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ABSTRACT  

The aim of this thesis is to study multiply transitive permutation 

groups and their normal subgroups. In this abstract we shall use 

the following notation: G is a permutation group on a finite set 

n of size n, G Is not the symmetric group on iZ and acts t-fold 

transitively on O. H is a normal subgroup of G, different from the 

identity, and x(H) denotes the number of H-orbits on S2(t) where 

i2(t) is the set of all ordered sequences of t distinct points in 11. 

Our main objective is the following question going back to C. JORDAN: 

When is H t-fold transitive as well? 

In Chapter II and III we extend some known results and prove the 

following theorems: 

THEOREM A (2.8) 

With the above notation, the following three statements hold: 

(i) 	if t = 2, H is generously transitive if and only if H 

has even order. Therefore H is generously transitive 

if G contains no regular normal subgroup. 

(Li) If t = 3, H is generously doubly transitive except if 

H is regular or if H is a subgroup of PrL(2,q) containing 

PSL(2,q) in their usual representation on the projective 

line, n = q+l. 

(i11) 	If t is at least 4, H is generously (t-l)-fold transitive, 



THEOREM B (3.6 & 3.7) 

Let p be a prime, p < t, and let r be the smallest non-negative integer 

with r 	(n-t+l)/x(H) mod p. 

(i) If p does not divide n-t+1, we have 0 < rx(H) < p. 

(i i) 	If p di vi des n-t+1, then p also di vi des (n-t+l/x(H) 

except if t = 3 and H is either regular or a subgroup 

of PrL(2,q) containing PSL(2,q) where n = q + 1. 

As a corollary to Theorem B we obtain the fol lowing generalisation of 

results by WAGNER and ITO: 

THEOREM C (3.11) 

Let 3 < t < 6 and let r' be a subset of SZ of size t-1. Suppose there 

are primes p and q, p < t, such that a Sylow q-subgroup of Hr, fixes 

exactly k points where k-t+1 	0 mod p. Then H is t-fold transitive 

on Q. 

In Chapter IV we prove some results in the case of doubly transitive 

groups. 

THEOREM D (4.4) 

Let G be a doubly transitive permutation group of degree n and H 	1 

a normal subgroup of G. Suppose G contains an involution i with 

iG  = T H  and let f = IFix(i)I. 

on SZ{2}. 

Let y(H) be the number of H-orbits 

Then y(H) divides (n-1, f-1) . In particular, H is doubly 	transitive 

if (n-1, f-1) = 1. 
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THEOREM E (4.5) 

Let G be a doubly transitive permutation group on 2 of even degree n 

and H 01 a normal subgroup of G. Let a, i3  be two distinct points in 

,sand S a Sylow 2-subgroup of H. Put N = NG(S) and N' = N n H. 

Suppose there is some subgroup I, S < 1 <H, with [I :S] = 2 and 

= I 	. Then H is doubly transitive. 

THEOREM F (4.6) 

Let G be doubly transitive of degree n and H normal in G with index 

d = [ G:H] in G. Let p be some prime dividing n exactly to the j th 

power. Suppose either  

(1) 	(d, n-1) = 1 or 

(i I) 	(d,pi-l) = 1 for all i S j and further that G/H is solvable 

if p = 2 and j 	2. 

Then H is doubly transitive on Sl. 

In Chapter V we investigate normal subgroups of triply transitive 

permutation groups. 

THEOREM G (5.4) 

Let G be a triply transitive group of degree n - 0 mod 4 and let H be a 

non-regular normal subgroup of G. 

Suppose no involution in H fixes 2•IFix(S)I points where S is a Sylow 

2-subgroup of 
Ha,s,y 

 (a,S and y distinct) . 

Then H is either triply transitive or PSL(2,q) 	H S G S PrL(2,q) with 

n = q+1. 
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THEOREM H (5.5) 

Let G be a triply transitive of degree n = 0 mod 3. Suppose GQ  contains 

a normal subgroup M * 1 such that IM3,1I  is prime to 3 for three distinct 

points a, a and y. 

Then G is isomorphic to a subgroup of PrL(2,q) containing PSL(2,q) for 

some prime power q = n-l. 

THEOREM I (5.7)  

Let G be triply transitive on SZ of degree n = 0 mod 3. Then every normal 

subgroup of G has at most two orbits on 0(3) . 

THEOREM J (5.8)  

Let G be triply transitive of degree n = 0 mod 12. Then either every 

normal subgroup of G is triply transitive or PSL(2,q) < G < PrL(2,q) 

where q+l = n. 
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CHAPTER 1 	INTRODUCTION 

In 1861 Emile Mathieu discovered the first non-trivial quintuply trans-

itive permutation groups M12  and M24.  Ever since multiply transitive 

permutation groups have been in the centre of interest of group theorists. 

Many problems about these groups have been solved such as the existence of 

M24  for instance which was in doubt for more than 75 years, and these 

investigations have led to many important discoveries. Yet we are far 

from understanding these groups completely. 

Mathieu and Jordan observed une sorte de fosse entre is groupe altern2 

at Zes autres groupes des substitutions (p.41 in [131) in so far as the 

degree of transitivity of non-alternating groups is much smaller than 

that of the alternating group. And in fact, Mathieu's groups M12  and M
24,  

together with their subgroups M11  and M23, are the only presently known 

groups operating quadruply transitively without containing the alternating 

group of the same degree. It has therefore been conjectured that 6 or 

even 5 is the highest degree of transitivity occurring for non-trivial 

multiply transitive permutation groups. A number of attempts to prove 

this very fundamental property could only show that the degree of trans-

itivity t is bounded by a logarithmic function of the representation 

degree (Wielandt, 1934 in [26]) and an absolute bound t < 6 has been 

given subject to Schreier's conjecture on the automorphisms of simple 

groups. 	(Wielandt [ 28] , Nagao [ 18] and Suzuki [221). 

In his paper [ 13] Jordan posed another question which was much more 

accessible: Given a t-fold transitive permutation group G on a finite 

set SZ of degree n. What is the degree of transistivity t' of a sub-

group H normal in G? This problem has found a number of interesting 

answers and is the theme of this thesis. 
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Jordan proved the classical result that t' is, apart from two obvious 

exceptions, at least t - 1. 	In 1955 Wielandt and Huppert [27] intro- 

duced the concepts of multiple primitivity and half-transitivity. Using 

these descriptions they were able to show t' > t - I  and Ito (1958 in 

[11]) showed that H is (t - 1)-fold primitive if t is at least 3. 

A decade later Livingstone and Wagner[15] introduced the notion of mul-

tiple homogeneity and Wagner [24] uses a description somehow complemen-

tary to multiple homogenei ty to prove in an entirely elementary way that 

t' equals t if t 	3 and n - t is even. This new concept later 

became known as multiple generosity in an article by Neumann [ 19] . Here 

Neumann develops a theory of multiple generosity similar to the general 

theory of multiple transitivity and establishes the natural link to the 

character theory of multiply transitive groups. 	He also considers 

Jordan's problem under the generosity aspect. A number of other authors 

have contributed to the normal subgroup problem and most of their results 

will be mentioned as we go along with our own discussion. 

Turning to the available evidence in terms of known examples, one observes 

that there are only few. A list of doubly transitive groups, given in 

Kan to r' s survey in [ 7] on doubly transitive designs, could roughly be 

summari zed i n the following 4 sections : 

(1) Symmetric and alternating groups. 

(2) Groups with regular normal subgroups. 

(3) Groups of Suzuki type containing normal subgroups PSL(n,q), 

PSU(3,q), Sz(22r+1)  and groups of Ree type. Also the 

symplectic group Sp(2m,2) and 

(4) Sporadic examples: unusual representations of some groups in 

the above sections and representations of the sporadic simple 
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groups M11, M12, M24, the Higman-Sims group HS and 

Conway's group .3. 

Let G be one of the above groups in a t-fold transitive represent- 

ation on a set 0 of size n and H 	1 a subgroup normal in G. The 

groups in section (1) and (2) are the exceptions in Jordan's result: 

G = Sym S2 is n-fold transitive and H = Alt 2 is sharply (n-2)-fold 

transitive. 	In section (2) t is at most 3 and 2 can be identified 

with a vector space such that GO  is a group of linear transformations 

on S2. Here H may be regular or (t-1)-fold transitive. If G is a 

group in section (4), t has values 2, 3, 4 or 5 but normal subgroups 

H always have the same degree of transitivity t. 

The groups in section (3) are geometrical groups acting on certain sub-

sets of projective spaces and apart from groups containing PSL(2,q) as 

a normal subgroup, they are all exactly doubly transitive and the same 

is true for their normal subgroups. So groups containing PSL(2,q) are 

the only exceptions and very interesting ones they are: The groups 

PSL(2,q) 5 H < G 	PrL(2,q) operate on the projective line S2 = PG /  (q) 

and IQI = q + 1. 	PrL(2,q) is triply transitive on this set and if q 

is an odd prime power, PSL(2,q) is only doubly transitive. The stabilizer 

in PSL of the points 0 and 	has two orbits on GF(q) , squares and ncn- 

squares. 

A suitable measure to determine the drop in transitivity from G to H 

seems to be the following: By definition G is transitive on the set 

of all ordered t-tuples 1(t) and 	H is t-fold transitive on 2 if and 

- only if S2 (t) is one orbit under H. Let therefore x(H) be the number of 

H-orbits on n(t). This definition allows us to sum up the list of known 

examples. In section (1) we obtain examples for every value of t and 

here x(H) is at most 2. In section (2) the consideration of the one-

dimensional affine groups shows that x(H) can take every value dividing 
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1 01 - 1. 	In section (3) we have t = 2 and X(H) = 1 or t = 3, H= PSL(2,c) 

and x(H) = 2 if q is odd. Finally in section (4) we obtain for every 

example x(H) = 1. 

There is a number of conjectures to fit these findings. The first con- 

jecture, 

(Cl) Normal subgroups H of quadruply transitive groups are quad- 

ruply transitive, i.e. x(H) = 1 if 1sij - 2 	t 	4, 

is fairly well established and has been proved by Ito [ 12] for Jc1 	0 

mod 3 and for 1014;10
6 
 by Saxl [20]. 

A second conjecture, 

(C2) Non-regular normal subgroups H of triply transitive groups have 

at most 2 orbits on a(t),  i .e. x(H) < 2 if t 3 3 and H is not 

regular on 0, 

takes account of the symmetric and one-dimensional projective groups. 

(C2) seems reasonable since, as we shall see, these groups always occur 

inductively as constituents of certain subgroups of G. 

The strongest conjecture, implying both C2 and Cl would be 

(C3) Normal subgroups of triply transitive groups are either regular, 

triply transitive or contain PSL(2,q) as a characteristic sub-

group. 

We are able to show that (C2) implies (C3) if 101 0  2 mod 4 (Theorem 3.8). 

In chapter V we prove that (C2) holds if 1c11 is a multiple of 3 and also 

for the case 1Q1 $ 2 mod 4 under some additional assumptions on involutions 

in H. Therefore (C3) holds for 101 E 0 mod 12 and for 101 # 2 mod 4 

subject to some restrictions and these results give some evidence that 
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C3 could be true in general. 

This thesis is organized in the following way: 

Chapter II gives the usual definitions,a list of results used and 

a proof of a very essential tool, the generosity theorem for normal sub-

groups which was initially proposed in Ito's paper [ 12] . 	In chapter III 

we develop a concept which allows a homogeneous treatment of many known 

theorems leading to new proofs and extensions of these results. This 

analysis is continued in Chapter V and leads to the above mentioned con-

clusion. In chapter IV we follow a different line of argument investi-

gating some symmetries of S2. The methods there are mainly of a combi-

natorial nature and give some arithmetic conditions for the doubly 

transitive case. 



CHAPTER II 	PRELIMINARIES 

In this section we list most of the group theoretic results we shall use 

throughout this thesis. While most of the results are quoted from the 

literature, some are extensions of known results like for instance a var-

iation of a theorem by Huppert (lemma 2.6), lemma 2.2 and the generosity 

theorem for normal subgroups 2.8. 

2.1 NOTATION AND DEFINITIONS 

For completeness we develop the notations and definitions to be used here. 

They are standard definitions and Wielandt's book [29] is an excellent 

reference for most of them. 

All groups and sets considered are finite. Let S2 be a set consisting of 

n elements also called points and denoted by Greek symbols. The symmetric 

group on 0 is denoted by Sym S2 or by Sym(n) when there is no emphasis on 

the set S2; Alt O or Alt(n) stands for the alternating group on Q. 

If k is a positive integer not exceeding n, S2{k} denotes the set of all 

subsets of 0 containing k distinct points. Members of Sd{k} will some-

times be called k—blocks or simply blocks. Similarly, ā2(k) denotes the 

set of all ordered sequences (al  ,a2, ...ak) where the ai  are distinct 

points in 0. Note that Sym S2 induces permutation groups on both S2{k} and 

0(k),  i .e. there are canonical homomorphisms from Sym S2 to Sym S2{k} and 

to Sym S2(k). 	In general, if G is a permutation group on S2, S2' some 

other set and h a homomorphism from G to Sym S2', we shall say 'G acts 

on 0' by hr  and omit the mentioning of h if the reference is clear. 

Let g be an element of G, a* a point and A a subset of Q. Then ag 

and Ag denote the images of a and A under g. Put aG  = {aglgeG} < 2 

and AG  = {Ag l geG} 	{ Al } • 
	

The subgroup of G fixing A pointwise 
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or setwise is denoted by GO  and G{a}  respectively. The largest sub-

group of G acting on A is G{Q}  and the kernel of this action is GA. 

Therefore, G{a}/Ga  is a permutation group on A, denoted by GA. 

A permutation group G on S2 is said to be half transitive on 0 if 

IG:Gai 0 1 is independent of the choice of a in 0. G is called trans-
itive on SS if I G:Gal = 101 or equivalently if aG  = S2; if G is trans-

itive on 0 with 'Gal = 1, G is called sharply transitive or also regular. 
G is said to be primitive on S2 if G is transitive and if Ga  is a maximal 

subgroup of G. There are similar definitions for higher degrees of trans- 

itivity: 	If t is a positive integer not exceeding n, G is called 

t- fold transitive on 0 if G acts transitively on 12(t), and 

(t + 4)-fold transitive, if G acts also half transitively on 0(t+l). 

G is said to be sharply t-fold transitive on 0 if G acts regularly on 

S2 (t). Finally, G is called t- fold primitive on 0 if G is t-fold 

transitive on SZ and if GrR  is primitive on Mr' for every r' in S1( t-11. 

There are two further concepts related to multiple transitivity I would 

like two introduce. G is said to be t- fold homogeneous on 0 if G acts 

transitively on 0{ t} and G is called t-fold generously transitive on 

0 if G4  = Sym A for all blocks A contained in ni t+1} 

Let B< 0{k} be a non-empty collection of k-blocks for some k, 

1 < k< n = 101 , and suppose B has the following property: For some t, 

1< t< k, there is a number Q such that every r in 0{t} is contained 

in exactly 2, blocks of B. Then the pair (s/ ,B) is called a design with 

parameters t, n, k and t or shortly a t-(n,k,2,) design. This definition 

is slightly different from the usual one where trivial cases are not 

included in the definition. An automorphism group of a design (S2 ,B) 

is a permutation group G on S2 with the additional property Ag 6B for 

every A in B and every g in G. 
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Some further notation and symbols. 

