications reduce statements (I) and (II) in the 

above to the Haar-Karman and Kachanov-Hodge principles, 

respectively. 

Maier (1971), Contro and Maier (1973), Contro et alia 

(1974) and Corradi and Maier (1975) have presented variational 

theorems, the proofs of which are based on mathematical 

programming theory; Contro et alia (1977) recovered the theorems 

presented by Corradi and Maier (1975) using direct arguments 

rather than mathematical programming concepts. 

5.3.4 Stnbi_li Ly Criteria 

Stability is regarded as an intrinsically dynamical 

subject. Several definitions of stability have been proposed, 

some of which are briefly discussed in Langhaar (1978). 

The kinetic definitions of stability, although simple in 

appearance, are of difficult application and statical criteria 

have been suggested in recurrence. 

As a consequence of the inexistence of a unique definition, 

some ambiguities and paradoxes have arisen on the theory of 

stability of elastoplastic systems; critical considerations can 

be found, for instance, in Sewell (1972). In the context of 

conservative systems with associated flow laws, Drucker's 

statical criterion of positive second-order work 

(5.3.21) 

is generally accepted as a valid stability definition. According 

to this criterion, Drucker (1964), the state of equilibrium is 

said to be STABLE if 17! is positive for any (infinitesimal) 

transition b into a neighbouring configuration, the equilibrium 

of which is ensured by a variation A of the external loads; the 

equilibrium state is said to be CRITICAL if * =0 for some paths 

and positive for others, and UNSTABLE if there are some paths 

for which I'1 becomes negative. 

Cattle's Theorem (Duality) states that at optimality the 

objective function of programs (5.1.7.) and (5.1.13) will attain 

an identical value; in the absence of prescribed dislocations and 
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adopting the notation in (5.2.46), expressions of the form 

• A  x =A T b (5.3.22) 

are found after equating the first-order objective functions 

of programs (5.2.8-9), (5.2.9-10), (5.2.2.8-29) and (5.2.30-31). 

The different forms matrix A presents for each of the four 

previously considered formulations are summarized in Table 

5.6; using (5.3.18) and (5.3.19) equality (5.3.22) can be 

expressed alternatively as 

ūĒ 	ūE + * IH 0 -Fop
bn = 1 T b (5.3.23) 

Considering matrix A defined in either of the formats 

shown in Table 5.6 or as in (5.3.23), Drucker's stability 

criterion can now be read as follows: 

(I) If matrix A is positive definite the equilibrium 

state is stable. 

(II) If matrix A is positive semi-definite the equilibrium 

state is non-unstable. 

When matrix A is defined in the nodal-stiffness format, 

the above statements reduce to the stability conditions in Maier 

(1971) when specialized for elastoplastic materials with plastic 

strain-rates normal to the reciprocally interactive yield modes. 

A stronger stability requirement was proposed by Drucker 

(1964); applying and subsequently removing ~ ,the net work must 

vanish if no plastic deformations occur, and must be positive 

otherwise, i.e. 

Wp 'kT ōp >0 if b p 0 (5.3.24) 

5 p being the permanent displacements caused by A . It can be 

easily shown that 

W = 	T ō 	= ĀT L 5‘. +5 T ō p (5.3.25) 
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where 

L = BT IF Bo + IFx- (B IF Bo+IFo ) T IF 1 (8T IFB0 + Fo ) 	(5.3.26) 

6p= Lac 	 (B TT IF Bo+ IFo )TIF1 	ūp (5.3.27) 

for the mesh-flexibility formulation, and, and similarly to 

Corradi (1977), 

L= IAo IK O 1 a 	and 	6 p = A IK I IATIK p (5.3.28,29) 

for the nodal-stiffness formulation. As pointed out by Corradi 

(1977), who quotes Mandel (1966), condition (5.2.24) and the 

positive definiteness of matrix L are sufficient to ensure the 

positivity of the incremental work Cl , the converse being not 

necessarily true since the positivity of t,l does not ensure the 

positivity of the net plastic work Ll, as shown by (5.3.25). 

NODAL-STIFFNESS NODAL-FLEXIBILITY 

IK _ E 	i 	-lA TIK 	IN 

-IN T K 	 A 	1 	11-14-IN
T 

 	 K 	N 
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----
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-
K 
- 
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-  
. 	1 	. 
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_ 	I 	I 	- - 

IK 	. 	I 	•. 

	

H 	i 
_____L____'____4_-- 
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	i IF 	

-
F

h 
---_ 	-- 	; 	- ' 	1 	' 	I 	-o 	 X 

1 	
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I 	
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-';  	B
T 	
IF 	B 	+F  F 	
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 -#  	-1- -o -o 

	

1 	 1 

	

I 	I 
• 1 	8 TF 	B,+r 	i 	Bōir 	B+IF  . 	o 

	

N 

	

- 	I 	 I 	_ 

MESH-STIFFNESS MESH-FLEXIBILITY 

Table 5.6 
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5.4 	THE BEHAVIOUR OF ELASTOPLASTIC STRUCTURES  

In the present section a brief description is given of 

the algorithms used to solve the quadratic programs derived in 

section 5.2 after processing through Kuhn-Tucker Equivalence 

the alternative governing systems of elastoplastic structures 

undergoing large displacements. 

First considered are the structures presenting a normal 

behaviour, that is, a history of deformation that, from the 

virgin state to the mobilization of a collapse mechanism, does 

not include the de-activation of yield modes (plastic unstress-

ing) nor the occurrence of critical points (limit and bifurcation 

points); not excluded however is the possibility of such 

structures becoming unstable after the formation of fewer plastic 

hinges than those required to mobilize a mechanism. 

Critical configurations are considered next. The techniques 

of elastic instability analysis are borrowed and adapted to the 

formulation being proposed and procedures to identify and solve 

situations of plastic unstressing presented. 

In the following it is assumed that 

the loads applied to the structure vary 

proportionally to a parameter A. 

Linear loading programs, as shown 

in Fig. 5.1(e), are represented thus 

X= A X 

where A is the directional vector in the 

A-space. 

If the loading program is non-linear, 

it can be replaced by a piecewise-linear 

approximation 

X=Xo  +AA - - 

FIGURE 5.1 
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the directional vector A changing now with the phase X0. When 

using incremental analysis formulations, we note in either case 

AX = A AX 

However, if a perturbation analysis formulation is to be used 

instead, the loading program can be represented in the form 

X. = A X.+R' 
i 

where 

RI = RI 	(A1  , A 2 
	

ea, ., .. , X i-1 ) 
1 

allowing the analysis to follow exactly the non-linear load 

program, if, as illustrated in Fig. 5.1(c), it can be subdivided 

into segments with known analytical representation. 

5.4.1 Computational Aspects 

The selection of an algorithm depends essentially on the 

degree (and type) of non-linearity of the Kuhn-Tucker Conditions 

of the program to be solved. 

When, except for the complementarity conditions, the Kuhn- 

Tucker Conditions are linear, as happens for linear and quadratic 

programming problems, the utilization of simplex-based algorithms 

is advisable; extensive research has been done and efficient 

algorithms are already available. 

If the Kuhn-Tucker Conditions are non-linear and linearization 

is not advisable, approximating procedures, such as the method of 

the feasible directions, have to be adopted. Selection of a 

method to solve a particular problem should be based on a judge- 

ment of the characteristics of convergence and rate of convergence 

of the particular algorithm for the particular geometry of the 

problem. 

Descriptions of many of the existing solution procedures 

can be found in Kunzi et alia (1966) and Rvriel (1976). A 

particularly efficient non-linear programming algorithm is 
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reported by Pierre and Lowe (1975). FORTRAN codes for several 

mathematical programming algorithms are given in Kuester and 

Mize (1973). 

Substantial gains in computational terms can be achieved 

through a suitable physical interpretation of the algorithm 

operations. Examples of successful adaptations of available 

algorithms to the behaviour of elastoplastic structures are the 

gradient method of De Donato and Franchi (1973) and the restricted 

basis linear programming technique first proposed by Maier (1970) 

and extensively applied ever since by Maier and his collaborators. 

The determination of the collapse configuration is, from 

the engineering point of view, the central objective in a 

kinematically non-linear elastoplastic analysis. 

As the variables involved are strongly history-dependent, 

the only process of attaining the exact solution is to follow 

the sequence of formation of plastic hinges, checking constantly 

for the occurrence of critical points and de-activation of yield 

modes; such is the objective of the procedure described in the 

following subsection. 

The computer time required for such an analysis is large 

and may soon become prohibitive for design (rather than research) 

purposes; instead of following the consistent but excessively 

long path dictated by the non-linear system governing the problem, 

preference has to be given to "short-cut" approaches leading to 

near-optimal solutions, molded by the knowledge gained by 

experience and constrained by the requirements of the relevant 

codes of practice. 

An improved consistency and a better rate of convergence 

can be achieved if such design-orientated methods, some of which 

are referred to by Horne (1972), are treated within a framework 

and processed through procedures provided by a mathematical 

programming approach. 

The most usual design preconditions are minimum load 

factors and an associated distribution of plastic hinges at the 

beams and columns of the structure. Let X be the required load-

level and X a (trial) stress-distribution (nearly) equilibrating 

the loading and satisfying the yield conditions for the pre-

selected yield pattern. As the stress distribution X is 
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PRESCRIBED the elastic strain-field becomes automatically 

determined and distinction between stiffness and flexibility 

descriptions of the elastic constitutive relations is thus made 

irrelevant. If the stress-distribution X is, as assumed, statically 

admissible it defines a (local) optimum rendering trivial the 

primal programs of elastoplastic deformation analysis; the dual 

programs become LINEAR when conditioned to a prescribed stress 

distribution. 

Performing the internal product of the deformation analysis 

descriptions of statics and kinematics and substituting in the 

resulting virtual-work equation 

X T(uE+uP+uD+un) _ XT 
ō + T ō 

the plasticity relations (4.1.24-28), the following relationship 

results 

The objective 

after 

q 
T 

a simple 

-K N 

i 

function of 

re- 

_ 

arrangement 

the 

of terms: 

_ 	-X T(uE+up+un-uy- 

dual nodal-stiffness 

-q - 

program 

_
-A TL 

X*+n 

(5.2.41) may now be expressed in the form 

T 	_T _ -  

	

w = —1 	--A—°—~--- ~ — —~— + 1 
(uD -- 

+ c~ 
o

) T X 

	

2 	X* + r- 	u 	2 *  

the maximization of which is equivalent to the minimization of 

T _ - o - 
A A 

z = 
.?_(*+  rc p 

as the entries of X and u have prescribed values and those of coo 

are constant. Following a similar procedure, the objective function 

of the dual mesh-stiffness program (5.2.43) can be reduced to the 

linear form 

z= C X 
+n 
	 q* 

The corresponding linear programs (5.4.1.) and (5.4.2.) 

represent the alternative formulations, nodal and mesh, for the 

* 
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problem of kinematically non-linear elastoplastic analysis 

under a prescribed stress-field. The specialized programs 

for kinematically linear analyses can be obtained just by setting 

to zero the non-linear corrective terms rte, u and u~; the 

programs proposed by Smith (1974) would be thus regained. 

DEFORMATION 	ANALYSIS UNDER A 	PRESCRIBED 	STRESS-FIELD 

Min z = 
--ATA 

-T 

--- --- 
X f + ndo 

-n- 

-Q - 
-* 

' 	
N 

- 

-~- 
-* 

u_ '0 

- 	uE+uD+un
-u

T 

NODAL 	PROGRAM 	(5.4.1) MESH 	PROGRAM 	(5.4.2) 

Min z =[NTHo X +x + T
t Tu 	

B TL u* 	= -B T( uE
+uD

+ums  

	

u* 	0 

uT) 

Of the 2c possible yield modes, c being the number of 

critical sections of the structure, only the c' activated modes 

c =0 fitting the pre-selected field pattern need be considered. 

The corresponding c' columns of the normal matrix N can be 

assembled into a matrix Nand the c' possible non-zero components 

of u* into u'*; the relevant sub-set of corrected plastic 

capacities are collected in X) +rttp. If the linear programs (5.4.1) 

and (5.4.2) are condensed employing X? ,rc
T
, N' and u'., then 

their only feasible solutions are optimal solutions, and the 

optimization procedure may now be implemented. First estimates 

of uE, un , u
T 
and rt are determined from the trial stress-field 

(and an approximation to the strain-field) and the selected 

linear program solved. A post-optimality analysis procedure, 

rather than a repetitive solution of the up-dated linear 

programs, should then be applied until convergence is 

guaranteed. If, at convergence, some of the plasticity conditions 

are found to have been contravened, the plastic capacities of the 

offending members are modified accordingly and the analysis 

repeated. 
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An adaptation of Smith's (1975, 1978) interpretation of 

the Wolfe-Markowitz algorithm was used to solve the deformation 

analysis programs (5.2.38) to (5.2.45). As every other simplicial 
method, it involves a finite sequence of pivot steps. Unlike the 

simplex method for linear programming, the pivot steps do not 

generate a sequence of adjacent extreme points of the primal 

(dual) feasible region; instead, they are concerned with 

satisfying the Kuhn-Tucker Conditions for the primal (dual) 

problem. For the programs under consideration, and as a consequence 

of this symmetry and the adoption of joint solutions, both 

primal and dual programs (5.1.7) and (5.1.13) share the same 

system (5.1.12) as their Kuhn-Tucker Conditions. 

The question arises on which of the previously presented 

formulations should be adopted in numerical applications, the 

decision having to be based on two basic considerations; ease of 

Formulating and solving the problem governing systems. 

With regard to the derivation of the structural matrices, 

the nodal formulations appear to enjoy a significant advantage 

over the mesh formulations. As was shown in the preceding Chapter, 

the automatic assemblage of the mesh matrices will not in general 

be as straightforward as the nodal assemblage. The nodal-

flexibility and the mesh-stiffness formulations require less 

matrix operations than the nodal-stiffness and mesh-flexibility 

formulations. 

The more compact nature of the latter two formulations 

is the result of a more economic use of variables and (equality) 

constraints, on the number of which the speed of solution of most 

algorithms depends upon. Summarized in Table 5.7 are the number 

of variables and constraints involved in the quadratic programs 

presented in subsection 5.2.1; a, 0, y and x represent the 

dimensions of vectors p, q, it and X (or uE) respectively, c' 

being the number of currently active yield modes. 
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PROGRfN NO. 	OF 
VAPII RLES 

NO. 	OF 
CONSTRAINTS 

NO. 	OF 
CONST 2;\INTO 

NO. 	OF 
UARIAOLE5 

PROGRAM 

(5.2. 	7) (3 -+-c P+c c 3+c (5.2. 	8) 

(5.2. 	9) (3+c+x Q+c c+x (3+c+x (5.2.10) 

(5.2.11) a+c+x c+x a+c c+x (5.2.12) 

(5.2. 1 3) a -1-c+x c a+ c+x a+c-+-x (5.2.14) 

(5.2. 28) •y+a+c+x c+x y+a+•c y+a,+c+x (5.2.29) 

(5.2.30) a+•Y+c c '4 a+c a l-y+c (5.2.31) 

TABLE 5.7 

The results summarized in Table 5.7 show that the nodal-

stiffness primal program and the mesh-flexibility dual program 

are the ones involving fewer constraints; the latter will in 

general involve significantly fewer variables than the former, 

since for most practical skeletal frames the number of generalized 

nodal displacements far exceeds the combined number Œ+y of 

generalized indeterminate forces p and additional forces it. 

Non-linear programming applications to kinematically non-

linear elastoplastic analysis are descrihed in Alexa (1976) and 

Corradi (1977b); traditional methods are reviewed in Horne (1972) 

and Argyris and Scharpf (1972). 

5.4.2 Normal Behaviour 

For later convenience, let us regroup the variables in 

system (5.1.12) and collect in uT= [y~ x T]all the unrestricted 

variables, and introduce the non-negative slack variables y* so 

that system (5.1.12) becomes 

     

u 

  

Y* 1 

    

    

2 
x2 

   

     

y 2~-0' Y* 01 YZ Y -x=0 

The comparison of the above system with the deformation analysis 

formulations (5.2.34) to (5.2.37) immediately identifies y2 with 
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X= N 
y4e- 

El 

1 

U1 1 i ~12 

T 1 
-12 i ~22 

al -1 

al 	wt 
-2 	_ _-2 

u> and y,, with -14. In vectors b1 and h2tuo terms can be 

distinguished, one involving the fixed loading X0 and prescriber) 

dislocations u8 together with the non-linear corrective variables 

Ci.), the other dependent on the .load parameter. Introducing these 

specializations in the system above and continuing to treat the 

elements of w as constants, the resulting system emerges as a 

PARAMETRIC (in X) LINEAR COMPLEMENTARITY PROBLEM; the objective of 

the solution procedure is to trace the sequence of values the 

variables u, u, and y* take as parameter X is increased From 

zero. The quadratic programs (5.1.7) and (5.1.13) are replaced by 

the LINEAR PROGRAMMING problem 

Max X , subject to:- 

-15 -111-12 

T I- 
-121-    22 

_ 	I 	— 

together with the complementarity condition over u* and z->E which 

is enforced by preventing the simultaneous presence of u
ui 

and 

y, in the pivoting basis. The adaptation of the Wolfe-Markowitz 
I 

algorithm to elastoplastic deformation (linear) analysis problems 

developes as follows: 

STEP 1: Pivot the unrestricted variables into the basis and update 

the remaining constraints: 

u 	15-1 [-n12u.ti -I- a 1 X+ w 1], D'u* - YF -a 1 X = wl (5.4.3a,b) 

STEP 2: Collect in ua the plastic multipliers associated with 

the yield modes already activated and re-write system (5.4.3b) as 

u 	y* 
	x 

U: 	 2 	 2 

u*~ may contain information on previously developed plastic 

strains at sections currently behaving elastically; that information 

is passed on into w'. 
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STEP 3: Pivot u;- into the basis. Then 

uB 
-1 

= DI 1 	-D1 2 L. 

^1 + Z.* + a 2 h + (5.4.4a) 

and 
Du u 	+ 

2y 
y* (5.4.4b) 

STEP 4: Check for plastic unstressing and modify the basis if 

necessary. 

STEP 5: Select outgoing basic variable. As u " and y 	are non- 

basic, and thus null, system (5.4.4b) identifies w=y* for X =0; 

hence, by definition, w M. If X is to increase from zero it has 

to become a basic variable by replacing one of the y* . Say that 

y*i is to leave the basis; then y. i becomes zero meaning that the 

i-th yield mode is about to be activated. The load parameter takes 

the place of y
*i 

on the basis with the value 
_ 	p 
w 

where āi > 0 if h is to increase (wi > 0 and y*i = 0). If ydi leaves 

the basis, y*~ takes the value 

-  
U.

- B yx. = W. - a~ 	
ai. 

(5.4.5b) 

As āi, wi and w~ are non-negative, if ā~ is non-positive ye p may 

increase further; otherwise it tends to decrease and the non-

negativity condition gives wj/ājL- wi/āi. This inequality provides 

the rule to select the outgoing variable yB ; among all positive 
i 

elements of ā select that which minimizes the ratio Di/5i' thus 

STEP 6: Pivot X into the basis, replacing y e . The equation of 
r 

system (5.4.4b) associated with the basic X reads 

d ia 
uxa + dia y a+ y, i + E. X= wi 

where the di and a 	 a are elements of Du and Dy, respectively. 

STEP 7: Update the program variables using (5.4.5), (5.4.4a) and 

(5.4.3a). 

y*. X 
 = t 

	
(5.4.5a) 

 ā. 

guaranteeing that the remaining y8  do not become negative. 
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(*)Estimated from graph, Horne (1971) 
(1)n A0, 
(2)nn=0, 
(3)7n$0, 

& tangent stability 
& "exact" stability 
& "exact" stability 

functions 
functions 
functions 

X L2 
EI 

-0.40 

-0.30 

-02 

* linear analysis 
o Horne (1971) 

^• deformation analysis 
i perturbation analysis 

Refer to Fig.5.3 and Table 5.8 
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STEP 8: The plastic multiplier u ni may now enter the basis. 

As āi and u_, i are non-negative, either of the following 

situations may arise: a) iF did` 0, X will not decrease and the 

maximization procedure may proceed after pivoting u 
`!i into the 

basis and returning to step 4, or b) if did >0, X may not be 

Further increased;X max has been attained. Note that if some of 

the did are null, the corresponding u j can be brought into the 

basis with a non-trivial value (if the corresponding y8j happened 

to be zero) without affecting the solution found for X , thus 

revealing a kinematically multiple solution. 

This algorithm was applied to obtain the discontinuity 

points (the program BASIC SOLUTIONS) of the piecewise-linear graph 

shown in Fig. 5.2 which represents the behaviour of the simple 

portal Frame illustrated in Fig. 5.3, as predicted by the simple 

bending theory of elastoplastic linear analysis. Each basic 

solution represents the activation of a new plastic hinge, the 

formation sequence of which is shown in Table 5.8 under "CS", 

standing for activated critical section. 

FIGURE 5.2 
	

TABLE 5.8 
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6 

1st basic 
solution (BS) 

2X 	12X 	 12X 

XL2 /EI 

-0.30 

2 

- 0.20 

i//ilii/ 

activation of 
sway mechanism 

L 	 L 

2 	 3 	 4 

1 	 5 

SR  = 400 

X 1
L = 0.4 

EI 

T 
L 	1,2,...,5 critical sections (CS) 

1 

-0.10 BS XL2 /EI 6/L CS 
1 .3162045 .0832270 5 
2 .3622707 .1120228 4 
3 .3652625 .1157574 1 
4 .3317663 .3452804 2 

0.10 
	

0.20 	 0.30 	 0.40 

11 1 3 	11 
member chord 
displacements 

0.50 	 0.60 6/L 

FIGURE 5.3 



In many situations this analyst may not be interested in the 

history of the structure deformations but only in the variation 

(in general a reduction) of the structure loading capacity when the 

effects of finite displacements, as well as those of the 

developing axial forces, are accounted for. The elastoplastic 

failure load can be obtained by repetitive application of the 

algorithm just described, updating recurrently the structural 

matrix D and the stipulation vector w using the information 

provided by the previous iteration; the structure, in its original 

state, is "loaded" with the axial forces and finite displacements 

effects formed when attainingA max in the previous iteration. As 

the sequence of plastic hinge formation thus formed can differ 

from the actual sequence provided by an historical analysis, the 

check for plastic unstressing is deprived of its significance and 

step 4 should therefore be disregarded. Eventually, in general 

3 to 4 iterations prove to be sufficient, the solutions associated 

with two consecutive Failure loads are found to converge, 

satisfying a pre-established accuracy requirement. A similar 

procedure has been discussed by Corradi et alia (1973). 

