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ABSTRACT  

This thesis describes a theoretical and experimental study 

of mixed forced-free laminar convection in vertical channels with an 

arbitrary prescribed wall heat-flux or temperature. 

The problem is solved for two different cross-sections: 

rectangular and circular. The results are based on a numerical solution 

of the conservation equations of mass, momentum and energy using a 

finite-difference method. No restriction on the profiles of wall 

heat-flux or temperature is made, solutions being obtained for various 

profiles. The scope of application of the method is wider for the 

rectangular cross-section than for the circular one, because in the 

former case, the computer program is written in such a way that the 

profiles of heat-flux or temperature on the opposite walls may differ. 

The method is applied to predict different cases of wall heat-flux 

profiles and of continuously developing flow along the channel. 

Special reference is made to models simulating plate-type nuclear fuel 

elements, as contained in the core of the University of London Reactor, 

at different power levels. The pressure drop and the nature of the 

flow inside channels of these elements are obtained. The problem 

relates to the maximum safe power at which the reactor can be operated. 

A search for a relevant parameter to represent the mixed-

convection flows is pursued and as a result, the parameter Grp/Reō is 

found to be suitable. Using this parameter, a plan is proposed for a 

general representation of the pure-forced convection, pure free-

convection and mixed-convection regimes. 

In order to gain more confidence in the adequacy of the 

theoretical method, the predictions are compared with available 
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published results for prescribed uniform or sinusoidal heating cases. 

There is always good agreement between the results, which were further 

checked by considering a wall heat-flux profile for a typical channel 

and obtaining the corresponding wall temperature profile. Then, this 

profile is considered as data for the same channel and the wall heat-

flux is re-obtained. A comparison between the two wall heat-flux 

profiles adds to the confidence about the present method. 

The possibility of the inception of an inflexion point in 

the axial velocity profile under various profiles of heating is also 

examined. For flow in round tubes, a tentative transition parameter, 

based on the published experimental results for uniform heating cases, 

is used to predict the possibility of transition from laminar flow 

into an unstable flow. 

The effects of different entrance conditions (e.g. Reynolds 

number, entrance velocity profile, water inlet temperature) on the flow 

are also investigated. 

The results for mixed-convection cases are compared with 

the corresponding forced-convection cases and it is concluded that 

because of continuously changing velocity and temperature profiles, a 

mixed-convection flow never becomes fully-developed. 
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NOMENCLATURE  

List of Symbols  

a 	: Coefficient for the numerical integration in 

Eq. (3.36) 

a' 	: Element of the "Flow-Field" matrix, IPVUI in 

Eq. (3.44) 

a" 	: Element of the "Temperature" matrix, ITI in 

Eq. (3.45) 

b 	: A constant used in Eq. (8.30) 

b' 	: Element of the right-hand matrix, Eq. (3.44) 

b" 	: Element of the right-hand matrix, Eq. (3.45) 

c 	: A constant used in Eq. (8.30) 

C' 	: ZDT/(Pr . Rep) 

C , C , C 	: Constants defined by Eq. (3.5a) 
1 	2 	3 

CO1 	 : 1/ (C 	. C ) 
5 	2 

CO2 	: (tin  + C)/C 1 	
2 

CO3 	: C 
3 

C , C , C 	: Constants defined by Eq. (3.6) 
4 	5 	6 

C04 	: C 	- C 	. t,.... + C 	. t? 
4 	5 	in 	6 	in 

C05 	: 2t. 	. C 6/C 
5 
 - 1 

in

C06 	: C /(C 2  . G) 
6 	5 

Cp 	: Specific heat of the fluid at constant pressure 

d 	: Gap between the walls of test-channel, Fig. (6.5a) 

d' 	: Coefficient for the numerical differentiation, Eq. (3.37) 

D 	: Effective diameter of the channel; 

D = 2d } For flat duct 

D = 2R ÷ For round tube 
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E 	: d/(2L) 

f 	: Pressure loss factor - 	
3Pmean  

P  az 
Tw  

fs 	: Shear loss factor = 1 	
2 

2 m . uo 

g 	 : Gravitational acceleration 

G 	: A dimensionless parameter = d3  . g/vB 

Gr 	: G parameter for round tubes = R3  . g/vg 

h 	: Heat transfer coefficient 

Ah' 	: Effective level-difference between the Supply and 

the Discharge Tanks, Fig. (6.1) 

the 	
. 

(Aptot 	Apgain)/(pm ' g)  

i 	: Mixed-convection index defined in Section (a.5) 

of (5.3.3). For forced convection; i = 0 while for 

free convection; i = 100 

I 	: Electric current through each simulating plate 

J 	: An index to represent intermediate points for the 

numerical integration, Eq. (3.36) 

k 	: Thermal conductivity 

2, 	: Dummy coordinate 

L 	: Length of the channel 

L' 	: Extrapolated length of the channel, Fig. (6.11) 

m 	: Horizontal parameter shown on Figs. (3.4) and (8.2) 

M 	: Mass flow rate through the test-channel 

M 	: Number of horizontal divisions in the finite- 

difference approximation as shown on Figs. (3.4) 

and (8.2) 

n 	: Axial parameter as shown on Figs. (3.4) and (8.2) 

N 	: Number of divisions considered for the numerical 

integration, Eq. (3.36) 



q . 
w 

qcd 

Qn  

4tot 

r 

r' 

r 
t 
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: Number of divisions considered for the numerical 

differentiation, Eq. (3.37) 

: Pressure 

: Extra pressure needed at the entrance to the 

test-channel for forcing the fluid through the 

channel 

: Pressure drop in the test-section 

: Pressure gain in the test-section 

: Total pressure drop throughout the water circuit, 

Fig. (6.1) 

: Dimensionless pressure parameter = 	P  
pm  . uo  

: Heat-flux rate at wall, Fig. (7.2) 

: Rate of longitudinal heat conduction, Fig. (7.2) 

: Heat rating of the division "n", Table (6.1) 

: Total heat rating of the test-channel 

: Dimensionless radial coordinate = r'/R 

: Radial coordinate 
two - t

in 
: Ratio of wall temperatures -  wo 

- 
twi 	tin 

p 

po.extra 

Apt.s 

4gain 

4tot 

P 

• 
rq 	: Ratio of wall heat-fluxes = qwo/qwi 

R 	: Tube radius 

R , R 	: Conversion ratios of the transformers, Fig. (6.17) 
1 	2 

R' 	: Electrical resistance of a simulating plate (S2) 

S 	: Parameter indicating the direction of the flow; 

1. 

 Upward flow-)-S = 1 

Downward flow + S = - 1 

Adiabatic flow -> S = 0 

t 	: Temperature 
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t 	: Selected temperature for water in the Heater Tank 
1 

tin 	: Fluid temperature at the inlet to the test-section 

tout 	
: Fluid temperature at the exit of the test-section 

T 	: Dimensionless temperature parameter = G . C S(t - tin) 

U 	: Axial velocity parameter = u/uo  

U* 	: d/(2a) . u 

v 	: Horizontal velocity 

V 	: Horizontal velocity parameter = v/uo  

w 	: Width of the test-channel 

x 	: Third coordinate (across the simulating plates) 

X 	: x/w 

y 	: Horizontal coordinate in flat duct 

Y 	: Horizontal parameter = y/d 

z 	: Axial coordinate measured from the entrance of the 

channel 

z' 	: Axial coordinate measured from the middle of the 

channel 

Z 	: Axial parameter; 

For flat duct, Z = z/d 

For round tube, Z = z/R 

ZD 	: Z/2 

Greek Symbols  

a 	: Average thermal diffusivity of the fluid = 	
k  

p Cp  

S 	: gw.Max/gw.av 

S' 	: Bulk expansion coefficient 

ō 	: Dummy axial coordinate 

ō' 	: Thickness of the simulating plate 



GrD  

t 
Gr 

Nu 

Nu. 

Nūo  
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: Density 

: Specific resistance (0/unit length) 

: Viscosity 

: Kinematic viscosity = p/p 

: Dimensionless temperature = 	. 

1 
- 
	atmean 	q ^  ' d  

(t - tin 	 2k ) 

: (CO1 . T/G + CO2) 

: {C04 . G + T (CO5 + C06 . T)} 

: Shear stress at wall 

Dimensionless Numbers  
I / 	• 

Dif 

Grashof number - S° 	
g 	

gw.av 
z vm  . km  

Grashof number based on the temperature 

= Sō . g . (t - tin) . D3/vm 

Nusselt number = D . h/km  

Nusselt number at the "inner" wall 
D • hwi  

km  

Nusselt number at the "outer" wall 
D 

h w o 
km  

Pe 	: Peclet number = Re . Pr 
C 

Pr 	 : Prandtl number = pB . ( k ) 
m 

Ra 	: Rayleigh number = Pr . GrD  

Re 	: Flow Reynolds number = pm  . uo  . d/11 /3 
 

Rem 	: Bulk Reynolds number = uo . d/vm  

Reo 	: Entrance Reynolds number = uo  . d/vo 
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Subscripts  

Av 	: Average 

B 	: Base 

C 	: Coolant 

: Centreline 

D 	: Based on the effective diameter, D 

f 	: Frictional 

H 	: Based on constant qw' case 

i 	: Measured at the inner wall (Y = 0 H ) 

m 	: Measured halfway through the channel 

mean 	: Integrated throughout the cross-section 

o 	: Measured at the outer wall (Y = 1 FL) 

p 	: Peak 

tot 	: Total 

T 	: Based on constant tw  case 

0 	: Entrance to the test-channel 

co 	: A reference point 

w 	: Wall 

Abbreviations  

CIRCLE 	: The computer program to solve for round tube geometry 

DUCT 	: The computer program to solve for flat duct geometry 

DVM 	: Digital Volt Meter 

F 	: Dummy function 

FI 	: Prescribed function at the inner wall 

FO 	: Prescribed function at the outer wall 

HFLUX 	: Dimensionless parameter for heat-flux rate in round 

tube geometry 
R" . g . C 	. 

= 	5 q., 

vg •km  M 
w 
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HFI 	: Dimensionless parameter for heat-flux rate in flat 

duct at the inner wall 
d'' . g . C 	. 

5 " 

V2 	k , M qwi 
B m 

HFO 	: The same as HFI but at the outer wall 

ICCC 	: Imperial College Computer Centre 

FL 	: Plate 

T/C 	: Thermocouple 

TWALL 	: Dimensionless parameter for tw  in round tube geometry 

= G
r 
 .CS  (t

w 
- tin) 

TWI 	: Dimensionless parameter for twi  in flat duct geometry 

= G . C5 (twi 	tin)  

TWO 	: The same as TWI but for two 

ULCC 	: University of London Computer Centre 

ULR 	: University of London Reactor 

ULRC 	: University of London Reactor Centre 

ZDT 	: ZD  for the Thermal Entry Length 

ZDU 	: zD  for the Hydrodynamic Entry Length 

For forced-convection cases where; p = Cte., the 

constant C must be replaced by l/t
in  5 

Notation of the parameters used in the Flow-Charts 

of DUCT and CIRCLE computer programs is given in 

Chapter (4). The listing of these two programs is 

available at:- 

Thermal Power Section, Imperial College of Science 

and Technology, London, SW7 2BX 

NB 
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CHAPTER 1  

INTRODUCTION  

Most studies of laminar convective heat transfer in 

vertical channels were done in channels in which the longitudinal 

heating was uniform. Moreover, the problem has been simplified by 

assuming that either "free" or "forced" convection effects dominate 

the mode of heat transfer. In view of several practical situations 

which involve a mode of heat transfer which is neither free nor forced-

convection but a mixture of these two, together with non-uniform 

prescribed heating on the wall, it has been decided to seek a method 

of solution which will be general in so far as solving for a mixed-

convection regime with arbitrary wall conditions is concerned. For 

practical applications, the case of a plate-type fuel element in a low-

power nuclear reactor, where the prescribed wall heat-flux along its 

channel is almost sinusoidal, has been solved for with special interest. 

In order to gain more confidence about the present 

theoretical method, an experimental test-rig has been designed and 

successfully tested. Water has been used as the working fluid and the 

tests, and in fact the study as a whole, have been directed to deal 

only with one-phase flow regimes. 

In Chapter (2) a review on the available literature on the 

forced and the mixed-convection regimes has been presented. Theoretical 

models, as well as experimental investigations on the subject, have 

been explained in detail. In particular, several methods of simulation 

of sinusoidal heating profiles have been reviewed. Towards the end of 

the chapter, the shortcomings of the existing methods in dealing with 

mixed-convection regimes and non-uniform heating cases have been pointed 
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out together with the possibility of considering them in the present 

study. 

In Chapter (3), the present theoretical model and the 

formulation of the problem have been described. Three principal 

conservation equations of mass, momentum and energy have been used in 

a form which preserves the representative terms for variations of 

viscosity and density with temperature. Arbitrary wall boundary 

conditions have been dealt with and it has been shown how they can be 

transformed into uniform wall conditions by employment of the present 

method. For the solution, the finite-difference method has been used 

which leads to the Matrix form of the above-mentioned equations. 

In Chapter (4), the numerical solution technique has been 

explained, leading to the writing of the computer program DUCT to solve 

for vertical flat ducts with arbitrary wall conditions. Input functions 

together with Input and Output parameters and a Flow-Chart have also 

been given. In the discussion which closes the chapter, a comparison 

has been made between the computer time consumption for solution of a 

typical flat duct with two different values of horizontal increments. 

Chapter (5) has been written to represent the present 

theoretical predictions for a set of arbitrary prescribed wall conditions 

in the forced and the mixed-convection regimes. To gain more confidence, 

a selected number of these results have been compared with the 

published theoretical and experimental results of other workers on the 

subject. In particular, the results for a typical "hot-channel" of a 

plate-type fuel element at two different heat ratings have been predicted. 

The contributions of mixed-convection effects on their corresponding 

forced-convection cases has been shown. Non-symmetrical heating cases 

have also been dealt with and the differences in these results and those 
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of the symmetrical heating cases have been pointed out. Two parameters 

which can be representative of the forced and the mixed-convection case 

have been introduced and their variations for different cases have been 

studied. Conclusions for forced and mixed-convection regimes have been 

given near the middle and the end of the chapter respectively. A cross-

checking of the present predictions for a typical flat duct has been 

presented at the end of the chapter. 

In Chapter (6), the experimental test-rig with its special 

features and its design has been described. The functions of each part 

of the rig together with necessary design drawings for them have also 

been given. Towards the end of the chapter, the measurements which 

have been executed for each typical test and the reasons for their 

utility in the confirmation of the present theoretical results have 

been mentioned. 

In Chapter (7), the experimental results of the test-rig 

have been given in comparison with their corresponding theoretical 

predictions. These consist of the results of four typical mixed-

convection tests which have been executed together with one test for a 

typical natural-convection test. In order to facilitate the representation 

of these results, a plan has been proposed which distinguishes the 

forced, free and mixed-convection regimes by means of defining two 

boundary curves. In the conclusions which have been given at the end of 

the chapter, the present experimental and theoretical results and their 

differences have been given and the factors which are thought to be the 

causes of these differences have been pointed out. 

Chapter (8) has been written to show how the present method 

can also solve for vertical channels with circular cross-section and the 

computer program CIRCLE has been developed for the purpose. By making 
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use of the existing experimental results for a round tube with prescribed 

uniform heating, it has been shown that the present predictions are 

reliable and accurate. Variations of the predicted results for different 

profiles of heating have been obtained together with the possibility of 

transition from a laminar into an unstable flow in certain cases. 

Towards the end of the chapter, the theoretical results of two other 

authors for a set of sinusoidal heating cases have been accurately 

reproduced with the contributions of the mixed-convection effects to 

these results. As for flat duct in Chapter (5), Chapter (8) includes 

the cross-checking of a typical solution for a prescribed heating case, 

and the effects of the different entrance conditions on the present 

theoretical predictions. 

Finally, in Chapter (9), general remarks about the present 

theoretical and experimental results have been made. Suggestions for 

continuation of the present work in future have also been included. 
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CHAPTER 2  

SURVEY OF THE LITERATURE  

	

2.1 	Introduction  

Several practical situations involve a mode of heat transfer 

which is neither "forced" convection nor "free" convection in nature. 

These arise when a fluid is forced to move adjacent to a 

heated surface at a rather low velocity. Coupled with this velocity, 

there is a convective velocity due to buoyancy forces. As a result, 

design parameters as friction factors and heat-transfer coefficients 

cannot be obtained from either free or forced convective flows. This 

type of heat transfer is referred to as "free-forced convection" or 

"combined-convection". However, the term "mixed-convection" is used in 

this thesis referring to this situation. 

Mixed-convective flows may be classified as: laminar, trans-

itional or turbulent. The present work is concerned with the first and, 

to some extent, with the second classes, in vertical channels with 

arbitrary heating. Of particular interest is the case of an open-ended 

vertical flat duct which is heated by a sinusoidal wall heat-flux along 

its vertical axis. 

	

2.2 	Review of Theoretical Work  

There has been ever-increasing attention paid to the problem 

of mixed-convective heat transfer during the last three decades. 

Possible equipment in which this method of heat transfer occurs are 

liquid-cooled turbines, boilers, transformers and low-power nuclear 

reactors. Earlier investigations on the problem are reported among 

others by Hallman (1956), Hanratty et al (1961) and Chato (1963). 
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2.2.1 	Boundaries of the Flow  

According to Metais et al (1964), the existence of mixed-

convective flow is characterized by two dimensionless numbers: Reynolds 

number (Re) and Rayleigh number (Ra). They mention that large Re implies 

forced-flow and, hence, less influence of free-convection. On the other 

hand, at larger Ra, one would expect free-convection effects to prevail. 

The limits of the forced and the free-convection flows are defined so 

that the actual heat-flux under the combined influence of the forces 

does not deviate by more than 10% from the heat-flux that would be 

caused by the external forces alone or by the body forces alone. 

Holman (1968) presents a general suggestion that the pre-

dominance of heat transfer mode is governed by the fluid velocity 

associated with that mode. He proposes a general criterion for 

determining whether free-convection effects predominate, which is that 

when, Gr/Re2  > 1, free-convection is of primary importance. 

	

2.2.2 	Forced-Convection Flow  

Pure forced-convection flow can be regarded as a limiting case 

of mixed-convection flow. Then the continuity and momentum equations 

may be solved independently of the energy equation. Early attempts to 

predict heat-transfer characteristics were centred about fully-developed 

velocity and temperature profiles far from the duct entrance. Hallman's 

(1958) results were presented in terms of local Nusselt number (Nu), 

for forced-convective flow in a round tube with uniform wall heat-flux, 

g14'. His solution consists of a series expansion similar to that 
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obtained by Graetz (1885) for the isothermal wall case. Graetz's work 

is reported by Jakob (1949). Solutions of this type are of limited 

value since in a channel of finite-length, the conditions under which 

they are valid may never exist. To be useful, these solutions must be 

backed by experiments or be arrived at numerically. In this regard, 

works of Schiller (1921), Campbell et al (1936) and Langhaar (1942) are 

more general in the sense that they consider the existence of a hydro-

dynamic entry length in the channel. Schiller (1921) analysed the 

hydrodynamic entrance region of round tubes and also of flat ducts by 

the use of an integral technique. This technique, in a modified form, 

is also used by Campbell et al (1936). Their results, according to 

Hornbeck (1964), seem to give reasonable agreement with the available 

experimental data but, because of the wide variations in these 

data, no conclusive statement is made as to the accuracy of his 

solution. Langhaar (1942) proposed an approach in which the axial 

momentum equation is linearised. 

Employment of the digital computer for solving the governing 

equations accentuated approaches based on numerical solutions. The 

finite-difference method is used by Hornbeck-(1964). His 

approach consists of a marching forward procedure in which the 

velocities and the pressure at any axial position in the pipe are 

determined by making use of the values upstream from that point. 

Zeldin et al (1970) employed a numerical solution based on the method 

proposed by Allen et al (1955) to solve the energy equation for both round 

tubes and flat ducts. In their work, however, axial conduction is 

neglected. 

2.2.3 	Free-Convection Flow  

Pure free-convection heat transfer is another limit of a 
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mixed-convective flow. This problem was first studied by Elenbaas (1942a) 

for vertical flat ducts. Later, Elenbaas (1942b) also established the 

heat dissipation characteristics of tubes of circular and other shapes 

of cross-section, with isothermal walls. However, by following his 

reported technique, it is not possible to obtain the temperature and 

the velocity profiles explicitly. Vernier (1962) obtained these 

profiles for natural-convection flow of water in vertical flat ducts 

with constant qw'. By his method, which is similar to that of Ostrach 

(1952), he produce's the velocity and the temperature profiles, for 

several sets of spacings and heat ratings, at the end of the duct. 

Dyer (1968) calculates U and T profiles by making use of a finite- 

difference technique in the study of the development of the flow in 

vertical round tubes with uniform wall temperature/heat-flux. His 

method of solution is similar to that of Bodoia et al (1962) who used 

it for their study of an isothermal flat duct. Davis et al (1971) 

have also investigated the development of the U and T profiles for 

uniform qw' in flat ducts. 

Dyer (1975) gives a more recent account of a theoretical, and 

also experimental, study of the flow in heated flat ducts and round 

tubes. In this paper, T and U profiles, and also the relationship 

between Nu and Ra, are obtained by solving the governing equations with 

a step-by-step numerical technique. Also, two types of Rayleigh 

numbers - one expressed in terms of uniform qw' and another in terms 

of the mean wall temperature, tw 	. Many features of natural- 
mean 

convection heat transfer, including the influence of Pr on the relation- 

ship between Nu and Ra, and also effects of three different inlet 

conditions on these relationships are examined. He concludes that the 

relationship remains the same for small values of Ra, and the difference 
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between the relationships obtained for large values of Ra are only 

small. 

2.2.4 	Mixed-Convection Flow  

Various aspects of the problem have been investigated, e.g. cases 

of axially symmetric flow in vertical flat ducts or round tubes which 

are uniformly heated or cooled. In most instances, the existence of a 

fully-developed flow is assumed. This is followed by considering 

similarity solutions for the U and T profiles, which means that the 

"entrance region effects" are neglected. Hallman (1956) reports 

similarity solutions for both upflow and downflow with constant qw'. 

Theoretical similarity solutions were also attempted by Hanratty et al (1958). 

In a succeeding paper, Hanratty et al (1960) visualised the effects of 

heating, or cooling, on the water flow in a vertical round tube by dye 

injection. They observed that under relatively mild conditions of 

heating or cooling (Re < 2300), the distortions were sufficient to 

change the parabolic velocity profile to an extent that the flow became 

turbulent. In a following paper, Hanratty et al (1961), used the 

integral method of Pigford (1955) for their solution of an initially 

fully-developed flow in an isothermal pipe. In this paper, they allowed 

for linear variations with temperature of both density and viscosity, 

but their method could only produce overall characteristics of the flow 

and not the U and T profiles explicitly. 

Lawrence et al (1966) considered a developing flow in a pipe 

with uniform qw'. In addition to obtaining a numerical solution to the 

boundary-layer-type conservation equations, an experiment using water 

was performed. In their numerical analysis, the entrance velocity and 

temperature are assumed to be uniform. Later, Collins (1971), continued 



-27— 

the study of the problem with the same developing-model as Lawrence et 

al (1966). In his study, the four main alternatives, (of upward or 

downward flow with heating or cooling), with constant tw  or constant qw', 

were investigated. He compared the results for water and air as working 

fluids and concluded that the mixed-convection effects are stronger in 

water than in air. Zeldin et al (1972) included the effects of the 

axial conduction and also of axial momentum change. Their results, 

backed by their experiments with air, are presented for both uniform 

and parabolic U0  profiles. Their findings confirm that as a consequence 

of the presence of gravity, density gradients induced by heat transfer, 

though small, may significantly alter the flow characteristics 

(particularly the U profile). Also, they show that the rate of heat 

transfer improves with increasing Gr. Collins (1975) extends his study 

of the mixed-convection problem, to cover several working fluids, 

vertical annuli and also the effects of the viscous dissipation. 

Iqbal et al (1970) also showed that viscous dissipation effects 

reduce the Nusselt numbers, Nu. However, these effects are found 

to be important only when the working fluid has a high Pr (e.g. oils). 

Chen et al (1975) made an analytical study of the effects of 

the buoyancy forces along an isothermally heated pipe. For the range 

of their study, 0 < Gr/Re2  < 2, they report that the heat transfer rate 

increases with increase in the buoyancy force and also with the 

curvature of the surface. Patankar et al (1976) showed analytically 

that the effects of the buoyancy on the laminar forced-convection 

adjacent to a heated vertical plate are accentuated by the presence of 

an unheated length. Chen et al (1976) extend their study to cover the 



-28— 

constant qw' case. They confirmed, as did Oosthuizen (1973), 

that similar to the isothermal cases, local Nusselt numbers and the 

friction-factors increase with higher degrees of mixed-convection. 

2.2.5 	Non-Uniform Heating  

The introduction of arbitrary prescribed thermal conditions on 

the wall adds considerably to the difficulties of solving the mixed-

convection problem. Available literature on this type of heating is 

rather limited. The first published study of convective heat transfer 

in a channel with arbitrary prescribed heating at the wall is that of 

Graetz (1885). His analytical method solves the case of fully-developed 

laminar flow in a pipe with a step-change in tw. He obtained a solution 

by the technique of separation of variables leading to the solution of 

the Sturm-Liouville type equation. Graetz (1885) originally obtained 

the first three terms of the infinite series solution for the local Nu 

in a flat duct with constant tw. Sellars et al (1956) extended Graetz's 

approach to solve the prescribed qw' cases. Fully-developed forced 

convection in flat ducts with uniform-equal, and also uniform-unequal 

qw' s, are solved by Cess et al (1958) and (1960). They use a method 

based, on a series expansion similar to that of Graetz (1885) and is 

proposed by Hallman et al (1958). McCuen (1962) solved laminar and 

also turbulent heat transfer flows in flat ducts of arbitrarily 

prescribed tw  or qw'. His solutions are based on the "four fundamental - 

solutions method" proposed by Reynolds et al (1960). These fundamental 

solutions were considered to be: a step change in the temperature or 

heat-flux at one wall combined with the opposite wall being either 

insulated or kept at the inlet temperature of the working fluid. At 
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this period, the solution for laminar heat transfer in flat ducts with 

uniform or non-uniform heating and fully-developed velocity profile, 

seemed to be complete. But the effort involved in calculating the 

necessary eigenfunctions, eigenvalues and also the coefficients was 

enormous. Lundberg et al (1963) and Kays et al (1964) published the 

generalised form of the above mentioned "four fundamental-solutions" 

for annular tubes in four successive papers. In the first three papers, 

they consider only the fully-developed U profile in the heated region 

of the annulus. The fourth paper, however, deals with simultaneous 

development of the U and also T profiles in the annuli of constant 

q". These four papers also include results for flat ducts and round 

tubes as the two extreme limits of a vertical annulus. It should also 

be mentioned that in these papers, the study is restricted to laminar 

incompressible flows. This assumption along with the assumption that 

other properties are not temperature dependent allowed an independent 

solution of the hydrodynamic problem, since the momentum and the energy 

equations were not coupled. Bankston et al (1969) pointed out that the 

superposition procedure used in the Lundberg et al (1963) and Kays et 

al (1964) gives rise to a very slowly converging series solution for 

the local Nu. The error, due to truncation of this series near the 

entry, may be great if a sufficient number of terms is not considered. 

A less attractive feature of these analytical approaches is that quite 

a substantial amount of numerical computation work, connected with 

the eigenvalues and eigenfunctions, which requires considerable skill, 

must be carried out. This may be the reason that although the approach 

is widely used in heat transfer text-books, it does not seem to be 

extensively applied in design. 

An alternative approach is based on expressing the governing 
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equations in a finite-difference form which can be solved in a straight-

forward manner. This approach is proposed by Kays (1955) and used by 

Grigull et al (1965). For high accuracy, a fine mesh size is desirable, 

entailing large computational times. Nijsing et al (1973) pointed out that 

the explicit computational procedures applied in the two papers just 

mentioned further require, because of stability restrictions, that the 

axial distance increment in the finite-difference formulation, does not 

exceed a critical size. This size, in turn, is related to the distance 

increment in the direction normal to the wall. In comparison with the 

analytical methods, the numerical methods have the drawback that they 

yield solutions of which the details cannot be obtained explicitly. 

2.2.6 	Sinusoidal Heating  

Of particular interest in this thesis is the case of laminar 

heat transfer to a fluid flowing in a vertical flat duct with sinusoidal 

wall heat-flux. At the first sight, the problem, with the assumption of 

fully-developed velocity profile, seems to have been completely solved 

by making use of the general formulae given in the two papers by Sellars 

et al (1956) and Tribus et al (1957), the former deals with the laminar 

and the latter with the turbulent flows. The solutions appear to be 

general but, as also mentioned by Dzung (1958a), their method can be 

applied reasonably only to the cases of prescribed tw. If qw' is 

prescribed, the method becomes very laborious, since the relevant 

eigenvalues and also the coefficients of the rather slowly converging 

series are themselves calculated from another set of eigenvalues and 

coefficients. Dzung (1958), in two successive papers - one for a round 

tube and another for a flat duct - represents a more direct method for 

sinusoidal heat-flux. By following his method, any arbitrary prescribed 
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q' can be treated by Fourier series expansion, instead of the superposition 

method of Sellars et al (1956). Dzung's approach, although sound, 

requires the eigenvalues and the associated constants to be evaluated 

according to approximate asymptotic solutions. Hsu (1965) solved the 

same problem in a more straightforward manner by utilizing the thermal- 

entrance region's solution for uniform qW' obtained by Hallman (1958). 

Hsu (1965) uses digital computers to calculate the first twenty eigen- 

values, eigenfunctions and the coefficients for the series expansion. 

His analytical results near the entrance region for slug flow agree 

closely with the experimental results obtained by Petrovichev (1960) 

for turbulent flow. Bankston et al (1969) applied the superposition 

method of Sellars et al (1956) in a developed form for prediction of tw. 

As a special case, they treated forced-convective flow with sinusoidal 

qW' along a round tube. By comparing the local Nusselt numbers 

calculated according to the two methods, they concluded that the method 

of Sellars et al (1956) should not be applied for design predictions. 

This is because, for the same number of terms in the series solution, 

the numerical method of Bankston et al (1969) predicts results with 

• 
lower percentage errors. In dealing with the sinusoidal qW' case, it 

is generally expected that if the wavelength of qW' (z) is long, 

compared to the distance which the basic constant qW' solution requires 

for the desired accuracy with the available eigenvalues, then reasonable 

results will be obtained by the superposition method of Sellars et al 

(1956). Stein (1966) has partially quantified this aspect of the 

problem for the first-order approximation for a sinusoidal distribution. 

Nijsing (1972) and (1973) proposes a "hybrid-method" which lies between 

the superposition method of Sellars et al (1956) and the numerical 

method of Bankston et al (1969). The essential feature of his method is 
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that the fluid region is discretized only in the section normal to the 

flow direction. Local energy balances which are set up for each 

element yield a system of linear first-order differential equations 

with the axial coordinate as the sole independent variable. This 

system of equations is solved analytically using a matrix method. Cases 

of flat ducts and round tubes are dealt with by Nijsing (1972) and (1973). 

The results, in the form of local Nusselt numbers, seem to be in agreement 

with those of Grigull et al (1965) and Schmidt (1967). 

2.2.7 	Limitations of the Existing Literature  

The main assumptions of the afore-mentioned literature for 

arbitrarily heated channels, including the sinusoidal qw' cases, are:- 

(a) The velocity profile is fully-developed, i.e. 

u/uo  = 6 . y/d (1 - y/d) For flat ducts 

or:- 

u/uo  = 2 . {1 - (r/ R)2} For round tubes 

(b) There is no natural-convection effect on the 

forced-convection flow. 

(c) The horizontal component of the fluid velocity 

is not significant, i.e.: V = 0. 
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These assumptions are shown to be valid only for low heat transfer 

rates to the flow and as a consequence, the results are reasonable 

only for forced-convection flows. As mentioned earlier, Hanratty et al 

(1960) showed that by taking into account the variations of density 

and viscosity, the velocity profile is distorted and does not have a 

parabolic form. Lawrence (1965) reports similar effects of the 

buoyancy force for a constant qW' case. He actually measured T 

profiles and also centreline velocities along the pipe and confirmed 

the continuously developing model for them. These results show that 

neither the fully-developed U profile nor constant p and p assumptions 

are valid for the solution of the mixed-convection problem. Schmitz et 

al (1965) reported that for constant tw  or qw' cases, the effects of 

the horizontal velocity V lead to a significant decrease in the 

calculated values of Nu in the entrance region from those obtained by 

Kays (1955). Hwang et al (1974) investigated the effects of V in flat 

ducts and their results are similar to those of Schmitz et al (1965). 

As will be seen from the other chapters, the intention of this 

thesis is to tackle the arbitrary heating case for mixed-convection, 

in a general form, avoiding the three limitations mentioned earlier. 

The solution is to cover all the three flows: pure-forced, pure-free 

and mixed-convection, in a laminar situation. Among the cases 

considered, a vertical flat duct with sinusoidal qW' is solved for and 

discussed with particular interest. 

2.3 	Review of Experimental Work  

Experimental results in the literature are mainly for vertical 



-34— 

round tubes or flat ducts in which either tw  or qW' are constant. 

Working fluids considered are either water or oil for medium and high 

Prandtl numbers respectively. Limited experimental results are available 

for liquid metals (low Pr) and the only gas tested is air (Pr = 0.7). 

2.3.1 	Experiments with Uniform Heating  

Hallman (1961) experimentally analysed the convective heat 

transfer in vertical round tubes with constant qw' and confirmed the 

three following points:- 

Existence of a thermal entrance region; 

Free convection effects on the forced-convection 

results; 

(c) 	Transition to an "unstable-flow" at certain 

conditions. 

Hanratty et al (1960) and (1962) obtained similar results for the 

constant tw  case. Kemeny et al (1962) extended the experiments of 

Hallman (1961) to oil and produced pressure drop data for the mixed-

convection cases. 

Lawrence (1965) measured developing T profiles, centreline 

velocities, and the pressure drop along a pipe with constant 

q " 	These results were in good agreement with his analytical results 
w' 

and confirmed the necessity of developing U and T models along the 

channel. His study also includes the definition of a tentative 

transition criterion, which depends only on the developing velocity 
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profiles, the fluid viscosity, and the entrance Reynolds number (Reo). 

Flat vertical ducts with constant qw' were experimentally 

investigated by Vernier (1962). He measured the U and T profiles at 

the exit of the duct for a set of spacings between the parallel plates. 

His results are in agreement with those of Riley (1970). 

Zeldin et al (1972) experimentally investigated the forced 

and also the mixed-convection flows with air as the working fluid. 

Their results, obtained for a vertical-isothermal pipe, include 

determination of the developing U and T profiles explicitly. 