Imlp, Imlp1 

XY, CO,Y(X) 

Let m be a positive integer and p 

a prime. Imlp  is the largest power of 

p dividing m and lml 	=m/Im. 

X and Y are subgroups of some group G. 

XY  = CO, (X) = {XYIy 6 Y}. 

CC9.y.V(X) 	. Y 5 Y and X are subgroups of some group G. 

CC2. 	(X)= {CC2,Y(0) IY  e Y}. 

TX is G-weakly closed in Y' : X S Y are subgroups of some group G. If X9  

is contained in Y for some g 6 G, then 

Xg 6 CCgy(X). 

Sykp(X) 	 : The set of all Sylow p-subgroups of the 

group X. 

Fix(U) U is a subgroup of some permutation group 

G on Q. Fix U= (ala 6SZand au=a for all 

u in U). 

x (H) , x (0) , y (H) ,y (HA) 	: See beginning of section 3. 1 . 

AUT(G), AUT(D) 	: Automorphism group of the group G or design D. 

1(G) < AUT(G) 	: The group of inner automorphisms of G. 

PG(l,q) 	 : The projective line over the field with 

q elements. 



2.2 PRELIMINARY RESULTS  

LEMMA 2.1 	(W I TT , [31]) 

Let G be a t-fold transitive permutation group on c and let U be a 

subgroup of Gr where url = t. Then NG(U) acts t-fold transitively on 

Fix(U) if and only if for every g 6 G with Ug < Gr there is some h6Gr 

such that Ug = Uh. 

LEMMA 2.2 

Let G be a permutation group on S2 of degree n and let t, k be 

integers with 1 	t 5 k S n. Let B be an orbit of G in n{k } and 

suppose B satisfies 

I: For every r in SZ{t} there is some A in B with r 	A, and 

II: For some A in B, GA is t-fold transitive (t-fold homogeneous) 

on A. 

Then G is t-fold transitive (t-fold homogeneous) on S. 

Proof: Let p be a member of B such that II holds. Let a = (ai,...at) 

be an arbitrary element of S2(t) , a* = {al,...at} an arbitrary element of 

a{t}, f3 =0 1,...8t) some element in 0(t) and S* ={sl'°°°s} some element 

in A{t}. 	It suffices to show, that there is some g in G with ag = a, 

( ~a%•g =5;;) . 

The first condition (I) implies, that there is some A' in B containing 

a...a 	Since B is an orbit under G there is some h 6 G such that 

A'h = A, and so ah is contained in A(t), (a h in A{t}). By the second 

condition there is some k in G{A} with (ah)k = 13, ((a*h)k = 
a*). 

14. 
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LEMMA 2.3. (WIELANDT & HUPPERT, [27]). 

Let G be a permutation group on SZ  of degree n. Let H be a normal sub-

group of G and suppose H is regular on Q. 

(i) If G is 2-fold transitive on SZ then H is elementary 

Abelian and n is a power of a prime. 

(ii) If G is 2-fold primitive or 2i-fold transitive on 

n is a power of 2 or n = 3. 

(iii) If G is 3-fold primitive on Q, n = 3 or 4. 

(iv) If G is 3k-fold transitive on 0, n = 4, 

LEMMA 2.4 (WIELANDT & HUPPERT, [ 27]). 

Let G be a permutation group on o, G0 Sym o. Let HO 1 be a normal 

subgroup of G, not regular on Q. 

If G is t-fold transitive, then H is (t-1)-fold transitive on Q. 

LEMMA 2.5 (I TO ,[ 1 l]) . 

Let G be a t-fold transitive permutation group on SZ, G * Sym Sā and t 	3. 

Then every non-regular normal subgroup H # l of G is (t-1)-fold primitive. 

LEMMA 2.6 (see HUPPERT, II 3.13 in [10]). 

Let G be triply transitive on n. Suppose G has a solvable normal sub-

group H # 1 which is not regular on Q. Then 101 = 3 or 4 and G = Sym Q. 

Proof: Let M be a minimal normal subgroup of G contained in H. Since H 

is solvable, M is elementary abelian of order pm, transitive on 12 and hence 

regular, see for instance 1 1 .5 in [ 29] . Therefore 1 2 1 = pm  = 3 or 2m  by 

lemma 2.3. Suppose ISZ' = 2m. Similarly, let F be a minimal normal sub-

group of G
a contained in H

a 0 1. Then F is elementary abelian of order 

qr , transitive on C\ {a} and hence regular on SZ\ {a} ,I q = qr  = 2m - 1.  
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The group M'F is therefore sharply doubly transitive on S2, i.e. M.F is 

a Frobenius group with kernel M and complement F. By Burnside's 

theorem (V.8.7 in [ 10]) , F is cyclic. Thus I FI = q. Gas  , is a com- 

plement of F in Ga  = F=Gas  and Gds  is also cyclic as a group of 

automorphisms of F. Hence Ga ,6  
is regular on d“  a,$). and this implies 

that G is sharply 3-fold transitive on n, IGI = 2m .(2m-1).(2m-2)  

where 2m-1 = q is a prime. 

Since IGA is divisible by 3, we either have 2m-1 = 3 and 101 = 4, or other-

wise 3 divides 2m-2. We show that the latter can not happen. 

Suppose 3I2m-2 and let S 	1 be the maximal subgroup of Ga,s  with order 

prime to 3. (S exists since Gas is cyclic of even order). The group 
,  

(M.F)•S is a normal subgroup of G since G = Ga,s  -(M.F) and S a  Ga,s . 

The group (M•F)'S has order prime to 3 by this construction. Since S has 

even order, there is some involution i 	in S with i = (a) (s) (y5) ... 

Conjugating i 	by an appropriate g 6 G also i' = (S)(sy)(...).... is 

contained in (M•F)°S. But this implied that i•1' = (6),8).... was con- 

tained in (M.F).S, a contradiction. Hence IS2I = 4. 	O 

With elementary tools one can prove the following lemma on the generosity 

of normal subgroups. 

LEMMA 2.7 

Let G be a t-fold transitive permutation group on SZ of degree n and 

H * 1 be a normal subgroup of G with t> 3 and n > 3. Let r' be in 

0.(t-11 and x the number of Hr, -orbits on SZ\ r' . 

Suppose (x,(t-1);) = 1. Then H is (t-1)-fold generously transitive on Q. 

Proof: We can assume G 0 Sym Q. Also, if G is triply transitive and H 

regular, then n = 2m (see 2.3) and x = n-2, i.e. (x,t-1) = 2. Therefore 
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assume by 2,4 that H is (t-1)-fold transitive. Let r' be any member 

of 0{t-11 and let {T 1 ,...,Tx} be the set of all Hr,-orbits on 0\ r'. 

Since Hr, a H{rI } °— Gir,l, Hui).  and G[1,, 1  induce permutation groups A 

and r on {Ti,...,Tx}. The group G is transitive on this set since G{r,}  

is transitive on c2\r' and since A s C, either A = 1 or A is half trans- 

itive on {T 1 ,...,Tx} , Assume A 	1 and let T ={T1 ,...Ts} be an orbit 

of A on {Ti,..,,Tx} . Then s divides x and also of course AHI . 

Since H{r, }/Hr, —` Sym(r'), MI divides ISym(r' )I = (t-1): . Hence s 

divides (x, (t-1) ō) = 1 and so s = 1 and RI = 1, i.e. Hr, and H {r , have 

the same orbits on c\ r' for any r' in 0{t-1}. 

Let r be in SZ{t}. We have to show that H{r}  acts on r like Sym(r) . Let 

y be a point in r and put r' = r\ {y}. Since by the above argument Hr, 

is transitive on the H{r,}-orbit containing y, we have H{r,}= Hr,•H{r,},y  

This means that H{r,},y 	operates on r' like Sym r' and fixes r as 

a set. Since Irl = t > 3, Sym r is generated by {Sym(T\Y)Ty e r} and 

therefore H{r}  acts on r like Sym r. Since r was arbitrary in 2{t}, H 

is (t-1)-fold generously transitive on SZ. 

The following main result on the generosity of normal subgroups has been 

proved by various authors in the case of quadruply transitive groups. See 

for instance Ito, lemma b in [ 12] , Saxl , lemma 1 in [ 201 , or Neumann, 

theorem 9.1 in [ 19] . 

GENEROSITY THEOREM FOR NORMAL SUBGROUPS 2.8  

Let G be a t-fold transitive permutation group on 0 of degree n • 

G # Sym 0 and t > 2. Suppose H 	1 is a normal subgroup of G. 

(i) 	If t = 2, H is generously transitive if and only if H 

has even order. 	In particular H is generously transitive 

if G contains no regular normal subgroup. 
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(ii) If t = 3, H is generously 2-fold transitive except if H is 

regular or if PSL(2,q) < H < G < PrL(2,q) in their usual 

representation on the projective line, q + 1 = n = 0 mod 4. 

(iii) If t 	4, H is generously (t-1)-fold transitive. 

Proof: 	Let r be a member of 0{t}. Since G is t-fold transitive, 

G{r}  acts on r like Sym r. To show that H is (t-1)-fold generously 

transitive, we have to prove that the same is true for 
H{r}. 

 Since H{r}  

is normal in G{r} ,  it suffices to show, that H{r}  contains an element 

h which acts on r like a transposition. 

On the other hand, G is also t-fold homogeneous on S2. This means 

that H{r}  is conjugate in G to 
H{r*} 

 for any r` in ){t}. So one may 

choose a particular r to show the required property. 

Let therefore t be a subset of c with IAI = t - 2. Then H is (t-1)-fold 

generously transitive on SZ if and only if HA  has even order. For assume 

that IHa(  is even. Then there is some element h in HQ  interchanging 

two points a and 13  in Q\ A. Take r = A u Ca,s} and h acts on r like a 

transpostion. 	The converse implication is trivial. 

(a) If t = 2, p = 0 and (i) will be proved if we can show, that H has 

even order if G contains no regular normal subgroup. Let M be 

a minimal normal subgroup of G contained in H. By a result of 

Burnside (page 202 in [ 5]) M is simple and by the Feit-Thompson 

Theorem H has even order. 

(b) Now let t = 3. Then by lemmata 2.3 and 2.4 H is either regular 

or doubly transitive. If H is regular, Ha  = 1 and by the above 

remark H is certainly not generously doubly transitive. So 

suppose H is doubly transitive. Put {a} = A. Then we have to 
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show that Ha  has even order if G is not contained in PrL(2,n-1), 

Since H
a 

is transitive on S2\ {a}, 	IHaI  is even if n is odd for n-1 

divides IHaI  . 

Hence assume n is even and Ha  has odd order. Then a theorem of Bender, 

lemma 2.12, applies and H is either solvable or otherwise contains 

PSL(2,q) as a normal subgroup for some prime power q. Lemma 2.6 implies 

that H cannot be solvable unless G = Sym(3) or Sym(4) which contradicts 

our assumption. Hence PSL(2,q) g H and using Burns i de's results (page 

202 and chapter 153 in [ 5]) one concludes that PSL(2,q) is characteristic 

in H and hence normal in G. Therefore PSL(2,q) is doubly transitive 

on 0 and checking through Dickson's list of subgroups of PSL(2,q), (see 

for instance 11.8.27 in [ 10]) , we find that PSL(2,q) acts on the projec-

tive line PG(1,9) in its usual representation. Hence q + 1 = n and 

PSL(2,n-1) < H < G 5 PrL(2,n-1). 

(c) Now suppose t > 4. Since G 	Sym 0, H is at least (t-1)-fold trans- 

itive on Q. Let r' be a subset of S2 with WI I = t - 3. Then Gr, is 

triply transitive on S2\r' and at the beginning of the proof we saw that 

H is (t-1) fold generously transitive onS2 if and only if Hr, is doubly 

generously transitive on mr'. This is the case if Hr, is not one of 

the exceptions in (ii) . But Hr, cannot be regular on S2\ r' , because then 

H could only be t-3+1 = t-2 transitive on Q. Similarly if PSL(2,n-Ir'I-1) 

< Hr i  < Gr  < < PrL (2,n-I r' -1) , as permutation groups on S2\ r' , let r* 

be a subset of r' with I r*1 = I r'  I  -1. Then Gr,, and Hr*  are transitive 

extensions of 	and and Hr , on mr*. Since we can assume n> t + 2, 

n-lr'I-1 > 4 and therefore by lemma 2.10,Gr*= M11 , the Mathieu group on 

11 points. Since Mil  is simple, also Mil  = Hr*  and Hr*  is quadruply 

transitive on Si\r*. 	In particular Hr;;  is 3-fold generously transitive 
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on Sa\ I* and hence H, is doubly generously transitive on Sl\I.". O 

LEMMA 2.9 (HERING, [ 8] )  

Let G be a doubly transitive permutation group on St of degree n. 

Suppose the stabilizer in G of two distinct points has even order 

and the stabilizer of three distinct points has odd order. 

Then either PSL(2,q) a  G < PrL(2,q) with n = q + 1 or else G = Alt(6), 

n = 6. 

The one-dimensional projective groups belong to an important class of 

doubly transitive permutation groups: 

Definition: A doubly transitive permutation group G on S2 is said to 

be of Suzuki type i f the stabilizer in G of a point cc contains a 

characteristic p-subgroup which is regular on St\ (a}. 

The known groups of Suzuki type are the sharply triply transitive groups, 

the groups PSL(2,q), PSU(3,g2) and PGU(3,q2), the Suzuki groups Sz(22r+1) 

and the Ree groups R(32r+1).  

Suzuki type groups have the following extension property: 

LEMMA 2.10 (SUZUKI , [22])  

If G is a group of Suzuki type on a having no regular normal subgroup 

then G has no transitive extension unless IScJ = 5, G..>- Alt(5) or 

121 	= 10 and G is a sharply triply transitive group with extension 

M11,  the Mathieu group on eleven points. 

A result of Hering, Kantor, Seitz and Shult classifies all Suzuki 

type groups: 
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LEMMA 2,11 ([9])  

Let G be a finite doubly transitive permutation group on Q. Suppose 

that, for a E Sa , Ga  has a normal subgroup Q regular on SZ\{a}. Then 

G has a normal subgroup M such that M < G < Aut M and M acts on S2 

as one of the following groups in its usual 	doubly transitive repres- 

entation: a sharply doubly transitive group, PSL(2,q), Sz(2
2r+1)  , 

PSU(3,q ) or a group of Ree type. 

LEMMA 2.12 (BENDER [ 1i] )  

Let G be a doubly transitive permutation group on SZ of degree n. 

Suppose the stabilizer in G of one point has odd order. Then G is 

either solvable or else G contains a normal subgroup isomorphic to 

PSL(2,q). 

LEMMA 2.13 (MARTI NEAU [17] , THOMPSON [23] )  

Let G be a non-abet i an finite simple group and assume IGI is not 

divisible by 3. Then G is isomorphic to a Suzuki group Sz(2
2r+1), 
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CHAPTER III. HOMOGENEITY AND GENEROSITY 

As an introduction to this chapter I would like to describe some of the 

basic concepts involved in the normal subgroup problem. 

