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AB3TRACT

Tre work reported in this. thesis aims at the develop-
ment of objective technijnes for the ciinical evaluation‘of aud-
itory functior. fhe auditory evoked poiertial {4EP), e convenien
electrovhysiological signal, has been exanined in detail. Several
statisticullv-vesed methods have been devised znd assessed for its
objective detection. JFower measures have been studied, together
with two patterrn recognition technidues: phase diétribution anal-
ysis, and template matching by cross-correlation.

The detection of the LEP is reﬁdered particularly Gif-
ficult by several factors: the variability of the AEP, its low.
signél—té—noise ratio, and its interaction with a nonstationery
noise source. These feztures limit the efficacy of methods based
on amplitude or power measures. Pattern features are therefore
rotentially more ztiractive aﬁd a phase speciral approach is con-
venient. FYhase values, however, are inherently periodic, and ihis
cannot help but complicate statistical analysis and interpretation.
Nonetheless, by recourse 1o a data simulation, énd to rotational

hase

statistical procedures, the sampling stetistics of certain v
measurés can be determined. Although a strong sample size bizs

has emerged very clearly from the analysis, the empirical nhase
statistics have been shown fo be well-hehaved zand entirelv reliable
for objective use in indicating the presence of the AEP. The ef-
fectiveness of the phase techniques suggests that a pattern recog-
nition aprroach is appropriate to the data, and this finding is

further confirmed by the cross-correlation studies.
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CHAPTER ORE
INTROLUCTION

Within the fiela of cliniecal audiometry, there has always
beeﬁ a need for some objectivé means of testing auvditory furction.
Subjective tests, where the patient himself indicates 'heard' or
'nof heard! in respénse to an acoustic stimulus, break down when-
ever his'coopération cannot be‘relied upon, Some physiological or
electrophysiological variable, such as the electrocochleogram (ECochG)
or electroenéephalogram (EEG), mast then be used to indicate the
~ bresence or zbsence of a response to sound stimulation. - These
vphysiological respénées can be asséssed in one of twp ways: either
the testér scores them visuzlly, a situation which retains an
element of subjectivity insofar as his bias is involved, or they
may be aésessed by machine gscoring. Here, the criteria for detect-
ing the reSponées are in-built and statistically derived, making
the test truly objective. The work reported in this thesis ei-
amines 6ne of these responses, the late components of the auditory
evoked potentiel (AEP) present inAthe EEG, and explores several
new techniques for detecting it objectively, based largely on a
pattern fecognition approach.

Study of the auditory evoked potential is of considerable
interest and importance. Although a diffuse and non-specific re-
~sponse, the AEP in some way reflects the integrity of the entire

auditory pathway. As such, it prbvides us with a c¢linically useful



physiological response to acoustic stimulation. As an audiological -
test, its merits are limited only for want of some objective means
of detecting the evoked vpotential. This, in itseif, is a challeng-
ing problem in signal analysis, Whenever both signal, the AEP,

and noise, primarily the ZEG, occupy a similar frequency bhand,
signal detection by some means of frequency selectivity, such as
analog filterirg or cohereni averaging, is limited in scope and
applicability. Differentiztion on.the basis of signal strength
will only be effective where signal-to-noise (S/N) ratios are high,
a situation seldom encounfered with AEP date. se of pattern rec-
ognition technigues assume a consistent signal will be found in
stimulated records. ‘hatever methods of signzl detection are em~
ployed, statistical measures nust be relied upon to indicate sig-
nificant or honsignificant findings. The nonstationarities exper-
ienced in =SEG records can aﬁd éften do affect the statistics ap~
plied, and care must always be teken in intérpreting the resnltis

of any analysis performed.

Once these problems are resolved, and some objective
methods developed to detect the evoked potentizl consistently and
reliably, many further developments are possible. Thg same, oOr
similar, technigues can thern be applied effectively to other elec-
troﬁhysiologicalvresponses with similar characteristics, such as
the brain-stem evoked potentizls (BSEZP) or the ECochG. This would
greatly extend the use, ard reduce the expense, of electric response
audiometry (ERA) by eliminating the need for clinically trained
personnel to assess these responses visually. Surveys could then
be conducted in & much wider context than has been attempted to
date.for want of a simple, objective, and universally accepted

means of audiometric testing.



The present study is primarily concerned with the detect-
ion of the AEP. A consisteni means of detection would place this
particular audiometric test on an objective and reliable footing,
and possibly allow for similar developments in other areas of ZRA.
As wili be seen, the techniques developed and outlined here heve
also allowed us to examine individual evoked potentials, a study
- that could not be considered before. Analysis of individual re-
cords may well enable us to gain some further insight into the
physiology underlying the generation of the AEP and aid in any

inferences we make @8 to the possible location of their generators.



CHAPTER TWO

ELECTRIC RESPOHSE AUDIONMETRY
2.1. Early Developments in ER&

The ezuditory evoked mpotentials (AEP's) under gtudy ure
present in, though frequéntly obscured‘by, the sponteneous elect-
rical acfivity of the brain. The presence of electric potentials
in. the exposed cortex of animals was first observed by Caton in
1875. These, he suggested, were related to cortical functioﬁ,
and in some way influenced by sensory stimulation., It was not
until fifty years later that similar potentizls were oﬁserved
from the human brain, Berger (1929) identified the alpha-rhythm -
in the electroencephalogram (EEG) as having a frequency centered-
on 10 Hz, and being associated with a resting or inattentive
state, Alpha-activity, he found, was blocked by visual alert-
ness and less frequently by sound. Later iAdrien and Hatthews
(1934) confirmed his observations and noted that the Berger- or
alpha-rhythm could be induced by photic stimulation,

Specific changes in the EEG in response to an acoustic

“stimulus were reported by P. Davis and by Davis, Davis, Loomis et
ai. in 1939. Presentation of tones was found to check the alpha-
acfivity or beta-activity in some waking subdjects. ( Davis, P.,
1939 ) For others, a diphasic or triphasic wave accompanied the

onset or cessation of the sound. These on- or off-effects were



not always discernible in the EEG and did vary greaily in amp-
litude. Because they were meximally recorded from the vertex,
they have come to be known as the veritex~ or V-potentials.

A similar response could also be evoked during sleep.
The X-complex ( Davis, Davis, Loomis, et al., 1939 ) consisted
of two components, both of which varied systematically with the
different stages of sleep. A slow component, clossly related to
the waking on-effect, was often followed by burstis of faster
.activity which decreacsed in frequency and grew more regular as
gsleer became @geper. Both the K-complex and ithe V-potential
could be evoked by wvisuel and tactile stimuli, suggesting that
thev were diffuse, non-specific resnonses of the brain to any
sensory invput.

V-potentizals, much smaller and more labile than the K-

complex; were fregquently obécured by spontaneous XEG of much
grezter amplitude than the responses themselves. Froviding some
reliable meazns of detecting them was & necessary first step in
conming to a better understanding of their morphology and clinical
usefulrness. Superposition of as many as twenty responses ( Dawson,
1947 ) enabled workers to identify the evoked pctential more
readily. However, it was not until the introduction of averaging
( Dawson, 1951 ) and the development of the averaging cémputer
( Dawson, 1954, and Clark, 1958 ) that AEP's could be recognized
with any degree of reliability.

With the advent of averzging, it was still uncertain, and
by no means universally accepted, that the auditory evoked potential
wzs indeed of cortical origin. Kost of the controversy surrounded

the early components ( first 30 ms ) of the response, which could



be due to muscle tone or eye movements. ( Borsanyi and Blanchard,
1964 ) Although movément artifacts do influence the evoked pot-
ential and can obscure its presence, the late components described
by various authors ( Davis, 1964 a&b, inter alia ) are now thought
of &s originaﬁing in the cefebral cortex. Whether they are specif-
ic responses, origirnating from the primary projection areas.of
the cortex ( Vaughan and Ritter, 1970 ) or of a more diffuse
origin ( Celesia and Puletti, 1969 ) remainé unresolved. They do
represent én electrophysiological response to acoustic stimulation,
znd as.such, have been used cliniczally as an objective audiometric
test.

Cliniczl applications, hrowever, have been limited by
several factors., Inter- and intra-subject variability of evoked
- potentials makes them difficult to assess wvisually. Eéch tester
- follows his own in-built criteria. ( Rosé, Keating, et al., 1971 )
Children pose special problems, Their EEG's and aAEP's are more
labile than those of an adult, and muscle contaminants frequently
obscure their a&eraged responses. ith the use of signal detection
techniques, it may be posSiblé to improve the clinical situafion
by providiﬁg an objective and consistent means of detecting the

evoked potential,
2.2.i. Recording

Auditory evoked potentials, the V—potentials'of P. Davis?
are recorded extra-cranially using scalp electrodes. The electrodes 
themselves are rémote from the source of the AEP, separated from
it by scalp, skull, and indifferernt but not necessarily inactive

cortex. Thus, these scalp electrodes will record volume-conducted



electrical events both related and unrelated to the evoked poten-
tial. Muscle contraction at or around any electrode will intro-
duce further contaminants. In addition, far-field =zignals are
substantially attenuzted by the me@ia through which they are con-
ducted. Recordinzs made intra-cranizlly in both humens and animals
are on average twenty times as lurge as those detected in the far-
field. ( Celesiz, 1968, Celesiz and Fuletti, 1969 ) What is
picked up on the scalp, then, is & composite of electrical activ-
ity generated in, and conducted throucsh, layers of cortex, and
possibly contaninated by muscle contractions.. "he evoked potentizl
is gmall and féequently engulfed by other volume conducted corticzal
pnotentials, |

Faithful renroduction of ZEG potentizlis cen only be
rezlized with an @ppropriate choice of both electrodes and record-
irng apparatus. Special consideration will be givern to each of

these topics.
2,2,ii. EBlectrodes

The relativelj snall potentials detected on the scalp
are typically of the order of 100 &V, demanding the use of rev-
ersible, rather than non-reversible, electirodes., This distinction
is based on the bLehaviour of the electrical doublé layer, a phen-
omenon related to the existence of electrode potentiazls. When an
electrode is immersed in a conducting solution, ions pass from the
ﬁetal into tke solutién and vice versa, causing a potential dif-

ference, the electrode potential, to develop between the metal

arnd the surrounding solution., If the outward flux of metal ions

into solution exceeds the inward flow of ions from the solution,



an excess of chafge builds up in the solution immediately sur-
roﬁnding the electrode, ziving rise to an electric double layer.
Once an.equilibrium is estzblished, a smzll change in voltagze
~applied to the electrode will disturb tre double 1ayér. Por a
reversible electrode, 2 substantial, stezdy current will flow,
indicating a low electrode resistance. Yon-reversible electrodes,
on the other kand, behave more like capacitors, passing very -
little cﬁrrént under 1i'ese caonditions.

‘e reversikle electrode most coirorly used for scajp
recordine of the #EG is ithe gsilver -- siiver-chloride ( me-A2C1 )

disc electrcde, hen in contact with

"
&y

solution or gel of sodium-
chloride ( Na €1 ), its resistance end capecitance may both be
large. Fowever, if the input impedznce of the amplifiers is

Eigh {> .5 M), a.c. recordings will not be serionsly affected.
Tor d.c., recordings, imcedances of order 50 Hsz:are required.

Three electrodes azre used for recording auditory evoked
ﬁotentials. Eeéause these zre thought to bve meximum over tre ver-
tex, a conventionzl placemenf of electrod;s has evolved. wun
active electrode on the vertex is tzken as a positive réference.
rotential differences between it and an inactive electrode loczated
on the mzstoid are then detected. & third electrode on the fore-
hezd acts as body‘ground._ This type of recording is often referred
to as monopolar, because only the vertex electrode ié assumed to
be active., 4 bipoler recording results from determining the poten-
tial differences between active eleétrode-pairs. Bipolar config-
urations are common in BEEG recording and essential forbany contour

mapping of the evoked potential,
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2.,2,iii. Recording Apparatus

A detailed schematic of all the recording apparatus used
in this study is shown in Fig. 2.1. The sigrals picked up tetween
vertex and mastoid electrodes were fed into a differential fET
amplifier of approximately 10 Y- input impedance.v The output
.voltage paseed ithrough further stages of amplification for an

4

overall gain of 10', For most of the recqrdings taken, the fil-
ters were set att:bSVEZ‘and 16 Hz., A digitel averager computed
the aygragéd response and displayed this on an oscilliscope.
Timing of the averager was controlled by.a stimulator, which in
turn trigcered an zudiomeier., Tone bursts were delivered through
the audiometer at a rate sel to one every two seconds. These had
a rise znd fall time of 10 ms znd an overall duration of 100 ms.
For off-lgne analyéis of these data, both the stirmlus
marker pulse and the signal output,from Stage 2 were stored on
analog tape and later digitized, In addition to this, on-line
analysis of the data was also attempted. The same two signals

were fed into an analog-to-digital convertor (ADC) and processed

by a Hewlett-Packard 2100 computer.

‘2.3,i. The Auditory Evoked Potential

The characteristic features of the AEP described in the
literature pertain to averaged rather than individual responses.‘
If N sweeps are summed for eaclk post-stimulus time, an avefagé
waveform car be derived. Events related to the stimulus, such as
the evoked potentizl, will be enhanced by averaging many recoxrds.

“Any random or unrelated EEG activity, on the other hand, will be
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diminished. Ensemble oxr coherent averaging can improve the signal-

to-noise ratio (S/K) by a factor of /N,

' £200
| \/\/\/‘\/\«f’ L%/
1 o0

oo Joo Ko s

Pig. 2.2. ®Pypical averaged suditory evoked votential.

The typical zuditory evoked poteutizl consists of several
claracteristic components. Of these, only thlose occurring more than
50 ms post-stimulus time haye been considered. A émall vertex pos-
itive peak may or ﬁay not ove seen at 50 1o 75 ms post-stimulus time,
( rig. 2.2, ) A striking veftex negative trough between 100 ms and
150 ms and followed by a positive deflectioh anywhere between 175
and 200 ms is the most ccngistent feature of the response. A second
low negative itrough occurring at approximately 250 ms is often prom-
inent in ckildren but less common in adults. 4 further slow pos-
itive wave at abhout 3C0 ms may also be present. This latter compon-
ent ( Sutton, Braren, et al., 1965 ) and the contingent negative
variation ( Walter, Cooper, et al., 1964 ) are related to stimulus
expectancy. Pecause the present study was not concerned with the
secondary psychological aspects of perception, recordings were set
up so a5 to minimize any effects due to conditioning or stimulus
uncertainty. Thus, neither of these components is prominent in
Fig. 2.2, Here, end thfoughout the text, vertex positive deflect-

ions are plotted upwards.
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To date, rno sutisfactory terminology exists for the naming
of the componehfs outlined utvove., Througrout this text, tle scheme
suggested by Davis ( 1976 ) will apply. Vertex positive components
are labelled with a P, vertex negative waves with an K. FEoih are
followed by a subscrint indicating the approximate post-stimulus
tire at which they occur. Thus, the components described in ihe

preceding paragraph would be designated by 1

P N T
“50* 1007 C2007 “2s0

I P ’
and F200°

2.3.1ii, AEP Variability

Although Fiz. 2.2. attempts io illustfate a '"typicul!
evoked poteﬁtial, the varicbility of wevelorm experienced boil armong
subjects and within the szme subject is considerable. ZSome aspects
of this variability are reusonably systemaiic, like the changes in
ampliﬁude and latency as a function of stimulus intensity. Others
do not appear to follow any specific patieri.

with changes in intensity level, the evoked poterntial de-
creases in magnitude and increases in latency until no observable
response can be seen in the averaged recoxd. ( Fig. 2.3. ) Changes

in bvoth parameters are grazdual as the intensity is reduced to about

30 4B SL. Relow this, latency shift of the R, .. and P,

COTINGI=-
100 i

00
ents is marked and may change by as muchk as 100 ms,

Any variations in psycﬁological state may affect trhe nat-~
‘ure of the evoked potential, often in ways which are difficult 1o
define. Certain broad generalizatioﬁs can often be made., 4 reduct-
ion in amplitude of the AEP with repetitive or boring stimuli, for
example? is xnown to occur. The presentation of random or surprise
~stimuli frequently enhances the amplitude pf the response. Sleeb
and d?ugs both affect the AEP in broadiy similar ways. ‘The background
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Fig. 2.2. Averaged auditory evoked potentials as a function of

-stimulus intensity. Subject JD, F., age 23, at 1 kHz.
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EEG progresses through distinct siages during sleep, and the

evoked potenfial becomes larger, broader and more prolohged. A
fast rhythmic component often follows the responée. In deep sleep -
or genefal anaesthesia, the AEP is rarely found.

