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ABSTRACT 

The general job~shop scheduling problem can be solved optimally only with 

prohibitively expensive enumerative methods, as has been demonstrated by 

the recent advancements in the theory of computational complexity. 

Thus sub-optimal or approximate procedures are the only realistic 

alternative. 

The objective of this thesis is to investigate the suitability and 

performance of approximate methods (ad hoc algorithms, exact methods 

for relaxed problems and incomplete search procedures) applied to 

different facets of the basic problem. Apart from the development of 

efficient single-pass and enumerative flow-shop and job-shop heuristics, 

a new methodology is suggested with which performance guarantees are 

established and the expected behaviour of heuristics is assessed 

probabilistically, under different job-shop environments. A model of the 

dynamic behaviour of heuristics based on local neighbourhood search is 

developed for stopping decisions. Statistical methods are used to 

obtain estimates of optimal solution values for improved bound calculations 

and stopping rules in incomplete search procedures. 

The behaviour of a new global and a number of local dispatching rules 

(single-pass, non-delay heuristics) is investigated in a dynamic and 

stochastic job-shop environment, with simulation. The effects of various 

data structures (differing in loading and in the statistical distribution, 

variance and accuracy of processing times estimates) on average waiting 

and on other measures of performance are studied. Approximate formulae 

are suggested for the calculation of the expected performance of heuristics 

in job-shops with differing variance of processing times. 

Finally, the context within which these approximate methods can be applied 

and the aspects of implementation that require further research are discussed. 
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1.1 Definitions 

'Scheduling is the allocation of resources over time to perform a 

collection of tasks' (Baker, 1974). This is one of the many 

definitions available. All of them have two elements in common, 

though they use different words: resources and tasks. Resources (or 

facilities) may be machines in an engineering industry, computers, 

doctors-nurses in a hospital, and generally processors. Tasks or 

more commonly jobs, require one or more operations on any combination 

of the facilities. 

Scheduling includes also the sequencing function which given a 

set of 'tasks' and 'facilities' defines a sequence-succession of 

the operations on each facility. In this sense a sequence is 

not automatically a schedule. The sequence does not indicate 

start and completion times of the tasks. It is possible though 

to derive a complete schedule from the sequence. 

The single most important field of application: of scheduling 

is in production planning, within the area of operations management. 

The problem originates from the production function in industry, 

and this is reflected in the prevailing terminology. 

Nowadays a number of problems outside this traditional area can be 

formulated and solved as scheduling problems. The most common are: 

the examination of patients by doctors in hospitals, manpower 

scheduling (e.g. nurses in hospitals) to provide a minimum service level 

per shift, the sequencing of programs in computers, the order of 

visiting cities by a salesman, preparing school timetables for 

teachers and classes. Besides these, there are a lot of common 

problems that are by nature scheduling and sequencing ones, and 

therefore can be dealt with
A
thh tools of scheduling theory. 
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1.2 Notation  

The notation and terminology adopted-are the ones suggested by Conway, 

Maxwell and Miller (1967), Baker (1974) and adopted by the major 

periodicals in the field. 

completion time of job i 

Cmax 
makespan (time elapsed between start of schedule 
and finish of last operation). 

Fi 	flow time (Ci  less time of entry) 

Wi 	waiting time 

Pi 	aggregate processing time of job Pi = 
xl 	 J Pi'  

Pij 	processing time of job i in facility j 

Di 	Due date 

Ri 	time of entry 

Li 	lateness (or missed due date) 

Ei 	earliness 

Ti 	tardiness 

I. 	idle time of machine j over makespan Cmax Ij 
 

Then, by definition: 

W. = F.- P. 
1 	1 

Ci  =Ri+ F. 

Ci  = Ri+ P.+ Wi  

Li  = C.- Di  

T. = max (O,L.) 

Ei  = max (0,-Li) 

-.E 
 

Ij  = C
max 	 1Pij 

(may be positive, zero or negative) 

Ci  
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The following notation is also used: 

n number of jobs 

m 	number of machines 

G 	general job-shop sequence 

F general flow-shop sequence 

P 	permutation flow-shop 

D 	deterministic arrivals or servicing in 
stochastic and/or dynamic problems 

M 	negative exponential process (Markovian) 

Ek 	Erlang process 

G. 	general independent 

UR 	uniform rectangular distribution 

A 	set of active schedules 

u mean value 

a 	standard deviation 

V 	coefficient of variation (V = a/p) 

a 	linear regression constant 

linear regression coefficient 

✓ correlation coefficient 

be 	lower bound 

b* 	minimum of lower bounds 

bu 	upper bound 

a 	location parameter 

b 	scale parameter 

c 	shape parameter 
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1.3 Classification 

There are several possibilities for distinguishing scheduling 

problems. 

(i) Randomness 

The problem is deterministic if all the data involved 

are deterministic (processing times, sequences, 

technological constraints, availability of facilities). 

The problem is stochastic if any of the data is stochastic. 

(ii) Change of characteristics over time. The problem is 

static if none of the initial data changes over time, e.g. 

if all the jobs that are to be considered are available 

simultaneously at the beginning of the scheduling period. 

The problem is dynamic if the data is subject to change 

with time, e.g. when the jobs arrive intermittently 

during the scheduling period. 

This broad classification can be represented in the following table: 

•Deterministic 	Stochastic 

Static 	I 	III 

Dynamic 	II 	IV 

The simplest form is the static and deterministic (I). 

At the other end the dynamic and stochastic (IV) ones are the most 

complex. 

Further classification is possible based on the resources available. 

There may be only one unit of each resource or many in parallel 

(scheduling of parallel processors) and they may be in one single 

stage or multistage (general job-shop scheduling). 

The sequence (technological and precedence constraints) is another 

important feature for classification. The scheduling problems are 

divided into: 
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G 	general job-shop 

F 	flow-shop (every job has the same path) 

P 	permutation (the same job-sequence in all 
machines) 

The classification adopted can be represented with four parameters 

as follows (Conway, Maxwell and Miller, 1967): 

pl / p2 / p3 / p4 

For static and deterministic problems:. 

pl  is the number of jobs n 

p2  is the number of machines m 

p3  describes the sequence pattern of operations 
(G,F or P) 

p4  describes the criterion of performance on which 
the schedule will be evaluated 

For dynamic and stochastic problems a classification/notation based 

on queuing theory is adopted,p5 / p6 / p7, where 

p5  is the arrival rate descriptor. 
It can be D : deterministic 

M : negative exponential/Poisson 
(Markovian) 

Ek: Erlang with parameter K 
G.: general independent 

p6  describes the processing times distribution 

p7  is the number of facilities in parallel 

Additionally it is useful for certain problems to specify another 

three parameters, p8  / p9  / p10  , where 

p$  describes the priority discipline in the queues 

p9  is the size of the population 

p10 is the limit to the size of the queue. 
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1.4 Criteria of performance  

The real scheduling problems in the production context are not 

restricted to finding a schedule or sequence allowing 

the tasks to be performed, but also fulfilling some goals/ 

objectives. In practice these may be: 

reduce queueing times 

reduce stocks of finished goods or raw materials 

reduce work in progress 

increase production output 

reduce back orders 

reduce delivery periods and product lead times 

reduce idle time of facilities 

reduce idle time of manpower 

reduce staff level and overtime 

meet delivery targets 

etc 

Apart from these direct objectives, some indirect ones are of 

interest: 

improve competitive position 

reduce labour turnover 

increase controlability (better information flow) 

improve return on investment 

etc 

To measure the fulfilment of these objectives, some criteria or 

measures of performance are needed. The general term -of 'regular 

measures of performance' is used for those criteria that can be 

described as a function of job completion times 	(C1 ,C2,...0 ) where 
n 

the objective is to minimise 	and where 	can increase only if one 

of the completion times in the schedule increases. There are many 
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possible criteria related to the jobs or to the facilities, some 

of them common, some others of academic interest only. It has 

been possible to count over 20 different criteria or measures of 

performance, all of them related to time directly or indirectly. 

Some of them are different in name only, because it can be proved 

that they are equivalent to others. They can be obtained from each 

other by simple transformations involving constants, and schedules 

that are optimal for one of them are optimal for the whole group 

(Baker 1974, Coffman 1976, Rinnoykan 1976, Lenstra 1977). 

(i) Minimising makespan or the maximum of cōmpletion times 

Cmax 
is equivalent to: 

- minimising the sum of machine idle times 

E 	=m (C 	- F P ) = mC 	- E E P. 
j=1 j j=l max i=1 ij 	max j=1i=1 ij 

-minimising the weighted sum of machine idle times 

m 	m 	 n 	 m 	m 	n 
E w I = E w (C 	- E P )= C 	F. w- E w( E P ) 

j=1  j j j=1 j 
max  i=1 ij 	maxi=1 j j=1 j i=1 ij 

- maximising the average utilization of machines over Cmax 

m 1  E (( n-, P..)/C 	} =L 
	
n P. }/mC 

j=1 1 =1 i3 	max 	j=1 i=1 13 	max 

- maximising the average number of jobs processed per unit time 

(expressed above) 

(ii) Minimising the sum of completion times is equivalent to: 

- minimising the sum of waiting times 

n n 	n 	n 	n 

.E1 W.=. 	(C.-R
i
-P.)  iE C.  iE 	P  1 R.  i 1 .  

- minimising the sum of flow times 

n n 	n 	n 
E F: E (C -R)=EC - ER 

1 =1 1 i=1 i 1 i=1  i  1=1 1 

- minimising the sum of lateness 

By dividing the above four measures by the number of jobs n, 

it is immediately seen that the following criteria are also 

equivalent to theiPiCi: 
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- average completion time C 

- average waiting time 	W 

- average flow time  

- average lateness 	L 

(iii) Minimising the weighted sum of completion times i=lwiC. 

is equivalent to: 

- minimising the weighted sum of waiting times 

- minimising the weighted sum of flow times 

- minimising the weighted sum of lateness (but not tardiness) 

(iv) Minimising the sum of tardiness is equivalent to minimising 

the average tardiness T = Ē T./n 
i=1 1 

There are a few more criteria that have been encountered in the 

literature but their value is very limited as they are not likely 

to be used in many practical situations (e.g. minimising the mean 

number of jobs in the system, calculated over 
Cmax' 

 expressing 

expected inventory or storage requirements; minimising the weighted 

sum of completion times with secondary criteria, in Burns, 1976; 

minimising the time-in-system variance encountered in Merton and Muller 

1972, Schrage 1975, Eilon and Chowdhury 1977). 

(v) The criteria 'minimising the maximum lateness' and 'minimising 

the maximum tardiness' are not equivalent but are related in 

the sense that a schedule that minimises L
max 

minimises also 

Tmax 
(the reverse is not true). 

Lmax 
= max (Li), i=1, ...., n 

Ti 	= max (0,Li) 

Tmax = max (T
i) = max (max (0,Li)) = max (0,max (Li)) 

Consider two schedules with L
max ` Lmax 

then max (0,L 
max

) < max (0,L' 	) or T 	< T' 

	

max 	max max max 
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The equivalence of criteria as discussed above reduces dramatically 

the number of distinct problems to the following: 

n 	n 	n 	n 
C 	, L 	, E C , E T , E w C , E w T 
max 	max 	1=1 i 	i=1 1 	i=1 i i 	i=1 	i 	i 1 

The single most important criterion of performance is the Makespan 

or Schedule Length 
(Cmax), 

 equivalent to the total of the machines 

idle times or to the average utilisation of machines. Its 

importance is reflected in the frequency with which it is encountered 

in the literature. 

The next most important criterion is the average flow time 

n 
F = (i E

11 
	equivalent to C, W and L. 

A more general class of criteria is related to the idea of 'cost' 

or 'utility' (e.g. Eskew and Parker, 1975). A value of cost is assigned 

to each schedule taking into account not only times but also relative 

values of materials, equipment, labour required etc, in which case 

it is usual to try and minimise total cost. The same basic idea can 

be incorporated in the concept of a generalised utility function. 

As an example, a total cost expression could be a function of lateness, 

slack, work in progress, utilisation of facilities (discussed in 

Chapter 7). Both these types of criteria create problems in the 

sense that they need some coefficients to be determined, which is 

practically difficult, unless some arbitrary values are used. 
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1.5 Assumptions  

There is a common set of assumptions encountered in the literature on 

scheduling problems (Gere 1966, Mellor 1966, Conway et al 1967, Day and 

Hottenstein 1970, Baker 1974). 

(i) Machines do not break down and do not need servicing. 

(ii) Preemption is not allowed (operations that start being 

processed are completed without interruption). 

(iii) Machines can process one operation only at a time (no 

overlapping possible). 

(iv) Job operations may not overlap (each job can be processed by 

one machine only at a time). 

(v) Set-up and transfer times are either negligible or incorporated 

in the processing times. 

(vi) No machine interchange (flexibility) is possible. 

	

(vii)( 	Processing times are fixed (the estimated time is equal to the 

actual). This assumption will be used•throughout this thesis 

except Section 7.3 where it will be relaxed. 

(viii) An important assumption that will be adopted is that the machines 

are used as single processors (one machine only in each. 

machine centre). There is another category of problems 

where n jobs have to be processed on m machines in parallel 

(usually identical), with or without precedence constraints, 

due dates etc, with the objective of minimising makespan or 

the number of processors required. 

(ix) Another assumption that is adopted is that prece dence 

constraints exist for the operations of every job, but there 

are no precedence constraints for operations from different 

jobs. This assumption 	in fact excludes assembly and 

splitting operations of the type encountered in project 

planning (with CPM and PERT). 
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1.6 Thesis outline  

The aim of this study has been to investigate the suitability and 

performance of a wide range of approximate methods applied to various 

aspects of the job-shop scheduling problem. 

The first chapter has been devoted to definitions, notation, 

classification, criteria of performance and common assumptions related 

to job-shop scheduling. 

Following this introduction, in the second chapter, the complexity 

of scheduling problems is investigated and the exact algorithms 

available for solving them are reviewed as two distinct groups: 

good optimising algorithms with polynomially bounded number of 

steps for the easier problems (to be named as P-class problems) and 

enumerative algorithms of polynomially bounded depths for the harder 

ones (named NP-complete). The approximate methods available are 

classified and reviewed as exact solutions of relaxed problems, 

ad-hoc algorithms and incomplete search procedures. This is followed 

by a discussion of methods of assessment of approximate solutions. 

The third chapter deals with ad-hoc algorithms for flow-shop 

scheduling problems, with no passing or no-waiting allowed (the 

simpler form of job-shop problems). New algorithms are proposed and 

'compared with solutions from the best available ones or from optimal 

procedures. 

Ad-hoc single-pass algorithms for active schedules are also the subject 

of the fourth chapter, this time for the general job-shop problem, 

where a worst-case and probabilistic analysis of their performance 

is carried out. 
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The fifth chapter is concerned with incomplete search procedures as 

approximate methods for the general job-shop problem. A local 

neighbourhood search (LNS) method is described for the probabilistic 

and worst-case analysis of decision rules and a model is constructed 

describing the performance of heuristics as a function of time. 

The applicability of statistical methods in LNS is discussed in 

the sixth chapter and in particular the use of the limiting form of 

the distribution of the smallest members of samples in stopping 

rules and bound calculations. 

The dynamic and stochastic scheduling problem is treated separately 

with dispatching rules and simulation in the seventh chapter. 

The sensitivity of simulation results of a number of priority rules 

is investigated for different data structures (distribution, variance, 

loading and accuracy of time estimates). Approximate formulae are 

developed relating results from problems with different number of 

machines in parallel. Approximate formulae are also suggested, 

dealing with the job-shop as a complex network of queues and 

predicting the simulation results for different values of variance 

of the processing times. 

The final (eighth) chapter sets the industrial context of these 

approximate methods in job-shop scheduling, reviews the thesis, 

highlights the parts that are believed to be its original 

contribution and puts forward suggestions for further theoretical 

and applied research. 
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2.1 Theory of computational complexity  

The scheduling problem in its simpler forms of static and deterministic 

cases is extremely simple to describe and formulate. The problem 

n/m/G/C
max 

 has an infinite number of feasible solutions, being 

created by the insertion of arbitrary idle times between operations. 

If all possible delays are eliminated by shifting the start-times 

of operations as early as possible, without changing their sequence 

on any machine,a set SA of schedules— called semi-active schedules- 

is defined. The size of this set SA 'is limited by the number of 

possible sequences (n:)m. The n: represents the limit to the number 

of alternative sequences on one machine and the exponent m allows 

all their combinations to be included. The actual number of SA 

schedules is usually smaller than (n:)m  because of the sequence or 

technological constraints. The significance of the size of this set 

is that it demonstrates the size of the problem and discourages full 

enumeration of solutions. 

The set SA contains the optimal solution for any of the criteria 

described in Section 1.3 The reason is that for any schedule s not 

belonging in SA there is a semi-active one s' belonging to SA, 

derived from s with shifting some or all of the start times, 

maintaining the sequence and not increasing the value of any of 

the completion times. All these criteria are'related to the 

completion times, since an improvement in their value requires a 

reduction of some completion time. 

For the C
max 

group of measures, the optimal solution is guaranteed to 

be contained within A, the set 	of 'active schedules' A c SA.The set A 

results from SA by allowing 'global' shifting of start times, i.e. by 

allowing change of sequence, provided no job completion time 

increases as a result of that change. From the definition of A, it is 

clear that it contains an optimal solution, for any regular measure of 

performance. 
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If in the process of constructing the schedules no machine is 

kept idle, when it could begin processing of some operation, a set ND 

of 'non-delay' schedules is defined, (sub-set of A), which may not 

contain an optimal solution. 

It is clear from the above discussion that the simpler form of static 

and deterministic job-shop problems is quite complex, since the 

smallest set that is guaranteed to contain the optimal solution is 

already too large. The number of alternative solutions is too large 

and the question arising is whether there is an efficient method that 	- 

could give the optimal solution. 

At this stage it is appropriate to discuss the nature of the scheduling 

problem in the light of recent advances in the theory of computational 

complexity. The scheduling problem is a combinatorial one with discrete 

feasible solutions, where optimisation through differentiation is 

not possible. There is a number of well-known combinatorial problems, 

similar in nature to scheduling: the travelling salesman problem, 

packing, assignment, transportation, shortest path of a network, 

shortest spanning tree, set covering, set colouring and many others. 

For all these non-differentiable discrete optimisation problems the 

fundamental question at issue is the number of operations required 

to find an optimal solution. Cook (1971) and Karp (1972) initiated 

the work on the computational complexity as part of the computer 

science field. A summary of this work is given below. 

An algorithm is a precisely stated procedure or set of instructions 

that can be applied in the same way to all instances of a problem. 

A problem P can be fully described in a computer with a string of 

0 and 1 elements, of length L, representing both the coefficients 

(numbers) and the operations performed with them. For large L 

(L } 00) the following definitions apply for the algorithms solving the 

problem. 
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Polynomial algorithm is one where the number of operations is 

proportional to Lk  e.g. L5, 7L5  + 3L etc. (called also 'good' 

algorithm by Edmonds, 1965). 

Non-deterministic Polynomial algorithm is one where the number of ' 

operations is proportional to kL  e.g. 2
L,  LlogL 

etc. (polynomial 

depth algorithm). 

The problems are divided accordingly to P-class and NP-class. 

Typical P-class problems, solved in a polynomially bounded number of 

steps are: 

- assignment/transportation problems 0 (n
5/2) 

- shortest spanning tree of a graph 0 (n2) 

- network flow, 1 or 2 commodities 0 (n3) 

- shortest path, 1 or 2 commodities 0 (n2), 0(n3) 

- P-median on tree-graphs 0 (n
2p2) 

- ordering n numbers in ascending order 0 (nlōgn) 

- minimising makespan of two-machine flow-shops and job-
shops 0 (nlogn) 

Examples of problems in NP-class, solved by a tree-search of 

polynomial depth are: 

- 0-1 integer programming 

- graph colouring/timetable/3-J assignment problems 

- travelling salesman 

- loading  

- knapsack 

- P-center, P-median 

- set covering/partitioning/packing 

- plant layout/quadratic assignment 
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- language recognition (find a given string within a 
given text) 

- simplex method of LP (Klee, 1972). It is not known 
whether the LP problem is in P or NP class. 

- general job-shop and flow-shop problem (Gonzalez and 
Sahni, 1978) 

Besides P and NP-class problems, there are others that are thought 

to be more complex. 

2.1.1 Reducibility and NP-complete problems  

There is a subset of the NP-class problems, called NP-complete,defined 

by the property of reducibility. Each problem of this group can be 

transformed by a polynomial algorithm, simple or complex, to a problem 

named 'SATISFIABILITY' which itself is reducible to any other 

problem of the NP-complete group. (Cook 1971, Karp 1972). 

The importance of the reducibility is that if a P-class algorithm 

could be found for one of the NP-complete problems, then P-class 

algorithms would exist for all of them. This is thought highly 

unlikely to happen, since the known NP-complete problems are the 

most difficult combinatorial ones: 

- the general job-shop problem and most of its special 
cases (Ullman, 1976) 

- knapsack problem 

- bin-packing 

- travelling salesman problem, Eucledean (undirected 
Hamiltonian circuit) 

- directed Hamiltonian circuit ( asymetric travelling 
salesman problem) 

- partitioning a set of integers into two subsets 
with equal sums 
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A detailed list of 25 NP-complete problems with descriptions is 

given in Karp (1975). It is worth adding here that for these problems_ 

the general approximation problem (i.e. find a solution with arbitrary 

distance c from the optimal) has been proved to be also NP-complete 

(Sahni and Gonzalez, 1976). 

2.1.2 Reducibility of scheduling problems  

The reducibility of the general scheduling problem to the 'satis-

fiability' is of major theoretical importance, proving that the former 

is NP-complete,but in terms of efficiency of solution, it does not 

reduce the complexity of the problem and does not constitute any 

practical improvement. There are though some special cases of 

scheduling problems for which the direct reduction to some other 

well-studied and analysed combinatorial problem consitutes an 

efficient transformation. This is the case with the 'flow-shop, 

no-waiting' and 'job-shop, no-waiting, no-passing' problems which can 

be transformed to a directed Hamiltonian Circuit problem known as 

Asymmetric Travelling Salesman problem or ATSP (Wismer, 1972). 

In a Gantt chart representation, a job profile in a flow-shop 

environment is represented as a staircase. The assumption of no-

waiting (or no-waiting and no-job-passing in a job-shop) in effect 

means that this staircase must remain unbroken. Thus, left-shifting 

and passing of a complete job profile is allowed, though not of 

individual operations. This can be illustrated as in Figure 2.1 below. 
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Figure 2.1 Flow shop with no-waiting 
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Job shop with no waiting 

and no passing 

For a given job sequence, the makespan is: 

	

Cmax 	
Pn +n E

1 1 
 Di,i+1  n:last job in sequence 

where P = Ē P 	and B. iii is the delay incurred to job i+i in the n 	n  
j=1 	J 

sequence, measured from the start time of job i. 

The reduction is obtained by representing every job with a vertex 

(node or city) in the ATSP, where Dij  is the distance between the 

vertices i-j. An extra vertex represents a dummy first and last 

job, and every other vertex has zero distance from it. The distance 

of every vertex i to the dummy node is Pi  =.E P. 	The ATSP 

distance matrix for a 4-jobs,m-machines problem would then be as in 

Table 2.1 on the following page. 

An alternative reduction method based on total slack, instead of 

delays is described and used in Chapter 3. 

The well known Bin-Packing and Knapsack combinatorial problems are 

also related to the scheduling one. The Bin-Packing problem can be 

formulated as a scheduling problem of m machines in parallel, 
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Table 2.1 	Asymetric travelling salesman problem matrix 

From 
node 

To node 

1 	2 	3 	4 	5 

1 	- 	D12 	D13 	D14 	P1 

2 	D
21 	D23 	D244 	P2

-  3 	D
31 	D32 	D34 	P3

-  4 	D41 	D42 	D43 	P4  

5 	0 	0 	0 	0 

n-jobs (tasks) with m < n and a deadline for the completion of all tasks, 

where it is desired to minimise the number of machines required for 

processing the job-set. The knapsack problem (Lenstra et al, 1977) 

is also related to a number of special cases of the scheduling problem 

(a review of the state of the art on Knapsack problems can be found 

in Salkin and de Kluyver, 1975) 

No 'good' algorithm has ever been found for any of the problems 

belonging to the NP-complete group, and it is very probable 

(though it has not been proved mathematically) that one does not 

exist. If such an algorithm were possible then all NP-complete 

problems would become P-class. The implication is that the general 

job-shop problem (static, deterministic) is solvable only by polynomial 

depth algorithms, i.e. some form of enumeration (tree-search). 

The intensive research in the scheduling area, therefore, is unlikely 

to lead to an 'algorithmic' break-through. The discoveries about 

NP-complete problems require a change in the direction of research. 

It is more likely that eventually the breakthrough will take the 

form of the -development of extremely powerful (large, fast and 

accurate) digital computers, which, together with the development of 

quantifiably approximate methods will allow the solution of practical 
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problems with results guaranteed to be close to optimal. 

A systematic review of exact and approximate algorithms for P-class 

and NP-complete scheduling problems is presented in the following 

sections. Reviews and references on the scheduling problem and the 

algorithms available can be found also in Eilon and King (1967), 

Conway et al (1967), Elmaghraby (1968), Elmaghraby ed. (1973), 

Chowdhury M.A. (1974), Baker (1974), Karp (1975), Chowdhury I.G. (1976), 

Coffman ed. (1976), Garey et al (1976), Lenstra et al (1977) and 

Graham (1978). 
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2.2 Review of P-class scheduling problems  

(1) Single machine scheduling with a finite number of jobs 

- Minimise the sum of completion times, with due-dates 

Smith (1956), 0(nlogn) 

Algorithm: 
Job i may be assigned the last position in the sequence 
only if 

n 
D. >.E .  P. and 

1 -j=1 J 
Pi  -> Pk 	for all jobs k such that Dk  > E Pj  

(If another job were to take last position in sequence, 

a reduction of E C. could be achieved by transferring 
i=1 1  

job i to the end of the sequence). 

- Minimise the maximum lateness and tardiness 

Jackson (1955), 0(nlogn) 

Algorithm : 
sequence the jobs in an order of non-decreasing due 
dates. 

- Minimise the weighted sum of tardiness, with unit 

processing times and different arrival times 

Lawler (1964), 0(n3) 

- Minimise the number of late jobs 

Moore (1968), 0(nlogn), for Ri>o Kise et al (1978),0(n2) 

- Minimise the weighted sum of completion times 

Horn (1972), Sidney (1975), 0(nlogn) 

- Minimise the maximum lateness, with simple precedence 

constraints. 

Lawler (1973),.0(n2) 

- Minimise the maximum of the value of a special penalty 

function, subject to a number of restrictive assumptions. 

Sidney (1977), 0(nlogn) 
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(ii) Two-machine problems 

- Minimise Makespan 
(Cmax) 

 in flow-shops 

Johnson (1954), 0(nlogn) 

- Minimise Makespan 
(Cmax) 

 in flow-shops, without waiting 

Gilmore and Gomory (1964), Reddi and Ramamoorthy (1972), 

0(nlogn) 

- Minimise Makespan in job-shops with one operation in 

each machine only 

Jackson (1956), 0(nlogn) 

- Minimise the sum of completion times, with two machines 

in parallel, unit processing times and simple 

precendence constraints 

Coffman and Graham (1972), 0(n2) 

(iii) .m-machine problems 

- Minimise C
max 

in job-shops with two jobs. 

Hardgrave -and Nemhauser (1963), Szwarc (1950), 0(m2) 

- Minimise C
max 

with in identical machines in parallel, 

unit processing times, tree-like precedence constraints. 

Hu (1961), 0(n) (with preemption, Gonzalez and Sahni, 1978) 

- Minimise.Eyr C. with m identical machines in parallel, 

unit processing times, time of entry Ri>o 

Lawler (1964), 0(n3) 

- Minimise.E C. (or F) with m identical machines in 

parallel. 

Conway et al (1967), Baker (1974), 0(nlogn) 

Algorithm : 
Step 1. Construct an SPT ordering/list of 

all the jobs. 
Step 2. To the machine with the least amount 

of processing already allocated, 
assign the next job from the list. 
Repeat Steps 1 and 2 until all jobs 
are assigned. 
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2.3 Exact methods of solution of NP-complete scheduling problems  

The general scheduling problem, one of the group of NP-complete 

combinatorial problems (Coffman ed. 1976) and most of its special 

cases even with 1, 2 or 3 machines (proved to be NP-complete as 

well by Garey et al, 1976) can be solved optimally only with some 

algorithm of polynomially bounded depth (which in practice limits the 

size of problems that can be solved). This, inevitably, takes the 

form of an enumerative method either explicit or implicit and 

usually that of a tree search, where the set of solutions searched 

can be trimmed to a more manageable size by the use of some branch 

and bound method. 

Although there is only one basic method, the enumerative one, there 

are numerous formulations encountered in the literature, summarised 

below, and subsequently described in some detail. 

(i) Enumeration of all feasible solutions and 
combinatorial approach 

(ii) Dynamic•Programming 

(iii) Integer Programming 

(iv) Branch and bound algorithms (including precedence 
or disjunctive graph formulations) 

One should bear in mind that there are limits to the size of even the 

simpler problems (static and deterministic) that can be solved 

optimally with these exact methods (as already discussed in Section 

2.1), while near optimal or approximate solutions can be constructed 

more easily and efficiently with approximate methods or heuristics, 

to be discussed later (Section 2.4). 

2.3.1 Enumeration of all feasible solutions and combinatorial approach  

The obvious method of solution and the most inefficient, is a complete 

enumeration of all feasible solutions (members of the set A of active 
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schedules) that do not include arbitrary (unnecessary) delays and 

where no global left-shifting of operations can be made i.e. no 

operation can begin earlier without delaying any other operation . 

The set of active schedules is the smallest set guaranteed to include 

an optimal solution (dominant set) for any regular measure of 

performance while the set of non-delay schedules, where no machine 

is left idle while jobs are awaiting processing, may not contain an 

optimal solution . There are methods that allow complete enumeration 

of the set A with minimum cost, based on the principle of minimum 

change: given a sequence S the next one to be generated is determined 

by the principle of minimum cost changes. 

An indication of the size of the problem is given by 0{(n.)m} 

which, for a sample of problem sizes takes the following values: 

Number 	Number of 
of jobs 	machines 

	

4 	3 

	

6 	3 

	

? 8 	4 

	

10 	4 

	

20 	5 

	

35 	5  

0{(n: )m} 

.138 E5 

.373 E9 

.264 E19 

.173 E27 

.852 E92 

.118 E201 

The set A of active schedules can be generated by the systematic 

partitioning procedure suggested by Giffler and Thomson (1960) 

(see also Brooks and White 1965, Baker 1974). This algorithm for 

generating all members of the set A of active schedules is summarised 

below. 

	

PSt 	: a partial schedule at time t 

	

St 	: set of schedulable operations at time t 

	

sj 	: earliest start time of the schedulable operation, jESt  

	

ci 	: earliest completion time of the schedulable 
operation, jESt 
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Algorithm  

Step 1. At time t=0, PS is empty, S4. contains all 
operations withaut predecessors. 

Step 2. Determine c*=min (c4 ) for j ESt  
Define m* as the machine where c* can occur. 

Step 3. For each schedulable operation j€S requiring m*, 
for which s.< c* create a new partial schedule by 
adding j inthe partial schedule PSt, starting at 
time s 4  

Step 4. Update3the set of schedulable operations (by 
removing operation j from St  and adding the 
next operation of that job, creating the 
S 	) 

Step 5. U date time to t+l. 
Step 6. If all active schedules have been generated, 

gu to 7. If not, return to 2. 
Step 7. STOP. 

The same set can be generated also with methods based on permutation 

changes. These changes can be based on minimum cost changing or 

lexicographic generation of allpossible permutations. Combinatorial 

approaches, relying on changing one permutation to another through 

switching around jobs, under certain conditions may produce optimal 

solutions. There are some special problems where optimisation 

techniques,based on a theorem by Smith (1956) for functions of 

permutations,can be applied (Elmagraby 1968, Rau 1970) but these 

methods cannot be used for obtaining optimal solutions of the general 

problem. They have been adopted though successfully for sub-optimal 

solutions (e.g. Neighbourhood Search) as will be discussed in 

Section 2.4 on heuristics. 

2.3.2 Dynamic Programming  

Dynamic Programming (DP) is an established technique for solving 

optimisation problems as sequential decision processes. It can be 

applied to problems with a separable objective function of the form 

n 
'minimise F =Efi(xi)' (where x1 , x2,....XnED and D is the domain of 

i=1 
 

values for all variables), with a single constraint and discrete 

variables that take integer values. This type of formulation seems 

to fit into a special group of scheduling problems and there has 
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been a number of attempts to use it. Held and Karp (1962) and Lawler 

(1964) have formulated the cost minimisation of a single machine 

problem, where costs are related to the completion times and the 

value of this objective function is calculated with recursive 

equations at every step of the algorithm. The solution method relies 

on the principle of optimality: 

'an optimal sequence of decisions has the property that whatever the 
initial state and initial decision are, the remaining decisions must 
be an optimal sequence of decisions with regard to the state 
resulting from the first decision'. 

Thismethod is in fact a tree-search or branch and bound, breadth first, 

using dominance criteria instead of bounds. For this type of problem, 

the method can be illustrated as a graph with n stages of vertices and 

k 
the minimum cost or minimum E c. as the shortest path from the 

i=1 1  

initial to the final stage. The method always requires searching 

trees of about n2n  nodes (Reingold et al 1977). 

Another interesting dynamic programming formulation is due to 

Lawler and Moore (1969). It is a special case of minimisation of 

F = E f.(c.) in a single machine problem, with precedence constraints 
i=1 1 1  

(i.e. sequence of jobs is fixed) but each job may be processed in 

two different ways with differing costs. Dynamic programming has 

been used also for flow-shop problems of two-machines and sequence 

dependent set-up times (Corwin and Esogbue 1974). Special types of 

job-shop problems have been solved with DP algorithms by Sahni (1976) 

and Baker and Schrage (1978). 

The main disadvantage of the dynamic programming formulation is that 

the dominance property used is not strong enough. At any intermediate 

stage of the solution a feasible alternative is discarded when its cost 

exceeds that of a complete feasible solution, which is not very 

efficient as a 'pruning' mechanism. Besides it is quite complicated, 

especially in keeping records of previous stages and intermediate 

decisions. 
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2.3.3 Integer Programming (IP) 

IP Formulations  

There is a vast literature on Integer Programming formulations and 

techniques for scheduling problems. The first IP formulation (0-1) 

was introduced by Bowman (1959) and is summarised below. At the point 

of time t, an operation k is either being processed, in which 

case a related variable xkt takes the value 1, or else xkt = 0. 

