
University of London

Imperial College of Science and Technology

Department of Management Science

JOB-SHOP SCHEDULING WITH

APPROXIMATE METHODS

by

Alexander S. Spachis

Dipi. Eng., MSc, DIC

A thesis submitted for the

Degree of Doctor of Philosophy

in Management Science

November 1978

2

ABSTRACT

The general job~shop scheduling problem can be solved optimally only with

prohibitively expensive enumerative methods, as has been demonstrated by

the recent advancements in the theory of computational complexity.

Thus sub-optimal or approximate procedures are the only realistic

alternative.

The objective of this thesis is to investigate the suitability and

performance of approximate methods (ad hoc algorithms, exact methods

for relaxed problems and incomplete search procedures) applied to

different facets of the basic problem. Apart from the development of

efficient single-pass and enumerative flow-shop and job-shop heuristics,

a new methodology is suggested with which performance guarantees are

established and the expected behaviour of heuristics is assessed

probabilistically, under different job-shop environments. A model of the

dynamic behaviour of heuristics based on local neighbourhood search is

developed for stopping decisions. Statistical methods are used to

obtain estimates of optimal solution values for improved bound calculations

and stopping rules in incomplete search procedures.

The behaviour of a new global and a number of local dispatching rules

(single-pass, non-delay heuristics) is investigated in a dynamic and

stochastic job-shop environment, with simulation. The effects of various

data structures (differing in loading and in the statistical distribution,

variance and accuracy of processing times estimates) on average waiting

and on other measures of performance are studied. Approximate formulae

are suggested for the calculation of the expected performance of heuristics

in job-shops with differing variance of processing times.

Finally, the context within which these approximate methods can be applied

and the aspects of implementation that require further research are discussed.

3

ACKNOWLEDGEMENTS

My sincere thanks are due to my supervisor Mr. J. King, Reader in the

Department of Management Science, for his guidance encouragement and

continuous interest throughout this study.

I would like to thank also Dr. N. Christofides for providing sources

of information on the complexity of computer calculations, Dr. G.P.

Cosmetatos for his advice on the approximate queueing formulae, Dr. R.

Mallya for his comments on parts of this thesis, Dr. N. Meade for his

advice on statistical tests and Mr. J. Beasley, for helpful discussions

on problems related to this research.

Thanks are due also to the library, technical and other staff of the

department for their help.

The financial support of the Greek Ministry of Coordination (Fellowship

award) is acknowledged.

The understanding and help of my wife Helene and all my family have been

a great support for my work. To them I dedicate this thesis.

CONTENTS

Page

TITLE PAGE 	 1

ABSTRACT 	 2

ACKNOWLEDGEMENTS 	 3

CONTENTS 	 4

LIST OF TABLES 	 8

LIST OF ILLUSTRATIONS 	 10

CHAPTER 1: 	INTRODUCTION

	

1.1 	Definitions 	 13

	

1.2 	Notation 	 14

	

1.3 	Classification 	 16

	

1.4 	Criteria of performance 	 18

	

1.5 	Assumptions 	 22

	

1.6 	Thesis outline 	 23

2.2

COMPUTATIONAL COMPLEXITY

Theory of computational complexity 	 26

2.1.1 	Reducibility and NP-complete problems 	29

2.1.2 	Reducibility of scheduling problems 	30

Review of P-class scheduling problems 	 34

CHAPTER 2:

2.1

2.3 	Exact methods of solution of NP-complete scheduling problems 36

	

2.3.1 	Enumeration of all feasible solutions and

combinatorial approach 	 36

	

2.3.2 	Dynamic programming 	 38

	

2.3.3 	Integer programming 	 40

	

2.3.4 	Tree-search and branch and bound methods 	44

Page

	

2.4 	Approximate methods of solution 	 50

2.4.1 	The need for approximate methods 	50

2.4.2 	Types of approximate methods 	 50

	

2.5 	Assessment of approximate methods 	 56

2.5.1 	Heuristic performance guarantees 	56

2.5.2 	Probabilistic analysis of heuristics 	58

CHAPTER 3: 	APPROXIMATE FLOW-SHOP ALGORITHMS

	

3.1 	Flow-shop problems and methods of solution 	61

	

3.2 	Flow-shop heuristics 	 65

	

3.3 	New heuristics for flow-shops with no-job-passing 	68

	

3.4 	New heuristics for flow-shops with no-waiting 	75

	

CHAPTER 4: 	PROBABILISTIC AND WORST CASE ANALYSIS OF SINGLE

PASS JOB SHOP HEURISTICS

	

4.1 	Evaluation of single-pass job-shop heuristics
	

84

	

4.2 	Description of the algorithm and decision rules 	87

	

4.3 	Computational experience
	

93

	

4.4 	Worst case behaviour and probabilistic analysis

of heuristics 	 98

	

CHAPTER 5: 	ANALYSIS OF ENUMERATIVE JOB-SHOP HEURISTICS

	

5.1 	Parameters of local neighbourhood search (LMS) 	102

	

5.2 	Lower bounds 	 107

5.2.1 	One-job and one-machine based bounds 	107

5.2.2. Complexity and limitations of bound calculations 	110

5.2.3 	A routine for calculating two-machine based lower

bounds 	 111

Page

5.2.4 	Fictitious bounds and estimates of the optimal

solution 	 113

	

5.3 	Design of the experiment 	 114

	

5.4 	Computational experience 	 120

5.4.1 	Lower bounds 	 120

5.4.2 	Number of iterations and CPU time 	123

5.4.3 	Problem complexity 	 126

5.4.4 	Speed of tree search 	 128

5.4.5 	Worst case and probabilistic behaviour of

heuristics in LNS with limited computational

resources 	 130

	

5.5 	Solution improvements models and stopping rules 	135

5.5.1 	Modelling the solution improvements process in LNS 135

5.5.2 	Stopping rules 	 142

	

CHAPTER 6: 	STATISTICAL METHODS IN LOCAL NEIGHBOURHOOD SEARCH

	

6.1 	Sampling methods in job-shop scheduling 	146

	

6.2 	Distribution of values of active schedules 	151

	

6.3 	Estimates of optimal solution value 	 156

	

6.4 	Applications in stopping decisions and bound calculations 161

	

CHAPTER 7: 	APPROXIMATE METHODSFOR STOCHASTIC AND DYNAMIC SCHEDULING

PROBLEMS

	

7.1 	Queueing theory and simulation in scheduling 	165

	

7.2 	Design of the experiment 	 174

	

7.3 	Sensitivity of simulation results to the processing times 177

structure

7.3.1 	Effects of changes in the distribution function 	177

Page

	

7.3.2 	Effects of changes of the variance of processing

times on the performance of scheduling rules at

fixed load factor
	

180

	

7.3.3 	Effects of changes of processing times variance

with variable load factor
	

186

	

7.3.4 	Effects of inaccuracy of processing times estimates 189

7.4 Evaluation of a new composite global 	scheduling rule

7.4.1 	Description of the scheduling rule

7.4.2 	Calibration and evaluation of the composite rule

191

191

193

7.5 Job-shops with identical machines in parallel 197

7.6 Approximate formulae for networks of queues 199

CHAPTER 8: CONCLUSIONS AND FURTHER RESEARCH

8.1 Discussion of the context and summary of the thesis 204

8.2 Suggestions for further research 208

REFERENCES 213

APPENDICES

APPENDIX A 229

APPENDIX B 233

APPENDIX C 234

APPENDIX D 243

APPENDIX E 244

-8

LIST OF TABLES

Table 	 Title 	 Page

	

2.1 	Asy Metric travelling salesman problem matrix 	32

	

3.1 	Performance of heuristics for flow-shops with no-job-passing 	73

	

3.2 	Performance of heuristics for flow-shops with no-waiting 	81

	

4.1 	Sample sizes for probabilistic analysis of heuristics 	86

	

4.2 	Problem dimensions and computational cost of single pass

heuristics 	 93

	

4.3 	Average Ranking for Makespan Values of single-pass heuristics 94

	

4.4 	Average BOS (Bracket for Optimal Solution %) 	94

	

4.5 	Average Ranking for 4J 	 94

	

4.6 	Worst case value of BOS for single-pass heuristics (%) 	98

	

5.1 	Sample sizes and computational budget for LNS 	116

	

5.2 	Feasibility of minimum lower bounds bē 	 121

	

5.3 	Frequency of feasibility of bē 	 123

	

5.4 	Size of set o.f active schedules 	 127

	

5.5 	Average Ranking for Makespan 	 131

	

5.6 	Worst case of BOS of LNS at TL (%) 	 132

	

5.7 	Average BOS of LNS at TL (%) 	 133

	

5.8 	Quality of continuous approximation of BOS improvements function 141

	

6.1 	Test for assumption of normally distributed makespan values 	148

	

6.2 	Hypothesis testing of Weibull distributed values of active

schedules 	 154

	

6.3 	Maximum likelihood estimators of Weibull parameters 	159

	

6.4 	Linear regression estimates of Weibull parameters 	160

	

7.1 	Coefficients of variation for Erlang and Normal distributions 178

	

7.2 	Comparison of the new composite rule with simple

dispatching rules 	 195

	

7.3 	Average waiting time from simulation and approximate formulae 200

-9-

Table 	 Title 	 Page

Al 	Heuristics for flow-shop scheduling with no-job-passing 	231

A2 	Heuristics for flow-shop scheduling with no-waiting 	232

B1 	Bracket for optimal- solution (BOS) with single pass active

job-shop scheduling heuristic ECT 	 233

Cl 	Average and standard deviation of regression coefficients

from the solution improvements model 	 239

D1 	Table of critical values of D in the Kolmogorov-Smirnov

one-sample test 	 243

El 	Simulation results for Normally distributed processing times -247

E2 	Average waiting time for Erlang distributed processing times 248

E3 	Average queue size for Erlang distributed processing times 	249

E4 	Average lateness (missed due dates) for Erlang distributed

processing times 	 250

E5 	Effects of inaccuracy of processing times estimates 	251

E6 	Similarity of job-shops with identical machines in parallel 	252

E7 	Average waiting time from simulation and approximate formulae 253

- 10 -

LIST OF ILLUSTRATIONS

Figure 	 Title 	 Page

	

2.1 	Flow-shop with no-waiting 	 31

	

2.2 	Depth-first tree search 	 45

	

2.3 	Disjunctive graph for a job-shop scheduling problem 	48

	

3.1 	Flow-shop scheduling slack times 	 68

	

3.2 	Gantt chart of a job with three operations 	69

	

3.3 	Matching of job profiles 	 70

	

3.4 	Sequencing without left-shifting 	 71

	

3.5 	Slack times for flow-shop no-waiting 	 75

	

3.6 	Flow-shop scheduling operations left-shifting 	79

	

4.1 	Conflict jobs 	 87

	

4.2 	Conflict resolution 	 87

	

4.3 	Flow chart for single-pass active schedule generation 	89

	

4.4 	Distribution function of BOS (%) for ECT (E9) 	99

	

4.5 	Distribution function of 80S (%) for ECT (E36) 	100.

	

5.1 	Tree search methods 	 105

	

5.2 	Two-machine based lower bounds 	 111

	

5.3 	Flow chart for job-shop scheduling with a local neighbourhood

search method 	 118

	

5.4 	Lower bounds across a tree traversal 	 120

	

5.5 	Number of iterations as a function of CPU time 	125

	

5.6 	Proportion of tree searched as a function of CPU time 	129

	

5.7 	Typical solution improvements patterns 	 136

	

5.8 	Effects of fictitious bounds 	 137

	

5.9 	Typical pattern for improvements of the bracket for the

optimal solution BOS 	 140

	

7.1 	Network of queues 	 167

7.8

7.9

7.10

Al

Cl

Figure 	Title 	 Page

	

7.2 	A flow-shop like queueing system
	

167

	

7.3 	Comparison of average waiting times with Erlang and Normal

distribution of processing times 	 179

	

7.4 	Average waiting for Erlang processing times (k = 1,2,...co)

at p = 0.8 	 182

	

7.5 	Mean queue size and mean lateness as a function of the

coefficient of variation of service times 	185

	

7.6 	Average waiting time for Erlang processing times at various

load factors 	 187

	

7.7 	Average waiting time for Ek processing times as a function of

the load factor
	

188

Effects of inaccuracy of processing times estimates
	

189

Priority values in a composite scheduling rule related to

due-dates
	

192

Ratios of simulation results from models with r and r'

machines in parallel
	

198

Erlang distribution with scale parameter b = 1
	

229

Models for continuous approximation of the step function

of the improvements for BOS
	

240

CHAPTER 1

INTRODUCTION

	

1.1 	Definitions

	

1.2 	Notation

	

1.3 	Classification

	

1.4 	Criteria of performance

	

1.5 	Assumptions

1.6 	Thesis outline

- 13 -

1.1 Definitions

'Scheduling is the allocation of resources over time to perform a

collection of tasks' (Baker, 1974). This is one of the many

definitions available. All of them have two elements in common,

though they use different words: resources and tasks. Resources (or

facilities) may be machines in an engineering industry, computers,

doctors-nurses in a hospital, and generally processors. Tasks or

more commonly jobs, require one or more operations on any combination

of the facilities.

Scheduling includes also the sequencing function which given a

set of 'tasks' and 'facilities' defines a sequence-succession of

the operations on each facility. In this sense a sequence is

not automatically a schedule. The sequence does not indicate

start and completion times of the tasks. It is possible though

to derive a complete schedule from the sequence.

The single most important field of application: of scheduling

is in production planning, within the area of operations management.

The problem originates from the production function in industry,

and this is reflected in the prevailing terminology.

Nowadays a number of problems outside this traditional area can be

formulated and solved as scheduling problems. The most common are:

the examination of patients by doctors in hospitals, manpower

scheduling (e.g. nurses in hospitals) to provide a minimum service level

per shift, the sequencing of programs in computers, the order of

visiting cities by a salesman, preparing school timetables for

teachers and classes. Besides these, there are a lot of common

problems that are by nature scheduling and sequencing ones, and

therefore can be dealt with
A
thh tools of scheduling theory.

- 14 -

1.2 Notation

The notation and terminology adopted-are the ones suggested by Conway,

Maxwell and Miller (1967), Baker (1974) and adopted by the major

periodicals in the field.

completion time of job i

Cmax
makespan (time elapsed between start of schedule
and finish of last operation).

Fi 	flow time (Ci less time of entry)

Wi 	waiting time

Pi 	aggregate processing time of job Pi =
xl 	 J Pi'

Pij 	processing time of job i in facility j

Di 	Due date

Ri 	time of entry

Li 	lateness (or missed due date)

Ei 	earliness

Ti 	tardiness

I. 	idle time of machine j over makespan Cmax Ij

Then, by definition:

W. = F.- P.
1 	1

Ci =Ri+ F.

Ci = Ri+ P.+ Wi

Li = C.- Di

T. = max (O,L.)

Ei = max (0,-Li)

-.E

Ij = C
max 	 1Pij

(may be positive, zero or negative)

Ci

- 15 -

The following notation is also used:

n number of jobs

m 	number of machines

G 	general job-shop sequence

F general flow-shop sequence

P 	permutation flow-shop

D 	deterministic arrivals or servicing in
stochastic and/or dynamic problems

M 	negative exponential process (Markovian)

Ek 	Erlang process

G. 	general independent

UR 	uniform rectangular distribution

A 	set of active schedules

u mean value

a 	standard deviation

V 	coefficient of variation (V = a/p)

a 	linear regression constant

linear regression coefficient

✓ correlation coefficient

be 	lower bound

b* 	minimum of lower bounds

bu 	upper bound

a 	location parameter

b 	scale parameter

c 	shape parameter

-- 16 -

1.3 Classification

There are several possibilities for distinguishing scheduling

problems.

(i) Randomness

The problem is deterministic if all the data involved

are deterministic (processing times, sequences,

technological constraints, availability of facilities).

The problem is stochastic if any of the data is stochastic.

(ii) Change of characteristics over time. The problem is

static if none of the initial data changes over time, e.g.

if all the jobs that are to be considered are available

simultaneously at the beginning of the scheduling period.

The problem is dynamic if the data is subject to change

with time, e.g. when the jobs arrive intermittently

during the scheduling period.

This broad classification can be represented in the following table:

•Deterministic 	Stochastic

Static 	I 	III

Dynamic 	II 	IV

The simplest form is the static and deterministic (I).

At the other end the dynamic and stochastic (IV) ones are the most

complex.

Further classification is possible based on the resources available.

There may be only one unit of each resource or many in parallel

(scheduling of parallel processors) and they may be in one single

stage or multistage (general job-shop scheduling).

The sequence (technological and precedence constraints) is another

important feature for classification. The scheduling problems are

divided into:

- 17 -

G 	general job-shop

F 	flow-shop (every job has the same path)

P 	permutation (the same job-sequence in all
machines)

The classification adopted can be represented with four parameters

as follows (Conway, Maxwell and Miller, 1967):

pl / p2 / p3 / p4

For static and deterministic problems:.

pl is the number of jobs n

p2 is the number of machines m

p3 describes the sequence pattern of operations
(G,F or P)

p4 describes the criterion of performance on which
the schedule will be evaluated

For dynamic and stochastic problems a classification/notation based

on queuing theory is adopted,p5 / p6 / p7, where

p5 is the arrival rate descriptor.
It can be D : deterministic

M : negative exponential/Poisson
(Markovian)

Ek: Erlang with parameter K
G.: general independent

p6 describes the processing times distribution

p7 is the number of facilities in parallel

Additionally it is useful for certain problems to specify another

three parameters, p8 / p9 / p10 , where

p$ describes the priority discipline in the queues

p9 is the size of the population

p10 is the limit to the size of the queue.

- 18 -

1.4 Criteria of performance

The real scheduling problems in the production context are not

restricted to finding a schedule or sequence allowing

the tasks to be performed, but also fulfilling some goals/

objectives. In practice these may be:

reduce queueing times

reduce stocks of finished goods or raw materials

reduce work in progress

increase production output

reduce back orders

reduce delivery periods and product lead times

reduce idle time of facilities

reduce idle time of manpower

reduce staff level and overtime

meet delivery targets

etc

Apart from these direct objectives, some indirect ones are of

interest:

improve competitive position

reduce labour turnover

increase controlability (better information flow)

improve return on investment

etc

To measure the fulfilment of these objectives, some criteria or

measures of performance are needed. The general term -of 'regular

measures of performance' is used for those criteria that can be

described as a function of job completion times 	(C1 ,C2,...0) where
n

the objective is to minimise 	and where 	can increase only if one

of the completion times in the schedule increases. There are many

- 19 -

possible criteria related to the jobs or to the facilities, some

of them common, some others of academic interest only. It has

been possible to count over 20 different criteria or measures of

performance, all of them related to time directly or indirectly.

Some of them are different in name only, because it can be proved

that they are equivalent to others. They can be obtained from each

other by simple transformations involving constants, and schedules

that are optimal for one of them are optimal for the whole group

(Baker 1974, Coffman 1976, Rinnoykan 1976, Lenstra 1977).

(i) Minimising makespan or the maximum of cōmpletion times

Cmax
is equivalent to:

- minimising the sum of machine idle times

E 	=m (C 	- F P) = mC 	- E E P.
j=1 j j=l max i=1 ij 	max j=1i=1 ij

-minimising the weighted sum of machine idle times

m 	m 	 n 	 m 	m 	n
E w I = E w (C 	- E P)= C 	F. w- E w(E P)

j=1 j j j=1 j
max i=1 ij 	maxi=1 j j=1 j i=1 ij

- maximising the average utilization of machines over Cmax

m 1 E ((n-, P..)/C 	} =L
	
n P. }/mC

j=1 1 =1 i3 	max 	j=1 i=1 13 	max

- maximising the average number of jobs processed per unit time

(expressed above)

(ii) Minimising the sum of completion times is equivalent to:

- minimising the sum of waiting times

n n 	n 	n 	n

.E1 W.=. 	(C.-R
i
-P.) iE C. iE 	P 1 R. i 1 .

- minimising the sum of flow times

n n 	n 	n
E F: E (C -R)=EC - ER

1 =1 1 i=1 i 1 i=1 i 1=1 1

- minimising the sum of lateness

By dividing the above four measures by the number of jobs n,

it is immediately seen that the following criteria are also

equivalent to theiPiCi:

-20-

- average completion time C

- average waiting time 	W

- average flow time

- average lateness 	L

(iii) Minimising the weighted sum of completion times i=lwiC.

is equivalent to:

- minimising the weighted sum of waiting times

- minimising the weighted sum of flow times

- minimising the weighted sum of lateness (but not tardiness)

(iv) Minimising the sum of tardiness is equivalent to minimising

the average tardiness T = Ē T./n
i=1 1

There are a few more criteria that have been encountered in the

literature but their value is very limited as they are not likely

to be used in many practical situations (e.g. minimising the mean

number of jobs in the system, calculated over
Cmax'

 expressing

expected inventory or storage requirements; minimising the weighted

sum of completion times with secondary criteria, in Burns, 1976;

minimising the time-in-system variance encountered in Merton and Muller

1972, Schrage 1975, Eilon and Chowdhury 1977).

(v) The criteria 'minimising the maximum lateness' and 'minimising

the maximum tardiness' are not equivalent but are related in

the sense that a schedule that minimises L
max

minimises also

Tmax
(the reverse is not true).

Lmax
= max (Li), i=1,, n

Ti 	= max (0,Li)

Tmax = max (T
i) = max (max (0,Li)) = max (0,max (Li))

Consider two schedules with L
max ` Lmax

then max (0,L
max

) < max (0,L') or T 	< T'

	

max 	max max max

- 21 -

The equivalence of criteria as discussed above reduces dramatically

the number of distinct problems to the following:

n 	n 	n 	n
C 	, L 	, E C , E T , E w C , E w T
max 	max 	1=1 i 	i=1 1 	i=1 i i 	i=1 	i 	i 1

The single most important criterion of performance is the Makespan

or Schedule Length
(Cmax),

 equivalent to the total of the machines

idle times or to the average utilisation of machines. Its

importance is reflected in the frequency with which it is encountered

in the literature.

The next most important criterion is the average flow time

n
F = (i E

11
	equivalent to C, W and L.

A more general class of criteria is related to the idea of 'cost'

or 'utility' (e.g. Eskew and Parker, 1975). A value of cost is assigned

to each schedule taking into account not only times but also relative

values of materials, equipment, labour required etc, in which case

it is usual to try and minimise total cost. The same basic idea can

be incorporated in the concept of a generalised utility function.

As an example, a total cost expression could be a function of lateness,

slack, work in progress, utilisation of facilities (discussed in

Chapter 7). Both these types of criteria create problems in the

sense that they need some coefficients to be determined, which is

practically difficult, unless some arbitrary values are used.

-22-

1.5 Assumptions

There is a common set of assumptions encountered in the literature on

scheduling problems (Gere 1966, Mellor 1966, Conway et al 1967, Day and

Hottenstein 1970, Baker 1974).

(i) Machines do not break down and do not need servicing.

(ii) Preemption is not allowed (operations that start being

processed are completed without interruption).

(iii) Machines can process one operation only at a time (no

overlapping possible).

(iv) Job operations may not overlap (each job can be processed by

one machine only at a time).

(v) Set-up and transfer times are either negligible or incorporated

in the processing times.

(vi) No machine interchange (flexibility) is possible.

	

(vii)(Processing times are fixed (the estimated time is equal to the

actual). This assumption will be used•throughout this thesis

except Section 7.3 where it will be relaxed.

(viii) An important assumption that will be adopted is that the machines

are used as single processors (one machine only in each.

machine centre). There is another category of problems

where n jobs have to be processed on m machines in parallel

(usually identical), with or without precedence constraints,

due dates etc, with the objective of minimising makespan or

the number of processors required.

(ix) Another assumption that is adopted is that prece dence

constraints exist for the operations of every job, but there

are no precedence constraints for operations from different

jobs. This assumption 	in fact excludes assembly and

splitting operations of the type encountered in project

planning (with CPM and PERT).

- 23 -

1.6 Thesis outline

The aim of this study has been to investigate the suitability and

performance of a wide range of approximate methods applied to various

aspects of the job-shop scheduling problem.

The first chapter has been devoted to definitions, notation,

classification, criteria of performance and common assumptions related

to job-shop scheduling.

Following this introduction, in the second chapter, the complexity

of scheduling problems is investigated and the exact algorithms

available for solving them are reviewed as two distinct groups:

good optimising algorithms with polynomially bounded number of

steps for the easier problems (to be named as P-class problems) and

enumerative algorithms of polynomially bounded depths for the harder

ones (named NP-complete). The approximate methods available are

classified and reviewed as exact solutions of relaxed problems,

ad-hoc algorithms and incomplete search procedures. This is followed

by a discussion of methods of assessment of approximate solutions.

The third chapter deals with ad-hoc algorithms for flow-shop

scheduling problems, with no passing or no-waiting allowed (the

simpler form of job-shop problems). New algorithms are proposed and

'compared with solutions from the best available ones or from optimal

procedures.

Ad-hoc single-pass algorithms for active schedules are also the subject

of the fourth chapter, this time for the general job-shop problem,

where a worst-case and probabilistic analysis of their performance

is carried out.

-24-

The fifth chapter is concerned with incomplete search procedures as

approximate methods for the general job-shop problem. A local

neighbourhood search (LNS) method is described for the probabilistic

and worst-case analysis of decision rules and a model is constructed

describing the performance of heuristics as a function of time.

The applicability of statistical methods in LNS is discussed in

the sixth chapter and in particular the use of the limiting form of

the distribution of the smallest members of samples in stopping

rules and bound calculations.

The dynamic and stochastic scheduling problem is treated separately

with dispatching rules and simulation in the seventh chapter.

The sensitivity of simulation results of a number of priority rules

is investigated for different data structures (distribution, variance,

loading and accuracy of time estimates). Approximate formulae are

developed relating results from problems with different number of

machines in parallel. Approximate formulae are also suggested,

dealing with the job-shop as a complex network of queues and

predicting the simulation results for different values of variance

of the processing times.

The final (eighth) chapter sets the industrial context of these

approximate methods in job-shop scheduling, reviews the thesis,

highlights the parts that are believed to be its original

contribution and puts forward suggestions for further theoretical

and applied research.

CHAPTER 2

COMPUTATIONAL COMPLEXITY

	

2.1 	Theory of computational complexity

2.1.1 Reducibility and NP-complete problems

2.1.2 Reducibility of scheduling problems

	

2.2 	Review of P-class scheduling problems

	

2.3 	Exact methods of solution of NP-complete scheduling problems

2.3.1 Enumeration of all feasible solutions and
combinatorial approach

2.3.2 Dynamic programming

2.3.3 Integer programming

2.3.4 Tree-search and branch and bound methods

	

2.4 	Approximate methods of solution

2.4.1 The need for approximate methods

2.4.2 Types of approximate methods

	

2.5 	Assessment of approximate methods

2.5.1 Heuristic performance guarantees

2.5.2 Probabilistic analysis of heuristics

-26-

2.1 Theory of computational complexity

The scheduling problem in its simpler forms of static and deterministic

cases is extremely simple to describe and formulate. The problem

n/m/G/C
max

 has an infinite number of feasible solutions, being

created by the insertion of arbitrary idle times between operations.

If all possible delays are eliminated by shifting the start-times

of operations as early as possible, without changing their sequence

on any machine,a set SA of schedules— called semi-active schedules-

is defined. The size of this set SA 'is limited by the number of

possible sequences (n:)m. The n: represents the limit to the number

of alternative sequences on one machine and the exponent m allows

all their combinations to be included. The actual number of SA

schedules is usually smaller than (n:)m because of the sequence or

technological constraints. The significance of the size of this set

is that it demonstrates the size of the problem and discourages full

enumeration of solutions.

The set SA contains the optimal solution for any of the criteria

described in Section 1.3 The reason is that for any schedule s not

belonging in SA there is a semi-active one s' belonging to SA,

derived from s with shifting some or all of the start times,

maintaining the sequence and not increasing the value of any of

the completion times. All these criteria are'related to the

completion times, since an improvement in their value requires a

reduction of some completion time.

For the C
max

group of measures, the optimal solution is guaranteed to

be contained within A, the set 	of 'active schedules' A c SA.The set A

results from SA by allowing 'global' shifting of start times, i.e. by

allowing change of sequence, provided no job completion time

increases as a result of that change. From the definition of A, it is

clear that it contains an optimal solution, for any regular measure of

performance.

-27-

If in the process of constructing the schedules no machine is

kept idle, when it could begin processing of some operation, a set ND

of 'non-delay' schedules is defined, (sub-set of A), which may not

contain an optimal solution.

It is clear from the above discussion that the simpler form of static

and deterministic job-shop problems is quite complex, since the

smallest set that is guaranteed to contain the optimal solution is

already too large. The number of alternative solutions is too large

and the question arising is whether there is an efficient method that 	-

could give the optimal solution.

At this stage it is appropriate to discuss the nature of the scheduling

problem in the light of recent advances in the theory of computational

complexity. The scheduling problem is a combinatorial one with discrete

feasible solutions, where optimisation through differentiation is

not possible. There is a number of well-known combinatorial problems,

similar in nature to scheduling: the travelling salesman problem,

packing, assignment, transportation, shortest path of a network,

shortest spanning tree, set covering, set colouring and many others.

For all these non-differentiable discrete optimisation problems the

fundamental question at issue is the number of operations required

to find an optimal solution. Cook (1971) and Karp (1972) initiated

the work on the computational complexity as part of the computer

science field. A summary of this work is given below.

An algorithm is a precisely stated procedure or set of instructions

that can be applied in the same way to all instances of a problem.

A problem P can be fully described in a computer with a string of

0 and 1 elements, of length L, representing both the coefficients

(numbers) and the operations performed with them. For large L

(L } 00) the following definitions apply for the algorithms solving the

problem.

-28-

Polynomial algorithm is one where the number of operations is

proportional to Lk e.g. L5, 7L5 + 3L etc. (called also 'good'

algorithm by Edmonds, 1965).

Non-deterministic Polynomial algorithm is one where the number of '

operations is proportional to kL e.g. 2
L, LlogL

etc. (polynomial

depth algorithm).

The problems are divided accordingly to P-class and NP-class.

Typical P-class problems, solved in a polynomially bounded number of

steps are:

- assignment/transportation problems 0 (n
5/2)

- shortest spanning tree of a graph 0 (n2)

- network flow, 1 or 2 commodities 0 (n3)

- shortest path, 1 or 2 commodities 0 (n2), 0(n3)

- P-median on tree-graphs 0 (n
2p2)

- ordering n numbers in ascending order 0 (nlōgn)

- minimising makespan of two-machine flow-shops and job-
shops 0 (nlogn)

Examples of problems in NP-class, solved by a tree-search of

polynomial depth are:

- 0-1 integer programming

- graph colouring/timetable/3-J assignment problems

- travelling salesman

- loading

- knapsack

- P-center, P-median

- set covering/partitioning/packing

- plant layout/quadratic assignment

-29-

- language recognition (find a given string within a
given text)

- simplex method of LP (Klee, 1972). It is not known
whether the LP problem is in P or NP class.

- general job-shop and flow-shop problem (Gonzalez and
Sahni, 1978)

Besides P and NP-class problems, there are others that are thought

to be more complex.

2.1.1 Reducibility and NP-complete problems

There is a subset of the NP-class problems, called NP-complete,defined

by the property of reducibility. Each problem of this group can be

transformed by a polynomial algorithm, simple or complex, to a problem

named 'SATISFIABILITY' which itself is reducible to any other

problem of the NP-complete group. (Cook 1971, Karp 1972).

The importance of the reducibility is that if a P-class algorithm

could be found for one of the NP-complete problems, then P-class

algorithms would exist for all of them. This is thought highly

unlikely to happen, since the known NP-complete problems are the

most difficult combinatorial ones:

- the general job-shop problem and most of its special
cases (Ullman, 1976)

- knapsack problem

- bin-packing

- travelling salesman problem, Eucledean (undirected
Hamiltonian circuit)

- directed Hamiltonian circuit (asymetric travelling
salesman problem)

- partitioning a set of integers into two subsets
with equal sums

- 30 -

A detailed list of 25 NP-complete problems with descriptions is

given in Karp (1975). It is worth adding here that for these problems_

the general approximation problem (i.e. find a solution with arbitrary

distance c from the optimal) has been proved to be also NP-complete

(Sahni and Gonzalez, 1976).

2.1.2 Reducibility of scheduling problems

The reducibility of the general scheduling problem to the 'satis-

fiability' is of major theoretical importance, proving that the former

is NP-complete,but in terms of efficiency of solution, it does not

reduce the complexity of the problem and does not constitute any

practical improvement. There are though some special cases of

scheduling problems for which the direct reduction to some other

well-studied and analysed combinatorial problem consitutes an

efficient transformation. This is the case with the 'flow-shop,

no-waiting' and 'job-shop, no-waiting, no-passing' problems which can

be transformed to a directed Hamiltonian Circuit problem known as

Asymmetric Travelling Salesman problem or ATSP (Wismer, 1972).

In a Gantt chart representation, a job profile in a flow-shop

environment is represented as a staircase. The assumption of no-

waiting (or no-waiting and no-job-passing in a job-shop) in effect

means that this staircase must remain unbroken. Thus, left-shifting

and passing of a complete job profile is allowed, though not of

individual operations. This can be illustrated as in Figure 2.1 below.

D12

31 J2

J1 J2

J1

J1 J2

31 J2

J1 J2

- 31 -

Figure 2.1 Flow shop with no-waiting

Admissible Inadmissible

F1

F2

F3

F1

F2

F3

D12

Fl

F2

F3

31

J1

J2

J2

J2

J2

Job shop with no waiting

and no passing

For a given job sequence, the makespan is:

	

Cmax 	
Pn +n E

1 1
 Di,i+1 n:last job in sequence

where P = Ē P 	and B. iii is the delay incurred to job i+i in the n 	n
j=1 	J

sequence, measured from the start time of job i.

The reduction is obtained by representing every job with a vertex

(node or city) in the ATSP, where Dij is the distance between the

vertices i-j. An extra vertex represents a dummy first and last

job, and every other vertex has zero distance from it. The distance

of every vertex i to the dummy node is Pi =.E P. 	The ATSP

distance matrix for a 4-jobs,m-machines problem would then be as in

Table 2.1 on the following page.

An alternative reduction method based on total slack, instead of

delays is described and used in Chapter 3.

The well known Bin-Packing and Knapsack combinatorial problems are

also related to the scheduling one. The Bin-Packing problem can be

formulated as a scheduling problem of m machines in parallel,

- 32 -

Table 2.1 	Asymetric travelling salesman problem matrix

From
node

To node

1 	2 	3 	4 	5

1 	- 	D12 	D13 	D14 	P1

2 	D
21 	D23 	D244 	P2

- 3 	D
31 	D32 	D34 	P3

- 4 	D41 	D42 	D43 	P4

5 	0 	0 	0 	0

n-jobs (tasks) with m < n and a deadline for the completion of all tasks,

where it is desired to minimise the number of machines required for

processing the job-set. The knapsack problem (Lenstra et al, 1977)

is also related to a number of special cases of the scheduling problem

(a review of the state of the art on Knapsack problems can be found

in Salkin and de Kluyver, 1975)

No 'good' algorithm has ever been found for any of the problems

belonging to the NP-complete group, and it is very probable

(though it has not been proved mathematically) that one does not

exist. If such an algorithm were possible then all NP-complete

problems would become P-class. The implication is that the general

job-shop problem (static, deterministic) is solvable only by polynomial

depth algorithms, i.e. some form of enumeration (tree-search).

The intensive research in the scheduling area, therefore, is unlikely

to lead to an 'algorithmic' break-through. The discoveries about

NP-complete problems require a change in the direction of research.

It is more likely that eventually the breakthrough will take the

form of the -development of extremely powerful (large, fast and

accurate) digital computers, which, together with the development of

quantifiably approximate methods will allow the solution of practical

- 33 -

problems with results guaranteed to be close to optimal.

A systematic review of exact and approximate algorithms for P-class

and NP-complete scheduling problems is presented in the following

sections. Reviews and references on the scheduling problem and the

algorithms available can be found also in Eilon and King (1967),

Conway et al (1967), Elmaghraby (1968), Elmaghraby ed. (1973),

Chowdhury M.A. (1974), Baker (1974), Karp (1975), Chowdhury I.G. (1976),

Coffman ed. (1976), Garey et al (1976), Lenstra et al (1977) and

Graham (1978).

-34-

2.2 Review of P-class scheduling problems

(1) Single machine scheduling with a finite number of jobs

- Minimise the sum of completion times, with due-dates

Smith (1956), 0(nlogn)

Algorithm:
Job i may be assigned the last position in the sequence
only if

n
D. >.E . P. and

1 -j=1 J
Pi -> Pk 	for all jobs k such that Dk > E Pj

(If another job were to take last position in sequence,

a reduction of E C. could be achieved by transferring
i=1 1

job i to the end of the sequence).

- Minimise the maximum lateness and tardiness

Jackson (1955), 0(nlogn)

Algorithm :
sequence the jobs in an order of non-decreasing due
dates.

- Minimise the weighted sum of tardiness, with unit

processing times and different arrival times

Lawler (1964), 0(n3)

- Minimise the number of late jobs

Moore (1968), 0(nlogn), for Ri>o Kise et al (1978),0(n2)

- Minimise the weighted sum of completion times

Horn (1972), Sidney (1975), 0(nlogn)

- Minimise the maximum lateness, with simple precedence

constraints.

Lawler (1973),.0(n2)

- Minimise the maximum of the value of a special penalty

function, subject to a number of restrictive assumptions.

Sidney (1977), 0(nlogn)

- 35 -

(ii) Two-machine problems

- Minimise Makespan
(Cmax)

 in flow-shops

Johnson (1954), 0(nlogn)

- Minimise Makespan
(Cmax)

 in flow-shops, without waiting

Gilmore and Gomory (1964), Reddi and Ramamoorthy (1972),

0(nlogn)

- Minimise Makespan in job-shops with one operation in

each machine only

Jackson (1956), 0(nlogn)

- Minimise the sum of completion times, with two machines

in parallel, unit processing times and simple

precendence constraints

Coffman and Graham (1972), 0(n2)

(iii) .m-machine problems

- Minimise C
max

in job-shops with two jobs.

Hardgrave -and Nemhauser (1963), Szwarc (1950), 0(m2)

- Minimise C
max

with in identical machines in parallel,

unit processing times, tree-like precedence constraints.

Hu (1961), 0(n) (with preemption, Gonzalez and Sahni, 1978)

- Minimise.Eyr C. with m identical machines in parallel,

unit processing times, time of entry Ri>o

Lawler (1964), 0(n3)

- Minimise.E C. (or F) with m identical machines in

parallel.

Conway et al (1967), Baker (1974), 0(nlogn)

Algorithm :
Step 1. Construct an SPT ordering/list of

all the jobs.
Step 2. To the machine with the least amount

of processing already allocated,
assign the next job from the list.
Repeat Steps 1 and 2 until all jobs
are assigned.

-36-

2.3 Exact methods of solution of NP-complete scheduling problems

The general scheduling problem, one of the group of NP-complete

combinatorial problems (Coffman ed. 1976) and most of its special

cases even with 1, 2 or 3 machines (proved to be NP-complete as

well by Garey et al, 1976) can be solved optimally only with some

algorithm of polynomially bounded depth (which in practice limits the

size of problems that can be solved). This, inevitably, takes the

form of an enumerative method either explicit or implicit and

usually that of a tree search, where the set of solutions searched

can be trimmed to a more manageable size by the use of some branch

and bound method.

Although there is only one basic method, the enumerative one, there

are numerous formulations encountered in the literature, summarised

below, and subsequently described in some detail.

(i) Enumeration of all feasible solutions and
combinatorial approach

(ii) Dynamic•Programming

(iii) Integer Programming

(iv) Branch and bound algorithms (including precedence
or disjunctive graph formulations)

One should bear in mind that there are limits to the size of even the

simpler problems (static and deterministic) that can be solved

optimally with these exact methods (as already discussed in Section

2.1), while near optimal or approximate solutions can be constructed

more easily and efficiently with approximate methods or heuristics,

to be discussed later (Section 2.4).

