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ABSTRACT  

H. STAPOUNTZIS: LIFT FORCES ON CYLINDRICAL  

BODIES IN UNSTEADY FLOWS  

The unsteady lift behaviour of a NACA 0015 aerofoil, a D cylinder 

(flat face downstream) and an elliptic cylinder was studied, when they 

were exposed to a two-dimensional sinusoidal upwash and to grid 

turbulence. The sinusoidal upwash was generated between the vortex 

wakes of two oscillating aerofoils. Experiments were undertaken at 

Reynolds numbers 1.2 x 105  to 3 x 105, sinusoidal flow reduced frequencies 

between 0.05 and 0.8 approximately, turbulence length scales of the order 

of the body chord and upwash intensities of the order 5% of the mean free 

stream speed. 

Existing thin aerofoil theories were employed in order to predict 

the unsteady lift on the bluff bodies, for frequencies not close to those 

of vortex shedding. The bluff bodies were assumed to behave like flat 

plates, but of mean lift curve slope equal to the experimentally 

determined. This assumption further implied the application of an 

equivalent Kutta-Joukowski condition at the trailing edge of the flat 

plate. 

There was found to be a generally good agreement between the 

theoretical and experimental aerodynamic admittances of lift for the 

aerofoil (a result indicating the adequacy of the flows employed) and 

the D cylinder. The aerodynamic admittance of the elliptic cylinder 

could not be reasonably predicted for all Reynolds numbers, especially 

at high frequencies but a better agreement with the theory was observed, 

when the Reynolds number was the highest, or the boundary layer was 

supplied with trip wires. This characteristic behaviour was associated 

with an unsteady movement of the separation points and the existence of 

separated flow upstream of the assumed "equivalent" trailing edge. 

The application of unsteady flows, and especially of turbulence, 

was found to decrease the peak spectral power of vortex shedding from 

its smooth flow level. 
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LIST OF NOTATION  

1A(k)1,1A(k1 )1 	Magnitude of aerodynamic admittance, see Eqns. 

(2.19), (5.4) and (6.1). 

AR 	Aspect ratio (= span/chord). 

arg 	Argument of complex function. 

b, b` 	Test model and oscillating aerofoil thickness 

respectively. 

bt 	Bar size of grid. 

CD 	Drag coefficient based on chord length. 

"Df 	
Form drag coefficient. 

C(k) 	Theodorsen's function, see Eqn. (2.8). 

CL 	Filtered root mean square lift coefficient, based 

on chord length (see Appendix 8). 

CL(t) 	Fluctuating lift coefficient. 

Cm 	Virtual mass coefficient, see Eqn. (2.16). 

Cp 	Mean pressure coefficient (Section 4.3b). 

Cpb 	Mean base pressure coefficient, see Eqn. (2.3). 

c, c' 	Test model and oscillating aerofoil chords respectively. 

d, D 	Body diameter (see also sketch p.84. 

3C/Da 	Mean lift curve slope at zero mean incidence. 

Eccentricity 	See Section 3.3.1 and Table 2. 

e 	Fluctuating voltage (Appendix A). 

IFI, F(k') 	See Fig. 3.6 and Eqn. (3.30) respectively. 

G(k 
1 
 , k

2
) 	Graham's function, see Eqn. (2.11). 

h 	Wind tunnel height. 

H(2) 	Henkel function of the second kind of order n. 

i 	=vT 
j 	Component of vorticity in the spanwise direction. 

J
n 	

Bessel function of the first kind, order n. 

K(s) 	KUssner's function, see Eqn. (5.6). 
i 

k , k, k' 	Reduced frequency in the streamwise direction, see 

Eqns. (2.5), (2.9), (3.22) and Fig. 6.1. 

k 	 Reduced frequency in the spanwise direction. 
2 

k 	Reduced frequency in the upwash direction. 
3 

kg 	 = 1  	k2 

t 	Mean lift. 



k' 	Distance between pivot shaft and mid-chord of 

oscillating aerofoil (see sketch p. 56 ). 

Lx 	Longitudinal turbulence length scale, see Eqn. (2.18). 

LA, LB, LC 	See Eqns. (D-1), (D-2), (D-3). 

t,t' 	
Spanwise u velocity correlation length and length of 

long connecting rod respectively. 

Qw 	Wind tunnel width. 

M 	Mesh size of grid. 

n 	Frequency (Hz). 

n, ng 	Oscillating aerofoil frequency (Hz). 

nb, nt 	Structural frequencies in torsion and bending, see 

Eqns. (3.15) and (3.16). 

nN 	Nyquist frequency (Hz). 

0(x) 	Of Order x. 

P, p 	Pressure. 

R 	Real part of. 

Re 	Reynolds number based on model chord length 

(= U 	. c/v). 

Rxx(n, y) 	Spanwise normalized coincident cross spectrum of 

x at frequency n. 

Rxx(y) 	Spanwise correlation coefficient of x. 

r 	Displacement (eccentricity) of long connecting rod, 

see sketch. p. 63 . 
S 	Strouhal number, see Section 2.2.3. 

s 	Test model span. 

s' 	Span between end plates or span of oscillating aerofoil. 

Sa 	Reference area. 

SA, SB, SC 	See Appendix D. 

Normalized lift spectrum, see Fig. 6.1. 

S(K Lx ) 	Sears's function, see Eqn. (2.7). 

S(k, k') 	Kemp's function, see Eqn. (2.10). 

Sm(k) 	Modified Sears's function, see Eqn. (5.11). 

SR 	Sampling rate (Hz). 

Sw,L 	Normalized upwash spectrum, see Fig. 3.26. 

S (C 

 

	

k2 ) 	Spectrum of the w velocity, see Eqn. (2.21). 
ww 1  
Sx, S~ 	Sa 	One-dimensional power spectral densities of x, 

L 	g 	lift coefficient and upwash respectively. 

T 	 Averaging time. 



t 	Time. 

T(k) 	Horlock's function, see Eqn. (2.14). 

T(k, k') 	See Eqn. (2.15). 

T(n, no) 	Response function of filter (Appendix B). 

U 	Mean velocity in the streamwise direction, or 

along the wall. 

Ue,  U 	Unsteady velocity along the wall just outside the 

boundary layer, unsteady velocity far upstream. 

U00 	Mean free stream speed. 

u Velocity component in the streamwise direction, 

see Fig. 3.8, or along the wall, see Eqn. (2.2). 

✓ Velocity of the gust in the spanwise direction. 

w Velocity of the gust in the z direction (upwash), 

(Fig. 3.8). 

x 	Distance in the streamwise direction, (Fig. 3.8). 

xg 	Streamwise distance between oscillating aerofoil and 

test model mid-chord points (see sketch p. 56). 

IX(n)1 2 	Aerodynamic admittance of drag, see Eqn. (2.28). 

xcp 
	Chordwise position of the centre of pressure. 

xt 	Distance between grid and test model mid-chord point. 

y 	Distance in the spanwise direction, see Fig. 3.8, 

or normal to the wall, see Eqn. (2.2). 

y' 	= 2y/s. 

z 	Distance in the upwash direction, see Fig. 3.8. 

zo 	Vertical distance between oscillating aerofoils (see 

sketch p. 56). 

a 	Geometric incidence. 

ā 	Mean incidence. 

ag 	Filtered RMS gust amplitude (= 	w2/Um) usually at 

the point (0, 0, 0). 

ag(x, y, z) 	Value of ag  at the point (x, y, z). 

ag(t) 	Fluctuating dimensionless gust amplitude, see Eqn. 

(2.6) at (0, 0, 0). 

S 	See Fig. 2.6. 

Ī', r(t) 	Mean and instantaneous circulation respectively. 

'a' Yw 	
Aerofoil and wake vorticity respectively (Section 3.4.3). 
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to, yo 	Quasi-steady circulation and vorticity respectively. 

ACp 	Pressure discontinuity on the flat plate aerofoil 

surface (z = 0). 

An, One 	Bandwidth, effective filter bandwidth (Appendix'B). 

ō 	Boundary layer thickness. 

dm 	Boundary layer thickness of mean U profile. 

E, cb, etc. 	Blockage correction factors (Chapter 4), or 

normalized errors (Appendix B). 	- 

0o 	Oscillating aerofoil peak amplitude in pitch. 

0(t) 	Phase angle (Appendix E). 

X 	Wavelength, see Eqn. (3.1); see also Eqn. (E-5). 

A 	Pressure factor for blockage corrections (Table 4). 

v 	Kinematic viscosity of fluid. 

Distance in the streamwise direction. 

p 	Fluid density. 

Tw 	Wall shear stress. 

vi 	Component of velocity in the i 	direction. 

T, ¢ 	Phase angle. 

w (= 2Trn) 	Circular frequency (rad/sec). 

Superscripts  

As overbar denotes time mean. 

Denotes amplitude, or estimate (in Appendix B). 

In Section 3.4, quantities non-dimensionalized 

by the half chord. 

Subscripts  

EXP 	Refers to experimental values. 

max 	Denotes maximum. 

MED. ECC. 	For medium eccentricity (Section 3.3.1, Table 2). 

PEAK 	Peak amplitude. 	
/-_ 

RMS 	Root mean square (xvm5  = ✓  x2 ). 

s, sep 	Denotes conditions at separation. 

t 	Refers to theoretical values. 

vs 	Refers to vortex shedding. 

00 	Denotes conditions at infinity. 
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CHAPTER 1. INTRODUCTION  

One of the most important aspects of industrial aero-

dynamics over the last few years, has been the understanding and - 

prediction of bluff body flows. Of great interest is the assessment 

of lift, drag, moment and pressure induced on bluff structures such as 

buildings, bridges, smoke stacks, transmission lines, periscopes, radio 

telescopes, antennas, oil rigs, boiler tubes, etc. by unsteady flows. 

A full solution of the Navier-Stokes equations is not yet 

known and, therefore, less difficult methods have to be followed, in 

order to analyze a particular flow. Up to the present, a general 

treatment of bluff body flows is prevented by the lack of an adequate 

flow model, especially if the oncoming free stream is turbulent. 

It is usual when analyzing aerodynamic loading, to consider 

as input to the problem the factor responsible for the generation of 

load; this may be a velocity or pressure field or the motion of the body 

itself. The output would be the quantity wanted: unsteady lift, drag, 

etc. For a linear system a quantity very useful to the designer is the 

frequency response function (ratio of the power spectral density of the 

output, to that of the input at the same frequency), which is commonly 

known as the aerodynamic admittance. Its knowledge permits the 

calculation of unsteady forces at any frequency, if the input (usually 

the flow) is given and the response is assumed to be linear. The aero-

dynamic admittance has been calculated successfully in linearized aero-

dynamic theories about the unsteady lift of two-dimensional thin aero-

foils as in Liepmann(1952), Jackson, Graham and Maull (1973) and 

McKeough (1976) but it has been extended to deal with strictly non-linear 

problems (dealt with as if linear), such as bluff body loading, e.g. 

Davenport (1961),(1962) and Vickery (1965). The non-linear character 
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of bluff body flows is due to:- 

- Flow separation. The separating shear layers (of which the origin 

and position generally change with time), interact in a non-linear 

manner. As a result, loads at frequencies not existing in the original 

input, appear in the output at, for example, the frequencies of vortex 

shedding. 

- Interaction of the rotational or turbulent oncoming flow with the 

body. Significant perturbations are introduced in the mean flow 

approaching the body with a subsequent distortion of the flow vortex 

lines. This latter process is non-linear because the rates of strain 

near a bluff body are large. 

The degree of success of the existing theories for the flow 

round bluff bodies depends on the kind of simplifying assumptions made. 

Up to the present the most complete analysis for the distortion of an 

external turbulent flow round bluff bodies, is due to Hunt (1973) and 

is based on the "rapid distortion" theory of Batchelor and Proudman 

(1954). Vortex shedding (i.e. the separation problem) was not examined. 

Hunt's method is however extremely expensive, from the computational 

point of view, and for that reason he was only able to calculate some 

asymptotic results, in the case of a circular cylinder in turbulent flow. 

It is this difficulty in developing accurate, but easy to 

use theoretical models for the prediction of loads in unsteady flows, 

that has established the experiment as the main source of information. 

There are lots of experimental data available to-day on the response of 

certain bluff body shapes to atmospheric and duct turbulence and on 

aeroelastic problems such as galloping and buffeting. Besides their 

value for immediate industrial applications and direct comparison with 

the theory, these data are often used as inputs to semi-empirical models. 

For example, these inputs may be the position of boundary layer separation 
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on the surface of the body, the base pressure, the drag coefficient, 

the Strouhal number, etc. A relatively greater proportion of work 

concerns unsteady drag and pressures than unsteady lift, despite the 

fact that the later kind of loading is equally interesting. Perhaps 

this is because the simplifying assumptions usually made for theoretical 

models about drag, lead to satisfactory results, sometimes sufficient 

for the present needs. 

At the present, therefore, there is not very much known 

about the unsteady lift on bluff bodies in unsteady flows and it was 

this lack of information, which urged the author to investigate the 

aforementioned subject. 

The experimental work in this study was planned as an 

investigation of the unsteady lift experienced by two-dimensional rigid 

bluff bodies, when placed in unsteady incompressible flows. Rigid 

bodies were chosen, i.e. for which the structural response introduces 

negligible flow disturbances compared to those of the unsteady flow, 

since they represent a large number of practical situations; in addition, 

it is usually easier to measure unsteady forces on rigid models. 

Two kinds of input flows were employed:- 

- A two-dimensional sinusoidal upwash gust convected, "frozen", with 

the mean free stream speed. 

- Isotropic grid turbulence also convected at the free stream speed. 

The importance of the former flow lies in the fact, that many complex 

flows can be Fourier analyzed into sinusoidal gusts of random velocity 

amplitude components. Thus the knowledge of the response of a bluff 

body to this very simple unsteady flow would help in elucidating its 

behaviour in more general flows in any linearized analysis of the 

response. 

It was intended to examine the applicability of linearized 
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thin aerofoil theories (e.g. Sears (1941), Jackson, Graham and Maull 

(1973), also Chapter 2) to the present problem. The unsteady thin 

aerofoil theories were considered to be useful, because they can be 

applied directly to turbulence, in contrast to numerical models 

(e.g. Giesing (1968), Basu and Hancock, 1977) for which this is 

extremely difficult. On account of this reason, the test bodies to be 

used would have to be similar to thin aerofoils in the following respects:- 

(i) • The thickness to chord ratio should be kept fairly small, in 

the range of 30%, but still sufficiently large, so that the bodies 

could still be considered bluff. 

(ii) Flow separation was to take place at or near to the rear of 

the models, as with unstalled aerofoils. A large unseparated surface 

would result in a relatively greater importance of the "direct" lift 

caused by the unsteady flow, over the natural vortex shedding, "indirect", 

lift which was examined in less detail in the present work. The bluff 

sections should, therefore, have a well rounded leading edge, to avoid 

premature separation. 

(iii) The effects of camber, incidence and thickness on unsteady 

lift, were not to be systematically investigated. In steady flow, 

aerofoil camber and incidence have small effect on the theoretical lift 

curve slope (for moderate incidences), while thickness tends to increase 

it. On the other hand, aerofoil thickness was found to decrease 

slightly the unsteady lift curve slope in unsteady two-dimensional flow 

(e.g. Maeda and Kobayakawa, 1970). If the distortion of vorticity is 

taken into account Goldstein and Atassi (1976) indicated, that although 

the effects of aerofoil camber, incidence and thickness could not be 

explicitly separated, the last would not be as important as the first 

two. Taking into account these points it was realised that the 

applicability of aerofoil theories for lift on bluff bodies, would be 
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more rigorously tested if the number of pertinent variables (camber, 

incidence, thickness, vorticity of oncoming flow) was kept to a minimum. 

Since it was not possible to discard thickness when examining bluff 

bodies (with properties as in (ii)), it was decided to consider only 

symmetrical profiles (i.e. no camber), at zero mean incidence with 

respect to the mean free stream direction. In the case of the 

sinusoidal flow, it was also thought advantageous to employ an 

irrotational upwash gust, in order to minimize the effects of vorticity 

distortion. 

The loading of an aerofoil is made determinate by imposing 

a zero loading condition (known as the Kutta-Joukowski condition) at 

its single trailing edge, which is the position where the flow leaves 

the surface. A corresponding condition would be needed to calculate 

the loading on a bluff body, with the difference that here there Ls. 

more than one point, at which the flow leaves the surface. As the 

nearest to an aerofoil bluff section, one could first consider an 

elongated aerofoil with two fixed separation points, but of which the 

thickness and the distance between the separation points gradually 

increase. However, since not all bluff bodies have fixed separation, 

it would also be useful to consider a similar body with two free 

separation points. Applying thin aerofoil theory, the assumption is 

made that the zero loading condition holds across the two separation 

points - in effect that it holds at a mean position between the 

separation points, "equivalent" to the aerofoil trailing edge. In the 

present work, it is intended to test how reasonable this assumption is. 

The aforementioned reasons led to the choice of the following 

test model profile sections:- 

- A U shape section with the nose in the upstream direction (sometimes 

called C shape), consisting of a half ellipse with its major axis aligned 
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with the free stream, attached to a rectangular afterbody. The elliptic 

nose was employed in order to prevent separation ahead of the body's 

trailing edge (for a suitable choice of Reynolds number range), see 

sketch below. 

Uw 

S1  ,S2  are separation points 

SKETCH 

- An elliptic section, of the same geometry as the nose of the D 

section and of the same thickness. At sufficiently high Re numbers, the 

two separation points lie downstream of the maximum thickness position. 

Further, to be able to check how accurately linearized thin 

aerofoil theories apply to a moderately thick aerofoil and uncover any 

phenomena, which might not be related to the differences of bluff bodies 

and aerofoils, but to particular features of the experimental apparatus 

(response of force transducers, anisotropy of flow, etc.), a third model 

was used, this being a symmetric aerofoil at zero incidence. 

In the experiments with the sinusoidal flow, an aerofoil of 

similar profile placed at a high incidence to the mean stream was also 

used. When the aerofoil was near the stall, it had two separation points, 

one free on the upper (suction) surface and another fixed at the trailing 

edge. The purpose of this was to study the behaviour of separation 

points in unsteady flow. 

Only two-dimensional models were examined in this work, i.e. 

completely spanning the working section. 

In the following chapter, a literature review is given, which 

contains data and formulae needed in the main work and which marks the 

areas of inadequate knowledge on the subject. 
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CHAPTER 2. PREVIOUS THEORETICAL AND 

EXPERIMENTAL WORK ON THE LOADING OF 

TWO-DIMENSIONAL RIGID BLUFF BODIES 

2.1 	FLOW SEPARATION ON TWO-DIMENSIONAL BLUFF BODIES 

The striking characteristic which distinguishes a streamlined 

from a bluff body, is that the latter causes a significant perturbation 

on the flow, in which it is immersed. Separation refers to the departure 

from the neighbourhood of the surface of those streamlines which lay 

within the boundary layer upstream; for a two-dimensional bluff obstacle, 

with a closed boundary, separation occurs at two or more points. At 

these separation points, it is usually assumed, in steady flow, that the 

flow near the surface is reversed and the wall shear stress, Tw,  becomes 

zero. In the flow over a curved surface, Tw  is gradually diminishing 

as the separation point is approached. However, in the case of a surface 

with a sharp edge, the flow as a whole adjusts itself so that separation 

takes place at the sharp edge (or in practical terms very near to it), 

without any sign of decrease in the wall shear stress, as the separation 

point is approached. Flows, with separation points of the former type 

(free separation points), are much more strongly influenced by pressure 

gradients and changes in the oncoming stream conditions (Re number, 

turbulence) or wall conditions (roughness, boundary layer control by 

suction, etc.), than those with separation points fixed at a salient 

edge. Examples of both type of flows can be found in Goldstein (1965) 

and Schlichting (1968). 

In steady flow over a body with two separation points, it 

is experimentally evident (e.g. Fage and Johansen, 1927) that the average 

rate at which vorticity is transported downstream from the one separation 

point is equal and opposite to the rate at which vorticity is transported 
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at the other separation point. The word "average" is used here because, 

instantaneously, these rates are not equal and opposite to each other. 

For small surface curvature, this means that the average velocities and 

pressures at the two separation points should be equal. The same applies 

to an unstalled aerofoil, with the difference that the two separation 	• 

points lie both at the sharp trailing edge, where (but in the wake as 

well) the vortex strength is now zero. In aerofoil theory, this fact is 

expressed by the Kutta-Joukowski condition, an alternative formulation of 

which is that the flow leaves smoothly at the trailing edge. By means of 

this condition the mean lift L and the mean circulation r round an 
aerofoil in inviscid flow are related by the equation:- 

L = pUcy 	 (2.1) 

where U is the free stream speed. In the case of bluff bodies, Eqn. (2.1) 

would only be valid if a circulation r could be found, such that the 
inviscid and experimental pressure distributions were in agreement. 

However, flow separation cannot in general be taken into account with 

inviscid theories only. Therefore, Eqn. (2.1) will tend to be more 

correct, the closer the flow conditions round a bluff section are to 

those round an aerofoil. 

When the oncoming flow is unsteady, there is experimental 

evidence, e.g. Despard and Miller (1971), that transient flow reversal 

occurs at all points on the surface in an adverse pressure gradient 

regime. It may also be that a transient reversal occurs even in a zero 

mean pressure gradient. Therefore, unless separation is fixed at a 

salient edge, there would be an ambiguity as to what is meant by 

separation in unsteady flow according to the conventional definition. 

Despard and Miller (1971) proposed a new definition (for a laminar 

boundary layer), i.e. that the separation position can be signalled by 
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the occurrence, for the first time as the surface is traversed downstream, 

of a continuous (i.e. at all times) reversed flow. This definition 

results in a unique point in the flow field and it is still valid for 

steady flow. On the other hand, Sears and Telionis (1971) constructed 

a theoretical model for separation, based on the conviction that, at 

least locally, the separated wake is a distinct body of fluid that 

bifurcates the boundary layer flow and pushes it away from the wall. 

Thus, they defined a "centre" of separation, not generally on the wall, 

which moves in the u direction with the speed of the separation 

phenomenon and is characterized by a zero shear stress. In the present 

work, when mention is made about experimental separation points in 

unsteady flow, it will be assumed that they are those that would have 

been found by applying Despard and Miller's (1971) definition. 

The flux of vorticity at the two separation points A, B in 

unsteady flow is no longer constant nor is the total flux into the wake 

equal to zero. Instead, the total flux is instantaneously equal and 

opposite to the rate of change of circulation, F, about the body 

(constancy of circulation then rm). This is expressed mathematically as:- 

S 	A 	A 

	

1 ~2 	 _ dI' 
J(u - usep) 

dy 	
= [2
.- 
 Ue 	usep 

Ue 	- 	dt 	(2.2) 

0 
B 
	

B 

(see Sears, 19F6) 

where:- 

S 	= boundary layer thickness 

j 	= vorticity in the boundary layer 

u 	= velocity component parallel to the wall 

usep = velocity of motion of the separation phenomenon 

Ue 	= value of u at the outside edge of the boundary layer 

A 
j stands for the difference between the flux of vorticity at the separation 
B 
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points A and B. 

When the vorticity is shed from a sharp edge, like the 

trailing edge of an aerofoil, then the points A and B both lie on the 

sharp edge and Usep  is zero. In this case, it is argued (e.g. Basu and 

Hancock, 1977) that the flow must leave the edge parallel to the one or 

the other of its surfaces, depending on the sign of the shed vorticity 

as shown in the sketch below. 

sharp edge flows (frictionless fluid ) 

steady flow 	 unsteady flow 

SKETCH 

In the case of•an aerofoil, Eqn. (2.2) expresses the relation between 

the vortex strength at the trailing edge and the rate of change of 

circulation. But the same relation could have been obtained from the 

inviscid aerofoil theory (see Bisplinghoff et al, 1958) by appealing 

on 
to the Kutta-Joukowski hypothesis, of no loading1the trailing edge. 

Thus, in the words of Sears (1976), there is a rather surprising 

identity between the vorticity production in the boundary layers and 

the Kutta-Joukowski condition. Eqn. (2.2) may, therefore, be termed 

as an equivalent Kutta-Joukowski condition for unsteady flow. Its 

importance lies in the fact, that in a particular flow model, it can 

be used to determine the value of the instantaneous circulation round 

the body and, depending on the accuracy of this model, to estimate the 

unsteady lift. 
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2.2 	LOADING OF BLUFF BODIES IN STEADY UNIFORM FLOW 

2.2.1 	METHODS OF CALCULATING THE MEAN LOADS 

The problem of calculating time-averaged pressures and 

forces round a bluff body, placed in a steady stream at relatively 

high Re numbers, can be approached, sometimes successfully enough, using 

potential flow methods combined with certain experimental results. 

In Roshko (1954a) it is reported that Kirchhoff developed a 

"free streamline" theory in which the shear layers springing out of the 

body were replaced by streamlines of velocity discontinuity. The flow 

was divided into the wake (which did not play any role in the analysis, 

being a "dead air" region), and an outer potential flow region. For 

simple symmetric geometrical shapes, (circular cylinders, flat plates, 

etc.) the complex velocity potential could be found, after applying 

suitable conformal transformations, relating the physical and the trans-

formed (hodograph) planes. An unrealistic assumption by Kirchoff was 

that the pressure in the wake was constant and equal to that in the 

undisturbed stream, while it is known that a lower pressure exists there. 

Thus, the theoretical value of the drag coefficient for a flat plate 

normal to the stream was 0.88, as compared with the value 2.0 found 

experimentally. 

Roshko (1954b) refined Kirchoff's method by equating the 

velocity along the free stream lines leaving the body with Us, where:- 

Us  = kb  U. , kb  = (1 + Cpb)2  ' Cpb  - (Pbase Po)/(2 PU!) (2.3) 

The base pressure coefficient 
'ph 

was determined experimentally and it 

was the only empirical input to the theoretical analysis for bodies 

with fixed separation points (flat plates, short rectangle, 90°  wedge). 

The situation is more complicated for non-fixed separation points. 

Assuming that in principle the transformation can be accomplished, a 
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second empirical input is necessary, specifying either the exact position 

of separation, or the curvature of the free streamline at the position of 

separation. Care should be taken, so that the predicted streamline does 

not cut into the body just downstream of separation. 

Another free streamline theory employing a different approach, 

but containing the same degree of empiricism, was the wake source model 

of Parkinson and Jandali (1970). Here, the wetted surface of the bluff 

body was conformally mapped (usually via a Joukowski transformation) 

onto a circular cylinder in another plane t. The two separation points 

S and S were made critical points of the transformation. Sources and 
z 

sinks of suitable strength and position were placed in the t plane so 

that S , S became stagnation points of the corresponding (known) flow 
1 	z 

round the circular cylinder. For fixed separation points, again the 

only empirical input was Cpb,  which was used in the Bernoulli equation 

to specify the separation velocity. For non-fixed separation points 

the extra information was the same as with Roshko's method. 

A more general extension of this technique was the numerical 

method developed by Bearman and Fackrell (1974), which combined the 

basic ideas of the Parkinson-Jandali model and vortex lattice theory. 

Using this method they replaced the wetted surface of the body by a 

distribution of discrete vortices. The effect of the wake was taken 

into account by placing sources on the rear of the wetted surface. The 

boundary condition of zero normal flow together with the positions of 

the separation points and the base pressure, sufficed to determined the 

vorticity distribution and the position and strength of the sources. 

Non-symmetric bodies with respect to the direction of the mean flow 

could be treated with this method. A problem would arise due to the 

development of a lift force, which was not predicted by the theory, 
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since the circulation round the surface was assumed zero. This requires 

an extra assumption about the flow, which may be for example that the 

circulation is equal to that experimentally found in the wind tunnel. 

An approach involving more directly the effects of viscosity 

was undertaken by Howarth (1935) in order to calculate the steady load 

on a body with separated boundary layers. Howarth employed the inviscid 

flow pressure distribution round the body to start boundary layer 

calculations and obtain a first estimate of the position and conditions 

at the final separation; an arbitrary value of the circulation was 

initially assumed. If the calculated conditions at separation did not 

conform to the (equivalent for bluff bodies) Kutta-Joukowski condition 

in steady flow (see Section 2.1), T was varied until this could be 

achieved. Then, the mean lift was calculated from Eqn. (2.1). Howarth 

refined his method by considering the cases of fully laminar and fully 

turbulent boundary layers (therefore, no scale effect), as well as the 

case where transition was allowed to occur. There are two main 

disadvantages of the method described: First, Eqn. (2.1) is not valid 

for a bluff body, so that the analysis will tend to be more accurate 

for the better streamlined bodies. Second, the assumptions leading to 

the boundary layer equations break down at separation and consequently 

the conditions at separation cannot be accurately determined. On 

account of the first reason Howarth applied his method to a two-

dimensional thin elliptic cylinder (fineness ratio 6.0). The calculated 

mean lift curve slopes, 3CL/a, at zero incidence are given in Fig. 2.1 

for fully laminar and fully turbulent boundary layers. The 3CL/3a 

corresponding to the latter case was the greatest, while for the mixed 

type boundary layer calculations (partly laminar, partly turbulent) 

intermediate values of 3CL/3a were to be expected. 
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2.2.2 	EXPERIMENTAL WORK ON THE MEAN LOADING OF BLUFF BODIES 

There is a great deal of experimental work available for the 

loading of bluff bodies with particular emphasis given to the circular 

and square cross-sections and the flat plate held normal to the free 

stream. Valuable information can be found in Roshko (1961) and Goldstein 

(1965) for circular cylinders, Vickery (1966), Pocha (1971) and Lee (1975) 

for square cylinders, Polhamus (1959) and Polhamus et al (1959) for 

rectangles and square cylinders with rounded edges, Fage and Johansen 

(1927) and Roshko (1954a) for flat plates. The important characteristics 

which were observed in the behaviour of these sections, but nevertheless 

are common to all other bluff sections, will now be briefly described. 

The mean drag coefficient of a bluff body is much greater 

than that of a streamlined one; while in the latter the drag consists 

mainly of viscous friction, in the former it consists mainly of the 

difference between the normal pressures of the front and rear surfaces. 

Generally, the lower the pressure in the back (base) region, the greater 

is the drag and the curvature of the streamlines leaving the surface. 

The wake is a region, where the fluid loses momentum, so that 

a narrow wake indicates a low mean drag while a broad wake, high drag. 

Especially for the bodies with non-fixed separation points the wake 

width and consequently the drag are strongly influenced by the Re number 

of the flow. This happens because the position where a laminar shear 

layer becomes turbulent depends on the Re number. At low Re numbers the 

separated sheoor layer is laminar and becomes turbulent at a certain 

distance downstream. The flow is then said to be subcritical. Free 

streamline theories (Section 2.2.1) are in reasonably good agreement 

with experiments in this flow range, especially for bodies with fixed 

separation points. An increase in the Re number brings the transition 
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upstream, until at a specific Re number (critical Re number), laminar 

separation and transition occur at the same point on the surface. By 

a further increase in the Re number the developed turbulent boundary 

layer, being able to sustain more effectively adverse pressure gradients, 

separates further downstream. As a result of the downstream movement of 

the separation point there is a significant narrowing of the wake with 

corresponding fall in the mean drag. The magnitude of this drop for 

elliptic cylinders of various fineness ratios can be seen in Fig. 2.2. 

It appears that the critical range of Re numbers occurs earlier, the less 

bluff is the section. 

The space between laminar separation and the position where 

the newly formed turbulent shear layer reattaches on the surface, is 

occupied by a separation bubble. This is a region of recirculating 

fluid of nearly constant pressure (see for example Crabtree (1957) and 

Tani, 1964) and, therefore, it could manifest itself by a flattened 

portion in a mean surface pressure distribution. Fig. 2.3 displays 

clearly the changes that take place in the positions of laminar and 

turbulent boundary layer separation for an elliptic cylinder, (a geometric 

shape studied in the present work), when the Re number is varied. The 

measurements are due to Schubauer (1939). Besides the effects mentioned 

previously, Schubauer found that a very incomplete transition took place 

in the region which marked the end of the accelerating pressure gradients 

(near the maximum thickness of the cylinder). On account of this reason 

the boundary layer separation which he observed for 9 x 10" < Re < 3.2 x 105, 

was neither purely laminar nor turbulent, but, in his words, of a "nearly 

laminar" type. 

Several other authors, e.g. Roshko (1961), Bearman (1969}x, 

Bruun and Davies (1975), have experimented in the critical flow range 
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and their results confirmed not only the strong dependence on the Re 

number, but also the dependence on disturbances in the free stream, 

surface roughness and even wind tunnel installation. The agreement of 

the experimental results with free streamline theories is deteriorating 

in the critical range, due to the existence of the separation bubbles. 

Generally, the bluff cylinders are found to behave differently 

to changes in the mean incidence than the aerofoils. For example the 

drag coefficient of a square cross-section cylinder (flat side facing 

the stream at zero incidence) decreases with increasing incidence, while 

a negative lift develops, see for example Lee (1975). This is caused by 

the reattachment of the shear layer, separating from the lower front 

corner, to the side of the cylinder and the subsequent narrowing of the 

wake. In another case, it is found that the mean lift curve slopes of 

certain elliptic cylinders are exceedingly high at zero incidence, e.g. 

Zahm et al (1928), Williams et al (1937) and Polhamus et al (1959), 

while the mean lift v. incidence curves are no longer straight lines for 

moderate incidences. Fig. 2.1 shows that even for constant fineness 

ratio, a /ac. does not remain constant, when the Re number is changed. 

The lift curve slopes obtained theoretically by Howarth (1935) are 

compared in this figure with the experimental results of Williams et al 

(1937). It can be seen that in the critical range the experimental 

slopes are much greater than those predicted, but as Re increases there 

is a tendency towards a better agreement. 

2.2.3 	THE UNSTEADY LOADING OF BLUFF BODIES IN A STEADY 

FREE STREAM 

Unsteady loads in this case may arise on bluff bodies for 

two reasons: Either due to vortex shedding or due to instabilities, 

provoked by a particular behaviour of their mean loading characteristics 
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with changing incidence. In the latter case, the induced oscillations 

either transverse to the direction of the free stream, or in torsion 

about the longitudinal elastic axis, are known as "galloping". 

(i) 	Vortex shedding: The sheets of vorticity leaving the bluff 

body rolf up alternatively further downstream to form a vortex street. 

The dimensionless group S = nvsb/Uo, where nvs  is the shedding frequency 

(i.e. the frequency at which the vortices appear in the wake) and b the 

body thickness or diameter, is the Strouhal number. Experiments, e.g. 

Roshko (1954a), Bearman (1964, have shown that S remains sensibly 

constant in the subcritical range, but it is raised to higher levels in 

the critical range. Gerrard (1966) postulated that the main factors 

determining the frequency of vortex shedding are the size of the region 

where the vortices are initially formed and the thickness of the shear 

layers at the end of that region; he could then explain the relative 

constancy of the Strouhal number when the Re number was changed. 

The unsteady pressure field round the body, induced by the 

wake vortices, results in fluctuating lift and drag forces, of which 

the frequency contents are maximum at the shedding frequency and twice 

the shedding frequency respectively. An elastic body may be forced to 

oscillate because of these loads, especially in the transverse direction )  

where the lift forces are greater. Stronger excitation will develop if 

vortex shedding is well correlated in the spanwise direction. When the 

vortex shedding and body natural frequencies approach coincidence, as 

would happen for example when the wind speed is varied, an aerodynamic 

resonance known as the "capture" or "lock in" effect takes place, 

provided that the amplitude of transverse oscillations is sufficient. 

What happens is that the shedding frequency occurs at the oscillation 

frequency for a certain range of speeds. In a circular cylinder, for 
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example, "lock in" appears for oscillation amplitudes exceeding 2% of 

the diameter approximately and could persist even if U. is about 1.5 times 

greater, than the speed at which the shedding and natural frequencies were 

equal, see Owen (1973). During "lock in", the amplitude of oscillation 

and fluctuating pressures is increased as well as the spanwise correlation 

of the shed vortices and the pressures. There are also great changes in 

the phase between the fluctuating lift and displacement. Hysteresis 

effects (i.e. dependence of the "lock in" extent, force amplitude, etc. 

on the direction through which the natural frequency is approached by nvs) 

are also observed, see for example the review of Mair and Maull (1971). 

The fact that the vortex induced oscillations are in some 

cases undesirable or, even worse, cause structural damage, has led to a 

considerable amount of experimental investigation and some theoretical 

formulations. In one of them, the wake is represented by two infinite 

rows of staggered vortices of opposite sign. The von Karman vortex 

street (see Goldstein (1965) and Lamb+, 1974) is only a special case of 

a stable vortex street, with spacing ratio 0.281. Sallet (1972) used 

this flow model to calculate the unsteady lift due to vortex shedding. 

Certainly, the values obtained are not likely to be very accurate, 

because the region where the vortices are formed and the lack of spanwise 

correlation were ignored. A more sophisticated method was developed by 

Clements and Maull*(1975). The wake was represented by discrete vortices 

shed behind a semi-infinite constant thickness square-ended body at 

specified time intervals. The nature of the self excited vortex shedding 

has also led some authors to assume that the fluid behaviour could be 

modelled by a simple non-linear oscillator. In one approach the 

fluctuating lift coefficient satisfied a van der Pol equation. A 

description of the various models developed can be found in Blevins (1977). 

+Lamb, H. "Nydnod a.rnzcs" c.U.P s;xth edition ,19m. 

CQemevtt 5 RR and Mauee 1~.1., Rro9r5 in Aerospace 5ci, 19 5,16 , ppV9-146 , Persavnon Press. 
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(ii) 	"Galloping": This instability is not connected with vortex 

shedding and the oscillation proceeds with a frequency close to the 

natural structural frequency. Parkinson and Brooks (1961) formulated a 

quasi-steady theory for bluff bodies in order to predict the characteristics 

of transverse galloping (amplitude, build-up time). Their theory predicted 

the behaviour of the oscillating body with reasonable accuracy away from 

the "lock in" range; it also agreed with den Hartog's criterion which 

states that "a section is dynamically unstable if the negative slope of 

the lift is greater than the ordinate of the drag curve". Experiments by 

the same authors suggested that the instability could be associated with 

the length of the afterbody. Thus, a circular cylinder, a D section and 

an upright rectangle vibrated under vortex excitation (because their short 

length of the afterbody apparently did not interfere with vortex shedding), 

while the square cross section and the long rectangle vibrated (for 

suitable values of structural damping) in a manner similar to that 

predicted by the theory. 

The approach described above, is one of the many dealing with 

the prediction of the aeroelastic behaviour of bluff bodies. In several 

proposed models, elements from unsteady aerofoil theory are included. 

More information about galloping and flutter (i.e. two degrees of 

freedom instability) can be found in conferences on wind induced 

vibrations, e.g. Naudascher (1972). 

2.3 	LOADING OF BLUFF BODIES IN OSCILLATORY FLOWS 

A general sinusoidal flow disturbance has three velocity 

components along the x, y, z axes of the coordinate system of the form:- 

" 	i(wt -kx-ky-kz) 
v. = U. e 	 ! 	2 	3 

(i = x, y, z) 

(2.4) 
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where: 

vi  is the amplitude of the fluctuating velocity; 

w is the frequency of the sinusoidal variations sensed by a point which 

is fixed in the coordinate system; 

k , k , k are wavenumbers in the x (streamwise), y (spanwise) and z 
1 	2 	3 

(transverse) directions respectively. 

The unsteady loading of aerofoils in oscillatory flows has 

been treated successfully by using linearised theories. In the present 

work, it will be attempted to use these theories in order to predict the 

loading of bluff bodies. Therefore, it was thought useful to describe 

them briefly. 

2.3.1 	UNSTEADY AEROFOIL THEORIES 

For sufficiently small gust velocities and aerofoil thickness 

incidence and camber the component of the gust in the spanwise direction 

may be neglected. Then two unsteady components of lift loading can be 

identified: One is a first order component due to the transverse (upwash) 

component of the gust uz  = w, and the other is a second order component 

dependent on the combination of the streamwise component ux  = u and the 

mean incidence ā, i.e. on uā. There are theories for the loading due to 

both of these components. 

If the changes in the upwash pattern occur over distances 

much greater than the chord of the aerofoil, then the gust is said to 

Tf CbC5 convected 
convect as a frozen patternft the free stream speed of the flow the 

wave number k will be then equal to w/U, or if all wave numbers are 
1 

non-dimensionalized by the half of the aerofoil chord (c/2):- 

k 
2U 
wc _irnc 

CO 	CO 
= =   (2.5) 
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k is also called the reduced frequency and gives a measure of the gust 

wavelength with respect to the aerofoil chord length. 

Sears (1941) determined the response of a zero thickness 

aerofoil and at zero mean incidence, to an upwash of the form:- 

a (t) _ 	ei(wt - kx) = ag ei(wt - kx) 

9 
(2.6) 

where ag(t) and ag  are the fluctuating and peak gust amplitudes 

respectively. The coordinate x was zero at the model mid-chord point. 

In Sears's model the aerofoil surface and the wake were represented by 

a distribution of vortex singularities. Free stream vorticity was 

neglected in this analysis. The Kutta-Joukowski condition of no loading 

at the trailing edge, was assumed to apply at all times. The unsteady 

lift coefficient was found to be:- 

CL(t) = 2Tr ag e
iwt 

 S(k) 

where S(k) is the Sears's response function given by:- 

S(k) = [ck[0 k) - iJl(k
'1 
 + iJi(k) 

(2.7) 

(2.8) 

where C(k) = H(2)(k)/{H(2)(k) + iH(2)(k)} is Theodorsen's (1935) function, 
1  

associated with the response of an oscillating aerofoil. Jo, J are 

Bessel functions of the first kind. H(2), H(2)  are Henkel functions of 
1 

the second kind. The squared modulus and the argument of S(k) are plotted 

in Figs. 2.4 and 2.5 respectively. 

In later years Kemp (1952), extended Sears's theory to 

include the case of an upwash gust propagating at a speed Uc 	U.. Then 

the streamwise reduced 	k,  is equal to k', so that:-  

k = 
k- 	wc _ Trnc 

I 	r 2Uc  Ūc  
(2.9) 
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and Sears's function is replaced by Kemp's function S(k, k') such that:- 

S(k, k') _ [J0(k) - iJ(k')J C(k) + i 
k 

J1(k') (2.10) 

This complex function is plotted in Figs. 2.4 and 2.5, for various ratios 

Uc/Uo. It is observed that the differences between S(k) and S(k, k') 

become more apparent for greater k (if k/k' = const.). 

Maeda and Kobayakawa (1970) examined the problem of a thick 

aerofoil exposed to an upwash gust of the Sears type. The boundary 

conditions were exactly satisfied on the aerofoil surface by an 

additional distribution of sources on the mean chord line. No distortion 

of vorticity was taken into account and the wake vorticity was assumed to 

be shed as in Sears's analysis (found after employing the Kutta-Joukowski 

condition). The calculated response function had a magnitude lower than 

Sears's function. 

The response of a thin aerofoil to a yawed sinusoidal upwash 

of the type w 
el(wt - k1 x - k

2
y) 

and convected at the free stream speed 

was calculated by Graham (1970a) using an exact lifting surface theory. 

For a chordwise section the unsteady lift coefficient was given by:- 

Ck(t, y) = 271- G(kl , k2 ) ~ 
ei t - ky) 

(2.11) 

where the response function G(k , k) was calculated by Graham numerically. 
1 	2 

In Fig. 2.6 the magnitude and the argument of Graham's function are 

plotted against the modulus of the reduced frequency kg = ✓  ki + k2. 

The various combinations between k and k result in the "front" of the 
1 	2 

yawed gust (i.e. the set of points with the same velocity and phase) 

being inclined to different angles with respect to the aerofoil leading 

edge. It is seen that the smaller is this angle, the closer is Graham's 

function to Sears's function. A perturbation expansion of G(k , k ) to 
1 	2 
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second order in k is given in Graham and Kullar (1977). For a two- 
s 

dimensional wing element of aspect ratio AR = span/chord = s/c, the 

unsteady lift is equal to:- 

sin(k AR) " 
CE(t) = 271- G(k1, k2) 	

(k AR) 	
•eiwt 

2 	°D 

(2.12) 

As stated previously, for an aerofoil at incidence, there 

is an extra lift loading (i.e. in addition to that given by Eqn. 2.7) 

depending on uā. Horlock (1968) examined the response to a streamwise 

gust convected at Ums, of the form u = u e
i(wt - kx)

. The result is:-  

CE(t) = 27a u e
iwt 

T(k) 	 (2.13) 

with T(k) = S(k) + Jo(k) + iJl(k) 	 (2.14) 

For a gust convected at a speed Uc # U
00, 

i.e. u = u 
ei(wt - k'x) ~ 

k' = "C the response function was calculated by Holmes (1970) as:- 
c 

T(k, k') = S(k, k') + Jo(k') + iJl(k') 	 (2.15) 

This function is plotted in Fig. 2.7 for several values of the ratio 

Uc/U. It should be noted, however, that the load response can be 

affected, if the gusts have a dependence on the reduced frequency k3, in 

the upwash direction, or if they are rotational. The last effect would 

be due to the distortion of vorticity, which is discussed below. 

The distortion of vorticity in the free stream is a result 

of the interaction between the flow and the body placed in that stream. 

The induced velocity fields due to this interaction are as follows:- 

(a) The mean perturbation of the flow, cancelling the normal 

component on the surface of the body. 

(b) The unsteady field induced by the body, which cancels the 

gust on the surface. 
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(c) The unsteady field resulting from the distortion of the 

vortices by the mean flow perturbation in (a). Vortices in the free 

stream can be distorted by skewing, stretching and convection at 

different rates. The induced velocities can be found from the Biot 

Savart law. 

(d) The unsteady field which cancels the field (c) on the surface 

of the body. 

The mathematical approach for the calculation of the 

distortion effects is by solving the vorticity transport equations. 

These equations can be made simpler, if the inertial and viscous effects 

can be neglected. In the case of a random turbulent gust this results 

in the "rapid distortion theory", in which it is assumed that each 

spectral component of the gust is distorted so quickly that it has no 

time to exchange energy with other spectral components or be affected 

by viscosity. Several authors applied this method for turbulent flows 

round bodies like a circular cylinder (Hunt, 1973), a porous plate 

normal to the stream (Graham, 1972) and an aerofoil at high mean 

incidence (McKeough, 1976). For the aerofoil at incidence considered 

previously, it is reported in Graham (1970b) that the vorticity in the 

free stream may be neglected if the variations in the mean pressure field 

of the aerofoil are small compared to the total pressure of the free 

stream and if the displacement of the streamlines is also small. 

2.3.2 	THEORIES FOR THE UNSTEADY LOADING OF BODIES WITH 

FLOW SEPARATION 

In the inviscid aerofoil theories described previously, the 

downstream stagnation point was located on the sharp trailing edge. The 

results derived can be applied to the real flow situation, where the 

aerofoil and its boundary layers are thin and all the way attached to 
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the surface. However, these results would be less representative for 

aerofoils with a rounded trailing edge and bluff bodies, where separation 

occurs at two points. With regard to this problem, there is very limited 

work done on the aerofoils with a rounded trailing edge and almost no 

work, as far as the author is aware, on bluff bodies. The main points of 

the existing work will now be reported. It should be emphasized that 

the (natural) vortex shedding phenomenon will be examined in a separate 

section later. 

Moore (1955) calculated the unsteady lift on a thin elliptic 

cylinder (fineness ratio 6.0) placed in a stream of varying direction 

(i.e. a gust of the type we1Wt). His method was similar to that of 

Howarth (1935) for a laminar boundary layer (see Section 2.2.1) but was 

extended to include some unsteady effects. The complexity of the 

problem was simplified by Moore in two ways: First, he assumed that the 

fluctuations in the incidence ag(t) of the free stream were of low 

frequency, that is dag(t)/dt was assumed small. This permitted the terms 

proportional to d2ag(t)/dt2  and all higher derivatives to be neglected. 

Second, he considered only the case of maximum mean lift. Then, not only 

the quasi-steady rate of change of circulation would be zero, but, in 

view of the first assumption, that to order dag(t)/dt. Therefore, 

although the circulation about the body is perturbed, the total vorticity 

flux into the wake is negligible and, consequently, there would be no 

unsteady lift due to the wake. Still, the complication due to the 

unsteady movement of the separation points remained and it was calculated 

by using Eqn. (2.2) and the von Karman momentum equations. (The 

separation points were defined from the vanishing of wall shear). The 

choice of a thin cylinder was again based on the requirement of thin 

boundary layers, thus making less objective the use of potential flow 

methods for determining the external flow. Finally, the total lift was 
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found from Eqn. (2.1) and the contribution of the impulsive pressures 

due to the unsteady potential flow. In the case of sinusoidal variations 

in a
9 
 (t)the unsteady lift increment is found to be also sinusoidal and 

to lag behind ag(t) by 90 degrees. Apart from its weak points common 

with Howarth's method (Section 2.2.1), the theory described suffers, 

according to Sears (1956), from the ambiguity in defining separation in 

unsteady flow. 

A more general approach was suggested by Sears (1976), making 

full use of Eqn. (2.2). He stated that in order to calculate the loading 

on a thin cylinder with a rounded trailing edge, a dual model was needed: 

A vortex sheet model, representing the cylinder and its two-layered wake 

by single bound and free vortex sheets (as in thin aerofoil theory) and 

a boundary layer model, requiring a more accurate picture of the body's 

contour, for the determination of the circulation. The total lift would 

then be calculated from the thin aerofoil formulae (in terms of vortex 

strength distributions) which were derived from the conservation of 

momentum considerations. However, there would be a questionable point 

about using the thin aerofoil result for the detailed pressure distribution 

if separation occurs upstream of the trailing edge and the separated layers 

are very thick; in that case the pressure calculated from the bound vortex 

sheet may differ from that at the body's surface. For,this reason, Sears's 

propositions are intended for thin cylinders. 