If however the analyst wishes to obtain the correct static 

and kinematic configurations developing along an equilibrium 

path, the following modifications have to be introduced in the 

above algorithm: 

STEP 7:(a) 	Update variables u and u_.. (b) Check convergence; 

if convergence achieved go to 7f). (c) Recalculate X using the 

Principle of Virtual Work in the form 

X = (uT  511 u - u* 522  u* 	uT  w1  + T. w2 ) /(uTa 1 - uT  a) 

or an equivalent one. (d) Check convergence for two successive 

load parameters; if convergence is achieved go to 7f). (e) 

Recalculate static variables using new X and return to 7c). (f) 

Update 0 and w. If coming from 7d) return to 1. 

STEP 8: Start new basic solution: a) If dij' 0 make ur i  basic 

and return to 1, b) If d
ij 

	start minimization of X if the 

post-buckling path is to be investigated. Otherwise stop. 
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Step 7c) proved very Efficient for the improvement of the 

algorithm rate of convergence. It reduced the number of iterations 

per basic solution From more than 20 in some cases, to 2 to 5 

depending on the "length" of the load increment between basic 

solutions. 

The efficiency of this algorithm can be significantly 

improved if, instead of updating repeatedly the arrays 0 and w 

until convergence of the basic solution is achieved, all correction 

terms are concentrated in w, leaving 5 unchanged, and procuring 

convergence using sensitivity analysis techniques. 

The incremental procedures, by their very nature, allow for 

a direct control of which of the yield modes are currently 

activated. As a consequence, the Kuhn-Tucker Conditions of the 

incremental analysis programs can be expressed as a strict 

equality system: 

E11 
	
E12 

E12 ; 	E22 
1 

Au 

Au ~ 

= e 1 

e2 

a 	+ Awl 

AW2 

(5.4.6a) 

(5.4.6b) 

The complementarity condition between the plastic multipliers Au* 

and the plastic potentials 	A. = -AY *  is automatically accounted 
for; the absence of Au* from the pivoting basis makes Au =0, 

while equation (5.4.6h) implies Ay 4=0. 
The detection of activation of a new yield mode can be 

performed in a number of ways. The crudest process is to maintain 

a fixed step length and check the yield rule after each increment; 

if contravened, a sequence of trial step lengths is attempted 

until incipient yielding is exposed. The method has obvious dis-

advantages and other more refined techniques have been proposed; 

procedures to reduce the violation of the plasticity condition by 

predictor and corrector schemes can be found in Zienkiewicz et 

alia (1969) and Argyris and Scharpf (1972). The linear prediction 

techniques, as for instance the one suggested by Jennings and 

(lajid (1965), are conceptually very similar to the rule in the 

simplicial methods for determining which variable is to leave the 

pivoting basis (step 5 in the algorithm described in the above). 

The numerical solution of system (5.4.6) can be performed 
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i 
0+•E 	(Emax)  
*r i=1 *ri ii 0 

using any of the many procedures available. As the value for 

the corrective terms A w is not known a priori, the "exact" 

solution has to be gained after successive approximations; 

sensitivity analysis techniques should be preferred to strictly 

iterative procedures. 

The essential advantage of the perturbation techniques is 

their ability to provide a regular pattern for successive 

improvements of the solution. For the perturbation analysis 

formulations, system (5.4.6) generates an infinite set of strict 

equality recursive systems, each of which can be expressed in the 

form 

E11 I  E12 
T 
E12_ 1 E22_ 

• 
N1 	

e1 	
Xi + F11 1 F 12 

_-2_ 	_ —211-22 
i 

   

1 

f2 

(5.4.7a) 

1(5.4.7b) 

   

where, for later convenience, the plastic potentials -y*i = 0 

were included; the i-th order corrective term f. 	is a function 

of the system variables of order lower than i-th. 

The detection of plastic straining becomes particularly 

simple. Let 	be the i-th coefficient in the series 

expansion of the r-th plastic potential A l*r ; then, by 
definition 

i 

''~r 	~ r + i=1 ~'~ri i: 	
0 (5.4.8) 

Let E be the adopted step length; if for E= E the above condition 

is contravened, we may select the step length E max responsible 

for the activation of the r-th yield mode using the following 

procedure; the onset of plastic straining is characterized by 

which can be reversed to give 
co 	o 	i 

r 
E max

__ 
i=1 ~i 	1 xr 

(5.4.9) 

1 

1 "r2 2 1 "r3  where T1=1, y2=-71 	*r1 ' T3= 2 T2 - 31 f*r1 ' ... 
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The solution procedure is straightforward and can be 

summarized as 	follows: 

STEP 	1: 	Set up matrices 	E, 	F 	and vector e. 

STEP 	2: 	Solve 	system 	(5.4.7) 	for ui 	and uBi, 	to 	give 

- 	N 

	

Y*i 	ā 	x. 	+ 	 (5.4.10a) 1 	-i 

	

8 	N u*i 	- 	a xi + Ri 	(5.4.10b) 

STEP 3: 	Check 	for plastic unstressing and change the basis if 

necessary. 

STEP 4: For load-control programs Ai= 61i  since AX= E. 

1) The first-order solution is u
1 
 =5 uB =a; evaluate 

22  and 22. 
• 
• 
• 

i) The i-th order solution is u.=Ri, u
B .

=Ri, evaluate 

R. 	and  and R. 
• 
• 
• 

STEP 5 : Determine the step length from E n= C.n:/yn  where E is 

the allowable error, y a generic program variable and n the order 

of the highest solution considered (n=3, in general). 

STEP 6: Evaluate the plastic potential coefficients 1 Bi and 

check the yield rule (5.4.8) for each of the yield modes yet to 

be activated. If the yield rule is contravened re-calculate the 

step-length through (5.4.9). 

STEP 7: Evaluate the generic incremental variable by using (2.1.52). 

STEP 8: Update the problem variables and return to step 1. 

The above procedure can be readily adapted to allow any 

other variable, contained either in Au or in Au*, to be used as 

a control parameter. 

The fixed-base portal frame of Fig. 5.3 was first analyzed 

by Horne (1971). The dimensions of the frame and the applied loads 

are shown in the same figure. The flexural rigidity is EI=2.5X1*L, 

the shape factor 1.15 and the ratio of radius of gyration to the 

cross-section depth 0.4; these values, together with the typical 
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XL2  
EI 

I 1 

_1.00 

-0.75 

2 -0.50 

0.1 	0.2 

2X 	i 2X 	L 2X 
-1.25 	1  

3X 	 3X 
2 	 2 

(Refer to Fig.5.3 

0.3 	0.4 	0.5 	0.6 	0.7 	b/L 
1 	I 	l 	I 	I 	i  

deterioration 
in the stiffness 

of the frame with the 
succhssive formation 

of plastic hinges 

ratio E/0*=900 for mild steel, give an unrealistically high 

slenderness ratio of 400 for the frame members. 

The discontinuity points of the non-linear graph in Fig. 

5.2 represent the "basic solutions" provided by the (iterative) 

Wolfe-Markowitz algorithm for solving deformation analysis 

programs. Table 5.8 summarizes the results obtained using first-

order formulations. The results presented by Horne (1971) appear 

to be equivalent to those provided by the first-order formulation 

with zero tt n  forces. Most direct stiffness methods use tangent 

approximations for the stability functions; as the results in the 

same table show, this approximation makes little difference in 

elastoplastic sway frames where the axial forces are usually small. 

The non-linear graph in Fig. 5.2, shown in more detail in 

Fig. 5.3, representing the equilibrium path associated with the 

prescribed proportional loading, was obtained using the perturbation 

analysis numerical procedure. The identification of the formation 

FIGURE 5.4 
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of a new plastic hinge was performed using the series reversion 

procedure described in the above. The results summarized in the 

table in Fig. 5.3 show an excellent agreement with those provided 

by the "exact" deformation analysis programs, the latter being 

given in Table 5.8. 

The effect on the frame deformability caused by the 

formation of a new plastic hinge is shown in Fig. 5.4. 

The progressive deterioration in the stiffness of elasto-

plastic structures has been discussed by Wood (1958) who 

introduced the concept of "deteriorated critical load". This 

concept has no physical basis in exact calculations, as Fig. 5.4 

shows; the deterioration of the frame stiffness immediately after 

the activation of a new yield mode can be recovered after 

increasing deformations. The deteriorated critical load concept 

has been used, among others, by Horne (1960, 1963) in the 

development of methods for practical estimation of the failure 

load of elastoplastic frames. 

5.4.3 Critical Points 

Let system (5.4.5) be expressed in the form 

E ui = e Ac + Ru i + RX i 	
(5.4.11) 

where Ru = Ru ( u~, u2, ..., Uf-1) and Rfi.= R, ( X1,  X2, ..., Ai 1) ' 
the 	1 	clatter vanishing for 	1 	cpiecewise-linear 

paths. When matrix E becomes singular, the values taken by ul for 

a given load increment become indefinite thus revealing the 

occurrence of a CRITICAL POINT. If the analysis is to be extended 

beyond this point, it is necessary to determine its nature; in 

general, a critical point is a limit point or/and a bifurcation 

point. 

This problem has been intensively and extensively discussed 

in the context of elastic systems and the objective of the present 

subsection is to bring that knowledge into the framework of the 

formulation being proposed. Equations (5.4.11) may well be 

interpreted as the governing system of an elastic structure with 

additional kinematic indeterminacies ue; the theory and techniques 

of elastic stability can thus be applied if further constrained by 
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the yield and flow rules of plasticity. The yield rule poses no 

special problems; the identification and solution of plastic 

unstressing may not be a complex procedure but can easily become 

a laborious one, as shown in the following subsection where a 

technique for the identification and solution of plastic unstressing 

is presented. 

A detailed discussion was made by Thompson (1963, 1969) on 

the properties, classification and solution of critical points. 

Schemes of diagonalization, although theoretically very attractive, 

are in general numerically inefficient and tend to be abandoned, 

e.g. Thompson and Hunt (1971). Of the remaining numerical solution 

procedures, Gaussian elimination is still favoured by most 

analysts; a detailed discussion on this matter can be found in 

Wilkinson (1965). 

Let us assume then that system (5.4.11) is to be solved 

by sequential pivoting; if a pivot, say ekk, is found to be null 

(or nearly so) a new pivot ejk 0 (k < 	n) is procured and, if 

found, the k-th and j-th rows of E are interchanged; otherwise, 

pivoting is allowed to proceed to stage k+1. Collecting in vl the 

N' variable associated with non-zero pivots (NI being the rank of 

matrix E) and in vi the N variables associated with zero pivots, 

system (5.4.11) can be solved to give 

I . vi = a' X. + Ri 	, 	0 . vi = a Xi + Ri 	(5.4. 1 2a, b ) 

In the terminology of stability analysis,a N-fold compound 

critical point has been found; from that point 2N-1 (post-buckling) 

paths may emerge, of which only those satisfying the plasticity 

conditions are relevant. 

Variables vi , termed PASSIVE, can be eliminated in Ri so 

that system (5.4.12b) can be expressed exclusively in terms of the 

load parameter X. and of the ACTIVE variables vi: 

a. X. + R. 	= 0 , 	j = 1,2, ..., N (5.4.13) 
J 1 Ji 

where R. =0 	 (5.4.14a) 
1 

R.  = Ajr 	a v 	v~ + Aja a v 	X + A X~ 	(5.4.14b) 
2 	1 	1 	1 	1 	

j 
 

291 



1 X 

A2 

R. = B. 	v 	v 	v + B. v 	v 	X 	+ Bt 	v 	v 	+ 
J3 	JaPY al a1 Y1 	Ja1 a1 13 	1 	Ja1 a1 R2 

8~v 	A2 	
a al 

+ B' 
v 	X +B" . v a2 X +B .X 	 1 +Bt . X X 

ja 
a1 	

2 

(5.4.14c) 

in which the summation convention over a, (3, and y is adopted. 

The N (non-linear) equations (5.4.13) and the fixing of the 

path parameter E are sufficient to determine the i-th order N+1 

unknowns X. and vi, although recurrence to higher-order equations 

is in general needed. The treatment of distinct critical points 

(N=1) is particularly simple and the two following cases may arise: 

DISTINCT STATIONARY POINT: If a l/O, 

equation (5.4.13) gives X i=-Rfi/aj. 

As X
1
=0,Av 1 has to be selected for path 

parameter, giving v
1i= 

S1i• The two 

possible situations for paths emerging 

from the third quadrant are represented 

in Fig. 5.5. 

DISTINCT BRANCHING POINT: If a1 =0 (and 

assuming that Al/0), the First-order 

equation (5.4.13) becomes trivial; in 

principle, either AX or Av 1 may be 

selected as a path parameter. In the 

latter case, the higher-order equations 

(5.4.13),together with (5.4.14), give 

FIGURE 5.5 

+ 	2 
-A11 - All - 4A

1 A ll  

2A 1 
2 

©1111 +B111 X 1 +B11 
X1 + 8

1 

B1 l + B'~ ~`1 
• • 
• 

The three cases of interest are represented in Fig. 5.6. The 

ASYMMMETRIC point of bifurcation is characterized by a non-zero 

slope at the critical point ( X 1 0). When the slope vanishes,the 

point of bifurcation is said to be STABLE-SYMMETRIC if the 

• 
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curvature, controlled by X 2, is positive, and UNSTABLE-SYMMETRIC 

otherwise. 

The forms of the post-buckling equilibrium paths and their 

influence on the stability behaviour of structures were first 

established by Koiter (1945). 

FIGURE 5.6 

The (elastic) post-buckling analysis technique proposed by 

Ecer (1973) can be readily adapted to the incremental formulation 

suggested herein. 

Compound critical points (N >1) can be studied in a similar 

way, the solution procedure becoming however rather more involved. 

In the context of elastic systems, reference to the main aspects 

of the problem can be found in Sewell (1969, 1970), Chilver and 

Johns (1971), Thompson and Hunt (1971, 1973, 1975), Supple (1973) 

and Koiter and Pignataro (1976). Chilver (1973) has shown that in 

situations of nearly simultaneous branching points, the equilibrium 

path may suffer contortions too severe to be handled satisfactorily 

by a perturbation technique; the general practice in such situations 

is to induce the artificial coalescence of such points into a 

compound critical point. 

The formulation being suggested is adaptable to studies in 

imperfection-sensitivity. Loading imperfections can be easily 

simulated, as well as geometric imperfections if use is made of 

the internal and external release devices; some types of material 
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FIGURE 5.7 

imperfections can however be more difficult to simulate in a 

realistic manner. 

5.4.4 Plastic Unstressing 

After pivoting the un-

restricted variables into the basis, 

system (5.4.7) can be solved for the 

plastic multipliers associated with 

the currently active yield modes; for 

load-controlled programs and using 

(5.4.10b), the first-order solution 

is defined by 

J 	,la a1 J 1 
Let us consider the k-th yield mode 

and isolate in the k-th equation of 

system (5.4.15) the complementary 

variable of u*k.  • 

	

B 	 N 

	

u* 	- a. y,. = a. (5.4.15) 

B 	N 	N u*k 1-akay _,~ a1-akk y k 1 
= . ak, 	akk (5.4.16) 

Depending on the sign of coefficient ak and akk, the following 

four situations, illustrated in Fig. 5.7, may arise: 

(1) ak > 0 , 

(2) ak < 0 , 

(3) ak < 0 , 

(4) ak > 0 

-ak/akk < 0 

-ak/akk > 0 

-ak/akk < 0 

-ak/akk > 0 

. paths AB or AE 

paths AC or AD 

paths AC or AE 

. paths AB or AD 

(5.4.17a) 

(5.4.17b) 

(5.4.17c) 

(5.4.17d) 

Whenever ak is positive, u*k 
	

can remain basic and a further 

increase of the plastic strains will take place; if however the 

ratio -ak /akk is positive, 
yNk can be brought into the basis 

replacing upk , thus satisfying complementarity. Among the four 

paths indicated in Fig. 5.7, only paths AB and AD satisfy the 

plasticity relations: 

Path AB ~uBk1 > 0 	and 
r i 

y*k1 = 0 
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Path AC 	> u~`k1 < 0 although y. k1 = 0 

Path AD 	>u*k = 0 	and 	
y k1 

= - 	
k 	

> 0 
1 	 1 

N 
Path AE 	

>uBk1 
= 0 	but 	

Y*kl = - ~
k1 < 0 

If ak is positive and -ak /akk negative, the plastic strains 

developed at the critical section associated with the k-th yield 

mode will increase further if, for the remaining yield modes the 

following condition is satisfied: 

a . > 0 and -a ./a j j < 0 for all j 	k 	(5.4.18) 
J 

The first-order path is represented by AB, in Fig. 5.7, the higher-

order solutions forcing B to coincide with Bt. 

Situation (2) also associates two paths, of which only one 

complies with the plasticity conditions. Path AC contravenes the 

flow rule and, assuming that condition (5.4.18) is fulfilled, path 

AB has to be followed instead, revealing the occurrence of PLASTIC 

UNSTRESSING, or de-activation of the yield mode; in the space of 

the stress components point A loses contact with the k-th yield 

mode and moves inwards. The plastic multiplier 
uek 

has to be 

removed from the basis and its complement 
y*k 

brought into it, 

transforming system (5.4.15) into 

Y 	- 	1 	uB +. 1 	a . 	Y N 	
-ak 

k1 akk k1 akk Ja. 'a1 	akk 
(5.4.19a) 

a. 	a . 	 -a 
N 

u8~ 	 Jk uek - (1 	
a
kk 	

a ja y* a 
= a.+ajk akk k j k 

1 	
a
kk 	1 	kk 	1  

(5.4.19b) 

The above equations show that if a jk is negative and sufficiently 

large in absolute value, plastic unstressing may occur at the 

generic section j if 

a. 	 a 

a.- 	a < 0 	and 	(1 	.lk ) a .. >0 
a kk 	k 	akk 	J.l 

Hence, even if all sections j / k satisfy condition (5.4.18), the 

occurrence of plastic unstressing at section k and the subsequent 

change in the system basis, can modify the system equation 
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sufficiently to open the four options (5.4.17) for the remaining 

sections j / k. 

Before studying situations (3) and (4), let us consider 

the possibility of MULTIPLE UNSTRESSING. Assume that modes 

k = p, q, r, ... were Found to be associated with negative 

coefficients ak and let mode q satisfy condition (5.4.17b). Then, 

from (5.4.19b) 

and 

uBj = aj + ajq y*q 

1 	1 

B 	 N 
u*k 1 = ak + ak 

q Y *q1 

where, from (5.4.19a) 

• j k 	(5.4.20a) 

, k q 	(5.4.20b) 

 
Y q 	--a > 0 a 

1 	qq 

The ratio aq/aqq is a measure of the tendency of mode q to 

unstress. If ajq is positive and akq negative, the value taken by 

does not affect qualitatively (5.4.20); the tendency of modes 
Y;`q1 	

q 	Y ( 	) ~ 	Y 

j / k to strain plastically and of modes k / q to unstress is 

magnified. If however ajq is negative and akq positive,system 

(5.4.20) can be altered qualitatively, the disruption increasing 

with the value of the ratio -aq/a
PP
; the higher this ratio is, the 

higher is the possibility of sections j to unstress (aj+ajq y*q 

may become negative) and of further plastic strains to develop at 

sections k / q (ak+akq y*q1 may become positive). Hence the 

following procedure of identifying those sections where plastic 

unstressing and selecting those which in fact do so: 

STEP 1 	: Identify which of the yield modes are in situation (2) 

STEP 2 : Select, among them, the one associated with the highest 

ratio -aq/aqq; remove uBq from the basis and bring YN
g1 

into it. 

STEP 3 : Return to step 1 and repeat until the list of all modes 

in situation (2) is exhausted. 

Both paths offered in situation (3) contravene the plasticity 

conditions. If all the remaining active yield modes comply with 
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(5.4.18) no changes can be introduced in the system basis and 

the load parameter cannot be Further increased; the structure 

locks in the direction X but it may well be able to deforme further 

if the control parameter is changed. Assume that variable uc  is 

chosen to replace X as a control parameter; then u = Ō 1i  and from c  
i 

x
1 - 	( 1  + a ca y*a ) 

c 	 1 
a. 	a. 

uBj 1 	(a jCt + 	a ca)  y a1 	ā 

and any of options (5.4.17) is re-opened for every yield mode j. 

Situation (4) opens the possibility for the generation of a 

multiple solution since both paths AB and AD satisfy the plasticity 

relations. A multiple solution will in fact exist if the following 

situations may occur simultaneously: 

1) Path ugk  >0, y*k  = 0 : when u*k  is left in the basis all 

the remaining modes j satisfy condition (5.4.18). 

2) Path uBk=0, y*k  > 0: when u.k  is replaced by y*k  in the 
basis (plastic unstressing), after the necessary re-

adjustment in the system basis (which may induce plastic 

unstressing to occur elsewhere) all the (ultimately) 

active yield modes j # k satisfy condition (5.4.18). 

The above considerations can easily he adapted for the 

analysis of similar situations exposed when using either a 

deformation or an incremental analysis formulation. 

Computer codes to detect, distinguish and solve situations 

(1) to (4) are of simple implementation; the routine we used starts 

by selecting and exhausting situations (2), following, in that order, 

by situations (4) and (3). In our limited experience, situation (4) 

has always occurred coupled with situation (3). After applying the 

multiple unstressing routine to every mode k in situation (4) it 

was always found that no yield mode remained in situation (3), of 

rr apparent locking"; instead, plastic unstressing occurred at modes 

j initially in situation (1). 

(5.4.10) 

and 
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1 I 	I 

X L2 
EI 

o~rO 0 
Refer to Fig.5.9 
and Table 5.9 

-0.50 
0 

O 

0 	linear analysis 
o 	Horne (1963) 

-0.2 	deformation analysis 
\J perturbation analysis 

6 
0.01. 	0.08 	0.12 	/L 

As an illustration, consider the single-bay, two-storey 

frame shown in Fig. 5.9, first studied by Horne (1963). All members 

are of the same symmetrical I-section with the web in the plane of 

the frame. The modulus of elasticity is 30 x 106 lb/int and the 

yield stress (at which indefinite plastic deformations may develop) 

is 36 x 103 lb/in2. The members slenderness ratio is 100, the 

variation of the full plastic moment with the axial force being 

negligible in frames with that order of slenderness ratio. 

FIGURE 5.8 

Horne has found that the frame collapses due to instability 

after the formation of the third plastic hinge. The solution 

presented by Horne appears to be equivalent to the results provided 

by the proposed first-order formulation with zero rtn forces, as 

shown in Table 5.9; Jenkins and flajid (1965) and Corradi (1977a), 

using first-order formulations, report values for the collapse load 

similar to Horne's. 

The non-linear graph in Fig. 5.8, shown in more detail in 

Fig. 5.9, representing the equilibrium path followed by the frame 
when subject to the proportional loading indicated, was obtained 

using the perturbation analysis formulation; the solutions found at 

the onset of plastic straining at a new critical section, summarized 
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SR = 100 X1 	*L = 0.12 
EI 

XL2  
EI 

-0.5 

9  activation of way mechanism 

-+ CS about to yield 
-.-activated CS 
---plastic unstressing at CS 

CS - critical section (1,2,...,12) 
RS - - plastic re-straining at CS 2 - 	- 3 1 1 

1: 'l H 
sway 

mechanism 

BS XL 2 /EI 5/L CS UNSTRESSING RS 
1 .4157440 .0315599 12 
2 .5331505 .0609491 9 
3 .5337098 .0611752 1 
4 .5036219 .1024691 6 
5 .5021415 .1047158 11 
6 .4845361 .1218924 2 6,11 
7 .4780875 .1261862 10 
8 .4639110 .1360513 6 6 
9 .4524814 .1448453 8 6,10,11,12 

L —0-+ 

4 	5 

X. 