We consider a finite t-fold transitive permutation group G with normal 

subgroup H and ask: Is H t-fold transitive as well? 	From the def- 

initions it is clear that the answer is positive if and only if H is 

both t-fold homogeneous and (t-l)-fold generously transitive. 

The only known examples where G is at least triply transitive but H 

only (t-1)-fold transitive are provided by the one-dimensional projective 

linear groups over finite fields GF(q): PGL(2,q) = G is triply transi-

tive on the projective line PG1(q) and PSL(2,q) = H is only doubly 

transitive if q is an odd prime power. Hence H fails to be both triply 

homogeneous 'and doubly generously transitive on Sl = PG1(q) . It is not 

difficult to see that H is triply homogeneous if and only if q - 3 mod 4 

and doubly generously transitive if and only if q = 1 mod 4. In either case 

H has exactly 2 orbits on the set of all 3-tupels Q(3). 

The Generosity theorem 2.8 now implies that this is the only example of 

an at least triply transitive group G where H fails to be (t-1)-fold 

generously transitive. So the question really becomes: Is H t-fold 

homogeneous? Or equivalently, if r in Q{t} is uniquely determined by H{r}: 

Is the set of subgroups {H{1,}1r E c{t}} a class of H-conjugate groups? 

The aim of this chapter mainly is to give a variation of the homogeneity — 

generosity concept. A key observation for this is lemma 2.2. Suppose 

A is a subset of S2 of size k > t such that G induces a t-fold trans-

itive group GA  on A. Call such a subset 'inductive'. Then clearly the 

set of all G-images AG  has the property that every r in c{t} is contained 

in at least one block of AG, i.e. AG  'covers' 	St{t}, Lemma 2.2 now gives 
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a transitivity criterion for H : 	If (I) pH  also covers SZ{t} and if 

(II) Hp  is t-fold transitive on p, then H is t-fold transitive on C2. 

The covering property (I) is closely related to the homogeneity of H, 

in fact, (I) holds if H is t-fold homogeneous and the converse is true 

if p has size k = t. Similarly, in this case (II) holds if and only if 

H is (t-l)-fold generously transitive. So it seems natural to consider 

the covering property as a generalisation of homogeneity and property (1 1) 

as a generalized generosity property. Lemma 2.2 now implies that H is 

t-fold transitive on sz if there exists some inductive subset p such that 

H is homogeneous and generous in this wider sense. 	And, of course, it 

is the choice of a suitable p that makes this lemma useful for our 

problem. Apart from the obvious possibilities p= r 6 s2{t} and A =El the 

only known general way of producing inductive subsets uses certain sub-

groups: call a subgroup U 'inductive' if the set of points fixed by U 

is an inductive set. The significance of Witt's Lemma is that weakly 

closed subgroups of Gr  are inductive. 

But it should be mentioned that inductive subsets do not necessarily 

originate from inductive subgroups. If, for instance, G is an auto-

morphism group of a t-(la( , k, 1) design, the blocks of this design 

are inductive without necessarily being sets of points fixed by some sub-

groups of G. 

Throughout this thesis inductive sets p arise from Sylow subgroups of Gr  

or Hr. The discussion so far then suggests studying two questions: Does 

p
H 
 cover SZ{t}? and Is Hp  also t-fold transitive on p? 

We shall see that the first question refers to the fusion of Sylo(Hr ) 

in H and in this chapter we use simple arguments to show that 

{Sylp  (H
r 
 ) 1 r 6 Q{t}} is a class of 
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H-conjugate subgroups if p does not divide Ici  -t + 1. The second 

question can be dealt with inductively: H A a  G A  are groups of smaller 

degree reflecting many properties of the original situation H a G. In HA  

Sylp((HA)r) = {1} and this fact can be used in counting arguments. 

More importantly: For p = 2 and t >2 GA  is a known group. 

3.1 INDUCTIVE SUBSETS AND SUBGROUPS  

Throughout this chapter we shall use the following notation: G usually 

denotes a t-fold transitive permutation group of degree n acting on 

the finite set S2 for some fixed integer t > 1. H is a non-identity 

normal subgroup of G. The group G acts canonically on both sl{ t} and 

2(t) and is transitive on these sets. SZ(t) is a disjoint union of 

H-orbits 0i , n(t).=  0 1  u...0 Ox, and similarly SZ{ t} is split up into 

H-orbits U. , SZ} {t 	= U 
1 
u...0 Uy. 

We put x = x(H) and y = y(H) and bear in mind that both x(H) and y(H) 

refer to the given value of t. So x(H) = 1 is the same as saying H is 

t-fold transitive and y(H) = 1 means that H is t-fold homogeneous. 

However, to avoid repeated consideration of special cases, x(H) and y(H) 

shall have no meaning if G is triply transitive and H is regular. 

Similarly, if A is a subset of S2  with 1 ,61>t such that G
{o} 

 acts t-fold 

transitively on A, 	let U'91', i = 1, ,.., y', and Of., i = 1, ,.., x' be 

the orbits of H{o  on A{t} and A(t) respectively. In analogy with the 

above notation we define x(HA) := x' and y(HA):= y'. 

The results of Wielandt and Huppert (2.3 and 2.4) imply that if 

G * Sym (c) and if r' is a member of slit-11, then x(H) is the number of 

orbits of Hr, on the remaining points S2\ r' . Since all these orbits have 

equal length, x(H) is a divisor of n-t+1 , 
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PROPOSITION 3.1  

Let t,k be integers with 1 < t 5k s n = 101, let B be some G-orbit 

in SZ{k}, 0 	B S Q{k} and let B 1 ,...,Bz be the orbits of H on B, 

B = B 1 u...0 Bz. 

If G is t-fold homogeneous on St and if for some r in Q{t} H{r} is 

transitive on the set of all blocks in B containing r, then GA is 

t-fold homogeneous on p for every p in B and 

y(H) = y (Hp) . z 

If G is t-fold transitive on r and if Hr is transitive on the set of 

all blocks in B containing r, then GA is t-fold transitive on for 

every p in B and 

x(H) = x(HA) • z . 

Proof: Let r l, r2 be members of SZ{t} and define r1 	r2 if there is some 

B i , i = 1, ... Z, and blocks Ai, A2 both contained in Bi with r1 s Ai, 
r2 <A,2° This relation is reflexive since B # 0 and G is t-fold homo- 

geneous, and is also transitive: 	Let r 1 <A1' r2 <A2 with A
l' 

A2 E B 1 

and let r2 s t2, r3 s p3 with p 2̀, p3 E B2. Then A23 Z2> r2 and by assump-

tion p2 and p'2 belong to the same H-orbit, i.e. B1 = B2 and so r1 ^- r3. 
Therefore — is an equivalence relation splitting SZ{t} into precisely z 

equivalence classes. H fixes each of these classes whi le G permutes 

them transitively. 

Consider for any A in B the H, -orbits lJ° and O° on A{ t} and p (t) resp-

ectively: p{t} = UAI u...0 Uy, and A(t) = Otil u...uOX,. Then clearly x' 

and y' are independent of the choice of p since G acts transitively on B. 

Now define r 1 —u r 2 if there is some p in B and some h E H such that 

r~ , r 2 5 t are contained in the same Uri. 
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If r1 
—u r2, i.e. rlh, r2 < A and r1 = r2f for some f in H{A} , then 

-1 	-1 	- 1 -1 r2h h
-1 

 , rl 	Ah 	= G and r2= rlhf h 	with h f-1h-1 in H. So —u 

is symmetric and also transitive: Let r l ^u r2 and r2 ̂ u r3, i.e.  .e. rl, 

r2 < A, r lh= r2f, f 6 H{A} and r
2

:1
' 

r3 < ~,  r2h  •= r3f, f'E H
f

}. Then 

-l. 	-1. rlhf h , r3 	p' and r lhf h =r3f', that is r l —u r 3. 

Hence ^u is an equivalence relation on c{t} and clearly —u implies —. 

Suppose r1 ^u r2 are both contained in some Ō. 	Let r1 h,r2 5 0 and 
1 

rih s r2f with f 6 H{o} . Then both p 
f 	

and r contain r2 and so by 
-1 

assumption there is some h in H{r } mapping p 
f 	

onto ā. Hence 
{1'21 

f = h•f-lh belongs to H{ 	and r1f= r2, i.e. rl and r2 belong to the 

same U.. 	From this remark we conclude that every ^- class splits into Y' 

^'u classes and altogether we obtain z.y' —u-classes. Obviously rl~ur2 

if and only if r 1 and r2 belong to the same H-orbit in sa{t}. 

So we have y(H) = z.y'. Evaluate this equation for H = G and 

1 = y(G) = 1•y' shows that y' = 1 and GA acts t-fold homogeneously 

on A for every A in B. 	So put y' = y (HA) and the first part of 3.1 

is proved. 

Similarly, if (r 1 ) and (r2) are members of S(t) with underlying sets r 1 

and r2, define (r 1 ) —0(r2) if there is some E in B and some h in H such 

that r1 h, r2 < A and (r 1 ), (r2) are contained in the same 0.. By the 

same arguments as above we get x(H) = z•x(HA) and GA is t-fold transi- 

tive on A. 	 lJ 

LEMMA 3.2  

Let r be a subset of St with IrI = t, let p be a prime and let S' be in 

Sylp(Gr), S = S'n H. Put N:= NG(S'), NH:=NH(S'), M:=NG(S) and MH:=NH(S). 

Let A' = Fix S' and 0 = Fix S. 
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Then G
A' 

= NA', GA = M
6
, Hai 	~ 	A = NH , H = MH and all these isomorphisms 

are permutation isomorphisms. 	In particular (GA )r p (HA )r and (H
A
)r 

are p'-groups, 

H6' and H6 are permutation isomorphic to normal subgroups of d6' and 

d6 respectively and hence we write by abuse of notation If s GA' and 

H° s GA. 

Proof: 	We use the Frattini argument. 	= N/N, since N{Ql}.= N. 

Since S' is also a Sylow p-subgroup of GQ,,we have G{Q,} 
	NG{pl

}(S')•GA„ 

i.e. G{p'} N•G{Ql }. Therefore GA S = AG
l 

	= N•GQ,/GQ, = N/Nn GA , = 

N/N
0 , 

= NA'. Obviously the isomorphism involved is a permutation iso-

morphism i.e. NAS and GAS act on A in the same way. Similarly one 

proves HA = MH and GA = MA. To prove NH' = HAI let A = H-S'. Then 

= Awl/A0 = (H•S'){a'}/(H•S')A, = (H{0'} S')/(HA,.S') = . 

(H{A i}•(HA,•S'))/HO,•S') 	HiA,}/(H{Ai}IIHp,•S) = H{e,}/HA, = H. Now, 

since S' is a Sylow p-subgroup of AA 1 , A{~,} = NA 	(S')•AAI = NH(S 1 )41 011.6 1 

= NH(S') •AA, and therefore AA = NH(S') •Aa,/AA, = NH(S')/NH(S') n Aa 

= NHA . Together we have 
NH, 

= H
Al
, 

Since (GA )r= Nr/NQ, and S' is a Sylow p-subgroup of both Nr and NO,, 

(GA )r is not divisible by p. Similarly (HA)r is a p'-group. 

For the remainder note that HA' = H{A, }/(H{A' } n GA,) _ (H{A, } •G0,)/G0, c 

G
{A

,}/G,, = GA . 	In the same way we obta in HA a G
A
. 

Definition: Let A be a subset of Q of size k, t 	k c n, and let H be 

a subgroup of G. Then A is said to be inductive with respect to H if the 

following implication holds: 	If H is t'-fold transitive on 2, 

1 < t' < t, then Hu} (or HA) acts t'-fold transitively on d, 

A subgroup U of G is called inductive with respect to H if Fix U is 

inductive with respect to H. 
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PROPOSITION 3,3  

Let G be a t-fold transitive permutation group on n, r a subset of S 

with I1'1 = t, Let S' be a Sylow p-subgroup of Gr for some prime p 

and let H be a normal subgroup of G. 

Then (i) S' and S= S' n H are inductive with respect to G and (ii) S' 

and S are inductive with respect to H. 

Proof:(i)Let p' = Fix(S'), a = Fix(S) and put B' = p'G and B = A
G. 

Let r be in Oft} and suppose r < di, 
p'2, r < 

p1,A2 where p! are members 

of B' and 
Al 

members of B. 	Then Ai =  Fix(S!) and pl = Fix(S1 ) for some 

conjugates of S' and S respectively. Since S'1 are contained in Sylp (Gr), 

they are conjugate in Gr. 	This implies d ~= d'2 for some s in Gr and 

so Gr is transitive on the blocks of B' containing r. For a simi lar 

reason Gr is also transitive on the blocks of B containing r. Hence 

proposition 3.1 applies (taking H = G there) and GA', GA are t-fold 

transitive on A', A respectively. 

(ii) 	First show that S is inductive with respect to H. Clearly this is 

true if S = 1 and 0= Fix(S) = si. Hence assume S 0 1 and in particular 

H is not regular. 	Then by 2.4 either G = Sym (c) , t = I0I , or else H 

is at least (t-1)-fold transitive on Q. 	If G = Sym S2 , and t = IcI, 

then S = 1, contrary to our assumption. So assume the latter. If H is 

actually t-fold transitive it follows from part (i) applied to H that 

S is inductive with respect to H. Hence let H be exactly (t-1)-fold 

transitive and prove that HA acts (t-1)-fold transitively on Fix(S) = p 

Let r' c r, Ir'I = t.- 1. If S is also in Syl (Hr,1 ), again the property 
P 

requi red follows by (i),(replacing G by H and t by t-1). Hence assume 

that S is not a Sylow p-subgroup of Hri. Let T be in Sylp(Hri) con- 

taining S 	, Then T fixes all points of r' but no further point 
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in A (in fact not even in 0). The same is true for every subgroup U, 

S< U <T, and hence IAI = (t - 1) +a°p, A 	1. Since U:= NT(S)--A S, 

we obtain that there are nontrivial elements in U
A 
 < H

A 
 fixing t-1 

points. 

By part (i) we already know that GA  is t-fold transitive on A and by 

3.2 HA a  GA. So by 2.4 and 2.3 HA  is either (a) regular, (b) (t-1)-fold 

transitive or (c) GA  = Sym 1k . By the above remark i6 cannot be regular, 

so it remains to show that in case (c) HA  is still (t-1)-fold transitive, 

i.e. (t-l) 	IAI -2. But this is also clear since AT 	2. Thus S is 

inductive with respect to H. 

Finally we prove that S' is inductive with respect to H. Suppose H is 

t'-fold transitive on Q. Then the same is true for A:= H.S'. Let r' 

be a subset of r with WI 	t'. If S' is a Sylow p-subgroup of Ar„ 

then NA(S') is t'-fold transitive on A' = Fix(S') by part (i) (putting 

G = A, t = t'). Obviously NA(S') = NH(S')°S' and since S' fixes all 

points of A', NH  (S') acts on A' in the same way as NA  (S') does. There-

fore S' is inductive with respect to H if S' is a Sylow p-subgroup of 

Ar,. This is true in particular if H is regular since then Ar, = Hri.S' 

= S', or if H is t' = t-fold transitive because then r' = r and S' { 

Ar, = Ar  < G is even in Sylp(Gn), and also it G = Sym 0, t' = n - 2. 