Woods (1961), presented an unsteady wake flow theory for the 

calculation of unsteady loads on oscillating cylinders of arbitrary 

thickness and shape, but with fixed separation points. The strength in 

the vortex sheets was determined by solving two simultaneous integral 

equations under two main assumptions: First, that the pressure at any 

point in the wake is constant and equal to its mean steady value and 

second that the boundary conditions of the unsteady flow can be applied 
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to the boundaries of the basic steady flow (which is assumed to be 

known). Two examples of the general theory were given, one dealing 

with a flat plate placed normal to a steady stream and executing 

oscillations in this direction and another dealing with an oscillating 

aerofoil fitted with a spoiler. 

a 
In a fluctuating free stream, the drag exerted onpody is 

given by the semi-empirical equation:- 

D(t) _ 	CD(k) d 	p 41111 + 
Cm (k)  p . Sa d (2.16) 

where CD(k) and Cm(k) are the drag and virtual mass coefficients 

respectively, which are functions of the reduced frequency k (see for 

example Davenport, 1961). d is the diameter of the body; Sa  is the 

reference area to which Cm  is based and 4  is the stream speed far from 

the body. 

The frequency dependent drag and virtual mass coefficients 

tend to their steady flow values when the reduced frequency tends to 

zero. Davenport (1961), was the first to introduce the concept of the 

aerodynamic admittance when he examined, by means of Eqn. (2.16), the 

unsteady drag exerted on a body placed in a stream with sinusoidal 

streamwise fluctuations. 

2.3.3 	EXPERIMENTAL WORK ON THE LOADING OF BLUFF BODIES 

IN AN OSCILLATORY FREE STREAM 

The material available for the direct loading in sinusoidal 

flows is of surprisingly limited extent, since most investigations 

concentrate on the effects of the oscillatory flow upon vortex shedding, 

e.g. Pocha (1971), Hancock (as reviewed in Mair and Maull, 1971). In 

this sense, the present work is probably among the few dealing with the 

direct response of bluff bodies in sinusoidal flows. 
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2.3.4 	EFFECTS OF OSCILLATORY FLOWS ON BOUNDARY LAYERS 

Of interest are the effects, which can be caused by 

oscillatory flows on the boundary layer transition and separation as well 

as on the skin friction coefficient. This has been the subject of 

theoretical and experimental investigations mainly for unidirectional 

flows, in which the streamwise velocity oscillates sinusoidally about the 

mean. 

Lighthill (1954) worked out, in a theoretical analysis, the 

fluctuations in the laminar skin friction of a cylindrical body exposed 

to a sinusoidally streaming flow. He found that the maxima of skin 

friction anticipated the maxima of the stream velocity and that if the 

oscillation frequency was greater than a critical value, (depending on 

the point on the surface) then this phase advance was 45°  and the skin 

friction behaved as if there was zero mean velocity. Unfortunately, he 

could not draw definite conclusions about boundary layer separation. 

The phase lead inside the boundary layer and the amplification of the 

velocity waveform, which were predicted by Lighthill, were confirmed by 

Despard and Miller (1971), who conducted experiments on a flat plate in 

a streamwise sinusoidal flow with an adverse pressure gradient. They 

also found the separation point to move upstream of its steady flow 

position; this displacement appeared to decrease with increasing 

dimensionless frequency 
2Inv

, while to be almost unaffected by the 
U2  

amplitude of the velocity Tluctuation T -. For the type of flow 
u. 

mentioned above,Morkovin et al (1971) pointed out that transition to 

turbulence may occur much earlier than in a steady flow of the same 

speed U.. 

The turbulent boundary layer is less amenable to theoretical 

and experimental investigation and work is still in progress. Relevant 

information can be found in conference proceedings, see for example 
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Eichelbrenner (1971). A remarkable result by Karlsson (1959), who carried 

out experiments with a flat plate in zero pressure gradient, was that the 

mean velocity profile was not significantly affected by streamwise 

fluctuations of amplitude as much as 30% of the free stream speed. 

2.3.5 	EFFECTS OF OSCILLATORY FLOWS ON VORTEX SHEDDING 

An oscillatory field may affect the phenomenon of vortex 

shedding in many respects. In the first place, there could be a coupling 

between the fluctuating wake and the applied field, leading to a 

suppression or enhancement of the energy at vortex shedding. Which of 

the two will occur depends on the symmetry of the two fields and their 

relative frequencies. Pocha (1971) conducted experiments with a square 

cross section cylinder in a sinusoidal upwash gust. He found that for 

gust frequencies not very close to the shedding frequency, the vortex 

shedding lift C
Lvs 

 was lower with respect to its steady flow value. As 

the gust frequency neared the shedding frequency (within ± 0.5 Hz) the 

latter was "locked in" by the former and C
Lvs 

 became greater than its 

steady flow value, see Fig. 2.8. Pocha pointed out that the shedding of 

vortices was strong and very regular during "lock in", in contrast to 

the weak and irregular shedding away from "lock in". The role of the 

field symmetry on the coupling between the wake and the externally 

applied flow was examined by Hatfield and Morkovin (1973). When a 

circular cylinder was placed in a streamwise sinusoidal flow, which, in 

the undisturbed state, had a symmetry in pressure with respect to the 

cylinder chordline, no significant change in the fluctuating pressure 

at the separation points was found, even when the oscillation and shedding 

frequencies coincided. This was due to the antisymmetry of the vortex 

shedding pressures with respect to the cylinder chordline (in the stream-

wise direction - see for example Gerrard, 1961). On the other hand, a 
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strong excitation at "lock in" was found when an antisymmetric acoustic 

field in the tunnel was employed. 

If the vortex shedding characteristics are sensitive to 

changes in the mean incidence, then the application of a sinusoidal 

upwash gust is expected to have an analogous effect. Pocha (1971), 

observed that the vortex shedding lift coefficient of a square cross 

section cylinder decreased, when the gust amplitude, for constant 

reduced frequency,was increased (see Fig. 2.8). This, he claimed, was 

partly a result of a quasi-steady effect, because 
CLvs 

 was found to 

decrease with increasing mean incidence (zero incidence is counted with 

the flat face of the cylinder placed normal to the stream). However, 

the fact that the drop in C
Lvs 

 was different at equal distances above 

and below the shedding frequency (see Fig. 2.8), may suggest that the 

stream fluctuations should not be counted in quasi-steady terms if n > nvs. 

2.3.6 	METHODS OF PRODUCING OSCILLATORY FLOWS 

The common characteristic of all the designs intended to 

produce two-dimensional sinusoidal gusts, is the existence of a 

sinusoidally fluctuating vorticity somewhere in the flow field. This 

vorticity, being either in the form of continuous sheets or individual 

clouds of vorticity, induces an unsteady velocity field, which generally 

has components both in the streamwise and transverse directions 

A simple example of a two-dimensional oscillatory flow is the 

wake of a two-dimensional bluff body. With suitable choice of the cross 

section and the Re number, it is possible to obtain an unsteady field 

with reasonably sinusoidal transverse and streamwise velocities. Graham 

(1969) had experimentally demonstrated, that with careful design of the 

end plates confining the bluff body, the spanwise coherence of the shed 

vortices could be considerably improved and as a result, a well correlated 
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gust could be obtained. This type of unsteady field was employed by 

Lamson (1957), Jackson (1970) and Edwards (1972) for studying the lift 

response of thin aerofoils. The vortex street should be of sufficient 

strength to ensure a measurable load on the test model, but unless the 

model is placed well outside the wake, an amount of background turbulence 

will be present as well. Further complications include the existence of 

a shear flow in the wake and a certain modification of the vortex street 

due to the presence of the model (especially if it is also a bluff body). 

However, the merit of the wake flow lies in the simplicity of its generation. 

In a different class of gust tunnels, the unsteady flow is 

produced in the region behind one or more aerofoils or flaps, oscillating 

in a steady oncoming stream. The source of the unsteady flow is here the 

vorticity, which is shed continuously from the trailing edge of the 

oscillating bodies. A number of workers adopted this design, e.g. 

Hakkinen and Richardson (1957), Maeda and Kobayakawa (1970), Pocha (1971), 

Sawyer (1972), Newton (1973) and the present author. The advantage of 

this arrangement is that it allows handling a range of reduced frequencies 

and gust amplitudes by only adjusting the frequency and amplitude of the 

oscillating aerofoils or flaps. In addition, if the oscillations are 

controlled by a function generator, e.g. a magnetic tape input, then a 

gust velocity of a desired waveform may be obtained (see Sawyer, 1972). 

Care should be taken, so that during oscillation no stall of the aerofoils 

or flaps would occur, for then additional frequencies, besides the 

fundamental oscillation frequency, may be introduced into the flow. 

Pocha (1971) was faced with this problem, when the flow past the two long 

oscillating flaps he employed, suffered from premature separation; as a 

remedy, he supplied the top and bottom of the flaps with vortex generators, 

which induced a strong upwash at the basic frequency of oscillation. A 

situation which can be objectionable with the oscillating body gust 
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tunnels, is that of excessive mechanical vibration. 

Holmes (1970) worked in a rather unique type of gust tunnel, 

in which the upper and lower walls, being constructed from flexible 

metal sheets, were allowed to move. To achieve sinusoidal flow 

oscillations, these walls were maintained in the form of a sine wave by 

a system of cams. By adjusting the phase of the upper and lower waves, 

it was possible to generate streamwise and transverse gusts and their 

combination as well as "oblique" or "yawed" gusts (see Section 2.3.1), 

with propagation speed equal to that of the sine waves on the moving 

walls. A shortcoming of this design is the inability to create gusts 

propagating at the free stream speed. Horlock (1974) described 

theoretically the properties of the unsteady flow produced in this tunnel. 

Sinusoidal fluctuations in the free stream direction can be 

also generated by placing rotating shutters either in the working section 

of the tunnel, e.g. Hatfield and Morkovin (1973), or before the settling 

chamber, e.g. Chen and Ballengee (1971). In this way, oscillation 

amplitudes as big as 50% of the mean stream speed can be effected. 

2.4 	LOADING OF BLUFF BODIES IN TURBULENT FLOWS 

A turbulent gust consists of three-dimensional gusts of all 

orientations and of all wavelengths between a "minimum" determined by 

viscous forces, and a maximum determined by the boundary conditions of 

the flow. The randomness is a characteristic of turbulence and dictates 

a statistical approach to the phenomena associated with it. In this 

respect, the analysis is best carried out in terms of correlations and 

spectra. Turbulence can be described by its three-dimensional wave 

number spectrum which, however, is difficult to measure experimentally. 

In certain problems it is realised that a full description of turbulence 

is not necessary, the one-dimensional and two-dimensional velocity spectra 
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being adequate. The former is defined as:- 

T 

SU (n) = limA  ,0 
ōn 
 limT  T v2 (t, n, An) dt (2.17) 

where i = x, y, z and ui(t, n, An is the velocity component in the i 

direction filtered at frequency n over a bandwidth An. 

The two-dimensional spectrum is a function of two wave 

numbers and although it is not simply directly measurable, its Fourier 

transform, the cross spectrum of turbulence, is. A relationship between 

the two spectra will be given in the next section. 

The study of turbulence becomes less complex, if it is 

assumed that it is homogeneous (i.e. the averaged properties are 

independent of position) or isotropic (averaged properties independent 

of 	direction). Another simplification occurs, if it is 

assumed that the turbulent gust is convected as a "frozen" pattern with 

the mean stream speed, U.. This is reasonable, if the velocity 

fluctuations are small compared with U.; space (over a distance r) 

correlations may then be replaced by time I T = 	1 autocorrelations, 
11 

which are sometimes easier to obtain in practice. An example is in the 

measurement of the longitudinal turbulent length scale Lx:- 

Lx  - 	u(x) . u(x + r) dr = z 
	

u( t) . u(t + T) dT 
u 0 	

u 0 

(2.18) 

The prediction of the unsteady lift forces, induced by an 

oncoming turbulent stream, appears to be limited only to streamlined 

bodies. For this reason, the relevant thin aerofoil theory is described 

next. Unless otherwise stated, the assumptions of isotropy and frozen 

convection (at U.) are meant to apply throughout. 



IA(k1)I2 = 
S  (k  )  . (27)-2 
ag 1  

SrL(kl) 
(2.19) 
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2.4.1 	UNSTEADY AEROFOIL THEORIES FOR TURBULENT FLOW 

As mentioned in Section 2.3.1, the relevant component of the 

gust is that in the normal direction to the aerofoil surface. Due to the 

statistical approach to the problem, the analysis is best carried out in 

terms of the frequency response function, termed here as the aerodynamic 

admittance, A(k ). The aerodynamic admittance is defined from:-
1 

S
C 

and Sa are the one-dimensional spectra of the lift coefficient and 
L 	g 

the upwash respectively and 27 is the theoretical mean lift curve slope 

of the aerofoil. Note that, when there is no case of confusion, the 

square of the magnitude of the aerodynamic admittance will be also called 

aerodynamic admittance for brevity. 

The first attempt to calculate the aerodynamic admittance was 

made by Liepmann (1952), under two assumptions: First, that turbulence 

was perfectly correlated in the spanwise direction and second, that each 

chordwise section or "strip" responded according to Sears's theory (see 

Section 2.3.1) 	As a result, the aerodynamic admittance was simply equal 

to the squared modulus of Sears's function, i.e. IS(k )I 2. Ribner (1956) 

formulated the problem in a general way, by considering the total load 

response as the superposition of the individual loads induced by all the 

upwash spectral components of turbulence. If it is assumed that the wing 

does not feel any other flow disturbances, except those on its own plane 

(reasonable for small thickness and incidence and no vorticity distortion), 

then the wavenumber (or reduced frequency) in the upwash direction, k3, 
3 

would have no effect upon the load response. Then the analysis (to order 

ag  = w/Uo) can be carried out in terms of the two wave number response 

function developed by Graham (1970a) for the unsteady lift due to a yawed 
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sinusoidal gust (see Eqn. 2.12). The theoretical aerodynamic admittance 

as given by Jackson, Graham and Maull (1973) is equal to:- 

co 
sin2(k AR) 

IA(kl 2  = 

0 

where S (k , k) is the two-dimensional upwash spectrum of turbulence 
ww i 2 

(all the other quantities appearing are defined in Eqn. 2.12). 

S (k , k) is related to the normalized (with respect to the,one-
ww i 2 

dimensional spectrum) upwash cross spectrum of turbulence, R (k , y), by 
ww 

the equation:- 

CO 

Sww(kl, k2) = 	Rww  

0 

, y) cos [lc  2  2= ] dy (2.21) 

The cross spectrum provides information about the space correlation of 

two velocity components fluctuating with frequency k
i 
 and is a real 

quantity for homogeneous turbulence. The experimental admittances found 

by Jackson, Graham and Maull (1973) and also by McKeough (1976), are in 

good agreement with the theoretical admittances given by Eqn. (2.20). 

Eqn. (2.20) becomes less accurate, but easier to calculate, under the 

assumption of one-dimensional response of each "strip" of the aerofoil, 

according to Sears's theory (Section 2.3.1). Such calculations were 

first performed by Hakkinen and Richardson (1957) who also found the 

experimental lift to be generally overestimated. 

In the theories described, the unsteady lift depended, to 

first order, on the upwash ag. A theory, accurate to order āag  for a 

flat plate aerofoil at mean incidence a, was developed by McKeough (1976), 

which also incorporated the effects of turbulence distortion. Using the 

three-dimensional spectrum of isotropic turbulence, McKeough found that 

the theoretical admittance increased with increasing absolute magnitude 

2 
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of the mean incidence, but only moderately, because this theoretical 

increment did not depend on ā, but on (ā)2 and higher order terms. This 

was in agreement with his experimental results. Distortion was found to 

dominate over the other higher order effects only at higher frequencies. 

At low frequencies, the effect of vorticity distortion was to slightly 

decrease the theoretical admittance increment. The length scale of the 

approaching turbulence was found to affect the degree by which distortion 

contributed to the admittance: For large values of the ratio Lx/c, the 

distortion effect was only a small part of the theoretical increment. 

For Lx/c much less than 1.0, the distortion effect becomes significant, 

but the theory fails to predict it (unless ag « Lx/c and the Re number 

is sufficiently large), because the "rapid distortion" theory (see Section 

2.3.1) conditions break down. Indeed, as determined by Hunt (1973), these 

conditions are:- 

2 	L 
Re « Uu « min l c , 1] 

(2.22) 

and Re » max 
l~ 

, 1I 
L
x 	J 

2.4.2 	THEORETICAL AND EXPERIMENTAL WORK ON THE LOADING 

OF BLUFF BODIES IN TURBULENT FLOW 

2.4.2.1 	MEAN LOADING 

The sensitivity of mean surface pressures to changes in the 

structure of the external flow, is mainly a result of the changes in 

the boundary layers and the separating free shear layers. Free stream 

turbulence, or changes in the Re number do not much influence the 

development of a purely laminar boundary layer. The effect on a purely 

turbulent boundary layer depends on the size of the boundary layer 

thickness d, relative to the turbulence length scale L. Relevant 
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information can be found in Bradshaw (1974). It should be noted, that 

in this case the introduction of free stream turbulence is not entirely 

equivalent to an increase in the Re number of the (steady) flow: as an 

example, the boundary layer displacement thickness at a fixed position 

will increase due to the former effect and decrease due to the latter. 

On the other hand, boundary layer transition is promoted by turbulence 

as it is when the Re number is increased. Fig. 2.9 demonstrates this 

effect for an elliptic cylinder of fineness ratio 3.0. The experimental 

results are due to Schubauer (1939). It is seen that the data for 

various turbulent flows collapse into a single curve, if plotted against 

471; [ C l"5  the dimensionless parameter 
	

, which was employed by Taylor 
x 

(1936) in examining the onset of critical flow for spheres. Fig. 2.9 

also shows that a turbulent flow of fixed intensity appears to be more 

effective as far as transition is concerned, the smaller is its length scale. 

The mean pressures and forces have been experimentally 

investigated by a number of workers, e.g. Vickery (1966) and Lee (1975) 

for square cross section cylinders, Nakamura and Tomonari (1976) for 

rectangular cylinders, Bearman (1969) for flat plates normal to the 

stream, Goldstein (1965), Surry (1969), Bruun and Davies (1975) for 

circular cylinders and Schubauer (1939) for an elliptic cylinder (fineness 

ratio 3.0). Turbulence was found to cause a variety of effects 

depending, as stated previously, on the response of the shear layers. 

For example the drag coefficient, CD  of a square cylinder at zero 

incidence (flat side normal to the stream) decreases in turbulent flow, 

because of the turbulence induced thickening of the separated shear 

layers; the possibility of a reattachment on the parallel sides and 

narrowing of the wake increase, resulting in rise of the base pressure 

coefficient, Cpb,  and decrease in CD.  In flat plates the effect is 

opposite, due to the increased entrainment (enhanced by turbulence) in 
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the base region and the sustenance of a low Cpb. If separation is not 

fixed, as in the circular cylinder, then for very low Re numbers where 

separation is and remains laminar, the introduction of turbulence increases 

CD slightly for the same reasons as with the flat plates (see Goldstein, 

1965). If, however, turbulence is going to lead to an eventual turbulent 

separation (by promoting transition), then the drop in rD is dramatic, on 

account of the downstream displacement of the separation points. 

There appear to be no special methods for predicting the mean 

pressures in turbulent flows. However, there is no reason why the free 

streamline methods (Section 2.2.1) should not be applicable: Parkinson 

and Jandali (1970), by using their "wake source model", predicted 

successfully the mean pressures on a circular cylinder exposed to a 

turbulent stream. 

2.4.2.2 	UNSTEADY LOADING 

(a) 	Unsteady Pressures: There is only a limited number of 

theoretical works for the calculation of unsteady pressures on a bluff 

body and the present situation indicates that experiment is well ahead 

of the theory. Vickery (1965), related linearly the local pressure on 

a point of a lattice structure to the streamwise velocity component of 

turbulence, incident on the same point, by making two assumptions: First, 

that the oncoming turbulence was of low intensity, and second that the 

individual members of the structure were small compared with the smallest 

wavelengths of the velocity fluctuations. It was then reasonable to 

treat the turbulence as unaltered by the presence of the lattice. The 

pressure, P(t), at a particular point was assumed to be a function of 

the upstream velocity U and the rate of change of the velocity far 

upstream, so that:- 

P(t)=~pyt)`CD
+p aa(t) .Tm .D 	 (2.23) 
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where D is the diameter of the lattice and for L » D, UD  and m were 
constants determined from the geometry of the structure. The fluctuating 

pressure p(t) would then be (if U1  = U. + u(t)):-  

p(t) = pU. u(t) ti) + p a a(t)  cm o 	 (2.24) 

This approach will be increasingly inaccurate if the porosity of the 

plate decreases and Lx/D becomes of order 1.0 or less. Bearman (1972) 

had shown, that the pressure fluctuations at the stagnation point of a 

solid flat plate held normal to the stream, can be predicted by simply 

applying quasi-steady potential flow theory only if Lx  » D. For 

Lx  = 0(D), the measured pressure spectra were in reasonable agreement 

with those predicted from potential flow theory (using the unsteady 

Bernoulli's equation - U12 +
P 
+ 	āi = const (t)) only at the lower 

reduced frequencies, 2Trn Lx/U.. For higher frequencies, the effect of 

distortion caused the experimental spectra to drop faster. Bruun and 

Davies (1975), measured similar spectra for a circular cylinder and 

observed the same trend for fall off at high frequencies. The rate of 

power fall off was in reasonable agreement with that predicted 

theoretically by Hunt (1972). As a result, the RMS pressure fluctuations 

at the stagnation point of the flat plate and the cylinder, were lower 

when Lx  = 0(D) than when Lx  » D. These effects, theoretically, 

continue in the same direction as Lx  becomes much less than D. 

(b) 	Unsteady Lift: Theoretical as well as experimental work 

about unsteady lift forces is very scarce. A step forward was made, 

when Davenport (1961), (1962) proposed the examination of bluff body 

loading in terms of aerodynamic admittances. He suggested that the 

instantaneous lift, L(t), acting on a "strip" of a long thin cylinder 

or lattice structure, induced by a streamwise and transverse spectral 

components of low intensity turbulence, could be expressed as follows:- 
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L(t) = L + 2t 	sin(2~rnt + 4)1 ) A1 (n) + āa ~ sin(27rnt + 2) A2(n) (2.25) 
0 

where: A , A are the aerodynamic admittances to be determined; 
1 	2 

, 	are phase angles; 
1 	2 

t = mean lift. 

Expressing Eqn. (2.25) in terms of corresponding spectral quantities:- 

S (n) 
	[F12.   

S (n) 

	

SL(n) = 4L2  
U2 	

IA1 (n)I 2 + 	 U2 	IA 
2
(n)1 2 + 

	

co 	 co 

S (n) 
+ 4t rot- 1A1 (n) • A2(n)1 

wu2  

U co 

(2.26) 

where Swu(n) is the cross correlation spectrum of turbulence at the 

position of the "strip". 

Graham (1973), took this suggestion further and applied the 

thin aerofoil theory of Jackson, Graham and Maull (1973) to this problem, 

thus taking into account, for the calculation of the theoretical 

admittance, the effects of spanwise incoherence of turbulence. He 

considered the case of symmetrical bodies at zero indicence, so that t = 0. 

Then, IA (n)1 2 in the notation of Eqn. (2.26), would be equal to the 
2 

theoretical admittance of Eqn. (2.20), for a thin aerofoil and 3t/3a 

would be the mean lift curve slope (determined experimentally in steady 

flow or, if possible, predicted). In this approach, the bluff body was 

idealized as a flat plate with two fixed separation points obeying the 

Kutta-Joukowski condition (i.e. of zero loading across the trailing edge) 

and for which the only effects of thickness was that on DL/3a. A 

correction due to turbulence distortion was also applied, following a 

method analogous to that presented by Graham (1972) for the distortion 

of turbulence by a porous plate. 

To test how accurately this modified aerofoil theory applied 

to bluff sections, Graham carried out some experiments in nearly isotropic 



49 

turbulence and selected as his two-dimensional models D sections (flat 

side downstream), elliptic sections, a circular section, a rectangular 

section and a NACA 0015 aerofoil for comparison purposes. A comparison 

between the theoretical and experimental results appears in Fig. 2.10. 

The effect of turbulence distortion, which theoretically appears to 

increase the measured lift, especially at the lower frequencies, is also 

shown for one of the bluff sections. The agreement between theory and 

experiment is seen to be only reasonable for the thinnest sections (D 

cylinder aerofoil), for which distortion would be small. A great 

discrepancy (lift under-estimation) was observed for the circular and 

elliptic sections. This should be partly due to the fact, that the 

measurement of aL/aa in steady flow had allowed time for the (free) 

separation points to adjust their positions, thus giving unrepresentative 

lift in unsteady flow (an obvious example being the circular cylinder, 

which has āL/aa = 0). 

With reference to the circular cylinder, Surry (1969) 

suggested that the fluctuating lift might be considered as a component 

of the fluctuating drag, if it is assumed that the turbulent velocity w 

changes only the direction of the free stream and not its magnitude. 

The lift response, which was just one quarter of the (strip theory) drag 

response at low frequencies (see next paragraph c) was, in fair agreement 

with the experiment for low frequencies. 

(c) 	Unsteady Drag: Vickery (1965) used Eqn. (2.24) in order 

to calculate the unsteady drag on a lattice plate of overall dimensions 

D x D, the only body for which Eqn. (2.24) accurately applied. The 

a 
spectrum of the unsteady drag SD(n) could then be determined as Adouble 

integral over the surface of the plate (note that the lateral correlation 

of forces was assumed identical to the lateral correlation of the 

upstream velocities). The result is (see also Eqn. 2.24):- 



lx(n) 1 2 = ū ny • t.2 .1 p2 U2 
D 

Sp(n) 
(2.28) 
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C 2 2 

Sp(n) = Cp 	
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where R'(n) is the integral of the normalized cross spectral density of 

the streamwise turbulent fluctuations (see for example Appendix A of 

Vickery, 1969) over the surface of the plate. In analogy with the lift 

admittances, Eqn. (2.27) suggests the definition of an aerodynamic drag 

admittance, as:- 

so that the theoretical drag admittance LX(n)t1 2 for the lattice plate 

would be:- 

iX(n)t1 2 = 

	

- 	2_ 2 

	

1 	
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(2.29) 

Eqn. (2.29) has been used for the prediction of the unsteady drag on a 

number of bluff cross sections. The degree of success depends on how 

accurately the original assumptions (Section 2.4.2.2a) are maintained. 

For example, the presence of the bluff body changes the flow pattern of 

the oncoming flow so that the relationship between velocity correlations 

in the stream and pressures on the body become complicated. The force 

coefficients Cp and Cm cannot be regarded as constants,and an added 

difficulty is that the virtual mass coefficient is in most cases unknown. 

Vickery (1965) and Bearman (1969) tested some square solid 

plates held normal to a turbulent stream and compared the experimental 

drag admittances with the theoretical ones, from Eqn. (2.29), under the 

assumption Cm = 0 and use of an empirical turbulence cross spectrum. At 

low values of the reduced frequency nD/U. (D = size of the plate) the 

agreement between the theoretical and experimental results was fairly 

good, if Lx/D was roughly 1.5 or higher; for lower values of „/D, 
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Vickery's theory progressively underestimated the experimental drag. 

This effect was due to the distortion of turbulence and it was also 

demonstrated theoretically and experimentally by Graham (1972), who 

developed a theory for porous plates, including the effects of vorticity 

distortion. At higher reduced frequencies Vickery's theory systematically 

underestimated the drag and possible reasons for this could be the neglect 

of the virtual mass terms, as well as some wake-induced pressure 

fluctuations on the rear of the body, which were found by Bearman (1969) 

to be uncorrelated with the upstream fluctuations. 

Surry (1969) had employed Eqn. (2.23) in order to obtain the 

spanwise cross spectrum of drag for a circular cylinder. He used a value 

of Cm  given by potential flow theory. Comparison with his experimental 

results indicated a reasonable agreement only at the lower frequencies 

and small spanwise separations. 

Unsteady drag spectra for rectangular prisms can be found in 

Vickery (1969). 

2.4.3 	EFFECTS OF TURBULENCE ON VORTEX SHEDDING 

It is an experimentally evident fact, e.g. Vickery (1966), 

Surry (1969), Graham (1973), that the introduction of turbulence in the 

free stream tends to reduce the strength of vortex shedding. The induced 

effects depend on both the turbulence intensity and length scale. Intense 

turbulence of length scale large compared to the body dimensions, is 

likely to modulate the effective stream speed (by means of its strong, 

low frequency streamwise velocity fluctuations) thus causing a spread of 

energy away from the Strouhal peak. Graham (1973) analyzed theoretically 

the modulation of vortex shedding lift by the streamwise component of 

turbulence, assuming a constant Strouhal number and a Gaussian turbulence 

spectrum. The calculated spreading of energy did not contradict his 
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experimental results. 

The effect of turbulence on the final separation and the 

subsequent development of the shear layers can also influence the 

frequency and strength of vortex shedding. For example Vickery (1966) 

reported that a nearly isotropic turbulence of intensity 10% and 

Lx/D = 1.34, reduced the RMS vortex shedding lift of a square cross 

section cylinder by about 50%. This was not only a result of the 

increase in the base pressure (see Section 2.4.2.1), but also of the 

spanwise incoherence of the shed vortices effected by the turbulence. 

In addition turbulence decreased the circumferential coherence of the 

unsteady pressures partly due to the intermittent reattachment of the 

separated shear layers on the two parallel sides of the cylinder. The 

broadening of the Strouhal peak, observed by Vickery (1965), Surry (1969) 

and others, could have its cause (besides 	the previously mentioned 

modulation effect) to the increased randomness imposed by turbulence on 

the separated shear layers. 

2.4.4 	SCALE CONSIDERATIONS IN WIND TUNNEL EXPERIMENTS 

A complete description of the forces on bluff bodies in 

turbulent flow, would generally require a full scale test, because wind 

tunnel experiments may not simulate exactly the conditions of the 

original flow pattern. The problem is complicated since, on one hand 

a full scale test is in most cases unrealistic and costly and on the 

other hand the real flow may not be amenable to a precise description 

(such as atmospheric turbulence), so that exact wind tunnel simulations 

would be impossible. If it could be ascertained, however, that some 

changes in the flow conditions, do not affect (to the degree of 

accuracy required), the pressures, or b.ts" etc. on the body, then 

exact similarity of conditions between real and wind tunnel flows would 

* boundary layers 
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not be necessary and this could ease considerably the experimental work. 

Davenport (1961), interpreting the experiments of M. Jensen, stated that, 

to the order of importance given, the rules for similarity between the 

pressures on the model and the prototype should be:- 

(i) Similarity in the kinetic properties of the incident flow. 

(ii) Similarity in Re number. 

(iii) Similarity in shape of the body and its environment. 

For example, when the model of a tall structure is to be tested in a 

tunnel, not only the b.2 of the earth should be reproduced as accurately 

as possible, but according to (i) any surface roughness round it must 

be taken into account. The roughness parameters (see ShihiP ai, 1957) 

r and rp should be similar:- 

rp _ 	linear dimension of model 	D 
- linear dimension of prototype - D' 

Upon comparing two homogeneous isotropic turbulent flows, (i) is well 

satisfied, if the turbulence intensities are equal, and if:- 

LxD _ 
D' 

(2.31) 

where Lx, Lx' are the longitudinal turbulence length scales in the two 

flows. 

(2.30) 
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CHAPTER 3. DESCRIPTION OF THE EXPERIMENTAL 

APPARATUS AND THE UNSTEADY FLOWS 

The basic tools of the experimental program were:- 

- The test models 

- The input flows 

- The apparatus for the generation of unsteady flows 

- The apparatus for measuring loads and flows 

- The statistical methods and apparatus for eliciting the fluctuating 

quantities 

3.1 	APPARATUS FOR THE UNSTEADY LOAD EXPERIMENT 

3.1.1 	FUNDAMENTAL DESIGN DECISIONS 

A working and tested unsteady lift measuring system 

(employing piezoelectric transducers) was inherited from previous 

experiments, and this considerably biased the decision to continue using 

this system. In addition, a single pitching aerofoil gust system had 

been previously built by Newton (1973), and the final system used for 

the present project was an improved version of this, using two aerofoils. 

General Decisions 

(i) The turbulent flow was to be generated by grids placed at a 

distance xt  upstream of the test models in the wind tunnel. The mesh 

size M, the bar width bt  and the distance xt, were the parameters to be 

determined. 

(ii) The sinusoidal flow was to be produced between the vortex 

wakes of two aerofoils, oscillating with the same phase in pitch at zero 
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mean incidence (see Figs. 3.4 and 3.7). They were to be installed so 

as to span completely the tunnel between vertical walls (i.e. with their 

mean planform horizontal). A system of connecting rods attached to an 

eccentric rotating shaft would impose the oscillations, which if 

sinusoidal, would produce (theoretically) vortex wakes with sinusoidal 

distribution of vorticity. These in turn, would induce sinusoidal flow 

perturbations further downstream whichs for in-phase oscillating aerofoils, 

would mainly consist of an upwash in the central region between the wakes. 

This region was expected to be practically irrotational and it was 

intended to select the centre plane, hereafter called the centre line, 

of the oscillating aerofoils, as the approximate position of the models 

to be tested for the measurement of unsteady lift. It should be 

remembered that the idealized sinusoidal upwash gust used first by 

Sears (1941) for the analysis of unsteady lift on a zero thickness 

aerofoil, at zero incidence, was rotational but distortion of vorticity 

was not involved in his theory to order ag  (ag  being the RMS gust 

amplitude, i.e. /w2/U.). Since there would be no vorticity to be 

distorted in the present gust, apart from that of the relatively distant 

vortex wakes, it was expected that the comparison of experimental lift 

results with the theory of Sears would be more rigorous. 

The parameters to be determined here were the aerofoil shape 

and dimensions, i.e. chord c', thickness b', span s', the relative 

position of the rotation axis (assumed on the mean chord line) 32"/-  , 

the distance zo  of the aerofoils (vertical, since one aerofoil would be 

above the other), and finally their distance xg, (in the streamwise 

direction) from the test models placed downstream, see sketch on the 

next page. 
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SKETCH 

(iii) 	The unsteady lift was to be measured over a finite span 

"live" elerent of each model for the following reasons:- 

- To be possible to have a model span of such dimensions, as to ensure 

structural rigidity. 

- To be possible to include the model in the region where the flow has 

uniform characteristics (for example, isotropy in the case of turbulence). 

This would result in a more rigorous test of the existing theories. 

- To minimize the effect of trailing vorticity shed by the oscillating 

;aerofoils and the test models themselves; The spanwise bound vorticity 

on these bodies cannot terminate on the walls but must turn and lie on 

them, inducing an image vorticity of opposite strength on the other 

side of the wall (to maintain the boundary conditions), see sketch p. 57. 

There is always a small amount of vorticity, which is not cancelled 

in this way and which has a measurable effect on the lift. McKeough 

(1976) found that reducing the aspect ratio, AR, of a two-dimensional 

wing from 5.0 to 4.0, brought about a reduction of 7/act from 5.8 
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to 5.4, i.e. the effect of trailing vorticity becomes more important 

as the overall aspect ratio s'/c decreases. For the same reason, the 

effect of trailing vorticity will become less important as s/s' 

decreases, but it will be always present for finite s' (see Lamson, 

1957). It is therefore desirable to have s' » s. 

The parameters to be determined are the chord c, the 

thickness b and the span s of the test models. 

(iv ) 	For the choice of unsteady load transducers, the author 

favoured the piezoelectric crystals (of quartz type), because they are 

inherently very stiff, they have very high resonant frequencies, they 

are sensitive to fluctuating loads and do not drift with temperature 

changes. The requirement of stiffness and high mechanical resonance is 

important, since the test bodies are assumed to be almost rigid in the 

present work (i.e. perform motions which induce extremely small 

effective incidencies compared to those of the unsteady flow). A problem 
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with these crystals is their size, which could be overcome by the use of 

strain gauges, but these do not have the aforementioned advantages, 

unless suitably compensated. 

Three piezoelectric transducers were available from previous 

experiments. Thus the decision was taken to use them, mounted externally 

to the test models, in conjunction with the already existing support system. 

3.1.2 	DESIGN OF TEST MODELS AND BASIC DIMENSIONS OF THE 

UNSTEADY FLOW RIGS 

The problem was to find the optimum values of the variables 

c, b, s, c', b', s', Q', zo,  xt,  xg,  M, bt  under the constraints 

described below:- 

1. 	In order to be able to draw more general conclusions from 

the tests, a wide range of flow wavelengths, compared with a linear 

dimension of the models, should be covered. The wavelength of a 

sinusoidal gust convected with the mean flow speed U., is equal to 
U 

A .-TF,  n being the frequency (Hz) of the velocity fluctuations at a 

point (x, y, z). A representative length in the case of turbulence is 

the longitudinal integral length scale Lx. If the wavelengths mentioned 

above are very large compared with the chord, say, of the body, then the 

latter would feel the very slow variations of an unsteady velocity field, 

and its response would be quasi-steady, a case of little interest here. 

On the other hand, very small length scales might invalidate thin aero-

foil theory assumptions (such as the fulfillment of the Kutta-Joukowski 

hypothesis) ,result in a relatively big change of the gust intensity 

over the chord and lead to a significant distortion and viscous dissipation 

of the vortices. A rigorous comparison of experiment with theories 

uncorrected for distortion effects would, therefore, be precluded. The 
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scales of interest in the present problem should satisfy the relations:- 

c =01 	or 
L
x 	

( ) 	- c- -0—nc=01) L 	 ( 
x  

(3.1) 

where 0(x) stands for the "order of x". 

2. 	The thickness to chord ratio b/c of the models should be 

sufficiently high to justify their classification as bluff bodies, but 

small enough to make a comparison with thin aerofoil theory possible. 

It is felt that the higher limit for b/c should be set at about 30%. As 

a rough idea of how the flat plate theory (Theodorsen, 1935), applies to 

a thick aerofoil, it is indicated that Giesing's (1968) theory for a 25% 

thick oscillating Joukowski aerofoil, predicts an approximate 20% drop 

of the circulatory lift, from the corresponding flat plate result for 

c/a = 0.3 (note that this depends also on the amplitude of oscillation) 

The ratio b/c should be kept small, so that the mean flow 

is not significantly perturbed. Then the effects of turbulent vorticity 

distortion would be smaller and the comparison with existing theories 

easier. 

Another reason why b/c should be low is that, in order to 

isolate the effects of vortex shedding, the corresponding frequency nvs 

should be much higher than the frequency n of the sinusoidal flow (which 

would appear as quasi-steady):- 

nvs  » n 

Um « Um.S 

ā b 

or: - 

S = Strouhal number, say, = 0.3 

For a/c = 0(1) 7 
b 

« 1 therefore:- 
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b < 0.3 
c 

(3.2) 

3. It was desirable to carry out the experiments at as high 

chord Reynolds numbers as possible, representative of the real flow 

situations. The neglect of the effects of viscosity would thus be more 

justifiable. To achieve this for a medium of constant kinematic 

viscosity v, the highest c and U. should be used, taking into account, 

however, that an increase in U. limits the upper values of reduced 

frequencies lrnc/Uo  to be attained. 

The effects of varying the Re number were of interest, 

especially for the elliptic cross-section. It was estimated, see 

Schubauer (1939) and Goldstein (1965), that for an elliptic cylinder of 

thickness about 30%, a Re = 105  would just be in the upper end of the 

subcritical region in smooth flow (the upper end of the critical region 

would lie near 4 x 105, see also Chapter 2). Hence:- 

U . c 
105  ti Re - 	

v 	
(3.3) 

The maximum tunnel speed available in the Department's 

subsonic wind tunnels was about 45 m/sec, so that:- 

U00 < 45 m/sec (3.4) 

4. The piezoelectric transducers available could measure 

unsteady axial forces with an accuracy 10-3  N (Newtons), up to t 500 N 

maximum force. It was, therefore, decided that the lowest unsteady 

load that could be accurately measured, should be of the order of 0.5 N, 

i .e.. 
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0.5 N ti total unsteady lift = Lt  < 500 N 	 (3.5) 

aCL  
Lt  is roughly equal to 

 
1 pUo ag 

as  S
a, where ag  = relative gust amplitude 

or unsteady incidence, radians; aCL/aa = corresponding lift curve slope in 

unsteady flow; Sa  = minimum (LX, s . c). In turbulence, this area takes 

into account the lack of correlation of turbulent vortices in space. 

ag  should not be too large, otherwise thin aerofoil theories 

would cease to apply, due to significant non-linear effects, and an 

upper limit could be set at about 0.1 rad:- 

ag  ti 0.1 rad 
	

(3.6) 

A simplified result for aC,/aa was given by Liepmann (1952) for the case 

of perfectly correlated turbulence in the spanwise direction:- 

.aCL 	aCL  

aa 	• f(n) 

where n = rrc/Lx,  aCL/aa = mean lift curve slope at zero incidence. If 

(aCL/aa) is taken roughly equal to 27 (for all the models) and 	= 0(1), 

then f(n) = 0.6 and for the lowest Re number, 
Remin, 

 see Eqn. (3.3):- 

Lt  = 	. p . (Remin.v)2  . c 
 . 2rr. (0.6) . min(LX, s . c) . ag  ti 0.5 N 
2 

 

or, 	min(c2, s . c) . - ag  ti 0.098 
c2  

Taking into account Eqn. (3.6), it follows that for the lowest Re number 

to be used, s should be of 0(c). The same result would have been 

Da 
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obtained for the sinusoidal flow: Sa  = s . c, f = Sears's function. 

Therefore, if:- 

ag  = 0 (0.1 rad) 
	

(3.7) 

a measurable load can be ensured, provided that:- 

s=0 (c) (3.8) 

5. To obtain a nearly isotropic and homogeneous turbulent field 

the test models should be placed at least 10 mesh lengths downstream of 

the grid. If M/bt  is between 4 and 6, then Lx  = 0.4 M and the longitudinal 

turbulence intensity about 5%. Since the longest working section 

available was 3 m approximately, xt  should satisfy the relation:- 

10 M ti xt  < 3 metres 
	

(3.9) 

6. Basic dimensions of the oscillating rig in relation to a: 

Later in the text (Section 3.4), a potential flow model has been 

constructed, to describe the flow produced by the two oscillating aerofoils. 

There, it is shown that the RMS gust amplitude, ag, generated between the 

wakes, depends on the following factors:- 

- The oscillation mode; for low reduced frequencies k' = Trnc'/Uo, 

pitching oscillations result in a comparatively stronger gust, than 

translatory ones, and for this reason the former kind of aerofoil 

motion was chosen. 

- The reduced frequency k'; ag  increases monotonically with k' only 

along the two vortical wakes, while along the centre line (see sketch 
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on page 56), it increases with k' starting from zero, reaches a 

maximum a 	at a particular k' = k' and then decreases rapidly, 
gmax 

see Fig. 3.1. 

- On zo/c' and zo/h (see sketch on page 56), ag  generally increases as 

these ratios decrease, see Fig. 3.1. 

- The position of rotation axis, ag  increasing as 2 - cQ/2I increases, 

i.e. the farther from the 3/4 chord point (from the leading edge) 

being the rotation axis. 

- The amplitude 00  (rad) of the pitching oscillations, ag  increasing 

proportionally to 00. 

The last parameter, 00, is considered first. 00  is 

d 	
! 	drive shaft 

SKETCH 

equal to tan-1  (r/d), where d is the distance between the rotation (or 

pivot) shaft and the shaft driving the aerofoil, and r the displacement 

of the connecting rod (see sketch). 

To obtain a strong ag, 00  should be high. However, there 

are certain limitations on the maximum value of 00,  which are listed 

below. 

00  should not be too high, otherwise the large wake 

deformations would lead to a thick vortical wake and distorted gust 	. 

waveform on account of higher than the fundamental harmonics. If the 

reduced frequency is not large, the thickness of the fully-developed 

vortical wake (including the rolled up vortices) would be of the order 
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of the maximum aerofoil displacement, see Bratt (1950), Giesing (1968) 

and Wood and Kirmani (1970). It is desirable to have a thin vortical 

wake and a wide "irrotational" gust region (see Section 3.1.1), hence r 

should be small, i.e. Oo  should be small. 

Oo  should be less than the stalling angle of the oscillating 

wings, the static value of the latter being in the range 10°  to 18°, 

depending on Re and aerofoil shape. Stall develops less readily in 

unsteady flow (see McKeough, 1976 and Farren, 1935), but to avoid 

irregular behaviour, such as sudden peaks in the CL(t) - a(t) curve, it 

is better to keep 00  below the steady stalling angle. 

Oo  should not be large, because then either r should be large, 

resulting in non-sinusoidal variation of 0 (instantaneous aerofoil 

geometric incidence) and large connecting rod inertial forces, or d 

should be small requiring high values of starting torques, besides being 

non-practical (housing of shaft, bearings, etc.). 

It was decided that 0o  should not be greater than 10°, i.e.:- 

0o  ti 10°  (= 0.174 rad) 
	

(3.10) 

As far as the rotation axis lies between the aerofoil leading 

and trailing edges and k' is not large, its exact position does not 

affect significantly ag. Strength considerations require that it should 

be close to the aerofoil cross-section gravity centre, for inertial 

forces to remain low, and in positions of sufficient aerofoil thickness. 

The same should hold for the drive shaft, which should be close to the 

elastic axis (or twist axis) of the wing (usually lying near the 1/4 

chord point from the leading edge). 
z 

should not be very small, so that an adequate potential 
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flow region could exist between the vortex wakes. Also, to obtain an 

irrotational region significantly larger than the model thickness b, 

zo/b should be large:- 

z 
b » 1 (3.11) 

z 

hshould be kept low, if interference from the tunnel floor and ceiling 

is to be kept low. This kind of interference causes a reduction in the 

gust intensity along the centre line, which is more pronounced for low 
z 

k' - ~Ūc  and high h. Using the results of Section 3.4, it was 

estimated that a reduction of 50% in gust intensity can be caused if 

h = 0.5, k ti 0.2 and ° = 2. Therefore:- 

(3.12) 

7. 	The distance xg (see sketchp.56) should not be too small, for 

then the vorticity distributions round the oscillating aerofoils and the 

test models may affect each other in a complicated manner and consequently 

introduce spurious effects on the unsteady lift measurements. The test 

model should also lie in the convected velocity field, far behind the 

oscillating aerofoil trailing edge. Five chord lengths are considered 

enough for the effects of bound vorticity to die out (see for example 

Karman and Sears, 1938,and Hakkinen and Richardson, 1956). Hence:- 

5 x max (c, c') ti xg 	 (3.13) 

On the other hand, since the effective potential flow gap 



66 

between the wakes decreases with distance downstream, due to the 

thickening of the shear layers and the interaction of individual 

vortices, xg/c' should not be too large. As far as the widening of a 

single vortical wake is concerned, there is experimental evidence, Pocha 

(1971), Newton (1973), indicating that the angle of expansion above and 

below the mean chord line is very roughly 5°  (i.e. total angle 100). 

Taking into account these considerations, the following restriction was 

imposed on xg:- 

xg/c' ti 10 
	

(3.14) 

8. 	Strength and mechanical resonance considerations: The 

construction of the oscillating aerofoils should be such as to prevent 

structural damage during operation and of sufficient rigidity, as to 

ensure that the wing elastic deformations would be much less than the 

actual amplitudes of the unsteady motions. For example, excessive 

bending would cause the vorticity to be shed with varying strength 

across the span, while twist would cause varying phase across the span. 

The equilibrium of the generally out-of-phase, inertial, 

elastic and externally applied forces (including the aerodynamic ones), 

is given by a set of simultaneous partial differential equations with 

respect to time and wing deformations and is difficult to solve 

(Bisplinghoff et al, 1958). In the present case, a simplified analysis 

will be followed: It is required that the natural frequencies of the 

wing in bending nb, and torsion nt, are well above the frequencies of 

interest, to avoid mechanical resonances. The wing will be assumed to 

have the shape of a rectangular beam (c' x b' x s'), of isotropic 

material, pivoted on an axis through its gravity centre, which lies on 
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the elastic axis. All the loads will be assumed to act on the mid-span 

and on this axis. It is true that these simplifications would only give 

an order of magnitude of the required quantities, but a complete 

calculation, besides being very difficult, would need a preconception of 

the design. The frequencies nb  and nt  are given by the formulae 

(DenHartog, 1956):- 

1
/10

GJ b' 	G(1 - 0.63 

t 	s  	Pw (b'2 + c'2)  

(the last expressions refer to a rectangular beam), where E = modulus of 

elasticity; pw  = density of wing material; A = cross sectional surface 

area; I = moment of inertia of cross section about chord; G = shear 

modulus of elasticity; J = torsion constant of the beam (Bisplinghoff et 

al, 1958) and Io  = moment of inertia of beam per unit span. Therefore:- 

nb  » n 

nt  » n 

(3.15) 

(3.16) 

The role of the span length and the need for a lightweight material is 

evident from the above relations. The same considerations as before apply 

for the design of test models. In the highest frequencies of interest 

should be included those from turbulence, which are of the order U./Lx, 

since turbulent eddies of size much less than Lx  have low energy. 