2.3.2 	Experiments with Sinusoidal and Non-Uniform Heating Cases  

Experimental results for sinusoidal heating, or generally 

non-uniform heating, are not extensive. The difficulty in producing 

these types of heat distributions, in comparison with uniform heating, 

may be the main reason. The earliest attempt, known to the author, is 

that of Petrovichev (1960). He made heat transfer measurements for 

turbulent flow of mercury in a horizontal pipe with a sinusoidal qw' 

distribution along the axis. Results of this work are presented in the 

form of the local Nu, and also empirical correlations relating tw 
 max 

and the Peclet number, Pe. A sinusoidal qW' was achieved in Petrovichev 

(1960) by winding an electric heater over the outside surface of the 

test-pipe, with variable spacing. The "correctness" of the experimental 

set-up in his work is checked by replacing the sinusoidal heating 

element with a similar element but with a constant qw', to produce 

similar results to those of Johnson et al (1954). 

McCuen (1962) produced experimental data for the forced 

turbulent heat transfer in air with non-uniform heating. Broad-sides of 

the flat duct in his tests were each composed of a number of narrow 
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rectangular copper cells, each separated from its neighbours by 

thermal insulators. The cells, forming the broad-sides, were subjected 

to heating, or cooling, individually to a range of desired temperatures. 

An adiabatic entry length was provided to minimise hydrodynamic-entry 

effects. Prescribed tw  profiles of constant or linear variation were 

tested by McCuen (1962). 

Dijkman (1969) reports experiments with sinusoidal heat- 

flux for a boiling water channel. His simulation model is based on the 

concept of "continuous variation of the wall thickness" in the test- 

pipe. Because of lack of machine tools, he divided the pipe into a 

number of pieces welded together. Every piece was internally turned 

with a tapering diameter. His results are of little interest to this 

thesis. Therefore, only his simulation method is mentioned. 

Muzzy et al (1974) used the same method as Dijkman (1969). By 

taking advantage of highly sophisticated tools, they achieved an 

accurately simulated chopped-sinusoidal qw' profile. They concluded 

that a heater element as such has a thermal response that is representative 

of a nuclear fuel element in the core of a nuclear reactor. (This 

conclusion is, of course, subject to satisfying certain specifications 

which are inherent to the analysis, e.g. geometry and thermal properties). 

Ornatskiy et al (1975), in their experiments of the "burn-out 

problem" in annuli, also used the concept of "variable wall thickness" 

to simulate a chopped-sinusoidal qjl'. In their work, several 

profiles of the sinusoidal q" with different q " /q"" ratios were 
'Max 

w
av 

experimented. 

Reisman et al (1977) obtained experimental results for laminar 

forced flow in a horizontal pipe with sinusoidal qw'. Their method of 

simulation was based on the concept of "step-change" in qi1 which was 
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proposed by Sellars et al (1956). To approximate the sinusoidal qW' 

with a step-varying flux, Reisman et al (1977) divided the sine-wave into 

three rows. The heating cable of the simulating pipe consisted of 

three separate windings, one for each row, and the test fluid was an 

organic liquid (Oil 10C, General Electric). Their conclusion, backed 

by numerical calculations of the Sellars et al (1956) formulae, was  that 

the step varying model leads to a good approximation of the sinusoidal 

wall heat-flux. 
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CHAPTER 3 

THEORETICAL ANALYSIS  

3.1 	Discussion of the Problem  

As mentioned in Chapter 2, it is the purpose of this study to 

develop a solution to the problem of mixed-convective heat transfer in 

vertical flat ducts (or round tubes at a later stage), for a variety of 

prescribed wall conditions. 

Major attention is devoted to cases with upflow heating, although 

the equations are developed in such a way that other configurations, 

such as downflow, or adiabatic flow, may also be tackled by manipulation 

of the buoyancy term. 

Among the different wall conditions, cases of uniform wall 

temperature or heat-flux are the basic cases upon which the solutions 

for arbitrary conditions are founded. In other words, profiles of 

arbitrary wall conditions are divided into infinitesimal lengths and 

treated as uniform heating along the length of each of the divisions. 

In the search for a general solution, it should be recalled 

that according to the studies of Hanratty et al (1961), and also Lawrence 

et al (1966), any solution claiming generality must include viscosity 

and density variations with temperature. Density variations are 

normally allowed for only in the buoyancy term of the axial momentum- 

equation. This condition is sometimes termed "quasi-incompressible". 

Also, because of the modest temperature changes frequently associated 

with the mixed-convection cases, other properties are assumed constant. 

As will follow, these points are taken into account in the present 

formulation of the theoretical model. 
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3.2 	The Theoretical Model  

The theoretical model is to represent the "laminar convective 

heat transfer in vertical flat ducts with arbitrary wall conditions". 

For the purpose of this study, the ducts with large aspect-ratios are to 

be considered. Therefore, a two-dimensional model is sought. Fig. (3.1) 

shows such a model with its vertical and horizontal co-ordinates, z and 

y respectively. Thermal boundary conditions, such as wall temperature 

or heat-flux, may only vary in the vertical direction. 

3.3 	General Formulation  

The solution is to be based on the three principal conservation 

equations of mass, momentum and energy in a two-dimensional form. 

According to Kays (1966), these equations in the differential form are:- 

(a) Continuity Equation  

au +av 
ay 

= D az  (3.1) 

(b) Momentum Equation in the Axial Direction, z  

p(uau +v a—") =- ap- S.p.g+ a (2u
au) + a {µ ( au 	av) } 	(3.2) az 	ay 	az 	 az 	az 	ay 	ay + āz 

(c) Momentum Equation in the Horizontal Direction, y  

p ( u 
av + v  av) _ - 8p + a (2u  av .  . + a { u ( av + au) } 
az ay 	ay āy ay az az ay (3.3) 
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(d) 	Energy Equation  

z 	z ua2+vay = p 	kC  ( a  2+a  2) 
p az ay 

(3.4) 

The assumptions in Equations (3.1) - (3.4) are:- 

1. The flow is steady and laminar. 

2. The ratio w/d is large enough to minimize the effects 

of the third co-ordinate x on the flow. Therefore, 

the flow specifications parallel to the y - z plate 

do not change for the model. 

3. Viscous energy dissipation is negligible. 

4. Wall thermal conditions, i.e. temperature or heat-

flux, are prescribed on the parallel boundaries 

distance d apart. For the flat duct, these two 

boundaries are referred to an "Inner" and "Outer" 

plates respectively (y = 0 or y = d). 

5. Cp  and k are constant, but the viscosity p varies 

with temperature. 

6. The density, p, is constant except in the buoyancy 

term of Equation (3.2). This assumption is justified 

for the liquid and for the conditions of interest by 

comparing the effects of density variations in the 

terms of Equations (3.2) - (3.3). 
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The buoyancy term in Equation (3.2) represents natural-

convection effects. This is done by assuming:- 

S=1 

S= -1 

S=0 

For upward flow 

For downward flow 

For pure-forced or adiabatic flow 

Choice of the viscosity-function of temperature, within the 

temperature range of the problem, depends on the test-fluid. Collins 

(1975) proposes the following three correlations:- 

(i ) 
t + C 	- C3 

u = PB( C 
1  ) 

2 
(3.5a) 

(For water, water/glycerol mixture and some oils) 

(ii) P = 
uB(t/tB)-C 1 	 (3.5b) 

(For S.A.E. 600 oil, suggested by Martin. 1973) 

(iii) u = PB(C1  + C 2  . t - C 3  . t2 ) 

(For air) 

In these correlations, uB  and tB  are base viscosity and temperature 

respectively, while C, C and C are constants. 
1 	2 	3 

An exponential approximation to the viscosity-function for 

water is proposed by Lawrence et al (1966) which facilitates the 

(3.5c) 
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differentiations occurring in Equations (3.2) - (3.3). This approximation 

is:- 

u =um +(uB - pm) . exp(-C1  (t - tB)} (3.5d) 

where um  and  uB  are water viscosities at two finite temperatures and CI 
 

is a constant. 

For the purpose of this study, Equations (3.5a) and (3.5d) 

were considered and compared with actual values reported by Kemeny et 

al (1962). This comparison is shown on Table (3.1) which leads to 

the selection of Equation (3.5a) for the results computed in this 

thesis. 

In regard to the approximation of the density-function of 

temperature for water, Lawrence et al (1966),  who studied upflow heating 

in a round tube with uniform heat-flux, showed that in order to obtain 

a good fit with their experimental data, it was necessary to use a 

quadratic expression for the density. Traditionally, a linear expression 

has been used where the bulk coefficient is calculated at the temperature 

halfway between the entrance and exit temperatures of the channel. 

Lawrence et al (1966) concluded that this leads to velocity and 

temperature profiles along the channel which only match at one point with 

the actual values and diverge elsewhere. Table (3.2) shows approximate 

values of water density according to the following form of quadratic 

function which is used for the numerical calculation of this thesis:- 

p = pB(C4  - C5  . t + C6  . t2 ) (3.6) 

where p8  is water density at a finite temperature and C4  - C6  are constants. 
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TABLE (3.1)  

WATER VISCOSITY AS A FUNCTION OF TEMPERATURE  

Temperature 

t(F°) 

Kemeny et al 
(1962) 

p(lbm/ft.hr.) 

Lawrence et al 
(1966) 

p(lbm/ft.hr.) 

Collins 	(1975) 

u(lbm/ft.hr.) 

70 2.372 2.372 2.372 
80 2.084 2.085 2.079 
90 1.847 1.846 1.843 
100 1.650 1.648 1.650 
110 1.487 1.483 1.490 
120 1.353 1.346 1.354 
130 1.236 1.232 1.239 
140 1.137 1.137 1.139 
170 0.900 0.938 0.909 
200 0.740 0.824 0.750 

Column 2 

Column 3 

Column 4 

Experimental values of p. 

Exponential approximation: 

II = 0.67 + 1.702 Exp{- 0.01848 (t - 70)} (lbm/ft.hr.) 

Power approximation: 

-1.38239 

p = 2.372 (7Q + 30 
+ 30) 	

(lbm/ft.hr.) 

The power approximation is used for the calculations in this thesis. 

In C.G.S. units, this approximation is:- 

-1.38239 

p = 0.9805 (
t + 34.444)  
55.555 

(t and p are in °C and Cent. Poise respectively) 
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TABLE (3.2)  

WATER DENSITY AS A FUNCTION  

OF TEMPERATURE  

Temperature 

t(F°) 

C.R.P. 	Handbook 	(1956) 

p(lbm/ft3 ) 

Approximation 

p(lbm/ft3 ) 

50 62.407 62.430 
68 62.314 62.314 
86 62.153 62.151 
104 61.940 61.940 
122 61.680 61.683 
140 61.378 61.377 
158 61.039 61.024 
176 60.667 61.626 
200 60.130 60.020 

The approximation is calculated from the function:-  

p = 62.314 (1.003063 + 3.444 x 10-5  . t - 1.169 x 10-6  . t2) 

This function in C.G.S. units is:- 

p = 0.99817 (1.0029654 - 7.2677 x 10-5  . t - 3.7875 x 10-6  . t2 ) 

(t and p are in °C and gr/cm3  respectively) 
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The integral continuity equation may be used as an additional 

equation for numerical solution of the problem. For the theoretical 

model, this equation is:- 

d 
p0 . u0 .w.d=

1 
 w.u.p.dy 	 (3.7) 
0 

In the calculations which follow, Equation (3.7) is used as part of the 

analysis, rather than as a mass balance check - a procedure proposed by 

Bodoia et al (1959). 

Wall thermal boundary conditions are specified either as 

temperature or heat-flux at the "Inner" and "Outer" walls, i.e. : 

Either: 	t
wi = twi (z)  

two  = two  (z) 

Or: 	
qwi = qwi (z)  

(Iwo = qwo (z)  

 

Prescribed wall temperatures 

(3.8) 

(3.9) 

   

 

Prescribed wall heat-fluxes 

(3.10) 

(3.11) 

   

The overall energy balance over an infinitesimal vertical 

length, dz, which is used as part of the analysis rather than as a heat 

balance check, is written as either:- 

z +dz 
uo  . w . d . p . C

p 
.

mean 
= w . 
	{qwi (z) 

 + qwo (z)} . dz (3.12) 

z 

(For prescribed qwi (z) and qw(; (z)) 

or:- 



d 
f uptdy 

_ 	o 
tmean 	

f d u . p . dy 
0 

(3.14) 
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at 
uo . w . d . p . Cp . Atmean = w . dz . k{- āy 

+ at 

y=0 3y y=d 
(3.13) 

 

(For prescribed twi (z) and two (z)) 

where 
Atmean 

is the increase in the mixed-mean temperature, 
tmean, 

for 

the length dz. This temperature is defined as:- 

3.4 	Boundary Conditions  

Boundary conditions of the problem may be classified into the 

• 
following three groups:- 

(i ) 
	

Entrance conditions: 	(z = 0, 0 < y < d) 

u = uo, v = 0, p = p0, t = tin 

(ii) 	Wall flow conditions: 	(0 < z < L, y = 0 or d) 

u = 0, v = 0 

An additional assumption is necessary in order to 

start the finite-difference solution of Equations 

(3.1) - (3.4) from the "Inner" wall. This is 

assumed to be - aP 
	

= Const. - which is consistent 
ay y~0 

with known round-tube results 	(The assumption was 
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checked by solving for a symmetrically heated 

vertical channel and confirming that p(y) has the 

same behaviour near the "Outer" wall also. Therefore:- 

dp 

P---1.,
- ay 

where a is an infinitesimal value). 

(iii) 	Wall thermal conditions: (0 < z < L, y = 0 or d) 

Either:- 

 

twi  = twi  (z) 

two  = two  (z) 

For prescribed wall temperatures 

  

or:- 

atI 
qW; = qW; (z) = - k 

 yly=0 
For prescribed wall 
heat-fluxes 

• 
at 

qWO  = qWŌ (z) = 
k Ty 

3.5 	Transformation Into a Non-Dimensional Form  

The above equations and boundary conditions may be transformed 

by the substitutions defined in the nomenclature. 

dp 
Ti y=s 

y=d 
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3.5.1 	Equations  

As follows, Equations (3.1) - (3.14) transform into Equations 

(3.15) - (3.28) respectively:- 

DU DV + =o āZ aY 

	

au 	aP 	P  
U az 	V  ay 	aZ - S  pm E/Re2 	Re 

B 

aT aU DT aU 3V 
+nB  {2 7  . 7 + 7  (T + -)} 

(3.15) 

(3.16) 

u 

 

ay + , aV 	aP + 1 	

i 
	a2v 	+ a2v + 

āY = 	arm̀ 	Re 	A (aY2 	
aZ2) 

 

aT aV DT aV au nB  {2 . . 	+ 7  (7  + T7)} 

 

(3.17) 

aT 	v  aT 	1 	 a2T 
+Y2 

a2T
)  āZ 	= Pr . Re (aZ2 	a 

U 	+  (3.18) 

u = (CO1 . T/G + CO2)
(- CO3)  

uB 
(3.19) 

P = (C04 + C05/G . T + C06/G . T2) 
PB 

(3.20) 

1 
1 = I 	p/p . U . dY 

J0 

(3.21) 
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d3  . g . C 
TWI (Z) = 	5 

 (twi (z) - tin) 
%)., 

d3  . g . C 
TWO (Z) = 	

v2 	
5  (two (z) 	tin) 

B 

d' . g . C 	. 
HFI (Z) - 	5  . q..  (z) 

vB 	k . M 	wi 

d' . g . C 	. 
HFO (Z) - 	5 . qwo (z)  

vB . k . M 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

J 
1  U . T. p. dY - 

AZ . M2  
0 	Po 

Pr . Re 

 

(HFI + HFO) 

Av. (between Z and Z + dZ) 

(3.26) 

    

P 
Po 

dY = 	A
Z M 	{ aT 

aY 
+ 

Y=0 
Pr 	. Re 

aT 
aY 

} 

Y=1 At level "Z" 

(3.27) 

  

r1 
TMEANn= 

J 
 P .0

n 
 .T

n 
 . dY 

0 0 

In Equations (3.16) - (3.17), it is assumed that:- 

au _ du at 
ay 	di ' ay 

TIA  = (C01 . T/G + CO2)(- CO3) 

(3.28) 

nB  = 
d 	

(11A) - 
C 	

(C01 . T/G + CO2)
- (CO3 + 1)  



—51 — 

Also:- 

(C04 . G + T (C05 + C06 . T)} 

3.5.2 	Boundary Conditions  

Boundary conditions in dimensionless form are:- 

(1) Entrance conditions: (Z = 0, 0 < Y < 1) 

U =1,V=0, P=P
o' 
 T=To  

(2) 	Wall flow conditions: (0 < Z < L/d, Y = 0 or 1) 

U = 0, V = 0, āPl 	
= Const. 

near walls 

(3) Wall thermal conditions: (0 < Z < L/d, Y = 0 or 1) 

Either:- 

TWI = TWI (Z) 

Prescribed wall temperatures 

TWO = TWO (Z) 

or:- 

HFI = HFI (Z) 

Prescribed wall heat-fluxes 

HFO = HFO (Z) 
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Figs. (3.2) - (3.3) show the general configuration 

and the cross-section of the theoretical model in 

dimensionless form. 

3.6 	Choice of the Method of Solution  

So far, the relevant equations for the theoretical model of 

the problem have been written and normalized together with the boundary 

conditions. The question now appears to be: "What method of solution 

may be adopted to these equations?" As mentioned in Chapter 2, 

analytical solutions of these equations are limited to the simple cases 

of fully-developed flow with uniform heating which are proposed, among 

others, by Sellars et al (1956) and McCuen (1962). Even these solutions 

involve a great deal of mathematical work. With recent developments in 

digital computers with high storage capacity, a numerical solution with 

the aid of these machines seems to be a natural choice. 

Numerical solution of Equations (3.15) - (3.28) may be 

attempted by the finite-difference or the finite-element methods. Both 

of these methods are DISCRETISATION techniques by which one approximates 

a problem with a large number of algebraic equations which may be solved 

by digital-computers. Olusoji et al (1977) applied the finite-element 

method to solve the case of natural-convection heat transfer in an open-

ended vertical channel. Their results, in term of correlations between 

Nusselt and Reynolds numbers, compared very closely with those for the 

finite-difference solution obtained by Bodoia et al (1962). 

Nayak et al (1975) compared the finite-element and the finite-

difference methods when they computed the fully-developed Nusselt 

number using both techniques. For the comparison, they first applied 

the finite-element method to solve for a square-duct with twenty-five 
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nodes. In addition to this, numerical calculations for the same duct 

based on the standard five-point formula of the finite-difference method 

were also carried out. Comparison of the results obtained by both of 

the methods showed that the finite-difference method is more accurate 

than the finite-element when a relatively small number of nodes are 

used. In fact, while the finite-difference method always gives 

symmetric results for symmetric boundary conditions, the finite- 

element method, with triangular elements and linear interpolation poly-

nominals, sometimes gives slightly unsymmetric results for symmetric 

boundary conditions. However, these results become more and more 

symmetric as more nodes are used. On the other hand, the finite-element 

method has advantages of its own. For instance, unequal mesh sizes do 

not introduce additional complexity in the computations. This 

characteristic can be utilised to advantage by allowing greater density 

of elements in the critical region where changes in the dependent 

variables are rapid. This consideration is desirable from the stand-

point of economy, namely, it will give the investigator more information 

in the critical region with less computer time than a more refined grid 

with uniform size. 

In passing, it may be stated that according to Zienkiewicz et al 

(1975), within a broad definition, the finite-difference techniques fall 

into a "subclass" of the general finite-element methodology which, 

indeed, embraces many other classical approximation procedures. 

In conclusion, it may be argued that within the existing 

literature on these two methods, it is not quite certain which of them 

should be used for a particular problem. For the solution of Equations 

(3.15) - (3.28) in this thesis, a finite-difference method, similar to 

that used by Lawrence et al (1966) and Collins (1971) for round tubes 

is used. 
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3.7 	Solution Procedure  

3.7.1 	The Finite-Difference Method 

A rectangular grid, shown on Fig. (3.4) with axial and 

horizontal co-ordinates (suffix n and m respectively), is used. The 

channel spacing, d, is divided into M divisions. Therefore:- 

Y = (m - 1)/M 

According to this definition:- 

For the "Inner" wall m=14-Y=0 

For the "Outer" wall 	m = M + 1 -Y Y = 1 

In order to solve Equations (3.15) - (3.18), a set of linear equations 

may be written for the unknown level "n + 1". Then, these equations 

may be solved by making use of the known values at the level "n". 

Whenever products of two unknowns occur in the solution, linearity may 

be achieved by putting one unknown at its value of the previous step, 

(Zn+1 
+ Zr). Provision should be made to check that this approximation 

does not have a considerable effect on the solution. 

In order to express Equations (3.15) - (3.18) in the finite-

difference form, the derivatives should be approximated also in the 

finite-difference form. The following two general formulae are useful 

in economising the space of presentation, for approximation of the 

derivatives:- 
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an 	_ Fn+1, m 	Fn, m 

azin+1 	AZ 

m 

Fn+1, m 	2Fn, m + Fn-1, m  
AQ2 

where F and Z represent a flow characteristic and a co-ordinate 

respectively. 

3.7.2 	Finite-Difference Form of the Equations  

(a) 	Mass Conservation  

Define:- 

a2F 
az2 

n+1 
m 

  

_ u n+1, m + U.
n+1, m-1 - U n, m - U n, m-1  

2AZ 
au 
az 

n+1, m 

  

  

- _ Vn+1, m 	
v
n+1, m-1  

1/M 
av 
aa īr 

n+l, m 

  

By substitution of these approximations into Equation (3.15), 

one obtains:- 

M 	V 	- M 	V 	+ ~ n+1, m + U n+1, m-1 - (U n, m 	U n, m-1 ) 
n+1, m 	n+1, m-1 	2AZ 	2AZ 	2AZ 

(3.29) 



-57— 

(b) 	Momentum Conservation in Z Direction  

In Equation (3.16), au/az, 3P/3Z, 3T/3Z, 3V/3Z and also 

a2u/az2, a2u/aY2  may be approximated by the general two and three point 

formulae mentioned above. 

The remaining derivatives are approximated as follows:- 

_ Un+1, m+1 
2/

n+1, m-1  , the same for 	and TT 
n+1, m 

Introducing these approximations into Equation (3.16) yields:- 

M2 	
n 

n+1, m+1 
L 	

A + 2 (T 	 - n+1, m+1 - Tn+l, m-1" 	2 ' Vn, m + 

2n 	u 

+Un+l,m Re {nA (
OZ 

12 	
2M2) + 	

B 
(Tn+l,m -  Tn, m)} 

- 	+ 

M2  

+ U n+1, m-1 12Re { 2nA 	2 (T 	, m+1 - Tn+1 , m-1)} + 	Vn, m 

2 

- Pn+1, m/AZ = - 
S 
 . pm  . c - P 

 U

A 
 

Re

2 	

B 

2Un, m  

Re AZ2  
{IA + 11B

_ 
B (Tn+1, m 	Tn, m)} (3.30) 

where:- 

Tn+1 nA = (CO1 	G  m  + CO2) 
- CO3 
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n6  = 
CG1 {C

01  n+G' m  + 	CO2} T 

- (CO3 + 1) 

= {C04 . G + Tn+1, m (C05 + C06 . Tn+1, m)}  

(c) 	Momentum Conservation in Y Direction  

In Equation (3.17), 3V/3Z, 9T/3Z and also 32V/9Z2, a2V/aY2  

may be approximated according to the general two and three-point 

formulae respectively. The rest of the derivatives in this equation 

are approximated as follows:-  

aV 	_ 
V
n+1, m+1 - 

V
n+1, m-1 	aP 3T DV 	aU 

3Y I 	2/ M 	
, the same for 7, 7, 7  and  7 

n+l, m  

By employing these approximations, one obtains:-  

2 	n 

Vn+l, m+1 2Re {nA + 	(Tn+1, m+1 - Tn+1, m-1 )} 	2 Vn,m + 

[-1  r t 1 
+ Vn+1, m Re nA

AZ
2 

2M2) 	
nB ( 
	)} - Un, m  2M 	+ QZ2 Tn+1, m - Tn, m 	AZ 	

+ 

+ 

r 
2 

+ Vn+1, m-1 2Re {2nA 	TIB (Tn+1, m+l - Tn+1, m-l)} + 
	V

n, m 
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+ M. P 	- M. P 	_ 
	

u
n,  m

. v  n, m +  2 	V n,  m. 
 TIA  

+ 

n+1, m-1 	n+1, m+1 	AZ 	AZ2  . Re 

+ vn-1, m  (n T - 	T 	} -  
AZ2 	Re 2  ( n+1, m 	n, m)  - nA 

M . nB _ 	_ 
2AZ . Re (Tn+1, m 	Tn, m).(Un, m+l 	fin, m-1 )  

(3.31) 

where nA  and nB  are the same as for Equation (3.30). 

(d) 	Energy Conservation  

In Equation (3.18), 9T/3Z and 32T/aZ2, a 2T/aY2  may be 

approximated according to the general two and three points formulae 

respectively. The remaining derivative is approximated by:- 

aT 	_ Tn+1, m+l - Tn+l, m-1  
aY + n+1, m 	

2/M 

Introduction of these substitutions into Equation (3.18) yields:- 

T 	(M v 	
M2 	

) + T 	
(Un, m + 2M2  - 1/AZ2

) 
n+1 ,  m+1 2 n, m 	Pr . Re 	n+1, m 	AZ 	Pr . Re 

	

_ 	_ 	M2 	_ 	Un, m 	2  
+ Tn+1, m-i ( 2 vn, m 	Pr . Re) 	Tn, m ( AZ 	AZ2 	Pr  . Re)  

( 	1  + T
n-1, m AZ

2  . Pr 	Re 
(3.32) 
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(e) Viscosity and Density Functions  

Equations (3.19) - (3.20) transform into the following two 

equations:- 

u = uB  (C01 T
n+G, 

m + CO2) 	 (3.33) 

m  
P = PB  (C04 + Tn+G

, 	
(C05 + C06 • T

n+1, m)}  
(3.34) 

(f) The Integral Continuity Equation  

If numerical integration in Equation (3.21) is carried out by 

a third order approximation, one obtains:- 

1  = 6M (U n+l , 1 + 4Un+1 , 2 +  2Un+1 , 3 + 4U  n+1, 4 + 

	 + 2U
n+1 , M-1 + 4Un+1 , M +   n+1 , M+1

) 
 

But:- 

U
n+l, M+1 = Un+l, 1 	0  

By using these boundary conditions in the equation and re- 

arranging:- 

- CO3 

M/2 	M/2 - 1 
3M _ 2 p2 U + 	 P U 

2m 	 p • 2m+1 
m=1 ° 	m=1 ° 

(3.35) 
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(g) 
	

Overall Energy Balance  

In the following, it is shown how Equations (3.26) - (3.27) 

may be transformed into Equations (3.36) - (3.37) respectively by making 

use of the finite-difference approximations. 

(g.l) 	When wall heat-fluxes are prescribed  

M 	 M 

p .Un+l,m .Tn+1,m - 	p . 
Un, m

. T
n, m =  

m=2 ° 	 m=2 

AZ .M2  
Pr . Re 

(HFI + HFO) 

Integrated between Z and Z + dZ 

The functions HFI (Z) and HFO (Z) on the right-hand side of 

this equation may be numerically integrated for the solution. According 

to the method mentioned in Singer (1964), these integrations may be 

carried out by the formula:- 

rZ+AZ 
 

1 	
HFI (Z) . dZ = a 	CJ  . HFI (ZJ) 

Z 	J=0 

where:- 

N = Number of divisions considered for the integration interval. 

a = Overall coefficient of the integration depending on N. 

J = A parameter to represent intermediate points for the integration. 

C = Partial coefficients depending on N. 
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Table (I.1) in the Appendix (I), reproduced from Singer (1964), 

shows values of these coefficients against their parameters. 

The function HFO (Z) may be similarly integrated. Therefore, 

the overall energy balance for this case becomes:- 

M 	 M 

p O n+l,m' Tn+l,m 	p O n,m T
n, m - 

m=2 o 	m=2 - 

- M
2  . AZ  

Pr . Re 

N 

a 	CJ  . HFI (ZJ) 

J=0 
"Inner" 
Wall 

N 

a 	CJ  . HFO (ZJ) 

J=0 
"Outer" 
Wall 

} (3.36) 

    

(g.2) 	When wall temperatures are prescribed  

In this case, the integral energy equation is:- 

M 	 M 

P 	O  n+l,  m 	Tn+1, m 	p 	
U
n,  m 	Tn, m 

m=2 o 	m=2 - 

M . AZ  TT 
- Pr . Re 	 Y 

Y=0 

dTl 	} 
dY 

Y=1  

The right-hand side differentiations may be carried out 

numerically. According to Singer (1964):- 

dTJ 	= M { 
dY

IY=0 

N' 

d' 1 CJ . T(YJ) 

J=0 

  

 

} 

Y=0 

 

   

where:- 
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N' = Total number of points used for the differentiation. 

d' = Overall coefficient of the differentiation depending on N. 

J = A parameter which signifies the points used for the differentiation. 

CJ  = Partial coefficients depending on N. 

Table (I.2), in Appendix (I), reproduced from Singer (1964), 

shows values of these coefficients against their parameters. 

The other derivative:- 

dT 

17  Y=1 

may be similarly treated. Therefore, the overall energy balance 

equation for this case is:- 

M 	 M 

P 
.

Un+1 , m 	Tn+1 , m - X  p . 
U
n, m . Tn,•  m = 

m=2 P° 	m=2 ° 

_ M2  . 
. 

AZ  { 
Pr Re 

N' 

d' 	CJ . T(YJ) 

J=0 Y=0 

+ 
N' 

d' E CJ . 1.(Y3) 

J=0 

} 

Y=1 

(3.37) 

     

     

3.7.3 	Finite-Difference Form of the Boundary Conditions  

(1 ) 
	

Entrance conditions: (Z = 0, 0 < Y < 1) 

U 1,  m  =11/ V1, m  =OP P1, m  =PT T1, m  = To 
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(2) Wall flow conditions: 	(0 < Z < L/d, Y = 0 or 1) 

Un, 1  = Un, M+1 = 0 

Un, 1 = 
V
n, M+1 = 0  

Additional assumption necessary to start the solution 

from the "Inner" wall:- 

Pn,  1 	Pn, 2 	Pn, 2  - Pn, 3  

Pn  or: Pn, 2  - 	' 1 	Pn, 3  
2 

(3) Wall thermal boundary conditions: (0 < Z < L/d, 

Y = 0 or 1) 

In order to make wall thermal conditions, qW"(z) 

or tw  (z) suitable for the finite-difference 

approximation, their profile is divided into 

infinitesimal axial strips and dealt with as 

follows:- 

(i) 	Wall heat-flux prescribed  

In this case, an average wall heat-flux is used. 

Define for the qwi (z) profile:- 

rZn+l  
HFI (Z) . dZ 

Z 
n (3.38) 

- Zn+l Zn  
HFI 

Av. for AZ 
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On the other hand, for differentiation with one 

adjacent point:- 

- 
_ Tn, 1 	Tn, 2 

1/M 
Y =0 

(3.39) HFI 

Av. for AZ 

Combining Equations (3.38) and (3.39):- 

1 
Tn, 1 = Tn, 2 + 

m- 	 HFI 

Av. for AZ 

By substituting TWIn = Tn,l and 

d' . g . C 	. 
HFI (z) = 	

V2 	k 	
s . qWi (z) :-  

B m 

d' . g . C 
TWI = T 	

s 	
q1 (z) n,2 + v 	2 	k .

M 	
W 

B ' m 
Av. integrated between Z 
and Z + dZ 

(3.40) 

The "Outer" wall may be dealt with similarly to 

obtain:- 

d`' . g . C 
-~ 

v 

TWOn = Tn 	s 

M + 2 	k
m 

M 
qwo 

B 	m 

(3.41) 

Av. integrated between Z and 
Z + dZ 

Equations (3.40) and (3.41) show how a prescribed 

wall heat-flux profile is turned into a boundary 
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condition problem. Now if the flow specifications 

at the point Z are known, their corresponding values 

at 
Zn+1 

may be calculated. In other words, the 

flow specifications (U, V, P and T), obtained for 

the level "Z" are treated as initial conditions for 

the level "Z + dZ". Also, the heat added to the 

model is the integrated value of the HFI and HFO 

profiles over the length dZ. Thus, a prescribed 

non-uniform qw' (z) turns into a uniform wall heat- 

flux problem for the distance dz. Here, the only 
• 

prerequisite is the integrability of qW' (z), 

either analytically or numerically. For the 

solutions reported in this thesis, these integrations 

are carried out numerically as mentioned for 

Equation (3.36). 

(ii) 	Wall temperature prescribed  

A similar procedure as for the case of prescribed 

qw' may be followed to obtain:- 

TWIn  = 

TWOn  = 

d3  . g . C 

v 2  
B  

d3  . g . C 

v 2 
B  

s 
 (twi (zn) 

 - tin)  (3.42) 

s (two  (zn) - tin) 	 (3.43) 

3.7.4 	Method of Solution  

From examination of Equations (3.29) - (3.32), it may be 

observed that where the product of two unknowns has occurred, 
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linearity is achieved by putting one of the unknowns equal to its 

value at the previous position. It can also be seen that these 

equations may be classified into two sets: one for the flow-field (i.e. 

U, V and P) and the other one for the temperature, T. In other words, 

the equations of conservation of mass and momentum are distinguished 

from the "energy equation" as the "flow-field" equations. These two 

sets of equations are linked to each other by the effects of 

temperature on the "flow-field" and vice versa. Therefore, the 

solution of Equations (3.29) - (3.32) may begin with the solution for 

either of the "sets". In the calculations which follow, it is assumed 

that the effect of temperature on the flow-field is of second-order. 

Therefore, the solution is started by solving the "flow-field" 

equations first. The solution is continued by using these results for 

the energy equation. 

In order to take into account the dependence of the coefficients 

of each of the above-mentioned "sets" on each other, the solution is to 

be repeated at each step to make sure that they have their "correct" 

values for the final solution. This repetition is to be stopped when 

the difference between two immediate solutions is negligible. In more 

detail, Equations (3.29) - (3.31) and (3.35) are written for each 

horizontal position. At the first axial step from the channel entry, 

the coefficients and also the right-hand side values are evaluated 

from the entrance boundary conditions. This produces (3M - 2) 

unknowns, (U, V, P for each horizontal position and P at the "Outer" 

wall) and the same number of equations. 

3.7.5 	Matrix Form of the Flow-Field and the Energy Equations  

Equations (3.29) - (3.31), together with Equation (3.35) may 



al, 	1 al, 	2  	a1, 	3M-2 
P2 

a2, 	1 
• 

• 
PM+1 

• 
• 

x 

V2 

• VM 

U2 

a3M-2, 	1 a3M-2, 3M-2 U~M 

b1 

b3M-2 
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be written in the following Matrix form:- 

where:- 

aid = Coefficients depending on the flow-field and also the temperature 

values at the previous steps. 

= Known values in the right-hand side of each of the equations. 