For the remainder of the proof therefore assume that H is (t-1)-fold 

transitive and that S' is not a Sylow p-subgroup of A 	where r' c rcA' 

and Ir'l = t - 1. 	Let T be in Sylp(An,) containing S'. Again, Fix(T)= r', 

_ Ir'` + a°p,(A > 1), and NT(S') contains an element fixing r' 

point-wise and A' setwise but not pointwise. Thus NA(S') acts neither 

trivially nor regularly on A' and the same is true for NH(S') since NA(S1) 

= NH(S 1 )°S'. Therefore by 3.2 14 H°'  is a normal, non-regular subgroup 
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Al 
of G 	and as in part (i) of the proof H 	is (t-1)-fold transitive 

on A' and thus S' is inductive with respect to H. 	4 

Proposition 3.3 partly overlaps with Witt's lemma and also with a result 

of Livingstone and Wagner ([ 15] , proof of theorem 3) . 

Definition: Let U be a subgroup of G fixing k > t points. Put B:= 

(Fix U)G = {Fix Ugig 6 G} c c {k} and let B' S B be an orbit of H on B. 

Define D(U) :=(Q, B) , DH(U) :=(Q, B') . 	Let r be a subset of Fix U with 

lrl = t. If U is a Sylow p-subgroup of Gr for some prime p, we also 

write D(U) _: D(p,G) and DH(U)=:DH(p,G). Similarly, if U is a Sylow 

p-subgroup of Hr, put D(U) =: D(p,H) and DH(U) =: DH(p,H). 

As an immediate consequence of this definition we have the following 

lemma: 

LEMMA 3.4 

Let G be t-fold transitive on S2 and H be a normal subgroup of G which is 

t'-fold transitive on 0, 1 < t' c t . Let r be a subset of S2 and let p 

be some prime. 

Put A = Fix S for some S in Sy1p(Hr) and Al = Fix S' for some S' in 

Sylp(Gr). Then we have: 

(i) D(p,G) is a t-(n,k',L,) design where k' = I0'I and 2, = IGrI /IGrnG{p'}I' 

(ii) D(p,H) is a t-(n,k,k) design where k=IAI and 2.=IGrI 	/ IGr n G{A}l 

G is a group of autcmorph i sms of both D(p,G) and D(p,H),  transitive on 

blocks. 	If A' and A are blocks of D(p,G) and D(p,H) respectively, then 

i 
G~ is t-fold transitive on A' and GA is t-fold transitive on A. 
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(iii) DH(p,G) is a t'-(n,k',£) design where k' = 1A1 1 	and 9 = IHr, I/ 

IHr, n H{a, 
} I , 

r' a subset of r with 	1r' I = t'. 

(iv) DH(p,H) is a t'-(n,k,.) design where k= IoI and Q = IHr' I /IHr,nH{a}l ° 

H is a group of automorph i sms of both DH(p,G) and DH(p,H), transitive on 

blocks. If A' and t are blocks of DH(p,G) and DH(p,H) respectively, then 

H 	is t'-fold transitive on Al and HA is t'-fold transitive on A. 

Proof: 	Let A be a u-fold transitive permutation group on c and let 0 

be a subset of Sā with IOI 	u and 101 = n. 

We note, that then (0,0A) is always a u-design. To prove this we only 

have to show that for any r in 0 {u} the number of blocks in 0A contain-

ing r is independent of the choice of r. Let [r] be this number. 

Suppose O1 ,..., Ox, x = Er] , are all blocks containing rand 71 ,..., 77 

x = [7.1 are all blocks containing r where r is some other member of 

c {u}. Since A is u-fold transitive on c, there are elements a and . in 

A with rr =r and ra = r.  Hence Ō ,...,OX are blocks in OA containing r and 

0~,...,0x are blocks in OA containing I. Thus x S x < x and [r] > 1 is 

independent of r. Therefore (52,0A) is a u-(n,IOI, [r]) design. 

Now express Q = [ r] in terms of A. Since A operates transitively on OA, 

the total number 2 of blocks in OA equals (AI / IA
{0}

I . On the other 

hand, there are (n) members of 2{u} each of them contained in 2 blocks. 

Let IOI = k. Since every block 0 contains (k) members of 0{0, we count 

in all 
&0- 

k°(u)/(u) different blocks in OA. Hence IAI/IA{0}I = 

£°n°(n-1)....°(n-u+l)/k°(k-1)°...°(k-u+l). 	Since A is-u-fold transitive 

on n, we have n° (n-l) 	 (n-u+l) °I Ar( =IAI . Now suppose A{0} acts u-fold 

transitively on 0. Then also k°(k-1).....(k-u+l)°I (A{o} r) I=IA{0}I 	
for 
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some r contained in 0, Irl In =u. Therefore 2 = IAid/IA{0} rI. 

Note that the assumption about A{0}  is true for G
{0' }' G{A}' H  {p' } 

and H{A}  by proposition 3.3. Substitute for A, u and 0 the various 

groups and parameters to prove lemma 3.4. O 

THEOREM 3.5 

Let G be a t-fold transitive permutation group on .n  of degree n 

and H 0 1 a normal subgroup of G. 	Let r be a subset of s, Irl  =t, 

p some prime and let S' be a Sylow p-subgroup of Gr  and S a Sylow 

p-subgroup of Hr  . Put A' = Fix(S') and p = Fix(S). 

Then x(H) = Icc2G:H(S)I•x(HA). 

Therefore H is t-fold transitive if Icc2G:H(S)I = 1 and if HA is 

t-fold transitive on A. 	If p does not divide n-t+l, then 

Icc2
G:H

(S)I = 1. 

Also H is t-fold transitive if Icc2G:H(B')1 = 1 and if HA'  is t-fold 

transitive on A l. 

Proof: We apply proposition 3.1. Put B = AG  = {Fix Sglg 6 G} and observe 

that if A l  = Fix(S1 ) and A2  = Fix(S2) contain r, then S 1 , S2  are Sylow 

p-subgroups of Hr  and therefore there is some h i n Hr  with S
1 h  = S2  

and Ai = A2. Let B1 ,..., BZ  be the H-orbits on B. Then A l  = Fix(S 1 ) 

and A2  = Fix(S2) 6 Bi  if and only if Sl  is conjugated to S2  in H. Hence 

z = I cc2G:H(S)I and by 3.1 we obtain x(H) = I cc2G:H(S)I •x(HA).  Now 

suppose 0 is t-fold transitive on A and p does not divide n-t+1. If 

S = 1, then A = S2 and clearly H = 1146  is t-fold transitive on 0. This 

is the case if (a) 	H is regular on Si or (b) if G = Sym(0), H = Alt(c) 

and t = n-l. Hence by lemma 2.4 we can assume that H is at least 
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(t-4)-fold transitive on R. Let y be a point in r and put r'= r\  {y}. 

Then [Hr, : Hrl is the length of the Hr,-orbit that contains y. Since 

all Hr,-orbits on c\ r' have equal length, [Hr, : Hr] 	divides n-t+1 

=lsz\rt I and since p is prime to n-t+l, S is also . a Sylow p-subgroup of 

Fir,. Hence by the Fratti n i argument, Gr, = NGrI  (S) °Hr, and since H is 

(t-1)-fold transitive on 	G = G
r' 
 .H = NG  (S).H = NG(S)•H, Thus 

r' 
G/H = NG(S)•H/H 	NG(S)/NH(S). 	Now calculate IccQG:H(S)l;lccRG:H(s)I = 

IccZG(S)I/Icc2H(S)I = ( IGI/ING(S))/(IH I/ING(s))I=IG/HI/ING(S)/NH(S)I 

= 1. Hence x(H) = 1-x(HA)  = 1 and H is t-fold transitive on 2. 

To prove the second statement, put B = p'G  = {Fix S'glg 6 C) and observe 

that H operates transitively on B since IcctG:H(S')l = 1. Clearly B has 

the property that any r in 0{t} is contained in at least one block of B 

and so by lemma 2.2 H is t-fold transitive on Q. O 

In the following theorem we use elementary counting arguments to obtain 

a boundfr-rfi/ for x(H). This result as we shall see later on can be used 

to prove that H is t-fold transitive in all cases mentioned i.n the 

theorem for t 	6. 

THEOREM 3.6  

Let G be a t-fold transitive permutation group on c  of degree n, 

GO Sym(P) , and let H = 1 be a normal subgroup of G. 

Suppose p is a prime, p < t, not dividing n-t+1. Let x be the number 

of H-orbits on g (t) and r the smallest positive integer with 

r - (n-t+l)/x mod p. Then 0 < r•x < p < t. 
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Proof: Of course t > 3. If t = 3, p = 2, H cannot be regular on SZ 

because this would imply that n is a power of 2 (see 2.3) and hence 

p = 2 divides n - 3 + 1. Hence by 2.3 and 2.4 H is at least (t-1)-

fold transitive on S2 and therefore x = x(H) is the number of Hr,-orbits 

on S2\ r' where r' is a member of S2{t-1 }. Since all these orbits have 

equal length, x divides n-t+l and r E (n-t+l)/x mod p is a well-

defined number 0 < r < p. 

Let r > r' be in s1{t} and let S be in SyZp(Hr) with A = Fix S. By 

3.5 we have x (H) = I cc2,G:H(S) I •x (HA) and as in the proof of 3.5 one 

shows that Icc2.G:H(S)I = 1 sincep is prime to n-t+l. Therefore 

x(H) = x(H A). By 3.3 GA  is t-fold transitive on A, HA  is (t-1)-fold 

transitive on A and by 3.2 HA a GA. Since I tI 	n' = n mod p, p 

does not divide n'-t+1. Hence the hypotheses of 3.6 are also satisfied 

for GA a  HA  except if GA  = Sym(t). 

So we deal with the case GA  = Sym (A) first. If HA  (a GA) is 

t-fold transitive on A, then by 3.5 H is t-fold transitive on 2, that 

is x= 1 and r•X = r < p. Hence assume HA  is (t-1)-fold transitive 

but not t-fold transitive on A, i.e. HA  = Alt(6,), I oI = n' = t + 1 

and x (HA) = 2. Then by the above remark x(H) = x(HH) = 2. Since 

n- t+ 1= n' - t+ 1 	t+ 1 - t+ 1 = 2 mod p, r= 2/ x =- 1 mod p 

and in particular p+ 2. Hence r•x = 2 < p. 

By induction we therefore may assume that HA  = H, A =c1 and S = 1. 

Let r' be in S2{t-1}, Then Hr,  has t-1 fixed points orbits and x orbits 

T I,Q..,Tx  on c\r' of equal length (n-t+1)/x,, Since H is (t-1)-fold 

transitive on S2, there is an element h in H{r,}  of order pm  (p < t - 1), 

fixing r' as a set such that h consists of a single p cycle and t - 1 - p 
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fixed points inside r'. Clearly h normalizes Hr, and therefore h 

induces a permutation of the orbits T l,,..,Tx, i.e. Tih  is again an 

orbit of Hr'. 

By hypothesis p does not divide n-t+1 and so p does not divide x. 

Thus, h fixes at least one orbit, say T1
h 

= T1 . Assume h does not 

fix all orbits T1 ,...,Tx. Let T2h  = T3. Choose gl  in 
G{r,} 

 such that 

hg' acts on r' like h-1 , i .e. h
9 l 

 I r' = h-1  I r, . 	Clearly such a gl  exists 

and again,. since Hr, a 
G{r' } 41 

 preserves {T1 ,...,Tx}. Since G is 

t-fold transitive on Sl, Gn,k G
tr,

}) permutes {T1 ,...,Tx} transitively; 

Hence choose some g2  in Gr.,, such that T2
glg2 

= T1. 

Then, if g = g 1 -g2, still hglr, = h-1 I r,. Therefore h•hg is an element 

9 	9 	-1  
of Hr, and so T1 hhg  = T1 . On the other hand T lhh = T lh = T1g hg 

T2hg = T .  - Hence T1  = T3g = T2g, a contradiction unless h fixes T2. 

Therefore h fixes all Hr,-orbits T1 ,...,Tx. 

Now we count the minimal number of points fixed by h : In r' h has t-1-p 

fixed points and in every Ti, i = 1,..., X, at least r fixed points. There- 

fore (Fix hi 	t-1-p + roc. But we assumed that S = 1 and so no element 

of p-order in H fixes as much as t distinct points. Hence t>t-l-p+r-x 

or p > r•x. Since neither x nor r equal p, we finally have p > r°x. 

In the following theorem 3.7 we extend the arguments of 3.6 for the 

situation 1 <in-t+1 I 
	

for primes p< t. The proof of 3.7 uses count- 

ing arguments but also involves the generosity Theorem 2.8. 

It is worth noting that 3.6 is independent of the Generosity Theorem. 
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THEOREM 3.7  

Let G be a t-fold transitive permutation group on S2 of degree n, 

G 	Sym(S2), and let H+ 1 be a non-regular normal subgroup of G having 

x orbits on 0(t). Suppose p < t is a prime dividing n-t+l. 

Then either (i) :I n-t+11 	> IxI 	or else (i i) : t = 3 and 

PSL(2,q) < H < G < PrL(2,q) with n = q + 1 E0 mod 4. 

Proof: 	Since t 	3, H is at least (t - 4)-fold transitive on 0  by 2.4. 

If H is actually t-fold transitive, clearly x = 1 and hence In-t+ll>p > 1. 

Hence assume x > 1. Then x is the number of orbits of Hr, (r' e oft-11) 

on c\ r' and so x divides n-t+1, i.e. I n-t+11
p 
 > I xI . Therefore it suffices 

to show that I n-t+11 	= I xI 
	
leads to a contradiction if G is not a sub- 

group of PrL(2,q) containing PSL(2,q) with n =q + 1 = 0 mod 4. 

Let r = riv {y} be in S2{t} and let S be a Sylow p-subgroup of Hr  with 

A =Fix(S) and assume In-t+11
p 

= 'Kip , i.e. pt(n-t+l)/x. Then S is also 

in Sytp  (Hr ,) since [ Hr , :Hr] = (n-t+l) /x is not divisible by p. Hence by 

the Frattini argument Gr , = NG  (S)•Hr, and since H is (t-l)-fold transi-
r' 

tive, also G = Gr, •H, i .e. G = NG  (S)•H. Therefore I ccQG(S) I = [ G:NG(S)] 

= [ NG  (S) •H : NG  (S)] = [ H:NH  (S)] = I cc2H  (S) I and so I cc2,G:H (S)  I = 1. 

Hence by 3.5 we have x = x(H) = x(H°) and from now on we look at HA , GA  

to produce a contradiction. 

By 3.2 and 3.3 HA  is (t-l)-fold transitive on A and is normal in G°  where 

GA  is t-fold transitive on A. Also (H' )r  is a p'-group. But if H and 

G are not the groups under (i i) , HA is even (t-1) generously transitive 

on A. We see this in the following way: Let r',  be any member of Q{t} 

and let s be an element of Sym(r*). Since H is (t-1)-fold generously 

transitive on S2 by 2.8, H contains some element h with h l r,. = s. 	In 
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h 	 h particular r = r" a A and Sh , S are both contained in H. Since 

1Hr.L I = 1Hr1, Sh and S are elements of Syzp (Hr,,) and therefore there 

is some k in Hr,, with (Sh)k = S. Especially p •k = A and also h•kl re, =s. 