The processing time of operation k then is 
bu 

Pk tElxkt 

where bu is a sufficiently large number or an upper bound. The 

number of operations is nm and the number of variables is nmbu. 

To ensure that one operation is processed at not more than one machine 

at any point in time t 

k 

xkt <1 for t = 1,.... 

where Mk is the set of operations k on machine j, j = 1...m 

To ensure that an operation, once started is completed without 

pre-emption 

pk(xkt - xk,t+1) it2 _ 	xki ` pk for t=1,...bu-1 

Finally, the precedence requirements for operations are taken into 

account by the constraints 

t-1 
rl

xki for t=1,...~ 
pkxk+l,t ì  

(in this case operation k precedes operation k+l) 

The total number of constraints is (2nm + m-n)bu 

The objective function for minimising Makespan C
max 

is: 

J to kE 2 
(n+1) tx k , b

0 
+t 

where bo=max (Pi) for i=1,.:.n 

and.' is the. set of last operations. 

At about the same time, Wagner (1959) suggested an IP formulation for 

the special case of permutation problems, with n20-1 variables and 
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nm real variables. Manne (1960) has produced another formulation 

for the general problem. These formulations reprinted in Muth and. Thomson 

(1963), were not found to be very efficient. 

A more efficient formulation of the problem as a mixed IP was 

proposed by Greenberg (1968). 

sik 

yijk=l 

rifk
=1  

start time of job i in machine k 
(nm continuous variables) 

if job i-  precedes j in k or else 0, thus 
when yijk  is defined, yjik  is superfluous 

(mn(n-1)/2 0-I variables) 

large positive number 

if operation f of job i requires machine k 
or else 0 

Constraints: 

k=lrifk(sik +pik)  -̀k=iri,f+1,ktik 	(m-1)n 

(M+Pjk)Yijk + (tik  - tjk) > pjk 	mn(n-1)/2 

(M+Pik)(1  yijk) + (tjk -tik)  ' Pik 	mn(n-1)/2 

Objective function: 

'Minimise Mean Flowtime' EE(sit + p.,) where £ is the 
machine of the last operation of 3'b i. 

For 'Minimising Makespan', additional constraints are required, of the 

following form, where h is the last operation 

k=lrihk(sik + Pik)  -̀ Cmax 	m, 

and the objective function is 'minimise C
max

'. This formulation 

for a problem of 10 jobs and 4 machines requires an IP of 220 

variables and 390 constraints for 'min.F' or 400 constraints for 'min.Cmax'' 

The work of Greenberg (1968) and of Pritsker et al (1969) provides more 

general models than the first formulations and demonstrates how a change 

in the definition of variables can drastically reduce the size of 

the problem (i.e. the number of variables and constraints). The 

resulting IP problems are still very large to be solved with general 
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IP methods. Only special structure cutting planes might be reasonably 

efficient, if a breakthrough were possible for the special case 

of job-shop scheduling. 

Methods of solution of IP problems  

There are two fundamental methods for solving scheduling problems 

formulated as IP; cutting planes and search methods. 

In the 'cutting planes' method, which is based on the concept of 

'relaxation' of integrality constraints, a corresponding LP is 

constructed whose feasible region is defined by the original constraints. 

The feasible LP region includes all the feasible integer solutions. 

The idea is to generate a number of linear inequalities that cut-

out parts of the feasible region of the corresponding LP not 

containing integer feasible solutions, while leaving the feasible region 

of the IP intact. These constraints essentially represent necessary 

conditions for integrality. The continuous (LP) feasible solution 

space is modified until its continuous optimum extreme point satisfies 

the integer conditions. 

The 'search' method basically enumerates the feasible integer points. 

It starts again from the continuous optimum and then partitions the 

solution space into sub-problems by deleting parts that do not 

contain feasible integer points. 

Langrangean Relaxation and subgradient optimisation  

The efficiency of this search can be improved by using bounds for 

eliminating a substantial part of the tree. A method for calculating 

lower bounds based on the use of Langrangean multipliers was implemented 

for the TSP by Held and Karp (1970) and (1971), called Langrangean 

Relaxation. 
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The basic idea with the Langrangean relaxation is that the objective 

function is changed to incorporate one or more of the constraints 

with Langrangean multipliers, which are then taken out and the relaxed 

problem is solved optimally. 

For the problem minimise Cx (x,A,B,C are vectors) 

subject to Ax > b 

Bx > d 

x > o 

the Langrangean relaxation is 

min {cx+a(b-Ax)} 

s.t. Bx > d 

x>0 

A > 0 (Langrangean multiplier/vector) 

It has been proved (Geoffrion, 1971 and 1974) that the optimal 

value of this problem is a lower bound to the optimal of the original 

problem, for any value of a > 0 

And the problem 

max {min {cx+a(b-Ax)}} for x > 0, Bx>-d and x?o 

gives the best possible lower bound to the original problem. The 

difference between the optimal value of the original and of the last 

problem is called the duality gap. One technique of determining the 

values of a that maximise the lower bound is subgradient optimisation. 

This method of solution offers itself for problems that are 

basically simple problems with additional constraints. By incor-

porating these constraints into the objective function, the problems 

are reduced to the simpler basic forms. 

Fisher (1973) has used this method for a 0-1 formulation of the 

scheduling problem, where 'the basic branching mechanism used is to 

select a resource k and a time period t and allocate the available 

resource Rkt  to the various resource-feasible subsets of the tasks 
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which may use resource k during time period t'. With his formulation 

Fisher succeeded in solving an independent scheduling problem for 

each job. It is worth noting that this method of Langrangean 

relaxation cannot be applied successfully with a partitioning method 

where partial sequences remain fixed. 

The Langrangean Relaxation and Subgradient Optimisation method can 

be applied generally in problems of minimisation of non-convex 

functions. A good review of the method and its applications can 

be found in Shapiro (1977). 

2.3.4 Tree-search and branch and bound methods  

The underlying concept is the repeated decomposition of a problem 

into several partial problems of smaller size, until the undecomposed 

problem is either solved or proved not to yield an optimal solution. 

The method can be described in terms of a generalised 'backtrack 

search' in which any solution to the problem is a vector V = (al,a2, 	 

with finite but undetermined elements. Each ai  is a member of a 

finite setAi, with Ni  elements: An exhaustive search must consider 

all the potential solutions i.e. the elements of (A1 xA2x 	xA). 

The initial value v of the solution vector is V = O. 

The constraints of the problem, e.g. sequence requirements for 

operations indicate which of the members of Ak  are candidates for 

ak, forming a sub-set Sk, Skim Ak. In this way, a partial solution is 

built up from (al,a2,a3, 	ak_i) to (a
l,a2, 	ak_l,ak).  

If the partial solution (a1 ,a2,....ak_l) does not allow any 

possibilities for ak,  then Sk  _ 0 and backtracking takes place.- 

This process can be represented graphically in a tree. The following 

diagram in Figure 2.2 is for a depth-first tree, where the nodes are 

visited (by a •traversal) in the order indicated by the arrows 

(Reingold et al, 1977). 
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Figure 2.2 Depth-first tree search 

Start 

Choices for a1  

Choices for a2,  given a1  

Choices for a3,  given a1  and a2  

Choices for a4, given al, a2  and a3  

Branch and bound is a specific type of backtrack search, where every 

partial or complete solution has a cost f associated with it, and 

the optimal solution (i.e. the one with least cost) is to be found. 

For any k, generally, f(al,a2,....ak_i) < f(al,a2,....ak-i,ak) 

and in scheduling f(al,a2,....ak _l) + C(ak
) = f(a1,a2,a3, .... ak-1,ak) 

A partial solution may be discarded if its cost is greater or 

equal to the cost of a previously computed solution. 

Details of implementation of such a method are given in Chapter 5. 

Here, it suffices to add that there are two different search strategies, 

the 'depth-first' and the 'breadth-first' and that potential 

improvements in the efficiency of the methods might be obtained by 

merging identical sub-trees, at the expense of keeping more complex 

records of the solution instances. 
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The published literature on branch and bound methods in scheduling 

is enormous. Reviews of the relevant literature can be found among 

others in Lawler and Wood (1966), Mitten (1970), King (1975), 

Reingold et al (1977) and Ibaraki (1977). 

Applications of branch and bound in scheduling problems  

The single machine problem of minimising the maximum lateness with 

different job arrival times is - NP-complete. A number of attempts to solve it 

have been published over the last few years by Bratley et al (1971), 

Dessouky and Margenthaler (1972), Baker and Su (1974), McMahon and 

Florian (1975). Comparison of these methods on sample problems has 

shown that the last two and especially the last one are quite 

efficient. 

The general cases of the single machine problems of 'minimising 

the sum of the weighted tardiness' (Schwimer, 1972 and Fisher, 1974), 

of 'minimising mean tardiness' (methods reviewed in Baker and 

Martin, 1974) and of'minimising the sum of completion times'(Rinnoykan 

et al 1975) are also NP-complete and solvable with branch and bound. 

An interesting development for the problem of 'minimising total 

tardiness' is due to Lawler (1977) who has constructed a 'pseudopoly-

nomial' algorithm for its solution. 

The problem of minimising the sum of completion times in a two-machine 

flow-shop was formulated and solved by Kohler and Steiglitz (1975), 

using a lower bound developed by Ignall and Schrage (1965) and 

Lomnicki (1965). Uskup and Smith (1975) have used a branch and bound 

method ror minimising the total cost, dependent on set-up times and 

Townsend (1977c)has shown how Lawler's procedure for minimising the 

maximum penalty in the single machine problem can be combined with 

Johnson's rule to produce a branch and bound algorithm for the two-

machine version. 
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For the n-jobs m-machines flow-shop problem, Lomnicki (1965) and 

Ignall and Schrage (1965) independently, applied a machine-based 

branch and bound algorithm (for the three-machine flow-shop problem). 

McMahon and Burton (1967) improved the efficiency of the method by 

using the best of machine-based and job-based bounds. Ashour and 

Quraishi (1969) made a study comparing the various available methods 

and concluded that Lomnicki's method was probably the best, taking into 

account total computational costs. 

The pioneering work in the n-jobs m-machines job-shop problem was 

conducted by Giffler and Thom on (1960) who proved that the optimal 

solution is contained within the set of active schedules, as described 

above in the 'complete enumeration' method. A basic branch and 

bound method for searching this set was constructed by Brooks and 

White (1965) and since then, many researchers have contributed 

towards improving its efficiency (e.g. Florian et al, 1971). More 

details about the bound calculation will be discussed in Chapter 5. 

These basic ideas have been used in the formulation of the same 

problem described in terms of a precedence or disjunctive graph 

(Balas, 1969, Charlton and Death, 1970b,Schrage, 1970, Ashour and 

Parker, 1971, Florian et al, 1975). This formulation,as described and 

used by Ashour and Parker, is summarised below. 

Formulation  

The finite directed graph G(X,A) with 
X = {x ,x , 	x1 	vertices or nodes k=nm 
A = {al ,a. , 	 a i} 	arcs (links) 
representt the scheduling problem as follows. 
Every vertex x. corresponds to a single operation. 
Every directediarc a. corresponds to a precedence requirement or decision. 
The graph has also afdummy source vertex S and a sink S'. 
The set X can be divided into n disjoint subsets J. (jobs) 
(J . n J.= Q for i/ j and X= J u J u 	 u J ) 
ant info in disjoint subsets M. machines) n  
(X=M1 u M u 	 uM and

1 M. n M. 	for ijj) 
Every fixed or determinate arc1

cor/esponds to a fixed precedence 
required by the technological constraints of job operations processing. 
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The remaining arcs are indeterminate, indicating that a precedence/ 
sequence is possible, but subject to decision. On the diagram, the 
latter are represented with broken lines while the former with 
continuous. As an example, a scheduling problem with two jobs, 
three machine's, six operations is given in Figure 2.3 (a) below. 

Figure 2.3 	Disjunctive graph for a job-shop scheduling problem 

Precedence of operations and Vertex identification 

JOB FIRST SECOND THIRD 

1 1,V1  3,V5  2,V3  

2 3,V6 	- 1,V2  2,V4  

(b) 

(c ) 

Between vertices V and V there are two arcs, to indicate that any 
of the operations tray precede the other. In a feasible schedule, 
every pair of these indeterminate arcs has to be replaced by one 
determinate only. For a schedule to be feasible, there must not 
exist directed 'cycles', i.e. closed paths. In this sense, the 
graph in Figure 2.3 (b) does not represent a feasible schedule, 
while the one in Figure 2.3 (c) does. The problem of minimising 
Makespan (C 

max
) then becomes one of finding the shortest critical 

path. 	
max  

The solution of the problem requires examining explicitly or 
implicitly all the possible fixings of the indeterminate arcs, in 
a branching and bounding procedure. 
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For the problem of minimising the maximum lateness, a branch and bound 

solution has been proposed by Townsend (1977a). Townsend (1977b) 

has'also constructed a branch and bound algorithm for the problem of 

minimising the maximum penalty, defined as a cost function of 

completion times. 

For problems of n-jobs and m-machines in parallel, the problem of 

minimising the average flow time (F), without precendence constraints 

can be solved in 0(nlogn),while with general precedence constraints, it is 

NP-complete even in the single machine case. With two or more 

machines and tree-like precedence constraints, it is again NP-complete 

(Sethi, 1977). 

For the problem of minimising the maximum lateness, for m-machines in 

parallel, with earliest start and due-date constraints, Bratley 

et al (1975) have proposed a branch and bound method. 
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2.4  Approximate methods of solution  

2.4.1The need for approximate methods  

Scheduling problems of the real world are very complex and even their 

simplified versions are difficult to solve exactly, as 	has been 

demonstrated by the discussion about their computational complexity. 

Besides, in most of the real life problems, an exactly 'optimal' 

solution is not essential. In fact, a sub-optimal solution is usually 

acceptable, especially when some information is available about its distance 

from the optimal. 	The idea of using sub-optimal methods is not new. 

Heuristics have been in use for some time and their successes and 

failures have been subject to a lot of discussion (Conway et al 

1967, Baker 1974). 

It is accepted in this research project that the discoveries about 

non-deterministic-polynomial-time-complete problems require a 

change of direction of research in scheduling. Earlier,a lot of 

effort was directed at finding optimal or exact solutions. This is not 

considered to be a very fruitful direction any longer. Instead, 

attention in this work is focussed to simple methods and efficient 

algorithms that will allow generation of solutions close to optimal 

and an assessment of their performance. 

2.4.2 Types of approximate methods  

There are several types of approximate methods and heuristics, based 

on three different principles. These three broad categories of 

heuristics can be named as follows: 

exact solutions of relaxed problems 

ad-hoc decision rules and algorithms 

incomplete search procedures, leading to a local but 
possibly not global optimum. 
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Exact solutions of relaxed problems  

(i) This can be achieved by simplifying the structure of the original 

problem, rendering it a P-complete one if possible. An example 

of this idea is the heuristic of Campbell, Dudek and Smith (1970) 

for flow-shops without passing, where a surrogate problem in 

P-class is solved optimally with Johnson's method and the sequence 

is used as a heuristic solution. The same principle is used in 

relaxing constraints with the Langrangean relaxation method, in 

aggregating constraints to create a surrogate IP and in ignoring 

constraints or coefficients. 

(ii) Similar effects are obtained by modifying the problem coefficients, 

as in the Right Hand Side (RHS) of an IP. 

(iii) Another interesting concept has been used by Ashour (1970) to 

decompose the initial problem, solve optimally the sub-problems 

and then put together their solutions to yield a complete 

sequence. 

Ad hoc decision rules and algorithms  

These methods have been the first to be used as heuristics for 

sub-optimal decisions. They are based mainly on intuition or 

they are trying to recognise and imitate the subjective 

decision making patterns of people and substitute them by objective 

decision rules. In Chapter 3 a number of heuristics of this type 

are proposed for flow-shops and analysed. In this category, one 

should include heuristics such as those proposed by Palmer-(l965) 

using a 'slope index' for each job-based on the length of its 

operations and constructing permutation schedules according to 

the value of this index-,and by Gupta (1972), using a similar 

approach, but with a completely different sequencing criterion 

which compares favourably with Palmer's. 
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The most well known heuristics in this category are the single 

pass priority rules (active and non-delay dispatching procedures). 

Once a decision is taken, it is implemented and there is no 

reconsideration for alternative courses of action. Their 

advantage is the extreme simplicity of application, which allows 

for decentralisation of the decision making process to local 

centres in a job-shop environment,and which makes them an 

attractive proposition especially for large-scale problems. 

The priority rules are also referred to as non-backtrack 

tree search methods. Referring to the notions used in the 

description of the general branch and bound method, from the 

subset Sk  of Ak,  one member ak  is selected according to a 

priority rule. Each member ak  is assigned a priority value and 

the one with higher priority is selected. When a complete feasible 

solution is constructed, a heuristic solution is found and 

the process is terminated. A number of heuristics of this type are 

described 	and analysed in Chapter 4. Single-pass heuristics 

(as well as multi-pass, with backtracking) have been used for special 

cases of the general problem, with various criteria. Holloway and 

Nelson (1973, 1974, 1975) have studied heuristics for problems 

with due-dates, flexible routes, variable processing times, 

and criteria related to due-dates. 

Priority dispatching (non-delay) rules are studied in a 

stochastic/dynamic job-shop environment with simulation and 

approximate formulae from queueing theory, in Chapter 7. 

In fact, for the general dynamic and/or stochastic problem, with 

its immense complexity, there is no other practical scheduling 

method except the single-pass priority or dispatching rules. 

The difference between this type of modelling, generally known 

as 'simulation' and the modelling of the simpler static and 
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deterministic problems lies in the treatment of the discrete events and time. 

While the arrivals in the static problem are taken to be simultaneous 

at time zero only, with simulation they are treated as stochastic 

and over a long period of time. The processing times are also 

stochastic in the sense that there is an estimated processing time 

and a realised one which may well be different. In order to 

obtain more reliable results with the stochastic data of this modelling, 

large numbers of jobs are used and no individual characteristics/results 

are collected but only statistical ones, usually in the form of 

histograms. Reviews of this approach are given in Gere (1966), Conway 

et al (1967), Day and Hottenstein (1970), Hollier (1968), Chowdhury 

(1976), Panwalkar and Iskander (1977). 

The stochastic structure of this category of problems bears 

resemblance to the principles of queueing theory, that is, 

arrival distributions, service times, infinite source population 

(for large N) etc. This resemblance leads to the consideration 

of the job-shop scheduling problem as a network of queues. The use 

of some approximate results (formulae) from queueing theory is 

discussed in Chapter 7. 

Incomplete search procedures and local optimisation 

(i) It is possible to terminate a branch and bound tree search, 

before an optimal solution is found. This search, if taken 

to completion, would guarantee an exact (optimal) solution. The 

method of such an incomplete search depends on a number of 

parameters and decision rules. The behaviour of heuristics 

related to this method is studied in Chapter 5. 

(ii) It is also possible to abandon parts of the search altogether, 
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i.e. eliminate branches when it is suspected that it is unlikely 

that they would lead to exact solution, and concentrate on 

more promising ones. This can be implemented by strengthening 

the bounds beyond their calculated value, 	e.g. 	by using 

fictitious bounds. This increases the efficiency of the search with 

the effect of obtaining possibly , sub-optimal solutions, (Ibaraki, 

1976a,Bazaraa and El-Shafei, 1977). 

Another rule that can be used for deciding when to abandon a 

part of a search is suggested in Chapter 6, based on probabilistic, 

statistical estimates of the exact solution value, by which the branch 

with the best estimate of an optimal solution is pursued further. 

(iii) Another incomplete search procedure for local neighbourhoods is 

based on combinatorial analysis (not a branch and bound search). 

The general permutation problem of size n is to minimise an 

objective function f(7r,x) where 7 is a permutation from the 

solution space P4{7r} and x is the parameter space (set of data). 

For each permutation 7eP a subset of P is defined, N (7r) 

called the neighbourhood N(7r) of 7. An initial solution is 

constructed and the neighbourhood is searched with a search method 

S for improvements in the objective function. Examples of 

neighbourhoods are defined by backward or forward single 

insertion (e.g., abcde -} acdbe) and by adjacent pair interchanges 

which can be searched in 0(n2) number of iterations (steps). 

A local optimum is achieved with respect to the neighbourhood 

N(7r) when improvement of the objective function value is not 

possible. The basic difference of this type of local neighbour-

hood search from the branch and bound tree search is that in the 

former a complete solution is obtained at every iteration, 

whose construction is based on the previous complete solution 

while in the latter the solution is obtained from fixed partial 

solutions and eliminations. 
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This method has been applied successfully for sequencing in the 

TSP by Lin (1965), and described as the a-optimal method in 

Eilon, Watson-Gandy and Christofides (1971). Baker (1974) 

reports the applications of such a method for the n/1/T 

problem. Kohler and Steiglitz (1975) have used such a method 

for F in flow-shops, reported also in Coffman ed. (1976). 
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2.5 Assessment of approximate methods  

2.5.1 Heuristic performance guarantees  

The main criticism for the approximate or heuristic methods has 

been that they are unpredictable and unreliable. This is related 

to the.approach adopted, which has been to try a number of test 

problems with the heuristic, compare results with those from other 

heuristics, occasionally solve the same problems with an exact 

enumerative method, compare with the optimal solution and deduce 

conclusions of a qualitative nature, e.g. heuristic A is better than 

B most of the times, heuristic C gives values very close to the 

optimal etc. 

Comparing the heuristic value with the optimal is not a practical 

proposition, nor is it very useful to know that 'heuristic values are 

close to the optimal'. This type of information gives some insight 

into the problem but one needs more information, preferably in 

quantitative terms. This has been the underlying idea for some 

recent research on the guaranteed performance of heuristics. 

It usually takes the form of a ratio v(H)/v(E) < k, where v(H) 

is the value from the heuristic solution, v(E) is the value from 

the exact solution and k is a real positive number specified for the 

heuristic. 

A number of studies on this line have proposed heuristics with 

guaranteed worst case behaviour for a few problems, to be discussed 

below. Yet for many other problems, it appears that no efficient 

algorithm can guarantee any value fog• the above coefficient k. 

For the problem of minimising Makespan (Cmax) of n jobs with precedence 

constraints'on m identical processors in parallel, Graham (1966) 

proved that by scheduling the first available job from the list of 

schedulable jobs, as soon as a machine becomes idle (non-delay 
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scheduling), 

v(H)/v(E) < (2-1/m) 

When the jobs are independent, i.e. without any precedence constraints, 

then (Graham, 1969) 

v(H)/v(E) < 4/3 - 1/3m 

which gives a bound of 33% on the maximum error. 

Another interesting result for the problem of two machines in parallel 

can be obtained by scheduling the 2K longest jobs (K: any integer) in 

an optimal procedure and the remaining short ones arbitrarily. Then, 

(Graham, 1978) 

v(H)/v(E) < 1 + 1/(2K + 2) 

For n jobs, the maximum number of iterations required is 2Kn + 2
2K  

(2Kn steps for selecting the 2K longest jobs and 22K  for finding their 

optimal arrangement). 

For the same problem, Ibarra and Kim (Graham, 1978) have developed 

recently an algorithm for which 

v(H)/v(E) < 1 + 1/K in 0(n + K4logn) 

(for large K and n, n +K4logn « 22K), 

Another problem for which a heuristic was proved to have guaranteed 

performance was the bin-packing (a special form of the scheduling problem). 

Given m identical bins of size Q and n items of sizes 
ql,  g2,....gn,  

put the items in the minimum possible number of bins. In scheduling 

terminology, the items are jobs, of length qi, the bins are identical 

machines in parallel and 	Q is a fixed deadline. The same problem 

in another form is known as a cutting problem. In a first-fit - 

procedure, Ullman in 1973 proved that for any precedence constraints 

imposed v(H) < (17/10)v(E) + 2 

and if v(E) is a multiple of 10, then 

v(H) < (17/10)v(E) (maximum error 70%) 
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Johnson,in a proof longer than 75 pages,showed that for any precedence 

constraints with decreasing values of qi, the same first-fit 

method produces v(H) < (11/9)v(E) + 4. When the optimal value v(E) 

is large, then this heuristic solution is quite satisfactory, 

producing no more than 22% error,in 0(nlogn), (Johnson et al, 1974). 

A heuristic with guaranteed maximum error of 50% has been constructed 

for the Travelling Salesman Problem with symmetric distance matrix 

based on the solution of two relaxations of the TSP (shortest spanning 

tree and matching problem) with P-class algorithms (Christofides 1975 and 

1976). The performance of this heuristic is bounded by 

v(H)/v(E) < 3/2 

For the TSP with general arbitrary matrix and for the graph colouring 

problem, it has been proved that no P-class heuristic can guarantee 

error less than 100% (Sahni, 1976). 

These heuristics described above are interesting not only for the 

-hv uhicĪ~ 
special problems they apply, but generally for the methodology used, 

which might give some insight on how to pursue similar work on other 

aspects of the scheduling problem with heuristic algorithms (Garey et al, 1978) 

The main disadvantage of these heuristics is that although they 

guarantee a maximum error for the worst case, they do not quantify 

how good the solution actually is. The expected performance of a 

heuristic is more useful as information, especially if it can take into 

account the parameters of the problem. For this purpose, a 

probabilistic analysis is suggested below. 

2.5.2 Probabilistic analysis of heuristics  

The worst case behaviour of a heuristic algorithm, when known, is 

certainly useful information in that it guarantees some minimum 

quality of performance. These guarantees may be of the order of 
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100% error, and one is left without information about the expected 

performance of the heuristic. 

Ideally one would like to know the probabilistic behaviour of 

a heuristic algorithm for all the possible instances and forms of a 

problem. For the general case of heuristic algorithms, it is not 

possible to derive this information with mathematical analysis. 

The only case where such an analysis has been possible,and only very 

recently, is for a partitioning algorithm (special structure 

heuristic) for large travelling salesman problems in the plane 

(Karp, 1977). No similar or related method can be applied for the 

general job-shop problem. What can be done (Chapters 3, 4, 5) is 

to look at a number of sizes and data structures of the problem and 

derive a probabilistic empirical profile for the performance of 

heuristics. 



CHAPTER 3 

APPROXIMATE FLOW-SHOP ALGORITHMS 

	

3.1 	Flow-shop problems and methods of solution 

	

3.2 	Flow-shop heuristics 

	

3.3 	New heuristics for flow-shops with no-job-passing 

	

3.4 	New heuristics for flow-shops with no-waiting 
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3.1 Flow-shop problems and methods of solution  

The general flow-shop problem of sequencing n jobs on m machines, 

in order to minimise some objective function (e.g. 6max,EF,Q), 

is NP-complete, as already discussed in Section 2.1. As a special 

case of the general job-shop problem it could be solved with the 

methods available for job-shop problems. But it has been felt that 

its special structure of maintaining the same sequence of operations 

through the machines could be used to simplify and improve the 

efficiency of the enumerative solution procedures. Thus, it has 

attracted considerable attention on its own. A number of branch and 

bound algorithms and other elimination methods based on dominance 

properties have been reported in the literature for the exact 

solution of the problem. 

The branch and bound methods for minimising makespan by Lomnicki 

(1965), Ignall and Schrage (1965) and McMahon and Burton (1967) have 

already been discussed in Section 2.3, evaluated in Baker (1975a) and 

thus need not be presented here. 

A review of the elimination methods can he found in Szwarc (1971), who 

has contributed to the development of dominance criteria. It is worth 

noting that for regular measures of performance, the sub-set of the 

(n:)m-1  schedules,where the job-sequence is the same in the first two 

machines,is dominant. 	For makespan problems the sub-set of 

schedules,where the job sequence is the same in the last two machines 

is also dominant, which, reduces the. set to be searched to (n:)
m-2. 

This also means that for two-machine problems with any regular measure 

of performance, and for three-machine makespan problems, one needs 

to search only the dominant set of permutation schedules. Baker (1975b) 

has conducted an extensive study comparing the performance of branch-bound 

and 	of elimination methods in the n/m/
F/Borax 

 problem, which clearly 

showed that the latter are inefficient. 
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Attention has also been paid to flow--shop scheduling problems with 

other criteria e.g. average completion time (Krone and Steiglitz, 

1974). A review of exact and approximate methods for the problem of 

minimising the average flow-time F or the sum of flow-times 
.E F., 

including computational results has been produced by Kohler and 

Steiglitz (1975). Computational results for the mean flow time 

problem are also given in Bansal (1977). Another seemingly different 

criterion, that of miminising the weighted sum of machine idle times 

Ē w.I., for which an optimal method has been proposed by Gupta (1976), 
j=1 J J 

is in fact equivalent to minimising Cmax
: 

m 	m 	m 	n 
j= lw jI j  = ( j=1vrj)Cmax j=1(wji=1Pij ) 

The equivalence of these criteria renders the method of Gupta a 

trivial extension of the one developed by Wismer (1972), who has 

produced an exact method for the special case of flow-shops with no 

intermediate queues, based on the TSP. Gelders and Sambandam 

(1978) have suggested optimal and approximate procedures for another 

criterion, defined as a complex cost function. 

Other methods for special structures of the problem have been presented 

that are more efficient than the general methodology. Such is the 

case in Gupta (1975), Smith, Panwalkar and Dudek (1975 and 1976) 

and Panwalkar and Khan (1976 and 1977). A dynamic programming 

method has been used for flow-shops of two-machines and sequence 

dependent set-up times (Corwin and Esogbue, 1974). Bestwick and 

Hastings (1976) have used a branch and bound method for flow-shops 

with no-job-passing, where all jobs .are not processed by all 

machines. For the permutation flow-shop problem, an efficient 

branch and bound method has been reported by Lageweg et al (1978). 
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The landmark that has influenced substantially research on flow-shops 

was the pioneering work of Johnson (1954) who produced an algorithm 

for optimal solutions of the two-machine problem, summarised below. 

Step 1 Find the minimum of available operations Pil,Pit 
from the set of schedulable jobs S, where 
Pij  is the processing time of job i in machine j. 

Step 2 If the minimum processing time requires machine 1, 
place the job in the first available position in 
sequence. If it requires machine 2, place the job 
in the last available position in sequence. 

Step 3 Remove the assigned job from the set S of 
schedulable jobs and return to Step 1, till S becomes 
empty. 

Several extensions to special structures of three-machine problems 

have been possible. Johnson proved that his algorithm yields optimal 

solutions when the second of the three machines is dominated. 

Another special three-machine (A,B,C,) case is when the Johnson's 

rule applied to AB,BC, A(gives the same ordering. Then this sequence 

is the optimal for the three-machine case (Burns and Rooker, 1976). 

Szwarc (1974) gave a sufficient optimality condition for a solution 

obtained by Johnson's method when the three-machine problem is relaxed 

to a two-machine one with time lags (extended by Burns and Rooker, 

1975). Szwarc (1977) has also defined a small sub-set of the feasible 

solutions which contains an optimal, whenever it is not empty. Recent 

additions to the theory of the three-machine problem are due to 

Gupta and Reddi (1978), Szwarc (1978), Burns and Rooker (1978). 

Extensions of the basic two-machine model have been possible. Mitten 

(1958) showed that Johnson's method yields an optimal solution when 

start-lags and stop-lags are included. The basic method can be-

applied also when the two machines A and B are not available 

simultaneously. The proof of this extension has been necessary for 

the application.of a new bounding method used in the study of 

enumerative heuristics in job-shop scheduling problems (described in Ch.5). 
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Proof: If machine B is available before A, the start time 

of the schedule is that of machine A, and the optimal sequence 

is the same as if A and B were available simultaneously. 

If machine B is available Id  time units after machine A 

(which anyway has no idle times) and E I is the sum of 
i i=1  

idle times in machine B for the schedule produced by 

Johnson's method, when A and B are available simultaneously, 

then 

(i) if I - E I >_0, the sequence produced by Johnson's 
d 	i • 

method is still optimal, since it is not possible 

to produce any sequence with smaller makespan. 

n 
(ii) if I - E I <0 then machine B can not have idle 

d i=1 i 

times. The critical path has no slacks and the 

makespan cannot be reduced by changing the sequence. 

Further use of the basic Johnson's method has been made, trying to 

improve the efficiency of enumerative methods. Townsend (1977c) has 

used Lawler's procedure for the one-machine problem, combined with 

Johnson's rule to produce an efficient branch and bound algorithm for 4/1e-

two-machine flow-shop problem of minimising the maximum penalty. 

A two-machine based bound calculation, using Johnson's rule has been 

applied also to a branch and bound method, described in detail in 

Chapter 5. 

Szwarc and Hutchinson (1977) have used the Johnson's rule as an 

approximate method (heuristic) for the three-machine C
max 

problem 

and have analysed the results statistically. The same rule has 

inspired also the heuristics of Palmer (1965) and of Campbell, Dudek 

and Smith (1970), described in the following section together with 

other heuristic methods. 
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3.2 Flow-shop heuristics  

A large number of heuristics for flow-shop problems has been suggested 

over the years, covering different approaches (Page 1961, Palmer 

1965, Campbell, Dudek and Smith 1970, Gupta 1971, Gupta and Maykut 

1973, Krone and Steiglitz 1974, Bonney and Gundry 1976, Dannenbring 

1977). The most important and representative ones are reviewed below 

and used for comparison with some new heuristics suggested. 

Page (1961) has developed heuristics based on sorting techniques 

by individual exchanging, group exchanging, pairing and merging. 

In the exchanging case, starting with a given sequence (permutation), 

each successive pair of adjacent jobs is tested to see whether it should 

remain as it is or exchanged in case a lower makespan is achieved. 

If an exchange reducing C
max 

 is obtained, the procedure is repeated. 

The same principle is used for exchanging the position of strings 

(chains) of jobs instead of single jobs. The pairing and merging of 

strings is based on replacing each successive pair of strings into 

a new ordered string, the order being the one with the best makespan 

Repeating this procedure, a single chain containing all jobs is 

constructed. 

The heuristic proposed by Palmer (1965) was inspired by 

a property of Johnson's method, where jobs with shorter first operations 

are positioned of the beginning of the solution sequence and jobs with 

shorter second operation; are positioned of the end. To extend this 

concept for m-machine problems, he suggested 	givt priority to jobs 

having longer operations near the end or stronger tendency to progress 

from short to long operation times. A 'slope index' is defined as: 

si  = (m-1)ti.m ± (m-3)ti,m-1 + .... -(m-3)t1
.2 
 - (m-1)ti1 

or s. = m (2j-nr
-1)t..12 

 
1  j=i 	ij 

and jobs are ordered in decreasing slope index value. 
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Gupta (1971) has tried to improve this concept by defining the 

slope index as: 

Si  = ej/minftjk  + tj,k+1} , 1 <K<m-1 

and 

	ej  = 1 	if 	tji  < tjm  

ej  =-1 	if 	til  > tjm  

Bonney (1976) has used the idea of slope index in a different context. 