2.3.1 Enumeration of all feasible solutions and combinatorial approach

The obvious method of solution and the most inefficient, is a complete

enumeration of all feasible solutions (members of the set A of active

-37-

schedules) that do not include arbitrary (unnecessary) delays and

where no global left-shifting of operations can be made i.e. no

operation can begin earlier without delaying any other operation .

The set of active schedules is the smallest set guaranteed to include

an optimal solution (dominant set) for any regular measure of

performance while the set of non-delay schedules, where no machine

is left idle while jobs are awaiting processing, may not contain an

optimal solution . There are methods that allow complete enumeration

of the set A with minimum cost, based on the principle of minimum

change: given a sequence S the next one to be generated is determined

by the principle of minimum cost changes.

An indication of the size of the problem is given by 0{(n.)m}

which, for a sample of problem sizes takes the following values:

Number 	Number of
of jobs 	machines

	

4 	3

	

6 	3

	

? 8 	4

	

10 	4

	

20 	5

	

35 	5

0{(n:)m}

.138 E5

.373 E9

.264 E19

.173 E27

.852 E92

.118 E201

The set A of active schedules can be generated by the systematic

partitioning procedure suggested by Giffler and Thomson (1960)

(see also Brooks and White 1965, Baker 1974). This algorithm for

generating all members of the set A of active schedules is summarised

below.

	

PSt 	: a partial schedule at time t

	

St 	: set of schedulable operations at time t

	

sj 	: earliest start time of the schedulable operation, jESt

	

ci 	: earliest completion time of the schedulable
operation, jESt

- 38 -

Algorithm

Step 1. At time t=0, PS is empty, S4. contains all
operations withaut predecessors.

Step 2. Determine c*=min (c4) for j ESt
Define m* as the machine where c* can occur.

Step 3. For each schedulable operation j€S requiring m*,
for which s.< c* create a new partial schedule by
adding j inthe partial schedule PSt, starting at
time s 4

Step 4. Update3the set of schedulable operations (by
removing operation j from St and adding the
next operation of that job, creating the
S)

Step 5. U date time to t+l.
Step 6. If all active schedules have been generated,

gu to 7. If not, return to 2.
Step 7. STOP.

The same set can be generated also with methods based on permutation

changes. These changes can be based on minimum cost changing or

lexicographic generation of allpossible permutations. Combinatorial

approaches, relying on changing one permutation to another through

switching around jobs, under certain conditions may produce optimal

solutions. There are some special problems where optimisation

techniques,based on a theorem by Smith (1956) for functions of

permutations,can be applied (Elmagraby 1968, Rau 1970) but these

methods cannot be used for obtaining optimal solutions of the general

problem. They have been adopted though successfully for sub-optimal

solutions (e.g. Neighbourhood Search) as will be discussed in

Section 2.4 on heuristics.

2.3.2 Dynamic Programming

Dynamic Programming (DP) is an established technique for solving

optimisation problems as sequential decision processes. It can be

applied to problems with a separable objective function of the form

n
'minimise F =Efi(xi)' (where x1 , x2,....XnED and D is the domain of

i=1

values for all variables), with a single constraint and discrete

variables that take integer values. This type of formulation seems

to fit into a special group of scheduling problems and there has

-39-

been a number of attempts to use it. Held and Karp (1962) and Lawler

(1964) have formulated the cost minimisation of a single machine

problem, where costs are related to the completion times and the

value of this objective function is calculated with recursive

equations at every step of the algorithm. The solution method relies

on the principle of optimality:

'an optimal sequence of decisions has the property that whatever the
initial state and initial decision are, the remaining decisions must
be an optimal sequence of decisions with regard to the state
resulting from the first decision'.

Thismethod is in fact a tree-search or branch and bound, breadth first,

using dominance criteria instead of bounds. For this type of problem,

the method can be illustrated as a graph with n stages of vertices and

k
the minimum cost or minimum E c. as the shortest path from the

i=1 1

initial to the final stage. The method always requires searching

trees of about n2n nodes (Reingold et al 1977).

Another interesting dynamic programming formulation is due to

Lawler and Moore (1969). It is a special case of minimisation of

F = E f.(c.) in a single machine problem, with precedence constraints
i=1 1 1

(i.e. sequence of jobs is fixed) but each job may be processed in

two different ways with differing costs. Dynamic programming has

been used also for flow-shop problems of two-machines and sequence

dependent set-up times (Corwin and Esogbue 1974). Special types of

job-shop problems have been solved with DP algorithms by Sahni (1976)

and Baker and Schrage (1978).

The main disadvantage of the dynamic programming formulation is that

the dominance property used is not strong enough. At any intermediate

stage of the solution a feasible alternative is discarded when its cost

exceeds that of a complete feasible solution, which is not very

efficient as a 'pruning' mechanism. Besides it is quite complicated,

especially in keeping records of previous stages and intermediate

decisions.

-40-

2.3.3 Integer Programming (IP)

IP Formulations

There is a vast literature on Integer Programming formulations and

techniques for scheduling problems. The first IP formulation (0-1)

was introduced by Bowman (1959) and is summarised below. At the point

of time t, an operation k is either being processed, in which

case a related variable xkt takes the value 1, or else xkt = 0.

The processing time of operation k then is
bu

Pk tElxkt

where bu is a sufficiently large number or an upper bound. The

number of operations is nm and the number of variables is nmbu.

To ensure that one operation is processed at not more than one machine

at any point in time t

k

xkt <1 for t = 1,....

where Mk is the set of operations k on machine j, j = 1...m

To ensure that an operation, once started is completed without

pre-emption

pk(xkt - xk,t+1) it2 _ 	xki ` pk for t=1,...bu-1

Finally, the precedence requirements for operations are taken into

account by the constraints

t-1
rl

xki for t=1,...~
pkxk+l,t ì

(in this case operation k precedes operation k+l)

The total number of constraints is (2nm + m-n)bu

The objective function for minimising Makespan C
max

is:

J to kE 2
(n+1) tx k , b

0
+t

where bo=max (Pi) for i=1,.:.n

and.' is the. set of last operations.

At about the same time, Wagner (1959) suggested an IP formulation for

the special case of permutation problems, with n20-1 variables and

41 -

nm real variables. Manne (1960) has produced another formulation

for the general problem. These formulations reprinted in Muth and. Thomson

(1963), were not found to be very efficient.

A more efficient formulation of the problem as a mixed IP was

proposed by Greenberg (1968).

sik

yijk=l

rifk
=1

start time of job i in machine k
(nm continuous variables)

if job i- precedes j in k or else 0, thus
when yijk is defined, yjik is superfluous

(mn(n-1)/2 0-I variables)

large positive number

if operation f of job i requires machine k
or else 0

Constraints:

k=lrifk(sik +pik) -̀k=iri,f+1,ktik 	(m-1)n

(M+Pjk)Yijk + (tik - tjk) > pjk 	mn(n-1)/2

(M+Pik)(1 yijk) + (tjk -tik) ' Pik 	mn(n-1)/2

Objective function:

'Minimise Mean Flowtime' EE(sit + p.,) where £ is the
machine of the last operation of 3'b i.

For 'Minimising Makespan', additional constraints are required, of the

following form, where h is the last operation

k=lrihk(sik + Pik) -̀ Cmax 	m,

and the objective function is 'minimise C
max

'. This formulation

for a problem of 10 jobs and 4 machines requires an IP of 220

variables and 390 constraints for 'min.F' or 400 constraints for 'min.Cmax''

The work of Greenberg (1968) and of Pritsker et al (1969) provides more

general models than the first formulations and demonstrates how a change

in the definition of variables can drastically reduce the size of

the problem (i.e. the number of variables and constraints). The

resulting IP problems are still very large to be solved with general

- 42 -

IP methods. Only special structure cutting planes might be reasonably

efficient, if a breakthrough were possible for the special case

of job-shop scheduling.

Methods of solution of IP problems

There are two fundamental methods for solving scheduling problems

formulated as IP; cutting planes and search methods.

In the 'cutting planes' method, which is based on the concept of

'relaxation' of integrality constraints, a corresponding LP is

constructed whose feasible region is defined by the original constraints.

The feasible LP region includes all the feasible integer solutions.

The idea is to generate a number of linear inequalities that cut-

out parts of the feasible region of the corresponding LP not

containing integer feasible solutions, while leaving the feasible region

of the IP intact. These constraints essentially represent necessary

conditions for integrality. The continuous (LP) feasible solution

space is modified until its continuous optimum extreme point satisfies

the integer conditions.

The 'search' method basically enumerates the feasible integer points.

It starts again from the continuous optimum and then partitions the

solution space into sub-problems by deleting parts that do not

contain feasible integer points.

Langrangean Relaxation and subgradient optimisation

The efficiency of this search can be improved by using bounds for

eliminating a substantial part of the tree. A method for calculating

lower bounds based on the use of Langrangean multipliers was implemented

for the TSP by Held and Karp (1970) and (1971), called Langrangean

Relaxation.

-43-

The basic idea with the Langrangean relaxation is that the objective

function is changed to incorporate one or more of the constraints

with Langrangean multipliers, which are then taken out and the relaxed

problem is solved optimally.

For the problem minimise Cx (x,A,B,C are vectors)

subject to Ax > b

Bx > d

x > o

the Langrangean relaxation is

min {cx+a(b-Ax)}

s.t. Bx > d

x>0

A > 0 (Langrangean multiplier/vector)

It has been proved (Geoffrion, 1971 and 1974) that the optimal

value of this problem is a lower bound to the optimal of the original

problem, for any value of a > 0

And the problem

max {min {cx+a(b-Ax)}} for x > 0, Bx>-d and x?o

gives the best possible lower bound to the original problem. The

difference between the optimal value of the original and of the last

problem is called the duality gap. One technique of determining the

values of a that maximise the lower bound is subgradient optimisation.

This method of solution offers itself for problems that are

basically simple problems with additional constraints. By incor-

porating these constraints into the objective function, the problems

are reduced to the simpler basic forms.

Fisher (1973) has used this method for a 0-1 formulation of the

scheduling problem, where 'the basic branching mechanism used is to

select a resource k and a time period t and allocate the available

resource Rkt to the various resource-feasible subsets of the tasks

1

- 44 -

which may use resource k during time period t'. With his formulation

Fisher succeeded in solving an independent scheduling problem for

each job. It is worth noting that this method of Langrangean

relaxation cannot be applied successfully with a partitioning method

where partial sequences remain fixed.

The Langrangean Relaxation and Subgradient Optimisation method can

be applied generally in problems of minimisation of non-convex

functions. A good review of the method and its applications can

be found in Shapiro (1977).

2.3.4 Tree-search and branch and bound methods

The underlying concept is the repeated decomposition of a problem

into several partial problems of smaller size, until the undecomposed

problem is either solved or proved not to yield an optimal solution.

The method can be described in terms of a generalised 'backtrack

search' in which any solution to the problem is a vector V = (al,a2, 	

with finite but undetermined elements. Each ai is a member of a

finite setAi, with Ni elements: An exhaustive search must consider

all the potential solutions i.e. the elements of (A1 xA2x 	xA).

The initial value v of the solution vector is V = O.

The constraints of the problem, e.g. sequence requirements for

operations indicate which of the members of Ak are candidates for

ak, forming a sub-set Sk, Skim Ak. In this way, a partial solution is

built up from (al,a2,a3, 	ak_i) to (a
l,a2, 	ak_l,ak).

If the partial solution (a1 ,a2,....ak_l) does not allow any

possibilities for ak, then Sk _ 0 and backtracking takes place.-

This process can be represented graphically in a tree. The following

diagram in Figure 2.2 is for a depth-first tree, where the nodes are

visited (by a •traversal) in the order indicated by the arrows

(Reingold et al, 1977).

- 45 -

Figure 2.2 Depth-first tree search

Start

Choices for a1

Choices for a2, given a1

Choices for a3, given a1 and a2

Choices for a4, given al, a2 and a3

Branch and bound is a specific type of backtrack search, where every

partial or complete solution has a cost f associated with it, and

the optimal solution (i.e. the one with least cost) is to be found.

For any k, generally, f(al,a2,....ak_i) < f(al,a2,....ak-i,ak)

and in scheduling f(al,a2,....ak _l) + C(ak
) = f(a1,a2,a3, ak-1,ak)

A partial solution may be discarded if its cost is greater or

equal to the cost of a previously computed solution.

Details of implementation of such a method are given in Chapter 5.

Here, it suffices to add that there are two different search strategies,

the 'depth-first' and the 'breadth-first' and that potential

improvements in the efficiency of the methods might be obtained by

merging identical sub-trees, at the expense of keeping more complex

records of the solution instances.

-46- a

The published literature on branch and bound methods in scheduling

is enormous. Reviews of the relevant literature can be found among

others in Lawler and Wood (1966), Mitten (1970), King (1975),

Reingold et al (1977) and Ibaraki (1977).

Applications of branch and bound in scheduling problems

The single machine problem of minimising the maximum lateness with

different job arrival times is - NP-complete. A number of attempts to solve it

have been published over the last few years by Bratley et al (1971),

Dessouky and Margenthaler (1972), Baker and Su (1974), McMahon and

Florian (1975). Comparison of these methods on sample problems has

shown that the last two and especially the last one are quite

efficient.

The general cases of the single machine problems of 'minimising

the sum of the weighted tardiness' (Schwimer, 1972 and Fisher, 1974),

of 'minimising mean tardiness' (methods reviewed in Baker and

Martin, 1974) and of'minimising the sum of completion times'(Rinnoykan

et al 1975) are also NP-complete and solvable with branch and bound.

An interesting development for the problem of 'minimising total

tardiness' is due to Lawler (1977) who has constructed a 'pseudopoly-

nomial' algorithm for its solution.

The problem of minimising the sum of completion times in a two-machine

flow-shop was formulated and solved by Kohler and Steiglitz (1975),

using a lower bound developed by Ignall and Schrage (1965) and

Lomnicki (1965). Uskup and Smith (1975) have used a branch and bound

method ror minimising the total cost, dependent on set-up times and

Townsend (1977c)has shown how Lawler's procedure for minimising the

maximum penalty in the single machine problem can be combined with

Johnson's rule to produce a branch and bound algorithm for the two-

machine version.

-47-

For the n-jobs m-machines flow-shop problem, Lomnicki (1965) and

Ignall and Schrage (1965) independently, applied a machine-based

branch and bound algorithm (for the three-machine flow-shop problem).

McMahon and Burton (1967) improved the efficiency of the method by

using the best of machine-based and job-based bounds. Ashour and

Quraishi (1969) made a study comparing the various available methods

and concluded that Lomnicki's method was probably the best, taking into

account total computational costs.

The pioneering work in the n-jobs m-machines job-shop problem was

conducted by Giffler and Thom on (1960) who proved that the optimal

solution is contained within the set of active schedules, as described

above in the 'complete enumeration' method. A basic branch and

bound method for searching this set was constructed by Brooks and

White (1965) and since then, many researchers have contributed

towards improving its efficiency (e.g. Florian et al, 1971). More

details about the bound calculation will be discussed in Chapter 5.

These basic ideas have been used in the formulation of the same

problem described in terms of a precedence or disjunctive graph

(Balas, 1969, Charlton and Death, 1970b,Schrage, 1970, Ashour and

Parker, 1971, Florian et al, 1975). This formulation,as described and

used by Ashour and Parker, is summarised below.

Formulation

The finite directed graph G(X,A) with
X = {x ,x , 	x1 	vertices or nodes k=nm
A = {al ,a. , 	 a i} 	arcs (links)
representt the scheduling problem as follows.
Every vertex x. corresponds to a single operation.
Every directediarc a. corresponds to a precedence requirement or decision.
The graph has also afdummy source vertex S and a sink S'.
The set X can be divided into n disjoint subsets J. (jobs)
(J . n J.= Q for i/ j and X= J u J u 	 u J)
ant info in disjoint subsets M. machines) n
(X=M1 u M u 	 uM and

1 M. n M. 	for ijj)
Every fixed or determinate arc1

cor/esponds to a fixed precedence
required by the technological constraints of job operations processing.

-48-

The remaining arcs are indeterminate, indicating that a precedence/
sequence is possible, but subject to decision. On the diagram, the
latter are represented with broken lines while the former with
continuous. As an example, a scheduling problem with two jobs,
three machine's, six operations is given in Figure 2.3 (a) below.

Figure 2.3 	Disjunctive graph for a job-shop scheduling problem

Precedence of operations and Vertex identification

JOB FIRST SECOND THIRD

1 1,V1 3,V5 2,V3

2 3,V6 	- 1,V2 2,V4

(b)

(c)

Between vertices V and V there are two arcs, to indicate that any
of the operations tray precede the other. In a feasible schedule,
every pair of these indeterminate arcs has to be replaced by one
determinate only. For a schedule to be feasible, there must not
exist directed 'cycles', i.e. closed paths. In this sense, the
graph in Figure 2.3 (b) does not represent a feasible schedule,
while the one in Figure 2.3 (c) does. The problem of minimising
Makespan (C

max
) then becomes one of finding the shortest critical

path. 	
max

The solution of the problem requires examining explicitly or
implicitly all the possible fixings of the indeterminate arcs, in
a branching and bounding procedure.

-49- 	,

For the problem of minimising the maximum lateness, a branch and bound

solution has been proposed by Townsend (1977a). Townsend (1977b)

has'also constructed a branch and bound algorithm for the problem of

minimising the maximum penalty, defined as a cost function of

completion times.

For problems of n-jobs and m-machines in parallel, the problem of

minimising the average flow time (F), without precendence constraints

can be solved in 0(nlogn),while with general precedence constraints, it is

NP-complete even in the single machine case. With two or more

machines and tree-like precedence constraints, it is again NP-complete

(Sethi, 1977).

For the problem of minimising the maximum lateness, for m-machines in

parallel, with earliest start and due-date constraints, Bratley

et al (1975) have proposed a branch and bound method.

-- 50 -

2.4 Approximate methods of solution

2.4.1The need for approximate methods

Scheduling problems of the real world are very complex and even their

simplified versions are difficult to solve exactly, as 	has been

demonstrated by the discussion about their computational complexity.

Besides, in most of the real life problems, an exactly 'optimal'

solution is not essential. In fact, a sub-optimal solution is usually

acceptable, especially when some information is available about its distance

from the optimal. 	The idea of using sub-optimal methods is not new.

Heuristics have been in use for some time and their successes and

failures have been subject to a lot of discussion (Conway et al

1967, Baker 1974).

It is accepted in this research project that the discoveries about

non-deterministic-polynomial-time-complete problems require a

change of direction of research in scheduling. Earlier,a lot of

effort was directed at finding optimal or exact solutions. This is not

considered to be a very fruitful direction any longer. Instead,

attention in this work is focussed to simple methods and efficient

algorithms that will allow generation of solutions close to optimal

and an assessment of their performance.

2.4.2 Types of approximate methods

There are several types of approximate methods and heuristics, based

on three different principles. These three broad categories of

heuristics can be named as follows:

exact solutions of relaxed problems

ad-hoc decision rules and algorithms

incomplete search procedures, leading to a local but
possibly not global optimum.

- 51 -

Exact solutions of relaxed problems

(i) This can be achieved by simplifying the structure of the original

problem, rendering it a P-complete one if possible. An example

of this idea is the heuristic of Campbell, Dudek and Smith (1970)

for flow-shops without passing, where a surrogate problem in

P-class is solved optimally with Johnson's method and the sequence

is used as a heuristic solution. The same principle is used in

relaxing constraints with the Langrangean relaxation method, in

aggregating constraints to create a surrogate IP and in ignoring

constraints or coefficients.

(ii) Similar effects are obtained by modifying the problem coefficients,

as in the Right Hand Side (RHS) of an IP.

(iii) Another interesting concept has been used by Ashour (1970) to

decompose the initial problem, solve optimally the sub-problems

and then put together their solutions to yield a complete

sequence.

Ad hoc decision rules and algorithms

These methods have been the first to be used as heuristics for

sub-optimal decisions. They are based mainly on intuition or

they are trying to recognise and imitate the subjective

decision making patterns of people and substitute them by objective

decision rules. In Chapter 3 a number of heuristics of this type

are proposed for flow-shops and analysed. In this category, one

should include heuristics such as those proposed by Palmer-(l965)

using a 'slope index' for each job-based on the length of its

operations and constructing permutation schedules according to

the value of this index-,and by Gupta (1972), using a similar

approach, but with a completely different sequencing criterion

which compares favourably with Palmer's.

-52-

The most well known heuristics in this category are the single

pass priority rules (active and non-delay dispatching procedures).

Once a decision is taken, it is implemented and there is no

reconsideration for alternative courses of action. Their

advantage is the extreme simplicity of application, which allows

for decentralisation of the decision making process to local

centres in a job-shop environment,and which makes them an

attractive proposition especially for large-scale problems.

The priority rules are also referred to as non-backtrack

tree search methods. Referring to the notions used in the

description of the general branch and bound method, from the

subset Sk of Ak, one member ak is selected according to a

priority rule. Each member ak is assigned a priority value and

the one with higher priority is selected. When a complete feasible

solution is constructed, a heuristic solution is found and

the process is terminated. A number of heuristics of this type are

described 	and analysed in Chapter 4. Single-pass heuristics

(as well as multi-pass, with backtracking) have been used for special

cases of the general problem, with various criteria. Holloway and

Nelson (1973, 1974, 1975) have studied heuristics for problems

with due-dates, flexible routes, variable processing times,

and criteria related to due-dates.

Priority dispatching (non-delay) rules are studied in a

stochastic/dynamic job-shop environment with simulation and

approximate formulae from queueing theory, in Chapter 7.

In fact, for the general dynamic and/or stochastic problem, with

its immense complexity, there is no other practical scheduling

method except the single-pass priority or dispatching rules.

The difference between this type of modelling, generally known

as 'simulation' and the modelling of the simpler static and

-53-

deterministic problems lies in the treatment of the discrete events and time.

While the arrivals in the static problem are taken to be simultaneous

at time zero only, with simulation they are treated as stochastic

and over a long period of time. The processing times are also

stochastic in the sense that there is an estimated processing time

and a realised one which may well be different. In order to

obtain more reliable results with the stochastic data of this modelling,

large numbers of jobs are used and no individual characteristics/results

are collected but only statistical ones, usually in the form of

histograms. Reviews of this approach are given in Gere (1966), Conway

et al (1967), Day and Hottenstein (1970), Hollier (1968), Chowdhury

(1976), Panwalkar and Iskander (1977).

The stochastic structure of this category of problems bears

resemblance to the principles of queueing theory, that is,

arrival distributions, service times, infinite source population

(for large N) etc. This resemblance leads to the consideration

of the job-shop scheduling problem as a network of queues. The use

of some approximate results (formulae) from queueing theory is

discussed in Chapter 7.

Incomplete search procedures and local optimisation

(i) It is possible to terminate a branch and bound tree search,

before an optimal solution is found. This search, if taken

to completion, would guarantee an exact (optimal) solution. The

method of such an incomplete search depends on a number of

parameters and decision rules. The behaviour of heuristics

related to this method is studied in Chapter 5.

(ii) It is also possible to abandon parts of the search altogether,

- 54 -

i.e. eliminate branches when it is suspected that it is unlikely

that they would lead to exact solution, and concentrate on

more promising ones. This can be implemented by strengthening

the bounds beyond their calculated value, 	e.g. 	by using

fictitious bounds. This increases the efficiency of the search with

the effect of obtaining possibly , sub-optimal solutions, (Ibaraki,

1976a,Bazaraa and El-Shafei, 1977).

Another rule that can be used for deciding when to abandon a

part of a search is suggested in Chapter 6, based on probabilistic,

statistical estimates of the exact solution value, by which the branch

with the best estimate of an optimal solution is pursued further.

(iii) Another incomplete search procedure for local neighbourhoods is

based on combinatorial analysis (not a branch and bound search).

The general permutation problem of size n is to minimise an

objective function f(7r,x) where 7 is a permutation from the

solution space P4{7r} and x is the parameter space (set of data).

For each permutation 7eP a subset of P is defined, N (7r)

called the neighbourhood N(7r) of 7. An initial solution is

constructed and the neighbourhood is searched with a search method

S for improvements in the objective function. Examples of

neighbourhoods are defined by backward or forward single

insertion (e.g., abcde -} acdbe) and by adjacent pair interchanges

which can be searched in 0(n2) number of iterations (steps).

A local optimum is achieved with respect to the neighbourhood

N(7r) when improvement of the objective function value is not

possible. The basic difference of this type of local neighbour-

hood search from the branch and bound tree search is that in the

former a complete solution is obtained at every iteration,

whose construction is based on the previous complete solution

while in the latter the solution is obtained from fixed partial

solutions and eliminations.

-55-

This method has been applied successfully for sequencing in the

TSP by Lin (1965), and described as the a-optimal method in

Eilon, Watson-Gandy and Christofides (1971). Baker (1974)

reports the applications of such a method for the n/1/T

problem. Kohler and Steiglitz (1975) have used such a method

for F in flow-shops, reported also in Coffman ed. (1976).

- 56 -

2.5 Assessment of approximate methods

2.5.1 Heuristic performance guarantees

The main criticism for the approximate or heuristic methods has

been that they are unpredictable and unreliable. This is related

to the.approach adopted, which has been to try a number of test

problems with the heuristic, compare results with those from other

heuristics, occasionally solve the same problems with an exact

enumerative method, compare with the optimal solution and deduce

conclusions of a qualitative nature, e.g. heuristic A is better than

B most of the times, heuristic C gives values very close to the

optimal etc.

Comparing the heuristic value with the optimal is not a practical

proposition, nor is it very useful to know that 'heuristic values are

close to the optimal'. This type of information gives some insight

into the problem but one needs more information, preferably in

quantitative terms. This has been the underlying idea for some

recent research on the guaranteed performance of heuristics.

It usually takes the form of a ratio v(H)/v(E) < k, where v(H)

is the value from the heuristic solution, v(E) is the value from

the exact solution and k is a real positive number specified for the

heuristic.

A number of studies on this line have proposed heuristics with

guaranteed worst case behaviour for a few problems, to be discussed

below. Yet for many other problems, it appears that no efficient

algorithm can guarantee any value fog• the above coefficient k.

For the problem of minimising Makespan (Cmax) of n jobs with precedence

constraints'on m identical processors in parallel, Graham (1966)

proved that by scheduling the first available job from the list of

schedulable jobs, as soon as a machine becomes idle (non-delay

-57-

scheduling),

v(H)/v(E) < (2-1/m)

When the jobs are independent, i.e. without any precedence constraints,

then (Graham, 1969)

v(H)/v(E) < 4/3 - 1/3m

which gives a bound of 33% on the maximum error.

Another interesting result for the problem of two machines in parallel

can be obtained by scheduling the 2K longest jobs (K: any integer) in

an optimal procedure and the remaining short ones arbitrarily. Then,

(Graham, 1978)

v(H)/v(E) < 1 + 1/(2K + 2)

For n jobs, the maximum number of iterations required is 2Kn + 2
2K

(2Kn steps for selecting the 2K longest jobs and 22K for finding their

optimal arrangement).

For the same problem, Ibarra and Kim (Graham, 1978) have developed

recently an algorithm for which

v(H)/v(E) < 1 + 1/K in 0(n + K4logn)

(for large K and n, n +K4logn « 22K),

Another problem for which a heuristic was proved to have guaranteed

performance was the bin-packing (a special form of the scheduling problem).

Given m identical bins of size Q and n items of sizes
ql, g2,....gn,

put the items in the minimum possible number of bins. In scheduling

terminology, the items are jobs, of length qi, the bins are identical

machines in parallel and 	Q is a fixed deadline. The same problem

in another form is known as a cutting problem. In a first-fit -

procedure, Ullman in 1973 proved that for any precedence constraints

imposed v(H) < (17/10)v(E) + 2

and if v(E) is a multiple of 10, then

v(H) < (17/10)v(E) (maximum error 70%)

- 58 -

Johnson,in a proof longer than 75 pages,showed that for any precedence

constraints with decreasing values of qi, the same first-fit

method produces v(H) < (11/9)v(E) + 4. When the optimal value v(E)

is large, then this heuristic solution is quite satisfactory,

producing no more than 22% error,in 0(nlogn), (Johnson et al, 1974).

A heuristic with guaranteed maximum error of 50% has been constructed

for the Travelling Salesman Problem with symmetric distance matrix

based on the solution of two relaxations of the TSP (shortest spanning

tree and matching problem) with P-class algorithms (Christofides 1975 and

1976). The performance of this heuristic is bounded by

v(H)/v(E) < 3/2

For the TSP with general arbitrary matrix and for the graph colouring

problem, it has been proved that no P-class heuristic can guarantee

error less than 100% (Sahni, 1976).

These heuristics described above are interesting not only for the

-hv uhicĪ~
special problems they apply, but generally for the methodology used,

which might give some insight on how to pursue similar work on other

aspects of the scheduling problem with heuristic algorithms (Garey et al, 1978)

The main disadvantage of these heuristics is that although they

guarantee a maximum error for the worst case, they do not quantify

how good the solution actually is. The expected performance of a

heuristic is more useful as information, especially if it can take into

account the parameters of the problem. For this purpose, a

probabilistic analysis is suggested below.

2.5.2 Probabilistic analysis of heuristics

The worst case behaviour of a heuristic algorithm, when known, is

certainly useful information in that it guarantees some minimum

quality of performance. These guarantees may be of the order of

- 5 9 - 	,

100% error, and one is left without information about the expected

performance of the heuristic.

Ideally one would like to know the probabilistic behaviour of

a heuristic algorithm for all the possible instances and forms of a

problem. For the general case of heuristic algorithms, it is not

possible to derive this information with mathematical analysis.

The only case where such an analysis has been possible,and only very

recently, is for a partitioning algorithm (special structure

heuristic) for large travelling salesman problems in the plane

(Karp, 1977). No similar or related method can be applied for the

general job-shop problem. What can be done (Chapters 3, 4, 5) is

to look at a number of sizes and data structures of the problem and

derive a probabilistic empirical profile for the performance of

heuristics.

CHAPTER 3

APPROXIMATE FLOW-SHOP ALGORITHMS

	

3.1 	Flow-shop problems and methods of solution

	

3.2 	Flow-shop heuristics

	

3.3 	New heuristics for flow-shops with no-job-passing

	

3.4 	New heuristics for flow-shops with no-waiting

- 61 -

3.1 Flow-shop problems and methods of solution

The general flow-shop problem of sequencing n jobs on m machines,

in order to minimise some objective function (e.g. 6max,EF,Q),

is NP-complete, as already discussed in Section 2.1. As a special

case of the general job-shop problem it could be solved with the

methods available for job-shop problems. But it has been felt that

its special structure of maintaining the same sequence of operations

through the machines could be used to simplify and improve the

efficiency of the enumerative solution procedures. Thus, it has

attracted considerable attention on its own. A number of branch and

bound algorithms and other elimination methods based on dominance

properties have been reported in the literature for the exact

solution of the problem.

The branch and bound methods for minimising makespan by Lomnicki

(1965), Ignall and Schrage (1965) and McMahon and Burton (1967) have

already been discussed in Section 2.3, evaluated in Baker (1975a) and

thus need not be presented here.

A review of the elimination methods can he found in Szwarc (1971), who

has contributed to the development of dominance criteria. It is worth

noting that for regular measures of performance, the sub-set of the

(n:)m-1 schedules,where the job-sequence is the same in the first two

machines,is dominant. 	For makespan problems the sub-set of

schedules,where the job sequence is the same in the last two machines

is also dominant, which, reduces the. set to be searched to (n:)
m-2.

This also means that for two-machine problems with any regular measure

of performance, and for three-machine makespan problems, one needs

to search only the dominant set of permutation schedules. Baker (1975b)

has conducted an extensive study comparing the performance of branch-bound

and 	of elimination methods in the n/m/
F/Borax

 problem, which clearly

showed that the latter are inefficient.

-62-

Attention has also been paid to flow--shop scheduling problems with

other criteria e.g. average completion time (Krone and Steiglitz,

1974). A review of exact and approximate methods for the problem of

minimising the average flow-time F or the sum of flow-times
.E F.,

including computational results has been produced by Kohler and

Steiglitz (1975). Computational results for the mean flow time

problem are also given in Bansal (1977). Another seemingly different

criterion, that of miminising the weighted sum of machine idle times

Ē w.I., for which an optimal method has been proposed by Gupta (1976),
j=1 J J

is in fact equivalent to minimising Cmax
:

m 	m 	m 	n
j= lw jI j = (j=1vrj)Cmax j=1(wji=1Pij)

The equivalence of these criteria renders the method of Gupta a

trivial extension of the one developed by Wismer (1972), who has

produced an exact method for the special case of flow-shops with no

intermediate queues, based on the TSP. Gelders and Sambandam

(1978) have suggested optimal and approximate procedures for another

criterion, defined as a complex cost function.

Other methods for special structures of the problem have been presented

that are more efficient than the general methodology. Such is the

case in Gupta (1975), Smith, Panwalkar and Dudek (1975 and 1976)

and Panwalkar and Khan (1976 and 1977). A dynamic programming

method has been used for flow-shops of two-machines and sequence

dependent set-up times (Corwin and Esogbue, 1974). Bestwick and

Hastings (1976) have used a branch and bound method for flow-shops

with no-job-passing, where all jobs .are not processed by all

machines. For the permutation flow-shop problem, an efficient

branch and bound method has been reported by Lageweg et al (1978).

- 63 -

The landmark that has influenced substantially research on flow-shops

was the pioneering work of Johnson (1954) who produced an algorithm

for optimal solutions of the two-machine problem, summarised below.

Step 1 Find the minimum of available operations Pil,Pit
from the set of schedulable jobs S, where
Pij is the processing time of job i in machine j.

Step 2 If the minimum processing time requires machine 1,
place the job in the first available position in
sequence. If it requires machine 2, place the job
in the last available position in sequence.

Step 3 Remove the assigned job from the set S of
schedulable jobs and return to Step 1, till S becomes
empty.

Several extensions to special structures of three-machine problems

have been possible. Johnson proved that his algorithm yields optimal

solutions when the second of the three machines is dominated.

Another special three-machine (A,B,C,) case is when the Johnson's

rule applied to AB,BC, A(gives the same ordering. Then this sequence

is the optimal for the three-machine case (Burns and Rooker, 1976).

Szwarc (1974) gave a sufficient optimality condition for a solution

obtained by Johnson's method when the three-machine problem is relaxed

to a two-machine one with time lags (extended by Burns and Rooker,

1975). Szwarc (1977) has also defined a small sub-set of the feasible

solutions which contains an optimal, whenever it is not empty. Recent

additions to the theory of the three-machine problem are due to

Gupta and Reddi (1978), Szwarc (1978), Burns and Rooker (1978).

Extensions of the basic two-machine model have been possible. Mitten

(1958) showed that Johnson's method yields an optimal solution when

start-lags and stop-lags are included. The basic method can be-

applied also when the two machines A and B are not available

simultaneously. The proof of this extension has been necessary for

the application.of a new bounding method used in the study of

enumerative heuristics in job-shop scheduling problems (described in Ch.5).

-64--

Proof: If machine B is available before A, the start time

of the schedule is that of machine A, and the optimal sequence

is the same as if A and B were available simultaneously.

If machine B is available Id time units after machine A

(which anyway has no idle times) and E I is the sum of
i i=1

idle times in machine B for the schedule produced by

Johnson's method, when A and B are available simultaneously,

then

(i) if I - E I >_0, the sequence produced by Johnson's
d 	i •

method is still optimal, since it is not possible

to produce any sequence with smaller makespan.

n
(ii) if I - E I <0 then machine B can not have idle

d i=1 i

times. The critical path has no slacks and the

makespan cannot be reduced by changing the sequence.

Further use of the basic Johnson's method has been made, trying to

improve the efficiency of enumerative methods. Townsend (1977c) has

used Lawler's procedure for the one-machine problem, combined with

Johnson's rule to produce an efficient branch and bound algorithm for 4/1e-

two-machine flow-shop problem of minimising the maximum penalty.

A two-machine based bound calculation, using Johnson's rule has been

applied also to a branch and bound method, described in detail in

Chapter 5.

Szwarc and Hutchinson (1977) have used the Johnson's rule as an

approximate method (heuristic) for the three-machine C
max

problem

and have analysed the results statistically. The same rule has

inspired also the heuristics of Palmer (1965) and of Campbell, Dudek

and Smith (1970), described in the following section together with

other heuristic methods.

-65-

3.2 Flow-shop heuristics

A large number of heuristics for flow-shop problems has been suggested

over the years, covering different approaches (Page 1961, Palmer

1965, Campbell, Dudek and Smith 1970, Gupta 1971, Gupta and Maykut

1973, Krone and Steiglitz 1974, Bonney and Gundry 1976, Dannenbring

1977). The most important and representative ones are reviewed below

and used for comparison with some new heuristics suggested.

Page (1961) has developed heuristics based on sorting techniques

by individual exchanging, group exchanging, pairing and merging.

In the exchanging case, starting with a given sequence (permutation),

each successive pair of adjacent jobs is tested to see whether it should

remain as it is or exchanged in case a lower makespan is achieved.

If an exchange reducing C
max

 is obtained, the procedure is repeated.

The same principle is used for exchanging the position of strings

(chains) of jobs instead of single jobs. The pairing and merging of

strings is based on replacing each successive pair of strings into

a new ordered string, the order being the one with the best makespan

Repeating this procedure, a single chain containing all jobs is

constructed.

The heuristic proposed by Palmer (1965) was inspired by

a property of Johnson's method, where jobs with shorter first operations

are positioned of the beginning of the solution sequence and jobs with

shorter second operation; are positioned of the end. To extend this

concept for m-machine problems, he suggested 	givt priority to jobs

having longer operations near the end or stronger tendency to progress

from short to long operation times. A 'slope index' is defined as:

si = (m-1)ti.m ± (m-3)ti,m-1 + -(m-3)t1
.2
 - (m-1)ti1

or s. = m (2j-nr
-1)t..12

1 j=i 	ij

and jobs are ordered in decreasing slope index value.

- 66 -

Gupta (1971) has tried to improve this concept by defining the

slope index as:

Si = ej/minftjk + tj,k+1} , 1 <K<m-1

and

	ej = 1 	if 	tji < tjm

ej =-1 	if 	til > tjm

Bonney (1976) has used the idea of slope index in a different context.

Two slope indices are defined for each job, a 'start-slope' and an

'end-slope' and the heuristic sequence is constructed by matching them

in the best possible way, with the aim of minimising slack or machine

idle times (slope matching method).

All these methods have the disadvantage of assuming some kind of standard

pattern of processing times, like monotonic increasing or decreasing

operation times. Bonney for example has calculated the slopes by linear

regression of the start and finish times of operations. But if the job

profile is irregular, it is not reasonable to describe it with a simple index.

This is particularly important in small problems, where these methods

perform poorly. In larger problems, the profile may approach some

linear form and this agrees with the results reported by Bonney,

that the slope matching performs better in larger problems.

An altogether different heuristic, inspired from Johnson's rule was

suggested by Campbell, Dudek and Smith (1970). Their idea was to

construct a surrogate problem by splitting the m-machines in two

groups 1,....k, k+l....m, for k=1,2,....m-1. For each of the two

groups, they considered the operations merging into an imaginery new

longer operation, and solved the surrogate(relaxed)problem optimally -

with Johnson's method. This proved 	to be a very good heuristic and

extensive studies (e.g. Bonney, 1976) have shown that it is a very

good measure of comparison with other heuristics.

-67-

Dannenbring (1977) has used a weighting scheme similar to the slope

index and to the Campbell et al method, with a simple improvement

procedure of pair exchanges.

-68-

3.3 New heuristics for flow-shops with no-job-passing

Least slack heuristics (hl,h2,h3,h4)

For flow-shop problems where job-passing is not allowed, minimising

total slack time between the operations, including the starting (A)

and ending (C) slacks, is equivalent to minimising total makespan.

From Figure 3.1 below, where A,B,C are machine idle times,

mn 	m
mC 	= E E P. + A + E B. + C and thus C 	is minimised when max j=1i=1 'J 	j=1 J 	max

A + E B. + C is minimised. If a schedule is optimal in respect to
j=1 3

Cmax'
then it is not possible to construct any other schedule with

total slack less than that of optimal Cmax.