9. 	The overall aspect ratio of the models, s'/c, should be kept 
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high enough to maintain a two-dimensional flow, as discussed in Section 

3.1.1 (iii). The span s should be sufficiently big, so that the inter-

ference caused by the support system lying below the model Ls small. 

A suggested value (see McKeough, 1976) for s'/c is 4.0, i.e.:- 

s'/c ti 4.0 	 (3.17) 

It should be noted that a high aspect ratio may have the opposite effect 

on the stall development of a wing, see for example Moss and Murdin (1968). 

10. 	To avoid excessive blockage of the flow, the tunnel cross 

sectional area should be large compared with the bluff body frontal area 

or the aerofoil plan area. Complete tunnel constraint corrections are 

not available for unsteady flows (see Reissner, 1947), but it is not 

thought that they would be significant if the corresponding steady flow 

corrections are small. Using the results of Maskell (1963) and Allen and 

Vicenti (1944), the following limitations were imposed on b, c and c':- 

ti 0.05 max (c'
h
c') ti 0.15 (3.18) 

As an indication, if b/h = 0.05 for a circular cylinder, it results in a 

correction of the measured drag of roughly - 3.5%. 

Solution to the Design Problem 

The difficulty in satisfying equally well all the aforestated 

conditions was realised when optimizing the problem. 

It was apparent that because of the requirement of high 

Reynolds numbers, Eqn. (3.3), and low blockage, Eqn. (3.18), the biggest 

and/or the fastest wind tunnel should be employed (but with Mach number 
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less than 0.1, say). 

It was decided to use the Department's largest low speed 

wind tunnel of octagonal cross section and dimensions: height = h = 

1.22 m (4'), width = kw = 1.52 m (5') and length of working section = 

xw  = 2.9 m. The level of free stream turbulence intensity (without grids) 

was approximately equal to 0.15%. During the course of the research, the 

cross section was replaced by a rectangular one measuring h = 1.22 m, 

kw  = 1.37 m (4.5'). That alteration did not affect in any significant 

respect the original experimental arrangements, as well as the consistency 

of the results. The laboratory floor had a resonant frequency of about 

15 Hz, and the author was advised that the fluctuating forces on it should 

not exceed 5000 N. 

From Eqn. (3.9) it follows 10 M < xt  < xw  = 2.9 m so that 

M ti 0:29 m and (roughly from restriction 5) Lx  ti 0.11 m, and from 

Eqn. (3.1), it follows Lx  = 0(c) = 0(0.11 m). The blockage restriction, 

from Eqn. (3.18) results in c ti 0.18 m, b ti 0.06 m. Finally, the chord 

length for all the models was taken as c = 0.1524 m (6") and from Eqn. (3.2), 

the thickness of the bluff bodies b = 0.0508 m (2"), resulting in a 

fineness ratio= 3.0. 

The aerofoil models for the zero and high incidence experiments 

were chosen to have the standard NACA 0015 profile, because for such 

moderately thick sections, thin aerofoil theories are expected to apply 

satisfactorily, see McKeough (1976), Jackson (1970), they stall at 

relatively high incidencies (= 15°) and provide thickness for rigidity 

requirements. 

From Eqn. (3.13), xg  ti 5c = 0.75 m, for which if the 

"irrotational" region behind the oscillating aerofoils, at the position 

of measurement, is required to have a thickness of at least 4b, .'. 
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zo > 0.75 m x tan 5° x 2 + 4b = 0.25 m, i.e. minimum zo = 0.25 m. From 

Eqn. (3.9), xg < 3 m, and from Eqn. (3.13) .'. maximum c' = 0.6 m, if 

blockage limitations are left aside at the moment. Then, similarly from 

U
eol 
	k' 	U

.. Eqn. (3.1), max. n = 0 c Hz, hence max 
- 
= 0 - . 	= 0 

t 
	For 

Z  

c' = cmax = 0.6 m, max k' = ri x 0.152 = 12 and °. _ 	5 - 1.2. Then 

from Fig. 3.1, ag/0o = 0, which is unacceptable. For c' = c = 0.152 m, 
z 

max k' = 1r x 1 = 7I-, ~~ = N2.,  = 1.6 and from Fig. 3.1, ag/0o = 0.1 which 

is rather low but still acceptable. For c' < c, it can be similarly 

deduced that ag/0o = 0, so that min c' = 0.152 m = c. If the highest 

tunnel speed is used, max n =  1552 = 300 Hz, hence max n = 300 Hz. 

Assuming that c' = min c' = 0.152 m has been selected, then d (see 

sketch on page 63) = 
	
= 0.075 m. From Eqn. (4.10) T r = eccentricity 

of rotating shaft = d tan 10° = 0.013 m. To obtain very nearly 

sinusoidal oscillations, the length q of the connecting rod should be 

much higher than r, i.e. q/r » 1 hence q » 0.013 m. For q = 1 m, 

it is estimated that the total mass mt of the various reciprocating parts 

will be about 5 kg, mt = 5 kg; then the vertical inertial forces trans-

mitted on to the laboratory floor will be: (21r x max n)2 x mt x r = 

(27r)2 x 3002 x 5 x 0.013 = 2.3 x 105 N, which is unacceptable. The most 

disturbing factor is max n; it can be reduced, either by accepting longer 

gust wavelengths or trying lower tunnel speeds or both. The last solution 

was followed here. Note that there are systems to balance the inertial 

forces almost completely, but they are considered as very complicated 

and expensive for the present case. In order that the maximum forces 

transmitted to the floor do not exceed 5000 N, max n had to be reduced to 
U 	 10  

40 Hz. A combination with U~ = 10 m/sec gives X = max n = 40 = 0.25 m, 

which is close to the assumed c' = 0.152 m. Finally, c' = 0.203 m (= 8"). 

For the same reasons as with the test models, plus the requirement of 
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thin emanating shear layers, the oscillating wings were chosen to have 

the NACA 0015 profile; therefore b' = 0.03 m. 

Assuming now that the oscillating wing is a rectangular beam 

constructed from solid hard wood with pw  = 600 kg/m3, E = 1.4 x 101°  N/m2, 

G = 5 x 109  N/m2, the span s' can be determined from Eqns. (3.15) and 

(3.16), requiring the resonant frequencies to be at least 2 max n, i.e. 

about 80 Hz. Eqn. (3.15) gives s' < 1.35 m, and Eqn. (3.16) gives 

s' < 2.2 m. 

Turning now to the test models, the highest frequency of 
U 

interest in turbulent flow depends on 
	
, which for Uo  = 45 m/sec and 
x 

Lx  = c = 0.152 is 300 Hz. The test models, therefore, should have 

resonant frequencies at least twice this value, i.e. 300 x 2 = 600 Hz. 

The thinnest model (aerofoil) had b = 0.15 c = 0.022 m, and if it is 

assumed to be constructed from aluminium, its span should be less than 

0.44 m, i.e. s < 0.44 m (use was made of Eqns. (3.15) and (3.16) and 

pw  = 2700 kg/m3, E = 7.1 x 101 ° N/m2  for aluminium). The maximum 

expected loads on this model cause negligible deflections, as 	can be 

easily verified. The final values of the remaining quantities were as 

follows:- 

span s = 0.381 m (= 15") 

span s' = 0.838 m (= 33") 

z
o 

= 0.475 m (= 18") 

The pivot (rotation) shaft was fixed at t' = 0.0019 m downstream of the 

mid-chord point. The difference in the expected loads from those 

relative to the mid-chord point would be very small. 

Constructional details for the test models (except for the 
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aerofoil at'high incidence (which had a span s = 0.28, and is described 

in McKeough, 1976) are given in Fig. 3.2 and for the oscillating wings 

in Fig. 3.3. The last are constructed from fibre-glass filled in with 

poet'  Srevie 
a kind of very strong expanded foam and reinforced with aluminium tubes 

and anti-twist rods. It is believed that this construction would be 

much more rigid than the hard wood construction assumed in the structural 

analysis mentioned before, but a reduction in s' from the calculated 

1.35 m was thought necessary, since in any case the actual wing is not 

a rectangular beam. 

Without touching the "live section", dummy sections, made 

from hard wood, were placed symmetrically on either side of the test 

sections and were mounted, during the experiments, on two wooden end 

plates, which formed the auxiliary vertical tunnel walls, see Fig. 3.4. 

These were placed parallel to each other at a distance s' = 0.84 m apart, 

symmetrically about the tunnel centre line. Thus, the overall aspect 

ratio of the models was ARo  = 5.5, while the aspect ratio of the models, 

AR = 2.5. These values comply with the requirements of Section 3.1.1 (iii). 

Turbulence was produced with a mesh grid of size M = 0.152 m 

(= 6") and M/bt  = 5.0, previously constructed in the Department. It was 

placed 12 M upstream of the test models, i.e. xt  = 1.82 m. To study the 

effect of turbulent intensity on unsteady lift, another smaller grid was 

M" 
employed with M' = 0.075 m (= 3") and/b+ = 5.0. This was placed at the 

same upstream position, xt  = 1.82m the ratio xt/M' being 24 approximately. 

A reduction in turbulent intensity was expected, at the position of the 

measurements, in comparison with the large grid, but a comparatively 

smaller change in Lx, due to increased xt/M, see for example Baines and 

Peterson (1951). 
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3.1.3 	LOAD MEASURING EQUIPMENT 

The system employed to measure the unsteady lift was 

similar to the ones used by Jackson (1970), McKeough (1976) and others, 

and consisted of the following parts (see sketch below). 

(i) 	Three thin cylindrical rods, connecting the model with the 

piezoelectric transducers (see also Fig. 3.4). 

test model 

	centre line 
cylindrical connecting rod 

piezoelectric transducer 

f 
1— ■ 

tapered pylon 
i 

i 

extension mount 

electric lead 

	

I ' I 	r 

	

IV On ~ ~ 	' " shaped beam 

I i 
i 	~ , 	~ 

	

i 	I 
massive base (=' 103 kg 

tunnel floor 

--- 	 helical spring 
laboratory floor 

SKETCH 

(ii) Three piezoelectric transducers. 

(iii) Three aluminium extension mounts clamping the transducers 

(iv) Three tapered pylons attached to three "H" shaped beams. 

(v) A massive base (= 103 kg) on which the beams were bolted. 

(vi) Six helical springs on which the base rested. 

The rods were available in two length sizes, 0.101 m (4") and 0.152 m 

(6"). Their diameters were 0.004 m and 0.006 m respectively. Load 

experiments were performed with both types, with the purpose of checking 

the effect of the support system of the three pylons (called also tripod 
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support system) and attempting to raise the support resonant frequencies 

even higher. 

The piezoelectric transducers were of the Quartz type, and 

had the following characteristics:- 

- Maximum measuring force ± 500 N in the axial direction. 

- Resolution = 1 x 10-3  N. 

- Resonant frequency 27 KHz. 

- Linearity 1%. 

- Temperature range of operation - 200°C to 450°C. 

During operation, each transducer was connected via a 5 m 

lead of special capacitance to a charge amplifier, the function of which 

was to convert the charge built up, into a proportional voltage. There 

was a "short time constant" switch for the measurement of fluctuating 

loads, and a "long time constant" switch for static loads. However, at 

the latter position the amplifiers tended to saturate quickly and give 

erroneous results, if the measurement was not taken on time. It has 

been suggested to the author, that the dryness of the leads could be 

the cure to this problem. 

The role of the extension mounts was to raise the models to 

the centre line (see sketch on page 73). It was not possible to do this 

by raising the whole base or the H beams, due to limited clearance 

below the tunnel floor. 

The massive base consisted of a double deck platform filled 

in with iron bars. Its great mass made the natural frequency of the 

balance very low, about 0.5 Hz. The helical springs were so designed 

as to isolate the support system from the vibrations of the floor, 

caused by the oscillating rig, the fan motor, footfalls, etc. Their 

effectiveness, as judged from the results shown in Fig. 3.5, was very good. 



75 

3.1.4 	ASSEMBLING AND CALIBRATION OF THE LOAD BALANCE 

First, the load balance was assembled in position without 

the models present, i.e. with the three cylindrical connecting rods 

protruding into the tunnel. Then, with the amplifiers in the "long" 

time setting, the response of each transducer in transverse loads was 

examined. This was done conveniently with a string held horizontally 

via a pulley and a known weight hanging at its other end. The direction 

of minimum response (an inherent property of the crystals) was then 

aligned with the mean flow direction, to ensure minimum sensitivity to 

drag. A detailed axial load calibration followed by placing known 

weights on the transducer and checking with the output voltage. 

Linearity was found to be 1%, as specified. The sensitivity to transverse 

loads was about 10% of the corresponding sensitivity to axial loads. This 

value was acceptable, for the zero mean incidence experiment (where 

3CD/Da was very small for the three models examined), but it could impose 

some problems in the high mean incidence experiment (discussed in 

Chapter 5). 

Sheet metal fairings were used to cover the pylons with the 

purpose of improving their streamlining and preventing any aerodynamic 

forces acting on them (see Fig. 3.4). Care was taken to avoid any 

contact between the lift balance and any part of the wind tunnel, which 

could introduce spurious signals. Each model was bolted firmly to its 

position and any holes left were covered with plasticine. A 1 mm gap 

approximately was left between the "live" and "dummy" sections. 

Attempts to seal this gap with sellotape, which was then cut with a 

razor blade, made no difference to the lift results, and, therefore, it 

was decided to carry on the experiments with the unsealed gap. 

A static and dynamic calibration of the assembled model 
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followed. For that purpose, the outputs of the three charge amplifiers 

were inverted and added together via an operational amplifier, the 

output voltage being very nearly proportional to the instantaneous 

vertical (here lift) force. A positive voltage corresponded to an 

upward force. To ensure that the response of the lift balance was 

linear and independent of the position of the instantaneous centre of 

pressure, a weight of known value was placed at various positions on 

the model surface. The overall linearity was in the range ± 1%. Only 

in the case of the aerofoil, it was found that the mounting of the back 

crystal affected the results. Specifically,the output voltage was 

lower than the expected for the values of the applied force, perhaps 

due to the presence of transverse components. By carefully levelling 

this model during mounting, the position giving the correct value of the 

applied force could be found. 

For the dynamic calibration, use was made of an electromagnetic 

shaker. It was fixed as shown in the sketch below and calibrated with a 

single transducer (with the test model removed), assuming that the 

frequency response in that case was equal to 1 (as claimed by the 

. SKETCH 
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manufacturers). Fig. 3.6 shows that the ratio F of the total force felt 

by the model, to the force exerted on a single crystal for the same 

frequency and amplitude of the shaker, is nearly equal to 1.0. Tests 

at higher frequencies than those shown in Fig. 3.6 were not attempted, 

because of resonances in the mounting mechanism. It is thought, however, 

that the transmission of forces in the actual installation would be 

accurate for all frequencies not close to the support's resonant 

frequencies. The dynamic calibration factor was assumed to be 1.0 for 

all the subsequent lift results. 

Finally each model was tested for mechanical resonances. 

Excitation was achieved by tapping the body and recording the ensuing 

damped vibrations on a storage oscilloscope. Approximate values of the 

resonance frequencies could be calculated from the oscilloscope traces. 

It was found that the elliptic and D bodies had a first mechanical 

resonant frequency 
resonance at approximately 500 Hz, while the aerofoil was 	about 300 Hz. 

3.2 	THE GENERATION OF TWO-DIMENSIONAL SINUSOIDAL FLOW 

3.2.1 	THE OSCILLATING RIG 

It was decided to modify the existing grid built by Newton (1973). 

There were three basic components of the modified rig (see Fig. 3.7):-  

- A lightweight support frame inA shape ofAH (parts 6, 7). 

- A motor-flywheel system (parts 5, 12), assembled to connecting rods 

(parts 2, 4) and support leaf springs (part 3). 

- Two oscillating aerofoils (part 1) driven by the long and short 

connecting rods and pivoted on the end plates. 

The frame, a legacy from Newton's (1973) experiment, was made 

from metal tube of a rectangular cross section. It consisted of two 

vertical supports placed one on each side of the tunnel and a horizontal 
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girder support, on which the platforms carrying the motor and flywheels 

were bolted. The DC motor had a nominal power of 0.5 HP and its speed 

could be controlled by means of a transistorized speed regulator. The 

horizontal support was clamped to the two vertical ones and could be 

raised or lowered or even separated from them during installation or 

dismantling. When the frame was screwed onto the laboratory floor, the 

latter received most of the vibration. 

The flywheel connecting rod assembly was designed with the 

aim of providing:- 

- Sinusoidal rotations of the aerofoils. 

- Adjustability of amplitude and frequency of the oscillations. 

- Smooth operation. 

On account of the first requirement 	 (i.e.Qc" 	the length of 

the connecting rod defined in Section 3.1.2) should be large. Amplitude 

adjustment was facilitated by a movable eccentric shaft. However, this 

arrangement - unlike a slider-crank mechanism - could not provide equal 

peak displacements of the wings about their horizontal chordline; but 

again this asymmetry diminishes for large 	compared with the shaft 

eccentricity r. It was thus decided to construct two identical 

connecting rods driving the lower aerofoil, of the maximum length 

permitted by the tunnel geometry, and connect the upper aerofoil to the 

lower by separate connecting rods. 

With the upper frequency limit set in Section 3.1.2 (= 40 Hz), 

a complete calculation of the various mechanical parts could be made, 

which are shown in Fig. 3.7. The length of the long connecting rod Q~ 

was taken 0.97 m and the maximum eccentricity used was r = 0.0125 m. 

Change of eccentricity could be achieved with a bolt fixed diametrically 

on the flywheel (see Fig. 3.7). The long and short connecting rods were 
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joined together with the aerofoil drive shaft and a rectangular leaf 

spring via a pin. This pin was screwed onto the spring, but it was 

allowed to rotate freely into the aerofoil drive shaft by means of a 

copper bearing insert. The steel leaf springs were clamped on the two 

vertical supports and provided means of 	Stiffev' win3 mounting, being 

preferred from helical springs in that they could raise considerably 

the natural frequency of the system. 

The installation of ball bearings in the main shaft and 

needle bearings in the connecting rods contributed to the smoother 

operation of the system. 

The two end plates used by Newton (1973) were modified to 

account for the double aerofoil configuration. There were two wooden 

panels added, supplied with square openings for the leaf springs to 

pass through and nylon bushes to enable the pivot shafts to rotate freely. 

3.2.2 	PERFORMANCE OF THE OSCILLATING RIG 

Before the final wind tunnel installation, the oscillating 

rig was tested in a false working section, made from DEXION, far from 

the tunnel. Tests at many frequencies and eccentric amplitudes showed 

that the only mechanical problem appeared to be the excessive floor and 

end-plate vibration, noticed at the floor resonant frequencies and also 

at the highest frequencies which, unfortunately, could not exceed 20 Hz, 

instead of the intended maximum of 40 Hz. It was hoped that the end 

plate vibration would be remedied in the actual stiffer tunnel 

installation, while the floor needed special attention. A large bin 

filled with gravel was placed at a suitable position near the rig and 

absorbed a considerable amount of floor vibration. Another effective 

method tried was to "mass balance" the girder support: two steel leaf 
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springs were bolted on it, each carrying a mass M, approximately 5 kg on 

the free end. The lengths of the springs were calculated so that the 

natural frequency of the combined body (spring-mass) corresponded to 

the floor natural frequency, or the horizontal girder natural frequency. 

At resonance the masses vibrated strongly, thus absorbing some of the 

energy, which otherwise would have been transmitted to the floor or the 

horizontal beam. 

The resonances in the actual tunnel installation occurred at 

higher frequencies. It was possible to attain frequencies up to 25 Hz 

with low shaft eccentricity (= ± 7°  aerofoil geometric incidence) and 

16 Hz with the largest (= ± 11°), without any vibration troubles. A 

light beam from a stroboscope was used to check that no appreciable 

flexing of the aerofoil took place during oscillation. 

At this stage a simple mechanism was added, which enabled 

an accurate measurement of the aerofoil frequency (and consequently the 

gust frequency since the transmission ratio was equal to 1.0) and also 

of the phase between the aerofoil displacement and gust or lift 

variations. It consisted of a permanent U shaped magnet, wired with a 

winding and mounted on the - horizontal beam of the rig and a piece of 

soft iron fixed onto one of the flywheels. As the iron piece passed 

periodically through the poles of the magnet, it induced a voltage on 

the winding. The electric signal generated in this way was displayed 

on an oscilloscope. The display showed a sharply peaked signal with 

period equal to the oscillation period. 

Measurements of this frequency (by methods described in 

Appendix B) indicated that once the motor speed was set, it started 

drifting very slowly towards a value, which was at maximum 0.2 Hz above 

the preset value, after roughly 10 to 15 minutes. 
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This drift depended on the frequency itself, the state of 

lubrication and perhaps some changes in the power supply. A remedy 

would have been the construction of a frequency correcting device at the 

expense of time and money. This matter was not pursued further and this 

drift had to be accepted. Care, however, was taken when the actual 

experiment was made to allow for some "warm-up" time before each run at 

a particular frequency. The present design, when compared with Newton's 

(1973), had the following mechanical advantages:- 

- Smoother operation. 

- Higher running frequencies. 

- Bending free motion of the oscillating aerofoils. 

3.3 	DESCRIPTION OF THE UNSTEADY FLOW 

3.3.1 	INTRODUCTION 

A survey of the flow field was needed and especially of the 

region occupied by the test models. To localize this region along the 

tunnel working section, the oscillating rig was set up and some 

preliminary measurements were made. Due to the limited clearance 

between the tripod support system and the tunnel floor, and also the 

necessity for short supports, the chord-line of the test models was 

0.051 m below the geometric tunnel centre line. For that reason the 

centre line of the oscillating aerofoils was also lowered by 0.051 m with 

respect to the tunnel centre line. 

The intensity and sinusoidality of the upwash gust were 

measured with a cross wire (see Section 3.3.2), which was traversed 

along the centre line. Some traverses in the vertical direction were 

made as well. The frequencies tested ranged from 5 to 20 Hz and the 

speeds from 10 m/s to 30 m/s. 
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It was found that within a streamwise distance of 1 to 7.5 

aerofoil chords from the oscillating aerofoil mid-chord point, the 

signal along the centre line was very sinusoidal and with variation in 

amplitude less than 15% approximately. The gust amplitude tended to 

drop with distance only for the lowest frequencies. Vertical traverses 

indicated that the irrotational region (manifested itself by a very 

sinusoidal signal), decreased with distance downstream, being 0.075 m 

in width approximately towards the end of the working section. 

Taking into account the conditions imposed in Section 3.1.2 

(Eqns. 3.13 and 3.14), it was decided to select the streamwise position 

of xg  = 1.2 m downstream of the oscillating aerofoil mid-chord point, 

for the subsequent unsteady flow and lift measurements. The origin of 

the coordinate system used in the present experiments was in the afore-

mentioned location and in the mid-distance of the two end plates and the 

two oscillating aerofoils, see Fig. 3.8. 

The next parameter to be determined was the actual tunnel 

speed. The oscillating rig was capable of producing a good sinusoidal 

gust over a wide range of flow speeds, but it was felt that the measure-

ment of lift would be a problem at very low and very high speeds. After 

a quick set up of the lift balance, it was found that in the approximate 

range of speeds 10 to 30 m/sec and for all but the lowest frequencies, 

the output lift signal was sinusoidal (with some noise superimposed on 

it) and accurately measurable. As the air speed decreased below the 

lower limit stated above, the lift signal became less sinusoidal and 

noisy, due to the relatively increasing contribution from the model and 

support system vortex shedding. On the other hand, at very high flow 

speeds, the vibration of the support shields became apparent (a high 

frequency intermittent noise was displayed on the oscilloscope) and a 
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low frequency streamwise swinging motion of the models was noticed 

(which tended to amplitude modulate the lift signals). Therefore, it 

was decided to carry out the unsteady flow and load experiments in the 

range of speeds 10 to 30 m/sec. The corresponding Re numbers (based on 

the model chord) are given in Table 1. 

Finally, it was the range of the oscillating aerofoils' 

amplitudes which had to be selected. Three amplitudes were chosen, 

termed "LARGE", "MEDIUM" and "SMALL" eccentricities. Details are given 

in Table 2. 

As the variation of the aerofoil angle with time was very 

nearly sinusoidal, the RMS oscillating aerofoil amplitudes could be 

obtained from the half peak to peak 
( PJ

amplitudes, after dividing 

by A.  

	

3.3.2 	HOT-WIRE EQUIPMENT 

During the course of the work, it was necessary to measure 

the streamwise as well as the transverse velocity components. This was 

done by using a normal U wire and a cross wire respectively. The details 

of the calibration methods and the accuracy of these measurements can be 

found in Appendix A. 

	

3.3.3 	MEASUREMENT AND PROCESSING OF SIGNALS 

The output of the transducers used in the experiments was 

in most of the cases an electric signal, which was immediately measured 

and occasionally stored in analogue form on magnetic tapes or paper 

tapes for further processing. The properties of the signals measured 

included the mean and root mean square values, spectral density, 

frequency, correlation coefficient, number of maxima per unit time and 
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instantaneous or conditionally averaged amplitude. Appendix B describes 

the techniques employed and their relevant accuracy. 

3.3.4 	FLOW MEASUREMENTS 

These were made in the "empty" tunnel (no support system), 

unless otherwise stated. It was expected that the effect of the support 

system would be small, causing perhaps only a change in the velocity 

upwash intensity and in the mean flow incidence. Since some measurements 

were also planned to be carried out on models not supported on the tripod 

but on the false walls (mean pressures and boundary layer experiments), 

the decision was taken to study the oscillatory flow alone and exclude 

any special conditions. However, quantitative results were also 

available with the support system installed in the tunnel, which are 

cited in the appropriate sections. 

3.3.4.1 	DYNAMIC HEAD MEASUREMENTS 

A Pitot static tube was fixed permanently at the point 

(- 0.5 m, 0.21 m, 0.10 m). Another tube was placed near the point 

(0, 0, 0) and indicated an increase of dynamic head of 2.5 - 3.5% 

approximately, in smooth and oscillatory flow, with the support system 

in position. Moving the second tube away from the centre, across the 

span, this value increased, but by no more than 1.5%, just above one 

of the pylons of the support system. No noticeable change in the 

dynamic head was realised in the empty tunnel. Since the end plates 

were installed parallel to each other, this shows that the wall 

boundary layer displacement effects were small. A correction due to 

change in the mean flow speed, U., was applied on the reduced frequency 

k = lrnc/Uo, in cases where the support system was in the tunnel during 
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velocity measurements. Vertical traverses in oscillatory flow, had 

shown that the dynamic head increased by 2% as the point (0, 0, 0.07 m) 

was approached (tripod in). 

Detailed flow angle measurements were not made. McKeough 

(1976) conducted experiments with a similar tripod system in turbulent 

flow and reported an increase in the mean flow incidence from 1°  to 2.5°. 

The author used an X-wire to estimate the change in mean incidence due 

to the presence of the support system. The probe was calibrated in yaw 

as well as each wire individually, in the empty tunnel. Then the tripod 

was 	put in place. If this had as effect an increase in the local 

speed, the squared outputs from the two anemometers would have the same 

difference as before. Since this did not happen, it was assumed that a 

change in the flow incidence took place, which was estimated to be less 

than 1°. In addition, the change in the pressure distribution over an 

elliptic model placed at the same position at zero incidence, indicated 

that the presence of the support system did not cause deviations of the 

flow direction by more than 1 degree. It may be that since McKeough's 

support system was bulkier than the author's, it caused greater changes 

in the mean flow direction. 

3.3.4.2 	VELOCITY UPWASH MEASUREMENTS IN THE X, Y, Z DIRECTIONS 

The purpose of these measurements was to examine whether the 

sinusoidal gust was of uniform structure, at least over that part of the 

working section occupied by the test models. 

First, a set of measurements was made with an X-wire supported 

on a tube spanning the tunnel. Only the unfiltered peak voltage output 

was measured, as depicted from a storage oscilloscope. Starting from the 

point (0, 0, 0) the traverses covered the line (0, 0, - 0.3 m), (0, 0, 
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0.3 m), z being made dimensionless with b/2 (half the bluff body thickness, 

which was equal to 0.025 m). The results are presented in Fig. 3.9. The 

peak gust angle is non-dimensionalized with the peak oscillating aerofoil 

angle. It was observed that only for 
Iz/2I 

ti 2 the signal had a 

sinusoidal form. Outside this region the signal was gradually distorted 

resembling a square wave with spikes superimposed on it.' This was more 

pronouced at higher frequencies and distances Iz/2I. A case where that 

spike just appears is shown in Fig. 3.10, obtained directly from a 

BRUSH pen recorder. The small amount of noise superimposed on the signal 

was discovered to be more related to hum and interference from the coil 

signal (see Section 3.2.2), than to turbulence. It appears that the 

presence of the spike at a certain point during the cycle is related to 

the hot-wire encountering part of the vortex, formed after a rolling-up 

of the continuous vorticity shed by the oscillating aerofoil (see Hanson, 

Kozak and Richardson, 1966). The enhanced unsteadiness, as Iz/2I 

increases, indicates that the vortical part of the flow is approached, 

but owing to the crudeness of the measurement, the centres of the 

individual vortices are hard to define. 

Referring to the central part of the curves in Fig. 3.9, it 

is observed that the distribution of gust intensity is not symmetric with 

respect to the x-y plane, the minimum occurring for negative z (towards 

the wall closer to the centre line). More detailed traverses of the 

central region for three oscillating aerofoil amplitude's and several 

frequencies are shown in Figs. 3.11, 3.12 and 3.13. The gust intensity 

is seen to increase with increasing dimensionless frequency k, but to 

drop after a certain value in k is reached. The asymmetry mentioned 

before is apparent especially at high frequencies. Over one body width 

the variation is at most 5%. Therefore, it was decided to keep the 
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point (0, 0, 0) as the origin of the coordinate system and to put the 

models in the tunnel in such a way, such that their mid-chord point 

would coincide with the point (0, 0, 0). The asymmetry could be due to 

the fact that the oscillating aerofoils were not placed symmetrically 

with respect to the centre line of the tunnel. 

Some further experiments were conducted with regard to the 

effect of the tripod support system on the gust intensity. The X-wire 

probe was traversed along the verticals, through the point (0, 0, 0) 

and the centres of the two front piezoelectric transducers. The results, 

presented in Fig. 3.14, are made dimensionless with the (filtered) RMS 

gust intensity at the point (0, 0, 0) but with the support system 

removed. Its effect is seen to reduce the gust intensity, mainly at the 

lower frequencies and at the spanwise positions just above the two front 

pylons. 

To find out whether that behaviour was due to the presence 

of the support system itself or due to an inherent property of the gust, 

i.e. to diminish away from the centre, some measurements in the spanwise 

direction were made, in the empty tunnel. In the plane z = 0, the gust 

was found to be effectively constant (within 2%) over the region 

occupied by the model. Near the end plates there was a tendency for 

the gust intensity to drop, probably because of the effect of trailing 

vortices shed by the oscillating aerofoil (see Section 3.1.1 (iii)). 

Closer to the end plates, boundary layer effects and plate vibration would 

also become important. 

The two-dimensionality of the flow in the spanwise direction 

was checked by two methods:- 

- First, two X-wires were employed, one fixed at the point (0, 0, 0) and 

the other free to move along the y axis in the spanwise direction. The 
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signal from the two wires (with the support system included), were 

recorded at a low speed and then played back at a higher speed; then the 

outputs were filtered using two identical band pass filters centred at 

the gust frequency (multiplied by the speed-up ratio of the tape recorder) 

and fed into a DISA 55A06 Random Signal Correlator. The correlation 

coefficient Rww  (ng,  y) between those two signals was displayed on the 

instrument. (The tape recorder simply helped to raise the frequencies 

of interest into the range of flat frequency response of the DISA 

correlator, 10 Hz to 2 x 104  Hz, while maintaining their phase). The 

results are shown in Fig. 3.15. They indicate that the flow is well 

correlated in the spanwise direction, especially at the higher reduced 

frequencies, the quality of two-dimensionality decreasing as the 

reduced frequency decreases. The reduction in Rww  (ng, y) at lower k 

could result from:- 

(i) A slightly oblique gust, which does not encounter the two 

X-wires simultaneously. 

(ii) A random variation of gust phase angle across the span, due 

to the dependence on a spanwise wave number k . 
z 

(iii) Relatively increased levels of turbulence, with respect to 

gust intensity originating from break-up of the oscillating aerofoil 

shed vortices. Turbulence is known to be poorly correlated in space. 

- In the second method, two small aluminium aerofoils (chord = 42 mm, 

span = 60 mm) were fixed on the two front piezoelectric transducers 

(their spanwise distance being about 88% of the model span). The same 

procedure was followed in getting the correlation coefficient for the 

two lift signals, when the tunnel was running. The correlation 

coefficients obtained were even higher than those from the X-wires, 

possibly because the wings responded less to the small amount of 
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streamwise fluctuations than the hot-wire. An instantaneous plot of 

lift signals is presented in Fig. 3.16, where it can be seen that for 

the specific value of k, the sinusoidal wave fronts appear to "hit" the 

model leading edge almost simultaneously. 

A conclusion may be drawn at this point that the tripod 

support system is mainly responsible for the small reduction in gust 

intensity and spanwise gust correlation at the lowest reduced frequencies. 

As the gust intensity was found to be approximately 

unchanged over one chord length of the models, it was decided to carry 

out the detailed measurements at the point (0, 0, 0) with no support 

system. This was done for two reasons:- 

(i) To gain a more general view of the unsteady flow produced, 

independent of the details of the current programme. 

(ii) To avoid blockage effects due to the simultaneous existence 

of the support system and the hot-wire traverse gear. 

The choice of a single point for taking velocity readings 

is certainly not the ideal solution, because the real flow is never 

exactly two-dimensional, but it saves quite a lot of experimental time. 

This matter will be discussed again in the explanation of lift results. 

3.3.4.3 	DETAILED UPWASH MEASUREMENTS AT THE POINT (0, 0, 0) 

In Section 3.1.1 the mechanism of production of the 

sinusoidal flow was suggested. Experimental evidence (e.g. Bratt, 1950; 

Wood and Kirmani, 1970) shows that each of the vortex wakes shed by the 

oscillating aerofoils starts to roll-up at a distance downstream (closer 

to the aerofoil trailing edge as k' = Inc'/Uo  increases), and form 

discrete vortices of alternate sign. The resulting "vortex streets" 

have the opposite sense of rotation to that of a Karman vortex street 
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and their transverse distance increases as they travel downstream (see 

sketch on page 56, Section 3.1.1). The result of this vortex motion is 

the sinusoidal flow, which is expected to be free from any streamwise 

component along the centre line. 

The measured values of the upwash gust along the centre line 

are now presented. The results appear in three different ways as:- 

(i) Root mean square (RMS) filtered gust amplitudes (degrees) 

plotted against k. 

(ii) Power spectra (sec) normalized with the total mean square 

value of the signal against frequency n (Hz). 

(iii) Variation of the dimensionless upwash (degrees) over a 

complete sinusoidal cycle (the upwash signal was- conditionally averaged 

over a large number of cycles, as described in Appendix B). 

Fig. 3.17 contains the results for case (1) for three 

different oscillating aerofoil amplitudes. The points shown at regular 

intervals of k, are selected from a smooth curve drawn through the 

original experimental points. Generally, the tendency is for the gust 

amplitude first to increase with k = lrnc/Uo, reach a maximum in the 

region k = 0.35 and then decrease. The reason for such a trend is that 

on one hand the gust intensity increases for increasing k, because 

stronger vorticity is shed in the wake, but on the other hand, for a 

point far away from the wake the gust is diminished due to counteracting 

vortices at higher frequencies. It is also noted that for fixed 

oscillating aerofoil eccentricity, a change in Re number does not 

significantly affect the relative gust intensity at a particular k. The 

collapse of the results is in the same order for all eccentricities, and 

this suggests that there might be a very small dependence on Re number, 

although the calibration constant of the cross hot-wire (different for 
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each speed) and the change in the effective wind speed could contribute 

as well. 

Another conclusion emerging from Fig. 3.17 is that the gust 

intensity is larger for larger oscillating aerofoil amplitudes at a 

certain frequency k. This is expected since a higher angle of attack 

produces higher unsteady lift on the oscillating aerofoils and stronger 

wake vorticity (see Karman and Sears, 1938), which consequently induces 

a stronger gust. 

The streamwise component u at the gust frequency was almost 

non-existent, but a u component at twice that frequency was about 20% of 

the corresponding upwash component, see Fig. 3.17. The disappearance of 

the primary u component is the result of the symmetry in the motion of 

the aerofoils. It is believed that the existence of higher harmonics 

in the upwash and streamwise gust components is caused by non-linear 

effects such as the deformation of the wake from the (assumed) state of 

a straight line (see for example Giesing, 1968), and the subsequent 

rolling-up process, pronounced for higher frequencies. 

The spanwise component v was found to be at least one order 

of magnitude less than the corresponding w component, see Fig. 3.17. 

Plots of upwash spectra (normalized with the full signal mean 

square value) for some selected frequencies are presented in Fig. 3.18. 

It is observed that the main power is concentrated under a 

peak at the oscillating aerofoil frequency. At high frequencies, this 

peak is more sharp than at lower frequencies. For example, in the case 

with ng  = 18 Hz, the spectral power drops by almost four orders of 

magnitude in a bandwidth 0.55 ng, while for ng  = 4.6 Hz, it drops by three 

orders of magnitude in a bandwidth 1.25 ng. This spread of energy could 

be due to: The random change of the oscillating rig frequency about its 
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mean value, small random changes in the position of shed vorticity, free 

stream turbulence, finite filter bandwidth and electronic noise. The 

amount of energy enclosed under the sharp peaks was found to be in good 

agreement with the square of the filtered values (measured with an RMS 

meter). Small differences are attributed to some attenuation caused by 

the filter (see Appendix B). The signal to noise ratio was comparatively 

poor at the lowest frequencies, because the gust intensity itself was small. 

The response at the second and third harmonics is marked on 

the plots of Fig. 3.18. Note, that the third harmonic is always stronger 

than the second. This may be due to a cancelling effect in the shed 

vorticity. The calculations of Giesing (1968), for an 8.4% thick von Mises 

aerofoil starting translational sinusoidal oscillations at t = 0, showed 

that the circulatory lift was characterized by higher harmonics, of which 

the third was greater than the second. As can be seen from Fig. 3.18c, 

the increase in the oscillating aerofoil amplitude of motion (marked as 

large eccentricity) does not affect the shape and spectral density of 

the main spectral peak, but it increases the level of higher harmonics. 

The relative increase in power lies between 6.5 and 8.0, meaning that 

the amplitudes of the corresponding oscillating components would be 

increased by a factor 2.5 to 2.8. If these values are compared with the 

increase in the oscillating aerofoil amplitude, approximately equal to 

1.53 (see Table 2), the greater, non-linear contribution of the wake 

deformations can be realised. 

The regularly spaced spikes at 50, 100, 150, 200 Hz, etc. 

are due to interference from the mains. Later it was discovered that 

the instrument responsible was the low pass filter. After it has been 

suitably earthed, the plots were almost free of that kind of noise, as 

in Fig. 3.18d. The spectrum of background noise appears lower, the 
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higher the gust frequency. 

The conditionally averaged gust angle ag(t) is plotted • 

against the cycle phase angle 	in Fig. 3.19. Only one eccentricity 

and speed were considered, but various frequencies. For convergence of 

the conditional sampling program, it was required that the difference 

between the running averages, formed while more data points were 

processed, to be less than 0.01 volts (the digitized signals usually had 

a peak amplitude of two orders of magnitude higher, ± 1 volt p.t.p). At 

the last two plots (oscillating aerofoil frequencies 4 and 3 Hz) the 

execution had to be stopped before convergence, since no more data records 

were available. It is felt, however, that the effect on the final 

result would be small because the calculations were very near convergence. 

As a comparison, a sine wave of peak amplitude equal to A ag  has been 

plotted in phase with the averaged waves. The zero phase angle, 	= 0, 

was taken as the position of the spike in the coil signal. The same 

instruments were used for the measurement of lift and velocity upwash 

levels, so that their phase (in fact the phase between each signal and 

the reference coil signal) was maintained. 

It can be seen that the maxima, or minima, in the various 

plots do not occur at the same phase angle (I), this being due to different 

wave-lengths of each gust. Some small deviations from sinusoidality are 

noticed, especially near the peaks (negative and positive) and at low 

frequencies. One could attribute these deviations to the following 

reasons:- 

(T) 	The motion of the oscillating aerofoils. As stated in 

Section 3.2.1, they perform a nearly sinusoidal oscillation. 

(ii) 	Some small amount of reversed flow at the highest oscillating 

aerofoil angle position. 

peak to peak 
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(iii) Turbulence in the signal, especially its lowest components, 

coming from the aerofoil's turbulent shear layers and possibly from some 

partial break-up into a turbulent vortex. 

(iv) Higher harmonics. The input to the conditional averaging 

computer program was low-passed at a high frequency, so that the averaged 

output might well contain some components of the second and third 

harmonics of the gust. 

(v) The fact that the absolute values of the peaks are not 

exactly the same, could be due to a small amount of DC voltage in the 

electronics. 

These results show that the gust can be assumed to be 

satisfactorily sinusoidal. The plots in Fig. 3.19 will find another 

application later in this work, when the phase between fluctuating lift 

and velocity is presented. 

3.4 	A SIMPLIFIED MATHEMATICAL MODEL FOR THE SINUSOIDAL FLOW 

3.4.1 	FORMULATION OF THE PROBLEM 

In this section, an attempt has been made to construct a 

simple potential flow model with the aim of predicting the velocity 

field of the flow generated by two aerofoils, performing pitching 

oscillations about points on their chordline in a smooth free stream. 

A schematic representation of this model flow is shown in Fig. 3.20 

3.4.2 	ASSUMPTIONS 

The following assumptions are made:- 

(i) The oscillating aerofoils are simulated by flat plates of 

zero thickness. 

(ii) Sinusoidal pitching oscillations of small amplitude, Go, 
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are assumed, for the unsteady thin aerofoil theory (see Karman and Sears, 

1938) to apply. 

(iii) The two-dimensional vorticity shed continuously downstream 

and convected with the free stream velocity U., is concentrated on the 

extension of the mean aerofoil chord lines. 

(iv) The two vortical wakes (which in fact are the only rotational 

regions of the field), extend infinitely in both (- co, + co) directions 

and do not interact with each other ( f orthe caecuQatiov) of the UPrvask on-ey), 

(v) The Kutta-Joukowski condition for the oscillating aerofoils 

is fulfilled at all times. 

Assumption (iii) makes the problem a linear one and (iv) 

simplifies the problem in that the calculation of the unsteady flow 

induced by 	two 	isolated oscillating aerofoils will suffice for the 

calculation of the combined flow field. 

3.4.3 	METHOD OF SOLUTION 

The vorticity in the wake is determined from unsteady thin 

aerofoil theory and then the induced velocities are obtained from an 

application of Biot-Savart's law. 

Any point on the aerofoil chord line is described by the 

equation (see Fig. 3.20):- 

z
a (x,  t) = 

Za (x) eiwt = 
(x - Q,-) po 

 eiwt 
(3.19) 

w = 2Trn, n = oscillation frequency (Hz). The actual oscillation is 

given by the real part of Eqn. (3.19). The boundary condition of zero 

normal velocity gives at the aerofoil surface:- 
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aza (x, t) 	aza (x, t) 

wa (x, t) = 	at 	+ U
~ 	ax (3.20) 

wa is the normal 

With Eqn. 	(3.19), 

wa (x, t) = iw (x 

or, after introducing 

we' 

(in the z direction) 

Eqn. 	(3.20) 

- t') 00 eiwt 

x*= 2x 
c' 

chord length. 

iw00E* + 00 

t) = wa (E*, 

becomes:- 

iw.o~* + 00 

the dimensionless 

velocity 

is rewritten 

+ U 	0o e 

* = 
c., 

U 	, 
2C 

iw 2 

iwt 

quantities:- 

Rearranging:- 

on the aerofoil 

as:- 

eiwt 

surface. 

(3.21) 

(3.22.) 

(3.23) 

(3.24) 

(3.25) 

- 2U~ 

c' being the aerofoil 

wa (V*, t) = 2 

Define:- 	wa (*, 

and Eqn. 	(3.23) 

t) = 2 

c~ 

t)/e
iwt 

U 
(2 

c~ 
- 	iwi 

For small oscillations, the problem becomes linear and all the quantities 

varying with time may be assumed proportional to eiwt:_ 

Ya (, t) = Ya () eiwt 

r (t) = r eiwt 

yw (, t) = Yw () 
eiwt 

(3.26a) 

(3.26b) 

(3.26c) 
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where ya is the aerofoil bound vorticity, yw is the wake vorticity and 

T the circulation round the aerofoil. Then, using standard thin aerofoil 

theory (e.g. Bisplinghoff et al, 1958), the wake vorticity is found to be:- 

1 	 -` 

E* wa (E*) dE* 
Yw 

(k') _ 

	El
(2) 	

- 4  

 (k') + iHo2) 
(61 

1 e-i wi;/Uo 

— (3.27) 

where the second kind Hānkel functions of order n can be computed from 

H(2) = Jn - i Yn, with Jn, Yn standing for the Bessel functions of the 

first and second kind and order n. 

Using Eqn. (3.25), one has to evaluate the integral:- 

1 / 	
1 
/ 	

1 

✓ 1 
±* (AE* + B ) dc* 	✓  1 ±* A * d* + 	/41-±41 	Bd 

-1 	 -1 	 -1 	(3.28) 

where A = iwOo 
2 

and B = 0
0 
(U - 2'iw). 

The first integral on the RHS#of Eqn. (3.28) is equal to 
i wO tic' 

A . 
	
= 	

4 	
and the second is equal to ihr = 0

o
7 (Uo - 2'iw) . Therefore 

Eqn. (3.27) becomes:- 

- -  i - _ 
yw () = F (k) 	. e (3.29) 

- 4 0 	U~ 
0 

1 + ( 	- 21 k' i 

F (3.30) where 	(k') 
H(2) + 	i 	H(2) 1 

This analysis has assumed non-interfering aerofoils. Each vortex wake 

right hand side 



/00 	
- . 2k' ,

iwt 
e 	

F (k') 21r 	
(x-E)2+z2 -o 

(3.31) 
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induces a velocity field at the test point. The vortex wake has been 

assumed to extend infinitely up and downstream unchanged. Therefore, 

the total velocity field is equal to the sum of two contributions. 

The upwash component (w) of a single vortex street is given 

by Biot Savart's law:- 

(x -) 1' (C) eiwt dE 
w (x, z, t) = - 

21r 	
(x-)2 +z2 

The -00 lower limit is justified from assumption (iv). Hence:- 

w (x, z, t) = 
	
F (k') e

iwt . 
-i 	x 

2k' 
z 

c. 	e 	 ~ ( I 	(3.32) 

so that w is an even function of z. The combined field has a resultant 

upwash velocity at some point B (see Fig. 3.20):- 

i (wt 	2k 
x) 

w (x, z, t) = 2 F (k') e e 2c 
7 

1
+e 

2C 

z2 (3.33) 

 

   

where z and z are always counted positive. 
1 	2 

The dimensionless gust amplitude is equal to:- 

w 	1 
Ū . 	= ag (t) 

o 

2k' 	2k' 

- 2i 1 
+ 11 21 

k'i [I-  c' zl + e 
c. z2 	

2k' 
t 	- 	 i(wt 	x) 
	  e 

C(2) (k') + iHa2) (k') 
(3.34) 
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The absolute value of Eqn. (3.34) gives the peak amplitude of the 

dimensionless gust comparable to the one measured by a X hot-wire. 

For the streamwise component (u) of a single sheet one can 

find similarly:- 

u 	(x, 	z, 	t) 	= 
z ( 

2 
Yw () eiwt z 

2~r -Co 

-i 2k' 
c 	 eiwt d_ F 	(kam) 	e 

2 (x-) 	+ z2  (x -  	)2 +z2 

= + F (k') eiwt e
-i 	x 	( z" 

2 
(3.35) 

2c > 0 .  

The sign + for z < 0 

The sign - for z > 0 

so that•u is an odd function of z (for a single aerofoil). The combined 

field is found to be:- 

u (x, z, t) = 2 F (k') e 
i(wt -- x) 

e 

2c 
Z1 - e

- z2 

(3.36a) 

  

    

    

Between the wakes 

Region II, (see Fig. 3.20) 

i(wt- 2k x) - 2k z 	- 2— --z 
u (x, z, t) = 	2 F (k') e 	c~ 	c 	1 + e c 	2 

Outside the wakes 

Regions III and I 

 

(3.36b) 
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3.4.4 	DISCUSSION OF RESULTS AND COMPARISON WITH THE 

EXPERIMENT 

The solutions for u and w concern only the oscillating 

aerofoils in an infinite free stream. The tunnel walls, roof and floor 

require that the actual velocities should fall to zero there. This 

boundary condition may be accounted for by introducing suitable 

distributions of image vorticity in planes parallel to those of the 

vortex wakes, and of such sign and distance from the centre line so as 

to maintain the boundary conditions. Figs. 3.21a, b, c and d show the 

effect that this correction has on the unconstrained results for two cases:- 

(i) When an infinite number of images are considered. 

(ii) When only the two closest to the centre line image distributions 

are considered. 