This Matrix form may also be represented as:- 

IA'I x IPVUI = 1B1 (For the flow-field) 	(3.44) 

Equation (3.32) together with either Equation (3.36) or (3.37) 

may be similarly treated to obtain the following Matrix form:- 



2 
T b" 

1 

• 
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a~ 	1 	a~ 	2 	...  	a1, M-1 

a2, 1 

x 

aM-1, 1 

 

aM-1, M-1 

 

TM 

where:- 

aid = A coefficient depending on PVU values obtained from the solution 

of Equation (3.44) and also the temperature values at the previous 

steps. 

b"." = Known values at the right-hand side of each of the equations. 

This equation may be represented also as:- 

IA"I x I TI = 1 B""1 
(For energy) 	 (3.45) 
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CHAPTER 4  

THE NUMERICAL SOLUTION TECHNIQUE  

AND THE COMPUTER PROGRAM 'DUCT' 

	

4.1 	Introduction  

In Chapter (3), conservation equations of mass, momentum and 

energy were written for the theoretical model. Later, these were 

transformed into the finite-difference form which led to the matrix 

Equation (3.44) for the "flow-field" equations (i.e. PVU) and the matrix 

Equation (3.45) for the temperature, T. This chapter is concerned with 

the solution of these two sets of equations by the computer program, DUCT 

specially written for the purpose. 

	

4.2 	The Numerical Solution Technique  

Recalling the matrix Equation (3.44):- 

IA"I . IPVUI = IB-I 	(3.44) 

Solution of this type of equation may be attempted, among other methods, 

by inversion of the matrixIA'I and later multiplying it by the matrix 

IB-1. In this thesis, however, the solution is obtained by a standard 

Gaussian Elimination Method suggested by McCormack et al (1964). 

The matrix Equation (3.45):- 

IA--1 • ITI = IB"I (3.45) 

is also similarly treated. 

As mentioned in Chapter (3), Equations (3.44) and (3.45) are 

coupled together because of the effects of the temperature, T on the 
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flow-field, PVU and vice versa. Thus, after obtaining a solution for 

Equation (3.44), this solution should be used for the solution of 

Equation (3.45). In order to make sure the effects of the dependence 

of theIA"I and IA "I  matrices on the PVU and T solutions is being 

catered for, these joint solutions are repeated until the difference 

between two successive solutions is negligible. The marching is 

carried out by progressing to the next axial distance until the total 

length of the tube is covered. 

The computer program DUCT is written for the solution of 

the matrix Equations (3.44) - (3.45). The listing of this program is 

available at:- 

Imperial College of Science and Technology, Thermal Power Section 

A discussion of the strategy of the computer program and 

also its parameters, plus a Flow-Chart  are given in the following. 

4.3 	The Computer Program DUCT  

This program is written in FORTRAN 4 and consists 

of the main program DUCT and the subroutine, MRV for the Gaussian 

Elimination Method. 

The main program DUCT has two basic parts. 

(i) In the first part, the coefficients aij  for (3M - 2) rows 

of the matrix IA-I, are calculated. The coefficients bi  of the matrix 

are also calculated by making use of the boundary conditions. At 

the end of the first part of DUCT, the subroutine MRV is called to solve 

for PVU values. 

(ii) In the second part of DUCT, the coefficients ai:j  of the (M - 1) 
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rows of the matrix IA " I are calculated. In these calculations, PVU 

values, obtained at the first part of the main program are used. The 

subroutine MRV is called at the end of this part also to solve for the 

T values. 

In order to take into effect the dependence of the PVU and 

T solutions on each other, a semi-iterative operation is carried out. 

This is done by using the T solutions, at the end of the DUCT program, 

to obtain another PVU solution which in turn is followed by another 

solution for T. This iteration is repeated until the difference 

between two successive solutions for T falls within the criterion pre-

selected for the problem. Having completed the iteration, the PVU and 

the T solutions are declared final and are written in the output list. 

4.4 	The Computer Program's Notation and Definition of its Terms  

4.4.1 	Input Functions  

In order to prescribe the functions according to which wall 

temperature or heat-flux on both walls vary, provision is made to 

give two functions, FI(Z) and FO(Z), as input directives for the computer 

program. 

4.4.2 	Input Parameters  

CO1, CO2, 	These three parameters represent the coefficients of the 

CO3 	viscosity function of temperature, Equation (3.19). (The 

program DUCT may be used for other viscosity functions than 

Equation (3.19), by replacing the 	and nB  terms which are 

used in it with the relevant new terms). 
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C04, C05, 	These parameters represent the coefficients of the density 

C06 	function of temperature, Equation (3.20). The term 	should be 

adjusted if density functions other than Equation (3.20) are 

to be used. 

DELTZ 	The axial increment in the marching-forward procedure is 

given by this parameter. It should be assumed rather small, 

e.g. DELTZ = 0.625, near the entrance region of the channel. 

However, provision is made in the program for DELTZ to be 

doubled at particular axial positions, should this be 

required. 

EPSYLN 	The criterion for iterative PVU and T solutions is specified 

by this parameter. The value of this parameter depends on 

the accuracy desired in the calculations. In DUCT, the 

iterative procedure is stopped when:- 

TW0
i+1 

- TWO. 
< EPSYLN - for IFTOQ = 2 or 3 

TWO. 

or: - 

HFO. 

where i is the number of iterations already executed. 

GNUMBRY 	A dimensionless number related to the geometry of the 

HFOi+I - HFO.1 
< EPSYLN -} for IFTOQ = 1 
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theoretical model and the base temperature, tB:- 

GNUMBRY E G = d 3  . g/vB 

IDR 	The number of points for the numerical differentiation 

in Equation (3.13) is specified by this index. 

IFTOQ 	This index specifies whether the wall temperature profiles 

or wall heat-fluxes are prescribed. Different cases are 

assumed by the program according to the following values of 

IFTOQ:- 

FI(Z) = TWI(Z) 

FO(Z) = TWO(Z) 

FI(Z) = HFI(Z) 

FO(Z) = HFO(Z) 

FI(Z) = TWI(Z) 

FO(Z) = HFO(Z) = 0 (Thermally insulated wall) 

ILASTY 	This is an index which controls the total number of axial 

steps in the marching-forward procedure. 

ISTEP 	This index specifies after how many axial steps the writing 

of the results in the output list should take place. 

1 -' 

2} 

3 + 
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ISUNUY 	The program assumes the following two U0  profiles according 

to the value of this index:- 

(i) Uniform Uo, i.e. Uo  = 1 -} For ISUNUY = 1 

(ii) Parabolic Uo, i.e. Uo  = 6Y(1 - Y)-'- For ISUNUY = 2 

KLASTY 	Provision is made in the program that at some axial positions, 

the axial increment, DELTZ is doubled. This is done to 

economize on the computer time after small increments which 

are necessary near the channel entry. 

Elements of this array specify the axial positions at which 

the axial increment, DELTZ is doubled. The maximum number 

of its elements is equal to ILASTY. 

This index specifies the number of divisions in the channel 

spacing, d (M = MAXY). Due to the nature of the finite-

difference approximation used for Equation (3.35), MAXY 

must be an even number. Choice of this index depends on 

the capacity of the computer system. For the CDC 7600 

(ULCC), it could be increased up to: MAXY = 90. 

NIM 	This index is used to limit the number of successive 

iterations at a particular axial position. 

PENTRY 	This parameter represents the pressure at the entrance to 

the channel. For convenience, it may be assumed zero. 

Later, p at any axial level may be adjusted by adding the 

LD 

MAXY 
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actual pc)  value to it. 

PRNDTL, 	These two parameters are the modified Prandtl and Reynolds 

RYNLDS 	numbers defined in the nomenclature. 

RATIOY 	The ratio, pm/pB  is specified by this parameter. 

S 	This parameter specifies the sign of the buoyancy term. 

Its value is:- 

1 -► For upward flow 

- 1 -► For downward flow 

0 -* For adiabatic or pure-forced flow 

4.4.3 	Output Parameters  

f , f 	(Pressure-factors): These two parameters represent the local and 

P pav 
the average pressure drops and are calculated based on the formulae: 

- PMEANY 
ZBAR 	(ZBAR-DELTZ) 

DELTZ 

PMEANY 
ZBAR  

f 	- 
 

pav 	
ZBAR 

fs  , fs 	(Shear loss-factors): These two parameters represent local 
i 	o 

shear stress factors at the "Inner" and the "Outer" walls 

respectively. For the "Inner" wall:- 

f
= s

l
. 	l 	z 	1 	z 

2 Pm
. uo 	2 pm . uo 

PMEANY 

fp  = 

Du 
Ts.

II
Wi •• ay 

i 	_ 	y=0 
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_ 2 	DU l 	uwi 

	

Sif Re 	ā Y 
Y=0 ' PB 

fsi  

2. nA 
e  

Similarly, for the "Outer" wall:- 

_ 2  ' nA(wo) 	aU 
fso 	Re 	' nilY=1  

Differentiations on the right-hand side of these formulae 

are numerically executed in the DUCT computer program. 

Local friction and shear-loss factors, fp  and fs, are 

important performance data. These two coincide only when 

density is constant,i.e. there is no momentum change. 

GRAETZ 	Graetz number is calculated according to the formula:- 

GRAETZ = ReD  . Pr/ZD  

HEADM 	This parameter represents the total pressure head which is 

needed at each axial position. It is calculated from the 

formula:- 

'z 

HEADM =  o  

( Pmean 	
Po) . g . dz - Apf 

2 
Pm  uo  

It can be noted that the right-hand side of this is the 

. au 
Y=0 
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difference between the "friction" and "buoyancy" pressure terms, 

where the buoyancy term is the difference between the static 

pressure drop which actually occurs with the heated fluid and 

the static pressure drop which would occur in the channel if the 

fluid density remained at its entrance value. This parameter is 

chosen, similar to that of Lawrence et al (1966), because it has 

physical significance in a mixed-convection regime. 

I HFLUXI, 	Wall heat-fluxes at the "Inner" and the "Outer" walls are 

INFLUX() 	represented by these two parameters respectively. When tw  

is prescribed, (IFTOQ = 1), these parameters are calculated 

according to the formulae:- 

.. 	atl 	=+k 8t 
qwi  =-k āy 

y=0' qwo 	By 

or in the dimensionless form:- 

HFLUXI --1 	aT 
- M āY 

HFLUXO 
= M a Y=1  

The differentiation on the right-hand side of these 

equations is performed by the method of Singer (1964) shown 

in Table (I.2) of Appendix (I). 

MCPCM 	This parameter specifies the "degree" of mixed-convection which 

is to be referred as "mixed-convection index" in Chapter (5). 

It is calculated from the formula:- 

y=d 

Y=0 
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rz 

1 Near' Po)  g dz 

MCPCM -  °
II 	

x 100 

Po 	 mean 
I z  

Therefore, it assumes values 0 and 100 for pure-forced and 

pure-free convection regimes respectively. 

I
NUSSLTI, 	These two parameters are Nui  and Nuo  respectively. The 

NUSSLTO 	following relations show how Nui  is calculated:- 

2d 	2d 	qwi  
Nui - k ' hwi=  k ' (twi 	tmean)  

or in the normalized form:- 

2 . MAXY . HFLUXI  NUSSLTI -  
(TWALLI - TMEANY) 

A similar method is adopted for the calculation of NUSSLTO. 

PMEANY 	The pressure is integrated throughout the cross-section 

according to the formula:- 
J 

rd 

w•d 	Pmean- j  
o  p 	w•dy 

or: - 

r1 
P 	=M.J P.dY 
mean  
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By execution of the integral numerically:- 

M 
PMEANY = 	Pm  + 

2 
 (P 1  + PM+1) 

m=2 

REDZD, 	These two parameters are modified forms of the axial 

REDZDPR 	coordinate, Z. They are calculated from the formulae:- 

ReD  
REDZD - 

REDZDPR - 
D 

TBARY 	This parameter is the mixed-mean temperature which is 

calculated based on the total heat input to the theoretical 

model, Equation (3.12) or (3.13). 

TMEANY 	This parameter is the mixed-mean temperature which is 

calculated based on the temperature profile across the cross-

section. Recalling from Equation (3.14):- 

rd 
1 u.p.t.dy 
0  

tmean = 	rd 

1 
 p.u.dy 
0 

(3.14) 

which after normalization and the numerical integration 

becomes:- 

ZD  

ReD .  Pr 
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1 

	

p  
TMEAN 

I n+1 = 
M 
mL  U 

 n+l,m • Tn+1,m . pa  

As mentioned in Chapter (2), the overall energy balance 

equations, Equation (3.12) or Equation (3.13)2 are used in 

the solution procedure as part of the equations in the PVU 

and the T solutions. Thus, TMEANY and TBARY should be the 

same. As a check, these two parameters are calculated 

independently to show the accuracy of the method of solution. 

TWALLI, 	These two parameters represent tw  at the "Inner" and the 

TWALLO 	"Outer" walls, (Y = 0 and 1) respectively. When qW' is 

prescribed, IFTOQ = 2, these parameters are calculated based 

on a curve-fitting exercise to the solved temperature profile. 

For "Inner" wall with three adjacent points:- 

TWALLI = (6 . HFLUXI + 18 . T - 9 . T + 2 . T )/11 
2 	 3 	 4 

For higher accuracies, more points are used according to 

the method of Singer (1964), see Table (I.2) of Appendix (I). 

The "Outer" wall is similarly treated to obtain TWALLO. 

1
U, V, T 	The output list contains the normalized values of the axial and 

Land P 	horizontal velocities, the temperature and the pressure 

across the cross-section at each axial position. The outline 

of the output is arranged such that the first value 

for each of these is the value at Y = 0 and the rest are 

the values at horizontal increments of 1/M. 
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ZBAR 	This parameter represents the axial coordinate in 

dimensionless form. 

ZDRED, 	These two parameters are modified forms of the axial coordinate, 

ZDREDPR 	Z. They are calculated from the formulae:- 

ZDRED - 
ZD  

ReD  

ZDREDPR = Re
D . 

 Pr 

4.4.4 	Input Parameters' Format  

(a) Card 1: 	ILASTY, KLASTY, MAXY, ISUNUY, IFTOQ, NIM, 

ISTEP, IDR are entered as integer numbers with 

maximum of three digits. 

(b) Cards 2 and 3: CO1, CO2, CO3, C04, C05/C06, GNUMBRY, 

PENTRY, DELTZ, PRNDTL, RYNLDS are entered 

as decimal numbers. 

(c) Cards 4 and 5: These cards explain the specifications of 

the functions FI(Z) and FO(Z) to be used as 

the head-lines in the output list. Due to 

the type of characters used in these cards, 

they are entered with "alpha-numeric" format. 

(d) Card 6: 	S, RATIOY, EPSYLN are entered as decimal 

ZD  

numbers. 
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(e) 	Card 7: 	LD(1) .... LD(KLASTY) are entered as 

integer numbers. The last element of the 

array LD must be equal to ILASTY. 

4.4.5 	Execution of the Program DUCT  

In order to facilitate execution of this computer program 

whilst reserving the possibility of inserting the new FI(Z) and FO(Z) 

functions in the program,and also any necessary modifications for any 

particular mixed-convection problem, the UPDATE filing system is used. 

By making use of this system, developed by Sinclair et al (1975), the 

computer program is stored in an initial form. Later, by a set of 

directives, the new functions FI(Z) and FO(Z) are inserted by 

deleting their corresponding functions which exist in the stored 

version. After the insertion of the new functions FI(Z) and FO(Z), 

and also the necessary modifications, the program turns into a new 

version ready to be compiled for the new set of data which follows the 

input-directives. This new version of the computer program does not 

remain permanently in the stored file and is purged as soon as the 

execution is over. 

4.5 	Discussion About the Flow-Chart of the DUCT Computer Program  

For the Flow-Chart (given at the end of this chapter), four 

variables, in addition to those already mentioned, are used. These 

internal variables are:- 

ITALLY 	An index representing the number of axial steps already 

taken. The program stops when:- 	ITALLY = ILASTY 
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N12 	This index shows the number of iterations executed for the 

PVU and T solutions. Iteration stops when this index equals 

NIM. 

NITER 	Iteration, for the PVU and T solutions, starts when this 

index is zero and finishes when it equals 1. 

PTWO 	This parameter represents the value of TWALLO or HFLUXO 

at the last iteration as follows:- 

IFTOQ = 1 	PTWO = HFLUXO 

IFTOQ = 2 or 3 } PTWO = TWALLO 

At the end of this chapter, the Flow-Chart of the computer 

program DUCT, with utilization of the UPDATE system, is given. For 

straightforward running of the program with a deck of cards, the two cards 

for the FI(Z) and F0(Z) functions must be inserted beforehand. 

4.6 	Consumption of Computer Time for a Typical Run of the  

Computer Program DUCT  

A single run of the DUCT computer program on the CDC 7600 

(ULCC), for a uniform heating case with 40 horizontal divisions and 16 

axial steps, uses 6.088 (sec) of the Central-Processing time, CP. This 

time increases to 119.114 (sec) for the same problem, but with 90 

horizontal divisions. 

For the CDC 6400 (ICCC), which is a much slower machine, 

CP time for the above-mentioned problem with 40 horizontal divisions and 
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24 axial steps, is 83.112 (sec). It increases to 310.811 (sec) when 

the number of horizontal divisions increases.  to 60. 



I 
UPDATE the stored version of the 
DUCT and INSERT the new FI (Z) 

and FO (Z) functions 

i  

/ 
READ the input parameters 

Ý 

180 

Assume the coefficients for the numerical 
integrations and differentiations. The 
latter according to the value of IDR 

Parabolic U
o 

profile 
Uniform Uo  profile 

Set U, V, T and P at their 
initial values 
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4.7 	Flow-Chart of DUCT  

100 

Contd. 



ZBAR 	= 0.0 , TBARY = 0.0 
ITALLY = 0 	, NITER = 0 

Integrate FI (Z) and FO (Z) 
over the length DELTZ 

Calculate a1J 
for Eq. (3.44) which 

depend on the boundary conditions 

Calculateaij 
for Eq. (3.44) which are 

independent of the boundary conditions 

ol o 

CD 
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TWALLI = FI (Z 
Av.Int. Av.Int. 

TWALLO = FO (Z) 
Av.Int. 

HFLUXI = FI (Z) 

HFLUXO = FO (Z) 
~ Av.Int. 

TWALLI = FI (Z) 

HFLUXO = 0 

Contd. 



Calculate a~~ for Eq. (3.45) which are 

independent of the boundary conditions 
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The subroutine MRV is 
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\ the PVU solution 
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the T solution 

t 
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No 

710 

Record the axial 
position, ZBAR 

Replace level 3 and 2 
values with the latest 

T solution and the level 3 

T values respectively 

NITER = 0 

Calculate the output parameters 

WRITE the output parameters 
in ISTEP sequences 

PTWO = 0 
N12 = 0 

Contd. 

1 

NITER = NITER + 1 
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Yes 

CZ 

ITALLY 	ILASTY 

WRITE the axial 
positions where 
DELTZ is doubled 

K 	=K+l 
DELTZ = 2 . DELTZ 

 

Replace level 1 U, P, V and 
T with their level 2 values 

 

 

810 

Replace level 2 U, P, V and T 
values with their respective 

level 3 values 

	 i 
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CHAPTER 5  

COMPUTER PREDICTIONS FOR ARBITRARY HEATED  

VERTICAL CHANNELS WITH FORCED OR  

MIXED-CONVECTIVE REGIMES  

5.1 	Introduction  

In this chapter, attention is focused on the computer 

predictions for typical channels similar to that of the theoretical 

model mentioned in Chapter (3). Cases of both forced and mixed-

convections are considered with the channel walls having symmetrical 

or asymmetrical heating. The density and the viscosity of water are 

assumed constant for the forced-convective cases while Equations (3.5a) - 

(3.6) are used to cater for their variations with temperature in the 

mixed-convective regimes. 

In order to gain more confidence in the model, the computer 

predictions for several cases are compared with other available results. 

This is done as follows:- 

(i) For the forced-convective cases, Kays (1966), among others, 

gives analytical solutions for a typical channel with both walls having 

identical (or non-identical) and uniform prescribed temperature or heat-

flux. These results are accurately predicted by the computer program. 

(ii) For the mixed-convective flows, experimental results of 

Vernier (1962) for a vertical channel with both walls having identical 

and uniform heat-fluxes, are compared with the computer predictions. 

These comparisons, executed for two examples, confirm the accuracy of 

the numerical approach of this thesis to be good. 
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Particular attention is paid to the cases where the profile 

of qw' varies in a sinusoidal manner along the channel. Two models, 

each representing the "hot-channel" of a plate-type nuclear fuel element 

at different power levels, are solved by the computer program and their 

results are compared with each other. These calculations are compared 

with forced-convective cases to confirm that for forced-convective flow 

with a non-uniform qw' profile, the parabolic U velocity profile will 

be established in the channel, together with a linear pressure-drop. 

For asymmetrical heating cases, a further examination of the 

computer results, for the forced and the mixed-convective flows, is 

executed. This is done by "exchanging" the prescribed heating conditions 

of the two walls. The direct reflexion of this exchange on the 

predictions leads to the conclusion that they are not dependent on the 

choice of the heated wall. 

A cross-checking was carried out by treating the tw  profile, 
• 

obtained for a particular qW' profile as data for a prescribed wall 

temperature case. Comparison between the qw' profile obtained for the 

latter and the original qw' profile reveals the fact that the predictions 

are reliable and accurate. This example may also be used to show that 

the numerical method of this thesis could also solve for the cases with 

a prescribed and non-uniform tw  profile. 

5.2 	Computer Predictions for Forced-Convective Heat Transferrin  

Vertical Channels  

For this part, the typical channel of Fig. (5.1), with its 

walls having a uniform prescribed heating, is considered. Three types 

of heating are selected as follows:- 
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The walls having identical/non-identical prescribed heat-

fluxes. 

The walls having identical/non-identical prescribed 

temperatures. 

(iii) 	Setting one wall to a prescribed temperature while the other 

one is thermally insulated. 

The data of this channel is given in Table (5.1). 

5.2.1 	Computer Predictions for Prescribed Wall  

Heat-Flux Cases  

These cases are referred to by their value of the 

parameter rq, representing the ratio of the heat-fluxes on the two walls 

(i.e. rq  = qwo/qwi)• Several cases of this type of heating with the 

identical and also non-identical wall heat-fluxes, rq  = 1 and rq  < 1 

respectively, are solved for to obtain a general conclusion about the 

fully-developed specifications of the flow, i.e. the U4  and Nu values, 

and their relationship with rq. 

(a) 	Uniform and Indentical Prescribed Wall Heat-Fluxes (rq  = 1) 

The computer predictions for this case, which are identical 

for both walls, are classified in the following three ways:- 

(a.l) 	Hydrodynamic Entry Length  

Fig. (5.2) shows the development of the U velocity profile 

along the channel for rq  = 1. It is noted that the profile continues 

(i) 

( ii 



TABLE (5.1) DATA FOR THE TYPICAL CHANNEL  

Reduced Data 

Data 

w/d Zmax = L/d m 

(gr/sec) 

tin  

(Co ) 

Re ReD  Pr 

d = 0.538 cm, w = 8.45 cm, L = 3.55 m 

t 	= 5 0C, uo = 3.81 cm/sec 
in 

qW' = 0.67 Wm') } For rq  cases 

tw 	= 40 oC 	} For rt  cases 

15.7 660 17.32 19 208.15 416.3 6.82 
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to develop towards a parabolic shape as the fluid moves downstream. At 

Z = 40, the difference between the U values and their corresponding 

values for U = 6Y(1 - Y), which can be analytically obtained, are less 

than 1%. This length, which is to be referred to as the "hydrodynamic 

entry length", ZDU, may be expressed in relation with Rep  by the formula:- 

ZDU = 0.0485 ReD  

This relationship is checked with solutions for several other 

values of ReD,  leading to the conclusion that its coefficient is constant 

and does not depend on ReD. Also, the relationship is in agreement with 

that suggested by Kays (1966): "A good approximate figure for the length 

of a conduit necessary for the development of the parabolic U velocity 

profile is: ZDU = 0.05 ReD". 

Development of the U velocity profile towards the parabolic 

shape may also be noted from Figs. (5.3) - (5.4). On Fig. (5.3), 

development of the centreline velocity, Ug  towards its asymptotic value 

of U = 1.5 at the end of ZDU is shown. Here by use of a logarithmic 

abscissa, the development at the entry region is better represented. 

Also Fig. (5.4), which is the V velocity profile at Z = 20 (i.e. 
	
ZDU), 

confirms the horizontal movement of the fluid from the walls towards 

the centre of the channel. V values are:- 

V>0 

V<0 

V=0 

for } 0 < Y < 0.5 

for -►0.5<Y<1 

for ;Y = 0.5 

At axial positions larger than ZDU, the values of V are zero across the 
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channel. This confirms the fact that once the hydrodynamic length is 

covered, there will be no further horizontal movement across the 

section. Consequently, the U profile does not change. 

(a.2) 	Thermal Entry Length  

Fig. (5.5) shows the temperature profile at different axial 

positions. Near the entry region (low Z values), the profile is very 

flat near the centre and sharp next to the walls, which leads to large 

Nusselt numbers. 

As the fluid moves further downstream, the profile continues 

towards the establishment of its fully-developed shape. Because in general 

it is not possible to compare the continuously-developing t profiles, the 

fully-developed length, ZDT, is defined as that length in which the term 

tw  - t does not change by more than 1% from its value d/2 upstream. This 

is a convenient definition for use with finite-difference methods. For the 

present problem at Z = 187.5 this criterion is satisfied. Application of 

several Reynolds and Prandtl numbers for the problem shows that ZDT is 

proportional to the product of these two numbers: ZDT = 0.033 ReD  . Pr. 

Fig. (5.6) shows axial variations of Nusselt number. This 

figure confirms that as a consequence of the establishment of the fully-

developed temperature profile, the Nusselt number approaches its 

asymptotic value of Nu = 8.23 at the end of ZDT. Kays (1966) has 

analytically obtained the same value for Nusselt number and suggests 

that ZDT may be approximated by: ZDT = 0.05 Rep  . Pr. 

In the following table, the Nu values along the duct which 

were predicted by the present method are compared with those obtained 

by McCuen (1962) in a theoretical approach. 
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COMPARISON OF THE NUSSELT NUMBERS ALONG  

THE CHANNEL FOR UNIFORM AND EQUAL WALL  

HEAT—FLUXES (rq  = 1) 

ZD/(Pr 	. 	ReD) McCuen 	(1962) Present Method 

0.0025 11.860 11.691 

0.0100 8.803 8.771 

0.0150 8.439 8.510 

0.0250 8.263 8.269 

0.0500 8.236 8.230 

0.0750 8.235 8.230 

0.1000 8.235 8.230 

0.1250 8.235 8.230 

0.1500 8.235 8.230 

0.2500 8.235 8.230 

0.5000 8.235 8.230 
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(a.3) The Pressure and the Shear Loss Factors (fp  and fs ) 

  

Axial variations of these two parameters are shown on 

Fig. (5.7). Here, by employment of a logarithmic abscissa, the variations 

near the entry regions are clearer. According to this figure, fp  and 

fs  decrease as the fluid moves along the channel. At axial positions 

lower than ZDU, where changes in the U values are rather large, these 

two coefficients assume large values (as a consequence of the changes in 

the U profile). At the end of ZDU:- 

fp  = fs  = 0.05765 = 24/ReD  

This relationship is the same as the one obtained by Knudson et al (1958) 

with an analytical approach, and suggests a linear pressure drop 

along the channel. It should be pointed out that equal values for the 

parameters fp  and fs  only occur when p and u are constant because then 

the momentum and the energy equations, Equations (3.2) - (3.4),are not 

coupled. 

(b) 
	

Uniform but Non-Identical Heat-Fluxes, 0 <rq  < 1 

Following the results for the symmetrical heating, rq  = 1, 

the channel with the data of Table (5.1) is to be solved for several 

values of the ratio rq  in order to generalize the results. 

(b.l) The Computer Predictions for rq  = 0 

  

One of the cases where the heating may be easily realised 

is the case where one of the channel walls is kept at a uniform and 

prescribed heat-flux while the other wall is thermally insulated. In 
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the following, the predictions are obtained for the case when 

• 	 • 
qwi = Const. and q; = 0. 

(i) The U Velocity Profile  

This profile is developed along the channel identical to 

Fig. (5.2) obtained for the symmetrical heating (rq  = 1). The parabolic 

profile is obtained at Z = 40 which may be expressed as: ZDU = 0.0485 . Rep' 

It is noted that the same U velocity profile is obtained for both 

the rq  = 1 and rq  = 0 cases because for the forced-convection cases, 

the density and viscosity were assumed constant. As a consequence, the 

asymmetry in heating is not reflected in the U profile. However, the 

profile will differ when p and u variations with temperature are 

considered. This is done when the same problem is solved for a mixed-

convection regime. 

(ii) The Temperature Profile  

Fig. (5.8) shows the horizontal temperature distribution at 

different axial positions. Near the channel entry (low Z values), the 

profile is sharp near the wall which is heated, (Y = 0). This results 

in a large Nusselt number. As the fluid moves further downstream, the 

profile develops towards its fully-developed shape at Z = 660. From 

this axial position onwards, the profile remains unchanged and any 

further heating results in shifting the profile parallel to itself. 

Application of several ReD's and Pr's confirm that the thermal entry 

length, ZDT for this case may be represented as:- 

ZDT = 0.116 ReD .  Pr 
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It is noted that for this case, the intersection of the line which 

represents 
tmean 

with the temperature profile remains always between 

the centre of the channel and the wall which is heated (the so-called 

Inner-wall). 

Establishment of the fully-developed temperature profile is 

reflected in the Nui  profile. In Fig. (5.9), Nui  starts from a large 

value near the entry to the channel and reduces gradually as water 

moves further downstream. At the end of the thermal entry length, ZDT, 

the Nui  values approach to the ideal value of Nui  = 5.385. This value 

is also obtained by Reynolds et al (1964). The table given in the next 

page shows comparison of the two results. 

(iii) 	The Pressure and the Shear Loss Factors (fs  and fp) 

Development of these two parameters for this case is 

identical to that of the one previously mentioned (rq  = 1). Therefore, 

Fig. (5.7) may also be used for the asymmetrical heating (rq  = 0). 

As will be mentioned, for the mixed-convection cases, the 

development of these two factors will differ when the variations of p 

and p with temperature are considered. 

• 

5.2.2 	General Discussion for the Prescribed qW' Cases 

This discussion is executed by solving the typical channel 

for several rq  values. In the first part of the following, the computer 

predictions are compared with their corresponding analytical results. 

In the second part, a general representation of the local Nu and tw  

depending on the ratio rq  is given. 	This is followed by a search for a 

relationship between the thermal entry length, ZDT and the ratio rq. 
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COMPARISON OF Nu. VALUES 

ALONG THE CHANNEL FOR r = 0 
q  

Z
D
/(Re

D 
	. 	Pr) Reynolds et al 	(1964) Present Method 

0.0010 15.56 15.950 

0.0025 11.46 11.010 

0.0050 9.20 8.960 

0.0100 7.49 7.410 

0.0250 6.09 6.122 

0.0500 5.55 5.538 

0.1000 5.40 5.392 

0.2500 5.39 5.386 

5.39 5.385 
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(a) 
	

The Predictions for Several rq  Values 

The predictions for the symmetric and the asymmetric cases 

previously mentioned: rq  = 1 and 0 respectively, showed that because 

of constant p and u values, the U, fp  and fs  profiles are not affected 

by the type of heating on the channel walls. Therefore, the discussion 

was focused on the temperature and the Nusselt number profiles. 

Examination of the temperature profiles, Figs. (5.5), (5.8) 

shows that throughout the channel, i.e. 0 < z < L:- 

tmean < t
wo -} For rq  = 1 

tmean > two 
- For rq  = 0 

Recalling the definition of Nuo  shows that the change of 

sign for the term (tmean - two) determines the behaviour of the Nuo  

profile along the channel. If the difference becomes very small, the 

Nuo  value increases drastically. Moreover, for a particular value of 

the ratio rq  : two = tmean 
(at the end of the thermal entry length). 

In this case, Nuo  i 	and the problem must be regarded as a special 

case. Kays (1966) has proposed the following formula relating Nuo  at 

the end of ZDT with rq:- 

5.385  Nu _ 
o 	1 - 0.346/r

9 
 

According to this formula:- 

Nuo  = 8.230 for r = 1 

Nuo  = 5.385 for rq  = 0 
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These results are the same as the predictions obtained earlier in this 

chapter. The "critical" rq  happens when:- 

1 - 0.346/rq  = 0 } rq  = 0.346 

In order to examine this case, the typical channel of Table (5.1) is 

solved for this ratio. 

(a.l) 	The Temperature Profile for rq  = 0.346 

Fig. (5.10) shows horizontal temperature distribution at 

different axial positions. Horizontal lines on each profile represent 

the intersection of 
tmean 

and the temperature profile at those axial 

positions. At Z = 620:- 

- 
two 	tmean - 0

.1 °C , Nu. = 6.1146 , Nuo  = 383.88 

This length may be represented in terms of the product(ReD  . Pr)as:- 

ZDT = 0.1092 ReD .  Pr 

The value Nu. = 6.1146 reflects the establishment of the fully-developed 

temperature profile as shown on Fig. (5.11). This value may 

also be obtained by using, rq  = 0.346 in the formula:- 

5.385  
- Nu

i 	1 - 0.346rq  

Axial variation of Nuo  is not monotonic. Fig. (5.12) shows 
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that it starts from a large value and continues to decrease. At Z = 40, 

(i.e. ZD  = ZDU), it goes through a minimum:- 

Nu
o.min = 

12.698  

After this position, due to the ever-decreasing value of (two 	tmean)' 

Nuo  starts to increase rapidly. It assumes a large value near the ZDT 

position: Z = 620 + Nuo  = 383.88. 

It should be pointed out that the large Nuo  value does not 

invalidate the definition employed for it so long as the physical 

meaning of t
wo = tmean 

is understood. 

(b) 	Relationship Between Specifications of the Flow and rq  

The temperature distribution along the Inner-Wall is shown 

on Fig. (5.13a) for various values of:- 

r - q 	. 

qwi 

Symmetrical heating corresponds to rq  = 1, whereas rq  = 0 represents 

the case for which the Outer-Wall is insulated. For rq  = - 1 the 

heat addition at the Inner-Wall is equal to the heat extraction at 

the Outer-Wall. One may note that the length required to approach 

fully-developed conditions is greater for unsymmetric heating than 

for a symmetrical wall heat-flux. In order to formulate this 

(Iwo 
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relationship,  the following formula may be suggested:- 

ZDT = C . ReD .  Pr 

where the constant C is a function only of rq. The suggestion is 

based on the following results which were obtained earlier in this 

chapter:- 

ZDT = 0.0330 . RD  . Pr ÷ For rq  = 1.000 

ZDT = 0.1092 . ReD  . Pr } For rq  = 0.346 

ZDT = 0.1160 . ReD  . Pr ; For rq  = 0.000 

Variation of the constant C against several rq  values 

is shown on Fig. (5.13b). It is noted that the variation is more 

apparent when:- 

0.9<rq <1 
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(c) 	Dependence of the Predictions on the Data  

In order to confirm that the predictions were not dependent 

on the system of coordinates, or the values of heat-fluxes, two 

examinations were executed:- 

(i) For the case with rq  = 0, the "Inner" and the 

"Outer" walls were exchanged and the problem was re-solved. 