This implies that H~ is (t-l)-fold generously transitive on A. 

Consider (HA){r ,} . Since HA is (t-1)-fold transitive on p, there is 

some element h of p-order in (HA){r'} consisting of a p cycle and 

t-1-p fixed points inside r'. Let Ti,...,Tx, be the orbits of (Ha) r, 

on Ai" where x' = x(HA) = x(H) = x. 

Since h normalizes (HA) r, , h induces a permutation of the set {Tl, • ..,Tx}; 

suppose h fixes f orbits Ti, i = 1, ... f. Then h has in each of these 

f orbits at least r fixed points where r is the smallest non-negative 

number with r E 1T1 E (I A! - ti- i)/x1 E (n- t+l )/X * 0 mod p since 

1 4, 1 E n mod p. In particular r # 0. Therefore h fixes altogether at 

least t - p - 1 + f•r points in A. But since Hr is a p'-group and 

[ (0)1,, : (H°) r] _ (IA! -t + 1)/x #0 mod p, also (HA) r, is a p'-group. 

Therefore t - 1 > JFix hi 	t - p - 1+f•r, i.e. f•r<p. 

Our assumption implies in particular that p divides x. Therefore we will 

arrive to a final contradiction if we can show that h fixes all T1 's or 

in other words, that f = x. 

For this purpose it suffices to prove that (0)r , and (Ha) 	have the 
{r'} 

same orbits on A\r'. Clearly an orbit of (A ir , } on A\ r' is a union 

of (HA)r ,-orbits since (HA) r , S (HA)0,11 • Show therefore that (H°) r , 

is transitive on every (H1) {r ,forbit. Let y be some point in a\r' and 

put r = r' tJ {y}. Since HA is (t-1)-fold generously transitive on A, 

(HB){r} acts on r like Sym(F) and therefore (HA) {r} 	acts on r' like 
,Y 

Sym(r'). Thus we have: (0){r'}=(HA){r},Y•(HA)rI,. But this implies that 
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(Hp) r , is transitive on the (Hp)
{r ,

}-orbit which contains Y.  Sin ceywas 

arbitrary, (HA) r' and (Hp) {r , } have the same orbi is on p\  

We mention one important consequence of 3.7 separately: 

THEOREM 3.8  

Let G be a triply transitive permutation group on S2 of degree n, 

4 < n = 0 mod 4. 

Suppose H 	1 is a non-regular normal subgroup of G and let x be the 

number of Hays-orbits on s-\ {a  , S} for two distinct points a  and S  in S2. 

Then either x is odd or else x = 2 and PSL(2,q)4 H 4 G 4 PrL(2,q) with 

n = q + 1 = 0 mod 4. 

At this stage we note that x is in general odd if t 	6. This is a 

result of E. Bannai: 

THEOREM 3.9 (BANNAI , theorem 1 in 1 31 )  

Let G be a 6- fold transitive permutation group on c, G+ Sym c, and 

let H+ 1 be a normal subgroup of G. If r is a subset of n with 

u rl = 5, then Hr  has an odd number of orbits on mr. 

3.2 THE THEOREM OF WAGNER 

In 1966 Wagner proved in [ 241 that normal subgroups 	1 of triply trans- 

itive permutation groups of odd degree are also triply transitive. (Wi th 

the obvious exception Alt(3) a Sym(3)). The proof of this theorem given 

in [ 24] asserts the 2-generosity of the normal subgroup and uses this 

property to bound the orbits on c{3}. All this only involves Sy low's 

Theorem and in fact Wagner's proof is most elementary. This makes his 

theorem one of the most important results on multiply transitive permu- 
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tati on groups. 

Six years later, Ito published his paper [ 12] on quadruply transitive 

groups of degree n* 0 mod 3 in an attempt to extend Wagner's theorem. 

Ito's proof, however,, is much less basic: To secure the 3-generosity of 

the normal subgroup Ito uses Bender's theorem [ 4 ] and 4-homogerrei ty is 

shown by some character theoretical arguments. 

Wagner's theorem is of course already contained in theorem 3.6 and so is 

Ito's result in so far as H is quadruply transitive if n 	1 mod 3 and 

has at most 2 orbits on 0(4) if n E 2 mod 3. 

In the following theorem we wi11 show that under the hypotheses of 3.6 

H is t-fold transitive if t does not exceed 6. This is the highest 

degree of transitivity for which one could reasonably expect to find 

groups not containing the alternating group Alt(0). (See for instance 

Nagao's paper [ 18 ], theorem 3) . The proofs are given at the end of this 

section. 

THEOREM 3.10  

Let G be a t-fold transitive permutation group on S2 of degree n, 

2 < t < 6, G 	Sym ~ , and let H * 1 be a normal subgroup of G. 

Suppose n - t + 1 is not divisible by some prime p, p < t c 6. 

Then H is t-fold transitive on Q. 

As generalisation of 3.10 we have: 

THEOREM 3.11 

Let G be a t-fold transitive permutation group on S2, G * Sym 0 and 

3 < t < 6. Let H * 1 be a normal subgroup of G. 

• Suppose there are primes p and q with p < t such that S' E Sylq(Gr 1) 

fixes exactly k' points and S = 5' (1 H 6 SylgHr, fixes k points in 
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S2 where r is a member of Oft-1}. 

Assume either (I): k' - t + 1.*. 0 mod p and NG(S')•H = G or 

(i i): k - t + 1* 0 mod p. Then H is t-fold transitive on Q. 

Note that 3.11 (ii) is theorem 3.10 for p = q: since k = n mod q, 

k - t + 1* 0 mod p implies that n - t + 1 is not divisible by p. 

A result which has some similarity to theorem 3.11 is due to Atsumi 

[ 2] , who proved that in the case t = 14, n = 4 (5) H also is quadruply 

transitive. With his method one can prove 

THEOREM 3.12  

Let G be a t-fold transitive permutation group on Si of degree n, 4 5 t 

and G * Sym Si , and let H 01 be a normal subgroup of G. 

Assume t + 1= p is a prime and n 	t (p) . 

Then H is t-fold transitive on O. 

For t = 2 and n =_ 2(3), the above statement is not true, doubly transi-

tive groups with regular normal subgroups are counter examples. But 

apart from this exception, theorem 3.12 probably also holds for t = 2 

and n = 2(3). In Chapter V we will see that H has at most 2 orbits on 

si (2) if G has a transitive extension. 

Proof of 3.10: 	We divide the proof into steps according to the four 

possibilities t = 3, 4, 5 and 6, 

(i) Let t = 3 and p = 2, Then by 3.6 x = x(H) < 2, i.e. x(H) = 1 

and H is triply transitive on O. 

(i i) 	Let t = 14 and p = 2 or 3, If n - 4 + 1 -fir  0(2), by 3.6 again x < 2, 

i.e. H is tr-i pjy transitive. Hence assume n - 4 + 1 E 0(2) and 

n - 14 + 1 * 0(3). The inequality 0 < r.x < 3 only has solutions for 



either have S3 = 1, e3 = si and Ge3 = G or else Ge3 = Sym(5) and He3 =Alt(5). 

A,  
The latter is impossible. 	Let e3 = {a; s,y,s,s*}. 	If H 3 = Alt(5), 

NH(S3) acts on e3 like Alt(5) and therefore (NH(S3))6* acts on {a,a,y,s} 

like Alt(4). By the Frattini argument H 	(N (S )) 	 •H 
{a,R,Y,s} - - 	H 3 s., a,i?,Y,s 

and hence H{a''Y'
6} 

= Alt(4). This contradicts theorem 2.8. Thus we 
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x = 1 or x = 2, r = 1 and n = 2(3). Let therefore 1 	H a G # Sym(c) 

be a counter example with t = 4, x = 2, n = 1(2) and n = 2(3), minimal 

with respect to the degree n and the index [G:H].  

Let a, S,y, S be distinct points in Q. The group G 	permutes the two 
a,a,Y 

-orbits. Let K c G
a S,Y 

be the kernel of this operation. Then Ha,a,Y  

[Ga,S ~ Y,:K]= [G:K•H]= 2 and since K.H a Ga S ~ Y'H = G we obtain by mini- 
, 

mality K•H = H. Therefore [G:H] = 2 and 
Ga,a,Y,s= Ha,B,Y,s' 

Let S3 be in Sy13(Ha~~,y s) and put e3 = Fix S3. Then 1 	He3 a Ge3 are 
Al  

groups of degree 1e31 - n = 2(3) and by 3.5 H 
	cannot be quadruply 

transitive on e3. Hence, by the minimality of the counter example, we 

have S3 = 1 and every element of 3-order fixes exactly 2 points. 

1 (2) . Therefore G
e 2 

is a transitive extension of one of the groups in 

lemma 2.9 and therefore by 2.10 GA  = Sym(5), Alt(7) or Mil, Get = Alt(7) 

A 
is impossible since Alt(7) contains 3-elements fixing 4 points. 	If G 2 = 

A, 
Sym(5), by the same argument as above, also H 	= Sym(5) and if Ge2 

= M11' 
A
2 
 

then H 2 = M11 since M11 is simple and in both cases H t is at least 

quadruply transitive on e2. This implies that e2\ {a,S,y} is contained 

in the same 
Ha,s,Y

-orbit Tl, 	In both cases NH(S2) contains an element 

h consisting of a 3-cycle (a,S,y).,, and at least 2 fixed points (s) and 

(S*) with s,s* in e2\{a ,s ,y} . Since h is contained in H 	 h 
{a,S,Y}

, 
 

preserves the 
HR,Ya, 	

-orbits T
1 
and T

2 and hence h has at least 
4 fixed 

A Now let S2 be in Sy12(Ha,s,y,$)and put e2 = Fix S2. Then G 2 is quadru- 

ply transitive on e2 of odd degree 1e21 = n E 1 (2) with KG
e 2

)W s 	d1 ,Y, 
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points, a contradiction. 

(iii) Let t = 5. This case can be reduced to (ii): Since there are no 

new primes below 5, n - t + 1 # 0 mod 5 implies (n - 1) - (t - 1) + 1 # 0 

mod 5 with p < t - 1 = 4. The groups 	= G
a 
and A = H

a 
have degree n - 1 

and are 4-transitive by part (i i) . Hence H is 5-fold transitive on Q. 

(iv) 	Let t = 6. 	If p = 2, n - 6 + 1 * 0(2) implies (n-3) - (6-3) + 1 4 
0(2) and the groups G:= 

Ga,l3►y 	
H:= 

Ha~R~y 
are triply transitive on 

2\{a,13,y} by part (i). Hence H is 6-fold transitive on 0. Similarly one 

uses part (iii) of the proof to eliminate the case p = 3. 

Hence let p = 5 and n satisfy the congruences n - 6 + 1 # 0(5) , 
n - 5 E 0(2) and n - 5 = 0(3). 	Then 3.6 implies 0 < r.x < 5 and this 

inequality has solutions for either x = 1 (in this case H is 6-fold 

transitive) or else for r = 1, x = 2, 3 or 4 and r = 2, x = 2. The 

congruences for n modulo 5 are then given by 

x= 2 x= 3 x= 4 

r= 	1 	n= 2(5) n 	a 	3(5) n = 4(5) 

r = 2 In =_ 	4(5) - - 

Let 1 * H4 G* Sym(c) be a counter example, i.e. n# 0(5) , n = 1(2) 

and n - 2(3), G in 6-fold transitive on 	and H is 5-fold transitive. 

Suppose this counter example is minimal with respect to the degree 

n = 121 and the index I. G: H1 = d. Then r, x and n are given by the above 

table. 

If x = 2 or 3, one shows as under (i) that d = x, Suppose x = 4. Let 

r' be in 0{ 5} and r = r' u {y} in n{61. Then Gr , permutes the 4 orbits 

of Hr, on o\ r' transitively and by minimality we can assume that the 
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kernel of this operation equals Hr i , Therefore Gr  ,/Hr is  a transitive 

subgroup of Sym(4) containing a transitive group C of order 4 where C 

is either a Klein group or cyclic. Let L, Hr , < L 6  Gr , be the inverse 

image of C. Then L is transitive on R  \r' and therefore H•L is 6-fold 

transitive on 	and again we have H•L = G. Let C* be a subgroup in C 

of order 2, C* 4 C, and L* q L = Gr , the inverse image of C*. Then 

HO H•L* is not 6-fold transitive on S2 and H•L* is normal in G with 

index 2. This shows that H was not maximal in G, a contradiction to 

our assumption about the minimality of d = [ G : Hl . Hence the case 

x = 4 cannot occur and we only need to consider the remaining cases x = 2 

or 3. 

H 5  is 5-fold transitive on 
n5 

but not 6-fold transitive by 3.5. 
A c  

Having assumed that G and H are minimal, we either have G 5  = G, 

A5 = ft and 55  = 1 or else G 5 = Sym(n5) .Since Hn5  cannot be 6-transitive 
A c  

the latter possibility implies IAS! = 7 and H 5  = Alt(7). But this 

contradicts 2.8 just as In part (ii) of the proof. 	Hence 55  = 1 and 

every element of 5-order fixes exactly 1, 2, 3 or 4 points according 

as n =_ 1, 2, 3 or 4 modulo 5. 

Now let S2  be in Sy12 (Hr ) and put A2 = Fix S2. Then 1 # H 2  q :2  and 
A2  

G 	is a 6-fold transitive group of degree 1A21 E n E 1(2) with 

a2 	A I (G' )r  1E 1 (2) . 	Hence G 	is a 3-fold transitive extension of one of 

A 
Sym(7) or G 2  = Alt(9) = 

A 
because H 2  = Alt(7) would contradict 2.8. In either case NH (S2) ( 

contains some element h of 5-order consisting of a 5-cycle in r' H{r ,r   
fixing A 2  \i" pointwise. Since NH (S2) acts 6-fold transitively on A 2,  

the points of A2\r' must be contained in the same Hr ,-orbit Ti. Since 

A 
Leet Sr  be in Sy15 (Hr) = Sy15 (Gr ) and put A5  = Fix S5. Then 1 	H 5  

G 5  where G 5  is 6-fold transitive on A5  of degree Nit 0 mod 5 and 
A 

A 
the groups in lemma 2.9, Since M11  extendsonly once n(to M12), G 2= 

A 2 
 2 
	i f G 2 = Sym(7) , then H 2  , 	 = Sym(7) also 
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h fixes T1 as a set, we have IT ] I = (n-6+1)/x = r = I62I - 5 

modulo 5. This remark excludes the possibility G 2 = Alt(9), since 

r = 4 and r•x < 5 implies x = 1, and it also excludes the possibility 

A x = 3. Hence G 2 	~ = Sym(7) = H 2, r = 2, x = 2 (from the table) and 

n = 4(5) is the only remaining possibility. But x = 2 contradicts 

Bannai's theorem 3.9 and so the assumption of a minimal counter 

example leads to a contradiction. 

O 

PROOF OF 3.11. 	Let S' be in SyLp(Gr,) and S = S'n H in Sy2p(Hr,) 

with Fix S' = A' and Fix S = A. 	Since k' = Io'I 	t 	k = IAI , S' is 

also in SyLp(Gr) and S in SyQp(Hr) where r' S r c Al, r 6 SZ {t}. 