The averaged waveforms in children are even more var-
iable. In part, this is atiributed to the immaiurity of the
central nervous sistem (C¥S). ' As neural pathwaeys develop, greater
and grezter consistency can be found in the evoked potential.
Activity and restlessnéss may also account for the fluctuations
experienced. The response is distinctly different in many features
from_the adult responte, as illusirated in Fig. 2.4. In older
children, it is possitle to detect both adult and childlike wave-

forms,

oy v

/oo Iz Sovo Ao s,

Fig. 2.4. The average response from a 3-year old child.

2.3.iii. Nonstationarities

Some of the variability mentioned above reflects the
presence of nonstationarities in the data. Nost physical or
physiological data does exhibit time-varying statistical properties

gsuch as the mean, the second or higher moments of its distribution,
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Nonstationarities may arise from transients in the system under
study, or during long-~range pericds of time where the system grad-
ually undergoes a change of state. This second condition is prob-
ably more descriptive of the nonstationa:ities present in the ELG,
because it implies thzt a given input, such as an escoustic stimmlus,
will produce a varizble output with ihe passsge of time. The pre-
cise naiure of the nonstationarities, though, has never been zd-
equately examined. Time-varying means, variances and frequency
structures may be found in EEG records. Chapter Three consgiders
tke problems of a nonstationzry variance in detail, while Chapier
Four suggesté some mezns of examihing the time-varying frequency
structures vnresent in some EEG data.

Véry few satisfactory methods exist for the itreatment of
ronstationary data, Often an assumption of stationarity is made
and a variety of statisticél tests pexrformed on the data. Distori-
ions may result from assuming that the statistical properties of
the sample do not ;hange with the course of time. Tapering of a
linear trend, for example, would introduce a false‘first hérmonic
in the frequency domain representztion of the signal, Even coherent
averaging can be affected by the presence of nonstationarities.
Purstis of high amplitude EEG activity of variable frequency often
swarp the average response.

If an assumption of stationarity is mede with the EEG
data, care muét be tzken in interpreting the resulis of any tests
or processing applied, Certain features, such'as trends, can be
removed, if it can be shown that these are influencing the siat-
istical test results, but not 2 characteristic feature of the sys-
tem as a whole. Or, the effects of particular processing tech~

nigques, like the distortion of trends by Banning or tapering, may
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be ignored in interpreting specific tests involving the discrete
Foﬁrier transform. Some nonstationary methods are also available.
These involve determining nonstationary probability density funct-
ions from unbiased estimates of time-varying means and variances.
These zre likely tc be different for each subject itested, and prob-
ably for the same subject over the course of time. Hﬁnstationary
stztistical procedures would only be warranted if‘careful and
selective analysis accounting for the presence of certain non-

stationarities proves to be inadequate.
2.4.i. The Koise Sources

Two main sources of bioclogiczl noise are present in AEP
data: the spontareous electrical activity of the brain; and myo-
genic artifacts, mostly due to the contraction of neck muscles.

Ezch of these will be discussed under separate headings.
'2.4.ii. The EEG

The REEG is an extiremely complex and-inherently nons%at-
ionary signal; its amplitude and frequency vary considerably with
the passage of time. Several reasorably regular.waveforms, however,
have been identified, These have coﬁe to be associated with var-
ious‘physiological states and with the maturation of the central
nervous system (CNS). Even though certain rhythms may be more
prominent at one time of life than another, or at one time of day
than another, they wax and wane, giving way to different character-
istic rhythms within the space of a few seqonds or a few minutes.

Several of these more characteristic waveforms will be considered
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in tris section.

REG activity is —ore variakle in children tran in adults,
a feature mernerally atlributed to tre growth and development of the
ChS, Ferticular rhythms, usually of low freguency anrd high but ir-

ic in tre youngy crild. Delta-

Py

regular cmplitude, are charzcieris
L hY

activity ( < 4 Bz ) is dominari and often asynchronous in the first

few wonths of l1ife. As the crild develons, these ri 11y variable

waves are zradually rerwlaced by more reglar azctivity of higher
freguercy and lower awmplitude. The generation of ileta waves ( L s

g ¥

™

) ard some alpha ( 8 to 13 Hz ) can be observod alter a year or
so of bhirth. These rhythms graduaily vecome more reguler in appear-
znce and nore specific in origins ag the child maturesz, By the time
the ehild reaches puberty, the FEG closely regembles that of an ad-
ult, trough irregular, high amplitude, low freguency rhythﬁs may
still e found in the recordings.

Ths BEG of &n adult is charscterized by the local gen-
eration of alpha-zctivity in the occipital regions of the brain,
This consistent rhythm is usually most prominent when tre subject
iy resting with eyes closed. ‘This is the Berger effect, Higher
freguency beta waves ( > 13 Hz ) may also be seen intérmingled with
the lower frequency theta described earlier. Usually, for both
childrenr and adults, a composite of activity is to be foﬁnd. One
prominent rhythm gives way to a seqond, or seversl anpear super-
impozed on one another.

Fhysiological changes of state, such as sleep or the ad-
ministration of drugs, produce substantial changes i the character
of EEG waveforms. During the various stages of sleep, for example,
{he alpha-activity of the resting state waxes and wanes until it is

replaced by the emergence of theta and the occurrence of'higher
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frequency sleep spipdles or -sigma rkythms ( 14 Hz ). As sleep be-
comes more profound, delta waves develop. REM sleep marks a return
of 1o§ amplitude, relatively high frequency waveforms. Drugs, too,
affect the rhythms observed in the EEG. Anzesthetics generaliy re-
duce the frequency of prominent rhythms and increase their amplitude
and varizbility. Thus, in the early stages of anzesthesia, alpha
is quickly replaced by the widesprezd generation of theta andé delta
activity. In deep anaeéthesia, little EEG activity can be seen.

Other patterns may also be seen in EEG tracings, though
- these are attributed to extra-cerebral sources and constitute bio-
logical artifacts. Eye blinks, for example, introduce localized
triangular deflections in the frontal regicns of the scalp, while
eye movements show up aé slow waves both frontally and temporally.
Muscle contrzetion produces spindles, again highly localized.
Sweating, too, intrbduces extrenely slow delta waves, usually in
frontal regions. Head or limb movement is reflected by variable
waveforms in the EEG, a coumon occurrence with children.

411 of the rhythms described above occur spontaneously.
It is‘possible, however, to induce specific rhythms or to check
their presence, Adrian and Katthews ( 1934 ) were able to induce
alpha activity by the use of strobe flashes. Sounds, or the at-
téntion to ?roblems of mental arifhmetic, can block this activity,.
as can visual alertness. The discrimination of complex visual pat-
erns seemsto enhance the generation of beta., Reading, restlessness
or boredom cause the EEG to chanrge in as yet ill-defined wayé, all
contributing to the complex temporal pattern of the signal, and,
of necessity, give rise to many of the nonstationary properties

observed in the data.
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The second source

cordings arises from muscle

are localized to the region.
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of biological noise common to ABP re-
contraction. These muscle spindles

immediately surrounding their generation,

but cun introduce zrtifacts should a recording

electrode be placed in that vieciniily. For AEP datz, the main source

of myczenie contaminztion is the mastoid., Head or neck movements

nay produce high amplitude spindles which can eunsily obscure the

signal detected &t the reference electrnde. ‘Yhen recordings zare

taken, care wmusit be exercised to ensure ithat the subject is reluxed,

with head comforiably resting on & high backed chair or lying down,

This relzxes the important necx ruscles. When testing adults or

[£2]

older children, this can be azccowplished without difficulty. Young

children, hyperactive or disturted subjectis, or ithose suffering from

lazck of musgcle coordination present substantizl problems, as can
epileptics.
2.5. Detection of the AZP

The variability of the evoked potential, its low S/N and
its interesction with 2 nonstaticnary noise source of similar freg-
nency range all compound the difficnltiies of signal detection and
interpretation. Any method of anzlysis chosen will be effective
only insofar as the data conforms to the assumptions inherent in
‘that technique. In order to simplify statistical analyses, an

agsumption of stationarity is often made which may limit the res-
olution or reliability of the signal methods used in detecting the
AEP, However, the usefulness of objective techniques for analysing

ERA data cannot be overlooked. At present, no really reliable,
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objective means of detecting the evoked potentiial is available.
4lthough several machine scoring méthods have been proposed, co-
herent averaging is still widely used in the clinical setting.
As long as records are visually assessed, considerable variability
will be experienced both on an inter-judge and intrsa-judge basis.
( Rose,.Keatiﬁg; Hedgecock, et 2l1., 1971 ) FProviding a method
of detection based on statistiqal probabilities rather than var-
iable, subjective criteria will put ZRiA on & more objective foot-
ing. In zddition, it may come to be accepted zs a standard proced-
ure, allowing zudiometric surveys to be carried out with full as-
suranée that the aata from regional dentres cbuld be compared un-
equivocally. Signal analysis metlods may also provide the means
for examining individual AEP sweeps in greater detail, thereby.
adding to exisiing knowledse und understanding of the evoked poten-
tial.

in the firét instance, detection is of primary concern.
Two general approaches to this problem exist. Fach makes different
.assumptions as to now the ALEP might be generated.- 1f tﬁe evoked
potential can be thought of as a signal superimposed on a noise
source, then differénces in amplitude, power, or signal sirength
could be found between stimulated and unstimulated records of EEG, .
suggesting that methods which improve the signal-to-noise ratio
would be worth investigating. If, however, the aAEP is thought
to result from some synchronization or time-=locking of existing

EEG activity, pattern recognition techniques would be indicated.
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2.6.i. Amplitude Leazsures and the S/K

Improving the signal-to-noise ratio of iXP data has been
attempted with considerable success, suggesiing that, to some exient
at least, the evoked potential may indeed be u smecific response
superimposed on continuous £5G. Coherent averuging, for example,
enhances the_respcnsé 2t the expense of any rundom fluctuations in

T L

the background wctivity. Determining the churacleristic amplitudes
and fréquencies of the ZEG in pre-stimulus epochs, then removing
these elements from post-stimulus records ( Szlomen znd Barford,
1977 ) reducéérthe effects of periodic, rather than random, aspects
of the noise source.

Superimposing o« signal on & noisy background has been as-
sumed to produce an increase in the ampliﬁude ard power of the
noise source alone. This working hypothesis ( Sechimmel, Rapin and
Cohen, 1974 ) has led to detection technigues which zre &g sensiiive
as the visusl scoring of avéraged waveforms., The «csunption, how-
éver, can only be justified for relatively high signal-to-noise
rztios; for those encountered in ERA data, other factors, 'such as
the phase of both signal and noise, must be faken into account. 4
more detailed account and critique of these procedures may be found
in Chapter Three.

Several other amplitude measures have heen developed, each
supposedly as sensitive as the subjective assessment of averaged
records. ( Shimizu and Glzckin, 1967, Saloman, 1970, 1974 )  Aver-
éging, itself, is limited by the discrepancies between the assumed
and actual behaviour of the data, viz., its variability and non-

stationarity. In addition, subjective criteria introduce a further

element of variability, making this choice of reference unsatisfactory
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for establishing the effectiveness of any new signal detection
technique. Sensation level (SL) is another possibility, but it,
too, is subjective on the part of the 1isteﬁer, and discrepancies
have been found to exist between SL and threshold detection by
ERA averaging. ( Rapin, 1974, Rose, Keating, et al., 1972, inter
alia ) Neither.reference, then, is really adequate, yet it is
only on the basis of one or the other ihat any comparisons can
be made. |

For tﬁis study, SL at the time of ERA testing has teen
arbitrarily chosen as a reference. Like averaging, sensation level
stili retains sorme elements of subjectivity, but makes no simplify-
ing assumptions about the data which mighi influence test resulis.

The reasonably consistent results reported by authors
using averaging, or some amplitude or power mezsures to detect the
AEP does suggest there may be some merit in modelling the evoked
potential by superposition. Such a description, however, does nof
conform to present-day understanding of how neurophysiological
mechenisns are thought to funciion. ﬁeurones fire spontaneously,
and send off synchronous volleys of impulses whenever they are
stimulated. KXo superposition of response on the background act-
ivity is observed, but rather, the spontaneous discharges are seen
as synchronized to the stimulus. From the physiological point of
view, it would be more reasonable to assume that similar mechenisms
are at work at the cortical level. The evoked response can be
strongly influenced by background EEG, being of similar amplitude
and frequency in both the waking and sleeping states. To speak of
the AEP as resulting'from some synchronizatidn of existing EEG act-
ivity allows us to consider pattern recognition techniques which

may be of greater resolution than those which rely on a superposition
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2.6.ii. Pattern Recognition Techniques

If spontanecus EEG became synchronized in response to an
acoustic stimulus, then some consistent nattern would be found in
an ensemble of post-stimulus sweeps, The presence of a consistent
pattern could then ke deiected in eitkrer the time or frequency
domains.