-01 

3 _ b 	I11 	12
1-

7 

2 	 8 

1 
/!!%!/ 	/!//// 0.10 	 0.15 0.05 

-0.4 

-03 

-0.2 

% a 
41 %̀ _1.- 	 

L 

L 

9 1 

1 . 

FIGURE 5.9 
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5 
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1 
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5 
6 
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8 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

(*) 
( 1 ) 

(2 ) 

6/L cs lJNSTRESSHJG -
.(l676 .0298 12 
.6588 .0554 1 1 
.6669 .0578 9 
.6687 .0585 6 
.6799 .0664 1 
.6857 .0798 5 

.4203 .033:;- 1 2 

.5266 .055-)(- 9 

.5328 .060-)(- 1 

.5109 .097* 6 

.496* .106-)1- 11 

.459* .127* 2 1 1 

.452* .130* 10 
• (,30-~ • 1 3 CJx- 8 6,10,12 

.{l161 .0315 1 ;( 

.5305 .0597 9 

.5332 .0608 1 

.5032 .1023 6 

.5015 .1048 11 

.4839 .1219 2 6, 11 

.4782 .1257 10 

.4652 .1347 6 

.4533 .1/137 8 6,10,11,12 

• {,156 .0315 12 
.5321 .0606 9 
.5336 .0612 1 
.5028 .1030 6 
.5016 .1048 11 
.4839 .1219 2 6,11 
.4781 .1257 10 
.4650 .1347 6 

6,10,11,12 .4532 .1t13(j 8 

.4157 .0315 12 

.5325 .0606 9 

.5340 .0612 1 

.5051 .1020 6 

.5038 .1040 11 

.4843 .1235 2 6,11 

.4788 .1274 10 

.4685 .1346 6 
• {I 54 4 .1l15A B 6, 1 [], 1 1"L 1 2 

.lJ157 .0316 1 :2 

.5331 .0609 9 

.5337 .0612 1 

.5036 .1025 6 

.5022 .1047 1 1 

.4845 .1219 2 6,11 

.4781 .1262 10 

.4640 .1360 6 

.4525 .1449 8 6,10,11,12 

Estimated from graph 
IT =O,tangent approx. of 

. n stability functions TABLE 5.9 

IT =0 (3) IT ¥O 
n n 
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in the table in Fig. 5.9, show a good agreement with the "basic 

solutions" provided by the deformation analysis using the proposed 

formulation, given in Table 5.9. 

The solution found differs from Hornets from the moment 

critical section 2 becomes active, well into the post-buckling 

phase. Horne identifies plastic unstressing at critical section 11, 

followed by the activation of sections 10 and 8, the sway mechanism 

being then mobilized with sections 6, 10 and 12 unstressing 

simultaneously. When yielding started at section 2 we found that 

sections 6, 11 and 12 were in situation (2). Section 11 was found 

to show the highest tendency to unstress and the corresponding 

plastic multiplier was then removed from the basis; section 6, but 

not section 12, continued showing a tendency, to be confirmed, to 

unstress. The activation of sections 10 and 8, consecutive in Hornet: 

solution, was separated by the re-activation of section 6 which 

re-unstressed later together with sections 10 and 12 to mobilize 

the same sway mechanism found by Horne. A sequence of the frame dis-

placements in the sway mechanism phase is shown in Fig. 5.10. 

FIGURE 5.10 
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0.10 0.20 0.30 

MEMBERS L(in) A(in2) I(in) X*(t.in) 

1 	and 	10 144 10.32 115.06 502.3 
2 and 	9 144 8.28 86.69 393.5 
3 and 	8 144 7.37 43.69 259.3 
4 and 	7 144 5.89 34.71 205.3 
5 and 	6 90 5.30 55.63 244.0 
11 	to 	14 90 7.35 122.34 428.0 

BS Xt2/EI 6/L CS UNSTRESSING RS 

1 1.7388876 .0178584 19 
2 1.8321100 .0188871 26 
3 1.9069149 .0207019 25 
4 1.9089590 .0208402 22 
5 1.9287741 .0221826 23 
6 1.9968725 .0483372 12 
7 2.0025171 .0524573 20 
8 2.0369751 .1180628 7 
9 2.0383611 .1409089 15 
10 2.0329135 .1713694 17 
11 2.0073125 .2453132 1 15,19,20 
12 1.8350801 .3860298 19 19 
13 1.8059336 .4133732 20 20 
14 1.6666315 .5621455 6 7,19,20 

_1.5 

_ 1.0 

_0.5 

9 	10 • • 11 

AL2 
EI 

~- 20 
5 
4 3 

2 

PROPORTIONAL LOADING (in tons) 
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FIGURE 5.11 
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8. 1 7 
6 	• ••6 

4 5 • • 

9 

. i 

. . 

partial 	collapse configurations! yield — 

• 

5 4 • • 

(a)_ __(b)_ _(c) 
X=1.90 	X=1.93 	X=2.04 

(a) Wood (1958) 	(c) "exact" 
(b)Jennings and Majid (1965) 

FIGURE 5.12 

When section 8 became active and the corresponding plastic 

multiplier was brought into the basis, sections 1, 2, 8 and 9 were 

found to be in situation (3) and section 12 in situation (4); when 

plastic unstressing of section 12 was performed, sections 1, 2, 8 

and 9 went back to situation (1) (of further plastic straining) 

while sections 6 and 10 moved from situation (1) into situation 

(2); their plastic multipliers were then removed from the basis 

in that order since section 6 showed an higher tendency to unstress. 

The frame in Fig. 5.11 is a four-storey, single-bay frame 

bent about the strong axis. This frame was first analysed by Wood 

(1958), who obtained a collapse configuration with the loads 

increased by a factor of approximately 1.90. At collapse Wood 

found that 5 plastic hinges were 

fully formed and partial yielding 

had also occurred at four other 

points, as shown in Fig. 5.12; in 

Wood's analysis spread of plasticity 

is accounted for. Jennings and 

Majid (1965) verified that the frame 

was still stable after the forma-

tion of 5 hinges; they found a 

collapse load of 1.93 when allowing 

a sixth hinge to form, after an 

astonishing increase in the dis-

placements. 

The solution we obtained 

using a perturbation analysis 

formulation showed that after the 

formation of the sixth hinge only 90% of the frame load-carrying 

capacity had already been used; the frame remained stable up to 

the formation of the ninth plastic hinge. Table 5.10 compares this 

solution with that of Jennings and Majid. The almost simultaneous 

activation of sections 22, 23 and 25 and the approximations in the 

first-order non-linear formulation adopted by Jennings and Majid can 

explain the different sequence of yielding found by them. 

After collapse the frame is still able of accepting 98.5% of 

the collapse load in a range of displacements of about 74% of those 
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member chord 

displacements 

~Ul 
c.n\.O 
CJO'I 
zS 
HO 
ZH 
zn 
Wc:r.: 
n~ 

~. 

U1 

:: en 
I- .-
U LL 

Cl:2 
x 'w OJ 

- '+-
- ClJ 

0:: 

I F3S I AL2;EI 5/L CS 

1 1 .74* .019* 19 
2 1 .79* .020* 26 
3 1.88* .023-* 25 
4 1 • 9 O~'>(- .024* 23 
5 1 .91 * .025-* 22 
6 1 .93 .060* 12 

1 1 .739 .0179 19 
2 1 .832 .0189 26 
3 1.907 .0207 25 
4 1.909 .0208 22 
5 1 .929 .0221 23 
6 1 .997 .0483 12 
7 2.003 .0525 20 
8 2.037 .1181 7 
9 2.038 .1409 15 

1(*) Estimated from graph 

TABLE 5.10 

developed up to collapse; of 

these, 84% are developed after 

the formation of the fifth 

plastic hinge. The multiple un-

stressing at the formation of 

the eleventh plastic hinge marks 

FIGURE 5.13 a significant loss of load-

carrying capacity. At this stage 

sections 7, 15, 19 and 20 were 

found to be in situation (2). Among them, it was section 19 which 

showed the highest tendency to unstress and after removing the 

associated plastic multiplier from the system basis, section 7 was 

allowed to develop further plastic strains; plastic unstressing did 

occur though at sections 15 and 20. Sections 19 and 20 were then re

activated but, when section 6 yielded and a sway mechanism was 

mobilized, they re-unstressed again, together with section 7. Fig. 

5.13 represents the frame displacements, well in the mechanism 

phase. 
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Most engineering structures attain the maximum load-carrying 

capacity for relatively small displacements, the post-failure 

behaviour being in most cases irrelevant. for practical purposes. 

The first-order deformation analysis programs should perform 

successfully in such situations. The solutions they provide are 

fairly accurate, it being always possible to decrease the margin of 

error by relaxing the approximations as much as desired. The rate 

of convergence is good, with 3 to 4 iterations per basic solution; 

difficulties have however been experienced in the post-failure 

phase, in particular if it is highly sensitive to the type and 

degree of approximation introduced. Although able to detect the 

onset of a mechanism motion, the simplicial algorithm is, due to 

its very nature, incapable of following the associated equilibrium 

path; it is also unable to identify the occurrence of critical 

points between the activation of two consecutive yield modes. On the 

other hand, situations of multiple plastic unstressing can be 

efficiently dealt with. 

Critical points and the post-buckling path(s) are, from the 

theoretical point of view, the most interesting phases of the 

structural response. Hence, for research purposes the utilization 

of the incremental and, in particular, the perturbation analysis 

programs is highly advisable, despite their tendency to require 

more computer storage and, in general, greater solution times. 

5.5 	ELASTIC STRUCTURES 

The classical approach to the large displacements analysis 

of flexible members is to solve a certain set of governing non-

linear differential equations in terms of elliptic integrals. Exact 

closed form solutions have thus been obtained for cantilever beams 

[ Barten (1944, 1945), Bisshopp and Drucker (1945), Rohde (1953), 

Frisch-Fay (1961)] , simply-supported beams [ Connway ( 1947), 

Scott and Carver (1955), Mitchell (1959), Frisch-Fay (1962), Sliter 

and Boresi (1964), Schille and Sierakowsky (1967)] , curved beams 

[ Connway (1956), Gospodnetic (1959)] , and frames formed by very 

simple combinations of bars [Kerr (1964), Jenkins at alia (1966)]. 

This very elegant method is however of limited applicability 

and approximate methods had to be considered and developed in order 
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to implement the analysis of more complex systems. 

Despite its successful application in the analysis of 

plates and shells, the finite-difference method has only been 

occasionally used in the analysis of discrete systems; reference 

should however be made to the works of Merchant (1955), Pisanty 

and Tene (1972), Yamada (1972) and Dunce and Brown (1976) in 

kinematically non-linear and stability analyses. 

In the last ten to fifteen years, a vast number of 

contributions to large displacement elastic analysis by the finite-

element method have appeared in the literature. The mathematical 

theory of the finite-element method was born in the engineering 

literature in the works of Melosh (1963), Fraeijs de Veubeke (1964), 

Oliveira (1968), Johnson and FicLay (1968) and Oden (1969); a 

concise description of the method can be found in Oden (1975) and 

more detailed expositions in various textbooks which have been 

published in the intervening period. 

In his valuable pioneering work of formulating structural 

analysis in matrix form, Livesley (1956) treated kinematical non-

linearities for the purpose of stability analysis. 

Turner et alia (1960) applied for the first time a direct 

displacement method in the analysis of structures under large dis-

placements. The method they propose adopts a step-by-step procedure 

with linearized relationships within each step. 

Another important contribution was that of Argyris (1965b) 

and Argyris et alia (1964), the main feature of his technique lying 

in the determination of the necessary forces to maintain the 

equilibrium of a given displacement configuration; this technique 

has been recently adopted by Besseling (1974, 1975), Oliveira (1974) 

and Oliveira and Pires (1976). 

Oden (1966) extended the treatment of kinematic non-lineari-

ties to very general and complex systems. Przemieniecki (1968) 

incorporated both kinematic and material non-linearities and 

presented a comparison between analytical and experimental results. 

The surveys on the proposed finite-element formulations, e.g. 

Ueda (1971), Stricklin et alia (1973) and Felippa (1974) tend to 

reveal an absence of a synthetic, unified approach to the problem 

of kinematically non-linear and stability analysis. In general, 

the different approaches are classified according to either the 

adopted formulation, Eulerian or Lagrangian, or the numerical 
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implementation procedures they use. 

Examples of Lagrangian approaches are the works of Hihbitt 

et alia (1970), Needleman (1972) and Felippa and Sharifi (1973); 

Eulerian approaches have been used, among others, by Yaghmai and 

Popov (1971) and Benedetti and Fontana (1974). A general discussion 

on these alternative formulations which refer the static and 

kinematic variables to the initial and updated configurations, 

respectively, is given in Alm oroth and Felippa (1974). 

According to the adopted solution procedure, most of the 

proposed formulations fall into either of the following (not 

entirely independent) groups; conventional incremental methods, e.g. 

Marcal (1970), Newton-Raphson iteration procedures, as Stricklin 

et alia (1968) and Kawai and Yoshimura (1969), and self-correcting 

incremental methods, of which the method of Heisler et alia (1972) 

is an example. 

A rather special self-correcting technique is the perturbation 

method of analysis. 

In the field of non-linear and stability analysis by matrix 

methods, increasing attention has been directed to the perturbation 

method as one of the most powerful tools of analysis that can be 

employed to follow the structural response in the highly non-linear 

range. 

The systematic analysis of the buckling and post-buckling 

behaviour of structures is a relatively recent development of the 

theory of elastic stability. Koiter in 1945 presented a comprehen-

sive high-order theory describing the stability and immediate 

post-buckling behaviour of structures and the effect of 

imperfections. 

Before the translation of Koiter's work in the mid-sixties, 

only parts of it were available in English, Koiter (1962, 1963). 

In the meantime parallel work was being done by Thompson and by 

Sewell who developed, independently, an asymptotic technique based 

on the perturbation method. 

Thompson's method of deriving the perturbation analysis 

governing systems, as presented for instance in Thompson and Hunt 

(1973), is implicit differentiation of the energy function with 

respect to a path parameter. The alternative method adopted herein 

and, among others, by Connor and Morin (1970), Hangai and Kawamata 
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(1972) and Mau and Gallagher (1972), is to establish the governing 

system in incremental form and to substitute into it the series 

expansions of the relevant problem variables, collecting afterwards 

the terms in the like powers of the perturbation parameter. The 

notion of "sliding co-.ordinates", which Thompson uses in his post-

buckling method of analysis, has been adopted by several other 

authors to establish a set of (nodal-stiffness) governing equations 

containing the solution to the fundamental path as knowns, and the 

relative displacements of the post-buckling path as unknowns. 

Koiter's method, which was further developed by Budiansky 

and Hutchinson (1966), has been almost exclusively used for 

continuum problems, while the Thompson-Sewell method was, on the 

other hand, originally developed and ever since applied to discrete 

systems; Haftka et alfa (1971) formally related the two methods and 

proved them equally suited to both continuum and discrete problems. 

A perturbation technique was used by Roorda and Chilver 

(1970) for the analysis of frame buckling. The technique is applied 

to a two-bar frame hinged nt the foundation and rigidly jointed at 

right angles at the apex; the first- and second-order solutions they 

obtained proved to be in agreement with experimental and theoretical 

results previously published by Roorda (1965) and Koiter (1967), 

respectively. The formulation for asymptotic analysis about to be 

presented is essentially identical to Roorda's; it is however 

believed to he more synthetic and systematic, and consequently 

better tailored to computer analysis. 

Lang and Hartz (1970), in a direct extension to the finite-

element format of Koiter's perturbation method, including the 

assumption of a linear pre-buckling state, presented a matrix 

formulation for the perturbation of total potential energy; buckling 

and post-buckling response of a shallow arch and a thin flat plate 

are calculated and the influence of various levels and types of 

geometric imperfections on the load-displacement response is 

assessed. 

Connor and Morin (1970) applied the perturbation technique 

to obtain the buckling load accompanying non-linear pre-buckling 

deformations and also to trace the post-buckling equilibrium path. 

Analyses were performed of a circular cylindrical shell under 

uniform normal pressure. 
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The essential concept in the "modified structure" method 

of Haftka et ilia (1971) and Mallet and Haftka (1972) is that a 

structure with pre-buckling non-linearity is an imperfect version 

of another hypothetical structure which has a linear pre-buckling 

path; pre-buckling non-linearities are incorporated as special 

imperfections. Cohen and Haftka (1972) discuss the limitations on 

the applicability of the method. 

In Gallagher et alia (1971) and Mau and Gallagher (1972) the 

calculation of the fundamental path is conducted on the basis of an 

iterative solution of the algebraic equations; the intensities of 

the critical load at bifurcation and limit points are determined 

by interpolation and extrapolation, respectively, of solution points 

of the fundamental path. Numerical solutions are given for a beam on 

an elastic foundation, the shallow arch and a flat plate. 

Hangai and Kawamata (1971, 1972, 1973) used the perturbation 

method to solve the non-linear governing equations in matrix form, 

and obtained the complete equilibrium paths for reticulated domes 

formed by unidimensional members. 

Ecer (1973) presents a thorough exposition of the perturba-

tion method which he applies in the analysis of arches, the Euler 

column, and a rectangular plate. 

Endo et ilia ( 1974) adopt a perturbation approach in the 

analysis of the critical behaviour of spherical shells. 

Glaum et alia (1975) specialized into a discrete model 

analysis a method previously developed by Masur and Schreyer (1967) 

for incorporating directly the effects of pre-buckling displace-

ments, by expanding in a power series the pre-buckling state, as 

well as the buckling parameter and mode. A computer program was 

developed for the analysis of planar structures and the results are 

compared with the exact solution for the buckling of shallow 

circular arches. 

The role of mathematical programming in structural analysis 

in general and in kinematically non-linear analysis in particular, 

has been understood in two quite different ways. Some researchers 

constrained themselves to extract from mathematical programming the 

numerical algorithms developed in the recent past, which they then 

use in the solution of programs established by direct application 

of certain energy principles; such is the approach followed by 
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Mallet and Schmit (1967) and ()awe (1973). Others, and among them 

Maier and his colleagues have to be mentioned, have realized that 

mathematical programming is a particularly well suited theory not 

only For the implementation of solutions but also, and specially, 

for the encodement of problems in structural mechanics. After 

establishing the problem governing system, preferably from First-

principles, the analyst only has to process it through mathematical 

programming equivalence theory in order to derive the associated 

mathematical programs; the natural and consistent transition 

between the discrete and variational descriptions of the problem is 

thus materialized. The physical interpretation of such programs 

will either confirm, correct or extend previously known results, 

the application of specially designed algorithms allowing for their 

efficient numerical implementation. 

5.5.1 The Quadratic Programs of Elastic Analysis 

Assume that the stress-strain curve represented in Fig. 

3.1 characterizes the behaviour of a two-phase, linear-non linear 

elastic material, that is, a material wherein reversible strains 

are allowed for in both linear and non-linear phases. 

Structures formed by a combination of members and internal 

and external release devices constituted of such non-linear elastic 

materials can still be analyzed adopting exactly the same procedures 

presented in the previous solutions. The plastic potentials may now 

be interpreted as non-linear elastic potentials, the plastic 

strains representing the non-linear components of the (total) 

elastic strains. The non-linear elastic components of strain must 

now be allowed to be reversible and, in the non-linear phase, the 

reduction of stress levels accompanied by constant values of the 

non-linear elastic strain component prevented. 

It must be recalled that developments in the non-linear 

phase of the stress-strain relationship have been allowed to occur 

only at a pre-selected and restricted number of cross-sections, the 

structure critical sections, while all the remaining sections were 

assumed to behave inside the initial linear elastic phase. If the 

non-linear elastic structure is to be conveniently modelled, the 

number of critical sections (and consequently the number of nodes) 

has to be increased significantly. 
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The present section is concerned with the analysis of 

structures constituted by materials (and external and internal 

release devices) presenting a linear elastic behaviour. Such 

structures can be interpreted as elastoplastic structures with 

infinite plastic capacities; the alternative descriptions for the 

governing system and the associated quadratic programs of the former 

can thus be obtained by specialization of the corresponding systems 

and programs characterizing the behaviour of the latter, it being 

sufficient to set to zero the plastic multipliers, thus triviali-

zing the flow rule present in the dual programs, and removing from 

the primal programs the yield rule as it is now never satisfied as 

a strict equality. 

I THE QUADRATIC PROGRAMS OF ELASTIC (PERTURBATION) ANALYSIS I 

THE NODAL-STIFFNESS FORMULATION 

(Min 	z 	= 	
Z 	

qT IK- 	qi 	:) 	IK* 	qi 	= 	[Tx +lATIK 	
uD+W1]i 

PRIMAL 	PROGRAM 	(5.5.1) 
I 	

DUAL 	PROGRAM 	(5.5.2) 

Max w = -2 q_. IK * qi 	+ qT [ux  +IA TIK 	uD+w1] i 

THE 	NODAL-FLEXIBILITY FORMULATION 

Min 	z 	= 	1 	qT[-IK 1, 2 	i 	—N .+1 
	XTIF 	X.+X T[u 	+w ] 	: [-IK ] i 2 -i— -i 	i -D -o i 	—N q.+IA T X.=PA T Ā+w ] i — -i 	o- 	—1 	i 

PRIMAL 	PROGRAM 	(5.5.3) DUAL 	PROGRAM 	(5.5.4) 

. Max w = -2 q[-K lq.-r X IF X+ L A Ā  i +wJ: 	-A q+IF X= -[ Q]ju+w
N  1i  

THE MESH-STIFFNESS FORMULATION 

Min z= 	
2 

UE IKUE1+2 p*iIF MP 	
i+P+i[IF p°

X+B uD+w31 i :IKuEI-Bip*i
-CB°X+W1]i 

PRIMAL 	PROGRAM 	(5.5.5) I 	DUAL 	PROGRAM 	(5.5.6) 

Max w = -2 uE1IKuE. -2 q-* FMP*
~ +uEi[8°

X+c,a11 
i :B

T.uEl+I 	p*1=-~Fp0 X+B*f+w3
1 

THE MESH-FLEXIBILITY FORMULATION 

Min 	z = 	2 p1 	IFp 	+ p -*-*i ( BPIF 	Bo+IF o )~+B 	uD+ w 
1]  p 	- 	-d
i 

PRIMAL 	PROGRAM 	(5.5.7) I 	DUAL 	PROGRAM 	(5.5.B) 

(Max 	w = -2 	p1 	IF*p* 	: ) IF*p* _ - [( B.TJF Bo 	+IFpo ),,+ *uD+w1] 
i 	i 	i 	L 	 i 
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Programs (5.5.1-0) were obtained by enforcing this set of 

specializations on the corresponding quadratic programs of elasto-

plastic perturbation analysis; the asymptotic, incremental and 

deformation programs of elastic analysis can be derived in a 

similar manner. 