Figure 3.1 Flow-shop scheduling slack times

Fl

J1
	

B 	J2

F3

The approach in this study is that heuristics based on slack (machine

idle time), trying to create schedules with small value of EB., should
J=J

not be based on a slope index. 	It is more reasonable to order the

jobs not from their approximate slopes but from their total slacks.

One would expect that by ordering the jobs with the view of

selecting those that have small values of ĒBj, Cmax will be near the
j=1

optimal. Matching the jobs with slope indices has, as already

discussed, the drawback that it may be very poor for jobs with

irregular profiles. Instead direct account of slacks incurred is

suggested to be the decision criterion for this type of heuristic .

Four different functions of slack have been tried; front delay, back

delay, total slack and weighted total slack where the weight

coefficients indicate that delays incurred in the last machine are more

F2

31

A

A

J2

Jl B

C

C

J2

-69-

undesirable than delays in the preceding machines. These heuristics

construct the solution by building up one partial schedule as a single

chain, adding jobs at the end of the chain. A multiple chain

approach, where many partial sequences are constructed and then joined

together is not very promising, because by allowing left shifting

without passing, the start profile of any partial sequence would

be altered, and the decisions already taken would be invalidated. For

the same reason, jobs cannot be added in the front of the single chain

solution. Thus, only a single-chain sequential solution is reasonable,

where, every time a job is added, the end profile of the chain is

calculated and used for the next job matching-selection.

Description of the algorithm

Every job can be represented with a profile as in Figure 3.2 below:

Figure 3.2 Gantt chart of a job with three operations

Fl 	[
F2

F3

When the profile is 'unbroken', the job has 'no-waiting' between the

operations. This will always be the case with the first job in the

sequence. Subsequent jobs will fall in one of the four cases

illustrated in Figure 3.3, on the following page.

The 'back delays' can be eliminated or reduced by left-shifting the

operations while maintaining the same sequence of jobs on all machines-

(no job-passing). The front-delays cannot be eliminated by left-shifting.

The four criteria (heuristics) used for selecting sequentially the

successor j of job i, from the set of unscheduled jobs are:

F3 i 	IF3

(b) 	Back delays B1, B2

Fl

	

r--,---] B1 l 	j

(c) 	Front delays F2, F3

El I i

F2

F2 	i

F3

j

i F2

B2

i

j

j 1

j

Fl 	i B1 1 	,,

F2

F3

i j

F

- 70 -

Figure 3.3 Matching of job profiles

(a) 	Perfect matching of profiles (zero total slack)

Fl j
F2 i j

F3 i j

(d) 	Back and front delays B1 , F3

hl select the job with the least total slack

h2 select the job with the least total weighted slack

(the machine index number has been used as weighting coefficient).

h3 select the job with the least total front delay

h4 select the job with the least total back delay

Once the successor j of job i is selected its completion time on

machine k is determined by the recursive relation:

Cjk = max
fCik, Cj,k-1} + P

jk, for all machines k.

A complete sequence is constructed with this method, and two simple

checks are used to see if an improvement is possible.

(i) Interchange of the last two jobs in the sequence

(ii) Use of all jobs successively as first job in the sequence.

•
• • J

J
	•

-71 - m

A savings-based sequential heuristic (h5)

Another approach to the idea of matching jobs in a sequence is based

on the amount of slack saved by a particular partial sequence. The

savings are computed as the amount of slack saved by sequencing j after

i, starting from the position where the first operation of job j

begins at the completion time of the last operation of i (as in

Figure 3.4 below).

Figure 3.4 Sequencing without left-shifting

F1 	;
F2

F3

If the schedule were constructed in that way, the makespan would be

n m
C 	= E E P... The optimal schedule is the one that allows the
max i=1j=1 13

savings to be maximised.

The heuristic algorithm can be described briefly as follows:

Select first job of sequence.

Select its successor by taking the job which, with all possible

left-shifting, allows the highest slack savings.

Repeat for all jobs in the first position of schedule.

Computational experience

The least slack and savings-based algorithms have been programmed in

FORTRAN IV for computer testing and evaluation. It has been necessary -

to code in FORTRAN IV also an algorithm for calculating the makespan

of random sequences and the algorithm of Campbell, Dudek and Smith

(computer codes in Spachis, 1978a).

- 72 -

Data for tests were generated for problems of 10 jobs 4 machines, 20

jobs 5 machines and 35 jobs 5 machines, with processing times from

the low-variance Erlang distribution with shape parameter k=9 (see

Appendix A about Erlang distribution) and from the high-variance

Erlang distribution with k=1 (negative exponential),with the same

average value. This distinction has been thought to be necessary

because of the effects of the variance of processing times on job

profiles. The computational results are given in Table Al of Appendix A.

The performance of these heuristics has been evaluated by means of a

relative ranking index. With this method, when a heuristic gives the

best solution value, it is ranked with index 1. For the second best

value, it is ranked with 2. In case of two or more heuristics

giving the same value, they are all ranked with the same value,

equal to the average (e.g. 2.5). With this method, the sum of ranks

is the same for all test problems. Another criterion thought to be

appropriate for the comparison of these heuristics is an 'error from

the best known solution z
mi
n which is the ratio e = (zh/zmin)-1,

where zh is the heuristic solution value. Although the ratio e gives

an indication of how far the heuristic value is from the best known

solution, it does not give any information about the relative error,

because it does not take into account the values from the other

heuristics. This can be achieved by a 'relative error' criterion,

defined as the ratio er
	(zh 	zmin) I (zmax 	zmin).

The average values of these criteria are given in Table 3.1. By

observing the results in this table, one can see that in high variance

problems, h2 (least total weighted slack) is the best for all three

criteria used and all problem sizes. The savings based heuristic h5

is the poorest of all (poorer than 'random'). The 'least total hack

-73- a

delay' h4 also is also very poor. The second best heuristic is

almost always the CDS (Campbell, Dudek and Smith).

Table 3.1 Performance of heuristics for flow-shops with no job-passing

High variance of processing times (El)

10 jobs 4 machines 	20 jobs 5 machines 	35 jobs 5 machines

Rank 	a 	er 	Rank 	a 	er 	Rank 	a 	er

	

Random 5.9 .176 	.78 5.6 .164 	.71 5.8 .240 	.73

	

CDS 2.6 .030 	.18 2.3 .034 	.17 	2.1 .036 	.10

	

hl 2.8 .044 	.15 2.8 .030 	.22 2.3 .042 	.14

	

h2 1.9 .008 	.03 2.0 .018 	.07 1.9 .030 	.10

	

h3 2.9 .052 	.21 	3.8 .052 	.29 3.7 .096 	.30

	

h4 5.6 .136 	.49 5.9 .182 	.82 6.2 ,274 	.81

	

h5 6.3 .188 	.77 5.6 .182 	.78 6.0 .274 	.80

Low variance of processing times (E9)

	

Random 5.7 .114 	.82 5.8 .056 	.67 6.1 .058 	.87

	

CDS 3.3 .010 	.17 	2.5 .010 	.13 	1.7 .002 	.05

	

hl 2.2 .002 	.01 3.2 .014 	.18 2.7 .016 	.22

	

h2 2.5 .006 	.13 1.6 .004 	.06 2.1 .006 	.14

	

h3 3.8 .032 	.34 2.9 .014 	.19 3.5 .018 	.29

	

h4 5.6 .062 	.58 7.0 .086 1.00 6.1 .062 	.88

	

h5 4.9 .038 	.39 5.0 .050 	.56 5.8 .052 	.76

e = (Zh/Zmin)-1

er- (z{?_zm.)/(Zmax-Zmin)

Sample size 5

-74-

In low variance problems, with Erlang k=9, a similar pattern emerges,

though less clearly. In terms of ranking, h2 is the best in problems

of 'medium' size (20 jobs and 5 machines). It is better than CDS in

'small problems' (10 jobs, 4 machines) but poorer than hl. At 'larger'

problems (35 jobs, 5 machines) h2 is poorer than CDS and better than

all the rest. The worst of all these cases are the RANDOM and h4 and

then h5 (savings-based heuristic).

The conclusion is that h3, h4, h5 are clearly inferior, in all cases.

Heuristic h2 is the best in high variance, and relatively good in low-

variance where hl and CDS can be good as well. In the low variance

case, one should notice that the best three of the heuristics (h2, hl,

CDS) have solution values very close to each other and that their ratios

e and er are not significantly different.

i j
C

1 j

i
A

j

-75--

3.4 New heuristics for flow-shopswith no-waiting

The flow-shop without waiting is reducible into a directed

Hamiltonian Circuit problem, known simply as Asymmetric Travelling

Salesman Problem (ATSP). There are two methods available for

defining the equivalent ATSP. One has already been described in

Section 2.1 on reducibility of combinatorial problems. The other is

based on the equivalence of two criteria of performance, namely

'minimise
Cmax'

 and 'minimise total machines idle times E I.' or
j=1 3

'minimise total slack'.

Each job is represented by a vertex (node) and a dummy vertex is used

as a starting and ending job for the sequence. Every pair of jobs

i-j has some slack Bij between i and j (see Gantt chart of Figure 3.5)

which is 'used as the distance between vertices (nodes) i-j. The

start slack A of job i is the distance from the dummy node to i, the

end slack C is the distance from i to the dummy node and the total

slack of schedule S is Af + EB.. + C where Af is the start slack of

the first job in the sequence and Ce is the end slack of the last one.

Figure 3.5 Slack times for flow-shop no-waiting

The equivalent ATSP matrix is constructed with the following algorithm,

where

Sik 	
start time of job i in machine k

Cik 	completion time of job i in machine k

Pik 	operation time of job i in machine k

n 	number of jobs

m 	number of machines

Fl

F2

F3

F4

-76-

Algorithm

Step 1S j1 = Cim for job i preceding job j

Step 2 f = min {Cik - Sjk} for all k

Step 3 Sjk =S~
k

- f
m

Step 4
di j= kE 1 Ci k 	Si k) =

Step 5 Repeat for all possible pairs i-j, and for i=jdij =

or - 1.

For the reduction described in Chapter 2 (with delays) replace step 4 by

Step 4 dij = S 1

For the special cases of start and end jobs j

= 0 (start) dn+l,j
m

dj,n+1 =
k=1 Pjk (end)

Some good heuristics exist for the TSP, one of which is based on the

construction of a shortest spanning tree, guaranteeing an error for

the worst case behaviour to be 50% from the optimal (Christofides,

1976). This heuristic can be used in problems where the 'triangularity

condition' holds true, but cannot be applied to the general asymmetric

distance matrix resulting from the reduction of the flow-shop with

no-waiting, because there is no P-class algorithm for finding the

shortest spanning aborescence (the asymmetric version of the shortest

spanning tree).

In this section, a number of heuristics have been designed, coded in

FORTRAN IV and tested and the performance of each of them has been

compared with the other heuristics, with RANDOM and with the exact

solution, found by the branch and bound, depth-first algorithm

of Little et al (1963). The computer codes for these routines are

given in Spachis (1978a).

There are two basic methods that are suggested here, characterised by

the way the heuristic sequence is built up as a chain.

- 77 -

(i) Sequential construction of a single chain

(ii) Multiple chain formation

Their common characteristic is that each job appears in one position

only in the sequence, except the dummy job which has to be at the

beginning and at the end of the heuristic solution.

The algorithms can be summarised as follows:

Step 1 Construct slack or distance matrix as described
in preceding algorithm. This step sees how well two
jobs i and j fit together, if i precedes j.

Step 2 Select one element of the chain (p,q)

Step 3 Exclude all elements that do not conform with the
above condition, i.e. those that form a closed chain
leaving jobs out. This can be achieved by excluding row
p, column cf, link (q,p)

Repeat steps 2 and 3 till a complete solution is
reached.

The efficiency of this heuristic idea clearly depends on the distribution

of processing times of the jobs. In a 'low-variance' case, the

matching is likely to be good and the slack,between all pairs

i-j is likely to be low. By the same token the start and end

slacks are likely to be fairly stable and the distribution of values

of A and C is likely to be with low-variance. This suggests that

two distinct cases should be considered, one with high variance

(E1) and one with low-variance (E9). Step 2 of this algorithm is

described below for a number of heuristics.

A constrained multiple chain heuristic (Hl)

The basic idea in this heuristic is to select links with values

constrained by a 'minimum covering level' (MCL), defined as the

maximum of minima of rows and columns. This defines a surrogate

problem where at least one element in each row and column of the

working matrix has a finite value (open cell), and where all

elements with values greater than MCL are not used (closed cells).

-78-

There is at least one row or column with open cell values equal to

MCL only (since MCL is the maximum of minima). If a feasible

solution is to be constructed for this surrogate problem, it has

to include the link corresponding to the open cell equal to MCL

(tie-breaking in lexicographic order). By selecting this link

(p,q) and by excluding the elements described in Step 3 above, a new

surrogate problem of reduced size is defined, from which another

link of the heuristic solution is to be selected. A new MCL is

defined, possibly by opening some of the closed cells. In case some

row or column has no open cells at all, it is necessary to open

cells up to a value higher than the previous value of MCL. The

procedure is repeated n-2 times, until a complete feasible solution

is constructed, using links of constrained value only, which is

expected to lead to a complete solution of constrained length.

Least slack heuristics

In a heuristic approach constructing partial sequences by selecting

the jobs with the best possible matching (least slack) at every

stage, it is reasonable to expect that low values of C
max

would

be realised. The following methods of forming such heuristic

solutions have been used.

- Multiple-chain heuristic (H2)

Select the smallest open cell of the matrix, i.e. the least

slack link. Break ties by selecting the last of the smallest

values encountered in scanning the slack matrix. It is

certain that this heuristic method will produce at the end a

single-chain solution, since all links forming sub-tours have

been excluded.

- Single-chain heuristic (H3)

Add in front or after the existing partial sequence (chain)

F1

F2

F3

Fl

F2

F3

J1 J2

J1 J2

J1 J2

-79--

the job-link corresponding to the smallest open cell of the

slack matrix. Break ties as above.

- Sequential heuristic (H4).

Start from job i. Add after it the job j with least slack

i-j. Repeat for all jobs i in first position. It is the

same principle as the one in the heuristic described for

flow-shop with no job-passing.

A multiple-chain savings-based heuristic (H5)

This heuristic is basically the same as that described in the preceding

section for the case of flow-shops with no job-passing. The

difference is that since the profiles must remain unbroken, only

limited left-shifting is allowed.

Figure 3.6 Flow-shop scheduling operations left-shifting

Admissible 	 Inadmissible

A. 	start slack for job j

C. 	end slack for job i

Bij 	slack between i-j, after left-shifting

Slack savings in this case are sij = Aj + Ci - Bij. These savings

are related to delay savings s!. as follows:

si j = si j,.m

and the solutions produced from the two different savings matrices

are identical. Variations of this heuristic could be obtained by

calculating a savings score, using weighting coefficients or by

forming a sequential or a single-chain solution.

- 80 -

Computational experience

All the heuristics described above have been tested both with high

and low-variance data, for problems of 10 jobs 4 machines, 20

jobs 5 machines, 35 jobs 5 machines. Heuristics H1, H2, H3 and

H4 have been tested with both slacks and delays. In 30 problems

tried with these four heuristics (two tests with each heuristic,

one with slack matrix and one with delay matrix), the use of

slacks gave better results than the use of delays in 116 out of

the 120 test cases. In the remaining four cases, the solutions

obtained with slacks were only marginally poorer, while the solutions

with delays were not found to be the best of all. This is a clear

case of dominance of the method using slacks. This superiority

of slacks compared with delays probably lies in the fact that more

information is used with slacks for the construction of the heuristic

solution, without increasing computational costs.

These results as well as the results. from RANDOM and from the

exact method are given in Table A2 of Appendix A. The measures of

performance used in the preceding section on heuristics for flow-

shops with no-job-passing, have been used also for the case of

no-waiting. The values of average ranking, error e and relative

error er are summarised in Table 3.2, on the following page.

Observation of the results of this table shows that the overall best

heuristics are the constrained multiple-chain formation H1 and

the savings based multiple-chain H5, in problems of both high and

low variance. The least slack heuristics of multiple-chain (H2),

single-chain (H3) and sequential (H4) are almost always dominated,

overall worst being the H3. No conclusions can be drawn on the

effects of the variance of processing times. The relative position

of H1 and H5 is not affected, while minor changes take place for

H2, H3, H4.

- 81 -

Table 3.2 Performance of heuristics for flow-shops with no-waiting

High variance of processing times (El)

n=10, m=4
	

n=20 ,m=5 	n=35 ,m=5

Rank 	e 	
er 	

Rank 	e 	er 	Rank 	e 	er

	

Random 6.0 .353 1.00 6.0 .483 1.00 6.0 .581 	1.00

	

H1 1.8 .048 	.16 2.6 .061 	.12 1.9 .043 	.07

	

H2 3.2 .100 	.29 3.5 .104 	.22 3.0 .056 	.09

	

H3 4.3 .126 	.38 3.7 .116 	.23 4.1 .089 	.14

	

H4 3.7 .064 	.18 3.9 .088 	.19 2.1 .048 	.08

	

H5 2.0 .032 	.09 1.3 .042 	.09 3.9 .084 	.14

Low variance of processing times (E9)

	

Random 5.8 .156 	.97 6.0 .176 	1.00 6.0 .245 	1.00

	

H1 1.9 .017 	.14 2.5 .025 	.15 2.3 .024 	.10

	

H2 4.7 .075 	.54 2.6 034 	.19 3.1 .033 	.14

	

H3 4.1 .072 	.45 4.3 059 	.31 	3.7 .038 	.17

	

H4 2.6 .035 	.21 	3.2 033 	.20 2.6 .025 	.10

	

H5 1.9 .016 	.12 2:2 026 	.15 3.3 .033 	.14

In small problems of 10 jobs 4 machines the savings based heuristic H5 is

better than H1 in terms of error and relative error, though not in

average ranking. In problems of 'intermediate'size (20 jobs 5 machines)

heuristic H5 is better than H1 in all counts. In the 'larger' problems

of 35 jobs 5 machines.though heuristic H1 is clearly the best.

As second best appears the least-slack sequential heuristic H4,

third in order comes the multiple chain H2 and H5 is only fourth.

These results indicate that the advantages of constructing a solution

with the constrained multiple chain heuristic (H1) are materialised

in larger problēms only where by controlling the maximum values of

the links selected, a solution of low C
max

 is obtained. In contrast

- 82 -

the other heuristics, based on least-slack or on savings, start with

low cost (contribution) links but are pushed to include very

unfavourable links near the end. It is possible that with further

investigations the performance of heuristic methods H1 and H5

could be improved. The constrained multiple chain heuristic (H1)

involves a number of decisions which could be resolved in a number

of ways other than the one used. Similarly, the savings based

heuristic (H5) could be improved by investigating minor changes

in the calculations of savings. A savings score could be used,

calculated on weighted, quadratic and other expressions of the

actual savings.

Another type of heuristic inspired by the method of group exchanges

of Page (1961) and by the'A-optimal' tour heuristic for Eucledian

TSP, has also been considered, whereby starting from an arbitrary

chain/solution A-links are taken out, all possible combinations of

the a-sub-chains are tried and the process is repeated for all possible

combinations of the A-links. This method with A=2 or x=3 is

reported to be efficient for the TSP. However, a preliminary

investigation for flow-shops with no-waiting (examples solved

manually) was rather inconclusive probably due to the assymetric

nature of the matrix,and it has been decided to drop the idea.

CHAPTER 4

PROBABILISTIC AND WORST CASE ANALYSIS

OF SINGLE PASS JOB SHOP HEURISTICS

	

4.1 	Evaluation of single pass job-shop heuristics

	

4.2 	Description of the algorithm and decision rules

	

4.3 	Computational experience

	

4.4 	Worst case behaviour and probabilistic analysis
of heuristics

- 84 -

4.1 Evaluation of single pass job-shop heuristics

Single pass heuristics for the general job-shop problem are of

special importance and interest. The simplicity of implementation

and the large size of problems that can be tackled with them allow

many practical applications at shop floor level. The assessment of

their performance can take a number of forms. The most common has

been a qualitative comparison whereby one particular heuristic is

either better or worse than another, evaluated on the basis of

solution values obtained over a number of problems, usually with

randomly generated data. An alternative method of assessment could

be based on the 'Worst Case Behaviour' of a heuristic. This information

if obtainable, would certainly be useful, guaranteeing a maximum

error, although it would give no indication of the actual performance

of a heuristic. It is believed that this expected performance is the

most useful information about a heuristic in a given job-shop

environment. A probabilistic analysis is proposed here as a more •

elaborate procedure, which will distinguish the various problem

structures and will quantify for each structure the actual performance

of heuristics in terms of an expected value and of a frequency

distribution.

The structure of the problem depends on a number of parameters:

(i) Size as an indicator of complexity

(ii) Variance of processing service times

(iii) Sequence constraints or transfer matrix

(i) Size

The size can be described by Of(n:)m} which is an

upper bound to the set of feasible semi-active

solutions.

The following problem sizes have been investigated:

-85-

Jobs Machines (n:)m

4 3 .138 E5
6 3 .373 E9
8 4 .264 El9
10 4 .173 E27
20 5 .852 E92
35 5 .118 E201

(ii) Service time distribution

A general distribution G (u,a) may be approximated with

an Erlang distribution (Appendix A), with parameter k

and mean u, assuming that the higher moments have

no significant effect on the processing time values.

The service times are expressed always as integers to allow

faster computations since the formulation is not

affected by using larger integer values instead of

real numbers (e.g. 45 time units instead of 4.5).

The values of variance used, as measured by the

coefficient of variation V = a/u, are as follows:

1.00 (Erlang, k=1) 	.
.82 (Uniform Rectangular)
.50 (Erlang, k=4)
.33 (Erlang, k=9)
.17 (Erlang, k=36)

(iii) Precedence constraints

The simplest form of transfer matrix is that of a

flow-shop with the same sequence for all jobs. At

the other end, there is a completely random routing,

where given a partial sequence S, the probability p

that the next of the remaining r' operations is

operation k, is p=1/r'. This more general case has

been adopted for the experiment, where the number of

alternative (possible) routes is m:, and the probability

of any of these routes is 1/m'

- 86 - •

The simplest evaluation possible is an average ranking whereby the

best value corresponds to the heuristic with rank 1. The second

best has a rank 2. In case of equal values, the average rank is

assigned to both, e.g. 1.5.

A more elaborate measurement of the performance of heuristics,

based on a probabilistic analysis of the error from the optimal,

is suggested here. A feasible solution obtained with a heuristic

is certainly appropriate only for the particular problem(set of jobs

and machines) 	under consideration and does not allow any comparison

with other similar problems. To overcome this difficulty, a

'normalisation' of the solution is desirable. This could be a

ratio of the solution value over the exact (optimal) solution, or

a percentage of 'excess' values over the yet unknown optimal. It is

argued that the best is a bracket value based on the feasible solution

available and specifying the maximum possible distance of the optimal.

This Bracket for the Optimal Solution will be referred to as 'BOS'.

BOS has the advantage of being based on the known feasible solution

and not on the unknown optimal.

H 	represents the single-pass heuristic used

v(H) solution value with H

be 	overall lower bound to the problem solutions

BOS 	bracket for optimal solution (%)

BOS = ((v(H)-be}/v(H)) 1.00

Empirical information on BOS has been derived from an experiment

with the model described in the following section, where the sample

size chosen for each problem structure is given in Table 4.1 below.

Table 4.1 Sample sizes for probabilistic analysis of heuristics

Problem Coefficient of variation

Jobs Machines 1.00 .82 .50 .33 .17

4 3 10 10 10 10 10
6 3 10 10 10 10 10
8 4 10 10 10 10 10
10 4 20 20 20 20 20
20 5 20 20 20 20 20

35 5 5 5 5 5 5

-87- 	•

4.2 Description of the algorithm and decision rules

An algorithm for the generation of active schedules, implementing the

method of Giffler and Thomson has been taken from King (1975), with

some modifications. Before describing the algorithm it is necessary

to discuss some notions and terminology to be used. The discussion

can be facilitated by using Gantt charts. 'Conflict' between two or

more operations arises when the jobs are contenders for processing

on the same facility M at the same time (Figure 4.1).

Figure 4.1 	'Conflict' jobs

job J

job J2

DT

A time index, called 'Datum Time' (DT) indicates in the Gantt chart

whether the position of an operation in a partial schedule is

fixed or not. Operations completed before DT are fixed decisions

while those with c1 > DT are tentative ones. In Figure 4.1, jobs

J1 and J2 compete for machine M. The conflict is recognised when

DT is equal to min (ci). Resolving the conflict by deciding to

give priority to J2, is represented in the Gantt chart of Figure 4.2,

and DT is updated to the next earliest completion time.

Figure 4.2 Conflict resolution

job J1

job J

DT

- 88 -

The algorithm used is described below (where Ns is the number of times

DT is updated, ci is the completion time of an operation i and 	•

pi is the processing time of operation i) and the related flow-

chart is given in Figure 4.3,_on the following page.

Algorithm for active schedule generation

Step 1

Step 2

Initialisation of procedures.
Define a matrix A=0 of nmN elements, where each row has
nm elements, in m blocks, representing the m machines, and
each block has n elements (operations). Define the set
S of schedulable operations by entering the completion
times of operations without predecessors in the appropriate
matrix positions. Define the empty Partial Schedule by
setting DT equal to the smallest entry DT=min (c.), jES

Conflict recognition.
If there is one conflict or more GO TO 3.
If not, GO TO 5.

A conflict exists in a machine block, if at least one
entry is equal to DT and at least another one is greater
or equal to DT. All entries greater or equal DT form the
conflict set S.

Step 3 	Definition of 'conflict machine' m*, where the conflict
occurs (if there is more than one conflict, select one).

Step 4 	Conflict resolution.
Select, with some rule, called 'Heuristic', one of the
conflict jobs(operations)to be processed first. Record
this decision by entering its earliest completion time c
in the same column of the next row of the matrix A. Update
the earliest completion times of the remaining conflict
jobs c. = c + p., enter all c. in the corresponding
column of the nxt 	row.

Step 5 	Update set of schedulable operations.
For all jobs with c. = DT (implying completion of an
operation) calculat the earliest completion time in their
next operations cn, at a machine different from the one
where c. = DT
c = DT'+ p (p :processing time of next operation). Enter
cn in the appropriate column of the next row.

Step 6 	Update the remaining part of next row.
Enter unchanged all other completion times in the same
column of the next row.

Step 7 	Update the datum time.
Set new DT equal to the smallest entry c. that is greater
than the current value of DT.

Step 8 	Check for completeness of schedule.
A complete feasible active schedule is indicated by all
entries in the current row being non-zero and by DT being
equal to the largest c.. If the schedule is not complete,
GO TO 2.

Step 9 	Terminate procedures.

Step 8

Step 3

Step 4

Step 7

Step 5

Step 6

-89-

Figure 4.3 Flow chart for single-pass active schedule generation

(Step

-90-

Description of Heuristics

The algorithm described in the previous section, resolves the

conflicts that arise with one of the heuristic decision rules to

be described below. Once a decision is made, then it is not

reconsidered or revised later (single-pass procedure), and the rule

used is called a'single-pass heuristic'. It is apparent that single-

pass heuristics are 'good algorithms', since the number of steps

(iterations) required (equal to the number of conflicts) is

polynomially bounded by 0(nm). The following active scheduling

heuristics have been used.

ECT 	Earliest Completion Time.

Select first the job with the earliest completion time. In

case of tie, i.e. more than one job with the same smallest ECT,

select the first in lexicographic order (randomly, since

labelling of jobs is random).

FCFS 	First Come First Served

Select the job that came first to the current conflict machine

i.e. the one that finished earlier its preceding operation, at

some other machine. Tie breaking, as above, in lexicographic

order. This is tantamount to an 'Earliest Start Time' rule

and the solution obtained is the same as a non-delay scheduling

one. Non-delay schedules are those where no machine is left

idle, while a job is waiting for processing. The difference

is that in non-delay scheduling, no conflict would be

recognised, unless some jobs had the same earliest start

time. Thus, if an enumerative method was to be used, some

active schedules might be missed, while with FCFS, all

alternative conflict resolutions are identified.

- 91 -

SPT 	Shortest Processing Time

Select the shortest operation first (tie breaking as above).

GEN 	A general decision rule is to assign priorities to the conflict

jobs according to some function of completion times, start

times, processing times, idle times and other variates, and

select the one with the highest priority.

The underlying idea for this general rule is the attempt to relate

desired results and the decision variables. The criteria of perform-

ance that are thought to be the most relevant to real problems are:

(i) meeting due dates

(ii) minimising work in progress

(iii) minimising idle time of facilities-resources

Since no due dates are used in this formulation of the problem, an

arbitrary due date D is set, which acts as an incentive to maximise

the number of jobs to be completed in the given timespan D (lateness-

tardiness criteria). Minimising the work in progess is the same as

minimising the time jobs spend waiting in queues (. 1 W). Minimising

the idle time of facilities E I.is equivalent to minimising makespan
j=1 J

Cmax
. These objectives are independent and probably conflicting.

An overall optimisation strategy should be one balancing these criteria

by the use of some composite objective function with subjectively

set weighting coefficients. The decision rule (priority function)

appropriate for this type of criteria should be also composite. The

following form is suggested:

For each job i a priority index P. is set-up as the weighted
sum of all criteria calculated as1deviations from given values.

Pi = w1P1 + w2P2 + w3P3

-92-

where 	Pri processing time of remaining operations of job i

Pfi processing time of finished operations of job i

Pm 	service time of operations available for processing
in the next machine

P1 = (1-0(D-T-Pri)-x + S(D-T-Pri)x

with 6 = 1 if the job is already late, or else 0

P2 = (T/Pfi)Y

P3 = z/Pm

The parameters that have to be defined are wl, w2, w3, x, y, z.

-93-

4.3 Computational experience

The experiment has been carried out with data generated randomly

from the processing times distributions described in Section 4.1.

A summary of the results collected from this experimental study of

the heuristic ECT, FCFS, SPT is presented below. Table 4.3 gives

the average relative ranking for makespan
Cmax'

 Table 4.4 gives the

average BOS and Table 4.5 gives the average ranking for average

waiting W (next page).

Results from the use of the generalised composite heuristic GEN were

obtained for a few problems where it became clear that the solution

values could be very good when the trade-offs were balanced but

only after a lot of search for defining the best combination of

its parameters and coefficient values. This being a very cumbersome

and rather expensive task, it has been necessary not to take the

investigation of this heuristic any further in this chapter.

The cost of obtaining the solutions as presented in Tables 4.3,

4.4 and 4.5 and a host of related information is almost negligible.

Table 4.2 below is indicative of the CPU times required, when a lot

of extra information, not directly needed, is computed (e.g.

bounds for every branch, proportions and others).

Table 4.2 Problem dimensions and computational cost of single pass
	 heuristics

Problem Size 	0(nm) 	No of conflicts or 	CPU time in seconds
decisions 	CDC 7600

Jobs Machines Typical case Range
FTN 	compiler

35 5 175 150 148-158 1.10
20 5 100 80 78-83 0.30
10 4 40 30 27-32 0.04
8 4 32 20 18-22 0.025
6 3 18 10 9-12
4 3 12 6 5-8

Table 4.3 Average ranking for makespan values of single-pass heuristics

Jobs Mach.

ECT

E1

FCFS SPT ECT

UR

FCFS

Processing times distribution

E9

FCFS SPT ECT
E36
FCFS SPT SPT ECT

E4

FCFS SPT ECT

4 3 1.85 1.6 2.55 1.85 1.7 2.45 1.85 1.5 2.65 2.0 1.6 2.4 1.55 1.75 2.7

6 3 1.9 1.6 2.5 1.65 1.7 2.65 1.35 2.1 2.55 1.5 1.8 2.7 1.45 1.65 2.9

8 4 1.95 1.45 2.6 1.6 1.7 2.7 1.5 1.6 2.9 1.4 1.85 2.75 1.4 1.65 2.95

10 4 1.4 :1.3 2.8 1.6 1.6 2.8 1.65 1.65 2.7 1.5 1.6 2.9 1.55 1.55 2.90

20 5 1.0 2.5 2.5 1.35 1.65 3.0 1.4 1.6 3,0 1.5 1.5 3.0 1.2 1.8 3.0

35 5 1.2 2.2 2.6 1.8 1.2 3.0 1.8 1.2 3.0 2.0 1.0 3.0 2.0 1.0 3.0

Table 4.4 Average BOS (Bracket for Optimal Solution %)

4 3 21.2 	18.2 	28.0 	19.6 	21.1 	29.7 19.9 15.6 31.1 21.2 21.2 31.3 15.9 21.0 30.4

6 3 20.3 16.7 26.5 19.7 17.5 26.9 15.1 19.4 26.5 18.2 19.6 27.1 18.1 19.4 30.4

8 4 22.6 16.4 27.6 21.5 21.0 31.4 23.8 23.4 37.0 19.2 24.0 32.7 20.6 20.5 31.0

10 4 25.6 15.8 33.9 18.3 17.9 29.4 23.1 21.6 31.2 17,7 17.6 30.7 17.9 17.5 29.5

20 5 20.6 15.5 30.3 14.6 13.2 25.6 13.6 14.2 27.2 12.0 12.0 25.0 12.3 15.9 26.9

35 5 21.0 12.0 30.0 13.6 9.8 24.4 12.0 15.0 25.0 9.0 10.0 23.0 10.0 7.0 25.0

Table 4.5 Average Ranking for W

4 3 .1.3 2.5 2.2 1.25 2.6 2.15 1.35 2.05 2.6 1.6 1.95 2.45 1.5 1.55 2.95

6 3 1.2 2.7 2.1 1.1 2.5 2.4 1.46 2.08 2.46 1.5 1.8 2.7 1.3 2.0 2.7

8 4 1.44 2.28 2.28 1.4 2.0 2.6 1.05 2.4 2.55 1.25 1.95 2.8 1.65 1.6 2.75

10 4 1.15 2.3 2.55 1.45 1.75 2.8 1.15 2.25 2.60 1.3 1.8 1.9 1.33 1.72 2.95

20 5 1.05 2.38 2.57 1.4 1.65 2.95 1.2 1.8 3.0 1.45. 1.55 3.0 1.85 1.15 3,0

35 5 1.2 2.2 2.6 1.8 1.2 .3.0 1.8 1.2 3.0 1.8 1.2 3.0 2.0 1.0 3.0

- 95 -

It should be noted that the solution time is the time starting from

and including the definition of the initial set of schedulable

operations to the completion of the feasible (heuristic) solution.

It does not include 'input' and set-up or compilation times, but

includes 'output' time. The machine used is a CDC 7600, with the

FTN compiler.

Discussion of results

In terms of average ranking for makespan values (Table 4.3), the

rule SPT gives always the poorest value, i.e. it has the highest

value of average ranking, with increasingly poor performance for

increasing problem dimensions. In the smaller problem sizes, the

average ranking for SPT tends to be worse for the low variance data.

Heuristic ECT performs better with low variance data for smaller

problems and with high variance data for larger problems. The

reverse trend seems to take place for FCFS. ,The emerging pattern

is that for smaller problems with high variance of processing times,

FCFS has the best average ranking, while with low variance, ECT is

clearly better. For larger problems, with high variance,ECT is better

while the result of the comparison is less clear in low variance

cases.

The impact of both the problem size and. variance of processing times
noticeable

is more 	on the value of the average BOS for the single

pass solution.

(i) In small problems, for -each heuristic, the values of

the BOS are higher than in the larger problems, some-

thing one might intuitively expect. The reason appears

to be that, due to prece dence constraints, idleness

is introduced in the machines, and there are not any

jobs in the sei: of schedulable operations to fill

-96-

the gaps. The result is that C
max

is substantially

higher than the max (max,F P.., maxĒ.P), which is
iJ=11J ji= ij

the base of lower bound calculations.

In larger problems,
Cmax

 is much nearer to the Lower

Bound, because there are always jobs which might fill

the gaps (or the machine idle times).

(ii) The value of the variance is also significant.

For the same problem size and heuristic, one can see a

tendency for larger BOS at high variance values,

which might be explained by the consideration of job-

delays or machine idle times. For a given transfer

matrix, low variance implies small differences in

processing times, and high variance may induce

longer machine idle times which are not cancelled by

subsequent shorter operations.

(iii) Apart from the above two general remarks on the impact

of these two parameters on the performance of the active

scheduling heuristics, a general remark is that in all

cases in terms of BOS, the SPT has the poorest

performance. In high variance,rule ECT has poorer

performance than the FCFS, while in low variance, this

is reversed. The performance of the same heuristics,

measured by the average ranking for the average waiting

(R,F,C,) per job is somewhat different from that for

BOS values, as can be seen from Table 4.5. In small

problem sizes (up to 10 jobs 4 machines) ECT is the

best, for all the values of the coefficient of

- variation V. The rule SPT is better than FCFS only

- 97 -

at high V, and clearly poorer in low V. In larger

problems SPT is the poorest for all values of

variance and ECT is the best for all V at problems

of 10 jobs 4 machines and 20 jobs 5 machines, and for

high values of V at problems of 35 jobs 5 machines.

- 98 -

4.4 Worst case behaviour and probabilistic analysis of heuristics

The maximum value of BOS observed for each problem size and

distribution of processing times is presented in the following

Table 4.6.

Table 4.6 Worst case value of BOS for single-pass heuristics (%)

Jobs 	Machines 	E1 	UR 	E4 	E9 	E
36

	

4 	3 	32 	34 	47 	39 	34

	

6 	3 	37 	31 	27 	27 	28

	

8 	4 	39 	31 	34 	29 	31

	

10 	4 	46 	30 	35 	31 	26

	

20 	5 	32 	23 	25 	22 	18

	

35 	5 	30 	16 	16 	11 	15

Heuristic

ECT

FCFS

4
6
8
10
20
35

3
3
4
4
5
5

39
34
34
38
28
17

42
35
41
28
27
16

22
39
32
33
26
15

37
33
30
33
20
14

32
31
26
34
23
10

SPT

4
6
8
10
20
35

3
3
4
4
5
5

38
46
40
51
39
31

44
42
46
39
34
31

48
38
46
44
31
27

42
39
41
39
33
26

41
36
40
39
32
29

From the figures in Table 4.6 one can see that both size and

variance have some impact on the worst case value of BOS. It is

worth noting that the worst case error (BOS) for all the heuristics

is {0)-bel /v (H)=0.56, and that the highest values are encountered

in the smaller problems while the values of BOS for large problems

with low variance are fairly small. There is a clear trend for BOS

values to decrease with increasing problem size, for all heuristics,

problem sizes and data structures. This is of great significance,

because, after all, heuristics are needed for the larger problems

rather than the small ones where exact solutions can be computationally

feasible.

-99-

A tentative explanation is that at large problems where more jobs are

involved in each conflict, delays can be avoided by this increased

availability and thus the makespan values are closer to the values

of lower bounds calculated as described in the preceding section.

Another point of interest is that the higher values occur in problems

with high variance of processing times, probably due to the fact

that a 'wrong' scheduling decision may result in long delays.

As an alternative to the analysis of results from observation of

Tables 4.4 and 4.6, a probabilistic analysis is also possible. The

basic idea is that an empirical distribution function F(x) can be

defined as

F(x) = Prob(X<x)

where X is the value obtainable by the heuristic and x is the

variate which can take values 0<x<x 	,x 	representing the
< < max mar.

worst value obtained. Obviously, the larger the sample size used,

the more reliable the probabilistic information (described by F(x))

will be. As an example, the distribution function for the heuristic

ECT has been plotted, at problems of 10 jobs 4 machines, 20 jobs

5 machines and 35 jobs 5 machines, for Erlang with k=9 in Figure

4.4 and for Erlang with k=36 in Figure 4.5. The computational

results used for plotting these figures are given in Appendix B.

Figure 4.4 Distribution function of BOS (%) for ECT (E9)
Probability

1.0-

0.9

0.8-

0.7.