In the time domain, both autocorrelation and éross-
correlation with a responze template could bring out the pattern in
tte data. The cﬂoice of template, however, must take certain known
sources of response varizbility into accourt. Simulating one from
the use of secord crder differéntial equations ( Derhyshire, Osenar,
et al., 1971 ) will only be effective when inter-subject variebility
of responses is small. As this seldom happens, this template will
only be successful when‘applied to those subjects whose Tesponse
pettern closely resembles the template. Using each subject as his
or lher own reference, and possibly adapting the template to zccount
for latency shifts a2t lower intensity levels may prove more effect-
ive. |

In the frequercy domain, synchronizetion of the EEG should
be seen in the re-ordering or constiraint of the phase spectral com-
pronents. By comparing the distribution of phase valpes in both
stimulated and unstimulated data, Sayers, Beagley, and Henshall
( 1974 ) have demonstrated the power of this signal detection tech-
nigue. In addition, they have been able to synthesize an evoked
potential pattern on continuous EEG and random noise ( Sayers, and
Beagley, 1974 ) merely by constraining the phase values, suggesting

“that the AEP may indeed result from synchronization of that activity.
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Reyond the advantages of improving response deteciion,
modelling thé AEP in this way may lead to a greater understanding
of how the response is generated. Individual evoked potentials
could then be examined in greater detail than =zt present. This,
in turn, could allow us to make new inferences about the physiolog-
ical mechanisms whick give rise to the observed behaviour and

characteristics of the AEP.
2.7. Conspectus

The AEP, tﬁen, provides us Withvchallenging prodblems of
signal detection and analysis. Both general approaches outlired
above, based on the superposition and synchronization models, will
be examined in detail in the next three chapters. Chapter Three
deals exclusively with the superposition model and with the merits.
énd problems of detection techniques based on signal-to-noise con- .
siderations. Chapters Four and Five, on‘the otrer hand,.are de-
voted to two pattern‘recognition techniques which assume a syn-
chronization model for AEP generation. The phase distributional
analysis of Chapter Four considers the problem of pattern detection
in frequency domain terms. With the phase approach, any consistent
pattern other than noise is sought out from ensembles of post-
stimulus BEG records. The femplate matching techniques of Chapter
Five,von the other hand, make usé of the known features of the AEP
.by attempting to match a high level response with individual mem-
bers of ensembles for post-stimulué epochs. The problems and ef- ‘

fectiveness of each of these methods will be considered in detail,
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CHAPTER THREE
POSER WEASURES AND THE S/N
3.1.i. Introduction

Traditionally, the elégtroencephalogram has been analysed
in terms of its power content. The power spectrum, in particular,
sexrves aé a meens of identifying the rhythms present in the EEG
record, and providing some quantita@ive measure of their relative
signal strengths.> Similar methods may provide a useful means of
detecting the auditory evoked potentizl. This chaptier examines a

few of them in detail.
3.1.ii. Theoretical Considerations

A‘simple, but widelj accepted, model of AEP generation
suggests that a consistent and characteristic signal is superimposed
" on the EEG in response to acoustic stimulation.  The background EEG
is thought of as bandlimited random noise, both Gaussian and stat-
ionary in oxrder tp facilitate statistical analysis. Admittedly, a -
model of this kind fails to account for either the known variasbility
of the AEP or the nonstatioﬁarities inherent in the EEG. It may,
however, be viewed =zs an acceptable set of working hypotheses broad-
ly descriptive of ERA data,

On this basis, the premise of'superposition suggests a
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variety of signal detection techniques based on megnitude and power
measures that could be applied tc the evoked potential. Firstly,

thé power of a signal superimposed on uncerrelzted noise should ex-
ceed that of the noise source z2lone. This effect should be even

more pronounced when the siznal is enhanced by céhcrent averaging.
Secondly, examination of the power specira of sisfnal and noise may
reveal differences in the digtribution of power 2mong the available
frequency components. The effectiveness of trese, or similar, meihods
rests largely on the extent to which the hypoiheses made apply to

the data under study.

Relying on {hese zssumontions, Schimrei, Hapin and Cohen
( 1974 ) have implemented several different amplitude and power
measures for detecting the AEP. Recause of the successes they re-
ported, it seemed reasonable to accept the basic tenents of their
model and to consider one procedure, initially, as a means of ver-
ifying their claims. 4 simple a.c. power comperison between av-
eraged pre-~ and post-stimulus waveforms was chosen for this purpose.

A single trial consisted of 54 sweeps, each composed of
640 ms of pre-stimulus and 640 ms of continuous post-stimulus EEG.
A total of 88 trials were chosen in the first instance. These con-
sisted of the ERA data from five normal young adults, each tested
under a2 maximum of 18 different stimulating conaitions from supra-
threshold to sub-threshold intensity levels. TFour of the 18 trials
were drawn from unstimulated EEG to serve as a control for the

analysis.
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The coherent average for each trial was then determined
and fhe variance of pre- and post-stimulus intervals compared on
the assumption that no significant difference would be seen if the
AEP were not present in the post-stimulus record. A Fisher-test
formed the basis of the comperison. ‘hen abplying an F-test to
the data under these conditions, certain coqsiderations must be
taken into acéount. These involve the notion of degrees of freedém

end how they pertain to the definition of the F-statistic.
3.2.ii., The F-Statistic

For a normally distributed variable, X4 with sample

mezn, x, and vopulation variance, cr‘2, the f01lqwing quantity can

1
be defined:
n

ee > [2]

i=1

2

The parameter u is distributed as')Lz with (n-1) degrees of freedom
where n is the number of indepéndent gamples making up the ensemble.

For a second variable, ¥y with mean, ¥y, variance, cr22, and en-

> []

The F-statistic is then defined as the ratio of these two guant-

semble length, m,

ities divided by their respective degrees of freedom.




As can be readily seen, the use of the r-test regquires a
knowledge of the number of degrees of freedom of the data. Because
each sample in the ensemble average cannot be thought of as indepen-
dent of the next, the equivalent number of degrees of freedom, dfe,
must te estimated from the Blackman-Tukey relations. Dfe is given

by the following equation:

where 7 is the period or dats length in seconds, and Be is the equiv-
alert bzndwidth of the date determined by comparing its smoothed
power spectrum, Pi’ 1o that of white noise of the same power var-

izbility.

L/2 2
1

Pi(f) RET
Be = i=1
N/2

2, v 1

P (f) §gp
i=1

Eere, ¥ is the number of samples per swee and &T is the
? s
interval, in seconds, between neighbouring samples.

Under the null hypothesis, 0’2 and 052 are essumed equal.

1
Any significance in the value of F will force us to reject H0 in
‘favour of the alternative hypothesis: 03? > 0&2. The subscript

1 denotes the post-stimulus record, thought to contain the evoked
potential and therefore be of greater variance or power than the pre-

stimulus EEG., For these conditions, F reduces to the following
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relation, where x and y represent the post- and pre-stimulus sweeps

respectively:
N
E (%)
F = i=1 . df
N af
-2
(:’ l—y)
i=1

This, rather than the convenfional formula for ¥, wes
applied to all 88 pre- arnd post-stimulus averaged waveforms and
tested f;r F(dfl,df2) at 5%. The results of the study are found
in Tables 3-i to 3-v. Bvery table is divided into two sections.
‘Bach section pertains to one of the two tone burst frequencies |
under which the subjects were tested. For every intensity level,
quoted in dB SIi, the.averaged waveform for both pre- and poét—
stimulus erochs is depicted. The degrees of freedom for the post-

stimulus record, d4df and those for the pre-stimulus interval, df2,

1,
are tabulated alongside., F-values are given, as are the probability
levels of the test. Any nonsignificant finding is denoted by a
dashed line. The presence of an asterix (¥*) to the right of an

F-value indicates that greater variability is seen in the pre-

rather than post-stimulus waveform.
3.2,iii. The Power of the Test

Wifh reference to sensation level, 62 of these 88 trials
can be identified as supra-threshold, and 26 as either sub-threshold

or control EEG. To within the confidence limits set up for testing’

Ho’ we would expect the supra-threshold records to show significance
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and sub-threshold records or runs of spbntaneous EEG to show little
or none,

Very brozdly speaking, & pettern of this kind can be found
in the data of Tables 3-i to 5-v. It would be unwise, however, to
press the matter much further. Inconsistencies do arise, as a com-
parison of the results from subjecté CH at 500 Hz ( Table 3-i ) and
JS at 2 kHz ( Table 3-iii ) will illustrate. In the first case,
supra—thfeshold records cbrres?ond with significant, threshold and
control runs with nonsignificant, values of F as expected under HO.
The second example reveals exactly the opposite, The data from zll
other subjecfs lie somewhere between these two extremes, showing
only a general tendency towards significance at supra-threshold in-
tensity levels ( 34 in 62 ) and nonsignificance elsewhere ( 17 in 26 ).

Taken overall, then, only S % of the trials indicate res-
ponse/no respor.se condition; reliably. Of the remaining 42¢, false
negatives account for approxinztely 32¢" and false positives for
10%,  These percentaces are bésed on sensation level, which is
often considered to be somewhat more sensitive than threshold est-
imation by LERA testing. Disparities beitween the two estimates
ma2y help to explazin some of the insensitivity seen in Tables 3-1
to 3-v at or near threshold. It does not, however, eccount for
the considerable amount of nonsignificance found at higher inten-
sity levels.,

These incongistencies do force us to consider more crit-
ically the set of hypotheses which gave rise to the test procedure
itself.v Failure to recognize or account for nonstationarities in
the data, for example, may be introducing distortions into the
analysis. It could be that the variance itself is a nonstationary

statistic in the EEG, As such, it might well be overshadowing any
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significant increase in the power of supra-threshold records; but
even the expectation of such an increase in power may not be valid
when applied to ERA daia.

The outcome of single test, however, is insufficient as
a basis for investigating any of these possibilities. Noxr does it
serve as an adeguate critigue of amplitude and power measures as a
means of detecting the evoked potential, Further examination of
the power is therefore necessary. Indeed, its statistical prop-
erties, distributions under stimulated and unstimulated conditicns,
and iﬁg frequency domain characteristics ﬁay give us some valuuble
insightS‘into.the nature and behaviour of ERA data. A comparison
between zctual data and data simulated to metch our assumptions of
a signal superirposed on =z stationéry noise éource may theréfore
vhelp to clarify the validity of trat set of working hypotheses in

relation to the data itself,
3.3.1. Simulation

ERA data was synthesized from normally distributed broad-
band noise in the following manner, The noisé wag filtered dig-
itally so that its amplitude spectrum closely ressembled the amp-
1litude spectrum of spontaneous EEG. Filtering ﬁés pexrformed on
blocks of 128 samples by a frequency domain multiplicetion of the
Fourier coefficients of the noise with the amplitude spectrum shown
in Fig. 3.1.- This was chosen arbitrarily from the GF 1 kHz file
because little difference could be detected in the amplitude spec~
tra for any of the control runs. A characteristic signal, the
averaged response shown in Fig. 3.2., was then superimposed by

addition bn the second half of the 128 .sample sweep at various
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signal-to-noise ratios,

Signal-to-noise ratio (S/N) is defined here as the rms
level of the signal divided by that of the noise. TFor this sim-
ulation, the unbiased standard deviation.served as the estimate of
rrns values for both the averaged response and the filtered noise.
S/N was considered at four approximate levels thought to be fairly
typicel of ERA data, 0.5, 0.25, 0.1, and 0.05.

Once simulated, the data was organized into 72 'supra-
threshold' trials, each consisting of 54 sweeps of pre- and posti-
stimulgs record 640 ms long. A further 18 trials of bandlimited
random ncise served as a control., The FP-test was ther performed
on the coherent averages of each of these 54 sweep ensembles, The
results of the test are tabulated in Tables 3-vi to 3-x. Every
table is divided.into two sections, each consisting of nine sep-
arate trials for a éiven signal-to-noise ratio, For.each trial,
the cohefent average is depicted. To the right'can be found the

degrees of freedom for the 'post-stimulus' interval, df and that

l’
for the 'pre-stimulus' period, dfz. F-values znd their probabil-
ities at 5% are tabulated alongside. An asterix (*) denotes any

F-value which indicates a higher variance in the pre- rather than

post-stimulus interval.
3.3.ii, Discussion

Not unexpectealy, signal-to-noise ratio appears to be
the crucial factor in deciding the outcome of the F-test. Through-
out this discussion, the signal-to-noise ratio is referred to in-
dividualnsweeps of simulated data. Ensemble averaging improves

this by as much as j/N s or approximately 7.5 for the sample size
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chosen.

For S/N equal to cr greater than 0.25, highly significant
values of F occur consistently. lost are considerably greater in
magnitude than those found in the zpplication of the F-statistic
to the actual 5ERa data in Tables 3-i to 3-v. In eddition, they
often correspond to substantially nore pronounced ccherent averages,
suggesting that, =11 other things being equal, S/N for ERA data is
typically 0.25 or less. Conmpare the coherent averages for S/N of
0.5 { Table 3-vi ) with that of thre zctual template { Fig. 3.2. ).

Belpy a signal-~to-noise ratio of 0,25, less consistency
is to be seen. &4 value of (0.1, for example, revezls slightly better
thar half the records as significant. At 0.05, this figure is re-
duced agein by anproximately two. Typical ensenrble averages at
each of these S/K are found in Tablész—viii and %-ix, HNote that,
although a characﬁeristic éignal is known to be prezent in each
post—stimulus sweep making up these averages, its rms level at a
signal-to-noise ratio of 0.05 is too low for a pattern to emerge in
~the averaged waveforms. Those for S/N of 0.1, however, are com-
varable to supra-threshold records in the range Trom 10 to about
30 4B SL.

A éomparison of this kind brings to light one very impoxrt-
ant matter: the signal-to-noise ratio of ERA data is often too
low for 2 power measure of this kind to be any more than modestly
effective in detecting the evoked potential. This conclusion, of
course, assumes that our other hypotheses concerning the signal and
noise sources are applicable 1o the data., Superposition and nor-
mality here are probably not as critical as the essumption of stat-
istical stationarity. An investigation of the power distributions

for both simulated‘and actual data mey help to.elucidate this matter.



3.4, Distributions of Power

»Using the same ERA and simuleted data, a second statistical
parameter, the power cr variance of each 64 sample sweep, was ex-
amined for both pre~ and post-stimmlus ehsemﬁles. 4 distribution
was then formed from a total of 9 by 54, or 486, estimates of var-
iance in each instance. |

| For broadbtand Gaussian random ﬂoise, this distribution
should be )(2 distributed with (n-1) degrees of freedom, where n
is the’number of independent samples making up each power ecstimate,
Bandlimiting reduces the number of degrees of freedom to about 9 -
on avefage as estimated by the Blackman-Tukey equations., The sin-
ulated 'pre-stimulusf and 'unstimuleted' data should behave in
this manner and sérve as a control. Any statistically significant
differences between the control distributions and those fqr the
simulated 'post-stimulus’ eﬁsembles may suggest some means of using
the ﬁower per sweep measure in detecting the presence of the signal.
Any disparities found between the control and the actual data may
reveal the nature and extent of irregularities present in fhe £EG.

Pig. 3.3. illustrates the type of power distribution
typical of 'unstimuléted' data for the simulation. As expected,
it is )(2 distributed with an estimated 8.42 degrees of freedom.
This estimate was taken from the relationship known to hold for 3(2

variables, namely:

vhere CVp is the coefficient of variation of the power, defined
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as

CV_ = sd(power
p mean(power

For large enough d4df, the sampling statistics of CVp
can be assumed reasonably normzl. Estimates of degrees of freedom
by this means are likely to vary by approximately + 3 for the 5%
confidence interﬁal, being somewhat smaller on average than those
estimated by the Blackman-Tukey eguations. These equations pér—
tain to the sﬁoothed power spectrum. Smoothing tends to reduce
the original power variability, thereby increasing the number of
degrees of freedom. As no such filtering operation is used in
deriving the coefficient of variation, the greater variability here
“will introduce a slightly lower estimate of df on average. In
addition, a wider spread to these estimates would be expected and
this can be determined from the following reiation, from which the

range of 4f quoted above is derived.

2
cv

sd = D 2
» 53t (1 + oV, )

For 211 unstimulated control distributions, i.e., for
simulated data, no significant difference could be detected between
and among them as determined by = Kolmogérov—Smirnov two-sample
test on their respective cumulative frequéncy distributions at 5%.
Neitter could any statistical significance be found between the
controls and any of the simlated 'supra-threshold' distributions
on the same basis. Such a finding is not surprising in the light

of the F-test performed on the averaged waveforms. The siénal-to-
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noise ratio of individual sweeps is too low for a power of amplitude
measure to reveal any significance on z sweep-to-sweep basis.

Comparison of the control distributions with those derived
from the five ERA test subjects, however, reveals sitriking and high-
1y significant results, suggesting that on the basis of their resp-
ective power, the simulated and actual data are drawn from two very
different underlying populations, In addition, cross~comparisons
of the power distributions betweén subjects are often significant.
Only within a given subject does significaence fail to arise. Fig. 3.4.
gives some indication of the kinds of power distributions exper-
ienced with EZRA data.