The predictions, as expected, reflected the exchange 

directly (i.e. after the exchange, Nui  = 0 and Nuo  = 5.385). 

(ii) For the case with rq  = 1, the values ofqWi and 

qWŌ were changed and the problem was re-solved. The 

predictions showed that the non-dimensional parameters; Nu, 

fp, fs  together with ZDU and ZDT were repeated. This 

confirms that the predictions were independent of the qw' 

values. 

Table (5.2) summarizes the computer prediction for several 

rq  values. 

5.2.3 	Solution of the Prescribed tw  Cases 

• 

These cases, in comparison with those with prescribed qw', 

may be regarded as the "reverse-problem". Their method of solution, as 

explained in Chapter (3), is essentially the same but with minor 

modifications to solve for this type of boundary condition. In the 

following, the computer predictions are obtained for several symmetrical 
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TABLE (5.2)  

LOCAL NUSSELT NUMBER PREDICTIONS FOR  

SEVERAL PRESCRIBED WALL HEAT-FLUX CASES  

Results 
r 

q 

Nu. Nuo  
ZDT 

C - Pr 	Re D 

- 1.000 4.0000 4.000 0.12500 

0.000 5.3850 0 0.11625 

0.200 5.7850 - 7.666 0.11270 

0.346 6.1146 383.884 0.10920 

0.500 6.5128 16.767 0.10220 

0.750 7.2710 9.824 0.09500 

0.950 8.0240 8.374 0.07220 

1.000 8.2340 8.183 0.03300 
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and asymmetrical heating cases of this category. The parameter rt 

defined as:- 

two - tin  wo 	~n
- 

rt 
twi 	tin 

is used as the principal parameter by which these cases are to be 

referred. 

(a) 	Uniform and Identical Wall Temperatures (rt = 1) 

The computer prediction for this type of heating is similar 

to the case with rq = 1, (in terms of the establishment of the fully-

developed U and T profiles, identical predictions for both of the channel 

walls, etc.) but is different for the values of some parameters. These 

results are explained in the following two points:- 

(i ) 
	

The U Velocity Profile and the fp and fs Values 

The parabolic U velocity profile, U = 6Y(1 - Y) shown on 

Fig. (5.2), is obtained at Z = 40. Similar to the rq cases, this 

length may be expressed as:- 

ZDU = 0.0485 ReD 

Also, at the end of this hydrodynamic-entry-length, fp and fs assume 

their ideal value of: fp = fs = 24/ReD as shown on Fig. (5.7). 

(ii) 	The Temperature Profile  

As shown on Fig. (5.14), the temperature profile continues 
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towards a fully-developed shape. At Z = 140, the profile is approximately 

of a parabolic shape and satisfies the conditions for the fully-developed 

t profile. This situation is reflected in the value of Nu as shown on 

Fig. (5.6). According to this figure, Nu starts with a large value 

near the channel entry and approaches its fully-developed value of, 

Nu = 7.54 at Z = 140. 

It should be pointed out that for this case (rt  = 1), at 

axial positions larger than the ZDT, the temperature profile changes 

slightly to cater for the heat input to the fluid (due to the ever-

increasing value of 
tmean)• 

 However, these changes appear in the 

temperature profile in such a way that the Nu value remains constant 

throughout. 

In the table on the next page the Nu values along the duct which 

were predicted by the present method are compared with those obtained by 

McCuen (1962) in a theoretical approach. 

(b) 
	

Non-Identical and Uniform rt  Cases (0 < rt  < 1) 

In order to generalize the computer predictions for this 

type of heating, the typical channel of Table (5.1) is solved for 

several rt  values shown in Table (5.3). For all of these cases, a 

parabolic U profile, identical to Fig. (5.2) is obtained at Z = 40, 

i.e. ZDU = 0.0485 ReD.  Also, f and fs  values at the end of the ZDU 

are:- 

fp  = fs  = 24/ReD  

Among the several rt  cases, the predictions for rt  = 0 and rt  = 0.486 
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COMPARISON OF THE NUSSELT NUMBERS ALONG  

THE CHANNEL FOR UNIFORM AND EQUAL WALL  

TEMPERATURES FOR rt  = 1 

ZD/(Pr 	. ReD ) McCuen 	(1962) Present Method 

0.0025 9.951 9.390 

0.0100 7.741 7.728 

0.0150 7.582 7.619 

0.0250 7.543 7.541 

0.0500 7.541 7.541 

0.0750 7.541 7.540 

0.1000 7.541 7.540 

0.1250 7.541 7.540 

0.1500 7.541 7.540 

0.2500 7.541 7.540 

0.5000 7.541 7.540 

TABLE (5.3)  

COMPUTER PREDICTIONS FOR THE PRESCRIBED  

WALL TEMPERATURE CASES AT Z = 660  

Results 

rt 
 

Nu. 
1 

Nu
o 

ZD  Type of the Fully-
Developed Temperature 

Profile 
P r 	. 	Re 

 

0.000 4.099 3.894 0.116 straight-line 

0.200 4.146 3.839 0.116 straight-line 

0.468 4.260 3.692 0.116 straight-line 

0.657 4.430 3.426 0.116 straight-line 

0.828 4.826 2.420 0.116 straight-line 

1.000 7.541 7.540 0.025 * parabolic 

* At this position, a parabolic t profile is obtained 
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are discussed in the following:- 

(b.1) 	The Temperature and the Nu Profiles (for rt  = 0) 

This is the case when one wall is set at a prescribed 

temperature while the other one is kept at the fluid entrance 

temperature, tin: The temperature profile at several axial positions is 

shown on Fig. (5.15). It is noted that far downstream, Z = 660, the 

profile turns into a straight-line drawn between the twi  and the two. 

This length is regarded as ZDT and may be expressed as:- 

ZDT = 0.116 ReD .  Pr 

The temperature profile does not change its straight-line shape at the axial 

positions larger than the ZDT. This is because, at these axial positions; 

• 

qwi = 	qwo. 
Therefore, 

 tmean 
 is constant and the shape of the profile 

remains unchanged thereafter. 

Fig. (5.16) shows axial variations of Nui  and Nuo  for this 

case. According to this figure, Nui  starts from a large value near the 

entrance to the channel and approaches its fully-developed value of: 

Nui  = Nuo  = 4 at the end of the ZDT. These results confirm once again that 

for this case: qwi + qwo = 0 at the end of the ZDT. The Nusselt 

numbers just mentioned may be analytically obtained as follows:- 

M 
 

	

Nu. 	
2d h 	= 2d 	qwi 	

- 
2d k  ly-0  

	

1 	k • wi 	k 	t
wi 	tmean 	

k • 
twi 	tmean 

As mentioned above, the fully-developed temperature profile for this 

case, (rt  = 0), is a straight line. Therefore:- 
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tmean = (twi + two)/2  

= (twi  - two)/d 

y = 0 

Combining these equations leads to:- 

Nu
i 
 = 4 

(b.2) 	The Temperature and the Nu Profiles (for rt  = 0.486) 

For this case, tin < two < t
wi, therefore, the situation is a 

mixture of the two previously mentioned cases, (i.e. rt  = 1 and 0 

respectively). 

Fig. (5.17) shows the development of the temperature profile 

towards its fully-developed shape. It is noted that the increase in the 

centreline temperature, t4  is slowed down as the fluid approaches the 

axial position; Z = 160, where tmean = two. Thereafter, the temperature 

profile loses its semi-parabolic shape and develops towards the straight 

line drawn between twi  and two. 

Axial variation of Nui  is shown on Fig. (5.18). According 

to this figure, after the large value at the entrance region, Nui  

approaches its fully-developed value of Nui  = 4. The continuous increase 

in the 
tmean 

 value does not seem to affect Nui  significantly. On the 

contrary, Nuo  is very sensitive to the changes taking place in tmean 

because:- 

at 
ay 

Nu
o  ti qwo/(two 	tmean) 
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Fig. (5.19) shows Nuo  variations along the channel. It is noted that 

these variations take place in such a way as to keep the Nuo  profile 

somewhere between that of the two extreme cases of rt  = 1 and rt  = 0. 

Recalling:- 

For r
t 

= 1 4- Nu I 	= 7.54 
o ZDT 

For r
t 
= 0-- Nu I 	= 4 

o ZDT 

Therefore, Fig. (5.19) may be divided into two different regions:- 

Region A, where : tmean < two } Z < 180 

Region B, where : tmean > t
wo 

 -} Z > 180 

For the Region A, the temperature profile has the semi-parabolic 

shape shown on Fig. (5.17) and accordingly the Nuo  profile develops 

similarly to the symmetrical case of rt  = 1, shown as the dashed curve 

on Fig. (5.19). Near the axial position, Z = 180, the difference 

between the two  and the 
tmean 

becomes very small and Nuo  assumes large 

values. This process does not invalidate the definition used for Nuo  

when its physical reason, tmean = two, is understood. 

For the Region B, Nuo  starts from large negative values. This 

happens because:- 

Z > 180 } t
mean > two 

But: qwo > 0 

Therefore:- Nuo rt.,
gwo/(two 	tmean)  < 0 
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At Z = 320, water layers near the "Outer" wall (Y = 1), assume 

temperature values very close to two. Consequently:- 

qwo=0± 
Nu

o 
=0 

In the axial positions where; Z > 320, the water temperature near the 

"Outer" wall becomes higher than that of the wall itself, so:- 

qwo < 0 and 
t
wo tmean ̀  0  

leading to a positive value for Nuo. From this axial position onwards, 

the temperature profile approaches the straight-line shape and, 

consequently, Nuo  -} 4. Despite the discontinuity in the Nuo  profile, 

the profile for the axial variations of qwō, Fig. (5.20), is a monotonic 

curve. 

From the foregoing discussion, it may be concluded that 

the criterion for the establishment of the fully-developed profile with 

the straight-line shape is that there should be tmean = two at an axial 

position throughout the channel. This in turn forces the existence of 

a difference between the twi  and the two  values because when they are 

equal (i.e. rt  = 1), there will always be a difference between the tmean 

and the two  values. Therefore, only for the case with rt  = 1 there 

establishes a parabolic temperature profile, instead of the straight-line 

and Nu  = 7.54 (instead of Nui  = 4). Figs. (5.21) - (5.24) which 

respectively represent the profiles of the temperature, Nui, Nuo  and 

q; along the channel for rt  = 0.828, also confirm these conclusions. 
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(c) 	Dependence of the Computer Predictions of the Prescribed tw  

Cases on the Data  

Following the examinations for independence of the 

• 
predictions for the prescribed qw' cases from the system of coordinates 

and the value of the parameters involved, the following two tests are 

executed for the prescribed tw  cases:- 

(i) For the case where rt  = 0, the "Inner" and the 

"Outer" walls were exchanged. A direct reflection of this 

exchange in the predictions for the problem confirmed that 

either of the walls may be used as the heated wall or the 

insulated wall. 

(ii) For the case with rt  = 1,  the values of the t
wi  

and the two  were changed and the problem was re-solved with 

the new data. The solution showed the same predictions for 

the non-dimensional parameters; Nu, fp  and fs, together 

with the same constants in the ZDU and the ZDT formulae, 

and hence confirmed their independence from the data. 

5.2.4 	Solution for the Case With One Wall Set at a  

Prescribed Temperature While the Other Wall is  

Thermally Insulated  

For this case, the typical channel of Table (5.1) is solved 

with the following boundary conditions:- 

twi  = Cte and qwō = 0 . 
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The method of solution, as executed in the DUCT computer 

program, is a combination of the prescribed wall heat-flux and temperature 

cases. It is based on the procedure by which two  is primarily calculated 

for the insulated wall. Then, the problem is treated as a prescribed 

• 
wall temperature case and a solution is obtained. A current Co" is 

calculated from this solution and is compared with zero. If the qW' 	0, 

• 
the procedure is repeated until the current q; is satisfactorily close 

to zero. For the predictions mentioned here, the criterion is considered 

to be Nuo  <.1. The accuracy which results from this criterion has been 

sufficient to allow the duplication of the analytic results of, among 

others, Kays (1966). 

The computer predictions are classified in the following 

two ways:- 

(i) The U velocity profile is the same as that of the prescribed 

wall heat-flux or temperature cases shown on Fig. (5.2). According to 

this figure, the parabolic U profile of U = 6Y(1 - Y) is established 

at Z = 40 which may be explained as:- 

ZDU = 0.0485 ReD  

Also, at the end of the ZDU, the pressure and the shear-loss factors 

assume their ideal values of fp  = fs  = 24/ReD. 

(ii) The temperature profile at several axial positions is 

shown on Fig. (5.25). It can be seen,with reference to this figure, 

that in the entrance region of the channel, two  does not rise significantly. 

It is after Z = 120 that it starts to increase more than that of smaller 
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Z values. At Z = 360, the profile assumes its fully-developed form 

which is of a semi-parabolic shape (with having a slope near the 

"Inner" wall and being rather flat close to the "Outer" wall). 

The above-mentioned variations in the temperature profile 

are also reflected in the Nui  profile along the channel, Fig. (5.26). 

As shown on this figure, at the end of the thermal entry length, Nui  

approaches its fully-developed value, i.e.:- 

Z = 360 4- Nui  = 4.864 and ZDT = 0.0634 . ReD  . Pr 

which are in accordance with the analytical results reported in Kays (1966). 

5.2.5 	General Conclusions for the Uniform Prescribed  

qW' or tw  Profiles in the Forced-Convective 

Regimes  

The main conclusions for the symmetrical and also the 

asymmetrical heating cases are:- 

(1) 	There exists a hydrodynamic entry length, ZDU at the end of 

which the fully-developed U profile, U = 6Y(1 - Y) is established. 

This length does not appear to be a function of the type of heating 

and only depends on the value of Rep. Their relationship is found to 

be: ZDU = 0.0485 ReD.  

The pressure drop is linear along the channel. As shown 

on Fig. (5.7), the pressure-loss factor, fp  and also the shear-loss 

factor fs  approach their ideal values at the end of the ZDU. These 

values are: fp  = fs  = 24/Rep. 
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These results are in agreement with the analytical results 

of Knudson et al (1958). 

(2) 	For the cases where cl;' is prescribed, the computer 

predictions for tw  or Nu values along the duct vary as shown on 

Fig. (5.13a). According to this figure, if the ratio rq  is known, the 

temperature and Nusselt number values on both walls along the duct can 

be determined. It could also be seen that there always exists a "thermal 

entry length", ZDT. This length is found to be a function of the product 

(Re0  . Pr')in the following form:- 

ZDT = C
i 
 . ReD .  Pr 

where the constant C is dependent on the ratio rq  as shown on Fig. (5.13b). 

Analytical results which lead to the formula:- 

Nuo  = 5.385/(1 - 0.346/r q) (Kays 1966) 

have been accurately obtained by the computer program, Figs. (5.5) - (5.13). 

Of special interest is when rq  = 0.346 for which Nuo ZDT = m' 

The predictions for this case confirm that it does not invalidate the 

Nuo  definition so long as its physical meaning of t
mean = two 

is under- 

stood. 

Table (5.2) summarises these predictions for several values 

of the ratio rq. Values of Nu. and Nuo  in this table are checked 

against the above-mentioned formula. The difference is less than 1% 

for Nui  and 4% for Nuo. 
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(3) 	In the cases where wall-temperatures are prescribed, it is 

concluded that the shape of the fully-developed temperature profile 

depends on the ratio of the wall-temperatures, rt. Depending on this 

ratio, there are two possible shapes of the temperature profile:- 

(i) Parabola, for rt  = 1. This type of profile is 

achieved at the end of the thermal entry length, ZDT where:- 

• 

= qwo and also, Nui  = Nuo  = 7.54 

(ii) Straight-line, for 0 < rt  < 1. This profile is 

obtained by a straight line drawn between the twi  and the 

two  as shown on Fig. (5.17). When this profile is 

established:- 

• 

qwi 	
-- Nui  = Nuo  = 4 

It should be pointed out that the fully-developed temperature 

profile will always be obtained if the channel is long enough. For the 

above-mentioned straight-line profile, ZDT is minimum when rt  = 0 and 

increases with it. For all of the rt  cases, the axial variation of Nui  

is a monotonic curve, Figs. (5.16), (5.18) and (5.22). Conversely, 

the Nuo  profile along the channel goes through a discontinuity, as shown 

on Figs. (5.19), (5.23). This is because for the cases where 0 < rt  < 1 

at an axial position inside the channel: tw
o 
 = tmean' This equilibrium 

forces a discontinuity in the Nuo  profile. However, the qwō profile for 

this case is monotonic, Figs. (5.20) and (5.24). Table (5.3) summarises 

the computer predictions for these prescribed wall-temperature cases. 
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(4) The computer predictions were also obtained for the case 

where one wall is set at a constant temperature while the other one is 

thermally insulated (i.e. twi  = Cte.and q,"4  = 0). For this type of 

heating also there exists a fully-developed temperature profile but with 

a semi-parabolic shape. It can be seen with reference to Fig. (5.25) 

that at the end of the ZDT for this case, Nui  approaches its ideal 

value of Nui  = 4.864, reported among others by Kays (1966). The 

criterion, Nui  < 0.1 has been sufficient to reproduce the analytically 

obtained results for this case. 

(5) To gain more confidence about the independence of the 

dimensionless predictions from the data and also from the system of 

coordinates, they have been re-examined. This is done according to the 

following two steps:- 

(1) 	The predictions were repeated for several values 

of ReD's and Pr's. They all agreed with their corresponding 

results previously mentioned in this chapter. 

(ii) 	For the two cases, rq  = 0 and rt  = 0, a further 

checking is executed. This is done by exchanging the 

"Inner" and the "Outer" walls with each other. A direct 

reflection of this exchange in the predictions confirm 

that they do not depend on the choice of the coordinate 

system. 

(6) 	Prescribed non-uniform qw' or tw  profiles may be similarly 
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solved for. These predictions are to be reported together with their 

corresponding mixed-convection results later in this chapter, 

e.g. Fig. (5.42). 

5.3 	Mixed-Convection Heat Transfer  

As mentioned in Chapters (2) - (3), in this mode of heat 

transfer, the effects of temperature on the density and the viscosity 

of the fluid should be considered. In the following, this point is 

taken into account for various types of heating. In so doing, the 

computer predictions are compared, for two cases of the identical and 

uniform prescribed wall heat-flux, with the experimental results of 

Vernier (1962). This is followed by the solution for the case, rq  = 0 

where one wall is set at a uniform prescribed qw' while the other one 

is thermally insulated. 

. Non-uniform prescribed q,',,,—  or tw  profilesare also considered. 

An interesting and important application of the method introduced in 

this thesis is its ability to solve for the problems where qW' varies 

in a specified manner along the channel. For this purpose, the computer 

predictions are obtained for two models of a nuclear fuel element where 

q;,' varies sinusoidally along the channel. 

Also, non-uniform prescribed tw  profiles are investigated. 

This is done by using the tw  profile, which is obtained as the solution 

of a prescribed qw' profile, as the data for a non-uniform prescribed 

tw  case. Comparison of the qW' profile obtained for this case and the 

original qw' profile is used for the following two conclusions:- 

(i) 	The method of solution covers non-uniform 

prescribed tw  profiles also. 
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(ii) 	The comparison between the predicted qw' profile 

by the solution and the original profile represents the 

accuracy of the predictions. 

5.3.1 	Comparison of the Computer Predictions and the  

Experimental Results for a Channel Having  

Identical and Uniform Prescribed Wall Heat-Fluxes  

Vernier (1962) has investigated the convective heat transfer 

problem in a uniformly heated vertical channel with rectangular cross-

section, Fig. (5.1). He focused his study on a set of wall heat-

fluxes and aspect ratios. In the following, the computer predictions 

are obtained for two examples which Vernier studied and comparison is 

made between the predicted profiles of the U velocity and the temperature 

with his experimental results. Data for these examples are given in 

Table (5.4) and they are referred to as Example No. 1 and Example No. 2 

respectively. 

Figs. (5.27) - (5.32) show the predictions obtained based on 

these data. (The full-line on these figures represent the computer 

predictions while the dots show Vernier's experimental results). Also, 

the system of coordinates used for the computer predictions are at the 

right hand side of the graphs and those of Vernier on the left. 

(a) 	Comparisons for Example No. 1  

These comparisons are made for the corresponding U velocity 

and the temperature profiles at the exit of the channel (i.e. Z = Zmax 

or z = L). The Nusselt number, Nu is also compared at different axial 

positions along the channel. 



TABLE (5.4) DATA FOR THE TWO EXAMPLES  

Reduced Data 

Data 

w/d Z
max 4tot 

(w) 

m 

(gr/sec) 

Attot 

(C°) 

t  m 

(C°) 

tout 

(C°) 

Re Reo  Rem  ReD  Gr
D 

Gr
D 
 /Re' Pr 

Example No. 	1 

7.692 76.92 1468 33.93 10.32 22.46 27.62 495.0 456.0 518.8 990.0 5.05 x 106  5.149 6.763 

uo  = 5.34 cm/sec, 

w = 7 cm, d = 0.91 	cm, 

t
in

= 17.3 °C, 	L = 70 cm, 

Cc( = 1.498(w/cm2) 

Example No. 2 

7.692 76.92 1036 26.68 9.26 22.13 26.76 390.8 356.5 397.0 781.6 3.56 x 106  5.830 6.763 

. 

uo  = 4.2 cm/sec, 

qW' = 1.057 	(w/cm2), 

tin 	= 	17.5 °C.  

The rest the same as for 

Example No. 	1 
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(a.1) 	The U Velocity Profile  

Fig. (5.27) shows this profile at the exit of the channel 

(Z = ;lax = 76.92). The figure suggests that the present theoretical 

method represents a significant improvement over that of Vernier. In 

both of them, there is a peak velocity somewhere between the centre of 

the channel and the wall. This comparison proves that when variation of 

p and u with temperature are also considered, the U velocity profile 

develops continuously and the ideal parabolic profile will not be 

produced. This is because the water at the centre is denser than that 

at the same horizontal positions near the wall. Also, because of heat 

gain from the walls, the water temperature varies from one section to 

another. This is followed by changes in p and u and, consequently, the 

U velocity and the temperature profiles cannot reach their fully-

developed shapes and will continue to change. 

As shown on Fig. (5.27), the computer predictions are lower 

near the walls and higher at the centre of the channel. At the peak 

position:- 

Up = 1.333 (c.f. U
p.experiment = 

1.395) 

Y = 1/8 -~ 

AU = 4.6% 

and at the centre of the channel:- 

U = 0.771 (c.f. Ua 	= 0.684) 
.experiment 

Y = 1/2 -* 
AUS 11.2% 
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It should be noted that because of the low values of U in these 

comparisons, percentage calculations may not be quite representative 

of the differences. Also, the experimental results were obtained by 

using a pitot tube and their accuracy is reported to be within 6 to 7%. 

The computer predictions represent a significant improvement on 

Vernier's own theoretical results. 

(a.2) 	The Temperature Profile  

Fig. (5.28) shows the predicted and also the measured 

water temperature distribution across the channel at the exit (i.e. 

Z = Zmax 
= 76.92). The differences are:- 

At the wall, 

(Y=0or1) 

tw = 59.5 °C (c.f. t
w.experiment = 63 

°C) 

Also:- 

At the centre of t~ = 18.2 °C (c.f. tv 	= 17.5 °C) 
experiment 

the channel,(Y = 1 ); 

It is noted that Vernier's experimental results are reported to be 

accurate within 0.2 to 0.8 °C. Vernier's own theoretical results 

are too close to the computer predictions to be shown separately. 
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(a.3) 	Nusselt number, Nu  

Fig. (5.29) shows the axial variation of the Nusselt 

number, Nu. Comparison of the predicted and the measured values shows 

a good agreement, the difference being less than 3%. 

(b) 	Comparisons for Example No. 2  

Example No. 2 is the same as the afore-mentioned 

Example No. 1, except for the changes mentioned in the first column of 

Table (5.4). In the following, the comparisons are explained. 

(b.l) 	The U Velocity Profile  

Fig. (5.30) shows this profile at the end of the channel 

and as with the example No. 1, the shape of the profile for both results 

is similar, but the computer predictions are higher in the centre and 

lower near the wall. At the centre:- 

Y = 2 -. U¢  = 0.763 (c.f. U 	= 0.610) 
. experiment 

At the peak position:-  

Y = 0.15 --U = 1.335 (c.f. U
p.experiment = 1.423) 

These differences might be less regarding the fact that Vernier's 

results are reported to be accurate to 6 - 7%. As with Example No. 1, 

the computer predictions represent a significant improvement on 

Vernier's own theoretical results. 
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(b.2) The Temperature Profile  

Fig. (5.31) shows this profile at the exit of the channel. 

Here, as for Example No. 1, the overall shape of the profile is the same 

for both the predicted and the measured temperatures. However, there 

are some differences:- 

For Y = 2 . t = 18.6 °C (c.f. to 	= 17.8 °C) 

. experiment 

and for Y = 0 or 1 } tw = 50.5 °C (c.f. t
w.experiment = 50.45 

°C) 

It is noted that the experimental results are reported to 

be accurate to 0.2 - 0.8 °C. 

(b.3) Nusselt Number, Nu  

Fig. (5.32) represents axial variations of the Nusselt 

number, Nu. The accuracy of the computer predictions seem to be good 

with the differences being less than 2%. 

5.3.2 	The Computer Predictions for the Case (with rq  = 0) 

As mentioned for the forced-convective flows, this type of 

heat transfer is realised when; 	= Cte. while qwō = 0 • The 

predictions show that for the mixed-convective regimes, where variations 

of p and u with temperature are considered, the velocity and the 

temperature profiles continue to develop and do not assume the fully-

developed shapes. Because of the asymmetric type of heating, the U 

velocity and the temperature profiles are essentially asymmetric also. 

These profiles, obtained for the typical channel of Table (5.1), with 

extention of the length, are discussed in the following. 
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(i) The U Velocity Profile  

Fig. (5.33) shows the U profile at two axial positions 

along the channel (at Z = 355, 715 respectively). For comparison, the 

predictions of the corresponding case with symmetrical heating are also 

given. It is noted that near the heated-wall, the U values for the 

asymmetric heating are considerably higher than the symmetric case. This 

is attributed to the p and u reductions there. It is interesting to note 

that as shown on Fig. (8.34) the effects of the variations of the density, 

p are more significant than those for viscosity, u. For the area near 

the insulated wall, a similar argument describes the low U values 

there. These results are in agreement with those of Savkar (1970) for 

a similar case. 

(ii) The Temperature Profile  

Fig. (5.34) shows the temperature profiles at two axial 

positions (Z = 355, 715 respectively) for this case, (rq  = 0) together 

with those of its corresponding symmetrical case, (rq  = 1). As expected 

the profile continues to develop along the channel and there is no sign 

of its approach to a fully-developed shape. For the same axial position, 

the twi  value is lower for the asymmetric case. This difference 

increases as the fluid continues to move downstream. There exists a 

similar situation for two. 

In order to represent the above-mentioned differences more 

clearly, axial variations of Nui  for both of the cases are plotted on 

Fig. (5.35). According to this figure, Nui  for the asymmetric case is 

lower throughout the channel, compared to the symmetric predictions. 

The forced-convection results are also represented to show the natural-

convection effects on the Nui  values. The larger Nui  values, for both 
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of the cases, (rq  = 0 and 1 respectively), compared to their 

corresponding forced-convective values, confirm that the natural-

convection effects significantly improve the heat-transfer rate in the 

channel. They also suggest that if the heat-transfer calculations for 

these two types of heating are based on the fully-developed Nui  values, they 

will be subject to errors which will be bigger for longer channels. 

(iii) 	The predictions for the case with rq  = 0 do not depend on 

the choice of the heated-wall. This is confirmed by the exchange of 

the boundary conditions between the two walls, which was directly 

reflected in the predictions (i.e. after the exchange of the data 

between the walls, their predictions were also exchanged). 

5.3.3 	The Predictions for Sinusoidally Heated Flat Ducts  

An interesting and important application of the solution 

technique developed in this thesis is to problems where qW' varies in 

a specified manner along the channel. For this purpose, the computer 

predictions are obtained for two models of a nuclear fuel element where 

qw' varies sinusoidally along the cooling channel. 

These two models are chosen to simulate the hot-channel in 

the core of the University of London Reactor, (ULR) at two different 

power levels (108.5 KW and 325 KW respectively). The general 

configuration of these models is the same as that of Fig. (5.1) and 

their numerical data are given in Table (5.5). For convenience, they 

are referred to as 650 W and 1950 W Models, these being their total heat 

rates. 

Heat fluxes prescribed on the walls of these models are 

considered to vary according to the formulae:- 



TABLE (5.5) DATA FOR THE TWO MODELS  

Reduced Data 

Model 

w/d Z
max Q 

(w) 

Attot 

(C°) 

tm  

(C°) 

Re Reo  RemD  ReD  GrD  GrD 
 
/Rep Pr Po  

650 W Model 

20.3 187.5 650 18.7 39.35 131.3 159.8 382.6 262.6 1.39 x 105  2.020 6.503 0 

tin  = 30 °C, w = 6.5 cm, 

d = 0.32 cm, L = 60 cm, 

uo  = 4.06 cm/sec 

1950 W Model 

20.3 187.5 1950 30.55 45.28 238.5 281.7 727.3 477.0 4.83 x 105  2.124 6.426 0 

uo  = 7.38 cm/sec. 

The rest as for the 

650 W Model 
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qwi (z) = 
Qt 

 W 

 S 
. Cos (7 	- 2 • 

qwo (z) = qwi (z) 

These profiles are obtained based on the typical flux curve 

provided by the ULR . The procedure to approximate the flux curve, 

leading to the above-mentioned sinusoidal functions for qwi (z) and 

qwo (z), is explained in Chapter (6). Application of the data of the 

two models into the above-mentioned sinusoidal qw' profile leads to:- 

For the 650W Model : qwi (z) = 1.104 Cos (0.043z - 1.291) 

For the 1950W Model : qwi (z) = 3.312 Cos (0.043z - 1.291) 

where z is measured in (cm) and qw' in (w/cm2) respectively and for 

• 
both of them; Co" 

(z)  = qwi (z).  

The computer predictions for these two models are given in 

the following two sections (a) and (b). 

(a) 	Results for the 650 W Model  

(a.l) 	The Wall Heat-Flux Profile  

Fig. (5.36) shows the qw' profile which is used for the 

numerical integration in the DUCT computer program. The negligible 

difference between the computed and the actual heat-input values along 

the channel confirms that the accuracy of the predictions is good. 

(a.2) 	The Velocity Profiles  

Fig. (5.37) shows the development of the U profile along 
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the channel. According to this figure, the uniform profile at the entry 

gradually develops towards the parabolic shape obtained for the forced-

convection cases. At Z = 10, the U reaches its peak value (U = 1.476), 

but later, in contrast with the forced-convection cases, the profile 

develops towards a more flat shape. This is because of the natural-

convection effects under which the resistance against the movement of 

the fluid becomes increasingly lower near the walls and higher in the 

centre. Halfway through the channel, U is still decreasing, (Z = 93.75, 

U = 1.354). After this axial position, because of the sinusoidal shape 

of qW', the heat addition to the fluid reduces, which leads to slower 

rate of p value reductions. At Z = 130, where U = 1.337, the flattening 
• 

process of the U profile comes to an end and it starts to assume a more 

parabolic shape. Comparatively low rates of heat-input in this area 

are responsible for this change in the trend. At the exit of the 

channel, the profile is still not parabolic, (Z = 187.5, U = 1.40). 

The development of the U velocity profile may best be shown 

by Fig. (5.38) showing axial variations of U. 

The movement of the fluid across the channel, as mentioned 

for the U profile, may also be confirmed by examining the V profile at 

two axial position, (e.g. Z = 50, 150 respectively). These positions 

are chosen to represent axial positions below and above 

Z = 130 (where the flattening process of the U profile stops). On 

Fig. (5.39), the signs of the V values confirm the movement of the water 

layers from the centre towards the walls of the channel. These signs 

change at Z = 150, where the movement takes place in the opposite 

direction. Naturally, the V values represent the rate at which the 

fluid moves across the channel. 
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(a.3) The Temperature Profiles  

Axial variations of tw  and horizontal distribution of the 

temperature are predicted by the computer program and are represented 

by Figs. (5.40) - (5.41) respectively. 

According to Fig. (5.40), tw  values increase as the fluid 

moves downstream. Its peak value, tw  = 56.4 °C occurs at Z = 147.5 

which is beyond the middle of the channel. 

The reason is that after qw' has its peak in the middle of 

the channel and starts to decrease, the effects of this decrease on 

the fluid are felt some distance along the channel. It may be suggested 

that there is a "phase-lag" between the qw' and the tw  profiles. This 

is in agreement with the results of the well-known Ginn's equation. 

Fig. (5.41) shows the fluid temperature distribution across 

the channel at different axial positions. It is noted that near the 

entry to the channel, the profile is rather flat at the centre and 

sharp near the walls. This trend continues up to the axial position 

where tw 	occurs, (i.e. Z = 147.5). Beyond this point, because of 
max 

the reduction in tw,  a higher proportion of the heat-input is absorbed 

by water layers near the centre. This in turn brings about a higher rate 

of increase in t values than before and, consequently, near the end of 

the channel, the temperature profile becomes more flat, (Z = 187.5, 

t = 46.7 °C). Fig. (5.40) shows t variations along the channel. 

(a.4) The Nu Profile  

Fig. (5.42) shows axial variations of the Nusselt number, Nu-  

For the axial positions before the middle of the channel, i.e. Z < 93.75, 

where the heat-flux is increasing in the direction of the flow, the 

Nu values always exceed their asymptotic value of 8.23 
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pertaining to the case of uniform wall heat-flux. In the region 

beyond Z = 140 (i.e. z/L = 0.746), characterised by an axial decrease 

of heat-flux, the Nu values start to fall below the asymptotic value 

and at the end of the channel, Nu = 6.05 • This may also be noted by 

examining the horizontal temperature profile, Fig. (5.41). For the 

region beyond Z = 140, the increase in t values becomes significant. 

This process forces the profile to assume a more flat shape. These 

predictions for Nu are in agreement with those of Nijsing et al (1973), 

who obtained a similar Nu profile for sinusoidal heating along a round 

tube. 

(a.5) 	The Pressure Profiles  

Pressure distributions across the channel at three different 

axial positions are shown on Fig. (5.43). The pressure is less near 

the walls than at the centre and the shape of these profiles is 

inverted with respect to that of the temperature profiles across the 

section, Fig. (5.41). 