Two slope indices are defined for each job, a 'start-slope' and an 

'end-slope' and the heuristic sequence is constructed by matching them 

in the best possible way, with the aim of minimising slack or machine 

idle times (slope matching method). 

All these methods have the disadvantage of assuming some kind of standard 

pattern of processing times, like monotonic increasing or decreasing 

operation times. Bonney for example has calculated the slopes by linear 

regression of the start and finish times of operations. But if the job 

profile is irregular, it is not reasonable to describe it with a simple index. 

This is particularly important in small problems, where these methods 

perform poorly. In larger problems, the profile may approach some 

linear form and this agrees with the results reported by Bonney, 

that the slope matching performs better in larger problems. 

An altogether different heuristic, inspired from Johnson's rule was 

suggested by Campbell, Dudek and Smith (1970). Their idea was to 

construct a surrogate problem by splitting the m-machines in two 

groups 1,....k, k+l....m, for k=1,2,....m-1. For each of the two 

groups, they considered the operations merging into an imaginery new 

longer operation, and solved the surrogate(relaxed)problem optimally - 

with Johnson's method. This proved 	to be a very good heuristic and 

extensive studies (e.g. Bonney, 1976) have shown that it is a very 

good measure of comparison with other heuristics. 
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Dannenbring (1977) has used a weighting scheme similar to the slope 

index and to the Campbell et al method, with a simple improvement 

procedure of pair exchanges. 
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3.3 New heuristics for flow-shops with no-job-passing  

Least slack heuristics (hl,h2,h3,h4) 

For flow-shop problems where job-passing is not allowed, minimising 

total slack time between the operations, including the starting (A) 

and ending (C) slacks, is equivalent to minimising total makespan. 

From Figure 3.1 below, where A,B,C are machine idle times, 

mn 	m 
mC 	= E E P. + A + E B. + C and thus C 	is minimised when max j=1i=1 'J 	j=1 J 	max 

A + E B. + C is minimised. If a schedule is optimal in respect to 
j=1 3 

Cmax' 
then it is not possible to construct any other schedule with 

total slack less than that of optimal Cmax. 
 

Figure 3.1 Flow-shop scheduling slack times 
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J1 
	

B 	J2 

F3 

The approach in this study is that heuristics based on slack (machine 

idle time), trying to create schedules with small value of EB., should 
J=J 

not be based on a slope index. 	It is more reasonable to order the 

jobs not from their approximate slopes but from their total slacks. 

One would expect that by ordering the jobs with the view of 

selecting those that have small values of ĒBj, Cmax will be near the 
j=1 

 

optimal. Matching the jobs with slope indices has, as already 

discussed, the drawback that it may be very poor for jobs with 

irregular profiles. Instead direct account of slacks incurred is 

suggested to be the decision criterion for this type of heuristic . 

Four different functions of slack have been tried; front delay, back 

delay, total slack and weighted total slack where the weight 

coefficients indicate that delays incurred in the last machine are more 

F2 

31 
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C 
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undesirable than delays in the preceding machines. These heuristics 

construct the solution by building up one partial schedule as a single 

chain, adding jobs at the end of the chain. A multiple chain 

approach, where many partial sequences are constructed and then joined 

together is not very promising, because by allowing left shifting 

without passing, the start profile of any partial sequence would 

be altered, and the decisions already taken would be invalidated. For 

the same reason, jobs cannot be added in the front of the single chain 

solution. Thus, only a single-chain sequential solution is reasonable, 

where, every time a job is added, the end profile of the chain is 

calculated and used for the next job matching-selection. 

Description of the algorithm  

Every job can be represented with a profile as in Figure 3.2 below: 

Figure 3.2 Gantt chart of a job with three operations 

Fl 	[ 	 
F2 

F3 

When the profile is 'unbroken', the job has 'no-waiting' between the 

operations. This will always be the case with the first job in the 

sequence. Subsequent jobs will fall in one of the four cases 

illustrated in Figure 3.3, on the following page. 

The 'back delays' can be eliminated or reduced by left-shifting the 

operations while maintaining the same sequence of jobs on all machines-

(no job-passing). The front-delays cannot be eliminated by left-shifting. 

The four criteria (heuristics) used for selecting sequentially the 

successor j of job i, from the set of unscheduled jobs are: 
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Figure 3.3 Matching of job profiles 

(a) 	Perfect matching of profiles (zero total slack) 

Fl  j 
F2 i j 

F3 i j 

(d) 	Back and front delays B1 , F3  

hl select the job with the least total slack 

h2 select the job with the least total weighted slack 

(the machine index number has been used as weighting coefficient). 

h3 select the job with the least total front delay 

h4 select the job with the least total back delay 

Once the successor j of job i is selected its completion time on 

machine k is determined by the recursive relation: 

Cjk  = max 
fCik,  Cj,k-1} + P

jk, for all machines k. 

A complete sequence is constructed with this method, and two simple 

checks are used to see if an improvement is possible. 

(i) Interchange of the last two jobs in the sequence 

(ii) Use of all jobs successively as first job in the sequence. 
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A savings-based sequential heuristic (h5) 

Another approach to the idea of matching jobs in a sequence is based 

on the amount of slack saved by a particular partial sequence. The 

savings are computed as the amount of slack saved by sequencing j after 

i, starting from the position where the first operation of job j 

begins at the completion time of the last operation of i (as in 

Figure 3.4 below). 

Figure 3.4 Sequencing without left-shifting 

F1 	; 
F2 

F3 

If the schedule were constructed in that way, the makespan would be 

n m 
C 	= E E P... The optimal schedule is the one that allows the 
max i=1j=1 13 

savings to be maximised. 

The heuristic algorithm can be described briefly as follows: 

Select first job of sequence. 

Select its successor by taking the job which, with all possible 

left-shifting, allows the highest slack savings. 

Repeat for all jobs in the first position of schedule. 

Computational experience 

The least slack and savings-based algorithms have been programmed in 

FORTRAN IV for computer testing and evaluation. It has been necessary - 

to code in FORTRAN IV also an algorithm for calculating the makespan 

of random sequences and the algorithm of Campbell, Dudek and Smith 

(computer codes in Spachis, 1978a). 
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Data for tests were generated for problems of 10 jobs 4 machines, 20 

jobs 5 machines and 35 jobs 5 machines, with processing times from 

the low-variance Erlang distribution with shape parameter k=9 (see 

Appendix A about Erlang distribution) and from the high-variance 

Erlang distribution with k=1 (negative exponential),with the same 

average value. This distinction has been thought to be necessary 

because of the effects of the variance of processing times on job 

profiles. The computational results are given in Table Al of Appendix A. 

The performance of these heuristics has been evaluated by means of a 

relative ranking index. With this method, when a heuristic gives the 

best solution value, it is ranked with index 1. For the second best 

value, it is ranked with 2. In case of two or more heuristics 

giving the same value, they are all ranked with the same value, 

equal to the average (e.g. 2.5). With this method, the sum of ranks 

is the same for all test problems. Another criterion thought to be 

appropriate for the comparison of these heuristics is an 'error from 

the best known solution z
mi
n which is the ratio e = (zh/zmin)-1, 

where zh  is the heuristic solution value. Although the ratio e gives 

an indication of how far the heuristic value is from the best known 

solution, it does not give any information about the relative error, 

because it does not take into account the values from the other 

heuristics. This can be achieved by a 'relative error' criterion, 

defined as the ratio er 
	(zh 	zmin) I (zmax 	zmin).  

The average values of these criteria are given in Table 3.1. By 

observing the results in this table, one can see that in high variance 

problems, h2 (least total weighted slack) is the best for all three 

criteria used and all problem sizes. The savings based heuristic h5 

is the poorest of all (poorer than 'random'). The 'least total hack 
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delay' h4 also is also very poor. The second best heuristic is 

almost always the CDS (Campbell, Dudek and Smith). 

Table 3.1 Performance of heuristics for flow-shops with no job-passing 

High variance of processing times (El) 

10 jobs 4 machines 	20 jobs 5 machines 	35 jobs 5 machines 

Rank 	a 	er 	Rank 	a 	er 	Rank 	a 	er  

	

Random 5.9 .176 	.78 5.6 .164 	.71 5.8 .240 	.73 

	

CDS 2.6 .030 	.18 2.3 .034 	.17 	2.1 .036 	.10 

	

hl 2.8 .044 	.15 2.8 .030 	.22 2.3 .042 	.14 

	

h2 1.9 .008 	.03 2.0 .018 	.07 1.9 .030 	.10 

	

h3 2.9 .052 	.21 	3.8 .052 	.29 3.7 .096 	.30 

	

h4 5.6 .136 	.49 5.9 .182 	.82 6.2 ,274 	.81 

	

h5 6.3 .188 	.77 5.6 .182 	.78 6.0 .274 	.80 

Low variance of processing times (E9) 

	

Random 5.7 .114 	.82 5.8 .056 	.67 6.1 .058 	.87 

	

CDS 3.3 .010 	.17 	2.5 .010 	.13 	1.7 .002 	.05 

	

hl 2.2 .002 	.01 3.2 .014 	.18 2.7 .016 	.22 

	

h2 2.5 .006 	.13 1.6 .004 	.06 2.1 .006 	.14 

	

h3 3.8 .032 	.34 2.9 .014 	.19 3.5 .018 	.29 

	

h4 5.6 .062 	.58 7.0 .086 1.00 6.1 .062 	.88 

	

h5 4.9 .038 	.39 5.0 .050 	.56 5.8 .052 	.76 

e = (Zh/Zmin)-1 

er-  (z{?_zm. )/(Zmax-Zmin)  

Sample size 5 
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In low variance problems, with Erlang k=9, a similar pattern emerges, 

though less clearly. In terms of ranking, h2 is the best in problems 

of 'medium' size (20 jobs and 5 machines). It is better than CDS in 

'small problems' (10 jobs, 4 machines) but poorer than hl. At 'larger' 

problems (35 jobs, 5 machines) h2 is poorer than CDS and better than 

all the rest. The worst of all these cases are the RANDOM and h4 and 

then h5 (savings-based heuristic). 

The conclusion is that h3, h4, h5 are clearly inferior, in all cases. 

Heuristic h2 is the best in high variance, and relatively good in low-

variance where hl and CDS can be good as well. In the low variance 

case, one should notice that the best three of the heuristics (h2, hl, 

CDS) have solution values very close to each other and that their ratios 

e and er  are not significantly different. 
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3.4 New heuristics for flow-shopswith no-waiting 

The flow-shop without waiting is reducible into a directed 

Hamiltonian Circuit problem, known simply as Asymmetric Travelling 

Salesman Problem (ATSP). There are two methods available for 

defining the equivalent ATSP. One has already been described in 

Section 2.1 on reducibility of combinatorial problems. The other is 

based on the equivalence of two criteria of performance, namely 

'minimise 
Cmax' 

 and 'minimise total machines idle times E I.' or 
j=1 3  

'minimise total slack'. 

Each job is represented by a vertex (node) and a dummy vertex is used 

as a starting and ending job for the sequence. Every pair of jobs 

i-j has some slack Bij  between i and j (see Gantt chart of Figure 3.5) 

which is 'used as the distance between vertices (nodes) i-j. The 

start slack A of job i is the distance from the dummy node to i, the 

end slack C is the distance from i to the dummy node and the total 

slack of schedule S is Af  + EB.. + C where Af  is the start slack of 

the first job in the sequence and Ce  is the end slack of the last one. 

Figure 3.5 Slack times for flow-shop no-waiting 

The equivalent ATSP matrix is constructed with the following algorithm, 

where 

Sik 	
start time of job i in machine k 

Cik 	completion time of job i in machine k 

Pik 	operation time of job i in machine k 

n 	number of jobs 

m 	number of machines 
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Algorithm  

Step 1S j1 = Cim for job i preceding job j 

Step 2 f = min {Cik - Sjk} for all k 

Step 3 Sjk =S~
k 

- f 
m 

Step 4 
di j= kE 1 Ci k 	Si k ) = 

Step 5 Repeat for all possible pairs i-j, and for i=jdij = 

or - 1. 

For the reduction described in Chapter 2 (with delays) replace step 4 by 

Step 4 dij = S 1 

For the special cases of start and end jobs j 

= 0 (start) dn+l,j  
m 

dj,n+1 =
k=1 Pjk (end) 

Some good heuristics exist for the TSP, one of which is based on the 

construction of a shortest spanning tree, guaranteeing an error for 

the worst case behaviour to be 50% from the optimal (Christofides, 

1976). This heuristic can be used in problems where the 'triangularity 

condition' holds true, but cannot be applied to the general asymmetric 

distance matrix resulting from the reduction of the flow-shop with 

no-waiting, because there is no P-class algorithm for finding the 

shortest spanning aborescence (the asymmetric version of the shortest 

spanning tree). 

In this section, a number of heuristics have been designed, coded in 

FORTRAN IV and tested and the performance of each of them has been 

compared with the other heuristics, with RANDOM and with the exact 

solution, found by the branch and bound, depth-first algorithm 

of Little et al (1963). The computer codes for these routines are 

given in Spachis (1978a). 

There are two basic methods that are suggested here, characterised by 

the way the heuristic sequence is built up as a chain. 
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(i) Sequential construction of a single chain 

(ii) Multiple chain formation 

Their common characteristic is that each job appears in one position 

only in the sequence, except the dummy job which has to be at the 

beginning and at the end of the heuristic solution. 

The algorithms can be summarised as follows: 

Step 1 Construct slack or distance matrix as described 
in preceding algorithm. This step sees how well two 
jobs i and j fit together, if i precedes j. 

Step 2 Select one element of the chain (p,q) 

Step 3 Exclude all elements that do not conform with the 
above condition, i.e. those that form a closed chain 
leaving jobs out. This can be achieved by excluding row 
p, column cf, link (q,p) 

Repeat steps 2 and 3 till a complete solution is 
reached. 

The efficiency of this heuristic idea clearly depends on the distribution 

of processing times of the jobs. In a 'low-variance' case, the 

matching is likely to be good and the slack,between all pairs 

i-j is likely to be low. By the same token the start and end 

slacks are likely to be fairly stable and the distribution of values 

of A and C is likely to be with low-variance. This suggests that 

two distinct cases should be considered, one with high variance 

(E1 ) and one with low-variance (E9 ). Step 2 of this algorithm is 

described below for a number of heuristics. 

A constrained multiple chain heuristic (Hl) 

The basic idea in this heuristic is to select links with values 

constrained by a 'minimum covering level' (MCL), defined as the 

maximum of minima of rows and columns. This defines a surrogate 

problem where at least one element in each row and column of the 

working matrix has a finite value (open cell), and where all 

elements with values greater than MCL are not used (closed cells). 
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There is at least one row or column with open cell values equal to 

MCL only (since MCL is the maximum of minima). If a feasible 

solution is to be constructed for this surrogate problem, it has 

to include the link corresponding to the open cell equal to MCL 

(tie-breaking in lexicographic order). By selecting this link 

(p,q) and by excluding the elements described in Step 3 above, a new 

surrogate problem of reduced size is defined, from which another 

link of the heuristic solution is to be selected. A new MCL is 

defined, possibly by opening some of the closed cells. In case some 

row or column has no open cells at all, it is necessary to open 

cells up to a value higher than the previous value of MCL. The 

procedure is repeated n-2 times, until a complete feasible solution 

is constructed, using links of constrained value only, which is 

expected to lead to a complete solution of constrained length. 

Least slack heuristics  

In a heuristic approach constructing partial sequences by selecting 

the jobs with the best possible matching (least slack) at every 

stage, it is reasonable to expect that low values of C
max 

would 

be realised. The following methods of forming such heuristic 

solutions have been used. 

- Multiple-chain heuristic (H2) 

Select the smallest open cell of the matrix, i.e. the least 

slack link. Break ties by selecting the last of the smallest 

values encountered in scanning the slack matrix. It is 

certain that this heuristic method will produce at the end a 

single-chain solution, since all links forming sub-tours have 

been excluded. 

- Single-chain heuristic (H3) 

Add in front or after the existing partial sequence (chain) 
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the job-link corresponding to the smallest open cell of the 

slack matrix. Break ties as above. 

- Sequential heuristic (H4). 

Start from job i. Add after it the job j with least slack 

i-j. Repeat for all jobs i in first position. It is the 

same principle as the one in the heuristic described for 

flow-shop with no job-passing. 

A multiple-chain savings-based heuristic (H5) 

This heuristic is basically the same as that described in the preceding 

section for the case of flow-shops with no job-passing. The 

difference is that since the profiles must remain unbroken, only 

limited left-shifting is allowed. 

Figure 3.6 Flow-shop scheduling operations left-shifting 

Admissible 	 Inadmissible 

A. 	start slack for job j 

C. 	end slack for job i 

Bij 	slack between i-j, after left-shifting 

Slack savings in this case are sij  = Aj  + Ci  - Bij. These savings 

are related to delay savings s!. as follows:  

si j  = si j,.m 

and the solutions produced from the two different savings matrices 

are identical. Variations of this heuristic could be obtained by 

calculating a savings score, using weighting coefficients or by 

forming a sequential or a single-chain solution. 
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Computational experience  

All the heuristics described above have been tested both with high 

and low-variance data, for problems of 10 jobs 4 machines, 20 

jobs 5 machines, 35 jobs 5 machines. Heuristics H1, H2, H3 and 

H4 have been tested with both slacks and delays. In 30 problems 

tried with these four heuristics (two tests with each heuristic, 

one with slack matrix and one with delay matrix), the use of 

slacks gave better results than the use of delays in 116 out of 

the 120 test cases. In the remaining four cases, the solutions 

obtained with slacks were only marginally poorer, while the solutions 

with delays were not found to be the best of all. This is a clear 

case of dominance of the method using slacks. This superiority 

of slacks compared with delays probably lies in the fact that more 

information is used with slacks for the construction of the heuristic 

solution, without increasing computational costs. 

These results as well as the results. from RANDOM and from the 

exact method are given in Table A2 of Appendix A. The measures of 

performance used in the preceding section on heuristics for flow-

shops with no-job-passing, have been used also for the case of 

no-waiting. The values of average ranking, error e and relative 

error er  are summarised in Table 3.2, on the following page. 

Observation of the results of this table shows that the overall best 

heuristics are the constrained multiple-chain formation H1 and 

the savings based multiple-chain H5, in problems of both high and 

low variance. The least slack heuristics of multiple-chain (H2), 

single-chain (H3) and sequential (H4) are almost always dominated, 

overall worst being the H3. No conclusions can be drawn on the 

effects of the variance of processing times. The relative position 

of H1 and H5 is not affected, while minor changes take place for 

H2, H3, H4. 
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Table 3.2 Performance of heuristics for flow-shops with no-waiting 

High variance of processing times (El) 

n=10, m=4 
	

n=20 ,m=5 	n=35 ,m=5 

Rank 	e 	
er 	

Rank 	e 	er 	Rank 	e 	er  

	

Random 6.0 .353 1.00 6.0 .483 1.00 6.0 .581 	1.00 

	

H1 1.8 .048 	.16 2.6 .061 	.12 1.9 .043 	.07 

	

H2 3.2 .100 	.29 3.5 .104 	.22 3.0 .056 	.09 

	

H3 4.3 .126 	.38 3.7 .116 	.23 4.1 .089 	.14 

	

H4 3.7 .064 	.18 3.9 .088 	.19 2.1 .048 	.08 

	

H5 2.0 .032 	.09 1.3 .042 	.09 3.9 .084 	.14 

Low variance of processing times (E9) 

	

Random 5.8 .156 	.97 6.0 .176 	1.00 6.0 .245 	1.00 

	

H1 1.9 .017 	.14 2.5 .025 	.15 2.3 .024 	.10 

	

H2 4.7 .075 	.54 2.6 034 	.19 3.1 .033 	.14 

	

H3 4.1 .072 	.45 4.3 059 	.31 	3.7 .038 	.17 

	

H4 2.6 .035 	.21 	3.2 033 	.20 2.6 .025 	.10 

	

H5 1.9 .016 	.12 2:2 026 	.15 3.3 .033 	.14 

In small problems of 10 jobs 4 machines the savings based heuristic H5 is 

better than H1 in terms of error and relative error, though not in 

average ranking. In problems of 'intermediate'size (20 jobs 5 machines) 

heuristic H5 is better than H1 in all counts. In the 'larger' problems 

of 35 jobs 5 machines.though heuristic H1 is clearly the best. 

As second best appears the least-slack sequential heuristic H4, 

third in order comes the multiple chain H2 and H5 is only fourth. 

These results indicate that the advantages of constructing a solution 

with the constrained multiple chain heuristic (H1) are materialised 

in larger problēms only where by controlling the maximum values of 

the links selected, a solution of low C
max 

 is obtained. In contrast 
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the other heuristics, based on least-slack or on savings, start with 

low cost (contribution) links but are pushed to include very 

unfavourable links near the end. It is possible that with further 

investigations the performance of heuristic methods H1 and H5 

could be improved. The constrained multiple chain heuristic (H1) 

involves a number of decisions which could be resolved in a number 

of ways other than the one used. Similarly, the savings based 

heuristic (H5) could be improved by investigating minor changes 

in the calculations of savings. A savings score could be used, 

calculated on weighted, quadratic and other expressions of the 

actual savings. 

Another type of heuristic inspired by the method of group exchanges 

of Page (1961) and by the'A-optimal' tour heuristic for Eucledian 

TSP, has also been considered, whereby starting from an arbitrary 

chain/solution A-links are taken out, all possible combinations of 

the a-sub-chains are tried and the process is repeated for all possible 

combinations of the A-links. This method with A=2 or x=3 is 

reported to be efficient for the TSP. However, a preliminary 

investigation for flow-shops with no-waiting (examples solved 

manually) was rather inconclusive probably due to the assymetric 

nature of the matrix,and it has been decided to drop the idea. 
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4.1 Evaluation of single pass job-shop heuristics  

Single pass heuristics for the general job-shop problem are of 

special importance and interest. The simplicity of implementation 

and the large size of problems that can be tackled with them allow 

many practical applications at shop floor level. The assessment of 

their performance can take a number of forms. The most common has 

been a qualitative comparison whereby one particular heuristic is 

either better or worse than another, evaluated on the basis of 

solution values obtained over a number of problems, usually with 

randomly generated data. An alternative method of assessment could 

be based on the 'Worst Case Behaviour' of a heuristic. This information 

if obtainable, would certainly be useful, guaranteeing a maximum 

error, although it would give no indication of the actual performance 

of a heuristic. It is believed that this expected performance is the 

most useful information about a heuristic in a given job-shop 

environment. A probabilistic analysis is proposed here as a more • 

elaborate procedure, which will distinguish the various problem 

structures and will quantify for each structure the actual performance 

of heuristics in terms of an expected value and of a frequency 

distribution. 

The structure of the problem depends on a number of parameters: 

(i) Size as an indicator of complexity 

(ii) Variance of processing service times 

(iii) Sequence constraints or transfer matrix 

(i) Size 

The size can be described by Of(n:)m} which is an 

upper bound to the set of feasible semi-active 

solutions. 

The following problem sizes have been investigated: 
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Jobs Machines (n:)m  

4 3 .138 E5 
6 3 .373 E9 
8 4 .264 El9 
10 4 .173 E27 
20 5 .852 E92 
35 5 .118 E201 

(ii) Service time distribution 

A general distribution G (u,a) may be approximated with 

an Erlang distribution (Appendix A), with parameter k 

and mean u, assuming that the higher moments have 

no significant effect on the processing time values. 

The service times are expressed always as integers to allow 

faster computations since the formulation is not 

affected by using larger integer values instead of 

real numbers (e.g. 45 time units instead of 4.5). 

The values of variance used, as measured by the 

coefficient of variation V = a/u, are as follows: 

1.00 (Erlang, k=1) 	. 
.82 (Uniform Rectangular) 
.50 (Erlang, k=4) 
.33 (Erlang, k=9) 
.17 (Erlang, k=36) 

(iii) Precedence constraints 

The simplest form of transfer matrix is that of a 

flow-shop with the same sequence for all jobs. At 

the other end, there is a completely random routing, 

where given a partial sequence S, the probability p 

that the next of the remaining r' operations is 

operation k, is p=1/r'. This more general case has 

been adopted for the experiment, where the number of 

alternative (possible) routes is m:, and the probability 

of any of these routes is 1/m' 
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The simplest evaluation possible is an average ranking whereby the 

best value corresponds to the heuristic with rank 1. The second 

best has a rank 2. In case of equal values, the average rank is 

assigned to both, e.g. 1.5. 

A more elaborate measurement of the performance of heuristics, 

based on a probabilistic analysis of the error from the optimal, 

is suggested here. A feasible solution obtained with a heuristic 

is certainly appropriate only for the particular problem(set of jobs 

and machines) 	under consideration and does not allow any comparison 

with other similar problems. To overcome this difficulty, a 

'normalisation' of the solution is desirable. This could be a 

ratio of the solution value over the exact (optimal) solution, or 

a percentage of 'excess' values over the yet unknown optimal. It is 

argued that the best is a bracket value based on the feasible solution 

available and specifying the maximum possible distance of the optimal. 

This Bracket for the Optimal Solution will be referred to as 'BOS'. 

BOS has the advantage of being based on the known feasible solution 

and not on the unknown optimal. 

H 	represents the single-pass heuristic used 

v(H) solution value with H 

be 	overall lower bound to the problem solutions 

BOS 	bracket for optimal solution (%) 

BOS = ((v(H)-be}/v(H)) 1.00 

Empirical information on BOS has been derived from an experiment 

with the model described in the following section, where the sample 

size chosen for each problem structure is given in Table 4.1 below. 

Table 4.1 Sample sizes for probabilistic analysis of heuristics 

Problem Coefficient of variation 

Jobs Machines 1.00 .82 .50 .33 .17 

4 3 10 10 10 10 10 
6 3 10 10 10 10 10 
8 4 10 10 10 10 10 
10 4 20 20 20 20 20 
20 5 20 20 20 20 20 

35 5 5 5 5 5 5 
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4.2 Description of the algorithm and decision rules  

An algorithm for the generation of active schedules, implementing the 

method of Giffler and Thomson has been taken from King (1975), with 

some modifications. Before describing the algorithm it is necessary 

to discuss some notions and terminology to be used. The discussion 

can be facilitated by using Gantt charts. 'Conflict' between two or 

more operations arises when the jobs are contenders for processing 

on the same facility M at the same time (Figure 4.1). 

Figure 4.1 	'Conflict' jobs 

job J 

job J2 

DT 

A time index, called 'Datum Time' (DT) indicates in the Gantt chart 

whether the position of an operation in a partial schedule is 

fixed or not. Operations completed before DT are fixed decisions 

while those with c1 > DT are tentative ones. In Figure 4.1, jobs 

J1  and J2  compete for machine M. The conflict is recognised when 

DT is equal to min (ci ). Resolving the conflict by deciding to 

give priority to J2, is represented in the Gantt chart of Figure 4.2, 

and DT is updated to the next earliest completion time. 

Figure 4.2 Conflict resolution 

job J1  

job J 

DT 
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The algorithm used is described below (where Ns  is the number of times 

DT is updated, ci  is the completion time of an operation i and 	• 

pi  is the processing time of operation i) and the related flow-

chart is given in Figure 4.3,_on the following page. 

Algorithm for active schedule generation  

Step 1 

Step 2 

Initialisation of procedures. 
Define a matrix A=0 of nmN elements, where each row has 
nm elements, in m blocks, representing the m machines, and 
each block has n elements (operations). Define the set 
S of schedulable operations by entering the completion 
times of operations without predecessors in the appropriate 
matrix positions. Define the empty Partial Schedule by 
setting DT equal to the smallest entry DT=min (c.), jES 

Conflict recognition. 
If there is one conflict or more GO TO 3. 
If not, GO TO 5. 

A conflict exists in a machine block, if at least one 
entry is equal to DT and at least another one is greater 
or equal to DT. All entries greater or equal DT form the 
conflict set S. 

Step 3 	Definition of 'conflict machine' m*, where the conflict 
occurs (if there is more than one conflict, select one). 

Step 4 	Conflict resolution. 
Select, with some rule, called 'Heuristic', one of the 
conflict jobs(operations)to be processed first. Record 
this decision by entering its earliest completion time c 
in the same column of the next row of the matrix A. Update 
the earliest completion times of the remaining conflict 
jobs c. = c + p., enter all c. in the corresponding 
column of the nxt 	row. 

Step 5 	Update set of schedulable operations. 
For all jobs with c. = DT (implying completion of an 
operation) calculat the earliest completion time in their 
next operations cn,  at a machine different from the one 
where c. = DT 
c = DT'+ p (p :processing time of next operation). Enter 
cn  in the appropriate column of the next row. 

Step 6 	Update the remaining part of next row. 
Enter unchanged all other completion times in the same 
column of the next row. 

Step 7 	Update the datum time. 
Set new DT equal to the smallest entry c. that is greater 
than the current value of DT. 

Step 8 	Check for completeness of schedule. 
A complete feasible active schedule is indicated by all 
entries in the current row being non-zero and by DT being 
equal to the largest c.. If the schedule is not complete, 
GO TO 2. 

Step 9 	Terminate procedures. 
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Figure 4.3 Flow chart for single-pass active schedule generation 

(Step 
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Description of Heuristics  

The algorithm described in the previous section, resolves the 

conflicts that arise with one of the heuristic decision rules to 

be described below. Once a decision is made, then it is not 

reconsidered or revised later (single-pass procedure), and the rule 

used is called a'single-pass heuristic'. It is apparent that single-

pass heuristics are 'good algorithms', since the number of steps 

(iterations) required (equal to the number of conflicts) is 

polynomially bounded by 0(nm). The following active scheduling 

heuristics have been used. 

ECT 	Earliest Completion Time. 

Select first the job with the earliest completion time. In 

case of tie, i.e. more than one job with the same smallest ECT, 

select the first in lexicographic order (randomly, since 

labelling of jobs is random). 

FCFS 	First Come First Served 

Select the job that came first to the current conflict machine 

i.e. the one that finished earlier its preceding operation, at 

some other machine. Tie breaking, as above, in lexicographic 

order. This is tantamount to an 'Earliest Start Time' rule 

and the solution obtained is the same as a non-delay scheduling 

one. Non-delay schedules are those where no machine is left 

idle, while a job is waiting for processing. The difference 

is that in non-delay scheduling, no conflict would be 

recognised, unless some jobs had the same earliest start 

time. Thus, if an enumerative method was to be used, some 

active schedules might be missed, while with FCFS, all 

alternative conflict resolutions are identified. 
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SPT 	Shortest Processing Time 

Select the shortest operation first (tie breaking as above). 

GEN 	A general decision rule is to assign priorities to the conflict 

jobs according to some function of completion times, start 

times, processing times, idle times and other variates, and 

select the one with the highest priority. 

The underlying idea for this general rule is the attempt to relate 

desired results and the decision variables. The criteria of perform-

ance that are thought to be the most relevant to real problems are: 

(i) meeting due dates 

(ii) minimising work in progress 

(iii) minimising idle time of facilities-resources 

Since no due dates are used in this formulation of the problem, an 

arbitrary due date D is set, which acts as an incentive to maximise 

the number of jobs to be completed in the given timespan D (lateness-

tardiness criteria). Minimising the work in progess is the same as 

minimising the time jobs spend waiting in queues (. 1 W ). Minimising 

the idle time of facilities E I.is equivalent to minimising makespan 
j=1 J 

Cmax
. These objectives are independent and probably conflicting. 

An overall optimisation strategy should be one balancing these criteria 

by the use of some composite objective function with subjectively 

set weighting coefficients. The decision rule (priority function) 

appropriate for this type of criteria should be also composite. The 

following form is suggested: 

For each job i a priority index P. is set-up as the weighted 
sum of all criteria calculated as1deviations from given values. 

Pi  = w1P1  + w2P2  + w3P3 
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where 	Pri  processing time of remaining operations of job i 

Pfi  processing time of finished operations of job i 

Pm 	service time of operations available for processing 
in the next machine 

P1  = (1-0(D-T-Pri)-x  + S(D-T-Pri)x  

with 6 = 1 if the job is already late, or else 0 

P2  = (T/Pfi)Y 

P3 = z/Pm 

The parameters that have to be defined are wl, w2, w3, x, y, z. 
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4.3 Computational experience  

The experiment has been carried out with data generated randomly 

from the processing times distributions described in Section 4.1. 

A summary of the results collected from this experimental study of 

the heuristic ECT, FCFS, SPT is presented below. Table 4.3 gives 

the average relative ranking for makespan 
Cmax' 

 Table 4.4 gives the 

average BOS and Table 4.5 gives the average ranking for average 

waiting W (next page). 

Results from the use of the generalised composite heuristic GEN were 

obtained for a few problems where it became clear that the solution 

values could be very good when the trade-offs were balanced but 

only after a lot of search for defining the best combination of 

its parameters and coefficient values. This being a very cumbersome 

and rather expensive task, it has been necessary not to take the 

investigation of this heuristic any further in this chapter. 

The cost of obtaining the solutions as presented in Tables 4.3, 

4.4 and 4.5 and a host of related information is almost negligible. 

Table 4.2 below is indicative of the CPU times required, when a lot 

of extra information, not directly needed, is computed (e.g. 

bounds for every branch, proportions and others). 

Table 4.2 Problem dimensions and computational cost of single pass 
	 heuristics 

Problem Size 	0(nm) 	No of conflicts or 	CPU time in seconds 
decisions 	CDC 7600 

Jobs Machines Typical case Range 
FTN 	compiler 

35 5 175 150 148-158 1.10 
20 5 100 80 78-83 0.30 
10 4 40 30 27-32 0.04 
8 4 32 20 18-22 0.025 
6 3 18 10 9-12 
4 3 12 6 5-8 



Table 4.3 Average ranking for makespan values of single-pass heuristics 

Jobs Mach. 