It will be noticed that, for any of the four formats of 

analysis under consideration, two (three, considering the alterna-

tive mesh formulation) of the original quadratic programs of 

elastoplastic analysis decompose into linear equation sets; these 

are the PRIMAL NODAL-STIFFNESS PROGRAMS and the DUAL MESH-FLEXIBILITY 

PROGRAMS, the former corresponding to the familiar DISPLACEMENT (or 

STIFFNESS) METHOD of analysis, the latter to the much less favoured 

FORCE (or FLEXIBILITY) METHOD. The duals of these programs require 

the extremization of unconstrained quadratic functions of the 

indeterminate generalized displacements and forces, respectively. 

The primal nodal-stiffness and dual mesh-flexibility, 

formulation programs are not however more convenient than the other 

formulations when the structure under analysis exhibits unilateral 

releases or constraints. The remaining quadratic programs may 

easily be modified to include these effects and non-negative 

constraints may be added to ensure unilateral constraints. 

The considerations in the above are a direct extension to 

kinematically non-linear analysis of similar results presented by 

Smith (1974); the eight alternative formulations suggested by Smith 

can be regained by specializing the elastic deformation programs 

for the analysis of structures in the range of small displacements 

and deformations. 

5.5.2 General Considerations in Elastic Analysis 

As the programs of elastic analysis were obtained by simple 

specialization of the corresponding programs for the analysis of 

elastoplastic systems, the conditions for the existence of optimal 

(elastoplastic) solutions presented in subsection 5.3.1 are still 

valid in the context of elastic systems. 

312 



Under the assumption that optimal solutions exist for both 

primal and dual quadratic programs of elastic analysis, their 

uniqueness can now be investigated; the physical interpretation 

of theorem (5.1.17) when applied to programs (5.5.1) to (5.5.8) 

results in the following conclusions: 

(I) If the stiffness matrix IK* is positive definite, the 

generalized nodal displacements Aq are unique. 

(II) If the unassembled flexibility matrix IF and the "geometric" 

stiffness matrix-IK N are positive definite, the generalized 

stress-resultants AX and the generalized nodal displacements 

Aq are unique. 

(III) If the unassembled stiffness matrix 1K and the "geometric" 

flexibility matrix FM are positive definite, the generalized 

elastic deformations Au[ and the generalized indeterminate 

forces Ap* are unique. 

and (IV) If the flexibility matrix F. is positive definite, the 

generalized indeterminate forces Ap* are unique. 

In particular, 

( v) If I In IĪl I n I ~ 0 and mGtrices (5.3.1) and [IK + 8 n (InlfI n) ~BI ] 
are positive definite, the generalized indeterminate 

forces Ap and the generalized elastic deformations AuL will 

be unique. 

and (vI) If 1 Bn IF B n + In U 	I n I/ 	0 and matrix (5.3.2) is positive 
definite, the generalized indeterminate forces Ap will be 

unique. 

Let (q, X') be a first-order optimal solution to the 

composite form of the nodal-flexibility programs (5.5.3-4); 

according to theorem (5.1.18), the solution 
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+ 6q n u  

X" X' 6x 

will also be optimal if system (5.5.9) admits a non-trivial 

solution 	(6q, 6X) ; systems (5.5.10) and (5.5.11) specialize 

system (5.5.9) into the cases of uniquely defined fields of stress-

resultants and displacements, respectively. 

6X T  u0 = 	6 gTIA T  A ATIA o 	6q = 0 up 	6X = 0 

-IK N  6g + A T  6X=0 -IK N 	6q = 0 IA T  6X = 0 

-IA 6q + IF 6X = 0 -IA 6q = 0 IF 	6X = 0 

(5.5.9) 
	

(5.5.10) 
	

(5.5.11) 

Systems (5.5.9) to (5.5.11) can be read ns follows: 

(VII) If the members of a structure are locally stable, i.e. if 

IF = I IK 1 -1 	0, a kinematically multiple solution q" = q'+a Op 
will exist if the stiffness matrix IK*  is singular, the 

associated stress field being defined by X" = X' +aIK IA 6q; 
the energy dissipated at the prescribed dislocations by the 

difference stress-field 6X equals the work realized by the 

difference displacement field 6g. 

(VIII) If the stress-resultant field is uniquely defined, a 

kinematically multiple solution will exist if the "geometric" 

stiffness matrix-IKN  is non-definite, the difference dis-

placement field 6q being self-compatible and orthogonal to 

the loading /A T X . 

(IX) If the displacement field is uniquely defined, a statically 
multiple solution will exist if the unassembled flexibility 

matrix IF is non-definite, the difference stress-resultant 

field 6X being self-equilibrated and orthogonal to the 

prescribed dislocations. 

Similar conclusions could be drawn by applying the same 

theorem to the pairs of primal-dual programs associated with the 
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nodal-stiffness mesh-flexibility and mesh-stiffness formulations; 

they would involve the remaining variables of elastic analysis, 

afected by the alternative structural matrices. 

The objective functions of the quadratic programs of elastic 

analysis can be obtained by suppressing the plastic components from 

the elistoplastic objective functions (5.3.14-19), yielding 

zD= 2 XTuE- 2 nT bn c - - (1.12D1117 + ZuEn) T X } + 	04 

XTuE- 2 IT T 6n ? - AT 6 - 	XErcuL }- 0 4 

(5.5.12) 

(5.5.13) 

for the deformation analysis programs and 

zi= S 1 AXT( Au + Du )- 	AnT A6 + 
1 [AxT(IR +n)+ p6TIR J} - {-AXTAu ( 2 	--E 	—n 	? 	—n 2 	-uE -un 	—n—n 	( 	-D 

+ 04 	 (5.5.14) 

-w 	Al--(  
2 

i= S 1 	 T( Au 	Du ) - 1 OnTA6 	- 1 [AX T (IR +IR )+p6TIR 
J

~ dAX TA5 ( 	-E 	-n 	2 - -n 	2 	uE -un 	-n-n 	- - 

-04 
	 (5.5.15) 

for the incremental analysis programs; the objective functions of 

the i-th order programs of perturbation analysis can be obtained 

by replacing in (5.5.14-15) each incremental variable by the i-th 

order component of its series expansion, and replacing the fourth-

and higher-order terms 04 by constants. 

From Static-Kinematic Duality, it can be easily concluded 

that, at optimality, the primal and dual objective functions attain 

an identical value, thus confirming Cottle's Theorem (Duality). 

Maier's bounding theorems can easily be specialized for 

elastic systems, it being sufficient to let in (5.3.20b) and (5.3.200 

z1 and w 1 represent the objective functions of the first-order 

programs of elastic perturbation analysis. 

Let the incremental strain energy and complementary strain 

energy be defined by 
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AU = 1 AXT( Au + Au 7)- 
1 
ALT Ab - 1 

AXT(IR +IR )+ AM TIR 
2 	 E 	 rL 	2 - 	-rt 	2 	- 	u E -un 	-it -rt 

and AU*= 1 AXT( Au + Au )+ 1 ArtT Ab + 1 AXT(IR +IR )+ Ab TIR 
z -E -rt 2 - -TC 2 	uE -urt 	-it-it 

respectively, and the incremental work performed by the prescribed 

.forces and dislocations respectively as 

AW = AXT Ab 	and 	AU* = - Auf AX 

Neglecting fourth- and higher-order terms, the primal and dual 

objective functions of the quadratic programs of elastic incremental 

analysis can be expressed as 

zI = AE* = AU* - AW* 

and -wI = 	AE 	= AU - A W 

where AE and AE* represent, respectively, the variation of the 

potential energy and complementary potential energy. 

It could be similarly concluded that the primal and dual 

objective functions, zi and wP, of analysis formulations represent, 

except for the linear terms which are irrelevant in the extremiza-

tion procedures, the i-th order terms of the series expansion of 

AE* and - AE, respectively. 

As the deformation analysis programs are derived assuming 

that the (non-linear) corrective variables are a priori known, i.e. 

that the structure acted upon by additional prescribed forces and 

dislocations behaves linearly, the strain energy and the complement-

ary strain energy take an identical form 

U = U* = 2 X T 	LE T uE- 	T bn 

the expressions for the total work and complementary work becoming 

1 
W = XTE, 	- 	X

T
Ert uE 

w* = -up X-( 2 ~Ert +uit)T X and 
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respectively, thus establishing the following correspondence 

between the dual (primal) objective Function and the (complementary) 

potential energy: 

E = -wD = U - W E* = zD = U'`-WY 

^s the primal and dual constraints of the programs of 

elastic analysis enforce, respectively, the static and kinematic 

admissibility conditions, the identifications in the above allow 

us to interpret those programs as the discrete representation of 

the PRINCIPLES OF MINIMUM COMPLEMENTARY POTENTIAL ENERGY and 

MINIMUM POTENTIAL ENERGY, respectively. 

The principle of minimum potential energy seems to have been 

initiated for linear elastic media by Kirchhoff (1850). The canonical 

transformation of this principle into that of minimum complementary 

potential energy was carried out by Friedrichs (1929), however the 

essential role of strain energy and complementary strain energy in 

the canonical theory was known to Crotti (1888); in 1809, Engesser 

applied a complementary energy based method in the analysis of non-

linear elastic structures. In recent years the dual role of energy 

and complementary energy has been demonstrated by Westergaard (1941) 

Pnd Argyris and Kelsey (1960). Zubov, (1972), Fraeijs de Veubeke 

(1972) and Koiter (1973) devoted important work to extend the 

complementary energy principles to kinematically non-linear analysis. 

Statements (I) and (II) in subsection 5.3.4, concerning 

Drucker's stability criterion, can be directly applied to elastic 

systems, it being sufficient to re-define matrix A as 

IF I . — 
A = IK and A= 

for the nodal-stiffness and nodal-flexibility formulations, 

respectively, and by 

A = 	IK i 	. j • 

• —o 
i IF— 

and A = IF 	B IF 0 	+ IF 

 

 

1 
B TIFB _~+IF T I 	Bo IF Bo+IFN 

1 — — — — - 
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for the mesh-stiffness and mesh-Flexibility formulations, respect-

ively. 

!An alternative statement can be set forth if use is made of 

the second-order work in the Form (5.3.24) where now 6 p=0: 

(X) If matrix L, defined in either of the formats (5.3.26) 

or (5.3.28), is positive definite (semi-definite) the 

equilibrium state is stable (non-unstable). 

Identical would be the results obtained when using Wiessman's 

(1965) stability criterion instead of the specialized version of 

Drucker's. 

Croll and Welker (1972), using a dynamic interpretation of 

stable equilibrium, present a  proof of the sufficiency, for defining 

a stable equilibrium configuration, of the relative minimum of the 

total potential energy, a requirement already emphasized by Horne 

(1960, 1961); Pian and Tong (1970) showed how the stationarity 

principle of potential energy can he substituted by that of the 

stationarity of its variation. Detailed expositions of the use of 

energy principles in stability analysis can he found in Britvec 

(1973) and Thompson and Hunt (1973). 

Concluded in the above is what so often is used axiomatically 

in alternative formulations of problems in kinematically non-linear 

and stability analysis. Namely, that the minimum of the (complement-

ary) potential energy ensures (kinematic compatibility) static 

equilibrium, while the quality of the definiteness of the second 

variation of the energy characterizes the stability of the 

configuration. 

Most of the proposed formulations develop from pre-

established energy functions; first-principle based formulations 

yielding to the associated energy principles have, on the other 

hand, been significantly less favoured. Examples of these two 

distinct approaches are the formulations proposed by 8rebbia and 

Connor (1969) and Alexa (1976), respectively. 

When judging the unbalanced popularity enjoyed by each 

approach,it would be sensible to remember, and it has gone un-

recognized for long, that mathematical programming purveys the 

link between first-principles, the most natural way of formulating 

318 



a problem, and the energy principles, which synthesize its 

characteristics. 

5.5.3 Numerical Applications 

In selecting a set of numerical examples, the emphasis was 

placed on their suitability for testing the numerical accuracy of 

the perturbation analysis formulation being suggested, not its 

computational efficiency; thus the academic nature of the problems 

being considered, some of which of known exact solution. 

The computer execution times per incremental step are given, 

in decimal seconds, in Table 5.11 for each of the examples to be 

presented; for the given number of finite-elements into which the 

structure is discretized, 1 represents the resulting kinematic 

indeterminacy and (3' the number of axially inextensible members, 

so that the dimension of the governing system becomes 13 + (3'. The 

computer time required to solve Example 6 was not printed during 

execution. 

EXAMPLE 1 2 3 and 4 5 7 8 

No. 	of 	F.E. 1 2 1 2 4 8 1 9 12 

(3 1 2 3 6 12 24 1 8 30 

(3' 0 1 1 2 4 8 0 0 0 

Time 	(sec.) 0.005 0.013 0.053 0.194 0.520 5.87 0.013 0.110 4.190 

Table 5.11 

As the author's knowledge on numerical analysis techniques 

and on the implementation of efficient computer codes is fairly 

superficial, the execution times being given should be taken as 

very conservative "upper bounds"; numerical analysts should however 

find them of easy improvement. 

The deformation analysis formulations have also been tested. 

The perturbation analysis formulation did prove better in accuracy 

of solution, sensibly as good as in execution times, but requiring 

significantly more computer storage. 
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104X1EA 

T 
h 

O1h 
	glow 

VON MISES' TRUSS 

a = 5° EA= Const. 

EXAMPLE 1: Von Mises' Truss  

The symmetric arch formed by two deformable members pinned 

to each other and to rigid supports is often used to illustrate the 

"snap through" phenomenon, typical in the response of shallow arches 

and domes. 

Because of the symmetry of the loading (2 X ) and the frame 

geometry only half of the structure, shown in Fig. 5.14, need be 

analyzed. The exact relationship between the loading and its 

displacements can be found in various ways to be 

A/EA = sin (3 - cos a . tan (3 

Ō /L = sin a - cos a . tan 13 

where L, E and A are the member length, modulus of elasticity and 

cross-sectional area, respectively and a and R the horizontal 

inclination of the member in its initial and displaced configurations. 

FIGURE 5.14 

Summarized in Table 5.12, and confronted with the exact 

solution in the above, are the results Found when using, in the 

perturbation analysis formulation being suggested, one, two and 

three forms in the series expansion. The structure was first solved 

without using the corrective technique mentioned in subsection 

5.4.2 (STEP 7c in the generic algorithm), and it proved necessary 
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104x X/EA 

b /L EXACT 
SOLUTION 

WITHOUT PVW WITH 	PUW 

3 2 1 1 

0.0174311 0.955 0.955 0.949 1.137 0.955 
0.0435779 1.247 1.247 1.231 1.627 1.247 
0.06972.46 0.639 0.639 0.613 1.130 0.639 
0.0958713 -0.330 -0.330 -0.366 0.181 -0.330 
0.122.0180 -1.118 -1.118 -1.164 -0.677 -1.118 
0.1481649 -1.185 -1.185 -1.2.41 -0.905 -1.185 
0.1743115 -0.000 -0.000 -0.066 0.333 -0.000 
0.2004582 2.958 2.958 2.883 2.657 2.958 
0.2266049 8.190 8.190 8.106 7.474 8.190 
0.2.52.7516 16.175 16.175 16.083 14.966 16.175 
0.2788984 27.368 27.368 27.267 25.592 27.368 
0.3050451 42.189 42.189 42.081 39.779 42.189 

TABLE 5.12 

to take three terms of the series in order to achieve a seventh 

decimal accuracy in the loading for a displacement control 

sequence; due to the very nature of the structure only one term of 

the series is required if the corrective technique, based on the 

Principle of Virtual Work (i.e. Static-Kinematic Duality) is used. 

Oliveira (1974) reports good results in the analysis of a 

similar truss ( CC = 10°) using his fictitious forces formulation; 

conceptually identical to Oliveira's is the formulation proposed 

by Khonke (1978). 

EXAMPLE 2: Thompson's Truss  

Thompson and Hunt (1973) used the structural system shown in 

Fig. 5.15 to illustrate the occurrence of asymmetric points of 

bifurcation. It comprises a rigid link of length L supported by an 

articulated bar of stiffness k = EA/VL in both tension and 

compression and inclined initially at 45°. The exact relationship 

between the vertical load X and the side-sway 5 of the structure 

can be found to be 

X /EA = (1/1 - ( 5 /L)2 -~ 1 - 6/L)/(v 6/L ) 
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EA X/EA 

EXACT 3 TERMS 

0. .35355 
0.1 .32742 .32742 
0.2 .30182 .30182 
0.3 .27643 .27643 
0.4 .25088 .25088 
0.5 .22474 .22474 
0.6 .19745 .19745 
0.7 .16811 .16811 
0.8 .13505 .13504 
0.9 .09402 .09401 
0.95 .06598 .06596 
0.995 .02073 .02065 

0.3 

X/EA 

X 0.5 kL 

EA=j kL 

0.75 	1;00  L 0.50 OIL 

rigid 
member - 0.1 

ITHOMPSON'S TRUSS 
45° 

FIGURE 5.15 

The results summarized in the Table in Fig. 5.15 show a good 

agreement between the exact and proposed solutions. 

EXAMPLE 3: The Transversely Loaded Cantilever  

In 1945, Bisshopp and Drucker solved, using elliptic 

integrals, the non-linear differential equations governing the 

behaviour of an axially inextensible cantilever under the action 

of a transverse point load. The exact solution they provided, re-

worked and recorded in Timoshenko and Gere (1972), has been used 

extensively as a basis of comparison for several proposed formula-

tions., 

The results obtained after solving the exact governing 

equations are set out in Table 5.13 in comparison with those 

provided by the present formulation; the cantilever was discretized • 

into one, two, four and eight finite-elements. 

Walker and Hall (1968) applied the Raylaigh-Ritz finite-

element method in the analysis of a simply supported beam, discreti-

zed into eight finite-elements, acted upon by a transverse load at 

mid-span and solved the associated non-algebraic equations by 

three distinct techniques; a perturbation method, the Newton-Raphson 

method and a step-by-step method. Shown in Fig. 5.16 is the sequence 
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1-6n/L 

■ 
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-8 

0 

- 4 

- present formulation (1 element) 
- elastica • Alexa (1976) 

-1 o Walker and Hall (1968) 	 • 
• Tada and Lee (1970) 	TRANSVERSELY 

LOADED CANTILEVER . 
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65 
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80 

85 
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6t /L 6 n /L AL 2 /EI 

ELASTICA PRESENT ELASTICA PRESENT ELASTICA PRESENT 

.0581 .0581 .0020 .0020 .1750 .1750 

.1160 .1160 .0001 .0081 .3530 .3531 

.1734 .1734 .0182 .0182 .5371 .5375 

.2302 .2300 .0324 .032.4 .7306 .7316 

.2859 .2856 .0505 .0504 .9376 .9396 

.3406 .3400 .0726 .0724 1.1626 1.1665 

.3938 .3937 .0985 .0985 1 .41 1 7 1.4121  

.4455 .4454 .1284 .1284 1.6923 1.6030 

.4955 .4953 .1621 .162.1 2.0145 2.0157 

.5436 .5433 .1997 .1996 2.3922 2.3941 

.5898 .5893 .2.412 .2411 2.8456 2.8487 

.6340 .6340 .2868 .2969 3.4054 3.4057 

.6762 .6762 .3368 .3369 4.1214 4.1219 

.7167 .7166 .3910 .3918 5.0912 5.0821 

.7559 .7557 .4531 .4531 6.4505 6.4612 

.7968 .7948 .5275 .5236 9.6788 8.6789 

.8397 .8373 .6173 .6120 1%2333 13.2335 

DIVERGED .9315 DIVERGED .8348 DIVE GED 8.6113 

No.of 
F.E. 

1 
1 
1 

1 
1 

1 

2 

2 

2 

2 

2 

4 

4 

4 

4 

8 

8 

8 

FIGURE 5.16 
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of transverse displacements they found for an equivalent canti-

lever; the axial displacements were not recorded. 

Tada and Lee (1970) used a very fine mesh of twenty elements 

and obtained a very accurate solution for the transverse displace-

ments; the values they found for the axial displacements, shown in 

Fig. 5.16, are seen to contain quite noticeable errors. 

Shown in the same figure are the results obtained by Alexa 

(1976) using a non-linear programming algorithm developed by Sargent 

and Murtagh (1973); only one finite-element was used. 

The finite-difference method, rarely applied in the analysis 

of plane bars and frames, was used by Pisanti and Tene (1972) and 

Ounce and Brown (1976) in the solution of the cantilever problem. 

While the former, using a two hundred and one point grid, solved the 

resulting non-linear algebraic equations by the Newton-Raphsonrs 

iterative procedure, the latter also report very accurate results, 

for a wider range of displacements, employing a dynamic relaxation 

method on a twenty-one point grid. 

Using an integral equation approach, Reeves (1975) has also 

analyzed the transversely loaded cantilever, based on complementary 

energy principles; the solution procedure, although of proved 

accuracy, appears to be of limited practical applicability. 

EXAMPLE 4: The Axially Loaded Cantilever  

The axially loaded cantilever is a classic example in 

buckling analysis; the exact solution for this problem is known 

and can be found in most of the works dealing with beam-columns, 

as for instance in Timoshenko and Gere (1961). 

Summarized in Table 5.14 are the results we found for the 

exact solution and after analyzing the cantilever when discretized 

in one, two, four and eight finite-elements. 

This problem, seldomly used to test finite-element formula-

tions, has also been solved by Oliveira and Pires (1976) as an 

illustration of the direct discrete formulation of kinematically 

non-linear analysis they propose; the non-linear equations are 

solved iteratively based on the direct derivation of the non-linear 
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Nodul 

Ro tntion 

20 

40 

60 

80 

100 

12.0 

140 

160 

100 

No .of 
I.E. 

1 

2 

2 

2 

2 

4 

4 

4 

4 

0.6 0.4 0.8 0.2 

2 
~EI 

- present formulation :1 element 
-- present formulation :2 elements 
- exact solution (elastica) 
• Oliveira and Pires (1976) 

L 

8 

1-6
7L 

AXIALLY LOADED CANTILEVER 

- 0.4 	-0.2 

6t /L 60/L X L2/EI 

ELASTIC/' PRESENT ELASTICA PRESENT ELP.STICA PRESENT 

.2194 .2192 .0303 .0302 2.5054 2.5074 

.4222 .422.2 .1100  .1188 2.62.45 2.6244 

.5932 .5930 .2590 .2590 2.8418 2.8416 

.7195 .7190 .4406 .4406 3.1925 3.192.4 

.7915 .7902 .6510 .6509 3.7465 3.7469 

.8032 .8031 .8768 .8768 4.6506 4.6500 

.7504 .7502 1.1069 1.1069 6.2728 6.2719 

.6246 .6240 1.3403 1.3403 9.9440 9.9427 

.1457 .2125 1.8543 1.7657 188.47 85.71 

TABLE 5.14 

FIGURE 5.17 
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X(lb) 

5/h A(lb) 

0.05 4.22897 
0.10 7.97080 
0.20 14.09483 
0.30 18.59430 
0.40 21.72275 
0.60 25.01501 
0.80 26.36450 
1.00 27.98170 
1.20 31.60469 
1.40 38.53368 
1.60 49.81576 
1.80 66.41226 
2.00 89.30292 
2.20 119.53705 
2.40 158.24741 
2.56 196.04307 

-100 

- 75 

- 50 

- 25 

WILLIAMS' 
TOGGLE 

s 
I'h 

L =12.94 in , sin a.=0.0247 
1.0 	1.5 	5/h 0.5 

discrete equations from the linear discrete ones. The solution they 

obtained by decomposing the strut into five elements is shown in 

Fig. 5.17. 