By 2.3, 2.4 H is either (t-1)-fold transitive on 0 or else regular, 

t = 3 and IHI = IQI = 2m• This latter possibility cannot occur: since 

S and S' are inductive in H (3.3) , H{0} and H{Q, } are regular on A and A' 

respectively and IAI = 0 = IA' I mod 2 violates the condition 

IoI - 3+ 1 	0 t IA'I 	- 3+ 1 mod 2. 

Hence H is at least (t-1) fold transitive on Si and therefore G = Gr, •H. 

By the Frattini argument and the condition under (ii) we have G = NG(S)•H 

and G = NG(S 1 )•H, 	This implies [CCQG:H(S)l= EG:NG(S)l : [H:NH(S)l = 1 

and also [CCQ.G,H(S')] = [G:NG(S')] 	: [H:NH(S')l= 1. 	Hence by theorem 

Al 

3.5 we obtain x(H) = 1-x(H A) and x(H) = l •x(H ) . 

The groups H A and H A are (t-1)-fold transitive normal subgroups of the 

t-fold transitive groups G A 	and G A of degree k and k' respectively 

where k - t + 1 t 0 mod p and k' - t + 1 	0 mod p for some Grime p less 

than t, 	If G A 	Sym A and G AI T Sym A we can apply 3.10 to show that 
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then also HA and HA are t-fold transitive. 	This then implies 1 = x(HA) 

= x(H) , 1 = x(H AI ) = x(H) and H is t-fold transitive on g. 

So assume for the remainder of the proof that G = Sym() or G 	= Sym A l. 

If GA = Sym A and HA is not t-fold transitive, then necessarily 

IAI =k = t + 1 and HA =Al t(A), and the condition k - t +1= 2 T 0 mod p 

implies p 	2 and therefore t > 3. 	Since S is a Sylow p-subgrouo of Hr, 

the Frattini argument gives (NH(S)){r}•Hr = H{r} 
and, taking A = r u{y} 

we obtain that (NG(S))6.Hr = H{r} acts on r like Alt(A\y), i.e. 

Hr = A1t(r). This is a contradiction to theorem 2.8 since t > 3. 

Similarly one proves that if G l = Sym (&) then also HA = Sym(01 ). 

O 

PROOF OF 3.12 	Let H 4 G be a counterexample to theorem 3.12. By 

3.6 we can assume that n - t + 1 a 0 mod 2. Let S2 be in Sy2.2Gr, 

0 
r 6 0{t}, and put A2 = Fix S2. 	Then G 2 is t-fold transitive on A2 

and I(GA2)rI = 1(2). 	Therefore GA2 is a (t-3)-fold transitive extension 

of one of the groups in lemma 2.9. If t = 4, then G 2 = Sym(5), Alt(7) 

and Mil are the only possibilities by lemma 2.10. Hence HA2 > Alt (5) , 

Alt(7) or M11. 	If t > 6, only d6'2  = Sym a2, IA2I 	= t + 1 and GA2 

=Alt A2, IA2I = t + 3 remain since M11 is not extendible twice. There-

fore HA2 > Alt(Q2) and IHH2I, IHI are divisible by t + 1 = p which is 

a prime by assumption. 

Let therefore 1 	Sp be a Sylow p-subgroup of H. Since I Fix S0I a n a t 

mod p, p > t, Sp fixes at least t points and therefore Sp 6 Sy2p (Hr) for 

some r contained in Fix $p , Irl = t. Put AP= Fix SP. Then HAO < GAP 

are groups of degree n' = IA I where 	is is t-fold transitive and HAP 

is at least (t-1)-fold transitive on An. 	(H P)r is a p'-group by 

construction and since IHAPI = ~n'•(n'-1)....(n'-t + 1)/x(HAP)}•I (HAP)r1 , 
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IHAp1is not divisible by p. Therefore HSP a GAP is no counterexample 

and hence Hip  is either t-fold transitive on Ap  or else Gip  = Sym(A0), 

HAp  = Alt(Ap) with IA 
P
1= n' = t + 1. But both is impossible: n' = t + 1 

implies n = 0 mod t + I and in the first case H is t-fold transitive on 

S2 by theorem 3.5. 
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CHAPTER IV 	HOMOGENEITY AND SYMMETRIC SETS 

In the present chapter we will concentrate on the homogeneity aspect 

of the normal subgroup problem. 

We suppose again that G is a t-fold transitive group on S?  and that H # I 

is a normal subgroup of G. 	Then we can define an equivalence relation 

on Q{t} by r — r' if T"  = r' for some h in H and so the --classes are 

exactly the orbits of H on 0{t}. 

This definition can easily be extended to equivalence relations ^1k  on 

SZ{k} 	for every k < 1 01 : A 
—k 
 A' if both A{  t} and A' { t} contain the 

same number of t-subsets in each H-orbit on SZ{t}, that is, if 

{rIr e  A{t}, r 	r*}I = I{r'Ir.' E A'{t}, r' 	r*}I for each 1' in f{t}. 

Then, of course,  '̂t is the original ^'-relation and we observe that for 

A e
' 
 A ^'kAh  for any h in H. If this should be true for every h 

in G, necessarily 1{rIr€o{t}, r ^ re,}I must be independent of r-',  and 

therefore a constant. 

For some values of k 
~k  is the trivial relation, i.e.A kAl for every 

pair of members of Si{k} . This is certainly true for k < t, and also, 

as we shall see later, for k > n-t if H is (t-1)-fold transitive on Q. 

Let yk  be the number of —k-classes on S2{k}. Then yk  = y
n-k 	

1 for 

k < t and ytyn-t = y (H) , the number of H-orbits on 0{0. An 

interesting question would be to determine all values k for which —k 

is a trivial 	relation. 	Or more generally, how is yk  related to yk+1? 

Of special interest are subsets A of 0 with the property A 
k°g 

 for the 

appropriate k and every g in G. For obvious reasons we will call such 

a subset 'symmetric'. As we have seen above, a subset A of 52 is 
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symmetric if and only if {rIr 6 A{t}, r 	r*J is independent of 1" 

in O{t}. So, for instance, if yk  = 1 for some particular k, every k-

subset is symmetric. Therefore the sets 0 and c\0 are examples of 

symmetric sets where 0 is any set of size at most t - 1. 	Obviously 

a set of size t is symmetric if and only if y(H) = 1, i.e. H is 

t -fold homogeneous. In general one derives from the above condition 

for symmetric sets D various numerical restrictions on IL I and y(H) 

which one can use to show that symmetric sets of certain sizes imply the 

t-fold homogeneity of H. 

In this chapter we describe canonical ways to produce more symmetric 

sets. 	In chapter III, for instance, the points fixed by group S in 

Sy/p(Hr) where symmetric sets if SG  = SH. 	More generally we observe 

that any subset of G with XG  = XH  leads to symmetric sets and collec-

tions associated with its orbits and their transversals. This last 

remark shows that the above symmetry concept basically compares the 

conjugation properties of G with its permutation properties (e.g. 

homogeneity) and we study some of these aspects for doubly transitive 

groups containing a normal subgroup which is not doubly homogeneous. 
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We adopt the notation of Chapter III. G is t-fold transitive on S2, 

H 0 1 is a normal subgroup of G which is not t-fold homogeneous, i.e. 

y(H) > 1, Therefore 2{t} is a disjoint union of H-orbits U T , 

1 	i S y = y(H) , 

oft} = U1  u ... u Uy, 

and G acts transitively on the set {U1 , ... Uy}. 

Assume H is (t-1)-fold transitive on Q and let r be a member of ctt}. 

Then 

(1) x(H) = x(Hr)•y(H) and so x(H) = y(H) 

if and only if H is (t-1)-fold generously 

transitive. 

Proof: 	Proposition 3.1.  

Let V = QY be the vector space over the rational numbers of dimension y. 

Define for every subset M of Q a vector cM  in V by the following rule: 

(cM)1 = IM{t} n U l I 	i = 1, ..., Y 

	

= I{rIr G Ul, r c M}I, i= 1, ... 	y. 

Then, obviously, we obtain:. 

Y 
(2) 	Z (c

m 
 ) i = 	( I tI  ) for every M G S . 

i=1 
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r. 
Let r. be a member of U., j = 1, ..., y. Then 	the vectors c.":=c 

form a basis C of V which we will fix. Define a G-action on V by 

(r  g:  cj -4- cjg = c jg)  , j = 1, ..., Y. 

Clearly cog is contained in C and G acts transitively on C. 

By this definition V becomes a G-module and • 

(3) (cM)g = C(Mg)  for every M C Q. 

and every g in G. 

Proof: Let cM  = E(cM).cj and hence (cM)g = E(cM).cjg. Then the i-th 

component of (cM)g, (cM)9, equals 
(cM)j 

 for some j such that cjg = ci  , 

r.g 	r. 
i.e. c - = c l  and rjg belongs to U. 	But 	alsoo is a member of Ujg  

1 

and so U. = U jg . Therefore (cM) 
i 
 g = (cM) 

j 
= I M{ t} n U . I = I M{ t} n 01= 

=I (M{t})g n U. I = I (Mg){t} n Il i ' 	= (c(Ms)) i  . 	Thus (cM)g = c(Mg)' O 

Let H* be the kernel of the G-action on V. 	Then 

(4) H < H* < G 

Proof: 	If h is contained in H and if r.1 
 is a member of Ui , also 

rih 

is in U.
I
. 	Therefore c ih  = c 1  for all i, i = 1, ..., y. O 
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Let X be a subset of G and XG = {Xglg 6 G} the set of all G-conjugates 

of X. Let P(c) be the set whose elements are all finite collections of 

subsets of S2, P(0) = {{M1 ,...,Mr}I Mi < 0, I1< i < r < 03}. 

G acts on P(c) in the usual way: {M1 ,...,Mr}9 = {M1 g,...,Mg} 6 P(0). 

A function 14 : XG -> P(c) is a G-function if M(X9) = (4(X))9. 

M. 
Call a collection M = {M 1 ,...,Mr} in P(c) symmetric if {c 

IIMi 
6 TO _ 

M. 
={(c 1)g1Mi 6 M} for all g in G. Call a subset M of 52 symmetric if 

{M} is symmetric. 

LEMMA 4.1  

Let X be a subset of G with XG = XH and let M : XG -~ P(S2) be a G-function. 

Then M(X*) is symmetric for every X* in XG and cEM 
	

EMeM(X*)cM is 

independent of X* in XG and invariant under G. 

Proof: Let g be in G and M in M(X*). There is some h in H such that 

X*9 = X*h and so Mg 6 M(X*)g = M(X*g)= M(X)h)= M(X*)h, i.e. there is 

some M' in M(X*) with Mg = M'h. Therefore (cM)g = cMg = clh = MI  and so 

M(X*) is symmetric. 	Let X', X* be in XG and h in H with X'h = X*. 

Then EMS M(X,)
c = EM6M0

,)(cM)
h 

= E
M6M(X')h 

c = E
M6M(X*)c M shows 

that cEM is independent of X* in XG. This also implies that 
cEM 

is a 

G-invariant vector.  
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LEMMA 4.2 

Let X be a subset of G with XG  = XH  and let M be a G-function on XG. 

Then NG(X'°) preserves M(X^) for every X* in XG  and if T: = 

{M1 ,...,Ms 1Mi  E M(X`)} is a NG(X-'.)-orbit or a union of orbits on M(X*), 

then T is a symmetric collection. 

In particular, if NH(X*) is transitive on T, then every M in T is a 

symmetric set. 

Proof: NG  (X `) acts on M(X*) : Let g be in NG  (X*) and M in M(X ) . 

Then Mg e M(X*)g = M(X*) = M(X*) . 	Now show that T is symmetric. 

Since XG  = XH  we have G = NG(X*)•H. 	So let g = h.g be an element 

in G where h is in H and g  in NG(X*)_ 	Then for any M in T we 

obtain (cM)g = (cM)h•g  = (cM)g  = c(Mg). 	Since g  is in NG(X*), Mg  

is also contained in T and hence T is symmetric. 

If T is even an NH  (X*) -orbit, Mg = Mh  for some h in NH  (X*) and so 

h 
(cM)g = c(Mg  ) = cM  = (cM)h  = cM 	Hence every M in T is a 

symmetric set. 

The following lemma gives some divisibility conditions for 

symmetric sets: 
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LEMMA 4.3  

Let M0, M1 , ... , Mj, ... , Mr be symmetric subsets of S2 with size 

IMiI=m+j, 0<j<r<t-1. 

Then y divides (m + (1-i)) for all i and j with 0 	i <j < r. t-1 

Proof: 	Let M:= Mj be a symmetric subset of Q. This implies (cM)g = 

cM for all g 6 G. 	Since G operates transitively on C = {c
1 	1, 

we have (CM) = (cN) 1 , 1 < Q < y. Therefore 

(IMI) = (m+J) = E (cM)!z = r(cm) 

0 < j < r. 

and y divides 	( ~ ) for all j, 

Now suppose the lemma is true for some i and all j > i. Then, by a 

general formula for combinations, we obtain 

- 
(m+j - (i+1) ) _ (m+t - i) 	- 	(m+(J-1) - ) . 

t 

If j 	i + 1, both terms on the right hand side are divisible by y 

and thus the lemma is proved. 

Suppose now that H is (t-1)-fold transitive on 52 and let ei be a 

subset of Sl with U< led = i < t - 1. Then 

(5) 
	

SZ \ A i is a symmetric set and y divides 

n - t + 1. 
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Proof: 	If 8 =8i  has size at most t - 1 and if g is in G, then 

there exists some h in H such that eg  = 8h  s ince H is (t-1)-fold 

transitive. 	Therefore (He)g = H 	= H 	= (H ) h  and HG  is 

(8g) 	(8h) 	
8 	e 

a class of H-conjugate subgroups. 	Observe that Fix(He) = e  :this 

is clear if 181 < t - 1 since then H8  is transitive on 0 \ e. 	If 

lel 

least 2 by lemma 2.4. 	If G = Symc2, n = t + 1 and H is t-fold 

homogeneous, i.e. y = y(H) = 1. 	Therefore M(H0.) :_ {0\ p*} for 

every 8* in 0( il is a well-defined G-function and me is a symmet- 

ric set by 4.1. 	By lemma 4.3 y divides n - t + 1. 	O 

With these preparations we turn to some applications. The existence 

of subgroups U (or subsets) of G with UG  = UH  provides symmetric 

collections which in some cases lead to symmetric subsets of Q. As 

we have seen above, the size of symmetric sets imposes restrictions 

on y so that one hopes to be able to show y = 1, that is, H is t-fold 

homogeneous. 

As an illustration consider the following case: G is doubly transitive 

on SZ having a regular normal subgroup H. 	If n is even, by lemma 2.3, H 

is an elementary Abelian 2-group of order IQI . Choose a base point 

a in 2 and identify H +-.n2 in the usual way, i.e. his if ah  = s. Then 

it is clear that G acts (by conjugation) transitively on the involu-

tions H\ {1}. But also the converse is true: Any subgroup A of G 

containing H is doubly transitive on SZ if H\ { 1} is a class of A-

conjugate involutions. 