ECT 

E1  

FCFS SPT ECT 

UR 

FCFS 

Processing times distribution 

E9  

FCFS SPT ECT 
E36  
FCFS SPT SPT ECT 

E4  

FCFS SPT ECT 

4 3 1.85 1.6 2.55 1.85 1.7 2.45 1.85 1.5 2.65 2.0 1.6 2.4 1.55 1.75 2.7 

6 3 1.9 1.6 2.5 1.65 1.7 2.65 1.35 2.1 2.55 1.5 1.8 2.7 1.45 1.65 2.9 

8 4 1.95 1.45 2.6 1.6 1.7 2.7 1.5 1.6 2.9 1.4 1.85 2.75 1.4 1.65 2.95 

10 4 1.4 :1.3 2.8 1.6 1.6 2.8 1.65 1.65 2.7 1.5 1.6 2.9 1.55 1.55 2.90 

20 5 1.0 2.5 2.5 1.35 1.65 3.0 1.4 1.6 3,0 1.5 1.5 3.0 1.2 1.8 3.0 

35 5 1.2 2.2 2.6 1.8 1.2 3.0 1.8 1.2 3.0 2.0 1.0 3.0 2.0 1.0 3.0 

Table 4.4 Average BOS (Bracket for Optimal Solution %) 

4 3 21.2 	18.2 	28.0 	19.6 	21.1 	29.7 19.9 15.6 31.1 21.2 21.2 31.3 15.9 21.0 30.4 

6 3 20.3 16.7 26.5 19.7 17.5 26.9 15.1 19.4 26.5 18.2 19.6 27.1 18.1 19.4 30.4 

8 4 22.6 16.4 27.6 21.5 21.0 31.4 23.8 23.4 37.0 19.2 24.0 32.7 20.6 20.5 31.0 

10 4 25.6 15.8 33.9 18.3 17.9 29.4 23.1 21.6 31.2 17,7 17.6 30.7 17.9 17.5 29.5 

20 5 20.6 15.5 30.3 14.6 13.2 25.6 13.6 14.2 27.2 12.0 12.0 25.0 12.3 15.9 26.9 

35 5 21.0 12.0 30.0 13.6 9.8 24.4 12.0 15.0 25.0 9.0 10.0 23.0 10.0 7.0 25.0 

Table 4.5 Average Ranking for W 

4 3 .1.3 2.5 2.2 1.25 2.6 2.15 1.35 2.05 2.6 1.6 1.95 2.45 1.5 1.55 2.95 

6 3 1.2 2.7 2.1 1.1 2.5 2.4 1.46 2.08 2.46 1.5 1.8 2.7 1.3 2.0 2.7 

8 4 1.44 2.28 2.28 1.4 2.0 2.6 1.05 2.4 2.55 1.25 1.95 2.8 1.65 1.6 2.75 

10 4 1.15 2.3 2.55 1.45 1.75 2.8 1.15 2.25 2.60 1.3 1.8 1.9 1.33 1.72 2.95 

20 5 1.05 2.38 2.57 1.4 1.65 2.95 1.2 1.8 3.0 1.45. 1.55 3.0 1.85 1.15 3,0 

35 5 1.2 2.2 2.6 1.8 1.2 .3.0 1.8 1.2 3.0 1.8 1.2 3.0 2.0 1.0 3.0 
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It should be noted that the solution time is the time starting from 

and including the definition of the initial set of schedulable 

operations to the completion of the feasible (heuristic) solution. 

It does not include 'input' and set-up or compilation times, but 

includes 'output' time. The machine used is a CDC 7600, with the 

FTN compiler. 

Discussion of results  

In terms of average ranking for makespan values (Table 4.3), the 

rule SPT gives always the poorest value, i.e. it has the highest 

value of average ranking, with increasingly poor performance for 

increasing problem dimensions. In the smaller problem sizes, the 

average ranking for SPT tends to be worse for the low variance data. 

Heuristic ECT performs better with low variance data for smaller 

problems and with high variance data for larger problems. The 

reverse trend seems to take place for FCFS. ,The emerging pattern 

is that for smaller problems with high variance of processing times, 

FCFS has the best average ranking, while with low variance, ECT is 

clearly better. For larger problems, with high variance,ECT is better 

while the result of the comparison is less clear in low variance 

cases. 

The impact of both the problem size and. variance of processing times 
noticeable 

is more 	on the value of the average BOS for the single 

pass solution. 

(i) In small problems, for -each heuristic, the values of 

the BOS are higher than in the larger problems, some-

thing one might intuitively expect. The reason appears 

to be that, due to prece dence constraints, idleness 

is introduced in the machines, and there are not any 

jobs in the sei: of schedulable operations to fill 
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the gaps. The result is that C
max 

is substantially 

higher than the max (max,F P.., maxĒ.P ), which is 
iJ=11J ji= ij 

the base of lower bound calculations. 

In larger problems, 
Cmax 

 is much nearer to the Lower 

Bound, because there are always jobs which might fill 

the gaps (or the machine idle times). 

(ii) The value of the variance is also significant. 

For the same problem size and heuristic, one can see a 

tendency for larger BOS at high variance values, 

which might be explained by the consideration of job-

delays or machine idle times. For a given transfer 

matrix, low variance implies small differences in 

processing times, and high variance may induce 

longer machine idle times which are not cancelled by 

subsequent shorter operations. 

(iii) Apart from the above two general remarks on the impact 

of these two parameters on the performance of the active 

scheduling heuristics, a general remark is that in all 

cases in terms of BOS, the SPT has the poorest 

performance. In high variance,rule ECT has poorer 

performance than the FCFS, while in low variance, this 

is reversed. The performance of the same heuristics, 

measured by the average ranking for the average waiting 

(R,F,C,) per job is somewhat different from that for 

BOS values, as can be seen from Table 4.5. In small 

problem sizes (up to 10 jobs 4 machines) ECT is the 

best, for all the values of the coefficient of 

- variation V. The rule SPT is better than FCFS only 
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at high V, and clearly poorer in low V. In larger 

problems SPT is the poorest for all values of 

variance and ECT is the best for all V at problems 

of 10 jobs 4 machines and 20 jobs 5 machines, and for 

high values of V at problems of 35 jobs 5 machines. 
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4.4 Worst case  behaviour and probabilistic analysis of heuristics  

The maximum value of BOS observed for each problem size and 

distribution of processing times is presented in the following 

Table 4.6. 

Table 4.6 Worst case value of BOS for single-pass heuristics (%) 

Jobs 	Machines 	E1 	UR 	E4 	E9 	E
36  

	

4 	3 	32 	34 	47 	39 	34 

	

6 	3 	37 	31 	27 	27 	28 

	

8 	4 	39 	31 	34 	29 	31 

	

10 	4 	46 	30 	35 	31 	26 

	

20 	5 	32 	23 	25 	22 	18 

	

35 	5 	30 	16 	16 	11 	15 

Heuristic 

ECT 

FCFS 

4 
6 
8 
10 
20 
35 

3 
3 
4 
4 
5 
5 

39 
34 
34 
38 
28 
17 

42 
35 
41 
28 
27 
16 

22 
39 
32 
33 
26 
15 

37 
33 
30 
33 
20 
14 

32 
31 
26 
34 
23 
10 

SPT 

4 
6 
8 
10 
20 
35 

3 
3 
4 
4 
5 
5 

38 
46 
40 
51 
39 
31 

44 
42 
46 
39 
34 
31 

48 
38 
46 
44 
31 
27 

42 
39 
41 
39 
33 
26 

41 
36 
40 
39 
32 
29 

From the figures in Table 4.6 one can see that both size and 

variance have some impact on the worst case value of BOS. It is 

worth noting that the worst case error (BOS) for all the heuristics 

is {0)-bel /v (H)=0.56, and that the highest values are encountered 

in the smaller problems while the values of BOS for large problems 

with low variance are fairly small. There is a clear trend for BOS 

values to decrease with increasing problem size, for all heuristics, 

problem sizes and data structures. This is of great significance, 

because, after all, heuristics are needed for the larger problems 

rather than the small ones where exact solutions can be computationally 

feasible. 
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A tentative explanation is that at large problems where more jobs are 

involved in each conflict, delays can be avoided by this increased 

availability and thus the makespan values are closer to the values 

of lower bounds calculated as described in the preceding section. 

Another point of interest is that the higher values occur in problems 

with high variance of processing times, probably due to the fact 

that a 'wrong' scheduling decision may result in long delays. 

As an alternative to the analysis of results from observation of 

Tables 4.4 and 4.6, a probabilistic analysis is also possible. The 

basic idea is that an empirical distribution function F(x) can be 

defined as 

F(x) = Prob(X<x) 

where X is the value obtainable by the heuristic and x is the 

variate which can take values 0<x<x 	,x 	representing the 
< < max mar. 

worst value obtained. Obviously, the larger the sample size used, 

the more reliable the probabilistic information (described by F(x)) 

will be. As an example, the distribution function for the heuristic 

ECT has been plotted, at problems of 10 jobs 4 machines, 20 jobs 

5 machines and 35 jobs 5 machines, for Erlang with k=9 in Figure 

4.4 and for Erlang with k=36 in Figure 4.5. The computational 

results used for plotting these figures are given in Appendix B. 

Figure 4.4 Distribution function of BOS (%) for ECT (E9) 
Probability 

1.0- 

0.9 

0.8- 

0.7. 

0.6 -  

0.5- 

0.4- 

0.3 

0.2_ 

0.1 

0( 

0 	2 	4 	6 	8 	10 	12 	14 16 	18 	20 	22 	24 26 	28 	30 BOS 

• 



- 100 - 

Figure 4.5 Distribution function of BOS (%) for ECT (E36) 

Probability 
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(a) 35 jobs 5 machines 

(b) 20 jobs 5 machines 

(c) 10 jobs 4 machines 

These diagrams show a clear dominance relation for the different 

problem sizes. For any level of probability F(x)>.2 

x35,5 < x20,5.` x10,4 

or for a given value x of the Bps 

F35,5 >F20,5 >F10,4 

For problems of 20 jobs 5 machines and 10 jobs 4 machines, where the 

sample size used was N=20, the difference 
F20,5 	

F10,4 is fairly 

stable. The implication is that some form of interpolation for 

problems of intermediate size is not only feasible but also meaning-

ful . One need not expand the experiment, in order to obtain 

probabilistic information for other problem sizes but can use 

with some accuracy the interpolation results. 

Another point of interest is the form of F(x) for each problem size. 

It appears that a linearity assumption is quite reasonable: 

F(x) = a + 	for .2<x<1.0 
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5.1 Parameters of local neighbourhood search(LNS) 

The probabilistic analysis of 	single-pass heuristics is use- 

ful because it provides probabilistic information about the expectation 

of the performance of these simple heuristics, at very low compu-

tational cost (small fractions of 1 second), as opposed to exact 

solutions where the required investment on computer resources may 

be infeasible. For cases, where higher accuracy of solution is 

desired and the amount of computer resources available is larger 

than the 1 second required for the single-pass heuristics, (of the 

order of 0.1 up to 1 minute) then approximate methods based on partial 

enumeration become feasible. 

The partial enumeration is based on the search of 'local neighbour-

hoods'. For the general job-shop problem under investigation, in 

a tree-like representation of the solution space, a local neighbour-

hood corresponds to a sub-tree, i.e. it is defined as 'all active 

solutions with a common fixed partial sequence'. In terms of 

permutations, it is the subset of the active solution space with 

a number of elements fixed in position. The idea of a partial 

enumerative solution is to search one or more of these neighbourhoods 

to find the best possible solution, As in the previous chapter, the 

objective of the study is not only to find the best possible 

"solution but mainly to try to describe the behaviour of the heuristic 

involved in quantitative terms and express the expected performance 

in probabilistic terms. 

There are two basic methods of searching a local neighbourhood, 

depending on its definition. In the case it is defined by inter-

changing the positions of some pair of elements from a complete 

sequence, leaving the others as they are, the method of search is 

usually referred to as 'combinatorial analysis' (Section 2.3). 
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This method is feasible for permutation problems, where one 

permutation is a complete solution to the problem, and where the 

calculation of the value of the objective function/measure 

of performance is derivable from the value of the previous 

sequence, through a simple transformation. 

The general n-job m-machine job-shop scheduling problem needs m 

permutations for its description and the calculation of the 

corresponding objective function is quite complex. Besides, one 

wants to search only the set of active solutions which is easily 

defined in graph terms but not in terms of permutations. If a 

pair of elements is interchanged, then in the general case, the 

computations required to find the new value of the objective 

function have to be repeated for a large part of the sequence, 

because no simple transformation is possible (as for example in the 

Travelling Salesman Problem). When the neighbourhood is described 

by a fixed partial sequence at the top of a 'tree' representation, 

then the natural method of solution is a 'branch and bound' method. 

A number of parameters is needed for describing a branch and bound 

method. 

Nodes and branches 

The basic idea of the method is to partition a set of solutions 

into disjoint sub-sets, A node represents a conflict, or a decision 

point, and branches are the alternative decisions/conflict resolutions. 

There are two basic methods of partitioning the problem and the 

solution space. 

(1) A binary tree has been suggested by Charlton and Death 

(1970a). In this method every node has a pair of 

branches, so that the partitioning is always generating 

two disjoint subtrees. Since any two operations to 
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be performed on the same machine cannot be performed 

simultaneously, the set of all schedules can be 

divided into two subsets, one in which the pair of 

operations is performed in one order and the second 

in which the order is reversed. The potential advantage 

of this method is that it might allow early settlement 

of crucial decisions after which the following 

decisions might -be more obvious. This method 

apparently results in 	trees with a high number of 

levels (generations of nodes). 

(ii) A more efficient partitioning method is the one 

used by Brooks and White (1965) and Florian et al 

(1971) and described in Section 4.2, where every 

node corresponds to a set of m' conflicting 

schedulable operations, resulting in m' branches. 

Selection of node and conflict resolution rule  

It is the rule by which the node to be used next is determined. 

There are two basic types of branching possible, named 'depth-first' 

and 'breadth-first' illustrated in Figure 5.1, There is also a'best-

bound-first' (branching from the active node with the least value 

of lower bound) which is a mixture of the other two methods 

(comparison of the search strategies can be found in Ibaraki, 1976b). 

The depth-first (i.e. branching from the last active node) is more 

expensive in terms of computer time required, while the breadth-first 

(branching from the first of active nodes) is much faster but needs 

a lot more storage (core) in the computer. The depth-first therefore 

is more suitable for adaptation to computers of any capacity (even 

small ones). It has also the advantage that feasible solutions are 

constructed from the beginning and improvements take place during 
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the solution,while in the breadth-first, solutions are constructed 

at later stages, which is not suitable for the approach adopted. • 

For these reasons a depth-first strategy has been the approach 

adopted in this study, with the branching rules ECT, FCFS, SPT, 

described in Section 4.2. Since core is not the main problem of the 

solution, but time, it is necessary to consider the amount of time 

to be invested for any problem, as another parameter of the branch 

and bound method. When this predetermined time is exhausted, the 

solution procedures terminate, and the answer will be the best value 

of the objective function obtained up to that time. 

Figure 5.1 Tree-search methods 

Feasibility function  

This function is used to eliminate partial schedules known not to 

have completion within the set of feasible solutions. In practice, 

it translates the precedence sequence requirements of operations into 

a set of schedulable operations for every instance of the problem. 

It determines the next executable operation for every job, if there 

is any. 
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Lower bound function  

The lower bound function assigns to each partial solution (node) 

a value be  representing a lower bound to all complete active solutions-

descendants from that node. The, lower bound is a non-decreasing 

function of the level (generation of nodes) in the tree representation, 

whose value at the final level is equal to the actual solution. 

The lower bound calculation methods will be discussed at length in 

the following Section 5.2. 

Upper bound  

Upper bound bu  is the value of the objective function for the best 

complete solution known 'a-priori' or alternatively a large number, 

greater than all possible solution values, if no complete solution 

is known. An initial upper bound close to the value 4ōptimal 

solution reduces computations substantially, as 	computational 

experience has shown. 

Dominance relation and elimination rules 

Every currently active node or branch has a lower bound assigned to 

it which is compared with the last (best) value of the upper bound 

of the problem, before further branching. If be>bu  then all 

descendants of this branch will have values v>be  and need not be 

considered further. 



- 107 - 

5.2 Lower bounds  

5.2.1 One-job and one-machine based bounds  

The lower bounds in principle are solutions to simple surrogate 

problems of the original, resulting from the relaxation of some of 

the constraints. For scheduling problems, the bound calculations 

are based on the relaxation of two types of constraints. 

One-machine based bounds 

Relaxing the constraint that no more than one operation can 

be carried out on a machine at any time, in all but one 

of the machines, 	the remaining work content of that 

machine determines the value of the bound. This is tanta-

mount to allowing operations in all jobs to overlap. If 

this relaxation is allowed, then operations on any of the 

machines need not have waiting times, and the related bound 

is 

where 

b' = max (ceJ_+ kER?ik} , jEM 

M 	set of machines 

R. 	set of unprocessed operations in 
machine j 

cej  last completed operation in machine j 

This bound, referred to as 'one-machine-based' lower 

bound, has been developed firstly for the flow-shop by 

Lomnicki (1965) and Ignall and Schrage (1965) and 

reformulated by others. 

One job-based bounds 

Relaxing the constraint that no more than one operation of 

a job can be executed at any time, in all jobs but one, 

then the remaining work-content of that job is the base 

for calculating the lower bound. An alternative description 

for the same bound is to relax capacity constraints in all 
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machines, and determine the schedule length from the 

jobs work-content only: 

b" = max {c 	P el  + k ER k. 	i EJ 

where 	J 	set of jobs 

Ri 	set of remaining unscheduled (unprocessed) 
operations for job i 

Pkj  processing times 

cel  completion time of last scheduled operation of 
job i 

This bound will be referred to as job-based .lower bound. 

A combination of these methods defined by 

b = max(b',b") 

has been proposed by McMahon and Burton (1967) as a more efficient 

bound for flow-shop problems, 

The basic idea of a machine based bound has been implemented in 

the general job-shop environment for the first time by Brooks and 

White (1965). Later, it has been extended to cases of different 

job-arrival times Ri>0, solving the problem 'Minimise Makespan in 

a single machine schedule with different job arrival times ' for the 

bound calculation, by ordering the jobs in non-decreasing order of 

arrival time (Florian et al 1971, and Ashour et al 1974). 

Refinements in the same basic ideas can be found in Charlton and 

Death (1970a and 1970b), Ashour and Parker (1971) and others which 

basically are suggesting the following: 

the machine based bound can be improved by replacing cek, i.e. 

the completion time of scheduled operations in a machine 

k by 	the earliest possible start time of the schedulable 

operations on that machine, sjk  which is 

sjk  = max {cek, max cpk} 

where 	c k  is the completion time of last scheduled 
operation of conflict jobs (in the machine 
preceding k). 



-109- 

The lower bound calculation procedure used in the local neighbourhood 

search experiment has been based on the above method, and is 

described below, 

Conflict job k is scheduled on conflict machine m* with operation 

completion time ch. The conflict jobs define the set Sc, the non-

conflict jobs define the set Sn  and the non-conflict machines define 

the set Sm. The remaining work content of job i is ri, the completion 

time of last scheduled operation of job i is c1e, the remaining 

work load on machine j is r1, the completion of last scheduled 

operation on machine j is cej, and the earliest start of the next 

operation onmachinej is sj. The job-based bound b' is: 

b' = max(g',g") 

where 	g' = ch  + max(ri) for icSc  

g" = max(c1e  + r1) for icSn  

The machine-based bound b" is: 

b" = max(f',f") 

where the earliest loading time for the non-conflict machine j 

is given by max (cej,sj) and 

f' = max {max(cejsj) + ri} for j€Sm  

For the conflict machine m* 

f" = ch  + rm*  

The overall bound is calculated as: 

b = max(b',b") 

Further improvements might be possible by looking at the possible 

combinations of the last operations of jobs in one particular 

machine, which requires a step-by-step calculation of completion 

times of all jobs on the preceding machines, though the overall 

efficiency of such methods is questionable (Ashour and Hiremath, 

1973). This agrees with the general principle that stronger bounds 

can be calculated but they may be overall less efficient than simpler 

ones that are dominated, 
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5.2.2 Complexity and limitations of bound calculations 

A different approach to the calculation of lower bounds as the one 

suggested by Bratley et al (1973), is based on the concept of enumeration 

using a' NP-class algorithm. This approach does not seem to 

be promising, because it attempts 	to solve a NP-complete problem 

with a branch and bound method,where boundsare derived with a NP-class 

procedure, It is believed that only P-class algorithms can be 

computationally efficient and thus suitable 	methods for bound 

calculations in any problem size. It is argued here that there are 

limits on the values that can be calculated with such non-enumerative 

algorithms. 

Theorem: In a scheduling optimisation problem with discrete 

objective function, where v* is the optimal solution, there is a 

limit bQ <v* to the values of lower bounds beyond which stronger 

job and/or machine bounds are obtainable only with NP-class 

algorithms° 

Proof  
.v* 

b* 
	  b 

Q 

1 

b 
0  

bo: Lower bound calculated with a 'good' algorithm. 

Assume that it is possible to find from lower bound bo  the next 

larger value bl  of the discrete space {bo,v*} of h-elements, with 

a P-class (good) algorithm. Thus, in an integer formulation, 

which does not restrict generality, bl  is also calculated with an 

overall 'good' algorithm. Repeating this procedure at most h times, 

the optimal value v* would be reached with 'a combination of 'good' 

n 
algorithms, since h is also polynomially bounded (because h<v*-b « E P.) 

o 

Thus, this limit b* for bounds obtainable with 'good' algorithms 

exists, and it is not possible to obtain better bounds unless an 

enumerative method is used. 



For the bounds calculated by relaxing job or machine constraints, it 

is to be expected that the best that can be obtained with a 'good' 

algorithm is in fact what the good algorithm for the largest 

possible problem can give. The higher order problems solvable 

in P-class are n/2/F/C
max 

 (Johnson, 1954) n/2/G/C
max 

 (Jackson, 1956) 

and 2/m/G/C
max 

 (Szwarc, 1960). 

5.2.3 A routine for calculating two-machine based lower bounds  

The basic idea of this bounding procedure is to relax the machine 

capacity constraints in all but two machines ma  and mb  (instead of 

one machine as in the bounds of Lomnicki and Ignall and Schrage). 

For this pair of machines ma  and mb  Jackson's method, with 

0(nlogn) has been used, based on Johnson's rule,to calculate an 

optimal schedule for their remaining operations, as if the jobs 

involved have no operations in any other machine. The optimal 

solution of this surrogate problem can be used as a lower bound to 

the original m-machine problem. This methodis based on a principle 

similar to the one used by Campbell et al (1970) and Townsend 

(1977c) whereby Johnson's rule has been used as a heuristic for 

the original problem, producing optimal solutions for a surrogate one. 

The value of this optimal two-machine schedule cannot be lower than 

the load of any of the two machines considered individually. This 

is illustrated graphically below in Figure 5.2. 

Figure 5.2 Two-machine based lower bound 

Jl J2 J3 

J2 
	

J1 
	

J3 

ma  

mb  
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This calculation is repeated for all possible pairs of the m machines. 

Their number is 

(2)  = 20 (m°2 	 _ (m  2 
 )m or 0(m2) ). 

and the best (highest) value is used as lower bound. The same 

idea, in an alternative formulation would be to relax the job 

technological constraints (i.e. not to allow jobs to have two 

operations processed simultaneously) in all but two jobs and find 

the optimal schedule for this 2/m/G/C
max 

 problem by Szwarc's 

method 0(m2). The number of possible pairs is 0(n2). This method 

has been considered to be poorer because, at problems with n>m, 

it is unlikely to have bottle-neck jobs, while it is almost certain 

to have bottle-neck machines. The implementation of this bounding 

procedure has met two basic problems. If one wants as strong a 

bound as possible, one should take into account that the operations 

for the pair of machines ma, mb  may have different 'entry' times 

Ri>0, in which case the problem n/2/F/C'max with Ri>0 is NP-complete, 

i.e. not solvable with Johnson's rule. However it is possible to use 

its relaxation with Ri  = 0 for all i, in which case C
max 

will be a 

lower bound to 
C'max. 

 The other problem arises from the fact that 

the machines ma  and mb,  due to decisions(conflict resolutions) 

taken earlier on, may become available for processing with a 

difference dt in time. For this case, it has been necessary to 

show that both Johnson's rule (Chapter 3) and Jackson's method 

(Appendix C) apply for determining an optimal sequence. 

Having resolved these difficulties as described above, test problems 

have been tried and the result was that the simpler bounding method 

was overall at least as good and probably better than the two-machine 

based one. This result verifies what other researchers have found, 

namely that stronger bounds are not necessarily better, because the 

increased computational costs involved cancel all possible advantages. 
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5.2.4  Fictitious bounds and estimates of the optimal solution  

An alternative to trying to improve bound calculations is the idea 

of using 'fictitious bounds' (Bazaraa and Elshafei, 1977). Given a 

lower bound be  and a good upper bound bu, one can put forward the 

hypothesis that the optimal solution value is v = be  + (bu-be)a, where 

0<a<1. The tree is then searched for constructing a feasible 

solution v>v* (v* is the real optimal),discarding all branches 

with lower bound values greater than v. If such a solution is 

found, then the upper bound value is updated to bu=v, a new value is 

assigned to the estimate of the optimal v and the process is 

repeated, till no feasible solution of value v is found. In this 

way the interval where the real optimal lies is narrowed until 

eventually the real optimal will be located and constructed. This 

method obviously requires a substantial amount of search, needed for 

the successive estimates of the optimal (for the repetitions of the 

tree search with different bounds). 

The shortest and most efficient tree search with a given method 

of lower bound calculation, is one where the value of the optimal 

solution v* is known in advance, and the branch and bound method is 

used only in order to construct an optimal schedule. In such a case the 

value of the optimal solution would be used as the upper bound for 

the dominance relation (bu  = v*), As soon as the lower bound of 

a partial solution becomes greater than v*, the associated branch 

is rendered inactive (pruned). This point will be discussed again, 

in the light of the statistical results presented in Chapter 6. 
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5.3 Design of the experiment  

The aim of this experiment has been to compare simple enumerative 

heuristics with a depth-first branch and bound method, in a wide 

range of problem structures, in order to find probabilistically the 

bounds of performance and 	determine the most appropriate solution 

strategy in each case. Another objective has been to relate the 

complexity (size of solution space A) of the problem to its 

characteristics and dimensions,namely to the number of jobs n, to the 

number of machines m and to the variability (coefficient of variation 

V) of the processing times. The main criticism for the branch and 

bound methods in general has been that they are unpredictable and 

expensive. Thus, one of the objectives of this study has been to 

investigate this unpredictability and to try and quantify it, if 

possible (predict behaviour by modelling solution improvements). 

The typical branch and bound method makes an exhaustive search of the 

tree and it is terminated when an optimal solution is found. This 

occurs when 

(i) the upper bound becomes equal to the overall lower 

bound of the solution (ie equal to the least lower 

bound of the active nodes). 

(ii) the complete tree has been searched. 

This method guarantees that an optimal will be found, but in larger 

problems, the amount of computational resources required may be 

enormous and therefore prohibitive. Besides, it is questionable 

whether the optimal solution is really needed,given that the data 

representing the processing times are only estimates of the actual 

service times. The use of assumptions about machine availability and 

breakdowns, labour availability etc. is another reason for not 

insisting on optimality. The above reasoning leads to the acceptance 
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that a solution with guaranteed distance from the optimal is a far 

more efficient usage of the computational resources and far more 

realistic as a task for real life job-shop scheduling problems. One 

could then redefine the problem as 'find a solution which guarantees 

that the value of the optimal solution is within a distance from the 

best known solution defined by a bracket for the optimal solution 

(BOS) of e%, regardless of the time required, which might result in 

a very early termination (before the expendable time is exhausted) 

or in a prolonged search (beyond desired expense). In terms of the 

BOS specified for the optimal solution, as defined in the previous 

chapter, it is reasonable to decide in advance the amount of computer 

time to be invested in a search. The problem is thus reformulated 

as 'find the best possible BOS (bracket for the optimal solution) 

within the amount TL of computer resources (time)'. 

More general stopping rules might take into account not only a desired 

BOS of e% and a TL but also a cost related to the inaccuracy of 

the solution, the proportion of the tree searched as an indicator 

of the probability of finding better solutions, the rate of 

solution improvements etc., to be discussed later in Section 5.5. 

The decision rules to be evaluated and compared are the enumerative 

heuristics based on the branching rules ECT, FCFS, SPT in a LNS. 

Their performance will be measured by the value of BOS obtained 

in a given TL. 

Table 5.1 on the following page, shows the different problem structures 

to be investigated, the sample sizes of the experiment and the time 

limit allowed TL (CPU time in CDC 7600 seconds). 

The LNS is by nature a dynamic process in which,whenever a solution 

better than the current upper bound is constructed, it is adopted and 

used for the search of the remaining neighbourhoods of the tree. 
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The efficiency of the LNS as a heuristic depends on the speed of these 

improvements and therefore some method of evaluating this speed or 

rate of improvements is needed. The values of the upper bound can 

be seen as values of a discrete function of time or of the number 

of iterations. It is to be expected that the number of iterations and 

CPU time are related and thus either of them can be used as the 

independent variable of the above mentioned discrete function. 

Table 5.1 Sample sizes and computational budget for LNS 

Problem 
Dimensions 

Jobs Machines 

Sample size 

Distribution of processing times 

E1 	UR 	E4 	E9 	E36  

Time limit 

(seconds) 

TL 

4 3 10 10 10 10 10 1 

6 3 10 10 10 10 10 5 

8 4 10 10 10 10 10 15 

10 4 20 20 20 20 20 5 

20 5 20 20 20 20 20 10 

35 5 5 5 5 5 5 60 

The efficiency of the heuristics will be judged also on the proportion of 

the tree that can be searched within the specified computational resources 

(speed of search). The heuristic that searches the largest part of the 

tree is expected to give the best solution value: The calculation 

of this proportion requires an estimate of the total tree size Td  

and of the number of branches that remain unsearched, Rd, where d is 

the depth of the tree. This can be achieved by a statistical method, _ 

or with a simple recursive calculation based on observation of the 

solution instance (both described in Appendix C) 

t. 	number of branches of active node at level i 

ri 	number of unsearched branches of active node at level i 

Ti 	total number of branches at level i (To  = 1) 
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Ri total number of unsearched branches at level i (Ro  = 0) 

The recursive formulae are: 

l = Ri+Tiri 
Ri+  

and 

Ti+1 = Tit. 

P = 1 - (Rd/Td) 

This calculation is needed not only for estimating the complexity 

of the problem and for the comparative evaluation of heuristics but 

also for stopping rules or decisions (to be discussed in Section 

5.5). 

Description of the model 

The algorithm described in Chapter 4 generates only one active schedule. 

In order to be able to generate all the active schedules, extensive 

modifications are required for record keeping. At every conflict 

(node), information has to be stored for the alternative decisions 

possible, to allow back-tracking and re-branching. Modifications 

are also required for the dominance relations and elimination rules 

('pruning' or 'fathoming' of the tree), and other record keeping 

needs. Any lower bound from those described in the previous section 

can be used, without effect in the structure of the method. The 

flow-chart of the algorithm used is given in Figure 5.3. 

Elimination (fathoming) of a branch takes place according to the 

dominance relation, whenever a particular branch is not going to 

produce solutions better than the best known solution (value of 

upper bound). This is checked at a.number of points. At Step 4, 

as soon as a job is selected for the conflict resolution, the lowe,' 

bound (be) of the corresponding branch is compared with the current 

upper bound (bu). If be>bu,  then further search in the descend-

ants of that branch is pointless, and elimination takes place. 
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Figure 503 	Flow-chart for job-shop scheduling with a local 
neighbourhood search method. 
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At Step 7, where the completion time Cp  of the current partial 

schedule is determined, if C >b , then the complete feasible schedules 
P-  u 

based on that current partial schedule cannot have C
max 

 lower than 

bu, and again elimination is necessary. 

In the two cases described above and also whenever a complete 

solution is constructed the current active conflict node is 

searched to see whether it remains active, in which case the 

remaining branches are investigated (at step 4), or whether it 

has become inactive (all options exhausted) in which case back-

tracking to the immediately above node level takes place (Step 10). 

More details of this model and the FORTRAN IV codes of the routines 

used are given in Spachis (1978b). 
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5.4 Computational experience 

5.4.1 Lower bounds 

The two bounding methods described in Section 5.2 were tried on 

test problems, and the conclusion was that the simpler method, based 

on one-job and one-machine was, in terms of overall efficiency 

and simplicity of implementation, as good and probably better than 

the two-machine one. Thus the former has been adopted for the LNS 

experiment. 

A direct evaluation of the one-machine and one-job based lower bound 

can be carried out by comparing the smallest lower bound value 

b*e  calculated at the first conflict (first node of the tree) 

with the optimal solution. The value of the lower bound can be 

expressed as a non-decreasing discrete function of the depth of 

the tree, across any traversal of the graph representing the complete 

	

tree (Figure 5.4), because b1  <b2 <b3  < 	<bd where d is 

	

e- e-  e- 	- e 

the depth of the tree. 

Figure 5.4 Lower bounds across a tree traversal 
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The least of these lower bound values across a traversal is 

ble  = min(bke) 	for 	k=1, 	d 

and the least of the lower bound values at the first node is b*e. 

This is an overall lower bound to the solutions of the problem. 

A feasible solution with value v=b*e  is apparently an optimal 

solution. The question that arises here is, how often is this least 

lower bound value realizable as a feasible solution, i.e. how 

often is it an optimal solution. From the experiment described in 

the preceding section, the following results have been obtained, 

summarised in Table 5.2 below (sample sizes as in Table 5.1). 

Table 5.2 Feasibility of minimum lower bounds b*e  

(Frequency of F,NF,U) 

Job-shop 
size 

Jobs Machines 

T L 

secs 
El  

F NF 

Distribution of processing times 

	

UR 	E
4 	E9 	E36  

U 	F NF 	U 	F NF 	U 	F NF 	U 	F NF U 

4 3 1 5 5 0 3 7 0 3 7 0 4 6 0 1 9 0 

6 3 5 7 3 0 8 2 0 7 3 0 5 5 0 6 4 0 

8 4 15 5 1 4 9 1 0 5 2 3 3 4 3 4 4 2 

10 4 5 10 0 10 11 0 9 10 0 10 12 1 7 14 0 6 

20 5 10 6 0 14 7 0 13 10 0 10 10 0 10 2 0 18 

35 5 60 2 0 3 2 0 3 4 0 1 1 0 4 0 0 5 

Note 	F: there is a feasible solution with value b*e  (optimal) 

NF: there is no feasible solution with value b* 
e  

U: it is not known whether there is a feasible solution 

with value b*
e 

or not. 

One can see from Table 5.2 that for smaller problems a complete search 

of all the neighbourhoods of the tree has been possible within TL, 

while for increasing problem size the proportion of incomplete search 

cases increases. From the test problems where the search has been complete 
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(i.e. problems of 4 jobs 3 machines and 6 jobs 3 machines) it is 

clear that the number of cases, where b*e  is a feasible (optimal) 

solution, increases with size. This could be attributed to the 

method of lower bound calculation, based on the summation of 

processing times, without taking'into account machine idle times, 

which may produce less tight bounds for smaller problems, as 

already discussed in Section 4.3. 

The variance of the processing times as can be deduced from Table 5.2 

is also significant for the quality of b*e. The pattern that emerges 

for small problems (Table 5.3) is that for increasing variance, the 

proportion of cases where b*e=v* increases. This can be justified 

by the nature of the data structure. In high variance data, there 

are jobs and/or machines whose work content (total processing times) 

is dominant or exceeds the others by a substantial amount. This 

means that they are crucial in determining 
6max' 

 At the same time 

they are crucial for the lower bound calculations. Thus, there are 

feasible solutions with value equal to the least of lower bounds. 

