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ABSTRACT

Thé alm of this thesis {s to study multiply transitlve pérmutatlon
groups ana thei r normal subgroups. |In this abstract wé shall use

the following notation: G s a permutation group on a finité set

Q of size n, G 1Is not the symmetric group on @ and acts t-fold
transitively on 2, H 1Is a normal subgroup of G, different from the
tdentity, and x(H) denotes the number of H-orbits on Q(t) where

q(t) is the set of all ordered sequences of t distinct points in Q.

Our main objective is the following question going back to C. JORDAN:

When Is H t-fold transitive as well?

In Chapter i! and !l! we extend some known results and prove the

following theorems:

THEOREM A (2.8)

With the above notation, the following three statements hold:

(i) 'f t =2, His generously transitive if and only if H
has even order. Therefore H is generously transitive

if G contains no regular normal subgroup.

(Li) 1f t = 3, His generously doubly transitive except if
H s regular or if H is a subgroup of PrL(2,q) containing
PSL(2,q) in their usual representation on the projective

line, n = g+l,

(11i) 1f t 1s at least 4, H is generously (t-1)-fold transitive,



THEOREM B (3.6 & 3.7)

Let p be a prime, p <t, and let r be the smallest non-negative integer

with r

11

(n=t+1)/x(H) mod p.
(i) If p does not divide n-t+1, we have 0 < rx(H) <p.

(ii) If p divides n-t+1, then p also divides (n-t+1/x(H)
except if t =3 and H is either regular or a subgroup

of PrL(2,q) containing PSL(2,q) where n = q + 1.

As a corollary to Theorem B we obtain the following generalisation of

results by WAGNER and 1TO:

THEOREM C (3.11)

let 3< t <6 and let I'" be a subset of Q of size t-1, Suppose there
are primes p and q, p < t, such that a Sylow q-subgroup of HF‘ fixes
exactly k points where k-t+1 £ 0 mod p. Then H is t-fold transitive

on Q.

In Chapter IV we prove some results in the case of doubly transitive

groups.

THEOREM D (4.4)

Let G be a doubly transitive permutation group of degree n and H % |

a normal subgroup of G. Suppose G contains an involution i with

18 2 i1 nd tet £ = |Fix(i)|. Let y(H) be the number of H-orbits

on Q{2}.

Then y(H) divides (n-1, f=1). In particular, H is doubly transitive

if (n-1, f-1) = 1.



THEOREM E (4.5)

Let G be a doubly transitive permutation group on Q of even degree n
and H # 1 a normal subgroup of G. Let g,B be two distinct points in

f2and S a Sylow 2-subgroup of Ha‘B' Put N = NG(S) and N'= NN H.

Suppose there is some subgroup |, S <1 <H, with [1:S] =2 and

1
lN = lN . Then H is doubly transitive,.

THEQREM F (4.6)

Let G be doubly transitive of degree n and H normal in G with index
d = [G:H] in G. Let p be some prime dividing n exactly to the jth
power. Suppose either

(i) (d, n=1) =1 or

(i) (d,pi—l) = ] for all i < j and further that G/H is solvable
ifp=2andj=2.

Then H is doubly transitive on Q.

In Chapter V we investigate normal subgroups of triply transitive

permutation groups.

THEOREM G (5.4)

let G be a triply transitive group of degree n = 0 mod 4 and let H be a

non-regular normal subgroup of G.

Suppose no involution in H fixes 2-

Fix(S)| points where S is a Sylow

2-subgroup of Ha (o, and y distinct).

By
Then H is either triply transitive or PSL(2,q) < H < G < PrL(2,q) with

n = qg+l.



THEOREM H (5.5)

Let G be a triply transitive of degree n = 0 mod 3. Suppose G, contains
a normal subgroup M # 1 such that IM8 YI is prime to 3 for three distinct
>

points a, B and Y.

Then G is isomorphic to a subgroup of PTL(2,q) containing PSL(2,q) for

some prime power g = n-1,

THEOREM I (5.7)

Let G be triply transitive on Q of degree n = 0 mod 3. Then every normal

subgroup of G has at most two orbits on Q(3).

THEQREM J (5.8)

Let G be triply transitive of degree n = 0 mod 12, Then either every
normal subgroup of G is triply transitive or PSL(2,q) < G < PTL(2,q)

where g+l = n,
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CHAPTER 1 INTRODUCTION

In 1861 Emile Mathieu discovered the first non-trivial quintuply trans-
itive permutation groups MIZ and Mzh‘ Ever since multiply transitive
permutation groups have been in the centre of interest of group theorists.
Many problems about these groups have been solved such as the existence of
M,y for instance which was in doubt for more than 75 years, and these

investigations have led to many important discoveries. Yet we are far

from understanding these groups completely.

Mathieu and Jordan observed une sorte de fossé entre le groupe alterné
et les autres groupes des substitutions (p.4l in [13]) in so far as the
degree of transitivity of non-alternating groups is much smaller than

that of the alternating group. And in fact, Mathieu's groups M,  and M

12
together with their subgroups M]] and M23, are the only presently known

24

groups operating quadruply transitively without containing the alternating
group of the same degree. |t has therefore been conjectured that 6 or
even 5 is the highest degree of transitivity occurring for non-trivial
multiply transitive permutation groups. A number of attempts to prove
this very fundamental property could only show that the degree of trans-
itivity t 1is bounded by a logarithmic function of the representation
degree (Wielandt, 1934 in [26]) and an absolute bound t < 6 has been
given subject to Schreier's conjecture on the automorphisms of simple

groups. (Wielandt [28], Nagao [ 18] and Suzuki [22]).

In his paper [ 13] Jordan posed another question which was much more
accessible: Given a t-fold transitive permutation group G on a finite
set @ of degree n. What is the degree of transistivity t' of a sub-
group H normal in G? This problem has found a number of interesting

answers and is the theme of this thesis.,



Jordan proved the classical result that t' is, apart from two obvious
exceptions, at least t = 1, In 1955 Wielandt and Huppert [27] intro-
duced the concepts of multiple primitivity and half-transitivity. Using
these descriptions they were able to show t' >t - % and Ito (1958 in
[11]) showed that H is (t - 1)-fold primitive if t is at least 3.

A decade later Livingstone and Wagner[ 15] introduced the notion of mul-
tiple homogeneity and Wagner [24] uses a description somehow complemen-
tary to multiple homogeneity to prove in an entirely elementary way that -
t' equals t if t=>3andn - tiseven, This new concept later
became known as multiple generosity in an article by Neumann [ 19]. Here
Neumann develops a theory of multiple generosity similar to the general
theory of multiple transitivity and establishes the natural link to the
character theory of multiply transitive groups. He also considers
Jordan's problem under the generosity aspéct. A number of other authors
have contributed to the normal subgroup problem and most of their results

will be mentioned as we go along with our own discussion,

Turning to the available evidence in terms of known examples, one observes
that there are only few. A list of doubly transitive groups, given in
Kantor's survey in [7] on doubly transitive designs, could roughly be

summarized in the following 4 sections:

(1) Symmetric and alternating groups.
(2) Groups with regular normal subgroups.

(3) Groups of Suzuki type containing normal subgroups PSL(n,q),
PSU(3,q), 52(22r+l) and groups of Ree type. Also the
symplectic group Sp(2m,2) and

(4) Sporadic examples: unusual representations of some groups in

the above sections and representations of the sporadic simple



groups M]], MIZ, MZh’ the Higman=-Sims group HS and

Conway's group .3.

Let G be one of the above groups in a t-fold transitive represent-
ation on a set @ of size n and H # 1 a subgroup normal in G. The
groups in section (1) and (2) are the exceptions in Jordan's result:
G = Sym Q is n-fold transitive and H = Alt 9 is sharply (n-2)-fold
transitive. In section (2) t 1is at most 3 and Q can be identified
with avector space such that GO is a group of linear transformations
on R, Here H may be regular or (t-%)-fold transitive. If G is a
group in section (4), t has values 2, 3, 4 or 5 but normal subgroups

H always have the same degree of transitivity t.

The groups in section (3) are geometrical groups acting on certain sub-
sets of projective spaces and apart from groups containing PSL(2,q) as
a normal subgroup, they are all exactly doubly transitive and the same
is true for their normal subgroups. So groups containing PSL(2,gq) are
the only exceptions and very interesting ones they are: The groups
PSL(2,q9) < H< G< PrL(2,q) operate on the projective line Q = PG](q)
and [92] = q + 1. PrL(2,9) is triply transitive on this set and if q

is an odd prime power, PSL(2,9) is only doubly transitive. The stabilizer

N

in PSL of the points 0 and ® has two orbits on GF(q) , squares and ncn-

squares.

A suitable measure to determine the drop in transitivity from G to H
seems to be the following: By definition G 1is transitive on the set
of all ordered t-tuples (t) and H 1is t-fold transitive on § if and
~only ifQ(t) is one orbit under H, Let therefore x(H) be the number of
H-orbits on 9(t). This definition allows us to sum up the list of known
examples. In section (1) we obtain examples for every value of t and
here x(H) is at most 2. In section (2) the consideration of the one-

dimensional affine groups shows that X (H) can take every value dividing



2] - 1. In section (3) we have t =2 and X(H) =1 or t =3, H= PSL(Z,q)
and X(H) =2 if q is odd. Finally in section (4) we obtain for every

example x(H) =1,

There is a number of conjectures to fit these findings. The first con-

jecture,

(C1) Normal subgroups H of quadruply transitive groups are quad-
ruply transitive, i.e. x(H) =1 if |Q] - 2>t >4,

is fairly well established and has been proved by Ito [12] for Hﬂ Z0

6

mod 3 and for |Q| <10 by Sax1 [20].

A second conjecture,

(C2) Non-regular normal subgroups H of triply transitive groups have
at most 2 orbits on Q(t), i.e, X(H) <2 if t >3 and H is not

regular on §,

takes account of the symmetric and one-dimensional projective groups.
(C2) seems reasonable since, as we shall see, these groups always occur

inductively as constituents of certain subgroups of G.
The strongest conjecture, implying both C2 and Cl would be

(C3) Normal subgroups of triply transitive groups are either regular,
triply transitive or contain PSL(2,9) as a characteristic sub-

group.

We are able to show that (C2) implies (C3) if |@| # 2 mod & (Theorem 3.8).
In chapter V we prove that (C2) holds if [@| is a multiple of 3 and also
for the case IQI # 2 mod 4 under some additional assumptions on involutions
in H. Therefore (C3) holds for [@] = 0 mod 12 and for |Q] & 2 mod &

subject to some restrictions and these results give some evidence that
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C3 could be true in general,

This thesis is organized in the following way:

Chapter Il gives the usual definitions,a list of results used and
a proof of a very essential tool, the generosity theorem for normal sub-
groups which was initially proposed in lto's paper [12]. [In chapter Il
we develop a concept which allows a homogeneous treatment of many known
theorems leading to new proofs and extensions of these results. This
analysis is continued in Chapter V and leads to the above mentioned con-
clusion. |In chapter IV we follow a different line of argument investi-
gating some symmetries of Q. The methods there are mainly of a combi-
natorial nature and give some arithmetic conditions for the doubly

transitive case.
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CHAPTER 11 PRELIMINARIES

In this section we list most of the group theoretic results we shall use
throughout this thesis. While most of the results are quoted from the
literature, some are extensions of known results like for instance a var-
iation of a theorem by Huppert (lemma 2.6), lemma 2.2 and the generosi ty

theorem for normal subgroups 2.8.

2.1 NOTATION AND DEFINITIONS

For completeness we develop the notations and definitions to be used here,
They are standard definitions and Wielandt's book [29] is an excellent

reference for most of them.

All groups and sets considered are finite. Let Q be a set consisting of
n elements also called points and denoted by Greek symbols. The symmetric
group on Q is denoted by Sym Q or by Sym(n) when there is no emphasis on

the set Q; ALt Qor Alt(n) stands for the alternating group on Q.

If k is a positive integer not exceeding n, Q{k} denctes the set of all
subsets of Q containing k distinct points., Members of Q{k} will some=-
times be called k-blocks or simply blocks. Similarly, Q(k) denotes the
set of all ordered sequences (a],az, ...ak) where the a; are distinct
points in Q. Note that SymQ induces permutation groups on both Q{k} and
Q(k), i.e. there are canonical homomorphisms from Sym @ to Sym Q{k} and
to Sym @(k). In general, if G 1is a permutation group on Q, Q' some
other set and h a homomorphism from G toSymQ', we shall say ‘G acts
on @' by h" and omit the mentioning of h if the reference is clear.
let g be an element of G, & a point and A a subset of Q. Then oY

and A9 denote the images of o and A under g. Put of = {aglgeG} <Q

and A8 = {89 geG} < a{la|} . . The subgroup of G fixing A pointwise
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or setwise is denoted by GA and G{A} respectively., The largest sub-
group of G acting on A is G{A} and the kernel of this action is GA°

Therefore, G.,,/G, is a permutation group on A, denoted by GA.
{2} ®a P

A permutation group G on Q is said to be half transitive on Q if

|G:G | # 1 is independent of the choice of a in Q. G is called trans-

|| or equivalently if of = Q; if G is trans-

ttive on @ if |G:G|

itive on @ with |G | = 1, G is called sharply transitive or also regular.
G is said to be primitive on Q if G is transitive and if Ga is a maximal
subgroup of G. There are similar definitions for higher degrees of trans-
itivity: If t 1is a positive integer not exceeding n, G is called
t=fold transitive on Q if G acts transitively on Q(t), and

(t + %)-fold transitive, if G acts also half transitively on Q(t+1).

G is said to be sharply t-fold transitive on Q if G acts regularly on

Q (t). Finally, G is called t-fold primitive onQ if G is t-fold

transitive on Q and if G, is primitive on A\T' for every I'' in Q{t-1}.

There are two further concepts related to multiple transitivity | would
like two introduce. G is said to be t-fold homogeneous on @ if G acts
transitively on Q{t} and G is called t—fold generously transitive on

Q if GA = Sym A for all blocks A contained in Q{ t+1},

Let B< Q{k} be a non-empty collection of k-blocks for some k,

1< k< n= ||, and suppose B has the following property: For some t,
1< t< k, there is a number & such that every I in Q{t} is contained
in exactly 2 blocks of B. Then the pair (,B) is called a design with
parameters t, n, kK and % or shortly a t—(n,k,%) design. This definition
is slightly different from the usual one where trivial cases are not
included in the definition., An automorphism group of a design @ ,8)

is a permutation group G on @ with the additional property A9 €8 for

every & in B and every g in G.