EXAMPLE 5: Williams' Toggle  

Williams, in 1964, developed a formulation for the analysis, 

by the so-called displacement method, of elastic planar frames 

undergoing large displacements. The effects of change of member 

WILLIAMS (1964):•experimental ❑  analytical 
JENNINGS (1968):o 1 element • 20 elements 
present formulation: - 	1 element 

FIGURE 5.18 

flexural stiffness, finite displacements of the joints and axial 

shortening due to bending are considered separately. In order to 

assess the accuracy of the results predicted by this formulation, 

Williams tested the symmetric rigid jointed toggle shown in Fig. 5.18; 

the flexural and axial stiffnesses are 9.27 x 103lb/in
2 
 and 1.885x106  

lb, respectively. 
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Compared in the same figure are the results found by 

Jennings (1968) and those provided by the present formulation, 

which are recorded in the inset; Alexa (1976) reports a good 

agreement with Jennings' solution. 

EXAMPLE 6: Chwalla's Frame  

The sidesway buckling of the symmetric frame shown in Fig. 

5.19 was first investigated by Chwalln (1938); he found that the 

equilibrium path exhibits a bifurcation at a load slightly lower 

than that of the same frame when axially loaded. 

f'lasur et ilia (1961) using stability functions and an 

extension of the moment distribution technique of Winter et alia 

(1948) reached the same governing equations of Chwalla and thence 

the same value for the critical load, X c= 1.775 EI/L2. 

Horne's (1962) approach, similar to 'lriaratnnm's (1959), is 

based on the expression of an arbitrary deformation of the frame as 

an infinite series in terms of the critical modes of the same 

structure when axially loaded; the bifurcation load he thus found 

for Chwalla's frame was 1.780 EI/L2. 

The aforementioned assumed that the displacements remained 

small and their effects in the equilibrium equation were negligible. 

Lee et ilia (1968) proposed a finite-element formulation 

for analyzing large deflections of elastic planar frames subject to 

discrete conservative loads. The system of simultaneous non-linear 

equātions, obtained after assembling the general solution of the 

non-linear finite-element, are solved by a modified Newton-Raphson 

iteration procedure. The stability analysis is based on a method 

proposed by Horne (1961). The values they obtained, in a step-by-

step sequence of load increments, for the symmetrical and sidesway 

buckling loads of Chwalla's frame are 14.9 and 1.7507 EI/L
2 
, 

respectively. 

Illustrated in Fig. 5.20 is the behaviour we found for this 

simple frame when deforming in the symmetrical and sidesway modes, 

the latter being shown in more detail in Figs. 5.19 and 5.21; the 

associated sequence of displacements are presented in Figs. 5.22 

and 5.23. 

The value we obtained for the symmetrical mode limit load, 

c
=13.3 EI/L2  is significantly lower than Lee's, although the 
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XL` 
~EI 

• 

-10 

symmetrical mode 
FIGURE 5.19 

• Lee et alia (1968) 

'-sidesway mode 

0.2 	0.4 6/L 

FIGURE 5.20 

CHWALLRt S FRAME 

FIGURE 5.22 

FIGURE 5.23 FIGURE 5.21 
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SYMMETRICAL MODE 	(*) 

AL 2 /EI 6/L 8 
1.6470 0.0013 0.0800 
4.1792 0.0099 0.2352 
6.3607 0.0273 0.4135 
7.8859 0.0481 0.5772 
9.9556 0.0693 0.7228 
9.7337 0.0899 0.852.3 

10.3310 0.1097 0.9697 
10.9190 0.1288 1.0784 
11.2411 0.1477 1.1817 
11.6336 0.1669 1.2.827 
12.02.16 0.1869 1.3844 
12.422.8 0.2.088 1.4905 
12.8325 0.2340 1.6056 
13.1782 0.2644 1.7352 
13.2720 0.2986 1.8321 
12.9371 0.3312 1.992.9 
11.7305 0.3788 2.1641 
9.6350 0.4255 2.3301 
6.9798 0.4663 2.4779 
4.1577 0.4986 2.6010 
1.4499 0.5226 2.6981 

SIDESWAY MODE: 	0-CONTROL 	(I) 

XL 2/EI 5/L 8 
0.4396 0.0001 0.0200 
0.8597 0.0003 0.0400 
1.2617 0.0007 0.0600 
1.6467 0.0013 0.0800 
1.7390 0.0063 0.0864 
1.7473 0.0163 0.0900 
1.7491 0.0263 0.0933 
1.7499 0.0363 0.0965 
1.7505 0.0463 0.0998 
1.7510 0.0563 0.1030 
1.7515 0.0663 0.1063 
1.7520 0.0763 0.1096 
1.7525 0.0863 0.1130 
1.7531 0.0963 0.1163 

(-E) 6 =0 	(I) e=10-5  

Refer to Fig. 5.19 

SIDESWrY 	MODE: X-CONTROL 	(I) 

AL 2 /EI 6/L 8 
1.6467 0.0013 0.0800 
1.7367 0.0019 0.0849 
1.7467 0.0029 0.0858 
1.7487 0.0040 0.0862 
1.7502 0.0071 0.0973 
1.7507 0.0106 0.0884 
1.7512 0.0218 0.0920 
1.7517 0.0425 0.0987 
1.7522 0.0579 0.1037 
1.762.2 0.2050 0.1545 
1.7722 0.2877 0.1863 
1.7822 0.3554 0.2145 
1.7922 0.4186 0.2430 
1.8022 0.4846 0.2759 
1.8122 0.8124 0.4723 
1.9022 0.72.11 0.3839 
1.9122 0.5802 0.2825 
1.9322 1.0977 0.6419 
1.9522 1.0968 0.6384 
1.9722 1.0958 0.6348 
1.9922 1.0948 0.6312 

SIDESWY MODE: 8-CONTROL 	(5) I 

AL 2 /EI 6 /L e 
0.4396 0.0001 0.0200 
0.8597 0.0003 0.0400 
1.2617 0.0007 0.0600 
1.6467 0.0013 0.0800 
1.6080 0.1609 0.1300 
1.7304 0.3989 0.2300 
1.7716 0.5832 0.3300 
1.5409 0.8056 0.5300 

-1.2882 0.9979 1.4300 
-1.1848 0.9997 1.5300 
-0.2551 1.0000 1.6300 
1.3621 0.9901 1.7300 
2.0718 0.9728 1.8300 
2.4070 0.9516 1.9300 
2.7315 0.9116 2.0800 
0.9743 0.9265 2.1800 

-0.9478 0.9489 2.2800 
-2.6296 0.9674 2.3300 
-2.9227 0.9242 2.3800 
-2.7904 0.9277 2.4300 
-2.7466 0.9301 2.4800 
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lateral displacement at collapse is in both cases accepted to 

be 6 	0.285L. The solutions appear to agree only for relatively 

small displacements, as shown in Fig. 5.20. 

^t the time this frame was analyzed, as a computer routine 

for the detection and solution of critical points was yet to be 

developed, the sidesway buckling had to he induced by the applica-

tion of a small disturbing lateral load, as shown in Fig. 5.19; the 

value we estimate for the buckling load; for a load-control program, 

is X c 
^• 1.7505 EI/L2. 

Chwalla and masur did not discuss the stability of the 

equilibrium path; according to Horne's analysis the frame is 

marginally unstable immediately after bifurcation. The results we 

obtained confirm Lee's conclusion that a very small but decidedly 

non-zero stiffness remained after bifurcation. Figs. 5.19 and 5.21 

show that the frame remains stable (with respect to direction 6 ) 

for a significant range of displacements. The sharp discontinuities 

in the graphs of Fig. 5.21 translate the drastic accommodations the 

frame has to endure when the variation of a control parameter, with 

tendency to decrease, is prescribed to increase monotonically. 

As, in the present case, the displacements at bifurcation 

are very small, 6 	1.5 x 10-3L, the values for the critical load 

predicted by small displacement stability analyses should not differ 

substantially in magnitude from that obtained by large displacement 

analyses; the lower value predicted by the latter,1.751 against 

1.775 of Chwalla and I'lesur and 1.780 of Horne, is explained by Lee 

as the result of the additional eccentricity to the column load 

produced by the flexural shortening of the beam, a contribution 

neglected in small displacement analysis. 

Brown (1970) has also analyzed Chwalla's frame. Although the 

effects of finite displacements are taken into consideration in the 

formulation he proposes, the value he found for the bifurcation 

load, 	X c= 1.8196 EI/L2, appears to be rather high; the stability 

of the equilibrium path is not discussed. 
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2.5 5/L 

BRACED TOWER 

6/L 102X/EA 

0.1 .41747 
0.2 .77732 
0.3 1.08936 
0.4 1.36159 
0.6 1.81136 
0.8 2.16488 
1.0 2.44700 
1.2 2.67376 
1.4 2.85523 
1.6 2.99699 
1.8 3.10061 
2.0 3.16318 
2.15 3.17817 
2.2 3.17595 
2.4 3.12302 
2.6 2.98332 
2.8 2.72879 

EXAMPLE 7: Braced Tower  

Illustrated in Fig. 5.24 is the response of the truss 

structure shown when subject to a monotonically increasing side-

sway; the response is quantified in the inset. 

FIGURE 5.24 

EXAMPLE 8: Two-Storey Portal Frame  

The two-storey portal frame analyzed in the previous 

section is herein assumed to be constituted of an ideal linear 

elastic material. The frame was discretized into twelve finite-

elements and the solution we obtained is given in Table 5.15 and 

illustrated in Fig. 5.25; the loading and a sequence of displace- 
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L/E 

2,0 

L 

PORTAL FRAME 

-1.0 	EI= const. 

7  

SR = 100 

0.5 	1.0  

FIGURE 5.25 

L 

6/L XL2/EI(SR=100) 

0.10 0.9548525 
0.20 1.3636201 
0.30 1.5954081 
0.40 1.7505655 
0.50 1.8674266 
0.60 1.9637561 
0.70 2.0488045 
0.80 2.1275415 
1.00 2.2717489 
1.20 2.3586215 
1.40 2.2768004 
1.60 1.8621526 
1.80 1.3479834 

TABLE 5.15 

FIGURE 5.26 
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ments is shown in Fig. 5.26. For the same computational cost, 

circa 3.5 decimal seconds per step, a more accurate solution would 

have been obtained if the finite-element mesh had been more refined 

in the first level columns and rendered more coarse in the second 

level ones. 

5.6 	RIGID-PLASTIC STRUCTURES  

Several methods used in the eighteenth and nineteenth 

centuries to assess the safety of arches, domes, retaining walls 

and earth structures may be regarded as the precursors of limit 

analysis. Prager (1974), in a most engaging presentation on the 

evolution of concepts in limit analysis, traces its origins back to 

the seventeenth century, to Galileo's study of the transversely 

loaded cantilever. 

After Cauchy laid the foundations of the theory of elasticity, 

in 1622, the substantial majority of methods in structural analysis 

and design developed during the subsequent decades adopted the linear 

elastic model. 

From the late 1930's onwards, the wish and necessity of 

designing structures of ever increasing complexity was not 

immediately accompanied by a parallel development in sophistication 

of the available processes of numerical implementation. Elastic 

analysis was proving too cumbersome and revealing an inadequacy for 

estimating realistically the load-carrying capacity of steel 

structures, as demonstrated in the pioneering investigations of 

Kazinczy (1914) and Kist (1917). Practical necessity, rather than 

theoretical consistency with experiment, was the main motivation in 

the search for alternative idealizations of the structures behaviour. 

The plastic theory of structures, which has been developed at 

Cambridge by Professor Sir John Baker and his co-workers, Baker (1954) 

has proved in its simplest form to be a suitable conceptual tool 

For the analysis and design of many beam and frame structures. 

Attempts to formulate the limit analysis problem and 

establish the uniqueness of the collapse surface accompanied attempts 

to formulate the limit theorems, first enunciated by Gvozdev (1936). 

When Gvozdev's work became known to Western researchers, in the after-

math of the last World War, the fundamental theorems had already 

been derived by Greenberg and Prager (1944, 1952), Horne (1950) and 
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Drucker et alfa (1952). According to Neal (1977), the static theorem 

was first suggested by Kist (1917) as an intuitive axiom; the 

corollary concerning the effect of strengthening the structure by 

increasing the plastic capacities was first stated, but not proved, 

by Feinberg (1948). 

The extremum theorems form the basis from which the proposed 

algorithms of structural plastic analysis developed. The static 

theorem is used in the method of inequalities of Neal and Symonds 

(1950) to select the collapse configuration among a set of statically 

admissible stress distributions; a quite different technique based 

upon the same theorem is that of moment distribution developed 

simultaneously by Horne (1954) and English (1954). The kinematic 

theorem is the criterion adopted in Neal and Symond's (1952) method 

of combining mechanisms. A tabular procedure for developing 

simultaneously upper and lower bounds was developed by Munro (1965b). 

The application of the simple plastic theory grows improper 

as the structures become more sensitive to stress-interaction effects 

to overcome this problem formulations and modified algorithms have 

been proposed, based on more truthful yield criteria. 

The answer to questions on the quality of the stability at 

incipient collapse is totally beyond the realm of limit analysis 

theory, as it requires a (kinematically non-linear) post-collapse 

analysis. Influence of change in the geometry in the behaviour of 

rigid-plastic structures have been studied by Haythornthwaite (1956, 

1957) and Murray (1956), For built-in beams and triangulated frames, 

respectively; Onat (1960) considered the post-collapse behaviour of 

arches and Horne (1963) that of planar frames. The early researchers 

recognized that, while the application of simple plastic theory to 

beam and frame structures could be justified by experiment, the 

behaviour of other kinds of structures was not patient of such 

simple analysis; accordingly, the emphasis on experimental and 

theoretical research moved from skeletal structures to plates 

slabs and shells, from as early as the late 1950's. 

The static theorem of plastic limit analysis was first 

recognized as a standard linear programming problem by Charnes and 

Greenberg (1951). Duality theory was then used by Dorn and Greenberg 

(1957) and Charnes et alio (1959) to formulate kinematic procedures; 
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a consistent discussion of the relationships between the safe and 

unsafe theorems and the primal and dual linear programs of plastic 

limit analysis, long overdue, was finally presented by Munro and 

Smith (1972). 

Extensive and fairly well-known research work has been done 

on mathematical programming applications in plastic limit analysis 

(and synthesis); representative contributions are those of Prager 

(1962), Hodge (1964), Gav arini (1966), Grierson and Gladwell (1971), 

Cohn at afin (1972), Maier (1973) and Smith (1974). 

Gavarini's (1969) step-by-step procedure is, apparently, the 

sole application of mathematical programming in the post-collapse 

analysis of rigid-plastic structures; a sequence of limit analysis 

by linear programming is performed to obtain a corresponding number 

of points defining a piecewise-linear approximation of the load-

displacement curve. 

5.6.1 	The Quadratic Programs of Rigid-Plastic Analysis 

Instead of removing the elastic phase components from the 

governing systems (and associated quadratic programs) of elastoplastic 

analysis, the rigid-plastic analysis systems and programs will be 

derived from first-principles of mechanics. This approach is justi-

fied by the desire of following as closely as possible the usual 

procedures in plastic limit analysis, wherein the loading is treated 

as an analysis variable; the external work expended per unit varia-

tion of the loading will now be used as a control variable. The 

formulations of elastic and elastoplastic analysis may also be 

adapted into variable loading programs following a procedure in 

every aspect similar to the one to be presented; this approach is 

particularly relevant for the mesh formulations wherein generalized 

displacements do not appear explicitly and may not therefore be used 

directly as alternatives to loading-control sequences. 

For simplicity of the presentation, prescribed dislocations 

are not to be considered and the variation of the loading will be 

assumed proportional to a parameter X. General loading descriptions 

can however be included, for instance in the manner of Smith (1974). 

The treatment of prescribed dislocations, which may be used as 

imperfection parameters, should not present special difficulties. 

335 



The specialization of the fundamental conditions of 

mechanics for structures formed by rigid-plastic members is straight-

forward, it being only necessary to remove the elastic components Iron 

the. generalized deformation variables present in the descriptions of 

Statics and Kinematics. 

If a rigid-plastic member is axially rigid, the potential 

pl:,stic hinges being inextensible, equation (2.1.36) provides a 

further compatibility condition of the form 

c • A6n= s • Ab t + ARu2( Au' 2=0) (5.6.1) 

The above equation can be used to eliminate either Ab t or A6n from 

the system kinematic equations, it being necessary however to 

replace Abt( Abn) by Abn( A6t) as a passive variable when s (c) 

approaches zero. 

Theoretically more attractive is an alternative approach 

wherein both variables Abn and Ab t are allowed to remain explicitly 

present in the system compatibility equations while condition 

(5.6.1) is implicitly satisfied. If the axial rigidity condition 

Au' 2=0 (5.6.2) 

is directly enforced, the general definition (2.1.30) for the 

additional deformations becomes 

Auf 	=Q' A bn + 
AR-un 

( Au' 2=0 ) (5.6.3) 

and, as the shear force reduces to 

Ax 3 = - - ( Ax i - Axi) + AR3( Au' 2 =0) 

the additional forces become characterized by 

Art = [~ AX' + P' Abn + AR n ( Auf 2=0) 	(5.6.4) 

In the above we note 
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- x 2  
L 

L 

  

0' = and P = 
L 

X 2  

L 

(5.6.5a,b) 

      

(Matrix Q is defined in (2.1.39b), where now the member chord 

length Lc  coincides with its initial length L. 

Static-Kinematic Duality is destroyed because matrices Q' 

and Q are not identical; furthermore, as matrix P' is non-

symmetric, the static-kinematic interdependence operators (mesh 

and nodal) cease being symmetric. 

This most undesirable situation can however be righted if 

use is made of the local compatibility equation (5.6.1); let us 

re-write definitions (5.6.3) and (5.6.4) as 

Au' = Q A b + (2'-Q)4b7  + ARu7(Au2 = 0) 	(5.6.6a) 

and 	Art = QTAX' + P Dōn  + (P'-P) A 	+ ARn(Au2 = 0) (5.6.6h) 

respectively. From definitions (5.6.5), (2.1.39b) and (2.1.43b), 

and using condition (5.6.1) it can be found that 

(Q' -Q) o6n= • ARu2(Au2=0) and (P'-P)A6n  = ARu2(Au2=0) 

• 

-s L +2c 

thus reducing (5.6.6) to 

Au'= Q A6 + AR n 	un 

An = QTAX' + P A6 + AR n  

where now AR un = ARun(Au2=0) + (Q '-Q) A5 

1 
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and 	AR Tz = AFtn ( Au'2=0)+ (P'-P) A67 

The derivation of the corresponding description suitable 

for a perturbation analysis is immediate. The asymptotic analysis 

definitions, given in subsection 2.1.4, can be treated similarly. 

The apparent loss of Static-Kinematic Duality and of symmetry of 

the static-kinematic interdependence matrix does not occur when 

enforcing the axial-rigidity condition u'2=0 in the deformation 

analysis fundamental conditions. 

The above procedure should be applied in the solution of 

elastic and elastoplastic structure containing axially-rigid members. 

AUXILIARY 	RESIDUAL 	VARIABLES 

Owl 	= AT IRn 	, 	Aw 2 = -IR 	, 	Aw 3 = MT( IRp -IRun ) 

Nodal 	Formulation 

Aw o 	= IR 	+ !NIP IB 	IR 	-1K 	(IR 	-IR 	)~ 
-~ 	- 	TL-n-n -M 	-p -un 

Aw 	= IB T( IRp-IRu~) 	, 	Aw 2 = AT19 T 	(IRp -IRu~) 

Alternative Mesh 	Formulation 

= 	BT 	(IRIR 	IR -) 	- IFp Aw 	= -IR 	Aw 	
-p 	

un 
-o 	

S 	 S 

Aw2 	p 	
-un 

= 	ATBT(IR-IR) 	- IF' 	IR
-IT 

Mesh 	Formulation 

TABLE 5.16 

The alternative descriptions for the governing system of 

rigid-plastic perturbation analysis are summarized in (5.6.7-9), 

wherein the residuals w.j are the coefficients in the series 

expansion (2.1.52) of thelauxilliary residual variables Aw. 

defined in Table 5.16. 

Rs the loading is assumed proportional to a VARIABLE 

parameter, in order to preserve the symmetry of each governing 

system, the displacement compatibility conditions (4.2.70b),(4.2.6Bb) 

and (5.2.24b)heve to be included in the systems, after being pre-

multiplied by the transpose of the loading proportionality vector A . 

It can he easily concluded that 
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PERTURBATION ANALYSIS FORMULATIONS 

NODAL 	FORMULATION (5.6.7) 

-IK N 	• ^q 
_ 

+ IA TM 	~ -alo ^X c = w1 (a)  

_ 	i 	IH _ _u- i ^ IN TI 	1 	_ _ X _ i ' - w2 i (b)  

- M TIA 	 -MTIN q = - -W3 (c)  

• ---no 	i 	_ _ v . i - i 
u--". 
i 

0 (d)  

u 
[

IH 	u. 	-IN TM 	X c 	-(1.-/d = 
i 	 i 	 i 0 (e)  

ALTERNATIVE MESH 	FORMULATION (5.6.8) 

[HTK u,~ 	+ [_TH:_T01 -p o (b)  
J. 

_ _ i 
- ̂ -18 TIN 

T 	 
u, 
i 

= 	_. -w1 _ 	 
(c)  

--IboIN _ _-W-w2 i 

u 
i 

0 (d)  

u*T 
iL 

IH -IN TIK IN) 	u 	1 	-IN TIB 	p 	-IN Tb 
o A -wo1i 

0 (a)  

MESH 	FORMULATION (5.6.9) 

IH 	u 	[ rl 	+ 	-IN TB* -IN Tbo - p; ' 	Wi L X i (b)  

-B T.IN̂  u 	+ - Em 	: 	IFo - p. _ - -w1 (c)  

---(INJ 
L IFo 	1 	IFN J ~' _i _-W-

10Z. i 

u* 

i 

-, 	0 (d)  

u*T. [ IH 	u. 	-IN TB .p. -INTboX - wo1i 0 
(e)  

TABLE 5.17 
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FIGURE 5.27 

TT. = A T  6 .  1 	— 	- 1 

which is to be identified with the perturbation parameter E (thus 

Wi= 61i) '  represents the (perturbed form of the) external work 

expended during a unit variation of the load parameter X. 