It is seen that the effect of the walls is to decrease the 

dimensionless gust amplitude at all frequencies (without introducing any 

phase changes), but their effect to become increasingly less important as 

k' 	co. 	This correction suggests that assumption (iv) is 

expected to get worse at low k' because of the interference from one 

sheet on the opposite aerofoil. 

The corresponding function F' (k') for a system of two aero-

foils performing heaving oscillations of amplitude eob I l + -1, i.e. 

equal to the greatest deviation of the trailing edge or the leading edge 

of the rotationally oscillating aerofoils, is equal to:- 

- 4i000 	
I, 
+ ~`J 	

C12) 
(' k ) + 	2) iHō  (3.37) 

The ratio of the two functions (see Eqn. 3.30) is:- 
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IF (V)I 	11 + 	
2(1 ik'f  

J= 	 - 
IFW)l 	IA' ll  + q7--)1 

(3.38) 

which indicates that for 0 ti k' ti 1.0 the pitching oscillations produce a 

much stronger gust than the translational oscillations. For example, in 

the author's case 2t. was equal to 0.1875 and J = 8.425 for k' = 0.1 and 

J = 1.100 for k' = 0.8. 

-  As expected, the vorticity 
au aw 
 az ax is everywhere zero except 

on the two vortex wakes. The u component is zero on the centre line 

(see Eqn. (3.36a), for z
1 
 = z2) and this is in agreement with the 

experimental results. It can also be shown that all the pressure 

gradients are zero. 

The gust amplitude ag(t) is seen to be proportional to the 

oscillating aerofoil amplitude Oo. Therefore, the choice of Oo  to 

non-dimensionalize the gust amplitude is justified. 

Eqn. (3.34), for the gust amplitude ag(t),was fed with 

suitable values from the author's experiment (z = z = 0.228 m, 
2 

c' = 0.203 m, 2Q'/c' = 0.1875), and the results (corrected and 

uncorrected for wall interference), are plotted in Figs. 3.21a, b, c and 

d, against the model reduced frequency k = Inc/Uo. The experimental 

results are in good agreement with those predicted and corrected for 

wall interference, for k up to about 0.35. Above this value, the 

experimental values are higher than the predicted, the deviation 

increasing as k further increases. Taking into account the experimental 

errors, there is no clear evidence whether a particular aerofoil 

amplitude Oo  exhibits better agreement than any other. 

For low reduced frequencies k, discrepancies may arise due 
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to the uncertainty in measuring the gust and the aerofoil vorticity Ya  

affecting the (assumed) infinite vortex sheets. 

In the range of large k, the vorticity shed is much stronger 

and a rolling-up process, as opposed to the continuous distribution 

assumed, is more likely to happen at an earlier stage (this introduces 

higher harmonics in the upwash and streamwise gusts). 

The proposed theoretical model does not account for these 

phenomena. In any case, the maximum near k = 0.35 is realised theoretically. 

A different approach in normalizing the gust amplitude results. 

is presented in Fig. 3.22. The oscillating aerofoil angle, the 

fluctuating lift obtained from two miniature wings fixed on the two front 

piezoelectric crystals and the gust angle, are correspondingly normalized 

with the similar quantities at medium eccentricity. If the theory was 

in absolute agreement with the experiment, then all these ratios should 

have collapsed on two straight lines. There is a reasonable scatter in 

the points, except for the large eccentricity below k = 0.1, where the 

experimental values fall below the theoretical ones. A premature corner 

separation (see McKeough, 1976) at the maximum aerofoil incidence (= 10°) 

could be responsible for this, at such low values of k. It may also be 

possible that this is an effect of roll-up of the wake, which will be 

more pronounced for stronger wake vorticity (due to high pitch amplitude Oo). 

The variation of dimensionless gust amplitude in the vertical 

(z) direction, for various k, is plotted in Fig. 3.23 and in more detail 

in Figs. 3.11 to 3.13 (note, 2 i s the half bluff body height). It is 

observed that while the gust intensity for z = 0 (centre line) reaches 

a maximum value (for k = 0.35) and then decreases, along the two vortex 

cores, iz/(2l1 = 9, it increases monotonically with reduced frequency k, 

because IF (k)I -4- 	as k -4- o  (see Eqn. 3.30). 	In the experiments, an 
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increase in the velocity amplitude does indeed occur at some distance 

from the centre line, see Fig. 3.9, though for lz/21 < 9. However, the 

data of Fig. 3.9 refers to measured peak, unfiltered fluctuations 

(obtained by means of an oscilloscope), which do not represent the real 

power of the first harmonic meant by the ag(t) of Eqn. (3.34). It is 

also observed that the effective centre line of the unsteady flow is 

shifted towards the nearest wall (here the tunnel floor),as 	was found 

experimentally, 	though to a greater extent. 

Finally, an attempt was made to examine whether the 

sinusoidal gust was convected at the free stream speed U. (assumption 

(iii)). For this purpose, a U wire was placed alternately at the points 

(0.06 m, 0, 0.12 m) and (- 0.305 m, 0, 0.12 m) in the empty tunnel. The 

anemometer outputs were recorded simultaneously with the reference spiky 

signal, thus enabling their phase difference to be calculated fairly 

accurately (within ± 3%). Four speeds were tried at medium eccentricity. 

In Fig. 3.24, the straight line which corresponds to a genuine frozen 

gust convected with the free stream speed lies above the experimental 

points. Although the accuracy of the measurements is not very good, 

this tends to indicate that the convection velocity of the shed vortices 

is slightly higher than the free stream velocity, which agrees with the 

findings of Wood and Kirmani (1970). The presence of the tripod support 

system did not cause any noticeable effect on the results. 

3.5 	CONCLUSIONS REGARDING THE SINUSOIDAL FLOW 

The flow generated in the region between the oscillating 

aerofoils appears to meet satisfactorily the requirements imposed in 

Section 3.1.2. In particular, for tunnel speeds 10 to 30 m/sec, it was 

possible to obtain RMS upwash gust amplitudes from 0.5°  to 5°  approximately 
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and reduced frequencies k = Trnc/Uo  (c = 0.152 m) from 0.05 to 0.8 

approximately. 

The flow is well correlated in the spanwise direction and 

the convection speed nearly that of the free stream. None of its 

qualities, at least in the region occupied by the test models, is 

significantly affected by that part of the unsteady load balance 

protruding into the tunnel (tripod support system). 

Compared with some previous designs for producing oscillatory 

flows (see Section 2.3.6), the present oscillating rig has the following 

advantages:- 

(1) 	Over the designs, which use the wake of a bluff body as 

oscillatory flow (Jackson, 1970; Edwards, 1972), it has the advantage 

that there is no need to resort to changes in the body dimensions in 

order to get a change in the reduced frequency. The gusts produced can 

be either in the streamwise or the normal to the mean stream directions, 

and convect at approximately the free stream speed; this is less true in 

the wake of a bluff body. In addition, the spanwise correlation of the 

present gust is superior to that of the shed vortices behind a body. A 

considerable degree of shear flow, which exists in the wake of a bluff 

section, was found to be very small in the region between the oscillating 

aerofoils of the present case. 

(ii) Over the "moving wall" tunnel used by Holmes (1970), it has 

the advantage of producing gusts convected at the free stream speed; this 

also holds for the open jet gust tunnel employed by Pocha (1971). An 

extra advantage over those two designs is that the present oscillating 

rig is less complicated and bulky. 

(iii) Over the "oscillating cascade" rig of Maeda and Kobayakawa 

(1970) and Sawyer (1972), it has the advantage of producing an extended 
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region of sinusoidal flow which contains no vorticity. Thus complications 

due to distortion of vorticity in a particular experiment can be avoided. 

As discussed in Section 2.3.6, the main disadvantage of the 

present oscillating rig is that of mechanical vibration. 

The simplified theoretical model for the prediction of the 

sinusoidal flow was in reasonable agreement with the experiment for 

reduced frequencies between 0.07 and 0.3 and in fair agreement for the 

other'frequencies. It is thought that the representation of the vortex 

wakes by plane sheets (i.e. without any rolling-up of vorticity) and the 

effects of wall interference, should be among the main reasons for the 

observed discrepancies at the highest and lowest reduced frequencies. 

More elaborate, numerical models, such as those of Basu and Hancock (1977) 

or Giesing (1968) would be expected to give better results. 

3.6 	GENERATION AND MEASUREMENT OF TURBULENT FLOW 

The dimensions of the grids for the generation of turbulence 

and their upstream distance relative to the models were given in Section 

3.1.2. For the computation of the experimental aerodynamic admittance 

one needs the spectrum of the vertical velocity Sw  (Eqn. 2.19), while for 

the calculation of the theoretical admittance of a thin aerofoil 

(Eqn. 2.20), the normalized cross spectrum in the spanwise direction, 

of the same component, is needed as well. Here, only the one-dimensional 

spectra were measured. The normalized (with respect to the signal mean 

square) u, v, w spectra are displayed in Figs. 3.25a, b, c, d and e. 

These digital analysis results were obtained from measurements at the 

point (0, 0, 0) in the (empty) 1.22 x 1.52 m working section of the 

tunnel. The tunnel speed corresponded to a Re number, based on the model 

chord (= 0.152 m), equal to 2.3 x 105. It was found that the turbulent 
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fields were not exactly isotropic, since for the large (M = 0.152 m) 

grid uRMS/U. = 0.067, vRMS/U. = 0.059, wRMS/U.0 = 0.06 and for the small 

(le= 0.076 m) grid, uRMS/Uo = 0.044, wRMS/Uo = 0.037. 

The experimental results of Figs. 3.25a, b, c, d and e are 

compared with the "von Karman" spectra for isotropic turbulence (for 

their derivation, see for example Houbolt et al, 	1964). 

formulae are:- 

Su (n) 	4L
x 	1 

The pertinent 

(3.39) 

u2 
1 + 	[1.3392 

2~rnL 
x f 
j.I 

2 5/6 

l U~ 

for the streamwise component, and:- 

2TrnLx $ 2 
[1.3392 

S(n) 	2Lx 	
1 +  	

. —11:7-) 
(3.40) 

• 
U°° w2 

_ 
2rrnL 2 11/6 

1 + 1.3392 
x} 

l 	U~ 

for the upwash and v components. Lx is the longitudinal length scale of 

turbulence; its value for each of the two flows was estimated by 

calculating the asymptote of the experimental Su spectrum as n -> 0. 

Then from Eqn. (3.39), Lx should be Su (o) Uc,/(4u2 ). The von Karman 

spectra (Eqns. 3.39 and 3.40) were computed for this value of Lx and the 

results were directly compared to the experimental spectra of Figs. 3.25a, 

b, c, d and e. It is observed that the agreement is good for the u spectra 

only, and at low to moderate frequencies. At the moderately high 

frequencies all the spectra are underestimated, while at the lowest the 
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v, w spectra are overestimated. Some analogue measurements, included in 

Figs. 3.25a, b, c, d and e differ to a variable degree from the digital 

ones. This might be due to averaging over a too short time and use of 

a different normalizing quantity (note that the wave analyzer measures 

the Mean Square Value over the range 2 to 20000 Hz,while the digital 

analysis program calculates the Mean Square Value from the data with 

frequencies up to the Nyquist frequency). Possible reasons for the 

discrepancies between the experimental and the (semi-empirical) von 

Karman spectra are:- 

(1) 	Proper choice of Lx. Spectral power is difficult to measure 

accurately at very low frequencies (see Appendix B), so the estimates of 

Lx  given above are rough. 

(ii) Anisotropy. For this reason the v and w spectra are also 

not identical with each other. 

(iii) Viscous dissipation. The high frequency vortices are 

affected (therefore, losing energy). This effect is not represented in 

the von Karman spectra. 

The values of the length scales which were thought as the 

more appropriate for the M = 0.152 m and W= 0.076 m grids, were 

Lx  = 0.0673 m (Lx/c = 0.44) and Lx  = 0.0553 m (Lx/c = 0.36). These 

results and also the measured intensities and spectra are in good agree-

ment with the corresponding results of McKeough (1976), who conducted 

similar measurements in the same wind tunnel, but with the load balance 

in it. Thus, there is an indirect indication that the tripod support 

system does not significantly affect the qualities of the turbulent flow 

at least in the region occupied by the test models. 

The upwash velocity spectra are plotted in a dimensionless 

form in Fig. 3.26, which is useful in the computation of the aerodynamic 
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admittance (see Chapter 6). If the dimensionless experimental spectra 

could be fitted exactly to the von Karman formula, then for the same 
2TrnL 

value of the reduced frequency k' = 	u x, the ratio of their spectral 
00 

power would be equal to the ratio of their total mean squares. From 

Fig. 3.26 it is seen that this is not true, for the reasons (i) and (iii) 

mentioned previously. 

During the course of the work it was necessary to determine 

the mean lift and drag on the bluff bodies in turbulent flow. Unfortunately, 

the mean load balance of the 1.52 x 1.22 m working section of the wind 

tunnel was closer to the grids, than the unsteady load balance, and 

consequently exact similarity (see Section 2.4.4) between the two flows 

could not be maintained. Therefore, some mean pressure measurements were 

also carried out in a 0.61 x 0.91 low speed wind tunnel with similar grids 

(0.152 m and 0.076 m mesh size) and similar models. But since it was 

realised, that the mean load characteristics for the two bodies and 

especially the lift, were not drastically altered by interchanging the 

two grids, the length scales of turbulence were not measured in this case. 

It was believed, however, that the length scales would not differ 

significantly from those that would be obtained in the 1.52 x 1.22 m 

tunnel when using the same grids and approximately the same downstream 

.distance/mesh length ratios. Bearman (1969a) carried out detailed 

,~/ measurements of 	u2/U and Lx in a wind tunnel with grids of size 

comparable to the author's and the trends of his results helped to 

determine some unknown values of intensities and length scales by 

interpolation. Also the findings of Baines and Peterson (1951) were 

applied in certain cases. Table 3 summarizes the results of the turbulent 

flow measurements. It should be noted that the actually measured data 

agree quite well with the trends indicated in Baines and Peterson (1951). 



109 

3.7 	APPARATUS FOR THE MEAN LOAD EXPERIMENT 

Two wooden models were constructed for the measurement of 

mean lift and drag of the elliptic and D cylinders, using the weight 

balance of the 1.52 x 1.22 m wind tunnel. These were geometrically 

similar to those for the unsteady load experiment (Section 3.1.2). They 

had a chord length of 0.170 m and a span of 1.52 m (so that AR = 9 	). 

Specially made brass holders were fitted on them to enable mounting on 

the balance. The mean forces on the aerofoil were measured on the same 

wing used by McKeough (1976), which had c = 0.31 m, AR = 5. Since the 

boundary layers of the 1.52 x 1.22 m tunnel cross section were quite thin 

and the turbulence producing grids were placed far upstream of the models, 

no end plates were used. The models spanned the tunnel walls completely, 

with a small gap of about 3 mm being left on either side. 

After the mean load experiment was over, these same models 

were cut down in length (new span 0.765 m) for use in the 0.61 x 0.91 m 

wind tunnel. The mid span cross section was fitted with pressure tappings 

which were connected to a manometer via copper tubes glued under the 

surface. A layout of the pressure tappings is presented in Fig. 3.27. 

The pressure holes are more densely distributed in the regions where 

steep pressure changes were expected to arise. The model trailing edge 

was supplied with five holes, evenly distributed across the span. Thus, 

the variation of base pressure could be determined. The boundary layers 

of the 0.61 x 0.91 m cross section were thicker than those of the 

1.52 x 1.22 m cross section and since the same models were used for both 

tunnels, it was decided here to use two end plates. These were made from 

perspex and had a cross section similar, but double in size, to that of 

the models. The effective span was limited to 0.45 m, implying an aspect 

ratio AR = 2.66. 
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Finally, a small wooden elliptic model, of fineness ratio 

3, chord length c = 0.101 m and span equal to 0.457 m, was used at
a
Alater 

stage to check some of the lift measurements at various Re numbers. It 

was mounted without end plates in the 0.56 m octagonal section wind 

tunnel of the Department. This model also served for an elementary flow 

visualization. 
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CHAPTER 4. THE MEAN LOADING EXPERIMENT 

4.1 	INTRODUCTION 

This chapter deals with the effects of both smooth and 

unsteady flows on the mean lift, drag and surface pressures of the 

bodies examined, since it was considered important to ascertain the 

mean effects of unsteady flows before proceeding to the unsteady effects. 

The assessment of mean lift forces would also be helpful in checking 

whether a quasi-steady approach can be followed in trying to predict 

the unsteady lift forces. Drag and surface pressures would be useful in 

providing a measure of the tunnel interference effects, indicating the 

regions of the flow regime (subcritical, critical, super-critical) and 

ordering the bluffness of the models and the strength of the natural 

vortex shedding. 

Flow visualization tests are included in cases, where marked 

changes in the boundary layer behaviour for the various flows is noticed. 

Details of the models used as well as their position in the 

wind tunnels are given in Section 3.7. 

The free stream speed in smooth flow was recorded by means 

of a Pitot tube placed far upstream of the models. In turbulent flow, 

however, this could not be done, since the indication of the tube 

depends on its position if too close to the grids. A calibration of 

the tunnel was necessary. With the grids removed, another tube was 

mounted downstream of the models and its indication, for various tunnel 

speeds and model angles of incidence, was plotted against the reading 

of the front tube. Then in turbulent flow, only the back tube was 

used and the effective free stream speed was found by reference to the 

calibration curve (nearly a straight line), neglecting any effects due 

to change in the wake geometry (strictly valid only for bodies with 
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fixed separation points) and the increased dynamic head sensed by the 

Pitot tube, due to the extra term 
Z 
pU 2. (u2 /U. + v2/U, + w2/U2~), which 

was very small for the turbulent intensities used. 

The sensitivity of the three component load balance of the 

1.52 x 1.22 m working section of the tunnel was within 0.1% of the 

maximum lift or drag encountered in the measurements. Incidence could 

be varied by an electrically controlled mechanism in steps of 0.1°. On 

the other hand, the pressure measurements obtained in the 0.61 x 0.91 m 

and 1.52 x 1.22 m wind tunnels (for the D and elliptic cylinders only) 

by means of an inclined alcohol manometer were accurate to within about 

1%. Incidence was changed with rotating discs attached at the ends of 

the models to an accuracy of 0.5°. The pressure readings were then 

integrated numerically (using Simpson's rule for unequally spaced 

points), to give the dimensionless force coefficients with respect to 

body axes (CFx in the chordwise direction, CFy in the normal direction) 

and the chordwise position of the centre of pressure -5Z 	The lift 

coefficient 
CI. 

and the form drag coefficient 
'Of 

are then easily 

obtained from a transformation of the system of axes. The errors 

introduced in this method are expected to account for 5% maximum of the 

final C~, CD values. 

Corrections due to wind tunnel interference were only applied 

to the free stream speed, steady forces and pressures according to Allen 

and Vincenti (1944) and Maskell (1963). The geometric angle of incidence 

ā was not corrected for tunnel blockage (although it would be necessary 

if a fully corrected lift curve slope aCL/aa was sought), because the 

correction would involve the measurement of pitching moment for which 

there were no accurate measurements at low ā. For an aerofoil it is 

estimated that the percentage correction of ā is less than half of the 

lift coefficient correction. The extra three-dimensional blocking effect 
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of the support system in the load balance was estimated to be very 

small and thus it was neglected. Blockage has the effect of increasing 

the free stream speed Ua to Uoc (c means corrected or effective) 

according to the formula:- 

Uoc - 
Uo(1 

+ Esb + Ewb) 
4.1) 

Esb 
is a term due to solid blockage (from wall image effect) and Ewb a 

corresponding term due to wake blockage (from the increased speed 

behind the body and outside its wake). Using (4.1) the lift coefficient 

can be corrected according to:- 

- 
CLc = 
	- 2E

sb 	2ewb Ecurv) 
(4.2) 

the extra term 
Ecury 

originating from the change of curvature of the flow, 

on account of the walls. 

For the drag coefficient similarly:- 

CDc = C
p(1 - 2Esb - 2Ewb - Ewg) (4.3) 

Ewg appearing because of the pressure gradient in the accelerated flow 

behind the body. If it is assumed that the tunnel constraint does not 

disturb the geometry of the wake and the form of the pressure distribution 

round the body, then the mean pressure coefficients can be simply 

corrected according to:- 

1 - Cp - Uoc _ 1 - ~pb  

1 -C
pc 
	U2 	1 - B

pbc 

where 
Cpb 

= base pressure coefficient. 

(4.4) 

The various factors appearing in these equations are functions 

of -- (ratio of area on which Cp, Cb are based, to the cross sectional 

area of the tunnel)which is equal to chord length/tunnel height in our 



case), A, which is a pressure factor depending on the shape of the base 

profile (given in Allen and Vincenti (1944) for various profiles), CD  

and Cpb. In Table 4 it is shown how each term is taken into account 

according to the shape of the test model. 

Maskell's (1963) correction for 
Ewb 

 did not apply to the 

elliptic model because the roots of the equation for E (see Table 4) 

were imaginary. Therefore, e was taken equal to 1.0, as suggested by 

Maskell (1963). The application of Maskell's theory for bodies with 

non-fixed separation points is questionable, because of the change of 

the wake shape with constraint. As an example, for incidence ā = 5°  

in smooth flow, the correction to CL  for the aerofoil (c/h = 0.25) was 

- 2.5% approximately, for the D cylinder (c/h = 0.185) - 7.5% approximately 

and for the elliptic cylinder (c/h = 0.185) - 3.5% approximately. 

Note, that in the following, the subscript c (denoting 

quantities corrected for blockage) has been dropped for convenience. 

4.2 	MEAN LOADING OF THE NACA 0015 AEROFOIL 

The mean lift and drag coefficients CL  and CD  of the NACA 0015 

aerofoil were measured on the load balance and the results are plotted 

in Figs. 4.1 and 4.2. In one set of measurements the smooth and 

turbulent flow speeds employed corresponded to Re = 2.2 x 105  and 

2.3 x 105  respectively, and these are essentially repeats of the 

measurements of McKeough (1976), who tested the same aerofoil (AR = 5.0, 

completely spanning the walls), but at a slightly higher Re number equal 

to 2.6 x 105. In another set of tests the Re number was equal to 

1.2 x 105. In most cases the incidences covered ranged from zero up to 

a few degrees beyond the stall. 

(a) 	Mean Lift Results: The higher Re number measurements are 

in very good agreement with those of McKeough (1976) for both smooth and 
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turbulent flows, except near the stall, since the author's measurements 

are corrected for blockage. It is observed that C varies almost 

linearly with incidence ā, if the latter is well below the stalling 

angle. The lift curve slope at zero incidence, Ri/aa, was computed 

using the method of least squares for points with Fi < 5°. For both 

types of flow, smooth and turbulent, a /aa was found to be approximately 

equal to 5.7. It is known that thin aerofoil theory predicts a 

a /aa = 271- in steady flow, while thick aerofoil theory, (see for example 

Batchelor, 1970), gives a mean lift coefficient, for a Joukowski aerofoil, 

according to:- 

CE = 2ir sinii l + 
0.77 thickness  

chord 
(4.5) 

  

For a 15% thick Joukowski aerofoil then, Eqn. (4.5) gives a /aa = 7.0. 

There are two main reasons for the reduction in a /aa 

from this value: viscosity and deviation from two-dimensional conditions. 

Due to the former, there exists a relatively thicker boundary layer on 

the suction side of the aerofoil, which reduces its effective angle of 

incidence and hence the lift. The existence of a separation point on 

the suction surface, which progressively departs from its position (at 

the trailing edge) when incidence increases, gives a picture different 
theoily 

from that assumed by thin aerofoil Brown and Stewartson (1975) discuss 

this matter in detail. The other reason is an experimental one, i.e. 

the wing is not of infinite spanwise extent, so that the downwash induced 

by the remaining trailing vorticity affects the lift (see also Section 

3.1.1 (iii)). 

In the low Re number (= 1.2 x 105) test the C~ v. ā curve 

for smooth flow is convex upwards, resulting in a Tyaa = 7.2. A 

similar trend was noticed by Jacobs and Sherman (1934), although a /aa 

in their case was equal to 7.4 approximately. The reason for this 
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abnormal behaviour is that for such low Re numbers, and even for zero 

incidence, there exist two separation points on either side of the 

surface near the trailing edge. For a small change in the angle of 

incidence there is an unequal displacement of the separation points, 

leading to high initial lift values (see Pope and Harper, 1966). In 

turbulent flow, this phenomenon disappears and 3CL/3a is again equal 

to 5.7 approximately. 

Fig. 4.1 shows that the maximum lift coefficient, kmax' 

increases either by an increase in the Re number or in the level of 

free stream turbulence. In smooth flow and Re = 1.2 x 105 the stall of 

the aerofoil has the characteristics of leading edge stall, i.e. a 

sudden loss of lift. For the higher Re number test, the stall is a 

combination of leading edge-trailing edge stall as found by McKeough 

(1976). He states that there should be a functional relationship 
z 	1/5 

between the Taylor's parameter 	Ou . 
ft- 	

, and the Re number at 

which the separation bubble, in the front of the aerofoil, bursts at a 

particular incidence. CLmax is not necessarily a function of Taylor's 

parameter, but it is related to the incidence at which the bubble bursts. 

(b) 	Flow Visualization in Sinusoidal Flow: At a later stage in 

this thesis, the unsteady lift on an aerofoil at high incidence in 

sinusoidal flow was measured, but unfortunately, it was not possible 

to find out quantitatively what was the effect of such a flow upon the 

~L v. 
ā curve and 

~Lmax' 
because the load balance was situated too close 

to the oscillating aerofoils. To obtain a picture of the mean flow when 

the sinusoidal gust was applied, a simple tuft flow visualization 

experiment was carried out, using the load model mounted on the unsteady 

lift balance. Tufts were fitted on the surface of the aerofoil from 

the leading edge up to the trailing edge. Since there was no remote 

control mechanism for the change of incidence, the aerofoil was mounted 
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on the transducers at a high incidence (from 10.5°  - 13.5°) and the 

wind tunnel was switched on at its maximum speed, to avoid stalling. 

When the flow was attached, the speed was lowered to the desired value 

of Re number and the oscillating rig was put into action. The reduced 

frequencies covered the range 0.05 - 0.8 and the Re numbers 1.2 x 105  - 

3 x 105. The gust frequency was increased in steps from zero up to the 

maximum frequency and then lowered to zero again. Stall was signalled 

by the complete reversal of all the tufts on the aerofoil surface and 

the very irregular unsteady lift signal felt by the piezoelectric 

transducers. The results of this flow visualization test are as follows:- 

- Over the lower surface of the aerofoil the flow always appeared to be 

attached. 

- For a fixed gust frequency, no, the mean flow conditions on the 

surface depend on whether no  is approached from lower or higher values. 

If the gust frequency is decreasing, the phenomena noticed at no  for 

increasing frequency, take place at a lower frequency than no. This is 

more pronounced the higher the mean incidence (with respect to stalling 

angle) and gust amplitude, and the lower the Re number. 

- There was no long term stall, even for incidences very close to the 

stalling angle, when the gust was applied. "Long term" is in connection 

with an intermittent stall noticed at very low reduced frequencies and 

high mean incidences: The wing remained stalled for a period ranging 

from a few cycles up to as many as 150 and then returned to attached 

flow again. This phenomenon was random in character. The only 

exception to this occurred, when the mean incidence was very near to 

the stalling angle and the gust was applied starting from zero frequency. 

Stall most probably occurred because the initial change of flow incidence 

was so slow as to act quasi-steadily. It required a significant rise 

in reduced frequency, i.e. k = 0.6, to bring the wing into fully attached 
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condition (note, however, that an inherent property of the oscillating 

rig is to result in higher gust amplitudes for higher frequencies). 

As the frequency decreased, the fully attached state was maintained, 

even for very low frequencies, except for the intermittent stall just 

mentioned. With an increase in frequency, an upstream displacement 

(towards the leading edge) of the (turbulent) separation position was 

noticed, partly due to a probable earlier transition. Immediately 

upstream of separation, a region of increased unsteadiness appeared, 

with the discernible gust frequency and sometimes an intermittent tuft 

reversal of short duration. This region had an extent of a few per 

cent of the chord and increased in length for higher gust amplitudes 

(at a fixed frequency). An oscillation of the separation point should 

have taken place there. Further upstream all the tufts were attached 

on the surface, but an increased unsteadiness (containing the 

characteristic gust frequency) was discernible, indicating the presence 

of a separation bubble. 

Summarizing the observations of the flow visualization and 

taking into account: (i) the particular gust employed (strong gust 

amplitude at high reduced frequencies, weak gust amplitude at low 

frequencies) and (ii) any hysteresis effects, it can be said that the 

wing at least does not stall in sinusoidal flow, as long as it does not 

stall in smooth flow. This is not surprising. The mean flow near the 

stall is very sensitive to changes in incidence. At low frequencies, 

the gust amplitude applied is necessarily small, so that stall is 

avoided. At high frequencies the gust amplitude is large and if applied 

statically, it would have surely caused stall. In fact the change of 

incidence is applied so quickly,that the mean flow has not enough time 

to change significantly. Hence the unstalled condition is maintained. 

It is anticipated that the mean flow situation in sinusoidal flow would 
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be something between the smooth and turbulent flow situations. 

(c) Selection of the Mean Lift Curve Slope: As far as the lift 

curve slope aCL/a is concerned, there is no reason to believe that it 

would be different from the one found in smooth or turbulent flow, equal 

in both cases to 5.7 approximately, except for the lowest Re number 

(= 1.2 x 105) case. There, aCL/aa in sinusoidal flow is expected to 

lie between 7.2 (measured in smooth flow) and 5.7 (in turbulent flow). 

The model for the unsteady lift experiment had an effective span of 2.5 

and an overall span (including the dummy wings) equal to 5.5. Since the 

model employed for the mean load measurements had AR = 5.0, the mean lift 

curve slopes measured would be the lowest values to be assigned to the 

lift sensitive model for the unsteady lift experiment. 

(d) Mean Drag and Centre of Pressure: The mean drag results are 

plotted in Fig. 4.2. It can be seen that the slope 9CD/3a is about two 

orders of magnitude lower than aCL/aa for incidences up to 7°  approximately. 

The relevance of this to the unsteady lift experiment will be discussed in 

Chapter 5. The chordwise position of the centre of pressure was not 

measured, but from the pitching moment measurements of McKeough (1976), 

it is inferred that it is close to the quarter chord point in both smooth 

and turbulent flows, moving towards the rear when the aerofoil stalls. 

4.3 	MEAN LOADING OF THE D SHAPE CYLINDER 

For the determination of forces on the D cylinder the load 

balance and pressure models were used. Both smooth and turbulent flows 

were considered, the latter of two different length scales and intensities. 

The Re number range was 1.2 x 105  to 3.85 x 105 . 

(a) 	Boundary Layer Separation: Tuft flow visualization and 

boundary layer measurements, indicated that separation took place at the 

two sharp trailing edges. The boundary layer results plotted in Fig. 4.7 
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(for ā = 00), give a boundary layer thickness (defined as the distance 

from the surface at which the velocity is maximum) of about 0.04 b 

(b = body thickness) for smooth flow and 0.065 b for turbulent flow. In 

both cases a turbulent boundary layer was observed at separation, which 

manifested itself by the presence of high frequencies in the hot-wire 

signal and the shape of the mean velocity profile (close to the power law 

(y/S)1/7  = U/Ue). Simmons (1974) reported a (turbulent) boundary layer 

thickness Ss  at separation of 0.13 b (Re = 2.25 x 104 ) for a D cylinder, 

twice as thick as the author's. Bearman (1965) working with a 16.6% thick 

D cylinder, found Ss  = 0.5 b (Re = 1.4 x 105  - 2.56 x 105) but his model 

had trip wires at 20% c. 

(b) 	Mean Surface Pressure Distributions: Figs. 4.3 to 4.5 show 

the variation of the mean pressure distribution Cp  (P = {p - 
po}/2 

pU
2
), 

round the centre section of the cylinder at incidences 0°, 5°  and 10°  

(the coordinates of the pressure tappings are given in Fig. 3.27). In 

Fig. 4.6 the variation of base pressure, -Co  along the span (z = 0) is 

presented for zero indicence, the distance of end plates being equal to 8.30 b. 

The shape of the Cp  distribution in smooth flow is seen to 

be similar to that in turbulent flow, but of lower magnitude. A rise 

in Cp  is noticed for increasing levels of free stream turbulence. It is 

thought that the rather uniform shift of Cp  towards higher values in 

turbulent flow, could be partly due to possible calibration errors of 

the tunnel (especially for the large grid which introduces a greater 

blockage in the free stream). Note also, that at the front stagnation 

point Cp  appears to be greater than 1.0. When turbulence is introduced, 

there are also two effects which might change the base pressure: One is 

due to the increased entrainment, caused by turbulence (which tends to 

drag fluid out of the base region); this leads to a decrease in Cpb. 

The other is due to the increased thickness of the shear layers, leaving 
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the surface, on account of the diffusion by turbulence. These thick 

shear layers interact less readily to start the vortex formation, which 

is suspended until later downstream. Since the strength of the vortex 

shedding phenomenon decreases, a rise of the base pressure follows. The 

rise of Cpb  found by introducing turbulence, suggests that the latter 

trend would dominate. (Note that the opposite happens for a flat plate 

normal to the turbulent stream, because the separating shear layers are thin). 

An increase in the Re number from 2.2 x 105  to 3 x 105  does 

not affect Cp  to a significant extent. 

Over the rear flat surface of the model, Cp  is distributed 

almost symmetrically with respect to the z = 0 plane, being always 

higher than 'Co. There, turbulence tends to smooth out the pressure 

distribution. 

In the spanwise direction the base pressure is again 

distributed symmetrically about the plane y = 0 and it is increased by 

about 10% at a distance 4 b on either side of the central region for both 

flows, one reason being the boundary layer effect of the end plates. A 

similar value, about 8% (for smooth flow, Re = 1.7 x 105), is given by 

Maull and Young (1972) for a D cylinder, 16.6% thick, placed between end 

plates at distance 20 b apart. 

Over the front of the model (x/c = 0.1 - 0.3), it is 

observed that for all incidences (negative incidences were also looked at), 

there is a region where Cp  remains almost constant and then is followed by 

a pressure recovery. Although this suggests the presence of a laminar 

separation bubble (e.g. Crabtree, 1957), the effect of possible 

irregularities on the surface cannot be dismissed, particularly because 

incidence, Re number and turbulence do not bring any drastic change in 

the position and shape of this pressure anomaly. A broad symmetric "hump" 

in Cp  centred about the chordwise position x/c = 0.5 should be a potential 
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flow result, since it appears in the pressure distributions of several 

other bodies which consist of a simple geometric shape followed by an 

afterbody, such as a long rectangular cylinder with well rounded edges, 

see for example Polhamus et al (1959). 

Next, by means of the pressure distributions the sectional 

lift and form drag coefficients were computed and the chordwise position 

of the centre of pressure, given as a percentage of chord from the 

leading edge (see Figs. 4.8 to 4.10). In the first two figures, the 

results from the mean load balance measurements, which give the overall 

lift and drag coefficients, are also included. 

(c) 	Lift Measurements: The sectional and overall lift coefficients 

were close within experimental error (5%), so they are plotted with one 

symbol in Fig. 4.8. For the same aspect ratio, the sectional lift 

coefficient in the middle of the span would be greater than the overall 

lift coefficient. The fact that the two lift coefficients measured were 

roughly equal, reflects the lower value of aspect ratio (= 2.76) in the 

pressure measurements. It also counterbalances for the gap between the 

load model and the tunnel walls which lowers the overall lift measured. 

The lift coefficient obtained from the pressure measurements, does not 

include the contribution of the skin friction force (in the chordwise 

direction). A-rough estimate of this force may be obtained from the 

formula for Cox  f 	a flat plate of length 2p  parallel to a stream 

of speed U.. If the boundary layer is turbulent, then:- 

CTX  = 2 x 0.072 x Re-1/5 	and 	Re = U . Qp/v 	(4.6) 

(see Schlichting, 1968). The effect of thickness can be roughly taken 

into account by replacing U. by 
Umax' 

 the maximum speed outside the 

boundary layer. Then:- 



123 

Q -1/5 U 2 

C 	
[Urn . 

2 x 0.072 x 	
p 	Ūax  

(4.7) 

For ā = 10", 
Umax 

is at most 2U. (see Fig. 4.5) so that the upper value 

of CD would be equal to 0.043, at a Re = 2.2 x 105. This is very small 

compared with the normal force CFy = 1.15 (computed from Fig. 4.5) and 

makes a maximum contribution to C~ equal to 0.043 sin 100 which is less 

than 1% of the lift coefficient measured in the lift balance. 

Fig. 4.8 shows that the C~ v. ā curve is nearly a straight 
line up to a few degrees before the stall. Its slope at CDT=  0 lies 

between 6.0 and 6.5, which is higher than the value of 5.7 found for 

the aerofoil. If it is assumed that the D section behaves like a fat 

aerofoil, then this difference in the mean lift curve slopes could be 

partly explained in terms of the greater thickness of the bluff body. 

The idealization of the D cylinder with an aerofoil is not unreasonable 

if it is taken into account that the flow over the former was found to 

be attached all the way up to the sharp edges and the pressure in the 

base region uniform (see Figs. 4.5 to 4.8). Therefore, instead of the 

Kutta- Joukowski condition of zero loading at the trailing edge, an 

"equivalent" Kutta-Joukowski condition of zero loading across the two 

sharp edges is now assumed (though satisfied only in a "mean" sense, as 

discussed in Sections 2.1 and 2.2.1). For a 33.3% thick Joukowski aero-

foil, i.e. of maximum thickness equal to that of the D cylinder, 

potential flow theory (e.g. Batchelor, 1970) gives 3CL/aa = 7.9. This 

value is about 25% greater from the average of the experimental lift 

curve slopes given previously. Note that the experimental lift of the 

NACA 0015 aerofoil is also overestimated by roughly the same percentage 

(see Section 4.2a). In turbulent flow .5T-79a  is lowered by approximately 

7%, while almost no change was observed for the aerofoil. It is 

considered that a comparatively increased asymmetric thickening of the 
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boundary layers could be the reason, although,as stated previously, 

calibration errors could also account for this. 

The maximum lift coefficient is seen to rise to values 

considerably greater than those of the NACA 0015 aerofoil, at the same 

Re number. It is also greater than the 
CLmax 

 encountered for aerofoils 

of thickness 6 to 24% at much higher Re numbers (= 6 x 106, see for 

example Abbot and Doenhoff, 1959). Turbulence has the effect of 

increasing 
CLmax 

 and delaying the stall development. 

(d) Mean Drag and Centre of Pressure Results: The mean drag 

coefficient, obtained from the load balance and the integration of normal 

pressures, is plotted in Fig. 4.9. The slope C/a is very small, 

except when stall is approached. The chordwise position of the centre 

of pressure (computed from the detailed pressure distribution) is shown 

in Fig. 4.10. Both figures indicate that changes in the Re number or 

introduction of turbulence do not cause appreciable effects, provided 

the mean incidence is low. 

(e) Loading in Sinusoidal Flow: So far from the two unsteady 

flows only turbulence was considered. Systematic measurements in 

sinusoidal flow were not performed. It was, however, qualitatively 

observed that over the useful range of incidences, the pressure 

distribution in sinusoidal flow differed only very slightly from the 

corresponding distribution in smooth flow, even when the highest gust 

amplitudes at the highest reduced frequencies were tried. Since 

experimental errors could lead to greater deviations, it is assumed that 

the lift curve slopes in the smooth and sinusoidal flows are the same. 

(f) Selection of the Mean Life Curve Slope: The question remains 

as to what values of 3CL/aa to ascribe to the model in unsteady flow 

(AR = 2.5). Due to the presence of the dummy ends, it is expected that two-

dimensional conditions will prevail over the central part of the arrange- 
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ment (see Fig. 3.4). The lift curve slopes in smooth and sinusoidal 

flows, therefore, can be taken equal to the measured (or assumed) cross 

sectional slopes (for the model with AR = 2.76). It was shown previously 

that these are roughly equal to the overall 2CL/3a (see Fig. 4.8). The 

turbulent flow employed in the unsteady lift experiment had different 

characteristics from the one used in the mean load experiment (consult 

Table 3). Fig. 4.8 shows that 3CL/9a in turbulent flow is only very 

slightly sensitive to changes in the length scale or intensity. Therefore, 

for the same reasons as before, the lift curve slopes of the unsteady lift 

sensitive model can be taken equal to those measured over the other 

models. Pertinent values are given in Fig. 4.8. 

4.4 	MEAN LOADING OF THE ELLIPTIC CYLINDER 

Similar measurements to those described previously for the D 

shape cylinder, were performed on the elliptic cylinder, and the results 

appear in Figs. 4.6 and 4.10 to 4.18. In addition, a flow visualization 

was undertaken, in order to investigate how the unsteady flow applied, 

had affected the mean separation of the boundary layer. 

(a) 	Flow Visualization Results: The "oil and chalk" method was 

used. It consisted of applying a mixture of kerosene and powdered chalk 

on the surface of the model and then quickly switching on the tunnel at 

the desired speed, until the kerosene evaporated. If the flow is 

adequately two-dimensional and the surface of the body free from any 

irregularities, such as machining engravings, etc., then the deposition 

of the dried up powder will concentrate in the positions where the shear 

stress is minimum, i.e. along the separation lines in the spanwise 

direction. Laminar and/or turbulent separation can be visualized in this way. 

One set of tests was carried out, while the oscillating rig 

was set up in the 1.52 x 1.22 m tunnel. Several runs indicated that the 
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application of sinusoidal gust did not alter the surface flow pattern 

as compared with that in smooth flow, of course within the accuracy 

limits of the method. It was thus decided to perform the tests in a 

more convenient situation where turbulence would be included. The final 

tests were made in the Departmental 0.56 m octagonal section wind 

tunnel, on a 0.101 m chord model (see Section 3.7), and the results 

appear in Fig. 4.11. Some of the photographs of Fig. 4.11 are not very 

clear, one reason being that the mixture could not be evenly applied on 

the surface. Near to the walls, the flow is seen also to depart from 

two-dimensionality. The surface flow pattern across the span sometimes 

showed a kind of "eruption" of material, the position of which was not 

repeatable. It is thus difficult to say whether they represent a three-

dimensional flow, such as "cells" of vorticity or that they are just 

caused by surface tension effects. In any case, the general pattern 

depicted from the photographs, indicates that the separation across the 

cylinder is not perfectly two-dimensional. This is a characteristic of 

the critical flow regime. 

The positions of laminar and turbulent boundary layer 

separation for ā = 0° (Re = 1.3 x 105, smooth flow) are indicated by the 

two white lines in Fig. 4.11, Photo. 1 (the upper one is just visible). 

At ā = 4°, Photo. 2, both lines move slightly upstream (the position of 

these lines was measured with a flexible tape over the surface). In 

turbulent flow (corresponding Photos. 3 and 4) only the turbulent 

boundary layer separation shows up, which happens further downstream of 

the turbulent separation in smooth flow. Again, separation moves 

upstream, when the incidence is increased. Taylor's parameter is about 

0.082 for the turbulent flow considered (Lx/c = 0.2, ,~ u2/U = 0.06), so 

that transition would have probably taken place quite early, judging 

from the experimental results of Fig. 2.9. Increasing the Re number to 
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2.2 x 105 in smooth flow at ā = 0 has the effect of moving laminar 

separation downstream and turbulent separation slightly upstream, Photo. 5. 

When the Re number is increased to 3 x 105  (ā = 0, smooth flow, Photo. 6) 

there is no clear indication where separation takes place, because in 

the central region there is a thick line indicating that laminar and 

turbulent separation move downstream, in a position close to the turbulent 

separation of Photo. 3 (turbulent flow). 

The approximate positions of laminar and turbulent separation 

are plotted more clearly in Fig. 4.12, and they are also compared with 

Schubauer's (1939) results in Fig. 2.3, for ā = 0°. The author's results 

for laminar separation in smooth flow are varying with Re number in the 

same direction as Schubauer's "nearly laminar" separation. This term 

was attributed by Schubauer (1939) to the separation of a boundary layer 

which maintained the general aspects of a laminar boundary layer, but 

which became turbulent just before separation, probably via natural 

transition. He found that to happen for 9 x 10' < Re < 3.2 x 105. The 

author found that separation took place via a laminar separation bubble 

at least for Re > 1.3 x 105, so that in Fig. 2.3 the discrepancy in the 

laminar separation positions, increasing as Re increases, is due to the 

fact that, while the author's points represent true laminar separation, 

Schubauer's indicate the final "nearly laminar" separation. The higher 

levels of free stream turbulence in Schubauer's wind tunnel (0.85%) 

should have brought the opposite effect, but it is thought that surface 

roughness, to which the models are sensitive, may be responsible. The 

positions of turbulent boundary layer separation in the range 1.3 x 105  

< Re ti 3 x 105  are upstream of those found by Schubauer for Re ti 3.2 x 105. 

Note, however, that the author's results show a tendency to agree with 

Schubauer's at the upper range of Re numbers (= 3 x 105), see Fig. 2.3. 

The position of turbulent boundary layer separation in turbulent flow 
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found by Schubauer is close to the author's, located at about 0.92 c 

from the leading edge. 

In order to get an idea about the position of the turbulent 

shear layer after separation, hot-wire traverses across the wake were 

made at x/c = 1.02 (see Fig. 4.12) for smooth, sinusoidal and turbulent 

flows. On passing the hot-wire through the free shear layer, a peak in 

the longitudinal RMS velocity is expected to appear, see for example 

Bearman (1965) and Hanson and Richardson (1968). This indeed was the 

case in smooth and sinusoidal flows, the peak being located at z/b = 0.24 -

0.25, while in turbulent flow only a small "hump" in the u
RMS 

 v. z/b curve 

was observed at z/b = 0.20. The peak in sinusoidal flow was somewhat 

broader than in smooth flow possibly due to the fluctuation of the 

separation point (note that the intensity of the sinusoidal flow is not 

uniform itself). With these data a conjectural mean position of the free 

shear layer was drawn up in Fig. 4.12, suggesting that the wake width is 

smaller than the distance of the upper and lower separation points (for 

zero angle of incidence). 

Taking into account the above results and those of Schubauer 

(1939), the following remarks can be made (cylinder at zero incidence):- 

- The critical regime in smooth flow extends from Re = 9 x 104  up to 

about 3 x 105. 

- The present sinusoidal flow does not alter the mean positions of 

separation of smooth flow. 

- Towards the end of the critical regime there is some evidence that 

final separation is invariable with changes in Re number. 

- The shear layers tend to bend inwards after separation. 

- Application of free stream turbulence moves the turbulent boundary 

layer separation downstream and reduces the width of the wake. 

(b) 	Mean Surface Pressure Distributions: glean pressures on the 

ll avns04)  F. as-)d Ficharo15011, P. p . TraonS. ASMC 3,  Basic Ev,g , go , Dec. 196g, 
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surface of the model were measured for incidences 0°, 5
0
, 9

0
, 10

0
, 15°  

and the results are plotted in Figs 	4.13-4.17. 

The -C. 	for ā = 0°  are shown in Fig. 4.13. The 

sinusoidal and smooth flow results at Re = 2.2 x 105  are almost identical. 

The present results also agree with those of Schubauer (1939), except 

near the base region. This could be because Schubauer's model was not 

put between end plates and also the aspect ratio (= 4.58) was higher than 

the author's (= 2.76). There is also good agreement, over the unseparated 

region, with the pressure coefficient calculated from potential flow. 

An increase of Re number to 3.85 x 105  brings about an 

increase in Cp  near the base. With free stream turbulence present, at 

Re = 2.2 x 105, Cp  is not significantly changed unless the greatest 

turbulent intensity is employed (7.8% approximately). The increase in 

Cpb  is of the same order as when Re was increased to 3.85 x 105. However, 

there is also an overall increase in Cp, which was again encountered in 

the D cylinder results. The shape of Cp  between the pressure tappings 

12 and 15, indicating the presence of a bubble, agrees with the findings 

of the flow visualization tests. 

For higher incidences, Figs. 4.14, 4.16, 4.17, the effects 

of free stream turbulence and increase in Re number are also evident, 

particularly over the lower (pressure) surface. It appears that 

separation is delayed there, with consequences on the mean lift, which 

will be discussed later. 

The plots in Fig. 4.15 compare the pressure distributions 

at Ti=  9°  for smooth and sinusoidal flow. It is seen that the pressure 

changes to a greater extent over the upper (suction) surface than on 

the lower surface and in the same manner as in turbulent flow, though 

to a lesser degree. 

At zero incidence, the base pressure is much higher than for 
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the D shape cylinder (see Fig. 4.6) and uniform along the span even 

fairly close to the end plates. For the strongest turbulent flow 

(//U = 0.078) there is an increase in Cpb  of about 40% near the end 

plates, with respect to the mid-span value. 

(c) 	Lift Measurements: Fig. 4.18 contains a series of CL  v. ā 

curves for various Re numbers and types of flows. CL  was again 

calculated from the overall lift measurements on the load balance 

(AR = 9.0 in the 1.52 x 1.22 m tunnel, AR = 5.5 in the 0.56 m tunnel) 

and integration of normal pressures (AR = 2.76 between end plates). 

Some interesting features of Fig. 4.18 will now be discussed. 

(i) 	Smooth Flow: It is observed that the shape of CL  v. 

curves depends strongly on the Re number of the flow. Starting from 

the lowest Re number examined, equal to 5.8 x 104, it is seen that 

3CL/8a is very low, up to an incidence of about 10°, after which it 

increases sharply and then is kept constant, until stall is reached. 