Some further notation and symbols.

[m] , [m]_, : Let m be a positive integer and p
a prime. lmlp is the largest power of

p dividing m and !m]pI =m/|m|p.

XY, CCZY(X) ¢ X and Y are subgroups of some group G.
X' = CCay(X) = {xY]y & Y}
CCZY,V(X) : Y<Y and X are subgroups of some group G.

cca, . 5(X)= {cczv(xy)ly € Y},

'X is G-weakly closed in Y' : X <Y are subgroups of some group G. |If x9
is contained in Y for some g € G, then

X9 ¢ cCey (X).

syzp(x) : The set of all Sylow p-subgroups of the
group X.
Fix(U) : U is a subgroup of some permutation group

G on 2. Fix U= {a]a € 2 and a"= o for all

uin U},
A A . . .
x(H), x (H"), y(H),y(H") : See beginning of section 3.1.
AUT(G) , AUT(D) : Automorphism group of the group G or design D.
1(G) < AUT(G) : The group of inner automorphisms of G.
PG(1,q) : The projective line over the field with

q elements,
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2,2 PRELIMINARY RESULTS

LEMMA 2.1  (WITT, [311)

Let G be a t-fold transitive permutation group on g and let U be a
subgroup of Gr where [FI = t. Then NG(U) acts t-fold transitively on
Fix(U) if and only if for every g € G with ud < Gr there is some h € GF

such that US = Uh.

LEMMA 2,2

Let G be a permutation group on Q of degree n and let t, k be
integers with 1 S t<k<n, Let B be an orbit of G in q{k} and
suppose B satisfies
I: For every I' in Q{t} there is some A in B with I < A, and
It: For some A in B, 6% is t-fold transitive (t-fold homogeneous)

cn A,
Then G is t-fold transitive (t-fold homogeneous) on Q.

Proof: Let A be a member of B such that I| holds. Let a,=(a],...at)
be an arbitrary element of Q(t), a* = {a],q..at} an arbitrary element of

a{t}, 8 =(B],...B ) some element in A(t) and B* ={Bl’°'°Bt} some element

t

in A{t}, It suffices to show, that there is some g in G with o9 = B,

(a:’:g =g%*),

The first condition (I) implies, that there is some A' in B containing

a],...at. Since B is an orbit under G there is some h € G such that

arh = A, and so o is contained in At), (on'=h in A{t}). By the second

%k
condi tion there is some k 1in G{A} with (ah)k =8, {(a h)k = g*¥), <
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LEMMA 2.3, (WIELANDT & HUPPERT, [271).

Let G be a permutation group on & of degree n. Let H be a normal sub-

group of G and suppose H 1is regular on Q.

(i) If G is 2-fold transitive on @ then H 1is elementary
Abelian and n is a power of a prime,
(ii) If G is 2-fold primitive or 2}-fold transitive on g,
n is a power of 2 or n= 3,
(iii) If G is 3=fold primitive on 2, n = 3 or 4,

(iv) If G 1is 33-fold transitive on Q, n = 4,

LEMMA 2.4 (WIELANDT & HUPPERT, [ 271).

Let G be a permutation group onQ, G+ Sym Q. Let H#* 1 be a normal
subgroup of G, not regular on §,

If G is t-fold transitive, then H is (t-})-fold transitive on Q.

LEMMA 2.5 (I1To,l111),

let G be a t-fold transitive permutation group on 2, G FSym @ and t=> 3,

Then every non-regular normal subgroup H# 1 of G is (t-1)=fold primitive.

LEMMA 2.6 (see HUPPERT, II 3.13 in [10]).

Let G be triply transitive on £, Suppose G has a solvable normal sub-

group H# 1 which is not regular on ., Then 2] = 3 0r b and G = Sym Q.

Proof: Let M be a minimal normal subgroup of G contained in H. Since

is solvable, M s elementary abelian of order pm, transitive on Q and hence

regular, see for instance 11.5 in [29]. Therefore || =p™ = 3 or 2™ by
lemma 2.3. Suppose IQI = 2", Similarly, let F be a minimal normal sub-
group of Ga contained in Ha # 1. Then F s elementary abelian of order

qr, transitive on ¢\ {a} and hence regular on&A{a},|F| = qr =2Mm .-,

H
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The group M~F is therefore sharply doubly transitive on @, i.e. M-F is
a Frobenius group with kernel M and complement F. By Burnside's
theorem (V,8.7 in [10]), F is cyclic. Thus |F] =g 'Gaﬁ is a com-
plement of F in Gy ~ F°Ga,s and Ga,s is also cyclic as a group of
automorphisms of F. Hence Ga,B is regular on @\ {as8} and this implies
that G is sharply 3-fold transitive on @, [G| = 2™ «(2™-1).(2™-2)

where 2™-1 = q is a prime,

Since |G| is divisible by 3, we either have 2M-1 3 and IQI = 4, or other-

wise 3 divides 2™-2., We show that the latter can not happen.

Suppose 3]2™-2 and let S # 1 be the maximal subgroup of G, 8 with order
L)
prime'to 3. (S exists since Ga 8 is cyclic of even order). The group
’
(M<F)+S is a normal subgroup of G since G = G, 8 «(M<F) and S < G .
. » alB
The group (M*F)°S has order prime to 3 by this construction. Since S has

even order, there is some involution i in S with i = (a)(8)(y8).es. .
Conjugating i by an appropriate g € G also i' = (8§)(By)(...).... is
contained in (M:<F)°S, But this implied that i-i' = (By§).... was con-

tained in (M<F).S, a contradiction, Hence |@] = 4, <

With elementary tools one can prove the following lemma on the generosity

of normal subgroups.

LEMMA 2.7

Let G be a t-fold transitive permutation group on @ of degree n and
H# 1 be a normal subgroup of G with t> 3 andn > 3. LetT' be in

Q{t=1} and x the number of Hr,-orbits on A\T',
Suppose (x,(t=1)!) = 1, Then H is (t-1)-fold generously transitive on Q.

Proof: We can assume G # Sym Q. Also, if G is triply transitive and H

regular, then n = 2Mm (see 2.3) and x = n-2, i.e, (x,t=1) = 2. Therefore
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assume by 2.4 that H is (t-1)-fold transitive. Let I' be any member
of q{t-1} and let {T]’““’Tx} be the set of all Hy -orbits on @\ T',

Since HI" E-] H{I"}i G{I"}’ H{I"} and G{I"} induce permutation groups H

and G on {T)s...,T 1. The group G is transitive on this set since Giroy

X
is transitive on AT' and since H=2 TG, either H = 1 or H is half trans-
itive on {T,...,T } . Assume H#*1and let T ={T|,...T,} be an orbit
of H on {T,...,T .} . Then s divides x and also of course 7] .
Since Hpyy/Hp, = Sym(T), |H| divides |Sym(I")| = (t-1)! . Hence s
divides (x,(t=1)!) =1 andsos =1and [A| =1, i.e. Hpo and Hyp jhave

the same orbits on Q\T' for any I''in Q{t-1}.

Let T be in Q{t}. We have to show that Hipy acts on T like Sym(T). Let
y be a point’ in T and put T' =T\ {y}. Since by the above argument Hp,
is transitive on the H{r,}-orbit containing v, we have H{I"}= HI"'H{I"}
This means that H{I"},Y operates on I'' like Sym I'' and fixes T as
a set. Since |T| = t> 3, Sym T is generated by {Sym("\y)|y € T} and
therefore H,p, acts on T like Sym I'. Since T was arbitrary in ltl}, H

is (t-1)-fold generously transitive on 2, <>

The following main result on the generosity of normal subgroups has been
proved by various authors in the case of quadruply transitive groups. See
for instance lto, lemma b in [12], Saxl , lemma 1 in [20], or Neumann,

theorem 9.1 in [19],

GENEROSITY THEOREM FOR NORMAL SUBGROUPS 2,8

Let G be a t-fold transitive permutation group on £ of degree n,

G #Sym @ and t > 2, Suppose H # 1 is a normal subgroup of G.

(i) Ift=2, H is generously transitive if and only if H
has even order. In particular H is generously transitive

if G contains no regular normal subgroup.

7y



(ii) 1f t =3, H is generously 2-fold transitive except if H is
regular or if P5L(2,9) <H <G <PrL(2,9) in their usual

representation on tne projective line, g + 1 =n = 0 mod 4,

(iii) I1f t > b, H is generously (t-1)-fold transitive.

Proof: Let T be a member of @Q{t}. Since G is t-fold transitive,
Gy acts on T like Sym I, To show that H s (t=1)=-fold generously
transi tive, we have to prove that the same is true foritr}. Since H{F}
is normal in G{P} y i1t suffices to show, that H{P} contains an element

h which acts on T like a transposition.

On the other hand, G is also t-fold homogeneous on Q. This means
that Hpy is conjugate in G to H{F*} for any T'* in @{t}. So one may

choose a particular I' to show the required property.

Let therefore A be a subset of @ with |A| =t = 2. Then H is (t-1)-fold
generously transitive on Q if and only if HA has even order. For assume

that IHAI is even. Then there is some element h in H interchanging

A
two points « and 8 in Q\ A, Take I' = A v {a,B} and h acts on T like a

transpostion. The converse implication is trivial.

(a) Ift=2,A=¢gand (i) will be proved if we can show, that H has
even order if G contains no regular normal subgroup. Let M be
a minimal normal subgroup of G contained in H. By a result of
Burnside (page 202 in[5]) M is simple and by the Feit-Thompson

Theorem H has even order,

(b) Now let t = 3., Then by lemmata 2.3 and 2.4 H is either regular
or doubly transitive, If H is regular, Ha = 1 and by the above
remark H 1is certainly not generously doubly transitive. So

suppose H is doubly transitive. Put {a} = A. Then we have to
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show that Hy has even order if G is not contained in PrL(2,n-1),
Since H, is transitive on A {al, lHal is even if n is odd for n-1

divides [H | .
a

Hence assume n is even and Ha has odd order. Then a theorem of Bender,
lemma 2,12, applies and H is either solvable or otherwise contains
PSL(2,9) as a normal subgroup for some prime power q. Lemma 2.6 implies
that H cannot be solvable unless G = Sym(3) or Sym(h) which contradicts
our assumption., Hence PSL(2,9) < H and using Burnside's results (page

202 and chapter 153 in [5]) one concludes that PSL(2,9) is characteristic
in H and hence normal in G. Therefore PSL(2,q) is doubly transitive
on © and checking through Dickson's list of subgroups of PSL(2,q9), (see
for instance 11.8.27 in [10]), we find that PSL(2,q) acts on the projec-
tive line PG(l,q) in its usual representation. Hence g + 1 =n and

PSL(2,n-1) S H< G < PIL(2,n-1).

(c) Now suppose t > 4, Since G# SymQ, H is at least (t-1)-fold trans-

itive on 2. Let T' be a subset of Q@ with [I'| =t = 3, Then G, is
triply transitive on Q\T'' and at the beginning of the proof we saw that
H is (t=1) fold generously transitive onQif and only if Hoo s doub ly
generously transitive on \T'., This is the case if HP' is not one of

the exceptions in {ii). But H,, cannot be regular on Q\T'', because then

I
H could only be t=3+1 = t-2 transitive on Q. Similarly if PSL(2,n=|T"'|=1)
< Hpy S Gpo S PTL(2,n=[T'[=1), as permutation groups onQ\T', let I'*

be a subset of I'' with [I*| = |T'| -1. Then G.. and H,, are transitive
extensions of GP' and HF' on A\T*, Since we can assume n> t + 2,
n-IT"|=1> 4 and therefore by lemma 2.10,Gp,= M,,, the Mathieu group on

11 points. Since M]] is simple, also M]] = HF* and HP* is quadruply

transitive on \T*, In particular Hpx is 3-fold generously transitive
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on A\T* and hence HF' is doubly generously transitive on \T'. <>

LEMMA 2.9 (HERING, [8])

Let G be a doubly transitive permutation group on @ of degree n.
Suppose the stabilizer in G of two distinct points has even order

and the stabilizer of three distinct points has odd order.

Then either PSL(2,9) < G < PrL(2,q) with n =q + 1 or else G = Alt(6),

n==56,

The one-dimensional projective groups belong to an important class of

doubly transitive permutation groups:

Definition: A doubly transitive permutation group G on @ is said to
be of Suzuki type if the stabilizer in G of a point o contains a

characteristic p-subgroup which is regular on @\ {a}.

The known groups of Suzuki type are the sharply triply transitive groups,

the groups PSL(2,9), PSU(B,QZ) and PGU(3,q2), the Suzuki groups 52(22r+1)

and the Ree groups R(32r+l)'

Suzuki type groups have the following extension property:

LEMMA 2,10 (SUZUKI, [22])

If G is a group of Suzuki type on @ having no regular normal subgroup
then G has no transitive extension unless IQI =5, G= Alt(5) or
o] = 10 and G is asharply triply transitive group with extension

M]], the Mathieu group on eleven points.

A result of Hering, Kantor, Seitz and Shult classifies all Suzuki

type groups:



21,

LEMMA 2,11 ([9])

Let G be a finite doubly transitive permutation group on Q, Suppose
that, for a € Q , Ga has a normal subgroup Q regular on f\{a}. Then
G has a normal subgroup M such that M <G < Aut M and M acts on Q
as one of the following groups in its usual doubly transitive repres-
entation: a sharply doubly transitive group, PSL(2,q9), Sz(22r+]),

PSU(3,q ) or a group of Ree type.

LEMMA 2,12 (BENDER [4] )

Let G be a doubly transitive permutation group on Q of degree n.
Suppose the stabilizer in G of one point has odd order. Then G is
either solvable or else G contains a normal subgroup isomorphic to

PSL(2,q).

LEMMA 2,13 (MARTINEAU[17] , THOMPSON[23])

Let G be a non-abelian finite simple group and assume G| is not

divisible by 3. Then G is isomorphic to a Suzuki group Sz(22r+]).
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CHAPTER Iit, HOMCGEMEITY AND GENEROSITY

As an introduction to this chapter | would like to describe some of the

basic concepts involved in the normal subgroup problem,

We consider a finite t-fold transitive permutation group G with normal
subgroup H and ask: Is H t-fold transitive as well? From the def-
initions it is clear that the answer is positive if and only if H s

both t-fold homogeneous and (t=1)=fold generously transitive.