The minimum makespan for problems with low variance data depends 

heavily on the sequence induced delays which are not taken into 

account in the lower bound calculations, thus it is less likely that 

b*
e 
will be the value of a feasible solution. 

The same reasoning applies for larger problems, where a time limit 

has been imposed on the search, and for a number of problems it has 

not been possible either to obtain a feasible solution equal to 

b*e  or to complete the search. It is to be expected that the 

dispersion of solution values is lower in problems with low 

variance of processing times, i.e. that the frequency of each 

class of solution values is higher than in problems with larger 

variance. This implies that whenever b*e  is realizable as a feasible 

solution, in low variance problems, such a solution, although rare, 
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is likely to be constructed earlier in the search than in high 

variance problems. 

The information obtained on the quality of the bounds is significant 

not Only from the point of efficiency of the search but also for 

purposes of stopping decisions. Early in the search a good solution 

v is constructed which is greater than the least of lower bounds 

(v>b*e), and the search continues, until either it is completed or 

a better solution v'=b*e  is constructed. It would be useful to 

have some information on the probability of having an optimal 

v*>b*e, with the view of using it for decisions on whether to 

continue the tree search or not. 

This type of information can be presented as the frequency of 

feasibility of b*e, as in Table 5.3 below, where the impact of 

size and variance on the quality of the lower bounds is summarised. 

It is worth noting that out of 375 test problems investigated with 

limited computer resources, the b*e  has been'the value of a 

feasible (optimal) solution in about half of them. 

Table 5.3 Frequency of feasibility of b*e  

Number of 
machines E1  

Distribution of processing times 

UR 	E4 	E9  
E36  

3 12/20 11/20 10/20 9/20 7/20 

4 15/30 20/30 15/30 15/30 18/30 

5 8/25 9/25 14/25 11/25 2/25 

TOTAL 35/75 40/75 39/75 35/75 27/75 

5.4.2  Number of iterations and CPU time  

The number of nodes generated during the tree search can be 

described in terms of a monotonically increasing function of time. 

For all practical purposes, the function can be assumed to be 
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continuous given the very large number of nodes involved, and the 

very small time interval between two successive nodes. In order • 

to establish the relationship between the number of nodes generated 

and the CPU time, results from a range of problems have been 

investigated. The problems investigated were of 8 jobs 4 machines, 

(E36) 10 jobs 4 machines (E1 ,E9,E36) 20 jobs 5 machines (E9 ) 

35 jobs 5 machines (E9,E36). The results have been plotted with 

the aid of computer graphics and a sample of these plots is given 

in Figure 5.5 on the following page. ,In these graphs, the meaning 

of the names and figures printed in the heading is given below. 

Name Numerical 
example 

DIMENSION 84 

DISTRIBUTION 1 

5 

36 

SEED 234 

LLB 50 

TLIMIT 32 

A 

B 

R correlation coefficient r 

Interpretation 

Job-shop of 8 jobs 4 machines 

•Erlang type of distribution of processing 
times 

expected value (average) of processing 
times 

k parameter of Erlang distribution 

Seed for random number generator, code 
for the data used in test problem 

minimum of lower bounds b* 
e  

Time limit TL imposed on the LNS 

regression constant a (intercept) 
for linear regression of nodes against 
time 

regression coefficient s (slope) 

Taking into account all information up to the last solution 

improvement available, the relation between nodes and time of the 

example problems of Figure 5.5 is clearly linear, with a correlation 

coefficient r equal to 1. In fact, only four of the 105 solutions 

involved had r lower than .98. Thus the effect of backtracking 

in terms of time for subsequent nodes generation is insignificant. 
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Figure 5.5. Number of iterations as a function of CPU time 

DIMENSION DISTRIBUTION SEED LLB TLIMIT 

24 	1 5 36 	234 SO 32.0 
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The particular problem set of 35 jobs 5 machines, E9, was tried also 

including the number of nodes near the end of the time allowed, which 

did not represent a solution improvement. The correlation coefficient 

was again practically equal to one and the difference in the regression 

coefficient s was insignificant. 

The conclusion is that, provided there is a reasonable number of 

solutions to use, for all practical purposes, the number of nodes is 

linearly related to the CPU time elapsed, and thus can be treated as 

equivalent. 

5.4.3 Problem complexity  

The partitioning of the active solution space A by the branch and 

bound method already described, defines a tree with d generations 

(levels) of nodes and size {A}. As already discussed these quantities 

are bounded as follows: 

d < nm 

{A,< (n: )m 

The size of the set A is a measUre of the overall complexity of 

the problem and the depth of the tree is significant for the amount 

of computer storage required in branch and bound depth-first 

solutions. Information on these quantities has been collected for 

a number of test problems with 10 jobs, 4 machines, processing' 

times from E1,UR,E4,E9,E36  distributions each solved with heuristics 

ECT, FCFS, SPT and RANDOM with the objective of finding whether there 

is any relation between d, {A} and the above mentioned parameters of 

the problem. 

Analysis of results for each of these problems showed that the 

depth d is fairly stable at different traversals of the corresponding 

tree, varying in the typical case from 28 to 32. The range of 

values of d obtained for a problem is not identical for all heuristics. 
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Some variations in the range of d have been observed also for 

problems with the same distribution of processing times as well as 

for problems with differing V. The conclusion is however that d is 

fairly stable. No correlation appears to exist between d and V, and 

there is no evidence that partitioning A by different heuristics 

results in significantly different depth patterns. 

Similar conclusions can be drawn for the estimates of the size 

of the set A. For each solution, the estimates of {A} are fairly 

similar at the different solution instances, typically of the order 

of E14. The estimates resulting from the use of different heuristics 

in each problem are also very close to each other, which validates 

the method used for estimating the tree size. Besides there is no 

evidence that different data structures (i.e. different V) result 

in different tree sizes. The following Table 5.4 presents the 

typical values of d and A for the different problem sizes. 

Table 	5.4 Size of set of active schedules 

Machines 	d {A} 
(E) 

(n/m)d  
(E) 

Jobs 

4 3 6- 8 3 1-2 

6 3 11-14 5 4-5 

8 4 18-22 8-9 6-7 

10 4 26-32 13-15 11-13 

20 5 77-83 40-48 46-49 

35 5 150-160 92-108 >100 

If the number of branches per node is taken to be the same all over 

the tree (which does not happen in practice), then the ratio n/m 

is the most plausible value, given that the routing is random and 

initially the n jobs are divided equally to the m machines for 

processing. For a tree with d generations of nodes, the number of 

branches at the last level will be (n/m)d  (see Appendix C). For 
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the experimental values obtained for d, the estimates (n/m)d  are given 

in Table 5.4. This model is certainly crude but as the figures in. 

Table 5.4 suggest, it gives a reasonable a-priori estimate for the 

order of the size of the set A. 

5.4.4 Speed of tree search  

The proportion of the tree that has been searched up to a point in 

time t is an increasing function of time P(t), whose values can be 

calculated with the method already described in Section 5.3. 

A sample of problems with 8 jobs and 4 machines has been used for 

detailed study of the function P(t). The first feasible solution 

constructed corresponds to a proportion of the tree of the order of 

E-10. The value of the proportion searched increases rapidly as a 

result of elimination of branches at various levels in the tree. 

The enormous range of values which P(t) takes during a problem 

solution does not allow any meaningful diagram to be constructed, 

unless logarithmic scales are used. 

The task of plotting a large number of diagrams with different 

data has been carried out by computer plotting facilities. Some 

representative results are given in Figure 5.6, where the points of 

the function P(t) corresponding to solution improvements are 

linked by straight lines. If these points are used for a linear 

regression of the form logP = a+Klogt, the values of the correlation 

coefficient are quite high. The lowest value is r=.7 and r>.9 

in 25 out of the 30 test cases. This result though should not 

he interpreted as an exactly linear relation between logP and logt, 

but rather as an approximate description of the trend. 

In the expression P = lets  for the solution of a problem with 

one of the heuristics ECT, FCFS, SPT the value of P. indicates the 
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Figure 5.6 	Proportion of tree searched as a function of CPU time 
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speed of the tree search with that particular heuristic. The values 

of s could be used as a criterion of performance of the heuristic, 

where higher s means faster tree search and thus better performance 

of the heuristic. Alternatively, the heuristics can be ranked by 

simple inspection of the graphs shown in Figure 5.6, where the best 

heuristic is the one which searches a given proportion of the tree 

in the shortest time. 

The information on the proportion of tree searched over time is 

useful also for stopping decisions in LNS, allowing an evaluation of 

the potential outcome of an extended search. If at time t, near 

the time limit, the proportion searched is very small and the 

extrapolation of the trend shows that a complete search would 

require a lot of extra time, the LNS is terminated. If on the 

other hand P approaches 1.0, an extended search might be considered. 

5.4.5 Worst case and probabilistic behaviour of heuristics in LNS  

with limited computational resources  

The BOS performance of heuristics is described by an average ranking 

and by some characteristics (parameters) of their distribution 

function. The ranking of the heuristics for each problem has 

been based on the values of C
max 

obtained, i.e. the lowest value gives 

rank 1 to the corresponding heuristics etc. In many cases, 

especially in smaller problems, all the heuristics achieve the 

same value, the optimal. In these cases, the ranking is based on 

the speed with which the value is obtained, measured either by CPU 

time or by the number of iterations. The average rankings given in 

Table 5.5 have been calculated either directly from experimental results 

or from diagrams as the ones presented in Figure 5.9 of Section 5.5. 
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Table 5.5 	Average Ranking for Makespan 

n=6 	n=8 	n=10 
m=3 	m=4 	m=4 

n=20 
m=5 

n=35 
m=5 

n=4 
m=3 

ECT 	1.90 1.65 1.70 1.80 1.85 1.40 

FCFS 1.60 1.90 1.40 1.60 1.35 1.60 

SPT 	2.50 2.45 2.90 2.60 2.80 3.00 

ECT 	1.60 1.45 1.30 1.55 1.65 1.80 

UR FCFS 1.80 2.10 2.00 1.60 1.45 1.20 

SPT 	2.60 2.45 2.70 2.85. 2.90 3.00 

ECT 	2.05 1.45 1.70 1.45 1.50 1.40 

E4  FCFS 1.35 2.20 1.80 1.85 1.60 1.60 

SPT 	2.60 2.35 2.50 2.70 2.90 3.00 

ECT 	1.45 1.70 1.70 1.50 1.50 1.20 

E9  FCFS 1.95 2.00 1.80 1.75 1.50 1.80 

SPT 	2.60 2.30 2.50 2.75 3.00 3.00 

ECT 	1.70 1.50 1.70 1.75 1.35 1.80 

E36  FCFS 1.40 1.60 1.50 1.40 1.65 1.20 

SPT 	2.90 2.90 2.80 2.85 3.00 3.00 

Note 

n is the mumber of jobs 

m is the number of machines 

E1,  UR, E4,  E9,  E36  are distributions of the processing times 

ECT, FCFS, SPT are the heuristics used 

The main conclusions drawn from the results of Table 5.5 are that 

SPT is clearly the poorest , in all circumstances. No valid comparisons 

can be carried out for a given value of V across the various 
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dimensions, because optimality is not always achieved. Although soma 

consistency of relative performance of the heuristics is to be 

expected (see also Section 5.5), the arbitrary nature of the time 

limit used may affect the results. It is possible that different 

rankings would be obtained at different time limits, although 

in. the typical case, the heuristics have the same rank over time. 

For a given problem size, at low variance (E36) FCFS has better 

average ranking than ECT, as well as at high variance (E1 ). For 

intermediate values of V (UR,E4,E9) ECT has the edge. 

The parameters used for describing the probabilistic behaviour of 

the heuristics are the worst case bracket for optimal C
max 

 and 

average BOS (Tables 5.6 and 5.7). 

Table 5.6 Worst case of BOS of LNS at TL 	(%) 

El 	UR 	E4  E9 
E35 

ECT 

m n 

4 3 0 0• 0 0 0 

6 3 0 0 0 0 0 

8 4 11 0 10 14 13 

10 4 20 14 12 15 12 

20 5 16 15 10 10 11 

35 5 13 12 6 5 5 

FCFS 

4 3 0 0 0 0 0 

6 3 0 0 0 0 0 

8 4 11 0 10 14 .13 

10 4 26 11 1T 18 11 

20 5 17 10 13 10 15 

35 5 9 7 5 5 6 
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Table 5.6 (continued) 

SPT 

n m E1  UR E4  E9  E
35  

4 	. 3 0 0 0 0 0 

6 3 0 0 0 0 0 

8 4 11 0 10 14 14 

10 4 25 14 20 21 24 

20 5 19 26 20 19 22 

35 5 18 21 22 18 20 

Observation of 	Table 5.6 shows that at smaller problems, the 

worst case bracket is always zero, because optimality is achieved 

with all heuristics. For larger problems ECT and FCFS have roughly 

the same values of worst case performance, which is always better 

than SPT. Higher values are seen in high variance problems. 

It is very encouraging to see that for larger problems, the worst 

cases have smaller brackets than the medium-size problems. It 

is thought that this is not due to the time limits used but to the 

size of the problems. 

Table 5.7 Average BUS of LUS at TL (;6; 

E1 	UR E4  E9  E
36  

ECT 

m n 

4 3 0 0 0 0 0 

6 3 0 0 0 0 0 

8 4 2.4 0 2.4 2.4 3.7 

10 4 3.9 3.0 4.4 4.0 3.0 

20 5 7.7 5.3 3.0 3.2 5.7 

35 5 5.2 6.1 2.0 2.7 3.1 

FCES 

4 3 0 0 0 0 -0 

6 3 0 0 0 0 0 

8 4 2.9 0.6 2.4 2.4 3.7 

10 4 5.5 3.2 5.3 3.7 2.7 

20 5 3.6 4.1 4.3 3.7 7.0 

35 5 5.4 3.4 2.2 3.6 3.0 
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Table 5.7 (continued) 

SPT 

n m E1 	UR 	E4 	E9 
	

E. 

4 3 0 0 0 0 0 

6 3 0 0 0 0 0 
8 4 3.1 0 2.4 2.4 3.8 

10 4 6.4 6.1 7.9 7.5 8.7 

20 5 12.1 12.9 12.0 12.5 16.4 
35 5 11.4 16.4 14.4 15.0 17.4 

The results in terms of average BOS are particularly encouraging 

(Table 5.7). The practical implications are that given a problem 

of size n-jobs m-machines and the variance of the processing 

times,one can refer to these results, select the heuristic to be 

used and have an indication of its performance from the average bracket 

as well as of some upper bound for the amount of the limited 

computer resources specified. 
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5.5 Solution improvement models and stopping rules  

5.5.1 Modelling the solution improvementsprocess in LNS  

The local neighbourhood search (LNS) produces solutions whose C
max  

value decreases with increasing number of iterations. It has already 

been established in Section 5.4.2 , that for all practical 

purposes, CPU time and number of iterations are equivalent, 

being linearly related. Thus the LNS process can be represented as 

a decreasing step function of time f(t), where the solution values 

(or the bracket for the optimal solution - BOS) are discrete and 

the variate t can be treated as continuous. This function 

f(t) has been plotted with the independent variable of CPU time on 

the horizontal axis and the solution value (or BUS)•on the vertical 

axis. A typical solution improvement pattern can be seen in 

Figure 5.7 below, where the continuous line is an approximation of 

the step function. 

The 'staircase' representation of Figure 5.7 is particularly 

useful for the comparisons and ranking of heuristics, carried out 

as described in Section 5.4. It is suitable also for demonstrating 

the effects of using fictitious lower bounds, i.e. when instead 

of the calculated value be, the bound bf=be+ob is used. Thus the 

search of the tree is accelerated and the solution terminates when 

v=bē + ob or when a solution v''bē + ob is constructed and the 

complete tree is searched. In such a case there is a loss in 

accuracy c<ob and the savings in time are At. The two processes for 

a given problem can be represented as in Figure 5.8 on the following page. 

The pattern of the LNS solution improvements is very much the same 

in all problems investigated. As can be seen from the typical 

chart of Figure 5.7, there is a rapid rate of improvements in 

the beginning of the search, slowing down later on with increasing 
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Figure 5.7 Typical solution improvements patterns 
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time. The fact that there are increasingly long intervals without 

any improvement is due to the nature of the search. A good 

solution is found within a local neighbourhood in which most of the other 

solutions have inferior values. A long search proves that there 

is no better solution in that neighbourhood. By backtracking 

higher up in the tree, and reversing some critical initial decisions 

(conflict resolutions), eventually another neighbourhood is 

reached and the search there produces a series of new improvements. 

The typical case is one where the intervals without any improvement 

become longer and the improvements obtained, if any, are smaller. 

Figure 5.8 Effects of fictitious bounds 

Solution value 

L 
fictitious" 
	

real bounds 
bounds 	' 	 

e 

At 

TIME 

During this search, it is possible that a solution is constructed 

with value v=bē (bē is the least of lower bounds for the problem). 

In this case, the solution obtained is an optimal and no further 

Search is required. If this does not happen, and the search is 

allowed to continue, then a solution v'>bē is constructed,after 

which no further improvement is obtained with an exhaustive tree 

search. This solutionv ' is then an optimal. From the computational 

experience of this study, v' is usually constructed fairly early in 

the search and then a large amount of time is spent trying to prove 

that v' is an optimal. Which of the two cases takes place in a 

particular problem depends on the quality of the lower bounds 
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calculations as already evaluated in Section 5.4.1 , where a 

pattern of the frequency of v=bē has been discussed. 

In large problems optimality is achieved practically only when 

v=bē, since exhaustive enumeration for the case of v'>b* is not 

possible within the limited computational resources TL. It is usual 

that, even when a solution with v=b* exists, it is not found within 

TL. Thus, one can assume that at least one more solution improvement 

is possible (i.e. one solution with value less than the upper 

bound), if the search is allowed to extend beyond the time limit, which 

would guarantee optimality of solution. 

It is argued that this event could be predictable, to a certain 

extent. The method by which it could be predicted is one in which 

a model is constructed, describing the dynamic behaviour of the 

LNS with a given heuristic. The discrete empirical function f(t) 

for to<t<TL can be approximated with a continuous function F(t'), 

for 	to<t<TL*, where TLT>TL is an extended time limit, and to  is the time 

of completion of the first feasible solution. 

The approximation can be as good as it is desired, provided 

polynomial models of higher order are used. It is not very 

helpful though to use higher order polynomials, because the number 

of parameters (coefficients) estimated from the 'fitting' will be 

high, and no meaningfull comparisons can be made across different 

problems. Ideally one would prefer a one-parameter fitting, 

describing only the shape (rate of improvements). This is not 

possible because the starting points of the step-functions of -

various problems, although bounded (see Section 4.3) can vary 

considerably. The next simplest fitting will obviously include a 

second parameter for the location of the approximate curve (starting 

point). 
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The fitting that would -be theoretically more correct would 

consider every point of the horizontal lines of the step-function,. 

representing the value of the upper bound at every iteration of the 

solution. This is impractical, because of the number of iterations 

involved. Therefore, it is necessary to use only representative 

instances of this step-function. A number of approximations is 

possible: 

1. The points -of the solution improvements only are 

approximated by a curve y = e
a+sx 

2. As above, with y = eaxs  

3. Mid-points of the horizontal sections only are 

used for fitting y = ea+sx 

4. Mid-points, y = eaxs  

In order to take into account also the interval during which the 

value of the upper bound is not improved, without considering 

every single iteration, the first and the final point of the 

horizontal lines are used for fitting 

5. y = e
a+sx 

6. y = eaxs  

A number of problems has been tested for each of these fittings 

(an example is given in Appendix C ) and it is thought that the 

most appropriate one is the one taking the two points from each 

solution value and fitting a curve y = eaxs  by defining a and s with 

a least square linear regression of logy = a+slogx. 

The bracket for the optimal C
max 

 (BOS) has been used because it is 

thought to be more useful than the actual solution values, allowing 

comparisons of different problems. This model has been used to 

describe the improvements of the bracket for optimal solutions (BOS) 

of the test problems and the correlation coefficients were satisfact- 

orily high, as can be seen in Table 5.8 	(some typical cases are 

illustrated in Figure 5.9 on the following page). 



IAr OF I.CR0T 	5" 

	

   u 	 
3-.00 	 CO0.. 	17.03 	1..37 	20.00 	30.00 	70.02 	00.00 .7.00 	47.00 	111 .09 	00.00 	6..00 	14.0 	12.00 	111 01 	05.,.0 

DIMENSION DISTRIBUTION SEED LLB TLIMIT 
355 	4 5 0 	1357 213 60.0 

IMPROV.OF BRACKET FUR OPTIMAL SOL. BY 6.9 

A B R 
ECT(I ) -1.884 -0.206 -0.954 

FCF5(21 -2.444 -0.168 -0.823 

SP1131 -1.449 -0.085 -0.872 

	_.SPT 

— 3 

	 !CT 

FC—.S 
2 

- 140 - 

Figure 5.9 	Typical patterns for improvements of the bracket for the 

optimal solution BOS 
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Table 5.8 	Quality of continuous approximation of BOS improvements 

% of cases with r greater than 

.6 	.8 	.9 

function 

Problems 

Jobs Machines 

8 4 97 60 34 

10 4 91 _ 45 30 

20 5 90 62 41 

35 5 92 73 33 

The value of the regression constant a represents an imaginary 

bracket value at time zero, and therefore a has no physical 

meaning. The function f(x) = eaxais in fact defined for to<x<TL 

(to: time of completion of first feasible solution). The value at 

to,f(to) = e
a
tā corresponds to the initial solution and the value 

at TL f(TL) = ea(TL)a  corresponds to the last (best) solution in 

the LNS. It should be added here that the values of a and a are 

not independent of the time limit used, though their values would 

not change dramatically for different TL. 

Given the similarity in the pattern of the solution improvements, 

a range of values for a and a might be established for each type 

of problem. A distinction is necessary though between problem- 

heuristics that reach optimality within the given time limit and 

those that do not. One cannot expect to find similarity in the graphs of 

these two groups. In fact, the whole idea of using a model of'solution 

improvements is related to those problems where optimality is not 

reached within TL. 

For problems with UR,E1 ,E4,E9  and E36  processing times, 	10 jobs 

4 machines (two groups of 10 problems each with different time limits) 

and 35 jobs 5 machines (5 problems), the mean values of a and the 

standard deviation are given in Table Cl of Appendix C. As can be 

seen from these results, the values of the regression coefficient 
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vary within a range of coefficientsof variation usually lower than 0.5 

and not exceeding 1.0. For problems of 10 jobs and 4 machines, 10 

out of the 15 different averages are lower for the larger time limit, 

indicating that the efficiency of the search diminishes with time. 

This reflects the fact that solution improvements become increasingly 

difficult with time. The values of the average a show also the 

differences in performance of the heuristics, although the patterns 

of change with the variance of processing times i s less clear. 

The smaller values of 	at the larger problems should be expected, as a 

consequence of the larger problem size and of the time limit used. These result 

are not comparable with those of Table 5.5 on average ranking and of Table 5.7 

on average BOS, because they include also the cases where optimality was 

achieved, while those reported in Table Cl are for cases of incomplete search. 

5.5.2 Stopping rules  

The usual criterion for stopping a tree search has been the 

construction of an optimal (exact) solution. This, as already 

discussed, can be very expensive if not infeasible, and certainly it 

is very inefficient. In a large number of cases (see Table 5.2, 

on how often the least of lower bounds is a feasible-and therefore 

optimal-solution) an optimal solution is constructed early in the 

tree-search and then an exhaustive search is needed to prove its 

optimality. Another case of inefficiency takes place when a 

near-optimal solution is constructed early in the search and exhaustive 

enumeration takes place to obtain relatively minor improvements, whose 

value is questionable, as discussed in Section 5.3. 

The method adopted in this chapter has been to find the best possible 

solution within given resources, quantify its quality relative to 

the optimal and to the other heuristic solutions obtained, estimate 

the complexity of the problem, the extent of search that allowed its 
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construction, and get some indication of the improvements that 

can be expected to be realised with further search. 

The first implication of the above information is that when the 

tree search in a particular problem approaches the prespecified 

time and the proportion of the tree searched, without obtaining 

an optimal, is very small, then the probability of obtaining a 

substantially better answer with a limited extension of the search 

is very small. If on the other hand, a large proportion of the 

set of active solutions has already been searched, and no optimal so-e444-t'04.1 

has been found, then it is possible to decide an extension jin order 

so-eu i4oM 
to exhaust fully the tree and either find an optimal,or prove the 

optimality of the last solution. Another implication is that the 

results up to the current instance of the solution can dictate the 

extent of furthersearch,in a sequential decision making process. 

There is some subjective benefit associated with an expected 

solution improvement and a cost related to the expected amount of time 

required to obtain the solution improvement. The decision rule 

for stopping would then be based on the comparison of the values 

assigned to these two quantities. 

The model described in the previous section for solution improvements 

over time can be used as an estimate of the time (cost) required for 

One more improvement. It is clear that the same amount of improve-

ment becomes more expensive as the bracket of the distance from 

the optimal BOS is reduced. An alternative formulation that is 

possible is to express the solution improvements as a function of 

the proportion of the tree searched (and not as a function of 

time). 

The feasible solution space A has a probability density function 

f(x) =Prob(x-?<X<x±2) where, in the formulation adopted, x takes 
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integer values only (x has discrete values in any formulation). 

The branch and bound search of a proportion P of the tree results 

in a solution value vb. The frequency of values z<vb  is 

F(vb) =bra  f(z)dz and if one assumes that values are distributed 

randomly within the solution space (which is not quite true, 

but can be acceptable as a hypothesis, if large parts of the tree 

are considered), then the probability of a better solution in the 

remaining part of the tree is (1-P)F(vb). The idea of using statistical 

properties of the solution space not only in stopping rules but also 

for other purposes will be discussed in detail in the following 

chapter. 
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6.1 	Sampling methods in job-shop scheduling  

The Local Neighbourhood Search method with heuristic decision rules 

for conflict resolution described in the previous chapter is a potentially 

powerful tool for solving approximately deterministic job-shop scheduling 

problems. The efficiency of the LNS method for a given decision rule 

depends on the quality of the lower bounds calculated and on the time 

of termination of the search. The latter is particularly crucial, 

as already seen in section 5.2, where in about half of the test problems 

the least of lower bounds b* has not been realizable as a feasible 

solution. In these cases, either an enormous amount of computational 

resources may be required to prove optimality by exhaustive search, 

or in the case of incomplete search, a poor value of the bracket for 

the optimal solution BOS may be obtained. 

If the value of the optimal solution is known- somehow in advance, then 

the implementation of stopping decisions can improve the efficiency 

of the LNS. Such information can be used also for lower bound purposes: 

each node in the tree search corresponds to a fixed partial sequence, 

and all the unscheduled operations form a surrogate problem, whose 

optimal solution can be used as a lower bound for the solution of the 

original problem. It is believed that statistical sampling methods 

can be used for the purpose of estimating the value of the optimal 

solution in a tree search method. The background to the use of 

statistical methods in job-shop scheduling will be reviewed below with 

the objective of developing and testing suitable estimators of the 

optimal solutions. 

The most crude way of using statistical methods in scheduling problems 

is random sampling of solutions from the set A of active schedules. 

0 
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This set, as already seen in Section 2.3.1 , is very large even for 

the more modest problem sizes, and the probability of selecting an 

optimal solution randomly is very small. Taking a sample of N random 

solutions and selecting the best of them is not satisfactory as an 

approximate method, for there is no way of determining a suitable 

sample size N and for the low confidence in the results. 

The first serious attempt to use sampling methods for solution generation, 

was conducted by Heller(1960). In a large scale investigation, he found 

experimentally that the distribution of feasible schedule makespan 

times in a flow-shop approaches the normal distribution, and tried to 

explain it theoretically with an'approximation to the central limit 

theorem for a simple periodic Markov chain.' 

The above result led this study to the formulation of the hypothesis 

that the distribution of makespan values in jobLshon scheduling 

problems, can also be approximated by a Normal distributioh N(u,cf). 

.This hypothesis has been tested in a number of problems, by constructing 

random solutions, with the help of the basic algorithm already described 

and used for active schedule generation in Chapter 4, and with a 

random number generator for deciding at every conflict node which 

branch to follow. 

The hypothesis of normally distributed makespan 
(Cmax) 

 values of the 

problems of Table 6.1 has been tested with the X2 	test and 

with the Kolmogorov-Smirnov non-parametric test, as described briefly 

below (Hoe1,1971). 

X2  -test: A number k of classes is defined by the lowest x 
min  

and highest x
max  of the integer random solutions, Cj, for 

j=1...N, the observed values being vi, i=l...k. The intervals 

are defined by 	corresponding observed number of occurences 

is 0. and the expected Ei. The quantity X` =
i  1

{(Oi•-Ei)2/Ei1 
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is approximated by a X2  distribution with a degree of freedom 

d.o.f.=k-1-np, where n is the number of parameters estimated 

from the sample (for a Normal distribution n=2) provided that 

Ei 	k>_5. 

Kolmogorov-Smirnov test: In this test two samples are tested 

to see if they are from the same population. The observed 

cumulative frequency is compared to the expected, and the maximum 

difference D is recorded and compared with the critical values 

which depend on the sample size. 

(Table D1 in Appendix D) 

As estimators of the parameters of the Normal distribution,the mean 

and the adjusted standard deviation of the random sample values have 

been used. The test problems processing times have been taken from 

Erlang distributions with the same average. Two different values of 

the Erlang parameter have been used, k=1 and k=9, in order to investigate 

the effect of the variance on the distribution of the values of the 

set A. 	The 

6.1 	below. 

Table 6.1 

results of this experiment are summarised in 	Table 

Test 	of 	assumption 	of normally distributed makespan values. 

Problem Dimensions Proc.times Sample  max V 	X2-test 	K-S 	test 

n m distrib. size level 	of max.diff. 
N signif. D 

P1  8 4 E1 400 91.45 6.52 .093 .0032 .0371 

P2  8 4 E1  400 85.1.5 8.77 .103 .0000 .0863 

P3 8  4 E1 400 75.42 5.61 .075 .4000 .0392 

P4  8 4 E9  400 69.59 4.39 .063 .0001 .0406 

P5  8 4 	- E9  400 61.23 4.99 .081 .0025 .0772 

P6  8 4 E9  400 66.13 4.12 .062 .0435 .0383 

P7  20 5 E9  400 138.02 7.31 .053 .1437 .0452 

P8  35 5 E9  120 230.33 8.85 .038 .3390 .0384 
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The resulting values of 
X2 

and the corresponding levels of significance 

(Table 6.1) show that the hypothesis of Normally distributed makespan 

values cannot be rejected at a level of significance of 2.5% in 6 out 

of the 8 test cases. The Kolmogorov-Smirnov test results, summarised 

in Table 6.1, show that the hypothesis of normally distributed values 

cannot'be rejected at a level of significance of 1% and in 6 out of 

the 8 cases at 20%. It should be noted here that in problem P2  several 

sample schedules had a value equal to the a-priori lower bound to the 

optimal solution, and thus it is not surprising that the distribution 

is not approaching the normal. It is worth adding that the mean u 

and standard deviation a of the sample values, and therefore the 

coefficient of variation V=a/u, are fairly stable for different sample 

sizes in each problem. 

For the same test problem size of 8 jobs and 4 machines, there is 

a substantial difference of the r'max values for Eland E9  distributions 

of processing times, as one might reasonably expect. The values of 

the coefficient of variation V show also some consistent small 

difference, indicating lower dispersion of values about the mean, for 

lower data variance. For increasing problem size, V is again decreasing, 

probably due to the larger number of operations, allowing some 

fluctuations of the makespan values to be absorbed. 

The hypothesis, that the values of C
max 

 are approximately normally 

distributed, although not rejected with the tests described above, 

has the fundamental drawback that it assumes an assymptotic behaviour. 

This is not true since the values of active schedules are bounded 

from below by the optimal vb (or a lower bound be) and from above by 

the worst possible case v* (or an upper bound bu). The normality 

assumption does. not give any indication of what the optimal Nit)  or the 
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worst case vW might be. Besides, the observed frequencies are somehow 

skewed, deviating from the symmetric bell-shaped form of the Normal. 

This is not unexpected, because the full set A of active schedules, 

described by a frequency histogram (an empirical distribution) may 

not be described exactly by a Normal or any other simple theoretical 

distribution. 
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6.2 	Distribution of values of active schedules  

A more accurate description of the empirical distribution of values 

of the set of active schedules, involving n-1 parameters, where n is 

the number of classes defined by an upper bound and a lower bound of 

set A, was suggested by Cunningham and Turner (1973) and Randolph 

et al (1973), based on the Bayesian theory. This method is summarised 

below. 

The population from which the sample is drawn has a distribution, 

known as 'state of nature' and described by e. An estimate of this 

constant 'state of nature' can be measured by means of a prior 

probability distribution b(e). Following the observation of an 

experimental outcome x, the revised probability distribution (or 

posterior probability distribution) is according to Bayes theorem 

b(e/x) = fb(e)•P(x/e)}/f E b(e).p(x/e)} 
alle 

A sequential sampling of N elements allows N revisions of the posterior 

distribution. If e were not the description of a distribution but 

a simple variable, then the computational effort would be manageable. 

Revising though a distribution described by a vector p of probabilities 

pi, i=1...n (where n is the number of classes) is much more complex 

and computationally expensive, which makes the practical efficiency 

of this excellent theoretical idea questionable. 	Assuming Normal 

distribution for A certainly would help shorten the calculations, 

but, as seen in the preceding section, is not exactly correct. The 

above mentioned authors have used.a Dirichlet distribution 	with 

n-1 variates: 
n 	 k k n-1 k 

bo(Pl'...,pn-1 ) ={r ( 
E k.+n)/r(kl~l)...r(kn+1)}pi...pnnll(1- E pi) 

1 i=1 	 i=1 

n 

where kiare positive integers and n is the number of classes assumed 

for the distribution values. The posterior distribution is again of 
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the same type, called conjugate to the prior. If the sample value 

corresponds to class i then ki  is updated to ki+1. Otherwise the 

value of ki  remains the same. 

A good description of the empirical distribution of active schedule 

values is possible with the above method, using a large number of 

parameters. It is though unlikely that more than one problem could 

be described with the same combination of parameter values. Thus 

the main drawback of the method remains the length of computations 

involved. 

If one does not insist on the exact description of the set A, then 

approximate descriptors, better than the Normal and simpler than 

the Dirichlet, are possible with theoretical distributions of more 

than two parameters. A simple theoretical distribution which seems 

to be more suitable than the Normal for describing the values of 

active schedules is the 'Weibull'. This is a three-parameter 

distribution which may approach the shape of the Normal, but which 

is bounded from below, i.e. Prob(x<a)=0 for some value of a. The 

probability density function of the Weibull (Hastings and Peacock, 

1975) is: 
c-1 	c 

f(x) = c/b ((x-a)/b) 	exp[-((x-a)/b) ] 

where a location parameter 

b scale parameter 

c shape parameter 

The cumulative distribution function is: 
c 

F(x) = 1 - exp[-((x-a)/b) ] 

where for c=1, the Weibull distribution reduces to a negative 

exponential. 