Consider a generic node k and the adjoining members, as shown 

in Fig. 5.2.7, and assume that members with end-sections i and j have 

identical bending plastic capacities. The equilibrium condition gives 

X 1  = Xj = X1 where X1 is the bending moment at critical section c, 

chosen in the present case to coincide with section j. Collecting in 

X 	the generalized stress-resultants at 
-c1 
all critical sections, the incidence 

Xi=r1 Xc  can be defined and substituted 
i 

intn (4.2.69)  thus reducing in the nodal 

system the number of generalized stress-

resultants from x to c, where x > c is the 

dimension of X i. To preserve Static-

K.inematic Duality, the nod^1 compatibility 

condition (4.2.70x) has to be pre-multiplied 

by MT, thus enforcing the summation of the rotations developing at 

the sections neighbouring node k; as a consequence, the rotation at 

nodes k where only two members connect becomes zero and may also be 

removed from the system. This procedure is also applicable to the 

nodal-flexibility programs of elastic and elastoplastic analysis. 

The three pairs of quadratic programs (5.6.10) to (5.6.15) 

were obtained after confronting each of the governing systems 

summarized in Table 5.17 with the Kuhn-Tucker Conditions (5.1.12) 

and, assuming the Kuhn-Tucker Equivalence requirements satisfied, 

enforcing the resulting identifications in the pair of primal-dual 

programs (5.1.7-13). 

The asymptotic analysis governing systems and the associated 

quadratic programs are qualitatively identical to systems (5.6.7-9) 

and programs (5.6.10-15), respectively. 

For non-workhardening plastic materials, the zeroth-order 
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NODAL 	FORMULATION 

= Min  z - 1 q 

u -_- 

T_ 

i_ 

	

-IK 	i -N r 
• r 	IH • r 	— 

q - 

u __* 

+ 

i 

X -c 
X - _ 

T 

i 

-w -3 
-W _ 	_i 

subject to:- -IK N 	• q +' /A TM 	I 	-al..., X c = 
w1- 

_ 	~ 	IH_ u i ` -IN TM i 	• - _X _i L -2_ i 

PRIMAL 	PROGRAM 	(5.6.10) j 	DUAL 	PROGRAM 	(5.6.11) 

Max 	w=-2 q T -IKN q + q T w1 
--- --- ---- 

i _ IH _ ~'f i ~* i _ - 2_ i 

subject 	to:- 	- M TIA -MTN q - - w 3 
T 

- ao • I 	__ -t i _-W if 
u 	0 
i 

ALTERNATIVE MESH FORMULATION 

[ IITIK1 

 

Min 	z = 2 u 	T
i

C IH- MIN 

subject to:- 	
C 

u* . 	+ 

u* 	+ 	LIN TIB I-IN TIb o] i 	_, — 
wo  

[E1 T 

X 
p 

i 

i  

 --1  
-W-w2 

1 

i 

PRIMAL PROGRAM (5.6.12) 
T 

DUAL PROGRAM 	(5.6.13) 

Max 	w 	=-2 	.1,1* 
1 

subject to:- - 

[ L.M 1 

-IB TIN 

-lb TIN - -0-- 

u 

u 

+ 
i 

i 

	

u,TF 	wo 
i 	1 

_ - 

	

u 	0 
1 

-cū1 

-W-W2 _ i 

progrnms become LINEAR. Consider for instance the primnl and dual 

nodnl progrnms 
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MESH 	DESCRIPTION 

Min  z = 2 	u * 	H u, 	+ 2 
i i 

subject 	to:- 	IH 	url 	+ 

P* 
---- 

X 
_ _ 

T 

i 

[INTB HNTbI P 

 

IFM ~ 	IF0 
----- 

IF 	i 	IF1 

2* 
--- 
_~_ 

_~_ 

+ 

i 

i 

p* 

_~_ i_ 

--- 	 
-to 1 

_ 

-‘1- ~'~2_ i 

PRIMAL 	PROGRAM 	(5.6.14) DUAL 	PROGRAM 	(5.6.15) 

1 Max 	w =-2 u* 	IH 
i 

subject 	to:- 	- 

u* 	- 
i 

-BET IN 
T 	- 

_ b0 	I N 

1 

u* 

-p 
--- 
— 	_ 

i 

T 

i 

+ 

IFM 	i 	IF0 
- 	T 	1  

I 

	

IF 0 	IF A._ 

Lm ; IF o 
--T-r-- 
IFo 	1 	IFN 

p 
-- 
X _ - 

p. 
- 
A_ 

u _ i 

+ 

i 

= 

i 

u* 	w  i 

-W1 	-  
_ W-W2_ 

0 

1 

i 

           

Max -z = 
0 

X c 

Ā 

T 

     

X 
_fl 

 

• 

         

 

n 

 

n 

    

0 
-Xx 

        

           

and 

  

T 

 

- MT/A i 	-4'1
T 
IN 

T ' -a ' -0 i 

    

        

 

Min -wo = 

  

q 

  

U 	0 
0 

    

X :, 

  

U 

  

U v. 

--- o 

 

0 

 

       

       

respectively. The unit work W can still be identified with the 

perturh,, tion p ranieter E, yielding 
7.= 

61i and consequently Wo=O. 

As by definition the zeroth-order kinematic variables yo are also 

null, the primal objective function becomes trivial and the dual 

feasible region empty. However, as -z0, qo, u* and oo are all 

null, the indeterminacies 	 o 

z ō = - zo 	q' = lo/70  , u 	= g* /go (5.6. 16 a - c ) 
0 	0 
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A 	X. W~ 
u 	III 

x= X0+ X1W 

	  X= Xo 

plastic limit analysis 

W 

can be artificially introducr3d, reducing the programs in the 

above to the following: 

Max Xo -ATM 
- 1 

NTM 

a -o 

 

Xc 

  

(5.6.17) 

       

       

   

x 

 

      

      

and 	Min X, u 	: -IST A 1 M T N 

a
o 	T ---- 

-o 

    

of 

 

1 u 	0 	(5.6.18) 
0 

 

0 

 

  

The zeroth-order mesh programs can be similarly reduced to 

A 

Max Xo 	: [NTB NTbcd (5.6.19) 
-P- 

and 	Min X* u.f. 	 BT N 	u 	= 
o 	- -- o 

bTN 

  

1 

0 	(5.6.20) 
0 

   

Setting, in the nodal programs (5.6.17-18), the incidence 

matrix M to the identity matrix I (implying that Xc = X and 

increasing the dual constraints by x-c) the programs in the above 

become the NODAL AND MESH LINEAR PROGRAMS OF PLASTIC LIMIT ANALYSIS 

proposed by Smith.(1974); equivalent programs in alternative 

formats are widely presented 

FIGURE 5.28 

in the literature, wherein the 

scaling operation (5.6.16) is known 

as the "normalization of the 

collapse mechanism". 

Illustrated in Fig.5.28 is a typical 

sequence of solutions as provided 

by an asymptotic analysis which 

essentially approximates by an 

infinite series 

W2 	—3 X= +X W+X w + X3 3i: 
+ ... 

the actual equilibrium path X=X(W). 
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The Plternative descriptions of the governing systems For 

the rigid-plastic incremental analysis are structurally identical 

to systems (5.6.7-9), it being only necessary to replace in there 

each variable by its corresponding increment. 

AS the residuals ic i , defined in Table 5.16, are non-linear 
functions of the system variables, such systems may only be identi-

fied with the Kuhn-Tucker Conditions (5.1.12) under the assumption 

that the actual values taken by the residuals are known a priori. 

Under this assumption, and supposing that the governing systems 

satisfy the Kuhn-Tucker Equivalence requirements, the associated 

pairs of primal-dual (iterative) quadratic programs could then be 

derived, emerging in formats similar to those of the perturbation 

analysis programs. 

The alternative governing systems of kinematically non-linear 

rigid-plastic deformation analysis are presented in Table 5.19; 

Table 5.18 summarizes the definitions of the relevant auxiliary 

variables wi. Matrices K N and K ~1 _are defined in (5.2.32c) and 
(5.2.32d), respectively. 

For a compatible kinematic configuration associated with a 

unit work W, assuming known the elements of functionals KN, 141, H 

and wi, systems (5.6.2.1) and (5.6.2.2) can be identified with the 
Kuhn-Tucker Conditions (5.1.12) thus generating the quadratic 

programs (5.6.23-24) and (5.6.25-26), respectively, to which they 

become equivalent if the Kuhn-Tucker Equivalence requirements are 

satisfied. 

Specializing the plasticity relations for the case of 

perfectly plastic materials and setting to zero all coefficients 

associated with the kinematic non-linear effects, programs 

(5.6.23-26), after enforcing a normalization condition similar to 

(5.6.16), are reduced to two pairs of primal-dual linear programs 

equivalent to programs (5.6.17-18) and (5.6.19-20). 
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AUXILIARY 	VARIABLES 

W1 = -t p w 2 = MT(u~-un ) 

Nodal Formulation 

c. o = -n~-T (up un) 	, w1 = B
T(u 

-un) ,  w 2 = ATBT(u~-un) 

Mesh Formulation 

TABLE 5.18 

THE FORMULATIONS OF DEFORMATION ANALYSIS 

NODAL 	FORMULATION 	(5.6.21) 

- 

-K 	• - 	

N_ 	

- 

• i 	H 

MT A 	-I TN 

- - q 

u 

q 

- 

+ - 	T 	1 	

-a 
A M 

-o 

	

-N TM I 	• 

X 

A 

_ 
c = 

=- 

- • 

-X 	+(,~i_ 

--w2 
-  

uT 
[ 

NM X° 	+X*-t 1l = 0 

u,~ 	0 

MESH 	FORMULATION 	(5.6.22) 

H 	-NTK f'1 N] 	u* + I -N 	B -NTb~ L 	 ° A p- 
-X*+wo 

- -BTN u_ - -t 	1 

-b N -W-W2 

ul4H -N TKMN1 * 	-NTB p -NTb° x+X -w }= 0 

- u..- 	0 

TABLE 5.19 

345 



NODAL 	FORMULATION 

1 

subject 	to:- 

_ 	_ 

q 

- "', 

T 

I 	_ 

-K NI 	• 

I 

I -. 	H 
r -K 	i 	• -NI 

Min z = 
 

q 

-U4 
q 

+ 

+ ATM 	-a 
- 	I 	-o 

lc 

X 

X 
- c 

T 

= 

_ 	_ 

-0..)2 

- - W 
- 

• 

PRIMAL 	PROGRAM 	(5.6.23) 	I DUAL 	PROGRAM 	(5.6.24) 

Max w=-2 

subject 	to:- 

q T 

u 

- 

-KN1 	• 

• 1 	H 

-MT A 

-ao 
_ 

q 

t.1-x- 

-M
T 

• 

+ 

N 	q - 

u 
__ 	_ 

q 

u 

u{ 

T 

= 

a 0 

-X +w 

r -w2 

-W 

1 

MESH 	FORMULATION 

Min z = 

 

1 
	
u* 

C 
H-N

TIN~ 	
u . + 

subject 	to:- EH-N
T K 	PJ1 	u 	+ [_NTRI_NTb I[E_ 

p 

A 

T 
 -W1 

-0 -W2 

-X .+wo 

PRIMAL 	PROGRAM 	(5.6.25) DUAL 	PROGRAM 	(5.6.26) 

Max w =-2 u 	[H-N 

subject 	to:- 	- 

T
-M-
K Nd 

-̂BT N 

-bTN 

u 	+ 	 u4( 	(-X 

u* 	= - 

u 	0 

*+wo ) 

J -C9 1 

-W-w2 

5.6.2 General Considerations in Rigid-Plastic analysis 

The alternative descriptions of the system governing rigid-

plastic behaviour were arranged in such a manner that when 

identified with the Kuhn-Tucker problem (5.1.12) the primal 

constraints [constraints of type (a) and (b)] represented the 

static admissibility conditions, while the dual constraints 

[ constraints of the type (c) and (d)] represented the kinematic 

admissibility conditions. 

., s =11 static quantities were treated as variables, the 

346 



primal programs will always be feasible; although non-empty, their 

Feasible regions may reduce to a point only satisfied by a trivial 

solution. The kinematic variables were, on the other hand, 

constrained to dissipate a prescribed amount of work per unit 

variation of the loading; if the value attributed to AW is 

unattainable, the dual programs will not be feasible, thus rendering 

the primal objective functions unbounded. Otherwise, it can be stated 

that IF, FOR A. PRESCRIBED INCREf1ENT AU, STATICALLY AND KINEMATICALLY 

ADMISSIBLE CONFIGURATIONS EXIST, THEN BOTH PRIMAL AND DUAL PROGRAMS 

WILL HAVE OPTIMAL SOLUTIONS. 

The application of Theorem (5.1.17) to the perturbation 

analysis programs presented in the previous subsection generates 

the following statements regu1•ting the sufficient conditions For 

uniqueness at optimality: 

- Consider the nodal formulation programs (5.6.10-11): 

(I) IF the "geometric" stiffness matrix -CA N and the hardening 

matrix H are positive definite,the generalized nodal dis-

placements Aq and the generalized plastic multipliers Aug. 

are unique 

and in particular 

(II) Ir matrix 0< Ni is non-singular, and matrix [A T
M- ago ] T (-IK F~ ) -1 

[ATM - ago ] is positive definite, the generalized stress-

resul.tants AX and the loading parameter AX are unique. 

- From the mesh formulation programs (5.6.14-15): 

(III) If matrix 	
I- I_M 

I IFn 

Ifō F
X 

and, in particular, 

( IU) IF matrices IFr~;IFo 

IFō ; IFN 
- ' 

is positive definite the stress-resultant 

field 	AX = AX( Ap*, a) is unique. 

and IH + 	-BA  T 	IF r. I IF ~ - -1 -A T IN T 

- -o 	IF_0 IF X 	- h TIN 
- - ' - 	- 	- 

are non-singular and positive definite, respectively, the 
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MULTIPLE SOLUTIONS 	(5.6.2.7) 

6q T -IK N • 6q- 

6u, 	• IH 6u* 

-IK N i  

• I 	IH 

IA i -IN 6q 

• 
= 0 	6X W = 0 

T IS j -;yo 

T 

ū + a 6u_ 

6q -
6u 

6x 

6X 

= 0 

0 61* 

I 

0 

~ ; 	• 	6u* 

u t T 	6~x + 11.* 6u* + a 6u* 6∎* = 0 

generalized plastic multipliers Au* are unique. 

The characterization of the conditions which a multiple 

optimal solution must satisfy, should be based on the composite form 

of the programs to which it refers if it is to be guaranteed 

explicitly that the configurations defined by such a solution are 

simultaneously statically and kinematically admissible. The 

application of Theorem (5.1.18) to the composite form of the nodal 

programs (5.6.10-11) generates system (5.6.27) which characterizes 

the possible (first-order) multiple solutions 

(A", ~ ~ X?T , A")=(q0, 6 , XI , ~' )+a( 6q, 6u*, 6X, 6X ) 

where W, O.., X', 3') represents a known optimal solution. System 
(5.6.27) could now be treated and interpreted following a procedure 

identical to the one used on system (5.3.4-9) which regulates 

multiple elastoplastic optimal solutions. 

After a sequence of substitutions, particularly simple for 

the nodal formulation programs, the primal and dual objective 

functions of the programs previously presented can be reduced to 

the following forms: 
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- Deformation analysis programs 

20 = 2 u* H 	u 	2 nTbn - {xT- 

	

0 	+ {XT(u_U) 	+04 (5.6.28) 

-wD= 
2 
u* H u* - 2 II ōn + X-T u* 

} + { 
u*T ntv 	-04 (5.6.29) 

zI 	= 

- 

2 

Incremen.tal 

QXT( Au - 
Qu* IR~J 

analysis programs 

p+ 	u )- 1 	QnT Qb 	+ 1 P
l 	

n 	2 	- 	-n 	2 

}-{AXTQŌ}+04 

[QXT(IR 	-IR 	)+ QST 	IR 	- 
un -P 	- n -n 

(5.6.30) 

-w I = { 2 QX T ( Qu p+ tun ) - 2 AnT QSn - 	[txT(IRun-IR p )+ QōIR - 

QuIR~~}- 04 (5.6.31) 

The objective functions of the i-th order program of 

perturbation analysis can be obtained by replacing in (5.3.30-31) 

each incremental variable by the i-th order component of its series 

expansion, and replacing the fourth- and higher-order terms 04 by 

constants. 

Combining through the Principle of Virtual Work, i.e., using 

Static-Kinematic Duality, two configurations, one statically the 

other kinematically admissible, and substituting in the above the 

results so obtained, it can be verified that the primal and dual 

objective functions attain the same value at optimality. 

In particular, the deformation analysis formulations give, 

for perfectly plastic materials 

X T u* = TL T ōn + X W - XT(un -uy) + u* TCA 

Introducing the assumptions of the simple bending theory of plasti-

city (u
T 

= 0, n
T 
- 0) and neglecting all the second- and higher-

order kinematic effects ( n n= -pX3, nt=pX2, 6n=0, ōt=pL, un =0) 

the above equation reduces to 

X* u* = 	X2 L i pi + Ā W (5.6.32) 
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The load at incipient collapse ( pi=0) is 

A o = D/W (5.6.33) 

where D=X* u* represents the plastic dissipation; assuming that, 

at any load f;ictor X during the deformation of the collapse 

mechanism the axial forces are proportional to the axial forces at 

incipient collapse, i.e. 

i 	a 	i 
X 2 = Xo 

X20 

equation (5.6.32) reduces to 

1-1 
X = Xo 1 + D-1~X2 Li p i 	(5.6.34) 

i o 

The above equation, first proposed by Horne (1963), characterizes 

the equilibrium path of a (predetermined) collapse mechanism under-

going very small but finite deformations. 

The application of the Principle of Virtual Work to the 

asymptotic analysis formulations gives for the load at incipient 

collapse 

1 
X 
o 
= 	[XT

-o -P1 W1 

re-generating (5.6.33) and for its first variation 

(5.6.35a) 

x1 = 1 
[-o u p + 2X1 u _P - X W2 _E 

2W 1 	
_ 2 	1 	 i 

6t 

-X
i 6 	1i 

20 t1• Li i 
(5.6.35b) • 

Higher-order coefficients in the series expansion of the load 

parameter X could be obtained in a simpler way. If the mechanism 

under consideration has only one degree of freedom, all kinematic 

variables present in the set of definitions (5.6.35a,b,...) can be 

expressed in terms of the parameter selected to describe the 

mechanism motion; this parameter could then be identified with the 

perturbation parameter E. If, on the other hand, the mechanism has 

two or more degrees of freedom, a series expansion in as many 

parameters should be used. 
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Let x.=( X1 / 61 )j  be a stiffness parameter measuring the 

(first-order) variation of the j-th applied load, X., during a 

unit increment of the corresponding displacement; following the 

procedure adopted in subsection 5.3.2 it may be concluded that the 

local stiffness x. is bounded by 

P  
62 

z1 (x1, x
S
) ,xj  < -  62 w1(x1 , y ) 

	

1. 	1. 

	

J 	 j 

where (xl, yi) and (xi, yi) represent (first-order) non-associated 

statically and kinematically admissible fields, respectively. If 

either of such fields coincides with a (first-order) optimal 

solution, the corresponding inequality in the above becomes a 

strict equality, characterizing therefore the actual value taken 

by the local stiffness X.. 

Ps the primal and dual constraints of the programs given in the 

previou- subsection represent, respectively, the static and kinematic 

admissibility conditions, the primal and dual programs, which 

read 

(U) nmong all statically admissible stress fields, the actual 

stress field(s) make the functional z a minimum. 

and (UI) fmong all kinematically admissible strain fields, the actual 

strain field(s) make the functional -w a'minimum. 

can be interpreted as representing the PRINCIPLES OF MINIMUM 

COMPLEMENTARY POTENTIAL ENERGY AND MINIMUM POTENTIAL ENERGY, 

respectively, if the incremental strain energy and complementary 

strain energy are defined as 

DU = 2 AX T ( Au p + Aun) - 1 AnT  \5n  - 2[ Ax T(IRu n IRp )+ A5T R n  - Au IR) 

and AU* = 2 tXT ( L u p+ Aun) - 2  AruT  Aōn  + —2 [LX T (IR un-IR p  ) +A6nIRn- Au. IR ] 

and the incremental complementary work by AW* _ A XTA5; as in the 

present case prescribed stresses have not been included, the 
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incremental work AW is null. Then, and neglecting fourth- and 

higher-order terms, we may write 

zI  = AE* = AU* - AW* and -wI  = AE = AU - AW 

where AE and AE* represent the variations of the potential energy 

and complementary potential energy, respectively. 

In the perturbation analysis formulation, the functionals 

-wP and z represent the non-linear terms, the only relevant terms 

in the minimization procedure, in the series expansion of AE and 

AE*, respectively. 

In the derivation of the deformation analysis programs, by 

treating every non-linear corrective variable as a known constant, 

the rigid-plastic structure is assumed to behave linearly within 

each iteration; as a consequence, during each step, and therefore 

at convergence, the strain and complementary strain energies 

present identical values 

U= U' = 2 u H u- 
2 
 TC T un 

The expressiors for the total work and complementary work become 

W = -u rzo 	and 	W* 
xT 6 

T( 4E  -14(p) 

respectively, since the corrective variables 7 4)  are interpreted as 

prescribed forces and un 
 and u 	as prescribed dislocations. 

Letting D = X* u*  represent the plastic dissipation, the following 

correspondence is found 

zD  = E* = U*-W* , -wD  = E = (U+D) - W 

thus reducing statements (U) and (UI) in the above to the speciali-

zation of the Haar-Karman and Hodge-Kachanov principles to rigid-

plastic systems undergoing large displacements. 

The zeroth-order primal (5.6.17-19) and dual (5.6.18-20) 

programs of asymptotic analysis represent, respectively, the SAFE 

(Static or Lower Bound) AND UNSAFE (Kinematic or Upper Bound) 
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THEOREMS OF PLASTIC LIMIT ANALYSIS, first enunciated by Gvozdev 

(1936). 

The uniqueness theorem, first proposed by Horne (1950), was 

established by Hill (1951) for regular yield loci, and the 

corollaries given by Bishop et ilia (1956) extended by Haythornth-

waite and Schield (1958) to yield loci with singularities; the 

uniqueness theorem can be recovered from the composite forms of 

programs (5.6.17-18) and (5.6.19-20). The theorems and corollaries 

of plastic limit analysis can be found in most textbooks dealing 

with this subject, as for instance Horne (1971) and Neal (1977); 

the proposed proofs are invariably based on direct arguments rather 

than on mathematical programming concepts. 

Instead of following closely Hill's (1957, 1959) stability 

theory for rigid-plastic solids, allow us, for the sake of unity 

of the presentation, use of Drucker's stability criteria once again. 