Although significantly different from the control and
from one another, the power disiributions of Fig. 3.4. are still
‘EK? distributed. The number of degrees of freedom of these dist-
ributions, however, is severely reduced, suggesting a much grezilexr
power varizbility present in the data than would be expected on
our assumptions of normality and stationarity. The disparity be-
tween the two estimates of df zre well outside the 5% confidence
intexrval ofv9 * 3 ﬁentioned above. The Blackman-Tukey estimates
for all subjects are comparable to those determined for the syn-
thesized data. Df as derived from the coefficient of variation of
the power distribution lie well below this in the range from 0.67
to 4.95.

Unusual and consistently high variability is one char-
acteristic of a nonétationary source. Ronstatiopnarity implies that
the estimates of any statistical parameter, here the second moment
or variance, vary with the course of time. This will undoubtedly

lead to irregularities of one kind or another in the distribution

of that stztistic. A nonstationary mean, for example, may turn
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out to be bimodally distributed where a normally distributed var-
iable is expected on the assuﬁption of statioﬁarity. The second
moment, the power chosen for this study, reméins essential]y-)(:2
distributed. The existence in the EEG of & significantly lurge
nﬁmber of sweeps either of much higher or much lower power content
thaen synthesized data tends to reduce thle degrées of freedom of
that 3(2 variable, often by a factor of four or five.

Any attempts to use the power as a response indicator
would be unwise on two counts. The sigral-to-noise ratio is often
too0 lqw to afford reliarle results., Even if this were not so, the
nonstationérities experienced with the power distributions would
require the use of involved nonstationaxry statisfical procedures,
Each subject would then have to be considered inland of himself,
as the possibilities of pooling power distributions on an inter-

subject basis are virtually negligible,
3.5. Spectral Analysis

In the time domain, an examination of the a. c. power
has failed to offer any consistent means of détecting the evoked
pofential. It has, however, afforded us some very valuable in-
sights into the behaviour of ERA data. Frequencj domain anzlysis
may reveal other signzl and noise features related to specific
harménic components which may not be readily recognizable in the
time domain., To éxplore'this possibility, the averaged amplitude
spectra.have been determined for all stimnlated and unstimulated
trials mentioned before; The synthesized data once again serve
as a reference, |

The amplitude spectira were derived from the real and
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imaginary components of the discrete Fourier transform performed
on each 64 saﬁple sweep of data. These were then averaged over
blocks 54 sweeps long. Fig. 3.5. shows a typical amplitude spec-
trum for a trial of 'unstimulated' synthesized data. Compare this
with the amplitude spectrum of Fig. 3.6., that of the character-
istic signzl used for the supervosition, Both are of the same:
general character, but with a few important differences, Har-
monics 1, 2, and 5 of the template are accentuated, suggesting
the possibility of differentiating signal from noise on the basis
of thgir spectral magnitude or power.

“hen one considers the amplitude sﬁectra of synthesized
data for S/N typical of ERA data, i.e., 0.25 or 0.1, the contrast
fails to be as marked. See Fig, 3.7. There is often some slight
and detectable increase in the signal strength of harmonics 1 énd
2 over unstimulated.trials, but this is not statistically sig-
nificent at 5%, nor is it a]wayé present, as Fig., 3.7.b. illust-
rates.

Thé averaged amplitude spectra of the actual data are
fairly similar in character io that of either the 'unstimuleated!
or 'stimulated! data from the simulation. The presence of non-

" stationarities is evident at tires, as Fig, 3.8. illustrates.
These are the amplitude spectra taken from the pre-stimulus EEG
6f the same subject for two consecutive 54 sweep intervals, a
total in ERA testing time of approximately four minﬁtes. Note the
~very dramatic increase in signal strength of the first few har-
monics for the first two minute interval,

These illustrations and comments refer, of‘coufse, to
an amplitude spectrum derived from a time domain signal 64 samples

( 640 ms ) long. A different choice of record length would either
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improve or reduce the resolution among thé frequency components

of the discrete Fourier itransform, Generally speaking, the longer
the time intérval chosen, the greater the frequency resolution.
Ideally, then, for differentiation of signal and noise sources on
the basis of their respectiive speciral components, the longer the
interval chosen, the btetter. Nonstationarities in the EEG and the
time duration of the evoked poténtial ﬁake the 640 ms period con-
sidered here a reasonable compromise. Fdi this interval, little
differerce can be seen in the spectral components of signal and

signal plus noise conditions.
3.6. Concluding Remarks

"In the light of the studies discussed in this chapter,
sevéral conclusionstcan be made., The signal-to-noise ratié of ERA
data is often too low for amplitude or power measures to be ef-
fective in differentiating between response and no response con-
ditions., Even when the S/N is improved by coherent averaging, in-
consistent reSults are prevalent, confirming this conélusion. Kore
importantly, the variance or power is nonstationary for EEG re-
cords. Without-recourse to nonstationary statistical procedures,'
variance cénnot be used as the basis of a statistical test for
significance, | |

Amplitude and power spectra do little more than provide
us with a general description of a signal, in terms of the relative
magnitudes of its frequency components, The general character
of both the EEG and the evoked potential are remarkably similar.
Both occupy essentially the same frequency range, the signal

strength of one not often significantly different from the other,
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Yet, differences do exist bhetween them. Thege are of 2 far more
Qubtle nature, in that the evoked poitentizl may he recognized as
having a particular characteristic shepe oxr pattern. The infor-
mation as to the relative timing of the various freguency com-

ponents can also be seen in the Fourier iran

n

form, 'The phase spec-
trum, often regarded as vproblematic because of a condition known as
wran-around, is noretheless available.for analysis. Because phases
reflect 211 the timing information of the harmonics, théy hold

more promise a&s & means of detecting e signal such zas the AEP.

The next chaptgr deals exclusively with the phase characteristics

of both the ZEG and ithe evoked potentizl,
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Tables 3-1 to 3-x

P-test Resulis on 2EP and Simulated Data
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CHAPTER FOUR
PBASE DISTRIBUTIOMAL AMALYSIS
4.1.i. Introduction

Althouszh too small to be detected reliably in terms of
its signal strength, the evoked potential is ronetheless a sig-
nal of characteristic shape.v Exploiting this pfoperty through
various pat{ern recognition techniques may provide some more
effective means of detecting the AEP, ahd vossibly further our
understanding of the behaviour of both signal and noise'sources.-
Two general approaches are éossible. Some meﬁhods assume prior
knowledge of the patitern to be detecfed, such as the templzte
matching techniques dealt with in Chapter Five. Others make no
such assumption, but merely reveal the presence of any consistent
patterﬁ'othef than noise. The phzse distribution znalysis dis~

cussed here is of this second kind.
4.1.ii. Theoretical Background

Any signal or length of noise can be described by a
series of siné and cosine components known as its Fourier coef-
ficients., These complex numbers provide a frequency domzin rep-
resentation of the signal in terms of the magnitude and phase of

its fundamental and higher order harmonics. Often, it is both
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Fige 4.1.a, A high level evoked votential,
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convenient and illuminating to analyse a signal in the fregquency
domain,

In the past, attention has ecentered on the amplitude or
power spectra. This particular approach, we concluded, is not
sufficiently sernsitive to the subile differences in pzttern ob-
served beiween the AEP and EEG., A recurring pattern implies
some gynchronization of aetivity in the time domain, and this
information is reflected 2s a constraint in the harmonics of the
phase spectrumn.

Phase specira, however, are more difficult to analyse.
In this context, any phase value arises out of the conversion
from Cartesian to polar coordinates of its complex Fourier coef-

ficients. Becazuse this ccnversion relies on the use of the arc-~
téngent‘furction, pheses are restricted to = 180° range. By the
use of further infor-ation, specifically the sign of the rezl
part of the complex number, this range can be extiended to 3600.
From here, by inference at least, the range of phase values can
be extended even further,

Consider the signal of distinctive shape shown in
Pig. 4.l.a. Its phase spectrum ( Fig., 4.1.b. ) can be thought
of as consisting of two superimposed functions of frequency.

One reflects the shape of the signal, the other, its time delay
from a point of maximum symmetry. Keither of these two components
can be distinguished readily from the phase specirum shown in

Fig. 4.1.b. However, by making use of this information, the
phases can be unwrapped, thereby extending the range of phase
values, and revealing the presence of a linear trend proportion-

al to frequency. See Fig. 4.2.a. Removal of this trend results
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The phase speotrum of Fig. 4.1.b. alter

Fig. 4.2.b. The same phase spectrum after removal of

unwrapping. the lineaxr trend.
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in a phase spectrum solely reflecting the pattern of the AEP
taken from its point of maximum symmetxry. ( Fig. 4.2.%0. )

Once the phase spectrum has been determined for each
~ sweep of an ensemble, the distribution of phase values for each
harmonic of interest can he set up, and-someAmeans devised for
testing its significance, If no recurring pattern is présent in
the record, as ié thevcase for spontaneous ZEG, we would expect
~the phase distribution to be uniform. This constitutes the null
hypothesis, Ho. The presencé of a signal such as the AEP in suc-
cessive sweeps of the ensemble, however, implies some synchronizat-_
ion of the continuous.EEG. This should be refiécted as a signif-
icantly non-uniform distribution of the phases for the particular
harmonics involved in producing that pattern. ( Sayers, Reagley,
and Henshall, 1974 )

The uniform distribution postulated under HO is in fact
a cylindrical one. In the first instance, it may be possible to
ignore this inherent periodicity without introducing too much
distortion to either the outcome or the interpretation of testi
results., This could be implemented very simply, by considering
the phase distributions 10 he rectargular and then appnlying a :t2
or perhaps Kolmogorov-Smirnov goodness of fit teét for signif-
icance. Should this lezd to anpmalies or inconsistencies, then
rotational statisticzl procedures would have to be introduced to
account for the periodic nature of the phase distributions.
These might involve a modification to the :ZZ test, where the
rectangular distribution is rotated in discrete steps from 0°

to 5600, or .an examination of the mean phase vector, which undexr

HO, would tend to zero magnitude.
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4.1.iii. The':(2 Test

To explore the possibilities of using this approach to
detect the LEP, & one-sample :ZQ goodnesyg of fit test was chosen
in the first instance. ( Riha, J., 1975 ) From an ensemble of
64 records ofveither stimulated or unstimulaled &G, each 640 ms
sweep was Hanned and tre phase spectrum of harmonics one to five
determined. These were found to ¢ontribute most to the character-
istic patitern of the AEP. The ensemble phase distributions foxr
each of these_harmonics were then formed into histograms of four,

six and twelve bins znd comparisons made with the rectangular dis-

tritution expected under HO by means of the following relation:

k
2
2 (0,-E,)
yi-l N ;;% =2
i=1 ®3

iere, 0i is the observed, and Ei’ the expecited, number of phase

.

¥

values in a given bin, while k is the number of categories or

. op . . . ><2 . i . 2
bins for the test. The variable Y_p is distributed as )(
with k-1 degrees of freedom.

This statistic was applied to a sample of data taken
from nine normzl young adulis under z total of 65 stimulus con-
P . . s 5 TK? < g

ditions. In most instances, significance in the statistic
was seen to coincide with a visually scored positive response,
Unstimalated records failed to reveal any significance other
tran what was expected undexr Ho.

Cexrtain factors, such as the hin size or the arbiiraxry

choice of reference for the phase histograms, were found to
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influence )(2 test results. This, coupled with its apparent
effectifeness in differentiating between response and no response
conditions, justified further investigation. 1In order to validate
the technique, an on-line clinical frial_was proposed, The data
collected would then allow us to explore the behaviour of the ){?
statistic, particularly in reletion to the essentially pericdic

nature of the phase disitributions,
4.2.i. The On-Line Trials

'{‘16 normal hearing young adults aged 20 to 31 took part
in a c¢linical on-line trial désigned to test the effectiveness
'of thé phasé technique in a real-time situztion. In addition,
the data waé stored on analog tape for subsequent analysis off-
line. A detailed déscription of the experimental set-up may bhe
found in Chapter Two. |

Bach subject-was tested at two different tone burst
frequencies; approximately one~half of the group at 500 Hz and
2 kHz, the rest at 1 kHz and 4 kHz. A freguency trial consisted
of seven runs of 64 stimulus presentations ranging in intensity
from 80 dB to 0 dB HL. A no stimulus control run was performed
at the beginning and end of each trial. This, it was hoped,
would give us some indication of the effects on the test resuits
of any long-term changes in the character of the KEG.

"Because of both core and timing limitations of the com-
puter used for this study, certain compromises had to be rade.
Only 40 of the 64 sweeps could be digitized and analysed on-line,

Once the Fourier transform was taken and the phase spectra for



harmonics 2 to 6 derived, a single )(2 test was all that could be
accommodated., For this, four bins were chosen with the phase
histograms referenced to 0°. Although 2 small statistical gample
arnd an arbitrary choice of goodness of fit test for Ho, it was

thought to be zdequate for a preliminary trial of the phase tech-

nicgue.
loT
7 -
Fig., 4.3.  The full Hanning window,

The stimulus marker pulse was set up in such a way that
it tiiggered the ADC to begin dat~ collection 150 ms prior to the
presentation of the stimulus. This was irtroduced in order to re-
duce the effectis of Hanniﬁg on the inrdividual evoked potentials.

A sampled, aperiodic signal such as the 3ZEG is often multiplied
by some gating function before Fourier analysis is undertaken,
The discrete Fourier transform which results from this procedure
is then interpreted as an isolated statistical sample from the
canvolution of the 5pectra of these two gignals. To assure con-

tinuity at the beginning and end of each sweep, the full Hanning



window is often chosen as the gating function. - This is the bell-
shaped curve shown in Fig. 4.3. As can be readily seen, the first
and last 10% to 15¢% of any sweep multiplied by this curve will be
seriously attenuated., ©So as not to distort the evoked potential;
a 150 ms time delay to the presentztion of the stimulus was im-
plemented.

For the results of this on-line sfudy, consult Tables 4-1i
to 4-xvi, Every table is divided into two sections, one pertain-
ing to each of the two tone burst frequencies used in testing a
given subject. Within each section, the nine stimulus trials are
statéa-in terms of dB sensation level (SL) for the test, and ac-
companied by their respéctive averaged responses over the interval
chosen for analysis. Here, the analysis windoﬁ is 640 ms long and
begins 150 ms »rior to stimulus presentation. The vertical arrow
on the time base at the foot of each section indicates the time
of stimulus presentation., Unless otherwise stated, a calibration
of 12‘/zv/cm applies throughout;‘ Probability levels for jk?j
performed on the phase distributions of hapmonics 2 through 6 are

tabulated alongside; dashed lines refer to nonsignificant find-

ings,

4.,2.ii., Discussion

Lt high intensity levels, the average evoked potential
is usually 2 large and sharply defined signal. As the intensity
is reduced, however, the averaged response becomes smaller and
less distinctive in shape. Such behaviour may be interpreted in
several ways. DBither the number of individual evoked potentials

in the ensenble, their shape and amplitude, or both, diminishes
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with @

e

minishing intensity. In the light of the ussumpticns made
concerning the phase distributions, we would expect different
Tindings for each of these possibilities,

If numbers alone ére involved in crezting the difference
in averaged waveforms, essentially the same frejuency components
should exhibit @ phase constraint at all supra-threshold levels.
This constraint would then become less anéd less proﬁounced as the
intensity is reduced. If, however, the shape of individuél

"evoked potentials is respornsible, we would expect the phase con-
straint to engage first higher, then lower, order harmonics with
redﬁctions iﬁ'in;ensity level. A change of shape might equally

likely reflect some altered relative latencies in the components

=]

zking up the respoﬁse and this would reveal a shift in the rel-
ative phasesAof several harmonics. Should both mechanisns be at
work, some combination of these two findings will no doubt emerge.