0.6 -

0.5-

0.4-

0.3

0.2_

0.1

0(

0 	2 	4 	6 	8 	10 	12 	14 16 	18 	20 	22 	24 26 	28 	30 BOS

•

- 100 -

Figure 4.5 Distribution function of BOS (%) for ECT (E36)

Probability

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 30 BOS

(a) 35 jobs 5 machines

(b) 20 jobs 5 machines

(c) 10 jobs 4 machines

These diagrams show a clear dominance relation for the different

problem sizes. For any level of probability F(x)>.2

x35,5 < x20,5.` x10,4

or for a given value x of the Bps

F35,5 >F20,5 >F10,4

For problems of 20 jobs 5 machines and 10 jobs 4 machines, where the

sample size used was N=20, the difference
F20,5 	

F10,4 is fairly

stable. The implication is that some form of interpolation for

problems of intermediate size is not only feasible but also meaning-

ful . One need not expand the experiment, in order to obtain

probabilistic information for other problem sizes but can use

with some accuracy the interpolation results.

Another point of interest is the form of F(x) for each problem size.

It appears that a linearity assumption is quite reasonable:

F(x) = a + 	for .2<x<1.0

CHAPTER 5

ANALYSIS OF ENUMERATIVE JOB-SHOP HEURISTICS

	

5.1 	Parameters of local neighbourhood search (LNS)

	

5.2 	Lower bounds

5.2.1 One-job and one-machine based bounds

5.2.2 Complexity and limitations of bound calculations

5.2.3. A routine for calculating two-machine based lower bounds

5.2.4 Fictitious bounds and estimates of the optimal solution

	

5.3 	Design of the experiment

	

5.4 	Computational experience

5.4.1 Lower bounds

5.4.2 Number of iterations and CPU time

5.4.3 Problem complexity

5.4.4 Speed of tree search

5.4.5 Worst case and probabilistic behaviour of heuristics in
LNS with limited computational resources

	

5.5 	Solution improvements models and stopping rules

5.5.1 Modelling the solution inprovements process in LNS

5.5.2 Stopping rules

- 10 2 -

5.1 Parameters of local neighbourhood search(LNS)

The probabilistic analysis of 	single-pass heuristics is use-

ful because it provides probabilistic information about the expectation

of the performance of these simple heuristics, at very low compu-

tational cost (small fractions of 1 second), as opposed to exact

solutions where the required investment on computer resources may

be infeasible. For cases, where higher accuracy of solution is

desired and the amount of computer resources available is larger

than the 1 second required for the single-pass heuristics, (of the

order of 0.1 up to 1 minute) then approximate methods based on partial

enumeration become feasible.

The partial enumeration is based on the search of 'local neighbour-

hoods'. For the general job-shop problem under investigation, in

a tree-like representation of the solution space, a local neighbour-

hood corresponds to a sub-tree, i.e. it is defined as 'all active

solutions with a common fixed partial sequence'. In terms of

permutations, it is the subset of the active solution space with

a number of elements fixed in position. The idea of a partial

enumerative solution is to search one or more of these neighbourhoods

to find the best possible solution, As in the previous chapter, the

objective of the study is not only to find the best possible

"solution but mainly to try to describe the behaviour of the heuristic

involved in quantitative terms and express the expected performance

in probabilistic terms.

There are two basic methods of searching a local neighbourhood,

depending on its definition. In the case it is defined by inter-

changing the positions of some pair of elements from a complete

sequence, leaving the others as they are, the method of search is

usually referred to as 'combinatorial analysis' (Section 2.3).

- 103 -

This method is feasible for permutation problems, where one

permutation is a complete solution to the problem, and where the

calculation of the value of the objective function/measure

of performance is derivable from the value of the previous

sequence, through a simple transformation.

The general n-job m-machine job-shop scheduling problem needs m

permutations for its description and the calculation of the

corresponding objective function is quite complex. Besides, one

wants to search only the set of active solutions which is easily

defined in graph terms but not in terms of permutations. If a

pair of elements is interchanged, then in the general case, the

computations required to find the new value of the objective

function have to be repeated for a large part of the sequence,

because no simple transformation is possible (as for example in the

Travelling Salesman Problem). When the neighbourhood is described

by a fixed partial sequence at the top of a 'tree' representation,

then the natural method of solution is a 'branch and bound' method.

A number of parameters is needed for describing a branch and bound

method.

Nodes and branches

The basic idea of the method is to partition a set of solutions

into disjoint sub-sets, A node represents a conflict, or a decision

point, and branches are the alternative decisions/conflict resolutions.

There are two basic methods of partitioning the problem and the

solution space.

(1) A binary tree has been suggested by Charlton and Death

(1970a). In this method every node has a pair of

branches, so that the partitioning is always generating

two disjoint subtrees. Since any two operations to

- 104 -

be performed on the same machine cannot be performed

simultaneously, the set of all schedules can be

divided into two subsets, one in which the pair of

operations is performed in one order and the second

in which the order is reversed. The potential advantage

of this method is that it might allow early settlement

of crucial decisions after which the following

decisions might -be more obvious. This method

apparently results in 	trees with a high number of

levels (generations of nodes).

(ii) A more efficient partitioning method is the one

used by Brooks and White (1965) and Florian et al

(1971) and described in Section 4.2, where every

node corresponds to a set of m' conflicting

schedulable operations, resulting in m' branches.

Selection of node and conflict resolution rule

It is the rule by which the node to be used next is determined.

There are two basic types of branching possible, named 'depth-first'

and 'breadth-first' illustrated in Figure 5.1, There is also a'best-

bound-first' (branching from the active node with the least value

of lower bound) which is a mixture of the other two methods

(comparison of the search strategies can be found in Ibaraki, 1976b).

The depth-first (i.e. branching from the last active node) is more

expensive in terms of computer time required, while the breadth-first

(branching from the first of active nodes) is much faster but needs

a lot more storage (core) in the computer. The depth-first therefore

is more suitable for adaptation to computers of any capacity (even

small ones). It has also the advantage that feasible solutions are

constructed from the beginning and improvements take place during

Breadth-first search strategy.

Depth-first search strategy.

- 10 5 -

the solution,while in the breadth-first, solutions are constructed

at later stages, which is not suitable for the approach adopted. •

For these reasons a depth-first strategy has been the approach

adopted in this study, with the branching rules ECT, FCFS, SPT,

described in Section 4.2. Since core is not the main problem of the

solution, but time, it is necessary to consider the amount of time

to be invested for any problem, as another parameter of the branch

and bound method. When this predetermined time is exhausted, the

solution procedures terminate, and the answer will be the best value

of the objective function obtained up to that time.

Figure 5.1 Tree-search methods

Feasibility function

This function is used to eliminate partial schedules known not to

have completion within the set of feasible solutions. In practice,

it translates the precedence sequence requirements of operations into

a set of schedulable operations for every instance of the problem.

It determines the next executable operation for every job, if there

is any.

-106-

Lower bound function

The lower bound function assigns to each partial solution (node)

a value be representing a lower bound to all complete active solutions-

descendants from that node. The, lower bound is a non-decreasing

function of the level (generation of nodes) in the tree representation,

whose value at the final level is equal to the actual solution.

The lower bound calculation methods will be discussed at length in

the following Section 5.2.

Upper bound

Upper bound bu is the value of the objective function for the best

complete solution known 'a-priori' or alternatively a large number,

greater than all possible solution values, if no complete solution

is known. An initial upper bound close to the value 4ōptimal

solution reduces computations substantially, as 	computational

experience has shown.

Dominance relation and elimination rules

Every currently active node or branch has a lower bound assigned to

it which is compared with the last (best) value of the upper bound

of the problem, before further branching. If be>bu then all

descendants of this branch will have values v>be and need not be

considered further.

- 107 -

5.2 Lower bounds

5.2.1 One-job and one-machine based bounds

The lower bounds in principle are solutions to simple surrogate

problems of the original, resulting from the relaxation of some of

the constraints. For scheduling problems, the bound calculations

are based on the relaxation of two types of constraints.

One-machine based bounds

Relaxing the constraint that no more than one operation can

be carried out on a machine at any time, in all but one

of the machines, 	the remaining work content of that

machine determines the value of the bound. This is tanta-

mount to allowing operations in all jobs to overlap. If

this relaxation is allowed, then operations on any of the

machines need not have waiting times, and the related bound

is

where

b' = max (ceJ_+ kER?ik} , jEM

M 	set of machines

R. 	set of unprocessed operations in
machine j

cej last completed operation in machine j

This bound, referred to as 'one-machine-based' lower

bound, has been developed firstly for the flow-shop by

Lomnicki (1965) and Ignall and Schrage (1965) and

reformulated by others.

One job-based bounds

Relaxing the constraint that no more than one operation of

a job can be executed at any time, in all jobs but one,

then the remaining work-content of that job is the base

for calculating the lower bound. An alternative description

for the same bound is to relax capacity constraints in all

- 108 -

machines, and determine the schedule length from the

jobs work-content only:

b" = max {c 	P el + k ER k. 	i EJ

where 	J 	set of jobs

Ri 	set of remaining unscheduled (unprocessed)
operations for job i

Pkj processing times

cel completion time of last scheduled operation of
job i

This bound will be referred to as job-based .lower bound.

A combination of these methods defined by

b = max(b',b")

has been proposed by McMahon and Burton (1967) as a more efficient

bound for flow-shop problems,

The basic idea of a machine based bound has been implemented in

the general job-shop environment for the first time by Brooks and

White (1965). Later, it has been extended to cases of different

job-arrival times Ri>0, solving the problem 'Minimise Makespan in

a single machine schedule with different job arrival times ' for the

bound calculation, by ordering the jobs in non-decreasing order of

arrival time (Florian et al 1971, and Ashour et al 1974).

Refinements in the same basic ideas can be found in Charlton and

Death (1970a and 1970b), Ashour and Parker (1971) and others which

basically are suggesting the following:

the machine based bound can be improved by replacing cek, i.e.

the completion time of scheduled operations in a machine

k by 	the earliest possible start time of the schedulable

operations on that machine, sjk which is

sjk = max {cek, max cpk}

where 	c k is the completion time of last scheduled
operation of conflict jobs (in the machine
preceding k).

-109-

The lower bound calculation procedure used in the local neighbourhood

search experiment has been based on the above method, and is

described below,

Conflict job k is scheduled on conflict machine m* with operation

completion time ch. The conflict jobs define the set Sc, the non-

conflict jobs define the set Sn and the non-conflict machines define

the set Sm. The remaining work content of job i is ri, the completion

time of last scheduled operation of job i is c1e, the remaining

work load on machine j is r1, the completion of last scheduled

operation on machine j is cej, and the earliest start of the next

operation onmachinej is sj. The job-based bound b' is:

b' = max(g',g")

where 	g' = ch + max(ri) for icSc

g" = max(c1e + r1) for icSn

The machine-based bound b" is:

b" = max(f',f")

where the earliest loading time for the non-conflict machine j

is given by max (cej,sj) and

f' = max {max(cejsj) + ri} for j€Sm

For the conflict machine m*

f" = ch + rm*

The overall bound is calculated as:

b = max(b',b")

Further improvements might be possible by looking at the possible

combinations of the last operations of jobs in one particular

machine, which requires a step-by-step calculation of completion

times of all jobs on the preceding machines, though the overall

efficiency of such methods is questionable (Ashour and Hiremath,

1973). This agrees with the general principle that stronger bounds

can be calculated but they may be overall less efficient than simpler

ones that are dominated,

110 -

5.2.2 Complexity and limitations of bound calculations

A different approach to the calculation of lower bounds as the one

suggested by Bratley et al (1973), is based on the concept of enumeration

using a' NP-class algorithm. This approach does not seem to

be promising, because it attempts 	to solve a NP-complete problem

with a branch and bound method,where boundsare derived with a NP-class

procedure, It is believed that only P-class algorithms can be

computationally efficient and thus suitable 	methods for bound

calculations in any problem size. It is argued here that there are

limits on the values that can be calculated with such non-enumerative

algorithms.

Theorem: In a scheduling optimisation problem with discrete

objective function, where v* is the optimal solution, there is a

limit bQ <v* to the values of lower bounds beyond which stronger

job and/or machine bounds are obtainable only with NP-class

algorithms°

Proof
.v*

b*
	 b

Q

1

b
0

bo: Lower bound calculated with a 'good' algorithm.

Assume that it is possible to find from lower bound bo the next

larger value bl of the discrete space {bo,v*} of h-elements, with

a P-class (good) algorithm. Thus, in an integer formulation,

which does not restrict generality, bl is also calculated with an

overall 'good' algorithm. Repeating this procedure at most h times,

the optimal value v* would be reached with 'a combination of 'good'

n
algorithms, since h is also polynomially bounded (because h<v*-b « E P.)

o

Thus, this limit b* for bounds obtainable with 'good' algorithms

exists, and it is not possible to obtain better bounds unless an

enumerative method is used.

For the bounds calculated by relaxing job or machine constraints, it

is to be expected that the best that can be obtained with a 'good'

algorithm is in fact what the good algorithm for the largest

possible problem can give. The higher order problems solvable

in P-class are n/2/F/C
max

 (Johnson, 1954) n/2/G/C
max

 (Jackson, 1956)

and 2/m/G/C
max

 (Szwarc, 1960).

5.2.3 A routine for calculating two-machine based lower bounds

The basic idea of this bounding procedure is to relax the machine

capacity constraints in all but two machines ma and mb (instead of

one machine as in the bounds of Lomnicki and Ignall and Schrage).

For this pair of machines ma and mb Jackson's method, with

0(nlogn) has been used, based on Johnson's rule,to calculate an

optimal schedule for their remaining operations, as if the jobs

involved have no operations in any other machine. The optimal

solution of this surrogate problem can be used as a lower bound to

the original m-machine problem. This methodis based on a principle

similar to the one used by Campbell et al (1970) and Townsend

(1977c) whereby Johnson's rule has been used as a heuristic for

the original problem, producing optimal solutions for a surrogate one.

The value of this optimal two-machine schedule cannot be lower than

the load of any of the two machines considered individually. This

is illustrated graphically below in Figure 5.2.

Figure 5.2 Two-machine based lower bound

Jl J2 J3

J2
	

J1
	

J3

ma

mb

- 112 -

This calculation is repeated for all possible pairs of the m machines.

Their number is

(2) = 20 (m°2 	 _ (m 2
)m or 0(m2)).

and the best (highest) value is used as lower bound. The same

idea, in an alternative formulation would be to relax the job

technological constraints (i.e. not to allow jobs to have two

operations processed simultaneously) in all but two jobs and find

the optimal schedule for this 2/m/G/C
max

 problem by Szwarc's

method 0(m2). The number of possible pairs is 0(n2). This method

has been considered to be poorer because, at problems with n>m,

it is unlikely to have bottle-neck jobs, while it is almost certain

to have bottle-neck machines. The implementation of this bounding

procedure has met two basic problems. If one wants as strong a

bound as possible, one should take into account that the operations

for the pair of machines ma, mb may have different 'entry' times

Ri>0, in which case the problem n/2/F/C'max with Ri>0 is NP-complete,

i.e. not solvable with Johnson's rule. However it is possible to use

its relaxation with Ri = 0 for all i, in which case C
max

will be a

lower bound to
C'max.

 The other problem arises from the fact that

the machines ma and mb, due to decisions(conflict resolutions)

taken earlier on, may become available for processing with a

difference dt in time. For this case, it has been necessary to

show that both Johnson's rule (Chapter 3) and Jackson's method

(Appendix C) apply for determining an optimal sequence.

Having resolved these difficulties as described above, test problems

have been tried and the result was that the simpler bounding method

was overall at least as good and probably better than the two-machine

based one. This result verifies what other researchers have found,

namely that stronger bounds are not necessarily better, because the

increased computational costs involved cancel all possible advantages.

- 113 -

5.2.4 Fictitious bounds and estimates of the optimal solution

An alternative to trying to improve bound calculations is the idea

of using 'fictitious bounds' (Bazaraa and Elshafei, 1977). Given a

lower bound be and a good upper bound bu, one can put forward the

hypothesis that the optimal solution value is v = be + (bu-be)a, where

0<a<1. The tree is then searched for constructing a feasible

solution v>v* (v* is the real optimal),discarding all branches

with lower bound values greater than v. If such a solution is

found, then the upper bound value is updated to bu=v, a new value is

assigned to the estimate of the optimal v and the process is

repeated, till no feasible solution of value v is found. In this

way the interval where the real optimal lies is narrowed until

eventually the real optimal will be located and constructed. This

method obviously requires a substantial amount of search, needed for

the successive estimates of the optimal (for the repetitions of the

tree search with different bounds).

The shortest and most efficient tree search with a given method

of lower bound calculation, is one where the value of the optimal

solution v* is known in advance, and the branch and bound method is

used only in order to construct an optimal schedule. In such a case the

value of the optimal solution would be used as the upper bound for

the dominance relation (bu = v*), As soon as the lower bound of

a partial solution becomes greater than v*, the associated branch

is rendered inactive (pruned). This point will be discussed again,

in the light of the statistical results presented in Chapter 6.

- 114 -

5.3 Design of the experiment

The aim of this experiment has been to compare simple enumerative

heuristics with a depth-first branch and bound method, in a wide

range of problem structures, in order to find probabilistically the

bounds of performance and 	determine the most appropriate solution

strategy in each case. Another objective has been to relate the

complexity (size of solution space A) of the problem to its

characteristics and dimensions,namely to the number of jobs n, to the

number of machines m and to the variability (coefficient of variation

V) of the processing times. The main criticism for the branch and

bound methods in general has been that they are unpredictable and

expensive. Thus, one of the objectives of this study has been to

investigate this unpredictability and to try and quantify it, if

possible (predict behaviour by modelling solution improvements).

The typical branch and bound method makes an exhaustive search of the

tree and it is terminated when an optimal solution is found. This

occurs when

(i) the upper bound becomes equal to the overall lower

bound of the solution (ie equal to the least lower

bound of the active nodes).

(ii) the complete tree has been searched.

This method guarantees that an optimal will be found, but in larger

problems, the amount of computational resources required may be

enormous and therefore prohibitive. Besides, it is questionable

whether the optimal solution is really needed,given that the data

representing the processing times are only estimates of the actual

service times. The use of assumptions about machine availability and

breakdowns, labour availability etc. is another reason for not

insisting on optimality. The above reasoning leads to the acceptance

-115-

that a solution with guaranteed distance from the optimal is a far

more efficient usage of the computational resources and far more

realistic as a task for real life job-shop scheduling problems. One

could then redefine the problem as 'find a solution which guarantees

that the value of the optimal solution is within a distance from the

best known solution defined by a bracket for the optimal solution

(BOS) of e%, regardless of the time required, which might result in

a very early termination (before the expendable time is exhausted)

or in a prolonged search (beyond desired expense). In terms of the

BOS specified for the optimal solution, as defined in the previous

chapter, it is reasonable to decide in advance the amount of computer

time to be invested in a search. The problem is thus reformulated

as 'find the best possible BOS (bracket for the optimal solution)

within the amount TL of computer resources (time)'.

More general stopping rules might take into account not only a desired

BOS of e% and a TL but also a cost related to the inaccuracy of

the solution, the proportion of the tree searched as an indicator

of the probability of finding better solutions, the rate of

solution improvements etc., to be discussed later in Section 5.5.

The decision rules to be evaluated and compared are the enumerative

heuristics based on the branching rules ECT, FCFS, SPT in a LNS.

Their performance will be measured by the value of BOS obtained

in a given TL.

Table 5.1 on the following page, shows the different problem structures

to be investigated, the sample sizes of the experiment and the time

limit allowed TL (CPU time in CDC 7600 seconds).

The LNS is by nature a dynamic process in which,whenever a solution

better than the current upper bound is constructed, it is adopted and

used for the search of the remaining neighbourhoods of the tree.

- 116 -
	s

The efficiency of the LNS as a heuristic depends on the speed of these

improvements and therefore some method of evaluating this speed or

rate of improvements is needed. The values of the upper bound can

be seen as values of a discrete function of time or of the number

of iterations. It is to be expected that the number of iterations and

CPU time are related and thus either of them can be used as the

independent variable of the above mentioned discrete function.

Table 5.1 Sample sizes and computational budget for LNS

Problem
Dimensions

Jobs Machines

Sample size

Distribution of processing times

E1 	UR 	E4 	E9 	E36

Time limit

(seconds)

TL

4 3 10 10 10 10 10 1

6 3 10 10 10 10 10 5

8 4 10 10 10 10 10 15

10 4 20 20 20 20 20 5

20 5 20 20 20 20 20 10

35 5 5 5 5 5 5 60

The efficiency of the heuristics will be judged also on the proportion of

the tree that can be searched within the specified computational resources

(speed of search). The heuristic that searches the largest part of the

tree is expected to give the best solution value: The calculation

of this proportion requires an estimate of the total tree size Td

and of the number of branches that remain unsearched, Rd, where d is

the depth of the tree. This can be achieved by a statistical method, _

or with a simple recursive calculation based on observation of the

solution instance (both described in Appendix C)

t. 	number of branches of active node at level i

ri 	number of unsearched branches of active node at level i

Ti 	total number of branches at level i (To = 1)

- 117 -

Ri total number of unsearched branches at level i (Ro = 0)

The recursive formulae are:

l = Ri+Tiri
Ri+

and

Ti+1 = Tit.

P = 1 - (Rd/Td)

This calculation is needed not only for estimating the complexity

of the problem and for the comparative evaluation of heuristics but

also for stopping rules or decisions (to be discussed in Section

5.5).

Description of the model

The algorithm described in Chapter 4 generates only one active schedule.

In order to be able to generate all the active schedules, extensive

modifications are required for record keeping. At every conflict

(node), information has to be stored for the alternative decisions

possible, to allow back-tracking and re-branching. Modifications

are also required for the dominance relations and elimination rules

('pruning' or 'fathoming' of the tree), and other record keeping

needs. Any lower bound from those described in the previous section

can be used, without effect in the structure of the method. The

flow-chart of the algorithm used is given in Figure 5.3.

Elimination (fathoming) of a branch takes place according to the

dominance relation, whenever a particular branch is not going to

produce solutions better than the best known solution (value of

upper bound). This is checked at a.number of points. At Step 4,

as soon as a job is selected for the conflict resolution, the lowe,'

bound (be) of the corresponding branch is compared with the current

upper bound (bu). If be>bu, then further search in the descend-

ants of that branch is pointless, and elimination takes place.

- 118 - a

Figure 503 	Flow-chart for job-shop scheduling with a local
neighbourhood search method.

(Step 1

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

C Stop .2,)

- 119 -

At Step 7, where the completion time Cp of the current partial

schedule is determined, if C >b , then the complete feasible schedules
P- u

based on that current partial schedule cannot have C
max

 lower than

bu, and again elimination is necessary.

In the two cases described above and also whenever a complete

solution is constructed the current active conflict node is

searched to see whether it remains active, in which case the

remaining branches are investigated (at step 4), or whether it

has become inactive (all options exhausted) in which case back-

tracking to the immediately above node level takes place (Step 10).

More details of this model and the FORTRAN IV codes of the routines

used are given in Spachis (1978b).

-120-

5.4 Computational experience

5.4.1 Lower bounds

The two bounding methods described in Section 5.2 were tried on

test problems, and the conclusion was that the simpler method, based

on one-job and one-machine was, in terms of overall efficiency

and simplicity of implementation, as good and probably better than

the two-machine one. Thus the former has been adopted for the LNS

experiment.

A direct evaluation of the one-machine and one-job based lower bound

can be carried out by comparing the smallest lower bound value

b*e calculated at the first conflict (first node of the tree)

with the optimal solution. The value of the lower bound can be

expressed as a non-decreasing discrete function of the depth of

the tree, across any traversal of the graph representing the complete

	

tree (Figure 5.4), because b1 <b2 <b3 < 	<bd where d is

	

e- e- e- 	- e

the depth of the tree.

Figure 5.4 Lower bounds across a tree traversal

b1
e

b2
e

b3
e

bd
e

- 121 -

The least of these lower bound values across a traversal is

ble = min(bke) 	for 	k=1, 	d

and the least of the lower bound values at the first node is b*e.

This is an overall lower bound to the solutions of the problem.

A feasible solution with value v=b*e is apparently an optimal

solution. The question that arises here is, how often is this least

lower bound value realizable as a feasible solution, i.e. how

often is it an optimal solution. From the experiment described in

the preceding section, the following results have been obtained,

summarised in Table 5.2 below (sample sizes as in Table 5.1).

Table 5.2 Feasibility of minimum lower bounds b*e

(Frequency of F,NF,U)

Job-shop
size

Jobs Machines

T L

secs
El

F NF

Distribution of processing times

	

UR 	E
4 	E9 	E36

U 	F NF 	U 	F NF 	U 	F NF 	U 	F NF U

4 3 1 5 5 0 3 7 0 3 7 0 4 6 0 1 9 0

6 3 5 7 3 0 8 2 0 7 3 0 5 5 0 6 4 0

8 4 15 5 1 4 9 1 0 5 2 3 3 4 3 4 4 2

10 4 5 10 0 10 11 0 9 10 0 10 12 1 7 14 0 6

20 5 10 6 0 14 7 0 13 10 0 10 10 0 10 2 0 18

35 5 60 2 0 3 2 0 3 4 0 1 1 0 4 0 0 5

Note 	F: there is a feasible solution with value b*e (optimal)

NF: there is no feasible solution with value b*
e

U: it is not known whether there is a feasible solution

with value b*
e

or not.

One can see from Table 5.2 that for smaller problems a complete search

of all the neighbourhoods of the tree has been possible within TL,

while for increasing problem size the proportion of incomplete search

cases increases. From the test problems where the search has been complete

- 122 -

(i.e. problems of 4 jobs 3 machines and 6 jobs 3 machines) it is

clear that the number of cases, where b*e is a feasible (optimal)

solution, increases with size. This could be attributed to the

method of lower bound calculation, based on the summation of

processing times, without taking'into account machine idle times,

which may produce less tight bounds for smaller problems, as

already discussed in Section 4.3.

The variance of the processing times as can be deduced from Table 5.2

is also significant for the quality of b*e. The pattern that emerges

for small problems (Table 5.3) is that for increasing variance, the

proportion of cases where b*e=v* increases. This can be justified

by the nature of the data structure. In high variance data, there

are jobs and/or machines whose work content (total processing times)

is dominant or exceeds the others by a substantial amount. This

means that they are crucial in determining
6max'

 At the same time

they are crucial for the lower bound calculations. Thus, there are

feasible solutions with value equal to the least of lower bounds.

The minimum makespan for problems with low variance data depends

heavily on the sequence induced delays which are not taken into

account in the lower bound calculations, thus it is less likely that

b*
e
will be the value of a feasible solution.

The same reasoning applies for larger problems, where a time limit

has been imposed on the search, and for a number of problems it has

not been possible either to obtain a feasible solution equal to

b*e or to complete the search. It is to be expected that the

dispersion of solution values is lower in problems with low

variance of processing times, i.e. that the frequency of each

class of solution values is higher than in problems with larger

variance. This implies that whenever b*e is realizable as a feasible

solution, in low variance problems, such a solution, although rare,

- 12 3 -

is likely to be constructed earlier in the search than in high

variance problems.

The information obtained on the quality of the bounds is significant

not Only from the point of efficiency of the search but also for

purposes of stopping decisions. Early in the search a good solution

v is constructed which is greater than the least of lower bounds

(v>b*e), and the search continues, until either it is completed or

a better solution v'=b*e is constructed. It would be useful to

have some information on the probability of having an optimal

v*>b*e, with the view of using it for decisions on whether to

continue the tree search or not.

This type of information can be presented as the frequency of

feasibility of b*e, as in Table 5.3 below, where the impact of

size and variance on the quality of the lower bounds is summarised.

It is worth noting that out of 375 test problems investigated with

limited computer resources, the b*e has been'the value of a

feasible (optimal) solution in about half of them.

Table 5.3 Frequency of feasibility of b*e

Number of
machines E1

Distribution of processing times

UR 	E4 	E9
E36

3 12/20 11/20 10/20 9/20 7/20

4 15/30 20/30 15/30 15/30 18/30

5 8/25 9/25 14/25 11/25 2/25

TOTAL 35/75 40/75 39/75 35/75 27/75

5.4.2 Number of iterations and CPU time

The number of nodes generated during the tree search can be

described in terms of a monotonically increasing function of time.

For all practical purposes, the function can be assumed to be

- 124 -

continuous given the very large number of nodes involved, and the

very small time interval between two successive nodes. In order •

to establish the relationship between the number of nodes generated

and the CPU time, results from a range of problems have been

investigated. The problems investigated were of 8 jobs 4 machines,

(E36) 10 jobs 4 machines (E1 ,E9,E36) 20 jobs 5 machines (E9)

35 jobs 5 machines (E9,E36). The results have been plotted with

the aid of computer graphics and a sample of these plots is given

in Figure 5.5 on the following page. ,In these graphs, the meaning

of the names and figures printed in the heading is given below.

Name Numerical
example

DIMENSION 84

DISTRIBUTION 1

5

36

SEED 234

LLB 50

TLIMIT 32

A

B

R correlation coefficient r

Interpretation

Job-shop of 8 jobs 4 machines

•Erlang type of distribution of processing
times

expected value (average) of processing
times

k parameter of Erlang distribution

Seed for random number generator, code
for the data used in test problem

minimum of lower bounds b*
e

Time limit TL imposed on the LNS

regression constant a (intercept)
for linear regression of nodes against
time

regression coefficient s (slope)

Taking into account all information up to the last solution

improvement available, the relation between nodes and time of the

example problems of Figure 5.5 is clearly linear, with a correlation

coefficient r equal to 1. In fact, only four of the 105 solutions

involved had r lower than .98. Thus the effect of backtracking

in terms of time for subsequent nodes generation is insignificant.

1.43 .63 S:2o 	60 2.11 	1.20 	1 10 	4.00 	40
113E CF ITt0AT10..5

5.03 	6.40 	141 	7.2G 	1.6J

DIMENSION 015TRIN:17ION SEED LLB TLIMIT

84 	I S 36 	417 49 6.0

NODES GENERATED VS 5ULUYl0NICPUITlME

A 	8 	R
ECTIII -92.15 86.550 0.995

FLFS121 72.75 75.645 0.989
SF'T 13 	I - 102 .71 98 . 107 1.000 /sPT

NODES GENERtiTttj VS S0LUTIONICPUITIq

A 	B 	R

	

ECTIII 	-122.2410.674 1.000

	

FCFSI2I 	-125.60106.145 1.000
5P1131 -104.4292.864 1.000

[US

3P

uJ

--11715C -- i oo 	10 00 	4: 02 	..03 	li CO 	
tInĒ,Of I3 o

503 	26.06 	11.30 	r6 0o 	woo 	42.00

- 125 -

Figure 5.5. Number of iterations as a function of CPU time

DIMENSION DISTRIBUTION SEED LLB TLIMIT

24 	1 5 36 	234 SO 32.0

-126-

The particular problem set of 35 jobs 5 machines, E9, was tried also

including the number of nodes near the end of the time allowed, which

did not represent a solution improvement. The correlation coefficient

was again practically equal to one and the difference in the regression

coefficient s was insignificant.

The conclusion is that, provided there is a reasonable number of

solutions to use, for all practical purposes, the number of nodes is

linearly related to the CPU time elapsed, and thus can be treated as

equivalent.

5.4.3 Problem complexity

The partitioning of the active solution space A by the branch and

bound method already described, defines a tree with d generations

(levels) of nodes and size {A}. As already discussed these quantities

are bounded as follows:

d < nm

{A,< (n:)m

The size of the set A is a measUre of the overall complexity of

the problem and the depth of the tree is significant for the amount

of computer storage required in branch and bound depth-first

solutions. Information on these quantities has been collected for

a number of test problems with 10 jobs, 4 machines, processing'

times from E1,UR,E4,E9,E36 distributions each solved with heuristics

ECT, FCFS, SPT and RANDOM with the objective of finding whether there

is any relation between d, {A} and the above mentioned parameters of

the problem.

Analysis of results for each of these problems showed that the

depth d is fairly stable at different traversals of the corresponding

tree, varying in the typical case from 28 to 32. The range of

values of d obtained for a problem is not identical for all heuristics.

- 127 -

Some variations in the range of d have been observed also for

problems with the same distribution of processing times as well as

for problems with differing V. The conclusion is however that d is

fairly stable. No correlation appears to exist between d and V, and

there is no evidence that partitioning A by different heuristics

results in significantly different depth patterns.

Similar conclusions can be drawn for the estimates of the size

of the set A. For each solution, the estimates of {A} are fairly

similar at the different solution instances, typically of the order

of E14. The estimates resulting from the use of different heuristics

in each problem are also very close to each other, which validates

the method used for estimating the tree size. Besides there is no

evidence that different data structures (i.e. different V) result

in different tree sizes. The following Table 5.4 presents the

typical values of d and A for the different problem sizes.

Table 	5.4 Size of set of active schedules

Machines 	d {A}
(E)

(n/m)d
(E)

Jobs

4 3 6- 8 3 1-2

6 3 11-14 5 4-5

8 4 18-22 8-9 6-7

10 4 26-32 13-15 11-13

20 5 77-83 40-48 46-49

35 5 150-160 92-108 >100

If the number of branches per node is taken to be the same all over

the tree (which does not happen in practice), then the ratio n/m

is the most plausible value, given that the routing is random and

initially the n jobs are divided equally to the m machines for

processing. For a tree with d generations of nodes, the number of

branches at the last level will be (n/m)d (see Appendix C). For

- 128 - a

the experimental values obtained for d, the estimates (n/m)d are given

in Table 5.4. This model is certainly crude but as the figures in.

Table 5.4 suggest, it gives a reasonable a-priori estimate for the

order of the size of the set A.

5.4.4 Speed of tree search

The proportion of the tree that has been searched up to a point in

time t is an increasing function of time P(t), whose values can be

calculated with the method already described in Section 5.3.

A sample of problems with 8 jobs and 4 machines has been used for

detailed study of the function P(t). The first feasible solution

constructed corresponds to a proportion of the tree of the order of

E-10. The value of the proportion searched increases rapidly as a

result of elimination of branches at various levels in the tree.

The enormous range of values which P(t) takes during a problem

solution does not allow any meaningful diagram to be constructed,

unless logarithmic scales are used.

The task of plotting a large number of diagrams with different

data has been carried out by computer plotting facilities. Some

representative results are given in Figure 5.6, where the points of

the function P(t) corresponding to solution improvements are

linked by straight lines. If these points are used for a linear

regression of the form logP = a+Klogt, the values of the correlation

coefficient are quite high. The lowest value is r=.7 and r>.9

in 25 out of the 30 test cases. This result though should not

he interpreted as an exactly linear relation between logP and logt,

but rather as an approximate description of the trend.

In the expression P = lets for the solution of a problem with

one of the heuristics ECT, FCFS, SPT the value of P. indicates the

~cr 	 3PT pa

- 12 9 -

Figure 5.6 	Proportion of tree searched as a function of CPU time

E

-1
DIMENSION DISTRIBUTION SEED LLB TLIMIT

84 	1 5 36 	417 49 6.0

PROPORTION OF TREE SEARCHED (LOGARITHM)

A 	B 	R

	

ECT(1I 	-11.68 25.144 0.991

	

FCFS(z) 	-12.54 38.322 0.991

SPT(31 -9.92 13.333 0.990

06.2

CTofT

.12

•0 00 	o.c. 	0.21 	0.1tā te 	C.ro 	o ii 	0.1g 	o.n 	
TIME (DEC .•t 	0.. 	1.01 	0.11 	0.6* 	0.w 	a.. 0 65 	2.27 u it 	; u

DIMENSION DISTRIBUTION SEED LLB TLIHIT

84 	I 5 36 	555 50 13.0

PROFOrOlUN OF TREE SEARCHED (LOGARITHM(

R 	B 	R

	

ECT11) 	-12.07 25.489 0.935

	

FCFS(21 	-13.53 38.951 0.966
SPTI31 -8.44 5.770 0.922

S

70 02 	0.00 	0.16 	0.70 	0.17 	0.40 	1e 	0.10 1.20 	1.20 	1.14 	1.1.1 	IS2 1.44 3.N 	0.w 	(SD 	its 	0.15 	I.E1 	I.0
TInE IOEC.WG3 R.I

- 130 -

speed of the tree search with that particular heuristic. The values

of s could be used as a criterion of performance of the heuristic,

where higher s means faster tree search and thus better performance

of the heuristic. Alternatively, the heuristics can be ranked by

simple inspection of the graphs shown in Figure 5.6, where the best

heuristic is the one which searches a given proportion of the tree

in the shortest time.

The information on the proportion of tree searched over time is

useful also for stopping decisions in LNS, allowing an evaluation of

the potential outcome of an extended search. If at time t, near

the time limit, the proportion searched is very small and the

extrapolation of the trend shows that a complete search would

require a lot of extra time, the LNS is terminated. If on the

other hand P approaches 1.0, an extended search might be considered.

5.4.5 Worst case and probabilistic behaviour of heuristics in LNS

with limited computational resources

The BOS performance of heuristics is described by an average ranking

and by some characteristics (parameters) of their distribution

function. The ranking of the heuristics for each problem has

been based on the values of C
max

obtained, i.e. the lowest value gives

rank 1 to the corresponding heuristics etc. In many cases,

especially in smaller problems, all the heuristics achieve the

same value, the optimal. In these cases, the ranking is based on

the speed with which the value is obtained, measured either by CPU

time or by the number of iterations. The average rankings given in

Table 5.5 have been calculated either directly from experimental results

or from diagrams as the ones presented in Figure 5.9 of Section 5.5.

- 131 - 	!

Table 5.5 	Average Ranking for Makespan

n=6 	n=8 	n=10
m=3 	m=4 	m=4

n=20
m=5

n=35
m=5

n=4
m=3

ECT 	1.90 1.65 1.70 1.80 1.85 1.40

FCFS 1.60 1.90 1.40 1.60 1.35 1.60

SPT 	2.50 2.45 2.90 2.60 2.80 3.00

ECT 	1.60 1.45 1.30 1.55 1.65 1.80

UR FCFS 1.80 2.10 2.00 1.60 1.45 1.20

SPT 	2.60 2.45 2.70 2.85. 2.90 3.00

ECT 	2.05 1.45 1.70 1.45 1.50 1.40

E4 FCFS 1.35 2.20 1.80 1.85 1.60 1.60

SPT 	2.60 2.35 2.50 2.70 2.90 3.00

ECT 	1.45 1.70 1.70 1.50 1.50 1.20

E9 FCFS 1.95 2.00 1.80 1.75 1.50 1.80

SPT 	2.60 2.30 2.50 2.75 3.00 3.00

ECT 	1.70 1.50 1.70 1.75 1.35 1.80

E36 FCFS 1.40 1.60 1.50 1.40 1.65 1.20

SPT 	2.90 2.90 2.80 2.85 3.00 3.00

Note

n is the mumber of jobs

m is the number of machines

E1, UR, E4, E9, E36 are distributions of the processing times

ECT, FCFS, SPT are the heuristics used

The main conclusions drawn from the results of Table 5.5 are that

SPT is clearly the poorest , in all circumstances. No valid comparisons

can be carried out for a given value of V across the various

- 132 -

dimensions, because optimality is not always achieved. Although soma

consistency of relative performance of the heuristics is to be

expected (see also Section 5.5), the arbitrary nature of the time

limit used may affect the results. It is possible that different

rankings would be obtained at different time limits, although

in. the typical case, the heuristics have the same rank over time.

For a given problem size, at low variance (E36) FCFS has better

average ranking than ECT, as well as at high variance (E1). For

intermediate values of V (UR,E4,E9) ECT has the edge.

The parameters used for describing the probabilistic behaviour of

the heuristics are the worst case bracket for optimal C
max

 and

average BOS (Tables 5.6 and 5.7).