Tlpplying, in the manner of subsection 5.3.4, Cottle's theorem 

on Duality to the (first-order) programs of rigid-plastic perturba-

tion analysis, expressions of the form (5.3.21) are again encountered; 

statements (I) and (II) in subsection 5.3.4, concerning Drucker's 

weak stability criterion (5.3.20), can be applied to rigid-plastic 

structures, it being necessary however to re-define matrix A as 

A = -- IK N 

GI 

and A = P1  . 

. i IF, 	IF 
---r-11 _~—n 

_ • 1 IF° IFĀ 

 

for the nodal and mesh descriptions, respectively. Specialized For 

linear behaviour, those statements reduce to the following well-

known results: at incipient collapse, the equilibrium configuration 

of rigid-workhardening (-perfectly) plastic structures is stable 

(critical). 

The dissipated work W can still be expressed in the form 

(5.3.24), where now matrix L and the plastic (and only) component 

of the load displacements are defined by 

L = IFx - — IL 1M IFo 
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and 

for the mesh formulation and 

( 	[Ak-K\-1 	T 	, 	\-1 ^ -~ T -1A(-K N)-1+(- KN)-1 
}AT 

-1 

for the nodal formulation. 

The reasoning followed in subsection 5.3.4 in the interpreta-

tion of Drucker's strong stability criterion (5.3.23) and its 

comparison with the weak criterion in the form (5.3.24) could now 

be applied and specialized for rigid-plastic systems. It is worth 

noting that, as shown by equation (5.3.24), if matrix L is positive 

definite. the work W can still be positive even if the plastic strain 

rates are zero, that is, even if the displacements of the rigid-

plastic structure remain unchanged. 

1n approximate method outlined in Sawczuk (1971) is developed 

by Duszek and Sawczuk (1976) for the determination of the stability 

of rigid-plastic frames at incipient Collapse. Positivity of the 

loading rate 5 at the onset of the mechanism motion is the adopted 

stability criterion; the definition they use for the loading rate 

= 
W 
[XT -p - 	AoW 1 (5.6.36) 

is the discretized version of an expression previously proposed by 

Duszek (1973). The method is illustrated in the analysis of simple 

portal frames, the regions of stable and unstable load combinations 

being specified on the load interaction surface. The material is 

assumed rigid-perfectly plastic, and provisions are made to take 

into consideration bending and axial force interaction. 

Specializing the loading rate as defined in (5.6.35b) for 

perfectly-plastic materials (XT u =0) and confronting the resulting 

expression with (5.6.36), one is led to the conclusion that Duszek 

neglects the contribution 

and 

6 p = Ao (-K N )-1 AT A (-K N)-N 	uP 

354 



of the rigid-body displacement components 6t and 6-n . The axial 

component 6 	will only be zero if member i-is axially undeformable, 
ni 

or if it moves without rotating; the latter is also the necessary 

and sufficient condition for the transverse component 6t to vanish. 

5.6.3 An Illustration of Lack of Uniqueness: Pseudomechanisms 

The behaviour, in linear regime, of the simple portal frame 

with pinned bases shown in Fig. 5.29 has been studied in detail by 

Smith (1974, 1975). The rigid-perfectly plastic response of this 

frame to the proportional loading AT = X [10 1] is analyzed herein 

to illustrate a situation characterized by the existence of two 

optimal solutions, the kinematic configurations of which differ by 

that of a pseudomechanism. 

The concept of a pseudomechanism was originally introduced by 

Munro (1963b) as an aid in explaining one of the modes of plastic 

unstressing. The concept was later used by Smith (1974) and Smith 

and (Munro (1978) to illustrate, and regulate through appropriate 

theorems, situations of kinematic multiplicity in the response of 

elastoplastic structures under small displacements. 

By definition, a PSEUDOP1ECHANISf1 is a device associating with 

a kinematically admissible mechanism, a statically admissible stress 

distribution contravening the plasticity association condition for 

at least one, but not all, critical sections; the plastic hinges 

where parity is contravened are termed PSEUDOHINGES. 

In the derivation of system (5.6.35) only Static-Kinematic 

Duality, i.e., the Principle of Virtual Work, was used; let it be 

expressed in the form 

X T 61 = XT u p 	 (5.6.37a) 
1 

s 
2 A~ b1 = XT u + 2XT~ u 	-XT 6 2- 	(2Xo3 n -Xi 6 	t 1i _p2 	-p1 	i 	o 1 i o 1i L i 

(5.6.37h) 

• 
• 
• 
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The plasticity relations give 

X. up = u* IH u~,. + 	u_x + son XT u.,~ +IR T uA -IR P X ~ ( 5.6.38) 
1 	J 	1 	J i 	i Ti i 1, 

Let the incidence matrices J+ and J collect from u 	and u 	, 

respectively, those critical sections where the association 1 

condition is contravened; after separating C4. into two sets, one 

containing the sections wherein the association condition is 

satisfied, the other the (remaining) sections where it is infringed, 

it can be easily found that equation (5.6.38) can be re-written as 

X T u 	= uT IH H. 	+ 6 	XT u +IR T u -IRT X _J _pi 	_ ~ • —p- i 	o• _ p _*i _~J_ -i 
	1 

(5.6.39) 

where 

and 

IH p = I T IH I 	and X-x-p = I* X* 

 

 

  

Substituting (5.6.39) into system (5.6.37) in the above, the 

following (asymptotic) definition for the pseudomechanism equation 

is found: 

-X
T 

6  —1 = X*p _* 
_0 -P1 

(5.6.40a) 

2 AT 6 = X* u* +2uL IH u* - 
XT 

6 -E 2X 6 	-X Z 6t 	
6t11 

-1 --1 	P 	2 	
1—p 	1 -o -2 	1 	3o 

n1 i 	
o 	1 i 	Li 

XT IR 	- 2X T IR 	+ 2u.T. IR 	(5.6.40b) 
. 	-o -p 2 	-1 -p 

1 	' 1 
-T 

1 	. 
. 	 . 

• 

When J+ and J are null matrices, i.e. when parity is satisfied at 

every critical section, matrix I. becomes the identity matrix and 

system (5.6.40) the asymptotic definition of a collapse mechanism. 

The natural process for generating pseudomechanisms is to 

consider the relevant collapse mechanisms and associate next to it 

statically admissible stress distributions contravening parity at 

1 4 Y < cl of the c'< c activated critical sections, c being the 
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FIGURE 5.30 

number of existing critical sections in the structure; if the 

mechanism has d-degrees of freedom, 	d-degree of freedom pseudo- 

mechanism of multiplicity y is thus generated. 

For structures formed by members 

of a rigid-perfectly plastic, non-inter-

active, material the yield polytope is 

an orthotope, the dimension of which is 

the number of critical sections of the 

structure, c. The yield polytope has 

N = 2c-kCc 
k 	k (5.6.41) 

elements of dimension k. The orthotope 

shown in Fig. 5.30 is the yield polytope 

of the simple frame under consideration; 

it has six, twelve and eight elements 

of dimension two, one and zero, respecti-

vely its faces, edges and vertices. 

n mechanism with d-degrees of 

freedom has a+d < c activated critical 

sections, a being the static indetermina-

cy number of the structure. The static 

configuration associated with such a mechanism is represented in the 

stress-space X by the intersection of a+d hyperplanes of the yield 

polytope; the number of elements of the yield polytope in such 

condition is, from (5.6.41) 

N 	__ 2 a+d ~c 	_ 2 a+d rc 
c-( a +d) 	c-( a+d) 	a+d 

The number of.test mechanisms, i.e. one-degree of freedom 

mechanisms, is, in the absence of partial collapse mechanisms, 

11 = 2 C a+1 

a 
As from each test mechanism j1 [j +1 pseudomechanisms can be 

generated, the total number of one-degree of freedom pseudomechanisms 
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is 

P  =2C  a+1 ( 	[ a +1  ) J-1 

The yield polytope has 

a+1 c 
Nc-(a+1) 	2 	c a +1 

elements of dimension a+1, representing static configurations which 

may be associated with one-degree of freedom mechanisms. The 

difference 

p = 2(2a -1) cā +1 

must therefore represent the number of stress distributions that 

although statically admissible at collapse cannot be associated 

with collapse test mechanisms; they represent the number of 

distinct static configurations which may 	associated with the 

possible P one-degree of freedom pseudomechanisms. In general P > D 
as the pseudomechanism hyperplanes may coincide. 

Analogous considerations can be made concerning multi-degree 

of freedom Prager mechanisms and the corresponding pseudomechanisms; 

Smith (1974) defines a PRAGER MECHANISM as an n-degree of freedom 

mechanism formed by a non-negative combination of n one-degree of 

freedom constituent mechanisms such that at any critical section the 

constituent mechanism rotations are all of like sense. Pseudo-

mechanisms generated from non-Prager mechanisms are not of relevance. 

The connected form shown in Fig. 5.31(a) represents the 

mapping, defined by the equilibrium conditions, of the yield polytope, 

which materializes the yield rule, onto the load-space X . The 

distinctive attribute of this mapping is of separating the c-( a+1 )  

dimensional elements of the X-space into two sets each of n-1 

dimensional elements, n being the dimension of the X-space; one set 

contains the test mechanisms which bound the X-space (collapse 

mechanisms) defining an interior safe region (hence the Safe Theorem 

of Plastic Limit Analysis); the other groups the one-degree of 

freedom pseudomechanism hyperplanes which become interior to that 

collapse polytope. 
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FIGURE 5.31 

If the elements of the X-space associated with the test 

mechanisms form a connected figure, as ABCDEF in Fig. 5.30, the 

(convex) X-space will be bounded; otherwise it may be unbounded. 

The three test mechanisms (the remaining three being their 

negatives) are shown in Fig. 5.32 and their relative positions in 

the str'in-resultant space in Fig. 5.33; the tangential vectors at 

the origin represent the kinematic configurations at incipient 

collapse. 

These three first-order solutions were mapped, through the 

displacement compatibility condition, onto the load-point displace-

ment space 6, defining the (first-order) displacement vectors shown 

in Fig. 5.31(b); the supporting hyperplanes may displace freely in 

the 6 -space being only constrained to maintain the same orientation. 

Their relative position is determined, apart from a scaling parameter, 

thus defining a polytope in the 6 -space, by minimizing the associated 

plastic dissipation, as required by the Unsafe Theorem of Plastic 

Limit analysis. Superimposing the X- and 6-spaces, the polytopes 

:Ire brought into coincidence; thus the Uniqueness Theorem. 
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If, when implementing the minimization of the plastic 

dissipation, infringement of the association condition at some 

of the activated critical sections is allowed for, the position 

of the (pseudomechanism) supporting hyperplanes in the 6-space 

is determined so that when the 6- and ?-spaces are superimposed, 

those hyperplanes coincide with the corresponding pseudomechanism 

hyperplanes in the X-space. 

Summarized in Table 5.20 are the static and kinematic 

configurations corresponding to the vertices and edges of the 

collapse polytope for the simple portal frame under consideration. 

Table 5.21 shows how to combine these configurations for each of 

the one-degree of freedom collapse mechanisms and pseudomechanisms; 

a pseudomechanism generated from the test mechanism collapsing in 

mode Mi by considering a pseudohinge at critical section j, is 

represented thus Pi(j), where 1 i < 6 and 1 ‘, j < 3. 

A B C D E F A' D' 

X 1/X1.. -1. 1. 1. 1. -1. -1. -1. 1. 

X2/X1,~ 3.5 3.5 -3.5 -3.5 -3.5 3.5 -3.5 3.5 
X3/X1 -2. -2. -2. 2. 2. 2. -2. 2. 

X1L/X1. 10. 8. -6. -10. -8.. 6. -4. 4. 

X2L/X1* 1. 3. 3. -1. -3. -3. 1. -1. 

1 u1 p 1 1. 1. -1. -1. 

u~p 
1 

1. -1. -1. • 1. 

u3 -1. -1. 1. 1. TABLE 	5 
1 

61 	/L 1. . -1. -1. • 1. 
1 

67 /L 1. 1. 1. -1. -1. -1. TABLE 	5 
1 

r.B nc CD DE EF FP 

51 S2 S3 -51 -S2 -53 54 55 56 S7 S8 59 

K1 M1 P1(1)  
P2(2) 

P1(3) 
P2(3) K2 M2 

K3 M3 P3(1) P3(2) 
-K1 M4 P4(3) P4(1) 
-K2 M5 P5(3) P5(2) 
-K3 M6 P6(2) P6(1) 

.20 

.21 
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FIGURE 5.34 

0.2 	0.4 - 0.2 

Consider now the proportional load path XT = XL [10 1]. 

When 0<X <1, the portal frame remains undeformed under an unde-

termined stress distribution. When X =1, the (bending) stress-

resultant distribution 52(53), with critical section 1(3) about to 

yield negatively, is found to equilibrate the loading X= X( X=1). 

Plastic Limit r.nalysis would then predict that either of the collapse 

mechanisms M2 or M3, or any linear combination of them, could then 

be mobilized for collapse, as it would predict that either of the 

modes M1 or M2, or any linear combination of them, could be mobilized 

for a second load path XT = X1' [8 3]nt X=1. 

A kinematically non-linear rigid-plastic analysis shows that 

the solution associated with the second load path is in fact 

unique; if collapse in mode M2 is attempted, it is found that, at 

incipient collapse, plastic unstressing occurs at critical section 2 

while plastic straining develops at critical section 1, thus 

reverting to the collapse configuration of mode M1. 

^.ssociated with the first load path there are however two 

optimal solutions corresponding to collapse modes M2 and M3. The 

corresponding load-displacement and load-bending moment relationships 

are illustrated in Figs. 5.34 and 5.35, respectively. For the same 

load path, the load-displacement relationship found for the 

(physically. inadmissible) pseudomechanism P1(1) is shown in Fig. 5.36. 

The kinematic configurations associated with these three 

modes of collapse are represented in Figs. 5.33 and 5.37. As illustra-

ted, any M2 solution can be obtained as the VECTORIAL sum of M1 [and 

therefore P1(1)]and M3 solutions. For structures undergoing small 

displacements, Smith (1974) has shown that when kinematically 
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FIGURE 5.35 

multiple optimal solutions exist, any of the extreme (or basic) 

solutions can be determined by adding (scalarly) a mechanism 

displacement to another of the existing extreme solutions; thus, 

alternative reference may be made to pseudomechanisms as 

DIFFERENCE (MECHANISMS. 

The response of the frame when collapsing in mode 12 was 

followed up for increasing values of the point load displacement 

61 , up to the limit 6 1  =1/3-  L, as shown in Fig. 5.38. 

The load-displacement, moment-displacement and moment-

rotation relationships thus found are presented in Figs. 5.29, 

5.39 and 5.40, respectively. 
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FIGURE 5.40 

The following phases, indicated in the above mentioned 

illustrations, can be distinguished in the frame response: 

PHASE I: After the mobilization of the collapse mode 1M2, 

critical section 1 unstresses and the bending moment is increased, 

almost to the point of activating the positive yield mode. Then it 

decreases but not sufficiently to re-activate the negative yield 

mode. In the meantime, plastic straining is developing at critical 

sections 2 and 3; this progression of yielding is interrupted in 

section 2 when 5 1= 1.0050 L, when plastic unstressing occurs at 

section 3. 

PHASE II: As only one plastic hinge remains active, if the 

frame is to displace further, an INSTANTANEOUS readjustment of the 

stress distribution has to take place. While plastic unstressing 

is implemented at critical section 3, the positive yield mode is 

activated at section 1, the kinematic field remaining unchanged 

during the rearrangement of stresses. 

PHASE III: The collapse mode changes from mode 1M2 into mode 

113, and the displacements may now progress. 
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PHASE IV: When the positive yield mode at section 3 is 

activated, instead of the development of a beam mechanism mode 

P12+113, the collapse mode reverts into mode M2, as plastic unstressing 

occurs at critical section 1. After an initial fall, the bending 

moment at this section increases again, reactivating the positive 

yield mode and subsequently mobilizing the combined mode 112+113. 

PHASE V: The frame displacements proceed to the point where 

the frame columns reach a rotation of 90 degrees. Then, plastic 

unstressing is revealed to be about to occur simultaneously at 

critical sections 1 and 2. 

PHASE VI: Once again only one plastic hinge remains active, 

the frame becoming a rigid system. If the displacements are to 

evolve further, yet another instantaneous rearrangement of stresses 

must take place; at critical section 2, where positive plastic 

strains had been developing, the negative yield mode is suddenly 

made active. Ds marginal plastic unstressing occurs at critical 

section 1, the collapse mode reverts once again into mode r12. 

PHASE VII: From this point onwards the frame manifests a 

stiffening behaviour. In the meantime, the instantaneous loss of 

stress at critical section 1 is recovered and the associated positive 

yield mode reactivated. 

PHASE VIII: ^ combined collapse mode 112+113 is thus 

mobilized and no further mode changes can be encountered up to the 

locking position 61 =v/3L. 

5.7 	THE COMPARATIVE BEHAVIOUR OF ELASTIC, ELASTOPLfSTIC AND 

RIGID-PLASTIC STRUCTURES  

In most textbooks and co-related publications, readers are 

referred to diagrams of the kind shown in Fig.5.41 which are used 

to illustrate the "typical" responses a structure will present 

when idealized elastic, elastoplastic and rigid-plastic behaviours 

are assumed. 

The straight line 1 is the linear elastic solution in which 

changes of geometry effects are ignored. If such effects are 
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FIGURE 5.41 

accounted for and/or a non-linear 

elastic constitutive relation is 

adopted a non-linear load-deflection 

relationship, represented by curve 2, 

is obtained. In the present case, 

instability is characterized by the 

attainment of a peak load, the 

elastic critical load X. 

The straight line 3 represents 

the rigid-plastic response obtained 

when assuming that the collapse 

mechanism displacements remain 

infinitesimally small; Ac is the 

plastic collapse load. Curve 4 shows 

the result of a kinematically non-

linear rigid-plastic analysis. It 

assumes that the collapse mode does 

not change in the range of displace-

ments being shown. 

The piecewise linear curve 5 

represents the elastoplastic response when assuming unit shape factors 

and neglecting change of geometry effects. Plastic hinges successively 

decrease the stiffness of the structure until finally the plastic 

collapse load is attained, with the ensuing mobilization of a 

collapse mechanism displacing in the mode predicted by the rigid-

plastic analysis. Curve 6 represents the kinematically non-linear 

elastoplastic solution; it is assumed in the present case that the 

structure fails due to global instability as the loading reaches 

the elastoplastic failure load X . As the load-carrying capacity 

diminishes, a number of new plastic hinges are activated with the 

subsequent mobilization of an elastoplastic collapse mechanism 

which may have the same mode as the rigid-plastic collapse 

configuration; thus the coalescence of curves 4 and 6 is tacitly 

assumed. 

Finally, when spreading of plastic zones, residual stresses, 

initial imperfections and strain-hardening are allowed for, curve 7 

is obtained. 

The examples being presented in the following have been 
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RIGID-PLASTIC BEHAVIOUR 
RPI Zeroth-order 
RP2 First-order (5.6.34) 
RP3 Present formulation 1.1 

I  I 	 ELASTOPLASTIC BEHAVIOUR 

G  Q (change of 	EP1 Zeroth-order 
collapsemode) EP2 Present formulation 

ELASTIC BEHAVIOUR 
El Zeroth-order 
E2 Present formulation 

1.0 

Example 1 0.9 EP2 

0.8 
Refer to Fig 5.3 

for particulars of the frame 

0.1 	0.2 	0.3 	0.4 s/L 
0.7 

E11 E2 	EP1 

R P2 RP3 

deliberately chosen to illustrate alternative modes of behaviour, 

which are rarely, if at all mentioned in the engineering literature. 

No attempt is or should be made to extrapolate quantatively into 

more realistic structural systems the types of response to be 

presented; the objective of the exercise is essentially qualitative, 

a mere call for caution, an invitation not to accept tempting 

generalization based on an expected, but possibly unconfirmed, 

"typical" behaviour, for which the practical methods for estimation 

of the failure load have been specifically devised. 

5.7.1 Illustrative Examples 

The structures to be examined are Horne's one-and two-storey 

frames shown in Fig.5.3 and 5.9, to be referred to as Examples 1 

and 2, respectively, and Smith's simple portal frame with pinned 

bases, shown in Fig.5.29; for the latter, the different combinations 

of loading and mechanical properties summarized in Table 5.22 will 

be considered. 

FIGURE 5.42 
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FIGURE 5.43 

EXAMPLE 3 4 5 6 7 8 

X1*L/EI 0.40 0.12 0.12 0.40 1. 1. 

X1 0 9A 10X 10X 9X 10X 
A2  X 0 X X 0 X 

TABLE 5.22 

FIGURE 5.44 



The elastic, elastoplastic and rigid-plastic responses of 

Examples 2.5 and 8 are not graphically represented as the quality 

of information they provide is already contained in either of the 

remaining examples, the comparative behaviour of which is 

illustrated in Fig.5.42 to 5.46. 

Examples 1 and 3 illustrate the two extreme cases of 

unstable and stable responses. In the first case, although unable 

to expose a change of the collapse mode, the first-order solution 

provided by equation (5.6.34) results in a good approximation to 

the real rigid-plastic response; in the second case, and in 

contrast, equation (5.6.34) is quite unable to introduce any 

improvement in the limit analysis solution. 

Example 4 illustrates the possibility of elastoplastic 

failure going undetected if the behaviour of the structure between 

the activation of two successive yield modes is not carefully 

investigated. If the plastic capacity of member 4 happened to be 

higher, the (positive) gradient between points A and At could be 

significant thus inciting the analyst to contemplate a convex, and 

therefore stable equilibrium path joining those two points. 

The possibility that multiple solutions may exist (and go 

undetected) is recalled in Example 6. 

Example 7 shows that when an elastoplastic structure fails 

due to global instability, the first-order rigid-plastic solution 

will not necessarily provide an upper-bound containing the elasto-

plastic response. 

Attempts were made to illustrate branching of the elasto-

plastic equilibrium path using Chwalla's frame; they did however 

fail. 

The elastoplastic response of Hornets simple portal frame 

with fixed bases has been described in subsection 5.4.2. 

The elastic response, shown in Fig.5.4 , is characterized 

by the recovery, as the displacements increase, of stiffness 

initially lost. The elastic frame is still stable for sway 

displacements of the order of the columns length. 

Plastic limit analysis predicts collapse through a mechanism 

displacing under constant loading, in a combined mode involving the 

activation of the positive yield modes at critical sections 3 and 5 
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and the negative yield modes at critical sections 1 and 4. The rigid-

plastic response defined by equation (5.6.34), which only accounts 

for first-order kinematic effects, is represented by curve PJB, in 

Fig.5.42. An exact analysis, to which the equilibrium path PQS 

corresponds, shows that as the displacements progress, the bending 

moment at critical section 2 increases, leading to the activation 

of the positive yield mode; at this stage, represented by point Q, 

plastic unstressing occurs at section 3 and the collapse mode 

changes into a sway mode. 

After failure due to overall instability, the sway mode is 

also the collapse mode which the frame mobilizes when behaving 

elastoplastically. The rigid-plastic and elastoplastic mechanism 

lines, although manifesting a tendency to, do not in the present 

case and will not in general coalesce, due to the different 

histories of deformation with which each of the models is 

associated. 