The only known examples where G 1is at least triply transitive but H

only (t-1)-fold transitive are provided by the one-dimensional projective
linear groups over finite fields GF(q): PGL(2,9) =G is triply transi-

tive on the projective line PGi(q) and PSL{2,q) = H is only doubly
transitive if q is an odd prime power. Hence H fails to be both triply
homogeneous ‘and doubly generously transitive cnQ= PGi(q)‘ It is not

di fficult to see that H is triply homogeneous if and only if 9 = 3 mod &
and doubly generously transitive if and only if 9 = 1 mod 4. In either case

H has exactly 2 orbits on the set of all 3-tupe1§ a(3).

The Generosity theorem 2.8 now implies that this is the only example of
an at least triply transitive group G where H fails to be (t-1)-fold
generously transitive. So the question really becomes: Is H t-fold

homogeneous? Or equivalently, if I in Q{t} is uniquely determined by H

{ry’
Is the set of subgroups {H{r}lr € Q{t}} a class of H-conjugate groups?

The aim of this chapter mainly is to give a variation of the homogeneity ~
generosity concept. A key cbservation for this is lemma 2.2. Suppose
A is a subset of Q of size k 2 t such that G induces a t-fold trans-
itive group 62 on A. Call such a subset ‘inductive'. Then clearly the
set of all G-images 2% has the property that every T' in Q{t} is contained

in at least one block of AG, i.e, AG 'covers' q{t}. Lemma 2.2 now gives
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a transitivity criterion for H : If (1) AH also covers Q{t} and if
(1) HA is t-fold transitive on o, then H s t-fold transitive on Q.
The covering property (1) is closely related to the homogeneity of H,

in fact, (1) holds if H is t-fold homogeneous and the converse is true
ifA has size k = t. Similarly, in this case (11) holds if and only if
H is (t-1)=fold generously transitive. So it seems natural to consider
the covering property as a generalisation of homogeneity and property (11)
as a generalized generosity property. Lemma 2.2 now implies that H s
t-fold transitive on @ if there exists some inductive subset p, such that
H is homogeneous and generous in this wider sense., And, of course, it
is the choice of a suitable A that makes this lemma useful for our
problem, Apart from the obvious possibilities po=T1 € Q{ttand A =q the
only known general way of producing inductive subsets uses certain sub-
groups: call a subgroup U 'inductive' if the set of points fixed by U
is an inductive set, The significance of Witt's Lemma is that weakly

closed subgroups of GF are inductive,

But It should be mentioned that inductive subsets do not necessarily
originate from inductive subgroups. |If, for instance, G is an auto-
morphism group of a t-(IQI , k, 1) design, the blocks of this design

are inductive without necessarily being sets of points fixed by some sub-

groups of G,

 Throughout this thesis inductive sets A arise from Sylow subgroups of GF

or H The discussion so far then suggests studying two questions: Does

I|°
H
A cover {t}? and s HA also t=fold transitive on A7

We shall see that the first question refers to the fusion of SYID(HP)

in H and in this chapter we use simple arguments to show that

{Sylp(Hr)| I € q{t}} is a class of
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H-conjugate subgroups if p does not divide |Q] -t + 1. The second

A

questidn can te dealt with inductively: H™ <« 62 are groups of smaller

degree reflecting many properties of the original situation H <« G, In ut
Sylp((HA)r) = {1} and this fact can be used in counting arguments.

More importantly: Forp =2 and t =2 G2 is a known group.,

3.1 INDUCTIVE SUBSETS AND SUBGROUPS

Throughout this chapter we shall use the following notation: G usually
denotes a t-fold transitive permutation group of degree n acting on
the finite set @ for some fixed integer t= 1. H 1is a non-identity
normal subgroup of G. The group G acts canonically on both Q{t} and
Q(t) and is transitive on these sets., Q{t) is a disjoint union of
H-orbits 0., 2(t)= 0, u...u 0,, and similarly @{t} is split up into

H=orbits U, Q{t} = U; ue.eou Uy'

We put x = x(H) and y = y(H) and bear in mind that both x(H) and y(H)
refer to the given value of t. So x(H) = 1 is the same as saying H is
t-fold transitive and y(H) = 1 means that H is t-fold homogeneous.
However, to avoid repeated consideration of special cases, x{H) and y(H)

shall have no meaning if G is triply transitive and H is regular.

Similarly, if A is a subset of 2 with IAI;’t such that G{A} acts t-fold
transitively on 4, let U?, i =1, .00y y', and 0?, i =1, ooy X' be

the orbits of H } on A{t} and A(t) respectively. In analogy with the

{A

above notation we define x(HA) := x' and y(HA):= y'.

The results of Wielandt and Huppert (2.3 and 2,h4) imply that if
G# Sym (9) and if I'' is a member of Q{t-1}, then x(H) is the number of
orbits of Hyy on the remaining points AT', Since all these orbits have

equal length, x(H) is a divisor of n-t+l,
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PROPOSITION 3,1

Let t,k be integers with 1 St <k <n = |q|, let B be some G-orbit
in @k}, 2+ 8B < q{k} and let Bys...)B, be the orbits of H on B,

B = B] Ueou Ul Bz.

If G is t-fold homogeneous on Q and if for some T in Q{t} H{I‘} is

transitive on the set of all blocks in B containing I, then 6d is

t-fold homogeneous on A for every A in B and
y(H) = y(ud.z,

If G is t-fold transitive on  and if HI‘ is transitive on the set of

all blocks in B containing I', then G4 is t-fold transitive on for
every A in B and

x(H) = x(HA)° z,

Proof: Let I‘], I‘2 be members of Q{t} and define I‘] ~ I‘2 if there is some

Bi’ i=1, ... % and blocks A], A, both contained in Bi wi th ry <A

2 1?

I, <A2, This relation is reflexive since B# @ and G is t-fold homo-
geneous, and is also transitive: Let I‘l <Al, I‘2 <A2 wi th A], AZ € B]
and let Ty < A'z, I‘3 < A3 wi th A'Z, A3 € B,. Then L) K2> r, and by assump-
tion 4, and A’2 belong to the same H-orbit, i.e. By = B, and soT| ~ Iy,
Therefore ~ is an equivalence relation splitting Q{t} into preciselyz

equivalence classes, H fixes each of these classes while G permutes

them transitively,

Consider for any A in B the PP -orbits UAI and OAI on A{t} and A(t) resp-

% ? u...uOi,. Then clearly x!

and y' are independent of the choice of A since G acts transitively on B,

ectively: A{t} = U7 u...u U‘;, and A(t) =0

Now define I‘] ~u I‘Z if there is some A in B and some h € H such that

h

I‘], I‘2< A are contained in the same lPi.
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~ . h < _r f .
I f F] u Fz, i.ee I'. , T, < AandT I, for some f in H{A} , then

-1 -1, =1
- hf "h . -1, -1,

< = L ] ~

r s T A A and T, F] with h f 'h in H{Zj' So ~,

is symmetric and also transitive: Let I'y~ur, and I, ~u F3, i.e, Flh,

h_ rzf, h, Iy < A, r2“ = r3‘°, '€ Hegy., Then

fE H{A} and F2

-1. .
r , F3 < % and F]hf h==P3f, that is F] ~u F3.

Hence ~u is an equivalence relation on Q{t} and clearly ~u implies ~,

Suppose FI ~u F2 are both contained in some A. Let r]h,rz <A and
-1
h ~hf — .
. r, A} ° Then both A and e]contann Ty and so by

assumption there is some B in Hepy mapping 77 onto T. Hence
2

r f with f € H

7'=-h‘f_lﬁ' belongs to H{K} and r]f==r2, i.e. T, and r, belong to the

same U?. From this remark we conclude that every ~ class splits into y!

~u classes and altogether Qe obtain z*y' ~u-classes. Obviously F]~uF2
if and only if T') and T, belong to the same H-orbit in Q{t}.

So we have y(H) = z.y'. Evaluate this equation for H = G and

1 = y(G) = 1-y' shows that y' = 1 and 6% acts t-fold homogeneously

on A for every A in B. So put y' = y(HA) and the first part of 3.1

is proved.

Similarly, if (F]) and (Fz) are members of 2(t) with underlying sets T,
and Fz, define (T]) ~o(T2) if there is some A in B and some h in H such
that F]h, r, < 4 and (F]), (Fz) are contained in the same 0?. By the
same arguments as above we get x(H) = zx(H8) and G2 is t-fold transi-

tive on A, <
LEMMA 3,2
Let T be a subset of @ with [T| = t, let p be a prime and let S' be in

Sylp(GF), S = S'aH., Put N:= NG(S'), NH:=NH(S'), M::NG(S) and MH:=NH(S)°

Let A' = Fix S' and A = Fix S,
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1 ~ 1~ 1 ~
NA R GA = MA, HA = Nﬁ , HA = Mﬁ and all these isomorphisms

\ 1
are permutation isomorphisms. In particular Ca )P ,(HA )P and (HA)P

ne

1
Then GA

are p'-groups,

Pl

I
HA and HA are permutation isomorphic to normal subgroups of GA' and

1 1
dﬁ respectively and hence we write by abuse of notation HA < GA and

H 2 &,

_ N/

\
Proof: We use the Frattini argument., N = since N .= N,

Al {a'y "

Since S' is also a Sylow p-subgroup of GA we have G (s*)-G ,,

=N

{a'"} G{at} A
I ~

= NG Therefore G = G/ Cyr = NCu/Gy = N/NA Gy, =

{A'}| {at}’
N/NA' = NA + Obviously the isomorphism involved is a permutation iso~
morphism i.e, NA'
A
H
£ = Acgip/Pye = (HS) (p /(oS ) 0 = (Hey St/ (H o8t) =

(H{Al}'(HAl'S'))/HAl'S') = H{AI}/(H{AI}nHAI'S) = H{AI}/HAI = HA'. Now,

i.e. G

t t
and G®' act on &' in the same way. Similarly one

n?

~ 1 ~ ]
proves HE S ME and &8 MA. To prove Nﬁ = HA let A =H-S'. Then

since S' is a Sylow p-subgroup of Apis A{A'} = NA{ }(S')-AA, = NH(S')oS'-AA,
AI

] ~

= = NH(S')-AAl and therefore AY = NH(S')-AA./AA, = NH(S')/NH(S')rsAd

Al

Al ~ AI
oo Together we have NH = H

=N

t
Since (a8 )r= NF/NA. and S' is a Sylow p-subgroup of both NP and NA"
' .
(6% ), s not divisible by p. Similarly (H*), is a p'-group.
A \

For the remainder note that H- = H{A,}/(H{A,}lw Gy) = (HﬂN}°GA')/GA' <

A A

. A
Gary/Bye = G . In the same way we obtain H” 2 G, <

Definition: Let A be a subset ot Q@ of size k, t <k <n, and let H be
a subgroup of G. Then A is said to be inductive with respect to H if the
following implication holds: If H is t'-fold transitive on Q,

1< t'<t, then H{A} (or HA) acts t'-fold transitively on A,

A subgroup U of G is called Znductive with respect to H if Fix U is

inductive with respect to H.



PROPOSITION 3.3

Let G be a t-fold transitive permutation group on Q,I' a subset of @
with |T|] = t. Let S' be a Sylow p-subgroup of GP for some prime p

and let H be a normal subgroup of G,

Then (i) S' and S=S' A H are inductive with respect to G and (ii) S!

and S are inductive with respect to H.

Proof:(i)Let A' = Fix(S'), A = Fix(S) and put B' = A'G and B = AG.

Let T be in Q{t} and suppose T < N], NE, I < A,y where A; are members

of B' and 4; members of B. Then A} = Fix(s!) and A; = Fix(Si) for some
conjugates of S' and S respectively. Since S'i are contained in Sylp(Gr),

they are conjugate in GF‘ This implies £3= ty for some s in G_ and

1 r
so Gp is transitive on the blocks of B' containing r. For a similar
reason GF is also transitive on the blocks of B containing . Hence

]
proposition 3.1 applies (taking H = G there) and G& , G® are t-fold

transitive on A', A respectively.

(ii) First show that S is inductive with respect to H, Clearly this is
true if S =1and a4 = Fix(S) = Q. Hence assume S # | and in particular
H is not regular, Then by 2.4 either G= Sym (@), t = |Q|, or else H
is at least (t-1)-fold transitive on Q. If G=Symg , and t = lel
then S = 1, contrary to our assumption. So assume the latter. If H is
actually t-fold transitive it follows from part (i) applied to H that

S is inductive with respect to H. Hence let H be exactly (t-1)-fold

transitive and prove that H acts (t-1)-fold transitively on Fix(S) = A .

let T'*<cT, |IY = t.- 1. 1fS is also in Sylp(Hﬁ,), again the property
requi red follows by (i),(replaéing G by H and t by t=1). Hence assume

that S is not a Sylow p-subgroup of H Let T be in Sylp(Hr,) con-

I
taining S o Then T fixes all points of ' but no further point
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in A (in fact not even in Q). The same is true for every subgroup U,
S<US<T, and hence |Al = (t = 1) +A°p, A =1, Since Us=N(S)# S,
we obtain that there are nontrivial elements in UA < HA fixing t-1

points,

By part (i) we already know that GA is t-fold transitive on & and by

3.2 s g8

. Soby 2.4 and 2.3 H® is either (a) regular, (b) (t-1)-fold
transitive or (c) A = SymA. By the above remark HA cannot be regular,
so it remains to show that in case (c) H® is still (t-1)-fold transitive,

i.e. (t=1) > |a] -2. But this is also clear since A-p > 2, Thus S is

inductive with respect to H.