Fig. (5.44) shows the axial variation of the integrated 

pressure, 
pmean' 

which is calculated based on the formula:- 

d 

p m e a n • w. d 
	
J 
 p. w. dy 

0 

The profile is nearly linear and as a consequence, the pressure loss 

factor, f is nearly constant. The predictions show that:- 

_ _ dpddZan = 0.075 (c.f. f
p ideal 	Ren 	

0.0627) 
no 

f 
P 
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The difference between the predicted and the ideal values of f 

depends on the total heat-input to the model through the U velocity 

profile, Fig. (5.37). In other words, the difference is reduced as the 

U profile gets closer to the parabolic shape. This difference also 

suggests that the calculations, based on the 
fp.ideal' 

 underestimate 

the values of pressure drop. 

For the mixed-convection cases, it is always useful to 

predict the extra pressure needed at the entry to the channel. This is 

done by predicting at each axial position the difference between the 

"friction" and the "buoyancy" pressure, terms, where the "buoyancy" term 

is in turn the difference between the static pressure drop which 

actually occurs with the heated fluid, and the static pressure drop 

which occurs in the channel if the fluid density remained at its 

entrance value, i.e.:- 

z 

Po(Extra) = J {mean 
(6) - po} . g . dS - opf  (z) 

0 

Therefore, this variable represents the extra pressure necessary to 

force the fluid through the channel and must be zero for the pure 

natural-convection cases. Fig. (5.45) shows the axial variation of 

o(Extra). This figure suggests that the heat transfer mode in the 

model is not a pure-natural convection because the 
po(Extra) 

 is 

positive at the end of the channel. 

The magnitude of the "buoyancy" and the "friction" terms 

in the above-mentioned formula are compared on Fig. (5.46). This 

figure shows axial variation of the index representing the ratio of 

the two terms at each axial position, i.e.:- 
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{9nean (6) - Po/ 
 . g . dd 

i =  o 	
ap (z) 

x 100 
f 

Therefore:- 

For pure natural-convection i = 100 

For pure forced-convection i = 0 

For the 650 W Model, this index at the end of the channel is; i = 88.8. 

(b) 	Results for the 1950 W Model  

The computer predictions for this model are represented by 

Figs. (5.47) - (5.49). For comparison, the predictions of the 650 W 

Model are also shown on these figures. 

(b.1) 	The U Velocity Profile  

For this Model, the U profile develops along the channel in 

a similar manner to that of the 650 W Model, Fig. (5.37). The only 

differences being in the axial positions where the maximum and the 

minimum values of U occur, i.e.:- 

Ua 	= 1.447, at Z = 15 	(c.f. Ua 	= 1.476, at Z = 10) 
.Max .Max 

Ua 	= 1.153, at Z = 147.5 (c.f. UQ 	= 1.337, at Z = 130) 
.min 	 .min 

Axial variations of U4  for this model are also shown on Fig. (5.38). 

It is noted from this figure that for the present model, the effects 

f' 
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of "natural-convection" in distorting the U profile are stronger 

(U4's are less than those of the 650 W Model at the same axial positions). 

This is because of higher density reductions resulting from a higher 

temperature rise throughout the channel (30.55 °C for the present 

model c.f. 18.7 °C for the 650 W Model). 

(b.2) The Temperature Profiles  

Fig. (5.47) shows the wall temperature for both of the 

models. It is noted that 
tw.Max 

for the 1950 W Model is much higher 

than that of the 650 W Modell  and occurs at a shorter axial distance:- 

tw.Max = 86 °C at Z = 140 (c.f. tw Max = 56.4 °C at Z = 147.5) 

On Fig. (5.48), horizontal temperature distributions for 

the two models are shown. According to this figure, there is a higher 

gradient near the wall for the present model. This results in a 

higher Nusselt number as shown on Fig. (5.49). 

(b.3) Comparisons of the Nusselt Number for the Two Models  

Fig. (5.49) represents the axial variations of Nusselt 

number for both of the models. It is noted that Nu values for the 

present model are higher throughout the channel. However, near the 

exit, this is not the case. The reason is thought to be that for the 

present model, 
tw.Max 

 occurs at a smaller Z value, Fig. (5.47). 

Therefore, in the cooling process of the heated walls, there seems to 

be more time (distance) for tw  to decrease, as compared to the 650 W 

Model. This leads to a lower rate of heat transfer and, consequently, 

lower Nu values near the exit. As for the 650 W Model, these results 
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are in agreement with those of Nijsing et al (1973). 

(b.4) 	The Pressure Profiles  

Fig. (5.44) shows the axial variations of the integrated 

pressure, 
Pmean' 

 It is noted that the profile is nearly linear with a 

bigger slope than that of the 650 W Model. The higher Reynolds number 

of the present model is responsible for that, (238.5 c.f. 131.3).  The 

pressure loss factor is:- 

dP
24 

fp = - 
	
mean  - 0.038 (c.f. fp.ideal = 	 - 0.033) 

On Fig. (5.45) is shown the extra needed entrance pressure, 

for the two models. According to this figure, P 
Po(Extra) 	 o(Extra) for 

the present model is positive at the end of the channel (similar to the 

650 W Model). 

It is important to notice that when the mixed-convection 

index, i is plotted against the axial coordinate, Z the curve is nearly 

the same, (strictly speaking slightly less), as that of the 650 W Model, 

Fig. (5.46). This curve shows that despite the differences in 

data, as far as the relative magnitude of the "buoyancy" and the 

"friction" pressures are concerned, the two models are the same, (e.g. at 

the exit, i = 88.80 for both of the models). 

This was to be expected because according to Burholt (1974), 

the data for these two models were obtained based on assuming a constant 

fp  and equalizing the frictional and the buoyancy pressure terms at the 

end of the channel. Moreover, according to an order of magnitude 

analysis, the dominant parameter for the mixed-convection problems is 

Grp 
 
/Rep which for the two models is:- 
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Grp/Rep = 2.020 
	

For the 650 W Model, Table (5.5). 

Grp/Reō = 2.124 
	

For the 1950 W Model, Table (5.5). 

The closeness of the parameter for the two models suggest that the 

"degree" of mixed-convection for both of them is the same. On the 

other hand, by recalling the definition of i (i.e. ratio of the 

buoyancy and the frictional pressure terms), it is concluded that the 

index i and the parameter Grp/Reō have the same physical meaning but 

with different scales. Therefore, the profile for i throughout the 

channel must be nearly the same for both of the models because their 

Grp/Reō parameter is nearly the same, Fig. (5.46). 

5.3.4 	Effects of Reynolds Number, Parabolic U0  Profile, 

and Asymmetric Heating on the Predictions for  

the Two Models  

In order to generalize the results of the 650 W and 1950 W 

model to cover a wider variety of cases, three following cases were 

considered:- 

The 650 W Model is re-solved for two Re's, (one 

below and one above what is given in Table (5.5) 

i.e. Re = 100, 200 c.f. Re = 131.3). 

A parabolic U0  profile, instead of the uniform 

one, is used for the solution of the 650 W Model. 

(iii) 	Asymmetric heating is exerted on the 1950 W Model 

(i) 

( ii 
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by assuming that one of its walls is being 

thermally insulated. 

In the following, the results for these cases are discussed. 

5.3.4.1 	Effects of Reynolds Number  

These effects are most significant on the pressure and its 

related parameters. Fig. (5.50) shows that the axial variation profile 

is in the same direction as Reynolds number. For the 
of Po(Extra) 

 

mixed-convection index, i the effects are considerable, Fig. (5.51). 

To give an example, the i values at the middle of the channel are:- 

i = 32 -* (For the 650 W Model , 	Re = 131.3) 

i = 13 -► (For the 650 W Model but Re = 200) 

i = 52 -- (For the 650 W Model but Re = 100) 

The physical explanation of these changes is that by applying a higher 

Re, which means a higher mass flow rate, the temperature rise throughout 

the channel is reduced. As a result, the "buoyancy" term of the 

pressure is also lowered, leading to lower i and higher p
o(Extra)  

values. By the same argument, it is concluded that lowering the 

Reynolds number boosts i values and reduces 
po(Extra) 

 for the channel. 

When Re is changed, the wall temperature and the U velocity 

profiles along the channel, retain their overall shape. However, changes 

do take place in the magnitude and the axial position of their peaks and 

troughs. These are shown in the table given on the next page. 

According to this table, when Re is decreased, tw Max 

increases and occurs at a larger axial distance. Moreover, because 
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EFFECT OF REYNOLDS NUMBER  

ON THE COMPUTER PREDICTIONS  

Re 
tw.Max 

0 C) 

Z 
U~,Max 

Z 
U~.min 

Z 

100.0 
61.1 

157.5 

1.474 

7.5 

1.281 

132.5 

131.3 
56.4 

147.5 

1.476 

10.0 

1.337 

130.0 

200.0 
51.32 

140.0 

1.477 

15.0 

1.390 

127.5 

* The 650 W Model 

U VALUES ALONG THE CHANNEL 

Z 

Uniform Uo Profile 

Uo =1 

Parabolic Uo Profile 

Uo =6Y 	(1 	-Y) 

0.00 1.000 1.500 

1.25 1.284 1.498 

2.50 1.399 1.495 

5.00 1.460 1.489 

10.00 1.476 1.479 

15.00 1.469 1.470 

20.00 1.461 1.461 

25.00 1.452 1.452 

100.00 1.349 1.349 

187.50 1.399 1.399 
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of the increase in the temperature rise throughout the channel, the 

natural-convection effects are amplified and, consequently, the shape 

of the U velocity profile will be more distorted. 

5.3.4.2 	Effects of the Parabolic Uo  Profile 

So far, a uniform U0  profile is assumed for all of the 

cases. In order to generalize the results to cover also the non-

uniform Uo  profile, the 650 W Model mentioned in (5.3.3), is re-solved 

with this additional assumption. In the table, given on the previous page 

it is shown how a parabolic U0  profile might affect the predictions. 

According to this table, only at the entrance region, i.e. 

Z < 20, do there exist any differences, and these gradually diminish 

along the channel. Other parameters, namely, tw, Nu, follow the same 

path. Therefore, it is concluded that the effects of the parabolic U0  

profile are limited to the entrance region of the channel. 

5.3.4.3 	Effects of Asymmetric Heating on the Computer 

Predictions of the 1950 W Model  

The problem of heat transfer in a flat duct in the case of 

asymmetrical one-sided heating is relatively rare in the literature. 

Following the results of the asymmetric heating for prescribed 

and uniform qw' in (5.2.1) and (5.2.4) it is intended to extend the 

result to cover non-uniform qw' profiles also. This is done by re-

solving the afore-mentioned 1950 W Model assuming that one of its walls 

is thermally insulated, i.e.:- 

• 

qW;, = 3.312 Cos (0.043z - 1.291) 

qwā = 0 

where qw' and z are measured in (w/cm2 ) and (cm) respectively. 
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Fig. (5.52) shows the U velocity profile at the exit of the 

channel for this case. According to this figure, the profile is also 

non-symmetric and the U values near the heated wall are comparatively 

large. This is attributed to the fact that at this region, the 

reduction in p value is more significant than in the rest of the cross-

section. The reduction is followed by a lower resistance to the flow 

which leads to the large magnitudes of U. For comparison, the 

corresponding U profile for the 1950 W Model (symmetrical heating) is 

also given. 

The axial variation of Nui  also reflects the effects of the 

asymmetric heating. According to Fig. (5.53), Nui  values are less, 

compared to their corresponding values obtained for the 1950 W Model, 

throughout the channel. It is only near the exit of the channel, where 

Nui  values fall below 5.385 (which was obtained for the asymmetric but 

uniform heating of a forced-convective regime). 

Other variables, such as tw  and i, are also affected. On 

the heated-wall:- 

t
w. 	

= 80 °C at Z = 135 
1 .Max 

(c.f. tw 	= 86 °C at Z = 140 for symmetrical heating) 
i .Max 

while the insulated-wall's temperature changes are not significant. As 

for the mixed-convection index, i the effects are substantial, Fig. (5.54). 

This is due to the reduction of the total heat-input by half. As a 

result, at the exit of the channel:- 

i = 40 (c.f. i = 88.8 for the 1950 W Model) 
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5.3.5 	The Main Conclusions for Mixed-Convection Heat  

Transfer in Channels With Prescribed qw' Profiles 

The following conclusions are obtained for three types of 

heating , namely: uniform, sinusoidal and asymmetrical. 

• 

(1) 	Uniform Prescribed q " 
w 

1. Computer predictions for the U profile, at the exit of two 

typical channels, are in agreement with what was experimentally 

obtained by Vernier (1962). Quantitatively, the predicted U values are 

slightly higher in the centre of the channels and lower near the walls, 

Figs. (5.27), (5.30). For both of the examples, the computer predictions 

show a significant improvement on Vernier's own theoretical results. 

2. The temperature profiles at the exit of the channels also 

agree with their corresponding experimental results. However, the 

predictions seem to be slightly higher near the central region, 

Figs. (5.28), (5.31). 

3. Nusselt numbers, predicted at different axial positions, 

are within 3% of their corresponding experimental values, Figs. (5.29), 

(5.32). 

4. The computer program may be equally used to solve also for 

asymmetric heating cases. Predictions for a typical channel with one wall 

heated while the other wall is thermally insulated show that the U 

profile will be also non-symmetrical, Fig. (5.33). The U values are 

higher near the heated-wall. Nusselt numbers throughout the channel 
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are higher than their corresponding values obtained for the forced-

convective regimes, Fig. (5.35). These results are in agreement with 

those of Savkar (1970). 

• 

(ii) 	Sinusoidal Prescribed qw  " 

Two channels of the same geometry were considered. These 

two were chosen to model the "hot-channel" in the core of the University 

of London Reactor (ULR) at two different power levels (108.5 KW and 325 KW 

respectively). These models are referred to as 650 W and 1950 W models, 

after their total heat ratings. 

Comparison of the predictions for these two models shows that:- 

1. The U velocity profiles, which continuously develop along 

the channel, are rather flat. Particularly, there is no sign of an 

inflexion in these profiles, Fig. (5.37). Therefore, for the two models, 

the possibility of transition into an unstable-flow is not predicted. 

2. In the 1950 W Model, the maximum wall temperature is higher 

than the 650 W Model and occurs at a shorter axial distance, Fig. (5.47). 

3. For the 1950 W Model, Nu is generally bigger than that of 

the 650 W Model, Fig. (5.49). However, for both of them, in axial 

positions before the middle of the channel, where the heat-flux is 

increasing in the direction of the flow, the Nu values always exceed 

their asymptotic value of 8.23 pertaining to the case of uniform V. 

In the regions beyond z/L = 0.75, characterised by an axial decrease of 

V, the Nu values start to fall below the asymptotic value and at the 

end of the channel, Nu = 5.67 and 6.05 for the two models respectively. 
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The sharper-falling trend for the 1950 W Model is thought to be due to 

the fact that its t
w Max 

occurs at a shorter distance. 

These results are in general agreement with those obtained by 

Nijsing et al (1973) for sinusoidal heating in a round tube. 

5. The axial variation of pmean 
 for both of the models is 

nearly linear, Fig. (5.44). But their pressure loss factors are higher 

than the ideal value of 24/Remy  which is traditionally used for these 

types of problems. These predictions suggest that the results of the 

calculations based on the ideal f are underestimates. 

The relative importance of the "buoyancy" and the "frictional" 

pressure terms is quantified by defining the mixed-convection index, i. 

The index varies between 100 and 0 for the pure-natural convection and 

pure-forced convections respectively. Fig. (5.46) shows that this 

index is very close for both of the models throughout the channel. 

At the exit, the condition i = 88.8 suggests that some extra pressure, 

equal to the value shown on Fig. (5.45), is needed to force the fluid in 

both of the models. 

It is also seen, that the index i, and the parameter 

Grp 
 
/Rep, have the same physical meaning but with two different scales. 

6. Effects of a parabolic U0  profile, instead of the universally 

assumed uniform profile, are limited to the entrance region and do not 

affect the overall predictions. 

7. Re-solving the 650 W Model for two other Reynolds numbers, 

one below and one above the original Re, shows that when Re is decreased:- 



—178- 

(a) Natural-convection effects become more significant, 

and, consequently, the U velocity profile is more 

distorted. 

(b) The mixed-convection index, i increases drastically, 

Fig. (5.50). 

(c) 
tw.Max increases and occurs at a larger axial 

distance. 

These trends are reversed for an increase in the Reynolds 

number. 

(iii) 	Asymmetrical Heating  

This part of the study is based on the computer predictions 

for two typical channels which both have one thermally insulated wall, 

while the other wall is set at a uniform/sinusoidal prescribed heat-

flux. The main conclusions are:- 

1. The U velocity profile will be non-symmetrical with 

comparatively large U values near the heated-wall, see Figs. (5.33) and 

(5.52) for the uniform and the sinusoidal heating cases respectively. As 

the fluid moves further downstream, the asymmetry of the profile will 

be amplified, Fig. (5.33). These results are in good agreement with those 

of Savkar (1970). 

2. Throughout the channel, the Nu values for the heated-wall 

are lower than their corresponding values with symmetrical heating, see 
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Figs. (5.35) and (5.53) for the above-mentioned two examples. 

	

3. 	In the two examples, the exchange of the heated and the 

insulated walls reflect directly on their results (error < 2%). This 

shows that the computer predictions do not depend on the choice of the 

heated-wall. In other words, the predictions are independent of the 

system of coordinates chosen for the solution. 

	

5.4 	Mixed-Convection in Vertical Channels Having Prescribed  

Wall Temperature Profiles  

As discussed in Chapter (3), the solution technique can 

also solve for the cases with prescribed wall temperature. Of 

particular interest are those cases with non-uniform tw  profiles. For 

this purpose, a typical channel with the data of Table (5.6) is solved 

for with the tw  profile shown on Fig. (5.55). This profile is specially 

chosen because it is obtained as the solution of a uniform qW' case. 

Therefore, ideally the heat-fluxes which will be obtained as the 

solution of the present case, will be constant throughout the channel and also 

be equal to the qw' value which is used in the prescribed qW' case. 

It is noted that the results of this part of the study serve 

as a cross-checkinvof the solution technique developed for the present 

thesis. 

5.4.1 	Computer Predictions for the Prescribed tw  Profile 

• 
Fig. (5.56) shows axial variation of the cc.;  or q; 

predicted by the program. It is noted that the profiles are nearly a 

straight line parallel to the abscissa. This confirms that the accuracy 

of the solution technique is good. However, at the entrance region 



TABLE (5.6) DATA FOR THE PRESCRIBED WALL-TEMPERATURE CASE  

Reduced Data 

Data 

w/d Z
max 4tot 

(w) 

m 

(gr/sec) 

Attot 

(C°) 

tm 
(co) 

 

tout 
(co) 

 

Re RemD  ReD  GrD  GrD/Re2  Pr 

t
in = 21.1 	°C, d = 0.538 cm, 

w = 8.45 cm, L = 200 cm, 

u°  = 7.62 cm/sec, 

qW' = 1.34 (w/cm2) 

15.70 371.75 4529 33.14 32.76 37.48 53.86 419.7 1158 839.4 1.24 x 106  1.75 6.503 
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there are small differences, (e.g. at Z = 10. Error = 1%). 

Based on the comparison of the assumed and the obtained wall 

heat-flux values, it is concluded that the solution technique produces 

reliable and accurate predictions for both prescribed qw' or tw  cases. 

Also, the reproduction of the results is extended to the 

other parameters such as: U, V, P, Nu and the mixed-convection index, i. 
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CHAPTER 6 

EXPERIMENTAL STUDY - DESCRIPTION OF  

THE MIXED-CONVECTION APPARATUS  

6.1 	The Purpose of the Experimental Study  

Very little data, or in some cases none, are available 

about mixed-convection heat transfer in vertical channels with 

arbitrarily heated walls. The development of boilers, transformers, 

turbines and low-power nuclear reactors has amplified attention towards 

a thorough study of this problem. The purpose of this test-rig is to 

investigate such a problem with special reference to the cases where 

the channel walls bear identical sinusoidal prescribed heat-fluxes and 

prove their present theoretical predictions. The two special features 

of the rig are:- 

Heating plates with sinusoidal heat-flux profile. 

Controllable pressure at the channel entrance. 

6.2 	Description of the Test-Rig  

The general arrangement of the test-rig is shown on Fig. (6.1) 

and also on the Photos. (1) - (3). According to this figure, the rig 

may be divided into two main parts, namely, the four tanks and the test-

section. In what follows, these two main parts, as well as their 

function in the rig, are described. 

6.2.1 	The Four Tanks  

These tanks are located in different parts of the rig and 

are named according to their function as follows:- 



KEY 

I D\5CHA2<6aE TA.NK 
1I IN~ MAN\r=o~O T~" 
lIt ~ EA i'EI< TAN \(. 
'lSl' SUPPt..V TA~\(' 

J. W~Te~ LEVEL. 

t 

t 

PUMP 

HeA"TCNe, COIL. 

F,t:t. (6 .1 ): GeNEr<Al... A~~A~~EMe."-l". 

OF tHE -reST Rica. 

- 184-



-185- 

Photo. (1) Front view of the test-rig 
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Tank 

Inlet-
Manifold 
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Heater Tank 



Photo. (1) Front view of the test-rig 
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Photo. (2) Side view of the test-rig 
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Photo. (2) Side view of the test-rig 
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Photo. (3) Top view of the test-rig 

Supply Tank 

Scale 

Discharge 
Tank 
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Photo. (3) Top view of the test-rig 
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(a) Heater Tank (Tank III)  

Here, tap water is collected and warmed up to a preselected 

temperature, t , by two heating-coils (5 KW each). A hot-water line is 
I 

also connected to this tank which facilitates the warming up of the 

water to the desired temperature. When drainage takes place, this tank 

is used for collecting the water from various parts of the test-rig. 

For a detailed drawing see Fig. (6. 2). 

(b) Supply Tank (Tank IV)  

This is a small constant-level tank. Its duty is to supply 

the test-section with a constant but controllable inlet pressure. The 

water level in this tank may be read against a scale by means of a 

glass pipe connected to the inner part of the tank. 

In order to vary the inlet pressure at the test-section, 

this tank is vertically movable by means of the hoisting equipment also 

shown on Fig. (6.1). A detailed drawing of this tank is given in 

Fig. (6. 2). 

(c) Inlet Manifold Tank (Tank II)  

This tank is where water arrives from the Supply Tank and, 

subsequently, flows into the test-section. The large flexible pipe 'CD' 

(2" diameter), provided with the regulating valve V I, connects these 

two tanks together. The top of this tank is covered by a special plate 

which also serves as the foundation of the test-section and the by-pass 

pipe, Fig. (6.3). A detailed drawing of this tank is given in Fig. (6.4). 

(d) Discharge Tank (Tank I)  

This is a constant-level tank and is connected to the exit 
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of the test-section and the by-pass pipe by a special plate. The tank 

is covered by a perspex plate shown on Photos. (3), (6a) - (6b). This 

plate is used as the base for the electrical connections of the test-

section heaters (simulating plates) and also holds the cold-end-junction 

of their thermocouples. A spherical bearing, which is placed at the 

centreline of the perspex plate, holds a vertical probe designed to 

measure water temperatures along the test-section. A detailed drawing 

of this tank is given in Fig. (6.4). 

6.2.2 	Test-Section  

As shown on Figs. (6.5a) - (6.5b), the test-section contains 

four heating plates. These plates with the four side walls make three 

similar channels in the middle and two narrow channels at the sides. 

The central channel is referred to as the "test-channel" of the rig 

while the rest of the channels are for simulation purposes. The heating 

plates are held in the grooves which are cut in the narrow side-walls, 

Fig. (6.6). 	A pair of bolts fix the side walls together to form the 

test-section. 

Two special plates, shown on Fig. (6.7), were bolted to 

the top and the bottom of the test-section, to fix it to the Inlet 

Manifold and the Discharge tanks shown on Figs. (6.8) - (6.9). 	In 

order to prevent heat dissipation from the sides of the test-section, 

it is wrapped by several folds of Fibre-Glass insulation, Fig. (6.5b). 

When the test-rig is operating, all of the four heating 

plates are heated, but temperature measurements are only executed in 

the test-channel. These measurements include measuring the wall 

temperature tw  and the temperature at the centre of the test-channel, 

t, along the channel. 
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Photo. (4) shows the test-section and the by-pass pipe 

parallel to it. Also on this photograph is shown the probes measuring 

water temperature at the entrance and the exit of the channel. 

For practical application of the results, the dimensions of 

the test-channel are designed to be the same as those of the "hot-

channel" of a plate-type fuel element in the core of a nuclear reactor. 

For the experimental results, to be given in Chapter (7), fuel plates 

of the Mark 2 element of the University of London Reactor (ULR), are 

simulated to serve as the heaters in the test-channel. In what follows 

the simulation technique is explained. 

6.2.3 	The Simulating Heaters  

A typical ULR fuel plate is shown on Fig. (6.10). According 

to this figure, the fuel covers an area of 600 x 60 mm2 of the plate. 

Axial variations of the heat-flux on the fuel plates has never been 

measured but results are available from a similar reactor (MERLIN) shown 

on Fig. (6.11). It is noted on this figure that the profile is almost 

of a sinusoidal shape (apart from the distortions at the two far-ends 

caused by the reflector effects). In conclusion, a sinusoidal heat 

distribution in the following form is considered:- 

q., = gmax . 

 

sin ~ 
L' 

Therefore, the heat-flux profile between the points A and B is chosen to 

represent the actual heat-flux profile of the fuel plate. 

Fig. (6.12a) shows the actual and the sinusoidal profiles. 

It is noted that the actual values are slightly higher in the first 

half of the channel and are lower in the second half. Therefore, 
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although the overall difference between the two profiles is negligible, 

there exist some differences at the two far-ends. The differences may 

be quantified in terms of the two ratios: gw.Plax/gw.av and gw.minigw.av' For 

the sinusoidal approximation, these ratios are 1.343 and 0.37 respectively, 

while on the actual profile, they are 1.315 and 0.393 for the first half 

and 1.390 and 0.335 for the second half. For the actual profile as a 

whole:- 

gw.Max/
w.av = 1.355 (c.f. 1.343 from the sinusoidal profile) 

gw.min~gw.av - 0.365 (c.f. 0.370 from the sinusoidal profile) 

From the foregoing discussion, it is concluded that the 

actual profile can be approximated with only small errors at the far-

ends. The question which follows this approximation is: "what method 

of heating should be adopted to produce the sinusoidal profile along 

the channel?" 

As discussed in the literature survey, Chapter (2), there 

exist two basic methods:- 

(i) Sinusoidal heat-flux production by means of an electrically 

heated plate of variable thickness. This method is attempted by 

Dijkman (1969) and later by Muzzy et al (1974). 

(ii) Sinusoidal heat production by means of wrapping an 

electrical resistor with a variable pitch over a plate. This method 

is attempted by Petrovichev (1960) and recently by Reisman et al (1977). 
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If the sizes of the simulating plates are to be kept the 

same as those of the fuel plates, i.e. 625 x 72 mm2, Fig. (6.10), 

application of the variable thickness method involves the longitudinal 

tapering of a very thin plate from the far ends towards the middle. 

This process leads to some technical problems, also observed by 

Dijkman (1969), and proves to be costly also (see Appendix II). 

Therefore, the second method is attempted. 

In the execution of the variable-pitch method of simulation, 

the heat-flux profile is divided into 24 divisions each 25 mm long, 

Fig. (6.12b). Then the sinusoidal profile is integrated for each of the 

divisions to determine the fraction of the total heat which each one of 

them should produce; Qn. The first three columns of Table (6.1) show 

Qn  values for a typical plate (wit
hQ

tot = 975 W). Column 6 of this 

table shows the electrical resistances for every division if the electric 

resistor bears the current of I = 13.25 A. Fig. (6.12b)shows the result 

of this method of simulation. On this figure, the abscissa shows the 

division numbers as well as their distances along the plate, while the 

ordinate shows the ratio Qn/Q12.  Also on Fig. (6.12b) is shown the 

sinusoidal heat-flux profile for comparison. It is noted that the 

differences virtually disappear near the middle of the channel. 

Having established the heating requirements of the 

simulating heaters, the heating element, as shown on Fig. (6.13), is 

designed. The element is assembled by wrapping a Nickel-Chrome 

(NICHROME) heating tape around two layers of a special material 

industrially called FILAMIC. This cardboard-type material conducts heat 

but is an electrical insulator. As shown on Fig. (6.13), the pitch of 

the heating tape gradually decreases to produce the Qn  values of Table (6.1). 

The specifications of the tape, (4.76 x 0.36 mm2  and 0.75 S2/m), 



TABLE (6.1) CALCULATIONS FOR A SIMULATING PLATE  

(Q
tot = 975 W, I = 13.25 A, p' = 0.75 Q/m) 

Division No. 

n 

Distance 

z 	(mm) 

Heating Rate 

On 
	(w) 

Q• /Q 
n 

Q /Q 

n 	1 2 
Resistance 

R- 	
(Q) 

Tape Length 

(mm) 

1 25 17.0 1.000 0.309 0.0968 129.0 

2 50 23.0 1.352 0.418 0.1310 174.6 

3 75 28.0 1.647 0.509 0.1595 212.6 

4 100 33.0 1.941 0.600 0.1880 250.7 

5 125 37.5 2.205 0.682 0.2136 285.0 

6 150 42.0 2.470 0.764 0.2392 319.0 

7 175 45.0 2.647 0.818 0.2563 341.7 

8 200 49.5 2.912 0.900 0.2820 376.0 

9 225 51.0 3.000 0.927 0.2905 387.3 

10 250 53.0 3.118 0.963 0.3019 402.5 

11 275 54.0 3.176 0.981 0.3076 410.1 

12 300 55.0 3.235 1.000 0.3133 417.8 
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made by British Driver-Harris, permit the required heat production 

along the heating element by almost 2 turns of it round the FILAMIC 

plate near the far-ends (for Q or Q ) which gradually increases to 
1 	24 

6.5 turns at the middle (for Q12  or Q13 ). In order to have both of 

the electrical terminals at one end of the heating element, a copper 

plate, as shown on Fig. (6.14),  is placed between the two FILAMIC 

layers. The copper plate connects one of the electrical terminals to 

the other end of the element where the wrapping starts. Employment of 

copper assures a good contact there, together with a negligible heat 

dissipation. 

The simulating plate is designed as shown on Fig. (6.15). In 

addition to the heating element above-mentioned, it contains two 

stainless-steel plates, one thicker than the other. The thicker plate 

accommodates twelve thermocouples embodied in it for measuring the 

surface temperature, tw  of the simulating plate at different axial 

positions (see Fig. (6.16) for their positions). A simulating plate is 

assembled by covering the heating-element with two thin layers of 

FILAMIC. Then the thin stainless steel plate, which is tray-shaped, 

accommodates the element. Assembling is completed by welding the two 

stainless steel plates together along three sides. The fourth side of 

the plate is filled with silicon-rubber and gives passage to the cold-

end-junctions of the thermocouples and also the electric terminals of 

the NICHROME tape. 

The test-section with the simulating heaters are also shown 

on Photos. (5a) - (5b). 

6.2.4 	Water Circuit  

As shown on Fig. (6.1), water is pumped from the Heater Tank 
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Photo. (5a) Test-section and its base plate 

Photo. (5b) Test-channel and its neighbouring channels 
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Photo. (5a) Test-section and its base plate 

Photo. (5b) Test-channel and its neighbouring channels 
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to the Supply Tank via the partly flexible pipe 'AB'. From this 

tank, water flows to the Inlet Manifold Tank via the large flexible 

pipe 'CD'. The regulating valve V 1  provided in this pipeline controls 

the flow throughout the circuit. Water enters the test-section from 

the Inlet Manifold Tank and is discharged at the end of this section 

to the Discharge Tank. Water overflowing from the inner to the outer 

shell of this tank is collected and directed through the rotameters via 

the pipeline G-J. The water cycle finishes at the draining point 'J' and 

starts by pumping from the Heater Tank to the Supply Tank. Water gauges 

connected to the inner shell of the Supply and Discharge tanks show 

the difference between their water levels. This is interpreted as an 

indicator of the inlet pressure of the test-channel; po. This pressure 

is zero when the Supply Tank is seated on its foundation. Therefore, 

the test-rig is suitable for studying both the natural and the mixed 

convection cases. Drain lines 'ST' and 'UV' and also the overflow line 

'QR' provide the water circuit with a quick drainage system. 

The by-pass pipe is used as an alternative water passage 

when the test-section is not in the circuit. However, during experiments 

it was fully closed. 

The water circuit may also be followed on Photo. (1). 

6.2.5 	Electrical Circuit  

The four heater plates of the test-section are fed by a 

system of two transformers. Fig. (6.17) shows this electrical circuit 

which is controlled by a Variac placed at the Main connections of the 

transformer R . Because of the high current required by the heaters, 
1 

(40 - 53A), and also the relatively higher power needed for all of the 

heaters, (2.6 to 3.9 KW), the transformers are connected in series. For 
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the experiments reported in Chapter (7) of this thesis, the ratios R 

and R are 5 and 8 respectively. This gives the circuit, when connected 
2 

to 240 V Main, the capability of providing the heaters with 30 to 76 

Volts. The four heaters of the test-channel are positioned in parallel 

when they are connected to the V
tot 

shown on Fig. (6.17). This 

connection is also shown on Photos. (6a) - (6b). The leads of the 

electrical terminals of the heaters are covered by silicon-rubber 

sleeving when they pass through the Discharge Tank. The total current 

passing through the test-section heaters, 
Itot 

is measured by the 

ammeter 'A' in the electrical circuit, (I = 
	'tot)* 

6.2.6 	Measurements For Each Experiment  

For each experiment, the level-difference between the Supply 

and the Discharge tanks, ohi and the total heat in the test-channel, 

Qtot 
were kept at prescribed values while water flow rate, me and 

various temperatures at the test-section were measured. The parameters 

involved in each test are determined as follows:- 

(1) 	The inlet pressure at the test-section, pc, is determined by 

the difference between the water levels of the "Supply" and the 

"Discharge" tanks. 

• 

(2) The power input to each simulating plate, 
Qtot 

is calculated 

according to the formula: Qtot = I2.R'. 

(3) The water flow rate, me is read by the rotameters provided 

in the water circuit. This reading is confirmed by collecting the 

drained water from the rotameters in a graded container for a specific 

period of time. The flow through the test-channel, 
mt.c, 

shown on 

Fig. (6.5a) is considered to be ~ of the total flow, mc. It is noted 
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Photo. (6a) The perspex cover of the Discharge Tank 

Photo. (6b) The perspex cover of the Discharge Tank with the 
vertical probe 
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that mt c  which is estimated as such is subject to some underestimation - 

order of 10% - and the error could have been avoided by setting up a 

single rectangular channel rather than the sub-assembly fuel plates, 

Fig. (6.5a). For the present study, however, the need for representing 

the fuel elements in ULR core has led to the choice of the latter. 

(4) 	The temperature is measured in different parts of the water 

circuit. Iron-Constantan thermocouples were used for these measurements 

and their signals were read by DVM/Chart-recorder. 

In addition to the test-section, the temperature is also 

measured at the three following parts of the circuit:- 

(1) 
	

In the Heater Tank, by a thermocouple positioned near the 

bottom of the tank. 