The same trend, though not so pronounced, is noticed for Re = 1.2 x 105. 

For further increase in the Re number a different sequence is observed. 

The lift curve slope is at first very high and then as the incidence 

increases, it drops off gradually. A characteristic of all these 

curves is that they roughly converge to a maximum lift coefficient of 1.2. 

The variation of aCL/aa (at zero incidence) against Re number 

is plotted in Fig. 2.1, where similar slopes of elliptic cylinders of 

various fineness ratios have been collected from other sources. Also 

in Fig. 4.18, the results of Zahm et al (1928) for a geometrically 

similar to the author's elliptic cylinder, at Re number = 1.37 x 105, 

are plotted. These results have been corrected by the author for 

infinite aspect ratio, by interpolation on Zahm et al results for 

elliptic cylinders of fineness ratios 2.5 and 4.0. From both Figs. 2.1 

and 4.18, it is observed that Zahm et al's results are lower than the 
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author's, coming gradually to a better agreement, as the incidence 

increases, actually resulting in approximately the same 
-CLmax. 

 The 

reasons for these discrepancies could be due to the different levels 

of free stream turbulence in each tunnel and the finite aspect ratio 

(not very serious, because Zahm et al (1928) found it to be small for 

slightly geometrically different elliptic cylinders). 

In the lowest Re number case (= 5.8 x 10') the flow 

separation should have been laminar and near the front for low incidences, 

resulting in a low C. Then at a particular value of ā the separated 

layer should have reattached as a turbulent boundary layer, separating 

further back, producing as a result a sudden increase in the lift (shown 

in Fig. 4.18). 

If the Re number is sufficiently high, say above 1.2 x 105, 

then as the flow visualization has shown, there is a final turbulent 

separation. The pressure coefficient plots of Figs. 4.14 to 4.17 indicate 

that as the Re number increases at constant ā, there is a weaker suction 

on the upper surface and a delayed separation on the lower (pressure) 

surface, and these tendencies combined, result in a lower lift. Hence, 

in Fig. 2.1, the peak in the aCL/aa v. Re curve may be explained. Note 

that other authors as well found a strong dependence of the mean lift 

curve slope on the Re number, e.g. Williams et al (1937) (fineness ratio 

6.0, Re between 3.1 x 105  and 7.21 x 106) and Polhamus et al (1959) 

(fineness ratio 2.0, Re between 3.5 x 105  and 2 x 106). Williams et al's 

(1937) experiments, performed in a compressed air tunnel, could not 

include such low Re numbers as to realise the above-mentioned peak 

(which must appear, since at zero speed there will be no lift), but the 

tendency for 3CL/aa to drop rapidly with increasing Re number was evident 

(see Fig. 2.1). Similarly high lift curve slope appears in the results 

of Zahm et al (1928) for elliptic cylinders of fineness ratios 2.5, 3.5 
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and 4.0. It is conjectured that if all other conditions are the same 

and only the fineness ratio and Re number are allowed to vary, then 

these peaks would appear the earlier, the lower the fineness ratio (i.e. 

the thicker the cylinder). However, as Fig. 2.1 shows this may not be 

true for too low fineness ratio, say, 1.7 (see in the same figure, Modi 

and Wiland's (1970) results) and certainly not for a circular cylinder 

(fineness ratio = 1.0). 

Assuming the elliptic cylinder to behave like a fat aerofoil 

with a Kutta-Joukowski condition holding between the two separation 

points, leads to a aCL/aa = 7.9 (see also Section 4.3c on the D cylinder). 

This value is in disagreement with both the maximum and the minimum lift 

curve slopes (see Fig. 4.18). The reasons are that the pressure in the 

base region is not uniform and that the (free) separation points lie 

forward of the trailing edge (hence potential flow cannot be applied in 

the separated region). Another Kutta-Joukowski condition could be to 

assume a single downstream stagnation point fixed at the point of 

minimum radius of curvature in the trailing edge region. Then, potential 

flow theory (e.g. Woods, 1961) gives:- 

CL =ā 	2. TT . J1 + bJ 
(4.8) 

which for b/c = 1/3, results in 9CL/aa = 8.37. Again, this value lies 

between the minimum and maximum experimental values. 

Fig. 4.18 shows that in the range 5.8 x 104  < Re < 2.2 x 105, 

stall occurs gradually at quite high incidences, while 
CLmax 

 does not 

change very much. A thick aerofoil section exhibiting a similar behaviour 

is the Gottingen 387 (see Goldstein, 1965). As Figs. 5.14 to 5.17 

indicate, the pressure distributions at high incidences tend to become 

equal, despite the changes in the Re number, resulting in roughly the 

same positions of turbulent separation. This could explain why C
Lmax 
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changes only little, when the Re number is varied. 

When trip wires were fitted on the upper and lower surfaces 

of the model, a great reduction of lift was observed, see Fig. 4.18. 

The trip wires consisted of two steel wires of diameter less than 0.5 mm 

fitted at 0.25 c from the leading edge, along the generators of the 

0.101 m elliptic model (which was used in the octagonal 0.56 m tunnel). 

This position was selected to be ahead of the early beginning of 

transition reported by Schubauer (1939), at roughly 0.4 c from the 

leading edge. The diameter of the wire was of the magnitude suggested 

in Pankhurst and Holder (1952) and although the wires were fitted further 

upstream of the expected transition region for smooth flow at the same 

Re number, the final effect on CL  is seen to be large (see Goldstein, 1965). 

(ii) Sinusoidal Flow: The changes on the mean lift produced by 

the application of sinusoidal flow are seen to be only mild (Fig. 4.18). 

There is an overall reduction in CL, especially for moderate incidences, 

with a corresponding reduction in ni./Da. (Note that the values of the 

lift curve slope given in Fig. 4.18 are approximate, because not many 

experimental points were available). It appears that aCL/aa changes 

less if the Re number is increased, but this fact should not be taken 

as general, since the gust reduced frequency (and amplitude) were not 

kept constant when the Re number was changed. 

(iii) Turbulent Flow: When the oncoming flow is turbulent, Fig. 4.18 

demonstrates that there is a dramatic fall in the lift curve slope from 

its corresponding value in smooth flow. Howev
er,CLmax 

 is of the same 

level, though occurring at higher incidences, about 30°  (not shown in 

Fig. 4.18). The values of RT/Da  for Re = 2.2 x 105  and 1.2 x 105  are 

of the same order with those measured in smooth flow, but at a higher Re 

number, equal to 3.85 x 105. It appears, therefore, that as far as 

/aa is concerned, an increase in the level of free stream turbulence 
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is equivalent, in the critical range, to an increase in the Re number. 

This holds generally in phenomena strongly dependent on boundary layer 

transition, as found by McKeough (1976). An increase in the free stream 

turbulence level or the Re number, is expected to cause an earlier 

transition, which on the lower (pressure) surface of the model would 

lead to a turbulent boundary layer separating further downstream of its 

smooth flow position. The result is a greater suction on this side (see 

Figs. 4.14, 4.16, 4.17) and a greater contribution in the reduction of 

lift, a fact which was confirmed experimentally. 

(d) Mean Drag and Centre of Pressure Results: The profile and 

form drag coefficients are plotted in Fig. 4.19 and the chordwise position 

of the centre of pressure in Fig. 4.10. Unlike the case of the D 

cylinder, the Re number and free stream turbulence effects are observed 

to be considerable. 

(e) Selection of Mean Lift Curve Slope: In smooth flow it was 

found that the values of CL  measured on the three elliptic models, at 

constant Re number, were not the same, but sometimes differed by as much 
(obta-i tneō -i-rnwi the pressure vneasu e vrEnts) 

as 7%. The cross sectional Tawas not the highest of the three, as it 

would be expected. The comparatively higher level of free stream 

turbulence (to which the ellipse is very sensitive in the critical flow 

regime), existing in the 0.61 x 0.91 m wind tunnel where the pressure 

measurements were made, should mainly account for that. Yet, a 

representative CL  v. ā curve was needed for the unsteady lift sensitive 

model (AR = 2.5). Due to the large aspect ratio of the mean load model 

used in the 1.52 x 1.22 m tunnel (AR = 9.0) and the low turbulence level 

of the same wind tunnel, it was decided to select its CL  v. ā curve as 

the most representative. , Those curves are plotted in Fig. 4.18. 

In sinusoidal flow, only the cross sectional mean CL  was 

available and as such is plotted in Fig. 4.18. It can be assumed 
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roughly equal to the lift coefficient of the unsteady lift model, since 

the free stream disturbances are for both the same. 

For turbulent flow, exact similarity of the flow conditions 

at constant Re number could not be facilitated in the three tunnels. 

However, as Fig. 4.18 indicates, the variations in aCL/aa at a particular 

Re number are more sensitive to changes in turbulence intensity than 

length scale. Accordingly, at Re = 2.2 x 105, the lift curve slope 

corresponding to the highest intensity (= 7.8%) in the mean load 

experiment, can be taken as representative for the unsteady lift model 

when exposed to turbulence of similarly high intensity (= 6.7%, consult 

Table 3, M = 0.152 m) this slope being equal to 3.85 per radian (see 

Fig. 4.18). The slope a /aa = 4.0, found for intensities 4.4 - 5.9% 

would be suitable for the unsteady lift model when the turbulence of 

intensity is 4.4% (Table 3, M = 0.076 m). 

4.5 	CONCLUSIONS REGARDING THE MEAN LOADING EXPERIMENT 

The dependence of mean loads on the Re number and free 

stream unsteadiness is much stronger for the bodies with free separation 

points (aerofoil at high incidence, ellipse), than for those with fixed 

separation points (D cylinder, aerofoil at moderate incidences). 

Of thetwo unsteady flows considered only turbulence had a 

pronounced effect on the mean loading, tending to diminish the mean lift 

curve slope of the elliptic model at zero incidence and delay the aero-

foil stall. The turbulent flow with the greater intensity appeared to 

cause the greater changes in the mean loads. 

An increase in the Re number is not always "equivalent" to 

the introduction of free stream turbulence, but the results depend on 

the state of the boundary layers. 

The maximum lift coefficient of the aerofoil and the aCL/aa 
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for the ellipse (for Re > 1.2 x 105 ) are clearly influenced by an 

increase in Re number, in the same way as by introducing free stream 

turbulence. 

At low Re numbers in smooth flow, the lift curve slopes and 

the minimum drag coefficients of the ellipse and the aerofoil exhibit a 

rather unusual behaviour with change of incidence. Turbulence tends to 

restore the behaviour observed at higher Re numbers. 

Under the assumption of an "equivalent" Kutta-Joukowski 

condition of zero loading across the trailing edge of the bluff sections, 

thick aerofoil theory predicts reasonably well the mean lift of the D 

cylinder but not on the elliptic cylinder. 
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CHAPTER 5. THE SINUSOIDAL LOADING EXPERIMENT 

5.1 	INTRODUCTION 

The sinusoidal loading experiment was carried out with the 

oscillating rig assembled as in Fig. 3.4. To check the results for 

repeatability, two sets of experiments were made: one in the old 

octagonal cross-section wind tunnel (width = 1.52 m, height = 1.22 m), 

and another in the rectangular cross-section (1.37 m x 1.22 m) (which 

actually replaced the old octagonal cross-section). The differences 

were found to be within the range of experimental error. Therefore, 

the data from both sets appear in a unified form, unless otherwise 

stated. 

Tests were undertaken at Re numbers 1.2 x 105, 1.6 x 105, 

2.2 x 105  and 3 x 105, the upper and lower limits being imposed for the 

reasons stated in Sections 3.1.2 and 3.3.1. 

' 	In conjunction with the frequencies attained by the oscillating 

fr 

 

rig, this range of speeds enabled reduced frequencies (k - 

 

41,1  + from 0.04 
li 	.1 

up to 0.8 approximately, to be attained. Even for the highest reduced 

frequencies of the present case, the sinusoidal lift variation can be 

considered as quasi-steady when compared with the lift variations due to 

vortex shedding, and approximately uncorrelated with it. Therefore, the 

purely sinusoidal and the vortex shedding lift measurements will be 

presented separately. 

Following the same procedure as for the upwash, the unsteady 

lift results appear in the form of frequency spectra, filtered RMS values 

and variations of lift amplitude with time (either averaged over a large 

number of periods, or as instantaneous raw signals from a pen recorder). 

The accuracy and the errors arising in these measurements are described 

in Appendix B. 
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The bulk of the experimental work was carried out with the 

load sensitive models described in Section 3.1.2 and Fig. 3.2, but 

during the course of the work, short tests were performed with four 

modified shapes shown in Fig. 5.1. In the first three, the trailing 

edge of the elliptic cylinder was modified by attaching two bent 

aluminium plates (as illustrated in Fig. 5.1), while the fourth model 

consisted of the elliptic cylinder supplied with trip wires, of diameter 

0.004 c approximately, which were fitted at a distance 0.25 c from the 

leading edge. The mean lift characteristic of this last model is only 

available and it is plotted in Fig. 4.18. The purpose of doing those 

measurements was to examine, in a qualitative manner, the possible effect 

of oscillations of the separation points, on the unsteady lift. 

As far as wind tunnel interference effects are concerned, 

there are no known theories which fully account for tunnel blockage in 

unsteady flow, nor a common practice exists, as to how experimental 

results may be approximately corrected. Holmes (1970) did not apply any 

correction to his unsteady lift results (obtained for a NACA 0012 aerofoil 

in an upwash gust), but he pointed out that the quasi-steady correction, 

of the order - 8%, is not likely to be sufficient in the unsteady flow. 

Graham (1973) working mainly with bluff bodies in turbulent flow applied 

quasi-steadily Maskell's (1963) correction on all the load coefficients, 

thus taking into account only the "wake blockage". Simmons (1976) made 

full (i.e. including all terms given in Table 4) quasi-steady corrections 

for the angle of pitch and moment of a NACA 0012 aerofoil oscillating in 

a steady stream. He justified this by noting that the theoretical lift 

blockage corrections of 	Jones (1950) for Theodorsen's (1935) 

analysis, when applied to his experiments (chord/tunnel height = 0.33), 

differed by a small amount from those for a stationary aerofoil. Recently, 

Kullar (1978) 	working in a similar way as Reissner (1947) in inviscid 
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flow, calculated the change in Sears's function for a flat plate aero- 

foil placed symmetrically with respect to the wind tunnel walls. 

Kullar's correction pertinent to the present work, will be given in 

Section 5.3.3. 

If the same blockage ratios had been used in the measurement 

of both the mean and the fluctuating loads, then the application of a 

quasi-steady correction would be unnecessary for the computation of the 

aerodynamic admittance (see Eqn. (6.5)), since the same corrections would 

apply to the numerator and the denominator. However, the ratio c/h in 

the unsteady load experiment was 0.125, while in the mean load was 

between 0.14 and 0.25. In the former case, there was the extra blocking 

effect of the tripod support system and also the induced change in the 

reduced frequency, which had to be taken into account. It was, therefore, 

decided to apply, as a first approximation, the corrections given by 

Eqns. (5.1) to (5.4) quasi-steadily. Since the drag coefficient in this 

stage of the work was not known, it was taken equal to the corrected 

drag coefficient found in the mean load experiment, at the mean incidence, 

at which the unsteady lift experiment was performed. The blocking effect 

of the support system was assumed to be equivalent to an effective 

increase in the free stream speed, applying in addition Maskell's (1963) 

correction for three-dimensional bodies (i.e. the factor c appearing in 

Table 4 was taken equal to 2.5, as Maskell suggests). The support system 

was assumed to consist of three rectangular Joukowski aerofoils of 

thickness roughly 30%, with drag coefficients estimated from Goldstein (1965). 

The resulting small increase in the free stream speed was added to that 

caused by the test models themselves. In this way the unsteady lift 

coefficient, the reduced frequency and the Re number were corrected. 

The fact that a constant drag coefficient was used for calculating the 

corrections (i.e. by neglecting the changes in incidence of the stream), 
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causes very small error, because for the zero incidence unsteady load 

experiment, it can be seen from Figs. 4.2, 4.9 and 4.19, that 	is 

very small. The calculated increase of the dynamic head due to the 

support system was roughly 2%, and considering the maximum lift 

correction for the D cylinder (about - 4.5%), it is seen that the 

maximum overall correction applied to unsteady lift results is 

approximately - 6.5%. As for the case of the aerofoil at high mean 

incidence, the quasi-steady correction is so small (= - 1.5% at a = 170), 

that the fluctuations above and below the mean angle of incidence do not 

need special attention. 

The fluctuating vortex shedding lift coefficient has not been 

corrected for blockage, since no aerodynamic admittance was calculated, 

or comparison with previous work was sought. The values of the Strouhal 

number given, are also uncorrected for blockage, although in this case 

there is a correction, proposed by Vickery (1966) based on the constancy 

of the Roshko's Universal Strouhal number. 

5.2 	EXPERIMENTAL RESULTS 

This section deals with the measurement of:- 

- The sinusoidal lift (sinusoidal refers to the model response at the 

gust frequency and the related harmonics). 

- The phase between the sinusoidal lift and upwash at the mid-chord point. 

- The chord-wise position of the centre of sinusoidal pressure. 

- The natural vortex shedding lift. 

- The Strouhal number. 

Unless otherwise indicated, it is implied in the following 

that the results refer to the zero mean incidence tests. 
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5.2.1 	UNSTEADY LIFT MEASUREMENTS 

5.2.1.1 	SPECTRAL ANALYSIS 

Selected unsteady lift spectra of the NACA 0015 aerofoil, 

the D cylinder and the elliptic cylinder, all at zero incidence, appear 

in Figs. 5.2 to 5.5. They were computed digitally by the method outlined 

in Appendix B. Note, that both the frequency (Hz) and spectral density 

(sec) scales are logarithmic, with base 10. The spectral density is 

normalized with the mean square (N2) of the full signal. No correction 

has been applied to the digitized data for frequency response of filters, 

amplifiers, force transducers, etc. However, the digitized spectra of 

two reference sinusoidal signals, fed outside and through the system, as 

well as the transducer calibration given in Fig. 3.6, indicated that the 

errors arising were much lower than the other systematic and statistical 

errors. The numbers appearing on top of some of the spectral peaks show 

the corresponding frequency in Hz. These values are only approximate, 

in view bf the finite spectral bandwidth, plotting inaccuracies, etc. 

Strictly, the statistical average frequency of a smoothly varying single 

spectral peak with density Sx  is equal to:- 

.00 

 

Sx  n2  dn 

0 

Sx  dn 

0 

 

 

   

see for example Crandall and Mark (1963). The symbol ng  is used 

exclusively to denote the first harmonic of the upwash or lift. The 

spectral density of this harmonic is employed as a measure of the 

density at other harmonics or peaks appearing on the spectra. "Linear 

response" is not meant in this section in a strict sense, because the 

normalized and not the absolute values of the spectra are presented. 

It tends rather to indicate that the suitably normalized frequency spectra 
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of the input and the output are the same, a necessary condition for 

strict linearity. Next, the spectra for each model are examined separately. 

(a) 	NACA 0015 Aerofoil 

The lift spectra for sinusoidal flow are displayed in Figs. 5.2a, 

d and 5.3a and for smooth flow in Fig. 5.5, all at a Re number of 2.2 x 105. 

As is inferred from the smooth flow spectrum, the strongest mechanical 

resonance occurs at a frequency of 289 Hz. There are also smaller 

intensity resonances in the low frequency range, e.g. at 5, 12, 26 and 

35 Hz (see Figs. 5.2a and 5.5). The extraneous noise spectrum (i.e. with 

zero wind speed), measured with a wave analyzer, indicated that even at 

the highest oscillating rig frequency, the power at the oscillation 

frequency was negligible, being mainly concentrated under the strongest 

mechanical resonance. Thus, it is certain that the spectral peaks 

centred at the gust frequency are almost entirely caused by the 

corresponding upwash. This is also true for the other models. The 

relatively elevated spectral density in Fig. 5.5a for low frequencies is 

thought to be a result of background turbulence and electronic noise. 

In sinusoidal flow the lift spectra exhibit a distinct peak, centred at 

the gust frequency. The height of this peak is 2 to 3 orders of magnitude 

greater than that of the next highest peak in the spectrum, and by more 

than 4 orders of magnitude greater than the average spectral level of 

background noise. This is an indication of good sensitivity of the 

present experiment. The top of the peak corresponds to a value of the 

normalized spectral density of 0.6 approximately. For increasing gust 

frequency, the width of the spectral peak (defined for example as the 

frequency bandwidth, at which the power falls by a certain percentage) 

becomes narrower. This is a characteristic of the oscillating rig, 

since it was observed in the upwash spectra as well (see Fig. 3.18). 

Comparison between the lift and gust spectral peaks, for the 
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same gust frequency and eccentricity, reveals that they are very 

similar and in fact they become almost identical at the highest 

frequencies. A possible change in the preset frequency, which is more 

likely to happen at the lower frequencies, could, however, be responsible 

for the lift and upwash peaks not being identical in this region. 

It can be seen from Figs. 5.2a, d and 5.3a that there exist 

higher harmonics in the lift response. These harmonics may be thought of 

as the combined response of the aerofoil to the already existing higher 

harmonics in the gust (assuming the aerofoil to behave linearly), and 

the generally non-linear response of the aerofoil to the fundamental gust 

harmonic. The strength of the higher harmonics in the lift spectra 

appears to be ordered as the corresponding upwash harmonics, unless they 

are obscured by a minor mechanical resonance or noise from the mains. 

Thus, in Figs. 3.18a and 5.2d (ng  = 4.6 Hz), the second harmonic 

(at n = 9.2 Hz) is lower than the third harmonic (n = 13.8 Hz). 

' 	It was interesting to note that, keeping the gust frequency 

fixed, while lowering the Re number, the main spectral peak changed only 

very little, but the power in the higher harmonics increased with respect 

to the first harmonic. Similar behaviour was observed in the upwash 

spectra, see Figs. 3.18c, d. This is more a result of the non-linear 

effects introduced by increasing the reduced frequency for roughly 

constant gust amplitude (see for example Giesing, 1968), than a Re number 

effect. 

Upon increasing the gust amplitude at constant frequency, 

the shape of the main peak remains unchanged, for both the upwash and 

lift spectra, see Figs. 3.18c and 5.3a. The relatively to the first, 

levels of the second and third harmonics are raised by a greater factor, 

(roughly 1.2 to 2.5) than the corresponding upwash harmonics (see Section 

3.3.4.3), meaning that in this case the aerofoil may respond more "non- 



144 

linearly" than for lower gust amplitudes. The comparatively enhanced 

spectrum of background noise (see Fig. 5.3a, symbol 0), suggests that 

the flow could be more irregular at greater gust amplitudes. In 

connection with this last point, it may be observed from Figs. 3.18, 

5.2a, d and 5.3a that the level of lift background noise, for medium 

eccentricity, is an order of magnitude lower than the corresponding 

upwash level, taking as reference the height of the main spectral 

peaks. This is because the wing is less sensitive to disturbances than 

the hot-wire, especially at high frequencies. 

The interesting points which may be drawn from the 

examination of the lift spectra are, therefore:- 

- The aerofoil responds in an essentially linear manner to the 

incident flow. Note that although the results presented here covered 

only a limited number of frequencies, gust amplitudes and Re numbers, 

this kind of behaviour was found to hold generally. 

- It follows from the great similarity of the main lift and upwash 

spectral peaks, and also from their narrowness, that the values of 

the experimental aerodynamic admittance, formed either as the ratio 

of corresponding spectral powers, or as the ratio of corresponding 

filtered mean square values (see Appendix B), should very nearly be 

the same. 

- The aerodynamic lift spectrum is not accurately represented as the 

strongest mechanical resonance (at 289 Hz), is approached. A safe 

upper limit can be taken as 200 Hz. 

(b) 	D Cylinder 

The lift spectra for the sinusoidal flow are shown in 

Figs. 5.2b, e and 5.3b, c, d and for the steady flow in Fig. 5.5b. There 

are two main mechanical resonances, one between 24 to 26 Hz and the other 

between 477 to 481 Hz (the slight differences in the resonant frequencies 
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are due to different experimental set-ups). At first it was thought 

that the low frequency resonance was associated with vortex shedding 

from the model or the tripod support system. However, this peak does 

not appear in the spectrum of u fluctuations, in the wake of the cylinder 

(see Fig. 5.6h) and its frequency does not change, when varying the Re 

number (Figs. 5.3b, c and 5.5b). Therefore, its origin is not aero- 

dynamic, but mechanical. 

As in the aerofoil case, the lift response is characterized 

by a very strong peak, centred at the gust frequency, which is followed 

by the, much smaller, peaks at higher harmonics. It is remarkable that, 

with the exception of very low frequencies, the main spectral peak of 

the D cylinder and these corresponding to the aerofoil and the upwash, 

have almost the same shape. Relative to the first harmonic, the second 

and third are greater or equal to the corresponding aerofoil harmonics 

(unless the latter coincide with a mechanical resonance, as it happens 

when ng  = 18 Hz). Apart from the fact that the D cylinder has a large 

fluctuating wake as compared to that of the aerofoil, a greater 

contribution from unsteady drag (showing up in the lift spectra due to 

the "cross talk" described in Section 3.1.4), could lead to enhanced 

higher harmonics. It should be noted, however, that the spectral peak 

at the gust frequency is also clearly predominant for this bluff section. 

Unexpectedly, the increase in the oscillating aerofoil amplitude, at all 

other conditions fixed, did not bring about a change in the higher 

harmonic levels, similar to that for the aerofoil. For example, in 

Figs. 5.3c, d, the second and third harmonics are raised by a factor of 

.2.5 and 3 respectively, while the corresponding numbers for the aerofoil 

(Fig. 5.3a) are roughly 16.0 and 8.0. Thus, the values for the D cylinder 

lie between the increase factors of the upwash harmonics (Section 3.3.4.3) 

and the oscillating aerofoil factors (see Table 2). Possible reasons may be:- 
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- Transfer of power to other harmonics. Note for example in Fig. 5.3c, 

that the fourth harmonic (at 40 Hz) is considerably increased. This 

could be due to the sinusoidal vortical wakes shed, at the two sharp 

trailing edges of the cylinder, interacting in a different way than 

in the case of the aerofoil. 

- The presence of the natural vortex shedding peak, which is of the 

same order of magnitude as the higher harmonic peaks. Although, it 

is at a relatively remote position, this peak may interfere, in terms 

of power, with other spectral peaks. 

- Mechanical resonances, which may be excited to a different degree, 

depending on the external forces. 

The overall greater unsteadiness of the flow round the D 

cylinder, is reflected in the spectral level of background noise, which 

is higher than the corresponding one for the aerofoil. Note, however, 

that the relative level of noise is suppressed, when increasing the 

gust amplitude, in contrast to the aerofoil. 

The same general comments can be made about the response of 

the D cylinder in sinusoidal flow, as was done for the aerofoil. In 

particular, it is noteworthy, that there is no sign of strong non-linear 

behaviour of the lift. 

(c) 	Elliptic Cylinder 

Figs. 5.2c, f and 5.4a, b, c show the sinusoidal flow lift 

spectra, while Figs. 5.5c, d, e, the smooth flow ones. The main 

mechanical resonances occur between 440 and 480 Hz and between 22.5 and 

25.5 Hz. (Note, that as with the other models the exact position of the 

resonant frequencies depended upon the particular experimental arrangement). 

Before proceeding to the sinusoidal lift response, the origin 

of some rather curious peaks appearing in the spectra for all the Re 

numbers will be investigated; namely, those between 50 and 56 Hz for 
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Re = 2.2 x 105  (Figs. 5.2c, f, 5.4a, b and 5.5c), at approximately 76 Hz 

for Re = 3 x 105  (Fig. 5.4c), between 29 to 36 Hz for Re = 1.6 x 105  

(Fig. 5.5d) and at approximately 16 Hz for Re = 1.2 x 105  (Fig. 5.5e). 

These peaks are observed in both steady and oscillatory flows; therefore, 

they cannot be caused by the latter. Their explanation in terms of 

natural vortex shedding, leads to unrealistically small values of Strouhal 

number (0.13 - 0.08). Indeed, Modi and Wiland (1970) and Schramm (1966) 

tested elliptic cylinders of similar fineness ratios at subcritical Re 

numbers and found quite higher Strouhal numbers (0.23 - 0.40). The 

author's experiments were undertaken at critical Re numbers, and in view 

of the results of Bearman (19690 for the rise in the Strouhal frequency 

of a circular cylinder as the critical flow regime is approached, it is 

expected that the vortex shedding frequencies would be considerably 

higher than those mentioned previously. In fact, this is what happens, 

as it is realised by referring back to Figs. 5.2, 5.4 and 5.5, where 

rather broad peaks appear at high frequencies. The following possibilities 

were considered, in an attempt to explain this phenomenon:- 

1. Interference due to vortex shedding from the tripod support 

system (shown in Fig. 3.4). Apart from the fact that the shedding 

frequencies related to this body are expected to be much higher, this 

possibility should be precluded, because similar peaks, also appear in 

the spectra of u fluctuations, measured in the wake of a solid elliptic 

cylinder (chord = 0.17 m), which was mounted between the vertical walls 

of the 0.61 x 0.91 m wind tunnel, i.e. without any support system, see 

Figs. 5.6a, b, c, d, e (end plates were used, see Fig. 4.6). 

2. Extraneous acoustical input. It may be that a pressure 

field generated by the vibrations of the tunnel walls (in particular, the 

two vertical end plates) could have affected the unsteady pressure on the 
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model (for example as found in the experimental results of Surry, 1969). 

If that was the case, or if another acoustic wave was responsible, the 

excitation frequency would have always been the same and, of course, it 

would have appeared on the other models as well. Therefore, this 

possibility is also excluded. 

3. 	Role of the separation bubbles. Bearman (19699, working on 

a circular cylinder in the subcritical and critical flow regimes and in 

steady flow, found that at a particular Re number, two peaks appeared in 

the velocity spectra in the wake (the second peak was at a frequency less 

than twice the first, so that it was not caused by the influence of the 

central wake region). He claimed that the two peaks on the spectrum 

indicated the Strouhal number just before and just after one separation 

bubble was formed on the surface of the cylinder. In the author's 

experiments such a Re number could not be found, nor was the flow 

particularly unsteady as Bearman (19698 reported. Also, unlike Bearman's 

(1969L- observations no discontinuity in the variation of base pressure 

against Re number, or mean lift coefficient different from zero (at zero 

mean incidence) was realised. In addition, if the lower peak in the 

author's results, corresponded to shedding in subcritical flow (as in 

Bearman, 19698, the Strouhal number should have been higher (see Schramm, 

1966). However, the. idea of an asymmetric (in space and time) formation 

of the separation bubbles cannot be entirely dismissed. Fig. 2.3 also 

shows that the formation of the separation bubbles varies according to 

the particular experiment. It can be seen from Figs. 5.6a, b, c, d that 

when the elliptic cylinder is at an angle of incidence relative to the 

free stream, the frequency of the higher (vortex shedding) spectral peak 

changes little (note, it is uncorrected for blockage), while its 

intensity progressively increases in relation to the lower curious peak, 
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of which the frequency is also nearly constant. At an incidence of 15°, 

the lower peak completely disappears, as it does when the free stream is 

turbulent (Fig. 5.6g), or the steady oncoming flow subcritical (Fig. 5.6f). 

These tests are only to indicate that the mechanism which controls the 

intensity of the lower peak depends on the state of separation (the 

spectra refer to one side of the wake only). 

4. 	Three-dimensionality in vortex shedding. It may be that 

vorticity is shed at different phases along the model span in a form of 

spanwise cells, similar to the kind observed by Gaster (1969), Maull and 

Young (1972) and Mair and Stansby (1975). Gaster (1969) tested a 

slightly tapering circular cylinder in a uniform low Re number flow, and 

found that vortex shedding occurred in patches, which were repeated 

regularly at a lower frequency; the Strouhal number in each spanwise 

cell was constant. The other authors mentioned, tested D section 

cylinders in a shear flow of which the vorticity vector was normal to 

the cylinder axis. They found that a longitudinal vortex served as a 

boundary between the observed spanwise cells, allowing different 

frequencies in the wake. Neither of these two conditions (i.e. tapering 

or shear flow) occurred in the author's experiments. However, the flow 

in the wake was irregular, as it can be judged from the oil flow 

visualization (Fig. 4.11) and the spanwise correlation, measurements shown 

in Figs. 6.6 and 6.7. Even for a D section cylinder, in uniform flow 

Graham (1969) found that the shed vortices were not coherent, unless 

the end plates were at a distance apart no greater than 4 b (b = body 

thickness). It is thought, that this incoherency combined with possible 

asymmetries due to bubble formation (see previous section), could lead 

to the shedding process taking place in patches, with a repetition 

frequency equal to the frequency of the curious peak described. The 

shape of the spectral peak (rather broad) could indicate the degree of 
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randomness of the phenomenon. By plotting this frequency in a 

dimensionless form, ns'/Um, (s' = total span) against the Re number, 

Uo.s'/v, in Fig. 5.7, it may be argued that (except for one experimental 

point, which is at the highest Re number), roughly, n depends only on 

U!,/v (since ns'/Uo  is roughly proportional to Uos'/v), a result also 

obtained by Gaster (1969). The closeness of the experimental points for 

models of different spans (see Fig. 5.7) shows that the span length is 

the appropriate non-dimensionalizing quantity. Another point, which is 

in support of the shedding in patches, is the high degree of spanwise 

found 
correlationnat this frequency, even higher than the correlation measured 

at the Strouhal frequency. It should be emphasized, that these suggestions 

are only based on a few measurements. Further work would be needed to 

explain this phenomenon, and in particular, flow visualization by smoke 

(in a larger model, to reduce the wind speed), may be helpful. The 

spectral peak described does not affect the main spectral peak of the 

sinusoidal lift, because it is several orders of magnitude lower. Its 

shape can, however, be modified, in fact become narrower, when it 

coincides with a higher lift harmonic (compare Figs. 5.2c and f), 

implying that in this case shedding might become more coherent. 

The sinusoidal lift response is now examined. From Figs. 5.2 

and 5.3 it is observed that the strong peak at the gust frequency 

characterizes the lift response of the elliptic cylinder. Its shape is 

very similar to those of the gust, aerofoil and D cylinder, especially 

at the higher frequencies. The higher lift harmonics are generally 

greater (relatively to the first) compared to those of the gust and the 

other models (unless they interfere with a minor mechanical resonance, 

as in Figs. 5.4a, b). An additional reason for this non-linearity (see 
possible 

also section on D cylinder) is thought to be a A movement of the 

separation points. 
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The spectral level of background noise is comparatively 

larger than in the D section cylinder and the aerofoil, an indication 

of a greater deviation from two-dimensionality. Partly, this is on 

account of the spread of energy away from the vortex shedding peak, which 

is observed to be significantly suppressed. 

Increasing the gust amplitude, with all the other variables 

fixed, has the effect of increasing the relative strength of the higher 

harmonics, but not as much as for the aerofoil or the gust, perhaps for 

the reasons mentioned previously (see the D cylinder results). The effect 

on the spectral level of background noise is in the same direction as for 

the D cylinder, i.e. the noise is relatively suppressed. 

Summarizing the results from the unsteady lift spectra, it 

can be said, that the sinusoidal response of the elliptic cylinder is of 

basically linear type, though less linear than the responses of the 

aerofoil and the D cylinder. The comments made for the aerofoil case 

hold here as well. 

5.2.1.2 	MEASUREMENTS OF THE RMS LIFT COEFFICIENT 

In this section, the RMS lift measurements performed on a 

frequency band, which is centred at the gust frequency are given. The 

spectra presented in Section 5.2.1.1 confirm that the filtering method 

outlined in Appendix B is meaningful. All results refer to the zero 

mean incidence experiment. 

(a) 	NACA 0015 aerofoil: Fig. 5.8 displays the variation of the 

filtered RMS lift coefficient, CL, with reduced frequency k = Trnc/Uo, 

for the NACA 0015 aerofoil. Four Re numbers, 1.2 x 105, 1.6 x 105 , 

2.2 x 105  and 3 x 105, and three oscillating aerofoil pitch amplitudes 

(marked as eccentricities) were tested. 
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The experimental results for each eccentricity are spread 

about a mean line, which is of similar shape to that of the RMS gust 

amplitude variation (Fig. 3.17). However, the observed maximum occurs 

here at a lower value of k. That seems to be a result of the progressively 

increasing influence from the aerofoil wake, which according to Sears's 

theory (Section 2.3.1), tends to diminish the unsteady lift as k increases. 

The values of the lift coefficient are ordered as the corresponding gust 

amplitudes, i.e. the greater the eccentricity, the greater the lift 

coefficient. By simply superimposing Figs. 5.8 and 3.17, it can be seen 

that, the proportionality is maintained. In conjunction with the spectral 

analysis results, this provides satisfactory evidence of a strong linear 

response of the aerofoil, over the range of variables examined here. 

Altering the Re number, at constant k and eccentricity, has 

the effect of slightly changing the lift coefficient and gust amplitude 

in the same direction (on average) and roughly by the same percentage. 

Therefore, it could be claimed that the scale effect is probably more 

important for the flow round the oscillating aerofoils, than the aerofoil 

exposed to the sinusoidal gust, but errors in the hot-wire calibration 

and inappropriate tunnel interference corrections, may render this 

argument untrue. There are also some factors, which could affect the 

level of the experimental results at fixed Re number and introduce scatter:- 

- Fixing the oscillating aerofoil amplitude. It was stated in Section 

3.2.1, that the adjustment of aerofoil pitch amplitude, was 

accomplished by moving (mechanically) an eccentric shaft. Although 

it has been tried, as far as possible, to carry out all measurements 

at a particular Re number and then change the oscillating aerofoil 

amplitude, this was not always the case. The errors introduced by 

readjusting the shaft eccentricity to its previous position would 

shift the overall level of lift. 
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- Although the gap between the "live" section and the dummy ones, and 

the length of the cylindrical rods supporting the aerofoil (see Fig. 

3.4) caused insignificant changes in the filtered RMS lift values, 

they should be remembered as possible factors introducing scatter. 

- Measurement of RMS value. Comparison between the filtered RMS values 

and those obtained by integrating the areas under the spectral peaks 

and taking the square root, showed a maximum discrepancy of 5%, at 

the lowest frequencies. It is thought that this uncertainty in 

measuring the RMS values is an additional source of scatter, which in 

the present results (for constant k, Re and eccentricity) did not 

exceed 6%. 

(b) 	D cylinder: In Fig. 5.9 the results for the D section are 

presented. The unsteady lift coefficient values are always higher, 

compared to those of the aerofoil. However, they can be made to roughly 

coincide over the entire frequency range, if the D section results are 

divided by a factor ranging from 1.16 to 1.21. In all other results 

(effect of Re number, reduced frequency, aerofoil amplitude) the comments 

made for the aerofoil also apply here. The experimental points, when 

shifted downwards do not correspond exactly to those for the aerofoil, 

partly because the blockage corrections involved, change both CL  and k. 

The fact that the unsteady lifts of the aerofoil and the D 

cylinder are approximately connected by a proportionality relationship , 

shows that the corresponding unsteady flows about the two might be quite 

similar. If the spectral analysis results are also taken into account, 

there could be no doubt that, with regard to the D cylinder, the lift 

response is strongly linear. 

The situation is somewhat different, when the unsteady lift 

coefficient of a modified elliptic cylinder is considered (see Figs. 5.9 

and 5.1). It can be seen from Fig. 5.9, that the experimental results 
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for this body do not follow the general trend of the D section points, 

i.e. they cannot be assumed proportional-to the aerofoil's results. 

Re number effects are not likely to be the cause, since the Re number for 

this model (= 2.5 x 105) lies between the Re numbers already examined. 

Although the mean load characteristic is not known, it is thought that 

it could not contribute to the deviation. Rather, it may be an irregular 

behaviour of the separation points, which makes the results for the two 

bodies look different. Namely, it could be that separation takes place 

either upstream of or at the two sharp trailing edges of the cylinder, 

depending partly on how rapidly the flow changes about it, i.e. depending 

on k. If separation takes place at the two sharp trailing edges, then 

only a small deviation from the D section results is to be expected. 

But if separation occurs upstream of the trailing edge, then the flow 

picture would be altered, due to possible oscillation of the separation 

points and interference of the two parallel plates with the wake. This 

test shows, therefore, that the consistent behaviour realised with the 

D section is associated with the two separation points being fixed at 

the sharp trailing edges. 

(c) 	Elliptic cylinder: The elliptic cylinder measurements are 

plotted in Figs. 5.10, 5.11 and 5.12. Interesting points are:- 

- The measured lift. coefficients are higher compared to those of the 

aerofoil, with the exception of a few experimental points at very 

high k, which are lower. At these highest reduced frequencies the 

lift signal appeared less steady and less sinusoidal. The departure 

from sinusoidality might be due to the relatively growing extraneous 

noise and the features of the flow itself, but the unsteadiness 

indicates an irregular flow behaviour. 

- The results depend very strongly on the Re number. The greatest 
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influence is observed for 1.2 x 105 < Re < 2.2 x 105, the range over 

which the mean lift coefficient is also greatly affected (see Fig. 4.18). 

- Unlike the D cylinder, here the CL v. k curve cannot be made to 

coincide with corresponding aerofoil curve, by a simple multiplication. 

For example, when 1.2 x 105 < Re < 2.2 x 105 and k is low, CL is about 

80% higher than the CL of the aerofoil, while at high k, it is only 

40% higher. However, when Re = 3 x 105, C~ varies with k in 

.approximately the same manner as in the aerofoil and the D section cases. 

- Although difficult to discern from the plots, there appears to be a 

systematic effect of gust amplitude (Re number fixed), expressed in 

the relative reduction of CL, when the eccentricity is large. This,' 

and the strong Re number dependence, make the elliptic cylinder behave 

less linearly than the aerofoil and the D cylinder. 

Some results for the modified elliptic shapes (see Fig. 5.1) 

are displayed in Fig. 5.12. The ellipse with a single, short trailing 

edge (marked as number 2) is tested at a Re number 2.35 x 105, and the 

lift coefficients obtained follow the same curve as the data for the 

simple ellipse, at Re = 3 x 105. Assuming that the Re number increase 

from 2.2 x 105 (in which case CL is high) to 2.35 x 105 is rather small 

to affect the lift coefficient, the short trailing edge could have 

reduced C~ in the following ways:- 

(1) 	Reduce the mean lift. 

(ii) Interfere with the wake. 

(iii) Alter the position and path of the separation points. 

The modified ellipse with the longer trailing edge (number 3) 

tested at Re = 2.6 x 105, exhibits consistently lower values of CL. The 

lift coefficient approaches, from below, that of the aerofoil (Re = 3 x 105 ) 

as k increases. In this case, the effect of increased Re number can be 

added to the reasons for the reduction of CL. 
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Finally, the lift coefficient of the elliptic cylinder 

fitted with trip wires at 0.25 c from the leading edge (number 4) is 

always lower from both CL  of the aerofoil and the simple elliptic 

cylinder, tested at the same Re number (= 2.2 x 105 ). As k increases, 

CL  becomes a greater percentage of the aerofoil's corresponding 

coefficient. At low k, the drop of unsteady lift relative to the 

aerofoil, corresponds approximately to the drop of the mean lift 

(measured on a similar model, see Fig. 4.18) below that of the aerofoil 

(Fig. 4.1). 

The experimental results presented in this section indicate 

that the sinusoidal lift can be made to depend onfewe+' parameters, if 

the separation points are held fixed. The significance of this fact will 

also be discussed later. 

5.2.1.3 	VARIATION OF FLUCTUATING LIFT COEFFICIENT WITH TIME 

The measurements described in this section, deal with the 

variation of the fluctuating lift coefficient in the time domain. The 

oscillating signals are shown in a full cycle, which is the average of 

a large number of similar cycles (see Appendix B). The time axis is 

expressed as phase angle wt (degrees), the origin being the same as in 

the corresponding gust amplitude plots (Fig. 3.19). The fluctuating 

lift signal, as it comes out from the charge amplifiers, does not include 

any mean load. Here, both the zero and the high mean incidence 

experiments are described. 

Fig. 5.13a to f shows a few selected CL  v. wt curves for the 

D and elliptic cylinders, at Re = 2.2 x 105  and medium eccentricity. 

The variation of gust amplitude is also shown for comparison. It is 

observed that, at high frequencies, CL  and ag  vary in an apparently 

sinusoidal manner. This can be seen clearly in Fig. 5.13c, f by 
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reference to a pure sine wave, with the same period and peak amplitude 

as CL.  As the frequency decreases, the deviation from sinusoidality of 

both CL  and ag  is more evident. Possible reasons for this lack of 

sinusoidality could be:- 

- The existence of higher harmonics, which are not smoothed out in the 

conditionally averaging method. 

- Insufficient averaging time. 

- The effect of the tripod support system. 

The presence of a small DC component in the signal. 

The last two reasons would lead to an asymmetric type of 

signal, like the one in Fig. 5.13b. In general, however, the variation 

of lift follows fairly closely the variations of the gust for both bluff 

bodies and for the aerofoil as well (of which the results are not 

presented here). It is noteworthy, that in all tests the variation of 

CL  with incidence over a complete cycle forms an anticlockwise loop (see 

also Section 5.2.2 on phase measurements). 

5.2.2 	LIFT-UPWASH PHASE MEASUREMENTS 

The phase between the lift and the upwash, with respect to 

the mid-chord point, is plotted in Figs. 5.14, 5.15 and 5.16. Both the 

fluctuating lift and upwash signals were processed under identical 

conditions to ensure uniform phase shift, relative to the fixed origin. 

To determine the phase, the position in the cycle of each signal 

(instantaneous or conditionally averaged) was measured with respect to 

the spiky reference signal (Section 3.2.2) and the two results were 

subtracted. It was estimated that the maximum error in measuring the 

phase of each quantity, was about 3%, so that the overall maximum error 

in the phase between CL(t) and ag(t) would be ± 3%, implying a scatter 

band of about 20°  maximum. The same and certainly more accurate results 
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could have been effected by the cross-spectral density approach, at the 

expense of computer time and digital tape. 

(a) 	NACA 0015 Aerofoil: In Fig. 5.14 the phase relating to the 

NACA 0015 aerofoil is shown. Only the medium eccentricity position of 

the oscillating aerofoils was considered, but four Re numbers ranging 

from 1.2 x 105  up to 3 x 105  were used. The absolute value of the phase 

is seen to increase from low values, at small k, and remain more or 

less constant for the higher reduced frequencies. Due to the 

considerable scatter a systematic Re number effect is not discernible. 

For the range of reduced frequencies considered, however, (k < 0.6) the 

experimental values are of the correct sign, according to the thin 

aerofoil theory, i.e. the sinusoidal lift lags behind the gust velocity. 

This shows that the vortical wake produces the anticipated effect. In 

contrast to the present results, Holmes (1970) reported a lead instead 

of a lag, for a NACA 0012 aerofoil, which he tested in a "moving wall" 

gust tunnel (Section 2.3.6). There is, however, an important difference 

in the gusts employed by Holmes and the author: In the former the 

ratio of the gust wavelength to chord length is kept constant (so that 

the quasi-steady interaction is maintained) and the frequency of the 

gust is varied (so that the unsteady interaction is varied); in the 

latter both interactions are allowed to change. Maeda and Kobayakawa 

(1970) presented the phase results for a NACA 0012 aerofoil for 

k < 0.0175. Their results exhibit an enormous degree of scatter with 

k and a reasonable one with mean incidence (mean incidences up to 9°  

were examined). Since they do not state the method of determining the 

phase (note, the results are scattered about the line if,= 2250), a 

comparison with the author's results (which could be meaningful due to 

the small differences in the NACA 0015 and 0012 profiles), is not 

possible. In the, apparently easier to handle, case of an oscillating 
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aerofoil in a uniform stream, the existing data from previous workers 

tend to be somewhat more coherent, as it is for example realised by a 

glance at the papers of Silverstein et al (1939), Reid et al (1940), 

Halfman (1952) and Spurk (1964). 

(b) D Cylinder: The D section experimental results are 

displayed in Fig. 5.15, with flow parameters the same as in the aerofoil. 

A certain amount of scatter is again evident, but the general trend 

indicates a greater lag of lift behind the upwash, as compared to that 

of the aerofoil. Otherwise the data for both models are similar. 

(c) Elliptic Cylinder: The phase measurements for the elliptic 

cylinder, appearing in Fig. 5.16 are on average different from those 

presented for the aerofoil and the D section in two respects. First, 

the phase lag is greater and second it tends to increase rather than 

remain constant, at the higher frequencies. It is also noticed, that 

the points corresponding to the greatest Re number examined tend to 

have the smaller lag, while those for the lower Re numbers (1.6 x 105  

and 1.2 x 105 ) to show on average, a tendency for bigger phase lags. 

5.2.3 	MEASUREMENTS OF THE CHORDWISE POSITION OF THE 

CENTRE OF PRESSURE 

In. Chapter 4, the centre of pressure was determined for the 

two bluff sections, with the help of the mean surface pressures and the 

results were plotted in Fig. 4.10. In the present experiment unsteady 

pressures were not measured, but instead the three individual signals 

from the piezoelectric transducers were processed instantaneously, to 

yield the instantaneous point of action of the fluctuating lift force. 