Finally we prove that S' is inductive with respect to H, Suppose H is
t'-fold transitive on Q. Then the same is true for A:= H.S', Let '
be a subset of I with |[P*] = t'. If S' is a Sylow p-subgroup of Ans
then N,(S') is t'-fold transitive on &' = Fix(S') by part (i) (putting
G= A, t =t'), Obviously Np(s') = Ny(s')+S' and since S' fixes all
points of A', NH(S') acts on A' in the same way as NA(S') does, There-
fore S' is inductive with respect to H if S' is a Sylow p-subgroup of

Apye This is true in particular if H is regular since then AP' = Hr.-s'

§', or if His t' = t=-fold transitive because then I'' = T and S'<<

Ape =Ap < G is even in Sylp(GP), and also it G =Symgq, t' =n - 2,

For the remainder of the proof therefore assume that H is (t-1)-fold

transitive and that S' is not a Sylow p-subgroup of AT" where T' € Tca'

and IP'|= t -1, Let T be in Sylp(AP,) containing S'. Again, Fix(T)=Tr"',
|at} = |t} + Aep,(A > 1}, and N7(S') contains an element fixing I

point-wise and A' setwise but not pointwise. Thus NA(S') acts neither

trivially nor regularly on A' and the same is true for NH(S') since N,(S')

1]
= NH(S')°S'° Therefore by 3.2 1+ FP is a normal, non-regular subgroup
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]
of 6% and as in part (i) of the proof HY s (t-1)=fold transitive

on A' and thus S' is inductive with respect to H. <

Proposition 3.3 partly overlaps with Witt's lemma and also with a result

of Livingstone and Wagner ([ 15], proof of theorem 3).

Definition: Let U be a subgroup of G fixing k = t points, Put B:=

(Fix U)G = {Fix Uglg € G} < {k} and let B! < B be an orbit of H on B.

Define D(U):=(Q, B), Dy(U):=(2, B'). Let T be a subset of Fix U with
[F| =t, If U is a Sylow p=subgroup of GF for some prime p, we also
write D(U) =: D{(p,G) and DH(U)=:DH(p,G). Similarly, if U is a Sylow

put D(U) =: D(p,H) and D (U) =: Dy(p,H).

p~subgroup of HP’

As an immediate consequence of this definition we have the following

lemma:
LEMMA 3.4

Let G be t-fold transitive on @ and H be a normal subgroup of G which is
t'-fold transitive on 2, 1 < t!' <t , Let T be a subset of @ and let p

be some prime,

Put A = Fix S for some S in Sylp(Hr) and A' = Fix S' for some S' in

Sylp(Gr). Then we have:

(i) D(p,G) is a t=(n,k',2) design where k' = [a'| and 2 = |G| /6,0 G, 1y].

(i) D(p,H) is a t-(n,k,2) design where k=|A| and 2=|G_| / |6, n G

rl ta!

G is a group of autcmorphisms of both D(p,G) and D(p,H), transitive on

blocks, If A' and A are blocks of D(p,G) and D{(p,H) respectively, then

]
GA is t-fold transitive on A' and GA is t=-fold transitive on A.
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(iti) Dy(p,G) is a t'=(n,k',8) design where k' = [4'] and g2 = [Hr.l/

|Hr| N H{A'}l , ' a subset of I with ]r'l = t!,

(iv) DH(p,H) is a t'-(n,k,2) design where k= |A| and ¢ = lHF'l /IHP,DH{A}{,

H is a group of automorphisms of both DH(p,G) and DH(p,H), transitive on
blocks, If A' and A are blocks of DH(p,G) and DH(p,H) respectively, then

HA' is t'=-fold transitive on A' and HA is t'-fold transitive on A.

Proof: Let A be a u-fold transitive permutation group on @ and let @

be a subset of 2 with |6] > u and [o| = n,

We note, that then (Q,GA) is always a u-design. To prove this we only
have to show that for any I' in @ {u} the number of blocks in eA contain=

ing T is independent of the choice of I'n Let [T] be this number.

Suppose G],..., Gx, x =[r], are all blocks containing T and 5},..°;§§ ’
X = [T} are all blocks containing T where T is some other member of

Q@ {u}. Since A is u-fold transitive on g, there are elements a and a in

Awith To=T and r¥ = T. Hence'§?,,.o,e§ are blocks in eA containing T and

?,...,Gi are blocks in GA containing T. Thus X< x< X and[r] =1 is

A)

€]

independent of I'. Therefore (2,6") is a u-(n,|6], [T]) design.

Now express & =[T] in terms of A, Since A operates transitively on GA,

the total number 2. of blocks in o” equals [A] / |A On the other

oyl

0
hand, there are (ﬂ) members of Q{u} each of them contained in g blocks.
Let |®] = k. Since every block @ contains (t) members of Q{u}, we count
. - n k s . A _
in all 2= 2.()/() different blocks in 6". Hence IAI/IA{G}' =

2ne(n=1)+...°(n=u+l)/ke(k=1)°,..°(k=u+1), Since A is-u-fold transitive

on 2, we have n°(n—l)......(n-u+l)°|Ar[==[A|° Now suppose A acts u-fold

{6}

transitively on 6. Then also k°(k-l)q°°.,(k-u+l)=|(A{e},r) |=[A{G}] for
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some T contained in @, |T| =u. Therefore & = IAFI/|A{@},FI'

N that th i b i
ote tha e assumption about A{@} is true for G{A'}' G{A}' H{A'}
and H{A} by proposition 3.3. Substitute for A, u and @ the various

groups and parameters to prove lemma 3.4, <>
THEOREM 3.5

Let G be a t-fold transitive permutation group on  of degree n
and H # 1 a normal subgroup of G. Let I be a subset of @, |I| =t,
p some prime and let S' be a Sylow p-subgroup of GF and S a Sylow

p-subgroup of H, . Put a' = Fix(S') and o = Fix(S).
Then x(H) = |ccag . (S)]x(HY).

Therefore H is t-fold transitive if [cch.H(S)l =1 and if HA is
t-fold transitive on A. If p does not divide n-t+], then

leceg, y(S)] = 1.

!
Also H 1is t-fold transitive if |cc2.G H(s')| = 1 and if HY is t-fold

transitive on A'.

Proof: We apply proposition 3.1, Put B = AG = {Fix Sg[g € G} and observe
that if &, = Fix(S]) and 4, = Fix(S,) containT, then S;, S, are Sylow

p-subgroups of HF and therefore there is some h in HP wi th S]h = S,

and A?:: A,. Let B],..., B, be the H-orbits on B. Then Ay = Fix(S])
and A, = Fix(Sz) € Bi if and only if S] is conjugated to S, in H. Hence

z =|cch, ,(S)] and by 3.1 we obtain x(H) = lccRG_H(S)]-x(HA). Now

G:H
suppose HY is t-fold transitive on A and p does not divide n-t+1, |If
S= 1, then A = Q and clearly H = HA is t-fold transitive on Q. This
is the case if (a) H is regular onQ or (b) if G =Sym(z), H= Alt(Q)

and t =n-1, Hence by lemma 2.4 we can assume that H is at least



33.

(t-3)-fold transitive on Q. Let y be a point in r and put T'= T\ {y}.
Then [HP' : HP] is the length of the HP,-orbit that contains y. Since
all Hpi =orbits on @\ T' have equal length, [Hrl : HP] divides n=t+]
=|\T'| and since p is prime to n-t+l, S is also a Sylow p-subgroup of
H Hence by the Frattini argument, G

= N (S)°Hrl and since H is

r': ! G

rl

(t-1)-fold transitive on @, G = GP,.H =Ng (S)+H = N.(S)-H. Thus
t

G

r )
G/H = N (S) "H/H = N (S)/N, (S) . Now calculate |ccoq.,(S)[5]ceny, (S)] =
|ceag (8) |/[ceny (8] = (S pngs) /(1R v (s)) =]arm/ngis) g (s) |

= 1, Hence x(H) = 1-x(HA) =1 and H is t-fold transitive on Q.

To prove the second statement, put B = Al = {Fix S'glg € C} and observe
that H operates transitively on B since |cch_H(S')| = 1, Clearly B has
the property that any T in Q{t} is contained in at least one block of B

and so by lemma 2.2 H is t-fold transitive on Q. <

In the following theorem we use elementary counting arguments to obtain
a boundary for x(H). This result as we shall see later on can be used
to prove that H is t-fold transitive in all cases mentioned in the

theorem for t < 6.

THEOREM 3.6

Let G be a t-fold transitive permutation group on @ of degree n,

G # Sym(9), and let H#= 1 be a normal subgroup of G.

Suppose p is a prime, p< t, not dividing n-t+], Let x be the number
of H-orbits on Q(t) and r the smallest positive integer with

rs (n-t+1)/x mod p, Then 0 < r.x <p< t,
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Proof: Of course t = 3.I1f t =3, p =2, H cannot be regular on @
because this would imply that n is a power of 2 (see 2.3) and hence

p =2 divides n - 3+ 1, Hence by 2,3 and 2.4 H is at least (t-%)-
fold transitive on @ and therefore x = x{H) is the number of Hr.-orbits
on SAT' where T' is a member of Q{t-1}. Since all these orbits have
equal length, X divides n=t+] and r = (n-t+1)/x mod p is a well-

defined number 0 < r < p.

Let T > TI' be in @{t} and let S be in Syzp(Hr) with o = Fix S. By

3.5 we have x(H) = |cc9,G:H(S)|-x(HA) and as in the proof of 3.5 one
shows that |ccfq, (S)| = 1sincep is prime to n-t+l. Therefore

x(H) = x(H). By 3.3 6" is t-fold transitive on &, H® is (t-1)-~fold
transitive on A and by 3,2 HA < GA Since |Al =t n' = nmod p, p

does not divide n'-t+]l, Hence the hypotheses of 3.6 are also satisfied

for G2 a H except if ¢ = Sym(a).

So we deal with the case G = Sym(a) first., |If HA(<_1_ ) is

t=-fold transitive on A, then by 3.5 H is t-fold transitive on g, that
is x=1 and rex = r <p, Hence assume W s (t=1)-fold transitive
but not t-fold transitive on A, i.e. b = Alt(a), Al =n' =t + |

and x (') = 2. Then by the above remark ‘x(H) = x(H) = 2. Since

n=-t+1

]

n' - t+1l=z=t+1=-t+1=z2modp, rz2/%xz1modp

and in particular p#+ 2, Hence rex =2 < p,
By induction we therefore may assume that HA = H, A=qQand S = 1,

Let T' be in @{t=1}. Then H_, has t-1 fixed pointd orbits and x orbits
TisseesTy on AAT' of equal length (n=-t+1)/%, Since H is (t=1)-fold
transitive on Q, there is an element h in H{I"} of order pm p<t=-1),

fixing I'' as a set such that h consists of a single p cycle and t = 1 - p
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fixed points inside I'. Clearly h normalizes Hr' and therefore h
induces a permutation of the orbits TI””’Tx' i.e,. Tih is again an

orbit of Hy,.

By hypothesis p does not divide n-t+l and so p does not divide X,

Thus, h fixes at least one orbit, say T]h = T]. Assume h does not

fix all orbits T ,...,T,. Let T," =T, Choose g, in &

g]|

'3 such that

h-llr,. Clearly such a g9, exists

h9 acts on TI' like h-], i.e. h o

and again,. since Hr' < G{r,} ’jgl preserves {T],...,Tx}. Since G is

t-fold transitive on @, Gr.(s G ) permutes {Tyse0s,Ty} transitively.

{r'}
. 9192 _
Hence choose some g, in GP' such that T2 =T
Then, if g = 9,°92s still hglP' = h-l|r,. Therefore h-h9 is an element
g g -1
hhS = T,. On the other hand T hh® | T h* _ T,9 hg _

of HP' and so T] | 1 1 1
TZhg = T3g. "Hence T] = T3g = ng, a contradiction unless h fixes T,,

Therefore h fixes all Hr,-orbits T]""’Tx’

Now we count the minimal number of points fixed by h : In ' h has t-1-p
fixed points and in every Ti’ i=1,,.., X, at least r fixed points., There-
fore |Fix h| = t-1-p + rex. But we assumed that S = 1 and so no element
of p-order in H fixes as much as t distinct points. Hence t>t-1-p+rex

or p> rex., Since neither x nor r equal p, we finally have p > rex. <

In the following theorem 3.7 we extend the arguments of 3.6 for the
situation 1< |n-t+l|p for primes p < t. The proof of 3.7 uses count-

ing arguments but also involves the generosity Theorem 2.8,

It is worth noting that 3.6 is independent of the Generosi.ty Theorem,
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THEQREM 3.7

Let G be a t-fold transitive permutation group on 2 of degree n,

G # Sym(Q), and let H+ 1 be a non-regular normal subgroup of G having
X orbits on Q(t). Suppose p < t is a prime dividing n-t+],

Then either (i):ln-t+1|p >-|x|p or else (ii): t =3 and

PSL(2,q9) S H< G<PrL(2,q) withn=q + 1 = 0 mod &,

Proof: Since t > 3, H is at least (t - })-fold transitive on Q by 2.4,
If His actually t-fold transitive, clearly x = 1 and hence |n-t+1]p;>p > 1,
- Hence assume x > 1, Then x is the number of orbits ot HP' (r' € {t-1})
on AAT' and so X divides n=-t+1, i.e. |n-t+l|p > |X|p. Therefore it suffices
to show that |n-t+]|p = |x|p leads to a contradiction if G is not a sub-

group of PrL(2,q9) containing PSL(2,9) with n =g + 1 =0 mod 4,

Let T = T'v {y} be in Q{t} and let S be a Sylow p-subgroup of HP with

A=Fix(S) and assume |n-t+1|p - |x|p, i.e.'pf(n-t+l)/x. Then S is also

in Syzp(HP ) since [HP':HF] (n-t+1) /% is not divisible by p. Hence by 7

the Frattini argument GP' =N (S)'Hl_,I and since H is (t=1)-fold transi-

G
Fl
tive, also G = Goi*H, T.e. G = Ng(S)*H. Therefore |ccgq(S)| = [G:Ng(S)]

= [NG(S)-H : NG(S)] = [H:NH(S)] = |cczH(S)| and so |cch:H(S)| =1,

Hence by 3.5 we have X = X(H) = x(H2) and from now on we look at HA, b

to produce a contradiction,

By 3.2 and 3.3 HA s (t=1)-fold transitive on A and is normal in G® where
6% is t-fold transitive on A. Also (HA)P is a p'-group. But if H and

G are not the groups under (ii), KA

is even (t=1) generously transitive
on A. We see this in the following way: Let I'* be any member of A{t}
and let s be an element of Sym(r*). Since H is (t-1)-fold generously

transitive onqQby 2.8, H contains some element h with h px = S. In
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particular rh= 1" ey and Sh, S are both contained in HF*' Since

[HF*I = [HFI’ s" and S are elements of Syzp(HF*) and therefore there

s some k in H, with (S)¥ =s. Especially "= s and alsoh-k[ ., =s.