7ith reference to Tables 4-1 to 4-xvi, Dboth ithe degree
of phase constraint ané trre harmonics involved are seen to change
with intensity level for wmost of the subdjects tested. Generally
speaking, high intensities coincide with z significant amount of
phase constraint in several, if not =211, the harmeonics considered.
As tre intensiiy is reduced, the degree of constraint reflected in
the probability level of )(2 test resulis diminishes accordingly
and usually involves fewer harmonics, although not necessarily
the lower order ones. |

Consider Subject SA at 500 Hz. ( Table A-xiv ) Sig-
hificance is seen mostly at .1% for intensities of 50 @B SL or
greater and 2ll harmonics are engaged. For records taken at
30 4B SL or less, the level of significance drops to either 2%

or 5¢. and only two or three frequencies are constrained, On the
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basis of our assumptions, these findings suggest that a reasonably
consistent response is evoked at ali supru-~threshold levels. &t
reduced intensities, however, fewer frequencies in the EEG are
synchronized to the stimulus on fewer occasions.

There is, of course, evidence of more erratic hehaviour
as the files for Subject GF at 4 kHz ( Table 4-ii ).will illus-
trate. Sporadic patches of significance can be seen in mosti re-
cords down to O 4B 5L, but in all instances only one harmonic
per record is engaged, and seldom the same one. less consistency
is to be found in the averaged waveforms here than is the case
for Sﬁgject'SA. This suggests that 2 smuller number of individ-
ual sweeps cortribute to the average, and that the time-locking
mechanism we vpostulate affects different =ZEG rhythms over the
course of time. This second inference mey well reflect a nron-
stétionary frequency structure in the TEG,

Viewed overall, our expectations are confirmed b; the
results of this on-line study. The phase distributions of supra-
threshold records do exhibit a significant degree of nonuniform-
ity, indicating that some reasonably consistent feature other
than noise is present in these records, There is, however, a
larger percentage ( 20% ) of false negatives than the number
anticipated on the basis of preliminary off-lirne investigations.
“Kost of these occur within 20 d® or so of threshold, suggesting
that this particular test is insensitive to the presence of the
evoked potential at lower intensity levels. Z=Zven more striking
are a few cases, for example, Subjects DF at 2 kHz ( Table 4-xv )
and LS at 4 xHz ( Table 4-xvi ), where most of the supra-threshold
records are nonsignificant, yet the coherenf average indicates a

definite response,
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The sample size chosen for this study may go some way
towards explaining the &anomalies. Certainly, at lower intensity
levels where the ALP exhibits less phase constraint, a small stat-

istical sample might not be sensitive enough to detect it. The

phase histograms of these records, however, freauently reveal a

(NS

. s N o~ - . Y s 5 - -
considerable degree of nonurniformity which the A~ test has failed
to detect as significant, See Fig. 4.4. Both the bin size and .

. Vs - ~ 2 .
trhie choice of zero reference for the use of A~ are known to af-

fect the test results., These findings suggest that, in certain

cage

]

at least, some azccouni must be taken of the periodicity of

-3

the phase distributions. he next section is devoted exclusively
. 2 . . . . . . .
to the X statistic, its behaviour and application to synthesized

data of an inherently cycliec nature.

/27

&0 s20°  s50° 20t Soot JE0°

Fig. 4.4. A 12 bin phase histogram revealing a constraint un-

detected by the 7(2 test.
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4.3.i. The Behaviour of-)iz

When applied to phase distributions, the‘j(? variable is
influenced by two factors. One is the choice of bin size, or num-
ber of éategories, for the test. The other ié the arbitrary
choice of reference for the comparison made between the actunal,
periodic, ristograms, and tEe rectangular distribution expected
undexr Ho' _ |

For a 7(2 variable, the greater the numbexr of degrees_
of freedomn, oxr cétegories, the lower its vériability. Increzsing
the Aumber of bins, then, should improve the consistency and sen-
sitivity of the test. This is limited by one factorionly: the
expected number of wvalues in any one‘category mast not drop below
five or incomsistencies will arise. ( Cochran,‘i952 )

Cn the thle, phase distributions tend to be only
broadly constrained about some value &, especially at lower in-
tensity levels. ( Pig. 4.4. ) Dividing the histograms into as
many biné as poséible would break up this constraint and tend fo
reduce, rather fhan improve, the chances of detecting this feature.
Although theoretically less sensitive, a smaller number of bins,
two in this instance, was chosen so as to accentuate the broad
constrzint often seen in tﬁe phase histograms.

The uniform distributioh postulated under H is now
taken to be cylindrical. Initially, a zero degree reference is
chosen and a two bin :{2 goodness of fit test performed on it.
Then, for the same histogram, the reference is incremented in
.discrete 10° steps as illustrated in Fig. 4.5. Each 10° rotation

of the histogram produces a :{2 value, which can then be considered
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Fig. 4.5; The c:}lindric‘al distribution now postulated undex HO.

Slicing the cylinder at 61, 6’2, etc., produces the

rectangular distributions shown on the right.

XZ

Lo° /8o° 270°

Pig. 4.6. The _)(_21(6’) function, periodic over 180°,
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as a function of rotation, &. The step-wise rotation is im-

o . . 2 .
plemented through 180°, at which point the X 1(6) function
becomes periodic. See Fig. 4.5.

N 4“ . 3 2

As can be seen from this figure, the values of j( 1
fluctuate considerably as & furction of €. There will always be
a theoretical minimum of zero, when an equal number of phases zre
found in each bin. The meximum will ocecur corresponding to the
angle éﬂlwhere the greatest deviation from the uniform distribution
. . . _ . 2 .-
is seen. Choosing the maximum value, denoted by X 1( em), should
optirize the procedure, affording far greater sensitivity to the

tegt itself.
4,%3.ii., Simulation

Eoth unifbrmly distributed, and broadband Gaussian ran-
dom noise were generated in order to study the sampling statistics
of the rotational 7(2 variable., Unifornly distributed data, per-
iodic over 360°, served as a control on the use of j{? as a test
of the rall hypothesis. From the Gaussian random data, the eff
fects of signal processing on the phase distributions could be
investigated. Hanning, in particnlar, affects the phase spectrum,
introducing dependence among the_harmonicé. This is, of course,

a seguentizl interdepgndence; the distribution of 211 second,
third, or nth harménics shouid not, &t leust theoretically, be
seriously affected. YTecause of the anomalies experienced in some
of the on-line data, the effects of signzl processing were still
thought to be worth verifying emﬁirically.

To this end, uniformly distributed data was generated



13

asy

ozt

o/ T

ro 20 So ‘o S 6o  Fo o S0 roo

Pig. 4.7.2. Probability density function for 7(21(00) derived

empirically from uniformly disiributed data.
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Fig. 4.7.b., Probability density function for the maximum of the

2
jK_1(69) function derived empirically from uniformly
distributed data.
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in blocks 54 samples long_and then arranged into trials consist-
ing of 1080 blocks. Gaussian iandom noise was generated as de-
" seribed in.Chapter Three, where 64 samples made up a sweep, 54
sweebs a block, and 1G8 blocks in a.trial. Phase distributions
for the fi;st ten harmonics viere considergd, and pooled to form
an>overa11 sample size of 1080 for 7(? analyéis.

The nurber 54 was cﬁosen so as to coincide with the
data taken from the on-line study, Of the 64 sweens recorded on
analog tzpe, only 54 were selected as free from saturation or
other recording artifacts. |

Once generated, both types of data were subjected to
an exploratory )12 survey. In the case of normally distribﬁted
data, each sweey was first Harmed and then the phase spectrum
determined. Fron blocks of 54 sweews, vhase histograns for the
first tep hzrmonics were set up and TX?1(¢9) results pooled over
these harmonies. In both instences, 1080 7X?1(¢9) functions
were determined and two values, the maximum denoted by )(21(¢9m),
and that corresponding to a zero degree reference, 7{?1(00), were

selected. The probability density functions for each of these

variables may be found in Fig. 4.7.
4.3%.iii. The Distribution of the Maximum

Both uniformly distributed data and the phase hiétograms
formea from broadband Gaussian random noise behaved in a very
similar manner, ruling out any possibilities of distortions due
to signal processing. For simplicity, this discussion will only

make reference to uniformly distributed data.
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Prom Fig. 4.7., a striking difference may be seen in

iq s . . 2 .
the probability density functions for the two ){ varialles under

\ 2 oy . . Sy 2 . .
study. As expected, TK_I(O ) is distributed as X with a single
degree of freedom. TFoth the mean and standard deviation of the
. ca4s - . 2 .- .

distrivation of the maximiz X, however, indicate that this par-
ticular vorizble is distributed with three degrees ol freedom. A
one-szwple Yolmogorov~-Smirnov test on its cumulative frequency
distritution confirms this finding, revealing no significant
.. : PR 2 ety
difference, at 5%, from a 7( 3 distribution.

To some exteunt, the increazse in degrees of freedom is
to be expected. . Choosing the maximum cannot help ot intreduce a

tizs In tre distributicon towards a grezter percentage o
. =] D>

-y

highexr

Y

2 s . s
TK values, Tiis, in {urn, increases the sensitivity of the test,
= e 2 U
by reducing the variability of the )( statistic. Tecause the
bin size remains constant throughout, the position of the maximunm
must in sopme way influence this veriability. Elementary prob-
ability theory affords us some insight on how this influence may
Le effected.
. o 2 .

For this, we postulate that each X 1(9) function can
te thought of as having n degrees of freedom. From this function
the maximum only is chosen, and we mey describe this choice as
the probability that 1(9) is greater than some specified level

denoted by:

P(XZ, > %) = &(x)

Determining the probability that the meximum has a value at least

x is related to the probability that, assuming independent :Kzl,
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2
a11~>( , &re less than x, or:

P(X7(6) >x) =1 - (X (8))<x UXZ,(8,)<x ...

2
...UXn(Gn) < x)

. e . - . 2
If £(x) is tre curulative freguency cistribution for =& j[ 1

variable, the zbove expression reduces to:

P(XZ,(6) >x) =1 - £(x).£(x)s..£(x)

n times
or:
2 n,
P(X (8, )>x) =1~ £ (x)
This is the probability for the maxirum. Its cum-
ulztive frequency distributioﬁ is what concerns us, and this

is given by:

F(x)

i

P(X>,(8,) < %)

1-(1-1"(x))

£ (x)

The cumulative frequency distritution of the maximum,
then, can be predicted by taking the cumulative frequency dist-
ribution of 7(2 4 raisine i .

; @nd raising it to the power n, where n rep-
resents the number of degrees of freedom, on average, in 7(21(6’ )

records., PFor this parficular function, degrees of freedom may
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be estimated from the following relation between the standard

error and standard deviation of the ensemble:

af = sd 2
se

From this equation, the j(?l function is found to have
three independent samrles, or degrees of freedom. Substitutiﬁg
n = 3 into tre formula F(x) = £ (x) derived earlier results in
the predicted cumulative frequency distribution illustrated in
Fig. 4.8.
| a Comparing this cumulativeAfréquency distribution with
.that for a'7(2 variable with three degrees of freedom reveals
that fhe predicted curve of Fig. 4.8. is significantly_different
at 14, Significance is also seen when comparisons are drawn be-
tween the predicted cumulative frequency distribution and that
for a variable distributed .as j(?z? The Koimogorov-Smirnov one~
sample test used for these comparisoﬁs indicates that the sig-
nificance seen results from the predicted curve being smaller
thanljx?s, in the first case, and larger than.XL?Q, in thé second,
Such a findihg suggests that the estimated cumulative frequency -
distribution of Fig. 4.8. has between two and three degrees of
freedom, slightly less than that determined empiiically.

The use of elementary probability theory, then, has
given ﬁs some quantitative basis on which to explain the increased
degrees of freedom observed in the distribution of the maximum of
beach->(?l(£9) furiction. The disparities seen in the degrees of
freedom, apprdximately 2.5 predicted to 3 observed empirically, are
not substantial, and may well reflectvsome statistical sampling

effects, This inference, however, has not been investigated
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any further,
- . N . . . 2 s s
¥nowing the distribution of'>( ]( 6&H’ it is now pos-
. . 2 .
sible to apply the rotatlonal-}: procedure to dula in an off-
line situation, testinz the maximum against the confidence in-

tervals established empirically.
4d.,4.1. Off-Line Data Analysis

2 .
Three different :{ goodness of fit tests were pex-

formed on the data collected frow the on-line siudy discussed in

Section 4-2, An additional 22 files taken from znother siudy
have also heen examined. To confirm the results of the on-line
2 . . . .
study, & four bhin TK test azrainst the rectangular distribution
was examined, In addition, tne rotational T& test was applied
in order to determine the effectiveness of this procedure in
i Fa . a " . - 2
detecting the presence of the evoxed potential. Two X 1 values
were selected: the maximun, and that correspordinT to a zero
degree shift,

Kach ensemble analysed consisted of 54 sweeps of either
stimulated or unsii-ulated BEG. From these, the phase dist-
ributions of tite first ten harmonics were forred, =:d the iwo
Xt ;

tests applied.

Results of this investigation on the data from the on-
line phase study may be found in Tables 4-xvii to 4-1, where
every table consists of the nine trials from & given subject at
orre tone burst frequency. The additional 22 files analysed are
presented in Tables 4-1i to 4-lxxii. Here, only eight trials

per subject are available, all taken under stimulated conditions.
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For both sets of tables, intensities zre quoted in 4B
SL and accompanied by their respective averaged responses for the
640 ms-ihterﬁal analysed., The vertical arroﬁ on the time base
serves as an indication of the time of stimulus presentaztion.
Three entries may be found under each intensiiy heading. The
first of these, W, refers to the ouicomne of‘the rotationa1'>(2
test for which ihe maximum value of the )(2i(69) funcfion has
been chosen. The second entry, denoted by 1, refers to the out-
come of the two bin :{2 test with the phése histograms referenced
to_Oot‘_The third, 3, represents the results of a four bin.)ﬁz
test, again with = 0° refererce for the pbase histograms. The
)(2 test results for the first ten harmonics considered are tab-
uléted alonggide the relevant entry. Dashed lines refer to any

finding which fails to reiurn significance &t 55,
4.4.ii. Discussion

Examinztion of these tables zllows us to draw compar-
isons between the various 7{2 measures chosen, and assess the
merits of each in turn. With reference to the on-line phase
study discussed in Section 4-2 ( Tableé 4-i through 4-xvi ), yet
further cowparisons can be made.

Consider the four bin test chosen to confirm the initial
on-line investigution. ( Tables 4-i to 4-xvi and 4-xvii to 4-1 )
For almost all subjects tested, the off-line verification marks
an improvement in the sensitivity and consistency of the')Lz test
results. Subject IS at 4 kidz ( Tables 4-xvi and 4-x1lix ) serves

as an illustrotion. In the on-line triel, only two of the seven
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supra-threshold records, those at 80 dB and 60 48, show any sig-
nificance, yet a consistent response is present ix the averzge
for ezch of these intensities. Coeompare this with the results of
the confirring off-line study, Pable 4-x1ix, where o greazter numter,
six of the seven records, reverl significance in % least itwo
harronics, For the off-line verificaztion, often ihe degree of

n . 2(0 L op.s
vhase asggregatiorn zs determined by )( 5“O ) is at higher prob-
ability levels and seen to affect a greater number of freguency
componrents as is the case with tre on-line study.