Indeed, if it is assumed that the transducers respond only to forces 

in the vertical upwash direction and the three cylindrical connecting 

rods (Figs. 3.2 and 3.4) exert point forces, then the centre of pressure 
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in the x-y plane can be found by applying the theorem of moments. The 

method followed consisted of recording simultaneously in the analogue 

tape recorder (odd or even channel positions only) the three lift 

signals and the coil reference signal. Then each lift signal was played 

back together with the reference signal and tape recorder output was 

filtered and recorded on paper, by means of a BRUSH two-channel pen 

recorder. The three pairs of plots thus obtained, corresponding to a 

specific model, k, Re, ā and rig eccentricity, were analyzed graphically 

to determine the chordwise position of the centre of pressure. Since 

only a limited number of cycles could be handled (usually 10) the 

statistical reliability of the results is not very good. Particularly 

inaccurate are the results, when the lift signals are about to become 

zero, due to augmented graphical errors, hence calculations in this 

region were not attempted. A minimum error of ± 3% was estimated. 

Also, due to the analogue filtering involved, the migrations in the 

centre of pressure due to vortex shedding and the harmonics higher 

than the third were eliminated. 

An important result was that the forces sensed by the two 

(front) transducers were virtually identical in amplitude and phase. 

Although the detailed load distribution remains unknown, this is a 

significant indication of two-dimensionality of the unsteady flow about 

the models. Hence, at zero mean incidence, the resultant unsteady 

force lies essentially in the vertical plane through the mid-span. 

(a) 	NACA 0015 Aerofoil: In the case of the aerofoil at zero 

incidence no quantitative results are available, but by displaying the 

individual lift signals in a storage oscilloscope, it was observed that 

the centre of pressure, being located in the mid span plane, did not 

on average deviate much from the quarter chord point position. Note, 

that the thin aerofoil theory predicts a centre of pressure located 
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exactly at the quarter chord point, at all times, and a pressure 

distribution of the same form, ACp  ti ✓(1 - x)(l + x), both in steady 

and frozen unsteady flows (see Graham, 1970b). Despite the fact that 

the overall lift response was very sinusoidal, the signal from each 

transducer departed slightly from the sinusoidal and symmetrical forms, 

especially the one in the rear of the aerofoil. Possible reasons for 

this behaviour could be:- 

- The existence of a small reversed flow near the aerofoil trailing 

edge. Holmes (1970) attributed to this fact the distorted shape of the 

unsteady pressure coefficient near the trailing edge of a NACA 0012 

aerofoil, but instead of a worsening in the load waveform with increasing 

frequency (observed by Holmes), an improvement was experienced in the 

present case. 

- The sensitivity of the transducers to transverse loads (Section 3.1.4). 

- The influence of the tripod support system (Figs. 3.4, 3.15). 

(b) 	D Cylinder: In Figs. 5.13a the migration of the centre of 

pressure over a complete cycle is shown, pertinent to the D section. 

The centre of pressure position is measured in fractions of the chord 

from the leading edge, xcp/c. Taking into account the experimental 

inaccuracies, it is seen that for the flow parameters considered, k = 0.22, 

Re = 2.2 x 105, medium eccentricity, the centre of pressure performs an 

excursion within close limits about the 35% c position approximately. 

The centre of pressure of the steady lift force, plotted in Fig. 4.10, 

at mean incidences comparable with those of the unsteady upwash (i.e. 0 

to 5°), is observed to lie at about 28% c from the leading edge. This 

difference indicates that the shapes of the mean and unsteady pressure 

distributions are not generally the same. 

The points regarding the sinusoidality of each separate lift 

signal (from each transducer) which were made for the aerofoil can be 
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also repeated here. 

(c) 	Elliptic Cylinder: The values of xcp/c for the elliptic 

cylinder are shown in Figs. 5.13d, f with corresponding reduced 

frequencies 0.12 and 0.22. The centre of pressure oscillates about the 

40% c position, which is within the range covered by the centre of 

pressure of the mean lift force, under a quasi-steady change of 

incidence (see Fig. 4.10). There does not seem to be any significant 

change in xcp/c for the two reduced frequencies examined considering the 

experimental errors involved. 

The lack of sinusoidality of the individual transducer outputs 

was more evident, than in the two other models, because of the extended 

reversed flow on the rear of the ellipse. However, no serious worsening 

of the two-dimensionality occurred. 

5.2.4 	NATURAL VORTEX SHEDDING IN SINUSOIDAL FLOW 

In this section, the effects of the sinusoidal flow upon the 

vortex shedding spectra of the two bluff bodies is briefly examined. In 

Sections 5.2.1.lb, c, it was pointed out which spectral peaks should not 

be confused with vortex shedding. Using this information, and assuming 

a universal Strouhal number S* = ndw/Uw  in the range of 0.16 to 0.18 

(where dw  is the value in the wake width, see Roshko (1954a), and Uw  the 

mean speed at separation (= U, /1 - Cpb)), the location of the intrinsic 

shedding frequencies could be ascertained. The wake width was roughly 

estimated from hot-wire traverses in the wake and also from the mean 

position of boundary layer separation (see Figs. 4.7 and 4.12). 

The spectra are presented in a dimensionless form, i.e. the 

absolute lift coefficient spectra are multiplied by Uw/b, to eliminate 

time and the result is divided by the mean square of the lift coefficient 

due to vortex shedding (CLvs)2. This last quantity was determined as 
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follows: The numerical values of the lift spectra, as obtained from 

the digital analysis program (Appendix B), were smoothed over frequency, 

so that they could be more clearly plotted. Then a curve of the form 
c 

c exp (- c2in - nvs  3) was fitted through the smoothed points, where 

c , c , c were constants to be found and n 	the vortex shedding 
1 	2 	3 	 VS 

frequency (Hz), chosen as the frequency at which the lift spectrum was 

maximum. For the D section this fitting required that the experimental 

and mathematical curves had the same maxima, 
Smax 

 at n= nvs, and common 

points at 0.5 S
max 

 and 0.05 
Smax' 

 For the elliptic section the two 

curves would have common points at n = nvs, and approximately at n = nvs 

± 0.05 nvs  and n = nvs  ± 0.15 nvs. The computed area under each one of 

these curves, from n = 0 to co, was defined as 
(CLvs)2, 

 taking into account 

the calibration factors, etc. It is recognized that there will be some 

"cross talk" between the lift power due to the sinusoidal gust and that 

due to vortex shedding, so that the lift coefficient, just defined, would 

not include only the (natural) vortex shedding contribution. However, 

from Figs. 3.18, 5.3 and 5.4, it can be seen that the power due to the 

upwash drops significantly before the much higher shedding frequencies 

are reached (spectra for Re > 2.2 x 105  were only analyzed to yield 

C
Lvs

). Therefore, the direct contribution of the unsteady sinusoidal 

lift to C
Lvs 

is expected to be small. Since the levels of the vortex 

shedding lift spectra are generally very low compared with the first 

harmonic of the sinusoidal lift (especially for the elliptic model, see 

Fig. 5.4), the existing background noise will limit the accuracy of 

measuring the former and consequently of 
CLvs. 

 All quantities presented 

are uncorrected for tunnel blockage. 

(a) 	D Cylinder: The dimensionless vortex shedding lift spectra 

are plotted in Fig. 5.17 for both smooth and sinusoidal flows. On the 

same figure the corresponding values of C
Lvs 

 obtained by numerical 



164 

integration are given. It is observed that the shape of the spectra is 

not appreciably affected by changes in Re number or reduced frequency. 

The different levelling of S
max 

 could be partly attributed to the 

uncertainty in measuring absolute spectral power and changes in the 

experimental arrangement. When compared to the uniform flow RMS lift 

coefficients of the square cross section cylinder at zero incidence 

(C
Lvs ' 1.3 - 1.4, Re of the order 105, see Vickery (1966) and Pocha, 

1971), or the circular cylinder (CLvs = 0.8 - 0.15, 102  ti Re ti 106, see 

Fung (1960) and Sallet, 1972), the D section cylinder is seen to be of 

a much smaller "bluffness". It should be pointed out that the present 

values of C
Lvs 

are in qualitative agreement with those calculated by 

applying a potential flow model, derived by Sallet (1972) with inputs 

the measured mean drag coefficient and Strouhal number and principal 

assumption of a von Karman vortex street with spacing ratio 0.281. 

Actually, the predicted C
Lvs 

 are 2 to 3 times higher than those measured 

and this could be partly due to the fact, that the theoretical model 

gives the cross sectional C
Lvs 

 and not the overall lift coefficient 

measured here, which is the sum of all the, non-perfectly correlated 

loads across the span (see Figs. 6.6 and 6.7). 

Fig. 5.17 shows that the introduction of the sinusoidal 

flow reduces the vortex shedding lift coefficient, as it does an 

increase in the Re number from 2.2 x 105  to 3 x 105. As k increases , 

CLvs 
becomes gradually lower with respect to its value in steady flow. 

It is also observed that the effect of increasing the gust amplitude, 

at constant k, is to lower 
CLvs' 

Thus the present results are similar 

to those reported by Pocha (1971) (see Section 2.3.5 and Fig. 2.8). 

Pocha attributed the decrease in 
CLvs' 

outside the "lock in" range, to 

two factors: One was due to the interference or the gust periodic flow 

with the vortex shedding flow, leading to a progressive weakening and 
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irregularity of the shed vortices as the gust frequency neared the 

shedding frequency (but still not very close to it); the other was due 

to the effective incidence of the gust (which quasi-steadily would 

reduce 
CLvs' 

as found experimentally in steady flow). Although the 

author's experimental conditons are not identical to those of Pocha (for 

example Pocha's sinusoidal gust is convected downstream at half the free 

stream speed), these reasons could account for the reduction in CLvs 

encountered in the present experiments. 

The effect of a sinusoidal cross flow upon vortex shedding 

for a long, square ended body, was studied theoretically by Clements 

and Maull (1975). During the "unlocked" type of shedding, the rate of 

shedding of vorticity, dr/dt, was found to exhibit large periodic 

variations in both its amplitude and period of oscillation. It is 

thought that this irregularity could act as to lower CLvs  relative to 

its value in steady flow (where dr/dt was settled to a steady periodic 

form). The present results may then be explained in terms of this argument. 

The vortex shedding lift may be also modulated by the streamwise 

component of the sinusoidal gust. A simplified analysis, presented in 

Appendix E, shows that, under the assumption of a constant Strouhal 

number, the shedding spectrum would decrease and become broader in the 

presence of a uniform streamwise sinusoidal component. ,This effect is 

not likely to be important here, because u is very small in the region 

occupied by the test models, but more important in turbulent flow, where 

u is much stronger. 

Fig. 5.19 displays the limits of variation of the Strouhal 

number with Re number for various types of flows. It can be seen that 

for 105  ti Re ti 3 x 105, the Strouhal number may be assumed constant, at 

the value of 0.265 within ± 4%. This value differs by less than 4% from 

the Strouhal numbers reported by other workers, who have tested D sections 
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of thickness to chord ratios 0.167 to 0.667, see for example Maull and 

Young (1972), Bearman (1965) and Graham (1969). 

(b) 	Elliptic Cylinder: The lift spectra appear in Fig. 5.18, 

with flow conditions as in the D cylinder. There is very little 

difference between the smooth and sinusoidal flow spectra at the same 

value of Re number. However, in smooth flow, an increase of Re number 

from 2.2 x 105  to 3 x 105  results in two different types of spectra 

altogether. The Strouhal number is raised, the maximum spectral level 

is decreased and there is some evidence of some broadening of the 

spectrum above nvs  and of a narrowing below nvs. These changes are too 

large to be attributed to measurement inaccuracies (which,, it should be 

emphasized, are higher than for the D section, due to the very low levels 

of the spectra). The corresponding lift coefficients are not, however, 

significantly altered, because the trends of lowering and broadening the 

spectrum might cancel each other. 

The theoretical model of Sallet (1972) mentioned earlier, 

gives lift coefficients as much as 5 times the experimental ones. The 

lack of spanwise coherence of the shed vortices (which is worse than in 

the D section, see Figs. 6.6 and 6.7), should be partly responsible for 

this discrepancy. Modi and Wiland (1970) are known to have measured 

RMS lift coefficients of elliptic cylinders of fineness ratios 1.25 and 

1.67 in uniform flow. They found values of C
Lvs 

 an order of magnitude 

higher than those presented here. Besides the different fineness ratio, 

their results are not, however, comparable with the author's, first 

because their models had a larger aspect ratio (= 11 compared with 2.5 

of the author's) and second, because they had experimented at subcritical 

Re numbers 
(CLvs 

is expected to drop significantly as the critical regime 

is entered, see Sallet (1972) and Fung, 1960). 

The fact that the shedding lift coefficient undergoes only a 
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small reduction in sinusoidal flow, compared to the corresponding 

reduction of the D cylinder, may be explained by observing that the 

Strouhal frequencies of the elliptic cylinder are almost twice those of 

the D cylinder. Thus, any interference between the vortex shedding and 

the sinusoidal flows would be weaker for the elliptic cylinder, although 

the "gust angle" effect might be more important due to the non-fixed 

positions of the separation points. 

The variation of the Strouhal number against Re number, 

shown in Fig. 5.19, indicates a strong Re number effect. In uniform flow, 

the Strouhal number is seen to decrease as the critical regime is 

approached, stay rather constant at Re = 105  and then increase rapidly 

to quite high values at Re = 3 x 105. It is noticed that approximately 

the same behaviour is followed in the sinusoidal flow. The sudden 

changes in the Strouhal number are associated with the corresponding 

changes in the positions of mean separation, reported in Chapter 4. For 

subcritical Re numbers (Re ti 10 5 ), the Strouhal numbers found here are 

between those measured by Schramm (1966), for elliptic cylinders of 

fineness ratios 2.0 to 4.0. Finally, a comparison between the Strouhal 

numbers of the elliptic and D cylinders, reveals that the former is of 

a considerably smaller "bluffness". 

5.3 	COMPARISON OF THE EXPERIMENTAL RESULTS WITH THE THEORY AND 

DISCUSSION 

5.3.1 	THEORY 

The unsteady thin aerofoil theory, originally developed by 

Sears (1941) was described in Section 2.3.1. This theory is here 

modified in two different ways, in an attempt to predict the linear gust 

loading of the models (i.e. excluding the vortex shedding loading). The 

corresponding Kutta-Joukowski condition employed is that the pressure at 
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each separation point is instantaneously equal to the base pressure, 

i.e. the condition of zero loading across the trailing edge is applied. 

The two bluff bodies are idealized as flat plates and the two vortex 

sheets shed from the separation points of each body are assumed to lie 

both at the extension of the flat plate chord. Thus the "effective" 

trailing edge of each bluff body is assumed to coincide with the 

trailing edge of the flat plate. To first order thickness does not 

affect the problem in unsteady thin aerofoil theory, though the mean 

lift curve slope is influenced by thickness. Therefore, the modifications 

applied relate to the mean loading only. 

Under the one type of modification, the factor 2ff, which 

appears on the right hand side of Eqn. (2.7) and which is equal to the 

theoretical lift curve slope of a flat plate in steady flow, is replaced 

by 5CL/9a, this being the experimentally determined mean lift curve 

slope of the model at zero incidence. The steady flow values ofTC-17./3a 

are marked on Figs. 4.1, 4.8 and 4.18. Thus Eqn. (2.7) for the predicted 

unsteady lift becomes:- 

CL(t) = R 

BC 	A  . ag . eiwt . S(k) (5.1) 

(R stands for the real part) where CL(t) and ag(t) = R(āg . e~ wt) are the 

sinusoidally varying lift coefficient and gust amplitude (rad) at the 

mid-chord point, respectively and S(k) is Sears's function, given from 

Eqn. (2.8). If only the variation of the lift coefficient amplitude is 

required (i.e. not the phase relative to the gust), then Eqn. (5.1) can 

be written as:- 

ICL(t)k= āā . xg(t)\. !S(k)( (5.2) 
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The replacement of 27 by 	/aa is justified by the fact, 

that at very low reduced frequencies, (CL(t)/(ag  eiwt)( should tend to 

8CE/3a, by definition, since S(k) 	1, and the model is effectively 

exposed to a stream of varying direction. The assumption is then made, 

that the reasons responsible for the deviation of the mean lift from 

its theoretical value in steady flow, continue in the unsteady flow as 

well. Note that Eqn. (5.1) only serves to change the amplitude of the 

fluctuating lift, while the phase, the shape of the chordwise pressure 

distribution and the centre of pressure are assumed still to be given 

by Sears's theory. 

It is realised that the proposed theoretical model cannot 

reveal the special features of the individual unsteady flows, because 

the empirical input is introduced from a quasi-steady point of view. 

The unsteady aerodynamics of the test models are in this way treated 

identically, although there are reasons to believe that their response 

would be different,for example,due to the conditions at separation 

characterizing each case. The thickness effect is only partly taken 

into account (i.e. incorporated in aCL/aa). 

In the other type of modification, the magnitude of the 

fluctuating lift coefficient is assumed to be given by the relationship:- 

C1  (t) = 
C 	- La + a (t)  CLa 

9 

. (S(k)( 	 (5.3) 

  

   

where C
L_ 	

and
— 
 are the steady flow mean lift coefficients at 

a + ag(t) 	a 

incidences ā + ag(t) and ā respectively. If the C1.  v. ā curve is a 

straight line (e.g. as in the aerofoil or D sections at low incidences, 

see Figs. 4.1 and 4.8), then Eqn. (5.3) gives the same result as Eqn. (5.2). 

If this is not the case, however, (e.g. elliptic model or aerofoil at high 



CE (t) = 8a • 	ag(0, 0, 0, t) . ISe(k)I (5.2a) 

(5.3a) CL(t) = 
C~ā + a (0, 0, 0, t) 	C~ā 

9 

• ISe(k)I 
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incidence, see Figs. 4.18 and 4.1) the two equations give different 

answers. The idea underlying the above formulation is that the unsteady 

lift may be considered as an increment of the mean lift at the various 

incidences, with the wake effect represented only by a reduction in the 

lift amplitude (due to the IS(k)I term). Again, this is correct in the 

limit k -'- 0, because only then the instantaneous angle of incidence can 

be taken equal to ā + ag(t) and the wake effect can be neglected (S(k) -} 1). 

Two refinements were applied in Eqns. (5.2) and (5.3) before 

making the comparison between the experimental and the predicted 

fluctuating lift coefficients. The one was to substitute ag with the 

corresponding value at the mid-chord point, but with the tripod support 

system installed in the tunnel. The new gust amplitude is denoted by 

ag(0, 0, 0) (see Fig. 3.14). This constitutes a simplified approach 

towards estimating the effect of the tripod support system, of which 

more will be said in Section 5.3.3. The other refinement was to 

rege ce 	IS(k)I by an effective Sears function ISe(k)I which accounts 

for the lack of two-dimensionality of the gust (see Fig. 3.15). How 

ISe(k)I can be computed, will also be discussed in Section 5.3.3. With 

these two changes, Eqns. (5.2) and (5.3) become:- 

It will be seen later, that the corrections applied are negligible at 

higher frequencies, say k ti 0.15. 
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5.3.2 	COMPARISON OF EXPERIMENTAL RESULTS WITH THE THEORY 

The phase and centre of pressure results can be directly 

compared to Sears's theoretical results, see Section 2.3.1. For the 

comparison of the experimental lift results with the theory described 

previously, two methods were followed:- 

- The first is an aerodynamic admittance approach which is defined here as:- 

IA(k)I 
5CL(k)

[5 Ì 1 
 

Sa 	(k) • 

ru-0

a l 
9 

(5.4) 

where S
C L 

and Sa are the absolute spectral densities of the lift 

coefficient and gust amplitude respectively and a /aa the experimental 

mean lift curve slope of the particular model. Experimental values of 

this function can be found, if the experimentally obtained spectra of 

the lift and the upwash are substituted in Eqn. (5.4). The result will 

be the experimental aerodynamic admittance, which will be also denoted 

with the symbol IA(k)I. According to Eqn. (5.2), however, this 

experimental admittance is directly comparable (at the gust frequency) 

to the modulus of Sears's function, IS(k)I which is the theoretical 

admittance. Such comparisons appear in Figs. 5.20 to 5.22. Another way 

to compute IA(k)1 is by dividing the corresponding RMS filtered values 

of the lift coefficient and the upwash, as recommended in Appendix B:- 

CL 
 

IA(k)I - ā . 	8a 	
(5.5) 

g 

- The second method is to compare directly the lift coefficients 

predicted from Eqns. (5.2), (5.3) or (5.2a), (5.3a) with those measured 

(either as raw or conditionally averaged over a large number of 

sinusoidal cycles). Since the phase was separately measured, the 

predicted lift coefficient was only compared in magnitude with that 
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measured. This was made by adjusting the position of the predicted CL(t) 

waveform in a cycle so as to coincide with the experimental (see Fig. 5.13). 

When the measured lift was obtained directly from the pen recorder, then a 

comparison was made only in terms of peak amplitudes. 

5.3.2.1 	THE NACA 0015 AEROFOIL AT ZERO INCIDENCE 

(a) 	Unsteady Lift: The values of the experimental aerodynamic 

admittance computed by means of Eqn. (5.5) are plotted against reduced 

frequency in Figs. 5.20a, b, c and d for Re numbers 3 x 105, 2.2 x 105, 

1.6 x 105  and 1.2 x 105  respectively. The value of aCL/aa corresponding 

to each Re number is marked on the plots. Three oscillating aerofoil 

amplitudes were examined. The modulus of Sears's function is plotted 

as a continuous line for comparison. 

It is observed that IA(k)l varies almost monotonically with 

k. At the lowest reduced frequency, k = 0.05, IA(k)I is smaller than 

IS(k)I by a maximum 25%. For all but one Re number, as k increases 

there is a progressive convergence of IA(k)j toward IS(k)I, up to about 

k = 0.3, where many of the experimental results actually lie on the 

Sears's curve. Beyond this point, there is a tendency for the 

experimental admittance to slightly exceed IS(k)I. For Re = 1.2 x 105, 

however, the situation is different. All the admittance results are at 

least 20% lower than IS(k)I and there is no sign of better agreement at 

high k, as occurred for the rest of the Re numbers. It will be recalled 

(see Fig. 4.1) that the mean loading in steady flow, at this particular 

Re number, was rather peculiar, in the sense that the 'L  v. ā curve 

deviated from the straight line form, leading to an augmented -517/3a  

equal to 7.2. This behaviour was attributed to the existence of two 

free separation points on the upper and lower surfaces near the trailing 

edge. A return to the "normal" behaviour was realised, once the oncoming 
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flow became turbulent. If it is assumed that the same thing happens 

(i.e. the 
TL 

 v. ā curve becomes a straight line, for low Ci, with RT/ea 
5.7), soon after a low frequency sinusoidal flow is applied, then it 

would appear that a suitable value of 3CL/aa to be used in Eqns. (5.4) 

or (5.5), is 5.7 instead of 7.2. If this is done, see Fig. 5.20d, then 

a much better agreement of IA(k)I with IS(k)I is obtained. Unfortunately, 

it is not possible to check how this new a /ea fits the very low k range, 

due to limitations in the frequency of the oscillating rig. 

It was stated in Sections 3.3.4.3 and 5.2.1.2 that there 

appeared to be no significant effect of the Re number upon ag  or CL. The 

same applies for the experimental admittance. The scatter of IA(k)I for 

constant k and input amplitude, but different Re numbers, can, therefore, 

be discussed along the same lines as in the aforementioned sections, 

apart, of course, for the case of Re = 1.2 x 105, which has just been 

investigated. 

For constant k and Re number, the scatter in 1A(k)I, produced 

by varying the gust amplitude is at maximum 14%. Again, there is no 

clearly distinguishable effect of the gust amplitude upon IA(k)I, because 

sometimes the curves formed by the experimental points tend to cross 

each other. If the gust amplitude had some effect, and this is expected 

to vary smoothly with ag  (for small values of ag), then the medium 

eccentricity results should not have tended to be the lowest (see Fig. 

5.20), but lie somewhere in the middle. The results of Maeda and 

Kobayakawa (1970) for a NACA 0012 aerofoil in a sinusoidal upwash, do 

show a systematic effect of gust amplitude, in fact a drop of as much 

as 30% in IA(k)I was realised when ag  was reduced from about 2.83°  to 

0.4°  (k, Re constant). Although this reduction in ag  is much greater 

than that attainable in the present experiments (see Fig. 3.17), there 

is a suspicion about the accuracy of the results of Maeda and Kobayakawa 
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(1970) for two reasons: First, the gust variations were extremely slow, 

a maximum k = 0.017 could only be reached. Under these circumstances 

the aerofoil behaves rather quasi-steadily and uniformly for reasonably 

low incidences. Second, the impression is given in the text (p. 387) 

that the lift and upwash measurements took place simultaneously, a fact 

that can seriously affect the consistency of results. The experimental 

admittance found by these authors for ag  = 2.83°  is plotted in Fig. 5.20a 

and it is in good agreement with IS(k)I, if it is taken into account 

that a value of 7-73a  equal to 2ir was used in Eqn. (5.5). 

It was mentioned that the results shown were computed by 

means of Eqn. (5.6), i.e. the experimental values obtained by analogue 

filtering were used. Some of the digital analysis results are plotted 

in Figs. 5.20a, b. They almost coincide with the analogue filtering 

results at the higher reduced frequencies (note, not all points are 

shown), while at k = 0.05 approximately, they are greater by 8% maximum. 

This deviation expresses the difficulty in measuring spectral power at 

low frequencies and it was discussed in Appendix B . On the other hand, 

the close agreement at the higher frequencies (k ti 0.1) indicates that 

the analogue filtering method employed is meaningful for the kind of 

spectra encountered in this work. 

Finally, an attempt was made to determine the aerodynamic 

admittance frequencies other than the gust frequency. For that purpose 

Eqn. (5.4) was applied at frequencies 2ng  and 3ng  (second and third 

harmonics respectively). The results (see Figs. 5.20a, b) are spread 

about the Sears's curve but the scatter is considerable. The strength 

of mechanical resonances appearing on the spectra (Figs. 5.2, 5.3) are 

of the same order of magnitude as the nearby harmonics and this is one 

of the main reasons of the noticed scatter. The fact that some of the 

1A(k)1 values are very close to the theoretical ones could well be 
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fortuitous, because some power in the higher lift harmonics is expected, 

even if no power at the corresponding frequency exists in the input 

(upwash gust). 

(b) Phase: In Fig. 5.14 the experimentally determined phase for 

medium eccentricity is compared to that given by Sears' theory (see also 

Fig. 2.5). The results generally indicate a greater lag of sinusoidal 

lift behind the upwash than Sears's theory predicts. However, the 

variation with k has the correct trend up to k = 0.25 approximately, but 

beyond that point the phase appears to become rather constant, than 

follow the theoretical trend. The existing scatter does not permit any 

definite suggestion about the effect of Re number. 

(c) Centre of Pressure: As reported in Section 5.2.3, from 

qualitative observations only, it can be said that the centre of pressure 

was located near the quarter chord point, being always at the mid-span 

plane. .This agrees with Sears's theory, which predicts a centre of 

pressure permanently fixed at the quarter chord point. 

(d) Summary: The experimental data presented for the aerofoil 

are in support of the proposed theoretical model. Particularly good is 

the agreement in the interval k = 0.15 - 0.4. The possible sources of 

discrepancy between theory and experiment over the frequency range 

examined will be discussed in Section 5.3.3. 

5.3.2.2 	THE D SECTION CYLINDER 

(a) 	Unsteady Lift: The experimental admittance results are shown 

in Figs. 5.21a, b, c and d. The same flow parameters and notation were 

used as in the aerofoil case. There are only minor differences in the 

admittances of these two models, except for the lowest flow speed 

(Re = 1.2 x 10 5 ), where, as mentioned in the previous section, the 

admittance of the aerofoil was significantly lower than IS(k)I. No such 
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thing occurs for the D section, IA(k)I is near IS(k)I within close 

limits. The D section admittances, having the same degree of scatter 

are somewhat higher than the corresponding aerofoil ones for which there 

is also evidence that IA(k)I is falling off slightly faster at the 

higher reduced frequencies. A drop in IA(k)1 below IS(k)I at the 

lowest frequencies is also observed here. 

There is actually little that can be added to what has been 

said about the aerofoil, for the effect of Re number and gust amplitude 

on IA(k)I; no systematic effect could be traced. The same applies to 

the agreement between the values of IA(k)I obtained by analogue and 

digital methods (see Figs. 5.21a, b), except for one point, at k = 0.4 

and Re = 2.2 x 105  (Fig. 5.21b). There, the two methods give results 

differing by 7.5%, the digital one being the lowest. Since such a 

discrepancy was not realised at other, similarly high frequencies, the 

digital analysis point may be discarded, as a rather bad point, which 

means that indeed the D section admittances do not drop as fast as the 

aerofoil ones at high k. 

Some of the admittance results at the higher gust harmonics 

are quite close to the Sears's function, while others deviate too much, 

more than the corresponding aerofoil values. The probable reasons 

were stated in Section 5.2.1.1b. The sinusoidal lift coefficient, as 

predicted by Eqn. (5.2a) for k = 0.22 is compared with the experimental 

in Fig. 5.13. The agreement is very good (compare also with the closeness 

of the admittance results). There are only small differences in the peak 

levels, which can be attributed to factors discussed in Section 5.2.1.3a. 

(b) 	Phase: The comparison between the experimental and theoretical 

phase results leads to the same comments made previously for the aerofoil, 

with the difference that here the lag of the lift is on average greater 

for the D section. 
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(c) Centre of Pressure: From Fig. 5.13, it can be seen that the 

chordwise position of the centre of pressure deviates significantly 

from the predicted quarter-chord position. If the difference of 

sinusoidal pressures on the upper and lower surfaces of the cylinder 

were tuned to the same phase along the chord (as it should happen 

theoretically for a thin aerofoil, see Graham, 1970b), then xcp/c should 

have been a constant. The absence of this in Fig. 5.13a suggests that 

the detailed loading may deviate from that predicted by thin aerofoil theory. 

(d) Summary: The agreement between the experimental and 

theoretical unsteady lift results is as good as that observed for the 

aerofoil. A frequency range of particularly close agreement also exists 

here, i.e. k = 0.1 - 0.3. However, although the unsteady lift is 

successfully predicted there is indication that the detailed unsteady 

load distribution might deviate significantly from the theoretical. 

5.3.2.3 	THE ELLIPTIC CYLINDER 

(a) 	Unsteady Lift: The experimental aerodynamic admittance of 

the elliptic cylinder is displayed in Figs. 5.22a, b, c and d. For the 

flow parameters employed etc., see the appropriate aerofoil section. 

With two exceptions, IA(k)I deviates seriously from IS(k)I in both 

magnitude and rate of variation with k. The two exceptions refer to 

the cases, where the Re number is the highest (= 3 x 105), or the model 

is fitted with trip wires (Figs. 4.18 and 5.1). Only then the agreement 

between the theoretical and experimental results is similar to that 

obtained for the aerofoil and D cylinder. It is also noteworthy that 

only then CL  varies linearly with ā for moderate incidences. At all the 

other cases IA(k)I underestimates IS(k)I by a factor ranging from 20% to 

400%, the greater deviation occurring at the highest frequencies. 

Attempts to adjust the overall level of IA(k)I by feeding a different 
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value of a /8a in Eqns. (5.4) or (5.5) did not improve the situation. 

For example a value of R/aa = 8.37 was tried, which is the potential 

flow result for an elliptic cylinder of fineness ratio 3.0, with a 

stagnation point at the trailing edge (Eqn. (4.8)). A reasonable 

agreement between IA(k)I and IS(k)I is obtained only in a small range of 

reduced frequencies. Note that the apparently good agreement at the 

lowest frequencies of Fig. 5.22b (Re = 2.2 x 105) with 3CL/8a = 8.37 is 

rather misleading: an underestimation of IS(k)I is expected at these 

frequencies for reasons explained in Section 5.3.3. At least this is 

seen to be true for the aerofoil and the D cylinder (Figs. 5.20 and 5.21). 

There is no clearly evident effect of the gust amplitude upon 

IA(k)I. However, although for the aerofoil and the D cylinder the 

medium eccentricity IA(k)I results tended to be the lowest, here it is 

the large eccentricity values which generally are lowest at the higher 

frequencies. This might be of some significance if Eqn. (5.3) really 

holds, because the higher the mean incidence, the lower is the rate of 

increase of the lift coefficient of the elliptic cylinder at Re numbers 

between 1.6 x 105  and 2.2 x 105  (see Fig. 4.18). 

The analogue and digital results for IA(k)I (Figs. 5.22a, b) 

are in good agreement at the higher frequencies, while at the lowest 

frequencies (k = 0.05) there is a discrepancy, the digital results being 

the greater. See also the section on the aerofoil. 

The admittances computed at the higher gust harmonics are 

spread about Sears's function with the same degree of scatter found 

previously in Sections 5.3.2.1 and 5.3.2.2. 

In Figs. 5.13b, c, d, e and f the experimental lift coefficient 

is compared to that predicted by Eqn. (5.3a) for Re = 2.2 x 105  and medium 

eccentricity. Despite the corrections to ag  and lS(k)I involved the 

experimental lift coefficient is still overestimated at all frequencies. 
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The discrepancy in the peak levels progressively increases with increasing 

k,being approximately 30% at k = 0.065, 40% at k = 0.17 and again 30% 

at k = 0.22. This recovery at the higher k might be due to the decrease 

in the local BCL/aa of the elliptic cylinder as the mean incidence 

increases (Fig. 4.18). It is noticed that CL  is also overestimated when 

the value of CL  entering Eqn. (5.3a) refers to the sinusoidal flow. 

Indeed, the lines appearing as "LEVEL A" and "LEVEL B" in Fig. 5.13f 

represent the predicted peak lift amplitude from Eqn. (5.3a), according 

to whether the CL  - ā curves in sinusoidal flow are computed from total 

load or surface pressure measurements respectively (extrapolated data 

from Fig. 4.18 are used). 

(b) Phase: There is a rather fortuitous good agreement with 

Sears's theory up to about k = 0.1, see Fig. 5.16. At higher reduced 

frequencies the lag of the lift behind the upwash is large and tends to 

vary in the opposite direction than Sears's theory predicts. The 

discrepancy is certainly greater than the one realised for the aerofoil 

and the D section. 

(c) Centre of Pressure: The deviation from Sears's theory is 

even worse than in the D section. From Figs. 5.13d and f it is observed 

that the centre of pressure is in the region of 0.4 c, compared to 0.25 c, 

predicted by the theory. Figs. 5.13d and f also indicate that the 

detailed loading is not likely to follow the thin aerofoil loading. 

(d) Summary: Except when certain special conditions relating 

to the behaviour of the boundary layer are met, the proposed theoretical 

model results in a consistently 8m :tier lift than that observed. The 

discrepancies are greater, the higher the reduced frequency, in contrast 

to what has been realised for the aerofoil and the D section. The "special" 

conditions mentioned above refer to either the boundary layer transition 

being fixed (e.g. by means of trip wires), or the flow departing from 
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the critical regime (this happens for Re approximately greater than 

3 x 105, see Fig. 2.3). In both cases, the Re number is effectively or 

truly increased. 

5.3.3 	SOURCES OF DISCREPANCY BETWEEN THEORY AND EXPERIMENT 

In this section the sources of discrepancy between theory and 

experiment are explored and, where possible, quantitative accounts are 

given. Two main categories of discrepancies are distinguished: Those 

originating from incomplete theory and those from inaccurate measurements. 

A. 	Incomplete theory. 

1. 	Viscous effects and the unsteady Kutta-Joukowski condition. 

Among the assumptions of the theory, one which is not actually 

fulfilled is that of the perfect fluid. It is partly due to this reason, 

that full potential lift is not achieved on an aerofoil at incidence in 

a uniform steady flow, as discussed in Section 4.2. Examining the 

effects of viscosity on the Theodorsen's function, Giesing (1968) found 

that the experimental unsteady lift was lower than the theoretical over 

the entire frequency range (though, as he points out, the lift reduction 

would be less severe if the reduction in the quasi-steady lift had been 

taken into account) while large discrepancies in the phase occurred 

only in the high frequency range. Spurk (1964) reported that the 

discrepancy between his experimental results (dealing with the unsteady 

loading of oscillating aerofoils of various thicknesses) and the inviscid 

theory of KUssner and Gorup (1960) was mainly due to viscosity, particularly 

for Re numbers less than 3 x 105. He observed, however, that the agreement 

was good if the boundary layer transition was kept fixed by using trip 

wires. 

The author's experiments show that the effects of Re number and 

consequently those of viscosity depend on the particular type of test 
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model. In situations where the separation points are fixed, the unsteady 

lift results are substantially independent of the Re number. The 

modification applied to Sears's formula (Eqn. (5.1)), i.e. the 

replacement of 2Tr by the experimental mean lift curve slope, was made in 

the sense that the effect of body thickness was similar and that the 

boundary layers behaved quasi-steadily (for gust frequencies well below 

those of vortex shedding). A measure of the quasi-steadiness in a 

boundary layer may be obtained by examining the ratio of the time it 

takes for a streamwise velocity disturbance (applied at the edge of the 

boundary layer), to diffuse through it, to the time required for this 

disturbance to change. F. K. Moore* analyzed this problem in detail and 

derived the conditions, under which the oscillatory flow over a flat. 

plate could be considered as quasi-steady. The ratio mentioned previously 

was expressed by Moore by the parameter (62/v) .I(aUē/at)/Uēl, where S is 

to+a Q. 
the boundary layer thickness, We' theAunsteady streamwise velocity at the 

edge of the boundary layer, and v the coefficient of diffusion in the 

fluid (equal to the kinematic viscosity for the case of a laminar 

boundary layer). A necessary condition for quasi-steadiness is that 

this parameter should be much less than unity. In order to get a rough 

idea of how reasonable is the assumption of boundary layer quasi-

steadiness made is the present case, it will be attempted to use this 

parameter for the elliptic cylinder. Boundary layer measurements at 

constant gust amplitude and not close to separation, indicated that for 

Re = 2.2 x 105, d = 0(c/100) and that the amplitude of the streamwise 

sinusoidal fluctuations at the edge of the boundary layer were of the 

order 3% of the mean velocity at this position. Hence, this parameter 

would be of the order 6 x 	x k x Re = 1.32 k, which suggests that 

* "Unsteady laminar boundary layer flow", NACA TN 2471, 1951. 
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for reduced frequencies of, say, greater than 0.1 (at this particular 

Re number) the boundary layer may not be treated as quasi-steady. 

The comparison between the theoretical and experimental 

admittances for the aerofoil and the D section (Figs. 5.20, 5.21) 

indicates that the assumption of a quasi-steady behaviour of the 

boundary layers does not lead to conflicting results. Further, the 

observed good agreement suggests that an equivalent Kutta-Joukowski 

condition can be applied at a position mid-way between the fixed 

separation points of the D section. This means that the vortex sheets 

shed from the two sharp trailing edges can be replaced by single vortex 

street consisting of their superposition, but placed along the extension 

of the cylinder chord line. 

Things are quite different for the elliptic cylinder which has 

two free separation points. Here, not only the unsteady lift and the 

experimental admittances depend on the Re number, but there is a serious 

disagreement between the theoretical and experimental results. Viscosity 

can affect not only the mean position of the separation points, but their 

unsteady movement as well, with corresponding consequences on the mean 

and instantaneous position of the shed shear layers. 

It is anticipated, that if the mean separation points are 

located well towards the rear, the boundary layers and the free shear 

layers are thin and close to the extension of the chordline, then the 

thin aerofoil theory would apply better. The fact that the experimental 

admittances of the elliptic cylinder agree better with the theoretical 

ones, when the Re number is high or the boundary layer is disturbed by 

means of trip wires (hence a delay in separation), is in support of this 

argument. 

Eqn. (2.2) in Chapter 2, shows that the rate of change of 

circulation round the body (and accordingly the unsteady lift) depends 
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on the velocity at separation and the velocity of the separation points. 

The latter velocity would be zero only for the models with fixed 

separation points (aerofoil, D cylinder). For the elliptic cylinder, the 

separation points are expected to perform an unsteady movement on the 

surface with a velocity, phase and amplitude which, if all other 

parameters are fixed, would depend on how rapid are the changes of 

incidence in the free stream. On quasi-steady terms, the difference in 

dr/dt found from Eqn. (2.2) by assuming first a periodic movement of 

the separation points and second no movement at all, is not insignificant 

for changes of incidence of, say 4°  (see Fig. 4.12). It may be argued 

that, as the boundary layer frequency parameter gets higher, the 

separation points would adjust themselves less readily to their steady 

flow positions, until at a certain frequency parameter, their motion may 

even cease. A lag in the adjustment of the separation points of a 

circular cylinder, exposed in a stream of rapidly changing incidence, 

leads to the development of an unsteady lift; specifically, to an 

increase of the unsteady lift from its zero value, when the incidence 

changes are quasi-steady. By analogy, it could also be argued that an 

increase in the unsteady lift of the elliptic model might be expected, 

when, at high enough boundary layer frequency parameters, a lag in the 

adjustment of the separation points appears. However, the experimental 

admittances of the elliptic cylinder tend to become gradually lower than 

the predicted, as the reduced frequency increases (see Fig. 5.22); large 

discrepancies are also noticed for the phase, at high reduced frequencies 

(Fig. 5.16). The previous arguments, therefore, appear to contradict 

the experimental observation. 

In an attempt to clarify this point two further experiments were 

planned: First a boundary layer experiment with the elliptic cylinder 

and second, an unsteady loading experiment with a NACA 0015 aerofoil 
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placed at high incidence. 

- Boundary layer experiment: With this experiment on the elliptic 

cylinder, it was hoped to establish how the amplitude of the movement 

of the separation points could be affected when the reduced frequency 

(at constant gust amplitude and Re number) was changed. For this 

purpose the instantaneous u boundary layer velocity profiles were 

measured as the (experimentally determined) mean separation point was 

approached. The instantaneous velocity profiles were constructed by 

measuring the unsteady velocity at predetermined intervals in one period 

of the gust and always at the same phase, for several positions inside 

the boundary layer (see also Appendix B and Fig. B-1) and averaging 

over a large number of periods. If during part of the cycle the hot-

wire encounters a reversed flow (manifesti9 itself by the rectified shape 

of the anemometer output, see for example Tutu et al (1975), McCroskey 

et al, 1976) then this would mean that the separation point has at least 

reached the position where the hot-wire is placed. Thus, it was hoped 

that the amplitude of oscillation of the separation points would be 

estimated, by counting the number of "reversed" profiles in one cycle 

and compare the results for different streamwise positions and reduced 

frequencies. Unfortunately, it was found that it was very difficult to 

judge which velocity profiles were "reversed" and which not, see Figs. 

C-2 to C-10. To this difficulty in distinguishing the instantaneous 

profiles contributed the appearance of spikes and the measurement 

inaccuracies (such as the effect of loss of heat from the wire to the 

surface), which are discussed in Appendix C. Therefore, no definite 

conclusion can be drawn about the unsteady movement of the separation 
a 

points from this test, though it is felt thatAcertain lag as well as a 

change in the amplitude of their movement does occur with changes in the 

reduced frequency. 
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- Unsteady loading experiment: A NACA 0015 aerofoil (chord = 0.152 m, 

span = 0.280 m) was placed at high incidences and its fluctuating lift 

was measured (see also Appendix C). At incidences near stall one of the 

separation points is located at the trailing edge and the other is free 

to move on the upper (suction) surface. The purpose of this test was 

to examine what would be the significance of a single free separation 

point on the development of unsteady lift. The results, appearing in 

Figs. C-11 and C-12A, B, C, indicate that, unlike the case of the 

ellipse, the unsteady lift remains considerably greater than the pre-

dicted at high reduced frequencies. (In fact the results are presented 

in the time domain and consequently include the energy of other 

frequencies, besides that at the gust frequency, but it is clear that 

the unsteady lift at the main frequency is strong. In later sections, 

there are given reasons for which the unsteady lift on an aerofoil at 

incidence is expected to be augmented; these reasons partly explain the 

high lift values observed here). Maeda and Kobayakawa (1970), have 

tested a NACA 0012 aerofoil at incidences up to 9°, but their results 

are limited to very low frequencies (see Fig. 5.20a), and cannot be 

compared with the present ones. However, the information available for 

oscillating aerofoils at high incidence (e.g. Carta (1967), Moss and 

Murdin (1968), McCroskey et al, 1976), or for aerofoils of which the 

incidence changes suddenly from the rest (e.g. Farren (1935), Kawashima 

et al, 1978), indicates that large values of unsteady lift are found, 

especially at rapid changes of incidence. Under these conditions the 

delays in the boundary layer separation and reattachment are important. 

It has been established, that the predominant feature of such flows 

(called dynamic stall flows), is the shedding of a strong vortex-like 

disturbance from the leading edge region, which, during its chordwise 

passage over the aerofoil surface, helps a suction to be maintained and 
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hence a high lift. It may be that a similar mechanism accounts for the 

considerably increased unsteady lift obtained in the present tests (see 

Fig. C-12C, ā = 13.5°, especially for Re = 1.2 x 105 ). Even if no complete 

temporary separation has occurred, an oscillation of the free separation 

point should have taken place. The fact that, at high frequencies, 

(Re = const.), a different kind of behaviour was found for the aerofoil 

at high incidence and the ellipse, is an indication, that the relative 

movement of the separation points (with respect to each other), might 

also be an important factor. This relative movement could affect the 

instantaneous position of the shed shear layers and their vorticity both 

in magnitude and relative phase. Accordingly, the contribution to the 

unsteady lift from the vortical wake (assumed in the proposed theory to 

consist of the superposition of the two vortex layers and lie on the 

extension of the chordline), would be different for the two bodies. This 

matter is again raised in the next section (see also Appendix D). The 

different behaviour of the phase for the ellipse (Fig. 5.16) and the 

aerofoil at incidence (Fig. C-11), should also be connected to the wake 

effect. 

The experimental results for the elliptic cylinder and the 

discussion given previously, suggest that the application of an 

"equivalent" Kutta-Joukowski condition at a fixed, "effective" trailing 

edge (located at the position of minimum radius of curvature of the 

cylinder), is not the appropriate one. Perhaps a better approach would 

be to look for an "effective" trailing edge moving with an appropriate 

phase, somewhere between the separation points of the cylinder; this 

could take more effectively into account the regions of separated flow 

over the cylinder, which are neglected in the present approach. It would 

be necessary, however, to have first a better knowledge as to how the 

separation points behave, over the frequency range of interest. 
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A final point concerns the application of the Kutta-Joukowski 

condition for the aerofoil in unsteady flow. A deviation from this 

condition (i.e. the tangential flow departure from the aerofoil surface) 

may occur only at extremely low Re numbers (for example, during a start 

of motion) or at very high frequencies (see for example Bechert and 

Pfizenmaier, 1975). 

2. 	Wake deformation and thickness effects. 

According to thin aerofoil theory the vorticity shed is 

convected downstream with the free stream speed along the extension of 

the chord line. This obviously cannot happen with the bluff bodies or 

the aerofoil at high incidence. But even for the NACA 0015 aerofoil at 

zero incidence, the initially straight vortex street may roll up further 

downstream, leading to the formation of discrete vortices. The deformed 

wake is a source of non-linearities, like the appearance of higher 

harmonics in the lift spectra, which are not accounted for by Sears's 

theory. Theoretical (e.g. Giesing, 1968) and experimental (e.g. Bratt, 

1950) work on oscillating aerofoils, shows that the wake deformation 

depends on the reduced frequency and amplitude of oscillation, getting 

worse as these parameters increase. Corresponding information relating 

to the unsteady flow about a stationary model is very scarce. The 

numerical calculations of Giesing (1968) indicated only, a small 

deformation in the wake of a-thick aerofoil, which entered at constant 

speed a relatively very strong sharp-edged upwash gust, and an even 

smaller effect on the unsteady lift. Since in the present work the 

unsteady incidences were low to moderate (see Fig. 3.18), it is not 

unreasonable to expect only a small contribution from the deformation 

of the wake. The very little power which exists in the higher harmonics 

of the zero incidence lift spectra supports this argument. 

In the theoretical model proposed here, the effect of body shape 
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on-unsteady lift was simply incorporated in 9CL/3a. Of course, in a 

more sophisticated approach the shape (and consequently the thickness) 

of the model should affect the unsteady lift in a non-linear manner if 

the boundary conditions on the surface are not linearized. For the 

symmetric models examined in this work, the effect of thickness is of 

interest. Maeda and Kobayakawa (1970) calculated the effect of thickness 

on a NACA 0012 aerofoil and the aerodynamic admittance is plotted in 

Fig. 5.23, where it is compared with IS(k)I. It is seen that thickness 

causes a decrease in IA(k)I below IS(k)I, but unfortunately the analysis 

of Maeda et al was limited to k < 0.02, so that a comparison with the 

author's experimental results cannot be made. To obtain an approximate 

idea about the influence of thickness on the unsteady lift of an aerofoil 

for higher k, aerodynamic admittances were computed from calculated 

values of KUssner's function, K, existing in the literature. This 

function gives the dimensionless lift development on an aerofoil 

travelling through a sharp-edged gust and its calculated or plotted 

values for various aerofoil shapes can be found in Karman and Sears 

(1938), Drischler (1956), Arnoldi (1969), Bisplinghoff et al (1958), 

Giesing (1968) and Basu and Hancock (1977). If it is assumed that the 

gust boundary is not affected by the body and its wake and that the 

wake deformation does not exist (refer to the discussion above) then 

there is a reciprocal relationship between K and A(k)t, the complex 

aerodynamic admittance, (see for example Drischler (1956) and 

Bisplinghoff et al, 1958), because the sharp edge gust can be thought of 

as a superposition of sinusoidal gusts. The relationship is:- 

o 

A(k),. = 1 + ik 	[K(s) - 1) e-iks1 ds 
~ 	1 	 1 

0 

eik 
(5.6) 
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where s = 2U . t/c is the distance in semi chords travelled by the 
1 

aerofoil after its leading edge first encounters the gust. As there 

is no closed algebraic form for K(s ), exponential approximations had to 

be used. The cases tested included a flat plate, an 8.4% thick von 

Mises aerofoil and a 25.5% thick Joukowski aerofoil. The flat plate 

was employed in order to check the accuracy of the method, and the 

pertinent function is (see for example Drischler, 1956):- 

K(si)   = 1 - 0.236e-0.058s
1  _ 0.513e-0.364s1  _ 0.171e-2'42s1 

 
(flat plate) 

(5.7) 

The approximations to K(s ) for the two thick aerofoils were obtained 

by fitting mathematical curves to the plotted results cf Giesing (1968). 