The hypothesis of Weibull distributed sample values was tested for 

the problems of Table 6.1. The calculation of estimators of the 
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Weibull parameters can be based on the limited number of discrete 

(integer) values that the location parameter a may take: 

be  s a < x
min  

a : integer. 

be  : lower bound to the values of set A. 

xmin: lowest value of the sample. 

The method used to calculate the scale b and shape c parameters of 

the Weibull for every value of a, has been based on the relatively 

simple form of the cumulative distribution function 

F(x) = 1 - exp [ -((x-a)/b)c] 

exp[-((x-a)/b)c] = 1 - F(x) 

-((x-a)/b)c  = ln(1 - F(x)) 

c[ln(x-.a)-lnb] = ln[-ln(1 - F(x))] 

-> 	ln[-ln(1 - F(x))] = -clnb + cln(x-a) 

For 

Y = ln[-ln(l - F(x))] 

X = ln(x-a) 

a = -clnb 

=c 

-- 	Y=a+BX 

This form offers itself for a least square linear regression, given 

that F(x) can be estimated from the sample available. The regression 

is repeated for all values of a, and every time b,c are calculated 

from c=g and b=exp(-a/a). The best estimate of the optimal solution 

is the value a with the highest regression coefficient r. 

This method has been applied to the test problems of Table 6.1 with 

seemingly very good results. The resulting values of the correlation 

coefficient r given in Table 6.2 below, are very high indeed, 

approaching 1.0 in most of the cases. These results though should 

be accepted with some caution, because by taking logarithms twice, 
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significant differences may become smaller, in which case, the real 

fitting is not as good as the value of r might suggest. 

For this reason, the parametric X2  and the non-parametric K-S tests 

were used to test the hypothesis that the sample values are Weibull 

distributed with parameters a,b,c estimated as above. Table 6.2, 

gives some additional information for the problems investigated (least 

of lower bounds b* , best known solution from tree search vb  and minimum 

of random sample 
xmin) 

 and summarises the results of this experiment. 

Table 6.2 	Hypothesis testing of Weibull distributed values of active 

schedules. 

v 	Highest X2-test K-S test 
Problem b* x

min (* op imal) 	r  a c level of max Diff. 
signif.% D 

P1  63 73 *67 	.998 71 2.5 3.1 .0314 

P2  71 71 71 	.814 71 (0.7) (0.0) (.3257) 

P3  51 58 57 	.981 55 3.9 12.5 .0538 

P4  51 59 *55 	. 	.996 56 3.3 0.01 .0468 

P5  50 51 *50 	.998 50 2.3 0.3 .0770 

P6  48 55 54 	.997 52 3.8 2.8 .0305 

P7  120 123 *120 	.999 121 2.5 16.3 .0302 

P8  209 210 210 	.977 209 2.2 16.7 .0907 

If one accepts that a higher level of significance for the X2  or a 

lower maximum difference for the Kolmogorov-Smirnov test implies a 

'better fit', then comparison of results in Tables 6.1 and 6.2 

indicates that the Normal assumption is better than the Weibull only for 

3 out of the 8 test problems with each of the two tests. One may also 

notice that the values of the Weibull shape parameter c for the best 
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fit lies between 2.2 and 3.9, with smaller values for the larger problems 

P
7
and P8.  For this range of c-values the Weibull distribution is 

bell-shaped and fairly symmetrical, looking not very different from 

a Normal. 

For the test problems P1  - P6  additional random solutions have been 

generated for a sample size of N=2000, to be used as described in 

the following sections. This increased sample size has been used here 

to test again the hypothesis that the active schedule values are 

from a Normal or a Weibull distribution. The hypothesis has been 

rejected with both the X2  - test and the Kolmogorov-Smirnov test. 

This was to be expected because,although the empirical distribution of the 

values of active schedules can be approximated with a Normal or a 

Weibull, it is not exactly either of these. This becomes apparent with 

large samples (eg. N=2000) where the maximum difference D of the K-S 

test should not exceed 1/ V and where the X2  value 	should be small. 

In fact in this experiment D did not become zero and the same 

proportional difference of observed and expected values gave a small 

X2  value in small samples and a larger one in large samples. 
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6.3 	Estimates of optimal solution value 

• 	Distribution of smallest members of samples of active schedules  

The assumption that the values of set A are from a Normal or Weibull 

distribution has the drawback of being relatively inaccurate. The 

calculation of a more accurate descriptor, like the Dirichlet, is 

very complex, as discussed in the preceeding section. One way of 

going round these problems is to use properties of samples, 

like the central limit theorem, without assuming any particular form 

for the distribution of the parent population. According to the 

central limit theorem, the averages of N samples, each of size M, are 

normally distributed with the same mean and standard deviation 

a / /7ff, where a is the standard deviation of the parent distribution. 

A more useful concept, applied for the Travelling Salesman problem by 

Golden (1977), is that the distribution of the minima xi  of the N 

samples bounded from below by the optimal solution, approaches a 

Weibull (Fisher and Tippett, 1927, Weibull, 1951). This concept has 

been used in this chapter, where the parameters of the Weibull 

disribution of the minima of samples of active schedules have been 

estimated with two different methods: one based on the principle of 

maximum likelihood (Mood and Graybill, 1963) and the other on regression 

(as discussed in the preceeding Section 6.2). 

Maximum likelihood estimators of Weibull parameters  

The likelihood function of N random variables xl,...,xN  from a 

population described by f(x,o) is the function 
N 

L(xl,x2,...,xN,e) = rr f(xi,e) 
i=1 

Many likelihood functions (e.g. e describing Normal or Weibull 

distributions) satisfy regularity conditions, so that the maximum 

likelihood estimator is the solution to the equation dL(o)/de = 0. 

Q 
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For the Weibull distribution, 

N 	N. 
L = (c/b)N[ n (xi-a)/b]

c-1
eXp[- E ((xi-a)/b)c] 

i=1 	i=1 

which is maximised for the same values of a,b,c, as the function 

N 	 N 
lnL = Nlnc - Nlnb + (c-1)[ E ln((x.-a)/b)] - E ((xi-a)/b) 

i=1 	i=1 

for 

a1nL/aa = 0 

alnL/ab = 0 

alnL/ac = 0 

The maximum likelihood estimates of a,b,c are calculated by solving 

the system of these three simultaneous equations.. This is a rather 

difficult task from the computational point of view, if the general 

methods of numerical techniques are used. This general methodology 

does not take into account some special features of the formulation 

of the problem, namely that the values of all members of A and the 

lower bound are integers, which limits the solution space for the 

parameter a to a small number of discrete (integer) values. In fact 

parameter a must lie between the lower bound be and an upper bound 

defined as 

bu = min[xi] 	for 	i=1,2,...,(Nm) 

be ~ a bu 
From 

alnL/gib = 0 	[-Nc/b]+bc+( 
i=1 (xi-a)c = 

b = g(a,c) =171 (xi--a))/Nl l/c 

Substituting in L, 
N 

L = [
g(a,c)

]N [ 	1 
N n (x4

- a)]c-l
eXp(-N) 

g(a,c) 	i=1 

which is simple enough to allow calculations for all possible values 

of a, and for a wide range of c (0 < c) 
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To avoid infinite and indefinite results, a is adjusted by a small 

quantity E (E=.001). Following these calculations, the largest value 

of L indicates the best estimates of the Weibull parameters a,b,c. 

The method described above has been applied for the test problems 

P1 -P6'  using a range of sample sizes (M) and of number of samples (N). 

For N=10 samples of M=40 independent members each (sample size of 400) 

the values of L calculated for all six problems have been very small 

varying between E-7 to E-18, except for a+c=
xmin, 

 where the fluctuations 

due to changes in the shape parameter c have been enormous. The same 

problems have been investigated with the parameter a corrected by E 

(for all values of a) and the results remained the same (i.e. the 

effect of E is insignificant). The most likely values of a and c 

resulting from this method are given in Table 6.3 and are discussed 

in some detail below: 

P1  Results inconclusive (same value of L for many a's). 

P2  No analysis possible since x
min b  e' 

P3  Results compatible with LNS (optimal solution unknown). 

P4  Results do not agree with known optimal solution. 

P5  Results agree with known optimal solution. 

P6  Results compatible with prior information (optimal unknown )• 

While the sample size M=40 is considered to be sufficient, the number 

of samples N=10 is thought to be rather small for allowing high 

confidence in the results. Thus, it has been necessary to use larger 

samples of up to 2000 random solutions, in order to estimate the 

parameters of the Weibull distributed sample minima. In this extended 

experiment, the number of samples N has been taken equal to 10, 20 

and 40, resulting in reduced values of the likelihood function (ranging 

from E-12 to E-35) and the sample size M has been taken equal to 50, 

100 and 200. The most likely values of the Weibull parameters a and 

c are given in Table 6.3 below. 
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Table 6.3 Maximum likelihood estimators of Weibull parameters. 

Lower 	Best known 	x
mi n 	

N=10 	N=10 	N=20 	N=40 	N=20 
bound 	solution 	M=40 	M=50 	M=50 	M=50 	M:100 
b* 	b 	a 	a 	a 	a 	a 

63 	67* 	73 	68 	72 	72 	72 	73 
c=5.0 	c=4.5 	c=2.5 	c=2.5 	c=0.8 

71 	71* 	71 	(71) 	(71) 	(71) 	(71) 	(71) 
c=0.5 	c=0.5 	c=0.5 	c=0.5 	c=0.5 

51 	57 	58 	51 	51 	51 	51 	51 
c=9.0 	c=9.0 	c=9.0 	c=9.0 	c=8.0 

51 	55* 	59 	59 	59 	59 	59 	59 
c=0.5 	c=1.0 	c=1.0 	c=1.0 	c=0.8 

50 	50* 	51 	50 	51 	51 	51 	51 
c=4.0 	c=0.5 	c=0.5 	c=0.5 	c=0.4 

48 	54 	55 	51 	55 	53 	52 	55 
c=5 	c=0.5 	c=3.0 	c=4.0 	c=0.8 

N=10 
M=200 
a 

73 
c=0.4 

(71) 
c=0.5 

51 
c=8.0 
59 

c=0.4 
51 

c=0.4 

55 
c=0.4 

Problem 

P1  

P2  

P 3 

P 4 

P5  

P6  

As can be seen from Table 6:3; the results of this method are relatively 

unstable in the sense that for different sample sizes the most likely 

values of the location parameter a vary in 3 out of the 

6 problems. One explanation might be that the differences of the ' 

likelihood ruction value are very small, of the order of E-30, and 

at this range, computational results are not accurate enough. In 3 

out of the 6 test problems the numerical results obtained with the increased 

samples do not agree with the independent information available. It is thought 

that larger samples might allow more conclusive and accurate results but the 

handling of larger samples would render the method impractical. As an 

alternative, a different method has been used to find the most likely 

values of a, using least square linear regression, as in Section 6.2. 

Least square regression estimates of Weibull parameters.  

The experiment has been conducted with the 2.000 random solutions 

available for each of problems P1  to P6, for N=40 samples, each of 

size M=50 and the results are summarised in Table 6.4. The number 

of samples has been set to N=40, because the X2-test (which is generally 

more reliable than the K-S test) requires at least 5 distinct classes 
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of 5 members each, i.e. a mimimum of 25 items. Taking into account 

that some classes may have less than 5 members and therefore have to 

be merged, it has been decided to set N=40. 

Table 6.4 	Linear regression estimates of Weibull parameters (with 

N=40, M=50). 

Problem Highest Parameter 	X2-test 	K-S test 
r 	Estimators 	level of signif.% 	Max. Diff. 

a 	c 	 D 

P1 	.996 	65 	7.3 	7.3 	.1430 

P2 	Regression not feasible 

P3 	.823 	51 	4.9 	0.0 	.2892 

P4 	.983 	55 	4.2 	- 	.1463 

P5 	.975 	50 	2.0 	- 	.2820 

P6 	.979 	48 	6.4 	0.3 	.1977 

The results of the above Table 6.4 are satisfactory in the sense that 

the most likely value of a is compatible with the independent 

information available in all except one problem (P1 ). In this case 

the difference of a=65 and the known optimal V67 is very small. 
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6.4 	Applications in stopping decisions and bound calculations  

The importance of the statistical methods described in the preceding 

sections for scheduling problems lies, not in their theoretical 

interest, but in their application to enumerative methods. The 

basic idea underlying all these statistical methods is that for a 

given problem P, the values of active schedules can be classified in 

a finite number of classes, defined by an upper bound and a lower 

bound. Each particular class v has either zero or positive probability 

of containing at least one member. The Weibull location parameter 

a corresponds to the class with lowest v that is likely to contain 

at least one member. This member is to be treated as an estimate of 

the value of the optimal solution to the scheduling problem. It 

should be stressed that this method may suggest a particular value v 

as the most likely optimal, but it does not say how to construct such 

a solution. The actual construction has to be based on some form of 

enumerative procedure (e.g. branch and bound, tree search), which is 

the methodology used in the previous chapter. The additional insight 

offered by these statistical methods is the probability associated 

with the unknown solution sequence with value v. (Erdos and 

Spencer,1974). 

There are two ways by which estimates of the optimal solution value 

can be used to improve the efficiency of LNS. They can be applied 

for stopping decisions and bound calculations. One of the main problems 

in branch and bound is that the least lower bounds calculated may 

be infeasible and therefore 'poor' compared with the actual yet 

unknown optimal solution. A lot of computational effort may be 

wasted trying to emumerate a tree, not knowing whether the best known 

value is the optimal or not. There are many cases where an optimal 

solution is constructed early in the search and the rest of the time 
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is spent trying to prove it is optimal by exhaustive search. Such an 

enumeration can be computationally very expensive, even in the case 

where the least of lower bounds is equal to the optimal solution. 

This is where the statistical methods can be of help. By obtaining 

an estimate a of the optimal solution, one may see that a solution 

with that value has already been constructed, and instead of proving 

optimality by exhaustive enumeration of the remaining tree, it is 

possible to terminate the search procedures, assuming that the Weibull 

parameter a is not an over-estimate of the real optimal solution. 

If the best known solution vb is greater than a, it is possible to 

obtain an estimate of the frequency of feasible solutions with value 

lower than vb. The frequency or probability of non-empty classes 

lower than vb expresses the expectation of finding solutions better 

than vb and can be used subjectively for stopping decisions. An 

alternative application of the statistical estimate of optimal solution 

values is in the sphere of bounds. The efficiency of the statistical 

methods as well as of the tree-search depends to a large extent on 

the 'quality' of the lower bounds be that can be calculated. An 

indication of their quality is given by the discussion of how often 

they are realizable as feasible solutions, i.e. whether the class 

v=be is empty or not. (see Section 5.2). A useful hypothesis is to 

assume, for given be and x
min 

(or bu) that at least one of the classes 

be,be+1,...,be+5(bu-be) fort() {0~< a < 1 1 is non-empty, and therefore 
bu s(b

u 
-b

e ) 

reduce drastically the computational task, by using a 'fictitious' 

upper bound bu. If the hypothesis is rejected, then the revised lower. 

bound becomes b'=b1 and the procedure is repeated. If not, then a 

new upper bound is found, used for further search 	(Bazaraa and 

Elshafei, 1977). Instead of using fictitious bounds,which are defined 

randomly, it is more efficient to use a statistical estimate of the 

optimal solution as an upper bound in a tree-search procedure, trying 
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to establish a feasible solution less than or equal to a. If such 

a solution is found, it can be either accepted or one could go 

further by trying a reduced value of a, progressively, until 

feasibility is violated, which would prove optimality. If no feasible 

solution with value a is found, one can increase progressively the 

value of the upper bound used, until feasibility is obtained and 

therefore optimality. 

The sampling method for estimating the value of the optimal has also 

another potential use. One can obtain an estimate of the optimal 

solution of a sub-problem, defined by a branch and bound partitioning 

method as a node corresponding to a fixed partial sequence and use 

this estimate as a lower bound. In such a case, from the set of 

active nodes, the one with the lowest estimate can be selected for 

further search in a best-bound-first procedure (tie breaking by 

selecting the nodes with the highest likelihood). This would be a 

strong bound, but one should take into account the computational cost 

of calculating this estimate of the optimal solution for the sub-

problems. 
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7.1 Queueing theory and simulation in scheduling  

The dynamic and deterministic job-shop, defined by different job arrival 

times (Ri20) is obviously more complex than the static one. P-class 

algorithms are available only for a few special cases of the single 

machine problem: C
max 

 with precedence constraints, C, L
max 

with 

precedence constraints and unit processing times, T with unit processing 

times, C with m-machines in parallel and unit processing times. It 

has been established that for the majority of single machine problems 

and all the m-machine problems, the dynamic case with Ri>0 is clearly 

NP-complete (.see Chapter 2). 

For the stochastic problem, static or dynamic, there is no enumerative 

method that can give any answer at all. There are though a few limited 

cases where an analytical approach can be applied, by considering the 

processors as queueing systems. (Bruno, 1976) 

The queueing theory approach can not give deterministic results. 

Probabilistic results can be obtained for certain problems under 

steady-state conditions. Mathematical analysis of the transient state 

is very complex even for the simpler models (Cox and Smith, 1961, 

Lee, 1966), Thus one can not have exact or optimal solutions, and the 

probabilistic ones are clearly approximate. 

The classification used for the static-deterministic scheduling problem 

(n/m/routing/criterion of performance) is not appropriate for the 

stochastic and dynamic features of the queueing models, where one needs 

information on the arrival pattern (frequency, batch-size etc), on the . 

processing times (deterministic or stochastic) and on the availability 

of facilities in parallel, which are described by the parameters 

pS,p6,p7, Additionally, one needs to know the queueing discipline p8, 

the size of the population of jobs p9  and the maximum queue size allowed 



-166- 

-10' The queue is thus described by the six parameters 

p5/P6/p7:p8/P9/P10 

Analytical results available for the average waiting time of some 

simple models FIF0/o/- are given below, where the load factor (or ratio) 

is defined as p=as/rxs  ,r is the number of identical servers in parallel, 

as 
is the arrival rate and xs  is the service rate (Kleinrock, 1975 and 

1976). In queues with Poisson (negative exponential) arrivals and 

service times, the expected waiting time W is: 

M/M/1 	aW=p/(1-p) 

M/M/2 	X5W=p2/(1-p2) 

Analytical results are also available for sone'non-Poisson-queues` 

(where p5  or p6  are not negative exponential) which are more complicated. 

M/D/1 	asW=p/(1-p) 

D/M/1 	X5W=zo/(1-zo) for 	o <zo<1 

root of z=exp {-(1-z)/p} 

.2(1-p)+(1-z
° 	
)(2p2-1) 

M/D/2 asW- 	for -1<zo<1 

4p(1-p)(1-z0) 	
root of z2exp{2p(1-z))=1 

A well known case is the M/G/1: GD/00/00 (GD: general discipline) where 

the expected number in the system Ls  is calculated by the Pollaczec-

Khintchine formula (Taha, 1976) 

Ls=xaE(t)+x2  {E2(t)+Var(t)}/2{1-aaE(t)} 

The operating characteristics for any service time distribution such 

as gamma or constant service times can be obtained directly from the 

above formula° 

The more realistic job-shop problems with batch arrivals and more than 
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one processor are complex queueing systems with servers in parallel 

and in tandem and are represented by networks of queues. 	Figure 7.1 

below shows a system with five queues and one of the possible routes. 

Figure 7.1 	Network of queues 

The analytical results for networks of queues are very limited. For 

queues in series or in tandem the most important result is based on 

a theorem stating that for Poisson input and service times and general 

queue discipline, the output from the processor is also Poisson 

(Saaty, 1961, Taha, 1976). The same result can be extended to the 

case of more than one identical machines in parallel. This model can 

be used for studying flow-shops like the one illustrated in Figure 7.2, 

with negative exponential interarrival times of single jobs and service 

times. 

Rao (1976) has suggested an analytical method for a three-stage series 

production system with identical Erlang service times, reducing 

drastically the number of simultaneous equations that have to he solved. 
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For many queueing systems however, analytical results are either 

unknown or too complex to derive, and approximate methods have been 

used. with success for a number of models, usually single stage ones 

(Kingman 1970, Page 1972, Cosmetatos 1974 and 1975, Rosenshine and 

Chandra 1975, Marchal 1976, Cosmetatos 1976 and 1977). Some of these 

formulae are given in Appendix E. 

Although the approximate results simplify the study of a number of 

queueing problems, they cannot offer any answer to the more general 

job-shop problem represented by a network of queues (for which a 

method based on approximate system formulae will be considered later 

in this chapter). The only method available that can be applied to 

problems of higher complexity is simulation. 

Simulation experiments for scheduling problems have been reported for 

the first time by Rowe and Jackson (1956), Jackson (1957), Baker and 

Dzielinski (1960) and since then a lot of research has been devoted in 

simulation of job-shops especially in the study of queueing disciplines 

(Gere 1966, Conway et al 1967, Hollier 1968, Chowdhuryl976, Panwalkar 

and Iskander 1977). Simulation experiments with priority dispatching 

rules have been conducted also for special structure job-shops, e.g. in 

a parallel processor shop (Moodie and Roberts, 1968). The decision 

rules applied for selecting a job from the queue of each machine, are 

what has been described in Section 4.2 as non-delay rules (dispatching 

rules or loading rules),i.e.as soon as a machine is available and jobs 

are waiting for processing, the machine is not left idle. A number 

of parameters related to the characteristics of the job-shop problems . 

are of importance in simulation. 

(i) 	Scheduling rules, known also as dispatching, priority or loading 

rules. 
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There are many rules encountered in the literature and in practical 

applications. Some are extremely simple and some quite sophisticated. 

• Reviews of these rules can be found in Conway et al (1967) and in 

Panwalkar and Iskander (1977). 

Commonly used loading rules can be classified as local or global. 

Local rules use information available locally at a particular 

machine centre, where the decision will be implemented, regardless 

of information on the rest of the job-shop. Global rules use 

both local information and from other sources, requiring therefore 

a more elaborate information system. The loading rules can be 

classified also as static, where the priority of a job does not 

change over time, and as dynamic where the priority is a function 

of time. Examples of simple rules are given below. 

RANDOM: 	random selection of job to be processed 

first. 

FIFO : 	first in, first out. 

LIFO : 	last in, first out. 

SI 	shorter imminent operation. 

SI* 	SI with a maximum permitted waiting time 

in queue. 

COVERT: 	c/t, according to descending value of 

waiting cost to processing time. 

EDD 	. 	Earliest (minimum) due date first. 

LROPS : 	least remaining operations. 

Many studies have been devoted to evaluating and comparing the 

rules in various job-shop environments. The SI rule came out as 

a very efficient rule and very simple to implement (Conway et al 

1967, Jones, 1973, Rochette and Sadowski, 1976). It produces 

low waiting (or flow) times but has the drawback that long 

operations tend to be left unprocessed for very long periods of 
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time. 	To counterbalance this disadvantage a 'truncation' 

has been superimposed on the SI rule, so that when the waiting 

time of a job in a queue exceeds a prespecified amount of time, 

the job is given priority to all other ordinary jobs waiting in 

the same queue (Conway et al 1967, Buffa and Taubert 1972, 

Eilon and Cotterill, 1968, Oral and Malouin, 1973,Eilon and 

Chowdhury, 1974). 

More variations of this basic idea can be found in Hottenstein 

(1970) and Jones (1973). Aggarwal and McCarl (1974) have tried 

a composite cost-based rule and Hershauer and Ebert (1975) have 

tried another form of a composite priority rule, comparing them 

with standard rules. A new composite rule has been designed and 

tested in this study (in Section 7.4). 

(ii) Arrival patterns and job-shop loading. 

There are many conceivable models describing arrivals in job-shops, 

where arrivals take place singly or in batches. Single arrivals 

have been used in a number of simulation studies, where the 

interarrival times were assumed to be from a negative exponential 

or other distribution (Conway, 1965, Nelson, 1967, Hottenstein, 

1970, Jackson, 1963, Conway and Maxwell, 1962). This model has 

no practical interest, because single arrivals in real life job-

shops are very rare. Batch arrivals are much more realistic, 

especially when the interarrival times At are fixed, corresponding 

to the industrial practice of receiving orders over a fixed time 

period and releasing them to the shop daily or every week.- 

The batch size Q can be variable or fixed, in which case the 

number of jobs dispatched (but not their characteristics) is 

deterministic, corresponding to the case where an agreed number 
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of orders is accepted, determined by an overall target loading 

of the shop, and where excess orders are refered to subsequent 

time periods. Eilon and Chcwdhury (1975) have studied the 

relationship of waiting times, for a number of dispatching rules, 

for deterministic and Poissonian batch sizes, and 	found that 

the latter yield a much higher mean waiting time, as one might 

expect. Elvers (1974) has conducted an extensive study with 

batch sizes Q determined by sixteen different probability distributions 

with the same mean, and his conclusions imply that the shape of the 

distribution is not a significant variable in evaluating the relative 

effectiveness of dispatching rules. Deterministic batch sizes and 

interarrival times have been used in this study, since the relative 

performance of heuristics has been established to be independent of 

the shape of the distribution. 

(iii) Job-shop size. 

Baker and Dzielinski (1960) have conducted a study in which they 

reported that the shop size has no significant effect on the 

relative performance of the scheduling rules. This conclusion 

has been confirmed by Conway et al (1967) where it has been 

suggested that experiments with a job-shop of six machines are 

adequate to show the complexities that are likely to arise in 

larger job-shops. 

(iv) Due-dates. 

The methods by which due-dates are determined. have attracted 

considerable attention on their own. A number of methods for 

determining due-dates have been investigated by Eilon and Hodgson 

(1967), Conway et al (1967), Ashour and Vaswani (1972), Holloway 

and Nelson (1974), Eilon and Chowdhury(1975), Day and Hottenstein 

(1975). The main conclusion is that some methods can produce 
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better results for specific scheduling rules and that changes 

in the parameters involved in defining the due-dates can control 

effectively the values of the criteria of performance. 

(v) Routing of jobs (transfer matrix). 

A range of routes is possible in job-shops. In the limiting case 

of the general job-shop all routes through the machines are equally 

likely. At the other end of the range, all jobs follow the same 

path through the machines (flow-shop). The routing is affected 

by the amount of flexibility possible in a given job-shop. It 

is possible that a particular operation can be performed by more 

than one machine, when the most suitable processor is not available 

or when a job is very urgent. Another type of flexibility is 

one where the operations sequence of a particular job can be 

altered, according to some rules (Chowdhury, 1976). These 

subjects have not attracted considerable attention up to now, 

and it is felt that 'flexibility' is an'open subject for further 

research. 

(vi) Processing times. 

The estimates of processing times of operations in a given job-

shop can be described by some statistical distribution, with 

defined average and standard deviation. The actual processing 

times may be equal to the estimates or they can vary according 

to some distribution. The effects of using processing times 

from different distributions or from the same distribution but 
thoroughly 

with a range of variances have not beenninvestigated up to now. 

The sensitivity of simulation results to errors in estimating 

processing times is only partially known, for cases of minor 

differences between expected and actual times. It has been felt 
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that the structure of the processing times is a topic of special 

interest and thus it has been investigated in depth in Section 

7.3. 

(vii) Machine centres with identical processors in parallel. 

This is another area that has not attracted attention and the 

results obtained in this study are discussed in Section 7.5. 
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7.2 	Design of the experiment  

The above mentioned studies have been carried out by means of a discrete 

event simulation in a digital computer(see Schmidt & Taylor,1970,Fishman,1973 

on simulation). 	The model used comprises 5 work-centres with one machine 

each. The arrivals of deterministic batches of jobs (batch sizes of 

1,10 and 35 jobs) in the shop take place at regular intervals, depending 

on the overall job-shop load (load factor ranging from 0.6 to 0.95). 

As soon as a batch of jobs is dispatched to the shop, due dates are 

assigned to the jobs, allowing for in-process waiting up to the total 

m 
processing time they require, i.e. 	Di  = R. + 2 E Pij  for all jobs i in j=1  
the batch. 

The estimated processing times are from the family of Erlang distribution 

and equal to the actual ones (the effect of actual processing times 

differing from the estimated, will be discussed in Section 73.4). A range 

of values of the Erlang parameter k has been considered: 1,2,3,4,5,9,15, 

30,x. The smaller values (data with high variance) represent cases of 

diversified product lines, consisting of items which vary extensively 

in their demand pattern of facilities. The high values of Erlang k 

correspond to homogeneous operations in length. 

The routing of jobs in the job-shop is assumed to be completely random-

all routes through the machines/centres are equally likely-and inflexible, 

in the sense that a certain route may not be altered in any case. The 

number of operations per job is randomly distributed between 1 and 5 

(uniform rectangular distribution). 

The overall load factor of the shop is the ratio of the total machine 

time required to process a set of jobs over the total available machine 

time (for the one machine system it is p = as/as). Defining a desired 

load ratio is equivalent to determining the batch interarrival timesot. 
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The real value of the load ratio can be calculated at the completion 

of the experiment and it might be slightly different from the desired 

load ratio. In this study, the term 'load ratio' p will be used for 

the desired value only and should be seen as equivalent to a specific 

value of batch interarrival times. 

The main measure of performance used is the average waiting time i.e. 

the first moment of the distribution of job waiting times. A lot of 

additional information has been collected in the form of histograms, 

averages and variances of waiting (flow) time, lateness and queue size. 

A number of experiments has been carried out in this study with the model 

described above, using routines of a general job-shop simulation 

package (Pace, 1969, JSS, 1972 and Eilon, 1973). 

There is a number of sources of possible error associated with any 

simulation experiment, and with the collection of information. The 

'run-in' period (until a steady state is reached) may introduce some 

error, which can be counterbalanced by deleting a number of observations 

of the beginning 	of 	the 	experiment. 	The length of the 

transient period that should be deleted can be calculated as in Wagner 

(1972) or Fishman (1973) or found empirically by collecting relevant 

information in a.number of trials. Another source of error is due to 

the timing of the collection of information. Values are added in 

histograms when a job is completed only, and some error is introduced 

at the termination of the experiment where jobs near completion are 

ignored (run-out period). Both types of error can become negligible, 

if a large sample of jobs is simulated.  

Another source of error is due to the auto-correlation that exists 

between the values recorded in successive observations. It is though 

not uncommon to ignore these effects, when one is interested in comparing 
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the same measure of performance for a number of dispatching rules or 

load factors (Pace, 1969, Chowdhury, 1976). Chowdhury (1976) in his 

study, using the same job-shop simulation computer package (JSS, 1972), 

has calculated confidence intervals for the results and found them 

satisfactorily low for runs between 5000 and 10,000 jobs. In this study, 

after some preliminary empirical investigation the sample size N has 

been taken equal to 10,000 jobs (one run only), large enough to absorb 

the run-in and run-out periods effects and to offset the effects of 

autocorrelated sample values for values of load factor up to p = 0.9. 
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7.3 	Sensitivity of simulation results to the processing times  

structure  

The objective of this study is to analyse the effects of different 

data structures for processing times on the performance of a number 

of scheduling rules. As additional parameters, the overall loading 

of the job-shop, and the size of the batches have been used. It is 

accepted that the size of the shop does not affect seriously the 

performance of the rules (Baker and Dzielinski, 1960) and that the 

effects of having arrivals with stochastic (Poissonian) batch size 

instead of deterministic need not be considered here, since they 

have already been studied in Eilon and Chowdhury (1975). 

7.3.1. Effects of changes in the distribution function 

For a given distribution function f(x) describing the processing 

times Pij  in a job-shop, changes in the expected value E (Pij) will 

not affect the relative performance of scheduling rules. A change 

in the expected value will result in a proportional change of 

waiting times, flow times etc, but ratios like W/E(P) and F/E(P) 

will remain the same. 

It is expected that distributions with the same first and second 

moments, i.e. with the same mean value and standard deviation, will 

not produce significantly different results in simulation. This 

hypothesis is derived from the fact that, in a Taylor expansion of 

the function, the derivatives of order higher than two play a minor 

role only (Appendix E). Thus, if two functions have the same values 

of first and second moments (11,6), their difference is expected to 

be insignificant for simulation purposes. 

This hypothesis has been tested by comparing results from Erlang 
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and Normal distributions, with the scheduling rules FIFO, SI, SI*,. 

load factor p = 0.8, deterministic batch arrivals with batch size • 

Q=35, mean processing time u=20 time units, and 10,000 jobs with 

random routing. The rule SI* is used with truncation defined by a 

control parameter U. Jobs are given ordinary priority as long as the 

quantity 0-(t+Pr) - U is positive (where t is the current time and 

Pr  is the expected remaining processing time). If this quantity 

becomes negative they are given top priority in the queue. The value 

of U has some effect on the average waiting time, as can be seen from 

Serghiou (1973) and from the following results of a trial with normally 

distributed processing times (p = 20, a = 6 ,p.0.8) . 

U 	0 	40 	80 	120 	160 

204 	206 	212 	214 	214 

a 	159 	169 	165 	165 	165 

In this study the value of the control parameter U has been taken 

equal to zero. Table 7.1 below shows the values of the variance 

parameters used for average processing time p = 20. 

Table 7.1 	Coefficients of variation for Erlang and Normal distributions 

Erlang 
parameter k 

V=k
-1/2  

Normal, a 

	

1 	1.000 	20.000 

	

2 	0.707 	14.142 

	

3 	0.577 	11.547 

	

4 	0.500 	10.000 

	

5 	0.447 	8.944 

	

9 	0.333 	6.667 

	

15 	0.258 	5.164 

	

30 	0.182 	3.651 

	

100 	0.100 	2.000 
co 	 0 	0 

The results of this simulation experiment are given in Tables El - E4 

in Appendix E and summarised in Figure 7.3 on the following page. 
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Figure 7.3 	Comparison of average waiting times with Erlang and Normal 

distribution of processing times (Q=35, p=0.8) 
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As can be seen from Figure 7.3 (and from 	Tables El and E2 

in Appendix E), the average waiting times resulting from Erlang and 

Normal distribution of processing times are very close, except 

for the case of very high variance (V = 1). The simulation results, 

for all scheduling rules, show a maximum difference of 5%, and 

usually lower. This verifies the hypothesis that the important 

descriptors of the processing times distribution are the mean and 

standard deviation of the distribution of processing times and not 

the higher order moments. The larger difference observed in the 

case of very high variance (k = 1, V = 1 and a = 20) should 

be expected, because of the method used for determining - processing 

times; all processing times less than 1 (or negatives) are set 

. equal to 1. This distortion produces a Normal-like distribution 

with real a less than 20 and this is reflected in the localised 

irregularity of the simulation results at V = 1. 