(ii) At the inlet to the test-section, by the probe shown on 

Photo. (4). The probe contains a thermocouple positioned in a thin 

hypodermic tube and is placed near the top of the Inlet Manifold Tank. 

(iii) At the exit of the test-section, by the horizontal probe 

shown on Photos. (4) and (8). The probe is positioned near the bottom 

of the Discharge Tank and exposes its thermocouple above the exit of 

the test-channel. A more accurate measurement of the t
out 

was executed 

by means of the vertical probe, Photo. (7), which could travel over the 

exit of the channel. 

6.2.7 	Temperature Measurements for the Test-Channel  

Provisions were made to measure the temperature on the 

walls and also at the centre of the test-channel, tw  and tg, shown on 

Fig. (6.5a). The temperature on the walls of the channel is measured 

by thermocouples embodied in the walls as shown in Fig. (6.16). The 
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Photo. (7) The vertical probe for tz  measurement and its holding 

arrangement on the perspex plate 

Photo. (8) The horizontal probe measuring water temperature at 
the exit of the test-channel 
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Photo. (7) The vertical probe for tg  measurement and its holding 

arrangement on the perspex plate 

Photo. (8) The horizontal probe measuring water temperature at 

the exit of the test-channel 
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centreline temperature is measured by a vertical probe travelling along 

the channel, Photo. (7). In the following, these two measurements are 

discussed in detail. 

(i) Wall Temperature Measurement  

The wall temperature on the broad-sides of the test-channel 

is measured by means of the twelve thermocouples embodied in the walls 

according to two-dimensional patterns shown on Fig.(6.16). The patterns 

were designed to reveal information about the temperature distributions 

across and along the channel. These two plates, which are used in the 

simulating heaters and make the broad-sides of the test-channel, were 

named FL. No. 1 and FL. No. 2 according to their temperature measuring 

patterns. The signal of their thermocouples is sent via a rotating 

switch (1 rev/40 sec) to a chart-recorder, Fig. (6.18) and Photo. (2). 

By this method, axial variations of the tw  profile in the channel are 

recorded every 40 seconds. For higher accuracy, and confirmation of 

the temperature recordings, the signals are also read by a Digital Volt 

Meter, DVM (accurate up to 0.2 °C). 

(ii) Centreline Temperature Measurement  

In order to obtain axial variations of the centreline 

temperature, t4  a vertical probe, shown on Photo. (7), has been 

designed. The probe is made of a thermocouple placed inside two 

hypodermic tubes. The smaller tube, OD = 2 mm , is chosen to be 

small enough to move along the test-channel (d = 3.2 mm),Fig. (6.5a). 

The large tube, OD = 4.76 mm , is to fit into a spherical bearing 

located in the perspex cover of the Discharge Tank, Photo. (6a). 

This tube is marked at 24 equal distances representing different 



-217— 

longitudinal positions inside the test-channel. 

Because of the rather large length of this probe, it is 

very difficult to have it ideally straight. Therefore, although the 

probe holder in the perspex plate is designed to position it at the 

centre of the test-channel, it is not quite possible to measure t4  

relying only on this fact. Moreover, for the present arrangement of 

the test-section, its solid sides do not permit observation of the 

position of the probe inside the test-channel. 

To make sure that at every axial position the probe is 

placed at the centre of the channel, it is noted that if the simulating 

heaters of the test-channel are equally heated, then the minimum coolant 

temperature occurs at the centre of the channel. This gives a practical 

solution to the uncertainties about the position of the tip of the probe 

because at every axial position, the probe could be turned around until 

the minimum value is read (by the recorder DVM). This minimum is 

regarded as the t4  value at that axial position. 

A circular plate, graded on the circumference, is placed at 

the end of the vertical probe, Photo. (6b), which facilitates the 

finding of the next centreline position when a t4  recording is completed. 
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CHAPTER 7  

EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY  

	

7.1 	Introduction  

In this chapter, the results of several tests which have 

been carried out on the test-rig, described in Chapter (6), are 

discussed. These consist of several mixed-convection cases as well as 

a natural-convection case. 

For each case, a comparison is made between the experimental 

results and their corresponding theoretical predictions which are 

obtained by the computer program DUCT, explained in Chapter (4). 

In order to facilitate the discussion of the results for 

the above-mentioned cases, a plan is proposed at the end of this chapter. 

Here, every case is represented by two dimensionless numbers related to 

it, namely, Rep  and Grp. The plan has the advantage of showing the 

boundaries of the forced, natural, and mixed-convections within the 

range of the two numbers considered for the tests. 

Results of a pressure-loss test for different water flow rates in 

the water circuit of the test-rig, Fig. (6.1), are shown at the end of this 

chapter. 

	

7.2 	Mixed-Convection Tests  

One of the objectives of the test-rig has been to study 

axial variations of temperature at the wall and also at the centre of 

the flat duct with large aspect ratio, when its broad-sides are heated 

according to a sinusoidal law, Fig. (6.5a),  under various mixed-

convection regimes. The study compares several of these cases, assuming 

given total heat input, 
4tot 

 and inlet pressure po. In what follows, 

the tw  and the tg  profiles are obtained for these cases. 
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According to dimensional analysis, two dimensionless 

numbers, Rep  and GrD  may represent each of the above-mentioned cases. 

The Reynolds number is selected to signify the effects of the forced-

convection while GrD  is representative of the natural-convection effects. 

Also, by an order- of-magnitude analysis, these two numbers may be 

combined into a parameter which represents the effects of both of them 

together. As mentioned in Chapter (5), this parameter is GrD/Rep and 

represents the relative importance of the "buoyancy" and "viscous" 

forces together. Table (7.1) summarises the data of the tests conducted 

for this chapter. According to this table, the first two tests have the 

same 
Qtot 

 but differ in pc). The second test is executed in order to 

study the effects of gradually moving from one mixed-convection case 

towards another which displays stronger effects of forced-convection. 

In the third and the fourth tests, the total power input, 
Qtot 

 has 

been set at lower values than that of the first test while keeping the 

tm  nearly the same. This allows us to assume the same water properties 

for all of the tests in the theoretical predictions. 

7.2.1 	Procedure of the Experiments  

Results for the mixed-convection tests,mentioned in 

Table (7.1),were obtained by taking the following steps for each of the 

tests:- 

(1) The test rig, Fig. (6.1) was filled with water at the 

preselected temperature ti. 

(2) The Supply Tank was raised to the height where its level-

difference with the Discharge Tank was:- Ah-  = 20 cm 



TABLE (7.1) DATA FOR THE MIXED-CONVECTION TESTS (SEE TABLE (5.5) FOR GEOMETRICAL DATA)  

Reduced 
data 

Test No. 
4tot (w)  
. 

Qw.av 	
(w/cm2) mc  (gr/sec) tm  (°C) p° 	(cm H 0) 

2 
Re 

D 
Gr D Gr /Re' 

D 	D 

1 975.0 1.2 43.3 40.76 33.3 341.4 2.219 x 105  1.903 

2 975.0 1.2 66.7 36.96 80.0 525.6 1.943 x 105  0.703 

3 812.5 1.0 40.0 39.71 27.6 315.3 1.749 x 105  1.760 

4 650.0 0.8 33.3 39.33 20.0 262.6 1.387 x 105  2.012 
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(3) 
	

After shutting the by-pass pipe, the water flow rate, me  

was regulated by the valve V to be:- 

mc  = 33.3 gr/sec (2 lit/min on the Rotameters) 

(4) 	The Supply Tank was raised to provide the test-section with 

the prescribed mass flow rate, me  and its corresponding inlet pressure, 

Po' 

(5) Power was connected to the electrical terminals of the 

simulating plates. 

(6) After 30 minutes, the first set of the tw  and the t 

profiles were recorded. The next readings were executed at 15 minute 

intervals. 

(7) For the tests where an increase in the pc)  value was to be 

studied, e.g. the second test in Table (7.1), the following step was also 

needed. 

After the recording of the tw  and the t profiles for the 

first test, the Supply Tank was gradually raised to the height required 

by the second test. Naturally, this was followed by a gradual increase 

in the me  value leading to reductions in the tw  and the t values. 

7.2.2 	Results for the First Test (Rep  = 341.4, Grp/Reō = 1.903) 

Fig. (7.1) shows the axial variation of tw  recorded for this 
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case. The profile was obtained by the recordings of the twelve thermo-

couples embodied in each side of the test-channel, Fig. (6.16). It is 

recalled from Chapter (6) that these thermocouples were positioned 

according to a two-dimensional pattern. The simulating plates are 

referred to as Plate No. 1 and Plate No. 2 according to their thermo-

couple patterns. The different symbols used in Fig. (7.1) for the 

reading of the two plates facilitate distinguishing their results. 

Table (7.2) shows the positions of the thermocouples in the 

two simulating plates. 

On Fig. (7.1) the dotted curve represents a curve-fit 

between the temperature reading of the two plates. Having only one 

sign at a position shows either that there has been only one reading 

for that position or that the tw  recording for both of the plates has 

been the same. 

Theoretical predictions for the tw  profile along the test-

channel are also shown on this figure (full-line). A comparison 

between these two curves suggest that qualitatively both of them are 

the same, i.e. the overall shape is the same and there exists a 

maximum value for the tw  at an axial position in the second half of 

the channel. However, the t
w max 

appears to be higher on the 

experimental curve and occurs at a shorter distance from the channel 

entry. 

Also, the experimental curve shows higher temperatures for 

the positions situated before the maximum. The reason for this may be 

due to a "longitudinal" conduction of heat which takes place along the 

channel, q&i.  (z) shown on Fig. (7.2). 	This conduction is due to the 

existence of a temperature gradient along the channel. In order to 
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TABLE (7.2)  

SUMMARISING THE THERMOCOUPLE PATTERNS OF  

THE TWO SIMULATING PLATES (SHOWN ON FIG. (6.9))  

FL . No. 1 
	

FL. No. 2  

T/C. No z/L x/w 

7 0.000 0.461 

8 0.080 0.400 

6 0.240 0.523 

5 0.400 0.585 

4 0.520 0.638 

9 0.600 0.330 

10 0.640 0.277 

3 0.680 0.715 

11 0.720 0.215 

2 0.800 0.769 

1 0.920 0.830 

12 0.984 0.153 

TIC. No z/L x/w 

1 0.000 0.830 

12 0.080 0.161 

11 0.320 0.215 

10 0.480 0.277 

2 0.560 0.777 

3 0.600 0.707 

9 0.640 0.346 

4 0.680 0.654 

8 0.720 0.408 

7 0.800 0.800 

6 0.920 0.523 

5 0.984 0.585 
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obtain a measure of the value of this conduction, the ratio of the net 

heat conduction Qcd  - which is proportional to a2tw/az2  - to the total 

generated heat of a strip of a finite length Qz, is calculated. For 

a strip near the entrance of the channel, this ratio is found to be 

0.0018, while for a similar strip located at the vicinity of the 

axial position where tw 	occurs, the ratio is 0.003. Therefore, 
max 

in both of the cases, the value of Qcd  is less than or equal to 0.3% 

of Qz. 

Existence of the longitudinal conduction is also noted by 

other workers, namely, Petrovichev (1960) and McCuen (1962). It is 

recalled from the literature survey, Chapter (2), that in Petrovichev's 

experiment, a round tube was heated according to a sinusoidal law by 

winding an electric heater (with a variable pitch) around it. In order 

to reduce the axial heat-losses, he divided the tube into twelve parts 

by circular grooves. 

In McCuen's experiment, a vertical flat duct was heated in 

the broad-sides by dividing it to twenty four divisions each heated by 

water at different temperatures. Each of the divisions was thermally 

insulated from its neighbouring divisions by a thin layer of an 

insulator. By this method, he assumes that during operation the 

divisions may be maintained at different temperatures without the 

possible axial heat-losses between the divisions. 

In the entrance region, there exists a difference between 

the experimental and the theoretical values of tw. This may be 

explained by considering that there exists a finite heat-flux at this 

region but a near zero temperature difference between the coolant and 

the wall. The convective heat transfer coefficient h would theoretically 



-227— 

be nearly infinite. However, because of axial heat conduction through 

the wall (or through a nuclear fuel element) toward the entrance, the 

wall temperature actually rises above the temperature of the coolant 

and the heat transfer coefficient, though large, is finite. 

Fig. (7.1) also shows that the tw  values experimentally 

obtained for Plate No. 1 are higher than those of Plate No. 2 at the 

same axial positions. This suggests that there is a temperature 

profile across the simulating plates. From Table (7.2), it 

is noted that there exists two different thermocouple patterns on these 

plates. In these patterns, some thermocouples are placed at the same 

axial positions on the two plates (e.g. T/C no. 3 of R.. No. 1 and T/C 

no. 4 of FL. No. 2) but they differ in their distances across the 

plates (x/w = 0.715 and 0.654 respectively). As shown on Fig. (7.1), 

the reading for the former is higher than that of the latter. This may 

be explained by considering that because of the rectangular shape of 

the cross-section, the velocity of the coolant particles near the 

corners is less than at the centre. Therefore, the cooling process is 

rather poor near the corners leading to higher tw  values. Following 

this argument it may be concluded that because the thermocouples 

embodied in 	. No. 1 are nearer to the corners of the cross-section 

than those of FL . No. 2, they measure higher tw  values at the same 

axial positions, Fig. (7.3). 

Existence of the temperature profile across the plates was 

also noted by Savino et al (1964) in their study of convective heat 

transfer in rectangular channels. Although they were only concerned 

with a uniform qw', they also concluded that because of the poor 

convection in the corners and along the narrow sides of a rectangular 

channel, the peak temperature at every axial position occurs at the 
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corners. 

The above-mentioned discussion suggests that the assumption 

of a uniform wall temperature across the plates employed in the 

theoretical model is not strictly correct. 

Fig. (7.4) shows axial variations of the temperature at the 

centre of the channel, tg. According to this figure, the shapes of 

the experimental and the theoretical curves are the same. However, the 

experimental values seem to be slightly higher all along the channel. 

The differences are higher near the entrance and decrease further 

downstream. The same argument as what is used for the tw  profile, 

Fig. (7.1), may be used to explain these differences. 

7.2.3 	Results for the Second Test (Rep  = 525.6, 

GrD/Reō = 0.703) 

In the theoretical model, the predictions for tw  and tg  

were obtained by considering the effects of the natural and the forced-

convection regimes together. Consequently, the predictions were 

affected by the degree to which the problem was close to these two 

regimes. In this part of the thesis, it is intended to study the 

effects of increasing the degree by which the problem depends on the 

forced-convection type of condition. 

The study is based on the tw  and the t
g 
 profiles obtained 

after raising the Supply Tank of Fig. (6.1) to a higher level than 

that required by the first mixed-convection test mentioned above. 

The increase in the level-difference between the Supply and the 

Discharge tanks affects pc  directly and leads to an increase in the 

• 
water flow rate, mc. Results for this case, reported as Test No. 2 

in Table (7.1) were obtained following this procedure, i.e. by gradually 
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raising the Supply Tank to a higher level (80 cm level-difference c.f. 

33.3 cm for the first test). Figs. (7.5) - (7.6) show the tw  and the 

t profiles experimentally obtained for this test together with their 

corresponding computer predictions. The results show the same trend 

as that of the first test although the differences are slightly lower. 

This may be attributed to a lower water temperature rise throughout the 

test-channel. 

In order to facilitate the comparison of the tw  profiles 

for the first and the second tests, they are both shown on Fig. (7.7). 

It is noted on this figure how the increase in the pc  value is followed 

by a reduction in the tw  values throughout the channel. The reduction 

is smaller at the entrance region of the channel and gradually increases 

along the channel. Also, tw Max 
 occurs at a shorter axial distance 

from the channel entry. The reason may be as follows. 

As mentioned earlier, Chapter (5), in the sinusoidal 

heating case, there exists a "lag" between the axial positions where 

gw.Max 
and 

 tw.Max 
 occur. This is due to the fact that the reduction in 

the qw' values after the middle of the channel is not immediately 

reflected by the coolant and its adjustment takes some distance along 

the channel. Therefore, the tw 
Max 

 occurs further than the middle of 

the channel. The difference between the axial positions where tw.Max 

and gc.Max occur may be lowered by increasing the speed of the heat 

recovery from the channel walls, i.e. increasing the water mass flow 

rate, mc.  In the second test, the gradual increase in the po  value 

directly leads to an increase in me  which in turn shortens the axial 

distance needed for the tw Max 
to occur. 
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7.2.4 	Results for the Third and the Fourth Typical Tests  

(ReD  = 315.26, Grp/Rep = 1.76 and ReD  = 262.6, 

GrD/Reō = 2.01) 

In order to confirm the experimental results obtained for 

the first two tests mentioned in Table (7.1), similar tests were carried 

out for two other cases which differ in the 
Qtot 

 and the po  values. 

As shown on Table (7.1), for the third and the fourth tests 

the 
Qtot 

 value is lower than the first test (16.3% and 33.3% respectively) 

while the tm  value is very close. The experimental results for the tw  

and the t profiles compare favourably with corresponding computer 

predictions; similar to those of the first test, although the differences 

seem to be slightly lower, Figs. (7.8) - (7.11). 

7.3 	Natural-Convection Test  

The problem of natural-convection in a vertical heating 

channel is one of the many problems which are presented in the sphere 

of natural-convection. The term "natural-convection" is used here for 

heat transfer in the test-channel when the pressure gain due to buoyancy 

of the coolant (water) equals the total pressure drop throughout the 

channel. This definition is employed in the computer program to 

calculate the water flow rate, me  which corresponds to a total heat 

rate, 
Qtot 

 for this type of regime in the test-channel. 

In performing an experimental test for natural-convection 

on the test-rig, Fig. (6.1), the pressure loss in the water circuit 

other than the test-section should also be considered. (These losses 

have so far been neglected because of their comparatively small values 

in regard to the level-difference of the Supply and the Discharge tanks). 

To account for these, the following method has been used:- 



o~•_o _ō-a-b=a 

THEORY 
Rep= 315.3 	 ā 
GrD/RQo=1-766 	oU 

EXPER %METJT 
o 	PLATE- Mc'. Q. 

V 	PLATE- N°. 1 

E 
3 

4) 

O 12.5 5o 	'100 	150 200 250 3oo 

L 
I I I 1 -& (m(n) 

500 550 GOo G25 
FIG . (7. 8): EXPERIMENTAL AND THEORETI CAL WALL 

ALONG THE CHAt.NEL .  

I 	I 	I 	I 
35o 4o0 450 
TEMPERATURE DISTR1BUTtOn1S 	V25 	01 

1 



CENTRE- LWE TEMPERATURE DI5TI2ISUTI0NS FIC. (7. 9) : EXPERIMEIJTAL AND THEORETICAL_ 
ALONG THE CHANNEL, 

EXPERIMENT 	R2 ` 515.3 
THEORY 	Carp/ Rep= 1.760 

5o 

• 
• 

• 

—•— —• 4o 

L-/ 
I I I I I l 1 I I I 

150 20o 250 Sap 35o 400 450 5C0 550 GOO  

•- 

O 12.5 5o loo G,25 ~'1") 
1 	1 



— EXPERIMENT 

1HEO2 ' 

0 	PLATE. N°.2 
♦ PLATE. t•-1° 1 

t=oR . Grp/ Reō = 2. 012 

V 

0— 

GO 

50 
a-~ 

10 

0 

I L 
l 	I 	I 	c(rnM) 
5oo 65o Loco G25 	t 

1 	 Lt2 
I 	I 	I 	1 	I 	I 	I 

12.5 5o 	100 	150 	200 25o 3oo . 
I 	I 	I 

36o 400 45o 
TEMPEIZATUI E DISTRIBUTIONS 612.5 

FIG. (7.10) : EXPERIMENTAL AND THEORETICAL CENTRELINE 
ALONG THE CHANNEL .  



EXPERIMENT 1  Reo  = 2Ca 2.6 

THEOR'-( 	Card  12¢ a ` 2.0 IZ 

• —• 
	—111 

4 

L 

350 400 45o 500 55o Goo 625 
C012•5 

O 12.5 50 100 15o 2oo 25o 300 
FIG. (7•11) I EXPERIMENTAL AND THEO2ETICAL CENTRELINE TEMPERATURE 

DISTRIBUTI0t.IS ALON THE CHANNEL.  

O 



-239— 

(1) The ideal flow rate, me  for a given total heat Qtot 
 is 

determined by the computer program. 

(2) Total pressure loss throughout the water circuit is measured; 

txptot' 

(3) Total pressure gain in the test-channel for the me  and the 

Qtot is calculated; APgain' 

(4) The extra level-difference needed between the Supply and the 

Discharge tanks is therefore:- 

Ahe = APtot "gain 

Table (7.3) shows the pertinent data for the natural-convection test 

(Test 5). 

To gain more confidence about this method of experiment, 

several tests were carried out for the same 
Qtot 

but with lower Ahē 

values. They all caused less water flow rates than the above-mentioned 

ideal value of m
c 
 (therefore the results obtained following the above-

mentioned four steps seem to be the closest possible results to the 

real results in the circumstances) but, in fact, the error between the 

real and the ideal me  values was within the range of the systematic 

error of the Rotameters (1.67 gr/sec). 

Fig. (7.12) shows axial variation of tw  for the natural-

convection test. A comparison between the experimental and the 

theoretical predictions on this figure demonstrates that they are 

qualitatively the same. However, as for the mixed-convection tests, 



TABLE (7.3) DATA FOR THE NATURAL-CONVECTION TEST (SEE TABLE (5.6) FOR GEOMETRICAL DATA)  

Reduced 
D data 

Test No. 

Q 	
(w) 

tot 
q " 	(w/cm2 ) 
w.av 

m
c 

(gr/sec) 
tm (
°C) p 	(cm H 0) 

o 	2 
Re 
D 

Gr Gr /Re2  
D 	D 

5 975.0 1.2 39.2 42.00 0 307.7 2.216 x 105  2.340 
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Tests 1 - 4 in Table (7.1), there are differences between the two 

curves. These differences reduce near the tw.Max  position and confirm 

the effects of the "longitudinal heat-conduction", q
c
'd  mentioned 

earlier in this chapter. 

This test also confirms the existence of a temperature 

profile across the simulating plates, since higher wall temperatures 

were recorded for FL. No. 1 than ft.. No. 2 at the same axial positions. 

(It is recalled that in the former plate, the thermocouples are 

positioned nearer the corners of the channel, Table (7.2). 

Fig. (7.13)  shows the t profile along the test-channel. 

Here, quite a good agreement exists between the experimental and the 

theoretical values near the entry of the channel. Further downstream, 

however, experimental values seem to be higher. This is thought to be 

because of some small recirculations taking place there. 

7.4 	General Representation of the Natural and the Mixed- 

Convection Tests  

Following the comparison of the theoretical and the 

experimental profiles of tw  and t for several cases of natural and 

the mixed-convections, Tables (7.1), (7.3), a trial is made to 

represent all of them in a general plan. 

Fig. (7.14) shows the proposed plan with Rep  and Grp  numbers 

on the ordinate and the abscissa axes respectively. The plan is 

divided to three distinct regions for the forced, the mixed, and the 

natural-convection regimes. The boundary between the forced and the 

mixed-convection regions is made by the curve representing Grp/Reō = 1. 

This is because, as mentioned in Chapter (2), when this relationship is 

satisfied, neither the forced nor the natural-convection effects dominate. 

Naturally above this curve, where Grp/Rep < 1, the forced-convection 

effects dominate. 
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Conversely, for the points located below that curve, 

GrD/Rep > 1, the natural-convection effects do prevail and they become 

stronger the larger the ratio becomes. The region below the curve for 

GrD/Rep = 1 is, therefore, representative of the cases where the forced 

and the natural-convection effects are combined together, i.e. mixed-

convection region. For the points far below the GrD/Reō = 1 curve, the 

natural-convection effects dominate the situation to the degree that 

the forced-convection effects can be ignored, i.e. the natural-convection 

region. The boundary between the natural and the mixed-convection. 

regions is shown by the dotted curve on the figure. This curve is 

predicted by the computer program DUCT for several natural-convection 

cases with the data of the test-channel mentioned in Chapter (6). 

The five experimental tests reported in this chapter are 

shown on this plan. It is noted that one test (Test 2) is placed in 

the forced-convection region, three tests (Tests 3, 1 and 4) are in the 

mixed-convection region and one test (Test 5), in the natural-convection 

region. The sequence of the position of these points is according to 

their GrD/Re' value, see Table (7.1) which confirms the relevance of the 

choice of this parameter in representing the mixed-convection cases in 

general, and the two extreme cases of it, i.e. the forced and the 

natural-convection regimes, in particular. 

Also on this plan is shown the natural-convection curve 

which will be obtained following the method of Head (1962). On this 

curve the two models considered in Chapter (5) (the 650 W and the 1950 W 

models) are also shown. 

7.5 	Frictional Characteristics of the Water Circuit of the Test-Rig  

In order to study the pressure losses which occur in the 
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water circuit for the range of water flow rates mentioned in Table (7.1), 

i.e. 33.3 to 66.6(gr/sec),a graph presented on Fig. (7.15) was 

experimentally obtained. The graph (dotted-line) which represents me  

against the level-difference between the Supply and the Discharge tanks, 

oh is the result of several tests executed in the absence of the power 

input to the test-section heaters. The following three steps were taken 

to obtain the data for this graph:- 

(1) 	The Supply Tank was raised to the height where its level- 

difference with the Discharge Tank was:- 

Th" = 20 cm 

(2) The water flow rate, m
c 
 was then regulated by the valve V 1  

of Fig. (6.1) to be:- 

me  = 33.3 gr/sec 	(i.e. 2 lit/min on the Rotameter's scale) 

(3) The Supply Tank level was adjusted to obtain the required 

water flow rate, mc. 

Results of these tests together with the results which were obtained by 

the relationship:-  

m 
c 

ti,/Ah' 

are shown on Fig. (7.15). It can be seen that me  varies as would be 

expected since the resistance in the water circuit is partly laminar 

and partly due to constrictions. 
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7.6 	The Effect of the Inlet Temperature, tin  on the tw  and the 

t
4 
 Profiles 

Some of the mixed-convection tests mentioned in Table (7.1) 

were once more tested but with a higher water inlet temperature tin  into 

the test-section. The result has been an upward shift for the tw  and the 

t4  profiles along the channel. The shift was equal to. the difference 

between the water inlet temperatures for the two corresponding tests. 

This result is used for the "correction" of the experimental values of 

the tw  and the t
4 
 profiles when the tin  has slightly changed during a 

test. 

7.7 	Conclusions  

The main conclusion is that simulation of a sinusoidal heat-

flux by dividing it into a number of strips with gradually increasing 

heat rating is a viable possibility. This method is confirmed by the 

experiments reported in this chapter, Table (7.1), to be successful in 

dealing with both the mixed and the natural-convection regimes. The 

average error for wall temperature is of the order of 10%. 

It is also concluded that although the test-section is 

covered by the Fibre-Glass insulation, there is a slight heat-loss. 

This is incorporated in the computer predictions obtained for each of 

the tests. 

A general plan, in the form of the graphical representation 

of the Reynolds number, Rep  against the Grashof number, Grp  could 

represent the results of each of the tests, Fig. (7.14). Two curves 

acting as the forced and the natural-convection boundaries divide the 

plan into three regions, namely, the forced, the mixed and the free-

convection regions. The first curve represents the relationship 



-249-- 

Grp  /Re' = 1 while the second one shows the computer predictions for the 

natural-convection regimes. The parameter Grp/Reō is the dominant 

parameter in regard to the position of the different tests in the plan. 

This is confirmed by the five typical tests conducted for this chapter 

which fall into one of the three regions according to their value of the 

parameter Grp 
 
/Rep. On the plan is also shown the natural-convection 

curve based on the calculations in which the average pressure drop is 

equalized with the average pressure gain in the test-section, Head (1962), 

leading to some over-estimation of the mass flow rate, mc. 

Specific conclusions for the mixed-convection and also for 

the natural-convection are described in the following:- 

(a) 	For Mixed-Convection  

Comparison between the experimental and the theoretical 

predictions of the tw  and the t profiles for the four typical tests of 

Table (7.1) shows that:- 

(a.l) 	The shape of the tw  profile is the same for the 

experiment and the theory, Figs. (7.1) and (7.7). For both 

of them, there exists a 
tw:Max 

 at an axial position down-

stream from the middle of the channel. However, before that 

position, the experimental values are higher. Also the 

tw %Max  predicted by the computer program is lower and 

occurs further from the channel entry. These are thought 

to be due to the existence of a longitudinal heat-conduction, 

qc`d along the channel in addition to the normal qw' which 
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is convected to the coolant water, Fig. (7.2). The ratio 

of the net heat conduction Qcd, which is proportional to 

32tW/z2, to the total heat generation in a typical 

finite strip along the channel, Qz  is at the order of 

0.003. 

Two other workers, Petrovichev (1960) and McCuen 

(1962) have also observed such a heat conduction and 

attempted to reduce it by various means (the former 

divided the test tube with a number of circular grooves, 

while the latter insulated each division along the channel 

using an insulation layer). 

At the entrance region of the test-channel, the 

experimental tw  values are higher. This is because the heat 

transfer coefficient, which is theoretically infinite, in 

practice, is finite but with a large value. The reason for this 

is that the axial conduction through the wall toward the 

entrance, raises the wall temperature above the entrance 

temperature tin  of the coolant leading to a large heat 

transfer coefficient but not an infinite one. 

The assumption of a uniform temperature profile 

across the channel has also been investigated. Based on the 

experimental temperature recordings of the two simulating 

plates of the channel, it is concluded that this assumption 

is not strictly correct. (The temperature readings for the 

FL. No. 1, whose thermocouples are nearer to the corners of 

the channel,are higher than those of the FL . No. 2 for the 
same axial positions, see Table (7.2) and also Fig. (7.1). 

Existence of a temperature profile across the channel was 
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also noted by Savino et al (1964) and small coolant 

velocities at the corners leading to a poor convection of 

heat in these areas/ are believed to be responsible. 

(a.2) The effect of a stronger degree of forced-

convection in the flow has been studied. This was done by 

gradually increasing po  in a typical mixed-convection test, 

Test 1, Table (7.1), while keeping 
4tot 

 unchanged. The 

effect has been an immediate increase in me  followed by a 

reduction in the t and the t¢  values along the channel. 

These temperature drops increase along the channel, 

Fig. (7. 7). Also the axial length where the tw Max 
 occurs 

shortens and gets closer to the middle of the test-channel. 

(a.3) Comparison of the experimental and the theoretical 

predictions of the t
4 
 profile along the channel shows a good 

agreement, see Fig. (7.4). However, the experimental values 

are slightly higher near the entrance region and are lower 

for the axial positions beyond the middle of the channel. As 

for the difference between the tw  profiles, the existence of 

the longitudinal heat-flux CG 	and also the finite value 

of h at the entry to the channel are thought to be the 

causes. 

(b) 	For Natural-Convection  

It is concluded that in addition to the pressure drop in the 

test-channel, Apts  there exists an external pressure drop in the water 

circuit, Ape. This extra pressure drop, which has been neglected in 
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the mixed-convection tests, in comparison with their pc) value, 

Table (7.1), is caused mainly by the flow of water through the connecting 

pipe between the Supply and the Discharge tanks, Fig. (6.1). The 

practical solution is to compensate the Ape by an extra level-difference 

between the two tanks as described in Section (7.3). 

Figs. (7.12) - (7.13)show the tw and the t profiles for 

this case. Comparison of the theoretical and the experimental values 

of these profiles lead to the following conclusions which are similar 

to those of the mixed-convection tests:- 

(i) There exists a longitudinal heat-conduction along 

the channel, q~d. The effect of this is higher experimental 

t
W 

values before the 
tw.Max 

position. 

(ii) The heat transfer coefficient in the entry to 

the channel has a large value but it is not infinite (as 

the ideal theoretical analysis requires). This is thought 

to be the reason why the experimental tw values are higher 

in this region. 

(iii) Because of the low coolant velocities near the 

corners of the cross-section, heat transfer is rather poor 

in these areas. This is confirmed by higher tw readings for 

FL. No. 1 whose thermocouples are nearer to the corners of 

the channel, Fig. (7.12), Fig. (6.16) and Table (7.2). 

(iv) There is a good agreement between the theoretical 
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and the experimental profiles of t at the entrance region 

of the test-channel. However, at the axial positions near 

the end of the channel, the experimental values are slightly 

higher. This may be attributed to some small recirculation 

taking place near the exit of the channel, Fig. (7.13). 

(c) The effect of raising the inlet water temperature, tin  is a 

parallel shift for the tw  and the t¢  profiles, equal to the amount of 

the increase in the tin  value. This conclusion has been used to 

correct the thermocouple readings for the tests where tin  was slightly 

lower or higher than its prescribed value. 

(d) Pressure losses in the water circuit were studied by 

• 
obtaining an experimental curve for mc  values against the level-

difference in the Supply and the Discharge tanks Ah', Fig. (7.15). 

According to this figure, there exists a difference between the 

experimental and the ideal values for Ah' which increases with higher 

water flow rates, mc. 
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CHAPTER 8  

APPLICATION OF THE PRESENT METHOD OF SOLUTION  

TO CIRCULAR CHANNELS  

8.1 	Introduction  

In this chapter, it is intended to extend the present 

method, introduced in Chapter (3), to solve for vertical round tubes. 

As mentioned in the literature survey, Chapter (2), the 

mixed-convection problem in round tubes with uniformly prescribed wall 

heat-flux or temperature has been tackled by, among others, Lawrence et 

al (1966) and later by Collins (1971) - (1975). Lawrence's measurements 

for the centreline velocity and the temperature profiles along a round 

tube agreed favourably with his theoretical results. However, the 

significant shortcoming of these works is that they have only dealt 

with the uniform wall conditions and, consequently, some important 

practical examples, where qW' or tw  varies along the channel in a 

specified manner, are left out. One of these cases, which is of special 

interest in nuclear reactors, is the case where wall heat-flux varies in 

a sinusoidal manner along the tube. In view of the fact that the present 

method can solve for arbitrary wall conditions, it is decided to extend 

its application to solve for round tubes too. 

For the execution of the method, the computer program 

CIRCLE is developed which predicts the axial and the radial distributions 

of the velocities, temperatures and pressures for the forced and the 

mixed-convection regimes with arbitrary wall conditions. For uniform 

heating, the program is, to some extent, similar to the two programs 

developed by Lawrence (1965) and Collins (1971) respectively. 

As an example, the predictions are obtained for a certain 



— 255— 

set of uniform and sinusoidal heating cases according to the general 

formula:- 

qw( (z) 
 = qwo (b + c . sin L1) 

Examination of these predictions showed a marked effect of 

natural-convection on the U velocity profile which distorts its fully-

developed parabolic shape and, in certain cases, brought about an 

inflexion. In view of this, the possibility of the transition into an 

unstable flow in the tube is studied. This is based on the transition-

parameter introduced by Lawrence et al (1966) which depends on the shape 

of the continuously developing U profile and also on the Reynolds 

number of the flow. 

The effects of the entrance conditions on the computer 

predictions are also examined. These consist of obtaining solutions 

for several Reynolds numbers and also for the parabolic entrance 

velocity profile. 