Since Giesing presents his results for si < 4.0, there is no means of  

checking the asymptotic behaviour of K(s ), a fact that limits the 
1 

accuracy of the method. The approximations to K(s ) are:- 
1 

K(s) = 1 - 0.24e-0.058s1  - 0.55e
-0.364s

1 - 0.17e
-2.42s1 	

(5.8) 
1 

for the von Mises aerofoil, 8.4% thick,and:- 

K(s ) = 1 - 0.274e-0.058s
1  _ 0.695e-0.364s1 _ 0.003-2.42s1 	

(5.9) 
1 

for the 25.5% thick Joukowski aerofoil. It appears from these equations 

that the thicker the aerofoil the longer it takes for the unsteady lift 

to build up. The absolute values and the arguments of the corresponding 

theoretical aerodynamic admittances are plotted in Figs. 5.23 and 5.24 

respectively. The original Sears's function is accurately predicted 

from Eqns. (5.6) and (5.7) for k ti  0.4. For higher reduced frequencies 

increasing discrepancies appear. This means that the aerodynamic 
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admittances for the thick aerofoils are also not likely to be accurate 

beyond that point. As was found by Maeda and Kobayakawa (1970), IA(k)tI 

is less than IS(k)I for a thick aerofoil. If this trend is assumed to 

hold for the bluff sections as well (which are 33.3% thick), then even 

greater reductions in 1A(k)ti than those plotted in Fig. 5.23, should 

be expected. It is true that a drop in the experimental admittance was 

found in the author's experiments (see Figs. 5.20 to 5.22) for low k, but 

it is too much to be attributed to this effect only. For high k, a 

further drop of IA(k)t1 below IS(k)I is predicted, which conflicts with 

the rise found experimentally (for the aerofoil and D sections). Fig. 

5.24 shows that the phase lags increase with model thickness. The 

predicted phases are here of the order found in the experiment (Figs. 

5.14, 5.15 and 5.16). 

There are also many individual factors which render the lift 

response of a flat plate at zero incidence different from that of a 

thick model and of those, three will be discussed here: Pressure 

gradients (in the undisturbed flow), "virtual mass" and vorticity 

distortion effects. 

(a) Due to the first effect, the existence of an unsteady pressure 

gradient in the undisturbed flow in the upwash direction would generally 

lead to an unsteady lift force for a thick model, but not for a flat 

plate. The oscillating rig produces a gust which, theoretically, has 

zero pressure gradients (Section 3.4.4) and, therefore in this respect 

a flat plate aerofoil and one of arbitrary thickness should behave 

(theoretically) in the same way. 

(b) The second effect would arise from the fact that the "virtual 

mass" of a thick body is different =owl that of a flat plate. The 

associated forces (termed here as "acceleration" or "inertial 

acceleration" forces), are those that would have been encountered, if 
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there was no production of circulation, due to the unsteady flow round 

the body. (These can be better visualized for a body oscillating in 

an inviscid fluid, with no production of circulation, e.g. a normal flat 

plate oscillating in the free stream direction). 

In the present problem, the contribution due to "inertial 

acceleration" has been calculated for a flat plate aerofoil with the 

help of formulae derived by Karman and Sears (1938), Bisplinghoff (1958). 

and Neumark (1952) (for details, see Appendix D). Sears's function was 

split iso a quasi-steady term SB  (representing the unsteady lift, which 

would be produced, if the effective incidence due to the gust was 

permanently maintained), a wake term SA  (representing the influence of 

the unsteady wake) and an "acceleration" term Sc. By adding these 

(complex) terms together Sears's function is recovered, see Figs. 5.25 

and 5.26. It is shown in Appendix D that the "acceleration" term 

behaves as J(k), i.e. it starts from zero, when the aerofoil is 

exposed to a steady flow and, as k increases, it is oscillating about 

zero with diminishing amplitude. By contrast, the "acceleration" 

forces for an oscillating model become increasingly important as the 

frequency gets higher. This distinct behaviour can be explained by 

imagining that at certain frequencies equal parts of the sinusoidal 

gust are accelerating in opposite directions, so that the net effect 

becomes zero. The question now is how much the "acceleration" term 

found can be influenced by an increase in the model thickness. The 

only relevant existing information is about the oscillating aerofoil 

case, again from the numerical calculations of Giesing (1968). He 

found that going from a flat plate aerofoil to a 25.5% thick Joukowski 

aerofoil, the amplitude of the "acceleration" forces was reduced by 

1% for translatory oscillation and by up to 7% approximately for 

pitching harmonic oscillations (this figure diminishing as the frequency 
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increased). Therefore, it is reasonable to assume that for the NACA 

0015 aerofoil the "acceleration" term would not be much different from 

that of the flat plate, if both are exposed to the same sinusoidal 

flow. There could be an effect on the bluff bodies, which are 33.3% 

thick, which, it is thought, should be of the order of the figures 

given above. Part of the increase of 1A(k)1 above IS(k)I at the 

higher frequencies (aerofoil and D section, Figs. 5.20 and 5.21) may 

be due to this effect. 

At this point, an attempt was made to see whether the 

experimental admittances were better predicted, if it was assumed that 

only the quasi-steady term SB  was affected by the body shape according 

to ayaa. Eqn. (5.2) would then become:- 

CE(t) = ag(t) . 12ff (SA  + Sc) + SB  . aCE/aal 	 (5.10) 

and from the definition of the admittance (Eqns. (5.4) or (5.5)):- 

IA(k)t1 = ISm(k)I = 1(a CE/aa)-1  . 2ff . (SA  + Sc) + SBI 	(5.11) 

where the theoretical admittance Sm(k) can be termed as "modified Sears's 

function". Sm(k) is plotted in Fig. 5.27 along with the original Sears's 

function. From Figs. 5.14 to 5.16, 5.20 to 5.22 and 5.27 it is observed 

that, at very low k, Sm(k) becomes almost equal to S(k). Sm(k) is not 

a good estimate of the experimental results for the elliptic section. 

The increase in IA(k)1 of the D section at high k is reasonably 

predicted by ISm(k)I, but not the drop at low k, while the predicted 

phase lags from the argument of Sm(k) are too small. For the NACA 0015 

aerofoil ISm(k)1 predicts a drop below IS(k)1 at high frequencies, which 

is not realised. The phases are rather more accurately predicted. These 
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results show that it is unlikely for the quasi-steady term to be the 

only one affected by changes in the model shape and thickness. 

(c) 	The third effect comes from the distortion of the vortex 

sheets (shed by the oscillating aerofoils)., after the models are placed 

between them. This would not occur if the models were of zero 

thickness and at zero mean incidence. The displacement of the vortex 

sheets will modify the unsteady upwash and with it the unsteady lift 

and phase; if the displacements are not symmetric with respect to the 

central line, so will be the variation of the lift coefficient with 

time.. An estimate of this effect can be made, if it is assumed that the 

flow is inviscid and no vortex rolling-up occurs. Then the, new, mean 

positions of the vortex sheets can be obtained from the perturbed 

position of the streamlines in steady flow (note that the vorticity 

acquired by the fluid element remains attached to it during its inviscid 

motion). Here, the case of the elliptic cylinder and the aerofoil at 

high incidence are examined. The corresponding steady potential flow 

streamlines, which are coincident with the two parallel vortex sheets 

in the undisturbed flow, are plotted in Fig. 5.28. Following a simplified 

approach, the observed outward expansion of the sheets could affect the 

unsteady flow in two ways: First, a change in the gust amplitude at 

the mid-chord point would occur, because as it was found in Section 3.4.3, 

ag  depends on 
e-2k'z/c" 

(see also Fig. 3.20). This effect would become 

more important as k increases. For example, if it is assumed that the 

vortex sheets are on the whole uniformly displaced by the maximum amount 

indicated in Fig. 5.28, while maintaining their original straight shape, 

then the reduction in the gust amplitude at the mid-chord point, for 

k = 1.0, would be approximately 3% for the elliptic cylinder and 25% for 

the aerofoil at incidence. Second, the change in the (theoretically 

sinusoidal) distribution of vorticity in the distorted region would 
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affect both the gust intensity and the phase between the lift and the 

upwash. An estimation of this effect can be obtained if the times 

taken for a fluid particle to travel along the distorted and undistorted 

streamlines between two fixed positions, is known. The difference of 

the times taken can be compared with a time scale, such as the period 

Tg  of the sinusoidal flow. Roughly, it was estimated that the aerofoil 

at incidence (ā = 14°) would cause again a greater distortion than the 

elliptic cylinder. For decreasing reduced frequency this distortion 

effect would become less important. Concluding, it can be said that in 

the zero incidence experiment, none of the effects described in this 

paragraph is likely to cause significant discrepancies between the 

theoretical and the experimental results. In the high mean incidence 

tests, the vorticity distortion effect should be included in the main 

reasons for the discrepancies encountered. 

3. 	Lack of two-dimensionality. 

The type of unsteady flow assumed in Sears's theory cannot be 

exactly realised in the experiment. At first, there is no such thing 

as a perfectly spanwise correlated sinusoidal gust. Indeed, the cross 

spectrum of the upwash, Fig. 3.15, indicates a lack of correlation 

across the span, though a mild one. This is most probably caused by 

a random change in the inclination of the gust fronts as they travel 

downstream. Therefore, a slight dependence on a random spanwise 

reduced frequency should be expected. In that case the theoretical 

aerodynamic admittance for a flat plate aerofoil can be calculated 

from Eqn. (2.20), provided the cross spectrum of the upwash, the model 

aspect ratio and the response function G(k , k) calculated by Graham 
1 	2 

(1970a) for the response to a yawed sinusoidal gust are known (see 

also Fig. 2.6). Here, since the lack in two-dimensionality is only 

mild, it is reasonable to assume that each chordwise station responds 
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according to Sears's theory, feeling only the upwash fluctuations local 

to it (strip theory). Jackson, Graham and Maull (1973) derived a simple 

expression, replacing Eqn. (2.20), which with the symbols used here is:- 

2 	
--1 

IA(k)t I = IS(k)I • 

where y' = y/(s/2). This theoretical admittance is then a correction 

to Sears's function and is equal to the function ISe(k)I of Eqns. (5.2a) 

and (5.3a). The cross spectrum of the upwash fluctuations at the gust 

frequency (assuming that the field is homogeneous, i.e. that the cross 

spectrum depends on Ay' rather than y'), was approximated by a curve of 
.c2  

the form ecly 	(c , c constants to be determined), which was fitted 
1 	2 

to the experimental results of Fig. 3.15. Note, that for such high 

spanwise correlations the size of reduction in IS(k)I should not depend 

too much on the choice of the fitted function, as pointed out by 

Jackson (1970). The theoretical admittance obtained from Eqn. (5.12) 

is plotted in Fig. 5.23 along with Sears's function modulus. It is 

observed that IA(k)tI approaches IS(k)I from below as k increases, the 

maximum deviation being about 5%, at k = 0.06. The variation of IA(k)tI 

agrees now better with the variation of the experimental admittances, 

shown in Figs. 5.20 to 5.22. Although the experimental admittance still 

remains lower at small values of the reduced frequency, the lack of 

spanwise correlation is thought to be one of the main reasons for this 

discrepancy. 

The same effect on the aerodynamic admittance, would occur for 

a not correctly aligned model with respect to a perfectly two-dimensional 

gust. Every effort was made to install the test models such that their 

leading edge would be parallel to the trailing edge of the oscillating 

Rww(ng, Y") - 	j Rww(ng, Y") Y' 
dy. 

0 	0 

(5.12) 
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aerofoils. Assuming an error of one or two degrees, the effect on the 

admittance should be negligible (see for example Edwards, 1972). 

4. 	Tunnel interference effects. 

In the theory it is assumed that the unsteady flow field is 

of infinite extent in all directions, while in reality the tests were 

undertaken in a wind tunnel of finite dimensions. A deviation from the 

theory is expected due to a variety of effects such as the wall and 

tripod support system interference, the influence of the oscillating 

aerofoils and the finite extent of the unsteady wake shed by the test models. 

Mention was made in Section 5.1 about a method of blockage 

correction developed by Kullar (1978) for a flat plate aerofoil in an 

unsteady inviscid flow. He employed the method of images, which 

simulate the walls parallel to the plane of the aerofoil, and required 

the boundary conditions on the aerofoil to be satisfied as in the 

classical thin aerofoil theory. The result is a correction to Sears's 

function involving terms of the order (c/h)2, (c/h)', (c/h)6, etc. In 

the developed formula the first term is only retained and the value 

suitable to the author's experimental arrangement is fitted (c/h = 0.125). 

The corrected Sears's function (denoted with the same symbol, i.e. S(k)) 

is plotted in Figs. 5.23 and 5.24. Its absolute value is greater than 

IS(k)I in the low frequency range, while at the higher frequencies, the 

two functions tend to become equal. As k } 0, the correction tends to 

the steady flow result. The maximum correction to IS(k)I does not 

occur for k = 0, but for some low frequency (which is difficult to 

establish due to a lengthy series summation required at low frequencies). 

The same trend is observed in the results of Reissner (1947) relating 

to blockage corrections for oscillating aerofoils. The unsteady 

corrections indicated by Fig. 5.23, show that the quasi-steady corrections 

applied to the present experimental admittances, after the wake blockage 
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and thickness effects are excluded, tend to slightly undercorrect 

IA(k)1 at low k and slightly overcorrect IA(k)I at high k. On the other 

hand, the corrected phases, shown in Fig. 5.24, tend to agree better with 

the experimental ones for low to moderate frequencies, since an increase 

in the phase lag due to blockage is predicted. 

In Section 3.3.4.2, it was found that the effect of the tripod 

support system was to decrease the intensity of the upwash over almost 

the whole area occupied by the models, with the lower frequency being 

the mostly affected. The uniformity of the gust intensity was also 

impaired in all three directions (Fig. 3.14). This fact was not taken 

into account in the computation of the experimental admittances, because 

the "empty" tunnel values of ag  were used. A simple correction would 

be to employ an "effective" gust amplitude equal to the arithmetic mean 

of values distributed across the span. Taking for example the case for 

k = 0.088 in Fig. 3.14, it turns out that all experimental admittances 

should be increased by 3% approximately, thus moving closer to IS(k)I. 

In fact, since there is also some drop in ag  below the centre line (see 

Fig. 3.14), the correction involved should be somewhat greater, 

especially for the thicker bodies. 

Effects on the unsteady lift, arising from the proximity of 

the test models to the oscillating aerofoils, are not thought to be 

significant. The relevant distance is about six oscillating aerofoil 

chord-lengths (see Fig. 3.8). From the work of Hakkinen and Richardson 

(1956), it is inferred that even at a downstream distance of five chord-

lengths, the gust characteristics do not "feel", within 1 to 2%, the 

presence of the upstream oscillating aerofoils, especially if k is large. 

The finite extent of the unsteady wake behind the models, 

might be a little more important for the lift results, because of the 

diffuser following after the working section. The beginning of the 
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diffuser and the model mid-chord point are at a distance 5 c apart, so 

that by analogy with the previous case (oscillating aerofoils), the 

limited wake effect should not be significant. 

5. 	The contribution of the streamwise gust. 

In Section 3.3.4.3, it was found experimentally that a stream-

wise u gust component at twice the oscillating rig frequency (2ng) existed 

along the centre line. Theoretically, (Section 3.4.2) the oscillating 

aerofoils produce a u component of frequency ng, which is zero only 

along the centre line. When an aerofoil at a non-zero mean incidence is 

exposed to such a streamwise gust, it experiences an unsteady lift of 

magnitude and phase given by Eqn. (2.13). The unsteady lift response 

function T(k) (Horlock's function) is plotted in Fig. 2.7. An estimate 

of this "extra" unsteady lift will now be given for the nominally zero 

and the high mean incidence experiments. 

Although the geometric incidence of a model may be zero, the 

effective mean incidence may be different. Assume that a 2°  (0.035 rad) 

error in the effective mean incidence is possible (see also Section 

3.3.4.1). The u component at frequency 2ng  along the centre line is 

about 20% of w (i.e. the ūpwash component, see Fig. 3.17), while that 

at frequency ng  is negligible, even at distances from the centre line 

equal to the maximum thickness of the bluff sections. The ratio 

IT(2k)/S(k)I becomes maximum for k = 0.5, reaching a value of 2.5 

approximately. It follows that the unsteady lift due to the streamwise 

gust cannot be more than 1.75% of the corresponding lift due to 

transverse gust. Although this result refers to a flat plate aerofoil, 

it may not be much different for the bodies examined in the present 

work. Anyway the experimental admittance results do not contain this 

small contribution because of the filtering at frequencies less than 2ng. 

In the high mean incidence test the NACA 0015 aerofoil was set 
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to a maximum mean incidence of 13.5°  (0.365 rad). The predicted 

unsteady lift at frequency 2ng  should still be present as before but its 

magnitude should be greater, because the incidence had increased. If a 

uniform distribution of the streamwise gust is assumed then the figure 

of 1.75% stated previously, becomes 12% and the overall unsteady lift 

deviates more from the sinusoidal form. Here also the various parts of 

the wing are displaced from the centre line, where a u component at the 

main frequency ng  exists. 

A rough estimate of the unsteady lift due to this component can 

be made, if it is assumed that the value of u is everywhere the same 

and equal to that prevailing in the position of the remotest part of the 

wing, i.e. the leading edge (this distance being about 0.23 c from the 

centre line). Theoretically, (Section 3.4.3) the ratios lu/wi and 

IT(k)/S(k)I are increasing functions of k, so that the ratio of the 

corresponding lift coefficients will also increase with k. Typical 

calculated values are given below:- 

k 
	

CLstr./CLupw. 

	

0.2 
	

0.04 

	

1 .0 
	

0.25 

It is seen that a considerable amplification of the overall 

unsteady lift may occur at high frequencies, if the contributions from 

the u and w components are not much out of phase. This phase difference 

will also lead to a non-sinusoidal shape of the overall lift. Both 

effects were observed in the high incidence tests, (see Fig. C-11). 

6. 	Convection speed of the gust. 

The measurements described in Section 3.4.4 suggest that, 

assuming the gust to travel downstream as a frozen pattern, the convection 
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speed Uc  is slightly higher than the free stream speed U.. For example 

at k = 0.35, one experimental point in Fig. 3.24 indicates that Uc  = 1.12 U.. 

The unsteady lift response will be then determined from Kemp's function, 

plotted in Figs. 2.4 and 2.5. For the values of k and Uc/Uo  given 

above, the lift response of a flat plate aerofoil should be about 6% 

higher than Sears's theory predicts. Although it is not known how well 

Kemp's (1952) theory applies to thick aerofoils (and even more to bluff 

bodies), this figure is of the same order as the rise in the experimental 

admittances at high k, observed for the aerofoil and the D section (Figs. 

5.20 and 5.21). However, although theoretically the phase lag should 

decrease with respect to Sears's result, the experiment showed that an 

increase in the lag took place (Figs. 5.21, 5.22 and 5.23). 

B. 	Inaccurate measurements. 

The possible inaccuracies introduced in each particular 

experiment were stated in the appropriate sections. The topics covered 

included among them the hot-wire techniques, the load measuring 

techniques, the installation of the test models (e.g. the gap effect 

between the "live" and "dummy" sections, the surface irregularities, 

the length of the supporting rods, etc.) and the extraneous noise. 

Special attention was paid to the errors due to the measurement of the 

fluctuating signals (Appendix B). Here, two of these subjects will be 

discussed further: That of the load measurements and that of the 

aerodynamic admittance computation. 

1. 	The experimental mean lift curve slopes used in the unsteady 

lift and admittance predictions (Eqns. (5.1) to (5.5)), may be partly 

responsible for the discrepancies at the lower reduced frequencies. 

There are two reasons for this. First, as stated in Chapter 4, the 

models employed for the measurements of the mean and fluctuating loads, 

were not the same. Therefore, the asymptotic behaviour of the unsteady 
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load model as k -'- 0, may not result in exactly the same aCL/aa, found 

on the mean load model. This would be a systematic effect for all the 

three models examined and the fact that all the admittances lie below 

IS(k)I, for small k, may be related with this matter. Second, even if 

the unsteady and steady load models are identical in every respect, 

there are the errors in measuring C~ and 3y3a. If the CL v. Ti curve 

is not a straight line near the origin, then the computation of a /3a 

for ā = 0 is more inaccurate, because a lot of experimental points are 

needed. 

The systematic rise of the experimental admittance above IS(k)I, 

observed for the aerofoil and the D section at high k, could have some 

of its cause in the presence of mechanical resonances. Although it was 

found, that the lift spectra for the "wind off" condition (but the 

oscillating rig running), contained no significant power at the rig 

frequency, it may be that, during the actual run "wind on", some small 

extra (i.e. non-aerodynamic) power did appear. The strength of this 

excitation could be greater at high frequencies (which are anyway close 

to the mechanical resonance observed). 

In Section 3.1.4 it was stated that the piezoelectric transducers 

picked up about 10% of the transverse (here drag) load as axial load, 

leading to a wrong measurement of the true lift force. In unsteady 

flow the drag fluctuations are expected to be strong for the aerofoil 

at high incidence. On purely quasi-steady terms, if for example -6-t. =  12° and 

ag = 2°, the fluctuating lift should be roughly 3 times the fluctuating 

drag. This means that the "extra" lift due to transverse loads would be 

about 3% of the true lift. The large values of unsteady lift, for high k, 

realised in the experiment will include this contribution. Another 

effect which could be associated with the drop of lift at very low 

frequencies, is the frequency response of the transducers. These were 
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calibrated with respect only to static loads (Section 3.1.4). A drift 

observed during these calibrations suggests that the frequency response 

of the transducers may not be flat at very low frequencies. This may 

partly account for the drop of the unsteady lift at low frequencies, 

when the transducers were used in the "short" or "dynamic response" mode. 

	

2. 	Figs. 5.20 to 5.21 show that the low frequency experimental 

admittances computed from the digital analysis data, are systematically 

higher than those computed from the analogue filtering data. Therefore, 

they are closer to Sears's theoretical curve. The reasons for this 

disagreement were analysed in Appendix B and it is felt that at that 

• particular frequency range, the digital analysis method leads to a 

better representation of the experimental aerodynamic admittance. 

	

5.4 	CONCLUSIONS REGARDING THE SINUSOIDAL LOADING EXPERIMENT 

The experimental results and discussion presented in Sections 

5.2 to 5.4, demonstrate that the proposed theoretical model for the 

prediction of lift in unsteady flow, does not apply with an equal degree 

of success for all bodies examined. This model is a simple modification 

of the unsteady thin aerofoil theory (Section 2.3.1) and consists of 

treating the bodies as flat plates of equal chord, thus effectively 

assuming instantaneously equal pressure at the separation points and 

neglecting the effect of thickness on the unsteady lift. The trailing 

edge of the flat plate is now an "equivalent" or "effective" trailing 

edge for the application of the Kutta-Joukowski condition. However, 

the fact that thickness does affect the mean lift, is taken into account 

by replacing the theoretical mean lift curve slope of a thin aerofoil 

(= 27r), by the experimentally determined mean lift curve slope in smooth 

flow. In the following, the main conclusions drawn from the investigation 

of each particular test model (at zero mean incidence) are listed. 
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1. 	NACA 0015 aerofoil. 

Over the examined range of reduced frequencies (0.05 - 0.8 

approximately) and RMS gust amplitudes (0.5°  to 5°  approximately), the 

aerofoil responds in an essentially linear manner to the incident 

sinusoidal upwash. This is suggested by both the great similarity 

between the upwash and corresponding lift spectra, which, it should be 

noted, are characterized by a very strong peak centred at the gust 

frequency and very little power in the other harmonics, and the fact 

that the shape of the complex aerodynamic admittance (frequency response 

function) is, within an experimental error of 15%, unique, i.e. it does 

not depend on the gust amplitude. 

All the experimental results (lift, phase, etc.) are 

substantially independent of the Re number, except for one case (Re = 

1.2 x 105 ) for which the magnitude of the aerodynamic admittance departs 

from the generally observed level. This discrepancy most probably 

appears, because the value of 3CL/aa used in the computation of the 

admittance is not the appropriate one. The invariability of the 

results with Re number, is associated with the existence of the sharp 

trailing edge, at which the single separation point is fixed. 

When certain sources of discrepancy are taken into account, 

then the magnitude of the experimental admittance IA(k.)I is in good 

agreement with the magnitude IS(k)I of Sears's function (Eqn. (2.8)). 

More specifically, it was found that the lack of correlation of the 

gust in the spanwise direction, the tripod supporting the aerofoil, 

and the employed analogue filtering method each tended to decrease the 

value of IA(k)I by a small percentage at low frequencies (k = 0.05 - 0.15 

approximately). The values of the aerodynamic admittance corrected for 

these additive effects are seen to be close to Sears's function within 

experimental error. Since the factors mentioned, accounting for the 
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drop of IA(k)I are almost totally independent of the body considered, 

they will not be repeated when stating the conclusions for the rest 

of the models. 

On the other hand, the observed tendency of IA(k)I to exceed 

IS(k)( at the highest frequencies (k ti 0.5) could be due to one or more 

of the following reasons:- 

- Contribution of mechanical resonances. 

- Gust convection speed higher than the free stream speed. 

- Different contribution of the"inertial acceleration"terms with respect 

to the quasi-steady and wake terms, than thin aerofoil theory predicts. 

The experimental phase lags between the sinusoidal lift and the 

upwash at the mid-chord point are in reasonable agreement with the 

theoretical (especially if k is less than 0.25 approximately) and almost 

always greater. 

Among the reasons which cause discrepancies in the admittance 

results at high k, that of the gust convection speed tends to decrease 

the phase lag, while viscosity, thickness and wind tunnel blockage tend 

to increase it, so that the net effect appears as an increase in the 

phase lag. 

There is evidence that the experimental centre of pressure in 

unsteady flow is close to the theoretical located at the quarter chord 

point. 

Therefore, it is concluded that the proposed modified unsteady 

aerofoil theory is capable of predicting the unsteady lift on the 

present aerofoil and, it is believed, on two-dimensional aerofoils of 

similar shape, provided the structure of the incident gust and the 

experimental mean lift curve slope are known and the Re number of the 

flow is sufficiently high so that the boundary layers remain thin and 

attached. A suggested lower limit of the Re number is one above which 
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the experimental mean lift curve slope stays sensibly constant. 

It should be emphasized that there are many other factors 

causing discrepancies between theory and experiment, which were not 

mentioned here, but of which the influence was estimated to be small 

in Section 5.3.3. 

The overall significance of the good agreement between the 

experimental and theoretical aerofoil results, is that it proves the 

present experimental set-up to be adequate for testing Sears's theory. 

2. 	D cylinder. 

This model exhibits a behaviour very similar to that of the 

aerofoil so that many of the conclusions stated can be also repeated 

here. Only the differences are, therefore, pointed out. 

Both the mean and the unsteady lift results of the D cylinder 

were found to be insensitive to changes in the Re number, so, therefore, 

• were the experimental admittances. The lift spectral power at the 

higher harmonics is slightly increased in comparison with the aerofoil, 

suggesting only a small deterioration in the linearity of the lift 

response. At all Re numbers the quality of the agreement between the 

experimental admittances and IS(k)I is as good as observed for the 

aerofoil for Re > 1.2 x 105. Here IA(k)I is rather uniformly greater 

than the aerofoil admittance and the rate of fall at high k is slightly 

smaller. An extra reason for this to happen (i.e. except those 

previously mentioned for the aerofoil) could be that of tunnel blockage 

on both the 9CL/act and unsteady lift values. Theoretically, the effect 

of thickness on the unsteady lift of a thick aerofoil as k increases 

should result in a progressive decrease of the admittance below IS(k)I. 

The absence of this trend in the D section admittances suggests that 

thickness may not be as important (for the admittance) as the factors 

mentioned previously. 
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The experimentally determined phase lags are systematically 

greater than the predicted values and also than the aerofoil values. 

It is thought that among other reasons, the additional model thickness 

contributes to this discrepancy. 

The unsteady centre of pressure was found to lie further 

downstream from the quarter chord point, predicted by thin aerofoil 

theory. There is also some indication that the chordwise sinusoidal 

loading is not tuned to a single phase, as it would happen theoretically 

for a flat plate. These observations also apply for the elliptic 

cylinder. 

As far as the natural vortex shedding lift coefficient is 

concerned, a reduction from its smooth flow value was noticed, when the 

sinusoidal flow was applied. The effect of the sinusoidal flow was more 

pronounced as the gust frequency was approaching the shedding frequency 

(though remaining much smaller). This agrees with the findings of other 

workers, e.g. Pocha (1971). Modulation effects are considered to be 

probable reasons for this drop in vortex shedding lift. A similar drop 

in the lift was found to occur for the elliptic cylinder (for which the 

Strouhal frequency was even more greater than the gust frequency) though 

relatively smaller. 

These results point to the conclusion that the unsteady lift 

on the D cylinder can be satisfactorily predicted by the proposed 

modified aerofoil theory, over the range of reduced frequencies 

examined (i.e. well below those of the natural vortex shedding), with 

an additional input the experimental mean lift curve slope. Thus, the 

idea of having a fixed, "effective", trailing edge (for the shedding of 

vorticity in a single, "equivalent" sheet) mid-way between the two 

fixed separation points, is proved to be a reasonable one. It is 

believed that the unsteady lift on similar kinds of bodies (large 
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unseparated surface in the direction of the free stream and fixed 

separation points), can be predicted with a similar degree of success, 

when using this theory. Further, it is thought that the idea of a 

fixed, "effective", trailing edge for such bodies may be fruitful for 

more elaborate load calculation methods. 

3. 	Elliptic cylinder. 

The response of the elliptic cylinder to the incident gust is 

distinctly different from that of the aerofoil and the D section. It is 

found that the results are strongly influenced by the Re number, though 

this influence tends to become less important as the Re number increases. 

There is also some evidence, that the magnitude of the gust intensity 

(ag), which for the previously examined models had no significant 

effect, appears to be here relatively more important. 

The values of the experimental admittance appear to follow two 

trends:- 

(a) If the Re number is high (about 3 x 105), or the boundary layer 

transition is fixed (e.g. by means of trip wires),1A(k)1 is seen to 

behave in a similar way to that found for the aerofoil and the D section 

(i.e. to approach IS(k)I ās k increases and to slightly exceed IS(k)I 

above a certain reduced frequency). 

(b) In the case where the above conditons are not met, then IA(k)1 

is found to fall off faster than IS(k)I, remaining always lower. The 

rate of this drop is greater, the lower the Re number, so that for 

Re = 1.2 x 105  and k = 0.7 the experimental admittance is about 4 times 

lower than IS(k)j. The sources of discrepancy mentioned so far, 

including the change in the mean loading characteristics with increasing 

k, cannot produce deviations of this order. 

One factor, which is thought to seriously affect the elliptic 

cylinder lift results and is not present in the aerofoil and the D section, 
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is that of the unsteady movement of the separation points, despite the 

fact that some boundary layer experiments could not provide a 

conclusive answer, as to how much, or how, these separation points 

move. Further support for the role played by the separation points is 

obtained from the following remarks: First from the trend (a) of the 

aerodynamic admittance mentioned previously, i.e. at high Re numbers 

or with a tripped boundary layer. It would appear that this trend is 

also associated with the fact, that the separation points lie further 

downstream in this case. Therefore, they are closer together and the 

separated surface of the cylinder is smaller. Second, the unsteady 

lift on a NACA 0015 aerofoil placed at high incidence (which, therefore, 

is expected to have one free separation point and one fixed at the 

trailing edge), exhibited the opposite behaviour, under the same 

conditions as the elliptic cylinder, at high frequencies. Third, it is 

the indication that an increase in the magnitude of the gust intensity 

(a ), affected (actually slightly decreased) the aerodynamic admittance, 

in a different manner than in the case of the aerofoil and the D 

section. If, when all other conditions are fixed, the separation 

points respond in a different manner to relatively big changes of the 

stream incidence, than to small ones, a corresponding effect upon the 

unsteady lift behaviour is to be expected. 

It should be concluded, therefore, that the existence of two 

free separation points, makes the idea of a fixed, "effective" trailing 

edge inappropriate for the calculation of the unsteady lift on the 

elliptic cylinder, using the proposed modified thin aerofoil theory. 

It is felt that the same would apply to bluff bodies with the same kind 

of separation. It may be, that the definition of an "effective" 

trailing edge for the shedding of vorticity, between the separation 

points, but allowed to move in a certain manner, is likely to produce 
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more reasonable results in a suitable theoretical model. Still, however, 

a knowledge of the behaviour of the separation points in unsteady flow 

should be necessary. 
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CHAPTER 6. THE TURBULENT LOADING EXPERIMENT 

	

6.1 	INTRODUCTION 

This chapter describes the unsteady lift measurements and the 

comparison with the theory, for the NACA 0015 aerofoil, the D shape 

cylinder and the elliptic cylinder, placed at zero mean incidence in 

grid produced turbulence. 

The models were those used in the sinusoidal loading 

experiment (chord = 0.152 m, aspect ratio = 2.5) and, in an identical 

manner as in that experiment, they were installed in the unsteady load 

balance of the 1.22 x 1.52 m wind tunnel. 

The unsteady lift measurements are presented in the form of 

power spectra, which were obtained after analyzing digitally the 

recorded data (see Appendix B). 

Turbulence of two different intensities and length scales 

was employed with characteristics given in Section 3.6 and Table 3. The 

experiments were carried out at a Re number of 2.3 x 105,wkcchwassegl-t hi9ketr 

+haut ivt-the 
sinusoidal loading case. 

Corrections due to tunnel blockage were applied in the way 

suggested in Section 5.1. 

Following Graham (1973), the broad-band and narrow-band 

(vortex shedding) contributions to the total lift spectrum are examined 

separately. This is permissible when, as it is likely in the present 

case, the incident (isotropic) turbulent field and vortex shedding are 

not correlated. 

	

6.2 	BROAD-BAND RESPONSE 

6.2.1 	EXPERIMENTAL RESULTS 

The spectra of the lift coefficient, non-dimensionalized 
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with the free stream speed U. and the turbulence length scale Lx, are 

plotted against the reduced frequency k' = 2nnLx/U~ in Figs. 6.1 and 6.2. 

The corresponding estimated values of Lx/c are 0.36 and 0.44. The points 

shown are taken from a smooth curve, which was fitted to the data 

obtained directly from the computer (after the calibration constants, 

etc. were taken into account). This resulted in some uncertainty of the 

spectral levels for very low frequencies. 

Figs. 6.1 and 6.2 show that most of the lift energy is 

concentrated at reduced frequencies less than 1.0 approximately; there, 

the differences in the spectral levels for the three models are clearly 

distinguishable. Above k' = 1-0 , the spectral power drops rapidly 

(except when it rises locally to form the shedding peak) becoming an 

order of magnitude smaller at k' = 2.0. In the low frequency range, the 

D section is observed to always have the greatest spectral power. 

However, while for Lx/c = 0.36 the model next in power magnitude is the 

ellipse, for Lx/c = 0.44, it is the aerofoil which shows this trend. The 

differences are such that they cannot be simply attributed to the plotting 

uncertainty mentioned previously. Another point which needs attention is 

the drop in power for k' < 0.1 noticed for all three models with Lx/c = 0.36, 

(Fig. 6.1). If this was due to experimental inaccuracies, such as 

transducer and filter response, intermittent contact of the "live" with 

the "dummy" sections, or insufficient averaging time, then it would have 

appeared in the spectra with Lx/c = 0.44 as well. The cause should, 

therefore, be of an aerodynamic origin. 

For frequencies k' > 1.0 approximately, the aerofoil and D 

section results are close to each other, but those of the elliptic section 

tend to fall off faster, while remaining always the lowest. 

Examination of corresponding mean square values of the upwash 

intensity and the lift coefficient, indicated that both changed in the 
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same direction and by the same order of magnitude. 

6.2.2 	COMPARISON OF THE EXPERIMENTAL RESULTS WITH THE 

THEORY AND DISCUSSION 

6.2.2.1 	THE THEORETICAL AND EXPERIMENTAL ADMITTANCES 

For the prediction of the unsteady loading in turbulent flow, 

the approach adopted in sinusoidal flow will be followed. Namely, the 

unsteady lift is assumed to be given by the exact theory for a flat 

plate (Section 2.4.1), but adjusted for the effect of mean lift curve 

slope. In fact, this is the method employed by Graham (1973) in his 

paper on bluff bodies (described in the present work in Section 2.4.2.2b). 

The comparison between the theoretical and experimental results is made 

in terms of aerodynamic admittances. In Chapter 5 the aerodynamic 

admittance was defined by Eqn. (5.4) and it was explained how it can be 

measured experimentally. Here, this definition is kept, but for 

compatibility with the existing formulae in the literature, the square 

of this admittance will be used, i.e.:-  

SC

L 

 000-2 

IA(k)I2  = -s--. 175-5.-J 	 (6.1) 
ag  

To avoid confusion, it should be noted that this squared value is termed 

in this chapter simply as the aerodynamic admittance for brevity. 

A question arises as to what value of aCL/aa should be used. 

In sinusoidal flow, it was taken equal to the corresponding smooth flow 

value and the justification was that for very low frequencies the body 

will behave quasi-steadily, since the flow is always very two-dimensional. 

Although turbulence is more correlated the lower the frequency, a body 

exposed to it will feel the velocity fluctuations at all frequencies. 

Also, the mean lift curve slope of the elliptic model was found to be 

particularly sensitive to changes in the levels of free stream turbulence 
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(see Chapter 4) and it is thought that even in well correlated turbulence 

(Lx/c large) this effect would still be present. In view of the points 

made, it was decided to use the values of aCL/aa measured in turbulent 

flow (see Figs. 4.1, 4.8 and 4.18). The experimental admittance denoted 

by IA(k)(2 or IA(k)Exp(2 can then be computed, if the measured values of 

the upwash and lift spectra (Figs. 3.26, 6.1 and 6.2) are fed into Eqn. (6.1). 

The theoretical admittance 1A(k)t12 is simply that derived 

by Jackson, Graham and Maull (1973) for a flat plate aerofoil in isotropic 

turbulence (see Eqns. (2.20), (2.21)), i.e.:- 

	

m 
	sin2(k AR) 

IA(k) 2 = 	~G(k , 	)1 2 	2 	S 	(k , k ) dk 
1 tl 	4 c 

0 
	2 1 

k 2 
	(k AR)2 	ww 1 	2 	2 

(2.20) 

It is noted, that in order to calculate IA(k1 )t12, the structure of the 

incident turbulent field should be known. S 	is related to the 
ww 

normalized upwash cross spectrum of turbulence, Rww, by means of Eqn. (2.21). 

Jackson, Graham and Maull (1973) show how the measurement of Rww can be 

accomplished in homogeneous turbulence. Then, if an empirical curve 

could be fitted to the measured values of R̀ w, its Fourier transform 

(Eqn. (2.21)) would give Sww, and IA(k1 )t12 would be calculated from 

Eqn. (2.20) via a single numerical integration. In the present work, 

such measurements were not made. Instead, it was assumed that R, could 

be reasonably predicted by von Karman's cross spectrum for isotropic 

turbulence (see for example McKeough, 1976):- 

2 	 

1/6 	*5/6 
Rww(ki, Y) = 	r (5/6) 

	
[K516(Y*) 

	3 +
Y 
8k* . 

K1/6(Y*) 
1 

• 

where: 

r is the gamma function. 

 

(6.2) 
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Kn  is the modified Bessel function of the second kind; 
k* - r(1/3) . k1  . 2 . Lx  

1 	F(1/2) . r(5/6) . c 

_ r(1/2) . r(5/6) . (1 + k*2)l/2 . 
y  

y*  F(1/3) . Lx  

The value of Lx  entering Eqn. (6.2) was that estimated from the 

experimental u spectra (Section 3.6 and Fig. 3.26). In McKeough (1976) 

the derived two-dimensional spectrum Sww  is found to be:- 

*2  0-22  
k1 	

+ k+22  + k1  
S 	k 
ww( 	1,  

k 
2)  

8 L 
r(1/3)2 

(6.3) 
F(5/6)2  

27r 1(1+k 2 )1/2(1+k 2)7/3(3+8k 2)i 
1 	2 	1 

r(1/3) 	. 	2 	. 	L 	. 	k 
where: k+  - x 	2  

2  r(1/2) . 	F(5/6) 	. 	(1 	+ 	
k*2)1/2 	. 	c 

It is realised that the calculation of the admittance would 

be more accurate if R 	is obtained directly from the particular 
ww 

experimental arrangement. For example, any effects of anisotropy, 

(evidenced from the different intensities of the u, v, w components) are 

not taken into account, when assuming that Rww  follows exactly the von 

Karman formula. However, even if Rww  had been measured, an uncertainty 

in the value of IA(k ) 1 2  at low k is difficult to avoid. This, as 
1 t 

McKeough (1976) pointed out, is because the theoretical admittance 

result is sensitive to the R
ww 
 (k, y) data fit over the range of y, in 

which R
ww 
 (k, y) is appreciably non-zero. In order to have an idea of 

how much the theoretical admittance given above, (Eqn. (2.20)) would 

differ from those derived with less rigorous assumptions, two other 

theoretical admittances were considered: One is obtained from the "strip" 

theory (see Sections 2.4.1 and 5.3.3), in which G(k 
1 
 , k

2
) is replaced by 

S(k), the Sears's function. Then Eqn. (2.20) becomes:- 

sin2(k AR) 
IA(k1)t!2 = IS(1)12 	

2 	
. S (k . k) dk4  

0 (k2AR)

2 	

1 2 
(6.4) 
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The other theoretical admittance is simply the squared modulus of Sears's 

fun ction (Liepmann, 1952), i.e. 1A(k1 )t 1 2  = 1S(k1 )1 2. 

The theoretical admittances given by Eqns. (2.20) and (6.4) 

are plotted in Figs. 6.3 and 6.4 for three values of the ratio Lx/c, 0.44, 

0.40 and 0.36. For the calculation of 1A(k1 )t 1 2  from Eqn. (2.20), a 

computer program written by McKeough (1976) was used. Note that the 

argument has been changed from k = k = Trnc/Uo, to k' = 2TrnLx/Um, so that 
1 

1A(k')t 1 2  = IA k1  At1 2
. 

It.can be seen from Figs. 6.3 and 6.4 that, for constant k' 

and Lx/c, strip theory predicts a higher lift than the exact (Graham's) 

theory, but much less lift than the entirely two-dimensional theory of 

Sears. This is because spanwise correlation effects are important in 

the present case, where Lx  is of the order of the body dimensions. But 

even if Lx  was much higher than c, the strip and exact theories would 

approach Sears's theory only for very small AR, i.e. for a very narrow 

strip model. The exact and strip theories (for Lx/c = constant) come 

closer together as the reduced frequency increases. Examination of the 

integrand in Eqn. (2.20), shows that its value falls rapidly to zero 

from its value at k = 0 and k constant, because G(k , k ), S 	and 
--- 	2 	 1 	 1 	2 	WW 

the ratio including the sine term are all decreasing, as k2  increases 

(see also Fig.. 2.6). The replacement of 1G(kl, k2 )I by lS(k1 )) in the 

strip theory when k
1 
 is small would make a considerable difference in 

the integral, because 1G(k 
1 
 , k 

2 
 )1 	0 as k

2 
 } co, while IS(k

1
)1 does 

not depend on k2.  However, for very high k
1 
 both IG(k 

1 
 , k 

2 
 )I and IS(k1)1 

tend to zero, irrespective of k (see Graham, 1970a), and, therefore, in 
2 

conjunction with the strong term sin2(k AR)/(k AR)2  (which knocks out 
2 	2 

the differences between IS(k1 )1 and IG(k 
1 
 , k 

2 
 )l at high k2), the integral 

in Eqn. (2.20) would give more or less the same answer in the exact and 

strip theories. Similarly, it may be shown that the exact admittances 
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approach each other at high k, when plotted in terms of k = Inc/U., 

for various values of Lx/c. The general tendency for all admittances 

is to increase with increasing value of Lx/c. 

6.2.2.2 	THE COMPARISON 

In Figs. 6.3 and 6.4 the experimental admittances are 

compared to the theoretical. 

(a) 	NACA 0015 Aerofoil: Considering first the case with Lx/c = 0.36, 

it is observed that the agreement between the experimental and the exact 

(Eqn. (2.20)) theoretical admittances is good, particularly around k' = 0.2. 

Generally the experimental admittance is overestimated. McKeough (1976) 

tested a similar NACA 0015 aerofoil under the same flow conditions but 

with AR = 1.66. When his results are adjusted for the mean lift curve 

slope factor (he had used aCL/aa = 27r), then the agreement between the 

theory and his experimental results, is very similar to that of the 

present case. 

The agreement is noticeably worse for Lx/c = 0.44, where the 

experimental admittance is overestimated by approximately 25% (on average), 

except for the lowest frequencies (k' ti 0.15), where it is underestimated. 

However, if the results, after being suitably plotted, are compared with 

the theoretical curve with Lx/c = 0.40, the agreement is better, in fact 

quite similar to that found in the results of Jackson, Graham and Maull 

(1973) (for Lx/c = 0.42 and AR = 2.67) and Graham (1973) (for Lx/c = 0.42 

and AR = 2.5). The theoretical admittances of Graham (1973) are corrected 
chs{ortl ova 

for turbulence This indicates that the turbulence distortion effects 

for the aerofoil at such values of Lx/c are not likely to be large. 

Strip theory overestimates the experimental lift by roughly 

250% at the lowest frequencies and 40% at the highest frequencies. 

There is no clear evidence of which value of Lx/c gives better agreement, 
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though it is expected that strip theory would give more reasonable 

load predictions at high values of the length scale to span ratios. 

Sears's theory is by more than 500% higherkhavthe experimental 

results, for all k. 

(b) 	D Cylinder: The experimental admittances of the D section 

are seen to be higher than those of the aerofoil, up to about k' = 1.0 

and then become lower. It should be noted, that the sinusoidal flow 

admittances exhibited a similar behaviour. 

Now, unlike the previous case, the agreement with the theory 

appears to be better for Lx/c = 0.44 than Lx/c = 0.36. For the latter 

value,, there is a large disagreement at low frequencies, i.e. the 

experimental admittance is about 200% higher than the theoretical. 

Besides the uncertainty in measuring power at low frequencies, it is 

also the response of the transducers to drag (due to both u and w) and 

the distortion effect which may contribute to this discrepancy. Graham 

(1973) conducted similar measurements on a D section (see Fig. 2.10) and 

his theoretical admittance corrected for distortion (Lx/c = 0.28), is 

higher than the uncorrected; at low k', the difference is of the order 

of the discrepancy reported above. 

The drop in the values of the experimental admittances 

below the theoretical for high k; which is observed here (even if the 

curve for Lx/c = 0.40 is used), appears also in the results of Graham 

(1973), see Fig. 2.10. Note that this is a systematic result, which 

cannot be attributed to the distortion effects, because the corrections 

of Graham showed the corrected and uncorrected theoretical admittances 

to be very close at high k: 

Strip theory again overestimates the experimental admittances 

at all frequencies. A tendency towards a better agreement for low k' and 

Lx/c = 0.36 is not a sign that strip theory is accurate, because the rise 
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in IA(k)I, discussed previously is most probably due to other effects. 

(c) 	Elliptic Cylinder: This model is seen to have the greatest 

experimental admittance. IA(k')I2  is underestimated up to about k' = 1.5 

and then drops faster than in the other two models. The same kind of 

variation was found also by Graham (1973), see Fig. 2.10. The lift 

underestimation is greatest for the case L/c = 0.36, being of the order 

of 300% at low k'. This is a rather unexpected behaviour, in view of 

the sinusoidal flow results, where the experimental admittance was 

overestimated. It is also noteworthy that, while in the sinusoidal flow, 

the drop in IA(k)1 occurred for reduced frequencies less than 1.0, here 

it is postponed until k' is greater than 1.5 approximately. 

The choice of a non-appropriate aCL/aa would result in 

shifting the overall levels of the experimental admittance. A value of 

BCL/9a = 8.37 has been tried (theoretical lift curve slope of a 33.3% 

thick elliptic aerofoil, see Eqn. (4.8)), which gives a better agreement 

at low k', but an equally great disagreement (overestimation) for moderate 

and high k'. 

6.2.2.3 SOURCES OF DISCREPANCY BETWEEN THEORY AND EXPERIMENT 

Some of the discrepancies encountered in the turbulent flow 

experiment are common with those reported for the sinusoidal flow 

experiment, so they will not be repeated in detail here. In particular, 

the errors due to wind tunnel interference, measurement of velocity, 

spectral power and 71./9a, response of piezoelectric transducers and 

mechanical resonances, should be of the same order of magnitude as 

reported in Section 5.3.3. 