Table 5.6 Worst case of BOS of LNS at TL 	(%)

El 	UR 	E4 E9
E35

ECT

m n

4 3 0 0• 0 0 0

6 3 0 0 0 0 0

8 4 11 0 10 14 13

10 4 20 14 12 15 12

20 5 16 15 10 10 11

35 5 13 12 6 5 5

FCFS

4 3 0 0 0 0 0

6 3 0 0 0 0 0

8 4 11 0 10 14 .13

10 4 26 11 1T 18 11

20 5 17 10 13 10 15

35 5 9 7 5 5 6

- 133 -

Table 5.6 (continued)

SPT

n m E1 UR E4 E9 E
35

4 	. 3 0 0 0 0 0

6 3 0 0 0 0 0

8 4 11 0 10 14 14

10 4 25 14 20 21 24

20 5 19 26 20 19 22

35 5 18 21 22 18 20

Observation of 	Table 5.6 shows that at smaller problems, the

worst case bracket is always zero, because optimality is achieved

with all heuristics. For larger problems ECT and FCFS have roughly

the same values of worst case performance, which is always better

than SPT. Higher values are seen in high variance problems.

It is very encouraging to see that for larger problems, the worst

cases have smaller brackets than the medium-size problems. It

is thought that this is not due to the time limits used but to the

size of the problems.

Table 5.7 Average BUS of LUS at TL (;6;

E1 	UR E4 E9 E
36

ECT

m n

4 3 0 0 0 0 0

6 3 0 0 0 0 0

8 4 2.4 0 2.4 2.4 3.7

10 4 3.9 3.0 4.4 4.0 3.0

20 5 7.7 5.3 3.0 3.2 5.7

35 5 5.2 6.1 2.0 2.7 3.1

FCES

4 3 0 0 0 0 -0

6 3 0 0 0 0 0

8 4 2.9 0.6 2.4 2.4 3.7

10 4 5.5 3.2 5.3 3.7 2.7

20 5 3.6 4.1 4.3 3.7 7.0

35 5 5.4 3.4 2.2 3.6 3.0

- 134 -

Table 5.7 (continued)

SPT

n m E1 	UR 	E4 	E9
	

E.

4 3 0 0 0 0 0

6 3 0 0 0 0 0
8 4 3.1 0 2.4 2.4 3.8

10 4 6.4 6.1 7.9 7.5 8.7

20 5 12.1 12.9 12.0 12.5 16.4
35 5 11.4 16.4 14.4 15.0 17.4

The results in terms of average BOS are particularly encouraging

(Table 5.7). The practical implications are that given a problem

of size n-jobs m-machines and the variance of the processing

times,one can refer to these results, select the heuristic to be

used and have an indication of its performance from the average bracket

as well as of some upper bound for the amount of the limited

computer resources specified.

- 135 -

5.5 Solution improvement models and stopping rules

5.5.1 Modelling the solution improvementsprocess in LNS

The local neighbourhood search (LNS) produces solutions whose C
max

value decreases with increasing number of iterations. It has already

been established in Section 5.4.2 , that for all practical

purposes, CPU time and number of iterations are equivalent,

being linearly related. Thus the LNS process can be represented as

a decreasing step function of time f(t), where the solution values

(or the bracket for the optimal solution - BOS) are discrete and

the variate t can be treated as continuous. This function

f(t) has been plotted with the independent variable of CPU time on

the horizontal axis and the solution value (or BUS)•on the vertical

axis. A typical solution improvement pattern can be seen in

Figure 5.7 below, where the continuous line is an approximation of

the step function.

The 'staircase' representation of Figure 5.7 is particularly

useful for the comparisons and ranking of heuristics, carried out

as described in Section 5.4. It is suitable also for demonstrating

the effects of using fictitious lower bounds, i.e. when instead

of the calculated value be, the bound bf=be+ob is used. Thus the

search of the tree is accelerated and the solution terminates when

v=bē + ob or when a solution v''bē + ob is constructed and the

complete tree is searched. In such a case there is a loss in

accuracy c<ob and the savings in time are At. The two processes for

a given problem can be represented as in Figure 5.8 on the following page.

The pattern of the LNS solution improvements is very much the same

in all problems investigated. As can be seen from the typical

chart of Figure 5.7, there is a rapid rate of improvements in

the beginning of the search, slowing down later on with increasing

- 13 6 -

Figure 5.7 Typical solution improvements patterns

DIMENSION DISTRIBUTION SEED LLB TLIMI1
355 	I 5 1 	5917 222 60.0

SOLUTION IMPROVEMENTS al' BRANCH AND BOUND
R B R

ECT(II 5.570 -0.029 -0.871
FCFSI2I 5.585 -0.041 -0.904
SPT(31 5.747 -0.056 -0.963

SPT

CO 	•4.0 	6.00 	Il 00 	16 A6 	21.00 	11.00 	11.00 	11.00 	li.ca 	.3 00 	.i CO 	4.01 	Sr 00 	11.10 	10.00 	64.00 	61.00 	71.03 	16.0C 	0•C1
Tin(Or ITE4a11O.

DIMENSION DISTRIBUTION SEED LLB TLIMIT

355 	1 5 1 	4567 248 60.0

SOLUTION IMPROVEMENTS BY BRANCH AND BOUNO

A 	B 	R

ECT(11 5.656 -0.069 -0.915
FCFS[21 5.628 -0.304 -0.500

SPT131 5.742 -0.044 -0.871

?PT

'11•c1 	..ci66.au 	v 01 	 CO 	r..oc 	06.01 	17.01 	++ 03 	41 01 	..—.ca 	4e41 	ei.c/ 	ei.u1 	5'0.e1 	D-..oc
1103E Of IIt000U hS

03.01 	00.00 	00.00

- 137 -

time. The fact that there are increasingly long intervals without

any improvement is due to the nature of the search. A good

solution is found within a local neighbourhood in which most of the other

solutions have inferior values. A long search proves that there

is no better solution in that neighbourhood. By backtracking

higher up in the tree, and reversing some critical initial decisions

(conflict resolutions), eventually another neighbourhood is

reached and the search there produces a series of new improvements.

The typical case is one where the intervals without any improvement

become longer and the improvements obtained, if any, are smaller.

Figure 5.8 Effects of fictitious bounds

Solution value

L
fictitious"
	

real bounds
bounds 	' 	

e

At

TIME

During this search, it is possible that a solution is constructed

with value v=bē (bē is the least of lower bounds for the problem).

In this case, the solution obtained is an optimal and no further

Search is required. If this does not happen, and the search is

allowed to continue, then a solution v'>bē is constructed,after

which no further improvement is obtained with an exhaustive tree

search. This solutionv ' is then an optimal. From the computational

experience of this study, v' is usually constructed fairly early in

the search and then a large amount of time is spent trying to prove

that v' is an optimal. Which of the two cases takes place in a

particular problem depends on the quality of the lower bounds

-138-

calculations as already evaluated in Section 5.4.1 , where a

pattern of the frequency of v=bē has been discussed.

In large problems optimality is achieved practically only when

v=bē, since exhaustive enumeration for the case of v'>b* is not

possible within the limited computational resources TL. It is usual

that, even when a solution with v=b* exists, it is not found within

TL. Thus, one can assume that at least one more solution improvement

is possible (i.e. one solution with value less than the upper

bound), if the search is allowed to extend beyond the time limit, which

would guarantee optimality of solution.

It is argued that this event could be predictable, to a certain

extent. The method by which it could be predicted is one in which

a model is constructed, describing the dynamic behaviour of the

LNS with a given heuristic. The discrete empirical function f(t)

for to<t<TL can be approximated with a continuous function F(t'),

for 	to<t<TL*, where TLT>TL is an extended time limit, and to is the time

of completion of the first feasible solution.

The approximation can be as good as it is desired, provided

polynomial models of higher order are used. It is not very

helpful though to use higher order polynomials, because the number

of parameters (coefficients) estimated from the 'fitting' will be

high, and no meaningfull comparisons can be made across different

problems. Ideally one would prefer a one-parameter fitting,

describing only the shape (rate of improvements). This is not

possible because the starting points of the step-functions of -

various problems, although bounded (see Section 4.3) can vary

considerably. The next simplest fitting will obviously include a

second parameter for the location of the approximate curve (starting

point).

- 139 -

The fitting that would -be theoretically more correct would

consider every point of the horizontal lines of the step-function,.

representing the value of the upper bound at every iteration of the

solution. This is impractical, because of the number of iterations

involved. Therefore, it is necessary to use only representative

instances of this step-function. A number of approximations is

possible:

1. The points -of the solution improvements only are

approximated by a curve y = e
a+sx

2. As above, with y = eaxs

3. Mid-points of the horizontal sections only are

used for fitting y = ea+sx

4. Mid-points, y = eaxs

In order to take into account also the interval during which the

value of the upper bound is not improved, without considering

every single iteration, the first and the final point of the

horizontal lines are used for fitting

5. y = e
a+sx

6. y = eaxs

A number of problems has been tested for each of these fittings

(an example is given in Appendix C) and it is thought that the

most appropriate one is the one taking the two points from each

solution value and fitting a curve y = eaxs by defining a and s with

a least square linear regression of logy = a+slogx.

The bracket for the optimal C
max

 (BOS) has been used because it is

thought to be more useful than the actual solution values, allowing

comparisons of different problems. This model has been used to

describe the improvements of the bracket for optimal solutions (BOS)

of the test problems and the correlation coefficients were satisfact-

orily high, as can be seen in Table 5.8 	(some typical cases are

illustrated in Figure 5.9 on the following page).

IAr OF I.CR0T 	5"

	

 u 	
3-.00 	 CO0.. 	17.03 	1..37 	20.00 	30.00 	70.02 	00.00 .7.00 	47.00 	111 .09 	00.00 	6..00 	14.0 	12.00 	111 01 	05.,.0

DIMENSION DISTRIBUTION SEED LLB TLIMIT
355 	4 5 0 	1357 213 60.0

IMPROV.OF BRACKET FUR OPTIMAL SOL. BY 6.9

A B R
ECT(I) -1.884 -0.206 -0.954

FCF5(21 -2.444 -0.168 -0.823

SP1131 -1.449 -0.085 -0.872

	_.SPT

— 3

	 !CT

FC—.S
2

- 140 -

Figure 5.9 	Typical patterns for improvements of the bracket for the

optimal solution BOS

DIMENSION DISTRIBUTION SEED LLB TLIMIT
355 . 	1 	5 	I 	8654 223 60.0

IMPROV`.0F dRRCKET FOR OPTIMAL SOL. Hi BoB

A 	8 	R

	

ECT({1 	-1.231 -1.105 -0.867

	

FCFS(21 	-2.282 -0.238 -0.742

	

SPTI3I 	-1.445 -0.227 -0.943

26 T

ō
T

SPT

ICFS

2

R~.00—~ō0 ē.ca ii ̂ a 	5.00 	:0 00 	24.00 	:2.00 	2240
T 50 C` Ob .C1 IONS 	'3.00

	52.00 	00.00 	60.03 	25.00 	60.0ui2.00 	16.0ō 76.22

- 141 - 	•

Table 5.8 	Quality of continuous approximation of BOS improvements

% of cases with r greater than

.6 	.8 	.9

function

Problems

Jobs Machines

8 4 97 60 34

10 4 91 _ 45 30

20 5 90 62 41

35 5 92 73 33

The value of the regression constant a represents an imaginary

bracket value at time zero, and therefore a has no physical

meaning. The function f(x) = eaxais in fact defined for to<x<TL

(to: time of completion of first feasible solution). The value at

to,f(to) = e
a
tā corresponds to the initial solution and the value

at TL f(TL) = ea(TL)a corresponds to the last (best) solution in

the LNS. It should be added here that the values of a and a are

not independent of the time limit used, though their values would

not change dramatically for different TL.

Given the similarity in the pattern of the solution improvements,

a range of values for a and a might be established for each type

of problem. A distinction is necessary though between problem-

heuristics that reach optimality within the given time limit and

those that do not. One cannot expect to find similarity in the graphs of

these two groups. In fact, the whole idea of using a model of'solution

improvements is related to those problems where optimality is not

reached within TL.

For problems with UR,E1 ,E4,E9 and E36 processing times, 	10 jobs

4 machines (two groups of 10 problems each with different time limits)

and 35 jobs 5 machines (5 problems), the mean values of a and the

standard deviation are given in Table Cl of Appendix C. As can be

seen from these results, the values of the regression coefficient

- 142 -

vary within a range of coefficientsof variation usually lower than 0.5

and not exceeding 1.0. For problems of 10 jobs and 4 machines, 10

out of the 15 different averages are lower for the larger time limit,

indicating that the efficiency of the search diminishes with time.

This reflects the fact that solution improvements become increasingly

difficult with time. The values of the average a show also the

differences in performance of the heuristics, although the patterns

of change with the variance of processing times i s less clear.

The smaller values of 	at the larger problems should be expected, as a

consequence of the larger problem size and of the time limit used. These result

are not comparable with those of Table 5.5 on average ranking and of Table 5.7

on average BOS, because they include also the cases where optimality was

achieved, while those reported in Table Cl are for cases of incomplete search.

5.5.2 Stopping rules

The usual criterion for stopping a tree search has been the

construction of an optimal (exact) solution. This, as already

discussed, can be very expensive if not infeasible, and certainly it

is very inefficient. In a large number of cases (see Table 5.2,

on how often the least of lower bounds is a feasible-and therefore

optimal-solution) an optimal solution is constructed early in the

tree-search and then an exhaustive search is needed to prove its

optimality. Another case of inefficiency takes place when a

near-optimal solution is constructed early in the search and exhaustive

enumeration takes place to obtain relatively minor improvements, whose

value is questionable, as discussed in Section 5.3.

The method adopted in this chapter has been to find the best possible

solution within given resources, quantify its quality relative to

the optimal and to the other heuristic solutions obtained, estimate

the complexity of the problem, the extent of search that allowed its

-143-

construction, and get some indication of the improvements that

can be expected to be realised with further search.

The first implication of the above information is that when the

tree search in a particular problem approaches the prespecified

time and the proportion of the tree searched, without obtaining

an optimal, is very small, then the probability of obtaining a

substantially better answer with a limited extension of the search

is very small. If on the other hand, a large proportion of the

set of active solutions has already been searched, and no optimal so-e444-t'04.1

has been found, then it is possible to decide an extension jin order

so-eu i4oM
to exhaust fully the tree and either find an optimal,or prove the

optimality of the last solution. Another implication is that the

results up to the current instance of the solution can dictate the

extent of furthersearch,in a sequential decision making process.

There is some subjective benefit associated with an expected

solution improvement and a cost related to the expected amount of time

required to obtain the solution improvement. The decision rule

for stopping would then be based on the comparison of the values

assigned to these two quantities.

The model described in the previous section for solution improvements

over time can be used as an estimate of the time (cost) required for

One more improvement. It is clear that the same amount of improve-

ment becomes more expensive as the bracket of the distance from

the optimal BOS is reduced. An alternative formulation that is

possible is to express the solution improvements as a function of

the proportion of the tree searched (and not as a function of

time).

The feasible solution space A has a probability density function

f(x) =Prob(x-?<X<x±2) where, in the formulation adopted, x takes

- 144 -

integer values only (x has discrete values in any formulation).

The branch and bound search of a proportion P of the tree results

in a solution value vb. The frequency of values z<vb is

F(vb) =bra f(z)dz and if one assumes that values are distributed

randomly within the solution space (which is not quite true,

but can be acceptable as a hypothesis, if large parts of the tree

are considered), then the probability of a better solution in the

remaining part of the tree is (1-P)F(vb). The idea of using statistical

properties of the solution space not only in stopping rules but also

for other purposes will be discussed in detail in the following

chapter.

CHAPTER 6

STATISTICAL METHODS IN LOCAL NEIGHBOURHOOD SEARCH

	

6.1 	Sampling methods in job-shop scheduling

	

6.2 	Distribution of values of active schedules

	

6.3 	Estimates of optimal solution value

	

6.4 	Applications in stopping decisions and bound calculations

- 146 -

6.1 	Sampling methods in job-shop scheduling

The Local Neighbourhood Search method with heuristic decision rules

for conflict resolution described in the previous chapter is a potentially

powerful tool for solving approximately deterministic job-shop scheduling

problems. The efficiency of the LNS method for a given decision rule

depends on the quality of the lower bounds calculated and on the time

of termination of the search. The latter is particularly crucial,

as already seen in section 5.2, where in about half of the test problems

the least of lower bounds b* has not been realizable as a feasible

solution. In these cases, either an enormous amount of computational

resources may be required to prove optimality by exhaustive search,

or in the case of incomplete search, a poor value of the bracket for

the optimal solution BOS may be obtained.

If the value of the optimal solution is known- somehow in advance, then

the implementation of stopping decisions can improve the efficiency

of the LNS. Such information can be used also for lower bound purposes:

each node in the tree search corresponds to a fixed partial sequence,

and all the unscheduled operations form a surrogate problem, whose

optimal solution can be used as a lower bound for the solution of the

original problem. It is believed that statistical sampling methods

can be used for the purpose of estimating the value of the optimal

solution in a tree search method. The background to the use of

statistical methods in job-shop scheduling will be reviewed below with

the objective of developing and testing suitable estimators of the

optimal solutions.

The most crude way of using statistical methods in scheduling problems

is random sampling of solutions from the set A of active schedules.

0

- 147 -

This set, as already seen in Section 2.3.1 , is very large even for

the more modest problem sizes, and the probability of selecting an

optimal solution randomly is very small. Taking a sample of N random

solutions and selecting the best of them is not satisfactory as an

approximate method, for there is no way of determining a suitable

sample size N and for the low confidence in the results.

The first serious attempt to use sampling methods for solution generation,

was conducted by Heller(1960). In a large scale investigation, he found

experimentally that the distribution of feasible schedule makespan

times in a flow-shop approaches the normal distribution, and tried to

explain it theoretically with an'approximation to the central limit

theorem for a simple periodic Markov chain.'

The above result led this study to the formulation of the hypothesis

that the distribution of makespan values in jobLshon scheduling

problems, can also be approximated by a Normal distributioh N(u,cf).

.This hypothesis has been tested in a number of problems, by constructing

random solutions, with the help of the basic algorithm already described

and used for active schedule generation in Chapter 4, and with a

random number generator for deciding at every conflict node which

branch to follow.

The hypothesis of normally distributed makespan
(Cmax)

 values of the

problems of Table 6.1 has been tested with the X2 	test and

with the Kolmogorov-Smirnov non-parametric test, as described briefly

below (Hoe1,1971).

X2 -test: A number k of classes is defined by the lowest x
min

and highest x
max of the integer random solutions, Cj, for

j=1...N, the observed values being vi, i=l...k. The intervals

are defined by 	corresponding observed number of occurences

is 0. and the expected Ei. The quantity X` =
i 1

{(Oi•-Ei)2/Ei1

- 148-

is approximated by a X2 distribution with a degree of freedom

d.o.f.=k-1-np, where n is the number of parameters estimated

from the sample (for a Normal distribution n=2) provided that

Ei 	k>_5.

Kolmogorov-Smirnov test: In this test two samples are tested

to see if they are from the same population. The observed

cumulative frequency is compared to the expected, and the maximum

difference D is recorded and compared with the critical values

which depend on the sample size.

(Table D1 in Appendix D)

As estimators of the parameters of the Normal distribution,the mean

and the adjusted standard deviation of the random sample values have

been used. The test problems processing times have been taken from

Erlang distributions with the same average. Two different values of

the Erlang parameter have been used, k=1 and k=9, in order to investigate

the effect of the variance on the distribution of the values of the

set A. 	The

6.1 	below.

Table 6.1

results of this experiment are summarised in 	Table

Test 	of 	assumption 	of normally distributed makespan values.

Problem Dimensions Proc.times Sample max V 	X2-test 	K-S 	test

n m distrib. size level 	of max.diff.
N signif. D

P1 8 4 E1 400 91.45 6.52 .093 .0032 .0371

P2 8 4 E1 400 85.1.5 8.77 .103 .0000 .0863

P3 8 4 E1 400 75.42 5.61 .075 .4000 .0392

P4 8 4 E9 400 69.59 4.39 .063 .0001 .0406

P5 8 4 	- E9 400 61.23 4.99 .081 .0025 .0772

P6 8 4 E9 400 66.13 4.12 .062 .0435 .0383

P7 20 5 E9 400 138.02 7.31 .053 .1437 .0452

P8 35 5 E9 120 230.33 8.85 .038 .3390 .0384

- 149 -

The resulting values of
X2

and the corresponding levels of significance

(Table 6.1) show that the hypothesis of Normally distributed makespan

values cannot be rejected at a level of significance of 2.5% in 6 out

of the 8 test cases. The Kolmogorov-Smirnov test results, summarised

in Table 6.1, show that the hypothesis of normally distributed values

cannot'be rejected at a level of significance of 1% and in 6 out of

the 8 cases at 20%. It should be noted here that in problem P2 several

sample schedules had a value equal to the a-priori lower bound to the

optimal solution, and thus it is not surprising that the distribution

is not approaching the normal. It is worth adding that the mean u

and standard deviation a of the sample values, and therefore the

coefficient of variation V=a/u, are fairly stable for different sample

sizes in each problem.

For the same test problem size of 8 jobs and 4 machines, there is

a substantial difference of the r'max values for Eland E9 distributions

of processing times, as one might reasonably expect. The values of

the coefficient of variation V show also some consistent small

difference, indicating lower dispersion of values about the mean, for

lower data variance. For increasing problem size, V is again decreasing,

probably due to the larger number of operations, allowing some

fluctuations of the makespan values to be absorbed.

The hypothesis, that the values of C
max

 are approximately normally

distributed, although not rejected with the tests described above,

has the fundamental drawback that it assumes an assymptotic behaviour.

This is not true since the values of active schedules are bounded

from below by the optimal vb (or a lower bound be) and from above by

the worst possible case v* (or an upper bound bu). The normality

assumption does. not give any indication of what the optimal Nit) or the

- 150 -

worst case vW might be. Besides, the observed frequencies are somehow

skewed, deviating from the symmetric bell-shaped form of the Normal.

This is not unexpected, because the full set A of active schedules,

described by a frequency histogram (an empirical distribution) may

not be described exactly by a Normal or any other simple theoretical

distribution.

- 151 -

6.2 	Distribution of values of active schedules

A more accurate description of the empirical distribution of values

of the set of active schedules, involving n-1 parameters, where n is

the number of classes defined by an upper bound and a lower bound of

set A, was suggested by Cunningham and Turner (1973) and Randolph

et al (1973), based on the Bayesian theory. This method is summarised

below.

The population from which the sample is drawn has a distribution,

known as 'state of nature' and described by e. An estimate of this

constant 'state of nature' can be measured by means of a prior

probability distribution b(e). Following the observation of an

experimental outcome x, the revised probability distribution (or

posterior probability distribution) is according to Bayes theorem

b(e/x) = fb(e)•P(x/e)}/f E b(e).p(x/e)}
alle

A sequential sampling of N elements allows N revisions of the posterior

distribution. If e were not the description of a distribution but

a simple variable, then the computational effort would be manageable.

Revising though a distribution described by a vector p of probabilities

pi, i=1...n (where n is the number of classes) is much more complex

and computationally expensive, which makes the practical efficiency

of this excellent theoretical idea questionable. 	Assuming Normal

distribution for A certainly would help shorten the calculations,

but, as seen in the preceding section, is not exactly correct. The

above mentioned authors have used.a Dirichlet distribution 	with

n-1 variates:
n 	 k k n-1 k

bo(Pl'...,pn-1) ={r (
E k.+n)/r(kl~l)...r(kn+1)}pi...pnnll(1- E pi)

1 i=1 	 i=1

n

where kiare positive integers and n is the number of classes assumed

for the distribution values. The posterior distribution is again of

- 152 -

the same type, called conjugate to the prior. If the sample value

corresponds to class i then ki is updated to ki+1. Otherwise the

value of ki remains the same.

A good description of the empirical distribution of active schedule

values is possible with the above method, using a large number of

parameters. It is though unlikely that more than one problem could

be described with the same combination of parameter values. Thus

the main drawback of the method remains the length of computations

involved.

If one does not insist on the exact description of the set A, then

approximate descriptors, better than the Normal and simpler than

the Dirichlet, are possible with theoretical distributions of more

than two parameters. A simple theoretical distribution which seems

to be more suitable than the Normal for describing the values of

active schedules is the 'Weibull'. This is a three-parameter

distribution which may approach the shape of the Normal, but which

is bounded from below, i.e. Prob(x<a)=0 for some value of a. The

probability density function of the Weibull (Hastings and Peacock,

1975) is:
c-1 	c

f(x) = c/b ((x-a)/b) 	exp[-((x-a)/b)]

where a location parameter

b scale parameter

c shape parameter

The cumulative distribution function is:
c

F(x) = 1 - exp[-((x-a)/b)]

where for c=1, the Weibull distribution reduces to a negative

exponential.

The hypothesis of Weibull distributed sample values was tested for

the problems of Table 6.1. The calculation of estimators of the

- 153 -

Weibull parameters can be based on the limited number of discrete

(integer) values that the location parameter a may take:

be s a < x
min

a : integer.

be : lower bound to the values of set A.

xmin: lowest value of the sample.

The method used to calculate the scale b and shape c parameters of

the Weibull for every value of a, has been based on the relatively

simple form of the cumulative distribution function

F(x) = 1 - exp [-((x-a)/b)c]

exp[-((x-a)/b)c] = 1 - F(x)

-((x-a)/b)c = ln(1 - F(x))

c[ln(x-.a)-lnb] = ln[-ln(1 - F(x))]

-> 	ln[-ln(1 - F(x))] = -clnb + cln(x-a)

For

Y = ln[-ln(l - F(x))]

X = ln(x-a)

a = -clnb

=c

-- 	Y=a+BX

This form offers itself for a least square linear regression, given

that F(x) can be estimated from the sample available. The regression

is repeated for all values of a, and every time b,c are calculated

from c=g and b=exp(-a/a). The best estimate of the optimal solution

is the value a with the highest regression coefficient r.

This method has been applied to the test problems of Table 6.1 with

seemingly very good results. The resulting values of the correlation

coefficient r given in Table 6.2 below, are very high indeed,

approaching 1.0 in most of the cases. These results though should

be accepted with some caution, because by taking logarithms twice,

- 15 4 -

significant differences may become smaller, in which case, the real

fitting is not as good as the value of r might suggest.

For this reason, the parametric X2 and the non-parametric K-S tests

were used to test the hypothesis that the sample values are Weibull

distributed with parameters a,b,c estimated as above. Table 6.2,

gives some additional information for the problems investigated (least

of lower bounds b* , best known solution from tree search vb and minimum

of random sample
xmin)

 and summarises the results of this experiment.

Table 6.2 	Hypothesis testing of Weibull distributed values of active

schedules.

v 	Highest X2-test K-S test
Problem b* x

min (* op imal) 	r a c level of max Diff.
signif.% D

P1 63 73 *67 	.998 71 2.5 3.1 .0314

P2 71 71 71 	.814 71 (0.7) (0.0) (.3257)

P3 51 58 57 	.981 55 3.9 12.5 .0538

P4 51 59 *55 	. 	.996 56 3.3 0.01 .0468

P5 50 51 *50 	.998 50 2.3 0.3 .0770

P6 48 55 54 	.997 52 3.8 2.8 .0305

P7 120 123 *120 	.999 121 2.5 16.3 .0302

P8 209 210 210 	.977 209 2.2 16.7 .0907

If one accepts that a higher level of significance for the X2 or a

lower maximum difference for the Kolmogorov-Smirnov test implies a

'better fit', then comparison of results in Tables 6.1 and 6.2

indicates that the Normal assumption is better than the Weibull only for

3 out of the 8 test problems with each of the two tests. One may also

notice that the values of the Weibull shape parameter c for the best

- 155 -

fit lies between 2.2 and 3.9, with smaller values for the larger problems

P
7
and P8. For this range of c-values the Weibull distribution is

bell-shaped and fairly symmetrical, looking not very different from

a Normal.

For the test problems P1 - P6 additional random solutions have been

generated for a sample size of N=2000, to be used as described in

the following sections. This increased sample size has been used here

to test again the hypothesis that the active schedule values are

from a Normal or a Weibull distribution. The hypothesis has been

rejected with both the X2 - test and the Kolmogorov-Smirnov test.

This was to be expected because,although the empirical distribution of the

values of active schedules can be approximated with a Normal or a

Weibull, it is not exactly either of these. This becomes apparent with

large samples (eg. N=2000) where the maximum difference D of the K-S

test should not exceed 1/ V and where the X2 value 	should be small.

In fact in this experiment D did not become zero and the same

proportional difference of observed and expected values gave a small

X2 value in small samples and a larger one in large samples.

- 156 -

6.3 	Estimates of optimal solution value

• 	Distribution of smallest members of samples of active schedules

The assumption that the values of set A are from a Normal or Weibull

distribution has the drawback of being relatively inaccurate. The

calculation of a more accurate descriptor, like the Dirichlet, is

very complex, as discussed in the preceeding section. One way of

going round these problems is to use properties of samples,

like the central limit theorem, without assuming any particular form

for the distribution of the parent population. According to the

central limit theorem, the averages of N samples, each of size M, are

normally distributed with the same mean and standard deviation

a / /7ff, where a is the standard deviation of the parent distribution.

A more useful concept, applied for the Travelling Salesman problem by

Golden (1977), is that the distribution of the minima xi of the N

samples bounded from below by the optimal solution, approaches a

Weibull (Fisher and Tippett, 1927, Weibull, 1951). This concept has

been used in this chapter, where the parameters of the Weibull

disribution of the minima of samples of active schedules have been

estimated with two different methods: one based on the principle of

maximum likelihood (Mood and Graybill, 1963) and the other on regression

(as discussed in the preceeding Section 6.2).

Maximum likelihood estimators of Weibull parameters

The likelihood function of N random variables xl,...,xN from a

population described by f(x,o) is the function
N

L(xl,x2,...,xN,e) = rr f(xi,e)
i=1

Many likelihood functions (e.g. e describing Normal or Weibull

distributions) satisfy regularity conditions, so that the maximum

likelihood estimator is the solution to the equation dL(o)/de = 0.

Q

-157-

For the Weibull distribution,

N 	N.
L = (c/b)N[n (xi-a)/b]

c-1
eXp[- E ((xi-a)/b)c]

i=1 	i=1

which is maximised for the same values of a,b,c, as the function

N 	 N
lnL = Nlnc - Nlnb + (c-1)[E ln((x.-a)/b)] - E ((xi-a)/b)

i=1 	i=1

for

a1nL/aa = 0

alnL/ab = 0

alnL/ac = 0

The maximum likelihood estimates of a,b,c are calculated by solving

the system of these three simultaneous equations.. This is a rather

difficult task from the computational point of view, if the general

methods of numerical techniques are used. This general methodology

does not take into account some special features of the formulation

of the problem, namely that the values of all members of A and the

lower bound are integers, which limits the solution space for the

parameter a to a small number of discrete (integer) values. In fact

parameter a must lie between the lower bound be and an upper bound

defined as

bu = min[xi] 	for 	i=1,2,...,(Nm)

be ~ a bu
From

alnL/gib = 0 	[-Nc/b]+bc+(
i=1 (xi-a)c =

b = g(a,c) =171 (xi--a))/Nl l/c

Substituting in L,
N

L = [
g(a,c)

]N [1
N n (x4

- a)]c-l
eXp(-N)

g(a,c) 	i=1

which is simple enough to allow calculations for all possible values

of a, and for a wide range of c (0 < c)

-158-

To avoid infinite and indefinite results, a is adjusted by a small

quantity E (E=.001). Following these calculations, the largest value

of L indicates the best estimates of the Weibull parameters a,b,c.

The method described above has been applied for the test problems

P1 -P6' using a range of sample sizes (M) and of number of samples (N).

For N=10 samples of M=40 independent members each (sample size of 400)

the values of L calculated for all six problems have been very small

varying between E-7 to E-18, except for a+c=
xmin,

 where the fluctuations

due to changes in the shape parameter c have been enormous. The same

problems have been investigated with the parameter a corrected by E

(for all values of a) and the results remained the same (i.e. the

effect of E is insignificant). The most likely values of a and c

resulting from this method are given in Table 6.3 and are discussed

in some detail below:

P1 Results inconclusive (same value of L for many a's).

P2 No analysis possible since x
min b e'

P3 Results compatible with LNS (optimal solution unknown).

P4 Results do not agree with known optimal solution.

P5 Results agree with known optimal solution.

P6 Results compatible with prior information (optimal unknown)•

While the sample size M=40 is considered to be sufficient, the number

of samples N=10 is thought to be rather small for allowing high

confidence in the results. Thus, it has been necessary to use larger

samples of up to 2000 random solutions, in order to estimate the

parameters of the Weibull distributed sample minima. In this extended

experiment, the number of samples N has been taken equal to 10, 20

and 40, resulting in reduced values of the likelihood function (ranging

from E-12 to E-35) and the sample size M has been taken equal to 50,

100 and 200. The most likely values of the Weibull parameters a and

c are given in Table 6.3 below.

159 -

Table 6.3 Maximum likelihood estimators of Weibull parameters.

Lower 	Best known 	x
mi n 	

N=10 	N=10 	N=20 	N=40 	N=20
bound 	solution 	M=40 	M=50 	M=50 	M=50 	M:100
b* 	b 	a 	a 	a 	a 	a

63 	67* 	73 	68 	72 	72 	72 	73
c=5.0 	c=4.5 	c=2.5 	c=2.5 	c=0.8

71 	71* 	71 	(71) 	(71) 	(71) 	(71) 	(71)
c=0.5 	c=0.5 	c=0.5 	c=0.5 	c=0.5

51 	57 	58 	51 	51 	51 	51 	51
c=9.0 	c=9.0 	c=9.0 	c=9.0 	c=8.0

51 	55* 	59 	59 	59 	59 	59 	59
c=0.5 	c=1.0 	c=1.0 	c=1.0 	c=0.8

50 	50* 	51 	50 	51 	51 	51 	51
c=4.0 	c=0.5 	c=0.5 	c=0.5 	c=0.4

48 	54 	55 	51 	55 	53 	52 	55
c=5 	c=0.5 	c=3.0 	c=4.0 	c=0.8

N=10
M=200
a

73
c=0.4

(71)
c=0.5

51
c=8.0
59

c=0.4
51

c=0.4

55
c=0.4

Problem

P1

P2

P 3

P 4

P5

P6

As can be seen from Table 6:3; the results of this method are relatively

unstable in the sense that for different sample sizes the most likely

values of the location parameter a vary in 3 out of the

6 problems. One explanation might be that the differences of the '

likelihood ruction value are very small, of the order of E-30, and

at this range, computational results are not accurate enough. In 3

out of the 6 test problems the numerical results obtained with the increased

samples do not agree with the independent information available. It is thought

that larger samples might allow more conclusive and accurate results but the

handling of larger samples would render the method impractical. As an

alternative, a different method has been used to find the most likely

values of a, using least square linear regression, as in Section 6.2.

Least square regression estimates of Weibull parameters.

The experiment has been conducted with the 2.000 random solutions

available for each of problems P1 to P6, for N=40 samples, each of

size M=50 and the results are summarised in Table 6.4. The number

of samples has been set to N=40, because the X2-test (which is generally

more reliable than the K-S test) requires at least 5 distinct classes

- 160 -

of 5 members each, i.e. a mimimum of 25 items. Taking into account

that some classes may have less than 5 members and therefore have to

be merged, it has been decided to set N=40.

Table 6.4 	Linear regression estimates of Weibull parameters (with

N=40, M=50).

Problem Highest Parameter 	X2-test 	K-S test
r 	Estimators 	level of signif.% 	Max. Diff.

a 	c 	 D

P1 	.996 	65 	7.3 	7.3 	.1430

P2 	Regression not feasible

P3 	.823 	51 	4.9 	0.0 	.2892

P4 	.983 	55 	4.2 	- 	.1463

P5 	.975 	50 	2.0 	- 	.2820

P6 	.979 	48 	6.4 	0.3 	.1977

The results of the above Table 6.4 are satisfactory in the sense that

the most likely value of a is compatible with the independent

information available in all except one problem (P1). In this case

the difference of a=65 and the known optimal V67 is very small.

- 161 -

6.4 	Applications in stopping decisions and bound calculations

The importance of the statistical methods described in the preceding

sections for scheduling problems lies, not in their theoretical

interest, but in their application to enumerative methods. The

basic idea underlying all these statistical methods is that for a

given problem P, the values of active schedules can be classified in

a finite number of classes, defined by an upper bound and a lower

bound. Each particular class v has either zero or positive probability

of containing at least one member. The Weibull location parameter

a corresponds to the class with lowest v that is likely to contain

at least one member. This member is to be treated as an estimate of

the value of the optimal solution to the scheduling problem. It

should be stressed that this method may suggest a particular value v

as the most likely optimal, but it does not say how to construct such

a solution. The actual construction has to be based on some form of

enumerative procedure (e.g. branch and bound, tree search), which is

the methodology used in the previous chapter. The additional insight

offered by these statistical methods is the probability associated

with the unknown solution sequence with value v. (Erdos and

Spencer,1974).

There are two ways by which estimates of the optimal solution value

can be used to improve the efficiency of LNS. They can be applied

for stopping decisions and bound calculations. One of the main problems

in branch and bound is that the least lower bounds calculated may

be infeasible and therefore 'poor' compared with the actual yet

unknown optimal solution. A lot of computational effort may be

wasted trying to emumerate a tree, not knowing whether the best known

value is the optimal or not. There are many cases where an optimal

solution is constructed early in the search and the rest of the time

- 162 -

is spent trying to prove it is optimal by exhaustive search. Such an

enumeration can be computationally very expensive, even in the case

where the least of lower bounds is equal to the optimal solution.

This is where the statistical methods can be of help. By obtaining

an estimate a of the optimal solution, one may see that a solution

with that value has already been constructed, and instead of proving

optimality by exhaustive enumeration of the remaining tree, it is

possible to terminate the search procedures, assuming that the Weibull

parameter a is not an over-estimate of the real optimal solution.

If the best known solution vb is greater than a, it is possible to

obtain an estimate of the frequency of feasible solutions with value

lower than vb. The frequency or probability of non-empty classes

lower than vb expresses the expectation of finding solutions better

than vb and can be used subjectively for stopping decisions. An

alternative application of the statistical estimate of optimal solution

values is in the sphere of bounds. The efficiency of the statistical

methods as well as of the tree-search depends to a large extent on

the 'quality' of the lower bounds be that can be calculated. An

indication of their quality is given by the discussion of how often

they are realizable as feasible solutions, i.e. whether the class

v=be is empty or not. (see Section 5.2). A useful hypothesis is to

assume, for given be and x
min

(or bu) that at least one of the classes

be,be+1,...,be+5(bu-be) fort() {0~< a < 1 1 is non-empty, and therefore
bu s(b

u
-b

e)

reduce drastically the computational task, by using a 'fictitious'

upper bound bu. If the hypothesis is rejected, then the revised lower.

bound becomes b'=b1 and the procedure is repeated. If not, then a

new upper bound is found, used for further search 	(Bazaraa and

Elshafei, 1977). Instead of using fictitious bounds,which are defined

randomly, it is more efficient to use a statistical estimate of the

optimal solution as an upper bound in a tree-search procedure, trying

- 163 -

to establish a feasible solution less than or equal to a. If such

a solution is found, it can be either accepted or one could go

further by trying a reduced value of a, progressively, until

feasibility is violated, which would prove optimality. If no feasible

solution with value a is found, one can increase progressively the

value of the upper bound used, until feasibility is obtained and

therefore optimality.

The sampling method for estimating the value of the optimal has also

another potential use. One can obtain an estimate of the optimal

solution of a sub-problem, defined by a branch and bound partitioning

method as a node corresponding to a fixed partial sequence and use

this estimate as a lower bound. In such a case, from the set of

active nodes, the one with the lowest estimate can be selected for

further search in a best-bound-first procedure (tie breaking by

selecting the nodes with the highest likelihood). This would be a

strong bound, but one should take into account the computational cost

of calculating this estimate of the optimal solution for the sub-

problems.

CHAPTER 7

APPROXIMATE METHODS FOR STOCHASTIC AND DYNAMIC SCHEDULING PROBLEMS

	

7.1 	Queueing theory and simulation in scheduling

	

7.2 	Design of the experiment

	

7.3 	Sensitivity of simulation results to the processing
times structure

7.3.1 	Effects of changes in the distribution function

7.3.2 	Effects of changes of the variance of processing
times on the performance of scheduling rules at
fixed load factor.