Im
This implies that H2 is (t-1)-fold generously transitive on a.

Consider (HA){P,}. Since H8 is (t-1)-fold transitive on a, there is

some element h of p-order in (H) consisting of a p cycle and

{r'}
t=1-p fixed points inside I'. Let Tl""'Tx' be the orbits of (HA) o
on AT* where x' = x(HY) = x(H) = x.
Since h normalizes (HA)P., h induces a permutation of the set {Tl’°"’Tx

b
suppose h fixes f orbits T,, i =1, ... f. Then h has in each of these
f orbits at least r fixed points where r is the smallest non-negative
number with r = lTll = ({A] =t+1)/x' = (n=t+1)/%x F 0 mod p since

|A| = n mod p. In particular r # 0, Therefore h fixes altogether at
least t = p - 1 + fer points in A, But ;ince HP is a p'=group and
[(HA)r, : (HA)F] =(]a]l -t + 1)/x =0 mod p, also (HA)P. is a p'~group.

Therefore t = 1 > [Fix h| =t - p = 1 + f*r, i.e. for <p.

Our assumption implies in particular that p divides x. Therefore we will
arrive to a final contradiction if we can show that h fixes all Ti's or

in other words, that f = x,

For this purpose it suffices to prove that (HA)I.I and (HA) have the
{r'}
same orbits on A\T'. Clearly an orbit of (HA){P.} on A\NT' is a union
A . . A A
of (H )P.-orblts since (H )F' < (H ){F'} . Show therefore that (HA)P.

is transitive on every (HA){F,Forbit. Let vy be some point in A\I' and
put T = T' U {y}. Since H} is {t-1)-fold generously transitive on A,
A .
(H ){P} acts on T like Sym(T') and therefore (HA){P},Y acts on I'' like
Sym(I'*). Thus we have: (HA){F,}=(HA){F} Y-(HA)
. ’

e But this implies that
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A . s A . . . .
(H )F' is transitive on the (H ){r|}-orb|t which contains y. Since ywas

arbitrary, (HA)Pl and (HA){Pl have the same orbits on A\ T'. <

}

We mention one important consequence of 3.7 separately:
THEOREM 3.8

Let G be a triply transitive permutation group on @ of degree n,

b<n =0 modhb.

Suppose H:+ 1 is a non-regular normal subgroup of G and let x be the
number of H B-orbits on A\ {a , g} for two distinct points o and g in @,
(s )

Then either x is odd or else x = 2 and PSL(2,q9)4 H4 G 4 PrL(2,q) with

n=q+1 =0 mod 4.

At this stage we note that x is in general odd if t> 6. This is a

result of E. Bannai:

THEOREM 3.9 (BANNAI, theorem | in [ 3])

Let G be a 6-fold transitive permutation group on Q» G Sym g, and
let H:+ | be a normal subgroup of G, If r is a subset of g with

|t| =5, then H, has an odd number of orbits on QAT.

3.2 THE THEOREM OF WAGNER

In 1966 Wagner proved in [ 24] that normal subgroups £ 1 of triply trans-
i tive permutaticn groups of odd degree are also triply transitive. (With
the obvious exception Alt(3) « Sym(3)). The proof of this theorem given
in[24] asserts the 2-generosity of the normal subgroup and uses this
property to bound the orbits on {3}. All this only involves Sylow's
Theorem and in fact Wagner's proof is most elementary. This makes his

theorem one of the most important results on multiply transitive permu-
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tation groups.

Six years later, ltopublished his paper [ 12] on quadruply transitive
groups of degree n $ 0 mod 3 in an attempt to extend Wagner's theorem.
lto's proof, however,.is much less basic: To secure the 3-generosity of
the normal subgroup |to uses Bender's theorem [ 4] and 4-homogereity is

shown by some character theoretical arguments,

Wagner's theorem is of course already contained in theorem 3.6 and so is
Ito's result in so far as H is quadruply transitive if n = | mod 3 and

has at most 2 orbits on Q(4) if n = 2 mod 3.

In the following theorem we will show that under the hypotheses of 3.6

H is t=fold transitive if t does not excesd 6. This is the highest
degree of transitivity for which one could reasonably expect to find
groups not containing the alternating group Alt(r). (See for instance
Nagao's paper [ 18], theorem 3). The proofs are given at the end of this

section.,

THEOREM 3.10

Let G be a t-fold transitive permutation group on @ of degree n,

2< t< 6, G# Sym @, and let H+# 1 be a normal subgroup of G.

Suppose n - t + 1 is not divisible by some prime p, p< t < 6,

Then H is t-fold transitive on Q.

As generalisation of 3.10 we have:

THEOREM 3,11

Let G be a t-fold transitive permutation group on , G # Sym Q and
3 t< 6, Let H#* 1 be a normal subgroup of G.
Suppose there are primes p and q with p < t such that S' € Squ@r|)

fixes exactly k' points and S = S'M H € SquHr. fixes k points in
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Q where I'' is a member of Q{t-1},

Assume either (i): k' = t + 1% 0 mod p and NG(S')-H =G or

(ii): k = t+ 1% 0mod p. Then H is t-fold transitive on Q.

Note that 3.11 (ii) is theorem 3,10 for p = q: since k = n mod q,

k -t + I$ 0 mod p implies that n - t + 1 is not divisible by p.

A result which has some similarity to theorem 3.11 is due to Atsumi
[ 2], who proved that in the case t = 4, n= & (5) H also is quadruply

transitive. With his method one can prove

THEOREM 3.12

Let G be a t-fold transitive permutation group on @ of degree n, 4< t

and G # SymQ, and let H #1 be a normal subgroup of G.

Assume t + 1 = p is a prime and n=t (p).

Then H is t-fold transitive on Q,

For t =2 and n = 2(3), the above statement is not true, doubly transi-
tive groups with regular normal subgroups are counter examples. But
apart from this exception, theorem 3,12 probably also holds for t = 2

and n = 2(3). In Chapter V we will see that H has at most 2 orbits on

(2) if G has a transitive extension.

Proof of 3.10: We divide the proof into steps according to the four

possibilities t =3, 4, 5 and 6,

(i) Let t= 3 and p= 2, Then by 3.6 x = x(H) < 2, i.e, x(H) = 1

and H is triply transitive on Q.

(ii) Let t= handp=2or 3, Ifn-=L+120(2), by 3,6 again x <2,

crisntlen ”
1

i.e. His triply transitive, Hence assume n - 4 + |

0(2) and

n-4+ 1% 0(3). The inequality 0 < r.x < 3 only has solutions for
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X =lorx=2,r=1andn z2(3). Let therefore | = H <G # Sym(g)

be a counter example with t =4, x =2, n = 1(2) and n = 2(3), minimal

with respect to the degree n and the index [G:H].

Let a,B,y,8 be distinct points in Q. The group Ga 8y permutes the two
PSS ]

Ha,s’y-orbits° Let K e GG,B.Y be the kernel of this operation. Then

(G K] = [G:KeH]= 2 and since K-H = Ga *H = G we obtain by mini-

Oy ByY.
mality K*H = H, Therefore [G:H] =2 and G

3By Y

G,B,Y,6= HG,B,Y,G'

A A
. e 3 3
Let S3 be in Sy]3(Hu,B,Y,6) and put Ay = Fix SZ. Then 1 #H ° < G 7 are
groups of degree |A3] = n =2(3) and by 3.5 H 3 cannot be quadruply
transitive on A3. Hence, by the minimality of the counter example, we

= =
G or else G ° = Sym(5) and H ° =A1t(5).

A
ei ther have S3 =1, A3 =0 and G 3

A
The latter is impossible, Let Ay = {a,8,v,8,8¥}. If H 3 = A1t(5),

NH(S3) acts on A3 like A1t(5) and therefore (NH(SS))a* acts on  {a,B,ys8}

= N _,_‘H
{a,B,y,S} ( H(s3))5" GsRyYrS
and hence H{G’B’Y’a} = Alt(4). This contradicts theorem 2.8. Thus we

like Alt(4). By the Frattini argument H

have S3 = 1 and every element of 3-order fixes exactly 2 points.

A

Now let S, be in Syl (H s)and put 4, = Fix S,. Then G * is quadru-

GyByys

A
- - - : 2 -
ply transitive on A, of odd degree [a,| = n =1 (2) with |(G l»s.y.ﬁl =

1(2). Therefore G 2 is a transitive extension of one of the groups in

)

G = A]t(?)
8y .

lemma 2.9 and therefore by 2.10 GA2 = Sym(5), Al1t(7) or My
is impossible since Alt(7) contains 3-elements fixing 4 points. If G
Sym(5), by the same argument as above, also HA2 = Sym(5) and if GAz = M]I’
then HA2 = M]] since M]] is simple and in both cases HA2 is at least

quadruply transitive on 4,. This implies that AZ\ {a,B,y} 1is contained

in the same H -orbit T,. In both cases N, (S,) contains an element
a,B, 1 HY72

h consisting of a 3-cycle (@,8,y)... and at least 2 fixed points (8) and

(6%) with 8,8% in A\ {a,B,y} . Since h is contained in H{G.B,Y}' h

preserves the H ~orbi ts T] and T2 and hence h has at least 4 fixed

B,y
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points, a contradiction,

(iii) Let t =5, This case can be reduced to (ii): Since there are no
new primes below 5, n = t + 1 £ 0mod 5 implies (n = 1) = (£-1) + 120
mod 5 with p <t =1 =4, The groups G = Ga and H = H have degree n = |

and are 4-transitive by part (ii). Hence H is 5-fold transitive on Q.

(iv) Let t =6, Ifp=2,n=-6+1z0(2) implies (n=3) - (6-3) + 1 %

0(2) and the groups G:= Ga.B,Y > H:= Ha,S.Y are triply transitive on
N\ {a,B,v} by part (i). Hence H is 6-fold transitive on Q. Simitarly one

uses part (iii) of the proof to eliminate the case p = 3.

Hence let p =5 and n satisfy the congruences n - 6 + 1 £ 0(5),
n-5=0(2) andn -5 =0(3). Then 3.6 implies 0 < rex < 5 and this
inequality has solutions for either x = 1 (in this case H is 6=fold
transitive) or else for r =1, x =2, 3 or 4 andr =2, x =2, The

congruences for n modulo 5 are then given by

x =2 x =3 x =4
r=11n=2(5)1{n = 3(5) |n = 4(5)
r=21Jn = 4(5) — —

Let 1+ H< G+ Sym(Q) be a counter example, i.e. n 0(5), n = 1(2)
and n = 2(3), G in 6-fold transitive on Q and H is 5-fold transitive.
Suppose this counter example is minimal with respect to the degree

n = |®| and the index | G:Hl = d. Then r, x and n are given by the above

table.

If x= 2 or 3, one shows as under (i) that d = x, Suppose x = 4, Let
' be in Q{5} andT=T'u{y} in Q{6}. Then GF' permutes the 4 orbits

of HT' on Q\ T' transitively and by minimality we can assume that the
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kernel of this opevration equals HI‘" Therefore GI"/HP' {s a transitive
subgroup of Sym(l4) contalning a transitive group C of order & where C

{s efther a Kiein group or cyclic, Let L, HP' < L< G , be the inverse

Pl
Imagé of C. Then L Is transitive on g \r' and therefore H-L Is 6-fold
transitive on § and again we have H-L = G, Let C* be a subgroup in¢C

of order 2, C* qC, and L* L = GI" the inverse image of C*, Then

H# H.L* Is not 6-fold transitive on @ and H.L* s normal In G with

Index 2. Thls shows that H was not maximal in G, a contradiction to

our assumption about the minimality of d =[G : H . Hence the case

x = b cannot occur and we only need to consider the remaining cases x = 2
or 3.

: : A5
th Sg be .2 SyIS(HP) = Syls(Gr) and put Ag = Fix Sg. Then 1# H°Q
G 2 where G 2 Is 6-fold transitive on Ag of degree |A5|§E_= 0 mod 5 and
HA5 is 5-foid transitive on AS but not 6-fold transitive by 3.5.

Having assumed that G and H are minimal, we either have GAS = G,

Ag = @ and Sg = 1 or else GA5 =Sym(A5).Since HAS cannot be 6-transitive
the latter possibility implies |A5l = 7 and HAS = Alt(7). But this
contradlcts 2.8 just as In part (il) of the proof. Hence S5 = 1 and

every element of S5-order fixes exactly 1, 2, 3 or 4 points according

as n=1, 2, 3 or 4 modulo 5.

A A
Now tet S, be in Syl (H,) and put A, = Fix S,. Then 1 ¢# HZQGZand
A 2 2T 2 2 -
G 2 is a 6~fold transitive group of degree lAzl =n = 1(2) with

A A
I(G‘Z)rlz 1(2). Hence G 2 s a 3-fold transitive extension of one of
A
the groups in lemma 2.9. Since M,, extends only once (to MIZ)’ G 2=
A A A A
sym(7) or G 2= Alt(3) = H 2, 1f 6 2= Sym(7), then K > = Sym(7) also
A

because H 2 . A1t(7) would contradict 2,8, |In either case NH(SZ) N
H{I"} contains some element h of 5-order consisting of a 5-cycle InT'
fixing AZ\I" pointwise, Since NH(SZ) acts 6-fold transitively on A,,

the polnts of AZ\I" must be contained in the same Hr,-orbit Ty Since
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h fixes T, as a set, we have Ty | = (h=6+1)/x =z r = |A2| -5
A

modulo 5. This remark excludes the possibility G 2 - A1t(9), since

r =4 and rex <5 implies x = 1, and it also excludes the possibility
A A

x = 3. Hence G 2 _ Sym(7) = H 2, r=2, x =2 (from the table) and

n 2 4(5) is the only remaining possibility. But x = 2 contradicts

Bannai's theorem 3.9 and so the assumption of a minimal counter

example leads to a contradiction,

<

PROOF OF 3,11, Let S' be in Sylp(Gr,) and S = S'nH in Sle(Hr,)
with Fix S! = Al and Fix S = 4, Since k! = |a'] > t <k = |a] , 5" is

also in sylp(c;r) and S in Sylp(HP) where T'  T<A', T e @ {t},

By 2.3, 2.4 H is either (t-1)-fold transitive on © or else reqular,

t =3 and [H| =] =2™. This latter possibility cannot occur: since

S and S' are inductive in H (3.3), Hia} and Har) are regular on A and A&
respectively and |A| =0 = |A']| mod 2 violates the condition

|a]l =3+ 1 0% o] -3+ 1 mod 2.