= t - 1 and G * Sym S, the He-orbits on S2\e have length at 
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We show that this observation can be generalized to 

THEOREM 4.4  

Let G be a doubly transitive permutation group of degree n and H 	1 

a normal subgroup of G. Suppose G contains an involution i with 

i G  = 1 H  and let f = IFi x(i) I. 

Then y(H) divides (n-1, f-1). 	In particular, H is doubly transitive 

if (n-1, f-1) = 1. 

Proof: 	H is at least transitive and so y(H) divides n-1 by 

remark (5). 	Let i* be an involution in iG  and 

i 	= (al) (a2)• ' (af) (af+l'af+2)  "' (an_ pan) its cycle decomposition . 

Define a G-function M: iG  -+ P(c2) by M(i") = {{af+1 ,af+2}'"' (an_l ,an}}.  

By lemma 14.1, cEM is a G-invariant vector, this implies that the 

y(H) components of cEM  are all equal, i.e. y(H) divides their sum 

which equals (n-f)/2. Therefore 0 - n-f - (n-1) + 1 - f = (f - 1) 

mod y and thus y(H) divides (n-1, f-1). 	If (n-1, f-1) = 1, H is 

therefore doubly homogeneous but also generously transitive: Since 

n _ f mod 2, (n-1, f-1) = 1 implies that n is even and trivially 

(or theorem 2.8) H is generously trans i ti ve and so doubly transitive. 

Remark: We mention that the above proof can be equally used for 

arbitrary elements i of order p (p a prime) to prove that y divides 

(n-1, ((f-1)(p-l))/2). Hence H is doubly homogeneous if G contains 

some element i of order 3 with i G  = iH  such that (n-1, f-1) = 1. 
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As an application of theorem 4.4 we obtain the following result 

relating properties of some 2-local subgroup of H to the transitivity 

of H. 

THEOREM 4.5  

Let G be a doubly transitive permutation group on SZ of even degree n 

and H 	1 a normal subgroup of G. Let a,B be two distinct points in 

SZ and S a Sylow 2-subgroup of H 	Put N = NG(S) and N' = N f! H. a  
,s ' 

Suppose there is some subgroup I, S < I < H, with [I:S] = 2 and 

I N  = IN 	Then H is doubly transitive. 

Proof: 	Let A = Fix(S), 2 SIpt= n mod 2; by theorem 3.5 we have 

x(H) = ICCICG:H(S)I.x(HA) and since n-1 is odd 	x(H) = x(H'). We 

recall that GA  is doubly transitive on A, HA  is a normal subgroup of 

GA  and involutions in H
A 
 fix no point at all. It suffices to show 

that HA 
 i s doubly transitive. 

d 
of A. We show i(G )  = i (H ). By the Frattini argument we have 

G{A}= NG(S)•H0. Let g be in G
u}

, g = g•h with g e NG(S) and h E HA; 

by assumption there is some h in NH(S) such that Ig = I 	F•h 6 H
{p} ' 

D 
This implies i 	) = i(H  ). 	Now theorem 4.4 applies for GA  and i 

(f = 0) and so HA  is doubly transitive on A and by the above remark, 

H is doubtly transitive. 

The subgroup I of H normalizes S and so I fixes A as a set. 

I corresponds to some involution i = I•HA/HA  in HA  fixing no point 
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Remark 1: 	Candidates for I are subgroups of a Sylow 2-subgroup T 

of NH(S) . In particular every characteristic subgroup I of T with 2— 

[I:S] satisfies the hypothesis of theorem 4.5. 	(More precisely: 	I 

only needs to be invariant under all automorphisms of T normalizing 

S) . Since [T:S] is bounded by ml 2, one arrives immediately to the 

following conclusions: 

(a) Aschbacher [ 1] : 	If n = 2 mod 4, H is doubly transitive 

(take I = T). 

(b) If n - 4 mod 8, either H is doubly transitive or else n = 1 

mod 3, S is normal in some Sylow 2-subgroup U of H, U/S is 

a Klein group and the 3 involutions in U/S correspond to 

y(H)= 3 H-orbits on O{2}. 

Remark 2: 	As we said earlier (in the remark after theorem 4.4) a 

similar version of theorem 4.4 holds for elements j of order p (p * 2) 

with jG  = jH  : y(H) divides (n-1, ((f-1)•(p-1))/2) where f =IFix(j)I. 

We can use this in the situation of theorem 4.5 : Let p 0 2 be a 

prime dividing n, S in Sy2, (Hays) and J a subgroup of H with [J:S] = p 

and JN  = JN  where N = NG(S) and N' = N n H. Then y(H) divides 

(n-1,(P
-1)

/2). 

(We omit the proof of this statement which can be given in almost the 

same way as the above proof.) Similar to the conclusions in Remarkl 

we obtain: 
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(a) 	If n - p mod p2  and (n-l,(p-1)/2) = 1 H is doubly 

homogeneous and H is also doubly transitive if and 

only if H has even order. In particular we obtain 

a version of Aschbacher's result for p = 3: If n = 3 

mod 9, H is doubly homogeneous on 0 and H is doubly 

transitive for n > 3 since in this case G cannot 

contain a regular normal subgroup. (See theorem 2.8). 

(b) 	If n - p2  mod p3  and (n-1,(p-1)/2) = 1, then either 

H is doubly homogeneous or else S is normal in some 

Sylow p-subgroup U of H, U/S is elementary Abelian 

of order p2, IFix(S)I = p2  mod p3  and y(H) divides 

p+1. 

Using similar methods we obtain the following result about doubly 

transitive groups whose degree contains some prime only in small 

powers: 

THEOREM 4.6  

Let G be a doubly transitive group of degree n and H a normal subgroup 

of G with index [ G:H] = d in G. 

Let p be a prime dividing n to the j-th power, i.e. Inlp = pi, j > 1. 

Suppose either (i) (d, n-1) = 1 or 	(ii) (d,pi-1) = 1 for all 	i < j 

and assume that G/H is solvable if p = 2 and i - 2. 

Then H is doubly transitive. 
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Proof: We assume that G and H are groups of smallest degree n 

satisfying the hypothesis but not the conclusion of the theorem. 

Furthermore, we may also assume that there is no normal subgroup 

of G between G and H, that is, G/H is simple. We will see that H 

must be doubly homogeneous and generously transitive, contrary to 

our assumption. 

The first hypothesis (i) is clear: G/H acts transitively on 

{U1 , ... , Uy} and so y divides IG/HI = d. But y also divides n-1 

by (5). Hence y = y(H) = 1 and H is doubly homogeneous. If n is 

even, also [HI is even and by theorem 2.8 H is generously transitive 

and so H is doubly transitive. 	If n is odd, also d is odd and 

since IGI is even, also IHI is even, i.e. H is doubly transitive. 

Now let H,G be a counterexample as above and p a prime with 

In'p  = pi, j > 1. Let T be in Sys p 
(H 
a
) and A = Fix T. Put 

n' =IAI; 	then n' = n mod o and In' Ip s [S:T] = Inlp for some S in 

SNie (H) containing T. GA  is doubly transitive on a (proposition 3.3) , 

HA  is normal in GA  and transitive but not doubly transitive on A by 

theorem 3.5. Observe also that d' = IGA/HAI divides d = IG/HI. Thus 

GA  and HA  satisfy the hypotheses of the theorem and by minimality we 

have n = n' and therefore T = 1, i.e. Ha  is a p'-group. Hence pi  is 

the largest power of p dividing the order of H and Sylow p-subgroups 

of H are semi regular having Inlp, orbits of equal length Inlp. 

Now we deal first with the case p = 2, j = 1, that is n = 2 mod 4. 

Since HI is divisible by 2 but not by 4, H contains a normal 

2-complement H. H is normal in G and cannot be transitive since 2'P I. 
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Thus H = 1 and so H = G = Sym (2), a contradiction to our assumption. 

In all other cases G/H is solvable: This follows in the case p r 2 

by the Feit-Thompson Theorem. 	Hence G/H is a simple abelian grouo, 

i.e. d = IG/HI = q for some prime q. By assumption q is odd and so 

IHI is even and H is generously transitive. Hence H is not doubly 

homogeneous. Let y = y(H) = q be the number of H-orbits on 5 2}. 

Then y = q divides n-1 by (5). 

Define a G-map M: Sy P(H) -► P(0) by M(S) = (0 I0 is an orbit of S. 

S 6 SySt (H)}. Then M(S) is a symmetric collection of Inlp, sets 

of size Inlp  by lemma 4.1. Let T be an NG(S)-orbit on M(S). Since 

[NG(S):NH(S)] = q, T is either an NH(S)-orbit or a union of q NH(S)- 

orbits. Not all NG(S)-orbits can split over NH(S), otherwise q would 

divide IM(S)I =InIp, , which is impossible since q divides n - 1. 

Hence M(S) contains some symmetric set of size InI p  = Di  by lemma 

J 
4.2. Hence q divides (2 ), i.e. glpJ-1. This contradicts the assumption 

(d, pJ-1) = 1 and H is doubly homogeneous on S, a final contradiction. 
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CHAPTER V 	TRIPLY TRANSITIVE GROUPS 

This chapter is a continuation of Chapter III. As we have seen there 

the transitivity of a normal subgroup H in G may be discussed in 

terms of its transitivity properties on designs D(p,H). 	In fact, 

proposition 3.1 tells us that H is t-fold transitive on 2 if and only 

if H is transitive on the blocks of D(p,H) and t-fold transitive on 

each block. In the present chapter we will investigate these two 

conditions for triply transitive groups. 

Section 5.1 deals with the design D(2,H). Here one uses a result of 

Hering to show that GA  and HA S  p a block of D(2,H),are one-dimensional 

projective groups and so the second condition above does not pose any 

problem. The transitivity of H on blocks of D(2,H) is equivalent to 

S G  = SH  where S is a Sylow 2-subgroup of 
Ha,f3,y. 

 So, whenever one 

can show S G  = SH, we obtain that H has at most 2 orbits on 2{3}. In 

proposition 5.3 we prove this in the case n =- 0 mod 4 under the 

assumption that involutions in H do not fix too many points. Using 

more elaborate fusion arguments one should be able to extend proposition 

5.3. considerably. 

In section 5.2 we suppose that the degree of G is divisible by 3 and 

we investigate the design D(3,H). 	In this situation one observes 

easily that H is transitive on the blocks of D(3,H) and so the emphasis 

lies on the determination of G6'. We are able to show that also in this 

case GA  is a projective group and this implies that H has at most 2 

orbits on c{3}. 

We mention that the proofs in this section use a number of very deep 

results on abstract finite groups like the Feit-Thompson theorem, 

Glauberman's Z*-theorem and Suzuki's characterization of ZT-groups. 
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5.1 TRIPLY TRANSITIVE GROUPS OF EVEN DEGREE  

G is a triply transitive group on SZ of even degree n and H is a 

normal subgroup of G. In Chapter III we have defined designs D(p,H) 

whose points are the points in SZ and whose blocks are the G-images 

of Fix(Sp) where S is a Sylow p-subgroup of H
a, s,y

. If H is at 

least doubly transitive and if H 	has odd order, D(2,H) has only 
a,S,y 

one block Si and Hering's theorem (lemma 2.9) implies that G is a 

projective group acting on the projective line SZ in the usual way 

or Alt(6) = H < G < Sym(6) with n = 6. 

The following proposition is a consequence of Hering's result and 

shows in the general case that G preserves a 3-design whose blocks 

are projective lines: 

PROPOSITION 5.1  

Let G be a triply transitive permutation group of even degree n and 

H 01 a non-regular normal subgroup of G. 

Then D(2,H) is a 3-design, G is contained in the automorphism group 

of D(2,H) and is transitive on its blocks. 

For any block A of D(2,H), H°  and 0 are isomorphic to either 

(i) subgroups of PrL(2,q) containing PSL(2,q) where Ipl - 1 = q 

is some odd prime power, or 

(ii) H' = Alt(6) < GA  < Sym(6) and n = 6. 

Proof: 	We only need to show that the statement about the isomorphisms 

holds. 
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The group H A is normal in G e and is at least doubly transitive on e 

where IeI is even. This follows from 2.4 and 3.3. By construction 

I(H ) 	I is odd for any three distinct points in a and to apply 

Hering's theorem we need to show that I(He) a,~I is even. Let S be 

in Sy2,2(Ha
,6,Y) 

such that Fix(S) = e and let T be in Sy2,2(Ha,$) 

containing S. 	If t is an element of NT(S)\ S, then t fixes A as 

a set but not pointwise and so (HA)a,8 has even order. So it remains 

to show that NT(S) \ S is not empty, i.e. T * S. Now T = S if and 

only if [ Ha f3:Ha 	Yl = n-2/x(H) is odd. 	But this contradicts theorem 

3.8 except in the case PSL(2,n-1) < H < G < PrL(2,n-1). 

Therefore there are two possibilities: either ((He)a,s I 	is even and 

by Lemma 2.9 we get (i) PSL(2,q) < He < PrL(2,q), IeI =q + 1, or 

~ 
(ii) H

e 
= Alt(6), IeI =6, or otherwise H itself is a subgroup of 

PrL(2,n-1) containing PSL(2,n-1). 	In the first case the statement of 

the proposition holds since PSL(2,q) is characteristic in He and so 

Ge < PrL(2,q) or G < Sym(6). In the second case, HA and GA must be 
one of the groups under (i) since these are the only triply transitive 

groups involved in PrL(2,n-1). See for instance 11.8.27 in [10]. 

A well-known type of 3-designs arises in this way from one-dimensional 

projective groups: Let K be a finite field with pf, f> 1, elements. 

Then PI'L(2 f 
	f 

,p ) = PGL(2,p )•F is triply transitive on the projective line 

PG 1 (pf) where F is the group of Frobenius automorohisms of K of order 

IFI = f. Let p* be a prime dividing f and F* a p*-subgroup of F. Put 

f* = [ F: F-,l ; then the s ubf i e l d K* of K fixed by F* has pf elements 

Put H:= PGL(2,pf)•F*. Then D(p*,H) is a 3-(pf+1, pf +l, 1) design and 

H , G e satisfy PSL(2,pf4) 	H a G 	PrL(2,pf*) for any block e of 

D (p*,H) . The block through 0, 1, co is K*u{c°) and so D (o*, H) consists 
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4 

of 'sublines' PG 1 (p ) of the projective line Pr l (pf). 

This example also includes the Miquelian type of finite inversive 

planes for f = 2•f*. 

Other examples of designs where blocks are in some sense projective 

lines one should mention in this context are the 2-designs associated 

with PSU(3,q) and the groups of Ree type: Let G be either AUT(PSU(3,q)), 

q odd, or a group of Ree type with characteristic q = 3
2a+1  i n their 

usual representation on a set SZ of q3+1 points. (See for instance 

Ward [ 25] and lemmata 3.2, 3.3 in [ 9]) . 

In either case G contains some involution i fixing precisely q + 1 

points. Arguments similar to those in the proof of 5.1 show that G 

induces a doubly transitive group G6L  on A = Fix(i) and G6 	PSL(2,q). 

Therefore D = (S2,EG) is a 2-design whose blocks are projective lines. 