7.3.3 	Effects of changes of processing times variance
with variable load factor.

7.3.4 	Effects of inaccuracy of.processing times estimates.

	

7.4 	Evaluation of a new composite global scheduling rule

7.4.1 	Description of the scheduling rule

7.4.2 	Calibration and evaluation of the composite
rule

	

7.5 	Job-shops with identical machines in parallel

	

7.6 	Approximate formulae for networks of queues

- 165 -

7.1 Queueing theory and simulation in scheduling

The dynamic and deterministic job-shop, defined by different job arrival

times (Ri20) is obviously more complex than the static one. P-class

algorithms are available only for a few special cases of the single

machine problem: C
max

 with precedence constraints, C, L
max

with

precedence constraints and unit processing times, T with unit processing

times, C with m-machines in parallel and unit processing times. It

has been established that for the majority of single machine problems

and all the m-machine problems, the dynamic case with Ri>0 is clearly

NP-complete (.see Chapter 2).

For the stochastic problem, static or dynamic, there is no enumerative

method that can give any answer at all. There are though a few limited

cases where an analytical approach can be applied, by considering the

processors as queueing systems. (Bruno, 1976)

The queueing theory approach can not give deterministic results.

Probabilistic results can be obtained for certain problems under

steady-state conditions. Mathematical analysis of the transient state

is very complex even for the simpler models (Cox and Smith, 1961,

Lee, 1966), Thus one can not have exact or optimal solutions, and the

probabilistic ones are clearly approximate.

The classification used for the static-deterministic scheduling problem

(n/m/routing/criterion of performance) is not appropriate for the

stochastic and dynamic features of the queueing models, where one needs

information on the arrival pattern (frequency, batch-size etc), on the .

processing times (deterministic or stochastic) and on the availability

of facilities in parallel, which are described by the parameters

pS,p6,p7, Additionally, one needs to know the queueing discipline p8,

the size of the population of jobs p9 and the maximum queue size allowed

-166-

-10' The queue is thus described by the six parameters

p5/P6/p7:p8/P9/P10

Analytical results available for the average waiting time of some

simple models FIF0/o/- are given below, where the load factor (or ratio)

is defined as p=as/rxs ,r is the number of identical servers in parallel,

as
is the arrival rate and xs is the service rate (Kleinrock, 1975 and

1976). In queues with Poisson (negative exponential) arrivals and

service times, the expected waiting time W is:

M/M/1 	aW=p/(1-p)

M/M/2 	X5W=p2/(1-p2)

Analytical results are also available for sone'non-Poisson-queues`

(where p5 or p6 are not negative exponential) which are more complicated.

M/D/1 	asW=p/(1-p)

D/M/1 	X5W=zo/(1-zo) for 	o <zo<1

root of z=exp {-(1-z)/p}

.2(1-p)+(1-z
° 	
)(2p2-1)

M/D/2 asW- 	for -1<zo<1

4p(1-p)(1-z0) 	
root of z2exp{2p(1-z))=1

A well known case is the M/G/1: GD/00/00 (GD: general discipline) where

the expected number in the system Ls is calculated by the Pollaczec-

Khintchine formula (Taha, 1976)

Ls=xaE(t)+x2 {E2(t)+Var(t)}/2{1-aaE(t)}

The operating characteristics for any service time distribution such

as gamma or constant service times can be obtained directly from the

above formula°

The more realistic job-shop problems with batch arrivals and more than

Station 1 Station m

Figure 702 	A flow-shop like queueing system

Input
o

- 167 -

one processor are complex queueing systems with servers in parallel

and in tandem and are represented by networks of queues. 	Figure 7.1

below shows a system with five queues and one of the possible routes.

Figure 7.1 	Network of queues

The analytical results for networks of queues are very limited. For

queues in series or in tandem the most important result is based on

a theorem stating that for Poisson input and service times and general

queue discipline, the output from the processor is also Poisson

(Saaty, 1961, Taha, 1976). The same result can be extended to the

case of more than one identical machines in parallel. This model can

be used for studying flow-shops like the one illustrated in Figure 7.2,

with negative exponential interarrival times of single jobs and service

times.

Rao (1976) has suggested an analytical method for a three-stage series

production system with identical Erlang service times, reducing

drastically the number of simultaneous equations that have to he solved.

-168-

For many queueing systems however, analytical results are either

unknown or too complex to derive, and approximate methods have been

used. with success for a number of models, usually single stage ones

(Kingman 1970, Page 1972, Cosmetatos 1974 and 1975, Rosenshine and

Chandra 1975, Marchal 1976, Cosmetatos 1976 and 1977). Some of these

formulae are given in Appendix E.

Although the approximate results simplify the study of a number of

queueing problems, they cannot offer any answer to the more general

job-shop problem represented by a network of queues (for which a

method based on approximate system formulae will be considered later

in this chapter). The only method available that can be applied to

problems of higher complexity is simulation.

Simulation experiments for scheduling problems have been reported for

the first time by Rowe and Jackson (1956), Jackson (1957), Baker and

Dzielinski (1960) and since then a lot of research has been devoted in

simulation of job-shops especially in the study of queueing disciplines

(Gere 1966, Conway et al 1967, Hollier 1968, Chowdhuryl976, Panwalkar

and Iskander 1977). Simulation experiments with priority dispatching

rules have been conducted also for special structure job-shops, e.g. in

a parallel processor shop (Moodie and Roberts, 1968). The decision

rules applied for selecting a job from the queue of each machine, are

what has been described in Section 4.2 as non-delay rules (dispatching

rules or loading rules),i.e.as soon as a machine is available and jobs

are waiting for processing, the machine is not left idle. A number

of parameters related to the characteristics of the job-shop problems .

are of importance in simulation.

(i) 	Scheduling rules, known also as dispatching, priority or loading

rules.

- 169 -

There are many rules encountered in the literature and in practical

applications. Some are extremely simple and some quite sophisticated.

• Reviews of these rules can be found in Conway et al (1967) and in

Panwalkar and Iskander (1977).

Commonly used loading rules can be classified as local or global.

Local rules use information available locally at a particular

machine centre, where the decision will be implemented, regardless

of information on the rest of the job-shop. Global rules use

both local information and from other sources, requiring therefore

a more elaborate information system. The loading rules can be

classified also as static, where the priority of a job does not

change over time, and as dynamic where the priority is a function

of time. Examples of simple rules are given below.

RANDOM: 	random selection of job to be processed

first.

FIFO : 	first in, first out.

LIFO : 	last in, first out.

SI 	shorter imminent operation.

SI* 	SI with a maximum permitted waiting time

in queue.

COVERT: 	c/t, according to descending value of

waiting cost to processing time.

EDD 	. 	Earliest (minimum) due date first.

LROPS : 	least remaining operations.

Many studies have been devoted to evaluating and comparing the

rules in various job-shop environments. The SI rule came out as

a very efficient rule and very simple to implement (Conway et al

1967, Jones, 1973, Rochette and Sadowski, 1976). It produces

low waiting (or flow) times but has the drawback that long

operations tend to be left unprocessed for very long periods of

- 170 -

time. 	To counterbalance this disadvantage a 'truncation'

has been superimposed on the SI rule, so that when the waiting

time of a job in a queue exceeds a prespecified amount of time,

the job is given priority to all other ordinary jobs waiting in

the same queue (Conway et al 1967, Buffa and Taubert 1972,

Eilon and Cotterill, 1968, Oral and Malouin, 1973,Eilon and

Chowdhury, 1974).

More variations of this basic idea can be found in Hottenstein

(1970) and Jones (1973). Aggarwal and McCarl (1974) have tried

a composite cost-based rule and Hershauer and Ebert (1975) have

tried another form of a composite priority rule, comparing them

with standard rules. A new composite rule has been designed and

tested in this study (in Section 7.4).

(ii) Arrival patterns and job-shop loading.

There are many conceivable models describing arrivals in job-shops,

where arrivals take place singly or in batches. Single arrivals

have been used in a number of simulation studies, where the

interarrival times were assumed to be from a negative exponential

or other distribution (Conway, 1965, Nelson, 1967, Hottenstein,

1970, Jackson, 1963, Conway and Maxwell, 1962). This model has

no practical interest, because single arrivals in real life job-

shops are very rare. Batch arrivals are much more realistic,

especially when the interarrival times At are fixed, corresponding

to the industrial practice of receiving orders over a fixed time

period and releasing them to the shop daily or every week.-

The batch size Q can be variable or fixed, in which case the

number of jobs dispatched (but not their characteristics) is

deterministic, corresponding to the case where an agreed number

- 171 -

of orders is accepted, determined by an overall target loading

of the shop, and where excess orders are refered to subsequent

time periods. Eilon and Chcwdhury (1975) have studied the

relationship of waiting times, for a number of dispatching rules,

for deterministic and Poissonian batch sizes, and 	found that

the latter yield a much higher mean waiting time, as one might

expect. Elvers (1974) has conducted an extensive study with

batch sizes Q determined by sixteen different probability distributions

with the same mean, and his conclusions imply that the shape of the

distribution is not a significant variable in evaluating the relative

effectiveness of dispatching rules. Deterministic batch sizes and

interarrival times have been used in this study, since the relative

performance of heuristics has been established to be independent of

the shape of the distribution.

(iii) Job-shop size.

Baker and Dzielinski (1960) have conducted a study in which they

reported that the shop size has no significant effect on the

relative performance of the scheduling rules. This conclusion

has been confirmed by Conway et al (1967) where it has been

suggested that experiments with a job-shop of six machines are

adequate to show the complexities that are likely to arise in

larger job-shops.

(iv) Due-dates.

The methods by which due-dates are determined. have attracted

considerable attention on their own. A number of methods for

determining due-dates have been investigated by Eilon and Hodgson

(1967), Conway et al (1967), Ashour and Vaswani (1972), Holloway

and Nelson (1974), Eilon and Chowdhury(1975), Day and Hottenstein

(1975). The main conclusion is that some methods can produce

- 172 -

better results for specific scheduling rules and that changes

in the parameters involved in defining the due-dates can control

effectively the values of the criteria of performance.

(v) Routing of jobs (transfer matrix).

A range of routes is possible in job-shops. In the limiting case

of the general job-shop all routes through the machines are equally

likely. At the other end of the range, all jobs follow the same

path through the machines (flow-shop). The routing is affected

by the amount of flexibility possible in a given job-shop. It

is possible that a particular operation can be performed by more

than one machine, when the most suitable processor is not available

or when a job is very urgent. Another type of flexibility is

one where the operations sequence of a particular job can be

altered, according to some rules (Chowdhury, 1976). These

subjects have not attracted considerable attention up to now,

and it is felt that 'flexibility' is an'open subject for further

research.

(vi) Processing times.

The estimates of processing times of operations in a given job-

shop can be described by some statistical distribution, with

defined average and standard deviation. The actual processing

times may be equal to the estimates or they can vary according

to some distribution. The effects of using processing times

from different distributions or from the same distribution but
thoroughly

with a range of variances have not beenninvestigated up to now.

The sensitivity of simulation results to errors in estimating

processing times is only partially known, for cases of minor

differences between expected and actual times. It has been felt

--173-

that the structure of the processing times is a topic of special

interest and thus it has been investigated in depth in Section

7.3.

(vii) Machine centres with identical processors in parallel.

This is another area that has not attracted attention and the

results obtained in this study are discussed in Section 7.5.

- 174 -

7.2 	Design of the experiment

The above mentioned studies have been carried out by means of a discrete

event simulation in a digital computer(see Schmidt & Taylor,1970,Fishman,1973

on simulation). 	The model used comprises 5 work-centres with one machine

each. The arrivals of deterministic batches of jobs (batch sizes of

1,10 and 35 jobs) in the shop take place at regular intervals, depending

on the overall job-shop load (load factor ranging from 0.6 to 0.95).

As soon as a batch of jobs is dispatched to the shop, due dates are

assigned to the jobs, allowing for in-process waiting up to the total

m
processing time they require, i.e. 	Di = R. + 2 E Pij for all jobs i in j=1
the batch.

The estimated processing times are from the family of Erlang distribution

and equal to the actual ones (the effect of actual processing times

differing from the estimated, will be discussed in Section 73.4). A range

of values of the Erlang parameter k has been considered: 1,2,3,4,5,9,15,

30,x. The smaller values (data with high variance) represent cases of

diversified product lines, consisting of items which vary extensively

in their demand pattern of facilities. The high values of Erlang k

correspond to homogeneous operations in length.

The routing of jobs in the job-shop is assumed to be completely random-

all routes through the machines/centres are equally likely-and inflexible,

in the sense that a certain route may not be altered in any case. The

number of operations per job is randomly distributed between 1 and 5

(uniform rectangular distribution).

The overall load factor of the shop is the ratio of the total machine

time required to process a set of jobs over the total available machine

time (for the one machine system it is p = as/as). Defining a desired

load ratio is equivalent to determining the batch interarrival timesot.

175 -

The real value of the load ratio can be calculated at the completion

of the experiment and it might be slightly different from the desired

load ratio. In this study, the term 'load ratio' p will be used for

the desired value only and should be seen as equivalent to a specific

value of batch interarrival times.

The main measure of performance used is the average waiting time i.e.

the first moment of the distribution of job waiting times. A lot of

additional information has been collected in the form of histograms,

averages and variances of waiting (flow) time, lateness and queue size.

A number of experiments has been carried out in this study with the model

described above, using routines of a general job-shop simulation

package (Pace, 1969, JSS, 1972 and Eilon, 1973).

There is a number of sources of possible error associated with any

simulation experiment, and with the collection of information. The

'run-in' period (until a steady state is reached) may introduce some

error, which can be counterbalanced by deleting a number of observations

of the beginning 	of 	the 	experiment. 	The length of the

transient period that should be deleted can be calculated as in Wagner

(1972) or Fishman (1973) or found empirically by collecting relevant

information in a.number of trials. Another source of error is due to

the timing of the collection of information. Values are added in

histograms when a job is completed only, and some error is introduced

at the termination of the experiment where jobs near completion are

ignored (run-out period). Both types of error can become negligible,

if a large sample of jobs is simulated.

Another source of error is due to the auto-correlation that exists

between the values recorded in successive observations. It is though

not uncommon to ignore these effects, when one is interested in comparing

- 176 -

the same measure of performance for a number of dispatching rules or

load factors (Pace, 1969, Chowdhury, 1976). Chowdhury (1976) in his

study, using the same job-shop simulation computer package (JSS, 1972),

has calculated confidence intervals for the results and found them

satisfactorily low for runs between 5000 and 10,000 jobs. In this study,

after some preliminary empirical investigation the sample size N has

been taken equal to 10,000 jobs (one run only), large enough to absorb

the run-in and run-out periods effects and to offset the effects of

autocorrelated sample values for values of load factor up to p = 0.9.

- 177 -

7.3 	Sensitivity of simulation results to the processing times

structure

The objective of this study is to analyse the effects of different

data structures for processing times on the performance of a number

of scheduling rules. As additional parameters, the overall loading

of the job-shop, and the size of the batches have been used. It is

accepted that the size of the shop does not affect seriously the

performance of the rules (Baker and Dzielinski, 1960) and that the

effects of having arrivals with stochastic (Poissonian) batch size

instead of deterministic need not be considered here, since they

have already been studied in Eilon and Chowdhury (1975).

7.3.1. Effects of changes in the distribution function

For a given distribution function f(x) describing the processing

times Pij in a job-shop, changes in the expected value E (Pij) will

not affect the relative performance of scheduling rules. A change

in the expected value will result in a proportional change of

waiting times, flow times etc, but ratios like W/E(P) and F/E(P)

will remain the same.

It is expected that distributions with the same first and second

moments, i.e. with the same mean value and standard deviation, will

not produce significantly different results in simulation. This

hypothesis is derived from the fact that, in a Taylor expansion of

the function, the derivatives of order higher than two play a minor

role only (Appendix E). Thus, if two functions have the same values

of first and second moments (11,6), their difference is expected to

be insignificant for simulation purposes.

This hypothesis has been tested by comparing results from Erlang

- 178 -

and Normal distributions, with the scheduling rules FIFO, SI, SI*,.

load factor p = 0.8, deterministic batch arrivals with batch size •

Q=35, mean processing time u=20 time units, and 10,000 jobs with

random routing. The rule SI* is used with truncation defined by a

control parameter U. Jobs are given ordinary priority as long as the

quantity 0-(t+Pr) - U is positive (where t is the current time and

Pr is the expected remaining processing time). If this quantity

becomes negative they are given top priority in the queue. The value

of U has some effect on the average waiting time, as can be seen from

Serghiou (1973) and from the following results of a trial with normally

distributed processing times (p = 20, a = 6 ,p.0.8) .

U 	0 	40 	80 	120 	160

204 	206 	212 	214 	214

a 	159 	169 	165 	165 	165

In this study the value of the control parameter U has been taken

equal to zero. Table 7.1 below shows the values of the variance

parameters used for average processing time p = 20.

Table 7.1 	Coefficients of variation for Erlang and Normal distributions

Erlang
parameter k

V=k
-1/2

Normal, a

	

1 	1.000 	20.000

	

2 	0.707 	14.142

	

3 	0.577 	11.547

	

4 	0.500 	10.000

	

5 	0.447 	8.944

	

9 	0.333 	6.667

	

15 	0.258 	5.164

	

30 	0.182 	3.651

	

100 	0.100 	2.000
co 	 0 	0

The results of this simulation experiment are given in Tables El - E4

in Appendix E and summarised in Figure 7.3 on the following page.

- 179 -

Figure 7.3 	Comparison of average waiting times with Erlang and Normal

distribution of processing times (Q=35, p=0.8)

Average
Waiting

360 	(time. units)

FIFO

340
	

FIFO

320

/
I
/

/

300

280

260

4.0

r

240

f SI

220 	E 	~~ ., 	 // , SI* 1
/
1

200 	N ` 	`~ ~"*-- _..- ~
~- S I

` 	 .° 	 SI*
~`' 	-.s

180

CO 30 15 9 	5 4 	3 	2

1 Coefficient of variation V

1 (k) Erlang parameter

- 180 -

As can be seen from Figure 7.3 (and from 	Tables El and E2

in Appendix E), the average waiting times resulting from Erlang and

Normal distribution of processing times are very close, except

for the case of very high variance (V = 1). The simulation results,

for all scheduling rules, show a maximum difference of 5%, and

usually lower. This verifies the hypothesis that the important

descriptors of the processing times distribution are the mean and

standard deviation of the distribution of processing times and not

the higher order moments. The larger difference observed in the

case of very high variance (k = 1, V = 1 and a = 20) should

be expected, because of the method used for determining - processing

times; all processing times less than 1 (or negatives) are set

. equal to 1. This distortion produces a Normal-like distribution

with real a less than 20 and this is reflected in the localised

irregularity of the simulation results at V = 1.

These preliminary results indicate clearly a relationship between

the variance of a distribution and the performance of heuristics

in simulation. This has been the subject of an extensive experiment,

discussed on the following pages.

7.3.2. Effects of changes of the variance of processing times on

the performance of scheduling rules at fixed load factor.

It has already been established in the study of static and

deterministic problems in Chapter 4, that the variance of processing

times has some impact on the performance of heuristic scheduling

rules. This effect has been studied in more depth with simulation

for some basic rules (FIFO, SI, SI*). The study has been based

on the Erlang family of distributions, since it has been shown above

that other distributions with the same mean and variance would

not produce 	significantly different results: It has been

- 181 -

thought necessary to include two additional parameters in this

experiment, the desired overall load factor for the job-shop and

the batch size of the deterministic arrivals. The effect of

changes in the variance (or in the Erlang parameter k) in

conjunction with changes in the batch size, at constant load

factor p = 0.8 have been investigated at Q=1, 10 and 35, with one

run of 10,000 jobs each. The load factor has been set to p = 0.8 as

a realistic high utilisation target value, avoiding the instability

of near congestion cases (p -- 1). The batch size of Q = 1

(single arrivals) has been used as a limiting case with theoretical

interest, Q = 35 has been selected as a case of large batch

arrivals, in accordance with the job-set n = 35 used in static

and deterministic scheduling (Chapters 4 and 5), while Q = 10 has been

set as 	an arbitrary intermediate value. The results are given

in Tables E2, E3 and E4 in Appendix E and summarised in charts.

The average waiting time with the dispatching rules FIFO, SI, SI*

has been plotted against the value of k in Figure 7.4(a) (next page),

The use of the value of k on the horizontal axis has the drawback

that k = o cannot be included in the graph. The coefficient of

variation V = k-1'2 is more appropriate for plotting the average

waiting, as can be seen in Figure 7.4(b) on the following page.

As can he seen from Figure 7.4, for the average waiting time

(W equivalent to F) in smaller batch sizes (Q = 1 and Q = 10)

SI performs better than SI* which performs better than FIFO, for

all values of k, and the VJ performance of each rule improves with

increasing k (decreasing V). In larger batches (Q = 35) FIFO

is again the poorest and its W performance improves with decreasing

V. There is though a reversal of performance for SI and SI*.

The scheduling rule SI* gives always the lowest average waiting.

Its performance however deteriorates with decreasing V.

Figure 7.4 	Average waiting for Erlang processing times (k=1,2,....,co) at p=0.8.

Average
Waiting

(time units) Average waiting

.(tines units)
360 360

340•

. 320

FIFO

(b)

300
(a)

280
`-.

FIFO
260 	•~I• f~,.J' 	

FIFO
i

240
1 FIFO

220

200

180

160

340

320

300

280

260

240

220 _.—.—._.-.-._._.r.
SI
SI"

200

180

..,.~~ •`•r.~ 	 I •~•~-.+ ~~ 	 I

I
I

160

140 	 ~I
6. SI'

SI' 	 140

120
_.

100

SI
	 120

• SI
100

80 80

t ----- 	 FIFO

SI
• "FIFO

SI*
	SI

60

0

60

0.5 1 2 3 4 5 9 15 30 k
▪ 30 15 9 5 4 3 	2

1.0 Vs=k-}

1 	k(Erlang
. 	parameter) Erlang parameter . _. _. q = 35

--• o = 10

	 Q 1

= 35

Q = 10

0 =1

- 183 -

The reason for this behaviour is that in small batches, an

increase in the variance of processing times results in significant

fluctuations in the loading, i.e. there are periods where queues

of jobs are built up in front of a certain machine and periods

where no jobs are available for processing. This unutilised

capacity cannot be balanced because jobs arrive singly or in small

batches and no pool of unprocessed jobs exists. The greater the

variance, the greater these fluctuations and the resulting delays,

as can be illustrated better at the extreme case of a one-

machine job-shop. 	The difference. of the average waiting

in the extreme cases of E1 and E can be described in terms of

the ratio WM/WD, taking the following values.

Ratio Wm / WD

Q FIFO SI SI*

1 2.9 1.4 1.6

10 2.6 1.2 1.4

35 1..4 0.8 0.9

The values of this ratio show clearly that there is a reversal

of behaviour of SI and SI* for large batches, where the average

waiting of highly diversified job-sets is lower than for homogeneous

product lines. This is due to the fact that at high variance,

SI and SI* are able to discriminate among jobs and exploit the

increased availability of work load for processing, due to the

larger batch size, by giving priority to shorter operations and

therefore reducing W,while at low variance, they behave more like

FIFO. In fact for E (V = 0) FIFO and SI are identical. -In that

case SI* produces a lower W because of the truncation, whereby

excessive delays of some jobs are avoided. In other words, with

larger batches the fluctuation in processing times becomes an

- 184 -

advantage when SI and SI* are used. The fact that SI* produces

lower W than SI in larger batch sizes but not in small ones, 'can

be explained again by a similar reasoning. By having this

truncation (cut-off time) in small batches and operating it in

very limited pools (queues)of jobs, long jobs are processed early

enough to block the machines, impeding them processing the shorter

operations of subsequent batch arrivals. Thus queues from these job

arrivals are formed and the advantages of this truncation are lost. At

larger queues there are usually enough jobs waiting to allow the SI

part of the rule to bring about reduced W. It is worth contrasting

here the above results on single-pass non-delay, scheduling heuristics

FIFO and SI to those obtained in Ch:4 on single-pass active scheduling

heuristics ECT, FCFS and SPT. The active rule FCFS and the non-

delay FIFO, as single pass heuristics, are the same. The use of

the non-delay rule SI (choose the job with the shortest imminent

operation) has the effect of processing first the job with the

earliest completion time. Thus, it resembles, in principle, to

the active rule ECT (earliest completion time). This resemblance

is reflected in the good performance of ECT for the average

waiting time (Section 4.3, Table 4.5), in agreement with the

good performance of SI in the simulation experiment carried out

in this section. The active rule SPT (shortest processing time)

is not acting like SI, because the point t in time at which the

scheduling (branching) decision is taken and t-dt, at which it

is retrospectively implemented are not the same. In the non-

delay case, the decision taken by SI is implemented at once.

Thus one should not expect similar performance for SI and SPT.

Another point worth mentioning is that the total makespan values

(Cmax) obtained in this section by simulating 10,000 jobs, using

- 185 --

the dispatching rules FIFO, SI and SI* are not significantly

different. This could be attributed to the large sample size,

in agreement with the results of static and deterministic

scheduling (Section 4.3) where for increasing number of jobs, the

bracket for the optimal solution BOS becomes smaller, especially

in problems with processing times of low-variance.

The average queue length results (Table E3) are, as expected,

related to the average waiting (in the single server queue,

expected queue length = mean arrival rate. x expected waiting

time). The average queue length has been plotted against the

coefficient of variation Vs of the processing times for Q = 1,

10 and 35 in Figure 7.5 (a) below. As can be seen from comparison

of Figures 7.4 (b) and 7.5 (a), the patterns are almost identical.

Figure 7.5 	Mean queue size and mean lateness as a function of
the coefficient of variation of service times.

Average
Queue
Size

FIFO

(a)
Average
Lateness

280

260

240

4.0

3.8

3.6

34

3.2

3.0

2.8

FIFO

	

2.0 	/ 	 100 	./e
51* 	 ,~f

.~ 	 i/51• 	80 	i 	 S)•

	

1.8 	/ 	✓ . 	 i 4". 	SI•

	

1.6 	i / '~*--
	/ S1 	60 	~'e o / 	^ 	

• 	

, SI

	

1.4 	~~ 	 _`~~ 51 	40 =G=.~_~
	/ SI

	

1.2 	 20

/

/ 	FIFO 	200
/ 	 ... ■ 	 /FIFO

-...~~ 	 / 	 180
'=+•̀ 	 / FIFO

	

2.4 	 / 	 140 	"`• + ▪ ...4...•
	~'~_:y / — Ī S IN

	

o

2.2 	 120 	 /~e~

280

/ FIFO

(b)

r

0
0 	0.5

30 15 9 	5 4 3 	2

35
	 Q • 10

	 Q • 1

V Coefficient of

1.0 	
variation

1 	(k)

0.5

▪ .30 15 9 	5 4 	3

..~ Q . I

2

10 	V

1 	(k)

- 18 6 -

The values of average lateness have also been plotted against

Vs, in Figure 7.5 (b), and again, the pattern is the same as that

of average waiting times in Figure 7.4 (b). This result was

predictable, because of the method used for determining due dates

(Di = Ri + 2Pi), since lateness is defined as Li =
~i 	Pi - W.

Ri + Pi - W. and the criteria of performance L and W are equivalent

(Section 1.4).

7.3.3. 	Effects of changes of processing times variance with

variable load factor.

The effect of changes in the variance of processing times

and in the job:-shop load factor on the performance of

the SI rule have been studied with an :experiment where •

deterministic arrivals take place in batches of Q = 35 and Q = 10.

The Erlang parameter k takes values from k = 1 to k = 0. and the

load factor takes values from p = 0.6 to p = 0.95. The average

waiting time values are given in Table E2 in Appendix E and

summarised in Figure 7.6 on the following page.

These results agree with the ones discussed in Section 7.3.2.

For large batches (Q = 35) and given load factor p, the average

waiting in the shop decreases with increasing variance of processing

times. As expected, higher load ratios result in larger W, created

by the increasingly congested state of the job-shop. For load

ratio approaching 1 (p = 0.95) results are unstable, varying

widely for different seeds of random numbers. This high variance

is probably due to autocorrelation which becomes increasingly

important for p 	1. The pattern of change for different values

of the Erlang parameter k is the same for all load factors used.

Results for smaller batch sizes (Q = 10) are again in agreement

- 187 -

Figure 7.6 	Average waiting time for Erlang processing times at various

Average
waiting
(time units)

540

520

500

480

460

440

420

400

380

360

load factors.

p=0.95

p=0.90

340

320

300

280

260

1 2 34 5 9 15

240 	 p=0.80

p=0.70

p=0.60

,..._.,._.____r_._T-_-_-~ 	 r-------•

220

200

180

160

30

0.7 0.8 0.6
--7 load

0.9 	0.95factor
n

- 188 -

with the preceding findings. For load factors up to p = 0.85

the average waiting increases with V, as explained in Section'

• 7.3.2. At load ratios greater than p = 0.9, where the shop is nearly

congested, the availability of more jobs in the queues allows the

SI heuristic rule to discriminate sufficiently between jobs and

reduce W for increasing V, in the same way as it does it for larger

batches. The similarity lies in the near congestion conditions

that are created either by the high load ratio or temporarily by

the arrivals of large batches. The implication is that SI performs

better with high variance data only under temporary or permanent

near-congestion conditions. The performance of SI* under varying

load factor conditions is expected to be similar to SI. The rule

FIFO is also affected by varying p, but the pattern of change for

varying V is the same as has been verified by the results in Table E2,

in Appendix E.

For a given type of distribution Ek, the effect of increasing the

load factor is illustrated below in Figure 7.7, where the average

Figure 7.7 	Average waiting time for E processing times
as a function of theload fakctor.

Average waiting
time log)

5I*

V
s
=0

500

400

300 	FIFO,SI

200

Vs=1

FIFO
SI

SI*

- 189 -

waiting times of SI (Q = 35) are plotted against the load

factor, for fixed k. The irregularity that arises with the line

k = 0., is probably due to the higher simulation error for p -} 1,

and to the method of generating Erlang variates for k r

7.3.4 Effects of inaccuracy of processing times estimates

The usual assumption found in job-shop scheduling studies is

that the processing times are known in advance. This is not the ease

in real life problems, where estimates are known but the actual times

differ. The performance of the heuristics is not seriously affected,

when minor differences occur. In this study, a full investigation

of the performance of FIFO, SI, SI* has been carried out where

the actual processing times have been taken to be distributed about

the estimated, with coefficients of variation Vr ranging from 0

to 1 at Q = 35, p = 0.8. The results are given in Table E5 in

Appendix E and summarised in Figure 7.8 below.

	

Figure 7.8 	Effects of inaccuracy of processing times estimates.

	

V s: 	coefficient of variation of estimates of processing times

coefficient of variation of real (actual) processing times
about the estimates.

Vr:

0 1 Vr 0 	 1 Vr 0 	} 	1 Vr

- 190 -

These figures show that the performance of the rules is affected

by the variations from the estimated times, deteriorating almost

exponentially with increasing variance of the actual times.

This is due to the unpredictability of the real processing times,

which renders rules based solely or partially on processing times

information useless. As a consequence, the scheduling decisions

produce large imbalances in the loading of the machines, and thus

substantial increases in W.

- 191 -

7.4' Evaluation of a new composite global scheduling rule

7 4.1 Description of the scheduling rule

The main idea in suggesting a composite priority rule is to relate

desired results with decision variables, thus allowing some form

of control of the job-shop state. A global dynamic rule has been

designed in this study, where the priorities have been defined

as functions of attributes related to some measures of performance.

The objectives that have been thought to be appropriate for all

industrial problems are: meeting due-dates, minimising work-in-progress,

maximising utilisation of facilities. These criteria are from three

different groups of measures of performance (Section 1.3) which are

independent and usually conflicting, 	One can improve the utilisation

(and increase the loading) of facilities at the expense of work-in-

progress or due-dates, 	The numerical values that each of them can

take are not directly comparable and if an overall evaluation of the

performance of a system is required, one has to link them in the form

of a composite criterion of performance (cost or utility function)

with subjectively defined coefficients. Such a composite criterion

of performance requires a composite decision rule, taking into

account the individual measures, since simple rules like FIFO, SI

etc. are unlikely to perform well for all of them.

The rule suggested here operates on each queue by calculating a

priority index p = j E 1 wj p., where w. is a weighting coefficient
J

N 	 '
(E 	w. = 100), p. is the priority attribute related to criterion j

=1

and N is the number of criteria taken into account.

- 192 -

A rule with three attributes is described below:

p =.w1 pl4w2
p2

 + w3 p3

The priority attribute pl is related to due dates and slack.

pl = Cl - 6) (Di - T - Pri)-x + ō (Di - T - Pri)
x

where D. is the due date of job i

T is the current time

Pri is the remaining processing of job i

6 = 1 if the job is late, or else 0.

x>0

When the quantity (Di - T - Pri),usually 	named slack, is a large

positive number, the risk of the job becoming late is small, while

it is high for small values of slack. The priority calculated in

this way can be plotted as in Figure 7.9 below.

Figure 7.9 	Priority values in a composite scheduling rule related

to due-dates,

P1

(Priority
Value)

Earliest
Start

	

Latest 	Due

	

Start 	Date

The second priority attribute p2 is related to work-in-progress, or

waiting in queues for processing.

- 193 -

p2 = { (T - Ri) / (Pi - Pri) }y

where Ri: arrival time of job i

Pi: total processing time of job i

y>0

With p2, the idea is to give high priority to jobs that have

been in the shop longer than some target value, e.g. jobs whose

flow time exceeds the total processing up to the current moment,

multiplied by a factor, using y to adjust the values numerically.

The basic idea can be used also if more elaborate calculations

are desired for the work-in-progress. A more exact method should

take into account not only the time spent waiting in queues but

also the value of the item waiting at every stage, based on the

cost of materials and on the added value from processing at

different facilities. The third priority attribute p3 is based

on a look-ahead (global) procedure, taking into account the size

of the queue at the machine of the subsequent operation of each

job. This can be extended to more than one subsequent operations

if required. The amount of processing known to be waiting for

the machine of the subsequent operation is Lm, and p3 = z Lm,

where z > 0 is a coefficient for adjusting the values of p3.

7.4.2 	Calibration and evaluation of the composite rule

This scheduling rule can take many forms, depending on the values

of the parameters and weighting coefficients.. The performance of

the rule for a particular measure of performance, simple or

composite,depends on these values. The objective of this experiment

has been to demonstrate that it is possible to define suitable

values of these coefficients, allowing the composite rule to

perform better than the simple rules of the preceding section.

- 194 -

Ideally the work should have been carried out for a composite

criterion of performance, but in order to avoid the complications

of using more arbitrary parameters, the average waiting time has

been used.

The W performance of the composite heuristic has been investigated

for fixed values of x,y,z and for a range of values of the

coefficients W.. The parameters x,y,z have been defined so that the

related priority attributes pl
, p2,

 p3 take values within an arbitrary

range (between 0 and 10, with 0 and 10 corresponding to extreme

cases and with a desired target value of 1). For deterministic

batch arrivals of Q = 1, 10 and 35, load factor p = 0.6 and 0.8,

the following sets of coefficients have been used:

wl w2 w3

0 0 100

50 0 50

100 0 0

0 50 50

0 ' 100 0

30 30 40

30 50 20

50 30 20

33 1 66

In each of these experiments, the average waiting time obtained

varied, depending on the combination of weighting coefficients

used. Although an 'optimal' set of W1, w2, w3 has always been

located, it has not been possible to establish a pattern for

varying batch size, load factor and variance of processing times.

The consequence of this lack of overriding pattern is that for

each special case of the problem (i.e. for each model, and

specific values of Q, P and Erlang parameter k) a separate

- 195 -

'calibration' is required in order to find the best combination

of coefficients for a given measure of performance.

Some tests have been carried out comparing the W performance of

the global composite rule with SI, SI*, FIFO using fixed values

of x,y,z with the results shown in Table 7.2 below (for p = 0.8).

Table 7.2 Comparison of the new composite rule with simple

dispatching rules.

W
Q Ek w l w2 Composite min 	(FIFO, 	SI, SI*)

1 9 33 1 89 86
1 o 0 50 72 82
10 9 0 0 104 103
10 0 0 83 101
35 9 33 1 208 219
35 o 50 0 190 240

These results, as expected, indicate that for the problems

investigated (and a"given criterion of performance), there is a

set of parameters (coefficients) with which the global rule gives

better results than FIFO, SI, SI*. For Q = 35, p = 0.8 and Eriang

estimated processing times the performance of the composite rule,

relatively to FIFO, SI, SI* was found to be the same, even when

the actual (real) processing times were assumed to be distributed

about the estimated with V = 0.5 and 1.0.

It is to be expected that for any sob-shop environment (model)

and any criterion of performance, there is a set of x,y,z,w l.w 2

and w 3 for which the global composite dispatching rule will perform

better than simple ones, like FIFO, SI, SI*. A problem with this

composite rule, which was predictable up to a certain extent, is

the computational costs associated with the search for a good

- 196 -

combination of coefficient values. The cost of investigating fully

such a rule in abstract terms, over a large range of job-shop

environments (models) will be high. This cost though will be

reduced when the job-shop and job-set (work load) characteristics

are specified, and such a search may become acceptable in relation

to a specific problem. The object of carrying out this work should

be seen therefore as a demonstration of the potential of the

composite rule not in an abstract theoretical case, but in a

specific job-shop. The implementation of such a rule should be

possible where an on-line data collection and production control

system is available. Thus the work of this section should be seen

as an attempt to adapt' 	a scheduling system to a real life

job-shop environment.

- 197 -

7.5. .cob-shops with identical machines in parallel

Analytical solutions to job-shop problems with m-machine centres and

more than one machine in each work-centre are practically impossible.

The obvious method available for, dealing with this extra degree of

complexity is simulation. A new approach, based on the principle of

similarity,is suggested here as an alternative to full-scale simulation

experiments. In this new method it is attempted to relate the results

(e.g. average waiting or queue length) of single-machine and m-machine

per work-centre, otherwise identical job-shops, by establishing some

model predicting the performance of the one from the other. In the

one-stage queueing systems with one or more identical servers in

parallel, and in networks of queues like those used in Section 7.3,

these quantities have been established to be functions of the load

factor. Thus it is to be expected that ratios of waiting times for two

different numbers of servers in parallel are also 	functions of the

load factor.

A limited experiment has been carried out with deterministic arrivals of

Q=35, E. processing times and load factors ranging from p=0.1 to p=0.9,

for the cases of 3 and 5 identical machines in parallel in each of the

5 work-centres of the model described in Section 7.2.

The ratios of the results for Average Queue Size, W, and aW of the cases

with 3 and 5 machines over the single-machine are given in Table E7 of

Appendix E and plotted against the load factor in Figure 7.10 (next page).

These results show that the ratios of- average waiting time, standard

deviation of waiting time and average queue length are constant for

load factor values ranging from p=0.1 to p=0.7. In this range of values,

with these results it is possible to predict the effects of changing the

number of machines in parallel on waiting times (mean and standard

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Load factor

-198-

Figure 7010 	Ratios of simulation results from models with r and r'

machines in parallel.

Ratio

deviation) and average queue length, without resorting to additional

simulation experiments. It is also possible to cover the near congestion

cases, by defining these ratios as functions of p .

The practical implication of this conclusion is that when studying

problems with more than one machine in parallel it is possible to use

the underlying similarities and avoid a lot of computational effort

and cost in simulation. This idea has been the motivation for the work

described in the following Section 7.6, where it has been attempted to

relate the W result of the general job-shop problem to the W of some

special cases, with queueing theory methodology.

- 19 9 -

7.6 Approximate formulae for networks of queues

Recent developments in queueing theory have changed the emphasis from

calculating analytically the values of average waiting time or average

queue size for complex single-stage problems, to deriving approximate

expressions (e.g. Kingman 1965, Page 1972) or using published results

derived by non-algebraic methods (Prabhu, 1965, and Page, 1972).