An error in the mean effective incidence should not be of 

importance, because, as was shown by McKeough (1976), the influence on 

the theoretical admittance goes as (CY)2  for a flat plate aerofoil. The 
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"inertial acceleration"effect (Section 5.3.3) could lead to discrepancies 

for the thick bodies at high k'. The higher harmonics, appearing in the 

lift response to a single spectral component (Sections 5.2.1.1 and 5.3.3), 

will be present here and they will tend to increase the experimental 

admittance. In Section 5.2.1.1, it was found that the relative strength 

of these harmonics was greatest for the elliptic cylinder and lowest for 

the aerofoil. The fact that the turbulence experimental admittances are 

ordered in the same way could be partly due to this effect. Sources of 

discrepancy which are of relatively greater importance are as follows:- 

1. Use of the von Karman cross spectrum. As stated previously 

IA(k')t1 2  is sensitive to the type of cross spectrum used and the large 

discrepancies at the lowest frequencies are certainly related to this. 

By assuming a von Karman spectrum, any effects of anisotropy are not 

taken into account. 

2. Distortion of vorticity. It was stated in Chapter 2 that 

the vorticity of the approaching turbulence is distorted by the presence 

of the body for two reasons: First, because the body acts as a "source" 

of turbulence so that the boundary conditions on it are satisfied 

(important for large Lx/c) and second, because the perturbed mean flow 

distorts the vortex lines (important for small Lx/c). For the values 

of the ratio Lx/c and the bodies considered here, a contribution from 

both sources is expected. 

Fig. 2.10 shows how the correction for distortion, applied 

by Graham (1973) for a D shape cylinder, affects the theoretical 

admittance: Theoretically the lift should appear higher due to 

distortion, especially at the lower frequencies. Consequently, this 

effect could account for the high experimental admittances observed for 

the two bluff bodies at low k' (Figs. 6.3 and 6.4), but it is thought 

to be small for the NACA 0015 aerofoil. The fact that the elliptic 
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cylinder has the highest experimental admittance is hard to attribute 

to the distortion effect alone, because, intuitively, it should not 

distort the vorticity more than the D section. Graham (1973) suggested 

that the distortion effect could be associated with the mean drag of the 

body, so that the D section would cause a greater distortion. 

3. 	Viscous effects and the unsteady Kutta-Joukowski condition. 

Viscous effects are expected to become more important at high 

frequencies. In particular, a discrepancy between the theoretical and 

experimental admittances is expected because the dissipation of 

turbulence spectra is not taken into account in the theoretical 

admittances (using the von Karman spectra). 

A common feature of the elliptic cylinder experimental 

admittances in the sinusoidal and turbulent flows, is that of a 

(relatively to the other bodies) rapid fall below the theoretical 

admittances, noticed at high frequencies, see Figs. 5.22, 6.3, 6.4 and 

the results of Graham (1973) in Fig. 2.10. It was said in Section 5.3.3 

that this effect should be associated with the unsteady movement of the 

separation points (due to the sinusoidal changes of incidence) and it 

could be that this is also the cause in turbulent flow. However, this 

rapid fall occurs at considerably greater reduced frequencies in 

turbulent flow compared to those in sinusoidal flow with the same Re 

number. Since the separation points are located further downstream and 

are closer together in turbulent flow than in the sinusoidal or smooth 

flows, see Fig. 4.12, it could be that the effect of their unsteady 

movement on the unsteady lift, is delayed until higher frequencies are 

reached. In addition, by simulating the cylinder with a flat plate, 

the separated regions are neglected; the vorticity carried by the shear 

layers passing over the rear of the body depends, among other parameters, 

on the reduced frequency. Therefore, this effect, which will be present 
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in both the sinusoidal and turbulent flows, may account for the 

characteristic lift behaviour noticed at high frequencies. Support to 

these arguments is also given from the high Re number (3 x 105 ) results 

in sinusoidal flow (Fig. 5.22a), where no drop in the admittance is 

observed and the separation points are also located further downstream. 

Therefore, like the case of the sinusoidal flow, it appears that 

the application of the Kutta-Joukowski condition on a fixed, "effective", 

trailing edge is not appropriate for the elliptic cylinder, which has 

two free separation points. It would also be rather difficult to comment 

on this matter with regard to the D section, because the deviations of 

the experimental from the theoretical admittances are generally greater 

in the turbulent than in the sinusoidal flow (see also the aerofoil 

theoretical and experimental results). It is clear, however, that the 

D section,which has two fixed separation points, behaves more consistently 

than the elliptic cylinder and in a manner more similar to that of the 

aerofoil. 

	

4. 	Thickness, 

The thin aerofoil theory given in Jackson, Graham and Maull (1973) 

is strictly valid for a flat plate. For a thick aerofoil, and, of course, 

for the even thicker bluff bodies, a deviation from the theory is 

expected partly because the variation of turbulence in,the normal 

(upwash) direction is not taken into account. In particular, the 

increased rate of fall off of the experimental admittances below the 

theoretical, noticed for all the models at high k', could be related to 

the lack of turbulence correlation in the upwash direction (which is more 

pronounced the higher the k', see Eqn. (6.2). 

	

6.3 	NARROW BAND RESPONSE 

The non-dimensionalized vortex shedding lift spectra of the D 
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shape and the elliptic cylinders are plotted in Figs. 6.5 and 5.18 

respectively, for both smooth and turbulent flows (see Section 5.2.4 

for method of non-dimensionalization). 

(a) 	D cylinder. 

Referring to the lift spectra of the D cylinder (Fig. 6.5), it 

is observed that the effect of turbulence is to reduce the peak spectral 

power from its corresponding value in smooth flow by 2.2 times 

approximately. Such reduction was not encountered in the sinusoidal 

flow experiment (see Fig. 5.17). The drop in the spectral power is the 

same for both turbulent flows considered here (of u intensities 6.7% and 

4.4%). However, the turbulent flow spectra are broader than the smooth 

flow ones. These trends also appear in the results of Graham (1973) 

who tested D shape cylinders in smooth and turbulent flows. 

The root mean square vortex shedding lift coefficients, CLvs, 

computed from the spectra (see Fig. 6.5) are seen to be lower in 

turbulent flow by a factor of 1.7 approximately, with respect to their 

smooth flow value. 

Turbulence .  appears to reduce slightly the Strouhal number, and 

this also agrees with the findings of Graham (1973). 

The results reported above, can be discussed as follows:-

- The slight decrease in the Strouhal number is thought to be a 

consequence of the thickening of the separating boundary layers due to 

the action of turbulence diffusion. When the shear layers are thick, a 

concentration of vorticity sufficient to initiate vortex shedding is 

delayed, so that the shedding frequency decreases. This suspension in 

the formation of a vortex (and so the relative reduction in the strength 

of vortex shedding) would tend to increase slightly the base pressure, 

when turbulence is added, a fact which was realised in the mean pressure 

measurements (see Section 4.3 and Fig. 4.3). 
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- The reason mentioned above is partly responsible for the lowering 

in the spectral levels and CLvs. An additional reason for this lowering 

is thought to be the modulation of the vortex shedding lift by the 

randomly fluctuating u component (see Section 5.2.4 and Appendix E). 

The effect of modulation is here more important than in the sinusoidal 

flow, because the modulating streamwise (u) component is much stronger. 

Note that the increased amount of turbulence carried by the two thickened 

shear layers also contributes to the randomness of vortex shedding and 

the broadening of the lift spectra. 

Turbulence can also lead to a decrease in the vortex shedding lift 

coefficient, by affecting the spanwise correlation of the shed vortices 

and consequently the spanwise correlation of the sectional lift. Fig. 6.6 

shows how the spanwise correlation of the u component, in the wake of 

the cylinder, falls after turbulence is introduced. The decrease in the 

spanwise correlation occurs for the total (broad-band) fluctuations and 

the narrow-band (at the shedding frequency) fluctuations. The result is 

that the spanwise correlation length 
Qc LQc = 	Ruu(y, 

 nvs) dy] of 
span 

the u fluctuations at the shedding frequency is about 2.2 b for smooth 

flow and 1.65 b for turbulent flow. A corresponding change in the 

correlation of pressures on the surface of the body is expected, so that 

on average CLvs  decreases in turbulent flow. It should be noted that 

the direct contribution of turbulence to the total C
Lvs 

is expected to 

be small, first because the height of the vortex shedding spectral peak 

is much greater than the power of turbulence at the same (i.e. the 

Strouhal) frequency, and second because at such high frequencies 

turbulence is relatively poorly correlated: see for example Fig. 6.6, 

where the "Townsend" or "Vickery" (1965) normalized cross spectrum of 

isotropic turbulence is plotted for Strouhal frequency S = 0.26. The 

formula is:- 
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2 

Ruu(y, n) = eye)- 2  Ko(e) (6.5) 

27rL ,n 2  
where 0= L 	1+ —u 

x  

 

Kn  are modified Bessel functions of the second kind 

and here n = nvs. 

- The effect of the rapid changes in the angle of incidence, caused 

by the w component of turbulence, could have an effect on C
Lvs 

 (see also 

Section 5.2.4), but it is not certain in what direction, because the 

shedding behaviour of the D section at various angles of incidence, in 

steady flow, is not known. However, the random nature of these changes 

could partly account for the observed broadening of the vortex shedding 

spectra. 

(b) 	Elliptic cylinder. 

The dimensionless vortex shedding lift spectra for smooth and 

turbulent flows are plotted in Fig. 5.18. As in the D section, the 

maximum spectral power is found to decrease when turbulence is applied. 

The flow with the greater turbulent intensity causes the greatest drop, 

- 17% approximately. But unlike case (a), the vortex shedding lift 

coefficients appear to be greater in turbulent than in smooth flow (note, 

however, that 
CLvs 

is defined in a different manner than for the D 

cylinder, see Section 5.2.4). 

It is believed that the increase in the Strouhal number with 

increasing levels of free stream turbulence is mainly due to the 

displacement of the mean separation points further downstream, as the 

flow visualization tests had indicated (Figs. 4.11, 4.12). Consequently 

the wake is narrower and the interaction between the shed shear layers 

is facilitated within shorter time, thus increasing the vortex shedding 

frequency. The ensuing increase in the mean base pressure, shown in 

Fig. 4.13, is greater, the greater the turbulence intensity. Note that 



225 

similar effects are introduced by an increase in the Re number (Figs. 

4.12, 4.13, 5.18, 5.19), with the only exception that the RMS lift 

coefficient is lowered. 

- The increase in 
CLvs 

with increasing turbulence level seems to be 

rather curious in view of the increase in the base pressure and the 

decrease in the narrow-band spanwise correlation (see Fig. 6.7). The 

following factors could account for this behaviour. 

(i) Broadening of the vortex shedding peak. (For the reasons leading 

to this broadening see case (a); an additional reason is thought to be 

the random excursion of the separation points away from their mean 

position). If the peak spectral levels were the same, then the broader 

spectrum would give the greater 
CLvs' 

 according to the way C
Lvs 

 is 

defined for the ellipse (Section 5.2.4). 

(ii) Direct contribution from turbulence. Although turbulence 

energy falls rapidly at such high frequencies as the vortex shedding 

(S = 0.44), there could be a contribution to the shedding peak, which 

is not very much higher than the turbulence power at the same frequency. 

(iii) It may be that turbulence causes a different degree of 

excitation of mechanical resonances than the smooth flow, which could 

contribute to the power at high frequencies. 

6.4 	CONCLUSIONS REGARDING THE TURBULENT LOADING EXPERIMENT 

- The linearized thin aerofoil theory of Jackson, Graham and Maull (1973) 

and the modified thin aerofoil theory of Graham (1973) (i.e. taking 

account only of the mean lift curve slope effect, see also Section 

2.4.2.2b), predict reasonably well the unsteady lift of the NACA 0015 

aerofoil and the D cylinder, when placed in grid produced turbulence of 

length scale of the order of the body dimensions. For the aerofoil, 

the agreement between the theoretical and experimental results shows 
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also the adequacy of the present experimental set-up for testing these 

theories. For the case of the D cylinder, which has two fixed 

separation points, this agreement means that the application of the 

Kutta-Joukowski condition at an "equivalent", fixed trailing edge, mid-

way between the separation points, is suitable for turbulent flow as 

well as for sinusoidal flow. The modified aerofoil theory should, 

therefore, be capable of predicting the unsteady lift on similar bluff 

bodies (with large unseparated surface in the free stream direction and 

two fixed separation points) in turbulent flow. This theory would be 

helpful in practical situations, where the application of other methods, 

such as numerical models, would be difficult and, from the computational 

point of view, extremely expensive. However, this theory underestimates 

the unsteady lift on the elliptic cylinder over most of the frequency 

range, as was also found experimentally by Graham (1973). 

- Of the sources of discrepancy between theory and experiment, arising 

at the lower frequencies, those of vorticity distortion and inappropriate 

turbulence representation, are the more important. Due to the former, 

the lift is expected to be more underestimated, the greater the thickness 

to chord ratio. The response of the transducers could also partly 

account for the discrepancies at low frequencies. 

- At the highest frequencies, the distortion effects would become less 

severe, while those of thickness and viscosity may be responsible for 

the increased rate of fall of the experimental lift below the theoretical. 

- Especially for the elliptic cylinder, the systematic lift under-
27nL 

estimation up to about k' _ 	x  - 1.5 should be partly attributed to 
u. 

the use of an unsuitable aCL/Da. At higher frequencies, it is thought 

that the increased rate of fall of the experimental lift relative to 

the theoretical should be associated with the unsteady movement of the 

separation points. A similar behaviour was observed in the sinusoidal 
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flow, though at lower frequencies. The results of the experiments in 

these two flows, point to the conclusion that thin aerofoil theories 

will not give generally a reasonable prediction of the loading, when 

the separation points of the body are free. If calculation method is 

sought, then an input providing information about the behaviour of the 

separation points should be included. 

The influence of turbulence on the vortex shedding of the bluff 

bodies, is to decrease the peak spectral power at the Strouhal 

frequency, broaden the vortex shedding spectra and impair the narrow-

band spanwise correlation of the shed vortices. These effects are like 

an effective increase in the Re number for the elliptic model, which 

has free separation points. The broadening and reduction of spectral 

power are also results of a modulation of the vortex shedding signal by 

the fluctuating streamwise component. When turbulence is applied, the 

vortex shedding lift coefficient of the D section is observed to 

decrease, while that of the elliptic section (which is much smaller than 

the vortex shedding lift of the D section), appears to increase. 
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CHAPTER 7. OVERALL CONCLUSIONS AND 

SUGGESTIONS FOR FURTHER WORK 

The NACA 0015 aerofoil (placed at zero mean incidence), which 

was used in the present work as a measure of the adequacy of the 

employed sinusoidal and turbulent flows, confirmed the validity of thin 

aerofoil theories. The effect of thickness was satisfactorily taken 

into account by substituting, in the theoretical thin aerofoil result, 

the theoretical mean lift curve slope (= 27) with the experimentally found. 

In order to predict the unsteady lift on the D and elliptic 

cylinders, the assumptions were made that they had zero thickness, that 

the Kutta-Joukowski condition for the shedding of vorticity could be 

applied at a fixed trailing edge (located at the end of the chordline) 

and that the thickness effect could be taken into account as mentioned 

above, for the aerofoil. 

• Using this modified thin aerofoil theory the unsteady lift on 

the D cylinder was reasonably well predicted in both sinusoidal and 

turbulent flows. Due to the large unseparated surface of this body in 

the streamwise direction and the location of the two fixed separation 

points right at the end, the unsteady flow is realistically simulated 

by that round a flat plate. The assumption that the two shear layers, 

leaving tangentially the two parallel surfaces of the cylinder, can be 

replaced by a single vortex sheet lying along the extension of the 

chordline and of equivalent vorticity, equal to the sum of the two 

shear layer vorticities, was found to lead to realistic results. 

On the other hand, the application of this modified theory to 

the calculation of the unsteady lift on the elliptic cylinder, has not 

generally produced satisfactory results. This occurred especially at 

high reduced frequencies where, depending on the Re number, a variable 
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degree of discrepancy from the theory was found. Here the separation 

points lie upstream of the assumed "effective" trailing edge, and their 

mean position depends on the Re number. Thus, there is a separated 

region on the cylinder, which cannot be accurately represented by the 

potential flow of the flat plate, and to a greater extent the more 

upstream the separation points are located. Generally, there would be 

an unsteady movement of the separation points, due to the unsteady 

changes of incidence and, therefore, the instantaneous position, 

vorticity strength and form of vorticity distribution of the shed shear 

layers will also be affected, and accordingly the unsteady lift. It 

had not been possible, however, to establish how the separation points 

actually moved with changing frequency. A more elaborate experimental 

investigation on this subject would be helpful. If, for example, the 

behaviour of the separation points in unsteady flow is known, it may be 

that the construction of a theoretical model, similar to that given 

here, but with the adoption of an "equivalent" moving trailing edge 

between the separation points, could lead to more satisfactory results. 

The present experiments were not planned to investigate the 

vortex shedding phenomenon in detail. The reduction of the vortex 

shedding power in both the sinusoidal and turbulent flows, which is 

partly due to modulation effects,can be studied experimentally in a 

streamwise sinusoidal flow. The present oscillating rig is capable of 

producing such a flow, if the oscillating aerofoils are forced to move 

out of phase. 
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TABLE I  : WIND TUNNEL SPEEDS FOR UNSTEADY LOAD FXPERI  ENT 

Uco 	NOMINAL 	TUNNEL 	SPEED 	M/sec. Re 	NUMBER Um. c/V 

29.55 3.0 x I05  

21.74 2.2 x I05  

15.75 I.6 x I05  

II.85 1.2 x I05  

TABLE 2 : OSCILLATING AEROFOIL AMPLITUDES FOR UNSTEADY 

WAD EXPERIMENT 

ECCENTRICITY RADIUS 	OF 	ECCENTRICITY 

(m) 

OSCILLATING 	AEROFOIL 

ANGLE 	(PEAK 	TO 	PEAK /2) 

(degrees) 

LARGE 0.0125 I0.12 

MEDIUM 	_ 0.0085 6.85 

SMALL 0.0045 3.55 
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TABLE 3 : DETAILS OF TURBULENT FLOWS. 
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1.52 1.22 0.076 24.0 22.6 0.055 0.044 0.037 

1.52 1.22 0.152 I2.0 22.6 0.067 0.067 0.06 0.059 

1.52 1.22 0.076 13.3 20.3 0.031* 0.059* 

1.52 1.22 0.076 13.3 10.6 0.031* 0.059* 

1.52 1.22 0.152 6.6 20.3 

1.52 1.22 0.152 6.6 I0.6 

1.52 1.22 0.076 13.3 11.3 0.031* 0.059* 

1.52 1.22 0.076 13.3 5.9 0.031* 0.059* 

0.61 0.91 0.152 10.0. 19.4 0.063* 0.078 

0.6I 0.91 0.152 10.0 10.6 0.063* 0.078 

0.6I 0.9I 0.076 20.0 19.4 0.046* 0.044 

0.61 0.91 0.076 20.0 10.6 0.046* 0.044 

0.51 0.51 0.051 13.0 32.5 0.021* 0.06* 

VALUES MARKED WITH AN ASTERISK ARE NOT MEASURED BY THE AUTHOL, 

BUT OBTAINED 	OTHER 
	• r i BUT OB1AINED FROM OTHER SCUESES: McHEOūGH 1 976   ], BE .F L.N[ 11969A] & 

GAINES AND PETERSON [1951) 



TABLE 4: TERMS IN THE FORMULA FOR BLOCKAGE CORRECTIONS (MEAN LOADING) 

TEST MODEL ESb • Ewb Ecurv Ewg 

NACA 0015 AERO- 
FOIL 

0.305 A. n2 •(c )2 
rc2 (~ )2 A rt2 	)2 (c 48 	h 4h ch 48 	h 48 

D CYLINDER • 1 	1.0 A 	'`2 ( c E c •Co 
h 

n? •( c )2 n n? (-C---)2 48 	h 48 	h 2 48 	h 

ELLIPTIC CYLINDER 4,89 A - 	•( c_ )2 
48 	h 

c 1 	Co n2 ( c 	)2 n2 	)2 
n 	( c 

h 2 48 	h 48 	h 

E is obtained from: (1- CPb) 1EE =1+E' Cp• h 
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symbol Ruu 	flow 
O Ruu(y) 	smooth 
• Ruu(y,n~) 
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APPENDIX A: HOT-WIRE TECHNIQUES 

The streamwise component of the gust was measured with a 

normal U-wire. It is known that such a wire senses velocities only 

perpendicular to its axis. In the present experiments a DISA DOl constant 

temperature anemometer was used and the wire was calibrated with the 

usual methods, see for example Bradshaw (1971). 

-The measurement of the gust upwash w was made with an X-wire 

probe. The probe had first to be made insensitive to the streamwise 

fluctuations. This was achieved by matching the slopes of the two 

individual hot-wire calibration curves. The procedure followed in the 

(empty) tunnel was as follows. The probe was fixed at the centre line 

and exposed in a smooth flow of the desired speed, U., at which the 

experiments were to be made. The signals from the two anemometers were 

subtracted and the result was displayed on a digital voltmeter. Then 

the tunnel speed was changed slowly above and below U. (± 10%), while 

the overheat ratio of one of the wires was altered (e.g. by turning the 

resistance knob of the anemometer). A point was then reached where the 

variations in U. did not affect (within 1 - 3%) the indication of the 

voltmeter. Accordingly, this implied that the X-probe was insensitive 

to (static) changes in velocity in the streamwise direction, feeling 

only the (static) upwash component w, i.e. the voltmeter output e would 

be, for w « U.:- 

e = kw  w + DC 	kv!  = constant 

(The linear dependence follows from w « Uo). Iv ionStenJy OW the DC 
part of the fluctuating output could be removed by means of a zero 

suppression unit. It is assumed that the above relation would still 
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hold for fluctuating quantities. Next, the constant kW was determined 

by calibrating the probe in yaw, see sketch below:- 

w (velocity sensed by inclined probe) 

Ueff (effective free stream speed for inclined probe) 

SKETCH 

then U sin a = w :or: - 

a= w/U. 	, , a - e 	1 

w o 

2e  
e = a k U 	

1 
w ~ 	. •. 	kw = āa Ū 

It was easier to plot e against a to obtain the slope Aw of the resulting 

straight line (see Fig. A-1) in volts/degree. The upwash w in m/sec 

could then be found from the relationships above. However, the gust 

amplitude ag = w/U was frequently used in the representation of 

results. It could be computed from the relation:- 

ag = VRMS/(u . 	) 	(degrees) 

where VR(,)S is the measured RMS voltaae from the conditioner, u is an 

amplification factor of the operational amplifiers and 
Xw 

is the 
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calibration factor (from Fig. A-1) in volts/degree, usually in the range 

0.010 to 0.012 volts/degree. It was thought that this static calibration 

would suffice for the needs of the present experiment, where the size 

of the energetic eddies was much greater than the size of the wire. 

Temperature changes in the fluid could produce errors in the 

measured velocities (approximately a 2% error for 1°C change) and, 

therefore, it had been tried to conduct the experiments at a constant 

fluid temperature, about 25°C. After the hot-wire measurements were 

completed, a second calibration followed (generally different calibration 

constants were obtained due to temperature effects and wire contamination). 

In the compilation of the results the average values were taken. 

Another source of error that could be introduced in the 

measurement of w is the response of the wire to a small tangential (i.e. 

along the axis of the wire) cooling velocity. Jackson (1970) states that 

this effect could lead to measured values of upwash which are lower than 

the real ones by a factor:- (1 + k2)/(1 - kg), where k2 is a constant 

of the order 0.04 for free stream speeds 15 to 300 m/sec. Thus the 

measured upwash could be as low as 92% approximately of the true upwash. 

This kind of correction has not been applied to the following velocity 

measurements, but it should be remembered as a possible source of 

discrepancy in the aerodynamic admittance results. 

Taking into account these errors, it was estimated that the 

upwash measurements would be accurate within 5 to 10%. 

Since it was necessary to take measurements elsewhere 

(besides the point (0, 0, 0)) in the flow, a simple rig had been 

constructed, capable of traversing the probe in all three (x, y, z) 

directions and also along a fixed direction. This last feature was 

useful for the boundary layer measure tints on the elliptic model. 
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APPENDIX B: THE MEASUREMENT AND 

PROCESSING OF SIGNALS 

1. 	Definition of Errors. 

The errors which can arise when measuring a quantity, may 

be divided into measurement errors (associated with the condition of 

the instrument, experience of the user, etc.) and the statistical errors 

(associated with the particular measuring technique). In the latter 

category, the errors can be estimated if certain parameters of the 

system are known. Let be the quantity to be measured, 0 an estimate 

of and E0the symbol for the mean, or expected, value of x. Then, as 

suggested by Bendat and Piersol (1971), a normalized root mean square 

error can be defined as:- 

e = ✓ er + Eb (B-1) 

where:- 

e _ 
	E(1,2)  - E20))  _ standard deviation of  

is the normalized random error; 

n 	A 
E( 	;) mean 	value of  

eb - 	1 - 	 - 1 

is the normalized bias error. 

Generally c will decrease when the true averaging time 

increases. For an instrument which has a fixed integration time constant 

Tc,  however, little is to be gained by measuring records of length greater 

than about 4 to 5 Tc. 
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2. 	Measurement of Mean Value. 

Digital voltmeters of the SOLARTRON and DISA types were 

used. For sufficiently long records (of duration greater than Ta), the 

bias error is negligible and the random error not more than 1%. 

3. Measurement of Root Mean Square Value (RMS). 

The DATRON and DISA brands of RMS meters were used. In 

both, there was a facility for changing Tc. The scatter of several 

calibration measurements indicated that a 5% maximum error in the true 

RMS value should be expected. 

4. Measurement of Power Spectral Density. 

Both, analogue methods (by using band-pass filters) and 

digital methods (numerical harmonic analysis) were used. 

(a) 	Analogue Methods. 

A band-pass filter of centre frequency no, is a device 

An 
which passes frequencies only in the interval no  - 	and no  + 41, where 

An is the real bandwidth of the filter. The frequency response function 

T(n, no) of the filter, gives a measure of the output spectrum, if a 

white noise signal of spectral density 1.0 is fed through it. If a 

general signal x(t) is passed through the filter, the output will be a 

signal x(t, no, An) of which the true mean square value will be:- 

 pco 

limT 	
T 	

x2(t, no, An) dn = 	IT(n, no)12  Sx(n) dn = 

0 	-0 

An 
no  +-- 

An IT(n, no)12  S^  (n) dn 

no  - 2 

(B-2) 
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where Sx(n) is the true spectrum of x(t) and T(n, no) is assumed to be 

zero outside the band [no   - 
2 

 no  + Znl. Our purpose is to measure 
JJ 

Sx(n), i.e. obtain an estimate, denoted by Sx(n). In practice, the 

following approximations are made. 

The true mean square on the left hand side of Eqn. (B-2) 

is replaced by its estimate, i.e. the value that would be measured with 

an RMS meter or integrator. Then, Eqn. (B-2) becomes:- 

An 
 	Inc  + -2-- 

x2(t, no, An) = 	IT(n, no 
 )1 2 Sx(n) dn 

An 
no - 2 

(B-3) 

A second approximation is to assume that An is so small, that 

An 
Sx(n) may be taken as constant in the interval Ines  - 	no  + 7  l. 

Eqn. (B-3) is then written as:- 

jno
+ 2nn 

x2(t, no,  An) = Sx(no) 	IT(n, no)I2  dn = Sx(no) . F(no, An) (B-4) 
An 

no - 

where F(no, An) is a characteristic function of the filter, which can be 

determined once for all, if no  and An are known; F(no, An) is an 

effective bandwidth of the filter, Ane, and in the commercial wave 

analyzers (or frequency spectrometers') is made proportional to no. 

Therefore, from Eqn. (B-4):- 

x2(t, no, An) 	x2(t, no, An) 	,. 

Sx(no)  - const x no 
	

An
e 	

Sx(no)  
(B-5) 

Bendat and Piersol (1971) give the normalized RMS error for 

Sx  (i.e. the estimate of the true spectrum Sx) as:- 
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C = 

 

1 	An' d2Sx(n) 1  2 

.T{ 	• dn2 
	 • Sx(n) 	atn=no  (B-6) 

 

where T is the averaging time. 

The first term under the square root gives the square of 

the random error, while the second, the square of the bias error. Hence 

there are two conflicting requirements about the size of the bandwidth: 

a small bandwidth increases the random error but decreases the bias error 

and vice versa. However, Eqn. (B-6) also shows that the random error can 

be made small if the averaging time is big. The shape of the spectrum 
d2Sx  

can significantly affect the accuracy of the measurement, because if 	 
dn2  

is large (e.g. when a sharp peak exists in the spectrum), thele also 

becomes large, according to Eqn. (B-6). In the present work, it was a 

matter of importance to choose the appropriate instrument for the 

accurate measurement of the sharp spectral peaks, associated with the 

sinusoidal flow experiment. A factor which influenced the selection of 

the appropriate device, was the drift with time in the oscillating 

. aerofoil frequency particularly noticed at low frequencies (see Section 3.2.2). 

Two "constant percentage bandwidth" wave analyzers were 

available:- 

A Bruel and Kjaer 2112 analyzer with 1/3 octave bandwidth (i.e. 

Ane 
 = (21/6-- 2-1/6) n

o  = 0.231 no) of which the lowest no  was 25 Hz. 

The band-pass filters were centred at frequencies 25(21/3
)m 

Hz 

(m = 0, 1, 2, 3 ...). These features made this instrument unsuitable 

for the sinusoidal flow experiment, where the frequencies of interest 

were below 25 Hz. 

- A Muirhead K134A analyzer with option for clue  = 0.02 no  and Ane  = 0.10 no  

(corresponding filter attenuations 36 dB/octave and 25 dB/octave). 

The centre frequency could be changed in steps of 0.1 Hz in the range 

3 Hz to 30 Hz and in steps of 1 Hz in the range 
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30 to 300 Hz. A disadvantage with this instrument was that the 

integration time constant appeared to be insufficient for the lowest 

frequencies and that no output facility was available, i.e. that the 

reading could only be taken from the front panel. The observed drift 

and also a random "meandering" in the frequency of the oscillating 

aerofoils would make the measurement of the spectral power unreliable 

• at low frequencies. Therefore, this analyzer was also abandoned when 

spectral power was measured. 

The solution adopted for the sinusoidal flow experiment, was 

to use a dual, variable frequency, filter in conjunction with an RMS 

meter. The filter, which had low-pass and high-pass settings, was of the 

Rockland 452 type. The frequency could be changed in steps of 0.01 Hz 

for 0 < no  < 10 Hz and in steps of 0.1 Hz for 10 < no  < 100 Hz. From 

the manufacturer's instruction book it was found that the input signal 

would be only slightly attenuated in the passband, while strongly 

attenuated outside this band (24 dB/octave at the cut-off frequency). 

The bandwidth was determined after some preliminary digital analysis 

spectral plots were obtained; they showed that the main response was at 

the fundamental gust frequency, while the lower and higher harmonics 

and the extraneous noise were of much lower spectral strength. 

Accordingly, the high-pass filter was almost invariably left in the 

0.5 Hz position, while the low-pass was adjusted every time, so as to 

cut the power of the second and higher harmonics in the lift or upwash 

spectra. Roughly, the upper cut-off frequency was 1.5 to 1.6 times the 

gust frequency. 

Computation of the Aerodynamic Admittance. 

The primary use of the filtered values was to compute the 

experimental aerodynamic admittance, 1A(n)I as the ratio of the lift' to 



	 in, + An 

x~(t, 	n g, fin) 	IT(n, ng)I 2 . IA(n)I 2 . S(n) dn 

ng - An 
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the upwash, i.e.:- 

SL(n) 

IA(n)1 2 = const. Sw(n) (B-7) 

If xL and xw are the fluctuating voltages proportional to the fluctuating 

lift and upwash respectively and ng the gust frequency, then from Eqn. (B-3):- 

(B-8)  
	 jng An2 

xw(t, ng, An) - 	IT(n, ng)I 2 . Sw(n) dn 

n - An g 	
I 

The integration limits were taken equal to the cut-off frequencies, at 

which the low-pass and high-pass filters were set by the previously 

described procedure. This is justified for two reasons. First, the 

preliminary spectra (obtained by digital analysis) indicated that, taking 

as centre the gust frequency, SL can be assumed proportional to Sw, in a 

frequency band where both spectra are strong. Second, these spectra are 

sharp, so that the frequency band is small. Therefore, IA(n)I can be 

obtained from Eqn. (B-8) as:- 

xi 	C
L 	

,. 
IA(n)I = const. ' 	 - const.— = IA(n)I 

xw 	9 
(B-9)  

where CL, ag are the filtered RMS lift coefficient and upwash respectively 

and IA(n)I is the estimate of IA(n)1. Note that IA(n)I was assumed to be 

nearly constant in the frequency band where SL and Sy are high. 

The maximum error in the estimate of the admittance (excluding 
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errors due to the hot-wire, transducer response, etc.) would be the sum 

of the maximum errors in the estimate of the root mean square values, 

i.e. in the region of 10%, because CL  and ag  are statistically uncorrelated 

in the present experiment. (If CL  and ag  were statistically correlated, 

e.g. if they were measured simultaneously in the laboratory, then the 

error would be lower). 

The Bruel and Kjaer wave analyzer was suitable for the 

measurement of the turbulent lift and velocity spectra because these do 

not vary rapidly with frequency, so that Eqn. (B-4) may be assumed to 

hold with good accuracy. 

(b) 	Digital Methods. 

The digitization of the signals was performed by an analogue-

to-digital converter, controlled by a PDP minicomputer, within an accuracy 

of 0.002 .jolts (4 1 volt ."s the permissible input to the converter) . The 

data were stored in a digital tape, the contents of which could be read 

and processed via a spectral analysis program written by Davies (1974). 

As in the case of analogue filtering, the relevant parameters should be 

determined in such a way as to produce the minimum possible statistical 

error. In addition, it is the effect of aliasing, i.e. the inability 

to define frequencies which are higher than the "Nyquist frequency" nN, 

equal to half the rate at which the data points are sampled. Thus the 

estimated spectral density at a frequency ri = nx  < nN  is equal to the 

sum of the spectral power existing at frequencies 2nN  + knx, k = 0, 1, 

2, 3 .... 

In the particular spectral analysis program used the normalized 

(with respect to the mean square) spectral density was given at 

frequencies uniformly distributed over the frequency range up to nN; the 

estimates were m in number (m < 513). If SR is the sampling rate (Hz), 

the adjacent spectral estimates differ by:- 



370 

n
N 

An = e 	
2(mSR 

1 ) 	(m 

	

1 ) 

For good resolution the effective bandwidth should be small. 

The random error is again equal to cr  = 1/. To make cr  small, say 5%, 

T, SR and m should be of appropriate value. If n
max 

 is the maximum 

frequency of interest, then not only should n
max < n

N, but also it must 

be ensured that negligible power exists at frequencies n > nN  to avoid 

"aliasing". A low-pass filter with cut-off frequency between nmax,  and nN  

was, therefore, always used during digitizing. A high pass filter set 

at 0.5 Hz was also used to avoid overloading of the converter. 
nmax 

 was 

roughly 25 Hz for the sinusoidal flow experiment, 400 Hz for turbulence 

and 250 Hz for the vortex shedding phenomenon. It is, therefore, 

anticipated that a single set of parameters would not give the same 

degree of accuracy for the frequencies of interest. For example, in the 

case of sinusoidal data, a fine resolution near the peak was desirable, 

while for the turbulence data a wide Ane  would be acceptable. Unlike 

the usual analogue wave analyzers, here the bandwidth is constant, 

resulting in a comparatively better resolution at high frequencies. To 

save digital tape and to have a rather uniform picture of the results, 

it was decided to work with a single nmax, 
 in the range of 300 to 400 Hz. 

To keep the true time of analogue recordings within rational limits 

(300 sec. maximum), An was kept between 0.8 and 1 Hz, and the number of 

estimates taken equal to 513(= mmax)• The sampling rate was in the 

range 1 to 1.2 kHz. With these parameters, the random error Cr  was 

estimated to be 6 to 7.5%. 

The square of the aerodynamic admittance, being the ratio of 

the corresponding lift and velocity spectra could be estimated with a 

maximum normalized error of 12 to 15 ā (this excludes hot-wire errors, etc.). 
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5. Measurement of Frequency. 

For the measurement of the oscillating rig frequency, the 

output signal from the rotating coil (Section 3.2.2) was fed into the 

Muirhead wave analyzer, which was preset at the desired frequency. The 

accuracy of the analyzer in measuring frequency was ± 0.5%. Therefore, 

the maximum error for the frequency measurements (taking into account 

the drift mentioned in Section 3.2.2) would be 6.5%. 

Other methods for the measurement of frequency was by means 

of the spectral peaks and by counting the number of digitized points 

between two successive spikes from the coil reference signal. The latter 

method was part of a computer program performing a conditional averaging 

technique. 

6. Measurement of Signal Amplitude via Conditional Sampling. 

In the sinusoidal flow experiment, it was useful to obtain 

a representative picture of the signal in the time domain. Since the 

relevant frequency was that of the fluctuating upwash, a time averaged 

signal was constructed, by superimposing a large number of cycles of 

frequency ng  and identical phase, and then taking their arithmetic 

average. Random noise and frequencies uncorrelated with the main gust 

frequency, would thus be suppressed. A simplified flow chart of the 

computer program executing the averaging is shown in Fig. B-1. 
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APPENDIX C. EXPERIMENTS ASSOCIATED WITH THE 

BEHAVIOUR OF THE FREE SEPARATION POINTS 

(1) 	Boundary layer experiment. 

A conventional constant temperature U-wire was used, which was 

mounted on a specially designed traverse gear, enabling traverses 

normal to the surface of the elliptic cylinder, held at zero mean 

incidence. Three positions for traverses were chosen marked as AA,' BB, 

CC in Fig. 4.12, the first being approximately the position of turbulent 

boundary layer separation (as depicted from the flow visualization). The 

measurements were conducted at a constant Re number of 2.2 x 105  (chord= 

0.17 m) in both smooth and sinusoidal flows. In the latter, the RMS gust 

amplitude, ag, was kept constant (= 2.20), while the reduced frequency 

k = Trnc/U was varied (values of k tried were 0.122, 0.212, 0.321). 

Velocities were made dimensionless with the value of the maximum mean 

speed encountered in the boundary layer and distances from the wall with 

the distance, at which this maximum was encountered. 

The mean velocity profiles in smooth flow (not shown here) and 

in sinusoidal flow (Figs. C-2 to C-10) were close to each other, 

supporting the flow visualization observation, which had not indicated 

any displacement of the mean separation in the two flows (Section 4.4). 

The fact that the mean velocity does not tend to become zero as the 

wall is approached, is due to experimental inaccuracies. At very low 

speeds buoyant convection and heat radiation from the wire to the wall 

become important. A correction due to heat loss to the surface, 

proposed by Wills (1962) was tried (not shown here) and the results 

exhibited a more reasonable behaviour. Another source of error is the 

inability to reach positions very close to the wall and this is 

important in the present tests, where the maximum boundary layer 
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thickness encountered was less than 7 mm. 

The instantaneous velocity was measured by applying "King's 

Law", with input the instantaneous voltage obtained from the hot-wire 

anemometer (mean plus fluctuating). As mentioned in Section 5.3.3, 

the picture of the instantaneous velocity profiles was confusing due 

to the presence of spikes in the hot-wire signals, such as those shown 

in Fig. C-1. These spikes had a rather regular frequency of appearance 

close to that reported in Section 5.2.2.1c, when the spikes in the lift 

and wake u velocity spectra of the elliptic cylinder were discussed. 

It is rather curious, however, why these spikes still appear in 

conditionally averaged results of the sinusoidal flow (which were 

processed at the gust frequency, see Fig. B•-1). The strength of these 

spikes is greatest for the highest frequency and near the middle of the 

boundary layer. Maekawa et al (1966) and Hanson, Kozak and Richardson 

(1966) have reported spiky velocity signals in the boundary layer and 

the wake of a circular cylinder in smooth flow, while Morkovin et al 

(1971) reported the existence of spikes in the region just behind a 

trip wire of a flat plate, but only in sinusoidally streaming flow. 

The possible explanations given converge to an idea of a violent short-

lived mixing of wake fluid with undisturbed, "potential flow", fluid, 

but the exact mechanism is not clear. 

Any occurrence of mechanical vibrations in the traverse gear 

could affect the boundary layer measurements, because then the hot-

wire would be forced to move inside the, relatively thin, boundary 

layer. But again this effect should be eliminated in the conditional 

averaging process. Anyway, no such vibrations could be traced. 

There exist, of course, more elaborate ways for the detection 

of flow reversal such as the pulsed wire (e.g. 3radbury, 1969), o;-  the 

hot film, for the measurement of the skin friction, (e.g. Belihouse et 
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al, 1968) but the shape and size of the test model, as well as economic 

reasons prevented their use. 

(ii) 	Unsteady loading experiment. 

A NACA 0015 aerofoil was mounted on the unsteady load balance 

at incidences 10.5°, 12°  and 13.5°. (A complete description of this 

model is given in McKeough, 1976). The output of the piezoelectric 

transducers is the fluctuating lift (i.e. the total unsteady lift less 

the mean lift). No aerodynamic admittances are formed in this case, 

but instead the measured fluctuating lift (see Figs. C-11, C-12A, B, C) 

is compared in amplitude with the predicted lift from Eqns. (5.2), (5.2a) 

and (5.3a). The raw signals of Figs. C-12A, B, C obtained through a 

BRUSH pen recorder are low-pass filtered at a frequency of 50 Hz in 

order to remove the unwanted noise. 
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APPENDIX D. ANALYSIS OF THE UNSTEADY 

LIFT OF A THIN AEROFOIL INTO QUASI-STEADY, 

WAKE AND 'ACCELERATION"TERMS 

In Karman and Sears (1938), the lift sensed by a thin aerofoil 

in unsteady motion was derived. 	Three terms appeared in the unsteady lift 

response:- 

The Quasi-Steady Lift Term:- 

Le = pUU ro(t) (D-1)  

The Wake Term:- 

40 	 (E*, t) 	(X* 

LA = pU 	b (D-2)  

1 	/ 	*2 - 1 

The"Acceleration"or Apparent Mass Term:- 

1 

LC = - p dt b2 Yo( *~ t) V* d* (D-3)  

where Ums, b 

-1 

are given in the sketch below:- 

b l 

SKETCH 



(D-4) 
* 	2 / 1  - x* 

Yo (X 	
t)  _ Tr / 1 + x* 
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where 
Yw 
 is the wake vorticity; yoW, t) is the quasi-steady bound 

vorticity on the aerofoil and ro(t) is the quasi-steady circulation. 

The quasi-steady bound vorticity on the aerofoil can be 

determined from the steady thin aerofoil theory, if the kind of unsteady 

motion is known, from the relationship (see Bisplinghoff et al, 1958):- 

where wa  is the relative velocity upwash on any point on the aerofoil. 

The quasi-steady circulation can be obtained from:- 

J

i 	 1 
ro(t) = b 	yo( *, t) g* = - 2b1 	//1 

 - * wa( *, t) dV* 
	(D-5) 

-1 	 -1 

because 

1 

1 - x* d  x* 	_ 
1+ x*x*- *= 

-1 

The terms LA  and LB  are a result of a total circulation 

being put round the aerofoil, while the term Lc  comes from the "non-

circulatory" part of Yo, which will be denoted here by Yon,  

1 

Yon  dx* = 0 

-1 

The rest of Yo  is the "circulatory part" equal to:- 

Yoc  
r 
0  

 

   

it ✓1- 1 
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Neumark (1952) gives the pressure distribution round the 

aerofoil due to the acceleration term as: 

x* 

pb 	āt 
-1 

yon(x*, t) dx* 

so that:- 

LC = pbi 	dx* - 	t 
J1 

—x* 

yon
(x*, t) dx* 

_-1 

(D-6) 

Neumark proves that the double integral in Eqn. (D-6) reduces to 

Eqn. (D-3), because yoc does not contribute to this integral. 

In deriving the above relationships no restriction whatsoever 

was placed on the time dependence of the motion. For simple harmonic 

motions, Karman and Sears (1938) prove that:- 

L
A 

= - L
B
O- C(k)} (D-7) 

where k = wb /U
c° 

and C(k) is Theodorsen's function (see Eqn. (2.8)). If 

the aerofoil is exposed to a sinusoidal gust of the type we
i(wt - kx , 

then the relative velocity at any point on the aerofoil surface would be 

- we
i(wt - kx*)

, so that LA, LB, LC can be immediately determined, by 

putting wa; t) = - We
i(wt - k *) (* 	in the previous equations. 

(a) 	Quasi-Steady Lift . 

i 

LB = 
pU~ ro(t) = 2pUobleiwt w 	1 + 

E* 

e-ikE* d* _ 

-1 

= 2pU.b 1 w e
iwt 

'Tr {Jo(k) - i J1(k)1 	 (D-8) 
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The term SB mentioned in Section 5.3.3 is equal to Jo - iJ. 

(b) Wake Vorticity Lift • 

From (D-7):- 

LA = - 27 plJ b 1 w e
iwt 

El _. C(k) [d0(k) - iJl(k) 	(D-9) 

so that the term SA of Section 5.3.3 is equal to 
R(k) - 	po(k) - iJl(k

) 
. 

(c) `Acceleration°or Apparent Mass Lift . 

From Eqns. (D-3) and (D-4):- 

L = 	pb2 (- w) dt 	✓  1 + x* 
x* C 

~l 
±*_- 	eiwt 

d* dx* 
1  

-1 	 • -1 

(D-10) 

or:- 

1 

2 b iwwe„w,r 
	/11 + r* e ik r* zr l - 	d = 	p 	j _ ,/ 1 - c* 	y 	( 	*) 	= 

1 

= 2pb2 iw 
w eiwt 7(J0 - iJ l ) - 	Jo + 	J2 + i7J i i = i 27pUop1 w J 1 (k) 

(D-11) 

so that the term Sc of Section 5.3.3 is equal to iJ(k). 

From Eqn. (D-8), (D-9) and (D-11), it can be verified that:- 

LA + LB + LC = 27 pUcob l w e
iwt (SA + SB + Sc) = 27pUo.b 1 w eiwt S(k) 

where S(k) is Sear's function. For k = 0, the known steady flow result is 

obtained, with the wake and "acceleration" terms becoming zero, as expected. 
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APPENDIX E. THE MODULATION OF VORTEX 

SHEDDING BY A S1NUSOIDALL.Y VARYING 

STREAMWISE VELOCITY COMPONENT 

In this simplified analysis, it will be assumed that the 

Strouhal number is constant and that the vortex shedding lift in smooth 

flow is a pure sinusoidal wave, i.e.:- 

2irn 	it  t 	 2iin 	it L=Lo e 	'~s 	=2pU4. c . CLvs 	e 	vs 
(E-1)  

where:- • 

nvs , b 
- S = const. (E-2)  

 

Let a streamwise velocity component u(t) = u 
eca'1 

be 

introduced into the smooth stream. Then the vortex shedding lift becomes:- 

() 
L  = 2 p f 	Uo. + u(t)l 

z 
. c . CLvs . 

exp 27i
U~ 

	
u t 

. S 't 	(E-3) 
l 	1 

L 	 ~ 

since S was assumed to be constant. Therefore, the lift is amplitude 

modulated by the term U. + u(t) and frequency modulated by the term:- 

Uo + u(t) 
exp 2Tri 	b 	S t 

(a) 	Frequency modulation. 

The modulated lift will be given by:- 

L =Le"(t) (E-4) 
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where 0(t) is a time varying phase. From Eqn. (E-3), the radian 

frequency is:- 

i2mit 
w= 	vs 

+2nSub 	
_ 
coo +Ae

iwlt (E-5) 

where:- 

2irS u 	
w = 27n wo = 2Trn vs 	=    

Since w = 
de(t) , 

the phase 8(t) is given by:-  
dt 

t 

8(t) _ 	(too + Ae1 Wit) dt = wot + 

to 
' ,14-7. Aiw t 

 
1 

( 0' =const ) 

For simplicity it will be assumed that the initial phases between the 

sinusoidally varying signals is zero. Therefore, putting X' = ~.- w 
1 

0(t) = wot + X' sin wit 
	

(E-6) 

The lift, from Eqn. (E-4), becomes:-  

L = L e
i(wot + 	sin wt) 

which, due to the relation e
iz sing = 	

F Jm(z) elms, gives the result:- 
m=-~ 

L = L Jo(X) cos wot - Ji(X) ]os(w0 - w l) t - cos(wo + wi) ] + 

J2(X) ]os(wo - 2w i ) t + cos(wo + 2w 1) J 
- 

t 	s' 	i 3  

) 
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Thus, it' is observed that the spectral power at the original 

vortex shedding frequency will decrease, while power at other frequencies 

will appear, if the u component is introduced. 

(b) 	Amplitude Modulation, 

The vortex shedding lift coefficient will be proportional to:- 

1 + 
u(t)2 

	2u(t) 	1 + 
2u(t) 

U 2 	U. 	U~ 
ifu«U. 

Again, assuming for simplicity a zero phase between the fluctuating 

sinusoidal signals, the modulated lift coefficient will be:- 

C
L 

= C
L 
	[cos wot + cos(wo + wl) t f cos(wo wl tJ ) 

m 	vs 	 --~~ 
(E-8) 

Therefore, two additional frequencies are introduced in the 

original (single frequency) spectrum. 