Hence H is at least (t=1) fold transitive on @ and therefore G = Gr,-H.
By the Frattini argument and the condition under (ii) we have G = NG(S)-H
y(s)1 =1
and also [CCQG_H(S')] = [G;NG(S')] : [H:NH(S')]= 1. Hence by thecrem

. Al
3.5 we obtain x(H) = l-x(HA) and x(H) = 1-x(H ).

and G = No(S')*H, This implies [cc&y (S)]1=Tla:Ng(S)] - [H:N

The groups HY  and HA' are (t-1)-fold transitive normal subgroups of the
1

t-fold transitive groups 6% and 6% of degree k and k' respoectively

where k = t + 1 £0mod p and k' - t+ 1 0 mod p for some orime o less

A !
than t. If cd Sym A and 6 #Sym A we can aoply 3.10 to show that
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]
then also H® and HY are t-fold transitive. This then implies 1 = x(H&)

Al

= x(H), 1 = x(H"') = x(H) and H is t-fold transitive on Q.

So assume for the remainder of the proof that ¢ = Sym(4) or ¢4 = Sym &',
If‘GA = Sym 4 and H8 is not t-fold transi tive, then necessarily

|a| =k = t + 1 and H=A1t(A), and the condition k = t +1=2 £ 0 mod p
implies p £ 2 and therefore t > 3, Since S is a Sylow p-subgroup of HP’

the Frattini argument gives (NH(S)){F}-HF = H{F} and, taking A = ru{y}

. = ].k At .- -
we obtain that (NG(S))a HF H{F} acts on T like Al (d\y), i.e
Wl = Alt(T). This is a contradiction to theorem 2.8 since t > 3,
A 1
Similarly one proves that if G ' = Sym (A') then also W' = Sym(A').
<>
PROOF OF 3.12 Let H < G be a counterexample to theorem 3.12, By

3.6 we can assume that n - t + 1 = Omod 2. Let S, be in SY2,6 .,
o)
r e 2{t}, and put 84, = Fix S,, Then G 2 is t-fold transitive on Ay

o) o)
and | (6 Z)FI = 1(2). Therefore G 2 is a (t-3)-fold transitive extension
o)
of one of the groups in lemma 2.9. If t = 4, then G 2 . Sym(5), Alt(7)
o)
and M]] are the only possibilities by lemma 2.10. Hence H 2> ATt (5),

2

A &
Alt(7) or M If t>6, only G 2=Symd,, [8,] = t+ 1 andGg

1

=Alt AZ’ |A2| = t + 3 remain since My, is not extendible twice. There-
Fa

fore H 2 > Alt(Az) and IHAZI, |H| are divisible by t + 1 = p which is

a prime by assumption,

Let therefore 1 § SD be a Sylow p-subgroup of H., Since |Fix SDI = n=t

mod p, p> t, S. fixes at least t points and therefore S. € Sy _(H ) for

P P P T

some T contained in Fix S Ir] = t. Put AP== Fix SP. Then HAD:i 6P
| = ~dp . s ap

are groups of degree n' = |Ap] where 67~ is t-fold transitive and H

A
is at least (t-1)-fold transitive on AP.  (H p)F is a p'-group by

construction and since lHApl = (n'°(n'-l)....(n'-t + 1)/x(HAP»-[(HAp)r|,
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]HAPI is not divisible by p. Therefore HAp 3 GAp is no counterexample
. . s A

and hence H® is either t-fold transitive on Ap or else G ° = Sym(AD),

HAP = Alt(Ap) wi th IAp|= n' = t+ 1. But both is impossible: n' = t + 1

implies n = 0 mod t + 1 and in the first case H is t-fold transitive on

Q by theorem 3.5.
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CHAPTER IV~ HOMOGENEITY AND SYMMETRIC SETS

In the present chapter we will concentrate on the homogeneity aspect

of the normal subgroup problem.

We suppose again that G is a t-fold transitive group on g and that H # 1
is a normal subgroup of G. Then we can define an equivalence relation
on Q{t} by r~71' if rh = ! for some h in H and so the ~-classes are

exactly the orbits of H on Q{t}.

This definition can easily be extended to equivalence relations ~ on
a{k} for every k < |Q|: & ~ A' if both A{t} and A'{t} contain the

same number of t-subsets in each H-orbit on Q{t}, that is, if

[ {r|r ¢ aft}, © ~ r*}| = [{T'|P' € A'{t}, T' ~ I*}| for each I* in Q{t}.
Then, of course, ~e is the original ~-relation and we observe that for
s €& Q{k}, 4 ~kAh for any h in H., |If this should be true for every h

in G, necessarily |{I[rea{t}, T ~ r*}| must be independent of I'* and

therefore a constant.

For some values of k ~ is the trivial relation, i.e.? ~kA' for every
pair of members of Q{k} . This is certainly true for k < t, and also,
as we shall see later, for k > n~t if H is (t-1)-fold transitive on 9.

Let y,  be the number of ~ -classes on Qlk}. Then Y T =1 for

yn-k

k <t and Ye =y (H), the number of H-orbits on {t}, An

" Yn-t
interesting question would be to determine all values k for which i

is a trivial relation. Or more generally, how is Yi related to yk+]?

Of special interest are subsets A of Q with the property A ~kA9 for the
appropriate k and every g in G, For obvious reascns we will call such

a subset 'symmetric', As we have seen above, a subset A of 2 is



48,

symmetric if and only if [{I|l & A{t}, I ~ I*| is independent of I*

in @{t}. So, for instance, if y, = 1 for some particular k, every k-
subset is symmetric., Therefore the sets © and ?\© are examples of
symmetric sets where © is any set of size at most t - 1. Obviously

a set of size t is symmetric if and only if y(H) =1, i.e. H is

t -fold homogeneous, In general one derives from the above condition
for symmetric sets A various numerical restrictions on |A| and y(H)
thch one can use to show that symmetric sets of certain sizes imply the

t-fold homogeneity of H,

In this chapter we describe canonical ways to produce more symmetric

sets, In chapter 111, for instance, the points fixed by group S in

G H

Syﬂp(Hr) where symmetric sets if S =S, More generally we observe

that any subset of G with XG H

= X' leads to symmetric sets and collec-
tions ‘associated with its orbits and their transversals. This last
remark shows that the above symmetry concept basically compares the
conjugation properties of G with its permutation properties (e.g.
homogenejty) and we study some of these aspects for doubly transitive

groups containing a normal subgroup which is not doubly homogeneous.
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We adopt the notation of Chapter Ill. G is t-fold transitive on Q,
H# 1 is a normal subgroup of G which is not t-fold homogeneous, i.e.
y(H) > 1, Therefore {t} is a disjoint union of H-orbits u.,

1<i <y =y(H),

Q{t} = U] U... ulu

Y

and G acts transitively on the set {U,, ... Uy}.

Assume H is (t-1)-fold transitive on @ and let T be a member of Q{t}.

Then

(1) x(H) = x(HT)-y(H) and so x(H) = y(H)
if and only if H is (t-1)-fold generously

transitive,

Proof: Proposition 3.1. <

Let V =@QY be thevector space over the rational numbers of dimension y.

Define for every subset M of 9 a vector cM in V by the following rule:

("),

IM{t} 0 U] =1, iy

[{rlr €U, reM, i=1,..,y.

Then, obviously, we obtain::
Y
(2) £ (M

.= (|2|) for every M < Q.
i=1
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. r.
Let Fj be a member of Uj’ j=1, «e., Yo Then the vectors Ji=c

form a basis C of V which we will fix. Define a G-action on V by

(rjg)
+ C =c , i =1, eauy Yo
jg

Clearly c’® is contained in C and G acts transitively on C.

By this definition V becomes a G-module and

g
(3) (CM)g = C(M ) for every M & Q.

and every g in G.

M

Proof: Let¢ = z(cM)jcj and hence (cM)g = z(cM)jcjg. Then the i-th

component of (c")9, (CM)?, equals (CM)j for some j such that c/9 - c',
r.g r.

i.e.cd =c¢ ! and rjg belongs to U;. But Fjg also is a member of U9

and so U, = Ujg. Therefore (cM)ig = (cM)j = |M{t} n Ujl = Mt} N U9|=

g
sl mendau | = [0 ay| = (c(“g))i. Thus (M9 = M) o

Let H* be the kernel of the G-action on V. Then
(4) H <H* < G

Proof: If h is contained in H and if T is a member of Ui’ also Fih

is in Ui’ Therefore Clh =c! for all i, T =21, teay Yo <

\A
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Let X be a subset of G and X8 = {Xglg € G} the set of all G-conjugates
of X. Let P(R) be the set whose elements are all finite collections of
subsets of Q, P(q) = {{M],...,Mr}l M, < q, 1< i < r < =},

G acts on P(Q) in the usual way: {M‘,...,Mr}g= {M]g,...,Mg} € P(q).

A function M : x& - P(Q) is a G-function if M(X9) = (M(X))9.

M

preeesM } i P(Q) symmetrie if {c '|M. € W} =

M.
={(c ')QIMi € M} for all g in G. Call a subset M of Q aymmetric if

Call a collection M = {M

{M} is symmetric.

LEMMA 4,1

Let X be a subset of G with X° = X' and let ¥ : x& = P(a) be a G-function.
o : ot oG M _ M

Then M(X*) is symmetric for every X* in X and.c ZMGM(X*)C is

independent of X* in XG and invariant under G,

Proof: Let g be in G and M in M(X*). There is some h in H such that
x#9 = xxD and so M3 & M(x*)9 = M(xx9)= p(xA")= M(x=)N, i.e. there is

g |h '
some M' in M(x*) with M9 = M0, Therefore (M9 =¥ = M = Mand so

M(X*) is symmetric. Let X', X* be in x& and h in H with X'" = X%,
Mo Myh M M

Then ZME‘M(X')C = ZMEM(X')(C) = ZMEM(X')h c = ZMEM(X*)C shows

that CZM is independent of X* in XG. This also implies that ctM is a

G-invariant vector. <
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LEMMA 4,2

Let X be a subset of G with XG = XH and let M be a G-function on XGQ

Then NG(X*) preserves M(X*) for every X* in ¥ and if T: =
{M]""’MslMi € M(X*)} is a NG(X*)-orbit or a union of orbits on M(X*),

then T is a symmetric collection.

In particular, if NH(X*) is transitive on T, then every M in T is a

symmetric set,

Proof: N.(X*) acts on M(X*): Let g be in Ng(X¥) and M in M(X*),

Then MI €& M(X*)9 = M(x=9) = M(xx), Now show that T is symmetric.

since X8 = X we have G

Ng(X*)*H.  So let g = h.g be an element
in G where h is in H and g in NG(X*)i Then for any M in T we

.q 3 g - q
obtain (¢h9 = (Mh9 - (M9 - M) since g is in N(X%), M9

is alsoc contained in T and hence T is symmetric.,

If T is even an NH£X*)-orbit, M3 = for some h in NH(X*) and so

g h v
(CM)g = C(M ) = M= (CM)h = CM. Hence every M in T is a

symmetric set,

The following lemma gives some divisibility conditions for

symmetric sets:
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LEMMA 4.3

Let MO, Ml, cee s MJ, ee. » M be symmetric subsets of Q with size

M| =m+j, 0<j<r<t-]1.

Then y divides (" *t_(J.I")) for all | and jwith 0<i<j<r,

Proof: Let M;: Mj be a symmetric subset of Q. This implies (CM)g =
M for all g € G. Since G operates transitively on C = {C],...,Cy},
we have (CM)g = (CN)], 1 <2 <y. Therefore

(l!l) = (m:j) =2§l (CM)z = y-(cM)] and y divides (m:j) for all j,
0<j<r.

Now suppose the lemma is true for some i and all j » i. Then, by a
general formula for combinations, we obtain

mejo- (i+1)y i -
(tJ-(;H)) B (m+Jt i) - t -3’

If j=2i + 1, both terms on the right hand side are divisible by y

-~

and thus the lemma is proved.

Suppose now that H is (t-1)-fold transitive on Q and let 0. be a

subset of Q with U< leil = i<t-1. Then

(5) @\ 8, is a symmetric set and y divides

n-t+ 1,
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Proof: If 6 =6, has size at most t - 1 and if g is in G, then

there exists some h in H such that g = eh since H is (t-1)=-fold

transitive. Therefore (H.)9 =H = H = (H )h and K is
o (89 (M ®

a class of H-conjugate subgroups. Observe that Fix(He) = g ¢ this
is clear if [8] <t - 1 since then He is transitive on o\ g. If
6] =t -1 and G # Sym @, the He-orbits on ¢ \6 have length at
least 2 by lemma 2.4, If G =Symp, n =t + 1 and H is t-fold
homogeneous, i.e. y =y(H) =1, Therefore M(HG*):= {Q\ o*} for
every 8% in Q{i} is a well-defined G-function and @Q\g is a symmet-

ric set by 4.1, By lemma 4,3 y dividesn-t+ 1. <

With these preparations we turn to some applications. The existence
of subgroups U (or subsets) of & with U® = UM orovides symmetric
collections which in some cases lead to symmetric subsets of . As
we have seen above, the size of symmetric sets imposes restricticns

on y so that one hopes to be able to show y = 1, that is, H is t-fold

homogeneous.,

As an illustration consider the following case: G is doubly transitive
on @ having a regular normal subgroup H. If n is even, by lemma 2.3, H
is an elementary Abelian 2-group of order |Q| . Choose a base point

o inQ and identify H<+>Q in the usual way, i.e. hesg if ah = 8. Then
it is clear that G acts (by conjugation) transitively on the involu-
tions H\ {1}. But also the converse is true: Any subgroup A of G

containing H is doubly transitive onq if H\ {1} is a class of A-

conjugate involutions,
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We show that this observation can be generalized to
THEOREM 4.4

Let G be a doubly transitive permutation group of degree n and H # |
a normal subgroup of G. Suppose G contains an involution i with

iG =M and tet F = [Fix(i)].