Page (1972) has suggested that linear interpolation in the values of these

tables gives reasonable approximations to waiting times for cases not

included. For the queue Ek /E Q/l,the average waiting time is approximately

w(Va2,vs- 2)=(1-Va2) (1-V s 	+2)W(0,0)(1-Va 	s)2VsW(0,1)+Va2(1-V s2)w(1,0)+Va2Vs 2w(i,l)

(1
where V2=1/k , Vs=1/31 and W (1,1) is the average waiting in the queue

M/M/1,W(0,1) in D/M/l, W (1,0) in M/D/1 and 'W (0,0) in D/D/1.

This form of approximation is satisfactory for the single server queues

and in this section a similar approach has been tried for another type

of queueing system, the general job-shop described by a network of

queues.

The basic idea is to use the network of queues as a single. 'black-box'

queue, obtain results from simulation experiments and test whether a

formula similar to (1) can be verified with d satisfactorily low error.

Assuming deterministic arrivals (Va=0), the formula is reduced to

W(0,VS)=(1-VS)W(0,0)+VSW(0,1) or

W(0,1/k)4 W(0,1)+(1-k)W(0,0) 	 (2)

where W(0,1) is the average waiting time for a system with identical

negative exponential distributions of the processing times and W(0,0)

- 200 -

for a completely deterministic system. The results summarised in Fig.7.6

of Section 7.3.3 suggest that such interpolation,based on the above

formUla,is reasonably accurate. To test this formula, With another method,

results obtained as described in the previous sections have been used

as the best estimates of average waiting time for the same model, for p=0.6

and p=0.8, Q=1, Q=10,Q=35 with FIFO,SI,SI*, COMP. The value of W from

the approximate formula is calculated, using the simulation values for

W(0,0) and W(0,1). The relative error e% for using this approximation is

given in Table E7 of Appendix E and a sample is presented in Table 7.3

below.

Table 7.3 	Average waiting time from simulation and approximate formulae

Dispatching rule

Erlang
Parameter

k

W
sim

FIFO

Wappr e% W
sim

SI

Wappr"
e%

Wsim

SI*

4'aPPr"
e%

1 348 - - 200 - 197 -
2 293 295 -0.1 204 221 8.3 199 208 4.5

3 283 278 -1.8 213 228 7.0 207 212 2.4

4 272 269 -1.1 214 232 8.4 206 214 3.9

5 267 264 -1.1 215 234 8.8 208 215 3.4

9 .262 255 -2.7 225 238 5.8 215 217 1.1

15 258 250 -3.0 229 240 4.8 219 219 0

30 255 247 -3.3 232 241 3.9 219 219 0

243 - 243 - - 220 -

These results suggest that the formula can give a reasonable approximation

of the average waiting time, with processing times of any V.

It is ;north noting that the error is consistent in most of the cases,

i.e. it is either positive or negative. This suggests that there may

- 201 -

be a systematic reason for these deviations. A number of sources of

this error could be considered; insufficiency of the approximate formula,

inaccuracy in assuming V2=1/k, simulation error in deriving W(0,0) or

W(0,1).

In order to investigate this approach further, an independent method of

deriving an approximate formula has been used,based on the single-stage

approximate formula developed by Cosmetatos (1974):

	

(D,G) 	s W (D,M) 	(1-s) W(D,D)

	

W (M,G) 	W(M,M) 	W(M,D)
(3_)

For heavy traffic conditions, where p -- 1

asW (GI/G/r: GD/°/°°) } (Vā+p2Vs)/2p (1-p)r 	(4)

Substituting in (3) above for r=1, (Vā)p=0, (V2a)M=1

(1+p2(Vs)M} {(VS)G - (VS)p}
S = 	

{1+p2(Vs)G) {(VS)M - (VS)D}

For the particular model under consideration with 5 machines, random

routes (as described in the previous section), and identical Ek of

processing times in all machines :

2 	2+ 3/ k
(Vs)G - 	

9

(VS)p = ?
9

V2 	_ 5
(s)m 	9

(5)

(See proof in Appendix E)

-202-

S
Substituting

1
9+5p2

k 9 + (2 + 3)p2
k

and for 	p--1 	S = 14/ (3+11k)

Using this value of S and the heavy traffic formula (4) in the original

approximate formula (3) of the preceding page:

LJ (D,G) = 	W (D,M) + (1-4 W (D,D) 	(6)
k 	 k 	•

This results in the same parameters as approximate formula (2)

and gives an explanation for a phenomenon already established

experimentally, with the simulation results.

The significance of these results lies in the fact that once some

approximate formula is constructed for a particular type of problem,

then a number of the results of intermediate cases that would be derived

from simulation can instead be estimated with 	reasonable accuracy from

the extreme cases of the same problem. The accuracy of this interpolation

is thought to be satisfactory, given that the simulation results for

the intermediate cases are anyway approximate, and that no exact or

analytical method exists for predicting the performance of scheduling

rules under different conditions.

CH4PTER 8

CONCLUSIONS AND FURTHER RESEARCH

	

8.1 	Discussion of the context and summary of the thesis

	

8.2 	Suggestions for further research

- 204 -

8.1 	Discussion of the context and summary of the thesis

Job-shop scheduling in practice is not a 'free-standing' problem, but

a sub-problem of the general one of production and operations management.

The question of detailed scheduling arises after obtaining demand fore-

casts and after deciding on the long and medium term allocation of

capacity(resources) over time. The complexity of aggregate planning

and the uncertainty and instability inherent in the real life systems

do not allow an overall optimisation of the long term capacity planning

and of the short term detailed scheduling.

Thus, it is believed, that long-range planning covering the allocation

of resources (capacity) to work load (tasks) is possible only with sub-

optimal methods based on crude models, simplifications of the real

problem, using the experience of past records and forecasts. 	Following

this planning stage only, detailed job-shop scheduling becomes relevant.

Although the meaning of optimality in industrial practice is rather

vague, due to the instability and variety of objectives, in theory it

is not. Theoretically optimal job-shop scheduling is possible with

simplifying assumptions and 	certainly desirable. However, the

potential of exact methods, as has been demonstrated in this thesis, is

limited by the complexity of the problem, to very small real life

problems. The approximate techniques and methodology presented in

this 	thesis can be used effectively for the sub-problems of the

decomposed production scheduling problem. It is envisaged that they

can be applied successully over short-term planning horizons, locally

at shop-floor level rather than for the problem of overall system

optimisation.

It is possible to link the two levels of planning (aggregate and detailed

scheduling) in an iterative procedure, where an initial allocation of

- 205 ..

capacity is followed by detailed scheduling. The degree to which the

overall objectives are satisfied can be used to decide whether a revision

of the long-term capacity allocation is required or not. In this way, a

feedback mechanism is used to control the aggregate loading (allocation of

capacity).

Within the context defined above, a study of approximate methods has been

carried out. A review of the exact (optimal) methods and of the recent

developments in the theory of computational complexity has demonstrated the

futility of research focused on finding 'good' algorithms for even the 	-

simplest form of the general n jobs m machines scheduling problem. It has

also shown the limitations of the size (complexity) of problems that can be

solved optimally with enumerative methods. The usefulness of optimal

solutions has also been disputed, given the inevitable human errors in

forecasting demand (numbers and types of jobs), processing times etc.

Thus the problem has been reformulated into 'finding good approximate

methods with predictable performance' and 'finding the most appropriate

approximate algorithm for a scheduling problem with given characteristics'.

Under this formulation, a range of problems has been investigated with

various approximate methods.

For flow-shops, the simplest form of the scheduling problem, with and

without in-process waiting, new non-enumerative heuristics have been

constructed, tested against the most powerful published ones and found to

be as good and usually better (Chapter 3).

For the general job-shop scheduling problem, the probabilistic and worst

case performance of simple single-pass heuristic rules have been established

for the first time, with a method that could be the model for a similar

analysis of all sorts of heuristics. A model for describing the probabilistic

behaviour of heuristics has been tested and found to be a satisfactory

predictor for other problems of different complexity (Chapter 4).

- 206 -

It has been felt that approximate methods based on local neighbourhood

search (LNS) could become a feasible proposition for many problems, where

more accuracy than that of a single-pass heuristic is required, without

bearing the computational cost of a complete tree search. With this

objective in mind, a number of issues have been studied. Strong lower

bounds have been calculated based on the relaxation of capacity constraints

in all but two machines. The complexity of job-shop scheduling problems

has been analysed and some characteristics of its tree representation

(depth) have been established, allowing an a-priori estimate of the tree

size. No correlation has been found between the variance of processing

times or the scheduling rule used for the tree generation and the depth

or the estimated size of the tree. A model describing the proportion of

the tree searched as a function of CPU time or number of iterations

has been proposed. An analysis has been carried out for simple heuristics

in this partially enumerative method, establishing for the first time,

bounds of heuristic performance, probabilistic descriptors of expected

behaviour and a model for 	'predicting the potential outcome of

incomplete search procedures. (Chapter 5)

Applications of statistical sampling methods in local neighbourhood

search (LNS) have been proposed, for stopping rules and bound calculations.

The Weibull distribution has been used as the limiting form of the

frequency distribution of the smallest members of samples of feasible

job-shop schedules, for the first time. Estimates of the optimal solution

have been obtained by calculating the most likely value of the Weibull

location parameter, allowing a tight bracket for the optimal solution

to be established. Estimates of the optimal solution of sub-problems,

with fixed partial sequence defined by the LNS partitioning method,

have been proposed as approximate lower bounds for a 'best-bound' search

strategy (Chapter 6).

- 207 -

For the stochastic-dynamic problem s where no exact analytical method

can be applied, simulation has been used to study special aspects of

the general problem. The sensitivity of simple and new composite

heuristics to changes in loading and in the data structures

(distribution, variance and error of estimates of processing times)

has been studied. Simple approximate models based on similarities of

job-shops to simpler queueing models, have been established for predicting

the performance of these heuristics (dispatching rules), as well as the

effects of changes in the number of machines in parallel (Chapter 7).

-208-

8.2 	Suggestions for further research

It is believed that no P-class algorithm can be constructed for the

general job-shop scheduling problem and that the practical benefits

' from finding a 'good' algorithm for some special case of a NP-complete

problem with one, two or three machines at best, are insignificant.

Thus, it is argued that future research should concentrate in the area

of sub-optimal or approximate methods, trying to establish guarantees

of performance, and in their implementation. The latter point is of

great importance, given the existing gap between the theory of scheduling

and the scheduling practices in industry (King, 1976, Dudek et al, 1974).

Although the general job-shop scheduling problem cannot be solved with

exact methods, the theory of scheduling, compared with the practice,

is relatively advanced. Work needs to be done towards bridging this

gap, taking into account the potential of the theory (single-pass

heuristics, LNS, simulation) and the current computer technology.

Some ideas which occured to the author during this project are listed

below. They were not however pursued for lack of time and for computational

expense.

(i) Flow-shop heuristics (Chapter 3)

A number of weighting coefficients could be tried in the 'slack-based'

and 'savings' heuristics and the ones with the best performance

for each type of problem established.

(ii) Local Neighbourhood Search (Chapters 5 and 6)

Instead of using the same heuristic scheduling rule during"a LNS,

it is worth trying different ones at various instances of the search.

In this way, simple rules could be used at the beginning of the tree

and some global rule, with a look ahead mechanism, near the bottom of

- 209 -

the tree. Alternatively, an initial solution and the related local

neighbourhood would be defined with some method. The search could

then be carried out using a simple heuristic, with the objective

of studying its performance as a function of the initial neighbourhood.

Another idea worth exploring is.concerned with a different back-

tracking mechanism. This is a heuristic method whereby backtracking

to the immediately previous level is not always necessary. In this

procedure, nodes that do not appear to be promising would be

ignored by 'jumptracking'. The criterion for ignoring nodes could

be based on comparison of the lower bounds; if the lower bounds at

two different level nodes are equal, further backtracking takes place.

It could be based also on a statistical estimate of the optimal

of the particular sub-problem defined by the node in question.

The idea of jumptracking seems to be particularly useful in an

interactive mode of operation of LNS.

(iii) 	Simulation and approximate network formulae.

The dynamic job-shop scheduling problem can be studied as a

sequence of static instances (Nelson et al 1977), with some form

of local neighbourhood search, where the jobset of executable

operations is updated. at. regular review times, with or without

preemption. A similar approach can be used when the set-up times

are sequence dependent. Every time a machine becomes idle, a

heuristic rule can be applied to select the next operation

(eg. minimum change-over cost).

The relative performance of single-pass non-delay (dispatching)

rules can be studied with simulation under conditions of limited

storage capacity between different work-centres (limited in-process

inventory), or under the assumption of machines breaking down

- 210 -

according to a Weibull process. When the machines are assumed

to have breakdowns, the operational flexibility becomes important.

' The effect of allowing such flexibility on the average waiting time

can be studied again with simulation.

The simulation results obtained (Chapter 7) suggest that approximate

formulae, based on interpolation, might be developed also for a

given processing times distribution, with the load factor as the

independent variable.

(iv) Interaction between detailed scheduling and aggregate capacity planning.

Attempts to link these two levels of planning have been restricted

to simplified job-shop models (Schwimer, 1972, Gelders and

Kleindorfer, 1974 and 1975). It is believed that there is scope

for further research in this direction, trying to link capacity

planning of real life production planning problems (eg Spachis,

1975, Adam and Surkis, 1977) with detailed scheduling, probably

in the form of LNS, as described in this thesis.

(v) Interaction between automatic LNS and human scheduler.

It is envisaged that the schedules would be presented in a Gantt-

chart form with the help of a video display unit (VDU), where the

scheduler would be able to resolve conflicts himself or instruct

the machine to do it according to prespecified routines.

A visual simulation would display the progress of scheduling.

The interactive software would then ask the scheduler whether to

continue or jumptrack, and whether to estimate the optimal solution

with sampling.

-211 -

(vi) Implementation of multiple objective criteria.

The criteria of performance used in industry are more complex

than'minimise makespan,machine idle time, work in progress'- etc.

They can be 'minimise cost', 'maximise return' and more generally,

'maximise profit'. The degree to which these generalised criteria

are satisfied can be measured with an objective function which

is set up as the weighted sum of all the deviations from given

targets. The difficulty is that the weight coefficients are

necessarily subjective and thus, in abstract form, meaningless.

One can assign values to them relevant togspecific context only.

At this point, the necessity of research in scheduling practices

in industry becomes apparent.

(vii) Routines for computerised scheduling.

A review of the Scheduling Handbook (O'Brien, 1969) shows that

the number of potential applications of scheduling techniques which

might influence the decision processes of managers, is very large.

Although there is some scope for manual application of scheduling

methods (New, 1975), the majority of real life scheduling problems

is so complex, that in some way or another, the implementation

has to be computerised. The interest in implementation lies not

in one-off applications but in complete and permanent adoption

of the approach, in the integration and institutionalization of

scheduling techniques. There is evidence that this is rather

limited (King, 1972 and 1975, Chazapis, 1977), confined to simple

forms of data processing and record keeping (Nicholson and

Pullen, 1974, Holden, 1976) rather than elaborate decision making.

This becomes apparent, when reviewing the available packages on

- 212 -

production control.

The commercial packages of computer manufacturers (PCS II of

Burroughs, FACTOR of Honeywell, CAPOSS of IBM, PROMPT of ICL etc)

provide a wide coverage of data processing and control functions.

Their main features include order processing (eg parts explosion,

requirements planning), some form of stock control, work-in-progress

-control, and usually simple dispatching rules for scheduling.

It is felt that more sophisticated scheduling routines, like a

depth-first LNS, can be of value in improving scheduling procedures.

These routines with relatively small core requirements. could be

used locally in mini-or even micro-processors and the resulting

schedules could be implemented at shop floor level, requiring

some form of interfacing with the main processors where the packages

are run. The development and implementation of these typesof

routines(procedures)either as free-standing programs or in

conjuction with some computerised data processing and control

system,is a feasible task even for small or medium size companies.

REFERENCES

-214-

ADAM N. and SURKIS J. (1977) A comparison of capacity planning techniques

in a job shop control system, Management Sci. 23, 1011-1015.

AGGARWAL S.C.,WYMAN P.F. and McCARL B.A. (1973) An investigation of a

cost-based rule for job-shop scheduling, Int. J. Production Research

11, 247-261.

ASHOUR S. (1970) A branch and bound algorithm for flow-shop scheduling

problems, AIIE Trans. 2, 172-176.

ASHOUR S. and HIREMATH S.R. (1973) A branch and bound approach to the job

shop sceduling problem, Int.J.Production Research 11, 47-58.

ASHOUR S.,MOORE T.E. and CHIU K.Y. (1974) An implicit enumeration

algorithm for the nonpreemptive shop scheduling problem, AIIE Trans.

6, 62-72.

ASHOUR S. and PARKER R.G. (1971) A precedence graph algorithm for the

shop scheduling problem, Operational Res. Quart. 22, 165-175.

ASHOUR S. and QURAISHI M.N. (1969) Investigation of various bounding

procedures for production scheduling problems, Int. J. Production

Research 8, 249-252.

ASHOUR S. and VASWANI S.D. (1972) A GASP simulation study of job-shop

scheduling, Simulation 18, 1-10.

BAKER C.T. and DZIELINSKI B.P. (1960) Simulation of a simplified job

shop, Management Sci. 6, 311-323.

BAKER K.R. (1974) Introduction to sequencing and scheduling, Wiley and Sons,

New York.

BAKER K.R. (1975b)An elimination method for the flow-shop problem,

Operations Res. 23, 159-162.

BAKER K.R. (1975a)A comparative study of flow-shop algorithms, Operations

Res. 23, 62-73.

BAKER K.R. and MARTIN J.B. (1974) An experimental comparison of solution

algorithms for the single-machine tardiness problem, Naval Res.

Logistics Quart. 21, 187-206.

BAKER K.R. and SCHRAGE L.E. (1978) Finding an optimal sequence by dynamic

programming: an extension to precedence-related tasks, Operations

Res. 26, 111-120.

BAKER K.R. and SU Z.-S. (1974) Sequencing with due-dates and early start

times to minimize maximum tardiness, Naval Res. Logistics Quart.

21, 171-176.

BALAS E. (1969) Machine sequencing via disjunctive graphs: an implicit

enumeration algorithm, Operations Res. 17, 941-957.

BANSAL S.P. (1977) Minimising the suOi of completion times of n jobs over

m machines in a flowshop: a branch-and-hound approach, AILE Trans.

9, 306-311.

- 215 -

BAZARAA M.S. and ELSHAFEI A.N. (1977) On the use of fictitious bounds in

tree search algorithms, Management Sci. 23, 904-907.

BESTWICK P.F. and HASTINGS N.A.J. (1976) A new bound for machine scheduling,

Operational Res. Quart. 27, 479-487.

BONNEY M.C. and GUNDRY S.W. (1976) Solutions to the constrained flowshop

sequencing problem, Operational Res. Quart. 27, 869-883.

BOWMAN E.H. (1959) The schedule-sequencing problem, Operations Res. 7,

621-624.

BRATLEY P., FLORIAN M. and ROBILLARD P. (1971) Scheduling with earliest

start and due-date constraints, Naval Res. Logistics Quart. 18,

511-519.

BRATLEY P., FLORIAN M. and ROBILLARD P. (1973) On sequencing with earliest

start and due dates with application to computing bounds for the

n/m/G/Fmax problem. Naval Res. Logistics Quart. 20, 57-67.

BRATLEY P., FLORIAN M. and ROBILLARD P. (1975) Scheduling with earliest

start and due date constraints on multiple machines, Naval Res.

Logistics Quart. 22, 165-174.

BROOKS G.H. and WHITE C.R. (1965) An algorithm for finding optimal or

near optimal solutions to the production scheduling problem,

J. Industrial Engineering 16, 34-40.

BRUNO J.L. (1976) Sequencing jobs with stochastic task structures on a

single machine, J. Assoc. Comp. Mach. 23, 655-664.

BUFFA E.S. and TAUBERT W.H. (1972) Production-inventory systems; Planning

and Control, Irwin, Homewood, Illinois.

BURNS R.N. (1976) Scheduling to minimise the weighted sum of completion

times with secondary criteria, Naval Res. Logistics Quart. 23,

125-129.

BURNS F. and ROOKER J. (1975) A special case of the 3xn flowshop problem,

Naval Res. Logistics Quart. 22, 811-817.

BURNS F. and ROOKER J. (1976) Johnson's three-machine flow-shop conjecture,

Operations Res. 24, 578-580.

BURNS F. and ROOKER J. (1978) Three-stage flow-shops with recessive second

stage, Operations Res. 26, 207-208.

CAMPBELL H.G., DUDEK R.A. and SMITH M.L. (1970) A heuristic algorithm for

the n-job, m-machine sequencing problem, Management Sci. 10, B630- 637.

CHARLTON J.M. and DEATH C.C. (1970a)A generalised machine-scheduling

algorithm, Operational Res. Quart. 21, 127-134.

CHARLTON J.M. and DEATH C.C. (1970b)A method of solution for general

machine-scheduling problems, Operations Res. 18, 689-707.

- 216 -

CHAZAPIS L. (1977) Minicomputers for production planning and control,

M Sc Dissert,Dept. of Management Sci., Imperial College of Science

and Technology, University of London.

CHOWDHURY I.G. (1976) Job scheduling with single and multiple operations,

Ph D Thesis, Dept. of Management Sci., Imperial College of Science

and Technology, University of London.

CHOWDHURY M.A. (1974) Operating procedures for multi-resource constrained

systems, Ph D Thesis, Faculty of Science and Engineering,

University of Birmingham.

CHRISTOFIDES N. (1975) Graph Theory: An algorithmic approach, Academic

Press, London.

CHRISTOFIDES N. (1976) Worst-case analysis of a new heuristic for the

travelling salesman problem, Research Report 388, Grad. School of

Industrial Admin., Carnegie-Mellon University, Pittsburgh, Pensylvania.

COFFMAN E.G. (ed) (1976) Computer and job-shop scheduling theory,

Wiley and Sons, New York.

COFFMAN E.G. and GRAHAM R.L. (1972) Optimal scheduling for two-processor

systems, Acta Informatica 1, 200-213.

CONWAY R.W. (1965) Priority dispatching and work-in-process inventory in

a job shop, J. Industrial Engineering 16, 123-130.

CONWAY R.W. and MAXWELL W.L. (1962) Network dispatching by the shortest

operation discipline, Operations Res 1, 51-73.

CONWAY R.W., MAXWELL W.L. and MILLER L.W. (1967) Theory of scheduling,

Addison-Wesley, Reading, Massachusetts.

COOK S.A. (1971) The complexity of theorem-proving procedures, Proceedings

of the 3rd Annual ACM Symposium on the theory of computing, 151-158.

CORWIN B.D. and ESOGBUE A.O. (1974) Two machine flowshop scheduling

problems with sequence dependent setup times: a dynamic programming

approach, Naval Res. Logistics Quart. 21, 515-524.

COSMETATOS G.P. (1974) Approximate equilibrium results for the multi-

server queue (GI/M/r), Operational Res. Quart. 25, 625-634.

COSMETATOS G.P. (1975)Approximate equilibrium results for the average

queueing time in the processes (M/D/r) and (D/M/r), INFOR -

Canadian J. Operational Res. 13, 328-331.

COSMETATOS G.P. (1976) Some approximate equilibrium results for the multi-

server queue (M/G/r), Operational Res. Quart. 27, 615-620.

COSMETATOS G.P. (1977) Cobham's model on preemptive multi-server queueing

systems, European J. Operat. Res. 1, 262-264.

COX D.R. and MILLER H.D. (1965) The theory of stochastic processes,

Methuen, London.

- 217 -
•

COX D.R. and SMITH W.L. (1961) Queues, Methuen, London.

CUNNINGHAM A. and TURNER I.B. (1973) Decision analysis for job-shop

scheduling, Omega 1, 733-746.

DANNENBRING D.G. (1977) An evaluation of flow shop sequencing heuristics,

Management Sci. 23, 1174-1182.

DAY J.E. and HOTTENSTEIN M.P. (1970) Review of sequencing research,

Naval Res. Logistics Quart. 17. 11-32.

DAY J.E. and HOTTENSTEIN M.P. (1975) The impact of advancing due-dates in

a pure job shop, Int. J. Production Research 13, 603-613.

DESSOUKY M.I. and MARGENTHALER C.R. (1972) The one-machine sequencing

problem with early starts and due dates, AIIE Trans. 4, 212-222.

DUDEK R.A., SMITH M.L. and PANWALKAR S.S. (1974) Use of a case study in

sequencing-scheduling research, Omega 2, 253-261.

EDMONDS J. (1965) Paths, trees and flowers, Canadian J. Mathematics

17, 449-467.

EILON S. The job shop simulation programme, Int. J. Production Research

11, 299-300.

EILON S. and CHOWDHURY I. (1975) Studies in a simulated job-shop, Proc.

I. Mech. E. 189, 417-425.

EILON S. and CHOWDHURY I.G. (1977) Minimising waiting time variance in

the single machine problem, Management Sci. 23, 567-575.

EILON S., CHOWDHURY I. and SERGHIOU S. (1975) Experiments with the SI*

rule in job-shop scheduling, Simulation, 24, 45-48.

EILON S. and COTTERILL D.J. (1968) A modified SI rule in job shop _

scheduling, In 	J. Production Research 7, 135-145.

EILON S. and HODGSON R.M. (1967) Job-shop scheduling with due dates,

Int. J. Production Research 6, 1-13.

EILON S. and KING J.R. (1967) Industrial scheduling abstracts (1950-

1966), Oliver and Boyd, London.

EILON S., WATSON-GANDY C.D.T. and CHRISTOFIDES N. (1971) Distribution

management: mathematical modelling and practical analysis, Griffin,

London.

ELMAGHRABY S. (1968) The machine sequencing problem - review and extensions,.

Naval Res. Logistics Quart. 15, 205--232.

ELMAGHRABY S.E. (ed) (1973) Symposium on the theory of scheduling and

its applications, Lecture notes in economics and mathematical systems,

Springer-V'erlag, Berlin.

ELVERS D.A. (1974) The sensitivity of the relative effectiveness of job=

shop dispatching rules with respect to various arrival distributions,

AIIE Trans. 6, 41-49.

-218-

ERDOS P. and SPENCER J. (1974) Probabilistic methods in combinatorics,

Academic Press, New York.

ESKEW J.D. and PARKER R.G. (1975) Computational experience with a

cost-based algorithm for the shop scheduling problem, Operational

Res. Quart. 26, 211-215.

FISHER M.L. (1973) Optimal solution of scheduling problems using

Lagrange multipliers: Part I, Operations Res. 21, 1114-1127.

FISHER M.L. (1976) A dual algorithm for the one-machine scheduling

problem, Math. Programming 11, 229-251.

FISHER R.A. and TIPPETT L.H.C. (1927) Limiting forms of the frequency

distribution of the largest or smallest member of a sample,

Proceedings of the Cambridge Philosophical Society 24, 180-190.

FISHMAN G. (1973) Discrete event digital simulation: concepts and

methods, Wiley and Sons, New York.

FLORIAN M., TILQUIN C. and TILQUIN G. (1975) An implicit enumeration

algorithm for complex scheduling problems, Int. J. Production

Research 13, 25-40.

FLORIAN M., TREPANT P. and McMAHON G. (1971) An implicit enumeration

algorithm for the machine sey encina problem,Management Sci. 17. B782-792.

GAREY M.R., GRAHAM R.L. and JOHNSON D.S. (1978) Performance guarantees

for scheduling algorithms, Operations Res. 26, 3-21.

GAREY M.R., JOHNSON D.S. and SETHI R. (1976) The complexity of flow-

shop and job-shop scheduling, Math. Operations Res. 1, 117-129.

GELDERS L. and KLEINDORFER P.R. (1974) Coordinating aggregate and

detailed scheduling decisions in the one-machine job-shop. I Theory,

Operations Res. 22, 46-60.

GELDERS L. and KLEINDORFER P.R. (1975) Coordinating aggregate and

detailed scheduling decisions in the one-machine job-shop.

II Computation and structure, Operations Res. 23, 312-324.

GELDERS L.F. and SAMBANDAM N. (1978) Four simple heuristics for

scheduling a flow-shop, Int. J. Production Research 16, 221-231.

GEOFFRION A.M. (1971) Duality in nonlinear programming, SIAM Review

13, 1-37.

GEOFFRION A.M. (1974) Lagrangean relaxation and its uses in integer

programming, Math. Programming Study 2, 82-114.

GERE W. (1966) Heuristics in job-shop scheduling, Management Sci.

13, 164-180.

GIFFLER B. and THOMPSON G. (1960) Algorithms for solving production-scheduling

- 219 -

problems, Operations Res. 8. 487-503.

GILMORE P.C. and GOMORY R.E. (1964) Sequencing a one state-variable

machine: a solvable case of the traveling salesman problem,

Operations Res. 12, 655-679.

GOLDEN B.L. (1977) A statistical approach to the TSP, Networks 7, 209-225.

GONZALEZ T. and SAHNI S. (1978) Preemptive scheduling of uniform

processor systems, J. Assoc. Comp. Mach. 25, 92-101.

GONZALEZ T. and SAHNI S. (1978) Flowshop and jobshop schedules: complexity

and approximation, Operations Res. 26, 36-52.

GRAHAM R.L. (1966) Bounds for certain multiprocessing anomalies,

Bell System Tech. J. 45, 1563-1581.

GRAHAM R.L. (1969) Bounds on multiprocessing timing anomalies, SIAM

J. Applied Math. 17, 416-429.

GRAHAM R.L. (1978) The combinational mathematics of scheduling,

Scientific American 238, 124-132.

GREENBERG H.H. (1968) A branch-bound solution to the general scheduling

problem, Operations Res. 16, 353-361.

GUPTA J.N.D. (1971) The generalized n-job m-machine scheduling problem,

Opsearch 8, 173-185.

GUPTA J.N.D. (1972) Heuristic algorithms for multistage flowshop

scheduling problems, AIIE Trans. 4, 11-18.

GUPTA J.N.D. (1975) Optimal schedules for special structure flowshops,

Naval Res. Logistics Quart. 22, 255-269.

GUPTA J.N.D. (1976) Optimal flowshop schedules with no intermediate

storage space, Naval Res. Logistics Quart. 23, 235-243.

GUPTA J.N.D. (1973) Flowshop scheduling by heuristic decomposition,

Int. J. Production Research 11, 105-111.

GUPTA J.N.D. (1978) Improved dominance conditions for the three-machine

flowshop scheduling problem, Operations Res. 26, 200-203.

HARDGRAVE W.W. and NEMHAUSER G.L. (1963) A geometric method and a

graphical algorithm for a sequencing problem, Operations Res.

12, 655-679.

HASTINGS N.A.J. and PEACOCK J.B. (1974) Statistical Distributions,

Butterworths, London.

HELLER J. (1960) Some numerical! experiments for an M x J flow shop

and its decision-theoretical aspects, Operations Res. 8, 178-184.

HELD M. and KARP R.M. (1962) A dynamic programming approach to sequencing

problems, J. SIAM 10, 196-210.

HELD M. and KARP R.M. (1970) The travelling salesman problem and

- 220 -

minimum spanning trees, Operations Res. 18, 1138-1162.

HELD M. and KARP R.M. (1971) The travelling salesman problem and

minimum spanning trees: Part II, Math. Programming 1, 6-25.

HERSHAUER J.C. and EBERT R.J. (1975) Search and simulation selection

of a job-shop sequencing rule, Management Sci. 21, 833-843.

HOEL P.G. (1971) Introduction to mathematical statistics, 4th ed.,

Wiley and Sons, New York.

HOLDEN G.K. (1976) Production control: packages and services, 2nd ed.,

National Computing Centre, Factfinder 13.

HOLLIER R.H. (1968) A simulation study of sequencing in batch production,

Operational Res. Quart. 19, 389-407.

HOLLOWAY C.A. and NELSON R.T. (1973) Alternative formulation of the

job-shop problem with due dates, Management Sci. 20, 65-75.

HOLLOWAY C.A. and NELSON R.T. (1974) Job-shop scheduling with due-

dates and variable processing times, Management Sci. 20, 1264-1275.

HOLLOWAY C.A. and NELSON R.T. (1975) Job-shop scheduling with due

dates and operation overlap feasibility, AIIE Trans. 7, 16-20.

HORN W.A. (1972) Single-machine job sequencing with treelike

precedence ordering and linear delay penalties, SIAM J. Applied

Math. 23, 189-202.

HOTTENSTEIN M.P. (1970) Expediting in job-order-control systems:

a simulation study, AIIE Trans. 2, 46-54.

HU T.C. (1961) Parallel sequencing and assembly line problems,

Operations Res. 9, 841-848.

IBARAKI T. (1976a)Computational efficiency of approximate branch and

bound algorithms, Math. Operations Res. 1,287-298.

IBARAKI T. (1976b)Theoretical comparisons of search strategies in

branch-and-bound algorithms, Int. J. Computer and Information

Sci. 5, 315-344.

IBARAKI T. (1977) On the computational efficiency of branch-and-

bound algorithms, J. Operations Res. Soc. Japan 20, 16-35.

IGNALL E. and SCHRAGE L. (1965) Application of the branch-and-bound

technique to some flow-shop scheduling problems, Operations

Res. 13, 400-412.

JACKSON J.R. (1956) An extension of Johnson's results on job lot

scheduling, Naval Res. Logistics Quart. 3, 201-203.

JACKSON J.R. (1957) Simulation research on job-shop production,

Naval Res. Logistics Quart. 4, 287-295.

- 221 -

JACKSON J.R. (1963) Job-shop-like queueing systems, Management Sci.

10, 131-142.

JOHNSON S.M. (1954) Optimal two- and three-stage production schedules

with set up times included, Naval Res. Logistics Quart. 1, 61-68.

JOHNSON D.S., DEMERS A., ULLMAN J.D., GAREY M.R. and GRAHAM R.L. (1974)

Worst-case performance bounds for simple one-dimensional packing

algorithms, SIAM J. Computing 3, 299-326.

JONES C.H. (1973) An economic evaluation of job shop dispatching rules,

Management Sci. 20, 293-307.

JSS (1972) Job shop simulation programme manual, Report, Dept. of

Management Science, Imperial College of Science and Technology,

University of London.

KARP R.M. (1972) Reducibility among combinational problems in

MILLER R.E. and THATCHER J.W. (eds) 'Complexity of computer

computations', Plennum Press, New York.

KARP R.M. (1975) On the computational complexity of conbinational

problems, Networks 5, 45-68.

KARP R.M. (1977) Probabilistic analysis of partitioning algorithms

for the travelling-salesman problem in the plane, Math. Operations

Res. 2, 209-224.

KING J.R. (1972) Production planning and control by computer - A

survey, The Production Engineer 51, 333-336.

KING J.R. (1975) Production planning and control; an introduction

to quantitative methods, Pergamon Press, Oxford.

KING J.R. (1976) The theory-practice gap in job-shop scheduling,

The Production Engineer 55, 137-143.

KINGMAN J.F.C. (1970) Inequalities in the theory of queues, Journal

of the Royal Statistical Society, B 32, 102-107.

KLEINROCK L. (1975) Queueing systems: Vol 1 Theory, Wiley and Sons,

New York.

KLEINROCK L. (1976) Queueing systems: Vol 2 Comput. applications,

Wiley and Sons, New York.

KISE H., IBARAKI T. and MINE H. (1978) A solvable case of the one-

machine scheduling probl'em with ready and due times, Operations

Res. 26, 121-126.

KLEE V. and MINTY G.I. (1972) How good is the simplex algorithm ?, 159-175,

In: SHISHA 0. (ed.) 'Inequalities III', Academic Press, New York.

KOHLER W.H. and STEIGLITZ K. (1975) Exact, approximate and guaranteeded

accuracy algorithms for the flow-shop problem nil/Fir

J. Assoc. Comput. Mach. 22, 106-114.

- 222 - 	s

KRONE M.J. and STEIGLITZ K. (1974) Heuristic programming solution

of a flow-shop scheduling problem, Operations Res. 22, 629-638.

LAGEWEG B.J., LENSTRA J.K and RINNOY KAN A.H.G. (1978) A general

bounding scheme for the permutation flow-shop problem, Operations

Res. 26, 53-67.

LAWLER E.L. (1964) On scheduling problems with deferral costs,

Management Sci. 11, 280-288.

LAWLER E.L. (1973) Optimal sequencing of a single machine subject

to precedence constraints, Management Sci. 19, 544-546.

LAWLER E.L. A "pseudopolynomial" algorithm for sequencing jobs to

minimize total tardiness, Annals of Discrete Mathematics

1, 331-342.

LAWLER E.L. and MOORE J.M. (1969) A functional equation and its

application to resource allocation and sequencing problems,

Management Sci. 16, 77-84.

LAWLER E.L. and WOOD D.E. (1966) Branch and bound methods: a survey,

Operations Res. 14, 699-719.

LEE A.M. (1966) Applied queueing theory, Macmillan.

LENSTRA J.K. (1977) Sequencing by enumerative methods, Mathematical

Centre Tracts 69, Amsterdam.

LENSTRA J.K., RINNOOY KAN A.H.G. and BRUCKER P. (1977) Complexity

of machine scheduling problems, Annals of Discrete Mathematics

1, 343-362.

LIN S. (1965) Computer solutions of the travelling salesman problem,

Bell System Tech. J. 44, 2245-2269.

LITTLE J.D.G., MURTY K.G., SWEENEY D.W. and KAREL G. (1963)

An algorithm for the travelling salesman problem, Operations

Res. 11, 972-989.

LOMNICKI Z.A. (1965) A branch-and-bound algorithm for the exact

solution of the three-machine scheduling problem, Operations

Res. Quart. 16, 89-100.

MCMAHON G.B. and BURTON P.G. (1967) Flow-shop scheduling with the

branch and bound method, Operations Res. 15, 473-481.

MCMAHON G.B. and FLORIAN M. (1975) On scheduling with ready times

and due dates to minimise maximum lateness, Operations Res.

23, 475-482.

MANNE A.S. (1960) On the job shop scheduling problem, Operations

Res. 8, 219-223.

- 223 - a

MARCHAL W.G. (1976) An approximate formula for waiting time in single

server queues, AIIE Trans. 8, 473-474.

MELLOR P. (1966) A review of job-shop scheduling, Operational Res.

• Quart. 17, 161-171.

MERTEN A.G. and MULLER M.E. (1972) Variance minimization in single

machine sequencing problems, Management Sci. 18, 518-528.

MITTEN L.G. (1958) Sequencing n jobs on two machines with arbitrary

time lags, Management Sci. 5, 293-298.

MITTEN L.G. (1970) Branch and bound methods: general formulation

and properties, Operations_Res. 18, 24-34.

MOOD A.M. and GRAYBILL F.A. (1963) Introduction to the theory of

statistics, 2nd ed., McGraw Hill, New York.

MOODIE C.L. and ROBERTS S.D. (1968) Experiments with priority dispatching

rules in a parallel processor shop, Int. J. Production Research

6, 303-312.

MOORE J.M. (1968) An n job, one machine sequencing algorithm for

minimizing the number of late jobs, Management Sci. 14, 102-109.

MUTH J.F. and THOMPSON G.L. (eds.) (1963) Industrial scheduling,

Prentice-Hall, Englewood Cliffs, New Jersey.

NELSON R.T. (1967) Labor and machine limited production systems,

Management Sci. 13, 648-671.

NELSON R.T „HOLLOWAY C.A. and WONG R.M.-L. (1977) Centralised

scheduling and priority implementation heuristics for a dynamic

job-shop model, AIIE Trans. 9, 95-102.

NEW C.C. (1975) Job-shop scheduling: Is manual application of

dispatching rules feasible ?, Operations Res. Quart. 26, 35-43.

NEWELL G.F. (1973) Approximate stochastic behaviour of n-server service

systems with large n, Springer-Verlag, Berlin.

NICHOLSON T.A.J. and PULLEN R.D. (1974) Computers.in production

management decisions, Pitman, London,

O'BRIEN J.J. (1969) Scheduling handbook, McGraw Hill ,

ORAL M. and MALOUIN J.L. (1973) Evaluation of the shortest processing

time scheduling rule with truncation process, AIIE Trans.

5, 357-365.

PACE A.J. (1969) Priority loading rules in job-shop scheduling, MPhil.

thesis, Management Engineering Section, Imperial College of

Science and Technology, University of London.