In general, however, it seems to be quite hopeless to recognise 

D(p,H) as some specific geometrical object. Yet for the question 

about the transitivity of H, this design concept is to some extent 

useful. 	So, for instance the question arises, under which circumstances 

is H necessarily transitive on the blocks of D(p,H)? 

Before we come to this question, we first prove the following lemma: 

LEMMA 5.2 

Let B a  A be groups and S a p-subgroup of B for some prime D. 

Suppose ccQA(S) 0 ccQB(S). Then there exists some a E A such that 

S 	Sa, S a  < NB(S) and Sc  NB(Sa). 
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Proof: 	Assume first there is some T 6 SyQp(B) such that S .47 T. 

Then NT(NT(S)) \ NT(S) is not empty and for any a in this set 

we get S# Sa  <(NT(S))a  = NT(S) = NT(Sa). Thus Sa  6 NB(S) and 

S < N
B 
 (Sa)

'  S
a  OS. 

Now we may assume that S is normal in every Sylow p-subgroup of B 

containing S and the same is true for every conjugate of S. Let c 

be in A such that S and S'c  are not conjugate in B. Let T be in 

Sykp(B) containing S. Then there is some b 6 B such that (Sc)b  is 

also contained in T. Put cb = a. Then 5a 	S  are by assumption 

normal subgroups of T and hence normalize each other. 

Now suppose H is not transitive on the blocks of D(o,H). This implies 

that SG(S 6 Sy22(H
aps,Y

)) is not a class of H-conjugate subgroups of 

H and by 5.2 every S in S G  determines a set of conjugates 

Sp  = S*, S I , ... , Sr  such that SD  and Si  normalise each other. 

Therefore 5.2 implies that D(D,H) also carries a graph structure 

preserved by G by defining edges (a0,A i ) if Ao  = Fix(S0) and 

A. = Fix(S.). This graph has some interesting properties. 
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PROPOSITION 5.3 

Let G be a triply transitive permutation group of degree n with 

normal subgroup H. 

Suppose n 	2 mod 4 and if n = 0 mod 4, that no involution in H 

fixes as much as 2.1Fix(S)I(>8) points where S is a Sylow 2-subgroup 

of the stabilizer in H of three distinct points. 

Then H has at most two orbits on the blocks of D(2,H). 

Proof. 	We may assume that H 	has even order, otherwise D(2,H) 
a,$,y 

is degenerate and consists of only one block 1. Hence 1 	H is not 

regular and so doubly transitive. If n is odd, S e Sy22(Ha0s,y) is 

also a Sylow subgroup of 
Ha,8 

and so SG  is a class of H-conjugate 

subgroups of H. This implies that H is transitive on the blocks of 

D(2,H) . 

Hence assume for the remainder of the proof that n is divisible by 

4 and that H is not transitive on the blocks of D(2,H). Let A and 

A' be two blocks in D(2,H) belonging to different H-orbits. Since 

H is doubly transitive on Q, we may assume that A and A' have two 

points a,6 in common. Let S be in Sylt2(Ha,S,y) and S' in SySt2(Haas,y1) 

such that A = Fix(S) and A' = Fix(S'). S and S' are not conjugate in 

B = H
a,$ 

but conjugate in A = G
a,s, 

; Ga,t3 is transitive on S2 \ {a,s} 

and so there is some g in G 	with yg = y', i.e. Sg c H 	and 
a,$ 	 a,8,y}  

therefore S and S' are conjugate in A. 
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By lemma 5,2, there is some conjugate S* of S in B such that S and 

S* normalize each other. 	Let A'' = Fix S*. 	Then n n A ;;={ass} 

because a further point S in A n A* would imply S Q  S•S* < H 
a, 13,ō 

which is impossible since S is a Sylow subgroup of H 
a,s,Y•  

Suppose i is an involution in S n S*. Then i fixes all 2•IAI -2 

points in tu* and by assumption these are the only points fixed 

by i. So i has degree n - 2 (IAI - 1) = 2 mod 4 since IAI is even 

and n = 0 mod 4, Thus H contains an odd permutation and so there 

is a normal subgroup H* of H not containing i, <i> •H* = H; clearly 

H* is also normal in G. 	If U in Sy9,2(H à,S,y) is contained in S, 

we get S =<i> •U and since every involution in S ( S* is an odd 

permutation, we obtain 	Un S* = 1 and so S tl S* = <i>. 	This 

shows that SnS* has order at most 2. 	On the other hand, since 

[H 	:H 	] divides n-2, I[H 	:H 	] I < 2. Thus T:= S-S* 
a,s a,s,Y 	a,i3 a,s,Y 2  

is a Sylow 2-subgroup of Ha,s  and IS•S*I = 21SI. This gives two 

possibilities: 

(a) S n  S* = 1, ISI = IS*I = 2 and I is a four group with 

involutions s, s* and s.s*, 

(b) S n S*=<i>, ISI=IS*I  =4, IT! =8;<u> =U =SnH*, 

<u*> = U* = S* 0 H. Since u* is the only even oermutation 

in S*, S centralizes S* = <u*,i>. So T = S-S* is elementary 

abelian containing the involutions u, u*, u•u* (even permu-

tations) and i, i•u, iu*, iuu* (odd permutations). 

Obviously we can assume that S' is also contained in T and we recall 

that S and S' are not conjugate under H. This means that in case 

(a) not all involutions in T are H-conjugate and hence there is some 

involution j in T such that fi n T = j. 
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In case (b) we claim that either the same fact is true or otherwise 

H has at most 2 block orbits on D(2,H): 	If u,u*,uu•`• are not all 

H-conjugate, we take j in {u,u*,u•u`} . Hence suppose they are all 

conjugate in H. 	By Burnside's theorem (p.155 in [5]) this is equi- 

valent to conjugacy in NH(T). Therefore we can assume that S' is 

not only contained in T but also contains (say) u. But apart from 

S there is only one subgroup of T containing u and some odd transposition 

and therefore S' = <u,iu`>. Thus every block orbit of H on D(2,H), 

different from the one containing A, leads to the same subgroup S' 

clearly H has at most two orbits on the blocks of D(2,H). 

Hence assume for the remaining part of the proof that j e T 6 SyQ2(Hao) 

has the property jH  n T = {j}. Note that T is also a Sylow 2-subgroup 

of Ha. By Glauberman's Z*-theorem [ 6] j is in Z* (Ha) . 	If 0 (Ha) = 1, 

Z*(Ha) = Z(Ha), the centre of Ha, is a normal subgroup of G 
a 
and 

therefore transitive on S2\{a}. But since Z(H
a
) is abelian, Z(Ha) 

is indeed regular on S2\ {a}, a contradiction, n-1 is odd. Thus 

0(H 
a
) 	1. Let M be a minimal normal subgroup of G

a 
	in 0(H ). 

a 	 a 	a 

Then M is elementary abelian and transitive on M{a} since 0(H 
a
) is 

solvable and Ga  doubly transitive on 12\ {a}. Lemma 2. 1 1 lists all 

groups with this property and the only possibility is PSL(2,n-1) 

H < G < PrL(2,n-1), Now it is easy to see that H has at most 2 block 

orbits on D(2,H): Let A, p' be two blocks and, since H is doubly 

transitive, assume that A and a' both contain 0,°°. 	If t and A' 

both contain some (non-)squares (as elements of the field GF(n-1), 

then A and A' belong to the same (PSL)..0 	orbit, since (PSL),°  is 
0, 

transitive on (non-)squares. 	So, if A and a' do not belong to the 

same H-orbit, necessarily A\ {0,°°} consists of squares and A'\{0,00} 

consists of non-squares. Hence H has at most 2 block orbits on D(2,H). 
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THEOREM 5.4  

Let G be a triply transitive permutation group on 52 of degree n, 

n E 0 mod 4. 

Suppose H is a nonregular normal subgroup of G such that no involution 

in H fixes 2.1Fix(S)I(> 8) points where S is a Sylow 2-subgroup of 

the stabilizer inH of three distinct points in Q. 

Then either H is triply transitive on C or PSL(2,q) 	H < G < PrL(2,q) 

for some odd prime power q with q + 1 = n. 

Proof: Let H Q  G be a counterexample of minimal degree n and let S 

be in Sy9,2(Ha,S,i). By theorem 3.8 and lemma 2.9, S is not the 

identity subgroup and by proposition 3.1 we obtain x(H) = z.x(H) 

where z is the number of block orbits of H in D(2,H) and 0 = Fix(S). 

Proposition 5.3 implies that z is at most 2. 

G4  is a triply transitive group of degree d= 1A1 with normal subgroup 

HA  for which the theorem is true: By construction involutions in 0 

fix at most 2 points and d is divisible by 4: Id-212 = 

=1( (e)a  :(Ga) s 1 1 2  < I[ Ga,s: Ga,a ] 1 2 = I n-212  = 2. Therefore 

x(H6') < 2 and so x(H) = 1, 2, 4. x(H) = 4 is impossible since 4 

does not divide n-2 and x(H) = 2 contradicts theorem 3.8. So only 

x(H) = 1 remains, a contradiction to our assumption. 
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5.2 TRIPLY TRANSITIVE GROUPS OF DEGREE DIVISIBLE BY 3. 

In this section G is a triply transitive group on SZ of degree n, 

n = 0 mod 3 and H is a normal subgroup of G. 

We begin with a classification theorem similar to Hering's theorem. 

THEOREM 5.5  

Let G be a triply transitive permutation group of degree n, 

n E 0 mod 3. 

Suppose Ga  contains a normal subgroup M # 1 such that 1MB  1 is 

prime to 3 for distinct points a,S,y. 

Then G is isomorphic to a subgroup of PrL(2,q) containing PSL(2,q) 

for some prime power q with q = n-l. 

Proof: Let M` be a minimal normal subgroup of Ga  contained in M. 

Since Ga  is doubly transitive on 	\ {a}, a result of Burnside 

(page 202 in [ 51) implies that M-' is either simple and primitive on 

SZ \ 	{a} or else is an elementary abelian p-group, regular on Sā \{a}. 

Consider the simple case first. 	It is not difficult to see that 

the hypotheses of the theorem imply that M* is a 3'-group: M-; is 

3/2-fold transitive on SZ\{a} and so 1M*1 divides IM*s,Y I . (n-1). (n-2) 

which is prime to 3. Therefore M* is a Suzuki group Sz(2
2r+1)  

r> 1, by the Martineau-Thompson result Lemma 2.13. 

Since M* is primitive on S2 \ {a}, CG  (M*) < M*, which means that 
a 

Ga/M* is a subgroup of OUT(M*). And so [ Ga:M*] divides 2r + 1 (see 
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Suzuki's paper [21], theorem 11), i.e. the order of Ga  divides 

(2r+1).g2.(q-1)•(q2+1) where q = 2
2r+1. 	

The primitivity of M* also 

implies that M* is a maximal subgroup of M*. From this information 

and the list of subgroups of M* (theorem 9 in [ 21]) we conclude that 

M* operates on Ma in its usual representation on q2  + 1 points. 

We show that this leads to a contradiction, a Suzuki group of degree 

q2  + 1 does not possess a transitive extension. For suppose G existed 

such that Ga  contains a normal subgroup M* 	Sz(q) and Ga/M` (as we 

have seen above) has odd order. Since G is transitive its degree is 

q2  + 2 = 2(2
4r+1 

 + 1), 	Let i be an involution in G. 	If i fixes a 

point of SI, i 	lies in M* since we then can assume that a G Fix (i), 

and so i fixes at most 2 points. But i must have at least one fixed 

point, otherwise i is an odd permutation and G has a normal subgroup 

of index 2 which is impossible. Hence every involution in G fixes 

exactly 2 points. 	Suppose j = (a,13)(y)(15)... is an involution 

normalizing Ga
l
R and let S be a Sylow 2-subgroup of M. S is 

characteristic in 
Gays 

 and so j normalizes S. According to the 

structure of M',, S is regular on SZ\ {a,R} and fixes a,$. CS(i) 0 1 

fixes (y,d). as a set and hence by regularity ICS(i)I = 2. 

Thus CS.<i>(i) has order 4 and by a well-known lemma of Suzuki 

S.<i> is either dihedral or semidihedral and the same is true for S. 

This finally is a contradiction, S has exponent 4 and is not dihedral, 

see lemma 1 in [ 21] . 

This shows that M` is not a simple group and therefore M* is an 

elementary abet i an p-group, regular on SZ \ {a}. 
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Let M be a minimal normal subgroup of G. M is solvable only if 

G = Sym (3) (lemma 2.6) and, by lemma 2.11, h3 is one of the following 

groups: 

(a) M - PSL(2,q), 	n = q + 1 

(b) M 	Sz(q) , 	n = q2  + 1, q = 22r+1 

(c) M = PSU(3,q), 	n = q3  + 1 

(d) M is isomorphic to a group of Ree type, 

n = q3  + 1, q = 32r+1.  

Possibilities (b) and (d) do not occur since 3 divides n. 	In case (c) 

we prove that PSU(3,q) is not a normal subgroup of a triply transitive 

group: (PSU)
a03 

 is cyclic and contains a subgroup U with 

{a,$} 0 Fix U 	Q. (See 11.10.12 in [ 10]). U is normal in Gays  and 

so 1\{a,0} contains an orbit of Ga,$,  i.e. Ga,s  is not transitive on 

S2 \ a,s . Therefore only PSL(2,q) = M < G < PrL(2,q), q = n-1 remains 

and the theorem is proved, 

Theorem 5.5 allows us to state the following analog to proposition 5.1: 

PROPOSITION 5.6 

Let G be a triply transitive permutation group of degree n, n = 0 

mod 3, and H 01 a normal subgroup of G. 

Then D(3,H) is a 3-design, G is contained in the automorphism group of 

D(3,H) and is transitive on its blocks. For any block p in D(3,H) we 
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have PSL(2,q) 5 HA  c GA  S PrL(2,q) for some prime power q , 

q = 2 mod 3. 

Proof: GA  and Hp  satisfy the hypotheses of theorem 5.5. 

Compared to the situation in section 5.1 this time the question about 

the transitivity of H on the blocks of D(3,H) finds an easy answer: 

If G r`- Sym (3) , H is at least doubly transitive and [ Hays: H
a. a,Y] = 

(n-2)/x(H) 	0 mod 3 shows that S e Syt3(Ha,apy) is also a Sylow 

3-subgroup of Hays and therefore SG  is a class of H-conjugate sub-

groups, i.e. H is transitive on the blocks of D(3,H). By theorem 

3.5 we obtain x(H) = x(Hp) where p = Fix(S) and 5.6 implies x(Hp) < 2. 

Hence: 

THEOREM 5.7 

Let G be a triply transitive permutation group on c of degree divisible 

by 3. 

Then every normal subgroup H 	1 of G has at most 2 orbits on 0{3}. 

In Chapter III, theorem 3.8, we have seen that the projective groups 

are the only groups of degree E 0 mod 4 for which x(H) is even. 

Therefore, as a corollary of 3.8 and 5.7 we have: 
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THEOREM 5.8  

Let G be a triply transitive group of degree n, n = 0 mod 12. 

Then either every normal subgroup H T 1 of G is triply transitive 

or PSL(2,q) c  H < G ‹ PrL(2,q) with q = n - 1. 

O O O 
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