Then y(H) divides (n-1, f-1). |In particular, H is doubly transitive

if (-1, f=1) =1,

Proof: H is at least transitive and so y(H) divides n-1 by
remark (5). Let i* be an involution in i® and
% = (“])(az)"'(af) (°f+]’“f+2)"'(“n-l’an) its cycle decomposition.
. . . .G sEy =
Define a G-functionM: i~ - P(Q) by M(i™) = {{af+],af+2},..., {a >0 1}

By lemma 4.1, CZM is a G-invariant vector, this implies that the

y(H) components of M are al equal, i.é. y (H) divides their sum
which equals (n-f)/2. Therefore 0 = n-f = (n=1) + 1 - f = (f - 1)
mod y and thus y(H) divides (n-1, f-1). If (n-1, f-1) =1, H is
therefore doubly homogeneous but also generously transitive: Since
n=fmod 2, {(n-1, f-1) = 1 implies that n is even and trivially

(or theorem 2.8) H is generously transitive and so doubly transitive.

<

Remark: We mention that the above proof can be equally used for
arbitrary elements i of order p (p a prime) to prove that y divides
(n-1, ((f-1)+(p-1))/2). Hence H is doubly homogeneous if G contains

some element | of order 3 with iG = iH such that (n=1, f=1) = 1.
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As an application of theorem 4.4 we obtain the following result
relating properties of some 2-local subgroup of H to the transitivity

of H.
THEOREM 4.5

Let G be a doubly transitive permutation group on Q of even degree n
and H # 1 a normal subgroup of G. Let a,B be two distinct points in

@ and S a Sylow 2-subgroup of H_ Put N = NG(S) and N' = N A H,

8 "

Suppose there is some subgroup I, S <1 <H, with [I:5] =2 and

]
|N = IN . Then H is doubly transitive.

Proof: Let A = Fix(S), 2<|A]l= n mod 2; by theorem 3.5 we have
x(H) = ]CCQG.H(S)I-X(HA) and since n-1 is odd x(H) = x(H}). We

-recall that ¢® is doubly transitive on A, H% is a normal subgroup of

A

G~ and involutions in Ko fix no point at all, It suffices to show

that HY is doubly transitive,

The subgroup | of H normalizes S and so | fixes A as a set.

| corresponds to some involution i = I-HA/HA in HA fixing no point

NI C

of A. We show i . By the Frattini argument we have

G{A}= NG(S)'dA' let g be in G g = g-h with g € NG(S) and h € HA;

{a}’ -
by assumption there is some h in NH(S) such that 19 = Ih'h, heh € H

A A
This implies T(G ) = i(H ), Now theorem 4.4 applies for 6% and i
(f = 0) and so HA is doubly transitive on A and by the above remark,

His doubfly transitive,

{a} °
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Remark 1: Candidates for | are subgroups of a Sylow 2-subgrouo T
of NH(S). In particular every characteristic subgroun ! of T with 2=
[1:S] satisfies the hypothesis of theorem 4,5, (More precisely: |
only needs to be invariant under all automorphisms of T normalizing
S). Since [T:S] is bounded by In|2, one arrives immediately to the

following conclusions:

(a) Aschbacher [1] : If n =2 mod 4, H is doub%ﬁy transitive

(take 1 = T).

(b) If n =4 mod 8, either H is doubly transitive or else n = 1
mod 3, S is normal in some Sylow 2-subgroup U of H, U/S is
a Klein group and the 3 involutions in U/S correspond to

y(H)= 3 H-orbits on 9{2}.

Remark 2: As we said earlier (in the remark after theorem 4.4) a
similar version of theorem 4.4 holds for elements j of order p (p # 2)

with j& = ;8 & y(H) divides (n-1, ((F=1)«(p=1))/2) where f =|Fix(j)].

We can use this in the situation of theorem 4,5 : Let p # 2 be a

prime dividing n, S in Syzp(H ) and J a subgroup of H with [J:S] = b

a,B
1
and 3V = 0N where N = NG(S) and N' = Ny H., Then y(H) divides

(n-1, P12y,

(We omit the proof of this statement which can be given in almost the
same way as the above proof.) Similar to the conclusions in Remark 1

we obtain:
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(b=172y 21 is doubly

(&) If n =p mod p2 and (n-1,
homogeneous and H is also doubly transitive if and
only if H has even order. In particular we obtain
a version of Aschbacher's result for p =3: If n =3
mod 9, H is doubly homogeneous on @ and H is doubly

transitive for n > 3 since in this case G cannot

contain a regular normal subgroup. (See theorem 2.8).

3 ,(D'])/Z) =1

(b)  1f n = p? mod p> and (n-1 , then either
H is doubly homogeneous or else S is normal in some
Sylow p-subgroup U of H, U/S is elementary Abelian

of order p%, |Fix(5)| = p? mod p3 and y(H) divides

p+].

Using similar methods we obtain the following result about doubly
transitive groups whose degree contains some prime only in small

powers:

THEOREM 4,6

Let G be a doubly transitive group of degree n and H a normal subgroup

of G with index[G:H = d in G.
Let p be a prime dividing n to the j-th power, i.e, ]n|D =pl, j> 1.

Suppose either (i) (d, n=1) =1 or (ii) (d,p'=1) = 1 for all i < j

and assume that G/H is solvable if p =2 and j > 2,

Then H is doubly transitive,
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Proof: We assume that G and H are groups of smallest degree n
satisfying the hypothesis but not the conclusion of the theorem,
Furthermore, we may also assume that there is no normal subgrouo
of G between G and H, that is, G/H is simple, We will see that H
mus t be doubly homogeneous and generously transitive, contrary to

our assumption,

The first hypothesis (i) is clear: G/H acts transitively on

{U], cee Uy} and so y divides |G/H| =d, But y also divides n-1
by (5). Hence y =y(H) =1 and H is doubly homogeneous. If n is
even, also |H] 1s even and by theorem 2.8 H is generously transitive
and so H is doubly transitive. If n is odd, also d is odd and

since |G| is even, also |H| is even, i.e. H is doubly transitive.

Now let H,G be a counterexample as above and p a prime with

Fix T, Put

[l = pl, 5> 1. Let Tbe in Syg (H ) and 4

n' ={al; then n' =n mod o and {n'| <[S$:T] = |n| for some S in
Sylp(H) containing T, 6 is doubly transitive on A (proposition 3.3),

A, . A - o
H™ is normal in G and transitive but not doubly transitive on A by

theorem 3.5. Observe also that d' = |GA/Hﬁ divides d = |G/H|. Thus
A

GA and H satisfy the hypotheses of the theorem and by minimality we

have n = n' and therefore 7T = 1, i.e. Ha is a p'=-group. Hence pd is

the largest power of p dividing the order of H and Sylow p-subgroups

of H are semiregular having [nlp, orbits of equal length |n| .

Now we deal first with the case p =2, j = 1, that is n = 2 mod b4,

Since |H| is divisible by 2 but not by 4, H contains a normal

2-complement H. H is normal in G and cannot be transitive since 2 |ﬁ|.
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Thus H = 1 and so H = G = Sym (2), a contradiction to our assumption.

In all other cases G/H is solvable: This follows in the case p # 2
by the Feit-Thomoson Theorem. Hence G/H is a simple abelian grouo,
i.e. d = |G/H| = q for some prime q. By assumotion q is odd and so
]H] is even and H is generously transitive. Hence H is not doubly
homogeneous. Lety = y(H) = q be the number of H-orbits on Q{2}.

Then y = q divides n-1 by (5).

Define a G-map M: Sy%§H) ~ P(p) by M(S) = {0]0 is an orbit of S.

S € SyEp(H)}. Then M(S) is a symmetric collection of ]n]p, sets

of size |n|p by lemma 4.1. Let T be an N, (S)-orbit on M(S). Since
[Ny (S):N,(S)] = q, T is either an Ny(S)-orbit or a union of q Ny (S)-
orbits. Not all NG(S)-orbits can split over NH(S), otherwise q would
divide |M(S)| =|n|D, , which is impossible since q divides n =~ 1.
Hence M(S) contains somejsymmetric set of size ]n|D = pj by lemma

L.,2., Hence q divides (g ), i.e. q|p?-1. This contradicts the assumption

(d, pJ=1) = 1 and H is doubly homogeneous on @, a final contradiction.
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CHAPTER V  TRIPLY TRANSITIVE GROUPS

This chapter is a continuation of Chapter Ill. As we have seen there
the transitivity of a normal subgroup H in G may be discussed in
terms of its transitivity properties on designs D(p,H). In fact,
proposition 3.1 tells us that H is t-fold transitive on q if and only
if His transitive on the blocks of D(p,H) and t-fold transitive on
each block. In the present chapter we will investigate these two

condi tions for triply transitive groups.

Section 5.1 deals with the design D(2,H). Here one uses a result of
Hering to show that 6% and HA, A a block of D(2,H),are one-dimensional
projective groups and so the second condition above does not pose any

problem. The transitivity of H on blocks of D(2,H) is equivalent to

G - SH where S is a Sylow 2-subgroup of H

ayB,Y
can show S° = SH, we obtain that H has at most 2 orbits on @{3}. In

S . So, whenever one
proposition 5.3 we prove this in the case n = 0 mod 4 under the
assumption that involutions in H do not fix too many points. Using

more elaborate fusion arguments one should be able to extend proposition

5.3. considerably.

In section 5.2 we suppose that the degree of G is divisible by 3 and
we investigate the design D(3,H). In this situation one observes
easily that H is transitive on the blocks of D(3,H) and so the emphasis
lies on the determination of GA. We are able to show that also in this
case GA is a projective groun and this implies that H has at most 2

orbits on Q{3}.

We mention that the proofs in this section use a number of very deep
results on abstract finite groups like the Feit-Thompson theorem,

Glauberman's Z*-theorem and Suzuki's characterization of ZT-groups.
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5.1 TRIPLY TRANSITIVE GROUPS OF EVEN DEGREE

G is a triply transitive group on Q of even degree n and H is a
normal subgroup of G. In Chapnter Il! we have defined designs D(p,H)
whose points are the points in Q and whose blocks are the G-images
is a Sylow p-subgroup of H . IfHis at

a, By
has odd order, D(2,H) has only

of Fix(Sp) where Sp

least doubly transitive and if H
oy Byy
one block Q and Hering's theorem (lemma 2.9) implies that G is a
projective group acting on the projective line g in the usual way

or Alt(6) = H <G < Sym(6) with n = 6,

The following proposition is a consequence of Hering's result and
shows in the general case that G preserves a 3-design whose blocks

are projective lines:

PROPQSITION 5,1

Let G be a triply transitive permutation group of even degree n and

H+# 1 a non-regular normal subgroup of G.

Then D(2,H) is a 3-design, G is contained in the automorphism group

of D(2,H) and is transitive on its blocks.

For any block A of D(2,H), H and 6 are i somorphic to either

(i) subgroups of PrL(2,q) containing PSL(2,q) where |a] = 1 = g
is some odd prime nower, or

A

iR

(11) HY= A1t(6) < ¢® < Sym(6) and n = 6.

Proof: We only need to show that the statement about the isomorphisms

holds.
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A
The group H is normal in GA and is at least doubly transitive on A
where IAI is even. This follows from 2.4 and 3.3. By construction

| (HA) | is odd for any three distinct points in A and to apply

@, B,y
Hering's theorem we need to show that [(HA)G Bl is even. Let S be
’
in SyQZ(Ha,B’Y) such that Fix(S) = A and let T be in SyQZ(Ha’B)

containing S. If t is an element of NT(S)\ S, then t fixes A as

A
a set but not pointwise and so (H") has even order. So it remains

o, B
to show that NT(S) \ S is not empty, i.e. T#S, Now T =S if and

only if [H I= n-2/x(H) is odd. But this contradicts theorem

0,808,y
3.8 except in the case PSL(2,n-1) < H <G <PrL(2,n-1).

Therefore there are two possibilities: eitherI(HA)a,sl is even and
by Lemma 2.9 we get (i) PSL(2,g9) < A < PTL(2,q), || =q + 1, or

(i) HA = Alt(6), 1Al =6, or otherwise H itself is a subgroup of
PTL(2,n-1) containing PSL(2,n-1). In the first case the statement of
the proposition holds since PSL(2,q) is characteristic in Ko and so
GA < PTL(2,q) or GA < Sym(6). In the second case, HA and GA must be

one of the groups under (i) since these are the only triply transitive

groups involved in PlL(2,n-1). See for instance 11.8.27 in[10].

<

A well-known type of 3-designs arises in this way from one-dimensional
projective groups: Let K be a finite field with of, f> f; elements.
Then PFL(Z,pf) = PGL(Z,pf)°F is triply transitive on the projective line
PG](pf) where F is the group of Frobenius automorohisms of K of order

IFI = f., Let p* be a orime dividing f and F* a p*-subgroup of F. Put

ot

f* =[F:Fd; then the subfield K* of K fixed by F* has pf" elements

f

Put H:= PGL(Z,pf)°F*. Then D(p*,H) is a 3-(of+l, P h+], 1) design and

f:‘:) < A A< f*

A
H, 6% satisfy PsL(2,07 )R H < € S pre(2,07") for any block & of

D(p*,H). The block through 0, 1, @ is K#y{=} and so D(o*,H) consists
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of 'sublines!' PG](pfh) of the projective line PG](pf).

This example also includes the Miquelian type of finite inversive

planes for f = 2.f%,

Other examples of designs where blocks are in some sense projective
lines one should mention in this context are the 2-designs associated
with PSU(3,q) and the groups of Ree type: Let G be either AUT(PSU(3,q)),

2a+l

q odd, or a group of Ree type with characteristic q = 3 in their

3

usual representation on a set Q of q”+! points. (See for instance

Ward [ 25] and lemmata 3.2, 3.3 in [9]).

In either case G contains some involution i fixing precisely q + 1
points. Arguments similar to those in the proof of 5.1 show that G
induces a doubly transitive group ona-= Fix(i) and 6% > PSL(2,q).