As for the rectangular cross-section, Chapter (5), a cross- 

checking of the computer predictions is made. This is done by treating 

the tw  profile, obtained for a sinusoidal qw' profile, as data for a 

prescribed tw  case. A comparison between the qW' profile obtained for 

the latter and the original sinusoidal qw' profile adds to the confidence 

about the present method of solution for round tubes. 

Published results of Hsu (1965) and Nijsing et al (1973), in the 

form of the axial distribution of the Nusselt number for prescribed 

sinusoidal qw' profiles for certain cases, are to be reproduced in this 

chapter to point out that their results are only applicable for the 

forced-convection regimes and that the contribution of the viscosity and 
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the density variations in the mixed-convection regimes should not be 

ignored. 

8.2 	Formulation of the Problem  

8.2.1 	Equations  

The problem to be considered is that of flow in vertical 

round tubes with prescribed wall conditions. A two-dimensional model, 

with axial and radial coordinates, as shown in Fig. (8.1), is 

considered. 

The following equations, as also mentioned in Lawrence et 

al (1966), Kays (1966) and Collins (1971), represent the mass (continuity), 

momentum (Navier-Stokes) and the energy equation for the model:- 

āz +ā +r =o 

Du 	av 	a 	32u 	1 	Dv + 32v  p(u āz +va  ) _ - aZ-S . p . g +u (;;-+ —,. ar' ar'2) 

' + 2 au 	au + au 	au + av 
az az Dr' (ar' az)  

(8.1) 

(8.2) 

p( u a z+ v 7.) = 	
ap 	32v 	1 	av 
37.7'  	(ar'2 	r,* ar- 

+ a2v)  + 
r'2  az2  

+ 2 a; 	Dv + au av + au  
ar ' 3r' 	az (āz 	ar')  (8.3) 

at 	at  — 	k 	alt 	1 	at 	92t )  

u  āz + v  ar' p Cp 
(az2 

 + r ar' + 9r'2 
(8.4) 
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The assumptions in these equations are:- 

(a) The flow is steady and laminar. 

(b) The flow is axially symmetric. This is also true about the 

prescribed heat-flux or temperature at the wall. 

(c) Viscous energy dissipation is negligible. 

(d) C and k are constant. 

(e) p is constant except in the buoyancy term of Equation (8.2). 

(This assumption is justified when the effect of the density 

variation with temperature in this term is compared with the 

other terms). 

As for the rectangular cross-section, the buoyancy term in 

Equation (8.2) will represent the natural-convection effects in the 

vertical flow when S = + 1 (upward flow), or S = - 1 (downward flow). 

These effects are assumed absent for the forced-convection regime in any 

orientation, and for the adiabatic flow, i.e. S = 0. 

The variations of the viscosity and the density with 

temperature may be represented by several correlations depending on the 

working fluid. As mentioned in Chapter (3), the following two 

correlations approximate accurately the functional relationship of u 

and p with temperature:- 

u  _ ( t + C 	3 1)  - C 

PB 	C2 

(8.5) 
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P = C - C . t+ C . t2 	 (8.6) 
PB 	4 	5 	6 

Numerical values of the constants C - C and the comparison of these 
1 	6 

approximations with the actual values of u and p are shown in Tables 

(3.1) - (3.2). 

The mass conservation equation may also be written in the 

following integral form:- 

uo . 7R2 = 
	

u . 27r' . dr' 

0 

(8.7) 

In the numerical analysis which will follow, Equation (8.7) is used as 

part of the analysis, rather than as a mass check balance. This 

guarantees mass conservation at each axial step. 

The wall thermal boundary condition is prescribed either 

as heat-flux or temperature, i.e:- 

q.~ 
w = q;- (z) (8.8) 

or: - 

tw = tw 
(z) (8.9) 

where these functions are given as data for each case. 

The overall energy balance, over an infinitesimal length, 

Az can be written:- 
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f

z

7R2 .p . uo  . C .at

mean = 27R 	
2  qw' (z) . dz 

z 
1 

(8.10) 

where 
Atmean 

is the increase in the mixed-mean temperature at the axial 

position and is defined as:- 

tmean 

(R . 	p 	u t 	r' . 	dr' 

(8.11) 

(8.12) 

R 
p 

0 

and:- 

Atmean = tmean 

. 	u 

z 

. 	r' 	. 

tmean 

dr' 

z 
z 1 • 

8.2.2 	The Boundary Conditions  

These may be classified in the four following sets:- 

(a) Entrance conditions, i.e. z = 0, 0 < r' < R 

u = u0  , v = 0 , p = pc)  , t = tin 
 

(b) At the tube axis, i.e. z >0, r' = 0 

-0 
ar
. 
	0  , v = 0 , ar' 	

0 

(c) The wall flow conditions, i.e. z > 0, r' = R 

u = 0 , v = 0 
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(d) 	The wall thermal conditions 

Either: qW" = k ar = qW" (z) 

r' =R Given as data 

Or: tw = tw (z)1 

Given as data 

8.2.3 	Dimensionless Form of the Equations  

Equations (8.1) - (8.12) may be rendered dimensionless by 

using the substitutions defined in the nomenclature, giving Equations 

(8.13) - (8.24) respectively:- 

ā + r + ār =o (8.13) 

au 	au _ _ aP 	1 r 	32U + 
	+ 

1 	au 	a2U

) U aZ + V ar 	+ 
Re nA (aZ 	r 	ar 2 	

ar2 ā   

3U 	3T (3V 
+ nB {2 RZ ' a + ar '3Z + ar) - 	S 

p6 	Re2 {G 
	CD4  + T(C05 + T C06)} 

(8.14) 

U a V + V a V __ DP 	1 	a 2 V + 1 	DV 	V + a 2 V + 
aZ 	ar 	ar Re L A (ar2 	r ār r2 	aZ2) 

+ n6 {2 ar . ara (a + ar) 

ar aT  1 32T 1 DT a2T U~+Var=Pr. Re (aZ2+ r 
ar+ar2) 

(8.15) 

(8.16) 
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1- = (C01 	G + CO2)-0O3 
1113 r  

(8.17) 

P = (CO4 + C05 
	. T  + C06 	T2) 

PB 	Gr 	Gr  

1= J1 

	

p/ p o U 	r 	d r 

0 

(8.18) 

(8.19) 

R3  .g.0 
TWALL = 

	

	5  {tw  (z) - tin} 
v2  

HFLUX - 
R" . g . C 

5 
 . (z)  ( z) 

vg k.114  
(8.20) 

(8.21) 

Pm rZ 

2 ATmean = rfi. Re ' pB  n+l HFLUX (Z) dZ 
Zn  

(8.22) 

where:- 

j1 
TMEAN = 2 J p/po  . U. T. r. dr 

0 

(8.23) 

ATmean 
= TMEAN - TMEAN 

Zn+1 	Zn  

(8.24) 

  

Also:- 

- CO3 

nA  = 
	
= (CO1 . 	+ CO2) 

B  
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- (CO3 + 1) 

'1B = dT  °A)  = G 	1  .  (CO1 . 
G 
 + CO2) 

G
r 	r  

8.2.4 	Dimensionless Form of the Boundary Conditions  

The four sets of boundary conditions become:- 

(a) Entrance conditions, i.e. Z = 0, 0 < r < 1 

U= 1 , V= 0 , P= Po  , T= To  

(b) At the axis, i.e. Z > 0, r = 0 

aU 3T 	aP 
ar = 0  , V =. 0 , ar = 0  , T. =O 

 

(c) The wall flow conditions, i.e. Z > 0, r = 1 

U = 0 , V = 0 

(d) The thermal conditions prescribed at the wall: 

Either: HFLUX = HFLUX (Z) 

Or: TWALL = TWALL (Z) 

8.2.5 	Procedure of the Solution  

The solution is obtained by applying the finite-difference 

method to Equations (8.13) - (8.24). A grid of the form shown on Fig. (8.2) 

is used. The grid is a rectangular axial-radial one with suffices 
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n and m respectively. As the radius r is divided into M divisions:- 

m-1  
r = M  

and for m = 1 (at the axis) .... M + 1 (at the wall) the values of 

r = 0 and 1 are obtained. 

By using a marching-forward technique, a set of linear 

finite-difference equations for the unknown level "n + 1" may be 

written. Then, these equations are solved by using the known values at 

the level "n" and "n - 1". In the solution whenever the product of two 

unknowns occurs, linearity is achieved by putting one of them equal to 

its value of the previous step, (i.e. Zn+1  ÷ Zn). An approximation 

which should not be too serious. 

The finite-difference form of Equations (8.13) - (8.24) is 

shown in Appendix (III). Here, only the boundary conditions are 

discussed. 

8.2.6 	Finite-Difference Form of the Boundary Conditions  

(a) Entrance conditions, i.e. Z = 0, 0 < r < 1 

Ulm  = 1V1,m  = 0 	P1,m  = Po 	Ti m  = To  

(b) At the tube axis, i.e. Z > 0, r = 0 

Un,l  = Un,2 	Vn,l  = 0 	Pn,1  = Pn,2  , Tn,1  = Tn,2  

(c) The wall flow conditions, i.e. Z > 0, r = 1 



HFLUXI 

Av. for AZ 

_ Tn,M+1 - Tn,M  
1/M 

aT 
ar 

r=1 

(8.26) 
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Un,M+1 = 0  , Vn,M+I = 0 
 

(d) 	The wall thermal conditions, i.e. (Z > 0, r = 1) 

In order to make the prescribed wall thermal conditions, 

qW' (z) or tw  (z), suitable for the finite-difference 

approximation, their profiles are divided into infinitesimal 

axial strips and dealt with as follows:- 

(d.l) 	Wall heat-flux profile, qW' (z) is prescribed 

  

J

n+l 
 HFLUX (Z) . dZ 

Z 
n  

 

Define: HFLUX 

 

(8.25) 

Av. for AZ 
Zn+l - Zn  

  

On the other hand:- 

Combining Equations (8.25) - (8.26):- 

. g . C 	. 

Tn,M+1 	Tn,M + 
v2  • k • M 

. 
qW.  

B 

  

Av. for Az 

(8.27) 

 

As for the flat duct, Equation (8.27) shows how a 

prescribed wall heat-flux profile is turned into a boundary 

condition problem. Thus, if the flow specifications, i.e. 

U, V, P and T at the point Zn  are known, their corresponding 
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values at Z
n+1 

may now be calculated. 

(d.2) 	Wall temperature profile, tw (z) is prescribed 

A similar procedure to that of the above-mentioned qW" 

case is followed. Define:- 

TWALLI 

Av. for AZ 

f
Zn~i TWALL (Z) . dZ 
Z 
n 

(8.28) 
- 

Zn+1 Zn 

Combining Equations (8.21) and (8.28):- 

R3 . g . C 
s_ 

Tn,M+1 = 
	ft (z)(z) 	tin 

V
2 
B 	Av. for Az 

(8.29) 

8.2.7 	Method of Solution  

As with the flat duct solution, by assuming a second-order 

effect of the temperature on the flow-field (i.e. U, V, P) the latter 

is solved for first, and the solution is then used to solve the energy 

equation. This assumes the UVP solution is reasonable. As a 

check, and in view of the energy equation coefficients depending on the 

U values, the temperature solution so obtained is substituted into the 

UVP equations for a second solution of these and in turn a second 

temperature solution is found. Differences have usually been slight 

justifying the assumptions. This also implies that the temperature 

dependent viscosity and the density, appearing in the momentum equations, 

Equations (8.2) - (8.3), have virtually their correct values the second 

time round, rather than their values at the first step. 
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In more detail, Equations (8.13) - (8.15) and (8.19) were 

written for each radial position at the first axial step from the entry, 

and the known coefficients and the right-hand side values were 

evaluated. This gave (3M - 2) unknowns (i.e. U, V, P for each radial 

position and PM+1)' 
 with the same number of equations. The solution, 

as for the flat duct, is by a standard Gaussian Elimination Method, 

suggested by McCormack and Salvadori (1964). The energy equation, 

Equation (8.16) is similarly written and solved with the Un+1 
 and V

n+1  

values from the first solution. Here (M - 1) equations, including 

Equation (8.22), solve for (M - 1) unknown Tn+1 
values. For the mixed-

convection cases, where the energy and the momentum equations are 

linked, the semi-iterative check is carried out, i.e. the U, V, P matrix 

uses Tn+l 
values from the temperature solution and finally the 

temperature solution will be re-obtained. 

Having completed the solution for one axial position, the 

marching forward is carried out by progression to the next axial step. 

This method has been executed by the computer program CIRCLE, see its Flow-

Chart, Appendix (IV), and the predictions for several cases of prescribed 

q' or tw  profiles were obtained which will be discussed in the following. 

8.3 	Computer Predictions for Several Prescribed qW' Profiles 

8.3.1 	The Wall Heat-Flux Profiles (I, II and III)  

As mentioned in (8.1), three typical qw' profiles are to 

be solved for. These are a uniform and two sinusoidal profiles 

described by the general formula:- 

q' (z') = q" {b + c . sin (EZ-)} 
wo 

(8.30) 
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where the constants b and c differ for each profile. For the examples 

which will follow they are chosen in such a way that although the 

resultant profiles are different, the average wall heat-flux, q" 	is is 

kept the same. The selected three profiles are:- 

(i) Profile (I), uniform heating  

which is obtained from Equation (8.30) by assuming:- 

b = 1 , c = 0 

qwo = gw.Av = 
1.34 (Wm') 

Therefore:- 

qw' (z) = 1.34 (8.31) 

where qW' and z are measured in (w/cm2) and cm respectively. 

(ii) Profile (II), sinusoidal heating  

By assuming: b = 0.5, c = 1, qwō = 1.179 (w/cm2) in 

Equation (8.30):- 

qw' (z) = 1.179 0.5 + sin q)} 	 (8.32) 

where qw' and z are measured in (w/cm2) and cm respectively. 

Therefore:- 

gw.Av = 1.34 Won') 

gw.Max/gw.min = 3.00 
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(iii) 	Profile (III), sinusoidal heating  

By taking b = 0.5, c = 2 and qwō = 0.755 (w/cm2) in 

Equation (8.30):- 

qW' (z) = 0.755 {0.5 + 2 sin (I)} 	 (8.33) 

where qw" and z are measured in (w/cm2) and cm respectively. 

So:- 

gw.Av = 1.34 (w/cm2) 

gw.Max/qw:min = 5.00 

It is noted that in these three profiles the ratio 

clW.Max/qW.
min assumes the values of 1, 3 and 5 respectively. These 

profiles are shown in Fig. (8.3) and were prescribed on a typical round 

tube, Fig. (8.1). The data for this tube is given in Table (8.1) and 

the computer predictions are discussed in the following. 

8.3.2 	Computer Predictions for a Prescribed Uniform  

Heating Case  

These predictions are to be assessed by the examination of 

the axial variations of the four parameters namely: U, t, Nu and p 

which were obtained for the case where qW' varies according to the 

Profile(I),Fig. (8.3). 

(a) 	U Profile  

Fig. (8.4) shows the U velocity profile along the tube for 

a forced-convection regime (i.e. when u and p are constant). It is 
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TABLE (8.1)• 

DATA FOR THE TYPICAL ROUND TUBE  

Reduced 
Data 

Data 
Z
max Qtot(w) 

m(gr/sec)  Attot(C°) tm(C°)  
tout(C

°) Pr Reo  Rem  Re Rep  GrD  GrD/Rep 

u°  = 7.85 cm/sec 

D = 	1.076 cm, 

L = 2.1875 m, 

tin  = 22.8 °C 

406.6 990.9 6.94 34.3 40 57 6.503 437.2 600 419.7 839.4 1.381 	x 106  1.96 

I 
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noted that the profile continues to develop, from the uniform shape 

at the entrance, towards the parabolic shape of U = 2(1 - r2) far 

downstream. 

In order to examine the effects of the variations of either 

of the viscosity and the density, the U profile is also obtained for 

when p varies with temperature according to Equation (8.5) but p 

remains constant. Figs. (8.5) - (8.6) show the U profiles at Z = 60 

and 310 respectively for both of these cases. It can be seen that the 

variable viscosity leads to a flatter U profile. The lower p values 

near the heated wall reduce the resistance against the flow and result 

in higher velocities than those for the constant p case. This is also 

reflected in the mass conservation equation, Equation (8.7), and leads 

to the lower velocities at the centre of the tube. 

Fig. (8.7) shows the U profile along the tube for a mixed-

convection regime, i.e. p and p vary with temperature according to 

Equations (8.5) - (8.6). It is noted that here the profiles continue 

to develop in the same manner as those for the forced-convection case 

and U = 1.57 at Z = 35. But as the fluid moves further downstream, 

the density reduction becomes more apparent and the profile tends 

towards a flatter shape, e.g. at Z = 110 : UQ  = 1.15 (c.f. U = 1.981 

for the forced-convection). Further than this point, because of the 

higher rates of reduction in p and p near the wall, the U values become 

increasingly larger there, to the extent that one of them even exceeds 

the U value at the centre of the tube,Ur  This leads to the appearance 

of an inflexion point in the profile which distorts its parabolic 

shape. The increase in the U values near the wall is followed by the 

reduction in the U4  values which continues until Z = 320 where it 

reaches zero. 
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The development of the U profile along the tube may also be 

explained by the examination of the V velocity profile across the tube, 

Fig. (8.8). The negative values of the V profile at Z = 17.5 represent 

the radial movement of the fluid towards the centre of the tube. 

Conversely for Z = 70, where the V values are positive, the movement is 

towards the tube's wall. These movements are in agreement with the 

development of the U velocity profiles, Fig. (8.7), because up to Z = 35, 

where the peak U occurs, the fluid layers near the centre are 

continuously assuming higher velocities (which requires the horizontal 

movement towards the centre). But, beyond this axial position, where 

the U velocity profiles are getting flatter, the increase in the U 

values will be transferred to the layers near the wall and accordingly 

the radial movement is reversed. 

For comparison, the U profiles for the mixed-convection 

regime at two axial levels, Z = 60 and 310, are also shown on Figs. 

(8.5) - (8.6). It can be seen on Fig. (8.5) that when the variations 

of u and p are both considered, the U profile is even flatter than that 

of the case where only u varies with temperature. The reduction of the 

p values near the wall, which amplifies the effects of the lower 

viscosities, is responsible for obtaining a still flatter U profile. 

In order to summarise the effects of u  and p variations 

along the tube, Fig. (8.9) is drawn. This figure shows the axial 

variations of the centreline velocity U for the forced and the mixed- 

convection cases. According to the figure, for the forced-convection case, 

U approaches its asymptotic value at Z = 120 where U = 1.985. 

Further downstream the parabolic shape changes slightly and U assumes 

values even closer to U¢  = 2 (e.g. U = 1.995 at Z = 330). When p 

variations with temperature are also allowed, the U profiles are flatter 
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and U approaches to an asymptote value less than that of the forced-

convection case, i.e. U = 1.705 at Z = 320. This occurs after UQ  

passes through its peak value of U = 1.763 at Z = 80. For the mixed-

convection, U4  increases along the tube axis until Z = 35 (where 

U 	= 1.500). Further downstream, U starts to decrease and after 
-max 

passing through the inflexion point, 1.1 	1.15 at Z = 110, it continues 

towards the zero value at Z = 320. 

The U4  variations along the tube have been checked against 

a published experimental result of Lawrence et al (1966) for a case with 

Rep  = 353.6 and Grp/Rep = 8.83. The comparison, shown on Fig. (8.10), 

adds to the confidence about the present theoretical method. 

(b) 	The Temperature Profile  

Two temperature profiles are considered for discussion. 

These are the wall temperature along the tube and the temperature 

distributions across the tube radius. These profiles are shown on 

Figs. (8.11) - (8.12) respectively. 

On Fig. (8.11) it is noted that throughout the tube the 

wall-temperature is lower for the mixed-convection case. As explained 

for the U profile, this is because of a higher velocity of the fluid 

layers near the tube wall which results in a better cooling process 

taking place. Also it may be seen that the effects of the density 

variations are more significant than those of the viscosity, although 

both of them contribute to the tw  reductions throughout the tube. 

Fig. (8.12) shows the development of the temperature 

profile across the tube for the mixed-convection case. According to 

this figure, the profiles tend towards a parabolic shape far downstream 

and the increase in the t values for the positions beyond Z = 110 
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(where the inflexion occurs in the U profile) is considerable. Also 

on this figure are shown the temperature profiles for the forced-

convection case and the case where only the variation of u with 

temperature is allowed. 

(c) 	Axial Variations of the Nusselt Number, Nu  

Fig. (8.13) shows the Nusselt number along the tube. For 

the forced-convection case it starts with large values of Nu near the 

tube entry which decrease further downstream. At Z = 350, Nu = 4.800 

and it is confirmed, by obtaining the predictions for larger Z values, 

that it approaches Nu = 4.364 which was theoretically obtained, among 

others, by Kays (1966). By allowing for the viscosity variations to 

take place the Nu values throughout the tube are slightly augmented. 

,This is in agreement with the reduction in tw  and the increase of the 

U values near the above-mentioned wall (e.g. Nu = 5.170 at Z = 350). 

For the mixed-convection regime, where the reduction in 

the density and the viscosity is allowed, the Nu values are even 

larger and the curve passes through a minimum value (Numin = 8.061 at 

Z = 140). This axial position is close to the position where the 

inflexion in the U profile occurs (i.e. Z = 110) and as a result, 

large U values will be assumed near the wall and the rate of heat 

transfer starts to improve. Due to ever-increasing U values near the 

wall, the Nusselt number continues to increase to the extent that 

Nu = 8.75 at Z = 320 which is considerably higher than the Nu = 4.87 

obtained for its corresponding forced-convection case. Based on these 

comparisons, it can be said that because of the considerable increase in 

the heat transfer rate for the mixed-convection regime, any calculation 

for mixed-convection cases based on the fully-developed solution, i.e. 
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NuH  = 4.364, is subject to a considerable error. 

(d) 	The Pressure Profiles  

Fig. (8.14) shows the Pmean 
 profile along the tube for 

the forced-convection case and for the case where the variation of p 

with temperature is also considered. The profile, as expected, is 

linear and its slope, fp  approaches the fully-developed value of 

fp  = 16/Rep  at the axial positions beyond the hydrodynamic entry length. 

Also on this figure, the effects of the variation of p are 

appeared by the reduction of Pmean 
 throughout the tube. According to 

this figure, for a forced-convective flow, the extra pressure needed 

at the tube entrance, po,Extra 
 must be at least equal to the value of 

at the end of the tube. For these two cases, the pressure profile 
Pmean  

across the tube is a straight line as shown on Fig. (8.15). 

Fig. (8.16) shows axial variations of 
Pmean 

 for the mixed-

convection regimes. According to this figure the profile for the 

uniform heating case is almost linear. As for the flat duct, 

is calculated for different lengths of the tube, Fig. (8.17). It is 

noted that for the axial positions beyond Z = 140, po,Extra  starts to 

decrease and becomes zero at Z = 260. This length may be interpreted 

as the minimum length of the tube which is required for the natural-

convection regime to take place in the tube. The mixed-convection 

index, i which is representative of the ratio of the buoyancy and the 

frictional pressure drops (defined in 5.3.3), is also predicted by 

CIRCLE and Fig. (8.18) shows its variations along the tube. The 

results shown on this figure are in agreement with those of Fig. (8.17) 

and particularly at Z = 260, where po.Extra = 
0, the mixed-convection 

index i approaches 100. 

po.Extra 
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The pressure profile across the tube for the mixed-

convection regime is also shown on Fig. (8.15). It is noted that near 

the wall, where the fluid temperature is higher than in the rest of 

the tube, the pressure is lower. This is expected because at this 

region the fluid is less dense. Conversely at the central region of 

the tube, where the fluid temperature is comparatively lower and the 

pressure is at its peak. 

(e) 	Transition Into an Unstable Flow  

The continuous development of the U profiles along the 

tube, and in particular the existence of an inflexion point in them 

at a certain axial distance, brings about the question of the possibility 

of transition from laminar flow to an unstable flow. The development 

of unstable flow is generally explained by the laminar instability 

theory, outlined by Pai (1956) and discussed in detail by Lin (1955). 

Their theory is based on the assumption that for any velocity profile 

there exists a Reynolds number such that above it the profile will be 

unstable to disturbances having wave numbers which lie within a certain 

range. Therefore, only the disturbances with these wave numbers will 

be amplified as they move downstream. The minimum Reynolds number at 

which a disturbance is amplified (so called "critical" Reynolds number) 

is the most important since below it the flow will be laminar for any 

disturbance. This Reynolds number depends only on the shape of the 

velocity profile. For developing profiles in poiseuille-flow, it 

would theoretically be possible to obtain a characteristic curve which, 

upon examination of different profiles along the tube, would show at 

what Reynolds number the profile would become unstable. 

Lawrence and Chato (1966) adopted a method based on the 



-285— 

Lin (1955) theory which consists of taking three steps. First, the 

theoretical solution is used to obtain the developing U profiles for 

a number of cases with various Rep's and Grp  /Re' parameters (or Gr/Rem  

in their paper). Second, using the experimental data to give the 

axial position at which instability began, the unstable profiles were 

obtained from the theoretical results for different Reynolds numbers. 

From these results they observed that transition always occurred after 

the profile had developed an inflexion point with the velocity at the 

centreline less than the velocity at some radial position, U
peak'  

Based on this procedure, Lawrence and Chato (1966) have 

proposed a method to characterise these profiles so that a functional 

relationship exists between the characteristic parameter and the 

entrance Reynolds number, Reo.  Using trial and error, they have 

proposed a tentative parameter for giving the necessary functional 

relationship, which is:- 

U + U 
P 	fl 

Tran. Coef = 	r 	. uw  
P 

where Up  and U are respectively the peak and the centreline velocities, 

rp  being the dimensionless radial distance from the peak velocity to 

the wall and 	the fluid viscosity at the wall. These parameters, 

together with some experimental results of Lawrence and Chato (1966), 

are reproduced in Figs. (8.19) - (8.20). 

In this chapter a trial is made to examine the possibility 

of transition into an unstable-flow based on this method. In 

particular, to assess the possiblity of extending it to cover the cases 

with sinusoidal heating. 

Fig. (8.21) shows axial variations of the transition 
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parameter for uniform heat-flux profile in the mixed-convection regime. 

It is noted that the parameter decreases from the entrance region of the 

tube up to the axial position where the U profile develops an inflexion 

point. Beyond that, it increases to a maximum value and falls again 

and passes through the critical-value line which was experimentally 

obtained by Lawrence and Chato (1966). Thus for a given Reo  the axial 

position where transition occurs may be found by repeating the 

procedure for every case. This method has its advantages over the 

other methods, which are generally based on correlations linked to the 

overall specifications of the flow, e.g. Hallman et al (1958). The main 

advantage is that the method is based only on the shape of the U 

velocity profile and thus may be extendable to non-uniform wall heating 

cases too. 

For the data of the typical tube shown in Table (8.1), this 

method is attempted as follows:- 

Reo  = 437.2 -> Fig. (8.19) ÷ Critical parameter = 7.875 

From Fig. (8.21) -> Z/Reo  = 0.680 

Therefore:- 

Ztransition 
= 297.2 [c.f. 320 experimentally obtained by Lawrence'(1965 )I 

This comparison shows that by following the present method the error 

will be 7.2%. 
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8.3.3 	Computer Predictions for Sinusoidal Heating Cases  

The main aim of this chapter is to study the computer 

predictions for sinusoidal heating cases. In what follows these 

predictions were obtained as a result of the prescription of the 

sinusoidal qw' Profiles(II)and(III), shown on Fig. (8.3) , on the 

typical round tube of Table (8.1). The results for Profile II, in a 

mixed-convective regime, are to be presented together with those of the 

uniform heating case to facilitate the comparisons. At the end of this 

section, the results for Profile(III)are also given to generalise the 

conclusions. 

8.3.3.1 	The Results for the Sinusoidal qW' Case 

According to the Profile (II)  

(a) 	The U Profile  

Fig. (8.22) shows the developing U profiles for this 

sinusoidal heating case. It is seen, as for the uniform heating case, 

that the profile develops along the tube towards the ideal parabolic 

shape of U = 2(1 - r2) in such a way that Ua  = Ua 	= 1.677 at Z = 40. 
-max 

Beyond this axial position, due to the natural-convection effects, the 

profile starts to flatten and at Z = 140 it assumes an inflexion point. 

Further downstream, the natural-convection effects become ever more 

dominant and distort the shape of the U profile more significantly. At 

Z = 290, the centreline velocity li reaches zero. 

On Fig. (8.23) the U4  profiles for this sinusoidal heating 

case and the uniform heating case, Profile M)  are shown. 

By comparison the following points may be noted for the sinusoidal 

heating:- 
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(i) 	Ua 	occurs at a larger distance from the tube 

-max 
entrance and its magnitude is larger, i.e. 

Ua 	= 1.677 at Z = 40 (c.f. Ua 	= 1.570 at Z = 35) 
-max 	 -max 

(ii 
	

Inflexion occurs at a larger axial distance with 

a lower magnitude, i.e. 

U 	= 1.08 at Z = 140 (c.f. Ua 	= 1.15 at Z = 110) 

Inflexion 	 Inflexion 

(iii) 	The axial distance needed for the U value to 

approach zero is smaller, i.e. 

U4  = 0.0 at Z = 290 (c.f. U = 0.0 at Z = 320) 

(b) 	The Temperature Profiles  

Fig. (8.24) shows the axial variation of the wall 

temperature, tw.  It is noted that for the axial positions within the 

first quarter of the tube, tw  for this sinusoidal heating is lower. 

The reason seems to be that in this region the heat-input to the fluid 

is lower for the sinusoidal heating case than for the uniform heating 

case. Beyond Z = 120, tw  for the former case continues to increase 

until it passes through its maximum, 
tw.Max = 79 

°C at Z = 300. It 

should be pointed out that this position is located at the second half 

of the tube and for the flat duct, Chapter (5), it is in accord with 

the results obtained by Ginn's equation. It is also noted that 

although the total heat addition up to Z = 203.3 (i.e. z = L/2) is 
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the same for both of the qw' profiles, 	 Maxtw. 	
for the sinusoidal heating 

case is larger. 

Fig. (8.25) shows the radial temperature distribution of 

• 
the flow along the tube for the sinusoidal qw' case. It is seen that 

despite the considerable increase of tw  the centreline temperature 

does not increase at the same pace and its augmentation is even smaller 

in the axial positions smaller than the length needed for the inflexion 

in the U profile to appear. Half-way through the tube, at Z = 203.3 

(z = L/2), the lower tw  value for the uniform qw' case, together with 

the same total heat-input, forces its radial distribution profile to 

be flatter than that of the sinusoidal heating case. 

Fig. (8.26) shows the mixed-mean temperature, 
tmean 

 along 

the channel for the three qw' profiles. The curves on this figure may 

also be interpreted as representing the total heat-input at each axial 

position in the tube, 
Qtot(z) 

 (according to the ordinate placed at the 

right-hand side of the figure). As expected, 
tmean 

 for the sinusoidal 

heating cases is lower at the first half and higher at the second half. 

But as the flow continues towards the end of the tube, the curves 

become closer to each other in such a way that they will intersect at 

the end of the tube. 

(c) 	The Axial Variations of Nu  

Fig. (8.27) shows the profile for Nu along the tube for 

this sinusoidal heating case. For comparison the profiles for the 

uniform heating case in the mixed and the forced-convection regimes are 

also shown. As for the flat duct, the shape of the profile is close to 

a horizontally positioned letter s (i.e.k). For the first half of 

the channel, Nu values always exceed their asymptotic value of 4.364, 
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pertaining to the case of uniform wall heat flux for forced-convection. 

They also exceed their corresponding mixed-convection values to a large 

extent. From Z = 130 to Z = 240, the Nu values are fairly constant. 

In the region beyond Z = 240 (z/L = 0.6), which is characterised by 

an axial decrease of wall heat-flux, the Nusselt numbers begin to 

decrease to the extent that at Z = 350, the Nu values fall below the 

corresponding values for the uniform heating case in a mixed-convection 

regime. However, they still exceed the values obtained for a forced-

convection case. 

This comparison shows that the calculations for a mixed-

convection regime in a tube, with prescribed sinusoidal qW' profile 
should not be based on the asymptotic value of Nu = 4.364 because of 

the large error which will occur. 

	

(d) 	Pressure Profiles  

The axial variation of 
pmean 

 for this sinusoidal heating 

case is shown on Fig. (8.16). It is noted that the deviations from 

the nearly linear curve which is obtained for the uniform qw' case are 

not significant although the 
pmean 

 values seem to be slightly lower. 

On Figs. (8.17) - (8.18) thepo.Extra  and i for this case 

are shown. It can be seen that the minimum length of the tube needed 

for:po.Extra = 0 is enlarged because of the prescription of the 

sinusoidal qw' profile. As for the mixed-convection index, i the 
values are less than their corresponding values for the uniform heating 

case. This is to be expected because of the shape of the total heat 

	

addition curve, 	presented on Fig. (8.26). However, because the 

heat-addition throughout the tube, for all of these qw' profiles, is the 

same, the index i will also be the same at the end of the tube, Fig. (8.18). 
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Radial pressure distributions will be of nearly the same 

shape as those for the uniform heating case, Fig. (8.15) although 

because of the lower tw, for a fraction of the first half of the tube 

the pressure, p is slightly higher. 

(e) 	Transition Length  

For this sinusoidal qW' case, Profile (II), the transition 

parameter is calculated and shown on Fig. (8.28). Following the same 

procedure as for the uniform qW' case, the intersection between the 

characteristic curve of this case and the critical value of the parameter 

is at Z/Reo  = 0.60, i.e. Z = 262.32. It can be seen from Fig. (8.28) 

that this length is shorter than what was obtained for the uniform qW' 

case (i.e. Z = 297.2) and may be interpreted as one of the effects of 

the prescription of a sinusoidal cc' profile. 

• 

8.3.3.2 	The Results for the Sinusoidal qW' Profile 

According to the Profile (III)  

As shown on Fig. (8.3) this qW' profile is the same as the 

Profile (II) but with a higher ratio of 
gw.Max/gmin' 

 5 c.f. 3 for the 

Profile (II). This profile has been chosen to confirm the trend of 

the results which were obtained for the other sinusoidal qW' profile, 

specially for important design factors such as tw Max,  Nu and to some 

extent, the transition length. 

Fig. (8.23) shows the axial variation of U for this qW' 

case together with similar profiles for the other two cases. From 

this figure, it can be seen that for the Profile (III) in comparison with 

the other two qW' profiles (I) and (II) of Fig. (8.3):- 
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(i) U¢ 	value is higher and occurs at a larger 
-max 

distance from the tube entrance, i.e. 

Ua 	= 1.713 at Z = 45 
-max 

U4max 
= 1.677 at Z = 40 	For the Profile(II) 

Ua 	= 1.570 at Z = 35 	For the Profile(I) 
max 

(ii) U 	value is lower and occurs at a 
Inflexion 

larger distance, i.e. 