These preliminary results indicate clearly a relationship between 

the variance of a distribution and the performance of heuristics 

in simulation. This has been the subject of an extensive experiment, 

discussed on the following pages. 

7.3.2. Effects of changes of the variance of processing times on  

the performance of scheduling rules at fixed load factor. 

It has already been established in the study of static and 

deterministic problems in Chapter 4, that the variance of processing 

times has some impact on the performance of heuristic scheduling 

rules. This effect has been studied in more depth with simulation 

for some basic rules (FIFO, SI, SI*). The study has been based 

on the Erlang family of distributions, since it has been shown above 

that other distributions with the same mean and variance would 

not produce 	significantly different results: It has been 
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thought necessary to include two additional parameters in this 

experiment, the desired overall load factor for the job-shop and 

the batch size of the deterministic arrivals. The effect of 

changes in the variance (or in the Erlang parameter k) in 

conjunction with changes in the batch size, at constant load 

factor p = 0.8 have been investigated at Q=1, 10 and 35, with one 

run of 10,000 jobs each. The load factor has been set to p = 0.8 as 

a realistic high utilisation target value, avoiding the instability 

of near congestion cases (p -- 1). The batch size of Q = 1 

(single arrivals) has been used as a limiting case with theoretical 

interest, Q = 35 has been selected as a case of large batch 

arrivals, in accordance with the job-set n = 35 used in static 

and deterministic scheduling (Chapters 4 and 5), while Q = 10 has been 

set as 	an arbitrary intermediate value. The results are given 

in Tables E2, E3 and E4 in Appendix E and summarised in charts. 

The average waiting time with the dispatching rules FIFO, SI, SI* 

has been plotted against the value of k in Figure 7.4(a) (next page), 

The use of the value of k on the horizontal axis has the drawback 

that k = o cannot be included in the graph. The coefficient of 

variation V = k-1'2 is more appropriate for plotting the average 

waiting, as can be seen in Figure 7.4(b) on the following page. 

As can he seen from Figure 7.4, for the average waiting time 

(W equivalent to F) in smaller batch sizes (Q = 1 and Q = 10) 

SI performs better than SI* which performs better than FIFO, for 

all values of k, and the VJ performance of each rule improves with 

increasing k (decreasing V). In larger batches (Q = 35) FIFO 

is again the poorest and its W performance improves with decreasing 

V. There is though a reversal of performance for SI and SI*. 

The scheduling rule SI* gives always the lowest average waiting. 

Its performance however deteriorates with decreasing V. 



Figure 7.4 	Average waiting for Erlang processing times (k=1,2,....,co) at p=0.8. 
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The reason for this behaviour is that in small batches, an 

increase in the variance of processing times results in significant 

fluctuations in the loading, i.e. there are periods where queues 

of jobs are built up in front of a certain machine and periods 

where no jobs are available for processing. This unutilised 

capacity cannot be balanced because jobs arrive singly or in small 

batches and no pool of unprocessed jobs exists. The greater the 

variance, the greater these fluctuations and the resulting delays, 

as can be illustrated better at the extreme case of a one- 

machine job-shop. 	The difference. of the average waiting 

in the extreme cases of E1  and E can be described in terms of 

the ratio WM/WD, taking the following values. 

Ratio Wm  / WD 

Q FIFO SI SI* 

1 2.9 1.4 1.6 

10 2.6 1.2 1.4 

35 1..4 0.8 0.9 

The values of this ratio show clearly that there is a reversal 

of behaviour of SI and SI* for large batches, where the average 

waiting of highly diversified job-sets is lower than for homogeneous 

product lines. This is due to the fact that at high variance, 

SI and SI* are able to discriminate among jobs and exploit the 

increased availability of work load for processing, due to the 

larger batch size, by giving priority to shorter operations and 

therefore reducing W,while at low variance, they behave more like 

FIFO. In fact for E (V = 0) FIFO and SI are identical. -In that 

case SI* produces a lower W because of the truncation, whereby 

excessive delays of some jobs are avoided. In other words, with 

larger batches the fluctuation in processing times becomes an 
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advantage when SI and SI* are used. The fact that SI* produces 

lower W than SI in larger batch sizes but not in small ones, 'can 

be explained again by a similar reasoning. By having this 

truncation (cut-off time) in small batches and operating it in 

very limited pools (queues)of jobs, long jobs are processed early 

enough to block the machines, impeding them processing the shorter 

operations of subsequent batch arrivals. Thus queues from these job 

arrivals are formed and the advantages of this truncation are lost. At 

larger queues there are usually enough jobs waiting to allow the SI 

part of the rule to bring about reduced W. It is worth contrasting 

here the above results on single-pass non-delay, scheduling heuristics 

FIFO and SI to those obtained in Ch:4 on single-pass active scheduling 

heuristics ECT, FCFS and SPT. The active rule FCFS and the non-

delay FIFO, as single pass heuristics, are the same. The use of 

the non-delay rule SI (choose the job with the shortest imminent 

operation) has the effect of processing first the job with the 

earliest completion time. Thus, it resembles, in principle, to 

the active rule ECT (earliest completion time). This resemblance 

is reflected in the good performance of ECT for the average 

waiting time (Section 4.3, Table 4.5), in agreement with the 

good performance of SI in the simulation experiment carried out 

in this section. The active rule SPT (shortest processing time) 

is not acting like SI, because the point t in time at which the 

scheduling (branching) decision is taken and t-dt, at which it 

is retrospectively implemented are not the same. In the non-

delay case, the decision taken by SI is implemented at once. 

Thus one should not expect similar performance for SI and SPT. 

Another point worth mentioning is that the total makespan values 

(Cmax ) obtained in this section by simulating 10,000 jobs, using 
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the dispatching rules FIFO, SI and SI* are not significantly 

different. This could be attributed to the large sample size, 

in agreement with the results of static and deterministic 

scheduling (Section 4.3) where for increasing number of jobs, the 

bracket for the optimal solution BOS becomes smaller, especially 

in problems with processing times of low-variance. 

The average queue length results (Table E3) are, as expected, 

related to the average waiting (in the single server queue, 

expected queue length = mean arrival rate. x expected waiting 

time). The average queue length has been plotted against the 

coefficient of variation Vs of the processing times for Q = 1, 

10 and 35 in Figure 7.5 (a) below. As can be seen from comparison 

of Figures 7.4 (b) and 7.5 (a), the patterns are almost identical. 

Figure 7.5 	Mean queue size and mean lateness as a function of 
the coefficient of variation of service times. 
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The values of average lateness have also been plotted against 

Vs, in Figure 7.5 (b), and again, the pattern is the same as that 

of average waiting times in Figure 7.4 (b). This result was 

predictable, because of the method used for determining due dates 

(Di = Ri + 2Pi), since lateness is defined as Li = 
~i 	Pi - W. 

Ri + Pi - W. and the criteria of performance L and W are equivalent 

(Section 1.4). 

7.3.3. 	Effects of changes of processing times variance with  

variable load factor. 

The effect of changes in the variance of processing times 

and in the job:-shop load factor on the performance of 

the SI rule have been studied with an :experiment where • 

deterministic arrivals take place in batches of Q = 35 and Q = 10. 

The Erlang parameter k takes values from k = 1 to k = 0. and the 

load factor takes values from p = 0.6 to p = 0.95. The average 

waiting time values are given in Table E2 in Appendix E and 

summarised in Figure 7.6 on the following page. 

These results agree with the ones discussed in Section 7.3.2. 

For large batches (Q = 35) and given load factor p, the average 

waiting in the shop decreases with increasing variance of processing 

times. As expected, higher load ratios result in larger W, created 

by the increasingly congested state of the job-shop. For load 

ratio approaching 1 (p = 0.95) results are unstable, varying 

widely for different seeds of random numbers. This high variance 

is probably due to autocorrelation which becomes increasingly 

important for p 	1. The pattern of change for different values 

of the Erlang parameter k is the same for all load factors used. 

Results for smaller batch sizes (Q = 10) are again in agreement 
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Figure 7.6 	Average waiting time for Erlang processing times at various 

Average 
waiting 
(time units) 

540 

520 

500 

480 

460 

440 

420 

400 

380 

360 

load factors. 

p=0.95 

p=0.90 

340 

320 

300 

280 

260 

1 2 34 5 9 15 

240 	 p=0.80 

p=0.70 

p=0.60 

,..._.,._.____r_._T-_-_-~ 	 r-------• 

220 

200 

180 

160 

30 



0.7 0.8 0.6 
--7 load 

0.9 	0.95factor 
n 

- 188 - 

with the preceding findings. For load factors up to p = 0.85 

the average waiting increases with V, as explained in Section' 

• 7.3.2. At load ratios greater than p = 0.9, where the shop is nearly 

congested, the availability of more jobs in the queues allows the 

SI heuristic rule to discriminate sufficiently between jobs and 

reduce W for increasing V, in the same way as it does it for larger 

batches. The similarity lies in the near congestion conditions 

that are created either by the high load ratio or temporarily by 

the arrivals of large batches. The implication is that SI performs 

better with high variance data only under temporary or permanent 

near-congestion conditions. The performance of SI* under varying 

load factor conditions is expected to be similar to SI. The rule 

FIFO is also affected by varying p, but the pattern of change for 

varying V is the same as has been verified by the results in Table E2, 

in Appendix E. 

For a given type of distribution Ek, the effect of increasing the 

load factor is illustrated below in Figure 7.7, where the average 

Figure 7.7 	Average waiting time for E processing times 
as a function of theload fakctor. 
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waiting times of SI (Q = 35) are plotted against the load 

factor, for fixed k. The irregularity that arises with the line 

k = 0., is probably due to the higher simulation error for p -} 1, 

and to the method of generating Erlang variates for k r 

7.3.4 Effects of inaccuracy of processing times estimates 

The usual assumption found in job-shop scheduling studies is 

that the processing times are known in advance. This is not the ease 

in real life problems, where estimates are known but the actual times 

differ. The performance of the heuristics is not seriously affected, 

when minor differences occur. In this study, a full investigation 

of the performance of FIFO, SI, SI* has been carried out where 

the actual processing times have been taken to be distributed about 

the estimated, with coefficients of variation Vr  ranging from 0 

to 1 at Q = 35, p = 0.8. The results are given in Table E5 in 

Appendix E and summarised in Figure 7.8 below. 

	

Figure 7.8 	Effects of inaccuracy of processing times estimates. 
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These figures show that the performance of the rules is affected 

by the variations from the estimated times, deteriorating almost 

exponentially with increasing variance of the actual times. 

This is due to the unpredictability of the real processing times, 

which renders rules based solely or partially on processing times 

information useless. As a consequence, the scheduling decisions 

produce large imbalances in the loading of the machines, and thus 

substantial increases in W. 
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7.4' Evaluation of a new composite global scheduling rule  

7 4.1 Description of the scheduling rule  

The main idea in suggesting a composite priority rule is to relate 

desired results with decision variables, thus allowing some form 

of control of the job-shop state. A global dynamic rule has been 

designed in this study, where the priorities have been defined 

as functions of attributes related to some measures of performance. 

The objectives that have been thought to be appropriate for all 

industrial problems are: meeting due-dates, minimising work-in-progress, 

maximising utilisation of facilities. These criteria are from three 

different groups of measures of performance (Section 1.3) which are 

independent and usually conflicting, 	One can improve the utilisation 

(and increase the loading) of facilities at the expense of work-in- 

progress or due-dates, 	The numerical values that each of them can 

take are not directly comparable and if an overall evaluation of the 

performance of a system is required, one has to link them in the form 

of a composite criterion of performance (cost or utility function) 

with subjectively defined coefficients. Such a composite criterion 

of performance requires a composite decision rule, taking into 

account the individual measures, since simple rules like FIFO, SI 

etc. are unlikely to perform well for all of them. 

The rule suggested here operates on each queue by calculating a 

priority index p = j E 1  wj  p., where w. is a weighting coefficient
J  

N 	 ' 
( E 	w. = 100), p. is the priority attribute related to criterion j 

=1 

and N is the number of criteria taken into account. 
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A rule with three attributes is described below: 

p =.w1  pl4w2 
p2 

 + w3  p3  

The priority attribute pl  is related to due dates and slack. 

pl  = Cl - 6) (Di  - T - Pri)-x  + ō (Di  - T - Pri )
x 

where D. is the due date of job i 

T is the current time 

Pri  is the remaining processing of job i 

6 = 1 if the job is late, or else 0. 

x>0 

When the quantity (Di  - T - Pri),usually 	named slack, is a large 

positive number, the risk of the job becoming late is small, while 

it is high for small values of slack. The priority calculated in 

this way can be plotted as in Figure 7.9 below. 

Figure 7.9 	Priority values in a composite scheduling rule related 

to due-dates, 
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The second priority attribute p2  is related to work-in-progress, or 

waiting in queues for processing. 
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p2  = { (T - Ri) / (Pi  - Pri) }y 

where Ri: arrival time of job i 

Pi: total processing time of job i 

y>0 

With p2, the idea is to give high priority to jobs that have 

been in the shop longer than some target value, e.g. jobs whose 

flow time exceeds the total processing up to the current moment, 

multiplied by a factor, using y to adjust the values numerically. 

The basic idea can be used also if more elaborate calculations 

are desired for the work-in-progress. A more exact method should 

take into account not only the time spent waiting in queues but 

also the value of the item waiting at every stage, based on the 

cost of materials and on the added value from processing at 

different facilities. The third priority attribute p3  is based 

on a look-ahead (global) procedure, taking into account the size 

of the queue at the machine of the subsequent operation of each 

job. This can be extended to more than one subsequent operations 

if required. The amount of processing known to be waiting for 

the machine of the subsequent operation is Lm, and p3  = z Lm, 

where z > 0 is a coefficient for adjusting the values of p3. 

7.4.2 	Calibration and evaluation of the composite rule  

This scheduling rule can take many forms, depending on the values 

of the parameters and weighting coefficients.. The performance of 

the rule for a particular measure of performance, simple or 

composite,depends on these values. The objective of this experiment 

has been to demonstrate that it is possible to define suitable 

values of these coefficients, allowing the composite rule to 

perform better than the simple rules of the preceding section. 
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Ideally the work should have been carried out for a composite 

criterion of performance, but in order to avoid the complications 

of using more arbitrary parameters, the average waiting time has 

been used. 

The W performance of the composite heuristic has been investigated 

for fixed values of x,y,z and for a range of values of the 

coefficients W.. The parameters x,y,z have been defined so that the 

related priority attributes pl
,  p2, 

 p3 take values within an arbitrary 

range (between 0 and 10, with 0 and 10 corresponding to extreme 

cases and with a desired target value of 1). For deterministic 

batch arrivals of Q = 1, 10 and 35, load factor p = 0.6 and 0.8, 

the following sets of coefficients have been used: 

wl  w2  w3  

0 0 100 

50 0 50 

100 0 0 

0 50 50 

0 ' 100 0 

30 30 40 

30 50 20 

50 30 20 

33 1 66 

In each of these experiments, the average waiting time obtained 

varied, depending on the combination of weighting coefficients 

used. Although an 'optimal' set of W1,  w2,  w3  has always been 

located, it has not been possible to establish a pattern for 

varying batch size, load factor and variance of processing times. 

The consequence of this lack of overriding pattern is that for 

each special case of the problem (i.e. for each model, and 

specific values of Q, P and Erlang parameter k) a separate 



- 195 - 

'calibration' is required in order to find the best combination 

of coefficients for a given measure of performance. 

Some tests have been carried out comparing the W performance of 

the global composite rule with SI, SI*, FIFO using fixed values 

of x,y,z with the results shown in Table 7.2 below (for p = 0.8). 

Table 7.2 Comparison of the new composite rule with simple 

dispatching rules. 

W 
Q Ek w l w2  Composite min 	(FIFO, 	SI, SI*) 

1 9 33 1 89 86 
1 o 0 50 72 82 
10 9 0 0 104 103 
10 0 0 83 101 
35 9 33 1 208 219 
35 o 50 0 190 240 

These results, as expected, indicate that for the problems 

investigated (and a"given criterion of performance), there is a 

set of parameters (coefficients) with which the global rule gives 

better results than FIFO, SI, SI*. For Q = 35, p = 0.8 and Eriang 

estimated processing times the performance of the composite rule, 

relatively to FIFO, SI, SI* was found to be the same, even when 

the actual (real) processing times were assumed to be distributed 

about the estimated with V = 0.5 and 1.0. 

It is to be expected that for any sob-shop environment (model) 

and any criterion of performance, there is a set of x,y,z,w l.w 2  

and w 3  for which the global composite dispatching rule will perform 

better than simple ones, like FIFO, SI, SI*. A problem with this 

composite rule, which was predictable up to a certain extent, is 

the computational costs associated with the search for a good 



- 196 - 

combination of coefficient values. The cost of investigating fully 

such a rule in abstract terms, over a large range of job-shop 

environments (models) will be high. This cost though will be 

reduced when the job-shop and job-set (work load) characteristics 

are specified, and such a search may become acceptable in relation 

to a specific problem. The object of carrying out this work should 

be seen therefore as a demonstration of the potential of the 

composite rule not in an abstract theoretical case, but in a 

specific job-shop. The implementation of such a rule should be 

possible where an on-line data collection and production control 

system is available. Thus the work of this section should be seen 

as an attempt to adapt' 	a scheduling system to a real life 

job-shop environment. 
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7.5. .cob-shops with identical machines in parallel  

Analytical solutions to job-shop problems with m-machine centres and 

more than one machine in each work-centre are practically impossible. 

The obvious method available for, dealing with this extra degree of 

complexity is simulation. A new approach, based on the principle of 

similarity,is suggested here as an alternative to full-scale simulation 

experiments. In this new method it is attempted to relate the results 

(e.g. average waiting or queue length) of single-machine and m-machine 

per work-centre, otherwise identical job-shops, by establishing some 

model predicting the performance of the one from the other. In the 

one-stage queueing systems with one or more identical servers in 

parallel, and in networks of queues like those used in Section 7.3, 

these quantities have been established to be functions of the load 

factor. Thus it is to be expected that ratios of waiting times for two 

different numbers of servers in parallel are also 	functions of the 

load factor. 

A limited experiment has been carried out with deterministic arrivals of 

Q=35, E. processing times and load factors ranging from p=0.1 to p=0.9, 

for the cases of 3 and 5 identical machines in parallel in each of the 

5 work-centres of the model described in Section 7.2. 

The ratios of the results for Average Queue Size, W, and aW  of the cases 

with 3 and 5 machines over the single-machine are given in Table E7 of 

Appendix E and plotted against the load factor in Figure 7.10 (next page). 

These results show that the ratios of- average waiting time, standard 

deviation of waiting time and average queue length are constant for 

load factor values ranging from p=0.1 to p=0.7. In this range of values, 

with these results it is possible to predict the effects of changing the 

number of machines in parallel on waiting times (mean and standard 
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Figure 7010 	Ratios of simulation results from models with r and r' 

machines in parallel. 

Ratio 

deviation) and average queue length, without resorting to additional 

simulation experiments. It is also possible to cover the near congestion 

cases, by defining these ratios as functions of p . 

The practical implication of this conclusion is that when studying 

problems with more than one machine in parallel it is possible to use 

the underlying similarities and avoid a lot of computational effort 

and cost in simulation. This idea has been the motivation for the work 

described in the following Section 7.6, where it has been attempted to 

relate the W result of the general job-shop problem to the W of some 

special cases, with queueing theory methodology. 
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7.6 Approximate formulae for networks of queues  

Recent developments in queueing theory have changed the emphasis from 

calculating analytically the values of average waiting time or average 

queue size for complex single-stage problems, to deriving approximate 

expressions (e.g. Kingman 1965, Page 1972) or using published results 

derived by non-algebraic methods (Prabhu, 1965, and Page, 1972). 

Page (1972) has suggested that linear interpolation in the values of these 

tables gives reasonable approximations to waiting times for cases not 

included. For the queue Ek  /E Q/l,the average waiting time is approximately 

w(Va2,vs- 2)=(1-Va2) (1-V s 	+2)W(0,0)(1-Va 	s  )2VsW(0,1)+Va2(1-V s2)w(1,0)+Va2Vs  2w(i,l) 

(1 
where V2=1/k , Vs=1/31 and W (1,1) is the average waiting in the queue 

M/M/1,W(0,1) in D/M/l, W (1,0) in M/D/1 and 'W (0,0) in D/D/1. 

This form of approximation is satisfactory for the single server queues 

and in this section a similar approach has been tried for another type 

of queueing system, the general job-shop described by a network of 

queues. 

The basic idea is to use the network of queues as a single. 'black-box' 

queue, obtain results from simulation experiments and test whether a 

formula similar to (1) can be verified with d satisfactorily low error. 

Assuming deterministic arrivals (Va=0), the formula is reduced to 

W(0,VS)=(1-VS)W(0,0)+VSW(0,1) or 

W(0,1/k)4 W(0,1)+(1-k)W(0,0) 	 (2) 

where W(0,1) is the average waiting time for a system with identical 

negative exponential distributions of the processing times and W(0,0) 
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for a completely deterministic system. The results summarised in Fig.7.6 

of Section 7.3.3 suggest that such interpolation,based on the above 

formUla,is reasonably accurate. To test this formula, With another method, 

results obtained as described in the previous sections have been used 

as the best estimates of average waiting time for the same model, for p=0.6 

and p=0.8, Q=1, Q=10,Q=35 with FIFO,SI,SI*, COMP. The value of W from 

the approximate formula is calculated, using the simulation values for 

W(0,0) and W(0,1). The relative error e% for using this approximation is 

given in Table E7 of Appendix E and a sample is presented in Table 7.3 

below. 

Table 7.3 	Average waiting time from simulation and approximate formulae 

Dispatching rule 

Erlang 
Parameter 

k 

W
sim 

FIFO 

Wappr e% W
sim 

SI 

Wappr" 
e% 

Wsim 

SI* 

4'aPPr" 
e% 

1 348 - - 200 - 197 - 
2 293 295 -0.1 204 221 8.3 199 208 4.5 

3 283 278 -1.8 213 228 7.0 207 212 2.4 

4 272 269 -1.1 214 232 8.4 206 214 3.9 

5 267 264 -1.1 215 234 8.8 208 215 3.4 

9 .262 255 -2.7 225 238 5.8 215 217 1.1 

15 258 250 -3.0 229 240 4.8 219 219 0 

30 255 247 -3.3 232 241 3.9 219 219 0 

243 - 243 - - 220 - 

These results suggest that the formula can give a reasonable approximation 

of the average waiting time, with processing times of any V. 

It is ;north noting that the error is consistent in most of the cases, 

i.e. it is either positive or negative. This suggests that there may 
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be a systematic reason for these deviations. A number of sources of 

this error could be considered; insufficiency of the approximate formula, 

inaccuracy in assuming V2=1/k, simulation error in deriving W(0,0) or 

W(0,1). 

In order to investigate this approach further, an independent method of 

deriving an approximate formula has been used,based on the single-stage 

approximate formula developed by Cosmetatos (1974): 

	

(D,G) 	s W (D,M) 	(1-s) W(D,D)  

	

W (M,G) 	W(M,M) 	W(M,D) 
(3_) 

For heavy traffic conditions, where p -- 1 

asW (GI/G/r: GD/°/°°) } (Vā+p2Vs)/2p (1-p)r 	(4) 

Substituting in (3) above for r=1, (Vā)p=0, (V2a)M=1 

(1+p2(Vs)M} {(VS )G  - (VS)p} 
S = 	 

{1+p2(Vs)G) {(VS )M  - (VS)D} 

For the particular model under consideration with 5 machines, random 

routes (as described in the previous section), and identical Ek  of 

processing times in all machines : 

2 	2+ 3/ k 
(Vs)G - 	

9 

(VS)p = ? 
9 

V2 	_ 5 
( s)m 	9 

(5) 

(See proof in Appendix E) 
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S 
Substituting 

1 
9+5p2  

k  9 + (2 + 3)p2  
k 

and for 	p--1 	S = 14/ (3+11k) 

Using this value of S and the heavy traffic formula (4) in the original 

approximate formula (3) of the preceding page: 

LJ (D,G) = 	W (D,M) + (1-4 W (D,D) 	(6) 
k 	 k 	• 

This results in the same parameters as approximate formula (2) 

and gives an explanation for a phenomenon already established 

experimentally, with the simulation results. 

The significance of these results lies in the fact that once some 

approximate formula is constructed for a particular type of problem, 

then a number of the results of intermediate cases that would be derived 

from simulation can instead be estimated with 	reasonable accuracy from 

the extreme cases of the same problem. The accuracy of this interpolation 

is thought to be satisfactory, given that the simulation results for 

the intermediate cases are anyway approximate, and that no exact or 

analytical method exists for predicting the performance of scheduling 

rules under different conditions. 
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8.1 	Discussion of the context and summary of the thesis 

Job-shop scheduling in practice is not a 'free-standing' problem, but 

a sub-problem of the general one of production and operations management. 

The question of detailed scheduling arises after obtaining demand fore-

casts and after deciding on the long and medium term allocation of 

capacity(resources) over time. The complexity of aggregate planning 

and the uncertainty and instability inherent in the real life systems 

do not allow an overall optimisation of the long term capacity planning 

and of the short term detailed scheduling. 

Thus, it is believed, that long-range planning covering the allocation 

of resources (capacity) to work load (tasks) is possible only with sub-

optimal methods based on crude models, simplifications of the real 

problem, using the experience of past records and forecasts. 	Following 

this planning stage only, detailed job-shop scheduling becomes relevant. 

Although the meaning of optimality in industrial practice is rather 

vague, due to the instability and variety of objectives, in theory it 

is not. Theoretically optimal job-shop scheduling is possible with 

simplifying assumptions and 	certainly desirable. However, the 

potential of exact methods, as has been demonstrated in this thesis, is 

limited by the complexity of the problem, to very small real life 

problems. The approximate techniques and methodology presented in 

this 	thesis can be used effectively for the sub-problems of the 

decomposed production scheduling problem. It is envisaged that they 

can be applied successully over short-term planning horizons, locally 

at shop-floor level rather than for the problem of overall system 

optimisation. 

It is possible to link the two levels of planning (aggregate and detailed 

scheduling) in an iterative procedure, where an initial allocation of 



- 205 .. 

capacity is followed by detailed scheduling. The degree to which the 

overall objectives are satisfied can be used to decide whether a revision 

of the long-term capacity allocation is required or not. In this way, a 

feedback mechanism is used to control the aggregate loading (allocation of 

capacity). 

Within the context defined above, a study of approximate methods has been 

carried out. A review of the exact (optimal) methods and of the recent 

developments in the theory of computational complexity has demonstrated the 

futility of research focused on finding 'good' algorithms for even the 	- 

simplest form of the general n jobs m machines scheduling problem. It has 

also shown the limitations of the size (complexity) of problems that can be 

solved optimally with enumerative methods. The usefulness of optimal 

solutions has also been disputed, given the inevitable human errors in 

forecasting demand (numbers and types of jobs), processing times etc. 

Thus the problem has been reformulated into 'finding good approximate 

methods with predictable performance' and 'finding the most appropriate 

approximate algorithm for a scheduling problem with given characteristics'. 

Under this formulation, a range of problems has been investigated with 

various approximate methods. 

For flow-shops, the simplest form of the scheduling problem, with and 

without in-process waiting, new non-enumerative heuristics have been 

constructed, tested against the most powerful published ones and found to 

be as good and usually better (Chapter 3). 

For the general job-shop scheduling problem, the probabilistic and worst 

case performance of simple single-pass heuristic rules have been established 

for the first time, with a method that could be the model for a similar 

analysis of all sorts of heuristics. A model for describing the probabilistic 

behaviour of heuristics has been tested and found to be a satisfactory 

predictor for other problems of different complexity (Chapter 4 ). 
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It has been felt that approximate methods based on local neighbourhood 

search (LNS) could become a feasible proposition for many problems, where 

more accuracy than that of a single-pass heuristic is required, without 

bearing the computational cost of a complete tree search. With this 

objective in mind, a number of issues have been studied. Strong lower 

bounds have been calculated based on the relaxation of capacity constraints 

in all but two machines. The complexity of job-shop scheduling problems 

has been analysed and some characteristics of its tree representation 

(depth) have been established, allowing an a-priori estimate of the tree 

size. No correlation has been found between the variance of processing 

times or the scheduling rule used for the tree generation and the depth 

or the estimated size of the tree. A model describing the proportion of 

the tree searched as a function of CPU time or number of iterations 

has been proposed. An analysis has been carried out for simple heuristics 

in this partially enumerative method, establishing for the first time, 

bounds of heuristic performance, probabilistic descriptors of expected 

behaviour and a model for 	'predicting the potential outcome of 

incomplete search procedures. (Chapter 5) 

Applications of statistical sampling methods in local neighbourhood 

search (LNS) have been proposed, for stopping rules and bound calculations. 

The Weibull distribution has been used as the limiting form of the 

frequency distribution of the smallest members of samples of feasible 

job-shop schedules, for the first time. Estimates of the optimal solution 

have been obtained by calculating the most likely value of the Weibull 

location parameter, allowing a tight bracket for the optimal solution 

to be established. Estimates of the optimal solution of sub-problems, 

with fixed partial sequence defined by the LNS partitioning method, 

have been proposed as approximate lower bounds for a 'best-bound' search 

strategy (Chapter 6). 
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For the stochastic-dynamic problem s  where no exact analytical method 

can be applied, simulation has been used to study special aspects of 

the general problem. The sensitivity of simple and new composite 

heuristics to changes in loading and in the data structures 

(distribution, variance and error of estimates of processing times) 

has been studied. Simple approximate models based on similarities of 

job-shops to simpler queueing models, have been established for predicting 

the performance of these heuristics (dispatching rules), as well as the 

effects of changes in the number of machines in parallel (Chapter 7). 
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8.2 	Suggestions for further research 

It is believed that no P-class algorithm can be constructed for the 

general job-shop scheduling problem and that the practical benefits 

' from finding a 'good' algorithm for some special case of a NP-complete 

problem with one, two or three machines at best, are insignificant. 

Thus, it is argued that future research should concentrate in the area 

of sub-optimal or approximate methods, trying to establish guarantees 

of performance, and in their implementation. The latter point is of 

great importance, given the existing gap between the theory of scheduling 

and the scheduling practices in industry (King, 1976, Dudek et al, 1974). 

Although the general job-shop scheduling problem cannot be solved with 

exact methods, the theory of scheduling, compared with the practice, 

is relatively advanced. Work needs to be done towards bridging this 

gap, taking into account the potential of the theory (single-pass 

heuristics, LNS, simulation) and the current computer technology. 

Some ideas which occured to the author during this project are listed 

below. They were not however pursued for lack of time and for computational 

expense. 

(i) Flow-shop heuristics (Chapter 3) 

A number of weighting coefficients could be tried in the 'slack-based' 

and 'savings' heuristics and the ones with the best performance 

for each type of problem established. 

(ii) Local Neighbourhood Search (Chapters 5 and 6) 

Instead of using the same heuristic scheduling rule during"a LNS, 

it is worth trying different ones at various instances of the search. 

In this way, simple rules could be used at the beginning of the tree 

and some global rule, with a look ahead mechanism, near the bottom of 
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the tree. Alternatively, an initial solution and the related local 

neighbourhood would be defined with some method. The search could 

then be carried out using a simple heuristic, with the objective 

of studying its performance as a function of the initial neighbourhood. 

Another idea worth exploring is.concerned with a different back-

tracking mechanism. This is a heuristic method whereby backtracking 

to the immediately previous level is not always necessary. In this 

procedure, nodes that do not appear to be promising would be 

ignored by 'jumptracking'. The criterion for ignoring nodes could 

be based on comparison of the lower bounds; if the lower bounds at 

two different level nodes are equal, further backtracking takes place. 

It could be based also on a statistical estimate of the optimal 

of the particular sub-problem defined by the node in question. 

The idea of jumptracking seems to be particularly useful in an 

interactive mode of operation of LNS. 

(iii) 	Simulation and approximate network formulae. 

The dynamic job-shop scheduling problem can be studied as a 

sequence of static instances (Nelson et al 1977), with some form 

of local neighbourhood search, where the jobset of executable 

operations is updated. at. regular review times, with or without 

preemption. A similar approach can be used when the set-up times 

are sequence dependent. Every time a machine becomes idle, a 

heuristic rule can be applied to select the next operation 

(eg. minimum change-over cost). 

The relative performance of single-pass non-delay (dispatching) 

rules can be studied with simulation under conditions of limited 

storage capacity between different work-centres (limited in-process 

inventory), or under the assumption of machines breaking down 
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according to a Weibull process. When the machines are assumed 

to have breakdowns, the operational flexibility becomes important. 

' The effect of allowing such flexibility on the average waiting time 

can be studied again with simulation. 

The simulation results obtained (Chapter 7) suggest that approximate 

formulae, based on interpolation, might be developed also for a 

given processing times distribution, with the load factor as the 

independent variable. 

(iv) Interaction between detailed scheduling and aggregate capacity planning. 

Attempts to link these two levels of planning have been restricted 

to simplified job-shop models (Schwimer, 1972, Gelders and 

Kleindorfer, 1974 and 1975). It is believed that there is scope 

for further research in this direction, trying to link capacity 

planning of real life production planning problems (eg Spachis, 

1975, Adam and Surkis, 1977) with detailed scheduling, probably 

in the form of LNS, as described in this thesis. 

(v) Interaction between automatic LNS and human scheduler. 

It is envisaged that the schedules would be presented in a Gantt-

chart form with the help of a video display unit (VDU), where the 

scheduler would be able to resolve conflicts himself or instruct 

the machine to do it according to prespecified routines. 

A visual simulation would display the progress of scheduling. 

The interactive software would then ask the scheduler whether to 

continue or jumptrack, and whether to estimate the optimal solution 

with sampling. 
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(vi) Implementation of multiple objective criteria. 

The criteria of performance used in industry are more complex 

than'minimise makespan,machine idle time, work in progress'- etc. 

They can be 'minimise cost', 'maximise return' and more generally, 

'maximise profit'. The degree to which these generalised criteria 

are satisfied can be measured with an objective function which 

is set up as the weighted sum of all the deviations from given 

targets. The difficulty is that the weight coefficients are 

necessarily subjective and thus, in abstract form, meaningless. 

One can assign values to them relevant togspecific context only. 

At this point, the necessity of research in scheduling practices 

in industry becomes apparent. 

(vii) Routines for computerised scheduling. 

A review of the Scheduling Handbook (O'Brien, 1969) shows that 

the number of potential applications of scheduling techniques which 

might influence the decision processes of managers, is very large. 

Although there is some scope for manual application of scheduling 

methods (New, 1975), the majority of real life scheduling problems 

is so complex, that in some way or another, the implementation 

has to be computerised. The interest in implementation lies not 

in one-off applications but in complete and permanent adoption 

of the approach, in the integration and institutionalization of 

scheduling techniques. There is evidence that this is rather 

limited (King, 1972 and 1975, Chazapis, 1977), confined to simple 

forms of data processing and record keeping (Nicholson and 

Pullen, 1974, Holden, 1976) rather than elaborate decision making. 