The downward sloping curve PQ indicates instability of the 

rigid-plastic structure at the collapse load, X0, resulting most 

often in a catastrophic complete collapse, unless important 

material work-hardening has been neglected. When the rigid-plastic 

model is unstable at incipient collapse, the elastoplastic failure 

load is likely not to reach the plastic collapse load as prior 

elastoplastic deformations may induce and accelerate the onset 

of a global instability phenomenon, as at point A in Fig.5.42. 

Example 3, to which Fig.5.43 refers, is a typical case of 

stable, stiffning behaviour; the linear formulations underestimate 

the real load-carrying capacity of the structure, irrespectively 

of the assumed type of behaviour, elastic, elastoplastic or rigid-

plastic. The raising, concave equilibrium paths indicate favourable 

changes of geometry, the so-called "geometrical work-hardening". 

The rigid-plastic structure remains stable under the limit 

and higher loads. Unloading will however result in large permanent 

deflections that most often will render the structure unstable. 

The set of responses illustrated in Fig.5.44 are qualitatively 

distinct from those discussed so far. 

For the range of loading and displacements being shown, the 

elastic solutions proved only marginally sensitive to changes in 
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the geometry of the frame. 

Despite being unstable at incipient collapse, the rigid-

plastic frame is able to recover a certain degree of stability as 

the displacements increase, almost recovering its maximum load-

carrying capacity. The first-order non-linear solution is 

incapable of foretelling such behaviour. 

The elastoplastic model presents certain interesting 

features. The first plastic hinge forms, at critical section 1, 

sensibly at the same load and displacement levels for the linear 

and non-linear formulations. The linear formulation proceeds by 

detecting the activation of critical section 2 and the ensuing 

mobilization of a collapse mechanism. The non-linear formulation 

shows that this collapse mechanism although initially unstable is 

capable of recovering the lost stiffness, thus mirroring the 

behaviour of the rigid-plastic model. As the elastoplastic failure 

load is regained (exceeded by 0.04% according to the computer 

results) plastic straining starts developing at critical section 3 

while plastic unstressing occurs at critical section 2. The elasto-

plastic collapse mechanism changes into a sway mode and from then 

onwards the concurrence between the elastoplastic and rigid-plastic 

responses ceases to exist. 

Examples 6 and 7 were prepared to illustrate situations 

wherein the elastic critical load is of the order of the rigid-

plastic collapse load and of the elastoplastic failure load, 

respectively. 

The optional rigid-plastic solutions that frame 6 may 

exhibit have been already discussed in the previous section. The 

associated equilibrium paths are shown in Fig.5.45 together with 

the corresponding first-order approximations. 

The elastoplastic frame fails as the first plastic hinge 

forms, at critical section 1. The next hinge forms at critical 

section 3 and as a sway collapse mechanism is mobilized the elasto-

plastic collapse phase does not even vaguely correspond, within the 

range of displacements being shown, to either of the rigid-plastic 

mechanism lines. 

The rigid-plastic response of Example 7 is identical to that 
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of Example 4. 

FIGURE 5.45 

The elastic and elastoplastic failure loads differ by less 

than 0.5%. 

The non-linear elastoplastic analysis shows that first yield, 

at critical section 1, occurs at a load level 9.8% higher than the 

predicted by a linear analysis; the opposite is the usual situation 

for non-stiffning responses. Elastoplastic failure occurs when 

plastic straining starts developing at critical section 2. A collapse 

mechanism is not mobilized though, as section 1 unstresses plastically 

 

1 1 1 1 

    

     

FIGURE 5.46 
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at that moment. Instead, and after a temporary loss of load-

carrying capacity, plastic unstressing occurs at critical section 

2 and the elastoplastic frame reverts into an elastic, stable 

response. 

5.7.2 The Merchant-Rankine Formula and Related Methods for 

Estimating the Elastoplastic Failure Load 

The collapse load 
Xf 

is of prime importance from the 

engineering point of view. Its evaluation does however require 

considerable computation as the governing system is highly non-

linear, involving history-dependent variables; it is not only 

necessary to follow the sequence of formation of plastic hinges 

but also to investigate the occurence of critical (limit and 

bifurcation) points at and between the activation of plastic 

hinges. Undetected plastic unstressing is likely not to affect 

substantially the elastoplastic failure load; it is however pf 

prime importance when the structure displaced configuration and 

the correct sequence and location of yielding are of relevance. 

The computer time required for such an analysis is large 

and soon becomes prohibitive when sizeable frames are being 

considered. Simplified methods of analysis, perhaps still too 

involved to be used on an every-day basis at design offices, have 

already been mentioned. In the following reference is made to a 

class of procedures characterized by their common objective of 

estimating the elastoplastic failure load through a convenient 

combination of the two distinct responses the structure presents 

when assumed to behave elastically and rigid-plastically. 

Merchant (1954) generalized Rankine's formula for frames 

and established the following relationship between the rigid-plastic 

collapse load Xo  and the elastic critical load Xc. 

1/4 = 1 /Ao+1 /Ac 	 (5.7.1) 

thus obtaining a rough estimate, the Merchant-Rankine load A1, of 

the elastoplastic failure load Xf. 

Merchant's empirical formula CAN NOT be theoretically 

demonstrated. In an attempt to justify it, Horne (1963) was forced 

to introduce a set of quite drastic assumptions; the exercise does 
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however indicate that the Merchant-Rankine load is not totally 

disaffected from the actual elastoplastic failure load. 

The second reason for the undeniable success of such a 

basic approach to the problem is the insensitivity to error of the 

formula for practical values of its entries. Code-based designs, 

in which servicibility constraints and other requirements play a 

major (limitative) role, tend to produce structures for which 

the elastoplastic failure load tends not to exceed substantially 

20% of the elastic critical load; as illustrated in Fig.5.47, if 

the elastic critical load is overestimated by as much as 100%, the 

Merchant-Rankine load is affected by less than 10%. Except when 

the elastic critical load is grossly underestimated, a substantial 

margin of error is permissible in its evaluation without affecting 

significantly the Merchant-Rankine load, its effect declining as 

the rigidity of frame response increases. 

Based on Wood's (1974) proposals, the European Convention 

for Constructional Steelwork, ECCS (1977), has adopted the 

following criterion, a demarcation of the frontier between rigid 

and flexible frames: 

- If X /X >10, the frame can be designed using a linear 

formulation (X
f~Xo). 

- If/ X.10, particular consideration must be given to 

stability; the elastoplastic failure load can be evaluated 

using Wood's modification of the merchant-Rankine formula 

X f~xp= xc/(0.9 0+X /Ac ) (5.7.2) 

- If Xc/ ō< 4, calculations of 	from Ac and Xo are not 
allowed; a (first-order) non-linear analysis should be used 

to design the frame. 

The shaded area in Fig.5.47 contains the class of frames 

which are allowed to be designed using Wood's formula (5.7.2). 

As the evaluation of the rigid-plastic collapse load poses 

no special problems, the emphasis has long ago been shifted into 

the research of reliable procedures for estimating the elastic 

critical load, many of which are collected by Lightfoot (1961) in 
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his textbook; further references on alternative methods can be 

found in Horne and Merchant (1965), Wood (1974), Horne (1975) and 

Williams (1977). 
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FIGURE 5.47 

Except for Hornets simple portal frame, all the remaining 

examples under consideration fall into the category for which a 

kinematically non-linear analysis is recommended. 

Summarized in Table 5.23 are the errors 

Xapprox. 
E = 100 	 - 1 

`exact 

that would have been perpetrated if a Rankine-type approximation 

had been adopted. 

In the summary of the characteristics of the frames, o y is 

the yield stress and v = v r/d the cross-section shape factor 

affected by the ratio of the radius of gyration r to the depth d. 

Given in the same Table are the rigid-plastic collapse 

factor X,, as well as the elastoplastic failure load Xf and the 

elastic critical load XE factors, obtained through the formulation 

being proposed; X is the elastic critical load factor as provided 

by Hornets (1975) approximate method, and X is the value it should 

ideally take in order to produce the exact elastoplastic failure 
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EXAMPLE 1 2 4 5 6 7 8 

S R  400 100 100 100 300 300 300 

E/o v 2000 1667 1667 1667 1500 600 600 

X 1. L/EI 0.40 0.12 0.12 0.12 0.40 1.0 1.0 

XoL 2 /EI 0.48 0.69 0.12 0.12 0.40 1.0 1.0 

X L 2/EI 2.06 2.25 0.30 0.27 0.27 0.30 0.27 

XEL2 /EI (CO) 2.37 0.85 0.39 0.39 0.85 0.39 

X L 2/EI 0.37 0.53 0.10 0.10 0.22 0.85 0.37 

X L2/EI 1.16 1.78 0.36 0.37 0.42 3.53 0.55 

EM 	(%) f 6.58 -1.50 -11.34 -15.31 -25.81 -72.66 -42.12 

Em 	(%) f 31.51 -0.37 8.25 -6.12 -8.76 -45.68 -23.37 

E' 	(%) 16.16 6.55 -5.15 -9.18 -22.58 -72.07 -41.03 
EW 	(%) f 46.03 8.05 18.56 2.04 -3.69 -43.08 -21.20 

EH 	(%) c ////// -5.02 -64.66 -31.30 -31.30 -64.66 -31.30 

XE / x   ( OD ) 3.45 7.08 3.28 0.98 0.85 0.39 

XH 
/ X0 

4.29 3.28 2.50 2.25 0.68 0.30 0.27 

TABLE 5.23 

EXAMPLE 1 2 4 5(M2) 5(M3) 6(M2) 6(M3) 7 

Ey 	(%) -13.4 -22.1 -26.6 -6.8 -6.8 0.0 0.0 -21.9 

Eyt(%) -3.7 -12.4 -26.6 -11.7 -11.7 36.5 36.5 -29.6 

EK 	(%) 17.2 16.2 12.8 11.7 9.2 45.8 40.2 -22.5 

EO 	(%) 14.5 13.0 12.8 10.4 8.6 36.5 29.0 -27.8 

EM 	(%) 16.1 14.9 12.1 10.4 8.0 27.1 21.5 -46.2 

E, 	(%) 12.3 10.6 12.1 9.2 6.1 ///// ///// ///// 

ER  (%) 5.7 3.1 23.9 11.7 11.7 14.0 14.0 -14.8 

EB 	(%) 6.6 24.4 7.8 9.2 4.9 34.7 26.7 ///// 

Eet(%) -3.1 5.5 7.8 9.2 4.9 27.1 19.6 -46.8 

TABLE 5.24 
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load factor using the Merchant-Rankine formula (5.7.1). 

The errors involved when using Horne's estimate of the 

elastic critical load in the Merchant-Rankine formula and in 

Wood's modification (5.7.2) are defined by Ef and Er, respectively; 

Ef  and Ef  represent the same errors when the actual elastic critical 

load XE is used instead. 
c 
The examples under consideration confirm Horne's prediction 

that the method leads to conservative estimates of the elastic 

critical load; however, with the exception of Example 2, in all 

the remaining examples the 20% limit he sets for the margin of 

error, EH, is largely exceeded. 

As a result of many analytical and experimental studies, 

the general consensus is that the Merchant-Rankine load tends to 

be a lower bound on the value of the elastoplastic failure load, 

although for simple portal frames the latter can sometimes fall 

slightly below the Merchant-Rankine load. Horne's frames, not 

Smith's though, confirm this generalization. 

Referred to lastly are alternative methods for estimating 

the elastoplastic failure load from the elastic and plastic 

responses of the frame which utilize the intersection points of 

the rigid-plastic and elastic equilibrium paths shown in Fig.5.42. 

Points K and G are the intersection of the (first-order) 

non-linear rigid-plastic equilibrium path with the linear and 

non-linear elastic equilibrium paths; the projection on the 

former of the intersection of the latter with the zeroth-order 

rigid-plastic mechanism line, points L and H, define points M and 

3, respectively suggested by Murray (1956) and Majid (1968). 

Point R is the projection of point L on the non-linear 

elastic equilibrium path; Majid's (1967) claim that the load 

associated with point R is the Merchant-Rankine load could not be 

confirmed. 

The loads associated with points Y' and Y are the first-

yield loads defined by linear and non-linear elastoplastic 

analysis, respectively. 

Point 8' is used in Horne's (1961) "last hinge method" to 

estimate not the elastoplastic failure load but the incipient 

collapse load, X8. 

For structures with unstiffning behaviour, the loads 
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associated with points K, M, G, J and R (Y" and B') tend to be 

upper (lower)-bounds on the elastoplastic failure load; ABA  should 

in such cases overestimate the actual incipient collapse load. 

Summarized in Table 5.24 are the errors found when using 

the loads associated with points Y, Y1 , K, G, M, J, R and B' to 

estimate the elastoplastic failure load; £ B  is the error involved 

when using the "last hinge method" to estimate the incipient 

collapse load. In Examples 5 and 6 a distinction is made between 

the results obtained using either of the possible to rigid-plastic 

solutions, the collapse modes M2 and M3 described in subsection 5.6.3. 

Herein use was made of the exact non-linear elastic equilibrium 

path to define points R, G and J; as the objective of the method 

is to estimate the elastoplastic failure load utilizing easy-to- 

obtain approximations on the plastic and elastic responses, 

simplified methods, as for instance, the amplification factor 

method described in Horne and Merchant (1965), leading to close 

approximations of the non-linear elastic load-deflection curve 

should be used instead. 

The results summarized in Tables 5.23 and 5.24 show a 

remarkable improvement when, instead of the Merchant-Rankine 

formula, the loads associated with the intersection points K, M, 

G and J are used to estimate the elastoplastic failure loads of 

very flexible frames. 

Both methods require the separate implementation of elastic 

and limit analyses, in comparison to which the supplementary 

calculations involved in the latter method represent a minor 

additional effort, amply justified by the quality of the estimates 

it generates. 
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CHAPTER 	SIX  

CLOSURE 

Among the varied extensions and many improvements to which 

the proposed formulation for problems in kinematically non-linear 

structural analysis is open, the following are thought to be 

prominent. 

6.1 	NECESSARY IMPROVEMENTS  

The objectives set for the study on Statics and Kinematics 

of the mesh and nodal fundamental substructures were accomplished 

in essence. 

A more efficient codification can be given to the (non-

linear) effects which the internal releases have on the conditions 

of equilibrium and compatibility at substructure level. 

The process suggested in Chapter Two to eliminate the 

additional forces from the mesh description of Statics is 

justifiable only when leading to a significantly more compact 

governing system; the alternative and simpler process for 

accounting for static-kinematic interdependence described in 

Chapter Five should be used otherwise. 

Although not devised for that particular purpose, the 

mathematical model for the simply supported elastic beam element, 

presented in Chapter Three, is thought not to be out-performed by 

383 



those used in most of the proposed beam-column theories. The 

degree of accuracy achieved seems quite appropriate for finite-

element based formulations in structural analysis. 

Distributed loads should be included to complete the study 

of the elastic beam element. Besides introducing further 

inaccuracies in the representation of the causality relations, the 

discretization of the distributed loads increases considerably the 

dimension of the problem if a nodal formulation is to be adopted 

in the analysis of the structure; to increase the number of nodes 

affects only marginally the mesh description, as the static 

indeterminacy number is left unchanged. 

Shear deformation effects can become relevant in many 

situations which should certainly not be served conveniently by 

the crude correction introduced in the elastic governing system. 

The format adopted for the representation of the plasticity 

causality relations had already been proved to be particularly 

suitable for discrete formulations to be processed through 

mathematical programming. 

The proposed approach of forcing the emergence of symmetric 

operators with constant entries by concentrating the disturbing 

non-linearities in corrective vectors, seems to be more rewarding 

than a piecewise linearization of the static and kinematic phases 

of yielding, at the cost of increasing immensely the dimension of 

the problem. 

Improvements should be concentrated upon the determination 

of normality and hardening coefficient functions, and on devising 

a practicable corrective procedure to include the more relevant 

of the spreading of plasticity effects. 

The ideal would be to substantiate a model preserving the 

piecewise continuity in the flow of elastoplastic finite strains, 

amenable to a discrete, vectorial representation; the propositions 

contained in the doctoral thesis on "Elastoplastic Deformation 

Analysis by (Mathematical Programming" my colleague fir. J. Appleton 

is submitting will certainly facilitate the development of such a 

formulation. 

The procedure for assembling the nodal description of Statics 

and Kinematics described in Chapter Four, appears to be generally 
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adequate. It may be improved through the use of connectivity 

theory algorithmic procedures; such improvement would be particularly 

beneficial for the proposed mesh assemblage procedure. 

The derivation of mesh formulations from nodal formulations, 

and vice-versa, is from a pedagogical standpoint a most unadvisable 

exercise, as it totally destroys the essential concepts characteriz-

ing the alternative and fundamental mesh and nodal connectivities. 

The derivation of a mesh formulation from a nodal formulation, may 

however be advantageous for practical, numerical implementation 

purposes, as it combines the easiness of codifying an efficient 

nodal assemblage with the compactness in the governing system a 

mesh description generally propitiates. 

Further improvements in the efficiency of implementation 

of solutions can be achieved through the use of mixed,simultaneously 

mesh and nodal, formulations, an avenue deserving more attention 

than it has received to date. 

As stressed in several occasions throughout the presentation, 

the role of mathematical programming in structural mechanics is 

two-fold: to encode and s.ynthetize the basic vectorial relations. 

and to supply efficient algorithmic procedures for numerical 

implementation of solutions. 

None of the many algorithms that mathematical programmers 

have developed is a universal-purpose routine. They were often 

suggested by specific problems, with particular geometries, 

encountered in the many fields which the applied sciences embrace; 

their adaptation to structural analysis problems is a necessity 

users have to face and overcome by learning and interpreting 

physically the way such algorithms operate. Their use as "black 

boxes" is an inadvisable practice, as it implies sub-utilization 

of capabilities and submission to situations of failure. 

The numerical procedures described in Chapter Five are 

suitable only for research purposes; their direct application to 

practical engineering problems will often be prohibitive. The lack 

of sophistication and the consequent simplicity for interpreting 

physically each of the algorithm operations, did however prove to 

be highly rewarding when extricating the many computing failures 

that a first acquaintance with any problem always involves (caused 

by a faulty or defficient programming of the alternative and complex 
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responses a non-linear system may present). The size of the problem 

could have been reduced, and computing costs thus saved, if, 

instead of solving directly the associated Kuhn-Tucker problem, 

an algorithm operating on either the primal or dual programs had 

been adopted. 

The linear programs for elastoplastic analysis under a 

prescribed stress field should provide a sound basis for developing 

economically feasible computer codes for the design (or analysis) 

by re-analysis of large scale structural systems. A valid 

experience in engineering code-based design warrants the reduction 

of the multiple options open in structural mechanics to a set of 

realistic possibilities, within which mathematical programming 

algorithmic procedures will select the best path to optimality. 

At the cost of high computer execution times, the 

formulation suggested herein is capable of substantiating a degree 

of accuracy and a completeness of analysis dispensable in most 

practical applications. However, as a consequence of being derived 

from, and presented in the form of first-principles of mechanics, 

the proposed formulation is amenable to simple and CONSISTENT 

adaptations suiting the designer's particular needs. Knowledge 

gained from practical experience, together with constructional 

and serviceability constraints and other code requirements, enable 

the designer to establish bounds for the variation of displacements 

and strain- and stress-resultants; in order to obtain a consistent 

approximate formulation, the designer is only requested to take as 

many terms in the series expansion of the additional forces and 

deformations, of the stability and bowing functions and of the 

normality and hardening functions, as required by the accuracy 

of the problem thus bounded. Those simplifications should be 

reflected in the time consuming routines for identifying and 

solving situations of multiple unstressing and branching, 

inessential in the preliminary phases of design. 

The theoretical considerations summarized in Chapter Five, 

regarding the more relevant aspects in structural analysis, namely 

extremum principles, conditions for uniqueness and stability 

criteria, represent a simple delineation of the possibilities 

mathematical programming opens up when applied to non-linear 

structural analysis. 
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Despite the superficiality of the exploration undertaken, 

a certain degree of unification was achieved in the treatment of 

the aforementioned aspects within, and enclosing, the analysis of 

elastoplastic, elastic and rigid-plastic systems. 

6.2 	FORESEEABLE EXTENSIONS  

An exhaustive study on extremum principles, static and 

kinematic uniqueness theorems and stability, leading to an ordered 

qualification of alternatives offered within each, and to the 

clarification of the inter-relationships between them, and from 

which efficient criteria to identify, classify and solve situations 

of multiple unstressing and/or bifurcation, can certainly be 

accomplished through a more effective use of mathematical 

programming system analysis theory; the immediate extension of the 

present work, is in the development of a unified theory of 

kinematically non-linear elastoplastic analysis, based on the 

proposed formulation ameliorated to include at least the 

improvements specified in the previous section, from which problems 

of elastic and rigid-plastic structures may result by simple 

specialization. 

The scope of such theory could be subsequently widened after 

extending the proposed formulation into the analysis of spatial 

frames and continuum structures, subject to quasi-static or 

dynamic deterministic actions. 

The procedure adopted herein for preserving duality in the 

exact, mesh and nodal, finite descriptions of Statics and Kinematics 

can be easily developed into the study of deformed skeletal sub-

structures undergoing large rigid-body movements in three-

dimensional space; difficulties can however be anticipated in the 

derivation of the causality relations associating stress-resultants 

with finite elastoplastic strain-resultants, based on a spatial 

beam element. 

The common interpretation of the fundamentals of the mechanics 

of structures would certainly facilitate a fruitful combination of 

the procedures adopted herein to deal with kinematic and material 

non-linearities, with the approach and representation of the 

(piecewise) linear response of plates and shells my colleague Mr. 
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A. da Fonseca proposes in the doctoral thesis he is submitting, 

entitled "Plastic Analysis and Synthesis of Plates and Shells by 

Mathematical Programming". 

The incorporation of deterministic dynamic actions in a 

discrete formulation is not particularly problematic; in the 

qualification and implementation of the many new options of 

structural response it opens up is where the implied difficulties 

reside. 

Structural stochastic analysis has already received the 

attention of many researchers. It is sincerely hoped that, as a 

result of a productive and unifying use of entropy, the research 

work my colleague Mr. E. Mello is undertaking will render more 

manageable the formidable task of implementing a kinematically 

non-linear elastoplastic stochastic analysis. 

Structural analysis has to be complemented by structural 

synthesis if a general and complete portrayal of structural 

mechanics is to be accomplished. 

In recent years significant advances have been made in using 

mathematical programming in structural synthesis; many aspects are 

still untouched, others not yet fully explored. 

Kinematically non-linear structural synthesis promises to 

be a most interesting research topic, as it will require the 

generalization, and even the replacement of some of the fundamental 

concepts from which the existing formulations in linear structural 

synthesis have been developed. A rewarding use of the proposed 

additional forces and deformations, treated by a perturbation 

technique in the context of a mathematical programming approach 

can be forecast. 
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