U 	= 1.03 at Z = 150 
-Inflexion 

U~ 	= 1.08 at Z = 140 	For the Profile(II) 
Inflexion 

U 	= 1.15 at Z = 110 	For the Profile(I) 
¢Inflexion 

(iii) The zero U value occurs at a smaller axial 

distance, i.e. 

U = 0.00 at Z = 280 

U = 0.00 at Z = 290 For the Profile(II) 

c.f. 
U = 0.00 at Z = 330 For the Profile(I) 

Fig. (8.24) shows the tube wall temperature profile along 

the tube for the three qw' cases. It is noted that 
tw.Max 

is higher 

than that for the qw' Profile (II) and occurs at a smaller distance from 

c.f. 

c.f. 
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the tube entry. i.e.:- 

tw.Max = 
80.14 °C at Z = 290 

c.f. tw.Max = 78.93 °C at Z = 300 For the Profile (II) 

Axial variations of Nu for all of these three qw-  profiles 

are shown on Fig. (8.27). It is noted that there exists a slight rise 

in the Nu values for the axial positions beyond the position where the 

inflexion in the U profile occurs. In more detail , for the Profile (III):- 

c.f. 

Numin = 9.055 at Z = 130 and NuMax = 9.173 at Z = 230 

For the Profile (II): 

Hu
min = 8.850 at Z = 130 and NuMax = 9.02 at Z = 230 

The mean pressure at each section, 
p
mean is not significantly 

affected by the sinusoidal heating. On Fig. (8.16) this is shown as for 

the other sinusoidal heating case. 

The transition length, as defined in (8.3.2e) is predicted 

to be smaller for this sinusoidal heating case than that which was 

obtained for the other case, Profile (II). As shown on Fig. (8.28) for 

heating according to the Profile (III):- 

Z/Reo  = 0.56 -} Z = 245 

(c.f. 262.3 and 297.2 for the Profiles (II) and (I) respectively) 
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8.3.4 	Effects of the Reynolds Number and the Parabolic  

Velocity Profile at the Tube Entrance on the  

Computer Predictions  

(a) Reynolds Number  

As for the flat duct, these effects are most significant for 

the pressure and its related parameters, i.e. Pmean and i. On Figs. 

(8.16) and (8.18) the axial variations of pmean 
 and i for the 

sinusoidal heating according to the Profile (II) are compared for two 

different Reynolds numbers (i.e. Rep  = 839.4 and 353.6). As expected, 

because of the reduction in the Re value while 4tot is kept constant, 

mean 
reduces significantly throughout the tube. Conversely, due to 

stronger natural-convection effects, the indexi increases considerably. 

These effects may also be seen by the examination of Fig. (8.9) where 

U4  values along the tube are compared for these two Reynolds numbers. 

(b) Parabolic Uo  Profile 

On Figs. (8.29) - (8.31) the axial variations of UQ, tw  and 

Nu are compared for the following two U0  profiles:- 

(i) 	Uo  = 1 	(Uniform Uo  profile) 

(ii) Uo  = 2(1 - r2) 	(Parabolic Uo  profile) 

By examination of these figures, it can be suggested that for the 

parabolic Uo  profile case, the Ug  and the tw  values are larger up to 

Z = 120 (i.e. z/L = 0.3) and Nu values at this region seem to be 

smaller. However, as for the flat duct geometry, the flow parameters 

such as U, tw  and Nu reach their corresponding values for the uniform 

Uo  profile. This confirms that for the round tube also, the effects of 
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the parabolic U0  profile is limited to the entrance region of the 

channel. 

8.4 	Cross-Checking of the Computer Predictions for the  

Sinusoidal Heating Cases  

In order to gain more confidence about the predictions for 

the sinusoidal heating cases, and also to test the computer program 

CIRCLE in solving the cases with prescribed tw  profiles, a cross-

checking is attempted. This is done by taking the following three 

steps:- 

The typical round tube of Fig. (8.1), with the data of 

Table (8.1), is solved by CIRCLE for a sinusoidal heating 

case according to Profile(II)in Fig. (8.3) and the tw  

profile, shown in Fig. (8.24), is predicted. 

2. This tw  profile is treated as the data for a prescribed 

wall temperature case applied on the same tube and CIRCLE 

is used to predict the qw' profile for such a case. 

3. A comparison between the qw' profile predicted in the 

second step and the original qW' profile, i.e. Profile (II), 

is made. 

Fig. (8.32) shows the qW' profile which was obtained when 

the above-mentioned steps were followed. A comparison between this 

profile and the sinusoidal qw' according to the Profile (II) of Fig. (8.3) 

showed that they are virtually the same and the small difference at the 
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entrance region is less than 0.5%. This method also reproduces the other 

specifications of the flow (e.g. Nu, U, P, i, etc.) correctly. 

Therefore, as for the flat duct mentioned in (5.4), the present method 

for non-uniform wall conditions may also be used to solve for round 

tubes. 

8.5 	Comparison of the Computer Predictions for the Sinusoidal  

Heating Cases with Published Results  

As mentioned in the literature review, Chapter (2) , there 

are published results for a sinusoidal heating case. These were 

obtained by the two following methods:- 

The superposition method, introduced by Hallman et al (1958) 

which takes the "thermal entrance region" solution, 

pertaining to the uniform wall heat-flux case as a starting 

point. Hsu (1965) used this method to calculate the local 

Nusselt number along the tube for a sinusoidal q;,' 
w
" case. 

The hybrid method, introduced by Nijsing et al (1973) which 

uses the superposition method together with an alternate 

method based on the numerical solution of the governing 

equations for the problem in a finite-difference form. 

In this part of the thesis, the predictions of the computer 

program CIRCLE are to be checked against two sets of published results, 

one for each of the above-mentioned methods, and the differences will 

be discussed. It should be pointed out that both Hsu (1965) and 

Nijsing et al (1973) assumed the fully-developed U profile throughout the 

(i ) 

(ii 
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D . Pr . ReD  
tube and chose the parameter 	L 

	to characterise each case. 

Therefore, their results correspond to the forced-convection cases. 

Also to comply with their assumptions the heat-flux distribution along 

the tube will be taken as half a complete sine wave, i.e.:- 

qw' (z)  = c
o" sin . 

which may be obtained by putting b = 0 in the general formula:- 

c (z) 
 = q;(; (b + c sin =) 

Fig. (8.33) shows the local Nusselt number, Nu along the tube 

for a laminar forced-convective flow with the sinusoidal qw' distribution. 
D . Pr . ReD  

Two cases with different values of 	
L 
	= 20 and 8 respectively 

are solved for. The agreement between the present predictions and those 

obtained by Hsu (1965) seems to be good and the Nu values are very close 

throughout the tube. However, the present method predicts the Nu values 

to be slightly lower in the first half of the tube and to be higher in 

the second half with the differences being less than 1%. 

In order to examine the effects of the variations of p and 

p with temperature, i.e. a mixed-convection regime, these variations 
D . Pr . ReD  

were considered for the case of 	
L 
	= 20. Fig. (8.34) shows 

that the gain in the local Nusselt numbers along the tube is considerable, 

especially in the region of the middle of the tube. As mentioned for 

the flat duct geometry, Chapter (5), these are attributed to a better 

cooling process which takes place as a result of large velocities near 

the heated wall of the tube. It is noted that these gains are more 
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significant after the inception of the inflexion in the U profile 

which causes large velocities near the wall, Fig. (8.22). In 

conclusion, as the fluid moves downstream, these gains in the Nu values 

become more significant and, consequently, the profile for the mixed-

convection case will always be above that of the forced-convection 

case throughout the tube. 

Fig. (8.34) shows that when the variations of u with 

temperature are only considered, there will be some augmentation in the 

Nu values throughout the tube because in this case also the U profile 

will not be parabolic and will continue to develop along the tube. 

Comparison of the computer predictions for the same problem 
D . Pr . ReD  

but having 	L 	= 10, with the published results of Nijsing et 

al (1973), Figs. (8.35) - (8.36), is also good. The gain in the 

local Nu values in the second half of the tube for the mixed-convection 

regime is more significant than the previous case. This is thought to be 

because of a lower value of(Re0  . Pr)which gives the natural-convection 

effects a stronger dominance throughout the tube. 

8.6 	Conclusions  

The main conclusion is that the present method could solve 

for non-uniform prescribed wall conditions in round tubes. The 

predictions of the computer program CIRCLE, which is developed to 

execute the present method for sinusoidal and uniform wall heat-flux 

profiles, are in agreement with the published results of Hsu (1965), 

Nijsing et al (1973), Lawrence et al (1966) and Kays (1966). The 

predictions obtained by the application of several wall heat-flux 

profiles according to the general formula:- 
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qw' (z) = 
	(b + c . sin 21i!) 

on a round tube lead to the following conclusions:- 

1. For a mixed-convection regime the velocity and the 

temperature profiles continuously develop along the tube but never 

become fully-developed, Figs. (8.7), (8.9). This is shown to be due 

to the effects of the viscosity and the density variations with 

temperature. The study of these effects individually showed a stronger 

contribution of the density variations than of the viscosity on the 

profiles, Figs. (8.5) - (8.6). However, the fully-developed U and t 

profiles will be obtained only when u and p are constant, i.e. in a 

forced-convection regime, Figs. (8.4) - (8.12), or when there is no 

heating, i.e. an adiabatic flow. 

2. With the examination of the predictions for three 

prescribed heating cases, one with uniform and two with sinusoidal 

• 
profiles shown on Fig. (8.3), it is noted that when the q~+.Max/gw.nvin 

increases:- 

(a) U 	values decrease in contrast with U 
Max 	 -.Inflexion 

while they occur at a larger axial distance z. Conversely, 

the tube length needed for U4 = 0.00 reduces, Fig. (8.23). 

(b) Maximum wall temperature increases and occurs 

at a smaller distance from the tube entrance, Fig. (8.24). 

(c) Mean pressure at a cross-section, 
pmean 

does not 
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change significantly along the tube, Fig. (8.16). Also 

the mixed-convection index, i for the sinusoidal heating 

cases is less than its corresponding value for uniform heating, 

Fig. (8.18). The pressure profile across the tube is of a 

parabolic shape with higher pressures near the central 

layers, Fig. (8.15). 

(d) 	The local Nusselt number, Nu increases throughout 

the tube, except near the exit where because of the shape 

of the V profile it actually reduces, Fig. (8.27). 

However, in all of the cases Nu is above its fully-

developed value of Nu = 4.364 which was obtained for the 

forced-convection case. 

(d) 	Transition from laminar to an unstable-flow is 

predicted to occur at a smaller distance from the tube 

entry, Fig. (8.28). This prediction is based on the 

tentative transition parameter of Lawrence et al (1966) 

which depends only on the shape of the U profile and the 

entrance Reynolds number, Reo. 

3. ' By reducing the Re value while keeping the 
0tot 

 constant, 

U = 0.0 occurs at a smaller axial distance, Fig. (8.9). Also pmean 

reduces throughout the tube length, Fig. (8.16). 

4. The effects of a parabolic entrance velocity profile, 

Uo  = 2(1 - r2) on the flow specifications are not significant, Figs. 

(8.29) - (8.31), and the differences with those obtained for a uniform 
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Uo  profile diminish downstream in the tube. 

5. A cross-checking between the predictions for a typical 

sinusoidal heating case is made. This is done by treating the tw  

• 
profile, obtained for a sinusoidal qw' profile, as data for a prescribed 

tw  case. A comparison between the qw' profile obtained for the latter 
• 

and the original sinusoidal qW' profile adds to the confidence about 

the computer predictions, Fig. (8.32). 

• 

6. The computer predictions for a prescribed sinusoidal q " 
w 

profile are compared with the analytical results of Hsu (1965) and 

Nijsing et al (1973) for the local Nusselt number distribution along the 

tube, Figs. (8.33), (8.35). Based on these comparisons, it is 

concluded that their results are valid only for a forced-convection 

regime, i.e. constant u and p values with a fully-developed U profile. 

In mixed-convection regimes, the gain in the Nu values, particularly 

near the middle of the tube, is considerable, Figs. (8.34), (8.36). 
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CHAPTER 9 

GENERAL REMARKS AND SUGGESTIONS  

FOR FUTURE WORK  

9.1 	General Remarks  

Considering the conclusions at the end of Chapters (5) and 

(7) for flat ducts, and Chapter (8) for round tubes, the following 

remarks are made. 

9.1.1 	For Flat Duct Geometry  

In laminar forced-convection flows, the present analysis 

assumes constant viscosity and density for the working fluid leading 

to fully-developed solutions for prescribed uniform heating cases. 

These consist of parabolic velocity and temperature profiles beyond the 

hydrodynamic and thermal entry lengths together with an asymptotic value 

for the local Nusselt number and the pressure-loss coefficient. For non-

uniform heating cases, the present method solves the problem by dividing 

the prescribed boundary conditions into infinitesimal strips and treats 

them as uniform heating cases at each axial distance with the results 

of the previous position acting as initial conditions. Due to the 

assumption of constant p and u values, the velocity profile will always 

assume its fully-developed shape beyond the hydrodynamic entry length 

regardless of the prescribed boundary conditions. Non-symmetrical 

heating cases were also considered. Important design parameters such 

as the local Nusselt number on both walls were obtained according to 

different ratios of the prescribed heat-fluxes (or temperatures) on the 

opposite walls. 

For laminar mixed-convection flow, it is shown that the 
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effects of variations of viscosity and density should be considered. 

Consequently, the temperature and the velocity profiles will never 

become fully-developed and the local Nusselt numbers will assume values 

considerably higher as compared to their corresponding forced-convection 

values and do not approach an asymptotic value. Comparison of the 

present predictions for two uniformly heated flat ducts showed a good 

agreement with the published experimental results and also a marked 

improvement over the existing theoretical approaches. In sinusoidal 

heating cases, the simulation of the hot-channel of a plate-type 

nuclear fuel-element together with its neighbouring channels was treated 

with special interest. 

Using the data of the University of London Reactor (ULR), the 

theoretical predictions for two different power levels (108.5 KW and 

315 KW) showed that the nature of the flow in both of these cases will 

be of a mixed-convection nature. It was noted that even for the higher 

power level, the maximum wall temperature will still be less than that 

required for boiling and the axial velocity profile, although rather 

flat, will always remain without an inflexion point. The experimental 

results from a test-rig which was designed and successfully tested 

confirmed the validity of these theoretical predictions. In particular, 

the tests proved that the dominant parameter for the mixed-convection 

regimes is Grp/Reō and lead to the conclusion that a plan with Grp  and 

Rep  as its co-ordinates with Grp 
 
/Rep as the governing parameter will 

facilitate the representation of the mixed-convection regimes and also 

the boundaries which exist between the forced, the mixed and the free-

convection regimes. Experiments on the test-rig were conducted within 

the following constraints:- 
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0.25 < qW' (w/cm2) < 1.66 

200 < Rep  < 600 

0.50 < Grp/Re/23  < 2.50 

It should be pointed out that despite the efforts which 

were made, in terms of the design and the construction of the simulating 

heater plates, the thickness of these plates was still nearly three 

times larger than that of the actual ULR fuel-plate. This large 

thickness, it is believed, has contributed considerably to the 

longitudinal heat conduction which affected the present experimental 

results, and a thinner simulating plate would have produced more 

favourable results. Thus, the present theoretical predictions, e.g. 

wall temperature, are believed to be closer to the actual values than 

the experimental measurements. The present predictions for non-

symmetrical heating cases show that the axial velocity profile will also 

be non-symmetrical, with the peak axial velocity occurring at a 

horizontal position between the centre of the duct and the wall with 

higher heating rate. The results for the case where one wall is 

sinusoidally heated while the other wall is insulated showed that the 

local Nusselt numbers will be larger than their corresponding forced-

convection values but will still be smaller in comparison with the case 

where both of the walls were sinusoidally heated. For the mixed-

convection cases, the present predictions show a larger pressure-loss 

coefficient than that conventionally assumed based on the average values 

of viscosity and density. Consequently, in a pure free-convection flow, 

the water flow rate for a given total heat-input to the duct will be 

reduced. 
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9.1.2 	For Round Tube Geometry  

The present method was shown to be successfully applicable 

to round tubes also. As for the flat duct, the laminar forced-

convection results could have only been obtained when variations of u 

and p with temperature were ignored. For several sinusoidal heating 

cases, these results were in good agreement with the published results 

of two other workers and it was shown that for mixed-convection regimes, 

the considerable increase in the local Nusselt number values must be 

considered. These increases were proved to be more significant when 

variations for both p and u with temperature, rather than only for one 

of them, were considered. A review of the predictions obtained for 

three different prescribed qW' profiles, according to the formula 

qw' = qwo 
(b + c . sin ~), on a typical round tube showed that by 

increasing the ratio gw.hlax~gw.min and at the same time keeping gw.av 

constant, the maximum wall temperature will be higher and as with the 

possible transition into an unstable flow, occurs at a smaller axial 

distance. Conversely, the centreline velocity and its value when the 

inflexion in the U profile occurs, although will be lower, is 

predicted to occur at larger axial distances. It is also noted that 

the mean pressure drop throughout the cross-section will not be 

significantly affected by the 
gw.Max/gw.min 

ratio but the pressure- 

loss coefficient will still be larger than its conventional value 

based on the average viscosity and the density. 

For round tube geometry, as for the flat duct, it is 

theoretically shown that a parabolic entrance velocity profile would 

only affect the predictions at the entrance region of the channel. 

A cross-checking of the present predictions for a prescribed 

sinusoidal heating case in round tube geometry (and also for a prescribed 
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uniform heating case in flat duct geometry) added to the confidence 

about the present method. 

9.2 	Suggestions for Future Work  

These suggestions are divided into two categories: one for 

theoretical; another for experimental. In what follows, these are 

explained in detail. 

9.2.1 	On the Theoretical Approach  

The present approach for laminar flow is general and does 

not seem to require alterations in future work. However, in the 

execution of the approach, the following points are suggested:- 

(a) Study of the prescribed qw' (or tw) profiles which were 

not specifically solved for in this thesis with the use of the computer 

programs DUCT and CIRCLE. 

(b) As mentioned in Chapter (3), the conservation equations of 

mass and momentum are linked together in the present method. This 

requires that these equations be solved simultaneously and leads to a 

matrix which is non-symmetrical and not-banded. Consequently, the conventional 

methods for space saving, Cantin (1971), could have not been used for 

solution and regarding the largest available computer space (ULCC-CDC 7600), 

it has only been possible to choose up to 90 horizontal divisions. 

A recent paper by Hofmeister (1978) which contains a technique for 

solving this type of matrices on digital computers with restricted core 

size can be used in order to be able to increase the number of horizontal 

divisions. This will improve the slight non-symmetrical predictions for 
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the symmetrical heating cases with large Cc values (c.f. 3.312 w/cm2 ) 

and could lead to the possibility of being able to choose smaller axial 

increments (c.f. AZ = 0.625). 

(c) The computer programs DUCT and CIRCLE, for flat duct and 

round tube respectively, were used for the present theoretical 

predictions. Examination of the three principal conservation equations 

for these two geometries shows that those for the flat duct can be 

obtained from the equations for the round tube provided that the radius 

parameter r was replaced by the co-ordinate Y and also the terms with r  

and —
1 

	ignored. Those two provisions can be included in DUCT to 
r2  

make it suitable for solving round tube geometry too. 

(d) The three principal conservation equations mentioned in 

Chapter (3) may also be written for an annular cross-section and solved 

for accordingly. Such a solution will have the advantage of covering 

the solution for annulus geometry in general and flat duct or round 

tube geometries as two extreme limits. 

(e) The present experimental measurements, Chapter (7), show 

that for flat duct geometry, the assumption of a uniform wall temperature 

on the periphery of the cross-section is not strictly correct and a 

temperature profile seems to exist across the wall. This point will be 

more important if the solutions for flat ducts with smaller aspect 

ratios (c.f. w/d = 20.3) were sought. For round tube geometry, this 

will be of importance too because in some heating cases, the heat flux 

is unevenly distributed around the tube (e.g. a bank of tubes radiantly 

heated on one side) which leads to hot spots on the tube surface. These 
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effects can be acute for thin-walled tubes. A three-dimensional 

approach is suggested to deal with such cases. 

(f) 
	

The scope of the work will be extended by solving the same 

set of equations (see Chāpter.3) for turbulent flow where, depending 

on the turbulent-model, the eddy properties (instead of the fluid 

properties used in the present laminar solution) can be used for 

solution. The transition phenomenon could also be studied parallel 

with the turbulent flow solution. 

9.2.2 	On the Experimental Test-Rig  

The utility of the present test-rig (see Chapter.6) can be 

extended by execution of the following suggestions:- 

(a) Further tests of the present simulating heaters with larger 

values of heating rate, water flow rate and also the spacing of the 

test-channel. 

(b) Non-symmetrical heating of the simulating plates and 

comparison of the results with the present predictions. 

(c) Addition of a heat-exchanger to the water circuit in order 

to be able to recirculate the working fluid thus making it possible to 

test the apparatus with other working fluids. 

(d) The narrow-sides of the test-channel may be made of a 

transparent material in order to be able to observe the flow inside 

the channel. Such arrangement will provide the possibility of measuring 

the velocity and the temperature profiles along the channel and 
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observing the appearance of an unstable flow. 

(e) Other simulating plates with different wall heat-flux 

profiles will be useful to confirm the corresponding theoretical 

predictions. Also, insertion of heat-flux sensors in several axial 

positions of these plates will provide the data about the local heat-

flux distribution along the test-channel. 

(f) A pressure transducer may be placed at the entry to the 

test-section, Fig. (6.1), in order to facilitate the natural-convection 

tests in so far as showing the inlet pressure to the test-channel (which 

must be the same as that of the exit). 
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APPENDIX (I)  

VALUES OF COEFFICIENTS FOR  

NUMERICAL INTEGRATION ANO  

DIFFERENTIATION  

TABLE (I.1)  

VALUES OF COEFFICIENTS FOR NL`IERICAL INTEGRATION - (REPR00L:J' FROM SINGER (195411  

Zi 	N 	N 

i 	
I 	F(Z) . dZ • K , e 	CJ . F(ZJ) = a I CJ . F(ZJ) 
JI 	J.0 	J•0 
Zo 

e • (Zi - Zo)/i 

Exact for 
Polynomials 
of max-degree 

K 
J 

i 
0 1 2 3 4 5 6 7 8 9 10 

4 

6, 	7 

3 
TU 

3 

176 

6 

6 

6 

11 

0 

41 

5 

- 	44 

11 

216 

96 

- 	14 

27 

- 	84 

26 

272 

41 

- 	14 

27 

11 

216 41 55 

5 

6 

7 

8 

7 
mu 

0,ō 6 

7 

7 

7 

7 

- 	611 

751 

751 

21361 

4277 

- 	640 

3577 

116662 

- 	9618 

8547 

1323 

6958 

12782 

- 	11648 

2989 

155134 

- 	8603 

14637 

2999 

7840 

3213 

- 	7224 

1323 

105154 

4417 

3577 

74578 

751 

31882 - 	1165 

77 

7 
31707 

5 

7 

8. 9 

y'T 
9 
75 
4 

17I175 

8 

8 

8 

460 

0 

989 

- 	2767 

460 

5888 

8706 

- 	954 

- 	928 

- 	13904 

2196 

10496 

13641 

- 	2459 

- 	4540 

- 	7464 

2195 

10496 

2256 

- 	954 

- 	928 

460 

5888 989 

7rr~'=r 

8 

9 

10 

9 

9 

9 

9 

- 	1767 

28 57 

2857 

60259 

16083 

- 	4985 

15741 

372252 

- 52839 

51956 

1080 

- 33015 

105039 

- 110322 

19344 

736968 

- 126801 

182880 

5778 

- 417234 

98361 

- 177102 

5778 

781055 

- 	45069 

129666 

19344 

- 	119382 

11453 

- 	50886 

1080 

335160 

20727 

15741 

229527 

2857 

29804 - 	2535 

e48J0 

oyō--1 

17717:5 

9 

10 	, 	11 

Z;,c 

:1,, 

10 

10 

0 

16067 

4045 

105330 

- 	11690 

- 48525 

33340 

272400 

- 	55070 

- 260550 

67822 

427358 

- 	55070 

- 	260550 

33340 

272400 

- 	11690 

- 48529 

4045 

106300 16067 
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TABLE (I.2)  

VALUES OF COEFFICIENTS FOR NW ERICA! DIFFERENTIATION - (REPRODUCED FROM SINGER (1964))  

N 	 N 

T'(Y)i  = ē 
	1 	CJ  . T(Y j  ) = d' . M F 	C j  . T (Y . ) 
J 0 	 J .0 

e  ' Y. - Y. 1.0 

polynomials 
of max-degree 

For  
i 

K 
0 1 2 3 4 5 6 7 8 . 9 10 

2 0 ; - 	3 4 	1 

1 - 	1 0 	1  

3 0 S - 	11 18 I - 	9 2 I 

1 - 	2 - 	3 6 - 	1 

4 0 
17 

- 	25 48 - 	36 16 - 	3 

1 - 	3 - 	10 18 - 	6 1 
2 1 - 	8 0 8 - 	1 

5 0 0 - 	 137 300 - 	300 200 - 	75 12 

1 - 	12 - 	65 120 - 	50 20 - 	3 

2 3 30 
- 	

20 60 
- 	

15 2 

6 ' 	0 - 	147 360 - 	450 400 - 	225 72 - 	10 

1 - 	10 - 	77 150 - 	100 50 - 	15 2 
2 2 - 	24 - 	35 80 - 	30 8 - 	1 

3 - 	1 9 - 	45 0 45 - 	9 1 

7 0 ,r - 10E9 2940 - 	4410 4900 - 	3675 1764 - 	490 60 

1 - 	60 - 	609 1260 - 	1050 700 - 	315 84 - 	10 

2 10 - 	140 - 	329 700 - 	350 140 - 	35 4 

3 - 	4 42 - 	252 - 	105 420 	- 	126 2B 3 

8 + 	0 NO  - 2283 6720 - 11760 15680 - 	14700 9408 - 	3920 960 - 	105 

1 - 	105 - 	1338 2940 - 	2940 2450 - 	1470 588 - 	140 15 
2 15 - 	240 - 	798 1680 - 	1050 560 - 	210 48 - 	5 

3 - 	5 60 - 	42D - 	378 1050 - 	420 140 - 	30 3 
4 3 - 	32 168 - 	672 0 672 - 	168 32 - 	3 

i 
9 0 - 7129 22680 - 45360 70560 - 	79380 63504 - 35280 12960 - 	2835 28u 

1 - 	280 - 	4329 10080 - 	11760 11760 - 	8820 4704 - 	1680 360 - 	35 

2 35 - 	630 - 	2754 5880 - 	4410 2940 - 	1470 504 - 	105 10 
3 - 	10 135 - 	1080 - 	1554 3780 - 	1890 840 - 	270 54 - 	5 

4 5 - 	60 360 - 	1680 - 	504 2520 - 	840 240 - 	45 4 

10 0 2D20  - 7381 25200 	Ī - 56700 100800 - 132300 	127008 - B8200 43200 	- 14175 2800 	- 252 

1 - 	252 - 	4609 	; 	11340 - 	15120 17640 	- 	15876 10584 - 	5040 	1620 - 	315 	1 	28 
2 28 - 	560 	1  - 	3069 6720 - 	5880 	4704 ,- 	2940 1344 	- 	420 80 	7 
3 - 	7 105 	1 	- 	945 - 	1914 	4410 	- 	2646 1470 - 	630 	189 - 	35 	, 	3 

4 3 - 	40 	Ī 	270 - 	1440 	- 	924 	3024 - 	1260 480 	- 	135 24 	I- 	2 
5 - 	2 25 	- 	150 	I 600 	- 	2100 	 0' 2100 - 	600 	150 - 	25 	Ī 	2 

i 
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APPENDIX II  

SIMULATION OF A SINUSOIDAL HEAT-FLUX WITH  

A PLATE WITH VARIABLE THICKNESS  

Consider the variable thickness plate of Fig. (II.1) for 

simulation of the heat-flux profile, q" (z'). If the voltage VAB is 

exerted on this plate, the heating rate of the element dz' will be:- 

d {Q (z')} = I2 . d {R'(z')} 	 (II.1) 

But:- 

d {R-(z')} -. wd.(zz ) 

Combining Equations (II.1) - (II.2):- 

d {Q (z')} = I2 P s.(z d)  

This equation may be integrated throughout the plate to obtain Qtot: 

L/2 	dz'  
Qtot = 2 1 	

12 ' 
p~ w . (5(z') 

0 

On the other hand, 
Qtot 

may be calculated from the q" (z') profile:- 

f

L/2

= 
2 	q" (z') . w . dz' 

0 
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FIG. (11.1) THE VARIABLE Tt-a1CKNES5 PLATE.  



d(z') =  (d'and z' are measured in mm) 
0.902 

lrz Cos 
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Combination of Equations (II.4) - (II.5) leads to:- 

d' (z' I2  . p' 	1  

w2 	q." (z') 

This equation shows that if the variable thickness plate is to simulate 

the prescribed q" (z') profile, the š (z') and the q" (z') functions 

vary in the opposite directions. 

• 
For the heat-flux profile: q'" (z') = gmax . Cos -L-7- . 

Therefore:- 

_  I2  . p' 	1  

w2 	Cos gmax 

Equation (II.7) shows that the thickness 5'(z') is directly proportional 

to the square of the electric current and for reasonable thicknesses it 

must be quite high. This is because the rest of the parameters in 

Equation (II.7) lead to a comparatively small coefficient. 

Assuming I = 416 A, and using the data of the 1950 W ULR 

fuel plate, Chapter (5), for a stainless steel simulating plate:- 

Table (II.1) shows the thicknesses vary from 0.902 (mm) in the centre of 

the plate to 3.26 (mm) at the far-ends, which, despite the high electric 

current,(I = 416 A),are still very small. 
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TABLE (II.1)  

z' (mm) S'(mm) 

0.0 0.902 

100.0 0.992 

150.0 1.129 

200.0 1.383 

250.0 1.900 

300.0 3.260 
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APPENDIX (III)  

FINITE-DIFFERENCE FORM OF  

EQUATIONS (8.13) - (8.24)  

These forms were obtained by using similar formulae for the 

partial differentiations as those used for the flat duct, Chapter (3). 

Obviously the variable Y in those formulae should be replaced by r. 

The final form of Equations (8.13) - (8.16) and (8.22) are 

enclosed in the next pages. For Equations (8.17) - (8.21) and also 

(8.23) - (8.24), the procedure will be similar to those given for 

Equations (3.33) - (3.35), (3.24), (3.22) and (3.27) - (3.28) 

respectively. 



p n+ 1 ,m 
6Z = 

[_1 {G. [Re2 r 

p Un m2 n ,m , + - ;;z- - 6Z 

n,m + 
U 1 - !JZ _ Un+ 1 ,m 

C + T (C + C T )} 
04 n+ 1 ,m os 06 n+ 1 ,m 

- T - V M ] n+1,m-1)} ! n,m . Vn+1,m+1 + 

+ t'e {n
A 

(&'2 - ....:.(_2m_2_-_4_m_+_3-'-)_r_~2), - nB 
+ - (T n+ 1, m - T n ,m)} -

(m - 1)2 ~Z2 
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(8.13) 

(8.14) 
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__ Un,J v + !J_M2 {n ---.-2m - 3 - n (T - T )} + 6Z] n+ 1 ,m l~Re A m - 1 B n+ 1 ,m+ 1 n+ 1 ,m-1 

2Vn m • nA V 1 rlB , + n- ,m {_ (T 
Re . N. 2 &. 2 • Re 2 n+ 1 ,m 

n - d () 
B - clT n+ 1 ,m nA 

~ M2 (1 - 2m) J 
~ Vn,m + 2Pr . Re(m - 1 ~ T + ~+ 1 t n+1,m+1 6Z Pr. Re {2M

2 
-

- -} T + 
1 J 6Z 2 _ n+ 1 ,m 

[ M2 (3 - 2m) M V 1 T = 
l~Pr . Re(m - 1) - 2 n,~ n+1,m-1 

= ~Un,m - Pr 

T T 2 ) n ,m n-1 ,m 
Rel',Z .;;Z + 

6Z 2 
• Pr . R~ 

(8.15) 

(8.16) 
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Equation (8.22)  

(1) 
	

When qw' profile is prescribed:- 

M 
p P -  

m2 Po 
(m - 1) Un+i,m• Tn+l,m - 

m2 
 (m - 1) 	Un,m 	Tn,m  • po  - 

	

_ " . M3 	IHFII 

	

Re . Pr 	Integrated between Z and Z + dZ (8.22) 

When tw  profile is prescribed:- 

M 
p 	

M 
P 

mF2 Po 
(m - 1) . Un+l,m . Tn+l,m - m=2 (m - 1) . U

n,m  . Tn,m  Po  = 

	

AZ . M2 	dT 	 (8.22) 

	

= Re . Pr 	dr
r=1  



-329— 

APPENDIX (IV)  

FLOW-CHART OF THE 'CIRCLE' COMPUTER PROGRAM  

UPDATE the stored version of the 
CIRCLE and INSERT the new FI (Z) 

READ the input parameters 

Assume the coefficients for the 
numerical integration 

Uo  = 2 (1 - 1.2 ) 

230 

26-(3 

Contd. 

Set U, V, T and P at 
their initial values 



O C) 
CD 	VD 
r N 
O O 
I— 

O O 
C3 	cs 

i 

1 
ZBAR 	= 0.0, TBAR = 0.0 

ITALLY = 0 , NITER = 0 

Integrate FI (Z) over 
the length DELTZ 

r LL = FI (Z) 

265 

HFLUX = FI (Z) 

Av.Int. .Int. 

Calculate elements of the UVP matrix. 
(Both dependent and independent 

of the boundary conditions) 

370 

CALL 

The subroutine MRV 
is called to solve 

for the PVU solution 

Contd. 

—330— 



i 

4 
—331— 

Replace the old values of P, V and 
U with the values obtained in the 

solution 

Contd. 

Calculate elements of the T matrix 

(Both dependent and independent of 
of the boundary conditions) 

CALL 

The subroutine MRV 
is called to solve 
for the T solution 

	J 	 
Replace the old T values with 
their corresponding new values 

ITALLY = ITALLY + 1 

ZBAR 	= ZBAR + DELTZ 

G
O

 T
O

 27
0
 

G
O

 T
O

 •2
60

 



570 

Calculate HFLUX 	f 	Calculate TWALL 

Calculate Nu,  fp,  fs  and the rest 

of the parameters for the output list 

NITER ? 

CD 	CO 	CD 

Calculate HEADM, 
PCENTM 

WRITE the output list 

NITER ? 



jReplace level 1 U, P, V and T 

I

with their level 	values 

1NITER = NITER + 1 	I 
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NITER = 0 

Ye~..s.,. 	ITALLY = ILAST 

CD 

CD 
co 

K 	=K+1 

DELTZ = 2 * DELTZ 

Replace level 1 U, P. V and T 
with their level 2 values 

T 	 

Replace level 2 U, V, P and 
T values with their respective 

level 3 values 
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