This becomes apparent, when reviewing the available packages on 
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production control. 

The commercial packages of computer manufacturers (PCS II of 

Burroughs, FACTOR of Honeywell, CAPOSS of IBM, PROMPT of ICL etc) 

provide a wide coverage of data processing and control functions. 

Their main features include order processing (eg parts explosion, 

requirements planning), some form of stock control, work-in-progress 

-control, and usually simple dispatching rules for scheduling. 

It is felt that more sophisticated scheduling routines, like a 

depth-first LNS, can be of value in improving scheduling procedures. 

These routines with relatively small core requirements. could be 

used locally in mini-or even micro-processors and the resulting 

schedules could be implemented at shop floor level, requiring 

some form of interfacing with the main processors where the packages 

are run. The development and implementation of these typesof 

routines(procedures)either as free-standing programs or in 

conjuction with some computerised data processing and control 

system,is a feasible task even for small or medium size companies. 
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- 	APPENDIX A 

Erlang process generator 

The Erlang distribution is.a statistical distribution which takes 

different forms for different values of a shape parameter k. In 

fact, the Erlang family of distributions is a special case of the 

Gamma, where the shape parameter is integer. 

The Erlang probability density function is 

f(x)  = (x/b)k-1 
exp(-x/b)/{b(k-1):} 

where b is the scale parameter. The cumulative distribution function 

is 
F(x) = 1-{exp(-x/b)}(kEl(x/b)/i:) 

1=o 

where the mean is p= bk , the variance is a2  = b2k and hence, the 

coefficient of variation is 

V=o/u =1/VI 

The distribution density function is plotted below for a number of 

values of the shape parameter k. 

Figure Al Erlang distribution with scale parameter b=1 



with mean: k(p/k) =p and variance: k(p/k)2  = p2/k 

x = E X. 
i=1 1  
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For k=1 the Erlang distribution reduces to the negative exponential. 

In fact the variate x of Ek  is the sum of k independent variates 

xi, i=1,k from a negative exponential with mean p/k and variance 

p2/ k2  

The implication is that if an operation is composed of k sub-

operations coming from the same negative exponential then its 

aggregate distribution can be described by Ek. 

Random numbers of the variate x of the negative exponential 

distribution with mean 1/a = p/k = b can be computed from random 

numbers r of the uniform rectangular distribution since 

r = F(x) , r = 1-exp(-Ax) and x = (-1/a)1n(1-r) 

Suffices to use r instead of 1-r for x 

x = (-1/a) lnr 

The Erlang k random variate x then is: 
K 

x = (-p/k)ln(01 r ) 



Table Al Heuristics for flow-shop scheduling with no-job-passing 

	

E1  processing times 
	

E9  processing times 

No. of No. of Problem Lower Random CDS 	hl 	h2 	h3 	h4 	h5 
	

Problem Lower Random CDS 	hl 	h2 	h3 	h4 	h5 
Jobs 	Mach. 
	bound 
	

bound 

10 4 Cl 61 77 75 70 70 74 77 81 C6 58 89 73 74 73 74 80 77 

C2 68 109 86 92 84 90 94 100 C7 72 95 85 84 84 84 89 87 

C3 58 88 70 71 73 71 80 91 C8 63 85 78 78 78 78 87 83 

C4 61 87 81 87 78 87 101 98 C9 64 76 77 75 77 77 78 77 

C5 83 101 94 92 92 92 95 95 C10 70 87 79 78 78 87 78 80 

20 5 D1 132 172 139 140 144 144 158 164 D6 119 147 146 146 143 145 152 146 

D2 152 208 205 215 202 214 220 212 D7 122 153 143 140 140 143 154 148 

D3 131 185 173 160 153 160 173 186 D8 123 148 142 143 142 143 155 152 

D4 144 191 153 158 161 164 187 182 D9 122 151 142 145 145 145 152 148 

D5 132 161 152 148 148 154 197 189 D10 120 151 144 145 142 144 157 150 

35 5 El 289 269 252 241 266 315 323 E6 229 218 225 223 228 234 229 

E2 263 241 257 253 262 320 314 E7 243 228 231 229 231 241 242 

E3 318 243 255 253 270 290 286 E8 244 231 234 228 229 250 244 

E4 295 237 223 223 237 307 314 E9 230 221 220 221 222 230 231 

E5 318 249 262 265 278 290 285 El0 240 227 229 230 232 235 233 



Table A2 Heuristics for flow-shop scheduling with no-waiting 

E1  processing times 
	

E9  processing times 

No. of 	No. of 	Problem Optimal Random 	H1 	H2 	H3 	H4 	H5 	Problem Optimal Random 	H1 H2 H3 H4 H5 

Jobs Machines 	Solution 	 Solution 

10 4 B1 97 120 109 109 116 101 	98 B6 79 98 80 85 86 81 80 

B2 89 129 93 109 110 94 	90 B7 84 98 85 92 92 89 84 

B3 106 143 106 109 109 112 	112 B8 79 84 81 85 81 79 81 

B4 82 112 86 88 89 89 	86 B9 80 92 83 86 89 84 80 

B5 82 112 84 86 89 89 	85 B10 74 86 74 78 77 77 77 

20 5 D1 160 234 167 174 175 175 166 D6 152 183 156 156 160 156 155 

D2 227 342 238 251 266 238 236 D7 151 182 152 162 164 155 156 

D3 188 285 199 2.19 228 205 201 D8 149 172 155 153 153 154 155 

D4 175 266 189 185 185 189 178 D9 150 172 154 152 158 156 154 

D5 175 247 188 193 183 198 183 D10 ' 151 177 155 156 160 157 153 

35 5 El 298 498 313 330 343 305 322 E6 232 285 234 244 243 236 244 

E2 295 452 297 297 297 295 313 E7 241 300 245 246 251 249 248 

E3 296 457 302 309 308 308,325 E8 249 309 256 252 255 249 253 

E4 264 417 285 290 297 286 296 E9 232 298 238 240 243 244 236 

E5 291 460 308 299 327 318 308 El0 239 244 249 250 249 245 251 
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APPENDIX B 

Table B1 

Bracket for optimal solution (BOS) with single pass active 

job-shop scheduling heuristic ECT 

Problem 

E9  processing times 

n=10,m=4 	n=20,m=5 	n=35,m=5 

E36  processing times 

n=10,m=4 	n=20,m=5 	n=35,m=5 

1 .08 .03 .08 .10 .03 .07 

2 .09 .06 .08 .14 .08 .09 

3 .09 .07 .09 .14 .09 .10 

4 .11 .08 .10 .14 .09 .10 

5 .12 .08 .11 .14 .09 .15 

6 .13 .08 .15 .10 

7 .13 .09 .15 .10 

8 .14 .09 .15 .12 

9 .14 .09 .18 .12 

10 .16 .10 .18 .12 

11 .17 .12 .18 .13 

12 .19 .13 .18 .13 

13 .19 .13 .19 .14 

14 .22 .14 .19 .14 

15 .23 .16 .19 .15 

16 .24 .18 .20 .15 

17 .25 .19 .20 .16 

18 .25 .20 .22 .16 

19 .29 ,22 .22 .18 

20 .31 .22 .25 .18 
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APPENDIX C 

Extension to Jackson's method for n/2/G/C
max 

 problem 

Algorithm (Jackson, 1956) 

Partition set of jobs in 4 sub-sets, AB, A, BA, B according to the 

order of their operations (A and B stand for the two machines) 

where sets AB and BA are ordered with Johnson's rule. Construct 

optimal sequence by ordering the jobs as follows: 

machine A 	AB,A,BA 

machine B 	BA,B,AB 

Jackson's algorithm gives the optimal sequence also when the two 

machines are not available simultaneously, as can be seen below. 

In machine A, there are no delays for operations of the subsets 

AB and A, and in machine B of the subsets BA and B. In the optimal 

schedule, delays are possible in one of the two machines only, and 

not in both simultaneously; assuming there are idle times in machine 

B (sets AB or A), there can be no delays for the operations of 

sets BA, B in machine A, because the operations of BA in machine B 

are completed before the AB,A operations in machine A, and thus any 

initial delay in machine A will not affect the optimal sequence. 

If, on the other hand. machine B is not available from the start of 

the schedule, delays that would arise otherwise will be reduced or 

eliminated, but again no other sequence can produce a schedule 

with smaller makespan. 
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Estimates of the size of the set of active solutions 

The complete space of active solutions of a job-shop scheduling 

problem can be represented by a tree. Each traversal of this tree, 

starting from the first level of nodes, passing from one node at 

every other level and ending in the bottom of the tree, describes 

fully one solution. Although the size of the tree for every problem 

is bounded by (n:)m, the actual size is substantially reduced by the 

'characteristic function' which eliminates the non-feasible sequences, 

allowing only those described by the transfer function to be 

constructed. 

Counting the members of the set A of the active solutions (ie the size 

of the tree) is not a practical proposition. Instead, it is possible 

to estimate its size by the value of the function Td  using a 

statistical method for branching processes (Cox and Miller, 1965). 

Each node i at some level -d has a number of offsprings or branches, 

(between 2 and n) and the probabilities of these values occurring are 

respectively 
go, gl, g2, 

 g3.....gn with a distibution {gi} 

(go = gl = 0). Let Y
d  = j denote the number of nodes in the d - th 

generation (or level). The node i for i = 1,....j has zi  branches, 

where si  has a distribution 
{g.

1}. 	The number of nodes in the next 

generation is 

Yd+1=zl+z2+ 
	

i 
+z. = Ē z. 
j 	-1 1 

and 	Prob(Y
d+l

=k/Yd=j) = Prob(zl-i-z2+....+zj=k) 
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The probability generating function P(t) defined for discrete 

variates is a function of an auxiliary variable t such that the 

coefficient of ti  is the probability density function g1. 

P(t) = jEOtxgi 	, 	x>o 

and 	gi  = (1/x:) (a'p(t)/at1 )t=0  

Then 	Prob(zl+ z2+....+zj=k) = coefficient of tk  in {P(t)}3  

It is practically impossible to derive an explicit expression 

describing the distribution of k at level d. It has been possible 

though to calculate the mean 	and variance 	of its distribution 

recursively from 

Pd -u  ud-1 

2 2d-2 
vd  = Q u 	+uv

drl  

where u,G2  are the mean and variance of number of branches per 

individual node. 

Assuming that u,a2  are the same for all nodes, then 

vd  = a2ud-1 (ud-1)/(u-1 



- 237 - 

Under this assumption p and 
a2 
 are easily calculated from the data 

generated during the tree search. 

number of branches generated 
P  = humber of nodes (conflicts) generated =Nb/Nc 

n 

	

a2 =(1/N ).E (z.-p)2  f. 	f. the observed frequency 
c 1-2 > 	1 	1  of nodes with zibranches 

Every time a solution improvement is obtained, the proportion of the 

tree that has been searched is: 

Pr  = 1 - (Remaining tree)/(Total tree) = 1 - Rd/Td  

where 

n-h 
Rd =h=1 uh.p  

h is the level number of an active node 

uh  is the number of unexplored branches at the active 

node of level h 

and thus 

d n-h d 
Pr 	1 - (hEluh.0 	)/u 

The value lid  is only a statistical estimate, and the confidence for 

its value depends on the variance vd. Under the assumption of u,Q
2  

constant, vd  depends mainly on the size of the tree described by p
d  

It is certain that n > u > 2 and therefore the terms p
d-1 

and 

d  
(u -1)/(u-1) increase exponentially. The drawback of this method of 

estimating the size of the tree is that for large trees, even for 

small values of 62, vd  is large. Another drawback of this method, 

which is particularly salient in large trees is the assumption of u 

being constant. The initial stages of the tree search are likely to 

have more branches per node than those near the bottom of the tree. 

This is due to the fact that near the end, large partial schedules 

are already fixed and there are fewer unscheduled operations left 

as candidates for conflicts. This agrees with the computational 
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experience on this method with large problems where most of the 

solution time is spent searching the lower parts of the tree which 

results in an overall p (average branches per node) decreasing with 

time. 

Another method which appears to be more reliable has been used and is 

described below. This method is based on the assumption that the zi  

sub-trees originating from the zi  branches of a node i at level h, 

have the same number of branches at the bottom of the tree (the same 

number of active solutions). 

The important feature of this assumption is that the error although 

unknown is likely to be small and self-balancing. This method avoids 

completely any assumption about the values of p and Q2  and is more 

realistic,. since it avoids using a constant - depth d for the tree. 

A recursive formula is constructed, for calculating the total Ti  and 

remaining tree R. at level i, starting from the bottom of the tree 

(i=0 at bottom of tree, i=d at the top). At every level i, in the 

depth-first search method there is one active node only, with ti  

branches, ri  of which are still unexplored (have not yet become active 

nodes). 

For every complete active solution 

To  = 1 

Ro  = 0 	i.e. 	To  > Ro  

At every level i 

ti >_ r.+l 	t. > r. 

It is 

Ri+i = Ri+(Ti  ri) 

Ti+1 = Ti ti 

If Ti  > R. then 
Ti+l > Ri+l 
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Ti+1 = T. t. >_ Ti
ri  + Ti  > Tiri  + Ri  = R1+1  

The proportion searched is computed from 

Pr  = 1 - R
d/Td  

At large problems, Ti  and Ri  become very large numbers and special 

care must be taken to avoid overflow of digits in the computer storage 

of integers, which might result in Ti  being treated as equal to Ri. 

Table Cl Average and standard deviation of regression coefficients 

from the solution improvements model. 

ECT 

TL=5 
n=10 m=4 

FCFS SPT 

TL=10 
n=10 m=4 

ECT 	FCFS SPT 

TL=60 
n=35 m=5 

ECT 	FCFS 	SPT 

E1  mean .435 .341 .448 .295 .148 .229 .215 .216 .199 

SD .244 .235 .224 .191 .133 .118 .040 .106 .088 

UR mean .403 .317 .289 .252 .343 .335 .235 .133 .102 

SD .183 .188 .243 .180 .159 .115 .213 .033 .056 

E4  mean .414 .271 .301 .296 .230 .308 .162 .364 .130 

SD .189 .183 .161 .150 .062 .168 .034 .099 .075 

E9  mean .181 .225 .257 .247 .251 .190 .342 .256 .109 

SD .127 .123 .078 .192 .091 .079 .329 .075 .045 

E36  mean .350 .415 .272 .120 .267 .200 .347 .245 .077 

SD .382 .283 .062 .063 .171 .136 .208 .230 .008 



IMPROV.OF BRACKET FOR OPTIMAL SOL. BY B+B 

A B R 

ECT(21 -1.038 -0.240 -0.981 

FCFS(21 -1.066 -0.312 -0.905 

SPT(31 -1.461 -0.035 -0.849 

s T 

F F 

io 

Model 1 

3•T 

1113 

i2.o0 	I1.0 	2:40 	00.00 	22.20 	12.02 	
11/
IS Cl 

OF lit 
CO 

	.0  c- 	.0.:0 	1740 	01.00 	03 00 	41.00 	Fi.00 	'i.:o 	'I.. 	4b c. `boo .1o1 iW 
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Figure Cl 	Models for continuous approximation of the step function 

of the improvements for BOS. 

DIMENSION DISTRIBUTION SEED LLB TLIMIT 

104 	1 5 36 	345 61 60.0 

:iMEFJS10N DISTRIBUTION SEED LLB TLIMIT 

104 	I 5 36 	345 61 60.0 

IMPROV.OF•BRACKET :OR OPTIMAL SOL. BY BOB 

 

ECTII 1 

FCFS1 z 1 
S P T (3 1 

A 	B 	P. 

-0.577 - 1.176 -0.920 
-0.B29 - 1.173 - 0.853 
-1.133 -0.34', -U.975 

 

 

   

Model 2 
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Lb 00 	Z00 	4.00 	ii 00 	0.00 	20.00 	01.00 	2i.00 	22.00 	
i 4. 00r 40.00 	C 1. 	

1 0 	12.00 	30.30 	51.00 	03.00 	00.00 	4i 00 	72.00 	72.00 	e 3 
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DIMENSION DISTRIBUTION SEED LLB TLIMIT 

104 	1 5 36 	345 61 60.0 

TMPROV.OF BRACKET FOR OPTIMAL SOL. BY 8.8 

A 	B 	R 

	

ECT111 	-1.711 -0.076 -0.896 

	

FCFSI2I 	-1.952 -0.070 -0.902 

	

51'1131 	-1.532 -0.018 -0.790 

1 

T 

F F 

Model 3 

i.00 	£2.00 	10.10 	20 00 	r:.01 	11.00 	12.0: 
	1
II

Ē 0F .0 01ail Oh 
500 	10.00 	12 00 	14, CO 	40.00 	40.00 	10.00 	10 .00 	11 CO 	1ū 

DISTRIBUTION SEED LLB TLIMIT 

1014 	•1 5 36 	345 61 60.0 

IMPROV.O' BRACKET FOR OPTIMAL 50L. BY 8.8 

A 	B 	R 

	

ECllil 	-0.705 -0.954 -0.969 

	

FLF5I21 	-1.047 -0.882 -0.985 

	

SPT131 	-1.146 -0.301 -0.567 

Model 4 

3 

LC15 
I 



- 242 - 

ENSION DISTRIBUTION SEED LLB TLIMIT 
104 	1 5 36 	345 61 60.0 

IMPROV.OF BRACKET FOR OPTIMAL SOL. BY 8.8 

A 	B 	R 

	

ECT(il 	-0.830 -0.901 -0.903 

	

FCFS121 	-1.195 -0.81? -0.873 

	

5P1131 	-1.178 -0.289 -0.935 

Model 6 

 spy 

3 

_ 

. 

ii.o0 	10.06 	20.0, 	04•00 	1.0 CI 	17.00 
1 )0  no 
	42 

00  iON$ 
0 	05.00 	50.00 	15.00 	60.01 	M.00 	65.00 	'12.00 70.0 	10.01 `S ō .:au i 0 

DIMENSION 'DISTRIBUTION SEED LLB TLIMIT 
104 	1 5 36 	345 61 60.0 

IMPROV.OF BRACKET FOR OPTIMAL SOL. BY BoB 

Model 5 

	,Opt 

3-T 

F F 

A 	B 	R 

	

ECT(i1 	-1.961 -0.046 -0.698 

	

FCFS(21 	-2.179 -0.038 -0.662 

	

SP1(31 	-1.573 -0.014 -0.701 

l 	 [CIS 

0 
43. 00 	.40 	or 00 	10.00 	:5.00 	:6 CO 	15 00 	06.00 	57.00 	

li0 
50 00 
	i0EAa11045 0 	

.5.00 	11 00 	15.:] 	61..00 	65 00 	10.00 	470-0-7448   ca 
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APPENDIX D 

Table D1  

Table of critical values of D in the Koimogorov-Smirnov one-sample test 

Sample 
size 

Level of significance for D = maximum IF0(X) 	- SN(X)I 

N .20 .15.' .10 .05 .OT 

1 .900 .925 .950 .975 .995 
2 .681 .720 -.776 .842 .929 
3 .565 .597 .642 .703 .828 
4 .494 .525 .564 .624 .733 
5 .446 .474 .510 .565 .669 

6 .410 .486 .470 .521 .618 
7 .381 .405 .433 .486 .577 
8 .358 .381 .441 .457 .543 
9 .330 .360 .388 .432 .514 
10 .322 .343 .368 .410 .490 

11 .307 .326 .352 .391 .468 
12 .295 .313 .338 .375 .450 
13 .284 .302 .325 .361 .433 
14 .274 .292 .314 .349 .418 
15 .266 .283 .304 .338 .404 

16 .258 .274 .295 .328 .392 
17 .250 .266 .286 .318 .381 
18 .244 .259 .278 .309 .371 
19 .237 .252 .272 .301 .363 
20 .231 .246 .264 .294 .356 

25 .21 .22 .24 .27 .32 
30 .19 .20 .22 .24 .29 
35 .18 .19 .21 .23 .27 

Over 35 	1.07. 	1.14 	1.22 	.J.36 	1.63 

	

iN 	✓N 	✓N 	✓N 	IN 
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APPENDIX E 

Approximate formulae for complex queueing systems with general 

queueing discipline. 

iW(GI/G/r ) } a2+p2Vs2)/2p (1-p )r for p-1 

(Kingman, 1970) 

W(Ek/ER/r) = (1-Va2) (1-V52) W (D/D/r) + (l_Va2) Vs2W (D/M/r) + 

+ (1-Vs2) Va2  W (M/D/r) + Va2Vs2W (M/M/r) 

(Page, 1972) 

2Va2 	W(M/M/r) +  1-Va2 	W(D/M/r)} 
 W GI/M/r') W(GI/M/r) = { 	 

1+Va2  W(M/M/r') 1+Va2  W(D/M/r') 

(Cosmetatos, 1974) 

2(V
a  2

+V 2) - (1-p) (1-V 2) {V 2(3-V 2) + 4V 2(1-V 2)} 
W(GI/G/r) _ 	s 	a 	s 	s 	a 	s 

 W(M/M/r) 
4 

(Rosenshine and Chandra, 1975) 

(1+V 2) (Va2+p2Vs2)p l 
W(GI/G/I) = 	 

2(1-p) (1 +p2Vs2) 	u 

(Marchal, 1976) 

W(M/G/r) 	= Vs2  W (M/M/r) + (1.-Vs2) W (M/D/r) 

(Cosmetatos, 1975) 
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Expansion of the distribution function of processing times. 

For a distribution function f(x) describing the processing times in 

a job-shop, the moment generating function is defined as: 

M (t) 	 otx  f(x) dx 

This can be expressed also as a MacLaurin series: 

M(t) = M(o) + t M'(o) + t2  M" (o) + R2  
1' 	2' 

where R2  represents the remaining part of the series, after the second 

moment: 

R2  = (t3/3`) MJ"  (et) 	o<e<1 

M" (o) = Q2+u2 

thus M(t) = 1 + t u + (t2/2) (a
2
+p2) + R2 
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Mean and variance of aggregate distribution of processing times in  a 

network of queues. 

In the model used, the number of operation per job (M) is from a uniform 

rectangular distribution between 1 and 5. Each operation is from an 

Erlang distribution Ek, the same for all machines. The mean p and 

variance a2  of the aggregate distribution of processing times are: 

u = E(P..) E(M) 

a2  = VAR(Pij) E(M) + {E(Pij)}2  VAR(M) 

For the model used 

E(M) = 3 

2 
VAR(M) = 	-1  - 2 

12 

and for Erlang distributed processing times 

VAR (Pij) = {E(Pij)}2/k 

and 	V2=a2/u2  = (2+3/k) / 9 

For 	k=1 	(V
2
) = 5/9. 

k= co (V2)D  = 2/9 



Table El Simulation results for Normally distributed processing times 

	

(Q=35 	p=0.8 	p=20) 

Standard Deviation Q 

0.20 	2.00 	3.65 	5.16 	6.67 	8.94 	10.00 	11.54 	14.14 

AVERAGE WAITING TIME 

20.0 Scheduling 
Rule 

SI 243 228 222 217 212 206 204 202 203 227 
SI* 215 210 206 202 197 195 195 195 196 222 
FIFO 243 243 244 245 247 252 254 260 275 355 

MEAN QUEUE SIZE 

SI 3.2 3.0 3.0 2.9 2.8 2.7 2.7 2.7 2.7 3.0 
SI* 2.9 2.8 2.7 2.7 2.6 2.6 2.6 2.6 3.0 
FIFO 3.2 3.2 3.2 3.3 3.3 3.4 3.4 3.5 3.7 4.7 

AVERAGE LATENESS 

SI 183 163 162 157 152 146 143 142 142 162 
SI* 155 150 146 142 137 135 134 135 158 
FIFO 183 183 184 185 187 194 194 199 214 290 



Table E2 

Load 
Factor 

Average waiting time for Erlang distributed processing times 

Parameter of Erlang distribution (k) Batch 
Size 

Q P 1 2 3 4 	5 9 15 30 03 

SI 

1 0.8 110 90 87 85 	82 84 82 85 82 

10 0.6 63 56 55 54 	54 54 54 55 
10 0.8 117 103 100 99 	98 103 101 105 101 
10 	' 0.9 201 192 200 197 	192 222 220 227 

35 0.6 163 179 187 190 	194 202 207 211 235 
35 0.7 173 184 191 195 	197 205 210 213 235 
35 0,8 200 204 213 214 	215 225 229 232 243 

35 0.85 227 230 238 240 	240 256 261 263 262 

35 0.9 2.73 2.82 295 298 	298 329 332 340 315 

35 0.95 400 437 482 456 	474 528 560 573 458 

35 0.95 363 412 467 444 	436 512 526 544 458 

35 0.95 Aver. 382 425 475 450 	455 520 543 560 458 

SI* 

1 0.8 136 113 103 102 	98 96 91 93 81 

10 0.8 141 122 116 	, 113 	113 113 111 112 102 

35 0.8 197 199 206 206 	208 215 219 219 220 

FIFO 

1 0.6 75 52 41 35 27 

1 0.8 228 157 136 128 	119 109 101 98 82 

10 0.8 249 179 155 148 	140 150 123 120 101 

35 0.8 348 293 283 272 	267 262 258 255 243 



Table E3 	Average queue size for Erlang distributed processing times 

Batch 	Load 	Parameter of Erlang processing times distribution (k) 
Size 	Factor 

Q p 1 2 3 4 	5 9 15 30 

SI 

1 0.8 1.46 1.20 1.15 1.13 	1.09 1.12 1.09 1.14 1.09 

10 0.6 0.63 0.56 0.55 0.54 	0.54 0.54 0.54 0.55 
10 0.8 1.56 1.37 1.32 1.31 	1.31 1.37 1.35 1.40 1.34 
10 0.9 3.02 2.90 3.01 2.96 	2.89 3.33 3.30 3.40 

35 0.6 1.63 1.79 1.86 1.91 	1.94 2.01 2.06 2.10 2.34 
35 0.7 2.01 2.14 2.22 2.27 	2.30 2.39 2.44 2.48 2.73 
35 0.8 2.66 2.71 2.83 2.84 	2.86 2.99 3.04 3.08 3.23 
35 0.85 3.21 3.25 3.37 3.40 	3.40 3,61 3.69 3.71 3.70 I, 
35 0.9 4.09 4.23 4.43 4.46 	4.45 4.92 4.97 5.09 4.71 UD 

35 0.95 6.42 6.94 7.72 7.24 	7.53 8.38 8.89 9.15 7.22 1 
35 0.95 6.06 6.72 7.73 7.18 	7.20 8.16 8.41 8.71 7.24 

SI* 

1 0.8 1.81 1.50 1.37 1.36 	1.30 1.28 1.21 1.24 1.08 
10 0.8 1.88 1.62 1.54 1.50 	1.50 1.50 - 	1,47 1.49 1,36 

35 0.8 2.62 2.65 2.74 2.74 	2.76 2.85 2.91 2,91 3.00 

FIFO 

1 0.6 0.75 0.52 0.40 4.34 0.27 
1 0.8 3.04 2.09 1.82 1.70 	1.58 1,45 1.35 1.30 1.09 

10 0.8 3.31 2.38 2.06 1.97 	1.86 1.73 1.60 1.60 1.34 

35 0.8 4.63 3.89 3.76 3.61 	3.55 3.48 3.42 3.39 3.23 



Table E4 

Load 
Factor 

Average lateness (missed due dates) for Erlang distributed processing times 

Parameter of Erlang processing times distribution (k) Batch 
Size 

Q P 1 2 3 4 	5 9 15 30 

SI 

1 0.8 48 28 25 23 	21 23 21 24 22 

10 0.6 2 -5 -6 -7 	-7 -7 -7 -6 
10 0.8 56 42 38 38 	37 41 40 44 41 
10 0.9 139 131 139 136 	131 160 158 165 

35 0.6 102 118 125 121 	133 141 146 150 175 
35 0.7 111 123 129 133 	136 143 148 152 175 
35 0.8 138 142 151 152 	154 164 167 170 183 
35 0.85 166 168 177 179 	180 194 200 201 202 
35 0.9 211 220 234 237 	235 267 271 279 255 
35 0.95 339 375 421 394 	413 467 498 512 398 
35 0.95 302 351 406 382 	374 451 465 482 398 

SI* 

1 0.8 74 51 42 41 	37 35 29 32 21 

10 0,8 79 61 54 52 	51 52 49 51 42 

35 0.8 .136 138 145 144 	146 153 157 158 162 

FIFO 

1 0,6 14 -9 -21 -27 -33 

1 008 167 96 75 66 	58 48 40 37 22 

10 0.8 187 117 94 87 	78 68 61 59 41 

35 0.8 287 231 221 210 	206 201 196 194 183 
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Table E5 	Effects of inaccuracy of processing times estimates. 

(Normal distribution about expected values) 

Average waiting time 

Vs  

(Expected 
Processing 

Times) 

Vr 

(Real 
Processing 

Times) 
FIFO SI SI* 

0 0 243 243 220 

(E.) 0.5 261 261 240 

1.0 388 388 375 

0.5 0 271 214 206 

(E4) 0.5 303 236 229 

1.0 516 370 363 

1.0 0 347 200 197 

(E1) 0.5 458 240 240 

1.0 938 410 414 



Table E6 	Similarity of job shops with identical machines in parallel. 

Load factor p 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9 0.95 

PI 234 234 234 234 234 234 234 244 263 314 457 

113 50 50 50 50 50 50 50 56 66 90 143 

P5 15 15 15 15 15 15 17 25 36 47 84 

113/111 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.230 0.250 0.286 0.312 

115/111 0.064 0.064 0.064 0.064 0.064 0.064 0.073 0.103 0.136 0.149 0.181 

al 122 122 122 122 122 122 122 127 144 185 276 

a3 29 29 29 29 29 29 29 34 42 59 90 

a5 14 14 14 14 14 14 17 19 26 34 55 

a3/al 0.238 0.238 0.238 0.238 0.238 0.238 0.238 0.268 0:291 0.319 0.326 

a5/al 0.115 0.115 0.115 0.115 0.115 0.115 0.139 0.149 0.180 0.184 0.199 

L1  0.39 0.78 1.17 1.56 1.95 2.34 2.73 3.23 3.70 4.71 7.22 

L3  0.25 0.50 0.75 1.00 1.24 1.49 1.75 2.25 2.87 4.09 6.81 

L5  0.13 0.26 0.39 0.52 0.65 0.78 1.03 1.72 2.56 3.64 6.70 

L3/L1 0.641 0.641 0.641 0.641 0.636 0.636 0.641 0.645 0.776 0.868 0.943 

L5/L1 0.33 0.33 0.33 0.33 0.33 0.33 0.37 0.53 0.69 0.77 0.93 

Average waiting time for r identical machines is parallel 

ar 	Standard deviation of waiting times for r identical machines is parallel 

Lr 	Average queue length for r identical machines is parallel 

`.) 



Table E7 	Average waiting time from simulation and approximate formulae 

Q=1, p=0.8 

Erl ang 
parameter 

k 

1 

Wsim 

228 

FIFO 

Wapprox 

- 

e% 

- 

Wsim 

110 

SI 

Wapprox 

- 

e% 

- 

Wsim 

136 

SI* 

Wapprox 

- 

e% 

2 157 155 1.3 90 96 6.7 113 109 -3.5 
3 136 131 -3.7 87 91 4.6 103 99 -3.9 
4 128 119 -7.0 85 89 4.7 102 95 -6.9 
5 119 111 -6.7 82 88 7.3 98 92 -6.1 
9 109 98 -10.0 84 85 1.2 96 87 -9.4 
15 101 92 -8.9 82 84 2.4 91 85 -6.6 
30 98 87 -11.2 85 83 -2.3 93 83 -10.7 

82 - - 81 - ,81 - - 

Q=35, 	SI 

p = 0.7 p=0.85 p=0.9 

1 173 227 - 273 
2 184 204 11 230 244 6.0 282 294 4.2 
3 191 214 12 238 250 5.0 295 301 2.0 
4 ' 195 219 12 240 253 5.4 298 304 2.0 
5 198 222 12 241 254 5.8 298 307 3.0 
9 205 228 11 256 255 -0.4 329 310 -5.8 
15 210 231 10 261 260 -0.4 332 312 -6.0 
30 213 233 10 263 261 -0.8 340 314 -7.6 
Co 235 - 262 315 - - 
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Table E7 (continued) 	Global composite scheduling rule 

Q=1: 

P 

Coefficients 

w1 	w2 

~fM t D lbk=2 

SIM APPROX c% 

4Jk=9 

SIM APPROX c% 

0.8 30 30 178 74 130 126 -3.0 91 86 -5.5 
0.8 0 0 191 72 135 131 -3.0 89 85 -4.5 
0.8 100 0 231 87 164 159 -3.0 113 103 -8.8 
0.8 33 1 182, 72 131 127 -3.0 89 84 -5.6 

0.6 30 30 63 27 49 45 -8.1 34 31 -8.8 
0.6 0 0 69 27 51 48 -5.9 34 32 -5.9 
0.6 100 0 68 28 51 48 -5.9 35 32 -8.5 
0.6 33 1 67 27 50 47 -6.0 34 31 -7.3 

Q=10 

P 

Coefficients 

w1 	w2 

0.8 0 0 
0.8 30 30 
0.8 100 0 
0.8 33 1 

0.6 0 0 
0.6 30 30 
0.6 100 0 
0.6 33 1 

Q=35 

Coefficients 

P 
	

wl 	2 

	

0.8 	0 	0 

	

0.8 	30 	30 

	

0.8 	100 	0 

	

0.8 	33 	1 

	

0.6 	0 	0 

	

0.6 	30 	30 

	

0.6 	100 	0 

	

0.6 	33 	1 

Wig 	WD 	Wk=2 	Wk=9 

SIM APPROX c% SIM APPROX c% 

211 83 149 147 -1.3 105 97 -7.6 
183 90 141 137 -3.2 110 100 -9.1 
251 108 183 177 -1.9 131 124 -5.3 
190 86 144 138 -4.2 106 98 -7.5 

89 50 69 69 0.0 58 54 -6.9 
80 50 67 65 -3.0 57 53 -7.0 
91 52 72 72 0.0 59 56 -4.6 
84 50 67 67 0.0 57 54 -5.3 

W1 W. W2 

SIM APPROX c 

W9 

SIM APPROX c% 

305 199 247 252 2.0 219 211 -3.6 
257 213 239 235 -1.7 225 218 -3.1 
339 216 272 277 2.0 229 229 0.0 
272 192 236 232 -1.7 208 201 -3.4 

225 188 205 206 0.7 201 192 -4.5 
196 202 199 199 0.0 209 201 -3.8 
198 203 196 200 2.3 205 202 -1.2 
199 179 191 189 -1.0 191 181 -5.2 