Therefore D = (Q,AG) is a 2-design whose blocks are projective lines,

In general, however, it seems to be quite hopeless to recognise

D(p,H) as some specific geometrical object. Yet for the question

about the transitivity of H, this design concept is to some extent
useful. So, for instance the question arises, under which circumstances

is H necessarily transitive on the blocks of D(p,H)?
Before we come to this question, we first prove the following lemma:

LEMMA 5.2

Let B< A be groups and S a p-subgroup of B for some prime b.

Suppose cclA(S) # ccl,(S). Then there exists some a € A such that

g
s # 52, ST < N (S) and S< Ny (S?).,
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Proof: Assume first there is some T € SyQD(B) such that S <h T.
Then Np(N;(S)) \ N (S) is not empty and for any a in this set
we get §# §° <(NT(S))a = N(S) = NL(s®). Thus s? < Ng (S) and

5 < NB(Sa), 59 %5,

Now we may assume that S is normal in every Sylow p-subgroup of B
containing S and the same is true for every conjugate of S. Let ¢
be in A such that S and S are not cenjugate in B, Let T be in
Syzp(B) containing S. Then there is some b € B such that (SC)b is
also contained in T. Put cb = a. Then §% # Srare by assumption

normal subgroups of T and hence normalize each other,

Now suppose H is not transitive on the blocks of D(p,H). This implies

that SG(S € SyRZ(H )) is not a class of H-conjugate subgroups of

a,B,Y

H and by 5.2 every S* in SG determines a set of conjugates

S, = §%, S], cee s Sr such that §

0 and Si normalise each other,

0
Therefore 5,2 implies that D(p,H) also carries a graph structure
preserved by G by defining edges (AO’Ai) if 4y = Fix(SO) and

Ai = Fix(si). This graph has some interesting pronerties.
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PROPOSITION 5,3

Let G be a triply transitive permutation group of degree n with

normal subgroup H.

Suppose n 2 2 mod 4 and if n = 0 mod 4, that no involution in H
fixes as much as 2¢|Fix(S)|(>8) points where S is a Sylow 2-subgrouo

of the stabilizer in H of three distinct points.

Then H has at most two orbits on the blocks of D(2,H).

Proof. We may assume that H has even order, otherwise D(2,H)

o, By
is degenerate and consists of only one block Q. Hence 1 # H is not

regular and so doubly transitive, 1f n is odd, S € Syzz(Ha 8 Y) is
yH 2

also a Sylow subgroup of Ha 8 and so SG is a class of H-conjugate
’

subgroups of H. This implies that H is transitive on the blocks of

D(2,H).

Hence assume for the remainder of the proof that n is divisible by
4 and that H is not transitive on the blocks of D(2,H). Let A and
A' be two blocks in D(2,H) belonging to different H-orbits. Since

H is doubly transitive on 2, we may assume that A and A' have two

)

points a,B in common. Let S be in Sylz(H ) and S! in SylZ(H

a,B,Y 0y B,y!
such that A=Fix(S) and A' = Fix(S'). S and S' are not conjugate in

B =H but conjugate in A = G

0.8 is transitive on @\ {o,B}

o,B, ] Ga,B

with y9 = y', i.e. S9<H and

and so there is some g in G '
o, B,y

o, B

therefore S and S' are conjugate in A.
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By lemma 5.2, there is some conjugate S* of S in B such that S and
S* normalize each other. Let A% = Fix S%, Then A N A *={a,R}
because a further point & in AAA* would imply § < §°5*% <H

@B, 8

which is impossible since S is a Sylow subgroup of H .
as By

Suppose i is an involution in SO S*, Then i fixes all 2

Al -2
points in AuA* and by assumption these are the only points fixed
by i. So i has degree n = 2 (|a] = 1) =2 mod 4 since |a]| is even
and n = 0 mod 4, Thus H contains an odd permutation and so there
is a normal subgroup H* of H not containing i, <i> «H* = H; clearly

H* is also normal in G, If U in Syzz(H*a ) is contained in S,
L)

BsY
we get S=<i> U and since every involution in SN S* is an odd

permutation, we obtain UN S*¥ =1 and so SN S$* =<i>, This
shows that SNS* has order at most 2. On the other hand, since

[ ] divides n-2, |[H ]]2 < 2, Thus T:= S§.5%

a,B:Ha,B.Y
and |S-S*| = 2°

H +H
G’B asBsY
S

is a Sylow 2-subgroup of Ha . This gives two

s B
possibilities:

(a) sonsx=1, |[S] =|s%| =2 and T is a four group with

wle

involutions s, s* and s.s%,

(b) SN Sk =<i> |s|=]|s% =4, |T| =8 <w>=U =5nH,
<u> = U* = S§* N H*, Since u* is the only even permutation

in §%, S centralizes S$* =<u*,i>, So T = 5:8% is elementary
abelian containing the involutions u, u*, u.u* (even permu-

tations) and i, i.u, iu*, fuu* (odd permutations).

Obviously we can assume that S' is also contained in T and we recall
that S and S' are not conjugate under H, This means that in case
(a) not all involutions in T are H-conjugate and hence there is some

involution j in T such that jH(W T = ].
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In case (b) we claim that either the same fact is true or otherwise

H has at most 2 block orbits on D(2,H): If u,u*,uu* are not all
H-conjugate, we take j in {u,u*,u-u*} , Hence suppose they are all
conjugate in H, By Burnside's theorem (p,155 in [5]) this is equi-
valent to conjugacy in NH(T). Therefore we can assume that S' is

not only contained in T but also contains (say) u. But apart from

S there is only one subgroup of T containing u and some odd transposition
and therefore $' = <u,iu*>, Thus every block orbit of H on D(2,H),

di fferent from the one containing A, leads to the same subgroup S'

clearly H has at most two orbits on the blocks of D(2,H).

Hence assume for the remaining part of the proof that j € T € Sygz(Ha’B)
has the property jH(W T=1{j}. Note that T is also a Sylow 2-subgroup
of Ha' éy Glauberman's Z*=-theorem [6] j is in Z*(Ha). I f O(Ha) =1,
Z*(Ha) = Z(Hu), the centre of Ha’ is a normal subgroup of Ga and
therefore transitive on A\ {a}. But since Z(Ha) is abelian, Z(Ha)

is indeed regular on¢@\ {a}, a contradiction, n-1 is odd, Thus

O(Ha) # 1. Let M be a minimal normal subgroup of Ga contained in O(Ha)'
Then M is elementary abelian and transitive on O\ {a} since O(Ha) is
solvable and Ga doubly transitive on @\ {a}. Lemma 2.11 lists all

grouns with this property and the only possibility is PSL(2,n-1)
H<G<PrL(2,n=1). Mow it is easy to see that H has at most 2 block
orbits on D(2,H): Let A, A' be two blocks and, since H is doubly
transitive, assume that & and A' both contain 0,%, |If A and A'

both contain some (non-)squares (as elements of the field GF(n-1),

then & and A' belong to the same (PSLIO’m-orbit, since (PSL)O’w is
transitive on {non-)squares. So, if A and A' do not belong to the

same H-orbit, necessarily A\ {0,%} consists of squares and A"\ {0}

consists of non-squares. Hence H has at most 2 block orbits on D(2,H).

<
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THEOREM 5.4

Let G be a triply transitive permutation group on Q of degree n,

n =0 mod &4,

Suppose H is a nonregular normal subgroup of G such that no involution

in H fixes 2.

Fix(S)| (> 8) points where S is a Sylow 2-subgroup of

the stabilizer inH of three distinct points in Q.

Then either H is triply transitive on @ or PSL(2,q) <H <G < PrL(2,q)

for some odd prime power q with q + 1 =n,

Proof: Let H < G be a counterexample of minimal degree n and let S

be in Syg,(H ). By theorem 3.8 and lemma 2.9, S is not the
2 a,B,y

identity subgroup and by proposition 3.1 we obtain x(H) = 2. x (H?)

where Z is the number of block orbits of H in D(2,H) and & = Fix(S).

Proposition 5.3 implies that z is at most 2,

GA

Ha

is a triply transitive group of degree d=]|aA| with normal subgroup
for which the theorem is true: By construction involutions in KA
fix at most 2 points and d is divisible by 4: [d-2|, =

: (G

_ir (b A
067, g:(6%), 5 0 auBy
X(HA) <2 and so x(H) =1, 2, 4, x(H) = 4 is impossible since &4

]Iz < I[Ga,B: G ]|2 = |n-2|2 = 2, Therefore

does not divide n-2 and x(H) = 2 contradicts theorem 3.8, So only

x(H) = 1 remains, a contradiction to our assumption,
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5.2 TRIPLY TRANSITIVE GROUPS OF DEGREE DIVISIBLE BY 3.

In this section G is a triply transitive group on Q of degree n,

n 20 mod 3 and H is a normal subgroup of G,

We begin with a classification theorem similar to Hering's theorem.

THEOREM 5.5

Let G be a triply transitive permutation group of degree n,

N =0 mod 3,

Suppose G, contains a normal subgroup M # ] such that |M Ylis

prime to 3 for distinct points a,B,y.

Then G is isomorphic to a subgroup of PTL(2,q) containing PSL(2,q)

for some prime power q with q = n-1,

Proof: Let M* be a minimal normal subgroup of Gy contained in M.
Since G, is doubly transitive on & A {a}, a result of Burnside
(page 202 in [5]) implies that M* is either simple and primitive on

2 \ {a} or else is an elementary abelian p-group, regular on Q \ {a}.

Consider the simple case first. It is not difficult to see that
the hypotheses of the theorem imply that M* is a 3'-groun: M* is
- (n=1)+(n-2)

|
which is prime to 3. Therefore M* is a Suzuki group 52(22r+ ),

3/2-fold transitive on\{a} and so |M*| divides IM*B y
H

r= 1, by the Martineau-Thompson result Lemma 2.13.

Since M* is primitive on 2\ {al, Cq (M*) < M*, which means that
a

G,/M* is a subgroup of OUT(M*). And so [G :M] divides 2r + | (see
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Suzuki's paper [21], theorem 11), i.e. the order of G, divides
(2r+l).q2.(q-|)-(q2+]) where q = 22r+1. The primitivity of M* also

implies that M*_ is a maximal subgroup of M*, From this information

8
and the list of subgroups of M* (theorem 9 in [21]) we conclude that

.. . 2 .
M* operates on f\a in its usual representation on q~ + | points.

We show that this leads to a contradiction, a Suzuki group of degree
q2 + 1 does not possess a transitive extension, For suppose G existed
such that Ga contains a normal subgroup M* = Sz(q) and GG/M* (as we
have seen ébove) has odd order. Since G is transitive its degree is
q2 + 2 = 2(24r+| + 1), Let i be an involution in G, If | fixes a
point of @, i lies in M* since we then can assume that a € Fix (i),
and so i fixes at most 2 points, But i must have at least one fixed
point, otherwise i is an odd permutation and G has a normal subgroup
of index 2 which is impossible, Hence every involution in G fixes
exactly 2 points. Suppose j = (a,8) (y)(8)... is an involution

normalizing Ga 8 and let S be a Sylow 2-subgroup of M* S is
’

g’
characteristic in Ga,B and so j normalizes S, According to the
structure of M*, S is regular on Q\ {a,8} and fixes «a,8. CS(i) # 1
fixes {y,8} as a set and hence by regularity ICS(i)l =2,

Thus Cg ois(i) has order 4 and by a well-known lemma of Suzuki

S«<i> is either dihedral or semidihedral and the same is true for S.

This finally is a contradiction, S has exponent 4 and is not dihedral,

see lemma 1 in[21] .

This shows that M* is not a simple group and therefore M* is an

elementary abelian p-group, regular on @\ {a}.
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Let M be a minimal normal subgroup of G, M is solvable only if

G = Sym (3) (lemma 2.6) and, by lemma 2.11, M is one of the following

groups:
(a) M=PsL(2,q), n=q+]
(b) M o= SZ(q), n = q2 + 1,9 = 22r+1
(c) M=PpPsu(3,q), n =g +]I

(d) M is isomorphic to a group of Ree type,

n = q3 +1,qs= 32r+l

Possibilities (b) and (d) do not occur since 3 divides n., In case (c)
we prove that PSU(3,q) is not a normal subgroup of a triply transitive

group: (PSU)G is cyclic and contains a subgroup U with
’

B

{a,B} # Fix U # @, (See 11.10,12 in[10]), U is normal in G nd

a
G;B

so N\ {a,R} contains an orbit of G i.e. is not transitive on

G
G’B’ o B
@\ a,8 . Therefore only PSL(2,q) = M< G < PrL(2,q), q = n-1 remains

and the theorem is proved,

Theorem 5.5 allows us to state the following analog to proposition 5,.1:

PROPOSITION 5,6

Let G be a triply transitive permutation group of degree n, n = O

mod 3, and H #1 a normal subgroup of G,

Then D(3,H) is a 3-design, G is contained in the automorphism group of

D(3,H) and is transitive on its blocks, For any block A in D(3,H) we
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A

have PSL(2,q) < H™ < ® < PrL(2,q) for some prime power gq ,

q = 2 mod 3.

A

Proof: G2 and K% satisfy the hypotheses of theorem 5,5,

<

Compared to the situation in section 5,1 this time the question about
the transitivity of H on the blocks of D(3,H) finds an easy answer:
If G# Sym (3), H is at least doubly transitive and [H _: H 1 =

o,B QyBry

(n-2)/x(H) # 0 mod 3 shows that S € Sy23(H ) is also a Sylow

0yByy

3-subgroup of Ha 8 and therefore SG is a class of H-conjugate sub-
2 .

groups, i,e, H is transitive on the blocks of D(3,H). By theorem
3,5 we obtain x(H) = x(H2) where A= Fix(S) and 5.6 implies x(H2) < 2.

Hence:

THEOREM 5.7

Let G be a triply transitive permutation group on @ of degree divisible

by 3.
Then every normal subgroup H ¥ 1 of G has at most 2 orbits on Q{3}.

In Chapter Ill, theorem 3,8, we have seen that the projective grouos
are the only groups of degree = 0 mod 4 for which x(H) is even.

Therefore, as a corollary of 3.8 and 5.7 we have:
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THEOREM 5.8
Let G be a triply transitive group of degree n, n = 0 mod 12,

Then either every normal subgroup H# 1 of G is triply transitive

or PSL(2,q) < H <G <PrL(2,q) withg=n - 1.
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