Such differences may well be due to the size of ttre
stetistical samplie analysed. Where an ensemble size of 40 pro-
duced a 2Q% false negative score in the on-line study, this is

. . : e . 2
now reduced to apvroximaztely 129 for the four bin X.° test per-

formed off-line on a sample of 54. Yost often, the false neg-

¢

tives are seen in the region of subjective threshold. Here,
even the coherent zverage often fails to detect a response. The
. Xz . L. o)
four bin test with phase histograms referenced to 0, then,
may be regarded as a reasonable indicator of resnvonse and no re-~
svonse conditions, provided a large encugh sample is analysed.
. 2 ; -
The rotational X results are remarkably sinilar to
. o, 2 .
those found for the off-line four bin X~ study in zlmost all re-
spects. Occasionally, the four bin test is more sensitive in the
region of subjective threshold. ( Subject FR at 2 kHz, Table 4-xxv
At other times, the rotationazl statistic provides a better in-
dication. ( Subject JS at 500 Hz, Table 4—xxii) When viewed over-
all, though, very few differences are to be found between these

two tests znd this is not suroprising. The rotational statistic is

known to he distributed as >{2 with three degrees of freedom. But,
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because a cylindrical, rather than rectangular, distribution is
postulated under Ho,‘a greater confidence can be placed in the
rotational.)i2 test results. 'The phazse constraint observed irn the
histozrams ﬁay fzl1 at or near the boundary of the bins chosen for
.)(2 analysis. The resulting )(2 value, ithen, mizht reflect a lack
of phase aggregation even though a significant nonuniformity exists
in the histogram. The step-wise rotation iiiroduced to the tuwo
bin 3(2 test eliminates these boundary problems, thus assuring'us
that the choice of reference for the phasé histograms canriot in-
fluence the test results. Comparing thé rqtational statistic to
the four bin off-line investigaticn revezls & false negative rating
of 145, only slightly higher than the 129 quoted earlier in this
discussion. In both instarnces, the false pqsitive score is the ex-
pected 57, | |

As is to bhe expected, thé tvwo bin off-line test showed
the zreatest irconsistency. Nost of the nonsignificant firdings are
within 20 4B or so of threshold, suggestirg the procedure is insen-
sitivé 1o the broader phase constraint present at these levels.
‘Anomalies do exist, such as the GF 4 kHz file. ( Table 4-xx ) This
particular file showed éimilar inconsistencies for the on-line |
study, and it may well be that some nonstationary frequency struct-
ure in the EEG ié responsible. Even the more sensitive four bin
test and the rotaztional 7(2 statistics reveal similar, though less
striking, inconsistiencies. When viewed overall, false negaiives
account for about 164 of the two-bin')Lzyrecords, and false ros-
itives, the 5% expected under Ho.

Accounting for the periodicity of the phase distributions,

then, hus certainly improved the sensitivity and reliability of the
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test results, This improvement is most striking when comparisons
' eoas 2 ot ts .

are made between the rOuatlona1'>C statistic and the two bhin test
from which it is derived. When comparisons are drawn between the

. . . . "X 2 . . . .
rotational statistic and the four bin test to which it is relazted
by virtue of its sanpling stetistics, fewer differences zre to be
seen. There is, however, the imporitant assurance that the arbitrery
choice of reference for the phase histograms does not influernce the
rotational test results., 'The step-wise rotation irherent in this
vprocedure reduces the boundary effects mentioned earlier, thereby
optimizing the search for phase constraint., This cannot be said of
“the four bin test, or any other procedure which postulates a rect-
erngular distribution of phases. Without accounting for the cyclie
nature of the prase histograms, a nomsignificant finding might well

refleect only a poor choice of reference.
4.5.i. The lrean Phase Vector

The rotational )(2 statistic is only one of a number of
procedures which can be devised and applied to data of an inherently
periodic nature. In its appiication, we merely zpproximate the
cylindrical distritution postulated under Ho by rotating the phase
histograms through discrete 10° stepg. Other statisties, such as
the mean phase vector, its magnitude or standard deviation, assume
-a continuous, rather than discrete, distribution of phases., Because
no approximations are made in the application of a technique of ihis
kind, the phase vector method may prove more reliable then the rotat-

2 v
ional )C statistic. By taking a slightly different approach to the

detection of phase constraint, it may well offer further insights
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.

. . 2 . L.
not obvious from the use of the X © stutistic.
4.5.ii. ‘Theoretical Rackground

Instezd of viewing each ensemble of phuse values as druwn
from a cylindrical distribution, we picture them as lying on the
circumference of 2 cirecle of unit radius, Sece Fig. 4.9. An arrow

drawn from the center of the cirele to each phase value defines ihe
—t

phase vector, ;4 . In vector rnotation, this is given by:

}‘i =|Vil 4?:5’1'

-l
where I;ﬁi]'denotes the magnitude, and & ij the direction of the

o—tn

vector ;?

.

el

Pron the vector sum of all members of the ensemble, ihe
mean phase vecfor, ;E;, its absolute value, I};ﬁl, ahd standzxd
deviation, sa, can‘be derived, In the absence of any phase éon~
straint, the magnitude of ZZ; will tend to zero, while its sd will
approach an exﬁected value given by 6”;}. Should there be sone
aggrega{ion of phase values, however, the magnitude will be sig-
nificantly srecter than zero, and the standard deviation signif-
icantly lesé than Cyza. If phase énsembles teken from spontareous -
ERG records are chosen as a reference, the cumulative frequerncy
distributions for each of thesé statistics car bhe derived., TFronm
these, the confidence intervals for a statistical test of phase

constraint are readily available.
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4.5.1ii. The Sampling Statistics of &,

Unstimulated EEG recoras taken from the on-liﬁe phase
study served as a reference on the behaeviour of the mean phase
vector, TFrom each 54 sweep ensemble, tne phuses of harmonics one
to ten were derived and the mean phase vector; its magnitude and
standard deviation calculated, 4 total of 68C estimates of ezach
statistic were then available for esfaﬁlishing the cumulative
frequency distributions shown in Figs. 4.10 and 4.11.

The sampling statisties of the two parameters which con-
cerﬁ‘ﬁé,,the absolutg velve of the phase vector and its standard
deviaticn fqr a 54 sanple eﬁsemble, czn be derived from thé two
distribﬁtions of Figs. 4.10 and 4.11. The absolute value is seen
to be distributed zbout a mean value of 0.125, while the stancard
devistion is centered.on 96.50. The means of hoth these distribut-
ions are different,Apbssibly significantly different, from thre
expected values afl}Z:ﬁl = C and .sd = 1040 determined theoretical-
ly for uniformly distributed data.

These two expected values have been derived from the

following relatior by assuming a continuous and uniform distritution

of phaseg between ~-180° znd +180°,

+180°

x p(x) dx

™
il

-180

Here, x is the stetistic of interest, and p(x) the probability
density function. TPor a continuous, uniformly distributed var-

iable, p(x) is a constant and equal to 1/3600.
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Pig. 4.10. Cumulative frequency distribution of sdj?i’ derived
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loT+

3
52 /%
5% 2 1 ]

1 1 { 1 ! ! i
T ¥ 1 { S

L eps oo ers  or0 Qo285 030 o035 o450

Fig. 4.11. Cumulative frequency distribution of l?zkl' derived

from the phase ensembles of spontaneous EEG.



88

The disparities seen between observed and expected values,
then, may well reflect either some nonuniformity in the phase dist-
ributions of spontaneous EEG or the effects of drawing a limited
sample from a continuous distrihutioﬁ. In ofder to examine these
possibilities in greater detail, distributions of the standard dev-
iationbwere set up for data known to te drawn from a uniform dist-
ribution ana compared with those determined for spontaneous ZEG.
Because of the possibility that certein rhythms in the EEG may be
" introducing a phase‘constraint, and hence a bias in the distribution
of the sd, each individual harmoric wes considered separately.

o If BEG xhythms are cohtrihuting to the difference between
the observed and expected mean of the distribution, we would expect
this contribution to be most marked in the first few harmonics,
where siow waves predominate, or in harmonics six through eight, the
range of oc—activitj. 4in examination of the records.for‘individual
subjects occasionally confirms this hypothesis. ihen distributions
zre formed for each harmonic, however, there is little evidence of
any synchronous background activity fo» any frequency to approx-
imately 10 Hz. Those histograms for harmonics seven and eight do
reveal some evidence of a bimodal distribution, as Fig. 4.12 il-
lustrates. A preponderance of e€-activity in some, but not all,
subjects, then, may be introducing a slight bias into the overall
cumulative frequency distributions of Fig, 4.11. But, because the
mezns of the distributions for 211 harmonics are not significantly
different from the overall mean of'96.5°, synchronous activity in
the BEEG cannot be rgsponsible for the disparities observed between
the expected and empirically derived distributions.

Roth uniformly distributed data, and the phase distributions
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Distributions of sd';?i derived from the phase ensembles
of bendlimited Gaussian random noise ( Fig. 4.13. ) and

from uniformly distributed data. In both cases, each

estimate of the sd is derived from a sample of 54.



of bandlimited Gausgsian random noise were generated in order to
clarify the tehaviour of the sd. 54 sweeps of bandlimited noise
made up each ensemble, from which the phase distributions 6f tre
first ten harmonics were derived. 4 total of 270 estimates of sd
were then aeterminea, and formed into the hisingram shown in Yigx, 4.13.
Initially, uniformly distributed data was generzted in blocxs 54
long, and from these, the distrilution of Fig. 4.14 was derived,
These two distributions are remerkably similar to one
another, and this observetion is confirmed when a two‘sample Fol;
mogqrpy-ﬂmirnov test is applied to their respective cumulative
frequency distributions, Xo signifidant aifference is to be seen
betwveen them at 5ﬂ._ In adiition, comparing either of these dist-

ributions with that derived from the phase distributions of spon-
taneous 2EG ( Fig. 4.11 ), reveals that ncne of these distrilutions
are significantly different fro:m one another. From this, we may

coriclude that an assumption of uniformly distrivuted data is cer-

tainly a reasonzble one to make as regards the phases of continuous

The sample size, then, may be respoﬁsible for the dis-
parities we observe hetween the expected and ;ctual values of the
- standard deviation. 1In orxder to investigate this matter, uniformiy
distributed dat;.weregenerated in blocks 200 loné. Its probability
density function for fhe sd is shown in Fig. 4.15.a. Note the shift
in mean value frbm approximately 969 to 1000, and ihe way in which
the distribution has narrowed to a range between 920 end 106°. When
1000 uniformly distributed variables make up each estimate of sd,
the distribution shifts even further to the right so that it is
centered on 1020, and limited to the range fron 100° to 106°.  See

Fig. 4.15.b.
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Fig. 4.15.a. Probability density function forx sd.zgitaken from
uniformly distributed datz. Each of the 270 estimates

is formed from 200 variables.
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Fig. 4.15.b. Probability density function for sd ;Ti where each

eptimate of sd is derived from 1000 variables.
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The standard deviztion of the mean phase vector, then, is
2 biased estimator, which approaches its theoretical, expected valﬁe
as the sample size increases. The nature of this bizs is a non-
linezr one, as Fig. 4.16 illustrates. Here, the mean of each en-
pirically derived distribution of sd is plotted against sample size.
The vertical bars indicate- ) 1 standard deviations on each estimate;
Tote how the mean increases in value, while its sprezd decreuses,
with increzsed sample size,

Confidence intervals for a biased estimator such as the sd,
‘and, by inference, the absolute value, of the mean phase vector,

™

then, mist we determined erpirically for a given sample size. For
the §4 sample ensemble we have heen invesiigeting, these are ;;iven

by

P |52) P(sd<s)

5% 0.24 86.5°
2¢; 0.28 87.5°
1¢% 0.33 84.0°
L 0.36 81.0°

For other sample sizes, consult the table on page 99,
4.6.1. Data'ﬂnalysis by the Phazse Vector iethod

All stimulated records can now be assessed in the light
of these findings. The same 34 files‘from the on-line phase study,
and the additioral 22 files discussed in Section 4.4 were subiected
ﬁo phase vector analysis.

The results of this study are to be found in Tables 4-l1xxiii
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to 4-cxxviii. The format here is similar to that of the other tables
in this chapter. Bach intensity is quoted in dB SL and accompanied
by its averaged_response; Three separate headings are to be found
alongside each intensity level, The first of these, 6%V refers to
the angle of incidence of the meanbphase vector, ;Z;. To the right
are tabulated the relevant values of ¢9m for eaéh of the ten har-
monics analysed. The seéond heading, Z;m, refers to -the absolute
value of the mean phase vector, while the third, sd, refers to its
standard deviation. To the right of the second and third headings
@ay be-found the respective probability levels for these statistics.

Dashed lines refer to any value which fails to reveal éigﬁificance

at 5%.
4.6.ii. Discussion

The results of Tables 4-1xxiii to 4-cxxviil reveal findings
remarkablﬁ similar to the off-line }:2 results. ( Tables 4-xvii to
4-1xxii ) discussed in Section 4.4.ii. For the most paft, high
intensities of acoustic stimulation illustrate a striking phase
constraint in several, if not all, the harmonics congidered., The
degree of constraint, as indicated by the probability levels of
botk the absolute vaiue and standard deviation statistics, dimin-
ishes substantially below intnesities of 20 4B or 30 dB SL, almosti
always engaging fewer harmonics;

In addition, these two statistics afford wus some insights
into the nature and behaviour of any phase aggregation seen in the
records. Consider Subject BO at 2 kHz., ( Table 4-Ixxxvi ) For

ali records from 70 dB to 10 dB SL, the second to fifth harmonics
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are'significaht with only a few exceptions. For intensities of

_ 30 dB SL or greater, these harmonics are very tightly constrained.
Although not noted in the tzbles, the standard deviation is zbout
65° on average, significantly smaller than the mean of 96.5O der-
ived from.spontaneous EEG files. Sﬁch a findirng suggests that the
majority‘of phases lie very close to the mean wvalue, é?m, and this
ie confirmed by the phase histograms shown in Fig. 4.17. 1In al-
most all cases above 30 dR Sl, thke mean phase value, de does not
change substantizlly as a functiop of intensity level, pcinting to
a‘consistency in both the shape und latenpy, and the nmumber of in-
divi&ﬁél evoked potentizls in the records.,

Below 30 dB SL, botk the extent of phase constréint and
the number of harmonics involved is progressively reduced until
little or no significénce is to be seen. Once again, the standard
deviation provides us with a quartitative measure of the spread of
phases abouf the meaﬁ phase value, 47m. On zverzge, the sd has
increased to 820, still significant, but substantially higher than
the figure of 65O gquoted above., The phases of a given harmonic,
then, are much more broadly constrained about the meén rhase value.
The mean itself is seen to shift. This could reflect either a
shift in the latency of individual evoked potertials in the records
or a reduction in their numbers, ér possibly both. |

Comparing the mean phase vector angle, cgm, with the
median of each of the phase distributions depicted‘in Pig. 4.17
allows us to investigate this mattef further. PFor the third har-
monic, d’m ( Table 4-lxxxvi ) is found to be -17° and -10° at
70 @B and 50 dB SL respectively. As the intensity is reduced,

this shifts to values of -37% at 30 dB, -46° at 20 dB and finally
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to -81° at 10 d5 before significance is lost. The median of the
phase histograms ( Fig. 4.17 ) at iniensities zbove 30 dB SL cor-
responds favourably with the mean phuse angle, é%n. it reduéed
intensities, however, it, too, shifts, but usually not as substant-
ially as (9m. Consider the 10 dB record, The median of the dist-
ribution is geen to lie at approximately —600, while the mean phase
vector is found to be -81°,

This finding suggests that the latency of the third har-
monic does indeegd shift ags a function of intensity level. The
time—locking‘mechanism we postulate has bvecome less effective on
two counts, Fewer sweeps are synchrorized to the time of stimulus,
and those sweeps which are synchronized zre locked less sharply to
the stimulus.