-224-

PAGE E.S. (1961) An approach to the scheduling of jobs on machines,

Journal of Royal Statistical Society, B 23, 484-492.

PAGE E. (1973) Queueing theory in O.R., Butterworth, London.

PALMER D.S. (1965) Sequencing jobs through a multi-stage process in

the minimum total time - a quick method of obtaining a near

optimum, Operational Res. Quart. 16, 101-107.

PANWALKAR S.S. and ISKANDER W. (1977) A survey of scheduling rules,

Operations Res. 25, 45-61.

PANWALKAR S.S. and KHAN A.W. (1976) An ordered flow-shop sequencing

problem with mean completion time criterion, Int. J. Production

Research 14, 631-635.

PANWALKAR S.S. and KHAN A.W. (1977) A convex property of an ordered

flow-shop sequencing problem, Naval Res. Logistics Quart.

24, 159-162.

PRABHU N.U. (1965) Queues and inventories, Wiley and Sons, New York.

PRITSKER A.A.B., WATTERS L.J. and WOLFE P.M. (1969) Multi-project

scheduling with limited resources: a zero-one programming

approach, Management Sci. 16, 93-108.

RANDOLPH P.H., SWINSON G. and ELLINGSEN C. (1973) Stopping rules for

sequencing problems, Operations Res. 21, 1309-1315.

RAO N.P. (1976) A viable alternative to the 'method of stages'

solution of series production systems with Erlang service times,

Int. J. Production Research.l4, 699-702.

RAU J.G. (1970) Minimising a function of permutations of n integers,

Operations Res. 18, 237-240.

REDDI S.S. and RAMAMOORTHY C.V. (1972) On the flow-shop sequencing

problem with no wait in process, Operational Res. Quart.

23, 323-331.

REINGOLD E.M., NIEVERGELT J. and DEO J. (1977) Combinatorial algorithms:

theory and practice, Prentice-Hall, Eaglewood Cliffs, New Jersey.

RINNOYKAN A.H.G. (1976) Machine scheduling problems: classification,

complexity and computations, Nijhoff, The Hague,

RINNOY KAN A.H.G., LAGEWEG B.J. and LENSTRA J.K. (1975) Minimizing

total costs in one-machine scheduling, Operations Res. 23, 908-927.

ROCHETTE R. and SADOWSKI R. (1976) Statistical comparison of the

performance of simple dispatching rules for a particular set of

job-shops, Int. J. Production Research 14, 63-75.

ROSENSHINE M. and CHANDRA M.J. (1975) Approximate solutions for some

two-stage tandem queues, Part 1: Individual arrivals at the second

stage, Operations Res. 23, 1155-1166.

- 225 - •

ROWE A.J. and JACKSON J-.R. (1956) Research problems in production

routing and scheduling, J. Industrial Engineering 7, 116-121.

SAATY T.L. (1961) Elements of queueing theory, McGraw Hill, New York.

SAHNI S.K. (1976) Algorithms for scheduling independent tasks, J.

Assoc. Comp. Mach. 23, 116-127.

SAHNI S. and GONZALEZ T. (1976) P - complete approximation problems,

J. Assoc. Comp. Mach. 23, 555-565.

SALKIN H.M. and KLUYVER C.A. (1975) The knapsack problem: a survey,

Naval Res. Logistics Quart. 22, 127-144.

SCHRAGE L. (1970) Solving resource-constrained network problems by

implicit enumeration - non-preemptive case, Operations Res.

18, 263-278.

SCHRAGE L. (1975) Minimizing the time-in-system variance for a finite

jobset, Management Sci. 21, 540-543.

SCHMIDT J.W. and TAYLOR R.E. (1970) Simulation and analysis of industrial

systems, Irwin, Illinois.

SHAPIRO J. (1977) A survey of Lagrangean techniques for discrete

optimisation, Techn. Rep. 133, OR Centre, MIT, Cambridge, Massachusetts.

SHWIMER J. (1972) Interaction between aggregate and detailed scheduling

in a job-shop, Ph D Dissertation, Sloan School of Management, MIT,

Cambridge, Massachusetts.

SHWIMER J. (1972) On the n-job one-machine sequence independent scheduling

problem with tardiness and penalties: a branch and bound solution,

Management Sci. 18, 301-313.

SETHI R. (1977) On the complexity of mean flow time scheduling,

Math. Operations Res. 2, 320-330.

SIDNEY J.B. (1975) Decomposition algorithms for single-machine

sequencing with precedence relations and deferral costs, Operations

Res. 23, 283-298.

SIDNEY J.B. (1977) Optimal single-machine scheduling with earliness

and tardiness penalties, Operations Res. 25, 62-69.

SMITH W.E. (1956) Various optimisers for single-stage production,

Naval Res. Logistics Quart. 3, 59-66.

SMITH M.L., PANWALKAR S.S. and DUDEK R.A. (1975) Flowshop sequencing

problem with ordered processing time matrices, Management Sci.

21, 544-549.

SMITH M.L., PANWALKAR S.S. and DUDEK R.A. (1976) Flowshop sequencing

problem with ordered processing time matrices: a general case,

Naval Res. Logistics Quart. 23, 481-486.

- 226 -

SPACHIS A. (1975) Production scheduling in a canning company, M Sc

Dissertation, Dept. of Management Science, Imperial College of.

.Science and Technology, University of London.

SPACHIS A. (1978a) Routines for heuristic flow-shop scheduling with

no-job-passing and/or no-waiting, Report, Dept. of Management

Science, Imperial College of Science and Technology, University

of London.

SPACHIS A. (1978b) Routines for local neighbourhood search and statistical

methods in job-shop scheduling, Report, Dept. of Management

Science, Imperial College df Science and Technology, University

of London.

SZWARC W. (1960) Solution of the Akers-Friedman scheduling problem,

Operations Res. 8, 782-788.

SZWARC W. (1971) Elimination methods in the m x n sequencing problems,

Naval Res. Logistics Quart. 18, 295-305.

SZWARC W. (1974) Mathematical aspects of the 3 x n job-shop sequencing

problem, Naval Res. Logistics Quart. 21, 145-154.

SZWARC W. (1977) Optimal two-machine orderings in the 3 x n flow-shop

problem, Operations Res. 25, 70-77.

SZWARC W. (1978) Dominance conditions for the three-machine flow-shop

problem. Operations Res. 26, 203-206.

SZWARC W. and HUTCHINSON G.K. (1977) Johnson's approximate method for

the 3 x n job-shop problem, Naval Res. Logistics Quart. 24, 153-157.

TAHA H.A. (1976) Operations Research - an introduction, 2nd ed.,

Macmillan, New York.

TOWNSEND W. (1977a) Sequencing n jobs on m machines to minimise

maximum tardiness: a branch-and-bound solution, Management Sci.

23, 1016-1019.

TOWNSEND W. (1977b) Minimising the maximum penalty in the m-machine

sequencing problem, Operational Res. Quart. 28, 727-734.

TOWNSEND W. (1977c) Minimising the maximum penalty in the two-machine

flow-shop, Management Sci. 24, 230-234.

ULLMAN J.D. (1976) Complexity of sequencing problems,l39-164,in:COFFMAN E.G.

(ed.) 'Comniiter and joh-shon scheduling theory',!iiley and Sons, N.Y.

USKUP E. and SMITH S.B. (1975) A branch-and-bound algorithm for two-

stage production-sequencing problems, Operations Res. 23, 118-136.

WAGNER H.M. (1972) Principles of operations research, Prentice Hall Int.,

London.

- 227 -

WAGNER H.M. (1959) An integer programming model for machine scheduling,

Naval Res. Logistics Quart. 6, 131-140.

WEIBULL W. (1951) A statistical distribution function of wide applicability,

Journal of Applied Mechanics 18, 293-297.

WISMER D.A. (1972) Solution of the flow-shop scheduling problem with

no intermediate queues, Operations Res. 20, 689-687.

APPENDICES

10 	•

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 X

f(x)

1.4

1.3

1.2

I.1

I.0

.9

.8

.7

.6

,5

.4

.3

.2

-229-

- 	APPENDIX A

Erlang process generator

The Erlang distribution is.a statistical distribution which takes

different forms for different values of a shape parameter k. In

fact, the Erlang family of distributions is a special case of the

Gamma, where the shape parameter is integer.

The Erlang probability density function is

f(x) = (x/b)k-1
exp(-x/b)/{b(k-1):}

where b is the scale parameter. The cumulative distribution function

is
F(x) = 1-{exp(-x/b)}(kEl(x/b)/i:)

1=o

where the mean is p= bk , the variance is a2 = b2k and hence, the

coefficient of variation is

V=o/u =1/VI

The distribution density function is plotted below for a number of

values of the shape parameter k.

Figure Al Erlang distribution with scale parameter b=1

with mean: k(p/k) =p and variance: k(p/k)2 = p2/k

x = E X.
i=1 1

- 230 -

For k=1 the Erlang distribution reduces to the negative exponential.

In fact the variate x of Ek is the sum of k independent variates

xi, i=1,k from a negative exponential with mean p/k and variance

p2/ k2

The implication is that if an operation is composed of k sub-

operations coming from the same negative exponential then its

aggregate distribution can be described by Ek.

Random numbers of the variate x of the negative exponential

distribution with mean 1/a = p/k = b can be computed from random

numbers r of the uniform rectangular distribution since

r = F(x) , r = 1-exp(-Ax) and x = (-1/a)1n(1-r)

Suffices to use r instead of 1-r for x

x = (-1/a) lnr

The Erlang k random variate x then is:
K

x = (-p/k)ln(01 r)

Table Al Heuristics for flow-shop scheduling with no-job-passing

	

E1 processing times
	

E9 processing times

No. of No. of Problem Lower Random CDS 	hl 	h2 	h3 	h4 	h5
	

Problem Lower Random CDS 	hl 	h2 	h3 	h4 	h5
Jobs 	Mach.
	bound
	

bound

10 4 Cl 61 77 75 70 70 74 77 81 C6 58 89 73 74 73 74 80 77

C2 68 109 86 92 84 90 94 100 C7 72 95 85 84 84 84 89 87

C3 58 88 70 71 73 71 80 91 C8 63 85 78 78 78 78 87 83

C4 61 87 81 87 78 87 101 98 C9 64 76 77 75 77 77 78 77

C5 83 101 94 92 92 92 95 95 C10 70 87 79 78 78 87 78 80

20 5 D1 132 172 139 140 144 144 158 164 D6 119 147 146 146 143 145 152 146

D2 152 208 205 215 202 214 220 212 D7 122 153 143 140 140 143 154 148

D3 131 185 173 160 153 160 173 186 D8 123 148 142 143 142 143 155 152

D4 144 191 153 158 161 164 187 182 D9 122 151 142 145 145 145 152 148

D5 132 161 152 148 148 154 197 189 D10 120 151 144 145 142 144 157 150

35 5 El 289 269 252 241 266 315 323 E6 229 218 225 223 228 234 229

E2 263 241 257 253 262 320 314 E7 243 228 231 229 231 241 242

E3 318 243 255 253 270 290 286 E8 244 231 234 228 229 250 244

E4 295 237 223 223 237 307 314 E9 230 221 220 221 222 230 231

E5 318 249 262 265 278 290 285 El0 240 227 229 230 232 235 233

Table A2 Heuristics for flow-shop scheduling with no-waiting

E1 processing times
	

E9 processing times

No. of 	No. of 	Problem Optimal Random 	H1 	H2 	H3 	H4 	H5 	Problem Optimal Random 	H1 H2 H3 H4 H5

Jobs Machines 	Solution 	 Solution

10 4 B1 97 120 109 109 116 101 	98 B6 79 98 80 85 86 81 80

B2 89 129 93 109 110 94 	90 B7 84 98 85 92 92 89 84

B3 106 143 106 109 109 112 	112 B8 79 84 81 85 81 79 81

B4 82 112 86 88 89 89 	86 B9 80 92 83 86 89 84 80

B5 82 112 84 86 89 89 	85 B10 74 86 74 78 77 77 77

20 5 D1 160 234 167 174 175 175 166 D6 152 183 156 156 160 156 155

D2 227 342 238 251 266 238 236 D7 151 182 152 162 164 155 156

D3 188 285 199 2.19 228 205 201 D8 149 172 155 153 153 154 155

D4 175 266 189 185 185 189 178 D9 150 172 154 152 158 156 154

D5 175 247 188 193 183 198 183 D10 ' 151 177 155 156 160 157 153

35 5 El 298 498 313 330 343 305 322 E6 232 285 234 244 243 236 244

E2 295 452 297 297 297 295 313 E7 241 300 245 246 251 249 248

E3 296 457 302 309 308 308,325 E8 249 309 256 252 255 249 253

E4 264 417 285 290 297 286 296 E9 232 298 238 240 243 244 236

E5 291 460 308 299 327 318 308 El0 239 244 249 250 249 245 251

- 233 -

APPENDIX B

Table B1

Bracket for optimal solution (BOS) with single pass active

job-shop scheduling heuristic ECT

Problem

E9 processing times

n=10,m=4 	n=20,m=5 	n=35,m=5

E36 processing times

n=10,m=4 	n=20,m=5 	n=35,m=5

1 .08 .03 .08 .10 .03 .07

2 .09 .06 .08 .14 .08 .09

3 .09 .07 .09 .14 .09 .10

4 .11 .08 .10 .14 .09 .10

5 .12 .08 .11 .14 .09 .15

6 .13 .08 .15 .10

7 .13 .09 .15 .10

8 .14 .09 .15 .12

9 .14 .09 .18 .12

10 .16 .10 .18 .12

11 .17 .12 .18 .13

12 .19 .13 .18 .13

13 .19 .13 .19 .14

14 .22 .14 .19 .14

15 .23 .16 .19 .15

16 .24 .18 .20 .15

17 .25 .19 .20 .16

18 .25 .20 .22 .16

19 .29 ,22 .22 .18

20 .31 .22 .25 .18

- 234

APPENDIX C

Extension to Jackson's method for n/2/G/C
max

 problem

Algorithm (Jackson, 1956)

Partition set of jobs in 4 sub-sets, AB, A, BA, B according to the

order of their operations (A and B stand for the two machines)

where sets AB and BA are ordered with Johnson's rule. Construct

optimal sequence by ordering the jobs as follows:

machine A 	AB,A,BA

machine B 	BA,B,AB

Jackson's algorithm gives the optimal sequence also when the two

machines are not available simultaneously, as can be seen below.

In machine A, there are no delays for operations of the subsets

AB and A, and in machine B of the subsets BA and B. In the optimal

schedule, delays are possible in one of the two machines only, and

not in both simultaneously; assuming there are idle times in machine

B (sets AB or A), there can be no delays for the operations of

sets BA, B in machine A, because the operations of BA in machine B

are completed before the AB,A operations in machine A, and thus any

initial delay in machine A will not affect the optimal sequence.

If, on the other hand. machine B is not available from the start of

the schedule, delays that would arise otherwise will be reduced or

eliminated, but again no other sequence can produce a schedule

with smaller makespan.

- 235 -

Estimates of the size of the set of active solutions

The complete space of active solutions of a job-shop scheduling

problem can be represented by a tree. Each traversal of this tree,

starting from the first level of nodes, passing from one node at

every other level and ending in the bottom of the tree, describes

fully one solution. Although the size of the tree for every problem

is bounded by (n:)m, the actual size is substantially reduced by the

'characteristic function' which eliminates the non-feasible sequences,

allowing only those described by the transfer function to be

constructed.

Counting the members of the set A of the active solutions (ie the size

of the tree) is not a practical proposition. Instead, it is possible

to estimate its size by the value of the function Td using a

statistical method for branching processes (Cox and Miller, 1965).

Each node i at some level -d has a number of offsprings or branches,

(between 2 and n) and the probabilities of these values occurring are

respectively
go, gl, g2,

 g3.....gn with a distibution {gi}

(go = gl = 0). Let Y
d = j denote the number of nodes in the d - th

generation (or level). The node i for i = 1,....j has zi branches,

where si has a distribution
{g.

1}. 	The number of nodes in the next

generation is

Yd+1=zl+z2+
	

i
+z. = Ē z.
j 	-1 1

and 	Prob(Y
d+l

=k/Yd=j) = Prob(zl-i-z2+....+zj=k)

- 236 -

The probability generating function P(t) defined for discrete

variates is a function of an auxiliary variable t such that the

coefficient of ti is the probability density function g1.

P(t) = jEOtxgi 	, 	x>o

and 	gi = (1/x:) (a'p(t)/at1)t=0

Then 	Prob(zl+ z2+....+zj=k) = coefficient of tk in {P(t)}3

It is practically impossible to derive an explicit expression

describing the distribution of k at level d. It has been possible

though to calculate the mean 	and variance 	of its distribution

recursively from

Pd -u ud-1

2 2d-2
vd = Q u 	+uv

drl

where u,G2 are the mean and variance of number of branches per

individual node.

Assuming that u,a2 are the same for all nodes, then

vd = a2ud-1 (ud-1)/(u-1

- 237 -

Under this assumption p and
a2
 are easily calculated from the data

generated during the tree search.

number of branches generated
P = humber of nodes (conflicts) generated =Nb/Nc

n

	

a2 =(1/N).E (z.-p)2 f. 	f. the observed frequency
c 1-2 > 	1 	1 of nodes with zibranches

Every time a solution improvement is obtained, the proportion of the

tree that has been searched is:

Pr = 1 - (Remaining tree)/(Total tree) = 1 - Rd/Td

where

n-h
Rd =h=1 uh.p

h is the level number of an active node

uh is the number of unexplored branches at the active

node of level h

and thus

d n-h d
Pr 	1 - (hEluh.0)/u

The value lid is only a statistical estimate, and the confidence for

its value depends on the variance vd. Under the assumption of u,Q
2

constant, vd depends mainly on the size of the tree described by p
d

It is certain that n > u > 2 and therefore the terms p
d-1

and

d
(u -1)/(u-1) increase exponentially. The drawback of this method of

estimating the size of the tree is that for large trees, even for

small values of 62, vd is large. Another drawback of this method,

which is particularly salient in large trees is the assumption of u

being constant. The initial stages of the tree search are likely to

have more branches per node than those near the bottom of the tree.

This is due to the fact that near the end, large partial schedules

are already fixed and there are fewer unscheduled operations left

as candidates for conflicts. This agrees with the computational

- 238 -

experience on this method with large problems where most of the

solution time is spent searching the lower parts of the tree which

results in an overall p (average branches per node) decreasing with

time.

Another method which appears to be more reliable has been used and is

described below. This method is based on the assumption that the zi

sub-trees originating from the zi branches of a node i at level h,

have the same number of branches at the bottom of the tree (the same

number of active solutions).

The important feature of this assumption is that the error although

unknown is likely to be small and self-balancing. This method avoids

completely any assumption about the values of p and Q2 and is more

realistic,. since it avoids using a constant - depth d for the tree.

A recursive formula is constructed, for calculating the total Ti and

remaining tree R. at level i, starting from the bottom of the tree

(i=0 at bottom of tree, i=d at the top). At every level i, in the

depth-first search method there is one active node only, with ti

branches, ri of which are still unexplored (have not yet become active

nodes).

For every complete active solution

To = 1

Ro = 0 	i.e. 	To > Ro

At every level i

ti >_ r.+l 	t. > r.

It is

Ri+i = Ri+(Ti ri)

Ti+1 = Ti ti

If Ti > R. then
Ti+l > Ri+l

- 239 -

Ti+1 = T. t. >_ Ti
ri + Ti > Tiri + Ri = R1+1

The proportion searched is computed from

Pr = 1 - R
d/Td

At large problems, Ti and Ri become very large numbers and special

care must be taken to avoid overflow of digits in the computer storage

of integers, which might result in Ti being treated as equal to Ri.

Table Cl Average and standard deviation of regression coefficients

from the solution improvements model.

ECT

TL=5
n=10 m=4

FCFS SPT

TL=10
n=10 m=4

ECT 	FCFS SPT

TL=60
n=35 m=5

ECT 	FCFS 	SPT

E1 mean .435 .341 .448 .295 .148 .229 .215 .216 .199

SD .244 .235 .224 .191 .133 .118 .040 .106 .088

UR mean .403 .317 .289 .252 .343 .335 .235 .133 .102

SD .183 .188 .243 .180 .159 .115 .213 .033 .056

E4 mean .414 .271 .301 .296 .230 .308 .162 .364 .130

SD .189 .183 .161 .150 .062 .168 .034 .099 .075

E9 mean .181 .225 .257 .247 .251 .190 .342 .256 .109

SD .127 .123 .078 .192 .091 .079 .329 .075 .045

E36 mean .350 .415 .272 .120 .267 .200 .347 .245 .077

SD .382 .283 .062 .063 .171 .136 .208 .230 .008

IMPROV.OF BRACKET FOR OPTIMAL SOL. BY B+B

A B R

ECT(21 -1.038 -0.240 -0.981

FCFS(21 -1.066 -0.312 -0.905

SPT(31 -1.461 -0.035 -0.849

s T

F F

io

Model 1

3•T

1113

i2.o0 	I1.0 	2:40 	00.00 	22.20 	12.02 	
11/
IS Cl

OF lit
CO

	.0 c- 	.0.:0 	1740 	01.00 	03 00 	41.00 	Fi.00 	'i.:o 	'I.. 	4b c. `boo .1o1 iW

- 240 -

Figure Cl 	Models for continuous approximation of the step function

of the improvements for BOS.

DIMENSION DISTRIBUTION SEED LLB TLIMIT

104 	1 5 36 	345 61 60.0

:iMEFJS10N DISTRIBUTION SEED LLB TLIMIT

104 	I 5 36 	345 61 60.0

IMPROV.OF•BRACKET :OR OPTIMAL SOL. BY BOB

ECTII 1

FCFS1 z 1
S P T (3 1

A 	B 	P.

-0.577 - 1.176 -0.920
-0.B29 - 1.173 - 0.853
-1.133 -0.34', -U.975

Model 2

OPT

Lb 00 	Z00 	4.00 	ii 00 	0.00 	20.00 	01.00 	2i.00 	22.00 	
i 4. 00r 40.00 	C 1. 	

1 0 	12.00 	30.30 	51.00 	03.00 	00.00 	4i 00 	72.00 	72.00 	e 3

'I LU 	..ao~ -- i.00 	ii oo 	i1 co 	:o.o, 	7. 13 	:0 02 	01.E 	10.00F 13 .E1R 10
..03 	40.03 	12.00 	soa3 	10.00 	14.10 	s'a .c0 	72 .07 	16r3 	u.o.

- 241 -

DIMENSION DISTRIBUTION SEED LLB TLIMIT

104 	1 5 36 	345 61 60.0

TMPROV.OF BRACKET FOR OPTIMAL SOL. BY 8.8

A 	B 	R

	

ECT111 	-1.711 -0.076 -0.896

	

FCFSI2I 	-1.952 -0.070 -0.902

	

51'1131 	-1.532 -0.018 -0.790

1

T

F F

Model 3

i.00 	£2.00 	10.10 	20 00 	r:.01 	11.00 	12.0:
	1
II

Ē 0F .0 01ail Oh
500 	10.00 	12 00 	14, CO 	40.00 	40.00 	10.00 	10 .00 	11 CO 	1ū

DISTRIBUTION SEED LLB TLIMIT

1014 	•1 5 36 	345 61 60.0

IMPROV.O' BRACKET FOR OPTIMAL 50L. BY 8.8

A 	B 	R

	

ECllil 	-0.705 -0.954 -0.969

	

FLF5I21 	-1.047 -0.882 -0.985

	

SPT131 	-1.146 -0.301 -0.567

Model 4

3

LC15
I

- 242 -

ENSION DISTRIBUTION SEED LLB TLIMIT
104 	1 5 36 	345 61 60.0

IMPROV.OF BRACKET FOR OPTIMAL SOL. BY 8.8

A 	B 	R

	

ECT(il 	-0.830 -0.901 -0.903

	

FCFS121 	-1.195 -0.81? -0.873

	

5P1131 	-1.178 -0.289 -0.935

Model 6

 spy

3

_

.

ii.o0 	10.06 	20.0, 	04•00 	1.0 CI 	17.00
1)0 no
	42

00 iON$
0 	05.00 	50.00 	15.00 	60.01 	M.00 	65.00 	'12.00 70.0 	10.01 `S ō .:au i 0

DIMENSION 'DISTRIBUTION SEED LLB TLIMIT
104 	1 5 36 	345 61 60.0

IMPROV.OF BRACKET FOR OPTIMAL SOL. BY BoB

Model 5

	,Opt

3-T

F F

A 	B 	R

	

ECT(i1 	-1.961 -0.046 -0.698

	

FCFS(21 	-2.179 -0.038 -0.662

	

SP1(31 	-1.573 -0.014 -0.701

l 	 [CIS

0
43. 00 	.40 	or 00 	10.00 	:5.00 	:6 CO 	15 00 	06.00 	57.00 	

li0
50 00
	i0EAa11045 0 	

.5.00 	11 00 	15.:] 	61..00 	65 00 	10.00 	470-0-7448 ca

- 243 -

APPENDIX D

Table D1

Table of critical values of D in the Koimogorov-Smirnov one-sample test

Sample
size

Level of significance for D = maximum IF0(X) 	- SN(X)I

N .20 .15.' .10 .05 .OT

1 .900 .925 .950 .975 .995
2 .681 .720 -.776 .842 .929
3 .565 .597 .642 .703 .828
4 .494 .525 .564 .624 .733
5 .446 .474 .510 .565 .669

6 .410 .486 .470 .521 .618
7 .381 .405 .433 .486 .577
8 .358 .381 .441 .457 .543
9 .330 .360 .388 .432 .514
10 .322 .343 .368 .410 .490

11 .307 .326 .352 .391 .468
12 .295 .313 .338 .375 .450
13 .284 .302 .325 .361 .433
14 .274 .292 .314 .349 .418
15 .266 .283 .304 .338 .404

16 .258 .274 .295 .328 .392
17 .250 .266 .286 .318 .381
18 .244 .259 .278 .309 .371
19 .237 .252 .272 .301 .363
20 .231 .246 .264 .294 .356

25 .21 .22 .24 .27 .32
30 .19 .20 .22 .24 .29
35 .18 .19 .21 .23 .27

Over 35 	1.07. 	1.14 	1.22 	.J.36 	1.63

	

iN 	✓N 	✓N 	✓N 	IN

- 244 -

APPENDIX E

Approximate formulae for complex queueing systems with general

queueing discipline.

iW(GI/G/r) } a2+p2Vs2)/2p (1-p)r for p-1

(Kingman, 1970)

W(Ek/ER/r) = (1-Va2) (1-V52) W (D/D/r) + (l_Va2) Vs2W (D/M/r) +

+ (1-Vs2) Va2 W (M/D/r) + Va2Vs2W (M/M/r)

(Page, 1972)

2Va2 	W(M/M/r) + 1-Va2 	W(D/M/r)}
 W GI/M/r') W(GI/M/r) = { 	

1+Va2 W(M/M/r') 1+Va2 W(D/M/r')

(Cosmetatos, 1974)

2(V
a 2

+V 2) - (1-p) (1-V 2) {V 2(3-V 2) + 4V 2(1-V 2)}
W(GI/G/r) _ 	s 	a 	s 	s 	a 	s

 W(M/M/r)
4

(Rosenshine and Chandra, 1975)

(1+V 2) (Va2+p2Vs2)p l
W(GI/G/I) = 	

2(1-p) (1 +p2Vs2) 	u

(Marchal, 1976)

W(M/G/r) 	= Vs2 W (M/M/r) + (1.-Vs2) W (M/D/r)

(Cosmetatos, 1975)

- 245 -

Expansion of the distribution function of processing times.

For a distribution function f(x) describing the processing times in

a job-shop, the moment generating function is defined as:

M (t) 	 otx f(x) dx

This can be expressed also as a MacLaurin series:

M(t) = M(o) + t M'(o) + t2 M" (o) + R2
1' 	2'

where R2 represents the remaining part of the series, after the second

moment:

R2 = (t3/3`) MJ" (et) 	o<e<1

M" (o) = Q2+u2

thus M(t) = 1 + t u + (t2/2) (a
2
+p2) + R2

-246-

Mean and variance of aggregate distribution of processing times in a

network of queues.

In the model used, the number of operation per job (M) is from a uniform

rectangular distribution between 1 and 5. Each operation is from an

Erlang distribution Ek, the same for all machines. The mean p and

variance a2 of the aggregate distribution of processing times are:

u = E(P..) E(M)

a2 = VAR(Pij) E(M) + {E(Pij)}2 VAR(M)

For the model used

E(M) = 3

2
VAR(M) = 	-1 - 2

12

and for Erlang distributed processing times

VAR (Pij) = {E(Pij)}2/k

and 	V2=a2/u2 = (2+3/k) / 9

For 	k=1 	(V
2
) = 5/9.

k= co (V2)D = 2/9

Table El Simulation results for Normally distributed processing times

	

(Q=35 	p=0.8 	p=20)

Standard Deviation Q

0.20 	2.00 	3.65 	5.16 	6.67 	8.94 	10.00 	11.54 	14.14

AVERAGE WAITING TIME

20.0 Scheduling
Rule

SI 243 228 222 217 212 206 204 202 203 227
SI* 215 210 206 202 197 195 195 195 196 222
FIFO 243 243 244 245 247 252 254 260 275 355

MEAN QUEUE SIZE

SI 3.2 3.0 3.0 2.9 2.8 2.7 2.7 2.7 2.7 3.0
SI* 2.9 2.8 2.7 2.7 2.6 2.6 2.6 2.6 3.0
FIFO 3.2 3.2 3.2 3.3 3.3 3.4 3.4 3.5 3.7 4.7

AVERAGE LATENESS

SI 183 163 162 157 152 146 143 142 142 162
SI* 155 150 146 142 137 135 134 135 158
FIFO 183 183 184 185 187 194 194 199 214 290

Table E2

Load
Factor

Average waiting time for Erlang distributed processing times

Parameter of Erlang distribution (k) Batch
Size

Q P 1 2 3 4 	5 9 15 30 03

SI

1 0.8 110 90 87 85 	82 84 82 85 82

10 0.6 63 56 55 54 	54 54 54 55
10 0.8 117 103 100 99 	98 103 101 105 101
10 	' 0.9 201 192 200 197 	192 222 220 227

35 0.6 163 179 187 190 	194 202 207 211 235
35 0.7 173 184 191 195 	197 205 210 213 235
35 0,8 200 204 213 214 	215 225 229 232 243

35 0.85 227 230 238 240 	240 256 261 263 262

35 0.9 2.73 2.82 295 298 	298 329 332 340 315

35 0.95 400 437 482 456 	474 528 560 573 458

35 0.95 363 412 467 444 	436 512 526 544 458

35 0.95 Aver. 382 425 475 450 	455 520 543 560 458

SI*

1 0.8 136 113 103 102 	98 96 91 93 81

10 0.8 141 122 116 	, 113 	113 113 111 112 102

35 0.8 197 199 206 206 	208 215 219 219 220

FIFO

1 0.6 75 52 41 35 27

1 0.8 228 157 136 128 	119 109 101 98 82

10 0.8 249 179 155 148 	140 150 123 120 101

35 0.8 348 293 283 272 	267 262 258 255 243

Table E3 	Average queue size for Erlang distributed processing times

Batch 	Load 	Parameter of Erlang processing times distribution (k)
Size 	Factor

Q p 1 2 3 4 	5 9 15 30

SI

1 0.8 1.46 1.20 1.15 1.13 	1.09 1.12 1.09 1.14 1.09

10 0.6 0.63 0.56 0.55 0.54 	0.54 0.54 0.54 0.55
10 0.8 1.56 1.37 1.32 1.31 	1.31 1.37 1.35 1.40 1.34
10 0.9 3.02 2.90 3.01 2.96 	2.89 3.33 3.30 3.40

35 0.6 1.63 1.79 1.86 1.91 	1.94 2.01 2.06 2.10 2.34
35 0.7 2.01 2.14 2.22 2.27 	2.30 2.39 2.44 2.48 2.73
35 0.8 2.66 2.71 2.83 2.84 	2.86 2.99 3.04 3.08 3.23
35 0.85 3.21 3.25 3.37 3.40 	3.40 3,61 3.69 3.71 3.70 I,
35 0.9 4.09 4.23 4.43 4.46 	4.45 4.92 4.97 5.09 4.71 UD

35 0.95 6.42 6.94 7.72 7.24 	7.53 8.38 8.89 9.15 7.22 1
35 0.95 6.06 6.72 7.73 7.18 	7.20 8.16 8.41 8.71 7.24

SI*

1 0.8 1.81 1.50 1.37 1.36 	1.30 1.28 1.21 1.24 1.08
10 0.8 1.88 1.62 1.54 1.50 	1.50 1.50 - 	1,47 1.49 1,36

35 0.8 2.62 2.65 2.74 2.74 	2.76 2.85 2.91 2,91 3.00

FIFO

1 0.6 0.75 0.52 0.40 4.34 0.27
1 0.8 3.04 2.09 1.82 1.70 	1.58 1,45 1.35 1.30 1.09

10 0.8 3.31 2.38 2.06 1.97 	1.86 1.73 1.60 1.60 1.34

35 0.8 4.63 3.89 3.76 3.61 	3.55 3.48 3.42 3.39 3.23

Table E4

Load
Factor

Average lateness (missed due dates) for Erlang distributed processing times

Parameter of Erlang processing times distribution (k) Batch
Size

Q P 1 2 3 4 	5 9 15 30

SI

1 0.8 48 28 25 23 	21 23 21 24 22

10 0.6 2 -5 -6 -7 	-7 -7 -7 -6
10 0.8 56 42 38 38 	37 41 40 44 41
10 0.9 139 131 139 136 	131 160 158 165

35 0.6 102 118 125 121 	133 141 146 150 175
35 0.7 111 123 129 133 	136 143 148 152 175
35 0.8 138 142 151 152 	154 164 167 170 183
35 0.85 166 168 177 179 	180 194 200 201 202
35 0.9 211 220 234 237 	235 267 271 279 255
35 0.95 339 375 421 394 	413 467 498 512 398
35 0.95 302 351 406 382 	374 451 465 482 398

SI*

1 0.8 74 51 42 41 	37 35 29 32 21

10 0,8 79 61 54 52 	51 52 49 51 42

35 0.8 .136 138 145 144 	146 153 157 158 162

FIFO

1 0,6 14 -9 -21 -27 -33

1 008 167 96 75 66 	58 48 40 37 22

10 0.8 187 117 94 87 	78 68 61 59 41

35 0.8 287 231 221 210 	206 201 196 194 183

- 251 -

Table E5 	Effects of inaccuracy of processing times estimates.

(Normal distribution about expected values)

Average waiting time

Vs

(Expected
Processing

Times)

Vr

(Real
Processing

Times)
FIFO SI SI*

0 0 243 243 220

(E.) 0.5 261 261 240

1.0 388 388 375

0.5 0 271 214 206

(E4) 0.5 303 236 229

1.0 516 370 363

1.0 0 347 200 197

(E1) 0.5 458 240 240

1.0 938 410 414

Table E6 	Similarity of job shops with identical machines in parallel.

Load factor p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9 0.95

PI 234 234 234 234 234 234 234 244 263 314 457

113 50 50 50 50 50 50 50 56 66 90 143

P5 15 15 15 15 15 15 17 25 36 47 84

113/111 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.230 0.250 0.286 0.312

115/111 0.064 0.064 0.064 0.064 0.064 0.064 0.073 0.103 0.136 0.149 0.181

al 122 122 122 122 122 122 122 127 144 185 276

a3 29 29 29 29 29 29 29 34 42 59 90

a5 14 14 14 14 14 14 17 19 26 34 55

a3/al 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.268 0:291 0.319 0.326

a5/al 0.115 0.115 0.115 0.115 0.115 0.115 0.139 0.149 0.180 0.184 0.199

L1 0.39 0.78 1.17 1.56 1.95 2.34 2.73 3.23 3.70 4.71 7.22

L3 0.25 0.50 0.75 1.00 1.24 1.49 1.75 2.25 2.87 4.09 6.81

L5 0.13 0.26 0.39 0.52 0.65 0.78 1.03 1.72 2.56 3.64 6.70

L3/L1 0.641 0.641 0.641 0.641 0.636 0.636 0.641 0.645 0.776 0.868 0.943

L5/L1 0.33 0.33 0.33 0.33 0.33 0.33 0.37 0.53 0.69 0.77 0.93

Average waiting time for r identical machines is parallel

ar 	Standard deviation of waiting times for r identical machines is parallel

Lr 	Average queue length for r identical machines is parallel

`.)

Table E7 	Average waiting time from simulation and approximate formulae

Q=1, p=0.8

Erl ang
parameter

k

1

Wsim

228

FIFO

Wapprox

-

e%

-

Wsim

110

SI

Wapprox

-

e%

-

Wsim

136

SI*

Wapprox

-

e%

2 157 155 1.3 90 96 6.7 113 109 -3.5
3 136 131 -3.7 87 91 4.6 103 99 -3.9
4 128 119 -7.0 85 89 4.7 102 95 -6.9
5 119 111 -6.7 82 88 7.3 98 92 -6.1
9 109 98 -10.0 84 85 1.2 96 87 -9.4
15 101 92 -8.9 82 84 2.4 91 85 -6.6
30 98 87 -11.2 85 83 -2.3 93 83 -10.7

82 - - 81 - ,81 - -

Q=35, 	SI

p = 0.7 p=0.85 p=0.9

1 173 227 - 273
2 184 204 11 230 244 6.0 282 294 4.2
3 191 214 12 238 250 5.0 295 301 2.0
4 ' 195 219 12 240 253 5.4 298 304 2.0
5 198 222 12 241 254 5.8 298 307 3.0
9 205 228 11 256 255 -0.4 329 310 -5.8
15 210 231 10 261 260 -0.4 332 312 -6.0
30 213 233 10 263 261 -0.8 340 314 -7.6
Co 235 - 262 315 - -

- 254 -

Table E7 (continued) 	Global composite scheduling rule

Q=1:

P

Coefficients

w1 	w2

~fM t D lbk=2

SIM APPROX c%

4Jk=9

SIM APPROX c%

0.8 30 30 178 74 130 126 -3.0 91 86 -5.5
0.8 0 0 191 72 135 131 -3.0 89 85 -4.5
0.8 100 0 231 87 164 159 -3.0 113 103 -8.8
0.8 33 1 182, 72 131 127 -3.0 89 84 -5.6

0.6 30 30 63 27 49 45 -8.1 34 31 -8.8
0.6 0 0 69 27 51 48 -5.9 34 32 -5.9
0.6 100 0 68 28 51 48 -5.9 35 32 -8.5
0.6 33 1 67 27 50 47 -6.0 34 31 -7.3

Q=10

P

Coefficients

w1 	w2

0.8 0 0
0.8 30 30
0.8 100 0
0.8 33 1

0.6 0 0
0.6 30 30
0.6 100 0
0.6 33 1

Q=35

Coefficients

P
	

wl 	2

	

0.8 	0 	0

	

0.8 	30 	30

	

0.8 	100 	0

	

0.8 	33 	1

	

0.6 	0 	0

	

0.6 	30 	30

	

0.6 	100 	0

	

0.6 	33 	1

Wig 	WD 	Wk=2 	Wk=9

SIM APPROX c% SIM APPROX c%

211 83 149 147 -1.3 105 97 -7.6
183 90 141 137 -3.2 110 100 -9.1
251 108 183 177 -1.9 131 124 -5.3
190 86 144 138 -4.2 106 98 -7.5

89 50 69 69 0.0 58 54 -6.9
80 50 67 65 -3.0 57 53 -7.0
91 52 72 72 0.0 59 56 -4.6
84 50 67 67 0.0 57 54 -5.3

W1 W. W2

SIM APPROX c

W9

SIM APPROX c%

305 199 247 252 2.0 219 211 -3.6
257 213 239 235 -1.7 225 218 -3.1
339 216 272 277 2.0 229 229 0.0
272 192 236 232 -1.7 208 201 -3.4

225 188 205 206 0.7 201 192 -4.5
196 202 199 199 0.0 209 201 -3.8
198 203 196 200 2.3 205 202 -1.2
199 179 191 189 -1.0 191 181 -5.2