When considered overall, the prase vector method is some-
whét more sensitive and consistent than the :t2 tests discusséd in
Section 4.4. Its false negetive rating is 11¢, as opposed to
either 12% or 14% experienced with 7(?. False positives are within
the expected 5% interval.

Because the phase vector approach assumes a uniform and
continuous distribution of phases, it is the statistical procedure
best suited to data of an inherently periodic kind. When compared
to a procedure which only approximates the periodicity of phases,
the rotationall}tz statistic, the phase vector method is only mar-
ginall& more sensitive?ﬁ?being a simpler and faster algorithm is
the greatest advantage of phase vector anzlysis. Computing time,
for examble,.is reduced by at lezst a factor of three, an important
consideration if real-time clinical trials are to be carried out in

future.
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4.7. Concluding Remarks

"Postulating that the AEP resuli{s from some synchronization
of.existing EEG actiyity has led us to search for thke presence of a
concistent and recurring pattern in arn ensemble of post-stimulus
sweers. This recurring pattern can be seen as & constraint in the
phasés of the individual harmonics which constitute it. . Fhasc anal-
ysis, however, is complicated by the inherent periodicity of the
phases themselves, and demands the use of rotational statistical
procedures. A data simulation has allowed us to explore the be-
havioﬁ? of several phase measures.and'establish their sampling stat-
istics empirically. Despite the sample size bias observed, the
empirical phase statistics are seen to te well-behaved and carable
of detecting the ABF to within +10 42 of.subjective threshold on
average. Thus, either the rotational 7(2 procedure, or tre standard
deviation of the vector angle could be used for fhe clinical assess-
ment of auditory thresholds, acheiving one of the objectives of
this‘research. In addition, theif effectiveness as response in-
dicators suggests that a pattern recognition approach is appropriate
to AEP data. The simple template-matching prbcedure discussed in
Chapter Five is considered in order to establish the use of pattern

recognition techniques for AEP detection.
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The standard deviation,:yi;%] us a function of sample size K.
4
A total of 500 estimates formed the empirical cumulative frequency

distributions from which the following confidence intervals were

derived.

N 5¢.. 2.5%. 155 0.5%
8 60.7° 53.9° 48.0° 45.3°
12 71.0° 57.2° 61.9° 55.8°
16 75.0° 71.6° 65.0°" 58.7°
20 77.3° 75.4° 59.4° 68.0°
24 76.7° 73.6° 69.4° | 6s.2°
28 83.0° £0,5° 76.5° 66.5°
32 83,0° 80.9° 78.4° 73.8°
36 84.7" g2, 8° 80, 7° 78.2°
40 86.3° 83.5° 80.7° 78.7°
44 86.5° 83.5° 81.5° 70,35°
48 87.8° £5,5° 83.1° 80.5°
54 88.5° 87.5° 84.0° 81.8°
60 20,1° 87.5° 84.6° 8., 7%
70 91.0° as.8° 87.7° 85.2°
80 91.5° 90, 3° ge, 2° £6.,4°
90 92,5° 90.6° £9.0° 87.7°
100 93.5° 91.8° 90, 4° p9.3°
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Tables 4-i to 4-~-xvi

The On-line X23 Study
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Tebles 4-1xxiii to 4-cxxviii

The Phase Vector Appioach
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CHAPTER FIVE
TEMPLATE MATCHING BY CROSS~CORRELATION
5.1.i. Introduction

The phase analysis discussed in Chapter Four reveals how
promigjhg pattern recognition techniques can be in AEP detection
and anéiysis. It is reasonable, then, to examine other pattern
recognitioh methods in order to assess their effectiveness as re-
sponse indjcators. To this end, a simple.template.matching pro-
cedure is discusseg in this chapter.

Template matching by cross-correlatidn makes use of
specific informatiéﬂ about the characteristic features of the
pattern to be detected. Phase spectra, too, contain much of this
information. Thus, they are related to the cross-correlation
coefficient between a respohse template and an individuvual post-
stimulus sweep. ( Beagley, Sayers, and Ross, 1978 ) The contrib-
ution o% an individual harmonic to the correlation coefficient is |
dependent on its relative amplitude, and on its phaée in relation
to the response template. Clearly, only high amplitude spectral
components can contribute substantially,‘and this contribution is

determined by their relative phases.

5.1.ii.- Template Matching

Template matching techniques -assume a similar pattern is
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present in the EEG following acoustic stimulation. Here, a refer-
ence waveform, or template, is compared with individual sweeps,
usually by some means of cross-correlation. The simplest detect-
ion procedure involves the use of the cross-correlation coefficient
which measures-the degree of similarity between two waveforms, both
referred to zero time.

In any template matching procedure, the cﬁoice of a2 suit-
able template is of considerable importance. Use of a template
synthesized from second order differential equations has been ex-
amined and fqund to be reesonably effective in detecting»the pres-
ence of ind;v;hgal AEP's. ( Derbyshire, Osenar, et al., 1971 )
Choice of this particula: template, however, fails to account for
either the inter- orvintra-subject vériability known io exist in
ERA data., A high ievel averaged response taken from each subject
tested would eliminate var}ability on an inter-subject basis, and
possibly improve the sensitivity of the technique. Should this
reference waveform prove inzdegquate in accommodating the intra-
subject variability, it could then be adapted to ;ccount for certain
knewn sources of variation, viz., the shift in latency at reduced
stimulus intensitiies. The present study is only concerned with
exploring the possibiiities of this method in order to wvalidate
a pattern recognition approach to AEP analysis. Improving the

sensitivity of the test procedures has not been attempted.
5.1.iii.- Cross—-correlation Coefficients: +the Null Hypothesis
To investigate the possibilities of template matching as

a means of detecting the AEP, a simple comparison involving the

cross-correlation coefficient was chosen for an exploratory study.
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" The cross-correlation coefficient, ro, measufes the ﬁegree 0f sim-
ilarity between iwo waveforms, provided this dependence is linear
in nature. If x; are the éampléd valués of the template, and ¥io
the samples from an individual post-stimulus sweep, then the cross-

correlation coefficient is given by:

whe?gﬁi and y are {he semple means of x and y respectively, and s
and sy'are their respective standard deviations. N = 64,15 the
ﬁumber of samples of x or ¥y in a sweep.

r, can take on any value from -1 to 41, the higher the .
value of T the greater the similarity between x znd y. If, on
average, x and y b;ar no linear relationship to one another, as is
the case for unstimulated EEG, the expected valﬁe of T, will tend
to zero. Should a pattern similar to the template be present in
'sucéessive sweeps of an ensemble, as with supra-threshold records,
the mean cross-correlation coefficient will then éxceed some pos-
itiﬁe value,'R. ¥athematically, the null, aﬁd alternative, hypoth-

eses can be stated simply as:

'HO: <1'o> = 0

H.: <ro>>R

Before these working hypotheses can be tested on stim-
ulated data, R must be derived from the distiribution of T, taken
from control EEG. To this end, nine records of sponianeous EEG,

each 54 sweeps long, were subjected to cross-correlation analysis,



and the estimated probability density function shown in Fig. 5.1.

derived.

a/5T

o./107

0O5T

S

O

Fig., 5.1. Distribtution of ro from 1080 estimates on spontaneous

EEG records.

4s can be seen from Fig. 5.1., the distri'bufion of ro is
essentially normal, with a& population mean of zero and a standard
deviation equal to 0.2391. In all but 5% of cases under the nuli
hypothesis, the sample mean should lie within 1.96 standard errors
of the population mean. Because we have devised a one-tailed test,

the confidence interval for R must be defined in the following way:

R > <ro> + t.se
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or

B> t. 0.2391
M

where t is tre vglue corresponding to a probability of P(ro>»t)
‘taken from a table of normal variables, and I = 54, the number of
sweeps making up each ensemble,

The confidence intervals associated with probabilities of

56, 2.5%. 1% and .1% are tabulated below.

e
AN

P(r0> t) - R
5% . 054
2.5% .064

. 1% .076
1% .100

5.2.i. An Exploratory Cross-correlation Study

Given the sampling statistics of ré fo:'control EEG, the
null hypothesis was tested on the stimulated records from 17 normal
hearing zdults. ZEXach subject was tested at two different ione
burst frequencies and seven intensities of stiﬁﬁlation ranging
“ from 80 dB to 0 dB HL., A trial consisted of 54 sweeps of post-
stimulus EEG 640 ms ( 64 samples ) long. For each series of eight
trials, thé»averaged response to an 80 dB HL tone burst was chosen
as the reference waveform. Individual sweeps at lower intensities
were then correlated with this template. Thus, for every trial,

54 estimates of T, vere available for analysis; The mean cross-

correlation coefficient for the trial -was determined and compared
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with the confidence ihtervals set up under Ho‘

The results of this exploratofy study can be found in
Tables 5-i to S-xvii.  Every tab1¢ is divided iﬁto two sections,
one pértaining to each of tﬁe two tone turst frequencies used in -
testing the subjects.- Here, intensities are quoted in 4B SL for
comparisons between cross~correlation and subjective.estimates of
threshold. For all eight trials, thg averaged response ls shown,
.The first entry is the template, below-whiphbare tabulated the mean
cross-correlation coefficient, 50, and its associated'probability
levels for the 7 ‘Trecords at lower intensities. Foxr simplicity
of ﬁézggntation, probabilifies of 2.5%% are recorded as 2%. Any
50 value which is not significant at 5% is denoted by a déshed,

line.
5.2.ii. Discussioh

Whenevér a recurring pattern simiiar to the templeate is
present in successive post-stimulus sweeps, the mean crossecorrelafion
coefficient should be significantly greater than zero. For most of
the supra—fhreshold records in Tables 5-i to's-xvii; this expect-
ation is confirmed. .At high intensities of acoustic stimulation,
the mean cross;correlation coefficient is large; and usually réf
mains so to about 20 or 30 dB SL, at which point it drops off rap-
idly, often becoming nonsignificant. See Subject FN at 2 kHz and |
500 Hz. ( Table 5-v ) The decline in the magnitude of T may be
more gradual, &s Subject GF at 1 kHz ( Table-s-ﬁ.) illustrates.

A characteristic S-shaped curve results from ranking an
ensemble of cross-correlation coefficients from the most negative

to the most positive values. For ERA data, reductions in the
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stimulus intensity cause this curve to move_downwards £uwards 2
larger percentage of negatively correlated sweeps. See Fig. 5.2.
This downward shift suggests tﬁat, in addition to the mean cor-
relation coefficient, either the median or the zero crossing of
the rank ordered curve could be implemented a2s a response in-
dicator.

Occasionelly, more than one slope can be seen in & rank
ordered curve, indicating the possible existence of two or more
populations in that particular record. See Fig. 5.3. The overzll
slope of this line, as mezsured by & least squares best fit to
all‘ggi;the first and last 10% of values, is 0.023, not signif-
icantly differeni from the mean of 0.027 found for 211 records
analysed. However, three distinct slopes, showr in dotted lines,
may be seen in this curve. These have values of 0.02, 0.045, and
0.01 respectively. In this particular czse, each of these slopes
lies withir two standard errors of the mean, suggesting that the
data here is still within the 5% confidencé intervals for the'
slope statistic. |

Taken overall, this simple cross-correlatiion procedure
Ausually detects the presence of the AEP to ﬁithin +15 4B of sub-
jective threshold. 4dmittedly, this is not as sensitive as the
phase statistics discussed in the previous chapter, but no at-:
tempt has been made as yet to refine the procedure, thereby im-
ppoving fhe sensitivity of the test. On this basis, a false neg-
ative score of 16% is not unreasonzble or unacceﬁtable. The false
: ﬁoéitive rating is well within the expected 5%. Such findings
indicate that this particular pattern recognition approach doés

- indeed hold promise as a means of AEP detection and analysis.
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5.3.i. An On-line Study

The preliminary off-line siudy indiceted ithat the cross-
correlation procedure could well he implemented effectively in =z
clinicai setiing. To this encd, an ori-line investigation was under-
taken 1o assess itis meriis and provide more cate for further anal-
¥sis off-linre.

Fifteen normal heaping adnlts, sged 18 1o 31, were chosen
as subjects for the study. Xach wes tested &t either one or iwo
tone burst freguencies, and &z rzange of intensity levels from 80 d3B
to =10 4B HL:V.Qonventional SRA equipment wes enwloyed in present-
ing 64 stimuli for each intensity level. The marker pulse and the
arplified BEG were then fed into. the analog-to-digital interface
of a small computef for immedi:zte zanalysis of the dazta, At the
seme time, analog recordin%s of both signels were tzken for future
verificaiion of the procedure. See Chapfer vo for a detailed
description of the experimental appzratus.

Tor a sampling rate of 100 Hz, 640 ms or 64 samples of
vost-stimulus record were considered. The sudbject's coherent av-
erage to 64 80 4B HL tone bursis was chosen «s the template or
reference waveform. For eazch lower intensitiy level, 64 individ-
ual sweeps were cross-correlated with the reference, yielding a
sample of T, values. These were rank ordefed, and their mean, Eo’
«nd standerd deviation, s, calculeted.

Because 64 sweeps madé up each ensemble of T, values, the
.confidence intervals quoted in Section 5.1.iii. have to be mod-

ified slightly to the figures itabulated below.
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"P(Eo>-t) R .
5% . 049
2% .061
1% .070
1% .093

The resulfs of this study can be fﬁund in Mables 5-xviii
t0 5-xxviii. The confirming off-lirne study, for ensembles of
length 54, are tabulatéd in Tables 5-xxix to S5-xxxix. ZXach
‘tableﬁjs divided into two sections, one pertaining to the éight
trials Bn a given subject at a single tone burst frequéncy. In-
tensity levels are all quoted in dB SL and accompanied by their
fespective‘averages over the 640 ms interval considered for the
analysis, To the Fight of each entry are tabulated the mean
cross-correlation coefficient, Eo’ and its aséociated probability
level. Any value of 50 which is not significant at 5% is denoted
by a dashed line.

o

5.3.ii. Discussion

. On average, use of the cross—correlation_technique matches
subjective thresholds to within 15 dB. High intensity levels of
stimulation usually correspond to very high values of Eo and cor-
respondingly low levels of significance. As the intensity is re-
duced, the mean correlation coeffiéient decreases in megnitude,
then very sharply drops to values typical of continuous EEG. Con- _
sider Subject AR at 1 kHz as an example. ( Table 5-xxiii ) All

recorde to +10 dB of threshold are significant. With slight
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fluectuations, the wvalue of 50 decrezses with intensity level, until
it drops from 0.0953 at 10 4B to 0.0257 at O 43 SL.

In certain cases, the disparities between subjective thres-
holds and tlose determined on the basis of cross-correlation are
extremely large and occasionally erratic. Consider Subject 2P at
4 ¥¥z. ( Table 5-xx ) Aalthough the averzged waveforms indicate =z
definite response in records to within 10 dB of subjective thres-
hold, only two trials, those at 40 4B and 20 4B SL returh values of

Eo which are significant

{w

t 5¢.. The rank ordered curves reveal no
evidence of more than one population in any of the records, sug-
ge-ting somé\ggber mechanism must he responsible for the anomalies
observed. In part, these may Te due to the choice of templzate,
less typical for this subject thar the 60 dB EL record beczuse of

the large negative deflection following the P complex. In part,

200

trhe disparities mayvreflec{ the presence of recording, or other,
ertifacts, because no provisions were made for their rejection in

this on;line investigation. The off-line verificztion ( Table S-xxxi )
shows & marked improvement in the test results, suggesting that
saturation of the imput amplifiers may well have been the cause

of the anomalies observed.

Subject BS at 4 kEz ( Table 5-xxvii ) brings to light one
problem encountered with this, and to some extent, the on-line
phase study. For both investigations three subjects in 32, or
apprdximately 10% of all tested, failed to display coherent av-
ereges even at high intensity levels. This has been known to hap-
4pen in ERA testing ( Davis, 1976, Rose, Keating, et al., 1974 )
and reesons for its occurrence still remain uncertain. For these
subjeets, it may be that the conventional electrode placement is

poorly situated to detect the dipole measured. The maximum of
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this dipole does shift with maturation df the CNS ( Davis, 1976,
Davis and Onishi, 1969 ), being most readily detected between
vertex and.mastoid in the adult subject. If surface.mapping of
the evéked potential were undertaken, it could well reveal whether
2 different spatial orientation of the dipole is responsible for
the very poor responses recorded;

wWhen the results of both the on-line study and its off-
lire verification are considered overall, the false positive rating
is 3%, while the false negative score is zpproximately 14°. 3Both
figures afe comparable to those found for thé exploratory stﬁdy
diséﬁgéed in section 5.2. Templute matching procedures, then,
hold considerable promise zs a means of detecting the AEP,.even if
- no allowance is made for the intra-subject variability of evoked
potentials; Their decided effectiveness assures us that pattern
recognition techniéues zre indeed the best means of studying the

AEP,
95.4. Concluding Remarks

Interesting features have come to light in the use of
this simple template matching procedure. Certain subjects, for
example, reveal little by way of a coherent reSﬁonse, even at
high levels of acoustic stimulation. This raises important quest-
ions about the spatial sampling of the AEvahich, to date, have
not been adequately resolved. Contour mapping of the evoked pot-
ential over the surface of the scalp could provide us with_much
important information. As well as specifying the spatial sampling

requirements for AEP recording, a study of this kind could help

to explain some of the disparities observed. Through the use of



247

spatio-temporal methods of signal analysis, the temporai and three-
dimensional spatial propagation of the AEP could be studied more
thoroughly, and its origins more clearly defined,

Though simple in its applicaﬁion, template matching by
cross-correlation is & reusonsbly effective and reliable resporse
indicetor. Its sensitivity could be improved by adapting the
response template to accommodate thé snift in latency of the ~Z=P
at reduced stimulus intersities.. This could well make template
matching comparable to the phase measures of Chapter Four in deiect-
ing the presence of the evoked poterntial., 4s it stands, though,
the cross-correlation analysis is sufficiently sensitive to in-
dicate that a pattern recognition approach to AEP data is indeed

Justified.
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- Tables 5-i to S-xvii

Preliminary Cross-correlation Study
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" Pable 5-1., Subjeot CH, P, age 23, at 2 kHz and 500 Hz.
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Table 5-ii. Subjeet GF, M, age 28, at ) kHz and 4 kHz.
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Table S5.vi,

Sudbject TB, L, oge 20, at 1 kHz and 4 kHz.
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and 4 kHz.
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Table 5-xii. Subject VM, P,.age 24, at 1 kHz and 4 kHz.
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- Pable S-xiii. Subjeoct SBa, F, age ?0. at 2 kHz and 500 Hz.
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Tadle 5~-xiv. Sudject PC, M, age 24, at 2 klz and 500 Hz,
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Dable Sexvi, Subject Si, M, age 28, at 2 kHz and 500 Hz.
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Tadle 5-xvi., Sudbject LS, F, -age 20, at 1 kHz and 4 kHz,
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‘ .
vz Intensity T, P(x > t) | / | ’ . Intonnity Eo . P('i‘o>_'-)
/\/\/\ 80 a8 - ' - _ ry\{w 70 43 - -
W 60 d3 0.2802 1% 50 4B ' 0.3252; 1%
’\'\/\ 40 aB 0.2421 1% 30 4B 0.1985 A%
W 30 dn 0.1221 T4 A/\/j’~‘j 20 4B 041379 S U
_/\/\/\’\/f 20 4B 0.1650 1% ‘ /\f,/\ 10 dB 0.0993 1%
j\.\\\/p\\/f/-/' 10 &3 o.14ofr 1% M 0 4B -0.0034. : -
0 4B 0.1887 1% -10 dB 0.0443 )
o YA
W control 0.0809 1% \/‘_\f\/f\/\/ control  -0,0132 -
control 0.0616 5% \t 5 : C::jj control -0,0303 B
J""’ Xo 300 ns . @ o 0 ms. |
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- Table 5-xvii, Sudbject DF, F, age 20. at 2 kHz and 500 Hz,
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Tables S-xviii to0 S-xxviii

~. The On-line Cross-correlation Study
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v}\/\W\‘\/&/ 30 4B
/W\/“JM/\\/L/ 10 4B
Jﬁ\f\\/\J\/N\ 0 4B
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o0 Joo Ro MS
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Table S5-xviii. Sudjects GP, M, age 18, at 500 Hz, and EB,F, age 18, at 1 kHz.
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Table H5-xix.

—

Subjects SH, F, age 20, at 2 kHz and RB, F, age 20, at 2 klsz.
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Table S5-xx.

Subject AP, P, age 20, at 4 kHz and 1 kHz,
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.Padvle 5~-xxi. Sudbjest XC, F, age 20, at 1 klz and 4 kHz,
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Table 5-xxii. Sudbjesct SC, P, age

22, at 2 xHz and 500 Hz,
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o, Intenaity 3 P(§9> t) o Intensity %, CB(E > t)
J\/\/\/\‘\/ 90 43 . - - | 90 a3 - - u
//J\‘ 70 4B 0.1351 % 70 4B 0.1390 A%
%[M/\ 50 4B 0.1661 1% \/\A/V 50 dB 0.1562 2%
| /,\/_/"*"\ 40 4B 0.1423 1% '\[\J\/\ 40 4B 0.1633 .19
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M ) \ '
' f\/_,\/‘f\ 20 4B 0.0623 2% J"\/\/\/v 20 4B o.1;e'2 1%
'\/"‘“‘\/" 10 4B _ 0.0953 1% /\/\/\ 10 3 0.1320 1%
/\,\/\J" 0 dB 0.0257 - /\/\,\/ 0 aB 0.0733 1%
1 { f 2 =10 4B 0.0257 - Iz r , control 0.0345 -
‘i o So Ws s> Joo Soo  ma,

Rable S5-xxiii.

Subjects AR, M, age 19, at 1 kHz, and RW¥, M, age 19, &% 4 kHz.
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Table S5-xxiv. Sudbject CK, R, age 19,

at 2 kHz and 500 Hz.
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Table 5-xxv. Sudject GD, P, age 19,

at 2 kHz and 500 H=z.
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Table §-xxvi.  Subject SR, M, ege 20, at 2 kHz and 500 Hz.
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.Table 5-xxvii. Subjeot BS, F,age 23, at 1 kHz and 4 kHz.
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Intensity 7, P(Z > t) 7 Intenstty z,
724/ 2/ -
80 dB - L .- -«\/\/\/ 60 dp -
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v\\/\«\ 30 dB 0.2296 .15 W 10 dB 0.1193
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[:————- A
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6Le

Pable 5~xxviii., Sudject TR, M, age 31, at 1 kHz and 4 kHz,.



280

Tables S-xxix to S~xxxix

" The QOff-1line Verification
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.Tabla S5-xxix. Subjects CP, M, age 18, at 500 Hz and EB, P, age 18, at 1 klz,-

282
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Table 5-xxx. Subjects SH, F, age 20, at 2 kHz and RB, F, age 20, at < kHz.
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Table S-xxxii. Subject KC, P, age 20, at 1 kMz and 4 kiz.
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Table Sexxxiv., Subjeots AR, M, age 19, at 1 kHz and RW¥, M, age 19, at 4 kHz.
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Table S-xxxvi.

Subjeect GD, F, age 19, at 2 kHz and 500 Hz,
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- Table 5-xxxvii. Subject SR, M, age 20, at 2 kHz and 500 Yz,
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‘Tadle S-xxxviii. Subject B3, F, age 23, ai 1 kHz and 4 kHz.
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. Table S-xxxix, Subjeot TR, M, age 31, at 1 kHz and 4 kHz.
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CHAPTER SIX
CONCLUSION
6.1, Introduction

The aim of the work reported in this thesis was to develo?
objective methods for detecting the suditory evoked potegtial pres-
ent in the EEG. The statistical properiies of the data were only
>vaguely understood at the outset of this study. It soon became
clear that the data was frequently ill-behaved; its statistical
properties, theréfore,-needed examination, delinezation, and required
understanding beforé any effective means of detéction could be pro;
posed and implemented. The signal analysis.approach'adopted here
made possible a thorough examination of signal and noise sources,
'-thereby defining their-nature. These invéstigations led to thé

~development of several reliable means of AEP detection.
6.2, Objective AEP Detection

In ordexr to provide some effective means of detecting the
AEP, three different signal approaches have been developed and as-
sessed. Two important conclusions were drawn from the power anal-
yses of Chavter Three. First, the tyﬁically low signal-to-noise
ratio of ERA data does not allow power measures to be effective in
discriminating the presence of a response. Second, the ensemble

power or variance of EEG records is a nonstationary statistic.
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Thus, it is an unsuitable mezns of AEP detection.

The use of phase phenomena suffers from no such disadvant-
ages. This has been established by the detailed phease analyses of
Chapter Four. Phase values are inherently cyclic ( exhibit 'wrap-
around! )} and this invariabiy complicates measurements, statistical
analyses and interpretztion. Further, the large record-by-recoxrd
variability of the phase values pf individual harmonic components
requires the use of substantial sample sizes, making the use of
histograms or other statistical simplifications uwnavoidable. How-
ever, the sampling statistics of none of the obvious measures are.
known, and so need empirical determination. This has been carried
out and it is interesting that a sample size bias has emerged vexry
clearly. HNevertheless, subject to recognizing this feature and its
implicafions, the‘distributions and the statisfics derived from them
were found to be stationary:and well-behaved. This approach is ef-
fective in detecting the AEP objectively to within 10 4B of subject-
ive threshold. In consequence,‘it is cleaxr that a patternArecognit-
ion epproach is fully justified. This finding was fbllowed up and
further supported by the cross-correlation studies carried out in
Chapter Five, |
N No satisfaétory and objective reference exists for estimating
tre effectiveness of the statistical procedures developed in this
thesis. Both the pure tone audiogram (SL) or a visually scored av-
erage response, for example, are subjective on the part of the
listener or of thg tester. Yet, it is only on the busis of one
or more of these subjective estimates that comparisons can be mude
and some relevant statistics dexrived, viz,, the false nositive or

false negative scores for & particulur test. The following table
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‘indicates the similarities and‘disparities between the subjective
mezsures of SL and a visually assessed cohereﬁt average on the one
hand, and the cbjective précedures developed in this thesis on the
other. Ior each entry, A represents the percentage agreement be-
.tWeen the two'scores, FP and FH, the percentage false positive or

‘false negative ratings respectively on the basis of the subjective

- reference,
Test SL : Coherent Averése
A FP Fli A Fp i
Power F 58% | 10% 329 645 |11% 25¢%
753 835 | 5% 126 | 884 | 5% 7%

' 2 , .

FPhase Yo | 8% | 3% | 145 | 90% | 3% | 7%
sd | ea | 5% | 11% | esd | 54 .| 7%

Template

- , , )

Vatching| o | 8% | 3% 16% |- 845 | 4% | 124

Table 6-i. Comparison of subjective and objective procedures for

estimating auditory threshold.

These tabulated comparisons reveai that the objective phase
étatistics are in good agreement with these two subjectiﬁe methods
* rontinely used in assessing auditory thresholds. Phase gtatistics,
however, have the added advantaze of objectivity. The criteria for
response/no response conditions are statisiically based, and thus,
time and tester invariant. In addition, the phase statistics are
ectsd.by the presence of high variaﬁce BEG sweeps which often

d;stort the ensemble average: ‘ezch sweep contridbutes only L/N to
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the test result.

The phase studies conducted in this thesis establish that
the method could now be implemented clinicelly, either in the )(?
or phase vector form, ithus reducing the exp-usé of HRA by elim-
inating the need for exrerienced clinicians to assess each iecord
visually. A special-purpose minicomputer or microprocessor system
could certainly be developed and programmed to perform the simple
analyses Tequired for extensive on-liné trials of the technique,
With the satisfaztory completion of clinical trials, a device of
~ this kind could ihen pe considered fq; large-scale epidemiological
studies, thereby acheiving one of the further objectiveé of this

research.
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6.3. AEP Analysis

At the outset of this study, a few qualitative features
about the averaged AEP were known and widely acceptéd. -Its sﬁbject
to subject variability, or its changes in shape and latency zs a
funiction of intensity level had been well documented., Other feat-
ures of the data, such as the interaction of signal and noise.
sources, of the presence of nonstationarities, had been recognized
sometimes, but largely overlooked. Thus, the assumption of a stat-
ionary EEG source was commonly implicit in most detection tech-
riques., So,.indeed, was the notion that the AEP could be modelled
ag a characteristic signal superimposed upon it,

- As the present study progressed, it became increasingly
evident tﬁaé hypotheses could not be applied to the data without
first testing their relevance. The simulation study of Chapter
Three illustrates this point very clearly. Given tﬁe superposition
model of AEP generation, its underlying assumption of stationarity
for the EEG cannot be justified. Though the additive mechanism
this model postulates may still be valid in describing the data,
it fails to suggest procedures reliable enough for objective AEP
detection. Thus, other models, with their correspondingly appro-
priate detection techniques, may provide a more satisfactory des-
cription of the data.

The phase statistics derived in Chapter Four reveal the
presence of any consistent pattern present in an ensemble, regard-
less of the mechanism by which that pattern is produced. Thus,
either superposition, or the synchronization model appropriate to
phase analysis, couid be responsible for the constraint seen in

supra-threshold records. Recent unpublished work in this department
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suggests that either model could be applicable to approximately

30 dB SL. Below this levei, data simulated by superposition fails
to reveal evidence of phase constraint. Phase aggregzation, however,
can still be seen in ERA deta and in that simulated by constraining
the phase values of bandlimited Gaussian random noise., Such find-
ings suggest that the synchronization model presented in Chapter
Four is more suitable in describing the AEP, Before any conclusions
are drawn, however, a detailed study should be carried out on data
simulated by these two means. With the results from that study, a

- thorough assessment of the two models can be made.

Details of the data, including its siat;stical properties,
need to be assessed fully before instrumenté are developed for its
measurement or gﬁiéelines set down for its interpretation. The
work reported here has implgmented this philosophy pracfically. As
such, it marks the first systematic attempt to define the parameters
of ERA data and determine their sampling statisfics before testing

their effectiveness as response indicators.
6.4. Proposals for Fuiture Study

As meﬁtiqned above, further validation of the phase pro-
cedures in a clinical setting is now warranted. So, too, is a
simulation study to assess the basic tenents of the synchronization
model. Comparisons between data simulated by synchronizaztion and
guperposition could provide the information necessary to establish
which of these models is more aprropriate for AEP data.

The phase statistics developed in Chapter Four should be

explored for further sampling effects. The phase vector statistics
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are known to be biased estimators. _The_same may be true of the
distribution of the maximum 121, and this should be established.

The relationship between the phase and othef pattern
lrecogniﬁion fechniques could be explored more thoroughly. For
example, the contribution of each harmoﬁic to the overall cér—
relation coefficignt could be coupled with its phase value, pos-
sibly providing further information about the behaviour of the data
in relation to these statistics.

Some studies could be proposed to investigate the source
of the AEP. Contour méﬁping of the evoked potential would provide
spatial distributions of the éignal. With the proper choice of
signal analysis procedures, the information derived from a study
of this kind could well enhance and quantify much existing know-

ledge of AEP and EEG behaviour.
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